Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Input image size #1941

Open
marthajoddrell opened this issue Aug 29, 2024 · 3 comments
Open

Input image size #1941

marthajoddrell opened this issue Aug 29, 2024 · 3 comments

Comments

@marthajoddrell
Copy link

marthajoddrell commented Aug 29, 2024

Branch

main branch (mmpretrain version)

Describe the bug

I'm trying to change the input size of the mmpretrain MAE https://mmpretrain.readthedocs.io/en/latest/papers/mae.html

The current code takes an input (224x224). I need a larger input size of (998x479) but I don't know how to update this in the code. When I change the input size, I get the error below:

RuntimeError: The size of tensor a (1890) must match the size of tensor b (196) at non-singleton dimension 1

##Code File 1:

base = [
'/home/Documents/MAENEW/segmentation/mae_vit-base-p16.py',
'/home/Documents/MAENEW/segmentation/imagenet_bs512_mae.py',
'/home/Documents/MAENEW/segmentation/default_runtime.py',
]

optim_wrapper = dict(
type='AmpOptimWrapper',
loss_scale='dynamic',
optimizer=dict(
type='AdamW',
lr=1.5e-4 * 4096 / 256,
betas=(0.9, 0.95),
weight_decay=0.05),
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))

param_scheduler = [
dict(
type='LinearLR',
start_factor=0.0001,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=260,
by_epoch=True,
begin=40,
end=300,
convert_to_iter_based=True)
]

train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))

randomness = dict(seed=0, diff_rank_seed=True)
resume = True
auto_scale_lr = dict(base_batch_size=4096)


##Code file 2

dataset_type = 'CustomDataset'
data_root = '/home/Documents/MAENEW/data/'
data_preprocessor = dict(
type='SelfSupDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=(998,479),
crop_ratio_range=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='PackInputs')
]

train_dataloader = dict(
batch_size=100,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type='CustomDataset',
data_root='/home/Documents/MAENEW/data/',
pipeline=train_pipeline))


##Code file 3

model = dict(
type='MAE',
backbone=dict(type='MAEViT', arch='b', patch_size=16, mask_ratio=0.75),
neck=dict(
type='MAEPretrainDecoder',
patch_size=16,
in_chans=3,
embed_dim=768,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16,
mlp_ratio=4.,
),
head=dict(
type='MAEPretrainHead',
norm_pix=True,
patch_size=16,
loss=dict(type='PixelReconstructionLoss', criterion='L2')),
init_cfg=[
dict(type='Xavier', layer='Linear', distribution='uniform'),
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
])

@devin-ry
Copy link

Hello. Did u solve it?

@marthajoddrell
Copy link
Author

marthajoddrell commented Oct 16, 2024 via email

@wanjunling168
Copy link

@marthajoddrell bro, see https://mmpretrain.readthedocs.io/en/latest/api/generated/mmpretrain.models.selfsup.MAEViT.html#mmpretrain.models.selfsup.MAEViT, you haven't change img_size to meet your larger input need, just go change it and tell us if this solve your problem!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants