diff --git a/.github/dependabot.yml b/.github/dependabot.yml index e37803c6..578e8611 100644 --- a/.github/dependabot.yml +++ b/.github/dependabot.yml @@ -5,7 +5,7 @@ version: 2 updates: - - package-ecosystem: "npm" - directory: "/" # Location of package manifest + - package-ecosystem: 'npm' + directory: '/' # Location of package manifest schedule: - interval: "weekly" + interval: 'weekly' diff --git a/.github/workflows/linting.yml b/.github/workflows/linting.yml new file mode 100644 index 00000000..36b6e2c7 --- /dev/null +++ b/.github/workflows/linting.yml @@ -0,0 +1,30 @@ +name: Lint + +on: + pull_request: + branches: + - main + +jobs: + run-linters: + if: github.event.pull_request.draft == false + name: Run linters + runs-on: ubuntu-latest + + steps: + - name: Check out Git repository + uses: actions/checkout@v4 + + - name: Set up Node.js + uses: actions/setup-node@v4 + with: + node-version: 20 + + - name: Install Prettier + run: npm install prettier + + - name: Run linters + uses: wearerequired/lint-action@v2 + with: + eslint: false + prettier: true diff --git a/.prettierrc.yml b/.prettierrc.yml index 1873b31a..4cd93744 100644 --- a/.prettierrc.yml +++ b/.prettierrc.yml @@ -1,4 +1,6 @@ -# prettier config -semi: false # No semicolons -singleQuote: false # use single quotes in regular js files -jsxSingleQuote: false # use single quotes in jsx files +semi: false +singleQuote: true +jsxSingleQuote: true +endOfLine: 'lf' +trailingComma: 'all' +tabWidth: 2 diff --git a/.vscode/settings.json b/.vscode/settings.json index beffe84a..8c029e24 100644 --- a/.vscode/settings.json +++ b/.vscode/settings.json @@ -3,11 +3,5 @@ "editor.suggest.insertMode": "replace" }, "editor.formatOnSave": true, - "editor.defaultFormatter": "esbenp.prettier-vscode", - "editor.codeActionsOnSave": { - "source.fixAll": "explicit", - "source.sortImports": "explicit" - }, - "prettier.semi": false, - "prettier.jsxSingleQuote": false + "editor.defaultFormatter": "esbenp.prettier-vscode" } diff --git a/README.md b/README.md index fb9b88d8..ca9bd0c4 100644 --- a/README.md +++ b/README.md @@ -1,11 +1,12 @@ [![Website](https://img.shields.io/website?url=https%3A%2F%2Fwww.openpv.de%2F)](https://www.openpv.de/) - # The OpenPV website + This is the base repository for the website [openpv.de](https://www.openpv.de). The website is built using -* [React](https://react.dev/) -* [Chakra-UI](https://v2.chakra-ui.com) -* [Three.js](https://threejs.org/) + +- [React](https://react.dev/) +- [Chakra-UI](https://v2.chakra-ui.com) +- [Three.js](https://threejs.org/) The whole site is **static**, reducing the hosting costs as much as possible. The shading simulation happens in the browser, using our npm package [simshady](https://github.com/open-pv/simshady). @@ -16,24 +17,26 @@ If you want to deploy this website locally, you need to follow these steps: 1. Clone the repository and enter it. 2. Make sure that you have [node](https://nodejs.org/en) and the node package manager npm installed. Check this by running - ``` - node --version - npm --version - ``` + ``` + node --version + npm --version + ``` 3. Install all required packages from `package.json` by running - ```shell - npm install - ``` + ```shell + npm install + ``` 4. To build the code and host it in a development environment, run - ```shell - npm run dev - ``` - and visit [localhost:5173](http://localhost:5173). + ```shell + npm run dev + ``` + and visit [localhost:5173](http://localhost:5173). ## How does this work? -We have a detailed description in german and english on our [About Page](https://www.openpv.de/about). + +We have a detailed description in german and english on our [About Page](https://www.openpv.de/about). Also check out our [blog](https://blog.openpv.de). ## Funding + We thank our sponsors. diff --git a/index.html b/index.html index dbc360a0..cceda51c 100644 --- a/index.html +++ b/index.html @@ -1,4 +1,4 @@ - + diff --git a/package-lock.json b/package-lock.json index fc10b9ce..e0a68464 100644 --- a/package-lock.json +++ b/package-lock.json @@ -15,7 +15,6 @@ "i18next-http-backend": "^3.0.1", "jszip": "^3.10.1", "maplibre-gl": "^4.7.1", - "pako": "^2.1.0", "proj4": "^2.15.0", "react": "^18.2.0", "react-dom": "^18.2.0", @@ -29,6 +28,7 @@ "devDependencies": { "@vitejs/plugin-react": "^4.3.4", "gh-pages": "^6.2.0", + "prettier": "3.4.2", "vite": "^6.0.7" } }, @@ -3539,6 +3539,21 @@ "resolved": "https://registry.npmjs.org/potpack/-/potpack-2.0.0.tgz", "integrity": "sha512-Q+/tYsFU9r7xoOJ+y/ZTtdVQwTWfzjbiXBDMM/JKUux3+QPP02iUuIoeBQ+Ot6oEDlC+/PGjB/5A3K7KKb7hcw==" }, + "node_modules/prettier": { + "version": "3.4.2", + "resolved": "https://registry.npmjs.org/prettier/-/prettier-3.4.2.tgz", + "integrity": "sha512-e9MewbtFo+Fevyuxn/4rrcDAaq0IYxPGLvObpQjiZBMAzB9IGmzlnG9RZy3FFas+eBMu2vA0CszMeduow5dIuQ==", + "dev": true, + "bin": { + "prettier": "bin/prettier.cjs" + }, + "engines": { + "node": ">=14" + }, + "funding": { + "url": "https://github.com/prettier/prettier?sponsor=1" + } + }, "node_modules/process-nextick-args": { "version": "2.0.1", "resolved": "https://registry.npmjs.org/process-nextick-args/-/process-nextick-args-2.0.1.tgz", diff --git a/package.json b/package.json index b2596489..85ea83f0 100644 --- a/package.json +++ b/package.json @@ -4,7 +4,8 @@ "build": "vite build", "preview": "vite preview", "deploy": "gh-pages -d dist -b build", - "deploy:test": "gh-pages -d dist -b gh-pages" + "deploy:test": "gh-pages -d dist -b gh-pages", + "format": "prettier --write ." }, "dependencies": { "@chakra-ui/react": "^2.10.1", @@ -17,7 +18,6 @@ "i18next-http-backend": "^3.0.1", "jszip": "^3.10.1", "maplibre-gl": "^4.7.1", - "pako": "^2.1.0", "proj4": "^2.15.0", "react": "^18.2.0", "react-dom": "^18.2.0", @@ -31,6 +31,7 @@ "devDependencies": { "@vitejs/plugin-react": "^4.3.4", "gh-pages": "^6.2.0", + "prettier": "3.4.2", "vite": "^6.0.7" }, "browserslist": { diff --git a/public/draco/README.md b/public/draco/README.md index 6dfa1d3a..71ffe66c 100644 --- a/public/draco/README.md +++ b/public/draco/README.md @@ -8,21 +8,21 @@ Draco is an open-source library for compressing and decompressing 3D geometric m This folder contains three utilities: -* `draco_decoder.js` — Emscripten-compiled decoder, compatible with any modern browser. -* `draco_decoder.wasm` — WebAssembly decoder, compatible with newer browsers and devices. -* `draco_wasm_wrapper.js` — JavaScript wrapper for the WASM decoder. +- `draco_decoder.js` — Emscripten-compiled decoder, compatible with any modern browser. +- `draco_decoder.wasm` — WebAssembly decoder, compatible with newer browsers and devices. +- `draco_wasm_wrapper.js` — JavaScript wrapper for the WASM decoder. Each file is provided in two variations: -* **Default:** Latest stable builds, tracking the project's [master branch](https://github.com/google/draco). -* **glTF:** Builds targeted by the [glTF mesh compression extension](https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression), tracking the [corresponding Draco branch](https://github.com/google/draco/tree/gltf_2.0_draco_extension). +- **Default:** Latest stable builds, tracking the project's [master branch](https://github.com/google/draco). +- **glTF:** Builds targeted by the [glTF mesh compression extension](https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression), tracking the [corresponding Draco branch](https://github.com/google/draco/tree/gltf_2.0_draco_extension). Either variation may be used with `THREE.DRACOLoader`: ```js -var dracoLoader = new THREE.DRACOLoader(); -dracoLoader.setDecoderPath('path/to/decoders/'); -dracoLoader.setDecoderConfig({type: 'js'}); // (Optional) Override detection of WASM support. +var dracoLoader = new THREE.DRACOLoader() +dracoLoader.setDecoderPath('path/to/decoders/') +dracoLoader.setDecoderConfig({ type: 'js' }) // (Optional) Override detection of WASM support. ``` Further [documentation on GitHub](https://github.com/google/draco/tree/master/javascript/example#static-loading-javascript-decoder). diff --git a/public/draco/draco_decoder.js b/public/draco/draco_decoder.js index 6629469b..ae82b00e 100644 --- a/public/draco/draco_decoder.js +++ b/public/draco/draco_decoder.js @@ -1,34 +1,74054 @@ - var DracoDecoderModule = (() => { - var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined; - if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename; - return ( -function(DracoDecoderModule = {}) { - -var Module=typeof DracoDecoderModule!="undefined"?DracoDecoderModule:{};var readyPromiseResolve,readyPromiseReject;Module["ready"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var isRuntimeInitialized=false;var isModuleParsed=false;Module["onRuntimeInitialized"]=function(){isRuntimeInitialized=true;if(isModuleParsed){if(typeof Module["onModuleLoaded"]==="function"){Module["onModuleLoaded"](Module)}}};Module["onModuleParsed"]=function(){isModuleParsed=true;if(isRuntimeInitialized){if(typeof Module["onModuleLoaded"]==="function"){Module["onModuleLoaded"](Module)}}};function isVersionSupported(versionString){if(typeof versionString!=="string")return false;const version=versionString.split(".");if(version.length<2||version.length>3)return false;if(version[0]==1&&version[1]>=0&&version[1]<=5)return true;if(version[0]!=0||version[1]>10)return false;return true}Module["isVersionSupported"]=isVersionSupported;var moduleOverrides=Object.assign({},Module);var arguments_=[];var thisProgram="./this.program";var quit_=(status,toThrow)=>{throw toThrow};var ENVIRONMENT_IS_WEB=typeof window=="object";var ENVIRONMENT_IS_WORKER=typeof importScripts=="function";var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";var scriptDirectory="";function locateFile(path){if(Module["locateFile"]){return Module["locateFile"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;function logExceptionOnExit(e){if(e instanceof ExitStatus)return;let toLog=e;err("exiting due to exception: "+toLog)}if(ENVIRONMENT_IS_NODE){var fs=require("fs");var nodePath=require("path");if(ENVIRONMENT_IS_WORKER){scriptDirectory=nodePath.dirname(scriptDirectory)+"/"}else{scriptDirectory=__dirname+"/"}read_=(filename,binary)=>{var ret=tryParseAsDataURI(filename);if(ret){return binary?ret:ret.toString()}filename=isFileURI(filename)?new URL(filename):nodePath.normalize(filename);return fs.readFileSync(filename,binary?undefined:"utf8")};readBinary=filename=>{var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}return ret};readAsync=(filename,onload,onerror)=>{var ret=tryParseAsDataURI(filename);if(ret){onload(ret)}filename=isFileURI(filename)?new URL(filename):nodePath.normalize(filename);fs.readFile(filename,function(err,data){if(err)onerror(err);else onload(data.buffer)})};if(process["argv"].length>1){thisProgram=process["argv"][1].replace(/\\/g,"/")}arguments_=process["argv"].slice(2);quit_=(status,toThrow)=>{if(keepRuntimeAlive()){process["exitCode"]=status;throw toThrow}logExceptionOnExit(toThrow);process["exit"](status)};Module["inspect"]=function(){return"[Emscripten Module object]"}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!="undefined"&&document.currentScript){scriptDirectory=document.currentScript.src}if(_scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf("blob:")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.replace(/[?#].*/,"").lastIndexOf("/")+1)}else{scriptDirectory=""}{read_=url=>{try{var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.send(null);return xhr.responseText}catch(err){var data=tryParseAsDataURI(url);if(data){return intArrayToString(data)}throw err}};if(ENVIRONMENT_IS_WORKER){readBinary=url=>{try{var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.responseType="arraybuffer";xhr.send(null);return new Uint8Array(xhr.response)}catch(err){var data=tryParseAsDataURI(url);if(data){return data}throw err}}}readAsync=(url,onload,onerror)=>{var xhr=new XMLHttpRequest;xhr.open("GET",url,true);xhr.responseType="arraybuffer";xhr.onload=()=>{if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}var data=tryParseAsDataURI(url);if(data){onload(data.buffer);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=title=>document.title=title}else{}var out=Module["print"]||console.log.bind(console);var err=Module["printErr"]||console.warn.bind(console);Object.assign(Module,moduleOverrides);moduleOverrides=null;if(Module["arguments"])arguments_=Module["arguments"];if(Module["thisProgram"])thisProgram=Module["thisProgram"];if(Module["quit"])quit_=Module["quit"];var wasmBinary;if(Module["wasmBinary"])wasmBinary=Module["wasmBinary"];var noExitRuntime=Module["noExitRuntime"]||true;var WebAssembly={Memory:function(opts){this.buffer=new ArrayBuffer(opts["initial"]*65536)},Module:function(binary){},Instance:function(module,info){this.exports=( -// EMSCRIPTEN_START_ASM -function instantiate(na){function c(d){d.set=function(a,b){this[a]=b};d.get=function(a){return this[a]};return d}var e;var f=new Uint8Array(123);for(var a=25;a>=0;--a){f[48+a]=52+a;f[65+a]=a;f[97+a]=26+a}f[43]=62;f[47]=63;function l(m,n,o){var g,h,a=0,i=n,j=o.length,k=n+(j*3>>2)-(o[j-2]=="=")-(o[j-1]=="=");for(;a>4;if(i>2;if(i>2];s=H[b+12>>2];d=H[b+20>>2];e=H[b+16>>2];g=e+4|0;d=g>>>0<4?d+1|0:d;a:{b:{c:{if(g>>>0>k>>>0&(d|0)>=(s|0)|(d|0)>(s|0)){break c}d=e+H[b>>2]|0;H[a>>2]=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);d=H[b+20>>2];k=d;g=H[b+16>>2];e=g+4|0;d=e>>>0<4?d+1|0:d;H[b+16>>2]=e;H[b+20>>2]=d;if(K[a>>2]>31){break c}s=H[b+8>>2];y=H[b+12>>2];d=k;g=g+8|0;d=g>>>0<8?d+1|0:d;if(g>>>0>s>>>0&(d|0)>=(y|0)|(d|0)>(y|0)){break c}d=e+H[b>>2]|0;H[a+4>>2]=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);d=H[b+20>>2];k=d;g=H[b+16>>2];e=g+4|0;d=e>>>0<4?d+1|0:d;H[b+16>>2]=e;H[b+20>>2]=d;s=H[b+8>>2];y=H[b+12>>2];d=k;g=g+8|0;d=g>>>0<8?d+1|0:d;if(g>>>0>s>>>0&(d|0)>=(y|0)|(d|0)>(y|0)){break c}d=e+H[b>>2]|0;H[a+12>>2]=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);d=H[b+20>>2];k=d;g=H[b+16>>2];e=g+4|0;d=e>>>0<4?d+1|0:d;H[b+16>>2]=e;H[b+20>>2]=d;d=H[a+20>>2];x=H[a+12>>2];if((x|0)!=(d|0)?d:0){break c}s=H[b+8>>2];y=H[b+12>>2];d=k;g=g+8|0;d=g>>>0<8?d+1|0:d;if(g>>>0>s>>>0&(d|0)>=(y|0)|(d|0)>(y|0)){break c}d=e+H[b>>2]|0;e=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[a+16>>2]=e;g=H[b+20>>2];d=H[b+16>>2]+4|0;g=d>>>0<4?g+1|0:g;H[b+16>>2]=d;H[b+20>>2]=g;if(e>>>0>=7){H[B>>2]=e;Qd(1713,B);break c}H[B+664>>2]=c;d:{if(!x){break d}e:{k=H[c>>2];if(x>>>0<=(H[c+8>>2]-k|0)/12>>>0){break e}if(x>>>0<357913942){l=H[c+4>>2];d=N(x,12);e=pa(d);g=d+e|0;e=e+N((l-k|0)/12|0,12)|0;d=e;if((k|0)!=(l|0)){while(1){d=d-12|0;l=l-12|0;H[d>>2]=H[l>>2];H[d+4>>2]=H[l+4>>2];H[d+8>>2]=H[l+8>>2];if((k|0)!=(l|0)){continue}break}}H[c+8>>2]=g;H[c+4>>2]=e;H[c>>2]=d;if(!k){break e}oa(k);break e}break b}f:{switch(H[a+16>>2]){case 0:i=wb(B+8|0,3);z=B+664|0;k=H[b+8>>2];n=H[b+12>>2];d=H[b+20>>2];e=H[b+16>>2];g=e+4|0;d=g>>>0<4?d+1|0:d;g:{if(g>>>0>k>>>0&(d|0)>=(n|0)|(d|0)>(n|0)){break g}d=e+H[b>>2]|0;H[i>>2]=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);d=H[b+20>>2];k=d;g=H[b+16>>2];e=g+4|0;d=e>>>0<4?d+1|0:d;H[b+16>>2]=e;H[b+20>>2]=d;if(K[i>>2]>32){break g}n=H[b+8>>2];s=H[b+12>>2];d=k;g=g+8|0;d=g>>>0<8?d+1|0:d;if(g>>>0>n>>>0&(d|0)>=(s|0)|(d|0)>(s|0)){break g}d=e+H[b>>2]|0;e=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[i+4>>2]=e;g=H[b+20>>2];d=H[b+16>>2]+4|0;g=d>>>0<4?g+1|0:g;H[b+16>>2]=d;H[b+20>>2]=g;if(!e){break g}H[i+8>>2]=0;if(!ua(i+16|0,b)){break g}if(!ua(i+36|0,b)){break g}if(!ua(i+56|0,b)){break g}if(!ua(i+76|0,b)){break g}A=H[i+4>>2];d=0;g=0;f=ca-32|0;ca=f;m=H[i+12>>2];H[f+16>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;if(m){if(m>>>0>=1073741824){break b}b=m<<2;g=pa(b);H[f+8>>2]=g;d=b+g|0;H[f+16>>2]=d;ra(g,0,b);H[f+12>>2]=d}e=H[i+120>>2];b=H[e>>2];if(b){H[e+4>>2]=b;oa(b);m=H[i+12>>2];g=H[f+8>>2];d=H[f+12>>2]}H[e+4>>2]=d;H[e>>2]=g;H[e+8>>2]=H[f+16>>2];g=0;H[f+16>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;h:{if(m){if(m>>>0>=1073741824){break b}b=m<<2;w=pa(b);H[f+8>>2]=w;g=b+w|0;H[f+16>>2]=g;ra(w,0,b);H[f+12>>2]=g}d=H[i+132>>2];b=H[d>>2];if(b){H[d+4>>2]=b;oa(b);w=H[f+8>>2];g=H[f+12>>2]}H[d+4>>2]=g;H[d>>2]=w;H[d+8>>2]=H[f+16>>2];H[f+24>>2]=0;H[f+28>>2]=0;H[f+16>>2]=0;H[f+20>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;xa(f+8|0);d=H[f+24>>2]+H[f+28>>2]|0;b=(d>>>0)/341|0;b=H[H[f+12>>2]+(b<<2)>>2]+N(d-N(b,341)|0,12)|0;H[b+4>>2]=0;H[b+8>>2]=0;H[b>>2]=A;m=H[f+28>>2]+1|0;H[f+28>>2]=m;i:{if(!m){break i}y=i+96|0;while(1){n=H[f+12>>2];g=H[f+24>>2];e=m-1|0;d=g+e|0;b=(d>>>0)/341|0;b=H[n+(b<<2)>>2]+N(d-N(b,341)|0,12)|0;o=H[b+8>>2];k=H[b+4>>2];t=H[b>>2];H[f+28>>2]=e;b=H[f+16>>2];if((((b|0)!=(n|0)?N(b-n>>2,341)-1|0:0)-(g+m|0)|0)+1>>>0>=682){oa(H[b-4>>2]);H[f+16>>2]=H[f+16>>2]-4}b=0;if(t>>>0>A>>>0){break i}d=H[i+12>>2];m=(k|0)!=(d-1|0)?k+1|0:0;if(m>>>0>=d>>>0){break i}q=N(o,12);p=q+H[i+132>>2]|0;l=q+H[i+120>>2]|0;g=H[i>>2];r=m<<2;e=H[r+H[p>>2]>>2];j:{k:{if((g|0)==(e|0)){if(!t){break k}while(1){d=H[l>>2];x=H[d+8>>2];s=H[d+4>>2];n=H[d>>2];q=H[z>>2];m=H[q+4>>2];d=H[q+8>>2];l:{if(m>>>0>>0){H[m+8>>2]=x;H[m+4>>2]=s;H[m>>2]=n;H[q+4>>2]=m+12;break l}r=H[q>>2];g=(m-r|0)/12|0;k=g+1|0;if(k>>>0>=357913942){break b}e=(d-r|0)/12|0;d=e<<1;k=e>>>0>=178956970?357913941:d>>>0>k>>>0?d:k;if(k){if(k>>>0>=357913942){break a}d=pa(N(k,12))}else{d=0}w=d+N(g,12)|0;H[w+8>>2]=x;H[w+4>>2]=s;H[w>>2]=n;e=w+12|0;if((m|0)!=(r|0)){while(1){w=w-12|0;m=m-12|0;H[w>>2]=H[m>>2];H[w+4>>2]=H[m+4>>2];H[w+8>>2]=H[m+8>>2];if((m|0)!=(r|0)){continue}break}}H[q+8>>2]=d+N(k,12);H[q+4>>2]=e;H[q>>2]=w;if(!r){break l}oa(r)}H[i+8>>2]=H[i+8>>2]+1;b=b+1|0;if((t|0)!=(b|0)){continue}break}break k}m:{n:{o:{p:{if(t>>>0<=2){d=H[i+108>>2];H[d>>2]=m;w=1;g=H[i+12>>2];if(g>>>0>1){break p}break m}if(K[i+8>>2]>K[i+4>>2]){break i}b=H[i+120>>2];s=o+1|0;x=N(s,12);d=b+x|0;if((d|0)!=(l|0)){Aa(d,H[l>>2],H[l+4>>2]);b=H[i+120>>2]}b=r+H[b+x>>2]|0;H[b>>2]=H[b>>2]+(1<>2];e=32-k|0;q:{if((n|0)<=(e|0)){e=H[i+28>>2];if((e|0)==H[i+20>>2]){break o}d=H[e>>2];b=k+n|0;H[i+32>>2]=b;w=d<>>32-n|0;if((b|0)!=32){break q}H[i+32>>2]=0;H[i+28>>2]=e+4;break q}g=H[i+28>>2];b=g+4|0;if((b|0)==H[i+20>>2]){break o}d=H[g>>2];H[i+28>>2]=b;b=n-e|0;H[i+32>>2]=b;w=H[g+4>>2]>>>32-b|d<>>32-n}d=t>>>1|0;if(w>>>0>d>>>0){break i}break n}while(1){m=(g-1|0)!=(m|0)?m+1|0:0;H[d+(w<<2)>>2]=m;g=H[i+12>>2];w=w+1|0;if(g>>>0>w>>>0){continue}break}break m}d=t>>>1|0;w=0}r:{s:{e=d-w|0;b=t-e|0;t:{if((b|0)==(e|0)){b=e;break t}n=H[i+88>>2];if((n|0)==H[i+80>>2]){break s}k=H[n>>2];g=H[i+92>>2];d=g+1|0;H[i+92>>2]=d;g=k&-2147483648>>>g;u:{if((d|0)==32){H[i+92>>2]=0;H[i+88>>2]=n+4;if(g){break u}break s}if(!g){break s}}}d=b;b=e;break r}d=e}n=H[i+132>>2];k=n+q|0;g=H[k>>2];e=g+r|0;H[e>>2]=H[e>>2]+1;Aa(n+x|0,g,H[k+4>>2]);if(b){g=H[f+28>>2]+H[f+24>>2]|0;e=H[f+16>>2];w=H[f+12>>2];if((g|0)==(((e|0)!=(w|0)?N(e-w>>2,341)-1|0:0)|0)){xa(f+8|0);w=H[f+12>>2];g=H[f+24>>2]+H[f+28>>2]|0}e=(g>>>0)/341|0;e=H[(e<<2)+w>>2]+N(g-N(e,341)|0,12)|0;H[e+8>>2]=o;H[e+4>>2]=m;H[e>>2]=b;H[f+28>>2]=H[f+28>>2]+1}if(!d){break k}g=H[f+28>>2]+H[f+24>>2]|0;b=H[f+16>>2];w=H[f+12>>2];if((g|0)==(((b|0)!=(w|0)?N(b-w>>2,341)-1|0:0)|0)){xa(f+8|0);w=H[f+12>>2];g=H[f+24>>2]+H[f+28>>2]|0}b=(g>>>0)/341|0;b=H[(b<<2)+w>>2]+N(g-N(b,341)|0,12)|0;H[b+8>>2]=s;H[b+4>>2]=m;H[b>>2]=d;m=H[f+28>>2]+1|0;H[f+28>>2]=m;break j}if(!t){break k}while(1){if(H[i+12>>2]){o=H[i+40>>2];n=H[p>>2];w=H[i+96>>2];k=H[i+108>>2];m=0;while(1){q=k+(m<<2)|0;H[w+(H[q>>2]<<2)>>2]=0;g=H[i>>2];e=H[q>>2]<<2;d=H[e+n>>2];v:{if((g|0)==(d|0)){break v}r=e+w|0;u=g-d|0;x=H[i+52>>2];g=32-x|0;if((u|0)<=(g|0)){e=H[i+48>>2];if((e|0)==(o|0)){break i}H[r>>2]=H[e>>2]<>>32-u;d=u+H[i+52>>2]|0;H[i+52>>2]=d;if((d|0)!=32){break v}H[i+52>>2]=0;H[i+48>>2]=e+4;break v}s=H[i+48>>2];d=s+4|0;if((d|0)==(o|0)){break i}e=H[s>>2];H[i+48>>2]=d;d=u-g|0;H[i+52>>2]=d;H[r>>2]=H[s+4>>2]>>>32-d|e<>>32-u}e=H[q>>2]<<2;d=e+w|0;H[d>>2]=H[d>>2]|H[e+H[l>>2]>>2];m=m+1|0;if(m>>>0>2]){continue}break}}jb(z,y);H[i+8>>2]=H[i+8>>2]+1;b=b+1|0;if((t|0)!=(b|0)){continue}break}}m=H[f+28>>2]}if(m){continue}break}}H[f+28>>2]=0;w=H[f+16>>2];m=H[f+12>>2];g=w-m|0;if(g>>>0>=9){while(1){oa(H[m>>2]);m=H[f+12>>2]+4|0;H[f+12>>2]=m;w=H[f+16>>2];g=w-m|0;if(g>>>0>8){continue}break}}b=170;w:{switch((g>>>2|0)-1|0){case 1:b=341;case 0:H[f+24>>2]=b;break;default:break w}}x:{if((m|0)==(w|0)){break x}while(1){oa(H[m>>2]);m=m+4|0;if((w|0)!=(m|0)){continue}break}d=H[f+16>>2];b=H[f+12>>2];if((d|0)==(b|0)){break x}H[f+16>>2]=d+((b-d|0)+3&-4)}b=H[f+8>>2];if(b){oa(b)}ca=f+32|0;break h}}xb(i);break d;case 1:i=wb(B+8|0,3);A=B+664|0;k=H[b+8>>2];n=H[b+12>>2];d=H[b+20>>2];e=H[b+16>>2];g=e+4|0;d=g>>>0<4?d+1|0:d;y:{if(g>>>0>k>>>0&(d|0)>=(n|0)|(d|0)>(n|0)){break y}d=e+H[b>>2]|0;H[i>>2]=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);d=H[b+20>>2];k=d;g=H[b+16>>2];e=g+4|0;d=e>>>0<4?d+1|0:d;H[b+16>>2]=e;H[b+20>>2]=d;if(K[i>>2]>32){break y}n=H[b+8>>2];s=H[b+12>>2];d=k;g=g+8|0;d=g>>>0<8?d+1|0:d;if(g>>>0>n>>>0&(d|0)>=(s|0)|(d|0)>(s|0)){break y}d=e+H[b>>2]|0;e=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[i+4>>2]=e;g=H[b+20>>2];d=H[b+16>>2]+4|0;g=d>>>0<4?g+1|0:g;H[b+16>>2]=d;H[b+20>>2]=g;if(!e){break y}H[i+8>>2]=0;if(!ua(i+16|0,b)){break y}if(!ua(i+36|0,b)){break y}if(!ua(i+56|0,b)){break y}if(!ua(i+76|0,b)){break y}p=H[i+4>>2];d=0;f=ca-32|0;ca=f;m=H[i+12>>2];H[f+16>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;if(m){if(m>>>0>=1073741824){break b}b=m<<2;t=pa(b);H[f+8>>2]=t;d=b+t|0;H[f+16>>2]=d;ra(t,0,b);H[f+12>>2]=d}e=H[i+120>>2];b=H[e>>2];if(b){H[e+4>>2]=b;oa(b);m=H[i+12>>2];t=H[f+8>>2];d=H[f+12>>2]}H[e+4>>2]=d;H[e>>2]=t;H[e+8>>2]=H[f+16>>2];t=0;H[f+16>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;z:{if(m){if(m>>>0>=1073741824){break b}b=m<<2;o=pa(b);H[f+8>>2]=o;t=b+o|0;H[f+16>>2]=t;ra(o,0,b);H[f+12>>2]=t}d=H[i+132>>2];b=H[d>>2];if(b){H[d+4>>2]=b;oa(b);t=H[f+12>>2];o=H[f+8>>2]}H[d+4>>2]=t;H[d>>2]=o;H[d+8>>2]=H[f+16>>2];H[f+24>>2]=0;H[f+28>>2]=0;H[f+16>>2]=0;H[f+20>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;xa(f+8|0);d=H[f+24>>2]+H[f+28>>2]|0;b=(d>>>0)/341|0;b=H[H[f+12>>2]+(b<<2)>>2]+N(d-N(b,341)|0,12)|0;H[b+4>>2]=0;H[b+8>>2]=0;H[b>>2]=p;m=H[f+28>>2]+1|0;H[f+28>>2]=m;A:{if(!m){break A}s=i+96|0;while(1){k=H[f+12>>2];g=H[f+24>>2];e=m-1|0;d=g+e|0;b=(d>>>0)/341|0;b=H[k+(b<<2)>>2]+N(d-N(b,341)|0,12)|0;q=H[b+8>>2];d=H[b+4>>2];l=H[b>>2];H[f+28>>2]=e;b=H[f+16>>2];if((((b|0)!=(k|0)?N(b-k>>2,341)-1|0:0)-(g+m|0)|0)+1>>>0>=682){oa(H[b-4>>2]);H[f+16>>2]=H[f+16>>2]-4}if(l>>>0>p>>>0){break A}b=H[i+12>>2];m=(d|0)!=(b-1|0)?d+1|0:0;if(m>>>0>=b>>>0){break A}b=H[i+120>>2];r=N(q,12);u=b+r|0;e=H[i>>2];x=m<<2;n=r+H[i+132>>2]|0;d=H[x+H[n>>2]>>2];B:{C:{if((e|0)==(d|0)){x=0;if(!l){break C}while(1){b=H[u>>2];y=H[b+8>>2];n=H[b+4>>2];k=H[b>>2];q=H[A>>2];m=H[q+4>>2];b=H[q+8>>2];D:{if(m>>>0>>0){H[m+8>>2]=y;H[m+4>>2]=n;H[m>>2]=k;H[q+4>>2]=m+12;break D}r=H[q>>2];e=(m-r|0)/12|0;g=e+1|0;if(g>>>0>=357913942){break b}d=(b-r|0)/12|0;b=d<<1;g=d>>>0>=178956970?357913941:b>>>0>g>>>0?b:g;if(g){if(g>>>0>=357913942){break a}b=pa(N(g,12))}else{b=0}o=b+N(e,12)|0;H[o+8>>2]=y;H[o+4>>2]=n;H[o>>2]=k;d=o+12|0;if((m|0)!=(r|0)){while(1){o=o-12|0;m=m-12|0;H[o>>2]=H[m>>2];H[o+4>>2]=H[m+4>>2];H[o+8>>2]=H[m+8>>2];if((m|0)!=(r|0)){continue}break}}H[q+8>>2]=b+N(g,12);H[q+4>>2]=d;H[q>>2]=o;if(!r){break D}oa(r)}H[i+8>>2]=H[i+8>>2]+1;x=x+1|0;if((l|0)!=(x|0)){continue}break}break C}E:{F:{G:{H:{if(l>>>0<=2){b=H[i+108>>2];H[b>>2]=m;o=1;t=H[i+12>>2];if(t>>>0>1){break H}break E}if(K[i+8>>2]>K[i+4>>2]){break A}k=b;b=r+12|0;Aa(k+b|0,H[u>>2],H[u+4>>2]);b=x+H[b+H[i+120>>2]>>2]|0;H[b>>2]=H[b>>2]+(1<>2];e=32-k|0;I:{if((n|0)<=(e|0)){e=H[i+28>>2];if((e|0)==H[i+20>>2]){break G}d=H[e>>2];b=k+n|0;H[i+32>>2]=b;d=d<>>32-n|0;if((b|0)!=32){break I}H[i+32>>2]=0;H[i+28>>2]=e+4;break I}g=H[i+28>>2];b=g+4|0;if((b|0)==H[i+20>>2]){break G}d=H[g>>2];H[i+28>>2]=b;b=n-e|0;H[i+32>>2]=b;d=H[g+4>>2]>>>32-b|d<>>32-n}o=l>>>1|0;if(o>>>0>>0){break A}break F}while(1){m=(t-1|0)!=(m|0)?m+1|0:0;H[b+(o<<2)>>2]=m;o=o+1|0;t=H[i+12>>2];if(o>>>0>>0){continue}break}break E}o=l>>>1|0;d=0}y=q+1|0;J:{K:{e=o-d|0;d=l-e|0;L:{if((d|0)==(e|0)){b=e;break L}n=H[i+88>>2];if((n|0)==H[i+80>>2]){break K}k=H[n>>2];g=H[i+92>>2];b=g+1|0;H[i+92>>2]=b;g=k&-2147483648>>>g;M:{if((b|0)==32){H[i+92>>2]=0;H[i+88>>2]=n+4;if(g){break M}break K}if(!g){break K}}b=d}d=e;break J}b=e}n=H[i+132>>2];k=n+r|0;g=H[k>>2];e=g+x|0;H[e>>2]=H[e>>2]+1;Aa(n+N(y,12)|0,g,H[k+4>>2]);if(d){t=H[f+28>>2]+H[f+24>>2]|0;e=H[f+16>>2];o=H[f+12>>2];if((t|0)==(((e|0)!=(o|0)?N(e-o>>2,341)-1|0:0)|0)){xa(f+8|0);t=H[f+24>>2]+H[f+28>>2]|0;o=H[f+12>>2]}e=(t>>>0)/341|0;e=H[o+(e<<2)>>2]+N(t-N(e,341)|0,12)|0;H[e+8>>2]=q;H[e+4>>2]=m;H[e>>2]=d;H[f+28>>2]=H[f+28>>2]+1}if(!b){break C}t=H[f+28>>2]+H[f+24>>2]|0;d=H[f+16>>2];o=H[f+12>>2];if((t|0)==(((d|0)!=(o|0)?N(d-o>>2,341)-1|0:0)|0)){xa(f+8|0);t=H[f+24>>2]+H[f+28>>2]|0;o=H[f+12>>2]}d=(t>>>0)/341|0;d=H[o+(d<<2)>>2]+N(t-N(d,341)|0,12)|0;H[d+8>>2]=y;H[d+4>>2]=m;H[d>>2]=b;m=H[f+28>>2]+1|0;H[f+28>>2]=m;break B}t=0;if(!l){break C}while(1){if(H[i+12>>2]){o=H[i+40>>2];k=H[n>>2];z=H[i+96>>2];g=H[i+108>>2];m=0;while(1){q=g+(m<<2)|0;H[z+(H[q>>2]<<2)>>2]=0;e=H[i>>2];d=H[q>>2]<<2;b=H[d+k>>2];N:{if((e|0)==(b|0)){break N}r=d+z|0;w=e-b|0;x=H[i+52>>2];e=32-x|0;if((w|0)<=(e|0)){d=H[i+48>>2];if((d|0)==(o|0)){break A}H[r>>2]=H[d>>2]<>>32-w;b=w+H[i+52>>2]|0;H[i+52>>2]=b;if((b|0)!=32){break N}H[i+52>>2]=0;H[i+48>>2]=d+4;break N}y=H[i+48>>2];b=y+4|0;if((b|0)==(o|0)){break A}d=H[y>>2];H[i+48>>2]=b;b=w-e|0;H[i+52>>2]=b;H[r>>2]=H[y+4>>2]>>>32-b|d<>>32-w}d=H[q>>2]<<2;b=d+z|0;H[b>>2]=H[b>>2]|H[d+H[u>>2]>>2];m=m+1|0;if(m>>>0>2]){continue}break}}jb(A,s);H[i+8>>2]=H[i+8>>2]+1;t=t+1|0;if((l|0)!=(t|0)){continue}break}}m=H[f+28>>2]}if(m){continue}break}}H[f+28>>2]=0;o=H[f+16>>2];m=H[f+12>>2];t=o-m|0;if(t>>>0>=9){while(1){oa(H[m>>2]);m=H[f+12>>2]+4|0;H[f+12>>2]=m;o=H[f+16>>2];t=o-m|0;if(t>>>0>8){continue}break}}b=170;O:{switch((t>>>2|0)-1|0){case 1:b=341;case 0:H[f+24>>2]=b;break;default:break O}}P:{if((m|0)==(o|0)){break P}while(1){oa(H[m>>2]);m=m+4|0;if((o|0)!=(m|0)){continue}break}d=H[f+16>>2];b=H[f+12>>2];if((d|0)==(b|0)){break P}H[f+16>>2]=d+((b-d|0)+3&-4)}b=H[f+8>>2];if(b){oa(b)}ca=f+32|0;break z}}xb(i);break d;case 2:f=ub(B+8|0,3);w=B+664|0;k=H[b+8>>2];n=H[b+12>>2];d=H[b+20>>2];e=H[b+16>>2];g=e+4|0;d=g>>>0<4?d+1|0:d;Q:{if(g>>>0>k>>>0&(d|0)>=(n|0)|(d|0)>(n|0)){break Q}d=e+H[b>>2]|0;H[f>>2]=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);d=H[b+20>>2];k=d;g=H[b+16>>2];e=g+4|0;d=e>>>0<4?d+1|0:d;H[b+16>>2]=e;H[b+20>>2]=d;if(K[f>>2]>32){break Q}n=H[b+8>>2];s=H[b+12>>2];d=k;g=g+8|0;d=g>>>0<8?d+1|0:d;if(g>>>0>n>>>0&(d|0)>=(s|0)|(d|0)>(s|0)){break Q}d=e+H[b>>2]|0;e=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[f+4>>2]=e;g=H[b+20>>2];d=H[b+16>>2]+4|0;g=d>>>0<4?g+1|0:g;H[b+16>>2]=d;H[b+20>>2]=g;if(!e){break Q}H[f+8>>2]=0;if(!ta(f+16|0,b)){break Q}if(!ua(f+32|0,b)){break Q}if(!ua(f+52|0,b)){break Q}if(!ua(f+72|0,b)){break Q}z=H[f+4>>2];g=0;b=0;h=ca-32|0;ca=h;j=H[f+12>>2];H[h+16>>2]=0;H[h+8>>2]=0;H[h+12>>2]=0;if(j){if(j>>>0>=1073741824){break b}d=j<<2;g=pa(d);H[h+8>>2]=g;b=d+g|0;H[h+16>>2]=b;ra(g,0,d);H[h+12>>2]=b}e=H[f+116>>2];d=H[e>>2];if(d){H[e+4>>2]=d;oa(d);j=H[f+12>>2];g=H[h+8>>2];b=H[h+12>>2]}H[e+4>>2]=b;H[e>>2]=g;H[e+8>>2]=H[h+16>>2];g=0;H[h+16>>2]=0;H[h+8>>2]=0;H[h+12>>2]=0;R:{if(j){if(j>>>0>=1073741824){break b}b=j<<2;u=pa(b);H[h+8>>2]=u;g=b+u|0;H[h+16>>2]=g;ra(u,0,b);H[h+12>>2]=g}d=H[f+128>>2];b=H[d>>2];if(b){H[d+4>>2]=b;oa(b);u=H[h+8>>2];g=H[h+12>>2]}H[d+4>>2]=g;H[d>>2]=u;H[d+8>>2]=H[h+16>>2];H[h+24>>2]=0;H[h+28>>2]=0;H[h+16>>2]=0;H[h+20>>2]=0;H[h+8>>2]=0;H[h+12>>2]=0;xa(h+8|0);d=H[h+24>>2]+H[h+28>>2]|0;b=(d>>>0)/341|0;b=H[H[h+12>>2]+(b<<2)>>2]+N(d-N(b,341)|0,12)|0;H[b+4>>2]=0;H[b+8>>2]=0;H[b>>2]=z;j=H[h+28>>2]+1|0;H[h+28>>2]=j;S:{if(!j){break S}x=f+92|0;y=f+16|0;while(1){n=H[h+12>>2];g=H[h+24>>2];e=j-1|0;d=g+e|0;b=(d>>>0)/341|0;b=H[n+(b<<2)>>2]+N(d-N(b,341)|0,12)|0;p=H[b+8>>2];k=H[b+4>>2];i=H[b>>2];H[h+28>>2]=e;b=H[h+16>>2];if((((b|0)!=(n|0)?N(b-n>>2,341)-1|0:0)-(g+j|0)|0)+1>>>0>=682){oa(H[b-4>>2]);H[h+16>>2]=H[h+16>>2]-4}d=0;if(i>>>0>z>>>0){break S}b=H[f+12>>2];j=(k|0)!=(b-1|0)?k+1|0:0;if(j>>>0>=b>>>0){break S}o=N(p,12);A=o+H[f+128>>2]|0;t=o+H[f+116>>2]|0;g=H[f>>2];q=j<<2;e=H[q+H[A>>2]>>2];T:{if((g|0)==(e|0)){if(!i){break T}while(1){b=H[t>>2];r=H[b+8>>2];s=H[b+4>>2];n=H[b>>2];o=H[w>>2];j=H[o+4>>2];b=H[o+8>>2];U:{if(j>>>0>>0){H[j+8>>2]=r;H[j+4>>2]=s;H[j>>2]=n;H[o+4>>2]=j+12;break U}q=H[o>>2];g=(j-q|0)/12|0;k=g+1|0;if(k>>>0>=357913942){break b}e=(b-q|0)/12|0;b=e<<1;k=e>>>0>=178956970?357913941:b>>>0>k>>>0?b:k;if(k){if(k>>>0>=357913942){break a}b=pa(N(k,12))}else{b=0}u=b+N(g,12)|0;H[u+8>>2]=r;H[u+4>>2]=s;H[u>>2]=n;e=u+12|0;if((j|0)!=(q|0)){while(1){u=u-12|0;j=j-12|0;H[u>>2]=H[j>>2];H[u+4>>2]=H[j+4>>2];H[u+8>>2]=H[j+8>>2];if((j|0)!=(q|0)){continue}break}}H[o+8>>2]=b+N(k,12);H[o+4>>2]=e;H[o>>2]=u;if(!q){break U}oa(q)}H[f+8>>2]=H[f+8>>2]+1;d=d+1|0;if((i|0)!=(d|0)){continue}break}break T}V:{W:{X:{Y:{if(i>>>0<=2){b=H[f+104>>2];H[b>>2]=j;u=1;g=H[f+12>>2];if(g>>>0>1){break Y}break V}if(K[f+8>>2]>K[f+4>>2]){break S}b=H[f+116>>2];s=p+1|0;r=N(s,12);d=b+r|0;if((d|0)!=(t|0)){Aa(d,H[t>>2],H[t+4>>2]);b=H[f+116>>2]}b=q+H[b+r>>2]|0;H[b>>2]=H[b>>2]+(1<>2]=0;pc(y,Q(i)^31,h+4|0);d=i>>>1|0;b=H[h+4>>2];if(d>>>0>>0){break S}e=d-b|0;d=i-e|0;Z:{if((d|0)==(e|0)){b=e;break Z}n=H[f+84>>2];if((n|0)==H[f+76>>2]){break X}k=H[n>>2];g=H[f+88>>2];b=g+1|0;H[f+88>>2]=b;g=k&-2147483648>>>g;_:{if((b|0)==32){H[f+88>>2]=0;H[f+84>>2]=n+4;if(g){break _}break X}if(!g){break X}}b=d}d=e;break W}while(1){j=(g-1|0)!=(j|0)?j+1|0:0;H[b+(u<<2)>>2]=j;g=H[f+12>>2];u=u+1|0;if(g>>>0>u>>>0){continue}break}break V}b=e}n=H[f+128>>2];k=n+o|0;g=H[k>>2];e=g+q|0;H[e>>2]=H[e>>2]+1;Aa(n+r|0,g,H[k+4>>2]);if(d){g=H[h+28>>2]+H[h+24>>2]|0;e=H[h+16>>2];u=H[h+12>>2];if((g|0)==(((e|0)!=(u|0)?N(e-u>>2,341)-1|0:0)|0)){xa(h+8|0);u=H[h+12>>2];g=H[h+24>>2]+H[h+28>>2]|0}e=(g>>>0)/341|0;e=H[(e<<2)+u>>2]+N(g-N(e,341)|0,12)|0;H[e+8>>2]=p;H[e+4>>2]=j;H[e>>2]=d;H[h+28>>2]=H[h+28>>2]+1}if(!b){break T}g=H[h+28>>2]+H[h+24>>2]|0;d=H[h+16>>2];u=H[h+12>>2];if((g|0)==(((d|0)!=(u|0)?N(d-u>>2,341)-1|0:0)|0)){xa(h+8|0);u=H[h+12>>2];g=H[h+24>>2]+H[h+28>>2]|0}d=(g>>>0)/341|0;d=H[(d<<2)+u>>2]+N(g-N(d,341)|0,12)|0;H[d+8>>2]=s;H[d+4>>2]=j;H[d>>2]=b;H[h+28>>2]=H[h+28>>2]+1;break T}if(!i){break T}while(1){if(H[f+12>>2]){p=H[f+36>>2];n=H[A>>2];u=H[f+92>>2];k=H[f+104>>2];j=0;while(1){o=k+(j<<2)|0;H[u+(H[o>>2]<<2)>>2]=0;g=H[f>>2];e=H[o>>2]<<2;b=H[e+n>>2];$:{if((g|0)==(b|0)){break $}q=e+u|0;l=g-b|0;r=H[f+48>>2];g=32-r|0;if((l|0)<=(g|0)){e=H[f+44>>2];if((e|0)==(p|0)){break S}H[q>>2]=H[e>>2]<>>32-l;b=l+H[f+48>>2]|0;H[f+48>>2]=b;if((b|0)!=32){break $}H[f+48>>2]=0;H[f+44>>2]=e+4;break $}s=H[f+44>>2];b=s+4|0;if((b|0)==(p|0)){break S}e=H[s>>2];H[f+44>>2]=b;b=l-g|0;H[f+48>>2]=b;H[q>>2]=H[s+4>>2]>>>32-b|e<>>32-l}e=H[o>>2]<<2;b=e+u|0;H[b>>2]=H[b>>2]|H[e+H[t>>2]>>2];j=j+1|0;if(j>>>0>2]){continue}break}}jb(w,x);H[f+8>>2]=H[f+8>>2]+1;d=d+1|0;if((i|0)!=(d|0)){continue}break}}j=H[h+28>>2];if(j){continue}break}}H[h+28>>2]=0;u=H[h+16>>2];j=H[h+12>>2];g=u-j|0;if(g>>>0>=9){while(1){oa(H[j>>2]);j=H[h+12>>2]+4|0;H[h+12>>2]=j;u=H[h+16>>2];g=u-j|0;if(g>>>0>8){continue}break}}b=170;aa:{switch((g>>>2|0)-1|0){case 1:b=341;case 0:H[h+24>>2]=b;break;default:break aa}}ba:{if((j|0)==(u|0)){break ba}while(1){oa(H[j>>2]);j=j+4|0;if((u|0)!=(j|0)){continue}break}d=H[h+16>>2];b=H[h+12>>2];if((d|0)==(b|0)){break ba}H[h+16>>2]=d+((b-d|0)+3&-4)}b=H[h+8>>2];if(b){oa(b)}ca=h+32|0;break R}}vb(f);break d;case 3:i=ub(B+8|0,3);z=B+664|0;k=H[b+8>>2];n=H[b+12>>2];d=H[b+20>>2];e=H[b+16>>2];g=e+4|0;d=g>>>0<4?d+1|0:d;ca:{if(g>>>0>k>>>0&(d|0)>=(n|0)|(d|0)>(n|0)){break ca}d=e+H[b>>2]|0;H[i>>2]=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);d=H[b+20>>2];k=d;g=H[b+16>>2];e=g+4|0;d=e>>>0<4?d+1|0:d;H[b+16>>2]=e;H[b+20>>2]=d;if(K[i>>2]>32){break ca}n=H[b+8>>2];s=H[b+12>>2];d=k;g=g+8|0;d=g>>>0<8?d+1|0:d;if(g>>>0>n>>>0&(d|0)>=(s|0)|(d|0)>(s|0)){break ca}d=e+H[b>>2]|0;e=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[i+4>>2]=e;g=H[b+20>>2];d=H[b+16>>2]+4|0;g=d>>>0<4?g+1|0:g;H[b+16>>2]=d;H[b+20>>2]=g;if(!e){break ca}H[i+8>>2]=0;if(!ta(i+16|0,b)){break ca}if(!ua(i+32|0,b)){break ca}if(!ua(i+52|0,b)){break ca}if(!ua(i+72|0,b)){break ca}A=H[i+4>>2];d=0;f=ca-32|0;ca=f;j=H[i+12>>2];H[f+16>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;if(j){if(j>>>0>=1073741824){break b}b=j<<2;m=pa(b);H[f+8>>2]=m;d=b+m|0;H[f+16>>2]=d;ra(m,0,b);H[f+12>>2]=d}e=H[i+116>>2];b=H[e>>2];if(b){H[e+4>>2]=b;oa(b);j=H[i+12>>2];m=H[f+8>>2];d=H[f+12>>2]}H[e+4>>2]=d;H[e>>2]=m;H[e+8>>2]=H[f+16>>2];m=0;H[f+16>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;da:{if(j){if(j>>>0>=1073741824){break b}b=j<<2;p=pa(b);H[f+8>>2]=p;m=b+p|0;H[f+16>>2]=m;ra(p,0,b);H[f+12>>2]=m}d=H[i+128>>2];b=H[d>>2];if(b){H[d+4>>2]=b;oa(b);m=H[f+12>>2];p=H[f+8>>2]}H[d+4>>2]=m;H[d>>2]=p;H[d+8>>2]=H[f+16>>2];H[f+24>>2]=0;H[f+28>>2]=0;H[f+16>>2]=0;H[f+20>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;xa(f+8|0);d=H[f+24>>2]+H[f+28>>2]|0;b=(d>>>0)/341|0;b=H[H[f+12>>2]+(b<<2)>>2]+N(d-N(b,341)|0,12)|0;H[b+4>>2]=0;H[b+8>>2]=0;H[b>>2]=A;j=H[f+28>>2]+1|0;H[f+28>>2]=j;ea:{if(!j){break ea}y=i+92|0;s=i+16|0;while(1){k=H[f+12>>2];g=H[f+24>>2];e=j-1|0;d=g+e|0;b=(d>>>0)/341|0;b=H[k+(b<<2)>>2]+N(d-N(b,341)|0,12)|0;o=H[b+8>>2];d=H[b+4>>2];t=H[b>>2];H[f+28>>2]=e;b=H[f+16>>2];if((((b|0)!=(k|0)?N(b-k>>2,341)-1|0:0)-(g+j|0)|0)+1>>>0>=682){oa(H[b-4>>2]);H[f+16>>2]=H[f+16>>2]-4}if(t>>>0>A>>>0){break ea}b=H[i+12>>2];j=(d|0)!=(b-1|0)?d+1|0:0;if(j>>>0>=b>>>0){break ea}b=H[i+116>>2];q=N(o,12);l=b+q|0;e=H[i>>2];r=j<<2;n=q+H[i+128>>2]|0;d=H[r+H[n>>2]>>2];fa:{if((e|0)==(d|0)){r=0;if(!t){break fa}while(1){b=H[l>>2];x=H[b+8>>2];n=H[b+4>>2];k=H[b>>2];o=H[z>>2];j=H[o+4>>2];b=H[o+8>>2];ga:{if(j>>>0>>0){H[j+8>>2]=x;H[j+4>>2]=n;H[j>>2]=k;H[o+4>>2]=j+12;break ga}q=H[o>>2];e=(j-q|0)/12|0;g=e+1|0;if(g>>>0>=357913942){break b}d=(b-q|0)/12|0;b=d<<1;g=d>>>0>=178956970?357913941:b>>>0>g>>>0?b:g;if(g){if(g>>>0>=357913942){break a}b=pa(N(g,12))}else{b=0}p=b+N(e,12)|0;H[p+8>>2]=x;H[p+4>>2]=n;H[p>>2]=k;d=p+12|0;if((j|0)!=(q|0)){while(1){p=p-12|0;j=j-12|0;H[p>>2]=H[j>>2];H[p+4>>2]=H[j+4>>2];H[p+8>>2]=H[j+8>>2];if((j|0)!=(q|0)){continue}break}}H[o+8>>2]=b+N(g,12);H[o+4>>2]=d;H[o>>2]=p;if(!q){break ga}oa(q)}H[i+8>>2]=H[i+8>>2]+1;r=r+1|0;if((t|0)!=(r|0)){continue}break}break fa}ha:{ia:{ja:{ka:{if(t>>>0<=2){b=H[i+104>>2];H[b>>2]=j;p=1;m=H[i+12>>2];if(m>>>0>1){break ka}break ha}if(K[i+8>>2]>K[i+4>>2]){break ea}k=b;b=q+12|0;Aa(k+b|0,H[l>>2],H[l+4>>2]);b=r+H[b+H[i+116>>2]>>2]|0;H[b>>2]=H[b>>2]+(1<>2]=0;pc(s,Q(t)^31,f+4|0);d=t>>>1|0;b=H[f+4>>2];if(d>>>0>>0){break ea}x=o+1|0;e=d-b|0;d=t-e|0;la:{if((d|0)==(e|0)){b=e;break la}n=H[i+84>>2];if((n|0)==H[i+76>>2]){break ja}k=H[n>>2];g=H[i+88>>2];b=g+1|0;H[i+88>>2]=b;g=k&-2147483648>>>g;ma:{if((b|0)==32){H[i+88>>2]=0;H[i+84>>2]=n+4;if(g){break ma}break ja}if(!g){break ja}}b=d}d=e;break ia}while(1){j=(m-1|0)!=(j|0)?j+1|0:0;H[b+(p<<2)>>2]=j;m=H[i+12>>2];p=p+1|0;if(m>>>0>p>>>0){continue}break}break ha}b=e}n=H[i+128>>2];k=n+q|0;g=H[k>>2];e=g+r|0;H[e>>2]=H[e>>2]+1;Aa(n+N(x,12)|0,g,H[k+4>>2]);if(d){m=H[f+28>>2]+H[f+24>>2]|0;e=H[f+16>>2];p=H[f+12>>2];if((m|0)==(((e|0)!=(p|0)?N(e-p>>2,341)-1|0:0)|0)){xa(f+8|0);m=H[f+24>>2]+H[f+28>>2]|0;p=H[f+12>>2]}e=(m>>>0)/341|0;e=H[p+(e<<2)>>2]+N(m-N(e,341)|0,12)|0;H[e+8>>2]=o;H[e+4>>2]=j;H[e>>2]=d;H[f+28>>2]=H[f+28>>2]+1}if(!b){break fa}m=H[f+28>>2]+H[f+24>>2]|0;d=H[f+16>>2];p=H[f+12>>2];if((m|0)==(((d|0)!=(p|0)?N(d-p>>2,341)-1|0:0)|0)){xa(f+8|0);m=H[f+24>>2]+H[f+28>>2]|0;p=H[f+12>>2]}d=(m>>>0)/341|0;d=H[p+(d<<2)>>2]+N(m-N(d,341)|0,12)|0;H[d+8>>2]=x;H[d+4>>2]=j;H[d>>2]=b;H[f+28>>2]=H[f+28>>2]+1;break fa}m=0;if(!t){break fa}while(1){if(H[i+12>>2]){p=H[i+36>>2];k=H[n>>2];w=H[i+92>>2];g=H[i+104>>2];j=0;while(1){o=g+(j<<2)|0;H[w+(H[o>>2]<<2)>>2]=0;e=H[i>>2];d=H[o>>2]<<2;b=H[d+k>>2];na:{if((e|0)==(b|0)){break na}q=d+w|0;u=e-b|0;r=H[i+48>>2];e=32-r|0;if((u|0)<=(e|0)){d=H[i+44>>2];if((d|0)==(p|0)){break ea}H[q>>2]=H[d>>2]<>>32-u;b=u+H[i+48>>2]|0;H[i+48>>2]=b;if((b|0)!=32){break na}H[i+48>>2]=0;H[i+44>>2]=d+4;break na}x=H[i+44>>2];b=x+4|0;if((b|0)==(p|0)){break ea}d=H[x>>2];H[i+44>>2]=b;b=u-e|0;H[i+48>>2]=b;H[q>>2]=H[x+4>>2]>>>32-b|d<>>32-u}d=H[o>>2]<<2;b=d+w|0;H[b>>2]=H[b>>2]|H[d+H[l>>2]>>2];j=j+1|0;if(j>>>0>2]){continue}break}}jb(z,y);H[i+8>>2]=H[i+8>>2]+1;m=m+1|0;if((t|0)!=(m|0)){continue}break}}j=H[f+28>>2];if(j){continue}break}}H[f+28>>2]=0;p=H[f+16>>2];j=H[f+12>>2];m=p-j|0;if(m>>>0>=9){while(1){oa(H[j>>2]);j=H[f+12>>2]+4|0;H[f+12>>2]=j;p=H[f+16>>2];m=p-j|0;if(m>>>0>8){continue}break}}b=170;oa:{switch((m>>>2|0)-1|0){case 1:b=341;case 0:H[f+24>>2]=b;break;default:break oa}}pa:{if((j|0)==(p|0)){break pa}while(1){oa(H[j>>2]);j=j+4|0;if((p|0)!=(j|0)){continue}break}d=H[f+16>>2];b=H[f+12>>2];if((d|0)==(b|0)){break pa}H[f+16>>2]=d+((b-d|0)+3&-4)}b=H[f+8>>2];if(b){oa(b)}ca=f+32|0;break da}}vb(i);break d;case 4:f=$a(B+8|0,3);w=B+664|0;k=H[b+8>>2];n=H[b+12>>2];d=H[b+20>>2];e=H[b+16>>2];g=e+4|0;d=g>>>0<4?d+1|0:d;qa:{if(g>>>0>k>>>0&(d|0)>=(n|0)|(d|0)>(n|0)){break qa}d=e+H[b>>2]|0;H[f>>2]=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);d=H[b+20>>2];k=d;g=H[b+16>>2];e=g+4|0;d=e>>>0<4?d+1|0:d;H[b+16>>2]=e;H[b+20>>2]=d;if(K[f>>2]>32){break qa}n=H[b+8>>2];s=H[b+12>>2];d=k;g=g+8|0;d=g>>>0<8?d+1|0:d;if(g>>>0>n>>>0&(d|0)>=(s|0)|(d|0)>(s|0)){break qa}d=e+H[b>>2]|0;e=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[f+4>>2]=e;g=H[b+20>>2];d=H[b+16>>2]+4|0;g=d>>>0<4?g+1|0:g;H[b+16>>2]=d;H[b+20>>2]=g;if(!e){break qa}H[f+8>>2]=0;if(!sb(f+16|0,b)){break qa}if(!ua(f+544|0,b)){break qa}if(!ua(f+564|0,b)){break qa}if(!ua(f+584|0,b)){break qa}z=H[f+4>>2];l=0;b=0;h=ca-32|0;ca=h;d=H[f+12>>2];H[h+16>>2]=0;H[h+8>>2]=0;H[h+12>>2]=0;if(d){if(d>>>0>=1073741824){break b}e=d<<2;l=pa(e);H[h+8>>2]=l;b=e+l|0;H[h+16>>2]=b;ra(l,0,e);H[h+12>>2]=b}g=H[f+628>>2];e=H[g>>2];if(e){H[g+4>>2]=e;oa(e);d=H[f+12>>2];l=H[h+8>>2];b=H[h+12>>2]}H[g+4>>2]=b;H[g>>2]=l;H[g+8>>2]=H[h+16>>2];l=0;H[h+16>>2]=0;H[h+8>>2]=0;H[h+12>>2]=0;ra:{if(d){if(d>>>0>=1073741824){break b}b=d<<2;j=pa(b);H[h+8>>2]=j;l=b+j|0;H[h+16>>2]=l;ra(j,0,b);H[h+12>>2]=l}d=H[f+640>>2];b=H[d>>2];if(b){H[d+4>>2]=b;oa(b);j=H[h+8>>2];l=H[h+12>>2]}H[d+4>>2]=l;H[d>>2]=j;H[d+8>>2]=H[h+16>>2];H[h+24>>2]=0;H[h+28>>2]=0;H[h+16>>2]=0;H[h+20>>2]=0;H[h+8>>2]=0;H[h+12>>2]=0;xa(h+8|0);d=H[h+24>>2]+H[h+28>>2]|0;b=(d>>>0)/341|0;b=H[H[h+12>>2]+(b<<2)>>2]+N(d-N(b,341)|0,12)|0;H[b+4>>2]=0;H[b+8>>2]=0;H[b>>2]=z;d=H[h+28>>2]+1|0;H[h+28>>2]=d;sa:{if(!d){break sa}x=f+604|0;y=f+16|0;while(1){n=H[h+12>>2];k=H[h+24>>2];g=d-1|0;e=k+g|0;b=(e>>>0)/341|0;b=H[n+(b<<2)>>2]+N(e-N(b,341)|0,12)|0;p=H[b+8>>2];e=H[b+4>>2];i=H[b>>2];H[h+28>>2]=g;b=H[h+16>>2];if((((b|0)!=(n|0)?N(b-n>>2,341)-1|0:0)-(d+k|0)|0)+1>>>0>=682){oa(H[b-4>>2]);H[h+16>>2]=H[h+16>>2]-4}if(i>>>0>z>>>0){break sa}b=H[f+12>>2];j=(e|0)!=(b-1|0)?e+1|0:0;if(j>>>0>=b>>>0){break sa}o=N(p,12);A=o+H[f+640>>2]|0;t=o+H[f+628>>2]|0;g=H[f>>2];q=j<<2;e=H[q+H[A>>2]>>2];ta:{ua:{if((g|0)==(e|0)){o=0;if(!i){break ua}while(1){b=H[t>>2];r=H[b+8>>2];s=H[b+4>>2];n=H[b>>2];p=H[w>>2];d=H[p+4>>2];b=H[p+8>>2];va:{if(d>>>0>>0){H[d+8>>2]=r;H[d+4>>2]=s;H[d>>2]=n;H[p+4>>2]=d+12;break va}q=H[p>>2];g=(d-q|0)/12|0;k=g+1|0;if(k>>>0>=357913942){break b}e=(b-q|0)/12|0;b=e<<1;k=e>>>0>=178956970?357913941:b>>>0>k>>>0?b:k;if(k){if(k>>>0>=357913942){break a}b=pa(N(k,12))}else{b=0}j=b+N(g,12)|0;H[j+8>>2]=r;H[j+4>>2]=s;H[j>>2]=n;e=j+12|0;if((d|0)!=(q|0)){while(1){j=j-12|0;d=d-12|0;H[j>>2]=H[d>>2];H[j+4>>2]=H[d+4>>2];H[j+8>>2]=H[d+8>>2];if((d|0)!=(q|0)){continue}break}}H[p+8>>2]=b+N(k,12);H[p+4>>2]=e;H[p>>2]=j;if(!q){break va}oa(q)}H[f+8>>2]=H[f+8>>2]+1;o=o+1|0;if((i|0)!=(o|0)){continue}break}break ua}wa:{xa:{ya:{if(i>>>0<=2){b=H[f+616>>2];H[b>>2]=j;d=1;l=H[f+12>>2];if(l>>>0>1){break ya}break wa}if(K[f+8>>2]>K[f+4>>2]){break sa}b=H[f+628>>2];s=p+1|0;r=N(s,12);d=b+r|0;if((d|0)!=(t|0)){Aa(d,H[t>>2],H[t+4>>2]);b=H[f+628>>2]}b=q+H[b+r>>2]|0;H[b>>2]=H[b>>2]+(1<>>1|0;break xa}while(1){l=Ba(y+(d<<4)|0)|l<<1;d=d+1|0;if((b|0)!=(d|0)){continue}break}d=i>>>1|0;if(l>>>0<=d>>>0){break xa}break sa}while(1){j=(l-1|0)!=(j|0)?j+1|0:0;H[b+(d<<2)>>2]=j;d=d+1|0;l=H[f+12>>2];if(d>>>0>>0){continue}break}break wa}za:{Aa:{e=d-l|0;d=i-e|0;Ba:{if((d|0)==(e|0)){b=e;break Ba}n=H[f+596>>2];if((n|0)==H[f+588>>2]){break Aa}k=H[n>>2];g=H[f+600>>2];b=g+1|0;H[f+600>>2]=b;g=k&-2147483648>>>g;Ca:{if((b|0)==32){H[f+600>>2]=0;H[f+596>>2]=n+4;if(g){break Ca}break Aa}if(!g){break Aa}}b=d}d=e;break za}b=e}n=H[f+640>>2];k=n+o|0;g=H[k>>2];e=g+q|0;H[e>>2]=H[e>>2]+1;Aa(n+r|0,g,H[k+4>>2]);if(d){g=H[h+28>>2]+H[h+24>>2]|0;e=H[h+16>>2];l=H[h+12>>2];if((g|0)==(((e|0)!=(l|0)?N(e-l>>2,341)-1|0:0)|0)){xa(h+8|0);l=H[h+12>>2];g=H[h+24>>2]+H[h+28>>2]|0}e=(g>>>0)/341|0;e=H[(e<<2)+l>>2]+N(g-N(e,341)|0,12)|0;H[e+8>>2]=p;H[e+4>>2]=j;H[e>>2]=d;H[h+28>>2]=H[h+28>>2]+1}if(!b){break ua}l=H[h+28>>2]+H[h+24>>2]|0;e=H[h+16>>2];d=H[h+12>>2];if((l|0)==(((d|0)!=(e|0)?N(e-d>>2,341)-1|0:0)|0)){xa(h+8|0);l=H[h+24>>2]+H[h+28>>2]|0;e=H[h+12>>2]}else{e=d}d=(l>>>0)/341|0;d=H[e+(d<<2)>>2]+N(l-N(d,341)|0,12)|0;H[d+8>>2]=s;H[d+4>>2]=j;H[d>>2]=b;d=H[h+28>>2]+1|0;H[h+28>>2]=d;break ta}j=0;if(!i){break ua}while(1){if(H[f+12>>2]){p=H[f+548>>2];n=H[A>>2];u=H[f+604>>2];k=H[f+616>>2];d=0;while(1){o=k+(d<<2)|0;H[u+(H[o>>2]<<2)>>2]=0;g=H[f>>2];e=H[o>>2]<<2;b=H[e+n>>2];Da:{if((g|0)==(b|0)){break Da}q=e+u|0;l=g-b|0;r=H[f+560>>2];g=32-r|0;if((l|0)<=(g|0)){e=H[f+556>>2];if((e|0)==(p|0)){break sa}H[q>>2]=H[e>>2]<>>32-l;b=l+H[f+560>>2]|0;H[f+560>>2]=b;if((b|0)!=32){break Da}H[f+560>>2]=0;H[f+556>>2]=e+4;break Da}s=H[f+556>>2];b=s+4|0;if((b|0)==(p|0)){break sa}e=H[s>>2];H[f+556>>2]=b;b=l-g|0;H[f+560>>2]=b;H[q>>2]=H[s+4>>2]>>>32-b|e<>>32-l}e=H[o>>2]<<2;b=e+u|0;H[b>>2]=H[b>>2]|H[e+H[t>>2]>>2];d=d+1|0;if(d>>>0>2]){continue}break}}jb(w,x);H[f+8>>2]=H[f+8>>2]+1;j=j+1|0;if((i|0)!=(j|0)){continue}break}}d=H[h+28>>2]}if(d){continue}break}}H[h+28>>2]=0;j=H[h+16>>2];d=H[h+12>>2];l=j-d|0;if(l>>>0>=9){while(1){oa(H[d>>2]);d=H[h+12>>2]+4|0;H[h+12>>2]=d;j=H[h+16>>2];l=j-d|0;if(l>>>0>8){continue}break}}b=170;Ea:{switch((l>>>2|0)-1|0){case 1:b=341;case 0:H[h+24>>2]=b;break;default:break Ea}}Fa:{if((d|0)==(j|0)){break Fa}while(1){oa(H[d>>2]);d=d+4|0;if((j|0)!=(d|0)){continue}break}d=H[h+16>>2];b=H[h+12>>2];if((d|0)==(b|0)){break Fa}H[h+16>>2]=d+((b-d|0)+3&-4)}b=H[h+8>>2];if(b){oa(b)}ca=h+32|0;break ra}}ab(f);break d;case 5:f=$a(B+8|0,3);w=B+664|0;k=H[b+8>>2];n=H[b+12>>2];d=H[b+20>>2];e=H[b+16>>2];g=e+4|0;d=g>>>0<4?d+1|0:d;Ga:{if(g>>>0>k>>>0&(d|0)>=(n|0)|(d|0)>(n|0)){break Ga}d=e+H[b>>2]|0;H[f>>2]=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);d=H[b+20>>2];k=d;g=H[b+16>>2];e=g+4|0;d=e>>>0<4?d+1|0:d;H[b+16>>2]=e;H[b+20>>2]=d;if(K[f>>2]>32){break Ga}n=H[b+8>>2];s=H[b+12>>2];d=k;g=g+8|0;d=g>>>0<8?d+1|0:d;if(g>>>0>n>>>0&(d|0)>=(s|0)|(d|0)>(s|0)){break Ga}d=e+H[b>>2]|0;e=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[f+4>>2]=e;g=H[b+20>>2];d=H[b+16>>2]+4|0;g=d>>>0<4?g+1|0:g;H[b+16>>2]=d;H[b+20>>2]=g;if(!e){break Ga}H[f+8>>2]=0;if(!sb(f+16|0,b)){break Ga}if(!ua(f+544|0,b)){break Ga}if(!ua(f+564|0,b)){break Ga}if(!ua(f+584|0,b)){break Ga}z=H[f+4>>2];l=0;b=0;h=ca-32|0;ca=h;d=H[f+12>>2];H[h+16>>2]=0;H[h+8>>2]=0;H[h+12>>2]=0;if(d){if(d>>>0>=1073741824){break b}e=d<<2;l=pa(e);H[h+8>>2]=l;b=e+l|0;H[h+16>>2]=b;ra(l,0,e);H[h+12>>2]=b}g=H[f+628>>2];e=H[g>>2];if(e){H[g+4>>2]=e;oa(e);d=H[f+12>>2];l=H[h+8>>2];b=H[h+12>>2]}H[g+4>>2]=b;H[g>>2]=l;H[g+8>>2]=H[h+16>>2];l=0;H[h+16>>2]=0;H[h+8>>2]=0;H[h+12>>2]=0;Ha:{if(d){if(d>>>0>=1073741824){break b}b=d<<2;p=pa(b);H[h+8>>2]=p;l=b+p|0;H[h+16>>2]=l;ra(p,0,b);H[h+12>>2]=l}d=H[f+640>>2];b=H[d>>2];if(b){H[d+4>>2]=b;oa(b);l=H[h+12>>2];p=H[h+8>>2]}H[d+4>>2]=l;H[d>>2]=p;H[d+8>>2]=H[h+16>>2];H[h+24>>2]=0;H[h+28>>2]=0;H[h+16>>2]=0;H[h+20>>2]=0;H[h+8>>2]=0;H[h+12>>2]=0;xa(h+8|0);d=H[h+24>>2]+H[h+28>>2]|0;b=(d>>>0)/341|0;b=H[H[h+12>>2]+(b<<2)>>2]+N(d-N(b,341)|0,12)|0;H[b+4>>2]=0;H[b+8>>2]=0;H[b>>2]=z;d=H[h+28>>2]+1|0;H[h+28>>2]=d;Ia:{if(!d){break Ia}x=f+604|0;y=f+16|0;while(1){n=H[h+12>>2];k=H[h+24>>2];g=d-1|0;e=k+g|0;b=(e>>>0)/341|0;b=H[n+(b<<2)>>2]+N(e-N(b,341)|0,12)|0;o=H[b+8>>2];e=H[b+4>>2];i=H[b>>2];H[h+28>>2]=g;b=H[h+16>>2];if((((b|0)!=(n|0)?N(b-n>>2,341)-1|0:0)-(d+k|0)|0)+1>>>0>=682){oa(H[b-4>>2]);H[h+16>>2]=H[h+16>>2]-4}if(i>>>0>z>>>0){break Ia}m=0;b=H[f+12>>2];p=(e|0)!=(b-1|0)?e+1|0:0;if(p>>>0>=b>>>0){break Ia}b=H[f+628>>2];q=N(o,12);t=b+q|0;e=H[f>>2];r=p<<2;s=q+H[f+640>>2]|0;d=H[r+H[s>>2]>>2];Ja:{Ka:{if((e|0)==(d|0)){if(!i){break Ka}while(1){b=H[t>>2];r=H[b+8>>2];s=H[b+4>>2];n=H[b>>2];o=H[w>>2];d=H[o+4>>2];b=H[o+8>>2];La:{if(d>>>0>>0){H[d+8>>2]=r;H[d+4>>2]=s;H[d>>2]=n;H[o+4>>2]=d+12;break La}q=H[o>>2];g=(d-q|0)/12|0;k=g+1|0;if(k>>>0>=357913942){break b}e=(b-q|0)/12|0;b=e<<1;k=e>>>0>=178956970?357913941:b>>>0>k>>>0?b:k;if(k){if(k>>>0>=357913942){break a}b=pa(N(k,12))}else{b=0}p=b+N(g,12)|0;H[p+8>>2]=r;H[p+4>>2]=s;H[p>>2]=n;e=p+12|0;if((d|0)!=(q|0)){while(1){p=p-12|0;d=d-12|0;H[p>>2]=H[d>>2];H[p+4>>2]=H[d+4>>2];H[p+8>>2]=H[d+8>>2];if((d|0)!=(q|0)){continue}break}}H[o+8>>2]=b+N(k,12);H[o+4>>2]=e;H[o>>2]=p;if(!q){break La}oa(q)}H[f+8>>2]=H[f+8>>2]+1;m=m+1|0;if((i|0)!=(m|0)){continue}break}break Ka}Ma:{Na:{Oa:{if(i>>>0<=2){b=H[f+616>>2];H[b>>2]=p;d=1;l=H[f+12>>2];if(l>>>0>1){break Oa}break Ma}if(K[f+8>>2]>K[f+4>>2]){break Ia}k=b;b=q+12|0;Aa(k+b|0,H[t>>2],H[t+4>>2]);b=r+H[b+H[f+628>>2]>>2]|0;H[b>>2]=H[b>>2]+(1<>>1|0;break Na}while(1){l=Ba(y+(d<<4)|0)|l<<1;d=d+1|0;if((b|0)!=(d|0)){continue}break}d=i>>>1|0;if(l>>>0<=d>>>0){break Na}break Ia}while(1){p=(l-1|0)!=(p|0)?p+1|0:0;H[b+(d<<2)>>2]=p;d=d+1|0;l=H[f+12>>2];if(d>>>0>>0){continue}break}break Ma}s=o+1|0;Pa:{Qa:{e=d-l|0;d=i-e|0;Ra:{if((d|0)==(e|0)){b=e;break Ra}n=H[f+596>>2];if((n|0)==H[f+588>>2]){break Qa}k=H[n>>2];g=H[f+600>>2];b=g+1|0;H[f+600>>2]=b;g=k&-2147483648>>>g;Sa:{if((b|0)==32){H[f+600>>2]=0;H[f+596>>2]=n+4;if(g){break Sa}break Qa}if(!g){break Qa}}b=d}d=e;break Pa}b=e}n=H[f+640>>2];k=n+q|0;g=H[k>>2];e=g+r|0;H[e>>2]=H[e>>2]+1;Aa(n+N(s,12)|0,g,H[k+4>>2]);if(d){m=H[h+28>>2]+H[h+24>>2]|0;e=H[h+16>>2];l=H[h+12>>2];if((m|0)==(((e|0)!=(l|0)?N(e-l>>2,341)-1|0:0)|0)){xa(h+8|0);m=H[h+24>>2]+H[h+28>>2]|0;l=H[h+12>>2]}e=(m>>>0)/341|0;e=H[l+(e<<2)>>2]+N(m-N(e,341)|0,12)|0;H[e+8>>2]=o;H[e+4>>2]=p;H[e>>2]=d;H[h+28>>2]=H[h+28>>2]+1}if(!b){break Ka}l=H[h+28>>2]+H[h+24>>2]|0;e=H[h+16>>2];d=H[h+12>>2];if((l|0)==(((d|0)!=(e|0)?N(e-d>>2,341)-1|0:0)|0)){xa(h+8|0);l=H[h+24>>2]+H[h+28>>2]|0;e=H[h+12>>2]}else{e=d}d=(l>>>0)/341|0;d=H[e+(d<<2)>>2]+N(l-N(d,341)|0,12)|0;H[d+8>>2]=s;H[d+4>>2]=p;H[d>>2]=b;d=H[h+28>>2]+1|0;H[h+28>>2]=d;break Ja}if(!i){break Ka}while(1){if(H[f+12>>2]){A=H[f+548>>2];n=H[s>>2];u=H[f+604>>2];k=H[f+616>>2];d=0;while(1){p=k+(d<<2)|0;H[u+(H[p>>2]<<2)>>2]=0;g=H[f>>2];e=H[p>>2]<<2;b=H[e+n>>2];Ta:{if((g|0)==(b|0)){break Ta}o=e+u|0;l=g-b|0;q=H[f+560>>2];g=32-q|0;if((l|0)<=(g|0)){e=H[f+556>>2];if((e|0)==(A|0)){break Ia}H[o>>2]=H[e>>2]<>>32-l;b=l+H[f+560>>2]|0;H[f+560>>2]=b;if((b|0)!=32){break Ta}H[f+560>>2]=0;H[f+556>>2]=e+4;break Ta}r=H[f+556>>2];b=r+4|0;if((b|0)==(A|0)){break Ia}e=H[r>>2];H[f+556>>2]=b;b=l-g|0;H[f+560>>2]=b;H[o>>2]=H[r+4>>2]>>>32-b|e<>>32-l}e=H[p>>2]<<2;b=e+u|0;H[b>>2]=H[b>>2]|H[e+H[t>>2]>>2];d=d+1|0;if(d>>>0>2]){continue}break}}jb(w,x);H[f+8>>2]=H[f+8>>2]+1;m=m+1|0;if((i|0)!=(m|0)){continue}break}}d=H[h+28>>2]}if(d){continue}break}}H[h+28>>2]=0;p=H[h+16>>2];d=H[h+12>>2];l=p-d|0;if(l>>>0>=9){while(1){oa(H[d>>2]);d=H[h+12>>2]+4|0;H[h+12>>2]=d;p=H[h+16>>2];l=p-d|0;if(l>>>0>8){continue}break}}b=170;Ua:{switch((l>>>2|0)-1|0){case 1:b=341;case 0:H[h+24>>2]=b;break;default:break Ua}}Va:{if((d|0)==(p|0)){break Va}while(1){oa(H[d>>2]);d=d+4|0;if((p|0)!=(d|0)){continue}break}d=H[h+16>>2];b=H[h+12>>2];if((d|0)==(b|0)){break Va}H[h+16>>2]=d+((b-d|0)+3&-4)}b=H[h+8>>2];if(b){oa(b)}ca=h+32|0;break Ha}}ab(f);break d;case 6:break f;default:break c}}f=$a(B+8|0,3);w=B+664|0;k=H[b+8>>2];n=H[b+12>>2];d=H[b+20>>2];e=H[b+16>>2];g=e+4|0;d=g>>>0<4?d+1|0:d;Wa:{if(g>>>0>k>>>0&(d|0)>=(n|0)|(d|0)>(n|0)){break Wa}d=e+H[b>>2]|0;H[f>>2]=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);d=H[b+20>>2];k=d;g=H[b+16>>2];e=g+4|0;d=e>>>0<4?d+1|0:d;H[b+16>>2]=e;H[b+20>>2]=d;if(K[f>>2]>32){break Wa}n=H[b+8>>2];s=H[b+12>>2];d=k;g=g+8|0;d=g>>>0<8?d+1|0:d;if(g>>>0>n>>>0&(d|0)>=(s|0)|(d|0)>(s|0)){break Wa}d=e+H[b>>2]|0;e=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[f+4>>2]=e;g=H[b+20>>2];d=H[b+16>>2]+4|0;g=d>>>0<4?g+1|0:g;H[b+16>>2]=d;H[b+20>>2]=g;if(!e){break Wa}H[f+8>>2]=0;if(!sb(f+16|0,b)){break Wa}if(!ua(f+544|0,b)){break Wa}if(!ua(f+564|0,b)){break Wa}if(!ua(f+584|0,b)){break Wa}z=H[f+4>>2];l=0;b=0;h=ca-32|0;ca=h;d=H[f+12>>2];H[h+16>>2]=0;H[h+8>>2]=0;H[h+12>>2]=0;if(d){if(d>>>0>=1073741824){break b}e=d<<2;l=pa(e);H[h+8>>2]=l;b=e+l|0;H[h+16>>2]=b;ra(l,0,e);H[h+12>>2]=b}g=H[f+628>>2];e=H[g>>2];if(e){H[g+4>>2]=e;oa(e);d=H[f+12>>2];l=H[h+8>>2];b=H[h+12>>2]}H[g+4>>2]=b;H[g>>2]=l;H[g+8>>2]=H[h+16>>2];l=0;H[h+16>>2]=0;H[h+8>>2]=0;H[h+12>>2]=0;Xa:{if(d){if(d>>>0>=1073741824){break b}b=d<<2;j=pa(b);H[h+8>>2]=j;l=b+j|0;H[h+16>>2]=l;ra(j,0,b);H[h+12>>2]=l}d=H[f+640>>2];b=H[d>>2];if(b){H[d+4>>2]=b;oa(b);j=H[h+8>>2];l=H[h+12>>2]}H[d+4>>2]=l;H[d>>2]=j;H[d+8>>2]=H[h+16>>2];H[h+24>>2]=0;H[h+28>>2]=0;H[h+16>>2]=0;H[h+20>>2]=0;H[h+8>>2]=0;H[h+12>>2]=0;xa(h+8|0);d=H[h+24>>2]+H[h+28>>2]|0;b=(d>>>0)/341|0;b=H[H[h+12>>2]+(b<<2)>>2]+N(d-N(b,341)|0,12)|0;H[b+4>>2]=0;H[b+8>>2]=0;H[b>>2]=z;d=H[h+28>>2]+1|0;H[h+28>>2]=d;Ya:{if(!d){break Ya}x=f+604|0;y=f+16|0;while(1){n=H[h+12>>2];k=H[h+24>>2];g=d-1|0;e=k+g|0;b=(e>>>0)/341|0;b=H[n+(b<<2)>>2]+N(e-N(b,341)|0,12)|0;p=H[b+8>>2];i=H[b>>2];H[h+28>>2]=g;b=H[h+16>>2];if((((b|0)!=(n|0)?N(b-n>>2,341)-1|0:0)-(d+k|0)|0)+1>>>0>=682){oa(H[b-4>>2]);H[h+16>>2]=H[h+16>>2]-4}if(i>>>0>z>>>0){break Ya}b=H[f+628>>2];o=N(p,12);A=o+H[f+640>>2]|0;j=Vd(f,i,A);if(j>>>0>=K[f+12>>2]){break Ya}t=b+o|0;g=H[f>>2];q=j<<2;e=H[q+H[A>>2]>>2];Za:{_a:{if((g|0)==(e|0)){o=0;if(!i){break _a}while(1){b=H[t>>2];r=H[b+8>>2];s=H[b+4>>2];n=H[b>>2];p=H[w>>2];d=H[p+4>>2];b=H[p+8>>2];$a:{if(d>>>0>>0){H[d+8>>2]=r;H[d+4>>2]=s;H[d>>2]=n;H[p+4>>2]=d+12;break $a}q=H[p>>2];g=(d-q|0)/12|0;k=g+1|0;if(k>>>0>=357913942){break b}e=(b-q|0)/12|0;b=e<<1;k=e>>>0>=178956970?357913941:b>>>0>k>>>0?b:k;if(k){if(k>>>0>=357913942){break a}b=pa(N(k,12))}else{b=0}j=b+N(g,12)|0;H[j+8>>2]=r;H[j+4>>2]=s;H[j>>2]=n;e=j+12|0;if((d|0)!=(q|0)){while(1){j=j-12|0;d=d-12|0;H[j>>2]=H[d>>2];H[j+4>>2]=H[d+4>>2];H[j+8>>2]=H[d+8>>2];if((d|0)!=(q|0)){continue}break}}H[p+8>>2]=b+N(k,12);H[p+4>>2]=e;H[p>>2]=j;if(!q){break $a}oa(q)}H[f+8>>2]=H[f+8>>2]+1;o=o+1|0;if((i|0)!=(o|0)){continue}break}break _a}ab:{bb:{cb:{if(i>>>0<=2){b=H[f+616>>2];H[b>>2]=j;d=1;l=H[f+12>>2];if(l>>>0>1){break cb}break ab}if(K[f+8>>2]>K[f+4>>2]){break Ya}b=H[f+628>>2];s=p+1|0;r=N(s,12);d=b+r|0;if((d|0)!=(t|0)){Aa(d,H[t>>2],H[t+4>>2]);b=H[f+628>>2]}b=q+H[b+r>>2]|0;H[b>>2]=H[b>>2]+(1<>>1|0;break bb}while(1){l=Ba(y+(d<<4)|0)|l<<1;d=d+1|0;if((b|0)!=(d|0)){continue}break}d=i>>>1|0;if(l>>>0<=d>>>0){break bb}break Ya}while(1){j=(l-1|0)!=(j|0)?j+1|0:0;H[b+(d<<2)>>2]=j;d=d+1|0;l=H[f+12>>2];if(d>>>0>>0){continue}break}break ab}db:{eb:{e=d-l|0;d=i-e|0;fb:{if((d|0)==(e|0)){b=e;break fb}n=H[f+596>>2];if((n|0)==H[f+588>>2]){break eb}k=H[n>>2];g=H[f+600>>2];b=g+1|0;H[f+600>>2]=b;g=k&-2147483648>>>g;gb:{if((b|0)==32){H[f+600>>2]=0;H[f+596>>2]=n+4;if(g){break gb}break eb}if(!g){break eb}}b=d}d=e;break db}b=e}n=H[f+640>>2];k=n+o|0;g=H[k>>2];e=g+q|0;H[e>>2]=H[e>>2]+1;Aa(n+r|0,g,H[k+4>>2]);if(d){g=H[h+28>>2]+H[h+24>>2]|0;e=H[h+16>>2];l=H[h+12>>2];if((g|0)==(((e|0)!=(l|0)?N(e-l>>2,341)-1|0:0)|0)){xa(h+8|0);l=H[h+12>>2];g=H[h+24>>2]+H[h+28>>2]|0}e=(g>>>0)/341|0;e=H[(e<<2)+l>>2]+N(g-N(e,341)|0,12)|0;H[e+8>>2]=p;H[e+4>>2]=j;H[e>>2]=d;H[h+28>>2]=H[h+28>>2]+1}if(!b){break _a}l=H[h+28>>2]+H[h+24>>2]|0;e=H[h+16>>2];d=H[h+12>>2];if((l|0)==(((d|0)!=(e|0)?N(e-d>>2,341)-1|0:0)|0)){xa(h+8|0);l=H[h+24>>2]+H[h+28>>2]|0;e=H[h+12>>2]}else{e=d}d=(l>>>0)/341|0;d=H[e+(d<<2)>>2]+N(l-N(d,341)|0,12)|0;H[d+8>>2]=s;H[d+4>>2]=j;H[d>>2]=b;d=H[h+28>>2]+1|0;H[h+28>>2]=d;break Za}j=0;if(!i){break _a}while(1){if(H[f+12>>2]){p=H[f+548>>2];n=H[A>>2];u=H[f+604>>2];k=H[f+616>>2];d=0;while(1){o=k+(d<<2)|0;H[u+(H[o>>2]<<2)>>2]=0;g=H[f>>2];e=H[o>>2]<<2;b=H[e+n>>2];hb:{if((g|0)==(b|0)){break hb}q=e+u|0;l=g-b|0;r=H[f+560>>2];g=32-r|0;if((l|0)<=(g|0)){e=H[f+556>>2];if((e|0)==(p|0)){break Ya}H[q>>2]=H[e>>2]<>>32-l;b=l+H[f+560>>2]|0;H[f+560>>2]=b;if((b|0)!=32){break hb}H[f+560>>2]=0;H[f+556>>2]=e+4;break hb}s=H[f+556>>2];b=s+4|0;if((b|0)==(p|0)){break Ya}e=H[s>>2];H[f+556>>2]=b;b=l-g|0;H[f+560>>2]=b;H[q>>2]=H[s+4>>2]>>>32-b|e<>>32-l}e=H[o>>2]<<2;b=e+u|0;H[b>>2]=H[b>>2]|H[e+H[t>>2]>>2];d=d+1|0;if(d>>>0>2]){continue}break}}jb(w,x);H[f+8>>2]=H[f+8>>2]+1;j=j+1|0;if((i|0)!=(j|0)){continue}break}}d=H[h+28>>2]}if(d){continue}break}}H[h+28>>2]=0;j=H[h+16>>2];d=H[h+12>>2];l=j-d|0;if(l>>>0>=9){while(1){oa(H[d>>2]);d=H[h+12>>2]+4|0;H[h+12>>2]=d;j=H[h+16>>2];l=j-d|0;if(l>>>0>8){continue}break}}b=170;ib:{switch((l>>>2|0)-1|0){case 1:b=341;case 0:H[h+24>>2]=b;break;default:break ib}}jb:{if((d|0)==(j|0)){break jb}while(1){oa(H[d>>2]);d=d+4|0;if((j|0)!=(d|0)){continue}break}d=H[h+16>>2];b=H[h+12>>2];if((d|0)==(b|0)){break jb}H[h+16>>2]=d+((b-d|0)+3&-4)}b=H[h+8>>2];if(b){oa(b)}ca=h+32|0;break Xa}}ab(f)}n=H[a+12>>2]==((H[c+4>>2]-H[c>>2]|0)/12|0)}ca=B+672|0;return n}sa();v()}wa();v()}function kd(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0;if(!a){return 1}e=H[c+20>>2];g=H[c+12>>2];i=H[c+16>>2];a:{if((e|0)>=(g|0)&i>>>0>=K[c+8>>2]|(e|0)>(g|0)){break a}g=I[i+H[c>>2]|0];i=i+1|0;e=i?e:e+1|0;H[c+16>>2]=i;H[c+20>>2]=e;b:{switch(g|0){case 0:e=a;f=b;i=d;a=0;d=0;m=ca+-64|0;ca=m;H[m+56>>2]=0;H[m+48>>2]=0;H[m+52>>2]=0;H[m+40>>2]=0;H[m+44>>2]=0;H[m+32>>2]=0;H[m+36>>2]=0;H[m+24>>2]=0;H[m+28>>2]=0;H[m+16>>2]=0;H[m+20>>2]=0;H[m+8>>2]=0;H[m+12>>2]=0;c:{if(!Ne(m+8|0,c)){break c}if(!Me(m+8|0,c)|(H[m+20>>2]?0:e)){break c}Db(c,0,0);if(e){s=f<<2;t=H[m+36>>2];w=H[m+48>>2];x=H[m+24>>2];l=H[m+56>>2];j=H[m+52>>2];while(1){d:{if(l>>>0>16383){break d}while(1){if((j|0)<=0){break d}j=j-1|0;H[m+52>>2]=j;l=I[j+w|0]|l<<8;H[m+56>>2]=l;if(l>>>0<16384){continue}break}}a=l&4095;r=H[(a<<2)+x>>2];b=(r<<3)+t|0;l=(N(H[b>>2],l>>>12|0)+a|0)-H[b+4>>2]|0;H[m+56>>2]=l;if((f|0)>0){a=0;if(!I[c+36|0]|r>>>0>32){break c}g=d+f|0;e:{if(!r){ra(i+(d<<2)|0,0,s);break e}y=r&-2;z=r&1;b=H[c+32>>2];h=H[c+28>>2];n=H[c+24>>2];while(1){k=0;a=b;o=0;q=0;if((r|0)!=1){while(1){p=n+(a>>>3|0)|0;f:{if(p>>>0>=h>>>0){p=0;break f}p=I[p|0];b=a+1|0;H[c+32>>2]=b;p=p>>>(a&7)&1;a=b}p=p<>>3|0)|0;if(u>>>0>>0){o=I[u|0];b=a+1|0;H[c+32>>2]=b;o=o>>>(a&7)&1;a=b}u=k|1;k=k+2|0;o=p|o<>>3|0)|0;if(p>>>0>>0){p=I[p|0];b=a+1|0;H[c+32>>2]=b;a=p>>>(a&7)&1}else{a=0}o=a<>2]=o;d=d+1|0;if((g|0)!=(d|0)){continue}break}}d=g}v=f+v|0;if(e>>>0>v>>>0){continue}break}}F[c+36|0]=0;b=H[c+20>>2];e=0;d=H[c+32>>2]+7|0;e=d>>>0<7?1:e;d=(e&7)<<29|d>>>3;a=d+H[c+16>>2]|0;e=(e>>>3|0)+b|0;H[c+16>>2]=a;H[c+20>>2]=a>>>0>>0?e+1|0:e;a=1}b=H[m+36>>2];if(b){H[m+40>>2]=b;oa(b)}b=H[m+24>>2];if(b){H[m+28>>2]=b;oa(b)}b=H[m+8>>2];if(b){H[m+12>>2]=b;oa(b)}ca=m- -64|0;return a;case 1:break b;default:break a}}b=0;e=H[c+20>>2];g=H[c+12>>2];i=H[c+16>>2];g:{if((e|0)>=(g|0)&i>>>0>=K[c+8>>2]|(e|0)>(g|0)){break g}g=I[i+H[c>>2]|0];i=i+1|0;e=i?e:e+1|0;H[c+16>>2]=i;H[c+20>>2]=e;h:{switch(g-1|0){case 8:g=a;r=d;i=ca+-64|0;ca=i;H[i+56>>2]=0;H[i+48>>2]=0;H[i+52>>2]=0;H[i+40>>2]=0;H[i+44>>2]=0;H[i+32>>2]=0;H[i+36>>2]=0;H[i+24>>2]=0;H[i+28>>2]=0;H[i+16>>2]=0;H[i+20>>2]=0;H[i+8>>2]=0;H[i+12>>2]=0;j=i+8|0;a=J[c+38>>1];i:{j:{if(!a){break j}k:{if(a>>>0<=511){d=H[c+8>>2];b=H[c+12>>2];e=H[c+20>>2];a=H[c+16>>2];f=a+4|0;e=f>>>0<4?e+1|0:e;if(d>>>0>>0&(b|0)<=(e|0)|(b|0)<(e|0)){break j}a=a+H[c>>2]|0;h=I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24);H[j+12>>2]=h;e=H[c+20>>2];f=H[c+16>>2]+4|0;e=f>>>0<4?e+1|0:e;H[c+16>>2]=f;H[c+20>>2]=e;break k}if(!hb(1,j+12|0,c)){break j}f=H[c+16>>2];e=H[c+20>>2];h=H[j+12>>2]}a=H[c+8>>2];d=a-f|0;a=H[c+12>>2]-((a>>>0>>0)+e|0)|0;if(d>>>0>>6>>>0&(a|0)<=0|(a|0)<0){break j}b=H[j>>2];a=H[j+4>>2]-b>>2;l:{if(a>>>0>>0){ya(j,h-a|0);h=H[j+12>>2];break l}if(a>>>0<=h>>>0){break l}H[j+4>>2]=b+(h<<2)}d=1;if(!h){break i}f=H[c+16>>2];e=H[c+20>>2];s=H[j>>2];m=H[c+8>>2];n=H[c+12>>2];b=0;while(1){d=0;if((e|0)>=(n|0)&f>>>0>=m>>>0|(e|0)>(n|0)){break i}d=H[c>>2];p=I[d+f|0];f=f+1|0;e=f?e:e+1|0;H[c+16>>2]=f;H[c+20>>2]=e;a=p>>>2|0;l=0;m:{n:{o:{p:{t=p&3;switch(t|0){case 0:break n;case 3:break p;default:break o}}a=a+b|0;d=0;if(a>>>0>=h>>>0){break i}ra(s+(b<<2)|0,0,(p&252)+4|0);b=a;break m}while(1){if((f|0)==(m|0)&(e|0)==(n|0)){break j}h=I[d+f|0];f=f+1|0;e=f?e:e+1|0;H[c+16>>2]=f;H[c+20>>2]=e;a=h<<(l<<3|6)|a;l=l+1|0;if((t|0)!=(l|0)){continue}break}}H[s+(b<<2)>>2]=a}b=b+1|0;h=H[j+12>>2];if(b>>>0>>0){continue}break}a=j+16|0;n=H[j>>2];d=H[j+16>>2];b=H[j+20>>2]-d|0;q:{if(b>>>0<=32767){ya(a,8192-(b>>>2|0)|0);break q}if((b|0)==32768){break q}H[j+20>>2]=d+32768}d=j+28|0;b=H[d>>2];f=H[j+32>>2]-b>>3;r:{if(f>>>0>>0){ob(d,h-f|0);b=H[d>>2];break r}if(f>>>0>h>>>0){H[j+32>>2]=(h<<3)+b}if(!h){break j}}m=H[a>>2];f=0;d=0;while(1){e=n+(f<<2)|0;j=H[e>>2];l=(f<<3)+b|0;a=d;H[l+4>>2]=a;H[l>>2]=j;e=H[e>>2];d=e+a|0;if(d>>>0>8192){break j}s:{if(a>>>0>=d>>>0){break s}l=0;j=e&7;if(j){while(1){H[m+(a<<2)>>2]=f;a=a+1|0;l=l+1|0;if((j|0)!=(l|0)){continue}break}}if(e-1>>>0<=6){break s}while(1){e=m+(a<<2)|0;H[e>>2]=f;H[e+28>>2]=f;H[e+24>>2]=f;H[e+20>>2]=f;H[e+16>>2]=f;H[e+12>>2]=f;H[e+8>>2]=f;H[e+4>>2]=f;a=a+8|0;if((d|0)!=(a|0)){continue}break}}f=f+1|0;if((h|0)!