diff --git a/scripts/prepare_heat_data.py b/scripts/prepare_heat_data.py index eca692ad1..ccdcb4e06 100644 --- a/scripts/prepare_heat_data.py +++ b/scripts/prepare_heat_data.py @@ -163,11 +163,11 @@ def prepare_heat_data(n): # TODO probably no need to cool water # TODO it's possible to account for weekday/weekend differences - for use in uses: + for use in ["space"]: day_cooling = list(intraday_profiles_cooling[f"cooling {use}"]) weekly_profile_cooling = day_cooling * 7 intraday_year_profile_cooling = generate_periodic_profiles( - daily_space_heat_demand.index.tz_localize("UTC"), + daily_space_cooling_demand.index.tz_localize("UTC"), nodes=daily_space_cooling_demand.columns, weekly_profile=weekly_profile_cooling, ) @@ -179,13 +179,14 @@ def prepare_heat_data(n): else: cooling_demand_shape = intraday_year_profile_cooling - cooling_demand[f"{use}"] = ( - cooling_demand_shape / cooling_demand_shape.sum() - ).multiply( - # TODO it appears there is no cooling in UN statistics - # nodal_energy_totals[f"total {use}"] - 1000 - ) * 1e6 # TODO v0.0.2 + # TODO Implement calibration + # it appears there is no cooling in UN statistics + # nodal_energy_totals[f"total {use}"] + cooling_demand[f"{use}"] = cooling_demand_shape + # cooling_demand[f"{use}"] = ( + # cooling_demand_shape / cooling_demand_shape.sum() + # ).multiply( + # ) * 1e6 # TODO v0.0.2 cooling_demand = pd.concat(cooling_demand, axis=1)