forked from shihchengyen/r2auto_nav
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathr2servo_auto_nav.py
1088 lines (911 loc) · 35.4 KB
/
r2servo_auto_nav.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2016 Open Source Robotics Foundation, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import rclpy
from rclpy.node import Node
from nav_msgs.msg import Odometry
from geometry_msgs.msg import Twist
from geometry_msgs.msg import Pose
from rclpy.qos import qos_profile_sensor_data
from sensor_msgs.msg import LaserScan
from nav_msgs.msg import OccupancyGrid
from std_msgs.msg import String
import numpy as np
import math
import cmath
import time
# constants
rotatechange = 0.25
speedchange = 0.15
occ_bins = [-1, 0, 100, 101]
stop_distance = 0.1
front_angle = 90
front_angles = range(-front_angle,front_angle+1,1)
scanfile = 'lidar.txt'
mapfile = 'map.txt'
import socket
import nmap
def check(x,y):
return abs(x)<5 and abs(y)<5
def yaw2angle(angle):
#maps angles from [-pi,pi] to [-180,180]
if angle < 0:
return 360+(angle/math.pi*180)
return angle/math.pi*180
def find_local_ip():
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(('8.8.8.8', 1)) # connect() for UDP doesn't send packets
local_ip_address = s.getsockname()[0]
ip_search = local_ip_address.split(".")[:-1]
ip_range = ""
for item in ip_search:
ip_range += item
ip_range += "."
ip_range += "1/24"
s.close()
return ip_range
def find_disp_ip(ip_range):
nm = nmap.PortScanner()
data = nm.scan(hosts=ip_range, arguments="-sN").get('scan')
for item in data:
try:
if nm[item]['addresses']['mac'] == "80:7D:3A:FC:F0:80":
print(item)
return item
except:
pass
#ip_range = find_local_ip()
#host = find_disp_ip(ip_range) #ESP32 IP in local network
#host = find_disp_ip(ip_range)
host = '192.168.34.163'
port = 80 #ESP32 Server Port
def angle_between(p1, p2):
print(p1,p2)
ydiff = p2[1]-p1[1]
xdiff = p2[0]-p1[0]
angle = math.degrees(math.atan2(abs(ydiff),abs(xdiff)))
if xdiff>0:
if ydiff>0:
angle = 90 - angle
else:
angle += 90
else:
if ydiff>0:
angle += 270
else:
angle = 270-angle
angle = (angle - 90 + 360)%360
angle = 360-angle
return angle
# code from https://automaticaddison.com/how-to-convert-a-quaternion-into-euler-angles-in-python/
def euler_from_quaternion(x, y, z, w):
"""
Convert a quaternion into euler angles (roll, pitch, yaw)
roll is rotation around x in radians (counterclockwise)
pitch is rotation around y in radians (counterclockwise)
yaw is rotation around z in radians (counterclockwise)
"""
t0 = +2.0 * (w * x + y * z)
t1 = +1.0 - 2.0 * (x * x + y * y)
roll_x = math.atan2(t0, t1)
t2 = +2.0 * (w * y - z * x)
t2 = +1.0 if t2 > +1.0 else t2
t2 = -1.0 if t2 < -1.0 else t2
pitch_y = math.asin(t2)
t3 = +2.0 * (w * z + x * y)
t4 = +1.0 - 2.0 * (y * y + z * z)
yaw_z = math.atan2(t3, t4)
return roll_x, pitch_y, yaw_z # in radians
class PosNav(Node):
def __init__(self):
super().__init__('pos_nav')
# create publisher for moving TurtleBot
self.publisher_ = self.create_publisher(Twist,'cmd_vel',1)
# self.get_logger().info('Created publisher')
self.cmdpub = self.create_publisher(String, 'cmdpi', 5)
self.ultrasonic = ''
#track coords
self.map2base_sub = self.create_subscription(
Pose,
'map2base',
self.map2base_callback,
5)
# create subscription to track orientation
self.odom_subscription = self.create_subscription(
Odometry,
'odom',
self.odom_callback,
10)
# self.get_logger().info('Created subscriber')
self.odom_subscription # prevent unused variable warning
# initialize variables
self.roll = 0
self.pitch = 0
self.yaw = 0
self.og = 0
# create subscription to track occupancy
self.occ_subscription = self.create_subscription(
OccupancyGrid,
'map',
self.occ_callback,
qos_profile_sensor_data)
self.occ_subscription # prevent unused variable warning
self.occdata = np.array([])
# create subscription to track lidar
self.scan_subscription = self.create_subscription(
LaserScan,
'scan',
self.scan_callback,
qos_profile_sensor_data)
self.scan_subscription # prevent unused variable warning
self.laser_range = np.array([])
# create subscription to track ultrasonic
self.ultrasub = self.create_subscription(
String,
'ultrasonic',
self.ultra_callback,
5
)
#checkpoints
Table1 = [(0.79,0),(1,0),(1.15,0),(1.3,0)]
Table2 = [(0.79,0),(1,0),(1.25,0),(1.3,-0.3),(1.3,-0.8),(1.3,-1)]
Table3 = [(0.4,-0.3),(0.4,-0.5),(0.48,-0.8)]
Table4 = [(0.4,-0.4),(0.4,-0.8),(0.4,-1.2),(0.48,-1.5)]
Table5 = [(0.4,-0.5),(0.4,-1),(0.15,-1),(0.15,-1.5),(0.15,-2),(0.15,-2.5),(0.5,-2.5),(1,-2.5),(1.25,-2.5)]
Table6 = [(0.8,0),(1.1,0),(1.1,-0.5),(1.4,-1),(1.4,-1.6),(2,-1.6),(2.5,-1.6),(2.7,-1.2),(3,-0.4)]
self.Tables = [Table1,Table2,Table3,Table4,Table5,Table6]
#,(3.2,-1),(2.2,0),(2.2,-1),(3.2,0)
def forwardcal(self):
rclpy.spin_once(self)
temp = [self.mapbase.x,self.mapbase.y]
self.robotforward()
time.sleep(1)
rclpy.spin_once(self)
self.stopbot()
while temp == [self.mapbase.x,self.mapbase.y]:
rclpy.spin_once(self)
time.sleep(0.1)
self.og = angle_between(temp,[self.mapbase.x,self.mapbase.y])
def ultra_callback(self, msg):
self.ultrasonic = msg.data.strip()
def odom_callback(self, msg):
# self.get_logger().info('In odom_callback')
orientation_quat = msg.pose.pose.orientation
self.roll, self.pitch, self.yaw = euler_from_quaternion(orientation_quat.x, orientation_quat.y, orientation_quat.z, orientation_quat.w)
def occ_callback(self, msg):
# self.get_logger().info('In occ_callback')
# create numpy array
msgdata = np.array(msg.data)
# compute histogram to identify percent of bins with -1
# occ_counts = np.histogram(msgdata,occ_bins)
# calculate total number of bins
# total_bins = msg.info.width * msg.info.height
# log the info
# self.get_logger().info('Unmapped: %i Unoccupied: %i Occupied: %i Total: %i' % (occ_counts[0][0], occ_counts[0][1], occ_counts[0][2], total_bins))
# make msgdata go from 0 instead of -1, reshape into 2D
oc2 = msgdata + 1
# reshape to 2D array using column order
# self.occdata = np.uint8(oc2.reshape(msg.info.height,msg.info.width,order='F'))
self.occdata = np.uint8(oc2.reshape(msg.info.height,msg.info.width))
# print to file
np.savetxt(mapfile, self.occdata)
def scan_callback(self, msg):
# self.get_logger().info('In scan_callback')
# create numpy array
self.laser_range = np.array(msg.ranges)
# print to file
np.savetxt(scanfile, self.laser_range)
# replace 0's with nan
self.laser_range[self.laser_range==0] = np.nan
def map2base_callback(self, msg):
#self.get_logger().info('In map2basecallback')
self.mapbase = msg.position
mapbaseorientation = msg.orientation
self.mbroll, self.mbpitch, self.mbyaw = euler_from_quaternion(mapbaseorientation.x, mapbaseorientation.y, mapbaseorientation.z, mapbaseorientation.w)
def dispwait(self):
self.counter1 = 0
rclpy.spin_once(self)
print("msg: ",self.ultrasonic, self.ultrasonic=="can in")
counter = 0
while self.ultrasonic == "waiting":
time.sleep(0.1)
rclpy.spin_once(self)
while(True):
rclpy.spin_once(self)
if self.ultrasonic == "can in":
counter = counter + 1
rclpy.spin_once(self)
print(counter)
time.sleep(1)
rclpy.spin_once(self)
if counter >= 5:
return 1
else:
return 0
def ultrawait(self):
self.counter2 = 0
rclpy.spin_once(self)
counter = 0
while self.ultrasonic == "waiting":
time.sleep(0.1)
rclpy.spin_once(self)
while(True):
rclpy.spin_once(self)
if self.ultrasonic == "can out":
counter = counter + 1
rclpy.spin_once(self)
print(counter)
time.sleep(0.5)
if counter >= 10:
return 1
else:
return 0
# function to rotate the TurtleBot
def rotatebot(self, rot_angle):
# self.get_logger().info('In rotatebot')
# create Twist object
twist = Twist()
# get current yaw angle
current_yaw = self.yaw
# log the info
self.get_logger().info('Current: %f' % math.degrees(current_yaw))
# we are going to use complex numbers to avoid problems when the angles go from
# 360 to 0, or from -180 to 180
c_yaw = complex(math.cos(current_yaw),math.sin(current_yaw))
# calculate desired yaw
target_yaw = current_yaw + math.radians(rot_angle)
# convert to complex notation
c_target_yaw = complex(math.cos(target_yaw),math.sin(target_yaw))
self.get_logger().info('Desired: %f' % math.degrees(cmath.phase(c_target_yaw)))
# divide the two complex numbers to get the change in direction
c_change = c_target_yaw / c_yaw
# get the sign of the imaginary component to figure out which way we have to turn
c_change_dir = np.sign(c_change.imag)
# set linear speed to zero so the TurtleBot rotates on the spot
twist.linear.x = 0.0
# set the direction to rotate
twist.angular.z = c_change_dir * rotatechange
# start rotation
self.publisher_.publish(twist)
# we will use the c_dir_diff variable to see if we can stop rotating
c_dir_diff = c_change_dir
curr_time = time.time()
time_passed = 0
if abs(rot_angle)<15:
turnflag = 0
else:
turnflag = 1
#self.get_logger().info('c_change_dir: %f c_dir_diff: %f' % (c_change_dir, c_dir_diff))
# if the rotation direction was 1.0, then we will want to stop when the c_dir_diff
# becomes -1.0, and vice versa
#self.get_logger().info('time_diff: %f turnflag: %f' % (time_passed, turnflag))
while(((c_change_dir * c_dir_diff) > 0) or (time_passed < 1 and turnflag)and ( abs(math.degrees(cmath.phase(c_target_yaw))-math.degrees(cmath.phase(c_yaw)))>2 )):
#print("mbyaw:",self.mbyaw)
# allow the callback functions to run
time_passed = time.time() - curr_time
rclpy.spin_once(self)
current_yaw = self.yaw
# convert the current yaw to complex form
c_yaw = complex(math.cos(current_yaw),math.sin(current_yaw))
# self.get_logger().info('Current Yaw: %f' % math.degrees(current_yaw))
# get difference in angle between current and target
c_change = c_target_yaw / c_yaw
# get the sign to see if we can stop
c_dir_diff = np.sign(c_change.imag)
# self.get_logger().info('c_change_dir: %f c_dir_diff: %f' % (c_change_dir, c_dir_diff))
self.get_logger().info('End Yaw: %f' % math.degrees(current_yaw))
print("mapbase yaw:",self.mbyaw)
# set the rotation speed to 0
twist.angular.z = 0.0
# stop the rotation
self.publisher_.publish(twist)
# function to rotate the TurtleBot
def rotatebotslow(self, rot_angle):
# self.get_logger().info('In rotatebot')
# create Twist object
twist = Twist()
# get current yaw angle
current_yaw = self.yaw
# log the info
self.get_logger().info('Current: %f' % math.degrees(current_yaw))
# we are going to use complex numbers to avoid problems when the angles go from
# 360 to 0, or from -180 to 180
c_yaw = complex(math.cos(current_yaw),math.sin(current_yaw))
# calculate desired yaw
target_yaw = current_yaw + math.radians(rot_angle)
# convert to complex notation
c_target_yaw = complex(math.cos(target_yaw),math.sin(target_yaw))
self.get_logger().info('Desired: %f' % math.degrees(cmath.phase(c_target_yaw)))
# divide the two complex numbers to get the change in direction
c_change = c_target_yaw / c_yaw
# get the sign of the imaginary component to figure out which way we have to turn
c_change_dir = np.sign(c_change.imag)
# set linear speed to zero so the TurtleBot rotates on the spot
twist.linear.x = 0.0
# set the direction to rotate
twist.angular.z = c_change_dir * (rotatechange/2)
# start rotation
self.publisher_.publish(twist)
# we will use the c_dir_diff variable to see if we can stop rotating
c_dir_diff = c_change_dir
curr_time = time.time()
time_passed = 0
if abs(rot_angle)<15:
turnflag = 0
else:
turnflag = 1
#self.get_logger().info('c_change_dir: %f c_dir_diff: %f' % (c_change_dir, c_dir_diff))
# if the rotation direction was 1.0, then we will want to stop when the c_dir_diff
# becomes -1.0, and vice versa
#self.get_logger().info('time_diff: %f turnflag: %f' % (time_passed, turnflag))
while(((c_change_dir * c_dir_diff) > 0) or (time_passed < 1 and turnflag)):
# allow the callback functions to run
time_passed = time.time() - curr_time
rclpy.spin_once(self)
current_yaw = self.yaw
# convert the current yaw to complex form
c_yaw = complex(math.cos(current_yaw),math.sin(current_yaw))
# self.get_logger().info('Current Yaw: %f' % math.degrees(current_yaw))
# get difference in angle between current and target
c_change = c_target_yaw / c_yaw
# get the sign to see if we can stop
c_dir_diff = np.sign(c_change.imag)
# self.get_logger().info('c_change_dir: %f c_dir_diff: %f' % (c_change_dir, c_dir_diff))
self.get_logger().info('End Yaw: %f' % math.degrees(current_yaw))
# set the rotation speed to 0
twist.angular.z = 0.0
# stop the rotation
self.publisher_.publish(twist)
def linefollowing(self):
rclpy.spin_once(self)
#self.get_logger().info('In linefollowing')
# create Twist object
if self.ultrasonic == "left":
self.rotatebot(2)
self.linefollowing()
elif self.ultrasonic == "right":
self.rotatebot(-2)
self.linefollowing()
elif self.ultrasonic == "back":
self.robotbackwards()
time.sleep(0.5)
self.linefollowing()
elif self.ultrasonic == "parked":
self.stopbot()
def robotforward(self):
# start moving
self.get_logger().info('Start moving')
twist = Twist()
twist.linear.x = speedchange
twist.angular.z = 0.0
# not sure if this is really necessary, but things seem to work more
# reliably with this
self.publisher_.publish(twist)
def robotbackwards(self):
# start moving
self.get_logger().info('Start moving')
twist = Twist()
twist.linear.x = -speedchange
twist.angular.z = 0.0
# not sure if this is really necessary, but things seem to work more
# reliably with this
self.publisher_.publish(twist)
def park(self):
# start moving
twist = Twist()
twist.linear.x = -speedchange/5
twist.angular.z = 0.0
# not sure if this is really necessary, but things seem to work more
# reliably with this
self.publisher_.publish(twist)
def cal(self):
rclpy.spin_once(self)
self.ogyaw = self.yaw
rclpy.spin_once(self)
og_coords = [self.mapbase.x,self.mapbase.y]
rclpy.spin_once(self)
print("going forwards")
rclpy.spin_once(self)
time.sleep(0.5)
self.robotforward()
rclpy.spin_once(self)
time.sleep(2)
rclpy.spin_once(self)
self.stopbot()
rclpy.spin_once(self)
time.sleep(1)
rclpy.spin_once(self)
while og_coords == [self.mapbase.x,self.mapbase.y]:
rclpy.spin_once(self)
self.og = angle_between(og_coords,[self.mapbase.x,self.mapbase.y])
print("Cal angle",self.og)
print("mapbase yaw:",self.mbyaw)
temp = [self.mapbase.x,self.mapbase.y]
self.robotbackwards()
time.sleep(2)
rclpy.spin_once(self)
self.stopbot()
time.sleep(2)
while (temp == [self.mapbase.x,self.mapbase.y]):
rclpy.spin_once(self)
rclpy.spin_once(self)
def turn_towards(self, coords):
print("og angle:",yaw2angle(self.mbyaw))
while (abs(self.mapbase.x)>20 or abs(self.mapbase.y)>20):
rclpy.spin_once(self)
temp = [self.mapbase.x,self.mapbase.y]
next = angle_between(temp,coords)
print("next angle:",next)
new_angle = (next-yaw2angle(self.mbyaw)+360)%360
print("desired rotation: ",end="")
print(new_angle)
self.rotatebot(new_angle)
stop_flag = 0
print("end angle:", yaw2angle(self.mbyaw))
print("found")
def move_coords(self, to_x, to_y):
mindist = 100
rclpy.spin_once(self)
print("og angle:",yaw2angle(self.mbyaw))
while (abs(self.mapbase.x)>20 or abs(self.mapbase.y)>20):
rclpy.spin_once(self)
temp = [self.mapbase.x,self.mapbase.y]
next = angle_between(temp,[to_x,to_y])
print("next angle:",next)
new_angle = (next-yaw2angle(self.mbyaw)+360)%360
print("desired rotation: ",end="")
print(new_angle)
self.rotatebot(new_angle)
stop_flag = 0
print("end angle:", yaw2angle(self.mbyaw))
print("found")
self.robotforward()
overshot = 0
while not stop_flag:
rclpy.spin_once(self)
checked = check(to_x,to_y)
next = angle_between([self.mapbase.x,self.mapbase.y],[to_x,to_y])
new_angle = (next-yaw2angle(self.mbyaw)+360)%360
print("new angle:",new_angle,"next angle:",next,"mbyaw:",yaw2angle(self.mbyaw))
if (180<new_angle <330 and checked):
self.rotatebotslow(-5)
elif (new_angle > 30 and checked):
new_angle = (next-yaw2angle(self.mbyaw)+360)%360
self.rotatebotslow(5)
self.robotforward()
time.sleep(0.1)
rclpy.spin_once(self)
dist = math.sqrt((self.mapbase.x-to_x)**2 + (self.mapbase.y-to_y)**2)
print(dist,self.mapbase.x,self.mapbase.y)
if dist < mindist:
mindist = dist
if dist < stop_distance:
stop_flag = 1
print("yes")
elif ((dist - mindist) > 0.02 ):
print("Overshot")
stop_flag = 1
overshot = 1
self.stopbot()
rclpy.spin_once(self)
next = angle_between(temp,[self.mapbase.x,self.mapbase.y])
self.og = next
if overshot:
self.move_coords(to_x, to_y)
print("done")
def setstartyaw(self):
rclpy.spin_once(self)
self.startyaw = self.mbyaw
def move_coords_back_normal(self, to_x, to_y):
mindist = 100
rclpy.spin_once(self)
while (abs(self.mapbase.x)>20 or abs(self.mapbase.y)>20):
rclpy.spin_once(self)
temp = [self.mapbase.x,self.mapbase.y]
next = angle_between([to_x,to_y],temp)
print("next angle:",next)
new_angle = (next-yaw2angle(self.mbyaw)+360)%360
print("desired rotation: ",end="")
print(new_angle)
self.rotatebotslow(new_angle)
stop_flag = 0
print("found")
self.park()
overshot = 0
dist = math.sqrt((self.mapbase.x-to_x)**2 + (self.mapbase.y-to_y)**2)
while not stop_flag:
rclpy.spin_once(self)
checked = check(to_x,to_y)
next = angle_between([to_x,to_y],[self.mapbase.x,self.mapbase.y])
new_angle = (next-yaw2angle(self.mbyaw)+360)%360
print("new angle:",new_angle,"next angle:",next,"mbyaw:",yaw2angle(self.mbyaw))
if (180<new_angle <355 and checked):
self.rotatebotslow(-5)
elif (new_angle > 5 and checked):
new_angle = (next-yaw2angle(self.mbyaw)+360)%360
self.rotatebotslow(5)
self.park()
time.sleep(0.2)
rclpy.spin_once(self)
prevdist = dist
dist = math.sqrt((self.mapbase.x-to_x)**2 + (self.mapbase.y-to_y)**2)
print(dist,self.mapbase.x,self.mapbase.y)
if dist < mindist:
mindist = dist
if dist < 0.03:
stop_flag = 1
print("yes")
elif (((dist - mindist) > 0.01 or self.mapbase.x<0) and dist<1) :
print("Overshot")
overshot += 1
time.sleep(0.2)
rclpy.spin_once(self)
if overshot>=5:
stop_flag = 1
self.stopbot()
rclpy.spin_once(self)
next = angle_between(temp,[self.mapbase.x,self.mapbase.y])
self.og = next
if (overshot>=5):
print("adjusting")
self.move_coords(temp[0], temp[1])
self.move_coords_back_normal(to_x, to_y)
print("done")
def get_ultra(self):
rclpy.spin_once(self)
return self.ultra
def move_coords_back(self, to_x, to_y):
mindist = 100
rclpy.spin_once(self)
while (abs(self.mapbase.x)>20 or abs(self.mapbase.y)>20):
rclpy.spin_once(self)
temp = [self.mapbase.x,self.mapbase.y]
next = angle_between([to_x,to_y],temp)
print("next angle:",next)
new_angle = (next-yaw2angle(self.mbyaw)+360)%360
print("desired rotation: ",end="")
print(new_angle)
self.rotatebotslow(new_angle)
stop_flag = 0
print("found")
self.park()
overshot = 0
dist = math.sqrt((self.mapbase.x-to_x)**2 + (self.mapbase.y-to_y)**2)
while not stop_flag:
rclpy.spin_once(self)
checked = check(to_x,to_y)
next = angle_between([to_x,to_y],[self.mapbase.x,self.mapbase.y])
new_angle = (next-yaw2angle(self.mbyaw)+360)%360
print("new angle:",new_angle,"next angle:",next,"mbyaw:",yaw2angle(self.mbyaw))
if (180<new_angle <350 and checked):
self.rotatebotslow(-1)
elif (new_angle > 10 and checked):
new_angle = (next-yaw2angle(self.mbyaw)+360)%360
self.rotatebotslow(1)
self.park()
time.sleep(0.3)
rclpy.spin_once(self)
prevdist = dist
dist = math.sqrt((self.mapbase.x-to_x)**2 + (self.mapbase.y-to_y)**2)
print(dist,self.mapbase.x,self.mapbase.y)
if dist < mindist:
mindist = dist
if dist < 0.03:
stop_flag = 1
print("yes")
elif (((dist - mindist) > 0.01 or self.mapbase.x<0) and dist<1) :
print("Overshot")
overshot += 1
time.sleep(0.2)
rclpy.spin_once(self)
if overshot>=5:
stop_flag = 1
self.stopbot()
rclpy.spin_once(self)
next = angle_between(temp,[self.mapbase.x,self.mapbase.y])
self.og = next
if (overshot>=5):
print("adjusting")
self.move_coords(temp[0]+0.1, temp[1])
self.move_coords_back(to_x, to_y)
print("done")
def orientate(self):
self.rotatebot(self.ogmbyaw-yaw2angle(self.mbyaw)+360)%360
temp = [self.mapbase.x,self.mapbase.y]
next = angle_between(temp,[to_x,to_y])
new_angle = (self.og-next+360)%360
print("new: ",end="")
print(new_angle,next,self.og,self.mapbase.x,self.mapbase.y)
self.rotatebot(new_angle)
rclpy.spin_once(self)
self.og = next
print("done")
def pick_table(self, table):
self.robotforward()
time.sleep(1)
self.stopbot()
rclpy.spin_once(self)
coords = self.Tables[table-1]
next = coords[0]
while next != coords[-1]:
self.move_coords(next[0],next[1])
next = coords[coords.index(next)+1]
self.move_coords_back_normal(next[0],next[1])
print("adjusted destinatiom")
nextangle = angle_between([self.mapbase.x,self.mapbase.y],coords[-2])
self.rotatebot((nextangle-yaw2angle(self.mbyaw)+360)%360)
#if table==6:
# self.find_table_6()
print("destination reached")
#self.robotforward()
#time.sleep(3)
#self.stopbot()
while not self.ultrawait():
time.sleep(0.1)
self.robotforward()
time.sleep(2)
self.stopbot()
next = coords[-2]
while next != coords[0]:
self.move_coords(next[0],next[1])
next = coords[coords.index(next)-1]
self.backup()
def stopbot(self):
self.get_logger().info('In stopbot')
# publish to cmd_vel to move TurtleBot
twist = Twist()
twist.linear.x = 0.0
twist.angular.z = 0.0
# time.sleep(1)
self.publisher_.publish(twist)
def find_table_6(self):
while rclpy.ok():
if self.laser_range.size != 0:
# check distances in front of TurtleBot and find values less
# than stop_distance using scan data
lri = (self.laser_range[front_angles]<float(0.40)).nonzero()
#removes angles where distance is more than stop_distance
if(len(lri[0])>0):
self.stopbot()
lr2i = np.nanargmin(self.laser_range)
self.rotatebot(float(lr2i))
lri2 = (self.laser_range[front_angles]<float(0.15).nonzero())
if(len(lri2[0])==0):
self.robotforward()
else:
self.stopbot()
else:
self.robotforward()
rclpy.spin_once(self)
def backup(self):
rclpy.spin_once(self)
self.move_coords(0.45,0)
'''
self.ogx = self.mapbase.x
self.ogy = self.mapbase.y
self.cal()
print("cal done")
while(self.mapbase.x>20 or self.mapbase.y>20):
rclpy.spin_once(self)
print("stuck",self.mapbase.x,self.mapbase.y)
print("mapbase clarified")
time.sleep(1)
rclpy.spin_once(self)
next = angle_between([0.2,0],[self.mapbase.x,self.mapbase.y])
new_angle = (self.og-next+360)%360
rclpy.spin_once(self)
#park_angle = (self.ogyaw - self.yaw + 360)%360
print("parking:",self.og,new_angle,self.mapbase.x,self.mapbase.y)
self.rotatebot(new_angle)
dist = math.sqrt((self.mapbase.x-0.2)**2 + (self.mapbase.y)**2)
mindist = 10000
stop_flag = 0
overshotcount = 0
msg = String()
msg.data = "back"
self.cmdpub.publish(msg)
rclpy.spin_once(self)
self.cal()
next = angle_between([0.2,0],[self.mapbase.x,self.mapbase.y])
new_angle = (self.og-next+360)%360
rclpy.spin_once(self)
#park_angle = (self.ogyaw - self.yaw + 360)%360
print("parking:",self.og,new_angle,self.mapbase.x,self.mapbase.y)
self.rotatebotslow(new_angle)
#ratiodiff = (self.mapbase.x - self.ogx)/(self.mapbase.y - self.ogy)
while not stop_flag and not (overshotcount>=10):
self.park()
print("started parking 1")
time.sleep(0.1)
rclpy.spin_once(self)
dist = math.sqrt((self.mapbase.x-0.2)**2 + (self.mapbase.y)**2)
#distmoved = math.sqrt((self.mapbase.x - self.ogx)**2 + (self.mapbase.y - self.ogy)**2)
rclpy.spin_once(self)
#ratiodiff = (self.mapbase.x - self.ogx)/(self.mapbase.y - self.ogy)
#distmoved = math.sqrt((self.mapbase.x - self.ogx)**2 + (self.mapbase.y - self.ogy)**2)
if dist < 0.03:
stop_flag = 1
if dist<mindist:
mindist = dist
elif ((dist - mindist) > 0.05):
print("overshot parking")
rclpy.spin_once(self)
overshotcount += 1
elif ((self.mapbase.x<0.2) or (abs(self.mapbase.y)>0.1)):
overshotcount = 10
print(dist)
rclpy.spin_once(self)
rclpy.spin_once(self)
self.stopbot()
if overshotcount >= 10:
self.move_coords(0.3,0)
next = angle_between([0,0],[self.mapbase.x,self.mapbase.y])
new_angle = (self.og-next+360)%360
rclpy.spin_once(self)
self.rotatebotslow(new_angle)
self.stopbot()
rclpy.spin_once(self)
self.ogx = self.mapbase.x
self.ogy = self.mapbase.y
self.cal()
print("cal done")
while(self.mapbase.x>20 or self.mapbase.y>20):
rclpy.spin_once(self)
print("stuck",self.mapbase.x,self.mapbase.y)
print("mapbase clarified")
time.sleep(1)
rclpy.spin_once(self)
next = angle_between([0,0],[self.mapbase.x,self.mapbase.y])
new_angle = (self.og-next+360)%360
rclpy.spin_once(self)
#park_angle = (self.ogyaw - self.yaw + 360)%360
print("parking:",self.og,new_angle,self.mapbase.x,self.mapbase.y)
self.rotatebotslow(new_angle)
dist = math.sqrt((self.mapbase.x)**2 + (self.mapbase.y)**2)
mindist = 10000
stop_flag = 0
overshotcount = 0
msg = String()
msg.data = "back"
self.cmdpub.publish(msg)
rclpy.spin_once(self)
#ratiodiff = (self.mapbase.x - self.ogx)/(self.mapbase.y - self.ogy)
while not stop_flag and not (overshotcount>=10):
self.park()
print("started parking2")
time.sleep(0.1)
rclpy.spin_once(self)
dist = math.sqrt((self.mapbase.x)**2 + (self.mapbase.y)**2)
#distmoved = math.sqrt((self.mapbase.x - self.ogx)**2 + (self.mapbase.y - self.ogy)**2)
rclpy.spin_once(self)
#ratiodiff = (self.mapbase.x - self.ogx)/(self.mapbase.y - self.ogy)
#distmoved = math.sqrt((self.mapbase.x - self.ogx)**2 + (self.mapbase.y - self.ogy)**2)
if dist < 0.02:
stop_flag = 1
if dist<mindist:
mindist = dist
elif ((dist - mindist) > 0.05):
print("overshot parking")
rclpy.spin_once(self)
overshotcount += 1
elif ((self.mapbase.x<0)):
overshotcount = 10
print(dist)
'''
self.move_coords_back(0.3,0)
self.move_coords_back(0,0)
print("done parking")
rclpy.spin_once(self)
self.stopbot()
#new_angle = (self.ogangle-self.og)
#self.rotatebot(new_angle)
#self.og = self.ogangle
def get_init_pose(self):
rclpy.spin_once(self)
self.ogx = self.mapbase.x
self.ogy = self.mapbase.y
self.robotforward()
time.sleep(3)
self.stopbot()
time.sleep(3)
while [self.ogx,self.ogy] == [self.mapbase.x,self.mapbase.y]:
rclpy.spin_once(self)
self.ogangle = angle_between([self.ogx,self.ogy],[self.mapbase.x,self.mapbase.y])
self.og = self.ogangle
temp = [self.mapbase.x,self.mapbase.y]
self.robotbackwards()
time.sleep(3)
rclpy.spin_once(self)
self.stopbot()
time.sleep(2)
while (temp == [self.mapbase.x,self.mapbase.y]):
rclpy.spin_once(self)
rclpy.spin_once(self)
def check_lidar():
if rclpy.ok():
return 1
def check_ultra():
if rclpy.ok():
return 1
def ultrastop():
#initmsg = "start".encode()
#sock.send(initmsg)
data = sock.recv(1).decode()
while(data != "P"):
data = sock.recv(1).decode().strip()
if data == 'P':
sock.close()
break