=(f|0)){continue}break}k=(d|0)==8192}d=k}t:{if(!d|(H[i+20>>2]?0:g)){break t}d=0;m=ca-16|0;ca=m;u:{v:{if(J[c+38>>1]<=511){b=H[c+8>>2];a=H[c+12>>2];h=a;e=H[c+20>>2];k=H[c+16>>2];f=k+8|0;e=f>>>0<8?e+1|0:e;if(b>>>0>>0&(a|0)<=(e|0)|(a|0)<(e|0)){break u}k=k+H[c>>2]|0;a=I[k|0]|I[k+1|0]<<8|(I[k+2|0]<<16|I[k+3|0]<<24);k=I[k+4|0]|I[k+5|0]<<8|(I[k+6|0]<<16|I[k+7|0]<<24);H[c+16>>2]=f;H[c+20>>2]=e;break v}if(!gb(1,m+8|0,c)){break u}f=H[c+16>>2];e=H[c+20>>2];b=H[c+8>>2];h=H[c+12>>2];a=H[m+8>>2];k=H[m+12>>2]}j=b-f|0;b=h-((b>>>0>>0)+e|0)|0;if((b|0)==(k|0)&a>>>0>j>>>0|b>>>0>>0){break u}e=e+k|0;b=a+f|0;e=b>>>0>>0?e+1|0:e;H[c+16>>2]=b;H[c+20>>2]=e;if((a|0)<=0){break u}b=H[c>>2]+f|0;H[i+48>>2]=b;c=a-1|0;f=c+b|0;e=I[f|0];w:{if(e>>>0<=63){H[i+52>>2]=c;a=I[f|0]&63;break w}x:{switch((e>>>6|0)-1|0){case 0:if(a>>>0<2){break u}a=a-2|0;H[i+52>>2]=a;a=a+b|0;a=I[a+1|0]<<8&16128|I[a|0];break w;case 1:if(a>>>0<3){break u}a=a-3|0;H[i+52>>2]=a;a=a+b|0;a=I[a+1|0]<<8|I[a+2|0]<<16&4128768|I[a|0];break w;default:break x}}a=a-4|0;H[i+52>>2]=a;a=a+b|0;a=(I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24))&1073741823}H[i+56>>2]=a+32768;d=a>>>0<8355840}ca=m+16|0;if(!d){break t}if(!g){o=1;break t}b=H[i+52>>2];a=H[i+56>>2];c=H[i+36>>2];d=H[i+48>>2];f=H[i+24>>2];while(1){y:{if(a>>>0>32767){break y}while(1){if((b|0)<=0){break y}b=b-1|0;H[i+52>>2]=b;a=I[b+d|0]|a<<8;H[i+56>>2]=a;if(a>>>0<32768){continue}break}}e=a&8191;o=H[f+(e<<2)>>2];k=c+(o<<3)|0;a=(N(H[k>>2],a>>>13|0)+e|0)-H[k+4>>2]|0;H[i+56>>2]=a;H[r+(q<<2)>>2]=o;o=1;q=q+1|0;if((g|0)!=(q|0)){continue}break}}a=H[i+36>>2];if(a){H[i+40>>2]=a;oa(a)}a=H[i+24>>2];if(a){H[i+28>>2]=a;oa(a)}a=H[i+8>>2];if(a){H[i+12>>2]=a;oa(a)}ca=i- -64|0;b=o;break g;case 9:m=a;r=d;g=ca+-64|0;ca=g;H[g+56>>2]=0;H[g+48>>2]=0;H[g+52>>2]=0;H[g+40>>2]=0;H[g+44>>2]=0;H[g+32>>2]=0;H[g+36>>2]=0;H[g+24>>2]=0;H[g+28>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;j=g+8|0;a=J[c+38>>1];z:{A:{if(!a){break A}B:{if(a>>>0<=511){d=H[c+8>>2];b=H[c+12>>2];e=H[c+20>>2];a=H[c+16>>2];f=a+4|0;e=f>>>0<4?e+1|0:e;if(d>>>0>>0&(b|0)<=(e|0)|(b|0)<(e|0)){break A}a=a+H[c>>2]|0;h=I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24);H[j+12>>2]=h;e=H[c+20>>2];f=H[c+16>>2]+4|0;e=f>>>0<4?e+1|0:e;H[c+16>>2]=f;H[c+20>>2]=e;break B}if(!hb(1,j+12|0,c)){break A}f=H[c+16>>2];e=H[c+20>>2];h=H[j+12>>2]}a=H[c+8>>2];d=a-f|0;a=H[c+12>>2]-((a>>>0>>0)+e|0)|0;if(d>>>0>>6>>>0&(a|0)<=0|(a|0)<0){break A}b=H[j>>2];a=H[j+4>>2]-b>>2;C:{if(a>>>0>>0){ya(j,h-a|0);h=H[j+12>>2];break C}if(a>>>0<=h>>>0){break C}H[j+4>>2]=b+(h<<2)}d=1;if(!h){break z}f=H[c+16>>2];e=H[c+20>>2];s=H[j>>2];i=H[c+8>>2];n=H[c+12>>2];b=0;while(1){d=0;if((e|0)>=(n|0)&f>>>0>=i>>>0|(e|0)>(n|0)){break z}d=H[c>>2];p=I[d+f|0];f=f+1|0;e=f?e:e+1|0;H[c+16>>2]=f;H[c+20>>2]=e;a=p>>>2|0;l=0;D:{E:{F:{G:{t=p&3;switch(t|0){case 0:break E;case 3:break G;default:break F}}a=a+b|0;d=0;if(a>>>0>=h>>>0){break z}ra(s+(b<<2)|0,0,(p&252)+4|0);b=a;break D}while(1){if((f|0)==(i|0)&(e|0)==(n|0)){break A}h=I[d+f|0];f=f+1|0;e=f?e:e+1|0;H[c+16>>2]=f;H[c+20>>2]=e;a=h<<(l<<3|6)|a;l=l+1|0;if((t|0)!=(l|0)){continue}break}}H[s+(b<<2)>>2]=a}b=b+1|0;h=H[j+12>>2];if(b>>>0>>0){continue}break}a=j+16|0;n=H[j>>2];d=H[j+16>>2];b=H[j+20>>2]-d|0;H:{if(b>>>0<=131071){ya(a,32768-(b>>>2|0)|0);break H}if((b|0)==131072){break H}H[j+20>>2]=d+131072}d=j+28|0;b=H[d>>2];f=H[j+32>>2]-b>>3;I:{if(f>>>0>>0){ob(d,h-f|0);b=H[d>>2];break I}if(f>>>0>h>>>0){H[j+32>>2]=(h<<3)+b}if(!h){break A}}i=H[a>>2];f=0;d=0;while(1){e=n+(f<<2)|0;j=H[e>>2];l=(f<<3)+b|0;a=d;H[l+4>>2]=a;H[l>>2]=j;e=H[e>>2];d=e+a|0;if(d>>>0>32768){break A}J:{if(a>>>0>=d>>>0){break J}l=0;j=e&7;if(j){while(1){H[i+(a<<2)>>2]=f;a=a+1|0;l=l+1|0;if((j|0)!=(l|0)){continue}break}}if(e-1>>>0<=6){break J}while(1){e=i+(a<<2)|0;H[e>>2]=f;H[e+28>>2]=f;H[e+24>>2]=f;H[e+20>>2]=f;H[e+16>>2]=f;H[e+12>>2]=f;H[e+8>>2]=f;H[e+4>>2]=f;a=a+8|0;if((d|0)!=(a|0)){continue}break}}f=f+1|0;if((h|0)!=(f|0)){continue}break}k=(d|0)==32768}d=k}K:{if(!d|(H[g+20>>2]?0:m)){break K}d=0;j=ca-16|0;ca=j;L:{M:{if(J[c+38>>1]<=511){b=H[c+8>>2];a=H[c+12>>2];h=a;e=H[c+20>>2];k=H[c+16>>2];f=k+8|0;e=f>>>0<8?e+1|0:e;if(b>>>0>>0&(a|0)<=(e|0)|(a|0)<(e|0)){break L}k=k+H[c>>2]|0;a=I[k|0]|I[k+1|0]<<8|(I[k+2|0]<<16|I[k+3|0]<<24);k=I[k+4|0]|I[k+5|0]<<8|(I[k+6|0]<<16|I[k+7|0]<<24);H[c+16>>2]=f;H[c+20>>2]=e;break M}if(!gb(1,j+8|0,c)){break L}f=H[c+16>>2];e=H[c+20>>2];b=H[c+8>>2];h=H[c+12>>2];a=H[j+8>>2];k=H[j+12>>2]}i=b-f|0;b=h-((b>>>0>>0)+e|0)|0;if((b|0)==(k|0)&a>>>0>i>>>0|b>>>0>>0){break L}i=e+k|0;b=a+f|0;i=b>>>0>>0?i+1|0:i;H[c+16>>2]=b;H[c+20>>2]=i;if((a|0)<=0){break L}b=H[c>>2]+f|0;H[g+48>>2]=b;c=a-1|0;f=c+b|0;e=I[f|0];N:{if(e>>>0<=63){H[g+52>>2]=c;a=I[f|0]&63;break N}O:{switch((e>>>6|0)-1|0){case 0:if(a>>>0<2){break L}a=a-2|0;H[g+52>>2]=a;a=a+b|0;a=I[a+1|0]<<8&16128|I[a|0];break N;case 1:if(a>>>0<3){break L}a=a-3|0;H[g+52>>2]=a;a=a+b|0;a=I[a+1|0]<<8|I[a+2|0]<<16&4128768|I[a|0];break N;default:break O}}a=a-4|0;H[g+52>>2]=a;a=a+b|0;a=(I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24))&1073741823}H[g+56>>2]=a+131072;d=a>>>0<33423360}ca=j+16|0;if(!d){break K}if(!m){o=1;break K}b=H[g+52>>2];a=H[g+56>>2];c=H[g+36>>2];d=H[g+48>>2];f=H[g+24>>2];while(1){P:{if(a>>>0>131071){break P}while(1){if((b|0)<=0){break P}b=b-1|0;H[g+52>>2]=b;a=I[b+d|0]|a<<8;H[g+56>>2]=a;if(a>>>0<131072){continue}break}}e=a&32767;o=H[f+(e<<2)>>2];k=c+(o<<3)|0;a=(N(H[k>>2],a>>>15|0)+e|0)-H[k+4>>2]|0;H[g+56>>2]=a;H[r+(q<<2)>>2]=o;o=1;q=q+1|0;if((m|0)!=(q|0)){continue}break}}a=H[g+36>>2];if(a){H[g+40>>2]=a;oa(a)}a=H[g+24>>2];if(a){H[g+28>>2]=a;oa(a)}a=H[g+8>>2];if(a){H[g+12>>2]=a;oa(a)}ca=g- -64|0;b=o;break g;case 10:m=a;j=d;g=ca+-64|0;ca=g;H[g+56>>2]=0;H[g+48>>2]=0;H[g+52>>2]=0;H[g+40>>2]=0;H[g+44>>2]=0;H[g+32>>2]=0;H[g+36>>2]=0;H[g+24>>2]=0;H[g+28>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;n=g+8|0;a=J[c+38>>1];Q:{R:{if(!a){break R}S:{if(a>>>0<=511){d=H[c+8>>2];b=H[c+12>>2];e=H[c+20>>2];a=H[c+16>>2];f=a+4|0;e=f>>>0<4?e+1|0:e;if(d>>>0>>0&(b|0)<=(e|0)|(b|0)<(e|0)){break R}a=a+H[c>>2]|0;h=I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24);H[n+12>>2]=h;e=H[c+20>>2];f=H[c+16>>2]+4|0;e=f>>>0<4?e+1|0:e;H[c+16>>2]=f;H[c+20>>2]=e;break S}if(!hb(1,n+12|0,c)){break R}f=H[c+16>>2];e=H[c+20>>2];h=H[n+12>>2]}a=H[c+8>>2];d=a-f|0;a=H[c+12>>2]-((a>>>0>>0)+e|0)|0;if(d>>>0>>6>>>0&(a|0)<=0|(a|0)<0){break R}b=H[n>>2];a=H[n+4>>2]-b>>2;T:{if(a>>>0>>0){ya(n,h-a|0);h=H[n+12>>2];break T}if(a>>>0<=h>>>0){break T}H[n+4>>2]=b+(h<<2)}d=1;if(!h){break Q}f=H[c+16>>2];e=H[c+20>>2];t=H[n>>2];r=H[c+8>>2];p=H[c+12>>2];b=0;while(1){d=0;if((e|0)>=(p|0)&f>>>0>=r>>>0|(e|0)>(p|0)){break Q}d=H[c>>2];s=I[d+f|0];f=f+1|0;i=f?e:e+1|0;H[c+16>>2]=f;e=i;H[c+20>>2]=e;a=s>>>2|0;l=0;U:{V:{W:{X:{i=s&3;switch(i|0){case 0:break V;case 3:break X;default:break W}}a=a+b|0;d=0;if(a>>>0>=h>>>0){break Q}ra(t+(b<<2)|0,0,(s&252)+4|0);b=a;break U}while(1){if((f|0)==(r|0)&(e|0)==(p|0)){break R}h=I[d+f|0];f=f+1|0;e=f?e:e+1|0;H[c+16>>2]=f;H[c+20>>2]=e;a=h<<(l<<3|6)|a;l=l+1|0;if((i|0)!=(l|0)){continue}break}}H[t+(b<<2)>>2]=a}b=b+1|0;h=H[n+12>>2];if(b>>>0>>0){continue}break}a=n+16|0;r=H[n>>2];d=H[n+16>>2];b=H[n+20>>2]-d|0;Y:{if(b>>>0<=262143){ya(a,65536-(b>>>2|0)|0);break Y}if((b|0)==262144){break Y}H[n+20>>2]=d+262144}d=n+28|0;b=H[d>>2];f=H[n+32>>2]-b>>3;Z:{if(f>>>0>>0){ob(d,h-f|0);b=H[d>>2];break Z}if(f>>>0>h>>>0){H[n+32>>2]=(h<<3)+b}if(!h){break R}}i=H[a>>2];f=0;d=0;while(1){e=r+(f<<2)|0;l=H[e>>2];n=(f<<3)+b|0;a=d;H[n+4>>2]=a;H[n>>2]=l;e=H[e>>2];d=e+a|0;if(d>>>0>65536){break R}_:{if(a>>>0>=d>>>0){break _}l=0;n=e&7;if(n){while(1){H[i+(a<<2)>>2]=f;a=a+1|0;l=l+1|0;if((n|0)!=(l|0)){continue}break}}if(e-1>>>0<=6){break _}while(1){e=i+(a<<2)|0;H[e>>2]=f;H[e+28>>2]=f;H[e+24>>2]=f;H[e+20>>2]=f;H[e+16>>2]=f;H[e+12>>2]=f;H[e+8>>2]=f;H[e+4>>2]=f;a=a+8|0;if((d|0)!=(a|0)){continue}break}}f=f+1|0;if((h|0)!=(f|0)){continue}break}k=(d|0)==65536}d=k}$:{if(!d|(H[g+20>>2]?0:m)){break $}d=0;i=ca-16|0;ca=i;aa:{ba:{if(J[c+38>>1]<=511){b=H[c+8>>2];a=H[c+12>>2];h=a;e=H[c+20>>2];k=H[c+16>>2];f=k+8|0;e=f>>>0<8?e+1|0:e;if(b>>>0>>0&(a|0)<=(e|0)|(a|0)<(e|0)){break aa}k=k+H[c>>2]|0;a=I[k|0]|I[k+1|0]<<8|(I[k+2|0]<<16|I[k+3|0]<<24);k=I[k+4|0]|I[k+5|0]<<8|(I[k+6|0]<<16|I[k+7|0]<<24);H[c+16>>2]=f;H[c+20>>2]=e;break ba}if(!gb(1,i+8|0,c)){break aa}f=H[c+16>>2];e=H[c+20>>2];b=H[c+8>>2];h=H[c+12>>2];a=H[i+8>>2];k=H[i+12>>2]}r=b-f|0;b=h-((b>>>0>>0)+e|0)|0;if((b|0)==(k|0)&a>>>0>r>>>0|b>>>0>>0){break aa}e=e+k|0;b=a+f|0;e=b>>>0>>0?e+1|0:e;H[c+16>>2]=b;H[c+20>>2]=e;if((a|0)<=0){break aa}b=H[c>>2]+f|0;H[g+48>>2]=b;c=a-1|0;f=c+b|0;e=I[f|0];ca:{if(e>>>0<=63){H[g+52>>2]=c;a=I[f|0]&63;break ca}da:{switch((e>>>6|0)-1|0){case 0:if(a>>>0<2){break aa}a=a-2|0;H[g+52>>2]=a;a=a+b|0;a=I[a+1|0]<<8&16128|I[a|0];break ca;case 1:if(a>>>0<3){break aa}a=a-3|0;H[g+52>>2]=a;a=a+b|0;a=I[a+1|0]<<8|I[a+2|0]<<16&4128768|I[a|0];break ca;default:break da}}a=a-4|0;H[g+52>>2]=a;a=a+b|0;a=(I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24))&1073741823}H[g+56>>2]=a+262144;d=a>>>0<66846720}ca=i+16|0;if(!d){break $}if(!m){o=1;break $}b=H[g+52>>2];a=H[g+56>>2];c=H[g+36>>2];d=H[g+48>>2];f=H[g+24>>2];while(1){ea:{if(a>>>0>262143){break ea}while(1){if((b|0)<=0){break ea}b=b-1|0;H[g+52>>2]=b;a=I[b+d|0]|a<<8;H[g+56>>2]=a;if(a>>>0<262144){continue}break}}e=a&65535;o=H[f+(e<<2)>>2];k=c+(o<<3)|0;a=(N(H[k>>2],a>>>16|0)+e|0)-H[k+4>>2]|0;H[g+56>>2]=a;H[j+(q<<2)>>2]=o;o=1;q=q+1|0;if((m|0)!=(q|0)){continue}break}}a=H[g+36>>2];if(a){H[g+40>>2]=a;oa(a)}a=H[g+24>>2];if(a){H[g+28>>2]=a;oa(a)}a=H[g+8>>2];if(a){H[g+12>>2]=a;oa(a)}ca=g- -64|0;b=o;break g;case 11:m=a;r=d;g=ca+-64|0;ca=g;H[g+56>>2]=0;H[g+48>>2]=0;H[g+52>>2]=0;H[g+40>>2]=0;H[g+44>>2]=0;H[g+32>>2]=0;H[g+36>>2]=0;H[g+24>>2]=0;H[g+28>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;j=g+8|0;a=J[c+38>>1];fa:{ga:{if(!a){break ga}ha:{if(a>>>0<=511){d=H[c+8>>2];b=H[c+12>>2];e=H[c+20>>2];a=H[c+16>>2];f=a+4|0;e=f>>>0<4?e+1|0:e;if(d>>>0>>0&(b|0)<=(e|0)|(b|0)<(e|0)){break ga}a=a+H[c>>2]|0;h=I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24);H[j+12>>2]=h;i=H[c+20>>2];f=H[c+16>>2]+4|0;i=f>>>0<4?i+1|0:i;H[c+16>>2]=f;e=i;H[c+20>>2]=e;break ha}if(!hb(1,j+12|0,c)){break ga}f=H[c+16>>2];e=H[c+20>>2];h=H[j+12>>2]}a=H[c+8>>2];d=a-f|0;a=H[c+12>>2]-((a>>>0>>0)+e|0)|0;if(d>>>0>>6>>>0&(a|0)<=0|(a|0)<0){break ga}b=H[j>>2];a=H[j+4>>2]-b>>2;ia:{if(a>>>0>>0){ya(j,h-a|0);h=H[j+12>>2];break ia}if(a>>>0<=h>>>0){break ia}H[j+4>>2]=b+(h<<2)}d=1;if(!h){break fa}f=H[c+16>>2];e=H[c+20>>2];s=H[j>>2];i=H[c+8>>2];n=H[c+12>>2];b=0;while(1){d=0;if((e|0)>=(n|0)&f>>>0>=i>>>0|(e|0)>(n|0)){break fa}d=H[c>>2];p=I[d+f|0];f=f+1|0;e=f?e:e+1|0;H[c+16>>2]=f;H[c+20>>2]=e;a=p>>>2|0;l=0;ja:{ka:{la:{ma:{t=p&3;switch(t|0){case 0:break ka;case 3:break ma;default:break la}}a=a+b|0;d=0;if(a>>>0>=h>>>0){break fa}ra(s+(b<<2)|0,0,(p&252)+4|0);b=a;break ja}while(1){if((f|0)==(i|0)&(e|0)==(n|0)){break ga}h=I[d+f|0];f=f+1|0;e=f?e:e+1|0;H[c+16>>2]=f;H[c+20>>2]=e;a=h<<(l<<3|6)|a;l=l+1|0;if((t|0)!=(l|0)){continue}break}}H[s+(b<<2)>>2]=a}b=b+1|0;h=H[j+12>>2];if(b>>>0>>0){continue}break}a=j+16|0;n=H[j>>2];d=H[j+16>>2];b=H[j+20>>2]-d|0;na:{if(b>>>0<=1048575){ya(a,262144-(b>>>2|0)|0);break na}if((b|0)==1048576){break na}H[j+20>>2]=d- -1048576}d=j+28|0;b=H[d>>2];f=H[j+32>>2]-b>>3;oa:{if(f>>>0>>0){ob(d,h-f|0);b=H[d>>2];break oa}if(f>>>0>h>>>0){H[j+32>>2]=(h<<3)+b}if(!h){break ga}}i=H[a>>2];f=0;d=0;while(1){e=n+(f<<2)|0;j=H[e>>2];l=(f<<3)+b|0;a=d;H[l+4>>2]=a;H[l>>2]=j;e=H[e>>2];d=e+a|0;if(d>>>0>262144){break ga}pa:{if(a>>>0>=d>>>0){break pa}l=0;j=e&7;if(j){while(1){H[i+(a<<2)>>2]=f;a=a+1|0;l=l+1|0;if((j|0)!=(l|0)){continue}break}}if(e-1>>>0<=6){break pa}while(1){e=i+(a<<2)|0;H[e>>2]=f;H[e+28>>2]=f;H[e+24>>2]=f;H[e+20>>2]=f;H[e+16>>2]=f;H[e+12>>2]=f;H[e+8>>2]=f;H[e+4>>2]=f;a=a+8|0;if((d|0)!=(a|0)){continue}break}}f=f+1|0;if((h|0)!=(f|0)){continue}break}k=(d|0)==262144}d=k}qa:{if(!d|(H[g+20>>2]?0:m)){break qa}d=0;j=ca-16|0;ca=j;ra:{sa:{if(J[c+38>>1]<=511){b=H[c+8>>2];a=H[c+12>>2];h=a;i=H[c+20>>2];k=H[c+16>>2];f=k+8|0;i=f>>>0<8?i+1|0:i;e=i;if(b>>>0>>0&(e|0)>=(a|0)|(a|0)<(e|0)){break ra}k=k+H[c>>2]|0;a=I[k|0]|I[k+1|0]<<8|(I[k+2|0]<<16|I[k+3|0]<<24);k=I[k+4|0]|I[k+5|0]<<8|(I[k+6|0]<<16|I[k+7|0]<<24);H[c+16>>2]=f;H[c+20>>2]=e;break sa}if(!gb(1,j+8|0,c)){break ra}f=H[c+16>>2];e=H[c+20>>2];b=H[c+8>>2];h=H[c+12>>2];a=H[j+8>>2];k=H[j+12>>2]}i=b-f|0;b=h-((b>>>0>>0)+e|0)|0;if((b|0)==(k|0)&a>>>0>i>>>0|b>>>0>>0){break ra}e=e+k|0;b=a+f|0;e=b>>>0>>0?e+1|0:e;H[c+16>>2]=b;H[c+20>>2]=e;if((a|0)<=0){break ra}b=H[c>>2]+f|0;H[g+48>>2]=b;c=a-1|0;f=c+b|0;e=I[f|0];ta:{if(e>>>0<=63){H[g+52>>2]=c;a=I[f|0]&63;break ta}ua:{switch((e>>>6|0)-1|0){case 0:if(a>>>0<2){break ra}a=a-2|0;H[g+52>>2]=a;a=a+b|0;a=I[a+1|0]<<8&16128|I[a|0];break ta;case 1:if(a>>>0<3){break ra}a=a-3|0;H[g+52>>2]=a;a=a+b|0;a=I[a+1|0]<<8|I[a+2|0]<<16&4128768|I[a|0];break ta;default:break ua}}a=a-4|0;H[g+52>>2]=a;a=a+b|0;a=(I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24))&1073741823}H[g+56>>2]=a- -1048576;d=a>>>0<267386880}ca=j+16|0;if(!d){break qa}if(!m){o=1;break qa}b=H[g+52>>2];a=H[g+56>>2];c=H[g+36>>2];d=H[g+48>>2];f=H[g+24>>2];while(1){va:{if(a>>>0>1048575){break va}while(1){if((b|0)<=0){break va}b=b-1|0;H[g+52>>2]=b;a=I[b+d|0]|a<<8;H[g+56>>2]=a;if(a>>>0<1048576){continue}break}}e=a&262143;o=H[f+(e<<2)>>2];k=c+(o<<3)|0;a=(N(H[k>>2],a>>>18|0)+e|0)-H[k+4>>2]|0;H[g+56>>2]=a;H[r+(q<<2)>>2]=o;o=1;q=q+1|0;if((m|0)!=(q|0)){continue}break}}a=H[g+36>>2];if(a){H[g+40>>2]=a;oa(a)}a=H[g+24>>2];if(a){H[g+28>>2]=a;oa(a)}a=H[g+8>>2];if(a){H[g+12>>2]=a;oa(a)}ca=g- -64|0;b=o;break g;case 12:m=a;r=d;g=ca+-64|0;ca=g;H[g+56>>2]=0;H[g+48>>2]=0;H[g+52>>2]=0;H[g+40>>2]=0;H[g+44>>2]=0;H[g+32>>2]=0;H[g+36>>2]=0;H[g+24>>2]=0;H[g+28>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;j=g+8|0;a=J[c+38>>1];wa:{xa:{if(!a){break xa}ya:{if(a>>>0<=511){d=H[c+8>>2];b=H[c+12>>2];i=H[c+20>>2];a=H[c+16>>2];f=a+4|0;i=f>>>0<4?i+1|0:i;if(d>>>0>>0&(b|0)<=(i|0)|(b|0)<(i|0)){break xa}a=a+H[c>>2]|0;h=I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24);H[j+12>>2]=h;e=H[c+20>>2];f=H[c+16>>2]+4|0;e=f>>>0<4?e+1|0:e;H[c+16>>2]=f;H[c+20>>2]=e;break ya}if(!hb(1,j+12|0,c)){break xa}f=H[c+16>>2];e=H[c+20>>2];h=H[j+12>>2]}a=H[c+8>>2];d=a-f|0;a=H[c+12>>2]-((a>>>0>>0)+e|0)|0;if(d>>>0>>6>>>0&(a|0)<=0|(a|0)<0){break xa}b=H[j>>2];a=H[j+4>>2]-b>>2;za:{if(a>>>0>>0){ya(j,h-a|0);h=H[j+12>>2];break za}if(a>>>0<=h>>>0){break za}H[j+4>>2]=b+(h<<2)}d=1;if(!h){break wa}f=H[c+16>>2];e=H[c+20>>2];s=H[j>>2];i=H[c+8>>2];n=H[c+12>>2];b=0;while(1){d=0;if((e|0)>=(n|0)&f>>>0>=i>>>0|(e|0)>(n|0)){break wa}d=H[c>>2];p=I[d+f|0];f=f+1|0;e=f?e:e+1|0;H[c+16>>2]=f;H[c+20>>2]=e;a=p>>>2|0;l=0;Aa:{Ba:{Ca:{Da:{t=p&3;switch(t|0){case 0:break Ba;case 3:break Da;default:break Ca}}a=a+b|0;d=0;if(a>>>0>=h>>>0){break wa}ra(s+(b<<2)|0,0,(p&252)+4|0);b=a;break Aa}while(1){if((f|0)==(i|0)&(e|0)==(n|0)){break xa}h=I[d+f|0];f=f+1|0;e=f?e:e+1|0;H[c+16>>2]=f;H[c+20>>2]=e;a=h<<(l<<3|6)|a;l=l+1|0;if((t|0)!=(l|0)){continue}break}}H[s+(b<<2)>>2]=a}b=b+1|0;h=H[j+12>>2];if(b>>>0>>0){continue}break}a=j+16|0;n=H[j>>2];d=H[j+16>>2];b=H[j+20>>2]-d|0;Ea:{if(b>>>0<=2097151){ya(a,524288-(b>>>2|0)|0);break Ea}if((b|0)==2097152){break Ea}H[j+20>>2]=d+2097152}d=j+28|0;b=H[d>>2];f=H[j+32>>2]-b>>3;Fa:{if(f>>>0>>0){ob(d,h-f|0);b=H[d>>2];break Fa}if(f>>>0>h>>>0){H[j+32>>2]=(h<<3)+b}if(!h){break xa}}i=H[a>>2];f=0;d=0;while(1){e=n+(f<<2)|0;j=H[e>>2];l=(f<<3)+b|0;a=d;H[l+4>>2]=a;H[l>>2]=j;e=H[e>>2];d=e+a|0;if(d>>>0>524288){break xa}Ga:{if(a>>>0>=d>>>0){break Ga}l=0;j=e&7;if(j){while(1){H[i+(a<<2)>>2]=f;a=a+1|0;l=l+1|0;if((j|0)!=(l|0)){continue}break}}if(e-1>>>0<=6){break Ga}while(1){e=i+(a<<2)|0;H[e>>2]=f;H[e+28>>2]=f;H[e+24>>2]=f;H[e+20>>2]=f;H[e+16>>2]=f;H[e+12>>2]=f;H[e+8>>2]=f;H[e+4>>2]=f;a=a+8|0;if((d|0)!=(a|0)){continue}break}}f=f+1|0;if((h|0)!=(f|0)){continue}break}k=(d|0)==524288}d=k}Ha:{if(!d|(H[g+20>>2]?0:m)){break Ha}d=0;i=ca-16|0;ca=i;Ia:{Ja:{if(J[c+38>>1]<=511){b=H[c+8>>2];a=H[c+12>>2];h=a;e=H[c+20>>2];k=H[c+16>>2];f=k+8|0;e=f>>>0<8?e+1|0:e;if(b>>>0>>0&(a|0)<=(e|0)|(a|0)<(e|0)){break Ia}k=k+H[c>>2]|0;a=I[k|0]|I[k+1|0]<<8|(I[k+2|0]<<16|I[k+3|0]<<24);k=I[k+4|0]|I[k+5|0]<<8|(I[k+6|0]<<16|I[k+7|0]<<24);H[c+16>>2]=f;H[c+20>>2]=e;break Ja}if(!gb(1,i+8|0,c)){break Ia}f=H[c+16>>2];e=H[c+20>>2];b=H[c+8>>2];h=H[c+12>>2];a=H[i+8>>2];k=H[i+12>>2]}j=b-f|0;b=h-((b>>>0>>0)+e|0)|0;if((b|0)==(k|0)&a>>>0>j>>>0|b>>>0>>0){break Ia}e=e+k|0;b=a+f|0;e=b>>>0>>0?e+1|0:e;H[c+16>>2]=b;H[c+20>>2]=e;if((a|0)<=0){break Ia}b=H[c>>2]+f|0;H[g+48>>2]=b;c=a-1|0;f=c+b|0;e=I[f|0];Ka:{if(e>>>0<=63){H[g+52>>2]=c;a=I[f|0]&63;break Ka}La:{switch((e>>>6|0)-1|0){case 0:if(a>>>0<2){break Ia}a=a-2|0;H[g+52>>2]=a;a=a+b|0;a=I[a+1|0]<<8&16128|I[a|0];break Ka;case 1:if(a>>>0<3){break Ia}a=a-3|0;H[g+52>>2]=a;a=a+b|0;a=I[a+1|0]<<8|I[a+2|0]<<16&4128768|I[a|0];break Ka;default:break La}}a=a-4|0;H[g+52>>2]=a;a=a+b|0;a=(I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24))&1073741823}H[g+56>>2]=a+2097152;d=a>>>0<534773760}ca=i+16|0;if(!d){break Ha}if(!m){o=1;break Ha}b=H[g+52>>2];a=H[g+56>>2];c=H[g+36>>2];d=H[g+48>>2];f=H[g+24>>2];while(1){Ma:{if(a>>>0>2097151){break Ma}while(1){if((b|0)<=0){break Ma}b=b-1|0;H[g+52>>2]=b;a=I[b+d|0]|a<<8;H[g+56>>2]=a;if(a>>>0<2097152){continue}break}}e=a&524287;o=H[f+(e<<2)>>2];k=c+(o<<3)|0;a=(N(H[k>>2],a>>>19|0)+e|0)-H[k+4>>2]|0;H[g+56>>2]=a;H[r+(q<<2)>>2]=o;o=1;q=q+1|0;if((m|0)!=(q|0)){continue}break}}a=H[g+36>>2];if(a){H[g+40>>2]=a;oa(a)}a=H[g+24>>2];if(a){H[g+28>>2]=a;oa(a)}a=H[g+8>>2];if(a){H[g+12>>2]=a;oa(a)}ca=g- -64|0;b=o;break g;case 17:b=Le(a,c,d);break g;case 0:case 1:case 2:case 3:case 4:case 5:case 6:case 7:b=ca+-64|0;ca=b;H[b+56>>2]=0;H[b+48>>2]=0;H[b+52>>2]=0;H[b+40>>2]=0;H[b+44>>2]=0;H[b+32>>2]=0;H[b+36>>2]=0;H[b+24>>2]=0;H[b+28>>2]=0;H[b+16>>2]=0;H[b+20>>2]=0;H[b+8>>2]=0;H[b+12>>2]=0;Na:{if(!Ne(b+8|0,c)|(H[b+20>>2]?0:a)){break Na}if(!Me(b+8|0,c)){break Na}if(!a){f=1;break Na}e=H[b+52>>2];c=H[b+56>>2];k=H[b+36>>2];i=H[b+48>>2];g=H[b+24>>2];while(1){Oa:{if(c>>>0>16383){break Oa}while(1){if((e|0)<=0){break Oa}e=e-1|0;H[b+52>>2]=e;c=I[e+i|0]|c<<8;H[b+56>>2]=c;if(c>>>0<16384){continue}break}}f=c&4095;m=H[g+(f<<2)>>2];r=k+(m<<3)|0;c=(N(H[r>>2],c>>>12|0)+f|0)-H[r+4>>2]|0;H[b+56>>2]=c;H[(o<<2)+d>>2]=m;f=1;o=o+1|0;if((o|0)!=(a|0)){continue}break}}a=H[b+36>>2];if(a){H[b+40>>2]=a;oa(a)}a=H[b+24>>2];if(a){H[b+28>>2]=a;oa(a)}a=H[b+8>>2];if(a){H[b+12>>2]=a;oa(a)}ca=b- -64|0;b=f;break g;case 13:case 14:case 15:case 16:break h;default:break g}}b=Le(a,c,d)}f=b}return f}function gi(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,L=0,M=0,O=0,P=0,Q=0,R=0;s=ca+-64|0;ca=s;H[a+132>>2]=0;if(H[a+148>>2]){c=H[a+144>>2];if(c){while(1){d=H[c>>2];oa(c);c=d;if(c){continue}break}}c=0;H[a+144>>2]=0;d=H[a+140>>2];a:{if(!d){break a}if(d>>>0>=4){g=d&-4;while(1){e=c<<2;H[e+H[a+136>>2]>>2]=0;H[H[a+136>>2]+(e|4)>>2]=0;H[H[a+136>>2]+(e|8)>>2]=0;H[H[a+136>>2]+(e|12)>>2]=0;c=c+4|0;b=b+4|0;if((g|0)!=(b|0)){continue}break}}b=d&3;if(!b){break a}while(1){H[H[a+136>>2]+(c<<2)>>2]=0;c=c+1|0;u=u+1|0;if((b|0)!=(u|0)){continue}break}}H[a+148>>2]=0}b:{c:{d:{c=H[a+4>>2];u=I[c+36|0];b=u<<8|I[c+37|0];if(b>>>0<=513){i=H[c+32>>2];e:{if(b>>>0<=511){b=H[i+20>>2];e=H[i+16>>2];d=e+4|0;b=d>>>0<4?b+1|0:b;g=b;h=H[i+12>>2];if(K[i+8>>2]>>0&(b|0)>=(h|0)|(b|0)>(h|0)){break d}b=e+H[i>>2]|0;b=I[b|0]|I[b+1|0]<<8|(I[b+2|0]<<16|I[b+3|0]<<24);H[i+16>>2]=d;H[i+20>>2]=g;break e}if(!Ea(1,s,i)){break d}c=H[a+4>>2];u=I[c+36|0];b=H[s>>2]}H[a+132>>2]=b}g=H[c+32>>2];f:{g:{h:{if((u&255)>>>0<=1){u=0;d=H[g+20>>2];e=H[g+16>>2];b=e+4|0;d=b>>>0<4?d+1|0:d;i=H[g+12>>2];if(K[g+8>>2]>>0&(i|0)<=(d|0)|(d|0)>(i|0)){break c}e=e+H[g>>2]|0;e=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);H[s+60>>2]=e;H[g+16>>2]=b;H[g+20>>2]=d;H[a+156>>2]=e;n=a+156|0;break h}u=0;if(!Ea(1,s+60|0,g)){break c}c=H[a+4>>2];b=I[c+36|0];H[a+156>>2]=H[s+60>>2];n=a+156|0;if(b>>>0>1){break g}}g=H[c+32>>2];h=H[g+8>>2];i=H[g+12>>2];c=H[g+20>>2];d=H[g+16>>2];b=d+4|0;c=b>>>0<4?c+1|0:c;e=b;if(b>>>0>h>>>0&(c|0)>=(i|0)|(c|0)>(i|0)){break c}b=d+H[g>>2]|0;b=I[b|0]|I[b+1|0]<<8|(I[b+2|0]<<16|I[b+3|0]<<24);H[s+56>>2]=b;H[g+16>>2]=e;H[g+20>>2]=c;break f}if(!Ea(1,s+56|0,H[c+32>>2])){break c}b=H[s+56>>2]}if(b>>>0>1431655765|K[n>>2]>N(b,3)>>>0){break c}f=H[a+4>>2];g=H[f+32>>2];c=g;e=H[c+8>>2];i=H[c+16>>2];j=H[c+12>>2];d=H[c+20>>2];c=d;if((j|0)<=(c|0)&e>>>0<=i>>>0|(c|0)>(j|0)){break c}n=H[g>>2];o=I[n+i|0];h=i+1|0;c=h?c:c+1|0;H[g+16>>2]=h;H[g+20>>2]=c;i:{if(I[f+36|0]<=1){f=e;c=j;e=i+5|0;d=e>>>0<5?d+1|0:d;if((c|0)<=(d|0)&e>>>0>f>>>0|(c|0)<(d|0)){break c}c=h+n|0;n=I[c|0]|I[c+1|0]<<8|(I[c+2|0]<<16|I[c+3|0]<<24);H[s+52>>2]=n;H[g+16>>2]=e;H[g+20>>2]=d;break i}if(!Ea(1,s+52|0,g)){break c}n=H[s+52>>2]}if(b>>>0>>0|((n>>>0)/3|0)+n>>>0>>0){break c}c=H[a+4>>2];i=H[c+32>>2];j:{if(I[c+36|0]<=1){c=H[i+20>>2];e=H[i+16>>2];d=e+4|0;c=d>>>0<4?c+1|0:c;g=d;f=K[i+8>>2]>>0;d=H[i+12>>2];if(f&(d|0)<=(c|0)|(c|0)>(d|0)){break c}d=e+H[i>>2]|0;d=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[s+48>>2]=d;H[i+16>>2]=g;H[i+20>>2]=c;break j}if(!Ea(1,s+48|0,i)){break c}d=H[s+48>>2]}if(d>>>0>n>>>0){break c}H[a+28>>2]=H[a+24>>2];e=$b(pa(88));c=H[a+8>>2];H[a+8>>2]=e;if(c){cb(c);if(!H[a+8>>2]){break c}}H[a+164>>2]=H[a+160>>2];Jb(a+160|0,b);H[a+176>>2]=H[a+172>>2];Jb(a+172|0,b);H[a- -64>>2]=0;H[a+92>>2]=-1;H[a+84>>2]=-1;H[a+88>>2]=-1;H[a+40>>2]=H[a+36>>2];H[a+52>>2]=H[a+48>>2];H[a+76>>2]=H[a+72>>2];B=a+216|0;ed(B);dd(B,o);if(!Lc(H[a+8>>2],b,H[a+156>>2]+d|0)){break c}c=H[a+156>>2];F[s|0]=1;Oa(a+120|0,c+d|0,s);c=H[a+4>>2];b=J[c+36>>1];b=(b<<8|b>>>8)&65535;k:{if(b>>>0<=513){i=H[c+32>>2];l:{if(b>>>0<=511){b=H[i+20>>2];e=H[i+16>>2];c=e+4|0;b=c>>>0<4?b+1|0:b;g=b;h=H[i+12>>2];if(K[i+8>>2]>>0&(b|0)>=(h|0)|(b|0)>(h|0)){break c}b=e+H[i>>2]|0;b=I[b|0]|I[b+1|0]<<8|(I[b+2|0]<<16|I[b+3|0]<<24);H[i+16>>2]=c;H[i+20>>2]=g;break l}if(!Ea(1,s+44|0,i)){break c}b=H[s+44>>2]}if(!b){break c}c=H[H[a+4>>2]+32>>2];e=H[c+8>>2];g=H[c+16>>2];i=e-g|0;c=H[c+12>>2]-(H[c+20>>2]+(e>>>0>>0)|0)|0;if((c|0)<=0&b>>>0>i>>>0|(c|0)<0){break c}c=Ha(s);e=H[H[a+4>>2]+32>>2];g=H[e+16>>2];i=(g+H[e>>2]|0)+b|0;g=H[e+8>>2]-g|0;G[c+38>>1]=J[e+38>>1];H[c>>2]=i;H[c+16>>2]=0;H[c+20>>2]=0;H[c+8>>2]=g-b;H[c+12>>2]=0;C=Ib(a,c);if((C|0)==-1){break c}M=C>>31;break k}C=-1;M=-1;if((Ib(a,H[c+32>>2])|0)==-1){break c}}e=a+232|0;Ee(e,a);H[a+372>>2]=o;H[a+384>>2]=H[a+156>>2]+d;O=Ha(s);g=O;b=0;j=ca-16|0;ca=j;m:{n:{c=H[e+144>>2];c=J[(ea[H[H[c>>2]+32>>2]](c)|0)+36>>1];if(((c<<8|c>>>8)&65535)>>>0<=513){c=H[e+4>>2];H[e+40>>2]=H[e>>2];H[e+44>>2]=c;c=H[e+36>>2];H[e+72>>2]=H[e+32>>2];H[e+76>>2]=c;d=H[e+28>>2];c=e- -64|0;H[c>>2]=H[e+24>>2];H[c+4>>2]=d;c=H[e+20>>2];H[e+56>>2]=H[e+16>>2];H[e+60>>2]=c;c=H[e+12>>2];H[e+48>>2]=H[e+8>>2];H[e+52>>2]=c;if(!Db(e+40|0,1,j+8|0)){break n}c=H[e+44>>2];H[e>>2]=H[e+40>>2];H[e+4>>2]=c;c=H[e+76>>2];H[e+32>>2]=H[e+72>>2];H[e+36>>2]=c;c=H[e+68>>2];H[e+24>>2]=H[e+64>>2];H[e+28>>2]=c;c=H[e+60>>2];h=c;d=H[e+56>>2];H[e+16>>2]=d;H[e+20>>2]=c;i=H[e+52>>2];f=i;c=H[e+48>>2];H[e+8>>2]=c;H[e+12>>2]=f;o=c-d|0;k=H[j+12>>2];c=f-((c>>>0>>0)+h|0)|0;i=H[j+8>>2];if((k|0)==(c|0)&o>>>0>>0|c>>>0>>0){break n}c=h+k|0;f=d;d=d+i|0;c=f>>>0>d>>>0?c+1|0:c;H[e+16>>2]=d;H[e+20>>2]=c}o:{if(J[e+38>>1]<=513){c=H[e+4>>2];H[e+96>>2]=H[e>>2];H[e+100>>2]=c;c=H[e+36>>2];H[e+128>>2]=H[e+32>>2];H[e+132>>2]=c;c=H[e+28>>2];H[e+120>>2]=H[e+24>>2];H[e+124>>2]=c;c=H[e+20>>2];H[e+112>>2]=H[e+16>>2];H[e+116>>2]=c;c=H[e+12>>2];H[e+104>>2]=H[e+8>>2];H[e+108>>2]=c;if(!Db(e+96|0,1,j+8|0)){break n}c=H[e+100>>2];H[e>>2]=H[e+96>>2];H[e+4>>2]=c;c=H[e+132>>2];H[e+32>>2]=H[e+128>>2];H[e+36>>2]=c;c=H[e+124>>2];H[e+24>>2]=H[e+120>>2];H[e+28>>2]=c;d=H[e+116>>2];h=d;c=H[e+112>>2];H[e+16>>2]=c;H[e+20>>2]=d;i=H[e+108>>2];f=i;d=H[e+104>>2];H[e+8>>2]=d;H[e+12>>2]=f;o=d-c|0;k=H[j+12>>2];d=f-((c>>>0>d>>>0)+h|0)|0;i=H[j+8>>2];if((k|0)==(d|0)&o>>>0>>0|d>>>0>>0){break n}d=h+k|0;f=c;c=c+i|0;d=f>>>0>c>>>0?d+1|0:d;H[e+16>>2]=c;H[e+20>>2]=d;break o}if(!ta(e+80|0,e)){break m}}if(!Fe(e)){break m}c=H[e+4>>2];H[g>>2]=H[e>>2];H[g+4>>2]=c;c=H[e+36>>2];H[g+32>>2]=H[e+32>>2];H[g+36>>2]=c;c=H[e+28>>2];H[g+24>>2]=H[e+24>>2];H[g+28>>2]=c;c=H[e+20>>2];H[g+16>>2]=H[e+16>>2];H[g+20>>2]=c;c=H[e+12>>2];H[g+8>>2]=H[e+8>>2];H[g+12>>2]=c;c=H[e+144>>2];c=J[(ea[H[H[c>>2]+32>>2]](c)|0)+36>>1];p:{if(((c<<8|c>>>8)&65535)>>>0<=513){c=H[e+144>>2];q:{if(I[(ea[H[H[c>>2]+32>>2]](c)|0)+36|0]<=1){c=H[g+20>>2];i=H[g+16>>2];d=i+4|0;c=d>>>0<4?c+1|0:c;h=d;f=K[g+8>>2]>>0;d=H[g+12>>2];if(f&(d|0)<=(c|0)|(c|0)>(d|0)){break m}d=i+H[g>>2]|0;d=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[g+16>>2]=h;H[g+20>>2]=c;break q}if(!Ea(1,j+8|0,g)){break m}d=H[j+8>>2]}c=H[e+152>>2];if(d>>>0>=c>>>0){break m}d=H[g+20>>2];h=H[g+12>>2];i=H[g+16>>2];if((d|0)>=(h|0)&i>>>0>=K[g+8>>2]|(d|0)>(h|0)){break m}h=I[i+H[g>>2]|0];i=i+1|0;d=i?d:d+1|0;H[g+16>>2]=i;H[g+20>>2]=d;if(h){break m}H[e+176>>2]=2;H[e+180>>2]=7;break p}H[e+176>>2]=2;H[e+180>>2]=7;c=H[e+152>>2]}if((c|0)<0){break m}H[j+8>>2]=0;b=2;h=H[e+156>>2];i=H[e+160>>2]-h>>2;r:{if(i>>>0>>0){Pa(e+156|0,c-i|0,j+8|0);b=H[e+176>>2];d=H[e+180>>2];break r}d=7;if(c>>>0>=i>>>0){break r}H[e+160>>2]=h+(c<<2)}i=e+184|0;b=(d-b|0)+1|0;c=H[e+188>>2];h=H[e+184>>2];d=(c-h|0)/12|0;s:{if(b>>>0>d>>>0){o=0;d=b-d|0;f=H[i+8>>2];c=H[i+4>>2];t:{if(d>>>0<=(f-c|0)/12>>>0){if(d){b=c;c=N(d,12)-12|0;c=(c-((c>>>0)%12|0)|0)+12|0;c=ra(b,0,c)+c|0}H[i+4>>2]=c;break t}u:{v:{w:{h=H[i>>2];k=(c-h|0)/12|0;b=k+d|0;if(b>>>0<357913942){f=(f-h|0)/12|0;l=f<<1;f=f>>>0>=178956970?357913941:b>>>0>>0?l:b;if(f){if(f>>>0>=357913942){break w}o=pa(N(f,12))}b=N(k,12)+o|0;d=N(d,12)-12|0;k=(d-((d>>>0)%12|0)|0)+12|0;d=ra(b,0,k);k=d+k|0;f=N(f,12)+o|0;if((c|0)==(h|0)){break v}while(1){b=b-12|0;c=c-12|0;H[b>>2]=H[c>>2];H[b+4>>2]=H[c+4>>2];H[b+8>>2]=H[c+8>>2];H[c+8>>2]=0;H[c>>2]=0;H[c+4>>2]=0;if((c|0)!=(h|0)){continue}break}H[i+8>>2]=f;d=H[i+4>>2];H[i+4>>2]=k;c=H[i>>2];H[i>>2]=b;if((c|0)==(d|0)){break u}while(1){b=d-12|0;h=H[b>>2];if(h){H[d-8>>2]=h;oa(h)}d=b;if((b|0)!=(c|0)){continue}break}break u}break b}wa();v()}H[i+8>>2]=f;H[i+4>>2]=k;H[i>>2]=d}if(c){oa(c)}}d=H[e+188>>2];break s}if(b>>>0>=d>>>0){d=c;break s}d=h+N(b,12)|0;if((d|0)!=(c|0)){while(1){b=c-12|0;h=H[b>>2];if(h){H[c-8>>2]=h;oa(h)}c=b;if((d|0)!=(b|0)){continue}break}}H[e+188>>2]=d}f=e+196|0;b=H[e+184>>2];c=(d-b|0)/12|0;o=H[e+196>>2];h=H[e+200>>2]-o>>2;x:{if(c>>>0>h>>>0){ya(f,c-h|0);b=H[e+184>>2];d=H[e+188>>2];break x}if(c>>>0>=h>>>0){break x}H[e+200>>2]=o+(c<<2)}if((b|0)==(d|0)){b=1;break m}c=0;while(1){if(!Ea(1,j+8|0,g)){break n}b=H[e+148>>2];d=(H[b+4>>2]-H[b>>2]>>2>>>0)/3|0;b=H[j+8>>2];if(d>>>0>>0){break n}if(b){k=N(c,12);h=k+H[i>>2]|0;d=H[h>>2];o=H[h+4>>2]-d>>2;y:{if(o>>>0>>0){ya(h,b-o|0);d=H[k+H[i>>2]>>2];break y}if(b>>>0>=o>>>0){break y}H[h+4>>2]=(b<<2)+d}kd(b,1,g,d);H[H[f>>2]+(c<<2)>>2]=b}b=1;c=c+1|0;if(c>>>0<(H[e+188>>2]-H[e+184>>2]|0)/12>>>0){continue}break}break m}b=0}ca=j+16|0;z:{if(!b){break z}d=0;c=0;g=0;i=0;o=0;l=ca-96|0;ca=l;H[l+72>>2]=0;H[l+64>>2]=0;H[l+68>>2]=0;H[l+48>>2]=0;H[l+52>>2]=0;H[l+40>>2]=0;H[l+44>>2]=0;H[l+56>>2]=1065353216;H[l+32>>2]=0;H[l+24>>2]=0;H[l+28>>2]=0;j=a;L=H[a+124>>2];A:{B:{C:{D:{E:{if((n|0)<=0){break E}r=j+232|0;P=H[j+216>>2]!=H[j+220>>2];D=1;while(1){h=i;i=h+1|0;a=H[r+172>>2];F:{G:{if((a|0)!=-1){b=H[r+196>>2]+(a<<2)|0;f=H[b>>2];a=f-1|0;H[b>>2]=a;b=9;if((f|0)<=0){break F}a=H[H[H[r+184>>2]+N(H[r+172>>2],12)>>2]+(a<<2)>>2];if(a>>>0>4){break F}b=H[(a<<2)+12144>>2];break G}b=7;a=H[r+144>>2];a=J[(ea[H[H[a>>2]+32>>2]](a)|0)+36>>1];if(((a<<8|a>>>8)&65535)>>>0>513|!I[r+76|0]){break G}b=0;m=H[r- -64>>2];k=H[r+72>>2];a=m+(k>>>3|0)|0;p=H[r+68>>2];if(a>>>0>=p>>>0){break G}f=I[a|0];a=k+1|0;H[r+72>>2]=a;f=f>>>(k&7)&1;if(!f){break G}q=a>>>3|0;b=m+q|0;H:{if(b>>>0>=p>>>0){b=a;a=0;break H}t=I[b|0];b=k+2|0;H[r+72>>2]=b;q=b>>>3|0;a=t>>>(a&7)&1}k=m+q|0;if(k>>>0

>>0){k=I[k|0];H[r+72>>2]=b+1;b=k>>>(b&7)<<1&2}else{b=0}b=(a|b)<<1|f}H[r+168>>2]=b}a=b;I:{J:{if(!a){if((c|0)==(g|0)){b=-1;break D}d=-1;m=H[j+8>>2];t=H[m+24>>2];D=c-4|0;f=H[D>>2];a=-1;K:{if((f|0)==-1){break K}k=f+1|0;k=(k>>>0)%3|0?k:f-2|0;a=-1;if((k|0)==-1){break K}a=H[H[m>>2]+(k<<2)>>2]}b=H[t+(a<<2)>>2];if((b|0)!=-1){d=b+1|0;d=(d>>>0)%3|0?d:b-2|0}if((d|0)==(f|0)){b=-1;break D}if((f|0)!=-1){b=-1;if(H[H[m+12>>2]+(f<<2)>>2]!=-1){break D}}k=H[m+12>>2];if((d|0)!=-1){b=-1;if(H[k+(d<<2)>>2]!=-1){break D}}p=N(h,3);b=p+1|0;H[k+(f<<2)>>2]=b;w=b<<2;H[w+k>>2]=f;q=p+2|0;H[k+(d<<2)>>2]=q;y=q<<2;H[y+k>>2]=d;k=-1;h=-1;L:{if((f|0)==-1){break L}M:{if((f>>>0)%3|0){b=f-1|0;break M}b=f+2|0;h=-1;if((b|0)==-1){break L}}h=H[H[m>>2]+(b<<2)>>2]}N:{if((d|0)==-1){break N}b=d+1|0;b=(b>>>0)%3|0?b:d-2|0;if((b|0)==-1){break N}k=H[H[m>>2]+(b<<2)>>2]}b=-1;if((a|0)==(h|0)|(a|0)==(k|0)){break D}b=H[m>>2];H[b+(p<<2)>>2]=a;H[b+w>>2]=k;H[b+y>>2]=h;if((h|0)!=-1){H[t+(h<<2)>>2]=q}b=H[j+120>>2]+(a>>>3&536870908)|0;d=H[b>>2];Q=b,R=Vj(a)&d,H[Q>>2]=R;H[D>>2]=p;k=H[c-4>>2];break J}b=-1;O:{P:{Q:{R:{S:{T:{U:{V:{W:{switch(a-1|0){case 2:case 4:if((c|0)==(g|0)){break D}t=c-4|0;d=H[t>>2];f=H[j+8>>2];m=H[f+12>>2];if((d|0)!=-1&H[m+(d<<2)>>2]!=-1){break D}k=N(h,3);p=(a|0)==5;q=k+(p?2:1)|0;w=q<<2;H[w+m>>2]=d;H[m+(d<<2)>>2]=q;Ka(f+24|0,11424);a=H[j+8>>2];m=H[a+24>>2];if(H[a+28>>2]-m>>2>(L|0)){break D}a=H[a>>2];y=a+w|0;b=H[f+28>>2];f=H[f+24>>2];w=(b-f>>2)-1|0;H[y>>2]=w;if((b|0)!=(f|0)){H[m+(w<<2)>>2]=q}b=p?k:k+2|0;q=a+(k+p<<2)|0;X:{if((d|0)==-1){H[a+(b<<2)>>2]=-1;b=-1;break X}Y:{Z:{_:{if((d>>>0)%3|0){f=d-1|0;break _}f=d+2|0;if((f|0)==-1){break Z}}f=H[a+(f<<2)>>2];H[a+(b<<2)>>2]=f;if((f|0)==-1){break Y}H[m+(f<<2)>>2]=b;break Y}H[a+(b<<2)>>2]=-1}f=d+1|0;d=(f>>>0)%3|0?f:d-2|0;b=-1;if((d|0)==-1){break X}b=H[a+(d<<2)>>2]}H[q>>2]=b;H[t>>2]=k;break V;case 0:if((c|0)==(d|0)){break D}a=c-4|0;m=H[a>>2];H[l+68>>2]=a;p=H[l+44>>2];$:{if(!p){c=a;break $}f=H[l+40>>2];q=Uj(p)>>>0>1;b=h&p+2147483647;aa:{if(!q){break aa}b=h;if(b>>>0

>>0){break aa}b=(h>>>0)%(p>>>0)|0}k=b;b=H[f+(k<<2)>>2];if(!b){c=a;break $}b=H[b>>2];if(!b){c=a;break $}ba:{if(!q){f=p-1|0;while(1){p=H[b+4>>2];ca:{if((p|0)!=(h|0)){if((k|0)==(f&p)){break ca}c=a;break $}if((h|0)==H[b+8>>2]){break ba}}b=H[b>>2];if(b){continue}break}c=a;break $}while(1){f=H[b+4>>2];da:{if((f|0)!=(h|0)){if(f>>>0>=p>>>0){f=(f>>>0)%(p>>>0)|0}if((f|0)==(k|0)){break da}c=a;break $}if((h|0)==H[b+8>>2]){break ba}}b=H[b>>2];if(b){continue}break}c=a;break $}if((a|0)!=(x|0)){H[a>>2]=H[b+12>>2];H[l+68>>2]=c;break $}a=x-d|0;g=a>>2;c=g+1|0;if(c>>>0>=1073741824){break b}f=a>>>1|0;f=a>>>0>=2147483644?1073741823:c>>>0>>0?f:c;if(f){if(f>>>0>=1073741824){break B}a=pa(f<<2)}else{a=0}g=a+(g<<2)|0;H[g>>2]=H[b+12>>2];c=g+4|0;if((d|0)!=(x|0)){while(1){g=g-4|0;x=x-4|0;H[g>>2]=H[x>>2];if((d|0)!=(x|0)){continue}break}}x=a+(f<<2)|0;H[l+72>>2]=x;H[l+68>>2]=c;H[l+64>>2]=g;if(d){oa(d)}}if((c|0)==(g|0)){break P}w=c-4|0;a=H[w>>2];if((a|0)==(m|0)){break P}b=(a|0)==-1;p=H[j+8>>2];if(!b&H[H[p+12>>2]+(a<<2)>>2]!=-1){break P}q=H[p+12>>2];if((m|0)!=-1&H[q+(m<<2)>>2]!=-1){break P}k=N(h,3);t=k+2|0;H[q+(a<<2)>>2]=t;h=t<<2;H[h+q>>2]=a;d=k+1|0;H[q+(m<<2)>>2]=d;y=d<<2;H[y+q>>2]=m;if(b){break T}if((a>>>0)%3|0){f=a-1|0;break S}f=a+2|0;if((f|0)!=-1){break S}d=H[p>>2];f=-1;break R;case 6:break W;default:break D}}k=H[j+8>>2];Ka(k+24|0,11424);f=H[j+8>>2];a=N(h,3);m=H[k+28>>2];p=H[k+24>>2];q=m-p|0;k=q>>2;t=k-1|0;H[H[f>>2]+(a<<2)>>2]=t;Ka(f+24|0,11424);w=a+1|0;H[H[f>>2]+(w<<2)>>2]=(H[f+28>>2]-H[f+24>>2]>>2)-1;f=H[j+8>>2];Ka(f+24|0,11424);y=a+2|0;H[H[f>>2]+(y<<2)>>2]=(H[f+28>>2]-H[f+24>>2]>>2)-1;E=H[j+8>>2];f=H[E+24>>2];if(H[E+28>>2]-f>>2>(L|0)){break D}ea:{fa:{if((m|0)!=(p|0)){H[f+(t<<2)>>2]=a;b=0;if((q|0)==-4){break fa}}H[f+(k<<2)>>2]=w;b=k+1|0;if((b|0)==-1){break ea}}H[f+(b<<2)>>2]=y}if((c|0)!=(x|0)){H[c>>2]=a;c=c+4|0;H[l+68>>2]=c;break U}b=c-d|0;k=b>>2;g=k+1|0;if(g>>>0>=1073741824){break b}f=b>>>1|0;b=b>>>0>=2147483644?1073741823:g>>>0>>0?f:g;if(b){if(b>>>0>=1073741824){break B}f=pa(b<<2)}else{f=0}g=f+(k<<2)|0;H[g>>2]=a;x=f+(b<<2)|0;a=g+4|0;if((c|0)!=(d|0)){while(1){g=g-4|0;c=c-4|0;H[g>>2]=H[c>>2];if((c|0)!=(d|0)){continue}break}}H[l+72>>2]=x;H[l+68>>2]=a;H[l+64>>2]=g;if(d){oa(d)}c=a}d=g}Ce(r,H[c-4>>2]);a=H[j+40>>2];if((a|0)==H[j+36>>2]){break I}b=a-12|0;f=H[b+4>>2];h=(h^-1)+n|0;if(f>>>0>h>>>0){break P}if((f|0)!=(h|0)){break I}k=I[a-4|0];f=H[b>>2];H[j+40>>2]=b;if((f|0)<0){break P}m=c-4|0;a=H[m>>2];H[l+20>>2]=(f^-1)+n;b=l+20|0;H[l+88>>2]=b;Gb(l,l+40|0,b,l+88|0);f=H[l>>2];ga:{if(k&1){b=-1;if((a|0)==-1){break ga}b=a+1|0;b=(b>>>0)%3|0?b:a-2|0;break ga}b=-1;if((a|0)==-1){break ga}b=a-1|0;if((a>>>0)%3|0){break ga}b=a+2|0}H[f+12>>2]=b;b=H[j+40>>2];if((b|0)==H[j+36>>2]){break I}while(1){a=b-12|0;f=H[a+4>>2];if(f>>>0>h>>>0){break P}if((f|0)!=(h|0)){break I}f=I[b-4|0];b=H[a>>2];H[j+40>>2]=a;if((b|0)<0){break P}a=H[m>>2];H[l+20>>2]=(b^-1)+n;b=l+20|0;H[l+88>>2]=b;Gb(l,l+40|0,b,l+88|0);k=H[l>>2];ha:{if(f&1){b=-1;if((a|0)==-1){break ha}b=a+1|0;b=(b>>>0)%3|0?b:a-2|0;break ha}b=-1;if((a|0)==-1){break ha}b=a-1|0;if((a>>>0)%3|0){break ha}b=a+2|0}H[k+12>>2]=b;b=H[j+40>>2];if((b|0)!=H[j+36>>2]){continue}break}break I}f=-1;d=H[p>>2];H[d+(k<<2)>>2]=-1;b=-1;break Q}d=H[p>>2];f=H[d+(f<<2)>>2]}H[(k<<2)+d>>2]=f;E=a+1|0;a=(E>>>0)%3|0?E:a-2|0;b=-1;if((a|0)==-1){break Q}b=H[(a<<2)+d>>2]}H[d+y>>2]=b;ia:{if((m|0)==-1){H[d+h>>2]=-1;t=-1;a=-1;break ia}ja:{ka:{la:{if((m>>>0)%3|0){b=m-1|0;break la}b=m+2|0;if((b|0)==-1){break ka}}a=H[(b<<2)+d>>2];H[d+h>>2]=a;if((a|0)==-1){break ja}H[H[p+24>>2]+(a<<2)>>2]=t;break ja}H[d+h>>2]=-1}t=-1;b=m+1|0;b=(b>>>0)%3|0?b:m-2|0;a=-1;if((b|0)==-1){break ia}t=H[(b<<2)+d>>2];a=b}b=H[j+388>>2];h=f<<2;m=b+h|0;y=b;b=t<<2;H[m>>2]=H[m>>2]+H[y+b>>2];m=b;b=H[p+24>>2];m=m+b|0;if((f|0)!=-1){H[b+h>>2]=H[m>>2]}b=a;while(1){if((b|0)==-1){break O}H[(b<<2)+d>>2]=f;p=b+1|0;b=(p>>>0)%3|0?p:b-2|0;h=-1;ma:{if((b|0)==-1){break ma}b=H[q+(b<<2)>>2];h=-1;if((b|0)==-1){break ma}h=b+1|0;h=(h>>>0)%3|0?h:b-2|0}b=h;if((a|0)!=(b|0)){continue}break}}b=-1;if(!D){break E}break D}H[m>>2]=-1;na:{if(P){break na}if((z|0)!=(A|0)){H[A>>2]=t;A=A+4|0;H[l+28>>2]=A;break na}a=z-o|0;h=a>>2;b=h+1|0;if(b>>>0>=1073741824){break b}d=a>>>1|0;d=a>>>0>=2147483644?1073741823:b>>>0>>0?d:b;if(d){if(d>>>0>=1073741824){break B}a=pa(d<<2)}else{a=0}b=a+(h<<2)|0;H[b>>2]=t;A=b+4|0;if((o|0)!=(z|0)){while(1){b=b-4|0;z=z-4|0;H[b>>2]=H[z>>2];if((o|0)!=(z|0)){continue}break}}z=a+(d<<2)|0;H[l+32>>2]=z;H[l+28>>2]=A;H[l+24>>2]=b;if(o){oa(o)}o=b}H[w>>2]=k}Ce(r,k);d=g}D=(i|0)<(n|0);if((i|0)!=(n|0)){continue}break}i=n}b=-1;d=H[j+8>>2];if(H[d+28>>2]-H[d+24>>2]>>2>(L|0)){break D}if((c|0)!=(g|0)){x=j+72|0;h=j+60|0;p=j+312|0;while(1){c=c-4|0;o=H[c>>2];H[l+68>>2]=c;oa:{pa:{qa:{if(J[j+270>>1]<=513){if(!I[j+364|0]){break pa}a=H[j+360>>2];b=H[j+352>>2]+(a>>>3|0)|0;if(b>>>0>=K[j+356>>2]){break qa}b=I[b|0];H[j+360>>2]=a+1;if(!(b>>>(a&7)&1)){break qa}break pa}if(Ba(p)){break pa}}b=H[j+64>>2];a=H[j+68>>2];if((b|0)==a<<5){if((b+1|0)<0){break b}if(b>>>0<=1073741822){a=a<<6;b=(b&-32)+32|0;a=a>>>0>b>>>0?a:b}else{a=2147483647}pb(h,a);b=H[j+64>>2]}H[j+64>>2]=b+1;a=H[j+60>>2]+(b>>>3&536870908)|0;d=H[a>>2];Q=a,R=Vj(b)&d,H[Q>>2]=R;b=H[j+76>>2];if((b|0)!=H[j+80>>2]){H[b>>2]=o;H[j+76>>2]=b+4;break oa}d=H[x>>2];a=b-d|0;k=a>>2;f=k+1|0;if(f>>>0<1073741824){n=a>>>1|0;n=a>>>0>=2147483644?1073741823:f>>>0>>0?n:f;if(n){if(n>>>0>=1073741824){break B}a=pa(n<<2)}else{a=0}f=a+(k<<2)|0;H[f>>2]=o;o=f+4|0;if((b|0)!=(d|0)){while(1){f=f-4|0;b=b-4|0;H[f>>2]=H[b>>2];if((b|0)!=(d|0)){continue}break}}H[j+80>>2]=a+(n<<2);H[j+76>>2]=o;H[j+72>>2]=f;if(!d){break oa}oa(d);break oa}break b}m=H[j+8>>2];r=H[m>>2];if(((H[m+4>>2]-r>>2>>>0)/3|0)<=(i|0)){b=-1;break D}d=-1;q=H[m+24>>2];n=-1;ra:{if((o|0)==-1){break ra}g=o+1|0;g=(g>>>0)%3|0?g:o-2|0;n=-1;if((g|0)==-1){break ra}n=H[r+(g<<2)>>2]}a=H[q+(n<<2)>>2];sa:{if((a|0)==-1){k=1;f=-1;break sa}k=1;f=-1;b=a+1|0;a=(b>>>0)%3|0?b:a-2|0;if((a|0)==-1){break sa}k=0;d=a;b=a+1|0;b=(b>>>0)%3|0?b:a-2|0;if((b|0)!=-1){f=H[r+(b<<2)>>2]}}b=-1;g=-1;a=H[q+(f<<2)>>2];if((a|0)!=-1){g=a+1|0;g=(g>>>0)%3|0?g:a-2|0}if((d|0)==(o|0)|(g|0)==(o|0)|((o|0)!=-1&H[H[m+12>>2]+(o<<2)>>2]!=-1|(d|0)==(g|0))){break D}if(!k&H[H[m+12>>2]+(d<<2)>>2]!=-1){break D}k=-1;a=H[m+12>>2];m=-1;ta:{if((g|0)==-1){break ta}if(H[a+(g<<2)>>2]!=-1){break D}b=g+1|0;b=(b>>>0)%3|0?b:g-2|0;m=-1;if((b|0)==-1){break ta}m=H[r+(b<<2)>>2]}b=N(i,3);H[l>>2]=b;H[a+(b<<2)>>2]=o;H[a+(o<<2)>>2]=b;b=H[l>>2]+1|0;H[a+(b<<2)>>2]=d;H[a+(d<<2)>>2]=b;b=H[l>>2]+2|0;H[a+(b<<2)>>2]=g;H[a+(g<<2)>>2]=b;a=H[l>>2];H[r+(a<<2)>>2]=f;b=a+1|0;d=r+(b<<2)|0;H[d>>2]=m;g=a+2|0;o=r+(g<<2)|0;H[o>>2]=n;a=H[j+120>>2];f=b?f:-1;n=a+(f>>>3&536870908)|0;r=H[n>>2];Q=n,R=Vj(f)&r,H[Q>>2]=R;k=(b|0)!=-1?H[d>>2]:k;b=a+(k>>>3&536870908)|0;d=H[b>>2];Q=b,R=Vj(k)&d,H[Q>>2]=R;b=-1;b=(g|0)!=-1?H[o>>2]:b;a=a+(b>>>3&536870908)|0;d=H[a>>2];Q=a,R=Vj(b)&d,H[Q>>2]=R;F[l+88|0]=1;_c(h,l+88|0);Ka(x,l);i=i+1|0;g=H[l+64>>2]}if((c|0)!=(g|0)){continue}break}d=H[j+8>>2]}b=-1;if(((H[d+4>>2]-H[d>>2]>>2>>>0)/3|0)!=(i|0)){break D}b=H[d+28>>2]-H[d+24>>2]>>2;i=H[l+24>>2];f=H[l+28>>2];if((i|0)==(f|0)){break C}while(1){a=H[i>>2];h=H[d+24>>2];c=b-1|0;g=h+(c<<2)|0;if(H[g>>2]==-1){while(1){c=b-2|0;b=b-1|0;g=h+(c<<2)|0;if(H[g>>2]==-1){continue}break}}if(a>>>0<=c>>>0){H[l>>2]=d;g=H[g>>2];F[l+12|0]=1;H[l+8>>2]=g;H[l+4>>2]=g;if((g|0)!=-1){while(1){d=H[H[j+8>>2]>>2]+(g<<2)|0;if(H[d>>2]!=(c|0)){b=-1;break D}H[d>>2]=a;uc(l);g=H[l+8>>2];if((g|0)!=-1){continue}break}d=H[j+8>>2]}h=H[d+24>>2];g=h+(c<<2)|0;if((a|0)!=-1){H[h+(a<<2)>>2]=H[g>>2]}H[g>>2]=-1;g=1<>2];a=h+(a>>>3&536870908)|0;h=h+(c>>>3&536870908)|0;c=1<>2]&c){g=g|H[a>>2]}else{g=H[a>>2]&(g^-1)}H[a>>2]=g;H[h>>2]=H[h>>2]&(c^-1);b=b-1|0}i=i+4|0;if((f|0)!=(i|0)){continue}break}}i=H[l+24>>2]}if(i){oa(i)}a=H[l+48>>2];if(a){while(1){c=H[a>>2];oa(a);a=c;if(a){continue}break}}a=H[l+40>>2];H[l+40>>2]=0;if(a){oa(a)}a=H[l+64>>2];if(a){H[l+68>>2]=a;oa(a)}ca=l+96|0;break A}wa();v()}if((b|0)==-1){break z}a=O;c=H[a+16>>2];d=c+H[a>>2]|0;c=H[a+8>>2]-c|0;a=H[H[j+4>>2]+32>>2];G[a+38>>1]=J[a+38>>1];H[a>>2]=d;H[a+16>>2]=0;H[a+20>>2]=0;H[a+8>>2]=c;H[a+12>>2]=0;a=H[j+4>>2];c=J[a+36>>1];g=c<<8|c>>>8;if((g&65535)>>>0<=513){a=H[a+32>>2];c=H[a+16>>2];d=M+H[a+20>>2]|0;c=c+C|0;d=c>>>0>>0?d+1|0:d;H[a+16>>2]=c;H[a+20>>2]=d}ua:{if(H[j+216>>2]==H[j+220>>2]){break ua}c=H[j+8>>2];a=H[c>>2];c=H[c+4>>2];va:{if((g&65535)>>>0>=513){if((a|0)==(c|0)){break ua}c=0;break va}if((a|0)==(c|0)){break ua}c=0;while(1){if(cd(j,c)){c=c+3|0;a=H[j+8>>2];if(c>>>0>2]-H[a>>2]>>2>>>0){continue}break ua}break}break z}while(1){if(bd(j,c)){c=c+3|0;a=H[j+8>>2];if(c>>>0>2]-H[a>>2]>>2>>>0){continue}break ua}break}break z}ad(e);c=H[j+216>>2];if((c|0)!=H[j+220>>2]){n=0;while(1){d=N(n,144);Jc((d+c|0)+4|0,H[j+8>>2]);a=H[B>>2];e=a+d|0;c=H[e+132>>2];e=H[e+136>>2];if((c|0)!=(e|0)){while(1){Hc((d+H[B>>2]|0)+4|0,H[c>>2]);c=c+4|0;if((e|0)!=(c|0)){continue}break}a=H[B>>2]}if(!Ic((a+d|0)+4|0)){break z}n=n+1|0;c=H[j+216>>2];if(n>>>0<(H[j+220>>2]-c|0)/144>>>0){continue}break}}a=H[j+8>>2];Hb(j+184|0,H[a+28>>2]-H[a+24>>2]>>2);u=H[j+216>>2];if((u|0)!=H[j+220>>2]){c=0;while(1){a=N(c,144)+u|0;d=H[a+60>>2]-H[a+56>>2]>>2;f=a+104|0;a=H[j+8>>2];a=H[a+28>>2]-H[a+24>>2]>>2;Hb(f,(a|0)<(d|0)?d:a);c=c+1|0;u=H[j+216>>2];if(c>>>0<(H[j+220>>2]-u|0)/144>>>0){continue}break}}u=$c(j,b)}break c}u=0}ca=s- -64|0;return u|0}sa();v()}function ii(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,L=0,M=0,O=0,P=0,Q=0,R=0,S=0;u=ca+-64|0;ca=u;H[a+132>>2]=0;if(H[a+148>>2]){c=H[a+144>>2];if(c){while(1){b=H[c>>2];oa(c);c=b;if(b){continue}break}}c=0;H[a+144>>2]=0;l=H[a+140>>2];a:{if(!l){break a}if(l>>>0>=4){b=l&-4;while(1){e=c<<2;H[e+H[a+136>>2]>>2]=0;H[H[a+136>>2]+(e|4)>>2]=0;H[H[a+136>>2]+(e|8)>>2]=0;H[H[a+136>>2]+(e|12)>>2]=0;c=c+4|0;f=f+4|0;if((b|0)!=(f|0)){continue}break}}b=l&3;if(!b){break a}while(1){H[H[a+136>>2]+(c<<2)>>2]=0;c=c+1|0;w=w+1|0;if((b|0)!=(w|0)){continue}break}}H[a+148>>2]=0}b:{c:{c=H[a+4>>2];w=I[c+36|0];b=w<<8|I[c+37|0];if(b>>>0<=513){g=H[c+32>>2];d:{if(b>>>0<=511){f=H[g+20>>2];l=H[g+16>>2];e=l+4|0;f=e>>>0<4?f+1|0:f;b=f;d=H[g+12>>2];if(K[g+8>>2]>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break c}f=l+H[g>>2]|0;f=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);H[g+16>>2]=e;H[g+20>>2]=b;break d}if(!Ea(1,u,g)){break c}c=H[a+4>>2];w=I[c+36|0];f=H[u>>2]}H[a+132>>2]=f}d=H[c+32>>2];e:{f:{g:{if((w&255)>>>0<=1){w=0;b=H[d+20>>2];e=H[d+16>>2];f=e+4|0;b=f>>>0<4?b+1|0:b;l=H[d+12>>2];if(K[d+8>>2]>>0&(l|0)<=(b|0)|(b|0)>(l|0)){break b}e=e+H[d>>2]|0;e=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);H[u+60>>2]=e;H[d+16>>2]=f;H[d+20>>2]=b;H[a+156>>2]=e;t=a+156|0;break g}w=0;if(!Ea(1,u+60|0,d)){break b}c=H[a+4>>2];b=I[c+36|0];H[a+156>>2]=H[u+60>>2];t=a+156|0;if(b>>>0>1){break f}}d=H[c+32>>2];e=H[d+8>>2];l=H[d+12>>2];c=H[d+20>>2];f=H[d+16>>2];b=f+4|0;c=b>>>0<4?c+1|0:c;if(b>>>0>e>>>0&(c|0)>=(l|0)|(c|0)>(l|0)){break b}f=f+H[d>>2]|0;f=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);H[u+56>>2]=f;H[d+16>>2]=b;H[d+20>>2]=c;break e}if(!Ea(1,u+56|0,H[c+32>>2])){break b}f=H[u+56>>2]}if(f>>>0>1431655765|K[t>>2]>N(f,3)>>>0){break b}E=H[a+4>>2];x=H[E+32>>2];c=H[x+8>>2];d=H[x+12>>2];b=H[x+20>>2];h=H[x+16>>2];if((d|0)<=(b|0)&h>>>0>=c>>>0|(b|0)>(d|0)){break b}j=H[x>>2];k=I[j+h|0];e=x;l=h+1|0;g=l?b:b+1|0;H[e+16>>2]=l;H[e+20>>2]=g;h:{if(I[E+36|0]<=1){e=c;c=h+5|0;b=c>>>0<5?b+1|0:b;if(c>>>0>e>>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break b}e=j+l|0;t=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);H[u+52>>2]=t;H[x+16>>2]=c;H[x+20>>2]=b;break h}if(!Ea(1,u+52|0,x)){break b}t=H[u+52>>2]}if(f>>>0>>0|((t>>>0)/3|0)+t>>>0>>0){break b}c=H[a+4>>2];d=H[c+32>>2];i:{if(I[c+36|0]<=1){c=H[d+20>>2];b=H[d+16>>2];e=b+4|0;c=e>>>0<4?c+1|0:c;l=H[d+12>>2];if(K[d+8>>2]>>0&(l|0)<=(c|0)|(c|0)>(l|0)){break b}b=b+H[d>>2]|0;b=I[b|0]|I[b+1|0]<<8|(I[b+2|0]<<16|I[b+3|0]<<24);H[u+48>>2]=b;H[d+16>>2]=e;H[d+20>>2]=c;break i}if(!Ea(1,u+48|0,d)){break b}b=H[u+48>>2]}if(b>>>0>t>>>0){break b}H[a+28>>2]=H[a+24>>2];c=$b(pa(88));e=H[a+8>>2];H[a+8>>2]=c;if(e){cb(e);if(!H[a+8>>2]){break b}}H[a+164>>2]=H[a+160>>2];Jb(a+160|0,f);H[a+176>>2]=H[a+172>>2];Jb(a+172|0,f);H[a- -64>>2]=0;H[a+92>>2]=-1;H[a+84>>2]=-1;H[a+88>>2]=-1;H[a+40>>2]=H[a+36>>2];H[a+52>>2]=H[a+48>>2];H[a+76>>2]=H[a+72>>2];M=a+216|0;ed(M);dd(M,k);if(!Lc(H[a+8>>2],f,H[a+156>>2]+b|0)){break b}c=H[a+156>>2];F[u|0]=1;Oa(a+120|0,b+c|0,u);f=H[a+4>>2];c=J[f+36>>1];c=(c<<8|c>>>8)&65535;j:{if(c>>>0<=513){g=H[f+32>>2];k:{if(c>>>0<=511){f=H[g+20>>2];l=H[g+16>>2];e=l+4|0;f=e>>>0<4?f+1|0:f;c=f;d=H[g+12>>2];if(K[g+8>>2]>>0&(c|0)>=(d|0)|(c|0)>(d|0)){break b}f=l+H[g>>2]|0;f=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);H[g+16>>2]=e;H[g+20>>2]=c;break k}if(!Ea(1,u+44|0,g)){break b}f=H[u+44>>2]}if(!f){break b}d=H[H[a+4>>2]+32>>2];l=H[d+8>>2];c=H[d+16>>2];e=l-c|0;c=H[d+12>>2]-(H[d+20>>2]+(c>>>0>l>>>0)|0)|0;if((c|0)<=0&f>>>0>e>>>0|(c|0)<0){break b}g=Ha(u);d=H[H[a+4>>2]+32>>2];l=H[d+16>>2];e=(l+H[d>>2]|0)+f|0;c=H[d+8>>2]-l|0;G[g+38>>1]=J[d+38>>1];H[g>>2]=e;H[g+16>>2]=0;H[g+20>>2]=0;H[g+8>>2]=c-f;H[g+12>>2]=0;c=Ib(a,g);if((c|0)==-1){break b}E=c;P=c>>31;break j}E=-1;P=-1;if((Ib(a,H[f+32>>2])|0)==-1){break b}}B=a+232|0;Ee(B,a);H[a+372>>2]=k;H[a+384>>2]=H[a+156>>2]+b;x=Ha(u);g=x;d=0;l=ca-16|0;ca=l;l:{if(!Ge(B,g)){break l}b=H[g+20>>2];f=H[g+16>>2];c=f+4|0;b=c>>>0<4?b+1|0:b;e=H[g+12>>2];if(K[g+8>>2]>>0&(e|0)<=(b|0)|(b|0)>(e|0)){break l}f=f+H[g>>2]|0;f=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);H[g+16>>2]=c;H[g+20>>2]=b;if((f|0)<0){break l}b=f;f=H[B+152>>2];if((b|0)>=(f|0)){break l}H[l+12>>2]=0;c=H[B+156>>2];b=H[B+160>>2]-c>>2;m:{if(b>>>0>>0){Pa(B+156|0,f-b|0,l+12|0);break m}if(b>>>0<=f>>>0){break m}H[B+160>>2]=c+(f<<2)}d=ta(B+168|0,g)}ca=l+16|0;n:{if(!d){break n}d=0;c=0;f=0;l=0;i=ca-96|0;ca=i;H[i+72>>2]=0;H[i+64>>2]=0;H[i+68>>2]=0;H[i+48>>2]=0;H[i+52>>2]=0;H[i+40>>2]=0;H[i+44>>2]=0;H[i+56>>2]=1065353216;H[i+32>>2]=0;H[i+24>>2]=0;H[i+28>>2]=0;g=a;O=H[a+124>>2];o:{p:{q:{r:{s:{t:{if((t|0)<=0){break t}z=g+400|0;Q=g+232|0;C=H[g+216>>2]!=H[g+220>>2];y=1;while(1){e=l;l=e+1|0;u:{v:{w:{x:{y:{if(H[g+420>>2]!=-1){if(Ba(z)){break y}}if(!I[g+308|0]){break x}z:{o=H[g+296>>2];r=H[g+304>>2];a=o+(r>>>3|0)|0;k=H[g+300>>2];if(a>>>0>=k>>>0){break z}b=I[a|0];a=r+1|0;H[g+304>>2]=a;h=b>>>(r&7)&1;if(!h){break z}n=a>>>3|0;b=o+n|0;A:{if(b>>>0>=k>>>0){b=a;a=0;break A}j=I[b|0];b=r+2|0;H[g+304>>2]=b;n=b>>>3|0;a=j>>>(a&7)&1}j=n+o|0;if(j>>>0>>0){j=I[j|0];H[g+304>>2]=b+1;b=j>>>(b&7)<<1&2}else{b=0}p=(a|b)<<1|h;H[g+416>>2]=p;break w}H[g+416>>2]=0;break x}p=H[g+420>>2];H[g+416>>2]=p;if(p){break w}}if((c|0)==(f|0)){b=-1;break s}p=-1;n=H[g+8>>2];o=H[n+24>>2];j=c-4|0;m=H[j>>2];d=-1;B:{if((m|0)==-1){break B}b=m+1|0;b=(b>>>0)%3|0?b:m-2|0;d=-1;if((b|0)==-1){break B}d=H[H[n>>2]+(b<<2)>>2]}b=H[o+(d<<2)>>2];if((b|0)!=-1){a=b+1|0;p=(a>>>0)%3|0?a:b-2|0}if((m|0)==(p|0)){b=-1;break s}if((m|0)!=-1){b=-1;if(H[H[n+12>>2]+(m<<2)>>2]!=-1){break s}}k=H[n+12>>2];if((p|0)!=-1){b=-1;if(H[k+(p<<2)>>2]!=-1){break s}}q=N(e,3);a=q+1|0;H[k+(m<<2)>>2]=a;h=a<<2;H[h+k>>2]=m;r=q+2|0;H[k+(p<<2)>>2]=r;e=r<<2;H[e+k>>2]=p;k=-1;a=-1;C:{if((m|0)==-1){break C}D:{if((m>>>0)%3|0){b=m-1|0;break D}b=m+2|0;a=-1;if((b|0)==-1){break C}}a=H[H[n>>2]+(b<<2)>>2]}E:{if((p|0)==-1){break E}b=p+1|0;b=(b>>>0)%3|0?b:p-2|0;if((b|0)==-1){break E}k=H[H[n>>2]+(b<<2)>>2]}b=-1;if((a|0)==(d|0)|(d|0)==(k|0)){break s}b=H[n>>2];H[b+(q<<2)>>2]=d;H[b+h>>2]=k;H[b+e>>2]=a;if((a|0)!=-1){H[o+(a<<2)>>2]=r}b=H[g+120>>2]+(d>>>3&536870908)|0;a=H[b>>2];R=b,S=Vj(d)&a,H[R>>2]=S;H[j>>2]=q;p=H[c-4>>2];break v}b=-1;F:{G:{H:{I:{J:{K:{L:{M:{N:{O:{P:{switch(p-1|0){case 2:case 4:if((c|0)==(f|0)){break s}h=c-4|0;m=H[h>>2];r=H[g+8>>2];d=H[r+12>>2];if((m|0)!=-1&H[d+(m<<2)>>2]!=-1){break s}q=N(e,3);k=(p|0)==5;j=q+(k?2:1)|0;a=j<<2;H[a+d>>2]=m;H[d+(m<<2)>>2]=j;Ka(r+24|0,11424);d=H[g+8>>2];o=H[d+24>>2];if(H[d+28>>2]-o>>2>(O|0)){break s}n=H[d>>2];p=n+a|0;d=H[r+28>>2];b=H[r+24>>2];a=(d-b>>2)-1|0;H[p>>2]=a;if((b|0)!=(d|0)){H[o+(a<<2)>>2]=j}d=k?q:q+2|0;j=n+(k+q<<2)|0;Q:{if((m|0)==-1){H[n+(d<<2)>>2]=-1;b=-1;break Q}R:{S:{T:{if((m>>>0)%3|0){a=m-1|0;break T}a=m+2|0;if((a|0)==-1){break S}}a=H[n+(a<<2)>>2];H[n+(d<<2)>>2]=a;if((a|0)==-1){break R}H[o+(a<<2)>>2]=d;break R}H[n+(d<<2)>>2]=-1}a=m+1|0;a=(a>>>0)%3|0?a:m-2|0;b=-1;if((a|0)==-1){break Q}b=H[n+(a<<2)>>2]}H[j>>2]=b;H[h>>2]=q;break O;case 0:if((c|0)==(d|0)){break s}a=c-4|0;m=H[a>>2];H[i+68>>2]=a;k=H[i+44>>2];U:{if(!k){c=a;break U}o=H[i+40>>2];h=Uj(k)>>>0>1;b=e&k+2147483647;V:{if(!h){break V}b=e;if(b>>>0>>0){break V}b=(e>>>0)%(k>>>0)|0}j=b;b=H[o+(j<<2)>>2];if(!b){c=a;break U}b=H[b>>2];if(!b){c=a;break U}W:{if(!h){k=k-1|0;while(1){h=H[b+4>>2];X:{if((h|0)!=(e|0)){if((j|0)==(h&k)){break X}c=a;break U}if((e|0)==H[b+8>>2]){break W}}b=H[b>>2];if(b){continue}break}c=a;break U}while(1){h=H[b+4>>2];Y:{if((h|0)!=(e|0)){if(h>>>0>=k>>>0){h=(h>>>0)%(k>>>0)|0}if((h|0)==(j|0)){break Y}c=a;break U}if((e|0)==H[b+8>>2]){break W}}b=H[b>>2];if(b){continue}break}c=a;break U}if((a|0)!=(A|0)){H[a>>2]=H[b+12>>2];H[i+68>>2]=c;break U}h=A-d|0;c=h>>2;f=c+1|0;if(f>>>0>=1073741824){break M}a=h>>>1|0;h=h>>>0>=2147483644?1073741823:a>>>0>f>>>0?a:f;if(h){if(h>>>0>=1073741824){break p}a=pa(h<<2)}else{a=0}f=a+(c<<2)|0;H[f>>2]=H[b+12>>2];c=f+4|0;if((d|0)!=(A|0)){while(1){f=f-4|0;A=A-4|0;H[f>>2]=H[A>>2];if((d|0)!=(A|0)){continue}break}}A=a+(h<<2)|0;H[i+72>>2]=A;H[i+68>>2]=c;H[i+64>>2]=f;if(d){oa(d)}}if((c|0)==(f|0)){break G}j=c-4|0;n=H[j>>2];if((n|0)==(m|0)){break G}d=(n|0)==-1;q=H[g+8>>2];if(!d&H[H[q+12>>2]+(n<<2)>>2]!=-1){break G}r=H[q+12>>2];if((m|0)!=-1&H[r+(m<<2)>>2]!=-1){break G}p=N(e,3);e=p+2|0;H[r+(n<<2)>>2]=e;o=e<<2;H[o+r>>2]=n;a=p+1|0;H[r+(m<<2)>>2]=a;b=a<<2;H[b+r>>2]=m;if(d){break L}if((n>>>0)%3|0){k=n-1|0;break J}k=n+2|0;if((k|0)!=-1){break J}d=H[q>>2];a=-1;break I;case 6:break P;default:break s}}a=H[g+8>>2];Ka(a+24|0,11424);h=H[g+8>>2];p=N(e,3);q=H[a+28>>2];r=H[a+24>>2];o=q-r|0;n=o>>2;k=n-1|0;H[H[h>>2]+(p<<2)>>2]=k;Ka(h+24|0,11424);j=p+1|0;H[H[h>>2]+(j<<2)>>2]=(H[h+28>>2]-H[h+24>>2]>>2)-1;a=H[g+8>>2];Ka(a+24|0,11424);h=p+2|0;H[H[a>>2]+(h<<2)>>2]=(H[a+28>>2]-H[a+24>>2]>>2)-1;a=H[g+8>>2];m=H[a+24>>2];if(H[a+28>>2]-m>>2>(O|0)){break s}Z:{_:{if((q|0)!=(r|0)){H[m+(k<<2)>>2]=p;b=0;if((o|0)==-4){break _}}H[m+(n<<2)>>2]=j;b=n+1|0;if((b|0)==-1){break Z}}H[m+(b<<2)>>2]=h}if((c|0)!=(A|0)){H[c>>2]=p;c=c+4|0;H[i+68>>2]=c;break N}h=c-d|0;b=h>>2;f=b+1|0;if(f>>>0>=1073741824){break K}a=h>>>1|0;h=h>>>0>=2147483644?1073741823:a>>>0>f>>>0?a:f;if(h){if(h>>>0>=1073741824){break p}a=pa(h<<2)}else{a=0}f=a+(b<<2)|0;H[f>>2]=p;A=a+(h<<2)|0;a=f+4|0;if((c|0)!=(d|0)){while(1){f=f-4|0;c=c-4|0;H[f>>2]=H[c>>2];if((c|0)!=(d|0)){continue}break}}H[i+72>>2]=A;H[i+68>>2]=a;H[i+64>>2]=f;if(d){oa(d)}c=a}d=f}De(Q,H[c-4>>2]);h=H[g+40>>2];if((h|0)==H[g+36>>2]){break u}b=h-12|0;a=H[b+4>>2];k=(e^-1)+t|0;if(a>>>0>k>>>0){break G}if((a|0)!=(k|0)){break u}e=I[h-4|0];a=H[b>>2];H[g+40>>2]=b;if((a|0)<0){break G}h=c-4|0;j=H[h>>2];H[i+20>>2]=(a^-1)+t;a=i+20|0;H[i+88>>2]=a;Gb(i,i+40|0,a,i+88|0);b=H[i>>2];$:{if(e&1){a=-1;if((j|0)==-1){break $}a=j+1|0;a=(a>>>0)%3|0?a:j-2|0;break $}a=-1;if((j|0)==-1){break $}a=j-1|0;if((j>>>0)%3|0){break $}a=j+2|0}H[b+12>>2]=a;b=H[g+40>>2];if((b|0)==H[g+36>>2]){break u}while(1){j=b-12|0;a=H[j+4>>2];if(a>>>0>k>>>0){break G}if((a|0)!=(k|0)){break u}e=I[b-4|0];a=H[j>>2];H[g+40>>2]=j;if((a|0)<0){break G}j=H[h>>2];H[i+20>>2]=(a^-1)+t;a=i+20|0;H[i+88>>2]=a;Gb(i,i+40|0,a,i+88|0);b=H[i>>2];aa:{if(e&1){a=-1;if((j|0)==-1){break aa}a=j+1|0;a=(a>>>0)%3|0?a:j-2|0;break aa}a=-1;if((j|0)==-1){break aa}a=j-1|0;if((j>>>0)%3|0){break aa}a=j+2|0}H[b+12>>2]=a;b=H[g+40>>2];if((b|0)!=H[g+36>>2]){continue}break}break u}sa();v()}k=-1;d=H[q>>2];H[d+(p<<2)>>2]=-1;h=-1;break H}sa();v()}d=H[q>>2];a=H[d+(k<<2)>>2]}k=a;H[(p<<2)+d>>2]=a;a=n+1|0;a=(a>>>0)%3|0?a:n-2|0;h=-1;if((a|0)==-1){break H}h=H[(a<<2)+d>>2]}H[b+d>>2]=h;ba:{if((m|0)==-1){H[d+o>>2]=-1;n=-1;a=-1;break ba}ca:{da:{ea:{if((m>>>0)%3|0){b=m-1|0;break ea}b=m+2|0;if((b|0)==-1){break da}}a=H[(b<<2)+d>>2];H[d+o>>2]=a;if((a|0)==-1){break ca}H[H[q+24>>2]+(a<<2)>>2]=e;break ca}H[d+o>>2]=-1}n=-1;b=m+1|0;b=(b>>>0)%3|0?b:m-2|0;a=-1;if((b|0)==-1){break ba}n=H[(b<<2)+d>>2];a=b}h=H[g+388>>2];e=k<<2;b=h+e|0;o=b;m=H[b>>2];b=n<<2;H[o>>2]=m+H[b+h>>2];h=b;b=H[q+24>>2];o=h+b|0;if((k|0)!=-1){H[b+e>>2]=H[o>>2]}b=a;while(1){if((b|0)==-1){break F}H[(b<<2)+d>>2]=k;h=b+1|0;b=(h>>>0)%3|0?h:b-2|0;e=-1;fa:{if((b|0)==-1){break fa}h=H[r+(b<<2)>>2];e=-1;if((h|0)==-1){break fa}b=h+1|0;e=(b>>>0)%3|0?b:h-2|0}b=e;if((a|0)!=(b|0)){continue}break}}b=-1;if(!(y&1)){break t}break s}H[o>>2]=-1;ga:{if(C){break ga}if((D|0)!=(L|0)){H[L>>2]=n;L=L+4|0;H[i+28>>2]=L;break ga}d=D-s|0;b=d>>2;e=b+1|0;if(e>>>0>=1073741824){break q}a=d>>>1|0;e=d>>>0>=2147483644?1073741823:a>>>0>e>>>0?a:e;if(e){if(e>>>0>=1073741824){break p}a=pa(e<<2)}else{a=0}b=a+(b<<2)|0;H[b>>2]=n;L=b+4|0;if((s|0)!=(D|0)){while(1){b=b-4|0;D=D-4|0;H[b>>2]=H[D>>2];if((s|0)!=(D|0)){continue}break}}D=a+(e<<2)|0;H[i+32>>2]=D;H[i+28>>2]=L;H[i+24>>2]=b;if(s){oa(s)}s=b}H[j>>2]=p}De(Q,p);d=f}y=(l|0)<(t|0);if((l|0)!=(t|0)){continue}break}l=t}b=-1;y=H[g+8>>2];if(H[y+28>>2]-H[y+24>>2]>>2>(O|0)){break s}if((c|0)!=(f|0)){r=g+72|0;j=g+60|0;t=g+312|0;while(1){c=c-4|0;z=H[c>>2];H[i+68>>2]=c;ha:{ia:{ja:{if(J[g+270>>1]<=513){if(!I[g+364|0]){break ia}b=H[g+360>>2];a=H[g+352>>2]+(b>>>3|0)|0;if(a>>>0>=K[g+356>>2]){break ja}a=I[a|0];H[g+360>>2]=b+1;if(!(a>>>(b&7)&1)){break ja}break ia}if(Ba(t)){break ia}}ka:{la:{b=H[g+64>>2];e=H[g+68>>2];if((b|0)==e<<5){if((b+1|0)<0){break la}if(b>>>0<=1073741822){e=e<<6;b=(b&-32)+32|0;a=b>>>0>>0?e:b}else{a=2147483647}pb(j,a);b=H[g+64>>2]}H[g+64>>2]=b+1;e=H[g+60>>2]+(b>>>3&536870908)|0;a=H[e>>2];R=e,S=Vj(b)&a,H[R>>2]=S;b=H[g+76>>2];if((b|0)!=H[g+80>>2]){H[b>>2]=z;H[g+76>>2]=b+4;break ha}s=H[r>>2];h=b-s|0;e=h>>2;d=e+1|0;if(d>>>0>=1073741824){break ka}a=h>>>1|0;h=h>>>0>=2147483644?1073741823:a>>>0>d>>>0?a:d;if(h){if(h>>>0>=1073741824){break p}a=pa(h<<2)}else{a=0}d=a+(e<<2)|0;H[d>>2]=z;e=d+4|0;if((b|0)!=(s|0)){while(1){d=d-4|0;b=b-4|0;H[d>>2]=H[b>>2];if((b|0)!=(s|0)){continue}break}}H[g+80>>2]=a+(h<<2);H[g+76>>2]=e;H[g+72>>2]=d;if(!s){break ha}oa(s);break ha}sa();v()}sa();v()}q=H[g+8>>2];C=H[q>>2];if(((H[q+4>>2]-C>>2>>>0)/3|0)<=(l|0)){b=-1;break s}f=-1;b=-1;d=-1;s=H[q+24>>2];e=-1;ma:{if((z|0)==-1){break ma}a=z+1|0;a=(a>>>0)%3|0?a:z-2|0;e=-1;if((a|0)==-1){break ma}e=H[C+(a<<2)>>2]}o=H[s+(e<<2)>>2];na:{if((o|0)==-1){k=1;a=-1;break na}k=1;h=o+1|0;h=(h>>>0)%3|0?h:o-2|0;a=-1;if((h|0)==-1){break na}k=0;a=h+1|0;f=h;a=(a>>>0)%3|0?a:f-2|0;if((a|0)!=-1){a=H[C+(a<<2)>>2]}else{a=-1}}h=H[(a<<2)+s>>2];if((h|0)!=-1){d=h+1|0;d=(d>>>0)%3|0?d:h-2|0}if((f|0)==(z|0)|(d|0)==(z|0)|((z|0)!=-1&H[H[q+12>>2]+(z<<2)>>2]!=-1|(d|0)==(f|0))){break s}if(!k&H[H[q+12>>2]+(f<<2)>>2]!=-1){break s}k=-1;s=H[q+12>>2];h=-1;oa:{if((d|0)==-1){break oa}if(H[s+(d<<2)>>2]!=-1){break s}b=d+1|0;b=(b>>>0)%3|0?b:d-2|0;h=-1;if((b|0)==-1){break oa}h=H[C+(b<<2)>>2]}b=N(l,3);H[i>>2]=b;H[s+(b<<2)>>2]=z;H[s+(z<<2)>>2]=b;b=H[i>>2]+1|0;H[s+(b<<2)>>2]=f;H[s+(f<<2)>>2]=b;b=H[i>>2]+2|0;H[s+(b<<2)>>2]=d;H[s+(d<<2)>>2]=b;b=H[i>>2];H[C+(b<<2)>>2]=a;o=b+1|0;s=C+(o<<2)|0;H[s>>2]=h;h=b+2|0;d=C+(h<<2)|0;H[d>>2]=e;e=H[g+120>>2];f=o?a:-1;b=e+(f>>>3&536870908)|0;a=H[b>>2];R=b,S=Vj(f)&a,H[R>>2]=S;k=(o|0)!=-1?H[s>>2]:k;b=e+(k>>>3&536870908)|0;a=H[b>>2];R=b,S=Vj(k)&a,H[R>>2]=S;b=-1;b=(h|0)!=-1?H[d>>2]:b;f=e+(b>>>3&536870908)|0;a=H[f>>2];R=f,S=Vj(b)&a,H[R>>2]=S;F[i+88|0]=1;_c(j,i+88|0);Ka(r,i);l=l+1|0;f=H[i+64>>2]}if((c|0)!=(f|0)){continue}break}y=H[g+8>>2]}b=-1;if(((H[y+4>>2]-H[y>>2]>>2>>>0)/3|0)!=(l|0)){break s}b=H[y+28>>2]-H[y+24>>2]>>2;l=H[i+24>>2];e=H[i+28>>2];if((l|0)==(e|0)){break r}while(1){j=H[l>>2];a=H[y+24>>2];c=b-1|0;d=a+(c<<2)|0;if(H[d>>2]==-1){while(1){c=b-2|0;b=b-1|0;d=a+(c<<2)|0;if(H[d>>2]==-1){continue}break}}if(c>>>0>=j>>>0){H[i>>2]=y;d=H[d>>2];F[i+12|0]=1;H[i+8>>2]=d;H[i+4>>2]=d;if((d|0)!=-1){while(1){a=H[H[g+8>>2]>>2]+(d<<2)|0;if(H[a>>2]!=(c|0)){b=-1;break s}H[a>>2]=j;uc(i);d=H[i+8>>2];if((d|0)!=-1){continue}break}y=H[g+8>>2]}a=H[y+24>>2];f=a+(c<<2)|0;if((j|0)!=-1){H[a+(j<<2)>>2]=H[f>>2]}H[f>>2]=-1;h=1<>2];f=a+(j>>>3&536870908)|0;d=a+(c>>>3&536870908)|0;a=1<>2]&a){c=h|H[f>>2]}else{c=H[f>>2]&(h^-1)}H[f>>2]=c;H[d>>2]=H[d>>2]&(a^-1);b=b-1|0}l=l+4|0;if((e|0)!=(l|0)){continue}break}}l=H[i+24>>2]}if(l){oa(l)}a=H[i+48>>2];if(a){while(1){c=H[a>>2];oa(a);a=c;if(a){continue}break}}a=H[i+40>>2];H[i+40>>2]=0;if(a){oa(a)}a=H[i+64>>2];if(a){H[i+68>>2]=a;oa(a)}ca=i+96|0;break o}sa();v()}wa();v()}f=b;if((b|0)==-1){break n}b=H[x+16>>2];c=b+H[x>>2]|0;a=H[x+8>>2]-b|0;b=H[H[g+4>>2]+32>>2];G[b+38>>1]=J[b+38>>1];H[b>>2]=c;H[b+16>>2]=0;H[b+20>>2]=0;H[b+8>>2]=a;H[b+12>>2]=0;b=H[g+4>>2];a=J[b+36>>1];c=a<<8|a>>>8;if((c&65535)>>>0<=513){b=H[b+32>>2];e=b;a=H[b+16>>2];b=P+H[b+20>>2]|0;a=a+E|0;b=a>>>0>>0?b+1|0:b;H[e+16>>2]=a;H[e+20>>2]=b}pa:{if(H[g+216>>2]==H[g+220>>2]){break pa}a=H[g+8>>2];b=H[a>>2];a=H[a+4>>2];qa:{if((c&65535)>>>0>=513){if((a|0)==(b|0)){break pa}c=0;break qa}if((a|0)==(b|0)){break pa}c=0;while(1){if(cd(g,c)){c=c+3|0;a=H[g+8>>2];if(c>>>0>2]-H[a>>2]>>2>>>0){continue}break pa}break}break n}while(1){if(bd(g,c)){c=c+3|0;a=H[g+8>>2];if(c>>>0>2]-H[a>>2]>>2>>>0){continue}break pa}break}break n}ad(B);c=H[g+216>>2];if((c|0)!=H[g+220>>2]){t=0;while(1){e=N(t,144);Jc((e+c|0)+4|0,H[g+8>>2]);a=H[M>>2];b=a+e|0;c=H[b+132>>2];b=H[b+136>>2];if((c|0)!=(b|0)){while(1){Hc((e+H[M>>2]|0)+4|0,H[c>>2]);c=c+4|0;if((b|0)!=(c|0)){continue}break}a=H[M>>2]}if(!Ic((a+e|0)+4|0)){break n}t=t+1|0;c=H[g+216>>2];if(t>>>0<(H[g+220>>2]-c|0)/144>>>0){continue}break}}a=H[g+8>>2];Hb(g+184|0,H[a+28>>2]-H[a+24>>2]>>2);w=H[g+216>>2];if((w|0)!=H[g+220>>2]){c=0;while(1){a=N(c,144)+w|0;b=H[a+60>>2]-H[a+56>>2]>>2;e=a+104|0;a=H[g+8>>2];a=H[a+28>>2]-H[a+24>>2]>>2;Hb(e,(a|0)<(b|0)?b:a);c=c+1|0;w=H[g+216>>2];if(c>>>0<(H[g+220>>2]-w|0)/144>>>0){continue}break}}w=$c(g,f)}break b}w=0}ca=u- -64|0;return w|0}function ki(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,L=0,M=0,O=0,P=0,Q=0;t=ca+-64|0;ca=t;H[a+132>>2]=0;if(H[a+148>>2]){d=H[a+144>>2];if(d){while(1){b=H[d>>2];oa(d);d=b;if(b){continue}break}}d=0;H[a+144>>2]=0;k=H[a+140>>2];a:{if(!k){break a}if(k>>>0>=4){b=k&-4;while(1){c=d<<2;H[c+H[a+136>>2]>>2]=0;H[H[a+136>>2]+(c|4)>>2]=0;H[H[a+136>>2]+(c|8)>>2]=0;H[H[a+136>>2]+(c|12)>>2]=0;d=d+4|0;e=e+4|0;if((b|0)!=(e|0)){continue}break}}b=k&3;if(!b){break a}while(1){H[H[a+136>>2]+(d<<2)>>2]=0;d=d+1|0;x=x+1|0;if((b|0)!=(x|0)){continue}break}}H[a+148>>2]=0}b:{c:{d=H[a+4>>2];x=I[d+36|0];b=x<<8|I[d+37|0];if(b>>>0<=513){f=H[d+32>>2];d:{if(b>>>0<=511){b=H[f+20>>2];e=H[f+16>>2];c=e+4|0;b=c>>>0<4?b+1|0:b;k=H[f+12>>2];if(K[f+8>>2]>>0&(k|0)<=(b|0)|(b|0)>(k|0)){break c}e=e+H[f>>2]|0;e=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);H[f+16>>2]=c;H[f+20>>2]=b;break d}if(!Ea(1,t,f)){break c}d=H[a+4>>2];x=I[d+36|0];e=H[t>>2]}H[a+132>>2]=e}f=H[d+32>>2];e:{f:{g:{if((x&255)>>>0<=1){x=0;b=H[f+20>>2];c=H[f+16>>2];e=c+4|0;b=e>>>0<4?b+1|0:b;k=H[f+12>>2];if(K[f+8>>2]>>0&(k|0)<=(b|0)|(b|0)>(k|0)){break b}c=c+H[f>>2]|0;c=I[c|0]|I[c+1|0]<<8|(I[c+2|0]<<16|I[c+3|0]<<24);H[t+60>>2]=c;H[f+16>>2]=e;H[f+20>>2]=b;H[a+156>>2]=c;l=a+156|0;break g}x=0;if(!Ea(1,t+60|0,f)){break b}d=H[a+4>>2];b=I[d+36|0];H[a+156>>2]=H[t+60>>2];l=a+156|0;if(b>>>0>1){break f}}f=H[d+32>>2];c=H[f+8>>2];k=H[f+12>>2];d=H[f+20>>2];e=H[f+16>>2];b=e+4|0;d=b>>>0<4?d+1|0:d;if(b>>>0>c>>>0&(d|0)>=(k|0)|(d|0)>(k|0)){break b}e=e+H[f>>2]|0;e=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);H[t+56>>2]=e;H[f+16>>2]=b;H[f+20>>2]=d;break e}if(!Ea(1,t+56|0,H[d+32>>2])){break b}e=H[t+56>>2]}if(e>>>0>1431655765|K[l>>2]>N(e,3)>>>0){break b}j=H[a+4>>2];y=H[j+32>>2];d=H[y+8>>2];f=H[y+12>>2];b=H[y+20>>2];m=H[y+16>>2];if((f|0)<=(b|0)&m>>>0>=d>>>0|(b|0)>(f|0)){break b}l=H[y>>2];g=I[l+m|0];c=y;k=m+1|0;C=k?b:b+1|0;H[c+16>>2]=k;H[c+20>>2]=C;h:{if(I[j+36|0]<=1){c=d;d=m+5|0;b=d>>>0<5?b+1|0:b;if(c>>>0>>0&(b|0)>=(f|0)|(b|0)>(f|0)){break b}c=k+l|0;l=I[c|0]|I[c+1|0]<<8|(I[c+2|0]<<16|I[c+3|0]<<24);H[t+52>>2]=l;H[y+16>>2]=d;H[y+20>>2]=b;break h}if(!Ea(1,t+52|0,y)){break b}l=H[t+52>>2]}if(e>>>0>>0|((l>>>0)/3|0)+l>>>0>>0){break b}d=H[a+4>>2];f=H[d+32>>2];i:{if(I[d+36|0]<=1){d=H[f+20>>2];b=H[f+16>>2];c=b+4|0;d=c>>>0<4?d+1|0:d;k=H[f+12>>2];if(K[f+8>>2]>>0&(k|0)<=(d|0)|(d|0)>(k|0)){break b}b=b+H[f>>2]|0;b=I[b|0]|I[b+1|0]<<8|(I[b+2|0]<<16|I[b+3|0]<<24);H[t+48>>2]=b;H[f+16>>2]=c;H[f+20>>2]=d;break i}if(!Ea(1,t+48|0,f)){break b}b=H[t+48>>2]}if(b>>>0>l>>>0){break b}H[a+28>>2]=H[a+24>>2];d=$b(pa(88));c=H[a+8>>2];H[a+8>>2]=d;if(c){cb(c);if(!H[a+8>>2]){break b}}H[a+164>>2]=H[a+160>>2];Jb(a+160|0,e);H[a+176>>2]=H[a+172>>2];Jb(a+172|0,e);H[a- -64>>2]=0;H[a+92>>2]=-1;H[a+84>>2]=-1;H[a+88>>2]=-1;H[a+40>>2]=H[a+36>>2];H[a+52>>2]=H[a+48>>2];H[a+76>>2]=H[a+72>>2];E=a+216|0;ed(E);dd(E,g);if(!Lc(H[a+8>>2],e,H[a+156>>2]+b|0)){break b}d=H[a+156>>2];F[t|0]=1;Oa(a+120|0,b+d|0,t);b=H[a+4>>2];d=J[b+36>>1];d=(d<<8|d>>>8)&65535;j:{if(d>>>0<=513){k=H[b+32>>2];k:{if(d>>>0<=511){b=H[k+20>>2];e=H[k+16>>2];d=e+4|0;b=d>>>0<4?b+1|0:b;c=H[k+12>>2];if(K[k+8>>2]>>0&(c|0)<=(b|0)|(b|0)>(c|0)){break b}e=e+H[k>>2]|0;e=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);H[k+16>>2]=d;H[k+20>>2]=b;break k}if(!Ea(1,t+44|0,k)){break b}e=H[t+44>>2]}if(!e){break b}k=H[H[a+4>>2]+32>>2];c=H[k+8>>2];d=H[k+16>>2];b=c-d|0;d=H[k+12>>2]-(H[k+20>>2]+(c>>>0>>0)|0)|0;if(b>>>0>>0&(d|0)<=0|(d|0)<0){break b}f=Ha(t);k=H[H[a+4>>2]+32>>2];c=H[k+16>>2];b=(c+H[k>>2]|0)+e|0;d=H[k+8>>2]-c|0;G[f+38>>1]=J[k+38>>1];H[f>>2]=b;H[f+16>>2]=0;H[f+20>>2]=0;H[f+8>>2]=d-e;H[f+12>>2]=0;d=Ib(a,f);if((d|0)==-1){break b}y=d;M=d>>31;break j}y=-1;M=-1;if((Ib(a,H[b+32>>2])|0)==-1){break b}}O=a+232|0;e=O;H[e+144>>2]=a;d=H[(ea[H[H[a>>2]+32>>2]](a)|0)+32>>2];b=H[d>>2]+H[d+16>>2]|0;d=H[(ea[H[H[a>>2]+32>>2]](a)|0)+32>>2];d=H[d+8>>2]-H[d+16>>2]|0;P=e,Q=J[H[(ea[H[H[a>>2]+32>>2]](a)|0)+32>>2]+38>>1],G[P+38>>1]=Q;H[e>>2]=b;H[e+16>>2]=0;H[e+20>>2]=0;H[e+8>>2]=d;H[e+12>>2]=0;H[a+372>>2]=g;C=Ha(t);l:{if(!Ge(e,C)){break l}b=0;d=0;e=0;k=0;i=ca-96|0;ca=i;H[i+72>>2]=0;H[i+64>>2]=0;H[i+68>>2]=0;H[i+48>>2]=0;H[i+52>>2]=0;H[i+40>>2]=0;H[i+44>>2]=0;H[i+56>>2]=1065353216;H[i+32>>2]=0;H[i+24>>2]=0;H[i+28>>2]=0;h=a;L=H[a+124>>2];m:{n:{o:{p:{q:{r:{if((l|0)<=0){break r}A=H[h+216>>2]!=H[h+220>>2];s=1;while(1){f=k;k=f+1|0;s:{t:{u:{v:{w:{x:{y:{z:{A:{B:{C:{D:{E:{F:{G:{if(!I[h+308|0]){break G}u=H[h+296>>2];g=H[h+304>>2];a=u+(g>>>3|0)|0;p=H[h+300>>2];if(a>>>0>=p>>>0){break G}c=I[a|0];a=g+1|0;H[h+304>>2]=a;m=c>>>(g&7)&1;if(!m){break G}n=0;j=a>>>3|0;c=u+j|0;H:{if(c>>>0>=p>>>0){g=a;a=0;break H}c=I[c|0];g=g+2|0;H[h+304>>2]=g;j=g>>>3|0;a=c>>>(a&7)&1}c=j+u|0;if(c>>>0

>>0){c=I[c|0];H[h+304>>2]=g+1;n=c>>>(g&7)<<1&2}j=-1;a=m|(a|n)<<1;switch(a-1|0){case 6:break D;case 0:break E;case 2:case 4:break F;default:break q}}if((d|0)==(e|0)){j=-1;break q}g=-1;q=H[h+8>>2];u=H[q+24>>2];p=d-4|0;s=H[p>>2];c=-1;I:{if((s|0)==-1){break I}b=s+1|0;b=(b>>>0)%3|0?b:s-2|0;c=-1;if((b|0)==-1){break I}c=H[H[q>>2]+(b<<2)>>2]}b=H[u+(c<<2)>>2];if((b|0)!=-1){a=b+1|0;g=(a>>>0)%3|0?a:b-2|0}if((g|0)==(s|0)){j=-1;break q}if((s|0)!=-1){j=-1;if(H[H[q+12>>2]+(s<<2)>>2]!=-1){break q}}b=H[q+12>>2];if((g|0)!=-1){j=-1;if(H[b+(g<<2)>>2]!=-1){break q}}n=N(f,3);a=n+1|0;H[b+(s<<2)>>2]=a;m=a<<2;H[m+b>>2]=s;r=n+2|0;H[b+(g<<2)>>2]=r;f=r<<2;H[f+b>>2]=g;o=-1;a=-1;J:{if((s|0)==-1){break J}K:{if((s>>>0)%3|0){b=s-1|0;break K}b=s+2|0;a=-1;if((b|0)==-1){break J}}a=H[H[q>>2]+(b<<2)>>2]}L:{if((g|0)==-1){break L}b=g+1|0;b=(b>>>0)%3|0?b:g-2|0;if((b|0)==-1){break L}o=H[H[q>>2]+(b<<2)>>2]}j=-1;if((a|0)==(c|0)|(c|0)==(o|0)){break q}b=H[q>>2];H[b+(n<<2)>>2]=c;H[b+m>>2]=o;H[b+f>>2]=a;if((a|0)!=-1){H[u+(a<<2)>>2]=r}b=H[h+120>>2]+(c>>>3&536870908)|0;a=H[b>>2];P=b,Q=Vj(c)&a,H[P>>2]=Q;H[p>>2]=n;b=e;break s}if((d|0)==(e|0)){break q}m=d-4|0;n=H[m>>2];r=H[h+8>>2];b=H[r+12>>2];if((n|0)!=-1&H[b+(n<<2)>>2]!=-1){break q}o=N(f,3);p=(a|0)==5;g=o+(p?2:1)|0;a=g<<2;H[a+b>>2]=n;H[b+(n<<2)>>2]=g;Ka(r+24|0,11424);b=H[h+8>>2];u=H[b+24>>2];if(H[b+28>>2]-u>>2>(L|0)){break q}j=H[b>>2];q=j+a|0;c=H[r+28>>2];b=H[r+24>>2];a=(c-b>>2)-1|0;H[q>>2]=a;if((b|0)!=(c|0)){H[u+(a<<2)>>2]=g}c=p?o:o+2|0;g=j+(o+p<<2)|0;M:{if((n|0)==-1){H[j+(c<<2)>>2]=-1;b=-1;break M}N:{O:{P:{if((n>>>0)%3|0){a=n-1|0;break P}a=n+2|0;if((a|0)==-1){break O}}a=H[j+(a<<2)>>2];H[j+(c<<2)>>2]=a;if((a|0)==-1){break N}H[u+(a<<2)>>2]=c;break N}H[j+(c<<2)>>2]=-1}a=n+1|0;a=(a>>>0)%3|0?a:n-2|0;b=-1;if((a|0)==-1){break M}b=H[j+(a<<2)>>2]}H[g>>2]=b;H[m>>2]=o;b=e;break y}if((b|0)==(d|0)){break q}a=d-4|0;q=H[a>>2];H[i+68>>2]=a;p=H[i+44>>2];Q:{if(!p){d=a;break Q}g=H[i+40>>2];j=Uj(p)>>>0>1;c=f&p+2147483647;R:{if(!j){break R}c=f;if(c>>>0

>>0){break R}c=(f>>>0)%(p>>>0)|0}m=c;c=H[g+(m<<2)>>2];if(!c){d=a;break Q}g=H[c>>2];if(!g){d=a;break Q}S:{if(!j){j=p-1|0;while(1){c=H[g+4>>2];T:{if((c|0)!=(f|0)){if((m|0)==(c&j)){break T}d=a;break Q}if((f|0)==H[g+8>>2]){break S}}g=H[g>>2];if(g){continue}break}d=a;break Q}while(1){c=H[g+4>>2];U:{if((c|0)!=(f|0)){if(c>>>0>=p>>>0){c=(c>>>0)%(p>>>0)|0}if((c|0)==(m|0)){break U}d=a;break Q}if((f|0)==H[g+8>>2]){break S}}g=H[g>>2];if(g){continue}break}d=a;break Q}if((a|0)!=(z|0)){H[a>>2]=H[g+12>>2];H[i+68>>2]=d;break Q}c=z-b|0;d=c>>2;e=d+1|0;if(e>>>0>=1073741824){break C}a=c>>>1|0;c=c>>>0>=2147483644?1073741823:a>>>0>e>>>0?a:e;if(c){if(c>>>0>=1073741824){break n}a=pa(c<<2)}else{a=0}e=a+(d<<2)|0;H[e>>2]=H[g+12>>2];d=e+4|0;if((b|0)!=(z|0)){while(1){e=e-4|0;z=z-4|0;H[e>>2]=H[z>>2];if((b|0)!=(z|0)){continue}break}}z=a+(c<<2)|0;H[i+72>>2]=z;H[i+68>>2]=d;H[i+64>>2]=e;if(b){oa(b)}}if((d|0)==(e|0)){break u}g=d-4|0;n=H[g>>2];if((n|0)==(q|0)){break u}b=(n|0)==-1;o=H[h+8>>2];if(!b&H[H[o+12>>2]+(n<<2)>>2]!=-1){break u}r=H[o+12>>2];if((q|0)!=-1&H[r+(q<<2)>>2]!=-1){break u}u=N(f,3);f=u+2|0;H[r+(n<<2)>>2]=f;p=f<<2;H[p+r>>2]=n;a=u+1|0;H[r+(q<<2)>>2]=a;c=a<<2;H[c+r>>2]=q;if(b){break B}if((n>>>0)%3|0){m=n-1|0;break x}m=n+2|0;if((m|0)!=-1){break x}a=H[o>>2];b=-1;break w}a=H[h+8>>2];Ka(a+24|0,11424);c=H[h+8>>2];q=N(f,3);r=H[a+28>>2];u=H[a+24>>2];p=r-u|0;o=p>>2;g=o-1|0;H[H[c>>2]+(q<<2)>>2]=g;Ka(c+24|0,11424);m=q+1|0;H[H[c>>2]+(m<<2)>>2]=(H[c+28>>2]-H[c+24>>2]>>2)-1;a=H[h+8>>2];Ka(a+24|0,11424);c=q+2|0;H[H[a>>2]+(c<<2)>>2]=(H[a+28>>2]-H[a+24>>2]>>2)-1;a=H[h+8>>2];n=H[a+24>>2];if(H[a+28>>2]-n>>2>(L|0)){break q}V:{W:{if((r|0)!=(u|0)){H[n+(g<<2)>>2]=q;j=0;if((p|0)==-4){break W}}H[n+(o<<2)>>2]=m;j=o+1|0;if((j|0)==-1){break V}}H[n+(j<<2)>>2]=c}if((d|0)!=(z|0)){H[d>>2]=q;d=d+4|0;H[i+68>>2]=d;break y}m=d-b|0;e=m>>2;c=e+1|0;if(c>>>0>=1073741824){break A}a=m>>>1|0;c=m>>>0>=2147483644?1073741823:a>>>0>c>>>0?a:c;if(c){if(c>>>0>=1073741824){break n}a=pa(c<<2)}else{a=0}e=a+(e<<2)|0;H[e>>2]=q;z=a+(c<<2)|0;a=e+4|0;if((b|0)!=(d|0)){while(1){e=e-4|0;d=d-4|0;H[e>>2]=H[d>>2];if((b|0)!=(d|0)){continue}break}}H[i+72>>2]=z;H[i+68>>2]=a;H[i+64>>2]=e;if(!b){break z}oa(b);break z}sa();v()}m=-1;a=H[o>>2];H[a+(u<<2)>>2]=-1;j=-1;break v}sa();v()}d=a;b=e}m=H[h+40>>2];if((m|0)==H[h+36>>2]){break s}c=m-12|0;a=H[c+4>>2];j=(f^-1)+l|0;if(a>>>0>j>>>0){break u}if((a|0)!=(j|0)){break s}f=I[m-4|0];a=H[c>>2];H[h+40>>2]=c;if((a|0)<0){break u}m=d-4|0;g=H[m>>2];H[i+20>>2]=(a^-1)+l;a=i+20|0;H[i+88>>2]=a;Gb(i,i+40|0,a,i+88|0);c=H[i>>2];X:{if(f&1){a=-1;if((g|0)==-1){break X}a=g+1|0;a=(a>>>0)%3|0?a:g-2|0;break X}a=-1;if((g|0)==-1){break X}a=g-1|0;if((g>>>0)%3|0){break X}a=g+2|0}H[c+12>>2]=a;g=H[h+40>>2];if((g|0)==H[h+36>>2]){break s}while(1){c=g-12|0;a=H[c+4>>2];if(a>>>0>j>>>0){break u}if((a|0)!=(j|0)){break s}f=I[g-4|0];a=H[c>>2];H[h+40>>2]=c;if((a|0)<0){break u}g=H[m>>2];H[i+20>>2]=(a^-1)+l;a=i+20|0;H[i+88>>2]=a;Gb(i,i+40|0,a,i+88|0);c=H[i>>2];Y:{if(f&1){a=-1;if((g|0)==-1){break Y}a=g+1|0;a=(a>>>0)%3|0?a:g-2|0;break Y}a=-1;if((g|0)==-1){break Y}a=g-1|0;if((g>>>0)%3|0){break Y}a=g+2|0}H[c+12>>2]=a;g=H[h+40>>2];if((g|0)!=H[h+36>>2]){continue}break}break s}a=H[o>>2];b=H[a+(m<<2)>>2]}m=b;H[(u<<2)+a>>2]=b;b=n+1|0;b=(b>>>0)%3|0?b:n-2|0;j=-1;if((b|0)==-1){break v}j=H[(b<<2)+a>>2]}H[a+c>>2]=j;Z:{if((q|0)==-1){H[a+p>>2]=-1;n=-1;c=-1;break Z}_:{$:{aa:{if((q>>>0)%3|0){b=q-1|0;break aa}b=q+2|0;if((b|0)==-1){break $}}b=H[(b<<2)+a>>2];H[a+p>>2]=b;if((b|0)==-1){break _}H[H[o+24>>2]+(b<<2)>>2]=f;break _}H[a+p>>2]=-1}n=-1;b=q+1|0;b=(b>>>0)%3|0?b:q-2|0;c=-1;if((b|0)==-1){break Z}n=H[(b<<2)+a>>2];c=b}b=H[o+24>>2];p=b+(n<<2)|0;if((m|0)!=-1){H[b+(m<<2)>>2]=H[p>>2]}b=c;while(1){if((b|0)==-1){break t}H[(b<<2)+a>>2]=m;j=b+1|0;b=(j>>>0)%3|0?j:b-2|0;f=-1;ba:{if((b|0)==-1){break ba}j=H[r+(b<<2)>>2];f=-1;if((j|0)==-1){break ba}b=j+1|0;f=(b>>>0)%3|0?b:j-2|0}b=f;if((c|0)!=(b|0)){continue}break}}j=-1;if(!(s&1)){break r}break q}H[p>>2]=-1;ca:{if(A){break ca}if((B|0)!=(D|0)){H[D>>2]=n;D=D+4|0;H[i+28>>2]=D;break ca}f=B-w|0;b=f>>2;c=b+1|0;if(c>>>0>=1073741824){break o}a=f>>>1|0;c=f>>>0>=2147483644?1073741823:a>>>0>c>>>0?a:c;if(c){if(c>>>0>=1073741824){break n}a=pa(c<<2)}else{a=0}b=a+(b<<2)|0;H[b>>2]=n;D=b+4|0;if((w|0)!=(B|0)){while(1){b=b-4|0;B=B-4|0;H[b>>2]=H[B>>2];if((w|0)!=(B|0)){continue}break}}B=a+(c<<2)|0;H[i+32>>2]=B;H[i+28>>2]=D;H[i+24>>2]=b;if(w){oa(w)}w=b}H[g>>2]=u;b=e}s=(k|0)<(l|0);if((k|0)!=(l|0)){continue}break}k=l}j=-1;a=H[h+8>>2];if(H[a+28>>2]-H[a+24>>2]>>2>(L|0)){break q}if((d|0)!=(e|0)){u=h+72|0;m=h+60|0;p=h+312|0;while(1){d=d-4|0;o=H[d>>2];H[i+68>>2]=d;da:{ea:{fa:{if(J[h+270>>1]<=513){if(!I[h+364|0]){break ea}b=H[h+360>>2];a=H[h+352>>2]+(b>>>3|0)|0;if(a>>>0>=K[h+356>>2]){break fa}a=I[a|0];H[h+360>>2]=b+1;if(!(a>>>(b&7)&1)){break fa}break ea}if(Ba(p)){break ea}}ga:{ha:{b=H[h+64>>2];c=H[h+68>>2];if((b|0)==c<<5){if((b+1|0)<0){break ha}if(b>>>0<=1073741822){c=c<<6;b=(b&-32)+32|0;a=b>>>0>>0?c:b}else{a=2147483647}pb(m,a);b=H[h+64>>2]}H[h+64>>2]=b+1;c=H[h+60>>2]+(b>>>3&536870908)|0;a=H[c>>2];P=c,Q=Vj(b)&a,H[P>>2]=Q;b=H[h+76>>2];if((b|0)!=H[h+80>>2]){H[b>>2]=o;H[h+76>>2]=b+4;break da}l=H[u>>2];w=b-l|0;c=w>>2;f=c+1|0;if(f>>>0>=1073741824){break ga}a=w>>>1|0;f=w>>>0>=2147483644?1073741823:a>>>0>f>>>0?a:f;if(f){if(f>>>0>=1073741824){break n}a=pa(f<<2)}else{a=0}g=a+(c<<2)|0;H[g>>2]=o;c=g+4|0;if((b|0)!=(l|0)){while(1){g=g-4|0;b=b-4|0;H[g>>2]=H[b>>2];if((b|0)!=(l|0)){continue}break}}H[h+80>>2]=a+(f<<2);H[h+76>>2]=c;H[h+72>>2]=g;if(!l){break da}oa(l);break da}sa();v()}sa();v()}r=H[h+8>>2];A=H[r>>2];if(((H[r+4>>2]-A>>2>>>0)/3|0)<=(k|0)){j=-1;break q}a=-1;j=-1;b=-1;w=H[r+24>>2];f=-1;ia:{if((o|0)==-1){break ia}e=o+1|0;e=(e>>>0)%3|0?e:o-2|0;f=-1;if((e|0)==-1){break ia}f=H[A+(e<<2)>>2]}l=H[w+(f<<2)>>2];ja:{if((l|0)==-1){g=1;e=-1;break ja}g=1;c=l+1|0;c=(c>>>0)%3|0?c:l-2|0;e=-1;if((c|0)==-1){break ja}g=0;a=c;e=a+1|0;e=(e>>>0)%3|0?e:a-2|0;if((e|0)!=-1){e=H[A+(e<<2)>>2]}else{e=-1}}c=H[(e<<2)+w>>2];if((c|0)!=-1){b=c+1|0;b=(b>>>0)%3|0?b:c-2|0}if((a|0)==(o|0)|(b|0)==(o|0)|((o|0)!=-1&H[H[r+12>>2]+(o<<2)>>2]!=-1|(a|0)==(b|0))){break q}if(!g&H[H[r+12>>2]+(a<<2)>>2]!=-1){break q}g=-1;l=H[r+12>>2];w=-1;ka:{if((b|0)==-1){break ka}if(H[l+(b<<2)>>2]!=-1){break q}c=b+1|0;c=(c>>>0)%3|0?c:b-2|0;w=-1;if((c|0)==-1){break ka}w=H[A+(c<<2)>>2]}c=N(k,3);H[i>>2]=c;H[l+(c<<2)>>2]=o;H[l+(o<<2)>>2]=c;c=H[i>>2]+1|0;H[l+(c<<2)>>2]=a;H[l+(a<<2)>>2]=c;a=H[i>>2]+2|0;H[l+(a<<2)>>2]=b;H[l+(b<<2)>>2]=a;a=H[i>>2];H[A+(a<<2)>>2]=e;j=a+1|0;l=A+(j<<2)|0;H[l>>2]=w;w=a+2|0;c=A+(w<<2)|0;H[c>>2]=f;f=H[h+120>>2];e=j?e:-1;b=f+(e>>>3&536870908)|0;a=H[b>>2];P=b,Q=Vj(e)&a,H[P>>2]=Q;g=(j|0)!=-1?H[l>>2]:g;b=f+(g>>>3&536870908)|0;a=H[b>>2];P=b,Q=Vj(g)&a,H[P>>2]=Q;b=-1;b=(w|0)!=-1?H[c>>2]:b;e=f+(b>>>3&536870908)|0;a=H[e>>2];P=e,Q=Vj(b)&a,H[P>>2]=Q;F[i+88|0]=1;_c(m,i+88|0);Ka(u,i);k=k+1|0;e=H[i+64>>2]}if((d|0)!=(e|0)){continue}break}a=H[h+8>>2]}j=-1;if(((H[a+4>>2]-H[a>>2]>>2>>>0)/3|0)!=(k|0)){break q}j=H[a+28>>2]-H[a+24>>2]>>2;s=H[i+24>>2];c=H[i+28>>2];if((s|0)==(c|0)){break p}while(1){k=H[s>>2];d=H[a+24>>2];b=j-1|0;g=d+(b<<2)|0;if(H[g>>2]==-1){while(1){b=j-2|0;j=j-1|0;g=d+(b<<2)|0;if(H[g>>2]==-1){continue}break}}if(b>>>0>=k>>>0){H[i>>2]=a;g=H[g>>2];F[i+12|0]=1;H[i+8>>2]=g;H[i+4>>2]=g;if((g|0)!=-1){while(1){a=H[H[h+8>>2]>>2]+(g<<2)|0;if(H[a>>2]!=(b|0)){j=-1;break q}H[a>>2]=k;uc(i);g=H[i+8>>2];if((g|0)!=-1){continue}break}a=H[h+8>>2]}d=H[a+24>>2];e=d+(b<<2)|0;if((k|0)!=-1){H[d+(k<<2)>>2]=H[e>>2]}H[e>>2]=-1;f=1<>2];e=d+(k>>>3&536870908)|0;k=d+(b>>>3&536870908)|0;d=1<>2]&d){b=f|H[e>>2]}else{b=H[e>>2]&(f^-1)}H[e>>2]=b;H[k>>2]=H[k>>2]&(d^-1);j=j-1|0}s=s+4|0;if((c|0)!=(s|0)){continue}break}}s=H[i+24>>2]}if(s){oa(s)}a=H[i+48>>2];if(a){while(1){d=H[a>>2];oa(a);a=d;if(a){continue}break}}a=H[i+40>>2];H[i+40>>2]=0;if(a){oa(a)}a=H[i+64>>2];if(a){H[i+68>>2]=a;oa(a)}ca=i+96|0;a=j;break m}sa();v()}wa();v()}e=a;if((a|0)==-1){break l}b=H[C+16>>2];d=b+H[C>>2]|0;a=H[C+8>>2]-b|0;b=H[H[h+4>>2]+32>>2];G[b+38>>1]=J[b+38>>1];H[b>>2]=d;H[b+16>>2]=0;H[b+20>>2]=0;H[b+8>>2]=a;H[b+12>>2]=0;b=H[h+4>>2];a=J[b+36>>1];d=a<<8|a>>>8;if((d&65535)>>>0<=513){b=H[b+32>>2];c=b;a=H[b+16>>2];b=M+H[b+20>>2]|0;a=a+y|0;b=a>>>0>>0?b+1|0:b;H[c+16>>2]=a;H[c+20>>2]=b}la:{if(H[h+216>>2]==H[h+220>>2]){break la}a=H[h+8>>2];b=H[a>>2];a=H[a+4>>2];ma:{if((d&65535)>>>0>=513){if((a|0)==(b|0)){break la}d=0;break ma}if((a|0)==(b|0)){break la}d=0;while(1){if(cd(h,d)){d=d+3|0;a=H[h+8>>2];if(d>>>0>2]-H[a>>2]>>2>>>0){continue}break la}break}break l}while(1){if(bd(h,d)){d=d+3|0;a=H[h+8>>2];if(d>>>0>2]-H[a>>2]>>2>>>0){continue}break la}break}break l}ad(O);d=H[h+216>>2];if((d|0)!=H[h+220>>2]){l=0;while(1){c=N(l,144);Jc((c+d|0)+4|0,H[h+8>>2]);a=H[E>>2];b=a+c|0;d=H[b+132>>2];b=H[b+136>>2];if((d|0)!=(b|0)){while(1){Hc((c+H[E>>2]|0)+4|0,H[d>>2]);d=d+4|0;if((b|0)!=(d|0)){continue}break}a=H[E>>2]}if(!Ic((a+c|0)+4|0)){break l}l=l+1|0;d=H[h+216>>2];if(l>>>0<(H[h+220>>2]-d|0)/144>>>0){continue}break}}a=H[h+8>>2];Hb(h+184|0,H[a+28>>2]-H[a+24>>2]>>2);x=H[h+216>>2];if((x|0)!=H[h+220>>2]){d=0;while(1){a=N(d,144)+x|0;b=H[a+60>>2]-H[a+56>>2]>>2;c=a+104|0;a=H[h+8>>2];a=H[a+28>>2]-H[a+24>>2]>>2;Hb(c,(a|0)<(b|0)?b:a);d=d+1|0;x=H[h+216>>2];if(d>>>0<(H[h+220>>2]-x|0)/144>>>0){continue}break}}x=$c(h,e)}break b}x=0}ca=t- -64|0;return x|0}function Bg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,G=0,J=0,K=0,L=0,M=0,O=0;B=c;c=0;m=ca-96|0;ca=m;l=m+16|0;ra(l,0,76);H[m+92>>2]=-1;H[m+8>>2]=0;H[m>>2]=0;H[m+4>>2]=0;r=ca-16|0;ca=r;H[l+68>>2]=0;H[l+72>>2]=0;H[l>>2]=b;s=ca-16|0;ca=s;u=b;a=H[b+20>>2];a:{if((H[b+24>>2]-a|0)<=0){break a}a=H[a>>2];if((a|0)==-1){break a}c=H[H[u+8>>2]+(a<<2)>>2]}b:{c:{d:{if(!c){a=0;break d}a=H[u+100>>2];e=H[u+96>>2];H[s+8>>2]=0;H[s>>2]=0;H[s+4>>2]=0;f=a-e|0;b=(f|0)/12|0;e:{if((a|0)==(e|0)){break e}if(b>>>0>=357913942){break c}d=pa(f);H[s>>2]=d;H[s+8>>2]=d+N(b,12);a=0;n=d;f=f-12|0;d=(f-((f>>>0)%12|0)|0)+12|0;f=ra(n,0,d);H[s+4>>2]=d+f;if(I[c+84|0]){c=b>>>0<=1?1:b;h=c&1;if(b>>>0>=2){g=c&-2;c=0;while(1){d=N(a,12);b=d+e|0;i=H[b+4>>2];j=H[b>>2];d=d+f|0;H[d+8>>2]=H[b+8>>2];H[d>>2]=j;H[d+4>>2]=i;d=N(a|1,12);b=d+e|0;i=H[b+4>>2];j=H[b>>2];d=d+f|0;H[d+8>>2]=H[b+8>>2];H[d>>2]=j;H[d+4>>2]=i;a=a+2|0;c=c+2|0;if((g|0)!=(c|0)){continue}break}}if(!h){break e}b=N(a,12);a=b+e|0;c=H[a+4>>2];e=H[a>>2];b=b+f|0;H[b+8>>2]=H[a+8>>2];H[b>>2]=e;H[b+4>>2]=c;break e}h=b>>>0<=1?1:b;a=H[c+68>>2];c=0;while(1){d=N(c,12);b=d+e|0;g=H[a+(H[b>>2]<<2)>>2];i=H[a+(H[b+4>>2]<<2)>>2];d=d+f|0;H[d+8>>2]=H[a+(H[b+8>>2]<<2)>>2];H[d+4>>2]=i;H[d>>2]=g;c=c+1|0;if((h|0)!=(c|0)){continue}break}}d=0;E=ca-16|0;ca=E;h=pa(88);$b(h);C=ca-16|0;ca=C;H[h+80>>2]=0;H[h+84>>2]=0;a=H[h+76>>2];H[h+76>>2]=0;if(a){oa(a)}H[h+68>>2]=0;H[h+72>>2]=0;b=h- -64|0;a=H[b>>2];H[b>>2]=0;if(a){oa(a)}g=H[s+4>>2];b=H[s>>2];c=(g-b|0)/12|0;a=N(c,3);f=H[h>>2];e=H[h+4>>2]-f>>2;f:{if(a>>>0>e>>>0){ue(h,a-e|0);g=H[s+4>>2];b=H[s>>2];c=(g-b|0)/12|0;break f}if(a>>>0>=e>>>0){break f}H[h+4>>2]=f+(a<<2)}g:{if((b|0)==(g|0)){break g}e=c>>>0<=1?1:c;g=e&1;a=H[h>>2];if(c>>>0>=2){i=e&-2;c=0;while(1){e=N(d,12);j=e+a|0;f=b+e|0;H[j>>2]=H[f>>2];H[a+(e|4)>>2]=H[f+4>>2];H[j+8>>2]=H[f+8>>2];f=N(d|1,12);e=f+a|0;f=b+f|0;H[e>>2]=H[f>>2];H[e+4>>2]=H[f+4>>2];H[e+8>>2]=H[f+8>>2];d=d+2|0;c=c+2|0;if((i|0)!=(c|0)){continue}break}}if(!g){break g}c=N(d,12);a=c+a|0;b=b+c|0;H[a>>2]=H[b>>2];H[a+4>>2]=H[b+4>>2];H[a+8>>2]=H[b+8>>2]}H[C+12>>2]=-1;a=0;e=0;g=0;f=ca-32|0;ca=f;h:{i:{w=C+12|0;j:{if(!w){break j}c=H[h+4>>2];j=H[h>>2];d=c-j|0;i=d>>2;n=H[h+12>>2];b=H[h+16>>2]-n>>2;k:{if(i>>>0>b>>>0){qb(h+12|0,i-b|0,13652);c=H[h+4>>2];j=H[h>>2];d=c-j|0;i=d>>2;break k}if(b>>>0<=i>>>0){break k}H[h+16>>2]=n+(i<<2)}H[f+24>>2]=0;H[f+16>>2]=0;H[f+20>>2]=0;b=(c|0)==(j|0);if(!b){if((d|0)<0){break i}e=pa(d);H[f+20>>2]=e;H[f+16>>2]=e;H[f+24>>2]=(i<<2)+e}l:{m:{n:{o:{p:{if(d){while(1){i=H[(a<<2)+j>>2];b=H[f+20>>2]-e>>2;q:{if(i>>>0>>0){break q}H[f>>2]=0;d=i+1|0;if(d>>>0>b>>>0){Pa(f+16|0,d-b|0,f);j=H[h>>2];c=H[h+4>>2];e=H[f+16>>2];break q}if(b>>>0<=d>>>0){break q}H[f+20>>2]=(d<<2)+e}b=(i<<2)+e|0;H[b>>2]=H[b>>2]+1;a=a+1|0;d=c-j|0;i=d>>2;if(a>>>0>>0){continue}break}break p}d=0;if(!b){break o}break n}if((c|0)==(j|0)){d=0;break n}if(d>>>0>=2147483645){break m}}d=pa(d<<1);ra(d,255,i<<3)}H[f+8>>2]=0;H[f>>2]=0;H[f+4>>2]=0;b=H[f+20>>2];a=b-e|0;t=a>>2;r:{s:{if((b|0)==(e|0)){break s}if((a|0)<0){break r}q=pa(a);H[f>>2]=q;H[f+8>>2]=(t<<2)+q;b=ra(q,0,a);H[f+4>>2]=b+a;c=t>>>0<=1?1:t;n=c&3;a=0;if(c-1>>>0>=3){o=c&-4;while(1){c=g<<2;H[c+b>>2]=a;x=c|4;a=H[c+e>>2]+a|0;H[x+b>>2]=a;y=c|8;a=a+H[e+x>>2]|0;H[y+b>>2]=a;c=c|12;a=a+H[e+y>>2]|0;H[c+b>>2]=a;a=a+H[c+e>>2]|0;g=g+4|0;p=p+4|0;if((o|0)!=(p|0)){continue}break}}if(!n){break s}while(1){c=g<<2;H[c+b>>2]=a;g=g+1|0;a=H[c+e>>2]+a|0;k=k+1|0;if((n|0)!=(k|0)){continue}break}}if(!i){break l}x=H[h+40>>2];y=H[h+12>>2];n=0;while(1){G=n<<2;a=G+j|0;k=-1;c=n+1|0;b=(c>>>0)%3|0?c:n-2|0;if((b|0)!=-1){k=H[(b<<2)+j>>2]}b=H[a>>2];t:{u:{if(!((n>>>0)%3|0)){p=-1;a=n+2|0;if((a|0)!=-1){p=H[(a<<2)+j>>2]}if(!((b|0)==(k|0)|(b|0)==(p|0))&(k|0)!=(p|0)){break u}x=x+1|0;H[h+40>>2]=x;c=n+3|0;break t}p=H[a-4>>2]}a=p<<2;A=H[a+e>>2];v:{w:{if((A|0)<=0){break w}a=H[a+q>>2];g=0;while(1){o=(a<<3)+d|0;z=H[o>>2];if((z|0)==-1){break w}x:{if((k|0)!=(z|0)){break x}o=H[o+4>>2];if((o|0)!=-1){z=H[(o<<2)+j>>2]}else{z=-1}if((z|0)==(b|0)){break x}while(1){y:{b=a;g=g+1|0;if((A|0)<=(g|0)){break y}a=b+1|0;J=(a<<3)+d|0;z=H[J>>2];K=(b<<3)+d|0;H[K+4>>2]=H[J+4>>2];H[K>>2]=z;if((z|0)!=-1){continue}}break}H[(b<<3)+d>>2]=-1;if((o|0)==-1){break w}H[y+G>>2]=o;H[y+(o<<2)>>2]=n;break v}a=a+1|0;g=g+1|0;if((A|0)!=(g|0)){continue}break}}a=k<<2;k=H[a+e>>2];if((k|0)<=0){break v}a=H[a+q>>2];g=0;while(1){b=(a<<3)+d|0;if(H[b>>2]==-1){H[b>>2]=p;H[b+4>>2]=n;break v}a=a+1|0;g=g+1|0;if((k|0)!=(g|0)){continue}break}}}n=c;if(n>>>0>>0){continue}break}break l}break i}sa();v()}H[w>>2]=t;if(q){oa(q)}if(d){oa(d)}a=H[f+16>>2];if(!a){break j}H[f+20>>2]=a;oa(a)}ca=f+32|0;x=(w|0)!=0;if(x){k=ca-32|0;ca=k;a=H[h>>2];g=H[h+4>>2];H[k+24>>2]=0;H[k+16>>2]=0;H[k+20>>2]=0;if((a|0)==(g|0)){c=g}else{a=g-a|0;if((a|0)<0){break i}a=a>>2;b=(a-1>>>5|0)+1|0;c=pa(b<<2);H[k+24>>2]=b;H[k+20>>2]=0;H[k+16>>2]=c;Mc(k+16|0,a);g=H[h>>2];c=H[h+4>>2]}H[k+8>>2]=0;H[k>>2]=0;while(1){z:{o=0;i=0;if((c|0)==(g|0)){break z}while(1){b=H[k+16>>2];A:{if(H[b+(i>>>3&536870908)>>2]>>>i&1){break A}c=H[k>>2];H[k+4>>2]=c;e=H[h+12>>2];a=i;while(1){B:{f=a+1|0;d=a;a=(f>>>0)%3|0?f:a-2|0;if((a|0)==-1){break B}a=H[e+(a<<2)>>2];if((a|0)==-1){break B}f=a+1|0;a=(f>>>0)%3|0?f:a-2|0;if((i|0)==(a|0)|(a|0)==-1){break B}if(!(H[b+(a>>>3&536870908)>>2]>>>a&1)){continue}}break}j=d;C:{D:{E:{while(1){a=H[k+16>>2]+(j>>>3&536870908)|0;H[a>>2]=H[a>>2]|1<>>0)%3|0?a:j-2|0;g=H[h>>2];y=(j>>>0)%3|0;b=(y?-1:2)+j|0;n=H[k>>2];A=(n|0)==(c|0);F:{if(A){break F}w=H[(f<<2)+g>>2];q=H[h+12>>2];a=n;if((b|0)!=-1){e=q+(b<<2)|0;while(1){G:{if((w|0)!=H[a>>2]){break G}p=H[a+4>>2];t=H[e>>2];if((p|0)==(t|0)){break G}e=b;c=-1;a=-1;if((p|0)==-1){break C}break D}a=a+8|0;if((c|0)!=(a|0)){continue}break}break F}while(1){if((w|0)==H[a>>2]){t=-1;e=-1;p=H[a+4>>2];if((p|0)!=-1){break D}}a=a+8|0;if((c|0)!=(a|0)){continue}break}}b=H[(b<<2)+g>>2];H:{if(H[k+8>>2]!=(c|0)){H[c>>2]=b;H[c+4>>2]=f;c=c+8|0;H[k+4>>2]=c;break H}a=c-n|0;p=a>>3;e=p+1|0;if(e>>>0>=536870912){break i}g=a>>>2|0;g=a>>>0>=2147483640?536870911:e>>>0>>0?g:e;if(g){if(g>>>0>=536870912){break E}e=pa(g<<3)}else{e=0}a=e+(p<<3)|0;H[a>>2]=b;H[a+4>>2]=f;b=a+8|0;if(!A){while(1){c=c-8|0;f=H[c+4>>2];a=a-8|0;H[a>>2]=H[c>>2];H[a+4>>2]=f;if((c|0)!=(n|0)){continue}break}c=H[k>>2]}H[k+8>>2]=e+(g<<3);H[k+4>>2]=b;H[k>>2]=a;if(c){oa(c)}c=b}I:{J:{if(y){a=j-1|0;break J}a=j+2|0;if((a|0)==-1){break I}}a=H[H[h+12>>2]+(a<<2)>>2];if((a|0)==-1){break I}j=a+((a>>>0)%3|0?-1:2)|0;if((d|0)==(j|0)){break I}if((j|0)!=-1){continue}}break}g=H[h>>2];break A}wa();v()}c=H[q+(p<<2)>>2];b=e;a=p}if((t|0)!=-1){H[q+(t<<2)>>2]=-1}if((c|0)!=-1){H[q+(c<<2)>>2]=-1}H[q+(b<<2)>>2]=-1;H[q+(a<<2)>>2]=-1;o=1}i=i+1|0;c=H[h+4>>2];if(i>>>0>2>>>0){continue}break}if(o){continue}}break}a=H[k>>2];if(a){oa(a)}a=H[k+16>>2];if(a){oa(a)}ca=k+32|0;n=0;g=ca-32|0;ca=g;e=H[C+12>>2];H[h+36>>2]=e;p=h+24|0;b=H[h+24>>2];a=H[h+28>>2]-b>>2;K:{L:{if(a>>>0>>0){qb(p,e-a|0,13652);H[g+24>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;break L}if(a>>>0>e>>>0){H[h+28>>2]=b+(e<<2)}H[g+24>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;if(!e){break K}}if((e|0)<0){break i}a=(e-1>>>5|0)+1|0;b=pa(a<<2);H[g+24>>2]=a;H[g+20>>2]=0;H[g+16>>2]=b;Mc(g+16|0,e)}a=H[h>>2];b=H[h+4>>2];H[g+8>>2]=0;H[g>>2]=0;H[g+4>>2]=0;M:{if((a|0)==(b|0)){a=b}else{a=b-a|0;if((a|0)<0){break i}a=a>>2;b=(a-1>>>5|0)+1|0;c=pa(b<<2);H[g+8>>2]=b;H[g+4>>2]=0;H[g>>2]=c;Mc(g,a);b=H[h>>2];a=H[h+4>>2]}if(a-b>>>0<12){break M}N:{while(1){q=N(n,3);d=(q<<2)+b|0;f=H[d>>2];c=-1;i=q+1|0;if((i|0)!=-1){c=H[(i<<2)+b>>2]}O:{if((c|0)==(f|0)){break O}i=f;f=H[d+8>>2];if((i|0)==(f|0)|(c|0)==(f|0)){break O}k=0;i=H[g>>2];while(1){f=k+q|0;if(!(H[(f>>>3&536870908)+i>>2]>>>f&1)){a=H[(f<<2)+b>>2];c=1<>2];b=a>>>5|0;i=H[d+(b<<2)>>2];t=c&i;if(t){c=H[h+28>>2];P:{if((c|0)!=H[h+32>>2]){H[c>>2]=-1;H[h+28>>2]=c+4;break P}i=H[p>>2];b=c-i|0;o=b>>2;d=o+1|0;if(d>>>0>=1073741824){break i}j=b>>>1|0;j=b>>>0>=2147483644?1073741823:d>>>0>>0?j:d;if(j){if(j>>>0>=1073741824){break N}b=pa(j<<2)}else{b=0}d=b+(o<<2)|0;H[d>>2]=-1;o=d+4|0;if((c|0)!=(i|0)){while(1){d=d-4|0;c=c-4|0;H[d>>2]=H[c>>2];if((c|0)!=(i|0)){continue}break}}H[h+32>>2]=b+(j<<2);H[h+28>>2]=o;H[h+24>>2]=d;if(!i){break P}oa(i)}c=H[h+52>>2];Q:{if((c|0)!=H[h+56>>2]){H[c>>2]=a;H[h+52>>2]=c+4;break Q}i=H[h+48>>2];b=c-i|0;o=b>>2;d=o+1|0;if(d>>>0>=1073741824){break i}j=b>>>1|0;j=b>>>0>=2147483644?1073741823:d>>>0>>0?j:d;if(j){if(j>>>0>=1073741824){break N}b=pa(j<<2)}else{b=0}d=b+(o<<2)|0;H[d>>2]=a;a=d+4|0;if((c|0)!=(i|0)){while(1){d=d-4|0;c=c-4|0;H[d>>2]=H[c>>2];if((c|0)!=(i|0)){continue}break}}H[h+56>>2]=b+(j<<2);H[h+52>>2]=a;H[h+48>>2]=d;if(!i){break Q}oa(i)}c=H[g+20>>2];a=H[g+24>>2];if((c|0)==a<<5){if((c+1|0)<0){break i}b=g+16|0;if(c>>>0<=1073741822){a=a<<6;c=(c&-32)+32|0;a=a>>>0>c>>>0?a:c}else{a=2147483647}pb(b,a);c=H[g+20>>2]}H[g+20>>2]=c+1;d=H[g+16>>2];a=d+(c>>>3&536870908)|0;b=H[a>>2];M=a,O=Vj(c)&b,H[M>>2]=O;c=1<>>5|0;i=H[(b<<2)+d>>2];a=e;e=a+1|0}H[(b<<2)+d>>2]=c|i;o=H[h+24>>2]+(a<<2)|0;j=H[h+12>>2];b=H[h>>2];i=H[g>>2];c=f;R:{S:{T:{while(1){if((c|0)==-1){break T}d=(c>>>3&536870908)+i|0;H[d>>2]=H[d>>2]|1<>2]=c;if(t){H[(c<<2)+b>>2]=a}w=c+1|0;c=(w>>>0)%3|0?w:c-2|0;d=-1;U:{if((c|0)==-1){break U}c=H[j+(c<<2)>>2];d=-1;if((c|0)==-1){break U}d=c+1|0;d=(d>>>0)%3|0?d:c-2|0}c=d;if((f|0)!=(c|0)){continue}break}if((f|0)!=-1){break R}c=1;break S}if((f>>>0)%3|0){c=f-1|0;break S}c=f+2|0;if((c|0)==-1){break R}}c=H[j+(c<<2)>>2];if((c|0)==-1){break R}V:{if((c>>>0)%3|0){c=c-1|0;break V}c=c+2|0;if((c|0)==-1){break R}}f=H[h+12>>2];b=H[h>>2];while(1){d=(c>>>3&536870908)+i|0;H[d>>2]=H[d>>2]|1<>2]=a}W:{if((c>>>0)%3|0){c=c-1|0;break W}c=c+2|0;if((c|0)==-1){break R}}c=H[f+(c<<2)>>2];if((c|0)==-1){break R}c=c+((c>>>0)%3|0?-1:2)|0;if((c|0)!=-1){continue}break}}}k=k+1|0;if((k|0)!=3){continue}break}b=H[h>>2];a=H[h+4>>2]}n=n+1|0;if(n>>>0<(a-b>>2>>>0)/3>>>0){continue}break}break M}wa();v()}c=0;H[h+44>>2]=0;a=H[g+16>>2];b=H[g+20>>2];if(b){e=b&31;b=(b>>>3&536870908)+a|0;d=a;i=0;while(1){if(!(H[d>>2]>>>c&1)){i=i+1|0;H[h+44>>2]=i}f=(c|0)==31;c=f?0:c+1|0;d=(f<<2)+d|0;if((b|0)!=(d|0)|(c|0)!=(e|0)){continue}break}}b=H[g>>2];if(b){oa(b);a=H[g+16>>2]}if(a){oa(a)}ca=g+32|0}ca=C+16|0;if(!x){H[E+8>>2]=0;cb(h);h=0}ca=E+16|0;a=h;break h}sa();v()}b=H[s>>2];if(!b){break d}H[s+4>>2]=b;oa(b)}ca=s+16|0;break b}sa();v()}c=H[l+4>>2];b=a;H[l+4>>2]=a;if(c){cb(c);b=H[l+4>>2]}X:{if(!b){break X}a=H[u+100>>2];c=H[u+96>>2];F[r+12|0]=0;Oa(l+56|0,(a-c|0)/12|0,r+12|0);a=H[u+100>>2];c=H[u+96>>2];if((a|0)==(c|0)){break X}while(1){if(!(H[H[l+56>>2]+(D>>>3&536870908)>>2]>>>D&1)){a=N(D,3);Gc(l,0,a);c=H[l+8>>2];e=H[l+12>>2];Gc(l,1,a+1|0);f=H[l+20>>2];d=H[l+24>>2];Gc(l,2,a+2|0);n=(c|0)==(e|0)?-1:0;a=d-f>>2;c=e-c>>2;e=a>>>0>c>>>0;c=H[l+36>>2]-H[l+32>>2]>>2>>>0>(e?a:c)>>>0?2:e?1:n;Y:{if(H[l+68>>2]<=0){break Y}H[r+12>>2]=H[l+76>>2];H[r+8>>2]=m;bb(r+8|0,r+12|0);a=H[((c<<2)+l|0)+44>>2];if((a|0)<0){a=-1}else{e=(a>>>0)/3|0;a=H[(H[H[l>>2]+96>>2]+N(e,12)|0)+(a-N(e,3)<<2)>>2]}H[r+12>>2]=a;H[r+8>>2]=m;bb(r+8|0,r+12|0);e=H[l+72>>2];H[l+72>>2]=e+2;if(!(e&1)){break Y}H[r+12>>2]=a;H[r+8>>2]=m;bb(r+8|0,r+12|0);H[l+72>>2]=H[l+72>>2]+1}d=0;e=ca-16|0;ca=e;H[l+68>>2]=H[l+68>>2]+1;a=N(c,12)+l|0;a=H[a+12>>2]-H[a+8>>2]|0;if((a|0)>0){a=a>>>2|0;h=a>>>0<=1?1:a;c=H[((c<<2)+l|0)+44>>2];while(1){a=c;f=(a>>>0)/3|0;c=(a|0)==-1;g=c?-1:f;i=H[l+56>>2]+(g>>>3&536870908)|0;H[i>>2]=H[i>>2]|1<>2]=H[l+72>>2]+1;Z:{_:{$:{aa:{ba:{if(!d){ca:{if((a|0)>=0){H[e+12>>2]=H[(H[H[l>>2]+96>>2]+N(f,12)|0)+((a>>>0)%3<<2)>>2];H[e+8>>2]=m;bb(e+8|0,e+12|0);break ca}H[e+12>>2]=-1;H[e+8>>2]=m;bb(e+8|0,e+12|0);if(c){break ba}}c=-1;f=a+1|0;f=(f>>>0)%3|0?f:a-2|0;if((f|0)>=0){g=(f>>>0)/3|0;f=H[(H[H[l>>2]+96>>2]+N(g,12)|0)+(f-N(g,3)<<2)>>2]}else{f=-1}H[e+12>>2]=f;H[e+8>>2]=m;bb(e+8|0,e+12|0);f=((a>>>0)%3|0?-1:2)+a|0;if((f|0)<0){break aa}c=(f>>>0)/3|0;c=H[(H[H[l>>2]+96>>2]+N(c,12)|0)+(f-N(c,3)<<2)>>2];break aa}c=(a|0)<0?-1:H[(H[H[l>>2]+96>>2]+N(f,12)|0)+((a>>>0)%3<<2)>>2];H[l+76>>2]=c;H[e+12>>2]=c;H[e+8>>2]=m;bb(e+8|0,e+12|0);if(d&1){c=-1;if((a|0)==-1){break Z}if((N(f,3)|0)!=(a|0)){a=a-1|0;break _}a=a+2|0;break $}c=-1;if((a|0)==-1){break Z}c=a+1|0;a=(c>>>0)%3|0?c:a-2|0;break $}c=-1;H[e+12>>2]=-1;H[e+8>>2]=m;bb(e+8|0,e+12|0)}H[l+76>>2]=c;H[e+12>>2]=c;H[e+8>>2]=m;bb(e+8|0,e+12|0)}c=-1;if((a|0)==-1){break Z}}c=H[H[H[l+4>>2]+12>>2]+(a<<2)>>2]}d=d+1|0;if((h|0)!=(d|0)){continue}break}}ca=e+16|0;c=H[u+96>>2];a=H[u+100>>2]}D=D+1|0;if(D>>>0<(a-c|0)/12>>>0){continue}break}}ca=r+16|0;da:{if(b){a=H[B>>2];if(a){H[B+4>>2]=a;oa(a)}H[B>>2]=H[m>>2];H[B+4>>2]=H[m+4>>2];H[B+8>>2]=H[m+8>>2];L=H[m+84>>2];break da}a=H[m>>2];if(!a){break da}H[m+4>>2]=a;oa(a)}a=H[m+72>>2];if(a){oa(a)}a=H[m+48>>2];if(a){H[m+52>>2]=a;oa(a)}a=H[m+36>>2];if(a){H[m+40>>2]=a;oa(a)}a=H[m+24>>2];if(a){H[m+28>>2]=a;oa(a)}a=H[m+20>>2];H[m+20>>2]=0;if(a){cb(a)}ca=m+96|0;return L|0}function qg(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;i=b;a=0;b=0;a:{b:{switch(d-1|0){case 0:j=H[i+80>>2];h=I[c+24|0];c:{if((N(j,h)|0)!=(e|0)){break c}d=H[c+28>>2]!=1;b=I[c+84|0];if(!(d|!b)){qa(f,H[H[c>>2]>>2]+H[c+48>>2]|0,e);b=1;break c}if(h){a=pa(h);ra(a,0,h)}d:{if(!j){b=1;break d}if(!d){if(h){d=0;e=0;while(1){i=d+f|0;k=H[H[c>>2]>>2];m=H[c+48>>2];g=H[c+40>>2];b=Rj(g,H[c+44>>2],I[c+84|0]?e:H[H[c+68>>2]+(e<<2)>>2],0);n=b;b=b+m|0;qa(i,qa(a,b+k|0,g),h);d=d+h|0;b=1;e=e+1|0;if((j|0)!=(e|0)){continue}break}break d}if(b){b=1;h=H[c>>2];e=H[c+48>>2];f=H[c+40>>2];i=H[c+44>>2];if((j|0)!=1){g=j&-2;c=0;d=0;while(1){k=H[h>>2];m=Rj(f,i,c,0)+e|0;k=qa(a,k+m|0,f);m=H[h>>2];n=Rj(f,i,c|1,0)+e|0;qa(k,m+n|0,f);c=c+2|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}g=c}if(!(j&1)){break d}c=H[h>>2];d=Rj(g,0,f,i)+e|0;qa(a,c+d|0,f);break d}b=1;h=H[c>>2];e=H[c+48>>2];g=H[c+68>>2];f=H[c+40>>2];i=H[c+44>>2];c=0;if((j|0)!=1){k=j&-2;d=0;while(1){m=H[h>>2];n=c<<2;l=Rj(f,i,H[n+g>>2],0)+e|0;m=qa(a,m+l|0,f);l=H[h>>2];n=Rj(f,i,H[g+(n|4)>>2],0)+e|0;qa(m,l+n|0,f);c=c+2|0;d=d+2|0;if((k|0)!=(d|0)){continue}break}}if(!(j&1)){break d}d=H[h>>2];c=Rj(f,i,H[g+(c<<2)>>2],0)+e|0;qa(a,c+d|0,f);break d}b=0;if(!h){d=0;while(1){if(!ic(c,I[c+84|0]?d:H[H[c+68>>2]+(d<<2)>>2],F[c+24|0],a)){break d}d=d+1|0;b=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}break d}d=0;e=0;while(1){if(!ic(c,I[c+84|0]?e:H[H[c+68>>2]+(e<<2)>>2],F[c+24|0],a)){break d}qa(d+f|0,a,h);d=d+h|0;e=e+1|0;b=j>>>0<=e>>>0;if((e|0)!=(j|0)){continue}break}}if(!a){break c}oa(a)}break a;case 2:n=I[c+24|0];l=n<<1;j=H[i+80>>2];e:{if((N(l,j)|0)!=(e|0)){break e}i=H[c+28>>2]!=3;d=I[c+84|0];if(!(i|!d)){qa(f,H[H[c>>2]>>2]+H[c+48>>2]|0,e);a=1;break e}f:{if(!n){e=0;break f}e=pa(l);ra(e,0,l)}g:{if(!j){a=1;break g}if(!i){o=H[c+68>>2];k=H[c>>2];b=H[c+48>>2];i=H[c+40>>2];m=H[c+44>>2];if(n){if(!d){c=0;d=0;while(1){a=1;g=H[k>>2];p=Rj(i,m,H[o+(d<<2)>>2],0)+b|0;qa((c<<1)+f|0,qa(e,g+p|0,i),l);c=c+n|0;d=d+1|0;if((j|0)!=(d|0)){continue}break}break g}c=0;while(1){a=1;o=H[k>>2];p=Rj(g,h,i,m)+b|0;qa((c<<1)+f|0,qa(e,o+p|0,i),l);c=c+n|0;d=h;g=g+1|0;d=g?d:d+1|0;h=d;if((j|0)!=(g|0)|d){continue}break}break g}if(!d){a=1;c=0;if((j|0)!=1){f=j&-2;d=0;while(1){h=H[k>>2];g=c<<2;n=Rj(i,m,H[g+o>>2],0)+b|0;h=qa(e,h+n|0,i);n=H[k>>2];g=Rj(i,m,H[o+(g|4)>>2],0)+b|0;qa(h,g+n|0,i);c=c+2|0;d=d+2|0;if((f|0)!=(d|0)){continue}break}}if(!(j&1)){break g}d=H[k>>2];b=Rj(i,m,H[o+(c<<2)>>2],0)+b|0;qa(e,b+d|0,i);break g}n=j&1;a=1;if((j|0)!=1){j=j&-2;f=0;c=0;while(1){d=H[k>>2];l=Rj(g,h,i,m)+b|0;d=qa(e,d+l|0,i);l=H[k>>2];o=Rj(i,m,g|1,h)+b|0;qa(d,l+o|0,i);g=g+2|0;h=g>>>0<2?h+1|0:h;f=f+2|0;d=f>>>0<2?c+1|0:c;c=d;if((f|0)!=(j|0)|c){continue}break}}if(!n){break g}c=H[k>>2];b=Rj(g,h,i,m)+b|0;qa(e,b+c|0,i);break g}if(!n){d=0;while(1){if(!gc(c,I[c+84|0]?d:H[H[c+68>>2]+(d<<2)>>2],F[c+24|0],e)){break g}d=d+1|0;a=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}break g}d=0;while(1){if(!gc(c,I[c+84|0]?d:H[H[c+68>>2]+(d<<2)>>2],F[c+24|0],e)){break g}qa((b<<1)+f|0,e,l);b=b+n|0;d=d+1|0;a=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}}if(!e){break e}oa(e)}b=a;break a;case 4:l=I[c+24|0];o=l<<2;j=H[i+80>>2];h:{if((N(o,j)|0)!=(e|0)){break h}i=H[c+28>>2]!=5;d=I[c+84|0];if(!(i|!d)){qa(f,H[H[c>>2]>>2]+H[c+48>>2]|0,e);b=1;break h}i:{if(!l){e=0;break i}e=pa(o);ra(e,0,o)}b=1;j:{if(!j){break j}if(!i){a=H[c+68>>2];m=H[c>>2];i=H[c+48>>2];k=H[c+40>>2];n=H[c+44>>2];if(l){if(!d){c=0;d=0;while(1){g=H[m>>2];p=Rj(k,n,H[a+(d<<2)>>2],0)+i|0;qa((c<<2)+f|0,qa(e,g+p|0,k),o);c=c+l|0;d=d+1|0;if((j|0)!=(d|0)){continue}break}break j}c=0;while(1){d=H[m>>2];p=Rj(g,h,k,n)+i|0;qa((c<<2)+f|0,qa(e,d+p|0,k),o);c=c+l|0;g=g+1|0;a=g?h:h+1|0;h=a;if((j|0)!=(g|0)|h){continue}break}break j}if(!d){c=0;if((j|0)!=1){f=j&-2;d=0;while(1){h=H[m>>2];g=c<<2;l=Rj(k,n,H[g+a>>2],0)+i|0;h=qa(e,h+l|0,k);l=H[m>>2];g=Rj(k,n,H[a+(g|4)>>2],0)+i|0;qa(h,g+l|0,k);c=c+2|0;d=d+2|0;if((f|0)!=(d|0)){continue}break}}if(!(j&1)){break j}d=H[m>>2];a=Rj(k,n,H[a+(c<<2)>>2],0)+i|0;qa(e,a+d|0,k);break j}l=j&1;if((j|0)!=1){j=j&-2;f=0;c=0;while(1){a=H[m>>2];d=Rj(g,h,k,n)+i|0;a=qa(e,a+d|0,k);d=H[m>>2];o=Rj(k,n,g|1,h)+i|0;qa(a,d+o|0,k);d=h;g=g+2|0;h=g>>>0<2?d+1|0:d;f=f+2|0;a=f>>>0<2?c+1|0:c;c=a;if((f|0)!=(j|0)|c){continue}break}}if(!l){break j}a=H[m>>2];c=Rj(g,h,k,n)+i|0;qa(e,a+c|0,k);break j}b=0;if(!l){d=0;while(1){if(!ec(c,I[c+84|0]?d:H[H[c+68>>2]+(d<<2)>>2],F[c+24|0],e)){break j}d=d+1|0;b=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}break j}d=0;while(1){if(!ec(c,I[c+84|0]?d:H[H[c+68>>2]+(d<<2)>>2],F[c+24|0],e)){break j}qa((a<<2)+f|0,e,o);a=a+l|0;d=d+1|0;b=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}}if(!e){break h}oa(e)}break a;case 1:j=H[i+80>>2];h=I[c+24|0];k:{if((N(j,h)|0)!=(e|0)){break k}d=H[c+28>>2]!=2;b=I[c+84|0];if(!(d|!b)){qa(f,H[H[c>>2]>>2]+H[c+48>>2]|0,e);b=1;break k}if(h){a=pa(h);ra(a,0,h)}l:{if(!j){b=1;break l}if(!d){if(h){d=0;e=0;while(1){i=d+f|0;k=H[H[c>>2]>>2];m=H[c+48>>2];g=H[c+40>>2];b=Rj(g,H[c+44>>2],I[c+84|0]?e:H[H[c+68>>2]+(e<<2)>>2],0);n=b;b=b+m|0;qa(i,qa(a,b+k|0,g),h);d=d+h|0;b=1;e=e+1|0;if((j|0)!=(e|0)){continue}break}break l}if(b){b=1;h=H[c>>2];e=H[c+48>>2];f=H[c+40>>2];i=H[c+44>>2];if((j|0)!=1){g=j&-2;c=0;d=0;while(1){k=H[h>>2];m=Rj(f,i,c,0)+e|0;k=qa(a,k+m|0,f);m=H[h>>2];n=Rj(f,i,c|1,0)+e|0;qa(k,m+n|0,f);c=c+2|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}g=c}if(!(j&1)){break l}c=H[h>>2];d=Rj(g,0,f,i)+e|0;qa(a,c+d|0,f);break l}b=1;h=H[c>>2];e=H[c+48>>2];g=H[c+68>>2];f=H[c+40>>2];i=H[c+44>>2];c=0;if((j|0)!=1){k=j&-2;d=0;while(1){m=H[h>>2];n=c<<2;l=Rj(f,i,H[n+g>>2],0)+e|0;m=qa(a,m+l|0,f);l=H[h>>2];n=Rj(f,i,H[g+(n|4)>>2],0)+e|0;qa(m,l+n|0,f);c=c+2|0;d=d+2|0;if((k|0)!=(d|0)){continue}break}}if(!(j&1)){break l}d=H[h>>2];c=Rj(f,i,H[g+(c<<2)>>2],0)+e|0;qa(a,c+d|0,f);break l}b=0;if(!h){d=0;while(1){if(!hc(c,I[c+84|0]?d:H[H[c+68>>2]+(d<<2)>>2],F[c+24|0],a)){break l}d=d+1|0;b=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}break l}d=0;e=0;while(1){if(!hc(c,I[c+84|0]?e:H[H[c+68>>2]+(e<<2)>>2],F[c+24|0],a)){break l}qa(d+f|0,a,h);d=d+h|0;e=e+1|0;b=j>>>0<=e>>>0;if((e|0)!=(j|0)){continue}break}}if(!a){break k}oa(a)}break a;case 3:n=I[c+24|0];l=n<<1;j=H[i+80>>2];m:{if((N(l,j)|0)!=(e|0)){break m}i=H[c+28>>2]!=4;d=I[c+84|0];if(!(i|!d)){qa(f,H[H[c>>2]>>2]+H[c+48>>2]|0,e);a=1;break m}n:{if(!n){e=0;break n}e=pa(l);ra(e,0,l)}o:{if(!j){a=1;break o}if(!i){o=H[c+68>>2];k=H[c>>2];b=H[c+48>>2];i=H[c+40>>2];m=H[c+44>>2];if(n){if(!d){c=0;d=0;while(1){a=1;g=H[k>>2];p=Rj(i,m,H[o+(d<<2)>>2],0)+b|0;qa((c<<1)+f|0,qa(e,g+p|0,i),l);c=c+n|0;d=d+1|0;if((j|0)!=(d|0)){continue}break}break o}c=0;while(1){a=1;o=H[k>>2];p=Rj(g,h,i,m)+b|0;qa((c<<1)+f|0,qa(e,o+p|0,i),l);c=c+n|0;d=h;g=g+1|0;d=g?d:d+1|0;h=d;if((j|0)!=(g|0)|d){continue}break}break o}if(!d){a=1;c=0;if((j|0)!=1){f=j&-2;d=0;while(1){h=H[k>>2];g=c<<2;n=Rj(i,m,H[g+o>>2],0)+b|0;h=qa(e,h+n|0,i);n=H[k>>2];g=Rj(i,m,H[o+(g|4)>>2],0)+b|0;qa(h,g+n|0,i);c=c+2|0;d=d+2|0;if((f|0)!=(d|0)){continue}break}}if(!(j&1)){break o}d=H[k>>2];b=Rj(i,m,H[o+(c<<2)>>2],0)+b|0;qa(e,b+d|0,i);break o}n=j&1;a=1;if((j|0)!=1){j=j&-2;f=0;c=0;while(1){d=H[k>>2];l=Rj(g,h,i,m)+b|0;d=qa(e,d+l|0,i);l=H[k>>2];o=Rj(i,m,g|1,h)+b|0;qa(d,l+o|0,i);g=g+2|0;h=g>>>0<2?h+1|0:h;f=f+2|0;d=f>>>0<2?c+1|0:c;c=d;if((f|0)!=(j|0)|c){continue}break}}if(!n){break o}c=H[k>>2];b=Rj(g,h,i,m)+b|0;qa(e,b+c|0,i);break o}if(!n){d=0;while(1){if(!fc(c,I[c+84|0]?d:H[H[c+68>>2]+(d<<2)>>2],F[c+24|0],e)){break o}d=d+1|0;a=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}break o}d=0;while(1){if(!fc(c,I[c+84|0]?d:H[H[c+68>>2]+(d<<2)>>2],F[c+24|0],e)){break o}qa((b<<1)+f|0,e,l);b=b+n|0;d=d+1|0;a=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}}if(!e){break m}oa(e)}b=a;break a;case 5:l=I[c+24|0];o=l<<2;j=H[i+80>>2];p:{if((N(o,j)|0)!=(e|0)){break p}i=H[c+28>>2]!=6;d=I[c+84|0];if(!(i|!d)){qa(f,H[H[c>>2]>>2]+H[c+48>>2]|0,e);b=1;break p}q:{if(!l){e=0;break q}e=pa(o);ra(e,0,o)}b=1;r:{if(!j){break r}if(!i){a=H[c+68>>2];m=H[c>>2];i=H[c+48>>2];k=H[c+40>>2];n=H[c+44>>2];if(l){if(!d){c=0;d=0;while(1){g=H[m>>2];p=Rj(k,n,H[a+(d<<2)>>2],0)+i|0;qa((c<<2)+f|0,qa(e,g+p|0,k),o);c=c+l|0;d=d+1|0;if((j|0)!=(d|0)){continue}break}break r}c=0;while(1){d=H[m>>2];p=Rj(g,h,k,n)+i|0;qa((c<<2)+f|0,qa(e,d+p|0,k),o);c=c+l|0;g=g+1|0;a=g?h:h+1|0;h=a;if((j|0)!=(g|0)|h){continue}break}break r}if(!d){c=0;if((j|0)!=1){f=j&-2;d=0;while(1){h=H[m>>2];g=c<<2;l=Rj(k,n,H[g+a>>2],0)+i|0;h=qa(e,h+l|0,k);l=H[m>>2];g=Rj(k,n,H[a+(g|4)>>2],0)+i|0;qa(h,g+l|0,k);c=c+2|0;d=d+2|0;if((f|0)!=(d|0)){continue}break}}if(!(j&1)){break r}d=H[m>>2];a=Rj(k,n,H[a+(c<<2)>>2],0)+i|0;qa(e,a+d|0,k);break r}l=j&1;if((j|0)!=1){j=j&-2;f=0;c=0;while(1){a=H[m>>2];d=Rj(g,h,k,n)+i|0;a=qa(e,a+d|0,k);d=H[m>>2];o=Rj(k,n,g|1,h)+i|0;qa(a,d+o|0,k);d=h;g=g+2|0;h=g>>>0<2?d+1|0:d;f=f+2|0;a=f>>>0<2?c+1|0:c;c=a;if((f|0)!=(j|0)|c){continue}break}}if(!l){break r}a=H[m>>2];c=Rj(g,h,k,n)+i|0;qa(e,a+c|0,k);break r}b=0;if(!l){d=0;while(1){if(!dc(c,I[c+84|0]?d:H[H[c+68>>2]+(d<<2)>>2],F[c+24|0],e)){break r}d=d+1|0;b=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}break r}d=0;while(1){if(!dc(c,I[c+84|0]?d:H[H[c+68>>2]+(d<<2)>>2],F[c+24|0],e)){break r}qa((a<<2)+f|0,e,o);a=a+l|0;d=d+1|0;b=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}}if(!e){break p}oa(e)}break a;case 8:p=I[c+24|0];q=p<<2;k=H[i+80>>2];s:{if((N(q,k)|0)!=(e|0)){break s}i=H[c+28>>2];t:{if(!p){break t}a=pa(q);d=a;m=q-4|0;l=(m>>>2|0)+1&7;if(l){e=0;while(1){H[d>>2]=-1073741824;d=d+4|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}if(m>>>0<28){break t}e=(p<<2)+a|0;while(1){H[d+24>>2]=-1073741824;H[d+28>>2]=-1073741824;H[d+16>>2]=-1073741824;H[d+20>>2]=-1073741824;H[d+8>>2]=-1073741824;H[d+12>>2]=-1073741824;H[d>>2]=-1073741824;H[d+4>>2]=-1073741824;d=d+32|0;if((e|0)!=(d|0)){continue}break}}u:{if(!k){b=1;break u}if((i|0)==9){r=H[c+68>>2];l=H[c>>2];i=H[c+48>>2];s=I[c+84|0];m=H[c+44>>2];c=H[c+40>>2];o=c;if(p){e=0;d=0;while(1){h=(e<<2)+f|0;g=H[l>>2];b=Rj(c,m,s?d:H[r+(d<<2)>>2],0)+i|0;qa(h,qa(a,b+g|0,o),q);e=e+p|0;b=1;d=d+1|0;if((k|0)!=(d|0)){continue}break}break u}if(!s){b=1;d=0;if((k|0)!=1){f=k&-2;e=0;while(1){h=H[l>>2];g=d<<2;j=Rj(c,m,H[g+r>>2],0)+i|0;h=qa(a,h+j|0,o);j=H[l>>2];g=Rj(c,m,H[r+(g|4)>>2],0)+i|0;qa(h,j+g|0,o);d=d+2|0;e=e+2|0;if((f|0)!=(e|0)){continue}break}}if(!(k&1)){break u}e=H[l>>2];c=Rj(c,m,H[r+(d<<2)>>2],0)+i|0;qa(a,c+e|0,o);break u}f=k&1;b=1;if((k|0)!=1){k=k&-2;while(1){d=H[l>>2];e=Rj(g,h,c,m)+i|0;d=qa(a,d+e|0,o);e=H[l>>2];p=Rj(c,m,g|1,h)+i|0;qa(d,e+p|0,o);g=g+2|0;h=g>>>0<2?h+1|0:h;d=j;e=n+2|0;d=e>>>0<2?d+1|0:d;n=e;j=d;if((e|0)!=(k|0)|d){continue}break}}if(!f){break u}d=H[l>>2];c=Rj(g,h,c,m)+i|0;qa(a,c+d|0,o);break u}if(!p){d=0;while(1){if(!Va(c,I[c+84|0]?d:H[H[c+68>>2]+(d<<2)>>2],F[c+24|0],a)){break u}d=d+1|0;b=k>>>0<=d>>>0;if((d|0)!=(k|0)){continue}break}break u}e=0;d=0;while(1){if(!Va(c,I[c+84|0]?d:H[H[c+68>>2]+(d<<2)>>2],F[c+24|0],a)){break u}qa((e<<2)+f|0,a,q);e=e+p|0;d=d+1|0;b=k>>>0<=d>>>0;if((d|0)!=(k|0)){continue}break}}if(!a){break s}oa(a)}a=b;break;default:break b}}b=a}return b|0}function ef(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;i=ca-48|0;ca=i;a:{b:{if((c|0)!=1){break b}c=H[a+4>>2];g=H[a+12>>2];H[i+40>>2]=0;a=i;H[a+32>>2]=0;H[a+36>>2]=0;H[a+24>>2]=0;H[a+28>>2]=0;H[a+16>>2]=0;H[a+20>>2]=0;H[a+8>>2]=0;H[a+12>>2]=0;e=a+8|0;c:{if((b|0)==-2){break c}l=H[H[H[c+4>>2]+8>>2]+(g<<2)>>2];if((ea[H[H[c>>2]+8>>2]](c)|0)==1){a=J[c+36>>1];j=(a<<8|a>>>8)&65535;a=0;h=ca-32|0;ca=h;d=H[H[H[c+4>>2]+8>>2]+(g<<2)>>2];d:{if((ea[H[H[c>>2]+8>>2]](c)|0)!=1|b-1>>>0>5){break d}k=ea[H[H[c>>2]+36>>2]](c)|0;f=ea[H[H[c>>2]+44>>2]](c,g)|0;if(!k|!f){break d}a=ea[H[H[c>>2]+40>>2]](c,g)|0;if(a){c=H[c+44>>2];H[h+12>>2]=a;H[h+8>>2]=c;H[h+20>>2]=f;H[h+16>>2]=f+12;c=h+8|0;a=0;e:{f:{switch(b-1|0){case 0:a=pa(60);H[a+4>>2]=d;H[a>>2]=3272;b=H[e+4>>2];H[a+8>>2]=H[e>>2];H[a+12>>2]=b;b=H[e+12>>2];H[a+16>>2]=H[e+8>>2];H[a+20>>2]=b;b=H[e+20>>2];H[a+24>>2]=H[e+16>>2];H[a+28>>2]=b;H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;d=H[e+24>>2];f=H[e+28>>2];if((d|0)!=(f|0)){g=f-d|0;if((g|0)<0){break a}b=pa(g);H[a+32>>2]=b;H[a+40>>2]=(g&-4)+b;while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((f|0)!=(d|0)){continue}break}H[a+36>>2]=b}b=H[c+4>>2];H[a+44>>2]=H[c>>2];H[a+48>>2]=b;b=H[c+12>>2];H[a+52>>2]=H[c+8>>2];H[a+56>>2]=b;H[a>>2]=2564;break e;case 1:a=pa(60);H[a+4>>2]=d;H[a>>2]=3272;b=H[e+4>>2];H[a+8>>2]=H[e>>2];H[a+12>>2]=b;b=H[e+12>>2];H[a+16>>2]=H[e+8>>2];H[a+20>>2]=b;b=H[e+20>>2];H[a+24>>2]=H[e+16>>2];H[a+28>>2]=b;H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;d=H[e+24>>2];f=H[e+28>>2];if((d|0)!=(f|0)){g=f-d|0;if((g|0)<0){break a}b=pa(g);H[a+32>>2]=b;H[a+40>>2]=(g&-4)+b;while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((f|0)!=(d|0)){continue}break}H[a+36>>2]=b}b=H[c+4>>2];H[a+44>>2]=H[c>>2];H[a+48>>2]=b;b=H[c+12>>2];H[a+52>>2]=H[c+8>>2];H[a+56>>2]=b;H[a>>2]=3328;break e;case 3:a=pa(112);H[a+4>>2]=d;H[a>>2]=3272;b=H[e+4>>2];H[a+8>>2]=H[e>>2];H[a+12>>2]=b;b=H[e+12>>2];H[a+16>>2]=H[e+8>>2];H[a+20>>2]=b;b=H[e+20>>2];H[a+24>>2]=H[e+16>>2];H[a+28>>2]=b;H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;d=H[e+24>>2];f=H[e+28>>2];if((d|0)!=(f|0)){g=f-d|0;if((g|0)<0){break a}b=pa(g);H[a+32>>2]=b;H[a+40>>2]=(g&-4)+b;while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((f|0)!=(d|0)){continue}break}H[a+36>>2]=b}b=H[c+4>>2];H[a+44>>2]=H[c>>2];H[a+48>>2]=b;b=H[c+12>>2];H[a+52>>2]=H[c+8>>2];H[a+56>>2]=b;H[a+60>>2]=0;H[a+64>>2]=0;H[a>>2]=3564;H[a+68>>2]=0;H[a+72>>2]=0;H[a+76>>2]=0;H[a+80>>2]=0;H[a+84>>2]=0;H[a+88>>2]=0;H[a+92>>2]=0;H[a+96>>2]=0;H[a+100>>2]=0;H[a+104>>2]=0;H[a+108>>2]=0;break e;case 2:a=pa(92);H[a+4>>2]=d;H[a>>2]=3272;b=H[e+4>>2];H[a+8>>2]=H[e>>2];H[a+12>>2]=b;b=H[e+12>>2];H[a+16>>2]=H[e+8>>2];H[a+20>>2]=b;b=H[e+20>>2];H[a+24>>2]=H[e+16>>2];H[a+28>>2]=b;H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;d=H[e+24>>2];f=H[e+28>>2];if((d|0)!=(f|0)){g=f-d|0;if((g|0)<0){break a}b=pa(g);H[a+32>>2]=b;H[a+40>>2]=(g&-4)+b;while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((f|0)!=(d|0)){continue}break}H[a+36>>2]=b}b=H[c+4>>2];H[a+44>>2]=H[c>>2];H[a+48>>2]=b;b=H[c+12>>2];H[a+52>>2]=H[c+8>>2];H[a+56>>2]=b;H[a+60>>2]=0;H[a+64>>2]=0;H[a>>2]=3812;H[a+68>>2]=0;H[a+72>>2]=0;H[a+76>>2]=0;H[a+80>>2]=0;H[a+84>>2]=0;H[a+88>>2]=j;break e;case 4:a=pa(104);H[a+4>>2]=d;H[a>>2]=3272;b=H[e+4>>2];H[a+8>>2]=H[e>>2];H[a+12>>2]=b;b=H[e+12>>2];H[a+16>>2]=H[e+8>>2];H[a+20>>2]=b;b=H[e+20>>2];H[a+24>>2]=H[e+16>>2];H[a+28>>2]=b;H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;d=H[e+24>>2];f=H[e+28>>2];if((d|0)!=(f|0)){g=f-d|0;if((g|0)<0){break a}b=pa(g);H[a+32>>2]=b;H[a+40>>2]=(g&-4)+b;while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((f|0)!=(d|0)){continue}break}H[a+36>>2]=b}b=H[c+4>>2];H[a+44>>2]=H[c>>2];H[a+48>>2]=b;b=H[c+12>>2];H[a+52>>2]=H[c+8>>2];H[a+56>>2]=b;H[a+84>>2]=0;H[a+76>>2]=0;H[a+80>>2]=0;H[a+60>>2]=0;H[a+64>>2]=0;H[a>>2]=4040;b=H[c+4>>2];H[a+88>>2]=H[c>>2];H[a+92>>2]=b;b=H[c+12>>2];H[a+96>>2]=H[c+8>>2];H[a+100>>2]=b;break e;case 5:break f;default:break e}}a=pa(128);H[a+4>>2]=d;H[a>>2]=3272;b=H[e+4>>2];H[a+8>>2]=H[e>>2];H[a+12>>2]=b;b=H[e+12>>2];H[a+16>>2]=H[e+8>>2];H[a+20>>2]=b;b=H[e+20>>2];H[a+24>>2]=H[e+16>>2];H[a+28>>2]=b;H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;g:{b=H[e+28>>2];d=H[e+24>>2];if((b|0)!=(d|0)){d=b-d|0;if((d|0)<0){break a}b=pa(d);H[a+36>>2]=b;H[a+32>>2]=b;H[a+40>>2]=(d&-4)+b;d=H[e+24>>2];f=H[e+28>>2];if((d|0)!=(f|0)){while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((f|0)!=(d|0)){continue}break}}H[a+36>>2]=b}H[a>>2]=3216;b=H[c+4>>2];H[a+44>>2]=H[c>>2];H[a+48>>2]=b;b=H[c+12>>2];H[a+52>>2]=H[c+8>>2];H[a+56>>2]=b;b=a- -64|0;H[b>>2]=0;H[b+4>>2]=0;H[a+60>>2]=4904;H[a>>2]=4276;b=H[c+4>>2];H[a+72>>2]=H[c>>2];H[a+76>>2]=b;b=H[c+12>>2];H[a+80>>2]=H[c+8>>2];H[a+84>>2]=b;H[a+104>>2]=1065353216;H[a+108>>2]=-1;H[a+96>>2]=-1;H[a+100>>2]=-1;H[a+88>>2]=1;H[a+92>>2]=-1;H[a+60>>2]=4512;H[a+112>>2]=0;H[a+116>>2]=0;F[a+117|0]=0;F[a+118|0]=0;F[a+119|0]=0;F[a+120|0]=0;F[a+121|0]=0;F[a+122|0]=0;F[a+123|0]=0;F[a+124|0]=0;break g}}break d}a=H[c+44>>2];H[h+12>>2]=k;H[h+8>>2]=a;H[h+20>>2]=f;H[h+16>>2]=f+12;c=h+8|0;a=0;h:{i:{switch(b-1|0){case 0:a=pa(60);H[a+4>>2]=d;H[a>>2]=3272;b=H[e+4>>2];H[a+8>>2]=H[e>>2];H[a+12>>2]=b;b=H[e+12>>2];H[a+16>>2]=H[e+8>>2];H[a+20>>2]=b;b=H[e+20>>2];H[a+24>>2]=H[e+16>>2];H[a+28>>2]=b;H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;d=H[e+24>>2];f=H[e+28>>2];if((d|0)!=(f|0)){g=f-d|0;if((g|0)<0){break a}b=pa(g);H[a+32>>2]=b;H[a+40>>2]=(g&-4)+b;while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((f|0)!=(d|0)){continue}break}H[a+36>>2]=b}b=H[c+4>>2];H[a+44>>2]=H[c>>2];H[a+48>>2]=b;b=H[c+12>>2];H[a+52>>2]=H[c+8>>2];H[a+56>>2]=b;H[a>>2]=4932;break h;case 1:a=pa(60);H[a+4>>2]=d;H[a>>2]=3272;b=H[e+4>>2];H[a+8>>2]=H[e>>2];H[a+12>>2]=b;b=H[e+12>>2];H[a+16>>2]=H[e+8>>2];H[a+20>>2]=b;b=H[e+20>>2];H[a+24>>2]=H[e+16>>2];H[a+28>>2]=b;H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;d=H[e+24>>2];f=H[e+28>>2];if((d|0)!=(f|0)){g=f-d|0;if((g|0)<0){break a}b=pa(g);H[a+32>>2]=b;H[a+40>>2]=(g&-4)+b;while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((f|0)!=(d|0)){continue}break}H[a+36>>2]=b}b=H[c+4>>2];H[a+44>>2]=H[c>>2];H[a+48>>2]=b;b=H[c+12>>2];H[a+52>>2]=H[c+8>>2];H[a+56>>2]=b;H[a>>2]=5356;break h;case 3:a=pa(112);H[a+4>>2]=d;H[a>>2]=3272;b=H[e+4>>2];H[a+8>>2]=H[e>>2];H[a+12>>2]=b;b=H[e+12>>2];H[a+16>>2]=H[e+8>>2];H[a+20>>2]=b;b=H[e+20>>2];H[a+24>>2]=H[e+16>>2];H[a+28>>2]=b;H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;d=H[e+24>>2];f=H[e+28>>2];if((d|0)!=(f|0)){g=f-d|0;if((g|0)<0){break a}b=pa(g);H[a+32>>2]=b;H[a+40>>2]=(g&-4)+b;while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((f|0)!=(d|0)){continue}break}H[a+36>>2]=b}b=H[c+4>>2];H[a+44>>2]=H[c>>2];H[a+48>>2]=b;b=H[c+12>>2];H[a+52>>2]=H[c+8>>2];H[a+56>>2]=b;H[a+60>>2]=0;H[a+64>>2]=0;H[a>>2]=5580;H[a+68>>2]=0;H[a+72>>2]=0;H[a+76>>2]=0;H[a+80>>2]=0;H[a+84>>2]=0;H[a+88>>2]=0;H[a+92>>2]=0;H[a+96>>2]=0;H[a+100>>2]=0;H[a+104>>2]=0;H[a+108>>2]=0;break h;case 2:a=pa(92);H[a+4>>2]=d;H[a>>2]=3272;b=H[e+4>>2];H[a+8>>2]=H[e>>2];H[a+12>>2]=b;b=H[e+12>>2];H[a+16>>2]=H[e+8>>2];H[a+20>>2]=b;b=H[e+20>>2];H[a+24>>2]=H[e+16>>2];H[a+28>>2]=b;H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;d=H[e+24>>2];f=H[e+28>>2];if((d|0)!=(f|0)){g=f-d|0;if((g|0)<0){break a}b=pa(g);H[a+32>>2]=b;H[a+40>>2]=(g&-4)+b;while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((f|0)!=(d|0)){continue}break}H[a+36>>2]=b}b=H[c+4>>2];H[a+44>>2]=H[c>>2];H[a+48>>2]=b;b=H[c+12>>2];H[a+52>>2]=H[c+8>>2];H[a+56>>2]=b;H[a+60>>2]=0;H[a+64>>2]=0;H[a>>2]=5816;H[a+68>>2]=0;H[a+72>>2]=0;H[a+76>>2]=0;H[a+80>>2]=0;H[a+84>>2]=0;H[a+88>>2]=j;break h;case 4:a=pa(104);H[a+4>>2]=d;H[a>>2]=3272;b=H[e+4>>2];H[a+8>>2]=H[e>>2];H[a+12>>2]=b;b=H[e+12>>2];H[a+16>>2]=H[e+8>>2];H[a+20>>2]=b;b=H[e+20>>2];H[a+24>>2]=H[e+16>>2];H[a+28>>2]=b;H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;d=H[e+24>>2];f=H[e+28>>2];if((d|0)!=(f|0)){g=f-d|0;if((g|0)<0){break a}b=pa(g);H[a+32>>2]=b;H[a+40>>2]=(g&-4)+b;while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((f|0)!=(d|0)){continue}break}H[a+36>>2]=b}b=H[c+4>>2];H[a+44>>2]=H[c>>2];H[a+48>>2]=b;b=H[c+12>>2];H[a+52>>2]=H[c+8>>2];H[a+56>>2]=b;H[a+84>>2]=0;H[a+76>>2]=0;H[a+80>>2]=0;H[a+60>>2]=0;H[a+64>>2]=0;H[a>>2]=6032;b=H[c+4>>2];H[a+88>>2]=H[c>>2];H[a+92>>2]=b;b=H[c+12>>2];H[a+96>>2]=H[c+8>>2];H[a+100>>2]=b;break h;case 5:break i;default:break h}}a=pa(128);H[a+4>>2]=d;H[a>>2]=3272;b=H[e+4>>2];H[a+8>>2]=H[e>>2];H[a+12>>2]=b;b=H[e+12>>2];H[a+16>>2]=H[e+8>>2];H[a+20>>2]=b;b=H[e+20>>2];H[a+24>>2]=H[e+16>>2];H[a+28>>2]=b;H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;j:{b=H[e+28>>2];d=H[e+24>>2];if((b|0)!=(d|0)){d=b-d|0;if((d|0)<0){break a}b=pa(d);H[a+36>>2]=b;H[a+32>>2]=b;H[a+40>>2]=(d&-4)+b;d=H[e+24>>2];f=H[e+28>>2];if((d|0)!=(f|0)){while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((f|0)!=(d|0)){continue}break}}H[a+36>>2]=b}H[a>>2]=5300;b=H[c+4>>2];H[a+44>>2]=H[c>>2];H[a+48>>2]=b;b=H[c+12>>2];H[a+52>>2]=H[c+8>>2];H[a+56>>2]=b;b=a- -64|0;H[b>>2]=0;H[b+4>>2]=0;H[a+60>>2]=6840;H[a>>2]=6256;b=H[c+4>>2];H[a+72>>2]=H[c>>2];H[a+76>>2]=b;b=H[c+12>>2];H[a+80>>2]=H[c+8>>2];H[a+84>>2]=b;H[a+104>>2]=1065353216;H[a+108>>2]=-1;H[a+96>>2]=-1;H[a+100>>2]=-1;H[a+88>>2]=1;H[a+92>>2]=-1;H[a+60>>2]=6476;H[a+112>>2]=0;H[a+116>>2]=0;F[a+117|0]=0;F[a+118|0]=0;F[a+119|0]=0;F[a+120|0]=0;F[a+121|0]=0;F[a+122|0]=0;F[a+123|0]=0;F[a+124|0]=0;break j}}}ca=h+32|0;d=a;if(a){break c}}d=pa(44);H[d+4>>2]=l;H[d>>2]=3272;a=H[e+4>>2];H[d+8>>2]=H[e>>2];H[d+12>>2]=a;a=H[e+12>>2];H[d+16>>2]=H[e+8>>2];H[d+20>>2]=a;a=H[e+20>>2];H[d+24>>2]=H[e+16>>2];H[d+28>>2]=a;H[d+40>>2]=0;H[d+32>>2]=0;H[d+36>>2]=0;c=H[e+24>>2];a=H[e+28>>2];if((c|0)!=(a|0)){b=a-c|0;if((b|0)<0){break a}e=pa(b);H[d+32>>2]=e;H[d+40>>2]=(b&-4)+e;while(1){H[e>>2]=H[c>>2];e=e+4|0;c=c+4|0;if((a|0)!=(c|0)){continue}break}H[d+36>>2]=e}H[d>>2]=6868;break c}e=d;a=H[i+32>>2];if(!a){break b}H[i+36>>2]=a;oa(a)}ca=i+48|0;return e|0}sa();v()}function Ec(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;l=ca-16|0;ca=l;a:{b:{c:{d:{e:{f:{g:{h:{i:{if(a>>>0<=244){g=H[4298];h=a>>>0<11?16:a+11&-8;c=h>>>3|0;b=g>>>c|0;if(b&3){c=c+((b^-1)&1)|0;a=c<<3;b=a+17232|0;d=H[a+17240>>2];a=H[d+8>>2];j:{if((b|0)==(a|0)){m=17192,n=Vj(c)&g,H[m>>2]=n;break j}H[a+12>>2]=b;H[b+8>>2]=a}a=d+8|0;b=c<<3;H[d+4>>2]=b|3;b=b+d|0;H[b+4>>2]=H[b+4>>2]|1;break a}k=H[4300];if(k>>>0>=h>>>0){break i}if(b){a=2<>2];a=H[e+8>>2];k:{if((b|0)==(a|0)){g=Vj(d)&g;H[4298]=g;break k}H[a+12>>2]=b;H[b+8>>2]=a}H[e+4>>2]=h|3;c=e+h|0;a=d<<3;d=a-h|0;H[c+4>>2]=d|1;H[a+e>>2]=d;if(k){b=(k&-8)+17232|0;f=H[4303];a=1<<(k>>>3);l:{if(!(a&g)){H[4298]=a|g;a=b;break l}a=H[b+8>>2]}H[b+8>>2]=f;H[a+12>>2]=f;H[f+12>>2]=b;H[f+8>>2]=a}a=e+8|0;H[4303]=c;H[4300]=d;break a}j=H[4299];if(!j){break i}c=H[(Qj(0-j&j)<<2)+17496>>2];f=(H[c+4>>2]&-8)-h|0;b=c;while(1){m:{a=H[b+16>>2];if(!a){a=H[b+20>>2];if(!a){break m}}b=(H[a+4>>2]&-8)-h|0;d=b>>>0>>0;f=d?b:f;c=d?a:c;b=a;continue}break}i=H[c+24>>2];d=H[c+12>>2];if((d|0)!=(c|0)){a=H[c+8>>2];H[a+12>>2]=d;H[d+8>>2]=a;break b}b=c+20|0;a=H[b>>2];if(!a){a=H[c+16>>2];if(!a){break h}b=c+16|0}while(1){e=b;d=a;b=a+20|0;a=H[b>>2];if(a){continue}b=d+16|0;a=H[d+16>>2];if(a){continue}break}H[e>>2]=0;break b}h=-1;if(a>>>0>4294967231){break i}a=a+11|0;h=a&-8;j=H[4299];if(!j){break i}f=0-h|0;g=0;n:{if(h>>>0<256){break n}g=31;if(h>>>0>16777215){break n}a=Q(a>>>8|0);g=((h>>>38-a&1)-(a<<1)|0)+62|0}b=H[(g<<2)+17496>>2];o:{p:{q:{if(!b){a=0;break q}a=0;c=h<<((g|0)!=31?25-(g>>>1|0)|0:0);while(1){r:{e=(H[b+4>>2]&-8)-h|0;if(e>>>0>=f>>>0){break r}d=b;f=e;if(e){break r}f=0;a=b;break p}e=H[b+20>>2];b=H[((c>>>29&4)+b|0)+16>>2];a=e?(e|0)==(b|0)?a:e:a;c=c<<1;if(b){continue}break}}if(!(a|d)){d=0;a=2<>2]}if(!a){break o}}while(1){b=(H[a+4>>2]&-8)-h|0;c=b>>>0>>0;f=c?b:f;d=c?a:d;b=H[a+16>>2];if(b){a=b}else{a=H[a+20>>2]}if(a){continue}break}}if(!d|H[4300]-h>>>0<=f>>>0){break i}g=H[d+24>>2];c=H[d+12>>2];if((d|0)!=(c|0)){a=H[d+8>>2];H[a+12>>2]=c;H[c+8>>2]=a;break c}b=d+20|0;a=H[b>>2];if(!a){a=H[d+16>>2];if(!a){break g}b=d+16|0}while(1){e=b;c=a;b=a+20|0;a=H[b>>2];if(a){continue}b=c+16|0;a=H[c+16>>2];if(a){continue}break}H[e>>2]=0;break c}a=H[4300];if(a>>>0>=h>>>0){d=H[4303];b=a-h|0;s:{if(b>>>0>=16){c=d+h|0;H[c+4>>2]=b|1;H[a+d>>2]=b;H[d+4>>2]=h|3;break s}H[d+4>>2]=a|3;a=a+d|0;H[a+4>>2]=H[a+4>>2]|1;c=0;b=0}H[4300]=b;H[4303]=c;a=d+8|0;break a}i=H[4301];if(i>>>0>h>>>0){b=i-h|0;H[4301]=b;c=H[4304];a=c+h|0;H[4304]=a;H[a+4>>2]=b|1;H[c+4>>2]=h|3;a=c+8|0;break a}a=0;j=h+47|0;if(H[4416]){c=H[4418]}else{H[4419]=-1;H[4420]=-1;H[4417]=4096;H[4418]=4096;H[4416]=l+12&-16^1431655768;H[4421]=0;H[4409]=0;c=4096}e=j+c|0;f=0-c|0;b=e&f;if(b>>>0<=h>>>0){break a}d=H[4408];if(d){c=H[4406];g=c+b|0;if(d>>>0>>0|c>>>0>=g>>>0){break a}}t:{if(!(I[17636]&4)){u:{v:{w:{x:{d=H[4304];if(d){a=17640;while(1){c=H[a>>2];if(c>>>0<=d>>>0&d>>>0>2]>>>0){break x}a=H[a+8>>2];if(a){continue}break}}c=zb(0);if((c|0)==-1){break u}g=b;d=H[4417];a=d-1|0;if(a&c){g=(b-c|0)+(a+c&0-d)|0}if(g>>>0<=h>>>0){break u}d=H[4408];if(d){a=H[4406];f=a+g|0;if(d>>>0>>0|a>>>0>=f>>>0){break u}}a=zb(g);if((c|0)!=(a|0)){break w}break t}g=f&e-i;c=zb(g);if((c|0)==(H[a>>2]+H[a+4>>2]|0)){break v}a=c}if((a|0)==-1){break u}if(h+48>>>0<=g>>>0){c=a;break t}c=H[4418];c=c+(j-g|0)&0-c;if((zb(c)|0)==-1){break u}g=c+g|0;c=a;break t}if((c|0)!=-1){break t}}H[4409]=H[4409]|4}c=zb(b);a=zb(0);if((c|0)==-1|(a|0)==-1|a>>>0<=c>>>0){break d}g=a-c|0;if(g>>>0<=h+40>>>0){break d}}a=H[4406]+g|0;H[4406]=a;if(a>>>0>K[4407]){H[4407]=a}y:{e=H[4304];if(e){a=17640;while(1){d=H[a>>2];b=H[a+4>>2];if((d+b|0)==(c|0)){break y}a=H[a+8>>2];if(a){continue}break}break f}a=H[4302];if(!(a>>>0<=c>>>0?a:0)){H[4302]=c}a=0;H[4411]=g;H[4410]=c;H[4306]=-1;H[4307]=H[4416];H[4413]=0;while(1){d=a<<3;b=d+17232|0;H[d+17240>>2]=b;H[d+17244>>2]=b;a=a+1|0;if((a|0)!=32){continue}break}d=g-40|0;a=c+8&7?-8-c&7:0;b=d-a|0;H[4301]=b;a=a+c|0;H[4304]=a;H[a+4>>2]=b|1;H[(c+d|0)+4>>2]=40;H[4305]=H[4420];break e}if(I[a+12|0]&8|d>>>0>e>>>0|c>>>0<=e>>>0){break f}H[a+4>>2]=b+g;a=e+8&7?-8-e&7:0;c=a+e|0;H[4304]=c;b=H[4301]+g|0;a=b-a|0;H[4301]=a;H[c+4>>2]=a|1;H[(b+e|0)+4>>2]=40;H[4305]=H[4420];break e}d=0;break b}c=0;break c}if(K[4302]>c>>>0){H[4302]=c}b=c+g|0;a=17640;z:{A:{B:{C:{D:{E:{while(1){if((b|0)!=H[a>>2]){a=H[a+8>>2];if(a){continue}break E}break}if(!(I[a+12|0]&8)){break D}}a=17640;while(1){b=H[a>>2];if(b>>>0<=e>>>0){f=b+H[a+4>>2]|0;if(f>>>0>e>>>0){break C}}a=H[a+8>>2];continue}}H[a>>2]=c;H[a+4>>2]=H[a+4>>2]+g;j=(c+8&7?-8-c&7:0)+c|0;H[j+4>>2]=h|3;g=b+(b+8&7?-8-b&7:0)|0;i=h+j|0;a=g-i|0;if((e|0)==(g|0)){H[4304]=i;a=H[4301]+a|0;H[4301]=a;H[i+4>>2]=a|1;break A}if(H[4303]==(g|0)){H[4303]=i;a=H[4300]+a|0;H[4300]=a;H[i+4>>2]=a|1;H[a+i>>2]=a;break A}f=H[g+4>>2];if((f&3)==1){e=f&-8;F:{if(f>>>0<=255){d=H[g+8>>2];b=f>>>3|0;c=H[g+12>>2];if((c|0)==(d|0)){m=17192,n=H[4298]&Vj(b),H[m>>2]=n;break F}H[d+12>>2]=c;H[c+8>>2]=d;break F}h=H[g+24>>2];c=H[g+12>>2];G:{if((g|0)!=(c|0)){b=H[g+8>>2];H[b+12>>2]=c;H[c+8>>2]=b;break G}H:{f=g+20|0;b=H[f>>2];if(b){break H}f=g+16|0;b=H[f>>2];if(b){break H}c=0;break G}while(1){d=f;c=b;f=c+20|0;b=H[f>>2];if(b){continue}f=c+16|0;b=H[c+16>>2];if(b){continue}break}H[d>>2]=0}if(!h){break F}d=H[g+28>>2];b=(d<<2)+17496|0;I:{if(H[b>>2]==(g|0)){H[b>>2]=c;if(c){break I}m=17196,n=H[4299]&Vj(d),H[m>>2]=n;break F}H[h+(H[h+16>>2]==(g|0)?16:20)>>2]=c;if(!c){break F}}H[c+24>>2]=h;b=H[g+16>>2];if(b){H[c+16>>2]=b;H[b+24>>2]=c}b=H[g+20>>2];if(!b){break F}H[c+20>>2]=b;H[b+24>>2]=c}g=e+g|0;f=H[g+4>>2];a=a+e|0}H[g+4>>2]=f&-2;H[i+4>>2]=a|1;H[a+i>>2]=a;if(a>>>0<=255){b=(a&-8)+17232|0;c=H[4298];a=1<<(a>>>3);J:{if(!(c&a)){H[4298]=a|c;a=b;break J}a=H[b+8>>2]}H[b+8>>2]=i;H[a+12>>2]=i;H[i+12>>2]=b;H[i+8>>2]=a;break A}f=31;if(a>>>0<=16777215){b=Q(a>>>8|0);f=((a>>>38-b&1)-(b<<1)|0)+62|0}H[i+28>>2]=f;H[i+16>>2]=0;H[i+20>>2]=0;b=(f<<2)+17496|0;d=H[4299];c=1<>2]=i;break K}f=a<<((f|0)!=31?25-(f>>>1|0)|0:0);c=H[b>>2];while(1){b=c;if((H[c+4>>2]&-8)==(a|0)){break B}c=f>>>29|0;f=f<<1;d=(c&4)+b|0;c=H[d+16>>2];if(c){continue}break}H[d+16>>2]=i}H[i+24>>2]=b;H[i+12>>2]=i;H[i+8>>2]=i;break A}d=g-40|0;a=c+8&7?-8-c&7:0;b=d-a|0;H[4301]=b;a=a+c|0;H[4304]=a;H[a+4>>2]=b|1;H[(c+d|0)+4>>2]=40;H[4305]=H[4420];a=(f+(f-39&7?39-f&7:0)|0)-47|0;d=a>>>0>>0?e:a;H[d+4>>2]=27;a=H[4413];H[d+16>>2]=H[4412];H[d+20>>2]=a;a=H[4411];H[d+8>>2]=H[4410];H[d+12>>2]=a;H[4412]=d+8;H[4411]=g;H[4410]=c;H[4413]=0;a=d+24|0;while(1){H[a+4>>2]=7;b=a+8|0;a=a+4|0;if(b>>>0>>0){continue}break}if((d|0)==(e|0)){break e}H[d+4>>2]=H[d+4>>2]&-2;f=d-e|0;H[e+4>>2]=f|1;H[d>>2]=f;if(f>>>0<=255){b=(f&-8)+17232|0;c=H[4298];a=1<<(f>>>3);L:{if(!(c&a)){H[4298]=a|c;a=b;break L}a=H[b+8>>2]}H[b+8>>2]=e;H[a+12>>2]=e;H[e+12>>2]=b;H[e+8>>2]=a;break e}a=31;if(f>>>0<=16777215){a=Q(f>>>8|0);a=((f>>>38-a&1)-(a<<1)|0)+62|0}H[e+28>>2]=a;H[e+16>>2]=0;H[e+20>>2]=0;b=(a<<2)+17496|0;d=H[4299];c=1<>2]=e;break M}a=f<<((a|0)!=31?25-(a>>>1|0)|0:0);d=H[b>>2];while(1){b=d;if((f|0)==(H[b+4>>2]&-8)){break z}c=a>>>29|0;a=a<<1;c=(c&4)+b|0;d=H[c+16>>2];if(d){continue}break}H[c+16>>2]=e}H[e+24>>2]=b;H[e+12>>2]=e;H[e+8>>2]=e;break e}a=H[b+8>>2];H[a+12>>2]=i;H[b+8>>2]=i;H[i+24>>2]=0;H[i+12>>2]=b;H[i+8>>2]=a}a=j+8|0;break a}a=H[b+8>>2];H[a+12>>2]=e;H[b+8>>2]=e;H[e+24>>2]=0;H[e+12>>2]=b;H[e+8>>2]=a}a=H[4301];if(a>>>0<=h>>>0){break d}b=a-h|0;H[4301]=b;c=H[4304];a=c+h|0;H[4304]=a;H[a+4>>2]=b|1;H[c+4>>2]=h|3;a=c+8|0;break a}H[3992]=48;a=0;break a}N:{if(!g){break N}b=H[d+28>>2];a=(b<<2)+17496|0;O:{if(H[a>>2]==(d|0)){H[a>>2]=c;if(c){break O}j=Vj(b)&j;H[4299]=j;break N}H[g+(H[g+16>>2]==(d|0)?16:20)>>2]=c;if(!c){break N}}H[c+24>>2]=g;a=H[d+16>>2];if(a){H[c+16>>2]=a;H[a+24>>2]=c}a=H[d+20>>2];if(!a){break N}H[c+20>>2]=a;H[a+24>>2]=c}P:{if(f>>>0<=15){a=f+h|0;H[d+4>>2]=a|3;a=a+d|0;H[a+4>>2]=H[a+4>>2]|1;break P}H[d+4>>2]=h|3;e=d+h|0;H[e+4>>2]=f|1;H[e+f>>2]=f;if(f>>>0<=255){b=(f&-8)+17232|0;c=H[4298];a=1<<(f>>>3);Q:{if(!(c&a)){H[4298]=a|c;a=b;break Q}a=H[b+8>>2]}H[b+8>>2]=e;H[a+12>>2]=e;H[e+12>>2]=b;H[e+8>>2]=a;break P}a=31;if(f>>>0<=16777215){a=Q(f>>>8|0);a=((f>>>38-a&1)-(a<<1)|0)+62|0}H[e+28>>2]=a;H[e+16>>2]=0;H[e+20>>2]=0;b=(a<<2)+17496|0;R:{c=1<>2]=e;break S}a=f<<((a|0)!=31?25-(a>>>1|0)|0:0);h=H[b>>2];while(1){b=h;if((H[b+4>>2]&-8)==(f|0)){break R}c=a>>>29|0;a=a<<1;c=(c&4)+b|0;h=H[c+16>>2];if(h){continue}break}H[c+16>>2]=e}H[e+24>>2]=b;H[e+12>>2]=e;H[e+8>>2]=e;break P}a=H[b+8>>2];H[a+12>>2]=e;H[b+8>>2]=e;H[e+24>>2]=0;H[e+12>>2]=b;H[e+8>>2]=a}a=d+8|0;break a}T:{if(!i){break T}b=H[c+28>>2];a=(b<<2)+17496|0;U:{if(H[a>>2]==(c|0)){H[a>>2]=d;if(d){break U}m=17196,n=Vj(b)&j,H[m>>2]=n;break T}H[i+(H[i+16>>2]==(c|0)?16:20)>>2]=d;if(!d){break T}}H[d+24>>2]=i;a=H[c+16>>2];if(a){H[d+16>>2]=a;H[a+24>>2]=d}a=H[c+20>>2];if(!a){break T}H[d+20>>2]=a;H[a+24>>2]=d}V:{if(f>>>0<=15){a=f+h|0;H[c+4>>2]=a|3;a=a+c|0;H[a+4>>2]=H[a+4>>2]|1;break V}H[c+4>>2]=h|3;d=c+h|0;H[d+4>>2]=f|1;H[d+f>>2]=f;if(k){b=(k&-8)+17232|0;e=H[4303];a=1<<(k>>>3);W:{if(!(a&g)){H[4298]=a|g;a=b;break W}a=H[b+8>>2]}H[b+8>>2]=e;H[a+12>>2]=e;H[e+12>>2]=b;H[e+8>>2]=a}H[4303]=d;H[4300]=f}a=c+8|0}ca=l+16|0;return a|0}function ce(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0;m=ca-32|0;ca=m;o=pa(12);H[o+8>>2]=0;H[o+4>>2]=b;H[o>>2]=0;s=o+12|0;b=s;a:{b:{c:{while(1){b=b-12|0;w=H[b+8>>2];j=H[b+4>>2];t=H[b>>2];if(t){if((w|0)>1e3){break a}H[m+24>>2]=0;H[m+16>>2]=0;H[m+20>>2]=0;d=1;c=H[a>>2];e=H[c+8>>2];h=H[c+12>>2];g=H[c+20>>2];f=H[c+16>>2];d:{if((h|0)<=(g|0)&f>>>0>=e>>>0|(g|0)>(h|0)){break d}e=I[f+H[c>>2]|0];h=c;c=g;f=f+1|0;c=f?c:c+1|0;H[h+16>>2]=f;H[h+20>>2]=c;Cc(m+16|0,e);if(e){c=H[a>>2];n=Dc(m+16|0);p=H[c+8>>2];g=H[c+12>>2];h=H[c+20>>2];f=H[c+16>>2];k=f+e|0;h=k>>>0>>0?h+1|0:h;if((g|0)<=(h|0)&k>>>0>p>>>0|(g|0)<(h|0)){break d}qa(n,f+H[c>>2]|0,e);d=H[c+20>>2];f=e;e=e+H[c+16>>2]|0;d=f>>>0>e>>>0?d+1|0:d;H[c+16>>2]=e;H[c+20>>2]=d}j=pa(24);c=j;H[c+4>>2]=0;H[c+8>>2]=0;c=c+16|0;H[c>>2]=0;H[c+4>>2]=0;H[j>>2]=j+4;H[j+12>>2]=c;e=ca-32|0;ca=e;h=t+12|0;c=m+16|0;u=nb(h,c);i=t+16|0;e:{if((u|0)==(i|0)){H[e+16>>2]=c;f:{g:{d=H[h+4>>2];h:{if(!d){f=h+4|0;c=f;break h}f=I[c+11|0];g=f<<24>>24<0;n=g?H[c>>2]:c;g=g?H[c+4>>2]:f;while(1){c=d;d=I[c+27|0];f=d<<24>>24<0;d=f?H[c+20>>2]:d;p=d>>>0>>0;i:{j:{k:{l:{k=p?d:g;m:{if(k){f=f?H[c+16>>2]:c+16|0;q=Fa(n,f,k);if(!q){if(d>>>0>g>>>0){break m}break l}if((q|0)>=0){break l}break m}if(d>>>0<=g>>>0){break k}}f=c;d=H[c>>2];if(d){continue}break h}d=Fa(f,n,k);if(d){break j}}if(p){break i}break g}if((d|0)>=0){break g}}d=H[c+4>>2];if(d){continue}break}f=c+4|0}d=pa(32);n=d+16|0;g=H[e+16>>2];n:{if(F[g+11|0]>=0){p=H[g+4>>2];H[n>>2]=H[g>>2];H[n+4>>2]=p;H[n+8>>2]=H[g+8>>2];break n}za(n,H[g>>2],H[g+4>>2])}H[d+8>>2]=c;H[d>>2]=0;H[d+4>>2]=0;H[d+28>>2]=0;H[f>>2]=d;c=d;g=H[H[h>>2]>>2];if(g){H[h>>2]=g;c=H[f>>2]}Sb(H[h+4>>2],c);H[h+8>>2]=H[h+8>>2]+1;c=1;break f}d=c;c=0}F[e+28|0]=c;H[e+24>>2]=d;d=H[e+24>>2];c=H[d+28>>2];H[d+28>>2]=j;if(!c){break e}Ra(c+12|0,H[c+16>>2]);Qa(c,H[c+4>>2]);oa(c);break e}if(!j){break e}Ra(j+12|0,H[j+16>>2]);Qa(j,H[j+4>>2]);oa(j)}ca=e+32|0;d=(i|0)!=(u|0)}if(F[m+27|0]<0){oa(H[m+16>>2])}if(d){break a}}if(!j){break a}H[m+16>>2]=0;if(!Bb(1,m+16|0,H[a>>2])){break a}q=0;x=H[m+16>>2];if(x){while(1){d=0;i=ca-32|0;ca=i;H[i+24>>2]=0;H[i+16>>2]=0;H[i+20>>2]=0;c=H[a>>2];f=H[c+8>>2];o:{p:{h=H[c+12>>2];g=H[c+20>>2];e=H[c+16>>2];q:{if((h|0)<=(g|0)&e>>>0>=f>>>0|(g|0)>(h|0)){break q}f=I[e+H[c>>2]|0];h=c;c=g;e=e+1|0;c=e?c:c+1|0;H[h+16>>2]=e;H[h+20>>2]=c;Cc(i+16|0,f);if(f){e=H[a>>2];n=Dc(i+16|0);p=H[e+8>>2];g=H[e+12>>2];c=H[e+20>>2];h=H[e+16>>2];k=h+f|0;c=k>>>0>>0?c+1|0:c;if(k>>>0>p>>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break q}qa(n,h+H[e>>2]|0,f);c=H[e+20>>2];g=f;f=f+H[e+16>>2]|0;c=g>>>0>f>>>0?c+1|0:c;H[e+16>>2]=f;H[e+20>>2]=c}H[i+12>>2]=0;if(!Bb(1,i+12|0,H[a>>2])){break q}f=H[i+12>>2];if(!f){break q}e=H[a>>2];c=H[e+8>>2];h=H[e+16>>2];g=c-h|0;c=H[e+12>>2]-(H[e+20>>2]+(c>>>0>>0)|0)|0;if((c|0)<=0&f>>>0>g>>>0|(c|0)<0){break q}H[i+8>>2]=0;H[i>>2]=0;H[i+4>>2]=0;if((f|0)<0){break p}d=pa(f);H[i>>2]=d;c=d+f|0;H[i+8>>2]=c;l=ra(d,0,f);H[i+4>>2]=c;h=H[e+12>>2];y=h;p=H[e+8>>2];c=H[e+20>>2];k=H[e+16>>2];g=f+k|0;c=g>>>0>>0?c+1|0:c;u=g;n=c;r:{if((c|0)<=(h|0)&g>>>0<=p>>>0|(c|0)<(h|0)){qa(l,H[e>>2]+k|0,f);d=H[e+20>>2];c=f+H[e+16>>2]|0;d=c>>>0>>0?d+1|0:d;H[e+16>>2]=c;H[e+20>>2]=d;h=ca-48|0;ca=h;e=nb(j,i+16|0);if((e|0)!=(j+4|0)){c=H[e+4>>2];s:{if(!c){c=e;while(1){d=H[c+8>>2];f=H[d>>2]!=(c|0);c=d;if(f){continue}break}break s}while(1){d=c;c=H[c>>2];if(c){continue}break}}if((e|0)==H[j>>2]){H[j>>2]=d}H[j+8>>2]=H[j+8>>2]-1;f=H[j+4>>2];t:{u:{g=e;d=e;e=H[d>>2];if(e){c=H[g+4>>2];if(!c){break u}while(1){d=c;c=H[c>>2];if(c){continue}break}}e=H[d+4>>2];if(e){break u}e=0;k=1;break t}H[e+8>>2]=H[d+8>>2];k=0}l=H[d+8>>2];c=H[l>>2];v:{if((d|0)==(c|0)){H[l>>2]=e;if((d|0)==(f|0)){c=0;f=e;break v}c=H[l+4>>2];break v}H[l+4>>2]=e}r=!I[d+12|0];if((d|0)!=(g|0)){l=H[g+8>>2];H[d+8>>2]=l;H[l+(((g|0)!=H[H[g+8>>2]>>2])<<2)>>2]=d;l=H[g>>2];H[d>>2]=l;H[l+8>>2]=d;l=H[g+4>>2];H[d+4>>2]=l;if(l){H[l+8>>2]=d}F[d+12|0]=I[g+12|0];f=(f|0)==(g|0)?d:f}w:{if(r|!f){break w}if(k){while(1){e=I[c+12|0];x:{d=H[c+8>>2];if(H[d>>2]!=(c|0)){if(!e){F[c+12|0]=1;F[d+12|0]=0;e=H[d+4>>2];k=H[e>>2];H[d+4>>2]=k;if(k){H[k+8>>2]=d}H[e+8>>2]=H[d+8>>2];k=H[d+8>>2];H[(((d|0)!=H[k>>2])<<2)+k>>2]=e;H[e>>2]=d;H[d+8>>2]=e;d=c;c=H[c>>2];f=(c|0)==(f|0)?d:f;c=H[c+4>>2]}y:{z:{d=H[c>>2];A:{if(!(I[d+12|0]?0:d)){e=H[c+4>>2];if(I[e+12|0]?0:e){break A}F[c+12|0]=0;c=H[c+8>>2];B:{if((f|0)==(c|0)){c=f;break B}if(I[c+12|0]){break x}}F[c+12|0]=1;break w}e=H[c+4>>2];if(!e){break z}}if(I[e+12|0]){break z}d=c;break y}F[d+12|0]=1;F[c+12|0]=0;e=H[d+4>>2];H[c>>2]=e;if(e){H[e+8>>2]=c}H[d+8>>2]=H[c+8>>2];e=H[c+8>>2];H[((H[e>>2]!=(c|0))<<2)+e>>2]=d;H[d+4>>2]=c;H[c+8>>2]=d;e=c}c=H[d+8>>2];F[d+12|0]=I[c+12|0];F[c+12|0]=1;F[e+12|0]=1;d=H[c+4>>2];e=H[d>>2];H[c+4>>2]=e;if(e){H[e+8>>2]=c}H[d+8>>2]=H[c+8>>2];e=H[c+8>>2];H[(((c|0)!=H[e>>2])<<2)+e>>2]=d;H[d>>2]=c;H[c+8>>2]=d;break w}if(!e){F[c+12|0]=1;F[d+12|0]=0;e=H[c+4>>2];H[d>>2]=e;if(e){H[e+8>>2]=d}H[c+8>>2]=H[d+8>>2];e=H[d+8>>2];H[(((d|0)!=H[e>>2])<<2)+e>>2]=c;H[c+4>>2]=d;H[d+8>>2]=c;f=(d|0)==(f|0)?c:f;c=H[d>>2]}e=H[c>>2];C:{if(!(!e|I[e+12|0])){d=c;break C}d=H[c+4>>2];if(!(I[d+12|0]?0:d)){F[c+12|0]=0;c=H[c+8>>2];if((c|0)!=(f|0)?I[c+12|0]:0){break x}F[c+12|0]=1;break w}if(e){if(!I[e+12|0]){d=c;break C}d=H[c+4>>2]}F[d+12|0]=1;F[c+12|0]=0;e=H[d>>2];H[c+4>>2]=e;if(e){H[e+8>>2]=c}H[d+8>>2]=H[c+8>>2];e=H[c+8>>2];H[((H[e>>2]!=(c|0))<<2)+e>>2]=d;H[d>>2]=c;H[c+8>>2]=d;e=c}c=H[d+8>>2];F[d+12|0]=I[c+12|0];F[c+12|0]=1;F[e+12|0]=1;d=H[c>>2];e=H[d+4>>2];H[c>>2]=e;if(e){H[e+8>>2]=c}H[d+8>>2]=H[c+8>>2];e=H[c+8>>2];H[(((c|0)!=H[e>>2])<<2)+e>>2]=d;H[d+4>>2]=c;H[c+8>>2]=d;break w}d=c;c=H[c+8>>2];c=H[(((d|0)==H[c>>2])<<2)+c>>2];continue}}F[e+12|0]=1}c=H[g+28>>2];if(c){H[g+32>>2]=c;oa(c)}if(F[g+27|0]<0){oa(H[g+16>>2])}oa(g)}H[h+8>>2]=0;H[h>>2]=0;H[h+4>>2]=0;c=H[i+4>>2];d=H[i>>2];f=c-d|0;e=0;D:{E:{if((c|0)!=(d|0)){if((f|0)<0){break E}e=pa(f);c=ra(e,0,f);g=c+f|0;H[h+8>>2]=g;H[h+4>>2]=g;H[h>>2]=c;c=d}qa(e,c,f);F:{if(F[i+27|0]>=0){H[h+24>>2]=H[i+24>>2];c=H[i+20>>2];H[h+16>>2]=H[i+16>>2];H[h+20>>2]=c;break F}za(h+16|0,H[i+16>>2],H[i+20>>2])}ae(h+28|0,h);f=h+16|0;c=f;G:{H:{d=H[j+4>>2];I:{if(!d){e=j+4|0;c=e;break I}e=I[c+11|0];g=e<<24>>24<0;k=g?H[c>>2]:c;g=g?H[c+4>>2]:e;while(1){c=d;d=I[c+27|0];e=d<<24>>24<0;d=e?H[c+20>>2]:d;l=d>>>0>>0;J:{K:{L:{M:{r=l?d:g;N:{if(r){e=e?H[c+16>>2]:c+16|0;z=Fa(k,e,r);if(!z){if(d>>>0>g>>>0){break N}break M}if((z|0)>=0){break M}break N}if(d>>>0<=g>>>0){break L}}e=c;d=H[c>>2];if(d){continue}break I}d=Fa(e,k,r);if(d){break K}}if(l){break J}break H}if((d|0)>=0){break H}}d=H[c+4>>2];if(d){continue}break}e=c+4|0}d=pa(40);H[d+24>>2]=H[f+8>>2];g=H[f+4>>2];H[d+16>>2]=H[f>>2];H[d+20>>2]=g;H[f>>2]=0;H[f+4>>2]=0;H[f+8>>2]=0;ae(d+28|0,f+12|0);H[d+8>>2]=c;H[d>>2]=0;H[d+4>>2]=0;H[e>>2]=d;c=d;f=H[H[j>>2]>>2];if(f){H[j>>2]=f;c=H[e>>2]}Sb(H[j+4>>2],c);H[j+8>>2]=H[j+8>>2]+1;c=1;break G}d=c;c=0}F[h+44|0]=c;H[h+40>>2]=d;c=H[h+28>>2];if(c){H[h+32>>2]=c;oa(c)}if(F[h+27|0]<0){oa(H[h+16>>2])}c=H[h>>2];if(c){H[h+4>>2]=c;oa(c)}ca=h+48|0;break D}sa();v()}d=H[i>>2];if(!d){break r}}H[i+4>>2]=d;oa(d)}d=(n|0)<=(y|0)&p>>>0>=u>>>0|(n|0)<(y|0)}if(F[i+27|0]<0){oa(H[i+16>>2])}ca=i+32|0;break o}sa();v()}if(!d){break a}q=q+1|0;if((x|0)!=(q|0)){continue}break}}H[m+12>>2]=0;if(!Bb(1,m+12|0,H[a>>2])){break a}c=H[a>>2];e=H[c+8>>2];f=H[c+16>>2];h=e-f|0;d=H[m+12>>2];c=H[c+12>>2]-(H[c+20>>2]+(e>>>0>>0)|0)|0;if(h>>>0>>0&(c|0)<=0|(c|0)<0){break a}if(d){q=0;h=((t|0)!=0)+w|0;while(1){O:{if(b>>>0>>0){H[b+8>>2]=h;H[b+4>>2]=0;H[b>>2]=j;b=b+12|0;d=H[m+12>>2];break O}c=b-o|0;g=(c|0)/12|0;b=g+1|0;if(b>>>0>=357913942){break c}e=(s-o|0)/12|0;f=e<<1;e=e>>>0>=178956970?357913941:b>>>0>>0?f:b;if(e){if(e>>>0>=357913942){break b}f=pa(N(e,12))}else{f=0}b=f+N(g,12)|0;H[b+8>>2]=h;H[b+4>>2]=0;H[b>>2]=j;c=va(b+N((c|0)/-12|0,12)|0,o,c);s=f+N(e,12)|0;b=b+12|0;if(o){oa(o)}o=c}q=q+1|0;if(q>>>0>>0){continue}break}}if((b|0)!=(o|0)){continue}break}A=1;break a}sa();v()}wa();v()}if(o){oa(o)}ca=m+32|0;return A}function Af(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=O(0),q=0,r=0;e=ca-720|0;ca=e;a:{b:{c:{d:{e:{f:{g:{h:{i:{if(J[b+38>>1]>=515){H[e+680>>2]=0;H[e+672>>2]=0;H[e+676>>2]=0;if((ea[H[H[a>>2]+24>>2]](a)|0)<=0){break d}while(1){c=ea[H[H[a>>2]+20>>2]](a,n)|0;d=H[H[H[(ea[H[H[a>>2]+28>>2]](a)|0)+4>>2]+8>>2]+(c<<2)>>2];if(H[d+28>>2]==9){f=H[e+672>>2];c=H[e+676>>2]-f>>2;k=I[d+24|0];j:{if(c>>>0>>0){ya(e+672|0,k-c|0);break j}if(c>>>0<=k>>>0){break j}H[e+676>>2]=f+(k<<2)}j=0;i=H[b+8>>2];h=H[b+12>>2];c=H[b+20>>2];d=k<<2;f=H[b+16>>2];l=f+d|0;c=d>>>0>l>>>0?c+1|0:c;if(i>>>0>>0&(c|0)>=(h|0)|(c|0)>(h|0)){break b}qa(H[e+672>>2],f+H[b>>2]|0,d);c=H[b+20>>2];f=d;d=d+H[b+16>>2]|0;c=f>>>0>d>>>0?c+1|0:c;i=d;H[b+16>>2]=d;H[b+20>>2]=c;l=H[b+12>>2];g=H[b+8>>2];h=d+4|0;f=h>>>0<4?c+1|0:c;d=f;if(g>>>0>>0&(d|0)>=(l|0)|(d|0)>(l|0)){break b}o=H[b>>2];f=o+i|0;f=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);H[b+16>>2]=h;H[b+20>>2]=d;if(g>>>0<=h>>>0&(d|0)>=(l|0)|(d|0)>(l|0)){break b}d=I[h+o|0];h=i+5|0;c=h>>>0<5?c+1|0:c;H[b+16>>2]=h;H[b+20>>2]=c;if(d>>>0>31){break b}p=(A(2,f),B());H[e+20>>2]=-1;H[e+16>>2]=1832;H[e+32>>2]=0;H[e+36>>2]=0;H[e+24>>2]=0;H[e+28>>2]=0;c=H[e+672>>2];o=d-1|0;if(o>>>0<=29){H[e+20>>2]=d;k:{h=c+(k<<2)|0;l=h-c|0;f=l>>2;i=H[e+32>>2];d=H[e+24>>2];if(f>>>0<=i-d>>2>>>0){i=H[e+28>>2]-d|0;l=i>>2;i=f>>>0>l>>>0?c+i|0:h;g=i-c|0;if((c|0)!=(i|0)){va(d,c,g)}if(f>>>0>l>>>0){c=h-i|0;d=H[e+28>>2];if((h|0)!=(i|0)){va(d,i,c)}H[e+28>>2]=c+d;break k}H[e+28>>2]=d+g;break k}if(d){H[e+28>>2]=d;oa(d);H[e+32>>2]=0;H[e+24>>2]=0;H[e+28>>2]=0;i=0}l:{if((l|0)<0){break l}d=i>>>1|0;d=i>>>0>=2147483644?1073741823:d>>>0>f>>>0?d:f;if(d>>>0>=1073741824){break l}i=d<<2;d=pa(i);H[e+28>>2]=d;H[e+24>>2]=d;H[e+32>>2]=d+i;if((c|0)!=(h|0)){qa(d,c,l)}H[e+28>>2]=d+(f<<2);break k}sa();v()}L[e+36>>2]=p}m:{if(o>>>0>=30){break m}if(!Xc(e+16|0,H[H[a+60>>2]+((H[a+40>>2]-H[a+36>>2]|0)/24<<2)>>2])){break m}c=H[a+40>>2];n:{if((c|0)!=H[a+44>>2]){H[c>>2]=1832;d=H[e+20>>2];H[c+16>>2]=0;H[c+8>>2]=0;H[c+12>>2]=0;H[c+4>>2]=d;d=H[e+28>>2];f=H[e+24>>2];if((d|0)!=(f|0)){d=d-f|0;if((d|0)<0){break i}g=pa(d);H[c+12>>2]=g;H[c+8>>2]=g;H[c+16>>2]=(d&-4)+g;k=H[e+24>>2];d=H[e+28>>2];if((k|0)!=(d|0)){while(1){L[g>>2]=L[k>>2];g=g+4|0;k=k+4|0;if((d|0)!=(k|0)){continue}break}}H[c+12>>2]=g}L[c+20>>2]=L[e+36>>2];H[a+40>>2]=c+24;break n}d=0;o:{p:{q:{r:{j=H[a+40>>2];f=H[a+36>>2];i=(j-f|0)/24|0;c=i+1|0;if(c>>>0<178956971){h=(H[a+44>>2]-f|0)/24|0;l=h<<1;h=h>>>0>=89478485?178956970:c>>>0>>0?l:c;if(h){if(h>>>0>=178956971){break r}d=pa(N(h,24))}g=N(i,24)+d|0;H[g>>2]=1832;c=H[e+20>>2];H[g+16>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;H[g+4>>2]=c;c=H[e+24>>2];i=H[e+28>>2];if((c|0)!=(i|0)){l=i-c|0;if((l|0)<0){break q}k=pa(l);H[g+8>>2]=k;H[g+16>>2]=(l&-4)+k;while(1){L[k>>2]=L[c>>2];k=k+4|0;c=c+4|0;if((i|0)!=(c|0)){continue}break}H[g+12>>2]=k}c=N(h,24)+d|0;L[g+20>>2]=L[e+36>>2];d=g+24|0;if((f|0)==(j|0)){break p}while(1){g=g-24|0;H[g>>2]=1832;j=j-24|0;H[g+4>>2]=H[j+4>>2];H[g+8>>2]=H[j+8>>2];H[g+12>>2]=H[j+12>>2];H[g+16>>2]=H[j+16>>2];H[j+16>>2]=0;H[j+8>>2]=0;H[j+12>>2]=0;L[g+20>>2]=L[j+20>>2];if((f|0)!=(j|0)){continue}break}H[a+44>>2]=c;k=H[a+40>>2];H[a+40>>2]=d;j=H[a+36>>2];H[a+36>>2]=g;if((j|0)==(k|0)){break o}while(1){k=k-24|0;ea[H[H[k>>2]>>2]](k)|0;if((j|0)!=(k|0)){continue}break}break o}sa();v()}wa();v()}sa();v()}H[a+44>>2]=c;H[a+40>>2]=d;H[a+36>>2]=g}if(j){oa(j)}}j=1}H[e+16>>2]=1832;c=H[e+24>>2];if(c){H[e+28>>2]=c;oa(c)}if(!j){break c}}n=n+1|0;if((ea[H[H[a>>2]+24>>2]](a)|0)>(n|0)){continue}break}break d}k=ea[H[H[a>>2]+24>>2]](a)|0;H[e+712>>2]=0;H[e+704>>2]=0;H[e+708>>2]=0;if(k){if(k>>>0>=214748365){break h}c=N(k,20);d=pa(c);H[e+704>>2]=d;H[e+712>>2]=c+d;c=c-20|0;c=(c-((c>>>0)%20|0)|0)+20|0;q=e,r=ra(d,0,c)+c|0,H[q+708>>2]=r;while(1){c=ea[H[H[a>>2]+20>>2]](a,m)|0;d=H[H[H[(ea[H[H[a>>2]+28>>2]](a)|0)+4>>2]+8>>2]+(c<<2)>>2];f=H[d+28>>2];c=f-1|0;if(c>>>0<=10){c=H[(c<<2)+13584>>2]}else{c=-1}h=(c|0)>0?c:0;if(h>>>0>4){break f}c=H[e+704>>2]+N(m,20)|0;i=I[d+24|0];H[c+16>>2]=i;H[c+12>>2]=h;H[c+8>>2]=f;H[c+4>>2]=g;H[c>>2]=d;g=g+i|0;m=m+1|0;if((k|0)!=(m|0)){continue}break}}c=ea[H[H[a>>2]+20>>2]](a,0)|0;m=H[H[H[(ea[H[H[a>>2]+28>>2]](a)|0)+4>>2]+8>>2]+(c<<2)>>2];F[m+84|0]=1;H[m+72>>2]=H[m+68>>2];h=H[b+12>>2];c=h;d=H[b+20>>2];f=H[b+8>>2];i=H[b+16>>2];if((c|0)<=(d|0)&f>>>0<=i>>>0|(c|0)<(d|0)){break f}n=H[b>>2];o=I[n+i|0];c=d;l=i+1|0;c=l?c:c+1|0;H[b+16>>2]=l;H[b+20>>2]=c;s:{switch(o|0){case 0:a=H[e+704>>2];if((H[e+708>>2]-a|0)!=20){break e}if(H[a+16>>2]!=3){break f}t:{if(f>>>0<=l>>>0&(c|0)>=(h|0)|(c|0)>(h|0)){break t}c=d;a=i+2|0;c=a>>>0<2?c+1|0:c;l=a;H[b+16>>2]=a;H[b+20>>2]=c;c=d;a=i+6|0;c=a>>>0<6?c+1|0:c;if(a>>>0>f>>>0&(c|0)>=(h|0)|(c|0)>(h|0)){break t}d=l+n|0;d=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=a;H[b+20>>2]=c;mb(m,d);j=e+672|0;H[j+20>>2]=0;H[j+12>>2]=0;H[j+16>>2]=0;H[j>>2]=0;H[j+4>>2]=0;H[j+20>>2]=d;d=Ac(e+16|0,e+704|0);k=0;g=ca-32|0;ca=g;H[g+24>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;f=H[b+12>>2];m=f;i=H[b+8>>2];c=H[b+20>>2];l=c;h=H[b+16>>2];a=h+4|0;c=a>>>0<4?c+1|0:c;u:{if(a>>>0>i>>>0&(c|0)>=(f|0)|(c|0)>(f|0)){break u}n=H[b>>2];f=n+h|0;f=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);H[b+16>>2]=a;H[b+20>>2]=c;v:{w:{switch(f-2|0){case 1:if((c|0)>=(m|0)&a>>>0>=i>>>0|(c|0)>(m|0)){break u}a=F[a+n|0];c=l;f=h+5|0;c=f>>>0<5?c+1|0:c;H[b+16>>2]=f;H[b+20>>2]=c;H[j+8>>2]=a;if((a|0)==1){if(Ud(j,b,g+16|0)){break v}break u}Rd(1799,23,H[3443]);break u;default:Rd(1774,24,H[3443]);break u;case 0:break w}}if(!Ud(j,b,g+16|0)){break u}}H[g+8>>2]=H[g+16>>2];H[g>>2]=H[g+20>>2];c=ca-32|0;ca=c;a=H[j>>2];p=L[j+4>>2];H[c+24>>2]=1065353216;h=-1<0){L[c+24>>2]=p/O(a|0)}m=H[g+8>>2];n=H[g>>2];if((m|0)!=(n|0)){a=H[d+28>>2];while(1){b=H[m>>2];f=H[m+4>>2];p=L[c+24>>2];L[c+16>>2]=p*O(H[m+8>>2]-h|0);L[c+12>>2]=p*O(f-h|0);L[c+8>>2]=p*O(b-h|0);b=a;i=H[d+16>>2];f=H[i>>2];if(!I[f+84|0]){b=H[H[f+68>>2]+(a<<2)>>2]}if(K[f+80>>2]>b>>>0){a=H[f+40>>2];qa(H[H[f>>2]>>2]+N(a,b)|0,(c+8|0)+(H[i+4>>2]<<2)|0,a);n=H[g>>2];a=H[d+28>>2]}a=a+1|0;H[d+28>>2]=a;m=m+12|0;if((n|0)!=(m|0)){continue}break}}ca=c+32|0;k=1}a=H[g+16>>2];if(a){H[g+20>>2]=a;oa(a)}ca=g+32|0;yc(d);j=1;if(k){break f}}j=0;break f;case 1:break s;default:break f}}if(f>>>0<=l>>>0&(c|0)>=(h|0)|(c|0)>(h|0)){break f}o=I[l+n|0];c=d;l=i+2|0;c=l>>>0<2?c+1|0:c;H[b+16>>2]=l;H[b+20>>2]=c;if(o>>>0>=7){H[e>>2]=o;Qd(1651,e);break f}c=d;d=i+6|0;c=d>>>0<6?c+1|0:c;if(d>>>0>f>>>0&(c|0)>=(h|0)|(c|0)>(h|0)){break f}f=l+n|0;f=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);H[b+16>>2]=d;H[b+20>>2]=c;if(k){m=0;while(1){c=ea[H[H[a>>2]+20>>2]](a,m)|0;c=H[H[H[(ea[H[H[a>>2]+28>>2]](a)|0)+4>>2]+8>>2]+(c<<2)>>2];mb(c,f);F[c+84|0]=1;H[c+72>>2]=H[c+68>>2];m=m+1|0;if((k|0)!=(m|0)){continue}break}}a=Ac(e+672|0,e+704|0);x:{y:{switch(o|0){case 1:c=wb(e+16|0,g);b=zd(c,b,a,-1);xb(c);if(!b){break g}break x;case 2:c=ub(e+16|0,g);b=yd(c,b,a,-1);vb(c);if(!b){break g}break x;case 3:c=ub(e+16|0,g);b=xd(c,b,a,-1);vb(c);if(!b){break g}break x;case 4:c=$a(e+16|0,g);b=wd(c,b,a,-1);ab(c);if(!b){break g}break x;case 5:c=$a(e+16|0,g);b=vd(c,b,a,-1);ab(c);if(!b){break g}break x;case 6:c=$a(e+16|0,g);b=ud(c,b,a,-1);ab(c);if(b){break x}break g;case 0:break y;default:break g}}c=wb(e+16|0,g);b=Bd(c,b,a,-1);xb(c);if(!b){break g}}yc(a);j=1;break f}sa();v()}sa();v()}yc(a)}a=H[e+704>>2]}if(!a){break a}H[e+708>>2]=a;oa(a);break a}j=1;if(H[a+52>>2]==H[a+48>>2]){break b}while(1){if(!td(1,e+16|0,b)){break c}c=H[a+48>>2];d=H[e+16>>2];H[c+(m<<2)>>2]=d>>>1^0-(d&1);m=m+1|0;if(m>>>0>2]-c>>2>>>0){continue}break}break b}j=0}a=H[e+672>>2];if(!a){break a}H[e+676>>2]=a;oa(a)}ca=e+720|0;return j|0}function te(a,b,c,d,e){var f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;h=ca-32|0;ca=h;H[b+32>>2]=d;H[b+40>>2]=c;H[b+4>>2]=e;nc(a,d,h+16|0);a:{if(H[a>>2]){break a}if(F[a+15|0]<0){oa(H[a+4>>2])}d=I[h+23|0];if((ea[H[H[b>>2]+8>>2]](b)|0)!=(d|0)){b=pa(64);F[b+50|0]=0;c=I[1314]|I[1315]<<8;F[b+48|0]=c;F[b+49|0]=c>>>8;c=I[1310]|I[1311]<<8|(I[1312]<<16|I[1313]<<24);d=I[1306]|I[1307]<<8|(I[1308]<<16|I[1309]<<24);F[b+40|0]=d;F[b+41|0]=d>>>8;F[b+42|0]=d>>>16;F[b+43|0]=d>>>24;F[b+44|0]=c;F[b+45|0]=c>>>8;F[b+46|0]=c>>>16;F[b+47|0]=c>>>24;c=I[1302]|I[1303]<<8|(I[1304]<<16|I[1305]<<24);d=I[1298]|I[1299]<<8|(I[1300]<<16|I[1301]<<24);F[b+32|0]=d;F[b+33|0]=d>>>8;F[b+34|0]=d>>>16;F[b+35|0]=d>>>24;F[b+36|0]=c;F[b+37|0]=c>>>8;F[b+38|0]=c>>>16;F[b+39|0]=c>>>24;c=I[1294]|I[1295]<<8|(I[1296]<<16|I[1297]<<24);d=I[1290]|I[1291]<<8|(I[1292]<<16|I[1293]<<24);F[b+24|0]=d;F[b+25|0]=d>>>8;F[b+26|0]=d>>>16;F[b+27|0]=d>>>24;F[b+28|0]=c;F[b+29|0]=c>>>8;F[b+30|0]=c>>>16;F[b+31|0]=c>>>24;c=I[1286]|I[1287]<<8|(I[1288]<<16|I[1289]<<24);d=I[1282]|I[1283]<<8|(I[1284]<<16|I[1285]<<24);F[b+16|0]=d;F[b+17|0]=d>>>8;F[b+18|0]=d>>>16;F[b+19|0]=d>>>24;F[b+20|0]=c;F[b+21|0]=c>>>8;F[b+22|0]=c>>>16;F[b+23|0]=c>>>24;c=I[1278]|I[1279]<<8|(I[1280]<<16|I[1281]<<24);d=I[1274]|I[1275]<<8|(I[1276]<<16|I[1277]<<24);F[b+8|0]=d;F[b+9|0]=d>>>8;F[b+10|0]=d>>>16;F[b+11|0]=d>>>24;F[b+12|0]=c;F[b+13|0]=c>>>8;F[b+14|0]=c>>>16;F[b+15|0]=c>>>24;c=I[1270]|I[1271]<<8|(I[1272]<<16|I[1273]<<24);d=I[1266]|I[1267]<<8|(I[1268]<<16|I[1269]<<24);F[b|0]=d;F[b+1|0]=d>>>8;F[b+2|0]=d>>>16;F[b+3|0]=d>>>24;F[b+4|0]=c;F[b+5|0]=c>>>8;F[b+6|0]=c>>>16;F[b+7|0]=c>>>24;H[a>>2]=-1;za(a+4|0,b,50);oa(b);break a}c=I[h+21|0];F[b+36|0]=c;e=I[h+22|0];F[b+37|0]=e;if((c-3&255)>>>0<=253){b=pa(32);F[b+22|0]=0;c=I[1427]|I[1428]<<8|(I[1429]<<16|I[1430]<<24);d=I[1423]|I[1424]<<8|(I[1425]<<16|I[1426]<<24);F[b+14|0]=d;F[b+15|0]=d>>>8;F[b+16|0]=d>>>16;F[b+17|0]=d>>>24;F[b+18|0]=c;F[b+19|0]=c>>>8;F[b+20|0]=c>>>16;F[b+21|0]=c>>>24;c=I[1421]|I[1422]<<8|(I[1423]<<16|I[1424]<<24);d=I[1417]|I[1418]<<8|(I[1419]<<16|I[1420]<<24);F[b+8|0]=d;F[b+9|0]=d>>>8;F[b+10|0]=d>>>16;F[b+11|0]=d>>>24;F[b+12|0]=c;F[b+13|0]=c>>>8;F[b+14|0]=c>>>16;F[b+15|0]=c>>>24;c=I[1413]|I[1414]<<8|(I[1415]<<16|I[1416]<<24);d=I[1409]|I[1410]<<8|(I[1411]<<16|I[1412]<<24);F[b|0]=d;F[b+1|0]=d>>>8;F[b+2|0]=d>>>16;F[b+3|0]=d>>>24;F[b+4|0]=c;F[b+5|0]=c>>>8;F[b+6|0]=c>>>16;F[b+7|0]=c>>>24;H[a>>2]=-5;za(a+4|0,b,22);oa(b);break a}if(!((c|0)!=2|e>>>0<=(d?2:3)>>>0)){b=pa(32);F[b+22|0]=0;c=I[1404]|I[1405]<<8|(I[1406]<<16|I[1407]<<24);d=I[1400]|I[1401]<<8|(I[1402]<<16|I[1403]<<24);F[b+14|0]=d;F[b+15|0]=d>>>8;F[b+16|0]=d>>>16;F[b+17|0]=d>>>24;F[b+18|0]=c;F[b+19|0]=c>>>8;F[b+20|0]=c>>>16;F[b+21|0]=c>>>24;c=I[1398]|I[1399]<<8|(I[1400]<<16|I[1401]<<24);d=I[1394]|I[1395]<<8|(I[1396]<<16|I[1397]<<24);F[b+8|0]=d;F[b+9|0]=d>>>8;F[b+10|0]=d>>>16;F[b+11|0]=d>>>24;F[b+12|0]=c;F[b+13|0]=c>>>8;F[b+14|0]=c>>>16;F[b+15|0]=c>>>24;c=I[1390]|I[1391]<<8|(I[1392]<<16|I[1393]<<24);d=I[1386]|I[1387]<<8|(I[1388]<<16|I[1389]<<24);F[b|0]=d;F[b+1|0]=d>>>8;F[b+2|0]=d>>>16;F[b+3|0]=d>>>24;F[b+4|0]=c;F[b+5|0]=c>>>8;F[b+6|0]=c>>>16;F[b+7|0]=c>>>24;H[a>>2]=-5;za(a+4|0,b,22);oa(b);break a}c=e|c<<8;G[H[b+32>>2]+38>>1]=c;b:{if((c&65535)>>>0<259|G[h+26>>1]>=0){break b}i=ca-16|0;ca=i;e=pa(36);c=e;H[c+4>>2]=0;H[c+8>>2]=0;H[c+24>>2]=0;H[c+28>>2]=0;c=c+16|0;H[c>>2]=0;H[c+4>>2]=0;H[e>>2]=e+4;H[e+32>>2]=0;H[e+12>>2]=c;H[i>>2]=0;d=H[b+32>>2];j=ca-16|0;ca=j;c=0;c:{if(!e){break c}H[i>>2]=d;H[j+12>>2]=0;c=0;if(!Bb(1,j+12|0,d)){break c}m=H[j+12>>2];if(m){while(1){d:{if(Bb(1,j+8|0,H[i>>2])){c=pa(28);H[c+4>>2]=0;H[c+8>>2]=0;d=c+16|0;H[d>>2]=0;H[d+4>>2]=0;H[c>>2]=c+4;H[c+12>>2]=d;H[c+24>>2]=H[j+8>>2];if(ce(i,c)){break d}Ra(c+12|0,H[c+16>>2]);Qa(c,H[c+4>>2]);oa(c)}c=0;break c}f=ca-16|0;ca=f;H[f+8>>2]=c;e:{if(!c){break e}d=H[e+28>>2];f:{if(d>>>0>2]){H[f+8>>2]=0;H[d>>2]=c;H[e+28>>2]=d+4;break f}d=0;g:{h:{i:{g=H[e+24>>2];l=H[e+28>>2]-g>>2;c=l+1|0;if(c>>>0<1073741824){g=H[e+32>>2]-g|0;k=g>>>1|0;g=g>>>0>=2147483644?1073741823:c>>>0>>0?k:c;if(g){if(g>>>0>=1073741824){break i}d=pa(g<<2)}k=H[f+8>>2];H[f+8>>2]=0;c=(l<<2)+d|0;H[c>>2]=k;g=(g<<2)+d|0;l=c+4|0;d=H[e+28>>2];k=H[e+24>>2];if((d|0)==(k|0)){break h}while(1){d=d-4|0;o=H[d>>2];H[d>>2]=0;c=c-4|0;H[c>>2]=o;if((d|0)!=(k|0)){continue}break}H[e+32>>2]=g;g=H[e+28>>2];H[e+28>>2]=l;d=H[e+24>>2];H[e+24>>2]=c;if((d|0)==(g|0)){break g}while(1){g=g-4|0;c=H[g>>2];H[g>>2]=0;if(c){Ra(c+12|0,H[c+16>>2]);Qa(c,H[c+4>>2]);oa(c)}if((d|0)!=(g|0)){continue}break}break g}sa();v()}wa();v()}H[e+32>>2]=g;H[e+28>>2]=l;H[e+24>>2]=c}if(d){oa(d)}}c=H[f+8>>2];H[f+8>>2]=0;if(!c){break e}Ra(c+12|0,H[c+16>>2]);Qa(c,H[c+4>>2]);oa(c)}ca=f+16|0;n=n+1|0;if((m|0)!=(n|0)){continue}break}}c=ce(i,e)}ca=j+16|0;j:{if(c){d=H[b+4>>2];c=H[d+4>>2];H[d+4>>2]=e;if(c){Uc(c)}H[a>>2]=0;H[a+4>>2]=0;H[a+8>>2]=0;H[a+12>>2]=0;break j}c=pa(32);F[c+26|0]=0;d=I[1579]|I[1580]<<8;F[c+24|0]=d;F[c+25|0]=d>>>8;d=I[1575]|I[1576]<<8|(I[1577]<<16|I[1578]<<24);f=I[1571]|I[1572]<<8|(I[1573]<<16|I[1574]<<24);F[c+16|0]=f;F[c+17|0]=f>>>8;F[c+18|0]=f>>>16;F[c+19|0]=f>>>24;F[c+20|0]=d;F[c+21|0]=d>>>8;F[c+22|0]=d>>>16;F[c+23|0]=d>>>24;d=I[1567]|I[1568]<<8|(I[1569]<<16|I[1570]<<24);f=I[1563]|I[1564]<<8|(I[1565]<<16|I[1566]<<24);F[c+8|0]=f;F[c+9|0]=f>>>8;F[c+10|0]=f>>>16;F[c+11|0]=f>>>24;F[c+12|0]=d;F[c+13|0]=d>>>8;F[c+14|0]=d>>>16;F[c+15|0]=d>>>24;d=I[1559]|I[1560]<<8|(I[1561]<<16|I[1562]<<24);f=I[1555]|I[1556]<<8|(I[1557]<<16|I[1558]<<24);F[c|0]=f;F[c+1|0]=f>>>8;F[c+2|0]=f>>>16;F[c+3|0]=f>>>24;F[c+4|0]=d;F[c+5|0]=d>>>8;F[c+6|0]=d>>>16;F[c+7|0]=d>>>24;H[a>>2]=-1;za(a+4|0,c,26);oa(c);H[i+8>>2]=0;Uc(e)}ca=i+16|0;if(H[a>>2]){break a}if(F[a+15|0]>=0){break b}oa(H[a+4>>2])}if(!(ea[H[H[b>>2]+12>>2]](b)|0)){b=pa(48);F[b+33|0]=0;F[b+32|0]=I[1384];c=I[1380]|I[1381]<<8|(I[1382]<<16|I[1383]<<24);d=I[1376]|I[1377]<<8|(I[1378]<<16|I[1379]<<24);F[b+24|0]=d;F[b+25|0]=d>>>8;F[b+26|0]=d>>>16;F[b+27|0]=d>>>24;F[b+28|0]=c;F[b+29|0]=c>>>8;F[b+30|0]=c>>>16;F[b+31|0]=c>>>24;c=I[1372]|I[1373]<<8|(I[1374]<<16|I[1375]<<24);d=I[1368]|I[1369]<<8|(I[1370]<<16|I[1371]<<24);F[b+16|0]=d;F[b+17|0]=d>>>8;F[b+18|0]=d>>>16;F[b+19|0]=d>>>24;F[b+20|0]=c;F[b+21|0]=c>>>8;F[b+22|0]=c>>>16;F[b+23|0]=c>>>24;c=I[1364]|I[1365]<<8|(I[1366]<<16|I[1367]<<24);d=I[1360]|I[1361]<<8|(I[1362]<<16|I[1363]<<24);F[b+8|0]=d;F[b+9|0]=d>>>8;F[b+10|0]=d>>>16;F[b+11|0]=d>>>24;F[b+12|0]=c;F[b+13|0]=c>>>8;F[b+14|0]=c>>>16;F[b+15|0]=c>>>24;c=I[1356]|I[1357]<<8|(I[1358]<<16|I[1359]<<24);d=I[1352]|I[1353]<<8|(I[1354]<<16|I[1355]<<24);F[b|0]=d;F[b+1|0]=d>>>8;F[b+2|0]=d>>>16;F[b+3|0]=d>>>24;F[b+4|0]=c;F[b+5|0]=c>>>8;F[b+6|0]=c>>>16;F[b+7|0]=c>>>24;H[a>>2]=-1;za(a+4|0,b,33);oa(b);break a}if(!(ea[H[H[b>>2]+20>>2]](b)|0)){b=mc(h,1582);H[a>>2]=-1;a=a+4|0;if(F[b+11|0]>=0){c=H[b+4>>2];H[a>>2]=H[b>>2];H[a+4>>2]=c;H[a+8>>2]=H[b+8>>2];break a}za(a,H[b>>2],H[b+4>>2]);if(F[b+11|0]>=0){break a}oa(H[b>>2]);break a}if(!(ea[H[H[b>>2]+24>>2]](b)|0)){b=mc(h,1317);H[a>>2]=-1;a=a+4|0;if(F[b+11|0]>=0){c=H[b+4>>2];H[a>>2]=H[b>>2];H[a+4>>2]=c;H[a+8>>2]=H[b+8>>2];break a}za(a,H[b>>2],H[b+4>>2]);if(F[b+11|0]>=0){break a}oa(H[b>>2]);break a}H[a>>2]=0;H[a+4>>2]=0;H[a+8>>2]=0;H[a+12>>2]=0}ca=h+32|0}function pg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0;m=ca-16|0;ca=m;H[m+12>>2]=b;b=pa(32);H[m>>2]=b;H[m+4>>2]=24;H[m+8>>2]=-2147483616;c=I[1206]|I[1207]<<8|(I[1208]<<16|I[1209]<<24);d=I[1202]|I[1203]<<8|(I[1204]<<16|I[1205]<<24);F[b+16|0]=d;F[b+17|0]=d>>>8;F[b+18|0]=d>>>16;F[b+19|0]=d>>>24;F[b+20|0]=c;F[b+21|0]=c>>>8;F[b+22|0]=c>>>16;F[b+23|0]=c>>>24;c=I[1198]|I[1199]<<8|(I[1200]<<16|I[1201]<<24);d=I[1194]|I[1195]<<8|(I[1196]<<16|I[1197]<<24);F[b+8|0]=d;F[b+9|0]=d>>>8;F[b+10|0]=d>>>16;F[b+11|0]=d>>>24;F[b+12|0]=c;F[b+13|0]=c>>>8;F[b+14|0]=c>>>16;F[b+15|0]=c>>>24;c=I[1190]|I[1191]<<8|(I[1192]<<16|I[1193]<<24);d=I[1186]|I[1187]<<8|(I[1188]<<16|I[1189]<<24);F[b|0]=d;F[b+1|0]=d>>>8;F[b+2|0]=d>>>16;F[b+3|0]=d>>>24;F[b+4|0]=c;F[b+5|0]=c>>>8;F[b+6|0]=c>>>16;F[b+7|0]=c>>>24;F[b+24|0]=0;l=ca-48|0;ca=l;f=H[m+12>>2];d=a;a=a+16|0;b=H[a>>2];a:{b:{if(!b){break b}c=a;while(1){e=(f|0)>H[b+16>>2];c=e?c:b;b=H[(e?b+4|0:b)>>2];if(b){continue}break}if((a|0)==(c|0)){break b}if((f|0)>=H[c+16>>2]){break a}}H[l+28>>2]=0;H[l+32>>2]=0;y=l+24|0;H[l+24>>2]=y|4;a=l+16|0;H[a>>2]=0;H[a+4>>2]=0;H[l+8>>2]=f;H[l+12>>2]=a;t=l+8|0;a=t;x=ca-16|0;ca=x;u=d+12|0;c=H[u+4>>2];c:{d:{if(!c){o=u+4|0;d=o;break d}a=H[a>>2];while(1){d=c;b=H[c+16>>2];if((b|0)>(a|0)){o=d;c=H[d>>2];if(c){continue}break d}if((a|0)<=(b|0)){g=d;a=0;break c}c=H[d+4>>2];if(c){continue}break}o=d+4|0}g=pa(32);b=H[t>>2];q=g+24|0;a=q;H[a>>2]=0;H[a+4>>2]=0;H[g+16>>2]=b;r=g+20|0;H[r>>2]=a;c=H[t+4>>2];z=t+8|0;if((c|0)!=(z|0)){while(1){p=ca-16|0;ca=p;a=p+8|0;k=c+16|0;e:{f:{g:{h:{i:{j:{k:{f=q;e=r+4|0;l:{if((f|0)==(e|0)){break l}b=I[f+27|0];h=b<<24>>24<0;i=I[k+11|0];n=i<<24>>24;j=(n|0)<0;i=j?H[k+4>>2]:i;b=h?H[f+20>>2]:b;s=i>>>0>b>>>0;w=s?b:i;if(w){j=j?H[k>>2]:k;h=h?H[f+16>>2]:f+16|0;A=Fa(j,h,w);if(!A){if(b>>>0>i>>>0){break l}break k}if((A|0)>=0){break k}break l}if(b>>>0<=i>>>0){break j}}h=H[f>>2];m:{a=f;n:{if((a|0)==H[r>>2]){break n}o:{if(!h){b=f;while(1){a=H[b+8>>2];i=H[a>>2]==(b|0);b=a;if(i){continue}break}break o}b=h;while(1){a=b;b=H[b+4>>2];if(b){continue}break}}i=I[k+11|0];s=i<<24>>24;b=(s|0)<0;j=I[a+27|0];n=j<<24>>24<0;p:{i=b?H[k+4>>2]:i;j=n?H[a+20>>2]:j;w=i>>>0>>0?i:j;if(w){b=Fa(n?H[a+16>>2]:a+16|0,b?H[k>>2]:k,w);if(b){break p}}if(i>>>0>j>>>0){break n}break m}if((b|0)>=0){break m}}if(!h){H[p+12>>2]=f;a=f;break e}H[p+12>>2]=a;a=a+4|0;break e}b=H[e>>2];if(!b){H[p+12>>2]=e;a=e;break e}h=(s|0)<0?H[k>>2]:k;f=e;while(1){a=b;b=I[b+27|0];e=b<<24>>24<0;b=e?H[a+20>>2]:b;k=b>>>0>>0;q:{r:{s:{t:{n=k?b:i;u:{if(n){e=e?H[a+16>>2]:a+16|0;j=Fa(h,e,n);if(!j){if(b>>>0>i>>>0){break u}break t}if((j|0)>=0){break t}break u}if(b>>>0<=i>>>0){break s}}f=a;b=H[a>>2];if(b){continue}break g}b=Fa(e,h,n);if(b){break r}}if(k){break q}break g}if((b|0)>=0){break g}}f=a+4|0;b=H[a+4>>2];if(b){continue}break}break g}b=Fa(h,j,w);if(b){break i}}if(s){break h}break f}if((b|0)>=0){break f}}h=H[f+4>>2];v:{if(!h){b=f;while(1){a=H[b+8>>2];j=H[a>>2]!=(b|0);b=a;if(j){continue}break}break v}b=h;while(1){a=b;b=H[b>>2];if(b){continue}break}}w:{x:{if((a|0)==(e|0)){break x}j=I[a+27|0];b=j<<24>>24<0;y:{j=b?H[a+20>>2]:j;s=i>>>0>j>>>0?j:i;if(s){b=Fa((n|0)<0?H[k>>2]:k,b?H[a+16>>2]:a+16|0,s);if(b){break y}}if(i>>>0>>0){break x}break w}if((b|0)>=0){break w}}if(!h){H[p+12>>2]=f;a=f+4|0;break e}H[p+12>>2]=a;break e}b=H[e>>2];if(!b){H[p+12>>2]=e;a=e;break e}h=(n|0)<0?H[k>>2]:k;f=e;while(1){a=b;b=I[b+27|0];e=b<<24>>24<0;b=e?H[a+20>>2]:b;k=b>>>0>>0;z:{A:{B:{C:{n=k?b:i;D:{if(n){e=e?H[a+16>>2]:a+16|0;j=Fa(h,e,n);if(!j){if(b>>>0>i>>>0){break D}break C}if((j|0)>=0){break C}break D}if(b>>>0<=i>>>0){break B}}f=a;b=H[a>>2];if(b){continue}break g}b=Fa(e,h,n);if(b){break A}}if(k){break z}break g}if((b|0)>=0){break g}}f=a+4|0;b=H[a+4>>2];if(b){continue}break}}H[p+12>>2]=a;a=f;break e}H[p+12>>2]=f;H[a>>2]=f}f=a;a=H[a>>2];if(a){b=0}else{a=pa(40);b=a+16|0;E:{if(F[c+27|0]>=0){e=H[c+20>>2];H[b>>2]=H[c+16>>2];H[b+4>>2]=e;H[b+8>>2]=H[c+24>>2];break E}za(b,H[c+16>>2],H[c+20>>2])}b=a+28|0;F:{if(F[c+39|0]>=0){e=H[c+32>>2];H[b>>2]=H[c+28>>2];H[b+4>>2]=e;H[b+8>>2]=H[c+36>>2];break F}za(b,H[c+28>>2],H[c+32>>2])}H[a+8>>2]=H[p+12>>2];H[a>>2]=0;H[a+4>>2]=0;H[f>>2]=a;b=a;e=H[H[r>>2]>>2];if(e){H[r>>2]=e;b=H[f>>2]}Sb(H[r+4>>2],b);H[r+8>>2]=H[r+8>>2]+1;b=1}F[x+12|0]=b;H[x+8>>2]=a;ca=p+16|0;b=H[c+4>>2];G:{if(b){while(1){c=b;b=H[b>>2];if(b){continue}break G}}while(1){a=c;c=H[c+8>>2];if((a|0)!=H[c>>2]){continue}break}}if((c|0)!=(z|0)){continue}break}}H[g+8>>2]=d;H[g>>2]=0;H[g+4>>2]=0;H[o>>2]=g;c=g;a=H[H[u>>2]>>2];if(a){H[u>>2]=a;c=H[o>>2]}Sb(H[u+4>>2],c);H[u+8>>2]=H[u+8>>2]+1;a=1}F[l+44|0]=a;H[l+40>>2]=g;ca=x+16|0;c=H[l+40>>2];Kb(t|4,H[l+16>>2]);Kb(y,H[l+28>>2])}f=ca-48|0;ca=f;d=f+8|0;g=ca-32|0;ca=g;o=g+32|0;b=o;a=g+21|0;H:{if((b|0)==(a|0)){break H}}e=b-a|0;I:{if((e|0)<=9){h=61;if((e|0)<(K[3660]<=1|0)){break I}}F[a|0]=49;b=a+1|0;h=0}H[g+12>>2]=h;H[g+8>>2]=b;h=ca-16|0;ca=h;e=ca-16|0;ca=e;J:{q=H[g+8>>2];g=q-a|0;if(g>>>0<=2147483631){K:{if(g>>>0<11){F[d+11|0]=g|I[d+11|0]&128;F[d+11|0]=I[d+11|0]&127;b=d;break K}t=e+8|0;if(g>>>0>=11){k=g+16&-16;b=k-1|0;b=(b|0)==11?k:b}else{b=10}Zb(t,b+1|0);b=H[e+8>>2];H[d>>2]=b;H[d+8>>2]=H[d+8>>2]&-2147483648|H[e+12>>2]&2147483647;H[d+8>>2]=H[d+8>>2]|-2147483648;H[d+4>>2]=g}while(1){if((a|0)!=(q|0)){F[b|0]=I[a|0];b=b+1|0;a=a+1|0;continue}break}F[e+7|0]=0;F[b|0]=I[e+7|0];ca=e+16|0;break J}Na();v()}ca=h+16|0;ca=o;H[f+32>>2]=m;L:{M:{a=c+20|0;d=H[a+4>>2];N:{if(!d){g=a+4|0;c=g;break N}b=I[m+11|0];c=b<<24>>24<0;e=c?H[m>>2]:m;b=c?H[m+4>>2]:b;while(1){c=d;d=I[c+27|0];g=d<<24>>24<0;d=g?H[c+20>>2]:d;o=d>>>0>>0;O:{P:{Q:{R:{h=o?d:b;S:{if(h){g=g?H[c+16>>2]:c+16|0;q=Fa(e,g,h);if(!q){if(b>>>0>>0){break S}break R}if((q|0)>=0){break R}break S}if(b>>>0>=d>>>0){break Q}}g=c;d=H[c>>2];if(d){continue}break N}d=Fa(g,e,h);if(d){break P}}if(o){break O}break M}if((d|0)>=0){break M}}d=H[c+4>>2];if(d){continue}break}g=c+4|0}d=pa(40);e=d+16|0;b=H[f+32>>2];T:{if(F[b+11|0]>=0){o=H[b+4>>2];H[e>>2]=H[b>>2];H[e+4>>2]=o;H[e+8>>2]=H[b+8>>2];break T}za(e,H[b>>2],H[b+4>>2])}H[d+8>>2]=c;H[d>>2]=0;H[d+4>>2]=0;H[d+36>>2]=0;H[d+28>>2]=0;H[d+32>>2]=0;H[g>>2]=d;c=d;b=H[H[a>>2]>>2];if(b){H[a>>2]=b;c=H[g>>2]}Sb(H[a+4>>2],c);H[a+8>>2]=H[a+8>>2]+1;a=1;break L}d=c;a=0}F[f+44|0]=a;H[f+40>>2]=d;a=H[f+40>>2];if(F[a+39|0]<0){oa(H[a+28>>2])}b=H[f+12>>2];H[a+28>>2]=H[f+8>>2];H[a+32>>2]=b;H[a+36>>2]=H[f+16>>2];ca=f+48|0;ca=l+48|0;if(F[m+11|0]<0){oa(H[m>>2])}ca=m+16|0}function Bd(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0;j=H[b+8>>2];e=H[b+12>>2];g=H[b+20>>2];h=H[b+16>>2];k=h+4|0;g=k>>>0<4?g+1|0:g;a:{if(j>>>0>>0&(e|0)<=(g|0)|(e|0)<(g|0)){break a}h=h+H[b>>2]|0;H[a>>2]=I[h|0]|I[h+1|0]<<8|(I[h+2|0]<<16|I[h+3|0]<<24);h=H[b+20>>2];e=h;j=H[b+16>>2];g=j+4|0;h=g>>>0<4?e+1|0:e;H[b+16>>2]=g;H[b+20>>2]=h;if(K[a>>2]>32){break a}l=H[b+8>>2];k=H[b+12>>2];h=e;e=j+8|0;h=e>>>0<8?h+1|0:h;if(e>>>0>l>>>0&(h|0)>=(k|0)|(h|0)>(k|0)){break a}h=H[b>>2]+g|0;g=I[h|0]|I[h+1|0]<<8|(I[h+2|0]<<16|I[h+3|0]<<24);H[a+4>>2]=g;h=H[b+20>>2];e=H[b+16>>2]+4|0;h=e>>>0<4?h+1|0:h;H[b+16>>2]=e;H[b+20>>2]=h;if(!g){return 1}if(d>>>0>>0){break a}H[a+8>>2]=0;if(!ua(a+16|0,b)){break a}if(!ua(a+36|0,b)){break a}if(!ua(a+56|0,b)){break a}if(!ua(a+76|0,b)){break a}s=H[a+4>>2];h=c;b=0;g=0;e=ca-32|0;ca=e;d=a;a=H[a+12>>2];H[e+16>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;b:{c:{if(a){if(a>>>0>=1073741824){break c}c=a<<2;b=pa(c);H[e+8>>2]=b;g=b+c|0;H[e+16>>2]=g;ra(b,0,c);H[e+12>>2]=g}c=H[d+120>>2];i=H[c>>2];if(i){H[c+4>>2]=i;oa(i);g=H[e+12>>2];b=H[e+8>>2];a=H[d+12>>2]}H[c+4>>2]=g;H[c>>2]=b;H[c+8>>2]=H[e+16>>2];b=0;H[e+16>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;d:{if(a){if(a>>>0>=1073741824){break d}a=a<<2;f=pa(a);H[e+8>>2]=f;b=a+f|0;H[e+16>>2]=b;ra(f,0,a);H[e+12>>2]=b}a=H[d+132>>2];c=H[a>>2];if(c){H[a+4>>2]=c;oa(c);f=H[e+8>>2];b=H[e+12>>2]}H[a+4>>2]=b;H[a>>2]=f;H[a+8>>2]=H[e+16>>2];H[e+24>>2]=0;H[e+28>>2]=0;H[e+16>>2]=0;H[e+20>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;xa(e+8|0);a=H[e+24>>2]+H[e+28>>2]|0;b=(a>>>0)/341|0;a=H[H[e+12>>2]+(b<<2)>>2]+N(a-N(b,341)|0,12)|0;H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=s;c=1;a=H[e+28>>2]+1|0;H[e+28>>2]=a;e:{if(!a){break e}while(1){b=H[e+12>>2];f=H[e+24>>2];k=a-1|0;c=f+k|0;i=(c>>>0)/341|0;c=H[b+(i<<2)>>2]+N(c-N(i,341)|0,12)|0;g=H[c+8>>2];i=H[c+4>>2];j=H[c>>2];H[e+28>>2]=k;c=H[e+16>>2];if((((b|0)!=(c|0)?N(c-b>>2,341)-1|0:0)-(a+f|0)|0)+1>>>0>=682){oa(H[c-4>>2]);H[e+16>>2]=H[e+16>>2]-4}c=0;if(j>>>0>s>>>0){break e}b=H[d+12>>2];a=(b-1|0)!=(i|0)?i+1|0:0;if(a>>>0>=b>>>0){break e}f=N(g,12);o=f+H[d+132>>2]|0;k=f+H[d+120>>2]|0;i=H[d>>2];l=a<<2;m=H[l+H[o>>2]>>2];f:{g:{if((i|0)==(m|0)){if(!j){break g}o=0;b=H[h+20>>2];g=H[h+16>>2];if((b|0)==(g|0)){a=H[d+8>>2];H[h+28>>2]=j+H[h+28>>2];H[d+8>>2]=a+j;break g}while(1){c=(b|0)==(g|0);a=b;i=0;b=g;h:{if(c){break h}while(1){f=H[h+28>>2];b=a;c=N(i,20)+g|0;l=H[c>>2];if(!I[l+84|0]){f=H[H[l+68>>2]+(f<<2)>>2]}if(K[l+80>>2]<=f>>>0){break h}m=H[k>>2]+(H[c+4>>2]<<2)|0;g=H[c+12>>2];b=m;i:{if(g>>>0>3){break i}a=0;b=H[h+12>>2];if(!H[c+16>>2]){break i}while(1){b=qa(b,m+(a<<2)|0,g);g=H[c+12>>2];b=b+g|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[h+12>>2]}a=H[l+40>>2];qa(H[H[l>>2]>>2]+N(a,f)|0,b,a);i=i+1|0;a=H[h+20>>2];b=a;g=H[h+16>>2];if(i>>>0<(b-g|0)/20>>>0){continue}break}}H[h+28>>2]=H[h+28>>2]+1;H[d+8>>2]=H[d+8>>2]+1;o=o+1|0;if((j|0)!=(o|0)){continue}break}break g}j:{k:{l:{m:{if(j>>>0<=2){c=H[d+108>>2];H[c>>2]=a;f=1;b=H[d+12>>2];if(b>>>0>1){break m}break j}if(K[d+8>>2]>K[d+4>>2]){break e}b=H[d+120>>2];n=g+1|0;o=N(n,12);p=b+o|0;if((p|0)!=(k|0)){Aa(p,H[k>>2],H[k+4>>2]);b=H[d+120>>2]}b=l+H[b+o>>2]|0;H[b>>2]=H[b>>2]+(1<>2];m=32-i|0;n:{if((b|0)<=(m|0)){k=H[d+28>>2];if((k|0)==H[d+20>>2]){break l}m=H[k>>2];p=b+i|0;H[d+32>>2]=p;b=m<>>32-b|0;if((p|0)!=32){break n}H[d+32>>2]=0;H[d+28>>2]=k+4;break n}k=H[d+28>>2];p=k+4|0;if((p|0)==H[d+20>>2]){break l}r=H[k>>2];H[d+28>>2]=p;m=b-m|0;H[d+32>>2]=m;b=H[k+4>>2]>>>32-m|r<>>32-b}i=j>>>1|0;if(i>>>0>>0){break e}break k}while(1){a=(b-1|0)!=(a|0)?a+1|0:0;H[c+(f<<2)>>2]=a;b=H[d+12>>2];f=f+1|0;if(b>>>0>f>>>0){continue}break}break j}i=j>>>1|0;b=0}o:{p:{b=i-b|0;c=j-b|0;q:{if((c|0)==(b|0)){c=b;break q}i=H[d+88>>2];if((i|0)==H[d+80>>2]){break p}j=H[i>>2];k=H[d+92>>2];m=k+1|0;H[d+92>>2]=m;j=j&-2147483648>>>k;r:{if((m|0)==32){H[d+92>>2]=0;H[d+88>>2]=i+4;if(j){break r}break p}if(!j){break p}}}i=c;c=b;break o}i=b}b=H[d+132>>2];j=b+f|0;f=H[j>>2];k=f+l|0;H[k>>2]=H[k>>2]+1;Aa(b+o|0,f,H[j+4>>2]);if(c){b=H[e+28>>2]+H[e+24>>2]|0;j=H[e+16>>2];f=H[e+12>>2];if((b|0)==(((f|0)!=(j|0)?N(j-f>>2,341)-1|0:0)|0)){xa(e+8|0);f=H[e+12>>2];b=H[e+24>>2]+H[e+28>>2]|0}j=(b>>>0)/341|0;b=H[(j<<2)+f>>2]+N(b-N(j,341)|0,12)|0;H[b+8>>2]=g;H[b+4>>2]=a;H[b>>2]=c;H[e+28>>2]=H[e+28>>2]+1}if(!i){break g}b=H[e+28>>2]+H[e+24>>2]|0;c=H[e+16>>2];f=H[e+12>>2];if((b|0)==(((c|0)!=(f|0)?N(c-f>>2,341)-1|0:0)|0)){xa(e+8|0);f=H[e+12>>2];b=H[e+24>>2]+H[e+28>>2]|0}c=(b>>>0)/341|0;b=H[(c<<2)+f>>2]+N(b-N(c,341)|0,12)|0;H[b+8>>2]=n;H[b+4>>2]=a;H[b>>2]=i;a=H[e+28>>2]+1|0;H[e+28>>2]=a;break f}m=0;if(!j){break g}while(1){if(H[d+12>>2]){i=H[d+40>>2];p=H[o>>2];c=H[d+96>>2];r=H[d+108>>2];a=0;while(1){g=r+(a<<2)|0;H[c+(H[g>>2]<<2)>>2]=0;b=H[d>>2];f=H[g>>2]<<2;l=H[f+p>>2];s:{if((b|0)==(l|0)){break s}f=c+f|0;b=b-l|0;l=H[d+52>>2];q=32-l|0;if((b|0)<=(q|0)){n=H[d+48>>2];if((n|0)==(i|0)){c=0;break e}H[f>>2]=H[n>>2]<>>32-b;b=b+H[d+52>>2]|0;H[d+52>>2]=b;if((b|0)!=32){break s}H[d+52>>2]=0;H[d+48>>2]=n+4;break s}n=H[d+48>>2];t=n+4|0;if((i|0)==(t|0)){c=0;break e}u=H[n>>2];H[d+48>>2]=t;q=b-q|0;H[d+52>>2]=q;H[f>>2]=H[n+4>>2]>>>32-q|u<>>32-b}b=H[g>>2]<<2;g=b+c|0;H[g>>2]=H[g>>2]|H[b+H[k>>2]>>2];a=a+1|0;if(a>>>0>2]){continue}break}}i=0;a=H[h+16>>2];t:{if((a|0)==H[h+20>>2]){break t}while(1){f=H[h+28>>2];c=N(i,20)+a|0;l=H[c>>2];if(!I[l+84|0]){f=H[H[l+68>>2]+(f<<2)>>2]}if(K[l+80>>2]<=f>>>0){break t}n=H[d+96>>2]+(H[c+4>>2]<<2)|0;g=H[c+12>>2];b=n;u:{if(g>>>0>3){break u}a=0;b=H[h+12>>2];if(!H[c+16>>2]){break u}while(1){b=qa(b,n+(a<<2)|0,g);g=H[c+12>>2];b=b+g|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[h+12>>2]}a=H[l+40>>2];qa(H[H[l>>2]>>2]+N(a,f)|0,b,a);i=i+1|0;a=H[h+16>>2];if(i>>>0<(H[h+20>>2]-a|0)/20>>>0){continue}break}}H[h+28>>2]=H[h+28>>2]+1;H[d+8>>2]=H[d+8>>2]+1;m=m+1|0;if((j|0)!=(m|0)){continue}break}}a=H[e+28>>2]}if(a){continue}break}c=1}H[e+28>>2]=0;f=H[e+16>>2];a=H[e+12>>2];b=f-a|0;if(b>>>0>=9){while(1){oa(H[a>>2]);a=H[e+12>>2]+4|0;H[e+12>>2]=a;f=H[e+16>>2];b=f-a|0;if(b>>>0>8){continue}break}}g=170;v:{switch((b>>>2|0)-1|0){case 1:g=341;case 0:H[e+24>>2]=g;break;default:break v}}w:{if((a|0)==(f|0)){break w}while(1){oa(H[a>>2]);a=a+4|0;if((f|0)!=(a|0)){continue}break}a=H[e+16>>2];b=H[e+12>>2];if((a|0)==(b|0)){break w}H[e+16>>2]=a+((b-a|0)+3&-4)}a=H[e+8>>2];if(a){oa(a)}ca=e+32|0;break b}sa();v()}sa();v()}i=c}return i}function zd(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0;j=H[b+8>>2];l=H[b+12>>2];k=H[b+20>>2];i=H[b+16>>2];f=i+4|0;k=f>>>0<4?k+1|0:k;a:{if(f>>>0>j>>>0&(k|0)>=(l|0)|(k|0)>(l|0)){break a}i=i+H[b>>2]|0;H[a>>2]=I[i|0]|I[i+1|0]<<8|(I[i+2|0]<<16|I[i+3|0]<<24);i=H[b+20>>2];j=i;f=H[b+16>>2];i=f+4|0;l=i>>>0<4?j+1|0:j;H[b+16>>2]=i;H[b+20>>2]=l;if(K[a>>2]>32){break a}l=H[b+8>>2];k=H[b+12>>2];f=f+8|0;j=f>>>0<8?j+1|0:j;if((k|0)<=(j|0)&f>>>0>l>>>0|(k|0)<(j|0)){break a}i=H[b>>2]+i|0;f=I[i|0]|I[i+1|0]<<8|(I[i+2|0]<<16|I[i+3|0]<<24);H[a+4>>2]=f;j=H[b+20>>2];i=H[b+16>>2]+4|0;j=i>>>0<4?j+1|0:j;H[b+16>>2]=i;H[b+20>>2]=j;if(!f){return 1}if(d>>>0>>0){break a}H[a+8>>2]=0;if(!ua(a+16|0,b)){break a}if(!ua(a+36|0,b)){break a}if(!ua(a+56|0,b)){break a}if(!ua(a+76|0,b)){break a}t=H[a+4>>2];i=c;b=0;c=0;e=ca-32|0;ca=e;f=a;a=H[a+12>>2];H[e+16>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;b:{c:{if(a){if(a>>>0>=1073741824){break c}d=a<<2;b=pa(d);H[e+8>>2]=b;c=b+d|0;H[e+16>>2]=c;ra(b,0,d);H[e+12>>2]=c}g=H[f+120>>2];d=H[g>>2];if(d){H[g+4>>2]=d;oa(d);c=H[e+12>>2];b=H[e+8>>2];a=H[f+12>>2]}H[g+4>>2]=c;H[g>>2]=b;H[g+8>>2]=H[e+16>>2];b=0;H[e+16>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;d:{if(a){if(a>>>0>=1073741824){break d}a=a<<2;h=pa(a);H[e+8>>2]=h;b=a+h|0;H[e+16>>2]=b;ra(h,0,a);H[e+12>>2]=b}c=H[f+132>>2];a=H[c>>2];if(a){H[c+4>>2]=a;oa(a);h=H[e+8>>2];b=H[e+12>>2]}H[c+4>>2]=b;H[c>>2]=h;H[c+8>>2]=H[e+16>>2];H[e+24>>2]=0;H[e+28>>2]=0;H[e+16>>2]=0;H[e+20>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;xa(e+8|0);b=H[e+24>>2]+H[e+28>>2]|0;a=(b>>>0)/341|0;a=H[H[e+12>>2]+(a<<2)>>2]+N(b-N(a,341)|0,12)|0;H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=t;d=1;a=H[e+28>>2]+1|0;H[e+28>>2]=a;e:{if(!a){break e}while(1){j=H[e+12>>2];g=H[e+24>>2];d=a-1|0;c=g+d|0;b=(c>>>0)/341|0;b=H[j+(b<<2)>>2]+N(c-N(b,341)|0,12)|0;n=H[b+8>>2];c=H[b+4>>2];m=H[b>>2];H[e+28>>2]=d;b=H[e+16>>2];if((((b|0)!=(j|0)?N(b-j>>2,341)-1|0:0)-(a+g|0)|0)+1>>>0>=682){oa(H[b-4>>2]);H[e+16>>2]=H[e+16>>2]-4}if(m>>>0>t>>>0){d=0;break e}d=0;b=H[f+12>>2];a=(c|0)!=(b-1|0)?c+1|0:0;if(a>>>0>=b>>>0){break e}b=H[f+120>>2];o=N(n,12);q=b+o|0;g=H[f>>2];h=a<<2;l=o+H[f+132>>2]|0;c=H[h+H[l>>2]>>2];f:{g:{if((g|0)==(c|0)){if(!m){break g}h=0;b=H[i+20>>2];c=H[i+16>>2];if((b|0)==(c|0)){a=H[f+8>>2];H[i+28>>2]=m+H[i+28>>2];H[f+8>>2]=a+m;break g}while(1){d=(b|0)==(c|0);a=b;g=0;b=c;h:{if(d){break h}while(1){d=H[i+28>>2];b=a;k=N(g,20)+c|0;l=H[k>>2];if(!I[l+84|0]){d=H[H[l+68>>2]+(d<<2)>>2]}if(K[l+80>>2]<=d>>>0){break h}j=H[q>>2]+(H[k+4>>2]<<2)|0;c=H[k+12>>2];b=j;i:{if(c>>>0>3){break i}a=0;b=H[i+12>>2];if(!H[k+16>>2]){break i}while(1){b=qa(b,j+(a<<2)|0,c);c=H[k+12>>2];b=b+c|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[i+12>>2]}a=H[l+40>>2];qa(H[H[l>>2]>>2]+N(a,d)|0,b,a);g=g+1|0;a=H[i+20>>2];b=a;c=H[i+16>>2];if(g>>>0<(b-c|0)/20>>>0){continue}break}}H[i+28>>2]=H[i+28>>2]+1;H[f+8>>2]=H[f+8>>2]+1;h=h+1|0;if((m|0)!=(h|0)){continue}break}break g}j:{k:{l:{m:{if(m>>>0<=2){c=H[f+108>>2];H[c>>2]=a;h=1;b=H[f+12>>2];if(b>>>0>1){break m}break j}if(K[f+8>>2]>K[f+4>>2]){break e}j=b;b=o+12|0;Aa(j+b|0,H[q>>2],H[q+4>>2]);b=h+H[b+H[f+120>>2]>>2]|0;H[b>>2]=H[b>>2]+(1<>2];g=32-l|0;n:{if((k|0)<=(g|0)){g=H[f+28>>2];if((g|0)==H[f+20>>2]){break l}c=H[g>>2];b=k+l|0;H[f+32>>2]=b;c=c<>>32-k|0;if((b|0)!=32){break n}H[f+32>>2]=0;H[f+28>>2]=g+4;break n}j=H[f+28>>2];b=j+4|0;if((b|0)==H[f+20>>2]){break l}c=H[j>>2];H[f+28>>2]=b;b=k-g|0;H[f+32>>2]=b;c=H[j+4>>2]>>>32-b|c<>>32-k}g=m>>>1|0;if(g>>>0>>0){break e}break k}while(1){a=(b-1|0)!=(a|0)?a+1|0:0;H[c+(h<<2)>>2]=a;b=H[f+12>>2];h=h+1|0;if(b>>>0>h>>>0){continue}break}break j}g=m>>>1|0;c=0}k=n+1|0;o:{p:{b=g-c|0;c=m-b|0;q:{if((c|0)==(b|0)){c=b;break q}l=H[f+88>>2];if((l|0)==H[f+80>>2]){break p}j=H[l>>2];g=H[f+92>>2];d=g+1|0;H[f+92>>2]=d;g=j&-2147483648>>>g;r:{if((d|0)==32){H[f+92>>2]=0;H[f+88>>2]=l+4;if(g){break r}break p}if(!g){break p}}}g=c;c=b;break o}g=b}l=H[f+132>>2];j=l+o|0;d=H[j>>2];b=d+h|0;H[b>>2]=H[b>>2]+1;Aa(l+N(k,12)|0,d,H[j+4>>2]);if(c){b=H[e+28>>2]+H[e+24>>2]|0;d=H[e+16>>2];h=H[e+12>>2];if((b|0)==(((d|0)!=(h|0)?N(d-h>>2,341)-1|0:0)|0)){xa(e+8|0);h=H[e+12>>2];b=H[e+24>>2]+H[e+28>>2]|0}d=(b>>>0)/341|0;b=H[(d<<2)+h>>2]+N(b-N(d,341)|0,12)|0;H[b+8>>2]=n;H[b+4>>2]=a;H[b>>2]=c;H[e+28>>2]=H[e+28>>2]+1}if(!g){break g}b=H[e+28>>2]+H[e+24>>2]|0;c=H[e+16>>2];h=H[e+12>>2];if((b|0)==(((c|0)!=(h|0)?N(c-h>>2,341)-1|0:0)|0)){xa(e+8|0);h=H[e+12>>2];b=H[e+24>>2]+H[e+28>>2]|0}c=(b>>>0)/341|0;b=H[(c<<2)+h>>2]+N(b-N(c,341)|0,12)|0;H[b+8>>2]=k;H[b+4>>2]=a;H[b>>2]=g;a=H[e+28>>2]+1|0;H[e+28>>2]=a;break f}r=0;if(!m){break g}while(1){if(H[f+12>>2]){u=H[f+40>>2];j=H[l>>2];s=H[f+96>>2];g=H[f+108>>2];a=0;while(1){n=(a<<2)+g|0;H[s+(H[n>>2]<<2)>>2]=0;d=H[f>>2];c=H[n>>2]<<2;b=H[c+j>>2];s:{if((d|0)==(b|0)){break s}o=c+s|0;p=d-b|0;h=H[f+52>>2];d=32-h|0;if((p|0)<=(d|0)){c=H[f+48>>2];if((c|0)==(u|0)){d=0;break e}H[o>>2]=H[c>>2]<>>32-p;b=p+H[f+52>>2]|0;H[f+52>>2]=b;if((b|0)!=32){break s}H[f+52>>2]=0;H[f+48>>2]=c+4;break s}k=H[f+48>>2];b=k+4|0;if((u|0)==(b|0)){d=0;break e}c=H[k>>2];H[f+48>>2]=b;b=p-d|0;H[f+52>>2]=b;H[o>>2]=H[k+4>>2]>>>32-b|c<>>32-p}c=H[n>>2]<<2;b=c+s|0;H[b>>2]=H[b>>2]|H[c+H[q>>2]>>2];a=a+1|0;if(a>>>0>2]){continue}break}}g=0;a=H[i+16>>2];t:{if((a|0)==H[i+20>>2]){break t}while(1){d=H[i+28>>2];h=N(g,20)+a|0;k=H[h>>2];if(!I[k+84|0]){d=H[H[k+68>>2]+(d<<2)>>2]}if(K[k+80>>2]<=d>>>0){break t}j=H[f+96>>2]+(H[h+4>>2]<<2)|0;c=H[h+12>>2];b=j;u:{if(c>>>0>3){break u}a=0;b=H[i+12>>2];if(!H[h+16>>2]){break u}while(1){b=qa(b,j+(a<<2)|0,c);c=H[h+12>>2];b=b+c|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[i+12>>2]}a=H[k+40>>2];qa(H[H[k>>2]>>2]+N(a,d)|0,b,a);g=g+1|0;a=H[i+16>>2];if(g>>>0<(H[i+20>>2]-a|0)/20>>>0){continue}break}}H[i+28>>2]=H[i+28>>2]+1;H[f+8>>2]=H[f+8>>2]+1;r=r+1|0;if((m|0)!=(r|0)){continue}break}}a=H[e+28>>2]}if(a){continue}break}d=1}H[e+28>>2]=0;h=H[e+16>>2];a=H[e+12>>2];b=h-a|0;if(b>>>0>=9){while(1){oa(H[a>>2]);a=H[e+12>>2]+4|0;H[e+12>>2]=a;h=H[e+16>>2];b=h-a|0;if(b>>>0>8){continue}break}}c=170;v:{switch((b>>>2|0)-1|0){case 1:c=341;case 0:H[e+24>>2]=c;break;default:break v}}w:{if((a|0)==(h|0)){break w}while(1){oa(H[a>>2]);a=a+4|0;if((h|0)!=(a|0)){continue}break}b=H[e+16>>2];a=H[e+12>>2];if((b|0)==(a|0)){break w}H[e+16>>2]=b+((a-b|0)+3&-4)}a=H[e+8>>2];if(a){oa(a)}ca=e+32|0;g=d;break b}sa();v()}sa();v()}}return g}function wd(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0;i=H[b+8>>2];j=H[b+12>>2];n=H[b+20>>2];e=H[b+16>>2];h=e+4|0;n=h>>>0<4?n+1|0:n;a:{if(i>>>0>>0&(j|0)<=(n|0)|(j|0)<(n|0)){break a}e=e+H[b>>2]|0;H[a>>2]=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);e=H[b+20>>2];i=e;h=H[b+16>>2];e=h+4|0;j=e>>>0<4?i+1|0:i;H[b+16>>2]=e;H[b+20>>2]=j;if(K[a>>2]>32){break a}j=H[b+8>>2];n=H[b+12>>2];h=h+8|0;i=h>>>0<8?i+1|0:i;if(h>>>0>j>>>0&(i|0)>=(n|0)|(i|0)>(n|0)){break a}e=H[b>>2]+e|0;h=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);H[a+4>>2]=h;i=H[b+20>>2];e=H[b+16>>2]+4|0;i=e>>>0<4?i+1|0:i;H[b+16>>2]=e;H[b+20>>2]=i;if(!h){return 1}if(d>>>0>>0){break a}H[a+8>>2]=0;if(!sb(a+16|0,b)){break a}if(!ua(a+544|0,b)){break a}if(!ua(a+564|0,b)){break a}if(!ua(a+584|0,b)){break a}u=H[a+4>>2];d=c;b=0;c=0;f=ca-32|0;ca=f;g=a;a=H[a+12>>2];H[f+16>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;b:{c:{if(a){if(a>>>0>=1073741824){break c}e=a<<2;b=pa(e);H[f+8>>2]=b;c=b+e|0;H[f+16>>2]=c;ra(b,0,e);H[f+12>>2]=c}h=H[g+628>>2];e=H[h>>2];if(e){H[h+4>>2]=e;oa(e);c=H[f+12>>2];b=H[f+8>>2];a=H[g+12>>2]}H[h+4>>2]=c;H[h>>2]=b;H[h+8>>2]=H[f+16>>2];b=0;H[f+16>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;d:{if(a){if(a>>>0>=1073741824){break d}a=a<<2;k=pa(a);H[f+8>>2]=k;b=a+k|0;H[f+16>>2]=b;ra(k,0,a);H[f+12>>2]=b}c=H[g+640>>2];a=H[c>>2];if(a){H[c+4>>2]=a;oa(a);k=H[f+8>>2];b=H[f+12>>2]}H[c+4>>2]=b;H[c>>2]=k;H[c+8>>2]=H[f+16>>2];H[f+24>>2]=0;H[f+28>>2]=0;H[f+16>>2]=0;H[f+20>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;xa(f+8|0);b=H[f+24>>2]+H[f+28>>2]|0;a=(b>>>0)/341|0;a=H[H[f+12>>2]+(a<<2)>>2]+N(b-N(a,341)|0,12)|0;H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=u;c=1;a=H[f+28>>2]+1|0;H[f+28>>2]=a;e:{if(!a){break e}n=g+16|0;while(1){j=H[f+12>>2];h=H[f+24>>2];e=a-1|0;c=h+e|0;b=(c>>>0)/341|0;b=H[j+(b<<2)>>2]+N(c-N(b,341)|0,12)|0;q=H[b+8>>2];i=H[b+4>>2];o=H[b>>2];H[f+28>>2]=e;b=H[f+16>>2];if((((b|0)!=(j|0)?N(b-j>>2,341)-1|0:0)-(a+h|0)|0)+1>>>0>=682){oa(H[b-4>>2]);H[f+16>>2]=H[f+16>>2]-4}c=0;if(o>>>0>u>>>0){break e}a=H[g+12>>2];k=(i|0)!=(a-1|0)?i+1|0:0;if(k>>>0>=a>>>0){break e}p=N(q,12);w=p+H[g+640>>2]|0;r=p+H[g+628>>2]|0;h=H[g>>2];l=k<<2;e=H[l+H[w>>2]>>2];f:{g:{if((h|0)==(e|0)){if(!o){break g}c=H[d+16>>2];b=H[d+20>>2];m=0;while(1){e=(b|0)==(c|0);a=b;j=0;b=c;h:{if(e){break h}while(1){l=H[d+28>>2];b=a;i=N(j,20)+c|0;h=H[i>>2];if(!I[h+84|0]){l=H[H[h+68>>2]+(l<<2)>>2]}if(K[h+80>>2]<=l>>>0){break h}e=H[r>>2]+(H[i+4>>2]<<2)|0;c=H[i+12>>2];b=e;i:{if(c>>>0>3){break i}a=0;b=H[d+12>>2];if(!H[i+16>>2]){break i}while(1){b=qa(b,e+(a<<2)|0,c);c=H[i+12>>2];b=b+c|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[d+12>>2]}a=H[h+40>>2];qa(H[H[h>>2]>>2]+N(a,l)|0,b,a);a=H[d+20>>2];b=a;j=j+1|0;c=H[d+16>>2];if(j>>>0<(a-c|0)/20>>>0){continue}break}}H[d+28>>2]=H[d+28>>2]+1;H[g+8>>2]=H[g+8>>2]+1;m=m+1|0;if((o|0)!=(m|0)){continue}break}break g}j:{k:{l:{if(o>>>0<=2){c=H[g+616>>2];H[c>>2]=k;a=1;b=H[g+12>>2];if(b>>>0>1){break l}break j}if(K[g+8>>2]>K[g+4>>2]){break e}a=H[g+628>>2];j=q+1|0;m=N(j,12);b=a+m|0;if((b|0)!=(r|0)){Aa(b,H[r>>2],H[r+4>>2]);a=H[g+628>>2]}a=l+H[a+m>>2]|0;H[a>>2]=H[a>>2]+(1<>>1|0;break k}while(1){b=Ba((a<<4)+n|0)|b<<1;a=a+1|0;if((c|0)!=(a|0)){continue}break}a=o>>>1|0;if(b>>>0<=a>>>0){break k}c=0;break e}while(1){k=(b-1|0)!=(k|0)?k+1|0:0;H[c+(a<<2)>>2]=k;a=a+1|0;b=H[g+12>>2];if(a>>>0>>0){continue}break}break j}m:{n:{b=a-b|0;a=o-b|0;o:{if((a|0)==(b|0)){a=b;break o}i=H[g+596>>2];if((i|0)==H[g+588>>2]){break n}h=H[i>>2];e=H[g+600>>2];c=e+1|0;H[g+600>>2]=c;e=h&-2147483648>>>e;p:{if((c|0)==32){H[g+600>>2]=0;H[g+596>>2]=i+4;if(e){break p}break n}if(!e){break n}}}c=a;a=b;break m}c=b}i=H[g+640>>2];h=i+p|0;e=H[h>>2];b=e+l|0;H[b>>2]=H[b>>2]+1;Aa(i+m|0,e,H[h+4>>2]);if(a){m=H[f+28>>2]+H[f+24>>2]|0;e=H[f+16>>2];b=H[f+12>>2];if((m|0)==(((b|0)!=(e|0)?N(e-b>>2,341)-1|0:0)|0)){xa(f+8|0);m=H[f+24>>2]+H[f+28>>2]|0;e=H[f+12>>2]}else{e=b}b=(m>>>0)/341|0;b=H[e+(b<<2)>>2]+N(m-N(b,341)|0,12)|0;H[b+8>>2]=q;H[b+4>>2]=k;H[b>>2]=a;H[f+28>>2]=H[f+28>>2]+1}if(!c){break g}b=H[f+28>>2]+H[f+24>>2]|0;e=H[f+16>>2];a=H[f+12>>2];if((b|0)==(((a|0)!=(e|0)?N(e-a>>2,341)-1|0:0)|0)){xa(f+8|0);b=H[f+24>>2]+H[f+28>>2]|0;e=H[f+12>>2]}else{e=a}a=(b>>>0)/341|0;a=H[e+(a<<2)>>2]+N(b-N(a,341)|0,12)|0;H[a+8>>2]=j;H[a+4>>2]=k;H[a>>2]=c;a=H[f+28>>2]+1|0;H[f+28>>2]=a;break f}k=0;if(!o){break g}while(1){if(H[g+12>>2]){q=H[g+548>>2];i=H[w>>2];t=H[g+604>>2];h=H[g+616>>2];a=0;while(1){p=(a<<2)+h|0;H[t+(H[p>>2]<<2)>>2]=0;e=H[g>>2];c=H[p>>2]<<2;b=H[c+i>>2];q:{if((e|0)==(b|0)){break q}l=c+t|0;s=e-b|0;m=H[g+560>>2];e=32-m|0;if((s|0)<=(e|0)){c=H[g+556>>2];if((c|0)==(q|0)){c=0;break e}H[l>>2]=H[c>>2]<>>32-s;b=s+H[g+560>>2]|0;H[g+560>>2]=b;if((b|0)!=32){break q}H[g+560>>2]=0;H[g+556>>2]=c+4;break q}j=H[g+556>>2];b=j+4|0;if((q|0)==(b|0)){c=0;break e}c=H[j>>2];H[g+556>>2]=b;b=s-e|0;H[g+560>>2]=b;H[l>>2]=H[j+4>>2]>>>32-b|c<>>32-s}c=H[p>>2]<<2;b=c+t|0;H[b>>2]=H[b>>2]|H[c+H[r>>2]>>2];a=a+1|0;if(a>>>0>2]){continue}break}}j=0;a=H[d+16>>2];r:{if((a|0)==H[d+20>>2]){break r}while(1){l=H[d+28>>2];i=N(j,20)+a|0;h=H[i>>2];if(!I[h+84|0]){l=H[H[h+68>>2]+(l<<2)>>2]}if(K[h+80>>2]<=l>>>0){break r}e=H[g+604>>2]+(H[i+4>>2]<<2)|0;c=H[i+12>>2];b=e;s:{if(c>>>0>3){break s}a=0;b=H[d+12>>2];if(!H[i+16>>2]){break s}while(1){b=qa(b,e+(a<<2)|0,c);c=H[i+12>>2];b=b+c|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[d+12>>2]}a=H[h+40>>2];qa(H[H[h>>2]>>2]+N(a,l)|0,b,a);j=j+1|0;a=H[d+16>>2];if(j>>>0<(H[d+20>>2]-a|0)/20>>>0){continue}break}}H[d+28>>2]=H[d+28>>2]+1;H[g+8>>2]=H[g+8>>2]+1;k=k+1|0;if((o|0)!=(k|0)){continue}break}}a=H[f+28>>2]}if(a){continue}break}c=1}H[f+28>>2]=0;k=H[f+16>>2];a=H[f+12>>2];b=k-a|0;if(b>>>0>=9){while(1){oa(H[a>>2]);a=H[f+12>>2]+4|0;H[f+12>>2]=a;k=H[f+16>>2];b=k-a|0;if(b>>>0>8){continue}break}}d=170;t:{switch((b>>>2|0)-1|0){case 1:d=341;case 0:H[f+24>>2]=d;break;default:break t}}u:{if((a|0)==(k|0)){break u}while(1){oa(H[a>>2]);a=a+4|0;if((k|0)!=(a|0)){continue}break}b=H[f+16>>2];a=H[f+12>>2];if((b|0)==(a|0)){break u}H[f+16>>2]=b+((a-b|0)+3&-4)}a=H[f+8>>2];if(a){oa(a)}ca=f+32|0;break b}sa();v()}sa();v()}g=c}return g}function ud(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0;i=H[b+8>>2];k=H[b+12>>2];o=H[b+20>>2];e=H[b+16>>2];h=e+4|0;o=h>>>0<4?o+1|0:o;a:{if(i>>>0>>0&(k|0)<=(o|0)|(k|0)<(o|0)){break a}e=e+H[b>>2]|0;H[a>>2]=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);e=H[b+20>>2];i=e;h=H[b+16>>2];e=h+4|0;k=e>>>0<4?i+1|0:i;H[b+16>>2]=e;H[b+20>>2]=k;if(K[a>>2]>32){break a}k=H[b+8>>2];o=H[b+12>>2];h=h+8|0;i=h>>>0<8?i+1|0:i;if(h>>>0>k>>>0&(i|0)>=(o|0)|(i|0)>(o|0)){break a}e=H[b>>2]+e|0;h=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);H[a+4>>2]=h;i=H[b+20>>2];e=H[b+16>>2]+4|0;i=e>>>0<4?i+1|0:i;H[b+16>>2]=e;H[b+20>>2]=i;if(!h){return 1}if(d>>>0>>0){break a}H[a+8>>2]=0;if(!sb(a+16|0,b)){break a}if(!ua(a+544|0,b)){break a}if(!ua(a+564|0,b)){break a}if(!ua(a+584|0,b)){break a}w=H[a+4>>2];d=c;b=0;c=0;f=ca-32|0;ca=f;g=a;a=H[a+12>>2];H[f+16>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;b:{c:{if(a){if(a>>>0>=1073741824){break c}e=a<<2;b=pa(e);H[f+8>>2]=b;c=b+e|0;H[f+16>>2]=c;ra(b,0,e);H[f+12>>2]=c}h=H[g+628>>2];e=H[h>>2];if(e){H[h+4>>2]=e;oa(e);c=H[f+12>>2];b=H[f+8>>2];a=H[g+12>>2]}H[h+4>>2]=c;H[h>>2]=b;H[h+8>>2]=H[f+16>>2];b=0;H[f+16>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;d:{if(a){if(a>>>0>=1073741824){break d}a=a<<2;j=pa(a);H[f+8>>2]=j;b=a+j|0;H[f+16>>2]=b;ra(j,0,a);H[f+12>>2]=b}c=H[g+640>>2];a=H[c>>2];if(a){H[c+4>>2]=a;oa(a);j=H[f+8>>2];b=H[f+12>>2]}H[c+4>>2]=b;H[c>>2]=j;H[c+8>>2]=H[f+16>>2];H[f+24>>2]=0;H[f+28>>2]=0;H[f+16>>2]=0;H[f+20>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;xa(f+8|0);b=H[f+24>>2]+H[f+28>>2]|0;a=(b>>>0)/341|0;a=H[H[f+12>>2]+(a<<2)>>2]+N(b-N(a,341)|0,12)|0;H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=w;c=1;a=H[f+28>>2]+1|0;H[f+28>>2]=a;e:{if(!a){break e}o=g+16|0;while(1){i=H[f+12>>2];h=H[f+24>>2];e=a-1|0;c=h+e|0;b=(c>>>0)/341|0;b=H[i+(b<<2)>>2]+N(c-N(b,341)|0,12)|0;q=H[b+8>>2];n=H[b>>2];H[f+28>>2]=e;b=H[f+16>>2];if((((b|0)!=(i|0)?N(b-i>>2,341)-1|0:0)-(a+h|0)|0)+1>>>0>=682){oa(H[b-4>>2]);H[f+16>>2]=H[f+16>>2]-4}c=0;if(n>>>0>w>>>0){break e}a=H[g+628>>2];p=N(q,12);t=p+H[g+640>>2]|0;j=Vd(g,n,t);if(j>>>0>=K[g+12>>2]){break e}r=a+p|0;h=H[g>>2];l=j<<2;e=H[l+H[t>>2]>>2];f:{g:{if((h|0)==(e|0)){if(!n){break g}c=H[d+16>>2];b=H[d+20>>2];m=0;while(1){e=(b|0)==(c|0);a=b;k=0;b=c;h:{if(e){break h}while(1){l=H[d+28>>2];b=a;i=N(k,20)+c|0;h=H[i>>2];if(!I[h+84|0]){l=H[H[h+68>>2]+(l<<2)>>2]}if(K[h+80>>2]<=l>>>0){break h}e=H[r>>2]+(H[i+4>>2]<<2)|0;c=H[i+12>>2];b=e;i:{if(c>>>0>3){break i}a=0;b=H[d+12>>2];if(!H[i+16>>2]){break i}while(1){b=qa(b,e+(a<<2)|0,c);c=H[i+12>>2];b=b+c|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[d+12>>2]}a=H[h+40>>2];qa(H[H[h>>2]>>2]+N(a,l)|0,b,a);a=H[d+20>>2];b=a;k=k+1|0;c=H[d+16>>2];if(k>>>0<(a-c|0)/20>>>0){continue}break}}H[d+28>>2]=H[d+28>>2]+1;H[g+8>>2]=H[g+8>>2]+1;m=m+1|0;if((n|0)!=(m|0)){continue}break}break g}j:{k:{l:{if(n>>>0<=2){c=H[g+616>>2];H[c>>2]=j;a=1;b=H[g+12>>2];if(b>>>0>1){break l}break j}if(K[g+8>>2]>K[g+4>>2]){break e}a=H[g+628>>2];k=q+1|0;m=N(k,12);b=a+m|0;if((b|0)!=(r|0)){Aa(b,H[r>>2],H[r+4>>2]);a=H[g+628>>2]}a=l+H[a+m>>2]|0;H[a>>2]=H[a>>2]+(1<>>1|0;break k}while(1){b=Ba((a<<4)+o|0)|b<<1;a=a+1|0;if((c|0)!=(a|0)){continue}break}a=n>>>1|0;if(b>>>0<=a>>>0){break k}c=0;break e}while(1){j=(b-1|0)!=(j|0)?j+1|0:0;H[c+(a<<2)>>2]=j;a=a+1|0;b=H[g+12>>2];if(a>>>0>>0){continue}break}break j}m:{n:{b=a-b|0;a=n-b|0;o:{if((a|0)==(b|0)){a=b;break o}i=H[g+596>>2];if((i|0)==H[g+588>>2]){break n}h=H[i>>2];e=H[g+600>>2];c=e+1|0;H[g+600>>2]=c;e=h&-2147483648>>>e;p:{if((c|0)==32){H[g+600>>2]=0;H[g+596>>2]=i+4;if(e){break p}break n}if(!e){break n}}}c=a;a=b;break m}c=b}i=H[g+640>>2];h=i+p|0;e=H[h>>2];b=e+l|0;H[b>>2]=H[b>>2]+1;Aa(i+m|0,e,H[h+4>>2]);if(a){m=H[f+28>>2]+H[f+24>>2]|0;e=H[f+16>>2];b=H[f+12>>2];if((m|0)==(((b|0)!=(e|0)?N(e-b>>2,341)-1|0:0)|0)){xa(f+8|0);m=H[f+24>>2]+H[f+28>>2]|0;e=H[f+12>>2]}else{e=b}b=(m>>>0)/341|0;b=H[e+(b<<2)>>2]+N(m-N(b,341)|0,12)|0;H[b+8>>2]=q;H[b+4>>2]=j;H[b>>2]=a;H[f+28>>2]=H[f+28>>2]+1}if(!c){break g}b=H[f+28>>2]+H[f+24>>2]|0;e=H[f+16>>2];a=H[f+12>>2];if((b|0)==(((a|0)!=(e|0)?N(e-a>>2,341)-1|0:0)|0)){xa(f+8|0);b=H[f+24>>2]+H[f+28>>2]|0;e=H[f+12>>2]}else{e=a}a=(b>>>0)/341|0;a=H[e+(a<<2)>>2]+N(b-N(a,341)|0,12)|0;H[a+8>>2]=k;H[a+4>>2]=j;H[a>>2]=c;a=H[f+28>>2]+1|0;H[f+28>>2]=a;break f}j=0;if(!n){break g}while(1){if(H[g+12>>2]){q=H[g+548>>2];i=H[t>>2];u=H[g+604>>2];h=H[g+616>>2];a=0;while(1){p=(a<<2)+h|0;H[u+(H[p>>2]<<2)>>2]=0;e=H[g>>2];c=H[p>>2]<<2;b=H[c+i>>2];q:{if((e|0)==(b|0)){break q}l=c+u|0;s=e-b|0;m=H[g+560>>2];e=32-m|0;if((s|0)<=(e|0)){c=H[g+556>>2];if((c|0)==(q|0)){c=0;break e}H[l>>2]=H[c>>2]<>>32-s;b=s+H[g+560>>2]|0;H[g+560>>2]=b;if((b|0)!=32){break q}H[g+560>>2]=0;H[g+556>>2]=c+4;break q}k=H[g+556>>2];b=k+4|0;if((q|0)==(b|0)){c=0;break e}c=H[k>>2];H[g+556>>2]=b;b=s-e|0;H[g+560>>2]=b;H[l>>2]=H[k+4>>2]>>>32-b|c<>>32-s}c=H[p>>2]<<2;b=c+u|0;H[b>>2]=H[b>>2]|H[c+H[r>>2]>>2];a=a+1|0;if(a>>>0>2]){continue}break}}k=0;a=H[d+16>>2];r:{if((a|0)==H[d+20>>2]){break r}while(1){l=H[d+28>>2];i=N(k,20)+a|0;h=H[i>>2];if(!I[h+84|0]){l=H[H[h+68>>2]+(l<<2)>>2]}if(K[h+80>>2]<=l>>>0){break r}e=H[g+604>>2]+(H[i+4>>2]<<2)|0;c=H[i+12>>2];b=e;s:{if(c>>>0>3){break s}a=0;b=H[d+12>>2];if(!H[i+16>>2]){break s}while(1){b=qa(b,e+(a<<2)|0,c);c=H[i+12>>2];b=b+c|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[d+12>>2]}a=H[h+40>>2];qa(H[H[h>>2]>>2]+N(a,l)|0,b,a);k=k+1|0;a=H[d+16>>2];if(k>>>0<(H[d+20>>2]-a|0)/20>>>0){continue}break}}H[d+28>>2]=H[d+28>>2]+1;H[g+8>>2]=H[g+8>>2]+1;j=j+1|0;if((n|0)!=(j|0)){continue}break}}a=H[f+28>>2]}if(a){continue}break}c=1}H[f+28>>2]=0;j=H[f+16>>2];a=H[f+12>>2];b=j-a|0;if(b>>>0>=9){while(1){oa(H[a>>2]);a=H[f+12>>2]+4|0;H[f+12>>2]=a;j=H[f+16>>2];b=j-a|0;if(b>>>0>8){continue}break}}d=170;t:{switch((b>>>2|0)-1|0){case 1:d=341;case 0:H[f+24>>2]=d;break;default:break t}}u:{if((a|0)==(j|0)){break u}while(1){oa(H[a>>2]);a=a+4|0;if((j|0)!=(a|0)){continue}break}b=H[f+16>>2];a=H[f+12>>2];if((b|0)==(a|0)){break u}H[f+16>>2]=b+((a-b|0)+3&-4)}a=H[f+8>>2];if(a){oa(a)}ca=f+32|0;break b}sa();v()}sa();v()}g=c}return g}function vd(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0;i=H[b+8>>2];k=H[b+12>>2];m=H[b+20>>2];f=H[b+16>>2];h=f+4|0;m=h>>>0<4?m+1|0:m;a:{if(i>>>0>>0&(k|0)<=(m|0)|(k|0)<(m|0)){break a}f=f+H[b>>2]|0;H[a>>2]=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);f=H[b+20>>2];i=f;h=H[b+16>>2];f=h+4|0;k=f>>>0<4?i+1|0:i;H[b+16>>2]=f;H[b+20>>2]=k;if(K[a>>2]>32){break a}k=H[b+8>>2];m=H[b+12>>2];h=h+8|0;i=h>>>0<8?i+1|0:i;if(h>>>0>k>>>0&(i|0)>=(m|0)|(i|0)>(m|0)){break a}f=f+H[b>>2]|0;h=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);H[a+4>>2]=h;i=H[b+20>>2];f=H[b+16>>2]+4|0;i=f>>>0<4?i+1|0:i;H[b+16>>2]=f;H[b+20>>2]=i;if(!h){return 1}if(d>>>0>>0){break a}H[a+8>>2]=0;if(!sb(a+16|0,b)){break a}if(!ua(a+544|0,b)){break a}if(!ua(a+564|0,b)){break a}if(!ua(a+584|0,b)){break a}u=H[a+4>>2];b=0;e=ca-32|0;ca=e;f=a;a=H[a+12>>2];H[e+16>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;b:{c:{if(a){if(a>>>0>=1073741824){break c}d=a<<2;b=pa(d);H[e+8>>2]=b;g=b+d|0;H[e+16>>2]=g;ra(b,0,d);H[e+12>>2]=g}h=H[f+628>>2];d=H[h>>2];if(d){H[h+4>>2]=d;oa(d);g=H[e+12>>2];b=H[e+8>>2];a=H[f+12>>2]}H[h+4>>2]=g;H[h>>2]=b;H[h+8>>2]=H[e+16>>2];b=0;H[e+16>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;d:{if(a){if(a>>>0>=1073741824){break d}a=a<<2;j=pa(a);H[e+8>>2]=j;b=a+j|0;H[e+16>>2]=b;ra(j,0,a);H[e+12>>2]=b}d=H[f+640>>2];a=H[d>>2];if(a){H[d+4>>2]=a;oa(a);j=H[e+8>>2];b=H[e+12>>2]}H[d+4>>2]=b;H[d>>2]=j;H[d+8>>2]=H[e+16>>2];H[e+24>>2]=0;H[e+28>>2]=0;H[e+16>>2]=0;H[e+20>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;xa(e+8|0);b=H[e+24>>2]+H[e+28>>2]|0;a=(b>>>0)/341|0;a=H[H[e+12>>2]+(a<<2)>>2]+N(b-N(a,341)|0,12)|0;H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=u;d=1;a=H[e+28>>2]+1|0;H[e+28>>2]=a;e:{if(!a){break e}m=f+16|0;while(1){k=H[e+12>>2];h=H[e+24>>2];g=a-1|0;d=h+g|0;b=(d>>>0)/341|0;b=H[k+(b<<2)>>2]+N(d-N(b,341)|0,12)|0;q=H[b+8>>2];i=H[b+4>>2];n=H[b>>2];H[e+28>>2]=g;b=H[e+16>>2];if((((b|0)!=(k|0)?N(b-k>>2,341)-1|0:0)-(a+h|0)|0)+1>>>0>=682){oa(H[b-4>>2]);H[e+16>>2]=H[e+16>>2]-4}if(n>>>0>u>>>0){d=0;break e}d=0;a=H[f+12>>2];j=(i|0)!=(a-1|0)?i+1|0:0;if(j>>>0>=a>>>0){break e}a=H[f+628>>2];o=N(q,12);s=a+o|0;g=H[f>>2];l=j<<2;k=o+H[f+640>>2]|0;b=H[l+H[k>>2]>>2];f:{g:{if((g|0)==(b|0)){if(!n){break g}g=H[c+16>>2];b=H[c+20>>2];p=0;while(1){d=(b|0)==(g|0);a=b;j=0;b=g;h:{if(d){break h}while(1){d=H[c+28>>2];b=a;k=N(j,20)+g|0;i=H[k>>2];if(!I[i+84|0]){d=H[H[i+68>>2]+(d<<2)>>2]}if(K[i+80>>2]<=d>>>0){break h}h=H[s>>2]+(H[k+4>>2]<<2)|0;g=H[k+12>>2];b=h;i:{if(g>>>0>3){break i}a=0;b=H[c+12>>2];if(!H[k+16>>2]){break i}while(1){b=qa(b,h+(a<<2)|0,g);g=H[k+12>>2];b=b+g|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[c+12>>2]}a=H[i+40>>2];qa(H[H[i>>2]>>2]+N(a,d)|0,b,a);a=H[c+20>>2];b=a;j=j+1|0;g=H[c+16>>2];if(j>>>0<(a-g|0)/20>>>0){continue}break}}H[c+28>>2]=H[c+28>>2]+1;H[f+8>>2]=H[f+8>>2]+1;p=p+1|0;if((p|0)!=(n|0)){continue}break}break g}j:{k:{l:{if(n>>>0<=2){d=H[f+616>>2];H[d>>2]=j;a=1;b=H[f+12>>2];if(b>>>0>1){break l}break j}if(K[f+8>>2]>K[f+4>>2]){break e}d=a;a=o+12|0;Aa(d+a|0,H[s>>2],H[s+4>>2]);a=l+H[a+H[f+628>>2]>>2]|0;H[a>>2]=H[a>>2]+(1<>>1|0;break k}while(1){b=Ba((a<<4)+m|0)|b<<1;a=a+1|0;if((d|0)!=(a|0)){continue}break}a=n>>>1|0;if(b>>>0<=a>>>0){break k}d=0;break e}while(1){j=(b-1|0)!=(j|0)?j+1|0:0;H[d+(a<<2)>>2]=j;a=a+1|0;b=H[f+12>>2];if(a>>>0>>0){continue}break}break j}k=q+1|0;m:{n:{b=a-b|0;a=n-b|0;o:{if((a|0)==(b|0)){a=b;break o}i=H[f+596>>2];if((i|0)==H[f+588>>2]){break n}h=H[i>>2];g=H[f+600>>2];d=g+1|0;H[f+600>>2]=d;g=h&-2147483648>>>g;p:{if((d|0)==32){H[f+600>>2]=0;H[f+596>>2]=i+4;if(g){break p}break n}if(!g){break n}}}d=a;a=b;break m}d=b}i=H[f+640>>2];h=i+o|0;g=H[h>>2];b=g+l|0;H[b>>2]=H[b>>2]+1;Aa(i+N(k,12)|0,g,H[h+4>>2]);if(a){h=H[e+28>>2]+H[e+24>>2]|0;g=H[e+16>>2];b=H[e+12>>2];if((h|0)==(((b|0)!=(g|0)?N(g-b>>2,341)-1|0:0)|0)){xa(e+8|0);h=H[e+24>>2]+H[e+28>>2]|0;g=H[e+12>>2]}else{g=b}b=(h>>>0)/341|0;b=H[g+(b<<2)>>2]+N(h-N(b,341)|0,12)|0;H[b+8>>2]=q;H[b+4>>2]=j;H[b>>2]=a;H[e+28>>2]=H[e+28>>2]+1}if(!d){break g}b=H[e+28>>2]+H[e+24>>2]|0;g=H[e+16>>2];a=H[e+12>>2];if((b|0)==(((a|0)!=(g|0)?N(g-a>>2,341)-1|0:0)|0)){xa(e+8|0);b=H[e+24>>2]+H[e+28>>2]|0;g=H[e+12>>2]}else{g=a}a=(b>>>0)/341|0;a=H[g+(a<<2)>>2]+N(b-N(a,341)|0,12)|0;H[a+8>>2]=k;H[a+4>>2]=j;H[a>>2]=d;a=H[e+28>>2]+1|0;H[e+28>>2]=a;break f}p=0;if(!n){break g}while(1){if(H[f+12>>2]){w=H[f+548>>2];i=H[k>>2];t=H[f+604>>2];h=H[f+616>>2];a=0;while(1){j=h+(a<<2)|0;H[(H[j>>2]<<2)+t>>2]=0;g=H[f>>2];d=H[j>>2]<<2;b=H[d+i>>2];q:{if((g|0)==(b|0)){break q}q=d+t|0;r=g-b|0;o=H[f+560>>2];g=32-o|0;if((r|0)<=(g|0)){d=H[f+556>>2];if((d|0)==(w|0)){d=0;break e}H[q>>2]=H[d>>2]<>>32-r;b=H[f+560>>2]+r|0;H[f+560>>2]=b;if((b|0)!=32){break q}H[f+560>>2]=0;H[f+556>>2]=d+4;break q}l=H[f+556>>2];b=l+4|0;if((b|0)==(w|0)){d=0;break e}d=H[l>>2];H[f+556>>2]=b;b=r-g|0;H[f+560>>2]=b;H[q>>2]=H[l+4>>2]>>>32-b|d<>>32-r}d=H[j>>2]<<2;b=d+t|0;H[b>>2]=H[b>>2]|H[d+H[s>>2]>>2];a=a+1|0;if(a>>>0>2]){continue}break}}j=0;a=H[c+16>>2];r:{if((a|0)==H[c+20>>2]){break r}while(1){d=H[c+28>>2];l=N(j,20)+a|0;i=H[l>>2];if(!I[i+84|0]){d=H[H[i+68>>2]+(d<<2)>>2]}if(K[i+80>>2]<=d>>>0){break r}h=H[f+604>>2]+(H[l+4>>2]<<2)|0;g=H[l+12>>2];b=h;s:{if(g>>>0>3){break s}a=0;b=H[c+12>>2];if(!H[l+16>>2]){break s}while(1){b=qa(b,h+(a<<2)|0,g);g=H[l+12>>2];b=b+g|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[c+12>>2]}a=H[i+40>>2];qa(H[H[i>>2]>>2]+N(a,d)|0,b,a);j=j+1|0;a=H[c+16>>2];if(j>>>0<(H[c+20>>2]-a|0)/20>>>0){continue}break}}H[c+28>>2]=H[c+28>>2]+1;H[f+8>>2]=H[f+8>>2]+1;p=p+1|0;if((p|0)!=(n|0)){continue}break}}a=H[e+28>>2]}if(a){continue}break}d=1}H[e+28>>2]=0;j=H[e+16>>2];a=H[e+12>>2];b=j-a|0;if(b>>>0>=9){while(1){oa(H[a>>2]);a=H[e+12>>2]+4|0;H[e+12>>2]=a;j=H[e+16>>2];b=j-a|0;if(b>>>0>8){continue}break}}g=170;t:{switch((b>>>2|0)-1|0){case 1:g=341;case 0:H[e+24>>2]=g;break;default:break t}}u:{if((a|0)==(j|0)){break u}while(1){oa(H[a>>2]);a=a+4|0;if((j|0)!=(a|0)){continue}break}b=H[e+16>>2];a=H[e+12>>2];if((b|0)==(a|0)){break u}H[e+16>>2]=b+((a-b|0)+3&-4)}a=H[e+8>>2];if(a){oa(a)}ca=e+32|0;break b}sa();v()}sa();v()}g=d}return g}function yd(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0;j=H[b+8>>2];e=H[b+12>>2];g=H[b+20>>2];h=H[b+16>>2];l=h+4|0;g=l>>>0<4?g+1|0:g;a:{if(j>>>0>>0&(e|0)<=(g|0)|(e|0)<(g|0)){break a}h=h+H[b>>2]|0;H[a>>2]=I[h|0]|I[h+1|0]<<8|(I[h+2|0]<<16|I[h+3|0]<<24);h=H[b+20>>2];e=h;j=H[b+16>>2];g=j+4|0;h=g>>>0<4?e+1|0:e;H[b+16>>2]=g;H[b+20>>2]=h;if(K[a>>2]>32){break a}k=H[b+8>>2];l=H[b+12>>2];h=e;e=j+8|0;h=e>>>0<8?h+1|0:h;if(e>>>0>k>>>0&(h|0)>=(l|0)|(h|0)>(l|0)){break a}h=H[b>>2]+g|0;g=I[h|0]|I[h+1|0]<<8|(I[h+2|0]<<16|I[h+3|0]<<24);H[a+4>>2]=g;h=H[b+20>>2];e=H[b+16>>2]+4|0;h=e>>>0<4?h+1|0:h;H[b+16>>2]=e;H[b+20>>2]=h;if(!g){return 1}if(d>>>0>>0){break a}H[a+8>>2]=0;if(!ta(a+16|0,b)){break a}if(!ua(a+32|0,b)){break a}if(!ua(a+52|0,b)){break a}if(!ua(a+72|0,b)){break a}r=H[a+4>>2];h=c;b=0;g=0;e=ca-32|0;ca=e;d=a;a=H[a+12>>2];H[e+16>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;b:{c:{if(a){if(a>>>0>=1073741824){break c}c=a<<2;b=pa(c);H[e+8>>2]=b;g=b+c|0;H[e+16>>2]=g;ra(b,0,c);H[e+12>>2]=g}c=H[d+116>>2];i=H[c>>2];if(i){H[c+4>>2]=i;oa(i);g=H[e+12>>2];b=H[e+8>>2];a=H[d+12>>2]}H[c+4>>2]=g;H[c>>2]=b;H[c+8>>2]=H[e+16>>2];b=0;H[e+16>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;d:{if(a){if(a>>>0>=1073741824){break d}a=a<<2;f=pa(a);H[e+8>>2]=f;b=a+f|0;H[e+16>>2]=b;ra(f,0,a);H[e+12>>2]=b}a=H[d+128>>2];c=H[a>>2];if(c){H[a+4>>2]=c;oa(c);f=H[e+8>>2];b=H[e+12>>2]}H[a+4>>2]=b;H[a>>2]=f;H[a+8>>2]=H[e+16>>2];H[e+24>>2]=0;H[e+28>>2]=0;H[e+16>>2]=0;H[e+20>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;xa(e+8|0);a=H[e+24>>2]+H[e+28>>2]|0;b=(a>>>0)/341|0;a=H[H[e+12>>2]+(b<<2)>>2]+N(a-N(b,341)|0,12)|0;H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=r;c=1;a=H[e+28>>2]+1|0;H[e+28>>2]=a;e:{if(!a){break e}t=d+16|0;while(1){b=H[e+12>>2];f=H[e+24>>2];l=a-1|0;c=f+l|0;i=(c>>>0)/341|0;c=H[b+(i<<2)>>2]+N(c-N(i,341)|0,12)|0;g=H[c+8>>2];i=H[c+4>>2];j=H[c>>2];H[e+28>>2]=l;c=H[e+16>>2];if((((b|0)!=(c|0)?N(c-b>>2,341)-1|0:0)-(a+f|0)|0)+1>>>0>=682){oa(H[c-4>>2]);H[e+16>>2]=H[e+16>>2]-4}c=0;if(j>>>0>r>>>0){break e}b=H[d+12>>2];a=(b-1|0)!=(i|0)?i+1|0:0;if(a>>>0>=b>>>0){break e}f=N(g,12);o=f+H[d+128>>2]|0;l=f+H[d+116>>2]|0;i=H[d>>2];k=a<<2;n=H[k+H[o>>2]>>2];f:{if((i|0)==(n|0)){if(!j){break f}o=0;b=H[h+20>>2];g=H[h+16>>2];if((b|0)==(g|0)){a=H[d+8>>2];H[h+28>>2]=j+H[h+28>>2];H[d+8>>2]=a+j;break f}while(1){c=(b|0)==(g|0);a=b;i=0;b=g;g:{if(c){break g}while(1){f=H[h+28>>2];b=a;c=N(i,20)+g|0;k=H[c>>2];if(!I[k+84|0]){f=H[H[k+68>>2]+(f<<2)>>2]}if(K[k+80>>2]<=f>>>0){break g}n=H[l>>2]+(H[c+4>>2]<<2)|0;g=H[c+12>>2];b=n;h:{if(g>>>0>3){break h}a=0;b=H[h+12>>2];if(!H[c+16>>2]){break h}while(1){b=qa(b,n+(a<<2)|0,g);g=H[c+12>>2];b=b+g|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[h+12>>2]}a=H[k+40>>2];qa(H[H[k>>2]>>2]+N(a,f)|0,b,a);i=i+1|0;a=H[h+20>>2];b=a;g=H[h+16>>2];if(i>>>0<(b-g|0)/20>>>0){continue}break}}H[h+28>>2]=H[h+28>>2]+1;H[d+8>>2]=H[d+8>>2]+1;o=o+1|0;if((j|0)!=(o|0)){continue}break}break f}i:{j:{k:{l:{if(j>>>0<=2){c=H[d+104>>2];H[c>>2]=a;f=1;b=H[d+12>>2];if(b>>>0>1){break l}break i}if(K[d+8>>2]>K[d+4>>2]){break e}b=H[d+116>>2];m=g+1|0;o=N(m,12);q=b+o|0;if((q|0)!=(l|0)){Aa(q,H[l>>2],H[l+4>>2]);b=H[d+116>>2]}b=k+H[b+o>>2]|0;H[b>>2]=H[b>>2]+(1<>2]=0;pc(t,Q(j)^31,e+4|0);b=j>>>1|0;i=H[e+4>>2];if(b>>>0>>0){break e}b=b-i|0;c=j-b|0;m:{if((c|0)==(b|0)){c=b;break m}i=H[d+84>>2];if((i|0)==H[d+76>>2]){break k}j=H[i>>2];l=H[d+88>>2];n=l+1|0;H[d+88>>2]=n;j=j&-2147483648>>>l;n:{if((n|0)==32){H[d+88>>2]=0;H[d+84>>2]=i+4;if(j){break n}break k}if(!j){break k}}}i=c;c=b;break j}while(1){a=(b-1|0)!=(a|0)?a+1|0:0;H[c+(f<<2)>>2]=a;b=H[d+12>>2];f=f+1|0;if(b>>>0>f>>>0){continue}break}break i}i=b}b=H[d+128>>2];j=b+f|0;f=H[j>>2];l=f+k|0;H[l>>2]=H[l>>2]+1;Aa(b+o|0,f,H[j+4>>2]);if(c){b=H[e+28>>2]+H[e+24>>2]|0;j=H[e+16>>2];f=H[e+12>>2];if((b|0)==(((f|0)!=(j|0)?N(j-f>>2,341)-1|0:0)|0)){xa(e+8|0);f=H[e+12>>2];b=H[e+24>>2]+H[e+28>>2]|0}j=(b>>>0)/341|0;b=H[(j<<2)+f>>2]+N(b-N(j,341)|0,12)|0;H[b+8>>2]=g;H[b+4>>2]=a;H[b>>2]=c;H[e+28>>2]=H[e+28>>2]+1}if(!i){break f}b=H[e+28>>2]+H[e+24>>2]|0;c=H[e+16>>2];f=H[e+12>>2];if((b|0)==(((c|0)!=(f|0)?N(c-f>>2,341)-1|0:0)|0)){xa(e+8|0);f=H[e+12>>2];b=H[e+24>>2]+H[e+28>>2]|0}c=(b>>>0)/341|0;b=H[(c<<2)+f>>2]+N(b-N(c,341)|0,12)|0;H[b+8>>2]=m;H[b+4>>2]=a;H[b>>2]=i;H[e+28>>2]=H[e+28>>2]+1;break f}n=0;if(!j){break f}while(1){if(H[d+12>>2]){i=H[d+36>>2];q=H[o>>2];c=H[d+92>>2];u=H[d+104>>2];a=0;while(1){g=(a<<2)+u|0;H[c+(H[g>>2]<<2)>>2]=0;b=H[d>>2];f=H[g>>2]<<2;k=H[f+q>>2];o:{if((b|0)==(k|0)){break o}f=c+f|0;b=b-k|0;k=H[d+48>>2];p=32-k|0;if((b|0)<=(p|0)){m=H[d+44>>2];if((m|0)==(i|0)){c=0;break e}H[f>>2]=H[m>>2]<>>32-b;b=b+H[d+48>>2]|0;H[d+48>>2]=b;if((b|0)!=32){break o}H[d+48>>2]=0;H[d+44>>2]=m+4;break o}m=H[d+44>>2];s=m+4|0;if((i|0)==(s|0)){c=0;break e}w=H[m>>2];H[d+44>>2]=s;p=b-p|0;H[d+48>>2]=p;H[f>>2]=H[m+4>>2]>>>32-p|w<>>32-b}b=H[g>>2]<<2;g=b+c|0;H[g>>2]=H[g>>2]|H[b+H[l>>2]>>2];a=a+1|0;if(a>>>0>2]){continue}break}}i=0;a=H[h+16>>2];p:{if((a|0)==H[h+20>>2]){break p}while(1){f=H[h+28>>2];c=N(i,20)+a|0;k=H[c>>2];if(!I[k+84|0]){f=H[H[k+68>>2]+(f<<2)>>2]}if(K[k+80>>2]<=f>>>0){break p}m=H[d+92>>2]+(H[c+4>>2]<<2)|0;g=H[c+12>>2];b=m;q:{if(g>>>0>3){break q}a=0;b=H[h+12>>2];if(!H[c+16>>2]){break q}while(1){b=qa(b,m+(a<<2)|0,g);g=H[c+12>>2];b=b+g|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[h+12>>2]}a=H[k+40>>2];qa(H[H[k>>2]>>2]+N(a,f)|0,b,a);i=i+1|0;a=H[h+16>>2];if(i>>>0<(H[h+20>>2]-a|0)/20>>>0){continue}break}}H[h+28>>2]=H[h+28>>2]+1;H[d+8>>2]=H[d+8>>2]+1;n=n+1|0;if((j|0)!=(n|0)){continue}break}}a=H[e+28>>2];if(a){continue}break}c=1}H[e+28>>2]=0;f=H[e+16>>2];a=H[e+12>>2];b=f-a|0;if(b>>>0>=9){while(1){oa(H[a>>2]);a=H[e+12>>2]+4|0;H[e+12>>2]=a;f=H[e+16>>2];b=f-a|0;if(b>>>0>8){continue}break}}g=170;r:{switch((b>>>2|0)-1|0){case 1:g=341;case 0:H[e+24>>2]=g;break;default:break r}}s:{if((a|0)==(f|0)){break s}while(1){oa(H[a>>2]);a=a+4|0;if((f|0)!=(a|0)){continue}break}a=H[e+16>>2];b=H[e+12>>2];if((a|0)==(b|0)){break s}H[e+16>>2]=a+((b-a|0)+3&-4)}a=H[e+8>>2];if(a){oa(a)}ca=e+32|0;break b}sa();v()}sa();v()}i=c}return i}function xd(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0;i=H[b+8>>2];k=H[b+12>>2];n=H[b+20>>2];h=H[b+16>>2];f=h+4|0;n=f>>>0<4?n+1|0:n;a:{if((k|0)<=(n|0)&f>>>0>i>>>0|(k|0)<(n|0)){break a}h=h+H[b>>2]|0;H[a>>2]=I[h|0]|I[h+1|0]<<8|(I[h+2|0]<<16|I[h+3|0]<<24);h=H[b+20>>2];i=h;f=H[b+16>>2];h=f+4|0;k=h>>>0<4?i+1|0:i;H[b+16>>2]=h;H[b+20>>2]=k;if(K[a>>2]>32){break a}k=H[b+8>>2];n=H[b+12>>2];f=f+8|0;i=f>>>0<8?i+1|0:i;if(f>>>0>k>>>0&(i|0)>=(n|0)|(i|0)>(n|0)){break a}h=H[b>>2]+h|0;f=I[h|0]|I[h+1|0]<<8|(I[h+2|0]<<16|I[h+3|0]<<24);H[a+4>>2]=f;i=H[b+20>>2];h=H[b+16>>2]+4|0;i=h>>>0<4?i+1|0:i;H[b+16>>2]=h;H[b+20>>2]=i;if(!f){return 1}if(d>>>0>>0){break a}H[a+8>>2]=0;if(!ta(a+16|0,b)){break a}if(!ua(a+32|0,b)){break a}if(!ua(a+52|0,b)){break a}if(!ua(a+72|0,b)){break a}u=H[a+4>>2];h=c;b=0;c=0;e=ca-32|0;ca=e;f=a;a=H[a+12>>2];H[e+16>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;b:{c:{if(a){if(a>>>0>=1073741824){break c}d=a<<2;b=pa(d);H[e+8>>2]=b;c=b+d|0;H[e+16>>2]=c;ra(b,0,d);H[e+12>>2]=c}j=H[f+116>>2];d=H[j>>2];if(d){H[j+4>>2]=d;oa(d);c=H[e+12>>2];b=H[e+8>>2];a=H[f+12>>2]}H[j+4>>2]=c;H[j>>2]=b;H[j+8>>2]=H[e+16>>2];b=0;H[e+16>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;d:{if(a){if(a>>>0>=1073741824){break d}a=a<<2;g=pa(a);H[e+8>>2]=g;b=a+g|0;H[e+16>>2]=b;ra(g,0,a);H[e+12>>2]=b}c=H[f+128>>2];a=H[c>>2];if(a){H[c+4>>2]=a;oa(a);g=H[e+8>>2];b=H[e+12>>2]}H[c+4>>2]=b;H[c>>2]=g;H[c+8>>2]=H[e+16>>2];H[e+24>>2]=0;H[e+28>>2]=0;H[e+16>>2]=0;H[e+20>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;xa(e+8|0);b=H[e+24>>2]+H[e+28>>2]|0;a=(b>>>0)/341|0;a=H[H[e+12>>2]+(a<<2)>>2]+N(b-N(a,341)|0,12)|0;H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=u;d=1;a=H[e+28>>2]+1|0;H[e+28>>2]=a;e:{if(!a){break e}n=f+16|0;while(1){i=H[e+12>>2];j=H[e+24>>2];d=a-1|0;c=j+d|0;b=(c>>>0)/341|0;b=H[i+(b<<2)>>2]+N(c-N(b,341)|0,12)|0;o=H[b+8>>2];c=H[b+4>>2];m=H[b>>2];H[e+28>>2]=d;b=H[e+16>>2];if((((b|0)!=(i|0)?N(b-i>>2,341)-1|0:0)-(a+j|0)|0)+1>>>0>=682){oa(H[b-4>>2]);H[e+16>>2]=H[e+16>>2]-4}if(m>>>0>u>>>0){d=0;break e}d=0;b=H[f+12>>2];a=(c|0)!=(b-1|0)?c+1|0:0;if(a>>>0>=b>>>0){break e}b=H[f+116>>2];p=N(o,12);r=b+p|0;j=H[f>>2];g=a<<2;k=p+H[f+128>>2]|0;c=H[g+H[k>>2]>>2];f:{if((j|0)==(c|0)){if(!m){break f}b=H[h+20>>2];c=H[h+16>>2];if((b|0)==(c|0)){a=H[f+8>>2];H[h+28>>2]=m+H[h+28>>2];H[f+8>>2]=a+m;break f}while(1){i=(b|0)==(c|0);a=b;j=0;b=c;g:{if(i){break g}while(1){g=H[h+28>>2];b=a;l=N(j,20)+c|0;k=H[l>>2];if(!I[k+84|0]){g=H[H[k+68>>2]+(g<<2)>>2]}if(K[k+80>>2]<=g>>>0){break g}i=H[r>>2]+(H[l+4>>2]<<2)|0;c=H[l+12>>2];b=i;h:{if(c>>>0>3){break h}a=0;b=H[h+12>>2];if(!H[l+16>>2]){break h}while(1){b=qa(b,i+(a<<2)|0,c);c=H[l+12>>2];b=b+c|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[h+12>>2]}a=H[k+40>>2];qa(H[H[k>>2]>>2]+N(a,g)|0,b,a);j=j+1|0;a=H[h+20>>2];b=a;c=H[h+16>>2];if(j>>>0<(b-c|0)/20>>>0){continue}break}}H[h+28>>2]=H[h+28>>2]+1;H[f+8>>2]=H[f+8>>2]+1;d=d+1|0;if((m|0)!=(d|0)){continue}break}break f}i:{j:{k:{l:{if(m>>>0<=2){c=H[f+104>>2];H[c>>2]=a;g=1;b=H[f+12>>2];if(b>>>0>1){break l}break i}if(K[f+8>>2]>K[f+4>>2]){break e}i=b;b=p+12|0;Aa(i+b|0,H[r>>2],H[r+4>>2]);b=g+H[b+H[f+116>>2]>>2]|0;H[b>>2]=H[b>>2]+(1<>2]=0;pc(n,Q(m)^31,e+4|0);c=m>>>1|0;b=H[e+4>>2];if(c>>>0>>0){break e}l=o+1|0;b=c-b|0;c=m-b|0;m:{if((c|0)==(b|0)){c=b;break m}k=H[f+84>>2];if((k|0)==H[f+76>>2]){break k}i=H[k>>2];j=H[f+88>>2];d=j+1|0;H[f+88>>2]=d;j=i&-2147483648>>>j;n:{if((d|0)==32){H[f+88>>2]=0;H[f+84>>2]=k+4;if(j){break n}break k}if(!j){break k}}}j=c;c=b;break j}while(1){a=(b-1|0)!=(a|0)?a+1|0:0;H[c+(g<<2)>>2]=a;b=H[f+12>>2];g=g+1|0;if(b>>>0>g>>>0){continue}break}break i}j=b}k=H[f+128>>2];i=k+p|0;d=H[i>>2];b=d+g|0;H[b>>2]=H[b>>2]+1;Aa(k+N(l,12)|0,d,H[i+4>>2]);if(c){b=H[e+28>>2]+H[e+24>>2]|0;d=H[e+16>>2];g=H[e+12>>2];if((b|0)==(((d|0)!=(g|0)?N(d-g>>2,341)-1|0:0)|0)){xa(e+8|0);g=H[e+12>>2];b=H[e+24>>2]+H[e+28>>2]|0}d=(b>>>0)/341|0;b=H[(d<<2)+g>>2]+N(b-N(d,341)|0,12)|0;H[b+8>>2]=o;H[b+4>>2]=a;H[b>>2]=c;H[e+28>>2]=H[e+28>>2]+1}if(!j){break f}b=H[e+28>>2]+H[e+24>>2]|0;c=H[e+16>>2];g=H[e+12>>2];if((b|0)==(((c|0)!=(g|0)?N(c-g>>2,341)-1|0:0)|0)){xa(e+8|0);g=H[e+12>>2];b=H[e+24>>2]+H[e+28>>2]|0}c=(b>>>0)/341|0;b=H[(c<<2)+g>>2]+N(b-N(c,341)|0,12)|0;H[b+8>>2]=l;H[b+4>>2]=a;H[b>>2]=j;H[e+28>>2]=H[e+28>>2]+1;break f}s=0;if(!m){break f}while(1){if(H[f+12>>2]){w=H[f+36>>2];i=H[k>>2];t=H[f+92>>2];j=H[f+104>>2];a=0;while(1){o=(a<<2)+j|0;H[t+(H[o>>2]<<2)>>2]=0;d=H[f>>2];c=H[o>>2]<<2;b=H[c+i>>2];o:{if((d|0)==(b|0)){break o}p=c+t|0;q=d-b|0;g=H[f+48>>2];d=32-g|0;if((q|0)<=(d|0)){c=H[f+44>>2];if((c|0)==(w|0)){d=0;break e}H[p>>2]=H[c>>2]<>>32-q;b=q+H[f+48>>2]|0;H[f+48>>2]=b;if((b|0)!=32){break o}H[f+48>>2]=0;H[f+44>>2]=c+4;break o}l=H[f+44>>2];b=l+4|0;if((w|0)==(b|0)){d=0;break e}c=H[l>>2];H[f+44>>2]=b;b=q-d|0;H[f+48>>2]=b;H[p>>2]=H[l+4>>2]>>>32-b|c<>>32-q}c=H[o>>2]<<2;b=c+t|0;H[b>>2]=H[b>>2]|H[c+H[r>>2]>>2];a=a+1|0;if(a>>>0>2]){continue}break}}j=0;a=H[h+16>>2];p:{if((a|0)==H[h+20>>2]){break p}while(1){g=H[h+28>>2];l=N(j,20)+a|0;i=H[l>>2];if(!I[i+84|0]){g=H[H[i+68>>2]+(g<<2)>>2]}if(K[i+80>>2]<=g>>>0){break p}d=H[f+92>>2]+(H[l+4>>2]<<2)|0;c=H[l+12>>2];b=d;q:{if(c>>>0>3){break q}a=0;b=H[h+12>>2];if(!H[l+16>>2]){break q}while(1){b=qa(b,d+(a<<2)|0,c);c=H[l+12>>2];b=b+c|0;a=a+1|0;if(a>>>0>2]){continue}break}b=H[h+12>>2]}a=H[i+40>>2];qa(H[H[i>>2]>>2]+N(a,g)|0,b,a);j=j+1|0;a=H[h+16>>2];if(j>>>0<(H[h+20>>2]-a|0)/20>>>0){continue}break}}H[h+28>>2]=H[h+28>>2]+1;H[f+8>>2]=H[f+8>>2]+1;s=s+1|0;if((m|0)!=(s|0)){continue}break}}a=H[e+28>>2];if(a){continue}break}d=1}H[e+28>>2]=0;g=H[e+16>>2];a=H[e+12>>2];b=g-a|0;if(b>>>0>=9){while(1){oa(H[a>>2]);a=H[e+12>>2]+4|0;H[e+12>>2]=a;g=H[e+16>>2];b=g-a|0;if(b>>>0>8){continue}break}}c=170;r:{switch((b>>>2|0)-1|0){case 1:c=341;case 0:H[e+24>>2]=c;break;default:break r}}s:{if((a|0)==(g|0)){break s}while(1){oa(H[a>>2]);a=a+4|0;if((g|0)!=(a|0)){continue}break}b=H[e+16>>2];a=H[e+12>>2];if((b|0)==(a|0)){break s}H[e+16>>2]=b+((a-b|0)+3&-4)}a=H[e+8>>2];if(a){oa(a)}ca=e+32|0;j=d;break b}sa();v()}sa();v()}}return j}function $c(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0;h=ca-32|0;ca=h;g=H[H[a+4>>2]+44>>2];c=H[a+8>>2];d=H[c>>2];c=H[c+4>>2];H[h+24>>2]=0;H[h+16>>2]=0;H[h+20>>2]=0;d=(c-d>>2>>>0)/3|0;c=H[g+96>>2];f=(H[g+100>>2]-c|0)/12|0;a:{if(d>>>0>f>>>0){e=d-f|0;i=H[g+104>>2];c=H[g+100>>2];if(e>>>0<=(i-c|0)/12>>>0){b:{if(!e){break b}d=c;f=N(e,12)-12|0;i=((f>>>0)/12|0)+1&3;if(i){while(1){l=H[h+20>>2];H[d>>2]=H[h+16>>2];H[d+4>>2]=l;H[d+8>>2]=H[h+24>>2];d=d+12|0;j=j+1|0;if((i|0)!=(j|0)){continue}break}}c=N(e,12)+c|0;if(f>>>0<36){break b}while(1){f=H[h+20>>2];H[d>>2]=H[h+16>>2];H[d+4>>2]=f;H[d+8>>2]=H[h+24>>2];H[d+20>>2]=H[h+24>>2];f=H[h+20>>2];H[d+12>>2]=H[h+16>>2];H[d+16>>2]=f;H[d+32>>2]=H[h+24>>2];f=H[h+20>>2];H[d+24>>2]=H[h+16>>2];H[d+28>>2]=f;f=H[h+20>>2];H[d+36>>2]=H[h+16>>2];H[d+40>>2]=f;H[d+44>>2]=H[h+24>>2];d=d+48|0;if((d|0)!=(c|0)){continue}break}}H[g+100>>2]=c;break a}c:{f=H[g+96>>2];n=(c-f|0)/12|0;d=n+e|0;if(d>>>0<357913942){f=(i-f|0)/12|0;i=f<<1;i=f>>>0>=178956970?357913941:d>>>0>>0?i:d;if(i){if(i>>>0>=357913942){break c}l=pa(N(i,12))}f=N(n,12)+l|0;d=f;e=N(e,12);n=e-12|0;q=((n>>>0)/12|0)+1&3;if(q){while(1){r=H[h+20>>2];H[d>>2]=H[h+16>>2];H[d+4>>2]=r;H[d+8>>2]=H[h+24>>2];d=d+12|0;j=j+1|0;if((q|0)!=(j|0)){continue}break}}e=e+f|0;if(n>>>0>=36){while(1){j=H[h+20>>2];H[d>>2]=H[h+16>>2];H[d+4>>2]=j;H[d+8>>2]=H[h+24>>2];H[d+20>>2]=H[h+24>>2];j=H[h+20>>2];H[d+12>>2]=H[h+16>>2];H[d+16>>2]=j;H[d+32>>2]=H[h+24>>2];j=H[h+20>>2];H[d+24>>2]=H[h+16>>2];H[d+28>>2]=j;j=H[h+20>>2];H[d+36>>2]=H[h+16>>2];H[d+40>>2]=j;H[d+44>>2]=H[h+24>>2];d=d+48|0;if((e|0)!=(d|0)){continue}break}}j=H[g+96>>2];if((j|0)!=(c|0)){while(1){c=c-12|0;n=H[c+4>>2];f=f-12|0;d=f;H[d>>2]=H[c>>2];H[d+4>>2]=n;H[d+8>>2]=H[c+8>>2];if((c|0)!=(j|0)){continue}break}c=H[g+96>>2]}H[g+104>>2]=N(i,12)+l;H[g+100>>2]=e;H[g+96>>2]=f;if(c){oa(c)}break a}sa();v()}wa();v()}if(d>>>0>=f>>>0){break a}H[g+100>>2]=c+N(d,12)}d:{if(H[a+216>>2]==H[a+220>>2]){j=H[a+4>>2];c=H[j+44>>2];d=H[c+100>>2];f=H[c+96>>2];if((d|0)!=(f|0)){c=(d-f|0)/12|0;o=c>>>0<=1?1:c;c=0;while(1){d=H[a+8>>2];i=f+N(c,12)|0;g=N(c,3);e:{f:{if((g|0)==-1){e=H[(H[d>>2]+(g<<2)|0)+4>>2];k=-1;g=1;break f}e=-1;k=H[H[d>>2]+(g<<2)>>2];l=g+1|0;if((l|0)==-1){g=0;break f}e=H[H[d>>2]+(l<<2)>>2];g=g+2|0;m=-1;if((g|0)==-1){break e}}m=H[H[d>>2]+(g<<2)>>2]}H[i+8>>2]=m;H[i+4>>2]=e;H[i>>2]=k;c=c+1|0;if((o|0)!=(c|0)){continue}break}}H[H[j+4>>2]+80>>2]=b;c=1;break d}d=0;H[h+24>>2]=0;H[h+16>>2]=0;H[h+20>>2]=0;l=H[a+8>>2];c=H[l>>2];g=H[l+4>>2];H[h+8>>2]=0;H[h>>2]=0;H[h+4>>2]=0;b=0;g:{h:{i:{j:{k:{l:{if((c|0)!=(g|0)){c=g-c|0;if((c|0)<0){break l}b=pa(c);H[h>>2]=b;H[h+8>>2]=(c&-4)+b;u=h,w=ra(b,0,c)+c|0,H[u+4>>2]=w}c=H[l+24>>2];if((H[l+28>>2]-c|0)<4){break h}f=0;while(1){g=H[(p<<2)+c>>2];m:{if((g|0)==-1){break m}n:{if(H[H[a+120>>2]+(p>>>3&536870908)>>2]>>>p&1){break n}n=H[a+216>>2];c=H[a+220>>2];if((n|0)==(c|0)){break n}e=g+2|0;i=(g>>>0)%3|0;q=i?g-1|0:e;c=(c-n|0)/144|0;r=c>>>0<=1?1:c;j=0;t=(i|0)!=0|(e|0)!=-1;while(1){s=g<<2;i=N(j,144)+n|0;c=H[s+H[H[i+68>>2]>>2]>>2];o:{if(!(H[H[i+16>>2]+(c>>>3&536870908)>>2]>>>c&1)){break o}c=-1;p:{if(!t){break p}e=H[H[l+12>>2]+(q<<2)>>2];c=-1;if((e|0)==-1){break p}c=e-1|0;if((e>>>0)%3|0){break p}c=e+2|0}if((g|0)==(c|0)){break o}e=s;s=H[i+32>>2];i=H[e+s>>2];while(1){e=0;if((c|0)==-1){break g}if((i|0)!=H[s+(c<<2)>>2]){g=c;break n}q:{r:{if((c>>>0)%3|0){e=c-1|0;break r}e=c+2|0;m=-1;if((e|0)==-1){break q}}c=H[H[l+12>>2]+(e<<2)>>2];m=-1;if((c|0)==-1){break q}m=c-1|0;if((c>>>0)%3|0){break q}m=c+2|0}c=m;if((g|0)!=(c|0)){continue}break}}j=j+1|0;if((r|0)!=(j|0)){continue}break}}i=k-f|0;e=i>>2;H[(g<<2)+b>>2]=e;s:{if(k>>>0>>0){H[k>>2]=g;k=k+4|0;H[h+20>>2]=k;break s}c=e+1|0;if(c>>>0>=1073741824){break k}d=o-f|0;k=d>>>1|0;c=d>>>0>=2147483644?1073741823:c>>>0>>0?k:c;if(c){if(c>>>0>=1073741824){break j}d=pa(c<<2)}else{d=0}e=d+(e<<2)|0;H[e>>2]=g;m=c<<2;c=va(d,f,i);o=m+c|0;H[h+24>>2]=o;k=e+4|0;H[h+20>>2]=k;H[h+16>>2]=c;if(f){oa(f);l=H[a+8>>2]}f=c}if((g|0)==-1){break m}t:{if((g>>>0)%3|0){c=g-1|0;break t}c=g+2|0;if((c|0)==-1){break m}}c=H[H[l+12>>2]+(c<<2)>>2];if((c|0)==-1){break m}c=c+((c>>>0)%3|0?-1:2)|0;if((c|0)==-1){break m}e=g;if((c|0)==(g|0)){break m}while(1){i=c;u:{v:{c=H[a+220>>2];j=H[a+216>>2];if((c|0)==(j|0)){break v}c=(c-j|0)/144|0;n=c>>>0<=1?1:c;c=0;while(1){q=H[(j+N(c,144)|0)+32>>2];r=i<<2;if(H[q+r>>2]==H[q+(e<<2)>>2]){c=c+1|0;if((n|0)!=(c|0)){continue}break v}break}j=k-d|0;e=j>>2;H[b+r>>2]=e;if(k>>>0>>0){H[k>>2]=i;k=k+4|0;H[h+20>>2]=k;f=d;break u}c=e+1|0;if(c>>>0>=1073741824){break i}f=o-d|0;k=f>>>1|0;c=f>>>0>=2147483644?1073741823:c>>>0>>0?k:c;if(c){if(c>>>0>=1073741824){break j}f=pa(c<<2)}else{f=0}e=f+(e<<2)|0;H[e>>2]=i;m=c<<2;c=va(f,d,j);o=m+c|0;H[h+24>>2]=o;k=e+4|0;H[h+20>>2]=k;H[h+16>>2]=c;if(!d){d=c;break u}oa(d);l=H[a+8>>2];d=c;break u}H[(i<<2)+b>>2]=H[(e<<2)+b>>2]}if((i|0)==-1){break m}w:{if((i>>>0)%3|0){c=i-1|0;break w}c=i+2|0;if((c|0)==-1){break m}}c=H[H[l+12>>2]+(c<<2)>>2];if((c|0)==-1){break m}c=c+((c>>>0)%3|0?-1:2)|0;if((c|0)==-1){break m}e=i;if((c|0)!=(g|0)){continue}break}}p=p+1|0;c=H[l+24>>2];if((p|0)>2]-c>>2){continue}break}break h}sa();v()}sa();v()}wa();v()}sa();v()}i=H[a+4>>2];a=H[i+44>>2];c=H[a+100>>2];a=H[a+96>>2];x:{if((c|0)==(a|0)){break x}g=(c-a|0)/12|0;f=g>>>0<=1?1:g;l=f&1;c=0;if(g>>>0>=2){j=f&-2;g=0;while(1){e=N(c,12);f=e+b|0;o=H[f>>2];p=H[f+4>>2];e=a+e|0;H[e+8>>2]=H[f+8>>2];H[e>>2]=o;H[e+4>>2]=p;e=N(c|1,12);f=e+b|0;o=H[f>>2];p=H[f+4>>2];e=a+e|0;H[e+8>>2]=H[f+8>>2];H[e>>2]=o;H[e+4>>2]=p;c=c+2|0;g=g+2|0;if((j|0)!=(g|0)){continue}break}}if(!l){break x}g=N(c,12);c=g+b|0;f=H[c>>2];e=H[c+4>>2];a=a+g|0;H[a+8>>2]=H[c+8>>2];H[a>>2]=f;H[a+4>>2]=e}H[H[i+4>>2]+80>>2]=k-d>>2;e=1}c=e;if(b){oa(b)}if(!d){break d}H[h+20>>2]=d;oa(d)}ca=h+32|0;return c}function Fj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,I=0,J=0,K=0,L=0,M=0,O=0,P=0;g=ca+-64|0;ca=g;H[a+8>>2]=e;y=a+32|0;f=H[y>>2];d=H[a+36>>2]-f>>2;a:{b:{if(d>>>0>>0){ya(y,e-d|0);H[g+56>>2]=0;H[g+60>>2]=0;H[g+48>>2]=0;H[g+52>>2]=0;H[g+40>>2]=0;H[g+44>>2]=0;H[g+32>>2]=0;H[g+36>>2]=0;H[g+24>>2]=0;H[g+28>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;H[g>>2]=0;break b}if(d>>>0>e>>>0){H[a+36>>2]=f+(e<<2)}H[g+56>>2]=0;H[g+60>>2]=0;H[g+48>>2]=0;H[g+52>>2]=0;H[g+40>>2]=0;H[g+44>>2]=0;H[g+32>>2]=0;H[g+36>>2]=0;H[g+24>>2]=0;H[g+28>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;H[g>>2]=0;d=0;if(!e){break a}}Pa(g+16|0,e,g);h=H[g+28>>2];d=H[g+32>>2]}H[g>>2]=0;d=d-h>>2;c:{if(d>>>0>=e>>>0){if(d>>>0<=e>>>0){break c}H[g+32>>2]=(e<<2)+h;break c}Pa(g+16|12,e-d|0,g)}H[g>>2]=0;f=H[g+40>>2];d=H[g+44>>2]-f>>2;d:{if(d>>>0>=e>>>0){if(d>>>0<=e>>>0){break d}H[g+44>>2]=f+(e<<2);break d}Pa(g+40|0,e-d|0,g)}H[g>>2]=0;f=H[g+52>>2];d=H[g+56>>2]-f>>2;e:{if(d>>>0>=e>>>0){if(d>>>0<=e>>>0){break e}H[g+56>>2]=f+(e<<2);break e}Pa(g+52|0,e-d|0,g)}f:{if(H[a+8>>2]<=0){break f}i=H[g+16>>2];j=H[a+32>>2];h=0;while(1){d=h<<2;f=H[d+i>>2];m=H[a+16>>2];g:{if((f|0)>(m|0)){H[d+j>>2]=m;break g}d=d+j|0;m=H[a+12>>2];if((m|0)>(f|0)){H[d>>2]=m;break g}H[d>>2]=f}h=h+1|0;d=H[a+8>>2];if((h|0)<(d|0)){continue}break}if((d|0)<=0){break f}d=0;while(1){i=d<<2;f=i+c|0;i=H[b+i>>2]+H[j+i>>2]|0;H[f>>2]=i;h:{if((i|0)>H[a+16>>2]){i=i-H[a+20>>2]|0}else{if((i|0)>=H[a+12>>2]){break h}i=i+H[a+20>>2]|0}H[f>>2]=i}d=d+1|0;if((d|0)>2]){continue}break}}G=H[a+52>>2];t=H[a+48>>2];z=pa(16);d=z;H[d>>2]=0;H[d+4>>2]=0;H[d+8>>2]=0;H[d+12>>2]=0;H[g+8>>2]=0;H[g>>2]=0;H[g+4>>2]=0;i:{if(e){if(e>>>0>=1073741824){break i}d=e<<2;r=pa(d);H[g>>2]=r;H[g+8>>2]=d+r;ra(r,0,d)}A=1;d=H[a+56>>2];B=H[d>>2];d=H[d+4>>2]-B|0;j:{if((d|0)<8){break j}w=d>>2;I=(w|0)<=2?2:w;J=w>>>0<=1?1:w;C=e&-2;D=e&1;K=e&-4;E=e&3;F=e-1|0;L=e<<2;M=e>>>0<4;A=0;m=1;while(1){k:{l:{m:{n:{if((m|0)!=(J|0)){o:{p:{f=H[(m<<2)+B>>2];if((f|0)==-1){break p}k=1;d=f+2|0;j=(f>>>0)%3|0;x=j?f-1|0:d;s=1<>2];O=n+(x>>>3&536870908)|0;i=0;P=(j|0)!=0|(d|0)!=-1;d=f;q:{while(1){r:{if(H[n+(d>>>3&536870908)>>2]>>>d&1){break r}j=H[H[H[t+64>>2]+12>>2]+(d<<2)>>2];if((j|0)==-1){break r}l=H[G>>2];h=H[t+28>>2];p=H[l+(H[h+(j<<2)>>2]<<2)>>2];if((p|0)>=(m|0)){break r}q=j+1|0;q=H[l+(H[h+(((q>>>0)%3|0?q:j-2|0)<<2)>>2]<<2)>>2];if((q|0)>=(m|0)){break r}h=H[l+(H[h+(j+((j>>>0)%3|0?-1:2)<<2)>>2]<<2)>>2];if((h|0)>=(m|0)){break r}s:{if(!e){break s}j=H[(g+16|0)+N(i,12)>>2];l=N(e,h);q=N(e,q);p=N(e,p);h=0;o=0;if(F){while(1){H[j+(h<<2)>>2]=(H[(h+l<<2)+c>>2]+H[(h+q<<2)+c>>2]|0)-H[(h+p<<2)+c>>2];u=h|1;H[j+(u<<2)>>2]=(H[(l+u<<2)+c>>2]+H[(q+u<<2)+c>>2]|0)-H[(p+u<<2)+c>>2];h=h+2|0;o=o+2|0;if((C|0)!=(o|0)){continue}break}}if(!D){break s}H[j+(h<<2)>>2]=(H[(h+l<<2)+c>>2]+H[(h+q<<2)+c>>2]|0)-H[(h+p<<2)+c>>2]}j=4;i=i+1|0;if((i|0)==4){break q}}t:{if(k&1){h=d-2|0;j=d+1|0;d=-1;j=(j>>>0)%3|0?j:h;if((j|0)==-1|H[n+(j>>>3&536870908)>>2]>>>j&1){break t}j=H[H[H[t+64>>2]+12>>2]+(j<<2)>>2];if((j|0)==-1){break t}d=j+1|0;d=(d>>>0)%3|0?d:j-2|0;break t}u:{if((d>>>0)%3|0){h=d-1|0;break u}h=d+2|0;d=-1;if((h|0)==-1){break t}}d=-1;if(H[n+(h>>>3&536870908)>>2]>>>h&1){break t}j=H[H[H[t+64>>2]+12>>2]+(h<<2)>>2];if((j|0)==-1){break t}if((j>>>0)%3|0){d=j-1|0;break t}d=j+2|0}v:{if((d|0)==(f|0)){break v}if((d|0)==-1&k){if(!P|s&H[O>>2]){break v}d=H[H[H[t+64>>2]+12>>2]+(x<<2)>>2];if((d|0)==-1){break v}k=0;d=(d>>>0)%3|0?d-1|0:d+2|0}if((d|0)!=-1){continue}}break}j=i;if((j|0)<=0){break p}}if(e){ra(r,0,L)}d=j-1|0;q=(d<<2)+z|0;d=N(d,12)+a|0;u=d;x=H[d- -64>>2];k=0;d=H[g>>2];f=0;while(1){i=H[q>>2];H[q>>2]=i+1;if(i>>>0>=x>>>0){break j}w:{if(H[H[u+60>>2]+(i>>>3&536870908)>>2]>>>i&1){break w}f=f+1|0;if(!e){break w}n=H[(g+16|0)+N(k,12)>>2];i=0;h=0;p=0;if(!M){while(1){l=h<<2;o=l+d|0;H[o>>2]=H[l+n>>2]+H[o>>2];o=l|4;s=o+d|0;H[s>>2]=H[n+o>>2]+H[s>>2];o=l|8;s=o+d|0;H[s>>2]=H[n+o>>2]+H[s>>2];l=l|12;o=l+d|0;H[o>>2]=H[l+n>>2]+H[o>>2];h=h+4|0;p=p+4|0;if((K|0)!=(p|0)){continue}break}}if(!E){break w}while(1){l=h<<2;p=l+d|0;H[p>>2]=H[l+n>>2]+H[p>>2];h=h+1|0;i=i+1|0;if((E|0)!=(i|0)){continue}break}}k=k+1|0;if((k|0)!=(j|0)){continue}break}i=N(e,m);if(!f){break o}if(!e){break l}h=0;d=0;if(F){break n}break m}i=N(e,m)}if(H[a+8>>2]<=0){break k}k=(N(m-1|0,e)<<2)+c|0;j=H[y>>2];h=0;while(1){d=h<<2;f=H[d+k>>2];n=H[a+16>>2];x:{if((f|0)>(n|0)){H[d+j>>2]=n;break x}d=d+j|0;n=H[a+12>>2];if((n|0)>(f|0)){H[d>>2]=n;break x}H[d>>2]=f}h=h+1|0;f=H[a+8>>2];if((h|0)<(f|0)){continue}break}d=0;if((f|0)<=0){break k}f=i<<2;h=f+c|0;k=b+f|0;while(1){i=d<<2;f=i+h|0;i=H[i+k>>2]+H[j+i>>2]|0;H[f>>2]=i;y:{if((i|0)>H[a+16>>2]){i=i-H[a+20>>2]|0}else{if((i|0)>=H[a+12>>2]){break y}i=i+H[a+20>>2]|0}H[f>>2]=i}d=d+1|0;if((d|0)>2]){continue}break}break k}Ca();v()}while(1){j=h<<2;k=j+r|0;H[k>>2]=H[k>>2]/(f|0);j=(j|4)+r|0;H[j>>2]=H[j>>2]/(f|0);h=h+2|0;d=d+2|0;if((C|0)!=(d|0)){continue}break}}if(!D){break l}d=(h<<2)+r|0;H[d>>2]=H[d>>2]/(f|0)}if(H[a+8>>2]<=0){break k}j=H[y>>2];h=0;while(1){d=h<<2;f=H[d+r>>2];k=H[a+16>>2];z:{if((f|0)>(k|0)){H[d+j>>2]=k;break z}d=d+j|0;k=H[a+12>>2];if((k|0)>(f|0)){H[d>>2]=k;break z}H[d>>2]=f}h=h+1|0;f=H[a+8>>2];if((h|0)<(f|0)){continue}break}d=0;if((f|0)<=0){break k}f=i<<2;h=f+c|0;k=b+f|0;while(1){i=d<<2;f=i+h|0;i=H[i+k>>2]+H[j+i>>2]|0;H[f>>2]=i;A:{if((i|0)>H[a+16>>2]){i=i-H[a+20>>2]|0}else{if((i|0)>=H[a+12>>2]){break A}i=i+H[a+20>>2]|0}H[f>>2]=i}d=d+1|0;if((d|0)>2]){continue}break}}m=m+1|0;A=(w|0)<=(m|0);if((m|0)!=(I|0)){continue}break}}a=H[g>>2];if(a){oa(a)}oa(z);a=H[g+52>>2];if(a){H[g+56>>2]=a;oa(a)}a=H[g+40>>2];if(a){H[g+44>>2]=a;oa(a)}a=H[g+28>>2];if(a){H[g+32>>2]=a;oa(a)}a=H[g+16>>2];if(a){H[g+20>>2]=a;oa(a)}ca=g- -64|0;return A|0}sa();v()}function oj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,I=0,J=0,K=0,L=0,M=0;h=ca+-64|0;ca=h;H[a+8>>2]=e;x=a+32|0;f=H[x>>2];d=H[a+36>>2]-f>>2;a:{b:{if(d>>>0>>0){ya(x,e-d|0);H[h+56>>2]=0;H[h+60>>2]=0;H[h+48>>2]=0;H[h+52>>2]=0;H[h+40>>2]=0;H[h+44>>2]=0;H[h+32>>2]=0;H[h+36>>2]=0;H[h+24>>2]=0;H[h+28>>2]=0;H[h+16>>2]=0;H[h+20>>2]=0;H[h>>2]=0;break b}if(d>>>0>e>>>0){H[a+36>>2]=f+(e<<2)}H[h+56>>2]=0;H[h+60>>2]=0;H[h+48>>2]=0;H[h+52>>2]=0;H[h+40>>2]=0;H[h+44>>2]=0;H[h+32>>2]=0;H[h+36>>2]=0;H[h+24>>2]=0;H[h+28>>2]=0;H[h+16>>2]=0;H[h+20>>2]=0;H[h>>2]=0;d=0;if(!e){break a}}Pa(h+16|0,e,h);i=H[h+28>>2];d=H[h+32>>2]}H[h>>2]=0;d=d-i>>2;c:{if(d>>>0>=e>>>0){if(d>>>0<=e>>>0){break c}H[h+32>>2]=(e<<2)+i;break c}Pa(h+16|12,e-d|0,h)}H[h>>2]=0;f=H[h+40>>2];d=H[h+44>>2]-f>>2;d:{if(d>>>0>=e>>>0){if(d>>>0<=e>>>0){break d}H[h+44>>2]=f+(e<<2);break d}Pa(h+40|0,e-d|0,h)}H[h>>2]=0;f=H[h+52>>2];d=H[h+56>>2]-f>>2;e:{if(d>>>0>=e>>>0){if(d>>>0<=e>>>0){break e}H[h+56>>2]=f+(e<<2);break e}Pa(h+52|0,e-d|0,h)}f:{if(H[a+8>>2]<=0){break f}g=H[h+16>>2];j=H[a+32>>2];i=0;while(1){d=i<<2;f=H[d+g>>2];m=H[a+16>>2];g:{if((f|0)>(m|0)){H[d+j>>2]=m;break g}d=d+j|0;m=H[a+12>>2];if((m|0)>(f|0)){H[d>>2]=m;break g}H[d>>2]=f}i=i+1|0;d=H[a+8>>2];if((i|0)<(d|0)){continue}break}if((d|0)<=0){break f}d=0;while(1){g=d<<2;f=g+c|0;g=H[b+g>>2]+H[g+j>>2]|0;H[f>>2]=g;h:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break h}g=g+H[a+20>>2]|0}H[f>>2]=g}d=d+1|0;if((d|0)>2]){continue}break}}G=H[a+52>>2];A=H[a+48>>2];y=pa(16);d=y;H[d>>2]=0;H[d+4>>2]=0;H[d+8>>2]=0;H[d+12>>2]=0;H[h+8>>2]=0;H[h>>2]=0;H[h+4>>2]=0;i:{if(e){if(e>>>0>=1073741824){break i}d=e<<2;t=pa(d);H[h>>2]=t;H[h+8>>2]=d+t;ra(t,0,d)}z=1;d=H[a+56>>2];B=H[d>>2];d=H[d+4>>2]-B|0;j:{if((d|0)<8){break j}w=d>>2;I=(w|0)<=2?2:w;J=w>>>0<=1?1:w;C=e&-2;D=e&1;K=e&-4;E=e&3;F=e-1|0;L=e<<2;M=e>>>0<4;z=0;m=1;while(1){k:{l:{m:{n:{if((m|0)!=(J|0)){o:{p:{f=H[(m<<2)+B>>2];if((f|0)==-1){break p}n=H[A+12>>2];d=f+2|0;g=(f>>>0)%3|0;q=n+((g?f-1|0:d)<<2)|0;j=0;u=(g|0)!=0|(d|0)!=-1;k=1;d=f;q:{while(1){g=H[n+(d<<2)>>2];r:{if((g|0)==-1){break r}l=-1;p=H[G>>2];r=H[A>>2];i=p+(H[r+(g<<2)>>2]<<2)|0;o=g+1|0;o=(o>>>0)%3|0?o:g-2|0;if((o|0)!=-1){l=H[r+(o<<2)>>2]}o=H[i>>2];s:{t:{if((g>>>0)%3|0){i=g-1|0;break t}i=g+2|0;s=-1;if((i|0)==-1){break s}}s=H[r+(i<<2)>>2]}if((m|0)<=(o|0)){break r}i=H[p+(l<<2)>>2];if((i|0)>=(m|0)){break r}l=H[p+(s<<2)>>2];if((l|0)>=(m|0)){break r}g=H[(h+16|0)+N(j,12)>>2];u:{if(!e){break u}l=N(e,l);r=N(e,i);p=N(e,o);i=0;s=0;if(F){while(1){H[g+(i<<2)>>2]=(H[(i+l<<2)+c>>2]+H[(i+r<<2)+c>>2]|0)-H[(i+p<<2)+c>>2];o=i|1;H[g+(o<<2)>>2]=(H[(l+o<<2)+c>>2]+H[(o+r<<2)+c>>2]|0)-H[(o+p<<2)+c>>2];i=i+2|0;s=s+2|0;if((C|0)!=(s|0)){continue}break}}if(!D){break u}H[g+(i<<2)>>2]=(H[(i+l<<2)+c>>2]+H[(i+r<<2)+c>>2]|0)-H[(i+p<<2)+c>>2]}g=4;j=j+1|0;if((j|0)==4){break q}}v:{if(k&1){i=d+1|0;d=(i>>>0)%3|0?i:d-2|0;g=-1;if((d|0)==-1){break v}d=H[n+(d<<2)>>2];g=-1;if((d|0)==-1){break v}g=d+1|0;g=(g>>>0)%3|0?g:d-2|0;break v}w:{if((d>>>0)%3|0){i=d-1|0;break w}i=d+2|0;g=-1;if((i|0)==-1){break v}}d=H[n+(i<<2)>>2];g=-1;if((d|0)==-1){break v}g=d-1|0;if((d>>>0)%3|0){break v}g=d+2|0}d=g;x:{if((f|0)==(d|0)){break x}if((d|0)==-1&k){if(!u){break x}d=H[q>>2];if((d|0)==-1){break x}k=0;d=(d>>>0)%3|0?d-1|0:d+2|0}if((d|0)!=-1){continue}}break}g=j;if((g|0)<=0){break p}}if(e){ra(t,0,L)}d=g-1|0;r=(d<<2)+y|0;d=N(d,12)+a|0;o=d;s=H[d- -64>>2];k=0;d=H[h>>2];f=0;while(1){j=H[r>>2];H[r>>2]=j+1;if(j>>>0>=s>>>0){break j}y:{if(H[H[o+60>>2]+(j>>>3&536870908)>>2]>>>j&1){break y}f=f+1|0;if(!e){break y}j=H[(h+16|0)+N(k,12)>>2];l=0;i=0;p=0;if(!M){while(1){n=i<<2;q=n+d|0;H[q>>2]=H[j+n>>2]+H[q>>2];q=n|4;u=q+d|0;H[u>>2]=H[j+q>>2]+H[u>>2];q=n|8;u=q+d|0;H[u>>2]=H[j+q>>2]+H[u>>2];n=n|12;q=n+d|0;H[q>>2]=H[j+n>>2]+H[q>>2];i=i+4|0;p=p+4|0;if((K|0)!=(p|0)){continue}break}}if(!E){break y}while(1){n=i<<2;p=n+d|0;H[p>>2]=H[j+n>>2]+H[p>>2];i=i+1|0;l=l+1|0;if((E|0)!=(l|0)){continue}break}}k=k+1|0;if((k|0)!=(g|0)){continue}break}g=N(e,m);if(!f){break o}if(!e){break l}i=0;d=0;if(F){break n}break m}g=N(e,m)}if(H[a+8>>2]<=0){break k}k=(N(m-1|0,e)<<2)+c|0;j=H[x>>2];i=0;while(1){d=i<<2;f=H[d+k>>2];l=H[a+16>>2];z:{if((f|0)>(l|0)){H[d+j>>2]=l;break z}d=d+j|0;l=H[a+12>>2];if((l|0)>(f|0)){H[d>>2]=l;break z}H[d>>2]=f}i=i+1|0;f=H[a+8>>2];if((i|0)<(f|0)){continue}break}d=0;if((f|0)<=0){break k}f=g<<2;i=f+c|0;k=b+f|0;while(1){g=d<<2;f=g+i|0;g=H[g+k>>2]+H[g+j>>2]|0;H[f>>2]=g;A:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break A}g=g+H[a+20>>2]|0}H[f>>2]=g}d=d+1|0;if((d|0)>2]){continue}break}break k}Ca();v()}while(1){j=i<<2;k=j+t|0;H[k>>2]=H[k>>2]/(f|0);j=(j|4)+t|0;H[j>>2]=H[j>>2]/(f|0);i=i+2|0;d=d+2|0;if((C|0)!=(d|0)){continue}break}}if(!D){break l}d=(i<<2)+t|0;H[d>>2]=H[d>>2]/(f|0)}if(H[a+8>>2]<=0){break k}j=H[x>>2];i=0;while(1){d=i<<2;f=H[d+t>>2];k=H[a+16>>2];B:{if((f|0)>(k|0)){H[d+j>>2]=k;break B}d=d+j|0;k=H[a+12>>2];if((k|0)>(f|0)){H[d>>2]=k;break B}H[d>>2]=f}i=i+1|0;f=H[a+8>>2];if((i|0)<(f|0)){continue}break}d=0;if((f|0)<=0){break k}f=g<<2;i=f+c|0;k=b+f|0;while(1){g=d<<2;f=g+i|0;g=H[g+k>>2]+H[g+j>>2]|0;H[f>>2]=g;C:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break C}g=g+H[a+20>>2]|0}H[f>>2]=g}d=d+1|0;if((d|0)>2]){continue}break}}m=m+1|0;z=(w|0)<=(m|0);if((m|0)!=(I|0)){continue}break}}a=H[h>>2];if(a){oa(a)}oa(y);a=H[h+52>>2];if(a){H[h+56>>2]=a;oa(a)}a=H[h+40>>2];if(a){H[h+44>>2]=a;oa(a)}a=H[h+28>>2];if(a){H[h+32>>2]=a;oa(a)}a=H[h+16>>2];if(a){H[h+20>>2]=a;oa(a)}ca=h- -64|0;return z|0}sa();v()}function Od(a,b,c,d,e){var f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0;i=ca-80|0;ca=i;H[i+76>>2]=b;y=i+55|0;r=i+56|0;a:{b:{c:{d:{e:while(1){h=b;if((o^2147483647)<(f|0)){break d}o=f+o|0;f:{g:{h:{f=h;g=I[f|0];if(g){while(1){i:{b=g&255;j:{if(!b){b=f;break j}if((b|0)!=37){break i}g=f;while(1){if(I[g+1|0]!=37){b=g;break j}f=f+1|0;j=I[g+2|0];b=g+2|0;g=b;if((j|0)==37){continue}break}}f=f-h|0;x=o^2147483647;if((f|0)>(x|0)){break d}if(a){Ab(a,h,f)}if(f){continue e}H[i+76>>2]=b;f=b+1|0;p=-1;if(!(I[b+2|0]!=36|F[b+1|0]-48>>>0>=10)){p=F[b+1|0]-48|0;s=1;f=b+3|0}H[i+76>>2]=f;n=0;g=F[f|0];b=g-32|0;k:{if(b>>>0>31){k=f;break k}k=f;b=1<>2]=k;n=b|n;g=F[f+1|0];b=g-32|0;if(b>>>0>=32){break k}f=k;b=1<>>0>=10)){H[((F[k+1|0]<<2)+e|0)-192>>2]=10;g=k+3|0;s=1;b=H[((F[k+1|0]<<3)+d|0)-384>>2];break m}if(s){break h}g=k+1|0;if(!a){H[i+76>>2]=g;s=0;q=0;break l}b=H[c>>2];H[c>>2]=b+4;s=0;b=H[b>>2]}H[i+76>>2]=g;q=b;if((b|0)>=0){break l}q=0-q|0;n=n|8192;break l}q=Nd(i+76|0);if((q|0)<0){break d}g=H[i+76>>2]}f=0;m=-1;n:{if(I[g|0]!=46){b=g;u=0;break n}if(I[g+1|0]==42){o:{if(!(I[g+3|0]!=36|F[g+2|0]-48>>>0>=10)){H[((F[g+2|0]<<2)+e|0)-192>>2]=10;b=g+4|0;m=H[((F[g+2|0]<<3)+d|0)-384>>2];break o}if(s){break h}b=g+2|0;m=0;if(!a){break o}j=H[c>>2];H[c>>2]=j+4;m=H[j>>2]}H[i+76>>2]=b;u=(m^-1)>>>31|0;break n}H[i+76>>2]=g+1;m=Nd(i+76|0);b=H[i+76>>2];u=1}while(1){g=f;k=28;l=b;f=F[b|0];if(f-123>>>0<4294967238){break c}b=l+1|0;f=I[(f+N(g,58)|0)+13711|0];if(f-1>>>0<8){continue}break}H[i+76>>2]=b;p:{q:{if((f|0)!=27){if(!f){break c}if((p|0)>=0){H[(p<<2)+e>>2]=f;j=(p<<3)+d|0;f=H[j+4>>2];H[i+64>>2]=H[j>>2];H[i+68>>2]=f;break q}if(!a){break f}Md(i- -64|0,f,c);break p}if((p|0)>=0){break c}}f=0;if(!a){continue e}}j=n&-65537;n=n&8192?j:n;p=0;t=1132;k=r;r:{s:{t:{u:{v:{w:{x:{y:{z:{A:{B:{C:{D:{E:{F:{G:{f=F[l|0];f=g?(f&15)==3?f&-33:f:f;switch(f-88|0){case 11:break r;case 9:case 13:case 14:case 15:break s;case 27:break x;case 12:case 17:break A;case 23:break B;case 0:case 32:break C;case 24:break D;case 22:break E;case 29:break F;case 1:case 2:case 3:case 4:case 5:case 6:case 7:case 8:case 10:case 16:case 18:case 19:case 20:case 21:case 25:case 26:case 28:case 30:case 31:break g;default:break G}}H:{switch(f-65|0){case 0:case 4:case 5:case 6:break s;case 2:break v;case 1:case 3:break g;default:break H}}if((f|0)==83){break w}break g}l=H[i+64>>2];j=H[i+68>>2];t=1132;break z}f=0;I:{switch(g&255){case 0:H[H[i+64>>2]>>2]=o;continue e;case 1:H[H[i+64>>2]>>2]=o;continue e;case 2:h=H[i+64>>2];H[h>>2]=o;H[h+4>>2]=o>>31;continue e;case 3:G[H[i+64>>2]>>1]=o;continue e;case 4:F[H[i+64>>2]]=o;continue e;case 6:H[H[i+64>>2]>>2]=o;continue e;case 7:break I;default:continue e}}h=H[i+64>>2];H[h>>2]=o;H[h+4>>2]=o>>31;continue e}m=m>>>0<=8?8:m;n=n|8;f=120}h=r;l=H[i+64>>2];j=H[i+68>>2];if(l|j){z=f&32;while(1){h=h-1|0;F[h|0]=z|I[(l&15)+14240|0];w=!j&l>>>0>15|(j|0)!=0;g=j;j=g>>>4|0;l=(g&15)<<28|l>>>4;if(w){continue}break}}if(!(H[i+64>>2]|H[i+68>>2])|!(n&8)){break y}t=(f>>>4|0)+1132|0;p=2;break y}f=r;h=H[i+68>>2];j=h;l=H[i+64>>2];if(h|l){while(1){f=f-1|0;F[f|0]=l&7|48;g=!j&l>>>0>7|(j|0)!=0;h=j;j=h>>>3|0;l=(h&7)<<29|l>>>3;if(g){continue}break}}h=f;if(!(n&8)){break y}f=r-h|0;m=(f|0)<(m|0)?m:f+1|0;break y}l=H[i+64>>2];h=H[i+68>>2];j=h;if((h|0)<0){f=0-(((l|0)!=0)+j|0)|0;j=f;l=0-l|0;H[i+64>>2]=l;H[i+68>>2]=f;p=1;t=1132;break z}if(n&2048){p=1;t=1133;break z}p=n&1;t=p?1134:1132}g=r;if(j){while(1){g=g-1|0;f=j;w=Tj(l,f,10,0);h=da;A=g,B=l-Rj(w,h,10,0)|48,F[A|0]=B;l=w;j=h;if(f>>>0>9){continue}break}}h=l;if(h){while(1){g=g-1|0;f=(h>>>0)/10|0;F[g|0]=h-N(f,10)|48;j=h>>>0>9;h=f;if(j){continue}break}}h=g}if((m|0)<0?u:0){break d}n=u?n&-65537:n;f=H[i+64>>2];j=H[i+68>>2];if(!(m|(f|j)!=0)){h=r;m=0;break g}f=!(f|j)+(r-h|0)|0;m=(f|0)<(m|0)?m:f;break g}g=m>>>0>=2147483647?2147483647:m;k=g;n=(g|0)!=0;h=H[i+64>>2];h=h?h:1614;f=h;J:{K:{L:{M:{if(!(f&3)|!g){break M}while(1){if(!I[f|0]){break L}k=k-1|0;n=(k|0)!=0;f=f+1|0;if(!(f&3)){break M}if(k){continue}break}}if(!n){break K}if(!(!I[f|0]|k>>>0<4)){while(1){l=H[f>>2];if((l^-1)&l-16843009&-2139062144){break L}f=f+4|0;k=k-4|0;if(k>>>0>3){continue}break}}if(!k){break K}}while(1){if(!I[f|0]){break J}f=f+1|0;k=k-1|0;if(k){continue}break}}f=0}f=f?f-h|0:g;k=f+h|0;if((m|0)>=0){n=j;m=f;break g}n=j;m=f;if(I[k|0]){break d}break g}if(m){g=H[i+64>>2];break u}f=0;ib(a,32,q,0,n);break t}H[i+12>>2]=0;H[i+8>>2]=H[i+64>>2];g=i+8|0;H[i+64>>2]=g;m=-1}f=0;N:{while(1){h=H[g>>2];if(!h){break N}j=Ld(i+4|0,h);h=(j|0)<0;if(!(h|j>>>0>m-f>>>0)){g=g+4|0;f=f+j|0;if(m>>>0>f>>>0){continue}break N}break}if(h){break b}}k=61;if((f|0)<0){break c}ib(a,32,q,f,n);if(!f){f=0;break t}k=0;g=H[i+64>>2];while(1){h=H[g>>2];if(!h){break t}h=Ld(i+4|0,h);k=h+k|0;if(k>>>0>f>>>0){break t}Ab(a,i+4|0,h);g=g+4|0;if(f>>>0>k>>>0){continue}break}}ib(a,32,q,f,n^8192);f=(f|0)<(q|0)?q:f;continue e}if((m|0)<0?u:0){break d}v()}F[i+55|0]=H[i+64>>2];m=1;h=y;n=j;break g}g=I[f+1|0];f=f+1|0;continue}}if(a){break a}if(!s){break f}f=1;while(1){a=H[(f<<2)+e>>2];if(a){Md((f<<3)+d|0,a,c);o=1;f=f+1|0;if((f|0)!=10){continue}break a}break}o=1;if(f>>>0>=10){break a}while(1){if(H[(f<<2)+e>>2]){break h}f=f+1|0;if((f|0)!=10){continue}break}break a}k=28;break c}l=k-h|0;j=(m|0)>(l|0)?m:l;if((j|0)>(p^2147483647)){break d}k=61;g=j+p|0;f=(g|0)<(q|0)?q:g;if((x|0)<(f|0)){break c}ib(a,32,f,g,n);Ab(a,t,p);ib(a,48,f,g,n^65536);ib(a,48,j,l,0);Ab(a,h,l);ib(a,32,f,g,n^8192);continue}break}o=0;break a}k=61}H[3992]=k}o=-1}ca=i+80|0;return o}function hj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,G=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0;a:{b:{if((e|0)!=2){break b}H[a+8>>2]=2;H[a- -64>>2]=f;M=a+32|0;e=H[M>>2];d=H[a+36>>2]-e|0;c:{if(d>>>0<=7){ya(M,2-(d>>>2|0)|0);break c}if((d|0)==8){break c}H[a+36>>2]=e+8}i=1;d=H[a+56>>2];d=H[d+4>>2]-H[d>>2]|0;if((d|0)<=0){break b}o=a+60|0;d=d>>>2|0;X=d>>>0<=1?1:d;Y=a+68|0;d=0;while(1){f=H[a+56>>2];e=H[f>>2];if(H[f+4>>2]-e>>2>>>0<=d>>>0){break a}k=ca-80|0;ca=k;f=-1;d:{e:{e=H[e+(d<<2)>>2];if((e|0)==-1){break e}i=H[o+32>>2];g=e+1|0;g=(g>>>0)%3|0?g:e-2|0;if((g|0)!=-1){f=H[H[i>>2]+(g<<2)>>2]}p=-1;e=e+((e>>>0)%3|0?-1:2)|0;if((e|0)!=-1){p=H[H[i>>2]+(e<<2)>>2]}i=H[o+36>>2];e=H[i>>2];i=H[i+4>>2]-e>>2;if(i>>>0<=f>>>0|i>>>0<=p>>>0){break e}f:{g:{h:{i:{j:{k:{j=H[e+(p<<2)>>2];f=H[e+(f<<2)>>2];if((j|0)>=(d|0)|(f|0)>=(d|0)){break k}i=(j<<3)+c|0;w=H[i+4>>2];g=(f<<3)+c|0;e=H[g+4>>2];l=H[i>>2];i=H[g>>2];if(!((l|0)!=(i|0)|(e|0)!=(w|0))){H[o+8>>2]=i;H[o+12>>2]=e;break j}p=H[H[o+4>>2]+(d<<2)>>2];H[k+72>>2]=0;H[k+76>>2]=0;g=k- -64|0;H[g>>2]=0;H[g+4>>2]=0;H[k+56>>2]=0;H[k+60>>2]=0;g=H[o>>2];if(!I[g+84|0]){p=H[H[g+68>>2]+(p<<2)>>2]}Sa(g,p,F[g+24|0],k+56|0);p=H[H[o+4>>2]+(f<<2)>>2];H[k+48>>2]=0;H[k+52>>2]=0;H[k+40>>2]=0;H[k+44>>2]=0;H[k+32>>2]=0;H[k+36>>2]=0;g=H[o>>2];if(!I[g+84|0]){p=H[H[g+68>>2]+(p<<2)>>2]}Sa(g,p,F[g+24|0],k+32|0);p=H[H[o+4>>2]+(j<<2)>>2];H[k+24>>2]=0;H[k+28>>2]=0;H[k+16>>2]=0;H[k+20>>2]=0;H[k+8>>2]=0;H[k+12>>2]=0;g=H[o>>2];if(!I[g+84|0]){p=H[H[g+68>>2]+(p<<2)>>2]}Sa(g,p,F[g+24|0],k+8|0);g=H[k+16>>2];n=H[k+40>>2];x=g-n|0;N=H[k+44>>2];g=H[k+20>>2]-(N+(g>>>0>>0)|0)|0;E=g;j=Rj(x,g,x,g);q=da;g=H[k+8>>2];z=H[k+32>>2];A=g-z|0;O=H[k+36>>2];g=H[k+12>>2]-(O+(g>>>0>>0)|0)|0;G=g;h=j;j=Rj(A,g,A,g);g=h+j|0;h=da+q|0;h=g>>>0>>0?h+1|0:h;j=H[k+24>>2];B=H[k+48>>2];C=j-B|0;P=H[k+52>>2];j=H[k+28>>2]-(P+(j>>>0>>0)|0)|0;J=j;m=g;g=Rj(C,j,C,j);r=m+g|0;h=da+h|0;s=g>>>0>r>>>0?h+1|0:h;if(!(s|r)){break k}p=0;D=Tj(-1,2147483647,r,s);f=i>>31;R=f;h=f>>31;Q=i;g=h;q=i^g;i=q-g|0;f=(f^g)-((g>>>0>q>>>0)+g|0)|0;g=f;f=e>>31;S=f;K=e;e=f>>31;q=K^e;m=q-e|0;h=f>>31;e=(h^f)-((e>>>0>q>>>0)+h|0)|0;f=(g|0)==(e|0)&i>>>0>m>>>0|e>>>0>>0;i=f?i:m;j=da;e=f?g:e;if((j|0)==(e|0)&i>>>0>D>>>0|e>>>0>j>>>0){break f}i=H[k+64>>2];T=H[k+68>>2];e=Rj(i-n|0,T-((i>>>0>>0)+N|0)|0,x,E);f=da;g=H[k+56>>2];U=H[k+60>>2];j=Rj(g-z|0,U-((g>>>0>>0)+O|0)|0,A,G);e=j+e|0;h=da+f|0;h=e>>>0>>0?h+1|0:h;f=e;m=H[k+72>>2];V=H[k+76>>2];e=Rj(m-B|0,V-((m>>>0>>0)+P|0)|0,C,J);j=f+e|0;f=da+h|0;q=e>>>0>j>>>0?f+1|0:f;e=l;D=e-Q|0;e=(e>>31)-((e>>>0>>0)+R|0)|0;W=e;l=e>>31;y=l^D;f=y-l|0;h=e>>31;e=(h^e)-((l>>>0>y>>>0)+h|0)|0;h=e;y=w-K|0;e=(w>>31)-((w>>>0>>0)+S|0)|0;w=e;l=f;t=e>>31;u=t^y;L=u-t|0;f=e>>31;e=(f^e)-((t>>>0>u>>>0)+f|0)|0;f=(h|0)==(e|0)&l>>>0>L>>>0|e>>>0>>0;f=Tj(-1,2147483647,f?l:L,f?h:e)>>>0>>0;e=da;if(f&(e|0)<=(q|0)|(e|0)<(q|0)){break f}e=G>>31;f=e;l=e^A;e=l-e|0;f=(f^G)-((f>>>0>l>>>0)+f|0)|0;h=E>>31;t=h^x;u=t-h|0;l=(h^E)-((h>>>0>t>>>0)+h|0)|0;h=(f|0)==(l|0)&e>>>0>u>>>0|f>>>0>l>>>0;e=h?e:u;f=h?f:l;h=J>>31;L=e;t=h^C;u=t-h|0;l=(h^J)-((h>>>0>t>>>0)+h|0)|0;e=(f|0)==(l|0)&e>>>0>u>>>0|f>>>0>l>>>0;f=Tj(-1,2147483647,e?L:u,e?f:l)>>>0>>0;e=da;if(f&(e|0)<=(q|0)|(e|0)<(q|0)){break f}l=1;e=0;f=n;n=Sj(Rj(j,q,x,E),da,r,s);f=f+n|0;h=da+N|0;h=f>>>0>>0?h+1|0:h;n=i-f|0;f=T-((f>>>0>i>>>0)+h|0)|0;n=Rj(n,f,n,f);x=da;f=g;h=Sj(Rj(j,q,A,G),da,r,s);i=h+z|0;g=da+O|0;g=h>>>0>i>>>0?g+1|0:g;h=f-i|0;f=U-((f>>>0>>0)+g|0)|0;g=Rj(h,f,h,f);i=g+n|0;f=da+x|0;f=g>>>0>i>>>0?f+1|0:f;n=i;g=Sj(Rj(j,q,C,J),da,r,s);i=g+B|0;h=da+P|0;h=g>>>0>i>>>0?h+1|0:h;g=m-i|0;i=V-((i>>>0>m>>>0)+h|0)|0;m=Rj(g,i,g,i);i=m+n|0;g=da+f|0;f=Rj(i,i>>>0>>0?g+1|0:g,r,s);i=da;m=i;if(!i&f>>>0<=1){break i}h=f;while(1){g=e<<1|l>>>31;l=l<<1;e=g;n=!i&h>>>0>7|(i|0)!=0;h=(i&3)<<30|h>>>2;i=i>>>2|0;if(n){continue}break}break h}if((d|0)>(f|0)){e=f<<1}else{if((d|0)<=0){H[o+8>>2]=0;H[o+12>>2]=0;break j}e=(d<<1)-2|0}e=(e<<2)+c|0;H[o+8>>2]=H[e>>2];H[o+12>>2]=H[e+4>>2]}p=1;break f}e=m;l=f;if(f-1|0){break g}}while(1){i=Tj(f,m,l,e);h=e+da|0;e=i+l|0;h=e>>>0>>0?h+1|0:h;l=(h&1)<<31|e>>>1;e=h>>>1|0;i=Rj(l,e,l,e);g=da;if((m|0)==(g|0)&f>>>0>>0|g>>>0>m>>>0){continue}break}}f=H[o+20>>2];if(!f){break f}g=f-1|0;h=H[H[o+16>>2]+(g>>>3&536870908)>>2];H[o+20>>2]=g;p=1;f=Rj(j,q,y,w);i=da;n=Rj(r,s,K,S);m=n+f|0;f=da+i|0;f=m>>>0>>0?f+1|0:f;i=Rj(l,e,D,W);g=h>>>g&1;h=g?0-i|0:i;m=h+m|0;n=f;f=da;i=n+(g?0-(f+((i|0)!=0)|0)|0:f)|0;Z=o,_=Sj(m,h>>>0>m>>>0?i+1|0:i,r,s),H[Z+12>>2]=_;f=Rj(j,q,D,W);i=da;j=Rj(r,s,Q,R);f=j+f|0;h=da+i|0;e=Rj(l,e,y,w);i=0-e|0;l=da;h=(f>>>0>>0?h+1|0:h)+(g?l:0-(((e|0)!=0)+l|0)|0)|0;i=g?e:i;f=i+f|0;Z=o,_=Sj(f,f>>>0>>0?h+1|0:h,r,s),H[Z+8>>2]=_}ca=k+80|0;e=p;break d}Ca();v()}i=e;if(!e){return 0}l:{if(H[a+8>>2]<=0){break l}l=H[M>>2];e=0;while(1){f=e<<2;g=H[f+Y>>2];j=H[a+16>>2];m:{if((g|0)>(j|0)){H[f+l>>2]=j;break m}f=f+l|0;j=H[a+12>>2];if((j|0)>(g|0)){H[f>>2]=j;break m}H[f>>2]=g}e=e+1|0;g=H[a+8>>2];if((e|0)<(g|0)){continue}break}f=0;if((g|0)<=0){break l}e=d<<3;j=e+c|0;q=b+e|0;while(1){g=f<<2;e=g+j|0;g=H[g+q>>2]+H[g+l>>2]|0;H[e>>2]=g;n:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break n}g=g+H[a+20>>2]|0}H[e>>2]=g}f=f+1|0;if((f|0)>2]){continue}break}}d=d+1|0;if((X|0)!=(d|0)){continue}break}}return i|0}Ca();v()}function xj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,G=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0;a:{b:{if((e|0)!=2){break b}H[a+8>>2]=2;H[a- -64>>2]=f;M=a+32|0;e=H[M>>2];d=H[a+36>>2]-e|0;c:{if(d>>>0<=7){ya(M,2-(d>>>2|0)|0);break c}if((d|0)==8){break c}H[a+36>>2]=e+8}p=1;d=H[a+56>>2];d=H[d+4>>2]-H[d>>2]|0;if((d|0)<=0){break b}o=a+60|0;d=d>>>2|0;X=d>>>0<=1?1:d;Y=a+68|0;d=0;while(1){e=H[a+56>>2];h=H[e>>2];if(H[e+4>>2]-h>>2>>>0<=d>>>0){break a}k=ca-80|0;ca=k;f=-1;h=H[h+(d<<2)>>2];e=-1;d:{if((h|0)==-1){break d}e=h+1|0;f=(e>>>0)%3|0?e:h-2|0;e=h-1|0;if((h>>>0)%3|0){break d}e=h+2|0}g=H[o+36>>2];h=H[g>>2];e:{f:{g:{h:{i:{g=H[g+4>>2]-h>>2;i=f<<2;f=H[H[o+32>>2]+28>>2];j=H[i+f>>2];if(g>>>0<=j>>>0){break i}e=H[f+(e<<2)>>2];if(e>>>0>=g>>>0){break i}j:{k:{l=H[h+(e<<2)>>2];f=H[h+(j<<2)>>2];if((l|0)>=(d|0)|(f|0)>=(d|0)){break k}h=(l<<3)+c|0;w=H[h+4>>2];g=(f<<3)+c|0;e=H[g+4>>2];j=H[h>>2];h=H[g>>2];if(!((j|0)!=(h|0)|(e|0)!=(w|0))){H[o+8>>2]=h;H[o+12>>2]=e;break j}p=H[H[o+4>>2]+(d<<2)>>2];H[k+72>>2]=0;H[k+76>>2]=0;g=k- -64|0;H[g>>2]=0;H[g+4>>2]=0;H[k+56>>2]=0;H[k+60>>2]=0;g=H[o>>2];if(!I[g+84|0]){p=H[H[g+68>>2]+(p<<2)>>2]}Sa(g,p,F[g+24|0],k+56|0);p=H[H[o+4>>2]+(f<<2)>>2];H[k+48>>2]=0;H[k+52>>2]=0;H[k+40>>2]=0;H[k+44>>2]=0;H[k+32>>2]=0;H[k+36>>2]=0;g=H[o>>2];if(!I[g+84|0]){p=H[H[g+68>>2]+(p<<2)>>2]}Sa(g,p,F[g+24|0],k+32|0);p=H[H[o+4>>2]+(l<<2)>>2];H[k+24>>2]=0;H[k+28>>2]=0;H[k+16>>2]=0;H[k+20>>2]=0;H[k+8>>2]=0;H[k+12>>2]=0;g=H[o>>2];if(!I[g+84|0]){p=H[H[g+68>>2]+(p<<2)>>2]}Sa(g,p,F[g+24|0],k+8|0);g=H[k+16>>2];n=H[k+40>>2];x=g-n|0;N=H[k+44>>2];g=H[k+20>>2]-(N+(g>>>0>>0)|0)|0;E=g;l=Rj(x,g,x,g);q=da;g=H[k+8>>2];z=H[k+32>>2];A=g-z|0;O=H[k+36>>2];g=H[k+12>>2]-(O+(g>>>0>>0)|0)|0;G=g;i=l;l=Rj(A,g,A,g);g=i+l|0;i=da+q|0;i=g>>>0>>0?i+1|0:i;l=H[k+24>>2];B=H[k+48>>2];C=l-B|0;P=H[k+52>>2];l=H[k+28>>2]-(P+(l>>>0>>0)|0)|0;J=l;m=g;g=Rj(C,l,C,l);r=m+g|0;i=da+i|0;s=g>>>0>r>>>0?i+1|0:i;if(!(s|r)){break k}p=0;D=Tj(-1,2147483647,r,s);f=h>>31;R=f;i=f>>31;Q=h;g=i;q=h^g;h=q-g|0;f=(f^g)-((g>>>0>q>>>0)+g|0)|0;g=f;f=e>>31;S=f;K=e;e=f>>31;q=K^e;m=q-e|0;i=f>>31;e=(i^f)-((e>>>0>q>>>0)+i|0)|0;f=(g|0)==(e|0)&h>>>0>m>>>0|e>>>0>>0;h=f?h:m;l=da;e=f?g:e;if((l|0)==(e|0)&h>>>0>D>>>0|e>>>0>l>>>0){break e}h=H[k+64>>2];T=H[k+68>>2];e=Rj(h-n|0,T-((h>>>0>>0)+N|0)|0,x,E);f=da;g=H[k+56>>2];U=H[k+60>>2];l=Rj(g-z|0,U-((g>>>0>>0)+O|0)|0,A,G);e=l+e|0;i=da+f|0;i=e>>>0>>0?i+1|0:i;f=e;m=H[k+72>>2];V=H[k+76>>2];e=Rj(m-B|0,V-((m>>>0>>0)+P|0)|0,C,J);l=f+e|0;f=da+i|0;q=e>>>0>l>>>0?f+1|0:f;e=j;D=e-Q|0;e=(e>>31)-((e>>>0>>0)+R|0)|0;W=e;j=e>>31;y=j^D;f=y-j|0;i=e>>31;e=(i^e)-((j>>>0>y>>>0)+i|0)|0;i=e;y=w-K|0;e=(w>>31)-((w>>>0>>0)+S|0)|0;w=e;j=f;t=e>>31;u=t^y;L=u-t|0;f=e>>31;e=(f^e)-((t>>>0>u>>>0)+f|0)|0;f=(i|0)==(e|0)&j>>>0>L>>>0|e>>>0>>0;f=Tj(-1,2147483647,f?j:L,f?i:e)>>>0>>0;e=da;if(f&(e|0)<=(q|0)|(e|0)<(q|0)){break e}e=G>>31;f=e;j=e^A;e=j-e|0;f=(f^G)-((f>>>0>j>>>0)+f|0)|0;i=E>>31;t=i^x;u=t-i|0;j=(i^E)-((i>>>0>t>>>0)+i|0)|0;i=(f|0)==(j|0)&e>>>0>u>>>0|f>>>0>j>>>0;e=i?e:u;f=i?f:j;i=J>>31;L=e;t=i^C;u=t-i|0;j=(i^J)-((i>>>0>t>>>0)+i|0)|0;e=(f|0)==(j|0)&e>>>0>u>>>0|f>>>0>j>>>0;f=Tj(-1,2147483647,e?L:u,e?f:j)>>>0>>0;e=da;if(f&(e|0)<=(q|0)|(e|0)<(q|0)){break e}j=1;e=0;f=n;n=Sj(Rj(l,q,x,E),da,r,s);f=f+n|0;i=da+N|0;i=f>>>0>>0?i+1|0:i;n=h-f|0;f=T-((f>>>0>h>>>0)+i|0)|0;n=Rj(n,f,n,f);x=da;f=g;i=Sj(Rj(l,q,A,G),da,r,s);h=i+z|0;g=da+O|0;g=h>>>0>>0?g+1|0:g;i=f-h|0;f=U-((f>>>0>>0)+g|0)|0;g=Rj(i,f,i,f);h=g+n|0;f=da+x|0;f=h>>>0>>0?f+1|0:f;n=h;g=Sj(Rj(l,q,C,J),da,r,s);h=g+B|0;i=da+P|0;i=h>>>0>>0?i+1|0:i;g=m-h|0;h=V-((h>>>0>m>>>0)+i|0)|0;m=Rj(g,h,g,h);h=m+n|0;g=da+f|0;f=Rj(h,h>>>0>>0?g+1|0:g,r,s);h=da;m=h;if(!h&f>>>0<=1){break h}i=f;while(1){g=e<<1|j>>>31;j=j<<1;e=g;n=!h&i>>>0>7|(h|0)!=0;i=(h&3)<<30|i>>>2;h=h>>>2|0;if(n){continue}break}break g}if((d|0)>(f|0)){e=f<<1}else{if((d|0)<=0){H[o+8>>2]=0;H[o+12>>2]=0;break j}e=(d<<1)-2|0}e=(e<<2)+c|0;H[o+8>>2]=H[e>>2];H[o+12>>2]=H[e+4>>2]}p=1;break e}Ca();v()}e=m;j=f;if(f-1|0){break f}}while(1){h=Tj(f,m,j,e);i=e+da|0;e=h+j|0;i=e>>>0>>0?i+1|0:i;j=(i&1)<<31|e>>>1;e=i>>>1|0;h=Rj(j,e,j,e);g=da;if((m|0)==(g|0)&f>>>0>>0|g>>>0>m>>>0){continue}break}}f=H[o+20>>2];if(!f){break e}g=f-1|0;i=H[H[o+16>>2]+(g>>>3&536870908)>>2];H[o+20>>2]=g;p=1;f=Rj(l,q,y,w);h=da;n=Rj(r,s,K,S);m=n+f|0;f=da+h|0;f=m>>>0>>0?f+1|0:f;h=Rj(j,e,D,W);g=i>>>g&1;i=g?0-h|0:h;m=i+m|0;n=f;f=da;h=n+(g?0-(f+((h|0)!=0)|0)|0:f)|0;Z=o,_=Sj(m,i>>>0>m>>>0?h+1|0:h,r,s),H[Z+12>>2]=_;f=Rj(l,q,D,W);h=da;l=Rj(r,s,Q,R);f=l+f|0;i=da+h|0;e=Rj(j,e,y,w);h=0-e|0;j=da;i=(f>>>0>>0?i+1|0:i)+(g?j:0-(((e|0)!=0)+j|0)|0)|0;h=g?e:h;f=h+f|0;Z=o,_=Sj(f,f>>>0>>0?i+1|0:i,r,s),H[Z+8>>2]=_}ca=k+80|0;if(!p){return 0}l:{if(H[a+8>>2]<=0){break l}g=H[M>>2];e=0;while(1){f=e<<2;h=H[f+Y>>2];j=H[a+16>>2];m:{if((h|0)>(j|0)){H[f+g>>2]=j;break m}f=f+g|0;j=H[a+12>>2];if((j|0)>(h|0)){H[f>>2]=j;break m}H[f>>2]=h}e=e+1|0;h=H[a+8>>2];if((e|0)<(h|0)){continue}break}f=0;if((h|0)<=0){break l}e=d<<3;j=e+c|0;l=b+e|0;while(1){h=f<<2;e=h+j|0;h=H[h+l>>2]+H[h+g>>2]|0;H[e>>2]=h;n:{if((h|0)>H[a+16>>2]){i=h-H[a+20>>2]|0}else{if((h|0)>=H[a+12>>2]){break n}i=h+H[a+20>>2]|0}H[e>>2]=i}f=f+1|0;if((f|0)>2]){continue}break}}d=d+1|0;if((X|0)!=(d|0)){continue}break}}return p|0}Ca();v()}function $a(a,b){var c=0,d=0,e=0,f=0,g=0;e=ca-16|0;ca=e;H[a+12>>2]=b;H[a+8>>2]=0;H[a>>2]=0;H[a+4>>2]=0;d=a+16|0;H[d>>2]=0;H[d+4>>2]=0;F[d+5|0]=0;F[d+6|0]=0;F[d+7|0]=0;F[d+8|0]=0;F[d+9|0]=0;F[d+10|0]=0;F[d+11|0]=0;F[d+12|0]=0;c=d+16|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+32|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+48|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d- -64|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+80|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+96|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+112|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+128|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+144|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+160|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+176|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+192|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+208|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+224|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+240|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+256|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+272|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+288|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+304|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+320|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+336|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+352|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+368|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+384|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+400|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+416|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+432|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+448|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+464|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c=d+480|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;d=d+496|0;H[d>>2]=0;H[d+4>>2]=0;F[d+5|0]=0;F[d+6|0]=0;F[d+7|0]=0;F[d+8|0]=0;F[d+9|0]=0;F[d+10|0]=0;F[d+11|0]=0;F[d+12|0]=0;H[a+528>>2]=0;H[a+532>>2]=0;F[a+533|0]=0;F[a+534|0]=0;F[a+535|0]=0;F[a+536|0]=0;F[a+537|0]=0;F[a+538|0]=0;F[a+539|0]=0;F[a+540|0]=0;H[a+544>>2]=0;H[a+548>>2]=0;H[a+560>>2]=0;H[a+552>>2]=0;H[a+556>>2]=0;H[a+564>>2]=0;H[a+568>>2]=0;H[a+580>>2]=0;H[a+572>>2]=0;H[a+576>>2]=0;H[a+584>>2]=0;H[a+588>>2]=0;H[a+600>>2]=0;H[a+592>>2]=0;H[a+596>>2]=0;H[a+612>>2]=0;H[a+604>>2]=0;H[a+608>>2]=0;g=a+628|0;a:{b:{if(b){if(b>>>0<1073741824){break b}sa();v()}H[a+616>>2]=0;H[a+620>>2]=0;H[a+624>>2]=0;H[e+8>>2]=0;H[e>>2]=0;H[e+4>>2]=0;d=1;break a}d=b<<2;c=pa(d);H[a+604>>2]=c;f=c+d|0;H[a+612>>2]=f;ra(c,0,d);H[a+624>>2]=0;H[a+616>>2]=0;H[a+620>>2]=0;H[a+608>>2]=f;c=pa(d);H[a+616>>2]=c;f=c+d|0;H[a+624>>2]=f;ra(c,0,d);H[a+620>>2]=f;c=pa(d);H[e>>2]=c;f=c+d|0;H[e+8>>2]=f;ra(c,0,d);H[e+4>>2]=f;d=b<<5|1}tb(g,d,e);c=H[e>>2];if(c){H[e+4>>2]=c;oa(c)}H[e+8>>2]=0;H[e>>2]=0;H[e+4>>2]=0;if(b){b=b<<2;c=pa(b);H[e>>2]=c;f=b+c|0;H[e+8>>2]=f;ra(c,0,b);H[e+4>>2]=f}tb(a+640|0,d,e);b=H[e>>2];if(b){H[e+4>>2]=b;oa(b)}ca=e+16|0;return a}function gc(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=O(0),n=O(0),o=0;a:{b:{if(!d){break b}c:{switch(H[a+28>>2]-1|0){case 0:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}G[(g<<1)+d>>1]=F[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 1:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}G[(g<<1)+d>>1]=I[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 2:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}G[(g<<1)+d>>1]=J[b>>1];b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 3:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){return 0}e=G[b>>1];if((e|0)<0){break b}G[(g<<1)+d>>1]=e;b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 4:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}e=H[b>>2];if(e+32768>>>0>65535){break b}G[(g<<1)+d>>1]=e;b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 5:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}e=H[b>>2];if(e>>>0>32767){break b}G[(g<<1)+d>>1]=e;b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 6:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;k=H[e+4>>2];while(1){if(b>>>0>=k>>>0){break b}h=H[b+4>>2];e=H[b>>2];i=e+32768|0;h=i>>>0<32768?h+1|0:h;if(!h&i>>>0>65535|h){break b}G[(g<<1)+d>>1]=e;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 7:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}k=H[b+4>>2];e=H[b>>2];if(!k&e>>>0>32767|k){break b}G[(g<<1)+d>>1]=e;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 8:d:{e:{e=I[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break e}e=H[a>>2];j=H[e>>2];g=j;f=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=H[e+4>>2];e=f-j|0;if(!I[a+32|0]){j=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=L[g>>2];if(m>=O(32767)|m>1]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}j=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=L[g>>2];if(m>=O(32767)|mO(1)){break d}e=(b<<1)+d|0;l=T(+m*32767+.5);f:{if(P(l)<2147483648){i=~~l;break f}i=-2147483648}G[e>>1]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}j=1;if(c>>>0<=e>>>0){break d}ra((e<<1)+d|0,0,c-e<<1)}return j;case 9:g:{h:{e=I[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break h}e=H[a>>2];j=H[e>>2];g=j;f=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=H[e+4>>2];e=f-j|0;if(!I[a+32|0]){j=0;if((b|0)>=(e|0)){break g}b=0;while(1){l=M[g>>3];if(l>=32767|l<-32768|l!=l){break g}o=P(l);if(o==Infinity){break g}e=(b<<1)+d|0;if(o<2147483648){i=~~l}else{i=-2147483648}G[e>>1]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}j=0;if((b|0)>=(e|0)){break g}b=0;while(1){l=M[g>>3];if(l>=32767|l<-32768|(P(l)==Infinity|l!=l)){break g}if(l<0|l>1){break g}e=(b<<1)+d|0;l=T(l*32767+.5);i:{if(P(l)<2147483648){i=~~l;break i}i=-2147483648}G[e>>1]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}j=1;if(c>>>0<=e>>>0){break g}ra((e<<1)+d|0,0,c-e<<1)}return j;case 10:break c;default:break b}}e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}G[(g<<1)+d>>1]=I[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}ra((e<<1)+d|0,0,(c&255)-e<<1)}return j}ra((e<<1)+d|0,0,(c&255)-e<<1);return 1}function ec(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=O(0),n=O(0),o=0;a:{b:{if(!d){break b}c:{switch(H[a+28>>2]-1|0){case 0:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=F[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 1:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=I[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 2:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=G[b>>1];b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 3:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=J[b>>1];b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 4:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=H[b>>2];b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 5:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){return 0}e=H[b>>2];if((e|0)<0){break b}H[(g<<2)+d>>2]=e;b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 6:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;k=H[e+4>>2];while(1){if(b>>>0>=k>>>0){break b}h=H[b+4>>2];e=H[b>>2];if(e- -2147483648>>>0<2147483648?h+1|0:h){break b}H[(g<<2)+d>>2]=e;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 7:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}k=H[b+4>>2];e=H[b>>2];if(!k&e>>>0>2147483647|k){break b}H[(g<<2)+d>>2]=e;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 8:d:{e:{e=I[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break e}e=H[a>>2];j=H[e>>2];g=j;f=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=H[e+4>>2];e=f-j|0;if(!I[a+32|0]){j=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=L[g>>2];if(m>=O(2147483648)|m>2]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}j=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=L[g>>2];if(m>=O(2147483648)|mO(1)){break d}e=(b<<2)+d|0;l=T(+m*2147483647+.5);f:{if(P(l)<2147483648){i=~~l;break f}i=-2147483648}H[e>>2]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}j=1;if(c>>>0<=e>>>0){break d}ra((e<<2)+d|0,0,c-e<<2)}return j;case 9:g:{h:{e=I[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break h}e=H[a>>2];j=H[e>>2];g=j;f=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=H[e+4>>2];e=f-j|0;if(!I[a+32|0]){j=0;if((b|0)>=(e|0)){break g}b=0;while(1){l=M[g>>3];if(l>=2147483647|l<-2147483648|l!=l){break g}o=P(l);if(o==Infinity){break g}e=(b<<2)+d|0;if(o<2147483648){i=~~l}else{i=-2147483648}H[e>>2]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}j=0;if((b|0)>=(e|0)){break g}b=0;while(1){l=M[g>>3];if(l>=2147483647|l<-2147483648|(P(l)==Infinity|l!=l)){break g}if(l<0|l>1){break g}e=(b<<2)+d|0;l=T(l*2147483647+.5);i:{if(P(l)<2147483648){i=~~l;break i}i=-2147483648}H[e>>2]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}j=1;if(c>>>0<=e>>>0){break g}ra((e<<2)+d|0,0,c-e<<2)}return j;case 10:break c;default:break b}}e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=I[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}ra((e<<2)+d|0,0,(c&255)-e<<2)}return j}ra((e<<2)+d|0,0,(c&255)-e<<2);return 1}function fc(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=O(0);a:{b:{if(!d){break b}c:{switch(H[a+28>>2]-1|0){case 0:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){return 0}e=F[b|0];if((e|0)<0){break b}G[(g<<1)+d>>1]=e&255;b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 1:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}G[(g<<1)+d>>1]=I[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 2:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){return 0}e=G[b>>1];if((e|0)<0){break b}G[(g<<1)+d>>1]=e;b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 3:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}G[(g<<1)+d>>1]=J[b>>1];b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 4:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}e=H[b>>2];if(e>>>0>65535){break b}G[(g<<1)+d>>1]=e;b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 5:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}e=H[b>>2];if(e>>>0>65535){break b}G[(g<<1)+d>>1]=e;b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 6:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}k=H[b+4>>2];e=H[b>>2];if(!k&e>>>0>65535|k){break b}G[(g<<1)+d>>1]=e;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 7:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}k=H[b+4>>2];e=H[b>>2];if(!k&e>>>0>65535|k){break b}G[(g<<1)+d>>1]=e;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 8:d:{e:{e=I[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break e}e=H[a>>2];l=H[e>>2];g=l;f=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=H[e+4>>2];e=f-l|0;if(!I[a+32|0]){l=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=L[g>>2];if(m>=O(65535)|m=O(0)){i=~~m>>>0}else{i=0}G[e>>1]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}l=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=L[g>>2];if(m>=O(65535)|mO(1)){break d}e=(b<<1)+d|0;j=T(+m*65535+.5);f:{if(j<4294967296&j>=0){i=~~j>>>0;break f}i=0}G[e>>1]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}l=1;if(c>>>0<=e>>>0){break d}ra((e<<1)+d|0,0,c-e<<1)}return l;case 9:g:{h:{e=I[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break h}e=H[a>>2];l=H[e>>2];g=l;f=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=H[e+4>>2];e=f-l|0;if(!I[a+32|0]){l=0;if((b|0)>=(e|0)){break g}b=0;while(1){j=M[g>>3];if(j>=65535|j<0|(P(j)==Infinity|j!=j)){break g}e=(b<<1)+d|0;if(j<4294967296&j>=0){i=~~j>>>0}else{i=0}G[e>>1]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}l=0;if((b|0)>=(e|0)){break g}b=0;while(1){j=M[g>>3];if(j>=65535|j<0|(P(j)==Infinity|j!=j)){break g}if(j>1){break g}e=(b<<1)+d|0;j=T(j*65535+.5);i:{if(j<4294967296&j>=0){i=~~j>>>0;break i}i=0}G[e>>1]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}l=1;if(c>>>0<=e>>>0){break g}ra((e<<1)+d|0,0,c-e<<1)}return l;case 10:break c;default:break b}}e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];k=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}G[(g<<1)+d>>1]=I[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}ra((e<<1)+d|0,0,(c&255)-e<<1)}return l}ra((e<<1)+d|0,0,(c&255)-e<<1);return 1}function Sa(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=O(0),l=0,m=0,n=O(0),o=0;a:{if(!d){break a}b:{c:{switch(H[a+28>>2]-1|0){case 0:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;i=F[b|0];H[e>>2]=i;H[e+4>>2]=i>>31;b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 1:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;H[e>>2]=I[b|0];H[e+4>>2]=0;b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 2:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;i=G[b>>1];H[e>>2]=i;H[e+4>>2]=i>>31;b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 3:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;H[e>>2]=J[b>>1];H[e+4>>2]=0;b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 4:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;i=H[b>>2];H[e>>2]=i;H[e+4>>2]=i>>31;b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 5:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;H[e>>2]=H[b>>2];H[e+4>>2]=0;b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 6:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}i=H[b+4>>2];e=(g<<3)+d|0;H[e>>2]=H[b>>2];H[e+4>>2]=i;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 7:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=H[b>>2];i=H[b+4>>2];if((i|0)<0){break a}j=(g<<3)+d|0;H[j>>2]=e;H[j+4>>2]=i;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 8:d:{e=I[a+24|0];f=c&255;if(!(e>>>0>>0?e:f)){break d}if(I[a+32|0]){break a}e=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);j=b;b=b+e|0;e=H[a>>2];i=H[e+4>>2];e=H[e>>2];if((b|0)>=(i-e|0)){break a}g=b+e|0;h=c&255;b=0;while(1){k=L[g>>2];if(k>=O(0x8000000000000000)|k=O(1)?~~(k>O(0)?O(R(O(T(O(k*O(2.3283064365386963e-10)))),O(4294967296))):O(U(O(O(k-O(~~k>>>0>>>0))*O(2.3283064365386963e-10)))))>>>0:0;m=~~k>>>0;break e}j=-2147483648;m=0}H[e>>2]=m;H[e+4>>2]=j;b=b+1|0;e=I[a+24|0];if(b>>>0>=(e>>>0>>0?e:h)>>>0){break d}g=g+4|0;if(i>>>0>g>>>0){continue}break}break a}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 9:f:{e=I[a+24|0];f=c&255;if(!(e>>>0>>0?e:f)){break f}if(I[a+32|0]){break a}e=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);j=b;b=b+e|0;e=H[a>>2];i=H[e+4>>2];e=H[e>>2];if((b|0)>=(i-e|0)){break a}g=b+e|0;h=c&255;b=0;while(1){l=M[g>>3];if(l>=0x8000000000000000|l<-0x8000000000000000|l!=l){break a}o=P(l);if(o==Infinity){break a}e=(b<<3)+d|0;g:{if(o<0x8000000000000000){j=P(l)>=1?~~(l>0?R(T(l*2.3283064365386963e-10),4294967295):U((l-+(~~l>>>0>>>0))*2.3283064365386963e-10))>>>0:0;m=~~l>>>0;break g}j=-2147483648;m=0}H[e>>2]=m;H[e+4>>2]=j;b=b+1|0;e=I[a+24|0];if(b>>>0>=(e>>>0>>0?e:h)>>>0){break f}g=g+8|0;if(i>>>0>g>>>0){continue}break}break a}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 10:break c;default:break a}}e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;H[e>>2]=I[b|0];H[e+4>>2]=0;b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0}ra(d,0,a<<3)}}function Oj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;j=a;a:{b:{c:{d:{e:{f:{g:{h:{a=H[a+8>>2];switch(H[a+28>>2]-1|0){case 4:break c;case 5:break d;case 2:break e;case 3:break f;case 0:break g;case 1:break h;default:break a}}f=I[a+24|0];c=pa(f);a=H[j+16>>2];if(H[a+80>>2]){g=H[H[a>>2]>>2]+H[a+48>>2]|0}else{g=0}if(!b){break b}if(f){o=f&252;l=f&3;h=f>>>0<4;while(1){a=0;e=0;if(!h){while(1){k=g+(d<<2)|0;F[a+c|0]=H[k>>2];F[(a|1)+c|0]=H[k+4>>2];F[(a|2)+c|0]=H[k+8>>2];F[(a|3)+c|0]=H[k+12>>2];a=a+4|0;d=d+4|0;e=e+4|0;if((o|0)!=(e|0)){continue}break}}e=0;if(l){while(1){F[a+c|0]=H[g+(d<<2)>>2];a=a+1|0;d=d+1|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}qa(H[H[H[j+8>>2]+64>>2]>>2]+m|0,c,f);m=f+m|0;n=n+1|0;if((n|0)!=(b|0)){continue}break}break b}a=0;if((b|0)!=1){g=b&-2;while(1){qa(H[H[H[j+8>>2]+64>>2]>>2]+a|0,c,f);a=a+f|0;qa(a+H[H[H[j+8>>2]+64>>2]>>2]|0,c,f);a=a+f|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}}if(!(b&1)){break b}qa(H[H[H[j+8>>2]+64>>2]>>2]+a|0,c,f);break b}f=I[a+24|0];c=pa(f);a=H[j+16>>2];if(H[a+80>>2]){g=H[H[a>>2]>>2]+H[a+48>>2]|0}else{g=0}if(!b){break b}if(f){o=f&252;l=f&3;h=f>>>0<4;while(1){a=0;e=0;if(!h){while(1){k=g+(d<<2)|0;F[a+c|0]=H[k>>2];F[(a|1)+c|0]=H[k+4>>2];F[(a|2)+c|0]=H[k+8>>2];F[(a|3)+c|0]=H[k+12>>2];a=a+4|0;d=d+4|0;e=e+4|0;if((o|0)!=(e|0)){continue}break}}e=0;if(l){while(1){F[a+c|0]=H[g+(d<<2)>>2];a=a+1|0;d=d+1|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}qa(H[H[H[j+8>>2]+64>>2]>>2]+m|0,c,f);m=f+m|0;n=n+1|0;if((n|0)!=(b|0)){continue}break}break b}a=0;if((b|0)!=1){g=b&-2;while(1){qa(H[H[H[j+8>>2]+64>>2]>>2]+a|0,c,f);a=a+f|0;qa(a+H[H[H[j+8>>2]+64>>2]>>2]|0,c,f);a=a+f|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}}if(!(b&1)){break b}qa(H[H[H[j+8>>2]+64>>2]>>2]+a|0,c,f);break b}h=I[a+24|0];i=h<<1;c=pa(i);a=H[j+16>>2];if(H[a+80>>2]){g=H[H[a>>2]>>2]+H[a+48>>2]|0}else{g=0}if(!b){break b}if(h){o=h&252;l=h&3;h=h>>>0<4;while(1){a=0;e=0;if(!h){while(1){f=a<<1;k=g+(d<<2)|0;G[f+c>>1]=H[k>>2];G[(f|2)+c>>1]=H[k+4>>2];G[(f|4)+c>>1]=H[k+8>>2];G[(f|6)+c>>1]=H[k+12>>2];a=a+4|0;d=d+4|0;e=e+4|0;if((o|0)!=(e|0)){continue}break}}e=0;if(l){while(1){G[(a<<1)+c>>1]=H[g+(d<<2)>>2];a=a+1|0;d=d+1|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}qa(H[H[H[j+8>>2]+64>>2]>>2]+n|0,c,i);n=i+n|0;m=m+1|0;if((m|0)!=(b|0)){continue}break}break b}a=0;if((b|0)!=1){g=b&-2;while(1){qa(H[H[H[j+8>>2]+64>>2]>>2]+a|0,c,i);a=a+i|0;qa(a+H[H[H[j+8>>2]+64>>2]>>2]|0,c,i);a=a+i|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}}if(!(b&1)){break b}qa(H[H[H[j+8>>2]+64>>2]>>2]+a|0,c,i);break b}h=I[a+24|0];i=h<<1;c=pa(i);a=H[j+16>>2];if(H[a+80>>2]){g=H[H[a>>2]>>2]+H[a+48>>2]|0}else{g=0}if(!b){break b}if(h){o=h&252;l=h&3;h=h>>>0<4;while(1){a=0;e=0;if(!h){while(1){f=a<<1;k=g+(d<<2)|0;G[f+c>>1]=H[k>>2];G[(f|2)+c>>1]=H[k+4>>2];G[(f|4)+c>>1]=H[k+8>>2];G[(f|6)+c>>1]=H[k+12>>2];a=a+4|0;d=d+4|0;e=e+4|0;if((o|0)!=(e|0)){continue}break}}e=0;if(l){while(1){G[(a<<1)+c>>1]=H[g+(d<<2)>>2];a=a+1|0;d=d+1|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}qa(H[H[H[j+8>>2]+64>>2]>>2]+n|0,c,i);n=i+n|0;m=m+1|0;if((m|0)!=(b|0)){continue}break}break b}a=0;if((b|0)!=1){g=b&-2;while(1){qa(H[H[H[j+8>>2]+64>>2]>>2]+a|0,c,i);a=a+i|0;qa(a+H[H[H[j+8>>2]+64>>2]>>2]|0,c,i);a=a+i|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}}if(!(b&1)){break b}qa(H[H[H[j+8>>2]+64>>2]>>2]+a|0,c,i);break b}h=I[a+24|0];i=h<<2;c=pa(i);a=H[j+16>>2];if(H[a+80>>2]){g=H[H[a>>2]>>2]+H[a+48>>2]|0}else{g=0}if(!b){break b}if(h){o=h&252;l=h&3;h=h>>>0<4;while(1){a=0;e=0;if(!h){while(1){f=a<<2;k=g+(d<<2)|0;H[f+c>>2]=H[k>>2];H[(f|4)+c>>2]=H[k+4>>2];H[(f|8)+c>>2]=H[k+8>>2];H[(f|12)+c>>2]=H[k+12>>2];a=a+4|0;d=d+4|0;e=e+4|0;if((o|0)!=(e|0)){continue}break}}e=0;if(l){while(1){H[(a<<2)+c>>2]=H[g+(d<<2)>>2];a=a+1|0;d=d+1|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}qa(H[H[H[j+8>>2]+64>>2]>>2]+n|0,c,i);n=i+n|0;m=m+1|0;if((m|0)!=(b|0)){continue}break}break b}a=0;if((b|0)!=1){g=b&-2;while(1){qa(H[H[H[j+8>>2]+64>>2]>>2]+a|0,c,i);a=a+i|0;qa(a+H[H[H[j+8>>2]+64>>2]>>2]|0,c,i);a=a+i|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}}if(!(b&1)){break b}qa(H[H[H[j+8>>2]+64>>2]>>2]+a|0,c,i);break b}h=I[a+24|0];i=h<<2;c=pa(i);a=H[j+16>>2];if(H[a+80>>2]){g=H[H[a>>2]>>2]+H[a+48>>2]|0}else{g=0}if(!b){break b}if(h){o=h&252;l=h&3;h=h>>>0<4;while(1){a=0;e=0;if(!h){while(1){f=a<<2;k=g+(d<<2)|0;H[f+c>>2]=H[k>>2];H[(f|4)+c>>2]=H[k+4>>2];H[(f|8)+c>>2]=H[k+8>>2];H[(f|12)+c>>2]=H[k+12>>2];a=a+4|0;d=d+4|0;e=e+4|0;if((o|0)!=(e|0)){continue}break}}e=0;if(l){while(1){H[(a<<2)+c>>2]=H[g+(d<<2)>>2];a=a+1|0;d=d+1|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}qa(H[H[H[j+8>>2]+64>>2]>>2]+n|0,c,i);n=i+n|0;m=m+1|0;if((m|0)!=(b|0)){continue}break}break b}a=0;if((b|0)!=1){g=b&-2;while(1){qa(H[H[H[j+8>>2]+64>>2]>>2]+a|0,c,i);a=a+i|0;qa(a+H[H[H[j+8>>2]+64>>2]>>2]|0,c,i);a=a+i|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}}if(!(b&1)){break b}qa(H[H[H[j+8>>2]+64>>2]>>2]+a|0,c,i)}oa(c);c=1}return c|0}function dc(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=O(0);a:{b:{if(!d){break b}c:{switch(H[a+28>>2]-1|0){case 0:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];l=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=F[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 1:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];l=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=I[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 2:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];l=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=G[b>>1];b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 3:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];l=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=J[b>>1];b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 4:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];l=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=H[b>>2];b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 5:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];l=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=H[b>>2];b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 6:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];l=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}e=H[b>>2];if(H[b+4>>2]){break b}H[(g<<2)+d>>2]=e;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 7:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];l=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}e=H[b>>2];if(H[b+4>>2]){break b}H[(g<<2)+d>>2]=e;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 8:d:{e:{e=I[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break e}e=H[a>>2];k=H[e>>2];g=k;f=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=H[e+4>>2];e=f-k|0;if(!I[a+32|0]){k=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=L[g>>2];if(m>=O(4294967296)|m=O(0)){i=~~m>>>0}else{i=0}H[e>>2]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}k=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=L[g>>2];if(m>=O(4294967296)|mO(1)){break d}e=(b<<2)+d|0;j=T(+m*4294967295+.5);f:{if(j<4294967296&j>=0){i=~~j>>>0;break f}i=0}H[e>>2]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}k=1;if(c>>>0<=e>>>0){break d}ra((e<<2)+d|0,0,c-e<<2)}return k;case 9:g:{h:{e=I[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break h}e=H[a>>2];k=H[e>>2];g=k;f=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=H[e+4>>2];e=f-k|0;if(!I[a+32|0]){k=0;if((b|0)>=(e|0)){break g}b=0;while(1){j=M[g>>3];if(j>=4294967295|j<0|(P(j)==Infinity|j!=j)){break g}e=(b<<2)+d|0;if(j<4294967296&j>=0){i=~~j>>>0}else{i=0}H[e>>2]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}k=0;if((b|0)>=(e|0)){break g}b=0;while(1){j=M[g>>3];if(j>=4294967295|j<0|(P(j)==Infinity|j!=j)){break g}if(j>1){break g}e=(b<<2)+d|0;j=T(j*4294967295+.5);i:{if(j<4294967296&j>=0){i=~~j>>>0;break i}i=0}H[e>>2]=i;b=b+1|0;e=I[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}k=1;if(c>>>0<=e>>>0){break g}ra((e<<2)+d|0,0,c-e<<2)}return k;case 10:break c;default:break b}}e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];h=H[e>>2];l=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=H[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}H[(g<<2)+d>>2]=I[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}ra((e<<2)+d|0,0,(c&255)-e<<2)}return k}ra((e<<2)+d|0,0,(c&255)-e<<2);return 1}function ye(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;a:{b:{c:{d:{e:{if(H[a+92>>2]==H[a+88>>2]){break e}c=H[a+52>>2];f:{if((c|0)!=H[a+56>>2]){H[c>>2]=b;H[a+52>>2]=c+4;break f}h=H[a+48>>2];g=c-h|0;d=g>>2;f=d+1|0;if(f>>>0>=1073741824){break a}e=g>>>1|0;g=g>>>0>=2147483644?1073741823:f>>>0>>0?e:f;if(g){if(g>>>0>=1073741824){break d}e=pa(g<<2)}else{e=0}f=e+(d<<2)|0;H[f>>2]=b;d=f+4|0;if((c|0)!=(h|0)){while(1){f=f-4|0;c=c-4|0;H[f>>2]=H[c>>2];if((c|0)!=(h|0)){continue}break}}H[a+56>>2]=e+(g<<2);H[a+52>>2]=d;H[a+48>>2]=f;if(!h){break f}oa(h)}H[a+84>>2]=0;c=-1;e=-1;g:{if((b|0)==-1){break g}d=H[a+4>>2];e=b+1|0;e=(e>>>0)%3|0?e:b-2|0;if((e|0)!=-1){c=H[H[d>>2]+(e<<2)>>2]}h:{if((b>>>0)%3|0){l=b-1|0;break h}l=b+2|0;e=-1;if((l|0)==-1){break g}}e=H[H[d>>2]+(l<<2)>>2]}i=e>>>3&536870908;d=H[a+36>>2];h=d+(c>>>3&536870908)|0;g=H[h>>2];f=1<>2]=f|g;f=a+8|0;if((b|0)!=-1){d=b+1|0;d=(d>>>0)%3|0?d:b-2|0}else{d=-1}Ua(f,c,d);d=H[a+36>>2]}f=d+i|0;d=H[f>>2];c=1<>2]=c|d;d=a+8|0;c=-1;i:{if((b|0)==-1){break i}c=b-1|0;if((b>>>0)%3|0){break i}c=b+2|0}Ua(d,e,c)}c=-1;c=(b|0)!=-1?H[H[H[a+4>>2]>>2]+(b<<2)>>2]:c;f=H[a+36>>2]+(c>>>3&536870908)|0;d=H[f>>2];e=1<>2]=d|e;Ua(a+8|0,c,b)}d=H[a+84>>2];if((d|0)>2){break e}while(1){e=N(d,12)+a|0;b=H[e+52>>2];if((b|0)==H[e+48>>2]){d=d+1|0;if((d|0)!=3){continue}break e}b=b-4|0;c=H[b>>2];H[e+52>>2]=b;H[a+84>>2]=d;if((c|0)==-1){break e}f=H[a+24>>2];b=(c>>>0)/3|0;j:{if(H[f+(b>>>3&268435452)>>2]>>>b&1){break j}k:{while(1){k=(c>>>0)/3|0;b=(k>>>3&268435452)+f|0;H[b>>2]=H[b>>2]|1<>2]>>2]+(c<<2)>>2]:d;f=H[a+36>>2]+(d>>>3&536870908)|0;e=H[f>>2];b=1<>2]=b|e;i=H[(H[H[a+16>>2]+96>>2]+N(k,12)|0)+((c>>>0)%3<<2)>>2];l=H[H[a+20>>2]+4>>2];f=H[l+4>>2];t:{if((f|0)!=H[l+8>>2]){H[f>>2]=i;H[l+4>>2]=f+4;break t}j=H[l>>2];h=f-j|0;g=h>>2;e=g+1|0;if(e>>>0>=1073741824){break s}b=h>>>1|0;h=h>>>0>=2147483644?1073741823:b>>>0>e>>>0?b:e;if(h){if(h>>>0>=1073741824){break d}e=pa(h<<2)}else{e=0}b=e+(g<<2)|0;H[b>>2]=i;g=b+4|0;if((f|0)!=(j|0)){while(1){b=b-4|0;f=f-4|0;H[b>>2]=H[f>>2];if((f|0)!=(j|0)){continue}break}}H[l+8>>2]=e+(h<<2);H[l+4>>2]=g;H[l>>2]=b;if(!j){break t}oa(j)}j=H[a+12>>2];f=H[j+4>>2];u:{if((f|0)!=H[j+8>>2]){H[f>>2]=c;H[j+4>>2]=f+4;break u}i=H[j>>2];h=f-i|0;g=h>>2;e=g+1|0;if(e>>>0>=1073741824){break r}b=h>>>1|0;h=h>>>0>=2147483644?1073741823:b>>>0>e>>>0?b:e;if(h){if(h>>>0>=1073741824){break d}e=pa(h<<2)}else{e=0}b=e+(g<<2)|0;H[b>>2]=c;g=b+4|0;if((f|0)!=(i|0)){while(1){b=b-4|0;f=f-4|0;H[b>>2]=H[f>>2];if((f|0)!=(i|0)){continue}break}}H[j+8>>2]=e+(h<<2);H[j+4>>2]=g;H[j>>2]=b;if(!i){break u}oa(i)}b=H[a+12>>2];H[H[b+12>>2]+(d<<2)>>2]=H[b+24>>2];H[b+24>>2]=H[b+24>>2]+1}if((c|0)==-1){break k}g=H[a+4>>2];f=-1;b=c+1|0;b=(b>>>0)%3|0?b:c-2|0;if((b|0)!=-1){f=H[H[g+12>>2]+(b<<2)>>2]}v:{w:{if((N(k,3)|0)!=(c|0)){d=c-1|0;break w}d=c+2|0;c=-1;if((d|0)==-1){break v}}c=H[H[g+12>>2]+(d<<2)>>2]}d=(c|0)==-1;e=(c>>>0)/3|0;if((f|0)!=-1){b=(f>>>0)/3|0;b=H[H[a+24>>2]+(b>>>3&268435452)>>2]&1<>2]+(b>>>3&536870908)>>2]>>>b&1){break x}k=0;b=H[H[g>>2]+(c<<2)>>2];if(!(H[H[a+36>>2]+(b>>>3&536870908)>>2]>>>b&1)){b=H[a+88>>2]+(b<<2)|0;e=H[b>>2];H[b>>2]=e+1;k=(e|0)<=0?2:1}if(H[a+84>>2]>=(k|0)&l){break m}j=N(k,12)+a|0;b=H[j+52>>2];y:{if((b|0)!=H[j+56>>2]){H[b>>2]=c;H[j+52>>2]=b+4;break y}i=H[j+48>>2];h=b-i|0;d=h>>2;g=d+1|0;if(g>>>0>=1073741824){break c}e=h>>>1|0;g=h>>>0>=2147483644?1073741823:e>>>0>g>>>0?e:g;if(g){if(g>>>0>=1073741824){break d}e=pa(g<<2)}else{e=0}d=e+(d<<2)|0;H[d>>2]=c;c=d+4|0;if((b|0)!=(i|0)){while(1){d=d-4|0;b=b-4|0;H[d>>2]=H[b>>2];if((b|0)!=(i|0)){continue}break}}H[j+48>>2]=d;H[j+52>>2]=c;H[j+56>>2]=e+(g<<2);if(!i){break y}oa(i)}if(H[a+84>>2]<=(k|0)){break x}H[a+84>>2]=k}if(l){break k}c=-1;if((f|0)==-1){break n}}c=H[H[H[a+4>>2]>>2]+(f<<2)>>2]}b=0;if(!(H[H[a+36>>2]+(c>>>3&536870908)>>2]>>>c&1)){b=H[a+88>>2]+(c<<2)|0;c=H[b>>2];H[b>>2]=c+1;b=(c|0)<=0?2:1}if(H[a+84>>2]<(b|0)){break l}c=f}f=H[a+24>>2];continue}break}k=N(b,12)+a|0;c=H[k+52>>2];z:{if((c|0)!=H[k+56>>2]){H[c>>2]=f;H[k+52>>2]=c+4;break z}i=H[k+48>>2];h=c-i|0;d=h>>2;g=d+1|0;if(g>>>0>=1073741824){break b}e=h>>>1|0;g=h>>>0>=2147483644?1073741823:e>>>0>g>>>0?e:g;if(g){if(g>>>0>=1073741824){break d}e=pa(g<<2)}else{e=0}d=e+(d<<2)|0;H[d>>2]=f;f=d+4|0;if((c|0)!=(i|0)){while(1){d=d-4|0;c=c-4|0;H[d>>2]=H[c>>2];if((c|0)!=(i|0)){continue}break}}H[k+48>>2]=d;H[k+52>>2]=f;H[k+56>>2]=e+(g<<2);if(!i){break z}oa(i)}d=H[a+84>>2];if((d|0)<=(b|0)){break j}H[a+84>>2]=b;d=b;break j}d=H[a+84>>2]}if((d|0)<3){continue}break}}return 1}wa();v()}sa();v()}sa();v()}sa();v()}function gd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;n=ca-96|0;ca=n;o=H[a+4>>2];d=H[o+32>>2];i=H[d+8>>2];j=H[d+12>>2];e=j;c=H[d+20>>2];f=H[d+16>>2];a:{if((e|0)<=(c|0)&f>>>0>=i>>>0|(c|0)>(e|0)){break a}p=H[d>>2];g=I[p+f|0];h=f+1|0;e=h?c:c+1|0;H[d+16>>2]=h;H[d+20>>2]=e;if((e|0)>=(j|0)&h>>>0>=i>>>0|(e|0)>(j|0)){break a}m=I[h+p|0];h=f+2|0;e=h>>>0<2?c+1|0:c;H[d+16>>2]=h;H[d+20>>2]=e;l=g<<24>>24;b:{if((l|0)>=0){k=H[a+216>>2];if(g>>>0>=(H[a+220>>2]-k|0)/144>>>0){break a}k=k+N(g,144)|0;if(H[k>>2]<0){break b}break a}if(H[a+212>>2]>=0){break a}k=a+212|0}H[k>>2]=b;c:{d:{e:{f:{g:{h:{k=J[o+36>>1];i:{if(((k<<8|k>>>8)&65535)>>>0>=258){if((e|0)>=(j|0)&h>>>0>=i>>>0|(e|0)>(j|0)){break a}e=I[h+p|0];f=f+3|0;c=f>>>0<3?c+1|0:c;H[d+16>>2]=f;H[d+20>>2]=c;if(e>>>0>1){break a}d=e>>>0<2?e:0;if(!m){break i}if(!d){break h}break a}if(m){break g}d=0}if((l|0)<0){e=a+184|0}else{c=H[a+216>>2]+N(g,144)|0;F[c+100|0]=0;e=c+104|0}if((d|0)!=1){break e}c=ca-112|0;ca=c;h=H[H[a+4>>2]+44>>2];d=pa(120);H[d>>2]=12172;H[d+4>>2]=0;H[d+116>>2]=0;H[d+112>>2]=e;H[d+108>>2]=h;H[d+12>>2]=0;H[d+16>>2]=0;H[d+20>>2]=0;H[d+24>>2]=0;H[d+28>>2]=0;H[d+32>>2]=0;H[d+36>>2]=0;H[d+40>>2]=0;H[d+44>>2]=0;H[d+48>>2]=0;H[d+52>>2]=0;H[d+56>>2]=0;H[d+60>>2]=0;H[d+8>>2]=12384;f=d- -64|0;H[f>>2]=0;H[f+4>>2]=0;H[d+72>>2]=0;H[d+76>>2]=0;H[d+80>>2]=0;H[d+84>>2]=0;H[d+88>>2]=0;H[d+104>>2]=0;H[d+96>>2]=0;H[d+100>>2]=0;f=H[a+8>>2];H[c+48>>2]=0;H[c+52>>2]=0;H[c+40>>2]=0;H[c+44>>2]=0;i=c+32|0;H[i>>2]=0;H[i+4>>2]=0;H[c+24>>2]=0;H[c+28>>2]=0;g=c- -64|0;H[g>>2]=0;H[g+4>>2]=0;H[c+72>>2]=0;H[c+76>>2]=0;H[c+80>>2]=0;H[c+84>>2]=0;H[c+88>>2]=0;H[c+104>>2]=0;H[c+16>>2]=0;H[c+20>>2]=0;H[c+56>>2]=0;H[c+60>>2]=0;H[c+8>>2]=12384;H[c+96>>2]=0;H[c+100>>2]=0;H[c+12>>2]=f;g=H[f>>2];j=H[f+4>>2];F[c+111|0]=0;m=i;i=c+111|0;Oa(m,(j-g>>2>>>0)/3|0,i);g=H[c+12>>2];j=H[g+28>>2];g=H[g+24>>2];F[c+111|0]=0;Oa(c+44|0,j-g>>2,i);H[c+28>>2]=d;H[c+24>>2]=h;H[c+20>>2]=e;H[c+16>>2]=f;f=d+8|0;e=c+8|0;fd(f,e);j:{if((e|0)==(f|0)){H[d+92>>2]=H[e+84>>2];break j}Cb(d+56|0,H[e+48>>2],H[e+52>>2]);Cb(d+68|0,H[e+60>>2],H[e- -64>>2]);Cb(d+80|0,H[e+72>>2],H[e+76>>2]);H[d+92>>2]=H[e+84>>2];Aa(d+96|0,H[e+88>>2],H[e+92>>2])}H[c+8>>2]=12384;e=H[c+96>>2];if(e){H[c+100>>2]=e;oa(e)}e=H[c+80>>2];if(e){H[c+84>>2]=e;oa(e)}e=H[c+68>>2];if(e){H[c+72>>2]=e;oa(e)}e=H[c+56>>2];if(e){H[c+60>>2]=e;oa(e)}H[c+8>>2]=12620;e=H[c+44>>2];if(e){oa(e)}e=H[c+32>>2];if(e){oa(e)}ca=c+112|0;break d}if((l|0)>=0){break f}break a}if((l|0)<0){break a}}e=H[a+216>>2];c=H[o+44>>2];d=pa(80);H[d>>2]=12932;H[d+4>>2]=0;H[d+76>>2]=0;H[d+68>>2]=c;H[d+8>>2]=11872;H[d+12>>2]=0;H[d+16>>2]=0;H[d+20>>2]=0;H[d+24>>2]=0;H[d+28>>2]=0;H[d+32>>2]=0;H[d+36>>2]=0;H[d+40>>2]=0;H[d+44>>2]=0;H[d+48>>2]=0;H[d+52>>2]=0;e=e+N(g,144)|0;f=e+104|0;H[d+72>>2]=f;H[d- -64>>2]=0;H[d+56>>2]=0;H[d+60>>2]=0;H[n+24>>2]=c;c=n;H[c+68>>2]=0;H[c+72>>2]=0;H[c+60>>2]=0;H[c+64>>2]=0;H[c+52>>2]=0;H[c+56>>2]=0;H[c+44>>2]=0;H[c+48>>2]=0;H[c+84>>2]=0;H[c+88>>2]=0;H[c+76>>2]=0;H[c+80>>2]=0;H[c+28>>2]=d;h=H[c+28>>2];H[c+8>>2]=H[c+24>>2];H[c+12>>2]=h;H[c+20>>2]=f;f=e+4|0;H[c+16>>2]=f;H[c+36>>2]=0;H[c+40>>2]=0;H[c+32>>2]=11872;e=H[c+20>>2];H[c>>2]=H[c+16>>2];H[c+4>>2]=e;e=c+32|0;Ie(e,f,c);c=d+8|0;fd(c,e);if((c|0)!=(e|0)){Cb(d+56|0,H[e+48>>2],H[e+52>>2])}He(e);break c}c=ca+-64|0;ca=c;h=H[H[a+4>>2]+44>>2];d=pa(80);H[d>>2]=12640;H[d+4>>2]=0;H[d+76>>2]=0;H[d+72>>2]=e;H[d+68>>2]=h;H[d+8>>2]=12804;H[d+12>>2]=0;H[d+16>>2]=0;H[d+20>>2]=0;H[d+24>>2]=0;H[d+28>>2]=0;H[d+32>>2]=0;H[d+36>>2]=0;H[d+40>>2]=0;H[d+44>>2]=0;H[d+48>>2]=0;H[d+52>>2]=0;H[d- -64>>2]=0;i=d+56|0;f=i;H[f>>2]=0;H[f+4>>2]=0;f=H[a+8>>2];H[c+40>>2]=0;H[c+44>>2]=0;H[c+32>>2]=0;H[c+36>>2]=0;g=c+24|0;H[g>>2]=0;H[g+4>>2]=0;H[c+16>>2]=0;H[c+20>>2]=0;H[c+56>>2]=0;H[c+8>>2]=0;H[c+12>>2]=0;H[c+48>>2]=0;H[c+52>>2]=0;H[c>>2]=12804;H[c+4>>2]=f;j=H[f>>2];l=H[f+4>>2];F[c+63|0]=0;m=g;g=c+63|0;Oa(m,(l-j>>2>>>0)/3|0,g);j=H[c+4>>2];l=H[j+28>>2];j=H[j+24>>2];F[c+63|0]=0;Oa(c+36|0,l-j>>2,g);H[c+20>>2]=d;H[c+16>>2]=h;H[c+12>>2]=e;H[c+8>>2]=f;fd(d+8|0,c);Cb(i,H[c+48>>2],H[c+52>>2]);H[c>>2]=12804;e=H[c+48>>2];if(e){H[c+52>>2]=e;oa(e)}H[c>>2]=12620;e=H[c+36>>2];if(e){oa(e)}e=H[c+24>>2];if(e){oa(e)}ca=c- -64|0}if(!d){break a}}d=od(pa(64),d);c=H[a+4>>2];a=d;d=b;k:{l:{if((d|0)>=0){h=c+8|0;b=H[c+12>>2];i=H[c+8>>2];e=b-i>>2;m:{if((e|0)>(d|0)){break m}f=d+1|0;if(d>>>0>=e>>>0){Vb(h,f-e|0);break m}if(e>>>0<=f>>>0){break m}f=i+(f<<2)|0;if((f|0)!=(b|0)){while(1){b=b-4|0;e=H[b>>2];H[b>>2]=0;if(e){ea[H[H[e>>2]+4>>2]](e)}if((b|0)!=(f|0)){continue}break}}H[c+12>>2]=f}c=H[h>>2]+(d<<2)|0;b=H[c>>2];H[c>>2]=a;if(b){break l}break k}b=a;if(!a){break k}}ea[H[H[b>>2]+4>>2]](b)}q=(d^-1)>>>31|0}ca=n+96|0;return q|0}function Kd(a){var b=0,c=0,d=0,e=0,f=0,g=0;e=ca-16|0;ca=e;H[e+12>>2]=a;a:{if(a>>>0<=211){d=H[Jd(14256,14448,e+12|0)>>2];break a}if(a>>>0>=4294967292){X();v()}f=(a>>>0)/210|0;d=N(f,210);H[e+8>>2]=a-d;g=Jd(14448,14640,e+8|0)-14448>>2;while(1){d=H[(g<<2)+14448>>2]+d|0;a=5;while(1){b:{if((a|0)==47){a=211;while(1){b=(d>>>0)/(a>>>0)|0;if(b>>>0>>0){break a}if((N(a,b)|0)==(d|0)){break b}b=a+10|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+12|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+16|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+18|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+22|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+28|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+30|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+36|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+40|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+42|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+46|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+52|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+58|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+60|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+66|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+70|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+72|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+78|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+82|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+88|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+96|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+100|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+102|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+106|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+108|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+112|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+120|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+126|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+130|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+136|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+138|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+142|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+148|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+150|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+156|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+162|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+166|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+168|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+172|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+178|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+180|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+186|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+190|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+192|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+196|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+198|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((N(b,c)|0)==(d|0)){break b}b=a+208|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}a=a+210|0;if((N(b,c)|0)!=(d|0)){continue}break}break b}b=H[(a<<2)+14256>>2];c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}a=a+1|0;if((N(b,c)|0)!=(d|0)){continue}}break}d=g+1|0;a=(d|0)==48;g=a?0:d;f=a+f|0;d=N(f,210);continue}}ca=e+16|0;return d}function Ib(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;j=ca-16|0;ca=j;a:{b:{c:{d:{if(I[H[a+4>>2]+36|0]<=1){k=-1;c=H[b+20>>2];d=H[b+16>>2];e=d+4|0;c=e>>>0<4?c+1|0:c;g=H[b+12>>2];if(K[b+8>>2]>>0&(g|0)<=(c|0)|(c|0)>(g|0)){break c}d=d+H[b>>2]|0;l=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[j+12>>2]=l;H[b+16>>2]=e;H[b+20>>2]=c;break d}k=-1;if(!Ea(1,j+12|0,b)){break c}l=H[j+12>>2]}e:{f:{g:{h:{i:{if(!l){break i}c=H[a+8>>2];if((H[c+4>>2]-H[c>>2]>>2>>>0)/3>>>0>>0){break c}c=J[H[a+4>>2]+36>>1];if(((c<<8|c>>>8)&65535)>>>0>=258){j:{while(1){if(!Ea(1,j+8|0,b)){break c}c=H[j+8>>2];if(!Ea(1,j+8|0,b)){break c}f=c+f|0;c=H[j+8>>2];if(f>>>0>>0){break c}g=f-c|0;c=H[a+40>>2];k:{if((c|0)!=H[a+44>>2]){H[c+4>>2]=f;H[c>>2]=g;H[a+40>>2]=c+12;l=H[j+12>>2];break k}m=H[a+36>>2];d=c-m|0;o=(d|0)/12|0;e=o+1|0;if(e>>>0>=357913942){break j}c=o<<1;h=o>>>0>=178956970?357913941:c>>>0>e>>>0?c:e;if(h){if(h>>>0>=357913942){break b}i=pa(N(h,12))}else{i=0}e=i+N(o,12)|0;H[e+4>>2]=f;H[e>>2]=g;c=va(e+N((d|0)/-12|0,12)|0,m,d);H[a+44>>2]=i+N(h,12);H[a+40>>2]=e+12;H[a+36>>2]=c;if(!m){break k}oa(m)}p=p+1|0;if(l>>>0>p>>>0){continue}break}k=0;Db(b,0,0);if(l){while(1){e=I[b+36|0];c=J[H[a+4>>2]+36>>1];l:{m:{if(((c<<8|c>>>8)&65535)>>>0<=513){if(!e){break l}p=0;c=H[b+32>>2];n=c>>>3|0;g=H[b+24>>2];e=n+g|0;d=H[b+28>>2];n:{if(e>>>0>=d>>>0){f=c;break n}e=I[e|0];f=c+1|0;H[b+32>>2]=f;n=f>>>3|0;p=e>>>(c&7)&1}if(d>>>0>g+n>>>0){break m}break l}if(!e){break l}p=0;f=H[b+32>>2];c=H[b+24>>2]+(f>>>3|0)|0;if(c>>>0>=K[b+28>>2]){break l}p=I[c|0]>>>(f&7)&1}H[b+32>>2]=f+1}c=H[a+36>>2]+N(k,12)|0;F[c+8|0]=I[c+8|0]&254|p&1;k=k+1|0;if((k|0)!=(l|0)){continue}break}}F[b+36|0]=0;f=H[b+20>>2];e=0;d=H[b+32>>2]+7|0;e=d>>>0<7?1:e;c=e>>>3|0;e=(e&7)<<29|d>>>3;d=e+H[b+16>>2]|0;c=c+f|0;H[b+16>>2]=d;H[b+20>>2]=d>>>0>>0?c+1|0:c;break i}sa();v()}while(1){d=H[b+8>>2];c=H[b+12>>2];g=c;c=H[b+20>>2];e=c;h=H[b+16>>2];f=h+4|0;c=f>>>0<4?c+1|0:c;i=f;if(f>>>0>d>>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break c}m=H[b>>2];f=m+h|0;o=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);H[b+16>>2]=i;H[b+20>>2]=c;c=e;f=h+8|0;c=f>>>0<8?c+1|0:c;if(d>>>0>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break c}i=i+m|0;i=I[i|0]|I[i+1|0]<<8|(I[i+2|0]<<16|I[i+3|0]<<24);H[b+16>>2]=f;H[b+20>>2]=c;if(d>>>0<=f>>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break c}d=I[f+m|0];c=h+9|0;e=c>>>0<9?e+1|0:e;H[b+16>>2]=c;H[b+20>>2]=e;f=d&1;c=H[a+40>>2];o:{if((c|0)!=H[a+44>>2]){F[c+8|0]=f;H[c+4>>2]=i;H[c>>2]=o;H[a+40>>2]=c+12;l=H[j+12>>2];break o}m=H[a+36>>2];d=c-m|0;h=(d|0)/12|0;e=h+1|0;if(e>>>0>=357913942){break h}c=h<<1;g=h>>>0>=178956970?357913941:c>>>0>e>>>0?c:e;if(g){if(g>>>0>=357913942){break b}e=pa(N(g,12))}else{e=0}h=e+N(h,12)|0;F[h+8|0]=f;H[h+4>>2]=i;H[h>>2]=o;c=va(h+N((d|0)/-12|0,12)|0,m,d);H[a+44>>2]=e+N(g,12);H[a+40>>2]=h+12;H[a+36>>2]=c;if(!m){break o}oa(m)}n=n+1|0;if(l>>>0>n>>>0){continue}break}}H[j+8>>2]=0;c=J[H[a+4>>2]+36>>1];c=(c<<8|c>>>8)&65535;p:{if(c>>>0<=511){k=-1;c=H[b+20>>2];d=H[b+16>>2];e=d+4|0;c=e>>>0<4?c+1|0:c;f=H[b+12>>2];if(K[b+8>>2]>>0&(f|0)<=(c|0)|(c|0)>(f|0)){break c}d=d+H[b>>2]|0;f=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=e;H[b+20>>2]=c;break p}if((c|0)!=512){break e}k=-1;if(!Ea(1,j+8|0,b)){break c}f=H[j+8>>2]}if(!f){break e}c=J[H[a+4>>2]+36>>1];if(((c<<8|c>>>8)&65535)>>>0<258){break f}n=0;l=0;while(1){if(!Ea(1,j+4|0,b)){break c}l=H[j+4>>2]+l|0;c=H[a+52>>2];q:{if((c|0)!=H[a+56>>2]){H[c>>2]=l;H[a+52>>2]=c+4;break q}i=H[a+48>>2];g=c-i|0;e=g>>2;d=e+1|0;if(d>>>0>=1073741824){break g}c=g>>>1|0;d=g>>>0>=2147483644?1073741823:c>>>0>d>>>0?c:d;if(d){if(d>>>0>=1073741824){break b}c=pa(d<<2)}else{c=0}e=c+(e<<2)|0;H[e>>2]=l;c=va(c,i,g);H[a+56>>2]=c+(d<<2);H[a+52>>2]=e+4;H[a+48>>2]=c;if(!i){break q}oa(i)}n=n+1|0;if((n|0)!=(f|0)){continue}break}break e}sa();v()}sa();v()}k=0;while(1){c=H[b+20>>2];d=H[b+16>>2];e=d+4|0;c=e>>>0<4?c+1|0:c;g=H[b+12>>2];if(K[b+8>>2]>>0&(g|0)<=(c|0)|(c|0)>(g|0)){k=-1;break c}d=d+H[b>>2]|0;g=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=e;H[b+20>>2]=c;c=H[a+52>>2];r:{if((c|0)!=H[a+56>>2]){H[c>>2]=g;H[a+52>>2]=c+4;break r}h=H[a+48>>2];i=c-h|0;e=i>>2;d=e+1|0;if(d>>>0>=1073741824){break a}c=i>>>1|0;d=i>>>0>=2147483644?1073741823:c>>>0>d>>>0?c:d;if(d){if(d>>>0>=1073741824){break b}c=pa(d<<2)}else{c=0}e=c+(e<<2)|0;H[e>>2]=g;c=va(c,h,i);H[a+56>>2]=c+(d<<2);H[a+52>>2]=e+4;H[a+48>>2]=c;if(!h){break r}oa(h)}k=k+1|0;if((k|0)!=(f|0)){continue}break}}k=H[b+16>>2]}ca=j+16|0;return k}wa();v()}sa();v()}function Va(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=O(0),k=0,l=0;a:{if(!d){break a}b:{c:{switch(H[a+28>>2]-1|0){case 0:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];g=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=H[e+4>>2];i=I[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=O(F[b|0]);L[(h<<2)+d>>2]=i?O(j/O(127)):j;b=b+1|0;h=h+1|0;e=I[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 1:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];g=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=H[e+4>>2];i=I[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=O(I[b|0]);L[(h<<2)+d>>2]=i?O(j/O(255)):j;b=b+1|0;h=h+1|0;e=I[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 2:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];g=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=H[e+4>>2];i=I[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=O(G[b>>1]);L[(h<<2)+d>>2]=i?O(j/O(32767)):j;b=b+2|0;h=h+1|0;e=I[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 3:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];g=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=H[e+4>>2];i=I[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=O(J[b>>1]);L[(h<<2)+d>>2]=i?O(j/O(65535)):j;b=b+2|0;h=h+1|0;e=I[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 4:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];g=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=H[e+4>>2];i=I[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=O(H[b>>2]);L[(h<<2)+d>>2]=i?O(j*O(4.656612873077393e-10)):j;b=b+4|0;h=h+1|0;e=I[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 5:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];g=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=H[e+4>>2];i=I[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=O(K[b>>2]);L[(h<<2)+d>>2]=i?O(j*O(2.3283064365386963e-10)):j;b=b+4|0;h=h+1|0;e=I[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 6:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];g=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=H[e+4>>2];i=I[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=O(+K[b>>2]+ +H[b+4>>2]*4294967296);L[(h<<2)+d>>2]=i?O(j*O(10842021724855044e-35)):j;b=b+8|0;h=h+1|0;e=I[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 7:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];g=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=H[e+4>>2];i=I[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=O(+K[b>>2]+ +K[b+4>>2]*4294967296);L[(h<<2)+d>>2]=i?O(j*O(5.421010862427522e-20)):j;b=b+8|0;h=h+1|0;e=I[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 8:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];g=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=H[e+4>>2];while(1){if(b>>>0>=g>>>0){break a}L[(h<<2)+d>>2]=L[b>>2];b=b+4|0;h=h+1|0;e=I[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 9:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];g=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=H[e+4>>2];while(1){if(b>>>0>=g>>>0){break a}L[(h<<2)+d>>2]=M[b>>3];b=b+8|0;h=h+1|0;e=I[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 10:break c;default:break a}}e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[a>>2];g=H[e>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=H[e+4>>2];while(1){if(b>>>0>=g>>>0){break a}L[(h<<2)+d>>2]=I[b|0]?O(1):O(0);b=b+1|0;h=h+1|0;e=I[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0}ra(d,0,a<<2)}return l}function ic(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=O(0),m=O(0);a:{b:{if(!d){break b}c:{switch(H[a+28>>2]-1|0){case 0:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}F[d+g|0]=I[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 1:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){return 0}e=F[b|0];if((e|0)<0){break b}F[d+g|0]=e;b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 2:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}e=J[b>>1];if((e+128&65535)>>>0>255){break b}F[d+g|0]=e;b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 3:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}e=J[b>>1];if(e>>>0>127){break b}F[d+g|0]=e;b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 4:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}e=H[b>>2];if(e+128>>>0>255){break b}F[d+g|0]=e;b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 5:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}e=H[b>>2];if(e>>>0>127){break b}F[d+g|0]=e;b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 6:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}i=H[b+4>>2];e=H[b>>2];h=e+128|0;i=h>>>0<128?i+1|0:i;if(!i&h>>>0>255|i){break b}F[d+g|0]=e;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 7:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}i=H[b+4>>2];e=H[b>>2];if(!i&e>>>0>127|i){break b}F[d+g|0]=e;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 8:e=I[a+24|0];c=c&255;d:{if(c>>>0>e>>>0?e:c){e=H[H[a>>2]>>2];f=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+f|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break d}l=L[b>>2];if(l>=O(127)|lO(1)){break d}j=T(+l*127+.5);if(!(P(j)<2147483648)){break f}h=~~j;break e}if(!(m>>0<(c>>>0>e>>>0?e:c)>>>0){continue}break}}k=1;if(c>>>0<=e>>>0){break d}ra(d+e|0,0,c-e|0)}return k;case 9:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}j=M[b>>3];if(j>=127|j<-128|(P(j)==Infinity|j!=j)){break b}e=d+g|0;if(I[a+32|0]){if(j<0|j>1){break b}j=T(j*127+.5)}g:{if(P(j)<2147483648){h=~~j;break g}h=-2147483648}F[e|0]=h;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 10:break c;default:break b}}e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}F[d+g|0]=I[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}ra(d+e|0,0,(c&255)-e|0)}return k}ra(d+e|0,0,(c&255)-e|0);return 1}function hc(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=O(0);a:{b:{if(!d){break b}c:{switch(H[a+28>>2]-1|0){case 0:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){return 0}e=F[b|0];if((e|0)<0){break b}F[d+g|0]=e;b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 1:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}F[d+g|0]=I[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 2:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}e=J[b>>1];if(e>>>0>255){break b}F[d+g|0]=e;b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 3:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}e=J[b>>1];if(e>>>0>255){break b}F[d+g|0]=e;b=b+2|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 4:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}e=H[b>>2];if(e>>>0>255){break b}F[d+g|0]=e;b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 5:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}e=H[b>>2];if(e>>>0>255){break b}F[d+g|0]=e;b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 6:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}i=H[b+4>>2];e=H[b>>2];if(!i&e>>>0>255|i){break b}F[d+g|0]=e;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 7:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}i=H[b+4>>2];e=H[b>>2];if(!i&e>>>0>255|i){break b}F[d+g|0]=e;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 8:e=I[a+24|0];c=c&255;d:{if(c>>>0>e>>>0?e:c){e=H[H[a>>2]>>2];f=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+f|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break d}l=L[b>>2];if(l>=O(255)|lO(1)){break d}j=T(+l*255+.5);if(!(j<4294967296&j>=0)){break f}h=~~j>>>0;break e}if(!(l=O(0))){break f}h=~~l>>>0;break e}h=0}F[e|0]=h;b=b+4|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(c>>>0>e>>>0?e:c)>>>0){continue}break}}k=1;if(c>>>0<=e>>>0){break d}ra(d+e|0,0,c-e|0)}return k;case 9:e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}j=M[b>>3];if(j>=255|j<0|(P(j)==Infinity|j!=j)){break b}e=d+g|0;if(I[a+32|0]){if(j>1){break b}j=T(j*255+.5)}g:{if(j<4294967296&j>=0){h=~~j>>>0;break g}h=0}F[e|0]=h;b=b+8|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 10:break c;default:break b}}e=I[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=H[H[a>>2]>>2];i=H[a+48>>2];b=Rj(H[a+40>>2],H[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(K[H[a>>2]+4>>2]<=b>>>0){break b}F[d+g|0]=I[b|0];b=b+1|0;g=g+1|0;e=I[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}ra(d+e|0,0,(c&255)-e|0)}return k}ra(d+e|0,0,(c&255)-e|0);return 1}function Hh(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;g=ca-32|0;ca=g;i=H[a+32>>2];b=J[a+36>>1];a:{b:{if(((b<<8|b>>>8)&65535)>>>0<=513){b=H[i+8>>2];d=H[i+12>>2];c=b;b=H[i+20>>2];e=b;j=H[i+16>>2];f=j+4|0;b=f>>>0<4?b+1|0:b;if(c>>>0>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break a}n=H[i>>2];k=n+j|0;k=I[k|0]|I[k+1|0]<<8|(I[k+2|0]<<16|I[k+3|0]<<24);H[i+16>>2]=f;H[i+20>>2]=b;h=c;c=d;b=e;d=j+8|0;b=d>>>0<8?b+1|0:b;if(d>>>0>h>>>0&(b|0)>=(c|0)|(b|0)>(c|0)){break a}c=f+n|0;n=I[c|0]|I[c+1|0]<<8|(I[c+2|0]<<16|I[c+3|0]<<24);H[i+16>>2]=d;H[i+20>>2]=b;break b}if(!Fb(1,g+28|0,i)){break a}if(!Fb(1,g+24|0,H[a+32>>2])){break a}k=H[g+28>>2];n=H[g+24>>2]}if(k>>>0>1431655765){break a}d=H[a+32>>2];b=d;j=H[b+8>>2];c=H[b+16>>2];f=H[b+12>>2];b=H[b+20>>2];e=Sj(j-c|0,f-(b+(c>>>0>j>>>0)|0)|0,3,0);if(!da&e>>>0>>0){break a}e=Rj(k,0,3,0);if(!da&e>>>0>>0|((b|0)>=(f|0)&c>>>0>=j>>>0|(b|0)>(f|0))){break a}j=I[c+H[d>>2]|0];c=c+1|0;b=c?b:b+1|0;H[d+16>>2]=c;H[d+20>>2]=b;c:{d:{if(!j){d=0;c=ca-32|0;ca=c;H[c+24>>2]=0;H[c+16>>2]=0;H[c+20>>2]=0;e:{f:{b=N(k,3);if(b){if(b>>>0>=1073741824){break f}j=N(k,12);d=pa(j);ra(d,0,j)}b=kd(b,1,H[a+32>>2],d);g:{h:{if(!(!k|!b)){j=0;while(1){i:{b=(j<<2)+d|0;f=H[b>>2];e=f>>>1|0;f=(f&1?0-e|0:e)+l|0;if((f|0)<0){break i}H[c>>2]=f;e=H[b+4>>2];h=e>>>1|0;f=f+(e&1?0-h|0:h)|0;if((f|0)<0){break i}H[c+4>>2]=f;b=H[b+8>>2];e=b>>>1|0;l=f+(b&1?0-e|0:e)|0;if((l|0)<0){break i}H[c+8>>2]=l;Rb(H[a+44>>2]+96|0,c);j=j+3|0;b=1;o=o+1|0;if((o|0)!=(k|0)){continue}break h}break}b=0;break h}if(!d){break g}}oa(d)}ca=c+32|0;break e}sa();v()}if(b){break d}break a}if(n>>>0<=255){if(!k){break d}while(1){j:{H[g+16>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;d=H[a+32>>2];b=d;j=H[b+16>>2];e=H[b+8>>2];c=H[b+20>>2];h=H[b+12>>2];b=h;if(e>>>0<=j>>>0&(c|0)>=(b|0)|(b|0)<(c|0)){break j}i=H[d>>2];l=I[i+j|0];b=c;f=j+1|0;b=f?b:b+1|0;H[d+16>>2]=f;H[d+20>>2]=b;H[g+8>>2]=l;l=e>>>0>>0&(c|0)>=(h|0)|(c|0)>(h|0);e=l?j:e;h=l?c:h;if((e|0)==(f|0)&(h|0)==(b|0)){break j}l=I[f+i|0];b=c;f=j+2|0;b=f>>>0<2?b+1|0:b;H[d+16>>2]=f;H[d+20>>2]=b;H[g+12>>2]=l;if((e|0)==(f|0)&(b|0)==(h|0)){break j}f=I[f+i|0];b=c;c=j+3|0;b=c>>>0<3?b+1|0:b;H[d+16>>2]=c;H[d+20>>2]=b;H[g+16>>2]=f;Rb(H[a+44>>2]+96|0,g+8|0);m=m+1|0;if((m|0)!=(k|0)){continue}break d}break}m=0;break a}if(n>>>0<=65535){if(!k){break d}while(1){k:{H[g+16>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;i=H[a+32>>2];b=i;c=H[b+8>>2];d=H[b+12>>2];f=H[b+16>>2];b=H[b+20>>2];j=b;e=f+2|0;b=e>>>0<2?b+1|0:b;if(c>>>0>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break k}l=H[i>>2];h=l+f|0;h=I[h|0]|I[h+1|0]<<8;H[i+16>>2]=e;H[i+20>>2]=b;H[g+8>>2]=h;b=j;h=f+4|0;b=h>>>0<4?b+1|0:b;if(c>>>0>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break k}e=e+l|0;e=I[e|0]|I[e+1|0]<<8;H[i+16>>2]=h;H[i+20>>2]=b;H[g+12>>2]=e;e=c;b=j;c=f+6|0;b=c>>>0<6?b+1|0:b;if(c>>>0>e>>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break k}d=h+l|0;d=I[d|0]|I[d+1|0]<<8;H[i+16>>2]=c;H[i+20>>2]=b;H[g+16>>2]=d;Rb(H[a+44>>2]+96|0,g+8|0);m=m+1|0;if((m|0)!=(k|0)){continue}break d}break}m=0;break a}l:{if(n>>>0>2097151){break l}b=J[a+36>>1];if(((b<<8|b>>>8)&65535)>>>0<514){break l}if(!k){break d}while(1){m:{H[g+16>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;if(!Fb(1,g+4|0,H[a+32>>2])){break m}H[g+8>>2]=H[g+4>>2];if(!Fb(1,g+4|0,H[a+32>>2])){break m}H[g+12>>2]=H[g+4>>2];if(!Fb(1,g+4|0,H[a+32>>2])){break m}H[g+16>>2]=H[g+4>>2];Rb(H[a+44>>2]+96|0,g+8|0);m=m+1|0;if((m|0)!=(k|0)){continue}break d}break}m=0;break a}if(!k){break d}while(1){H[g+16>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;i=H[a+32>>2];b=i;c=H[b+8>>2];d=H[b+12>>2];f=H[b+16>>2];b=H[b+20>>2];j=b;e=f+4|0;b=e>>>0<4?b+1|0:b;if(c>>>0>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break c}l=H[i>>2];h=l+f|0;h=I[h|0]|I[h+1|0]<<8|(I[h+2|0]<<16|I[h+3|0]<<24);H[i+16>>2]=e;H[i+20>>2]=b;H[g+8>>2]=h;b=j;h=f+8|0;b=h>>>0<8?b+1|0:b;if(c>>>0>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break c}e=e+l|0;e=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);H[i+16>>2]=h;H[i+20>>2]=b;H[g+12>>2]=e;e=c;b=j;c=f+12|0;b=c>>>0<12?b+1|0:b;if(c>>>0>e>>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break c}d=h+l|0;d=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[i+16>>2]=c;H[i+20>>2]=b;H[g+16>>2]=d;Rb(H[a+44>>2]+96|0,g+8|0);m=m+1|0;if((m|0)!=(k|0)){continue}break}}H[H[a+4>>2]+80>>2]=n;m=1;break a}m=0}ca=g+32|0;return m|0}function zf(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=O(0),w=0;p=ca-16|0;ca=p;a:{if(!(H[a+60>>2]!=H[a- -64>>2]|H[a+48>>2]!=H[a+52>>2])){j=1;break a}j=1;if((ea[H[H[a>>2]+24>>2]](a)|0)<=0){break a}while(1){b:{b=ea[H[H[a>>2]+20>>2]](a,w)|0;c:{d:{e:{f=H[H[H[(ea[H[H[a>>2]+28>>2]](a)|0)+4>>2]+8>>2]+(b<<2)>>2];switch(H[f+28>>2]-1|0){case 8:break d;case 0:case 2:case 4:break e;default:break c}}b=I[f+24|0];f:{if(!b){n=0;j=0;break f}j=0;b=b<<2;n=pa(b);ra(n,0,b);b=I[f+24|0];if(!b){break f}b=b<<2;j=pa(b);ra(j,0,b)}g:{h:{i:{switch(H[f+28>>2]-1|0){case 4:i=0;h=0;d=0;b=0;k=0;e=I[f+24|0];j:{if(!e){g=0;break j}e=e<<2;h=pa(e);ra(h,0,e);g=pa(e);ra(g,0,e)}k:{if(H[f+80>>2]){while(1){o=H[f>>2];c=H[o>>2];m=H[f+48>>2];e=H[f+40>>2];l=Rj(e,H[f+44>>2],d,b);m=m+l|0;s=c+m|0;c=e;m=qa(h,s,c);l=I[f+24|0];if(l){t=H[a+48>>2];e=0;while(1){r=e<<2;s=H[r+m>>2];if((s|0)<0){break k}H[g+r>>2]=s+H[t+(e+u<<2)>>2];e=e+1|0;if((l|0)!=(e|0)){continue}break}}qa(H[o>>2]+N(d,c)|0,g,c);d=d+1|0;b=d?b:b+1|0;if(!b&K[f+80>>2]>d>>>0){continue}break}}k=1}if(g){oa(g)}if(h){oa(h)}if(k){break h}break g;case 2:g=0;e=0;d=0;b=0;c=I[f+24|0];if(c){c=c<<1;e=pa(c);ra(e,0,c);g=pa(c);ra(g,0,c)}if(H[f+80>>2]){while(1){l=H[f>>2];h=H[l>>2];i=H[f+48>>2];c=H[f+40>>2];k=Rj(c,H[f+44>>2],d,b);i=i+k|0;k=qa(e,h+i|0,c);o=I[f+24|0];l:{if(!o){break l}m=H[a+48>>2];h=0;if((o|0)!=1){t=o&254;i=0;while(1){r=h<<1;G[r+g>>1]=J[k+r>>1]+J[m+(h+u<<2)>>1];r=h|1;s=r<<1;G[s+g>>1]=J[k+s>>1]+J[m+(r+u<<2)>>1];h=h+2|0;i=i+2|0;if((t|0)!=(i|0)){continue}break}}if(!(o&1)){break l}i=h<<1;G[i+g>>1]=J[i+k>>1]+J[m+(h+u<<2)>>1]}qa(H[l>>2]+N(d,c)|0,g,c);d=d+1|0;b=d?b:b+1|0;if(!b&K[f+80>>2]>d>>>0){continue}break}}if(g){oa(g)}if(e){oa(e)}break h;case 0:break i;default:break h}}h=0;e=0;d=0;b=0;c=I[f+24|0];if(c){e=pa(c);ra(e,0,c);h=pa(c);ra(h,0,c)}if(H[f+80>>2]){while(1){t=H[f>>2];g=H[t>>2];i=H[f+48>>2];c=H[f+40>>2];k=Rj(c,H[f+44>>2],d,b);i=i+k|0;k=qa(e,g+i|0,c);o=I[f+24|0];m:{if(!o){break m}m=H[a+48>>2];g=0;if((o|0)!=1){r=o&254;i=0;while(1){F[g+h|0]=I[g+k|0]+I[m+(g+u<<2)|0];l=g|1;F[l+h|0]=I[k+l|0]+I[m+(l+u<<2)|0];g=g+2|0;i=i+2|0;if((r|0)!=(i|0)){continue}break}}if(!(o&1)){break m}F[g+h|0]=I[g+k|0]+I[m+(g+u<<2)|0]}qa(H[t>>2]+N(d,c)|0,h,c);d=d+1|0;b=d?b:b+1|0;if(!b&K[f+80>>2]>d>>>0){continue}break}}if(h){oa(h)}if(e){oa(e)}}u=I[f+24|0]+u|0;i=1}if(j){oa(j)}if(n){oa(n)}if(i){break c}j=0;break a}e=H[H[a+60>>2]+(q<<2)>>2];h=H[a+36>>2];g=H[(ea[H[H[a>>2]+28>>2]](a)|0)+40>>2];H[p+12>>2]=H[f+56>>2];b=pa(32);H[p>>2]=b;H[p+4>>2]=24;H[p+8>>2]=-2147483616;d=I[1206]|I[1207]<<8|(I[1208]<<16|I[1209]<<24);c=I[1202]|I[1203]<<8|(I[1204]<<16|I[1205]<<24);F[b+16|0]=c;F[b+17|0]=c>>>8;F[b+18|0]=c>>>16;F[b+19|0]=c>>>24;F[b+20|0]=d;F[b+21|0]=d>>>8;F[b+22|0]=d>>>16;F[b+23|0]=d>>>24;d=I[1198]|I[1199]<<8|(I[1200]<<16|I[1201]<<24);c=I[1194]|I[1195]<<8|(I[1196]<<16|I[1197]<<24);F[b+8|0]=c;F[b+9|0]=c>>>8;F[b+10|0]=c>>>16;F[b+11|0]=c>>>24;F[b+12|0]=d;F[b+13|0]=d>>>8;F[b+14|0]=d>>>16;F[b+15|0]=d>>>24;d=I[1190]|I[1191]<<8|(I[1192]<<16|I[1193]<<24);c=I[1186]|I[1187]<<8|(I[1188]<<16|I[1189]<<24);F[b|0]=c;F[b+1|0]=c>>>8;F[b+2|0]=c>>>16;F[b+3|0]=c>>>24;F[b+4|0]=d;F[b+5|0]=d>>>8;F[b+6|0]=d>>>16;F[b+7|0]=d>>>24;F[b+24|0]=0;d=sd(g,p+12|0,p);if(F[p+11|0]<0){oa(H[p>>2])}b=q+1|0;n:{if(d){oe(f,e);break n}g=h+N(q,24)|0;q=H[g+4>>2];c=I[f+24|0];h=c<<2;d=pa(h);H[p>>2]=1065353216;v=L[g+20>>2];q=-1<0){L[p>>2]=v/O(q|0)}if((q|0)<=0){break b}o:{if(!H[e+80>>2]){break o}if(!c){n=0;j=0;while(1){qa(H[H[f+64>>2]>>2]+j|0,d,h);j=h+j|0;n=n+1|0;if(n>>>0>2]){continue}break}break o}o=H[H[e>>2]>>2]+H[e+48>>2]|0;t=c&254;r=c&1;i=0;k=0;j=0;while(1){q=H[g+8>>2];v=L[p>>2];n=0;m=0;if((c|0)!=1){while(1){l=n<<2;s=o+(j<<2)|0;L[l+d>>2]=O(v*O(H[s>>2]))+L[l+q>>2];l=l|4;L[l+d>>2]=O(v*O(H[s+4>>2]))+L[l+q>>2];n=n+2|0;j=j+2|0;m=m+2|0;if((t|0)!=(m|0)){continue}break}}if(r){n=n<<2;L[n+d>>2]=O(v*O(H[o+(j<<2)>>2]))+L[n+q>>2];j=j+1|0}qa(H[H[f+64>>2]>>2]+k|0,d,h);k=h+k|0;i=i+1|0;if(i>>>0>2]){continue}break}}oa(d)}q=b}j=1;w=w+1|0;if((ea[H[H[a>>2]+24>>2]](a)|0)>(w|0)){continue}break a}break}oa(d);j=0}ca=p+16|0;return j|0}function Le(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;g=ca+-64|0;ca=g;H[g+56>>2]=0;H[g+48>>2]=0;H[g+52>>2]=0;H[g+40>>2]=0;H[g+44>>2]=0;H[g+32>>2]=0;H[g+36>>2]=0;H[g+24>>2]=0;H[g+28>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;j=g+8|0;d=J[b+38>>1];a:{b:{if(!d){break b}c:{if(d>>>0<=511){h=H[b+8>>2];f=H[b+12>>2];e=H[b+20>>2];d=H[b+16>>2];i=d+4|0;e=i>>>0<4?e+1|0:e;if(h>>>0>>0&(e|0)>=(f|0)|(e|0)>(f|0)){break b}d=d+H[b>>2]|0;l=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[j+12>>2]=l;e=H[b+20>>2];d=H[b+16>>2]+4|0;e=d>>>0<4?e+1|0:e;H[b+16>>2]=d;H[b+20>>2]=e;break c}if(!hb(1,j+12|0,b)){break b}d=H[b+16>>2];e=H[b+20>>2];l=H[j+12>>2]}f=H[b+8>>2];i=f-d|0;d=H[b+12>>2]-((d>>>0>f>>>0)+e|0)|0;if(i>>>0>>6>>>0&(d|0)<=0|(d|0)<0){break b}e=H[j>>2];d=H[j+4>>2]-e>>2;d:{if(d>>>0>>0){ya(j,l-d|0);l=H[j+12>>2];break d}if(d>>>0<=l>>>0){break d}H[j+4>>2]=e+(l<<2)}i=1;if(!l){break a}d=H[b+16>>2];e=H[b+20>>2];r=H[j>>2];k=H[b+8>>2];o=H[b+12>>2];h=0;while(1){i=0;if((e|0)>=(o|0)&d>>>0>=k>>>0|(e|0)>(o|0)){break a}i=H[b>>2];p=I[i+d|0];d=d+1|0;e=d?e:e+1|0;H[b+16>>2]=d;H[b+20>>2]=e;f=p>>>2|0;m=0;e:{f:{g:{h:{s=p&3;switch(s|0){case 0:break f;case 3:break h;default:break g}}f=f+h|0;i=0;if(f>>>0>=l>>>0){break a}ra(r+(h<<2)|0,0,(p&252)+4|0);h=f;break e}while(1){if((d|0)==(k|0)&(e|0)==(o|0)){break b}l=I[d+i|0];d=d+1|0;e=d?e:e+1|0;H[b+16>>2]=d;H[b+20>>2]=e;f=l<<(m<<3|6)|f;m=m+1|0;if((s|0)!=(m|0)){continue}break}}H[r+(h<<2)>>2]=f}l=H[j+12>>2];h=h+1|0;if(l>>>0>h>>>0){continue}break}d=j+16|0;o=H[j>>2];f=H[j+16>>2];e=H[j+20>>2]-f|0;i:{if(e>>>0<=4194303){ya(d,1048576-(e>>>2|0)|0);break i}if((e|0)==4194304){break i}H[j+20>>2]=f+4194304}e=j+28|0;h=H[e>>2];f=H[j+32>>2]-h>>3;j:{if(f>>>0>>0){ob(e,l-f|0);h=H[e>>2];break j}if(f>>>0>l>>>0){H[j+32>>2]=(l<<3)+h}if(!l){break b}}k=H[d>>2];d=0;i=0;while(1){e=o+(d<<2)|0;j=H[e>>2];m=(d<<3)+h|0;f=i;H[m+4>>2]=f;H[m>>2]=j;e=H[e>>2];i=e+f|0;if(i>>>0>1048576){break b}k:{if(f>>>0>=i>>>0){break k}m=0;j=e&7;if(j){while(1){H[k+(f<<2)>>2]=d;f=f+1|0;m=m+1|0;if((j|0)!=(m|0)){continue}break}}if(e-1>>>0<=6){break k}while(1){e=k+(f<<2)|0;H[e>>2]=d;H[e+28>>2]=d;H[e+24>>2]=d;H[e+20>>2]=d;H[e+16>>2]=d;H[e+12>>2]=d;H[e+8>>2]=d;H[e+4>>2]=d;f=f+8|0;if((i|0)!=(f|0)){continue}break}}d=d+1|0;if((l|0)!=(d|0)){continue}break}n=(i|0)==1048576}i=n}l:{if(!i|(H[g+20>>2]?0:a)){break l}i=0;n=ca-16|0;ca=n;m:{n:{if(J[b+38>>1]<=511){h=H[b+8>>2];f=H[b+12>>2];j=f;e=H[b+20>>2];k=H[b+16>>2];d=k+8|0;e=d>>>0<8?e+1|0:e;if(d>>>0>h>>>0&(e|0)>=(f|0)|(e|0)>(f|0)){break m}k=k+H[b>>2]|0;f=I[k|0]|I[k+1|0]<<8|(I[k+2|0]<<16|I[k+3|0]<<24);k=I[k+4|0]|I[k+5|0]<<8|(I[k+6|0]<<16|I[k+7|0]<<24);H[b+16>>2]=d;H[b+20>>2]=e;break n}if(!gb(1,n+8|0,b)){break m}d=H[b+16>>2];e=H[b+20>>2];h=H[b+8>>2];j=H[b+12>>2];f=H[n+8>>2];k=H[n+12>>2]}l=h-d|0;h=j-((d>>>0>h>>>0)+e|0)|0;if((h|0)==(k|0)&f>>>0>l>>>0|h>>>0>>0){break m}e=e+k|0;h=d+f|0;e=h>>>0>>0?e+1|0:e;H[b+16>>2]=h;H[b+20>>2]=e;if((f|0)<=0){break m}b=H[b>>2]+d|0;H[g+48>>2]=b;d=f-1|0;e=d+b|0;h=I[e|0];o:{if(h>>>0<=63){H[g+52>>2]=d;b=I[e|0]&63;break o}p:{switch((h>>>6|0)-1|0){case 0:if(f>>>0<2){break m}d=f-2|0;H[g+52>>2]=d;b=b+d|0;b=I[b+1|0]<<8&16128|I[b|0];break o;case 1:if(f>>>0<3){break m}d=f-3|0;H[g+52>>2]=d;b=b+d|0;b=I[b+1|0]<<8|I[b+2|0]<<16&4128768|I[b|0];break o;default:break p}}d=f-4|0;H[g+52>>2]=d;b=b+d|0;b=(I[b|0]|I[b+1|0]<<8|(I[b+2|0]<<16|I[b+3|0]<<24))&1073741823}H[g+56>>2]=b+4194304;i=b>>>0<1069547520}ca=n+16|0;if(!i){break l}if(!a){t=1;break l}b=H[g+52>>2];f=H[g+56>>2];d=H[g+36>>2];e=H[g+48>>2];h=H[g+24>>2];while(1){q:{if(f>>>0>4194303){break q}while(1){if((b|0)<=0){break q}b=b-1|0;H[g+52>>2]=b;f=I[b+e|0]|f<<8;H[g+56>>2]=f;if(f>>>0<4194304){continue}break}}i=f&1048575;k=H[h+(i<<2)>>2];n=d+(k<<3)|0;f=(N(H[n>>2],f>>>20|0)+i|0)-H[n+4>>2]|0;H[g+56>>2]=f;H[(q<<2)+c>>2]=k;t=1;q=q+1|0;if((q|0)!=(a|0)){continue}break}}a=H[g+36>>2];if(a){H[g+40>>2]=a;oa(a)}a=H[g+24>>2];if(a){H[g+28>>2]=a;oa(a)}a=H[g+8>>2];if(a){H[g+12>>2]=a;oa(a)}ca=g- -64|0;return t}function nc(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0;e=ca-48|0;ca=e;f=J[6677]|J[6678]<<16;d=J[6675]|J[6676]<<16;G[e+38>>1]=d;G[e+40>>1]=d>>>16;G[e+42>>1]=f;G[e+44>>1]=f>>>16;d=H[3337];H[e+32>>2]=H[3336];H[e+36>>2]=d;d=H[3335];H[e+24>>2]=H[3334];H[e+28>>2]=d;d=H[3333];H[e+16>>2]=H[3332];H[e+20>>2]=d;g=H[b+8>>2];i=H[b+12>>2];h=H[b+20>>2];d=H[b+16>>2];f=d+5|0;h=f>>>0<5?h+1|0:h;a:{b:{if(g>>>0>>0&(h|0)>=(i|0)|(h|0)>(i|0)){d=Ma(e+16|0);if(d>>>0>=2147483632){break a}c:{d:{if(d>>>0>=11){b=(d|15)+1|0;c=pa(b);H[e+8>>2]=b|-2147483648;H[e>>2]=c;H[e+4>>2]=d;b=c+d|0;break d}F[e+11|0]=d;b=d+e|0;c=e;if(!d){break c}}qa(c,e+16|0,d)}F[b|0]=0;H[a>>2]=-2;b=a+4|0;if(F[e+11|0]>=0){a=H[e+4>>2];H[b>>2]=H[e>>2];H[b+4>>2]=a;H[b+8>>2]=H[e+8>>2];break b}za(b,H[e>>2],H[e+4>>2]);if(F[e+11|0]>=0){break b}oa(H[e>>2]);break b}f=d+H[b>>2]|0;d=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);F[c|0]=d;F[c+1|0]=d>>>8;F[c+2|0]=d>>>16;F[c+3|0]=d>>>24;F[c+4|0]=I[f+4|0];d=H[b+20>>2];f=H[b+16>>2]+5|0;d=f>>>0<5?d+1|0:d;H[b+16>>2]=f;H[b+20>>2]=d;if(Fa(c,1260,5)){d=pa(32);F[d+17|0]=0;F[d+16|0]=I[1496];c=I[1492]|I[1493]<<8|(I[1494]<<16|I[1495]<<24);b=I[1488]|I[1489]<<8|(I[1490]<<16|I[1491]<<24);F[d+8|0]=b;F[d+9|0]=b>>>8;F[d+10|0]=b>>>16;F[d+11|0]=b>>>24;F[d+12|0]=c;F[d+13|0]=c>>>8;F[d+14|0]=c>>>16;F[d+15|0]=c>>>24;c=I[1484]|I[1485]<<8|(I[1486]<<16|I[1487]<<24);b=I[1480]|I[1481]<<8|(I[1482]<<16|I[1483]<<24);F[d|0]=b;F[d+1|0]=b>>>8;F[d+2|0]=b>>>16;F[d+3|0]=b>>>24;F[d+4|0]=c;F[d+5|0]=c>>>8;F[d+6|0]=c>>>16;F[d+7|0]=c>>>24;H[a>>2]=-1;za(a+4|0,d,17);oa(d);break b}g=H[b+12>>2];if((g|0)<=(d|0)&K[b+8>>2]<=f>>>0|(d|0)>(g|0)){d=Ma(e+16|0);if(d>>>0>=2147483632){break a}e:{f:{if(d>>>0>=11){b=(d|15)+1|0;c=pa(b);H[e+8>>2]=b|-2147483648;H[e>>2]=c;H[e+4>>2]=d;b=c+d|0;break f}F[e+11|0]=d;b=d+e|0;c=e;if(!d){break e}}qa(c,e+16|0,d)}F[b|0]=0;H[a>>2]=-2;b=a+4|0;if(F[e+11|0]>=0){a=H[e+4>>2];H[b>>2]=H[e>>2];H[b+4>>2]=a;H[b+8>>2]=H[e+8>>2];break b}za(b,H[e>>2],H[e+4>>2]);if(F[e+11|0]>=0){break b}oa(H[e>>2]);break b}F[c+5|0]=I[f+H[b>>2]|0];g=H[b+20>>2];d=H[b+16>>2]+1|0;g=d?g:g+1|0;H[b+16>>2]=d;H[b+20>>2]=g;f=H[b+12>>2];if((f|0)<=(g|0)&K[b+8>>2]<=d>>>0|(g|0)>(f|0)){d=Ma(e+16|0);if(d>>>0>=2147483632){break a}g:{h:{if(d>>>0>=11){b=(d|15)+1|0;c=pa(b);H[e+8>>2]=b|-2147483648;H[e>>2]=c;H[e+4>>2]=d;b=c+d|0;break h}F[e+11|0]=d;b=d+e|0;c=e;if(!d){break g}}qa(c,e+16|0,d)}F[b|0]=0;H[a>>2]=-2;b=a+4|0;if(F[e+11|0]>=0){a=H[e+4>>2];H[b>>2]=H[e>>2];H[b+4>>2]=a;H[b+8>>2]=H[e+8>>2];break b}za(b,H[e>>2],H[e+4>>2]);if(F[e+11|0]>=0){break b}oa(H[e>>2]);break b}F[c+6|0]=I[d+H[b>>2]|0];h=H[b+20>>2];d=H[b+16>>2]+1|0;h=d?h:h+1|0;H[b+16>>2]=d;H[b+20>>2]=h;f=H[b+12>>2];if((f|0)<=(h|0)&K[b+8>>2]<=d>>>0|(f|0)<(h|0)){d=Ma(e+16|0);if(d>>>0>=2147483632){break a}i:{j:{if(d>>>0>=11){b=(d|15)+1|0;c=pa(b);H[e+8>>2]=b|-2147483648;H[e>>2]=c;H[e+4>>2]=d;b=c+d|0;break j}F[e+11|0]=d;b=d+e|0;c=e;if(!d){break i}}qa(c,e+16|0,d)}F[b|0]=0;H[a>>2]=-2;b=a+4|0;if(F[e+11|0]>=0){a=H[e+4>>2];H[b>>2]=H[e>>2];H[b+4>>2]=a;H[b+8>>2]=H[e+8>>2];break b}za(b,H[e>>2],H[e+4>>2]);if(F[e+11|0]>=0){break b}oa(H[e>>2]);break b}F[c+7|0]=I[d+H[b>>2]|0];g=H[b+20>>2];d=H[b+16>>2]+1|0;g=d?g:g+1|0;H[b+16>>2]=d;H[b+20>>2]=g;f=H[b+12>>2];if((f|0)<=(g|0)&K[b+8>>2]<=d>>>0|(g|0)>(f|0)){c=mc(e,e+16|0);H[a>>2]=-2;b=a+4|0;if(F[c+11|0]>=0){a=H[c+4>>2];H[b>>2]=H[c>>2];H[b+4>>2]=a;H[b+8>>2]=H[c+8>>2];break b}za(b,H[c>>2],H[c+4>>2]);if(F[c+11|0]>=0){break b}oa(H[c>>2]);break b}F[c+8|0]=I[d+H[b>>2]|0];d=H[b+20>>2];g=H[b+16>>2];f=g+1|0;i=f?d:d+1|0;H[b+16>>2]=f;H[b+20>>2]=i;i=H[b+8>>2];h=H[b+12>>2];g=g+3|0;d=g>>>0<3?d+1|0:d;if(g>>>0>i>>>0&(d|0)>=(h|0)|(d|0)>(h|0)){c=mc(e,e+16|0);H[a>>2]=-2;b=a+4|0;if(F[c+11|0]>=0){a=H[c+4>>2];H[b>>2]=H[c>>2];H[b+4>>2]=a;H[b+8>>2]=H[c+8>>2];break b}za(b,H[c>>2],H[c+4>>2]);if(F[c+11|0]>=0){break b}oa(H[c>>2]);break b}d=c;c=H[b>>2]+f|0;G[d+10>>1]=I[c|0]|I[c+1|0]<<8;g=H[b+20>>2];c=H[b+16>>2]+2|0;g=c>>>0<2?g+1|0:g;H[b+16>>2]=c;H[b+20>>2]=g;H[a+8>>2]=0;H[a+12>>2]=0;H[a>>2]=0;H[a+4>>2]=0}ca=e+48|0;return}Na();v()}function Nb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0;e=ca-96|0;ca=e;f=H[a+16>>2];F[e+92|0]=1;H[e+88>>2]=b;H[e+84>>2]=b;H[e+80>>2]=f;j=H[a+20>>2];d=H[j>>2];a:{b:{f=H[H[f+28>>2]+(b<<2)>>2];if(f>>>0>2]-d>>2>>>0){d=H[H[a+8>>2]+(H[d+(f<<2)>>2]<<2)>>2];f=H[a+4>>2];if(!I[f+84|0]){d=H[H[f+68>>2]+(d<<2)>>2]}H[e+72>>2]=0;H[e+76>>2]=0;j=e- -64|0;H[j>>2]=0;H[j+4>>2]=0;H[e+56>>2]=0;H[e+60>>2]=0;Sa(f,d,F[f+24|0],e+56|0);if((b|0)!=-1){f=b+1|0;j=(f>>>0)%3|0?f:b-2|0;m=((b>>>0)%3|0?-1:2)+b|0;while(1){d=j;f=m;c:{if(!H[a+28>>2]){break c}f=b+1|0;d=(f>>>0)%3|0?f:b-2|0;f=b-1|0;if((b>>>0)%3|0){break c}f=b+2|0}n=H[a+20>>2];b=H[n>>2];d=H[H[H[a+16>>2]+28>>2]+(d<<2)>>2];if(d>>>0>=H[n+4>>2]-b>>2>>>0){break b}d=H[H[a+8>>2]+(H[b+(d<<2)>>2]<<2)>>2];b=H[a+4>>2];if(!I[b+84|0]){d=H[H[b+68>>2]+(d<<2)>>2]}H[e+48>>2]=0;H[e+52>>2]=0;H[e+40>>2]=0;H[e+44>>2]=0;H[e+32>>2]=0;H[e+36>>2]=0;Sa(b,d,F[b+24|0],e+32|0);d=H[a+20>>2];b=H[d>>2];f=H[H[H[a+16>>2]+28>>2]+(f<<2)>>2];if(f>>>0>=H[d+4>>2]-b>>2>>>0){break a}d=H[H[a+8>>2]+(H[b+(f<<2)>>2]<<2)>>2];b=H[a+4>>2];if(!I[b+84|0]){d=H[H[b+68>>2]+(d<<2)>>2]}H[e+24>>2]=0;H[e+28>>2]=0;H[e+16>>2]=0;H[e+20>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;Sa(b,d,F[b+24|0],e+8|0);g=H[e+8>>2];b=H[e+56>>2];d=g-b|0;p=H[e+60>>2];t=H[e+12>>2]-(p+(b>>>0>g>>>0)|0)|0;h=H[e+40>>2];f=H[e+64>>2];n=h-f|0;u=H[e+68>>2];y=H[e+44>>2]-(u+(f>>>0>h>>>0)|0)|0;g=Rj(d,t,n,y);w=o-g|0;x=i-(da+(g>>>0>o>>>0)|0)|0;i=w;h=H[e+16>>2];g=h-f|0;u=H[e+20>>2]-((f>>>0>h>>>0)+u|0)|0;k=H[e+32>>2];h=k-b|0;w=H[e+36>>2]-((b>>>0>k>>>0)+p|0)|0;b=Rj(g,u,h,w);o=i+b|0;i=da+x|0;i=b>>>0>o>>>0?i+1|0:i;b=l;l=d;p=t;k=H[e+48>>2];f=H[e+72>>2];d=k-f|0;t=H[e+76>>2];x=H[e+52>>2]-(t+(f>>>0>k>>>0)|0)|0;l=Rj(l,p,d,x);k=b+l|0;b=da+q|0;b=k>>>0>>0?b+1|0:b;l=H[e+24>>2];p=l-f|0;f=H[e+28>>2]-((f>>>0>l>>>0)+t|0)|0;q=Rj(p,f,h,w);l=k-q|0;q=b-(da+(k>>>0>>0)|0)|0;b=Rj(g,u,d,x);d=r-b|0;b=s-(da+(b>>>0>r>>>0)|0)|0;s=Rj(p,f,n,y);r=s+d|0;b=da+b|0;s=r>>>0>>0?b+1|0:b;b=H[e+88>>2];f=H[e+80>>2];d:{if(I[e+92|0]){e:{f:{g:{h:{if((b|0)==-1){break h}d=b+1|0;b=(d>>>0)%3|0?d:b-2|0;if((b|0)==-1|H[H[f>>2]+(b>>>3&536870908)>>2]>>>b&1){break h}b=H[H[H[f+64>>2]+12>>2]+(b<<2)>>2];if((b|0)!=-1){break g}}H[e+88>>2]=-1;break f}d=b+1|0;b=(d>>>0)%3|0?d:b-2|0;H[e+88>>2]=b;if((b|0)!=-1){break e}}b=H[e+84>>2];d=-1;i:{if((b|0)==-1){break i}j:{if((b>>>0)%3|0){b=b-1|0;break j}b=b+2|0;d=-1;if((b|0)==-1){break i}}d=-1;if(H[H[f>>2]+(b>>>3&536870908)>>2]>>>b&1){break i}b=H[H[H[f+64>>2]+12>>2]+(b<<2)>>2];d=-1;if((b|0)==-1){break i}d=b-1|0;if((b>>>0)%3|0){break i}d=b+2|0}F[e+92|0]=0;H[e+88>>2]=d;break d}if((b|0)!=H[e+84>>2]){break d}H[e+88>>2]=-1;break d}d=-1;k:{if((b|0)==-1){break k}l:{if((b>>>0)%3|0){b=b-1|0;break l}b=b+2|0;d=-1;if((b|0)==-1){break k}}d=-1;if(H[H[f>>2]+(b>>>3&536870908)>>2]>>>b&1){break k}b=H[H[H[f+64>>2]+12>>2]+(b<<2)>>2];d=-1;if((b|0)==-1){break k}d=b-1|0;if((b>>>0)%3|0){break k}d=b+2|0}H[e+88>>2]=d}b=H[e+88>>2];if((b|0)!=-1){continue}break}}b=s>>31;f=b^r;d=f-b|0;b=(b^s)-((b>>>0>f>>>0)+b|0)|0;m=-1;f=2147483647;g=q>>31;h=g^l;j=h-g|0;n=(g^q)-((h>>>0>>0)+g|0)|0;h=n;k=j^-1;g=h^2147483647;n=i;m:{n:{if(!H[a+28>>2]){if((b|0)==(g|0)&d>>>0>k>>>0|b>>>0>g>>>0){break m}b=b+h|0;a=d+j|0;b=a>>>0>>0?b+1|0:b;f=a;g=i;a=g>>31;d=a;m=d^o;a=m-d|0;i=a;d=(d^g)-((d>>>0>m>>>0)+d|0)|0;a=a+f|0;d=d^2147483647;i=(d|0)==(b|0)&(i^-1)>>>0>>0|b>>>0>d>>>0;a=i?-1:a;if(!(i&0)&(a|0)<=536870912|(a|0)<536870912){break m}b=0;a=a>>>29|0;break n}o:{if((b|0)==(g|0)&d>>>0>k>>>0|b>>>0>g>>>0){break o}b=b+h|0;a=d+j|0;b=a>>>0>>0?b+1|0:b;k=i;d=i>>31;h=d^o;i=h-d|0;j=(d^k)-((d>>>0>h>>>0)+d|0)|0;g=j^2147483647;d=a;a=i;if((g|0)==(b|0)&d>>>0>(a^-1)>>>0|b>>>0>g>>>0){break o}b=b+j|0;m=a+d|0;b=m>>>0>>0?b+1|0:b;f=b;if(!b&m>>>0<536870913){break m}}b=f>>>29|0;a=(f&536870911)<<3|m>>>29}o=Sj(o,n,a,b);l=Sj(l,q,a,b);r=Sj(r,s,a,b)}H[c+8>>2]=o;H[c+4>>2]=l;H[c>>2]=r;ca=e+96|0;return}Ca();v()}Ca();v()}Ca();v()}function Jj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0;H[a+8>>2]=e;r=a+32|0;g=H[r>>2];f=H[a+36>>2]-g>>2;a:{if(f>>>0>>0){ya(r,e-f|0);d=H[a+8>>2];break a}d=e;if(d>>>0>=f>>>0){break a}H[a+36>>2]=g+(e<<2);d=e}w=e<<2;f=e>>>0>1073741823?-1:w;m=ra(pa(f),0,f);p=ra(pa(f),0,f);b:{if((d|0)<=0){break b}i=H[a+32>>2];while(1){d=h<<2;f=H[d+m>>2];g=H[a+16>>2];c:{if((f|0)>(g|0)){H[d+i>>2]=g;break c}d=d+i|0;g=H[a+12>>2];if((g|0)>(f|0)){H[d>>2]=g;break c}H[d>>2]=f}d=H[a+8>>2];h=h+1|0;if((d|0)>(h|0)){continue}break}if((d|0)<=0){break b}f=0;while(1){g=f<<2;d=g+c|0;g=H[b+g>>2]+H[g+i>>2]|0;H[d>>2]=g;d:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break d}g=g+H[a+20>>2]|0}H[d>>2]=g}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}}f=H[a+56>>2];x=H[f>>2];f=H[f+4>>2]-x|0;if((f|0)>=5){D=H[a+52>>2];s=H[a+48>>2];u=f>>>2|0;E=u>>>0<=2?2:u;y=e&-2;z=e&1;F=e&-4;A=e&3;B=e-1|0;n=1;while(1){e:{f:{g:{h:{if((n|0)!=(u|0)){g=H[(n<<2)+x>>2];t=(e|0)<=0;if(!t){ra(m,0,w)}if((g|0)==-1){i=N(e,n);break f}C=H[s>>2];l=0;f=g;while(1){i:{if(H[(f>>>3&536870908)+C>>2]>>>f&1){break i}i=H[H[H[s+64>>2]+12>>2]+(f<<2)>>2];if((i|0)==-1){break i}j=H[D>>2];h=H[s+28>>2];o=H[j+(H[h+(i<<2)>>2]<<2)>>2];if((o|0)>=(n|0)){break i}k=i+1|0;k=H[j+(H[h+(((k>>>0)%3|0?k:i-2|0)<<2)>>2]<<2)>>2];if((k|0)>=(n|0)){break i}i=H[j+(H[h+(i+((i>>>0)%3|0?-1:2)<<2)>>2]<<2)>>2];if((i|0)>=(n|0)){break i}j:{if(t){break j}i=N(e,i);j=N(e,k);o=N(e,o);h=0;q=0;if(B){while(1){H[(h<<2)+p>>2]=(H[(h+i<<2)+c>>2]+H[(h+j<<2)+c>>2]|0)-H[(h+o<<2)+c>>2];k=h|1;H[(k<<2)+p>>2]=(H[(i+k<<2)+c>>2]+H[(j+k<<2)+c>>2]|0)-H[(k+o<<2)+c>>2];h=h+2|0;q=q+2|0;if((y|0)!=(q|0)){continue}break}}if(z){H[(h<<2)+p>>2]=(H[(h+i<<2)+c>>2]+H[(h+j<<2)+c>>2]|0)-H[(h+o<<2)+c>>2]}if(t){break j}o=0;h=0;i=0;if(e>>>0>3){while(1){j=h<<2;k=j+m|0;H[k>>2]=H[j+p>>2]+H[k>>2];k=j|4;q=k+m|0;H[q>>2]=H[k+p>>2]+H[q>>2];k=j|8;q=k+m|0;H[q>>2]=H[k+p>>2]+H[q>>2];j=j|12;k=j+m|0;H[k>>2]=H[j+p>>2]+H[k>>2];h=h+4|0;i=i+4|0;if((F|0)!=(i|0)){continue}break}}if(!A){break j}while(1){i=h<<2;j=i+m|0;H[j>>2]=H[i+p>>2]+H[j>>2];h=h+1|0;o=o+1|0;if((A|0)!=(o|0)){continue}break}}l=l+1|0}k:{l:{if((f>>>0)%3|0){h=f-1|0;break l}h=f+2|0;i=-1;if((h|0)==-1){break k}}i=-1;if(H[(h>>>3&536870908)+C>>2]>>>h&1){break k}f=H[H[H[s+64>>2]+12>>2]+(h<<2)>>2];i=-1;if((f|0)==-1){break k}i=f-1|0;if((f>>>0)%3|0){break k}i=f+2|0}f=i;if((g|0)!=(f|0)&(f|0)!=-1){continue}break}i=N(e,n);if(!l){break f}if(t){break g}h=0;f=0;if(!B){break h}while(1){g=h<<2;j=g+m|0;H[j>>2]=H[j>>2]/(l|0);g=(g|4)+m|0;H[g>>2]=H[g>>2]/(l|0);h=h+2|0;f=f+2|0;if((y|0)!=(f|0)){continue}break}break h}Ca();v()}if(!z){break g}f=(h<<2)+m|0;H[f>>2]=H[f>>2]/(l|0)}if((d|0)<=0){break e}l=H[r>>2];h=0;while(1){d=h<<2;f=H[d+m>>2];g=H[a+16>>2];m:{if((f|0)>(g|0)){H[d+l>>2]=g;break m}d=d+l|0;g=H[a+12>>2];if((g|0)>(f|0)){H[d>>2]=g;break m}H[d>>2]=f}d=H[a+8>>2];h=h+1|0;if((d|0)>(h|0)){continue}break}f=0;if((d|0)<=0){break e}d=i<<2;i=d+c|0;h=b+d|0;while(1){g=f<<2;d=g+i|0;g=H[h+g>>2]+H[g+l>>2]|0;H[d>>2]=g;n:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break n}g=g+H[a+20>>2]|0}H[d>>2]=g}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}break e}if((d|0)<=0){break e}g=(N(n-1|0,e)<<2)+c|0;l=H[r>>2];h=0;while(1){d=h<<2;f=H[d+g>>2];j=H[a+16>>2];o:{if((f|0)>(j|0)){H[d+l>>2]=j;break o}d=d+l|0;j=H[a+12>>2];if((j|0)>(f|0)){H[d>>2]=j;break o}H[d>>2]=f}d=H[a+8>>2];h=h+1|0;if((d|0)>(h|0)){continue}break}f=0;if((d|0)<=0){break e}d=i<<2;i=d+c|0;h=b+d|0;while(1){g=f<<2;d=g+i|0;g=H[h+g>>2]+H[g+l>>2]|0;H[d>>2]=g;p:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break p}g=g+H[a+20>>2]|0}H[d>>2]=g}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}}n=n+1|0;if((E|0)!=(n|0)){continue}break}}oa(p);oa(m);return 1}function sj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0;H[a+8>>2]=e;r=a+32|0;f=H[r>>2];j=H[a+36>>2]-f>>2;a:{if(j>>>0>>0){ya(r,e-j|0);d=H[a+8>>2];break a}d=e;if(e>>>0>=j>>>0){break a}H[a+36>>2]=f+(e<<2);d=e}u=e<<2;f=e>>>0>1073741823?-1:u;m=ra(pa(f),0,f);p=ra(pa(f),0,f);b:{if((d|0)<=0){break b}i=H[a+32>>2];while(1){f=h<<2;j=H[f+m>>2];d=H[a+16>>2];c:{if((j|0)>(d|0)){H[f+i>>2]=d;break c}f=f+i|0;d=H[a+12>>2];if((d|0)>(j|0)){H[f>>2]=d;break c}H[f>>2]=j}d=H[a+8>>2];h=h+1|0;if((d|0)>(h|0)){continue}break}if((d|0)<=0){break b}f=0;while(1){j=f<<2;d=j+c|0;j=H[b+j>>2]+H[j+i>>2]|0;H[d>>2]=j;d:{if((j|0)>H[a+16>>2]){j=j-H[a+20>>2]|0}else{if((j|0)>=H[a+12>>2]){break d}j=j+H[a+20>>2]|0}H[d>>2]=j}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}}f=H[a+56>>2];w=H[f>>2];f=H[f+4>>2]-w|0;if((f|0)>=5){D=H[a+52>>2];x=H[a+48>>2];t=f>>>2|0;E=t>>>0<=2?2:t;y=e&-2;z=e&1;F=e&-4;A=e&3;B=e-1|0;n=1;while(1){e:{f:{g:{h:{if((n|0)!=(t|0)){j=H[(n<<2)+w>>2];s=(e|0)<=0;if(!s){ra(m,0,u)}if((j|0)==-1){g=N(e,n);break f}C=H[x+12>>2];q=0;f=j;while(1){h=H[(f<<2)+C>>2];i:{if((h|0)==-1){break i}o=H[D>>2];l=H[x>>2];k=H[o+(H[l+(h<<2)>>2]<<2)>>2];i=h+1|0;i=(i>>>0)%3|0?i:h-2|0;if((i|0)!=-1){g=H[l+(i<<2)>>2]}else{g=-1}j:{k:{if((h>>>0)%3|0){h=h-1|0;break k}h=h+2|0;i=-1;if((h|0)==-1){break j}}i=H[l+(h<<2)>>2]}if((k|0)>=(n|0)){break i}g=H[(g<<2)+o>>2];if((g|0)>=(n|0)){break i}i=H[o+(i<<2)>>2];if((i|0)>=(n|0)){break i}l:{if(s){break l}l=N(e,i);o=N(e,g);k=N(e,k);h=0;i=0;if(B){while(1){H[(h<<2)+p>>2]=(H[(h+l<<2)+c>>2]+H[(h+o<<2)+c>>2]|0)-H[(h+k<<2)+c>>2];g=h|1;H[(g<<2)+p>>2]=(H[(g+l<<2)+c>>2]+H[(g+o<<2)+c>>2]|0)-H[(g+k<<2)+c>>2];h=h+2|0;i=i+2|0;if((y|0)!=(i|0)){continue}break}}if(z){H[(h<<2)+p>>2]=(H[(h+l<<2)+c>>2]+H[(h+o<<2)+c>>2]|0)-H[(h+k<<2)+c>>2]}if(s){break l}o=0;h=0;k=0;if(e>>>0>3){while(1){l=h<<2;i=l+m|0;H[i>>2]=H[l+p>>2]+H[i>>2];g=l|4;i=g+m|0;H[i>>2]=H[g+p>>2]+H[i>>2];g=l|8;i=g+m|0;H[i>>2]=H[g+p>>2]+H[i>>2];g=l|12;i=g+m|0;H[i>>2]=H[g+p>>2]+H[i>>2];h=h+4|0;k=k+4|0;if((F|0)!=(k|0)){continue}break}}if(!A){break l}while(1){g=h<<2;i=g+m|0;H[i>>2]=H[g+p>>2]+H[i>>2];h=h+1|0;o=o+1|0;if((A|0)!=(o|0)){continue}break}}q=q+1|0}m:{n:{if((f>>>0)%3|0){h=f-1|0;break n}h=f+2|0;g=-1;if((h|0)==-1){break m}}f=H[(h<<2)+C>>2];g=-1;if((f|0)==-1){break m}g=f-1|0;if((f>>>0)%3|0){break m}g=f+2|0}f=g;if((j|0)!=(f|0)&(f|0)!=-1){continue}break}g=N(e,n);if(!q){break f}if(s){break g}h=0;f=0;if(!B){break h}while(1){i=h<<2;j=i+m|0;H[j>>2]=H[j>>2]/(q|0);j=(i|4)+m|0;H[j>>2]=H[j>>2]/(q|0);h=h+2|0;f=f+2|0;if((y|0)!=(f|0)){continue}break}break h}Ca();v()}if(!z){break g}f=(h<<2)+m|0;H[f>>2]=H[f>>2]/(q|0)}if((d|0)<=0){break e}k=H[r>>2];h=0;while(1){f=h<<2;j=H[f+m>>2];d=H[a+16>>2];o:{if((j|0)>(d|0)){H[f+k>>2]=d;break o}f=f+k|0;d=H[a+12>>2];if((d|0)>(j|0)){H[f>>2]=d;break o}H[f>>2]=j}d=H[a+8>>2];h=h+1|0;if((d|0)>(h|0)){continue}break}f=0;if((d|0)<=0){break e}d=g<<2;i=d+c|0;j=b+d|0;while(1){g=f<<2;d=g+i|0;g=H[g+j>>2]+H[g+k>>2]|0;H[d>>2]=g;p:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break p}g=g+H[a+20>>2]|0}H[d>>2]=g}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}break e}if((d|0)<=0){break e}f=(N(n-1|0,e)<<2)+c|0;k=H[r>>2];h=0;while(1){j=h<<2;i=H[j+f>>2];d=H[a+16>>2];q:{if((i|0)>(d|0)){H[j+k>>2]=d;break q}j=j+k|0;d=H[a+12>>2];if((d|0)>(i|0)){H[j>>2]=d;break q}H[j>>2]=i}d=H[a+8>>2];h=h+1|0;if((d|0)>(h|0)){continue}break}f=0;if((d|0)<=0){break e}d=g<<2;i=d+c|0;j=b+d|0;while(1){g=f<<2;d=g+i|0;g=H[g+j>>2]+H[g+k>>2]|0;H[d>>2]=g;r:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break r}g=g+H[a+20>>2]|0}H[d>>2]=g}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}}n=n+1|0;if((E|0)!=(n|0)){continue}break}}oa(p);oa(m);return 1}function xa(a){var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;f=ca-32|0;ca=f;a:{b=H[a+16>>2];b:{if(b>>>0>=341){H[a+16>>2]=b-341;b=H[a+4>>2];j=H[b>>2];c=b+4|0;H[a+4>>2]=c;b=H[a+8>>2];c:{if((b|0)!=H[a+12>>2]){d=b;break c}k=H[a>>2];if(k>>>0>>0){e=((c-k>>2)+1|0)/-2<<2;b=b-c|0;d=va(e+c|0,c,b)+b|0;H[a+8>>2]=d;H[a+4>>2]=e+H[a+4>>2];break c}d=(b|0)==(k|0)?1:b-k>>1;if(d>>>0>=1073741824){break a}e=d<<2;h=pa(e);l=e+h|0;e=h+(d&-4)|0;d=e;d:{if((b|0)==(c|0)){break d}b=b-c|0;m=b&-4;i=b-4|0;g=(i>>>2|0)+1&7;e:{if(!g){b=e;break e}d=0;b=e;while(1){H[b>>2]=H[c>>2];c=c+4|0;b=b+4|0;d=d+1|0;if((g|0)!=(d|0)){continue}break}}d=e+m|0;if(i>>>0<28){break d}while(1){H[b>>2]=H[c>>2];H[b+4>>2]=H[c+4>>2];H[b+8>>2]=H[c+8>>2];H[b+12>>2]=H[c+12>>2];H[b+16>>2]=H[c+16>>2];H[b+20>>2]=H[c+20>>2];H[b+24>>2]=H[c+24>>2];H[b+28>>2]=H[c+28>>2];c=c+32|0;b=b+32|0;if((d|0)!=(b|0)){continue}break}}H[a+12>>2]=l;H[a+8>>2]=d;H[a+4>>2]=e;H[a>>2]=h;if(!k){break c}oa(k);d=H[a+8>>2]}H[d>>2]=j;H[a+8>>2]=H[a+8>>2]+4;break b}c=H[a+8>>2];b=H[a+4>>2];l=c-b|0;h=l>>2;g=H[a+12>>2];d=H[a>>2];e=g-d|0;if(h>>>0>2>>>0){if((c|0)!=(g|0)){n=f,o=pa(4092),H[n+8>>2]=o;d=a;f:{g:{b=H[a+8>>2];h:{if((b|0)!=H[a+12>>2]){e=b;break h}c=H[d+4>>2];h=H[d>>2];if(c>>>0>h>>>0){g=((c-h>>2)+1|0)/-2<<2;a=b-c|0;e=va(g+c|0,c,a)+a|0;H[d+8>>2]=e;H[d+4>>2]=g+H[d+4>>2];break h}e=(b|0)==(h|0)?1:b-h>>1;if(e>>>0>=1073741824){break g}a=e<<2;j=pa(a);l=a+j|0;a=j+(e&-4)|0;e=a;i:{if((b|0)==(c|0)){break i}b=b-c|0;m=b&-4;i=b-4|0;g=(i>>>2|0)+1&7;j:{if(!g){b=a;break j}e=0;b=a;while(1){H[b>>2]=H[c>>2];c=c+4|0;b=b+4|0;e=e+1|0;if((g|0)!=(e|0)){continue}break}}e=a+m|0;if(i>>>0<28){break i}while(1){H[b>>2]=H[c>>2];H[b+4>>2]=H[c+4>>2];H[b+8>>2]=H[c+8>>2];H[b+12>>2]=H[c+12>>2];H[b+16>>2]=H[c+16>>2];H[b+20>>2]=H[c+20>>2];H[b+24>>2]=H[c+24>>2];H[b+28>>2]=H[c+28>>2];c=c+32|0;b=b+32|0;if((e|0)!=(b|0)){continue}break}}H[d+12>>2]=l;H[d+8>>2]=e;H[d+4>>2]=a;H[d>>2]=j;if(!h){break h}oa(h);e=H[d+8>>2]}H[e>>2]=H[f+8>>2];H[d+8>>2]=H[d+8>>2]+4;break f}wa();v()}break b}n=f,o=pa(4092),H[n+8>>2]=o;qd(a,f+8|0);b=H[a+4>>2];j=H[b>>2];c=b+4|0;H[a+4>>2]=c;b=H[a+8>>2];k:{if((b|0)!=H[a+12>>2]){d=b;break k}k=H[a>>2];if(k>>>0>>0){e=((c-k>>2)+1|0)/-2<<2;b=b-c|0;d=va(e+c|0,c,b)+b|0;H[a+8>>2]=d;H[a+4>>2]=e+H[a+4>>2];break k}d=(b|0)==(k|0)?1:b-k>>1;if(d>>>0>=1073741824){break a}e=d<<2;h=pa(e);l=e+h|0;e=h+(d&-4)|0;d=e;l:{if((b|0)==(c|0)){break l}b=b-c|0;m=b&-4;i=b-4|0;g=(i>>>2|0)+1&7;m:{if(!g){b=e;break m}d=0;b=e;while(1){H[b>>2]=H[c>>2];c=c+4|0;b=b+4|0;d=d+1|0;if((g|0)!=(d|0)){continue}break}}d=e+m|0;if(i>>>0<28){break l}while(1){H[b>>2]=H[c>>2];H[b+4>>2]=H[c+4>>2];H[b+8>>2]=H[c+8>>2];H[b+12>>2]=H[c+12>>2];H[b+16>>2]=H[c+16>>2];H[b+20>>2]=H[c+20>>2];H[b+24>>2]=H[c+24>>2];H[b+28>>2]=H[c+28>>2];c=c+32|0;b=b+32|0;if((d|0)!=(b|0)){continue}break}}H[a+12>>2]=l;H[a+8>>2]=d;H[a+4>>2]=e;H[a>>2]=h;if(!k){break k}oa(k);d=H[a+8>>2]}H[d>>2]=j;H[a+8>>2]=H[a+8>>2]+4;break b}H[f+24>>2]=a+12;m=(d|0)==(g|0)?1:e>>1;if(m>>>0>=1073741824){break a}e=m<<2;g=pa(e);H[f+8>>2]=g;j=e+g|0;H[f+20>>2]=j;d=(h<<2)+g|0;H[f+12>>2]=d;i=pa(4092);n:{if((h|0)!=(m|0)){break n}if((l|0)>0){d=((h+1|0)/-2<<2)+d|0;H[f+12>>2]=d;break n}d=(b|0)==(c|0)?1:l>>1;if(d>>>0>=1073741824){break a}b=d<<2;e=pa(b);H[f+8>>2]=e;j=b+e|0;H[f+20>>2]=j;d=e+(d&-4)|0;H[f+12>>2]=d;oa(g);b=H[a+4>>2];c=H[a+8>>2];g=e}H[d>>2]=i;i=d+4|0;H[f+16>>2]=i;e=b;if((b|0)!=(c|0)){while(1){c=c-4|0;qd(f+8|0,c);if(H[a+4>>2]!=(c|0)){continue}break}j=H[f+20>>2];i=H[f+16>>2];d=H[f+12>>2];g=H[f+8>>2];e=c;b=H[a+8>>2]}c=H[a>>2];H[a>>2]=g;H[f+8>>2]=c;H[a+4>>2]=d;H[f+12>>2]=e;H[a+8>>2]=i;H[f+16>>2]=b;d=H[a+12>>2];H[a+12>>2]=j;H[f+20>>2]=d;if((b|0)!=(e|0)){H[f+16>>2]=((e-b|0)+3&-4)+b}if(!c){break b}oa(c)}ca=f+32|0;return}wa();v()}function Aj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=O(0),j=0,k=0,l=0,m=O(0),n=O(0),o=O(0),p=O(0),q=O(0),r=0,s=O(0),t=O(0),u=O(0),w=O(0),x=0,y=O(0),z=O(0),A=O(0),B=0;a:{b:{if((e|0)!=2){break b}H[a+64>>2]=f;H[a+72>>2]=2;e=pa(8);d=H[a+68>>2];H[a+68>>2]=e;if(d){oa(d)}H[a+8>>2]=2;x=a+32|0;e=H[x>>2];d=H[a+36>>2]-e|0;c:{if(d>>>0<=7){ya(x,2-(d>>>2|0)|0);break c}if((d|0)==8){break c}H[a+36>>2]=e+8}h=1;d=H[a+56>>2];d=H[d+4>>2]-H[d>>2]|0;if((d|0)<=0){break b}d=d>>>2|0;B=d>>>0<=1?1:d;d=0;while(1){e=H[a+56>>2];h=H[e>>2];if(H[e+4>>2]-h>>2>>>0<=d>>>0){break a}q=O(0);g=ca-48|0;ca=g;e=-1;h=H[h+(d<<2)>>2];f=-1;d:{if((h|0)==-1){break d}e=h+1|0;e=(e>>>0)%3|0?e:h-2|0;f=h-1|0;if((h>>>0)%3|0){break d}f=h+2|0}j=H[a+52>>2];h=H[j>>2];e:{f:{j=H[j+4>>2]-h>>2;l=e<<2;e=H[H[a+48>>2]+28>>2];r=H[l+e>>2];if(j>>>0<=r>>>0){break f}e=H[e+(f<<2)>>2];if(e>>>0>=j>>>0){break f}j=H[h+(e<<2)>>2];f=H[h+(r<<2)>>2];g:{if(!((j|0)>=(d|0)|(f|0)>=(d|0))){e=H[a+72>>2];h=(N(e,j)<<2)+c|0;m=O(H[h+4>>2]);e=(N(e,f)<<2)+c|0;p=O(H[e+4>>2]);y=O(H[e>>2]);n=O(H[h>>2]);if(!(y!=n|m!=p)){h=+m>2147483647;e=H[a+68>>2];if(O(P(m))>2]=m2147483647;if(O(P(n))>2]=n>2]+(d<<2)>>2];H[g+40>>2]=0;H[g+32>>2]=0;H[g+36>>2]=0;h=H[a+60>>2];if(!I[h+84|0]){e=H[H[h+68>>2]+(e<<2)>>2]}Va(h,e,F[h+24|0],g+32|0);f=H[H[a+64>>2]+(f<<2)>>2];H[g+24>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;e=H[a+60>>2];if(!I[e+84|0]){f=H[H[e+68>>2]+(f<<2)>>2]}Va(e,f,F[e+24|0],g+16|0);f=H[H[a+64>>2]+(j<<2)>>2];H[g+8>>2]=0;H[g>>2]=0;H[g+4>>2]=0;e=H[a+60>>2];if(!I[e+84|0]){f=H[H[e+68>>2]+(f<<2)>>2]}Va(e,f,F[e+24|0],g);o=L[g+24>>2];s=O(L[g+8>>2]-o);t=L[g+20>>2];u=O(L[g+4>>2]-t);A=L[g+16>>2];w=O(L[g>>2]-A);z=O(O(s*s)+O(O(u*u)+O(O(w*w)+O(0))));h:{if(H[a+88>>2]>=258){i=O(0);if(!(z>O(0))){break h}}i=O(L[g+40>>2]-o);o=O(L[g+36>>2]-t);t=O(L[g+32>>2]-A);q=O(O(O(s*i)+O(O(u*o)+O(O(w*t)+O(0))))/z);i=O(i-O(s*q));s=O(i*i);i=O(o-O(u*q));o=O(i*i);i=O(t-O(w*q));i=O(W(O(O(s+O(o+O(O(i*i)+O(0))))/z)))}f=H[a+80>>2];if(f){e=f-1|0;h=H[H[a+76>>2]+(e>>>3&536870908)>>2];H[a+80>>2]=e;m=O(m-p);o=O(O(m*q)+p);n=O(n-y);p=O(n*i);e=h>>>e&1;p=O(o+(e?p:O(-p)));i=O(i*m);k=T(+O(O(O(n*q)+y)+(e?O(-i):i))+.5);i:{if(k<-2147483648|k!=k|k>2147483647){e=H[a+68>>2];H[e>>2]=-2147483648;break i}e=H[a+68>>2];if(P(k)<2147483648){h=~~k}else{h=-2147483648}H[e>>2]=h}k=T(+p+.5);j=k>2147483647;if(P(k)<2147483648){h=~~k}else{h=-2147483648}H[e+4>>2]=k<-2147483648?-2147483648:k!=k?-2147483648:j?-2147483648:h}f=(f|0)!=0;break g}j:{if((d|0)>(f|0)){e=H[a+72>>2];h=N(f,e);break j}if((d|0)<=0){f=1;if(H[a+72>>2]<=0){break g}h=H[a+68>>2];e=0;while(1){H[h+(e<<2)>>2]=0;e=e+1|0;if((e|0)>2]){continue}break}break g}e=H[a+72>>2];h=N(e,d-1|0)}f=1;if((e|0)<=0){break g}j=H[a+68>>2];e=0;while(1){H[j+(e<<2)>>2]=H[(e+h<<2)+c>>2];e=e+1|0;if((e|0)>2]){continue}break}}ca=g+48|0;break e}Ca();v()}h=f;if(!h){return 0}k:{if(H[a+8>>2]<=0){break k}r=H[a+68>>2];j=H[x>>2];e=0;while(1){f=e<<2;g=H[f+r>>2];l=H[a+16>>2];l:{if((g|0)>(l|0)){H[f+j>>2]=l;break l}f=f+j|0;l=H[a+12>>2];if((l|0)>(g|0)){H[f>>2]=l;break l}H[f>>2]=g}e=e+1|0;g=H[a+8>>2];if((e|0)<(g|0)){continue}break}f=0;if((g|0)<=0){break k}e=d<<3;r=e+c|0;l=b+e|0;while(1){g=f<<2;e=g+r|0;g=H[g+l>>2]+H[g+j>>2]|0;H[e>>2]=g;m:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break m}g=g+H[a+20>>2]|0}H[e>>2]=g}f=f+1|0;if((f|0)>2]){continue}break}}d=d+1|0;if((B|0)!=(d|0)){continue}break}}return h|0}Ca();v()}function kj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=O(0),j=0,k=0,l=O(0),m=O(0),n=O(0),o=O(0),p=0,q=O(0),r=O(0),s=O(0),t=O(0),u=O(0),w=0,x=O(0),y=O(0),z=0,A=O(0),B=0;a:{b:{if((e|0)!=2){break b}H[a+64>>2]=f;H[a+72>>2]=2;e=pa(8);d=H[a+68>>2];H[a+68>>2]=e;if(d){oa(d)}H[a+8>>2]=2;w=a+32|0;e=H[w>>2];d=H[a+36>>2]-e|0;c:{if(d>>>0<=7){ya(w,2-(d>>>2|0)|0);break c}if((d|0)==8){break c}H[a+36>>2]=e+8}h=1;d=H[a+56>>2];d=H[d+4>>2]-H[d>>2]|0;if((d|0)<=0){break b}d=d>>>2|0;B=d>>>0<=1?1:d;d=0;while(1){f=H[a+56>>2];e=H[f>>2];if(H[f+4>>2]-e>>2>>>0<=d>>>0){break a}q=O(0);g=ca-48|0;ca=g;h=-1;d:{e:{e=H[e+(d<<2)>>2];if((e|0)==-1){break e}j=H[a+48>>2];f=e+1|0;f=(f>>>0)%3|0?f:e-2|0;if((f|0)!=-1){h=H[H[j>>2]+(f<<2)>>2]}f=-1;e=e+((e>>>0)%3|0?-1:2)|0;if((e|0)!=-1){f=H[H[j>>2]+(e<<2)>>2]}e=H[a+52>>2];j=H[e>>2];e=H[e+4>>2]-j>>2;if(e>>>0<=h>>>0|e>>>0<=f>>>0){break e}e=H[j+(h<<2)>>2];j=H[j+(f<<2)>>2];f:{if(!((d|0)<=(e|0)|(j|0)>=(d|0))){f=H[a+72>>2];h=(N(f,j)<<2)+c|0;l=O(H[h+4>>2]);f=(N(e,f)<<2)+c|0;o=O(H[f+4>>2]);x=O(H[f>>2]);m=O(H[h>>2]);if(!(x!=m|l!=o)){h=+l>2147483647;e=H[a+68>>2];if(O(P(l))>2]=l2147483647;if(O(P(m))>2]=m>2]+(d<<2)>>2];H[g+40>>2]=0;H[g+32>>2]=0;H[g+36>>2]=0;h=H[a+60>>2];if(!I[h+84|0]){f=H[H[h+68>>2]+(f<<2)>>2]}Va(h,f,F[h+24|0],g+32|0);f=H[H[a+64>>2]+(e<<2)>>2];H[g+24>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;e=H[a+60>>2];if(!I[e+84|0]){f=H[H[e+68>>2]+(f<<2)>>2]}Va(e,f,F[e+24|0],g+16|0);h=H[H[a+64>>2]+(j<<2)>>2];H[g+8>>2]=0;H[g>>2]=0;H[g+4>>2]=0;e=H[a+60>>2];if(!I[e+84|0]){h=H[H[e+68>>2]+(h<<2)>>2]}Va(e,h,F[e+24|0],g);n=L[g+24>>2];r=O(L[g+8>>2]-n);s=L[g+20>>2];t=O(L[g+4>>2]-s);A=L[g+16>>2];u=O(L[g>>2]-A);y=O(O(r*r)+O(O(t*t)+O(O(u*u)+O(0))));g:{if(H[a+88>>2]>=258){i=O(0);if(!(y>O(0))){break g}}i=O(L[g+40>>2]-n);n=O(L[g+36>>2]-s);s=O(L[g+32>>2]-A);q=O(O(O(r*i)+O(O(t*n)+O(O(u*s)+O(0))))/y);i=O(i-O(r*q));r=O(i*i);i=O(n-O(t*q));n=O(i*i);i=O(s-O(u*q));i=O(W(O(O(r+O(n+O(O(i*i)+O(0))))/y)))}e=H[a+80>>2];if(e){f=e-1|0;h=H[H[a+76>>2]+(f>>>3&536870908)>>2];H[a+80>>2]=f;l=O(l-o);n=O(O(l*q)+o);m=O(m-x);o=O(m*i);f=h>>>f&1;o=O(n+(f?o:O(-o)));i=O(i*l);k=T(+O(O(O(m*q)+x)+(f?O(-i):i))+.5);h:{if(k<-2147483648|k!=k|k>2147483647){h=H[a+68>>2];H[h>>2]=-2147483648;break h}h=H[a+68>>2];if(P(k)<2147483648){f=~~k}else{f=-2147483648}H[h>>2]=f}k=T(+o+.5);j=k>2147483647;if(P(k)<2147483648){f=~~k}else{f=-2147483648}H[h+4>>2]=k<-2147483648?-2147483648:k!=k?-2147483648:j?-2147483648:f}h=(e|0)!=0;break f}i:{if((d|0)>(e|0)){f=H[a+72>>2];e=N(e,f);break i}if((d|0)<=0){h=1;if(H[a+72>>2]<=0){break f}e=H[a+68>>2];f=0;while(1){H[e+(f<<2)>>2]=0;f=f+1|0;if((f|0)>2]){continue}break}break f}f=H[a+72>>2];e=N(f,d-1|0)}h=1;if((f|0)<=0){break f}j=H[a+68>>2];f=0;while(1){H[j+(f<<2)>>2]=H[(e+f<<2)+c>>2];f=f+1|0;if((f|0)>2]){continue}break}}ca=g+48|0;break d}Ca();v()}if(!h){return 0}j:{if(H[a+8>>2]<=0){break j}z=H[a+68>>2];j=H[w>>2];e=0;while(1){f=e<<2;g=H[f+z>>2];p=H[a+16>>2];k:{if((g|0)>(p|0)){H[f+j>>2]=p;break k}f=f+j|0;p=H[a+12>>2];if((p|0)>(g|0)){H[f>>2]=p;break k}H[f>>2]=g}e=e+1|0;g=H[a+8>>2];if((e|0)<(g|0)){continue}break}f=0;if((g|0)<=0){break j}e=d<<3;z=e+c|0;p=b+e|0;while(1){g=f<<2;e=g+z|0;g=H[g+p>>2]+H[g+j>>2]|0;H[e>>2]=g;l:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break l}g=g+H[a+20>>2]|0}H[e>>2]=g}f=f+1|0;if((f|0)>2]){continue}break}}d=d+1|0;if((B|0)!=(d|0)){continue}break}}return h|0}Ca();v()}function Of(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;f=ca-704|0;ca=f;n=1;a:{b:{c:{d:{if(J[b+38>>1]<515){break d}n=0;c=H[b+20>>2];d=H[b+12>>2];g=H[b+16>>2];if((c|0)>=(d|0)&g>>>0>=K[b+8>>2]|(c|0)>(d|0)){break d}p=I[H[b>>2]+g|0];g=g+1|0;c=g?c:c+1|0;H[b+16>>2]=g;H[b+20>>2]=c;g=H[H[(ea[H[H[a>>2]+28>>2]](a)|0)+4>>2]+80>>2];c=ea[H[H[a>>2]+24>>2]](a)|0;H[f+40>>2]=0;H[f+32>>2]=0;H[f+36>>2]=0;if(c){if(c>>>0>=214748365){break c}c=N(c,20);d=pa(c);H[f+32>>2]=d;H[f+40>>2]=c+d;c=c-20|0;c=(c-((c>>>0)%20|0)|0)+20|0;q=f,r=ra(d,0,c)+c|0,H[q+36>>2]=r}e:{if((ea[H[H[a>>2]+24>>2]](a)|0)>0){while(1){c=ea[H[H[a>>2]+20>>2]](a,l)|0;c=H[H[H[(ea[H[H[a>>2]+28>>2]](a)|0)+4>>2]+8>>2]+(c<<2)>>2];mb(c,g);F[c+84|0]=1;H[c+72>>2]=H[c+68>>2];d=H[c+28>>2];if(d>>>0>9){break e}f:{g:{h:{e=1<>2],d,6,0,i,i>>31);c=jc(pa(96),e);H[f>>2]=c;F[c+84|0]=1;H[c+72>>2]=H[c+68>>2];mb(c,g);c=H[a+64>>2];if(c>>>0>=K[a+68>>2]){break h}d=H[f>>2];H[f>>2]=0;H[c>>2]=d;c=c+4|0;H[a+64>>2]=c;break g}j=0;if(!I[c+24|0]){break f}while(1){d=H[a+52>>2];i=H[a+56>>2];i:{if(d>>>0>>0){H[d>>2]=0;H[a+52>>2]=d+4;break i}e=d;d=H[a+48>>2];m=e-d|0;k=m>>2;e=k+1|0;if(e>>>0>=1073741824){break b}o=k<<2;i=i-d|0;k=i>>>1|0;e=i>>>0>=2147483644?1073741823:e>>>0>>0?k:e;if(e){if(e>>>0>=1073741824){break a}i=pa(e<<2)}else{i=0}k=o+i|0;H[k>>2]=0;o=e<<2;e=va(i,d,m);H[a+56>>2]=o+e;H[a+52>>2]=k+4;H[a+48>>2]=e;if(!d){break i}oa(d)}j=j+1|0;if(j>>>0>2];i=H[a+64>>2]-e>>2;d=i+1|0;if(d>>>0<1073741824){e=H[a+68>>2]-e|0;j=e>>>1|0;e=e>>>0>=2147483644?1073741823:d>>>0>>0?j:d;if(e){if(e>>>0>=1073741824){break l}c=pa(e<<2)}j=H[f>>2];H[f>>2]=0;d=(i<<2)+c|0;H[d>>2]=j;e=(e<<2)+c|0;i=d+4|0;c=H[a+64>>2];j=H[a+60>>2];if((c|0)==(j|0)){break k}while(1){c=c-4|0;m=H[c>>2];H[c>>2]=0;d=d-4|0;H[d>>2]=m;if((c|0)!=(j|0)){continue}break}H[a+68>>2]=e;e=H[a+64>>2];H[a+64>>2]=i;c=H[a+60>>2];H[a+60>>2]=d;if((c|0)==(e|0)){break j}while(1){e=e-4|0;d=H[e>>2];H[e>>2]=0;if(d){Ga(d)}if((c|0)!=(e|0)){continue}break}break j}sa();v()}wa();v()}H[a+68>>2]=e;H[a+64>>2]=i;H[a+60>>2]=d}if(c){oa(c)}c=H[a+64>>2]}c=H[c-4>>2];d=H[f>>2];H[f>>2]=0;if(!d){break f}Ga(d)}i=H[c+28>>2];d=i-1|0;if(d>>>0<=10){e=H[(d<<2)+13584>>2]}else{e=-1}d=H[f+32>>2]+N(l,20)|0;j=I[c+24|0];H[d+16>>2]=j;H[d+12>>2]=(e|0)>0?e:0;H[d+8>>2]=i;H[d+4>>2]=h;H[d>>2]=c;h=h+j|0;l=l+1|0;if((ea[H[H[a>>2]+24>>2]](a)|0)>(l|0)){continue}break}}a=Ac(f,f+32|0);m:{n:{o:{switch(p|0){case 0:c=wb(f+48|0,h);b=Bd(c,b,a,g);h=H[c+8>>2];xb(c);if(!b){break m}if((h|0)==(g|0)){break n}break m;case 1:c=wb(f+48|0,h);b=zd(c,b,a,g);h=H[c+8>>2];xb(c);if(!b){break m}if((h|0)==(g|0)){break n}break m;case 2:c=ub(f+48|0,h);b=yd(c,b,a,g);h=H[c+8>>2];vb(c);if(!b){break m}if((h|0)==(g|0)){break n}break m;case 3:c=ub(f+48|0,h);b=xd(c,b,a,g);h=H[c+8>>2];vb(c);if(!b){break m}if((h|0)==(g|0)){break n}break m;case 4:c=$a(f+48|0,h);b=wd(c,b,a,g);h=H[c+8>>2];ab(c);if(!b){break m}if((h|0)==(g|0)){break n}break m;case 5:c=$a(f+48|0,h);b=vd(c,b,a,g);h=H[c+8>>2];ab(c);if(!b){break m}if((h|0)==(g|0)){break n}break m;case 6:break o;default:break m}}c=$a(f+48|0,h);b=ud(c,b,a,g);h=H[c+8>>2];ab(c);if(!b|(h|0)!=(g|0)){break m}}n=1}b=H[a+16>>2];if(b){H[a+20>>2]=b;oa(b)}b=H[a>>2];if(!b){break e}H[a+4>>2]=b;oa(b)}a=H[f+32>>2];if(!a){break d}H[f+36>>2]=a;oa(a)}ca=f+704|0;return n|0}sa();v()}sa();v()}wa();v()}function Zi(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0;e=ca-32|0;ca=e;a:{b:{switch(c-2|0){case 0:c=H[a+4>>2];f=H[a+12>>2];H[e+24>>2]=-1;H[e+16>>2]=-1;H[e+20>>2]=1065353216;H[e+8>>2]=-1;H[e+12>>2]=-1;if((b|0)==-2){break a}i=H[H[H[c+4>>2]+8>>2]+(f<<2)>>2];if((ea[H[H[c>>2]+8>>2]](c)|0)==1){h=H[H[H[c+4>>2]+8>>2]+(f<<2)>>2];c:{if((ea[H[H[c>>2]+8>>2]](c)|0)!=1|b-1>>>0>5){break c}g=ea[H[H[c>>2]+36>>2]](c)|0;a=ea[H[H[c>>2]+44>>2]](c,f)|0;if(!g|!a){break c}f=ea[H[H[c>>2]+40>>2]](c,f)|0;d:{if(f){if((b|0)!=6){break c}b=H[c+44>>2];d=pa(112);H[d+4>>2]=h;c=H[e+12>>2];H[d+8>>2]=H[e+8>>2];H[d+12>>2]=c;c=H[e+20>>2];H[d+16>>2]=H[e+16>>2];H[d+20>>2]=c;H[d+24>>2]=H[e+24>>2];H[d+40>>2]=a;c=a+12|0;H[d+36>>2]=c;H[d+32>>2]=f;H[d+28>>2]=b;H[d+68>>2]=a;H[d- -64>>2]=c;H[d+60>>2]=f;H[d+56>>2]=b;H[d+48>>2]=0;H[d+52>>2]=0;H[d>>2]=7144;H[d+88>>2]=1065353216;H[d+92>>2]=-1;H[d+80>>2]=-1;H[d+84>>2]=-1;H[d+72>>2]=1;H[d+76>>2]=-1;H[d+44>>2]=7668;a=d+96|0;break d}if((b|0)!=6){break c}b=H[c+44>>2];d=pa(112);H[d+4>>2]=h;c=H[e+12>>2];H[d+8>>2]=H[e+8>>2];H[d+12>>2]=c;c=H[e+20>>2];H[d+16>>2]=H[e+16>>2];H[d+20>>2]=c;H[d+24>>2]=H[e+24>>2];H[d+40>>2]=a;c=a+12|0;H[d+36>>2]=c;H[d+32>>2]=g;H[d+28>>2]=b;H[d+68>>2]=a;H[d- -64>>2]=c;H[d+60>>2]=g;H[d+56>>2]=b;H[d+48>>2]=0;H[d+52>>2]=0;H[d>>2]=8080;H[d+88>>2]=1065353216;H[d+92>>2]=-1;H[d+80>>2]=-1;H[d+84>>2]=-1;H[d+72>>2]=1;H[d+76>>2]=-1;H[d+44>>2]=8472;a=d+96|0}H[a>>2]=0;H[a+4>>2]=0;F[a+5|0]=0;F[a+6|0]=0;F[a+7|0]=0;F[a+8|0]=0;F[a+9|0]=0;F[a+10|0]=0;F[a+11|0]=0;F[a+12|0]=0}if(d){break a}}d=pa(28);H[d+4>>2]=i;a=H[e+12>>2];H[d+8>>2]=H[e+8>>2];H[d+12>>2]=a;a=H[e+20>>2];H[d+16>>2]=H[e+16>>2];H[d+20>>2]=a;H[d+24>>2]=H[e+24>>2];H[d>>2]=8860;break a;case 1:break b;default:break a}}c=H[a+4>>2];f=H[a+12>>2];H[e+24>>2]=-1;H[e+16>>2]=-1;H[e+20>>2]=1065353216;H[e+8>>2]=-1;H[e+12>>2]=-1;if((b|0)==-2){break a}i=H[H[H[c+4>>2]+8>>2]+(f<<2)>>2];if((ea[H[H[c>>2]+8>>2]](c)|0)==1){h=H[H[H[c+4>>2]+8>>2]+(f<<2)>>2];e:{if((ea[H[H[c>>2]+8>>2]](c)|0)!=1|b-1>>>0>5){break e}g=ea[H[H[c>>2]+36>>2]](c)|0;a=ea[H[H[c>>2]+44>>2]](c,f)|0;if(!g|!a){break e}f=ea[H[H[c>>2]+40>>2]](c,f)|0;f:{if(f){if((b|0)!=6){break e}b=H[c+44>>2];d=pa(112);H[d+4>>2]=h;c=H[e+12>>2];H[d+8>>2]=H[e+8>>2];H[d+12>>2]=c;c=H[e+20>>2];H[d+16>>2]=H[e+16>>2];H[d+20>>2]=c;H[d+24>>2]=H[e+24>>2];H[d+40>>2]=a;c=a+12|0;H[d+36>>2]=c;H[d+32>>2]=f;H[d+28>>2]=b;H[d+68>>2]=a;H[d- -64>>2]=c;H[d+60>>2]=f;H[d+56>>2]=b;H[d+48>>2]=0;H[d+52>>2]=0;H[d>>2]=9028;H[d+88>>2]=1065353216;H[d+92>>2]=-1;H[d+80>>2]=-1;H[d+84>>2]=-1;H[d+72>>2]=1;H[d+76>>2]=-1;H[d+44>>2]=9592;a=d+96|0;break f}if((b|0)!=6){break e}b=H[c+44>>2];d=pa(112);H[d+4>>2]=h;c=H[e+12>>2];H[d+8>>2]=H[e+8>>2];H[d+12>>2]=c;c=H[e+20>>2];H[d+16>>2]=H[e+16>>2];H[d+20>>2]=c;H[d+24>>2]=H[e+24>>2];H[d+40>>2]=a;c=a+12|0;H[d+36>>2]=c;H[d+32>>2]=g;H[d+28>>2]=b;H[d+68>>2]=a;H[d- -64>>2]=c;H[d+60>>2]=g;H[d+56>>2]=b;H[d+48>>2]=0;H[d+52>>2]=0;H[d>>2]=10032;H[d+88>>2]=1065353216;H[d+92>>2]=-1;H[d+80>>2]=-1;H[d+84>>2]=-1;H[d+72>>2]=1;H[d+76>>2]=-1;H[d+44>>2]=10452;a=d+96|0}H[a>>2]=0;H[a+4>>2]=0;F[a+5|0]=0;F[a+6|0]=0;F[a+7|0]=0;F[a+8|0]=0;F[a+9|0]=0;F[a+10|0]=0;F[a+11|0]=0;F[a+12|0]=0}if(d){break a}}d=pa(28);H[d+4>>2]=i;a=H[e+12>>2];H[d+8>>2]=H[e+8>>2];H[d+12>>2]=a;a=H[e+20>>2];H[d+16>>2]=H[e+16>>2];H[d+20>>2]=a;H[d+24>>2]=H[e+24>>2];H[d>>2]=10864}ca=e+32|0;return d|0}function Ki(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=O(0),f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=O(0),p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0;if(H[c>>2]==H[c+4>>2]){m=H[d+80>>2];u=ca-16|0;ca=u;g=H[a+4>>2];k=I[b+24|0];h=H[d+48>>2];n=H[H[d>>2]>>2];c=u+8|0;H[c>>2]=1065353216;d=c;L[c>>2]=O(-1<>2];c=pa(k<<2);a:{if(!m|!k){break a}p=h+n|0;o=L[d>>2];n=H[a+8>>2];v=H[b>>2];d=H[b+48>>2];g=H[b+40>>2];w=H[b+44>>2];if(!I[b+84|0]){f=H[b+68>>2];s=k&254;t=k&1;a=0;while(1){b=H[v>>2];l=Rj(g,w,H[f+(i<<2)>>2],0)+d|0;h=qa(c,b+l|0,g);b=0;q=0;if((k|0)!=1){while(1){l=p+(a<<2)|0;j=b<<2;e=O(T(O(O(o*O(L[j+h>>2]-L[n+j>>2]))+O(.5))));b:{if(O(P(e))>2]=r;j=j|4;e=O(T(O(O(o*O(L[j+h>>2]-L[n+j>>2]))+O(.5))));c:{if(O(P(e))>2]=j;b=b+2|0;a=a+2|0;q=q+2|0;if((s|0)!=(q|0)){continue}break}}if(t){l=p+(a<<2)|0;b=b<<2;e=O(T(O(O(o*O(L[b+h>>2]-L[b+n>>2]))+O(.5))));d:{if(O(P(e))>2]=b;a=a+1|0}i=i+1|0;if((m|0)!=(i|0)){continue}break}break a}s=k&254;t=k&1;a=0;while(1){b=H[v>>2];h=Rj(g,w,i,l)+d|0;j=qa(c,b+h|0,g);b=0;q=0;if((k|0)!=1){while(1){h=p+(a<<2)|0;f=b<<2;e=O(T(O(O(o*O(L[f+j>>2]-L[f+n>>2]))+O(.5))));e:{if(O(P(e))>2]=r;f=f|4;e=O(T(O(O(o*O(L[f+j>>2]-L[f+n>>2]))+O(.5))));f:{if(O(P(e))>2]=f;b=b+2|0;a=a+2|0;q=q+2|0;if((s|0)!=(q|0)){continue}break}}if(t){h=p+(a<<2)|0;b=b<<2;e=O(T(O(O(o*O(L[b+j>>2]-L[b+n>>2]))+O(.5))));g:{if(O(P(e))>2]=b;a=a+1|0}b=l;i=i+1|0;b=i?b:b+1|0;l=b;if((i|0)!=(m|0)|b){continue}break}}oa(c);ca=u+16|0;return 1}j=ca-16|0;ca=j;m=H[a+4>>2];i=I[b+24|0];g=H[d+48>>2];h=H[H[d>>2]>>2];d=j+8|0;H[d>>2]=1065353216;l=d;L[d>>2]=O(-1<>2];d=pa(i<<2);m=H[c+4>>2];q=H[c>>2];h:{if(!i|(m|0)==(q|0)){break h}n=h+g|0;c=m-q>>2;u=c>>>0<=1?1:c;o=L[l>>2];h=H[a+8>>2];v=H[b>>2];l=H[b+48>>2];m=H[b+40>>2];w=H[b+44>>2];if(I[b+84|0]){s=i&254;t=i&1;a=0;c=0;while(1){b=H[v>>2];g=Rj(m,w,H[q+(c<<2)>>2],0)+l|0;p=qa(d,b+g|0,m);b=0;k=0;if((i|0)!=1){while(1){g=n+(a<<2)|0;f=b<<2;e=O(T(O(O(o*O(L[f+p>>2]-L[h+f>>2]))+O(.5))));i:{if(O(P(e))>2]=r;f=f|4;e=O(T(O(O(o*O(L[f+p>>2]-L[h+f>>2]))+O(.5))));j:{if(O(P(e))>2]=f;b=b+2|0;a=a+2|0;k=k+2|0;if((s|0)!=(k|0)){continue}break}}if(t){g=n+(a<<2)|0;b=b<<2;e=O(T(O(O(o*O(L[b+p>>2]-L[b+h>>2]))+O(.5))));k:{if(O(P(e))>2]=b;a=a+1|0}c=c+1|0;if((u|0)!=(c|0)){continue}break}break h}s=H[b+68>>2];t=i&254;x=i&1;a=0;c=0;while(1){b=H[v>>2];g=Rj(m,w,H[s+(H[q+(c<<2)>>2]<<2)>>2],0)+l|0;p=qa(d,b+g|0,m);b=0;k=0;if((i|0)!=1){while(1){g=n+(a<<2)|0;f=b<<2;e=O(T(O(O(o*O(L[f+p>>2]-L[h+f>>2]))+O(.5))));l:{if(O(P(e))>2]=r;f=f|4;e=O(T(O(O(o*O(L[f+p>>2]-L[h+f>>2]))+O(.5))));m:{if(O(P(e))>2]=f;b=b+2|0;a=a+2|0;k=k+2|0;if((t|0)!=(k|0)){continue}break}}if(x){g=n+(a<<2)|0;b=b<<2;e=O(T(O(O(o*O(L[b+p>>2]-L[b+h>>2]))+O(.5))));n:{if(O(P(e))>2]=b;a=a+1|0}c=c+1|0;if((u|0)!=(c|0)){continue}break}}oa(d);ca=j+16|0;return 1}function dd(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;c=H[a+4>>2];e=H[a>>2];f=(c-e|0)/144|0;if(f>>>0>>0){e=a;b=b-f|0;h=H[a+8>>2];c=H[a+4>>2];a:{if(b>>>0<=(h-c|0)/144>>>0){b:{if(!b){break b}a=c;f=b&7;if(f){while(1){Ia(a);a=a+144|0;d=d+1|0;if((f|0)!=(d|0)){continue}break}}c=N(b,144)+c|0;if((b-1&268435455)>>>0<7){break b}while(1){Ia(a);Ia(a+144|0);Ia(a+288|0);Ia(a+432|0);Ia(a+576|0);Ia(a+720|0);Ia(a+864|0);Ia(a+1008|0);a=a+1152|0;if((c|0)!=(a|0)){continue}break}}H[e+4>>2]=c;break a}c:{d:{e:{a=c;c=H[e>>2];i=(a-c|0)/144|0;a=i+b|0;if(a>>>0<29826162){c=(h-c|0)/144|0;f=c<<1;f=c>>>0>=14913080?29826161:a>>>0>>0?f:a;if(f){if(f>>>0>=29826162){break e}g=pa(N(f,144))}c=N(i,144)+g|0;a=c;h=b&7;if(h){while(1){Ia(a);a=a+144|0;d=d+1|0;if((h|0)!=(d|0)){continue}break}}h=N(b,144)+c|0;if((b-1&268435455)>>>0>=7){while(1){Ia(a);Ia(a+144|0);Ia(a+288|0);Ia(a+432|0);Ia(a+576|0);Ia(a+720|0);Ia(a+864|0);Ia(a+1008|0);a=a+1152|0;if((h|0)!=(a|0)){continue}break}}b=N(f,144)+g|0;d=H[e+4>>2];f=H[e>>2];if((d|0)==(f|0)){break d}while(1){c=c-144|0;d=d-144|0;a=d;H[c>>2]=H[a>>2];H[c+4>>2]=H[a+4>>2];H[c+8>>2]=H[a+8>>2];H[c+12>>2]=H[a+12>>2];H[a+12>>2]=0;H[a+4>>2]=0;H[a+8>>2]=0;H[c+16>>2]=H[a+16>>2];H[c+20>>2]=H[a+20>>2];H[c+24>>2]=H[a+24>>2];H[a+24>>2]=0;H[a+16>>2]=0;H[a+20>>2]=0;g=I[a+28|0];H[c+40>>2]=0;H[c+32>>2]=0;H[c+36>>2]=0;F[c+28|0]=g;H[c+32>>2]=H[a+32>>2];H[c+36>>2]=H[a+36>>2];H[c+40>>2]=H[a+40>>2];H[a+40>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;H[c+52>>2]=0;H[c+44>>2]=0;H[c+48>>2]=0;H[c+44>>2]=H[a+44>>2];H[c+48>>2]=H[a+48>>2];H[c+52>>2]=H[a+52>>2];H[a+52>>2]=0;H[a+44>>2]=0;H[a+48>>2]=0;g=c- -64|0;H[g>>2]=0;H[c+56>>2]=0;H[c+60>>2]=0;H[c+56>>2]=H[a+56>>2];H[c+60>>2]=H[a+60>>2];i=g;g=a- -64|0;H[i>>2]=H[g>>2];H[g>>2]=0;H[a+56>>2]=0;H[a+60>>2]=0;H[c+68>>2]=H[a+68>>2];g=H[a+72>>2];H[c+84>>2]=0;H[c+76>>2]=0;H[c+80>>2]=0;H[c+72>>2]=g;H[c+76>>2]=H[a+76>>2];H[c+80>>2]=H[a+80>>2];H[c+84>>2]=H[a+84>>2];H[a+84>>2]=0;H[a+76>>2]=0;H[a+80>>2]=0;H[c+96>>2]=0;H[c+88>>2]=0;H[c+92>>2]=0;H[c+88>>2]=H[a+88>>2];H[c+92>>2]=H[a+92>>2];H[c+96>>2]=H[a+96>>2];H[a+96>>2]=0;H[a+88>>2]=0;H[a+92>>2]=0;g=I[a+100|0];H[c+112>>2]=0;H[c+104>>2]=0;H[c+108>>2]=0;F[c+100|0]=g;H[c+104>>2]=H[a+104>>2];H[c+108>>2]=H[a+108>>2];H[c+112>>2]=H[a+112>>2];H[a+112>>2]=0;H[a+104>>2]=0;H[a+108>>2]=0;H[c+124>>2]=0;H[c+116>>2]=0;H[c+120>>2]=0;H[c+116>>2]=H[a+116>>2];H[c+120>>2]=H[a+120>>2];H[c+124>>2]=H[a+124>>2];H[a+124>>2]=0;H[a+116>>2]=0;H[a+120>>2]=0;g=H[a+128>>2];H[c+140>>2]=0;H[c+132>>2]=0;H[c+136>>2]=0;H[c+128>>2]=g;H[c+132>>2]=H[a+132>>2];H[c+136>>2]=H[a+136>>2];H[c+140>>2]=H[a+140>>2];H[a+140>>2]=0;H[a+132>>2]=0;H[a+136>>2]=0;if((a|0)!=(f|0)){continue}break}H[e+8>>2]=b;a=H[e+4>>2];H[e+4>>2]=h;d=H[e>>2];H[e>>2]=c;if((a|0)==(d|0)){break c}while(1){b=a-144|0;c=H[b+132>>2];if(c){H[a-8>>2]=c;oa(c)}c=H[a-28>>2];if(c){H[a-24>>2]=c;oa(c)}c=H[a-40>>2];if(c){H[a-36>>2]=c;oa(c)}oc(a-140|0);a=b;if((d|0)!=(a|0)){continue}break}break c}sa();v()}wa();v()}H[e+8>>2]=b;H[e+4>>2]=h;H[e>>2]=c}if(d){oa(d)}}return}if(b>>>0>>0){e=e+N(b,144)|0;if((e|0)!=(c|0)){while(1){b=c-144|0;d=H[b+132>>2];if(d){H[c-8>>2]=d;oa(d)}d=H[c-28>>2];if(d){H[c-24>>2]=d;oa(d)}d=H[c-40>>2];if(d){H[c-36>>2]=d;oa(d)}oc(c-140|0);c=b;if((e|0)!=(c|0)){continue}break}}H[a+4>>2]=e}}function Pe(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0;f=ca-80|0;ca=f;e=H[c+36>>2];H[f+72>>2]=H[c+32>>2];H[f+76>>2]=e;g=H[c+28>>2];e=f- -64|0;H[e>>2]=H[c+24>>2];H[e+4>>2]=g;e=H[c+20>>2];H[f+56>>2]=H[c+16>>2];H[f+60>>2]=e;e=H[c+12>>2];H[f+48>>2]=H[c+8>>2];H[f+52>>2]=e;e=H[c+4>>2];H[f+40>>2]=H[c>>2];H[f+44>>2]=e;nc(a,f+40|0,f+24|0);a:{if(H[a>>2]){break a}if(F[a+15|0]<0){oa(H[a+4>>2])}if(I[f+31|0]){b=pa(32);F[b+27|0]=0;c=I[1521]|I[1522]<<8|(I[1523]<<16|I[1524]<<24);F[b+23|0]=c;F[b+24|0]=c>>>8;F[b+25|0]=c>>>16;F[b+26|0]=c>>>24;c=I[1518]|I[1519]<<8|(I[1520]<<16|I[1521]<<24);d=I[1514]|I[1515]<<8|(I[1516]<<16|I[1517]<<24);F[b+16|0]=d;F[b+17|0]=d>>>8;F[b+18|0]=d>>>16;F[b+19|0]=d>>>24;F[b+20|0]=c;F[b+21|0]=c>>>8;F[b+22|0]=c>>>16;F[b+23|0]=c>>>24;c=I[1510]|I[1511]<<8|(I[1512]<<16|I[1513]<<24);d=I[1506]|I[1507]<<8|(I[1508]<<16|I[1509]<<24);F[b+8|0]=d;F[b+9|0]=d>>>8;F[b+10|0]=d>>>16;F[b+11|0]=d>>>24;F[b+12|0]=c;F[b+13|0]=c>>>8;F[b+14|0]=c>>>16;F[b+15|0]=c>>>24;c=I[1502]|I[1503]<<8|(I[1504]<<16|I[1505]<<24);d=I[1498]|I[1499]<<8|(I[1500]<<16|I[1501]<<24);F[b|0]=d;F[b+1|0]=d>>>8;F[b+2|0]=d>>>16;F[b+3|0]=d>>>24;F[b+4|0]=c;F[b+5|0]=c>>>8;F[b+6|0]=c>>>16;F[b+7|0]=c>>>24;H[a>>2]=-1;za(a+4|0,b,27);oa(b);break a}i=ca-16|0;ca=i;b:{c:{switch(F[f+32|0]){case 0:e=pa(44);H[e>>2]=0;H[e+4>>2]=0;H[e+40>>2]=0;H[e+32>>2]=0;H[e+36>>2]=0;H[e+24>>2]=0;H[e+28>>2]=0;H[e+16>>2]=0;H[e+20>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;e=Vc(e);H[e>>2]=13496;H[f+8>>2]=0;H[f+12>>2]=0;H[f>>2]=0;H[f+4>>2]=0;H[f+16>>2]=e;break b;case 1:e=pa(44);H[e>>2]=0;H[e+4>>2]=0;H[e+40>>2]=0;H[e+32>>2]=0;H[e+36>>2]=0;H[e+24>>2]=0;H[e+28>>2]=0;H[e+16>>2]=0;H[e+20>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;e=Vc(e);H[e>>2]=13404;H[f+8>>2]=0;H[f+12>>2]=0;H[f>>2]=0;H[f+4>>2]=0;H[f+16>>2]=e;break b;default:break c}}g=pa(32);F[g+28|0]=0;e=I[1550]|I[1551]<<8|(I[1552]<<16|I[1553]<<24);F[g+24|0]=e;F[g+25|0]=e>>>8;F[g+26|0]=e>>>16;F[g+27|0]=e>>>24;e=I[1546]|I[1547]<<8|(I[1548]<<16|I[1549]<<24);h=I[1542]|I[1543]<<8|(I[1544]<<16|I[1545]<<24);F[g+16|0]=h;F[g+17|0]=h>>>8;F[g+18|0]=h>>>16;F[g+19|0]=h>>>24;F[g+20|0]=e;F[g+21|0]=e>>>8;F[g+22|0]=e>>>16;F[g+23|0]=e>>>24;e=I[1538]|I[1539]<<8|(I[1540]<<16|I[1541]<<24);h=I[1534]|I[1535]<<8|(I[1536]<<16|I[1537]<<24);F[g+8|0]=h;F[g+9|0]=h>>>8;F[g+10|0]=h>>>16;F[g+11|0]=h>>>24;F[g+12|0]=e;F[g+13|0]=e>>>8;F[g+14|0]=e>>>16;F[g+15|0]=e>>>24;e=I[1530]|I[1531]<<8|(I[1532]<<16|I[1533]<<24);h=I[1526]|I[1527]<<8|(I[1528]<<16|I[1529]<<24);F[g|0]=h;F[g+1|0]=h>>>8;F[g+2|0]=h>>>16;F[g+3|0]=h>>>24;F[g+4|0]=e;F[g+5|0]=e>>>8;F[g+6|0]=e>>>16;F[g+7|0]=e>>>24;H[i>>2]=-1;e=i|4;za(e,g,28);j=F[i+15|0];H[f>>2]=H[i>>2];h=f+4|0;d:{if((j|0)>=0){j=H[e+4>>2];H[h>>2]=H[e>>2];H[h+4>>2]=j;H[h+8>>2]=H[e+8>>2];H[f+16>>2]=0;break d}za(h,H[i+4>>2],H[i+8>>2]);e=F[i+15|0];H[f+16>>2]=0;if((e|0)>=0){break d}oa(H[i+4>>2])}oa(g)}ca=i+16|0;e=H[f>>2];e:{if(e){H[a>>2]=e;a=a+4|0;if(F[f+15|0]>=0){b=f|4;c=H[b+4>>2];H[a>>2]=H[b>>2];H[a+4>>2]=c;H[a+8>>2]=H[b+8>>2];break e}za(a,H[f+4>>2],H[f+8>>2]);break e}e=H[f+16>>2];H[f+16>>2]=0;te(a,e,b,c,d);if(!H[a>>2]){if(F[a+15|0]<0){oa(H[a+4>>2])}H[a>>2]=0;H[a+4>>2]=0;H[a+8>>2]=0;H[a+12>>2]=0}ea[H[H[e>>2]+4>>2]](e)}a=H[f+16>>2];H[f+16>>2]=0;if(a){ea[H[H[a>>2]+4>>2]](a)}if(F[f+15|0]>=0){break a}oa(H[f+4>>2])}ca=f+80|0}function Ic(a){var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;H[a+56>>2]=H[a+52>>2];H[a+44>>2]=H[a+40>>2];b=H[a+64>>2];c=H[b+24>>2];if((c|0)==H[b+28>>2]){return 1}a:{b:{c:{while(1){g=i;i=H[(k<<2)+c>>2];d:{if((i|0)==-1){i=g;break d}b=H[a+56>>2];e:{if((b|0)!=H[a+60>>2]){H[b>>2]=g;H[a+56>>2]=b+4;break e}d=H[a+52>>2];e=b-d|0;h=e>>2;c=h+1|0;if(c>>>0>=1073741824){break c}f=e>>>1|0;f=e>>>0>=2147483644?1073741823:c>>>0>>0?f:c;if(f){if(f>>>0>=1073741824){break b}e=pa(f<<2)}else{e=0}c=e+(h<<2)|0;H[c>>2]=g;h=c+4|0;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;H[c>>2]=H[b>>2];if((b|0)!=(d|0)){continue}break}}H[a+60>>2]=e+(f<<2);H[a+56>>2]=h;H[a+52>>2]=c;if(!d){break e}oa(d)}f:{g:{if(!(H[H[a+12>>2]+(k>>>3&536870908)>>2]>>>k&1)){break g}e=i+1|0;e=(e>>>0)%3|0?e:i-2|0;if((e|0)==-1|H[H[a>>2]+(e>>>3&536870908)>>2]>>>e&1){break g}e=H[H[H[a+64>>2]+12>>2]+(e<<2)>>2];if((e|0)==-1){break g}b=e+1|0;b=(b>>>0)%3|0?b:e-2|0;if((b|0)==-1){break g}c=H[a+64>>2];f=H[a>>2];while(1){e=b;b=-1;d=e+1|0;d=(d>>>0)%3|0?d:e-2|0;h:{if((d|0)==-1|H[f+(d>>>3&536870908)>>2]>>>d&1){break h}d=H[H[c+12>>2]+(d<<2)>>2];if((d|0)==-1){break h}b=d+1|0;b=(b>>>0)%3|0?b:d-2|0}if((b|0)!=(i|0)){if((b|0)==-1){break f}continue}break}return 0}e=i}H[H[a+28>>2]+(e<<2)>>2]=g;b=H[a+44>>2];i:{if((b|0)!=H[a+48>>2]){H[b>>2]=e;H[a+44>>2]=b+4;break i}d=H[a+40>>2];i=b-d|0;h=i>>2;c=h+1|0;if(c>>>0>=1073741824){break a}f=i>>>1|0;f=i>>>0>=2147483644?1073741823:c>>>0>>0?f:c;if(f){if(f>>>0>=1073741824){break b}i=pa(f<<2)}else{i=0}c=i+(h<<2)|0;H[c>>2]=e;h=c+4|0;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;H[c>>2]=H[b>>2];if((b|0)!=(d|0)){continue}break}}H[a+48>>2]=i+(f<<2);H[a+44>>2]=h;H[a+40>>2]=c;if(!d){break i}oa(d)}i=g+1|0;b=H[a+64>>2];if((e|0)==-1){break d}j:{if((e>>>0)%3|0){c=e-1|0;break j}c=e+2|0;if((c|0)==-1){break d}}d=H[H[b+12>>2]+(c<<2)>>2];if((d|0)==-1){break d}f=d+((d>>>0)%3|0?-1:2)|0;if((f|0)==-1|(e|0)==(f|0)){break d}while(1){b=f+1|0;b=(b>>>0)%3|0?b:f-2|0;if(H[H[a>>2]+(b>>>3&536870908)>>2]>>>b&1){b=H[a+56>>2];k:{if((b|0)!=H[a+60>>2]){H[b>>2]=i;H[a+56>>2]=b+4;break k}d=H[a+52>>2];g=b-d|0;j=g>>2;c=j+1|0;if(c>>>0>=1073741824){break c}h=g>>>1|0;h=g>>>0>=2147483644?1073741823:c>>>0>>0?h:c;if(h){if(h>>>0>=1073741824){break b}g=pa(h<<2)}else{g=0}c=g+(j<<2)|0;H[c>>2]=i;j=c+4|0;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;H[c>>2]=H[b>>2];if((b|0)!=(d|0)){continue}break}}H[a+60>>2]=g+(h<<2);H[a+56>>2]=j;H[a+52>>2]=c;if(!d){break k}oa(d)}d=i+1|0;b=H[a+44>>2];l:{if((b|0)!=H[a+48>>2]){H[b>>2]=f;H[a+44>>2]=b+4;break l}h=H[a+40>>2];g=b-h|0;l=g>>2;c=l+1|0;if(c>>>0>=1073741824){break a}j=g>>>1|0;j=g>>>0>=2147483644?1073741823:c>>>0>>0?j:c;if(j){if(j>>>0>=1073741824){break b}g=pa(j<<2)}else{g=0}c=g+(l<<2)|0;H[c>>2]=f;l=c+4|0;if((b|0)!=(h|0)){while(1){c=c-4|0;b=b-4|0;H[c>>2]=H[b>>2];if((b|0)!=(h|0)){continue}break}}H[a+48>>2]=g+(j<<2);H[a+44>>2]=l;H[a+40>>2]=c;if(!h){break l}oa(h)}g=i;i=d}H[H[a+28>>2]+(f<<2)>>2]=g;b=H[a+64>>2];m:{if((f>>>0)%3|0){c=f-1|0;break m}c=f+2|0;if((c|0)==-1){break d}}d=H[H[b+12>>2]+(c<<2)>>2];if((d|0)==-1){break d}f=d+((d>>>0)%3|0?-1:2)|0;if((f|0)==-1){break d}if((e|0)!=(f|0)){continue}break}}k=k+1|0;c=H[b+24>>2];if(k>>>0>2]-c>>2>>>0){continue}break}return 1}sa();v()}wa();v()}sa();v()}function ti(a){a=a|0;var b=0,c=0,d=0,e=0;c=H[a+32>>2];d=H[c+16>>2];e=H[c+12>>2];b=H[c+20>>2];if(K[c+8>>2]>d>>>0&(e|0)>=(b|0)|(b|0)<(e|0)){e=I[H[c>>2]+d|0];d=d+1|0;b=d?b:b+1|0;H[c+16>>2]=d;H[c+20>>2]=b;b=H[a+48>>2];H[a+48>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}a:{b:{c:{d:{switch(e|0){case 0:b=pa(384);H[b>>2]=11384;ra(b+4|0,0,80);H[b+96>>2]=0;H[b+100>>2]=0;H[b+92>>2]=-1;H[b+84>>2]=-1;H[b+88>>2]=-1;H[b+104>>2]=0;H[b+108>>2]=0;H[b+112>>2]=0;H[b+116>>2]=0;H[b+120>>2]=0;H[b+124>>2]=0;H[b+128>>2]=0;H[b+132>>2]=0;H[b+136>>2]=0;H[b+140>>2]=0;H[b+144>>2]=0;H[b+148>>2]=0;H[b+156>>2]=0;H[b+160>>2]=0;H[b+152>>2]=1065353216;H[b+164>>2]=0;H[b+168>>2]=0;H[b+172>>2]=0;H[b+176>>2]=0;H[b+180>>2]=0;H[b+184>>2]=0;H[b+188>>2]=0;H[b+192>>2]=0;H[b+196>>2]=0;H[b+200>>2]=0;H[b+204>>2]=0;H[b+208>>2]=0;H[b+212>>2]=-1;H[b+216>>2]=0;H[b+220>>2]=0;H[b+224>>2]=0;Ha(b+232|0);Ha(b+272|0);c=b+312|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;Ha(b+328|0);H[b+376>>2]=0;H[b+368>>2]=0;H[b+372>>2]=0;break c;case 1:b=pa(424);H[b>>2]=11436;ra(b+4|0,0,80);H[b+96>>2]=0;H[b+100>>2]=0;H[b+92>>2]=-1;H[b+84>>2]=-1;H[b+88>>2]=-1;H[b+104>>2]=0;H[b+108>>2]=0;H[b+112>>2]=0;H[b+116>>2]=0;H[b+120>>2]=0;H[b+124>>2]=0;H[b+128>>2]=0;H[b+132>>2]=0;H[b+136>>2]=0;H[b+140>>2]=0;H[b+144>>2]=0;H[b+148>>2]=0;H[b+156>>2]=0;H[b+160>>2]=0;H[b+152>>2]=1065353216;H[b+164>>2]=0;H[b+168>>2]=0;H[b+172>>2]=0;H[b+176>>2]=0;H[b+180>>2]=0;H[b+184>>2]=0;H[b+188>>2]=0;H[b+192>>2]=0;H[b+196>>2]=0;H[b+200>>2]=0;H[b+204>>2]=0;H[b+208>>2]=0;H[b+212>>2]=-1;H[b+216>>2]=0;H[b+220>>2]=0;H[b+224>>2]=0;Ha(b+232|0);Ha(b+272|0);c=b+312|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;Ha(b+328|0);H[b+392>>2]=0;H[b+396>>2]=0;H[b+384>>2]=0;H[b+388>>2]=0;H[b+376>>2]=0;H[b+380>>2]=0;H[b+368>>2]=0;H[b+372>>2]=0;c=b+400|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;H[b+416>>2]=-1;H[b+420>>2]=-1;break c;case 2:break d;default:break b}}b=pa(440);H[b>>2]=11484;ra(b+4|0,0,80);H[b+96>>2]=0;H[b+100>>2]=0;H[b+92>>2]=-1;H[b+84>>2]=-1;H[b+88>>2]=-1;H[b+104>>2]=0;H[b+108>>2]=0;H[b+112>>2]=0;H[b+116>>2]=0;H[b+120>>2]=0;H[b+124>>2]=0;H[b+128>>2]=0;H[b+132>>2]=0;H[b+136>>2]=0;H[b+140>>2]=0;H[b+144>>2]=0;H[b+148>>2]=0;H[b+156>>2]=0;H[b+160>>2]=0;H[b+152>>2]=1065353216;H[b+164>>2]=0;H[b+168>>2]=0;H[b+172>>2]=0;H[b+176>>2]=0;H[b+180>>2]=0;H[b+184>>2]=0;H[b+188>>2]=0;H[b+192>>2]=0;H[b+196>>2]=0;H[b+200>>2]=0;H[b+204>>2]=0;H[b+208>>2]=0;H[b+212>>2]=-1;H[b+216>>2]=0;H[b+220>>2]=0;H[b+224>>2]=0;Ha(b+232|0);Ha(b+272|0);c=b+312|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;Ha(b+328|0);H[b+392>>2]=0;H[b+396>>2]=0;H[b+384>>2]=0;H[b+388>>2]=0;H[b+376>>2]=0;H[b+380>>2]=0;H[b+368>>2]=0;H[b+372>>2]=0;H[b+416>>2]=0;H[b+420>>2]=0;H[b+408>>2]=2;H[b+412>>2]=7;H[b+400>>2]=-1;H[b+404>>2]=-1;H[b+424>>2]=0;H[b+428>>2]=0;H[b+432>>2]=0;H[b+436>>2]=0}c=H[a+48>>2];H[a+48>>2]=b;if(!c){break a}ea[H[H[c>>2]+4>>2]](c)}b=H[a+48>>2];if(b){break a}return 0}a=ea[H[H[b>>2]+8>>2]](b,a)|0}else{a=0}return a|0}function Lb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0;f=ca-96|0;ca=f;e=H[a+16>>2];F[f+92|0]=1;H[f+88>>2]=b;H[f+84>>2]=b;H[f+80>>2]=e;a:{if((b|0)==-1){break a}j=H[a+20>>2];d=H[j>>2];e=H[H[e>>2]+(b<<2)>>2];if(e>>>0>=H[j+4>>2]-d>>2>>>0){break a}e=H[H[a+8>>2]+(H[d+(e<<2)>>2]<<2)>>2];d=H[a+4>>2];if(!I[d+84|0]){e=H[H[d+68>>2]+(e<<2)>>2]}H[f+72>>2]=0;H[f+76>>2]=0;j=f- -64|0;H[j>>2]=0;H[j+4>>2]=0;H[f+56>>2]=0;H[f+60>>2]=0;Sa(d,e,F[d+24|0],f+56|0);e=b+1|0;j=(e>>>0)%3|0?e:b-2|0;n=((b>>>0)%3|0?-1:2)+b|0;b:{c:{while(1){d=j;e=n;d:{if(!H[a+28>>2]){break d}e=b+1|0;d=(e>>>0)%3|0?e:b-2|0;e=b-1|0;if((b>>>0)%3|0){break d}e=b+2|0}if((d|0)==-1){break b}m=H[a+20>>2];b=H[m>>2];d=H[H[H[a+16>>2]>>2]+(d<<2)>>2];if(d>>>0>=H[m+4>>2]-b>>2>>>0){break b}d=H[H[a+8>>2]+(H[(d<<2)+b>>2]<<2)>>2];b=H[a+4>>2];if(!I[b+84|0]){d=H[H[b+68>>2]+(d<<2)>>2]}H[f+48>>2]=0;H[f+52>>2]=0;H[f+40>>2]=0;H[f+44>>2]=0;H[f+32>>2]=0;H[f+36>>2]=0;Sa(b,d,F[b+24|0],f+32|0);if((e|0)==-1){break c}d=H[a+20>>2];b=H[d>>2];e=H[H[H[a+16>>2]>>2]+(e<<2)>>2];if(e>>>0>=H[d+4>>2]-b>>2>>>0){break c}d=H[H[a+8>>2]+(H[b+(e<<2)>>2]<<2)>>2];b=H[a+4>>2];if(!I[b+84|0]){d=H[H[b+68>>2]+(d<<2)>>2]}H[f+24>>2]=0;H[f+28>>2]=0;H[f+16>>2]=0;H[f+20>>2]=0;H[f+8>>2]=0;H[f+12>>2]=0;Sa(b,d,F[b+24|0],f+8|0);g=H[f+8>>2];b=H[f+56>>2];d=g-b|0;p=H[f+60>>2];t=H[f+12>>2]-(p+(b>>>0>g>>>0)|0)|0;i=H[f+40>>2];e=H[f+64>>2];m=i-e|0;u=H[f+68>>2];y=H[f+44>>2]-(u+(e>>>0>i>>>0)|0)|0;g=Rj(d,t,m,y);w=o-g|0;x=h-(da+(g>>>0>o>>>0)|0)|0;h=w;i=H[f+16>>2];g=i-e|0;u=H[f+20>>2]-((e>>>0>i>>>0)+u|0)|0;k=H[f+32>>2];i=k-b|0;w=H[f+36>>2]-((b>>>0>k>>>0)+p|0)|0;b=Rj(g,u,i,w);o=h+b|0;h=da+x|0;h=b>>>0>o>>>0?h+1|0:h;b=l;l=d;p=t;k=H[f+48>>2];e=H[f+72>>2];d=k-e|0;t=H[f+76>>2];x=H[f+52>>2]-(t+(e>>>0>k>>>0)|0)|0;l=Rj(l,p,d,x);k=b+l|0;b=da+q|0;b=k>>>0>>0?b+1|0:b;l=H[f+24>>2];p=l-e|0;e=H[f+28>>2]-((e>>>0>l>>>0)+t|0)|0;q=Rj(p,e,i,w);l=k-q|0;q=b-(da+(k>>>0>>0)|0)|0;b=Rj(g,u,d,x);d=r-b|0;b=s-(da+(b>>>0>r>>>0)|0)|0;s=Rj(p,e,m,y);r=s+d|0;b=da+b|0;s=r>>>0>>0?b+1|0:b;uc(f+80|0);b=H[f+88>>2];if((b|0)!=-1){continue}break}b=s>>31;e=b^r;d=e-b|0;b=(b^s)-((b>>>0>e>>>0)+b|0)|0;n=-1;e=2147483647;m=q>>31;g=m;i=g^l;j=i-g|0;m=(g^q)-((i>>>0>>0)+g|0)|0;i=m;k=j^-1;g=i^2147483647;m=h;e:{f:{if(!H[a+28>>2]){if((b|0)==(g|0)&d>>>0>k>>>0|b>>>0>g>>>0){break e}b=b+i|0;a=d+j|0;b=a>>>0>>0?b+1|0:b;e=a;g=h;a=g>>31;d=a;n=d^o;a=n-d|0;h=a;d=(d^g)-((d>>>0>n>>>0)+d|0)|0;a=a+e|0;d=d^2147483647;h=(d|0)==(b|0)&(h^-1)>>>0>>0|b>>>0>d>>>0;a=h?-1:a;if(!(h&0)&(a|0)<=536870912|(a|0)<536870912){break e}b=0;a=a>>>29|0;break f}g:{if((b|0)==(g|0)&d>>>0>k>>>0|b>>>0>g>>>0){break g}b=b+i|0;a=d+j|0;b=a>>>0>>0?b+1|0:b;k=h;h=h>>31;g=h;i=g^o;h=i-g|0;j=(g^k)-((g>>>0>i>>>0)+g|0)|0;g=j^2147483647;d=a;a=h;if((g|0)==(b|0)&d>>>0>(a^-1)>>>0|b>>>0>g>>>0){break g}b=b+j|0;n=a+d|0;b=n>>>0>>0?b+1|0:b;e=b;if(!b&n>>>0<536870913){break e}}b=e>>>29|0;a=(e&536870911)<<3|n>>>29}o=Sj(o,m,a,b);l=Sj(l,q,a,b);r=Sj(r,s,a,b)}H[c+8>>2]=o;H[c+4>>2]=l;H[c>>2]=r;ca=f+96|0;return}Ca();v()}Ca();v()}Ca();v()}function Wd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;a:{if((b|0)<0){break a}c=H[a+12>>2];d=H[a+8>>2];if(c-d>>2>>>0<=b>>>0){break a}d=d+(b<<2)|0;e=H[d>>2];i=H[e+60>>2];f=H[e+56>>2];e=d+4|0;if((e|0)!=(c|0)){while(1){h=H[e>>2];H[e>>2]=0;g=H[d>>2];H[d>>2]=h;if(g){Ga(g)}d=d+4|0;e=e+4|0;if((e|0)!=(c|0)){continue}break}c=H[a+12>>2]}if((c|0)!=(d|0)){while(1){c=c-4|0;e=H[c>>2];H[c>>2]=0;if(e){Ga(e)}if((c|0)!=(d|0)){continue}break}}H[a+12>>2]=d;g=H[a+4>>2];b:{if(!g|(i|0)<0){break b}c=H[g+24>>2];d=H[g+28>>2];if((c|0)==(d|0)){break b}while(1){if((i|0)==H[H[c>>2]+24>>2]){d=c+4|0;i=H[g+28>>2];if((d|0)!=(i|0)){while(1){h=H[d>>2];H[d>>2]=0;e=H[c>>2];H[c>>2]=h;if(e){Ra(e+12|0,H[e+16>>2]);Qa(e,H[e+4>>2]);oa(e)}c=c+4|0;d=d+4|0;if((i|0)!=(d|0)){continue}break}d=H[g+28>>2]}if((c|0)!=(d|0)){while(1){d=d-4|0;e=H[d>>2];H[d>>2]=0;if(e){Ra(e+12|0,H[e+16>>2]);Qa(e,H[e+4>>2]);oa(e)}if((c|0)!=(d|0)){continue}break}}H[g+28>>2]=c;break b}c=c+4|0;if((d|0)!=(c|0)){continue}break}}c:{if((f|0)>4){break c}d:{e=N(f,12)+a|0;c=H[e+20>>2];d=H[e+24>>2];if((c|0)==(d|0)){break d}while(1){if(H[c>>2]==(b|0)){break d}c=c+4|0;if((d|0)!=(c|0)){continue}break}break c}if((c|0)==(d|0)){break c}f=c;c=c+4|0;va(f,c,d-c|0);H[e+24>>2]=d-4}c=H[a+24>>2];d=H[a+20>>2];e:{if((c|0)==(d|0)){break e}e=c-d|0;c=e>>2;g=c>>>0<=1?1:c;i=g&1;c=0;if(e>>>0>=8){g=g&-2;e=0;while(1){f=c<<2;h=f+d|0;j=H[h>>2];if((j|0)>(b|0)){H[h>>2]=j-1}f=d+(f|4)|0;h=H[f>>2];if((h|0)>(b|0)){H[f>>2]=h-1}c=c+2|0;e=e+2|0;if((g|0)!=(e|0)){continue}break}}if(!i){break e}c=d+(c<<2)|0;d=H[c>>2];if((d|0)<=(b|0)){break e}H[c>>2]=d-1}c=H[a+36>>2];d=H[a+32>>2];f:{if((c|0)==(d|0)){break f}e=c-d|0;c=e>>2;g=c>>>0<=1?1:c;i=g&1;c=0;if(e>>>0>=8){g=g&-2;e=0;while(1){f=c<<2;h=f+d|0;j=H[h>>2];if((j|0)>(b|0)){H[h>>2]=j-1}f=d+(f|4)|0;h=H[f>>2];if((h|0)>(b|0)){H[f>>2]=h-1}c=c+2|0;e=e+2|0;if((g|0)!=(e|0)){continue}break}}if(!i){break f}c=d+(c<<2)|0;d=H[c>>2];if((d|0)<=(b|0)){break f}H[c>>2]=d-1}c=H[a+48>>2];d=H[a+44>>2];g:{if((c|0)==(d|0)){break g}e=c-d|0;c=e>>2;g=c>>>0<=1?1:c;i=g&1;c=0;if(e>>>0>=8){g=g&-2;e=0;while(1){f=c<<2;h=f+d|0;j=H[h>>2];if((j|0)>(b|0)){H[h>>2]=j-1}f=d+(f|4)|0;h=H[f>>2];if((h|0)>(b|0)){H[f>>2]=h-1}c=c+2|0;e=e+2|0;if((g|0)!=(e|0)){continue}break}}if(!i){break g}c=d+(c<<2)|0;d=H[c>>2];if((d|0)<=(b|0)){break g}H[c>>2]=d-1}c=H[a+60>>2];d=H[a+56>>2];h:{if((c|0)==(d|0)){break h}e=c-d|0;c=e>>2;g=c>>>0<=1?1:c;i=g&1;c=0;if(e>>>0>=8){g=g&-2;e=0;while(1){f=c<<2;h=f+d|0;j=H[h>>2];if((j|0)>(b|0)){H[h>>2]=j-1}f=d+(f|4)|0;h=H[f>>2];if((h|0)>(b|0)){H[f>>2]=h-1}c=c+2|0;e=e+2|0;if((g|0)!=(e|0)){continue}break}}if(!i){break h}c=d+(c<<2)|0;d=H[c>>2];if((d|0)<=(b|0)){break h}H[c>>2]=d-1}c=H[a+72>>2];a=H[a+68>>2];if((c|0)==(a|0)){break a}d=c-a|0;c=d>>2;e=c>>>0<=1?1:c;g=e&1;c=0;if(d>>>0>=8){d=e&-2;e=0;while(1){i=c<<2;f=i+a|0;h=H[f>>2];if((h|0)>(b|0)){H[f>>2]=h-1}i=a+(i|4)|0;f=H[i>>2];if((f|0)>(b|0)){H[i>>2]=f-1}c=c+2|0;e=e+2|0;if((d|0)!=(e|0)){continue}break}}if(!g){break a}f=b;a=a+(c<<2)|0;b=H[a>>2];if((f|0)>=(b|0)){break a}H[a>>2]=b-1}}function oa(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;a:{if(!a){break a}d=a-8|0;b=H[a-4>>2];a=b&-8;f=d+a|0;b:{if(b&1){break b}if(!(b&3)){break a}b=H[d>>2];d=d-b|0;if(d>>>0>>0<=255){e=H[d+8>>2];b=b>>>3|0;c=H[d+12>>2];if((c|0)==(e|0)){i=17192,j=H[4298]&Vj(b),H[i>>2]=j;break b}H[e+12>>2]=c;H[c+8>>2]=e;break b}h=H[d+24>>2];b=H[d+12>>2];c:{if((d|0)!=(b|0)){c=H[d+8>>2];H[c+12>>2]=b;H[b+8>>2]=c;break c}d:{e=d+20|0;c=H[e>>2];if(c){break d}e=d+16|0;c=H[e>>2];if(c){break d}b=0;break c}while(1){g=e;b=c;e=b+20|0;c=H[e>>2];if(c){continue}e=b+16|0;c=H[b+16>>2];if(c){continue}break}H[g>>2]=0}if(!h){break b}e=H[d+28>>2];c=(e<<2)+17496|0;e:{if(H[c>>2]==(d|0)){H[c>>2]=b;if(b){break e}i=17196,j=H[4299]&Vj(e),H[i>>2]=j;break b}H[h+(H[h+16>>2]==(d|0)?16:20)>>2]=b;if(!b){break b}}H[b+24>>2]=h;c=H[d+16>>2];if(c){H[b+16>>2]=c;H[c+24>>2]=b}c=H[d+20>>2];if(!c){break b}H[b+20>>2]=c;H[c+24>>2]=b;break b}b=H[f+4>>2];if((b&3)!=3){break b}H[4300]=a;H[f+4>>2]=b&-2;H[d+4>>2]=a|1;H[a+d>>2]=a;return}if(d>>>0>=f>>>0){break a}b=H[f+4>>2];if(!(b&1)){break a}f:{if(!(b&2)){if(H[4304]==(f|0)){H[4304]=d;a=H[4301]+a|0;H[4301]=a;H[d+4>>2]=a|1;if(H[4303]!=(d|0)){break a}H[4300]=0;H[4303]=0;return}if(H[4303]==(f|0)){H[4303]=d;a=H[4300]+a|0;H[4300]=a;H[d+4>>2]=a|1;H[a+d>>2]=a;return}a=(b&-8)+a|0;g:{if(b>>>0<=255){e=H[f+8>>2];b=b>>>3|0;c=H[f+12>>2];if((c|0)==(e|0)){i=17192,j=H[4298]&Vj(b),H[i>>2]=j;break g}H[e+12>>2]=c;H[c+8>>2]=e;break g}h=H[f+24>>2];b=H[f+12>>2];h:{if((f|0)!=(b|0)){c=H[f+8>>2];H[c+12>>2]=b;H[b+8>>2]=c;break h}i:{e=f+20|0;c=H[e>>2];if(c){break i}e=f+16|0;c=H[e>>2];if(c){break i}b=0;break h}while(1){g=e;b=c;e=b+20|0;c=H[e>>2];if(c){continue}e=b+16|0;c=H[b+16>>2];if(c){continue}break}H[g>>2]=0}if(!h){break g}e=H[f+28>>2];c=(e<<2)+17496|0;j:{if(H[c>>2]==(f|0)){H[c>>2]=b;if(b){break j}i=17196,j=H[4299]&Vj(e),H[i>>2]=j;break g}H[h+(H[h+16>>2]==(f|0)?16:20)>>2]=b;if(!b){break g}}H[b+24>>2]=h;c=H[f+16>>2];if(c){H[b+16>>2]=c;H[c+24>>2]=b}c=H[f+20>>2];if(!c){break g}H[b+20>>2]=c;H[c+24>>2]=b}H[d+4>>2]=a|1;H[a+d>>2]=a;if(H[4303]!=(d|0)){break f}H[4300]=a;return}H[f+4>>2]=b&-2;H[d+4>>2]=a|1;H[a+d>>2]=a}if(a>>>0<=255){b=(a&-8)+17232|0;c=H[4298];a=1<<(a>>>3);k:{if(!(c&a)){H[4298]=a|c;a=b;break k}a=H[b+8>>2]}H[b+8>>2]=d;H[a+12>>2]=d;H[d+12>>2]=b;H[d+8>>2]=a;return}e=31;if(a>>>0<=16777215){b=Q(a>>>8|0);e=((a>>>38-b&1)-(b<<1)|0)+62|0}H[d+28>>2]=e;H[d+16>>2]=0;H[d+20>>2]=0;g=(e<<2)+17496|0;l:{m:{c=H[4299];b=1<>2]=d;H[d+24>>2]=g;break n}e=a<<((e|0)!=31?25-(e>>>1|0)|0:0);b=H[g>>2];while(1){c=b;if((H[b+4>>2]&-8)==(a|0)){break m}b=e>>>29|0;e=e<<1;g=c+(b&4)|0;b=H[g+16>>2];if(b){continue}break}H[g+16>>2]=d;H[d+24>>2]=c}H[d+12>>2]=d;H[d+8>>2]=d;break l}a=H[c+8>>2];H[a+12>>2]=d;H[c+8>>2]=d;H[d+24>>2]=0;H[d+12>>2]=c;H[d+8>>2]=a}a=H[4306]-1|0;H[4306]=a?a:-1}}function tj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0;H[a+8>>2]=e;n=a+32|0;h=H[n>>2];f=H[a+36>>2]-h>>2;a:{if(f>>>0>>0){ya(n,e-f|0);d=H[a+8>>2];break a}d=e;if(d>>>0>=f>>>0){break a}H[a+36>>2]=h+(e<<2);d=e}s=H[a+52>>2];p=H[a+48>>2];f=0;h=e>>>0>1073741823?-1:e<<2;m=ra(pa(h),0,h);b:{if((d|0)<=0){break b}g=H[a+32>>2];while(1){d=f<<2;h=H[d+m>>2];j=H[a+16>>2];c:{if((h|0)>(j|0)){H[d+g>>2]=j;break c}d=d+g|0;j=H[a+12>>2];if((j|0)>(h|0)){H[d>>2]=j;break c}H[d>>2]=h}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}if((d|0)<=0){break b}f=0;while(1){h=f<<2;d=h+c|0;h=H[b+h>>2]+H[g+h>>2]|0;H[d>>2]=h;d:{if((h|0)>H[a+16>>2]){i=h-H[a+20>>2]|0}else{if((h|0)>=H[a+12>>2]){break d}i=h+H[a+20>>2]|0}H[d>>2]=i}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}}f=H[a+56>>2];q=H[f>>2];f=H[f+4>>2]-q|0;if((f|0)>=5){o=f>>>2|0;t=o>>>0<=2?2:o;u=e&-2;w=e&1;h=1;while(1){e:{f:{if((h|0)!=(o|0)){r=N(e,h);f=H[(h<<2)+q>>2];if((f|0)==-1){break f}f=H[H[p+12>>2]+(f<<2)>>2];if((f|0)==-1){break f}j=H[s>>2];g=H[p>>2];k=H[j+(H[g+(f<<2)>>2]<<2)>>2];i=f+1|0;i=(i>>>0)%3|0?i:f-2|0;if((i|0)!=-1){i=H[g+(i<<2)>>2]}else{i=-1}g:{h:{if((f>>>0)%3|0){f=f-1|0;break h}f=f+2|0;l=-1;if((f|0)==-1){break g}}l=H[g+(f<<2)>>2]}if((h|0)<=(k|0)){break f}f=H[(i<<2)+j>>2];if((f|0)>=(h|0)){break f}g=H[j+(l<<2)>>2];if((g|0)>=(h|0)){break f}i:{if((e|0)<=0){break i}g=N(e,g);j=N(e,f);k=N(e,k);f=0;l=0;if((e|0)!=1){while(1){H[(f<<2)+m>>2]=(H[(f+g<<2)+c>>2]+H[(f+j<<2)+c>>2]|0)-H[(f+k<<2)+c>>2];i=f|1;H[(i<<2)+m>>2]=(H[(g+i<<2)+c>>2]+H[(j+i<<2)+c>>2]|0)-H[(i+k<<2)+c>>2];f=f+2|0;l=l+2|0;if((u|0)!=(l|0)){continue}break}}if(!w){break i}H[(f<<2)+m>>2]=(H[(f+g<<2)+c>>2]+H[(f+j<<2)+c>>2]|0)-H[(f+k<<2)+c>>2]}if((d|0)<=0){break e}j=H[n>>2];f=0;while(1){d=f<<2;g=H[d+m>>2];k=H[a+16>>2];j:{if((g|0)>(k|0)){H[d+j>>2]=k;break j}d=d+j|0;k=H[a+12>>2];if((k|0)>(g|0)){H[d>>2]=k;break j}H[d>>2]=g}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}f=0;if((d|0)<=0){break e}d=r<<2;k=d+c|0;i=b+d|0;while(1){g=f<<2;d=g+k|0;g=H[g+i>>2]+H[g+j>>2]|0;H[d>>2]=g;k:{if((g|0)>H[a+16>>2]){l=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break k}l=g+H[a+20>>2]|0}H[d>>2]=l}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}break e}Ca();v()}if((d|0)<=0){break e}k=(N(h-1|0,e)<<2)+c|0;j=H[n>>2];f=0;while(1){d=f<<2;g=H[d+k>>2];i=H[a+16>>2];l:{if((g|0)>(i|0)){H[d+j>>2]=i;break l}d=d+j|0;i=H[a+12>>2];if((i|0)>(g|0)){H[d>>2]=i;break l}H[d>>2]=g}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}f=0;if((d|0)<=0){break e}d=r<<2;k=d+c|0;i=b+d|0;while(1){g=f<<2;d=g+k|0;g=H[g+i>>2]+H[g+j>>2]|0;H[d>>2]=g;m:{if((g|0)>H[a+16>>2]){l=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break m}l=g+H[a+20>>2]|0}H[d>>2]=l}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}}h=h+1|0;if((t|0)!=(h|0)){continue}break}}oa(m);return 1}function we(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;if((b|0)==-1){return 1}g=(b>>>0)/3|0;if(!(H[H[a+24>>2]+(g>>>3&268435452)>>2]>>>g&1)){e=H[a+48>>2];H[a+52>>2]=e;a:{if((e|0)!=H[a+56>>2]){H[e>>2]=b;H[a+52>>2]=e+4;break a}d=pa(4);H[d>>2]=b;c=d+4|0;H[a+56>>2]=c;H[a+52>>2]=c;H[a+48>>2]=d;if(!e){break a}oa(e)}c=b+1|0;i=(c>>>0)%3|0?c:b-2|0;c=H[H[a+4>>2]+28>>2];k=H[(i<<2)+c>>2];if((k|0)==-1){return 0}e=(b-N(g,3)|0?-1:2)+b|0;j=H[c+(e<<2)>>2];if((j|0)==-1){return 0}b=H[a+36>>2];g=b+(k>>>3&536870908)|0;d=H[g>>2];c=1<>2]=c|d;Ua(a+8|0,k,i);b=H[a+36>>2]}d=(j>>>3&536870908)+b|0;c=H[d>>2];b=1<>2]=b|c;Ua(a+8|0,j,e)}f=H[a+52>>2];if((f|0)==H[a+48>>2]){return 1}k=a+8|0;while(1){b:{c:{f=f-4|0;b=H[f>>2];if((b|0)==-1){break c}c=(b>>>0)/3|0;g=H[a+24>>2]+(c>>>3&268435452)|0;d=H[g>>2];c=1<>2]=c|d;h=H[a+4>>2];c=H[H[h+28>>2]+(b<<2)>>2];if((c|0)==-1){return 0}while(1){d=b;d:{e:{j=H[a+36>>2]+(c>>>3&536870908)|0;i=H[j>>2];e=1<>2]+(c<<2)>>2];g:{if((g|0)==-1){break g}b=g+1|0;b=(b>>>0)%3|0?b:g-2|0;if((b|0)==-1|H[H[h>>2]+(b>>>3&536870908)>>2]>>>b&1){break g}g=H[H[H[h+64>>2]+12>>2]+(b<<2)>>2];if((g|0)!=-1){break f}}H[j>>2]=e|i;Ua(k,c,d);h=H[a+4>>2];break e}H[j>>2]=e|i;Ua(k,c,d);h=H[a+4>>2];b=g+1|0;if((((b>>>0)%3|0?b:g-2|0)|0)==-1){break e}b=-1;h:{if((d|0)==-1){break h}c=d+1|0;c=(c>>>0)%3|0?c:d-2|0;if((c|0)==-1|H[H[h>>2]+(c>>>3&536870908)>>2]>>>c&1){break h}b=H[H[H[h+64>>2]+12>>2]+(c<<2)>>2]}c=(b>>>0)/3|0;d=1<>2];e=c>>>5|0;j=H[f+(e<<2)>>2];break d}i:{j:{if((d|0)==-1){break j}c=-1;b=d+1|0;b=(b>>>0)%3|0?b:d-2|0;if(!((b|0)==-1|H[H[h>>2]+(b>>>3&536870908)>>2]>>>b&1)){c=H[H[H[h+64>>2]+12>>2]+(b<<2)>>2]}k:{l:{if((d>>>0)%3|0){f=d-1|0;break l}f=d+2|0;b=-1;if((f|0)==-1){break k}}b=-1;if(H[H[h>>2]+(f>>>3&536870908)>>2]>>>f&1){break k}b=H[H[H[h+64>>2]+12>>2]+(f<<2)>>2]}g=(b|0)==-1;i=g?-1:(b>>>0)/3|0;if((c|0)!=-1){f=H[a+24>>2];d=(c>>>0)/3|0;e=d>>>5|0;j=H[f+(e<<2)>>2];d=1<>2];e=i>>>5|0;j=H[f+(e<<2)>>2];if(!(d&j)){break d}}f=H[a+52>>2]-4|0;H[a+52>>2]=f;break b}if(g){b=c;break d}if(H[(i>>>3&536870908)+f>>2]>>>i&1){b=c;break d}h=H[a+52>>2];H[h-4>>2]=b;if(H[a+56>>2]!=(h|0)){H[h>>2]=c;f=h+4|0;break c}m:{i=H[a+48>>2];e=h-i|0;g=e>>2;d=g+1|0;if(d>>>0<1073741824){b=e>>>1|0;e=e>>>0>=2147483644?1073741823:b>>>0>d>>>0?b:d;if(e){if(e>>>0>=1073741824){break m}d=pa(e<<2)}else{d=0}b=d+(g<<2)|0;H[b>>2]=c;f=b+4|0;if((h|0)!=(i|0)){while(1){b=b-4|0;h=h-4|0;H[b>>2]=H[h>>2];if((h|0)!=(i|0)){continue}break}}H[a+56>>2]=d+(e<<2);H[a+52>>2]=f;H[a+48>>2]=b;if(!i){break b}oa(i);f=H[a+52>>2];break b}sa();v()}wa();v()}H[(e<<2)+f>>2]=d|j;c=H[H[h+28>>2]+(b<<2)>>2];if((c|0)!=-1){continue}break}return 0}H[a+52>>2]=f}if(H[a+48>>2]!=(f|0)){continue}break}}return 1}function Lj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0;H[a+8>>2]=e;m=a+32|0;h=H[m>>2];f=H[a+36>>2]-h>>2;a:{if(f>>>0>>0){ya(m,e-f|0);d=H[a+8>>2];break a}d=e;if(d>>>0>=f>>>0){break a}H[a+36>>2]=h+(e<<2);d=e}s=H[a+52>>2];n=H[a+48>>2];f=0;h=e>>>0>1073741823?-1:e<<2;l=ra(pa(h),0,h);b:{if((d|0)<=0){break b}g=H[a+32>>2];while(1){d=f<<2;h=H[d+l>>2];i=H[a+16>>2];c:{if((h|0)>(i|0)){H[d+g>>2]=i;break c}d=d+g|0;i=H[a+12>>2];if((i|0)>(h|0)){H[d>>2]=i;break c}H[d>>2]=h}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}if((d|0)<=0){break b}f=0;while(1){h=f<<2;d=h+c|0;h=H[b+h>>2]+H[g+h>>2]|0;H[d>>2]=h;d:{if((h|0)>H[a+16>>2]){h=h-H[a+20>>2]|0}else{if((h|0)>=H[a+12>>2]){break d}h=h+H[a+20>>2]|0}H[d>>2]=h}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}}f=H[a+56>>2];q=H[f>>2];f=H[f+4>>2]-q|0;if((f|0)>=5){o=f>>>2|0;t=o>>>0<=2?2:o;u=e&-2;w=e&1;h=1;while(1){e:{f:{if((h|0)!=(o|0)){r=N(e,h);f=H[(h<<2)+q>>2];if((f|0)==-1|H[H[n>>2]+(f>>>3&536870908)>>2]>>>f&1){break f}f=H[H[H[n+64>>2]+12>>2]+(f<<2)>>2];if((f|0)==-1){break f}i=H[s>>2];g=H[n+28>>2];k=H[i+(H[g+(f<<2)>>2]<<2)>>2];if((k|0)>=(h|0)){break f}j=f+1|0;j=H[i+(H[g+(((j>>>0)%3|0?j:f-2|0)<<2)>>2]<<2)>>2];if((j|0)>=(h|0)){break f}f=H[i+(H[g+(f+((f>>>0)%3|0?-1:2)<<2)>>2]<<2)>>2];if((f|0)>=(h|0)){break f}g:{if((e|0)<=0){break g}g=N(e,f);i=N(e,j);k=N(e,k);f=0;p=0;if((e|0)!=1){while(1){H[(f<<2)+l>>2]=(H[(f+g<<2)+c>>2]+H[(f+i<<2)+c>>2]|0)-H[(f+k<<2)+c>>2];j=f|1;H[(j<<2)+l>>2]=(H[(g+j<<2)+c>>2]+H[(i+j<<2)+c>>2]|0)-H[(k+j<<2)+c>>2];f=f+2|0;p=p+2|0;if((u|0)!=(p|0)){continue}break}}if(!w){break g}H[(f<<2)+l>>2]=(H[(f+g<<2)+c>>2]+H[(f+i<<2)+c>>2]|0)-H[(f+k<<2)+c>>2]}if((d|0)<=0){break e}i=H[m>>2];f=0;while(1){d=f<<2;g=H[d+l>>2];k=H[a+16>>2];h:{if((g|0)>(k|0)){H[d+i>>2]=k;break h}d=d+i|0;k=H[a+12>>2];if((k|0)>(g|0)){H[d>>2]=k;break h}H[d>>2]=g}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}f=0;if((d|0)<=0){break e}d=r<<2;k=d+c|0;j=b+d|0;while(1){g=f<<2;d=g+k|0;g=H[g+j>>2]+H[g+i>>2]|0;H[d>>2]=g;i:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break i}g=g+H[a+20>>2]|0}H[d>>2]=g}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}break e}Ca();v()}if((d|0)<=0){break e}k=(N(h-1|0,e)<<2)+c|0;i=H[m>>2];f=0;while(1){d=f<<2;g=H[d+k>>2];j=H[a+16>>2];j:{if((g|0)>(j|0)){H[d+i>>2]=j;break j}d=d+i|0;j=H[a+12>>2];if((j|0)>(g|0)){H[d>>2]=j;break j}H[d>>2]=g}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}f=0;if((d|0)<=0){break e}d=r<<2;k=d+c|0;j=b+d|0;while(1){g=f<<2;d=g+k|0;g=H[g+j>>2]+H[g+i>>2]|0;H[d>>2]=g;k:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break k}g=g+H[a+20>>2]|0}H[d>>2]=g}d=H[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}}h=h+1|0;if((t|0)!=(h|0)){continue}break}}oa(l);return 1}function Gb(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=O(0),k=0,l=0,m=O(0);i=H[c>>2];a:{b:{f=H[b+4>>2];if(!f){break b}g=Uj(f);c:{if(g>>>0>=2){e=i;if(f>>>0<=e>>>0){e=(i>>>0)%(f>>>0)|0}c=H[H[b>>2]+(e<<2)>>2];if(!c){break b}if(g>>>0<=1){break c}while(1){c=H[c>>2];if(!c){break b}g=H[c+4>>2];if((g|0)!=(i|0)){if(f>>>0<=g>>>0){g=(g>>>0)%(f>>>0)|0}if((e|0)!=(g|0)){break b}}if(H[c+8>>2]!=(i|0)){continue}break}b=0;break a}e=f-1&i;c=H[H[b>>2]+(e<<2)>>2];if(!c){break b}}h=f-1|0;while(1){c=H[c>>2];if(!c){break b}g=H[c+4>>2];if((g|0)!=(i|0)&(g&h)!=(e|0)){break b}if(H[c+8>>2]!=(i|0)){continue}break}b=0;break a}c=pa(16);d=H[H[d>>2]>>2];H[c+12>>2]=0;H[c+8>>2]=d;H[c+4>>2]=i;H[c>>2]=0;m=O(H[b+12>>2]+1>>>0);j=L[b+16>>2];d:{if(m>O(j*O(f>>>0))?0:f){break d}e=2;d=(f-1&f)!=0|f>>>0<3|f<<1;j=O(U(O(m/j)));e:{if(j=O(0)){g=~~j>>>0;break e}g=0}d=d>>>0>g>>>0?d:g;f:{if((d|0)==1){break f}if(!(d&d-1)){e=d;break f}e=Kd(d);f=H[b+4>>2]}g:{if(e>>>0<=f>>>0){if(e>>>0>=f>>>0){break g}g=f>>>0<3;j=O(U(O(O(K[b+12>>2])/L[b+16>>2])));h:{if(j=O(0)){d=~~j>>>0;break h}d=0}i:{j:{if(g){break j}if(Uj(f)>>>0>1){break j}d=d>>>0<2?d:1<<32-Q(d-1|0);break i}d=Kd(d)}e=d>>>0>>0?e:d;if(f>>>0<=e>>>0){break g}}f=0;g=0;h=e;k:{l:{m:{n:{if(e){if(h>>>0>=1073741824){break n}d=pa(h<<2);e=H[b>>2];H[b>>2]=d;if(e){oa(e)}H[b+4>>2]=h;d=0;if(h>>>0>=4){e=h&-4;while(1){k=d<<2;H[k+H[b>>2]>>2]=0;H[H[b>>2]+(k|4)>>2]=0;H[H[b>>2]+(k|8)>>2]=0;H[H[b>>2]+(k|12)>>2]=0;d=d+4|0;g=g+4|0;if((e|0)!=(g|0)){continue}break}}e=h&3;if(e){while(1){H[H[b>>2]+(d<<2)>>2]=0;d=d+1|0;f=f+1|0;if((e|0)!=(f|0)){continue}break}}e=H[b+8>>2];if(!e){break k}d=b+8|0;f=H[e+4>>2];g=Uj(h);if(g>>>0<2){break m}f=f>>>0>=h>>>0?(f>>>0)%(h>>>0)|0:f;H[H[b>>2]+(f<<2)>>2]=d;d=H[e>>2];if(!d){break k}if(g>>>0<=1){break l}while(1){g=H[d+4>>2];if(h>>>0<=g>>>0){g=(g>>>0)%(h>>>0)|0}o:{if((f|0)==(g|0)){e=d;break o}l=g<<2;k=l+H[b>>2]|0;if(!H[k>>2]){H[k>>2]=e;e=d;f=g;break o}H[e>>2]=H[d>>2];H[d>>2]=H[H[l+H[b>>2]>>2]>>2];H[H[l+H[b>>2]>>2]>>2]=d}d=H[e>>2];if(d){continue}break}break k}d=H[b>>2];H[b>>2]=0;if(d){oa(d)}H[b+4>>2]=0;break k}wa();v()}f=h-1&f;H[H[b>>2]+(f<<2)>>2]=d;d=H[e>>2];if(!d){break k}}k=h-1|0;while(1){g=k&H[d+4>>2];p:{if((g|0)==(f|0)){e=d;break p}l=g<<2;h=l+H[b>>2]|0;if(H[h>>2]){H[e>>2]=H[d>>2];H[d>>2]=H[H[l+H[b>>2]>>2]>>2];H[H[l+H[b>>2]>>2]>>2]=d;break p}H[h>>2]=e;e=d;f=g}d=H[e>>2];if(d){continue}break}}}f=H[b+4>>2];d=f-1|0;if(!(d&f)){e=d&i;break d}if(f>>>0>i>>>0){e=i;break d}e=(i>>>0)%(f>>>0)|0}e=H[b>>2]+(e<<2)|0;d=H[e>>2];q:{r:{if(!d){d=b+8|0;H[c>>2]=H[d>>2];H[b+8>>2]=c;H[e>>2]=d;d=H[c>>2];if(!d){break q}d=H[d+4>>2];e=f-1|0;s:{if(!(e&f)){d=d&e;break s}if(d>>>0>>0){break s}d=(d>>>0)%(f>>>0)|0}d=H[b>>2]+(d<<2)|0;break r}H[c>>2]=H[d>>2]}H[d>>2]=c}H[b+12>>2]=H[b+12>>2]+1;b=1}F[a+4|0]=b;H[a>>2]=c}function Oe(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0;f=ca-80|0;ca=f;e=H[c+36>>2];H[f+72>>2]=H[c+32>>2];H[f+76>>2]=e;g=H[c+28>>2];e=f- -64|0;H[e>>2]=H[c+24>>2];H[e+4>>2]=g;e=H[c+20>>2];H[f+56>>2]=H[c+16>>2];H[f+60>>2]=e;e=H[c+12>>2];H[f+48>>2]=H[c+8>>2];H[f+52>>2]=e;e=H[c+4>>2];H[f+40>>2]=H[c>>2];H[f+44>>2]=e;nc(a,f+40|0,f+24|0);a:{if(H[a>>2]){break a}if(F[a+15|0]<0){oa(H[a+4>>2])}if(I[f+31|0]!