-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathensemble_metric.py
248 lines (200 loc) · 8.42 KB
/
ensemble_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
from retinanet.dataset import Ring_Cell_all_dataset
from tqdm import tqdm
import numpy as np
import torch
# from lib.nms.pth_nms import pth_nms
from lib_new.nms.nums_py import py_cpu_nms, py_cpu_nms_contain
from metric import compute_overlap
def calculate_metric_final(pred_bboxes, gt_bboxes, pred_scores, iou_threshold=0.3, score_threshold=0.5):
'''
:param pred_bboxes: list -> [num_pic, num_box, 4] (sorted already, descending order)
:param gt_bboxes: list -> [num_pic, num_box, 4]
:param pred_scores: list -> [num_pic, num_box]
:return:
'''
false_positives = np.zeros((0,))
true_positives = np.zeros((0,))
scores = np.zeros((0,))
num_annotations = 0.0
# scores of predict box in negative image
scores_normal_region = np.zeros((0,))
num_pos = 0
normal_regions = 0
FPs = 0
for i in range(len(pred_bboxes)):
detections = pred_bboxes[i]
annotations = np.array(gt_bboxes[i])
num_annotations += len(annotations)
if len(annotations) != 0:
num_pos += 1
# positive region
# calculate precision and recall
detected_annotations = []
for j, d in enumerate(detections):
score = pred_scores[i][j]
if score < 0.05:
# score has been sorted in descending order
break
scores = np.append(scores, score)
overlaps = compute_overlap(np.expand_dims(d, axis=0), annotations)
assigned_annotation = np.argmax(overlaps, axis=1)
max_overlap = overlaps[0, assigned_annotation]
if max_overlap >= iou_threshold and assigned_annotation not in detected_annotations:
false_positives = np.append(false_positives, 0)
true_positives = np.append(true_positives, 1)
detected_annotations.append(assigned_annotation)
else:
false_positives = np.append(false_positives, 1)
true_positives = np.append(true_positives, 0)
else:
# negative region (normal region)
# calculate FPs
normal_regions += 1
for j, d in enumerate(detections):
score = pred_scores[i][j]
if score < 0.05:
# score has been sorted in descending order
break
FPs += 1
scores_normal_region = np.append(scores_normal_region, score)
indices = np.argsort(-scores)
scores = scores[indices]
false_positives = false_positives[indices]
true_positives = true_positives[indices]
indices = np.argsort(-scores_normal_region)
scores_normal_region = scores_normal_region[indices]
# compute false positives and true positives
false_positives = np.cumsum(false_positives)
true_positives = np.cumsum(true_positives)
# compute recall and precision
recall = true_positives / num_annotations
if len(recall) == 0:
recall = [0]
precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps)
if len(precision) == 0:
precision = [0]
# index where precision greater equal 0.2
index_record = np.where(precision >= 0.2)[0][-1]
# recall, precision, FPs when precision is 0.2
recall_record = recall[:index_record+1]
precision_record = precision[:index_record+1]
score_record = scores[:index_record+1]
scores_normal_region_record = scores_normal_region[scores_normal_region > score_record[-1]]
FPs_record = scores_normal_region_record.shape[0]
FPs_record = float(FPs_record / normal_regions)
FPs_record = max(100 - FPs_record, 0)
# compute FROC when precision is 0.2
fps_list = [1, 2, 4, 8, 16, 32]
recall_list = []
for fps in fps_list:
total_fps_num = fps * normal_regions
if total_fps_num >= len(scores_normal_region_record):
recall_list.append(float(recall_record[-1]))
else:
score_min = scores_normal_region_record[total_fps_num - 1]
score_index = np.where(score_record >= score_min)[0]
if score_index.shape[0] == 0:
recall_list.append(0)
else:
score_index = score_index[-1]
recall_list.append(float(recall_record[score_index]))
froc_record = np.mean(recall_list)
recall = recall[scores > score_threshold]
precision = precision[scores > score_threshold]
scores = scores[scores > score_threshold]
scores_normal_region = scores_normal_region[scores_normal_region > score_threshold]
# compute FROC
fps_list = [1, 2, 4, 8, 16, 32]
recall_list = []
for fps in fps_list:
total_fps_num = fps * normal_regions
if total_fps_num >= len(scores_normal_region):
recall_list.append(float(recall[-1]))
else:
score_min = scores_normal_region[total_fps_num-1]
score_index = np.where(scores>=score_min)[0]
if score_index.shape[0] == 0:
recall_list.append(0)
else:
score_index = score_index[-1]
recall_list.append(float(recall[score_index]))
froc = np.mean(recall_list)
FPs = float(len(scores_normal_region) / normal_regions)
FPs = max(100 - FPs, 0)
return recall, precision, froc, FPs, recall_record, precision_record, froc_record, FPs_record, score_record
def nms(dets, thresh):
"Dispatch to either CPU or GPU NMS implementations.\
Accept dets as tensor"""
dets = dets.cpu().detach().numpy()
return py_cpu_nms(dets, thresh)
def nms_contain(dets, thresh):
"Dispatch to either CPU or GPU NMS implementations.\
Accept dets as tensor"""
dets = dets.cpu().detach().numpy()
return py_cpu_nms_contain(dets, thresh)
ensemble_csv_list = []
result_dir = 'test_result_new'
# ensemble_csv_list.append(os.path.join(result_dir, 'retinanet_resnet18_round0_test_fold_0_weight_loss_1_on_test_data_latest.csv'))
# ensemble_csv_list.append(os.path.join(result_dir, 'retinanet_resnet18_round0_test_fold_0_weight_loss_10_on_test_data_latest.csv'))
ensemble_csv_list.append(os.path.join(result_dir, 'retinanet_resnet18_round0_fold_0_weight_loss_1_on_train_data_best_valid_recall.csv'))
ensemble_csv_list.append(os.path.join(result_dir, 'retinanet_resnet18_round0_fold_0_weight_loss_1_on_train_data_best_valid_recall_new1.csv'))
# ensemble_csv_list.append(os.path.join(result_dir, 'retinanet_resnet18_round0_test_fold_0_weight_loss_1_on_test_data_latest.csv'))
def get_info(pred_csv, box_dict, score_dict):
with open(pred_csv, 'r') as f:
lines = f.readlines()
for line in lines:
line = line[:-1]
line = line.split(',')
image_name = line[0]
if image_name not in box_dict:
box_dict[image_name] = []
score_dict[image_name] = []
if len(line[1]) != 0:
preds = line[1].split(';')[:-1]
for pred in preds:
pred = pred.split(' ')
box = []
for elemet in pred[:-1]:
box.append(float(elemet))
box_dict[image_name].append(box)
score_dict[image_name].append(float(pred[-1]))
return box_dict, score_dict
pred_dict_box = {}
pred_dict_score ={}
for i, ensemble_csv in enumerate(ensemble_csv_list):
pred_dict_box, pred_dict_score = get_info(ensemble_csv, pred_dict_box, pred_dict_score)
test_dataset = Ring_Cell_all_dataset('/data/sqy/code/miccai2019/train_test_4/train_{}.txt'.format(0))
result_dict = {}
pred_boxes_total = []
pred_scores_total = []
gt_boxes_total = []
for i, (image, bbox, image_, image_name) in enumerate(tqdm(test_dataset)):
result_dict[image_name] = []
gt_bbox = bbox
gt_scores = np.ones(len(gt_bbox)).tolist()
pred_scores = pred_dict_score[image_name]
pred_bboxs = pred_dict_box[image_name]
if len(pred_bboxs) != 0:
# nms
pred_bboxs = torch.Tensor(pred_bboxs).unsqueeze(0) # size -> [1, num_box, 4]
pred_scores = torch.Tensor(pred_scores).unsqueeze(0).unsqueeze(-1) # size -> [1, num_box, 1]
anchors_nms_idx = nms(torch.cat([pred_bboxs, pred_scores], dim=2)[0, :, :], 0.4)
pred_bboxs = pred_bboxs[0, anchors_nms_idx, :]
pred_scores = pred_scores[0, anchors_nms_idx, 0]
# pred_bboxs = pred_bboxs[pred_scores > score_threshold]
# pred_scores = pred_scores[pred_scores > score_threshold]
pred_bboxs = pred_bboxs.numpy().tolist()
pred_scores = pred_scores.numpy().tolist()
pred_boxes_total.append(pred_bboxs)
pred_scores_total.append(pred_scores)
gt_boxes_total.append(bbox)
else:
pred_boxes_total.append([])
pred_scores_total.append([])
gt_boxes_total.append(bbox)
recall, precision, froc, FPs, recall_record, precision_record, froc_record, FPs_record, score_record\
= calculate_metric_final(pred_boxes_total, gt_boxes_total, pred_scores_total, score_threshold=0.2)
print('recall: {}, precision: {}, froc: {}, FPs:{}'.format(recall[-1], precision[-1], froc, FPs))
print('recall: {}, FPs: {}, froc:{}, score threshold: {} when precision is {}'.
format(recall_record[-1], FPs_record, froc_record, score_record[-1], precision_record[-1]))