Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to control randomness?如何控制随机性? #1012

Open
3 tasks done
JasonYangCode opened this issue Jun 6, 2024 · 0 comments
Open
3 tasks done

How to control randomness?如何控制随机性? #1012

JasonYangCode opened this issue Jun 6, 2024 · 0 comments

Comments

@JasonYangCode
Copy link

JasonYangCode commented Jun 6, 2024

Prerequisite

🐞 Describe the bug

I used the official recommended code (https://mmyolo.readthedocs.io/zh-cn/dev/common_usage/set_random_seed.html), but I couldn't control the randomness of the training results. Is there any other way to control the randomness of training? What details do I need to pay attention to?
我使用了官方的建议代码(https://mmyolo.readthedocs.io/zh-cn/dev/common_usage/set_random_seed.html),无法控制训练结果的随机性,请问还有其他方法可以控制训练的随机性吗?我需要注意哪些细节?

python ./tools/train.py
${CONFIG} \ # 配置文件路径
--cfg-options randomness.seed=2023 \ # 设置随机种子为 2023
[randomness.diff_rank_seed=True] \ # 根据 rank 来设置不同的种子。
[randomness.deterministic=True] # 把 cuDNN 后端确定性选项设置为 True

[] 代表可选参数,实际输入命令行时,不用输入 []

Environment

sys.platform: win32
Python: 3.8.19 (default, Mar 20 2024, 19:55:45) [MSC v.1916 64 bit (AMD64)]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0: NVIDIA GeForce RTX 3090
CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: n/a
PyTorch: 2.0.1
PyTorch compiling details: PyTorch built with:

  • C++ Version: 199711
  • MSVC 193431937
  • Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
  • OpenMP 2019
  • LAPACK is enabled (usually provided by MKL)
  • CPU capability usage: AVX2
  • CUDA Runtime 11.8
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_
    70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_37,code=compute_37
  • CuDNN 8.7
  • Magma 2.5.4
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=C:/cb/pytorch_1000000000000/work/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /
    GR /EHsc /w /bigobj /FS -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE, LAPACK_INFO=mkl, PERF_WIT
    H_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=OFF, TORCH_VERSION=2.0.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF,

TorchVision: 0.15.2
OpenCV: 4.10.0
MMEngine: 0.10.4
MMCV: 2.0.1
MMDetection: 3.3.0
MMYOLO: 0.6.0+8c4d9dc

Additional information

No response

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant