diff --git a/README.md b/README.md index d707bc9..7645fe8 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # Supplemental information for ‘Tutorial on survival modelling with omics data’ -This is an R Markdown supplement for the article ‘[Tutorial on survival modelling with omics data](https://arxiv.org/abs/2302.12542v1)’, see [here](https://ocbe-uio.github.io/survomics/survomics.html). +This is an R Markdown supplement for the article ‘[Tutorial on survival modelling with omics data](https://arxiv.org/abs/2302.12542)’, see the step-by-step R tutorial [here](https://ocbe-uio.github.io/survomics/survomics.html). ## Citation diff --git a/fig/TCGA_adaptivelasso.png b/fig/TCGA_adaptivelasso.png index c4473df..8e0b2fa 100644 Binary files a/fig/TCGA_adaptivelasso.png and b/fig/TCGA_adaptivelasso.png differ diff --git a/fig/TCGA_bayesEN.png b/fig/TCGA_bayesEN.png index f9e4fd9..38e13b7 100644 Binary files a/fig/TCGA_bayesEN.png and b/fig/TCGA_bayesEN.png differ diff --git a/fig/TCGA_bayesLassoM.png b/fig/TCGA_bayesLassoM.png new file mode 100644 index 0000000..5d4ad72 Binary files /dev/null and b/fig/TCGA_bayesLassoM.png differ diff --git a/fig/TCGA_bayesSpikeSlab.png b/fig/TCGA_bayesSpikeSlab.png index 9e30fc5..f50dc45 100644 Binary files a/fig/TCGA_bayesSpikeSlab.png and b/fig/TCGA_bayesSpikeSlab.png differ diff --git a/fig/TCGA_bayeslasso.png b/fig/TCGA_bayeslasso.png index d949f19..b35fb1c 100644 Binary files a/fig/TCGA_bayeslasso.png and b/fig/TCGA_bayeslasso.png differ diff --git a/fig/TCGA_elastic.png b/fig/TCGA_elastic.png index 7d69b2e..f7c2257 100644 Binary files a/fig/TCGA_elastic.png and b/fig/TCGA_elastic.png differ diff --git a/fig/TCGA_lasso.png b/fig/TCGA_lasso.png index d69b277..5ace5cf 100644 Binary files a/fig/TCGA_lasso.png and b/fig/TCGA_lasso.png differ diff --git a/fig/TCGA_surv_auc_lasso.png b/fig/TCGA_surv_auc_lasso.png index c1e52a8..b2e1b11 100644 Binary files a/fig/TCGA_surv_auc_lasso.png and b/fig/TCGA_surv_auc_lasso.png differ diff --git a/fig/TCGA_surv_brier_lasso.png b/fig/TCGA_surv_brier_lasso.png index 1109cdb..b0ecc67 100644 Binary files a/fig/TCGA_surv_brier_lasso.png and b/fig/TCGA_surv_brier_lasso.png differ diff --git a/fig/TCGA_surv_brier_t_lasso.png b/fig/TCGA_surv_brier_t_lasso.png index d5ef1b6..1b77fea 100644 Binary files a/fig/TCGA_surv_brier_t_lasso.png and b/fig/TCGA_surv_brier_t_lasso.png differ diff --git a/fig/TCGA_surv_calibration.png b/fig/TCGA_surv_calibration.png index c04ebb9..691db78 100644 Binary files a/fig/TCGA_surv_calibration.png and b/fig/TCGA_surv_calibration.png differ diff --git a/fig/TCGA_surv_cindex_lasso.png b/fig/TCGA_surv_cindex_lasso.png index 33f4caf..5d36d25 100644 Binary files a/fig/TCGA_surv_cindex_lasso.png and b/fig/TCGA_surv_cindex_lasso.png differ diff --git a/fig/TCGA_surv_iauc_lasso.png b/fig/TCGA_surv_iauc_lasso.png index 7962646..0d50f05 100644 Binary files a/fig/TCGA_surv_iauc_lasso.png and b/fig/TCGA_surv_iauc_lasso.png differ diff --git a/fig/TCGA_surv_km_lasso.png b/fig/TCGA_surv_km_lasso.png index 13db8db..9954b24 100644 Binary files a/fig/TCGA_surv_km_lasso.png and b/fig/TCGA_surv_km_lasso.png differ diff --git a/fig/TCGA_surv_nomogram.png b/fig/TCGA_surv_nomogram.png index 2337b85..96395d8 100644 Binary files a/fig/TCGA_surv_nomogram.png and b/fig/TCGA_surv_nomogram.png differ diff --git a/fig/TCGA_surv_roc.png b/fig/TCGA_surv_roc.png index b8f52ab..eeb5539 100644 Binary files a/fig/TCGA_surv_roc.png and b/fig/TCGA_surv_roc.png differ diff --git a/fig/mlr3_calibration_BS.png b/fig/mlr3_calibration_BS.png index a50d08b..d38a3f3 100644 Binary files a/fig/mlr3_calibration_BS.png and b/fig/mlr3_calibration_BS.png differ diff --git a/fig/mlr3_calibration_RCLL.png b/fig/mlr3_calibration_RCLL.png index a40106b..341a205 100644 Binary files a/fig/mlr3_calibration_RCLL.png and b/fig/mlr3_calibration_RCLL.png differ diff --git a/fig/mlr3_discrimination_msrs.png b/fig/mlr3_discrimination_msrs.png index d6ea4fe..f0f05c9 100644 Binary files a/fig/mlr3_discrimination_msrs.png and b/fig/mlr3_discrimination_msrs.png differ diff --git a/references.bib b/references.bib index c3035be..3c7b4f6 100644 --- a/references.bib +++ b/references.bib @@ -406,4 +406,20 @@ @misc{Sonabend2022 eprint = {2212.05260}, archiveprefix = {arXiv}, primaryclass = {math.ST} +} + +@article{Zucknick2023, + title = {Penalized Semiparametric {Bayesian} Survival Models}, + author = {Manuela Zucknick, Zhi Zhao, Maral Saadati, Axel Benner}, + year = 2023, + journal = {R package version 2.0.}, + volume = {\url{https://github.com/ocbe-uio/psbcSpeedUp.git} (18 September 2023, date last accessed)} +} + +@article{Zhao2023, + title = {Penalized Semiparametric Bayesian Survival Models}, + author = {Zhi Zhao and Manuela Zucknick and Maral Saadati and Axel Benner}, + year = 2023, + journal = {R package version 2.0.4.}, + volume = {\url{https://CRAN.R-project.org/package=psbcSpeedUp}} } \ No newline at end of file diff --git a/survomics.Rmd b/survomics.Rmd index bb33ca0..8221f18 100644 --- a/survomics.Rmd +++ b/survomics.Rmd @@ -18,7 +18,7 @@ link-citations: true --- ```{r, include=FALSE} -knitr::opts_chunk$set( +knitr::opts_chunk$set( comment = '', eval = FALSE ) ``` @@ -61,6 +61,7 @@ library("plotmo") library("grpreg") library("SGL") library("psbcGroup") +library("psbcSpeedUp") library("GGally") library("BhGLM") library("risksetROC") @@ -90,7 +91,7 @@ clin$time = apply(clin[, c("days_to_death", "days_to_last_follow_up")], 1, max, clin$age = clin$age_at_diagnosis / 365.25 clin$status = clin$vital_status clin = clin[, c("project", "submitter_id", "status", "time", "gender", "age", "race", "ethnicity")] - +# extract patients with positive overall survival time clin = clin[(clin$time > 0) & (clin$status %in% c("Alive", "Dead")), ] # frequency table of the patients w.r.t. status, gender and ethnicity @@ -121,19 +122,19 @@ clin %>% ```{r} # censoring plot by cancer types +ID = 1:nrow(clin) clin %>% - mutate(index=1:n()) %>% ggplot( - aes(y = index, x = time, colour = project, shape = factor(status))) + - geom_segment(aes(x = time, y = index, xend = 0, yend = index)) + + aes(y = ID, x = time, colour = project, shape = factor(status))) + + geom_segment(aes(x = time, y = ID, xend = 0, yend = ID)) + geom_point() + ggtitle("") + - labs(x="Years", y="Patients") + - scale_shape_discrete(name = "Status", labels = c("Censored","Dead")) + + labs(x = "Years", y = "Patients") + + scale_shape_discrete(name = "Status", labels = c("Censored", "Dead")) + scale_color_discrete(name = "Cancer", - labels = c("Bladder","Breast","Colon","Liver", "Lung adeno", - "Pancreatic", "Prostate","Thyroid")) + - theme(legend.position="top", legend.direction="vertical") + + labels = c("Bladder", "Breast", "Colon", "Liver", "Lung adeno", + "Pancreatic", "Prostate", "Thyroid")) + + theme(legend.position = "top", legend.direction = "vertical") + guides(color = guide_legend(nrow = 2, byrow = TRUE)) ``` @@ -161,13 +162,19 @@ dat = TCGAbiolinks::GDCprepare(query = query) SummarizedExperiment::assays(dat)$unstranded[1:5, 1:2] ``` +```{r, echo=FALSE} +# save the downloaded large data on sever +save(dat, file="TCGA_data.rda") +# load the downloaded large data and work on PC +load("/Users/zhiz/TCGA_data.rda") +``` ``` - TCGA-LL-A73Y-01A-11R-A33J-07 TCGA-E2-A1IU-01A-11R-A14D-07 -ENSG00000000003.15 7015 850 -ENSG00000000005.6 16 5 -ENSG00000000419.13 2167 1680 -ENSG00000000457.14 2505 1559 -ENSG00000000460.17 726 402 + TCGA-A7-A26E-01B-06R-A277-07 TCGA-A2-A0CU-01A-12R-A034-07 +ENSG00000000003.15 691 1429 +ENSG00000000005.6 20 73 +ENSG00000000419.13 335 1674 +ENSG00000000457.14 1292 1018 +ENSG00000000460.17 536 450 ``` It is recommended to use DESeq2 or TMM normalization method for RNA-seq data before further statistical analysis [@ZhaoY2021]. @@ -175,20 +182,20 @@ Here we demonstrate how to use the R/Bioconductor package [**DESeq2**](https://b ```{r} meta = colData(dat)[, c("project_id", "submitter_id", "age_at_diagnosis", "ethnicity", "gender", "days_to_death", "days_to_last_follow_up", "vital_status", "paper_BRCA_Subtype_PAM50", "treatments")] -meta$treatments = unlist(lapply(meta$treatments, function(xx){any(xx$treatment_or_therapy == "yes")})) +meta$treatments = unlist(lapply(meta$treatments, function(xx) {any(xx$treatment_or_therapy == "yes")})) dds = DESeq2::DESeqDataSetFromMatrix(assays(dat)$unstranded, colData = meta, design = ~ 1) dds2 = DESeq2::estimateSizeFactors(dds) -RNA_count = DESeq2::counts(dds2, normalized=TRUE) +RNA_count = DESeq2::counts(dds2, normalized = TRUE) RNA_count[1:5, 1:2] ``` ``` - TCGA-LL-A73Y-01A-11R-A33J-07 TCGA-E2-A1IU-01A-11R-A14D-07 -ENSG00000000003.15 6034.27168 951.825764 -ENSG00000000005.6 13.76313 5.598975 -ENSG00000000419.13 1864.04373 1881.255628 -ENSG00000000457.14 2154.78982 1745.760431 -ENSG00000000460.17 624.50196 450.157597 + TCGA-A7-A26E-01B-06R-A277-07 TCGA-A2-A0CU-01A-12R-A034-07 +ENSG00000000003.15 1899.76848 1419.51789 +ENSG00000000005.6 54.98606 72.51561 +ENSG00000000419.13 921.01656 1662.89219 +ENSG00000000457.14 3552.09968 1011.24507 +ENSG00000000460.17 1473.62649 447.01403 ``` To perform survival analysis with both clinical/demographic variables and omics data, in the following code we extract female breast cancer patients with their corresponding survival outcomes, clinical/demographic variables and RNA-seq features. @@ -203,7 +210,12 @@ RNA_count = RNA_count[, rownames(clin)] ``` :::{.info-box .note} -The R/Bioconductor package **TCGAbiolinks** cannot retrieve any proteomics or metabolomics data. +- [Bioconductor](https://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html) might provide an old package version of **TCGAbiolinks** for Linux machines. +Here, we use the version TCGAbiolinks_2.29.6. +If you encounter some issues when using this tutorial, please check your installed **TCGAbiolinks** version. +If necessary, you can re-install the package from its [GitHub repository](https://github.com/BioinformaticsFMRP/TCGAbiolinks.git). + +- The package **TCGAbiolinks** cannot retrieve any proteomics or metabolomics data. It is always useful to look at your data first, in particular the data type and dimensions (i.e. numbers of rows and columns for a data frame or matrix). ::: @@ -224,14 +236,19 @@ clin$status = as.numeric(clin$status) sfit = survival::survfit(Surv(time, status) ~ 1, data = clin) # calculate survival probability at 1-, 3- and 5-year time points -summary(sfit, times=c(1,3,5)) +summary(sfit, times = c(1, 3, 5)) theme_set(theme_bw()) ggsurv = survminer::ggsurvplot(sfit, conf.int = TRUE, risk.table = TRUE, xlab = "Time since diagnosis (year)", legend = "none", surv.median.line = "hv") -ggsurv$plot = ggsurv$plot + annotate("text", x = 20, y = 0.9, label= "+ Censor") +ggsurv$plot = ggsurv$plot + annotate("text", x = 20, y = 0.9, label = "+ Censor") ggsurv ``` +```{r, echo=FALSE} +pdf("TCGA_surv_km1.pdf", width = 5, height = 5) +ggsurv +dev.off() +``` ![_Kaplan-Meier curve for 1061 BRCA patients data from TCGA._](fig/TCGA_surv_km1.png){width=60%}
@@ -245,13 +262,18 @@ survival::survdiff(Surv(time, status) ~ treatments, data = clin) sfit2 = survfit(Surv(time, status) ~ treatments, data = clin) ggsurv = ggsurvplot(sfit2, conf.int = TRUE, risk.table = TRUE, - xlab = "Time since diagnosis (year)", legend = c(.6,.9), + xlab = "Time since diagnosis (year)", legend = c(.6, .9), legend.labs = c("No", "Yes"), legend.title = "Treatment", risk.table.y.text.col = TRUE, risk.table.y.text = FALSE) ggsurv$plot = ggsurv$plot + - annotate("text", x = 21, y = 1, label= "+ Censor") + - annotate("text", x = 22, y = .88, label= paste0("Log-rank test:\n", surv_pvalue(sfit2)$pval.txt)) + annotate("text", x = 21, y = 1, label = "+ Censor") + + annotate("text", x = 22, y = .88, label = paste0("Log-rank test:\n", surv_pvalue(sfit2)$pval.txt)) +ggsurv +``` +```{r, echo=FALSE} +pdf("TCGA_surv_km2.pdf", width = 5, height = 5) ggsurv +dev.off() ``` ![_Kaplan-Meier curves of the BRCA patients' survival data from TCGA grouped by treatment (i.e. pharmaceutical or radiation therapy) or nontreatment. The log-rank test is to compare the two survival distributions corresponding to the two groups of patients._](fig/TCGA_surv_km2.png){width=60%} @@ -306,7 +328,6 @@ Iterations: 5 outer, 15 Newton-Raphson Degrees of freedom for terms= 4 Likelihood ratio test=46.4 on 4.03 df, p=2e-09 n= 1047, number of events= 149 - (14 observations deleted due to missingness) ``` To check proportional hazards of age, we can add a time-dependent covariate $age \times g(t)$, where $g(t)$ is a known function e.g. $g(t) = \log t$. @@ -332,11 +353,21 @@ When including high-dimensional omics data, there are no standard approaches for From a practical point of view, since most omics profiles contain thousands of variables and most supervised statistical methods are not suited for high dimensional omics features, it is better to filter the omics features first. In addition, we perceive that not too many omics features are relevant to one medical problem. -We will demonstrate **two different filtering approaches for high-dimensional omics data**: +We will demonstrate **three different filtering approaches for high-dimensional omics data**: +- Knowledge-based filtering - P-value-based filtering - Variance-based filtering +### Knowledge filter {-} + +One can be interested in only some biologically meaningful genes or only protein-coding genes in a specific study. +For example, the code below filters protein-coding genes. + +```{r} +filtered_rna = RNA_count[rowData(dat)$gene_type == "protein_coding", ] +``` + ### P-value filter {-} Before joint analyzing the associations between the thousands of omics features and survival outcomes, one can analyze the association between each omics feature and the survival outcomes, and filter omics features at a statistical significance level $0.1$ or $0.2$ (larger than 0.05 to reduce false negative identification of omics features in multivariate analysis). @@ -344,12 +375,12 @@ For demonstration, based on the $100$ mRNA-Seq features from TCGA breast cancer ```{r} RNA_log2count = log2(RNA_count[1:100, ] + 1) -pvalues <- rep(NA, nrow(RNA_log2count)) -for(j in 1:nrow(RNA_log2count)) { +pvalues = rep(NA, nrow(RNA_log2count)) +for (j in 1:nrow(RNA_log2count)) { fit_cox = coxph(Surv(clin$time, clin$status) ~ RNA_log2count[j, ], data = clin) pvalues[j] = summary(fit_cox)$coefficients[, "Pr(>|z|)"] } -filtered_rna <- RNA_log2count[which(pvalues < 0.2), ] +filtered_rna = RNA_log2count[which(pvalues < 0.2), ] ``` ### Variance filter {-} @@ -374,11 +405,11 @@ features to start with: 60660 performing calculations for variance printing topN most variable features with statistics... feature mean var sd -ENSG00000166509.12 ENSG00000166509.12 6.084336 31.60450 5.621788 -ENSG00000110484.7 ENSG00000110484.7 11.004346 26.22686 5.121216 -ENSG00000153002.12 ENSG00000153002.12 8.222386 25.87780 5.087022 -ENSG00000134184.13 ENSG00000134184.13 5.371158 23.28756 4.825719 -ENSG00000160182.3 ENSG00000160182.3 9.901567 21.48403 4.635087 +ENSG00000166509.12 ENSG00000166509.12 6.086125 31.60384 5.621729 +ENSG00000110484.7 ENSG00000110484.7 11.005136 26.13755 5.112489 +ENSG00000153002.12 ENSG00000153002.12 8.212895 25.89105 5.088325 +ENSG00000134184.13 ENSG00000134184.13 5.371435 23.23511 4.820281 +ENSG00000160182.3 ENSG00000160182.3 9.902195 21.41407 4.627534 features remaining: 607 ``` @@ -406,25 +437,13 @@ We demonstrate three unsupervised learning methods, i.e. principal component ana The `R` package [**M3C**](https://bioconductor.org/packages/M3C/) [@John2020] provides the analyses and visualization of all the three methods. ```{r} +# identify indexes of the PAM50 genes in the TCGA-BRCA data +idx = which(rowData(dat)$gene_name %in% + c("UBE2T", "BIRC5", "NUF2", "CDC6", "CCNB1", "TYMS", "MYBL2", "CEP55", "MELK", "NDC80", "RRM2", "UBE2C", "CENPF", "PTTG1", "EXO1", "ORC6", "ANLN", "CCNE1", "CDC20", "MKI67", "KIF2C", "ACTR3B", "MYC", "EGFR", "KRT5", "PHGDH", "CDH3", "MIA", "KRT17", "FOXC1", "SFRP1", "KRT14", "ESR1", "SLC39A6", "BAG1", "MAPT", "PGR", "CXXC5", "MLPH", "BCL2", "MDM2", "NAT1", "FOXA1", "BLVRA", "MMP11", "GPR160", "FGFR4", "GRB7", "TMEM45B", "ERBB2")) # extract the PAM50 genes of TCGA-BRCA patients -TCGA_PAM50 = RNA_count[sapply(strsplit(rownames(RNA_count), ".", fixed = TRUE), function(x) x[[1]]) %in% c( - "ENSG00000077152", "ENSG00000089685", "ENSG00000143228", "ENSG00000094804", "ENSG00000134057", - "ENSG00000176890", "ENSG00000101057", "ENSG00000138180", "ENSG00000165304", "ENSG00000080986", - "ENSG00000171848", "ENSG00000175063", "ENSG00000117724", "ENSG00000164611", "ENSG00000174371", - "ENSG00000091651", "ENSG00000011426", "ENSG00000105173", "ENSG00000117399", "ENSG00000148773", - "ENSG00000142945", "ENSG00000133627", "ENSG00000136997", "ENSG00000146648", "ENSG00000186081", - "ENSG00000092621", "ENSG00000062038", "ENSG00000261857", "ENSG00000128422", "ENSG00000054598", - "ENSG00000104332", "ENSG00000186847", "ENSG00000091831", "ENSG00000141424", "ENSG00000107262", - "ENSG00000186868", "ENSG00000082175", "ENSG00000171604", "ENSG00000115648", "ENSG00000171791", - "ENSG00000135679", "ENSG00000171428", "ENSG00000129514", "ENSG00000106605", "ENSG00000099953", - "ENSG00000173890", "ENSG00000160867", "ENSG00000141738", "ENSG00000151715", "ENSG00000141736"), ] +TCGA_PAM50 = RNA_count[idx, ] # use gene symbols instead of Ensembl IDs -rownames(TCGA_PAM50) = - c("UBE2T", "BIRC5", "NUF2", "CDC6", "CCNB1", "TYMS", "MYBL2", "CEP55", "MELK", "NDC80", "RRM2", - "UBE2C", "CENPF", "PTTG1", "EXO1", "ORC6L", "ANLN", "CCNE1", "CDC20", "MKI67", "KIF2C", - "ACTR3B", "MYC", "EGFR", "KRT5", "PHGDH", "CDH3", "MIA", "KRT17", "FOXC1", "SFRP1", "KRT14", - "ESR1", "SLC39A6", "BAG1", "MAPT", "PGR", "CXXC5", "MLPH", "BCL2", "MDM2", "NAT1", "FOXA1", - "BLVRA", "MMP11", "GPR160", "FGFR4", "GRB7", "TMEM45B", "ERBB2") +rownames(TCGA_PAM50) = rowData(dat)$gene_name[idx] # log2-transformation of the normalized count data TCGA_PAM50 = log2(TCGA_PAM50 + 1) @@ -476,19 +495,19 @@ coxph(formula = Surv(time, status) ~ PC1 + PC2, data = data_tmp) n= 1047, number of events= 149 coef exp(coef) se(coef) z Pr(>|z|) -PC1 0.004894 1.004906 0.009689 0.505 0.61348 -PC2 0.038269 1.039010 0.013224 2.894 0.00381 ** +PC1 0.004679 1.004690 0.009675 0.484 0.62862 +PC2 0.038179 1.038918 0.013233 2.885 0.00391 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 exp(coef) exp(-coef) lower .95 upper .95 -PC1 1.005 0.9951 0.986 1.024 -PC2 1.039 0.9625 1.012 1.066 +PC1 1.005 0.9953 0.9858 1.024 +PC2 1.039 0.9625 1.0123 1.066 Concordance= 0.58 (se = 0.028 ) -Likelihood ratio test= 8.62 on 2 df, p=0.01 -Wald test = 8.71 on 2 df, p=0.01 -Score (logrank) test = 8.73 on 2 df, p=0.01 +Likelihood ratio test= 8.54 on 2 df, p=0.01 +Wald test = 8.64 on 2 df, p=0.01 +Score (logrank) test = 8.66 on 2 df, p=0.01 ``` ### Penalized Cox models {-} @@ -522,7 +541,7 @@ beta.negative = colnames(x)[betas < 0] #get ordered list of variables as they appear at smallest lambda allnames = names(coef(mod)[, ncol(coef(mod))] [order(coef(mod)[, ncol(coef(mod))], decreasing = TRUE)]) -# assign colors +# assign colors for positive (pink) and negative (green) coefficients cols = rep("gray80", length(allnames)) cols[allnames %in% beta.positive] = "seagreen3" cols[allnames %in% beta.negative] = "hotpink" @@ -530,7 +549,14 @@ cols[allnames %in% beta.negative] = "hotpink" # drwa coefficient paths of a Lasso Cox model plotmo::plot_glmnet(mod, label = TRUE, s = lambda_optimal, col = cols, xlab = expression(log ~~ lambda), ylab = expression(beta)) -title("Lasso \n\n") +title("Lasso \n\n") +``` +```{r, echo=FALSE} +pdf("TCGA_Lasso.pdf", width = 6, height = 5) +plotmo::plot_glmnet(mod, label = TRUE, s = lambda_optimal, col = cols, + xlab = expression(log ~~ lambda), ylab = expression(beta)) +title("Lasso \n\n") +dev.off() ``` ![_Coefficient paths of a Lasso Cox model. The verticle gray line indicates the optimal $\lambda$ and its correspondingly selected features are marked as green (positive coefficient) and red (negative coefficient) colors. Note that the demographic variables age and ethnicity were not penalized, so that their coefficient paths did not start from zero in the figure._](fig/TCGA_lasso.png){width=60%} @@ -546,7 +572,7 @@ The parameter $\alpha$ can be fixed as $0$ (Ridge), $1$ (Lasso) or any value bet alpha = seq(0.1, 1, length = 10) fitEN = list() set.seed(123) -for(i in 1:length(alpha)) { +for (i in 1:length(alpha)) { fitEN[[i]] = cv.glmnet(x, y, family = "cox", alpha = alpha[i], nfolds = 5, penalty.factor = pf) } idx = which.min(sapply(fitEN, function(xx) {xx$cvm[xx$lambda == xx$lambda.min]})) @@ -569,6 +595,13 @@ plotmo::plot_glmnet(mod, label = TRUE, s = lambda_optimal, col = cols, xlab = expression(log ~~ lambda), ylab = expression(beta)) title("Elastic Net \n\n") ``` +```{r, echo=FALSE} +pdf("TCGA_elastic.pdf", width = 6, height = 5) +plotmo::plot_glmnet(mod, label = TRUE, s = lambda_optimal, col = cols, + xlab = expression(log ~~ lambda), ylab = expression(beta)) +title("Elastic Net \n\n") +dev.off() +``` ![_Coefficient paths of an Elastic Net Cox model. The verticle gray line indicates the optimal $\lambda$ and its correspondingly selected features are marked as green (positive coefficient) and red (negative coefficient) colors. Note that the demographic variables age and ethnicity were not penalized, so that their coefficient paths did not start from zero in the figure._](fig/TCGA_elastic.png){width=60%}
@@ -603,6 +636,13 @@ plot_glmnet(mod, label = TRUE, s = lambda_optimal, col = cols, xlab = expression(log ~ lambda), ylab = expression(beta)) title("Adative Lasso \n\n") ``` +```{r, echo=FALSE} +pdf("TCGA_adaptiveLasso.pdf", width = 6, height = 5) +plot_glmnet(mod, label = TRUE, s = lambda_optimal, col = cols, + xlab = expression(log ~ lambda), ylab = expression(beta)) +title("Adative Lasso \n\n") +dev.off() +``` ![_Coefficient paths of an adaptive Lasso Cox model. The verticle gray line indicates the optimal $\lambda$ and its correspondingly selected features are marked as green (positive coefficient) and red (negative coefficient) colors. Note that the demographic variables age and ethnicity were not penalized, so that their coefficient paths did not start from zero in the figure._](fig/TCGA_adaptivelasso.png){width=60%}
@@ -629,58 +669,58 @@ round(cvfit$fit$beta[, c(which.min(cvfit$cve), 10, 20)], digits = 4) ``` ``` 0.0143 0.0217 0.0108 -age 0.0219 0.0154 0.0247 -ethnicity -0.0542 -0.0425 -0.0569 -UBE2T 0.0209 0.0000 0.0732 -BIRC5 -0.0035 0.0000 -0.0109 -NUF2 -0.0031 0.0000 -0.0093 -CDC6 0.0155 0.0000 0.0546 -CCNB1 -0.0247 0.0000 -0.0846 -TYMS -0.0028 0.0000 -0.0086 -MYBL2 -0.0147 0.0000 -0.0522 -CEP55 0.0152 0.0000 0.0507 -MELK -0.0001 0.0000 -0.0006 -NDC80 0.0007 0.0000 0.0022 -RRM2 0.0000 0.0000 -0.0100 -UBE2C 0.0000 0.0000 0.0076 -CENPF 0.0000 0.0000 -0.0002 -PTTG1 0.0000 0.0000 0.0052 -EXO1 0.0000 0.0000 -0.0002 -ORC6L 0.0000 0.0000 -0.0464 -ANLN 0.0000 0.0000 -0.0175 -CCNE1 0.0000 0.0000 -0.0155 -CDC20 0.0000 0.0000 -0.0142 -MKI67 0.0000 0.0000 -0.0245 -KIF2C 0.0000 0.0000 -0.0123 -ACTR3B 0.0000 0.0000 0.0043 -MYC 0.0000 0.0000 -0.0137 -EGFR 0.0000 0.0000 0.0319 -KRT5 0.0000 0.0000 -0.0059 -PHGDH 0.0000 0.0000 0.0004 -CDH3 0.0000 0.0000 -0.0265 -MIA 0.0000 0.0000 0.0049 -KRT17 0.0000 0.0000 -0.0088 -FOXC1 0.0000 0.0000 0.0096 -SFRP1 0.0000 0.0000 0.0235 -KRT14 0.0000 0.0000 0.0218 -ESR1 0.0000 0.0000 -0.0158 -SLC39A6 0.0000 0.0000 0.0284 -BAG1 0.0000 0.0000 0.0104 -MAPT 0.0000 0.0000 0.0023 -PGR 0.0000 0.0000 0.0095 -CXXC5 0.0000 0.0000 -0.0182 -MLPH 0.0000 0.0000 -0.0059 -BCL2 0.0000 0.0000 0.0133 -MDM2 0.0000 0.0000 -0.0084 -NAT1 0.0000 0.0000 -0.0008 -FOXA1 0.0000 0.0000 -0.0055 -BLVRA 0.0000 0.0000 0.0053 -MMP11 0.0000 0.0000 -0.0037 -GPR160 0.0000 0.0000 -0.0328 -FGFR4 0.0000 0.0000 -0.0029 -GRB7 0.0000 0.0000 0.0086 -TMEM45B 0.0000 0.0000 -0.0078 -ERBB2 0.0000 0.0000 -0.0194 +age 0.0218 0.0154 0.0247 +ethnicity -0.0542 -0.0425 -0.0570 +ANLN 0.0193 0.0000 0.0713 +FOXC1 -0.0032 0.0000 -0.0104 +CDH3 -0.0028 0.0000 -0.0090 +UBE2T 0.0154 0.0000 0.0571 +NDC80 -0.0239 0.0000 -0.0862 +PGR -0.0027 0.0000 -0.0086 +BIRC5 -0.0133 0.0000 -0.0497 +ORC6 0.0140 0.0000 0.0489 +ESR1 -0.0002 0.0000 -0.0008 +PHGDH 0.0008 0.0000 0.0024 +CDC6 0.0000 0.0000 -0.0094 +MMP11 0.0000 0.0000 0.0074 +MYBL2 0.0000 0.0000 0.0018 +SFRP1 0.0000 0.0000 0.0049 +CCNE1 0.0000 0.0000 0.0000 +BLVRA 0.0000 0.0000 -0.0436 +BAG1 0.0000 0.0000 -0.0163 +MLPH 0.0000 0.0000 -0.0155 +CDC20 0.0000 0.0000 -0.0129 +CENPF 0.0000 0.0000 -0.0245 +KRT17 0.0000 0.0000 -0.0125 +FOXA1 0.0000 0.0000 0.0040 +ACTR3B 0.0000 0.0000 -0.0112 +CCNB1 0.0000 0.0000 0.0302 +MDM2 0.0000 0.0000 -0.0077 +MYC 0.0000 0.0000 0.0002 +CEP55 0.0000 0.0000 -0.0242 +SLC39A6 0.0000 0.0000 0.0053 +ERBB2 0.0000 0.0000 -0.0089 +GRB7 0.0000 0.0000 0.0099 +KIF2C 0.0000 0.0000 0.0219 +NUF2 0.0000 0.0000 0.0210 +EGFR 0.0000 0.0000 -0.0150 +MKI67 0.0000 0.0000 0.0266 +TMEM45B 0.0000 0.0000 0.0100 +FGFR4 0.0000 0.0000 0.0023 +PTTG1 0.0000 0.0000 0.0095 +MELK 0.0000 0.0000 -0.0188 +NAT1 0.0000 0.0000 -0.0052 +CXXC5 0.0000 0.0000 0.0131 +BCL2 0.0000 0.0000 -0.0082 +RRM2 0.0000 0.0000 -0.0003 +GPR160 0.0000 0.0000 -0.0043 +EXO1 0.0000 0.0000 0.0041 +UBE2C 0.0000 0.0000 -0.0052 +TYMS 0.0000 0.0000 -0.0298 +KRT5 0.0000 0.0000 -0.0025 +KRT14 0.0000 0.0000 0.0085 +MAPT 0.0000 0.0000 -0.0071 +MIA 0.0000 0.0000 -0.0180 ``` Sparse group Lasso Cox model is implemented in the `R` package [**SGL**](https://CRAN.R-project.org/package=SGL) [@Simon2019]. @@ -699,53 +739,54 @@ names(beta.hat) = paste0("group", as.numeric(group), ".", c(1:2, 1:10, 1:40)) beta.hat ``` ``` - group1.1 group1.2 group2.1 group2.2 group2.3 group2.4 - 5.68387570 0.00000000 0.50711740 0.00000000 0.00000000 0.21522490 - group2.5 group2.6 group2.7 group2.8 group2.9 group2.10 - 0.00000000 0.00000000 0.00000000 0.34168669 0.00000000 0.00000000 - group3.1 group3.2 group3.3 group3.4 group3.5 group3.6 - 0.00000000 0.25691478 0.00000000 -0.37494726 0.00000000 -2.85110146 - group3.7 group3.8 group3.9 group3.10 group3.11 group3.12 --1.93556994 0.00000000 0.00000000 0.00000000 -1.77805542 0.00000000 - group3.13 group3.14 group3.15 group3.16 group3.17 group3.18 - 0.00000000 1.03819778 0.00000000 0.00000000 0.00000000 0.00000000 - group3.19 group3.20 group3.21 group3.22 group3.23 group3.24 - 0.00000000 0.00000000 0.00000000 0.00000000 -0.34496717 0.00000000 - group3.25 group3.26 group3.27 group3.28 group3.29 group3.30 - 1.01552095 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 - group3.31 group3.32 group3.33 group3.34 group3.35 group3.36 --2.13205587 0.00000000 0.00000000 0.00000000 0.00000000 -0.95048121 - group3.37 group3.38 group3.39 group3.40 --1.86222105 -0.01120573 -0.81157646 -2.14148900 + group1.1 group1.2 group2.1 group2.2 group2.3 group2.4 + 5.6584838488 0.0000000000 0.4812006103 0.0000000000 0.0000000000 0.2481830177 + group2.5 group2.6 group2.7 group2.8 group2.9 group2.10 + 0.0000000000 -0.0003042126 0.0000000000 0.3317385412 0.0000000000 0.0000000000 + group3.1 group3.2 group3.3 group3.4 group3.5 group3.6 + 0.0000000000 0.3037631224 0.0000000000 -0.3782338997 0.0000000000 -2.6805881347 + group3.7 group3.8 group3.9 group3.10 group3.11 group3.12 +-1.8418523757 0.0000000000 0.0000000000 0.0000000000 -1.7849923007 0.0000000000 + group3.13 group3.14 group3.15 group3.16 group3.17 group3.18 + 0.0000000000 1.0290918041 0.0000000000 0.0000000000 0.0000000000 0.0000000000 + group3.19 group3.20 group3.21 group3.22 group3.23 group3.24 + 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.3679980817 0.0000000000 + group3.25 group3.26 group3.27 group3.28 group3.29 group3.30 + 0.9925901529 0.0088469957 0.0000000000 0.0000000000 0.0000000000 0.0000000000 + group3.31 group3.32 group3.33 group3.34 group3.35 group3.36 +-2.1975942364 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.8407228093 + group3.37 group3.38 group3.39 group3.40 +-1.8217490477 0.0000000000 -0.7323739107 -2.0111900380 ``` ### Sparse Bayesian Cox models -The `R` package [**psbcGroup**](https://CRAN.R-project.org/package=psbcGroup) [@Lee2021] integrates a large set of sparse Bayesian Cox models. -The function `psbcGL()` implements Bayesian Cox models with Lasso and group Lasso priors for feature selection and group selection respectively. -For the Lasso prior, set the hyperparameter `priorPara$groupInd = 1:p` where $p$ is the total number of covariates. -For the group Lasso prior, set the hyperparameter `priorPara$groupInd` as a vector of size $p$, where each element denotes which group each covariate corresponds to. -Note that **psbcGroup** cannot distinguish mandatory (unpenalized) covariates with omics features, see @Zucknick2015 for an extended Bayesian Lasso Cox model. +The `R` package [**psbcGroup**](https://CRAN.R-project.org/package=psbcGroup) [@Lee2021] integrates a large set of sparse Bayesian Cox models. +The function `psbcGL()` implements Bayesian Cox models with Lasso and group Lasso priors for feature selection and group selection respectively. +For the Lasso prior, set the hyperparameter `priorPara$groupInd = 1:p` where $p$ is the total number of covariates. +For the group Lasso prior, set the hyperparameter `priorPara$groupInd` as a vector of size $p$, where each element denotes which group each covariate corresponds to. ```{r} # Bayesian Cox model with Lasso prior + set.seed(123) survObj = list(t = clin$time, di = clin$status, x = x) p = ncol(x) # set hyperparameters. # For Lasso prior (i.e. 'groupInd'= 1:p), larger ratio r/delta tends to force the posterior betas to be more concentrated at 0 # For group Lasso prior (i.e. 'groupInd' as group indicator for covariates), larger ratio r/delta tends to force stronger grouping effect of covariates -s = c(sort(survObj$t[survObj$di == 1]), 2 * max(survObj$t) - max(survObj$t[-which(survObj$t==max(survObj$t))])) -priorPara = list('eta0' = 1, 'kappa0' = 1, 'c0'= 2, 'r' = 0.5, - 'delta' = 0.0001, 's'= s, 'J'=length(s), 'groupInd'= 1:p) +s = c(sort(survObj$t[survObj$di == 1]), 2 * max(survObj$t) - max(survObj$t[-which(survObj$t == max(survObj$t))])) +priorPara = list('eta0' = 1, 'kappa0' = 1, 'c0' = 2, 'r' = 0.5, + 'delta' = 0.0001, 's' = s, 'J' = length(s), 'groupInd' = 1:p) # set MCMC parameters -mcmcPara = list('numBeta'= p, 'beta.prop.var'= 1) +mcmcPara = list('numBeta' = p, 'beta.prop.var' = 1) # set initial values of hyperparameters lambdaSq = 1 -initial = list('beta.ini'= rep(0, p), 'lambdaSq' = 1, 'sigmaSq' = runif(1, 0.1, 10), +initial = list('beta.ini' = rep(0, p), 'lambdaSq' = 1, 'sigmaSq' = runif(1, 0.1, 10), 'tauSq' = rexp(length(unique(priorPara$groupInd)), 'rate' = lambdaSq / 2), 'h' = rgamma(priorPara$J, 1, 1)) # in real applications, 'num.reps' should be large enough (e.g. 20000, 40000) and 'chain' to be > 1 +# argument 'rw' should be FALSE for high-dimensional covariates BayesLassofit = psbcGroup::psbcGL(survObj, priorPara, initial, rw = TRUE, mcmcPara, num.reps = 100, thin = 1, chain = 1) # burn-in the first half MCMC iterations beta_p = BayesLassofit$beta.p[-(1:51), ] @@ -755,9 +796,40 @@ beta_U = apply(beta_p, 2, quantile, 0.975) tbl = data.frame(term = colnames(x), estimate = beta_mean, conf.low = beta_L, conf.high = beta_U) tbl$term = factor(tbl$term, levels = tbl$term) -GGally::ggcoef(tbl) + xlab(expression(Posterior~~beta)) + ylab("") +GGally::ggcoef(tbl) + xlab(expression(Posterior ~~ beta)) + ylab("") +``` +```{r, echo=FALSE} +pdf("TCGA_bayesLasso.pdf", width = 4, height = 6) +GGally::ggcoef(tbl) + xlab(expression(Posterior ~~ beta)) + ylab("") +dev.off() ``` -![_Estimates of regression coefficients by a penalized semiparametric Bayesian Cox model with Lasso prior. Solid dots indicate the posterior mean over MCMC iterations (excluding burn-in period), and horizontal lines show the corresponding 95% credibility intervals._](fig/TCGA_bayeslasso.png){width=60%} +![_Estimates of regression coefficients by a penalized semiparametric Bayesian Cox model with Lasso prior. Solid dots indicate the posterior mean over MCMC iterations (excluding burn-in period), and horizontal lines show the corresponding 95% credibility intervals._](fig/TCGA_bayeslasso.png){width=50%} + +
+ +Note that **psbcGroup** cannot distinguish mandatory (unpenalized) covariates with omics features, see @Zucknick2015 for an extended Bayesian Lasso Cox model. +The following code implements the Bayesian Lasso Cox model with mandatory covariates through the `R` package [**psbcSpeedUp**](https://CRAN.R-project.org/package=psbcSpeedUp) [@Zhao2023]. + +```{r} +# Bayesian Cox model with Lasso prior and mandatory covariates +set.seed(123) +survObjM = list(t = clin$time, di = clin$status, x = x[, c(3:52, 1:2)]) +priorPara = list('eta0' = 1, 'kappa0' = 1, 'c0' = 2, 'r' = 0.5, 'delta' = 0.0001) +BayesLassoMfit <- psbcSpeedUp::psbcSpeedUp(survObjM, p = 50, q = 2, hyperpar = priorPara, + nIter = 100, burnin = 50, thin = 1, rw = FALSE, outFilePath = "tmp") +plot(BayesLassoMfit) +``` +``` +Running MCMC iterations ... +[##################################################] 100% +DONE, exiting! +``` +```{r, echo=FALSE} +pdf("TCGA_bayesLassoM.pdf", width = 4, height = 6) +plot(BayesLassoMfit) +dev.off() +``` +![_Estimates of regression coefficients by a penalized semiparametric Bayesian Cox model with Lasso prior and unpenalized covariates. Solid dots indicate the posterior mean over MCMC iterations (excluding burn-in period), and horizontal lines show the corresponding 95% credibility intervals._](fig/TCGA_bayeslassoM.png){width=50%}
@@ -770,26 +842,26 @@ set.seed(123) # set hyperparameters # Larger ratio r1/delta1 forces the posterior betas to be more concentrated at 0 # Larger ratio r2/delta2 forces stronger grouping effect of covariates -priorPara = list('eta0' = 1, 'kappa0' = 1, 'c0'= 2, 'r1' = 0.1, 'r2' = 1, - 'delta1' = 0.1, 'delta2' = 1, 's'= s, 'J' = length(s)) +priorPara = list('eta0' = 1, 'kappa0' = 1, 'c0' = 2, 'r1' = 0.1, 'r2' = 1, + 'delta1' = 0.1, 'delta2' = 1, 's' = s, 'J' = length(s)) # set MCMC parameters -mcmcPara = list('numBeta'= p, 'beta.prop.var'= 1) +mcmcPara = list('numBeta' = p, 'beta.prop.var' = 1) # set initial values of hyperparameters -initial = list('beta.ini'= rep(0, p), 'lambda1Sq' = 1, 'lambda2' = 1, 'sigmaSq' = runif(1, 0.1, 10), +initial = list('beta.ini' = rep(0, p), 'lambda1Sq' = 1, 'lambda2' = 1, 'sigmaSq' = runif(1, 0.1, 10), 'tauSq' = rexp(p, rate = 1 / 2), 'h' = rgamma(priorPara$J, 1, 1)) # in real application, 'num.reps' should be large enough (e.g. 20000, 40000) and 'chain' to be > 1 -BayesENfit = psbcEN(survObj, priorPara, initial, rw = TRUE, mcmcPara, num.reps = 100, thin = 1, chain = 1) +BayesENfit = psbcEN(survObj, priorPara, initial, rw = FALSE, mcmcPara, num.reps = 100, thin = 1, chain = 1) # burn-in the first half MCMC iterations EN_beta_p = BayesENfit$beta.p[52:101, ] -EN_beta_mean = colMeans(EN_beta_p) -EN_beta_L = apply(EN_beta_p, 2, quantile, 0.025) -EN_beta_U = apply(EN_beta_p, 2, quantile, 0.975) -EN_tbl = data.frame(term = colnames(x), estimate = EN_beta_mean, conf.low = EN_beta_L, conf.high = EN_beta_U) -EN_tbl$term = factor(EN_tbl$term, levels = EN_tbl$term) - -GGally::ggcoef(EN_tbl) + xlab(expression(Posterior~~beta)) + ylab("") +colnames(EN_beta_p) = colnames(x) +psbcSpeedUp:::plot.psbcSpeedUp(EN_beta_p) +``` +```{r, echo=FALSE} +pdf("TCGA_bayesEN.pdf", width = 4, height = 6) +psbcSpeedUp:::plot.psbcSpeedUp(EN_beta_p) +dev.off() ``` -![_Estimates of regression coefficients by a penalized semiparametric Bayesian Cox model with Elastic Net prior. Solid dots indicate the posterior mean over MCMC iterations (excluding burn-in period), and horizontal lines show the corresponding 95% credibility intervals._](fig/TCGA_bayesEN.png){width=60%} +![_Estimates of regression coefficients by a penalized semiparametric Bayesian Cox model with Elastic Net prior. Solid dots indicate the posterior mean over MCMC iterations (excluding burn-in period), and horizontal lines show the corresponding 95% credibility intervals._](fig/TCGA_bayesEN.png){width=50%}
@@ -803,6 +875,12 @@ set.seed(123) Bayesfit = BhGLM::bcoxph(y_surv ~ ., x_dataframe, prior = mde(0, 0.01, 0.8), control = coxph.control(iter.max = 200)) BhGLM::plot.bh(Bayesfit, col.pts = c("red", "blue"), main = "Cox with mixture double exponential\n") ``` +```{r, echo=FALSE} +pdf("TCGA_bayesSpikeSlab.pdf", width = 6, height = 5) +par(mar = c(3, 8, 4, 4)) +BhGLM::plot.bh(Bayesfit, col.pts = c("red", "blue"), main = "Cox with mixture double exponential\n") +dev.off() +``` ![_Coefficient estimates of a penalized semiparametric Bayesian Cox model with (double exponential) spike-and-slab prior. Solid dots denote the posterior mode of the coefficients and lines denote the 95% confidence intervals. Red colored text on the right side mark the significant features with $p < 0.05$._](fig/TCGA_bayesSpikeSlab.png){width=60%}
@@ -870,15 +948,20 @@ dat_tmp = data.frame(time = y_validate[, 1], status = y_validate[, 2], group = g sfit = survfit(Surv(time, status) ~ group, data = dat_tmp) ggsurv = ggsurvplot(sfit, conf.int = TRUE, risk.table = TRUE, - xlab = "Time since diagnosis (year)", legend = c(.2,.3), + xlab = "Time since diagnosis (year)", legend = c(.2, .3), legend.labs = c("Low risk", "High risk"), legend.title = "Dichotomized groups", risk.table.y.text.col = TRUE, risk.table.y.text = FALSE) ggsurv$plot = ggsurv$plot + - annotate("text", x = 2.6, y = .03, label= paste0("Log-rank test:\n", surv_pvalue(sfit)$pval.txt)) + annotate("text", x = 2.6, y = .03, label = paste0("Log-rank test:\n", surv_pvalue(sfit)$pval.txt)) ggsurv$table = ggsurv$table + labs(y = "Dichotomized\n groups") ggsurv ``` -![_Kaplan-Meier curves of the BRCA patients data dichotomized by the median of prognostic scores (calculated from the Lasso Cox model with patients' survival and mRNA-Seq data) into two groups. The log-rank test is to compare the two survival distributions corresponding to the two groups of patients._](fig/TCGA_surv_km_lasso.png){width=60%} +```{r, echo=FALSE} +pdf("TCGA_surv_km_lasso.pdf", width = 5, height = 5) +ggsurv +dev.off() +``` +![_Kaplan-Meier curves of the BRCA patients data dichotomized by the median of prognostic scores (calculated from the Lasso Cox model with patients' survival and mRNA-Seq data) into two groups. The log-rank test is to compare the two survival distributions corresponding to the two groups of patients._](fig/TCGA_surv_km_lasso.png){width=50%}
@@ -886,23 +969,28 @@ The prognostic scores can also be divided into three or more groups based on qua ```{r} group = pred_lp -group[pred_lp >= quantile(pred_lp, 2/3)] = 3 -group[pred_lp >= quantile(pred_lp, 1/3) & pred_lp < quantile(pred_lp, 2/3)] = 2 -group[pred_lp < quantile(pred_lp, 1/3)] = 1 +group[pred_lp >= quantile(pred_lp, 2 / 3)] = 3 +group[pred_lp >= quantile(pred_lp, 1 / 3) & pred_lp < quantile(pred_lp, 2 / 3)] = 2 +group[pred_lp < quantile(pred_lp, 1 / 3)] = 1 # draw two survival curves based on KM estimation and compare them by a log-rank test dat_tmp = data.frame(time = y_validate[, 1], status = y_validate[, 2], group = group) sfit = survfit(Surv(time, status) ~ group, data = dat_tmp) ggsurv = ggsurvplot(sfit, conf.int = TRUE, risk.table = TRUE, - xlab = "Time since diagnosis (year)", legend = c(.2,.3), + xlab = "Time since diagnosis (year)", legend = c(.2, .3), legend.labs = c("Low risk", "Middle risk", "High risk"), legend.title = "Groups", risk.table.y.text.col = TRUE, risk.table.y.text = FALSE) ggsurv$plot = ggsurv$plot + - annotate("text", x = 3.5, y = .05, label= paste0("Log-rank test:\n", surv_pvalue(sfit)$pval.txt)) + annotate("text", x = 3.5, y = .05, label = paste0("Log-rank test:\n", surv_pvalue(sfit)$pval.txt)) ggsurv ``` -![_Kaplan-Meier curves of the BRCA patients data divided by 33% and 67% quantiles of prognostic scores (calculated from the Lasso Cox model with patients' survival and mRNA-Seq data) into three groups. The log-rank test is to compare the two survival distributions corresponding to the three groups of patients._](fig/TCGA_surv_km_lasso2.png){width=60%} +```{r, echo=FALSE} +pdf("TCGA_surv_km_lasso2.pdf", width = 5, height = 5) +ggsurv +dev.off() +``` +![_Kaplan-Meier curves of the BRCA patients data divided by 33% and 67% quantiles of prognostic scores (calculated from the Lasso Cox model with patients' survival and mRNA-Seq data) into three groups. The log-rank test is to compare the two survival distributions corresponding to the three groups of patients._](fig/TCGA_surv_km_lasso2.png){width=50%}
@@ -915,11 +1003,19 @@ The following code draws a ROC curve at 5-years survival evaluation time point f ROC = risksetROC(Stime = y_validate[, 1], status = y_validate[, 2], marker = pred_lp, predict.time = 5, method = "Cox", main = "ROC Curve", col = "seagreen3", type = "s", - lwd = 2, xlab="1 - Specificity", ylab="Sensitivity") + lwd = 2, xlab = "1 - Specificity", ylab = "Sensitivity") text(0.7, 0.2, paste("AUC =", round(ROC$AUC, 3))) ``` - -![_ROC curve estimated at 5-years survival evaluation time point for the 20% TCGA validation data and based on a Lasso Cox model learned from the 80% training data. The AUC value is the area under the ROC curve. The diagonal line represents the performance of a random prediction of the outcome event with AUC = 0.5._](fig/TCGA_surv_roc.png){width=50%} +```{r, echo=FALSE} +pdf("TCGA_surv_roc.pdf", height = 3.9, width = 3.4) +ROC = risksetROC(Stime = y_validate[, 1], status = y_validate[, 2], + marker = pred_lp, predict.time = 5, method = "Cox", + main = "ROC Curve", col = "seagreen3", type = "s", + lwd = 2, xlab = "1 - Specificity", ylab = "Sensitivity") +text(0.7, 0.2, paste("AUC =", round(ROC$AUC, 3))) +dev.off() +``` +![_ROC curve estimated at 5-years survival evaluation time point for the 20% TCGA validation data and based on a Lasso Cox model learned from the 80% training data. The AUC value is the area under the ROC curve. The diagonal line represents the performance of a random prediction of the outcome event with AUC = 0.5._](fig/TCGA_surv_roc.png){width=40%}
@@ -962,9 +1058,15 @@ dat_AUC = data.frame(tAUC = c(AUC_train, AUC_validate), times = c(utimes_train, utimes_validate), group = c(rep("AUC_train", length(AUC_train)), rep("AUC_validate", length(AUC_validate)))) ggplot(dat_AUC, aes(times, tAUC, group = group, color = group)) + xlab("Evaluation time points (year)") + ylab("AUC") + ylim(0.5, 1) + - geom_step(direction = "vh") + theme(legend.position = c(0.7, 0.8), legend.title=element_blank()) + geom_step(direction = "vh") + theme(legend.position = c(0.7, 0.8), legend.title = element_blank()) ``` -![_Time-dependent AUC based on a Lasso Cox model applied to the BRCA patients data from TCGA. The red line shows the Time-dependent AUC calculated from the 80% training data, and the green line shows the Time-dependent AUC calculated from the 20% validation data._](fig/TCGA_surv_auc_lasso.png){width=50%} +```{r, echo=FALSE} +pdf("TCGA_surv_auc_lasso.pdf", height = 3, width = 3) +ggplot(dat_AUC, aes(times, tAUC, group = group, color = group)) + xlab("Evaluation time points (year)") + ylab("AUC") + ylim(0.5, 1) + + geom_step(direction = "vh") + theme(legend.position = c(0.7, 0.8), legend.title = element_blank()) +dev.off() +``` +![_Time-dependent AUC based on a Lasso Cox model applied to the BRCA patients data from TCGA. The red line shows the Time-dependent AUC calculated from the 80% training data, and the green line shows the Time-dependent AUC calculated from the 20% validation data._](fig/TCGA_surv_auc_lasso.png){width=40%}
@@ -981,14 +1083,14 @@ surv_prob_validate = unique(survfit(Surv(y_validate[, 1], y_validate[, 2]) ~ 1)$ (iAUC_train = risksetROC::IntegrateAUC(AUC_train, utimes_train, surv_prob_train, tmax = 10)) ``` ``` -[1] 0.6281301 +[1] 0.6279646 ``` ```{r} ## integrated AUC (e.g. over tmax=10 years) to get concordance measure based on validation data -(iAUC_validate = risksetROC::IntegrateAUC( AUC_validate, utimes_validate, surv_prob_validate, tmax = 10)) +(iAUC_validate = risksetROC::IntegrateAUC(AUC_validate, utimes_validate, surv_prob_validate, tmax = 10)) ``` ``` -[1] 0.6318857 +[1] 0.6318253 ``` **Time-dependent C-index** @@ -1006,19 +1108,19 @@ See an example calculation for both C-indexes using a Lasso Cox model below. ```{r} set.seed(123) cvfit = cv.glmnet(x_train, y_train, family = "cox", nfolds = 5, penalty.factor = pf) -pred = predict(cvfit, newx = x_validate, type = "response", s = cvfit$lambda.min) +pred = predict(cvfit, newx = x_validate, type = "link", s = cvfit$lambda.min) # Harrell's C-index -(Cindex_Harrell = mean(apply(pred, 2, Cindex, y = y_validate))) +(Cindex_Harrell = Cindex(pred = pred[, 1], y = y_validate)) ``` ``` -[1] 0.7320221 +[1] 0.7246466 ``` ```{r} # Uno's C-index (Cindex_Uno = survAUC::UnoC(y_train, y_validate, pred)) ``` ``` -[1] 0.5786861 +[1] 0.5772041 ```
@@ -1042,27 +1144,33 @@ Similar to the time-dependent AUC, one needs to first calculate the linear predi # use the (x_train, y_train) 80% samples for training # and the (x_validate, y_validate) 20% samples for testing -y_train_surv = Surv(y_train[,"time"], y_train[,"status"]) -y_validate_surv = Surv(y_validate[,"time"], y_validate[,"status"]) +y_train_surv = Surv(y_train[, "time"], y_train[, "status"]) +y_validate_surv = Surv(y_validate[, "time"], y_validate[, "status"]) set.seed(123) cvfit = cv.glmnet(x_train, y_train_surv, family = "cox", nfolds = 5, penalty.factor = pf) lp_train = predict(cvfit, newx = x_train, s = cvfit$lambda.min, type = "link") lp_validate = predict(cvfit, newx = x_validate, s = cvfit$lambda.min, type = "link") # prepare data format suited for function Score() from the riskRegression package -data_train = data.frame(time = y_train[,"time"], status = y_train[,"status"], lp = as.vector(lp_train)) -data_validate = data.frame(time = y_validate[,"time"], status = y_validate[,"status"], lp = as.vector(lp_validate)) -lasso_train = coxph(Surv(time,status) ~ lp, data = data_train, y=TRUE, x = TRUE) -lasso_validate = coxph(Surv(time,status) ~ lp, data = data_validate, y=TRUE, x = TRUE) +data_train = data.frame(time = y_train[, "time"], status = y_train[, "status"], lp = as.vector(lp_train)) +data_validate = data.frame(time = y_validate[, "time"], status = y_validate[, "status"], lp = as.vector(lp_validate)) +lasso_train = coxph(Surv(time, status) ~ lp, data = data_train, y=TRUE, x = TRUE) +lasso_validate = coxph(Surv(time, status) ~ lp, data = data_validate, y = TRUE, x = TRUE) # calculate Brier scores based on both training and validation data -Brier_train = riskRegression::Score(list("Brier_train" = lasso_train), formula = Surv(time, status) ~ 1, data = data_train, conf.int = FALSE, metrics = "brier", summary="ibs", times = sort(unique(data_train$time)))$Brier$score -Brier_validate = riskRegression::Score(list("Brier_validate" = lasso_validate), formula = Surv(time, status) ~ 1, data = data_validate, conf.int = FALSE, metrics = "brier", summary="ibs", times = sort(unique(data_validate$time)))$Brier$score +Brier_train = riskRegression::Score(list("Brier_train" = lasso_train), formula = Surv(time, status) ~ 1, data = data_train, conf.int = FALSE, metrics = "brier", summary = "ibs", times = sort(unique(data_train$time)))$Brier$score +Brier_validate = riskRegression::Score(list("Brier_validate" = lasso_validate), formula = Surv(time, status) ~ 1, data = data_validate, conf.int = FALSE, metrics = "brier", summary = "ibs", times = sort(unique(data_validate$time)))$Brier$score Brier_score = rbind(Brier_train, Brier_validate) Brier_score = Brier_score[Brier_score$model != "Null model", ] ggplot(Brier_score, aes(times, Brier, group = model, color = model)) + xlab("Evaluation time points (year)") + ylab("Brier score") + - geom_step(direction = "vh") + theme(legend.position = c(0.15, 0.88), legend.title=element_blank()) + geom_step(direction = "vh") + theme(legend.position = c(0.15, 0.88), legend.title = element_blank()) +``` +```{r, echo=FALSE} +pdf("TCGA_surv_brier_t_lasso.pdf", height = 4, width = 5) +ggplot(Brier_score, aes(times, Brier, group = model, color = model)) + xlab("Evaluation time points (year)") + ylab("Brier score") + + geom_step(direction = "vh") + theme(legend.position = c(0.15, 0.88), legend.title = element_blank()) +dev.off() ``` ![_Time-dependent Brier score based on a Lasso Cox model applied to the BRCA patients data from TCGA. The red line shows the Time-dependent Brier score calculated from the 80% training data, and the green line shows the Time-dependent Brier score calculated from the 20% validation data._](fig/TCGA_surv_brier_t_lasso.png){width=60%} @@ -1078,7 +1186,7 @@ Brier_validate_ibs = Brier_validate[Brier_validate$model == "Brier_validate", ] Brier_validate_ibs$IBS[which.max(Brier_validate_ibs$times)] ``` ``` -[1] 0.1711617 +[1] 0.1721158 ```
@@ -1120,7 +1228,14 @@ dat_tmp = data.frame(x = "Lasso Cox", y = iAUC) set.seed(123) ggplot(dat_tmp, aes(x, y)) + geom_boxplot() + ylim(0.5, 1) + xlab("") + ylab("Integrated AUC") + - geom_jitter(color="blue", size = 0.5, alpha = 0.5) + geom_jitter(color = "blue", size = 0.5, alpha = 0.5) +``` +```{r, echo=FALSE} +pdf("TCGA_surv_iauc_lasso.pdf", height = 3, width = 2) +set.seed(123) +ggplot(dat_tmp, aes(x, y)) + geom_boxplot() + ylim(0.5, 1) + xlab("") + ylab("Integrated AUC") + + geom_jitter(color = "blue", size = 0.5, alpha = 0.5) +dev.off() ``` ![_Integrated AUC based on randomly split validation data 100 times. The blue dots are the 100 values of integrated AUC._](fig/TCGA_surv_iauc_lasso.png){width=30%} @@ -1148,7 +1263,14 @@ dat_tmp = data.frame(x = rep(c("Harrell", "Uno"), each = k), y = unlist(Cindex_a set.seed(123) ggplot(dat_tmp, aes(x, y, col = x)) + geom_boxplot() + geom_jitter(size = 0.5, alpha = 0.5) + - ylim(0, 1) + xlab("") + ylab("C-index") + theme(legend.position="none") + ylim(0, 1) + xlab("") + ylab("C-index") + theme(legend.position = "none") +``` +```{r, echo=FALSE} +pdf("TCGA_surv_cindex_lasso.pdf", height = 3, width = 3) +set.seed(123) +ggplot(dat_tmp, aes(x, y, col = x)) + geom_boxplot() + geom_jitter(size = 0.5, alpha = 0.5) + + ylim(0, 1) + xlab("") + ylab("C-index") + theme(legend.position = "none") +dev.off() ``` ![_C-index (Harrell's and Uno's) based on randomly split validation data 100 times._](fig/TCGA_surv_cindex_lasso.png){width=40%} @@ -1167,10 +1289,15 @@ peperr_object = peperr::peperr(response = y_surv, x = x, fit.fun = fit.glmnet, args.fit = list(family = "cox", penalty.factor = pf), complexity = complexity.glmnet, args.complexity = list(family = "cox", nfolds = 5, penalty.factor = pf), - indices = resample.indices(n = n, method="sub632", sample.n = 100)) + indices = resample.indices(n = n, method = "sub632", sample.n = 100)) c060::Plot.peperr.curves(peperr_object) ``` -![_Resampling-based prediction error curves (time-dependent Brier score) a the Lasso Cox model applied to the BRCA data set from TCGA. The gray area indicates the pointwise 2.5% and 97.5% quantiles of the 100 out-of-bag bootstrap samples. The other lines show the prediction error curves of the null model (estimated by the Kaplan-Meier estimator without covariate information), the full apparent error estimates (i.e., the errors as estimated when applying the model to the entire training data set), and the .632+ bootstrap error estimates._](fig/TCGA_surv_brier_lasso.png){width=60%} +```{r, echo=FALSE} +pdf("TCGA_surv_brier_lasso.pdf", height = 5, width = 5) +Plot.peperr.curves(peperr_object) +dev.off() +``` +![_Resampling-based prediction error curves (time-dependent Brier score) a the Lasso Cox model applied to the BRCA data set from TCGA. The gray area indicates the pointwise 2.5% and 97.5% quantiles of the 100 out-of-bag bootstrap samples. The other lines show the prediction error curves of the null model (estimated by the Kaplan-Meier estimator without covariate information), the full apparent error estimates (i.e., the errors as estimated when applying the model to the entire training data set), and the .632+ bootstrap error estimates._](fig/TCGA_surv_brier_lasso.png){width=50%}
@@ -1196,13 +1323,19 @@ for (j in 1:k) { (stable_features = colnames(x)[rowSums(beta_all != 0) >= 2]) ``` ``` - [1] "age" "ethnicity" "UBE2T" "CDC6" "CCNB1" "TYMS" "CEP55" "MELK" "NDC80" "UBE2C" "PTTG1" "EXO1" "ORC6L" "ANLN" "CCNE1" "KIF2C" "ACTR3B" "MYC" "EGFR" "KRT5" "PHGDH" "CDH3" "MIA" "FOXC1" "KRT14" "ESR1" "SLC39A6" "BAG1" "MAPT" "CXXC5" "MLPH" "BCL2" "MDM2" "FOXA1" "GPR160" "FGFR4" "TMEM45B" "ERBB2" + [1] "age" "ethnicity" "ANLN" "UBE2T" "NDC80" "PGR" "ORC6" + [8] "ESR1" "PHGDH" "MMP11" "SFRP1" "CCNE1" "BLVRA" "BAG1" +[15] "MLPH" "CENPF" "KRT17" "FOXA1" "ACTR3B" "CCNB1" "MDM2" +[22] "MYC" "CEP55" "SLC39A6" "GRB7" "NUF2" "EGFR" "MKI67" +[29] "TMEM45B" "FGFR4" "MELK" "NAT1" "CXXC5" "BCL2" "GPR160" +[36] "TYMS" "KRT5" "MAPT" "MIA" ``` ```{r} (stable_features = colnames(x)[rowSums(beta_all != 0) >= 5]) ``` ``` - [1] "age" "ethnicity" "UBE2T" "CEP55" "UBE2C" "ORC6L" "ANLN" "ESR1" "BAG1" "MLPH" "MDM2" "GPR160" "FGFR4" "ERBB2" + [1] "age" "ethnicity" "ANLN" "ORC6" "MMP11" "BLVRA" "BAG1" + [8] "CCNB1" "EGFR" "TMEM45B" "BCL2" "TYMS" "KRT5" "MIA" ``` Alternatively for a Bayesian Cox model, its median probability model (MPM) can be obtained based on the coefficient estimates over MCMC iterations. @@ -1215,15 +1348,24 @@ beta_MPM[is.na(beta_MPM)] = 0 beta_MPM ``` ``` - [1] 0.0000000000 -0.0172015280 0.0304316616 -0.0114623308 0.0837824132 -0.0547983327 - [7] 0.1407439126 -0.0562438350 0.0233413258 0.0822548966 -0.0216956009 -0.0046531991 -[13] 0.0000000000 -0.0102432707 -0.0462764281 -0.0261233503 0.1204452692 0.0498380632 -[19] 0.0000000000 0.0000000000 0.0411354271 0.0008250959 -0.0747121328 0.3709996035 -[25] -0.0714123785 0.0531884491 -0.0263379552 -0.0278157511 0.0868213917 -0.0417584334 -[31] -0.0154609980 -1.7597763992 0.0248018172 0.1583448784 0.0000000000 -0.0270275080 -[37] 0.0316279851 0.1896061075 0.0359063687 -0.1373224621 -0.1648833174 0.0346494611 -[43] 0.1168334315 0.0224791857 0.1336344881 -0.0047435108 0.0187484228 0.1178996364 -[49] -0.1696531126 0.0573713694 -0.0308897787 -0.2130819387 + age ethnicity ANLN FOXC1 CDH3 UBE2T + 1.305162e-02 5.348458e-03 -1.299443e-03 -1.857811e-02 -6.123574e-03 -5.467111e-03 + NDC80 PGR BIRC5 ORC6 ESR1 PHGDH +-6.652927e-03 -2.101243e-06 -1.640386e-02 -1.237153e-02 -1.077863e-02 2.483990e-02 + CDC6 MMP11 MYBL2 SFRP1 CCNE1 BLVRA +-9.079708e-03 -1.588726e-02 5.225344e-03 -1.383981e-02 -3.181265e-03 -2.632373e-02 + BAG1 MLPH CDC20 CENPF KRT17 FOXA1 +-3.913529e-02 -1.435805e-02 -2.027232e-02 -2.476495e-02 -2.871143e-02 -3.017213e-03 + ACTR3B CCNB1 MDM2 MYC CEP55 SLC39A6 +-2.504869e-03 -1.346817e-03 -2.156041e-02 1.431062e-02 1.421036e-02 -1.150196e-02 + ERBB2 GRB7 KIF2C NUF2 EGFR MKI67 +-6.347367e-03 -1.008689e-02 6.033792e-03 -2.405689e-03 -1.964927e-02 1.956661e-02 + TMEM45B FGFR4 PTTG1 MELK NAT1 CXXC5 + 2.736216e-02 1.842323e-03 -5.651905e-03 2.894074e-02 -2.126163e-02 2.571472e-02 + BCL2 RRM2 GPR160 EXO1 UBE2C TYMS +-5.140894e-03 2.881004e-02 -3.927705e-02 -1.710419e-02 -1.343832e-02 -1.884342e-02 + KRT5 KRT14 MAPT MIA +-2.180294e-02 -1.386489e-03 -2.587557e-02 -1.033317e-02 ```
@@ -1259,7 +1401,7 @@ x_stable$ethnicity = factor(x_stable$ethnicity) levels(x_stable$ethnicity) = c("Hispanic/latino", "Not hispanic/latino") data_tmp = data.frame(times = yy[, "time"], status = yy[, "status"], x_stable) -f = cph(formula = Surv(times, status) ~ age + ethnicity + UBE2T + ORC6L + ESR1, +f = cph(formula = Surv(times, status) ~ age + ethnicity + ANLN + BLVRA + EGFR, data = data_tmp, x = TRUE, y = TRUE, surv = TRUE) ddist = datadist(data_tmp) oldoption = options(datadist = 'ddist') @@ -1291,14 +1433,26 @@ data_train = data_tmp[train_id, ] data_validate = data_tmp[-train_id, ] ddist = datadist(data_train) -options(datadist='ddist') -f_train = cph(formula = Surv(times, status) ~ age + ethnicity + UBE2T + ORC6L + ESR1, +options(datadist = 'ddist') +f_train = cph(formula = Surv(times, status) ~ age + ethnicity + ANLN + BLVRA + EGFR, data = data_train, x = TRUE, y = TRUE, surv = TRUE, time.inc = 5) f_validate = update(f_train, data = data_validate) cal_train = calibrate(f_train, u = 5, cmethod = "KM", m = nrow(data_train) / 4, B = 200) cal_validate = calibrate(f_validate, u = 5, cmethod = "KM", m = nrow(data_validate) / 4, B = 200) -pdf("TCGA_surv_calibration.pdf", width=7, height=4) +layout(matrix(1:2, nrow = 1)) +plot(cal_train, lwd = 2, lty = 1, errbar.col = "seagreen3", + xlab = 'Predicted survival probability', ylab = 'Actual survival probability', + xlim = c(0, 1), ylim = c(0, 1), col = "seagreen3", subtitles = FALSE) +title(main = "Calibration on training data") + +plot(cal_validate, lwd = 2, lty = 1, errbar.col = "seagreen3", + xlab = 'Predicted survival probability', ylab = 'Actual survival probability', + xlim = c(0, 1), ylim = c(0, 1), col = "seagreen3", subtitles = FALSE) +title(main = "Calibration on validation data") +``` +```{r, echo=FALSE} +pdf("TCGA_surv_calibration.pdf", width = 7, height = 4) layout(matrix(1:2, nrow = 1)) plot(cal_train, lwd = 2, lty = 1, errbar.col = "seagreen3", xlab = 'Predicted survival probability', ylab = 'Actual survival probability', @@ -1364,11 +1518,10 @@ split = mlr3::partition(task, ratio = 0.8) * Target: time, status * Properties: - * Features (52): - - dbl (52): ACTR3B, ANLN, BAG1, BCL2, BIRC5, BLVRA, CCNB1, CCNE1, - CDC20, CDC6, CDH3, CENPF, CEP55, CXXC5, EGFR, ERBB2, ESR1, EXO1, - FGFR4, FOXA1, FOXC1, GPR160, GRB7, KIF2C, KRT14, KRT17, KRT5, MAPT, - MDM2, MELK, MIA, MKI67, MLPH, MMP11, MYBL2, MYC, NAT1, NDC80, NUF2, - ORC6L, PGR, PHGDH, PTTG1, RRM2, SFRP1, SLC39A6, TMEM45B, TYMS, + - dbl (52): ACTR3B, ANLN, BAG1, BCL2, BIRC5, BLVRA, CCNB1, CCNE1, CDC20, CDC6, CDH3, + CENPF, CEP55, CXXC5, EGFR, ERBB2, ESR1, EXO1, FGFR4, FOXA1, FOXC1, GPR160, GRB7, + KIF2C, KRT14, KRT17, KRT5, MAPT, MDM2, MELK, MIA, MKI67, MLPH, MMP11, MYBL2, MYC, + NAT1, NDC80, NUF2, ORC6, PGR, PHGDH, PTTG1, RRM2, SFRP1, SLC39A6, TMEM45B, TYMS, UBE2C, UBE2T, age, ethnicity ``` @@ -1418,8 +1571,8 @@ Call: (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target, Measure: Partial Likelihood Deviance Lambda Index Measure SE Nonzero -min 0.00994 15 12.30 0.2719 15 -1se 0.03656 1 12.35 0.2562 2 +min 0.01082 14 12.31 0.2743 15 +1se 0.03626 1 12.35 0.2564 2 ``` Get the survival distribution predictions ($distr$) along with the linear predictors ($lp$): @@ -1429,12 +1582,12 @@ head(as.data.table(pred)) ``` ``` row_ids time status crank lp distr -1: 5 0.9527721 FALSE -3.329133 -3.329133 -2: 6 4.0438056 FALSE -3.800766 -3.800766 -3: 15 1.7385352 FALSE -2.786662 -2.786662 -4: 45 4.5804244 FALSE -2.761110 -2.761110 -5: 50 5.1279945 FALSE -3.736211 -3.736211 -6: 54 6.6858316 FALSE -3.499691 -3.499691 +1: 5 0.9527721 FALSE -2.346574 -2.346574 +2: 6 4.0438056 FALSE -2.806708 -2.806708 +3: 15 1.7385352 FALSE -1.845042 -1.845042 +4: 45 4.5804244 FALSE -1.715041 -1.715041 +5: 50 5.1279945 FALSE -2.790122 -2.790122 +6: 54 6.6858316 FALSE -2.466360 -2.466360 ``` So for every patient in the test set, the Lasso Cox model prediction is a linear predictor of the form $lp = \hat{\beta} X_{new}$. @@ -1452,10 +1605,10 @@ pred$distr$survival(times)[,c(1,2)] ``` ``` [,1] [,2] -1 0.9993357 0.9995854 -5 0.9925989 0.9953754 -10 0.9804035 0.9877267 -20 0.9633548 0.9769738 +1 0.9982264 0.9988801 +5 0.9803515 0.9875526 +10 0.9485057 0.9671807 +20 0.9050832 0.9389918 ```
@@ -1480,7 +1633,7 @@ pred$score(harrell_c) ``` ``` surv.cindex.harrell - 0.6188244 + 0.6224306 ```
@@ -1495,7 +1648,7 @@ pred$score(uno_c, task = task, train_set = split$train) ``` ``` surv.cindex.uno - 0.6004459 + 0.5932426 ```
@@ -1512,7 +1665,7 @@ pred$score(uno_iauc, task = task, train_set = split$train) ``` ``` surv.uno_iauc - 0.6645719 + 0.6585791 ```
@@ -1527,7 +1680,7 @@ pred$score(uno_auc, task = task, train_set = split$train) ``` ``` surv.uno_auc.10 - 0.6749081 + 0.667014 ```
@@ -1543,7 +1696,7 @@ pred$score(dcal) ``` ``` surv.dcalib - 32.25961 + 22.57035 ```
@@ -1565,7 +1718,7 @@ pred$score(ibrier, task = task, train_set = split$train) ``` ``` surv.graf -0.4044287 +0.338386 ``` We can also get the *standard error* of IBS (the above result is the mean across all the test set's patients) as follows: @@ -1575,7 +1728,7 @@ pred$score(ibrier_se, task = task, train_set = split$train) ``` ``` surv.graf -0.02253927 +0.02106744 ```
@@ -1590,7 +1743,7 @@ pred$score(brier10, task = task, train_set = split$train) ``` ``` surv.graf.10 - 0.4252442 + 0.3751958 ```
@@ -1602,7 +1755,7 @@ pred$score(rcll) ``` ``` surv.rcll - 4.684644 + 4.686742 ```
@@ -1648,34 +1801,21 @@ res = rr$score(measures = measures) head(res) ``` ``` - task task_id learner learner_id -1: BRCA-TCGA Lasso Cox -2: BRCA-TCGA Lasso Cox -3: BRCA-TCGA Lasso Cox -4: BRCA-TCGA Lasso Cox -5: BRCA-TCGA Lasso Cox -6: BRCA-TCGA Lasso Cox - resampling resampling_id iteration prediction -1: subsampling 1 -2: subsampling 2 -3: subsampling 3 -4: subsampling 4 -5: subsampling 5 -6: subsampling 6 - surv.cindex.harrell surv.cindex.uno surv.uno_iauc surv.uno_auc.10 surv.graf -1: 0.5679167 0.6090304 0.6628350 0.4719335 0.3255181 -2: 0.5422131 0.4884603 0.4023684 0.5652588 0.3148992 -3: 0.7604049 0.5740556 0.5941948 0.5235439 0.2855151 -4: 0.6610169 0.5277736 0.5360690 0.5110032 0.2972719 -5: 0.5800073 0.5655076 0.6160743 0.5388393 0.3518505 -6: 0.5427837 0.6975740 0.6494779 0.6400328 0.2035609 - surv.graf.10 surv.rcll surv.dcalib -1: 0.6161825 6.038909 1.026901e+07 -2: 0.4473104 5.400253 1.050427e+04 -3: 0.2969766 4.953528 2.544116e+01 -4: 0.2365322 4.953830 2.275040e+01 -5: 0.4387165 4.943446 3.370510e+01 -6: 0.4228169 5.434970 4.223742e+02 + task_id learner_id resampling_id iteration surv.cindex.harrell surv.cindex.uno +1: BRCA-TCGA Lasso Cox subsampling 1 0.5679167 0.6090304 +2: BRCA-TCGA Lasso Cox subsampling 2 0.5524590 0.4969326 +3: BRCA-TCGA Lasso Cox subsampling 3 0.7502812 0.5682061 +4: BRCA-TCGA Lasso Cox subsampling 4 0.6591337 0.5294816 +5: BRCA-TCGA Lasso Cox subsampling 5 0.5752472 0.5553336 +6: BRCA-TCGA Lasso Cox subsampling 6 0.5427837 0.6975740 + surv.uno_iauc surv.uno_auc.10 surv.graf surv.graf.10 surv.rcll surv.dcalib +1: 0.6628350 0.4719335 0.3255181 0.6161825 6.038909 1.026901e+07 +2: 0.4038682 0.5712012 0.4815700 0.6666994 6.893425 3.342804e+08 +3: 0.5882995 0.5235439 0.2796580 0.2926334 4.955110 2.490982e+01 +4: 0.5356461 0.5082385 0.2915395 0.2324248 4.955409 2.222845e+01 +5: 0.6090615 0.5288752 0.3497189 0.4371144 4.943943 3.346780e+01 +6: 0.6494779 0.6400328 0.2035609 0.4228169 5.434970 4.223742e+02 +Hidden columns: task, learner, resampling, prediction ``` We extract and visualize the discrimination and calibration (resampled) performance of our Lasso Cox model using several evaluation metrics: ```{r} @@ -1704,7 +1844,32 @@ res[, .(surv.cindex.harrell, surv.cindex.uno, surv.uno_iauc, surv.uno_auc.10)] % labs(title = 'Discrimination Measures') + theme(axis.text.x = element_blank()) ``` -![_Discrimination performance of Lasso Cox on the TCGA-BRCA dataset (expression data of the PAM50 genes and the variables age and ethnicity). Performance metrics used are Harrell's C-index, Uno's C-index, Uno's Integrated AUC and Uno's AUC at 10 years. The dataset was split to training/validation sets 100 times to allow for the quantification of uncertainty in the different performance estimates._](fig/mlr3_discrimination_msrs.png){width=80%} +```{r, echo=FALSE} +pdf("mlr3_discrimination_msrs.pdf", width = 6, height = 3) +res[, .(surv.cindex.harrell, surv.cindex.uno, surv.uno_iauc, surv.uno_auc.10)] %>% + tidyr::pivot_longer(cols = tidyselect::everything(), + names_to = 'Measure', values_to = 'Value') %>% + mutate(Measure = case_when( + Measure == 'surv.cindex.harrell' ~ 'Harrell\'s C-index', + Measure == 'surv.cindex.uno' ~ 'Uno\'s C-index', + Measure == 'surv.uno_iauc' ~ 'Uno\'s Integrated AUC', + Measure == 'surv.uno_auc.10' ~ 'Uno\'s AUC (t = 10 years)', + )) %>% + mutate(Measure = factor(Measure, levels = c( + 'Harrell\'s C-index', + 'Uno\'s C-index', + 'Uno\'s Integrated AUC', + 'Uno\'s AUC (t = 10 years)'))) %>% + ggplot(aes(x = Measure, y = Value, fill = Measure)) + + geom_boxplot() + + ylim(c(0.2, 0.8)) + + geom_hline(yintercept = 0.5, color = 'red', linetype = 'dashed') + + theme_bw(base_size = 14) + + labs(title = 'Discrimination Measures') + + theme(axis.text.x = element_blank()) +dev.off() +``` +![_Discrimination performance of Lasso Cox on the TCGA-BRCA dataset (expression data of the PAM50 genes and the variables age and ethnicity). Performance metrics used are Harrell's C-index, Uno's C-index, Uno's Integrated AUC and Uno's AUC at 10 years. The dataset was split to training/validation sets 100 times to allow for the quantification of uncertainty in the different performance estimates._](fig/mlr3_discrimination_msrs.png){width=70%} ```{r, fig.show='hold', out.width='50%'} # different scales for each measure, so we separate the plots @@ -1739,6 +1904,39 @@ res[, .(surv.rcll)] %>% theme_bw(base_size = 14) + theme(axis.title.x = element_blank()) ``` +```{r, echo=FALSE} +pdf("mlr3_calibration_BS.pdf", width = 6, height = 5) +set.seed(42) +# Integrated Brier Score and Brier Score at t = 10 years +res[, .(surv.graf, surv.graf.10)] %>% + tidyr::pivot_longer(cols = tidyselect::everything(), + names_to = 'Measure', values_to = 'Value') %>% + mutate(Measure = case_when( + Measure == 'surv.graf' ~ 'IBS', + Measure == 'surv.graf.10' ~ 'BS(t=10)' + )) %>% + ggplot(aes(x = Measure, y = Value, fill = Measure)) + + geom_boxplot(show.legend = FALSE) + + geom_jitter(color = 'blue', size = 0.5, alpha = 0.5, show.legend = FALSE) + + labs(title = 'Integrated Brier Score vs Brier Score (t = 10 years)') + + theme_bw(base_size = 14) + + theme(axis.title.x = element_blank()) +dev.off() +pdf("mlr3_calibration_RCLL.pdf", width = 6, height = 5) +res[, .(surv.rcll)] %>% + tidyr::pivot_longer(cols = tidyselect::everything(), + names_to = 'Measure', values_to = 'Value') %>% + mutate(Measure = case_when( + Measure == 'surv.rcll' ~ 'RCLL' + )) %>% + ggplot(aes(x = Measure, y = Value)) + + geom_boxplot(show.legend = FALSE) + + geom_jitter(color = 'blue', size = 0.5, alpha = 0.5, show.legend = FALSE) + + labs(title = 'Right-censored Log Loss') + + theme_bw(base_size = 14) + + theme(axis.title.x = element_blank()) +dev.off() +```

1 2 @@ -1761,20 +1959,21 @@ times = as.vector(unname(fs_res)) tibble::tibble(feat_name = names(fs_res), times = times, freq = times/n) ``` ``` -# A tibble: 35 × 3 +# A tibble: 33 × 3 feat_name times freq 1 age 100 1 2 ethnicity 100 1 - 3 UBE2T 53 0.53 - 4 ORC6L 48 0.48 - 5 ANLN 42 0.42 - 6 ERBB2 40 0.4 - 7 GPR160 35 0.35 - 8 FGFR4 33 0.33 - 9 CEP55 32 0.32 -10 UBE2C 30 0.3 -# … with 25 more rows + 3 ANLN 43 0.43 + 4 BLVRA 41 0.41 + 5 BAG1 37 0.37 + 6 MIA 34 0.34 + 7 TYMS 30 0.3 + 8 KRT5 27 0.27 + 9 MMP11 27 0.27 +10 BCL2 26 0.26 +# ℹ 23 more rows +# ℹ Use `print(n = ...)` to see more rows ``` As `age` and `ethnicity` were not penalized, they have non-zero coefficients in all Lasso Cox models and therefore are included in all selected feature sets. @@ -1802,7 +2001,7 @@ tibble::tibble(jaccard = jac, nogueira = nog, zucknick = zuck) # A tibble: 1 × 3 jaccard nogueira zucknick -1 0.439 0.412 0.402 +1 0.474 0.412 0.442 ``` From the above values we conclude that the stability of Lasso Cox's feature selection is neither poor nor excellent but somewhere in between. @@ -1843,102 +2042,104 @@ library("stabm") sessionInfo() ``` ``` -R version 4.2.1 (2022-06-23) -Platform: x86_64-pc-linux-gnu (64-bit) -Running under: Ubuntu 20.04.5 LTS +R version 4.3.1 (2023-06-16) +Platform: x86_64-apple-darwin20 (64-bit) +Running under: macOS Monterey 12.7 Matrix products: default -BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0 -LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0 +BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib +LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0 locale: - [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 - [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C - [9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C +[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 + +time zone: Europe/Oslo +tzcode source: internal attached base packages: [1] stats4 stats graphics grDevices utils datasets methods base other attached packages: - [1] stabm_1.2.1 mlr3extralearners_0.6.1 mlr3proba_0.5.2 - [4] mlr3verse_0.2.7 mlr3_0.14.1 regplot_1.1 - [7] survAUC_1.1-1 rms_6.3-0 SparseM_1.81 -[10] Hmisc_4.7-1 lattice_0.20-45 c060_0.2-9 -[13] peperr_1.4 snowfall_1.84-6.2 snow_0.4-4 -[16] riskRegression_2022.09.23 risksetROC_1.0.4.1 MASS_7.3-57 -[19] BhGLM_1.1.0 GGally_2.1.2 psbcGroup_1.5 -[22] mvtnorm_1.1-3 SuppDists_1.1-9.7 LearnBayes_2.15.1 -[25] SGL_1.3 grpreg_3.4.0 plotmo_3.6.2 -[28] TeachingDemos_2.12 plotrix_3.8-2 Formula_1.2-4 -[31] glmnet_4.1-4 Matrix_1.5-1 M3C_1.20.0 -[34] survminer_0.4.9 ggpubr_0.4.0 survival_3.4-0 -[37] ggplot2_3.4.0 dplyr_1.0.10 DESeq2_1.38.3 -[40] SummarizedExperiment_1.28.0 Biobase_2.58.0 GenomicRanges_1.50.2 -[43] GenomeInfoDb_1.34.6 IRanges_2.32.0 S4Vectors_0.36.1 -[46] BiocGenerics_0.44.0 MatrixGenerics_1.10.0 matrixStats_0.63.0 -[49] TCGAbiolinks_2.25.3 + [1] stabm_1.2.2 mlr3extralearners_0.7.0 mlr3proba_0.5.2 + [4] mlr3verse_0.2.8 mlr3_0.16.1 regplot_1.1 + [7] survAUC_1.2-0 rms_6.7-0 Hmisc_5.1-0 +[10] c060_0.3-0 peperr_1.5 snowfall_1.84-6.2 +[13] snow_0.4-4 riskRegression_2023.03.22 risksetROC_1.0.4.1 +[16] MASS_7.3-60 BhGLM_1.1.0 GGally_2.1.2 +[19] psbcGroup_1.5 mvtnorm_1.2-2 SuppDists_1.1-9.7 +[22] LearnBayes_2.15.1 SGL_1.3 grpreg_3.4.0 +[25] plotmo_3.6.2 TeachingDemos_2.12 plotrix_3.8-2 +[28] Formula_1.2-5 glmnet_4.1-7 Matrix_1.5-4.1 +[31] M3C_1.22.0 survminer_0.4.9 ggpubr_0.6.0 +[34] survival_3.5-5 ggplot2_3.4.2 dplyr_1.1.2 +[37] DESeq2_1.40.2 SummarizedExperiment_1.30.2 Biobase_2.60.0 +[40] GenomicRanges_1.52.0 GenomeInfoDb_1.36.1 IRanges_2.34.1 +[43] S4Vectors_0.38.1 BiocGenerics_0.46.0 MatrixGenerics_1.12.2 +[46] matrixStats_1.0.0 TCGAbiolinks_2.28.3 loaded via a namespace (and not attached): - [1] rappdirs_0.3.3 vioplot_0.4.0 tidyr_1.2.1 - [4] bit64_4.0.5 knitr_1.40 multcomp_1.4-20 - [7] DelayedArray_0.24.0 data.table_1.14.6 rpart_4.1.19 - [10] KEGGREST_1.38.0 RCurl_1.98-1.9 doParallel_1.0.17 - [13] generics_0.1.3 timereg_2.0.4 tgp_2.4-21 - [16] TH.data_1.1-1 RSQLite_2.2.20 polspline_1.1.20 - [19] proxy_0.4-27 future_1.31.0 bit_4.0.4 - [22] tzdb_0.3.0 xml2_1.3.3 assertthat_0.2.1 - [25] xfun_0.33 hms_1.1.2 evaluate_0.20 - [28] fansi_1.0.3 progress_1.2.2 dbplyr_2.2.1 - [31] km.ci_0.5-6 DBI_1.1.3 geneplotter_1.76.0 - [34] htmlwidgets_1.5.4 reshape_0.8.9 purrr_1.0.1 - [37] ellipsis_0.3.2 mlr3data_0.6.1 RSpectra_0.16-1 - [40] backports_1.4.1 annotate_1.76.0 biomaRt_2.54.0 - [43] deldir_1.0-6 vctrs_0.5.1 quantreg_5.94 - [46] abind_1.4-5 cachem_1.0.6 withr_2.5.0 - [49] mlr3learners_0.5.6 checkmate_2.1.0 prettyunits_1.1.1 - [52] mlr3fselect_0.9.1 param6_0.2.4 cluster_2.1.3 - [55] crayon_1.5.2 pkgconfig_2.0.3 nlme_3.1-157 - [58] mlegp_3.1.9 nnet_7.3-17 rlang_1.0.6 - [61] globals_0.16.2 lifecycle_1.0.3 MatrixModels_0.5-1 - [64] sandwich_3.0-2 downloader_0.4 filelock_1.0.2 - [67] palmerpenguins_0.1.1 BiocFileCache_2.6.0 mets_1.3.1 - [70] doSNOW_1.0.20 KMsurv_0.1-5 carData_3.0-5 - [73] boot_1.3-28 zoo_1.8-11 base64enc_0.1-3 - [76] png_0.1-8 bitops_1.0-7 Biostrings_2.66.0 - [79] blob_1.2.3 shape_1.4.6 paradox_0.11.0 - [82] stringr_1.5.0 parallelly_1.34.0 readr_2.1.3 - [85] jpeg_0.1-9 rstatix_0.7.1 dictionar6_0.1.3 - [88] ggsignif_0.6.4 scales_1.2.1 memoise_2.0.1 - [91] magrittr_2.0.3 plyr_1.8.8 zlibbioc_1.44.0 - [94] compiler_4.2.1 RColorBrewer_1.1-3 clue_0.3-63 - [97] lme4_1.1-31 set6_0.2.5 cli_3.4.1 -[100] XVector_0.38.0 mlr3tuningspaces_0.3.3 mlr3filters_0.7.0 -[103] listenv_0.9.0 htmlTable_2.4.1 tidyselect_1.2.0 -[106] stringi_1.7.12 TCGAbiolinksGUI.data_1.18.0 distr6_1.6.13 -[109] yaml_2.3.5 askpass_1.1 locfit_1.5-9.6 -[112] latticeExtra_0.6-30 survMisc_0.5.6 grid_4.2.1 -[115] maptree_1.4-8 tools_4.2.1 mlr3misc_0.11.0 -[118] mlr3cluster_0.1.6 future.apply_1.10.0 parallel_4.2.1 -[121] matrixcalc_1.0-6 rstudioapi_0.14 uuid_1.1-0 -[124] foreach_1.5.2 foreign_0.8-82 gridExtra_2.3 -[127] prodlim_2019.11.13 Rtsne_0.16 digest_0.6.31 -[130] lava_1.7.0 cmprsk_2.2-11 Rcpp_1.0.10 -[133] car_3.1-1 broom_1.0.1 httr_1.4.4 -[136] AnnotationDbi_1.60.0 mlr3tuning_0.17.2 colorspace_2.0-3 -[139] rvest_1.0.3 XML_3.99-0.13 reticulate_1.26 -[142] umap_0.2.9.0 splines_4.2.1 lgr_0.4.4 -[145] bbotk_0.7.2 sm_2.2-5.7.1 statmod_1.4.37 -[148] mlr3pipelines_0.4.2 xtable_1.8-4 nloptr_2.0.3 -[151] jsonlite_1.8.3 corpcor_1.6.10 clusterCrit_1.2.8 -[154] R6_2.5.1 pillar_1.8.1 htmltools_0.5.3 -[157] minqa_1.2.5 glue_1.6.2 fastmap_1.1.0 -[160] BiocParallel_1.32.5 beanplot_1.3.1 class_7.3-20 -[163] ooplah_0.2.0 codetools_0.2-18 utf8_1.2.2 -[166] tibble_3.1.8 numDeriv_2016.8-1.1 curl_4.3.3 -[169] mlr3viz_0.6.1 openssl_2.0.3 interp_1.1-3 -[172] penalizedSVM_1.1.3 rmarkdown_2.17 munsell_0.5.0 -[175] e1071_1.7-12 GenomeInfoDbData_1.2.9 iterators_1.0.14 -[178] gtable_0.3.1 + [1] tgp_2.4-21 progress_1.2.2 mlr3hyperband_0.4.5 + [4] penalized_0.9-52 nnet_7.3-19 Biostrings_2.68.1 + [7] TH.data_1.1-2 vctrs_0.6.3 digest_0.6.32 + [10] png_0.1-8 corpcor_1.6.10 shape_1.4.6 + [13] proxy_0.4-27 parallelly_1.36.0 reshape_0.8.9 + [16] foreach_1.5.2 withr_2.5.0 param6_0.2.4 + [19] xfun_0.39 memoise_2.0.1 diptest_0.76-0 + [22] MatrixModels_0.5-1 zoo_1.8-12 DEoptimR_1.1-1 + [25] distr6_1.8.0 prettyunits_1.1.1 prabclus_2.3-2 + [28] KEGGREST_1.40.0 httr_1.4.6 downloader_0.4 + [31] maptree_1.4-8 rstatix_0.7.2 globals_0.16.2 + [34] fpc_2.2-10 rstudioapi_0.14 generics_0.1.3 + [37] base64enc_0.1-3 curl_5.0.1 zlibbioc_1.46.0 + [40] doSNOW_1.0.20 GenomeInfoDbData_1.2.10 lgr_0.4.4 + [43] xtable_1.8-4 stringr_1.5.0 doParallel_1.0.17 + [46] evaluate_0.21 S4Arrays_1.0.4 BiocFileCache_2.8.0 + [49] hms_1.1.3 colorspace_2.1-0 filelock_1.0.2 + [52] cmprsk_2.2-11 reticulate_1.30 flexmix_2.3-19 + [55] magrittr_2.0.3 readr_2.1.4 modeltools_0.2-23 + [58] lattice_0.21-8 palmerpenguins_0.1.1 future.apply_1.11.0 + [61] robustbase_0.99-0 SparseM_1.81 XML_3.99-0.14 + [64] class_7.3-22 pillar_1.9.0 nlme_3.1-162 + [67] iterators_1.0.14 compiler_4.3.1 RSpectra_0.16-1 + [70] stringi_1.7.12 paradox_0.11.1 minqa_1.2.5 + [73] dictionar6_0.1.3 plyr_1.8.8 crayon_1.5.2 + [76] abind_1.4-5 sm_2.2-5.7.1 locfit_1.5-9.8 + [79] bit_4.0.5 sandwich_3.0-2 mlr3mbo_0.2.1 + [82] codetools_0.2-19 multcomp_1.4-25 matrixcalc_1.0-6 + [85] openssl_2.0.6 e1071_1.7-13 splines_4.3.1 + [88] Rcpp_1.0.10 quantreg_5.95 dbplyr_2.3.2 + [91] TCGAbiolinksGUI.data_1.20.0 knitr_1.43 blob_1.2.4 + [94] utf8_1.2.3 clue_0.3-64 lme4_1.1-34 + [97] listenv_0.9.0 checkmate_2.2.0 ggsignif_0.6.4 +[100] tibble_3.2.1 mlr3tuningspaces_0.4.0 statmod_1.5.0 +[103] tzdb_0.4.0 pkgconfig_2.0.3 tools_4.3.1 +[106] cachem_1.0.8 RSQLite_2.3.1 rvest_1.0.3 +[109] DBI_1.1.3 numDeriv_2016.8-1.1 mlr3filters_0.7.1 +[112] fastmap_1.1.1 rmarkdown_2.22 scales_1.2.1 +[115] mlegp_3.1.9 grid_4.3.1 mets_1.3.2 +[118] broom_1.0.5 carData_3.0-5 rpart_4.1.19 +[121] yaml_2.3.7 foreign_0.8-84 cli_3.6.1 +[124] purrr_1.0.1 lifecycle_1.0.3 askpass_1.1 +[127] bbotk_0.7.2 lava_1.7.2.1 kernlab_0.9-32 +[130] backports_1.4.1 mlr3tuning_0.19.0 BiocParallel_1.34.2 +[133] gtable_0.3.3 umap_0.2.10.0 parallel_4.3.1 +[136] mlr3cluster_0.1.8 jsonlite_1.8.7 bitops_1.0-7 +[139] bit64_4.0.5 Rtsne_0.16 mlr3learners_0.5.6 +[142] polspline_1.1.23 survMisc_0.5.6 spacefillr_0.3.2 +[145] htmltools_0.5.5 KMsurv_0.1-5 set6_0.2.6 +[148] rappdirs_0.3.3 mlr3pipelines_0.5.0-1 glue_1.6.2 +[151] penalizedSVM_1.1.4 mlr3viz_0.6.1 timereg_2.0.5 +[154] XVector_0.40.0 RCurl_1.98-1.12 mclust_6.0.0 +[157] gridExtra_2.3 boot_1.3-28.1 R6_2.5.1 +[160] tidyr_1.3.0 km.ci_0.5-6 ooplah_0.2.0 +[163] cluster_2.1.4 beanplot_1.3.1 nloptr_2.0.3 +[166] mlr3misc_0.13.0 vioplot_0.4.0 DelayedArray_0.26.3 +[169] tidyselect_1.2.0 htmlTable_2.4.1 xml2_1.3.4 +[172] mlr3fselect_0.11.0 car_3.1-2 AnnotationDbi_1.62.1 +[175] future_1.33.0 munsell_0.5.0 data.table_1.14.8 +[178] htmlwidgets_1.6.2 mlr3data_0.7.0 RColorBrewer_1.1-3 +[181] biomaRt_2.56.1 rlang_1.1.1 uuid_1.1-1 +[184] fansi_1.0.4 prodlim_2023.03.31 ``` # References diff --git a/survomics.html b/survomics.html index b014ef0..7a21010 100644 --- a/survomics.html +++ b/survomics.html @@ -1667,7 +1667,7 @@

Supplemental information for ‘Tutorial on survival modelling with omics data’

-

Last updated: 20 July, 2023

+

Last updated: 06 October, 2023

@@ -1717,6 +1717,7 @@

TCGA survival and clinical data

library("grpreg") library("SGL") library("psbcGroup") +library("psbcSpeedUp") library("GGally") library("BhGLM") library("risksetROC") @@ -1743,7 +1744,7 @@

TCGA survival and clinical data

clin$age = clin$age_at_diagnosis / 365.25 clin$status = clin$vital_status clin = clin[, c("project", "submitter_id", "status", "time", "gender", "age", "race", "ethnicity")] - +# extract patients with positive overall survival time clin = clin[(clin$time > 0) & (clin$status %in% c("Alive", "Dead")), ] # frequency table of the patients w.r.t. status, gender and ethnicity @@ -1768,19 +1769,19 @@

TCGA survival and clinical data

11 Dead male not hispanic or latino 327 0.378 12 Dead male not reported 80 0.0925
# censoring plot by cancer types
+ID = 1:nrow(clin)
 clin %>%
-  mutate(index=1:n()) %>%
   ggplot(
-    aes(y = index, x = time, colour = project, shape = factor(status))) +
-    geom_segment(aes(x = time, y = index, xend = 0, yend = index)) +
+    aes(y = ID, x = time, colour = project, shape = factor(status))) +
+    geom_segment(aes(x = time, y = ID, xend = 0, yend = ID)) +
   geom_point() +
   ggtitle("") +
-  labs(x="Years", y="Patients") +
-  scale_shape_discrete(name = "Status", labels = c("Censored","Dead")) +
+  labs(x = "Years", y = "Patients") +
+  scale_shape_discrete(name = "Status", labels = c("Censored", "Dead")) +
   scale_color_discrete(name = "Cancer", 
-                       labels = c("Bladder","Breast","Colon","Liver", "Lung adeno", 
-                                  "Pancreatic", "Prostate","Thyroid")) +
-  theme(legend.position="top", legend.direction="vertical") + 
+                       labels = c("Bladder", "Breast", "Colon", "Liver", "Lung adeno", 
+                                  "Pancreatic", "Prostate", "Thyroid")) +
+  theme(legend.position = "top", legend.direction = "vertical") + 
   guides(color = guide_legend(nrow = 2, byrow = TRUE))
Overall survival times and status of pan-cancer patients from TCGA. @@ -1814,12 +1815,12 @@

TCGA omics data

dat = TCGAbiolinks::GDCprepare(query = query) SummarizedExperiment::assays(dat)$unstranded[1:5, 1:2] -
                   TCGA-LL-A73Y-01A-11R-A33J-07 TCGA-E2-A1IU-01A-11R-A14D-07
-ENSG00000000003.15                         7015                          850
-ENSG00000000005.6                            16                            5
-ENSG00000000419.13                         2167                         1680
-ENSG00000000457.14                         2505                         1559
-ENSG00000000460.17                          726                          402
+
                   TCGA-A7-A26E-01B-06R-A277-07 TCGA-A2-A0CU-01A-12R-A034-07
+ENSG00000000003.15                          691                         1429
+ENSG00000000005.6                            20                           73
+ENSG00000000419.13                          335                         1674
+ENSG00000000457.14                         1292                         1018
+ENSG00000000460.17                          536                          450

It is recommended to use DESeq2 or TMM normalization method for RNA-seq data before further statistical analysis (Y. Zhao et al. 2021). Here we demonstrate how to use the R/Bioconductor @@ -1827,17 +1828,17 @@

TCGA omics data

(Love, Huber, and Anders 2014) to normalize the RNA count data.

meta = colData(dat)[, c("project_id", "submitter_id", "age_at_diagnosis",  "ethnicity", "gender", "days_to_death", "days_to_last_follow_up", "vital_status", "paper_BRCA_Subtype_PAM50", "treatments")]
-meta$treatments = unlist(lapply(meta$treatments, function(xx){any(xx$treatment_or_therapy == "yes")}))
+meta$treatments = unlist(lapply(meta$treatments, function(xx) {any(xx$treatment_or_therapy == "yes")}))
 dds = DESeq2::DESeqDataSetFromMatrix(assays(dat)$unstranded, colData = meta, design = ~ 1) 
 dds2 = DESeq2::estimateSizeFactors(dds)
-RNA_count = DESeq2::counts(dds2, normalized=TRUE)
+RNA_count = DESeq2::counts(dds2, normalized = TRUE)
 RNA_count[1:5, 1:2]
-
                   TCGA-LL-A73Y-01A-11R-A33J-07 TCGA-E2-A1IU-01A-11R-A14D-07
-ENSG00000000003.15                   6034.27168                   951.825764
-ENSG00000000005.6                      13.76313                     5.598975
-ENSG00000000419.13                   1864.04373                  1881.255628
-ENSG00000000457.14                   2154.78982                  1745.760431
-ENSG00000000460.17                    624.50196                   450.157597
+
                   TCGA-A7-A26E-01B-06R-A277-07 TCGA-A2-A0CU-01A-12R-A034-07
+ENSG00000000003.15                   1899.76848                   1419.51789
+ENSG00000000005.6                      54.98606                     72.51561
+ENSG00000000419.13                    921.01656                   1662.89219
+ENSG00000000457.14                   3552.09968                   1011.24507
+ENSG00000000460.17                   1473.62649                    447.01403

To perform survival analysis with both clinical/demographic variables and omics data, in the following code we extract female breast cancer patients with their corresponding survival outcomes, @@ -1849,10 +1850,19 @@

TCGA omics data

clin = clin[order(clin$submitter_id), ] RNA_count = RNA_count[, rownames(clin)]
-

The R/Bioconductor package TCGAbiolinks cannot -retrieve any proteomics or metabolomics data. It is always useful to -look at your data first, in particular the data type and dimensions -(i.e. numbers of rows and columns for a data frame or matrix).

+
    +
  • Bioconductor +might provide an old package version of TCGAbiolinks +for Linux machines. Here, we use the version TCGAbiolinks_2.29.6. If you +encounter some issues when using this tutorial, please check your +installed TCGAbiolinks version. If necessary, you can +re-install the package from its GitHub +repository.

  • +
  • The package TCGAbiolinks cannot retrieve any +proteomics or metabolomics data. It is always useful to look at your +data first, in particular the data type and dimensions (i.e. numbers of +rows and columns for a data frame or matrix).

  • +


@@ -1873,12 +1883,12 @@

Nonparametric survival analysis

sfit = survival::survfit(Surv(time, status) ~ 1, data = clin) # calculate survival probability at 1-, 3- and 5-year time points -summary(sfit, times=c(1,3,5)) +summary(sfit, times = c(1, 3, 5)) theme_set(theme_bw()) ggsurv = survminer::ggsurvplot(sfit, conf.int = TRUE, risk.table = TRUE, xlab = "Time since diagnosis (year)", legend = "none", surv.median.line = "hv") -ggsurv$plot = ggsurv$plot + annotate("text", x = 20, y = 0.9, label= "+ Censor") +ggsurv$plot = ggsurv$plot + annotate("text", x = 20, y = 0.9, label = "+ Censor") ggsurv
Kaplan-Meier curve for 1061 BRCA patients data from TCGA. @@ -1901,12 +1911,12 @@

Nonparametric survival analysis

sfit2 = survfit(Surv(time, status) ~ treatments, data = clin) ggsurv = ggsurvplot(sfit2, conf.int = TRUE, risk.table = TRUE, - xlab = "Time since diagnosis (year)", legend = c(.6,.9), + xlab = "Time since diagnosis (year)", legend = c(.6, .9), legend.labs = c("No", "Yes"), legend.title = "Treatment", risk.table.y.text.col = TRUE, risk.table.y.text = FALSE) ggsurv$plot = ggsurv$plot + - annotate("text", x = 21, y = 1, label= "+ Censor") + - annotate("text", x = 22, y = .88, label= paste0("Log-rank test:\n", surv_pvalue(sfit2)$pval.txt)) + annotate("text", x = 21, y = 1, label = "+ Censor") + + annotate("text", x = 22, y = .88, label = paste0("Log-rank test:\n", surv_pvalue(sfit2)$pval.txt)) ggsurv
Kaplan-Meier curves of the BRCA patients’ survival data from TCGA grouped by treatment (i.e. pharmaceutical or radiation therapy) or nontreatment. The log-rank test is to compare the two survival distributions corresponding to the two groups of patients. @@ -1961,8 +1971,7 @@

Nonparametric survival analysis

Theta= 0.828 Degrees of freedom for terms= 4 Likelihood ratio test=46.4 on 4.03 df, p=2e-09 -n= 1047, number of events= 149 - (14 observations deleted due to missingness) +n= 1047, number of events= 149

To check proportional hazards of age, we can add a time-dependent covariate \(age \times g(t)\), where \(g(t)\) is a known function e.g. \(g(t) = \log t\). The following code shows @@ -1989,12 +1998,20 @@

Feature preselection/filtering

suited for high dimensional omics features, it is better to filter the omics features first. In addition, we perceive that not too many omics features are relevant to one medical problem. We will demonstrate -two different filtering approaches for high-dimensional omics +three different filtering approaches for high-dimensional omics data:

    +
  • Knowledge-based filtering
  • P-value-based filtering
  • Variance-based filtering
+
+

Knowledge filter

+

One can be interested in only some biologically meaningful genes or +only protein-coding genes in a specific study. For example, the code +below filters protein-coding genes.

+
filtered_rna = RNA_count[rowData(dat)$gene_type == "protein_coding", ]
+

P-value filter

Before joint analyzing the associations between the thousands of @@ -2007,12 +2024,12 @@

P-value filter

previously, the code below filters omics features at the statistical significance level \(0.2\), i.e. \(p < 0.2\).

RNA_log2count = log2(RNA_count[1:100, ] + 1)
-pvalues <- rep(NA, nrow(RNA_log2count))
-for(j in 1:nrow(RNA_log2count)) {
+pvalues = rep(NA, nrow(RNA_log2count))
+for (j in 1:nrow(RNA_log2count)) {
   fit_cox = coxph(Surv(clin$time, clin$status) ~ RNA_log2count[j, ], data = clin)
   pvalues[j] = summary(fit_cox)$coefficients[, "Pr(>|z|)"]
 }
-filtered_rna <- RNA_log2count[which(pvalues < 0.2), ]
+filtered_rna = RNA_log2count[which(pvalues < 0.2), ]

Variance filter

@@ -2043,11 +2060,11 @@

Variance filter

performing calculations for variance printing topN most variable features with statistics... feature mean var sd -ENSG00000166509.12 ENSG00000166509.12 6.084336 31.60450 5.621788 -ENSG00000110484.7 ENSG00000110484.7 11.004346 26.22686 5.121216 -ENSG00000153002.12 ENSG00000153002.12 8.222386 25.87780 5.087022 -ENSG00000134184.13 ENSG00000134184.13 5.371158 23.28756 4.825719 -ENSG00000160182.3 ENSG00000160182.3 9.901567 21.48403 4.635087 +ENSG00000166509.12 ENSG00000166509.12 6.086125 31.60384 5.621729 +ENSG00000110484.7 ENSG00000110484.7 11.005136 26.13755 5.112489 +ENSG00000153002.12 ENSG00000153002.12 8.212895 25.89105 5.088325 +ENSG00000134184.13 ENSG00000134184.13 5.371435 23.23511 4.820281 +ENSG00000160182.3 ENSG00000160182.3 9.902195 21.41407 4.627534 features remaining: 607

Another variance-type filter is to remain features with certain percentage of cumulative variances, which will usually @@ -2082,25 +2099,13 @@

Unsupervised learning (omics data)

(John et al. 2020) provides the analyses and visualization of all the three methods.

-
# extract the PAM50 genes of TCGA-BRCA patients
-TCGA_PAM50 = RNA_count[sapply(strsplit(rownames(RNA_count), ".", fixed = TRUE), function(x) x[[1]]) %in% c(
-  "ENSG00000077152", "ENSG00000089685", "ENSG00000143228", "ENSG00000094804", "ENSG00000134057",
-  "ENSG00000176890", "ENSG00000101057", "ENSG00000138180", "ENSG00000165304", "ENSG00000080986",
-  "ENSG00000171848", "ENSG00000175063", "ENSG00000117724", "ENSG00000164611", "ENSG00000174371",
-  "ENSG00000091651", "ENSG00000011426", "ENSG00000105173", "ENSG00000117399", "ENSG00000148773",
-  "ENSG00000142945", "ENSG00000133627", "ENSG00000136997", "ENSG00000146648", "ENSG00000186081",
-  "ENSG00000092621", "ENSG00000062038", "ENSG00000261857", "ENSG00000128422", "ENSG00000054598",
-  "ENSG00000104332", "ENSG00000186847", "ENSG00000091831", "ENSG00000141424", "ENSG00000107262",
-  "ENSG00000186868", "ENSG00000082175", "ENSG00000171604", "ENSG00000115648", "ENSG00000171791",
-  "ENSG00000135679", "ENSG00000171428", "ENSG00000129514", "ENSG00000106605", "ENSG00000099953",
-  "ENSG00000173890", "ENSG00000160867", "ENSG00000141738", "ENSG00000151715", "ENSG00000141736"), ]
+
# identify indexes of the PAM50 genes in the TCGA-BRCA data
+idx = which(rowData(dat)$gene_name %in% 
+              c("UBE2T", "BIRC5", "NUF2", "CDC6", "CCNB1", "TYMS", "MYBL2", "CEP55", "MELK", "NDC80", "RRM2", "UBE2C", "CENPF", "PTTG1", "EXO1", "ORC6", "ANLN", "CCNE1", "CDC20", "MKI67", "KIF2C", "ACTR3B", "MYC", "EGFR", "KRT5", "PHGDH", "CDH3", "MIA", "KRT17", "FOXC1", "SFRP1", "KRT14", "ESR1", "SLC39A6", "BAG1", "MAPT", "PGR", "CXXC5", "MLPH", "BCL2", "MDM2", "NAT1", "FOXA1", "BLVRA", "MMP11", "GPR160", "FGFR4", "GRB7", "TMEM45B", "ERBB2"))
+# extract the PAM50 genes of TCGA-BRCA patients
+TCGA_PAM50 = RNA_count[idx, ]
 # use gene symbols instead of Ensembl IDs
-rownames(TCGA_PAM50) = 
-  c("UBE2T", "BIRC5", "NUF2", "CDC6", "CCNB1", "TYMS", "MYBL2", "CEP55", "MELK", "NDC80", "RRM2", 
-    "UBE2C", "CENPF", "PTTG1", "EXO1", "ORC6L", "ANLN", "CCNE1", "CDC20", "MKI67", "KIF2C", 
-    "ACTR3B", "MYC", "EGFR", "KRT5", "PHGDH", "CDH3", "MIA", "KRT17", "FOXC1", "SFRP1", "KRT14", 
-    "ESR1", "SLC39A6", "BAG1", "MAPT", "PGR", "CXXC5", "MLPH", "BCL2", "MDM2", "NAT1", "FOXA1", 
-    "BLVRA", "MMP11", "GPR160", "FGFR4", "GRB7", "TMEM45B", "ERBB2")
+rownames(TCGA_PAM50) = rowData(dat)$gene_name[idx]
 
 # log2-transformation of the normalized count data
 TCGA_PAM50 = log2(TCGA_PAM50 + 1)
@@ -2163,19 +2168,19 @@ 

Dimension reduction for Cox models

n= 1047, number of events= 149 coef exp(coef) se(coef) z Pr(>|z|) -PC1 0.004894 1.004906 0.009689 0.505 0.61348 -PC2 0.038269 1.039010 0.013224 2.894 0.00381 ** +PC1 0.004679 1.004690 0.009675 0.484 0.62862 +PC2 0.038179 1.038918 0.013233 2.885 0.00391 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 exp(coef) exp(-coef) lower .95 upper .95 -PC1 1.005 0.9951 0.986 1.024 -PC2 1.039 0.9625 1.012 1.066 +PC1 1.005 0.9953 0.9858 1.024 +PC2 1.039 0.9625 1.0123 1.066 Concordance= 0.58 (se = 0.028 ) -Likelihood ratio test= 8.62 on 2 df, p=0.01 -Wald test = 8.71 on 2 df, p=0.01 -Score (logrank) test = 8.73 on 2 df, p=0.01
+Likelihood ratio test= 8.54 on 2 df, p=0.01 +Wald test = 8.64 on 2 df, p=0.01 +Score (logrank) test = 8.66 on 2 df, p=0.01

Penalized Cox models

@@ -2217,7 +2222,7 @@

Penalized Cox models

#get ordered list of variables as they appear at smallest lambda allnames = names(coef(mod)[, ncol(coef(mod))] [order(coef(mod)[, ncol(coef(mod))], decreasing = TRUE)]) -# assign colors +# assign colors for positive (pink) and negative (green) coefficients cols = rep("gray80", length(allnames)) cols[allnames %in% beta.positive] = "seagreen3" cols[allnames %in% beta.negative] = "hotpink" @@ -2225,9 +2230,9 @@

Penalized Cox models

# drwa coefficient paths of a Lasso Cox model plotmo::plot_glmnet(mod, label = TRUE, s = lambda_optimal, col = cols, xlab = expression(log ~~ lambda), ylab = expression(beta)) -title("Lasso \n\n") +title("Lasso \n\n")
-Coefficient paths of a Lasso Cox model. The verticle gray line indicates the optimal \lambda and its correspondingly selected features are marked as green (positive coefficient) and red (negative coefficient) colors. Note that the demographic variables age and ethnicity were not penalized, so that their coefficient paths did not start from zero in the figure. +Coefficient paths of a Lasso Cox model. The verticle gray line indicates the optimal \lambda and its correspondingly selected features are marked as green (positive coefficient) and red (negative coefficient) colors. Note that the demographic variables age and ethnicity were not penalized, so that their coefficient paths did not start from zero in the figure.
Coefficient paths of a Lasso Cox model. The verticle gray line indicates the optimal \(\lambda\) and its correspondingly selected features are marked as green (positive coefficient) and red (negative @@ -2248,7 +2253,7 @@

Penalized Cox models

alpha = seq(0.1, 1, length = 10) fitEN = list() set.seed(123) -for(i in 1:length(alpha)) { +for (i in 1:length(alpha)) { fitEN[[i]] = cv.glmnet(x, y, family = "cox", alpha = alpha[i], nfolds = 5, penalty.factor = pf) } idx = which.min(sapply(fitEN, function(xx) {xx$cvm[xx$lambda == xx$lambda.min]})) @@ -2271,7 +2276,7 @@

Penalized Cox models

xlab = expression(log ~~ lambda), ylab = expression(beta)) title("Elastic Net \n\n")
-Coefficient paths of an Elastic Net Cox model. The verticle gray line indicates the optimal \lambda and its correspondingly selected features are marked as green (positive coefficient) and red (negative coefficient) colors. Note that the demographic variables age and ethnicity were not penalized, so that their coefficient paths did not start from zero in the figure. +Coefficient paths of an Elastic Net Cox model. The verticle gray line indicates the optimal \lambda and its correspondingly selected features are marked as green (positive coefficient) and red (negative coefficient) colors. Note that the demographic variables age and ethnicity were not penalized, so that their coefficient paths did not start from zero in the figure.
Coefficient paths of an Elastic Net Cox model. The verticle gray line indicates the optimal \(\lambda\) and its correspondingly selected features are marked as green (positive coefficient) and red (negative @@ -2311,7 +2316,7 @@

Penalized Cox models

xlab = expression(log ~ lambda), ylab = expression(beta)) title("Adative Lasso \n\n")
-Coefficient paths of an adaptive Lasso Cox model. The verticle gray line indicates the optimal \lambda and its correspondingly selected features are marked as green (positive coefficient) and red (negative coefficient) colors. Note that the demographic variables age and ethnicity were not penalized, so that their coefficient paths did not start from zero in the figure. +Coefficient paths of an adaptive Lasso Cox model. The verticle gray line indicates the optimal \lambda and its correspondingly selected features are marked as green (positive coefficient) and red (negative coefficient) colors. Note that the demographic variables age and ethnicity were not penalized, so that their coefficient paths did not start from zero in the figure.
Coefficient paths of an adaptive Lasso Cox model. The verticle gray line indicates the optimal \(\lambda\) and its correspondingly selected features are marked as green (positive coefficient) and red (negative @@ -2356,58 +2361,58 @@

Penalized Cox models

cvfit = grpreg::cv.grpsurv(X = x, y = y, group = group, penalty = "grLasso", returnY = TRUE) round(cvfit$fit$beta[, c(which.min(cvfit$cve), 10, 20)], digits = 4)
           0.0143  0.0217  0.0108
-age        0.0219  0.0154  0.0247
-ethnicity -0.0542 -0.0425 -0.0569
-UBE2T      0.0209  0.0000  0.0732
-BIRC5     -0.0035  0.0000 -0.0109
-NUF2      -0.0031  0.0000 -0.0093
-CDC6       0.0155  0.0000  0.0546
-CCNB1     -0.0247  0.0000 -0.0846
-TYMS      -0.0028  0.0000 -0.0086
-MYBL2     -0.0147  0.0000 -0.0522
-CEP55      0.0152  0.0000  0.0507
-MELK      -0.0001  0.0000 -0.0006
-NDC80      0.0007  0.0000  0.0022
-RRM2       0.0000  0.0000 -0.0100
-UBE2C      0.0000  0.0000  0.0076
-CENPF      0.0000  0.0000 -0.0002
-PTTG1      0.0000  0.0000  0.0052
-EXO1       0.0000  0.0000 -0.0002
-ORC6L      0.0000  0.0000 -0.0464
-ANLN       0.0000  0.0000 -0.0175
-CCNE1      0.0000  0.0000 -0.0155
-CDC20      0.0000  0.0000 -0.0142
-MKI67      0.0000  0.0000 -0.0245
-KIF2C      0.0000  0.0000 -0.0123
-ACTR3B     0.0000  0.0000  0.0043
-MYC        0.0000  0.0000 -0.0137
-EGFR       0.0000  0.0000  0.0319
-KRT5       0.0000  0.0000 -0.0059
-PHGDH      0.0000  0.0000  0.0004
-CDH3       0.0000  0.0000 -0.0265
-MIA        0.0000  0.0000  0.0049
-KRT17      0.0000  0.0000 -0.0088
-FOXC1      0.0000  0.0000  0.0096
-SFRP1      0.0000  0.0000  0.0235
-KRT14      0.0000  0.0000  0.0218
-ESR1       0.0000  0.0000 -0.0158
-SLC39A6    0.0000  0.0000  0.0284
-BAG1       0.0000  0.0000  0.0104
-MAPT       0.0000  0.0000  0.0023
-PGR        0.0000  0.0000  0.0095
-CXXC5      0.0000  0.0000 -0.0182
-MLPH       0.0000  0.0000 -0.0059
-BCL2       0.0000  0.0000  0.0133
-MDM2       0.0000  0.0000 -0.0084
-NAT1       0.0000  0.0000 -0.0008
-FOXA1      0.0000  0.0000 -0.0055
-BLVRA      0.0000  0.0000  0.0053
-MMP11      0.0000  0.0000 -0.0037
-GPR160     0.0000  0.0000 -0.0328
-FGFR4      0.0000  0.0000 -0.0029
-GRB7       0.0000  0.0000  0.0086
-TMEM45B    0.0000  0.0000 -0.0078
-ERBB2      0.0000  0.0000 -0.0194
+age 0.0218 0.0154 0.0247 +ethnicity -0.0542 -0.0425 -0.0570 +ANLN 0.0193 0.0000 0.0713 +FOXC1 -0.0032 0.0000 -0.0104 +CDH3 -0.0028 0.0000 -0.0090 +UBE2T 0.0154 0.0000 0.0571 +NDC80 -0.0239 0.0000 -0.0862 +PGR -0.0027 0.0000 -0.0086 +BIRC5 -0.0133 0.0000 -0.0497 +ORC6 0.0140 0.0000 0.0489 +ESR1 -0.0002 0.0000 -0.0008 +PHGDH 0.0008 0.0000 0.0024 +CDC6 0.0000 0.0000 -0.0094 +MMP11 0.0000 0.0000 0.0074 +MYBL2 0.0000 0.0000 0.0018 +SFRP1 0.0000 0.0000 0.0049 +CCNE1 0.0000 0.0000 0.0000 +BLVRA 0.0000 0.0000 -0.0436 +BAG1 0.0000 0.0000 -0.0163 +MLPH 0.0000 0.0000 -0.0155 +CDC20 0.0000 0.0000 -0.0129 +CENPF 0.0000 0.0000 -0.0245 +KRT17 0.0000 0.0000 -0.0125 +FOXA1 0.0000 0.0000 0.0040 +ACTR3B 0.0000 0.0000 -0.0112 +CCNB1 0.0000 0.0000 0.0302 +MDM2 0.0000 0.0000 -0.0077 +MYC 0.0000 0.0000 0.0002 +CEP55 0.0000 0.0000 -0.0242 +SLC39A6 0.0000 0.0000 0.0053 +ERBB2 0.0000 0.0000 -0.0089 +GRB7 0.0000 0.0000 0.0099 +KIF2C 0.0000 0.0000 0.0219 +NUF2 0.0000 0.0000 0.0210 +EGFR 0.0000 0.0000 -0.0150 +MKI67 0.0000 0.0000 0.0266 +TMEM45B 0.0000 0.0000 0.0100 +FGFR4 0.0000 0.0000 0.0023 +PTTG1 0.0000 0.0000 0.0095 +MELK 0.0000 0.0000 -0.0188 +NAT1 0.0000 0.0000 -0.0052 +CXXC5 0.0000 0.0000 0.0131 +BCL2 0.0000 0.0000 -0.0082 +RRM2 0.0000 0.0000 -0.0003 +GPR160 0.0000 0.0000 -0.0043 +EXO1 0.0000 0.0000 0.0041 +UBE2C 0.0000 0.0000 -0.0052 +TYMS 0.0000 0.0000 -0.0298 +KRT5 0.0000 0.0000 -0.0025 +KRT14 0.0000 0.0000 0.0085 +MAPT 0.0000 0.0000 -0.0071 +MIA 0.0000 0.0000 -0.0180

Sparse group Lasso Cox model is implemented in the R package SGL (N. Simon et al. @@ -2423,24 +2428,24 @@

Penalized Cox models

beta.hat = cvfit$fit$beta[, which.min(cvfit$lldiff)] names(beta.hat) = paste0("group", as.numeric(group), ".", c(1:2, 1:10, 1:40)) beta.hat -
   group1.1    group1.2    group2.1    group2.2    group2.3    group2.4 
- 5.68387570  0.00000000  0.50711740  0.00000000  0.00000000  0.21522490 
-   group2.5    group2.6    group2.7    group2.8    group2.9   group2.10 
- 0.00000000  0.00000000  0.00000000  0.34168669  0.00000000  0.00000000 
-   group3.1    group3.2    group3.3    group3.4    group3.5    group3.6 
- 0.00000000  0.25691478  0.00000000 -0.37494726  0.00000000 -2.85110146 
-   group3.7    group3.8    group3.9   group3.10   group3.11   group3.12 
--1.93556994  0.00000000  0.00000000  0.00000000 -1.77805542  0.00000000 
-  group3.13   group3.14   group3.15   group3.16   group3.17   group3.18 
- 0.00000000  1.03819778  0.00000000  0.00000000  0.00000000  0.00000000 
-  group3.19   group3.20   group3.21   group3.22   group3.23   group3.24 
- 0.00000000  0.00000000  0.00000000  0.00000000 -0.34496717  0.00000000 
-  group3.25   group3.26   group3.27   group3.28   group3.29   group3.30 
- 1.01552095  0.00000000  0.00000000  0.00000000  0.00000000  0.00000000 
-  group3.31   group3.32   group3.33   group3.34   group3.35   group3.36 
--2.13205587  0.00000000  0.00000000  0.00000000  0.00000000 -0.95048121 
-  group3.37   group3.38   group3.39   group3.40 
--1.86222105 -0.01120573 -0.81157646 -2.14148900 
+
     group1.1      group1.2      group2.1      group2.2      group2.3      group2.4 
+ 5.6584838488  0.0000000000  0.4812006103  0.0000000000  0.0000000000  0.2481830177 
+     group2.5      group2.6      group2.7      group2.8      group2.9     group2.10 
+ 0.0000000000 -0.0003042126  0.0000000000  0.3317385412  0.0000000000  0.0000000000 
+     group3.1      group3.2      group3.3      group3.4      group3.5      group3.6 
+ 0.0000000000  0.3037631224  0.0000000000 -0.3782338997  0.0000000000 -2.6805881347 
+     group3.7      group3.8      group3.9     group3.10     group3.11     group3.12 
+-1.8418523757  0.0000000000  0.0000000000  0.0000000000 -1.7849923007  0.0000000000 
+    group3.13     group3.14     group3.15     group3.16     group3.17     group3.18 
+ 0.0000000000  1.0290918041  0.0000000000  0.0000000000  0.0000000000  0.0000000000 
+    group3.19     group3.20     group3.21     group3.22     group3.23     group3.24 
+ 0.0000000000  0.0000000000  0.0000000000  0.0000000000 -0.3679980817  0.0000000000 
+    group3.25     group3.26     group3.27     group3.28     group3.29     group3.30 
+ 0.9925901529  0.0088469957  0.0000000000  0.0000000000  0.0000000000  0.0000000000 
+    group3.31     group3.32     group3.33     group3.34     group3.35     group3.36 
+-2.1975942364  0.0000000000  0.0000000000  0.0000000000  0.0000000000 -0.8407228093 
+    group3.37     group3.38     group3.39     group3.40 
+-1.8217490477  0.0000000000 -0.7323739107 -2.0111900380 

Sparse Bayesian Cox models

@@ -2453,28 +2458,27 @@

Sparse Bayesian Cox models

priorPara$groupInd = 1:p where \(p\) is the total number of covariates. For the group Lasso prior, set the hyperparameter priorPara$groupInd as a vector of size \(p\), where each element denotes which group -each covariate corresponds to. Note that psbcGroup -cannot distinguish mandatory (unpenalized) covariates with omics -features, see Zucknick, Saadati, and Benner (
2015) for an extended Bayesian Lasso -Cox model.

+each covariate corresponds to.

# Bayesian Cox model with Lasso prior
+
 set.seed(123)
 survObj = list(t = clin$time, di = clin$status, x = x)
 p = ncol(x)
 # set hyperparameters. 
 # For Lasso prior (i.e. 'groupInd'= 1:p), larger ratio r/delta tends to force the posterior betas to be more concentrated at 0
 # For group Lasso prior (i.e. 'groupInd' as group indicator for covariates), larger ratio r/delta tends to force stronger grouping effect of covariates
-s = c(sort(survObj$t[survObj$di == 1]), 2 * max(survObj$t) - max(survObj$t[-which(survObj$t==max(survObj$t))]))
-priorPara = list('eta0' = 1, 'kappa0' = 1, 'c0'= 2, 'r' = 0.5, 
-                  'delta' = 0.0001, 's'= s, 'J'=length(s), 'groupInd'= 1:p)
+s = c(sort(survObj$t[survObj$di == 1]), 2 * max(survObj$t) - max(survObj$t[-which(survObj$t == max(survObj$t))]))
+priorPara = list('eta0' = 1, 'kappa0' = 1, 'c0' = 2, 'r' = 0.5, 
+                  'delta' = 0.0001, 's' = s, 'J' = length(s), 'groupInd' = 1:p)
 # set MCMC parameters
-mcmcPara = list('numBeta'= p, 'beta.prop.var'= 1)
+mcmcPara = list('numBeta' = p, 'beta.prop.var' = 1)
 # set initial values of hyperparameters
 lambdaSq = 1
-initial = list('beta.ini'= rep(0, p), 'lambdaSq' = 1, 'sigmaSq' = runif(1, 0.1, 10),
+initial = list('beta.ini' = rep(0, p), 'lambdaSq' = 1, 'sigmaSq' = runif(1, 0.1, 10),
                 'tauSq' = rexp(length(unique(priorPara$groupInd)), 'rate' = lambdaSq / 2),
                 'h' = rgamma(priorPara$J, 1, 1))
 # in real applications, 'num.reps' should be large enough (e.g. 20000, 40000) and 'chain' to be > 1
+# argument 'rw' should be FALSE for high-dimensional covariates
 BayesLassofit = psbcGroup::psbcGL(survObj, priorPara, initial, rw = TRUE, mcmcPara, num.reps = 100, thin = 1, chain = 1)
 # burn-in the first half MCMC iterations
 beta_p = BayesLassofit$beta.p[-(1:51), ]
@@ -2484,9 +2488,9 @@ 

Sparse Bayesian Cox models

tbl = data.frame(term = colnames(x), estimate = beta_mean, conf.low = beta_L, conf.high = beta_U) tbl$term = factor(tbl$term, levels = tbl$term) -GGally::ggcoef(tbl) + xlab(expression(Posterior~~beta)) + ylab("")
+GGally::ggcoef(tbl) + xlab(expression(Posterior ~~ beta)) + ylab("")
-Estimates of regression coefficients by a penalized semiparametric Bayesian Cox model with Lasso prior. Solid dots indicate the posterior mean over MCMC iterations (excluding burn-in period), and horizontal lines show the corresponding 95% credibility intervals. +Estimates of regression coefficients by a penalized semiparametric Bayesian Cox model with Lasso prior. Solid dots indicate the posterior mean over MCMC iterations (excluding burn-in period), and horizontal lines show the corresponding 95% credibility intervals.
Estimates of regression coefficients by a penalized semiparametric Bayesian Cox model with Lasso prior. Solid dots indicate the posterior mean over MCMC iterations (excluding burn-in @@ -2494,6 +2498,31 @@

Sparse Bayesian Cox models

intervals.


+

Note that psbcGroup cannot distinguish mandatory +(unpenalized) covariates with omics features, see Zucknick, Saadati, and Benner (2015) for an extended Bayesian Lasso +Cox model. The following code implements the Bayesian Lasso Cox model +with mandatory covariates through the R package psbcSpeedUp +(Z. Zhao et al. +2023).

+
# Bayesian Cox model with Lasso prior and mandatory covariates
+set.seed(123)
+survObjM = list(t = clin$time, di = clin$status, x = x[, c(3:52, 1:2)])
+priorPara = list('eta0' = 1, 'kappa0' = 1, 'c0' = 2, 'r' = 0.5, 'delta' = 0.0001)
+BayesLassoMfit <- psbcSpeedUp::psbcSpeedUp(survObjM, p = 50, q = 2, hyperpar = priorPara, 
+                                           nIter = 100, burnin = 50, thin = 1, rw = FALSE, outFilePath = "tmp")
+plot(BayesLassoMfit)
+
Running MCMC iterations ...
+[##################################################] 100%
+DONE, exiting! 
+
+Estimates of regression coefficients by a penalized semiparametric Bayesian Cox model with Lasso prior and unpenalized covariates. Solid dots indicate the posterior mean over MCMC iterations (excluding burn-in period), and horizontal lines show the corresponding 95% credibility intervals. +
Estimates of regression coefficients by a +penalized semiparametric Bayesian Cox model with Lasso prior and +unpenalized covariates. Solid dots indicate the posterior mean over MCMC +iterations (excluding burn-in period), and horizontal lines show the +corresponding 95% credibility intervals.
+
+


In the R package psbcGroup (Lee, Chakraborty, and Sun 2021), function psbcEN() implements Bayesian Cox @@ -2505,26 +2534,21 @@

Sparse Bayesian Cox models

# set hyperparameters # Larger ratio r1/delta1 forces the posterior betas to be more concentrated at 0 # Larger ratio r2/delta2 forces stronger grouping effect of covariates -priorPara = list('eta0' = 1, 'kappa0' = 1, 'c0'= 2, 'r1' = 0.1, 'r2' = 1, - 'delta1' = 0.1, 'delta2' = 1, 's'= s, 'J' = length(s)) +priorPara = list('eta0' = 1, 'kappa0' = 1, 'c0' = 2, 'r1' = 0.1, 'r2' = 1, + 'delta1' = 0.1, 'delta2' = 1, 's' = s, 'J' = length(s)) # set MCMC parameters -mcmcPara = list('numBeta'= p, 'beta.prop.var'= 1) +mcmcPara = list('numBeta' = p, 'beta.prop.var' = 1) # set initial values of hyperparameters -initial = list('beta.ini'= rep(0, p), 'lambda1Sq' = 1, 'lambda2' = 1, 'sigmaSq' = runif(1, 0.1, 10), +initial = list('beta.ini' = rep(0, p), 'lambda1Sq' = 1, 'lambda2' = 1, 'sigmaSq' = runif(1, 0.1, 10), 'tauSq' = rexp(p, rate = 1 / 2), 'h' = rgamma(priorPara$J, 1, 1)) # in real application, 'num.reps' should be large enough (e.g. 20000, 40000) and 'chain' to be > 1 -BayesENfit = psbcEN(survObj, priorPara, initial, rw = TRUE, mcmcPara, num.reps = 100, thin = 1, chain = 1) +BayesENfit = psbcEN(survObj, priorPara, initial, rw = FALSE, mcmcPara, num.reps = 100, thin = 1, chain = 1) # burn-in the first half MCMC iterations EN_beta_p = BayesENfit$beta.p[52:101, ] -EN_beta_mean = colMeans(EN_beta_p) -EN_beta_L = apply(EN_beta_p, 2, quantile, 0.025) -EN_beta_U = apply(EN_beta_p, 2, quantile, 0.975) -EN_tbl = data.frame(term = colnames(x), estimate = EN_beta_mean, conf.low = EN_beta_L, conf.high = EN_beta_U) -EN_tbl$term = factor(EN_tbl$term, levels = EN_tbl$term) - -GGally::ggcoef(EN_tbl) + xlab(expression(Posterior~~beta)) + ylab("") +colnames(EN_beta_p) = colnames(x) +psbcSpeedUp:::plot.psbcSpeedUp(EN_beta_p)
-Estimates of regression coefficients by a penalized semiparametric Bayesian Cox model with Elastic Net prior. Solid dots indicate the posterior mean over MCMC iterations (excluding burn-in period), and horizontal lines show the corresponding 95% credibility intervals. +Estimates of regression coefficients by a penalized semiparametric Bayesian Cox model with Elastic Net prior. Solid dots indicate the posterior mean over MCMC iterations (excluding burn-in period), and horizontal lines show the corresponding 95% credibility intervals.
Estimates of regression coefficients by a penalized semiparametric Bayesian Cox model with Elastic Net prior. Solid dots indicate the posterior mean over MCMC iterations (excluding @@ -2544,7 +2568,7 @@

Sparse Bayesian Cox models

Bayesfit = BhGLM::bcoxph(y_surv ~ ., x_dataframe, prior = mde(0, 0.01, 0.8), control = coxph.control(iter.max = 200)) BhGLM::plot.bh(Bayesfit, col.pts = c("red", "blue"), main = "Cox with mixture double exponential\n")
-Coefficient estimates of a penalized semiparametric Bayesian Cox model with (double exponential) spike-and-slab prior. Solid dots denote the posterior mode of the coefficients and lines denote the 95% confidence intervals. Red colored text on the right side mark the significant features with p < 0.05. +Coefficient estimates of a penalized semiparametric Bayesian Cox model with (double exponential) spike-and-slab prior. Solid dots denote the posterior mode of the coefficients and lines denote the 95% confidence intervals. Red colored text on the right side mark the significant features with p < 0.05.
Coefficient estimates of a penalized semiparametric Bayesian Cox model with (double exponential) spike-and-slab prior. Solid dots denote the posterior mode of the @@ -2644,15 +2668,15 @@

Discrimination metrics

sfit = survfit(Surv(time, status) ~ group, data = dat_tmp) ggsurv = ggsurvplot(sfit, conf.int = TRUE, risk.table = TRUE, - xlab = "Time since diagnosis (year)", legend = c(.2,.3), + xlab = "Time since diagnosis (year)", legend = c(.2, .3), legend.labs = c("Low risk", "High risk"), legend.title = "Dichotomized groups", risk.table.y.text.col = TRUE, risk.table.y.text = FALSE) ggsurv$plot = ggsurv$plot + - annotate("text", x = 2.6, y = .03, label= paste0("Log-rank test:\n", surv_pvalue(sfit)$pval.txt)) + annotate("text", x = 2.6, y = .03, label = paste0("Log-rank test:\n", surv_pvalue(sfit)$pval.txt)) ggsurv$table = ggsurv$table + labs(y = "Dichotomized\n groups") ggsurv
-Kaplan-Meier curves of the BRCA patients data dichotomized by the median of prognostic scores (calculated from the Lasso Cox model with patients’ survival and mRNA-Seq data) into two groups. The log-rank test is to compare the two survival distributions corresponding to the two groups of patients. +Kaplan-Meier curves of the BRCA patients data dichotomized by the median of prognostic scores (calculated from the Lasso Cox model with patients’ survival and mRNA-Seq data) into two groups. The log-rank test is to compare the two survival distributions corresponding to the two groups of patients.
Kaplan-Meier curves of the BRCA patients data dichotomized by the median of prognostic scores (calculated from the Lasso Cox model with patients’ survival and mRNA-Seq data) into two @@ -2664,23 +2688,23 @@

Discrimination metrics

based on quantiles and the log-rank test can be used to compare the difference of multiple survival curves.

group = pred_lp
-group[pred_lp >= quantile(pred_lp, 2/3)] = 3
-group[pred_lp >= quantile(pred_lp, 1/3) & pred_lp < quantile(pred_lp, 2/3)] = 2
-group[pred_lp < quantile(pred_lp, 1/3)] = 1
+group[pred_lp >= quantile(pred_lp, 2 / 3)] = 3
+group[pred_lp >= quantile(pred_lp, 1 / 3) & pred_lp < quantile(pred_lp, 2 / 3)] = 2
+group[pred_lp < quantile(pred_lp, 1 / 3)] = 1
 
 # draw two survival curves based on KM estimation and compare them by a log-rank test
 dat_tmp = data.frame(time = y_validate[, 1], status = y_validate[, 2], group = group)
 sfit = survfit(Surv(time, status) ~ group, data = dat_tmp)
 
 ggsurv = ggsurvplot(sfit, conf.int = TRUE, risk.table = TRUE, 
-           xlab = "Time since diagnosis (year)", legend = c(.2,.3),
+           xlab = "Time since diagnosis (year)", legend = c(.2, .3),
            legend.labs = c("Low risk", "Middle risk", "High risk"), legend.title = "Groups",  
            risk.table.y.text.col = TRUE, risk.table.y.text = FALSE)
 ggsurv$plot = ggsurv$plot + 
-  annotate("text", x = 3.5, y = .05, label= paste0("Log-rank test:\n", surv_pvalue(sfit)$pval.txt))
+  annotate("text", x = 3.5, y = .05, label = paste0("Log-rank test:\n", surv_pvalue(sfit)$pval.txt))
 ggsurv
-Kaplan-Meier curves of the BRCA patients data divided by 33% and 67% quantiles of prognostic scores (calculated from the Lasso Cox model with patients’ survival and mRNA-Seq data) into three groups. The log-rank test is to compare the two survival distributions corresponding to the three groups of patients. +Kaplan-Meier curves of the BRCA patients data divided by 33% and 67% quantiles of prognostic scores (calculated from the Lasso Cox model with patients’ survival and mRNA-Seq data) into three groups. The log-rank test is to compare the two survival distributions corresponding to the three groups of patients.
Kaplan-Meier curves of the BRCA patients data divided by 33% and 67% quantiles of prognostic scores (calculated from the Lasso Cox model with patients’ survival and mRNA-Seq data) into @@ -2698,10 +2722,10 @@

Discrimination metrics

ROC = risksetROC(Stime = y_validate[, 1], status = y_validate[, 2],
                  marker = pred_lp, predict.time = 5, method = "Cox", 
                  main = "ROC Curve", col = "seagreen3", type = "s", 
-                 lwd = 2, xlab="1 - Specificity", ylab="Sensitivity") 
+                 lwd = 2, xlab = "1 - Specificity", ylab = "Sensitivity") 
 text(0.7, 0.2, paste("AUC =", round(ROC$AUC, 3)))
-ROC curve estimated at 5-years survival evaluation time point for the 20% TCGA validation data and based on a Lasso Cox model learned from the 80% training data. The AUC value is the area under the ROC curve. The diagonal line represents the performance of a random prediction of the outcome event with AUC = 0.5. +ROC curve estimated at 5-years survival evaluation time point for the 20% TCGA validation data and based on a Lasso Cox model learned from the 80% training data. The AUC value is the area under the ROC curve. The diagonal line represents the performance of a random prediction of the outcome event with AUC = 0.5.
ROC curve estimated at 5-years survival evaluation time point for the 20% TCGA validation data and based on a Lasso Cox model learned from the 80% training data. The AUC value is the @@ -2750,9 +2774,9 @@

Discrimination metrics

times = c(utimes_train, utimes_validate), group = c(rep("AUC_train", length(AUC_train)), rep("AUC_validate", length(AUC_validate)))) ggplot(dat_AUC, aes(times, tAUC, group = group, color = group)) + xlab("Evaluation time points (year)") + ylab("AUC") + ylim(0.5, 1) + - geom_step(direction = "vh") + theme(legend.position = c(0.7, 0.8), legend.title=element_blank()) + geom_step(direction = "vh") + theme(legend.position = c(0.7, 0.8), legend.title = element_blank())
-Time-dependent AUC based on a Lasso Cox model applied to the BRCA patients data from TCGA. The red line shows the Time-dependent AUC calculated from the 80% training data, and the green line shows the Time-dependent AUC calculated from the 20% validation data. +Time-dependent AUC based on a Lasso Cox model applied to the BRCA patients data from TCGA. The red line shows the Time-dependent AUC calculated from the 80% training data, and the green line shows the Time-dependent AUC calculated from the 20% validation data.
Time-dependent AUC based on a Lasso Cox model applied to the BRCA patients data from TCGA. The red line shows the Time-dependent AUC calculated from the 80% training data, and the @@ -2771,10 +2795,10 @@

Discrimination metrics

## integrated AUC (e.g. over tmax=10 years) to get concordance measure based on training data (iAUC_train = risksetROC::IntegrateAUC(AUC_train, utimes_train, surv_prob_train, tmax = 10)) -
[1] 0.6281301
+
[1] 0.6279646
## integrated AUC (e.g. over tmax=10 years) to get concordance measure based on validation data
-(iAUC_validate = risksetROC::IntegrateAUC( AUC_validate, utimes_validate, surv_prob_validate, tmax = 10))
-
[1] 0.6318857
+(iAUC_validate = risksetROC::IntegrateAUC(AUC_validate, utimes_validate, surv_prob_validate, tmax = 10)) +
[1] 0.6318253

Time-dependent C-index

The C-index is not proper for \(t\)-year predictions, see Blanche, Kattan, and Gerds (2019). Consider using time-dependent AUC or time-dependent Brier score instead. For a time-dependent @@ -2788,13 +2812,13 @@

Discrimination metrics

model below.

set.seed(123)
 cvfit = cv.glmnet(x_train, y_train, family = "cox", nfolds = 5, penalty.factor = pf)
-pred = predict(cvfit, newx = x_validate, type = "response", s = cvfit$lambda.min)
+pred = predict(cvfit, newx = x_validate, type = "link", s = cvfit$lambda.min)
 # Harrell's C-index
-(Cindex_Harrell = mean(apply(pred, 2, Cindex, y = y_validate)))
-
[1] 0.7320221
+(Cindex_Harrell = Cindex(pred = pred[, 1], y = y_validate)) +
[1] 0.7246466
# Uno's C-index
 (Cindex_Uno = survAUC::UnoC(y_train, y_validate, pred))
-
[1] 0.5786861
+
[1] 0.5772041


@@ -2820,29 +2844,29 @@

Overall metrics

# use the (x_train, y_train) 80% samples for training # and the (x_validate, y_validate) 20% samples for testing -y_train_surv = Surv(y_train[,"time"], y_train[,"status"]) -y_validate_surv = Surv(y_validate[,"time"], y_validate[,"status"]) +y_train_surv = Surv(y_train[, "time"], y_train[, "status"]) +y_validate_surv = Surv(y_validate[, "time"], y_validate[, "status"]) set.seed(123) cvfit = cv.glmnet(x_train, y_train_surv, family = "cox", nfolds = 5, penalty.factor = pf) lp_train = predict(cvfit, newx = x_train, s = cvfit$lambda.min, type = "link") lp_validate = predict(cvfit, newx = x_validate, s = cvfit$lambda.min, type = "link") # prepare data format suited for function Score() from the riskRegression package -data_train = data.frame(time = y_train[,"time"], status = y_train[,"status"], lp = as.vector(lp_train)) -data_validate = data.frame(time = y_validate[,"time"], status = y_validate[,"status"], lp = as.vector(lp_validate)) -lasso_train = coxph(Surv(time,status) ~ lp, data = data_train, y=TRUE, x = TRUE) -lasso_validate = coxph(Surv(time,status) ~ lp, data = data_validate, y=TRUE, x = TRUE) +data_train = data.frame(time = y_train[, "time"], status = y_train[, "status"], lp = as.vector(lp_train)) +data_validate = data.frame(time = y_validate[, "time"], status = y_validate[, "status"], lp = as.vector(lp_validate)) +lasso_train = coxph(Surv(time, status) ~ lp, data = data_train, y=TRUE, x = TRUE) +lasso_validate = coxph(Surv(time, status) ~ lp, data = data_validate, y = TRUE, x = TRUE) # calculate Brier scores based on both training and validation data -Brier_train = riskRegression::Score(list("Brier_train" = lasso_train), formula = Surv(time, status) ~ 1, data = data_train, conf.int = FALSE, metrics = "brier", summary="ibs", times = sort(unique(data_train$time)))$Brier$score -Brier_validate = riskRegression::Score(list("Brier_validate" = lasso_validate), formula = Surv(time, status) ~ 1, data = data_validate, conf.int = FALSE, metrics = "brier", summary="ibs", times = sort(unique(data_validate$time)))$Brier$score +Brier_train = riskRegression::Score(list("Brier_train" = lasso_train), formula = Surv(time, status) ~ 1, data = data_train, conf.int = FALSE, metrics = "brier", summary = "ibs", times = sort(unique(data_train$time)))$Brier$score +Brier_validate = riskRegression::Score(list("Brier_validate" = lasso_validate), formula = Surv(time, status) ~ 1, data = data_validate, conf.int = FALSE, metrics = "brier", summary = "ibs", times = sort(unique(data_validate$time)))$Brier$score Brier_score = rbind(Brier_train, Brier_validate) Brier_score = Brier_score[Brier_score$model != "Null model", ] ggplot(Brier_score, aes(times, Brier, group = model, color = model)) + xlab("Evaluation time points (year)") + ylab("Brier score") + - geom_step(direction = "vh") + theme(legend.position = c(0.15, 0.88), legend.title=element_blank()) + geom_step(direction = "vh") + theme(legend.position = c(0.15, 0.88), legend.title = element_blank())
-Time-dependent Brier score based on a Lasso Cox model applied to the BRCA patients data from TCGA. The red line shows the Time-dependent Brier score calculated from the 80% training data, and the green line shows the Time-dependent Brier score calculated from the 20% validation data. +Time-dependent Brier score based on a Lasso Cox model applied to the BRCA patients data from TCGA. The red line shows the Time-dependent Brier score calculated from the 80% training data, and the green line shows the Time-dependent Brier score calculated from the 20% validation data.
Time-dependent Brier score based on a Lasso Cox model applied to the BRCA patients data from TCGA. The red line shows the Time-dependent Brier score calculated from the 80% training @@ -2857,7 +2881,7 @@

Overall metrics

the IBS corresponding to the largest evaluation time point.

Brier_validate_ibs = Brier_validate[Brier_validate$model == "Brier_validate", ]
 Brier_validate_ibs$IBS[which.max(Brier_validate_ibs$times)]
-
[1] 0.1711617
+
[1] 0.1721158


@@ -2903,9 +2927,9 @@

Uncertainty Quantification

set.seed(123) ggplot(dat_tmp, aes(x, y)) + geom_boxplot() + ylim(0.5, 1) + xlab("") + ylab("Integrated AUC") + - geom_jitter(color="blue", size = 0.5, alpha = 0.5) + geom_jitter(color = "blue", size = 0.5, alpha = 0.5)
-Integrated AUC based on randomly split validation data 100 times. The blue dots are the 100 values of integrated AUC. +Integrated AUC based on randomly split validation data 100 times. The blue dots are the 100 values of integrated AUC.
Integrated AUC based on randomly split validation data 100 times. The blue dots are the 100 values of integrated AUC.
@@ -2933,9 +2957,9 @@

Uncertainty Quantification

set.seed(123) ggplot(dat_tmp, aes(x, y, col = x)) + geom_boxplot() + geom_jitter(size = 0.5, alpha = 0.5) + - ylim(0, 1) + xlab("") + ylab("C-index") + theme(legend.position="none") + ylim(0, 1) + xlab("") + ylab("C-index") + theme(legend.position = "none")
-C-index (Harrell’s and Uno’s) based on randomly split validation data 100 times. +C-index (Harrell’s and Uno’s) based on randomly split validation data 100 times.
C-index (Harrell’s and Uno’s) based on randomly split validation data 100 times.
@@ -2961,10 +2985,10 @@

Uncertainty Quantification

args.fit = list(family = "cox", penalty.factor = pf), complexity = complexity.glmnet, args.complexity = list(family = "cox", nfolds = 5, penalty.factor = pf), - indices = resample.indices(n = n, method="sub632", sample.n = 100)) + indices = resample.indices(n = n, method = "sub632", sample.n = 100)) c060::Plot.peperr.curves(peperr_object)
-Resampling-based prediction error curves (time-dependent Brier score) a the Lasso Cox model applied to the BRCA data set from TCGA. The gray area indicates the pointwise 2.5% and 97.5% quantiles of the 100 out-of-bag bootstrap samples. The other lines show the prediction error curves of the null model (estimated by the Kaplan-Meier estimator without covariate information), the full apparent error estimates (i.e., the errors as estimated when applying the model to the entire training data set), and the .632+ bootstrap error estimates. +Resampling-based prediction error curves (time-dependent Brier score) a the Lasso Cox model applied to the BRCA data set from TCGA. The gray area indicates the pointwise 2.5% and 97.5% quantiles of the 100 out-of-bag bootstrap samples. The other lines show the prediction error curves of the null model (estimated by the Kaplan-Meier estimator without covariate information), the full apparent error estimates (i.e., the errors as estimated when applying the model to the entire training data set), and the .632+ bootstrap error estimates.
Resampling-based prediction error curves (time-dependent Brier score) a the Lasso Cox model applied to the BRCA data set from TCGA. The gray area indicates the pointwise 2.5% and 97.5% @@ -2999,9 +3023,15 @@

Feature stability analysis

} (stable_features = colnames(x)[rowSums(beta_all != 0) >= 2]) -
 [1] "age"       "ethnicity" "UBE2T"     "CDC6"      "CCNB1"     "TYMS"      "CEP55"     "MELK"     "NDC80"     "UBE2C"     "PTTG1"     "EXO1"      "ORC6L"     "ANLN"      "CCNE1"     "KIF2C"    "ACTR3B"    "MYC"       "EGFR"      "KRT5"      "PHGDH"     "CDH3"      "MIA"       "FOXC1"    "KRT14"     "ESR1"      "SLC39A6"   "BAG1"      "MAPT"      "CXXC5"     "MLPH"      "BCL2"     "MDM2"      "FOXA1"     "GPR160"    "FGFR4"     "TMEM45B"   "ERBB2" 
+
 [1] "age"       "ethnicity" "ANLN"      "UBE2T"     "NDC80"     "PGR"       "ORC6"     
+ [8] "ESR1"      "PHGDH"     "MMP11"     "SFRP1"     "CCNE1"     "BLVRA"     "BAG1"     
+[15] "MLPH"      "CENPF"     "KRT17"     "FOXA1"     "ACTR3B"    "CCNB1"     "MDM2"     
+[22] "MYC"       "CEP55"     "SLC39A6"   "GRB7"      "NUF2"      "EGFR"      "MKI67"    
+[29] "TMEM45B"   "FGFR4"     "MELK"      "NAT1"      "CXXC5"     "BCL2"      "GPR160"   
+[36] "TYMS"      "KRT5"      "MAPT"      "MIA"
(stable_features = colnames(x)[rowSums(beta_all != 0) >= 5])
-
 [1] "age"       "ethnicity" "UBE2T"     "CEP55"     "UBE2C"     "ORC6L"     "ANLN"      "ESR1"      "BAG1"     "MLPH"      "MDM2"      "GPR160"    "FGFR4"     "ERBB2"
+
 [1] "age"       "ethnicity" "ANLN"      "ORC6"      "MMP11"     "BLVRA"     "BAG1"     
+ [8] "CCNB1"     "EGFR"      "TMEM45B"   "BCL2"      "TYMS"      "KRT5"      "MIA"

Alternatively for a Bayesian Cox model, its median probability model (MPM) can be obtained based on the coefficient estimates over MCMC iterations. The following code shows how to obtain the MPM’s @@ -3011,15 +3041,24 @@

Feature stability analysis

beta_MPM = (gammas >= 0.5) * colMeans(EN_beta_p) / gammas beta_MPM[is.na(beta_MPM)] = 0 beta_MPM -
 [1]  0.0000000000 -0.0172015280  0.0304316616 -0.0114623308  0.0837824132 -0.0547983327
- [7]  0.1407439126 -0.0562438350  0.0233413258  0.0822548966 -0.0216956009 -0.0046531991
-[13]  0.0000000000 -0.0102432707 -0.0462764281 -0.0261233503  0.1204452692  0.0498380632
-[19]  0.0000000000  0.0000000000  0.0411354271  0.0008250959 -0.0747121328  0.3709996035
-[25] -0.0714123785  0.0531884491 -0.0263379552 -0.0278157511  0.0868213917 -0.0417584334
-[31] -0.0154609980 -1.7597763992  0.0248018172  0.1583448784  0.0000000000 -0.0270275080
-[37]  0.0316279851  0.1896061075  0.0359063687 -0.1373224621 -0.1648833174  0.0346494611
-[43]  0.1168334315  0.0224791857  0.1336344881 -0.0047435108  0.0187484228  0.1178996364
-[49] -0.1696531126  0.0573713694 -0.0308897787 -0.2130819387
+
          age     ethnicity          ANLN         FOXC1          CDH3         UBE2T 
+ 1.305162e-02  5.348458e-03 -1.299443e-03 -1.857811e-02 -6.123574e-03 -5.467111e-03 
+        NDC80           PGR         BIRC5          ORC6          ESR1         PHGDH 
+-6.652927e-03 -2.101243e-06 -1.640386e-02 -1.237153e-02 -1.077863e-02  2.483990e-02 
+         CDC6         MMP11         MYBL2         SFRP1         CCNE1         BLVRA 
+-9.079708e-03 -1.588726e-02  5.225344e-03 -1.383981e-02 -3.181265e-03 -2.632373e-02 
+         BAG1          MLPH         CDC20         CENPF         KRT17         FOXA1 
+-3.913529e-02 -1.435805e-02 -2.027232e-02 -2.476495e-02 -2.871143e-02 -3.017213e-03 
+       ACTR3B         CCNB1          MDM2           MYC         CEP55       SLC39A6 
+-2.504869e-03 -1.346817e-03 -2.156041e-02  1.431062e-02  1.421036e-02 -1.150196e-02 
+        ERBB2          GRB7         KIF2C          NUF2          EGFR         MKI67 
+-6.347367e-03 -1.008689e-02  6.033792e-03 -2.405689e-03 -1.964927e-02  1.956661e-02 
+      TMEM45B         FGFR4         PTTG1          MELK          NAT1         CXXC5 
+ 2.736216e-02  1.842323e-03 -5.651905e-03  2.894074e-02 -2.126163e-02  2.571472e-02 
+         BCL2          RRM2        GPR160          EXO1         UBE2C          TYMS 
+-5.140894e-03  2.881004e-02 -3.927705e-02 -1.710419e-02 -1.343832e-02 -1.884342e-02 
+         KRT5         KRT14          MAPT           MIA 
+-2.180294e-02 -1.386489e-03 -2.587557e-02 -1.033317e-02


@@ -3054,7 +3093,7 @@

Graphical representation

levels(x_stable$ethnicity) = c("Hispanic/latino", "Not hispanic/latino") data_tmp = data.frame(times = yy[, "time"], status = yy[, "status"], x_stable) -f = cph(formula = Surv(times, status) ~ age + ethnicity + UBE2T + ORC6L + ESR1, +f = cph(formula = Surv(times, status) ~ age + ethnicity + ANLN + BLVRA + EGFR, data = data_tmp, x = TRUE, y = TRUE, surv = TRUE) ddist = datadist(data_tmp) oldoption = options(datadist = 'ddist') @@ -3067,7 +3106,7 @@

Graphical representation

regplot::regplot(f, observation = data_tmp[1,], failtime = c(1, 3, 5), title = "", prfail = FALSE, points = TRUE, showP = FALSE, subticks = TRUE)
-Nomogram developed to estimate the overall survival probability for TCGA’s BRAC patients based on demographic and Lasso Cox selected mRNA features. The red coloured symbols represent one patient’s information and predicted probabilities of 1-year, 3-year and 5-year survival. +Nomogram developed to estimate the overall survival probability for TCGA’s BRAC patients based on demographic and Lasso Cox selected mRNA features. The red coloured symbols represent one patient’s information and predicted probabilities of 1-year, 3-year and 5-year survival.
Nomogram developed to estimate the overall survival probability for TCGA’s BRAC patients based on demographic and Lasso Cox selected mRNA features. The red coloured symbols represent one @@ -3093,27 +3132,25 @@

Graphical representation

data_validate = data_tmp[-train_id, ] ddist = datadist(data_train) -options(datadist='ddist') -f_train = cph(formula = Surv(times, status) ~ age + ethnicity + UBE2T + ORC6L + ESR1, +options(datadist = 'ddist') +f_train = cph(formula = Surv(times, status) ~ age + ethnicity + ANLN + BLVRA + EGFR, data = data_train, x = TRUE, y = TRUE, surv = TRUE, time.inc = 5) f_validate = update(f_train, data = data_validate) cal_train = calibrate(f_train, u = 5, cmethod = "KM", m = nrow(data_train) / 4, B = 200) cal_validate = calibrate(f_validate, u = 5, cmethod = "KM", m = nrow(data_validate) / 4, B = 200) -pdf("TCGA_surv_calibration.pdf", width=7, height=4) layout(matrix(1:2, nrow = 1)) plot(cal_train, lwd = 2, lty = 1, errbar.col = "seagreen3", xlab = 'Predicted survival probability', ylab = 'Actual survival probability', - xlim = c(0,1), ylim = c(0,1), col = "seagreen3", subtitles = FALSE) + xlim = c(0, 1), ylim = c(0, 1), col = "seagreen3", subtitles = FALSE) title(main = "Calibration on training data") plot(cal_validate, lwd = 2, lty = 1, errbar.col = "seagreen3", xlab = 'Predicted survival probability', ylab = 'Actual survival probability', - xlim = c(0,1), ylim = c(0,1), col = "seagreen3", subtitles = FALSE) -title(main = "Calibration on validation data") -dev.off() + xlim = c(0, 1), ylim = c(0, 1), col = "seagreen3", subtitles = FALSE) +title(main = "Calibration on validation data")
-Nomogram model calibration curves for TCGA’s BRAC patients at 5-year evaluation time-point. +Nomogram model calibration curves for TCGA’s BRAC patients at 5-year evaluation time-point.
Nomogram model calibration curves for TCGA’s BRAC patients at 5-year evaluation time-point.
@@ -3177,11 +3214,10 @@

Workflow

* Target: time, status * Properties: - * Features (52): - - dbl (52): ACTR3B, ANLN, BAG1, BCL2, BIRC5, BLVRA, CCNB1, CCNE1, - CDC20, CDC6, CDH3, CENPF, CEP55, CXXC5, EGFR, ERBB2, ESR1, EXO1, - FGFR4, FOXA1, FOXC1, GPR160, GRB7, KIF2C, KRT14, KRT17, KRT5, MAPT, - MDM2, MELK, MIA, MKI67, MLPH, MMP11, MYBL2, MYC, NAT1, NDC80, NUF2, - ORC6L, PGR, PHGDH, PTTG1, RRM2, SFRP1, SLC39A6, TMEM45B, TYMS, + - dbl (52): ACTR3B, ANLN, BAG1, BCL2, BIRC5, BLVRA, CCNB1, CCNE1, CDC20, CDC6, CDH3, + CENPF, CEP55, CXXC5, EGFR, ERBB2, ESR1, EXO1, FGFR4, FOXA1, FOXC1, GPR160, GRB7, + KIF2C, KRT14, KRT17, KRT5, MAPT, MDM2, MELK, MIA, MKI67, MLPH, MMP11, MYBL2, MYC, + NAT1, NDC80, NUF2, ORC6, PGR, PHGDH, PTTG1, RRM2, SFRP1, SLC39A6, TMEM45B, TYMS, UBE2C, UBE2T, age, ethnicity

We create a Lasso Cox mlr3 graph learner (a wrapper around the glmnet::cv.glmnet() @@ -3237,19 +3273,19 @@

Workflow

Measure: Partial Likelihood Deviance Lambda Index Measure SE Nonzero -min 0.00994 15 12.30 0.2719 15 -1se 0.03656 1 12.35 0.2562 2 +min 0.01082 14 12.31 0.2743 15 +1se 0.03626 1 12.35 0.2564 2

Get the survival distribution predictions (\(distr\)) along with the linear predictors (\(lp\)):

pred = coxlasso_grlrn$predict(task, row_ids = split$test)
 head(as.data.table(pred))
   row_ids      time status     crank        lp     distr
-1:       5 0.9527721  FALSE -3.329133 -3.329133 <list[1]>
-2:       6 4.0438056  FALSE -3.800766 -3.800766 <list[1]>
-3:      15 1.7385352  FALSE -2.786662 -2.786662 <list[1]>
-4:      45 4.5804244  FALSE -2.761110 -2.761110 <list[1]>
-5:      50 5.1279945  FALSE -3.736211 -3.736211 <list[1]>
-6:      54 6.6858316  FALSE -3.499691 -3.499691 <list[1]>
+1: 5 0.9527721 FALSE -2.346574 -2.346574 <list[1]> +2: 6 4.0438056 FALSE -2.806708 -2.806708 <list[1]> +3: 15 1.7385352 FALSE -1.845042 -1.845042 <list[1]> +4: 45 4.5804244 FALSE -1.715041 -1.715041 <list[1]> +5: 50 5.1279945 FALSE -2.790122 -2.790122 <list[1]> +6: 54 6.6858316 FALSE -2.466360 -2.466360 <list[1]>

So for every patient in the test set, the Lasso Cox model prediction is a linear predictor of the form \(lp = \hat{\beta} X_{new}\). \(crank\) @@ -3268,10 +3304,10 @@

Workflow

# same logic for the cumulative hazard # pred$distr$cumHazard(times)[,c(1,2)]
        [,1]      [,2]
-1  0.9993357 0.9995854
-5  0.9925989 0.9953754
-10 0.9804035 0.9877267
-20 0.9633548 0.9769738
+1 0.9982264 0.9988801 +5 0.9803515 0.9875526 +10 0.9485057 0.9671807 +20 0.9050832 0.9389918


@@ -3293,7 +3329,7 @@

Discrimination metrics

pred$score(harrell_c)
surv.cindex.harrell 
-          0.6188244 
+ 0.6224306


Uno’s C-index (Uno et al. 2011): (across all time points of the test set):

@@ -3303,7 +3339,7 @@

Discrimination metrics

# Uno's C needs the train data pred$score(uno_c, task = task, train_set = split$train)
surv.cindex.uno 
-      0.6004459 
+ 0.5932426


Uno’s Integrated AUC (Uno et al. 2007) (across all time points of the test set):

@@ -3315,7 +3351,7 @@

Discrimination metrics

# uno_iauc$properties # needs the train data pred$score(uno_iauc, task = task, train_set = split$train)
surv.uno_iauc 
-    0.6645719 
+ 0.6585791


Uno’s AUC at a specific time point, e.g. \(10\) years:

@@ -3325,7 +3361,7 @@

Discrimination metrics

# needs the train data pred$score(uno_auc, task = task, train_set = split$train)
surv.uno_auc.10 
-      0.6749081 
+ 0.667014


@@ -3340,7 +3376,7 @@

Calibration metrics

dcal = msr('surv.dcalib')
 pred$score(dcal)
surv.dcalib 
-   32.25961 
+ 22.57035


@@ -3361,13 +3397,13 @@

Overall metrics

# better to use the train data for the Kaplan-Meier estimation of the censoring distribution, but can use the test set as well pred$score(ibrier, task = task, train_set = split$train)
surv.graf 
-0.4044287 
+0.338386

We can also get the standard error of IBS (the above result is the mean across all the test set’s patients) as follows:

ibrier_se = msr('surv.brier', proper = TRUE, se = TRUE)
 pred$score(ibrier_se, task = task, train_set = split$train)
 surv.graf 
-0.02253927
+0.02106744


Brier Score at a specific time point, e.g. \(10\) years: @@ -3378,14 +3414,14 @@

Overall metrics

# better to use the train data for the Kaplan-Meier estimation of the censoring distribution, but can use the test set as well pred$score(brier10, task = task, train_set = split$train)
surv.graf.10 
-   0.4252442 
+ 0.3751958


Right-censored Logarithmic Loss score (RCLL) (Avati et al. 2020; Sonabend 2022):

rcll = msr('surv.rcll')
 pred$score(rcll)
surv.rcll 
- 4.684644 
+ 4.686742


View all evaluation metrics for survival data implemented in mlr3proba here

@@ -3426,34 +3462,21 @@

Uncertainty Quantification

res = rr$score(measures = measures) head(res) -
             task   task_id            learner learner_id
-1: <TaskSurv[55]> BRCA-TCGA <GraphLearner[38]>  Lasso Cox
-2: <TaskSurv[55]> BRCA-TCGA <GraphLearner[38]>  Lasso Cox
-3: <TaskSurv[55]> BRCA-TCGA <GraphLearner[38]>  Lasso Cox
-4: <TaskSurv[55]> BRCA-TCGA <GraphLearner[38]>  Lasso Cox
-5: <TaskSurv[55]> BRCA-TCGA <GraphLearner[38]>  Lasso Cox
-6: <TaskSurv[55]> BRCA-TCGA <GraphLearner[38]>  Lasso Cox
-                    resampling resampling_id iteration           prediction
-1: <ResamplingSubsampling[20]>   subsampling         1 <PredictionSurv[20]>
-2: <ResamplingSubsampling[20]>   subsampling         2 <PredictionSurv[20]>
-3: <ResamplingSubsampling[20]>   subsampling         3 <PredictionSurv[20]>
-4: <ResamplingSubsampling[20]>   subsampling         4 <PredictionSurv[20]>
-5: <ResamplingSubsampling[20]>   subsampling         5 <PredictionSurv[20]>
-6: <ResamplingSubsampling[20]>   subsampling         6 <PredictionSurv[20]>
-   surv.cindex.harrell surv.cindex.uno surv.uno_iauc surv.uno_auc.10 surv.graf
-1:           0.5679167       0.6090304     0.6628350       0.4719335 0.3255181
-2:           0.5422131       0.4884603     0.4023684       0.5652588 0.3148992
-3:           0.7604049       0.5740556     0.5941948       0.5235439 0.2855151
-4:           0.6610169       0.5277736     0.5360690       0.5110032 0.2972719
-5:           0.5800073       0.5655076     0.6160743       0.5388393 0.3518505
-6:           0.5427837       0.6975740     0.6494779       0.6400328 0.2035609
-   surv.graf.10 surv.rcll  surv.dcalib
-1:    0.6161825  6.038909 1.026901e+07
-2:    0.4473104  5.400253 1.050427e+04
-3:    0.2969766  4.953528 2.544116e+01
-4:    0.2365322  4.953830 2.275040e+01
-5:    0.4387165  4.943446 3.370510e+01
-6:    0.4228169  5.434970 4.223742e+02
+
     task_id learner_id resampling_id iteration surv.cindex.harrell surv.cindex.uno
+1: BRCA-TCGA  Lasso Cox   subsampling         1           0.5679167       0.6090304
+2: BRCA-TCGA  Lasso Cox   subsampling         2           0.5524590       0.4969326
+3: BRCA-TCGA  Lasso Cox   subsampling         3           0.7502812       0.5682061
+4: BRCA-TCGA  Lasso Cox   subsampling         4           0.6591337       0.5294816
+5: BRCA-TCGA  Lasso Cox   subsampling         5           0.5752472       0.5553336
+6: BRCA-TCGA  Lasso Cox   subsampling         6           0.5427837       0.6975740
+   surv.uno_iauc surv.uno_auc.10 surv.graf surv.graf.10 surv.rcll  surv.dcalib
+1:     0.6628350       0.4719335 0.3255181    0.6161825  6.038909 1.026901e+07
+2:     0.4038682       0.5712012 0.4815700    0.6666994  6.893425 3.342804e+08
+3:     0.5882995       0.5235439 0.2796580    0.2926334  4.955110 2.490982e+01
+4:     0.5356461       0.5082385 0.2915395    0.2324248  4.955409 2.222845e+01
+5:     0.6090615       0.5288752 0.3497189    0.4371144  4.943943 3.346780e+01
+6:     0.6494779       0.6400328 0.2035609    0.4228169  5.434970 4.223742e+02
+Hidden columns: task, learner, resampling, prediction

We extract and visualize the discrimination and calibration (resampled) performance of our Lasso Cox model using several evaluation metrics:

@@ -3482,7 +3505,7 @@

Uncertainty Quantification

labs(title = 'Discrimination Measures') + theme(axis.text.x = element_blank())
-Discrimination performance of Lasso Cox on the TCGA-BRCA dataset (expression data of the PAM50 genes and the variables age and ethnicity). Performance metrics used are Harrell’s C-index, Uno’s C-index, Uno’s Integrated AUC and Uno’s AUC at 10 years. The dataset was split to training/validation sets 100 times to allow for the quantification of uncertainty in the different performance estimates. +Discrimination performance of Lasso Cox on the TCGA-BRCA dataset (expression data of the PAM50 genes and the variables age and ethnicity). Performance metrics used are Harrell’s C-index, Uno’s C-index, Uno’s Integrated AUC and Uno’s AUC at 10 years. The dataset was split to training/validation sets 100 times to allow for the quantification of uncertainty in the different performance estimates.
Discrimination performance of Lasso Cox on the TCGA-BRCA dataset (expression data of the PAM50 genes and the variables age and ethnicity). Performance metrics used are Harrell’s @@ -3523,8 +3546,8 @@

Uncertainty Quantification

theme_bw(base_size = 14) + theme(axis.title.x = element_blank())

-1 -2 +1 +2 Calibration performance of Lasso Cox on the TCGA-BRCA dataset (expression data of the PAM50 genes and the variables age and ethnicity). Performance metrics used are the Integrated Brier Score @@ -3548,20 +3571,21 @@

Feature stability analysis

fs_res = sort(table(unlist(sf_list)), decreasing = TRUE) times = as.vector(unname(fs_res)) tibble::tibble(feat_name = names(fs_res), times = times, freq = times/n) -
# A tibble: 35 × 3
+
# A tibble: 33 × 3
    feat_name times  freq
    <chr>     <int> <dbl>
  1 age         100  1   
  2 ethnicity   100  1   
- 3 UBE2T        53  0.53
- 4 ORC6L        48  0.48
- 5 ANLN         42  0.42
- 6 ERBB2        40  0.4 
- 7 GPR160       35  0.35
- 8 FGFR4        33  0.33
- 9 CEP55        32  0.32
-10 UBE2C        30  0.3 
-# … with 25 more rows
+ 3 ANLN 43 0.43 + 4 BLVRA 41 0.41 + 5 BAG1 37 0.37 + 6 MIA 34 0.34 + 7 TYMS 30 0.3 + 8 KRT5 27 0.27 + 9 MMP11 27 0.27 +10 BCL2 26 0.26 +# ℹ 23 more rows +# ℹ Use `print(n = ...)` to see more rows

As age and ethnicity were not penalized, they have non-zero coefficients in all Lasso Cox models and therefore are included in all selected feature sets.

@@ -3593,7 +3617,7 @@

Feature stability analysis

# A tibble: 1 × 3
   jaccard nogueira zucknick
     <dbl>    <dbl>    <dbl>
-1   0.439    0.412    0.402
+1 0.474 0.412 0.442

From the above values we conclude that the stability of Lasso Cox’s feature selection is neither poor nor excellent but somewhere in between.

@@ -3603,102 +3627,104 @@

Feature stability analysis

R session info

sessionInfo()
-
R version 4.2.1 (2022-06-23)
-Platform: x86_64-pc-linux-gnu (64-bit)
-Running under: Ubuntu 20.04.5 LTS
+
R version 4.3.1 (2023-06-16)
+Platform: x86_64-apple-darwin20 (64-bit)
+Running under: macOS Monterey 12.7
 
 Matrix products: default
-BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
-LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
+BLAS:   /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib 
+LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0
 
 locale:
- [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
- [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8    LC_PAPER=en_US.UTF-8       LC_NAME=C                 
- [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
+[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
+
+time zone: Europe/Oslo
+tzcode source: internal
 
 attached base packages:
 [1] stats4    stats     graphics  grDevices utils     datasets  methods   base     
 
 other attached packages:
- [1] stabm_1.2.1                 mlr3extralearners_0.6.1     mlr3proba_0.5.2            
- [4] mlr3verse_0.2.7             mlr3_0.14.1                 regplot_1.1                
- [7] survAUC_1.1-1               rms_6.3-0                   SparseM_1.81               
-[10] Hmisc_4.7-1                 lattice_0.20-45             c060_0.2-9                 
-[13] peperr_1.4                  snowfall_1.84-6.2           snow_0.4-4                 
-[16] riskRegression_2022.09.23   risksetROC_1.0.4.1          MASS_7.3-57                
-[19] BhGLM_1.1.0                 GGally_2.1.2                psbcGroup_1.5              
-[22] mvtnorm_1.1-3               SuppDists_1.1-9.7           LearnBayes_2.15.1          
-[25] SGL_1.3                     grpreg_3.4.0                plotmo_3.6.2               
-[28] TeachingDemos_2.12          plotrix_3.8-2               Formula_1.2-4              
-[31] glmnet_4.1-4                Matrix_1.5-1                M3C_1.20.0                 
-[34] survminer_0.4.9             ggpubr_0.4.0                survival_3.4-0             
-[37] ggplot2_3.4.0               dplyr_1.0.10                DESeq2_1.38.3              
-[40] SummarizedExperiment_1.28.0 Biobase_2.58.0              GenomicRanges_1.50.2       
-[43] GenomeInfoDb_1.34.6         IRanges_2.32.0              S4Vectors_0.36.1           
-[46] BiocGenerics_0.44.0         MatrixGenerics_1.10.0       matrixStats_0.63.0         
-[49] TCGAbiolinks_2.25.3        
+ [1] stabm_1.2.2                 mlr3extralearners_0.7.0     mlr3proba_0.5.2            
+ [4] mlr3verse_0.2.8             mlr3_0.16.1                 regplot_1.1                
+ [7] survAUC_1.2-0               rms_6.7-0                   Hmisc_5.1-0                
+[10] c060_0.3-0                  peperr_1.5                  snowfall_1.84-6.2          
+[13] snow_0.4-4                  riskRegression_2023.03.22   risksetROC_1.0.4.1         
+[16] MASS_7.3-60                 BhGLM_1.1.0                 GGally_2.1.2               
+[19] psbcGroup_1.5               mvtnorm_1.2-2               SuppDists_1.1-9.7          
+[22] LearnBayes_2.15.1           SGL_1.3                     grpreg_3.4.0               
+[25] plotmo_3.6.2                TeachingDemos_2.12          plotrix_3.8-2              
+[28] Formula_1.2-5               glmnet_4.1-7                Matrix_1.5-4.1             
+[31] M3C_1.22.0                  survminer_0.4.9             ggpubr_0.6.0               
+[34] survival_3.5-5              ggplot2_3.4.2               dplyr_1.1.2                
+[37] DESeq2_1.40.2               SummarizedExperiment_1.30.2 Biobase_2.60.0             
+[40] GenomicRanges_1.52.0        GenomeInfoDb_1.36.1         IRanges_2.34.1             
+[43] S4Vectors_0.38.1            BiocGenerics_0.46.0         MatrixGenerics_1.12.2      
+[46] matrixStats_1.0.0           TCGAbiolinks_2.28.3        
 
 loaded via a namespace (and not attached):
-  [1] rappdirs_0.3.3              vioplot_0.4.0               tidyr_1.2.1                
-  [4] bit64_4.0.5                 knitr_1.40                  multcomp_1.4-20            
-  [7] DelayedArray_0.24.0         data.table_1.14.6           rpart_4.1.19               
- [10] KEGGREST_1.38.0             RCurl_1.98-1.9              doParallel_1.0.17          
- [13] generics_0.1.3              timereg_2.0.4               tgp_2.4-21                 
- [16] TH.data_1.1-1               RSQLite_2.2.20              polspline_1.1.20           
- [19] proxy_0.4-27                future_1.31.0               bit_4.0.4                  
- [22] tzdb_0.3.0                  xml2_1.3.3                  assertthat_0.2.1           
- [25] xfun_0.33                   hms_1.1.2                   evaluate_0.20              
- [28] fansi_1.0.3                 progress_1.2.2              dbplyr_2.2.1               
- [31] km.ci_0.5-6                 DBI_1.1.3                   geneplotter_1.76.0         
- [34] htmlwidgets_1.5.4           reshape_0.8.9               purrr_1.0.1                
- [37] ellipsis_0.3.2              mlr3data_0.6.1              RSpectra_0.16-1            
- [40] backports_1.4.1             annotate_1.76.0             biomaRt_2.54.0             
- [43] deldir_1.0-6                vctrs_0.5.1                 quantreg_5.94              
- [46] abind_1.4-5                 cachem_1.0.6                withr_2.5.0                
- [49] mlr3learners_0.5.6          checkmate_2.1.0             prettyunits_1.1.1          
- [52] mlr3fselect_0.9.1           param6_0.2.4                cluster_2.1.3              
- [55] crayon_1.5.2                pkgconfig_2.0.3             nlme_3.1-157               
- [58] mlegp_3.1.9                 nnet_7.3-17                 rlang_1.0.6                
- [61] globals_0.16.2              lifecycle_1.0.3             MatrixModels_0.5-1         
- [64] sandwich_3.0-2              downloader_0.4              filelock_1.0.2             
- [67] palmerpenguins_0.1.1        BiocFileCache_2.6.0         mets_1.3.1                 
- [70] doSNOW_1.0.20               KMsurv_0.1-5                carData_3.0-5              
- [73] boot_1.3-28                 zoo_1.8-11                  base64enc_0.1-3            
- [76] png_0.1-8                   bitops_1.0-7                Biostrings_2.66.0          
- [79] blob_1.2.3                  shape_1.4.6                 paradox_0.11.0             
- [82] stringr_1.5.0               parallelly_1.34.0           readr_2.1.3                
- [85] jpeg_0.1-9                  rstatix_0.7.1               dictionar6_0.1.3           
- [88] ggsignif_0.6.4              scales_1.2.1                memoise_2.0.1              
- [91] magrittr_2.0.3              plyr_1.8.8                  zlibbioc_1.44.0            
- [94] compiler_4.2.1              RColorBrewer_1.1-3          clue_0.3-63                
- [97] lme4_1.1-31                 set6_0.2.5                  cli_3.4.1                  
-[100] XVector_0.38.0              mlr3tuningspaces_0.3.3      mlr3filters_0.7.0          
-[103] listenv_0.9.0               htmlTable_2.4.1             tidyselect_1.2.0           
-[106] stringi_1.7.12              TCGAbiolinksGUI.data_1.18.0 distr6_1.6.13              
-[109] yaml_2.3.5                  askpass_1.1                 locfit_1.5-9.6             
-[112] latticeExtra_0.6-30         survMisc_0.5.6              grid_4.2.1                 
-[115] maptree_1.4-8               tools_4.2.1                 mlr3misc_0.11.0            
-[118] mlr3cluster_0.1.6           future.apply_1.10.0         parallel_4.2.1             
-[121] matrixcalc_1.0-6            rstudioapi_0.14             uuid_1.1-0                 
-[124] foreach_1.5.2               foreign_0.8-82              gridExtra_2.3              
-[127] prodlim_2019.11.13          Rtsne_0.16                  digest_0.6.31              
-[130] lava_1.7.0                  cmprsk_2.2-11               Rcpp_1.0.10                
-[133] car_3.1-1                   broom_1.0.1                 httr_1.4.4                 
-[136] AnnotationDbi_1.60.0        mlr3tuning_0.17.2           colorspace_2.0-3           
-[139] rvest_1.0.3                 XML_3.99-0.13               reticulate_1.26            
-[142] umap_0.2.9.0                splines_4.2.1               lgr_0.4.4                  
-[145] bbotk_0.7.2                 sm_2.2-5.7.1                statmod_1.4.37             
-[148] mlr3pipelines_0.4.2         xtable_1.8-4                nloptr_2.0.3               
-[151] jsonlite_1.8.3              corpcor_1.6.10              clusterCrit_1.2.8          
-[154] R6_2.5.1                    pillar_1.8.1                htmltools_0.5.3            
-[157] minqa_1.2.5                 glue_1.6.2                  fastmap_1.1.0              
-[160] BiocParallel_1.32.5         beanplot_1.3.1              class_7.3-20               
-[163] ooplah_0.2.0                codetools_0.2-18            utf8_1.2.2                 
-[166] tibble_3.1.8                numDeriv_2016.8-1.1         curl_4.3.3                 
-[169] mlr3viz_0.6.1               openssl_2.0.3               interp_1.1-3               
-[172] penalizedSVM_1.1.3          rmarkdown_2.17              munsell_0.5.0              
-[175] e1071_1.7-12                GenomeInfoDbData_1.2.9      iterators_1.0.14           
-[178] gtable_0.3.1               
+ [1] tgp_2.4-21 progress_1.2.2 mlr3hyperband_0.4.5 + [4] penalized_0.9-52 nnet_7.3-19 Biostrings_2.68.1 + [7] TH.data_1.1-2 vctrs_0.6.3 digest_0.6.32 + [10] png_0.1-8 corpcor_1.6.10 shape_1.4.6 + [13] proxy_0.4-27 parallelly_1.36.0 reshape_0.8.9 + [16] foreach_1.5.2 withr_2.5.0 param6_0.2.4 + [19] xfun_0.39 memoise_2.0.1 diptest_0.76-0 + [22] MatrixModels_0.5-1 zoo_1.8-12 DEoptimR_1.1-1 + [25] distr6_1.8.0 prettyunits_1.1.1 prabclus_2.3-2 + [28] KEGGREST_1.40.0 httr_1.4.6 downloader_0.4 + [31] maptree_1.4-8 rstatix_0.7.2 globals_0.16.2 + [34] fpc_2.2-10 rstudioapi_0.14 generics_0.1.3 + [37] base64enc_0.1-3 curl_5.0.1 zlibbioc_1.46.0 + [40] doSNOW_1.0.20 GenomeInfoDbData_1.2.10 lgr_0.4.4 + [43] xtable_1.8-4 stringr_1.5.0 doParallel_1.0.17 + [46] evaluate_0.21 S4Arrays_1.0.4 BiocFileCache_2.8.0 + [49] hms_1.1.3 colorspace_2.1-0 filelock_1.0.2 + [52] cmprsk_2.2-11 reticulate_1.30 flexmix_2.3-19 + [55] magrittr_2.0.3 readr_2.1.4 modeltools_0.2-23 + [58] lattice_0.21-8 palmerpenguins_0.1.1 future.apply_1.11.0 + [61] robustbase_0.99-0 SparseM_1.81 XML_3.99-0.14 + [64] class_7.3-22 pillar_1.9.0 nlme_3.1-162 + [67] iterators_1.0.14 compiler_4.3.1 RSpectra_0.16-1 + [70] stringi_1.7.12 paradox_0.11.1 minqa_1.2.5 + [73] dictionar6_0.1.3 plyr_1.8.8 crayon_1.5.2 + [76] abind_1.4-5 sm_2.2-5.7.1 locfit_1.5-9.8 + [79] bit_4.0.5 sandwich_3.0-2 mlr3mbo_0.2.1 + [82] codetools_0.2-19 multcomp_1.4-25 matrixcalc_1.0-6 + [85] openssl_2.0.6 e1071_1.7-13 splines_4.3.1 + [88] Rcpp_1.0.10 quantreg_5.95 dbplyr_2.3.2 + [91] TCGAbiolinksGUI.data_1.20.0 knitr_1.43 blob_1.2.4 + [94] utf8_1.2.3 clue_0.3-64 lme4_1.1-34 + [97] listenv_0.9.0 checkmate_2.2.0 ggsignif_0.6.4 +[100] tibble_3.2.1 mlr3tuningspaces_0.4.0 statmod_1.5.0 +[103] tzdb_0.4.0 pkgconfig_2.0.3 tools_4.3.1 +[106] cachem_1.0.8 RSQLite_2.3.1 rvest_1.0.3 +[109] DBI_1.1.3 numDeriv_2016.8-1.1 mlr3filters_0.7.1 +[112] fastmap_1.1.1 rmarkdown_2.22 scales_1.2.1 +[115] mlegp_3.1.9 grid_4.3.1 mets_1.3.2 +[118] broom_1.0.5 carData_3.0-5 rpart_4.1.19 +[121] yaml_2.3.7 foreign_0.8-84 cli_3.6.1 +[124] purrr_1.0.1 lifecycle_1.0.3 askpass_1.1 +[127] bbotk_0.7.2 lava_1.7.2.1 kernlab_0.9-32 +[130] backports_1.4.1 mlr3tuning_0.19.0 BiocParallel_1.34.2 +[133] gtable_0.3.3 umap_0.2.10.0 parallel_4.3.1 +[136] mlr3cluster_0.1.8 jsonlite_1.8.7 bitops_1.0-7 +[139] bit64_4.0.5 Rtsne_0.16 mlr3learners_0.5.6 +[142] polspline_1.1.23 survMisc_0.5.6 spacefillr_0.3.2 +[145] htmltools_0.5.5 KMsurv_0.1-5 set6_0.2.6 +[148] rappdirs_0.3.3 mlr3pipelines_0.5.0-1 glue_1.6.2 +[151] penalizedSVM_1.1.4 mlr3viz_0.6.1 timereg_2.0.5 +[154] XVector_0.40.0 RCurl_1.98-1.12 mclust_6.0.0 +[157] gridExtra_2.3 boot_1.3-28.1 R6_2.5.1 +[160] tidyr_1.3.0 km.ci_0.5-6 ooplah_0.2.0 +[163] cluster_2.1.4 beanplot_1.3.1 nloptr_2.0.3 +[166] mlr3misc_0.13.0 vioplot_0.4.0 DelayedArray_0.26.3 +[169] tidyselect_1.2.0 htmlTable_2.4.1 xml2_1.3.4 +[172] mlr3fselect_0.11.0 car_3.1-2 AnnotationDbi_1.62.1 +[175] future_1.33.0 munsell_0.5.0 data.table_1.14.8 +[178] htmlwidgets_1.6.2 mlr3data_0.7.0 RColorBrewer_1.1-3 +[181] biomaRt_2.56.1 rlang_1.1.1 uuid_1.1-1 +[184] fansi_1.0.4 prodlim_2023.03.31

References

@@ -3889,8 +3915,9 @@

References

Journal of Translational Medicine 19 (1): 269. https://doi.org/10.1186/s12967-021-02936-w.
-Zhao, Zhi, John Zobolas, Manuela Zucknick, and Tero Aittokallio. 2023. -“Tutorial on Survival Modelling with Omics Data.” arXiv. https://doi.org/10.48550/ARXIV.2302.12542. +Zhao, Zhi, Manuela Zucknick, Maral Saadati, and Axel Benner. 2023. +“Penalized Semiparametric Bayesian Survival Models.” R +Package Version 2.0.4. https://CRAN.R-project.org/package=psbcSpeedUp.
Zucknick, Manuela, Sylvia Richardson, and Euan A Stronach. 2008. @@ -3907,7 +3934,7 @@

References

-
LS0tCnRpdGxlOiAiU3VwcGxlbWVudGFsIGluZm9ybWF0aW9uIGZvciAnVHV0b3JpYWwgb24gc3Vydml2YWwgbW9kZWxsaW5nIHdpdGggb21pY3MgZGF0YSciCmRhdGU6ICJMYXN0IHVwZGF0ZWQ6IGByIGZvcm1hdChTeXMudGltZSgpLCAnJWQgJUIsICVZJylgIgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIGNzczogc3R5bGUuY3NzCiAgICB0aGVtZTogdW5pdGVkCiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDoKICAgICAgY29sbGFwc2VkOiB0cnVlCiAgICAgIHNtb290aF9zY3JvbGw6IHRydWUKICAgIHRvY19kZXB0aDogNAogICAgbnVtYmVyX3NlY3Rpb25zOiBmYWxzZQogICAgY29kZV9mb2xkaW5nOiBzaG93CiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCmJpYmxpb2dyYXBoeTogcmVmZXJlbmNlcy5iaWIKbGluay1jaXRhdGlvbnM6IHRydWUKLS0tCgpgYGB7ciwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KAogIGNvbW1lbnQgPSAnJywgZXZhbCA9IEZBTFNFCikKYGBgCjxicj4KVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgc3VwcGxlbWVudCBmb3IgdGhlIGFydGljbGUgWyoqX1R1dG9yaWFsIG9uIHN1cnZpdmFsIG1vZGVsbGluZyB3aXRoIG9taWNzIGRhdGFfKipdKGh0dHBzOi8vYXJ4aXYub3JnL2Ficy8yMzAyLjEyNTQyKSBbQFpoYW8yMDIzXS4KCiMgSW50cm9kdWN0aW9uIHstfQoKW1RoZSBDYW5jZXIgR2Vub21lIEF0bGFzXShodHRwczovL3d3dy5jYW5jZXIuZ292L2Fib3V0LW5jaS9vcmdhbml6YXRpb24vY2NnL3Jlc2VhcmNoL3N0cnVjdHVyYWwtZ2Vub21pY3MvdGNnYSkgKFRDR0EpIHByb3ZpZGVzIGFuIGVub3Jtb3VzIGNvbGxlY3Rpb24gb2YgY2FuY2VyIGRhdGEgc2V0cywgaW5jbHVkaW5nIHN1cnZpdmFsLCBjbGluaWNhbCBhbmQgbXVsdGktb21pY3MgZGF0YS4KCjo6OnsuZ3JlZW4tYm94fQpXZSB3aWxsIHVzZSBUQ0dBIGRhdGEgdG8gZGVtb25zdHJhdGU6CgotIFRoZSBkaWZmZXJlbnQgZGF0YSB0eXBlcwotIFByZXByb2Nlc3Npbmcgb2Ygc3Vydml2YWwgYW5kIG9taWNzIGRhdGEKLSBBbmFseXNpcyBvZiBzdXJ2aXZhbCBkYXRhIGJ5IGNsYXNzaWNhbCBzdGF0aXN0aWNhbCBtZXRob2RzCi0gVW5zdXBlcnZpc2VkIGxlYXJuaW5nIGZvciBvbWljcyBkYXRhCi0gRnJlcXVlbnRpc3QgJiBCYXllc2lhbiBzdXBlcnZpc2VkIGxlYXJuaW5nIGZvciBzdXJ2aXZhbCBhbmQgb21pY3MgZGF0YQo6OjoKCiMgVENHQSBzdXJ2aXZhbCBhbmQgY2xpbmljYWwgZGF0YSB7LX0KClRoZSBSL0Jpb2NvbmR1Y3RvciBwYWNrYWdlIFsqKlRDR0FiaW9saW5rcyoqXShodHRwczovL2Jpb2NvbmR1Y3Rvci5vcmcvcGFja2FnZXMvVENHQWJpb2xpbmtzLykgW0BNb3VuaXIyMDE5XSBwcm92aWRlcyBhIGZldyBmdW5jdGlvbnMgdG8gZG93bmxvYWQgYW5kIHByZXByb2Nlc3MgY2xpbmljYWwgYW5kIG11bHRpLW9taWNzIGRhdGEgZnJvbSB0aGUgW0dlbm9taWMgRGF0YSBDb21tb25zXShodHRwczovL2dkYy5jYW5jZXIuZ292LykgKEdEQykgRGF0YSBQb3J0YWwgZm9yIGZ1cnRoZXIgYW5hbHlzaXMuCgpGaXJzdCB3ZSBsb2FkIGFsbCBuZWNlc3NhcnkgbGlicmFyaWVzIHVzZWQgaW4gdGhpcyB0dXRvcmlhbCBleGNlcHQgWyoqbWxyMyoqIGxpYnJhcmllc10oI21scjMpIHdoaWNoIHdpbGwgYmUgaW50cm9kdWNlZCBsYXRlci4gClRoZW4gd2UgdXNlIGZ1bmN0aW9uIGBHRENxdWVyeV9jbGluaWMoKWAgZnJvbSAqKlRDR0FiaW9saW5rcyoqIHBhY2thZ2UgdG8gcXVlcnkgYW5kIGRvd25sb2FkIFRDR0Egc3Vydml2YWwgYW5kIGNsaW5pY2FsIGRhdGEgZnJvbSBtdWx0aXBsZSBjYW5jZXIgdHlwZXM6CgpgYGB7cn0KIyBsb2FkIGFsbCBsaWJyYXJpZXMgdXNlZCBpbiB0aGlzIHR1dG9yaWFsIGV4Y2VwdCBtbHIzCmxpYnJhcnkoIlRDR0FiaW9saW5rcyIpCmxpYnJhcnkoIlN1bW1hcml6ZWRFeHBlcmltZW50IikKbGlicmFyeSgiREVTZXEyIikKbGlicmFyeSgiZHBseXIiKQpsaWJyYXJ5KCJnZ3Bsb3QyIikKbGlicmFyeSgic3Vydml2YWwiKQpsaWJyYXJ5KCJzdXJ2bWluZXIiKQpsaWJyYXJ5KCJNM0MiKQpsaWJyYXJ5KCJnbG1uZXQiKQpsaWJyYXJ5KCJwbG90bW8iKQpsaWJyYXJ5KCJncnByZWciKQpsaWJyYXJ5KCJTR0wiKQpsaWJyYXJ5KCJwc2JjR3JvdXAiKQpsaWJyYXJ5KCJHR2FsbHkiKQpsaWJyYXJ5KCJCaEdMTSIpCmxpYnJhcnkoInJpc2tzZXRST0MiKQpsaWJyYXJ5KCJyaXNrUmVncmVzc2lvbiIpCmxpYnJhcnkoInBlcGVyciIpCmxpYnJhcnkoImMwNjAiKQpsaWJyYXJ5KCJybXMiKQpsaWJyYXJ5KCJzdXJ2QVVDIikKbGlicmFyeSgicmVncGxvdCIpCmBgYAoKYGBge3J9CiMgZG93bmxvYWQgdGhlIGNsaW5pY2FsIGRhdGEgYW5kIGV4dHJhY3QgZGF0YSBmb3IgbXVsdGlwbGUgY2FuY2VycyB1c2luZyBHREMgYXBpIG1ldGhvZApjYW5jZXJfdHlwZXMgPSBjKCJUQ0dBLUJMQ0EiLCAiVENHQS1CUkNBIiwgIlRDR0EtQ09BRCIsICJUQ0dBLUxJSEMiLCAKICAgICAgICAgICAgICAgICAgIlRDR0EtTFVBRCIsICJUQ0dBLVBBQUQiLCAiVENHQS1QUkFEIiwgIlRDR0EtVEhDQSIpCmNsaW4gPSBOVUxMCmZvciAoaSBpbiBzZXFfYWxvbmcoY2FuY2VyX3R5cGVzKSkgewogIHRtcCA9IFRDR0FiaW9saW5rczo6R0RDcXVlcnlfY2xpbmljKHByb2plY3QgPSBjYW5jZXJfdHlwZXNbaV0sIHR5cGUgPSAiY2xpbmljYWwiKQogIGNsaW4gPSByYmluZChjbGluLCB0bXBbLCBjKCJwcm9qZWN0IiwgInN1Ym1pdHRlcl9pZCIsICJ2aXRhbF9zdGF0dXMiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgImRheXNfdG9fbGFzdF9mb2xsb3dfdXAiLCAiZGF5c190b19kZWF0aCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiYWdlX2F0X2RpYWdub3NpcyIsICJnZW5kZXIiLCAicmFjZSIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiZXRobmljaXR5IiwgImFqY2NfcGF0aG9sb2dpY190IildKQp9CgojIGV4dHJhY3QgdGhlIG9ic2VydmVkIHRpbWUgZm9yIGVhY2ggcGF0aWVudCBhbmQgdXNlIHllYXJzIGFzIHVuaXQKY2xpbiR0aW1lID0gYXBwbHkoY2xpblssIGMoImRheXNfdG9fZGVhdGgiLCAiZGF5c190b19sYXN0X2ZvbGxvd191cCIpXSwgMSwgbWF4LCBuYS5ybSA9IFRSVUUpIC8gMzY1LjI1CmNsaW4kYWdlID0gY2xpbiRhZ2VfYXRfZGlhZ25vc2lzIC8gMzY1LjI1CmNsaW4kc3RhdHVzID0gY2xpbiR2aXRhbF9zdGF0dXMKY2xpbiA9IGNsaW5bLCBjKCJwcm9qZWN0IiwgInN1Ym1pdHRlcl9pZCIsICJzdGF0dXMiLCAidGltZSIsICJnZW5kZXIiLCAiYWdlIiwgInJhY2UiLCAiZXRobmljaXR5IildCgpjbGluID0gY2xpblsoY2xpbiR0aW1lID4gMCkgJiAoY2xpbiRzdGF0dXMgJWluJSBjKCJBbGl2ZSIsICJEZWFkIikpLCBdCgojIGZyZXF1ZW5jeSB0YWJsZSBvZiB0aGUgcGF0aWVudHMgdy5yLnQuIHN0YXR1cywgZ2VuZGVyIGFuZCBldGhuaWNpdHkKY2xpbiAlPiUKICBjb3VudChzdGF0dXMsIGdlbmRlciwgZXRobmljaXR5KSAlPiUKICBncm91cF9ieShzdGF0dXMpICU+JSAgICAgICAgCiAgbXV0YXRlKHByb3AgPSBwcm9wLnRhYmxlKG4pKQpgYGAKCmBgYAojIEEgdGliYmxlOiAxMiDDlyA1CiMgR3JvdXBzOiAgIHN0YXR1cyBbMl0KICAgc3RhdHVzIGdlbmRlciBldGhuaWNpdHkgICAgICAgICAgICAgICAgICBuICAgIHByb3AKICAgPGNocj4gIDxjaHI+ICA8Y2hyPiAgICAgICAgICAgICAgICAgIDxpbnQ+ICAgPGRibD4KIDEgQWxpdmUgIGZlbWFsZSBoaXNwYW5pYyBvciBsYXRpbm8gICAgICAgIDc1IDAuMDI0MCAKIDIgQWxpdmUgIGZlbWFsZSBub3QgaGlzcGFuaWMgb3IgbGF0aW5vICAxMzY3IDAuNDM4ICAKIDMgQWxpdmUgIGZlbWFsZSBub3QgcmVwb3J0ZWQgICAgICAgICAgICAgMzI4IDAuMTA1ICAKIDQgQWxpdmUgIG1hbGUgICBoaXNwYW5pYyBvciBsYXRpbm8gICAgICAgIDM0IDAuMDEwOSAKIDUgQWxpdmUgIG1hbGUgICBub3QgaGlzcGFuaWMgb3IgbGF0aW5vICAxMDQxIDAuMzM0ICAKIDYgQWxpdmUgIG1hbGUgICBub3QgcmVwb3J0ZWQgICAgICAgICAgICAgMjc2IDAuMDg4NCAKIDcgRGVhZCAgIGZlbWFsZSBoaXNwYW5pYyBvciBsYXRpbm8gICAgICAgICA3IDAuMDA4MDkKIDggRGVhZCAgIGZlbWFsZSBub3QgaGlzcGFuaWMgb3IgbGF0aW5vICAgMzc3IDAuNDM2ICAKIDkgRGVhZCAgIGZlbWFsZSBub3QgcmVwb3J0ZWQgICAgICAgICAgICAgIDY0IDAuMDc0MCAKMTAgRGVhZCAgIG1hbGUgICBoaXNwYW5pYyBvciBsYXRpbm8gICAgICAgIDEwIDAuMDExNiAKMTEgRGVhZCAgIG1hbGUgICBub3QgaGlzcGFuaWMgb3IgbGF0aW5vICAgMzI3IDAuMzc4ICAKMTIgRGVhZCAgIG1hbGUgICBub3QgcmVwb3J0ZWQgICAgICAgICAgICAgIDgwIDAuMDkyNSAKYGBgCgpgYGB7cn0KIyBjZW5zb3JpbmcgcGxvdCBieSBjYW5jZXIgdHlwZXMKY2xpbiAlPiUKICBtdXRhdGUoaW5kZXg9MTpuKCkpICU+JQogIGdncGxvdCgKICAgIGFlcyh5ID0gaW5kZXgsIHggPSB0aW1lLCBjb2xvdXIgPSBwcm9qZWN0LCBzaGFwZSA9IGZhY3RvcihzdGF0dXMpKSkgKwogICAgZ2VvbV9zZWdtZW50KGFlcyh4ID0gdGltZSwgeSA9IGluZGV4LCB4ZW5kID0gMCwgeWVuZCA9IGluZGV4KSkgKwogIGdlb21fcG9pbnQoKSArCiAgZ2d0aXRsZSgiIikgKwogIGxhYnMoeD0iWWVhcnMiLCB5PSJQYXRpZW50cyIpICsKICBzY2FsZV9zaGFwZV9kaXNjcmV0ZShuYW1lID0gIlN0YXR1cyIsIGxhYmVscyA9IGMoIkNlbnNvcmVkIiwiRGVhZCIpKSArCiAgc2NhbGVfY29sb3JfZGlzY3JldGUobmFtZSA9ICJDYW5jZXIiLCAKICAgICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJCbGFkZGVyIiwiQnJlYXN0IiwiQ29sb24iLCJMaXZlciIsICJMdW5nIGFkZW5vIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiUGFuY3JlYXRpYyIsICJQcm9zdGF0ZSIsIlRoeXJvaWQiKSkgKwogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbj0idG9wIiwgbGVnZW5kLmRpcmVjdGlvbj0idmVydGljYWwiKSArIAogIGd1aWRlcyhjb2xvciA9IGd1aWRlX2xlZ2VuZChucm93ID0gMiwgYnlyb3cgPSBUUlVFKSkKYGBgCgohW19PdmVyYWxsIHN1cnZpdmFsIHRpbWVzIGFuZCBzdGF0dXMgb2YgcGFuLWNhbmNlciBwYXRpZW50cyBmcm9tIFRDR0EuX10oZmlnL1RDR0Ffc3Vydml2YWwucG5nKXt3aWR0aD02MCV9Cgo8YnI+CgojIFRDR0Egb21pY3MgZGF0YSB7LX0KCldlIHVzZSBmdW5jdGlvbiBgR0RDcXVlcnkoKWAgdG8gcXVlcnkgYW5kIHVzZSBgR0RDZG93bmxvYWQoKWAgYW5kIGBHRENwcmVwYXJlKClgIHRvIGRvd25sb2FkIFRDR0Egb21pY3MgZGF0YSBmcm9tIG9uZSBjYW5jZXIgdHlwZSAoYnJlYXN0IGNhbmNlcikuClRoZSBhcmd1bWVudCBgZGF0YS5jYXRlZ29yeWAgaW4gZnVuY3Rpb24gYEdEQ3F1ZXJ5KClgIHNwZWNpZmllcyB0aGUgdHlwZSBvZiBvbWljcyBkYXRhLCBzdWNoIGFzIGAiQ29weSBOdW1iZXIgVmFyaWF0aW9uImAsIGAiRE5BIE1ldGh5bGF0aW9uImAsIGAiVHJhbnNjcmlwdG9tZSBQcm9maWxpbmciYCwgYCJTaW1wbGUgTnVjbGVvdGlkZSBWYXJpYXRpb24iYC4KTm90ZSB0aGF0IHRoZSBkb3dubG9hZGVkIG9taWNzIGRhdGEgYXJlIGFjY29tcGFuaWVkIGJ5IG1ldGFkYXRhIGluY2x1ZGluZyBzdXJ2aXZhbCBvdXRjb21lcywgY2xpbmljYWwgYW5kIGRlbW9ncmFwaGljIHZhcmlhYmxlcy4gClRoZSBhY2NvbXBhbmllZCBtZXRhZGF0YSBhcmUgYWxtb3N0IHRoZSBzYW1lIGFzIHRoZSBjbGluaWNhbCBkYXRhIGRvd25sb2FkZWQgdmlhIGBHRENxdWVyeV9jbGluaWMoKWAgaW4gdGhlIHByZXZpb3VzIHNlY3Rpb24gYnV0IGhlcmUgb25seSBjb3JyZXNwb25kaW5nIHRvIG9uZSBjYW5jZXIgdHlwZS4KCmBgYHtyfQojIGRvd25sb2FkIFRDR0EgYnJlYXN0IGNhbmNlciAoQlJDQSkgbVJOQS1TZXEgZGF0YSB1c2luZyBHREMgYXBpIG1ldGhvZApxdWVyeSA9IFRDR0FiaW9saW5rczo6R0RDcXVlcnkocHJvamVjdCA9ICJUQ0dBLUJSQ0EiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGF0YS5jYXRlZ29yeSA9ICJUcmFuc2NyaXB0b21lIFByb2ZpbGluZyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhLnR5cGUgPSAiR2VuZSBFeHByZXNzaW9uIFF1YW50aWZpY2F0aW9uIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdvcmtmbG93LnR5cGUgPSAiU1RBUiAtIENvdW50cyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBleHBlcmltZW50YWwuc3RyYXRlZ3kgPSAiUk5BLVNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzYW1wbGUudHlwZSA9IGMoIlByaW1hcnkgVHVtb3IiKSkKVENHQWJpb2xpbmtzOjpHRENkb3dubG9hZChxdWVyeSA9IHF1ZXJ5LCBtZXRob2QgPSAiYXBpIikKZGF0ID0gVENHQWJpb2xpbmtzOjpHRENwcmVwYXJlKHF1ZXJ5ID0gcXVlcnkpCgpTdW1tYXJpemVkRXhwZXJpbWVudDo6YXNzYXlzKGRhdCkkdW5zdHJhbmRlZFsxOjUsIDE6Ml0KYGBgCmBgYAogICAgICAgICAgICAgICAgICAgVENHQS1MTC1BNzNZLTAxQS0xMVItQTMzSi0wNyBUQ0dBLUUyLUExSVUtMDFBLTExUi1BMTRELTA3CkVOU0cwMDAwMDAwMDAwMy4xNSAgICAgICAgICAgICAgICAgICAgICAgICA3MDE1ICAgICAgICAgICAgICAgICAgICAgICAgICA4NTAKRU5TRzAwMDAwMDAwMDA1LjYgICAgICAgICAgICAgICAgICAgICAgICAgICAgMTYgICAgICAgICAgICAgICAgICAgICAgICAgICAgNQpFTlNHMDAwMDAwMDA0MTkuMTMgICAgICAgICAgICAgICAgICAgICAgICAgMjE2NyAgICAgICAgICAgICAgICAgICAgICAgICAxNjgwCkVOU0cwMDAwMDAwMDQ1Ny4xNCAgICAgICAgICAgICAgICAgICAgICAgICAyNTA1ICAgICAgICAgICAgICAgICAgICAgICAgIDE1NTkKRU5TRzAwMDAwMDAwNDYwLjE3ICAgICAgICAgICAgICAgICAgICAgICAgICA3MjYgICAgICAgICAgICAgICAgICAgICAgICAgIDQwMgpgYGAKCkl0IGlzIHJlY29tbWVuZGVkIHRvIHVzZSBERVNlcTIgb3IgVE1NIG5vcm1hbGl6YXRpb24gbWV0aG9kIGZvciBSTkEtc2VxIGRhdGEgYmVmb3JlIGZ1cnRoZXIgc3RhdGlzdGljYWwgYW5hbHlzaXMgW0BaaGFvWTIwMjFdLgpIZXJlIHdlIGRlbW9uc3RyYXRlIGhvdyB0byB1c2UgdGhlIFIvQmlvY29uZHVjdG9yIHBhY2thZ2UgWyoqREVTZXEyKipdKGh0dHBzOi8vYmlvY29uZHVjdG9yLm9yZy9wYWNrYWdlcy9ERVNlcTIvKSBbQExvdmUyMDE0XSB0byBub3JtYWxpemUgdGhlIFJOQSBjb3VudCBkYXRhLgoKYGBge3J9Cm1ldGEgPSBjb2xEYXRhKGRhdClbLCBjKCJwcm9qZWN0X2lkIiwgInN1Ym1pdHRlcl9pZCIsICJhZ2VfYXRfZGlhZ25vc2lzIiwgICJldGhuaWNpdHkiLCAiZ2VuZGVyIiwgImRheXNfdG9fZGVhdGgiLCAiZGF5c190b19sYXN0X2ZvbGxvd191cCIsICJ2aXRhbF9zdGF0dXMiLCAicGFwZXJfQlJDQV9TdWJ0eXBlX1BBTTUwIiwgInRyZWF0bWVudHMiKV0KbWV0YSR0cmVhdG1lbnRzID0gdW5saXN0KGxhcHBseShtZXRhJHRyZWF0bWVudHMsIGZ1bmN0aW9uKHh4KXthbnkoeHgkdHJlYXRtZW50X29yX3RoZXJhcHkgPT0gInllcyIpfSkpCmRkcyA9IERFU2VxMjo6REVTZXFEYXRhU2V0RnJvbU1hdHJpeChhc3NheXMoZGF0KSR1bnN0cmFuZGVkLCBjb2xEYXRhID0gbWV0YSwgZGVzaWduID0gfiAxKSAKZGRzMiA9IERFU2VxMjo6ZXN0aW1hdGVTaXplRmFjdG9ycyhkZHMpClJOQV9jb3VudCA9IERFU2VxMjo6Y291bnRzKGRkczIsIG5vcm1hbGl6ZWQ9VFJVRSkKUk5BX2NvdW50WzE6NSwgMToyXQpgYGAKCmBgYAogICAgICAgICAgICAgICAgICAgVENHQS1MTC1BNzNZLTAxQS0xMVItQTMzSi0wNyBUQ0dBLUUyLUExSVUtMDFBLTExUi1BMTRELTA3CkVOU0cwMDAwMDAwMDAwMy4xNSAgICAgICAgICAgICAgICAgICA2MDM0LjI3MTY4ICAgICAgICAgICAgICAgICAgIDk1MS44MjU3NjQKRU5TRzAwMDAwMDAwMDA1LjYgICAgICAgICAgICAgICAgICAgICAgMTMuNzYzMTMgICAgICAgICAgICAgICAgICAgICA1LjU5ODk3NQpFTlNHMDAwMDAwMDA0MTkuMTMgICAgICAgICAgICAgICAgICAgMTg2NC4wNDM3MyAgICAgICAgICAgICAgICAgIDE4ODEuMjU1NjI4CkVOU0cwMDAwMDAwMDQ1Ny4xNCAgICAgICAgICAgICAgICAgICAyMTU0Ljc4OTgyICAgICAgICAgICAgICAgICAgMTc0NS43NjA0MzEKRU5TRzAwMDAwMDAwNDYwLjE3ICAgICAgICAgICAgICAgICAgICA2MjQuNTAxOTYgICAgICAgICAgICAgICAgICAgNDUwLjE1NzU5NwpgYGAKClRvIHBlcmZvcm0gc3Vydml2YWwgYW5hbHlzaXMgd2l0aCBib3RoIGNsaW5pY2FsL2RlbW9ncmFwaGljIHZhcmlhYmxlcyBhbmQgb21pY3MgZGF0YSwgaW4gdGhlIGZvbGxvd2luZyBjb2RlIHdlIGV4dHJhY3QgZmVtYWxlIGJyZWFzdCBjYW5jZXIgcGF0aWVudHMgd2l0aCB0aGVpciBjb3JyZXNwb25kaW5nIHN1cnZpdmFsIG91dGNvbWVzLCBjbGluaWNhbC9kZW1vZ3JhcGhpYyB2YXJpYWJsZXMgYW5kIFJOQS1zZXEgZmVhdHVyZXMuCgpgYGB7cn0KbWV0YSR0aW1lID0gYXBwbHkobWV0YVssIGMoImRheXNfdG9fZGVhdGgiLCAiZGF5c190b19sYXN0X2ZvbGxvd191cCIpXSwgMSwgbWF4LCBuYS5ybSA9IFRSVUUpIC8gMzY1LjI1Cm1ldGEkc3RhdHVzID0gbWV0YSR2aXRhbF9zdGF0dXMKbWV0YSRhZ2UgPSBtZXRhJGFnZV9hdF9kaWFnbm9zaXMgLyAzNjUuMjUKY2xpbiA9IHN1YnNldChtZXRhLCBnZW5kZXIgPT0gImZlbWFsZSIgJiAhZHVwbGljYXRlZChzdWJtaXR0ZXJfaWQpICYgdGltZSA+IDAgJiAhaXMubmEoYWdlKSkKY2xpbiA9IGNsaW5bb3JkZXIoY2xpbiRzdWJtaXR0ZXJfaWQpLCBdClJOQV9jb3VudCA9IFJOQV9jb3VudFssIHJvd25hbWVzKGNsaW4pXQpgYGAKCjo6OnsuaW5mby1ib3ggLm5vdGV9ClRoZSBSL0Jpb2NvbmR1Y3RvciBwYWNrYWdlICoqVENHQWJpb2xpbmtzKiogY2Fubm90IHJldHJpZXZlIGFueSBwcm90ZW9taWNzIG9yIG1ldGFib2xvbWljcyBkYXRhLgpJdCBpcyBhbHdheXMgdXNlZnVsIHRvIGxvb2sgYXQgeW91ciBkYXRhIGZpcnN0LCBpbiBwYXJ0aWN1bGFyIHRoZSBkYXRhIHR5cGUgYW5kIGRpbWVuc2lvbnMgKGkuZS4gbnVtYmVycyBvZiByb3dzIGFuZCBjb2x1bW5zIGZvciBhIGRhdGEgZnJhbWUgb3IgbWF0cml4KS4KOjo6Cgo8YnI+CgojIFN1cnZpdmFsIGFuYWx5c2lzIHdpdGggbG93LWRpbWVuc2lvbmFsIGlucHV0IGRhdGEgey19CgojIyBOb25wYXJhbWV0cmljIHN1cnZpdmFsIGFuYWx5c2lzIHstfQoKRm9yIHRoZSBkYXRhIG9mIFRDR0EgYnJlYXN0IGNhbmNlciBwYXRpZW50cyB0aGF0IHdlIGV4dHJhY3RlZCBpbiB0aGUgcHJldmlvdXMgc2VjdGlvbiwgS2FwbGFuLU1laWVyIGVzdGltYXRlcyBvZiB0aGUgc3Vydml2YWwgcHJvYmFiaWxpdGllcyBjYW4gYmUgb2J0YWluZWQgdmlhIGZ1bmN0aW9uIGBzdXJ2Zml0KClgIGZyb20gWyoqc3Vydml2YWwqKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1zdXJ2aXZhbCkgcGFja2FnZS4KVGhlIGRhc2hlZCBsaW5lcyBpbiB0aGUgZm9sbG93aW5nIGZpZ3VyZSBpbmRpY2F0ZSB0aGUgbWVkaWFuIHN1cnZpdmFsIHRpbWUuCgpgYGB7cn0KIyBLYXBsYW4tTWVpZXIgKEtNKSBlc3RpbWF0aW9uCmNsaW4kc3RhdHVzW2NsaW4kc3RhdHVzID09ICJEZWFkIl0gPSAxCmNsaW4kc3RhdHVzW2NsaW4kc3RhdHVzID09ICJBbGl2ZSJdID0gMApjbGluJHN0YXR1cyA9IGFzLm51bWVyaWMoY2xpbiRzdGF0dXMpCnNmaXQgPSBzdXJ2aXZhbDo6c3VydmZpdChTdXJ2KHRpbWUsIHN0YXR1cykgfiAxLCBkYXRhID0gY2xpbikKCiMgY2FsY3VsYXRlIHN1cnZpdmFsIHByb2JhYmlsaXR5IGF0IDEtLCAzLSBhbmQgNS15ZWFyIHRpbWUgcG9pbnRzCnN1bW1hcnkoc2ZpdCwgdGltZXM9YygxLDMsNSkpCnRoZW1lX3NldCh0aGVtZV9idygpKQpnZ3N1cnYgPSBzdXJ2bWluZXI6Omdnc3VydnBsb3Qoc2ZpdCwgY29uZi5pbnQgPSBUUlVFLCByaXNrLnRhYmxlID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB4bGFiID0gIlRpbWUgc2luY2UgZGlhZ25vc2lzICh5ZWFyKSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsZWdlbmQgPSAibm9uZSIsIHN1cnYubWVkaWFuLmxpbmUgPSAiaHYiKQpnZ3N1cnYkcGxvdCA9IGdnc3VydiRwbG90ICsgYW5ub3RhdGUoInRleHQiLCB4ID0gMjAsIHkgPSAwLjksIGxhYmVsPSAiKyAgQ2Vuc29yIikKZ2dzdXJ2CmBgYAohW19LYXBsYW4tTWVpZXIgY3VydmUgZm9yIDEwNjEgQlJDQSBwYXRpZW50cyBkYXRhIGZyb20gVENHQS5fXShmaWcvVENHQV9zdXJ2X2ttMS5wbmcpe3dpZHRoPTYwJX0KCjxicj4KClRvIGNvbXBhcmUgdGhlIHN1cnZpdmFsIGN1cnZlcyBvZiB0d28gZ3JvdXBzIG9mIHBhdGllbnRzLCBmb3IgZXhhbXBsZSwgdHJlYXRtZW50IChpLmUuIHBoYXJtYWNldXRpY2FsIG9yIHJhZGlhdGlvbiB0aGVyYXB5KSBvciBub250cmVhdG1lbnQsIHRoZSBgUmAgZnVuY3Rpb24gYHN1cnZpdmFsOjpzdXJ2ZGlmZigpYCBjYW4gcGVyZm9ybSB0aGUgbG9nLXJhbmsgdGVzdCB0byBjb21wYXJlIHR3byBzdXJ2aXZhbCBjdXJ2ZXMuCkFsdGVybmF0aXZlbHksIHRoZSBgUmAgZnVuY3Rpb24gYHN1cnZpdmFsOjpzdXJ2Zml0YCB3aXRoIGEgZm9ybXVsYSBpbmNsdWRpbmcgdGhlIHRyZWF0bWVudCBncm91cCBhcyBhIGNvdmFyaWF0ZSBjYW4gcmV0dXJuIHRoZSAoS00pIHN1cnZpdmFsIHByb2JhYmlsaXRpZXMgZm9yIGVhY2ggZ3JvdXBzLiAKVGhlbiB0aGUgYFJgIGZ1bmN0aW9uIGBzdXJ2bWluZXI6Omdnc3VydnBsb3QoKWAgd2l0aCBhIGBzdXJ2Zml0YCBvYmplY3Qgd2lsbCBkcmF3IHRoZSB0d28gc3Vydml2YWwgY3VydmVzIGFuZCBwZXJmb3JtIHRoZSBsb2ctcmFuayB0ZXN0IGFzIHNob3duIGluIHRoZSBmb2xsb3dpbmcgZmlndXJlLgoKYGBge3J9CnN1cnZpdmFsOjpzdXJ2ZGlmZihTdXJ2KHRpbWUsIHN0YXR1cykgfiB0cmVhdG1lbnRzLCBkYXRhID0gY2xpbikKCnNmaXQyID0gc3VydmZpdChTdXJ2KHRpbWUsIHN0YXR1cykgfiB0cmVhdG1lbnRzLCBkYXRhID0gY2xpbikKZ2dzdXJ2ID0gZ2dzdXJ2cGxvdChzZml0MiwgY29uZi5pbnQgPSBUUlVFLCByaXNrLnRhYmxlID0gVFJVRSwgCiAgICAgICAgICAgeGxhYiA9ICJUaW1lIHNpbmNlIGRpYWdub3NpcyAoeWVhcikiLCBsZWdlbmQgPSBjKC42LC45KSwKICAgICAgICAgICBsZWdlbmQubGFicyA9IGMoIk5vIiwgIlllcyIpLCBsZWdlbmQudGl0bGUgPSAiVHJlYXRtZW50IiwgIAogICAgICAgICAgIHJpc2sudGFibGUueS50ZXh0LmNvbCA9IFRSVUUsIHJpc2sudGFibGUueS50ZXh0ID0gRkFMU0UpCmdnc3VydiRwbG90ID0gZ2dzdXJ2JHBsb3QgKyAKICBhbm5vdGF0ZSgidGV4dCIsIHggPSAyMSwgeSA9IDEsIGxhYmVsPSAiKyAgQ2Vuc29yIikgKwogIGFubm90YXRlKCJ0ZXh0IiwgeCA9IDIyLCB5ID0gLjg4LCBsYWJlbD0gcGFzdGUwKCJMb2ctcmFuayB0ZXN0OlxuIiwgc3Vydl9wdmFsdWUoc2ZpdDIpJHB2YWwudHh0KSkKZ2dzdXJ2CmBgYAohW19LYXBsYW4tTWVpZXIgY3VydmVzIG9mIHRoZSBCUkNBIHBhdGllbnRzJyBzdXJ2aXZhbCBkYXRhIGZyb20gVENHQSBncm91cGVkIGJ5IHRyZWF0bWVudCAoaS5lLiBwaGFybWFjZXV0aWNhbCBvciByYWRpYXRpb24gdGhlcmFweSkgb3Igbm9udHJlYXRtZW50LiBUaGUgbG9nLXJhbmsgdGVzdCBpcyB0byBjb21wYXJlIHRoZSB0d28gc3Vydml2YWwgZGlzdHJpYnV0aW9ucyBjb3JyZXNwb25kaW5nIHRvIHRoZSB0d28gZ3JvdXBzIG9mIHBhdGllbnRzLl9dKGZpZy9UQ0dBX3N1cnZfa20yLnBuZyl7d2lkdGg9NjAlfQoKPGJyPgoKVG8gYW5hbHl6ZSBpZiBhIGNvbnRpbnVvdXMgdmFyaWFibGUsIGUuZy4gYWdlLCBpcyBhc3NvY2lhdGVkIHdpdGggdGhlIHN1cnZpdmFsIG91dGNvbWVzLCB3ZSBjYW4gdXNlIHRoZSBgUmAgZnVuY3Rpb24gYGNveHBoKClgIGZvciBmaXR0aW5nIGEgQ294IG1vZGVsLCB3aGljaCBpcyBzaW1pbGFyIHRvIHRoZSBmdW5jdGlvbiBgbG0oKWAgZm9yIGZpdHRpbmcgbGluZWFyIG1vZGVscy4KCmBgYHtyfQpmaXRfY294ID0gY294cGgoU3Vydih0aW1lLCBzdGF0dXMpIH4gYWdlLCBkYXRhID0gY2xpbikKc3VtbWFyeShmaXRfY294KQpgYGAKYGBgCkNhbGw6CmNveHBoKGZvcm11bGEgPSBTdXJ2KHRpbWUsIHN0YXR1cykgfiBhZ2UsIGRhdGEgPSBjbGluKQoKICBuPSAxMDQ3LCBudW1iZXIgb2YgZXZlbnRzPSAxNDkgCiAgICgxNCBvYnNlcnZhdGlvbnMgZGVsZXRlZCBkdWUgdG8gbWlzc2luZ25lc3MpCgogICAgICAgIGNvZWYgZXhwKGNvZWYpIHNlKGNvZWYpICAgICB6IFByKD58enwpICAgIAphZ2UgMC4wMzQyNDQgIDEuMDM0ODM3IDAuMDA2NzAzIDUuMTA5IDMuMjRlLTA3ICoqKgotLS0KU2lnbmlmLiBjb2RlczogIDAg4oCYKioq4oCZIDAuMDAxIOKAmCoq4oCZIDAuMDEg4oCYKuKAmSAwLjA1IOKAmC7igJkgMC4xIOKAmCDigJkgMQoKICAgIGV4cChjb2VmKSBleHAoLWNvZWYpIGxvd2VyIC45NSB1cHBlciAuOTUKYWdlICAgICAxLjAzNSAgICAgMC45NjYzICAgICAxLjAyMSAgICAgMS4wNDkKCkNvbmNvcmRhbmNlPSAwLjYzOSAgKHNlID0gMC4wMjkgKQpMaWtlbGlob29kIHJhdGlvIHRlc3Q9IDI2LjM0ICBvbiAxIGRmLCAgIHA9M2UtMDcKV2FsZCB0ZXN0ICAgICAgICAgICAgPSAyNi4xICBvbiAxIGRmLCAgIHA9M2UtMDcKU2NvcmUgKGxvZ3JhbmspIHRlc3QgPSAyNi42MyAgb24gMSBkZiwgICBwPTJlLTA3CmBgYAoKVGhlIENveCBtb2RlbCBhc3N1bWVzIHByb3BvcnRpb25hbCBoYXphcmRzIGFuZCBsb2ctbGluZWFyaXR5IG9mIHRoZSBjb3ZhcmlhdGVzLgpUbyBjaGVjayB0aGUgbG9nLWxpbmVhcml0eSBmb3IgYSBjbGluaWNhbCBvciBkZW1vZ3JhcGhpYyB2YXJpYWJsZSwgZS5nLiBhZ2UsIHdlIGNhbiBmaXQgYSBwZW5hbGl6ZWQgc21vb3RoaW5nIHNwbGluZSBmb3IgYWdlIGVmZmVjdC4KVGhlIGZvbGxvd2luZyBjb2RlIHNob3dzIHRoYXQgdGhlIG5vbmxpbmVhciBwYXJ0IG9mIHRoZSBzbW9vdGhpbmcgc3BsaW5lIGhhcyBhIHNpZ25pZmljYW50IGVmZmVjdCAoJHAgPSAwLjAwMDEzJCkuClRodXMsIHRoZSBhc3N1bXB0aW9uIG9mIGxvZy1saW5lYXJpdHkgZm9yIGFnZSBpcyBub3Qgc2F0aXNmaWVkLgoKYGBge3J9CmZpdF9jb3hfc3BsaW5lID0gY294cGgoU3Vydih0aW1lLCBzdGF0dXMpIH4gcHNwbGluZShhZ2UpLCBkYXRhID0gY2xpbikKZml0X2NveF9zcGxpbmUKYGBgCmBgYApDYWxsOgpjb3hwaChmb3JtdWxhID0gU3Vydih0aW1lLCBzdGF0dXMpIH4gcHNwbGluZShhZ2UpLCBkYXRhID0gY2xpbikKCiAgICAgICAgICAgICAgICAgICAgICAgICBjb2VmIHNlKGNvZWYpICAgICAgc2UyICAgIENoaXNxICAgREYgICAgICAgcApwc3BsaW5lKGFnZSksIGxpbmVhciAgMC4wMzUwOSAgMC4wMDU3NyAgMC4wMDU3NyAzNi45ODMyMyAxLjAwIDEuMmUtMDkKcHNwbGluZShhZ2UpLCBub25saW4gICAgICAgICAgICAgICAgICAgICAgICAgICAgMjAuNjkxNDYgMy4wMyAwLjAwMDEzCgpJdGVyYXRpb25zOiA1IG91dGVyLCAxNSBOZXd0b24tUmFwaHNvbgogICAgIFRoZXRhPSAwLjgyOCAKRGVncmVlcyBvZiBmcmVlZG9tIGZvciB0ZXJtcz0gNCAKTGlrZWxpaG9vZCByYXRpbyB0ZXN0PTQ2LjQgIG9uIDQuMDMgZGYsIHA9MmUtMDkKbj0gMTA0NywgbnVtYmVyIG9mIGV2ZW50cz0gMTQ5IAogICAoMTQgb2JzZXJ2YXRpb25zIGRlbGV0ZWQgZHVlIHRvIG1pc3NpbmduZXNzKQpgYGAKClRvIGNoZWNrIHByb3BvcnRpb25hbCBoYXphcmRzIG9mIGFnZSwgd2UgY2FuIGFkZCBhIHRpbWUtZGVwZW5kZW50IGNvdmFyaWF0ZSAkYWdlIFx0aW1lcyBnKHQpJCwgd2hlcmUgJGcodCkkIGlzIGEga25vd24gZnVuY3Rpb24gZS5nLiAkZyh0KSA9IFxsb2cgdCQuClRoZSBmb2xsb3dpbmcgY29kZSBzaG93cyB0aGF0IHRoZSB0aW1lLWRlcGVuZGVudCBhZ2UgaXMgc2lnbmlmaWNhbnQgdXNpbmcgYSBzY29yZSB0ZXN0ICgkcCA9IDAuMDA4NyQpLgpUaHVzLCB0aGUgYXNzdW1wdGlvbiBvZiBwcm9wb3J0aW9uYWwgaGF6YXJkcyBmb3IgYWdlIGlzIG5vdCBzYXRpc2ZpZWQuIFRoZSBhYm92ZSB0d28gdGVzdHMgaW5kaWNhdGUgYSBub24tbG9nbGluZWFyIG9yIHRpbWUtZGVwZW5kZW50IGFzc29jaWF0aW9uIG9mIGFnZSB3aXRoIHRoZSBzdXJ2aXZhbCBvdXRjb21lcy4KCmBgYHtyfQpzdXJ2aXZhbDo6Y294LnpwaChmaXRfY294LCB0cmFuc2Zvcm0gPSAibG9nIikgCmBgYApgYGAKICAgICAgIGNoaXNxIGRmICAgIHAKYWdlICAgICA2Ljg4ICAxIDAuMDA4NwpHTE9CQUwgIDYuODggIDEgMC4wMDg3CmBgYAo6Ojp7LmluZm8tYm94IC5ub3RlfQpIZXJlIHRoZSBhcHByb2FjaGVzIGZvciBjaGVja2luZyBsb2ctbGluZWFyaXR5IG9yIHByb3BvcnRpb25hbCBoYXphcmRzIGNhbiBvbmx5IGJlIHVzZWQgaW4gbG93LWRpbWVuc2lvbmFsIGRhdGEgc2V0dGluZ3MuCldoZW4gaW5jbHVkaW5nIGhpZ2gtZGltZW5zaW9uYWwgb21pY3MgZGF0YSwgdGhlcmUgYXJlIG5vIHN0YW5kYXJkIGFwcHJvYWNoZXMgZm9yIGNoZWNraW5nIGxvZy1saW5lYXJpdHkgb3IgcHJvcG9ydGlvbmFsIGhhemFyZHMgY3VycmVudGx5Lgo6OjoKCjxicj4KCiMjIEZlYXR1cmUgcHJlc2VsZWN0aW9uL2ZpbHRlcmluZyB7LX0KCkZyb20gYSBwcmFjdGljYWwgcG9pbnQgb2Ygdmlldywgc2luY2UgbW9zdCBvbWljcyBwcm9maWxlcyBjb250YWluIHRob3VzYW5kcyBvZiB2YXJpYWJsZXMgYW5kIG1vc3Qgc3VwZXJ2aXNlZCBzdGF0aXN0aWNhbCBtZXRob2RzIGFyZSBub3Qgc3VpdGVkIGZvciBoaWdoIGRpbWVuc2lvbmFsIG9taWNzIGZlYXR1cmVzLCBpdCBpcyBiZXR0ZXIgdG8gZmlsdGVyIHRoZSBvbWljcyBmZWF0dXJlcyBmaXJzdC4KSW4gYWRkaXRpb24sIHdlIHBlcmNlaXZlIHRoYXQgbm90IHRvbyBtYW55IG9taWNzIGZlYXR1cmVzIGFyZSByZWxldmFudCB0byBvbmUgbWVkaWNhbCBwcm9ibGVtLgpXZSB3aWxsIGRlbW9uc3RyYXRlICoqdHdvIGRpZmZlcmVudCBmaWx0ZXJpbmcgYXBwcm9hY2hlcyBmb3IgaGlnaC1kaW1lbnNpb25hbCBvbWljcyBkYXRhKio6CgotIFAtdmFsdWUtYmFzZWQgZmlsdGVyaW5nCi0gVmFyaWFuY2UtYmFzZWQgZmlsdGVyaW5nCgojIyMgUC12YWx1ZSBmaWx0ZXIgey19CgpCZWZvcmUgam9pbnQgYW5hbHl6aW5nIHRoZSBhc3NvY2lhdGlvbnMgYmV0d2VlbiB0aGUgdGhvdXNhbmRzIG9mIG9taWNzIGZlYXR1cmVzIGFuZCBzdXJ2aXZhbCBvdXRjb21lcywgb25lIGNhbiBhbmFseXplIHRoZSBhc3NvY2lhdGlvbiBiZXR3ZWVuIGVhY2ggb21pY3MgZmVhdHVyZSBhbmQgdGhlIHN1cnZpdmFsIG91dGNvbWVzLCBhbmQgZmlsdGVyIG9taWNzIGZlYXR1cmVzIGF0IGEgc3RhdGlzdGljYWwgc2lnbmlmaWNhbmNlIGxldmVsICQwLjEkIG9yICQwLjIkIChsYXJnZXIgdGhhbiAwLjA1IHRvIHJlZHVjZSBmYWxzZSBuZWdhdGl2ZSBpZGVudGlmaWNhdGlvbiBvZiBvbWljcyBmZWF0dXJlcyBpbiBtdWx0aXZhcmlhdGUgYW5hbHlzaXMpLgpGb3IgZGVtb25zdHJhdGlvbiwgYmFzZWQgb24gdGhlICQxMDAkIG1STkEtU2VxIGZlYXR1cmVzIGZyb20gVENHQSBicmVhc3QgY2FuY2VyIHBhdGllbnRzIHByZXByb2Nlc3NlZCBwcmV2aW91c2x5LCB0aGUgY29kZSBiZWxvdyBmaWx0ZXJzIG9taWNzIGZlYXR1cmVzIGF0IHRoZSBzdGF0aXN0aWNhbCBzaWduaWZpY2FuY2UgbGV2ZWwgJDAuMiQsIGkuZS4gJHAgPCAwLjIkLgoKYGBge3J9ClJOQV9sb2cyY291bnQgPSBsb2cyKFJOQV9jb3VudFsxOjEwMCwgXSArIDEpCnB2YWx1ZXMgPC0gcmVwKE5BLCBucm93KFJOQV9sb2cyY291bnQpKQpmb3IoaiBpbiAxOm5yb3coUk5BX2xvZzJjb3VudCkpIHsKICBmaXRfY294ID0gY294cGgoU3VydihjbGluJHRpbWUsIGNsaW4kc3RhdHVzKSB+IFJOQV9sb2cyY291bnRbaiwgXSwgZGF0YSA9IGNsaW4pCiAgcHZhbHVlc1tqXSA9IHN1bW1hcnkoZml0X2NveCkkY29lZmZpY2llbnRzWywgIlByKD58enwpIl0KfQpmaWx0ZXJlZF9ybmEgPC0gUk5BX2xvZzJjb3VudFt3aGljaChwdmFsdWVzIDwgMC4yKSwgXQpgYGAKCiMjIyBWYXJpYW5jZSBmaWx0ZXIgey19CgpUaGUgb3RoZXIgY29tbW9uIGFuZCBlYXN5IHdheSB0byBkZWNyZWFzZSB0aGUgbnVtYmVyIG9mIG9taWNzIGZlYXR1cmVzIGlzIHRvIGZpbHRlciB0aGUgbW9zdCB2YXJpYWJsZSBvbmVzIGZvciBmdXJ0aGVyIGFuYWx5c2lzLgpOb3RlIHRoYXQgdGhlIHZhcmlhbmNlLWJhc2VkIGZpbHRlcmluZyBzdGVwIHNob3VsZCBiZSBkb25lIGJlZm9yZSBkYXRhIHN0YW5kYXJkaXphdGlvbiAoaS5lLiBjYWxjdWxhdGluZyAkeiQtc2NvcmUpLCBidXQgY2FuIGJlIHBlcmZvcm1lZCBhZnRlciBjb3VudCBkYXRhIG5vcm1hbGl6YXRpb24gYW5kIGxvZzItdHJhbnNmb3JtYXRpb24gZm9yIGluc3RhbmNlLgoKVGhlIGBSYCBwYWNrYWdlIFsqKk0zQyoqXShodHRwczovL2Jpb2NvbmR1Y3Rvci5vcmcvcGFja2FnZXMvTTNDLykgW0BKb2huMjAyMF0gcHJvdmlkZXMgYSBmaWx0ZXIgZnVuY3Rpb24gYGZlYXR1cmVmaWx0ZXIoKWAgYnkgdXNpbmcgZGlmZmVyZW50IHZhcmlhbmNlLXR5cGUgbWV0cmljcywgZm9yIGV4YW1wbGUsIHZhcmlhbmNlLCBtZWRpYW4gYWJzb2x1dGUgZGV2aWF0aW9uIChNQUQpLCBjb2VmZmljaWVudCBvZiB2YXJpYXRpb24gKEEpIGFuZCBpdHMgc2Vjb25kIG9yZGVyIGRlcml2YXRpdmUgKEEyKS4KVGhlIHNpbXBsZSB2YXJpYW5jZSBmaWx0ZXIgY2FuIGJlIHVzZWQgaWYgdGhlIHZhcmlhbmNlIGRvZXMgbm90IGNoYW5nZSB3aXRoIHRoZSBjb3JyZXNwb25kaW5nIG1lYW4sIG90aGVyd2lzZSB0aGUgY29lZmZpY2llbnQgb2YgdmFyaWF0aW9uIGNhbiBiZSB1c2VkLgpJZiB0aGUgb21pY3MgZGF0YSBpbmNsdWRlIG91dGxpZXJzLCBNQUQgZmlsdGVyIGlzIG1vcmUgcm9idXN0IHRoYW4gdGhlIHZhcmlhbmNlIGZpbHRlci4KQmFzZWQgb24gdGhlICQ2MDY2MCQgbVJOQS1TZXEgZmVhdHVyZXMgZnJvbSBUQ0dBIGJyZWFzdCBjYW5jZXIgcGF0aWVudHMgcHJlcHJvY2Vzc2VkIHByZXZpb3VzbHksIHRoZSBjb2RlIGJlbG93IGV4dHJhY3RzIHRoZSAkMVwlJCBtb3N0IHZhcmlhYmxlIGZlYXR1cmVzIHVzaW5nIHZhcmlhbmNlIGFzIGEgZmlsdGVyaW5nIG1ldHJpYy4KCmBgYHtyfQpSTkFfbG9nMmNvdW50ID0gbG9nMihSTkFfY291bnQgKyAxKQpmaWx0ZXJlZCA9IE0zQzo6ZmVhdHVyZWZpbHRlcihSTkFfbG9nMmNvdW50LCBwZXJjZW50aWxlID0gMSwgbWV0aG9kID0gJ3ZhcicsIHRvcE4gPSA1KQpmaWx0ZXJlZF9ybmExID0gZmlsdGVyZWQkZmlsdGVyZWRfZGF0YQpgYGAKYGBgCioqKmZlYXR1cmUgZmlsdGVyIGZ1bmN0aW9uKioqCmV4dHJhY3RpbmcgdGhlIG1vc3QgdmFyaWFibGU6IDEgcGVyY2VudApmZWF0dXJlcyB0byBzdGFydCB3aXRoOiA2MDY2MApwZXJmb3JtaW5nIGNhbGN1bGF0aW9ucyBmb3IgdmFyaWFuY2UKcHJpbnRpbmcgdG9wTiBtb3N0IHZhcmlhYmxlIGZlYXR1cmVzIHdpdGggc3RhdGlzdGljcy4uLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmZWF0dXJlICAgICAgbWVhbiAgICAgIHZhciAgICAgICBzZApFTlNHMDAwMDAxNjY1MDkuMTIgRU5TRzAwMDAwMTY2NTA5LjEyICA2LjA4NDMzNiAzMS42MDQ1MCA1LjYyMTc4OApFTlNHMDAwMDAxMTA0ODQuNyAgIEVOU0cwMDAwMDExMDQ4NC43IDExLjAwNDM0NiAyNi4yMjY4NiA1LjEyMTIxNgpFTlNHMDAwMDAxNTMwMDIuMTIgRU5TRzAwMDAwMTUzMDAyLjEyICA4LjIyMjM4NiAyNS44Nzc4MCA1LjA4NzAyMgpFTlNHMDAwMDAxMzQxODQuMTMgRU5TRzAwMDAwMTM0MTg0LjEzICA1LjM3MTE1OCAyMy4yODc1NiA0LjgyNTcxOQpFTlNHMDAwMDAxNjAxODIuMyAgIEVOU0cwMDAwMDE2MDE4Mi4zICA5LjkwMTU2NyAyMS40ODQwMyA0LjYzNTA4NwpmZWF0dXJlcyByZW1haW5pbmc6IDYwNwpgYGAKCkFub3RoZXIgdmFyaWFuY2UtdHlwZSBmaWx0ZXIgaXMgdG8gcmVtYWluIGZlYXR1cmVzIHdpdGggY2VydGFpbiBwZXJjZW50YWdlIG9mICoqY3VtdWxhdGl2ZSB2YXJpYW5jZXMqKiwgd2hpY2ggd2lsbCB1c3VhbGx5IGZpbHRlciBmZXdlciBmZWF0dXJlcyB0aGFuIHRoZSBhcHByb2FjaGVzIGFib3ZlLgpUaGUgY29kZSBiZWxvdyBleHRyYWN0cyB0aGUgbW9zdCB2YXJpYWJsZSBmZWF0dXJlcyBleHBsYWluaW5nICQxXCUkICoqY3VtdWxhdGl2ZSB2YXJpYW5jZXMqKi4KCmBgYHtyfQpjdW1zdW1fdmFyID0gY3Vtc3VtKGZpbHRlcmVkJHN0YXRpc3RpY3MkdmFyKQpjdW1zdW1fY3V0b2ZmID0gY3Vtc3VtX3ZhcltsZW5ndGgoY3Vtc3VtX3ZhcildICogMC4wMQpmaWx0ZXJlZF9uYW1lcyA9IGZpbHRlcmVkJHN0YXRpc3RpY3MkZmVhdHVyZVtjdW1zdW1fdmFyIDwgY3Vtc3VtX2N1dG9mZl0KYGBgCgo8YnI+CgojIFN1cnZpdmFsIGFuYWx5c2lzIHdpdGggaGlnaC1kaW1lbnNpb25hbCBpbnB1dCBkYXRhIHstfQoKIyMgVW5zdXBlcnZpc2VkIGxlYXJuaW5nIChvbWljcyBkYXRhKSB7LX0KCkluIHRoaXMgc2VjdGlvbiB3ZSB3aWxsIHVzZSB0aGUgbVJOQS1TZXEgZGF0YSBvZiBicmVhc3QgY2FuY2VyIHBhdGllbnRzIGZyb20gVENHQS4KVGhlIGZvbGxvd2luZyB1bnN1cGVydmlzZWQgbWV0aG9kcyBjYW4gYmUgYXBwbGllZCB0byBvdGhlciBvbWljcyBkYXRhIGFzIHdlbGwgKHRoZSBzYW1lIGFwcGxpZXMgdG8gdGhlIHN1cGVydmlzZWQgbGVhcm5pbmcgbWV0aG9kcykuCk9uZSBpbXBvcnRhbnQgdGhpbmcgaXMgdGhhdCB0aGUgaW5wdXQgb21pY3MgZGF0YSwgZXNwZWNpYWxseSB0aGUgZGF0YSB0eXBlIGFuZCBkaW1lbnNpb25zLCBzaG91bGQgYmUgc3VpdGVkIHRvIHRoZSBtZXRob2RzLgoKVW5zdXBlcnZpc2VkIGxlYXJuaW5nIGZvciBvbWljcyBkYXRhIGNhbiBiZSBoZWxwZnVsIHRvIGV4cGxvcmUgc3VicG9wdWxhdGlvbnMgb2YgdGhlIGRhdGEsIGZvciBleGFtcGxlLCBwYXRpZW50cyBmcm9tIG9uZSBjYW5jZXIgdHlwZSBjYW4gYmUgZGl2aWRlZCB0byBzZXZlcmFsIG9taWNzLXJlbGF0ZWQgc3VidHlwZXMuCldlIGRlbW9uc3RyYXRlIHRocmVlIHVuc3VwZXJ2aXNlZCBsZWFybmluZyBtZXRob2RzLCBpLmUuIHByaW5jaXBhbCBjb21wb25lbnQgYW5hbHlzaXMgKFBDQSksICR0JC1zdG9jaGFzdGljIG5laWdoYm91ciBlbWJlZGRpbmcgKCR0JC1TTkUpIGFuZCB1bmlmb3JtIG1hbmlmb2xkIGFwcHJveGltYXRpb24gYW5kIHByb2plY3Rpb24gKFVNQVApLCBiYXNlZCBvbiB0aGUgUEFNNTAgZ2VuZXMgW0BQYXJrZXIyMDA5XS4KVGhlIGBSYCBwYWNrYWdlIFsqKk0zQyoqXShodHRwczovL2Jpb2NvbmR1Y3Rvci5vcmcvcGFja2FnZXMvTTNDLykgW0BKb2huMjAyMF0gcHJvdmlkZXMgdGhlIGFuYWx5c2VzIGFuZCB2aXN1YWxpemF0aW9uIG9mIGFsbCB0aGUgdGhyZWUgbWV0aG9kcy4KCmBgYHtyfQojIGV4dHJhY3QgdGhlIFBBTTUwIGdlbmVzIG9mIFRDR0EtQlJDQSBwYXRpZW50cwpUQ0dBX1BBTTUwID0gUk5BX2NvdW50W3NhcHBseShzdHJzcGxpdChyb3duYW1lcyhSTkFfY291bnQpLCAiLiIsIGZpeGVkID0gVFJVRSksIGZ1bmN0aW9uKHgpIHhbWzFdXSkgJWluJSBjKAogICJFTlNHMDAwMDAwNzcxNTIiLCAiRU5TRzAwMDAwMDg5Njg1IiwgIkVOU0cwMDAwMDE0MzIyOCIsICJFTlNHMDAwMDAwOTQ4MDQiLCAiRU5TRzAwMDAwMTM0MDU3IiwKICAiRU5TRzAwMDAwMTc2ODkwIiwgIkVOU0cwMDAwMDEwMTA1NyIsICJFTlNHMDAwMDAxMzgxODAiLCAiRU5TRzAwMDAwMTY1MzA0IiwgIkVOU0cwMDAwMDA4MDk4NiIsCiAgIkVOU0cwMDAwMDE3MTg0OCIsICJFTlNHMDAwMDAxNzUwNjMiLCAiRU5TRzAwMDAwMTE3NzI0IiwgIkVOU0cwMDAwMDE2NDYxMSIsICJFTlNHMDAwMDAxNzQzNzEiLAogICJFTlNHMDAwMDAwOTE2NTEiLCAiRU5TRzAwMDAwMDExNDI2IiwgIkVOU0cwMDAwMDEwNTE3MyIsICJFTlNHMDAwMDAxMTczOTkiLCAiRU5TRzAwMDAwMTQ4NzczIiwKICAiRU5TRzAwMDAwMTQyOTQ1IiwgIkVOU0cwMDAwMDEzMzYyNyIsICJFTlNHMDAwMDAxMzY5OTciLCAiRU5TRzAwMDAwMTQ2NjQ4IiwgIkVOU0cwMDAwMDE4NjA4MSIsCiAgIkVOU0cwMDAwMDA5MjYyMSIsICJFTlNHMDAwMDAwNjIwMzgiLCAiRU5TRzAwMDAwMjYxODU3IiwgIkVOU0cwMDAwMDEyODQyMiIsICJFTlNHMDAwMDAwNTQ1OTgiLAogICJFTlNHMDAwMDAxMDQzMzIiLCAiRU5TRzAwMDAwMTg2ODQ3IiwgIkVOU0cwMDAwMDA5MTgzMSIsICJFTlNHMDAwMDAxNDE0MjQiLCAiRU5TRzAwMDAwMTA3MjYyIiwKICAiRU5TRzAwMDAwMTg2ODY4IiwgIkVOU0cwMDAwMDA4MjE3NSIsICJFTlNHMDAwMDAxNzE2MDQiLCAiRU5TRzAwMDAwMTE1NjQ4IiwgIkVOU0cwMDAwMDE3MTc5MSIsCiAgIkVOU0cwMDAwMDEzNTY3OSIsICJFTlNHMDAwMDAxNzE0MjgiLCAiRU5TRzAwMDAwMTI5NTE0IiwgIkVOU0cwMDAwMDEwNjYwNSIsICJFTlNHMDAwMDAwOTk5NTMiLAogICJFTlNHMDAwMDAxNzM4OTAiLCAiRU5TRzAwMDAwMTYwODY3IiwgIkVOU0cwMDAwMDE0MTczOCIsICJFTlNHMDAwMDAxNTE3MTUiLCAiRU5TRzAwMDAwMTQxNzM2IiksIF0KIyB1c2UgZ2VuZSBzeW1ib2xzIGluc3RlYWQgb2YgRW5zZW1ibCBJRHMKcm93bmFtZXMoVENHQV9QQU01MCkgPSAKICBjKCJVQkUyVCIsICJCSVJDNSIsICJOVUYyIiwgIkNEQzYiLCAiQ0NOQjEiLCAiVFlNUyIsICJNWUJMMiIsICJDRVA1NSIsICJNRUxLIiwgIk5EQzgwIiwgIlJSTTIiLCAKICAgICJVQkUyQyIsICJDRU5QRiIsICJQVFRHMSIsICJFWE8xIiwgIk9SQzZMIiwgIkFOTE4iLCAiQ0NORTEiLCAiQ0RDMjAiLCAiTUtJNjciLCAiS0lGMkMiLCAKICAgICJBQ1RSM0IiLCAiTVlDIiwgIkVHRlIiLCAiS1JUNSIsICJQSEdESCIsICJDREgzIiwgIk1JQSIsICJLUlQxNyIsICJGT1hDMSIsICJTRlJQMSIsICJLUlQxNCIsIAogICAgIkVTUjEiLCAiU0xDMzlBNiIsICJCQUcxIiwgIk1BUFQiLCAiUEdSIiwgIkNYWEM1IiwgIk1MUEgiLCAiQkNMMiIsICJNRE0yIiwgIk5BVDEiLCAiRk9YQTEiLCAKICAgICJCTFZSQSIsICJNTVAxMSIsICJHUFIxNjAiLCAiRkdGUjQiLCAiR1JCNyIsICJUTUVNNDVCIiwgIkVSQkIyIikKCiMgbG9nMi10cmFuc2Zvcm1hdGlvbiBvZiB0aGUgbm9ybWFsaXplZCBjb3VudCBkYXRhClRDR0FfUEFNNTAgPSBsb2cyKFRDR0FfUEFNNTAgKyAxKQpwYW01MCA9IGZhY3RvcihjbGluJHBhcGVyX0JSQ0FfU3VidHlwZV9QQU01MCkKCk0zQzo6cGNhKFRDR0FfUEFNNTAsIGxhYmVscyA9IHBhbTUwLCBkb3RzaXplID0gMywgIGxlZ2VuZHRpdGxlID0gIlN1YnR5cGUiKQpgYGAKIVtfVW5zdXBlcnZpc2VkIGNsdXN0ZXJpbmcgKHByaW5jaXBhbCBjb21wb25lbnQgYW5hbHlzaXMsIFBDQSkgb2YgdHJhbnNjcmlwdG9taWMgZGF0YSBmcm9tIFRDR0EgYnJlYXN0IGNhbmNlciBwYXRpZW50c19dKGZpZy9UQ0dBX3BjYS5wbmcpe3dpZHRoPTUwJX0KCmBgYHtyfQpNM0M6OnRzbmUoVENHQV9QQU01MCwgbGFiZWxzID0gcGFtNTAsIGRvdHNpemUgPSAzLCAgbGVnZW5kdGl0bGUgPSAiU3VidHlwZSIpCmBgYAohW19VbnN1cGVydmlzZWQgY2x1c3RlcmluZyAoJHQkLXN0b2NoYXN0aWMgbmVpZ2hib3VyIGVtYmVkZGluZywgJHQkLVNORSkgb2YgdHJhbnNjcmlwdG9taWMgZGF0YSBmcm9tIFRDR0EgYnJlYXN0IGNhbmNlciBwYXRpZW50c19dKGZpZy9UQ0dBX3RzbmUucG5nKXt3aWR0aD01MCV9CgpgYGB7cn0KTTNDOjp1bWFwKFRDR0FfUEFNNTAsIGxhYmVscyA9IHBhbTUwLCBkb3RzaXplID0gMywgIGxlZ2VuZHRpdGxlID0gIlN1YnR5cGUiKQpgYGAKIVtfVW5zdXBlcnZpc2VkIGNsdXN0ZXJpbmcgKHVuaWZvcm0gbWFuaWZvbGQgYXBwcm94aW1hdGlvbiBhbmQgcHJvamVjdGlvbiwgVU1BUCkgb2YgdHJhbnNjcmlwdG9taWMgZGF0YSBmcm9tIFRDR0EgYnJlYXN0IGNhbmNlciBwYXRpZW50c19dKGZpZy9UQ0dBX3VtYXAucG5nKXt3aWR0aD01MCV9Cgo8YnI+CgojIyBTdXBlcnZpc2VkIGxlYXJuaW5nIChvbWljcyBhbmQgc3Vydml2YWwgZGF0YSkgey19CgpUbyBpbnZlc3RpZ2F0ZSB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gb21pY3MgZmVhdHVyZXMgYW5kIHN1cnZpdmFsIG91dGNvbWVzLCByZWdyZXNzaW9uIG1ldGhvZHMgKGkuZS4gc3VwZXJ2aXNlZCBsZWFybmluZykgY2FuIGJlIGFwcGxpZWQuIApTaW5jZSBvbWljcyBkYXRhIGFyZSBoaWdoLWRpbWVuc2lvbmFsLCBvbmUgY2FuIHVzZSB1bnN1cGVydmlzZWQgbGVhcm5pbmcgbWV0aG9kcyB0byBzdW1tYXJpemUgYSBmZXcgY29tcG9uZW50cyAoZGltZW5zaW9uIHJlZHVjdGlvbikgYW5kIHJlZ3Jlc3MgdGhlIHN1cnZpdmFsIG91dGNvbWVzIG9uIHRoZSBsb3ctZGltZW5zaW9uYWwgY29tcG9uZW50cyBieSBzb21lIGNsYXNzaWNhbCBzdGF0aXN0aWNhbCBtZXRob2RzLCBlLmcuIGNsYXNzaWNhbCBDb3ggbW9kZWwuClRoZXJlIGFyZSBhbHNvIGZyZXF1ZW50aXN0IGFuZCBCYXllc2lhbiBzdXBlcnZpc2VkIGxlYXJuaW5nIG1ldGhvZHMgc3VpdGVkIHRvIGRpcmVjdGx5IHJlZ3Jlc3MgdGhlIHN1cnZpdmFsIG91dGNvbWVzIG9uIHRoZSBoaWdoLWRpbWVuc2lvbmFsIG9taWNzIGZlYXR1cmVzLgpOb3RlIHRoYXQgcHJlc2VsZWN0aW5nL2ZpbHRlcmluZyB1bHRyYWhpZ2gtZGltZW5zaW9uYWwgb21pY3MgZmVhdHVyZXMgY2FuIGJlIHVzZWZ1bCBiZWZvcmUgcnVubmluZyB0aGUgZnJlcXVlbnRpc3QgYW5kIEJheWVzaWFuIHN1cGVydmlzZWQgbGVhcm5pbmcgbWV0aG9kcy4KCiMjIyBEaW1lbnNpb24gcmVkdWN0aW9uIGZvciBDb3ggbW9kZWxzIHstfQoKVGhlIGZvbGxvd2luZyBjb2RlIGRlbW9uc3RyYXRlcyB0aGUgdXNlIG9mIHRoZSBmaXJzdCB0d28gcHJpbmNpcGFsIGNvbXBvbmVudHMgb2YgUENBIGFzIGNvdmFyaWF0ZXMgZm9yIHRoZSAqKnB1cnBvc2Ugb2Ygc3Vydml2YWwgcHJlZGljdGlvbioqLgpTaW1pbGFybHksIHRoZSBmaXJzdCBjb21wb25lbnRzIGZyb20gJHQkLVNORSBvciBVTUFQIGNhbiBhbHNvIGJlIGV4dHJhY3RlZCBhcyBjb3ZhcmlhdGVzLgoKYGBge3J9CiMgcHJpbmNpcGFsIGNvbXBvbmVudCByZWdyZXNzaW9uCnhfdG1wID0gcHJjb21wKHQoVENHQV9QQU01MCkpCgojIGNob29zZSB0aGUgdG9wIHR3byBjb21wb25lbnRzIChzdWJqZWN0aXZlKSBhcyBjb3ZhcmlhdGVzClhfUEMgPSB4X3RtcCR4WywgMToyXQojIGJ1aWxkIGNsYXNzaWNhbCBzdXJ2aXZhbCBtb2RlbCAoZS5nLiBQSCBDb3ggbW9kZWwpCmRhdGFfdG1wID0gZGF0YS5mcmFtZSh0aW1lID0gY2xpbiR0aW1lLCBzdGF0dXMgPSBjbGluJHN0YXR1cywgWF9QQykKZml0ID0gY294cGgoU3Vydih0aW1lLCBzdGF0dXMpIH4gUEMxICsgUEMyLCBkYXRhID0gZGF0YV90bXApCnN1bW1hcnkoZml0KQpgYGAKYGBgCkNhbGw6CmNveHBoKGZvcm11bGEgPSBTdXJ2KHRpbWUsIHN0YXR1cykgfiBQQzEgKyBQQzIsIGRhdGEgPSBkYXRhX3RtcCkKCiAgbj0gMTA0NywgbnVtYmVyIG9mIGV2ZW50cz0gMTQ5IAoKICAgICAgICBjb2VmIGV4cChjb2VmKSBzZShjb2VmKSAgICAgeiBQcig+fHp8KSAgIApQQzEgMC4wMDQ4OTQgIDEuMDA0OTA2IDAuMDA5Njg5IDAuNTA1ICAwLjYxMzQ4ICAgClBDMiAwLjAzODI2OSAgMS4wMzkwMTAgMC4wMTMyMjQgMi44OTQgIDAuMDAzODEgKioKLS0tClNpZ25pZi4gY29kZXM6ICAwIOKAmCoqKuKAmSAwLjAwMSDigJgqKuKAmSAwLjAxIOKAmCrigJkgMC4wNSDigJgu4oCZIDAuMSDigJgg4oCZIDEKCiAgICBleHAoY29lZikgZXhwKC1jb2VmKSBsb3dlciAuOTUgdXBwZXIgLjk1ClBDMSAgICAgMS4wMDUgICAgIDAuOTk1MSAgICAgMC45ODYgICAgIDEuMDI0ClBDMiAgICAgMS4wMzkgICAgIDAuOTYyNSAgICAgMS4wMTIgICAgIDEuMDY2CgpDb25jb3JkYW5jZT0gMC41OCAgKHNlID0gMC4wMjggKQpMaWtlbGlob29kIHJhdGlvIHRlc3Q9IDguNjIgIG9uIDIgZGYsICAgcD0wLjAxCldhbGQgdGVzdCAgICAgICAgICAgID0gOC43MSAgb24gMiBkZiwgICBwPTAuMDEKU2NvcmUgKGxvZ3JhbmspIHRlc3QgPSA4LjczICBvbiAyIGRmLCAgIHA9MC4wMQpgYGAKCiMjIyBQZW5hbGl6ZWQgQ294IG1vZGVscyB7LX0KCkZvciBjb21wdXRhdGlvbmFsIGVmZmljaWVuY3ksIHdlIHdpbGwgdXNlIG9ubHkgdGhlIG1STkEtU2VxIGZlYXR1cmVzIGNvcnJlc3BvbmRpbmcgdG8gdGhlIFBBTTUwIGdlbmVzIFtAUGFya2VyMjAwOV0gaW5zdGVhZCBvZiB0aGUgdmFyaWFuY2UgZmlsdGVyZWQgZ2VuZXMgZnJvbSB0aGUgcHJldmlvdXMgc2VjdGlvbi4KV2UgcGVyZm9ybSBhbiBpbnZlc3RpZ2F0aW9uIG9mIHRoZSByZWxhdGlvbnNoaXBzIGJldHdlZW4gdGhlIG1STkEtU2VxIGZlYXR1cmVzLCB0d28gY2xpbmljYWwgdmFyaWFibGVzIChpLmUuIHRoZSBwYXRpZW50cycgYWdlIGF0IGRpYWdub3NpcyBhbmQgdGhlaXIgZXRobmljaXR5KSBhbmQgdGhlIHN1cnZpdmFsIG91dGNvbWVzLgoKVGhlIGBSYCBwYWNrYWdlIFsqKmdsbW5ldCoqXShodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPWdsbW5ldCkgW0BGcmllZG1hbjIwMTBdIGlzIHZlcnkgY29tcHV0YXRpb25hbGx5IGVmZmljaWVudCB0byBydW4gTGFzc28gYW5kIEVsYXN0aWMgTmV0IENveCBtb2RlbHMuCkxhc3NvIGhhcyBhIHR1bmluZyBwYXJhbWV0ZXIgJFxsYW1iZGEkIHRvIGNvbnRyb2wgdGhlIHBlbmFsdHkgc3RyZW5ndGggb2YgdGhlIGNvZWZmaWNpZW50cyB3aGljaCBjYW4gYmUgb3B0aW1pemVkIGJ5IGNyb3NzLXZhbGlkYXRpb24gKENWKSB2aWEgZnVuY3Rpb24gYGN2LmdsbW5ldCgpYC4KVGhlIGBnbG1uZXQoKWAgYW5kIGBjdi5nbG1uZXQoKWAgZnVuY3Rpb25zIHByb3ZpZGUgdGhlIGFyZ3VtZW50IGBwZW5hbHR5LmZhY3RvcmAgdG8gYWxsb3cgZGlmZmVyZW50IHNocmlua2FnZXMgZm9yIGRpZmZlcmVudCBmZWF0dXJlcywgd2hpY2ggbWFrZXMgc2Vuc2UgaWYgb25lIGluY2x1ZGVzIGJvdGggY2xpbmljYWwvZGVtb2dyYXBoaWMgdmFyaWFibGVzIGFuZCBvbWljcyBmZWF0dXJlcyBhbmQgZG9lcyBub3Qgd2FudCB0byBwZXJmb3JtIGZlYXR1cmUgc2VsZWN0aW9uIGZvciB0aGUgY2xpbmljYWwvZGVtb2dyYXBoaWMgdmFyaWFibGVzLgoKYGBge3J9CiMjIExhc3NvIENveCBtb2RlbAoKIyMgZm9yIGRlbW9uc3RyYXRpb24gc2ltcGxpY2l0eSwgUEFNNTAgZ2VuZXMgYXJlIHVzZWQgaGVyZQp4ID0gY2JpbmQoYWdlID0gY2xpbiRhZ2UsIGV0aG5pY2l0eSA9IGZhY3RvcihjbGluJGV0aG5pY2l0eSksIHQoVENHQV9QQU01MCkpCnkgPSBjYmluZCh0aW1lID0gY2xpbiR0aW1lLCBzdGF0dXMgPSBjbGluJHN0YXR1cykKCiMgc2V0IHBlbmFsdHkgZmFjdG9yIHdpdGhvdXQgcGVuYWxpemluZyB0aGUgdHdvIGRlbW9ncmFwaGljYWwgdmFyaWFibGVzCnBmID0gYyhyZXAoMCwgMiksIHJlcCgxLCBuY29sKHgpIC0gMikpCgojIExhc3NvIENveCBieSB1c2luZyBjdi5nbG1uZXQgdG8gb2J0YWluIHRoZSA1LWZvbGQgQ1Ygb3B0aW1hbCBsYW1iZGEubWluIG9yIGxhbWJkYS4xc2UKc2V0LnNlZWQoMTIzKQpjdmZpdCA9IGdsbW5ldDo6Y3YuZ2xtbmV0KHgsIHksIGZhbWlseSA9ICJjb3giLCBuZm9sZHMgPSA1LCBwZW5hbHR5LmZhY3RvciA9IHBmKQptb2QgPSBjdmZpdCRnbG1uZXQuZml0CmxhbWJkYV9vcHRpbWFsID0gY3ZmaXQkbGFtYmRhLm1pbiAjIG9wdGltYWwgbGFtYmRhCgpiZXRhcyA9IGFzLnZlY3Rvcihjb2VmKG1vZCwgcyA9IGxhbWJkYV9vcHRpbWFsKSkKYmV0YS5wb3NpdGl2ZSA9IGNvbG5hbWVzKHgpW2JldGFzID4gMF0KYmV0YS5uZWdhdGl2ZSA9IGNvbG5hbWVzKHgpW2JldGFzIDwgMF0KI2dldCBvcmRlcmVkIGxpc3Qgb2YgdmFyaWFibGVzIGFzIHRoZXkgYXBwZWFyIGF0IHNtYWxsZXN0IGxhbWJkYQphbGxuYW1lcyA9IG5hbWVzKGNvZWYobW9kKVssIG5jb2woY29lZihtb2QpKV0KICAgICAgICAgICAgICAgIFtvcmRlcihjb2VmKG1vZClbLCBuY29sKGNvZWYobW9kKSldLCBkZWNyZWFzaW5nID0gVFJVRSldKQojIGFzc2lnbiBjb2xvcnMKY29scyA9IHJlcCgiZ3JheTgwIiwgbGVuZ3RoKGFsbG5hbWVzKSkKY29sc1thbGxuYW1lcyAlaW4lIGJldGEucG9zaXRpdmVdID0gInNlYWdyZWVuMyIKY29sc1thbGxuYW1lcyAlaW4lIGJldGEubmVnYXRpdmVdID0gImhvdHBpbmsiCgojIGRyd2EgY29lZmZpY2llbnQgcGF0aHMgb2YgYSBMYXNzbyBDb3ggbW9kZWwKcGxvdG1vOjpwbG90X2dsbW5ldChtb2QsIGxhYmVsID0gVFJVRSwgcyA9IGxhbWJkYV9vcHRpbWFsLCBjb2wgPSBjb2xzLAogICAgICAgICAgICB4bGFiID0gZXhwcmVzc2lvbihsb2cgfn4gbGFtYmRhKSwgeWxhYiA9IGV4cHJlc3Npb24oYmV0YSkpCnRpdGxlKCJMYXNzbyAgIFxuXG4iKQpgYGAKIVtfQ29lZmZpY2llbnQgcGF0aHMgb2YgYSBMYXNzbyBDb3ggbW9kZWwuIFRoZSB2ZXJ0aWNsZSBncmF5IGxpbmUgaW5kaWNhdGVzIHRoZSBvcHRpbWFsICRcbGFtYmRhJCBhbmQgaXRzIGNvcnJlc3BvbmRpbmdseSBzZWxlY3RlZCBmZWF0dXJlcyBhcmUgbWFya2VkIGFzIGdyZWVuIChwb3NpdGl2ZSBjb2VmZmljaWVudCkgYW5kIHJlZCAobmVnYXRpdmUgY29lZmZpY2llbnQpIGNvbG9ycy4gTm90ZSB0aGF0IHRoZSBkZW1vZ3JhcGhpYyB2YXJpYWJsZXMgYWdlIGFuZCBldGhuaWNpdHkgd2VyZSBub3QgcGVuYWxpemVkLCBzbyB0aGF0IHRoZWlyIGNvZWZmaWNpZW50IHBhdGhzIGRpZCBub3Qgc3RhcnQgZnJvbSB6ZXJvIGluIHRoZSBmaWd1cmUuX10oZmlnL1RDR0FfbGFzc28ucG5nKXt3aWR0aD02MCV9Cgo8YnI+CgpFbGFzdGljIE5ldCBDb3ggbW9kZWwgaW5jbHVkZXMgdGhlICRcbGFtYmRhJCBhbmQgYW4gYWRkaXRpb25hbCBwZW5hbHR5IHBhcmFtZXRlciAkXGFscGhhIFxpbiBbMCwxXSQuClRoZSBwYXJhbWV0ZXIgJFxhbHBoYSQgY2FuIGJlIGZpeGVkIGFzICQwJCAoUmlkZ2UpLCAkMSQgKExhc3NvKSBvciBhbnkgdmFsdWUgYmV0d2VlbiAkMCQgYW5kICQxJCBmb3IgbWFraW5nIGEgY29tcHJvbWlzZSBiZXR3ZWVuIFJpZGdlIGFuZCBMYXNzbywgd2hpY2ggY2FuIGFsc28gYmUgb3B0aW1pemVkIGJ5IGNyb3NzLXZhbGlkYXRpb24gbWFudWFsbHksIHNlZSB0aGUgZXhhbXBsZSBiZWxvdy4KCmBgYHtyfQojIyBFbGFzdGljIE5ldCBDb3ggbW9kZWwKCiMgc2V0IHBlbmFsdHkgcGFyYW1ldGVyIGFscGhhIHdoaWNoIGNvbXByaXNlcyBiZXR3ZWVuIExhc3NvIGFuZCByaWRnZSByZWdyZXNzaW9ucwphbHBoYSA9IHNlcSgwLjEsIDEsIGxlbmd0aCA9IDEwKQpmaXRFTiA9IGxpc3QoKQpzZXQuc2VlZCgxMjMpCmZvcihpIGluIDE6bGVuZ3RoKGFscGhhKSkgewogIGZpdEVOW1tpXV0gPSBjdi5nbG1uZXQoeCwgeSwgZmFtaWx5ID0gImNveCIsIGFscGhhID0gYWxwaGFbaV0sIG5mb2xkcyA9IDUsIHBlbmFsdHkuZmFjdG9yID0gcGYpCn0KaWR4ID0gd2hpY2gubWluKHNhcHBseShmaXRFTiwgZnVuY3Rpb24oeHgpIHt4eCRjdm1beHgkbGFtYmRhID09IHh4JGxhbWJkYS5taW5dfSkpCmN2Zml0ID0gZml0RU5bW2lkeF1dCgojIHRoZSBmb2xsb3dpbmcgY29kZSBpcyB0aGUgc2FtZSBhcyBMYXNzbyBwcmV2aW91c2x5Cm1vZCA9IGN2Zml0JGdsbW5ldC5maXQKbGFtYmRhX29wdGltYWwgPSBjdmZpdCRsYW1iZGEubWluICMgb3B0aW1hbCBsYW1iZGEKCmJldGFzID0gYXMudmVjdG9yKGNvZWYobW9kLCBzID0gbGFtYmRhX29wdGltYWwpKQpiZXRhLnBvc2l0aXZlID0gY29sbmFtZXMoeClbYmV0YXMgPiAwXQpiZXRhLm5lZ2F0aXZlID0gY29sbmFtZXMoeClbYmV0YXMgPCAwXQphbGxuYW1lcyA9IG5hbWVzKGNvZWYobW9kKVssIG5jb2woY29lZihtb2QpKV0KICAgICAgICAgICAgICAgIFtvcmRlcihjb2VmKG1vZClbLCBuY29sKGNvZWYobW9kKSldLCBkZWNyZWFzaW5nID0gVFJVRSldKQpjb2xzID0gcmVwKCJncmF5ODAiLCBsZW5ndGgoYWxsbmFtZXMpKQpjb2xzW2FsbG5hbWVzICVpbiUgYmV0YS5wb3NpdGl2ZV0gPSAic2VhZ3JlZW4zIiAKY29sc1thbGxuYW1lcyAlaW4lIGJldGEubmVnYXRpdmVdID0gImhvdHBpbmsiICAgCgpwbG90bW86OnBsb3RfZ2xtbmV0KG1vZCwgbGFiZWwgPSBUUlVFLCBzID0gbGFtYmRhX29wdGltYWwsIGNvbCA9IGNvbHMsCiAgICAgICAgICAgIHhsYWIgPSBleHByZXNzaW9uKGxvZyB+fiBsYW1iZGEpLCB5bGFiID0gZXhwcmVzc2lvbihiZXRhKSkKdGl0bGUoIkVsYXN0aWMgTmV0ICAgICBcblxuIikKYGBgCiFbX0NvZWZmaWNpZW50IHBhdGhzIG9mIGFuIEVsYXN0aWMgTmV0IENveCBtb2RlbC4gVGhlIHZlcnRpY2xlIGdyYXkgbGluZSBpbmRpY2F0ZXMgdGhlIG9wdGltYWwgJFxsYW1iZGEkIGFuZCBpdHMgY29ycmVzcG9uZGluZ2x5IHNlbGVjdGVkIGZlYXR1cmVzIGFyZSBtYXJrZWQgYXMgZ3JlZW4gKHBvc2l0aXZlIGNvZWZmaWNpZW50KSBhbmQgcmVkIChuZWdhdGl2ZSBjb2VmZmljaWVudCkgY29sb3JzLiBOb3RlIHRoYXQgdGhlIGRlbW9ncmFwaGljIHZhcmlhYmxlcyBhZ2UgYW5kIGV0aG5pY2l0eSB3ZXJlIG5vdCBwZW5hbGl6ZWQsIHNvIHRoYXQgdGhlaXIgY29lZmZpY2llbnQgcGF0aHMgZGlkIG5vdCBzdGFydCBmcm9tIHplcm8gaW4gdGhlIGZpZ3VyZS5fXShmaWcvVENHQV9lbGFzdGljLnBuZyl7d2lkdGg9NjAlfQoKPGJyPgoKQWRhcHRpdmUgTGFzc28gQ294IG1vZGVsIG5lZWRzIHRvIHByZS1lc3RpbWF0ZSBhbGwgY29lZmZpY2llbnRzIHdoaWNoIHdpbGwgYmUgdXNlZCBhcyB3ZWlnaHRzIHZpYSB0aGUgYXJndW1lbnQgYHBlbmFsdHkuZmFjdG9yYCBpbiB0aGUgYGdsbW5ldCgpYCBhbmQgYGN2LmdsbW5ldCgpYCBmdW5jdGlvbnMgdG8gZml0IGEgTGFzc28gQ294IG1vZGVsLgpUaGUgcHJlLWVzdGltYXRpb24gY2FuIGJlIGRvbmUgYnkgYSBSaWRnZSBDb3ggbW9kZWwsIHNlZSBhbiBleGFtcGxlIGJlbG93LgoKYGBge3J9CiMjIEFkYXB0aXZlIExhc3NvIENveCBtb2RlbAoKc2V0LnNlZWQoMTIzKQpmaXQgPSBjdi5nbG1uZXQoeCwgeSwgZmFtaWx5ID0gImNveCIsIGFscGhhID0gMCwgbmZvbGRzID0gNSkKd2VpZ2h0cyA9IGFicygxIC8gYXMudmVjdG9yKGNvZWYoZml0LCBzID0gImxhbWJkYS5taW4iKSkpCgojIGFkYXB0aXZlIExhc3NvIENveCBieSB1c2luZyBjdi5nbG1uZXQgdG8gb2J0YWluIHRoZSA1LWZvbGQgQ1Ygb3B0aW1hbCBsYW1iZGEubWluIG9yIGxhbWJkYS4xc2UKY3ZmaXQgPSBjdi5nbG1uZXQoeCwgeSwgZmFtaWx5ID0gImNveCIsIG5mb2xkcyA9IDUsIHBlbmFsdHkuZmFjdG9yID0gcGYpCm1vZCA9IGN2Zml0JGdsbW5ldC5maXQKbGFtYmRhX29wdGltYWwgPSBjdmZpdCRsYW1iZGEubWluICMgb3B0aW1hbCBsYW1iZGEKCmJldGFzID0gYXMudmVjdG9yKGNvZWYobW9kLCBzID0gbGFtYmRhX29wdGltYWwpKQpiZXRhLnBvc2l0aXZlID0gY29sbmFtZXMoeClbYmV0YXMgPiAwXQpiZXRhLm5lZ2F0aXZlID0gY29sbmFtZXMoeClbYmV0YXMgPCAwXQojZ2V0IG9yZGVyZWQgbGlzdCBvZiB2YXJpYWJsZXMgYXMgdGhleSBhcHBlYXIgYXQgc21hbGxlc3QgbGFtYmRhCmFsbG5hbWVzID0gbmFtZXMoY29lZihtb2QpWywgbmNvbChjb2VmKG1vZCkpXQogICAgICAgICAgICAgICAgW29yZGVyKGNvZWYobW9kKVssIG5jb2woY29lZihtb2QpKV0sIGRlY3JlYXNpbmcgPSBUUlVFKV0pCiNhc3NpZ24gY29sb3JzCmNvbHMgPSByZXAoImdyYXk4MCIsIGxlbmd0aChhbGxuYW1lcykpCmNvbHNbYWxsbmFtZXMgJWluJSBiZXRhLnBvc2l0aXZlXSA9ICJzZWFncmVlbjMiCmNvbHNbYWxsbmFtZXMgJWluJSBiZXRhLm5lZ2F0aXZlXSA9ICJob3RwaW5rIgoKcGxvdF9nbG1uZXQobW9kLCBsYWJlbCA9IFRSVUUsIHMgPSBsYW1iZGFfb3B0aW1hbCwgY29sID0gY29scywKICAgICAgICAgICAgeGxhYiA9IGV4cHJlc3Npb24obG9nIH4gbGFtYmRhKSwgeWxhYiA9IGV4cHJlc3Npb24oYmV0YSkpCnRpdGxlKCJBZGF0aXZlIExhc3NvICAgIFxuXG4iKQpgYGAKIVtfQ29lZmZpY2llbnQgcGF0aHMgb2YgYW4gYWRhcHRpdmUgTGFzc28gQ294IG1vZGVsLiBUaGUgdmVydGljbGUgZ3JheSBsaW5lIGluZGljYXRlcyB0aGUgb3B0aW1hbCAkXGxhbWJkYSQgYW5kIGl0cyBjb3JyZXNwb25kaW5nbHkgc2VsZWN0ZWQgZmVhdHVyZXMgYXJlIG1hcmtlZCBhcyBncmVlbiAocG9zaXRpdmUgY29lZmZpY2llbnQpIGFuZCByZWQgKG5lZ2F0aXZlIGNvZWZmaWNpZW50KSBjb2xvcnMuIE5vdGUgdGhhdCB0aGUgZGVtb2dyYXBoaWMgdmFyaWFibGVzIGFnZSBhbmQgZXRobmljaXR5IHdlcmUgbm90IHBlbmFsaXplZCwgc28gdGhhdCB0aGVpciBjb2VmZmljaWVudCBwYXRocyBkaWQgbm90IHN0YXJ0IGZyb20gemVybyBpbiB0aGUgZmlndXJlLl9dKGZpZy9UQ0dBX2FkYXB0aXZlbGFzc28ucG5nKXt3aWR0aD02MCV9Cgo8YnI+CgpHcm91cCBMYXNzbyBDb3ggbW9kZWwgY2FuIGJlIGltcGxlbWVudGVkIHRocm91Z2ggdGhlIGBSYCBwYWNrYWdlIFsqKmdycHJlZyoqXShodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPWdycHJlZykgW0BCcmVoZW55MjAxNV0uCkZvciBhbiBpbGx1c3RyYXRpb24sIHdlIHNwZWNpZnkgdGhlIHR3byBkZW1vZ3JhcGhpYyB2YXJpYWJsZXMgYXMgdGhlIGZpcnN0IGdyb3VwLCB0aGUgZmlyc3QgJDEwJCBQQU01MCBnZW5lcyBhcyB0aGUgc2Vjb25kIGdyb3VwLCB0aGUgbGFzdCAkNDAkIFBBTTUwIGdlbmVzIGFzIHRoZSB0aGlyZCBncm91cC4KQSAkayQtZm9sZCBjcm9zcy12YWxpZGF0aW9uIChDVikgZm9yIHRoZSBncm91cCBMYXNzbyBDb3ggbW9kZWwgaXMgcGVyZm9ybWVkIHRocm91Z2ggZnVuY3Rpb24gYGN2LmdycHN1cnYoKWAuClRoZSByZXR1cm5lZCBvYmplY3QgYGN2Zml0JGxhbWJkYS5taW5gIGlzIHRoZSB2YWx1ZSBvZiBDVi1vcHRpbWl6ZWQgJFxsYW1iZGEkLgpUaGUgZm9sbG93aW5nIHJlc3VsdHMgc2hvdyB0aGF0IAoKLSB3aGVuIGNob29zaW5nIHRoZSBDVi1vcHRpbWl6ZWQgJFxsYW1iZGEgPSAwLjAxNDMkIChvdXRwdXQgbWF0cml4IGhhcyBsYW1iZGEgdmFsdWVzIGFzIGNvbHVtbiBuYW1lcyksIHRoZSBlc3RpbWF0ZWQgY29lZmZpY2llbnRzIG9mIHRoZSBmaXJzdCB0d28gZ3JvdXBzIGFyZSBub256ZXJvIChpLmUuIHNlbGVjdGluZyBmaXJzdCBhbmQgc2Vjb25kIGdyb3Vwcyk7Ci0gd2hlbiBjaG9vc2luZyB0aGUgJDEwJC10aCBsYW1iZGEgJFxsYW1iZGEgPSAwLjAyMTckLCBvbmx5IHRoZSBmaXJzdCBncm91cCBvZiBjb3ZhcmlhdGVzIGhhcyBub256ZXJvIGNvZWZmaWNpZW50cyAoaS5lLiBzZWxlY3RpbmcgZmlyc3QgZ3JvdXApOwotIHdoZW4gY2hvb3NpbmcgdGhlICQxNSQtdGggbGFtYmRhICRcbGFtYmRhID0gMC4wMTA4JCwgdGhlIGVzdGltYXRlZCBjb2VmZmljaWVudHMgb2YgYWxsIHRoZSB0aHJlZSBncm91cHMgYXJlIG5vbnplcm8gKGkuZS4gc2VsZWN0aW5nIGFsbCBncm91cHMpLiAKCk5vdGUgdGhhdCB0aGUgYFJgIHBhY2thZ2UgWyoqZ3JwcmVnKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9Z3JwcmVnKSBbQEJyZWhlbnkyMDE1XSBhbHNvIGltcGxlbWVudHMgZ3JvdXAgc21vb3RobHkgY2xpcHBlZCBhYnNvbHV0ZSBkZXZpYXRpb24gKFNDQUQpIG1vZGVsIGFuZCBzb21lIG90aGVycywgc2VlIEBCcmVoZW55MjAyMSBmb3IgZGV0YWlscy4KCmBgYHtyfQojIGdyb3VwIExhc3NvIENveCBtb2RlbApncm91cCA9IGMocmVwKCJkZW1vZ3JhcGhpYyIsIDIpLCByZXAoIlBBTTUwXzEiLCAxMCksIHJlcCgiUEFNNTBfMiIsIDQwKSkKZ3JvdXAgPSBmYWN0b3IoZ3JvdXApCnNldC5zZWVkKDEyMykKY3ZmaXQgPSBncnByZWc6OmN2LmdycHN1cnYoWCA9IHgsIHkgPSB5LCBncm91cCA9IGdyb3VwLCBwZW5hbHR5ID0gImdyTGFzc28iLCByZXR1cm5ZID0gVFJVRSkKcm91bmQoY3ZmaXQkZml0JGJldGFbLCBjKHdoaWNoLm1pbihjdmZpdCRjdmUpLCAxMCwgMjApXSwgZGlnaXRzID0gNCkKYGBgCmBgYAogICAgICAgICAgIDAuMDE0MyAgMC4wMjE3ICAwLjAxMDgKYWdlICAgICAgICAwLjAyMTkgIDAuMDE1NCAgMC4wMjQ3CmV0aG5pY2l0eSAtMC4wNTQyIC0wLjA0MjUgLTAuMDU2OQpVQkUyVCAgICAgIDAuMDIwOSAgMC4wMDAwICAwLjA3MzIKQklSQzUgICAgIC0wLjAwMzUgIDAuMDAwMCAtMC4wMTA5Ck5VRjIgICAgICAtMC4wMDMxICAwLjAwMDAgLTAuMDA5MwpDREM2ICAgICAgIDAuMDE1NSAgMC4wMDAwICAwLjA1NDYKQ0NOQjEgICAgIC0wLjAyNDcgIDAuMDAwMCAtMC4wODQ2ClRZTVMgICAgICAtMC4wMDI4ICAwLjAwMDAgLTAuMDA4NgpNWUJMMiAgICAgLTAuMDE0NyAgMC4wMDAwIC0wLjA1MjIKQ0VQNTUgICAgICAwLjAxNTIgIDAuMDAwMCAgMC4wNTA3Ck1FTEsgICAgICAtMC4wMDAxICAwLjAwMDAgLTAuMDAwNgpOREM4MCAgICAgIDAuMDAwNyAgMC4wMDAwICAwLjAwMjIKUlJNMiAgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMTAwClVCRTJDICAgICAgMC4wMDAwICAwLjAwMDAgIDAuMDA3NgpDRU5QRiAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAwMDIKUFRURzEgICAgICAwLjAwMDAgIDAuMDAwMCAgMC4wMDUyCkVYTzEgICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDAwMgpPUkM2TCAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjA0NjQKQU5MTiAgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMTc1CkNDTkUxICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDE1NQpDREMyMCAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAxNDIKTUtJNjcgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMjQ1CktJRjJDICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDEyMwpBQ1RSM0IgICAgIDAuMDAwMCAgMC4wMDAwICAwLjAwNDMKTVlDICAgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMTM3CkVHRlIgICAgICAgMC4wMDAwICAwLjAwMDAgIDAuMDMxOQpLUlQ1ICAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAwNTkKUEhHREggICAgICAwLjAwMDAgIDAuMDAwMCAgMC4wMDA0CkNESDMgICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDI2NQpNSUEgICAgICAgIDAuMDAwMCAgMC4wMDAwICAwLjAwNDkKS1JUMTcgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMDg4CkZPWEMxICAgICAgMC4wMDAwICAwLjAwMDAgIDAuMDA5NgpTRlJQMSAgICAgIDAuMDAwMCAgMC4wMDAwICAwLjAyMzUKS1JUMTQgICAgICAwLjAwMDAgIDAuMDAwMCAgMC4wMjE4CkVTUjEgICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDE1OApTTEMzOUE2ICAgIDAuMDAwMCAgMC4wMDAwICAwLjAyODQKQkFHMSAgICAgICAwLjAwMDAgIDAuMDAwMCAgMC4wMTA0Ck1BUFQgICAgICAgMC4wMDAwICAwLjAwMDAgIDAuMDAyMwpQR1IgICAgICAgIDAuMDAwMCAgMC4wMDAwICAwLjAwOTUKQ1hYQzUgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMTgyCk1MUEggICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDA1OQpCQ0wyICAgICAgIDAuMDAwMCAgMC4wMDAwICAwLjAxMzMKTURNMiAgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMDg0Ck5BVDEgICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDAwOApGT1hBMSAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAwNTUKQkxWUkEgICAgICAwLjAwMDAgIDAuMDAwMCAgMC4wMDUzCk1NUDExICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDAzNwpHUFIxNjAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAzMjgKRkdGUjQgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMDI5CkdSQjcgICAgICAgMC4wMDAwICAwLjAwMDAgIDAuMDA4NgpUTUVNNDVCICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAwNzgKRVJCQjIgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMTk0CmBgYAoKU3BhcnNlIGdyb3VwIExhc3NvIENveCBtb2RlbCBpcyBpbXBsZW1lbnRlZCBpbiB0aGUgYFJgIHBhY2thZ2UgWyoqU0dMKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9U0dMKSBbQFNpbW9uMjAxOV0uIApUaGUgZnVuY3Rpb24gYGN2U0dMKClgIHVzZXMgY3Jvc3MgdmFsaWRhdGlvbiB0byBvcHRpbWl6ZSB0aGUgcGVuYWx0eSBwYXJhbWV0ZXIgJFxsYW1iZGEkLgpUaGUgZm9sbG93aW5nIGV4YW1wbGUgc2hvd3MgdGhhdCBpdCBpbmR1Y2VzIHNwYXJzaXR5IGluIGVhY2ggZ3JvdXAgb2YgY292YXJpYXRlcy4gCgpgYGB7cn0KIyBzcGFyc2UgZ3JvdXAgTGFzc28gQ294IG1vZGVsCmdyb3VwID0gYyhyZXAoImRlbW9ncmFwaGljIiwgMiksIHJlcCgiUEFNNTBfMSIsIDEwKSwgcmVwKCJQQU01MF8yIiwgNDApKQpncm91cCA9IGZhY3Rvcihncm91cCkKZGF0X3RtcCA9IGxpc3QoeCA9IHgsIHRpbWUgPSBjbGluJHRpbWUsIHN0YXR1cyA9IGNsaW4kc3RhdHVzKQpzZXQuc2VlZCgxMjMpCmN2Zml0ID0gU0dMOjpjdlNHTChkYXRfdG1wLCBpbmRleCA9IGdyb3VwLCB0eXBlID0gImNveCIsIG5mb2xkID0gNSkKYmV0YS5oYXQgPSBjdmZpdCRmaXQkYmV0YVssIHdoaWNoLm1pbihjdmZpdCRsbGRpZmYpXQpuYW1lcyhiZXRhLmhhdCkgPSBwYXN0ZTAoImdyb3VwIiwgYXMubnVtZXJpYyhncm91cCksICIuIiwgYygxOjIsIDE6MTAsIDE6NDApKQpiZXRhLmhhdApgYGAKYGBgCiAgIGdyb3VwMS4xICAgIGdyb3VwMS4yICAgIGdyb3VwMi4xICAgIGdyb3VwMi4yICAgIGdyb3VwMi4zICAgIGdyb3VwMi40IAogNS42ODM4NzU3MCAgMC4wMDAwMDAwMCAgMC41MDcxMTc0MCAgMC4wMDAwMDAwMCAgMC4wMDAwMDAwMCAgMC4yMTUyMjQ5MCAKICAgZ3JvdXAyLjUgICAgZ3JvdXAyLjYgICAgZ3JvdXAyLjcgICAgZ3JvdXAyLjggICAgZ3JvdXAyLjkgICBncm91cDIuMTAgCiAwLjAwMDAwMDAwICAwLjAwMDAwMDAwICAwLjAwMDAwMDAwICAwLjM0MTY4NjY5ICAwLjAwMDAwMDAwICAwLjAwMDAwMDAwIAogICBncm91cDMuMSAgICBncm91cDMuMiAgICBncm91cDMuMyAgICBncm91cDMuNCAgICBncm91cDMuNSAgICBncm91cDMuNiAKIDAuMDAwMDAwMDAgIDAuMjU2OTE0NzggIDAuMDAwMDAwMDAgLTAuMzc0OTQ3MjYgIDAuMDAwMDAwMDAgLTIuODUxMTAxNDYgCiAgIGdyb3VwMy43ICAgIGdyb3VwMy44ICAgIGdyb3VwMy45ICAgZ3JvdXAzLjEwICAgZ3JvdXAzLjExICAgZ3JvdXAzLjEyIAotMS45MzU1Njk5NCAgMC4wMDAwMDAwMCAgMC4wMDAwMDAwMCAgMC4wMDAwMDAwMCAtMS43NzgwNTU0MiAgMC4wMDAwMDAwMCAKICBncm91cDMuMTMgICBncm91cDMuMTQgICBncm91cDMuMTUgICBncm91cDMuMTYgICBncm91cDMuMTcgICBncm91cDMuMTggCiAwLjAwMDAwMDAwICAxLjAzODE5Nzc4ICAwLjAwMDAwMDAwICAwLjAwMDAwMDAwICAwLjAwMDAwMDAwICAwLjAwMDAwMDAwIAogIGdyb3VwMy4xOSAgIGdyb3VwMy4yMCAgIGdyb3VwMy4yMSAgIGdyb3VwMy4yMiAgIGdyb3VwMy4yMyAgIGdyb3VwMy4yNCAKIDAuMDAwMDAwMDAgIDAuMDAwMDAwMDAgIDAuMDAwMDAwMDAgIDAuMDAwMDAwMDAgLTAuMzQ0OTY3MTcgIDAuMDAwMDAwMDAgCiAgZ3JvdXAzLjI1ICAgZ3JvdXAzLjI2ICAgZ3JvdXAzLjI3ICAgZ3JvdXAzLjI4ICAgZ3JvdXAzLjI5ICAgZ3JvdXAzLjMwIAogMS4wMTU1MjA5NSAgMC4wMDAwMDAwMCAgMC4wMDAwMDAwMCAgMC4wMDAwMDAwMCAgMC4wMDAwMDAwMCAgMC4wMDAwMDAwMCAKICBncm91cDMuMzEgICBncm91cDMuMzIgICBncm91cDMuMzMgICBncm91cDMuMzQgICBncm91cDMuMzUgICBncm91cDMuMzYgCi0yLjEzMjA1NTg3ICAwLjAwMDAwMDAwICAwLjAwMDAwMDAwICAwLjAwMDAwMDAwICAwLjAwMDAwMDAwIC0wLjk1MDQ4MTIxIAogIGdyb3VwMy4zNyAgIGdyb3VwMy4zOCAgIGdyb3VwMy4zOSAgIGdyb3VwMy40MCAKLTEuODYyMjIxMDUgLTAuMDExMjA1NzMgLTAuODExNTc2NDYgLTIuMTQxNDg5MDAgCmBgYAoKIyMjIFNwYXJzZSBCYXllc2lhbiBDb3ggbW9kZWxzCgpUaGUgYFJgIHBhY2thZ2UgWyoqcHNiY0dyb3VwKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9cHNiY0dyb3VwKSBbQExlZTIwMjFdIGludGVncmF0ZXMgYSBsYXJnZSBzZXQgb2Ygc3BhcnNlIEJheWVzaWFuIENveCBtb2RlbHMuClRoZSBmdW5jdGlvbiBgcHNiY0dMKClgIGltcGxlbWVudHMgQmF5ZXNpYW4gQ294IG1vZGVscyB3aXRoIExhc3NvIGFuZCBncm91cCBMYXNzbyBwcmlvcnMgZm9yIGZlYXR1cmUgc2VsZWN0aW9uIGFuZCBncm91cCBzZWxlY3Rpb24gcmVzcGVjdGl2ZWx5LgpGb3IgdGhlIExhc3NvIHByaW9yLCBzZXQgdGhlIGh5cGVycGFyYW1ldGVyIGBwcmlvclBhcmEkZ3JvdXBJbmQgPSAxOnBgIHdoZXJlICRwJCBpcyB0aGUgdG90YWwgbnVtYmVyIG9mIGNvdmFyaWF0ZXMuCkZvciB0aGUgZ3JvdXAgTGFzc28gcHJpb3IsIHNldCB0aGUgaHlwZXJwYXJhbWV0ZXIgYHByaW9yUGFyYSRncm91cEluZGAgYXMgYSB2ZWN0b3Igb2Ygc2l6ZSAkcCQsIHdoZXJlIGVhY2ggZWxlbWVudCBkZW5vdGVzIHdoaWNoIGdyb3VwIGVhY2ggY292YXJpYXRlIGNvcnJlc3BvbmRzIHRvLgpOb3RlIHRoYXQgKipwc2JjR3JvdXAqKiBjYW5ub3QgZGlzdGluZ3Vpc2ggbWFuZGF0b3J5ICh1bnBlbmFsaXplZCkgY292YXJpYXRlcyB3aXRoIG9taWNzIGZlYXR1cmVzLCBzZWUgQFp1Y2tuaWNrMjAxNSBmb3IgYW4gZXh0ZW5kZWQgQmF5ZXNpYW4gTGFzc28gQ294IG1vZGVsLgoKYGBge3J9CiMgQmF5ZXNpYW4gQ294IG1vZGVsIHdpdGggTGFzc28gcHJpb3IKc2V0LnNlZWQoMTIzKQpzdXJ2T2JqID0gbGlzdCh0ID0gY2xpbiR0aW1lLCBkaSA9IGNsaW4kc3RhdHVzLCB4ID0geCkKcCA9IG5jb2woeCkKIyBzZXQgaHlwZXJwYXJhbWV0ZXJzLiAKIyBGb3IgTGFzc28gcHJpb3IgKGkuZS4gJ2dyb3VwSW5kJz0gMTpwKSwgbGFyZ2VyIHJhdGlvIHIvZGVsdGEgdGVuZHMgdG8gZm9yY2UgdGhlIHBvc3RlcmlvciBiZXRhcyB0byBiZSBtb3JlIGNvbmNlbnRyYXRlZCBhdCAwCiMgRm9yIGdyb3VwIExhc3NvIHByaW9yIChpLmUuICdncm91cEluZCcgYXMgZ3JvdXAgaW5kaWNhdG9yIGZvciBjb3ZhcmlhdGVzKSwgbGFyZ2VyIHJhdGlvIHIvZGVsdGEgdGVuZHMgdG8gZm9yY2Ugc3Ryb25nZXIgZ3JvdXBpbmcgZWZmZWN0IG9mIGNvdmFyaWF0ZXMKcyA9IGMoc29ydChzdXJ2T2JqJHRbc3Vydk9iaiRkaSA9PSAxXSksIDIgKiBtYXgoc3Vydk9iaiR0KSAtIG1heChzdXJ2T2JqJHRbLXdoaWNoKHN1cnZPYmokdD09bWF4KHN1cnZPYmokdCkpXSkpCnByaW9yUGFyYSA9IGxpc3QoJ2V0YTAnID0gMSwgJ2thcHBhMCcgPSAxLCAnYzAnPSAyLCAncicgPSAwLjUsIAogICAgICAgICAgICAgICAgICAnZGVsdGEnID0gMC4wMDAxLCAncyc9IHMsICdKJz1sZW5ndGgocyksICdncm91cEluZCc9IDE6cCkKIyBzZXQgTUNNQyBwYXJhbWV0ZXJzCm1jbWNQYXJhID0gbGlzdCgnbnVtQmV0YSc9IHAsICdiZXRhLnByb3AudmFyJz0gMSkKIyBzZXQgaW5pdGlhbCB2YWx1ZXMgb2YgaHlwZXJwYXJhbWV0ZXJzCmxhbWJkYVNxID0gMQppbml0aWFsID0gbGlzdCgnYmV0YS5pbmknPSByZXAoMCwgcCksICdsYW1iZGFTcScgPSAxLCAnc2lnbWFTcScgPSBydW5pZigxLCAwLjEsIDEwKSwKICAgICAgICAgICAgICAgICd0YXVTcScgPSByZXhwKGxlbmd0aCh1bmlxdWUocHJpb3JQYXJhJGdyb3VwSW5kKSksICdyYXRlJyA9IGxhbWJkYVNxIC8gMiksCiAgICAgICAgICAgICAgICAnaCcgPSByZ2FtbWEocHJpb3JQYXJhJEosIDEsIDEpKQojIGluIHJlYWwgYXBwbGljYXRpb25zLCAnbnVtLnJlcHMnIHNob3VsZCBiZSBsYXJnZSBlbm91Z2ggKGUuZy4gMjAwMDAsIDQwMDAwKSBhbmQgJ2NoYWluJyB0byBiZSA+IDEKQmF5ZXNMYXNzb2ZpdCA9IHBzYmNHcm91cDo6cHNiY0dMKHN1cnZPYmosIHByaW9yUGFyYSwgaW5pdGlhbCwgcncgPSBUUlVFLCBtY21jUGFyYSwgbnVtLnJlcHMgPSAxMDAsIHRoaW4gPSAxLCBjaGFpbiA9IDEpCiMgYnVybi1pbiB0aGUgZmlyc3QgaGFsZiBNQ01DIGl0ZXJhdGlvbnMKYmV0YV9wID0gQmF5ZXNMYXNzb2ZpdCRiZXRhLnBbLSgxOjUxKSwgXQpiZXRhX21lYW4gPSBjb2xNZWFucyhiZXRhX3ApCmJldGFfTCA9IGFwcGx5KGJldGFfcCwgMiwgcXVhbnRpbGUsIDAuMDI1KQpiZXRhX1UgPSBhcHBseShiZXRhX3AsIDIsIHF1YW50aWxlLCAwLjk3NSkKdGJsID0gZGF0YS5mcmFtZSh0ZXJtID0gY29sbmFtZXMoeCksIGVzdGltYXRlID0gYmV0YV9tZWFuLCAgY29uZi5sb3cgPSBiZXRhX0wsICBjb25mLmhpZ2ggPSBiZXRhX1UpCnRibCR0ZXJtID0gZmFjdG9yKHRibCR0ZXJtLCBsZXZlbHMgPSB0YmwkdGVybSkKCkdHYWxseTo6Z2djb2VmKHRibCkgKyB4bGFiKGV4cHJlc3Npb24oUG9zdGVyaW9yfn5iZXRhKSkgKyB5bGFiKCIiKQpgYGAKIVtfRXN0aW1hdGVzIG9mIHJlZ3Jlc3Npb24gY29lZmZpY2llbnRzIGJ5IGEgcGVuYWxpemVkIHNlbWlwYXJhbWV0cmljIEJheWVzaWFuIENveCBtb2RlbCB3aXRoIExhc3NvIHByaW9yLiBTb2xpZCBkb3RzIGluZGljYXRlIHRoZSBwb3N0ZXJpb3IgbWVhbiBvdmVyIE1DTUMgaXRlcmF0aW9ucyAoZXhjbHVkaW5nIGJ1cm4taW4gcGVyaW9kKSwgYW5kIGhvcml6b250YWwgbGluZXMgc2hvdyB0aGUgY29ycmVzcG9uZGluZyA5NSUgY3JlZGliaWxpdHkgaW50ZXJ2YWxzLl9dKGZpZy9UQ0dBX2JheWVzbGFzc28ucG5nKXt3aWR0aD02MCV9Cgo8YnI+CgpJbiB0aGUgYFJgIHBhY2thZ2UgWyoqcHNiY0dyb3VwKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9cHNiY0dyb3VwKSBbQExlZTIwMjFdLCBmdW5jdGlvbiBgcHNiY0VOKClgIGltcGxlbWVudHMgQmF5ZXNpYW4gQ294IG1vZGVscyB3aXRoIEVsYXN0aWMgTmV0IHByaW9yIGZvciBmZWF0dXJlIHNlbGVjdGlvbiB3aXRoIGdyb3VwaW5nIGVmZmVjdCBvZiBjb3JyZWxhdGVkIGZlYXR1cmVzLgpGdW5jdGlvbiBgcHNiY0ZMKClgIGltcGxlbWVudHMgQmF5ZXNpYW4gQ294IG1vZGVscyB3aXRoIGZ1c2VkIExhc3NvIHByaW9yLgoKYGBge3J9CiMgQmF5ZXNpYW4gQ294IG1vZGVsIHdpdGggRWxhc3RpYyBOZXQgcHJpb3IKc2V0LnNlZWQoMTIzKQojIHNldCBoeXBlcnBhcmFtZXRlcnMKIyBMYXJnZXIgcmF0aW8gcjEvZGVsdGExIGZvcmNlcyB0aGUgcG9zdGVyaW9yIGJldGFzIHRvIGJlIG1vcmUgY29uY2VudHJhdGVkIGF0IDAKIyBMYXJnZXIgcmF0aW8gcjIvZGVsdGEyIGZvcmNlcyBzdHJvbmdlciBncm91cGluZyBlZmZlY3Qgb2YgY292YXJpYXRlcwpwcmlvclBhcmEgPSBsaXN0KCdldGEwJyA9IDEsICdrYXBwYTAnID0gMSwgJ2MwJz0gMiwgJ3IxJyA9IDAuMSwgJ3IyJyA9IDEsIAogICAgICAgICAgICAgICAgICAnZGVsdGExJyA9IDAuMSwgJ2RlbHRhMicgPSAxLCAncyc9IHMsICdKJyA9IGxlbmd0aChzKSkKIyBzZXQgTUNNQyBwYXJhbWV0ZXJzCm1jbWNQYXJhID0gbGlzdCgnbnVtQmV0YSc9IHAsICdiZXRhLnByb3AudmFyJz0gMSkKIyBzZXQgaW5pdGlhbCB2YWx1ZXMgb2YgaHlwZXJwYXJhbWV0ZXJzCmluaXRpYWwgPSBsaXN0KCdiZXRhLmluaSc9IHJlcCgwLCBwKSwgJ2xhbWJkYTFTcScgPSAxLCAnbGFtYmRhMicgPSAxLCAnc2lnbWFTcScgPSBydW5pZigxLCAwLjEsIDEwKSwKICAgICAgICAgICAgICAgICd0YXVTcScgPSByZXhwKHAsIHJhdGUgPSAxIC8gMiksICdoJyA9IHJnYW1tYShwcmlvclBhcmEkSiwgMSwgMSkpCiMgaW4gcmVhbCBhcHBsaWNhdGlvbiwgJ251bS5yZXBzJyBzaG91bGQgYmUgbGFyZ2UgZW5vdWdoIChlLmcuIDIwMDAwLCA0MDAwMCkgYW5kICdjaGFpbicgdG8gYmUgPiAxCkJheWVzRU5maXQgPSBwc2JjRU4oc3Vydk9iaiwgcHJpb3JQYXJhLCBpbml0aWFsLCBydyA9IFRSVUUsIG1jbWNQYXJhLCBudW0ucmVwcyA9IDEwMCwgdGhpbiA9IDEsIGNoYWluID0gMSkKIyBidXJuLWluIHRoZSBmaXJzdCBoYWxmIE1DTUMgaXRlcmF0aW9ucwpFTl9iZXRhX3AgPSBCYXllc0VOZml0JGJldGEucFs1MjoxMDEsIF0KRU5fYmV0YV9tZWFuID0gY29sTWVhbnMoRU5fYmV0YV9wKQpFTl9iZXRhX0wgPSBhcHBseShFTl9iZXRhX3AsIDIsIHF1YW50aWxlLCAwLjAyNSkKRU5fYmV0YV9VID0gYXBwbHkoRU5fYmV0YV9wLCAyLCBxdWFudGlsZSwgMC45NzUpCkVOX3RibCA9IGRhdGEuZnJhbWUodGVybSA9IGNvbG5hbWVzKHgpLCBlc3RpbWF0ZSA9IEVOX2JldGFfbWVhbiwgY29uZi5sb3cgPSBFTl9iZXRhX0wsIGNvbmYuaGlnaCA9IEVOX2JldGFfVSkKRU5fdGJsJHRlcm0gPSBmYWN0b3IoRU5fdGJsJHRlcm0sIGxldmVscyA9IEVOX3RibCR0ZXJtKQoKR0dhbGx5OjpnZ2NvZWYoRU5fdGJsKSArIHhsYWIoZXhwcmVzc2lvbihQb3N0ZXJpb3J+fmJldGEpKSArIHlsYWIoIiIpCmBgYAohW19Fc3RpbWF0ZXMgb2YgcmVncmVzc2lvbiBjb2VmZmljaWVudHMgYnkgYSBwZW5hbGl6ZWQgc2VtaXBhcmFtZXRyaWMgQmF5ZXNpYW4gQ294IG1vZGVsIHdpdGggRWxhc3RpYyBOZXQgcHJpb3IuIFNvbGlkIGRvdHMgaW5kaWNhdGUgdGhlIHBvc3RlcmlvciBtZWFuIG92ZXIgTUNNQyBpdGVyYXRpb25zIChleGNsdWRpbmcgYnVybi1pbiBwZXJpb2QpLCBhbmQgaG9yaXpvbnRhbCBsaW5lcyBzaG93IHRoZSBjb3JyZXNwb25kaW5nIDk1JSBjcmVkaWJpbGl0eSBpbnRlcnZhbHMuX10oZmlnL1RDR0FfYmF5ZXNFTi5wbmcpe3dpZHRoPTYwJX0KCjxicj4KCkEgcGVuYWxpemVkIHNlbWlwYXJhbWV0cmljIEJheWVzaWFuIENveCBtb2RlbCB3aXRoIGRvdWJsZSBleHBvbmVudGlhbCBzcGlrZS1hbmQtc2xhYiBwcmlvciBpcyBpbXBsZW1lbnRlZCBpbiB0aGUgYFJgIHBhY2thZ2UgWyoqQmhHTE0qKl0oaHR0cHM6Ly9naXRodWIuY29tL255aXVhYi9CaEdMTS5naXQpIFtAWWkyMDE5XS4gTm90ZSB0aGF0ICoqQmhHTE0qKiBwcm92aWRlcyBmcmVxdWVudGlzdCBjb25maWRlbmNlIGludGVydmFscyBvZiB0aGUgcG9zdGVyaW9yIG1vZGUgb2YgdGhlIGNvZWZmaWNpZW50cy4KCmBgYHtyfQojIHBlbmFsaXplZCBzZW1pcGFyYW1ldHJpYyBCYXllc2lhbiBDb3ggbW9kZWwgd2l0aCAoZG91YmxlIGV4cG9uZW50aWFsKSBzcGlrZS1hbmQtc2xhYiBwcmlvcgp5X3N1cnYgPSBTdXJ2KGNsaW4kdGltZSwgY2xpbiRzdGF0dXMpCnhfZGF0YWZyYW1lID0gYXMuZGF0YS5mcmFtZSh4KQpzZXQuc2VlZCgxMjMpCkJheWVzZml0ID0gQmhHTE06OmJjb3hwaCh5X3N1cnYgfiAuLCB4X2RhdGFmcmFtZSwgcHJpb3IgPSBtZGUoMCwgMC4wMSwgMC44KSwgY29udHJvbCA9IGNveHBoLmNvbnRyb2woaXRlci5tYXggPSAyMDApKQpCaEdMTTo6cGxvdC5iaChCYXllc2ZpdCwgY29sLnB0cyA9IGMoInJlZCIsICJibHVlIiksIG1haW4gPSAiQ294IHdpdGggbWl4dHVyZSBkb3VibGUgZXhwb25lbnRpYWxcbiIpIApgYGAKIVtfQ29lZmZpY2llbnQgZXN0aW1hdGVzIG9mIGEgcGVuYWxpemVkIHNlbWlwYXJhbWV0cmljIEJheWVzaWFuIENveCBtb2RlbCB3aXRoIChkb3VibGUgZXhwb25lbnRpYWwpIHNwaWtlLWFuZC1zbGFiIHByaW9yLiBTb2xpZCBkb3RzIGRlbm90ZSB0aGUgcG9zdGVyaW9yIG1vZGUgb2YgdGhlIGNvZWZmaWNpZW50cyBhbmQgbGluZXMgZGVub3RlIHRoZSA5NSUgY29uZmlkZW5jZSBpbnRlcnZhbHMuIFJlZCBjb2xvcmVkIHRleHQgb24gdGhlIHJpZ2h0IHNpZGUgbWFyayB0aGUgc2lnbmlmaWNhbnQgZmVhdHVyZXMgd2l0aCAkcCA8IDAuMDUkLl9dKGZpZy9UQ0dBX2JheWVzU3Bpa2VTbGFiLnBuZyl7d2lkdGg9NjAlfQoKPGJyPgoKIyBTdXJ2aXZhbCBtb2RlbCB2YWxpZGF0aW9uCgpUaGUgaWRlYWwgZXZhbHVhdGlvbiBvZiBhIHByb2dub3N0aWMgbW9kZWwgaXMgYmFzZWQgb24gY29tcGxldGVseSBpbmRlcGVuZGVudCB2YWxpZGF0aW9uIGRhdGEsIHNpbmNlIGhpZ2gtZGltZW5zaW9uYWwgc3Vydml2YWwgbW9kZWxzIGJ1aWx0IG9uIHRoZSB0cmFpbmluZyBkYXRhIGNhbiBiZSBvdmVyZml0dGVkLiAKSWYgdGhlcmUgYXJlIG5vIGluZGVwZW5kZW50IHZhbGlkYXRpb24gZGF0YSwgaXQgaXMgcmVjb21tZW5kZWQgdG8gdXNlIHJlc2FtcGxpbmctYmFzZWQgbWV0aG9kcyBmb3IgZXN0aW1hdGluZyB0aGUgKip1bmNlcnRhaW50eSoqIG9mIHRoZSBtb2RlbOKAmXMgcHJlZGljdGlvbiBwZXJmb3JtYW5jZS4gClRoaXMgY2FuIGJlIGRvbmUgZm9yIGV4YW1wbGUgYnkgcmVwZWF0ZWRseSBzcGxpdHRpbmcgdGhlIGRhdGFzZXQgdG8gdHJhaW5pbmcvdmFsaWRhdGlvbiBzZXRzIGFuZCBldmFsdWF0aW5nIGEgbW9kZWzigJlzIHBlcmZvcm1hbmNlIG9uIHRoZSBkaWZmZXJlbnQgdmFsaWRhdGlvbiBzZXRzIHVzaW5nIHZhcmlvdXMgZXZhbHVhdGlvbiBtZXRyaWNzLiAKCjo6OnsuZ3JlZW4tYm94fQpUbyB2YWxpZGF0ZSBhIHByZWRpY3Rpb24gbW9kZWwgc3lzdGVtYXRpY2FsbHksIHRoZSBwcmVkaWN0aXZlIHBlcmZvcm1hbmNlIG9mIHRoZSBtb2RlbCBpcyBjb21tb25seSBhZGRyZXNzZWQgYnkKCiAgLSAqKkRpc2NyaW1pbmF0aW9uKio6IHRoZSBhYmlsaXR5IG9mIHRoZSBtb2RlbCB0byBkaXN0aW5ndWlzaCBiZXR3ZWVuIGxvdyBhbmQgaGlnaCByaXNrIHBhdGllbnRzCiAgLSAqKkNhbGlicmF0aW9uKio6IHRoZSBhZ3JlZW1lbnQgYmV0d2VlbiB0aGUgb2JzZXJ2ZWQgYW5kIHByZWRpY3RlZCBzdXJ2aXZhbCBwcm9iYWJpbGl0aWVzCiAgLSAqKk92ZXJhbGwgcGVyZm9ybWFuY2UqKjogdGhlIGRpc3RhbmNlIGJldHdlZW4gdGhlIG9ic2VydmVkIGFuZCBwcmVkaWN0ZWQgc3Vydml2YWwgcHJvYmFiaWxpdGllcwo6OjoKClRoZSBwZXJmb3JtYW5jZSBtZXRyaWNzIGNhbiBiZSAqdGltZS1kZXBlbmRlbnQqIG9yICp0aW1lLWluZGVwZW5kZW50Kiwgd2l0aCB0aGUgdGltZS1kZXBlbmRlbnQgbWV0cmljcyBiZWluZyBtb3JlIGluZm9ybWF0aXZlIGluIGdlbmVyYWwgY29tcGFyZWQgdG8gaW50ZWdyYXRlZCBtZWFzdXJlcyAoaS5lLiBldmFsdWF0ZWQgYWNyb3NzIG1hbnkgdGltZSBwb2ludHMpLgpGb3Igc3Vydml2YWwgZGF0YSwgd2UgY2FuIGFzc2VzcyB0aGUgKipkaXNjcmltaW5hdG9yeSBwb3dlcioqIG9mIGEgbW9kZWwgKGkuZS4gaG93IHdlbGwgZG9lcyBpdCByYW5rcyBwYXRpZW50cykgb3IgaG93IHdlbGwgYSBtb2RlbCBpcyAqKmNhbGlicmF0ZWQqKiAoaS5lLiBob3cgY2xvc2VseSB0aGUgcHJlZGljdGVkIHN1cnZpdmFsIHByb2JhYmlsaXRpZXMgYWdyZWUgbnVtZXJpY2FsbHkgd2l0aCB0aGUgYWN0dWFsIHN1cnZpdmFsIG91dGNvbWVzKS4KRm9yIGV4YW1wbGUsIG1lYXN1cmVzIHN1Y2ggYXMgdGhlIHJlY2VpdmVyIG9wZXJhdGluZyBjaGFyYWN0ZXJpc3RpYyAoUk9DKSBjdXJ2ZSwgdGhlIChpbnRlZ3JhdGVkKSBhcmVhIHVuZGVyIHRpbWUtc3BlY2lmaWMgUk9DIGN1cnZlcyAoKipBVUMqKiwgQEhlYWdlcnR5MjAwNSkgYW5kIHRoZSBjb25jb3JkYW5jZSBpbmRleCAoKipDLWluZGV4KiosIEBIYXJyZWxsMTk4MikgYXJlIG1lYXN1cmVzIG9mIGRpc2NyaW1pbmF0aW9uLCB3aGlsZSB0aGUgcmlnaHQtY2Vuc29yZWQgbG9nYXJpdGhtaWMgbG9zcyAoKipSQ0xMKiosIEBBdmF0aTIwMjApIGFuZCB0aGUgd2VsbC1rbm93biAqKkJyaWVyIHNjb3JlKiogW0BHcmFmMTk5OV0gYXJlIHVzZWQgdG8gZXZhbHVhdGUgYm90aCBkaXNjcmltaW5hdGlvbiBhbmQgY2FsaWJyYXRpb24gcGVyZm9ybWFuY2UuCgojIyBNb2RlbCBldmFsdWF0aW9uIChjbGFzc2ljKSB7LX0KCjo6OnsuZ3JlZW4tYm94fQonQ2xhc3NpYycgaGVyZSByZWZlcnMgdG8gdGhlIHVzZSBvZiBtYW51YWwgYFJgIGNvZGUgaW4gY29tYmluYXRpb24gd2l0aCBtYW55IHNlcGFyYXRlIGBSYCBwYWNrYWdlcyB3aGljaCBoYXZlIGJlZW4gcm91dGluZWx5IHVzZWQgaW4gYWNhZGVtaWEgdGhlIGxhdGVzdCAxMCsgeWVhcnMgZm9yIGV2YWx1YXRpbmcgc3Vydml2YWwgbW9kZWxzLgo6OjoKClRvIGV2YWx1YXRlIHRoZSBwZXJmb3JtYW5jZSBvZiBhIHN0YXRpc3RpY2FsIG1vZGVsLCB3ZSBmaXJzdCBzcGxpdCB0aGUgZGF0YSBpbnRvIHRyYWluaW5nIGFuZCB2YWxpZGF0aW9uIGRhdGEgc2V0cy4KRm9yIGV4YW1wbGUsIHdlIGNhbiByYW5kb21seSBzcGxpdCB0aGUgMTA0NyBCUkNBIHBhdGllbnRzIGZyb20gVENHQSBpbnRvICQ4MFwlJCBhcyB0cmFpbmluZyBzZXQgYW5kICQyMFwlJCBhcyB2YWxpZGF0aW9uIHNldC4KCmBgYHtyfQpzZXQuc2VlZCgxMjMpCm4gPSBucm93KHgpCmlkeCA9IHNhbXBsZSgxOm4sIG4gKiAwLjgsIHJlcGxhY2UgPSBGQUxTRSkKeF90cmFpbiA9IHhbaWR4LCBdCnlfdHJhaW4gPSB5W2lkeCwgXQp4X3ZhbGlkYXRlID0geFstaWR4LCBdCnlfdmFsaWRhdGUgPSB5Wy1pZHgsIF0KYGBgCgo6Ojp7LmluZm8tYm94IC5ub3RlfQpUaGUgJDIwXCUkIHNwbGl0IG9mIGEgZGF0YXNldCBpcyBvZnRlbiBub3QgY29uc2lkZXJlZCBhbiAqKmluZGVwZW5kZW50KiogZGF0YXNldCBhbmQgKipyZXNhbXBsaW5nLWJhc2VkIG1ldGhvZHMqKiBzaG91bGQgYmUgdXNlZCBpbiBzdWNoIGNhc2VzIHRvIHByb3ZpZGUgYW4gdW5iaWFzZWQgZXN0aW1hdGUgb2YgdGhlIHByZWRpY3RpdmUgYWNjdXJhY3kgb2YgYSBwcm9nbm9zdGljIG1vZGVsLgo6OjoKCiMjIyBEaXNjcmltaW5hdGlvbiBtZXRyaWNzIHstfQoKPGZvbnQgc2l6ZT0iNCI+ICoqR29vZG5lc3Mtb2YtZml0KiogPC9mb250PiAKClRoZSBzaW1wbGVzdCB3YXkgdG8gZGVtb25zdHJhdGUgdGhlIHByb2dub3N0aWMgcG93ZXIgb2YgYSBzdXJ2aXZhbCBtb2RlbCBpcyB0byBkaWNob3RvbWl6ZSB0aGUgcHJvZ25vc3RpYyBzY29yZXMgKGkuZS4sIGxpbmVhciBwcmVkaWN0b3IgJGxwJCBpbiB0aGUgQ294IG1vZGVsKSBieSBtZWRpYW4gdmFsdWUsIGFuZCB0aGVuIHRvIHVzZSBhIGxvZy1yYW5rIHRlc3QgdG8gY29tcGFyZSB0aGUgc3Vydml2YWwgY3VydmVzIG9mIHRoZSBwYXRpZW50cyBpbiB0aGUgdHdvIGdyb3Vwcy4KV2UgdXNlIHRoZSBidWlsdCBtb2RlbCB0byBwcmVkaWN0IHRoZSBwcm9nbm9zdGljIHNjb3JlcyBiYXNlZCBvbiB0aGUgJDIwXCUkIHZhbGlkYXRpb24gZGF0YS4KVGhlIGZvbGxvd2luZyBjb2RlIHNob3dzIHRoZSAqKmdvb2RuZXNzLW9mLWZpdCoqIG9mIGEgTGFzc28gQ294IG1vZGVsIHdpdGggdGhlIEJSQ0EgcGF0aWVudHMgc3Vydml2YWwgYW5kIFBBTTUwIG1STkEtU2VxIGRhdGEgZnJvbSBUQ0dBLgoKYGBge3J9CiMgdHJhaW4gYSBMYXNzbyBDb3ggbW9kZWwsIHNpbWlsYXJseSBmb3Igb3RoZXIgQ294LXR5cGUgbW9kZWxzCnNldC5zZWVkKDEyMykKY3ZmaXQgPSBjdi5nbG1uZXQoeF90cmFpbiwgeV90cmFpbiwgZmFtaWx5ID0gImNveCIsIG5mb2xkcyA9IDUsIHBlbmFsdHkuZmFjdG9yID0gcGYpCnByZWRfbHAgPSBwcmVkaWN0KGN2Zml0LCBuZXd4ID0geF92YWxpZGF0ZSwgcyA9IGN2Zml0JGxhbWJkYS5taW4sIHR5cGUgPSAibGluayIpCgojIGRpY2hvdG9taXplIGJ5IHByb2dub3N0aWMgc2NvcmVzIChsaW5lYXIgcHJlZGljdG9yKSAgYnkgbWVkaWFuIHRvIGRpdmlkZSB0aGUgdmFsaWRhdGlvbiBwYXRpZW50cyBpbnRvIHR3byBncm91cHMKZ3JvdXBfZGljaG90b21pemUgPSBhcy5udW1lcmljKHByZWRfbHAgPiBtZWRpYW4ocHJlZF9scCkpCgojIGRyYXcgdHdvIHN1cnZpdmFsIGN1cnZlcyBiYXNlZCBvbiBLTSBlc3RpbWF0aW9uIGFuZCBjb21wYXJlIHRoZW0gYnkgYSBsb2ctcmFuayB0ZXN0CmRhdF90bXAgPSBkYXRhLmZyYW1lKHRpbWUgPSB5X3ZhbGlkYXRlWywgMV0sIHN0YXR1cyA9IHlfdmFsaWRhdGVbLCAyXSwgZ3JvdXAgPSBncm91cF9kaWNob3RvbWl6ZSkKc2ZpdCA9IHN1cnZmaXQoU3Vydih0aW1lLCBzdGF0dXMpIH4gZ3JvdXAsIGRhdGEgPSBkYXRfdG1wKQoKZ2dzdXJ2ID0gZ2dzdXJ2cGxvdChzZml0LCBjb25mLmludCA9IFRSVUUsIHJpc2sudGFibGUgPSBUUlVFLCAKICAgICAgICAgICB4bGFiID0gIlRpbWUgc2luY2UgZGlhZ25vc2lzICh5ZWFyKSIsIGxlZ2VuZCA9IGMoLjIsLjMpLAogICAgICAgICAgIGxlZ2VuZC5sYWJzID0gYygiTG93IHJpc2siLCAiSGlnaCByaXNrIiksIGxlZ2VuZC50aXRsZSA9ICJEaWNob3RvbWl6ZWQgZ3JvdXBzIiwgIAogICAgICAgICAgIHJpc2sudGFibGUueS50ZXh0LmNvbCA9IFRSVUUsIHJpc2sudGFibGUueS50ZXh0ID0gRkFMU0UpCmdnc3VydiRwbG90ID0gZ2dzdXJ2JHBsb3QgKyAKICBhbm5vdGF0ZSgidGV4dCIsIHggPSAyLjYsIHkgPSAuMDMsIGxhYmVsPSBwYXN0ZTAoIkxvZy1yYW5rIHRlc3Q6XG4iLCBzdXJ2X3B2YWx1ZShzZml0KSRwdmFsLnR4dCkpCmdnc3VydiR0YWJsZSA9IGdnc3VydiR0YWJsZSArIGxhYnMoeSA9ICJEaWNob3RvbWl6ZWRcbiBncm91cHMiKQpnZ3N1cnYKYGBgCiFbX0thcGxhbi1NZWllciBjdXJ2ZXMgb2YgdGhlIEJSQ0EgcGF0aWVudHMgZGF0YSBkaWNob3RvbWl6ZWQgYnkgdGhlIG1lZGlhbiBvZiBwcm9nbm9zdGljIHNjb3JlcyAoY2FsY3VsYXRlZCBmcm9tIHRoZSBMYXNzbyBDb3ggbW9kZWwgd2l0aCBwYXRpZW50cycgc3Vydml2YWwgYW5kIG1STkEtU2VxIGRhdGEpIGludG8gdHdvIGdyb3Vwcy4gVGhlIGxvZy1yYW5rIHRlc3QgaXMgdG8gY29tcGFyZSB0aGUgdHdvIHN1cnZpdmFsIGRpc3RyaWJ1dGlvbnMgY29ycmVzcG9uZGluZyB0byB0aGUgdHdvIGdyb3VwcyBvZiBwYXRpZW50cy5fXShmaWcvVENHQV9zdXJ2X2ttX2xhc3NvLnBuZyl7d2lkdGg9NjAlfQoKPGJyPgoKVGhlIHByb2dub3N0aWMgc2NvcmVzIGNhbiBhbHNvIGJlIGRpdmlkZWQgaW50byB0aHJlZSBvciBtb3JlIGdyb3VwcyBiYXNlZCBvbiBxdWFudGlsZXMgYW5kIHRoZSBsb2ctcmFuayB0ZXN0IGNhbiBiZSB1c2VkIHRvIGNvbXBhcmUgdGhlIGRpZmZlcmVuY2Ugb2YgbXVsdGlwbGUgc3Vydml2YWwgY3VydmVzLgoKYGBge3J9Cmdyb3VwID0gcHJlZF9scApncm91cFtwcmVkX2xwID49IHF1YW50aWxlKHByZWRfbHAsIDIvMyldID0gMwpncm91cFtwcmVkX2xwID49IHF1YW50aWxlKHByZWRfbHAsIDEvMykgJiBwcmVkX2xwIDwgcXVhbnRpbGUocHJlZF9scCwgMi8zKV0gPSAyCmdyb3VwW3ByZWRfbHAgPCBxdWFudGlsZShwcmVkX2xwLCAxLzMpXSA9IDEKCiMgZHJhdyB0d28gc3Vydml2YWwgY3VydmVzIGJhc2VkIG9uIEtNIGVzdGltYXRpb24gYW5kIGNvbXBhcmUgdGhlbSBieSBhIGxvZy1yYW5rIHRlc3QKZGF0X3RtcCA9IGRhdGEuZnJhbWUodGltZSA9IHlfdmFsaWRhdGVbLCAxXSwgc3RhdHVzID0geV92YWxpZGF0ZVssIDJdLCBncm91cCA9IGdyb3VwKQpzZml0ID0gc3VydmZpdChTdXJ2KHRpbWUsIHN0YXR1cykgfiBncm91cCwgZGF0YSA9IGRhdF90bXApCgpnZ3N1cnYgPSBnZ3N1cnZwbG90KHNmaXQsIGNvbmYuaW50ID0gVFJVRSwgcmlzay50YWJsZSA9IFRSVUUsIAogICAgICAgICAgIHhsYWIgPSAiVGltZSBzaW5jZSBkaWFnbm9zaXMgKHllYXIpIiwgbGVnZW5kID0gYyguMiwuMyksCiAgICAgICAgICAgbGVnZW5kLmxhYnMgPSBjKCJMb3cgcmlzayIsICJNaWRkbGUgcmlzayIsICJIaWdoIHJpc2siKSwgbGVnZW5kLnRpdGxlID0gIkdyb3VwcyIsICAKICAgICAgICAgICByaXNrLnRhYmxlLnkudGV4dC5jb2wgPSBUUlVFLCByaXNrLnRhYmxlLnkudGV4dCA9IEZBTFNFKQpnZ3N1cnYkcGxvdCA9IGdnc3VydiRwbG90ICsgCiAgYW5ub3RhdGUoInRleHQiLCB4ID0gMy41LCB5ID0gLjA1LCBsYWJlbD0gcGFzdGUwKCJMb2ctcmFuayB0ZXN0OlxuIiwgc3Vydl9wdmFsdWUoc2ZpdCkkcHZhbC50eHQpKQpnZ3N1cnYKYGBgCiFbX0thcGxhbi1NZWllciBjdXJ2ZXMgb2YgdGhlIEJSQ0EgcGF0aWVudHMgZGF0YSBkaXZpZGVkIGJ5IDMzJSBhbmQgNjclIHF1YW50aWxlcyBvZiBwcm9nbm9zdGljIHNjb3JlcyAoY2FsY3VsYXRlZCBmcm9tIHRoZSBMYXNzbyBDb3ggbW9kZWwgd2l0aCBwYXRpZW50cycgc3Vydml2YWwgYW5kIG1STkEtU2VxIGRhdGEpIGludG8gdGhyZWUgZ3JvdXBzLiBUaGUgbG9nLXJhbmsgdGVzdCBpcyB0byBjb21wYXJlIHRoZSB0d28gc3Vydml2YWwgZGlzdHJpYnV0aW9ucyBjb3JyZXNwb25kaW5nIHRvIHRoZSB0aHJlZSBncm91cHMgb2YgcGF0aWVudHMuX10oZmlnL1RDR0Ffc3Vydl9rbV9sYXNzbzIucG5nKXt3aWR0aD02MCV9Cgo8YnI+Cgo8Zm9udCBzaXplPSI0Ij4gKipST0MgY3VydmUqKiA8L2ZvbnQ+IAoKVGhlIGBSYCBwYWNrYWdlIFsqKnJpc2tzZXRST0MqKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1yaXNrc2V0Uk9DKSBbQEhlYWdlcnR5MjAwNV0gY2FuIGVzdGltYXRlIGEgUk9DIGN1cnZlIGF0IGFuIGV2YWx1YXRpb24gdGltZSBwb2ludC4gClRoZSBmb2xsb3dpbmcgY29kZSBkcmF3cyBhIFJPQyBjdXJ2ZSBhdCA1LXllYXJzIHN1cnZpdmFsIGV2YWx1YXRpb24gdGltZSBwb2ludCBmb3IgdGhlIDIwJSBUQ0dBIHZhbGlkYXRpb24gZGF0YSBhbmQgYmFzZWQgb24gYSBMYXNzbyBDb3ggbW9kZWwgbGVhcm5lZCBmcm9tIHRoZSA4MCUgdHJhaW5pbmcgZGF0YS4KCmBgYHtyfQpST0MgPSByaXNrc2V0Uk9DKFN0aW1lID0geV92YWxpZGF0ZVssIDFdLCBzdGF0dXMgPSB5X3ZhbGlkYXRlWywgMl0sCiAgICAgICAgICAgICAgICAgbWFya2VyID0gcHJlZF9scCwgcHJlZGljdC50aW1lID0gNSwgbWV0aG9kID0gIkNveCIsIAogICAgICAgICAgICAgICAgIG1haW4gPSAiUk9DIEN1cnZlIiwgY29sID0gInNlYWdyZWVuMyIsIHR5cGUgPSAicyIsIAogICAgICAgICAgICAgICAgIGx3ZCA9IDIsIHhsYWI9IjEgLSBTcGVjaWZpY2l0eSIsIHlsYWI9IlNlbnNpdGl2aXR5IikgCnRleHQoMC43LCAwLjIsIHBhc3RlKCJBVUMgPSIsIHJvdW5kKFJPQyRBVUMsIDMpKSkKYGBgCgohW19ST0MgY3VydmUgZXN0aW1hdGVkIGF0IDUteWVhcnMgc3Vydml2YWwgZXZhbHVhdGlvbiB0aW1lIHBvaW50IGZvciB0aGUgMjAlIFRDR0EgdmFsaWRhdGlvbiBkYXRhIGFuZCBiYXNlZCBvbiBhIExhc3NvIENveCBtb2RlbCBsZWFybmVkIGZyb20gdGhlIDgwJSB0cmFpbmluZyBkYXRhLiBUaGUgQVVDIHZhbHVlIGlzIHRoZSBhcmVhIHVuZGVyIHRoZSBST0MgY3VydmUuIFRoZSBkaWFnb25hbCBsaW5lIHJlcHJlc2VudHMgdGhlIHBlcmZvcm1hbmNlIG9mIGEgcmFuZG9tIHByZWRpY3Rpb24gb2YgdGhlIG91dGNvbWUgZXZlbnQgd2l0aCBBVUMgPSAwLjUuX10oZmlnL1RDR0Ffc3Vydl9yb2MucG5nKXt3aWR0aD01MCV9Cgo8YnI+Cgo8Zm9udCBzaXplPSI0Ij4gKipUaW1lLWRlcGVuZGVudCBBVUMqKiA8L2ZvbnQ+IAoKQm90aCB0aW1lLWRlcGVuZGVudCBhbmQgaW50ZWdyYXRlZCBBVUNzIGNhbiBiZSBlc3RpbWF0ZWQgYnkgdGhlIGBSYCBwYWNrYWdlIFsqKnJpc2tzZXRST0MqKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1yaXNrc2V0Uk9DKS4gCldlIGRlbW9uc3RyYXRlIHRoZSBjYWxjdWxhdGlvbiBiYXNlZCBvbiBib3RoIHRyYWluaW5nIGFuZCB2YWxpZGF0aW9uIGRhdGEuCgo6Ojp7LmluZm8tYm94IC5ub3RlfQpBIENveCBwcm9wb3J0aW9uYWwgaGF6YXJkcyBtb2RlbCAoYW5kIExhc3NvIENveCBhcyBhIGNvbnNlcXVlbmNlKSBpcyBhIHNlbWktcGFyYW1ldHJpYyBtb2RlbCwgd2hpY2ggbWVhbnMgdGhhdCBpdCBkb2VzIG5vdCBwcm9kdWNlIHN1cnZpdmFsIGRpc3RyaWJ1dGlvbiBwcmVkaWN0aW9ucyBieSBkZWZhdWx0LgpIb3dldmVyLCB1c2luZyB0aGUgZnVuY3Rpb24gYHJpc2tzZXRST0M6OkNveFdlaWdodHMoKWAgeW91IGNhbiB0cmFuc2Zvcm0gdGhlIGBjdi5nbG1uZXRgJ3Mgb3V0cHV0IGxpbmVhciBwcmVkaWN0b3JzIChgbHBgKSB0byBzdXJ2aXZhbCBkaXN0cmlidXRpb24gcHJlZGljdGlvbnMuClRoaXMgdHJhbnNmb3JtYXRpb24gaW50ZXJuYWxseSB1c2VzIHRoZSBCcmVzbG93IGVzdGltYXRvciBmb3IgdGhlIGN1bXVsYXRpdmUgYmFzZWxpbmUgaGF6YXJkLgo6OjoKCmBgYHtyfQojIHVuaXF1ZSBldmVudCB0aW1lcyBmb3IgcGF0aWVudHMgaW4gdGhlIHRyYWluaW5nIGFuZCB2YWxpZGF0aW9uIGRhdGEgc2V0cwp1dGltZXNfdHJhaW4gPSBzb3J0KHVuaXF1ZSh5X3RyYWluW3lfdHJhaW5bLCAyXSA9PSAxLCAxXSkpCnV0aW1lc192YWxpZGF0ZSA9IHNvcnQodW5pcXVlKHlfdmFsaWRhdGVbeV92YWxpZGF0ZVssIDJdID09IDEsIDFdKSkKCiMgbWFya2VycyBmcm9tIHRoZSBlc3RpbWF0ZWQgbGluZWFyIHByZWRpY3RvcnMgb2YgYSBMYXNzbyBDb3ggbW9kZWwKcHJlZF9scF90cmFpbiA9IHByZWRpY3QoY3ZmaXQsIG5ld3ggPSB4X3RyYWluLCBzID0gY3ZmaXQkbGFtYmRhLm1pbiwgdHlwZSA9ICJsaW5rIikKcHJlZF9scF92YWxpZGF0ZSA9IHByZWRpY3QoY3ZmaXQsIG5ld3ggPSB4X3ZhbGlkYXRlLCBzID0gY3ZmaXQkbGFtYmRhLm1pbiwgdHlwZSA9ICJsaW5rIikKCiMjIGNvbXB1dGUgdGltZS1kZXBlbmRlbnQgQVVDCkFVQ190cmFpbiA9IHJlcChOQSwgbGVuZ3RoKHV0aW1lc190cmFpbikpCkFVQ192YWxpZGF0ZSA9IHJlcChOQSwgbGVuZ3RoKHV0aW1lc192YWxpZGF0ZSkpCmZvciAoaiBpbiAxOmxlbmd0aCh1dGltZXNfdHJhaW4pKSB7CiAgb3V0ID0gcmlza3NldFJPQzo6Q294V2VpZ2h0cyhtYXJrZXIgPSBwcmVkX2xwX3RyYWluLCBTdGltZSA9IHlfdHJhaW5bLCAxXSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzdGF0dXMgPSB5X3RyYWluWywgMl0sIHByZWRpY3QudGltZSA9IHV0aW1lc190cmFpbltqXSkKICBBVUNfdHJhaW5bal0gPSBvdXQkQVVDCn0KZm9yIChqIGluIDE6bGVuZ3RoKHV0aW1lc192YWxpZGF0ZSkpIHsKICBvdXQgPSByaXNrc2V0Uk9DOjpDb3hXZWlnaHRzKG1hcmtlciA9IHByZWRfbHBfdmFsaWRhdGUsIFN0aW1lID0geV92YWxpZGF0ZVssIDFdLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN0YXR1cyA9IHlfdmFsaWRhdGVbLCAyXSwgcHJlZGljdC50aW1lID0gdXRpbWVzX3ZhbGlkYXRlW2pdKQogIEFVQ192YWxpZGF0ZVtqXSA9IG91dCRBVUMKfQoKIyBkcmF3IHRoZSB0aW1lLWRlcGVuZGVudCBBVUMgZnJvbSB0aGUgdHJhaW5pbmcgYW5kIHZhbGlkYXRpb24gZGF0YSBzZXRzCmRhdF9BVUMgPSBkYXRhLmZyYW1lKHRBVUMgPSBjKEFVQ190cmFpbiwgQVVDX3ZhbGlkYXRlKSwgCiAgICAgICAgICAgICAgICAgICAgICB0aW1lcyA9IGModXRpbWVzX3RyYWluLCB1dGltZXNfdmFsaWRhdGUpLAogICAgICAgICAgICAgICAgICAgICAgZ3JvdXAgPSBjKHJlcCgiQVVDX3RyYWluIiwgbGVuZ3RoKEFVQ190cmFpbikpLCByZXAoIkFVQ192YWxpZGF0ZSIsIGxlbmd0aChBVUNfdmFsaWRhdGUpKSkpCmdncGxvdChkYXRfQVVDLCBhZXModGltZXMsIHRBVUMsIGdyb3VwID0gZ3JvdXAsIGNvbG9yID0gZ3JvdXApKSArIHhsYWIoIkV2YWx1YXRpb24gdGltZSBwb2ludHMgKHllYXIpIikgKyB5bGFiKCJBVUMiKSArIHlsaW0oMC41LCAxKSArCiAgZ2VvbV9zdGVwKGRpcmVjdGlvbiA9ICJ2aCIpICsgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gYygwLjcsIDAuOCksIGxlZ2VuZC50aXRsZT1lbGVtZW50X2JsYW5rKCkpCmBgYAohW19UaW1lLWRlcGVuZGVudCBBVUMgYmFzZWQgb24gYSBMYXNzbyBDb3ggbW9kZWwgYXBwbGllZCB0byB0aGUgQlJDQSBwYXRpZW50cyBkYXRhIGZyb20gVENHQS4gVGhlIHJlZCBsaW5lIHNob3dzIHRoZSBUaW1lLWRlcGVuZGVudCBBVUMgY2FsY3VsYXRlZCBmcm9tIHRoZSA4MCUgdHJhaW5pbmcgZGF0YSwgYW5kIHRoZSBncmVlbiBsaW5lIHNob3dzIHRoZSBUaW1lLWRlcGVuZGVudCBBVUMgY2FsY3VsYXRlZCBmcm9tIHRoZSAyMCUgdmFsaWRhdGlvbiBkYXRhLl9dKGZpZy9UQ0dBX3N1cnZfYXVjX2xhc3NvLnBuZyl7d2lkdGg9NTAlfQoKPGJyPgoKPGZvbnQgc2l6ZT0iNCI+ICoqSW50ZWdyYXRlZCBBVUMqKiA8L2ZvbnQ+IAoKVGhlIGBSYCBwYWNrYWdlIFsqKnJpc2tzZXRST0MqKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1yaXNrc2V0Uk9DKSBbQEhlYWdlcnR5MjAwNV0gcHJvdmlkZXMgZnVuY3Rpb24gYEludGVncmF0ZUFVQygpYCB0byBlc3RpbWF0ZSBpbnRlZ3JhdGVkIEFVQy4KCmBgYHtyfQojIEJlZm9yZSBjb21wdXRpbmcgaW50ZWdyYXRlZCBBVUMsIGZpcnN0IGVzdGltYXRlIHN1cnZpdmFsIHByb2JhYmlsaXRpZXMgYXQgdW5pcXVlIHN1cnZpdmFsIHRpbWVzCnN1cnZfcHJvYl90cmFpbiA9IHVuaXF1ZShzdXJ2Zml0KFN1cnYoeV90cmFpblssIDFdLCB5X3RyYWluWywgMl0pIH4gMSkkc3VydikKc3Vydl9wcm9iX3ZhbGlkYXRlID0gdW5pcXVlKHN1cnZmaXQoU3Vydih5X3ZhbGlkYXRlWywgMV0sIHlfdmFsaWRhdGVbLCAyXSkgfiAxKSRzdXJ2KQoKIyMgaW50ZWdyYXRlZCBBVUMgKGUuZy4gb3ZlciB0bWF4PTEwIHllYXJzKSB0byBnZXQgY29uY29yZGFuY2UgbWVhc3VyZSBiYXNlZCBvbiB0cmFpbmluZyBkYXRhCihpQVVDX3RyYWluID0gcmlza3NldFJPQzo6SW50ZWdyYXRlQVVDKEFVQ190cmFpbiwgdXRpbWVzX3RyYWluLCBzdXJ2X3Byb2JfdHJhaW4sIHRtYXggPSAxMCkpCmBgYApgYGAKWzFdIDAuNjI4MTMwMQpgYGAKYGBge3J9CiMjIGludGVncmF0ZWQgQVVDIChlLmcuIG92ZXIgdG1heD0xMCB5ZWFycykgdG8gZ2V0IGNvbmNvcmRhbmNlIG1lYXN1cmUgYmFzZWQgb24gdmFsaWRhdGlvbiBkYXRhCihpQVVDX3ZhbGlkYXRlID0gcmlza3NldFJPQzo6SW50ZWdyYXRlQVVDKCBBVUNfdmFsaWRhdGUsIHV0aW1lc192YWxpZGF0ZSwgc3Vydl9wcm9iX3ZhbGlkYXRlLCB0bWF4ID0gMTApKQpgYGAKYGBgClsxXSAwLjYzMTg4NTcKYGBgCgo8Zm9udCBzaXplPSI0Ij4gKipUaW1lLWRlcGVuZGVudCBDLWluZGV4KiogPC9mb250PiAKClRoZSBDLWluZGV4IGlzIG5vdCBwcm9wZXIgZm9yICR0JC15ZWFyIHByZWRpY3Rpb25zLCBzZWUgQEJsYW5jaGUyMDE5LgpDb25zaWRlciB1c2luZyB0aW1lLWRlcGVuZGVudCBBVUMgb3IgdGltZS1kZXBlbmRlbnQgQnJpZXIgc2NvcmUgaW5zdGVhZC4KRm9yIGEgdGltZS1kZXBlbmRlbnQgZGlzY3JpbWluYXRpb24gaW5kZXggZm9yIHN1cnZpdmFsIGRhdGEsIHNlZSBAQW50b2xpbmkyMDA1LgoKPGZvbnQgc2l6ZT0iNCI+ICoqQy1pbmRleCoqIDwvZm9udD4gCgpUaGUgYFJgIHBhY2thZ2UgWyoqZ2xtbmV0KipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9Z2xtbmV0KSBwcm92aWRlcyB0aGUgZnVuY3Rpb24gYGdsbW5ldDo6Q2luZGV4KClgIHRvIGVzdGltYXRlIEhhcnJlbGwncyBDLWluZGV4IGZyb20gYSAiY294bmV0IiBvYmplY3QuClRoZSBgUmAgcGFja2FnZSBbKipzdXJ2QVVDKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9c3VydkFVQykgcHJvdmlkZXMgdGhlIGZ1bmN0aW9uIGBzdXJ2QVVDOjpVbm9DKClgIHRvIGVzdGltYXRlZCBVbm8ncyBDLWluZGV4LgpTZWUgYW4gZXhhbXBsZSBjYWxjdWxhdGlvbiBmb3IgYm90aCBDLWluZGV4ZXMgdXNpbmcgYSBMYXNzbyBDb3ggbW9kZWwgYmVsb3cuCgpgYGB7cn0Kc2V0LnNlZWQoMTIzKQpjdmZpdCA9IGN2LmdsbW5ldCh4X3RyYWluLCB5X3RyYWluLCBmYW1pbHkgPSAiY294IiwgbmZvbGRzID0gNSwgcGVuYWx0eS5mYWN0b3IgPSBwZikKcHJlZCA9IHByZWRpY3QoY3ZmaXQsIG5ld3ggPSB4X3ZhbGlkYXRlLCB0eXBlID0gInJlc3BvbnNlIiwgcyA9IGN2Zml0JGxhbWJkYS5taW4pCiMgSGFycmVsbCdzIEMtaW5kZXgKKENpbmRleF9IYXJyZWxsID0gbWVhbihhcHBseShwcmVkLCAyLCBDaW5kZXgsIHkgPSB5X3ZhbGlkYXRlKSkpCmBgYApgYGAKWzFdIDAuNzMyMDIyMQpgYGAKYGBge3J9CiMgVW5vJ3MgQy1pbmRleAooQ2luZGV4X1VubyA9IHN1cnZBVUM6OlVub0MoeV90cmFpbiwgeV92YWxpZGF0ZSwgcHJlZCkpCmBgYApgYGAKWzFdIDAuNTc4Njg2MQpgYGAKCjxicj4KCiMjIyBDYWxpYnJhdGlvbiBtZXRyaWNzIHstfQoKU2VlIGEgW2NhbGlicmF0aW9uIHBsb3RdKCNzbG9wZUNhbGkpIGluIHRoZSBmb2xsb3dpbmcgc2VjdGlvbiBbR3JhcGhpY2FsIGNvbXB1dGF0aW9uXSgjZ3JhcGhDb21wKS4KCjxicj4KCiMjIyBPdmVyYWxsIG1ldHJpY3Mgey19Cgo8Zm9udCBzaXplPSI0Ij4gKipUaW1lLWRlcGVuZGVudCBCcmllciBzY29yZSoqIDwvZm9udD4gCgpUaGUgYFJgIHBhY2thZ2UgWyoqcmlza1JlZ3Jlc3Npb24qKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1yaXNrUmVncmVzc2lvbikgY2FuIGFzc2VzcyB0aGUgcHJlZGljdGlvbiBlcnJvciBjdXJ2ZXMgb2Ygc3Vydml2YWwgbW9kZWxzIGJhc2VkIG9uIHRoZSB0aW1lLWRlcGVuZGVudCBCcmllciBzY29yZS4KU2ltaWxhciB0byB0aGUgdGltZS1kZXBlbmRlbnQgQVVDLCBvbmUgbmVlZHMgdG8gZmlyc3QgY2FsY3VsYXRlIHRoZSBsaW5lYXIgcHJlZGljdG9ycyAoJGxwJCkgZnJvbSBhIGZyZXF1ZW50aXN0IG9yIEJheWVzaWFuIENveCBtb2RlbCwgYW5kIHRoZW4gdXNlIGBzdXJ2aXZhbDo6Y294cGgoKWAgdG8gcmVncmVzcyB0aGUgc3Vydml2YWwgb3V0Y29tZXMgb24gdGhlIGxpbmVhciBwcmVkaWN0b3IsIHdoaWNoIGlzIHByZXBhcmVkIGFzIGlucHV0IG9mIGByaXNrUmVncmVzc2lvbjo6U2NvcmUoKWAgdG8gZXN0aW1hdGUgdGhlICh0aW1lLWRlcGVuZGVudCkgQnJpZXIgc2NvcmUuCgpgYGB7cn0KIyMgdGltZS1kZXBlbmRlbnQgQnJpZXIgc2NvcmUKCiMgdXNlIHRoZSAoeF90cmFpbiwgeV90cmFpbikgODAlIHNhbXBsZXMgZm9yIHRyYWluaW5nCiMgYW5kIHRoZSAoeF92YWxpZGF0ZSwgeV92YWxpZGF0ZSkgMjAlIHNhbXBsZXMgZm9yIHRlc3RpbmcKCnlfdHJhaW5fc3VydiA9IFN1cnYoeV90cmFpblssInRpbWUiXSwgeV90cmFpblssInN0YXR1cyJdKQp5X3ZhbGlkYXRlX3N1cnYgPSBTdXJ2KHlfdmFsaWRhdGVbLCJ0aW1lIl0sIHlfdmFsaWRhdGVbLCJzdGF0dXMiXSkKc2V0LnNlZWQoMTIzKQpjdmZpdCA9IGN2LmdsbW5ldCh4X3RyYWluLCB5X3RyYWluX3N1cnYsIGZhbWlseSA9ICJjb3giLCBuZm9sZHMgPSA1LCBwZW5hbHR5LmZhY3RvciA9IHBmKQpscF90cmFpbiA9IHByZWRpY3QoY3ZmaXQsIG5ld3ggPSB4X3RyYWluLCBzID0gY3ZmaXQkbGFtYmRhLm1pbiwgdHlwZSA9ICJsaW5rIikKbHBfdmFsaWRhdGUgPSBwcmVkaWN0KGN2Zml0LCBuZXd4ID0geF92YWxpZGF0ZSwgcyA9IGN2Zml0JGxhbWJkYS5taW4sIHR5cGUgPSAibGluayIpCgojIHByZXBhcmUgZGF0YSBmb3JtYXQgc3VpdGVkIGZvciBmdW5jdGlvbiBTY29yZSgpIGZyb20gdGhlIHJpc2tSZWdyZXNzaW9uIHBhY2thZ2UKZGF0YV90cmFpbiA9IGRhdGEuZnJhbWUodGltZSA9IHlfdHJhaW5bLCJ0aW1lIl0sIHN0YXR1cyA9IHlfdHJhaW5bLCJzdGF0dXMiXSwgbHAgPSBhcy52ZWN0b3IobHBfdHJhaW4pKQpkYXRhX3ZhbGlkYXRlID0gZGF0YS5mcmFtZSh0aW1lID0geV92YWxpZGF0ZVssInRpbWUiXSwgc3RhdHVzID0geV92YWxpZGF0ZVssInN0YXR1cyJdLCBscCA9IGFzLnZlY3RvcihscF92YWxpZGF0ZSkpCmxhc3NvX3RyYWluID0gY294cGgoU3Vydih0aW1lLHN0YXR1cykgfiBscCwgZGF0YSA9IGRhdGFfdHJhaW4sIHk9VFJVRSwgeCA9IFRSVUUpCmxhc3NvX3ZhbGlkYXRlID0gY294cGgoU3Vydih0aW1lLHN0YXR1cykgfiBscCwgZGF0YSA9IGRhdGFfdmFsaWRhdGUsIHk9VFJVRSwgeCA9IFRSVUUpCgojIGNhbGN1bGF0ZSBCcmllciBzY29yZXMgYmFzZWQgb24gYm90aCB0cmFpbmluZyBhbmQgdmFsaWRhdGlvbiBkYXRhCkJyaWVyX3RyYWluID0gcmlza1JlZ3Jlc3Npb246OlNjb3JlKGxpc3QoIkJyaWVyX3RyYWluIiA9IGxhc3NvX3RyYWluKSwgZm9ybXVsYSA9IFN1cnYodGltZSwgc3RhdHVzKSB+IDEsIGRhdGEgPSBkYXRhX3RyYWluLCBjb25mLmludCA9IEZBTFNFLCBtZXRyaWNzID0gImJyaWVyIiwgc3VtbWFyeT0iaWJzIiwgdGltZXMgPSBzb3J0KHVuaXF1ZShkYXRhX3RyYWluJHRpbWUpKSkkQnJpZXIkc2NvcmUKQnJpZXJfdmFsaWRhdGUgPSByaXNrUmVncmVzc2lvbjo6U2NvcmUobGlzdCgiQnJpZXJfdmFsaWRhdGUiID0gbGFzc29fdmFsaWRhdGUpLCBmb3JtdWxhID0gU3Vydih0aW1lLCBzdGF0dXMpIH4gMSwgZGF0YSA9IGRhdGFfdmFsaWRhdGUsIGNvbmYuaW50ID0gRkFMU0UsIG1ldHJpY3MgPSAiYnJpZXIiLCBzdW1tYXJ5PSJpYnMiLCB0aW1lcyA9IHNvcnQodW5pcXVlKGRhdGFfdmFsaWRhdGUkdGltZSkpKSRCcmllciRzY29yZQpCcmllcl9zY29yZSA9IHJiaW5kKEJyaWVyX3RyYWluLCBCcmllcl92YWxpZGF0ZSkKQnJpZXJfc2NvcmUgPSBCcmllcl9zY29yZVtCcmllcl9zY29yZSRtb2RlbCAhPSAiTnVsbCBtb2RlbCIsIF0KICAKZ2dwbG90KEJyaWVyX3Njb3JlLCBhZXModGltZXMsIEJyaWVyLCBncm91cCA9IG1vZGVsLCBjb2xvciA9IG1vZGVsKSkgKyB4bGFiKCJFdmFsdWF0aW9uIHRpbWUgcG9pbnRzICh5ZWFyKSIpICsgeWxhYigiQnJpZXIgc2NvcmUiKSArIAogIGdlb21fc3RlcChkaXJlY3Rpb24gPSAidmgiKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9IGMoMC4xNSwgMC44OCksIGxlZ2VuZC50aXRsZT1lbGVtZW50X2JsYW5rKCkpCmBgYAohW19UaW1lLWRlcGVuZGVudCBCcmllciBzY29yZSBiYXNlZCBvbiBhIExhc3NvIENveCBtb2RlbCBhcHBsaWVkIHRvIHRoZSBCUkNBIHBhdGllbnRzIGRhdGEgZnJvbSBUQ0dBLiBUaGUgcmVkIGxpbmUgc2hvd3MgdGhlIFRpbWUtZGVwZW5kZW50IEJyaWVyIHNjb3JlIGNhbGN1bGF0ZWQgZnJvbSB0aGUgODAlIHRyYWluaW5nIGRhdGEsIGFuZCB0aGUgZ3JlZW4gbGluZSBzaG93cyB0aGUgVGltZS1kZXBlbmRlbnQgQnJpZXIgc2NvcmUgY2FsY3VsYXRlZCBmcm9tIHRoZSAyMCUgdmFsaWRhdGlvbiBkYXRhLl9dKGZpZy9UQ0dBX3N1cnZfYnJpZXJfdF9sYXNzby5wbmcpe3dpZHRoPTYwJX0KCjxicj4KCjxmb250IHNpemU9IjQiPiAqKkludGVncmF0ZWQgQnJpZXIgc2NvcmUgKElCUykqKiA8L2ZvbnQ+IAoKVGhlIGZ1bmN0aW9uIGByaXNrUmVncmVzc2lvbjo6U2NvcmUoKWAgYWxzbyBzdW1tYXJpemVzIElCUyB3aGVuIHNwZWNpZnlpbmcgYXJndW1lbnQgYHN1bW1hcnkgPSAiaWJzImAuCldlIGNhbiBleHRyYWN0IHRoZSBJQlMgY29ycmVzcG9uZGluZyB0byB0aGUgbGFyZ2VzdCBldmFsdWF0aW9uIHRpbWUgcG9pbnQuCgpgYGB7cn0KQnJpZXJfdmFsaWRhdGVfaWJzID0gQnJpZXJfdmFsaWRhdGVbQnJpZXJfdmFsaWRhdGUkbW9kZWwgPT0gIkJyaWVyX3ZhbGlkYXRlIiwgXQpCcmllcl92YWxpZGF0ZV9pYnMkSUJTW3doaWNoLm1heChCcmllcl92YWxpZGF0ZV9pYnMkdGltZXMpXQpgYGAKYGBgClsxXSAwLjE3MTE2MTcKYGBgCgo8YnI+CgojIyMgVW5jZXJ0YWludHkgUXVhbnRpZmljYXRpb24gey0jdXExfQoKOjo6ey5pbmZvLWJveCAuaW1wb3J0YW50fQoqKkl0IGlzIHJlY29tbWVuZGVkIHRvIHVzZSByZXNhbXBsaW5nLWJhc2VkIG1ldGhvZHMqKiBmb3IgZXN0aW1hdGluZyB0aGUgdW5jZXJ0YWludHkgb2YgdGhlIG1vZGVsJ3MgcGVyZm9ybWFuY2UsIGlmIHRoZXJlIGFyZSBubyAqKmluZGVwZW5kZW50KiogdmFsaWRhdGlvbiBkYXRhIGZvciBtb2RlbCBldmFsdWF0aW9uLgpUaGlzIGNhbiBiZSBkb25lIGZvciBleGFtcGxlIGJ5IHJlcGVhdGVkbHkgc3BsaXR0aW5nIHRoZSBkYXRhc2V0IHRvIHRyYWluaW5nL3ZhbGlkYXRpb24gc2V0cyBhbmQgZXZhbHVhdGluZyBhIG1vZGVsJ3MgcGVyZm9ybWFuY2Ugb24gdGhlIGRpZmZlcmVudCB2YWxpZGF0aW9uIHNldHMgdXNpbmcgdmFyaW91cyBkaXNjcmltaW5hdGlvbiBvciBjYWxpYnJhdGlvbiBtZXRyaWNzLgo6OjoKCldlIGRlbW9uc3RyYXRlIGhvdyB0byByYW5kb21seSBzcGxpdCB0aGUgZGF0YSwgZS5nLiAkMTAwJCB0aW1lcywgdHJhaW4gYSBMYXNzbyBDb3ggbW9kZWwgYW5kIGVzdGltYXRlIHRoZSBpbnRlZ3JhdGVkIEFVQyBiYXNlZCBvbiB0aGUgdmFsaWRhdGlvbiBkYXRhIGluIGVhY2ggcmVwbGljYXRpb24uCkZvciBvdGhlciBDb3gtdHlwZSBtb2RlbHMsIHdlIGNhbiBqdXN0IHJlcGxhY2UgdGhlIG1vZGVsIGZpdHRpbmcgcGFydCBgY3YuZ2xtbmV0KClgIChhbmQgYHByZWRpY3QoKWApIGluIHRoZSBgZm9yYCBsb29wIGJlbG93LgpIb3dldmVyLCBtb3N0IG9mIHRoZSBCYXllc2lhbiBDb3ggbW9kZWxzIGludHJvZHVjZWQgcHJldmlvdXNseSBhcmUgY29tcHV0YXRpb25hbGx5IHRpbWUtY29uc3VtaW5nIHdoZW4gcmFuZG9tbHkgc3BsaXR0aW5nIHRoZSBkYXRhIG1hbnkgdGltZXMuCgpgYGB7cn0KIyBzcGxpdCB0aGUgZGF0YSAxMDAgdGltZXMKc2V0LnNlZWQoMTIzKQprID0gMTAwCmlBVUMgPSByZXAoTkEsIGspCmZvciAoaSBpbiAxOmspIHsKICBpZHggPSBzYW1wbGUoMTpuLCBuICogMC44LCByZXBsYWNlID0gRkFMU0UpCiAgeF90cmFpbiA9IHhbaWR4LCBdCiAgeV90cmFpbiA9IHlbaWR4LCBdCiAgeF92YWxpZGF0ZSA9IHhbLWlkeCwgXQogIHlfdmFsaWRhdGUgPSB5Wy1pZHgsIF0KICBjdmZpdCA9IGN2LmdsbW5ldCh4X3RyYWluLCB5X3RyYWluLCBmYW1pbHkgPSAiY294IiwgbmZvbGRzID0gNSwgcGVuYWx0eS5mYWN0b3IgPSBwZikKICBwcmVkX2xwID0gcHJlZGljdChjdmZpdCwgbmV3eCA9IHhfdmFsaWRhdGUsIHMgPSBjdmZpdCRsYW1iZGEubWluLCB0eXBlID0gImxpbmsiKQogIHV0aW1lcyA9IHNvcnQodW5pcXVlKHlfdmFsaWRhdGVbeV92YWxpZGF0ZVssIDJdID09IDEsIDFdKSkKICBBVUMgPSByZXAoTkEsIGxlbmd0aCh1dGltZXMpKQogIGZvciAoaiBpbiAxOmxlbmd0aCh1dGltZXMpKSB7CiAgICBvdXQgPSBDb3hXZWlnaHRzKG1hcmtlciA9IHByZWRfbHAsIFN0aW1lID0geV92YWxpZGF0ZVssIDFdLCBzdGF0dXMgPSB5X3ZhbGlkYXRlWywgMl0sIHByZWRpY3QudGltZSA9IHV0aW1lc1tqXSkKICAgIEFVQ1tqXSA9IG91dCRBVUMKICB9CiAgc3Vydl9wcm9iID0gdW5pcXVlKHN1cnZmaXQoU3Vydih5X3ZhbGlkYXRlWywgMV0sIHlfdmFsaWRhdGVbLCAyXSkgfiAxKSRzdXJ2KQogIGlBVUNbaV0gPSBJbnRlZ3JhdGVBVUMoQVVDLCB1dGltZXMsIHN1cnZfcHJvYiwgdG1heCA9IDEwKQp9CmRhdF90bXAgPSBkYXRhLmZyYW1lKHggPSAiTGFzc28gQ294IiwgeSA9IGlBVUMpCgpzZXQuc2VlZCgxMjMpCmdncGxvdChkYXRfdG1wLCBhZXMoeCwgeSkpICsgZ2VvbV9ib3hwbG90KCkgKyB5bGltKDAuNSwgMSkgKyB4bGFiKCIiKSArIHlsYWIoIkludGVncmF0ZWQgQVVDIikgKwogIGdlb21faml0dGVyKGNvbG9yPSJibHVlIiwgc2l6ZSA9IDAuNSwgYWxwaGEgPSAwLjUpCmBgYAohW19JbnRlZ3JhdGVkIEFVQyBiYXNlZCBvbiByYW5kb21seSBzcGxpdCB2YWxpZGF0aW9uIGRhdGEgMTAwIHRpbWVzLiBUaGUgYmx1ZSBkb3RzIGFyZSB0aGUgMTAwIHZhbHVlcyBvZiBpbnRlZ3JhdGVkIEFVQy5fXShmaWcvVENHQV9zdXJ2X2lhdWNfbGFzc28ucG5nKXt3aWR0aD0zMCV9Cgo8YnI+CgpTaW1pbGFyIHRvIG9idGFpbmluZyB1bmNlcnRhaW50eSBvZiB0aGUgaW50ZWdyYXRlZCBBVUMsIHdlIGNhbiBhbHNvIGVzdGltYXRlIHRoZSB1bmNlcnRhaW50eSBvZiB0aGUgQy1pbmRleCBmb3IgZXZhbHVhdGluZyB0aGUgZ2xvYmFsIHBlcmZvcm1hbmNlIG9mIG91ciBtb2RlbCdzIGRpc2NyaW1pbmF0aW9uLgoKYGBge3J9CiMgc3BsaXQgdGhlIGRhdGEgMTAwIHRpbWVzCnNldC5zZWVkKDEyMykKayA9IDEwMApDaW5kZXhfYWxsID0gZGF0YS5mcmFtZShIYXJyZWxsID0gcmVwKE5BLCBrKSwgVW5vID0gcmVwKE5BLCBrKSkKZm9yIChpIGluIDE6aykgewogIGlkeCA9IHNhbXBsZSgxOm4sIG4gKiAwLjgsIHJlcGxhY2UgPSBGQUxTRSkKICB4X3RyYWluID0geFtpZHgsIF0KICB5X3RyYWluID0geVtpZHgsIF0KICB4X3ZhbGlkYXRlID0geFstaWR4LCBdCiAgeV92YWxpZGF0ZSA9IHlbLWlkeCwgXQogIGN2Zml0ID0gY3YuZ2xtbmV0KHhfdHJhaW4sIHlfdHJhaW4sIGZhbWlseSA9ICJjb3giLCBuZm9sZHMgPSA1LCBwZW5hbHR5LmZhY3RvciA9IHBmKQogIHByZWQgPSBwcmVkaWN0KGN2Zml0LCBuZXd4ID0geF92YWxpZGF0ZSwgdHlwZSA9ICJyZXNwb25zZSIsIHMgPSBjdmZpdCRsYW1iZGEubWluKQogIENpbmRleF9hbGwkSGFycmVsbFtpXSA9IG1lYW4oYXBwbHkocHJlZCwgMiwgQ2luZGV4LCB5ID0geV92YWxpZGF0ZSkpCiAgQ2luZGV4X2FsbCRVbm9baV0gPSBVbm9DKHlfdHJhaW4sIHlfdmFsaWRhdGUsIHByZWQpCn0KZGF0X3RtcCA9IGRhdGEuZnJhbWUoeCA9IHJlcChjKCJIYXJyZWxsIiwgIlVubyIpLCBlYWNoID0gayksIHkgPSB1bmxpc3QoQ2luZGV4X2FsbCkpCgpzZXQuc2VlZCgxMjMpCmdncGxvdChkYXRfdG1wLCBhZXMoeCwgeSwgY29sID0geCkpICsgZ2VvbV9ib3hwbG90KCkgKyBnZW9tX2ppdHRlcihzaXplID0gMC41LCBhbHBoYSA9IDAuNSkgKwogICB5bGltKDAsIDEpICsgeGxhYigiIikgKyB5bGFiKCJDLWluZGV4IikgKyB0aGVtZShsZWdlbmQucG9zaXRpb249Im5vbmUiKQpgYGAKIVtfQy1pbmRleCAoSGFycmVsbCdzIGFuZCBVbm8ncykgYmFzZWQgb24gcmFuZG9tbHkgc3BsaXQgdmFsaWRhdGlvbiBkYXRhIDEwMCB0aW1lcy5fXShmaWcvVENHQV9zdXJ2X2NpbmRleF9sYXNzby5wbmcpe3dpZHRoPTQwJX0KCjxicj4KClRoZSBgUmAgcGFja2FnZSBbKipjMDYwKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9YzA2MCkgW0BTaWxsMjAxNF0gaW5jbHVkZXMgd3JhcHBlciBmdW5jdGlvbnMgZm9yIHRoZSBbKipnbG1uZXQqKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1nbG1uZXQpIGFsZ29yaXRobSBhbmQgaW1wbGVtZW50cyByZXNhbXBsaW5nLWJhc2VkIG1ldGhvZHMgKGUuZy4gY3Jvc3MtdmFsaWRhdGlvbiBhbmQgYm9vdHN0cmFwIC0gd2l0aCBhbmQgd2l0aG91dCByZXBsYWNlbWVudCkgYmFzZWQgb24gdGhlIFsqKnBlcGVycioqXShodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPXBlcGVycikgcGFja2FnZSB0byBjYWxjdWxhdGUgdGhlIHRpbWUtZGVwZW5kZW50IEJyaWVyIHNjb3JlLgpbKipjMDYwKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9YzA2MCkgZXh0ZW5kcyBbKipwZXBlcnIqKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1wZXBlcnIpIHBhY2thZ2UgdG8gYWxsb3cgbWFuZGF0b3J5IGZlYXR1cmVzIHdpdGhvdXQgcGVuYWxpemF0aW9uLgpAQmluZGVyMjAwOCByZWNvbW1lbmRzIHRvIGRyYXcgYm9vdHN0cmFwIHNhbXBsZXMgd2l0aG91dCByZXBsYWNlbWVudCAoaS5lLiBzdWJzYW1wbGluZyksIGJlY2F1c2UgYm9vdHN0cmFwIHNhbXBsZXMgd2l0aCByZXBsYWNlbWVudCBvZnRlbiByZXN1bHQgaW4gdG9vIGNvbXBsZXggbW9kZWxzIGluIGhpZ2gtZGltZW5zaW9uYWwgc2V0dGluZ3MuClRvIHVzZSByZXNhbXBsaW5nIGJ5IENWIHByb3Blcmx5IGZvciBzdXJ2aXZhbCBkYXRhLCBzZWUgQFNpbW9uMjAxMS4KTm90ZSB0aGF0IHJlc2FtcGxpbmctYmFzZWQgbWV0aG9kcyBoZXJlIGFyZSBzaW1pbGFyIHRvIHNwbGl0dGluZyAkODBcJS8yMFwlJCB0aGUgZGF0YSBtYW55IHRpbWVzIHdoaWNoIGFsbG93cyB1cyB0byBxdWFudGlmeSB0aGUgdW5jZXJ0YWludHkgb2YgdGhlIHRpbWUtZGVwZW5kZW50IEJyaWVyIHNjb3JlLgoKYGBge3J9CiMjIHRpbWUtZGVwZW5kZW50IEJyaWVyIHNjb3JlIGJ5IHN1YnNhbXBsaW5nIGZyb20gdGhlIHdob2xlIGRhdGEKc2V0LnNlZWQoMTIzKQpwZXBlcnJfb2JqZWN0ID0gcGVwZXJyOjpwZXBlcnIocmVzcG9uc2UgPSB5X3N1cnYsIHggPSB4LCBmaXQuZnVuID0gZml0LmdsbW5ldCwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhcmdzLmZpdCA9IGxpc3QoZmFtaWx5ID0gImNveCIsIHBlbmFsdHkuZmFjdG9yID0gcGYpLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbXBsZXhpdHkgPSBjb21wbGV4aXR5LmdsbW5ldCwgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYXJncy5jb21wbGV4aXR5ID0gbGlzdChmYW1pbHkgPSAiY294IiwgbmZvbGRzID0gNSwgcGVuYWx0eS5mYWN0b3IgPSBwZiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbmRpY2VzID0gcmVzYW1wbGUuaW5kaWNlcyhuID0gbiwgbWV0aG9kPSJzdWI2MzIiLCBzYW1wbGUubiA9IDEwMCkpCmMwNjA6OlBsb3QucGVwZXJyLmN1cnZlcyhwZXBlcnJfb2JqZWN0KQpgYGAKIVtfUmVzYW1wbGluZy1iYXNlZCBwcmVkaWN0aW9uIGVycm9yIGN1cnZlcyAodGltZS1kZXBlbmRlbnQgQnJpZXIgc2NvcmUpIGEgdGhlIExhc3NvIENveCBtb2RlbCBhcHBsaWVkIHRvIHRoZSBCUkNBIGRhdGEgc2V0IGZyb20gVENHQS4gVGhlIGdyYXkgYXJlYSBpbmRpY2F0ZXMgdGhlIHBvaW50d2lzZSAyLjUlIGFuZCA5Ny41JSBxdWFudGlsZXMgb2YgdGhlIDEwMCBvdXQtb2YtYmFnIGJvb3RzdHJhcCBzYW1wbGVzLiBUaGUgb3RoZXIgbGluZXMgc2hvdyB0aGUgcHJlZGljdGlvbiBlcnJvciBjdXJ2ZXMgb2YgdGhlIG51bGwgbW9kZWwgKGVzdGltYXRlZCBieSB0aGUgS2FwbGFuLU1laWVyIGVzdGltYXRvciB3aXRob3V0IGNvdmFyaWF0ZSBpbmZvcm1hdGlvbiksIHRoZSBmdWxsIGFwcGFyZW50IGVycm9yIGVzdGltYXRlcyAoaS5lLiwgdGhlIGVycm9ycyBhcyBlc3RpbWF0ZWQgd2hlbiBhcHBseWluZyB0aGUgbW9kZWwgdG8gdGhlIGVudGlyZSB0cmFpbmluZyBkYXRhIHNldCksIGFuZCB0aGUgLjYzMisgYm9vdHN0cmFwIGVycm9yIGVzdGltYXRlcy5fXShmaWcvVENHQV9zdXJ2X2JyaWVyX2xhc3NvLnBuZyl7d2lkdGg9NjAlfQoKPGJyPgoKIyMjIEZlYXR1cmUgc3RhYmlsaXR5IGFuYWx5c2lzIHstfQoKVG8gaWRlbnRpZnkgc3RhYmxlIG9taWNzIGZlYXR1cmVzLCBhIHN0cmFpZ2h0Zm9yd2FyZCB3YXkgaXMgdG8gZmluZCB0aGUgb3ZlcmxhcHBlZCBvbWljcyBmZWF0dXJlcyB3aXRoIG5vbnplcm8gY29lZmZpY2llbnRzIGFtb25nIGRpZmZlcmVudCBkYXRhIHN1YnNldHMgKGUuZy4gQ1YgZm9sZHMgb3IgcmVzYW1wbGVzKS4KVGhlIGZvbGxvd2luZyBjb2RlIHN1bW1hcml6ZXMgdGhlIExhc3NvIENveCBzZWxlY3RlZCBvbWljcyBmZWF0dXJlcyB3aGljaCB3ZXJlIGlkZW50aWZpZWQgYXQgbGVhc3QgJDIkIG9yICQ1JCBvdXQgb2YgJDEwJCByZXNhbXBsZXMuClNpbWlsYXJseSwgdGhpcyBhcHByb2FjaCBjYW4gYmUgYXBwbGllZCB0byBvdGhlciBMYXNzby10eXBlIG9yIEJheWVzaWFuIENveCBtb2RlbHMgdGhhdCBwZXJmb3JtIGZlYXR1cmUgc2VsZWN0aW9uIGZvciBpZGVudGlmeWluZyBzdGFibGUgc2VsZWN0ZWQgZmVhdHVyZXMuCgpgYGB7cn0KIyBzcGVjaWZ5IHRoZSBudW1iZXIgb2YgcmVzYW1wbGVzIGsKayA9IDEwCmJldGFfYWxsID0gbWF0cml4KG5yb3cgPSBuY29sKHgpLCBuY29sID0gaykKc2V0LnNlZWQoMTIzKQpmb3IgKGogaW4gMTprKSB7CiAgcmVzYW1wbGVfaWQgPSBzYW1wbGUoMTpucm93KHkpLCBucm93KHkpLCByZXBsYWNlID0gVFJVRSkKICByZXNhbXBsZV94ID0geFtyZXNhbXBsZV9pZCwgXQogIHJlc2FtcGxlX3kgPSB5W3Jlc2FtcGxlX2lkLCBdCiAgY3ZmaXQgPSBjdi5nbG1uZXQocmVzYW1wbGVfeCwgcmVzYW1wbGVfeSwgZmFtaWx5ID0gImNveCIsIG5mb2xkcyA9IDUsIHBlbmFsdHkuZmFjdG9yID0gcGYpCiAgYmV0YV9hbGxbLCBqXSA9IGFzLnZlY3Rvcihjb2VmKGN2Zml0LCBzID0gY3ZmaXQkbGFtYmRhLm1pbikpCn0KCihzdGFibGVfZmVhdHVyZXMgPSBjb2xuYW1lcyh4KVtyb3dTdW1zKGJldGFfYWxsICE9IDApID49IDJdKQpgYGAKYGBgCiBbMV0gImFnZSIgICAgICAgImV0aG5pY2l0eSIgIlVCRTJUIiAgICAgIkNEQzYiICAgICAgIkNDTkIxIiAgICAgIlRZTVMiICAgICAgIkNFUDU1IiAgICAgIk1FTEsiICAgICAiTkRDODAiICAgICAiVUJFMkMiICAgICAiUFRURzEiICAgICAiRVhPMSIgICAgICAiT1JDNkwiICAgICAiQU5MTiIgICAgICAiQ0NORTEiICAgICAiS0lGMkMiICAgICJBQ1RSM0IiICAgICJNWUMiICAgICAgICJFR0ZSIiAgICAgICJLUlQ1IiAgICAgICJQSEdESCIgICAgICJDREgzIiAgICAgICJNSUEiICAgICAgICJGT1hDMSIgICAgIktSVDE0IiAgICAgIkVTUjEiICAgICAgIlNMQzM5QTYiICAgIkJBRzEiICAgICAgIk1BUFQiICAgICAgIkNYWEM1IiAgICAgIk1MUEgiICAgICAgIkJDTDIiICAgICAiTURNMiIgICAgICAiRk9YQTEiICAgICAiR1BSMTYwIiAgICAiRkdGUjQiICAgICAiVE1FTTQ1QiIgICAiRVJCQjIiIApgYGAKYGBge3J9CihzdGFibGVfZmVhdHVyZXMgPSBjb2xuYW1lcyh4KVtyb3dTdW1zKGJldGFfYWxsICE9IDApID49IDVdKQpgYGAKYGBgCiBbMV0gImFnZSIgICAgICAgImV0aG5pY2l0eSIgIlVCRTJUIiAgICAgIkNFUDU1IiAgICAgIlVCRTJDIiAgICAgIk9SQzZMIiAgICAgIkFOTE4iICAgICAgIkVTUjEiICAgICAgIkJBRzEiICAgICAiTUxQSCIgICAgICAiTURNMiIgICAgICAiR1BSMTYwIiAgICAiRkdGUjQiICAgICAiRVJCQjIiCmBgYAoKQWx0ZXJuYXRpdmVseSBmb3IgYSBCYXllc2lhbiBDb3ggbW9kZWwsIGl0cyBtZWRpYW4gcHJvYmFiaWxpdHkgbW9kZWwgKE1QTSkgY2FuIGJlIG9idGFpbmVkIGJhc2VkIG9uIHRoZSBjb2VmZmljaWVudCBlc3RpbWF0ZXMgb3ZlciBNQ01DIGl0ZXJhdGlvbnMuClRoZSBmb2xsb3dpbmcgY29kZSBzaG93cyBob3cgdG8gb2J0YWluIHRoZSBNUE0ncyBjb2VmZmljaWVudHMgb2YgdGhlIHBlbmFsaXplZCBzZW1pcGFyYW1ldHJpYyBCYXllc2lhbiBDb3ggbW9kZWwgd2l0aCBFbGFzdGljIE5ldCBwcmlvciBydW4gcHJldmlvdXNseS4KCmBgYHtyfQpnYW1tYXMgPSBjb2xNZWFucyhtYXRyaXgoYXMubnVtZXJpYyhFTl9iZXRhX3AgIT0gMCksIG5jb2wgPSBuY29sKEVOX2JldGFfcCkpKQpiZXRhX01QTSA9IChnYW1tYXMgPj0gMC41KSAqIGNvbE1lYW5zKEVOX2JldGFfcCkgLyBnYW1tYXMKYmV0YV9NUE1baXMubmEoYmV0YV9NUE0pXSA9IDAKYmV0YV9NUE0KYGBgCmBgYAogWzFdICAwLjAwMDAwMDAwMDAgLTAuMDE3MjAxNTI4MCAgMC4wMzA0MzE2NjE2IC0wLjAxMTQ2MjMzMDggIDAuMDgzNzgyNDEzMiAtMC4wNTQ3OTgzMzI3CiBbN10gIDAuMTQwNzQzOTEyNiAtMC4wNTYyNDM4MzUwICAwLjAyMzM0MTMyNTggIDAuMDgyMjU0ODk2NiAtMC4wMjE2OTU2MDA5IC0wLjAwNDY1MzE5OTEKWzEzXSAgMC4wMDAwMDAwMDAwIC0wLjAxMDI0MzI3MDcgLTAuMDQ2Mjc2NDI4MSAtMC4wMjYxMjMzNTAzICAwLjEyMDQ0NTI2OTIgIDAuMDQ5ODM4MDYzMgpbMTldICAwLjAwMDAwMDAwMDAgIDAuMDAwMDAwMDAwMCAgMC4wNDExMzU0MjcxICAwLjAwMDgyNTA5NTkgLTAuMDc0NzEyMTMyOCAgMC4zNzA5OTk2MDM1ClsyNV0gLTAuMDcxNDEyMzc4NSAgMC4wNTMxODg0NDkxIC0wLjAyNjMzNzk1NTIgLTAuMDI3ODE1NzUxMSAgMC4wODY4MjEzOTE3IC0wLjA0MTc1ODQzMzQKWzMxXSAtMC4wMTU0NjA5OTgwIC0xLjc1OTc3NjM5OTIgIDAuMDI0ODAxODE3MiAgMC4xNTgzNDQ4Nzg0ICAwLjAwMDAwMDAwMDAgLTAuMDI3MDI3NTA4MApbMzddICAwLjAzMTYyNzk4NTEgIDAuMTg5NjA2MTA3NSAgMC4wMzU5MDYzNjg3IC0wLjEzNzMyMjQ2MjEgLTAuMTY0ODgzMzE3NCAgMC4wMzQ2NDk0NjExCls0M10gIDAuMTE2ODMzNDMxNSAgMC4wMjI0NzkxODU3ICAwLjEzMzYzNDQ4ODEgLTAuMDA0NzQzNTEwOCAgMC4wMTg3NDg0MjI4ICAwLjExNzg5OTYzNjQKWzQ5XSAtMC4xNjk2NTMxMTI2ICAwLjA1NzM3MTM2OTQgLTAuMDMwODg5Nzc4NyAtMC4yMTMwODE5Mzg3CmBgYAoKPGJyPgoKIyMjIEdyYXBoaWNhbCByZXByZXNlbnRhdGlvbiB7LSNncmFwaENvbXB9CgpBZnRlciBpZGVudGlmeWluZyBzdGFibGUgb21pY3MgZmVhdHVyZXMgcHJlZGljdGl2ZSBvZiBzdXJ2aXZhbCBvdXRjb21lcywgd2UgY2FuIGRyYXcgYSAqKm5vbW9ncmFtKiogdG8gYWxsb3dzIHRoZSBncmFwaGljYWwgY2FsY3VsYXRpb24gb2Ygc3Vydml2YWwgcHJvYmFiaWxpdGllcyBhbmQgcmVwb3J0IGEgKipjYWxpYnJhdGlvbiBwbG90KiogZm9yIHByYWN0aXRpb25lcnMuCgo8Zm9udCBzaXplPSI0Ij4gKipOb21vZ3JhbSoqIDwvZm9udD4gCgpXZSBkZW1vbnN0cmF0ZSBhIG5vbW9ncmFtIHVzaW5nIHRoZSBzdGFibGUgc2VsZWN0ZWQgZmVhdHVyZXMgZnJvbSBUQ0dBIGJyZWFzdCBjYW5jZXIgZGF0YSBwcmVwcm9jZXNzZWQgcHJldmlvdXNseS4KVGhlIGBSYCBwYWNrYWdlICoqcmVncGxvdCoqIGRyYXdzIGFuIGVuaGFuY2VkIHJlZ3Jlc3Npb24gbm9tb2dyYW0gYmFzZWQgb24gdGhlICoqcm1zKiogcGFja2FnZS4KCmBgYHtyfQojIHJlbW92ZSBwYXRpZW50cyB3aXRob3V0IHJlcG9ydGluZyBldGhuaWNpdHkKeXkgPSB5W3hbLCAyXSAhPSAzLCBdCnh4ID0geFt4WywgMl0gIT0gMywgXQojIHNwZWNpZnkgdGhlIG51bWJlciBvZiByZXNhbXBsZXMgawprID0gMTAKYmV0YV9hbGwgPSBtYXRyaXgobnJvdyA9IG5jb2woeHgpLCBuY29sID0gaykKc2V0LnNlZWQoMTIzKQpmb3IgKGogaW4gMTprKSB7CiAgcmVzYW1wbGVfaWQgPSBzYW1wbGUoMTpucm93KHl5KSwgbnJvdyh5eSksIHJlcGxhY2UgPSBUUlVFKQogIHJlc2FtcGxlX3ggPSB4eFtyZXNhbXBsZV9pZCwgXQogIHJlc2FtcGxlX3kgPSB5eVtyZXNhbXBsZV9pZCwgXQogIGN2Zml0ID0gY3YuZ2xtbmV0KHJlc2FtcGxlX3gsIHJlc2FtcGxlX3ksIGZhbWlseSA9ICJjb3giLCBuZm9sZHMgPSA1LCBwZW5hbHR5LmZhY3RvciA9IHBmKQogIGJldGFfYWxsWywgal0gPSBhcy52ZWN0b3IoY29lZihjdmZpdCwgcyA9IGN2Zml0JGxhbWJkYS5taW4pKQp9CgojIGlkZW50aWZ5IGZlYXR1cmVzIGF0IGxlYXN0IDgwJSBmcmVxdWVudGx5IHNlbGVjdGVkCnhfc3RhYmxlID0gZGF0YS5mcmFtZSh4eFssIHJvd1N1bXMoYmV0YV9hbGwgIT0gMCkgPj0gayAqIDAuOF0pCnhfc3RhYmxlJGV0aG5pY2l0eSA9IGZhY3Rvcih4X3N0YWJsZSRldGhuaWNpdHkpIApsZXZlbHMoeF9zdGFibGUkZXRobmljaXR5KSA9IGMoIkhpc3BhbmljL2xhdGlubyIsICJOb3QgaGlzcGFuaWMvbGF0aW5vIikKCmRhdGFfdG1wID0gZGF0YS5mcmFtZSh0aW1lcyA9IHl5WywgInRpbWUiXSwgc3RhdHVzID0geXlbLCAic3RhdHVzIl0sIHhfc3RhYmxlKQpmID0gY3BoKGZvcm11bGEgPSBTdXJ2KHRpbWVzLCBzdGF0dXMpIH4gYWdlICsgZXRobmljaXR5ICsgVUJFMlQgKyBPUkM2TCArIEVTUjEsICAKICAgICAgICAgICAgIGRhdGEgPSBkYXRhX3RtcCwgeCA9IFRSVUUsIHkgPSBUUlVFLCBzdXJ2ID0gVFJVRSkKZGRpc3QgPSBkYXRhZGlzdChkYXRhX3RtcCkKb2xkb3B0aW9uID0gb3B0aW9ucyhkYXRhZGlzdCA9ICdkZGlzdCcpCnN1cnYgPSBTdXJ2aXZhbChmKQpub20gPSBub21vZ3JhbShmLCBmdW4gPSBsaXN0KGZ1bmN0aW9uKHgpIHN1cnYoMSwgeCksIGZ1bmN0aW9uKHgpIHN1cnYoMywgeCksIGZ1bmN0aW9uKHgpIHN1cnYoNSwgeCkpLAogICAgICAgICAgICAgICAgICAgIGZ1bmxhYmVsID0gYygiMS1ZZWFyIFN1cnZpdmFsIFByb2JhYmlsaXR5IiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICIzLVllYXIgU3Vydml2YWwgUHJvYmFiaWxpdHkiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjUtWWVhciBTdXJ2aXZhbCBQcm9iYWJpbGl0eSIpLAogICAgICAgICAgICAgICAgICAgIGxwID0gRkFMU0UpCnJlZ3Bsb3Q6OnJlZ3Bsb3QoZiwgb2JzZXJ2YXRpb24gPSBkYXRhX3RtcFsxLF0sIGZhaWx0aW1lID0gYygxLCAzLCA1KSwgdGl0bGUgPSAiIiwKICAgICAgICAgICAgICAgICBwcmZhaWwgPSBGQUxTRSwgcG9pbnRzID0gVFJVRSwgc2hvd1AgPSBGQUxTRSwgc3VidGlja3MgPSBUUlVFKSAKYGBgCiFbX05vbW9ncmFtIGRldmVsb3BlZCB0byBlc3RpbWF0ZSB0aGUgb3ZlcmFsbCBzdXJ2aXZhbCBwcm9iYWJpbGl0eSBmb3IgVENHQSdzIEJSQUMgcGF0aWVudHMgYmFzZWQgb24gZGVtb2dyYXBoaWMgYW5kIExhc3NvIENveCBzZWxlY3RlZCBtUk5BIGZlYXR1cmVzLiBUaGUgcmVkIGNvbG91cmVkIHN5bWJvbHMgcmVwcmVzZW50IG9uZSBwYXRpZW504oCZcyBpbmZvcm1hdGlvbiBhbmQgcHJlZGljdGVkIHByb2JhYmlsaXRpZXMgb2YgMS15ZWFyLCAzLXllYXIgYW5kIDUteWVhciBzdXJ2aXZhbC5fXShmaWcvVENHQV9zdXJ2X25vbW9ncmFtLnBuZyl7d2lkdGg9ODAlfQoKPGJyPiAKCjxmb250IHNpemU9IjQiPiBbKipDYWxpYnJhdGlvbiBwbG90KipdeyNzbG9wZUNhbGl9IDwvZm9udD4gCgpBIGNhbGlicmF0aW9uIHBsb3QgaXMgYSBzdHJhaWdodGZvcndhcmQgdmlzdWFsaXphdGlvbiB0byBzaG93IHRoZSBwcmVkaWN0aW9uIGFiaWxpdHkgb2YgdGhlIG5vbW9ncmFtLCBpLmUuLCB0aGUgYWdyZWVtZW50IGJldHdlZW4gcHJlZGljdGVkIHN1cnZpdmFsIHByb2JhYmlsaXRpZXMgZnJvbSB0aGUgZmluYWwgbW9kZWwgYW5kIHRoZSBLTSBlc3RpbWF0ZWQgc3Vydml2YWwgcHJvYmFiaWxpdGllcyBpbiBkaWZmZXJlbnQgcGVyY2VudGlsZXMgb2YgdGhlIHByZWRpY3RlZCB2YWx1ZXMgYXQgYSB0aW1lIHBvaW50IG9mIGludGVyZXN0LiAKV2UgZGVtb25zdHJhdGUgYmVsb3cgY2FsaWJyYXRpb24gcGxvdHMgYmFzZWQgb24gdHJhaW5pbmcgYW5kIHZhbGlkYXRpb24gZGF0YSBzZXRzLCByZXNwZWN0aXZlbHkuCgpgYGB7cn0KIyBDYWxpYnJhdGlvbiBhdCA1LXllYXIgdGltZS1wb2ludAoKIyBwcmVwYXJlIHN1aXRhYmxlIGRhdGEgZm9ybWF0IGZvciBjYWxpYnJhdGlvbiBwbG90CnNldC5zZWVkKDEyMykKdHJhaW5faWQgPC0gc2FtcGxlKDE6bnJvdyh5eSksIG5yb3coeXkpICogMC44LCByZXBsYWNlID0gRkFMU0UpCmRhdGFfdHJhaW4gPSBkYXRhX3RtcFt0cmFpbl9pZCwgXQpkYXRhX3ZhbGlkYXRlID0gZGF0YV90bXBbLXRyYWluX2lkLCBdCgpkZGlzdCA9IGRhdGFkaXN0KGRhdGFfdHJhaW4pCm9wdGlvbnMoZGF0YWRpc3Q9J2RkaXN0JykKZl90cmFpbiA9IGNwaChmb3JtdWxhID0gU3Vydih0aW1lcywgc3RhdHVzKSB+IGFnZSArIGV0aG5pY2l0eSArIFVCRTJUICsgT1JDNkwgKyBFU1IxLAogICAgICAgICAgICAgIGRhdGEgPSBkYXRhX3RyYWluLCB4ID0gVFJVRSwgeSA9IFRSVUUsIHN1cnYgPSBUUlVFLCB0aW1lLmluYyA9IDUpCmZfdmFsaWRhdGUgPSB1cGRhdGUoZl90cmFpbiwgZGF0YSA9IGRhdGFfdmFsaWRhdGUpCmNhbF90cmFpbiA9IGNhbGlicmF0ZShmX3RyYWluLCB1ID0gNSwgY21ldGhvZCA9ICJLTSIsIG0gPSBucm93KGRhdGFfdHJhaW4pIC8gNCwgQiA9IDIwMCkKY2FsX3ZhbGlkYXRlID0gY2FsaWJyYXRlKGZfdmFsaWRhdGUsIHUgPSA1LCBjbWV0aG9kID0gIktNIiwgbSA9IG5yb3coZGF0YV92YWxpZGF0ZSkgLyA0LCBCID0gMjAwKQoKcGRmKCJUQ0dBX3N1cnZfY2FsaWJyYXRpb24ucGRmIiwgd2lkdGg9NywgaGVpZ2h0PTQpCmxheW91dChtYXRyaXgoMToyLCBucm93ID0gMSkpCnBsb3QoY2FsX3RyYWluLCBsd2QgPSAyLCBsdHkgPSAxLCBlcnJiYXIuY29sID0gInNlYWdyZWVuMyIsCiAgICAgeGxhYiA9ICdQcmVkaWN0ZWQgc3Vydml2YWwgcHJvYmFiaWxpdHknLCB5bGFiID0gJ0FjdHVhbCBzdXJ2aXZhbCBwcm9iYWJpbGl0eScsCiAgICAgeGxpbSA9IGMoMCwxKSwgeWxpbSA9IGMoMCwxKSwgY29sID0gInNlYWdyZWVuMyIsIHN1YnRpdGxlcyA9IEZBTFNFKQp0aXRsZShtYWluID0gIkNhbGlicmF0aW9uIG9uIHRyYWluaW5nIGRhdGEiKQoKcGxvdChjYWxfdmFsaWRhdGUsIGx3ZCA9IDIsIGx0eSA9IDEsIGVycmJhci5jb2wgPSAic2VhZ3JlZW4zIiwKICAgICB4bGFiID0gJ1ByZWRpY3RlZCBzdXJ2aXZhbCBwcm9iYWJpbGl0eScsIHlsYWIgPSAnQWN0dWFsIHN1cnZpdmFsIHByb2JhYmlsaXR5JywKICAgICB4bGltID0gYygwLDEpLCB5bGltID0gYygwLDEpLCBjb2wgPSAic2VhZ3JlZW4zIiwgc3VidGl0bGVzID0gRkFMU0UpCnRpdGxlKG1haW4gPSAiQ2FsaWJyYXRpb24gb24gdmFsaWRhdGlvbiBkYXRhIikKZGV2Lm9mZigpCmBgYAohW19Ob21vZ3JhbSBtb2RlbCBjYWxpYnJhdGlvbiBjdXJ2ZXMgZm9yIFRDR0EncyBCUkFDIHBhdGllbnRzIGF0IDUteWVhciBldmFsdWF0aW9uIHRpbWUtcG9pbnQuX10oZmlnL1RDR0Ffc3Vydl9jYWxpYnJhdGlvbi5wbmcpe3dpZHRoPTcwJX0KCjxicj4KCiMjIE1vZGVsIGV2YWx1YXRpb24gKG1scjMpIHstI21scjN9Cgo6Ojp7LmdyZWVuLWJveH0KVXNpbmcgdGhlIFsqKm1scjMqKl0oaHR0cHM6Ly9tbHIzLm1sci1vcmcuY29tKSBtYWNoaW5lIGxlYXJuaW5nIGZyYW1ld29yayBhbmQgdGhlIFsqKm1scjNwcm9iYSoqXShodHRwczovL21scjNwcm9iYS5tbHItb3JnLmNvbSkgYFJgIGxpYnJhcnksIHdlIHdpbGwgZGVtb25zdHJhdGUgaG93IHRvOgoKLSBDcmVhdGUgYSBzdXJ2aXZhbCB0YXNrIGZyb20gYSBkYXRhc2V0IGFuZCBzcGxpdCBpdCB0byB0cmFpbmluZyBhbmQgdGVzdCAodmFsaWRhdGlvbikgc2V0cwotIERlZmluZSBhIExhc3NvIENveCBtb2RlbCB0aGF0IGNhbiBvdXRwdXQgYm90aCBsaW5lYXIgcHJlZGljdG9ycyBhbmQgc3Vydml2YWwgZGlzdHJpYnV0aW9uIHByZWRpY3Rpb25zIGFuZCB0cmFpbi90dW5lIGl0IG9uIHRoZSB0cmFpbmluZyBzZXQKLSBNYWtlIHByZWRpY3Rpb25zIHVzaW5nIHRoZSB0cmFpbmVkIExhc3NvIENveCBtb2RlbCBvbiB0aGUgc2VwYXJhdGUgdGVzdCBzZXQKLSBNZWFzdXJlIHRoZSBwZXJmb3JtYW5jZSBvZiBvdXIgbW9kZWwgKGRpc2NyaW1pbmF0aW9uIGFuZCBjYWxpYnJhdGlvbikgdXNpbmcgc2V2ZXJhbCBldmFsdWF0aW9uIG1ldHJpY3MKLSBVc2luZyByZXNhbXBsaW5nIHRlY2huaXF1ZXMsIHdlIHdpbGwgYXNzZXNzIG91ciBtb2RlbCdzIGNhcGFjaXR5IGZvciBnZW5lcmFsaXphdGlvbiAocHJlZGljdGlvbiBvbiB1bnNlZW4gZGF0YSkgYW5kIHRoZSBzdGFiaWxpdHkgb2YgdGhlIG1vZGVsJ3Mgc2VsZWN0ZWQgZmVhdHVyZXMKOjo6CgpGb3IgdGhlIHJlc3Qgb2YgdGhlIGFuYWx5c2lzLCB3ZSB3aWxsIGJvcnJvdyB0aGUgdGVybWlub2xvZ3kgZnJvbSB0aGUgWyoqbWxyMyoqXShodHRwczovL21scjMubWxyLW9yZy5jb20pIGVjb3N5c3RlbSBvZiBtYWNoaW5lIGxlYXJuaW5nIHBhY2thZ2VzIChlLmcuICp0YXNrKiBpcyBhIGRhdGFzZXQsICpsZWFybmVyKiBpcyBhIG1vZGVsLCBldGMuKS4KU2VlIFttbHIzIGJvb2tdKGh0dHBzOi8vbWxyM2Jvb2subWxyLW9yZy5jb20vKSBmb3IgbW9yZSBkZXRhaWxzLgoKRmlyc3QsIHdlIGxvYWQgdGhlIG5lY2Vzc2FyeSBbKiptbHIzKipdKGh0dHBzOi8vbWxyMy5tbHItb3JnLmNvbSkgbGlicmFyaWVzIFtATGFuZzIwMTk7IEBTb25hYmVuZDIwMjFdIGFuZCBzb21lIG90aGVyIHVzZWZ1bCBvbmVzOgpgYGB7ciwgbWVzc2FnZT1GQUxTRX0KbGlicmFyeSgibWxyM3ZlcnNlIikgIyBtbHIzLCBtbHIzcGlwZXBsaW5lcywgbWxyM2xlYXJuZXJzLCBtbHIzdHVuaW5nLCBwYXJhZG94LCBldGMuCmxpYnJhcnkoIm1scjNwcm9iYSIpICMgcHJvYmFiaWxpc3RpYyBsZWFybmluZyBhbmQgc3Vydml2YWwgYW5hbHlzaXMKbGlicmFyeSgibWxyM2V4dHJhbGVhcm5lcnMiKSAjIGZvciBscm4oJ3N1cnYuZ2xtbmV0JykKYGBgCgo8YnI+CgojIyMgV29ya2Zsb3cgey19CgpXZSBjb25zdHJ1Y3QgYW4gWyoqbWxyMyoqXShodHRwczovL21scjMubWxyLW9yZy5jb20pICpzdXJ2aXZhbCB0YXNrKiAoVENHQSBCUkNBIGRhdGFzZXQgZXNzZW50aWFsbHksIHdpdGggbm9ybWFsaXplZCBQQU01MCBnZW5lIGV4cHJlc3Npb24gZmVhdHVyZXMgYW5kIHR3byBjbGluaWNhbC9kZW1vZ3JhcGhpYyB2YXJpYWJsZXMpIGFuZCBzcGxpdCBpdCBpbnRvIHRyYWluaW5nIGFuZCB0ZXN0IHNldHMgKCQ4MFwlLzIwXCUkKToKYGBge3J9CiMgRnJvbSAnUGVuYWxpemVkIENveCBtb2RlbHMnIHNlY3Rpb246CiMgeCA9PiBnZW5lIGV4cHJlc3Npb24gbWF0cml4ICg1MCBQQU01MCBnZW5lcykgKyAyIGNsaW5pY2FsIHZhcmlhYmxlcwojIHkgPT4gKHRpbWUsIHN0YXR1cykgdGFyZ2V0IG1hdHJpeAoKZGF0YSA9IGNiaW5kLmRhdGEuZnJhbWUoeCwgeSkKIyBkYXRhID0gcmVhZFJEUyhmaWxlID0gJ2RhdGEucmRzJykKdGFzayA9IG1scjNwcm9iYTo6YXNfdGFza19zdXJ2KHggPSBkYXRhLCAKICB0aW1lID0gJ3RpbWUnLCBldmVudCA9ICdzdGF0dXMnLCBpZCA9ICdCUkNBLVRDR0EnKQp0YXNrICMgc2VlIHVzZWZ1bCBpbmZvIGFib3V0IHRoZSBkYXRhc2V0ICgjZmVhdHVyZXMsICNzYW1wbGVzLCB0YXJnZXQgdmFyaWFibGVzKQoKIyBzcGxpdCB0byB0cmFpbiBhbmQgdGVzdCBzZXRzCnNldC5zZWVkKDQyKQpzcGxpdCA9IG1scjM6OnBhcnRpdGlvbih0YXNrLCByYXRpbyA9IDAuOCkKIyBzcGxpdCR0cmFpbiAjIHRyYWluIGluZGljZXMKIyBzcGxpdCR0ZXN0ICMgdGVzdCBpbmRpY2VzCmBgYApgYGAKPFRhc2tTdXJ2OkJSQ0EtVENHQT4gKDEwNDcgeCA1NCkKKiBUYXJnZXQ6IHRpbWUsIHN0YXR1cwoqIFByb3BlcnRpZXM6IC0KKiBGZWF0dXJlcyAoNTIpOgogIC0gZGJsICg1Mik6IEFDVFIzQiwgQU5MTiwgQkFHMSwgQkNMMiwgQklSQzUsIEJMVlJBLCBDQ05CMSwgQ0NORTEsCiAgICBDREMyMCwgQ0RDNiwgQ0RIMywgQ0VOUEYsIENFUDU1LCBDWFhDNSwgRUdGUiwgRVJCQjIsIEVTUjEsIEVYTzEsCiAgICBGR0ZSNCwgRk9YQTEsIEZPWEMxLCBHUFIxNjAsIEdSQjcsIEtJRjJDLCBLUlQxNCwgS1JUMTcsIEtSVDUsIE1BUFQsCiAgICBNRE0yLCBNRUxLLCBNSUEsIE1LSTY3LCBNTFBILCBNTVAxMSwgTVlCTDIsIE1ZQywgTkFUMSwgTkRDODAsIE5VRjIsCiAgICBPUkM2TCwgUEdSLCBQSEdESCwgUFRURzEsIFJSTTIsIFNGUlAxLCBTTEMzOUE2LCBUTUVNNDVCLCBUWU1TLAogICAgVUJFMkMsIFVCRTJULCBhZ2UsIGV0aG5pY2l0eQpgYGAKCldlIGNyZWF0ZSBhIExhc3NvIENveCBbKiptbHIzKipdKGh0dHBzOi8vbWxyMy5tbHItb3JnLmNvbSkgKmdyYXBoIGxlYXJuZXIqIChhIHdyYXBwZXIgYXJvdW5kIHRoZSBgZ2xtbmV0Ojpjdi5nbG1uZXQoKWAgZnVuY3Rpb24gd2l0aCB0aGUgY2FwYWNpdHkgdG8gcHJvdmlkZSBzdXJ2aXZhbCBwcmVkaWN0aW9ucyksIHdoZXJlIHdlIHNwZWNpZnkgdGhlIHR3byBjbGluaWNhbCB2YXJpYWJsZXMgdG8gYmUgKm1hbmRhdG9yeSogKGkuZS4gbm8gcGVuYWxpemF0aW9uKSBhbmQgdGhlICRzJCB2YWx1ZSAoJFxsYW1iZGEkIHBhcmFtZXRlciB1c2VkIGZvciBwcmVkaWN0aW9uKSBlcXVhbCB0byBgbGFtYmRhLm1pbmA6CmBgYHtyfQojdGFpbCh0YXNrJGZlYXR1cmVfbmFtZXMpICMgYWdlLCBldGhuaWNpdHkgYXJlIHRoZSAyIGxhc3QgZmVhdHVyZXMKcGYgPSBjKHJlcCgxLCBsZW5ndGgodGFzayRmZWF0dXJlX25hbWVzKSAtIDIpLCByZXAoMCwgMikpCgojIGRlZmluZSBtb2RlbApjb3hsYXNzbyA9IGxybignc3Vydi5jdl9nbG1uZXQnLCBhbHBoYSA9IDEsIG5mb2xkcyA9IDUsIHMgPSAnbGFtYmRhLm1pbicsCiAgcGVuYWx0eS5mYWN0b3IgPSBwZikKIyBjb3hsYXNzbyAjIHNlZSBkZXRhaWxzIG9mIGNveGxhc3NvIGxlYXJuZXIKIyBjb3hsYXNzbyRoZWxwKCkgIyBmb3IgbW9yZSBkZXRhaWxzCgojID9tbHJfZ3JhcGhzX2Rpc3RyY29tcG9zaXRvcgpjb3hsYXNzb19ncmxybiA9IG1scjNwaXBlbGluZXM6OnBwbCgnZGlzdHJjb21wb3NpdG9yJywKICBsZWFybmVyID0gY294bGFzc28sCiAgZXN0aW1hdG9yID0gJ2thcGxhbicsICMgS00gZXN0aW1hdG9yIGZvciB0aGUgYmFzZWxpbmUKICBmb3JtID0gJ3BoJywgIyBQcm9wb3J0aW9uYWwgSGF6YXJkcyBmb3JtIHNpbmNlIHdlIHVzZSBhIExhc3NvIENveCBtb2RlbAogIGdyYXBoX2xlYXJuZXIgPSBUUlVFCikKY294bGFzc29fZ3Jscm4kaWQgPSAnTGFzc28gQ294JwojIGNveGxhc3NvX2dybHJuJGdyYXBoX21vZGVsJHBsb3QoaHRtbCA9IFRSVUUpICMgcGxvdCB0aGUgZ3JhcGggbGVhcm5lcgpgYGAKCjo6OnsuaW5mby1ib3ggLm5vdGV9CkEgQ294IHByb3BvcnRpb25hbCBoYXphcmRzIG1vZGVsIChhbmQgTGFzc28gQ294IGFzIGEgY29uc2VxdWVuY2UpIGlzIGEgc2VtaS1wYXJhbWV0cmljIG1vZGVsLCB3aGljaCBtZWFucyB0aGF0IGl0IGRvZXMgbm90IHByb2R1Y2Ugc3Vydml2YWwgZGlzdHJpYnV0aW9uIHByZWRpY3Rpb25zIGJ5IGRlZmF1bHQuCkhvd2V2ZXIsIHVzaW5nIHRoZSBmdW5jdGlvbiBgc3Vydml2YWw6OnN1cnZmaXQuY294cGgoKWAgeW91IGNhbiB0cmFuc2Zvcm0gdGhlIGBjdi5nbG1uZXRgJ3Mgb3V0cHV0IGxpbmVhciBwcmVkaWN0b3JzIChgbHBgKSB0byBzdXJ2aXZhbCBkaXN0cmlidXRpb24gcHJlZGljdGlvbnMuClRoaXMgdHJhbnNmb3JtYXRpb24gaW50ZXJuYWxseSB1c2VzIHRoZSBCcmVzbG93IGVzdGltYXRvciBmb3IgdGhlIGN1bXVsYXRpdmUgYmFzZWxpbmUgaGF6YXJkIChzZWUgYHN0eXBlYCBwYXJhbWV0ZXIpLgoKVXNpbmcgWyoqbWxyM3Byb2JhKipdKGh0dHBzOi8vbWxyM3Byb2JhLm1sci1vcmcuY29tKSBbQFNvbmFiZW5kMjAyMV0sIHdlIGNhbiBjb25zdHJ1Y3QgYSBwaXBlbGluZSBbQG1scjNwaXBlbGluZXMyMDIxXSB0aGF0IGNvbWJpbmVzIHRoZSBkaXN0cmlidXRpb24gcHJlZGljdGlvbnMgb2YgYSBiYXNlbGluZSBtb2RlbCAoZS5nLiBLYXBsYW4gTWVpZXIpIHdpdGggdGhlIGxpbmVhciBwcmVkaWN0b3JzIG9mIGEgQ294LXR5cGUgbW9kZWwgKGUuZy4gTGFzc28gQ294KS4KU2VlIGRldGFpbHMgc3VjaCBhcyB0aGUgdHJhbnNmb3JtYXRpb24gYXNzdW1wdGlvbnMsIHRoZSBjaG9pY2Ugb2YgdGhlIHN1cnZpdmFsIGZ1bmN0aW9uIGZvcm0gYW5kIHRoZSBhdmFpbGFibGUgYmFzZWxpbmUgc3Vydml2YWwgZGlzdHJpYnV0aW9uIGVzdGltYXRvcnMgb24gdGhlIHJlc3BlY3RpdmUgW2RvY3VtZW50YXRpb25dKGh0dHBzOi8vbWxyM3Byb2JhLm1sci1vcmcuY29tL3JlZmVyZW5jZS9tbHJfcGlwZW9wc19jb21wb3NlX2Rpc3RyLmh0bWwpLgo6OjoKCjxicj4KClRyYWluIHRoZSBMYXNzbyBDb3ggbW9kZWw6CmBgYHtyfQpzZXQuc2VlZCgzKQpjb3hsYXNzb19ncmxybiR0cmFpbih0YXNrLCByb3dfaWRzID0gc3BsaXQkdHJhaW4pCiMgdmlldyBgY3YuZ2xtbmV0YCBmaXQKY294bGFzc29fZ3Jscm4kbW9kZWwkc3Vydi5jdl9nbG1uZXQkbW9kZWwKYGBgCmBgYApDYWxsOiAgKGlmIChjdikgZ2xtbmV0Ojpjdi5nbG1uZXQgZWxzZSBnbG1uZXQ6OmdsbW5ldCkoeCA9IGRhdGEsIHkgPSB0YXJnZXQsICAgICAgbmZvbGRzID0gNUwsIGFscGhhID0gMSwgcGVuYWx0eS5mYWN0b3IgPSBjKDEsIC4uLiwgMCwgMCksIGZhbWlseSA9ICJjb3giKSAKCk1lYXN1cmU6IFBhcnRpYWwgTGlrZWxpaG9vZCBEZXZpYW5jZSAKCiAgICAgTGFtYmRhIEluZGV4IE1lYXN1cmUgICAgIFNFIE5vbnplcm8KbWluIDAuMDA5OTQgICAgMTUgICAxMi4zMCAwLjI3MTkgICAgICAxNQoxc2UgMC4wMzY1NiAgICAgMSAgIDEyLjM1IDAuMjU2MiAgICAgICAyCmBgYAoKR2V0IHRoZSBzdXJ2aXZhbCBkaXN0cmlidXRpb24gcHJlZGljdGlvbnMgKCRkaXN0ciQpIGFsb25nIHdpdGggdGhlIGxpbmVhciBwcmVkaWN0b3JzICgkbHAkKToKYGBge3J9CnByZWQgPSBjb3hsYXNzb19ncmxybiRwcmVkaWN0KHRhc2ssIHJvd19pZHMgPSBzcGxpdCR0ZXN0KQpoZWFkKGFzLmRhdGEudGFibGUocHJlZCkpCmBgYApgYGAKICAgcm93X2lkcyAgICAgIHRpbWUgc3RhdHVzICAgICBjcmFuayAgICAgICAgbHAgICAgIGRpc3RyCjE6ICAgICAgIDUgMC45NTI3NzIxICBGQUxTRSAtMy4zMjkxMzMgLTMuMzI5MTMzIDxsaXN0WzFdPgoyOiAgICAgICA2IDQuMDQzODA1NiAgRkFMU0UgLTMuODAwNzY2IC0zLjgwMDc2NiA8bGlzdFsxXT4KMzogICAgICAxNSAxLjczODUzNTIgIEZBTFNFIC0yLjc4NjY2MiAtMi43ODY2NjIgPGxpc3RbMV0+CjQ6ICAgICAgNDUgNC41ODA0MjQ0ICBGQUxTRSAtMi43NjExMTAgLTIuNzYxMTEwIDxsaXN0WzFdPgo1OiAgICAgIDUwIDUuMTI3OTk0NSAgRkFMU0UgLTMuNzM2MjExIC0zLjczNjIxMSA8bGlzdFsxXT4KNjogICAgICA1NCA2LjY4NTgzMTYgIEZBTFNFIC0zLjQ5OTY5MSAtMy40OTk2OTEgPGxpc3RbMV0+CmBgYAoKU28gZm9yIGV2ZXJ5IHBhdGllbnQgaW4gdGhlIHRlc3Qgc2V0LCB0aGUgTGFzc28gQ294IG1vZGVsIHByZWRpY3Rpb24gaXMgYSBsaW5lYXIgcHJlZGljdG9yIG9mIHRoZSBmb3JtICRscCA9IFxoYXR7XGJldGF9IFhfe25ld30kLgokY3JhbmskIHN0YW5kcyBmb3IgY29udGludW91cyByYW5raW5nIHNjb3JlIGFuZCBpdCdzIHRoZSBzYW1lIGFzICRscCQgZm9yIHRoZSBMYXNzbyBDb3ggbW9kZWwuClRoZSAkZGlzdHIkIHByZWRpY3Rpb25zIGFyZSB0aGUgcGVyLXBhdGllbnQgc3Vydml2YWwgZGlzdHJpYnV0aW9uIHByZWRpY3Rpb25zLCBpbXBsZW1lbnRlZCBieSB0aGUgYFJgIHBhY2thZ2UgW2Rpc3RyNl0oaHR0cHM6Ly9naXRodWIuY29tL2FsYW4tdHVyaW5nLWluc3RpdHV0ZS9kaXN0cjYpIHdoaWNoIHRoZSBbKiptbHIzcHJvYmEqKl0oaHR0cHM6Ly9tbHIzcHJvYmEubWxyLW9yZy5jb20pIGltcG9ydHMuClNlZSByZXNwZWN0aXZlIFtkb2N1bWVudGF0aW9uXShodHRwczovL21scjNwcm9iYS5tbHItb3JnLmNvbS9yZWZlcmVuY2UvUHJlZGljdGlvblN1cnYuaHRtbCkgb24gdGhlIGRpZmZlcmVudCBwcmVkaWN0aW9uIHR5cGVzIHN1cHBvcnRlZC4KCkFuIGV4YW1wbGUgb2YgdXNpbmcgdGhlIGBkaXN0cmAgcHJlZGljdGlvbnMgd291bGQgYmUgdG8gcmVxdWVzdCBmb3IgdGhlIHN1cnZpdmFsIHByb2JhYmlsaXR5IGF0IGUuZy4gJDEsNSwxMCwyMCQgeWVhcnMgZm9yIHRoZSBmaXJzdCB0d28gcGF0aWVudHMgaW4gdGhlIHRlc3Qgc2V0OgpgYGB7cn0KdGltZXMgPSBjKDEsNSwxMCwyMCkKcHJlZCRkaXN0ciRzdXJ2aXZhbCh0aW1lcylbLGMoMSwyKV0KCiMgc2FtZSBsb2dpYyBmb3IgdGhlIGN1bXVsYXRpdmUgaGF6YXJkCiMgcHJlZCRkaXN0ciRjdW1IYXphcmQodGltZXMpWyxjKDEsMildCmBgYApgYGAKICAgICAgICBbLDFdICAgICAgWywyXQoxICAwLjk5OTMzNTcgMC45OTk1ODU0CjUgIDAuOTkyNTk4OSAwLjk5NTM3NTQKMTAgMC45ODA0MDM1IDAuOTg3NzI2NwoyMCAwLjk2MzM1NDggMC45NzY5NzM4CmBgYAoKPGJyPgoKIyMjIERpc2NyaW1pbmF0aW9uIG1ldHJpY3Mgey19CgpXZSB3YW50IHRvIHRlc3Qgb3VyIExhc3NvIENveCBtb2RlbCBhbmQgc2VlIGhvdyB3ZWxsIGl0IHdhcyBhYmxlIHRvICoqZGlzY3JpbWluYXRlIHRoZSBwYXRpZW50cyBpbiB0aGUgdGVzdCBzZXQqKi4KRm9yIHRoaXMgd2UgY2FuIHVzZSB0aGUgJGxwJCBwcmVkaWN0aW9ucyBvZiBMYXNzbyBDb3ggbW9kZWwgYW5kIG1ldHJpY3Mgc3VjaCBhcyB0aGUgKHRpbWUtZGVwZW5kZW50KSBDLWluZGV4IGFuZCAodGltZS1kZXBlbmRlbnQpIEFVQy4KPGJyPgoKPGZvbnQgc2l6ZT0iNCI+ICoqSGFycmVsbCdzIEMtaW5kZXgqKiBbQEhhcnJlbGwxOTgyXTogPC9mb250PiAKYGBge3J9CmhhcnJlbGxfYyA9IG1zcignc3Vydi5jaW5kZXgnKQpoYXJyZWxsX2MkaWQgPSAnc3Vydi5jaW5kZXguaGFycmVsbCcKCiMgaGFycmVsbF9jICMgZ2V0IHNvbWUgZGV0YWlscyBhYm91dCB0aGUgbWVhc3VyZQojIGhhcnJlbGxfYyRtaW5pbWl6ZSAjIEZBTFNFID0+IGhpZ2hlciBDLWluZGV4IGlzIGJldHRlcgojIGhhcnJlbGxfYyRyYW5nZSAjIFswLCAxXSA9PiBbbWluLCBtYXhdCiMgaGFycmVsbF9jJHByZWRpY3RfdHlwZSAjIHVzZXMgdGhlICRjcmFuayQgcHJlZGljdGlvbnMgKGVxdWFsIHRvICRscCQgZm9yIExhc3NvIENveAoKcHJlZCRzY29yZShoYXJyZWxsX2MpCmBgYApgYGAKc3Vydi5jaW5kZXguaGFycmVsbCAKICAgICAgICAgIDAuNjE4ODI0NCAKYGBgCgo8YnI+Cgo8Zm9udCBzaXplPSI0Ij4gKipVbm8ncyBDLWluZGV4KiogW0BVbm8yMDExXTogKGFjcm9zcyBhbGwgdGltZSBwb2ludHMgb2YgdGhlIHRlc3Qgc2V0KTogPC9mb250PiAKYGBge3J9CnVub19jID0gbXNyKCdzdXJ2LmNpbmRleCcsIHdlaWdodF9tZXRoID0gJ0cyJykKdW5vX2MkaWQgPSAnc3Vydi5jaW5kZXgudW5vJwoKIyBVbm8ncyBDIG5lZWRzIHRoZSB0cmFpbiBkYXRhCnByZWQkc2NvcmUodW5vX2MsIHRhc2sgPSB0YXNrLCB0cmFpbl9zZXQgPSBzcGxpdCR0cmFpbikKYGBgCmBgYApzdXJ2LmNpbmRleC51bm8gCiAgICAgIDAuNjAwNDQ1OSAKYGBgCgo8YnI+Cgo8Zm9udCBzaXplPSI0Ij4gKipVbm8ncyBJbnRlZ3JhdGVkIEFVQyoqIFtAVW5vMjAwN10gKGFjcm9zcyBhbGwgdGltZSBwb2ludHMgb2YgdGhlIHRlc3Qgc2V0KTogPC9mb250PiAKYGBge3J9CnVub19pYXVjID0gbXNyKCdzdXJ2LnVub19hdWMnKQp1bm9faWF1YyRpZCA9ICdzdXJ2LnVub19pYXVjJwojIHVub19pYXVjJHBhcmFtX3NldCR2YWx1ZXMkaW50ZWdyYXRlZCAjIGludGVncmF0ZWQgPSBUUlVFIGJ5IGRlZmF1bHQKIyBzb3J0KHVuaXF1ZShwcmVkJHRydXRoWywxXSkpICMgdGltZSBwb2ludHMgdXNlZAoKIyB1bm9faWF1YyRwcm9wZXJ0aWVzICMgbmVlZHMgdGhlIHRyYWluIGRhdGEKcHJlZCRzY29yZSh1bm9faWF1YywgdGFzayA9IHRhc2ssIHRyYWluX3NldCA9IHNwbGl0JHRyYWluKQpgYGAKYGBgCnN1cnYudW5vX2lhdWMgCiAgICAwLjY2NDU3MTkgCmBgYAoKPGJyPgoKPGZvbnQgc2l6ZT0iNCI+ICoqVW5vJ3MgQVVDIGF0IGEgc3BlY2lmaWMgdGltZSBwb2ludCoqLCBlLmcuICQxMCQgeWVhcnM6IDwvZm9udD4gCmBgYHtyfQp1bm9fYXVjID0gbXNyKCdzdXJ2LnVub19hdWMnLCBpbnRlZ3JhdGVkID0gRkFMU0UsIHRpbWVzID0gMTApCnVub19hdWMkaWQgPSAnc3Vydi51bm9fYXVjLjEwJwoKIyBuZWVkcyB0aGUgdHJhaW4gZGF0YQpwcmVkJHNjb3JlKHVub19hdWMsIHRhc2sgPSB0YXNrLCB0cmFpbl9zZXQgPSBzcGxpdCR0cmFpbikKYGBgCmBgYApzdXJ2LnVub19hdWMuMTAgCiAgICAgIDAuNjc0OTA4MSAKYGBgCgo8YnI+CgojIyMgQ2FsaWJyYXRpb24gbWV0cmljcyB7LX0KCldlIHdhbnQgdG8gdGVzdCBob3cgd2VsbCBvdXIgTGFzc28gQ294IG1vZGVsIHdhcyAqKmNhbGlicmF0ZWQqKi4gQEFuZHJlczIwMTggYW5kIEBIYWlkZXIyMDIwIHN1Z2dlc3RlZCB0aGUgZGlzdHJpYnV0aW9uYWwgKEQpLWNhbGlicmF0aW9uIGFjY291bnRpbmcgc3Vydml2YWwgcHJvYmFiaWxpdGllcyBhY3Jvc3MgYWxsIHRpbWVzLiBUaGlzIGNhbiBiZSB1c2VmdWwgd2hlbiBhc3Nlc3NpbmcgdGhlIGVudGlyZSBwb3N0LXRyZWF0bWVudCBzdXJ2aXZhbCBwcm9nbm9zaXMsIGZvciBleGFtcGxlLCBhc3Nlc3NpbmcgdGhlIHBvc3QgbGl2ZXIgdHJhbnNwbGFudGF0aW9uIHN1cnZpdmFsIHV0aWxpdHkgaW4gQEFuZHJlczIwMTguCgo8Zm9udCBzaXplPSI0Ij4gKipELWNhbGlicmF0aW9uKiogPC9mb250PiAKYGBge3J9CmRjYWwgPSBtc3IoJ3N1cnYuZGNhbGliJykKcHJlZCRzY29yZShkY2FsKQpgYGAKYGBgCnN1cnYuZGNhbGliIAogICAzMi4yNTk2MSAKYGBgCgo8YnI+CgojIyMgT3ZlcmFsbCBtZXRyaWNzIHstfQoKVXN1YWxseSB3ZSBkZXJpdmUgYW4gZXN0aW1hdGlvbiBvZiB0aGUgZXJyb3IgYmV0d2VlbiB0aGUgc3Vydml2YWwgZGlzdHJpYnV0aW9ucyAoJGRpc3RyJCBwcmVkaWN0aW9ucykgb2YgdGhlIHBhdGllbnRzIGluIHRoZSB0ZXN0IHNldCBhbmQgdGhlaXIgYWN0dWFsIHN1cnZpdmFsIG91dGNvbWVzIChjb3JyZXNwb25kaW5nIHRvIHRoZSBzdXJ2aXZhbCB0YXNrJ3MgYHRpbWVgIGFuZCBgc3RhdHVzYCB2YXJpYWJsZXMpLgpUaGUgbW9zdCBmcmVxdWVudGx5IHVzZWQgbWV0cmljIGlzIHRoZSBCcmllciBTY29yZSBbQEdyYWYxOTk5XToKPGJyPgoKPGZvbnQgc2l6ZT0iNCI+ICoqSW50ZWdyYXRlZCBCcmllciBTY29yZSAoSUJTKSoqIChhY3Jvc3MgYWxsIHRpbWUgcG9pbnRzIG9mIHRoZSB0ZXN0IHNldCk6IDwvZm9udD4gCmBgYHtyfQppYnJpZXIgPSBtc3IoJ3N1cnYuYnJpZXInLCBwcm9wZXIgPSBUUlVFKQojIGlicmllciRoZWxwKCkgIyBzZWUgZG9jdW1lbnRhdGlvbgojIGlicmllciRwcmVkaWN0X3R5cGUgIyB1c2VzIHRoZSBgZGlzdHJgIHByZWRpY3Rpb25zCgojIGJldHRlciB0byB1c2UgdGhlIHRyYWluIGRhdGEgZm9yIHRoZSBLYXBsYW4tTWVpZXIgZXN0aW1hdGlvbiBvZiB0aGUgY2Vuc29yaW5nIGRpc3RyaWJ1dGlvbiwgYnV0IGNhbiB1c2UgdGhlIHRlc3Qgc2V0IGFzIHdlbGwKcHJlZCRzY29yZShpYnJpZXIsIHRhc2sgPSB0YXNrLCB0cmFpbl9zZXQgPSBzcGxpdCR0cmFpbikKYGBgCmBgYApzdXJ2LmdyYWYgCjAuNDA0NDI4NyAKYGBgCgpXZSBjYW4gYWxzbyBnZXQgdGhlICpzdGFuZGFyZCBlcnJvciogb2YgSUJTICh0aGUgYWJvdmUgcmVzdWx0IGlzIHRoZSBtZWFuIGFjcm9zcyBhbGwgdGhlIHRlc3Qgc2V0J3MgcGF0aWVudHMpIGFzIGZvbGxvd3M6CmBgYHtyfQppYnJpZXJfc2UgPSBtc3IoJ3N1cnYuYnJpZXInLCBwcm9wZXIgPSBUUlVFLCBzZSA9IFRSVUUpCnByZWQkc2NvcmUoaWJyaWVyX3NlLCB0YXNrID0gdGFzaywgdHJhaW5fc2V0ID0gc3BsaXQkdHJhaW4pCmBgYApgYGAKIHN1cnYuZ3JhZiAKMC4wMjI1MzkyNwpgYGAKCjxicj4KCjxmb250IHNpemU9IjQiPiAqKkJyaWVyIFNjb3JlIGF0IGEgc3BlY2lmaWMgdGltZSBwb2ludCoqLCBlLmcuICQxMCQgeWVhcnM6IDwvZm9udD4gCmBgYHtyfQpicmllcjEwID0gbXNyKCdzdXJ2LmJyaWVyJywgcHJvcGVyID0gVFJVRSwgaW50ZWdyYXRlZCA9IEZBTFNFLCB0aW1lcyA9IDEwKQpicmllcjEwJGlkID0gJ3N1cnYuZ3JhZi4xMCcKCiMgYmV0dGVyIHRvIHVzZSB0aGUgdHJhaW4gZGF0YSBmb3IgdGhlIEthcGxhbi1NZWllciBlc3RpbWF0aW9uIG9mIHRoZSBjZW5zb3JpbmcgZGlzdHJpYnV0aW9uLCBidXQgY2FuIHVzZSB0aGUgdGVzdCBzZXQgYXMgd2VsbApwcmVkJHNjb3JlKGJyaWVyMTAsIHRhc2sgPSB0YXNrLCB0cmFpbl9zZXQgPSBzcGxpdCR0cmFpbikKYGBgCmBgYApzdXJ2LmdyYWYuMTAgCiAgIDAuNDI1MjQ0MiAKYGBgCgo8YnI+Cgo8Zm9udCBzaXplPSI0Ij4gKipSaWdodC1jZW5zb3JlZCBMb2dhcml0aG1pYyBMb3NzIHNjb3JlKiogKFJDTEwpIFtAQXZhdGkyMDIwO0BTb25hYmVuZDIwMjJdOiA8L2ZvbnQ+IApgYGB7cn0KcmNsbCA9IG1zcignc3Vydi5yY2xsJykKcHJlZCRzY29yZShyY2xsKQpgYGAKYGBgCnN1cnYucmNsbCAKIDQuNjg0NjQ0IApgYGAKCjxicj4KCjo6OnsuaW5mby1ib3ggLm5vdGV9ClZpZXcgYWxsIGV2YWx1YXRpb24gbWV0cmljcyBmb3Igc3Vydml2YWwgZGF0YSBpbXBsZW1lbnRlZCBpbiBbKiptbHIzcHJvYmEqKl0oaHR0cHM6Ly9tbHIzcHJvYmEubWxyLW9yZy5jb20pIFtoZXJlXShodHRwczovL21scjNwcm9iYS5tbHItb3JnLmNvbS9yZWZlcmVuY2UvI3N1cnZpdmFsLW1lYXN1cmVzKQo6OjoKCjxicj4KCiMjIyBVbmNlcnRhaW50eSBRdWFudGlmaWNhdGlvbiB7LX0KClNpbWlsYXIgcHJvY2VkdXJlIGFzIGZvbGxvd2VkIGluIGEgW3ByZXZpb3VzIHNlY3Rpb25dKCN1cTEpLgoKV2Ugd2lsbCBwZXJmb3JtIGEgKipzdHJhdGlmaWVkIHNwbGl0Kiogb2YgdGhlIEJSQ0EtVENHQSBzdXJ2aXZhbCB0YXNrIHRvIHRyYWluaW5nIGFuZCB0ZXN0IHNldHMgKHdpdGggYSAkODBcJS8yMFwlJCByYXRpbyBhcyBiZWZvcmUpLgpTdHJhdGlmaWNhdGlvbiBvbiB0aGUgY2Vuc29yaW5nIGluZGljYXRvciBgc3RhdHVzYCBpcyBpbXBvcnRhbnQgYmVjYXVzZSB3ZSB3YW50IG91ciB0cmFpbmluZyBhbmQgdGVzdCBzZXRzIHRvIGhhdmUgdGhlIHNhbWUgY2Vuc29yaW5nIGRpc3RyaWJ1dGlvbiBhcyB0aGUgaW5pdGlhbCBkYXRhc2V0LgpUaHVzIHdlIGNhbiBhdm9pZCBtZWFzdXJpbmcgcGVyZm9ybWFuY2Ugb24gdGVzdCBzZXRzIHdpdGggc2V2ZXJlbHkgZGlmZmVyZW50IGNlbnNvcmluZyBkaXN0cmlidXRpb25zIHRoYXQgbWlnaHQgaW5mbHVlbmNlIHRoZSBwZXJmb3JtYW5jZSBzY29yZXMuCgpTdHJhdGlmeSBzdXJ2aXZhbCB0YXNrIGJ5IGBzdGF0dXNgOgpgYGB7cn0KY294bGFzc29fZ3Jscm4kcmVzZXQoKSAjIHVuLXRyYWluIG1vZGVsCgp0YXNrJGNvbF9yb2xlcyRzdHJhdHVtID0gJ3N0YXR1cycKIyB0YXNrCmBgYAoKTmV4dCwgd2UgZGVmaW5lIHRoZSB0eXBlIG9mIHJlc2FtcGxpbmcgKGA/bWxyX3Jlc2FtcGxpbmdzX3N1YnNhbXBsaW5nYCksIHRyYWluIHRoZSBMYXNzbyBDb3ggbW9kZWwgb24gYWxsIHRyYWluaW5nIHNldHMgKCQxMDAkKSBhbmQgc3RvcmUgdGhlIGZpdHRlZCBtb2RlbHMgZm9yIGZlYXR1cmUgc2VsZWN0aW9uIGFuZCBldmFsdWF0aW9uOgpgYGB7ciwgcmVzdWx0cz0naGlkZSd9CiMgMTAwIHRpbWVzIHRyYWluL3Rlc3Qgc3BsaXQgKDgwJSBmb3IgdHJhaW5pbmcsIDIwJSBmb3IgdmFsaWRhdGlvbikKc3Vic2FtcGxpbmcgPSByc21wKCdzdWJzYW1wbGluZycsIHJlcGVhdHMgPSAxMDAsIHJhdGlvID0gMC44KQoKc2V0LnNlZWQoNDIpCnJyID0gbWxyMzo6cmVzYW1wbGUodGFzayA9IHRhc2ssIGxlYXJuZXIgPSBjb3hsYXNzb19ncmxybiwgCiAgcmVzYW1wbGluZyA9IHN1YnNhbXBsaW5nLCBzdG9yZV9tb2RlbHMgPSBUUlVFLCBzdG9yZV9iYWNrZW5kcyA9IFRSVUUpCmBgYAoKV2UgY2FuIHVzZSBhbGwgdGhlIGFmb3JlbWVudGlvbmVkIGV2YWx1YXRpb24gbWV0cmljcyB0byBtZWFzdXJlIHRoZSBwZXJmb3JtYW5jZSBvZiB0aGUgTGFzc28gQ294IG1vZGVscyBvbiB0aGUgJDEwMCQgZGlmZmVyZW50IHRlc3Qgc2V0cy4KTm90ZSB0aGF0IGlmIGEgbWV0cmljIG5lZWRzIHRoZSB0cmFpbmluZyBkYXRhc2V0IGl0IGlzIGF1dG9tYXRpY2FsbHkgcHJvdmlkZWQgYnkgdGhlIGBSZXNhbXBsZVJlc3VsdGAgb2JqZWN0IChgcnJgKToKYGBge3J9Cm1lYXN1cmVzID0gbGlzdChoYXJyZWxsX2MsIHVub19jLCB1bm9faWF1YywgdW5vX2F1YywgaWJyaWVyLCBicmllcjEwLCByY2xsLCBkY2FsKQoKcmVzID0gcnIkc2NvcmUobWVhc3VyZXMgPSBtZWFzdXJlcykKaGVhZChyZXMpCmBgYApgYGAKICAgICAgICAgICAgIHRhc2sgICB0YXNrX2lkICAgICAgICAgICAgbGVhcm5lciBsZWFybmVyX2lkCjE6IDxUYXNrU3Vydls1NV0+IEJSQ0EtVENHQSA8R3JhcGhMZWFybmVyWzM4XT4gIExhc3NvIENveAoyOiA8VGFza1N1cnZbNTVdPiBCUkNBLVRDR0EgPEdyYXBoTGVhcm5lclszOF0+ICBMYXNzbyBDb3gKMzogPFRhc2tTdXJ2WzU1XT4gQlJDQS1UQ0dBIDxHcmFwaExlYXJuZXJbMzhdPiAgTGFzc28gQ294CjQ6IDxUYXNrU3Vydls1NV0+IEJSQ0EtVENHQSA8R3JhcGhMZWFybmVyWzM4XT4gIExhc3NvIENveAo1OiA8VGFza1N1cnZbNTVdPiBCUkNBLVRDR0EgPEdyYXBoTGVhcm5lclszOF0+ICBMYXNzbyBDb3gKNjogPFRhc2tTdXJ2WzU1XT4gQlJDQS1UQ0dBIDxHcmFwaExlYXJuZXJbMzhdPiAgTGFzc28gQ294CiAgICAgICAgICAgICAgICAgICAgcmVzYW1wbGluZyByZXNhbXBsaW5nX2lkIGl0ZXJhdGlvbiAgICAgICAgICAgcHJlZGljdGlvbgoxOiA8UmVzYW1wbGluZ1N1YnNhbXBsaW5nWzIwXT4gICBzdWJzYW1wbGluZyAgICAgICAgIDEgPFByZWRpY3Rpb25TdXJ2WzIwXT4KMjogPFJlc2FtcGxpbmdTdWJzYW1wbGluZ1syMF0+ICAgc3Vic2FtcGxpbmcgICAgICAgICAyIDxQcmVkaWN0aW9uU3VydlsyMF0+CjM6IDxSZXNhbXBsaW5nU3Vic2FtcGxpbmdbMjBdPiAgIHN1YnNhbXBsaW5nICAgICAgICAgMyA8UHJlZGljdGlvblN1cnZbMjBdPgo0OiA8UmVzYW1wbGluZ1N1YnNhbXBsaW5nWzIwXT4gICBzdWJzYW1wbGluZyAgICAgICAgIDQgPFByZWRpY3Rpb25TdXJ2WzIwXT4KNTogPFJlc2FtcGxpbmdTdWJzYW1wbGluZ1syMF0+ICAgc3Vic2FtcGxpbmcgICAgICAgICA1IDxQcmVkaWN0aW9uU3VydlsyMF0+CjY6IDxSZXNhbXBsaW5nU3Vic2FtcGxpbmdbMjBdPiAgIHN1YnNhbXBsaW5nICAgICAgICAgNiA8UHJlZGljdGlvblN1cnZbMjBdPgogICBzdXJ2LmNpbmRleC5oYXJyZWxsIHN1cnYuY2luZGV4LnVubyBzdXJ2LnVub19pYXVjIHN1cnYudW5vX2F1Yy4xMCBzdXJ2LmdyYWYKMTogICAgICAgICAgIDAuNTY3OTE2NyAgICAgICAwLjYwOTAzMDQgICAgIDAuNjYyODM1MCAgICAgICAwLjQ3MTkzMzUgMC4zMjU1MTgxCjI6ICAgICAgICAgICAwLjU0MjIxMzEgICAgICAgMC40ODg0NjAzICAgICAwLjQwMjM2ODQgICAgICAgMC41NjUyNTg4IDAuMzE0ODk5MgozOiAgICAgICAgICAgMC43NjA0MDQ5ICAgICAgIDAuNTc0MDU1NiAgICAgMC41OTQxOTQ4ICAgICAgIDAuNTIzNTQzOSAwLjI4NTUxNTEKNDogICAgICAgICAgIDAuNjYxMDE2OSAgICAgICAwLjUyNzc3MzYgICAgIDAuNTM2MDY5MCAgICAgICAwLjUxMTAwMzIgMC4yOTcyNzE5CjU6ICAgICAgICAgICAwLjU4MDAwNzMgICAgICAgMC41NjU1MDc2ICAgICAwLjYxNjA3NDMgICAgICAgMC41Mzg4MzkzIDAuMzUxODUwNQo2OiAgICAgICAgICAgMC41NDI3ODM3ICAgICAgIDAuNjk3NTc0MCAgICAgMC42NDk0Nzc5ICAgICAgIDAuNjQwMDMyOCAwLjIwMzU2MDkKICAgc3Vydi5ncmFmLjEwIHN1cnYucmNsbCAgc3Vydi5kY2FsaWIKMTogICAgMC42MTYxODI1ICA2LjAzODkwOSAxLjAyNjkwMWUrMDcKMjogICAgMC40NDczMTA0ICA1LjQwMDI1MyAxLjA1MDQyN2UrMDQKMzogICAgMC4yOTY5NzY2ICA0Ljk1MzUyOCAyLjU0NDExNmUrMDEKNDogICAgMC4yMzY1MzIyICA0Ljk1MzgzMCAyLjI3NTA0MGUrMDEKNTogICAgMC40Mzg3MTY1ICA0Ljk0MzQ0NiAzLjM3MDUxMGUrMDEKNjogICAgMC40MjI4MTY5ICA1LjQzNDk3MCA0LjIyMzc0MmUrMDIKYGBgCldlIGV4dHJhY3QgYW5kIHZpc3VhbGl6ZSB0aGUgZGlzY3JpbWluYXRpb24gYW5kIGNhbGlicmF0aW9uIChyZXNhbXBsZWQpIHBlcmZvcm1hbmNlIG9mIG91ciBMYXNzbyBDb3ggbW9kZWwgdXNpbmcgc2V2ZXJhbCBldmFsdWF0aW9uIG1ldHJpY3M6CmBgYHtyfQpzZXQuc2VlZCg0MikKCiMgQy1pbmRleGVzLCBBVUNzIChpbnRlZ3JhdGVkIGFuZCBhdCB0ID0gMTAgeWVhcnMpCnJlc1ssIC4oc3Vydi5jaW5kZXguaGFycmVsbCwgc3Vydi5jaW5kZXgudW5vLCBzdXJ2LnVub19pYXVjLCBzdXJ2LnVub19hdWMuMTApXSAlPiUgCiAgdGlkeXI6OnBpdm90X2xvbmdlcihjb2xzID0gdGlkeXNlbGVjdDo6ZXZlcnl0aGluZygpLCAKICAgIG5hbWVzX3RvID0gJ01lYXN1cmUnLCB2YWx1ZXNfdG8gPSAnVmFsdWUnKSAlPiUKICBtdXRhdGUoTWVhc3VyZSA9IGNhc2Vfd2hlbigKICAgIE1lYXN1cmUgPT0gJ3N1cnYuY2luZGV4LmhhcnJlbGwnIH4gJ0hhcnJlbGxcJ3MgQy1pbmRleCcsCiAgICBNZWFzdXJlID09ICdzdXJ2LmNpbmRleC51bm8nIH4gJ1Vub1wncyBDLWluZGV4JywKICAgIE1lYXN1cmUgPT0gJ3N1cnYudW5vX2lhdWMnIH4gJ1Vub1wncyBJbnRlZ3JhdGVkIEFVQycsCiAgICBNZWFzdXJlID09ICdzdXJ2LnVub19hdWMuMTAnIH4gJ1Vub1wncyBBVUMgKHQgPSAxMCB5ZWFycyknLAogICkpICU+JQogICBtdXRhdGUoTWVhc3VyZSA9IGZhY3RvcihNZWFzdXJlLCBsZXZlbHMgPSBjKAogICAgICdIYXJyZWxsXCdzIEMtaW5kZXgnLAogICAgICdVbm9cJ3MgQy1pbmRleCcsCiAgICAgJ1Vub1wncyBJbnRlZ3JhdGVkIEFVQycsCiAgICAgJ1Vub1wncyBBVUMgKHQgPSAxMCB5ZWFycyknKSkpICU+JQogIGdncGxvdChhZXMoeCA9IE1lYXN1cmUsIHkgPSBWYWx1ZSwgZmlsbCA9IE1lYXN1cmUpKSArCiAgICBnZW9tX2JveHBsb3QoKSArIAogICAgeWxpbShjKDAuMiwgMC44KSkgKyAKICAgIGdlb21faGxpbmUoeWludGVyY2VwdCA9IDAuNSwgY29sb3IgPSAncmVkJywgbGluZXR5cGUgPSAnZGFzaGVkJykgKwogICAgdGhlbWVfYncoYmFzZV9zaXplID0gMTQpICsgCiAgICBsYWJzKHRpdGxlID0gJ0Rpc2NyaW1pbmF0aW9uIE1lYXN1cmVzJykgKwogICAgdGhlbWUoYXhpcy50ZXh0LnggPSBlbGVtZW50X2JsYW5rKCkpCmBgYAohW19EaXNjcmltaW5hdGlvbiBwZXJmb3JtYW5jZSBvZiBMYXNzbyBDb3ggb24gdGhlIFRDR0EtQlJDQSBkYXRhc2V0IChleHByZXNzaW9uIGRhdGEgb2YgdGhlIFBBTTUwIGdlbmVzIGFuZCB0aGUgdmFyaWFibGVzIGFnZSBhbmQgZXRobmljaXR5KS4gUGVyZm9ybWFuY2UgbWV0cmljcyB1c2VkIGFyZSBIYXJyZWxsJ3MgQy1pbmRleCwgVW5vJ3MgQy1pbmRleCwgVW5vJ3MgSW50ZWdyYXRlZCBBVUMgYW5kIFVubydzIEFVQyBhdCAxMCB5ZWFycy4gVGhlIGRhdGFzZXQgd2FzIHNwbGl0IHRvIHRyYWluaW5nL3ZhbGlkYXRpb24gc2V0cyAxMDAgdGltZXMgdG8gYWxsb3cgZm9yIHRoZSBxdWFudGlmaWNhdGlvbiBvZiB1bmNlcnRhaW50eSBpbiB0aGUgZGlmZmVyZW50IHBlcmZvcm1hbmNlIGVzdGltYXRlcy5fXShmaWcvbWxyM19kaXNjcmltaW5hdGlvbl9tc3JzLnBuZyl7d2lkdGg9ODAlfQoKYGBge3IsIGZpZy5zaG93PSdob2xkJywgb3V0LndpZHRoPSc1MCUnfQojIGRpZmZlcmVudCBzY2FsZXMgZm9yIGVhY2ggbWVhc3VyZSwgc28gd2Ugc2VwYXJhdGUgdGhlIHBsb3RzCnNldC5zZWVkKDQyKQoKIyBJbnRlZ3JhdGVkIEJyaWVyIFNjb3JlIGFuZCBCcmllciBTY29yZSBhdCB0ID0gMTAgeWVhcnMKcmVzWywgLihzdXJ2LmdyYWYsIHN1cnYuZ3JhZi4xMCldICU+JSAKICB0aWR5cjo6cGl2b3RfbG9uZ2VyKGNvbHMgPSB0aWR5c2VsZWN0OjpldmVyeXRoaW5nKCksIAogICAgbmFtZXNfdG8gPSAnTWVhc3VyZScsIHZhbHVlc190byA9ICdWYWx1ZScpICU+JQogIG11dGF0ZShNZWFzdXJlID0gY2FzZV93aGVuKAogICAgTWVhc3VyZSA9PSAnc3Vydi5ncmFmJyB+ICdJQlMnLAogICAgTWVhc3VyZSA9PSAnc3Vydi5ncmFmLjEwJyB+ICdCUyh0PTEwKScKICApKSAlPiUKICBnZ3Bsb3QoYWVzKHggPSBNZWFzdXJlLCB5ID0gVmFsdWUsIGZpbGwgPSBNZWFzdXJlKSkgKwogICAgZ2VvbV9ib3hwbG90KHNob3cubGVnZW5kID0gRkFMU0UpICsgCiAgICBnZW9tX2ppdHRlcihjb2xvciA9ICdibHVlJywgc2l6ZSA9IDAuNSwgYWxwaGEgPSAwLjUsIHNob3cubGVnZW5kID0gRkFMU0UpICsKICAgIGxhYnModGl0bGUgPSAnSW50ZWdyYXRlZCBCcmllciBTY29yZSB2cyBCcmllciBTY29yZSAodCA9IDEwIHllYXJzKScpICsKICAgIHRoZW1lX2J3KGJhc2Vfc2l6ZSA9IDE0KSArIAogICAgdGhlbWUoYXhpcy50aXRsZS54ID0gZWxlbWVudF9ibGFuaygpKQoKIyBSQ0xMCnJlc1ssIC4oc3Vydi5yY2xsKV0gJT4lIAogIHRpZHlyOjpwaXZvdF9sb25nZXIoY29scyA9IHRpZHlzZWxlY3Q6OmV2ZXJ5dGhpbmcoKSwgCiAgICBuYW1lc190byA9ICdNZWFzdXJlJywgdmFsdWVzX3RvID0gJ1ZhbHVlJykgJT4lCiAgbXV0YXRlKE1lYXN1cmUgPSBjYXNlX3doZW4oCiAgICBNZWFzdXJlID09ICdzdXJ2LnJjbGwnIH4gJ1JDTEwnCiAgKSkgJT4lCiAgZ2dwbG90KGFlcyh4ID0gTWVhc3VyZSwgeSA9IFZhbHVlKSkgKwogICAgZ2VvbV9ib3hwbG90KHNob3cubGVnZW5kID0gRkFMU0UpICsgCiAgICBnZW9tX2ppdHRlcihjb2xvciA9ICdibHVlJywgc2l6ZSA9IDAuNSwgYWxwaGEgPSAwLjUsIHNob3cubGVnZW5kID0gRkFMU0UpICsKICAgIGxhYnModGl0bGUgPSAnUmlnaHQtY2Vuc29yZWQgTG9nIExvc3MnKSArCiAgICB0aGVtZV9idyhiYXNlX3NpemUgPSAxNCkgKwogICAgdGhlbWUoYXhpcy50aXRsZS54ID0gZWxlbWVudF9ibGFuaygpKQpgYGAKPHAgYWxpZ249ImxlZnQiPgogIDxpbWcgYWx0PSIxIiBzcmM9Ii4vZmlnL21scjNfY2FsaWJyYXRpb25fQlMucG5nIiB3aWR0aD0iNDklIj4KICA8aW1nIGFsdD0iMiIgc3JjPSIuL2ZpZy9tbHIzX2NhbGlicmF0aW9uX1JDTEwucG5nIiB3aWR0aD0iNDklIj4KICA8aT5DYWxpYnJhdGlvbiBwZXJmb3JtYW5jZSBvZiBMYXNzbyBDb3ggb24gdGhlIFRDR0EtQlJDQSBkYXRhc2V0IChleHByZXNzaW9uIGRhdGEgb2YgdGhlIFBBTTUwIGdlbmVzIGFuZCB0aGUgdmFyaWFibGVzIGFnZSBhbmQgZXRobmljaXR5KS4gUGVyZm9ybWFuY2UgbWV0cmljcyB1c2VkIGFyZSB0aGUgSW50ZWdyYXRlZCBCcmllciBTY29yZSAoSUJTKSwgdGhlIEJyaWVyIFNjb3JlIGF0IDEwIHllYXJzIGFuZCB0aGUgUmlnaHQtQ2Vuc29yZWQgTG9nYXJpdGhtaWMgTG9zcyAoUkNMTCkuIFRoZSBkYXRhc2V0IHdhcyBzcGxpdCB0byB0cmFpbmluZy92YWxpZGF0aW9uIHNldHMgMTAwIHRpbWVzIHRvIGFsbG93IGZvciB0aGUgcXVhbnRpZmljYXRpb24gb2YgdW5jZXJ0YWludHkgaW4gdGhlIGRpZmZlcmVudCBwZXJmb3JtYW5jZSBlc3RpbWF0ZXMuPC9pPgo8L3A+CgojIyMgRmVhdHVyZSBzdGFiaWxpdHkgYW5hbHlzaXMgey19CgpXZSBjYW4gZXh0cmFjdCB0aGUgc2VsZWN0ZWQgZmVhdHVyZXMgZnJvbSBhbGwgJDEwMCQgdHJhaW5lZCBMYXNzbyBDb3ggbW9kZWxzIGFuZCBjcmVhdGUgYSBmcmVxdWVuY3kgc2VsZWN0aW9uIHRhYmxlOgpgYGB7cn0KIyBnZXQgc2VsZWN0ZWQgZmVhdHVyZXMgZnJvbSBhbGwgdHJhaW5lZCBsZWFybmVycyBpbiBhIGxpc3QKc2ZfbGlzdCA9IGxhcHBseShyciRsZWFybmVycywgZnVuY3Rpb24obGVhcm5lcikgewogIGxlYXJuZXIkZ3JhcGhfbW9kZWwkcGlwZW9wcyRzdXJ2LmN2X2dsbW5ldCRsZWFybmVyX21vZGVsJHNlbGVjdGVkX2ZlYXR1cmVzKCkKfSkKCiMgbWFrZSBmcmVxdWVuY3kgc2VsZWN0aW9uIHRhYmxlCm4gPSBsZW5ndGgoc2ZfbGlzdCkKZnNfcmVzID0gc29ydCh0YWJsZSh1bmxpc3Qoc2ZfbGlzdCkpLCBkZWNyZWFzaW5nID0gVFJVRSkKdGltZXMgPSBhcy52ZWN0b3IodW5uYW1lKGZzX3JlcykpCnRpYmJsZTo6dGliYmxlKGZlYXRfbmFtZSA9IG5hbWVzKGZzX3JlcyksIHRpbWVzID0gdGltZXMsIGZyZXEgPSB0aW1lcy9uKQpgYGAKYGBgCiMgQSB0aWJibGU6IDM1IMOXIDMKICAgZmVhdF9uYW1lIHRpbWVzICBmcmVxCiAgIDxjaHI+ICAgICA8aW50PiA8ZGJsPgogMSBhZ2UgICAgICAgICAxMDAgIDEgICAKIDIgZXRobmljaXR5ICAgMTAwICAxICAgCiAzIFVCRTJUICAgICAgICA1MyAgMC41MwogNCBPUkM2TCAgICAgICAgNDggIDAuNDgKIDUgQU5MTiAgICAgICAgIDQyICAwLjQyCiA2IEVSQkIyICAgICAgICA0MCAgMC40IAogNyBHUFIxNjAgICAgICAgMzUgIDAuMzUKIDggRkdGUjQgICAgICAgIDMzICAwLjMzCiA5IENFUDU1ICAgICAgICAzMiAgMC4zMgoxMCBVQkUyQyAgICAgICAgMzAgIDAuMyAKIyDigKYgd2l0aCAyNSBtb3JlIHJvd3MKYGBgCgpBcyBgYWdlYCBhbmQgYGV0aG5pY2l0eWAgd2VyZSBub3QgcGVuYWxpemVkLCB0aGV5IGhhdmUgbm9uLXplcm8gY29lZmZpY2llbnRzIGluIGFsbCBMYXNzbyBDb3ggbW9kZWxzIGFuZCB0aGVyZWZvcmUgYXJlIGluY2x1ZGVkIGluIGFsbCBzZWxlY3RlZCBmZWF0dXJlIHNldHMuCgpMYXN0bHksIHdlIGNhbiB1c2UgdGhlIGBSYCBwYWNrYWdlIFsqKnN0YWJtKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9c3RhYm0pIFtAc3RhYm1dIHRvIGFzc2VzcyBob3cgc2ltaWxhciB0aGUgJDEwMCQgc2VsZWN0ZWQgZmVhdHVyZSBzZXRzIHdlcmUuCldlIHdpbGwgZGVtb25zdHJhdGUgdGhlIHVzZSBvZiB0aHJlZSBtZXRyaWNzIHdoaWNoIG1lYXN1cmUgdGhlICpzdGFiaWxpdHkqIG9mIHRoZSBMYXNzbyBDb3gncyBmZWF0dXJlIHNlbGVjdGlvbiBvbiB0aGUgVENHQS1CUkNBIGRhdGFzZXQ6CgoxLiBUaGUgSmFjY2FyZCBpbmRleAoyLiBOb2d1ZWlyYSdzIG1ldHJpYyAoY29ycmVjdGVkIGZvciBjaGFuY2UsIGkuZS4gaW5kZXBlbmRlbnQgb2YgdGhlIG51bWJlciBvZiBmZWF0dXJlczsgQE5vZ3VlaXJhMjAxOCkKMy4gWnVja25pY2sncyBtZXRyaWMgKGV4dGVuc2lvbiBvZiBKYWNjYXJkIGluZGV4IHRoYXQgY29uc2lkZXJzIHRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIHRoZSBmZWF0dXJlczsgQFp1Y2tuaWNrMjAwOCk6CgpgYGB7ciwgd2FybmluZz1GQUxTRX0Kc2V0LnNlZWQoNDIpCmphYyA9IHN0YWJtOjpzdGFiaWxpdHlKYWNjYXJkKGZlYXR1cmVzID0gc2ZfbGlzdCwgY29ycmVjdGlvbi5mb3IuY2hhbmNlID0gJ25vbmUnKQpub2cgPSBzdGFibTo6c3RhYmlsaXR5Tm9ndWVpcmEoZmVhdHVyZXMgPSBzZl9saXN0LCBwID0gbGVuZ3RoKHRhc2skZmVhdHVyZV9uYW1lcykpCgojIFNpbWlsYXJpdHkgb2YgZWFjaCBwYWlyIG9mIGZlYXR1cmVzIHVzaW5nIFBlYXJzb24gY29ycmVsYXRpb24Kc2ltLm1hdCA9IGFicyhzdGF0czo6Y29yKHggPSB0YXNrJGRhdGEoY29scyA9IHRhc2skZmVhdHVyZV9uYW1lcyksIG1ldGhvZCA9ICdwJykpCnp1Y2sgPSBzdGFibTo6c3RhYmlsaXR5WnVja25pY2soZmVhdHVyZXMgPSBzZl9saXN0LCBzaW0ubWF0ID0gc2ltLm1hdCwgCiAgdGhyZXNob2xkID0gMC45LCBjb3JyZWN0aW9uLmZvci5jaGFuY2UgPSAnZXN0aW1hdGUnLCBOID0gMTAwKQoKdGliYmxlOjp0aWJibGUoamFjY2FyZCA9IGphYywgbm9ndWVpcmEgPSBub2csIHp1Y2tuaWNrID0genVjaykKYGBgCmBgYAojIEEgdGliYmxlOiAxIMOXIDMKICBqYWNjYXJkIG5vZ3VlaXJhIHp1Y2tuaWNrCiAgICA8ZGJsPiAgICA8ZGJsPiAgICA8ZGJsPgoxICAgMC40MzkgICAgMC40MTIgICAgMC40MDIKYGBgCgpGcm9tIHRoZSBhYm92ZSB2YWx1ZXMgd2UgY29uY2x1ZGUgdGhhdCB0aGUgc3RhYmlsaXR5IG9mIExhc3NvIENveCdzIGZlYXR1cmUgc2VsZWN0aW9uIGlzIG5laXRoZXIgcG9vciBub3IgZXhjZWxsZW50IGJ1dCBzb21ld2hlcmUgaW4gYmV0d2Vlbi4KCiMgUiBzZXNzaW9uIGluZm8gey19CgpgYGB7ciwgaW5jbHVkZT1GQUxTRSwgbWVzc2FnZT1GQUxTRX0KIyBwdXR0aW5nIGFsbCBsaWJyYXJpZXMgaGVyZSBmb3IgdGhlIHNlc3Npb24gaW5mbwpsaWJyYXJ5KCJUQ0dBYmlvbGlua3MiKQpsaWJyYXJ5KCJTdW1tYXJpemVkRXhwZXJpbWVudCIpCmxpYnJhcnkoIkRFU2VxMiIpCmxpYnJhcnkoImRwbHlyIikKbGlicmFyeSgiZ2dwbG90MiIpCmxpYnJhcnkoInN1cnZpdmFsIikKbGlicmFyeSgic3Vydm1pbmVyIikKbGlicmFyeSgiTTNDIikKbGlicmFyeSgiZ2xtbmV0IikKbGlicmFyeSgicGxvdG1vIikKbGlicmFyeSgiZ3JwcmVnIikKbGlicmFyeSgiU0dMIikKbGlicmFyeSgicHNiY0dyb3VwIikKbGlicmFyeSgiR0dhbGx5IikKbGlicmFyeSgiQmhHTE0iKQpsaWJyYXJ5KCJyaXNrc2V0Uk9DIikKbGlicmFyeSgicmlza1JlZ3Jlc3Npb24iKQpsaWJyYXJ5KCJwZXBlcnIiKQpsaWJyYXJ5KCJjMDYwIikKbGlicmFyeSgicm1zIikKbGlicmFyeSgic3VydkFVQyIpCmxpYnJhcnkoInJlZ3Bsb3QiKQpsaWJyYXJ5KCJtbHIzdmVyc2UiKQpsaWJyYXJ5KCJtbHIzcHJvYmEiKQpsaWJyYXJ5KCJtbHIzZXh0cmFsZWFybmVycyIpCmxpYnJhcnkoInN0YWJtIikKYGBgCgpgYGB7cn0Kc2Vzc2lvbkluZm8oKQpgYGAKYGBgClIgdmVyc2lvbiA0LjIuMSAoMjAyMi0wNi0yMykKUGxhdGZvcm06IHg4Nl82NC1wYy1saW51eC1nbnUgKDY0LWJpdCkKUnVubmluZyB1bmRlcjogVWJ1bnR1IDIwLjA0LjUgTFRTCgpNYXRyaXggcHJvZHVjdHM6IGRlZmF1bHQKQkxBUzogICAvdXNyL2xpYi94ODZfNjQtbGludXgtZ251L2JsYXMvbGliYmxhcy5zby4zLjkuMApMQVBBQ0s6IC91c3IvbGliL3g4Nl82NC1saW51eC1nbnUvbGFwYWNrL2xpYmxhcGFjay5zby4zLjkuMAoKbG9jYWxlOgogWzFdIExDX0NUWVBFPWVuX1VTLlVURi04ICAgICAgIExDX05VTUVSSUM9QyAgICAgICAgICAgICAgIExDX1RJTUU9ZW5fVVMuVVRGLTggICAgICAgIExDX0NPTExBVEU9ZW5fVVMuVVRGLTggICAgCiBbNV0gTENfTU9ORVRBUlk9ZW5fVVMuVVRGLTggICAgTENfTUVTU0FHRVM9ZW5fVVMuVVRGLTggICAgTENfUEFQRVI9ZW5fVVMuVVRGLTggICAgICAgTENfTkFNRT1DICAgICAgICAgICAgICAgICAKIFs5XSBMQ19BRERSRVNTPUMgICAgICAgICAgICAgICBMQ19URUxFUEhPTkU9QyAgICAgICAgICAgICBMQ19NRUFTVVJFTUVOVD1lbl9VUy5VVEYtOCBMQ19JREVOVElGSUNBVElPTj1DICAgICAgIAoKYXR0YWNoZWQgYmFzZSBwYWNrYWdlczoKWzFdIHN0YXRzNCAgICBzdGF0cyAgICAgZ3JhcGhpY3MgIGdyRGV2aWNlcyB1dGlscyAgICAgZGF0YXNldHMgIG1ldGhvZHMgICBiYXNlICAgICAKCm90aGVyIGF0dGFjaGVkIHBhY2thZ2VzOgogWzFdIHN0YWJtXzEuMi4xICAgICAgICAgICAgICAgICBtbHIzZXh0cmFsZWFybmVyc18wLjYuMSAgICAgbWxyM3Byb2JhXzAuNS4yICAgICAgICAgICAgCiBbNF0gbWxyM3ZlcnNlXzAuMi43ICAgICAgICAgICAgIG1scjNfMC4xNC4xICAgICAgICAgICAgICAgICByZWdwbG90XzEuMSAgICAgICAgICAgICAgICAKIFs3XSBzdXJ2QVVDXzEuMS0xICAgICAgICAgICAgICAgcm1zXzYuMy0wICAgICAgICAgICAgICAgICAgIFNwYXJzZU1fMS44MSAgICAgICAgICAgICAgIApbMTBdIEhtaXNjXzQuNy0xICAgICAgICAgICAgICAgICBsYXR0aWNlXzAuMjAtNDUgICAgICAgICAgICAgYzA2MF8wLjItOSAgICAgICAgICAgICAgICAgClsxM10gcGVwZXJyXzEuNCAgICAgICAgICAgICAgICAgIHNub3dmYWxsXzEuODQtNi4yICAgICAgICAgICBzbm93XzAuNC00ICAgICAgICAgICAgICAgICAKWzE2XSByaXNrUmVncmVzc2lvbl8yMDIyLjA5LjIzICAgcmlza3NldFJPQ18xLjAuNC4xICAgICAgICAgIE1BU1NfNy4zLTU3ICAgICAgICAgICAgICAgIApbMTldIEJoR0xNXzEuMS4wICAgICAgICAgICAgICAgICBHR2FsbHlfMi4xLjIgICAgICAgICAgICAgICAgcHNiY0dyb3VwXzEuNSAgICAgICAgICAgICAgClsyMl0gbXZ0bm9ybV8xLjEtMyAgICAgICAgICAgICAgIFN1cHBEaXN0c18xLjEtOS43ICAgICAgICAgICBMZWFybkJheWVzXzIuMTUuMSAgICAgICAgICAKWzI1XSBTR0xfMS4zICAgICAgICAgICAgICAgICAgICAgZ3JwcmVnXzMuNC4wICAgICAgICAgICAgICAgIHBsb3Rtb18zLjYuMiAgICAgICAgICAgICAgIApbMjhdIFRlYWNoaW5nRGVtb3NfMi4xMiAgICAgICAgICBwbG90cml4XzMuOC0yICAgICAgICAgICAgICAgRm9ybXVsYV8xLjItNCAgICAgICAgICAgICAgClszMV0gZ2xtbmV0XzQuMS00ICAgICAgICAgICAgICAgIE1hdHJpeF8xLjUtMSAgICAgICAgICAgICAgICBNM0NfMS4yMC4wICAgICAgICAgICAgICAgICAKWzM0XSBzdXJ2bWluZXJfMC40LjkgICAgICAgICAgICAgZ2dwdWJyXzAuNC4wICAgICAgICAgICAgICAgIHN1cnZpdmFsXzMuNC0wICAgICAgICAgICAgIApbMzddIGdncGxvdDJfMy40LjAgICAgICAgICAgICAgICBkcGx5cl8xLjAuMTAgICAgICAgICAgICAgICAgREVTZXEyXzEuMzguMyAgICAgICAgICAgICAgCls0MF0gU3VtbWFyaXplZEV4cGVyaW1lbnRfMS4yOC4wIEJpb2Jhc2VfMi41OC4wICAgICAgICAgICAgICBHZW5vbWljUmFuZ2VzXzEuNTAuMiAgICAgICAKWzQzXSBHZW5vbWVJbmZvRGJfMS4zNC42ICAgICAgICAgSVJhbmdlc18yLjMyLjAgICAgICAgICAgICAgIFM0VmVjdG9yc18wLjM2LjEgICAgICAgICAgIApbNDZdIEJpb2NHZW5lcmljc18wLjQ0LjAgICAgICAgICBNYXRyaXhHZW5lcmljc18xLjEwLjAgICAgICAgbWF0cml4U3RhdHNfMC42My4wICAgICAgICAgCls0OV0gVENHQWJpb2xpbmtzXzIuMjUuMyAgICAgICAgCgpsb2FkZWQgdmlhIGEgbmFtZXNwYWNlIChhbmQgbm90IGF0dGFjaGVkKToKICBbMV0gcmFwcGRpcnNfMC4zLjMgICAgICAgICAgICAgIHZpb3Bsb3RfMC40LjAgICAgICAgICAgICAgICB0aWR5cl8xLjIuMSAgICAgICAgICAgICAgICAKICBbNF0gYml0NjRfNC4wLjUgICAgICAgICAgICAgICAgIGtuaXRyXzEuNDAgICAgICAgICAgICAgICAgICBtdWx0Y29tcF8xLjQtMjAgICAgICAgICAgICAKICBbN10gRGVsYXllZEFycmF5XzAuMjQuMCAgICAgICAgIGRhdGEudGFibGVfMS4xNC42ICAgICAgICAgICBycGFydF80LjEuMTkgICAgICAgICAgICAgICAKIFsxMF0gS0VHR1JFU1RfMS4zOC4wICAgICAgICAgICAgIFJDdXJsXzEuOTgtMS45ICAgICAgICAgICAgICBkb1BhcmFsbGVsXzEuMC4xNyAgICAgICAgICAKIFsxM10gZ2VuZXJpY3NfMC4xLjMgICAgICAgICAgICAgIHRpbWVyZWdfMi4wLjQgICAgICAgICAgICAgICB0Z3BfMi40LTIxICAgICAgICAgICAgICAgICAKIFsxNl0gVEguZGF0YV8xLjEtMSAgICAgICAgICAgICAgIFJTUUxpdGVfMi4yLjIwICAgICAgICAgICAgICBwb2xzcGxpbmVfMS4xLjIwICAgICAgICAgICAKIFsxOV0gcHJveHlfMC40LTI3ICAgICAgICAgICAgICAgIGZ1dHVyZV8xLjMxLjAgICAgICAgICAgICAgICBiaXRfNC4wLjQgICAgICAgICAgICAgICAgICAKIFsyMl0gdHpkYl8wLjMuMCAgICAgICAgICAgICAgICAgIHhtbDJfMS4zLjMgICAgICAgICAgICAgICAgICBhc3NlcnR0aGF0XzAuMi4xICAgICAgICAgICAKIFsyNV0geGZ1bl8wLjMzICAgICAgICAgICAgICAgICAgIGhtc18xLjEuMiAgICAgICAgICAgICAgICAgICBldmFsdWF0ZV8wLjIwICAgICAgICAgICAgICAKIFsyOF0gZmFuc2lfMS4wLjMgICAgICAgICAgICAgICAgIHByb2dyZXNzXzEuMi4yICAgICAgICAgICAgICBkYnBseXJfMi4yLjEgICAgICAgICAgICAgICAKIFszMV0ga20uY2lfMC41LTYgICAgICAgICAgICAgICAgIERCSV8xLjEuMyAgICAgICAgICAgICAgICAgICBnZW5lcGxvdHRlcl8xLjc2LjAgICAgICAgICAKIFszNF0gaHRtbHdpZGdldHNfMS41LjQgICAgICAgICAgIHJlc2hhcGVfMC44LjkgICAgICAgICAgICAgICBwdXJycl8xLjAuMSAgICAgICAgICAgICAgICAKIFszN10gZWxsaXBzaXNfMC4zLjIgICAgICAgICAgICAgIG1scjNkYXRhXzAuNi4xICAgICAgICAgICAgICBSU3BlY3RyYV8wLjE2LTEgICAgICAgICAgICAKIFs0MF0gYmFja3BvcnRzXzEuNC4xICAgICAgICAgICAgIGFubm90YXRlXzEuNzYuMCAgICAgICAgICAgICBiaW9tYVJ0XzIuNTQuMCAgICAgICAgICAgICAKIFs0M10gZGVsZGlyXzEuMC02ICAgICAgICAgICAgICAgIHZjdHJzXzAuNS4xICAgICAgICAgICAgICAgICBxdWFudHJlZ181Ljk0ICAgICAgICAgICAgICAKIFs0Nl0gYWJpbmRfMS40LTUgICAgICAgICAgICAgICAgIGNhY2hlbV8xLjAuNiAgICAgICAgICAgICAgICB3aXRocl8yLjUuMCAgICAgICAgICAgICAgICAKIFs0OV0gbWxyM2xlYXJuZXJzXzAuNS42ICAgICAgICAgIGNoZWNrbWF0ZV8yLjEuMCAgICAgICAgICAgICBwcmV0dHl1bml0c18xLjEuMSAgICAgICAgICAKIFs1Ml0gbWxyM2ZzZWxlY3RfMC45LjEgICAgICAgICAgIHBhcmFtNl8wLjIuNCAgICAgICAgICAgICAgICBjbHVzdGVyXzIuMS4zICAgICAgICAgICAgICAKIFs1NV0gY3JheW9uXzEuNS4yICAgICAgICAgICAgICAgIHBrZ2NvbmZpZ18yLjAuMyAgICAgICAgICAgICBubG1lXzMuMS0xNTcgICAgICAgICAgICAgICAKIFs1OF0gbWxlZ3BfMy4xLjkgICAgICAgICAgICAgICAgIG5uZXRfNy4zLTE3ICAgICAgICAgICAgICAgICBybGFuZ18xLjAuNiAgICAgICAgICAgICAgICAKIFs2MV0gZ2xvYmFsc18wLjE2LjIgICAgICAgICAgICAgIGxpZmVjeWNsZV8xLjAuMyAgICAgICAgICAgICBNYXRyaXhNb2RlbHNfMC41LTEgICAgICAgICAKIFs2NF0gc2FuZHdpY2hfMy4wLTIgICAgICAgICAgICAgIGRvd25sb2FkZXJfMC40ICAgICAgICAgICAgICBmaWxlbG9ja18xLjAuMiAgICAgICAgICAgICAKIFs2N10gcGFsbWVycGVuZ3VpbnNfMC4xLjEgICAgICAgIEJpb2NGaWxlQ2FjaGVfMi42LjAgICAgICAgICBtZXRzXzEuMy4xICAgICAgICAgICAgICAgICAKIFs3MF0gZG9TTk9XXzEuMC4yMCAgICAgICAgICAgICAgIEtNc3Vydl8wLjEtNSAgICAgICAgICAgICAgICBjYXJEYXRhXzMuMC01ICAgICAgICAgICAgICAKIFs3M10gYm9vdF8xLjMtMjggICAgICAgICAgICAgICAgIHpvb18xLjgtMTEgICAgICAgICAgICAgICAgICBiYXNlNjRlbmNfMC4xLTMgICAgICAgICAgICAKIFs3Nl0gcG5nXzAuMS04ICAgICAgICAgICAgICAgICAgIGJpdG9wc18xLjAtNyAgICAgICAgICAgICAgICBCaW9zdHJpbmdzXzIuNjYuMCAgICAgICAgICAKIFs3OV0gYmxvYl8xLjIuMyAgICAgICAgICAgICAgICAgIHNoYXBlXzEuNC42ICAgICAgICAgICAgICAgICBwYXJhZG94XzAuMTEuMCAgICAgICAgICAgICAKIFs4Ml0gc3RyaW5ncl8xLjUuMCAgICAgICAgICAgICAgIHBhcmFsbGVsbHlfMS4zNC4wICAgICAgICAgICByZWFkcl8yLjEuMyAgICAgICAgICAgICAgICAKIFs4NV0ganBlZ18wLjEtOSAgICAgICAgICAgICAgICAgIHJzdGF0aXhfMC43LjEgICAgICAgICAgICAgICBkaWN0aW9uYXI2XzAuMS4zICAgICAgICAgICAKIFs4OF0gZ2dzaWduaWZfMC42LjQgICAgICAgICAgICAgIHNjYWxlc18xLjIuMSAgICAgICAgICAgICAgICBtZW1vaXNlXzIuMC4xICAgICAgICAgICAgICAKIFs5MV0gbWFncml0dHJfMi4wLjMgICAgICAgICAgICAgIHBseXJfMS44LjggICAgICAgICAgICAgICAgICB6bGliYmlvY18xLjQ0LjAgICAgICAgICAgICAKIFs5NF0gY29tcGlsZXJfNC4yLjEgICAgICAgICAgICAgIFJDb2xvckJyZXdlcl8xLjEtMyAgICAgICAgICBjbHVlXzAuMy02MyAgICAgICAgICAgICAgICAKIFs5N10gbG1lNF8xLjEtMzEgICAgICAgICAgICAgICAgIHNldDZfMC4yLjUgICAgICAgICAgICAgICAgICBjbGlfMy40LjEgICAgICAgICAgICAgICAgICAKWzEwMF0gWFZlY3Rvcl8wLjM4LjAgICAgICAgICAgICAgIG1scjN0dW5pbmdzcGFjZXNfMC4zLjMgICAgICBtbHIzZmlsdGVyc18wLjcuMCAgICAgICAgICAKWzEwM10gbGlzdGVudl8wLjkuMCAgICAgICAgICAgICAgIGh0bWxUYWJsZV8yLjQuMSAgICAgICAgICAgICB0aWR5c2VsZWN0XzEuMi4wICAgICAgICAgICAKWzEwNl0gc3RyaW5naV8xLjcuMTIgICAgICAgICAgICAgIFRDR0FiaW9saW5rc0dVSS5kYXRhXzEuMTguMCBkaXN0cjZfMS42LjEzICAgICAgICAgICAgICAKWzEwOV0geWFtbF8yLjMuNSAgICAgICAgICAgICAgICAgIGFza3Bhc3NfMS4xICAgICAgICAgICAgICAgICBsb2NmaXRfMS41LTkuNiAgICAgICAgICAgICAKWzExMl0gbGF0dGljZUV4dHJhXzAuNi0zMCAgICAgICAgIHN1cnZNaXNjXzAuNS42ICAgICAgICAgICAgICBncmlkXzQuMi4xICAgICAgICAgICAgICAgICAKWzExNV0gbWFwdHJlZV8xLjQtOCAgICAgICAgICAgICAgIHRvb2xzXzQuMi4xICAgICAgICAgICAgICAgICBtbHIzbWlzY18wLjExLjAgICAgICAgICAgICAKWzExOF0gbWxyM2NsdXN0ZXJfMC4xLjYgICAgICAgICAgIGZ1dHVyZS5hcHBseV8xLjEwLjAgICAgICAgICBwYXJhbGxlbF80LjIuMSAgICAgICAgICAgICAKWzEyMV0gbWF0cml4Y2FsY18xLjAtNiAgICAgICAgICAgIHJzdHVkaW9hcGlfMC4xNCAgICAgICAgICAgICB1dWlkXzEuMS0wICAgICAgICAgICAgICAgICAKWzEyNF0gZm9yZWFjaF8xLjUuMiAgICAgICAgICAgICAgIGZvcmVpZ25fMC44LTgyICAgICAgICAgICAgICBncmlkRXh0cmFfMi4zICAgICAgICAgICAgICAKWzEyN10gcHJvZGxpbV8yMDE5LjExLjEzICAgICAgICAgIFJ0c25lXzAuMTYgICAgICAgICAgICAgICAgICBkaWdlc3RfMC42LjMxICAgICAgICAgICAgICAKWzEzMF0gbGF2YV8xLjcuMCAgICAgICAgICAgICAgICAgIGNtcHJza18yLjItMTEgICAgICAgICAgICAgICBSY3BwXzEuMC4xMCAgICAgICAgICAgICAgICAKWzEzM10gY2FyXzMuMS0xICAgICAgICAgICAgICAgICAgIGJyb29tXzEuMC4xICAgICAgICAgICAgICAgICBodHRyXzEuNC40ICAgICAgICAgICAgICAgICAKWzEzNl0gQW5ub3RhdGlvbkRiaV8xLjYwLjAgICAgICAgIG1scjN0dW5pbmdfMC4xNy4yICAgICAgICAgICBjb2xvcnNwYWNlXzIuMC0zICAgICAgICAgICAKWzEzOV0gcnZlc3RfMS4wLjMgICAgICAgICAgICAgICAgIFhNTF8zLjk5LTAuMTMgICAgICAgICAgICAgICByZXRpY3VsYXRlXzEuMjYgICAgICAgICAgICAKWzE0Ml0gdW1hcF8wLjIuOS4wICAgICAgICAgICAgICAgIHNwbGluZXNfNC4yLjEgICAgICAgICAgICAgICBsZ3JfMC40LjQgICAgICAgICAgICAgICAgICAKWzE0NV0gYmJvdGtfMC43LjIgICAgICAgICAgICAgICAgIHNtXzIuMi01LjcuMSAgICAgICAgICAgICAgICBzdGF0bW9kXzEuNC4zNyAgICAgICAgICAgICAKWzE0OF0gbWxyM3BpcGVsaW5lc18wLjQuMiAgICAgICAgIHh0YWJsZV8xLjgtNCAgICAgICAgICAgICAgICBubG9wdHJfMi4wLjMgICAgICAgICAgICAgICAKWzE1MV0ganNvbmxpdGVfMS44LjMgICAgICAgICAgICAgIGNvcnBjb3JfMS42LjEwICAgICAgICAgICAgICBjbHVzdGVyQ3JpdF8xLjIuOCAgICAgICAgICAKWzE1NF0gUjZfMi41LjEgICAgICAgICAgICAgICAgICAgIHBpbGxhcl8xLjguMSAgICAgICAgICAgICAgICBodG1sdG9vbHNfMC41LjMgICAgICAgICAgICAKWzE1N10gbWlucWFfMS4yLjUgICAgICAgICAgICAgICAgIGdsdWVfMS42LjIgICAgICAgICAgICAgICAgICBmYXN0bWFwXzEuMS4wICAgICAgICAgICAgICAKWzE2MF0gQmlvY1BhcmFsbGVsXzEuMzIuNSAgICAgICAgIGJlYW5wbG90XzEuMy4xICAgICAgICAgICAgICBjbGFzc183LjMtMjAgICAgICAgICAgICAgICAKWzE2M10gb29wbGFoXzAuMi4wICAgICAgICAgICAgICAgIGNvZGV0b29sc18wLjItMTggICAgICAgICAgICB1dGY4XzEuMi4yICAgICAgICAgICAgICAgICAKWzE2Nl0gdGliYmxlXzMuMS44ICAgICAgICAgICAgICAgIG51bURlcml2XzIwMTYuOC0xLjEgICAgICAgICBjdXJsXzQuMy4zICAgICAgICAgICAgICAgICAKWzE2OV0gbWxyM3Zpel8wLjYuMSAgICAgICAgICAgICAgIG9wZW5zc2xfMi4wLjMgICAgICAgICAgICAgICBpbnRlcnBfMS4xLTMgICAgICAgICAgICAgICAKWzE3Ml0gcGVuYWxpemVkU1ZNXzEuMS4zICAgICAgICAgIHJtYXJrZG93bl8yLjE3ICAgICAgICAgICAgICBtdW5zZWxsXzAuNS4wICAgICAgICAgICAgICAKWzE3NV0gZTEwNzFfMS43LTEyICAgICAgICAgICAgICAgIEdlbm9tZUluZm9EYkRhdGFfMS4yLjkgICAgICBpdGVyYXRvcnNfMS4wLjE0ICAgICAgICAgICAKWzE3OF0gZ3RhYmxlXzAuMy4xICAgICAgICAgICAgICAgCmBgYAoKIyBSZWZlcmVuY2VzCgo=
+
LS0tCnRpdGxlOiAiU3VwcGxlbWVudGFsIGluZm9ybWF0aW9uIGZvciAnVHV0b3JpYWwgb24gc3Vydml2YWwgbW9kZWxsaW5nIHdpdGggb21pY3MgZGF0YSciCmRhdGU6ICJMYXN0IHVwZGF0ZWQ6IGByIGZvcm1hdChTeXMudGltZSgpLCAnJWQgJUIsICVZJylgIgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIGNzczogc3R5bGUuY3NzCiAgICB0aGVtZTogdW5pdGVkCiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDoKICAgICAgY29sbGFwc2VkOiB0cnVlCiAgICAgIHNtb290aF9zY3JvbGw6IHRydWUKICAgIHRvY19kZXB0aDogNAogICAgbnVtYmVyX3NlY3Rpb25zOiBmYWxzZQogICAgY29kZV9mb2xkaW5nOiBzaG93CiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCmJpYmxpb2dyYXBoeTogcmVmZXJlbmNlcy5iaWIKbGluay1jaXRhdGlvbnM6IHRydWUKLS0tCgpgYGB7ciwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KCAKICBjb21tZW50ID0gJycsIGV2YWwgPSBGQUxTRQopCmBgYAo8YnI+ClRoaXMgaXMgYW4gW1IgTWFya2Rvd25dKGh0dHA6Ly9ybWFya2Rvd24ucnN0dWRpby5jb20pIHN1cHBsZW1lbnQgZm9yIHRoZSBhcnRpY2xlIFsqKl9UdXRvcmlhbCBvbiBzdXJ2aXZhbCBtb2RlbGxpbmcgd2l0aCBvbWljcyBkYXRhXyoqXShodHRwczovL2FyeGl2Lm9yZy9hYnMvMjMwMi4xMjU0MikgW0BaaGFvMjAyM10uCgojIEludHJvZHVjdGlvbiB7LX0KCltUaGUgQ2FuY2VyIEdlbm9tZSBBdGxhc10oaHR0cHM6Ly93d3cuY2FuY2VyLmdvdi9hYm91dC1uY2kvb3JnYW5pemF0aW9uL2NjZy9yZXNlYXJjaC9zdHJ1Y3R1cmFsLWdlbm9taWNzL3RjZ2EpIChUQ0dBKSBwcm92aWRlcyBhbiBlbm9ybW91cyBjb2xsZWN0aW9uIG9mIGNhbmNlciBkYXRhIHNldHMsIGluY2x1ZGluZyBzdXJ2aXZhbCwgY2xpbmljYWwgYW5kIG11bHRpLW9taWNzIGRhdGEuCgo6Ojp7LmdyZWVuLWJveH0KV2Ugd2lsbCB1c2UgVENHQSBkYXRhIHRvIGRlbW9uc3RyYXRlOgoKLSBUaGUgZGlmZmVyZW50IGRhdGEgdHlwZXMKLSBQcmVwcm9jZXNzaW5nIG9mIHN1cnZpdmFsIGFuZCBvbWljcyBkYXRhCi0gQW5hbHlzaXMgb2Ygc3Vydml2YWwgZGF0YSBieSBjbGFzc2ljYWwgc3RhdGlzdGljYWwgbWV0aG9kcwotIFVuc3VwZXJ2aXNlZCBsZWFybmluZyBmb3Igb21pY3MgZGF0YQotIEZyZXF1ZW50aXN0ICYgQmF5ZXNpYW4gc3VwZXJ2aXNlZCBsZWFybmluZyBmb3Igc3Vydml2YWwgYW5kIG9taWNzIGRhdGEKOjo6CgojIFRDR0Egc3Vydml2YWwgYW5kIGNsaW5pY2FsIGRhdGEgey19CgpUaGUgUi9CaW9jb25kdWN0b3IgcGFja2FnZSBbKipUQ0dBYmlvbGlua3MqKl0oaHR0cHM6Ly9iaW9jb25kdWN0b3Iub3JnL3BhY2thZ2VzL1RDR0FiaW9saW5rcy8pIFtATW91bmlyMjAxOV0gcHJvdmlkZXMgYSBmZXcgZnVuY3Rpb25zIHRvIGRvd25sb2FkIGFuZCBwcmVwcm9jZXNzIGNsaW5pY2FsIGFuZCBtdWx0aS1vbWljcyBkYXRhIGZyb20gdGhlIFtHZW5vbWljIERhdGEgQ29tbW9uc10oaHR0cHM6Ly9nZGMuY2FuY2VyLmdvdi8pIChHREMpIERhdGEgUG9ydGFsIGZvciBmdXJ0aGVyIGFuYWx5c2lzLgoKRmlyc3Qgd2UgbG9hZCBhbGwgbmVjZXNzYXJ5IGxpYnJhcmllcyB1c2VkIGluIHRoaXMgdHV0b3JpYWwgZXhjZXB0IFsqKm1scjMqKiBsaWJyYXJpZXNdKCNtbHIzKSB3aGljaCB3aWxsIGJlIGludHJvZHVjZWQgbGF0ZXIuIApUaGVuIHdlIHVzZSBmdW5jdGlvbiBgR0RDcXVlcnlfY2xpbmljKClgIGZyb20gKipUQ0dBYmlvbGlua3MqKiBwYWNrYWdlIHRvIHF1ZXJ5IGFuZCBkb3dubG9hZCBUQ0dBIHN1cnZpdmFsIGFuZCBjbGluaWNhbCBkYXRhIGZyb20gbXVsdGlwbGUgY2FuY2VyIHR5cGVzOgoKYGBge3J9CiMgbG9hZCBhbGwgbGlicmFyaWVzIHVzZWQgaW4gdGhpcyB0dXRvcmlhbCBleGNlcHQgbWxyMwpsaWJyYXJ5KCJUQ0dBYmlvbGlua3MiKQpsaWJyYXJ5KCJTdW1tYXJpemVkRXhwZXJpbWVudCIpCmxpYnJhcnkoIkRFU2VxMiIpCmxpYnJhcnkoImRwbHlyIikKbGlicmFyeSgiZ2dwbG90MiIpCmxpYnJhcnkoInN1cnZpdmFsIikKbGlicmFyeSgic3Vydm1pbmVyIikKbGlicmFyeSgiTTNDIikKbGlicmFyeSgiZ2xtbmV0IikKbGlicmFyeSgicGxvdG1vIikKbGlicmFyeSgiZ3JwcmVnIikKbGlicmFyeSgiU0dMIikKbGlicmFyeSgicHNiY0dyb3VwIikKbGlicmFyeSgicHNiY1NwZWVkVXAiKQpsaWJyYXJ5KCJHR2FsbHkiKQpsaWJyYXJ5KCJCaEdMTSIpCmxpYnJhcnkoInJpc2tzZXRST0MiKQpsaWJyYXJ5KCJyaXNrUmVncmVzc2lvbiIpCmxpYnJhcnkoInBlcGVyciIpCmxpYnJhcnkoImMwNjAiKQpsaWJyYXJ5KCJybXMiKQpsaWJyYXJ5KCJzdXJ2QVVDIikKbGlicmFyeSgicmVncGxvdCIpCmBgYAoKYGBge3J9CiMgZG93bmxvYWQgdGhlIGNsaW5pY2FsIGRhdGEgYW5kIGV4dHJhY3QgZGF0YSBmb3IgbXVsdGlwbGUgY2FuY2VycyB1c2luZyBHREMgYXBpIG1ldGhvZApjYW5jZXJfdHlwZXMgPSBjKCJUQ0dBLUJMQ0EiLCAiVENHQS1CUkNBIiwgIlRDR0EtQ09BRCIsICJUQ0dBLUxJSEMiLCAKICAgICAgICAgICAgICAgICAgIlRDR0EtTFVBRCIsICJUQ0dBLVBBQUQiLCAiVENHQS1QUkFEIiwgIlRDR0EtVEhDQSIpCmNsaW4gPSBOVUxMCmZvciAoaSBpbiBzZXFfYWxvbmcoY2FuY2VyX3R5cGVzKSkgewogIHRtcCA9IFRDR0FiaW9saW5rczo6R0RDcXVlcnlfY2xpbmljKHByb2plY3QgPSBjYW5jZXJfdHlwZXNbaV0sIHR5cGUgPSAiY2xpbmljYWwiKQogIGNsaW4gPSByYmluZChjbGluLCB0bXBbLCBjKCJwcm9qZWN0IiwgInN1Ym1pdHRlcl9pZCIsICJ2aXRhbF9zdGF0dXMiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgImRheXNfdG9fbGFzdF9mb2xsb3dfdXAiLCAiZGF5c190b19kZWF0aCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiYWdlX2F0X2RpYWdub3NpcyIsICJnZW5kZXIiLCAicmFjZSIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiZXRobmljaXR5IiwgImFqY2NfcGF0aG9sb2dpY190IildKQp9CgojIGV4dHJhY3QgdGhlIG9ic2VydmVkIHRpbWUgZm9yIGVhY2ggcGF0aWVudCBhbmQgdXNlIHllYXJzIGFzIHVuaXQKY2xpbiR0aW1lID0gYXBwbHkoY2xpblssIGMoImRheXNfdG9fZGVhdGgiLCAiZGF5c190b19sYXN0X2ZvbGxvd191cCIpXSwgMSwgbWF4LCBuYS5ybSA9IFRSVUUpIC8gMzY1LjI1CmNsaW4kYWdlID0gY2xpbiRhZ2VfYXRfZGlhZ25vc2lzIC8gMzY1LjI1CmNsaW4kc3RhdHVzID0gY2xpbiR2aXRhbF9zdGF0dXMKY2xpbiA9IGNsaW5bLCBjKCJwcm9qZWN0IiwgInN1Ym1pdHRlcl9pZCIsICJzdGF0dXMiLCAidGltZSIsICJnZW5kZXIiLCAiYWdlIiwgInJhY2UiLCAiZXRobmljaXR5IildCiMgZXh0cmFjdCBwYXRpZW50cyB3aXRoIHBvc2l0aXZlIG92ZXJhbGwgc3Vydml2YWwgdGltZQpjbGluID0gY2xpblsoY2xpbiR0aW1lID4gMCkgJiAoY2xpbiRzdGF0dXMgJWluJSBjKCJBbGl2ZSIsICJEZWFkIikpLCBdCgojIGZyZXF1ZW5jeSB0YWJsZSBvZiB0aGUgcGF0aWVudHMgdy5yLnQuIHN0YXR1cywgZ2VuZGVyIGFuZCBldGhuaWNpdHkKY2xpbiAlPiUKICBjb3VudChzdGF0dXMsIGdlbmRlciwgZXRobmljaXR5KSAlPiUKICBncm91cF9ieShzdGF0dXMpICU+JSAgICAgICAgCiAgbXV0YXRlKHByb3AgPSBwcm9wLnRhYmxlKG4pKQpgYGAKCmBgYAojIEEgdGliYmxlOiAxMiDDlyA1CiMgR3JvdXBzOiAgIHN0YXR1cyBbMl0KICAgc3RhdHVzIGdlbmRlciBldGhuaWNpdHkgICAgICAgICAgICAgICAgICBuICAgIHByb3AKICAgPGNocj4gIDxjaHI+ICA8Y2hyPiAgICAgICAgICAgICAgICAgIDxpbnQ+ICAgPGRibD4KIDEgQWxpdmUgIGZlbWFsZSBoaXNwYW5pYyBvciBsYXRpbm8gICAgICAgIDc1IDAuMDI0MCAKIDIgQWxpdmUgIGZlbWFsZSBub3QgaGlzcGFuaWMgb3IgbGF0aW5vICAxMzY3IDAuNDM4ICAKIDMgQWxpdmUgIGZlbWFsZSBub3QgcmVwb3J0ZWQgICAgICAgICAgICAgMzI4IDAuMTA1ICAKIDQgQWxpdmUgIG1hbGUgICBoaXNwYW5pYyBvciBsYXRpbm8gICAgICAgIDM0IDAuMDEwOSAKIDUgQWxpdmUgIG1hbGUgICBub3QgaGlzcGFuaWMgb3IgbGF0aW5vICAxMDQxIDAuMzM0ICAKIDYgQWxpdmUgIG1hbGUgICBub3QgcmVwb3J0ZWQgICAgICAgICAgICAgMjc2IDAuMDg4NCAKIDcgRGVhZCAgIGZlbWFsZSBoaXNwYW5pYyBvciBsYXRpbm8gICAgICAgICA3IDAuMDA4MDkKIDggRGVhZCAgIGZlbWFsZSBub3QgaGlzcGFuaWMgb3IgbGF0aW5vICAgMzc3IDAuNDM2ICAKIDkgRGVhZCAgIGZlbWFsZSBub3QgcmVwb3J0ZWQgICAgICAgICAgICAgIDY0IDAuMDc0MCAKMTAgRGVhZCAgIG1hbGUgICBoaXNwYW5pYyBvciBsYXRpbm8gICAgICAgIDEwIDAuMDExNiAKMTEgRGVhZCAgIG1hbGUgICBub3QgaGlzcGFuaWMgb3IgbGF0aW5vICAgMzI3IDAuMzc4ICAKMTIgRGVhZCAgIG1hbGUgICBub3QgcmVwb3J0ZWQgICAgICAgICAgICAgIDgwIDAuMDkyNSAKYGBgCgpgYGB7cn0KIyBjZW5zb3JpbmcgcGxvdCBieSBjYW5jZXIgdHlwZXMKSUQgPSAxOm5yb3coY2xpbikKY2xpbiAlPiUKICBnZ3Bsb3QoCiAgICBhZXMoeSA9IElELCB4ID0gdGltZSwgY29sb3VyID0gcHJvamVjdCwgc2hhcGUgPSBmYWN0b3Ioc3RhdHVzKSkpICsKICAgIGdlb21fc2VnbWVudChhZXMoeCA9IHRpbWUsIHkgPSBJRCwgeGVuZCA9IDAsIHllbmQgPSBJRCkpICsKICBnZW9tX3BvaW50KCkgKwogIGdndGl0bGUoIiIpICsKICBsYWJzKHggPSAiWWVhcnMiLCB5ID0gIlBhdGllbnRzIikgKwogIHNjYWxlX3NoYXBlX2Rpc2NyZXRlKG5hbWUgPSAiU3RhdHVzIiwgbGFiZWxzID0gYygiQ2Vuc29yZWQiLCAiRGVhZCIpKSArCiAgc2NhbGVfY29sb3JfZGlzY3JldGUobmFtZSA9ICJDYW5jZXIiLCAKICAgICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJCbGFkZGVyIiwgIkJyZWFzdCIsICJDb2xvbiIsICJMaXZlciIsICJMdW5nIGFkZW5vIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiUGFuY3JlYXRpYyIsICJQcm9zdGF0ZSIsICJUaHlyb2lkIikpICsKICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAidG9wIiwgbGVnZW5kLmRpcmVjdGlvbiA9ICJ2ZXJ0aWNhbCIpICsgCiAgZ3VpZGVzKGNvbG9yID0gZ3VpZGVfbGVnZW5kKG5yb3cgPSAyLCBieXJvdyA9IFRSVUUpKQpgYGAKCiFbX092ZXJhbGwgc3Vydml2YWwgdGltZXMgYW5kIHN0YXR1cyBvZiBwYW4tY2FuY2VyIHBhdGllbnRzIGZyb20gVENHQS5fXShmaWcvVENHQV9zdXJ2aXZhbC5wbmcpe3dpZHRoPTYwJX0KCjxicj4KCiMgVENHQSBvbWljcyBkYXRhIHstfQoKV2UgdXNlIGZ1bmN0aW9uIGBHRENxdWVyeSgpYCB0byBxdWVyeSBhbmQgdXNlIGBHRENkb3dubG9hZCgpYCBhbmQgYEdEQ3ByZXBhcmUoKWAgdG8gZG93bmxvYWQgVENHQSBvbWljcyBkYXRhIGZyb20gb25lIGNhbmNlciB0eXBlIChicmVhc3QgY2FuY2VyKS4KVGhlIGFyZ3VtZW50IGBkYXRhLmNhdGVnb3J5YCBpbiBmdW5jdGlvbiBgR0RDcXVlcnkoKWAgc3BlY2lmaWVzIHRoZSB0eXBlIG9mIG9taWNzIGRhdGEsIHN1Y2ggYXMgYCJDb3B5IE51bWJlciBWYXJpYXRpb24iYCwgYCJETkEgTWV0aHlsYXRpb24iYCwgYCJUcmFuc2NyaXB0b21lIFByb2ZpbGluZyJgLCBgIlNpbXBsZSBOdWNsZW90aWRlIFZhcmlhdGlvbiJgLgpOb3RlIHRoYXQgdGhlIGRvd25sb2FkZWQgb21pY3MgZGF0YSBhcmUgYWNjb21wYW5pZWQgYnkgbWV0YWRhdGEgaW5jbHVkaW5nIHN1cnZpdmFsIG91dGNvbWVzLCBjbGluaWNhbCBhbmQgZGVtb2dyYXBoaWMgdmFyaWFibGVzLiAKVGhlIGFjY29tcGFuaWVkIG1ldGFkYXRhIGFyZSBhbG1vc3QgdGhlIHNhbWUgYXMgdGhlIGNsaW5pY2FsIGRhdGEgZG93bmxvYWRlZCB2aWEgYEdEQ3F1ZXJ5X2NsaW5pYygpYCBpbiB0aGUgcHJldmlvdXMgc2VjdGlvbiBidXQgaGVyZSBvbmx5IGNvcnJlc3BvbmRpbmcgdG8gb25lIGNhbmNlciB0eXBlLgoKYGBge3J9CiMgZG93bmxvYWQgVENHQSBicmVhc3QgY2FuY2VyIChCUkNBKSBtUk5BLVNlcSBkYXRhIHVzaW5nIEdEQyBhcGkgbWV0aG9kCnF1ZXJ5ID0gVENHQWJpb2xpbmtzOjpHRENxdWVyeShwcm9qZWN0ID0gIlRDR0EtQlJDQSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhLmNhdGVnb3J5ID0gIlRyYW5zY3JpcHRvbWUgUHJvZmlsaW5nIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRhdGEudHlwZSA9ICJHZW5lIEV4cHJlc3Npb24gUXVhbnRpZmljYXRpb24iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd29ya2Zsb3cudHlwZSA9ICJTVEFSIC0gQ291bnRzIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGV4cGVyaW1lbnRhbC5zdHJhdGVneSA9ICJSTkEtU2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNhbXBsZS50eXBlID0gYygiUHJpbWFyeSBUdW1vciIpKQpUQ0dBYmlvbGlua3M6OkdEQ2Rvd25sb2FkKHF1ZXJ5ID0gcXVlcnksIG1ldGhvZCA9ICJhcGkiKQpkYXQgPSBUQ0dBYmlvbGlua3M6OkdEQ3ByZXBhcmUocXVlcnkgPSBxdWVyeSkKClN1bW1hcml6ZWRFeHBlcmltZW50Ojphc3NheXMoZGF0KSR1bnN0cmFuZGVkWzE6NSwgMToyXQpgYGAKYGBge3IsIGVjaG89RkFMU0V9CiMgc2F2ZSB0aGUgZG93bmxvYWRlZCBsYXJnZSBkYXRhIG9uIHNldmVyCnNhdmUoZGF0LCBmaWxlPSJUQ0dBX2RhdGEucmRhIikKIyBsb2FkIHRoZSBkb3dubG9hZGVkIGxhcmdlIGRhdGEgYW5kIHdvcmsgb24gUEMKbG9hZCgiL1VzZXJzL3poaXovVENHQV9kYXRhLnJkYSIpCmBgYApgYGAKICAgICAgICAgICAgICAgICAgIFRDR0EtQTctQTI2RS0wMUItMDZSLUEyNzctMDcgVENHQS1BMi1BMENVLTAxQS0xMlItQTAzNC0wNwpFTlNHMDAwMDAwMDAwMDMuMTUgICAgICAgICAgICAgICAgICAgICAgICAgIDY5MSAgICAgICAgICAgICAgICAgICAgICAgICAxNDI5CkVOU0cwMDAwMDAwMDAwNS42ICAgICAgICAgICAgICAgICAgICAgICAgICAgIDIwICAgICAgICAgICAgICAgICAgICAgICAgICAgNzMKRU5TRzAwMDAwMDAwNDE5LjEzICAgICAgICAgICAgICAgICAgICAgICAgICAzMzUgICAgICAgICAgICAgICAgICAgICAgICAgMTY3NApFTlNHMDAwMDAwMDA0NTcuMTQgICAgICAgICAgICAgICAgICAgICAgICAgMTI5MiAgICAgICAgICAgICAgICAgICAgICAgICAxMDE4CkVOU0cwMDAwMDAwMDQ2MC4xNyAgICAgICAgICAgICAgICAgICAgICAgICAgNTM2ICAgICAgICAgICAgICAgICAgICAgICAgICA0NTAKYGBgCgpJdCBpcyByZWNvbW1lbmRlZCB0byB1c2UgREVTZXEyIG9yIFRNTSBub3JtYWxpemF0aW9uIG1ldGhvZCBmb3IgUk5BLXNlcSBkYXRhIGJlZm9yZSBmdXJ0aGVyIHN0YXRpc3RpY2FsIGFuYWx5c2lzIFtAWmhhb1kyMDIxXS4KSGVyZSB3ZSBkZW1vbnN0cmF0ZSBob3cgdG8gdXNlIHRoZSBSL0Jpb2NvbmR1Y3RvciBwYWNrYWdlIFsqKkRFU2VxMioqXShodHRwczovL2Jpb2NvbmR1Y3Rvci5vcmcvcGFja2FnZXMvREVTZXEyLykgW0BMb3ZlMjAxNF0gdG8gbm9ybWFsaXplIHRoZSBSTkEgY291bnQgZGF0YS4KCmBgYHtyfQptZXRhID0gY29sRGF0YShkYXQpWywgYygicHJvamVjdF9pZCIsICJzdWJtaXR0ZXJfaWQiLCAiYWdlX2F0X2RpYWdub3NpcyIsICAiZXRobmljaXR5IiwgImdlbmRlciIsICJkYXlzX3RvX2RlYXRoIiwgImRheXNfdG9fbGFzdF9mb2xsb3dfdXAiLCAidml0YWxfc3RhdHVzIiwgInBhcGVyX0JSQ0FfU3VidHlwZV9QQU01MCIsICJ0cmVhdG1lbnRzIildCm1ldGEkdHJlYXRtZW50cyA9IHVubGlzdChsYXBwbHkobWV0YSR0cmVhdG1lbnRzLCBmdW5jdGlvbih4eCkge2FueSh4eCR0cmVhdG1lbnRfb3JfdGhlcmFweSA9PSAieWVzIil9KSkKZGRzID0gREVTZXEyOjpERVNlcURhdGFTZXRGcm9tTWF0cml4KGFzc2F5cyhkYXQpJHVuc3RyYW5kZWQsIGNvbERhdGEgPSBtZXRhLCBkZXNpZ24gPSB+IDEpIApkZHMyID0gREVTZXEyOjplc3RpbWF0ZVNpemVGYWN0b3JzKGRkcykKUk5BX2NvdW50ID0gREVTZXEyOjpjb3VudHMoZGRzMiwgbm9ybWFsaXplZCA9IFRSVUUpClJOQV9jb3VudFsxOjUsIDE6Ml0KYGBgCgpgYGAKICAgICAgICAgICAgICAgICAgIFRDR0EtQTctQTI2RS0wMUItMDZSLUEyNzctMDcgVENHQS1BMi1BMENVLTAxQS0xMlItQTAzNC0wNwpFTlNHMDAwMDAwMDAwMDMuMTUgICAgICAgICAgICAgICAgICAgMTg5OS43Njg0OCAgICAgICAgICAgICAgICAgICAxNDE5LjUxNzg5CkVOU0cwMDAwMDAwMDAwNS42ICAgICAgICAgICAgICAgICAgICAgIDU0Ljk4NjA2ICAgICAgICAgICAgICAgICAgICAgNzIuNTE1NjEKRU5TRzAwMDAwMDAwNDE5LjEzICAgICAgICAgICAgICAgICAgICA5MjEuMDE2NTYgICAgICAgICAgICAgICAgICAgMTY2Mi44OTIxOQpFTlNHMDAwMDAwMDA0NTcuMTQgICAgICAgICAgICAgICAgICAgMzU1Mi4wOTk2OCAgICAgICAgICAgICAgICAgICAxMDExLjI0NTA3CkVOU0cwMDAwMDAwMDQ2MC4xNyAgICAgICAgICAgICAgICAgICAxNDczLjYyNjQ5ICAgICAgICAgICAgICAgICAgICA0NDcuMDE0MDMKYGBgCgpUbyBwZXJmb3JtIHN1cnZpdmFsIGFuYWx5c2lzIHdpdGggYm90aCBjbGluaWNhbC9kZW1vZ3JhcGhpYyB2YXJpYWJsZXMgYW5kIG9taWNzIGRhdGEsIGluIHRoZSBmb2xsb3dpbmcgY29kZSB3ZSBleHRyYWN0IGZlbWFsZSBicmVhc3QgY2FuY2VyIHBhdGllbnRzIHdpdGggdGhlaXIgY29ycmVzcG9uZGluZyBzdXJ2aXZhbCBvdXRjb21lcywgY2xpbmljYWwvZGVtb2dyYXBoaWMgdmFyaWFibGVzIGFuZCBSTkEtc2VxIGZlYXR1cmVzLgoKYGBge3J9Cm1ldGEkdGltZSA9IGFwcGx5KG1ldGFbLCBjKCJkYXlzX3RvX2RlYXRoIiwgImRheXNfdG9fbGFzdF9mb2xsb3dfdXAiKV0sIDEsIG1heCwgbmEucm0gPSBUUlVFKSAvIDM2NS4yNQptZXRhJHN0YXR1cyA9IG1ldGEkdml0YWxfc3RhdHVzCm1ldGEkYWdlID0gbWV0YSRhZ2VfYXRfZGlhZ25vc2lzIC8gMzY1LjI1CmNsaW4gPSBzdWJzZXQobWV0YSwgZ2VuZGVyID09ICJmZW1hbGUiICYgIWR1cGxpY2F0ZWQoc3VibWl0dGVyX2lkKSAmIHRpbWUgPiAwICYgIWlzLm5hKGFnZSkpCmNsaW4gPSBjbGluW29yZGVyKGNsaW4kc3VibWl0dGVyX2lkKSwgXQpSTkFfY291bnQgPSBSTkFfY291bnRbLCByb3duYW1lcyhjbGluKV0KYGBgCgo6Ojp7LmluZm8tYm94IC5ub3RlfQotIFtCaW9jb25kdWN0b3JdKGh0dHBzOi8vYmlvY29uZHVjdG9yLm9yZy9wYWNrYWdlcy9yZWxlYXNlL2Jpb2MvaHRtbC9UQ0dBYmlvbGlua3MuaHRtbCkgbWlnaHQgcHJvdmlkZSBhbiBvbGQgcGFja2FnZSB2ZXJzaW9uIG9mICoqVENHQWJpb2xpbmtzKiogZm9yIExpbnV4IG1hY2hpbmVzLiAKSGVyZSwgd2UgdXNlIHRoZSB2ZXJzaW9uIFRDR0FiaW9saW5rc18yLjI5LjYuIApJZiB5b3UgZW5jb3VudGVyIHNvbWUgaXNzdWVzIHdoZW4gdXNpbmcgdGhpcyB0dXRvcmlhbCwgcGxlYXNlIGNoZWNrIHlvdXIgaW5zdGFsbGVkICoqVENHQWJpb2xpbmtzKiogdmVyc2lvbi4gCklmIG5lY2Vzc2FyeSwgeW91IGNhbiByZS1pbnN0YWxsIHRoZSBwYWNrYWdlIGZyb20gaXRzIFtHaXRIdWIgcmVwb3NpdG9yeV0oaHR0cHM6Ly9naXRodWIuY29tL0Jpb2luZm9ybWF0aWNzRk1SUC9UQ0dBYmlvbGlua3MuZ2l0KS4gCgotIFRoZSBwYWNrYWdlICoqVENHQWJpb2xpbmtzKiogY2Fubm90IHJldHJpZXZlIGFueSBwcm90ZW9taWNzIG9yIG1ldGFib2xvbWljcyBkYXRhLgpJdCBpcyBhbHdheXMgdXNlZnVsIHRvIGxvb2sgYXQgeW91ciBkYXRhIGZpcnN0LCBpbiBwYXJ0aWN1bGFyIHRoZSBkYXRhIHR5cGUgYW5kIGRpbWVuc2lvbnMgKGkuZS4gbnVtYmVycyBvZiByb3dzIGFuZCBjb2x1bW5zIGZvciBhIGRhdGEgZnJhbWUgb3IgbWF0cml4KS4KOjo6Cgo8YnI+CgojIFN1cnZpdmFsIGFuYWx5c2lzIHdpdGggbG93LWRpbWVuc2lvbmFsIGlucHV0IGRhdGEgey19CgojIyBOb25wYXJhbWV0cmljIHN1cnZpdmFsIGFuYWx5c2lzIHstfQoKRm9yIHRoZSBkYXRhIG9mIFRDR0EgYnJlYXN0IGNhbmNlciBwYXRpZW50cyB0aGF0IHdlIGV4dHJhY3RlZCBpbiB0aGUgcHJldmlvdXMgc2VjdGlvbiwgS2FwbGFuLU1laWVyIGVzdGltYXRlcyBvZiB0aGUgc3Vydml2YWwgcHJvYmFiaWxpdGllcyBjYW4gYmUgb2J0YWluZWQgdmlhIGZ1bmN0aW9uIGBzdXJ2Zml0KClgIGZyb20gWyoqc3Vydml2YWwqKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1zdXJ2aXZhbCkgcGFja2FnZS4KVGhlIGRhc2hlZCBsaW5lcyBpbiB0aGUgZm9sbG93aW5nIGZpZ3VyZSBpbmRpY2F0ZSB0aGUgbWVkaWFuIHN1cnZpdmFsIHRpbWUuCgpgYGB7cn0KIyBLYXBsYW4tTWVpZXIgKEtNKSBlc3RpbWF0aW9uCmNsaW4kc3RhdHVzW2NsaW4kc3RhdHVzID09ICJEZWFkIl0gPSAxCmNsaW4kc3RhdHVzW2NsaW4kc3RhdHVzID09ICJBbGl2ZSJdID0gMApjbGluJHN0YXR1cyA9IGFzLm51bWVyaWMoY2xpbiRzdGF0dXMpCnNmaXQgPSBzdXJ2aXZhbDo6c3VydmZpdChTdXJ2KHRpbWUsIHN0YXR1cykgfiAxLCBkYXRhID0gY2xpbikKCiMgY2FsY3VsYXRlIHN1cnZpdmFsIHByb2JhYmlsaXR5IGF0IDEtLCAzLSBhbmQgNS15ZWFyIHRpbWUgcG9pbnRzCnN1bW1hcnkoc2ZpdCwgdGltZXMgPSBjKDEsIDMsIDUpKQp0aGVtZV9zZXQodGhlbWVfYncoKSkKZ2dzdXJ2ID0gc3Vydm1pbmVyOjpnZ3N1cnZwbG90KHNmaXQsIGNvbmYuaW50ID0gVFJVRSwgcmlzay50YWJsZSA9IFRSVUUsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgeGxhYiA9ICJUaW1lIHNpbmNlIGRpYWdub3NpcyAoeWVhcikiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGVnZW5kID0gIm5vbmUiLCBzdXJ2Lm1lZGlhbi5saW5lID0gImh2IikKZ2dzdXJ2JHBsb3QgPSBnZ3N1cnYkcGxvdCArIGFubm90YXRlKCJ0ZXh0IiwgeCA9IDIwLCB5ID0gMC45LCBsYWJlbCA9ICIrICBDZW5zb3IiKQpnZ3N1cnYKYGBgCmBgYHtyLCBlY2hvPUZBTFNFfQpwZGYoIlRDR0Ffc3Vydl9rbTEucGRmIiwgd2lkdGggPSA1LCBoZWlnaHQgPSA1KQpnZ3N1cnYKZGV2Lm9mZigpCmBgYAohW19LYXBsYW4tTWVpZXIgY3VydmUgZm9yIDEwNjEgQlJDQSBwYXRpZW50cyBkYXRhIGZyb20gVENHQS5fXShmaWcvVENHQV9zdXJ2X2ttMS5wbmcpe3dpZHRoPTYwJX0KCjxicj4KClRvIGNvbXBhcmUgdGhlIHN1cnZpdmFsIGN1cnZlcyBvZiB0d28gZ3JvdXBzIG9mIHBhdGllbnRzLCBmb3IgZXhhbXBsZSwgdHJlYXRtZW50IChpLmUuIHBoYXJtYWNldXRpY2FsIG9yIHJhZGlhdGlvbiB0aGVyYXB5KSBvciBub250cmVhdG1lbnQsIHRoZSBgUmAgZnVuY3Rpb24gYHN1cnZpdmFsOjpzdXJ2ZGlmZigpYCBjYW4gcGVyZm9ybSB0aGUgbG9nLXJhbmsgdGVzdCB0byBjb21wYXJlIHR3byBzdXJ2aXZhbCBjdXJ2ZXMuCkFsdGVybmF0aXZlbHksIHRoZSBgUmAgZnVuY3Rpb24gYHN1cnZpdmFsOjpzdXJ2Zml0YCB3aXRoIGEgZm9ybXVsYSBpbmNsdWRpbmcgdGhlIHRyZWF0bWVudCBncm91cCBhcyBhIGNvdmFyaWF0ZSBjYW4gcmV0dXJuIHRoZSAoS00pIHN1cnZpdmFsIHByb2JhYmlsaXRpZXMgZm9yIGVhY2ggZ3JvdXBzLiAKVGhlbiB0aGUgYFJgIGZ1bmN0aW9uIGBzdXJ2bWluZXI6Omdnc3VydnBsb3QoKWAgd2l0aCBhIGBzdXJ2Zml0YCBvYmplY3Qgd2lsbCBkcmF3IHRoZSB0d28gc3Vydml2YWwgY3VydmVzIGFuZCBwZXJmb3JtIHRoZSBsb2ctcmFuayB0ZXN0IGFzIHNob3duIGluIHRoZSBmb2xsb3dpbmcgZmlndXJlLgoKYGBge3J9CnN1cnZpdmFsOjpzdXJ2ZGlmZihTdXJ2KHRpbWUsIHN0YXR1cykgfiB0cmVhdG1lbnRzLCBkYXRhID0gY2xpbikKCnNmaXQyID0gc3VydmZpdChTdXJ2KHRpbWUsIHN0YXR1cykgfiB0cmVhdG1lbnRzLCBkYXRhID0gY2xpbikKZ2dzdXJ2ID0gZ2dzdXJ2cGxvdChzZml0MiwgY29uZi5pbnQgPSBUUlVFLCByaXNrLnRhYmxlID0gVFJVRSwgCiAgICAgICAgICAgeGxhYiA9ICJUaW1lIHNpbmNlIGRpYWdub3NpcyAoeWVhcikiLCBsZWdlbmQgPSBjKC42LCAuOSksCiAgICAgICAgICAgbGVnZW5kLmxhYnMgPSBjKCJObyIsICJZZXMiKSwgbGVnZW5kLnRpdGxlID0gIlRyZWF0bWVudCIsICAKICAgICAgICAgICByaXNrLnRhYmxlLnkudGV4dC5jb2wgPSBUUlVFLCByaXNrLnRhYmxlLnkudGV4dCA9IEZBTFNFKQpnZ3N1cnYkcGxvdCA9IGdnc3VydiRwbG90ICsgCiAgYW5ub3RhdGUoInRleHQiLCB4ID0gMjEsIHkgPSAxLCBsYWJlbCA9ICIrICBDZW5zb3IiKSArCiAgYW5ub3RhdGUoInRleHQiLCB4ID0gMjIsIHkgPSAuODgsIGxhYmVsID0gcGFzdGUwKCJMb2ctcmFuayB0ZXN0OlxuIiwgc3Vydl9wdmFsdWUoc2ZpdDIpJHB2YWwudHh0KSkKZ2dzdXJ2CmBgYApgYGB7ciwgZWNobz1GQUxTRX0KcGRmKCJUQ0dBX3N1cnZfa20yLnBkZiIsIHdpZHRoID0gNSwgaGVpZ2h0ID0gNSkKZ2dzdXJ2CmRldi5vZmYoKQpgYGAKIVtfS2FwbGFuLU1laWVyIGN1cnZlcyBvZiB0aGUgQlJDQSBwYXRpZW50cycgc3Vydml2YWwgZGF0YSBmcm9tIFRDR0EgZ3JvdXBlZCBieSB0cmVhdG1lbnQgKGkuZS4gcGhhcm1hY2V1dGljYWwgb3IgcmFkaWF0aW9uIHRoZXJhcHkpIG9yIG5vbnRyZWF0bWVudC4gVGhlIGxvZy1yYW5rIHRlc3QgaXMgdG8gY29tcGFyZSB0aGUgdHdvIHN1cnZpdmFsIGRpc3RyaWJ1dGlvbnMgY29ycmVzcG9uZGluZyB0byB0aGUgdHdvIGdyb3VwcyBvZiBwYXRpZW50cy5fXShmaWcvVENHQV9zdXJ2X2ttMi5wbmcpe3dpZHRoPTYwJX0KCjxicj4KClRvIGFuYWx5emUgaWYgYSBjb250aW51b3VzIHZhcmlhYmxlLCBlLmcuIGFnZSwgaXMgYXNzb2NpYXRlZCB3aXRoIHRoZSBzdXJ2aXZhbCBvdXRjb21lcywgd2UgY2FuIHVzZSB0aGUgYFJgIGZ1bmN0aW9uIGBjb3hwaCgpYCBmb3IgZml0dGluZyBhIENveCBtb2RlbCwgd2hpY2ggaXMgc2ltaWxhciB0byB0aGUgZnVuY3Rpb24gYGxtKClgIGZvciBmaXR0aW5nIGxpbmVhciBtb2RlbHMuCgpgYGB7cn0KZml0X2NveCA9IGNveHBoKFN1cnYodGltZSwgc3RhdHVzKSB+IGFnZSwgZGF0YSA9IGNsaW4pCnN1bW1hcnkoZml0X2NveCkKYGBgCmBgYApDYWxsOgpjb3hwaChmb3JtdWxhID0gU3Vydih0aW1lLCBzdGF0dXMpIH4gYWdlLCBkYXRhID0gY2xpbikKCiAgbj0gMTA0NywgbnVtYmVyIG9mIGV2ZW50cz0gMTQ5IAogICAoMTQgb2JzZXJ2YXRpb25zIGRlbGV0ZWQgZHVlIHRvIG1pc3NpbmduZXNzKQoKICAgICAgICBjb2VmIGV4cChjb2VmKSBzZShjb2VmKSAgICAgeiBQcig+fHp8KSAgICAKYWdlIDAuMDM0MjQ0ICAxLjAzNDgzNyAwLjAwNjcwMyA1LjEwOSAzLjI0ZS0wNyAqKioKLS0tClNpZ25pZi4gY29kZXM6ICAwIOKAmCoqKuKAmSAwLjAwMSDigJgqKuKAmSAwLjAxIOKAmCrigJkgMC4wNSDigJgu4oCZIDAuMSDigJgg4oCZIDEKCiAgICBleHAoY29lZikgZXhwKC1jb2VmKSBsb3dlciAuOTUgdXBwZXIgLjk1CmFnZSAgICAgMS4wMzUgICAgIDAuOTY2MyAgICAgMS4wMjEgICAgIDEuMDQ5CgpDb25jb3JkYW5jZT0gMC42MzkgIChzZSA9IDAuMDI5ICkKTGlrZWxpaG9vZCByYXRpbyB0ZXN0PSAyNi4zNCAgb24gMSBkZiwgICBwPTNlLTA3CldhbGQgdGVzdCAgICAgICAgICAgID0gMjYuMSAgb24gMSBkZiwgICBwPTNlLTA3ClNjb3JlIChsb2dyYW5rKSB0ZXN0ID0gMjYuNjMgIG9uIDEgZGYsICAgcD0yZS0wNwpgYGAKClRoZSBDb3ggbW9kZWwgYXNzdW1lcyBwcm9wb3J0aW9uYWwgaGF6YXJkcyBhbmQgbG9nLWxpbmVhcml0eSBvZiB0aGUgY292YXJpYXRlcy4KVG8gY2hlY2sgdGhlIGxvZy1saW5lYXJpdHkgZm9yIGEgY2xpbmljYWwgb3IgZGVtb2dyYXBoaWMgdmFyaWFibGUsIGUuZy4gYWdlLCB3ZSBjYW4gZml0IGEgcGVuYWxpemVkIHNtb290aGluZyBzcGxpbmUgZm9yIGFnZSBlZmZlY3QuClRoZSBmb2xsb3dpbmcgY29kZSBzaG93cyB0aGF0IHRoZSBub25saW5lYXIgcGFydCBvZiB0aGUgc21vb3RoaW5nIHNwbGluZSBoYXMgYSBzaWduaWZpY2FudCBlZmZlY3QgKCRwID0gMC4wMDAxMyQpLgpUaHVzLCB0aGUgYXNzdW1wdGlvbiBvZiBsb2ctbGluZWFyaXR5IGZvciBhZ2UgaXMgbm90IHNhdGlzZmllZC4KCmBgYHtyfQpmaXRfY294X3NwbGluZSA9IGNveHBoKFN1cnYodGltZSwgc3RhdHVzKSB+IHBzcGxpbmUoYWdlKSwgZGF0YSA9IGNsaW4pCmZpdF9jb3hfc3BsaW5lCmBgYApgYGAKQ2FsbDoKY294cGgoZm9ybXVsYSA9IFN1cnYodGltZSwgc3RhdHVzKSB+IHBzcGxpbmUoYWdlKSwgZGF0YSA9IGNsaW4pCgogICAgICAgICAgICAgICAgICAgICAgICAgY29lZiBzZShjb2VmKSAgICAgIHNlMiAgICBDaGlzcSAgIERGICAgICAgIHAKcHNwbGluZShhZ2UpLCBsaW5lYXIgIDAuMDM1MDkgIDAuMDA1NzcgIDAuMDA1NzcgMzYuOTgzMjMgMS4wMCAxLjJlLTA5CnBzcGxpbmUoYWdlKSwgbm9ubGluICAgICAgICAgICAgICAgICAgICAgICAgICAgIDIwLjY5MTQ2IDMuMDMgMC4wMDAxMwoKSXRlcmF0aW9uczogNSBvdXRlciwgMTUgTmV3dG9uLVJhcGhzb24KICAgICBUaGV0YT0gMC44MjggCkRlZ3JlZXMgb2YgZnJlZWRvbSBmb3IgdGVybXM9IDQgCkxpa2VsaWhvb2QgcmF0aW8gdGVzdD00Ni40ICBvbiA0LjAzIGRmLCBwPTJlLTA5Cm49IDEwNDcsIG51bWJlciBvZiBldmVudHM9IDE0OSAKYGBgCgpUbyBjaGVjayBwcm9wb3J0aW9uYWwgaGF6YXJkcyBvZiBhZ2UsIHdlIGNhbiBhZGQgYSB0aW1lLWRlcGVuZGVudCBjb3ZhcmlhdGUgJGFnZSBcdGltZXMgZyh0KSQsIHdoZXJlICRnKHQpJCBpcyBhIGtub3duIGZ1bmN0aW9uIGUuZy4gJGcodCkgPSBcbG9nIHQkLgpUaGUgZm9sbG93aW5nIGNvZGUgc2hvd3MgdGhhdCB0aGUgdGltZS1kZXBlbmRlbnQgYWdlIGlzIHNpZ25pZmljYW50IHVzaW5nIGEgc2NvcmUgdGVzdCAoJHAgPSAwLjAwODckKS4KVGh1cywgdGhlIGFzc3VtcHRpb24gb2YgcHJvcG9ydGlvbmFsIGhhemFyZHMgZm9yIGFnZSBpcyBub3Qgc2F0aXNmaWVkLiBUaGUgYWJvdmUgdHdvIHRlc3RzIGluZGljYXRlIGEgbm9uLWxvZ2xpbmVhciBvciB0aW1lLWRlcGVuZGVudCBhc3NvY2lhdGlvbiBvZiBhZ2Ugd2l0aCB0aGUgc3Vydml2YWwgb3V0Y29tZXMuCgpgYGB7cn0Kc3Vydml2YWw6OmNveC56cGgoZml0X2NveCwgdHJhbnNmb3JtID0gImxvZyIpIApgYGAKYGBgCiAgICAgICBjaGlzcSBkZiAgICBwCmFnZSAgICAgNi44OCAgMSAwLjAwODcKR0xPQkFMICA2Ljg4ICAxIDAuMDA4NwpgYGAKOjo6ey5pbmZvLWJveCAubm90ZX0KSGVyZSB0aGUgYXBwcm9hY2hlcyBmb3IgY2hlY2tpbmcgbG9nLWxpbmVhcml0eSBvciBwcm9wb3J0aW9uYWwgaGF6YXJkcyBjYW4gb25seSBiZSB1c2VkIGluIGxvdy1kaW1lbnNpb25hbCBkYXRhIHNldHRpbmdzLgpXaGVuIGluY2x1ZGluZyBoaWdoLWRpbWVuc2lvbmFsIG9taWNzIGRhdGEsIHRoZXJlIGFyZSBubyBzdGFuZGFyZCBhcHByb2FjaGVzIGZvciBjaGVja2luZyBsb2ctbGluZWFyaXR5IG9yIHByb3BvcnRpb25hbCBoYXphcmRzIGN1cnJlbnRseS4KOjo6Cgo8YnI+CgojIyBGZWF0dXJlIHByZXNlbGVjdGlvbi9maWx0ZXJpbmcgey19CgpGcm9tIGEgcHJhY3RpY2FsIHBvaW50IG9mIHZpZXcsIHNpbmNlIG1vc3Qgb21pY3MgcHJvZmlsZXMgY29udGFpbiB0aG91c2FuZHMgb2YgdmFyaWFibGVzIGFuZCBtb3N0IHN1cGVydmlzZWQgc3RhdGlzdGljYWwgbWV0aG9kcyBhcmUgbm90IHN1aXRlZCBmb3IgaGlnaCBkaW1lbnNpb25hbCBvbWljcyBmZWF0dXJlcywgaXQgaXMgYmV0dGVyIHRvIGZpbHRlciB0aGUgb21pY3MgZmVhdHVyZXMgZmlyc3QuCkluIGFkZGl0aW9uLCB3ZSBwZXJjZWl2ZSB0aGF0IG5vdCB0b28gbWFueSBvbWljcyBmZWF0dXJlcyBhcmUgcmVsZXZhbnQgdG8gb25lIG1lZGljYWwgcHJvYmxlbS4KV2Ugd2lsbCBkZW1vbnN0cmF0ZSAqKnRocmVlIGRpZmZlcmVudCBmaWx0ZXJpbmcgYXBwcm9hY2hlcyBmb3IgaGlnaC1kaW1lbnNpb25hbCBvbWljcyBkYXRhKio6CgotIEtub3dsZWRnZS1iYXNlZCBmaWx0ZXJpbmcKLSBQLXZhbHVlLWJhc2VkIGZpbHRlcmluZwotIFZhcmlhbmNlLWJhc2VkIGZpbHRlcmluZwoKIyMjIEtub3dsZWRnZSBmaWx0ZXIgey19CgpPbmUgY2FuIGJlIGludGVyZXN0ZWQgaW4gb25seSBzb21lIGJpb2xvZ2ljYWxseSBtZWFuaW5nZnVsIGdlbmVzIG9yIG9ubHkgcHJvdGVpbi1jb2RpbmcgZ2VuZXMgaW4gYSBzcGVjaWZpYyBzdHVkeS4gCkZvciBleGFtcGxlLCB0aGUgY29kZSBiZWxvdyBmaWx0ZXJzIHByb3RlaW4tY29kaW5nIGdlbmVzLiAKCmBgYHtyfQpmaWx0ZXJlZF9ybmEgPSBSTkFfY291bnRbcm93RGF0YShkYXQpJGdlbmVfdHlwZSA9PSAicHJvdGVpbl9jb2RpbmciLCBdCmBgYAoKIyMjIFAtdmFsdWUgZmlsdGVyIHstfQoKQmVmb3JlIGpvaW50IGFuYWx5emluZyB0aGUgYXNzb2NpYXRpb25zIGJldHdlZW4gdGhlIHRob3VzYW5kcyBvZiBvbWljcyBmZWF0dXJlcyBhbmQgc3Vydml2YWwgb3V0Y29tZXMsIG9uZSBjYW4gYW5hbHl6ZSB0aGUgYXNzb2NpYXRpb24gYmV0d2VlbiBlYWNoIG9taWNzIGZlYXR1cmUgYW5kIHRoZSBzdXJ2aXZhbCBvdXRjb21lcywgYW5kIGZpbHRlciBvbWljcyBmZWF0dXJlcyBhdCBhIHN0YXRpc3RpY2FsIHNpZ25pZmljYW5jZSBsZXZlbCAkMC4xJCBvciAkMC4yJCAobGFyZ2VyIHRoYW4gMC4wNSB0byByZWR1Y2UgZmFsc2UgbmVnYXRpdmUgaWRlbnRpZmljYXRpb24gb2Ygb21pY3MgZmVhdHVyZXMgaW4gbXVsdGl2YXJpYXRlIGFuYWx5c2lzKS4KRm9yIGRlbW9uc3RyYXRpb24sIGJhc2VkIG9uIHRoZSAkMTAwJCBtUk5BLVNlcSBmZWF0dXJlcyBmcm9tIFRDR0EgYnJlYXN0IGNhbmNlciBwYXRpZW50cyBwcmVwcm9jZXNzZWQgcHJldmlvdXNseSwgdGhlIGNvZGUgYmVsb3cgZmlsdGVycyBvbWljcyBmZWF0dXJlcyBhdCB0aGUgc3RhdGlzdGljYWwgc2lnbmlmaWNhbmNlIGxldmVsICQwLjIkLCBpLmUuICRwIDwgMC4yJC4KCmBgYHtyfQpSTkFfbG9nMmNvdW50ID0gbG9nMihSTkFfY291bnRbMToxMDAsIF0gKyAxKQpwdmFsdWVzID0gcmVwKE5BLCBucm93KFJOQV9sb2cyY291bnQpKQpmb3IgKGogaW4gMTpucm93KFJOQV9sb2cyY291bnQpKSB7CiAgZml0X2NveCA9IGNveHBoKFN1cnYoY2xpbiR0aW1lLCBjbGluJHN0YXR1cykgfiBSTkFfbG9nMmNvdW50W2osIF0sIGRhdGEgPSBjbGluKQogIHB2YWx1ZXNbal0gPSBzdW1tYXJ5KGZpdF9jb3gpJGNvZWZmaWNpZW50c1ssICJQcig+fHp8KSJdCn0KZmlsdGVyZWRfcm5hID0gUk5BX2xvZzJjb3VudFt3aGljaChwdmFsdWVzIDwgMC4yKSwgXQpgYGAKCiMjIyBWYXJpYW5jZSBmaWx0ZXIgey19CgpUaGUgb3RoZXIgY29tbW9uIGFuZCBlYXN5IHdheSB0byBkZWNyZWFzZSB0aGUgbnVtYmVyIG9mIG9taWNzIGZlYXR1cmVzIGlzIHRvIGZpbHRlciB0aGUgbW9zdCB2YXJpYWJsZSBvbmVzIGZvciBmdXJ0aGVyIGFuYWx5c2lzLgpOb3RlIHRoYXQgdGhlIHZhcmlhbmNlLWJhc2VkIGZpbHRlcmluZyBzdGVwIHNob3VsZCBiZSBkb25lIGJlZm9yZSBkYXRhIHN0YW5kYXJkaXphdGlvbiAoaS5lLiBjYWxjdWxhdGluZyAkeiQtc2NvcmUpLCBidXQgY2FuIGJlIHBlcmZvcm1lZCBhZnRlciBjb3VudCBkYXRhIG5vcm1hbGl6YXRpb24gYW5kIGxvZzItdHJhbnNmb3JtYXRpb24gZm9yIGluc3RhbmNlLgoKVGhlIGBSYCBwYWNrYWdlIFsqKk0zQyoqXShodHRwczovL2Jpb2NvbmR1Y3Rvci5vcmcvcGFja2FnZXMvTTNDLykgW0BKb2huMjAyMF0gcHJvdmlkZXMgYSBmaWx0ZXIgZnVuY3Rpb24gYGZlYXR1cmVmaWx0ZXIoKWAgYnkgdXNpbmcgZGlmZmVyZW50IHZhcmlhbmNlLXR5cGUgbWV0cmljcywgZm9yIGV4YW1wbGUsIHZhcmlhbmNlLCBtZWRpYW4gYWJzb2x1dGUgZGV2aWF0aW9uIChNQUQpLCBjb2VmZmljaWVudCBvZiB2YXJpYXRpb24gKEEpIGFuZCBpdHMgc2Vjb25kIG9yZGVyIGRlcml2YXRpdmUgKEEyKS4KVGhlIHNpbXBsZSB2YXJpYW5jZSBmaWx0ZXIgY2FuIGJlIHVzZWQgaWYgdGhlIHZhcmlhbmNlIGRvZXMgbm90IGNoYW5nZSB3aXRoIHRoZSBjb3JyZXNwb25kaW5nIG1lYW4sIG90aGVyd2lzZSB0aGUgY29lZmZpY2llbnQgb2YgdmFyaWF0aW9uIGNhbiBiZSB1c2VkLgpJZiB0aGUgb21pY3MgZGF0YSBpbmNsdWRlIG91dGxpZXJzLCBNQUQgZmlsdGVyIGlzIG1vcmUgcm9idXN0IHRoYW4gdGhlIHZhcmlhbmNlIGZpbHRlci4KQmFzZWQgb24gdGhlICQ2MDY2MCQgbVJOQS1TZXEgZmVhdHVyZXMgZnJvbSBUQ0dBIGJyZWFzdCBjYW5jZXIgcGF0aWVudHMgcHJlcHJvY2Vzc2VkIHByZXZpb3VzbHksIHRoZSBjb2RlIGJlbG93IGV4dHJhY3RzIHRoZSAkMVwlJCBtb3N0IHZhcmlhYmxlIGZlYXR1cmVzIHVzaW5nIHZhcmlhbmNlIGFzIGEgZmlsdGVyaW5nIG1ldHJpYy4KCmBgYHtyfQpSTkFfbG9nMmNvdW50ID0gbG9nMihSTkFfY291bnQgKyAxKQpmaWx0ZXJlZCA9IE0zQzo6ZmVhdHVyZWZpbHRlcihSTkFfbG9nMmNvdW50LCBwZXJjZW50aWxlID0gMSwgbWV0aG9kID0gJ3ZhcicsIHRvcE4gPSA1KQpmaWx0ZXJlZF9ybmExID0gZmlsdGVyZWQkZmlsdGVyZWRfZGF0YQpgYGAKYGBgCioqKmZlYXR1cmUgZmlsdGVyIGZ1bmN0aW9uKioqCmV4dHJhY3RpbmcgdGhlIG1vc3QgdmFyaWFibGU6IDEgcGVyY2VudApmZWF0dXJlcyB0byBzdGFydCB3aXRoOiA2MDY2MApwZXJmb3JtaW5nIGNhbGN1bGF0aW9ucyBmb3IgdmFyaWFuY2UKcHJpbnRpbmcgdG9wTiBtb3N0IHZhcmlhYmxlIGZlYXR1cmVzIHdpdGggc3RhdGlzdGljcy4uLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmZWF0dXJlICAgICAgbWVhbiAgICAgIHZhciAgICAgICBzZApFTlNHMDAwMDAxNjY1MDkuMTIgRU5TRzAwMDAwMTY2NTA5LjEyICA2LjA4NjEyNSAzMS42MDM4NCA1LjYyMTcyOQpFTlNHMDAwMDAxMTA0ODQuNyAgIEVOU0cwMDAwMDExMDQ4NC43IDExLjAwNTEzNiAyNi4xMzc1NSA1LjExMjQ4OQpFTlNHMDAwMDAxNTMwMDIuMTIgRU5TRzAwMDAwMTUzMDAyLjEyICA4LjIxMjg5NSAyNS44OTEwNSA1LjA4ODMyNQpFTlNHMDAwMDAxMzQxODQuMTMgRU5TRzAwMDAwMTM0MTg0LjEzICA1LjM3MTQzNSAyMy4yMzUxMSA0LjgyMDI4MQpFTlNHMDAwMDAxNjAxODIuMyAgIEVOU0cwMDAwMDE2MDE4Mi4zICA5LjkwMjE5NSAyMS40MTQwNyA0LjYyNzUzNApmZWF0dXJlcyByZW1haW5pbmc6IDYwNwpgYGAKCkFub3RoZXIgdmFyaWFuY2UtdHlwZSBmaWx0ZXIgaXMgdG8gcmVtYWluIGZlYXR1cmVzIHdpdGggY2VydGFpbiBwZXJjZW50YWdlIG9mICoqY3VtdWxhdGl2ZSB2YXJpYW5jZXMqKiwgd2hpY2ggd2lsbCB1c3VhbGx5IGZpbHRlciBmZXdlciBmZWF0dXJlcyB0aGFuIHRoZSBhcHByb2FjaGVzIGFib3ZlLgpUaGUgY29kZSBiZWxvdyBleHRyYWN0cyB0aGUgbW9zdCB2YXJpYWJsZSBmZWF0dXJlcyBleHBsYWluaW5nICQxXCUkICoqY3VtdWxhdGl2ZSB2YXJpYW5jZXMqKi4KCmBgYHtyfQpjdW1zdW1fdmFyID0gY3Vtc3VtKGZpbHRlcmVkJHN0YXRpc3RpY3MkdmFyKQpjdW1zdW1fY3V0b2ZmID0gY3Vtc3VtX3ZhcltsZW5ndGgoY3Vtc3VtX3ZhcildICogMC4wMQpmaWx0ZXJlZF9uYW1lcyA9IGZpbHRlcmVkJHN0YXRpc3RpY3MkZmVhdHVyZVtjdW1zdW1fdmFyIDwgY3Vtc3VtX2N1dG9mZl0KYGBgCgo8YnI+CgojIFN1cnZpdmFsIGFuYWx5c2lzIHdpdGggaGlnaC1kaW1lbnNpb25hbCBpbnB1dCBkYXRhIHstfQoKIyMgVW5zdXBlcnZpc2VkIGxlYXJuaW5nIChvbWljcyBkYXRhKSB7LX0KCkluIHRoaXMgc2VjdGlvbiB3ZSB3aWxsIHVzZSB0aGUgbVJOQS1TZXEgZGF0YSBvZiBicmVhc3QgY2FuY2VyIHBhdGllbnRzIGZyb20gVENHQS4KVGhlIGZvbGxvd2luZyB1bnN1cGVydmlzZWQgbWV0aG9kcyBjYW4gYmUgYXBwbGllZCB0byBvdGhlciBvbWljcyBkYXRhIGFzIHdlbGwgKHRoZSBzYW1lIGFwcGxpZXMgdG8gdGhlIHN1cGVydmlzZWQgbGVhcm5pbmcgbWV0aG9kcykuCk9uZSBpbXBvcnRhbnQgdGhpbmcgaXMgdGhhdCB0aGUgaW5wdXQgb21pY3MgZGF0YSwgZXNwZWNpYWxseSB0aGUgZGF0YSB0eXBlIGFuZCBkaW1lbnNpb25zLCBzaG91bGQgYmUgc3VpdGVkIHRvIHRoZSBtZXRob2RzLgoKVW5zdXBlcnZpc2VkIGxlYXJuaW5nIGZvciBvbWljcyBkYXRhIGNhbiBiZSBoZWxwZnVsIHRvIGV4cGxvcmUgc3VicG9wdWxhdGlvbnMgb2YgdGhlIGRhdGEsIGZvciBleGFtcGxlLCBwYXRpZW50cyBmcm9tIG9uZSBjYW5jZXIgdHlwZSBjYW4gYmUgZGl2aWRlZCB0byBzZXZlcmFsIG9taWNzLXJlbGF0ZWQgc3VidHlwZXMuCldlIGRlbW9uc3RyYXRlIHRocmVlIHVuc3VwZXJ2aXNlZCBsZWFybmluZyBtZXRob2RzLCBpLmUuIHByaW5jaXBhbCBjb21wb25lbnQgYW5hbHlzaXMgKFBDQSksICR0JC1zdG9jaGFzdGljIG5laWdoYm91ciBlbWJlZGRpbmcgKCR0JC1TTkUpIGFuZCB1bmlmb3JtIG1hbmlmb2xkIGFwcHJveGltYXRpb24gYW5kIHByb2plY3Rpb24gKFVNQVApLCBiYXNlZCBvbiB0aGUgUEFNNTAgZ2VuZXMgW0BQYXJrZXIyMDA5XS4KVGhlIGBSYCBwYWNrYWdlIFsqKk0zQyoqXShodHRwczovL2Jpb2NvbmR1Y3Rvci5vcmcvcGFja2FnZXMvTTNDLykgW0BKb2huMjAyMF0gcHJvdmlkZXMgdGhlIGFuYWx5c2VzIGFuZCB2aXN1YWxpemF0aW9uIG9mIGFsbCB0aGUgdGhyZWUgbWV0aG9kcy4KCmBgYHtyfQojIGlkZW50aWZ5IGluZGV4ZXMgb2YgdGhlIFBBTTUwIGdlbmVzIGluIHRoZSBUQ0dBLUJSQ0EgZGF0YQppZHggPSB3aGljaChyb3dEYXRhKGRhdCkkZ2VuZV9uYW1lICVpbiUgCiAgICAgICAgICAgICAgYygiVUJFMlQiLCAiQklSQzUiLCAiTlVGMiIsICJDREM2IiwgIkNDTkIxIiwgIlRZTVMiLCAiTVlCTDIiLCAiQ0VQNTUiLCAiTUVMSyIsICJOREM4MCIsICJSUk0yIiwgIlVCRTJDIiwgIkNFTlBGIiwgIlBUVEcxIiwgIkVYTzEiLCAiT1JDNiIsICJBTkxOIiwgIkNDTkUxIiwgIkNEQzIwIiwgIk1LSTY3IiwgIktJRjJDIiwgIkFDVFIzQiIsICJNWUMiLCAiRUdGUiIsICJLUlQ1IiwgIlBIR0RIIiwgIkNESDMiLCAiTUlBIiwgIktSVDE3IiwgIkZPWEMxIiwgIlNGUlAxIiwgIktSVDE0IiwgIkVTUjEiLCAiU0xDMzlBNiIsICJCQUcxIiwgIk1BUFQiLCAiUEdSIiwgIkNYWEM1IiwgIk1MUEgiLCAiQkNMMiIsICJNRE0yIiwgIk5BVDEiLCAiRk9YQTEiLCAiQkxWUkEiLCAiTU1QMTEiLCAiR1BSMTYwIiwgIkZHRlI0IiwgIkdSQjciLCAiVE1FTTQ1QiIsICJFUkJCMiIpKQojIGV4dHJhY3QgdGhlIFBBTTUwIGdlbmVzIG9mIFRDR0EtQlJDQSBwYXRpZW50cwpUQ0dBX1BBTTUwID0gUk5BX2NvdW50W2lkeCwgXQojIHVzZSBnZW5lIHN5bWJvbHMgaW5zdGVhZCBvZiBFbnNlbWJsIElEcwpyb3duYW1lcyhUQ0dBX1BBTTUwKSA9IHJvd0RhdGEoZGF0KSRnZW5lX25hbWVbaWR4XQoKIyBsb2cyLXRyYW5zZm9ybWF0aW9uIG9mIHRoZSBub3JtYWxpemVkIGNvdW50IGRhdGEKVENHQV9QQU01MCA9IGxvZzIoVENHQV9QQU01MCArIDEpCnBhbTUwID0gZmFjdG9yKGNsaW4kcGFwZXJfQlJDQV9TdWJ0eXBlX1BBTTUwKQoKTTNDOjpwY2EoVENHQV9QQU01MCwgbGFiZWxzID0gcGFtNTAsIGRvdHNpemUgPSAzLCAgbGVnZW5kdGl0bGUgPSAiU3VidHlwZSIpCmBgYAohW19VbnN1cGVydmlzZWQgY2x1c3RlcmluZyAocHJpbmNpcGFsIGNvbXBvbmVudCBhbmFseXNpcywgUENBKSBvZiB0cmFuc2NyaXB0b21pYyBkYXRhIGZyb20gVENHQSBicmVhc3QgY2FuY2VyIHBhdGllbnRzX10oZmlnL1RDR0FfcGNhLnBuZyl7d2lkdGg9NTAlfQoKYGBge3J9Ck0zQzo6dHNuZShUQ0dBX1BBTTUwLCBsYWJlbHMgPSBwYW01MCwgZG90c2l6ZSA9IDMsICBsZWdlbmR0aXRsZSA9ICJTdWJ0eXBlIikKYGBgCiFbX1Vuc3VwZXJ2aXNlZCBjbHVzdGVyaW5nICgkdCQtc3RvY2hhc3RpYyBuZWlnaGJvdXIgZW1iZWRkaW5nLCAkdCQtU05FKSBvZiB0cmFuc2NyaXB0b21pYyBkYXRhIGZyb20gVENHQSBicmVhc3QgY2FuY2VyIHBhdGllbnRzX10oZmlnL1RDR0FfdHNuZS5wbmcpe3dpZHRoPTUwJX0KCmBgYHtyfQpNM0M6OnVtYXAoVENHQV9QQU01MCwgbGFiZWxzID0gcGFtNTAsIGRvdHNpemUgPSAzLCAgbGVnZW5kdGl0bGUgPSAiU3VidHlwZSIpCmBgYAohW19VbnN1cGVydmlzZWQgY2x1c3RlcmluZyAodW5pZm9ybSBtYW5pZm9sZCBhcHByb3hpbWF0aW9uIGFuZCBwcm9qZWN0aW9uLCBVTUFQKSBvZiB0cmFuc2NyaXB0b21pYyBkYXRhIGZyb20gVENHQSBicmVhc3QgY2FuY2VyIHBhdGllbnRzX10oZmlnL1RDR0FfdW1hcC5wbmcpe3dpZHRoPTUwJX0KCjxicj4KCiMjIFN1cGVydmlzZWQgbGVhcm5pbmcgKG9taWNzIGFuZCBzdXJ2aXZhbCBkYXRhKSB7LX0KClRvIGludmVzdGlnYXRlIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBvbWljcyBmZWF0dXJlcyBhbmQgc3Vydml2YWwgb3V0Y29tZXMsIHJlZ3Jlc3Npb24gbWV0aG9kcyAoaS5lLiBzdXBlcnZpc2VkIGxlYXJuaW5nKSBjYW4gYmUgYXBwbGllZC4gClNpbmNlIG9taWNzIGRhdGEgYXJlIGhpZ2gtZGltZW5zaW9uYWwsIG9uZSBjYW4gdXNlIHVuc3VwZXJ2aXNlZCBsZWFybmluZyBtZXRob2RzIHRvIHN1bW1hcml6ZSBhIGZldyBjb21wb25lbnRzIChkaW1lbnNpb24gcmVkdWN0aW9uKSBhbmQgcmVncmVzcyB0aGUgc3Vydml2YWwgb3V0Y29tZXMgb24gdGhlIGxvdy1kaW1lbnNpb25hbCBjb21wb25lbnRzIGJ5IHNvbWUgY2xhc3NpY2FsIHN0YXRpc3RpY2FsIG1ldGhvZHMsIGUuZy4gY2xhc3NpY2FsIENveCBtb2RlbC4KVGhlcmUgYXJlIGFsc28gZnJlcXVlbnRpc3QgYW5kIEJheWVzaWFuIHN1cGVydmlzZWQgbGVhcm5pbmcgbWV0aG9kcyBzdWl0ZWQgdG8gZGlyZWN0bHkgcmVncmVzcyB0aGUgc3Vydml2YWwgb3V0Y29tZXMgb24gdGhlIGhpZ2gtZGltZW5zaW9uYWwgb21pY3MgZmVhdHVyZXMuCk5vdGUgdGhhdCBwcmVzZWxlY3RpbmcvZmlsdGVyaW5nIHVsdHJhaGlnaC1kaW1lbnNpb25hbCBvbWljcyBmZWF0dXJlcyBjYW4gYmUgdXNlZnVsIGJlZm9yZSBydW5uaW5nIHRoZSBmcmVxdWVudGlzdCBhbmQgQmF5ZXNpYW4gc3VwZXJ2aXNlZCBsZWFybmluZyBtZXRob2RzLgoKIyMjIERpbWVuc2lvbiByZWR1Y3Rpb24gZm9yIENveCBtb2RlbHMgey19CgpUaGUgZm9sbG93aW5nIGNvZGUgZGVtb25zdHJhdGVzIHRoZSB1c2Ugb2YgdGhlIGZpcnN0IHR3byBwcmluY2lwYWwgY29tcG9uZW50cyBvZiBQQ0EgYXMgY292YXJpYXRlcyBmb3IgdGhlICoqcHVycG9zZSBvZiBzdXJ2aXZhbCBwcmVkaWN0aW9uKiouClNpbWlsYXJseSwgdGhlIGZpcnN0IGNvbXBvbmVudHMgZnJvbSAkdCQtU05FIG9yIFVNQVAgY2FuIGFsc28gYmUgZXh0cmFjdGVkIGFzIGNvdmFyaWF0ZXMuCgpgYGB7cn0KIyBwcmluY2lwYWwgY29tcG9uZW50IHJlZ3Jlc3Npb24KeF90bXAgPSBwcmNvbXAodChUQ0dBX1BBTTUwKSkKCiMgY2hvb3NlIHRoZSB0b3AgdHdvIGNvbXBvbmVudHMgKHN1YmplY3RpdmUpIGFzIGNvdmFyaWF0ZXMKWF9QQyA9IHhfdG1wJHhbLCAxOjJdCiMgYnVpbGQgY2xhc3NpY2FsIHN1cnZpdmFsIG1vZGVsIChlLmcuIFBIIENveCBtb2RlbCkKZGF0YV90bXAgPSBkYXRhLmZyYW1lKHRpbWUgPSBjbGluJHRpbWUsIHN0YXR1cyA9IGNsaW4kc3RhdHVzLCBYX1BDKQpmaXQgPSBjb3hwaChTdXJ2KHRpbWUsIHN0YXR1cykgfiBQQzEgKyBQQzIsIGRhdGEgPSBkYXRhX3RtcCkKc3VtbWFyeShmaXQpCmBgYApgYGAKQ2FsbDoKY294cGgoZm9ybXVsYSA9IFN1cnYodGltZSwgc3RhdHVzKSB+IFBDMSArIFBDMiwgZGF0YSA9IGRhdGFfdG1wKQoKICBuPSAxMDQ3LCBudW1iZXIgb2YgZXZlbnRzPSAxNDkgCgogICAgICAgIGNvZWYgZXhwKGNvZWYpIHNlKGNvZWYpICAgICB6IFByKD58enwpICAgClBDMSAwLjAwNDY3OSAgMS4wMDQ2OTAgMC4wMDk2NzUgMC40ODQgIDAuNjI4NjIgICAKUEMyIDAuMDM4MTc5ICAxLjAzODkxOCAwLjAxMzIzMyAyLjg4NSAgMC4wMDM5MSAqKgotLS0KU2lnbmlmLiBjb2RlczogIDAg4oCYKioq4oCZIDAuMDAxIOKAmCoq4oCZIDAuMDEg4oCYKuKAmSAwLjA1IOKAmC7igJkgMC4xIOKAmCDigJkgMQoKICAgIGV4cChjb2VmKSBleHAoLWNvZWYpIGxvd2VyIC45NSB1cHBlciAuOTUKUEMxICAgICAxLjAwNSAgICAgMC45OTUzICAgIDAuOTg1OCAgICAgMS4wMjQKUEMyICAgICAxLjAzOSAgICAgMC45NjI1ICAgIDEuMDEyMyAgICAgMS4wNjYKCkNvbmNvcmRhbmNlPSAwLjU4ICAoc2UgPSAwLjAyOCApCkxpa2VsaWhvb2QgcmF0aW8gdGVzdD0gOC41NCAgb24gMiBkZiwgICBwPTAuMDEKV2FsZCB0ZXN0ICAgICAgICAgICAgPSA4LjY0ICBvbiAyIGRmLCAgIHA9MC4wMQpTY29yZSAobG9ncmFuaykgdGVzdCA9IDguNjYgIG9uIDIgZGYsICAgcD0wLjAxCmBgYAoKIyMjIFBlbmFsaXplZCBDb3ggbW9kZWxzIHstfQoKRm9yIGNvbXB1dGF0aW9uYWwgZWZmaWNpZW5jeSwgd2Ugd2lsbCB1c2Ugb25seSB0aGUgbVJOQS1TZXEgZmVhdHVyZXMgY29ycmVzcG9uZGluZyB0byB0aGUgUEFNNTAgZ2VuZXMgW0BQYXJrZXIyMDA5XSBpbnN0ZWFkIG9mIHRoZSB2YXJpYW5jZSBmaWx0ZXJlZCBnZW5lcyBmcm9tIHRoZSBwcmV2aW91cyBzZWN0aW9uLgpXZSBwZXJmb3JtIGFuIGludmVzdGlnYXRpb24gb2YgdGhlIHJlbGF0aW9uc2hpcHMgYmV0d2VlbiB0aGUgbVJOQS1TZXEgZmVhdHVyZXMsIHR3byBjbGluaWNhbCB2YXJpYWJsZXMgKGkuZS4gdGhlIHBhdGllbnRzJyBhZ2UgYXQgZGlhZ25vc2lzIGFuZCB0aGVpciBldGhuaWNpdHkpIGFuZCB0aGUgc3Vydml2YWwgb3V0Y29tZXMuCgpUaGUgYFJgIHBhY2thZ2UgWyoqZ2xtbmV0KipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9Z2xtbmV0KSBbQEZyaWVkbWFuMjAxMF0gaXMgdmVyeSBjb21wdXRhdGlvbmFsbHkgZWZmaWNpZW50IHRvIHJ1biBMYXNzbyBhbmQgRWxhc3RpYyBOZXQgQ294IG1vZGVscy4KTGFzc28gaGFzIGEgdHVuaW5nIHBhcmFtZXRlciAkXGxhbWJkYSQgdG8gY29udHJvbCB0aGUgcGVuYWx0eSBzdHJlbmd0aCBvZiB0aGUgY29lZmZpY2llbnRzIHdoaWNoIGNhbiBiZSBvcHRpbWl6ZWQgYnkgY3Jvc3MtdmFsaWRhdGlvbiAoQ1YpIHZpYSBmdW5jdGlvbiBgY3YuZ2xtbmV0KClgLgpUaGUgYGdsbW5ldCgpYCBhbmQgYGN2LmdsbW5ldCgpYCBmdW5jdGlvbnMgcHJvdmlkZSB0aGUgYXJndW1lbnQgYHBlbmFsdHkuZmFjdG9yYCB0byBhbGxvdyBkaWZmZXJlbnQgc2hyaW5rYWdlcyBmb3IgZGlmZmVyZW50IGZlYXR1cmVzLCB3aGljaCBtYWtlcyBzZW5zZSBpZiBvbmUgaW5jbHVkZXMgYm90aCBjbGluaWNhbC9kZW1vZ3JhcGhpYyB2YXJpYWJsZXMgYW5kIG9taWNzIGZlYXR1cmVzIGFuZCBkb2VzIG5vdCB3YW50IHRvIHBlcmZvcm0gZmVhdHVyZSBzZWxlY3Rpb24gZm9yIHRoZSBjbGluaWNhbC9kZW1vZ3JhcGhpYyB2YXJpYWJsZXMuCgpgYGB7cn0KIyMgTGFzc28gQ294IG1vZGVsCgojIyBmb3IgZGVtb25zdHJhdGlvbiBzaW1wbGljaXR5LCBQQU01MCBnZW5lcyBhcmUgdXNlZCBoZXJlCnggPSBjYmluZChhZ2UgPSBjbGluJGFnZSwgZXRobmljaXR5ID0gZmFjdG9yKGNsaW4kZXRobmljaXR5KSwgdChUQ0dBX1BBTTUwKSkKeSA9IGNiaW5kKHRpbWUgPSBjbGluJHRpbWUsIHN0YXR1cyA9IGNsaW4kc3RhdHVzKQoKIyBzZXQgcGVuYWx0eSBmYWN0b3Igd2l0aG91dCBwZW5hbGl6aW5nIHRoZSB0d28gZGVtb2dyYXBoaWNhbCB2YXJpYWJsZXMKcGYgPSBjKHJlcCgwLCAyKSwgcmVwKDEsIG5jb2woeCkgLSAyKSkKCiMgTGFzc28gQ294IGJ5IHVzaW5nIGN2LmdsbW5ldCB0byBvYnRhaW4gdGhlIDUtZm9sZCBDViBvcHRpbWFsIGxhbWJkYS5taW4gb3IgbGFtYmRhLjFzZQpzZXQuc2VlZCgxMjMpCmN2Zml0ID0gZ2xtbmV0Ojpjdi5nbG1uZXQoeCwgeSwgZmFtaWx5ID0gImNveCIsIG5mb2xkcyA9IDUsIHBlbmFsdHkuZmFjdG9yID0gcGYpCm1vZCA9IGN2Zml0JGdsbW5ldC5maXQKbGFtYmRhX29wdGltYWwgPSBjdmZpdCRsYW1iZGEubWluICMgb3B0aW1hbCBsYW1iZGEKCmJldGFzID0gYXMudmVjdG9yKGNvZWYobW9kLCBzID0gbGFtYmRhX29wdGltYWwpKQpiZXRhLnBvc2l0aXZlID0gY29sbmFtZXMoeClbYmV0YXMgPiAwXQpiZXRhLm5lZ2F0aXZlID0gY29sbmFtZXMoeClbYmV0YXMgPCAwXQojZ2V0IG9yZGVyZWQgbGlzdCBvZiB2YXJpYWJsZXMgYXMgdGhleSBhcHBlYXIgYXQgc21hbGxlc3QgbGFtYmRhCmFsbG5hbWVzID0gbmFtZXMoY29lZihtb2QpWywgbmNvbChjb2VmKG1vZCkpXQogICAgICAgICAgICAgICAgW29yZGVyKGNvZWYobW9kKVssIG5jb2woY29lZihtb2QpKV0sIGRlY3JlYXNpbmcgPSBUUlVFKV0pCiMgYXNzaWduIGNvbG9ycyBmb3IgcG9zaXRpdmUgKHBpbmspIGFuZCBuZWdhdGl2ZSAoZ3JlZW4pIGNvZWZmaWNpZW50cwpjb2xzID0gcmVwKCJncmF5ODAiLCBsZW5ndGgoYWxsbmFtZXMpKQpjb2xzW2FsbG5hbWVzICVpbiUgYmV0YS5wb3NpdGl2ZV0gPSAic2VhZ3JlZW4zIgpjb2xzW2FsbG5hbWVzICVpbiUgYmV0YS5uZWdhdGl2ZV0gPSAiaG90cGluayIKCiMgZHJ3YSBjb2VmZmljaWVudCBwYXRocyBvZiBhIExhc3NvIENveCBtb2RlbApwbG90bW86OnBsb3RfZ2xtbmV0KG1vZCwgbGFiZWwgPSBUUlVFLCBzID0gbGFtYmRhX29wdGltYWwsIGNvbCA9IGNvbHMsCiAgICAgICAgICAgIHhsYWIgPSBleHByZXNzaW9uKGxvZyB+fiBsYW1iZGEpLCB5bGFiID0gZXhwcmVzc2lvbihiZXRhKSkKdGl0bGUoIkxhc3NvICAgIFxuXG4iKQpgYGAKYGBge3IsIGVjaG89RkFMU0V9CnBkZigiVENHQV9MYXNzby5wZGYiLCB3aWR0aCA9IDYsIGhlaWdodCA9IDUpCnBsb3Rtbzo6cGxvdF9nbG1uZXQobW9kLCBsYWJlbCA9IFRSVUUsIHMgPSBsYW1iZGFfb3B0aW1hbCwgY29sID0gY29scywKICAgICAgICAgICAgeGxhYiA9IGV4cHJlc3Npb24obG9nIH5+IGxhbWJkYSksIHlsYWIgPSBleHByZXNzaW9uKGJldGEpKQp0aXRsZSgiTGFzc28gICAgXG5cbiIpCmRldi5vZmYoKQpgYGAKIVtfQ29lZmZpY2llbnQgcGF0aHMgb2YgYSBMYXNzbyBDb3ggbW9kZWwuIFRoZSB2ZXJ0aWNsZSBncmF5IGxpbmUgaW5kaWNhdGVzIHRoZSBvcHRpbWFsICRcbGFtYmRhJCBhbmQgaXRzIGNvcnJlc3BvbmRpbmdseSBzZWxlY3RlZCBmZWF0dXJlcyBhcmUgbWFya2VkIGFzIGdyZWVuIChwb3NpdGl2ZSBjb2VmZmljaWVudCkgYW5kIHJlZCAobmVnYXRpdmUgY29lZmZpY2llbnQpIGNvbG9ycy4gTm90ZSB0aGF0IHRoZSBkZW1vZ3JhcGhpYyB2YXJpYWJsZXMgYWdlIGFuZCBldGhuaWNpdHkgd2VyZSBub3QgcGVuYWxpemVkLCBzbyB0aGF0IHRoZWlyIGNvZWZmaWNpZW50IHBhdGhzIGRpZCBub3Qgc3RhcnQgZnJvbSB6ZXJvIGluIHRoZSBmaWd1cmUuX10oZmlnL1RDR0FfbGFzc28ucG5nKXt3aWR0aD02MCV9Cgo8YnI+CgpFbGFzdGljIE5ldCBDb3ggbW9kZWwgaW5jbHVkZXMgdGhlICRcbGFtYmRhJCBhbmQgYW4gYWRkaXRpb25hbCBwZW5hbHR5IHBhcmFtZXRlciAkXGFscGhhIFxpbiBbMCwxXSQuClRoZSBwYXJhbWV0ZXIgJFxhbHBoYSQgY2FuIGJlIGZpeGVkIGFzICQwJCAoUmlkZ2UpLCAkMSQgKExhc3NvKSBvciBhbnkgdmFsdWUgYmV0d2VlbiAkMCQgYW5kICQxJCBmb3IgbWFraW5nIGEgY29tcHJvbWlzZSBiZXR3ZWVuIFJpZGdlIGFuZCBMYXNzbywgd2hpY2ggY2FuIGFsc28gYmUgb3B0aW1pemVkIGJ5IGNyb3NzLXZhbGlkYXRpb24gbWFudWFsbHksIHNlZSB0aGUgZXhhbXBsZSBiZWxvdy4KCmBgYHtyfQojIyBFbGFzdGljIE5ldCBDb3ggbW9kZWwKCiMgc2V0IHBlbmFsdHkgcGFyYW1ldGVyIGFscGhhIHdoaWNoIGNvbXByaXNlcyBiZXR3ZWVuIExhc3NvIGFuZCByaWRnZSByZWdyZXNzaW9ucwphbHBoYSA9IHNlcSgwLjEsIDEsIGxlbmd0aCA9IDEwKQpmaXRFTiA9IGxpc3QoKQpzZXQuc2VlZCgxMjMpCmZvciAoaSBpbiAxOmxlbmd0aChhbHBoYSkpIHsKICBmaXRFTltbaV1dID0gY3YuZ2xtbmV0KHgsIHksIGZhbWlseSA9ICJjb3giLCBhbHBoYSA9IGFscGhhW2ldLCBuZm9sZHMgPSA1LCBwZW5hbHR5LmZhY3RvciA9IHBmKQp9CmlkeCA9IHdoaWNoLm1pbihzYXBwbHkoZml0RU4sIGZ1bmN0aW9uKHh4KSB7eHgkY3ZtW3h4JGxhbWJkYSA9PSB4eCRsYW1iZGEubWluXX0pKQpjdmZpdCA9IGZpdEVOW1tpZHhdXQoKIyB0aGUgZm9sbG93aW5nIGNvZGUgaXMgdGhlIHNhbWUgYXMgTGFzc28gcHJldmlvdXNseQptb2QgPSBjdmZpdCRnbG1uZXQuZml0CmxhbWJkYV9vcHRpbWFsID0gY3ZmaXQkbGFtYmRhLm1pbiAjIG9wdGltYWwgbGFtYmRhCgpiZXRhcyA9IGFzLnZlY3Rvcihjb2VmKG1vZCwgcyA9IGxhbWJkYV9vcHRpbWFsKSkKYmV0YS5wb3NpdGl2ZSA9IGNvbG5hbWVzKHgpW2JldGFzID4gMF0KYmV0YS5uZWdhdGl2ZSA9IGNvbG5hbWVzKHgpW2JldGFzIDwgMF0KYWxsbmFtZXMgPSBuYW1lcyhjb2VmKG1vZClbLCBuY29sKGNvZWYobW9kKSldCiAgICAgICAgICAgICAgICBbb3JkZXIoY29lZihtb2QpWywgbmNvbChjb2VmKG1vZCkpXSwgZGVjcmVhc2luZyA9IFRSVUUpXSkKY29scyA9IHJlcCgiZ3JheTgwIiwgbGVuZ3RoKGFsbG5hbWVzKSkKY29sc1thbGxuYW1lcyAlaW4lIGJldGEucG9zaXRpdmVdID0gInNlYWdyZWVuMyIgCmNvbHNbYWxsbmFtZXMgJWluJSBiZXRhLm5lZ2F0aXZlXSA9ICJob3RwaW5rIiAgIAoKcGxvdG1vOjpwbG90X2dsbW5ldChtb2QsIGxhYmVsID0gVFJVRSwgcyA9IGxhbWJkYV9vcHRpbWFsLCBjb2wgPSBjb2xzLAogICAgICAgICAgICB4bGFiID0gZXhwcmVzc2lvbihsb2cgfn4gbGFtYmRhKSwgeWxhYiA9IGV4cHJlc3Npb24oYmV0YSkpCnRpdGxlKCJFbGFzdGljIE5ldCAgICAgXG5cbiIpCmBgYApgYGB7ciwgZWNobz1GQUxTRX0KcGRmKCJUQ0dBX2VsYXN0aWMucGRmIiwgd2lkdGggPSA2LCBoZWlnaHQgPSA1KQpwbG90bW86OnBsb3RfZ2xtbmV0KG1vZCwgbGFiZWwgPSBUUlVFLCBzID0gbGFtYmRhX29wdGltYWwsIGNvbCA9IGNvbHMsCiAgICAgICAgICAgIHhsYWIgPSBleHByZXNzaW9uKGxvZyB+fiBsYW1iZGEpLCB5bGFiID0gZXhwcmVzc2lvbihiZXRhKSkKdGl0bGUoIkVsYXN0aWMgTmV0ICAgICBcblxuIikKZGV2Lm9mZigpCmBgYAohW19Db2VmZmljaWVudCBwYXRocyBvZiBhbiBFbGFzdGljIE5ldCBDb3ggbW9kZWwuIFRoZSB2ZXJ0aWNsZSBncmF5IGxpbmUgaW5kaWNhdGVzIHRoZSBvcHRpbWFsICRcbGFtYmRhJCBhbmQgaXRzIGNvcnJlc3BvbmRpbmdseSBzZWxlY3RlZCBmZWF0dXJlcyBhcmUgbWFya2VkIGFzIGdyZWVuIChwb3NpdGl2ZSBjb2VmZmljaWVudCkgYW5kIHJlZCAobmVnYXRpdmUgY29lZmZpY2llbnQpIGNvbG9ycy4gTm90ZSB0aGF0IHRoZSBkZW1vZ3JhcGhpYyB2YXJpYWJsZXMgYWdlIGFuZCBldGhuaWNpdHkgd2VyZSBub3QgcGVuYWxpemVkLCBzbyB0aGF0IHRoZWlyIGNvZWZmaWNpZW50IHBhdGhzIGRpZCBub3Qgc3RhcnQgZnJvbSB6ZXJvIGluIHRoZSBmaWd1cmUuX10oZmlnL1RDR0FfZWxhc3RpYy5wbmcpe3dpZHRoPTYwJX0KCjxicj4KCkFkYXB0aXZlIExhc3NvIENveCBtb2RlbCBuZWVkcyB0byBwcmUtZXN0aW1hdGUgYWxsIGNvZWZmaWNpZW50cyB3aGljaCB3aWxsIGJlIHVzZWQgYXMgd2VpZ2h0cyB2aWEgdGhlIGFyZ3VtZW50IGBwZW5hbHR5LmZhY3RvcmAgaW4gdGhlIGBnbG1uZXQoKWAgYW5kIGBjdi5nbG1uZXQoKWAgZnVuY3Rpb25zIHRvIGZpdCBhIExhc3NvIENveCBtb2RlbC4KVGhlIHByZS1lc3RpbWF0aW9uIGNhbiBiZSBkb25lIGJ5IGEgUmlkZ2UgQ294IG1vZGVsLCBzZWUgYW4gZXhhbXBsZSBiZWxvdy4KCmBgYHtyfQojIyBBZGFwdGl2ZSBMYXNzbyBDb3ggbW9kZWwKCnNldC5zZWVkKDEyMykKZml0ID0gY3YuZ2xtbmV0KHgsIHksIGZhbWlseSA9ICJjb3giLCBhbHBoYSA9IDAsIG5mb2xkcyA9IDUpCndlaWdodHMgPSBhYnMoMSAvIGFzLnZlY3Rvcihjb2VmKGZpdCwgcyA9ICJsYW1iZGEubWluIikpKQoKIyBhZGFwdGl2ZSBMYXNzbyBDb3ggYnkgdXNpbmcgY3YuZ2xtbmV0IHRvIG9idGFpbiB0aGUgNS1mb2xkIENWIG9wdGltYWwgbGFtYmRhLm1pbiBvciBsYW1iZGEuMXNlCmN2Zml0ID0gY3YuZ2xtbmV0KHgsIHksIGZhbWlseSA9ICJjb3giLCBuZm9sZHMgPSA1LCBwZW5hbHR5LmZhY3RvciA9IHBmKQptb2QgPSBjdmZpdCRnbG1uZXQuZml0CmxhbWJkYV9vcHRpbWFsID0gY3ZmaXQkbGFtYmRhLm1pbiAjIG9wdGltYWwgbGFtYmRhCgpiZXRhcyA9IGFzLnZlY3Rvcihjb2VmKG1vZCwgcyA9IGxhbWJkYV9vcHRpbWFsKSkKYmV0YS5wb3NpdGl2ZSA9IGNvbG5hbWVzKHgpW2JldGFzID4gMF0KYmV0YS5uZWdhdGl2ZSA9IGNvbG5hbWVzKHgpW2JldGFzIDwgMF0KI2dldCBvcmRlcmVkIGxpc3Qgb2YgdmFyaWFibGVzIGFzIHRoZXkgYXBwZWFyIGF0IHNtYWxsZXN0IGxhbWJkYQphbGxuYW1lcyA9IG5hbWVzKGNvZWYobW9kKVssIG5jb2woY29lZihtb2QpKV0KICAgICAgICAgICAgICAgIFtvcmRlcihjb2VmKG1vZClbLCBuY29sKGNvZWYobW9kKSldLCBkZWNyZWFzaW5nID0gVFJVRSldKQojYXNzaWduIGNvbG9ycwpjb2xzID0gcmVwKCJncmF5ODAiLCBsZW5ndGgoYWxsbmFtZXMpKQpjb2xzW2FsbG5hbWVzICVpbiUgYmV0YS5wb3NpdGl2ZV0gPSAic2VhZ3JlZW4zIgpjb2xzW2FsbG5hbWVzICVpbiUgYmV0YS5uZWdhdGl2ZV0gPSAiaG90cGluayIKCnBsb3RfZ2xtbmV0KG1vZCwgbGFiZWwgPSBUUlVFLCBzID0gbGFtYmRhX29wdGltYWwsIGNvbCA9IGNvbHMsCiAgICAgICAgICAgIHhsYWIgPSBleHByZXNzaW9uKGxvZyB+IGxhbWJkYSksIHlsYWIgPSBleHByZXNzaW9uKGJldGEpKQp0aXRsZSgiQWRhdGl2ZSBMYXNzbyAgICBcblxuIikKYGBgCmBgYHtyLCBlY2hvPUZBTFNFfQpwZGYoIlRDR0FfYWRhcHRpdmVMYXNzby5wZGYiLCB3aWR0aCA9IDYsIGhlaWdodCA9IDUpCnBsb3RfZ2xtbmV0KG1vZCwgbGFiZWwgPSBUUlVFLCBzID0gbGFtYmRhX29wdGltYWwsIGNvbCA9IGNvbHMsCiAgICAgICAgICAgIHhsYWIgPSBleHByZXNzaW9uKGxvZyB+IGxhbWJkYSksIHlsYWIgPSBleHByZXNzaW9uKGJldGEpKQp0aXRsZSgiQWRhdGl2ZSBMYXNzbyAgICBcblxuIikKZGV2Lm9mZigpCmBgYAohW19Db2VmZmljaWVudCBwYXRocyBvZiBhbiBhZGFwdGl2ZSBMYXNzbyBDb3ggbW9kZWwuIFRoZSB2ZXJ0aWNsZSBncmF5IGxpbmUgaW5kaWNhdGVzIHRoZSBvcHRpbWFsICRcbGFtYmRhJCBhbmQgaXRzIGNvcnJlc3BvbmRpbmdseSBzZWxlY3RlZCBmZWF0dXJlcyBhcmUgbWFya2VkIGFzIGdyZWVuIChwb3NpdGl2ZSBjb2VmZmljaWVudCkgYW5kIHJlZCAobmVnYXRpdmUgY29lZmZpY2llbnQpIGNvbG9ycy4gTm90ZSB0aGF0IHRoZSBkZW1vZ3JhcGhpYyB2YXJpYWJsZXMgYWdlIGFuZCBldGhuaWNpdHkgd2VyZSBub3QgcGVuYWxpemVkLCBzbyB0aGF0IHRoZWlyIGNvZWZmaWNpZW50IHBhdGhzIGRpZCBub3Qgc3RhcnQgZnJvbSB6ZXJvIGluIHRoZSBmaWd1cmUuX10oZmlnL1RDR0FfYWRhcHRpdmVsYXNzby5wbmcpe3dpZHRoPTYwJX0KCjxicj4KCkdyb3VwIExhc3NvIENveCBtb2RlbCBjYW4gYmUgaW1wbGVtZW50ZWQgdGhyb3VnaCB0aGUgYFJgIHBhY2thZ2UgWyoqZ3JwcmVnKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9Z3JwcmVnKSBbQEJyZWhlbnkyMDE1XS4KRm9yIGFuIGlsbHVzdHJhdGlvbiwgd2Ugc3BlY2lmeSB0aGUgdHdvIGRlbW9ncmFwaGljIHZhcmlhYmxlcyBhcyB0aGUgZmlyc3QgZ3JvdXAsIHRoZSBmaXJzdCAkMTAkIFBBTTUwIGdlbmVzIGFzIHRoZSBzZWNvbmQgZ3JvdXAsIHRoZSBsYXN0ICQ0MCQgUEFNNTAgZ2VuZXMgYXMgdGhlIHRoaXJkIGdyb3VwLgpBICRrJC1mb2xkIGNyb3NzLXZhbGlkYXRpb24gKENWKSBmb3IgdGhlIGdyb3VwIExhc3NvIENveCBtb2RlbCBpcyBwZXJmb3JtZWQgdGhyb3VnaCBmdW5jdGlvbiBgY3YuZ3Jwc3VydigpYC4KVGhlIHJldHVybmVkIG9iamVjdCBgY3ZmaXQkbGFtYmRhLm1pbmAgaXMgdGhlIHZhbHVlIG9mIENWLW9wdGltaXplZCAkXGxhbWJkYSQuClRoZSBmb2xsb3dpbmcgcmVzdWx0cyBzaG93IHRoYXQgCgotIHdoZW4gY2hvb3NpbmcgdGhlIENWLW9wdGltaXplZCAkXGxhbWJkYSA9IDAuMDE0MyQgKG91dHB1dCBtYXRyaXggaGFzIGxhbWJkYSB2YWx1ZXMgYXMgY29sdW1uIG5hbWVzKSwgdGhlIGVzdGltYXRlZCBjb2VmZmljaWVudHMgb2YgdGhlIGZpcnN0IHR3byBncm91cHMgYXJlIG5vbnplcm8gKGkuZS4gc2VsZWN0aW5nIGZpcnN0IGFuZCBzZWNvbmQgZ3JvdXBzKTsKLSB3aGVuIGNob29zaW5nIHRoZSAkMTAkLXRoIGxhbWJkYSAkXGxhbWJkYSA9IDAuMDIxNyQsIG9ubHkgdGhlIGZpcnN0IGdyb3VwIG9mIGNvdmFyaWF0ZXMgaGFzIG5vbnplcm8gY29lZmZpY2llbnRzIChpLmUuIHNlbGVjdGluZyBmaXJzdCBncm91cCk7Ci0gd2hlbiBjaG9vc2luZyB0aGUgJDE1JC10aCBsYW1iZGEgJFxsYW1iZGEgPSAwLjAxMDgkLCB0aGUgZXN0aW1hdGVkIGNvZWZmaWNpZW50cyBvZiBhbGwgdGhlIHRocmVlIGdyb3VwcyBhcmUgbm9uemVybyAoaS5lLiBzZWxlY3RpbmcgYWxsIGdyb3VwcykuIAoKTm90ZSB0aGF0IHRoZSBgUmAgcGFja2FnZSBbKipncnByZWcqKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1ncnByZWcpIFtAQnJlaGVueTIwMTVdIGFsc28gaW1wbGVtZW50cyBncm91cCBzbW9vdGhseSBjbGlwcGVkIGFic29sdXRlIGRldmlhdGlvbiAoU0NBRCkgbW9kZWwgYW5kIHNvbWUgb3RoZXJzLCBzZWUgQEJyZWhlbnkyMDIxIGZvciBkZXRhaWxzLgoKYGBge3J9CiMgZ3JvdXAgTGFzc28gQ294IG1vZGVsCmdyb3VwID0gYyhyZXAoImRlbW9ncmFwaGljIiwgMiksIHJlcCgiUEFNNTBfMSIsIDEwKSwgcmVwKCJQQU01MF8yIiwgNDApKQpncm91cCA9IGZhY3Rvcihncm91cCkKc2V0LnNlZWQoMTIzKQpjdmZpdCA9IGdycHJlZzo6Y3YuZ3Jwc3VydihYID0geCwgeSA9IHksIGdyb3VwID0gZ3JvdXAsIHBlbmFsdHkgPSAiZ3JMYXNzbyIsIHJldHVyblkgPSBUUlVFKQpyb3VuZChjdmZpdCRmaXQkYmV0YVssIGMod2hpY2gubWluKGN2Zml0JGN2ZSksIDEwLCAyMCldLCBkaWdpdHMgPSA0KQpgYGAKYGBgCiAgICAgICAgICAgMC4wMTQzICAwLjAyMTcgIDAuMDEwOAphZ2UgICAgICAgIDAuMDIxOCAgMC4wMTU0ICAwLjAyNDcKZXRobmljaXR5IC0wLjA1NDIgLTAuMDQyNSAtMC4wNTcwCkFOTE4gICAgICAgMC4wMTkzICAwLjAwMDAgIDAuMDcxMwpGT1hDMSAgICAgLTAuMDAzMiAgMC4wMDAwIC0wLjAxMDQKQ0RIMyAgICAgIC0wLjAwMjggIDAuMDAwMCAtMC4wMDkwClVCRTJUICAgICAgMC4wMTU0ICAwLjAwMDAgIDAuMDU3MQpOREM4MCAgICAgLTAuMDIzOSAgMC4wMDAwIC0wLjA4NjIKUEdSICAgICAgIC0wLjAwMjcgIDAuMDAwMCAtMC4wMDg2CkJJUkM1ICAgICAtMC4wMTMzICAwLjAwMDAgLTAuMDQ5NwpPUkM2ICAgICAgIDAuMDE0MCAgMC4wMDAwICAwLjA0ODkKRVNSMSAgICAgIC0wLjAwMDIgIDAuMDAwMCAtMC4wMDA4ClBIR0RIICAgICAgMC4wMDA4ICAwLjAwMDAgIDAuMDAyNApDREM2ICAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAwOTQKTU1QMTEgICAgICAwLjAwMDAgIDAuMDAwMCAgMC4wMDc0Ck1ZQkwyICAgICAgMC4wMDAwICAwLjAwMDAgIDAuMDAxOApTRlJQMSAgICAgIDAuMDAwMCAgMC4wMDAwICAwLjAwNDkKQ0NORTEgICAgICAwLjAwMDAgIDAuMDAwMCAgMC4wMDAwCkJMVlJBICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDQzNgpCQUcxICAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAxNjMKTUxQSCAgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMTU1CkNEQzIwICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDEyOQpDRU5QRiAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAyNDUKS1JUMTcgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMTI1CkZPWEExICAgICAgMC4wMDAwICAwLjAwMDAgIDAuMDA0MApBQ1RSM0IgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAxMTIKQ0NOQjEgICAgICAwLjAwMDAgIDAuMDAwMCAgMC4wMzAyCk1ETTIgICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDA3NwpNWUMgICAgICAgIDAuMDAwMCAgMC4wMDAwICAwLjAwMDIKQ0VQNTUgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMjQyClNMQzM5QTYgICAgMC4wMDAwICAwLjAwMDAgIDAuMDA1MwpFUkJCMiAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAwODkKR1JCNyAgICAgICAwLjAwMDAgIDAuMDAwMCAgMC4wMDk5CktJRjJDICAgICAgMC4wMDAwICAwLjAwMDAgIDAuMDIxOQpOVUYyICAgICAgIDAuMDAwMCAgMC4wMDAwICAwLjAyMTAKRUdGUiAgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMTUwCk1LSTY3ICAgICAgMC4wMDAwICAwLjAwMDAgIDAuMDI2NgpUTUVNNDVCICAgIDAuMDAwMCAgMC4wMDAwICAwLjAxMDAKRkdGUjQgICAgICAwLjAwMDAgIDAuMDAwMCAgMC4wMDIzClBUVEcxICAgICAgMC4wMDAwICAwLjAwMDAgIDAuMDA5NQpNRUxLICAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAxODgKTkFUMSAgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMDUyCkNYWEM1ICAgICAgMC4wMDAwICAwLjAwMDAgIDAuMDEzMQpCQ0wyICAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAwODIKUlJNMiAgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMDAzCkdQUjE2MCAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDA0MwpFWE8xICAgICAgIDAuMDAwMCAgMC4wMDAwICAwLjAwNDEKVUJFMkMgICAgICAwLjAwMDAgIDAuMDAwMCAtMC4wMDUyClRZTVMgICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDI5OApLUlQ1ICAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAwMjUKS1JUMTQgICAgICAwLjAwMDAgIDAuMDAwMCAgMC4wMDg1Ck1BUFQgICAgICAgMC4wMDAwICAwLjAwMDAgLTAuMDA3MQpNSUEgICAgICAgIDAuMDAwMCAgMC4wMDAwIC0wLjAxODAKYGBgCgpTcGFyc2UgZ3JvdXAgTGFzc28gQ294IG1vZGVsIGlzIGltcGxlbWVudGVkIGluIHRoZSBgUmAgcGFja2FnZSBbKipTR0wqKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1TR0wpIFtAU2ltb24yMDE5XS4gClRoZSBmdW5jdGlvbiBgY3ZTR0woKWAgdXNlcyBjcm9zcyB2YWxpZGF0aW9uIHRvIG9wdGltaXplIHRoZSBwZW5hbHR5IHBhcmFtZXRlciAkXGxhbWJkYSQuClRoZSBmb2xsb3dpbmcgZXhhbXBsZSBzaG93cyB0aGF0IGl0IGluZHVjZXMgc3BhcnNpdHkgaW4gZWFjaCBncm91cCBvZiBjb3ZhcmlhdGVzLiAKCmBgYHtyfQojIHNwYXJzZSBncm91cCBMYXNzbyBDb3ggbW9kZWwKZ3JvdXAgPSBjKHJlcCgiZGVtb2dyYXBoaWMiLCAyKSwgcmVwKCJQQU01MF8xIiwgMTApLCByZXAoIlBBTTUwXzIiLCA0MCkpCmdyb3VwID0gZmFjdG9yKGdyb3VwKQpkYXRfdG1wID0gbGlzdCh4ID0geCwgdGltZSA9IGNsaW4kdGltZSwgc3RhdHVzID0gY2xpbiRzdGF0dXMpCnNldC5zZWVkKDEyMykKY3ZmaXQgPSBTR0w6OmN2U0dMKGRhdF90bXAsIGluZGV4ID0gZ3JvdXAsIHR5cGUgPSAiY294IiwgbmZvbGQgPSA1KQpiZXRhLmhhdCA9IGN2Zml0JGZpdCRiZXRhWywgd2hpY2gubWluKGN2Zml0JGxsZGlmZildCm5hbWVzKGJldGEuaGF0KSA9IHBhc3RlMCgiZ3JvdXAiLCBhcy5udW1lcmljKGdyb3VwKSwgIi4iLCBjKDE6MiwgMToxMCwgMTo0MCkpCmJldGEuaGF0CmBgYApgYGAKICAgICBncm91cDEuMSAgICAgIGdyb3VwMS4yICAgICAgZ3JvdXAyLjEgICAgICBncm91cDIuMiAgICAgIGdyb3VwMi4zICAgICAgZ3JvdXAyLjQgCiA1LjY1ODQ4Mzg0ODggIDAuMDAwMDAwMDAwMCAgMC40ODEyMDA2MTAzICAwLjAwMDAwMDAwMDAgIDAuMDAwMDAwMDAwMCAgMC4yNDgxODMwMTc3IAogICAgIGdyb3VwMi41ICAgICAgZ3JvdXAyLjYgICAgICBncm91cDIuNyAgICAgIGdyb3VwMi44ICAgICAgZ3JvdXAyLjkgICAgIGdyb3VwMi4xMCAKIDAuMDAwMDAwMDAwMCAtMC4wMDAzMDQyMTI2ICAwLjAwMDAwMDAwMDAgIDAuMzMxNzM4NTQxMiAgMC4wMDAwMDAwMDAwICAwLjAwMDAwMDAwMDAgCiAgICAgZ3JvdXAzLjEgICAgICBncm91cDMuMiAgICAgIGdyb3VwMy4zICAgICAgZ3JvdXAzLjQgICAgICBncm91cDMuNSAgICAgIGdyb3VwMy42IAogMC4wMDAwMDAwMDAwICAwLjMwMzc2MzEyMjQgIDAuMDAwMDAwMDAwMCAtMC4zNzgyMzM4OTk3ICAwLjAwMDAwMDAwMDAgLTIuNjgwNTg4MTM0NyAKICAgICBncm91cDMuNyAgICAgIGdyb3VwMy44ICAgICAgZ3JvdXAzLjkgICAgIGdyb3VwMy4xMCAgICAgZ3JvdXAzLjExICAgICBncm91cDMuMTIgCi0xLjg0MTg1MjM3NTcgIDAuMDAwMDAwMDAwMCAgMC4wMDAwMDAwMDAwICAwLjAwMDAwMDAwMDAgLTEuNzg0OTkyMzAwNyAgMC4wMDAwMDAwMDAwIAogICAgZ3JvdXAzLjEzICAgICBncm91cDMuMTQgICAgIGdyb3VwMy4xNSAgICAgZ3JvdXAzLjE2ICAgICBncm91cDMuMTcgICAgIGdyb3VwMy4xOCAKIDAuMDAwMDAwMDAwMCAgMS4wMjkwOTE4MDQxICAwLjAwMDAwMDAwMDAgIDAuMDAwMDAwMDAwMCAgMC4wMDAwMDAwMDAwICAwLjAwMDAwMDAwMDAgCiAgICBncm91cDMuMTkgICAgIGdyb3VwMy4yMCAgICAgZ3JvdXAzLjIxICAgICBncm91cDMuMjIgICAgIGdyb3VwMy4yMyAgICAgZ3JvdXAzLjI0IAogMC4wMDAwMDAwMDAwICAwLjAwMDAwMDAwMDAgIDAuMDAwMDAwMDAwMCAgMC4wMDAwMDAwMDAwIC0wLjM2Nzk5ODA4MTcgIDAuMDAwMDAwMDAwMCAKICAgIGdyb3VwMy4yNSAgICAgZ3JvdXAzLjI2ICAgICBncm91cDMuMjcgICAgIGdyb3VwMy4yOCAgICAgZ3JvdXAzLjI5ICAgICBncm91cDMuMzAgCiAwLjk5MjU5MDE1MjkgIDAuMDA4ODQ2OTk1NyAgMC4wMDAwMDAwMDAwICAwLjAwMDAwMDAwMDAgIDAuMDAwMDAwMDAwMCAgMC4wMDAwMDAwMDAwIAogICAgZ3JvdXAzLjMxICAgICBncm91cDMuMzIgICAgIGdyb3VwMy4zMyAgICAgZ3JvdXAzLjM0ICAgICBncm91cDMuMzUgICAgIGdyb3VwMy4zNiAKLTIuMTk3NTk0MjM2NCAgMC4wMDAwMDAwMDAwICAwLjAwMDAwMDAwMDAgIDAuMDAwMDAwMDAwMCAgMC4wMDAwMDAwMDAwIC0wLjg0MDcyMjgwOTMgCiAgICBncm91cDMuMzcgICAgIGdyb3VwMy4zOCAgICAgZ3JvdXAzLjM5ICAgICBncm91cDMuNDAgCi0xLjgyMTc0OTA0NzcgIDAuMDAwMDAwMDAwMCAtMC43MzIzNzM5MTA3IC0yLjAxMTE5MDAzODAgCmBgYAoKIyMjIFNwYXJzZSBCYXllc2lhbiBDb3ggbW9kZWxzCgpUaGUgYFJgIHBhY2thZ2UgWyoqcHNiY0dyb3VwKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9cHNiY0dyb3VwKSBbQExlZTIwMjFdIGludGVncmF0ZXMgYSBsYXJnZSBzZXQgb2Ygc3BhcnNlIEJheWVzaWFuIENveCBtb2RlbHMuIApUaGUgZnVuY3Rpb24gYHBzYmNHTCgpYCBpbXBsZW1lbnRzIEJheWVzaWFuIENveCBtb2RlbHMgd2l0aCBMYXNzbyBhbmQgZ3JvdXAgTGFzc28gcHJpb3JzIGZvciBmZWF0dXJlIHNlbGVjdGlvbiBhbmQgZ3JvdXAgc2VsZWN0aW9uIHJlc3BlY3RpdmVseS4gCkZvciB0aGUgTGFzc28gcHJpb3IsIHNldCB0aGUgaHlwZXJwYXJhbWV0ZXIgYHByaW9yUGFyYSRncm91cEluZCA9IDE6cGAgd2hlcmUgJHAkIGlzIHRoZSB0b3RhbCBudW1iZXIgb2YgY292YXJpYXRlcy4gCkZvciB0aGUgZ3JvdXAgTGFzc28gcHJpb3IsIHNldCB0aGUgaHlwZXJwYXJhbWV0ZXIgYHByaW9yUGFyYSRncm91cEluZGAgYXMgYSB2ZWN0b3Igb2Ygc2l6ZSAkcCQsIHdoZXJlIGVhY2ggZWxlbWVudCBkZW5vdGVzIHdoaWNoIGdyb3VwIGVhY2ggY292YXJpYXRlIGNvcnJlc3BvbmRzIHRvLiAKCmBgYHtyfQojIEJheWVzaWFuIENveCBtb2RlbCB3aXRoIExhc3NvIHByaW9yCgpzZXQuc2VlZCgxMjMpCnN1cnZPYmogPSBsaXN0KHQgPSBjbGluJHRpbWUsIGRpID0gY2xpbiRzdGF0dXMsIHggPSB4KQpwID0gbmNvbCh4KQojIHNldCBoeXBlcnBhcmFtZXRlcnMuIAojIEZvciBMYXNzbyBwcmlvciAoaS5lLiAnZ3JvdXBJbmQnPSAxOnApLCBsYXJnZXIgcmF0aW8gci9kZWx0YSB0ZW5kcyB0byBmb3JjZSB0aGUgcG9zdGVyaW9yIGJldGFzIHRvIGJlIG1vcmUgY29uY2VudHJhdGVkIGF0IDAKIyBGb3IgZ3JvdXAgTGFzc28gcHJpb3IgKGkuZS4gJ2dyb3VwSW5kJyBhcyBncm91cCBpbmRpY2F0b3IgZm9yIGNvdmFyaWF0ZXMpLCBsYXJnZXIgcmF0aW8gci9kZWx0YSB0ZW5kcyB0byBmb3JjZSBzdHJvbmdlciBncm91cGluZyBlZmZlY3Qgb2YgY292YXJpYXRlcwpzID0gYyhzb3J0KHN1cnZPYmokdFtzdXJ2T2JqJGRpID09IDFdKSwgMiAqIG1heChzdXJ2T2JqJHQpIC0gbWF4KHN1cnZPYmokdFstd2hpY2goc3Vydk9iaiR0ID09IG1heChzdXJ2T2JqJHQpKV0pKQpwcmlvclBhcmEgPSBsaXN0KCdldGEwJyA9IDEsICdrYXBwYTAnID0gMSwgJ2MwJyA9IDIsICdyJyA9IDAuNSwgCiAgICAgICAgICAgICAgICAgICdkZWx0YScgPSAwLjAwMDEsICdzJyA9IHMsICdKJyA9IGxlbmd0aChzKSwgJ2dyb3VwSW5kJyA9IDE6cCkKIyBzZXQgTUNNQyBwYXJhbWV0ZXJzCm1jbWNQYXJhID0gbGlzdCgnbnVtQmV0YScgPSBwLCAnYmV0YS5wcm9wLnZhcicgPSAxKQojIHNldCBpbml0aWFsIHZhbHVlcyBvZiBoeXBlcnBhcmFtZXRlcnMKbGFtYmRhU3EgPSAxCmluaXRpYWwgPSBsaXN0KCdiZXRhLmluaScgPSByZXAoMCwgcCksICdsYW1iZGFTcScgPSAxLCAnc2lnbWFTcScgPSBydW5pZigxLCAwLjEsIDEwKSwKICAgICAgICAgICAgICAgICd0YXVTcScgPSByZXhwKGxlbmd0aCh1bmlxdWUocHJpb3JQYXJhJGdyb3VwSW5kKSksICdyYXRlJyA9IGxhbWJkYVNxIC8gMiksCiAgICAgICAgICAgICAgICAnaCcgPSByZ2FtbWEocHJpb3JQYXJhJEosIDEsIDEpKQojIGluIHJlYWwgYXBwbGljYXRpb25zLCAnbnVtLnJlcHMnIHNob3VsZCBiZSBsYXJnZSBlbm91Z2ggKGUuZy4gMjAwMDAsIDQwMDAwKSBhbmQgJ2NoYWluJyB0byBiZSA+IDEKIyBhcmd1bWVudCAncncnIHNob3VsZCBiZSBGQUxTRSBmb3IgaGlnaC1kaW1lbnNpb25hbCBjb3ZhcmlhdGVzCkJheWVzTGFzc29maXQgPSBwc2JjR3JvdXA6OnBzYmNHTChzdXJ2T2JqLCBwcmlvclBhcmEsIGluaXRpYWwsIHJ3ID0gVFJVRSwgbWNtY1BhcmEsIG51bS5yZXBzID0gMTAwLCB0aGluID0gMSwgY2hhaW4gPSAxKQojIGJ1cm4taW4gdGhlIGZpcnN0IGhhbGYgTUNNQyBpdGVyYXRpb25zCmJldGFfcCA9IEJheWVzTGFzc29maXQkYmV0YS5wWy0oMTo1MSksIF0KYmV0YV9tZWFuID0gY29sTWVhbnMoYmV0YV9wKQpiZXRhX0wgPSBhcHBseShiZXRhX3AsIDIsIHF1YW50aWxlLCAwLjAyNSkKYmV0YV9VID0gYXBwbHkoYmV0YV9wLCAyLCBxdWFudGlsZSwgMC45NzUpCnRibCA9IGRhdGEuZnJhbWUodGVybSA9IGNvbG5hbWVzKHgpLCBlc3RpbWF0ZSA9IGJldGFfbWVhbiwgIGNvbmYubG93ID0gYmV0YV9MLCAgY29uZi5oaWdoID0gYmV0YV9VKQp0YmwkdGVybSA9IGZhY3Rvcih0YmwkdGVybSwgbGV2ZWxzID0gdGJsJHRlcm0pCgpHR2FsbHk6OmdnY29lZih0YmwpICsgeGxhYihleHByZXNzaW9uKFBvc3RlcmlvciB+fiBiZXRhKSkgKyB5bGFiKCIiKQpgYGAKYGBge3IsIGVjaG89RkFMU0V9CnBkZigiVENHQV9iYXllc0xhc3NvLnBkZiIsIHdpZHRoID0gNCwgaGVpZ2h0ID0gNikKR0dhbGx5OjpnZ2NvZWYodGJsKSArIHhsYWIoZXhwcmVzc2lvbihQb3N0ZXJpb3Igfn4gYmV0YSkpICsgeWxhYigiIikKZGV2Lm9mZigpCmBgYAohW19Fc3RpbWF0ZXMgb2YgcmVncmVzc2lvbiBjb2VmZmljaWVudHMgYnkgYSBwZW5hbGl6ZWQgc2VtaXBhcmFtZXRyaWMgQmF5ZXNpYW4gQ294IG1vZGVsIHdpdGggTGFzc28gcHJpb3IuIFNvbGlkIGRvdHMgaW5kaWNhdGUgdGhlIHBvc3RlcmlvciBtZWFuIG92ZXIgTUNNQyBpdGVyYXRpb25zIChleGNsdWRpbmcgYnVybi1pbiBwZXJpb2QpLCBhbmQgaG9yaXpvbnRhbCBsaW5lcyBzaG93IHRoZSBjb3JyZXNwb25kaW5nIDk1JSBjcmVkaWJpbGl0eSBpbnRlcnZhbHMuX10oZmlnL1RDR0FfYmF5ZXNsYXNzby5wbmcpe3dpZHRoPTUwJX0KCjxicj4KCk5vdGUgdGhhdCAqKnBzYmNHcm91cCoqIGNhbm5vdCBkaXN0aW5ndWlzaCBtYW5kYXRvcnkgKHVucGVuYWxpemVkKSBjb3ZhcmlhdGVzIHdpdGggb21pY3MgZmVhdHVyZXMsIHNlZSBAWnVja25pY2syMDE1IGZvciBhbiBleHRlbmRlZCBCYXllc2lhbiBMYXNzbyBDb3ggbW9kZWwuIApUaGUgZm9sbG93aW5nIGNvZGUgaW1wbGVtZW50cyB0aGUgQmF5ZXNpYW4gTGFzc28gQ294IG1vZGVsIHdpdGggbWFuZGF0b3J5IGNvdmFyaWF0ZXMgdGhyb3VnaCB0aGUgYFJgIHBhY2thZ2UgWyoqcHNiY1NwZWVkVXAqKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1wc2JjU3BlZWRVcCkgW0BaaGFvMjAyM10uCgpgYGB7cn0KIyBCYXllc2lhbiBDb3ggbW9kZWwgd2l0aCBMYXNzbyBwcmlvciBhbmQgbWFuZGF0b3J5IGNvdmFyaWF0ZXMKc2V0LnNlZWQoMTIzKQpzdXJ2T2JqTSA9IGxpc3QodCA9IGNsaW4kdGltZSwgZGkgPSBjbGluJHN0YXR1cywgeCA9IHhbLCBjKDM6NTIsIDE6MildKQpwcmlvclBhcmEgPSBsaXN0KCdldGEwJyA9IDEsICdrYXBwYTAnID0gMSwgJ2MwJyA9IDIsICdyJyA9IDAuNSwgJ2RlbHRhJyA9IDAuMDAwMSkKQmF5ZXNMYXNzb01maXQgPC0gcHNiY1NwZWVkVXA6OnBzYmNTcGVlZFVwKHN1cnZPYmpNLCBwID0gNTAsIHEgPSAyLCBoeXBlcnBhciA9IHByaW9yUGFyYSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuSXRlciA9IDEwMCwgYnVybmluID0gNTAsIHRoaW4gPSAxLCBydyA9IEZBTFNFLCBvdXRGaWxlUGF0aCA9ICJ0bXAiKQpwbG90KEJheWVzTGFzc29NZml0KQpgYGAKYGBgClJ1bm5pbmcgTUNNQyBpdGVyYXRpb25zIC4uLgpbIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyNdIDEwMCUKRE9ORSwgZXhpdGluZyEgCmBgYApgYGB7ciwgZWNobz1GQUxTRX0KcGRmKCJUQ0dBX2JheWVzTGFzc29NLnBkZiIsIHdpZHRoID0gNCwgaGVpZ2h0ID0gNikKcGxvdChCYXllc0xhc3NvTWZpdCkKZGV2Lm9mZigpCmBgYAohW19Fc3RpbWF0ZXMgb2YgcmVncmVzc2lvbiBjb2VmZmljaWVudHMgYnkgYSBwZW5hbGl6ZWQgc2VtaXBhcmFtZXRyaWMgQmF5ZXNpYW4gQ294IG1vZGVsIHdpdGggTGFzc28gcHJpb3IgYW5kIHVucGVuYWxpemVkIGNvdmFyaWF0ZXMuIFNvbGlkIGRvdHMgaW5kaWNhdGUgdGhlIHBvc3RlcmlvciBtZWFuIG92ZXIgTUNNQyBpdGVyYXRpb25zIChleGNsdWRpbmcgYnVybi1pbiBwZXJpb2QpLCBhbmQgaG9yaXpvbnRhbCBsaW5lcyBzaG93IHRoZSBjb3JyZXNwb25kaW5nIDk1JSBjcmVkaWJpbGl0eSBpbnRlcnZhbHMuX10oZmlnL1RDR0FfYmF5ZXNsYXNzb00ucG5nKXt3aWR0aD01MCV9Cgo8YnI+CgpJbiB0aGUgYFJgIHBhY2thZ2UgWyoqcHNiY0dyb3VwKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9cHNiY0dyb3VwKSBbQExlZTIwMjFdLCBmdW5jdGlvbiBgcHNiY0VOKClgIGltcGxlbWVudHMgQmF5ZXNpYW4gQ294IG1vZGVscyB3aXRoIEVsYXN0aWMgTmV0IHByaW9yIGZvciBmZWF0dXJlIHNlbGVjdGlvbiB3aXRoIGdyb3VwaW5nIGVmZmVjdCBvZiBjb3JyZWxhdGVkIGZlYXR1cmVzLgpGdW5jdGlvbiBgcHNiY0ZMKClgIGltcGxlbWVudHMgQmF5ZXNpYW4gQ294IG1vZGVscyB3aXRoIGZ1c2VkIExhc3NvIHByaW9yLgoKYGBge3J9CiMgQmF5ZXNpYW4gQ294IG1vZGVsIHdpdGggRWxhc3RpYyBOZXQgcHJpb3IKc2V0LnNlZWQoMTIzKQojIHNldCBoeXBlcnBhcmFtZXRlcnMKIyBMYXJnZXIgcmF0aW8gcjEvZGVsdGExIGZvcmNlcyB0aGUgcG9zdGVyaW9yIGJldGFzIHRvIGJlIG1vcmUgY29uY2VudHJhdGVkIGF0IDAKIyBMYXJnZXIgcmF0aW8gcjIvZGVsdGEyIGZvcmNlcyBzdHJvbmdlciBncm91cGluZyBlZmZlY3Qgb2YgY292YXJpYXRlcwpwcmlvclBhcmEgPSBsaXN0KCdldGEwJyA9IDEsICdrYXBwYTAnID0gMSwgJ2MwJyA9IDIsICdyMScgPSAwLjEsICdyMicgPSAxLCAKICAgICAgICAgICAgICAgICAgJ2RlbHRhMScgPSAwLjEsICdkZWx0YTInID0gMSwgJ3MnID0gcywgJ0onID0gbGVuZ3RoKHMpKQojIHNldCBNQ01DIHBhcmFtZXRlcnMKbWNtY1BhcmEgPSBsaXN0KCdudW1CZXRhJyA9IHAsICdiZXRhLnByb3AudmFyJyA9IDEpCiMgc2V0IGluaXRpYWwgdmFsdWVzIG9mIGh5cGVycGFyYW1ldGVycwppbml0aWFsID0gbGlzdCgnYmV0YS5pbmknID0gcmVwKDAsIHApLCAnbGFtYmRhMVNxJyA9IDEsICdsYW1iZGEyJyA9IDEsICdzaWdtYVNxJyA9IHJ1bmlmKDEsIDAuMSwgMTApLAogICAgICAgICAgICAgICAgJ3RhdVNxJyA9IHJleHAocCwgcmF0ZSA9IDEgLyAyKSwgJ2gnID0gcmdhbW1hKHByaW9yUGFyYSRKLCAxLCAxKSkKIyBpbiByZWFsIGFwcGxpY2F0aW9uLCAnbnVtLnJlcHMnIHNob3VsZCBiZSBsYXJnZSBlbm91Z2ggKGUuZy4gMjAwMDAsIDQwMDAwKSBhbmQgJ2NoYWluJyB0byBiZSA+IDEKQmF5ZXNFTmZpdCA9IHBzYmNFTihzdXJ2T2JqLCBwcmlvclBhcmEsIGluaXRpYWwsIHJ3ID0gRkFMU0UsIG1jbWNQYXJhLCBudW0ucmVwcyA9IDEwMCwgdGhpbiA9IDEsIGNoYWluID0gMSkKIyBidXJuLWluIHRoZSBmaXJzdCBoYWxmIE1DTUMgaXRlcmF0aW9ucwpFTl9iZXRhX3AgPSBCYXllc0VOZml0JGJldGEucFs1MjoxMDEsIF0KY29sbmFtZXMoRU5fYmV0YV9wKSA9IGNvbG5hbWVzKHgpCnBzYmNTcGVlZFVwOjo6cGxvdC5wc2JjU3BlZWRVcChFTl9iZXRhX3ApCmBgYApgYGB7ciwgZWNobz1GQUxTRX0KcGRmKCJUQ0dBX2JheWVzRU4ucGRmIiwgd2lkdGggPSA0LCBoZWlnaHQgPSA2KQpwc2JjU3BlZWRVcDo6OnBsb3QucHNiY1NwZWVkVXAoRU5fYmV0YV9wKQpkZXYub2ZmKCkKYGBgCiFbX0VzdGltYXRlcyBvZiByZWdyZXNzaW9uIGNvZWZmaWNpZW50cyBieSBhIHBlbmFsaXplZCBzZW1pcGFyYW1ldHJpYyBCYXllc2lhbiBDb3ggbW9kZWwgd2l0aCBFbGFzdGljIE5ldCBwcmlvci4gU29saWQgZG90cyBpbmRpY2F0ZSB0aGUgcG9zdGVyaW9yIG1lYW4gb3ZlciBNQ01DIGl0ZXJhdGlvbnMgKGV4Y2x1ZGluZyBidXJuLWluIHBlcmlvZCksIGFuZCBob3Jpem9udGFsIGxpbmVzIHNob3cgdGhlIGNvcnJlc3BvbmRpbmcgOTUlIGNyZWRpYmlsaXR5IGludGVydmFscy5fXShmaWcvVENHQV9iYXllc0VOLnBuZyl7d2lkdGg9NTAlfQoKPGJyPgoKQSBwZW5hbGl6ZWQgc2VtaXBhcmFtZXRyaWMgQmF5ZXNpYW4gQ294IG1vZGVsIHdpdGggZG91YmxlIGV4cG9uZW50aWFsIHNwaWtlLWFuZC1zbGFiIHByaW9yIGlzIGltcGxlbWVudGVkIGluIHRoZSBgUmAgcGFja2FnZSBbKipCaEdMTSoqXShodHRwczovL2dpdGh1Yi5jb20vbnlpdWFiL0JoR0xNLmdpdCkgW0BZaTIwMTldLiBOb3RlIHRoYXQgKipCaEdMTSoqIHByb3ZpZGVzIGZyZXF1ZW50aXN0IGNvbmZpZGVuY2UgaW50ZXJ2YWxzIG9mIHRoZSBwb3N0ZXJpb3IgbW9kZSBvZiB0aGUgY29lZmZpY2llbnRzLgoKYGBge3J9CiMgcGVuYWxpemVkIHNlbWlwYXJhbWV0cmljIEJheWVzaWFuIENveCBtb2RlbCB3aXRoIChkb3VibGUgZXhwb25lbnRpYWwpIHNwaWtlLWFuZC1zbGFiIHByaW9yCnlfc3VydiA9IFN1cnYoY2xpbiR0aW1lLCBjbGluJHN0YXR1cykKeF9kYXRhZnJhbWUgPSBhcy5kYXRhLmZyYW1lKHgpCnNldC5zZWVkKDEyMykKQmF5ZXNmaXQgPSBCaEdMTTo6YmNveHBoKHlfc3VydiB+IC4sIHhfZGF0YWZyYW1lLCBwcmlvciA9IG1kZSgwLCAwLjAxLCAwLjgpLCBjb250cm9sID0gY294cGguY29udHJvbChpdGVyLm1heCA9IDIwMCkpCkJoR0xNOjpwbG90LmJoKEJheWVzZml0LCBjb2wucHRzID0gYygicmVkIiwgImJsdWUiKSwgbWFpbiA9ICJDb3ggd2l0aCBtaXh0dXJlIGRvdWJsZSBleHBvbmVudGlhbFxuIikgCmBgYApgYGB7ciwgZWNobz1GQUxTRX0KcGRmKCJUQ0dBX2JheWVzU3Bpa2VTbGFiLnBkZiIsIHdpZHRoID0gNiwgaGVpZ2h0ID0gNSkKcGFyKG1hciA9IGMoMywgOCwgNCwgNCkpCkJoR0xNOjpwbG90LmJoKEJheWVzZml0LCBjb2wucHRzID0gYygicmVkIiwgImJsdWUiKSwgbWFpbiA9ICJDb3ggd2l0aCBtaXh0dXJlIGRvdWJsZSBleHBvbmVudGlhbFxuIikgCmRldi5vZmYoKQpgYGAKIVtfQ29lZmZpY2llbnQgZXN0aW1hdGVzIG9mIGEgcGVuYWxpemVkIHNlbWlwYXJhbWV0cmljIEJheWVzaWFuIENveCBtb2RlbCB3aXRoIChkb3VibGUgZXhwb25lbnRpYWwpIHNwaWtlLWFuZC1zbGFiIHByaW9yLiBTb2xpZCBkb3RzIGRlbm90ZSB0aGUgcG9zdGVyaW9yIG1vZGUgb2YgdGhlIGNvZWZmaWNpZW50cyBhbmQgbGluZXMgZGVub3RlIHRoZSA5NSUgY29uZmlkZW5jZSBpbnRlcnZhbHMuIFJlZCBjb2xvcmVkIHRleHQgb24gdGhlIHJpZ2h0IHNpZGUgbWFyayB0aGUgc2lnbmlmaWNhbnQgZmVhdHVyZXMgd2l0aCAkcCA8IDAuMDUkLl9dKGZpZy9UQ0dBX2JheWVzU3Bpa2VTbGFiLnBuZyl7d2lkdGg9NjAlfQoKPGJyPgoKIyBTdXJ2aXZhbCBtb2RlbCB2YWxpZGF0aW9uCgpUaGUgaWRlYWwgZXZhbHVhdGlvbiBvZiBhIHByb2dub3N0aWMgbW9kZWwgaXMgYmFzZWQgb24gY29tcGxldGVseSBpbmRlcGVuZGVudCB2YWxpZGF0aW9uIGRhdGEsIHNpbmNlIGhpZ2gtZGltZW5zaW9uYWwgc3Vydml2YWwgbW9kZWxzIGJ1aWx0IG9uIHRoZSB0cmFpbmluZyBkYXRhIGNhbiBiZSBvdmVyZml0dGVkLiAKSWYgdGhlcmUgYXJlIG5vIGluZGVwZW5kZW50IHZhbGlkYXRpb24gZGF0YSwgaXQgaXMgcmVjb21tZW5kZWQgdG8gdXNlIHJlc2FtcGxpbmctYmFzZWQgbWV0aG9kcyBmb3IgZXN0aW1hdGluZyB0aGUgKip1bmNlcnRhaW50eSoqIG9mIHRoZSBtb2RlbOKAmXMgcHJlZGljdGlvbiBwZXJmb3JtYW5jZS4gClRoaXMgY2FuIGJlIGRvbmUgZm9yIGV4YW1wbGUgYnkgcmVwZWF0ZWRseSBzcGxpdHRpbmcgdGhlIGRhdGFzZXQgdG8gdHJhaW5pbmcvdmFsaWRhdGlvbiBzZXRzIGFuZCBldmFsdWF0aW5nIGEgbW9kZWzigJlzIHBlcmZvcm1hbmNlIG9uIHRoZSBkaWZmZXJlbnQgdmFsaWRhdGlvbiBzZXRzIHVzaW5nIHZhcmlvdXMgZXZhbHVhdGlvbiBtZXRyaWNzLiAKCjo6OnsuZ3JlZW4tYm94fQpUbyB2YWxpZGF0ZSBhIHByZWRpY3Rpb24gbW9kZWwgc3lzdGVtYXRpY2FsbHksIHRoZSBwcmVkaWN0aXZlIHBlcmZvcm1hbmNlIG9mIHRoZSBtb2RlbCBpcyBjb21tb25seSBhZGRyZXNzZWQgYnkKCiAgLSAqKkRpc2NyaW1pbmF0aW9uKio6IHRoZSBhYmlsaXR5IG9mIHRoZSBtb2RlbCB0byBkaXN0aW5ndWlzaCBiZXR3ZWVuIGxvdyBhbmQgaGlnaCByaXNrIHBhdGllbnRzCiAgLSAqKkNhbGlicmF0aW9uKio6IHRoZSBhZ3JlZW1lbnQgYmV0d2VlbiB0aGUgb2JzZXJ2ZWQgYW5kIHByZWRpY3RlZCBzdXJ2aXZhbCBwcm9iYWJpbGl0aWVzCiAgLSAqKk92ZXJhbGwgcGVyZm9ybWFuY2UqKjogdGhlIGRpc3RhbmNlIGJldHdlZW4gdGhlIG9ic2VydmVkIGFuZCBwcmVkaWN0ZWQgc3Vydml2YWwgcHJvYmFiaWxpdGllcwo6OjoKClRoZSBwZXJmb3JtYW5jZSBtZXRyaWNzIGNhbiBiZSAqdGltZS1kZXBlbmRlbnQqIG9yICp0aW1lLWluZGVwZW5kZW50Kiwgd2l0aCB0aGUgdGltZS1kZXBlbmRlbnQgbWV0cmljcyBiZWluZyBtb3JlIGluZm9ybWF0aXZlIGluIGdlbmVyYWwgY29tcGFyZWQgdG8gaW50ZWdyYXRlZCBtZWFzdXJlcyAoaS5lLiBldmFsdWF0ZWQgYWNyb3NzIG1hbnkgdGltZSBwb2ludHMpLgpGb3Igc3Vydml2YWwgZGF0YSwgd2UgY2FuIGFzc2VzcyB0aGUgKipkaXNjcmltaW5hdG9yeSBwb3dlcioqIG9mIGEgbW9kZWwgKGkuZS4gaG93IHdlbGwgZG9lcyBpdCByYW5rcyBwYXRpZW50cykgb3IgaG93IHdlbGwgYSBtb2RlbCBpcyAqKmNhbGlicmF0ZWQqKiAoaS5lLiBob3cgY2xvc2VseSB0aGUgcHJlZGljdGVkIHN1cnZpdmFsIHByb2JhYmlsaXRpZXMgYWdyZWUgbnVtZXJpY2FsbHkgd2l0aCB0aGUgYWN0dWFsIHN1cnZpdmFsIG91dGNvbWVzKS4KRm9yIGV4YW1wbGUsIG1lYXN1cmVzIHN1Y2ggYXMgdGhlIHJlY2VpdmVyIG9wZXJhdGluZyBjaGFyYWN0ZXJpc3RpYyAoUk9DKSBjdXJ2ZSwgdGhlIChpbnRlZ3JhdGVkKSBhcmVhIHVuZGVyIHRpbWUtc3BlY2lmaWMgUk9DIGN1cnZlcyAoKipBVUMqKiwgQEhlYWdlcnR5MjAwNSkgYW5kIHRoZSBjb25jb3JkYW5jZSBpbmRleCAoKipDLWluZGV4KiosIEBIYXJyZWxsMTk4MikgYXJlIG1lYXN1cmVzIG9mIGRpc2NyaW1pbmF0aW9uLCB3aGlsZSB0aGUgcmlnaHQtY2Vuc29yZWQgbG9nYXJpdGhtaWMgbG9zcyAoKipSQ0xMKiosIEBBdmF0aTIwMjApIGFuZCB0aGUgd2VsbC1rbm93biAqKkJyaWVyIHNjb3JlKiogW0BHcmFmMTk5OV0gYXJlIHVzZWQgdG8gZXZhbHVhdGUgYm90aCBkaXNjcmltaW5hdGlvbiBhbmQgY2FsaWJyYXRpb24gcGVyZm9ybWFuY2UuCgojIyBNb2RlbCBldmFsdWF0aW9uIChjbGFzc2ljKSB7LX0KCjo6OnsuZ3JlZW4tYm94fQonQ2xhc3NpYycgaGVyZSByZWZlcnMgdG8gdGhlIHVzZSBvZiBtYW51YWwgYFJgIGNvZGUgaW4gY29tYmluYXRpb24gd2l0aCBtYW55IHNlcGFyYXRlIGBSYCBwYWNrYWdlcyB3aGljaCBoYXZlIGJlZW4gcm91dGluZWx5IHVzZWQgaW4gYWNhZGVtaWEgdGhlIGxhdGVzdCAxMCsgeWVhcnMgZm9yIGV2YWx1YXRpbmcgc3Vydml2YWwgbW9kZWxzLgo6OjoKClRvIGV2YWx1YXRlIHRoZSBwZXJmb3JtYW5jZSBvZiBhIHN0YXRpc3RpY2FsIG1vZGVsLCB3ZSBmaXJzdCBzcGxpdCB0aGUgZGF0YSBpbnRvIHRyYWluaW5nIGFuZCB2YWxpZGF0aW9uIGRhdGEgc2V0cy4KRm9yIGV4YW1wbGUsIHdlIGNhbiByYW5kb21seSBzcGxpdCB0aGUgMTA0NyBCUkNBIHBhdGllbnRzIGZyb20gVENHQSBpbnRvICQ4MFwlJCBhcyB0cmFpbmluZyBzZXQgYW5kICQyMFwlJCBhcyB2YWxpZGF0aW9uIHNldC4KCmBgYHtyfQpzZXQuc2VlZCgxMjMpCm4gPSBucm93KHgpCmlkeCA9IHNhbXBsZSgxOm4sIG4gKiAwLjgsIHJlcGxhY2UgPSBGQUxTRSkKeF90cmFpbiA9IHhbaWR4LCBdCnlfdHJhaW4gPSB5W2lkeCwgXQp4X3ZhbGlkYXRlID0geFstaWR4LCBdCnlfdmFsaWRhdGUgPSB5Wy1pZHgsIF0KYGBgCgo6Ojp7LmluZm8tYm94IC5ub3RlfQpUaGUgJDIwXCUkIHNwbGl0IG9mIGEgZGF0YXNldCBpcyBvZnRlbiBub3QgY29uc2lkZXJlZCBhbiAqKmluZGVwZW5kZW50KiogZGF0YXNldCBhbmQgKipyZXNhbXBsaW5nLWJhc2VkIG1ldGhvZHMqKiBzaG91bGQgYmUgdXNlZCBpbiBzdWNoIGNhc2VzIHRvIHByb3ZpZGUgYW4gdW5iaWFzZWQgZXN0aW1hdGUgb2YgdGhlIHByZWRpY3RpdmUgYWNjdXJhY3kgb2YgYSBwcm9nbm9zdGljIG1vZGVsLgo6OjoKCiMjIyBEaXNjcmltaW5hdGlvbiBtZXRyaWNzIHstfQoKPGZvbnQgc2l6ZT0iNCI+ICoqR29vZG5lc3Mtb2YtZml0KiogPC9mb250PiAKClRoZSBzaW1wbGVzdCB3YXkgdG8gZGVtb25zdHJhdGUgdGhlIHByb2dub3N0aWMgcG93ZXIgb2YgYSBzdXJ2aXZhbCBtb2RlbCBpcyB0byBkaWNob3RvbWl6ZSB0aGUgcHJvZ25vc3RpYyBzY29yZXMgKGkuZS4sIGxpbmVhciBwcmVkaWN0b3IgJGxwJCBpbiB0aGUgQ294IG1vZGVsKSBieSBtZWRpYW4gdmFsdWUsIGFuZCB0aGVuIHRvIHVzZSBhIGxvZy1yYW5rIHRlc3QgdG8gY29tcGFyZSB0aGUgc3Vydml2YWwgY3VydmVzIG9mIHRoZSBwYXRpZW50cyBpbiB0aGUgdHdvIGdyb3Vwcy4KV2UgdXNlIHRoZSBidWlsdCBtb2RlbCB0byBwcmVkaWN0IHRoZSBwcm9nbm9zdGljIHNjb3JlcyBiYXNlZCBvbiB0aGUgJDIwXCUkIHZhbGlkYXRpb24gZGF0YS4KVGhlIGZvbGxvd2luZyBjb2RlIHNob3dzIHRoZSAqKmdvb2RuZXNzLW9mLWZpdCoqIG9mIGEgTGFzc28gQ294IG1vZGVsIHdpdGggdGhlIEJSQ0EgcGF0aWVudHMgc3Vydml2YWwgYW5kIFBBTTUwIG1STkEtU2VxIGRhdGEgZnJvbSBUQ0dBLgoKYGBge3J9CiMgdHJhaW4gYSBMYXNzbyBDb3ggbW9kZWwsIHNpbWlsYXJseSBmb3Igb3RoZXIgQ294LXR5cGUgbW9kZWxzCnNldC5zZWVkKDEyMykKY3ZmaXQgPSBjdi5nbG1uZXQoeF90cmFpbiwgeV90cmFpbiwgZmFtaWx5ID0gImNveCIsIG5mb2xkcyA9IDUsIHBlbmFsdHkuZmFjdG9yID0gcGYpCnByZWRfbHAgPSBwcmVkaWN0KGN2Zml0LCBuZXd4ID0geF92YWxpZGF0ZSwgcyA9IGN2Zml0JGxhbWJkYS5taW4sIHR5cGUgPSAibGluayIpCgojIGRpY2hvdG9taXplIGJ5IHByb2dub3N0aWMgc2NvcmVzIChsaW5lYXIgcHJlZGljdG9yKSAgYnkgbWVkaWFuIHRvIGRpdmlkZSB0aGUgdmFsaWRhdGlvbiBwYXRpZW50cyBpbnRvIHR3byBncm91cHMKZ3JvdXBfZGljaG90b21pemUgPSBhcy5udW1lcmljKHByZWRfbHAgPiBtZWRpYW4ocHJlZF9scCkpCgojIGRyYXcgdHdvIHN1cnZpdmFsIGN1cnZlcyBiYXNlZCBvbiBLTSBlc3RpbWF0aW9uIGFuZCBjb21wYXJlIHRoZW0gYnkgYSBsb2ctcmFuayB0ZXN0CmRhdF90bXAgPSBkYXRhLmZyYW1lKHRpbWUgPSB5X3ZhbGlkYXRlWywgMV0sIHN0YXR1cyA9IHlfdmFsaWRhdGVbLCAyXSwgZ3JvdXAgPSBncm91cF9kaWNob3RvbWl6ZSkKc2ZpdCA9IHN1cnZmaXQoU3Vydih0aW1lLCBzdGF0dXMpIH4gZ3JvdXAsIGRhdGEgPSBkYXRfdG1wKQoKZ2dzdXJ2ID0gZ2dzdXJ2cGxvdChzZml0LCBjb25mLmludCA9IFRSVUUsIHJpc2sudGFibGUgPSBUUlVFLCAKICAgICAgICAgICB4bGFiID0gIlRpbWUgc2luY2UgZGlhZ25vc2lzICh5ZWFyKSIsIGxlZ2VuZCA9IGMoLjIsIC4zKSwKICAgICAgICAgICBsZWdlbmQubGFicyA9IGMoIkxvdyByaXNrIiwgIkhpZ2ggcmlzayIpLCBsZWdlbmQudGl0bGUgPSAiRGljaG90b21pemVkIGdyb3VwcyIsICAKICAgICAgICAgICByaXNrLnRhYmxlLnkudGV4dC5jb2wgPSBUUlVFLCByaXNrLnRhYmxlLnkudGV4dCA9IEZBTFNFKQpnZ3N1cnYkcGxvdCA9IGdnc3VydiRwbG90ICsgCiAgYW5ub3RhdGUoInRleHQiLCB4ID0gMi42LCB5ID0gLjAzLCBsYWJlbCA9IHBhc3RlMCgiTG9nLXJhbmsgdGVzdDpcbiIsIHN1cnZfcHZhbHVlKHNmaXQpJHB2YWwudHh0KSkKZ2dzdXJ2JHRhYmxlID0gZ2dzdXJ2JHRhYmxlICsgbGFicyh5ID0gIkRpY2hvdG9taXplZFxuIGdyb3VwcyIpCmdnc3VydgpgYGAKYGBge3IsIGVjaG89RkFMU0V9CnBkZigiVENHQV9zdXJ2X2ttX2xhc3NvLnBkZiIsIHdpZHRoID0gNSwgaGVpZ2h0ID0gNSkKZ2dzdXJ2CmRldi5vZmYoKQpgYGAKIVtfS2FwbGFuLU1laWVyIGN1cnZlcyBvZiB0aGUgQlJDQSBwYXRpZW50cyBkYXRhIGRpY2hvdG9taXplZCBieSB0aGUgbWVkaWFuIG9mIHByb2dub3N0aWMgc2NvcmVzIChjYWxjdWxhdGVkIGZyb20gdGhlIExhc3NvIENveCBtb2RlbCB3aXRoIHBhdGllbnRzJyBzdXJ2aXZhbCBhbmQgbVJOQS1TZXEgZGF0YSkgaW50byB0d28gZ3JvdXBzLiBUaGUgbG9nLXJhbmsgdGVzdCBpcyB0byBjb21wYXJlIHRoZSB0d28gc3Vydml2YWwgZGlzdHJpYnV0aW9ucyBjb3JyZXNwb25kaW5nIHRvIHRoZSB0d28gZ3JvdXBzIG9mIHBhdGllbnRzLl9dKGZpZy9UQ0dBX3N1cnZfa21fbGFzc28ucG5nKXt3aWR0aD01MCV9Cgo8YnI+CgpUaGUgcHJvZ25vc3RpYyBzY29yZXMgY2FuIGFsc28gYmUgZGl2aWRlZCBpbnRvIHRocmVlIG9yIG1vcmUgZ3JvdXBzIGJhc2VkIG9uIHF1YW50aWxlcyBhbmQgdGhlIGxvZy1yYW5rIHRlc3QgY2FuIGJlIHVzZWQgdG8gY29tcGFyZSB0aGUgZGlmZmVyZW5jZSBvZiBtdWx0aXBsZSBzdXJ2aXZhbCBjdXJ2ZXMuCgpgYGB7cn0KZ3JvdXAgPSBwcmVkX2xwCmdyb3VwW3ByZWRfbHAgPj0gcXVhbnRpbGUocHJlZF9scCwgMiAvIDMpXSA9IDMKZ3JvdXBbcHJlZF9scCA+PSBxdWFudGlsZShwcmVkX2xwLCAxIC8gMykgJiBwcmVkX2xwIDwgcXVhbnRpbGUocHJlZF9scCwgMiAvIDMpXSA9IDIKZ3JvdXBbcHJlZF9scCA8IHF1YW50aWxlKHByZWRfbHAsIDEgLyAzKV0gPSAxCgojIGRyYXcgdHdvIHN1cnZpdmFsIGN1cnZlcyBiYXNlZCBvbiBLTSBlc3RpbWF0aW9uIGFuZCBjb21wYXJlIHRoZW0gYnkgYSBsb2ctcmFuayB0ZXN0CmRhdF90bXAgPSBkYXRhLmZyYW1lKHRpbWUgPSB5X3ZhbGlkYXRlWywgMV0sIHN0YXR1cyA9IHlfdmFsaWRhdGVbLCAyXSwgZ3JvdXAgPSBncm91cCkKc2ZpdCA9IHN1cnZmaXQoU3Vydih0aW1lLCBzdGF0dXMpIH4gZ3JvdXAsIGRhdGEgPSBkYXRfdG1wKQoKZ2dzdXJ2ID0gZ2dzdXJ2cGxvdChzZml0LCBjb25mLmludCA9IFRSVUUsIHJpc2sudGFibGUgPSBUUlVFLCAKICAgICAgICAgICB4bGFiID0gIlRpbWUgc2luY2UgZGlhZ25vc2lzICh5ZWFyKSIsIGxlZ2VuZCA9IGMoLjIsIC4zKSwKICAgICAgICAgICBsZWdlbmQubGFicyA9IGMoIkxvdyByaXNrIiwgIk1pZGRsZSByaXNrIiwgIkhpZ2ggcmlzayIpLCBsZWdlbmQudGl0bGUgPSAiR3JvdXBzIiwgIAogICAgICAgICAgIHJpc2sudGFibGUueS50ZXh0LmNvbCA9IFRSVUUsIHJpc2sudGFibGUueS50ZXh0ID0gRkFMU0UpCmdnc3VydiRwbG90ID0gZ2dzdXJ2JHBsb3QgKyAKICBhbm5vdGF0ZSgidGV4dCIsIHggPSAzLjUsIHkgPSAuMDUsIGxhYmVsID0gcGFzdGUwKCJMb2ctcmFuayB0ZXN0OlxuIiwgc3Vydl9wdmFsdWUoc2ZpdCkkcHZhbC50eHQpKQpnZ3N1cnYKYGBgCmBgYHtyLCBlY2hvPUZBTFNFfQpwZGYoIlRDR0Ffc3Vydl9rbV9sYXNzbzIucGRmIiwgd2lkdGggPSA1LCBoZWlnaHQgPSA1KQpnZ3N1cnYKZGV2Lm9mZigpCmBgYAohW19LYXBsYW4tTWVpZXIgY3VydmVzIG9mIHRoZSBCUkNBIHBhdGllbnRzIGRhdGEgZGl2aWRlZCBieSAzMyUgYW5kIDY3JSBxdWFudGlsZXMgb2YgcHJvZ25vc3RpYyBzY29yZXMgKGNhbGN1bGF0ZWQgZnJvbSB0aGUgTGFzc28gQ294IG1vZGVsIHdpdGggcGF0aWVudHMnIHN1cnZpdmFsIGFuZCBtUk5BLVNlcSBkYXRhKSBpbnRvIHRocmVlIGdyb3Vwcy4gVGhlIGxvZy1yYW5rIHRlc3QgaXMgdG8gY29tcGFyZSB0aGUgdHdvIHN1cnZpdmFsIGRpc3RyaWJ1dGlvbnMgY29ycmVzcG9uZGluZyB0byB0aGUgdGhyZWUgZ3JvdXBzIG9mIHBhdGllbnRzLl9dKGZpZy9UQ0dBX3N1cnZfa21fbGFzc28yLnBuZyl7d2lkdGg9NTAlfQoKPGJyPgoKPGZvbnQgc2l6ZT0iNCI+ICoqUk9DIGN1cnZlKiogPC9mb250PiAKClRoZSBgUmAgcGFja2FnZSBbKipyaXNrc2V0Uk9DKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9cmlza3NldFJPQykgW0BIZWFnZXJ0eTIwMDVdIGNhbiBlc3RpbWF0ZSBhIFJPQyBjdXJ2ZSBhdCBhbiBldmFsdWF0aW9uIHRpbWUgcG9pbnQuIApUaGUgZm9sbG93aW5nIGNvZGUgZHJhd3MgYSBST0MgY3VydmUgYXQgNS15ZWFycyBzdXJ2aXZhbCBldmFsdWF0aW9uIHRpbWUgcG9pbnQgZm9yIHRoZSAyMCUgVENHQSB2YWxpZGF0aW9uIGRhdGEgYW5kIGJhc2VkIG9uIGEgTGFzc28gQ294IG1vZGVsIGxlYXJuZWQgZnJvbSB0aGUgODAlIHRyYWluaW5nIGRhdGEuCgpgYGB7cn0KUk9DID0gcmlza3NldFJPQyhTdGltZSA9IHlfdmFsaWRhdGVbLCAxXSwgc3RhdHVzID0geV92YWxpZGF0ZVssIDJdLAogICAgICAgICAgICAgICAgIG1hcmtlciA9IHByZWRfbHAsIHByZWRpY3QudGltZSA9IDUsIG1ldGhvZCA9ICJDb3giLCAKICAgICAgICAgICAgICAgICBtYWluID0gIlJPQyBDdXJ2ZSIsIGNvbCA9ICJzZWFncmVlbjMiLCB0eXBlID0gInMiLCAKICAgICAgICAgICAgICAgICBsd2QgPSAyLCB4bGFiID0gIjEgLSBTcGVjaWZpY2l0eSIsIHlsYWIgPSAiU2Vuc2l0aXZpdHkiKSAKdGV4dCgwLjcsIDAuMiwgcGFzdGUoIkFVQyA9Iiwgcm91bmQoUk9DJEFVQywgMykpKQpgYGAKYGBge3IsIGVjaG89RkFMU0V9CnBkZigiVENHQV9zdXJ2X3JvYy5wZGYiLCBoZWlnaHQgPSAzLjksIHdpZHRoID0gMy40KQpST0MgPSByaXNrc2V0Uk9DKFN0aW1lID0geV92YWxpZGF0ZVssIDFdLCBzdGF0dXMgPSB5X3ZhbGlkYXRlWywgMl0sCiAgICAgICAgICAgICAgICAgbWFya2VyID0gcHJlZF9scCwgcHJlZGljdC50aW1lID0gNSwgbWV0aG9kID0gIkNveCIsIAogICAgICAgICAgICAgICAgIG1haW4gPSAiUk9DIEN1cnZlIiwgY29sID0gInNlYWdyZWVuMyIsIHR5cGUgPSAicyIsIAogICAgICAgICAgICAgICAgIGx3ZCA9IDIsIHhsYWIgPSAiMSAtIFNwZWNpZmljaXR5IiwgeWxhYiA9ICJTZW5zaXRpdml0eSIpIAp0ZXh0KDAuNywgMC4yLCBwYXN0ZSgiQVVDID0iLCByb3VuZChST0MkQVVDLCAzKSkpCmRldi5vZmYoKQpgYGAKIVtfUk9DIGN1cnZlIGVzdGltYXRlZCBhdCA1LXllYXJzIHN1cnZpdmFsIGV2YWx1YXRpb24gdGltZSBwb2ludCBmb3IgdGhlIDIwJSBUQ0dBIHZhbGlkYXRpb24gZGF0YSBhbmQgYmFzZWQgb24gYSBMYXNzbyBDb3ggbW9kZWwgbGVhcm5lZCBmcm9tIHRoZSA4MCUgdHJhaW5pbmcgZGF0YS4gVGhlIEFVQyB2YWx1ZSBpcyB0aGUgYXJlYSB1bmRlciB0aGUgUk9DIGN1cnZlLiBUaGUgZGlhZ29uYWwgbGluZSByZXByZXNlbnRzIHRoZSBwZXJmb3JtYW5jZSBvZiBhIHJhbmRvbSBwcmVkaWN0aW9uIG9mIHRoZSBvdXRjb21lIGV2ZW50IHdpdGggQVVDID0gMC41Ll9dKGZpZy9UQ0dBX3N1cnZfcm9jLnBuZyl7d2lkdGg9NDAlfQoKPGJyPgoKPGZvbnQgc2l6ZT0iNCI+ICoqVGltZS1kZXBlbmRlbnQgQVVDKiogPC9mb250PiAKCkJvdGggdGltZS1kZXBlbmRlbnQgYW5kIGludGVncmF0ZWQgQVVDcyBjYW4gYmUgZXN0aW1hdGVkIGJ5IHRoZSBgUmAgcGFja2FnZSBbKipyaXNrc2V0Uk9DKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9cmlza3NldFJPQykuIApXZSBkZW1vbnN0cmF0ZSB0aGUgY2FsY3VsYXRpb24gYmFzZWQgb24gYm90aCB0cmFpbmluZyBhbmQgdmFsaWRhdGlvbiBkYXRhLgoKOjo6ey5pbmZvLWJveCAubm90ZX0KQSBDb3ggcHJvcG9ydGlvbmFsIGhhemFyZHMgbW9kZWwgKGFuZCBMYXNzbyBDb3ggYXMgYSBjb25zZXF1ZW5jZSkgaXMgYSBzZW1pLXBhcmFtZXRyaWMgbW9kZWwsIHdoaWNoIG1lYW5zIHRoYXQgaXQgZG9lcyBub3QgcHJvZHVjZSBzdXJ2aXZhbCBkaXN0cmlidXRpb24gcHJlZGljdGlvbnMgYnkgZGVmYXVsdC4KSG93ZXZlciwgdXNpbmcgdGhlIGZ1bmN0aW9uIGByaXNrc2V0Uk9DOjpDb3hXZWlnaHRzKClgIHlvdSBjYW4gdHJhbnNmb3JtIHRoZSBgY3YuZ2xtbmV0YCdzIG91dHB1dCBsaW5lYXIgcHJlZGljdG9ycyAoYGxwYCkgdG8gc3Vydml2YWwgZGlzdHJpYnV0aW9uIHByZWRpY3Rpb25zLgpUaGlzIHRyYW5zZm9ybWF0aW9uIGludGVybmFsbHkgdXNlcyB0aGUgQnJlc2xvdyBlc3RpbWF0b3IgZm9yIHRoZSBjdW11bGF0aXZlIGJhc2VsaW5lIGhhemFyZC4KOjo6CgpgYGB7cn0KIyB1bmlxdWUgZXZlbnQgdGltZXMgZm9yIHBhdGllbnRzIGluIHRoZSB0cmFpbmluZyBhbmQgdmFsaWRhdGlvbiBkYXRhIHNldHMKdXRpbWVzX3RyYWluID0gc29ydCh1bmlxdWUoeV90cmFpblt5X3RyYWluWywgMl0gPT0gMSwgMV0pKQp1dGltZXNfdmFsaWRhdGUgPSBzb3J0KHVuaXF1ZSh5X3ZhbGlkYXRlW3lfdmFsaWRhdGVbLCAyXSA9PSAxLCAxXSkpCgojIG1hcmtlcnMgZnJvbSB0aGUgZXN0aW1hdGVkIGxpbmVhciBwcmVkaWN0b3JzIG9mIGEgTGFzc28gQ294IG1vZGVsCnByZWRfbHBfdHJhaW4gPSBwcmVkaWN0KGN2Zml0LCBuZXd4ID0geF90cmFpbiwgcyA9IGN2Zml0JGxhbWJkYS5taW4sIHR5cGUgPSAibGluayIpCnByZWRfbHBfdmFsaWRhdGUgPSBwcmVkaWN0KGN2Zml0LCBuZXd4ID0geF92YWxpZGF0ZSwgcyA9IGN2Zml0JGxhbWJkYS5taW4sIHR5cGUgPSAibGluayIpCgojIyBjb21wdXRlIHRpbWUtZGVwZW5kZW50IEFVQwpBVUNfdHJhaW4gPSByZXAoTkEsIGxlbmd0aCh1dGltZXNfdHJhaW4pKQpBVUNfdmFsaWRhdGUgPSByZXAoTkEsIGxlbmd0aCh1dGltZXNfdmFsaWRhdGUpKQpmb3IgKGogaW4gMTpsZW5ndGgodXRpbWVzX3RyYWluKSkgewogIG91dCA9IHJpc2tzZXRST0M6OkNveFdlaWdodHMobWFya2VyID0gcHJlZF9scF90cmFpbiwgU3RpbWUgPSB5X3RyYWluWywgMV0sIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc3RhdHVzID0geV90cmFpblssIDJdLCBwcmVkaWN0LnRpbWUgPSB1dGltZXNfdHJhaW5bal0pCiAgQVVDX3RyYWluW2pdID0gb3V0JEFVQwp9CmZvciAoaiBpbiAxOmxlbmd0aCh1dGltZXNfdmFsaWRhdGUpKSB7CiAgb3V0ID0gcmlza3NldFJPQzo6Q294V2VpZ2h0cyhtYXJrZXIgPSBwcmVkX2xwX3ZhbGlkYXRlLCBTdGltZSA9IHlfdmFsaWRhdGVbLCAxXSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzdGF0dXMgPSB5X3ZhbGlkYXRlWywgMl0sIHByZWRpY3QudGltZSA9IHV0aW1lc192YWxpZGF0ZVtqXSkKICBBVUNfdmFsaWRhdGVbal0gPSBvdXQkQVVDCn0KCiMgZHJhdyB0aGUgdGltZS1kZXBlbmRlbnQgQVVDIGZyb20gdGhlIHRyYWluaW5nIGFuZCB2YWxpZGF0aW9uIGRhdGEgc2V0cwpkYXRfQVVDID0gZGF0YS5mcmFtZSh0QVVDID0gYyhBVUNfdHJhaW4sIEFVQ192YWxpZGF0ZSksIAogICAgICAgICAgICAgICAgICAgICAgdGltZXMgPSBjKHV0aW1lc190cmFpbiwgdXRpbWVzX3ZhbGlkYXRlKSwKICAgICAgICAgICAgICAgICAgICAgIGdyb3VwID0gYyhyZXAoIkFVQ190cmFpbiIsIGxlbmd0aChBVUNfdHJhaW4pKSwgcmVwKCJBVUNfdmFsaWRhdGUiLCBsZW5ndGgoQVVDX3ZhbGlkYXRlKSkpKQpnZ3Bsb3QoZGF0X0FVQywgYWVzKHRpbWVzLCB0QVVDLCBncm91cCA9IGdyb3VwLCBjb2xvciA9IGdyb3VwKSkgKyB4bGFiKCJFdmFsdWF0aW9uIHRpbWUgcG9pbnRzICh5ZWFyKSIpICsgeWxhYigiQVVDIikgKyB5bGltKDAuNSwgMSkgKwogIGdlb21fc3RlcChkaXJlY3Rpb24gPSAidmgiKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9IGMoMC43LCAwLjgpLCBsZWdlbmQudGl0bGUgPSBlbGVtZW50X2JsYW5rKCkpCmBgYApgYGB7ciwgZWNobz1GQUxTRX0KcGRmKCJUQ0dBX3N1cnZfYXVjX2xhc3NvLnBkZiIsIGhlaWdodCA9IDMsIHdpZHRoID0gMykKZ2dwbG90KGRhdF9BVUMsIGFlcyh0aW1lcywgdEFVQywgZ3JvdXAgPSBncm91cCwgY29sb3IgPSBncm91cCkpICsgeGxhYigiRXZhbHVhdGlvbiB0aW1lIHBvaW50cyAoeWVhcikiKSArIHlsYWIoIkFVQyIpICsgeWxpbSgwLjUsIDEpICsKICBnZW9tX3N0ZXAoZGlyZWN0aW9uID0gInZoIikgKyB0aGVtZShsZWdlbmQucG9zaXRpb24gPSBjKDAuNywgMC44KSwgbGVnZW5kLnRpdGxlID0gZWxlbWVudF9ibGFuaygpKQpkZXYub2ZmKCkKYGBgCiFbX1RpbWUtZGVwZW5kZW50IEFVQyBiYXNlZCBvbiBhIExhc3NvIENveCBtb2RlbCBhcHBsaWVkIHRvIHRoZSBCUkNBIHBhdGllbnRzIGRhdGEgZnJvbSBUQ0dBLiBUaGUgcmVkIGxpbmUgc2hvd3MgdGhlIFRpbWUtZGVwZW5kZW50IEFVQyBjYWxjdWxhdGVkIGZyb20gdGhlIDgwJSB0cmFpbmluZyBkYXRhLCBhbmQgdGhlIGdyZWVuIGxpbmUgc2hvd3MgdGhlIFRpbWUtZGVwZW5kZW50IEFVQyBjYWxjdWxhdGVkIGZyb20gdGhlIDIwJSB2YWxpZGF0aW9uIGRhdGEuX10oZmlnL1RDR0Ffc3Vydl9hdWNfbGFzc28ucG5nKXt3aWR0aD00MCV9Cgo8YnI+Cgo8Zm9udCBzaXplPSI0Ij4gKipJbnRlZ3JhdGVkIEFVQyoqIDwvZm9udD4gCgpUaGUgYFJgIHBhY2thZ2UgWyoqcmlza3NldFJPQyoqXShodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPXJpc2tzZXRST0MpIFtASGVhZ2VydHkyMDA1XSBwcm92aWRlcyBmdW5jdGlvbiBgSW50ZWdyYXRlQVVDKClgIHRvIGVzdGltYXRlIGludGVncmF0ZWQgQVVDLgoKYGBge3J9CiMgQmVmb3JlIGNvbXB1dGluZyBpbnRlZ3JhdGVkIEFVQywgZmlyc3QgZXN0aW1hdGUgc3Vydml2YWwgcHJvYmFiaWxpdGllcyBhdCB1bmlxdWUgc3Vydml2YWwgdGltZXMKc3Vydl9wcm9iX3RyYWluID0gdW5pcXVlKHN1cnZmaXQoU3Vydih5X3RyYWluWywgMV0sIHlfdHJhaW5bLCAyXSkgfiAxKSRzdXJ2KQpzdXJ2X3Byb2JfdmFsaWRhdGUgPSB1bmlxdWUoc3VydmZpdChTdXJ2KHlfdmFsaWRhdGVbLCAxXSwgeV92YWxpZGF0ZVssIDJdKSB+IDEpJHN1cnYpCgojIyBpbnRlZ3JhdGVkIEFVQyAoZS5nLiBvdmVyIHRtYXg9MTAgeWVhcnMpIHRvIGdldCBjb25jb3JkYW5jZSBtZWFzdXJlIGJhc2VkIG9uIHRyYWluaW5nIGRhdGEKKGlBVUNfdHJhaW4gPSByaXNrc2V0Uk9DOjpJbnRlZ3JhdGVBVUMoQVVDX3RyYWluLCB1dGltZXNfdHJhaW4sIHN1cnZfcHJvYl90cmFpbiwgdG1heCA9IDEwKSkKYGBgCmBgYApbMV0gMC42Mjc5NjQ2CmBgYApgYGB7cn0KIyMgaW50ZWdyYXRlZCBBVUMgKGUuZy4gb3ZlciB0bWF4PTEwIHllYXJzKSB0byBnZXQgY29uY29yZGFuY2UgbWVhc3VyZSBiYXNlZCBvbiB2YWxpZGF0aW9uIGRhdGEKKGlBVUNfdmFsaWRhdGUgPSByaXNrc2V0Uk9DOjpJbnRlZ3JhdGVBVUMoQVVDX3ZhbGlkYXRlLCB1dGltZXNfdmFsaWRhdGUsIHN1cnZfcHJvYl92YWxpZGF0ZSwgdG1heCA9IDEwKSkKYGBgCmBgYApbMV0gMC42MzE4MjUzCmBgYAoKPGZvbnQgc2l6ZT0iNCI+ICoqVGltZS1kZXBlbmRlbnQgQy1pbmRleCoqIDwvZm9udD4gCgpUaGUgQy1pbmRleCBpcyBub3QgcHJvcGVyIGZvciAkdCQteWVhciBwcmVkaWN0aW9ucywgc2VlIEBCbGFuY2hlMjAxOS4KQ29uc2lkZXIgdXNpbmcgdGltZS1kZXBlbmRlbnQgQVVDIG9yIHRpbWUtZGVwZW5kZW50IEJyaWVyIHNjb3JlIGluc3RlYWQuCkZvciBhIHRpbWUtZGVwZW5kZW50IGRpc2NyaW1pbmF0aW9uIGluZGV4IGZvciBzdXJ2aXZhbCBkYXRhLCBzZWUgQEFudG9saW5pMjAwNS4KCjxmb250IHNpemU9IjQiPiAqKkMtaW5kZXgqKiA8L2ZvbnQ+IAoKVGhlIGBSYCBwYWNrYWdlIFsqKmdsbW5ldCoqXShodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPWdsbW5ldCkgcHJvdmlkZXMgdGhlIGZ1bmN0aW9uIGBnbG1uZXQ6OkNpbmRleCgpYCB0byBlc3RpbWF0ZSBIYXJyZWxsJ3MgQy1pbmRleCBmcm9tIGEgImNveG5ldCIgb2JqZWN0LgpUaGUgYFJgIHBhY2thZ2UgWyoqc3VydkFVQyoqXShodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPXN1cnZBVUMpIHByb3ZpZGVzIHRoZSBmdW5jdGlvbiBgc3VydkFVQzo6VW5vQygpYCB0byBlc3RpbWF0ZWQgVW5vJ3MgQy1pbmRleC4KU2VlIGFuIGV4YW1wbGUgY2FsY3VsYXRpb24gZm9yIGJvdGggQy1pbmRleGVzIHVzaW5nIGEgTGFzc28gQ294IG1vZGVsIGJlbG93LgoKYGBge3J9CnNldC5zZWVkKDEyMykKY3ZmaXQgPSBjdi5nbG1uZXQoeF90cmFpbiwgeV90cmFpbiwgZmFtaWx5ID0gImNveCIsIG5mb2xkcyA9IDUsIHBlbmFsdHkuZmFjdG9yID0gcGYpCnByZWQgPSBwcmVkaWN0KGN2Zml0LCBuZXd4ID0geF92YWxpZGF0ZSwgdHlwZSA9ICJsaW5rIiwgcyA9IGN2Zml0JGxhbWJkYS5taW4pCiMgSGFycmVsbCdzIEMtaW5kZXgKKENpbmRleF9IYXJyZWxsID0gQ2luZGV4KHByZWQgPSBwcmVkWywgMV0sIHkgPSB5X3ZhbGlkYXRlKSkKYGBgCmBgYApbMV0gMC43MjQ2NDY2CmBgYApgYGB7cn0KIyBVbm8ncyBDLWluZGV4CihDaW5kZXhfVW5vID0gc3VydkFVQzo6VW5vQyh5X3RyYWluLCB5X3ZhbGlkYXRlLCBwcmVkKSkKYGBgCmBgYApbMV0gMC41NzcyMDQxCmBgYAoKPGJyPgoKIyMjIENhbGlicmF0aW9uIG1ldHJpY3Mgey19CgpTZWUgYSBbY2FsaWJyYXRpb24gcGxvdF0oI3Nsb3BlQ2FsaSkgaW4gdGhlIGZvbGxvd2luZyBzZWN0aW9uIFtHcmFwaGljYWwgY29tcHV0YXRpb25dKCNncmFwaENvbXApLgoKPGJyPgoKIyMjIE92ZXJhbGwgbWV0cmljcyB7LX0KCjxmb250IHNpemU9IjQiPiAqKlRpbWUtZGVwZW5kZW50IEJyaWVyIHNjb3JlKiogPC9mb250PiAKClRoZSBgUmAgcGFja2FnZSBbKipyaXNrUmVncmVzc2lvbioqXShodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPXJpc2tSZWdyZXNzaW9uKSBjYW4gYXNzZXNzIHRoZSBwcmVkaWN0aW9uIGVycm9yIGN1cnZlcyBvZiBzdXJ2aXZhbCBtb2RlbHMgYmFzZWQgb24gdGhlIHRpbWUtZGVwZW5kZW50IEJyaWVyIHNjb3JlLgpTaW1pbGFyIHRvIHRoZSB0aW1lLWRlcGVuZGVudCBBVUMsIG9uZSBuZWVkcyB0byBmaXJzdCBjYWxjdWxhdGUgdGhlIGxpbmVhciBwcmVkaWN0b3JzICgkbHAkKSBmcm9tIGEgZnJlcXVlbnRpc3Qgb3IgQmF5ZXNpYW4gQ294IG1vZGVsLCBhbmQgdGhlbiB1c2UgYHN1cnZpdmFsOjpjb3hwaCgpYCB0byByZWdyZXNzIHRoZSBzdXJ2aXZhbCBvdXRjb21lcyBvbiB0aGUgbGluZWFyIHByZWRpY3Rvciwgd2hpY2ggaXMgcHJlcGFyZWQgYXMgaW5wdXQgb2YgYHJpc2tSZWdyZXNzaW9uOjpTY29yZSgpYCB0byBlc3RpbWF0ZSB0aGUgKHRpbWUtZGVwZW5kZW50KSBCcmllciBzY29yZS4KCmBgYHtyfQojIyB0aW1lLWRlcGVuZGVudCBCcmllciBzY29yZQoKIyB1c2UgdGhlICh4X3RyYWluLCB5X3RyYWluKSA4MCUgc2FtcGxlcyBmb3IgdHJhaW5pbmcKIyBhbmQgdGhlICh4X3ZhbGlkYXRlLCB5X3ZhbGlkYXRlKSAyMCUgc2FtcGxlcyBmb3IgdGVzdGluZwoKeV90cmFpbl9zdXJ2ID0gU3Vydih5X3RyYWluWywgInRpbWUiXSwgeV90cmFpblssICJzdGF0dXMiXSkKeV92YWxpZGF0ZV9zdXJ2ID0gU3Vydih5X3ZhbGlkYXRlWywgInRpbWUiXSwgeV92YWxpZGF0ZVssICJzdGF0dXMiXSkKc2V0LnNlZWQoMTIzKQpjdmZpdCA9IGN2LmdsbW5ldCh4X3RyYWluLCB5X3RyYWluX3N1cnYsIGZhbWlseSA9ICJjb3giLCBuZm9sZHMgPSA1LCBwZW5hbHR5LmZhY3RvciA9IHBmKQpscF90cmFpbiA9IHByZWRpY3QoY3ZmaXQsIG5ld3ggPSB4X3RyYWluLCBzID0gY3ZmaXQkbGFtYmRhLm1pbiwgdHlwZSA9ICJsaW5rIikKbHBfdmFsaWRhdGUgPSBwcmVkaWN0KGN2Zml0LCBuZXd4ID0geF92YWxpZGF0ZSwgcyA9IGN2Zml0JGxhbWJkYS5taW4sIHR5cGUgPSAibGluayIpCgojIHByZXBhcmUgZGF0YSBmb3JtYXQgc3VpdGVkIGZvciBmdW5jdGlvbiBTY29yZSgpIGZyb20gdGhlIHJpc2tSZWdyZXNzaW9uIHBhY2thZ2UKZGF0YV90cmFpbiA9IGRhdGEuZnJhbWUodGltZSA9IHlfdHJhaW5bLCAidGltZSJdLCBzdGF0dXMgPSB5X3RyYWluWywgInN0YXR1cyJdLCBscCA9IGFzLnZlY3RvcihscF90cmFpbikpCmRhdGFfdmFsaWRhdGUgPSBkYXRhLmZyYW1lKHRpbWUgPSB5X3ZhbGlkYXRlWywgInRpbWUiXSwgc3RhdHVzID0geV92YWxpZGF0ZVssICJzdGF0dXMiXSwgbHAgPSBhcy52ZWN0b3IobHBfdmFsaWRhdGUpKQpsYXNzb190cmFpbiA9IGNveHBoKFN1cnYodGltZSwgc3RhdHVzKSB+IGxwLCBkYXRhID0gZGF0YV90cmFpbiwgeT1UUlVFLCB4ID0gVFJVRSkKbGFzc29fdmFsaWRhdGUgPSBjb3hwaChTdXJ2KHRpbWUsIHN0YXR1cykgfiBscCwgZGF0YSA9IGRhdGFfdmFsaWRhdGUsIHkgPSBUUlVFLCB4ID0gVFJVRSkKCiMgY2FsY3VsYXRlIEJyaWVyIHNjb3JlcyBiYXNlZCBvbiBib3RoIHRyYWluaW5nIGFuZCB2YWxpZGF0aW9uIGRhdGEKQnJpZXJfdHJhaW4gPSByaXNrUmVncmVzc2lvbjo6U2NvcmUobGlzdCgiQnJpZXJfdHJhaW4iID0gbGFzc29fdHJhaW4pLCBmb3JtdWxhID0gU3Vydih0aW1lLCBzdGF0dXMpIH4gMSwgZGF0YSA9IGRhdGFfdHJhaW4sIGNvbmYuaW50ID0gRkFMU0UsIG1ldHJpY3MgPSAiYnJpZXIiLCBzdW1tYXJ5ID0gImlicyIsIHRpbWVzID0gc29ydCh1bmlxdWUoZGF0YV90cmFpbiR0aW1lKSkpJEJyaWVyJHNjb3JlCkJyaWVyX3ZhbGlkYXRlID0gcmlza1JlZ3Jlc3Npb246OlNjb3JlKGxpc3QoIkJyaWVyX3ZhbGlkYXRlIiA9IGxhc3NvX3ZhbGlkYXRlKSwgZm9ybXVsYSA9IFN1cnYodGltZSwgc3RhdHVzKSB+IDEsIGRhdGEgPSBkYXRhX3ZhbGlkYXRlLCBjb25mLmludCA9IEZBTFNFLCBtZXRyaWNzID0gImJyaWVyIiwgc3VtbWFyeSA9ICJpYnMiLCB0aW1lcyA9IHNvcnQodW5pcXVlKGRhdGFfdmFsaWRhdGUkdGltZSkpKSRCcmllciRzY29yZQpCcmllcl9zY29yZSA9IHJiaW5kKEJyaWVyX3RyYWluLCBCcmllcl92YWxpZGF0ZSkKQnJpZXJfc2NvcmUgPSBCcmllcl9zY29yZVtCcmllcl9zY29yZSRtb2RlbCAhPSAiTnVsbCBtb2RlbCIsIF0KICAKZ2dwbG90KEJyaWVyX3Njb3JlLCBhZXModGltZXMsIEJyaWVyLCBncm91cCA9IG1vZGVsLCBjb2xvciA9IG1vZGVsKSkgKyB4bGFiKCJFdmFsdWF0aW9uIHRpbWUgcG9pbnRzICh5ZWFyKSIpICsgeWxhYigiQnJpZXIgc2NvcmUiKSArIAogIGdlb21fc3RlcChkaXJlY3Rpb24gPSAidmgiKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9IGMoMC4xNSwgMC44OCksIGxlZ2VuZC50aXRsZSA9IGVsZW1lbnRfYmxhbmsoKSkKYGBgCmBgYHtyLCBlY2hvPUZBTFNFfQpwZGYoIlRDR0Ffc3Vydl9icmllcl90X2xhc3NvLnBkZiIsIGhlaWdodCA9IDQsIHdpZHRoID0gNSkKZ2dwbG90KEJyaWVyX3Njb3JlLCBhZXModGltZXMsIEJyaWVyLCBncm91cCA9IG1vZGVsLCBjb2xvciA9IG1vZGVsKSkgKyB4bGFiKCJFdmFsdWF0aW9uIHRpbWUgcG9pbnRzICh5ZWFyKSIpICsgeWxhYigiQnJpZXIgc2NvcmUiKSArIAogIGdlb21fc3RlcChkaXJlY3Rpb24gPSAidmgiKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9IGMoMC4xNSwgMC44OCksIGxlZ2VuZC50aXRsZSA9IGVsZW1lbnRfYmxhbmsoKSkKZGV2Lm9mZigpCmBgYAohW19UaW1lLWRlcGVuZGVudCBCcmllciBzY29yZSBiYXNlZCBvbiBhIExhc3NvIENveCBtb2RlbCBhcHBsaWVkIHRvIHRoZSBCUkNBIHBhdGllbnRzIGRhdGEgZnJvbSBUQ0dBLiBUaGUgcmVkIGxpbmUgc2hvd3MgdGhlIFRpbWUtZGVwZW5kZW50IEJyaWVyIHNjb3JlIGNhbGN1bGF0ZWQgZnJvbSB0aGUgODAlIHRyYWluaW5nIGRhdGEsIGFuZCB0aGUgZ3JlZW4gbGluZSBzaG93cyB0aGUgVGltZS1kZXBlbmRlbnQgQnJpZXIgc2NvcmUgY2FsY3VsYXRlZCBmcm9tIHRoZSAyMCUgdmFsaWRhdGlvbiBkYXRhLl9dKGZpZy9UQ0dBX3N1cnZfYnJpZXJfdF9sYXNzby5wbmcpe3dpZHRoPTYwJX0KCjxicj4KCjxmb250IHNpemU9IjQiPiAqKkludGVncmF0ZWQgQnJpZXIgc2NvcmUgKElCUykqKiA8L2ZvbnQ+IAoKVGhlIGZ1bmN0aW9uIGByaXNrUmVncmVzc2lvbjo6U2NvcmUoKWAgYWxzbyBzdW1tYXJpemVzIElCUyB3aGVuIHNwZWNpZnlpbmcgYXJndW1lbnQgYHN1bW1hcnkgPSAiaWJzImAuCldlIGNhbiBleHRyYWN0IHRoZSBJQlMgY29ycmVzcG9uZGluZyB0byB0aGUgbGFyZ2VzdCBldmFsdWF0aW9uIHRpbWUgcG9pbnQuCgpgYGB7cn0KQnJpZXJfdmFsaWRhdGVfaWJzID0gQnJpZXJfdmFsaWRhdGVbQnJpZXJfdmFsaWRhdGUkbW9kZWwgPT0gIkJyaWVyX3ZhbGlkYXRlIiwgXQpCcmllcl92YWxpZGF0ZV9pYnMkSUJTW3doaWNoLm1heChCcmllcl92YWxpZGF0ZV9pYnMkdGltZXMpXQpgYGAKYGBgClsxXSAwLjE3MjExNTgKYGBgCgo8YnI+CgojIyMgVW5jZXJ0YWludHkgUXVhbnRpZmljYXRpb24gey0jdXExfQoKOjo6ey5pbmZvLWJveCAuaW1wb3J0YW50fQoqKkl0IGlzIHJlY29tbWVuZGVkIHRvIHVzZSByZXNhbXBsaW5nLWJhc2VkIG1ldGhvZHMqKiBmb3IgZXN0aW1hdGluZyB0aGUgdW5jZXJ0YWludHkgb2YgdGhlIG1vZGVsJ3MgcGVyZm9ybWFuY2UsIGlmIHRoZXJlIGFyZSBubyAqKmluZGVwZW5kZW50KiogdmFsaWRhdGlvbiBkYXRhIGZvciBtb2RlbCBldmFsdWF0aW9uLgpUaGlzIGNhbiBiZSBkb25lIGZvciBleGFtcGxlIGJ5IHJlcGVhdGVkbHkgc3BsaXR0aW5nIHRoZSBkYXRhc2V0IHRvIHRyYWluaW5nL3ZhbGlkYXRpb24gc2V0cyBhbmQgZXZhbHVhdGluZyBhIG1vZGVsJ3MgcGVyZm9ybWFuY2Ugb24gdGhlIGRpZmZlcmVudCB2YWxpZGF0aW9uIHNldHMgdXNpbmcgdmFyaW91cyBkaXNjcmltaW5hdGlvbiBvciBjYWxpYnJhdGlvbiBtZXRyaWNzLgo6OjoKCldlIGRlbW9uc3RyYXRlIGhvdyB0byByYW5kb21seSBzcGxpdCB0aGUgZGF0YSwgZS5nLiAkMTAwJCB0aW1lcywgdHJhaW4gYSBMYXNzbyBDb3ggbW9kZWwgYW5kIGVzdGltYXRlIHRoZSBpbnRlZ3JhdGVkIEFVQyBiYXNlZCBvbiB0aGUgdmFsaWRhdGlvbiBkYXRhIGluIGVhY2ggcmVwbGljYXRpb24uCkZvciBvdGhlciBDb3gtdHlwZSBtb2RlbHMsIHdlIGNhbiBqdXN0IHJlcGxhY2UgdGhlIG1vZGVsIGZpdHRpbmcgcGFydCBgY3YuZ2xtbmV0KClgIChhbmQgYHByZWRpY3QoKWApIGluIHRoZSBgZm9yYCBsb29wIGJlbG93LgpIb3dldmVyLCBtb3N0IG9mIHRoZSBCYXllc2lhbiBDb3ggbW9kZWxzIGludHJvZHVjZWQgcHJldmlvdXNseSBhcmUgY29tcHV0YXRpb25hbGx5IHRpbWUtY29uc3VtaW5nIHdoZW4gcmFuZG9tbHkgc3BsaXR0aW5nIHRoZSBkYXRhIG1hbnkgdGltZXMuCgpgYGB7cn0KIyBzcGxpdCB0aGUgZGF0YSAxMDAgdGltZXMKc2V0LnNlZWQoMTIzKQprID0gMTAwCmlBVUMgPSByZXAoTkEsIGspCmZvciAoaSBpbiAxOmspIHsKICBpZHggPSBzYW1wbGUoMTpuLCBuICogMC44LCByZXBsYWNlID0gRkFMU0UpCiAgeF90cmFpbiA9IHhbaWR4LCBdCiAgeV90cmFpbiA9IHlbaWR4LCBdCiAgeF92YWxpZGF0ZSA9IHhbLWlkeCwgXQogIHlfdmFsaWRhdGUgPSB5Wy1pZHgsIF0KICBjdmZpdCA9IGN2LmdsbW5ldCh4X3RyYWluLCB5X3RyYWluLCBmYW1pbHkgPSAiY294IiwgbmZvbGRzID0gNSwgcGVuYWx0eS5mYWN0b3IgPSBwZikKICBwcmVkX2xwID0gcHJlZGljdChjdmZpdCwgbmV3eCA9IHhfdmFsaWRhdGUsIHMgPSBjdmZpdCRsYW1iZGEubWluLCB0eXBlID0gImxpbmsiKQogIHV0aW1lcyA9IHNvcnQodW5pcXVlKHlfdmFsaWRhdGVbeV92YWxpZGF0ZVssIDJdID09IDEsIDFdKSkKICBBVUMgPSByZXAoTkEsIGxlbmd0aCh1dGltZXMpKQogIGZvciAoaiBpbiAxOmxlbmd0aCh1dGltZXMpKSB7CiAgICBvdXQgPSBDb3hXZWlnaHRzKG1hcmtlciA9IHByZWRfbHAsIFN0aW1lID0geV92YWxpZGF0ZVssIDFdLCBzdGF0dXMgPSB5X3ZhbGlkYXRlWywgMl0sIHByZWRpY3QudGltZSA9IHV0aW1lc1tqXSkKICAgIEFVQ1tqXSA9IG91dCRBVUMKICB9CiAgc3Vydl9wcm9iID0gdW5pcXVlKHN1cnZmaXQoU3Vydih5X3ZhbGlkYXRlWywgMV0sIHlfdmFsaWRhdGVbLCAyXSkgfiAxKSRzdXJ2KQogIGlBVUNbaV0gPSBJbnRlZ3JhdGVBVUMoQVVDLCB1dGltZXMsIHN1cnZfcHJvYiwgdG1heCA9IDEwKQp9CmRhdF90bXAgPSBkYXRhLmZyYW1lKHggPSAiTGFzc28gQ294IiwgeSA9IGlBVUMpCgpzZXQuc2VlZCgxMjMpCmdncGxvdChkYXRfdG1wLCBhZXMoeCwgeSkpICsgZ2VvbV9ib3hwbG90KCkgKyB5bGltKDAuNSwgMSkgKyB4bGFiKCIiKSArIHlsYWIoIkludGVncmF0ZWQgQVVDIikgKwogIGdlb21faml0dGVyKGNvbG9yID0gImJsdWUiLCBzaXplID0gMC41LCBhbHBoYSA9IDAuNSkKYGBgCmBgYHtyLCBlY2hvPUZBTFNFfQpwZGYoIlRDR0Ffc3Vydl9pYXVjX2xhc3NvLnBkZiIsIGhlaWdodCA9IDMsIHdpZHRoID0gMikKc2V0LnNlZWQoMTIzKQpnZ3Bsb3QoZGF0X3RtcCwgYWVzKHgsIHkpKSArIGdlb21fYm94cGxvdCgpICsgeWxpbSgwLjUsIDEpICsgeGxhYigiIikgKyB5bGFiKCJJbnRlZ3JhdGVkIEFVQyIpICsKICBnZW9tX2ppdHRlcihjb2xvciA9ICJibHVlIiwgc2l6ZSA9IDAuNSwgYWxwaGEgPSAwLjUpCmRldi5vZmYoKQpgYGAKIVtfSW50ZWdyYXRlZCBBVUMgYmFzZWQgb24gcmFuZG9tbHkgc3BsaXQgdmFsaWRhdGlvbiBkYXRhIDEwMCB0aW1lcy4gVGhlIGJsdWUgZG90cyBhcmUgdGhlIDEwMCB2YWx1ZXMgb2YgaW50ZWdyYXRlZCBBVUMuX10oZmlnL1RDR0Ffc3Vydl9pYXVjX2xhc3NvLnBuZyl7d2lkdGg9MzAlfQoKPGJyPgoKU2ltaWxhciB0byBvYnRhaW5pbmcgdW5jZXJ0YWludHkgb2YgdGhlIGludGVncmF0ZWQgQVVDLCB3ZSBjYW4gYWxzbyBlc3RpbWF0ZSB0aGUgdW5jZXJ0YWludHkgb2YgdGhlIEMtaW5kZXggZm9yIGV2YWx1YXRpbmcgdGhlIGdsb2JhbCBwZXJmb3JtYW5jZSBvZiBvdXIgbW9kZWwncyBkaXNjcmltaW5hdGlvbi4KCmBgYHtyfQojIHNwbGl0IHRoZSBkYXRhIDEwMCB0aW1lcwpzZXQuc2VlZCgxMjMpCmsgPSAxMDAKQ2luZGV4X2FsbCA9IGRhdGEuZnJhbWUoSGFycmVsbCA9IHJlcChOQSwgayksIFVubyA9IHJlcChOQSwgaykpCmZvciAoaSBpbiAxOmspIHsKICBpZHggPSBzYW1wbGUoMTpuLCBuICogMC44LCByZXBsYWNlID0gRkFMU0UpCiAgeF90cmFpbiA9IHhbaWR4LCBdCiAgeV90cmFpbiA9IHlbaWR4LCBdCiAgeF92YWxpZGF0ZSA9IHhbLWlkeCwgXQogIHlfdmFsaWRhdGUgPSB5Wy1pZHgsIF0KICBjdmZpdCA9IGN2LmdsbW5ldCh4X3RyYWluLCB5X3RyYWluLCBmYW1pbHkgPSAiY294IiwgbmZvbGRzID0gNSwgcGVuYWx0eS5mYWN0b3IgPSBwZikKICBwcmVkID0gcHJlZGljdChjdmZpdCwgbmV3eCA9IHhfdmFsaWRhdGUsIHR5cGUgPSAicmVzcG9uc2UiLCBzID0gY3ZmaXQkbGFtYmRhLm1pbikKICBDaW5kZXhfYWxsJEhhcnJlbGxbaV0gPSBtZWFuKGFwcGx5KHByZWQsIDIsIENpbmRleCwgeSA9IHlfdmFsaWRhdGUpKQogIENpbmRleF9hbGwkVW5vW2ldID0gVW5vQyh5X3RyYWluLCB5X3ZhbGlkYXRlLCBwcmVkKQp9CmRhdF90bXAgPSBkYXRhLmZyYW1lKHggPSByZXAoYygiSGFycmVsbCIsICJVbm8iKSwgZWFjaCA9IGspLCB5ID0gdW5saXN0KENpbmRleF9hbGwpKQoKc2V0LnNlZWQoMTIzKQpnZ3Bsb3QoZGF0X3RtcCwgYWVzKHgsIHksIGNvbCA9IHgpKSArIGdlb21fYm94cGxvdCgpICsgZ2VvbV9qaXR0ZXIoc2l6ZSA9IDAuNSwgYWxwaGEgPSAwLjUpICsKICAgeWxpbSgwLCAxKSArIHhsYWIoIiIpICsgeWxhYigiQy1pbmRleCIpICsgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiKQpgYGAKYGBge3IsIGVjaG89RkFMU0V9CnBkZigiVENHQV9zdXJ2X2NpbmRleF9sYXNzby5wZGYiLCBoZWlnaHQgPSAzLCB3aWR0aCA9IDMpCnNldC5zZWVkKDEyMykKZ2dwbG90KGRhdF90bXAsIGFlcyh4LCB5LCBjb2wgPSB4KSkgKyBnZW9tX2JveHBsb3QoKSArIGdlb21faml0dGVyKHNpemUgPSAwLjUsIGFscGhhID0gMC41KSArCiAgIHlsaW0oMCwgMSkgKyB4bGFiKCIiKSArIHlsYWIoIkMtaW5kZXgiKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikKZGV2Lm9mZigpCmBgYAohW19DLWluZGV4IChIYXJyZWxsJ3MgYW5kIFVubydzKSBiYXNlZCBvbiByYW5kb21seSBzcGxpdCB2YWxpZGF0aW9uIGRhdGEgMTAwIHRpbWVzLl9dKGZpZy9UQ0dBX3N1cnZfY2luZGV4X2xhc3NvLnBuZyl7d2lkdGg9NDAlfQoKPGJyPgoKVGhlIGBSYCBwYWNrYWdlIFsqKmMwNjAqKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1jMDYwKSBbQFNpbGwyMDE0XSBpbmNsdWRlcyB3cmFwcGVyIGZ1bmN0aW9ucyBmb3IgdGhlIFsqKmdsbW5ldCoqXShodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPWdsbW5ldCkgYWxnb3JpdGhtIGFuZCBpbXBsZW1lbnRzIHJlc2FtcGxpbmctYmFzZWQgbWV0aG9kcyAoZS5nLiBjcm9zcy12YWxpZGF0aW9uIGFuZCBib290c3RyYXAgLSB3aXRoIGFuZCB3aXRob3V0IHJlcGxhY2VtZW50KSBiYXNlZCBvbiB0aGUgWyoqcGVwZXJyKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9cGVwZXJyKSBwYWNrYWdlIHRvIGNhbGN1bGF0ZSB0aGUgdGltZS1kZXBlbmRlbnQgQnJpZXIgc2NvcmUuClsqKmMwNjAqKl0oaHR0cHM6Ly9DUkFOLlItcHJvamVjdC5vcmcvcGFja2FnZT1jMDYwKSBleHRlbmRzIFsqKnBlcGVycioqXShodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPXBlcGVycikgcGFja2FnZSB0byBhbGxvdyBtYW5kYXRvcnkgZmVhdHVyZXMgd2l0aG91dCBwZW5hbGl6YXRpb24uCkBCaW5kZXIyMDA4IHJlY29tbWVuZHMgdG8gZHJhdyBib290c3RyYXAgc2FtcGxlcyB3aXRob3V0IHJlcGxhY2VtZW50IChpLmUuIHN1YnNhbXBsaW5nKSwgYmVjYXVzZSBib290c3RyYXAgc2FtcGxlcyB3aXRoIHJlcGxhY2VtZW50IG9mdGVuIHJlc3VsdCBpbiB0b28gY29tcGxleCBtb2RlbHMgaW4gaGlnaC1kaW1lbnNpb25hbCBzZXR0aW5ncy4KVG8gdXNlIHJlc2FtcGxpbmcgYnkgQ1YgcHJvcGVybHkgZm9yIHN1cnZpdmFsIGRhdGEsIHNlZSBAU2ltb24yMDExLgpOb3RlIHRoYXQgcmVzYW1wbGluZy1iYXNlZCBtZXRob2RzIGhlcmUgYXJlIHNpbWlsYXIgdG8gc3BsaXR0aW5nICQ4MFwlLzIwXCUkIHRoZSBkYXRhIG1hbnkgdGltZXMgd2hpY2ggYWxsb3dzIHVzIHRvIHF1YW50aWZ5IHRoZSB1bmNlcnRhaW50eSBvZiB0aGUgdGltZS1kZXBlbmRlbnQgQnJpZXIgc2NvcmUuCgpgYGB7cn0KIyMgdGltZS1kZXBlbmRlbnQgQnJpZXIgc2NvcmUgYnkgc3Vic2FtcGxpbmcgZnJvbSB0aGUgd2hvbGUgZGF0YQpzZXQuc2VlZCgxMjMpCnBlcGVycl9vYmplY3QgPSBwZXBlcnI6OnBlcGVycihyZXNwb25zZSA9IHlfc3VydiwgeCA9IHgsIGZpdC5mdW4gPSBmaXQuZ2xtbmV0LCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFyZ3MuZml0ID0gbGlzdChmYW1pbHkgPSAiY294IiwgcGVuYWx0eS5mYWN0b3IgPSBwZiksIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29tcGxleGl0eSA9IGNvbXBsZXhpdHkuZ2xtbmV0LCAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhcmdzLmNvbXBsZXhpdHkgPSBsaXN0KGZhbWlseSA9ICJjb3giLCBuZm9sZHMgPSA1LCBwZW5hbHR5LmZhY3RvciA9IHBmKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGluZGljZXMgPSByZXNhbXBsZS5pbmRpY2VzKG4gPSBuLCBtZXRob2QgPSAic3ViNjMyIiwgc2FtcGxlLm4gPSAxMDApKQpjMDYwOjpQbG90LnBlcGVyci5jdXJ2ZXMocGVwZXJyX29iamVjdCkKYGBgCmBgYHtyLCBlY2hvPUZBTFNFfQpwZGYoIlRDR0Ffc3Vydl9icmllcl9sYXNzby5wZGYiLCBoZWlnaHQgPSA1LCB3aWR0aCA9IDUpClBsb3QucGVwZXJyLmN1cnZlcyhwZXBlcnJfb2JqZWN0KQpkZXYub2ZmKCkKYGBgCiFbX1Jlc2FtcGxpbmctYmFzZWQgcHJlZGljdGlvbiBlcnJvciBjdXJ2ZXMgKHRpbWUtZGVwZW5kZW50IEJyaWVyIHNjb3JlKSBhIHRoZSBMYXNzbyBDb3ggbW9kZWwgYXBwbGllZCB0byB0aGUgQlJDQSBkYXRhIHNldCBmcm9tIFRDR0EuIFRoZSBncmF5IGFyZWEgaW5kaWNhdGVzIHRoZSBwb2ludHdpc2UgMi41JSBhbmQgOTcuNSUgcXVhbnRpbGVzIG9mIHRoZSAxMDAgb3V0LW9mLWJhZyBib290c3RyYXAgc2FtcGxlcy4gVGhlIG90aGVyIGxpbmVzIHNob3cgdGhlIHByZWRpY3Rpb24gZXJyb3IgY3VydmVzIG9mIHRoZSBudWxsIG1vZGVsIChlc3RpbWF0ZWQgYnkgdGhlIEthcGxhbi1NZWllciBlc3RpbWF0b3Igd2l0aG91dCBjb3ZhcmlhdGUgaW5mb3JtYXRpb24pLCB0aGUgZnVsbCBhcHBhcmVudCBlcnJvciBlc3RpbWF0ZXMgKGkuZS4sIHRoZSBlcnJvcnMgYXMgZXN0aW1hdGVkIHdoZW4gYXBwbHlpbmcgdGhlIG1vZGVsIHRvIHRoZSBlbnRpcmUgdHJhaW5pbmcgZGF0YSBzZXQpLCBhbmQgdGhlIC42MzIrIGJvb3RzdHJhcCBlcnJvciBlc3RpbWF0ZXMuX10oZmlnL1RDR0Ffc3Vydl9icmllcl9sYXNzby5wbmcpe3dpZHRoPTUwJX0KCjxicj4KCiMjIyBGZWF0dXJlIHN0YWJpbGl0eSBhbmFseXNpcyB7LX0KClRvIGlkZW50aWZ5IHN0YWJsZSBvbWljcyBmZWF0dXJlcywgYSBzdHJhaWdodGZvcndhcmQgd2F5IGlzIHRvIGZpbmQgdGhlIG92ZXJsYXBwZWQgb21pY3MgZmVhdHVyZXMgd2l0aCBub256ZXJvIGNvZWZmaWNpZW50cyBhbW9uZyBkaWZmZXJlbnQgZGF0YSBzdWJzZXRzIChlLmcuIENWIGZvbGRzIG9yIHJlc2FtcGxlcykuClRoZSBmb2xsb3dpbmcgY29kZSBzdW1tYXJpemVzIHRoZSBMYXNzbyBDb3ggc2VsZWN0ZWQgb21pY3MgZmVhdHVyZXMgd2hpY2ggd2VyZSBpZGVudGlmaWVkIGF0IGxlYXN0ICQyJCBvciAkNSQgb3V0IG9mICQxMCQgcmVzYW1wbGVzLgpTaW1pbGFybHksIHRoaXMgYXBwcm9hY2ggY2FuIGJlIGFwcGxpZWQgdG8gb3RoZXIgTGFzc28tdHlwZSBvciBCYXllc2lhbiBDb3ggbW9kZWxzIHRoYXQgcGVyZm9ybSBmZWF0dXJlIHNlbGVjdGlvbiBmb3IgaWRlbnRpZnlpbmcgc3RhYmxlIHNlbGVjdGVkIGZlYXR1cmVzLgoKYGBge3J9CiMgc3BlY2lmeSB0aGUgbnVtYmVyIG9mIHJlc2FtcGxlcyBrCmsgPSAxMApiZXRhX2FsbCA9IG1hdHJpeChucm93ID0gbmNvbCh4KSwgbmNvbCA9IGspCnNldC5zZWVkKDEyMykKZm9yIChqIGluIDE6aykgewogIHJlc2FtcGxlX2lkID0gc2FtcGxlKDE6bnJvdyh5KSwgbnJvdyh5KSwgcmVwbGFjZSA9IFRSVUUpCiAgcmVzYW1wbGVfeCA9IHhbcmVzYW1wbGVfaWQsIF0KICByZXNhbXBsZV95ID0geVtyZXNhbXBsZV9pZCwgXQogIGN2Zml0ID0gY3YuZ2xtbmV0KHJlc2FtcGxlX3gsIHJlc2FtcGxlX3ksIGZhbWlseSA9ICJjb3giLCBuZm9sZHMgPSA1LCBwZW5hbHR5LmZhY3RvciA9IHBmKQogIGJldGFfYWxsWywgal0gPSBhcy52ZWN0b3IoY29lZihjdmZpdCwgcyA9IGN2Zml0JGxhbWJkYS5taW4pKQp9Cgooc3RhYmxlX2ZlYXR1cmVzID0gY29sbmFtZXMoeClbcm93U3VtcyhiZXRhX2FsbCAhPSAwKSA+PSAyXSkKYGBgCmBgYAogWzFdICJhZ2UiICAgICAgICJldGhuaWNpdHkiICJBTkxOIiAgICAgICJVQkUyVCIgICAgICJOREM4MCIgICAgICJQR1IiICAgICAgICJPUkM2IiAgICAgCiBbOF0gIkVTUjEiICAgICAgIlBIR0RIIiAgICAgIk1NUDExIiAgICAgIlNGUlAxIiAgICAgIkNDTkUxIiAgICAgIkJMVlJBIiAgICAgIkJBRzEiICAgICAKWzE1XSAiTUxQSCIgICAgICAiQ0VOUEYiICAgICAiS1JUMTciICAgICAiRk9YQTEiICAgICAiQUNUUjNCIiAgICAiQ0NOQjEiICAgICAiTURNMiIgICAgIApbMjJdICJNWUMiICAgICAgICJDRVA1NSIgICAgICJTTEMzOUE2IiAgICJHUkI3IiAgICAgICJOVUYyIiAgICAgICJFR0ZSIiAgICAgICJNS0k2NyIgICAgClsyOV0gIlRNRU00NUIiICAgIkZHRlI0IiAgICAgIk1FTEsiICAgICAgIk5BVDEiICAgICAgIkNYWEM1IiAgICAgIkJDTDIiICAgICAgIkdQUjE2MCIgICAKWzM2XSAiVFlNUyIgICAgICAiS1JUNSIgICAgICAiTUFQVCIgICAgICAiTUlBIgpgYGAKYGBge3J9CihzdGFibGVfZmVhdHVyZXMgPSBjb2xuYW1lcyh4KVtyb3dTdW1zKGJldGFfYWxsICE9IDApID49IDVdKQpgYGAKYGBgCiBbMV0gImFnZSIgICAgICAgImV0aG5pY2l0eSIgIkFOTE4iICAgICAgIk9SQzYiICAgICAgIk1NUDExIiAgICAgIkJMVlJBIiAgICAgIkJBRzEiICAgICAKIFs4XSAiQ0NOQjEiICAgICAiRUdGUiIgICAgICAiVE1FTTQ1QiIgICAiQkNMMiIgICAgICAiVFlNUyIgICAgICAiS1JUNSIgICAgICAiTUlBIgpgYGAKCkFsdGVybmF0aXZlbHkgZm9yIGEgQmF5ZXNpYW4gQ294IG1vZGVsLCBpdHMgbWVkaWFuIHByb2JhYmlsaXR5IG1vZGVsIChNUE0pIGNhbiBiZSBvYnRhaW5lZCBiYXNlZCBvbiB0aGUgY29lZmZpY2llbnQgZXN0aW1hdGVzIG92ZXIgTUNNQyBpdGVyYXRpb25zLgpUaGUgZm9sbG93aW5nIGNvZGUgc2hvd3MgaG93IHRvIG9idGFpbiB0aGUgTVBNJ3MgY29lZmZpY2llbnRzIG9mIHRoZSBwZW5hbGl6ZWQgc2VtaXBhcmFtZXRyaWMgQmF5ZXNpYW4gQ294IG1vZGVsIHdpdGggRWxhc3RpYyBOZXQgcHJpb3IgcnVuIHByZXZpb3VzbHkuCgpgYGB7cn0KZ2FtbWFzID0gY29sTWVhbnMobWF0cml4KGFzLm51bWVyaWMoRU5fYmV0YV9wICE9IDApLCBuY29sID0gbmNvbChFTl9iZXRhX3ApKSkKYmV0YV9NUE0gPSAoZ2FtbWFzID49IDAuNSkgKiBjb2xNZWFucyhFTl9iZXRhX3ApIC8gZ2FtbWFzCmJldGFfTVBNW2lzLm5hKGJldGFfTVBNKV0gPSAwCmJldGFfTVBNCmBgYApgYGAKICAgICAgICAgIGFnZSAgICAgZXRobmljaXR5ICAgICAgICAgIEFOTE4gICAgICAgICBGT1hDMSAgICAgICAgICBDREgzICAgICAgICAgVUJFMlQgCiAxLjMwNTE2MmUtMDIgIDUuMzQ4NDU4ZS0wMyAtMS4yOTk0NDNlLTAzIC0xLjg1NzgxMWUtMDIgLTYuMTIzNTc0ZS0wMyAtNS40NjcxMTFlLTAzIAogICAgICAgIE5EQzgwICAgICAgICAgICBQR1IgICAgICAgICBCSVJDNSAgICAgICAgICBPUkM2ICAgICAgICAgIEVTUjEgICAgICAgICBQSEdESCAKLTYuNjUyOTI3ZS0wMyAtMi4xMDEyNDNlLTA2IC0xLjY0MDM4NmUtMDIgLTEuMjM3MTUzZS0wMiAtMS4wNzc4NjNlLTAyICAyLjQ4Mzk5MGUtMDIgCiAgICAgICAgIENEQzYgICAgICAgICBNTVAxMSAgICAgICAgIE1ZQkwyICAgICAgICAgU0ZSUDEgICAgICAgICBDQ05FMSAgICAgICAgIEJMVlJBIAotOS4wNzk3MDhlLTAzIC0xLjU4ODcyNmUtMDIgIDUuMjI1MzQ0ZS0wMyAtMS4zODM5ODFlLTAyIC0zLjE4MTI2NWUtMDMgLTIuNjMyMzczZS0wMiAKICAgICAgICAgQkFHMSAgICAgICAgICBNTFBIICAgICAgICAgQ0RDMjAgICAgICAgICBDRU5QRiAgICAgICAgIEtSVDE3ICAgICAgICAgRk9YQTEgCi0zLjkxMzUyOWUtMDIgLTEuNDM1ODA1ZS0wMiAtMi4wMjcyMzJlLTAyIC0yLjQ3NjQ5NWUtMDIgLTIuODcxMTQzZS0wMiAtMy4wMTcyMTNlLTAzIAogICAgICAgQUNUUjNCICAgICAgICAgQ0NOQjEgICAgICAgICAgTURNMiAgICAgICAgICAgTVlDICAgICAgICAgQ0VQNTUgICAgICAgU0xDMzlBNiAKLTIuNTA0ODY5ZS0wMyAtMS4zNDY4MTdlLTAzIC0yLjE1NjA0MWUtMDIgIDEuNDMxMDYyZS0wMiAgMS40MjEwMzZlLTAyIC0xLjE1MDE5NmUtMDIgCiAgICAgICAgRVJCQjIgICAgICAgICAgR1JCNyAgICAgICAgIEtJRjJDICAgICAgICAgIE5VRjIgICAgICAgICAgRUdGUiAgICAgICAgIE1LSTY3IAotNi4zNDczNjdlLTAzIC0xLjAwODY4OWUtMDIgIDYuMDMzNzkyZS0wMyAtMi40MDU2ODllLTAzIC0xLjk2NDkyN2UtMDIgIDEuOTU2NjYxZS0wMiAKICAgICAgVE1FTTQ1QiAgICAgICAgIEZHRlI0ICAgICAgICAgUFRURzEgICAgICAgICAgTUVMSyAgICAgICAgICBOQVQxICAgICAgICAgQ1hYQzUgCiAyLjczNjIxNmUtMDIgIDEuODQyMzIzZS0wMyAtNS42NTE5MDVlLTAzICAyLjg5NDA3NGUtMDIgLTIuMTI2MTYzZS0wMiAgMi41NzE0NzJlLTAyIAogICAgICAgICBCQ0wyICAgICAgICAgIFJSTTIgICAgICAgIEdQUjE2MCAgICAgICAgICBFWE8xICAgICAgICAgVUJFMkMgICAgICAgICAgVFlNUyAKLTUuMTQwODk0ZS0wMyAgMi44ODEwMDRlLTAyIC0zLjkyNzcwNWUtMDIgLTEuNzEwNDE5ZS0wMiAtMS4zNDM4MzJlLTAyIC0xLjg4NDM0MmUtMDIgCiAgICAgICAgIEtSVDUgICAgICAgICBLUlQxNCAgICAgICAgICBNQVBUICAgICAgICAgICBNSUEgCi0yLjE4MDI5NGUtMDIgLTEuMzg2NDg5ZS0wMyAtMi41ODc1NTdlLTAyIC0xLjAzMzMxN2UtMDIKYGBgCgo8YnI+CgojIyMgR3JhcGhpY2FsIHJlcHJlc2VudGF0aW9uIHstI2dyYXBoQ29tcH0KCkFmdGVyIGlkZW50aWZ5aW5nIHN0YWJsZSBvbWljcyBmZWF0dXJlcyBwcmVkaWN0aXZlIG9mIHN1cnZpdmFsIG91dGNvbWVzLCB3ZSBjYW4gZHJhdyBhICoqbm9tb2dyYW0qKiB0byBhbGxvd3MgdGhlIGdyYXBoaWNhbCBjYWxjdWxhdGlvbiBvZiBzdXJ2aXZhbCBwcm9iYWJpbGl0aWVzIGFuZCByZXBvcnQgYSAqKmNhbGlicmF0aW9uIHBsb3QqKiBmb3IgcHJhY3RpdGlvbmVycy4KCjxmb250IHNpemU9IjQiPiAqKk5vbW9ncmFtKiogPC9mb250PiAKCldlIGRlbW9uc3RyYXRlIGEgbm9tb2dyYW0gdXNpbmcgdGhlIHN0YWJsZSBzZWxlY3RlZCBmZWF0dXJlcyBmcm9tIFRDR0EgYnJlYXN0IGNhbmNlciBkYXRhIHByZXByb2Nlc3NlZCBwcmV2aW91c2x5LgpUaGUgYFJgIHBhY2thZ2UgKipyZWdwbG90KiogZHJhd3MgYW4gZW5oYW5jZWQgcmVncmVzc2lvbiBub21vZ3JhbSBiYXNlZCBvbiB0aGUgKipybXMqKiBwYWNrYWdlLgoKYGBge3J9CiMgcmVtb3ZlIHBhdGllbnRzIHdpdGhvdXQgcmVwb3J0aW5nIGV0aG5pY2l0eQp5eSA9IHlbeFssIDJdICE9IDMsIF0KeHggPSB4W3hbLCAyXSAhPSAzLCBdCiMgc3BlY2lmeSB0aGUgbnVtYmVyIG9mIHJlc2FtcGxlcyBrCmsgPSAxMApiZXRhX2FsbCA9IG1hdHJpeChucm93ID0gbmNvbCh4eCksIG5jb2wgPSBrKQpzZXQuc2VlZCgxMjMpCmZvciAoaiBpbiAxOmspIHsKICByZXNhbXBsZV9pZCA9IHNhbXBsZSgxOm5yb3coeXkpLCBucm93KHl5KSwgcmVwbGFjZSA9IFRSVUUpCiAgcmVzYW1wbGVfeCA9IHh4W3Jlc2FtcGxlX2lkLCBdCiAgcmVzYW1wbGVfeSA9IHl5W3Jlc2FtcGxlX2lkLCBdCiAgY3ZmaXQgPSBjdi5nbG1uZXQocmVzYW1wbGVfeCwgcmVzYW1wbGVfeSwgZmFtaWx5ID0gImNveCIsIG5mb2xkcyA9IDUsIHBlbmFsdHkuZmFjdG9yID0gcGYpCiAgYmV0YV9hbGxbLCBqXSA9IGFzLnZlY3Rvcihjb2VmKGN2Zml0LCBzID0gY3ZmaXQkbGFtYmRhLm1pbikpCn0KCiMgaWRlbnRpZnkgZmVhdHVyZXMgYXQgbGVhc3QgODAlIGZyZXF1ZW50bHkgc2VsZWN0ZWQKeF9zdGFibGUgPSBkYXRhLmZyYW1lKHh4Wywgcm93U3VtcyhiZXRhX2FsbCAhPSAwKSA+PSBrICogMC44XSkKeF9zdGFibGUkZXRobmljaXR5ID