-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
1674 lines (1278 loc) · 79 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=2">
<meta name="theme-color" content="#222">
<meta name="generator" content="Hexo 4.2.1">
<link rel="apple-touch-icon" sizes="180x180" href="/images/apple-touch-icon-next.png">
<link rel="icon" type="image/png" sizes="32x32" href="/images/favicon-32x32-next.png">
<link rel="icon" type="image/png" sizes="16x16" href="/images/favicon-16x16-next.png">
<link rel="mask-icon" href="/images/logo.svg" color="#222">
<link rel="stylesheet" href="/css/main.css">
<link rel="stylesheet" href="/lib/font-awesome/css/font-awesome.min.css">
<script id="hexo-configurations">
var NexT = window.NexT || {};
var CONFIG = {
hostname: new URL('http://yoursite.com').hostname,
root: '/',
scheme: 'Muse',
version: '7.7.0',
exturl: false,
sidebar: {"position":"left","display":"post","padding":18,"offset":12,"onmobile":false},
copycode: {"enable":false,"show_result":false,"style":null},
back2top: {"enable":true,"sidebar":false,"scrollpercent":false},
bookmark: {"enable":false,"color":"#222","save":"auto"},
fancybox: false,
mediumzoom: false,
lazyload: false,
pangu: false,
comments: {"style":"tabs","active":null,"storage":true,"lazyload":false,"nav":null},
algolia: {
appID: '',
apiKey: '',
indexName: '',
hits: {"per_page":10},
labels: {"input_placeholder":"Search for Posts","hits_empty":"We didn't find any results for the search: ${query}","hits_stats":"${hits} results found in ${time} ms"}
},
localsearch: {"enable":false,"trigger":"auto","top_n_per_article":1,"unescape":false,"preload":false},
path: '',
motion: {"enable":true,"async":false,"transition":{"post_block":"fadeIn","post_header":"slideDownIn","post_body":"slideDownIn","coll_header":"slideLeftIn","sidebar":"slideUpIn"}}
};
</script>
<meta property="og:type" content="website">
<meta property="og:title" content="tSupan">
<meta property="og:url" content="http://yoursite.com/index.html">
<meta property="og:site_name" content="tSupan">
<meta property="og:locale" content="zh_CN">
<meta property="article:author" content="tSupan">
<meta name="twitter:card" content="summary">
<link rel="canonical" href="http://yoursite.com/">
<script id="page-configurations">
// https://hexo.io/docs/variables.html
CONFIG.page = {
sidebar: "",
isHome: true,
isPost: false
};
</script>
<title>tSupan</title>
<noscript>
<style>
.use-motion .brand,
.use-motion .menu-item,
.sidebar-inner,
.use-motion .post-block,
.use-motion .pagination,
.use-motion .comments,
.use-motion .post-header,
.use-motion .post-body,
.use-motion .collection-header { opacity: initial; }
.use-motion .site-title,
.use-motion .site-subtitle {
opacity: initial;
top: initial;
}
.use-motion .logo-line-before i { left: initial; }
.use-motion .logo-line-after i { right: initial; }
</style>
</noscript>
</head>
<body itemscope itemtype="http://schema.org/WebPage">
<div class="container use-motion">
<div class="headband"></div>
<header class="header" itemscope itemtype="http://schema.org/WPHeader">
<div class="header-inner"><div class="site-brand-container">
<div class="site-meta">
<div>
<a href="/" class="brand" rel="start">
<span class="logo-line-before"><i></i></span>
<span class="site-title">tSupan</span>
<span class="logo-line-after"><i></i></span>
</a>
</div>
</div>
<div class="site-nav-toggle">
<div class="toggle" aria-label="切换导航栏">
<span class="toggle-line toggle-line-first"></span>
<span class="toggle-line toggle-line-middle"></span>
<span class="toggle-line toggle-line-last"></span>
</div>
</div>
</div>
<nav class="site-nav">
<ul id="menu" class="menu">
<li class="menu-item menu-item-home">
<a href="/" rel="section"><i class="fa fa-fw fa-home"></i>首页</a>
</li>
<li class="menu-item menu-item-tags">
<a href="/tags/" rel="section"><i class="fa fa-fw fa-tags"></i>标签</a>
</li>
<li class="menu-item menu-item-categories">
<a href="/categories/" rel="section"><i class="fa fa-fw fa-th"></i>分类</a>
</li>
<li class="menu-item menu-item-archives">
<a href="/archives/" rel="section"><i class="fa fa-fw fa-archive"></i>归档</a>
</li>
</ul>
</nav>
</div>
</header>
<div class="back-to-top">
<i class="fa fa-arrow-up"></i>
<span>0%</span>
</div>
<main class="main">
<div class="main-inner">
<div class="content-wrap">
<div class="content">
<div class="posts-expand">
<article itemscope itemtype="http://schema.org/Article" class="post-block home" lang="zh-CN">
<link itemprop="mainEntityOfPage" href="http://yoursite.com/2020/07/22/%E6%A6%82%E7%8E%87%E8%AE%BA/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="tSupan">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="tSupan">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a href="/2020/07/22/%E6%A6%82%E7%8E%87%E8%AE%BA/" class="post-title-link" itemprop="url">概率论与数理统计</a>
</h1>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2020-07-22 17:26:01 / 修改时间:19:48:15" itemprop="dateCreated datePublished" datetime="2020-07-22T17:26:01+08:00">2020-07-22</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/%E6%A6%82%E7%8E%87%E8%AE%BA%E4%B8%8E%E6%95%B0%E7%90%86%E7%BB%9F%E8%AE%A1/" itemprop="url" rel="index">
<span itemprop="name">概率论与数理统计</span>
</a>
</span>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h1 id="汤老名言">汤老名言</h1>
<p>这东西简单得一塌糊涂</p>
<h1 id="概率论基本概念">概率论基本概念</h1>
<h2 id="随机试验">随机试验</h2>
<p>所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果为样本点</p>
<h2 id="样本空间随机事件">样本空间、随机事件</h2>
<p>E为随机事件,E里面只有一个元素则叫基本事件,S包含所有事件则为必然事件,∅则为不可能事件</p>
<h3 id="事件之间的关系">事件之间的关系</h3>
<h4 id="包含">包含</h4>
<p>B里面有A事件,A发生则B也发生</p>
<p><span class="math display">\[A\subset B\]</span></p>
<p><span class="math display">\[(A\subset B) \land (B\subset A) \rightarrow A=B\]</span></p>
<h4 id="和">和</h4>
<p>n个事件任意一个发生</p>
<p><span class="math display">\[A_1 \cup A_2 \cup A_3 ... \cup A_n\]</span></p>
<h4 id="积">积</h4>
<p>n个事件同时发生 <span class="math display">\[A_1\cap A_2 ... \cap A_n\]</span></p>
<h4 id="差">差</h4>
<p>A发生,B不发生 <span class="math display">\[A-B\]</span></p>
<h4 id="互斥">互斥</h4>
<p>A和B不可能同时发生 <span class="math display">\[A\cap B=∅\]</span></p>
<h4 id="对立">对立</h4>
<p>太极的阴阳形状 <span class="math display">\[P{A}+P{B}=1 \text{并且} A\cap B=∅\]</span></p>
<h3 id="计算规律德摩根律需注意">计算规律(德摩根律需注意)</h3>
<p>交换律,结合律,分配律,德摩根律</p>
<h2 id="频率与概率">频率与概率</h2>
<h3 id="频率">频率</h3>
<h4 id="定义">定义</h4>
<p>n次试验中,事件A发生的次数<span class="math inline">\(n_A\)</span>称为事件A的频数,比值<span class="math inline">\(frac{n_A}{n}\)</span>为频率,并记为<span class="math inline">\(f_n(A)\)</span></p>
<h4 id="性质">性质</h4>
<p><span class="math display">\[0\le f_n(A\le 1\]</span> <span class="math display">\[f_n(S)=1\]</span> <span class="math display">\[f_n(A_1\cap A_2\cap ... \cap A_k)=f_n(A_1)+f_n(A_2)+...+f_n(A_k)\]</span></p>
<h3 id="概率">概率</h3>
<h4 id="性质-1">性质</h4>
<p>1.非负性</p>
<p>2.规范性</p>
<p>3.可列可加性</p>
<h2 id="等可能概型古典概型">等可能概型(古典概型)</h2>
<h2 id="条件概率">条件概率</h2>
<h2 id="独立性">独立性</h2>
