forked from dashpay/dash
-
Notifications
You must be signed in to change notification settings - Fork 0
/
checkdatasig_tests.cpp
234 lines (203 loc) · 10.3 KB
/
checkdatasig_tests.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright (c) 2018-2020 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <policy/policy.h>
#include <script/interpreter.h>
#include <test/lcg.h>
#include <test/test_dash.h>
#include <boost/test/unit_test.hpp>
#include <array>
#include <bitset>
typedef std::vector<uint8_t> valtype;
typedef std::vector<valtype> stacktype;
BOOST_FIXTURE_TEST_SUITE(checkdatasig_tests, BasicTestingSetup)
std::array<uint32_t, 2> flagset{{0, STANDARD_SCRIPT_VERIFY_FLAGS}};
const uint8_t vchPrivkey[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
struct KeyData {
CKey privkey, privkeyC;
CPubKey pubkey, pubkeyC, pubkeyH;
KeyData() {
privkey.Set(vchPrivkey, vchPrivkey + 32, false);
privkeyC.Set(vchPrivkey, vchPrivkey + 32, true);
pubkey = privkey.GetPubKey();
pubkeyH = privkey.GetPubKey();
pubkeyC = privkeyC.GetPubKey();
*const_cast<uint8_t *>(&pubkeyH[0]) = 0x06 | (pubkeyH[64] & 1);
}
};
static void CheckError(uint32_t flags, const stacktype& original_stack,
const CScript& script, ScriptError expected)
{
BaseSignatureChecker sigchecker;
ScriptError err = ScriptError::SCRIPT_ERR_OK;
stacktype stack{original_stack};
bool r = EvalScript(stack, script, flags | SCRIPT_ENABLE_DIP0020_OPCODES, sigchecker, SigVersion::BASE, &err);
BOOST_CHECK(!r);
BOOST_CHECK(err == expected);
}
static void CheckPass(uint32_t flags, const stacktype& original_stack,
const CScript& script, const stacktype& expected)
{
BaseSignatureChecker sigchecker;
ScriptError err = ScriptError::SCRIPT_ERR_OK;
stacktype stack{original_stack};
bool r = EvalScript(stack, script, flags | SCRIPT_ENABLE_DIP0020_OPCODES, sigchecker, SigVersion::BASE, &err);
BOOST_CHECK(r);
BOOST_CHECK(err == ScriptError::SCRIPT_ERR_OK);
BOOST_CHECK(stack == expected);
}
/**
* General utility functions to check for script passing/failing.
*/
static void CheckTestResultForAllFlags(const stacktype& original_stack,
const CScript& script,
const stacktype& expected)
{
for (uint32_t flags : flagset) {
CheckPass(flags, original_stack, script, expected);
}
}
static void CheckErrorForAllFlags(const stacktype& original_stack,
const CScript& script, ScriptError expected)
{
for (uint32_t flags : flagset) {
CheckError(flags, original_stack, script, expected);
}
}
BOOST_AUTO_TEST_CASE(checkdatasig_test)
{
// Empty stack.
CheckErrorForAllFlags({}, CScript() << OP_CHECKDATASIG,
ScriptError::SCRIPT_ERR_INVALID_STACK_OPERATION);
CheckErrorForAllFlags({{0x00}}, CScript() << OP_CHECKDATASIG,
ScriptError::SCRIPT_ERR_INVALID_STACK_OPERATION);
CheckErrorForAllFlags({{0x00}, {0x00}}, CScript() << OP_CHECKDATASIG,
ScriptError::SCRIPT_ERR_INVALID_STACK_OPERATION);
CheckErrorForAllFlags({}, CScript() << OP_CHECKDATASIGVERIFY,
ScriptError::SCRIPT_ERR_INVALID_STACK_OPERATION);
CheckErrorForAllFlags({{0x00}}, CScript() << OP_CHECKDATASIGVERIFY,
ScriptError::SCRIPT_ERR_INVALID_STACK_OPERATION);
CheckErrorForAllFlags({{0x00}, {0x00}}, CScript() << OP_CHECKDATASIGVERIFY,
ScriptError::SCRIPT_ERR_INVALID_STACK_OPERATION);
// Check various pubkey encoding.
