-
Notifications
You must be signed in to change notification settings - Fork 4
/
esm-lecture-2.tex
1028 lines (605 loc) · 24.6 KB
/
esm-lecture-2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% NB: use pdflatex to compile NOT pdftex. Also make sure youngtab is
% there...
% converting eps graphics to pdf with ps2pdf generates way too much
% whitespace in the resulting pdf, so crop with pdfcrop
% cf. http://www.cora.nwra.com/~stockwel/rgspages/pdftips/pdftips.shtml
\documentclass[10pt,aspectratio=169,dvipsnames]{beamer}
\usetheme[color/block=transparent]{metropolis}
\usepackage[absolute,overlay]{textpos}
\usepackage{booktabs}
\usepackage[utf8]{inputenc}
\usepackage[scale=2]{ccicons}
\usepackage[official]{eurosym}
%use this to add space between rows
\newcommand{\ra}[1]{\renewcommand{\arraystretch}{#1}}
\setbeamerfont{alerted text}{series=\bfseries}
\setbeamercolor{alerted text}{fg=Mahogany}
\setbeamercolor{background canvas}{bg=white}
\newcommand{\R}{\mathbb{R}}
\def\l{\lambda}
\def\m{\mu}
\def\d{\partial}
\def\cL{\mathcal{L}}
\def\co2{CO${}_2$}
% for sources http://tex.stackexchange.com/questions/48473/best-way-to-give-sources-of-images-used-in-a-beamer-presentation
\setbeamercolor{framesource}{fg=gray}
\setbeamerfont{framesource}{size=\tiny}
\newcommand{\source}[1]{\begin{textblock*}{5cm}(10.5cm,8.35cm)
\begin{beamercolorbox}[ht=0.5cm,right]{framesource}
\usebeamerfont{framesource}\usebeamercolor[fg]{framesource} Source: {#1}
\end{beamercolorbox}
\end{textblock*}}
\usepackage{hyperref}
%\usepackage[pdftex]{graphicx}
\graphicspath{{graphics/}}
\DeclareGraphicsExtensions{.pdf,.jpeg,.png,.jpg}
\def\goat#1{{\scriptsize\color{green}{[#1]}}}
\let\olditem\item
\renewcommand{\item}{%
\olditem\vspace{5pt}}
\title{Energy System Modelling\\ Summer Semester 2020, Lecture 2}
%\subtitle{---}
\author{
{\bf Dr. Tom Brown}, \href{mailto:[email protected]}{[email protected]}, \url{https://nworbmot.org/}\\
\emph{Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI)}
}
\date{}
\titlegraphic{%
\vspace{0cm}
\hspace{10cm}
\includegraphics[trim=0 0cm 0 0cm,height=1.8cm,clip=true]{kit.png}
\vspace{5.1cm}
{\footnotesize
Unless otherwise stated, graphics and text are Copyright \copyright Tom Brown, 2020.
Graphics and text for which no other attribution are given are licensed under a
\href{https://creativecommons.org/licenses/by/4.0/}{Creative Commons
Attribution 4.0 International Licence}. \ccby}
}
\begin{document}
\maketitle
\begin{frame}
\frametitle{Table of Contents}
\setbeamertemplate{section in toc}[sections numbered]
\tableofcontents[hideallsubsections]
\end{frame}
\section{Electricity Consumption}
\begin{frame}
\frametitle{Why is electricity useful?}
Electricity is a versatile form of energy carried by electrical
charge which can be consumed in a wide variety of ways (with selected examples):
\begin{itemize}
\item Lighting (lightbulbs, halogen lamps, televisions)
\item Mechanical work (hoovers, washing machines, electric vehicles)
\item Heating (cooking, resistive room heating, heat pumps)
\item Cooling (refrigerators, air conditioning)
\item Electronics (computation, data storage, control systems)
\item Industry (electrochemical processes)
\end{itemize}
Compare the convenience and versatility of electricity with another
energy carrier: the chemical energy stored in natural gas (mostly methane),
which can only be accessed by burning it.
\end{frame}
\begin{frame}
\frametitle{Power: Flow of energy}
\alert{Power} is the rate of consumption of energy.
It is measured in \alert{Watts}:
\begin{equation*}
1 \textrm{ Watt } = 1 \textrm{ Joule per second }
\end{equation*}
The symbol for Watt is W, 1 W = 1 J/s.
\centering
1 kilo-Watt = 1 kW = 1,000 W
1 mega-Watt = 1 MW = 1,000,000 W
1 giga-Watt = 1 GW = 1,000,000,000 W
1 tera-Watt = 1 TW = 1,000,000,000,000 W
\end{frame}
\begin{frame}
\frametitle{Power: Examples of consumption}
At full power, the following items consume:
\ra{1.1}
\begin{table}[!t]
\begin{tabular}{lr}
\toprule
Item & Power\\
\midrule
New efficient lightbulb & 10 W \\
Old-fashioned lightbulb & 70 W \\
Single room air-conditioning & 1.5 kW \\
Kettle & 2 kW \\
Factory & $\sim$1-500 MW \\
CERN & 200 MW \\
Germany total demand & 35-80 GW \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\begin{frame}
\frametitle{Energy}
In the electricity sector, energy is usually measured in
`Watt-hours', Wh.
1 kWh = power consumption of 1 kW for one hour
E.g. a 10 W lightbulb left on for two hours will consume
10 W * 2 h = 20 Wh
It is easy to convert this back to the SI unit for energy, Joules:
1 kWh = (1000 W) * (1 h) = (1000 J/s)*(3600 s) = 3.6 MJ
\end{frame}
\begin{frame}
\frametitle{Electricity spot market: trading of energy}
Energy is traded in MWh; current price around 40-50~\euro/MWh. Was sinking until 2016 thanks to renewables and the \alert{merit order effect}, but rising since 2016 due to rising \alert{CO$_2$ price}:
\centering
\includegraphics[width=11.4cm]{strompreis-2019.png}
\source{\href{https://www.agora-energiewende.de/fileadmin2/Projekte/2019/Jahresauswertung_2019/171_A-EW_Jahresauswertung_2019_WEB.pdf}{Agora Energiewende Jahresauswertung 2019}}
\end{frame}
\begin{frame}
\frametitle{Consumption metering}
\begin{columns}[T]
\begin{column}{6.5cm}
\includegraphics[width=7.5cm,angle=270]{stromzaehler}
\end{column}
\begin{column}{4cm}
\vspace{1cm}
\begin{itemize}
\item Look for your electricity meter at home
\item Mine here shows 42470.3 kWh
\item Check what the value is a week later
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Electricity bill}
My bill for 2014-5: 1900 kWh for a year, at a cost of \euro 570, which
corresponds to 0.3 \euro/kWh or 300 \euro/MWh. But the spot market price is 30 \euro/MWh, so what's going on??
\centering
\includegraphics[width=10cm,angle=180]{bill}
\end{frame}
\begin{frame}
\frametitle{Household price breakdown}
Although the wholesale price is going down, other taxes, grid
charges and renewables subsidy (EEG surcharge) have kept the price
high.
\centering
\includegraphics[width=12cm]{electricity-residential-price-2019.png}
\raggedright
HOWEVER the EEG is only high because it is paying for solar panels
bought at a time when they were still comparatively expensive; but
through the German subsidy, production volumes were high and the
learning curve has brought the costs down exponentially.
\source{\href{https://www.agora-energiewende.de/fileadmin2/Projekte/2019/Jahresauswertung_2019/AGORA_State_of_Affairs_German_Power_Sector_2019_Webinar_28012020.pdf}{Agora Energiewende, 2019}}
\end{frame}
\begin{frame}
\frametitle{Yearly energy to power}
Germany consumes around 600 TWh per year, written 600 TWh/a.
What is the \emph{average} power consumption?
\begin{align*}
600\textrm{ TWh/a} & = \frac{(600\textrm{ TW}) * (1\textrm{ h})}{(365*24 \textrm{ h})} \\
& = \frac{600}{8760} \textrm{ TW} \\
& = 68.5 \textrm{ GW}
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Discrete Consumers Aggregation}
The discrete actions of individual consumers smooth out
statistically if we aggregate over many consumers.
\centering
\includegraphics[width=10cm]{demand_smoothing}
\end{frame}
\begin{frame}
\frametitle{Load curve properties}
The Germany load curve (around 500 TWh/a) shows \alert{daily}, \alert{weekly} and
\alert{seasonal} patterns; religious festivals are also visible.
\centering
\includegraphics[width=13cm]{DE-load-H}
\end{frame}
\begin{frame}
\frametitle{Load duration curve}
For some analysis it is useful to construct a \alert{duration curve}
by stacking the hourly values from highest to lowest.
\centering
\includegraphics[width=13cm]{DE-load-duration}
\end{frame}
\begin{frame}
\frametitle{Load density function}
Similarly we can also build the \alert{probability density function} $pdf(x)$, $\int dx \, pdf(x) = 1$:
\centering
\includegraphics[width=13cm]{DE-load-density}
\end{frame}
\begin{frame}
\frametitle{Fourier transform to see spectrum}
For a periodic, continuous, complex signal $f(t)$, we can decompose it in frequency space to see which frequencies dominate the signal. This is called a \alert{Fourier transform/series}.
For period $T$ (in our case a year) the function $f: [0,T] \rightarrow \mathbb{C}$ can be decomposed
\begin{equation*}
f(t) = \sum_{n=-\infty}^{n=\infty} a_n e^{-\frac{i2\pi nt}{T}}
\end{equation*}
To recover the values of the \alert{frequency amplitudes} $a_n$, integrate over $T$
\begin{equation*}
a_n = \frac{1}{T} \int_0^T dt \left[ f(t) e^{\frac{i2\pi nt}{T}} \right]
\end{equation*}
For a real-valued function $f: [0,T] \rightarrow \mathbb{R}$, $a_{-n} = a_n^*$.
For a periodic, \alert{discrete} signal $f_n$, the \alert{Fast Fourier Transform} (FFT) is a computationally advantageous algorithm and is implemented in many programming libraries (see tutorial).
\end{frame}
\begin{frame}
\frametitle{Fourier transform: exercise}
To remind yourself of how Fourier transforms work, check the formula for $a_n$ by inserting the expansion of $f(t)$ into the formula for $a_n$.
First hint: remember Euler's formula:
\begin{equation*}
e^{i\theta} = \cos \theta + i \sin \theta
\end{equation*}
Second hint: think about integrating a periodic signal over its period:
\begin{equation*}
\frac{1}{T} \int_0^T dt \cos \frac{2\pi nt}{T} = \left\{
\begin{array}{@{}ll@{}}
1, & \text{if}\ n=0 \\
0, & \text{otherwise}
\end{array}\right.
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Load spectrum}
If we Fourier transform, the \alert{seasonal}, \alert{weekly} and \alert{daily} frequencies are clearly visible.
\centering
\includegraphics[width=13cm]{DE-load-spectrum}
\end{frame}
\section{Electricity Generation}
\begin{frame}
\frametitle{How is electricity generated?}
\alert{Conservation of Energy}: Energy cannot be created or destroyed:
it can only be converted from one form to another.
There are several `primary' sources of energy which are converted
into electrical energy in modern power systems:
\begin{itemize}
\item Chemical energy, accessed by combustion (coal, gas, oil, biomass)
\item Nuclear energy, accessed by fission reactions, perhaps one day by fusion too
\item Hydroelectric energy, allowing water to flow downhill (gravitational potential energy)
\item Wind energy (kinetic energy of air)
\item Solar energy (accessed with photovoltaic (PV) panels or
concentrating solar thermal power (CSP))
\item Geothermal energy
\end{itemize}
NB: The definition of `primary' is somewhat arbitrary.
\end{frame}
\begin{frame}
\frametitle{Power: Examples of generation}
At full power, the following items generate:
\ra{1.1}
\begin{table}[!t]
\begin{tabular}{lr}
\toprule
Item & Power\\
\midrule
Solar panel on house roof & 15 kW \\
Wind turbine & 3 MW \\
Coal power station & 1 GW \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\begin{frame}
\frametitle{Generators}
With the exception of solar photovoltaic panels (and electrochemical
energy and a few other minor exceptions), all generators convert to
electrical energy via rotational kinetic energy and electromagnetic
induction in an \emph{alternating current generator}.
%https://en.wikipedia.org/wiki/Fossil-fuel_power_station#/media/File:Coal_fired_power_plant_diagram.svg
\centering
\includegraphics[width=10cm]{Coal_fired_power_plant_diagram}
\source{Wikipedia}
% https://de.wikipedia.org/wiki/Drehstrom-Synchronmaschine#/media/File:Walchenseekraftwerk-1_Turbinenhalle.jpg
% Walchenseekraftwerk-1_Turbinenhalle.jpg
\end{frame}
\begin{frame}
\frametitle{Example of electricity generation across major EU countries in 2013}
\centering
\includegraphics[width=11cm]{european_countries-energy}
\end{frame}
\begin{frame}
\frametitle{Renewables reached 40\% of gross electricity generation in Germany in 2019}
\centering
\includegraphics[width=11cm]{fig2-gross-power-production-germany-1990-2019.png}
\end{frame}
\begin{frame}
\frametitle{Efficiency}
When fuel is consumed, much/most of the energy of the fuel is lost
as waste heat rather than being converted to electricity.
The thermal energy, or calorific value, of the fuel is given in
terms of MWh${}_{\textrm{th}}$, to distinguish it from the
electrical energy MWh${}_{\textrm{el}}$.
The ratio of input thermal energy to output electrical energy is the
\alert{efficiency}.
\ra{1.1}
\begin{table}[!t]
\begin{tabular}{lrrrrr}
\toprule
Fuel & Calorific energy & Per unit efficiency & Electrical energy \\
& MWh\(_{\text{th}}\)/tonne & MWh\(_{\text{el}}\)/MWh\(_{\text{th}}\) & MWh\(_{\text{el}}\)/tonne \\
\midrule
Lignite & 2.5 & 0.4 & 1.0 \\
Hard Coal & 6.7 & 0.45 & 2.7\\
Gas (CCGT) & 15.4 & 0.58 & 8.9\\
Uranium (unenriched) & 150000 & 0.33 & 50000 \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\begin{frame}
\frametitle{Fuel costs to marginal costs}
The cost of a fuel is often given in \euro/kg or \euro/MWh\(_{\text{th}}\).
Using the efficiency, we can convert this to
\euro/MWh\(_{\text{el}}\).
For the full marginal cost, we have to
also add the CO$_2$ price and the variable operation and maintenance
(VOM) costs.
\ra{1.1}
\begin{table}[!t]
\begin{tabular}{lrrrrr}
\toprule
Fuel & Per unit efficiency & Cost per thermal & Cost per elec. \\
& MWh\(_{\text{el}}\)/MWh\(_{\text{th}}\) & \euro/MWh\(_{\text{th}}\) & \euro/MWh\(_{\text{el}}\)\\
\midrule
Lignite & 0.4 & 4.5 & 11\\
Hard Coal & 0.45 & 11 & 24\\
Gas (CCGT) & 0.58 & 19 & 33\\
Uranium & 0.33 & 3.3 & 10\\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\begin{frame}
\frametitle{CO2 emissions per MWh}
The \co2 emissions of the fuel.
\ra{1.1}
\begin{table}[!t]
\begin{tabular}{lrrr}
\toprule
Fuel & t\(_{\text{CO2}}\)/t & t\(_{\text{C02}}\)/MWh\(_{\text{th}}\) & t\(_{\text{CO2}}\)/MWh\(_{\text{el}}\)\\
\midrule
Lignite & 0.9 & 0.36 & 0.9 \\
Hard Coal & 2.4 & 0.36 & 0.8 \\
Gas (CCGT) & 3.1 & 0.2 & 0.35\\
Uranium & 0 & 0 & 0 \\
\bottomrule
\end{tabular}
\end{table}
Current \co2 price in EU Emissions Trading Scheme (ETS) is around \euro 25/t${}_{\textrm{CO2}}$
\end{frame}
\begin{frame}
\frametitle{You calculate: What CO$_2$ price to switch gas and lignite?}
What CO$_2$ price, i.e. x \euro/t${}_{\textrm{CO2}}$, is required so
that the marginal cost of gas (CCGT) is lower than lignite?
NB: It helps to track units.
\pause
We need to solve for the switch point by adding the CO$_2$ price to the fuel cost. Left is lignite, right is gas:
\begin{equation*}
11 \textrm{ \euro/MWh}_{\textrm{el}} + (0.9 \textrm{ tCO}_2/\textrm{MWh}_{\textrm{el}}) \cdot (x \textrm{ \euro/tCO}_2)
= 33 \textrm{ \euro/MWh}_{\textrm{el}} + (0.35 \textrm{ tCO}_2/\textrm{MWh}_{\textrm{el}}) \cdot (x \textrm{ \euro/tCO}_2)
\end{equation*}
Solve:
\begin{equation*}
x = \frac{33 - 11}{0.9 - 0.35} = 40
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{CO2 and import costs change over time...}
\centering
\includegraphics[width=14cm]{import_costs-2019.png}
\source{\href{https://www.agora-energiewende.de/fileadmin2/Projekte/2019/Jahresauswertung_2019/AGORA_State_of_Affairs_German_Power_Sector_2019_Webinar_28012020.pdf}{Agora Energiewende, 2019}}
\end{frame}
\begin{frame}
\frametitle{...which affects the marginal costs of generation}
\centering
\includegraphics[width=14cm]{marginal_costs-2019.png}
\source{\href{https://www.agora-energiewende.de/fileadmin2/Projekte/2019/Jahresauswertung_2019/AGORA_State_of_Affairs_German_Power_Sector_2019_Webinar_28012020.pdf}{Agora Energiewende, 2019}}
\end{frame}
\begin{frame}
\frametitle{CO2 emissions from electricity sector}
\co2
emissions in electricity generation stagnated for years because of coal, which is slowly being pushed out by the \co2 price and in the longer term by the Kohleausstieg.
\centering
\includegraphics[width=11cm]{co2-strom-2019.png}
\source{\href{https://www.agora-energiewende.de/fileadmin2/Projekte/2019/Jahresauswertung_2019/171_A-EW_Jahresauswertung_2019_WEB.pdf}{Agora Energiewende Jahresauswertung 2019}}
\end{frame}
\begin{frame}
\frametitle{Capacity Factors and Full Load Hours}
A generator's \alert{capacity factor} is the average power generation divided by the power capacity.
For variable renewable generators it depends on weather, generator model and
curtailment; for dispatchable generators it depends on market
conditions and maintenance schedules.
A generator's \alert{full load hours} are the equivalent number of hours at full capacity the generator required to produce its yearly energy yield. The two quantities are related:
\begin{equation*}
\textrm{full load hours} = \textrm{per unit capacity factor} \cdot 365 \cdot 24 = \textrm{per unit capacity factor} \cdot 8760
\end{equation*}
Typical values for Germany:
\begin{table}[!t]
\begin{tabular}{lrr}
\toprule
Fuel & capacity factor [\%] & full load hours \\
\midrule
wind & 20-35 & 1600-3000 \\
solar & 10-12 & 800-1000 \\
nuclear & 70-90 & 6000-8000 \\
open-cycle gas & 20 & 1500 \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\section{Variable Renewable Energy (VRE)}
\begin{frame}
\frametitle{Solar time series}
Unlike the load, the solar feed-in is much more variable, dropping to zero and not reaching full output (when aggregated over all of Germany).
\centering
\includegraphics[width=13cm]{DE-solar-H}
\end{frame}
\begin{frame}
\frametitle{How do we derive solar time series?}
We take times series weather data for the solar radiation (also
called irradiation or insolation) at each location in W/m$^2$. This
is often provided for a horizontal surface, so we need to convert
for the angles of the solar panel to the horizontal, and account for
factors that affect the energy conversion (losses, outside
temperature). We have a software library \alert{atlite} that takes
care of this. See \url{https://model.energy} or
\url{https://renewables.ninja} for live examples.
\centering
\includegraphics[width=10cm]{figure5.png}
\source{\href{https://www.volker-quaschning.de/articles/fundamentals1/index.php}{Volker Quaschning}}
\end{frame}
\begin{frame}
\frametitle{Solar time series: weekly}
If we take a weekly average we see higher solar in the summer.
\centering
\includegraphics[width=13cm]{DE-solar-W}
\end{frame}
\begin{frame}
\frametitle{Solar duration curve}
\centering
\includegraphics[width=13cm]{DE-solar-duration}
\end{frame}
\begin{frame}
\frametitle{Solar density function}
\centering
\includegraphics[width=13cm]{DE-solar-density}
\end{frame}
\begin{frame}
\frametitle{Solar spectrum}
If we Fourier transform, the \alert{seasonal} and \alert{daily} patterns become visible.
\centering
\includegraphics[width=13cm]{DE-solar-spectrum}
\end{frame}
\begin{frame}
\frametitle{Wind time series}
Wind is variable, like solar, but the variations are on different time scales. It drops close to zero and rarely reaches full output (when aggregated over all of Germany).
\centering
\includegraphics[width=13cm]{DE-onwind-H}
\end{frame}
\begin{frame}
\frametitle{How do we derive wind time series?}
We take times series weather data for the wind speeds at hub height (e.g. 60-100m) at each
location in ms$^{-1}$. In theory the power in the wind goes like
$v^3$, but in practice high wind speeds are rare and it is not
economic to build the generator so large.
\centering
\includegraphics[width=10cm]{1200px-Powercurve.png}
\source{\href{https://de.wikipedia.org/wiki/Datei:Powercurve.png}{Wikipedia}}
\end{frame}
\begin{frame}
\frametitle{How do we derive wind time series?}
Wind speeds are typically distributed according to a Weibull probability distribution.
Although the wind speeds are clustered at the lower end, most of the energy is generated between 5 and 15 ms$^{-1}$.
\centering
\includegraphics[width=10cm]{Lee_Ranch_Wind_Speed_Frequency.png}
\source{\href{https://commons.wikimedia.org/wiki/File:Lee_Ranch_Wind_Speed_Frequency.svg}{Wikipedia}}
\end{frame}
\begin{frame}
\frametitle{Wind time series: weekly}
If we take a weekly average we see higher wind in the winter and
some periodic patterns over 2-3 weeks (\alert{synoptic scale}).
\centering
\includegraphics[width=13cm]{DE-onwind-W}
\end{frame}
\begin{frame}
\frametitle{Wind duration curve}
\centering
\includegraphics[width=13cm]{DE-onwind-duration}
\end{frame}
\begin{frame}
\frametitle{Wind density function}
\centering
\includegraphics[width=13cm]{DE-onwind-density}
\end{frame}
\begin{frame}
\frametitle{Wind spectrum}
If we Fourier transform, the \alert{seasonal}, \alert{synoptic} (2-3 weeks) and \alert{daily} patterns become visible.
\centering
\includegraphics[width=13cm]{DE-onwind-spectrum}
\end{frame}
\section{Balancing a Single Country}
\begin{frame}
\frametitle{Power mismatch}
Suppose we now try and cover the electrical demand with the
generation from wind and solar.
How much wind and solar do we need? We have three time series:
\begin{itemize}
\item $\{ d_t\}, d_t \in \R$ the load (varying between 35 GW and 80 GW)
\item $\{ w_t\}, w_t \in [0,1]$ the wind availability (how much a 1 MW wind turbine produces)
\item $\{ s_t\}, s_t \in [0,1]$ the solar availability (how much a 1 MW solar turbine produces)
\end{itemize}
We try $W$ MW of wind and $S$ MW of solar. Now the effective \alert{residual load} or \alert{mismatch} is
\begin{equation*}
m_t = d_t - Ww_t - Ss_t
\end{equation*}
We choose $W$ and $S$ such that on \alert{average} we cover all the load
\begin{equation*}
\langle m_t \rangle = 0
\end{equation*}
and so that the 70\% of the energy comes from wind and 30\% from solar ($W = 147$ GW and $S = 135$ GW).
\end{frame}
\begin{frame}
\frametitle{Mismatch time series}
\centering
\includegraphics[width=13cm]{DE-mismatch-H}
\end{frame}
\begin{frame}
\frametitle{Mismatch duration curve}
\centering
\includegraphics[width=13cm]{DE-mismatch-duration}
\end{frame}
\begin{frame}
\frametitle{Mismatch density function}
\centering
\includegraphics[width=13cm]{DE-mismatch-density}
\end{frame}
\begin{frame}
\frametitle{Mismatch spectrum}
If we Fourier transform, the synoptic (from wind) and daily patterns (from demand and solar) become visible. Seasonal variations appear to cancel out.
\centering
\includegraphics[width=13cm]{DE-mismatch-spectrum}
\end{frame}
\begin{frame}
\frametitle{How to deal with the mismatch?}
The problem is that
\begin{equation*}
\langle m_t \rangle = 0
\end{equation*}
is not good enough! We need to meet the demand in every single hour.
This means:
\begin{itemize}
\item If $m_t > 0$, i.e. we have unmet demand, then we need
backup generation from \alert{dispatchable} sources
e.g. hydroelectricity reservoirs, fossil/biomass fuels.
\item If $m_t < 0$, i.e. we have over-supply, then we have to
shed / spill / \alert{curtail} the renewable energy.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Mismatch}
\centering
\includegraphics[width=13cm]{mismatch-2011-03-01-2011-03-31}
\end{frame}
\begin{frame}
\frametitle{Mismatch}
\centering
\includegraphics[width=13cm]{mismatch-2011-07-01-2011-07-31}
\end{frame}
\begin{frame}
\frametitle{Mismatch}
\centering
\includegraphics[width=13cm]{mismatch-2011-12-01-2011-12-31}
\end{frame}
\begin{frame}
\frametitle{Mismatch duration curve}
\centering
\includegraphics[width=13cm]{mismatch-duration}