-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBubbleStats.py
286 lines (213 loc) · 9.09 KB
/
BubbleStats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#####################################################################
# Example : contour edges for a video file
# specified on the command line (e.g. python FILE.py video_file) or from an
# attached web camera
# Author : Toby Breckon, [email protected]
# Copyright (c) 2016 School of Engineering & Computing Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
#####################################################################
import numpy as np
import cv2
import argparse
import sys
import pandas as pd
#####################################################################
keep_processing = True;
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(description='Perform ' + sys.argv[0] + ' example operation on incoming camera/video image')
parser.add_argument("-c", "--camera_to_use", type=int, help="specify camera to use", default=0)
parser.add_argument('video_file', metavar='video_file', type=str, nargs='?', help='specify optional video file')
args = parser.parse_args()
#####################################################################
# this function is called as a call-back everytime the trackbar is moved
# (here we just do nothing)
def nothing(x):
pass
def draw_flow(img, flow, step=18):
h, w = img.shape[:2]
y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1).astype(int)
fx, fy = flow[y,x].T
lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2)
lines = np.int32(lines + 0.5)
vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.polylines(vis, lines, 0, (0, 255, 0))
# for (x1, y1), (x2, y2) in lines:
# cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1)
return vis
#####################################################################
def h_concatenate(img1, img2):
# get size and channels for both images
height1 = img1.shape[0];
width1 = img1.shape[1];
if (len(img1.shape) == 2):
channels1 = 1;
else:
channels1 = img1.shape[2];
height2 = img2.shape[0];
width2 = img2.shape[1];
if (len(img2.shape) == 2):
channels2 = 1;
else:
channels2 = img2.shape[2];
# make all images 3 channel, or assume all same channel
if ((channels1 > channels2) and (channels1 == 3)):
out2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2BGR);
out1 = img1;
elif ((channels2 > channels1) and (channels2 == 3)):
out1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2BGR);
out2 = img2;
else: # both must be equal
out1 = img1;
out2 = img2;
# height of first image is master height, width can remain unchanged
if (height1 != height2):
out2 = cv2.resize(out2, (height1, width2))
return np.hstack((out1, out2));
# define video capture object
cap = cv2.VideoCapture();
# define display window name
windowName = "Largest Area Contour"; # window name
windowName2 = "All Contours"; # window name
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached H/W camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(windowName, cv2.WINDOW_NORMAL);
cv2.namedWindow(windowName2, cv2.WINDOW_NORMAL);
# add some track bar controllers for settings
lower_threshold = 118;
cv2.createTrackbar("param1", windowName2, lower_threshold, 255, nothing);
upper_threshold = 8;
cv2.createTrackbar("param2", windowName2, upper_threshold, 255, nothing);
smoothing_neighbourhood = 0;
cv2.createTrackbar("minRadius", windowName2, smoothing_neighbourhood, 150, nothing);
sobel_size = 13; # greater than 7 seems to crash
cv2.createTrackbar("maxRadius", windowName2, sobel_size, 150, nothing);
sthres = 157; # greater than 7 seems to crash
cv2.createTrackbar("threshold", windowName2, sthres, 255, nothing);
if (cap.isOpened):
ret, frame = cap.read();
print("frameshape",frame.shape)
# convert image to grayscale to be previous frame
prevgray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
while (keep_processing):
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read();
# get parameters from track bars
param1 = cv2.getTrackbarPos("param1", windowName2);
param2 = cv2.getTrackbarPos("param2", windowName2);
minRadius = cv2.getTrackbarPos("minRadius", windowName2);
maxRadius = cv2.getTrackbarPos("maxRadius", windowName2);
thres = cv2.getTrackbarPos("threshold", windowName2);
cv2.imwrite('cir4.jpg', frame,(cv2.IMWRITE_JPEG_QUALITY, 80))
img = cv2.imread('cir4.jpg',0)
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
ret1,cimg = cv2.threshold(img,thres,255,cv2.THRESH_BINARY)
# cimg=cv2.adaptiveThreshold(img,155,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2)
# cimg = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,111,21)
# circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,5,param1=118,param2=8,minRadius=0,maxRadius=7)
circles = cv2.HoughCircles(cimg,cv2.HOUGH_GRADIENT,1,5,param1=param1,param2=param2,minRadius=minRadius,maxRadius=maxRadius)
circles = np.uint16(np.around(circles))
no_c=circles.shape[1]
print(no_c)
# cv2.putText(img, title, p3, cv2.FONT_ITALIC, 0.6, (0, 255, 0), 1)
font = cv2.FONT_HERSHEY_SIMPLEX
bottomLeftCornerOfText = (1,50)
fontScale = 2
fontColor = (255,255,0)
lineType = 4
cv2.putText(img,'Bubble Statistics',
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
lineType)
# cv2.putText(img, title, p3, cv2.FONT_ITALIC, 0.6, (0, 255, 0), 1)
font = cv2.FONT_HERSHEY_SIMPLEX
bottomLeftCornerOfText = (1,100)
fontScale = 2
fontColor = (255,255,0)
lineType = 4
radius_all=[]
for i in circles[0,:]:
# draw the outer circle
cv2.circle(img,(i[0],i[1]),i[2],(255,0,0),1)
# draw the center of the circle
cv2.circle(img,(i[0],i[1]),2,(255,0,0),1)
# print('radius',i[2])
radius_all.append(i[2])
# print('radius_all',radius_all)
# df = pd.DataFrame(radius_all)
df = pd.Series(radius_all)
# s = pd.Series([radius_all])
print("stats",df.describe())
# [a1,b2,c3,d4,e5,f6, g7, h8]=df.describe()
count, mean, std, min, t25, t50, t75, max = df.describe()
cv2.putText(img,'Number of bubbles :%d' % no_c,
(1,100),
font,
fontScale,
fontColor,
lineType)
cv2.putText(img,'Min size of bubbles:%d' % min,
(1,150),
font,
fontScale,
fontColor,
lineType)
cv2.putText(img,'Max size of bubbles:%d' % max,
(1,200),
font,
fontScale,
fontColor,
lineType)
cv2.putText(img,'Mean size of bubbles :%d' % mean,
(1,250),
font,
fontScale,
fontColor,
lineType)
cv2.putText(img,'Std of bubbles :%d' % std,
(1,300),
font,
fontScale,
fontColor,
lineType)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(prevgray, gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
prevgray = gray
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
print("mag",np.amax(mag))
print("magshape",mag.shape)
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
mv=np.amax(mag)
# min_mv=np.amean(mag)
# mean_mv=np.amax(mag)
cv2.putText(gray,'Maximum flow rate :%d' % mv,
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
lineType)
print("mag",mv)
print("magshape",mag.shape)
# display image with optic flow overlay
# cv2.imshow(windowName, draw_flow(gray, flow))
# display image
cv2.imshow(windowName,draw_flow(gray, flow));
cv2.imshow(windowName2, img)# h_concatenate(cimg, img));
key = cv2.waitKey(40) & 0xFF; # wait 40ms (i.e. 1000ms / 25 fps = 40 ms)
# It can also be set to detect specific key strokes by recording which key is pressed
# e.g. if user presses "x" then exit / press "f" for fullscreen display
if (key == ord('x')):
keep_processing = False;
elif (key == ord('f')):
cv2.setWindowProperty(windowName, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN);
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.");
#####################################################################