<h1 id="随机变量及其分布">随机变量及其分布</h1>
<h2 id="随机变量">随机变量</h2>
<h2 id="离散型随机变量及其分布律">离散型随机变量及其分布律</h2>
<h2 id="连续型随机变量及其概率密度">连续型随机变量及其概率密度</h2>
<h2 id="随机变量的函数的分布">随机变量的函数的分布</h2>
<h1 id="多维随机变量及其分布">多维随机变量及其分布</h1>
<h2 id="二维随机变量">二维随机变量</h2>
<h2 id="边缘分布">边缘分布</h2>
<h2 id="条件分布">条件分布</h2>
<h2 id="相互独立的随机变量">相互独立的随机变量</h2>
<h2 id="两个随机变量的函数的分布">两个随机变量的函数的分布</h2>
<h1 id="随机变量的数学特征">随机变量的数学特征</h1>
<h2 id="数学期望">数学期望</h2>
<h2 id="方差">方差</h2>
<h2 id="协方差及相关系数">协方差及相关系数</h2>
<h2 id="矩协方差矩阵">矩、协方差矩阵</h2>
<h1 id="大数定律及中心极限定理">大数定律及中心极限定理</h1>
<h2 id="中心极限定理">中心极限定理</h2>
<h1 id="数理统计分割线--------">--------数理统计分割线--------</h1>
<h1 id="样本及抽样分布">样本及抽样分布</h1>
<h2 id="随机样本">随机样本</h2>
<h2 id="抽样分布">抽样分布</h2>
<h1 id="参数估计">参数估计</h1>
<h2 id="点估计">点估计</h2>
<h2 id="基于截尾样本的最大似然估计">基于截尾样本的最大似然估计</h2>
<h2 id="估计量的评选标准">估计量的评选标准</h2>
<h2 id="区间估计">区间估计</h2>
<h1 id="假设检验">假设检验</h1>
<h2 id="假设检验-1">假设检验</h2>
<h2 id="正态总体均值的假设检验">正态总体均值的假设检验</h2>
<h2 id="正态总体方差的假设检验">正态总体方差的假设检验</h2>
<h2 id="置信区间的假设检验之间的关系">置信区间的假设检验之间的关系</h2>
<h2 id="样本容量的选取">样本容量的选取</h2>
<h2 id="分布拟合检验">分布拟合检验</h2>
<h2 id="秩和检验">秩和检验</h2>
<h2 id="假设检验问题的p值检验法">假设检验问题的p值检验法</h2>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block home" lang="zh-CN">
<link itemprop="mainEntityOfPage" href="http://yoursite.com/2020/05/28/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E5%8E%9F%E7%90%86%E6%A6%82%E8%AE%BA/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="tSupan">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="tSupan">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a href="/2020/05/28/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E5%8E%9F%E7%90%86%E6%A6%82%E8%AE%BA/" class="post-title-link" itemprop="url">计算机组成原理概论</a>
</h1>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2020-05-28 20:00:43 / 修改时间:20:58:28" itemprop="dateCreated datePublished" datetime="2020-05-28T20:00:43+08:00">2020-05-28</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E5%8E%9F%E7%90%86/" itemprop="url" rel="index">
<span itemprop="name">计算机组成原理</span>
</a>
</span>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h1 id="cpu提高性能方法今后发展方向">CPU提高性能方法(今后发展方向)</h1>
<h2 id="进一步提高电路复杂性">进一步提高电路复杂性</h2>
<p>采用传统的指令级并行方法加速单线程应用,采用更多功能部件、多级 Cache、更宽的超标量。</p>
<h2 id="通过线程进程并行性">通过线程/进程并行性</h2>
<p>如多处理器、多线程处理器等。</p>
<h2 id="将存储器集成到处理器芯片内来提高其性能">将存储器集成到处理器芯片内来提高其性能</h2>
<p>这样可使访存延时减少 5~10 倍以上,存储器带宽可增加 50~100 倍。</p>
<h2 id="发展嵌入式处理器">发展嵌入式处理器</h2>
<p>嵌入式处理器实现高性能的途径与通用处理器不同,大多针对专门的应用领域来专门设计以满足高性能、低成本和低功耗的要求。</p>
<p>例如,手机和个人移动通信设备要求具有高性能的数字信号处理能力和超低功耗;视频游戏控制要求高性能的图形处理能力等等。嵌入式处理器体系结构需要在新技术与产品、市场与应用需求之间取得平衡,设计方法趋向于专用、定制和自动化。</p>
<h1 id="计算机的主要性能指标">计算机的主要性能指标</h1>
<h2 id="机器字长土话就是多少位">机器字长(土话就是多少位)</h2>
<ol type="1">
<li><p>机器字长是指 CPU 一次能处理的数据位数,它决定了寄存器、运算部件、数据总线的位数。字长越长,数的表示范围也越大,精度也越高,但其相应的硬件成本也越高。因此为 了适应不同的设计需要,较好地协调数据精度与硬件成本的关系,在硬件或软件上可以采用 变字长运算,如采用半字长、全字长或双字长等等。</p></li>
<li><p>机器字长还会影响机器的运算速度。因为,假设 CPU字长短,而运算的数据位数较多,则需要经过多次运算才能完成,这样势必会影响整机的运算速度。</p></li>
<li><p>机器字长和机器指令存在着密切的关系,指令和数据都是存放在主存储器中,因此指令长度受到机器字长的限制,机器字长对指令系统的功能也有着影响。一般指令长度可以是机器字长的整数倍。</p></li>
</ol>
<h2 id="存储容量">存储容量</h2>
<ol type="1">
<li><p>存储器容量应包括主存储器容量和辅助存储器容量。主存储器指 CPU 能通过地址线直接访问的存储器,如RAM、ROM等;辅助存储器是主存储器以外的存储器,如磁盘、U盘等。</p></li>
<li><p>主存储器容量是指主存中存放数据的字节(以字节为单位)或字(以字为单位)的数量,以字节为单位表示主存每个单元存放一个字节数据,而以字为单位则表示主存每个单元存放一个字数据。</p></li>
<li><p>以字节为单位的主存容量用字节数乘以字节长度来表示主存容量:</p>
<p><strong><em>存储容量=存储单元个数×字节长度</em></strong></p></li>
<li><p>以字为单位的主存容量用字数乘以存储字长来表示主存容量:</p>
