forked from CSTR-Edinburgh/ophelia
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
348 lines (271 loc) · 10.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# -*- coding: utf-8 -*-
#!/usr/bin/env python2
'''
Adapted from original code by kyubyong park. [email protected].
https://www.github.com/kyubyong/dc_tts
'''
from __future__ import print_function, division
import math
import sys
import librosa
import os, copy
import matplotlib
matplotlib.use('pdf')
import matplotlib.pyplot as plt
from scipy import signal
import numpy as np
import tensorflow as tf
import pdb
def get_spectrograms(hp, fpath):
'''Parse the wave file in `fpath` and
Returns normalized melspectrogram and linear spectrogram.
Args:
fpath: A string. The full path of a sound file.
Returns:
mel: A 2d array of shape (T, n_mels) and dtype of float32.
mag: A 2d array of shape (T, 1+n_fft/2) and dtype of float32.
'''
# Loading sound file
try:
y, sr = librosa.load(fpath, sr=hp.sr)
except:
pdb.set_trace()
# Trimming
if hp.trim_before_spectrogram_extraction:
y, _ = librosa.effects.trim(y, top_db=hp.trim_before_spectrogram_extraction) #### osw: don't trim here so length matches e.g. magphase features
# Preemphasis
y = np.append(y[0], y[1:] - hp.preemphasis * y[:-1])
# stft
linear = librosa.stft(y=y,
n_fft=hp.n_fft,
hop_length=hp.hop_length,
win_length=hp.win_length)
# magnitude spectrogram
mag = np.abs(linear) # (1+n_fft//2, T)
# mel spectrogram
mel_basis = librosa.filters.mel(hp.sr, hp.n_fft, hp.n_mels) # (n_mels, 1+n_fft//2)
mel = np.dot(mel_basis, mag) # (n_mels, t)
# to decibel
mel = 20 * np.log10(np.maximum(1e-5, mel))
mag = 20 * np.log10(np.maximum(1e-5, mag))
# normalize
mel = np.clip((mel - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1)
mag = np.clip((mag - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1)
# Transpose
mel = mel.T.astype(np.float32) # (T, n_mels)
mag = mag.T.astype(np.float32) # (T, 1+n_fft//2)
return mel, mag
def spectrogram2wav(hp, mag, trim_output=False):
'''# Generate wave file from linear magnitude spectrogram
Args:
mag: A numpy array of (T, 1+n_fft//2)
Returns:
wav: A 1-D numpy array.
'''
# transpose
mag = mag.T
# de-noramlize
mag = (np.clip(mag, 0, 1) * hp.max_db) - hp.max_db + hp.ref_db
# to amplitude
mag = np.power(10.0, mag * 0.05)
# wav reconstruction
wav = griffin_lim(hp, mag**hp.power)
# de-preemphasis
wav = signal.lfilter([1], [1, -hp.preemphasis], wav)
if trim_output: # removed this as default, as we now do early stopping in generation
wav, _ = librosa.effects.trim(wav)
return wav.astype(np.float32)
def griffin_lim(hp, spectrogram):
'''Applies Griffin-Lim's raw.'''
X_best = copy.deepcopy(spectrogram)
for i in range(hp.n_iter):
X_t = invert_spectrogram(hp, X_best)
est = librosa.stft(X_t, hp.n_fft, hp.hop_length, win_length=hp.win_length)
phase = est / np.maximum(1e-8, np.abs(est))
X_best = spectrogram * phase
X_t = invert_spectrogram(hp, X_best)
y = np.real(X_t)
return y
def invert_spectrogram(hp, spectrogram):
'''Applies inverse fft.
Args:
spectrogram: [1+n_fft//2, t]
'''
return librosa.istft(spectrogram, hp.hop_length, win_length=hp.win_length, window="hann")
# from mel-spectrogram !! (from github.com/fatchord/WaveRNN)
def reconstruct_waveform(hp, mel, n_iter=32):
"""Uses Griffin-Lim phase reconstruction to convert from a normalized
mel spectrogram back into a waveform."""
#denormalized = denormalize(mel)
#amp_mel = db_to_amp(denormalized)
# transpose
mel = mel.T
# de-noramlize
mel = (np.clip(mel, 0, 1) * hp.max_db) - hp.max_db + hp.ref_db
# to amplitude
mel = np.power(10.0, mel * 0.05)
S = librosa.feature.inverse.mel_to_stft(
mel, power=1, sr=hp.sr,
n_fft=hp.n_fft)#, fmin=hp.fmin)
wav = librosa.core.griffinlim(
S, n_iter=n_iter,
hop_length=hp.hop_length, win_length=hp.win_length)
# de-preemphasis
wav = signal.lfilter([1], [1, -hp.preemphasis], wav)
return wav
# TODO add functionality so that we can also plot on phone identities to the encoder states on the y-axis
def plot_alignment(hp, alignment, utt_idx, t2m_epoch, dir=''):
"""Plots the alignment.
Args:
hp: Hyperparams file
alignment: A numpy array with shape of (encoder_steps, decoder_steps)
utt_idx: The index of the utterance that we are plotting, for naming/titling purposes.
t2m_epoch: (int) training epoch reached for text2mel model.
dir: Output path.
"""
if not dir:
dir = hp.logdir
if not os.path.exists(dir): os.mkdir(dir)
fig, ax = plt.subplots()
im = ax.imshow(alignment)
fig.colorbar(im)
plt.title('Cfg={}, t2m_epoch={}, utt=#{}'.format(
hp.config_name, t2m_epoch, utt_idx))
plt.ylabel('Encoder timestep')
plt.xlabel('Decoder timestep')
plt.savefig('{}/alignment_{}_utt{}_epoch{}.png'.format(dir,
hp.config_name, utt_idx, t2m_epoch), format='png')
plt.close(fig)
def get_attention_guide(xdim, ydim, g=0.2):
'''Guided attention. Refer to page 3 on the paper.'''
W = np.zeros((xdim, ydim), dtype=np.float32)
for n_pos in range(xdim):
for t_pos in range(ydim):
W[n_pos, t_pos] = 1 - np.exp(-(t_pos / float(ydim) - n_pos / float(xdim)) ** 2 / (2 * g * g))
return W
def get_global_attention_guide(hp):
return get_attention_guide(hp.max_N, hp.max_T, g=hp.g)
def learning_rate_decay(init_lr, global_step, warmup_steps = 4000.0):
'''Noam scheme from tensor2tensor'''
step = tf.to_float(global_step + 1)
return init_lr * warmup_steps**0.5 * tf.minimum(step * warmup_steps**-1.5, step**-0.5)
def load_spectrograms(hp, fpath):
'''Read the wave file in `fpath`
and extracts spectrograms'''
fname = os.path.basename(fpath)
mel, mag = get_spectrograms(hp, fpath)
t = mel.shape[0]
# Marginal padding for reduction shape sync. TODO: could refactor with end_pad_for_reduction_shape_sync function?
num_paddings = hp.r - (t % hp.r) if t % hp.r != 0 else 0
mel = np.pad(mel, [[0, num_paddings], [0, 0]], mode="constant")
mag = np.pad(mag, [[0, num_paddings], [0, 0]], mode="constant")
# Reduction
mel_reduced = mel[::hp.r, :]
return fname, mel_reduced, mag, mel
def end_pad_for_reduction_shape_sync(data, hp):
nframe = data.shape[0]
num_paddings = hp.r - (nframe % hp.r) if nframe % hp.r != 0 else 0
data = np.pad(data, [[0, num_paddings], [0, 0]], mode="constant")
return data
def durations_to_hard_attention_matrix(durations):
'''
Take array of durations, return selection matrix to replace A in attention mechanism.
E.g.:
durations_to_hard_attention_matrix(np.array([3,0,1,2]))
[[1. 1. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0.]
[0. 0. 0. 0. 1. 1.]]
'''
nphones = len(durations)
nframes = durations.sum()
A = np.zeros((nframes, nphones), dtype=np.float32)
start = 0
for (i,dur) in enumerate(durations):
end = start + dur
A[start:end,i] = 1.0
start = end
assert A.sum(axis=1).all() == 1.0
assert A.sum(axis=0).all() == durations.all()
return A
def durations_to_position(durations, fractional=False):
nframes = durations.sum()
positions = np.zeros((nframes,), dtype=np.float32)
start = 0
#print (durations)
#sys.exit('qevfewrb')
for dur in durations:
#print (positions)
end = start + dur
if fractional:
#print (dur)
positions[start:end] = np.arange(dur) / dur
else:
positions[start:end] = np.arange(dur)
start = end
return positions.reshape(-1,1)
def split_streams(combined, streamlist, streamdims):
separate_streams = {}
start = 0
for (stream, dim) in zip(streamlist, streamdims):
end = start + dim
stream_speech = combined[:, start:end]
start = end
separate_streams[stream] = stream_speech
return separate_streams
def magphase_synth_from_compressed(split_predictions, samplerate=48000, b_const_rate=5.0):
required_streams = ['real','imag','lf0','vuv','mag']
for stream in required_streams:
assert stream in split_predictions, 'Missing stream: %s'%(stream)
lfz = split_predictions['lf0'].flatten()
vuv = split_predictions['vuv'].flatten()
## TODO: configure this...
unvoiced = vuv<0.5
lfz = np.clip(lfz, math.log(60.0), math.log(400.0))
lfz[unvoiced] = -10000000000.0
synwave = mp.synthesis_from_compressed(split_predictions['mag'], split_predictions['real'], \
split_predictions['imag'], lfz, samplerate, b_const_rate=b_const_rate) # fft_len=2048,
return synwave
# from: https://nolanbconaway.github.io/blog/2017/softmax-numpy
def softmax(X, theta = 1.0, axis = None):
"""
Compute the softmax of each element along an axis of X.
Parameters
----------
X: ND-Array. Probably should be floats.
theta (optional): float parameter, used as a multiplier
prior to exponentiation. Default = 1.0
axis (optional): axis to compute values along. Default is the
first non-singleton axis.
Returns an array the same size as X. The result will sum to 1
along the specified axis.
"""
# make X at least 2d
y = np.atleast_2d(X)
# find axis
if axis is None:
axis = next(j[0] for j in enumerate(y.shape) if j[1] > 1)
# multiply y against the theta parameter,
y = y * float(theta)
# subtract the max for numerical stability
y = y - np.expand_dims(np.max(y, axis = axis), axis)
# exponentiate y
y = np.exp(y)
# take the sum along the specified axis
ax_sum = np.expand_dims(np.sum(y, axis = axis), axis)
# finally: divide elementwise
p = y / ax_sum
# flatten if X was 1D
if len(X.shape) == 1: p = p.flatten()
return p
if __name__ == '__main__':
if 0:
import pylab
a = guided_attention(g=0.2)
pylab.imshow(a)
pylab.show()
if 1:
a = durations_to_hard_attention_matrix(np.array([3,0,1,2]))
print( a)
print (durations_to_fractional_position(np.array([3,0,1,2])))
print (durations_to_absolute_position(np.array([3,0,1,2])))