-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmexMGv6.cpp
929 lines (864 loc) · 30.6 KB
/
mexMGv6.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
/***********************************************************************
MGv6.cpp
written by Dong Zhou
---------------------
created: 4.10.13
last update: 9.20.13
------------------------------------------------
multigrid algorithm for 3D Poisson's equation
background field removal
------------------------------------------------
- coarsest grid is has the greatest depth, finest grid is depth 0
-
- 3D image stack is flattened to 1D array
- matrix size Nx Ny Nz
in the .bin file, data is organized column-major
- matrix indexing: x + y*m_size[0] + z*m_size[0]*m_size[1]
------------------------------------------------
- Poisson's equation L u = f
- residual equation L e = r, where r = f - L v, e = u - v
- in the Coarse Grid Correction scheme
alpha1 and alpha2 are not distinguished, both set to N_GS
as Gauss-Seidel is used for relaxation
-
************************************************************************/
#include <iostream>
#include <fstream>
#include <algorithm>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdio>
#include "mex.h"
#define _CORRECTION_ true
#undef _DEBUG_
using namespace std;
extern void _main();
class MG {
public:
MG(void);
~MG(void);
float* fT; // total magnetic field
int* mask_; // mask needs to be fed to the class
int* interior_; // internal points, n_peel layers less than the mask
unsigned int n_vox[10]; // number of voxels
float v_size[3]; // voxel size
int Ncycle; // number of V cycles at each level, 1 or 2
float* rho[10]; // source term for the Poisson equation
float* v[10]; // local field on all grids
// also error term for residual equation
private:
int N1, N2; // number of Gauss-Seidal relaxation iterations
// for all depths but the coarsest. pre and post
int N3; // extra iteration after all the FMG procedures
float tol; // relaxation tolerance
int depth; // depth of the V cycle
unsigned int n_peel; // throw away the outer n_peel layers
bool usrInput;
bool savemode;
float aux2; // prefactor 1/(2/dx^2+2/dy^2+2/dz^2)
float aux3[3]; // 1/dx^2, 1/dy^2, 1/dz^2
int aux4[10]; // nx * ny
int nx[10]; // matrix size for all grids
int ny[10];
int nz[10];
bool* mask[10]; // boolean mask on all grids
bool* interior[10]; // interior mask on all grids
float* res[10]; // residual on all grids
// for the V cycle
unsigned int scale[10];
float* buf;
public:
void C2F(float* [],int,bool /* = false */);
float computeDiff(float*, float*, int);
void createInterior(bool*,int);
void determineDepth(void);
void F2C(float* [],int);
void initializeRho(void);
void initializeMem(void); // v/err, rho and res stack
void initializeConstants(void);
void initializeROI(void); // interior mask for coarser grids
void saveData(void);
void updateRes(float*,float*,int);
public:
void setN1(int n){this->N1 = n;};
void setN2(int n){this->N2 = n;};
void setN3(int n){this->N3 = n;};
void setTol(float t){this->tol = t;};
void setPeel(int n){this->n_peel = n;};
void setDepth(int d){this->depth = d;};