0gZmFjdG9yKHhfc3RhYmxlJGV0aG5pY2l0eSkgCmxldmVscyh4X3N0YWJsZSRldGhuaWNpdHkpID0gYygiSGlzcGFuaWMvbGF0aW5vIiwgIk5vdCBoaXNwYW5pYy9sYXRpbm8iKQoKZGF0YV90bXAgPSBkYXRhLmZyYW1lKHRpbWVzID0geXlbLCAidGltZSJdLCBzdGF0dXMgPSB5eVssICJzdGF0dXMiXSwgeF9zdGFibGUpCmYgPSBjcGgoZm9ybXVsYSA9IFN1cnYodGltZXMsIHN0YXR1cykgfiBhZ2UgKyBldGhuaWNpdHkgKyBBTkxOICsgQkxWUkEgKyBFR0ZSLCAgCiAgICAgICAgICAgICBkYXRhID0gZGF0YV90bXAsIHggPSBUUlVFLCB5ID0gVFJVRSwgc3VydiA9IFRSVUUpCmRkaXN0ID0gZGF0YWRpc3QoZGF0YV90bXApCm9sZG9wdGlvbiA9IG9wdGlvbnMoZGF0YWRpc3QgPSAnZGRpc3QnKQpzdXJ2ID0gU3Vydml2YWwoZikKbm9tID0gbm9tb2dyYW0oZiwgZnVuID0gbGlzdChmdW5jdGlvbih4KSBzdXJ2KDEsIHgpLCBmdW5jdGlvbih4KSBzdXJ2KDMsIHgpLCBmdW5jdGlvbih4KSBzdXJ2KDUsIHgpKSwKICAgICAgICAgICAgICAgICAgICBmdW5sYWJlbCA9IGMoIjEtWWVhciBTdXJ2aXZhbCBQcm9iYWJpbGl0eSIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiMy1ZZWFyIFN1cnZpdmFsIFByb2JhYmlsaXR5IiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI1LVllYXIgU3Vydml2YWwgUHJvYmFiaWxpdHkiKSwKICAgICAgICAgICAgICAgICAgICBscCA9IEZBTFNFKQpyZWdwbG90OjpyZWdwbG90KGYsIG9ic2VydmF0aW9uID0gZGF0YV90bXBbMSxdLCBmYWlsdGltZSA9IGMoMSwgMywgNSksIHRpdGxlID0gIiIsCiAgICAgICAgICAgICAgICAgcHJmYWlsID0gRkFMU0UsIHBvaW50cyA9IFRSVUUsIHNob3dQID0gRkFMU0UsIHN1YnRpY2tzID0gVFJVRSkgCmBgYAohW19Ob21vZ3JhbSBkZXZlbG9wZWQgdG8gZXN0aW1hdGUgdGhlIG92ZXJhbGwgc3Vydml2YWwgcHJvYmFiaWxpdHkgZm9yIFRDR0EncyBCUkFDIHBhdGllbnRzIGJhc2VkIG9uIGRlbW9ncmFwaGljIGFuZCBMYXNzbyBDb3ggc2VsZWN0ZWQgbVJOQSBmZWF0dXJlcy4gVGhlIHJlZCBjb2xvdXJlZCBzeW1ib2xzIHJlcHJlc2VudCBvbmUgcGF0aWVudOKAmXMgaW5mb3JtYXRpb24gYW5kIHByZWRpY3RlZCBwcm9iYWJpbGl0aWVzIG9mIDEteWVhciwgMy15ZWFyIGFuZCA1LXllYXIgc3Vydml2YWwuX10oZmlnL1RDR0Ffc3Vydl9ub21vZ3JhbS5wbmcpe3dpZHRoPTgwJX0KCjxicj4gCgo8Zm9udCBzaXplPSI0Ij4gWyoqQ2FsaWJyYXRpb24gcGxvdCoqXXsjc2xvcGVDYWxpfSA8L2ZvbnQ+IAoKQSBjYWxpYnJhdGlvbiBwbG90IGlzIGEgc3RyYWlnaHRmb3J3YXJkIHZpc3VhbGl6YXRpb24gdG8gc2hvdyB0aGUgcHJlZGljdGlvbiBhYmlsaXR5IG9mIHRoZSBub21vZ3JhbSwgaS5lLiwgdGhlIGFncmVlbWVudCBiZXR3ZWVuIHByZWRpY3RlZCBzdXJ2aXZhbCBwcm9iYWJpbGl0aWVzIGZyb20gdGhlIGZpbmFsIG1vZGVsIGFuZCB0aGUgS00gZXN0aW1hdGVkIHN1cnZpdmFsIHByb2JhYmlsaXRpZXMgaW4gZGlmZmVyZW50IHBlcmNlbnRpbGVzIG9mIHRoZSBwcmVkaWN0ZWQgdmFsdWVzIGF0IGEgdGltZSBwb2ludCBvZiBpbnRlcmVzdC4gCldlIGRlbW9uc3RyYXRlIGJlbG93IGNhbGlicmF0aW9uIHBsb3RzIGJhc2VkIG9uIHRyYWluaW5nIGFuZCB2YWxpZGF0aW9uIGRhdGEgc2V0cywgcmVzcGVjdGl2ZWx5LgoKYGBge3J9CiMgQ2FsaWJyYXRpb24gYXQgNS15ZWFyIHRpbWUtcG9pbnQKCiMgcHJlcGFyZSBzdWl0YWJsZSBkYXRhIGZvcm1hdCBmb3IgY2FsaWJyYXRpb24gcGxvdApzZXQuc2VlZCgxMjMpCnRyYWluX2lkIDwtIHNhbXBsZSgxOm5yb3coeXkpLCBucm93KHl5KSAqIDAuOCwgcmVwbGFjZSA9IEZBTFNFKQpkYXRhX3RyYWluID0gZGF0YV90bXBbdHJhaW5faWQsIF0KZGF0YV92YWxpZGF0ZSA9IGRhdGFfdG1wWy10cmFpbl9pZCwgXQoKZGRpc3QgPSBkYXRhZGlzdChkYXRhX3RyYWluKQpvcHRpb25zKGRhdGFkaXN0ID0gJ2RkaXN0JykKZl90cmFpbiA9IGNwaChmb3JtdWxhID0gU3Vydih0aW1lcywgc3RhdHVzKSB+IGFnZSArIGV0aG5pY2l0eSArIEFOTE4gKyBCTFZSQSArIEVHRlIsIAogICAgICAgICAgICAgIGRhdGEgPSBkYXRhX3RyYWluLCB4ID0gVFJVRSwgeSA9IFRSVUUsIHN1cnYgPSBUUlVFLCB0aW1lLmluYyA9IDUpCmZfdmFsaWRhdGUgPSB1cGRhdGUoZl90cmFpbiwgZGF0YSA9IGRhdGFfdmFsaWRhdGUpCmNhbF90cmFpbiA9IGNhbGlicmF0ZShmX3RyYWluLCB1ID0gNSwgY21ldGhvZCA9ICJLTSIsIG0gPSBucm93KGRhdGFfdHJhaW4pIC8gNCwgQiA9IDIwMCkKY2FsX3ZhbGlkYXRlID0gY2FsaWJyYXRlKGZfdmFsaWRhdGUsIHUgPSA1LCBjbWV0aG9kID0gIktNIiwgbSA9IG5yb3coZGF0YV92YWxpZGF0ZSkgLyA0LCBCID0gMjAwKQoKbGF5b3V0KG1hdHJpeCgxOjIsIG5yb3cgPSAxKSkKcGxvdChjYWxfdHJhaW4sIGx3ZCA9IDIsIGx0eSA9IDEsIGVycmJhci5jb2wgPSAic2VhZ3JlZW4zIiwKICAgICB4bGFiID0gJ1ByZWRpY3RlZCBzdXJ2aXZhbCBwcm9iYWJpbGl0eScsIHlsYWIgPSAnQWN0dWFsIHN1cnZpdmFsIHByb2JhYmlsaXR5JywKICAgICB4bGltID0gYygwLCAxKSwgeWxpbSA9IGMoMCwgMSksIGNvbCA9ICJzZWFncmVlbjMiLCBzdWJ0aXRsZXMgPSBGQUxTRSkKdGl0bGUobWFpbiA9ICJDYWxpYnJhdGlvbiBvbiB0cmFpbmluZyBkYXRhIikKCnBsb3QoY2FsX3ZhbGlkYXRlLCBsd2QgPSAyLCBsdHkgPSAxLCBlcnJiYXIuY29sID0gInNlYWdyZWVuMyIsCiAgICAgeGxhYiA9ICdQcmVkaWN0ZWQgc3Vydml2YWwgcHJvYmFiaWxpdHknLCB5bGFiID0gJ0FjdHVhbCBzdXJ2aXZhbCBwcm9iYWJpbGl0eScsCiAgICAgeGxpbSA9IGMoMCwgMSksIHlsaW0gPSBjKDAsIDEpLCBjb2wgPSAic2VhZ3JlZW4zIiwgc3VidGl0bGVzID0gRkFMU0UpCnRpdGxlKG1haW4gPSAiQ2FsaWJyYXRpb24gb24gdmFsaWRhdGlvbiBkYXRhIikKYGBgCmBgYHtyLCBlY2hvPUZBTFNFfQpwZGYoIlRDR0Ffc3Vydl9jYWxpYnJhdGlvbi5wZGYiLCB3aWR0aCA9IDcsIGhlaWdodCA9IDQpCmxheW91dChtYXRyaXgoMToyLCBucm93ID0gMSkpCnBsb3QoY2FsX3RyYWluLCBsd2QgPSAyLCBsdHkgPSAxLCBlcnJiYXIuY29sID0gInNlYWdyZWVuMyIsCiAgICAgeGxhYiA9ICdQcmVkaWN0ZWQgc3Vydml2YWwgcHJvYmFiaWxpdHknLCB5bGFiID0gJ0FjdHVhbCBzdXJ2aXZhbCBwcm9iYWJpbGl0eScsCiAgICAgeGxpbSA9IGMoMCwxKSwgeWxpbSA9IGMoMCwxKSwgY29sID0gInNlYWdyZWVuMyIsIHN1YnRpdGxlcyA9IEZBTFNFKQp0aXRsZShtYWluID0gIkNhbGlicmF0aW9uIG9uIHRyYWluaW5nIGRhdGEiKQoKcGxvdChjYWxfdmFsaWRhdGUsIGx3ZCA9IDIsIGx0eSA9IDEsIGVycmJhci5jb2wgPSAic2VhZ3JlZW4zIiwKICAgICB4bGFiID0gJ1ByZWRpY3RlZCBzdXJ2aXZhbCBwcm9iYWJpbGl0eScsIHlsYWIgPSAnQWN0dWFsIHN1cnZpdmFsIHByb2JhYmlsaXR5JywKICAgICB4bGltID0gYygwLDEpLCB5bGltID0gYygwLDEpLCBjb2wgPSAic2VhZ3JlZW4zIiwgc3VidGl0bGVzID0gRkFMU0UpCnRpdGxlKG1haW4gPSAiQ2FsaWJyYXRpb24gb24gdmFsaWRhdGlvbiBkYXRhIikKZGV2Lm9mZigpCmBgYAohW19Ob21vZ3JhbSBtb2RlbCBjYWxpYnJhdGlvbiBjdXJ2ZXMgZm9yIFRDR0EncyBCUkFDIHBhdGllbnRzIGF0IDUteWVhciBldmFsdWF0aW9uIHRpbWUtcG9pbnQuX10oZmlnL1RDR0Ffc3Vydl9jYWxpYnJhdGlvbi5wbmcpe3dpZHRoPTcwJX0KCjxicj4KCiMjIE1vZGVsIGV2YWx1YXRpb24gKG1scjMpIHstI21scjN9Cgo6Ojp7LmdyZWVuLWJveH0KVXNpbmcgdGhlIFsqKm1scjMqKl0oaHR0cHM6Ly9tbHIzLm1sci1vcmcuY29tKSBtYWNoaW5lIGxlYXJuaW5nIGZyYW1ld29yayBhbmQgdGhlIFsqKm1scjNwcm9iYSoqXShodHRwczovL21scjNwcm9iYS5tbHItb3JnLmNvbSkgYFJgIGxpYnJhcnksIHdlIHdpbGwgZGVtb25zdHJhdGUgaG93IHRvOgoKLSBDcmVhdGUgYSBzdXJ2aXZhbCB0YXNrIGZyb20gYSBkYXRhc2V0IGFuZCBzcGxpdCBpdCB0byB0cmFpbmluZyBhbmQgdGVzdCAodmFsaWRhdGlvbikgc2V0cwotIERlZmluZSBhIExhc3NvIENveCBtb2RlbCB0aGF0IGNhbiBvdXRwdXQgYm90aCBsaW5lYXIgcHJlZGljdG9ycyBhbmQgc3Vydml2YWwgZGlzdHJpYnV0aW9uIHByZWRpY3Rpb25zIGFuZCB0cmFpbi90dW5lIGl0IG9uIHRoZSB0cmFpbmluZyBzZXQKLSBNYWtlIHByZWRpY3Rpb25zIHVzaW5nIHRoZSB0cmFpbmVkIExhc3NvIENveCBtb2RlbCBvbiB0aGUgc2VwYXJhdGUgdGVzdCBzZXQKLSBNZWFzdXJlIHRoZSBwZXJmb3JtYW5jZSBvZiBvdXIgbW9kZWwgKGRpc2NyaW1pbmF0aW9uIGFuZCBjYWxpYnJhdGlvbikgdXNpbmcgc2V2ZXJhbCBldmFsdWF0aW9uIG1ldHJpY3MKLSBVc2luZyByZXNhbXBsaW5nIHRlY2huaXF1ZXMsIHdlIHdpbGwgYXNzZXNzIG91ciBtb2RlbCdzIGNhcGFjaXR5IGZvciBnZW5lcmFsaXphdGlvbiAocHJlZGljdGlvbiBvbiB1bnNlZW4gZGF0YSkgYW5kIHRoZSBzdGFiaWxpdHkgb2YgdGhlIG1vZGVsJ3Mgc2VsZWN0ZWQgZmVhdHVyZXMKOjo6CgpGb3IgdGhlIHJlc3Qgb2YgdGhlIGFuYWx5c2lzLCB3ZSB3aWxsIGJvcnJvdyB0aGUgdGVybWlub2xvZ3kgZnJvbSB0aGUgWyoqbWxyMyoqXShodHRwczovL21scjMubWxyLW9yZy5jb20pIGVjb3N5c3RlbSBvZiBtYWNoaW5lIGxlYXJuaW5nIHBhY2thZ2VzIChlLmcuICp0YXNrKiBpcyBhIGRhdGFzZXQsICpsZWFybmVyKiBpcyBhIG1vZGVsLCBldGMuKS4KU2VlIFttbHIzIGJvb2tdKGh0dHBzOi8vbWxyM2Jvb2subWxyLW9yZy5jb20vKSBmb3IgbW9yZSBkZXRhaWxzLgoKRmlyc3QsIHdlIGxvYWQgdGhlIG5lY2Vzc2FyeSBbKiptbHIzKipdKGh0dHBzOi8vbWxyMy5tbHItb3JnLmNvbSkgbGlicmFyaWVzIFtATGFuZzIwMTk7IEBTb25hYmVuZDIwMjFdIGFuZCBzb21lIG90aGVyIHVzZWZ1bCBvbmVzOgpgYGB7ciwgbWVzc2FnZT1GQUxTRX0KbGlicmFyeSgibWxyM3ZlcnNlIikgIyBtbHIzLCBtbHIzcGlwZXBsaW5lcywgbWxyM2xlYXJuZXJzLCBtbHIzdHVuaW5nLCBwYXJhZG94LCBldGMuCmxpYnJhcnkoIm1scjNwcm9iYSIpICMgcHJvYmFiaWxpc3RpYyBsZWFybmluZyBhbmQgc3Vydml2YWwgYW5hbHlzaXMKbGlicmFyeSgibWxyM2V4dHJhbGVhcm5lcnMiKSAjIGZvciBscm4oJ3N1cnYuZ2xtbmV0JykKYGBgCgo8YnI+CgojIyMgV29ya2Zsb3cgey19CgpXZSBjb25zdHJ1Y3QgYW4gWyoqbWxyMyoqXShodHRwczovL21scjMubWxyLW9yZy5jb20pICpzdXJ2aXZhbCB0YXNrKiAoVENHQSBCUkNBIGRhdGFzZXQgZXNzZW50aWFsbHksIHdpdGggbm9ybWFsaXplZCBQQU01MCBnZW5lIGV4cHJlc3Npb24gZmVhdHVyZXMgYW5kIHR3byBjbGluaWNhbC9kZW1vZ3JhcGhpYyB2YXJpYWJsZXMpIGFuZCBzcGxpdCBpdCBpbnRvIHRyYWluaW5nIGFuZCB0ZXN0IHNldHMgKCQ4MFwlLzIwXCUkKToKYGBge3J9CiMgRnJvbSAnUGVuYWxpemVkIENveCBtb2RlbHMnIHNlY3Rpb246CiMgeCA9PiBnZW5lIGV4cHJlc3Npb24gbWF0cml4ICg1MCBQQU01MCBnZW5lcykgKyAyIGNsaW5pY2FsIHZhcmlhYmxlcwojIHkgPT4gKHRpbWUsIHN0YXR1cykgdGFyZ2V0IG1hdHJpeAoKZGF0YSA9IGNiaW5kLmRhdGEuZnJhbWUoeCwgeSkKIyBkYXRhID0gcmVhZFJEUyhmaWxlID0gJ2RhdGEucmRzJykKdGFzayA9IG1scjNwcm9iYTo6YXNfdGFza19zdXJ2KHggPSBkYXRhLCAKICB0aW1lID0gJ3RpbWUnLCBldmVudCA9ICdzdGF0dXMnLCBpZCA9ICdCUkNBLVRDR0EnKQp0YXNrICMgc2VlIHVzZWZ1bCBpbmZvIGFib3V0IHRoZSBkYXRhc2V0ICgjZmVhdHVyZXMsICNzYW1wbGVzLCB0YXJnZXQgdmFyaWFibGVzKQoKIyBzcGxpdCB0byB0cmFpbiBhbmQgdGVzdCBzZXRzCnNldC5zZWVkKDQyKQpzcGxpdCA9IG1scjM6OnBhcnRpdGlvbih0YXNrLCByYXRpbyA9IDAuOCkKIyBzcGxpdCR0cmFpbiAjIHRyYWluIGluZGljZXMKIyBzcGxpdCR0ZXN0ICMgdGVzdCBpbmRpY2VzCmBgYApgYGAKPFRhc2tTdXJ2OkJSQ0EtVENHQT4gKDEwNDcgeCA1NCkKKiBUYXJnZXQ6IHRpbWUsIHN0YXR1cwoqIFByb3BlcnRpZXM6IC0KKiBGZWF0dXJlcyAoNTIpOgogIC0gZGJsICg1Mik6IEFDVFIzQiwgQU5MTiwgQkFHMSwgQkNMMiwgQklSQzUsIEJMVlJBLCBDQ05CMSwgQ0NORTEsIENEQzIwLCBDREM2LCBDREgzLAogICAgQ0VOUEYsIENFUDU1LCBDWFhDNSwgRUdGUiwgRVJCQjIsIEVTUjEsIEVYTzEsIEZHRlI0LCBGT1hBMSwgRk9YQzEsIEdQUjE2MCwgR1JCNywKICAgIEtJRjJDLCBLUlQxNCwgS1JUMTcsIEtSVDUsIE1BUFQsIE1ETTIsIE1FTEssIE1JQSwgTUtJNjcsIE1MUEgsIE1NUDExLCBNWUJMMiwgTVlDLAogICAgTkFUMSwgTkRDODAsIE5VRjIsIE9SQzYsIFBHUiwgUEhHREgsIFBUVEcxLCBSUk0yLCBTRlJQMSwgU0xDMzlBNiwgVE1FTTQ1QiwgVFlNUywKICAgIFVCRTJDLCBVQkUyVCwgYWdlLCBldGhuaWNpdHkKYGBgCgpXZSBjcmVhdGUgYSBMYXNzbyBDb3ggWyoqbWxyMyoqXShodHRwczovL21scjMubWxyLW9yZy5jb20pICpncmFwaCBsZWFybmVyKiAoYSB3cmFwcGVyIGFyb3VuZCB0aGUgYGdsbW5ldDo6Y3YuZ2xtbmV0KClgIGZ1bmN0aW9uIHdpdGggdGhlIGNhcGFjaXR5IHRvIHByb3ZpZGUgc3Vydml2YWwgcHJlZGljdGlvbnMpLCB3aGVyZSB3ZSBzcGVjaWZ5IHRoZSB0d28gY2xpbmljYWwgdmFyaWFibGVzIHRvIGJlICptYW5kYXRvcnkqIChpLmUuIG5vIHBlbmFsaXphdGlvbikgYW5kIHRoZSAkcyQgdmFsdWUgKCRcbGFtYmRhJCBwYXJhbWV0ZXIgdXNlZCBmb3IgcHJlZGljdGlvbikgZXF1YWwgdG8gYGxhbWJkYS5taW5gOgpgYGB7cn0KI3RhaWwodGFzayRmZWF0dXJlX25hbWVzKSAjIGFnZSwgZXRobmljaXR5IGFyZSB0aGUgMiBsYXN0IGZlYXR1cmVzCnBmID0gYyhyZXAoMSwgbGVuZ3RoKHRhc2skZmVhdHVyZV9uYW1lcykgLSAyKSwgcmVwKDAsIDIpKQoKIyBkZWZpbmUgbW9kZWwKY294bGFzc28gPSBscm4oJ3N1cnYuY3ZfZ2xtbmV0JywgYWxwaGEgPSAxLCBuZm9sZHMgPSA1LCBzID0gJ2xhbWJkYS5taW4nLAogIHBlbmFsdHkuZmFjdG9yID0gcGYpCiMgY294bGFzc28gIyBzZWUgZGV0YWlscyBvZiBjb3hsYXNzbyBsZWFybmVyCiMgY294bGFzc28kaGVscCgpICMgZm9yIG1vcmUgZGV0YWlscwoKIyA/bWxyX2dyYXBoc19kaXN0cmNvbXBvc2l0b3IKY294bGFzc29fZ3Jscm4gPSBtbHIzcGlwZWxpbmVzOjpwcGwoJ2Rpc3RyY29tcG9zaXRvcicsCiAgbGVhcm5lciA9IGNveGxhc3NvLAogIGVzdGltYXRvciA9ICdrYXBsYW4nLCAjIEtNIGVzdGltYXRvciBmb3IgdGhlIGJhc2VsaW5lCiAgZm9ybSA9ICdwaCcsICMgUHJvcG9ydGlvbmFsIEhhemFyZHMgZm9ybSBzaW5jZSB3ZSB1c2UgYSBMYXNzbyBDb3ggbW9kZWwKICBncmFwaF9sZWFybmVyID0gVFJVRQopCmNveGxhc3NvX2dybHJuJGlkID0gJ0xhc3NvIENveCcKIyBjb3hsYXNzb19ncmxybiRncmFwaF9tb2RlbCRwbG90KGh0bWwgPSBUUlVFKSAjIHBsb3QgdGhlIGdyYXBoIGxlYXJuZXIKYGBgCgo6Ojp7LmluZm8tYm94IC5ub3RlfQpBIENveCBwcm9wb3J0aW9uYWwgaGF6YXJkcyBtb2RlbCAoYW5kIExhc3NvIENveCBhcyBhIGNvbnNlcXVlbmNlKSBpcyBhIHNlbWktcGFyYW1ldHJpYyBtb2RlbCwgd2hpY2ggbWVhbnMgdGhhdCBpdCBkb2VzIG5vdCBwcm9kdWNlIHN1cnZpdmFsIGRpc3RyaWJ1dGlvbiBwcmVkaWN0aW9ucyBieSBkZWZhdWx0LgpIb3dldmVyLCB1c2luZyB0aGUgZnVuY3Rpb24gYHN1cnZpdmFsOjpzdXJ2Zml0LmNveHBoKClgIHlvdSBjYW4gdHJhbnNmb3JtIHRoZSBgY3YuZ2xtbmV0YCdzIG91dHB1dCBsaW5lYXIgcHJlZGljdG9ycyAoYGxwYCkgdG8gc3Vydml2YWwgZGlzdHJpYnV0aW9uIHByZWRpY3Rpb25zLgpUaGlzIHRyYW5zZm9ybWF0aW9uIGludGVybmFsbHkgdXNlcyB0aGUgQnJlc2xvdyBlc3RpbWF0b3IgZm9yIHRoZSBjdW11bGF0aXZlIGJhc2VsaW5lIGhhemFyZCAoc2VlIGBzdHlwZWAgcGFyYW1ldGVyKS4KClVzaW5nIFsqKm1scjNwcm9iYSoqXShodHRwczovL21scjNwcm9iYS5tbHItb3JnLmNvbSkgW0BTb25hYmVuZDIwMjFdLCB3ZSBjYW4gY29uc3RydWN0IGEgcGlwZWxpbmUgW0BtbHIzcGlwZWxpbmVzMjAyMV0gdGhhdCBjb21iaW5lcyB0aGUgZGlzdHJpYnV0aW9uIHByZWRpY3Rpb25zIG9mIGEgYmFzZWxpbmUgbW9kZWwgKGUuZy4gS2FwbGFuIE1laWVyKSB3aXRoIHRoZSBsaW5lYXIgcHJlZGljdG9ycyBvZiBhIENveC10eXBlIG1vZGVsIChlLmcuIExhc3NvIENveCkuClNlZSBkZXRhaWxzIHN1Y2ggYXMgdGhlIHRyYW5zZm9ybWF0aW9uIGFzc3VtcHRpb25zLCB0aGUgY2hvaWNlIG9mIHRoZSBzdXJ2aXZhbCBmdW5jdGlvbiBmb3JtIGFuZCB0aGUgYXZhaWxhYmxlIGJhc2VsaW5lIHN1cnZpdmFsIGRpc3RyaWJ1dGlvbiBlc3RpbWF0b3JzIG9uIHRoZSByZXNwZWN0aXZlIFtkb2N1bWVudGF0aW9uXShodHRwczovL21scjNwcm9iYS5tbHItb3JnLmNvbS9yZWZlcmVuY2UvbWxyX3BpcGVvcHNfY29tcG9zZV9kaXN0ci5odG1sKS4KOjo6Cgo8YnI+CgpUcmFpbiB0aGUgTGFzc28gQ294IG1vZGVsOgpgYGB7cn0Kc2V0LnNlZWQoMykKY294bGFzc29fZ3Jscm4kdHJhaW4odGFzaywgcm93X2lkcyA9IHNwbGl0JHRyYWluKQojIHZpZXcgYGN2LmdsbW5ldGAgZml0CmNveGxhc3NvX2dybHJuJG1vZGVsJHN1cnYuY3ZfZ2xtbmV0JG1vZGVsCmBgYApgYGAKQ2FsbDogIChpZiAoY3YpIGdsbW5ldDo6Y3YuZ2xtbmV0IGVsc2UgZ2xtbmV0OjpnbG1uZXQpKHggPSBkYXRhLCB5ID0gdGFyZ2V0LCAgICAgIG5mb2xkcyA9IDVMLCBhbHBoYSA9IDEsIHBlbmFsdHkuZmFjdG9yID0gYygxLCAuLi4sIDAsIDApLCBmYW1pbHkgPSAiY294IikgCgpNZWFzdXJlOiBQYXJ0aWFsIExpa2VsaWhvb2QgRGV2aWFuY2UgCgogICAgIExhbWJkYSBJbmRleCBNZWFzdXJlICAgICBTRSBOb256ZXJvCm1pbiAwLjAxMDgyICAgIDE0ICAgMTIuMzEgMC4yNzQzICAgICAgMTUKMXNlIDAuMDM2MjYgICAgIDEgICAxMi4zNSAwLjI1NjQgICAgICAgMgpgYGAKCkdldCB0aGUgc3Vydml2YWwgZGlzdHJpYnV0aW9uIHByZWRpY3Rpb25zICgkZGlzdHIkKSBhbG9uZyB3aXRoIHRoZSBsaW5lYXIgcHJlZGljdG9ycyAoJGxwJCk6CmBgYHtyfQpwcmVkID0gY294bGFzc29fZ3Jscm4kcHJlZGljdCh0YXNrLCByb3dfaWRzID0gc3BsaXQkdGVzdCkKaGVhZChhcy5kYXRhLnRhYmxlKHByZWQpKQpgYGAKYGBgCiAgIHJvd19pZHMgICAgICB0aW1lIHN0YXR1cyAgICAgY3JhbmsgICAgICAgIGxwICAgICBkaXN0cgoxOiAgICAgICA1IDAuOTUyNzcyMSAgRkFMU0UgLTIuMzQ2NTc0IC0yLjM0NjU3NCA8bGlzdFsxXT4KMjogICAgICAgNiA0LjA0MzgwNTYgIEZBTFNFIC0yLjgwNjcwOCAtMi44MDY3MDggPGxpc3RbMV0+CjM6ICAgICAgMTUgMS43Mzg1MzUyICBGQUxTRSAtMS44NDUwNDIgLTEuODQ1MDQyIDxsaXN0WzFdPgo0OiAgICAgIDQ1IDQuNTgwNDI0NCAgRkFMU0UgLTEuNzE1MDQxIC0xLjcxNTA0MSA8bGlzdFsxXT4KNTogICAgICA1MCA1LjEyNzk5NDUgIEZBTFNFIC0yLjc5MDEyMiAtMi43OTAxMjIgPGxpc3RbMV0+CjY6ICAgICAgNTQgNi42ODU4MzE2ICBGQUxTRSAtMi40NjYzNjAgLTIuNDY2MzYwIDxsaXN0WzFdPgpgYGAKClNvIGZvciBldmVyeSBwYXRpZW50IGluIHRoZSB0ZXN0IHNldCwgdGhlIExhc3NvIENveCBtb2RlbCBwcmVkaWN0aW9uIGlzIGEgbGluZWFyIHByZWRpY3RvciBvZiB0aGUgZm9ybSAkbHAgPSBcaGF0e1xiZXRhfSBYX3tuZXd9JC4KJGNyYW5rJCBzdGFuZHMgZm9yIGNvbnRpbnVvdXMgcmFua2luZyBzY29yZSBhbmQgaXQncyB0aGUgc2FtZSBhcyAkbHAkIGZvciB0aGUgTGFzc28gQ294IG1vZGVsLgpUaGUgJGRpc3RyJCBwcmVkaWN0aW9ucyBhcmUgdGhlIHBlci1wYXRpZW50IHN1cnZpdmFsIGRpc3RyaWJ1dGlvbiBwcmVkaWN0aW9ucywgaW1wbGVtZW50ZWQgYnkgdGhlIGBSYCBwYWNrYWdlIFtkaXN0cjZdKGh0dHBzOi8vZ2l0aHViLmNvbS9hbGFuLXR1cmluZy1pbnN0aXR1dGUvZGlzdHI2KSB3aGljaCB0aGUgWyoqbWxyM3Byb2JhKipdKGh0dHBzOi8vbWxyM3Byb2JhLm1sci1vcmcuY29tKSBpbXBvcnRzLgpTZWUgcmVzcGVjdGl2ZSBbZG9jdW1lbnRhdGlvbl0oaHR0cHM6Ly9tbHIzcHJvYmEubWxyLW9yZy5jb20vcmVmZXJlbmNlL1ByZWRpY3Rpb25TdXJ2Lmh0bWwpIG9uIHRoZSBkaWZmZXJlbnQgcHJlZGljdGlvbiB0eXBlcyBzdXBwb3J0ZWQuCgpBbiBleGFtcGxlIG9mIHVzaW5nIHRoZSBgZGlzdHJgIHByZWRpY3Rpb25zIHdvdWxkIGJlIHRvIHJlcXVlc3QgZm9yIHRoZSBzdXJ2aXZhbCBwcm9iYWJpbGl0eSBhdCBlLmcuICQxLDUsMTAsMjAkIHllYXJzIGZvciB0aGUgZmlyc3QgdHdvIHBhdGllbnRzIGluIHRoZSB0ZXN0IHNldDoKYGBge3J9CnRpbWVzID0gYygxLDUsMTAsMjApCnByZWQkZGlzdHIkc3Vydml2YWwodGltZXMpWyxjKDEsMildCgojIHNhbWUgbG9naWMgZm9yIHRoZSBjdW11bGF0aXZlIGhhemFyZAojIHByZWQkZGlzdHIkY3VtSGF6YXJkKHRpbWVzKVssYygxLDIpXQpgYGAKYGBgCiAgICAgICAgWywxXSAgICAgIFssMl0KMSAgMC45OTgyMjY0IDAuOTk4ODgwMQo1ICAwLjk4MDM1MTUgMC45ODc1NTI2CjEwIDAuOTQ4NTA1NyAwLjk2NzE4MDcKMjAgMC45MDUwODMyIDAuOTM4OTkxOApgYGAKCjxicj4KCiMjIyBEaXNjcmltaW5hdGlvbiBtZXRyaWNzIHstfQoKV2Ugd2FudCB0byB0ZXN0IG91ciBMYXNzbyBDb3ggbW9kZWwgYW5kIHNlZSBob3cgd2VsbCBpdCB3YXMgYWJsZSB0byAqKmRpc2NyaW1pbmF0ZSB0aGUgcGF0aWVudHMgaW4gdGhlIHRlc3Qgc2V0KiouCkZvciB0aGlzIHdlIGNhbiB1c2UgdGhlICRscCQgcHJlZGljdGlvbnMgb2YgTGFzc28gQ294IG1vZGVsIGFuZCBtZXRyaWNzIHN1Y2ggYXMgdGhlICh0aW1lLWRlcGVuZGVudCkgQy1pbmRleCBhbmQgKHRpbWUtZGVwZW5kZW50KSBBVUMuCjxicj4KCjxmb250IHNpemU9IjQiPiAqKkhhcnJlbGwncyBDLWluZGV4KiogW0BIYXJyZWxsMTk4Ml06IDwvZm9udD4gCmBgYHtyfQpoYXJyZWxsX2MgPSBtc3IoJ3N1cnYuY2luZGV4JykKaGFycmVsbF9jJGlkID0gJ3N1cnYuY2luZGV4LmhhcnJlbGwnCgojIGhhcnJlbGxfYyAjIGdldCBzb21lIGRldGFpbHMgYWJvdXQgdGhlIG1lYXN1cmUKIyBoYXJyZWxsX2MkbWluaW1pemUgIyBGQUxTRSA9PiBoaWdoZXIgQy1pbmRleCBpcyBiZXR0ZXIKIyBoYXJyZWxsX2MkcmFuZ2UgIyBbMCwgMV0gPT4gW21pbiwgbWF4XQojIGhhcnJlbGxfYyRwcmVkaWN0X3R5cGUgIyB1c2VzIHRoZSAkY3JhbmskIHByZWRpY3Rpb25zIChlcXVhbCB0byAkbHAkIGZvciBMYXNzbyBDb3gKCnByZWQkc2NvcmUoaGFycmVsbF9jKQpgYGAKYGBgCnN1cnYuY2luZGV4LmhhcnJlbGwgCiAgICAgICAgICAwLjYyMjQzMDYgCmBgYAoKPGJyPgoKPGZvbnQgc2l6ZT0iNCI+ICoqVW5vJ3MgQy1pbmRleCoqIFtAVW5vMjAxMV06IChhY3Jvc3MgYWxsIHRpbWUgcG9pbnRzIG9mIHRoZSB0ZXN0IHNldCk6IDwvZm9udD4gCmBgYHtyfQp1bm9fYyA9IG1zcignc3Vydi5jaW5kZXgnLCB3ZWlnaHRfbWV0aCA9ICdHMicpCnVub19jJGlkID0gJ3N1cnYuY2luZGV4LnVubycKCiMgVW5vJ3MgQyBuZWVkcyB0aGUgdHJhaW4gZGF0YQpwcmVkJHNjb3JlKHVub19jLCB0YXNrID0gdGFzaywgdHJhaW5fc2V0ID0gc3BsaXQkdHJhaW4pCmBgYApgYGAKc3Vydi5jaW5kZXgudW5vIAogICAgICAwLjU5MzI0MjYgCmBgYAoKPGJyPgoKPGZvbnQgc2l6ZT0iNCI+ICoqVW5vJ3MgSW50ZWdyYXRlZCBBVUMqKiBbQFVubzIwMDddIChhY3Jvc3MgYWxsIHRpbWUgcG9pbnRzIG9mIHRoZSB0ZXN0IHNldCk6IDwvZm9udD4gCmBgYHtyfQp1bm9faWF1YyA9IG1zcignc3Vydi51bm9fYXVjJykKdW5vX2lhdWMkaWQgPSAnc3Vydi51bm9faWF1YycKIyB1bm9faWF1YyRwYXJhbV9zZXQkdmFsdWVzJGludGVncmF0ZWQgIyBpbnRlZ3JhdGVkID0gVFJVRSBieSBkZWZhdWx0CiMgc29ydCh1bmlxdWUocHJlZCR0cnV0aFssMV0pKSAjIHRpbWUgcG9pbnRzIHVzZWQKCiMgdW5vX2lhdWMkcHJvcGVydGllcyAjIG5lZWRzIHRoZSB0cmFpbiBkYXRhCnByZWQkc2NvcmUodW5vX2lhdWMsIHRhc2sgPSB0YXNrLCB0cmFpbl9zZXQgPSBzcGxpdCR0cmFpbikKYGBgCmBgYApzdXJ2LnVub19pYXVjIAogICAgMC42NTg1NzkxIApgYGAKCjxicj4KCjxmb250IHNpemU9IjQiPiAqKlVubydzIEFVQyBhdCBhIHNwZWNpZmljIHRpbWUgcG9pbnQqKiwgZS5nLiAkMTAkIHllYXJzOiA8L2ZvbnQ+IApgYGB7cn0KdW5vX2F1YyA9IG1zcignc3Vydi51bm9fYXVjJywgaW50ZWdyYXRlZCA9IEZBTFNFLCB0aW1lcyA9IDEwKQp1bm9fYXVjJGlkID0gJ3N1cnYudW5vX2F1Yy4xMCcKCiMgbmVlZHMgdGhlIHRyYWluIGRhdGEKcHJlZCRzY29yZSh1bm9fYXVjLCB0YXNrID0gdGFzaywgdHJhaW5fc2V0ID0gc3BsaXQkdHJhaW4pCmBgYApgYGAKc3Vydi51bm9fYXVjLjEwIAogICAgICAwLjY2NzAxNCAKYGBgCgo8YnI+CgojIyMgQ2FsaWJyYXRpb24gbWV0cmljcyB7LX0KCldlIHdhbnQgdG8gdGVzdCBob3cgd2VsbCBvdXIgTGFzc28gQ294IG1vZGVsIHdhcyAqKmNhbGlicmF0ZWQqKi4gQEFuZHJlczIwMTggYW5kIEBIYWlkZXIyMDIwIHN1Z2dlc3RlZCB0aGUgZGlzdHJpYnV0aW9uYWwgKEQpLWNhbGlicmF0aW9uIGFjY291bnRpbmcgc3Vydml2YWwgcHJvYmFiaWxpdGllcyBhY3Jvc3MgYWxsIHRpbWVzLiBUaGlzIGNhbiBiZSB1c2VmdWwgd2hlbiBhc3Nlc3NpbmcgdGhlIGVudGlyZSBwb3N0LXRyZWF0bWVudCBzdXJ2aXZhbCBwcm9nbm9zaXMsIGZvciBleGFtcGxlLCBhc3Nlc3NpbmcgdGhlIHBvc3QgbGl2ZXIgdHJhbnNwbGFudGF0aW9uIHN1cnZpdmFsIHV0aWxpdHkgaW4gQEFuZHJlczIwMTguCgo8Zm9udCBzaXplPSI0Ij4gKipELWNhbGlicmF0aW9uKiogPC9mb250PiAKYGBge3J9CmRjYWwgPSBtc3IoJ3N1cnYuZGNhbGliJykKcHJlZCRzY29yZShkY2FsKQpgYGAKYGBgCnN1cnYuZGNhbGliIAogICAyMi41NzAzNSAKYGBgCgo8YnI+CgojIyMgT3ZlcmFsbCBtZXRyaWNzIHstfQoKVXN1YWxseSB3ZSBkZXJpdmUgYW4gZXN0aW1hdGlvbiBvZiB0aGUgZXJyb3IgYmV0d2VlbiB0aGUgc3Vydml2YWwgZGlzdHJpYnV0aW9ucyAoJGRpc3RyJCBwcmVkaWN0aW9ucykgb2YgdGhlIHBhdGllbnRzIGluIHRoZSB0ZXN0IHNldCBhbmQgdGhlaXIgYWN0dWFsIHN1cnZpdmFsIG91dGNvbWVzIChjb3JyZXNwb25kaW5nIHRvIHRoZSBzdXJ2aXZhbCB0YXNrJ3MgYHRpbWVgIGFuZCBgc3RhdHVzYCB2YXJpYWJsZXMpLgpUaGUgbW9zdCBmcmVxdWVudGx5IHVzZWQgbWV0cmljIGlzIHRoZSBCcmllciBTY29yZSBbQEdyYWYxOTk5XToKPGJyPgoKPGZvbnQgc2l6ZT0iNCI+ICoqSW50ZWdyYXRlZCBCcmllciBTY29yZSAoSUJTKSoqIChhY3Jvc3MgYWxsIHRpbWUgcG9pbnRzIG9mIHRoZSB0ZXN0IHNldCk6IDwvZm9udD4gCmBgYHtyfQppYnJpZXIgPSBtc3IoJ3N1cnYuYnJpZXInLCBwcm9wZXIgPSBUUlVFKQojIGlicmllciRoZWxwKCkgIyBzZWUgZG9jdW1lbnRhdGlvbgojIGlicmllciRwcmVkaWN0X3R5cGUgIyB1c2VzIHRoZSBgZGlzdHJgIHByZWRpY3Rpb25zCgojIGJldHRlciB0byB1c2UgdGhlIHRyYWluIGRhdGEgZm9yIHRoZSBLYXBsYW4tTWVpZXIgZXN0aW1hdGlvbiBvZiB0aGUgY2Vuc29yaW5nIGRpc3RyaWJ1dGlvbiwgYnV0IGNhbiB1c2UgdGhlIHRlc3Qgc2V0IGFzIHdlbGwKcHJlZCRzY29yZShpYnJpZXIsIHRhc2sgPSB0YXNrLCB0cmFpbl9zZXQgPSBzcGxpdCR0cmFpbikKYGBgCmBgYApzdXJ2LmdyYWYgCjAuMzM4Mzg2IApgYGAKCldlIGNhbiBhbHNvIGdldCB0aGUgKnN0YW5kYXJkIGVycm9yKiBvZiBJQlMgKHRoZSBhYm92ZSByZXN1bHQgaXMgdGhlIG1lYW4gYWNyb3NzIGFsbCB0aGUgdGVzdCBzZXQncyBwYXRpZW50cykgYXMgZm9sbG93czoKYGBge3J9Cmlicmllcl9zZSA9IG1zcignc3Vydi5icmllcicsIHByb3BlciA9IFRSVUUsIHNlID0gVFJVRSkKcHJlZCRzY29yZShpYnJpZXJfc2UsIHRhc2sgPSB0YXNrLCB0cmFpbl9zZXQgPSBzcGxpdCR0cmFpbikKYGBgCmBgYAogc3Vydi5ncmFmIAowLjAyMTA2NzQ0CmBgYAoKPGJyPgoKPGZvbnQgc2l6ZT0iNCI+ICoqQnJpZXIgU2NvcmUgYXQgYSBzcGVjaWZpYyB0aW1lIHBvaW50KiosIGUuZy4gJDEwJCB5ZWFyczogPC9mb250PiAKYGBge3J9CmJyaWVyMTAgPSBtc3IoJ3N1cnYuYnJpZXInLCBwcm9wZXIgPSBUUlVFLCBpbnRlZ3JhdGVkID0gRkFMU0UsIHRpbWVzID0gMTApCmJyaWVyMTAkaWQgPSAnc3Vydi5ncmFmLjEwJwoKIyBiZXR0ZXIgdG8gdXNlIHRoZSB0cmFpbiBkYXRhIGZvciB0aGUgS2FwbGFuLU1laWVyIGVzdGltYXRpb24gb2YgdGhlIGNlbnNvcmluZyBkaXN0cmlidXRpb24sIGJ1dCBjYW4gdXNlIHRoZSB0ZXN0IHNldCBhcyB3ZWxsCnByZWQkc2NvcmUoYnJpZXIxMCwgdGFzayA9IHRhc2ssIHRyYWluX3NldCA9IHNwbGl0JHRyYWluKQpgYGAKYGBgCnN1cnYuZ3JhZi4xMCAKICAgMC4zNzUxOTU4IApgYGAKCjxicj4KCjxmb250IHNpemU9IjQiPiAqKlJpZ2h0LWNlbnNvcmVkIExvZ2FyaXRobWljIExvc3Mgc2NvcmUqKiAoUkNMTCkgW0BBdmF0aTIwMjA7QFNvbmFiZW5kMjAyMl06IDwvZm9udD4gCmBgYHtyfQpyY2xsID0gbXNyKCdzdXJ2LnJjbGwnKQpwcmVkJHNjb3JlKHJjbGwpCmBgYApgYGAKc3Vydi5yY2xsIAogNC42ODY3NDIgCmBgYAoKPGJyPgoKOjo6ey5pbmZvLWJveCAubm90ZX0KVmlldyBhbGwgZXZhbHVhdGlvbiBtZXRyaWNzIGZvciBzdXJ2aXZhbCBkYXRhIGltcGxlbWVudGVkIGluIFsqKm1scjNwcm9iYSoqXShodHRwczovL21scjNwcm9iYS5tbHItb3JnLmNvbSkgW2hlcmVdKGh0dHBzOi8vbWxyM3Byb2JhLm1sci1vcmcuY29tL3JlZmVyZW5jZS8jc3Vydml2YWwtbWVhc3VyZXMpCjo6OgoKPGJyPgoKIyMjIFVuY2VydGFpbnR5IFF1YW50aWZpY2F0aW9uIHstfQoKU2ltaWxhciBwcm9jZWR1cmUgYXMgZm9sbG93ZWQgaW4gYSBbcHJldmlvdXMgc2VjdGlvbl0oI3VxMSkuCgpXZSB3aWxsIHBlcmZvcm0gYSAqKnN0cmF0aWZpZWQgc3BsaXQqKiBvZiB0aGUgQlJDQS1UQ0dBIHN1cnZpdmFsIHRhc2sgdG8gdHJhaW5pbmcgYW5kIHRlc3Qgc2V0cyAod2l0aCBhICQ4MFwlLzIwXCUkIHJhdGlvIGFzIGJlZm9yZSkuClN0cmF0aWZpY2F0aW9uIG9uIHRoZSBjZW5zb3JpbmcgaW5kaWNhdG9yIGBzdGF0dXNgIGlzIGltcG9ydGFudCBiZWNhdXNlIHdlIHdhbnQgb3VyIHRyYWluaW5nIGFuZCB0ZXN0IHNldHMgdG8gaGF2ZSB0aGUgc2FtZSBjZW5zb3JpbmcgZGlzdHJpYnV0aW9uIGFzIHRoZSBpbml0aWFsIGRhdGFzZXQuClRodXMgd2UgY2FuIGF2b2lkIG1lYXN1cmluZyBwZXJmb3JtYW5jZSBvbiB0ZXN0IHNldHMgd2l0aCBzZXZlcmVseSBkaWZmZXJlbnQgY2Vuc29yaW5nIGRpc3RyaWJ1dGlvbnMgdGhhdCBtaWdodCBpbmZsdWVuY2UgdGhlIHBlcmZvcm1hbmNlIHNjb3Jlcy4KClN0cmF0aWZ5IHN1cnZpdmFsIHRhc2sgYnkgYHN0YXR1c2A6CmBgYHtyfQpjb3hsYXNzb19ncmxybiRyZXNldCgpICMgdW4tdHJhaW4gbW9kZWwKCnRhc2skY29sX3JvbGVzJHN0cmF0dW0gPSAnc3RhdHVzJwojIHRhc2sKYGBgCgpOZXh0LCB3ZSBkZWZpbmUgdGhlIHR5cGUgb2YgcmVzYW1wbGluZyAoYD9tbHJfcmVzYW1wbGluZ3Nfc3Vic2FtcGxpbmdgKSwgdHJhaW4gdGhlIExhc3NvIENveCBtb2RlbCBvbiBhbGwgdHJhaW5pbmcgc2V0cyAoJDEwMCQpIGFuZCBzdG9yZSB0aGUgZml0dGVkIG1vZGVscyBmb3IgZmVhdHVyZSBzZWxlY3Rpb24gYW5kIGV2YWx1YXRpb246CmBgYHtyLCByZXN1bHRzPSdoaWRlJ30KIyAxMDAgdGltZXMgdHJhaW4vdGVzdCBzcGxpdCAoODAlIGZvciB0cmFpbmluZywgMjAlIGZvciB2YWxpZGF0aW9uKQpzdWJzYW1wbGluZyA9IHJzbXAoJ3N1YnNhbXBsaW5nJywgcmVwZWF0cyA9IDEwMCwgcmF0aW8gPSAwLjgpCgpzZXQuc2VlZCg0MikKcnIgPSBtbHIzOjpyZXNhbXBsZSh0YXNrID0gdGFzaywgbGVhcm5lciA9IGNveGxhc3NvX2dybHJuLCAKICByZXNhbXBsaW5nID0gc3Vic2FtcGxpbmcsIHN0b3JlX21vZGVscyA9IFRSVUUsIHN0b3JlX2JhY2tlbmRzID0gVFJVRSkKYGBgCgpXZSBjYW4gdXNlIGFsbCB0aGUgYWZvcmVtZW50aW9uZWQgZXZhbHVhdGlvbiBtZXRyaWNzIHRvIG1lYXN1cmUgdGhlIHBlcmZvcm1hbmNlIG9mIHRoZSBMYXNzbyBDb3ggbW9kZWxzIG9uIHRoZSAkMTAwJCBkaWZmZXJlbnQgdGVzdCBzZXRzLgpOb3RlIHRoYXQgaWYgYSBtZXRyaWMgbmVlZHMgdGhlIHRyYWluaW5nIGRhdGFzZXQgaXQgaXMgYXV0b21hdGljYWxseSBwcm92aWRlZCBieSB0aGUgYFJlc2FtcGxlUmVzdWx0YCBvYmplY3QgKGBycmApOgpgYGB7cn0KbWVhc3VyZXMgPSBsaXN0KGhhcnJlbGxfYywgdW5vX2MsIHVub19pYXVjLCB1bm9fYXVjLCBpYnJpZXIsIGJyaWVyMTAsIHJjbGwsIGRjYWwpCgpyZXMgPSByciRzY29yZShtZWFzdXJlcyA9IG1lYXN1cmVzKQpoZWFkKHJlcykKYGBgCmBgYAogICAgIHRhc2tfaWQgbGVhcm5lcl9pZCByZXNhbXBsaW5nX2lkIGl0ZXJhdGlvbiBzdXJ2LmNpbmRleC5oYXJyZWxsIHN1cnYuY2luZGV4LnVubwoxOiBCUkNBLVRDR0EgIExhc3NvIENveCAgIHN1YnNhbXBsaW5nICAgICAgICAgMSAgICAgICAgICAgMC41Njc5MTY3ICAgICAgIDAuNjA5MDMwNAoyOiBCUkNBLVRDR0EgIExhc3NvIENveCAgIHN1YnNhbXBsaW5nICAgICAgICAgMiAgICAgICAgICAgMC41NTI0NTkwICAgICAgIDAuNDk2OTMyNgozOiBCUkNBLVRDR0EgIExhc3NvIENveCAgIHN1YnNhbXBsaW5nICAgICAgICAgMyAgICAgICAgICAgMC43NTAyODEyICAgICAgIDAuNTY4MjA2MQo0OiBCUkNBLVRDR0EgIExhc3NvIENveCAgIHN1YnNhbXBsaW5nICAgICAgICAgNCAgICAgICAgICAgMC42NTkxMzM3ICAgICAgIDAuNTI5NDgxNgo1OiBCUkNBLVRDR0EgIExhc3NvIENveCAgIHN1YnNhbXBsaW5nICAgICAgICAgNSAgICAgICAgICAgMC41NzUyNDcyICAgICAgIDAuNTU1MzMzNgo2OiBCUkNBLVRDR0EgIExhc3NvIENveCAgIHN1YnNhbXBsaW5nICAgICAgICAgNiAgICAgICAgICAgMC41NDI3ODM3ICAgICAgIDAuNjk3NTc0MAogICBzdXJ2LnVub19pYXVjIHN1cnYudW5vX2F1Yy4xMCBzdXJ2LmdyYWYgc3Vydi5ncmFmLjEwIHN1cnYucmNsbCAgc3Vydi5kY2FsaWIKMTogICAgIDAuNjYyODM1MCAgICAgICAwLjQ3MTkzMzUgMC4zMjU1MTgxICAgIDAuNjE2MTgyNSAgNi4wMzg5MDkgMS4wMjY5MDFlKzA3CjI6ICAgICAwLjQwMzg2ODIgICAgICAgMC41NzEyMDEyIDAuNDgxNTcwMCAgICAwLjY2NjY5OTQgIDYuODkzNDI1IDMuMzQyODA0ZSswOAozOiAgICAgMC41ODgyOTk1ICAgICAgIDAuNTIzNTQzOSAwLjI3OTY1ODAgICAgMC4yOTI2MzM0ICA0Ljk1NTExMCAyLjQ5MDk4MmUrMDEKNDogICAgIDAuNTM1NjQ2MSAgICAgICAwLjUwODIzODUgMC4yOTE1Mzk1ICAgIDAuMjMyNDI0OCAgNC45NTU0MDkgMi4yMjI4NDVlKzAxCjU6ICAgICAwLjYwOTA2MTUgICAgICAgMC41Mjg4NzUyIDAuMzQ5NzE4OSAgICAwLjQzNzExNDQgIDQuOTQzOTQzIDMuMzQ2NzgwZSswMQo2OiAgICAgMC42NDk0Nzc5ICAgICAgIDAuNjQwMDMyOCAwLjIwMzU2MDkgICAgMC40MjI4MTY5ICA1LjQzNDk3MCA0LjIyMzc0MmUrMDIKSGlkZGVuIGNvbHVtbnM6IHRhc2ssIGxlYXJuZXIsIHJlc2FtcGxpbmcsIHByZWRpY3Rpb24KYGBgCldlIGV4dHJhY3QgYW5kIHZpc3VhbGl6ZSB0aGUgZGlzY3JpbWluYXRpb24gYW5kIGNhbGlicmF0aW9uIChyZXNhbXBsZWQpIHBlcmZvcm1hbmNlIG9mIG91ciBMYXNzbyBDb3ggbW9kZWwgdXNpbmcgc2V2ZXJhbCBldmFsdWF0aW9uIG1ldHJpY3M6CmBgYHtyfQpzZXQuc2VlZCg0MikKCiMgQy1pbmRleGVzLCBBVUNzIChpbnRlZ3JhdGVkIGFuZCBhdCB0ID0gMTAgeWVhcnMpCnJlc1ssIC4oc3Vydi5jaW5kZXguaGFycmVsbCwgc3Vydi5jaW5kZXgudW5vLCBzdXJ2LnVub19pYXVjLCBzdXJ2LnVub19hdWMuMTApXSAlPiUgCiAgdGlkeXI6OnBpdm90X2xvbmdlcihjb2xzID0gdGlkeXNlbGVjdDo6ZXZlcnl0aGluZygpLCAKICAgIG5hbWVzX3RvID0gJ01lYXN1cmUnLCB2YWx1ZXNfdG8gPSAnVmFsdWUnKSAlPiUKICBtdXRhdGUoTWVhc3VyZSA9IGNhc2Vfd2hlbigKICAgIE1lYXN1cmUgPT0gJ3N1cnYuY2luZGV4LmhhcnJlbGwnIH4gJ0hhcnJlbGxcJ3MgQy1pbmRleCcsCiAgICBNZWFzdXJlID09ICdzdXJ2LmNpbmRleC51bm8nIH4gJ1Vub1wncyBDLWluZGV4JywKICAgIE1lYXN1cmUgPT0gJ3N1cnYudW5vX2lhdWMnIH4gJ1Vub1wncyBJbnRlZ3JhdGVkIEFVQycsCiAgICBNZWFzdXJlID09ICdzdXJ2LnVub19hdWMuMTAnIH4gJ1Vub1wncyBBVUMgKHQgPSAxMCB5ZWFycyknLAogICkpICU+JQogICBtdXRhdGUoTWVhc3VyZSA9IGZhY3RvcihNZWFzdXJlLCBsZXZlbHMgPSBjKAogICAgICdIYXJyZWxsXCdzIEMtaW5kZXgnLAogICAgICdVbm9cJ3MgQy1pbmRleCcsCiAgICAgJ1Vub1wncyBJbnRlZ3JhdGVkIEFVQycsCiAgICAgJ1Vub1wncyBBVUMgKHQgPSAxMCB5ZWFycyknKSkpICU+JQogIGdncGxvdChhZXMoeCA9IE1lYXN1cmUsIHkgPSBWYWx1ZSwgZmlsbCA9IE1lYXN1cmUpKSArCiAgICBnZW9tX2JveHBsb3QoKSArIAogICAgeWxpbShjKDAuMiwgMC44KSkgKyAKICAgIGdlb21faGxpbmUoeWludGVyY2VwdCA9IDAuNSwgY29sb3IgPSAncmVkJywgbGluZXR5cGUgPSAnZGFzaGVkJykgKwogICAgdGhlbWVfYncoYmFzZV9zaXplID0gMTQpICsgCiAgICBsYWJzKHRpdGxlID0gJ0Rpc2NyaW1pbmF0aW9uIE1lYXN1cmVzJykgKwogICAgdGhlbWUoYXhpcy50ZXh0LnggPSBlbGVtZW50X2JsYW5rKCkpCmBgYApgYGB7ciwgZWNobz1GQUxTRX0KcGRmKCJtbHIzX2Rpc2NyaW1pbmF0aW9uX21zcnMucGRmIiwgd2lkdGggPSA2LCBoZWlnaHQgPSAzKQpyZXNbLCAuKHN1cnYuY2luZGV4LmhhcnJlbGwsIHN1cnYuY2luZGV4LnVubywgc3Vydi51bm9faWF1Yywgc3Vydi51bm9fYXVjLjEwKV0gJT4lIAogIHRpZHlyOjpwaXZvdF9sb25nZXIoY29scyA9IHRpZHlzZWxlY3Q6OmV2ZXJ5dGhpbmcoKSwgCiAgICBuYW1lc190byA9ICdNZWFzdXJlJywgdmFsdWVzX3RvID0gJ1ZhbHVlJykgJT4lCiAgbXV0YXRlKE1lYXN1cmUgPSBjYXNlX3doZW4oCiAgICBNZWFzdXJlID09ICdzdXJ2LmNpbmRleC5oYXJyZWxsJyB+ICdIYXJyZWxsXCdzIEMtaW5kZXgnLAogICAgTWVhc3VyZSA9PSAnc3Vydi5jaW5kZXgudW5vJyB+ICdVbm9cJ3MgQy1pbmRleCcsCiAgICBNZWFzdXJlID09ICdzdXJ2LnVub19pYXVjJyB+ICdVbm9cJ3MgSW50ZWdyYXRlZCBBVUMnLAogICAgTWVhc3VyZSA9PSAnc3Vydi51bm9fYXVjLjEwJyB+ICdVbm9cJ3MgQVVDICh0ID0gMTAgeWVhcnMpJywKICApKSAlPiUKICAgbXV0YXRlKE1lYXN1cmUgPSBmYWN0b3IoTWVhc3VyZSwgbGV2ZWxzID0gYygKICAgICAnSGFycmVsbFwncyBDLWluZGV4JywKICAgICAnVW5vXCdzIEMtaW5kZXgnLAogICAgICdVbm9cJ3MgSW50ZWdyYXRlZCBBVUMnLAogICAgICdVbm9cJ3MgQVVDICh0ID0gMTAgeWVhcnMpJykpKSAlPiUKICBnZ3Bsb3QoYWVzKHggPSBNZWFzdXJlLCB5ID0gVmFsdWUsIGZpbGwgPSBNZWFzdXJlKSkgKwogICAgZ2VvbV9ib3hwbG90KCkgKyAKICAgIHlsaW0oYygwLjIsIDAuOCkpICsgCiAgICBnZW9tX2hsaW5lKHlpbnRlcmNlcHQgPSAwLjUsIGNvbG9yID0gJ3JlZCcsIGxpbmV0eXBlID0gJ2Rhc2hlZCcpICsKICAgIHRoZW1lX2J3KGJhc2Vfc2l6ZSA9IDE0KSArIAogICAgbGFicyh0aXRsZSA9ICdEaXNjcmltaW5hdGlvbiBNZWFzdXJlcycpICsKICAgIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF9ibGFuaygpKQpkZXYub2ZmKCkKYGBgCiFbX0Rpc2NyaW1pbmF0aW9uIHBlcmZvcm1hbmNlIG9mIExhc3NvIENveCBvbiB0aGUgVENHQS1CUkNBIGRhdGFzZXQgKGV4cHJlc3Npb24gZGF0YSBvZiB0aGUgUEFNNTAgZ2VuZXMgYW5kIHRoZSB2YXJpYWJsZXMgYWdlIGFuZCBldGhuaWNpdHkpLiBQZXJmb3JtYW5jZSBtZXRyaWNzIHVzZWQgYXJlIEhhcnJlbGwncyBDLWluZGV4LCBVbm8ncyBDLWluZGV4LCBVbm8ncyBJbnRlZ3JhdGVkIEFVQyBhbmQgVW5vJ3MgQVVDIGF0IDEwIHllYXJzLiBUaGUgZGF0YXNldCB3YXMgc3BsaXQgdG8gdHJhaW5pbmcvdmFsaWRhdGlvbiBzZXRzIDEwMCB0aW1lcyB0byBhbGxvdyBmb3IgdGhlIHF1YW50aWZpY2F0aW9uIG9mIHVuY2VydGFpbnR5IGluIHRoZSBkaWZmZXJlbnQgcGVyZm9ybWFuY2UgZXN0aW1hdGVzLl9dKGZpZy9tbHIzX2Rpc2NyaW1pbmF0aW9uX21zcnMucG5nKXt3aWR0aD03MCV9CgpgYGB7ciwgZmlnLnNob3c9J2hvbGQnLCBvdXQud2lkdGg9JzUwJSd9CiMgZGlmZmVyZW50IHNjYWxlcyBmb3IgZWFjaCBtZWFzdXJlLCBzbyB3ZSBzZXBhcmF0ZSB0aGUgcGxvdHMKc2V0LnNlZWQoNDIpCgojIEludGVncmF0ZWQgQnJpZXIgU2NvcmUgYW5kIEJyaWVyIFNjb3JlIGF0IHQgPSAxMCB5ZWFycwpyZXNbLCAuKHN1cnYuZ3JhZiwgc3Vydi5ncmFmLjEwKV0gJT4lIAogIHRpZHlyOjpwaXZvdF9sb25nZXIoY29scyA9IHRpZHlzZWxlY3Q6OmV2ZXJ5dGhpbmcoKSwgCiAgICBuYW1lc190byA9ICdNZWFzdXJlJywgdmFsdWVzX3RvID0gJ1ZhbHVlJykgJT4lCiAgbXV0YXRlKE1lYXN1cmUgPSBjYXNlX3doZW4oCiAgICBNZWFzdXJlID09ICdzdXJ2LmdyYWYnIH4gJ0lCUycsCiAgICBNZWFzdXJlID09ICdzdXJ2LmdyYWYuMTAnIH4gJ0JTKHQ9MTApJwogICkpICU+JQogIGdncGxvdChhZXMoeCA9IE1lYXN1cmUsIHkgPSBWYWx1ZSwgZmlsbCA9IE1lYXN1cmUpKSArCiAgICBnZW9tX2JveHBsb3Qoc2hvdy5sZWdlbmQgPSBGQUxTRSkgKyAKICAgIGdlb21faml0dGVyKGNvbG9yID0gJ2JsdWUnLCBzaXplID0gMC41LCBhbHBoYSA9IDAuNSwgc2hvdy5sZWdlbmQgPSBGQUxTRSkgKwogICAgbGFicyh0aXRsZSA9ICdJbnRlZ3JhdGVkIEJyaWVyIFNjb3JlIHZzIEJyaWVyIFNjb3JlICh0ID0gMTAgeWVhcnMpJykgKwogICAgdGhlbWVfYncoYmFzZV9zaXplID0gMTQpICsgCiAgICB0aGVtZShheGlzLnRpdGxlLnggPSBlbGVtZW50X2JsYW5rKCkpCgojIFJDTEwKcmVzWywgLihzdXJ2LnJjbGwpXSAlPiUgCiAgdGlkeXI6OnBpdm90X2xvbmdlcihjb2xzID0gdGlkeXNlbGVjdDo6ZXZlcnl0aGluZygpLCAKICAgIG5hbWVzX3RvID0gJ01lYXN1cmUnLCB2YWx1ZXNfdG8gPSAnVmFsdWUnKSAlPiUKICBtdXRhdGUoTWVhc3VyZSA9IGNhc2Vfd2hlbigKICAgIE1lYXN1cmUgPT0gJ3N1cnYucmNsbCcgfiAnUkNMTCcKICApKSAlPiUKICBnZ3Bsb3QoYWVzKHggPSBNZWFzdXJlLCB5ID0gVmFsdWUpKSArCiAgICBnZW9tX2JveHBsb3Qoc2hvdy5sZWdlbmQgPSBGQUxTRSkgKyAKICAgIGdlb21faml0dGVyKGNvbG9yID0gJ2JsdWUnLCBzaXplID0gMC41LCBhbHBoYSA9IDAuNSwgc2hvdy5sZWdlbmQgPSBGQUxTRSkgKwogICAgbGFicyh0aXRsZSA9ICdSaWdodC1jZW5zb3JlZCBMb2cgTG9zcycpICsKICAgIHRoZW1lX2J3KGJhc2Vfc2l6ZSA9IDE0KSArCiAgICB0aGVtZShheGlzLnRpdGxlLnggPSBlbGVtZW50X2JsYW5rKCkpCmBgYApgYGB7ciwgZWNobz1GQUxTRX0KcGRmKCJtbHIzX2NhbGlicmF0aW9uX0JTLnBkZiIsIHdpZHRoID0gNiwgaGVpZ2h0ID0gNSkKc2V0LnNlZWQoNDIpCiMgSW50ZWdyYXRlZCBCcmllciBTY29yZSBhbmQgQnJpZXIgU2NvcmUgYXQgdCA9IDEwIHllYXJzCnJlc1ssIC4oc3Vydi5ncmFmLCBzdXJ2LmdyYWYuMTApXSAlPiUgCiAgdGlkeXI6OnBpdm90X2xvbmdlcihjb2xzID0gdGlkeXNlbGVjdDo6ZXZlcnl0aGluZygpLCAKICAgIG5hbWVzX3RvID0gJ01lYXN1cmUnLCB2YWx1ZXNfdG8gPSAnVmFsdWUnKSAlPiUKICBtdXRhdGUoTWVhc3VyZSA9IGNhc2Vfd2hlbigKICAgIE1lYXN1cmUgPT0gJ3N1cnYuZ3JhZicgfiAnSUJTJywKICAgIE1lYXN1cmUgPT0gJ3N1cnYuZ3JhZi4xMCcgfiAnQlModD0xMCknCiAgKSkgJT4lCiAgZ2dwbG90KGFlcyh4ID0gTWVhc3VyZSwgeSA9IFZhbHVlLCBmaWxsID0gTWVhc3VyZSkpICsKICAgIGdlb21fYm94cGxvdChzaG93LmxlZ2VuZCA9IEZBTFNFKSArIAogICAgZ2VvbV9qaXR0ZXIoY29sb3IgPSAnYmx1ZScsIHNpemUgPSAwLjUsIGFscGhhID0gMC41LCBzaG93LmxlZ2VuZCA9IEZBTFNFKSArCiAgICBsYWJzKHRpdGxlID0gJ0ludGVncmF0ZWQgQnJpZXIgU2NvcmUgdnMgQnJpZXIgU2NvcmUgKHQgPSAxMCB5ZWFycyknKSArCiAgICB0aGVtZV9idyhiYXNlX3NpemUgPSAxNCkgKyAKICAgIHRoZW1lKGF4aXMudGl0bGUueCA9IGVsZW1lbnRfYmxhbmsoKSkKZGV2Lm9mZigpCnBkZigibWxyM19jYWxpYnJhdGlvbl9SQ0xMLnBkZiIsIHdpZHRoID0gNiwgaGVpZ2h0ID0gNSkKcmVzWywgLihzdXJ2LnJjbGwpXSAlPiUgCiAgdGlkeXI6OnBpdm90X2xvbmdlcihjb2xzID0gdGlkeXNlbGVjdDo6ZXZlcnl0aGluZygpLCAKICAgIG5hbWVzX3RvID0gJ01lYXN1cmUnLCB2YWx1ZXNfdG8gPSAnVmFsdWUnKSAlPiUKICBtdXRhdGUoTWVhc3VyZSA9IGNhc2Vfd2hlbigKICAgIE1lYXN1cmUgPT0gJ3N1cnYucmNsbCcgfiAnUkNMTCcKICApKSAlPiUKICBnZ3Bsb3QoYWVzKHggPSBNZWFzdXJlLCB5ID0gVmFsdWUpKSArCiAgICBnZW9tX2JveHBsb3Qoc2hvdy5sZWdlbmQgPSBGQUxTRSkgKyAKICAgIGdlb21faml0dGVyKGNvbG9yID0gJ2JsdWUnLCBzaXplID0gMC41LCBhbHBoYSA9IDAuNSwgc2hvdy5sZWdlbmQgPSBGQUxTRSkgKwogICAgbGFicyh0aXRsZSA9ICdSaWdodC1jZW5zb3JlZCBMb2cgTG9zcycpICsKICAgIHRoZW1lX2J3KGJhc2Vfc2l6ZSA9IDE0KSArCiAgICB0aGVtZShheGlzLnRpdGxlLnggPSBlbGVtZW50X2JsYW5rKCkpCmRldi5vZmYoKQpgYGAKPHAgYWxpZ249ImxlZnQiPgogIDxpbWcgYWx0PSIxIiBzcmM9Ii4vZmlnL21scjNfY2FsaWJyYXRpb25fQlMucG5nIiB3aWR0aD0iNDklIj4KICA8aW1nIGFsdD0iMiIgc3JjPSIuL2ZpZy9tbHIzX2NhbGlicmF0aW9uX1JDTEwucG5nIiB3aWR0aD0iNDklIj4KICA8aT5DYWxpYnJhdGlvbiBwZXJmb3JtYW5jZSBvZiBMYXNzbyBDb3ggb24gdGhlIFRDR0EtQlJDQSBkYXRhc2V0IChleHByZXNzaW9uIGRhdGEgb2YgdGhlIFBBTTUwIGdlbmVzIGFuZCB0aGUgdmFyaWFibGVzIGFnZSBhbmQgZXRobmljaXR5KS4gUGVyZm9ybWFuY2UgbWV0cmljcyB1c2VkIGFyZSB0aGUgSW50ZWdyYXRlZCBCcmllciBTY29yZSAoSUJTKSwgdGhlIEJyaWVyIFNjb3JlIGF0IDEwIHllYXJzIGFuZCB0aGUgUmlnaHQtQ2Vuc29yZWQgTG9nYXJpdGhtaWMgTG9zcyAoUkNMTCkuIFRoZSBkYXRhc2V0IHdhcyBzcGxpdCB0byB0cmFpbmluZy92YWxpZGF0aW9uIHNldHMgMTAwIHRpbWVzIHRvIGFsbG93IGZvciB0aGUgcXVhbnRpZmljYXRpb24gb2YgdW5jZXJ0YWludHkgaW4gdGhlIGRpZmZlcmVudCBwZXJmb3JtYW5jZSBlc3RpbWF0ZXMuPC9pPgo8L3A+CgojIyMgRmVhdHVyZSBzdGFiaWxpdHkgYW5hbHlzaXMgey19CgpXZSBjYW4gZXh0cmFjdCB0aGUgc2VsZWN0ZWQgZmVhdHVyZXMgZnJvbSBhbGwgJDEwMCQgdHJhaW5lZCBMYXNzbyBDb3ggbW9kZWxzIGFuZCBjcmVhdGUgYSBmcmVxdWVuY3kgc2VsZWN0aW9uIHRhYmxlOgpgYGB7cn0KIyBnZXQgc2VsZWN0ZWQgZmVhdHVyZXMgZnJvbSBhbGwgdHJhaW5lZCBsZWFybmVycyBpbiBhIGxpc3QKc2ZfbGlzdCA9IGxhcHBseShyciRsZWFybmVycywgZnVuY3Rpb24obGVhcm5lcikgewogIGxlYXJuZXIkZ3JhcGhfbW9kZWwkcGlwZW9wcyRzdXJ2LmN2X2dsbW5ldCRsZWFybmVyX21vZGVsJHNlbGVjdGVkX2ZlYXR1cmVzKCkKfSkKCiMgbWFrZSBmcmVxdWVuY3kgc2VsZWN0aW9uIHRhYmxlCm4gPSBsZW5ndGgoc2ZfbGlzdCkKZnNfcmVzID0gc29ydCh0YWJsZSh1bmxpc3Qoc2ZfbGlzdCkpLCBkZWNyZWFzaW5nID0gVFJVRSkKdGltZXMgPSBhcy52ZWN0b3IodW5uYW1lKGZzX3JlcykpCnRpYmJsZTo6dGliYmxlKGZlYXRfbmFtZSA9IG5hbWVzKGZzX3JlcyksIHRpbWVzID0gdGltZXMsIGZyZXEgPSB0aW1lcy9uKQpgYGAKYGBgCiMgQSB0aWJibGU6IDMzIMOXIDMKICAgZmVhdF9uYW1lIHRpbWVzICBmcmVxCiAgIDxjaHI+ICAgICA8aW50PiA8ZGJsPgogMSBhZ2UgICAgICAgICAxMDAgIDEgICAKIDIgZXRobmljaXR5ICAgMTAwICAxICAgCiAzIEFOTE4gICAgICAgICA0MyAgMC40MwogNCBCTFZSQSAgICAgICAgNDEgIDAuNDEKIDUgQkFHMSAgICAgICAgIDM3ICAwLjM3CiA2IE1JQSAgICAgICAgICAzNCAgMC4zNAogNyBUWU1TICAgICAgICAgMzAgIDAuMyAKIDggS1JUNSAgICAgICAgIDI3ICAwLjI3CiA5IE1NUDExICAgICAgICAyNyAgMC4yNwoxMCBCQ0wyICAgICAgICAgMjYgIDAuMjYKIyDihLkgMjMgbW9yZSByb3dzCiMg4oS5IFVzZSBgcHJpbnQobiA9IC4uLilgIHRvIHNlZSBtb3JlIHJvd3MKYGBgCgpBcyBgYWdlYCBhbmQgYGV0aG5pY2l0eWAgd2VyZSBub3QgcGVuYWxpemVkLCB0aGV5IGhhdmUgbm9uLXplcm8gY29lZmZpY2llbnRzIGluIGFsbCBMYXNzbyBDb3ggbW9kZWxzIGFuZCB0aGVyZWZvcmUgYXJlIGluY2x1ZGVkIGluIGFsbCBzZWxlY3RlZCBmZWF0dXJlIHNldHMuCgpMYXN0bHksIHdlIGNhbiB1c2UgdGhlIGBSYCBwYWNrYWdlIFsqKnN0YWJtKipdKGh0dHBzOi8vQ1JBTi5SLXByb2plY3Qub3JnL3BhY2thZ2U9c3RhYm0pIFtAc3RhYm1dIHRvIGFzc2VzcyBob3cgc2ltaWxhciB0aGUgJDEwMCQgc2VsZWN0ZWQgZmVhdHVyZSBzZXRzIHdlcmUuCldlIHdpbGwgZGVtb25zdHJhdGUgdGhlIHVzZSBvZiB0aHJlZSBtZXRyaWNzIHdoaWNoIG1lYXN1cmUgdGhlICpzdGFiaWxpdHkqIG9mIHRoZSBMYXNzbyBDb3gncyBmZWF0dXJlIHNlbGVjdGlvbiBvbiB0aGUgVENHQS1CUkNBIGRhdGFzZXQ6CgoxLiBUaGUgSmFjY2FyZCBpbmRleAoyLiBOb2d1ZWlyYSdzIG1ldHJpYyAoY29ycmVjdGVkIGZvciBjaGFuY2UsIGkuZS4gaW5kZXBlbmRlbnQgb2YgdGhlIG51bWJlciBvZiBmZWF0dXJlczsgQE5vZ3VlaXJhMjAxOCkKMy4gWnVja25pY2sncyBtZXRyaWMgKGV4dGVuc2lvbiBvZiBKYWNjYXJkIGluZGV4IHRoYXQgY29uc2lkZXJzIHRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIHRoZSBmZWF0dXJlczsgQFp1Y2tuaWNrMjAwOCk6CgpgYGB7ciwgd2FybmluZz1GQUxTRX0Kc2V0LnNlZWQoNDIpCmphYyA9IHN0YWJtOjpzdGFiaWxpdHlKYWNjYXJkKGZlYXR1cmVzID0gc2ZfbGlzdCwgY29ycmVjdGlvbi5mb3IuY2hhbmNlID0gJ25vbmUnKQpub2cgPSBzdGFibTo6c3RhYmlsaXR5Tm9ndWVpcmEoZmVhdHVyZXMgPSBzZl9saXN0LCBwID0gbGVuZ3RoKHRhc2skZmVhdHVyZV9uYW1lcykpCgojIFNpbWlsYXJpdHkgb2YgZWFjaCBwYWlyIG9mIGZlYXR1cmVzIHVzaW5nIFBlYXJzb24gY29ycmVsYXRpb24Kc2ltLm1hdCA9IGFicyhzdGF0czo6Y29yKHggPSB0YXNrJGRhdGEoY29scyA9IHRhc2skZmVhdHVyZV9uYW1lcyksIG1ldGhvZCA9ICdwJykpCnp1Y2sgPSBzdGFibTo6c3RhYmlsaXR5WnVja25pY2soZmVhdHVyZXMgPSBzZl9saXN0LCBzaW0ubWF0ID0gc2ltLm1hdCwgCiAgdGhyZXNob2xkID0gMC45LCBjb3JyZWN0aW9uLmZvci5jaGFuY2UgPSAnZXN0aW1hdGUnLCBOID0gMTAwKQoKdGliYmxlOjp0aWJibGUoamFjY2FyZCA9IGphYywgbm9ndWVpcmEgPSBub2csIHp1Y2tuaWNrID0genVjaykKYGBgCmBgYAojIEEgdGliYmxlOiAxIMOXIDMKICBqYWNjYXJkIG5vZ3VlaXJhIHp1Y2tuaWNrCiAgICA8ZGJsPiAgICA8ZGJsPiAgICA8ZGJsPgoxICAgMC40NzQgICAgMC40MTIgICAgMC40NDIKYGBgCgpGcm9tIHRoZSBhYm92ZSB2YWx1ZXMgd2UgY29uY2x1ZGUgdGhhdCB0aGUgc3RhYmlsaXR5IG9mIExhc3NvIENveCdzIGZlYXR1cmUgc2VsZWN0aW9uIGlzIG5laXRoZXIgcG9vciBub3IgZXhjZWxsZW50IGJ1dCBzb21ld2hlcmUgaW4gYmV0d2Vlbi4KCiMgUiBzZXNzaW9uIGluZm8gey19CgpgYGB7ciwgaW5jbHVkZT1GQUxTRSwgbWVzc2FnZT1GQUxTRX0KIyBwdXR0aW5nIGFsbCBsaWJyYXJpZXMgaGVyZSBmb3IgdGhlIHNlc3Npb24gaW5mbwpsaWJyYXJ5KCJUQ0dBYmlvbGlua3MiKQpsaWJyYXJ5KCJTdW1tYXJpemVkRXhwZXJpbWVudCIpCmxpYnJhcnkoIkRFU2VxMiIpCmxpYnJhcnkoImRwbHlyIikKbGlicmFyeSgiZ2dwbG90MiIpCmxpYnJhcnkoInN1cnZpdmFsIikKbGlicmFyeSgic3Vydm1pbmVyIikKbGlicmFyeSgiTTNDIikKbGlicmFyeSgiZ2xtbmV0IikKbGlicmFyeSgicGxvdG1vIikKbGlicmFyeSgiZ3JwcmVnIikKbGlicmFyeSgiU0dMIikKbGlicmFyeSgicHNiY0dyb3VwIikKbGlicmFyeSgiR0dhbGx5IikKbGlicmFyeSgiQmhHTE0iKQpsaWJyYXJ5KCJyaXNrc2V0Uk9DIikKbGlicmFyeSgicmlza1JlZ3Jlc3Npb24iKQpsaWJyYXJ5KCJwZXBlcnIiKQpsaWJyYXJ5KCJjMDYwIikKbGlicmFyeSgicm1zIikKbGlicmFyeSgic3VydkFVQyIpCmxpYnJhcnkoInJlZ3Bsb3QiKQpsaWJyYXJ5KCJtbHIzdmVyc2UiKQpsaWJyYXJ5KCJtbHIzcHJvYmEiKQpsaWJyYXJ5KCJtbHIzZXh0cmFsZWFybmVycyIpCmxpYnJhcnkoInN0YWJtIikKYGBgCgpgYGB7cn0Kc2Vzc2lvbkluZm8oKQpgYGAKYGBgClIgdmVyc2lvbiA0LjMuMSAoMjAyMy0wNi0xNikKUGxhdGZvcm06IHg4Nl82NC1hcHBsZS1kYXJ3aW4yMCAoNjQtYml0KQpSdW5uaW5nIHVuZGVyOiBtYWNPUyBNb250ZXJleSAxMi43CgpNYXRyaXggcHJvZHVjdHM6IGRlZmF1bHQKQkxBUzogICAvU3lzdGVtL0xpYnJhcnkvRnJhbWV3b3Jrcy9BY2NlbGVyYXRlLmZyYW1ld29yay9WZXJzaW9ucy9BL0ZyYW1ld29ya3MvdmVjTGliLmZyYW1ld29yay9WZXJzaW9ucy9BL2xpYkJMQVMuZHlsaWIgCkxBUEFDSzogL0xpYnJhcnkvRnJhbWV3b3Jrcy9SLmZyYW1ld29yay9WZXJzaW9ucy80LjMteDg2XzY0L1Jlc291cmNlcy9saWIvbGliUmxhcGFjay5keWxpYjsgIExBUEFDSyB2ZXJzaW9uIDMuMTEuMAoKbG9jYWxlOgpbMV0gZW5fVVMuVVRGLTgvZW5fVVMuVVRGLTgvZW5fVVMuVVRGLTgvQy9lbl9VUy5VVEYtOC9lbl9VUy5VVEYtOAoKdGltZSB6b25lOiBFdXJvcGUvT3Nsbwp0emNvZGUgc291cmNlOiBpbnRlcm5hbAoKYXR0YWNoZWQgYmFzZSBwYWNrYWdlczoKWzFdIHN0YXRzNCAgICBzdGF0cyAgICAgZ3JhcGhpY3MgIGdyRGV2aWNlcyB1dGlscyAgICAgZGF0YXNldHMgIG1ldGhvZHMgICBiYXNlICAgICAKCm90aGVyIGF0dGFjaGVkIHBhY2thZ2VzOgogWzFdIHN0YWJtXzEuMi4yICAgICAgICAgICAgICAgICBtbHIzZXh0cmFsZWFybmVyc18wLjcuMCAgICAgbWxyM3Byb2JhXzAuNS4yICAgICAgICAgICAgCiBbNF0gbWxyM3ZlcnNlXzAuMi44ICAgICAgICAgICAgIG1scjNfMC4xNi4xICAgICAgICAgICAgICAgICByZWdwbG90XzEuMSAgICAgICAgICAgICAgICAKIFs3XSBzdXJ2QVVDXzEuMi0wICAgICAgICAgICAgICAgcm1zXzYuNy0wICAgICAgICAgICAgICAgICAgIEhtaXNjXzUuMS0wICAgICAgICAgICAgICAgIApbMTBdIGMwNjBfMC4zLTAgICAgICAgICAgICAgICAgICBwZXBlcnJfMS41ICAgICAgICAgICAgICAgICAgc25vd2ZhbGxfMS44NC02LjIgICAgICAgICAgClsxM10gc25vd18wLjQtNCAgICAgICAgICAgICAgICAgIHJpc2tSZWdyZXNzaW9uXzIwMjMuMDMuMjIgICByaXNrc2V0Uk9DXzEuMC40LjEgICAgICAgICAKWzE2XSBNQVNTXzcuMy02MCAgICAgICAgICAgICAgICAgQmhHTE1fMS4xLjAgICAgICAgICAgICAgICAgIEdHYWxseV8yLjEuMiAgICAgICAgICAgICAgIApbMTldIHBzYmNHcm91cF8xLjUgICAgICAgICAgICAgICBtdnRub3JtXzEuMi0yICAgICAgICAgICAgICAgU3VwcERpc3RzXzEuMS05LjcgICAgICAgICAgClsyMl0gTGVhcm5CYXllc18yLjE1LjEgICAgICAgICAgIFNHTF8xLjMgICAgICAgICAgICAgICAgICAgICBncnByZWdfMy40LjAgICAgICAgICAgICAgICAKWzI1XSBwbG90bW9fMy42LjIgICAgICAgICAgICAgICAgVGVhY2hpbmdEZW1vc18yLjEyICAgICAgICAgIHBsb3RyaXhfMy44LTIgICAgICAgICAgICAgIApbMjhdIEZvcm11bGFfMS4yLTUgICAgICAgICAgICAgICBnbG1uZXRfNC4xLTcgICAgICAgICAgICAgICAgTWF0cml4XzEuNS00LjEgICAgICAgICAgICAgClszMV0gTTNDXzEuMjIuMCAgICAgICAgICAgICAgICAgIHN1cnZtaW5lcl8wLjQuOSAgICAgICAgICAgICBnZ3B1YnJfMC42LjAgICAgICAgICAgICAgICAKWzM0XSBzdXJ2aXZhbF8zLjUtNSAgICAgICAgICAgICAgZ2dwbG90Ml8zLjQuMiAgICAgICAgICAgICAgIGRwbHlyXzEuMS4yICAgICAgICAgICAgICAgIApbMzddIERFU2VxMl8xLjQwLjIgICAgICAgICAgICAgICBTdW1tYXJpemVkRXhwZXJpbWVudF8xLjMwLjIgQmlvYmFzZV8yLjYwLjAgICAgICAgICAgICAgCls0MF0gR2Vub21pY1Jhbmdlc18xLjUyLjAgICAgICAgIEdlbm9tZUluZm9EYl8xLjM2LjEgICAgICAgICBJUmFuZ2VzXzIuMzQuMSAgICAgICAgICAgICAKWzQzXSBTNFZlY3RvcnNfMC4zOC4xICAgICAgICAgICAgQmlvY0dlbmVyaWNzXzAuNDYuMCAgICAgICAgIE1hdHJpeEdlbmVyaWNzXzEuMTIuMiAgICAgIApbNDZdIG1hdHJpeFN0YXRzXzEuMC4wICAgICAgICAgICBUQ0dBYmlvbGlua3NfMi4yOC4zICAgICAgICAKCmxvYWRlZCB2aWEgYSBuYW1lc3BhY2UgKGFuZCBub3QgYXR0YWNoZWQpOgogIFsxXSB0Z3BfMi40LTIxICAgICAgICAgICAgICAgICAgcHJvZ3Jlc3NfMS4yLjIgICAgICAgICAgICAgIG1scjNoeXBlcmJhbmRfMC40LjUgICAgICAgIAogIFs0XSBwZW5hbGl6ZWRfMC45LTUyICAgICAgICAgICAgbm5ldF83LjMtMTkgICAgICAgICAgICAgICAgIEJpb3N0cmluZ3NfMi42OC4xICAgICAgICAgIAogIFs3XSBUSC5kYXRhXzEuMS0yICAgICAgICAgICAgICAgdmN0cnNfMC42LjMgICAgICAgICAgICAgICAgIGRpZ2VzdF8wLjYuMzIgICAgICAgICAgICAgIAogWzEwXSBwbmdfMC4xLTggICAgICAgICAgICAgICAgICAgY29ycGNvcl8xLjYuMTAgICAgICAgICAgICAgIHNoYXBlXzEuNC42ICAgICAgICAgICAgICAgIAogWzEzXSBwcm94eV8wLjQtMjcgICAgICAgICAgICAgICAgcGFyYWxsZWxseV8xLjM2LjAgICAgICAgICAgIHJlc2hhcGVfMC44LjkgICAgICAgICAgICAgIAogWzE2XSBmb3JlYWNoXzEuNS4yICAgICAgICAgICAgICAgd2l0aHJfMi41LjAgICAgICAgICAgICAgICAgIHBhcmFtNl8wLjIuNCAgICAgICAgICAgICAgIAogWzE5XSB4ZnVuXzAuMzkgICAgICAgICAgICAgICAgICAgbWVtb2lzZV8yLjAuMSAgICAgICAgICAgICAgIGRpcHRlc3RfMC43Ni0wICAgICAgICAgICAgIAogWzIyXSBNYXRyaXhNb2RlbHNfMC41LTEgICAgICAgICAgem9vXzEuOC0xMiAgICAgICAgICAgICAgICAgIERFb3B0aW1SXzEuMS0xICAgICAgICAgICAgIAogWzI1XSBkaXN0cjZfMS44LjAgICAgICAgICAgICAgICAgcHJldHR5dW5pdHNfMS4xLjEgICAgICAgICAgIHByYWJjbHVzXzIuMy0yICAgICAgICAgICAgIAogWzI4XSBLRUdHUkVTVF8xLjQwLjAgICAgICAgICAgICAgaHR0cl8xLjQuNiAgICAgICAgICAgICAgICAgIGRvd25sb2FkZXJfMC40ICAgICAgICAgICAgIAogWzMxXSBtYXB0cmVlXzEuNC04ICAgICAgICAgICAgICAgcnN0YXRpeF8wLjcuMiAgICAgICAgICAgICAgIGdsb2JhbHNfMC4xNi4yICAgICAgICAgICAgIAogWzM0XSBmcGNfMi4yLTEwICAgICAgICAgICAgICAgICAgcnN0dWRpb2FwaV8wLjE0ICAgICAgICAgICAgIGdlbmVyaWNzXzAuMS4zICAgICAgICAgICAgIAogWzM3XSBiYXNlNjRlbmNfMC4xLTMgICAgICAgICAgICAgY3VybF81LjAuMSAgICAgICAgICAgICAgICAgIHpsaWJiaW9jXzEuNDYuMCAgICAgICAgICAgIAogWzQwXSBkb1NOT1dfMS4wLjIwICAgICAgICAgICAgICAgR2Vub21lSW5mb0RiRGF0YV8xLjIuMTAgICAgIGxncl8wLjQuNCAgICAgICAgICAgICAgICAgIAogWzQzXSB4dGFibGVfMS44LTQgICAgICAgICAgICAgICAgc3RyaW5ncl8xLjUuMCAgICAgICAgICAgICAgIGRvUGFyYWxsZWxfMS4wLjE3ICAgICAgICAgIAogWzQ2XSBldmFsdWF0ZV8wLjIxICAgICAgICAgICAgICAgUzRBcnJheXNfMS4wLjQgICAgICAgICAgICAgIEJpb2NGaWxlQ2FjaGVfMi44LjAgICAgICAgIAogWzQ5XSBobXNfMS4xLjMgICAgICAgICAgICAgICAgICAgY29sb3JzcGFjZV8yLjEtMCAgICAgICAgICAgIGZpbGVsb2NrXzEuMC4yICAgICAgICAgICAgIAogWzUyXSBjbXByc2tfMi4yLTExICAgICAgICAgICAgICAgcmV0aWN1bGF0ZV8xLjMwICAgICAgICAgICAgIGZsZXhtaXhfMi4zLTE5ICAgICAgICAgICAgIAogWzU1XSBtYWdyaXR0cl8yLjAuMyAgICAgICAgICAgICAgcmVhZHJfMi4xLjQgICAgICAgICAgICAgICAgIG1vZGVsdG9vbHNfMC4yLTIzICAgICAgICAgIAogWzU4XSBsYXR0aWNlXzAuMjEtOCAgICAgICAgICAgICAgcGFsbWVycGVuZ3VpbnNfMC4xLjEgICAgICAgIGZ1dHVyZS5hcHBseV8xLjExLjAgICAgICAgIAogWzYxXSByb2J1c3RiYXNlXzAuOTktMCAgICAgICAgICAgU3BhcnNlTV8xLjgxICAgICAgICAgICAgICAgIFhNTF8zLjk5LTAuMTQgICAgICAgICAgICAgIAogWzY0XSBjbGFzc183LjMtMjIgICAgICAgICAgICAgICAgcGlsbGFyXzEuOS4wICAgICAgICAgICAgICAgIG5sbWVfMy4xLTE2MiAgICAgICAgICAgICAgIAogWzY3XSBpdGVyYXRvcnNfMS4wLjE0ICAgICAgICAgICAgY29tcGlsZXJfNC4zLjEgICAgICAgICAgICAgIFJTcGVjdHJhXzAuMTYtMSAgICAgICAgICAgIAogWzcwXSBzdHJpbmdpXzEuNy4xMiAgICAgICAgICAgICAgcGFyYWRveF8wLjExLjEgICAgICAgICAgICAgIG1pbnFhXzEuMi41ICAgICAgICAgICAgICAgIAogWzczXSBkaWN0aW9uYXI2XzAuMS4zICAgICAgICAgICAgcGx5cl8xLjguOCAgICAgICAgICAgICAgICAgIGNyYXlvbl8xLjUuMiAgICAgICAgICAgICAgIAogWzc2XSBhYmluZF8xLjQtNSAgICAgICAgICAgICAgICAgc21fMi4yLTUuNy4xICAgICAgICAgICAgICAgIGxvY2ZpdF8xLjUtOS44ICAgICAgICAgICAgIAogWzc5XSBiaXRfNC4wLjUgICAgICAgICAgICAgICAgICAgc2FuZHdpY2hfMy4wLTIgICAgICAgICAgICAgIG1scjNtYm9fMC4yLjEgICAgICAgICAgICAgIAogWzgyXSBjb2RldG9vbHNfMC4yLTE5ICAgICAgICAgICAgbXVsdGNvbXBfMS40LTI1ICAgICAgICAgICAgIG1hdHJpeGNhbGNfMS4wLTYgICAgICAgICAgIAogWzg1XSBvcGVuc3NsXzIuMC42ICAgICAgICAgICAgICAgZTEwNzFfMS43LTEzICAgICAgICAgICAgICAgIHNwbGluZXNfNC4zLjEgICAgICAgICAgICAgIAogWzg4XSBSY3BwXzEuMC4xMCAgICAgICAgICAgICAgICAgcXVhbnRyZWdfNS45NSAgICAgICAgICAgICAgIGRicGx5cl8yLjMuMiAgICAgICAgICAgICAgIAogWzkxXSBUQ0dBYmlvbGlua3NHVUkuZGF0YV8xLjIwLjAga25pdHJfMS40MyAgICAgICAgICAgICAgICAgIGJsb2JfMS4yLjQgICAgICAgICAgICAgICAgIAogWzk0XSB1dGY4XzEuMi4zICAgICAgICAgICAgICAgICAgY2x1ZV8wLjMtNjQgICAgICAgICAgICAgICAgIGxtZTRfMS4xLTM0ICAgICAgICAgICAgICAgIAogWzk3XSBsaXN0ZW52XzAuOS4wICAgICAgICAgICAgICAgY2hlY2ttYXRlXzIuMi4wICAgICAgICAgICAgIGdnc2lnbmlmXzAuNi40ICAgICAgICAgICAgIApbMTAwXSB0aWJibGVfMy4yLjEgICAgICAgICAgICAgICAgbWxyM3R1bmluZ3NwYWNlc18wLjQuMCAgICAgIHN0YXRtb2RfMS41LjAgICAgICAgICAgICAgIApbMTAzXSB0emRiXzAuNC4wICAgICAgICAgICAgICAgICAgcGtnY29uZmlnXzIuMC4zICAgICAgICAgICAgIHRvb2xzXzQuMy4xICAgICAgICAgICAgICAgIApbMTA2XSBjYWNoZW1fMS4wLjggICAgICAgICAgICAgICAgUlNRTGl0ZV8yLjMuMSAgICAgICAgICAgICAgIHJ2ZXN0XzEuMC4zICAgICAgICAgICAgICAgIApbMTA5XSBEQklfMS4xLjMgICAgICAgICAgICAgICAgICAgbnVtRGVyaXZfMjAxNi44LTEuMSAgICAgICAgIG1scjNmaWx0ZXJzXzAuNy4xICAgICAgICAgIApbMTEyXSBmYXN0bWFwXzEuMS4xICAgICAgICAgICAgICAgcm1hcmtkb3duXzIuMjIgICAgICAgICAgICAgIHNjYWxlc18xLjIuMSAgICAgICAgICAgICAgIApbMTE1XSBtbGVncF8zLjEuOSAgICAgICAgICAgICAgICAgZ3JpZF80LjMuMSAgICAgICAgICAgICAgICAgIG1ldHNfMS4zLjIgICAgICAgICAgICAgICAgIApbMTE4XSBicm9vbV8xLjAuNSAgICAgICAgICAgICAgICAgY2FyRGF0YV8zLjAtNSAgICAgICAgICAgICAgIHJwYXJ0XzQuMS4xOSAgICAgICAgICAgICAgIApbMTIxXSB5YW1sXzIuMy43ICAgICAgICAgICAgICAgICAgZm9yZWlnbl8wLjgtODQgICAgICAgICAgICAgIGNsaV8zLjYuMSAgICAgICAgICAgICAgICAgIApbMTI0XSBwdXJycl8xLjAuMSAgICAgICAgICAgICAgICAgbGlmZWN5Y2xlXzEuMC4zICAgICAgICAgICAgIGFza3Bhc3NfMS4xICAgICAgICAgICAgICAgIApbMTI3XSBiYm90a18wLjcuMiAgICAgICAgICAgICAgICAgbGF2YV8xLjcuMi4xICAgICAgICAgICAgICAgIGtlcm5sYWJfMC45LTMyICAgICAgICAgICAgIApbMTMwXSBiYWNrcG9ydHNfMS40LjEgICAgICAgICAgICAgbWxyM3R1bmluZ18wLjE5LjAgICAgICAgICAgIEJpb2NQYXJhbGxlbF8xLjM0LjIgICAgICAgIApbMTMzXSBndGFibGVfMC4zLjMgICAgICAgICAgICAgICAgdW1hcF8wLjIuMTAuMCAgICAgICAgICAgICAgIHBhcmFsbGVsXzQuMy4xICAgICAgICAgICAgIApbMTM2XSBtbHIzY2x1c3Rlcl8wLjEuOCAgICAgICAgICAganNvbmxpdGVfMS44LjcgICAgICAgICAgICAgIGJpdG9wc18xLjAtNyAgICAgICAgICAgICAgIApbMTM5XSBiaXQ2NF80LjAuNSAgICAgICAgICAgICAgICAgUnRzbmVfMC4xNiAgICAgICAgICAgICAgICAgIG1scjNsZWFybmVyc18wLjUuNiAgICAgICAgIApbMTQyXSBwb2xzcGxpbmVfMS4xLjIzICAgICAgICAgICAgc3Vydk1pc2NfMC41LjYgICAgICAgICAgICAgIHNwYWNlZmlsbHJfMC4zLjIgICAgICAgICAgIApbMTQ1XSBodG1sdG9vbHNfMC41LjUgICAgICAgICAgICAgS01zdXJ2XzAuMS01ICAgICAgICAgICAgICAgIHNldDZfMC4yLjYgICAgICAgICAgICAgICAgIApbMTQ4XSByYXBwZGlyc18wLjMuMyAgICAgICAgICAgICAgbWxyM3BpcGVsaW5lc18wLjUuMC0xICAgICAgIGdsdWVfMS42LjIgICAgICAgICAgICAgICAgIApbMTUxXSBwZW5hbGl6ZWRTVk1fMS4xLjQgICAgICAgICAgbWxyM3Zpel8wLjYuMSAgICAgICAgICAgICAgIHRpbWVyZWdfMi4wLjUgICAgICAgICAgICAgIApbMTU0XSBYVmVjdG9yXzAuNDAuMCAgICAgICAgICAgICAgUkN1cmxfMS45OC0xLjEyICAgICAgICAgICAgIG1jbHVzdF82LjAuMCAgICAgICAgICAgICAgIApbMTU3XSBncmlkRXh0cmFfMi4zICAgICAgICAgICAgICAgYm9vdF8xLjMtMjguMSAgICAgICAgICAgICAgIFI2XzIuNS4xICAgICAgICAgICAgICAgICAgIApbMTYwXSB0aWR5cl8xLjMuMCAgICAgICAgICAgICAgICAga20uY2lfMC41LTYgICAgICAgICAgICAgICAgIG9vcGxhaF8wLjIuMCAgICAgICAgICAgICAgIApbMTYzXSBjbHVzdGVyXzIuMS40ICAgICAgICAgICAgICAgYmVhbnBsb3RfMS4zLjEgICAgICAgICAgICAgIG5sb3B0cl8yLjAuMyAgICAgICAgICAgICAgIApbMTY2XSBtbHIzbWlzY18wLjEzLjAgICAgICAgICAgICAgdmlvcGxvdF8wLjQuMCAgICAgICAgICAgICAgIERlbGF5ZWRBcnJheV8wLjI2LjMgICAgICAgIApbMTY5XSB0aWR5c2VsZWN0XzEuMi4wICAgICAgICAgICAgaHRtbFRhYmxlXzIuNC4xICAgICAgICAgICAgIHhtbDJfMS4zLjQgICAgICAgICAgICAgICAgIApbMTcyXSBtbHIzZnNlbGVjdF8wLjExLjAgICAgICAgICAgY2FyXzMuMS0yICAgICAgICAgICAgICAgICAgIEFubm90YXRpb25EYmlfMS42Mi4xICAgICAgIApbMTc1XSBmdXR1cmVfMS4zMy4wICAgICAgICAgICAgICAgbXVuc2VsbF8wLjUuMCAgICAgICAgICAgICAgIGRhdGEudGFibGVfMS4xNC44ICAgICAgICAgIApbMTc4XSBodG1sd2lkZ2V0c18xLjYuMiAgICAgICAgICAgbWxyM2RhdGFfMC43LjAgICAgICAgICAgICAgIFJDb2xvckJyZXdlcl8xLjEtMyAgICAgICAgIApbMTgxXSBiaW9tYVJ0XzIuNTYuMSAgICAgICAgICAgICAgcmxhbmdfMS4xLjEgICAgICAgICAgICAgICAgIHV1aWRfMS4xLTEgICAgICAgICAgICAgICAgIApbMTg0XSBmYW5zaV8xLjAuNCAgICAgICAgICAgICAgICAgcHJvZGxpbV8yMDIzLjAzLjMxICAgICAgICAgICAgIApgYGAKCiMgUmVmZXJlbmNlcwoK