-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathocroline-train
executable file
·262 lines (216 loc) · 8.56 KB
/
ocroline-train
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/python3
import os
import sys
import argparse
import itertools
import numpy as np
import pylab
import torch
import psutil
import torch.optim as optim
import editdistance
from torch import nn
from dlinputs import gopen, paths, utils, filters, sequence
from dltrainers import flex, layers, helpers
from torch.autograd import Variable
import ocroline
print(dir(ocroline))
# matplotlib.use("GTK")
pylab.rc("image", cmap="hot")
parser = argparse.ArgumentParser("""Train an RNN recognizer.
LSTM parameters (for -L) include: project, nhidden, sizes, k, mp, mpk, relu, bn, vmp.
""")
parser.add_argument("-d", "--db", default="uw3-dew-training.tgz",
help="training set")
parser.add_argument("-t", "--testdb", default="uw3-dew-testing.tgz",
help="testset")
parser.add_argument("-s", "--shuffle", default=0, type=int,
help="size for training data shuffle buffer (0=disable)")
parser.add_argument("-b", "--batchsize", default=5, type=int,
help="batch size for training")
parser.add_argument("-B", "--testbatchsize", default=5, type=int,
help="batchsize for tests")
parser.add_argument("-n", "--normalize", default=False, action="store_true",
help="apply text line normalization")
parser.add_argument("--epochs", type=int, default=10000)
parser.add_argument("-m", "--model", default=None,
help="load model")
parser.add_argument("-T", "--testevery", default=5000, type=int,
help="how often to run the testset")
parser.add_argument("--testverbose", action="store_true")
parser.add_argument("-l", "--learningrate", default=1e-5, type=float,
help="learning rate")
parser.add_argument("--momentum", default=0.9, type=float,
help="momentum")
parser.add_argument("-R", "--output_frequency", default=1000, type=int,
help="how often to display outputs")
parser.add_argument("--upload", default=None,
help="command used for uploading; {} will be replaced with local file")
parser.add_argument("--saveevery", type=int, default=-1,
help="how often to save network (-1: every testset eval)")
parser.add_argument("-o", "--savebase", default="temp",
help="basename for output files")
parser.add_argument("--load", nargs="*", default=[])
parser.add_argument("--exec", dest="execute", nargs="*", default=[])
parser.add_argument("--sync", default=None)
parser.add_argument("--stage", default="none")
args = parser.parse_args()
codec = sequence.ascii_codec
def make_source():
return gopen.open_source(args.db)
def make_pipeline(batchsize=args.batchsize):
pipeline = [filters.rename(image="png", transcript="txt")]
if args.normalize:
normalizer = ocroline.CenterNormalizer()
pipeline += [filters.map(input=normalizer.measure_and_normalize)]
if args.shuffle > 0:
pipeline += [filters.shuffle(args.shuffle)]
pipeline += [filters.batchedbuckets(batchsize=batchsize)]
pipeline += [filters.map(image=sequence.seq_makebatch,
transcript=codec.encode_batch)]
pipeline += [filters.map(image=lambda x: np.expand_dims(x, 3))]
return filters.compose(*pipeline)
def make_model(ninput=48, noutput=97):
B, W, H, D = (0, 900), (0, 9000), ninput, (0, 5000)
return nn.Sequential(
# reorder to Torch conventions
layers.Reorder("BHWD", "BDHW"),
layers.CheckSizes(B, 1, H, W, name="input"),
# convolutional layers
flex.Conv2d(100, 3, padding=(1, 1)), # BDWH
nn.ReLU(),
# turn image into sequence
layers.Reshape(0, [1, 2], 3),
layers.CheckSizes(B, D, W),
# run 1D LSTM
flex.Lstm1(100),
flex.Conv1d(noutput, 1),
# reorder
layers.Reorder("BDW", "BWD"),
layers.CheckSizes(B, W, noutput, name="output"))
for e in args.load:
exec(compile(open(e, "rb").read(), e, 'exec'))
for e in args.execute:
exec(e)
def train_batch(model, input, target):
"""Train a BHWD input batch against a BWD target batch."""
assert input.size(0) == target.size(0)
b, h, w, d = input.size()
assert d == 1
input = Variable(input.cuda())
target = target.cuda()
logits = model.forward(input)
probs = helpers.sequence_softmax(logits)
optimizer.zero_grad()
deltas, aligned = helpers.ctc_loss(logits, target)
#assert deltas.size()[:2] == (b, w), (deltas.size(), (b, w))
#assert aligned.size()[:2] == (b, w), (aligned.size(), (b, w))
optimizer.step()
return probs, aligned
def display_batch(total, input, target, probs, aligned):
truth = codec.decode_tensor(target[0])
aligned = codec.decode_tensor(aligned[0])
result = codec.decode_tensor(probs[0])
print("#", total)
print("TRU", truth)
print("ALN", aligned)
print("PRE", result)
if False and i % (args.output_frequency*10) == 0:
pylab.clf()
pylab.subplot(311)
pylab.imshow(helpers.asnd(input[0]).T)
pylab.subplot(312)
pylab.imshow(helpers.asnd(target[0]).T)
pylab.subplot(313)
# imshow(ocroline.asnd(ocr.probs[0]).T, cmap=cm.gist_stern)
pylab.ginput(1, 0.001)
# convert command line args into plain dict to add to save files
params = {k: v for k, v in list(args.__dict__.items())}
process = psutil.Process(os.getpid())
def error(*args):
msg = " ".join([str(x) for x in args])
raise Exception(msg)
def rss():
return process.memory_info().rss
def eval_testset(model, testset, batchsize=args.testbatchsize):
pipeline = make_pipeline(batchsize=batchsize)
test_data = pipeline(gopen.sharditerator_once(testset))
nchars = 0
nlines = 0
total = 0
for batch in test_data:
input = helpers.astorch(batch["image"]).cuda()
logits = model.forward(Variable(input, volatile=True))
probs = helpers.sequence_softmax(logits)
results = codec.decode_batch(helpers.asnd(probs.cpu()))
targets = codec.decode_batch(batch["transcript"])
for i, (pre, tru) in enumerate(zip(results, targets)):
if args.testverbose:
print("TEST", i)
print("TEST PRE", pre)
print("TEST TRU", tru)
assert isinstance(pre, str), pre
assert isinstance(tru, str), tru
errs = editdistance.eval(pre, tru)
total += errs
nchars += len(tru)
nlines += len(results)
return total*1.0/nchars, nchars, nlines
def test_divergence(errors, scale=5, factor=2.0):
errors = [x[1] for x in errors]
if len(errors) < 2*scale+1:
return False
if factor*np.mean(errors[-2*scale:-scale]) < np.mean(errors[-scale:]):
return True
return False
source = make_source()
pipeline = make_pipeline()
training_data = pipeline(source)
sample = next(training_data)
utils.print_sample(sample)
if args.model is None:
model = make_model()
ntrain = 0
input = Variable(helpers.astorch(
sample["image"][:3, :, :20]), volatile=True)
print("input", input.size())
output = model.forward(input)
print("output", output.size())
flex.flex_freeze(model)
else:
print("loading", args.model)
model = torch.load(args.model)
ntrain, _ = paths.parse_save_path(args.model)
print("setting ntrain to", ntrain)
model = model.cuda()
model[0].cuda()
print(model)
optimizer = optim.SGD(model.parameters(),
lr=args.learningrate, momentum=args.momentum)
next_save = -1
errs = []
for epoch in range(args.epochs):
for i, sample in enumerate(itertools.islice(training_data, 0, args.testevery//args.batchsize)):
input = helpers.astorch(sample["image"])
ntrain += len(input)
target = helpers.astorch(sample["transcript"])
probs, aligned = train_batch(model, input, target)
if i % max(args.output_frequency//args.batchsize, 1) == 0:
display_batch(ntrain, input, target, probs, aligned)
err, nchars, nlines = eval_testset(model, args.testdb)
errs.append((ntrain, err))
print("testset", ntrain, err)
if args.saveevery < 0 or ntrain >= next_save:
fname = paths.make_save_path(args.savebase, ntrain, err)
print("saving as", fname)
torch.save(model, fname)
if args.sync is not None:
cmd = args.sync.format(fname=fname, ntrain=ntrain, base=args.savebase)
print("#", cmd)
assert os.system(cmd) == 0
print("done")
if test_divergence(errs, scale=5, factor=2.0):
print("DIVERGENCE")
break
sys.stdout.flush()
sys.stderr.flush()