We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I used the official recommended code (https://mmyolo.readthedocs.io/zh-cn/dev/common_usage/set_random_seed.html), but I couldn't control the randomness of the training results. Is there any other way to control the randomness of training? What details do I need to pay attention to? 我使用了官方的建议代码(https://mmyolo.readthedocs.io/zh-cn/dev/common_usage/set_random_seed.html),无法控制训练结果的随机性,请问还有其他方法可以控制训练的随机性吗?我需要注意哪些细节?
python ./tools/train.py ${CONFIG} \ # 配置文件路径 --cfg-options randomness.seed=2023 \ # 设置随机种子为 2023 [randomness.diff_rank_seed=True] \ # 根据 rank 来设置不同的种子。 [randomness.deterministic=True] # 把 cuDNN 后端确定性选项设置为 True
sys.platform: win32 Python: 3.8.19 (default, Mar 20 2024, 19:55:45) [MSC v.1916 64 bit (AMD64)] CUDA available: True MUSA available: False numpy_random_seed: 2147483648 GPU 0: NVIDIA GeForce RTX 3090 CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8 NVCC: Cuda compilation tools, release 11.8, V11.8.89 GCC: n/a PyTorch: 2.0.1 PyTorch compiling details: PyTorch built with:
TorchVision: 0.15.2 OpenCV: 4.10.0 MMEngine: 0.10.4 MMCV: 2.0.1 MMDetection: 3.3.0 MMYOLO: 0.6.0+8c4d9dc
No response
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Prerequisite
🐞 Describe the bug
I used the official recommended code (https://mmyolo.readthedocs.io/zh-cn/dev/common_usage/set_random_seed.html), but I couldn't control the randomness of the training results. Is there any other way to control the randomness of training? What details do I need to pay attention to?
我使用了官方的建议代码(https://mmyolo.readthedocs.io/zh-cn/dev/common_usage/set_random_seed.html),无法控制训练结果的随机性,请问还有其他方法可以控制训练的随机性吗?我需要注意哪些细节?
python ./tools/train.py
${CONFIG} \ # 配置文件路径
--cfg-options randomness.seed=2023 \ # 设置随机种子为 2023
[randomness.diff_rank_seed=True] \ # 根据 rank 来设置不同的种子。
[randomness.deterministic=True] # 把 cuDNN 后端确定性选项设置为 True
[] 代表可选参数,实际输入命令行时,不用输入 []
Environment
sys.platform: win32
Python: 3.8.19 (default, Mar 20 2024, 19:55:45) [MSC v.1916 64 bit (AMD64)]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0: NVIDIA GeForce RTX 3090
CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: n/a
PyTorch: 2.0.1
PyTorch compiling details: PyTorch built with:
70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_37,code=compute_37
GR /EHsc /w /bigobj /FS -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE, LAPACK_INFO=mkl, PERF_WIT
H_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=OFF, TORCH_VERSION=2.0.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.15.2
OpenCV: 4.10.0
MMEngine: 0.10.4
MMCV: 2.0.1
MMDetection: 3.3.0
MMYOLO: 0.6.0+8c4d9dc
Additional information
No response
The text was updated successfully, but these errors were encountered: