-
Notifications
You must be signed in to change notification settings - Fork 1.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Input image size #1941
Comments
Hello. Did u solve it? |
Hi, no I haven’t been able to resolve it.
…________________________________
From: devin-ry ***@***.***>
Sent: Wednesday, October 16, 2024 5:11:13 PM
To: open-mmlab/mmpretrain ***@***.***>
Cc: marthajoddrell ***@***.***>; Author ***@***.***>
Subject: Re: [open-mmlab/mmpretrain] Input image size (Issue #1941)
Hello. Did u solve it?
—
Reply to this email directly, view it on GitHub<#1941 (comment)>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/AR6LBSJKUOVD6D6ZBWQMZ3TZ3YUTDAVCNFSM6AAAAABNJUHUL2VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDIMJWGE4TMOJRGI>.
You are receiving this because you authored the thread.Message ID: ***@***.***>
|
@marthajoddrell bro, see |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Branch
main branch (mmpretrain version)
Describe the bug
I'm trying to change the input size of the mmpretrain MAE https://mmpretrain.readthedocs.io/en/latest/papers/mae.html
The current code takes an input (224x224). I need a larger input size of (998x479) but I don't know how to update this in the code. When I change the input size, I get the error below:
RuntimeError: The size of tensor a (1890) must match the size of tensor b (196) at non-singleton dimension 1
##Code File 1:
base = [
'/home/Documents/MAENEW/segmentation/mae_vit-base-p16.py',
'/home/Documents/MAENEW/segmentation/imagenet_bs512_mae.py',
'/home/Documents/MAENEW/segmentation/default_runtime.py',
]
optim_wrapper = dict(
type='AmpOptimWrapper',
loss_scale='dynamic',
optimizer=dict(
type='AdamW',
lr=1.5e-4 * 4096 / 256,
betas=(0.9, 0.95),
weight_decay=0.05),
paramwise_cfg=dict(
custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)
}))
param_scheduler = [
dict(
type='LinearLR',
start_factor=0.0001,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=260,
by_epoch=True,
begin=40,
end=300,
convert_to_iter_based=True)
]
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
randomness = dict(seed=0, diff_rank_seed=True)
resume = True
auto_scale_lr = dict(base_batch_size=4096)
##Code file 2
dataset_type = 'CustomDataset'
data_root = '/home/Documents/MAENEW/data/'
data_preprocessor = dict(
type='SelfSupDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=(998,479),
crop_ratio_range=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='PackInputs')
]
train_dataloader = dict(
batch_size=100,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type='CustomDataset',
data_root='/home/Documents/MAENEW/data/',
pipeline=train_pipeline))
##Code file 3
model = dict(
type='MAE',
backbone=dict(type='MAEViT', arch='b', patch_size=16, mask_ratio=0.75),
neck=dict(
type='MAEPretrainDecoder',
patch_size=16,
in_chans=3,
embed_dim=768,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16,
mlp_ratio=4.,
),
head=dict(
type='MAEPretrainHead',
norm_pix=True,
patch_size=16,
loss=dict(type='PixelReconstructionLoss', criterion='L2')),
init_cfg=[
dict(type='Xavier', layer='Linear', distribution='uniform'),
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
])
The text was updated successfully, but these errors were encountered: