Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

YOLOx_s转换onnx后无法正常推理结果 #1027

Open
3 tasks done
6sz opened this issue Aug 21, 2024 · 0 comments
Open
3 tasks done

YOLOx_s转换onnx后无法正常推理结果 #1027

6sz opened this issue Aug 21, 2024 · 0 comments

Comments

@6sz
Copy link

6sz commented Aug 21, 2024

Prerequisite

🐞 Describe the bug

按照 中文说明文档 15分钟上手目标检测 中的 EasyDeploy 模型部署,使用如下命令
python projects/easydeploy/tools/export_onnx.py
configs/yolox/yolox_s_fast_8xb8-300e_gx-dec-data20240712.py
work_dirs/yolox/yolox_s_fast_8xb8-300e/best_coco_bbox_mAP_50_epoch_300.pth
--work-dir ./work_dirs/yolox/yolox_s_fast_8xb8-300e/easy
--img-size 640 640
--batch 1
--device cpu
--opset 11
--backend ONNXRUNTIME
--pre-topk 100
--keep-topk 10
--iou-threshold 0.3
--score-threshold 0.2
--simplify
输出结果显示转换成功
Export ONNX with bbox decoder and NMS ...
Loads checkpoint by local backend from path: work_dirs/yolox/yolox_s_fast_8xb8-300e_gx-dec-data20240712_20240715_143215/best_coco_bbox_mAP_50_epoch_300.pth
ONNX export success, save into ./work_dirs/yolox/yolox_s_fast_8xb8-300e/easy/best_coco_bbox_mAP_50_epoch_300.onnx
使用推理代码
python projects/easydeploy/tools/image-demo0509.py
./demo/artifical.png
./configs/yolox/yolox_s_fast_8xb8-300e_gx-dec-data20240712.py
./work_dirs/yolox/yolox_s_fast_8xb8-300e/easy/best_coco_bbox_mAP_50_epoch_300.onnx
--device cpu
查看输出图片发现没有检测框,打印result发现为确实没有检测结果,检测到的数量为0
[ ] 0/1, elapsed: 0s, ETA:torch.Size([1, 3, 640, 640])
(tensor([[0]]), tensor([[[0., 0., 0., 0.]]]), tensor([[0.]]), tensor([[-1]], dtype=torch.int32))

image

Environment

sys.platform: linux
Python: 3.9.18 (main, Sep 11 2023, 13:41:44) [GCC 11.2.0]
CUDA available: True
numpy_random_seed: 2147483648
GPU 0: NVIDIA GeForce RTX 4090
CUDA_HOME: /usr/local/cuda-11.7
NVCC: Cuda compilation tools, release 11.7, V11.7.64
GCC: gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0
PyTorch: 1.13.0
PyTorch compiling details: PyTorch built with:

  • GCC 9.3
  • C++ Version: 201402
  • Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • LAPACK is enabled (usually provided by MKL)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 11.7
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
  • CuDNN 8.5
  • Magma 2.6.1
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,

TorchVision: 0.14.0
OpenCV: 4.7.0
MMEngine: 0.7.3
MMCV: 2.0.1
MMDetection: 3.3.0
MMYOLO: 0.6.0+

Additional information

训练使用的是自己的数据集,使用原版配置文件,并未更改其他,原有的pth可以正常识别图片

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant