You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Traceback (most recent call last):
File "convert2onnx/convert_superglue_to_onnx.py", line 124, in
main()
File "convert2onnx/convert_superglue_to_onnx.py", line 117, in main
tf_rep.run((kpts0, scores0, desc0, kpts1, scores1, desc1))
File "/mnt/training/map/zhifeng.lin/code/SuperPoint-SuperGlue-TensorRT/onnx-tensorflow/onnx_tf/backend_rep.py", line 107, in run
output_values = self.tf_module(**input_dict)
File "/mnt/data/anaconda3/envs/lightglue/lib/python3.8/site-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/tmp/autograph_generated_filecuhrqz0v.py", line 30, in tf____call
ag__.for_stmt(ag__.ld(self).graph_def.node, None, loop_body, get_state, set_state, (), {'iterate_names': 'node'})
File "/tmp/autograph_generated_filecuhrqz0v.py", line 23, in loop_body
output_ops = ag.converted_call(ag__.ld(self).backend.onnx_node_to_tensorflow_op, (ag_.ld(onnx_node), ag__.ld(tensor_dict), ag__.ld(self).handlers), dict(opset=ag__.ld(self).opset, strict=ag__.ld(self).strict), fscope)
File "/tmp/autograph_generated_file05s8tr06.py", line 50, in tf___onnx_node_to_tensorflow_op
ag.if_stmt(ag__.ld(handlers), if_body_1, else_body_1, get_state_1, set_state_1, ('do_return', 'retval_'), 2)
File "/tmp/autograph_generated_file05s8tr06.py", line 44, in if_body_1
ag.if_stmt(ag__.ld(handler), if_body, else_body, get_state, set_state, ('do_return', 'retval_'), 2)
File "/tmp/autograph_generated_file05s8tr06.py", line 36, in if_body
retval = ag_.converted_call(ag__.ld(handler).handle, (ag__.ld(node),), dict(tensor_dict=ag__.ld(tensor_dict), strict=ag__.ld(strict)), fscope)
File "/tmp/autograph_generated_filegv1w6atb.py", line 34, in tf__handle
ag.if_stmt(ag__.ld(ver_handle), if_body, else_body, get_state, set_state, ('do_return', 'retval_'), 2)
File "/tmp/autograph_generated_filegv1w6atb.py", line 26, in if_body
retval = ag_.converted_call(ag__.ld(ver_handle), (ag__.ld(node),), dict(**ag__.ld(kwargs)), fscope)
File "/tmp/autograph_generated_fileg_gf0gau.py", line 12, in tf__version
retval = ag_.converted_call(ag__.ld(cls).conv, (ag__.ld(node), ag__.ld(kwargs)['tensor_dict']), None, fscope)
File "/tmp/autograph_generated_filekbecj_e4.py", line 12, in tf__conv
x_rank = ag.converted_call(ag__.ld(len), (ag__.converted_call(ag__.ld(x).get_shape, (), None, fscope),), None, fscope)
ValueError: in user code:
File "/mnt/training/map/zhifeng.lin/code/SuperPoint-SuperGlue-TensorRT/onnx-tensorflow/onnx_tf/backend_tf_module.py", line 99, in __call__ *
output_ops = self.backend._onnx_node_to_tensorflow_op(onnx_node,
File "/mnt/training/map/zhifeng.lin/code/SuperPoint-SuperGlue-TensorRT/onnx-tensorflow/onnx_tf/backend.py", line 347, in _onnx_node_to_tensorflow_op *
return handler.handle(node, tensor_dict=tensor_dict, strict=strict)
File "/mnt/training/map/zhifeng.lin/code/SuperPoint-SuperGlue-TensorRT/onnx-tensorflow/onnx_tf/handlers/handler.py", line 59, in handle *
return ver_handle(node, **kwargs)
File "/mnt/training/map/zhifeng.lin/code/SuperPoint-SuperGlue-TensorRT/onnx-tensorflow/onnx_tf/handlers/backend/conv.py", line 15, in version_11 *
return cls.conv(node, kwargs["tensor_dict"])
File "/mnt/training/map/zhifeng.lin/code/SuperPoint-SuperGlue-TensorRT/onnx-tensorflow/onnx_tf/handlers/backend/conv_mixin.py", line 30, in conv *
x_rank = len(x.get_shape())
ValueError: Cannot take the length of shape with unknown rank.
To Reproduce
torch.onnx.export(superpoint_model, # model being run
(kpts0, scores0, desc0, kpts1, scores1, desc1), # model input (or a tuple for multiple inputs)
onnx_filename, # where to save the model (can be a file or file-like object)
#export_params=True, # store the trained parameter weights inside the model file
opset_version=13, # the ONNX version to export the model to
#do_constant_folding=True, # whether to execute constant folding for optimization
input_names=["keypoints_0", # batch x feature_number0 x 2
"scores_0", # batch x feature_number0
"descriptors_0", # batch x feature_dims x feature_number0
"keypoints_1", # batch x feature_number1 x 2
"scores_1", # batch x feature_number1
"descriptors_1", # batch x feature_dims x feature_number1
], # the model input names
output_names=["scores"], # the model output names
dynamic_axes={'keypoints_0': {1: 'feature_number_0'},
'scores_0': {1: 'feature_number_0'},
'descriptors_0': {2: 'feature_number_0'},
'keypoints_1': {1: 'feature_number_1'},
'scores_1': {1: 'feature_number_1'},
'descriptors_1': {2: 'feature_number_1'},
} # dynamic model input names
)
# check onnx model
onnx_model = onnx.load(onnx_filename)
onnx.checker.check_model(onnx_model)
print("Exported model has been checked with ONNXRuntime.")
#spsg_model_path = "sgsg.onnx"
sgsg_tf_model="superglue.tf.pb"
#model_onnx = onnx.load(spsg_model_path)
tf_rep = prepare(onnx_model)
# Input nodes to the model
print('inputs:', tf_rep.inputs)
Output nodes from the model
print('outputs:', tf_rep.outputs)
All nodes in the model
print('tensor_dict:')
print(tf_rep.tensor_dict)
print("11111")
tf_rep.run((kpts0, scores0, desc0, kpts1, scores1, desc1))
print("2222")
# Export model as .pb file
tf_rep.export_graph(sgsg_tf_model)
A self-contained piece of code that can demonstrate the problem is required.
Please do not expect us to have PyTorch, Caffe2 installed.
If a model exported from PyTorch and Caffe2 is having trouble in ONNX-TF, use the next section to attach the model.
ONNX model file
If applicable, attach the onnx model file in question using Gist, DropBox or Google Drive.
ONNX-TF
This section can be obtained by running get_version.py from util folder.
Python 3.8:
ONNX version 1.16.1:
ONNX-TF version 1.10.1:
Tensorflow version 2.13.1:
Additional context
Add any other context about the problem here.
The text was updated successfully, but these errors were encountered:
Describe the bug
Traceback (most recent call last):
File "convert2onnx/convert_superglue_to_onnx.py", line 124, in
main()
File "convert2onnx/convert_superglue_to_onnx.py", line 117, in main
tf_rep.run((kpts0, scores0, desc0, kpts1, scores1, desc1))
File "/mnt/training/map/zhifeng.lin/code/SuperPoint-SuperGlue-TensorRT/onnx-tensorflow/onnx_tf/backend_rep.py", line 107, in run
output_values = self.tf_module(**input_dict)
File "/mnt/data/anaconda3/envs/lightglue/lib/python3.8/site-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/tmp/autograph_generated_filecuhrqz0v.py", line 30, in tf____call
ag__.for_stmt(ag__.ld(self).graph_def.node, None, loop_body, get_state, set_state, (), {'iterate_names': 'node'})
File "/tmp/autograph_generated_filecuhrqz0v.py", line 23, in loop_body
output_ops = ag.converted_call(ag__.ld(self).backend.onnx_node_to_tensorflow_op, (ag_.ld(onnx_node), ag__.ld(tensor_dict), ag__.ld(self).handlers), dict(opset=ag__.ld(self).opset, strict=ag__.ld(self).strict), fscope)
File "/tmp/autograph_generated_file05s8tr06.py", line 50, in tf___onnx_node_to_tensorflow_op
ag.if_stmt(ag__.ld(handlers), if_body_1, else_body_1, get_state_1, set_state_1, ('do_return', 'retval_'), 2)
File "/tmp/autograph_generated_file05s8tr06.py", line 44, in if_body_1
ag.if_stmt(ag__.ld(handler), if_body, else_body, get_state, set_state, ('do_return', 'retval_'), 2)
File "/tmp/autograph_generated_file05s8tr06.py", line 36, in if_body
retval = ag_.converted_call(ag__.ld(handler).handle, (ag__.ld(node),), dict(tensor_dict=ag__.ld(tensor_dict), strict=ag__.ld(strict)), fscope)
File "/tmp/autograph_generated_filegv1w6atb.py", line 34, in tf__handle
ag.if_stmt(ag__.ld(ver_handle), if_body, else_body, get_state, set_state, ('do_return', 'retval_'), 2)
File "/tmp/autograph_generated_filegv1w6atb.py", line 26, in if_body
retval = ag_.converted_call(ag__.ld(ver_handle), (ag__.ld(node),), dict(**ag__.ld(kwargs)), fscope)
File "/tmp/autograph_generated_fileg_gf0gau.py", line 12, in tf__version
retval = ag_.converted_call(ag__.ld(cls).conv, (ag__.ld(node), ag__.ld(kwargs)['tensor_dict']), None, fscope)
File "/tmp/autograph_generated_filekbecj_e4.py", line 12, in tf__conv
x_rank = ag.converted_call(ag__.ld(len), (ag__.converted_call(ag__.ld(x).get_shape, (), None, fscope),), None, fscope)
ValueError: in user code:
To Reproduce
torch.onnx.export(superpoint_model, # model being run
(kpts0, scores0, desc0, kpts1, scores1, desc1), # model input (or a tuple for multiple inputs)
onnx_filename, # where to save the model (can be a file or file-like object)
#export_params=True, # store the trained parameter weights inside the model file
opset_version=13, # the ONNX version to export the model to
#do_constant_folding=True, # whether to execute constant folding for optimization
input_names=["keypoints_0", # batch x feature_number0 x 2
"scores_0", # batch x feature_number0
"descriptors_0", # batch x feature_dims x feature_number0
"keypoints_1", # batch x feature_number1 x 2
"scores_1", # batch x feature_number1
"descriptors_1", # batch x feature_dims x feature_number1
], # the model input names
output_names=["scores"], # the model output names
dynamic_axes={'keypoints_0': {1: 'feature_number_0'},
'scores_0': {1: 'feature_number_0'},
'descriptors_0': {2: 'feature_number_0'},
'keypoints_1': {1: 'feature_number_1'},
'scores_1': {1: 'feature_number_1'},
'descriptors_1': {2: 'feature_number_1'},
} # dynamic model input names
)
Output nodes from the model
All nodes in the model
A self-contained piece of code that can demonstrate the problem is required.
Please do not expect us to have PyTorch, Caffe2 installed.
If a model exported from PyTorch and Caffe2 is having trouble in ONNX-TF, use the next section to attach the model.
ONNX model file
If applicable, attach the onnx model file in question using Gist, DropBox or Google Drive.
ONNX-TF
This section can be obtained by running
get_version.py
from util folder.Additional context
Add any other context about the problem here.
The text was updated successfully, but these errors were encountered: