-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_new_training_data_from_test_prediction.py
105 lines (84 loc) · 3.19 KB
/
generate_new_training_data_from_test_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from retinanet.dataset import Ring_Cell_all_dataset
from tqdm import tqdm
import numpy as np
import torch
# from lib.nms.pth_nms import pth_nms
from lib_new.nms.gpu_nms import gpu_nms
from lib_new.nms.nums_py import py_cpu_nms, py_cpu_nms_contain
def nms(dets, thresh):
"Dispatch to either CPU or GPU NMS implementations.\
Accept dets as tensor"""
dets = dets.cpu().detach().numpy()
return py_cpu_nms(dets, thresh)
def nms_contain(dets, thresh):
"Dispatch to either CPU or GPU NMS implementations.\
Accept dets as tensor"""
dets = dets.cpu().detach().numpy()
return py_cpu_nms_contain(dets, thresh)
pred_dict_box = {}
pred_dict_score = {}
result_str = ''
round = 0
nms_threshold = 0.4
score_threshold = 0.1
for test_fold in range(0, 4):
pred_csv = './test_result_new/retinanet_resnet18_round0_fold_{}_weight_loss_1_on_test_data_latest.csv'.format(test_fold)
with open(pred_csv, 'r') as f:
lines = f.readlines()
for line in lines:
line = line[:-1]
line = line.split(',')
image_name = line[0]
pred_dict_box[image_name] = []
pred_dict_score[image_name] = []
if len(line[1]) != 0:
preds = line[1].split(';')[:-1]
for pred in preds:
pred = pred.split(' ')
box = []
for elemet in pred[:-1]:
box.append(float(elemet))
pred_dict_box[image_name].append(box)
pred_dict_score[image_name].append(float(pred[-1]))
test_dataset = Ring_Cell_all_dataset('/data/sqy/code/miccai2019/train_test_4/test_{}.txt'.format(test_fold))
result_dict = {}
for i, (image, bbox, image_, image_name) in enumerate(tqdm(test_dataset)):
result_dict[image_name] = []
gt_bbox = bbox
gt_scores = np.ones(len(gt_bbox)).tolist()
if len(bbox) != 0:
pred_scores = pred_dict_score[image_name]
pred_bboxs = pred_dict_box[image_name]
scores = gt_scores
scores.extend(pred_scores)
bboxs = gt_bbox
bboxs.extend(pred_bboxs)
# nms
pred_bboxs = torch.Tensor(bboxs).unsqueeze(0) # size -> [1, num_box, 4]
pred_scores = torch.Tensor(scores).unsqueeze(0).unsqueeze(-1) # size -> [1, num_box, 1]
anchors_nms_idx = nms(torch.cat([pred_bboxs, pred_scores], dim=2)[0, :, :], nms_threshold)
pred_boxes = pred_bboxs[:, anchors_nms_idx, :]
pred_scores = pred_scores[:, anchors_nms_idx, :]
anchors_nms_idx = nms_contain(torch.cat([pred_boxes, pred_scores], dim=2)[0, :, :], 0.8)
bboxs = pred_boxes[0, anchors_nms_idx, :]
scores = pred_scores[0, anchors_nms_idx, 0]
bboxs = bboxs[scores >= score_threshold]
scores = scores[scores >= score_threshold]
bboxs = bboxs.numpy().tolist()
scores = scores.numpy().tolist()
result_dict[image_name].extend(bboxs)
for image_name in result_dict:
result_str += image_name
result_str += ','
results = result_dict[image_name]
for result in results:
box = result
for element in box:
result_str += str(element)
result_str += ' '
result_str += ';'
result_str += '\n'
result_csv = './bbox/retinanet_resnet_18_using_test_prediction_latest_nms_{}_scorethreshold_{}_for_round{}_training.csv'\
.format(nms_threshold, score_threshold, (round+1))
with open(result_csv, 'w') as f:
f.write(result_str)