const valtype message{};
valtype vchHash(32);
CSHA256().Write(message.data(), message.size()).Finalize(vchHash.data());
uint256 messageHash(vchHash);
KeyData kd;
valtype pubkey = ToByteVector(kd.pubkey);
valtype pubkeyC = ToByteVector(kd.pubkeyC);
valtype pubkeyH = ToByteVector(kd.pubkeyH);
CheckTestResultForAllFlags({{}, message, pubkey},
CScript() << OP_CHECKDATASIG, {{}});
CheckTestResultForAllFlags({{}, message, pubkeyC},
CScript() << OP_CHECKDATASIG, {{}});
CheckErrorForAllFlags({{}, message, pubkey},
CScript() << OP_CHECKDATASIGVERIFY,
ScriptError::SCRIPT_ERR_CHECKDATASIGVERIFY);
CheckErrorForAllFlags({{}, message, pubkeyC},
CScript() << OP_CHECKDATASIGVERIFY,
ScriptError::SCRIPT_ERR_CHECKDATASIGVERIFY);
// Flags dependent checks.
const CScript script = CScript() << OP_CHECKDATASIG << OP_NOT << OP_VERIFY;
const CScript scriptverify = CScript() << OP_CHECKDATASIGVERIFY;
// Check valid signatures (as in the signature format is valid).
valtype validsig;
kd.privkey.Sign(messageHash, validsig);
validsig.push_back(static_cast<unsigned char>(1));
CheckTestResultForAllFlags({validsig, message, pubkey},
CScript() << OP_CHECKDATASIG, {{0x01}});
CheckTestResultForAllFlags({validsig, message, pubkey},
CScript() << OP_CHECKDATASIGVERIFY, {});
const valtype minimalsig{0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x01};
const valtype nondersig{0x30, 0x80, 0x06, 0x02, 0x01,
0x01, 0x02, 0x01, 0x01, 0x01};
const valtype highSSig{
0x30, 0x45, 0x02, 0x20, 0x3e, 0x45, 0x16, 0xda, 0x72, 0x53, 0xcf, 0x06,
0x8e, 0xff, 0xec, 0x6b, 0x95, 0xc4, 0x12, 0x21, 0xc0, 0xcf, 0x3a, 0x8e,
0x6c, 0xcb, 0x8c, 0xbf, 0x17, 0x25, 0xb5, 0x62, 0xe9, 0xaf, 0xde, 0x2c,
0x02, 0x21, 0x00, 0xab, 0x1e, 0x3d, 0xa7, 0x3d, 0x67, 0xe3, 0x20, 0x45,
0xa2, 0x0e, 0x0b, 0x99, 0x9e, 0x04, 0x99, 0x78, 0xea, 0x8d, 0x6e, 0xe5,
0x48, 0x0d, 0x48, 0x5f, 0xcf, 0x2c, 0xe0, 0xd0, 0x3b, 0x2e, 0xf0, 0x01};
MMIXLinearCongruentialGenerator lcg;
for (int i = 0; i < 4096; i++) {
uint32_t flags = lcg.next();
if (flags & SCRIPT_VERIFY_STRICTENC) {
// When strict encoding is enforced, hybrid keys are invalid.
CheckError(flags, {{}, message, pubkeyH}, script,
ScriptError::SCRIPT_ERR_PUBKEYTYPE);
CheckError(flags, {{}, message, pubkeyH}, scriptverify,
ScriptError::SCRIPT_ERR_PUBKEYTYPE);
} else {
// Otherwise, hybrid keys are valid.
CheckPass(flags, {{}, message, pubkeyH}, script, {});
CheckError(flags, {{}, message, pubkeyH}, scriptverify,
ScriptError::SCRIPT_ERR_CHECKDATASIGVERIFY);
}
// Uncompressed keys are valid.
CheckPass(flags, {{}, message, pubkey}, script, {});
CheckError(flags, {{}, message, pubkey}, scriptverify,
ScriptError::SCRIPT_ERR_CHECKDATASIGVERIFY);
if (flags & SCRIPT_VERIFY_NULLFAIL) {
// Invalid signature causes checkdatasig to fail.
CheckError(flags, {minimalsig, message, pubkeyC}, script,
ScriptError::SCRIPT_ERR_SIG_NULLFAIL);
CheckError(flags, {minimalsig, message, pubkeyC}, scriptverify,
ScriptError::SCRIPT_ERR_SIG_NULLFAIL);
// Invalid message causes checkdatasig to fail.
CheckError(flags, {validsig, {0x01}, pubkeyC}, script,
ScriptError::SCRIPT_ERR_SIG_NULLFAIL);
CheckError(flags, {validsig, {0x01}, pubkeyC}, scriptverify,
ScriptError::SCRIPT_ERR_SIG_NULLFAIL);
} else {
// When nullfail is not enforced, invalid signature are just false.
CheckPass(flags, {minimalsig, message, pubkeyC}, script, {});
CheckError(flags, {minimalsig, message, pubkeyC}, scriptverify,
ScriptError::SCRIPT_ERR_CHECKDATASIGVERIFY);
// Invalid message cause checkdatasig to fail.
CheckPass(flags, {validsig, {0x01}, pubkeyC}, script, {});
CheckError(flags, {validsig, {0x01}, pubkeyC}, scriptverify,
ScriptError::SCRIPT_ERR_CHECKDATASIGVERIFY);
}
if (flags & SCRIPT_VERIFY_LOW_S) {
// If we do enforce low S, then high S sigs are rejected.
CheckError(flags, {highSSig, message, pubkeyC}, script,
ScriptError::SCRIPT_ERR_SIG_HIGH_S);
CheckError(flags, {highSSig, message, pubkeyC}, scriptverify,
ScriptError::SCRIPT_ERR_SIG_HIGH_S);
} else if (flags & SCRIPT_VERIFY_NULLFAIL) {
// If we do enforce nullfail, these invalid sigs hit this.
CheckError(flags, {highSSig, message, pubkeyC}, script,
ScriptError::SCRIPT_ERR_SIG_NULLFAIL);
CheckError(flags, {highSSig, message, pubkeyC}, scriptverify,
ScriptError::SCRIPT_ERR_SIG_NULLFAIL);
} else {
// If we do not enforce low S, then high S sigs are accepted.
CheckPass(flags, {highSSig, message, pubkeyC}, script, {});
CheckError(flags, {highSSig, message, pubkeyC}, scriptverify,
ScriptError::SCRIPT_ERR_CHECKDATASIGVERIFY);
}
if (flags & (SCRIPT_VERIFY_DERSIG | SCRIPT_VERIFY_LOW_S |
SCRIPT_VERIFY_STRICTENC)) {
// If we get any of the dersig flags, the non canonical dersig
// signature fails.
CheckError(flags, {nondersig, message, pubkeyC}, script,
ScriptError::SCRIPT_ERR_SIG_DER);
CheckError(flags, {nondersig, message, pubkeyC}, scriptverify,
ScriptError::SCRIPT_ERR_SIG_DER);
} else if (flags & SCRIPT_VERIFY_NULLFAIL) {
// If we do enforce nullfail, these invalid sigs hit this.
CheckError(flags, {nondersig, message, pubkeyC}, script,
ScriptError::SCRIPT_ERR_SIG_NULLFAIL);
CheckError(flags, {nondersig, message, pubkeyC}, scriptverify,
ScriptError::SCRIPT_ERR_SIG_NULLFAIL);
} else {
// If we do not check, then it is accepted.
CheckPass(flags, {nondersig, message, pubkeyC}, script, {});
CheckError(flags, {nondersig, message, pubkeyC}, scriptverify,
ScriptError::SCRIPT_ERR_CHECKDATASIGVERIFY);
}
}
}
BOOST_AUTO_TEST_SUITE_END()