-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparticipant_correlations.py
57 lines (41 loc) · 1.88 KB
/
participant_correlations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import pandas as pd
from scipy import stats
import seaborn as sns
import matplotlib.pyplot as plt
# Calculate correlations between different characteristics of the participants
participant_data = pd.read_csv("participant_stats.csv")
dyslexic_data = participant_data[participant_data["dyslexia"] == 'yes']
print(len(dyslexic_data), " participants with dyslexia.")
var1 = 'comprehension_accuracy'
var2 = 'words_per_minute'
#var3 = 'score_reading_comprehension_test'
#var4 = 'pseudohomophone_score'
rho, pval =stats.spearmanr(dyslexic_data[var1], dyslexic_data[var2])
print(rho, pval)
print()
significant = "*" if pval<0.05 else ""
sns.regplot(data = dyslexic_data, x=var1, y=var2, color="g",ci=68, truncate=False)
plt.title("dyslexic readers, ρ="+"{:.2f}".format(rho)+significant)
#plt.xlabel(var1)
plt.savefig("plots/dyslexic-corr-"+var1+"-"+var2+".pdf")
plt.close()
typical_data = participant_data[participant_data["dyslexia"] == 'no']
typical_data = typical_data[typical_data["native_language"] == 'Danish']
print(len(typical_data), " native participants without dyslexia.")
rho, pval =stats.spearmanr(typical_data[var1], typical_data[var2])
print(rho, pval)
print()
significant = "*" if pval<0.05 else ""
sns.regplot(data = typical_data, x=var1, y=var2, color="b",ci=68, truncate=False)
plt.title("typical readers, ρ="+"{:.2f}".format(rho)+significant)
plt.savefig("plots/typical-corr-"+var1+"-"+var2+".pdf")
plt.close()
nonnative_data = participant_data[participant_data["native_language"] != 'Danish']
print(len(nonnative_data), " non-native participants.")
rho, pval =stats.spearmanr(nonnative_data[var1], nonnative_data[var2])
print(rho, pval)
print()
significant = "*" if pval<0.05 else ""
sns.regplot(data = nonnative_data, x=var1, y=var2, color="r",ci=68, truncate=False)
plt.title("non-native readers, ρ="+"{:.2f}".format(rho)+significant)
plt.savefig("plots/non_native-corr-"+var1+"-"+var2+".pdf")