-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddqn_model.py
49 lines (40 loc) · 1.39 KB
/
ddqn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import load_cfg
# Load configuration from YAML
cfg = load_cfg()
# Define global configuration variables
fc1_size = cfg["Model"]["fc1_size"]
fc2_size = cfg["Model"]["fc2_size"]
class QNetwork(nn.Module):
"""Actor (Policy) Model."""
def __init__(
self,
state_size,
action_size,
seed,
fc1_size=fc1_size,
fc2_size=fc2_size
):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
"""
super(QNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.state_size = state_size
self.action_size = action_size
self.fc1 = nn.Linear(self.state_size, fc1_size)
self.fc2 = nn.Linear(fc1_size, fc2_size)
self.fc3 = nn.Linear(fc2_size, self.action_size)
def forward(self, state):
"""Build a network that maps state -> action values."""
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
# We don't use an activation function for the last layer because the function we want to
# approximate is not bound below by zero. Q(s,a) can have negative values, so don't rectify!
return self.fc3(x)