<p><strong><em>存储容量=存储单元个数×存储字长</em></strong></p></li>
<li><p>现代大多计算机以字节为单位来表示主存储器的容量,如64MB、128MB、256MB主存等等。辅助存储器的容量一般以字节数来表示,如某机硬盘容量为20GB。</p></li>
</ol>
<h2 id="运算速度">运算速度</h2>
<p>计算机的运算速度与许多因素有关,如机器的主频、执行何种操作、访问存储器的速度 等。早期曾经采用综合折算的方法,它综合考虑每条指令的执行时间以及它们在全部操作中所占的百分比。即:</p>
<p><span class="math display">\[T_M=\sum_{i=1}^nf_it_i\]</span></p>
<p><span class="math inline">\(T_M\)</span>为机器运行速度</p>
<p><span class="math inline">\(f_i\)</span>为第 i 种指令占全部操作的百分比数 i</p>
<p><span class="math inline">\(t_i\)</span>为第 i 种指令的执行时间</p>
<p>现在普遍采用单位时间内执行指令的平均条数来作为运算速度的指标。并用 MIPS(Million Instruction Per Second)每秒多少百万条指令表示,例如,某机器每秒可执行 400 万条指令,则记为 4MIPS。也可以用 CPI(Cycle Per Instruction)执行一条指令所需的周期数表示,或者用 FPOPS(Floating Point Operation Per Second )每秒浮点运算次数来衡量运算速度。</p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block home" lang="zh-CN">
<link itemprop="mainEntityOfPage" href="http://yoursite.com/2020/05/17/%E7%BA%A7%E6%95%B0/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="tSupan">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="tSupan">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a href="/2020/05/17/%E7%BA%A7%E6%95%B0/" class="post-title-link" itemprop="url">级数</a>
</h1>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2020-05-17 17:00:01 / 修改时间:17:54:14" itemprop="dateCreated datePublished" datetime="2020-05-17T17:00:01+08:00">2020-05-17</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/%E9%AB%98%E7%AD%89%E6%95%B0%E5%AD%A6/" itemprop="url" rel="index">
<span itemprop="name">高等数学</span>
</a>
</span>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h1 id="概念和性质">概念和性质</h1>
<p>类似于小学学的无理数</p>
<p>例子:0.9999999999999...9</p>
<p>级数:<span class="math inline">\(\sum_{i=1}^{∞}u_i\)</span></p>
<p>级数极限:<span class="math inline">\(\lim_{n\rightarrow ∞}s_n=s\)</span></p>
<p>级数每一项记为:<span class="math inline">\(u_n\)</span></p>
<h2 id="定义">定义</h2>
<p>级数<span class="math inline">\(\sum_{i=1}^{∞}u_i\)</span>的部分和<span class="math inline">\(s_n\)</span>有极限的话,该级数收敛;如果没有极限,则为发散。</p>
<h2 id="等比级数几何级数">等比级数(几何级数)</h2>
<p><span class="math display">\[\sum_{i=1}^{∞}aq^i =
\begin{cases}
\text{发散}\ \ |q|\ge 1 \\
\text{收敛于}\frac{aq}{1-q}\ \ |q|<1
\end{cases}
\]</span></p>
<h2 id="必要条件">必要条件</h2>
<p>如果级数收敛,一般项<span class="math inline">\(u_n\)</span>趋于0f <span class="math display">\[\lim_{n\rightarrow ∞}=0\]</span></p>
<h2 id="调和级数需记">调和级数(需记)</h2>
<p>调和级数<span class="math inline">\(\sum_{i=1}^{∞}\frac{1}{n}\)</span>发散</p>
<h2 id="柯西审敛原理空">柯西审敛原理(空)</h2>
<h1 id="常数项级数">常数项级数</h1>
<h2 id="审敛法重要">审敛法(重要)</h2>
<h3 id="比较审敛法">比较审敛法</h3>
<p><span class="math inline">\(a_n\le b_n\)</span>,且b级数收敛,则a级数收敛</p>
<p><span class="math inline">\(a_n\ge b_n\)</span>,且b级数发散,则a级数发散</p>
<h4 id="极限形式">极限形式</h4>
<p><span class="math inline">\(\lim_{n\rightarrow ∞}\frac{u_n}{v_n}=l\ \ (0\le l < +∞)\)</span>,且v级数收敛,则u级数收敛</p>
<p><span class="math inline">\(\lim_{n\rightarrow ∞}\frac{u_n}{v_n}=l > 0\)</span>或<span class="math inline">\(\lim_{n\rightarrow ∞}\frac{u_n}{v_n}= +∞\)</span>,且v级数发散,则u级数发散</p>
<h3 id="比值审敛法">比值审敛法</h3>
<p>有级数为正项级数<span class="math inline">\(\sum_{n=1}^{∞}u_n\)</span></p>
<p><span class="math display">\[\lim_{n\rightarrow ∞}\frac{u_{n+1}}{u_n}=\rho\]</span></p>
<p><span class="math inline">\(\rho < 1\)</span>收敛,<span class="math inline">\(\rho > 1\ \ \text{或}\ \ \lim_{n\rightarrow ∞}\frac{u_{n+1}}{u_n}=∞\)</span>发散,<span class="math inline">\(\rho = 1\)</span>不确定</p>
<h3 id="根值审敛法柯西判别法">根值审敛法(柯西判别法)</h3>
<p>有级数为正项级数<span class="math inline">\(\sum_{n=1}^{∞}u_n\)</span></p>
<p><span class="math display">\[\lim_{n\rightarrow ∞}\sqrt[n]{u_n}=\rho\]</span></p>
<p><span class="math inline">\(\rho < 1\)</span>收敛,<span class="math inline">\(\rho > 1\ \ \text{或}\ \ \lim_{n\rightarrow ∞}\frac{u_{n+1}}{u_n}=∞\)</span>发散,<span class="math inline">\(\rho = 1\)</span>不确定</p>
<h3 id="极限审敛法">极限审敛法</h3>
<p>有级数为正项级数<span class="math inline">\(\sum_{n=1}^{∞}u_n\)</span></p>
<h4 id="情况1">情况1</h4>
<p><span class="math display">\[\lim_{n\rightarrow ∞}nu_n=l>0\ \text{或}\ =+∞\]</span></p>
<p>级数发散</p>
<h4 id="情况2">情况2</h4>
<p><span class="math inline">\(p>1\)</span></p>
<p><span class="math display">\[\lim_{n\rightarrow ∞}n^p u_n=l \ \ (0\le l < +∞)\]</span></p>
<p>级数收敛</p>
<h2 id="交错级数及审敛法">交错级数及审敛法</h2>
<h3 id="莱布尼兹定理审敛法之一">莱布尼兹定理(审敛法之一)</h3>
<p>交错级数<span class="math inline">\(\sum_{n=1}^{∞}(-1)^{n-1}u_n\)</span>满足下面条件则为收敛:</p>
<ol type="1">
<li><p><span class="math inline">\(u_n \ge u_{n+1}\ \ (n=1,2,3,...,n)\)</span></p></li>
<li><p><span class="math inline">\(\lim_{n\rightarrow ∞}=0\)</span></p></li>
</ol>
<p>并且级数其和<span class="math inline">\(s \le u_1\)</span>,余项<span class="math inline">\(r_n\)</span>的绝对值<span class="math inline">\(|r_n| \le u_{n+1}\)</span></p>
<h2 id="绝对收敛和条件收敛">绝对收敛和条件收敛</h2>
<p>前提:级数本身是收敛的</p>
<p>级数加绝对值符号,如果级数还收敛,则为绝对收敛;如果加绝对值符号后的级数发散,则为条件收敛。</p>
<p>A推B: <span class="math display">\[\text{绝对收敛}\rightarrow \text{必定收敛}\]</span></p>
<h1 id="幂级数空">幂级数(空)</h1>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block home" lang="zh-CN">
<link itemprop="mainEntityOfPage" href="http://yoursite.com/2020/05/12/%E6%9B%B2%E7%BA%BF%E7%A7%AF%E5%88%86%E4%B8%8E%E6%9B%B2%E9%9D%A2%E7%A7%AF%E5%88%86/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="tSupan">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="tSupan">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a href="/2020/05/12/%E6%9B%B2%E7%BA%BF%E7%A7%AF%E5%88%86%E4%B8%8E%E6%9B%B2%E9%9D%A2%E7%A7%AF%E5%88%86/" class="post-title-link" itemprop="url">曲线积分与曲面积分</a>
</h1>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2020-05-12 18:28:10" itemprop="dateCreated datePublished" datetime="2020-05-12T18:28:10+08:00">2020-05-12</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-check-o"></i>
</span>
<span class="post-meta-item-text">更新于</span>
<time title="修改时间:2020-05-13 12:05:02" itemprop="dateModified" datetime="2020-05-13T12:05:02+08:00">2020-05-13</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/%E9%AB%98%E7%AD%89%E6%95%B0%E5%AD%A6/" itemprop="url" rel="index">
<span itemprop="name">高等数学</span>
</a>
</span>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h1 id="对弧长的曲线积分第一类曲线积分">对弧长的曲线积分(第一类曲线积分)</h1>
<h2 id="作用">作用</h2>
<p>求弧长</p>
<h2 id="计算方法">计算方法</h2>
<p><span class="math display">\[
\begin{cases}
x=\varphi (t)\\\\
y=\psi (t)
\end{cases}
(\alpha \leq t \leq \beta)
\]</span> 前提条件:<span class="math inline">\(\varphi (t)\)</span>、<span class="math inline">\(\psi (t)\)</span>在<span class="math inline">\([\alpha,\beta]\)</span>有连续一阶导数,且<span class="math inline">\(\varphi '^2(t) +\psi '^2(t)\neq 0\)</span></p>
<p>则 <span class="math display">\[\int_Lf(x,y)ds=\int_{\alpha}^{\beta}f[\varphi (t),\psi (t)]\sqrt{\varphi '^2(t) +\psi '^2(t)}dt \ \ (\alpha < \beta)\]</span></p>
<h2 id="推广到空间曲线弧">推广到空间曲线弧</h2>
<p><span class="math display">\[\int_Lf(x,y,z)ds=\int_{\alpha}^{\beta}f[\varphi (t),\psi (t),\omega (t)]\sqrt{\varphi '^2(t) +\psi '^2(t)+\omega '^2(t)}dt\ \ (\alpha < \beta)\]</span></p>
<h2 id="特殊情形">特殊情形</h2>
<p>也就是说少了谁就函数对谁求导</p>
<h3 id="二维">二维</h3>
<p><span class="math display">\[\int_Lf(x,y)ds=\int_{0}^{x_0}f[x,\psi (x)]\sqrt{1 +\psi '^2(x)}dx \ \ (x_0 < X)\]</span> <span class="math display">\[\int_Lf(x,y)ds=\int_{0}^{y_0}f[\varphi (y),y]\sqrt{\varphi '^2(y) + 1}dy \ \ (y_0 < Y)\]</span></p>
<h3 id="三维">三维</h3>
<p><span class="math display">\[\int_Lf(x,y,z)ds=\int_{\alpha}^{\beta}f[\varphi (t),\psi (t),\omega (t)]\sqrt{\varphi '^2(t) +\psi '^2(t)+\omega '^2(t)}dt\ \ (\alpha < \beta)\]</span></p>
<h1 id="对坐标的曲线积分第二类曲线积分">对坐标的曲线积分(第二类曲线积分)</h1>
<h2 id="作用-1">作用</h2>
<p>求做功(物理上)</p>
<h2 id="计算方法-1">计算方法</h2>
<p>同上,前提条件大致相同</p>
<p><span class="math display">\[\int_L P(x,y)dx+Q(x,y)dy = \int_{\alpha}^{\beta} \{ P[\varphi (t), \psi (t)] \varphi '(t) + Q[\varphi (t), \psi (t)] \psi '(t) \} dt \]</span></p>
<h2 id="公式变形">公式变形</h2>
<p>根据题目给出的y=f(x),化简成x=啥,代入公式,然后进一步积分</p>
<p><span class="math display">\[\int_L P(x,y)dx+Q(x,y)dy = \int_{a}^{b} \{ P[x, \psi (t)] + Q[x, \psi (t)] \psi '(t) \} dx \]</span></p>
<h2 id="推广到空间曲线">推广到空间曲线</h2>
<p><span class="math display">\[\int_L P(x,y)dx+Q(x,y)dy+R(x,y)dz = \int_{\alpha}^{\beta} \{ P[\varphi (t), \psi (t), \omega (t)] \varphi '(t) + Q[\varphi (t), \psi (t), \omega (t)] \psi '(t) + R[\varphi (t), \psi (t), \omega (t)]\omega '(t) \}dt\]</span></p>
<h1 id="格林公式">格林公式</h1>
<h2 id="使用条件">使用条件</h2>
<p>区域内都要可导,且图形为逆时针</p>
<h2 id="形式补充">形式(补充)</h2>
<h1 id="对面积的曲面积分第一类曲面积分">对面积的曲面积分(第一类曲面积分)</h1>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block home" lang="zh-CN">
<link itemprop="mainEntityOfPage" href="http://yoursite.com/2020/05/11/%E5%A4%9A%E5%85%83%E5%87%BD%E6%95%B0%E5%BE%AE%E5%88%86%E6%B3%95%E5%8F%8A%E5%85%B6%E5%BA%94%E7%94%A8/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="tSupan">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="tSupan">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a href="/2020/05/11/%E5%A4%9A%E5%85%83%E5%87%BD%E6%95%B0%E5%BE%AE%E5%88%86%E6%B3%95%E5%8F%8A%E5%85%B6%E5%BA%94%E7%94%A8/" class="post-title-link" itemprop="url">多元函数微分法及其应用</a>
</h1>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2020-05-11 20:49:30 / 修改时间:21:49:53" itemprop="dateCreated datePublished" datetime="2020-05-11T20:49:30+08:00">2020-05-11</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/%E9%AB%98%E7%AD%89%E6%95%B0%E5%AD%A6/" itemprop="url" rel="index">
<span itemprop="name">高等数学</span>
</a>
</span>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h1 id="多元函数的基本概念">多元函数的基本概念</h1>
<h2 id="二重极限两种表达形式">二重极限(两种表达形式)</h2>
<p><span class="math display">\[\lim_{(x,y)\rightarrow (x_0,y_0)}f(x,y)=A\text{(面积)}\]</span></p>
<p><span class="math display">\[\lim_{P\rightarrow P_0}f(P)=A\text{(面积)}\]</span></p>
<h2 id="连续性">连续性</h2>
<p><span class="math display">\[\lim_{(x,y)\rightarrow (x_0,y_0)}f(x,y)=f(x_0,y_0)\]</span> 称函数<span class="math inline">\(f(x,y)\)</span>在点<span class="math inline">\(P_0(x_0,y_0)\)</span>连续</p>
<h1 id="微分">微分</h1>
<h2 id="偏导数">偏导数</h2>
<p>一个导数微分</p>
<h2 id="高阶偏导数">高阶偏导数</h2>
<p>微分再微分</p>
<h2 id="全微分">全微分</h2>
<p>偏导数微分相加</p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block home" lang="zh-CN">
<link itemprop="mainEntityOfPage" href="http://yoursite.com/2020/04/20/%E5%90%91%E9%87%8F%E4%BB%A3%E6%95%B0%E4%B8%8E%E7%A9%BA%E9%97%B4%E8%A7%A3%E6%9E%90%E5%87%A0%E4%BD%95/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="tSupan">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="tSupan">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a href="/2020/04/20/%E5%90%91%E9%87%8F%E4%BB%A3%E6%95%B0%E4%B8%8E%E7%A9%BA%E9%97%B4%E8%A7%A3%E6%9E%90%E5%87%A0%E4%BD%95/" class="post-title-link" itemprop="url">向量代数与空间解析几何</a>
</h1>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2020-04-20 21:21:19" itemprop="dateCreated datePublished" datetime="2020-04-20T21:21:19+08:00">2020-04-20</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-check-o"></i>
</span>
<span class="post-meta-item-text">更新于</span>
<time title="修改时间:2020-04-21 22:59:28" itemprop="dateModified" datetime="2020-04-21T22:59:28+08:00">2020-04-21</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/%E9%AB%98%E7%AD%89%E6%95%B0%E5%AD%A6/" itemprop="url" rel="index">
<span itemprop="name">高等数学</span>
</a>
</span>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h1 id="基本运算">基本运算</h1>
<h2 id="ab和ab的区别">a·b和a×b的区别</h2>
<p>坐标分别为(<span class="math inline">\(a_1\)</span>,<span class="math inline">\(a_2\)</span>,<span class="math inline">\(a_3\)</span>),(<span class="math inline">\(b_1\)</span>,<span class="math inline">\(b_2\)</span>,<span class="math inline">\(b_3\)</span>)</p>
<p><span class="math display">\[a·b=a_1*b_1+a_2*b_2+a_3*b_3\]</span></p>
<p>而a×b为行列式计算</p>
<h2 id="方向余弦和总和">方向余弦和总和</h2>
<p><span class="math display">\[\cos \alpha = \frac{\text{x或y或z}}{|r|}\]</span></p>
<p><span class="math display">\[\frac{r}{|r|}=e\]</span></p>
<h2 id="数量积">数量积</h2>
<p><span class="math display">\[a·b=|a||b|\cos \text{夹角}\]</span></p>
<h2 id="向量积包含特殊运算关系">向量积(包含特殊运算关系)</h2>
<p><span class="math display">\[|c|=|a||b|\sin \alpha\]</span></p>
<p><span class="math display">\[c=a×b\]</span></p>
<p><span class="math display">\[a×b=-b×a\]</span> ## 数量积和向量积区别 <span class="math display">\[a·b=0\rightarrow a⊥b\]</span></p>
<p><span class="math display">\[a×b=0\rightarrow a//b\]</span></p>
<h2 id="混合积也可以用于求体积">混合积(也可以用于求体积)</h2>
<p><span class="math display">\[[abc]=(a×b)·c=|a×b||c|\cos \alpha\]</span></p>
<p>相当于三个向量求行列式,求体积的话上面<span class="math inline">\(\cos \alpha\)</span>要加绝对值</p>
<h1 id="平面方程">平面方程</h1>
<h2 id="点法式方程">点法式方程</h2>
<p><span class="math inline">\(n·\vec{M_0M}\)</span>,其中n(a,b,c)为法向量的点,<span class="math inline">\(\vec{M_0M}=(x-x_0,y-y_0,z-z_0)\)</span>为平面向量</p>
<p><span class="math display">\[a(x-x_0)+b(y-y_0)+c(z-z_0)=0\]</span></p>
<h2 id="一般方程">一般方程</h2>
<p><span class="math display">\[ax+by+cz+d=0\]</span></p>
<p>a,b,c分别为0代表着方程与x,y,z平行,也代表着法向量(a,b,c)分别垂直于x,y,z轴</p>
<p>d=0时,表示通过原点</p>
<h2 id="截距式方程">截距式方程</h2>
<p><span class="math display">\[\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \quad d\neq 0\]</span></p>
<h2 id="平面夹角">平面夹角</h2>
<p>同1.3数量积,把<span class="math inline">\(\cos \alpha\)</span>化成来,代入法向量坐标计算</p>
<h1 id="空间直线">空间直线</h1>
<h2 id="一般方程-1">一般方程</h2>
<p>两个平面方程放一起,类似于解方程</p>
<h2 id="对称式方程点向式方程">对称式方程,点向式方程</h2>
<p>前提:<span class="math inline">\(s(n,m,p)\text{方向向量}//\vec{M_0M}(x-x_0,y-y_0,z-z_0)\)</span></p>
<p><span class="math display">\[\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}\]</span></p>
<h2 id="参数方程">参数方程</h2>
<p>同上,也即 <span class="math display">\[\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}=t\]</span> 将t左右化开</p>
<h2 id="直线夹角">直线夹角</h2>
<p>方向向量求<span class="math inline">\(\cos \alpha\)</span>,同1.3</p>
<p>垂直条件:直线夹角的<span class="math inline">\(\cos =0\)</span></p>
<p>平行条件:系数比例相等。线性相关??</p>
<h2 id="直线与平面夹角">直线与平面夹角</h2>
<p>方向向量s(m,n,p)与法向量n(a,b,c)的<span class="math inline">\(\cos \alpha\)</span>的绝对值,也就是<span class="math inline">\(\sin \alpha\)</span></p>
<h2 id="平面束略过暂时不懂后面补充同济高数下册p35">平面束(略过暂时不懂后面补充,同济高数下册P35)</h2>
<h1 id="曲面方程暂时不补p37">曲面方程(暂时不补,P37)</h1>
<h1 id="其他">其他</h1>
<p>单位向量计算:<span class="math inline">\(e=\frac{l}{|l|}\)</span></p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block home" lang="zh-CN">
<link itemprop="mainEntityOfPage" href="http://yoursite.com/2020/04/08/%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="tSupan">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="tSupan">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a href="/2020/04/08/%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B/" class="post-title-link" itemprop="url">微分方程</a>
</h1>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2020-04-08 17:54:42 / 修改时间:20:24:41" itemprop="dateCreated datePublished" datetime="2020-04-08T17:54:42+08:00">2020-04-08</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/%E9%AB%98%E7%AD%89%E6%95%B0%E5%AD%A6/" itemprop="url" rel="index">
<span itemprop="name">高等数学</span>
</a>
</span>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h1 id="可分离变量微分方程">可分离变量微分方程</h1>
<p><span class="math inline">\(\frac{dy}{dx}=\frac{y}{x}\)</span>化成<span class="math inline">\(\frac{dy}{y}=\frac{dx}{x}\)</span>,也就是y一边,x化一边,再积分</p>
<h1 id="齐次方程">齐次方程</h1>
<p><span class="math inline">\(\frac{dy}{dx}\)</span>等号右边可以化成关于<span class="math inline">\(\frac{y}{x}\)</span>的函数,就是齐次方程</p>
<h1 id="一阶线性方程">一阶线性方程</h1>
<h2 id="线性方程">线性方程</h2>
<h3 id="形式">形式</h3>
<p><span class="math display">\[\frac{dy}{dx}+P(x)y=Q(x)\]</span></p>
<h3 id="情况">情况</h3>
<p>Q(x)为0则为齐次,否则为非齐次</p>
<h3 id="通解形式">通解形式</h3>
<p><span class="math display">\[y=e^{-\int P(x)dx}\left( \int Q(x)e^{\int P(x)dx}dx+C \right)\]</span></p>
<h2 id="伯努利方程">伯努利方程</h2>
<h3 id="形式与线性方程略有不同">形式(与线性方程略有不同)</h3>
<p><span class="math display">\[\frac{dy}{dx}+P(x)y=Q(x)y^n\]</span></p>
<h3 id="通解形式-1">通解形式</h3>
<p>方法:</p>
<p>1.y^n往等号左边移动,变<span class="math inline">\(\frac{dy}{dx}y^{-n}+P(x)y^{1-n}=Q(x)\)</span></p>
<p>2.令<span class="math inline">\(z=y^{1-n}\)</span>,求导代回1中的方程,得到<span class="math inline">\(\frac{dz}{dx}+(1-n)P(x)z=(1-n)Q(x)\)</span></p>
<p>3.用线性方程通解形式求解,然后再把2中的z代回求解后的方程</p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block home" lang="zh-CN">
<link itemprop="mainEntityOfPage" href="http://yoursite.com/2020/03/10/%E4%B8%8D%E5%AE%9A%E7%A7%AF%E5%88%86%E4%B8%8E%E5%AE%9A%E7%A7%AF%E5%88%86/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="tSupan">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="tSupan">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a href="/2020/03/10/%E4%B8%8D%E5%AE%9A%E7%A7%AF%E5%88%86%E4%B8%8E%E5%AE%9A%E7%A7%AF%E5%88%86/" class="post-title-link" itemprop="url">不定积分与定积分</a>
</h1>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建时间:2020-03-10 14:09:08" itemprop="dateCreated datePublished" datetime="2020-03-10T14:09:08+08:00">2020-03-10</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-check-o"></i>
</span>
<span class="post-meta-item-text">更新于</span>
<time title="修改时间:2020-05-14 15:53:47" itemprop="dateModified" datetime="2020-05-14T15:53:47+08:00">2020-05-14</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/%E9%AB%98%E7%AD%89%E6%95%B0%E5%AD%A6/" itemprop="url" rel="index">
<span itemprop="name">高等数学</span>
</a>
</span>
</span>