We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
按照 中文说明文档 15分钟上手目标检测 中的 EasyDeploy 模型部署,使用如下命令 python projects/easydeploy/tools/export_onnx.py configs/yolox/yolox_s_fast_8xb8-300e_gx-dec-data20240712.py work_dirs/yolox/yolox_s_fast_8xb8-300e/best_coco_bbox_mAP_50_epoch_300.pth --work-dir ./work_dirs/yolox/yolox_s_fast_8xb8-300e/easy --img-size 640 640 --batch 1 --device cpu --opset 11 --backend ONNXRUNTIME --pre-topk 100 --keep-topk 10 --iou-threshold 0.3 --score-threshold 0.2 --simplify 输出结果显示转换成功 Export ONNX with bbox decoder and NMS ... Loads checkpoint by local backend from path: work_dirs/yolox/yolox_s_fast_8xb8-300e_gx-dec-data20240712_20240715_143215/best_coco_bbox_mAP_50_epoch_300.pth ONNX export success, save into ./work_dirs/yolox/yolox_s_fast_8xb8-300e/easy/best_coco_bbox_mAP_50_epoch_300.onnx 使用推理代码 python projects/easydeploy/tools/image-demo0509.py ./demo/artifical.png ./configs/yolox/yolox_s_fast_8xb8-300e_gx-dec-data20240712.py ./work_dirs/yolox/yolox_s_fast_8xb8-300e/easy/best_coco_bbox_mAP_50_epoch_300.onnx --device cpu 查看输出图片发现没有检测框,打印result发现为确实没有检测结果,检测到的数量为0 [ ] 0/1, elapsed: 0s, ETA:torch.Size([1, 3, 640, 640]) (tensor([[0]]), tensor([[[0., 0., 0., 0.]]]), tensor([[0.]]), tensor([[-1]], dtype=torch.int32))
sys.platform: linux Python: 3.9.18 (main, Sep 11 2023, 13:41:44) [GCC 11.2.0] CUDA available: True numpy_random_seed: 2147483648 GPU 0: NVIDIA GeForce RTX 4090 CUDA_HOME: /usr/local/cuda-11.7 NVCC: Cuda compilation tools, release 11.7, V11.7.64 GCC: gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0 PyTorch: 1.13.0 PyTorch compiling details: PyTorch built with:
TorchVision: 0.14.0 OpenCV: 4.7.0 MMEngine: 0.7.3 MMCV: 2.0.1 MMDetection: 3.3.0 MMYOLO: 0.6.0+
训练使用的是自己的数据集,使用原版配置文件,并未更改其他,原有的pth可以正常识别图片
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Prerequisite
🐞 Describe the bug
按照 中文说明文档 15分钟上手目标检测 中的 EasyDeploy 模型部署,使用如下命令
python projects/easydeploy/tools/export_onnx.py
configs/yolox/yolox_s_fast_8xb8-300e_gx-dec-data20240712.py
work_dirs/yolox/yolox_s_fast_8xb8-300e/best_coco_bbox_mAP_50_epoch_300.pth
--work-dir ./work_dirs/yolox/yolox_s_fast_8xb8-300e/easy
--img-size 640 640
--batch 1
--device cpu
--opset 11
--backend ONNXRUNTIME
--pre-topk 100
--keep-topk 10
--iou-threshold 0.3
--score-threshold 0.2
--simplify
输出结果显示转换成功
Export ONNX with bbox decoder and NMS ...
Loads checkpoint by local backend from path: work_dirs/yolox/yolox_s_fast_8xb8-300e_gx-dec-data20240712_20240715_143215/best_coco_bbox_mAP_50_epoch_300.pth
ONNX export success, save into ./work_dirs/yolox/yolox_s_fast_8xb8-300e/easy/best_coco_bbox_mAP_50_epoch_300.onnx
使用推理代码
python projects/easydeploy/tools/image-demo0509.py
./demo/artifical.png
./configs/yolox/yolox_s_fast_8xb8-300e_gx-dec-data20240712.py
./work_dirs/yolox/yolox_s_fast_8xb8-300e/easy/best_coco_bbox_mAP_50_epoch_300.onnx
--device cpu
查看输出图片发现没有检测框,打印result发现为确实没有检测结果,检测到的数量为0
[ ] 0/1, elapsed: 0s, ETA:torch.Size([1, 3, 640, 640])
(tensor([[0]]), tensor([[[0., 0., 0., 0.]]]), tensor([[0.]]), tensor([[-1]], dtype=torch.int32))
Environment
sys.platform: linux
Python: 3.9.18 (main, Sep 11 2023, 13:41:44) [GCC 11.2.0]
CUDA available: True
numpy_random_seed: 2147483648
GPU 0: NVIDIA GeForce RTX 4090
CUDA_HOME: /usr/local/cuda-11.7
NVCC: Cuda compilation tools, release 11.7, V11.7.64
GCC: gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0
PyTorch: 1.13.0
PyTorch compiling details: PyTorch built with:
TorchVision: 0.14.0
OpenCV: 4.7.0
MMEngine: 0.7.3
MMCV: 2.0.1
MMDetection: 3.3.0
MMYOLO: 0.6.0+
Additional information
训练使用的是自己的数据集,使用原版配置文件,并未更改其他,原有的pth可以正常识别图片
The text was updated successfully, but these errors were encountered: