-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
253 lines (183 loc) · 8.98 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import PIL
import torch
import numpy as np
import torch.nn.functional as F
import torchvision.models as models
from torchvision.utils import make_grid, save_image
import json
from utils import visualize_cam, Normalize
from utils_GradCAM import convert_to_grayscale
from gradcam import GradCAM, GradCAMpp, Contrast, Contrast_pp, GuidedBackprop, generate_smooth_grad, guided_grad_cam, GuidedBackprop_Contrast
def iou_numpy(outputs: np.array, labels: np.array):
threshold = 0.1
outputs = outputs.numpy()
outputs = np.where(outputs > threshold, 1, 0)
labels = np.where(labels > threshold, 1, 0)
SMOOTH = 1e-6
intersection = (outputs & labels).sum()
union = (outputs | labels).sum()
iou = (intersection + SMOOTH) / (union + SMOOTH)
return iou
def signaltonoise(a, axis=0, ddof=0):
a = np.asanyarray(a)
m = a.mean(axis)
sd = a.std(axis=axis, ddof=ddof)
return np.where(sd == 0, 0, m/sd)
def get_stats(explanation, uncertainty, logit, label):
snr = signaltonoise(uncertainty.numpy(), axis=None)
target = torch.from_numpy(np.asarray([label])).cuda()
log_likelihood = -F.nll_loss(logit, target).data.cpu().numpy()
iou = iou_numpy(uncertainty, explanation)
return iou, snr, log_likelihood
def get_explanation(explanation_model, contrast_model, img, num_classes):
mask_explanation, logit = explanation_model(img)
mask_explanation = mask_explanation.squeeze(0).squeeze(0).cpu().numpy()
_, classes = torch.topk(logit, 2)
classes = classes.squeeze(0)
pred_class = classes[0].data.cpu().numpy()
contrast_class = classes[1].data.cpu().numpy()
mask_contrast, _ = contrast_model(img, contrast_class)
mask_contrast = mask_contrast.squeeze(0).squeeze(0).cpu().numpy()
uncertain_mask = []
for num_class in range(num_classes):
# print(curr_class)
if num_class == pred_class:
continue
mask_temp, _ = contrast_model(img, num_class) # , retain_graph = True)
mask_temp = mask_temp.squeeze(0).squeeze(0).data.cpu()
uncertain_mask.append(mask_temp)
del mask_temp
uncertain_mask_all = torch.stack(uncertain_mask, 0)
mask_uncertainty = torch.var(uncertain_mask_all.data, 0)
saliency_map_min, saliency_map_max = mask_uncertainty.min(), mask_uncertainty.max()
mask_uncertainty = (mask_uncertainty - saliency_map_min).div(saliency_map_max - saliency_map_min).data
iou, snr, log_likelihood = get_stats(mask_explanation, mask_uncertainty, logit, pred_class)
stats = {
'Prediction': pred_class,
'Contrast Class': contrast_class,
'SNR': snr,
'Log Likelihood': log_likelihood,
'IoU': iou,
'Logit': logit,
}
return mask_explanation, mask_contrast, mask_uncertainty, stats
def get_explanation_smoothgrad(explanation_model, contrast_model, img, pred, contrast_class, logit, num_classes):
param_n = 10
param_sigma_multiplier = 5
smooth_grad = generate_smooth_grad(explanation_model,
img,
pred,
param_n,
param_sigma_multiplier)
grayscale_guided_grads = convert_to_grayscale(smooth_grad)
mask_explanation = grayscale_guided_grads.squeeze(0)
smooth_grad_contrast = generate_smooth_grad(contrast_model,
img,
contrast_class,
param_n,
param_sigma_multiplier)
grayscale_guided_grads = convert_to_grayscale(smooth_grad_contrast)
mask_contrast = grayscale_guided_grads.squeeze(0)
uncertain_mask = []
for num_class in range(num_classes):
if num_class == pred:
continue
mask_gbp_c = generate_smooth_grad(contrast_model,
img,
num_class,
param_n,
param_sigma_multiplier)
grayscale_guided_grads_c = convert_to_grayscale(mask_gbp_c).squeeze(0)
uncertain_mask.append(torch.Tensor(grayscale_guided_grads_c))
del grayscale_guided_grads_c, mask_gbp_c
uncertain_mask_all = torch.stack(uncertain_mask, 0)
mask_uncertainty = torch.var(uncertain_mask_all.data, 0)
saliency_map_min, saliency_map_max = mask_uncertainty.min(), mask_uncertainty.max()
mask_uncertainty = (mask_uncertainty - saliency_map_min).div(saliency_map_max - saliency_map_min).data
iou, snr, log_likelihood = get_stats(mask_explanation, mask_uncertainty, logit, pred)
stats = {
'Prediction': pred,
'Contrast Class': contrast_class,
'SNR': snr,
'Log Likelihood': log_likelihood,
'IoU': iou,
'Logit':logit,
}
return mask_explanation, mask_contrast, mask_uncertainty, stats
def save_explanations(explanation, contrast, uncertainty, image, output_dir):
_, result = visualize_cam(explanation, image)
output_path = os.path.join(output_dir + 'Explanation.png')
save_image(result, output_path)
_, result_contrast = visualize_cam(contrast, image)
output_path = os.path.join(output_dir + 'Contrast.png')
save_image(result_contrast, output_path)
_, result = visualize_cam(uncertainty, image)
output_path = os.path.join(output_dir + 'Uncertainty of Explanation.png')
save_image(result, output_path)
def main():
img_dir = 'images'
#img_name = 'water-bird.JPEG'
img_name = 'cat_dog.png'
img_path = os.path.join(img_dir, img_name)
pil_img = PIL.Image.open(img_path)
normalizer = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
torch_img = torch.from_numpy(np.asarray(pil_img)).permute(2, 0, 1).unsqueeze(0).float().div(255).cuda()
torch_img = F.upsample(torch_img, size=(224, 224), mode='bilinear', align_corners=False)
normed_torch_img = normalizer(torch_img)
#Choose Architecture
arch = models.vgg16(pretrained=True)
model_dict = dict(type='vgg', arch=arch, layer_name='features_29', input_size=(224, 224))
#arch = models.squeezenet1_0(pretrained=True)
#model_dict = dict(type='squeezenet', arch=arch, layer_name='features_12_expand3x3_activation', input_size=(224, 224))
#arch = models.alexnet(pretrained=True)
#model_dict = dict(type='alexnet', arch=arch, layer_name='features_11', input_size=(224, 224))
#arch = models.densenet169(pretrained=True)
#model_dict = dict(type='densenet', arch=arch, layer_name='features_norm5', input_size=(224, 224))
#arch = models.swin_b(pretrained=True)
#target_layer = [arch.features[-2].norm]
#model_dict = dict(type='swin', arch=arch, layer_name=target_layer, input_size=(224, 224))
#arch = models.resnet18(pretrained=True)
#model_dict = dict(type='resnet', arch=arch, layer_name='layer4', input_size=(224, 224))
num_classes = 1000 #Number of classes in ImageNet
#GradCAM
print('Computing GradCAM and its VOICE uncertainty')
gradcam = GradCAM(model_dict, False)
contrast = Contrast(model_dict, False)
explanation_map, contrast_map, uncertainty_map, stats = get_explanation(gradcam, contrast, normed_torch_img, num_classes)
output_dir = 'Results/GradCAM/'
os.makedirs(output_dir, exist_ok=True)
save_explanations(explanation_map, contrast_map, uncertainty_map, torch_img, output_dir)
torch.save(stats, output_dir + 'stats_gradcam.t7')
with open(output_dir + 'stats.txt', 'w') as file:
file.write(str(stats))
print('GradCAM complete')
#GradCAM++
print('Computing GradCAM++ and its VOICE uncertainty')
gradcampp = GradCAMpp(model_dict, False)
contrastpp = Contrast_pp(model_dict, False)
explanation_map, contrast_map, uncertainty_map, stats = get_explanation(gradcampp, contrastpp, normed_torch_img, num_classes)
output_dir = 'Results/GradCAM++/'
os.makedirs(output_dir, exist_ok=True)
save_explanations(explanation_map, contrast_map, uncertainty_map, torch_img, output_dir)
torch.save(stats, output_dir + 'stats_gradcam++.t7')
with open(output_dir + 'stats.txt', 'w') as file:
file.write(str(stats))
print('GradCAM++ complete')
#SmoothGrad
print('Computing SmoothGrad and its VOICE uncertainty')
pred = stats['Prediction']
contrast_class = stats['Contrast Class']
logit = stats['Logit']
GBP = GuidedBackprop(arch)
GBP_c = GuidedBackprop_Contrast(arch)
explanation_map, contrast_map, uncertainty_map, stats = get_explanation_smoothgrad(GBP, GBP_c, normed_torch_img, pred, contrast_class, logit, num_classes)
output_dir = 'Results/SmoothGrad/'
os.makedirs(output_dir, exist_ok=True)
save_explanations(explanation_map, contrast_map, uncertainty_map, torch_img, output_dir)
torch.save(stats, output_dir + 'stats_sm.t7')
with open(output_dir + 'stats_sm.txt', 'w') as file:
file.write(str(stats))
print('SmoothGrad complete')
if __name__ == '__main__':
main()