-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_train.py
494 lines (421 loc) · 19.1 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from opt import load_arg
from utils import IO, import_class
from models import Model_vision, masked_loss, kl_criterion, kl_fixed_logvar_criterion
import numpy as np
import time
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
torch.set_num_threads(4)
is_half_precision=False
print("Working with torch ", torch.__version__)
if is_half_precision:
torch.set_default_dtype(torch.float16)
args = load_arg()
device_ids = [args.device_ids] if isinstance(args.device_ids, int) else list(args.device_ids)
plotlevel= args.plotlevel #10-all, 5-low, 0-none
do_center_loss= args.model_args.get('do_center_loss', False)
do_sparse_memupdate_loss= args.model_args.get('do_sparse_memupdate_loss', False)
# intialize environment
io = IO(
args.work_dir,
save_log=args.save_log,
print_log=args.print_log
)
io.save_arg(args)
# load_data
Feeder = import_class(args.feeder)
data_loader = dict()
train_feeder = Feeder(**args.train_feeder_args)
num_train_samples = len(train_feeder)
data_loader['train'] = DataLoader(
dataset=train_feeder,
batch_size=args.batch_size,
shuffle=False,
num_workers=0,#args.num_workers * len(device_ids),
drop_last=False
)
test_feeder = Feeder(**args.test_feeder_args)
num_test_samples = len(test_feeder)
data_loader['test'] = DataLoader(
dataset=test_feeder,
batch_size=args.test_batch_size,
shuffle=False,
num_workers=0#args.num_worker * ngpu(self.arg.device)
)
l_seq_len, lang_dim = train_feeder[0][3].shape[0], train_feeder[0][3].shape[1]
seq_len, _ = train_feeder[0][2].shape[0], train_feeder[0][2].shape[1]
evalversion = args.evalversion
test_batch_size = args.test_batch_size
sample_start = args.sample_start
sample_num = args.sample_num
if args.sample_num_select<=0:
samples_to_eval = list(range(sample_start, sample_start+sample_num))
else:
step_ = float(sample_num-1)/float(args.sample_num_select)
l1 = np.round(step_ * np.arange(0.0, float(args.sample_num_select)))
samples_to_eval = list(l1.astype(int)+sample_start)
work_dir=args.work_dir
# load model
model = Model_vision(seed=args.seed, num_context_frames=args.num_context_frames, **args.model_args)
pb_size = args.model_args['language_args']['layers'][0]['pb_size']
lang_pb = []
lang_train_labels = []
lang_test_labels = []
loader1 = data_loader['train']
nc_pb = args.model_args['language_args']['layers'][0]['pb_size']
pca_pb = PCA(n_components=nc_pb)
lang_i = torch.zeros((num_train_samples, l_seq_len, lang_dim))
loader_t = data_loader['test']
lang_t = torch.zeros((num_test_samples, l_seq_len, lang_dim))
for indices, visions, motors, language, masks, lang_masks in loader1:
lang = language.float()
lang_train_labels.append(lang)
for indices, visions, motors, language, masks, lang_masks in loader_t:
lang = language.float()
lang_test_labels.append(lang)
lang_t[indices, :, :] = lang
pca_pb_train, pca_pb_test = io.pca_init(pca_pb, lang_i, lang_t)
for i in range(len(train_feeder)):
if args.model_args['language_args']["is_lang"]:
# lang_pb.append(nn.Parameter(F.tanh(torch.zeros(pb_size).clone().detach().cuda(args.cuda))))
lang_pb.append(nn.Parameter(F.tanh(pca_pb_train[i].clone().detach().cuda(args.cuda))))
# lang_pb.append(torch.randn_like(F.tanh(pca_pb_train[i].clone().detach().cuda(args.cuda))))
posterior_params = []
for _ in range(num_train_samples):
posterior_param = {'mu': nn.Parameter(model.create_init_states()), 'logvar': nn.Parameter(model.create_init_states())}
posterior_params.append(posterior_param)
#prior mu and logvar for initial step
pvrnn_pos_mu, pvrnn_pos_logvar = [], []
for n in range(num_train_samples):
posterior_A_mu, posterior_A_logvar = model.pvrnn_init_states(args.model_args['integration_args']['layers'], seq_len=seq_len)
pvrnn_pos_mu.append(posterior_A_mu)
pvrnn_pos_logvar.append(posterior_A_logvar)
if args.model_args['integration_args']['is_UG'] == False:
# learnable prior for initial state if not using unit gaussian
pvrnn_prior_mu_i, pvrnn_prior_logvar_i = model.pvrnn_init_states(args.model_args['integration_args']['layers'],
seq_len=1)
else:
z_size = sum(args.model_args['integration_args']['layers'][l]['z_size'] for l in
range(len(args.model_args['integration_args']['layers'])))
pvrnn_prior_mu_i, pvrnn_prior_logvar_i = torch.zeros(1, z_size), torch.zeros(1, z_size)
if args.checkpoint_path:
checkpoint = torch.load(args.checkpoint_path)
model.load_state_dict(checkpoint['model'])
# intention_params = checkpoint['intention']
v_criterion = nn.MSELoss(reduction='none') # vison loss
if args.model_args['motor_args'].get('is_softmax',True):
m_criterion = nn.KLDivLoss(reduction='none') # motor loss
else:
m_criterion = nn.MSELoss(reduction='none') # motor loss
cv_center_loss_criterion = nn.MSELoss(reduction='none')
# langauge loss function
if args.lang_loss == 'mse':
l_criterion = nn.MSELoss(reduction='none')
elif args.lang_loss =='bce':
l_criterion = nn.BCELoss(reduction='none')
elif args.lang_loss =='kld':
l_criterion = nn.KLDivLoss(reduction='none')
elif args.lang_loss =='ce': #doesn't work unless to change language output activation
l_criterion = nn.CrossEntropyLoss(reduction='none')
b_criterion = nn.MSELoss(reduction='mean')
# dev='cpu'
if args.use_gpu:
dev = 'cuda:'+str(args.cuda)
else:
dev = 'cpu'
model = model.to(dev)
if is_half_precision:
model.half()
# intention_params = intention_params.to(dev)
v_criterion = v_criterion.to(dev)
m_criterion = m_criterion.to(dev)
l_criterion = l_criterion.to(dev)
b_criterion = b_criterion.to(dev)
cv_center_loss_criterion = cv_center_loss_criterion.to(dev)
if args.use_gpu:
if len(device_ids) > 1:
model = nn.DataParallel(model, device_ids=device_ids)
# load optimizer
optimizer = dict()
optimizer['model'] = optim.Adam(
model.parameters(),
lr=args.base_lr,
weight_decay=args.weight_decay
)
optimizer['pvrnn_posterior']= {
'mu':
[
optim.Adam(
[pvrnn_pos_mu[n]],
lr=args.base_lr * 10 * 3,
)for n in range(num_train_samples)
],
'logvar':
[
optim.Adam(
[pvrnn_pos_logvar[n]],
lr=args.base_lr * 10 * 3,
)for n in range(num_train_samples)
]}
if args.model_args['integration_args']['is_UG'] == False:
optimizer['pvrnn_prior_i']= {
'mu':
optim.Adam(
[pvrnn_prior_mu_i],
lr=args.base_lr * 10 * 3,
),
'logvar':
optim.Adam(
[pvrnn_prior_logvar_i],
lr=args.base_lr * 10 * 3,
)
}
optimizer['lang_pb'] = \
{'lang_pb': [optim.Adam([lang_pb[n]],
lr=args.base_lr * 10 * 3,
) for n in range(num_train_samples)]}
K = args.k
target_reg_dynmodel = model.L0MemoryL1Reg
model.L0MemoryL1Reg=0
print(model)
def train(meta_info):
model.train()
# loader = data_loader['train']
loss_value = []
mse_value = []
kl_value = []
iter_info = dict()
attention_prior = torch.Tensor([0,0,0]).view(1, 3).to(dev)
#test distance to center:
v_dim = args.model_args['vision_args']['dim']
m1, m2 = torch.meshgrid([torch.arange(0, v_dim, dtype=torch.get_default_dtype()), torch.arange(0, v_dim, dtype=torch.get_default_dtype())])
m1 = (m1/(v_dim-1.0)) #*2-1 1-...
m2 = (m2/(v_dim-1.0)) #*2-1 1-..
v_mesh = torch.stack([m2, m1], dim=2).to(dev)
cv_center_loss = torch.tensor(0)
sparse_memupdate_loss = torch.tensor(0)
ib_state, integ_states = [], []
l_pred, l_targ = [], []
l_pb = []
m_pred, m_targ = [], []
ids = []
epoloss= 0.
epo_vloss = 0.
epo_mloss = 0.
epo_lloss = 0.
epo_bloss = 0.
epo_kld = 0.
epo_pvkl = 0.
for indices, visions, motors, language, masks, lang_masks in loader1:
# do_eval_this_iter = (meta_info['iter'] % args.plot_interval == 0)
time_start=time.time()
# l_str = io.gen_lang(language[0])
# print("lang = {}".format(l_str))
indices = indices.long().to(dev)
visions = visions.float().to(dev)
for i in indices:
ids.append(i)
lang = language.float().to(dev)
lang_masks = lang_masks.float().to(dev)
l_inputs = lang[:, :-1]
l_targets = lang[:, args.num_context_frames:]
l_masks = lang_masks[:, :args.num_context_frames]
if len(motors)>0: motors = motors.float().to(dev)
masks = masks.float().to(dev)
v_inputs = visions[:,:-1]
m_inputs = []
if len(motors) > 0: m_inputs = motors[:,:-1]
v_targets = visions[:,args.num_context_frames:]
m_targets = []
if len(motors) > 0: m_targets = motors[:,args.num_context_frames:]
mask_targets = masks[:,args.num_context_frames:]
# setting posterior A values for each sequence
pvrnn_posterior_mu = torch.stack([pvrnn_pos_mu[i] for i in indices], dim=0)
pvrnn_posterior_logvar = torch.stack([pvrnn_pos_logvar[i] for i in indices], dim=0)
posterior = {'mu': torch.stack([posterior_params[i]['mu'] for i in indices], dim=0),
'logvar': torch.stack([posterior_params[i]['logvar'] for i in indices], dim=0)}
cell_mu = posterior['mu'].to(dev)
cell_logvar = posterior['logvar'].to(dev)
# cell_mu_prior = prior_param['mu'][None,:].to(dev)
# cell_logvar_prior = prior_param['logvar'][None,:].to(dev)
pv_mu = pvrnn_posterior_mu.to(dev)
pv_logvar = pvrnn_posterior_logvar.to(dev)
pv_prior_mu_i = pvrnn_prior_mu_i.to(dev)
pv_prior_logvar_i = pvrnn_prior_logvar_i.to(dev)
ediststart = 3750
edistend = 5000
edistdiff = (edistend - ediststart)
if meta_info['epoch'] > ediststart:
edistfac = min(float(meta_info['epoch'] - ediststart) / float(edistdiff), 1.0)
# edistfac = 1
model.L0MemoryL1Reg = target_reg_dynmodel * edistfac
lang_pbs = torch.stack([lang_pb[i] for i in indices], dim=0)
lang_pbs = lang_pbs.to(dev)
model_out = model(v_inputs, m_inputs, l_inputs, cell_mu, cell_logvar, pv_mu, pv_logvar, pv_prior_mu_i,
pv_prior_logvar_i, lang_pb=lang_pbs)
m_predictions, rv_predictions, cv_predictions, attention_wheres, \
pv_kl, l_predictions, lang_pb_pred_list = model_out
l_pred.append(l_predictions.detach().cpu().numpy())
l_targ.append(l_targets.detach().cpu().numpy())
m_pred.append(m_predictions.detach().cpu().numpy())
m_targ.append(m_targets.detach().cpu().numpy())
v_loss = masked_loss(v_criterion, rv_predictions, v_targets, mask_targets)
if len(motors) > 0: m_loss = masked_loss(m_criterion, m_predictions, m_targets, mask_targets)
loss = v_loss + m_loss
lossfactor = (float(meta_info['epoch']) / 500.0) - 1.0
if lossfactor <= 0:
bk = 1
else:
bk = K
if args.model_args['language_args']["is_lang"]:
lang_pbs = lang_pbs.repeat(len(v_inputs[0]), 1, 1)
lang_pb_preds = torch.stack(lang_pb_pred_list)
b_loss = b_criterion(lang_pb_preds, lang_pbs)
# ib_state.append(lang_init_state.detach().cpu().numpy())
for i in range(len(lang_pbs)):
l_pb.append(lang_pbs[i].detach().cpu().numpy())
l_loss = masked_loss(l_criterion, l_predictions, l_targets, l_masks)
loss += K*l_loss + 1*b_loss
else:
l_loss = torch.zeros(1)
b_loss = torch.zeros(1)
loss += pv_kl
#loss for focus area
if do_center_loss:
#old: lossfactor = 1.0-(float(meta_info['iter'])/10000.0)
lossfactor = 1.0 - (float(meta_info['epoch']) / 500.0)
if lossfactor>0:
cv_center = model.transformer.where_to_center(attention_wheres)
dists = cv_center[:, :, None, None, :] - v_mesh
distweight = torch.sum(torch.pow(dists, 2), dim=-1)
prewdists = (rv_predictions - v_targets)
wdists = prewdists.detach() * distweight[:, :, None, :, :]
cv_center_loss = 100 * torch.mean(wdists ** 2)
cv_center_loss=cv_center_loss*lossfactor
loss += cv_center_loss
optimizer['model'].zero_grad()
if args.model_args['integration_args']['is_UG'] == False:
optimizer['pvrnn_prior_i']['mu'].zero_grad()
optimizer['pvrnn_prior_i']['logvar'].zero_grad()
for i in indices:
optimizer['lang_pb']['lang_pb'][i].zero_grad()
optimizer['pvrnn_posterior']['mu'][i].zero_grad()
optimizer['pvrnn_posterior']['logvar'][i].zero_grad()
loss.backward()
# gradiant clipping to avoid NaN
norm = nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad)
if args.model_args['language_args']['is_lang']:
norm += nn.utils.clip_grad_norm_(lang_pb, args.clip_grad)
norm += nn.utils.clip_grad_norm_(pvrnn_pos_mu, args.clip_grad)
norm += nn.utils.clip_grad_norm_(pvrnn_pos_logvar, args.clip_grad)
if not args.model_args['integration_args']['is_UG']:
norm += nn.utils.clip_grad_norm_(pvrnn_prior_mu_i, args.clip_grad)
norm += nn.utils.clip_grad_norm_(pvrnn_prior_logvar_i, args.clip_grad)
optimizer['model'].step()
if args.model_args['integration_args']['is_UG'] == False:
optimizer['pvrnn_prior_i']['mu'].step()
optimizer['pvrnn_prior_i']['logvar'].step()
for i in indices:
optimizer['lang_pb']['lang_pb'][i].step()
optimizer['pvrnn_posterior']['mu'][i].step()
optimizer['pvrnn_posterior']['logvar'][i].step()
# statistics
epoloss += loss.data.item()
epo_vloss += v_loss.data.item()
epo_mloss += m_loss.data.item()
epo_lloss += l_loss.data.item()
epo_bloss += b_loss.data.item()
# epo_kld += kl_loss.data.item()
epo_pvkl += pv_kl.data.item() # for plotting the kld without multiplying with w
iter_info['loss'] = loss.data.item()
iter_info['v_loss'] = v_loss.data.item()
if args.model_args['language_args']['is_lang']:
iter_info['l_loss'] = l_loss.data.item()
iter_info['b_loss'] = b_loss.data.item()
if len(motors) > 0: iter_info['m_loss'] = m_loss.data.item()
iter_info['pvkl_loss'] = pv_kl.data.item()
iter_info['norm'] = norm#.data.item()
iter_info['cv_center_loss']=cv_center_loss.data.item()
iter_info['sparse_memupdate_loss']=sparse_memupdate_loss.data.item()
iter_info['duration'] = time.time()-time_start
# show_iter_info
if meta_info['iter'] % args.log_interval == 0:
info ='\tIter {} Done.'.format(meta_info['iter'])
for k, v in iter_info.items():
if isinstance(v, float):
info = info + ' | {}: {:.4f}'.format(k, v)
else:
info = info + ' | {}: {}'.format(k, v)
io.print_log(info)
if args.model_args['language_args']["is_lang"]:
mse_value.append(iter_info['v_loss'] + iter_info['m_loss']+ iter_info['l_loss'] + iter_info['b_loss'])
else:
mse_value.append(iter_info['v_loss'] + iter_info['m_loss'])
loss_value.append(iter_info['loss'])
meta_info['iter'] += 1
return epo_vloss, epo_mloss, epo_lloss, epo_bloss, epo_kld, epo_pvkl
def start():
io.print_log('Parameters:\n{}\n'.format(str(vars(args))))
print("phase"+str(args.phase))
# training phase
#ToDo: generate loss curve at the end of training. Also include posterior reconstruction of trained data (for training accuracy)
if args.phase == 'train':
meta_info = dict(epoch=0, iter=0)
if args.start_epoch>0:
print("starting epoch = " + str(args.start_epoch))
# load checkpoint:
filename = 'epoch{}_checkpoint.pt'.format(args.start_epoch)
# checkpoint = io.load_checkpoint(filename)
# io.load_weights_from_checkpoint(model, checkpoint)
# opti_model = io.load_optimizer(checkpoint, param='model') #io.load_optimizer_model(checkpoint)
FE= []
vision_error, motor_error, lang_error, bind_error, kld, pv_kl = [], [], [], [], [], []
for epoch in range(args.start_epoch, args.num_epochs):
meta_info['epoch'] = epoch
epoch_start = time.time()
v_loss, m_loss, l_loss, b_loss, kl, pvkl = train(meta_info)
loss_value = v_loss + m_loss + l_loss + b_loss + pvkl
FE.append(loss_value)
vision_error.append(v_loss)
motor_error.append(m_loss)
lang_error.append(l_loss)
bind_error.append(b_loss)
kld.append(kl)
pv_kl.append(pvkl)
io.print_log('Training epoch: {}| loss: {:.4f} | v_loss: {:.4f}| m_loss: {:.4f}| l_loss: {:.4f}| b_loss:{:.4f}| pv_kl: {:.4f}'.format(
epoch, loss_value, v_loss, m_loss, l_loss, b_loss, pvkl))
io.print_log('Done. Duration: {}'.format(time.time() - epoch_start))
# save model
if ((epoch + 1) % args.save_interval == 0) or (epoch + 1 == args.num_epochs):
filename = 'epoch{}_checkpoint.pt'.format(epoch + 1)
save_dict = {
'epoch': epoch + 1,
'model': model.state_dict(),
'loss_value': loss_value,
'optimizer': {'model': optimizer['model'].state_dict()},
}
# if args.model_args['integration_args']['is_pvrnn']:
save_dict['pvrnn_pos_mu'] = pvrnn_pos_mu
save_dict['pvrnn_pos_logvar'] = pvrnn_pos_logvar
save_dict['optimizer']['pvrnn_posterior'] = [[o.state_dict() for o in optimizer['pvrnn_posterior']['mu']],
[o.state_dict() for o in
optimizer['pvrnn_posterior']['logvar']]]
if not args.model_args['integration_args']['is_UG']:
save_dict['pvrnn_prior_mu_i'] = pvrnn_prior_mu_i
save_dict['pvrnn_prior_logvar_i'] = pvrnn_prior_logvar_i
save_dict['optimizer']['pvrnn_prior_i'] = optimizer['pvrnn_prior_i']
save_dict['lang_train_labels'] = lang_train_labels
save_dict['lang_pb'] = lang_pb
save_dict['optimizer']['lang_pb'] = [o.state_dict() for o in optimizer['lang_pb']['lang_pb']]
loss_dict = {'v_loss': vision_error, 'm_loss': motor_error, "l_loss": lang_error,
"b_loss": bind_error, "pv_kl": pv_kl, 'loss': FE}
np.savez(work_dir + "/loss_{}".format(epoch), **loss_dict)
io.save_checkpoint(save_dict, filename)
if __name__ == '__main__':
# mp.set_start_method('spawn')
start()