-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathai_configurator.py
127 lines (98 loc) · 5.89 KB
/
ai_configurator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
from typing import Dict, List, Optional
from dotenv import load_dotenv
from model_config.model_config import ModelConfig
load_dotenv()
class AIConfigurator:
def __init__(self):
# will hold the current model instance
self.current_model_instance = None
# loading in context
self.initial_prompt = ""
try:
with open(os.getenv('INITIAL_PROMPT_FILE_PATH'), "r") as prompt_file:
self.initial_prompt = prompt_file.read()
except FileNotFoundError:
pass
# variables related to keeping track of conversation history and token usage
self.conversation_history = {} # the history received from the client each time and to be used for truncation
self.stringified_conversation_history = "" # to be passed in along with the query each time
self.token_limit = 0 # the maximum number of tokens for a given provider
self.used_tokens = 0 # keep track of the number of tokens used locally(user + bot combined)
self.tokens_exceeded = False # flag to keep track of whether the number of used tokens has been exceeded
self.previous_thread = ""
# keep track of current model and provider
self.active_provider_name = ""
self.active_model_name = ""
def set_model(self, provider_name: str, model_name: str, tokenizer_func, completion_func, use_initial_prompt: bool) -> None:
"""Set the active AI provider based on user input."""
# we will only execute this whenever the provider and/or the model name is changed
if provider_name != self.active_provider_name or model_name != self.active_model_name:
try:
self.current_model_instance = ModelConfig(provider_name, model_name, tokenizer_func, completion_func, use_initial_prompt)
model_info = self.current_model_instance.get_model_info()
self.active_provider_name = model_info[0]
self.active_model_name = model_info[1]
self.token_limit = model_info[2]
except ValueError as e:
print(f"Error: {e}")
def format_history(self) -> str:
result = ""
user_queries = self.conversation_history["user"]
bot_responses = self.conversation_history["bot"]
threads = list(zip(user_queries, bot_responses))
for query, response in threads:
result += f"User: {query}\nBot: {response}\n"
return result
def retrieve_response_and_tokens(self, message: str, fetch_response=False) -> Dict[Optional[str], int]:
response, tokens = None, None
if fetch_response:
response = self.get_model_completion(message)
tokens = self.current_model_instance.tokenize(response)
else:
# just tokenize the query if fetch_response is false
tokens = self.current_model_instance.tokenize(message)
return {"response": response, "tokens": tokens}
def get_response(self, history: Dict[List[str], List[str]], user_message: str, total_tokens: int):
self.tokens_exceeded = False
self.conversation_history = history
self.used_tokens = total_tokens
query_tokens = self.retrieve_response_and_tokens(user_message)["tokens"]
if self.conversation_history["user"] and self.conversation_history["bot"]:
if query_tokens + self.used_tokens >= self.token_limit:
self.tokens_exceeded = True
current = query_tokens + self.used_tokens
while current >= self.token_limit:
query = self.conversation_history["user"].pop(0)
response = self.conversation_history["bot"].pop(0)
q_tokens = self.retrieve_response_and_tokens(query)["tokens"]
res_tokens = self.retrieve_response_and_tokens(response)["tokens"]
history_tokens = self.retrieve_response_and_tokens(self.previous_thread)["tokens"] if self.previous_thread else 0
current -= (history_tokens + q_tokens + res_tokens)
self.used_tokens -= (history_tokens + q_tokens + res_tokens)
# accumulate the history across various runs
self.previous_thread += f"User: {query}\nBot: {response}\n"
# reconstruct stringified conversation history based on truncated version
self.stringified_conversation_history = self.format_history()
else: # we can just update the number of used tokens since it's within limits
self.stringified_conversation_history += f"User: {self.conversation_history['user'][-1]}\n"
self.stringified_conversation_history += f"Bot: {self.conversation_history['bot'][-1]}\n"
# include context being passed in also in used token count
self.used_tokens += self.retrieve_response_and_tokens(self.stringified_conversation_history)["tokens"]
else:
# reset history each time the page is refreshed(start of a new conversation)
self.conversation_history = {}
self.stringified_conversation_history = ""
self.previous_thread = ""
self.used_tokens = 0
self.tokens_exceeded = False
self.used_tokens += query_tokens # update used tokens with token count for current user query
result = self.retrieve_response_and_tokens(user_message, True)
self.used_tokens += result["tokens"]
return {"response": result["response"], "usedTokens": self.used_tokens, "updatedHistory": self.conversation_history if self.tokens_exceeded else None}
def get_model_completion(self, user_message: str) -> str:
return self.current_model_instance.get_completion(
self.initial_prompt,
user_message,
self.stringified_conversation_history
)