void setSavemode(int n){this->savemode = n;};
void feedVoxelSize(const float* v){
for (int i=0;i<3;++i)
this->v_size[i] = v[i]; };
void feedMatrixSize(const int*);
void FMG(int);
void loadfL(const char*);
void loadfT(const char*);
void loadMask(const char*);
void loadParameters(const char*);
void readfT(const float*);
void readMask(const int*);
void preProcessing(void); // prepare the auxiliary variables
void postProcessing(void);
void relax(float*,float*, int,int); // Gauss-Seidel
void V_cycle(float*[],float*, int);
};
MG::MG(void){
this->usrInput = false;
this->depth = -1;
this->N1 = 30; // GS iteration steps
this->N2 = 100;
this->N3 = 100;
this->Ncycle = 1; // V or W cycle
this->n_peel = 0;
this->fT = NULL;
this->mask_ = NULL;
this->interior_ = NULL;
this->buf = NULL;
this->tol = 0;
this->savemode = 0;
this->nx[0]= 0;
this->ny[0]= 0;
this->nz[0]= 0;
int i;
this->scale[0] = 1; // scale of finest grid
for (i=0;i<9;++i)
this->scale[i+1] = this->scale[i] * 2;
for (i=0;i<10;++i){
this->mask[i] = NULL;
this->interior[i] = NULL;
this->rho[i] = NULL;
this->v[i] = NULL;
this->res[i] = NULL;
}
}
MG::~MG(void){
delete [] this->fT;
delete [] this->buf;
delete [] this->mask_;
delete [] this->interior_;
for (int i=0;i<=this->depth;++i){
delete [] this->interior[i];
delete [] this->mask[i];
delete [] this->rho[i];
delete [] this->v[i];
delete [] this->res[i];
}
}
void MG::loadParameters(const char* filename){
ifstream fin(filename);
if (fin){
cout << "-------------- load parameters ----------------" << endl;
string tmp;
while (fin >> tmp){
// cout << tmp << endl;
if (tmp == "matrix_size:" ){
fin >> this->nx[0];
fin >> this->ny[0];
fin >> this->nz[0];
this->n_vox[0] = this->nx[0]*this->ny[0]*this->nz[0];
}
else if (tmp == "voxel_size:"){
fin >> this->v_size[0];
fin >> this->v_size[1];
fin >> this->v_size[2];
}
else if (tmp == "fT_name:"){
fin >> tmp;
if (tmp.size() > 3)
this->loadfT(tmp.c_str());
}
else if (tmp == "mask_name:"){
fin >> tmp;
if (tmp.size() > 3)
this->loadMask(tmp.c_str());
}
else if (tmp == "tolerance:")
fin >> this->tol;
else if (tmp == "n_peel:")
fin >> this->n_peel;
else if (tmp == "depth:")
fin >> this->depth;
else if (tmp == "N1:")
fin >> this->N1;
else if (tmp == "N2:")
fin >> this->N2;
else if (tmp == "N3:")
fin >> this->N3;
else if (tmp == "save_mode:")
fin >> this->savemode;
else if (tmp == "fL_name:"){
fin >> tmp;
if (tmp.size() > 3)
this->loadfL(tmp.c_str());
}
else
cout << "unknown parameter" << endl;
}
cout << "parameters loaded." << endl;
fin.close();
}
else{
cout << "error in loading parameters." << endl;
exit(1);
}
}
float MG::computeDiff(float* a, float* b, int d){
float diff = 0;
for (int i=0;i<this->n_vox[d];++i){
if (this->interior[d][i] == true){
diff += abs(a[i]-b[i]);
}
}
return diff;
}
void MG::C2F(float* vv[], int d,bool cor=false){ // d -> d-1
#ifdef _DEBUG_
cout << "\tC2F: " << d << ", correction? " << cor << endl;
#endif
/* if correction, then add to itself */
int i,j,k;
int idx;
int idx_;
float prefac = 1.0/ float(this->scale[d])/float(this->scale[d]);
for (i=0;i<this->nx[d];++i){
for (j=0;j<this->ny[d];++j){
for (k=0;k<this->nz[d];++k){
idx = i + j*this->nx[d] + k*this->aux4[d];
if (this->mask[d][idx] == true){
// current pt is within mask on the coarse grid
idx_ = 2* (i + j*this->nx[d-1] + k*this->aux4[d-1]);
if (cor){
vv[d-1][idx_] += vv[d][idx] *prefac; }
else{
vv[d-1][idx_] = vv[d][idx]; }
if (k!=this->nz[d]-1 && this->mask[d][idx+this->aux4[d]]){
// between 2 coarse grid points along z
if (cor){
vv[d-1][idx_+ this->aux4[d-1]]
+= (vv[d][idx] + vv[d][idx+this->aux4[d]])/2.0 * prefac; }
else{
vv[d-1][idx_ + this->aux4[d-1]]
= (vv[d][idx] + vv[d][idx+this->aux4[d]])/2.0; }
}
if (j!=this->ny[d]-1 && this->mask[d][idx+this->nx[d]]){
// between 2 coarse grid points along y
if (cor){
vv[d-1][idx_ + this->nx[d-1]]
+= (vv[d][idx] + vv[d][idx+this->nx[d]])/2.0 * prefac; }
else{
vv[d-1][idx_ + this->nx[d-1]]
= (vv[d][idx] + vv[d][idx+this->nx[d]])/2.0; }
}
if (i!=this->nx[d]-1 && this->mask[d][idx+1]){
// between 2 coarse grid points along x
if (cor){
vv[d-1][idx_+ 1]
+= (vv[d][idx] + vv[d][idx+1])/2.0 * prefac; }
else{
vv[d-1][idx_ + 1]
= (vv[d][idx] + vv[d][idx+1])/2.0; }
}
if (i!=this->nx[d]-1 && j!=this->ny[d]-1
&& this->mask[d][idx+1]
&& this->mask[d][idx+this->nx[d]]
&& this->mask[d][idx+this->nx[d]+1]){
// between 4 coarse grid pts along diagonal in x-y plane
if (cor){
vv[d-1][idx_+1+this->nx[d-1]] += (vv[d][idx]
+ vv[d][idx+1] +vv[d][idx+1+this->nx[d]]
+ vv[d][idx+this->nx[d]]) /4.0 * prefac; }
else{
vv[d-1][idx_+1+this->nx[d-1]] = (vv[d][idx]
+ vv[d][idx+1] +vv[d][idx+1+this->nx[d]]
+ vv[d][idx+this->nx[d]]) /4.0 ; }
}
if (i!=this->nx[d]-1 && k!=this->nz[d]-1
&& this->mask[d][idx+1]
&& this->mask[d][idx+this->aux4[d]]
&& this->mask[d][idx+this->aux4[d]+1] ){
// between 4 coarse grid pts along diagonal in x-z plane
if (cor){
vv[d-1][idx_+1+this->aux4[d-1]] += (vv[d][idx]
+ vv[d][idx+1] +vv[d][idx+1+this->aux4[d]]
+ vv[d][idx+this->aux4[d]]) /4.0 * prefac; }
else{
vv[d-1][idx_+1+this->aux4[d-1]] = (vv[d][idx]
+ vv[d][idx+1] +vv[d][idx+1+this->aux4[d]]
+ vv[d][idx+this->aux4[d]]) /4.0 ; }
}
if (j!=this->ny[d]-1 && k!=this->nz[d]-1
&& this->mask[d][idx+this->nx[d]]
&& this->mask[d][idx+this->aux4[d]]
&& this->mask[d][idx+this->nx[d]+this->aux4[d]] ){
// between 4 coarse grid pts along diagonal in y-z plane
if (cor){
vv[d-1][idx_+this->nx[d-1]+this->aux4[d-1]] += (vv[d][idx]
+ vv[d][idx+this->nx[d]]
+ vv[d][idx+this->nx[d] +this->aux4[d]]
+ vv[d][idx+this->aux4[d]]) /4.0 * prefac; }
else{
vv[d-1][idx_+this->nx[d-1]+this->aux4[d-1]] = (vv[d][idx]
+ vv[d][idx+this->nx[d]]
+ vv[d][idx+this->nx[d] +this->aux4[d]]
+ vv[d][idx+this->aux4[d]]) /4.0 ; }
}
if (i!=this->nx[d]-1 && j!=this->ny[d]-1 && k!=this->nz[d]-1
&& this->mask[d][idx+1]
&& this->mask[d][idx+1+this->nx[d]]
&& this->mask[d][idx+1+this->aux4[d]]
&& this->mask[d][idx+1+this->aux4[d]+this->nx[d]]
&& this->mask[d][idx+this->nx[d]]
&& this->mask[d][idx+this->aux4[d]]
&& this->mask[d][idx+this->nx[d]+this->aux4[d]]){
// between 8 coarse grid pts along body diagonal
if (cor){
vv[d-1][idx_+1+this->nx[d-1]+this->aux4[d-1]] +=
(vv[d][idx +1] + vv[d][idx+this->aux4[d]]
+ vv[d][idx] + vv[d][idx+this->nx[d]]
+ vv[d][idx+this->nx[d]+1]
+ vv[d][idx+this->nx[d]+this->aux4[d]]
+ vv[d][idx+this->nx[d]+this->aux4[d]+1]
+ vv[d][idx+this->aux4[d]+1] ) / 8.0*prefac; }
else{
vv[d-1][idx_+1+this->nx[d-1]+this->aux4[d-1]] =
(vv[d][idx +1] + vv[d][idx+this->aux4[d]]
+ vv[d][idx] + vv[d][idx+this->nx[d]]
+ vv[d][idx+this->nx[d]+1]
+ vv[d][idx+this->nx[d]+this->aux4[d]]
+ vv[d][idx+this->nx[d]+this->aux4[d]+1]
+ vv[d][idx+this->aux4[d]+1] ) / 8.0; }
}
}
}
}
}
#ifdef _DEBUG_
if (!cor){
FILE *fout;
fout = fopen("prolong.bin","wb");
if (fout){
fwrite(vv[d-1],sizeof(float),this->n_vox[d-1],fout);
cout << "prolongation saved." << endl;
}
fclose(fout);
}
#endif
}
void MG::relax(float* vv, float* rr, int d,int N){
#ifdef _DEBUG_
cout << "\trelax " << d << ' ' << this->nx[d] << 'x'
<< this->ny[d] << 'x'
<< this->nz[d] << endl;
#endif
int i;
/* coarsest grid or user choice, iterate until converge */
if (d == this->depth ){
float err = 1;
float* old = new float [this->n_vox[d]]();
while (err > this->tol){
memcpy(old,vv, this->n_vox[d]*sizeof(float));
for (i=0;i<this->n_vox[d] ;++i)
if (this->interior[d][i] == true){
vv[i] = this->aux3[0]* (vv[i+1]+vv[i-1])
+this->aux3[1]*(vv[i+this->nx[d]]
+vv[i-this->nx[d]])
+this->aux3[2]*(vv[i+this->aux4[d]]
+vv[i-this->aux4[d]])
- rr[i];
vv[i] *= this->aux2; // prefactor
}
err = this->computeDiff(old,this->v[d],d);
// cout << "update in relax " << err << endl;
}
#ifdef _DEBUG_
cout << "\tconverged." << endl;
#endif
delete [] old;
return;
}
/* finer grids, fixed number of iterations */
for (int k=0;k<N;++k){
for (i=0;i<this->n_vox[d] ;++i){
if (this->interior[d][i] == true){
vv[i] = this->aux3[0]* (vv[i+1]+ vv[i-1])
+this->aux3[1]*(vv[i+this->nx[d]]
+ vv[i-this->nx[d]])
+this->aux3[2]*(vv[i+this->aux4[d]]
+ vv[i-this->aux4[d]])
- rr[i];
vv[i] *= this->aux2;
}
}
}
}
void MG::updateRes(float* u,float* f, int d){ // d -> d+1
#ifdef _DEBUG_
cout << "\tupdate residual: " << d << endl;
#endif
/* update r = f - L u */
for (int i=0;i<this->n_vox[d];++i){
if (this->interior[d][i] == true){
this->res[d][i] = f[i] - (
(u[i+this->aux4[d]]+u[i-this->aux4[d]]-2*u[i])*this->aux3[2]
+(u[i+this->nx[d]]+u[i-this->nx[d]]-2*u[i])*this->aux3[1]
+(u[i+1]+ u[i-1]-2*u[i])*this->aux3[0] );
}
}
this->F2C(this->res,d);
}
void MG::FMG(int d){ // d for depth
#ifdef _DEBUG_
cout << "FMG, depth: " << d << endl;
#endif
if (d == this->depth) // coarsest grid
this->relax(this->v[d],this->rho[d],d,0); //solve fL to convergence
else{
this->FMG(d+1); // go to coarser grid
#ifdef _DEBUG_
cout << " still in FMG " << d << endl;
#endif
this->C2F(this->v,d+1); // no correction
/* note L v = rho is to be solved at depth d */
for (int i=0;i<this->Ncycle;++i) // finer grid
this->V_cycle(this->v,this->rho[d],d);
}
}
void MG::V_cycle(float* u[], float* f, int d){
#ifdef _DEBUG_
cout << "V cycle " << d << endl;
#endif
/* at level 0, solve L u = f
at lower levels, solve L e = r */
this->relax(u[d],f,d,this->N1);
if (d != this->depth){ // not the coarsest grid
this->updateRes(u[d],f, d);
fill_n(u[d+1],this->n_vox[d+1],0); // erase b.v.
this->V_cycle(u,this->res[d+1],d+1);
this->C2F(u,d+1,true); // correct fine grid solution
}
this->relax(u[d],f,d,this->N2);
}
void MG::initializeConstants(void){
int i;
this->aux2 = 0; // prefactor
for (i=0;i<3;++i){ // used in recursion relation
this->aux3[i] = 1.0 / this->v_size[i] / this->v_size[i];
this->aux2 += this->aux3[i];
}
this->aux2 = 1/2.0 /this->aux2;
for (i=0;i<10;++i) // used in indexing matrix
this->aux4[i] = this->nx[i] * this->ny[i];
}
void MG::initializeROI(void){
#ifdef _DEBUG_
cout << "init ROI" << endl;
#endif
int d,i,x,y,z;
for (d=1;d<=this->depth;++d){ // the finest is already updated
/* make the coarser mask */
for (i=0;i<this->n_vox[d];++i){
x = i % this->nx[d]; // create 3D matrix index
y = (i / this->nx[d]) % this->ny[d]; // for the
z = i / this->aux4[d]; // finer grid
this->mask[d][i] = this->mask[0][x*this->scale[d]
+ y*this->scale[d]*this->nx[0]
+ z*this->scale[d]*this->aux4[0]];
}
this->createInterior(this->mask[d],d);
}
#ifdef _DEBUG_
FILE *fout;
fout = fopen("interior2.bin","wb");
if (fout){
fwrite(this->interior[1],sizeof(bool),this->n_vox[1],fout);
cout << "interior saved." << endl;
}
fclose(fout);
#endif
}
void MG::initializeMem(void){
#ifdef _DEBUG_
cout << "init mem" << endl;
#endif
for (int d=0;d<=this->depth;++d){
this->n_vox[d] = this->nx[d]*this->ny[d]*this->nz[d];
cout << "depth " << d << " voxel number: "
<< this->n_vox[d] << endl;
delete [] this->rho[d];
this->rho[d] = new float [this->n_vox[d]]();
delete [] this->v[d];
this->v[d] = new float [this->n_vox[d]]();
delete [] this->interior[d];
this->interior[d] = new bool [this->n_vox[d]]();
delete [] this->res[d];
this->res[d] = new float [this->n_vox[d]]();
// update matrix size for all grids
this->nx[d+1] = (1+ this->nx[d]) / 2;
this->ny[d+1] = (1+ this->ny[d]) / 2;
this->nz[d+1] = (1+ this->nz[d]) / 2;
}
for (int d=1;d<=this->depth;++d){ // mask is loaded by user
delete [] this->mask[d];
this->mask[d] = new bool [this->n_vox[d]]();
}
}
void MG::initializeRho(void){
#ifdef _DEBUG_
cout << "init rho" << endl;
#endif
/* note scale is set to 1 for all grids
rho at each grid is calculated from Laplacian fT
instead of F2C(rho0) */
int j,x,y,z;
float* tmpi = new float [this->n_vox[0]]();
float* tmpj = new float [this->n_vox[0]]();
float* tmpk = new float [this->n_vox[0]]();
float tmp;
for (int d=0;d<=this->depth;++d){
for (j=0;j<this->n_vox[d];++j){
if (d == 0) // for the finest grid
tmp = this->fT[j];
else{
x = j % this->nx[d]; // create 3D matrix
y = (j / this->nx[d]) % this->ny[d]; // index for the
z = j / this->aux4[d]; // finer grid
tmp = this->fT[x*this->scale[d]
+ y*this->scale[d]*this->nx[0]
+ z*this->scale[d]*this->aux4[0]];
}
tmpi[j] = tmp * this->aux3[0];
tmpj[j] = tmp * this->aux3[1];
tmpk[j] = tmp * this->aux3[2];
}
/* calculate the Laplace */
for (j=0;j<this->n_vox[d];++j)
if (this->interior[d][j]){ // Laplace operation
this->rho[d][j] = tmpk[j+this->aux4[d]]+tmpk[j-this->aux4[d]]
+tmpj[j+this->nx[d]]+tmpj[j-this->nx[d]]
+tmpi[j+1] + tmpi[j-1]
-2*(tmpi[j]+tmpj[j]+tmpk[j]);
}
}
delete [] tmpi;
delete [] tmpj;
delete [] tmpk;
if (this->savemode == 1){
FILE *fout;
fout = fopen("rho.bin","wb");
if (fout){
fwrite(this->rho[0],sizeof(float),this->n_vox[0],fout);
cout << "rho saved." << endl;
}
fclose(fout);
}
}
void MG::readfT(const float* pf){
if (this->n_vox[0] == 0){
cout << "matrix size undefined." << endl;
exit(3);
}
delete [] this->fT;
this->fT = new float [this->n_vox[0]]();
memcpy(this->fT,pf, this->n_vox[0]*sizeof(float));
}
void MG::readMask(const int* pmask){
if (this->n_vox[0] == 0){
cout << "matrix size undefined." << endl;
exit(3);
}
delete [] this->mask_;
this->mask_ = new int [this->n_vox[0]]();
memcpy(this->mask_,pmask, this->n_vox[0]*sizeof(int));
delete this->mask[0];
this->mask[0] = new bool [this->n_vox[0]]();
for (int i=0;i<this->n_vox[0];++i) // initialize the boolean mask
this->mask[0][i] = (this->mask_[i] == 1);
}
void MG::loadMask(const char* f_mask){
if (this->n_vox[0] == 0){
cout << "matrix size undefined." << endl;
exit(3);
}
FILE *fin;
delete [] this->mask_;
this->mask_ = new int [this->n_vox[0]]();
fin = fopen(f_mask,"rb");
if (fin){
fread(this->mask_,sizeof(int),this->n_vox[0],fin);
fclose(fin);
cout << "mask " << f_mask << " loaded." << endl;
this->mask[0] = new bool [this->n_vox[0]]();
for (int i=0;i<this->n_vox[0];++i) // initialize the boolean mask
this->mask[0][i] = (this->mask_[i] == 1);
}
else{
cout << "error in read mask." << endl;
exit(3);
}
}
void MG::loadfT(const char* f_field){
if (this->n_vox[0] == 0){
cout << "matrix size undefined." << endl;
exit(3);
}
FILE *fin;
delete [] this->fT;
this->fT = new float [this->n_vox[0]]();
fin = fopen(f_field,"rb");
if (fin){
fread(this->fT,sizeof(float),this->n_vox[0],fin);
fclose(fin);
cout << "total field " << f_field << " loaded." << endl;
}
else{
cout << "error in read fT." << endl;
exit(3);
}
}
void MG::loadfL(const char* filename){
if (this->n_vox[0] == 0){
cout << "matrix size undefined." << endl;
exit(3);
}
this->usrInput = true;
delete this->buf;
this->buf = new float [this->n_vox[0]]();
FILE *fin;
fin = fopen(filename,"rb");
if (fin){
fread(this->buf,sizeof(float),this->n_vox[0],fin);
fclose(fin);
cout << "local field " << filename << " loaded." << endl;
}
else{
cout << "error in read initial fL." << endl;
cout << filename << endl;
}
}
void MG::preProcessing(void){
if (this->fT == NULL) {
cout << "field data undefined." << endl;
exit(3);
}
if (this->mask[0] == NULL){
cout << "mask undefined." << endl;
exit(3);
}
cout << "--------------- pre processing ----------------" << endl;
if (this->depth < 0)
this->determineDepth();
this->initializeMem();
this->initializeConstants();
int i,d,x,y,z;
if (this->usrInput){ // initialize fL guess on all grids
memcpy(this->v[0],this->buf, this->n_vox[0]*sizeof(float));
for (d=1;d<=this->depth;++d){
for (i=0;i<this->n_vox[d];++i){
x = i % this->nx[d]; // create 3D matrix index
y = (i / this->nx[d]) % this->ny[d]; // for the
z = i / this->aux4[d]; // finer grid
this->v[d][i] = this->v[0][x*this->scale[d]
+ y*this->scale[d]*this->nx[0]
+ z*this->scale[d]*this->aux4[0]];
}
}
}
this->createInterior(this->mask[0],0);
cout << "peel off " << this->n_peel
<< " layers from the current mask." << endl;
for (i=0;i<this->n_peel;++i){
memcpy(this->mask[0],this->interior[0],sizeof(bool)*this->n_vox[0]);
this->createInterior(this->mask[0],0);
}
this->initializeROI();
this->initializeRho();
// if (this->n_peel != 0){
stringstream ss;
ss << this->n_peel;
string postfix = ss.str() + ".bin";
FILE *fout;
fout = fopen(("interior_p"+postfix).c_str(),"wb");
if (fout){
fwrite(this->interior[0],sizeof(bool),this->n_vox[0],fout);
cout << "interior mask saved." << endl;
}
fclose(fout);
if (this->mask[0] != NULL){
int* mask_int = new int [this->n_vox[0]]();
for (int i=0;i<this->n_vox[0];++i) // initialize the integer mask
mask_int[i] = this->mask[0][i];
fout = fopen(("mask_p"+postfix).c_str(),"wb");
if (fout){
fwrite(mask_int,sizeof(int),this->n_vox[0], fout);
cout << "mask saved." << endl;
}
fclose(fout);
delete mask_int;
}
// }
}
void MG::postProcessing(void){
// eliminate any residue outside the mask
// it should not be necessary
// for (int i=0;i<this->n_vox[0];++i)
// this->v[0][i] = this->v[0][i] * this->mask_[i];
// relax more on the finest grid
this->relax(this->v[0],this->rho[0],0,this->N3);
// this->saveData();
}
void MG::feedMatrixSize(const int m[]){
this->nx[0] = m[0];
this->ny[0] = m[1];
this->nz[0] = m[2];
int i;
this->n_vox[0] = 1;
for (i=0;i<3;++i)
this->n_vox[0] *= m[i];
}
void MG::determineDepth(void){
int tmp;
int scale = 0;
/* find the smallest matrix dimension */
if (this->nx[0]<=this->ny[0] && this->nx[0]<=this->nz[0])
tmp = this->nx[0];
else if (this->ny[0]<=this->nx[0] && this->ny[0]<=this->nz[0])
tmp = this->ny[0];
else
tmp = this->nz[0];
if (tmp <= 0 ){
cout << "Matrix size undefined. " << endl;
exit(2);
}
while (tmp != 1){
tmp >>= 1;
++ scale;
}
cout << scale << endl;
this->depth = scale>3?scale-3:0;
cout << "FMG depth = " << this->depth << endl;
}
void MG::F2C(float* vv[], int d){ // d -> d+1
#ifdef _DEBUG_
cout << "\tF2C: " << d << endl;
#endif
/* take the on-grid points, instead of full weighting */
int count = 0,x,y,z;
for (int i=0;i<this->n_vox[d];++i){
x = i % this->nx[d]; // create 3D matrix
y = (i / this->nx[d]) % this->ny[d]; // index for the
z = i / this->aux4[d]; // finer grid
if ((x%2==0) && (y%2==0) && (z%2==0)){ // if on the coarser grid
