Skip to content

Latest commit

 

History

History
141 lines (107 loc) · 4.67 KB

README.md

File metadata and controls

141 lines (107 loc) · 4.67 KB

MMOCR-SAM

中文文档

The project is migrated from OCR-SAM, which combines MMOCR with Segment Anything.

Installation

conda create -n ocr-sam python=3.8 -y
conda activate ocr-sam
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

pip install -U openmim
mim install mmengine
mim install mmocr
mim install 'mmcv==2.0.0rc4'
mim install 'mmdet==3.0.0rc5'
mim install 'mmcls==1.0.0rc5'

pip install git+https://github.com/facebookresearch/segment-anything.git
pip install -r requirements.txt

pip install gradio
pip install diffusers
pip install pytorch-lightning==2.0.1.post0

Download checkpoints

We retrain DBNet++ with Swin Transformer V2 as the backbone on a combination of multiple scene text datsets (e.g. HierText, TextOCR). Checkpoint for DBNet++ on Google Drive (1G).

And you should make dir following:

mkdir checkpoints
mkdir checkpoints/mmocr
mkdir checkpoints/sam
mkdir checkpoints/ldm
mv db_swin_mix_pretrain.pth checkpoints/mmocr

Download the rest of checkpints to the related path (If you've done, ignore the following):

# mmocr recognizer ckpt
wget -O checkpoints/mmocr/abinet_20e_st-an_mj_20221005_012617-ead8c139.pth https://download.openmmlab.com/mmocr/textrecog/abinet/abinet_20e_st-an_mj/abinet_20e_st-an_mj_20221005_012617-ead8c139.pth

# sam ckpt, more details: https://github.com/facebookresearch/segment-anything#model-checkpoints
wget -O checkpoints/sam/sam_vit_h_4b8939.pth https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth

# ldm ckpt
wget -O checkpoints/ldm/last.ckpt https://heibox.uni-heidelberg.de/f/4d9ac7ea40c64582b7c9/?dl=1

Usage

SAM for Text

  • Inference MMOCR-SAM with a single image or an image folder and obtain visualization result.

    python mmocr_sam.py \
        --inputs /YOUR/INPUT/IMG_PATH \ 
        --outdir /YOUR/OUTPUT_DIR \ 
        --device cuda \ 
    • --inputs: the path to your input image.
    • --outdir: the dir to your output.
    • --device: the device used for inference.

Text Removal

  • In this application demo, we use the latent-diffusion-inpainting to erase, or the Stable-Diffusion-inpainting with text prompt to erase, which you can choose one of both by the parameter --diffusion_model. Also, you can choose whether to use the SAM ouput mask to erase by the parameter --use_sam.

  • Run the following script:

    python mmocr_sam_erase.py \ 
        --inputs /YOUR/INPUT/IMG_PATH \ 
        --outdir /YOUR/OUTPUT_DIR \ 
        --device cuda \ 
        --use_sam True \ 
        --dilate_iteration 2 \ 
        --diffusion_model \ 
        --sd_ckpt None \ 
        --prompt None \ 
        --img_size (512, 512) \ 
    • --inputs : the path to your input image.
    • --outdir: the dir to your output.
    • --device: the device used for inference.
    • --use_sam: whether to use sam for segment.
    • --dilate_iteration: iter to dilate the SAM's mask.
    • --diffusion_model: choose 'latent-diffusion' or 'stable-diffusion'.
    • --sd_ckpt: path to the checkpoints of stable-diffusion.
    • --prompt: the text prompt when use the stable-diffusion, set 'None' if use the default for erasing.
    • --img_size: image size of latent-diffusion.
  • We suggest use our WebUI build with gradio to run the demo.

    python mmocr_sam_erase_app.py

Text Inpainting

  • We use StablediffusionInpainter to inpaint the text in the image.

    python mmocr_sam_inpainting.py \
        --img_path /YOUR/INPUT/IMG_PATH \ 
        --outdir /YOUR/OUTPUT_DIR \ 
        --device cuda \ 
        --prompt YOUR_PROMPT \ 
        --select_index 0 \ 
    • --img_path: the path to your input image.
    • --outdir: the dir to your output.
    • --device: the device used for inference.
    • --prompt: the text prompt.
    • --select_index: select the index of the text to inpaint.
  • We suggest use our WebUI build with gradio to run the demo.

    python mmocr_sam_inpainting_app.py