-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstorage_invest.py
executable file
·311 lines (240 loc) · 10.2 KB
/
storage_invest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# -*- coding: utf-8 -*-
"""
General description:
---------------------
The example models the following energy system:
input/output bgas bel
| | | |
| | | |
wind(FixedSource) |------------------>| |
| | | |
pv(FixedSource) |------------------>| |
| | | |
rgas(Commodity) |--------->| | |
| | | |
demand(Sink) |<------------------| |
| | | |
| | | |
pp_gas(Transformer) |<---------| | |
|------------------>| |
| | | |
storage(Storage) |<------------------| |
|------------------>| |
"""
###############################################################################
# imports
###############################################################################
# Outputlib
from oemof import outputlib
# Default logger of oemof
from oemof.tools import logger
from oemof.tools import helpers
# import oemof base classes to create energy system objects
import logging
import os
import pandas as pd
import matplotlib.pyplot as plt
import oemof.solph as solph
from oemof import db
from oemof.db import coastdat
from shapely import geometry as geopy
from feedinlib import powerplants as plants
year = 2014
conn = db.connection()
my_weather = coastdat.get_weather(
conn, geopy.Point(8.043, 52.279), year) # Location Osnabrück
#weather data
coastDat2 = {
'dhi': 0,
'dirhi': 0,
'pressure': 0,
'temp_air': 2,
'v_wind': 100,
'Z0': 0}
#pv module
yingli210 = {
'module_name': 'Yingli_YL210__2008__E__',
'azimuth': 180,
'tilt': 30,
'albedo': 0.2}
#wind turbine
enerconE126 = {
'h_hub': 135,
'd_rotor': 127,
'wind_conv_type': 'ENERCON E 126 7500',
'data_height': coastDat2}
#
E126_power_plant = plants.WindPowerPlant(**enerconE126)
yingli_module = plants.Photovoltaic(**yingli210)
wind_feedin = E126_power_plant.feedin(weather=my_weather,
installed_capacity=1)
pv_feedin = yingli_module.feedin(weather=my_weather, peak_power=1)
#conn = db.connection()
#pol = c.next()
#multi_weather = coastdat.get_weather(conn, germany_u['geom'][0], year)
def optimise_storage_size(filename="storage_invest.csv", solvername='cbc',
debug=True, number_timesteps=8760, tee_switch=True):
logging.info('Initialize the energy system')
date_time_index = pd.date_range('1/1/' + str(year), periods=number_timesteps,
freq='H')
energysystem = solph.EnergySystem(timeindex=date_time_index)
# Read data file
full_filename = os.path.join(os.path.dirname(__file__), filename)
data = pd.read_csv(full_filename, sep=",")
data_demand = data['demand_el']/data['demand_el'].sum()
##########################################################################
# Create oemof object
##########################################################################
consumption = 5165 * 1e6
wind_installed = 1516 * 1e3
pv_installed = 1491 * 1e3
grid_share = 0.75
logging.info('Create oemof objects')
# create gas bus
bgas = solph.Bus(label="natural_gas")
# create electricity bus
bel = solph.Bus(label="electricity")
# create excess component for the electricity bus to allow overproduction
solph.Sink(label='excess_bel', inputs={bel: solph.Flow()})
# Create commodity object for import electricity resource
solph.Source(label='gridsource', outputs={bel: solph.Flow(
nominal_value=consumption * grid_share * number_timesteps / 8760,
summed_max=1)})
# create fixed source object for wind
solph.Source(label='wind', outputs={bel: solph.Flow(
actual_value=wind_feedin, nominal_value=wind_installed, fixed=True,
fixed_costs=20)})
# create fixed source object for pv
solph.Source(label='pv', outputs={bel: solph.Flow(
actual_value=pv_feedin, nominal_value=pv_installed, fixed=True,
fixed_costs=15)})
# create simple sink object for demand
solph.Sink(label='demand', inputs={bel: solph.Flow(
actual_value=data_demand, fixed=True, nominal_value=consumption)})
# Calculate ep_costs from capex to compare with old solph
capex = 1000
lifetime = 20
wacc = 0.05
epc = capex * (wacc * (1 + wacc) ** lifetime) / ((1 + wacc) ** lifetime - 1)
# create storage transformer object for storage
solph.Storage(
label='storage',
inputs={bel: solph.Flow(variable_costs=10e10)},
outputs={bel: solph.Flow(variable_costs=10e10)},
capacity_loss=0.00, initial_capacity=0,
nominal_input_capacity_ratio=1,
nominal_output_capacity_ratio=1,
inflow_conversion_factor=1, outflow_conversion_factor=0.8,
fixed_costs=35,
investment=solph.Investment(ep_costs=epc),
)
##########################################################################
# Optimise the energy system and plot the results
##########################################################################
logging.info('Optimise the energy system')
om = solph.OperationalModel(energysystem)
if debug:
filename = os.path.join(
helpers.extend_basic_path('lp_files'), 'storage_invest.lp')
logging.info('Store lp-file in {0}.'.format(filename))
om.write(filename, io_options={'symbolic_solver_labels': True})
logging.info('Solve the optimization problem')
om.solve(solver=solvername, solve_kwargs={'tee': tee_switch})
return energysystem
def get_result_dict(energysystem):
logging.info('Check the results')
storage = energysystem.groups['storage']
myresults = outputlib.DataFramePlot(energy_system=energysystem)
demand = myresults.slice_by(obj_label='demand',
date_from=str(year)+'-01-01 00:00:00',
date_to=str(year)+'-12-31 23:00:00')
wind = myresults.slice_by(obj_label='wind',
date_from=str(year)+'-01-01 00:00:00',
date_to=str(year)+'-12-31 23:00:00')
pv = myresults.slice_by(obj_label='pv',
date_from=str(year)+'-01-01 00:00:00',
date_to=str(year)+'-12-31 23:00:00')
storage_input = myresults.slice_by(obj_label='storage', type='from_bus',
date_from=str(year)+'-01-01 00:00:00',
date_to=str(year)+'-12-31 23:00:00')
storage_output = myresults.slice_by(obj_label='storage', type='to_bus',
date_from=str(year)+'-01-01 00:00:00',
date_to=str(year)+'-12-31 23:00:00')
storage_soc = myresults.slice_by(obj_label='storage', type='other',
date_from=str(year)+'-01-01 00:00:00',
date_to=str(year)+'-12-31 23:00:00')
results_dc = {}
results_dc['ts_storage_input'] = storage_input
results_dc['ts_storage_output'] = storage_output
results_dc['ts_storage_soc'] = storage_soc
results_dc['storage_cap'] = energysystem.results[
storage][storage].invest
results_dc['objective'] = energysystem.results.objective
return results_dc
def create_plots(energysystem):
logging.info('Plot the results')
cdict = {'wind': '#5b5bae',
'pv': '#ffde32',
'storage': '#42c77a',
'gridsource': '#636f6b',
'demand': '#ce4aff',
'excess_bel': '#555555'}
# Plotting the input flows of the electricity bus for January
myplot = outputlib.DataFramePlot(energy_system=energysystem)
myplot.slice_unstacked(bus_label="electricity", type="to_bus",
date_from=str(year)+'-01-01 00:00:00',
date_to=str(year)+'-01-31 00:00:00')
colorlist = myplot.color_from_dict(cdict)
myplot.plot(color=colorlist, linewidth=2, title='January'+str(year))
myplot.ax.legend(loc='upper right')
myplot.ax.set_ylabel('Power in MW')
myplot.ax.set_xlabel('Date')
myplot.set_datetime_ticks(date_format='%d-%m-%Y', tick_distance=24*7)
# Plotting the output flows of the electricity bus for January
myplot.slice_unstacked(bus_label="electricity", type="from_bus")
myplot.plot(title="Year 2016", colormap='Spectral', linewidth=2)
myplot.ax.legend(loc='upper right')
myplot.ax.set_ylabel('Power in MW')
myplot.ax.set_xlabel('Date')
myplot.set_datetime_ticks()
plt.show()
# Plotting a combined stacked plot
fig = plt.figure(figsize=(24, 14))
plt.rc('legend', **{'fontsize': 19})
plt.rcParams.update({'font.size': 19})
plt.style.use('grayscale')
handles, labels = myplot.io_plot(
bus_label='electricity', cdict=cdict,
barorder=['pv', 'wind', 'gridsource', 'storage'],
lineorder=['demand', 'storage', 'excess_bel'],
line_kwa={'linewidth': 4},
ax=fig.add_subplot(1, 1, 1),
date_from=str(year)+'-06-01 00:00:00',
date_to=str(year)+'-06-8 00:00:00',
)
myplot.ax.set_ylabel('Power in MW')
myplot.ax.set_xlabel('Date')
myplot.ax.set_title("Electricity bus")
myplot.set_datetime_ticks(tick_distance=24, date_format='%d-%m-%Y')
myplot.outside_legend(handles=handles, labels=labels)
plt.show()
def run_storage_invest_example():
logger.define_logging()
esys = optimise_storage_size()
# esys.dump()
# esys.restore()
import pprint as pp
results = get_result_dict(esys)
p = results['ts_storage_soc']['val']
print(p)
plt.plot(p)
plt.show()
# Print some results
#print(results['ts_storage_soc'])
#print(results['storage_cap'])
# Write results to csv
# results['ts_storage_input'].to_csv('ts_storage_input_' + str(year) + '.csv')
# results['ts_storage_soc'].to_csv('ts_storage_soc_' + str(year) + '.csv')
# create_plots(esys)
if __name__ == "__main__":
run_storage_invest_example()