-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathparse_nmt.py
1877 lines (1571 loc) · 70.4 KB
/
parse_nmt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import nltk
from nltk import treetransforms
from copy import deepcopy
from collections import deque
import queue
from nltk.parse import CoreNLPParser
import argparse
import json
from nltk.tree import Tree
import os
import warnings
import re
import torch
import traceback
import os
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from nltk.tree import Tree
from nltk import tree, treetransforms
import queue
# from bllipparser import RerankingParser
import datetime
# rrp = RerankingParser.from_unified_model_dir("/home/ttnguyen/Downloads/WSJ-PTB3/")
from nltk.parse import CoreNLPParser
from copy import deepcopy
from nltk.parse import CoreNLPDependencyParser
import argparse
from shutil import copyfile
import itertools
RETRIEVE_BATCH = int(os.environ.get('RETRIEVE_BATCH', 1000))
PARSER_TIMEOUT = int(os.environ.get('PARSER_TIMEOUT', 60000000))
PARSER_PORT = str(os.environ.get('PARSER_PORT', 9001))
SPECIAL_CHAR = {''': "'", ''s': "'s", '"': '"', '[': '[',
']': "]", ''@@': "'@@", ''t': "'t",
'&': "&", ''ll': "'ll", ''ve': "'ve",
''m': "'m", ''re': "'re", ''d': "'d",
'|': "|", '>': ">", '<': "<"}
# special_character_dict['"']="''"
SPECIAL_CHAR_MBACK = {v: k for k, v in SPECIAL_CHAR.items()}
SPECIAL_CHAR_MBACK['-LSB-'] = '['
SPECIAL_CHAR_MBACK['-RSB-'] = ']'
SPECIAL_CHAR_MBACK['-LRB-'] = "("
SPECIAL_CHAR_MBACK['-RRB-'] = ")"
SPECIAL_CHAR_MBACK["''"] = """
class CusCoreNLPParser(CoreNLPParser):
def api_call(self, data, properties=None, timeout=18000000, lang=None):
if properties is None:
properties = {'parse.binaryTrees': "true"}
return super().api_call(data, properties, timeout)
@classmethod
def build_parser(cls, port=9001):
port = str(port)
return cls(url=f'http://localhost:{port}')
def remove_nodeset(tree):
ntree = deepcopy(tree)
queue_tree = queue.Queue()
queue_tree.put(ntree)
step = 0
while not queue_tree.empty():
parent = queue_tree.get()
if len(parent) > 1:
for i in range(len(parent)):
queue_tree.put(parent[i])
else:
sole_child = parent[0]
if isinstance(sole_child, str):
pass
else:
assert isinstance(sole_child, Tree)
if sole_child.label() == '@NodeSet':
parent.clear()
for i in range(len(sole_child)):
parent.append(sole_child[i])
queue_tree.put(parent)
else:
queue_tree.put(sole_child)
step += 1
return ntree
parser = CusCoreNLPParser.build_parser(9000)
import time
def f(x, n):
x = x.lower()
print(f'[{n}][{len(x.split())}]: {x}')
all_diff = 0
for i in range(n):
before = time.time()
p = list(parser.parse_text(x))
after = time.time()
all_diff += after - before
# diff = after - before
print(f'Elapse: {all_diff}')
return all_diff
def remove_single_nodeset(tree, remove_root=False):
ntree = deepcopy(tree)
queue_tree = queue.Queue()
queue_tree.put(ntree)
step = 0
while not queue_tree.empty():
parent = queue_tree.get()
children = list(parent)
parent.clear()
for child in children:
# if len(child) == 1 and isinstance(child[0], Tree):
# parent.append(child[0])
# else:
# parent.append(child)
cur_child = child
while len(cur_child) == 1 and isinstance(cur_child[0], Tree):
cur_child = cur_child[0]
parent.append(cur_child)
for child in list(parent):
if isinstance(child, Tree):
queue_tree.put(child)
step += 1
if remove_root and ntree.label() == 'ROOT':
ntree = ntree[0]
return ntree
def remove_atnodeset_single_nodeset(tree, remove_root=False):
# todo: remove consecutive single-child nodes, take the last child and remove the parents
# fixme: somehow still a lot of case it does not work
ntree = remove_nodeset(tree)
ntree = remove_single_nodeset(ntree, remove_root)
return ntree
# from copy import deepcopy
# import queue
# from nltk import Tree
def clean_maybe_rmnode(tree):
ntree = deepcopy(tree)
if ntree.label() == "ROOT" and len(ntree) == 1:
ntree = deepcopy(tree[0])
while len(ntree) == 1 and isinstance(ntree[0], Tree) and not (len(ntree[0]) == 1 and isinstance(ntree[0][0], str)):
ntree = ntree[0]
queue_tree = queue.Queue()
queue_tree.put(ntree)
step = 0
while not queue_tree.empty():
parent = queue_tree.get()
children = list(parent)
parent.clear()
for child in children:
cur_child = child
while len(cur_child) == 1 and isinstance(cur_child[0], Tree):
cur_child = cur_child[0]
parent.append(cur_child)
for child in list(parent):
if isinstance(child, Tree):
queue_tree.put(child)
return ntree
def breadth_first_search(tree):
"""
:param tree:
:return:
tree_node_lst: list of nodes following BFS order
meta_lst: not sure
meta: not sure
"""
meta = dict()
list_subtree = list(tree.subtrees())
meta_lst = []
tree_node_lst = []
queue_tree = queue.Queue()
queue_tree.put(tree)
meta[list_subtree.index(tree)] = []
found_prob = False
while not queue_tree.empty():
node = queue_tree.get()
if len(node) <= 0:
warnings.warn("[bft]: len(node) <= 0!! will cause error later")
found_prob = True
tree_node_lst.append(node)
meta_lst.append(meta[list_subtree.index(node)])
for i in range(len(node)):
child = node[i]
if isinstance(child, nltk.Tree):
meta[list_subtree.index(child)] = deepcopy(meta[list_subtree.index(node)])
meta[list_subtree.index(child)].append(i)
queue_tree.put(child)
return tree_node_lst, meta_lst, meta
def leaves2span(in_leaves, leaves):
# FIXME: this will cause wrong if the phrase repeat!
query = in_leaves[0]
start_idx = [i for (y, i) in zip(leaves, range(len(leaves))) if query == y]
for idx in start_idx:
if ' '.join(in_leaves) == ' '.join(leaves[idx:idx + len(in_leaves)]):
return [idx, idx + len(in_leaves) - 1]
raise ValueError(f'Not found: {in_leaves}\nIN: {leaves}')
def tree_to_leave_pos_node_span(tree):
leaves = tree.leaves()
pos_tags = []
# meta = dict()
# list_subtree = list(tree.subtrees())
# meta_lst = []
tree_node_lst = []
spans = []
queue_tree = queue.Queue()
queue_tree.put(tree)
# meta[list_subtree.index(tree)] = []
found_prob = False
while not queue_tree.empty():
node = queue_tree.get()
if len(node) <= 0:
warnings.warn("[bft]: len(node) <= 0!! will cause error later")
if len(node) == 1 and isinstance(node[0], str):
pos_tags.append(node.label())
continue
tree_node_lst.append(node)
# meta_lst.append(meta[list_subtree.index(node)])
# create the spans
internal_leaves = node.leaves()
spans.append(leaves2span(internal_leaves, leaves))
for i in range(len(node)):
child = node[i]
if isinstance(child, nltk.Tree):
# meta[list_subtree.index(child)] = deepcopy(meta[list_subtree.index(node)])
# meta[list_subtree.index(child)].append(i)
queue_tree.put(child)
nodes = [x.label() for x in tree_node_lst]
return leaves, pos_tags, nodes, spans, tree_node_lst
def tree_to_leave_pos_node_span_collapse(tree):
# print(f'tree_to_leave_pos_node_span_collapse.....')
leaves = tree.leaves()
pos_tags = []
tree_node_lst = []
spans = []
queue_tree = queue.Queue()
queue_tree.put(tree)
while not queue_tree.empty():
node = queue_tree.get()
if len(node) == 1 and isinstance(node[0], str):
pos_tags.append(node.label())
continue
while len(node) == 1 and isinstance(node[0], nltk.Tree):
node.set_label(node[0].label())
node[0:] = [c for c in node[0]]
tree_node_lst.append(node)
internal_leaves = node.leaves()
spans.append(leaves2span(internal_leaves, leaves))
for c in node:
if isinstance(c, nltk.Tree):
queue_tree.put(c)
del queue_tree
nodes = [x.label() for x in tree_node_lst]
return leaves, pos_tags, nodes, spans, tree_node_lst
def tree_to_leave_pos_node_span_collapse_v2(tree):
# print(f'tree_to_leave_pos_node_span_collapse.....')
leaves = tree.leaves()
len_leave = len(leaves)
pos_tags = []
tree_node_lst = []
spans = []
queue_tree = queue.Queue()
queue_tree.put(tree)
level = 0
start = 0
end = len_leave - 1
while not queue_tree.empty():
node = queue_tree.get()
while len(node) == 1 and isinstance(node[0], nltk.Tree):
node.set_label(node[0].label())
node[0:] = [c for c in node[0]]
internal_leaves = node.leaves()
if level == 0:
_span = [start, len_leave - 1]
level += 1
else:
_span = [start, start + len(internal_leaves) - 1]
start = start + len(internal_leaves)
# print(start)
if start >= len_leave:
# end
start = 0
level += 1
if len(node) == 1 and isinstance(node[0], str):
pos_tags.append(node.label())
continue
tree_node_lst.append(node)
spans.append(_span)
# spans.append(leaves2span(internal_leaves, leaves))
# loc = [t.leaf_treeposition(i) for i in range(3)]
for c in node:
if isinstance(c, nltk.Tree):
queue_tree.put(c)
del queue_tree
nodes = [x.label() for x in tree_node_lst]
print(f'{len(spans)}, {len(nodes)}')
tree.pretty_print()
for n, s in zip(nodes, spans):
print(f'[{n}]: {s}')
return leaves, pos_tags, nodes, spans, tree_node_lst
def padding_leaves_wnum(leaves, tree):
# leaves_location = [tree.leaf_treeposition(i) for i in range(len(tree.leaves()))]
# for i in range(len(leaves_location)):
# # tree[leaves_location[i]] = "{0:03}".format(i) + "||||" + tree[leaves_location[i]]
# tree[leaves_location[i]] = f'{i}'
# for i in range(len(tree.leaves())):
# if len(tree[tree.leaf_treeposition(i)[:-1]]) > 1:
# tree[tree.leaf_treeposition(i)] = Tree(tree[tree.leaf_treeposition(i)[:-1]].label(), [tree.leaves()[i]])
for i in range(len(leaves)):
tree[tree.leaf_treeposition(i)] = f'{i}'
def tree_to_leave_pos_node_span_collapse_v3(tree):
# print(f'tree_to_leave_pos_node_span_collapse.....')
leaves = tree.leaves()
# tree.pretty_print()
# len_leave = len(leaves)
padding_leaves_wnum(leaves, tree)
pos_tags = []
tree_node_lst = []
spans = []
queue_tree = queue.Queue()
queue_tree.put(tree)
while not queue_tree.empty():
node = queue_tree.get()
while len(node) == 1 and isinstance(node[0], nltk.Tree):
node.set_label(node[0].label())
node[0:] = [c for c in node[0]]
if len(node) == 1 and isinstance(node[0], str):
pos_tags.append(node.label())
continue
internal_leaves = node.leaves()
tree_node_lst.append(node)
_span = [int(internal_leaves[0]), int(internal_leaves[-1])]
spans.append(_span)
# spans.append(leaves2span(internal_leaves, leaves))
# loc = [t.leaf_treeposition(i) for i in range(3)]
for c in node:
if isinstance(c, nltk.Tree):
queue_tree.put(c)
del queue_tree
nodes = [x.label() for x in tree_node_lst]
if len(nodes) == 0:
nodes = [tree.label()]
spans = [[0, len(leaves) - 1]]
# print(f'{len(spans)}, {len(nodes)}')
# tree.pretty_print()
# for n, s in zip(nodes, spans):
# print(f'[{n}]: {s}')
return leaves, pos_tags, nodes, spans, tree_node_lst
# here
# leaves, pos_tags, nodes, spans, tree_node_lst = tree_to_leave_pos_node_span_collapse_v3(t)
def tree_string_to_symbols(tree_string, remove_root=True, no_collapse=False, **kwargs):
tree = tree_from_string(tree_string)
# if not no_collapse:
# if remove_root:
# tree = clean_maybe_rmnode(tree)
# else:
# # tree = remove_atnodeset_single_nodeset(tree, remove_root=remove_root)
# tree = remove_single_nodeset(tree, remove_root)
leaves = tree.leaves()
labels = []
queue_tree = queue.Queue()
queue_tree.put(tree)
while not queue_tree.empty():
node = queue_tree.get()
labels.append(node.label())
if len(node) == 1 and isinstance(node[0], str):
# node is terminal, its only child is a leaves
continue
for i in range(len(node)):
child = node[i]
if isinstance(child, nltk.Tree):
queue_tree.put(child)
tokens = leaves + labels
return tokens
def clean_node(tree):
"""
### Similar to: remove_atnodeset_single_nodeset
:param tree:
:return:
"""
t3 = deepcopy(tree)
t3_lst, t3_lst_tree, t3_meta = breadth_first_search(t3)
for ind, sub in reversed(list(enumerate(t3.subtrees()))):
if sub.height() >= 2:
postn = t3_meta[ind]
parentpos = postn[:-1]
if parentpos and len(t3[parentpos]) == 1:
t3[parentpos] = t3[postn]
leaves_location = [t3.leaf_treeposition(i) for i in range(len(t3.leaves()))]
for i in range(len(leaves_location)):
t3[leaves_location[i]] = t3[leaves_location[i]][7:]
if len(t3) == 1:
t3 = t3[0]
return t3
def collapse_unary(tree, collapsePOS=False, collapseRoot=False, joinChar="+"):
"""
Collapse subtrees with a single child (ie. unary productions)
into a new non-terminal (Tree node) joined by 'joinChar'.
This is useful when working with algorithms that do not allow
unary productions, and completely removing the unary productions
would require loss of useful information. The Tree is modified
directly (since it is passed by reference) and no value is returned.
:param tree: The Tree to be collapsed
:type tree: Tree
:param collapsePOS: 'False' (default) will not collapse the parent of leaf nodes (ie.
Part-of-Speech tags) since they are always unary productions
:type collapsePOS: bool
:param collapseRoot: 'False' (default) will not modify the root production
if it is unary. For the Penn WSJ treebank corpus, this corresponds
to the TOP -> productions.
:type collapseRoot: bool
:param joinChar: A string used to connect collapsed node values (default = "+")
:type joinChar: str
"""
if collapseRoot == False and isinstance(tree, Tree) and len(tree) == 1:
nodeList = [tree[0]]
else:
nodeList = [tree]
# depth-first traversal of tree
while nodeList != []:
node = nodeList.pop()
if isinstance(node, Tree):
if (
len(node) == 1
and isinstance(node[0], Tree)
and (collapsePOS == True or isinstance(node[0, 0], Tree))
):
node.set_label(node.label() + joinChar + node[0].label())
node[0:] = [child for child in node[0]]
# since we assigned the child's children to the current node,
# evaluate the current node again
nodeList.append(node)
else:
for child in node:
nodeList.append(child)
def collapse_unary_last(tree, collapsePOS=False, collapseRoot=False, joinChar="+"):
"""
Collapse subtrees with a single child (ie. unary productions)
into a new non-terminal (Tree node) joined by 'joinChar'.
This is useful when working with algorithms that do not allow
unary productions, and completely removing the unary productions
would require loss of useful information. The Tree is modified
directly (since it is passed by reference) and no value is returned.
:param tree: The Tree to be collapsed
:type tree: Tree
:param collapsePOS: 'False' (default) will not collapse the parent of leaf nodes (ie.
Part-of-Speech tags) since they are always unary productions
:type collapsePOS: bool
:param collapseRoot: 'False' (default) will not modify the root production
if it is unary. For the Penn WSJ treebank corpus, this corresponds
to the TOP -> productions.
:type collapseRoot: bool
:param joinChar: A string used to connect collapsed node values (default = "+")
:type joinChar: str
"""
if not collapseRoot and isinstance(tree, Tree) and len(tree) == 1:
nodeList = [tree[0]]
else:
nodeList = [tree]
# depth-first traversal of tree
while nodeList != []:
node = nodeList.pop()
if isinstance(node, Tree):
if (
len(node) == 1
and isinstance(node[0], Tree)
and (collapsePOS or isinstance(node[0, 0], Tree))
):
# node.set_label(node.label() + joinChar + node[0].label())
node.set_label(node[0].label())
node[0:] = [child for child in node[0]]
# since we assigned the child's children to the current node,
# evaluate the current node again
nodeList.append(node)
else:
for child in node:
nodeList.append(child)
def padding_leaves(tree):
leaves_location = [tree.leaf_treeposition(i) for i in range(len(tree.leaves()))]
for i in range(len(leaves_location)):
tree[leaves_location[i]] = "{0:03}".format(i) + "||||" + tree[leaves_location[i]]
for i in range(len(tree.leaves())):
if len(tree[tree.leaf_treeposition(i)[:-1]]) > 1:
tree[tree.leaf_treeposition(i)] = Tree(tree[tree.leaf_treeposition(i)[:-1]].label(), [tree.leaves()[i]])
def tree_str_post_process(tree_string):
tree_string = tree_string.replace('-LRB- (', '-LRB- -LRB-').replace('-RRB- )', '-RRB- -RRB-')
tree_string = tree_string.replace('TRUNC (', 'TRUNC -LRB-').replace('TRUNC )', 'TRUNC -RRB-')
return tree_string
def tree_from_string(tree_string):
try:
s = tree_string
s = tree_str_post_process(s)
tree = Tree.fromstring(s)
except Exception as e:
# print(f'Tree.fromstring(tree_string) failed, try to omit the post_process')
try:
tree = Tree.fromstring(tree_string)
except Exception as e:
print(f'ERROR: unable to parse the tree')
print(tree_string)
raise e
return tree
def tree_string_to_leave_pos_node_span(tree_string, remove_root=True, no_collapse=False, **kwargs):
tree = tree_from_string(tree_string)
if not no_collapse:
# if remove_root:
# tree = clean_maybe_rmnode(tree)
# else:
# backhere
# tree = remove_atnodeset_single_nodeset(tree, remove_root=remove_root)
# tree = collapse_unary_last(tree)
# leaves, pos_tags, nodes, spans, tree_node_lst = tree_to_leave_pos_node_span_collapse(tree)
leaves, pos_tags, nodes, spans, tree_node_lst = tree_to_leave_pos_node_span_collapse_v3(tree)
# leaves, pos_tags, nodes, spans, tree_node_lst = tree_to_leave_pos_node_span_collapse_v2(tree)
else:
leaves, pos_tags, nodes, spans, tree_node_lst = tree_to_leave_pos_node_span(tree)
return leaves, pos_tags, nodes, spans
# TODO: Nstack Dataset builder ---------------------
def replace_special_character(string):
new_string = deepcopy(string)
# new_string = new_string.replace(u")", ")").replace(u"(", "(")
new_string = new_string.replace(")", u")").replace("(", u"(")
list_string = new_string.split(" ")
new_list = deepcopy(list_string)
for i in range(len(list_string)):
for k, v in SPECIAL_CHAR.items():
if k in list_string[i]:
new_list[i] = list_string[i].replace(k, v)
return " ".join(new_list)
def merge_list_tree(list_tree):
root_label = [x.label() for x in list_tree]
assert len(set(root_label)) == 1 and 'ROOT' in root_label
list_string = "(ROOT " + " ".join([str(i) for i in range(len(list_tree))]) + ")"
new_tree = Tree.fromstring(list_string)
for i in range(len(list_tree)):
new_tree[i] = list_tree[i][0]
return new_tree
def remap_chars(tree):
for i in range(len(tree.leaves())):
if tree.leaves()[i] in SPECIAL_CHAR_MBACK:
tree[tree.leaf_treeposition(i)] = SPECIAL_CHAR_MBACK[tree.leaves()[i]]
def parse_string(parser, bpe_string, unify_tree=True):
word_string_nobpe = bpe_string.replace("@@ ", "")
word_string = replace_special_character(word_string_nobpe)
# tree_strings = list(get_corenlp_parser().parse_text(word_string, timeout=PARSER_TIMEOUT))
try:
tree_strings = list(parser.parse_text(word_string))
except Exception as e:
try:
print(f'Try bpe version')
tree_strings = list(parser.parse_text(bpe_string))
except Exception as ee:
print(f'Failed.')
print(f'[Ori]: {bpe_string}')
print(f'[Proc]: {word_string}')
traceback.print_stack()
raise ee
if unify_tree:
merged = merge_list_tree(tree_strings)
out_merged_tree = deepcopy(merged)
remap_chars(merged)
out_tree = deepcopy(merged)
parse_string = ' '.join(str(merged).split())
token_set = set(out_tree.leaves())
return parse_string, [out_merged_tree, out_tree], token_set
else:
token_set = set()
parse_strings = []
befores = []
afters = []
for tree_s in tree_strings:
before = deepcopy(tree_s)
remap_chars(tree_s)
after = deepcopy(tree_s)
parse_string = ' '.join(str(tree_s).split())
token_set = token_set.union(set(after.leaves()))
parse_strings.append(parse_string)
befores.append(before)
afters.append(after)
return parse_strings, [befores, afters], token_set
# fixme: temp: imdb preprocessing
def proc(x, y):
with open(x, 'r') as f:
s = f.read().replace('< br />< br />', '')
with open(y, 'w') as f:
f.write(s)
# proc('dev.input', 'dev.proc.input')
def max_tokens(x):
with open(x, 'r') as f:
longest = max(len(x.split(" ")) for x in f.read().strip().split('\n'))
print(longest)
class NStackDataset(Dataset):
def __init__(self, data_file, transform=None, unify_tree=True, port=PARSER_PORT):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.data = open(data_file, "r").readlines()
print(f'Finish reading lines [port={port}]: {len(self.data)}')
print(f'Line 0: {self.data[0]}')
self.transform = transform
self.port = port
self.unify_tree = unify_tree
self.parser = CusCoreNLPParser(url=f'http://localhost:{self.port}')
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data[idx].rstrip("\n")
# if self.transform:
try:
parse_strings, _, token_string_set = parse_string(self.parser, sample, unify_tree=self.unify_tree)
except Exception as e:
print(f'Error happen at index {idx}, return empty')
print(f'{sample}')
# raise e
return {
'ori_sample': sample,
'pstring': [],
'token_set': []
}
sample = {
'ori_sample': sample,
'pstring': parse_strings,
'token_set': list(token_string_set)
}
return sample
class Nstack2SeqDataset(Dataset):
def __init__(self, src_file, tgt_file, transform=None, unify_tree=True, port=PARSER_PORT):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.src_data = open(src_file, "r").readlines()
self.tgt_data = open(tgt_file, "r").readlines()
assert len(self.src_data) == len(self.tgt_data), f'{len(self.src_data)} != {len(self.tgt_data)}'
print(f'Finish reading lines [port={port}]: {len(self.src_data)}')
print(f'[init]Line 0: {self.src_data[0]} --> {self.tgt_data[0]}')
self.transform = transform
self.port = port
self.unify_tree = unify_tree
self.parser = CusCoreNLPParser(url=f'http://localhost:{self.port}')
def __len__(self):
return len(self.src_data)
def __getitem__(self, idx):
src_sample = self.src_data[idx].rstrip("\n")
tgt_sample = self.tgt_data[idx].rstrip("\n")
# if self.transform:
try:
parse_strings, _, token_string_set = parse_string(self.parser, src_sample, unify_tree=self.unify_tree)
except Exception as e:
print(f'Error happen at index {idx}, return empty')
print(f'{src_sample}')
print(f'{tgt_sample}')
print(traceback.format_exc())
# raise e
return {
'ori_sample': src_sample,
'pstring': [],
'token_set': [],
'tgt': ''
}
src_sample = {
'ori_sample': src_sample,
'pstring': parse_strings,
'token_set': list(token_string_set),
'tgt': tgt_sample,
}
return src_sample
class BuildTree2LeavesDataset(Dataset):
def __init__(self, data) -> None:
super().__init__()
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
tree = tree_from_string(self.data[index])
leaves = tree.leaves()
return " ".join(leaves)
class NstackTreeBuilder(object):
SENT_SPLITTER = '#####------#####'
def __init__(self, transform=None, unify_tree=True, bpe_tree=False, bpe_code=None, ignore_error=True) -> None:
super().__init__()
self.transform = transform
self.bpe_tree = bpe_tree
self.bpe_code = bpe_code
self.unify_tree = unify_tree
self.ignore_error = ignore_error
if self.bpe_tree:
assert bpe_code is not None and os.path.exists(bpe_code)
print(f'bpe_tree= {self.bpe_tree}')
print(f'ignore_error= {self.ignore_error}')
print(f'bpe_code= {self.bpe_code}')
def retrieve_tree_data(self, dataloader):
data = []
vocab = set()
for i_batch, sample_batched in enumerate(dataloader):
if self.unify_tree:
assert isinstance(sample_batched['pstring'], (list, tuple))
s = sample_batched['pstring'][0]
assert isinstance(s, str)
else:
try:
s = [x[0] for x in sample_batched['pstring']]
assert isinstance(s[0], str), f'{sample_batched["pstring"]}'
except Exception as e:
mess = 'skip it' if self.ignore_error else 'raise error'
print(f'WARNING: Failed step {i_batch} -> {mess}')
print(sample_batched)
print(f'[Sample]: {sample_batched["ori_sample"]}')
if self.ignore_error:
continue
else:
raise e
v = sample_batched['token_set'][0]
if i_batch % RETRIEVE_BATCH == 0:
print(f'Retrieve batch [{i_batch}]: time {datetime.datetime.now()}]')
data.append(s)
vocab = vocab.union(set(v))
vocab = list(vocab)
return data, vocab
def build_bpe_tree_vocab(self, raw_vocab_file_or_set, output_file):
# raw_vocab_file = f'{output_file}.raw.vocab'
bpe_vocab_file = f'{output_file}.bpe.vocab'
if isinstance(raw_vocab_file_or_set, str):
assert os.path.exists(raw_vocab_file_or_set)
is_file = True
raw_vocab_file = raw_vocab_file_or_set
else:
assert isinstance(raw_vocab_file_or_set, (set, list))
is_file = False
raw_vocab = list(raw_vocab_file_or_set)
raw_vocab_file = f"temp.{len(raw_vocab)}.vocab"
with open(raw_vocab_file, 'w') as f:
f.write('\n'.join(raw_vocab))
print(f'Applying BPE: subword-nmt apply-bpe -c {self.bpe_code} < {raw_vocab_file} > {bpe_vocab_file}')
os.system(f'subword-nmt apply-bpe -c {self.bpe_code} < {raw_vocab_file} > {bpe_vocab_file}')
assert os.path.exists(bpe_vocab_file)
# re-open bpe vocab
with open(bpe_vocab_file, "r") as f:
vocab_bpe = f.readlines()
list_dict = [x.strip().replace("@@ ", "") for x in vocab_bpe]
word2bpe = {}
for i, w in enumerate(list_dict):
word2bpe[w] = vocab_bpe[i].strip().split(" ")
return bpe_vocab_file, word2bpe, list_dict, vocab_bpe
def export_seq_file(self, data, file, separate=True):
with open(file, "w") as f:
for i, w in enumerate(data):
if separate:
assert isinstance(w, (list, tuple))
s = self.__class__.SENT_SPLITTER.join(w)
f.write(f'{s}\n')
else:
f.write(f'{w}\n')
f.close()
def read_separate_file(self, file):
with open(file, 'r') as f:
lines = f.read().strip().split('\n')
data = [x.split(self.__class__.SENT_SPLITTER) for x in lines]
return data
def apply_bpe_on_tree_strings(self, data, bpe_vocab_file, word2bpe, list_dict, vocab_bpe, multiple_sents=False, workers=0):
parse_string_data = []
splitter = self.__class__.SENT_SPLITTER
class BpeToTreeStringDataset(Dataset):
def __len__(self):
return len(self.data)
def __getitem__(self, index):
data_p = self.data[index]
data_p = data_p if isinstance(data_p, list) else [data_p]
bpe_trees = []
for x in data_p:
try:
tree_i = tree_from_string(x)
except Exception as e:
print(f'---- Error when parse tree at index {index}')
raise e
new_tree_j = deepcopy(tree_i)
leaves = tree_i.leaves()
for j, word in enumerate(leaves):
if word in word2bpe and len(word2bpe[word]) > 1:
# reassign
loc_leaf_j = tree_i.leaf_treeposition(j)
# eg: (0, 1, 0)...
pos_tag_j = tree_i[loc_leaf_j[:-1]].label()
bpe_tree_j = Tree(
pos_tag_j,
[Tree(f'{pos_tag_j}_bpe', [x]) for x in word2bpe[word]]
)
new_tree_j[loc_leaf_j[:-1]] = bpe_tree_j
parsing_bpe_tree = ' '.join(str(new_tree_j).split())
bpe_trees.append(parsing_bpe_tree)
merged = splitter.join(bpe_trees)
return merged
def __init__(self, data) -> None:
super().__init__()
self.data = data
def parse(x, index=0):
try:
tree_i = tree_from_string(x)
except Exception as e:
print(f'---- Error when parse tree at index {index}')
raise e
new_tree_j = deepcopy(tree_i)
leaves = tree_i.leaves()
for j, word in enumerate(leaves):
if word in word2bpe and len(word2bpe[word]) > 1:
# reassign
loc_leaf_j = tree_i.leaf_treeposition(j)
# eg: (0, 1, 0)...
pos_tag_j = tree_i[loc_leaf_j[:-1]].label()
bpe_tree_j = Tree(
pos_tag_j,
[Tree(f'{pos_tag_j}_bpe', [x]) for x in word2bpe[word]]
)
new_tree_j[loc_leaf_j[:-1]] = bpe_tree_j
# try:
# new_tree_j[loc_leaf_j[:-1]] = bpe_tree_j
# new_tree_j[loc_leaf_j[:-2]] = bpe_tree_j
# except Exception as e:
# print(f'index={index}, ')
# new_tree_j[loc_leaf_j[:-2]] = bpe_tree_j
parsing_bpe_tree = ' '.join(str(new_tree_j).split())
return parsing_bpe_tree
# for i, d in enumerate(data):
# if i % 100000 == 0:
# print(f'apply_bpe_on_tree_strings:: {i}')
# bpes = [parse(x, i) for x in d] if isinstance(d, list) else parse(d, index=i)
# parse_string_data.append(bpes)
dataset = BpeToTreeStringDataset(data)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=workers)
for i, d in enumerate(dataloader):
if i == 0:
print(f'First: {d}')
if i % 200000 == 0:
print(f'apply_bpe_on_tree_strings:: [{i}]: {d}')
# bpes = [parse(x, i) for x in d] if isinstance(d, list) else parse(d, index=i)
parse_string_data.append(d[0])
return parse_string_data
def build_bpe_tree(self, data, raw_vocab_file_or_set, before_bpe_output_file, bpe_output_file, separate=True):
print(f'Proceed to generate bpe tree [separate={separate}]: {bpe_output_file}')
assert separate
bpe_vocab_file, word2bpe, list_dict, vocab_bpe = self.build_bpe_tree_vocab(
raw_vocab_file_or_set, before_bpe_output_file)
print(f'apply_bpe_on_tree_strings [separate={separate}]: {bpe_output_file}')
parse_string_data = self.apply_bpe_on_tree_strings(
data, bpe_vocab_file, word2bpe, list_dict, vocab_bpe
)
# self.export_seq_file(parse_string_data, bpe_output_file, separate)
with open(bpe_output_file, "w") as f:
# for i, w in enumerate(parse_string_data):
# f.write(f'{w}\n')
f.write('\n'.join(parse_string_data))
f.close()
def export_text_to_tree_strings(
self, input_file, output_file, separate=True, num_workers=0, ignore_if_exist=False,
port=PARSER_PORT, remove_root=True, tgt_file=None, tgt_out_file=None):
raw_vocab_file = f'{output_file}.raw.vocab'
before_bpe_output_file = f'{output_file}.before-bpe'
if ignore_if_exist:
if self.bpe_tree and os.path.exists(before_bpe_output_file):
assert os.path.exists(raw_vocab_file)
print(f'Ignore tree generation, proceed to tree production')
bpe_output_file = output_file
data = self.read_separate_file(before_bpe_output_file)
self.build_bpe_tree(
data, raw_vocab_file, before_bpe_output_file, bpe_output_file, separate=separate)
return
nstack_dataset = NStackDataset(input_file, self.transform, not separate, port)
dataloader = DataLoader(nstack_dataset, batch_size=1, shuffle=False, num_workers=num_workers)
data, vocab = self.retrieve_tree_data(dataloader)
print(f'Generating raw vocab [separate={separate}]: {raw_vocab_file}')
self.export_seq_file(vocab, raw_vocab_file, separate=False)
print(f'Generate tree string data [separate={separate}]: {output_file}')
self.export_seq_file(data, output_file, separate)
if self.bpe_tree:
copyfile(output_file, before_bpe_output_file)
bpe_output_file = output_file
self.build_bpe_tree(data, raw_vocab_file, before_bpe_output_file, bpe_output_file, separate=separate)
def export_bpe_tree_from_nonbpe(