vv[d+1][count] = vv[d][i];
++ count ;
}
}
if (count != this->n_vox[d+1])
cout << "Wrong dimension in F2C: " << count << endl;
}
void MG::createInterior(bool* mask,int d){
memcpy(this->interior[d],mask,this->n_vox[d]*sizeof(bool));
int x,y,z;
for (int i=0;i<this->n_vox[d]; ++i)
if (mask[i]){
x = i % this->nx[d]; // create 3D matrix index
y = (i / this->nx[d]) % this->ny[d];
z = i / this->aux4[d];
if (x==0||y==0||z==0||x==this->nx[d]-1 // if the point is on
||y==this->ny[d]-1||z==this->nz[d]-1) // the stack boundary
this->interior[d][i] = false;
else if ( (x>0 && mask[i-1]==false)
|| (x+1<this->nx[d]&& mask[i+1]==false)
|| (y>0 && mask[i-this->nx[d]]==false)
|| (y+1<this->ny[d]
&& mask[i+this->nx[d]] ==false)
|| (z>0 && mask[i-this->aux4[d]] ==false)
|| (z+1<this->nz[d]
&& mask[i+this->aux4[d]] ==false)
)
this->interior[d][i] = false;
}
}
void MG::saveData(void){
cout << "-------- save results --------" << endl;
FILE *fout;
stringstream ss;
ss << this->n_peel;
string postfix = ss.str() + ".bin";
if (this->v[0] != NULL){
fout = fopen(("fLp"+postfix).c_str(),"wb");
if (fout){
fwrite(this->v[0],sizeof(float),this->n_vox[0],fout);
cout << "fL saved." << endl;
}
fclose(fout);
}
}
// ------------------- interface ----------------------------
void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[]) {
if (nrhs != 10) {
mexErrMsgTxt("MEX requires 10 inputs."); }
int N1, N2, N3, peel, depth;
int *mask, *m_size, n;
float* fT, *v_size, tol;
tol = (float)(*mxGetPr(prhs[4]));
depth = *mxGetPr(prhs[5]);
peel =(int)(*mxGetPr(prhs[6]));
N1 = (int) (*mxGetPr(prhs[7]));
N2 = (int) (*mxGetPr(prhs[8]));
N3 = (int) (*mxGetPr(prhs[9]));
mexPrintf("tolerance=%g, depth=%d, peel=%d, N1=%d, N2=%d, N3=%d\n",tol,depth, peel, N1,N2,N3);
mexEvalString("drawnow;");
int i;
double *p,*pp;
m_size = new int [3]();
v_size = new float [3]();
p = mxGetPr(prhs[2]);
pp = mxGetPr(prhs[3]);
for (i=0;i<3;++i){
m_size[i] = p[i];
v_size[i] = pp[i];
}
mexPrintf("matrix size: %d %d %d\n",m_size[0],m_size[1],m_size[2]);
mexPrintf("voxel size: %g %g %g\n",v_size[0],v_size[1],v_size[2]);
n = mxGetNumberOfElements(prhs[0]);
fT = new float [n]();
mask = new int [n]();
p = mxGetPr(prhs[0]);
pp = mxGetPr(prhs[1]);
for (i=0;i<n;++i){
fT[i] = p[i];
mask[i] = pp[i];
}
MG *a = new MG;
a->feedMatrixSize(m_size);
a->feedVoxelSize(v_size);
a->readMask(mask);
a->readfT(fT);
a->setDepth(depth);
a->setN1(N1);
a->setN2(N2);
a->setN3(N3);
a->setTol(tol);
a->setPeel(peel);
a->preProcessing();
a->FMG(0);
a->postProcessing();
// associate output
int dim = a->n_vox[0];
mxArray *out_m;
out_m = plhs[0] = mxCreateDoubleMatrix(dim,1,mxREAL);
double *c;
c = mxGetPr(out_m);
for (int i=0;i<dim;++i)
c[i] = a->v[0][i];
// free memory
delete a;
delete fT;
delete mask;
delete m_size;
delete v_size;
}