=1){b=pa(32);F[b+20|0]=0;c=I[1448]|I[1449]<<8|(I[1450]<<16|I[1451]<<24);F[b+16|0]=c;F[b+17|0]=c>>>8;F[b+18|0]=c>>>16;F[b+19|0]=c>>>24;c=I[1444]|I[1445]<<8|(I[1446]<<16|I[1447]<<24);d=I[1440]|I[1441]<<8|(I[1442]<<16|I[1443]<<24);F[b+8|0]=d;F[b+9|0]=d>>>8;F[b+10|0]=d>>>16;F[b+11|0]=d>>>24;F[b+12|0]=c;F[b+13|0]=c>>>8;F[b+14|0]=c>>>16;F[b+15|0]=c>>>24;c=I[1436]|I[1437]<<8|(I[1438]<<16|I[1439]<<24);d=I[1432]|I[1433]<<8|(I[1434]<<16|I[1435]<<24);F[b|0]=d;F[b+1|0]=d>>>8;F[b+2|0]=d>>>16;F[b+3|0]=d>>>24;F[b+4|0]=c;F[b+5|0]=c>>>8;F[b+6|0]=c>>>16;F[b+7|0]=c>>>24;H[a>>2]=-1;za(a+4|0,b,20);oa(b);break a}i=ca-16|0;ca=i;b:{c:{switch(I[f+32|0]){case 0:e=Ke(pa(48));H[e>>2]=13112;H[f+8>>2]=0;H[f+12>>2]=0;H[f>>2]=0;H[f+4>>2]=0;H[f+16>>2]=e;break b;case 1:e=Ke(pa(52));H[e+48>>2]=0;H[e>>2]=11276;H[f+8>>2]=0;H[f+12>>2]=0;H[f>>2]=0;H[f+4>>2]=0;H[f+16>>2]=e;break b;default:break c}}g=pa(32);F[g+28|0]=0;e=I[1550]|I[1551]<<8|(I[1552]<<16|I[1553]<<24);F[g+24|0]=e;F[g+25|0]=e>>>8;F[g+26|0]=e>>>16;F[g+27|0]=e>>>24;e=I[1546]|I[1547]<<8|(I[1548]<<16|I[1549]<<24);h=I[1542]|I[1543]<<8|(I[1544]<<16|I[1545]<<24);F[g+16|0]=h;F[g+17|0]=h>>>8;F[g+18|0]=h>>>16;F[g+19|0]=h>>>24;F[g+20|0]=e;F[g+21|0]=e>>>8;F[g+22|0]=e>>>16;F[g+23|0]=e>>>24;e=I[1538]|I[1539]<<8|(I[1540]<<16|I[1541]<<24);h=I[1534]|I[1535]<<8|(I[1536]<<16|I[1537]<<24);F[g+8|0]=h;F[g+9|0]=h>>>8;F[g+10|0]=h>>>16;F[g+11|0]=h>>>24;F[g+12|0]=e;F[g+13|0]=e>>>8;F[g+14|0]=e>>>16;F[g+15|0]=e>>>24;e=I[1530]|I[1531]<<8|(I[1532]<<16|I[1533]<<24);h=I[1526]|I[1527]<<8|(I[1528]<<16|I[1529]<<24);F[g|0]=h;F[g+1|0]=h>>>8;F[g+2|0]=h>>>16;F[g+3|0]=h>>>24;F[g+4|0]=e;F[g+5|0]=e>>>8;F[g+6|0]=e>>>16;F[g+7|0]=e>>>24;H[i>>2]=-1;e=i|4;za(e,g,28);j=F[i+15|0];H[f>>2]=H[i>>2];h=f+4|0;d:{if((j|0)>=0){j=H[e+4>>2];H[h>>2]=H[e>>2];H[h+4>>2]=j;H[h+8>>2]=H[e+8>>2];H[f+16>>2]=0;break d}za(h,H[i+4>>2],H[i+8>>2]);e=F[i+15|0];H[f+16>>2]=0;if((e|0)>=0){break d}oa(H[i+4>>2])}oa(g)}ca=i+16|0;e=H[f>>2];e:{if(e){H[a>>2]=e;a=a+4|0;if(F[f+15|0]>=0){b=f|4;c=H[b+4>>2];H[a>>2]=H[b>>2];H[a+4>>2]=c;H[a+8>>2]=H[b+8>>2];break e}za(a,H[f+4>>2],H[f+8>>2]);break e}e=H[f+16>>2];H[f+16>>2]=0;H[e+44>>2]=d;te(a,e,b,c,d);if(!H[a>>2]){if(F[a+15|0]<0){oa(H[a+4>>2])}H[a>>2]=0;H[a+4>>2]=0;H[a+8>>2]=0;H[a+12>>2]=0}ea[H[H[e>>2]+4>>2]](e)}a=H[f+16>>2];H[f+16>>2]=0;if(a){ea[H[H[a>>2]+4>>2]](a)}if(F[f+15|0]>=0){break a}oa(H[f+4>>2])}ca=f+80|0}function Gc(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;j=N(b,12)+a|0;H[j+12>>2]=H[j+8>>2];m=(c|0)==-1?-1:(c>>>0)/3|0;d=1;k=c;a:{b:{c:{while(1){d:{l=d;if(!d){if((k|0)==-1){break d}if((de(a,((k>>>0)%3|0?-1:2)+k|0)|0)==-1){break a}c=k+1|0;d=(c>>>0)%3|0?c:k-2|0;if((d|0)==-1){break a}c=d+1|0;c=(c>>>0)%3|0?c:d-2|0;if((c|0)==-1){break a}d=H[H[H[a+4>>2]+12>>2]+(c<<2)>>2];if((d|0)==-1){break a}c=d+1|0;c=(c>>>0)%3|0?c:d-2|0;if((c|0)==-1){break a}m=(c>>>0)/3|0}e:{d=H[a+56>>2]+(m>>>3&536870908)|0;h=H[d>>2];e=1<>2]=e|h;d=H[j+12>>2];f:{if((d|0)!=H[j+16>>2]){H[d>>2]=m;H[j+12>>2]=d+4;break f}n=H[j+8>>2];h=d-n|0;e=h>>2;i=e+1|0;if(i>>>0>=1073741824){break c}g=h>>>1|0;i=h>>>0>=2147483644?1073741823:i>>>0>>0?g:i;if(i){if(i>>>0>=1073741824){break b}g=pa(i<<2)}else{g=0}h=g+(e<<2)|0;H[h>>2]=m;e=h+4|0;if((d|0)!=(n|0)){while(1){h=h-4|0;d=d-4|0;H[h>>2]=H[d>>2];if((d|0)!=(n|0)){continue}break}}H[j+8>>2]=h;H[j+12>>2]=e;H[j+16>>2]=g+(i<<2);if(!n){break f}oa(n)}g=f+1|0;g:{h:{i:{if(!f){break i}if(g&1){if((c|0)==-1){c=-1;break g}d=c+1|0;c=(d>>>0)%3|0?d:c-2|0;break i}k=l?k:c;if((c|0)==-1){c=-1;break g}if((c>>>0)%3|0){d=c-1|0;break h}c=c+2|0}d=c;c=-1;if((d|0)==-1){break g}}c=H[H[H[a+4>>2]+12>>2]+(d<<2)>>2];h=-1;f=-1;e=d+1|0;e=(e>>>0)%3|0?e:d-2|0;if((e|0)>=0){f=(e>>>0)/3|0;f=H[(H[H[a>>2]+96>>2]+N(f,12)|0)+(e-N(f,3)<<2)>>2]}j:{if((c|0)==-1){break j}i=((c>>>0)%3|0?-1:2)+c|0;if((i|0)<0){break j}e=(i>>>0)/3|0;h=H[(H[H[a>>2]+96>>2]+N(e,12)|0)+(i-N(e,3)<<2)>>2]}if((f|0)!=(h|0)){c=-1;break g}k:{l:{f=((d>>>0)%3|0?-1:2)+d|0;if((f|0)>=0){d=(f>>>0)/3|0;if((c|0)!=-1){break l}c=-1;break g}d=-1;if((c|0)!=-1){break k}c=-1;break g}d=H[(H[H[a>>2]+96>>2]+N(d,12)|0)+(f-N(d,3)<<2)>>2]}f=c+1|0;e=(f>>>0)%3|0?f:c-2|0;if((e|0)>=0){f=(e>>>0)/3|0;f=H[(H[H[a>>2]+96>>2]+N(f,12)|0)+(e-N(f,3)<<2)>>2]}else{f=-1}if((f|0)!=(d|0)){c=-1;break g}f=g;m=(c>>>0)/3|0;d=H[a+56>>2]+(m>>>3&268435452)|0;h=H[d>>2];e=1<>2]-4|0;g=H[l>>2];d=H[a+56>>2]+(g>>>3&536870908)|0;c=H[d>>2];o=d,p=Vj(g)&c,H[o>>2]=p;H[j+12>>2]=l;break a}d=0;if(l){continue}break a}break}k=-1;de(a,-1);break a}sa();v()}wa();v()}H[((b<<2)+a|0)+44>>2]=k;b=H[j+12>>2];i=H[j+8>>2];m:{if((b|0)==(i|0)){break m}c=b-i|0;b=c>>2;b=b>>>0<=1?1:b;k=b&1;e=H[a+56>>2];d=0;if(c>>>0>=8){f=b&-2;c=0;while(1){l=d<<2;g=H[l+i>>2];b=e+(g>>>3&536870908)|0;a=H[b>>2];o=b,p=Vj(g)&a,H[o>>2]=p;g=H[i+(l|4)>>2];b=e+(g>>>3&536870908)|0;a=H[b>>2];o=b,p=Vj(g)&a,H[o>>2]=p;d=d+2|0;c=c+2|0;if((f|0)!=(c|0)){continue}break}}if(!k){break m}c=H[i+(d<<2)>>2];b=e+(c>>>3&536870908)|0;a=H[b>>2];o=b,p=Vj(c)&a,H[o>>2]=p}}function Gj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;h=ca-32|0;ca=h;a:{if(J[b+38>>1]<=513){c=H[b+20>>2];f=H[b+12>>2];d=H[b+16>>2];if((c|0)>=(f|0)&d>>>0>=K[b+8>>2]|(c|0)>(f|0)){break a}f=I[d+H[b>>2]|0];d=d+1|0;c=d?c:c+1|0;H[b+16>>2]=d;H[b+20>>2]=c;if(f){break a}}b:{if(!Xa(1,h+28|0,b)){break b}d=H[h+28>>2];c=H[H[a+48>>2]+64>>2];if(d>>>0>H[c+4>>2]-H[c>>2]>>2>>>0){break b}c:{if(d){Wa(a+60|0,d);c=h+8|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;if(!ta(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|H[g>>2]}else{i=H[g>>2]&(f^-1)}H[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}if(!Xa(1,h+28|0,b)){break b}d=H[h+28>>2];c=H[H[a+48>>2]+64>>2];if(d>>>0>H[c+4>>2]-H[c>>2]>>2>>>0){break b}if(d){e=0;Wa(a+72|0,d);c=h+8|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;if(!ta(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|H[g>>2]}else{i=H[g>>2]&(f^-1)}H[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}if(!Xa(1,h+28|0,b)){break b}d=H[h+28>>2];c=H[H[a+48>>2]+64>>2];if(d>>>0>H[c+4>>2]-H[c>>2]>>2>>>0){break b}if(d){e=0;Wa(a+84|0,d);c=h+8|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;if(!ta(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|H[g>>2]}else{i=H[g>>2]&(f^-1)}H[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}if(!Xa(1,h+28|0,b)){break b}d=H[h+28>>2];c=H[H[a+48>>2]+64>>2];if(d>>>0>H[c+4>>2]-H[c>>2]>>2>>>0){break b}if(d){e=0;Wa(a+96|0,d);c=h+8|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;if(!ta(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|H[g>>2]}else{i=H[g>>2]&(f^-1)}H[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}e=0;c=H[b+8>>2];f=H[b+12>>2];d=c;c=H[b+20>>2];i=c;g=H[b+16>>2];j=g+4|0;c=j>>>0<4?c+1|0:c;if(d>>>0>>0&(c|0)>=(f|0)|(c|0)>(f|0)){break a}m=H[b>>2];k=m+g|0;l=I[k|0]|I[k+1|0]<<8|(I[k+2|0]<<16|I[k+3|0]<<24);H[b+16>>2]=j;H[b+20>>2]=c;k=d;d=f;c=i;f=g+8|0;c=f>>>0<8?c+1|0:c;if(f>>>0>k>>>0&(c|0)>=(d|0)|(c|0)>(d|0)){break a}d=j+m|0;d=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=f;H[b+20>>2]=c;if((d|0)<(l|0)){break a}H[a+16>>2]=d;H[a+12>>2]=l;c=(d>>31)-((l>>31)+(d>>>0>>0)|0)|0;b=d-l|0;if(!c&b>>>0>2147483646|c){break a}e=1;b=b+1|0;H[a+20>>2]=b;c=b>>>1|0;H[a+24>>2]=c;H[a+28>>2]=0-c;if(b&1){break a}H[a+24>>2]=c-1;break a}}e=0}ca=h+32|0;return e|0}function pj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;h=ca-32|0;ca=h;a:{if(J[b+38>>1]<=513){c=H[b+20>>2];f=H[b+12>>2];d=H[b+16>>2];if((c|0)>=(f|0)&d>>>0>=K[b+8>>2]|(c|0)>(f|0)){break a}f=I[d+H[b>>2]|0];d=d+1|0;c=d?c:c+1|0;H[b+16>>2]=d;H[b+20>>2]=c;if(f){break a}}b:{if(!Xa(1,h+28|0,b)){break b}d=H[h+28>>2];c=H[a+48>>2];if(d>>>0>H[c+4>>2]-H[c>>2]>>2>>>0){break b}c:{if(d){Wa(a+60|0,d);c=h+8|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;if(!ta(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|H[g>>2]}else{i=H[g>>2]&(f^-1)}H[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}if(!Xa(1,h+28|0,b)){break b}d=H[h+28>>2];c=H[a+48>>2];if(d>>>0>H[c+4>>2]-H[c>>2]>>2>>>0){break b}if(d){e=0;Wa(a+72|0,d);c=h+8|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;if(!ta(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|H[g>>2]}else{i=H[g>>2]&(f^-1)}H[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}if(!Xa(1,h+28|0,b)){break b}d=H[h+28>>2];c=H[a+48>>2];if(d>>>0>H[c+4>>2]-H[c>>2]>>2>>>0){break b}if(d){e=0;Wa(a+84|0,d);c=h+8|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;if(!ta(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|H[g>>2]}else{i=H[g>>2]&(f^-1)}H[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}if(!Xa(1,h+28|0,b)){break b}d=H[h+28>>2];c=H[a+48>>2];if(d>>>0>H[c+4>>2]-H[c>>2]>>2>>>0){break b}if(d){e=0;Wa(a+96|0,d);c=h+8|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;if(!ta(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|H[g>>2]}else{i=H[g>>2]&(f^-1)}H[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}e=0;c=H[b+8>>2];f=H[b+12>>2];d=c;c=H[b+20>>2];i=c;g=H[b+16>>2];j=g+4|0;c=j>>>0<4?c+1|0:c;if(d>>>0>>0&(c|0)>=(f|0)|(c|0)>(f|0)){break a}m=H[b>>2];k=m+g|0;l=I[k|0]|I[k+1|0]<<8|(I[k+2|0]<<16|I[k+3|0]<<24);H[b+16>>2]=j;H[b+20>>2]=c;k=d;d=f;c=i;f=g+8|0;c=f>>>0<8?c+1|0:c;if(f>>>0>k>>>0&(c|0)>=(d|0)|(c|0)>(d|0)){break a}d=j+m|0;d=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=f;H[b+20>>2]=c;if((d|0)<(l|0)){break a}H[a+16>>2]=d;H[a+12>>2]=l;c=(d>>31)-((l>>31)+(d>>>0>>0)|0)|0;b=d-l|0;if(!c&b>>>0>2147483646|c){break a}e=1;b=b+1|0;H[a+20>>2]=b;c=b>>>1|0;H[a+24>>2]=c;H[a+28>>2]=0-c;if(b&1){break a}H[a+24>>2]=c-1;break a}}e=0}ca=h+32|0;return e|0}function xe(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;if((b|0)==-1){return 1}g=(b>>>0)/3|0;if(!(H[H[a+24>>2]+(g>>>3&268435452)>>2]>>>g&1)){f=H[a+48>>2];H[a+52>>2]=f;a:{if((f|0)!=H[a+56>>2]){H[f>>2]=b;H[a+52>>2]=f+4;break a}d=pa(4);H[d>>2]=b;c=d+4|0;H[a+56>>2]=c;H[a+52>>2]=c;H[a+48>>2]=d;if(!f){break a}oa(f)}e=-1;d=H[a+4>>2];c=b+1|0;i=(c>>>0)%3|0?c:b-2|0;if((i|0)!=-1){e=H[H[d>>2]+(i<<2)>>2]}b:{h=b-N(g,3)|0;if(h){c=b-1|0;break b}c=b+2|0;if((c|0)!=-1){break b}return 0}if((e|0)==-1){return 0}j=H[H[d>>2]+(c<<2)>>2];if((j|0)==-1){return 0}c=H[a+36>>2];f=c+(e>>>3&536870908)|0;g=H[f>>2];d=1<>2]=d|g;Ua(a+8|0,e,i);c=H[a+36>>2]}g=(j>>>3&536870908)+c|0;d=H[g>>2];c=1<>2]=c|d;Ua(a+8|0,j,(h?-1:2)+b|0)}c=H[a+52>>2];if((c|0)==H[a+48>>2]){return 1}j=a+8|0;while(1){c:{d:{c=c-4|0;b=H[c>>2];if((b|0)==-1){break d}d=(b>>>0)/3|0;f=H[a+24>>2]+(d>>>3&268435452)|0;g=H[f>>2];d=1<>2]=d|g;while(1){i=H[a+4>>2];e=H[H[i>>2]+(b<<2)>>2];if((e|0)==-1){return 0}e:{f:{h=H[a+36>>2]+(e>>>3&536870908)|0;f=H[h>>2];g=1<>2]+(e<<2)>>2];h:{if((d|0)==-1){break h}c=d+1|0;c=(c>>>0)%3|0?c:d-2|0;if((c|0)==-1){break h}d=H[H[i+12>>2]+(c<<2)>>2];if((d|0)!=-1){break g}}H[h>>2]=f|g;Ua(j,e,b);break f}H[h>>2]=f|g;Ua(j,e,b);c=d+1|0;if((((c>>>0)%3|0?c:d-2|0)|0)==-1){break f}c=b-2|0;d=b+1|0;b=-1;c=(d>>>0)%3|0?d:c;if((c|0)!=-1){b=H[H[H[a+4>>2]+12>>2]+(c<<2)>>2]}c=(b>>>0)/3|0;d=1<>2];f=c>>>5|0;i=H[e+(f<<2)>>2];break e}c=-1;g=H[a+4>>2];d=b+1|0;d=(d>>>0)%3|0?d:b-2|0;if((d|0)!=-1){c=H[H[g+12>>2]+(d<<2)>>2]}i:{j:{if((b>>>0)%3|0){e=b-1|0;break j}e=b+2|0;b=-1;if((e|0)==-1){break i}}b=H[H[g+12>>2]+(e<<2)>>2]}g=(b|0)==-1;h=g?-1:(b>>>0)/3|0;k:{if((c|0)!=-1){e=H[a+24>>2];d=(c>>>0)/3|0;f=d>>>5|0;i=H[e+(f<<2)>>2];d=1<>2];f=h>>>5|0;i=H[e+(f<<2)>>2];if(!(d&i)){break e}}c=H[a+52>>2]-4|0;H[a+52>>2]=c;break c}if(g){b=c;break e}if(H[(h>>>3&536870908)+e>>2]>>>h&1){b=c;break e}e=H[a+52>>2];H[e-4>>2]=b;if(H[a+56>>2]!=(e|0)){H[e>>2]=c;c=e+4|0;break d}l:{h=H[a+48>>2];f=e-h|0;g=f>>2;d=g+1|0;if(d>>>0<1073741824){b=f>>>1|0;f=f>>>0>=2147483644?1073741823:b>>>0>d>>>0?b:d;if(f){if(f>>>0>=1073741824){break l}d=pa(f<<2)}else{d=0}b=d+(g<<2)|0;H[b>>2]=c;c=b+4|0;if((e|0)!=(h|0)){while(1){b=b-4|0;e=e-4|0;H[b>>2]=H[e>>2];if((e|0)!=(h|0)){continue}break}}H[a+56>>2]=d+(f<<2);H[a+52>>2]=c;H[a+48>>2]=b;if(!h){break c}oa(h);c=H[a+52>>2];break c}sa();v()}wa();v()}H[(f<<2)+e>>2]=d|i;if((b|0)!=-1){continue}break}return 0}H[a+52>>2]=c}if(H[a+48>>2]!=(c|0)){continue}break}}return 1}function uj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;g=ca-32|0;ca=g;H[a+68>>2]=f;d=H[a+56>>2];e=H[d>>2];d=H[d+4>>2];H[g+24>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;a:{d=d-e|0;if((d|0)>0){m=a+60|0;d=d>>>2|0;n=d>>>0<=1?1:d;o=a+112|0;while(1){e=H[a+56>>2];d=H[e>>2];if(H[e+4>>2]-d>>2>>>0<=j>>>0){break a}Nb(m,H[d+(j<<2)>>2],g+16|0);i=H[g+20>>2];d=i>>31;h=H[g+16>>2];e=h>>31;f=(d^i)-d+((e^h)-e)|0;k=H[g+24>>2];d=k>>31;e=(d^k)-d|0;d=0;l=e;e=e+f|0;d=l>>>0>e>>>0?1:d;b:{if(!(d|e)){H[g+16>>2]=H[a+108>>2];break b}f=H[a+108>>2];l=f>>31;h=Sj(Rj(f,l,h,h>>31),da,e,d);H[g+16>>2]=h;d=Sj(Rj(f,l,i,i>>31),da,e,d);H[g+20>>2]=d;e=d;d=d>>31;e=(e^d)-d|0;d=h>>31;d=e+((d^h)-d|0)|0;if((k|0)>=0){H[g+24>>2]=f-d;break b}H[g+24>>2]=d-f}d=Ba(o);f=H[g+16>>2];c:{if(d){H[g+24>>2]=0-H[g+24>>2];e=0-H[g+20>>2]|0;H[g+20>>2]=e;f=0-f|0;H[g+16>>2]=f;break c}e=H[g+20>>2]}d:{if((f|0)>=0){f=H[a+108>>2];d=f+H[g+24>>2]|0;f=e+f|0;break d}e:{if((e|0)<0){d=H[g+24>>2];f=d>>31;f=(d^f)-f|0;break e}d=H[g+24>>2];f=d>>31;f=H[a+100>>2]+(f-(d^f)|0)|0}if((d|0)<0){d=e>>31;d=(d^e)-d|0;break d}d=e>>31;d=H[a+100>>2]+(d-(d^e)|0)|0}e=H[a+100>>2];f:{if(!(d|f)){d=e;f=d;break f}if(!((d|0)!=(e|0)|f)){f=d;break f}if(!((e|0)!=(f|0)|d)){d=f;break f}g:{if(f){break g}i=H[a+108>>2];if((i|0)>=(d|0)){break g}d=(i<<1)-d|0;f=0;break f}h:{if((e|0)!=(f|0)){break h}i=H[a+108>>2];if((i|0)<=(d|0)){break h}d=(i<<1)-d|0;break f}i:{if((d|0)!=(e|0)){break i}e=H[a+108>>2];if((e|0)<=(f|0)){break i}f=(e<<1)-f|0;break f}if(d){break f}d=0;e=H[a+108>>2];if((e|0)>=(f|0)){break f}f=(e<<1)-f|0}H[g+12>>2]=d;H[g+8>>2]=f;j:{if(H[a+8>>2]<=0){break j}i=H[a+32>>2];f=0;while(1){d=f<<2;e=H[d+(g+8|0)>>2];h=H[a+16>>2];k:{if((e|0)>(h|0)){H[d+i>>2]=h;break k}d=d+i|0;h=H[a+12>>2];if((h|0)>(e|0)){H[d>>2]=h;break k}H[d>>2]=e}f=f+1|0;e=H[a+8>>2];if((f|0)<(e|0)){continue}break}d=0;if((e|0)<=0){break j}e=j<<3;h=e+c|0;k=b+e|0;while(1){f=d<<2;e=f+h|0;f=H[f+k>>2]+H[f+i>>2]|0;H[e>>2]=f;l:{if((f|0)>H[a+16>>2]){f=f-H[a+20>>2]|0}else{if((f|0)>=H[a+12>>2]){break l}f=f+H[a+20>>2]|0}H[e>>2]=f}d=d+1|0;if((d|0)>2]){continue}break}}j=j+1|0;if((n|0)!=(j|0)){continue}break}}ca=g+32|0;return 1}Ca();v()}function dj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;g=ca-32|0;ca=g;H[a+68>>2]=f;d=H[a+56>>2];e=H[d>>2];d=H[d+4>>2];H[g+24>>2]=0;H[g+16>>2]=0;H[g+20>>2]=0;a:{d=d-e|0;if((d|0)>0){m=a+60|0;d=d>>>2|0;n=d>>>0<=1?1:d;o=a+112|0;while(1){e=H[a+56>>2];d=H[e>>2];if(H[e+4>>2]-d>>2>>>0<=j>>>0){break a}Lb(m,H[d+(j<<2)>>2],g+16|0);i=H[g+20>>2];d=i>>31;h=H[g+16>>2];e=h>>31;f=(d^i)-d+((e^h)-e)|0;k=H[g+24>>2];d=k>>31;e=(d^k)-d|0;d=0;l=e;e=e+f|0;d=l>>>0>e>>>0?1:d;b:{if(!(d|e)){H[g+16>>2]=H[a+108>>2];break b}f=H[a+108>>2];l=f>>31;h=Sj(Rj(f,l,h,h>>31),da,e,d);H[g+16>>2]=h;d=Sj(Rj(f,l,i,i>>31),da,e,d);H[g+20>>2]=d;e=d;d=d>>31;e=(e^d)-d|0;d=h>>31;d=e+((d^h)-d|0)|0;if((k|0)>=0){H[g+24>>2]=f-d;break b}H[g+24>>2]=d-f}d=Ba(o);f=H[g+16>>2];c:{if(d){H[g+24>>2]=0-H[g+24>>2];e=0-H[g+20>>2]|0;H[g+20>>2]=e;f=0-f|0;H[g+16>>2]=f;break c}e=H[g+20>>2]}d:{if((f|0)>=0){f=H[a+108>>2];d=f+H[g+24>>2]|0;f=e+f|0;break d}e:{if((e|0)<0){d=H[g+24>>2];f=d>>31;f=(d^f)-f|0;break e}d=H[g+24>>2];f=d>>31;f=H[a+100>>2]+(f-(d^f)|0)|0}if((d|0)<0){d=e>>31;d=(d^e)-d|0;break d}d=e>>31;d=H[a+100>>2]+(d-(d^e)|0)|0}e=H[a+100>>2];f:{if(!(d|f)){d=e;f=d;break f}if(!((d|0)!=(e|0)|f)){f=d;break f}if(!((e|0)!=(f|0)|d)){d=f;break f}g:{if(f){break g}i=H[a+108>>2];if((i|0)>=(d|0)){break g}d=(i<<1)-d|0;f=0;break f}h:{if((e|0)!=(f|0)){break h}i=H[a+108>>2];if((i|0)<=(d|0)){break h}d=(i<<1)-d|0;break f}i:{if((d|0)!=(e|0)){break i}e=H[a+108>>2];if((e|0)<=(f|0)){break i}f=(e<<1)-f|0;break f}if(d){break f}d=0;e=H[a+108>>2];if((e|0)>=(f|0)){break f}f=(e<<1)-f|0}H[g+12>>2]=d;H[g+8>>2]=f;j:{if(H[a+8>>2]<=0){break j}i=H[a+32>>2];f=0;while(1){d=f<<2;e=H[d+(g+8|0)>>2];h=H[a+16>>2];k:{if((e|0)>(h|0)){H[d+i>>2]=h;break k}d=d+i|0;h=H[a+12>>2];if((h|0)>(e|0)){H[d>>2]=h;break k}H[d>>2]=e}f=f+1|0;e=H[a+8>>2];if((f|0)<(e|0)){continue}break}d=0;if((e|0)<=0){break j}e=j<<3;h=e+c|0;k=b+e|0;while(1){f=d<<2;e=f+h|0;f=H[f+k>>2]+H[f+i>>2]|0;H[e>>2]=f;l:{if((f|0)>H[a+16>>2]){f=f-H[a+20>>2]|0}else{if((f|0)>=H[a+12>>2]){break l}f=f+H[a+20>>2]|0}H[e>>2]=f}d=d+1|0;if((d|0)>2]){continue}break}}j=j+1|0;if((n|0)!=(j|0)){continue}break}}ca=g+32|0;return 1}Ca();v()}function ke(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;h=ca-80|0;ca=h;a:{b:{if(I[H[a+28>>2]+36|0]<=1){d=H[b+20>>2];f=H[b+16>>2];c=f+4|0;d=c>>>0<4?d+1|0:d;g=H[b+12>>2];if(K[b+8>>2]>>0&(g|0)<=(d|0)|(d|0)>(g|0)){break a}f=f+H[b>>2]|0;j=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);H[b+16>>2]=c;H[b+20>>2]=d;break b}if(!Pc(1,h+76|0,b)){break a}j=H[h+76>>2]}if(!j){break a}d=H[b+8>>2];c=H[b+16>>2];d=Rj(d-c|0,H[b+12>>2]-(H[b+20>>2]+(c>>>0>d>>>0)|0)|0,5,0);c=da;if(d>>>0>>0&(c|0)<=0|(c|0)<0){break a}c=H[a+4>>2];d=H[a+8>>2]-c>>2;c:{if(d>>>0>>0){ya(a+4|0,j-d|0);break c}if(d>>>0<=j>>>0){break c}H[a+8>>2]=c+(j<<2)}p=a+16|0;l=H[a+32>>2];while(1){i=H[b+12>>2];c=i;d=H[b+20>>2];e=H[b+8>>2];f=H[b+16>>2];if((c|0)<=(d|0)&e>>>0<=f>>>0|(c|0)<(d|0)){e=0;break a}n=H[b>>2];q=I[n+f|0];c=d;g=f+1|0;c=g?c:c+1|0;H[b+16>>2]=g;H[b+20>>2]=c;if(e>>>0<=g>>>0&(c|0)>=(i|0)|(c|0)>(i|0)){e=0;break a}g=I[g+n|0];c=d;k=f+2|0;c=k>>>0<2?c+1|0:c;H[b+16>>2]=k;H[b+20>>2]=c;if(e>>>0<=k>>>0&(c|0)>=(i|0)|(c|0)>(i|0)){e=0;break a}k=I[k+n|0];c=d;m=f+3|0;c=m>>>0<3?c+1|0:c;H[b+16>>2]=m;H[b+20>>2]=c;if(e>>>0<=m>>>0&(c|0)>=(i|0)|(c|0)>(i|0)){e=0;break a}e=I[m+n|0];c=d;d=f+4|0;c=d>>>0<4?c+1|0:c;H[b+16>>2]=d;H[b+20>>2]=c;if(q>>>0>4){e=0;break a}if((g-12&255)>>>0<245){e=0;break a}if(!k){e=0;break a}m=Eb(h+8|0);i=(e|0)!=0;d=g-1|0;if(d>>>0<=10){c=H[(d<<2)+13584>>2]}else{c=-1}d=N(c,k);lc(m,q,k,g,i,d,d>>31);d:{d=J[H[a+28>>2]+36>>1];e:{if(((d<<8|d>>>8)&65535)>>>0<=258){c=H[b+20>>2];f=H[b+16>>2];d=f+2|0;c=d>>>0<2?c+1|0:c;e=H[b+12>>2];if(K[b+8>>2]>>0&(e|0)<=(c|0)|(c|0)>(e|0)){break d}f=f+H[b>>2]|0;e=I[f|0]|I[f+1|0]<<8;H[b+16>>2]=d;H[b+20>>2]=c;break e}if(!Pc(1,h+4|0,b)){break d}e=H[h+4>>2]}H[h+68>>2]=e;d=jc(pa(96),m);ea[H[H[l>>2]+8>>2]](l,H[l+12>>2]-H[l+8>>2]>>2,d);d=(H[l+12>>2]-H[l+8>>2]>>2)-1|0;f=d<<2;H[H[f+H[l+8>>2]>>2]+60>>2]=e;H[H[a+4>>2]+(o<<2)>>2]=d;e=H[a+16>>2];c=H[a+20>>2]-e>>2;f:{if((c|0)>(d|0)){break f}H[h>>2]=-1;d=d+1|0;if(d>>>0>c>>>0){Pa(p,d-c|0,h);e=H[p>>2];break f}if(c>>>0<=d>>>0){break f}H[a+20>>2]=(d<<2)+e}H[e+f>>2]=o;e=1;o=o+1|0;if((o|0)!=(j|0)){continue}break a}break}e=0}ca=h+80|0;return e|0}function nd(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;n=ea[H[H[a>>2]+44>>2]](a)|0;a:{if((n|0)<=0){break a}i=H[b+4>>2]-H[b>>2]>>2;e=ca+-64|0;ca=e;f=Eb(e);d=N(H[3400],n);lc(f,H[H[a+8>>2]+56>>2],n&255,5,0,d,d>>31);f=jc(pa(96),f);F[f+84|0]=1;H[f+72>>2]=H[f+68>>2];mb(f,i);H[f+60>>2]=H[H[a+8>>2]+60>>2];d=H[a+16>>2];H[a+16>>2]=f;if(d){Ga(d)}ca=e- -64|0;h=H[a+16>>2];if(!H[h+80>>2]){break a}j=H[H[h>>2]>>2];if(!j){break a}m=H[c+12>>2];e=m;d=H[c+20>>2];g=H[c+8>>2];k=H[c+16>>2];if((e|0)<=(d|0)&g>>>0<=k>>>0|(d|0)>(e|0)){break a}l=N(i,n);i=j+H[h+48>>2]|0;h=H[c>>2];j=I[h+k|0];e=k+1|0;f=e?d:d+1|0;H[c+16>>2]=e;H[c+20>>2]=f;b:{c:{if(j){if(kd(l,n,c,i)){break c}break a}if((f|0)>=(m|0)&e>>>0>=g>>>0|(f|0)>(m|0)){break a}g=I[e+h|0];f=k+2|0;d=f>>>0<2?d+1|0:d;H[c+16>>2]=f;H[c+20>>2]=d;d=H[H[a+16>>2]+64>>2];d=H[d+4>>2]-H[d>>2]|0;if((g|0)==H[3400]){e=l<<2;if(e>>>0>d>>>0){break a}g=H[c+8>>2];k=H[c+12>>2];j=H[c+20>>2];d=H[c+16>>2];f=e+d|0;j=f>>>0>>0?j+1|0:j;if(f>>>0>g>>>0&(j|0)>=(k|0)|(j|0)>(k|0)){break a}qa(i,d+H[c>>2]|0,e);f=H[c+20>>2];d=e+H[c+16>>2]|0;f=d>>>0>>0?f+1|0:f;H[c+16>>2]=d;H[c+20>>2]=f;break c}if(d>>>0>>0){break a}d=H[c+8>>2];f=H[c+16>>2];e=d-f|0;m=d>>>0>>0;d=H[c+20>>2];k=H[c+12>>2]-(m+d|0)|0;m=Rj(g,0,l,0)>>>0>e>>>0;e=da;if(m&(e|0)>=(k|0)|(e|0)>(k|0)){break a}e=1;if(!l){break b}h=0;while(1){k=H[c+8>>2];j=H[c+12>>2];e=f+g|0;d=e>>>0>>0?d+1|0:d;if(e>>>0>k>>>0&(d|0)>=(j|0)|(d|0)>(j|0)){return 0}qa(i+(h<<2)|0,H[c>>2]+f|0,g);d=H[c+20>>2];f=g+H[c+16>>2]|0;d=f>>>0>>0?d+1|0:d;H[c+16>>2]=f;H[c+20>>2]=d;h=h+1|0;if((l|0)!=(h|0)){continue}break}}e=1;if(!l){break b}d=H[a+20>>2];if(d){e=0;if(ea[H[H[d>>2]+32>>2]](d)|0){break b}}g=0;h=0;d:{if((l|0)<=0){break d}if((l|0)!=1){f=l&-2;while(1){e=g<<2;d=H[e+i>>2];H[e+i>>2]=0-(d&1)^d>>>1;d=e|4;e=H[d+i>>2];H[d+i>>2]=0-(e&1)^e>>>1;g=g+2|0;h=h+2|0;if((f|0)!=(h|0)){continue}break}}if(!(l&1)){break d}d=g<<2;f=H[d+i>>2];H[d+i>>2]=0-(f&1)^f>>>1}e=0}d=e;f=H[a+20>>2];e:{if(!f){break e}if(!(ea[H[H[f>>2]+40>>2]](f,c)|0)){break a}if(d){break e}a=H[a+20>>2];if(!(ea[H[H[a>>2]+44>>2]](a,i,i,l,n,H[b>>2])|0)){break a}}o=1}return o|0}function pb(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;h=ca-32|0;ca=h;a:{b:{if(H[a+8>>2]<<5>>>0>=b>>>0){break b}if((b|0)<0){break a}b=(b-1>>>5|0)+1|0;c=pa(b<<2);H[h+24>>2]=b;H[h+20>>2]=0;H[h+16>>2]=c;b=H[a>>2];H[h+12>>2]=0;H[h+8>>2]=b;c=H[a+4>>2];H[h+4>>2]=c&31;H[h>>2]=b+(c>>>3&536870908);e=ca-32|0;ca=e;i=H[h+4>>2];g=H[h+12>>2];j=H[h>>2];d=H[h+8>>2];b=(i-g|0)+(j-d<<3)|0;f=H[h+20>>2];c=b+f|0;H[h+20>>2]=c;if(!((c-1^f-1)>>>0<32?f:0)){H[H[h+16>>2]+((c>>>0>=33?c-1>>>5|0:0)<<2)>>2]=0}c=H[h+16>>2]+(f>>>3&536870908)|0;f=f&31;c:{if((f|0)==(g|0)){if((b|0)<=0){break c}if(g){i=32-g|0;f=(b|0)<(i|0)?b:i;i=-1<>>i-f;H[c>>2]=H[c>>2]&(i^-1)|i&H[d>>2];d=d+4|0;c=(g+f>>>3&536870908)+c|0;b=b-f|0}g=(b|0)/32|0;if(b+31>>>0>=63){va(c,d,g<<2)}b=b-(g<<5)|0;if((b|0)<=0){break c}f=c;c=g<<2;g=f+c|0;b=-1>>>32-b|0;H[g>>2]=H[g>>2]&(b^-1)|b&H[c+d>>2];break c}H[e+28>>2]=g;H[e+24>>2]=d;H[e+20>>2]=i;H[e+16>>2]=j;H[e+12>>2]=f;H[e+8>>2]=c;b=H[e+28>>2];c=H[e+24>>2];g=(H[e+20>>2]-b|0)+(H[e+16>>2]-c<<3)|0;d:{if((g|0)<=0){b=H[e+12>>2];d=H[e+8>>2];break d}e:{if(!b){b=H[e+12>>2];break e}d=H[e+12>>2];j=32-d|0;k=32-b|0;f=(g|0)<(k|0)?g:k;i=f>>>0>j>>>0?j:f;l=H[e+8>>2];m=H[l>>2]&(-1<>>j-i^-1);j=H[c>>2]&(-1<>>k-f);H[l>>2]=m|(b>>>0>>0?j<>>b-d|0);c=d+i|0;b=c&31;H[e+12>>2]=b;d=l+(c>>>3&536870908)|0;H[e+8>>2]=d;c=f-i|0;if((c|0)>0){H[d>>2]=H[d>>2]&(-1>>>32-c^-1)|j>>>i+H[e+28>>2];H[e+12>>2]=c;b=c}g=g-f|0;c=H[e+24>>2]+4|0;H[e+24>>2]=c}i=-1<=32){j=i^-1;while(1){d=H[e+8>>2];c=H[c>>2];H[d>>2]=j&H[d>>2]|c<>2]=d+4;H[d+4>>2]=i&H[d+4>>2]|c>>>f;c=H[e+24>>2]+4|0;H[e+24>>2]=c;d=g>>>0>63;g=g-32|0;if(d){continue}break}}d=H[e+8>>2];if((g|0)<=0){break d}j=f;f=(g|0)>(f|0)?f:g;j=H[d>>2]&(i&-1>>>j-f^-1);i=H[c>>2]&-1>>>32-g;H[d>>2]=j|i<>2]=c;d=(b>>>3&536870908)+d|0;H[e+8>>2]=d;b=g-f|0;if((b|0)<=0){b=c;break d}H[d>>2]=H[d>>2]&(-1>>>32-b^-1)|i>>>f;H[e+12>>2]=b}H[e+4>>2]=b;H[e>>2]=d}ca=e+32|0;b=H[a>>2];H[a>>2]=H[h+16>>2];H[h+16>>2]=b;c=H[a+4>>2];H[a+4>>2]=H[h+20>>2];H[h+20>>2]=c;c=H[a+8>>2];H[a+8>>2]=H[h+24>>2];H[h+24>>2]=c;if(!b){break b}oa(b)}ca=h+32|0;return}sa();v()}function Ne(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;c=J[b+38>>1];a:{if(!c){break a}b:{if(c>>>0<=511){g=H[b+8>>2];e=H[b+12>>2];d=H[b+20>>2];c=H[b+16>>2];i=c+4|0;d=i>>>0<4?d+1|0:d;if(g>>>0>>0&(d|0)>=(e|0)|(d|0)>(e|0)){break a}c=c+H[b>>2]|0;f=I[c|0]|I[c+1|0]<<8|(I[c+2|0]<<16|I[c+3|0]<<24);H[a+12>>2]=f;d=H[b+20>>2];c=H[b+16>>2]+4|0;d=c>>>0<4?d+1|0:d;H[b+16>>2]=c;H[b+20>>2]=d;break b}if(!hb(1,a+12|0,b)){break a}c=H[b+16>>2];d=H[b+20>>2];f=H[a+12>>2]}e=H[b+8>>2];i=e-c|0;c=H[b+12>>2]-(d+(c>>>0>e>>>0)|0)|0;if(i>>>0>>6>>>0&(c|0)<=0|(c|0)<0){break a}d=H[a>>2];c=H[a+4>>2]-d>>2;c:{if(c>>>0>>0){ya(a,f-c|0);f=H[a+12>>2];break c}if(c>>>0<=f>>>0){break c}H[a+4>>2]=d+(f<<2)}if(!f){return 1}c=H[b+16>>2];d=H[b+20>>2];l=H[a>>2];i=H[b+8>>2];j=H[b+12>>2];g=0;while(1){if((d|0)>=(j|0)&c>>>0>=i>>>0|(d|0)>(j|0)){return 0}m=H[b>>2];k=I[m+c|0];c=c+1|0;d=c?d:d+1|0;H[b+16>>2]=c;H[b+20>>2]=d;e=k>>>2|0;h=0;d:{e:{f:{g:{n=k&3;switch(n|0){case 0:break e;case 3:break g;default:break f}}e=e+g|0;if(e>>>0>=f>>>0){return 0}ra(l+(g<<2)|0,0,(k&252)+4|0);g=e;break d}while(1){if((c|0)==(i|0)&(d|0)==(j|0)){break a}f=I[c+m|0];c=c+1|0;d=c?d:d+1|0;H[b+16>>2]=c;H[b+20>>2]=d;e=f<<(h<<3|6)|e;h=h+1|0;if((n|0)!=(h|0)){continue}break}}H[l+(g<<2)>>2]=e}f=H[a+12>>2];g=g+1|0;if(f>>>0>g>>>0){continue}break}b=a+16|0;i=H[a>>2];d=H[a+16>>2];c=H[a+20>>2]-d|0;h:{if(c>>>0<=16383){ya(b,4096-(c>>>2|0)|0);break h}if((c|0)==16384){break h}H[a+20>>2]=d+16384}c=a+28|0;g=H[c>>2];d=H[a+32>>2]-g>>3;i:{if(d>>>0>>0){ob(c,f-d|0);g=H[c>>2];break i}if(d>>>0>f>>>0){H[a+32>>2]=(f<<3)+g}if(!f){break a}}d=H[b>>2];b=0;a=0;while(1){c=i+(b<<2)|0;h=H[c>>2];e=a;j=(b<<3)+g|0;H[j+4>>2]=a;H[j>>2]=h;c=H[c>>2];a=c+a|0;if(a>>>0>4096){break a}j:{if(a>>>0<=e>>>0){break j}h=0;j=c&7;if(j){while(1){H[d+(e<<2)>>2]=b;e=e+1|0;h=h+1|0;if((j|0)!=(h|0)){continue}break}}if(c-1>>>0<=6){break j}while(1){c=d+(e<<2)|0;H[c>>2]=b;H[c+28>>2]=b;H[c+24>>2]=b;H[c+20>>2]=b;H[c+16>>2]=b;H[c+12>>2]=b;H[c+8>>2]=b;H[c+4>>2]=b;e=e+8|0;if((e|0)!=(a|0)){continue}break}}b=b+1|0;if((f|0)!=(b|0)){continue}break}o=(a|0)==4096}return o}function Ni(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;g=ca-48|0;ca=g;d=H[a+8>>2];if(d-2>>>0<=28){H[a+76>>2]=d;e=-1<>2]=d;H[a+80>>2]=e^-1;H[a+92>>2]=(d|0)/2;L[a+88>>2]=O(2)/O(d|0)}H[a+52>>2]=f;d=H[a+40>>2];e=H[d>>2];d=H[d+4>>2];H[g+16>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;a:{d=d-e|0;if((d|0)>0){m=a+8|0;n=a+44|0;d=d>>>2|0;o=d>>>0<=1?1:d;p=a+96|0;while(1){e=H[a+40>>2];d=H[e>>2];if(H[e+4>>2]-d>>2>>>0<=j>>>0){break a}Nb(n,H[d+(j<<2)>>2],g+8|0);h=H[g+12>>2];d=h>>31;i=H[g+8>>2];e=i>>31;f=(d^h)-d+((e^i)-e)|0;l=H[g+16>>2];d=l>>31;e=(d^l)-d|0;d=0;k=e;e=e+f|0;d=k>>>0>e>>>0?1:d;b:{if(!(d|e)){H[g+8>>2]=H[a+92>>2];break b}f=H[a+92>>2];k=f>>31;i=Sj(Rj(f,k,i,i>>31),da,e,d);H[g+8>>2]=i;d=Sj(Rj(f,k,h,h>>31),da,e,d);H[g+12>>2]=d;e=d>>31;e=(d^e)-e|0;d=i>>31;d=e+((d^i)-d|0)|0;if((l|0)>=0){H[g+16>>2]=f-d;break b}H[g+16>>2]=d-f}d=Ba(p);f=H[g+8>>2];c:{if(d){H[g+16>>2]=0-H[g+16>>2];e=0-H[g+12>>2]|0;H[g+12>>2]=e;f=0-f|0;H[g+8>>2]=f;break c}e=H[g+12>>2]}d:{if((f|0)>=0){f=H[a+92>>2];d=f+H[g+16>>2]|0;f=e+f|0;break d}e:{if((e|0)<0){d=H[g+16>>2];f=d>>31;f=(d^f)-f|0;break e}d=H[g+16>>2];f=d>>31;f=H[a+84>>2]+(f-(d^f)|0)|0}if((d|0)<0){d=e>>31;d=(d^e)-d|0;break d}d=e>>31;d=H[a+84>>2]+(d-(d^e)|0)|0}e=H[a+84>>2];f:{if(!(d|f)){d=e;f=d;break f}if(!((d|0)!=(e|0)|f)){f=d;break f}if(!((e|0)!=(f|0)|d)){d=f;break f}g:{if(f){break g}h=H[a+92>>2];if((h|0)>=(d|0)){break g}d=(h<<1)-d|0;f=0;break f}h:{if((e|0)!=(f|0)){break h}h=H[a+92>>2];if((h|0)<=(d|0)){break h}d=(h<<1)-d|0;break f}i:{if((d|0)!=(e|0)){break i}e=H[a+92>>2];if((e|0)<=(f|0)){break i}f=(e<<1)-f|0;break f}if(d){break f}d=0;e=H[a+92>>2];if((e|0)>=(f|0)){break f}f=(e<<1)-f|0}e=j<<3;h=e+b|0;i=H[h>>2];h=H[h+4>>2];H[g+36>>2]=d;H[g+32>>2]=f;H[g+24>>2]=i;H[g+28>>2]=h;qc(g+40|0,m,g+32|0,g+24|0);d=c+e|0;H[d>>2]=H[g+40>>2];H[d+4>>2]=H[g+44>>2];j=j+1|0;if((o|0)!=(j|0)){continue}break}}ca=g+48|0;return 1}Ca();v()}function Ii(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;g=ca-48|0;ca=g;d=H[a+8>>2];if(d-2>>>0<=28){H[a+76>>2]=d;e=-1<>2]=d;H[a+80>>2]=e^-1;H[a+92>>2]=(d|0)/2;L[a+88>>2]=O(2)/O(d|0)}H[a+52>>2]=f;d=H[a+40>>2];e=H[d>>2];d=H[d+4>>2];H[g+16>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;a:{d=d-e|0;if((d|0)>0){m=a+8|0;n=a+44|0;d=d>>>2|0;o=d>>>0<=1?1:d;p=a+96|0;while(1){e=H[a+40>>2];d=H[e>>2];if(H[e+4>>2]-d>>2>>>0<=j>>>0){break a}Lb(n,H[d+(j<<2)>>2],g+8|0);h=H[g+12>>2];d=h>>31;i=H[g+8>>2];e=i>>31;f=(d^h)-d+((e^i)-e)|0;l=H[g+16>>2];d=l>>31;e=(d^l)-d|0;d=0;k=e;e=e+f|0;d=k>>>0>e>>>0?1:d;b:{if(!(d|e)){H[g+8>>2]=H[a+92>>2];break b}f=H[a+92>>2];k=f>>31;i=Sj(Rj(f,k,i,i>>31),da,e,d);H[g+8>>2]=i;d=Sj(Rj(f,k,h,h>>31),da,e,d);H[g+12>>2]=d;e=d>>31;e=(d^e)-e|0;d=i>>31;d=e+((d^i)-d|0)|0;if((l|0)>=0){H[g+16>>2]=f-d;break b}H[g+16>>2]=d-f}d=Ba(p);f=H[g+8>>2];c:{if(d){H[g+16>>2]=0-H[g+16>>2];e=0-H[g+12>>2]|0;H[g+12>>2]=e;f=0-f|0;H[g+8>>2]=f;break c}e=H[g+12>>2]}d:{if((f|0)>=0){f=H[a+92>>2];d=f+H[g+16>>2]|0;f=e+f|0;break d}e:{if((e|0)<0){d=H[g+16>>2];f=d>>31;f=(d^f)-f|0;break e}d=H[g+16>>2];f=d>>31;f=H[a+84>>2]+(f-(d^f)|0)|0}if((d|0)<0){d=e>>31;d=(d^e)-d|0;break d}d=e>>31;d=H[a+84>>2]+(d-(d^e)|0)|0}e=H[a+84>>2];f:{if(!(d|f)){d=e;f=d;break f}if(!((d|0)!=(e|0)|f)){f=d;break f}if(!((e|0)!=(f|0)|d)){d=f;break f}g:{if(f){break g}h=H[a+92>>2];if((h|0)>=(d|0)){break g}d=(h<<1)-d|0;f=0;break f}h:{if((e|0)!=(f|0)){break h}h=H[a+92>>2];if((h|0)<=(d|0)){break h}d=(h<<1)-d|0;break f}i:{if((d|0)!=(e|0)){break i}e=H[a+92>>2];if((e|0)<=(f|0)){break i}f=(e<<1)-f|0;break f}if(d){break f}d=0;e=H[a+92>>2];if((e|0)>=(f|0)){break f}f=(e<<1)-f|0}e=j<<3;h=e+b|0;i=H[h>>2];h=H[h+4>>2];H[g+36>>2]=d;H[g+32>>2]=f;H[g+24>>2]=i;H[g+28>>2]=h;qc(g+40|0,m,g+32|0,g+24|0);d=c+e|0;H[d>>2]=H[g+40>>2];H[d+4>>2]=H[g+44>>2];j=j+1|0;if((o|0)!=(j|0)){continue}break}}ca=g+48|0;return 1}Ca();v()}function Wi(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;g=ca-48|0;ca=g;d=H[a+8>>2];if(d-2>>>0<=28){H[a+76>>2]=d;e=-1<>2]=d;H[a+80>>2]=e^-1;H[a+92>>2]=(d|0)/2;L[a+88>>2]=O(2)/O(d|0)}H[a+52>>2]=f;d=H[a+40>>2];e=H[d>>2];d=H[d+4>>2];H[g+16>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;a:{d=d-e|0;if((d|0)>0){m=a+8|0;n=a+44|0;d=d>>>2|0;o=d>>>0<=1?1:d;p=a+96|0;while(1){e=H[a+40>>2];d=H[e>>2];if(H[e+4>>2]-d>>2>>>0<=j>>>0){break a}Nb(n,H[d+(j<<2)>>2],g+8|0);h=H[g+12>>2];d=h>>31;i=H[g+8>>2];e=i>>31;f=(d^h)-d+((e^i)-e)|0;l=H[g+16>>2];d=l>>31;e=(d^l)-d|0;d=0;k=e;e=e+f|0;d=k>>>0>e>>>0?1:d;b:{if(!(d|e)){H[g+8>>2]=H[a+92>>2];break b}f=H[a+92>>2];k=f>>31;i=Sj(Rj(f,k,i,i>>31),da,e,d);H[g+8>>2]=i;d=Sj(Rj(f,k,h,h>>31),da,e,d);H[g+12>>2]=d;e=d>>31;e=(d^e)-e|0;d=i>>31;d=e+((d^i)-d|0)|0;if((l|0)>=0){H[g+16>>2]=f-d;break b}H[g+16>>2]=d-f}d=Ba(p);f=H[g+8>>2];c:{if(d){H[g+16>>2]=0-H[g+16>>2];e=0-H[g+12>>2]|0;H[g+12>>2]=e;f=0-f|0;H[g+8>>2]=f;break c}e=H[g+12>>2]}d:{if((f|0)>=0){f=H[a+92>>2];d=f+H[g+16>>2]|0;f=e+f|0;break d}e:{if((e|0)<0){d=H[g+16>>2];f=d>>31;f=(d^f)-f|0;break e}d=H[g+16>>2];f=d>>31;f=H[a+84>>2]+(f-(d^f)|0)|0}if((d|0)<0){d=e>>31;d=(d^e)-d|0;break d}d=e>>31;d=H[a+84>>2]+(d-(d^e)|0)|0}e=H[a+84>>2];f:{if(!(d|f)){d=e;f=d;break f}if(!((d|0)!=(e|0)|f)){f=d;break f}if(!((e|0)!=(f|0)|d)){d=f;break f}g:{if(f){break g}h=H[a+92>>2];if((h|0)>=(d|0)){break g}d=(h<<1)-d|0;f=0;break f}h:{if((e|0)!=(f|0)){break h}h=H[a+92>>2];if((h|0)<=(d|0)){break h}d=(h<<1)-d|0;break f}i:{if((d|0)!=(e|0)){break i}e=H[a+92>>2];if((e|0)<=(f|0)){break i}f=(e<<1)-f|0;break f}if(d){break f}d=0;e=H[a+92>>2];if((e|0)>=(f|0)){break f}f=(e<<1)-f|0}e=j<<3;h=e+b|0;i=H[h+4>>2];H[g+40>>2]=H[h>>2];H[g+44>>2]=i;H[g+28>>2]=d;H[g+24>>2]=f;rc(g+32|0,m,g+24|0,g+40|0);d=c+e|0;H[d>>2]=H[g+32>>2];H[d+4>>2]=H[g+36>>2];j=j+1|0;if((o|0)!=(j|0)){continue}break}}ca=g+48|0;return 1}Ca();v()}function Ri(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;g=ca-48|0;ca=g;d=H[a+8>>2];if(d-2>>>0<=28){H[a+76>>2]=d;e=-1<>2]=d;H[a+80>>2]=e^-1;H[a+92>>2]=(d|0)/2;L[a+88>>2]=O(2)/O(d|0)}H[a+52>>2]=f;d=H[a+40>>2];e=H[d>>2];d=H[d+4>>2];H[g+16>>2]=0;H[g+8>>2]=0;H[g+12>>2]=0;a:{d=d-e|0;if((d|0)>0){m=a+8|0;n=a+44|0;d=d>>>2|0;o=d>>>0<=1?1:d;p=a+96|0;while(1){e=H[a+40>>2];d=H[e>>2];if(H[e+4>>2]-d>>2>>>0<=j>>>0){break a}Lb(n,H[d+(j<<2)>>2],g+8|0);h=H[g+12>>2];d=h>>31;i=H[g+8>>2];e=i>>31;f=(d^h)-d+((e^i)-e)|0;l=H[g+16>>2];d=l>>31;e=(d^l)-d|0;d=0;k=e;e=e+f|0;d=k>>>0>e>>>0?1:d;b:{if(!(d|e)){H[g+8>>2]=H[a+92>>2];break b}f=H[a+92>>2];k=f>>31;i=Sj(Rj(f,k,i,i>>31),da,e,d);H[g+8>>2]=i;d=Sj(Rj(f,k,h,h>>31),da,e,d);H[g+12>>2]=d;e=d>>31;e=(d^e)-e|0;d=i>>31;d=e+((d^i)-d|0)|0;if((l|0)>=0){H[g+16>>2]=f-d;break b}H[g+16>>2]=d-f}d=Ba(p);f=H[g+8>>2];c:{if(d){H[g+16>>2]=0-H[g+16>>2];e=0-H[g+12>>2]|0;H[g+12>>2]=e;f=0-f|0;H[g+8>>2]=f;break c}e=H[g+12>>2]}d:{if((f|0)>=0){f=H[a+92>>2];d=f+H[g+16>>2]|0;f=e+f|0;break d}e:{if((e|0)<0){d=H[g+16>>2];f=d>>31;f=(d^f)-f|0;break e}d=H[g+16>>2];f=d>>31;f=H[a+84>>2]+(f-(d^f)|0)|0}if((d|0)<0){d=e>>31;d=(d^e)-d|0;break d}d=e>>31;d=H[a+84>>2]+(d-(d^e)|0)|0}e=H[a+84>>2];f:{if(!(d|f)){d=e;f=d;break f}if(!((d|0)!=(e|0)|f)){f=d;break f}if(!((e|0)!=(f|0)|d)){d=f;break f}g:{if(f){break g}h=H[a+92>>2];if((h|0)>=(d|0)){break g}d=(h<<1)-d|0;f=0;break f}h:{if((e|0)!=(f|0)){break h}h=H[a+92>>2];if((h|0)<=(d|0)){break h}d=(h<<1)-d|0;break f}i:{if((d|0)!=(e|0)){break i}e=H[a+92>>2];if((e|0)<=(f|0)){break i}f=(e<<1)-f|0;break f}if(d){break f}d=0;e=H[a+92>>2];if((e|0)>=(f|0)){break f}f=(e<<1)-f|0}e=j<<3;h=e+b|0;i=H[h+4>>2];H[g+40>>2]=H[h>>2];H[g+44>>2]=i;H[g+28>>2]=d;H[g+24>>2]=f;rc(g+32|0,m,g+24|0,g+40|0);d=c+e|0;H[d>>2]=H[g+32>>2];H[d+4>>2]=H[g+36>>2];j=j+1|0;if((o|0)!=(j|0)){continue}break}}ca=g+48|0;return 1}Ca();v()}function Ge(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;f=ca-16|0;ca=f;c=H[a+4>>2];H[a+40>>2]=H[a>>2];H[a+44>>2]=c;c=H[a+36>>2];H[a+72>>2]=H[a+32>>2];H[a+76>>2]=c;d=H[a+28>>2];c=a- -64|0;H[c>>2]=H[a+24>>2];H[c+4>>2]=d;c=H[a+20>>2];H[a+56>>2]=H[a+16>>2];H[a+60>>2]=c;c=H[a+12>>2];H[a+48>>2]=H[a+8>>2];H[a+52>>2]=c;a:{b:{if(Db(a+40|0,1,f+8|0)){c=H[a+44>>2];H[a>>2]=H[a+40>>2];H[a+4>>2]=c;c=H[a+76>>2];H[a+32>>2]=H[a+72>>2];H[a+36>>2]=c;c=H[a+68>>2];H[a+24>>2]=H[a+64>>2];H[a+28>>2]=c;d=H[a+60>>2];h=d;c=H[a+56>>2];H[a+16>>2]=c;H[a+20>>2]=d;e=H[a+52>>2];d=H[a+48>>2];H[a+8>>2]=d;H[a+12>>2]=e;i=d-c|0;g=H[f+12>>2];e=e-((c>>>0>d>>>0)+h|0)|0;d=H[f+8>>2];if((g|0)==(e|0)&i>>>0>=d>>>0|e>>>0>g>>>0){break b}}c=0;break a}e=h+g|0;c=c+d|0;e=c>>>0>>0?e+1|0:e;H[a+16>>2]=c;H[a+20>>2]=e;c:{if(J[a+38>>1]<=513){c=H[a+4>>2];H[a+96>>2]=H[a>>2];H[a+100>>2]=c;c=H[a+36>>2];H[a+128>>2]=H[a+32>>2];H[a+132>>2]=c;c=H[a+28>>2];H[a+120>>2]=H[a+24>>2];H[a+124>>2]=c;c=H[a+20>>2];H[a+112>>2]=H[a+16>>2];H[a+116>>2]=c;c=H[a+12>>2];H[a+104>>2]=H[a+8>>2];H[a+108>>2]=c;d:{if(Db(a+96|0,1,f+8|0)){c=H[a+100>>2];H[a>>2]=H[a+96>>2];H[a+4>>2]=c;c=H[a+132>>2];H[a+32>>2]=H[a+128>>2];H[a+36>>2]=c;c=H[a+124>>2];H[a+24>>2]=H[a+120>>2];H[a+28>>2]=c;d=H[a+116>>2];h=d;c=H[a+112>>2];H[a+16>>2]=c;H[a+20>>2]=d;e=H[a+108>>2];d=H[a+104>>2];H[a+8>>2]=d;H[a+12>>2]=e;i=d-c|0;g=H[f+12>>2];e=e-((c>>>0>d>>>0)+h|0)|0;d=H[f+8>>2];if((g|0)==(e|0)&i>>>0>=d>>>0|e>>>0>g>>>0){break d}}c=0;break a}e=h+g|0;c=c+d|0;e=c>>>0>>0?e+1|0:e;H[a+16>>2]=c;H[a+20>>2]=e;break c}c=0;if(!ta(a+80|0,a)){break a}}c=0;if(!Fe(a)){break a}c=H[a+4>>2];H[b>>2]=H[a>>2];H[b+4>>2]=c;c=H[a+36>>2];H[b+32>>2]=H[a+32>>2];H[b+36>>2]=c;c=H[a+28>>2];H[b+24>>2]=H[a+24>>2];H[b+28>>2]=c;c=H[a+20>>2];H[b+16>>2]=H[a+16>>2];H[b+20>>2]=c;c=H[a+12>>2];H[b+8>>2]=H[a+8>>2];H[b+12>>2]=c;c=1}ca=f+16|0;return c}function oe(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;if(!H[a+64>>2]){c=pa(32);H[c+16>>2]=0;H[c+20>>2]=0;H[c+8>>2]=0;H[c>>2]=0;H[c+4>>2]=0;H[c+24>>2]=0;H[c+28>>2]=0;d=H[a+64>>2];H[a+64>>2]=c;if(d){c=H[d>>2];if(c){H[d+4>>2]=c;oa(c)}oa(d);c=H[a+64>>2]}H[a>>2]=c;d=H[c+20>>2];H[a+8>>2]=H[c+16>>2];H[a+12>>2]=d;d=H[c+24>>2];c=H[c+28>>2];H[a+48>>2]=0;H[a+52>>2]=0;H[a+40>>2]=0;H[a+44>>2]=0;H[a+16>>2]=d;H[a+20>>2]=c}a:{F[a+24|0]=I[b+24|0];H[a+28>>2]=H[b+28>>2];F[a+32|0]=I[b+32|0];c=H[b+44>>2];H[a+40>>2]=H[b+40>>2];H[a+44>>2]=c;c=H[b+52>>2];H[a+48>>2]=H[b+48>>2];H[a+52>>2]=c;H[a+56>>2]=H[b+56>>2];c=H[b+12>>2];H[a+8>>2]=H[b+8>>2];H[a+12>>2]=c;c=H[b+20>>2];H[a+16>>2]=H[b+16>>2];H[a+20>>2]=c;H[a+60>>2]=H[b+60>>2];c=H[b>>2];b:{if(!c){H[a>>2]=0;d=1;break b}g=H[a>>2];d=0;if(!g){break b}d=H[c>>2];c=H[c+4>>2]-d|0;se(g,d,c,0);d=1}c:{if(!d){break c}F[a+84|0]=I[b+84|0];H[a+80>>2]=H[b+80>>2];if((a|0)!=(b|0)){Cb(a+68|0,H[b+68>>2],H[b+72>>2])}f=H[b+88>>2];d:{if(f){e=pa(40);b=H[f>>2];H[e+16>>2]=0;H[e+8>>2]=0;H[e+12>>2]=0;H[e>>2]=b;c=H[f+12>>2];b=H[f+8>>2];if((c|0)!=(b|0)){c=c-b|0;if((c|0)<0){break a}b=pa(c);H[e+12>>2]=b;H[e+8>>2]=b;H[e+16>>2]=b+c;c=H[f+8>>2];h=H[f+12>>2];e:{if((c|0)==(h|0)){break e}g=(c^-1)+h|0;d=h-c&7;if(d){while(1){F[b|0]=I[c|0];b=b+1|0;c=c+1|0;i=i+1|0;if((d|0)!=(i|0)){continue}break}}if(g>>>0<7){break e}while(1){F[b|0]=I[c|0];F[b+1|0]=I[c+1|0];F[b+2|0]=I[c+2|0];F[b+3|0]=I[c+3|0];F[b+4|0]=I[c+4|0];F[b+5|0]=I[c+5|0];F[b+6|0]=I[c+6|0];F[b+7|0]=I[c+7|0];b=b+8|0;c=c+8|0;if((h|0)!=(c|0)){continue}break}}H[e+12>>2]=b}b=H[f+36>>2];H[e+32>>2]=H[f+32>>2];H[e+36>>2]=b;b=H[f+28>>2];H[e+24>>2]=H[f+24>>2];H[e+28>>2]=b;b=H[a+88>>2];H[a+88>>2]=e;if(b){break d}break c}b=H[a+88>>2];H[a+88>>2]=0;if(!b){break c}}a=H[b+8>>2];if(a){H[b+12>>2]=a;oa(a)}oa(b)}return}sa();v()}function og(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0;f=ca-32|0;ca=f;e=f+8|0;c=ca-80|0;ca=c;a=H[b+36>>2];H[c+72>>2]=H[b+32>>2];H[c+76>>2]=a;d=H[b+28>>2];a=c- -64|0;H[a>>2]=H[b+24>>2];H[a+4>>2]=d;a=H[b+20>>2];H[c+56>>2]=H[b+16>>2];H[c+60>>2]=a;a=H[b+12>>2];H[c+48>>2]=H[b+8>>2];H[c+52>>2]=a;a=H[b+4>>2];H[c+40>>2]=H[b>>2];H[c+44>>2]=a;nc(c+8|0,c+40|0,c+24|0);a=H[c+8>>2];a:{if(a){H[e>>2]=a;a=e+4|0;if(F[c+23|0]>=0){b=c+8|4;e=H[b+4>>2];H[a>>2]=H[b>>2];H[a+4>>2]=e;H[a+8>>2]=H[b+8>>2];break a}za(a,H[c+12>>2],H[c+16>>2]);if(F[c+23|0]>=0){break a}oa(H[c+12>>2]);break a}if(F[c+23|0]<0){oa(H[c+12>>2])}a=I[c+31|0];if(a>>>0>=2){b=pa(32);F[b+26|0]=0;a=I[1477]|I[1478]<<8;F[b+24|0]=a;F[b+25|0]=a>>>8;a=I[1473]|I[1474]<<8|(I[1475]<<16|I[1476]<<24);d=I[1469]|I[1470]<<8|(I[1471]<<16|I[1472]<<24);F[b+16|0]=d;F[b+17|0]=d>>>8;F[b+18|0]=d>>>16;F[b+19|0]=d>>>24;F[b+20|0]=a;F[b+21|0]=a>>>8;F[b+22|0]=a>>>16;F[b+23|0]=a>>>24;a=I[1465]|I[1466]<<8|(I[1467]<<16|I[1468]<<24);d=I[1461]|I[1462]<<8|(I[1463]<<16|I[1464]<<24);F[b+8|0]=d;F[b+9|0]=d>>>8;F[b+10|0]=d>>>16;F[b+11|0]=d>>>24;F[b+12|0]=a;F[b+13|0]=a>>>8;F[b+14|0]=a>>>16;F[b+15|0]=a>>>24;a=I[1457]|I[1458]<<8|(I[1459]<<16|I[1460]<<24);d=I[1453]|I[1454]<<8|(I[1455]<<16|I[1456]<<24);F[b|0]=d;F[b+1|0]=d>>>8;F[b+2|0]=d>>>16;F[b+3|0]=d>>>24;F[b+4|0]=a;F[b+5|0]=a>>>8;F[b+6|0]=a>>>16;F[b+7|0]=a>>>24;H[c+8>>2]=-1;a=c+8|4;za(a,b,26);d=F[c+23|0];H[e>>2]=H[c+8>>2];e=e+4|0;if((d|0)>=0){d=H[a+4>>2];H[e>>2]=H[a>>2];H[e+4>>2]=d;H[e+8>>2]=H[a+8>>2];oa(b);break a}za(e,H[c+12>>2],H[c+16>>2]);if(F[c+23|0]<0){oa(H[c+12>>2])}oa(b);break a}H[e>>2]=0;H[e+4>>2]=0;H[e+16>>2]=a;H[e+8>>2]=0;H[e+12>>2]=0}ca=c+80|0;a=H[f+24>>2];if(F[f+23|0]<0){oa(H[f+12>>2])}ca=f+32|0;return a|0}function Xd(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;k=ca-16|0;ca=k;H[k+8>>2]=c;h=H[a+12>>2];d=H[a+8>>2];g=h-d>>2;a:{if((g|0)>(b|0)){break a}e=b+1|0;if(e>>>0>g>>>0){l=e-g|0;f=H[a+16>>2];d=H[a+12>>2];if(l>>>0<=f-d>>2>>>0){if(l){e=d;d=l<<2;d=ra(e,0,d)+d|0}H[a+12>>2]=d;break a}b:{c:{d:{m=H[a+8>>2];g=d-m>>2;i=g+l|0;if(i>>>0<1073741824){e=f-m|0;f=e>>>1|0;e=e>>>0>=2147483644?1073741823:f>>>0>i>>>0?f:i;if(e){if(e>>>0>=1073741824){break d}j=pa(e<<2)}h=(g<<2)+j|0;f=l<<2;i=ra(h,0,f);g=f+i|0;e=(e<<2)+j|0;if((d|0)==(m|0)){break c}while(1){d=d-4|0;f=H[d>>2];H[d>>2]=0;h=h-4|0;H[h>>2]=f;if((d|0)!=(m|0)){continue}break}H[a+16>>2]=e;e=H[a+12>>2];H[a+12>>2]=g;d=H[a+8>>2];H[a+8>>2]=h;if((d|0)==(e|0)){break b}while(1){e=e-4|0;f=H[e>>2];H[e>>2]=0;if(f){Ga(f)}if((d|0)!=(e|0)){continue}break}break b}sa();v()}wa();v()}H[a+16>>2]=e;H[a+12>>2]=g;H[a+8>>2]=i}if(d){oa(d)}break a}if(e>>>0>=g>>>0){break a}d=d+(e<<2)|0;if((d|0)!=(h|0)){while(1){h=h-4|0;c=H[h>>2];H[h>>2]=0;if(c){Ga(c)}if((d|0)!=(h|0)){continue}break}c=H[k+8>>2]}H[a+12>>2]=d}e:{f:{d=H[c+56>>2];g:{if((d|0)>4){break g}j=N(d,12)+a|0;d=H[j+24>>2];if((d|0)!=H[j+28>>2]){H[d>>2]=b;H[j+24>>2]=d+4;break g}i=H[j+20>>2];g=d-i|0;f=g>>2;e=f+1|0;if(e>>>0>=1073741824){break f}d=g>>>1|0;e=g>>>0>=2147483644?1073741823:d>>>0>e>>>0?d:e;if(e){if(e>>>0>=1073741824){break e}d=pa(e<<2)}else{d=0}f=d+(f<<2)|0;H[f>>2]=b;d=va(d,i,g);H[j+20>>2]=d;H[j+24>>2]=f+4;H[j+28>>2]=d+(e<<2);if(!i){break g}oa(i)}H[c+60>>2]=b;a=H[a+8>>2];H[k+8>>2]=0;a=a+(b<<2)|0;b=H[a>>2];H[a>>2]=c;if(b){Ga(b)}a=H[k+8>>2];H[k+8>>2]=0;if(a){Ga(a)}ca=k+16|0;return}sa();v()}wa();v()}function Og(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;i=c;d=a;a:{if(H[a+12>>2]==(b|0)){break a}a=b;b=H[d+4>>2];e=H[d>>2];if((b|0)!=(e|0)){while(1){c=b-12|0;if(F[b-1|0]<0){oa(H[c>>2])}b=c;if((e|0)!=(b|0)){continue}break}}H[d+12>>2]=a;H[d+4>>2]=e;c=H[a>>2];j=a+4|0;if((c|0)==(j|0)){break a}while(1){a=H[d+4>>2];b:{if((a|0)!=H[d+8>>2]){c:{if(F[c+27|0]>=0){b=H[c+20>>2];H[a>>2]=H[c+16>>2];H[a+4>>2]=b;H[a+8>>2]=H[c+24>>2];break c}za(a,H[c+16>>2],H[c+20>>2])}H[d+4>>2]=a+12;break b}g=0;d:{e:{f:{a=H[d+4>>2];e=H[d>>2];f=(a-e|0)/12|0;b=f+1|0;if(b>>>0<357913942){h=(H[d+8>>2]-e|0)/12|0;k=h<<1;b=h>>>0>=178956970?357913941:b>>>0>>0?k:b;if(b){if(b>>>0>=357913942){break f}g=pa(N(b,12))}h=N(b,12);b=N(f,12)+g|0;g:{if(F[c+27|0]>=0){f=H[c+20>>2];H[b>>2]=H[c+16>>2];H[b+4>>2]=f;H[b+8>>2]=H[c+24>>2];break g}za(b,H[c+16>>2],H[c+20>>2]);e=H[d>>2];a=H[d+4>>2]}g=g+h|0;f=b+12|0;if((a|0)==(e|0)){break e}while(1){a=a-12|0;h=H[a+4>>2];b=b-12|0;H[b>>2]=H[a>>2];H[b+4>>2]=h;H[b+8>>2]=H[a+8>>2];H[a>>2]=0;H[a+4>>2]=0;H[a+8>>2]=0;if((a|0)!=(e|0)){continue}break}H[d+8>>2]=g;a=H[d+4>>2];H[d+4>>2]=f;e=H[d>>2];H[d>>2]=b;if((a|0)==(e|0)){break d}while(1){b=a-12|0;if(F[a-1|0]<0){oa(H[b>>2])}a=b;if((e|0)!=(b|0)){continue}break}break d}sa();v()}wa();v()}H[d+8>>2]=g;H[d+4>>2]=f;H[d>>2]=b}if(e){oa(e)}}b=H[c+4>>2];h:{if(b){while(1){a=b;b=H[b>>2];if(b){continue}break h}}while(1){a=H[c+8>>2];b=H[a>>2]!=(c|0);c=a;if(b){continue}break}}c=a;if((j|0)!=(a|0)){continue}break}}a=0;i:{if((i|0)<0){break i}b=H[d>>2];if((H[d+4>>2]-b|0)/12>>>0<=i>>>0){break i}a=b+N(i,12)|0;a=F[a+11|0]<0?H[a>>2]:a}return a|0}function bd(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;i=ca-16|0;ca=i;H[i>>2]=b;f=-1;a:{if((b|0)==-1){H[i+4>>2]=-1;break a}f=b+1|0;H[i+4>>2]=(f>>>0)%3|0?f:b-2|0;if((b>>>0)%3|0){f=b-1|0;break a}f=b+2|0}H[i+8>>2]=f;n=(b>>>0)/3|0;b:{c:{d:{while(1){e:{f:{j=H[(l<<2)+i>>2];if((j|0)!=-1){f=H[H[H[a+8>>2]+12>>2]+(j<<2)>>2];if((f|0)!=-1){break f}}f=0;g=H[a+216>>2];if((g|0)==H[a+220>>2]){break e}while(1){g=N(f,144)+g|0;d=H[g+136>>2];c=H[g+140>>2];g:{if(d>>>0>>0){H[d>>2]=j;H[g+136>>2]=d+4;break g}e=d;d=H[g+132>>2];k=e-d|0;e=k>>2;h=e+1|0;if(h>>>0>=1073741824){break d}m=e<<2;c=c-d|0;e=c>>>1|0;h=c>>>0>=2147483644?1073741823:h>>>0>>0?e:h;if(h){if(h>>>0>=1073741824){break c}c=pa(h<<2)}else{c=0}e=m+c|0;H[e>>2]=j;c=va(c,d,k);H[g+132>>2]=c;H[g+136>>2]=e+4;H[g+140>>2]=c+(h<<2);if(!d){break g}oa(d)}f=f+1|0;g=H[a+216>>2];if(f>>>0<(H[a+220>>2]-g|0)/144>>>0){continue}break}break e}if((b|0)==-1|(f>>>0)/3>>>0>>0){break e}f=0;if(H[a+220>>2]==H[a+216>>2]){break e}while(1){h:{if(!Ba(H[a+368>>2]+(f<<4)|0)){break h}g=H[a+216>>2]+N(f,144)|0;d=H[g+136>>2];c=H[g+140>>2];if(d>>>0>>0){H[d>>2]=j;H[g+136>>2]=d+4;break h}e=d;d=H[g+132>>2];k=e-d|0;e=k>>2;h=e+1|0;if(h>>>0>=1073741824){break b}m=e<<2;c=c-d|0;e=c>>>1|0;h=c>>>0>=2147483644?1073741823:h>>>0>>0?e:h;if(h){if(h>>>0>=1073741824){break c}c=pa(h<<2)}else{c=0}e=m+c|0;H[e>>2]=j;c=va(c,d,k);H[g+132>>2]=c;H[g+136>>2]=e+4;H[g+140>>2]=c+(h<<2);if(!d){break h}oa(d)}f=f+1|0;if(f>>>0<(H[a+220>>2]-H[a+216>>2]|0)/144>>>0){continue}break}}l=l+1|0;if((l|0)!=3){continue}break}ca=i+16|0;return 1}sa();v()}wa();v()}sa();v()}function cd(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;h=ca-16|0;ca=h;H[h>>2]=b;c=-1;a:{if((b|0)==-1){H[h+4>>2]=-1;break a}c=b+1|0;H[h+4>>2]=(c>>>0)%3|0?c:b-2|0;if((b>>>0)%3|0){c=b-1|0;break a}c=b+2|0}H[h+8>>2]=c;b:{c:{while(1){i=H[(k<<2)+h>>2];d:{if(!((i|0)==-1|H[H[H[a+8>>2]+12>>2]+(i<<2)>>2]==-1)){b=0;if(H[a+220>>2]==H[a+216>>2]){break d}while(1){e:{f:{if(!Ba(H[a+368>>2]+(b<<4)|0)){break f}c=H[a+216>>2]+N(b,144)|0;e=H[c+136>>2];d=H[c+140>>2];if(e>>>0>>0){H[e>>2]=i;H[c+136>>2]=e+4;break f}f=e;e=H[c+132>>2];j=f-e|0;f=j>>2;g=f+1|0;if(g>>>0>=1073741824){break e}l=f<<2;d=d-e|0;f=d>>>1|0;g=d>>>0>=2147483644?1073741823:g>>>0>>0?f:g;if(g){if(g>>>0>=1073741824){break b}d=pa(g<<2)}else{d=0}f=l+d|0;H[f>>2]=i;d=va(d,e,j);H[c+132>>2]=d;H[c+136>>2]=f+4;H[c+140>>2]=d+(g<<2);if(!e){break f}oa(e)}b=b+1|0;if(b>>>0<(H[a+220>>2]-H[a+216>>2]|0)/144>>>0){continue}break d}break}sa();v()}b=0;c=H[a+216>>2];if((c|0)==H[a+220>>2]){break d}while(1){c=N(b,144)+c|0;e=H[c+136>>2];d=H[c+140>>2];g:{if(e>>>0>>0){H[e>>2]=i;H[c+136>>2]=e+4;break g}f=e;e=H[c+132>>2];j=f-e|0;f=j>>2;g=f+1|0;if(g>>>0>=1073741824){break c}l=f<<2;d=d-e|0;f=d>>>1|0;g=d>>>0>=2147483644?1073741823:g>>>0>>0?f:g;if(g){if(g>>>0>=1073741824){break b}d=pa(g<<2)}else{d=0}f=l+d|0;H[f>>2]=i;d=va(d,e,j);H[c+132>>2]=d;H[c+136>>2]=f+4;H[c+140>>2]=d+(g<<2);if(!e){break g}oa(e)}b=b+1|0;c=H[a+216>>2];if(b>>>0<(H[a+220>>2]-c|0)/144>>>0){continue}break}}k=k+1|0;if((k|0)!=3){continue}break}ca=h+16|0;return 1}sa();v()}wa();v()}function vg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;m=ca-16|0;ca=m;l=H[b+80>>2];e=I[c+24|0];a=N(l,e);a:{b:{c:{d:{b=H[c+28>>2];if(!(!I[c+84|0]|(b|0)!=1&(b|0)!=2)){b=H[c+48>>2];c=H[H[c>>2]>>2];H[m+8>>2]=0;H[m>>2]=0;H[m+4>>2]=0;if(a){if((a|0)<0){break d}f=pa(a);h=qa(f,b+c|0,a)+a|0}a=H[d>>2];if(a){H[d+4>>2]=a;oa(a)}H[d+8>>2]=h;H[d+4>>2]=h;H[d>>2]=f;b=1;break a}if(e){f=pa(e);ra(f,0,e)}e:{i=H[d+4>>2];b=H[d>>2];g=i-b|0;f:{if(g>>>0>>0){k=a-g|0;j=H[d+8>>2];if(k>>>0<=j-i>>>0){n=d,o=ra(i,0,k)+k|0,H[n+4>>2]=o;break f}if((a|0)<0){break e}i=j-b|0;j=i<<1;i=i>>>0>=1073741823?2147483647:a>>>0>>0?j:a;j=pa(i);ra(j+g|0,0,k);g=va(j,b,g);H[d+8>>2]=g+i;H[d+4>>2]=a+g;H[d>>2]=g;if(!b){break f}oa(b);break f}if(a>>>0>=g>>>0){break f}H[d+4>>2]=a+b}if(!l){b=1;break c}if(!e){b=0;a=0;while(1){if(!ic(c,I[c+84|0]?a:H[H[c+68>>2]+(a<<2)>>2],F[c+24|0],f)){break c}a=a+1|0;b=l>>>0<=a>>>0;if((a|0)!=(l|0)){continue}break}break c}i=e&252;g=e&3;b=0;j=e>>>0<4;e=0;while(1){if(!ic(c,I[c+84|0]?e:H[H[c+68>>2]+(e<<2)>>2],F[c+24|0],f)){break c}b=0;a=0;k=0;if(!j){while(1){F[H[d>>2]+h|0]=I[a+f|0];F[(H[d>>2]+h|0)+1|0]=I[(a|1)+f|0];F[(H[d>>2]+h|0)+2|0]=I[(a|2)+f|0];F[(H[d>>2]+h|0)+3|0]=I[(a|3)+f|0];a=a+4|0;h=h+4|0;k=k+4|0;if((i|0)!=(k|0)){continue}break}}if(g){while(1){F[H[d>>2]+h|0]=I[a+f|0];a=a+1|0;h=h+1|0;b=b+1|0;if((g|0)!=(b|0)){continue}break}}e=e+1|0;b=l>>>0<=e>>>0;if((e|0)!=(l|0)){continue}break}break b}sa();v()}sa();v()}if(!f){break a}}oa(f)}ca=m+16|0;return b&1}function ug(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;m=ca-16|0;ca=m;l=H[b+80>>2];e=I[c+24|0];a=N(l,e);a:{b:{c:{d:{b=H[c+28>>2];if(!(!I[c+84|0]|(b|0)!=1&(b|0)!=2)){b=H[c+48>>2];c=H[H[c>>2]>>2];H[m+8>>2]=0;H[m>>2]=0;H[m+4>>2]=0;if(a){if((a|0)<0){break d}f=pa(a);h=qa(f,b+c|0,a)+a|0}a=H[d>>2];if(a){H[d+4>>2]=a;oa(a)}H[d+8>>2]=h;H[d+4>>2]=h;H[d>>2]=f;b=1;break a}if(e){f=pa(e);ra(f,0,e)}e:{i=H[d+4>>2];b=H[d>>2];g=i-b|0;f:{if(g>>>0>>0){k=a-g|0;j=H[d+8>>2];if(k>>>0<=j-i>>>0){n=d,o=ra(i,0,k)+k|0,H[n+4>>2]=o;break f}if((a|0)<0){break e}i=j-b|0;j=i<<1;i=i>>>0>=1073741823?2147483647:a>>>0>>0?j:a;j=pa(i);ra(j+g|0,0,k);g=va(j,b,g);H[d+8>>2]=g+i;H[d+4>>2]=a+g;H[d>>2]=g;if(!b){break f}oa(b);break f}if(a>>>0>=g>>>0){break f}H[d+4>>2]=a+b}if(!l){b=1;break c}if(!e){b=0;a=0;while(1){if(!hc(c,I[c+84|0]?a:H[H[c+68>>2]+(a<<2)>>2],F[c+24|0],f)){break c}a=a+1|0;b=l>>>0<=a>>>0;if((a|0)!=(l|0)){continue}break}break c}i=e&252;g=e&3;b=0;j=e>>>0<4;e=0;while(1){if(!hc(c,I[c+84|0]?e:H[H[c+68>>2]+(e<<2)>>2],F[c+24|0],f)){break c}b=0;a=0;k=0;if(!j){while(1){F[H[d>>2]+h|0]=I[a+f|0];F[(H[d>>2]+h|0)+1|0]=I[(a|1)+f|0];F[(H[d>>2]+h|0)+2|0]=I[(a|2)+f|0];F[(H[d>>2]+h|0)+3|0]=I[(a|3)+f|0];a=a+4|0;h=h+4|0;k=k+4|0;if((i|0)!=(k|0)){continue}break}}if(g){while(1){F[H[d>>2]+h|0]=I[a+f|0];a=a+1|0;h=h+1|0;b=b+1|0;if((g|0)!=(b|0)){continue}break}}e=e+1|0;b=l>>>0<=e>>>0;if((e|0)!=(l|0)){continue}break}break b}sa();v()}sa();v()}if(!f){break a}}oa(f)}ca=m+16|0;return b&1}function qc(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;k=H[b+16>>2];h=H[c+4>>2]-k|0;e=H[c>>2]-k|0;H[c>>2]=e;f=h;H[c+4>>2]=f;l=H[b+16>>2];f=f>>31;g=(h^f)-f|0;f=e>>31;m=l>>>0>=g+((f^e)-f|0)>>>0;a:{if(m){f=h;break a}b:{c:{if((e|0)>=0){g=1;j=1;if((h|0)>=0){break b}i=1;g=-1;j=-1;if(e){break c}break b}i=-1;g=-1;j=-1;if((h|0)<=0){break b}}g=(h|0)<=0?-1:1;j=i}n=N(j,l);f=(e<<1)-n|0;i=(N(g,j)|0)>=0;e=N(g,l);f=((i?0-f|0:f)+e|0)/2|0;H[c+4>>2]=f;e=(h<<1)-e|0;e=((i?0-e|0:e)+n|0)/2|0;H[c>>2]=e}d:{e:{f:{g:{h:{i:{j:{if(e){if((e|0)<0){break j}if((f|0)>=0){break i}break f}if(f){break h}j=1;g=0;f=0;i=0;break d}j=1;if((f|0)>0){break g}i=(f|0)>0?3:0;g=f;f=e;break d}g=0-f|0;f=0-e|0;i=2;break e}if((f|0)<=0){break f}}f=0-f|0;g=e;i=3;break e}g=0-e|0;i=1}H[c>>2]=f;H[c+4>>2]=g;j=0}e=H[d>>2]+f|0;h=H[b+16>>2];k:{if((e|0)>(h|0)){e=e-H[b+4>>2]|0;break k}if((0-h|0)<=(e|0)){break k}e=H[b+4>>2]+e|0}c=H[d+4>>2]+g|0;l:{if((h|0)<(c|0)){c=c-H[b+4>>2]|0;break l}if((0-h|0)<=(c|0)){break l}c=H[b+4>>2]+c|0}m:{if(j){b=c;break m}b=c;n:{o:{p:{d=4-i|0;switch((d>>>0<4?d:0-i|0)-1|0){case 2:break n;case 1:break o;case 0:break p;default:break m}}b=0-e|0;e=c;break m}b=0-c|0;e=0-e|0;break m}b=e;e=0-c|0}q:{if(m){c=b;break q}r:{s:{if((e|0)>=0){c=1;f=1;if((b|0)>=0){break r}d=1;c=-1;f=-1;if(e){break s}break r}d=-1;c=-1;f=-1;if((b|0)<=0){break r}}c=(b|0)<=0?-1:1;f=d}d=e<<1;e=N(f,h);d=d-e|0;f=(N(c,f)|0)>=0;g=f?0-d|0:d;d=N(c,h);c=(g+d|0)/2|0;b=(b<<1)-d|0;e=(e+(f?0-b|0:b)|0)/2|0}b=a;H[b>>2]=e+k;H[b+4>>2]=c+k}function Cj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;j=ca-32|0;ca=j;H[j+28>>2]=0;a:{b:{if(J[b+38>>1]<=513){c=H[b+20>>2];d=H[b+16>>2];e=d+4|0;c=e>>>0<4?c+1|0:c;h=H[b+12>>2];if(K[b+8>>2]>>0&(h|0)<=(c|0)|(c|0)>(h|0)){break a}d=d+H[b>>2]|0;f=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=e;H[b+20>>2]=c;break b}if(!Xa(1,j+28|0,b)){break a}f=H[j+28>>2]}if(!f){break a}c=H[H[a+48>>2]+64>>2];if(H[c+4>>2]-H[c>>2]>>2>>>0>>0){break a}Wa(a+76|0,f);c=j+8|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c:{if(!ta(c,b)){break c}h=1;while(1){d=1<>2]+(i>>>3&536870908)|0;e=e^h;if(e&1){d=H[g>>2]&(d^-1)}else{d=d|H[g>>2]}h=e^1;H[g>>2]=d;i=i+1|0;if((f|0)!=(i|0)){continue}break}c=H[b+8>>2];e=H[b+12>>2];g=e;e=H[b+20>>2];h=e;f=H[b+16>>2];d=f+4|0;e=d>>>0<4?e+1|0:e;i=d;if(d>>>0>c>>>0&(e|0)>=(g|0)|(e|0)>(g|0)){break c}l=H[b>>2];d=l+f|0;k=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=i;H[b+20>>2]=e;d=c;c=h;e=f+8|0;c=e>>>0<8?c+1|0:c;if(d>>>0>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break c}d=i+l|0;d=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=e;H[b+20>>2]=c;if((d|0)<(k|0)){break c}H[a+16>>2]=d;H[a+12>>2]=k;c=(d>>31)-((k>>31)+(d>>>0>>0)|0)|0;b=d-k|0;if(!c&b>>>0>2147483646|c){break c}m=1;c=b+1|0;H[a+20>>2]=c;b=c>>>1|0;H[a+24>>2]=b;H[a+28>>2]=0-b;if(c&1){break c}H[a+24>>2]=b-1}}ca=j+32|0;return m|0}function lj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;j=ca-32|0;ca=j;H[j+28>>2]=0;a:{b:{if(J[b+38>>1]<=513){c=H[b+20>>2];d=H[b+16>>2];e=d+4|0;c=e>>>0<4?c+1|0:c;h=H[b+12>>2];if(K[b+8>>2]>>0&(h|0)<=(c|0)|(c|0)>(h|0)){break a}d=d+H[b>>2]|0;f=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=e;H[b+20>>2]=c;break b}if(!Xa(1,j+28|0,b)){break a}f=H[j+28>>2]}if(!f){break a}c=H[a+48>>2];if(H[c+4>>2]-H[c>>2]>>2>>>0>>0){break a}Wa(a+76|0,f);c=j+8|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;c:{if(!ta(c,b)){break c}h=1;while(1){d=1<>2]+(i>>>3&536870908)|0;e=e^h;if(e&1){d=H[g>>2]&(d^-1)}else{d=d|H[g>>2]}h=e^1;H[g>>2]=d;i=i+1|0;if((f|0)!=(i|0)){continue}break}c=H[b+8>>2];e=H[b+12>>2];g=e;e=H[b+20>>2];h=e;f=H[b+16>>2];d=f+4|0;e=d>>>0<4?e+1|0:e;i=d;if(d>>>0>c>>>0&(e|0)>=(g|0)|(e|0)>(g|0)){break c}l=H[b>>2];d=l+f|0;k=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=i;H[b+20>>2]=e;d=c;c=h;e=f+8|0;c=e>>>0<8?c+1|0:c;if(d>>>0>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break c}d=i+l|0;d=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=e;H[b+20>>2]=c;if((d|0)<(k|0)){break c}H[a+16>>2]=d;H[a+12>>2]=k;c=(d>>31)-((k>>31)+(d>>>0>>0)|0)|0;b=d-k|0;if(!c&b>>>0>2147483646|c){break c}m=1;c=b+1|0;H[a+20>>2]=c;b=c>>>1|0;H[a+24>>2]=b;H[a+28>>2]=0-b;if(c&1){break c}H[a+24>>2]=b-1}}ca=j+32|0;return m|0}function cj(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;H[a+8>>2]=e;m=a+32|0;h=H[m>>2];g=H[a+36>>2]-h>>2;a:{if(g>>>0>>0){ya(m,e-g|0);f=H[a+8>>2];break a}f=e;if(f>>>0>=g>>>0){break a}H[a+36>>2]=h+(e<<2);f=e}g=e>>>0>1073741823?-1:e<<2;n=ra(pa(g),0,g);b:{if((f|0)<=0){break b}h=H[a+32>>2];while(1){f=i<<2;g=H[f+n>>2];j=H[a+16>>2];c:{if((g|0)>(j|0)){H[f+h>>2]=j;break c}f=f+h|0;j=H[a+12>>2];if((j|0)>(g|0)){H[f>>2]=j;break c}H[f>>2]=g}f=H[a+8>>2];i=i+1|0;if((f|0)>(i|0)){continue}break}if((f|0)<=0){break b}i=0;while(1){g=i<<2;f=g+c|0;g=H[b+g>>2]+H[g+h>>2]|0;H[f>>2]=g;d:{if((g|0)>H[a+16>>2]){g=g-H[a+20>>2]|0}else{if((g|0)>=H[a+12>>2]){break d}g=g+H[a+20>>2]|0}H[f>>2]=g}f=H[a+8>>2];i=i+1|0;if((f|0)>(i|0)){continue}break}}if(!((d|0)<=(e|0)|(f|0)<=0)){p=0-e<<2;g=e;while(1){e:{if((f|0)<=0){break e}l=g<<2;o=l+c|0;q=o+p|0;j=H[m>>2];i=0;while(1){f=i<<2;h=H[f+q>>2];k=H[a+16>>2];f:{if((h|0)>(k|0)){H[f+j>>2]=k;break f}f=f+j|0;k=H[a+12>>2];if((k|0)>(h|0)){H[f>>2]=k;break f}H[f>>2]=h}f=H[a+8>>2];i=i+1|0;if((f|0)>(i|0)){continue}break}i=0;if((f|0)<=0){break e}l=b+l|0;while(1){h=i<<2;f=h+o|0;h=H[h+l>>2]+H[h+j>>2]|0;H[f>>2]=h;g:{if((h|0)>H[a+16>>2]){h=h-H[a+20>>2]|0}else{if((h|0)>=H[a+12>>2]){break g}h=h+H[a+20>>2]|0}H[f>>2]=h}f=H[a+8>>2];i=i+1|0;if((f|0)>(i|0)){continue}break}}g=e+g|0;if((g|0)<(d|0)){continue}break}}oa(n);return 1}function De(a,b){var c=0,d=0,e=0,f=0,g=0;d=-1;f=-1;a:{if((b|0)==-1){break a}c=b+1|0;d=(c>>>0)%3|0?c:b-2|0;f=b-1|0;if((b>>>0)%3|0){break a}f=b+2|0}b:{c:{d:{e:{f:{g:{e=H[a+184>>2];switch(e|0){case 7:break d;case 3:break e;case 5:break f;case 0:case 1:break g;default:break b}}g=H[a+148>>2];c=-1;e=1;d=((d|0)!=-1?H[H[g>>2]+(d<<2)>>2]:c)<<2;c=H[a+156>>2];d=d+c|0;H[d>>2]=H[d>>2]+1;c=(((f|0)==-1?-1:H[H[g>>2]+(f<<2)>>2])<<2)+c|0;break c}g=H[a+148>>2];c=H[a+156>>2];e=c+(((b|0)==-1?-1:H[H[g>>2]+(b<<2)>>2])<<2)|0;H[e>>2]=H[e>>2]+1;d=(((d|0)==-1?-1:H[H[g>>2]+(d<<2)>>2])<<2)+c|0;H[d>>2]=H[d>>2]+1;e=2;c=(((f|0)==-1?-1:H[H[g>>2]+(f<<2)>>2])<<2)+c|0;break c}g=H[a+148>>2];c=H[a+156>>2];e=c+(((b|0)==-1?-1:H[H[g>>2]+(b<<2)>>2])<<2)|0;H[e>>2]=H[e>>2]+1;d=(((d|0)==-1?-1:H[H[g>>2]+(d<<2)>>2])<<2)+c|0;H[d>>2]=H[d>>2]+2;e=1;c=(((f|0)==-1?-1:H[H[g>>2]+(f<<2)>>2])<<2)+c|0;break c}g=H[a+148>>2];c=H[a+156>>2];e=c+(((b|0)==-1?-1:H[H[g>>2]+(b<<2)>>2])<<2)|0;H[e>>2]=H[e>>2]+2;d=(((d|0)==-1?-1:H[H[g>>2]+(d<<2)>>2])<<2)+c|0;H[d>>2]=H[d>>2]+2;e=2;c=(((f|0)==-1?-1:H[H[g>>2]+(f<<2)>>2])<<2)+c|0}H[c>>2]=H[c>>2]+e;e=H[a+184>>2]}h:{switch(e|0){case 0:case 5:f=H[a+156>>2];c=-1;i:{if((b|0)==-1){break i}d=b+1|0;b=(d>>>0)%3|0?d:b-2|0;c=-1;if((b|0)==-1){break i}c=H[H[H[a+148>>2]>>2]+(b<<2)>>2]}if(H[f+(c<<2)>>2]<=5){H[a+188>>2]=5;return}H[a+188>>2]=0;return;default:break h}}H[a+188>>2]=-1}function xg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;j=H[b+80>>2];b=I[c+24|0];g=N(j,b);a:{if(!b){break a}h=b<<2;f=pa(h);a=f;k=b&7;if(k){while(1){H[a>>2]=-1073741824;a=a+4|0;e=e+1|0;if((k|0)!=(e|0)){continue}break}}if((b-1&1073741823)>>>0<7){break a}e=f+h|0;while(1){H[a+24>>2]=-1073741824;H[a+28>>2]=-1073741824;H[a+16>>2]=-1073741824;H[a+20>>2]=-1073741824;H[a+8>>2]=-1073741824;H[a+12>>2]=-1073741824;H[a>>2]=-1073741824;H[a+4>>2]=-1073741824;a=a+32|0;if((e|0)!=(a|0)){continue}break}}e=H[d>>2];a=H[d+4>>2]-e>>2;b:{if(a>>>0>>0){ya(d,g-a|0);break b}if(a>>>0<=g>>>0){break b}H[d+4>>2]=e+(g<<2)}c:{d:{e:{if(!j){i=1;break e}if(!b){a=0;while(1){if(!Va(c,I[c+84|0]?a:H[H[c+68>>2]+(a<<2)>>2],F[c+24|0],f)){break e}a=a+1|0;i=j>>>0<=a>>>0;if((a|0)!=(j|0)){continue}break}break e}n=b&252;k=b&3;o=b>>>0<4;e=0;b=0;while(1){if(!Va(c,I[c+84|0]?b:H[H[c+68>>2]+(b<<2)>>2],F[c+24|0],f)){break e}m=H[d>>2];i=0;a=0;l=0;if(!o){while(1){g=(e<<2)+m|0;h=a<<2;L[g>>2]=L[h+f>>2];L[g+4>>2]=L[(h|4)+f>>2];L[g+8>>2]=L[(h|8)+f>>2];L[g+12>>2]=L[(h|12)+f>>2];a=a+4|0;e=e+4|0;l=l+4|0;if((n|0)!=(l|0)){continue}break}}if(k){while(1){L[(e<<2)+m>>2]=L[(a<<2)+f>>2];a=a+1|0;e=e+1|0;i=i+1|0;if((k|0)!=(i|0)){continue}break}}b=b+1|0;i=j>>>0<=b>>>0;if((b|0)!=(j|0)){continue}break}break d}if(!f){break c}}oa(f)}return i|0}function mf(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;e=ca-16|0;ca=e;h=1;i=ea[H[H[a>>2]+24>>2]](a)|0;a:{if((i|0)<=0){break a}l=a+48|0;h=0;while(1){b:{c:{if(!H[(ea[H[H[a>>2]+28>>2]](a)|0)+40>>2]){break c}j=f<<2;g=H[j+H[a+36>>2]>>2];b=H[g+8>>2];k=rb(g);if(!k){break c}g=H[(ea[H[H[a>>2]+28>>2]](a)|0)+40>>2];H[e+12>>2]=H[b+56>>2];b=pa(32);H[e>>2]=b;H[e+4>>2]=24;H[e+8>>2]=-2147483616;c=I[1206]|I[1207]<<8|(I[1208]<<16|I[1209]<<24);d=I[1202]|I[1203]<<8|(I[1204]<<16|I[1205]<<24);F[b+16|0]=d;F[b+17|0]=d>>>8;F[b+18|0]=d>>>16;F[b+19|0]=d>>>24;F[b+20|0]=c;F[b+21|0]=c>>>8;F[b+22|0]=c>>>16;F[b+23|0]=c>>>24;c=I[1198]|I[1199]<<8|(I[1200]<<16|I[1201]<<24);d=I[1194]|I[1195]<<8|(I[1196]<<16|I[1197]<<24);F[b+8|0]=d;F[b+9|0]=d>>>8;F[b+10|0]=d>>>16;F[b+11|0]=d>>>24;F[b+12|0]=c;F[b+13|0]=c>>>8;F[b+14|0]=c>>>16;F[b+15|0]=c>>>24;c=I[1190]|I[1191]<<8|(I[1192]<<16|I[1193]<<24);d=I[1186]|I[1187]<<8|(I[1188]<<16|I[1189]<<24);F[b|0]=d;F[b+1|0]=d>>>8;F[b+2|0]=d>>>16;F[b+3|0]=d>>>24;F[b+4|0]=c;F[b+5|0]=c>>>8;F[b+6|0]=c>>>16;F[b+7|0]=c>>>24;F[b+24|0]=0;b=sd(g,e+12|0,e);if(F[e+11|0]<0){oa(H[e>>2])}if(!b){break c}oe(H[H[H[a+36>>2]+j>>2]+8>>2],k);break b}b=H[H[a+36>>2]+(f<<2)>>2];if(!(ea[H[H[b>>2]+24>>2]](b,l)|0)){break a}}f=f+1|0;h=(i|0)<=(f|0);if((f|0)!=(i|0)){continue}break}}ca=e+16|0;return h|0}function Ye(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;k=ca-16|0;ca=k;c=H[b+20>>2];d=H[b+16>>2];e=d+4|0;c=e>>>0<4?c+1|0:c;g=H[b+12>>2];a:{if(K[b+8>>2]>>0&(g|0)<=(c|0)|(c|0)>(g|0)){break a}d=d+H[b>>2]|0;h=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=e;H[b+20>>2]=c;if((h|0)<0){break a}Wa(a+76|0,h);c=k;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;b:{if(!ta(c,b)){break b}if(h){g=1;while(1){d=1<>2]+(i>>>3&536870908)|0;e=e^g;if(e&1){d=H[f>>2]&(d^-1)}else{d=d|H[f>>2]}g=e^1;H[f>>2]=d;i=i+1|0;if((h|0)!=(i|0)){continue}break}}i=0;c=H[b+8>>2];e=H[b+12>>2];f=e;e=H[b+20>>2];g=e;l=H[b+16>>2];d=l+4|0;e=d>>>0<4?e+1|0:e;h=d;if(d>>>0>c>>>0&(e|0)>=(f|0)|(e|0)>(f|0)){break b}m=H[b>>2];d=m+l|0;j=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=h;H[b+20>>2]=e;d=c;c=g;e=l+8|0;c=e>>>0<8?c+1|0:c;if(d>>>0>>0&(c|0)>=(f|0)|(c|0)>(f|0)){break b}d=h+m|0;d=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=e;H[b+20>>2]=c;if((d|0)<(j|0)){break b}H[a+16>>2]=d;H[a+12>>2]=j;c=(d>>31)-((j>>31)+(d>>>0>>0)|0)|0;b=d-j|0;if(!c&b>>>0>2147483646|c){break b}i=1;c=b+1|0;H[a+20>>2]=c;b=c>>>1|0;H[a+24>>2]=b;H[a+28>>2]=0-b;if(c&1){break b}H[a+24>>2]=b-1}}ca=k+16|0;return i|0}function rg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;a=0;k=ca-16|0;ca=k;j=H[b+80>>2];e=I[c+24|0];b=N(j,e);a:{b:{c:{d:{f=H[c+28>>2];if(!(!I[c+84|0]|(f|0)!=5&(f|0)!=6)){e=H[c+48>>2];c=H[H[c>>2]>>2];H[k+8>>2]=0;H[k>>2]=0;H[k+4>>2]=0;if(b){if((b|0)<0){break d}b=b<<2;a=pa(b);g=qa(a,c+e|0,b)+b|0}b=H[d>>2];if(b){H[d+4>>2]=b;oa(b)}H[d+8>>2]=g;H[d+4>>2]=g;H[d>>2]=a;h=1;break a}if(e){f=e<<2;a=pa(f);ra(a,0,f)}i=H[d>>2];f=H[d+4>>2]-i>>2;e:{if(f>>>0>>0){ya(d,b-f|0);break e}if(b>>>0>=f>>>0){break e}H[d+4>>2]=i+(b<<2)}if(!j){h=1;break c}if(!e){b=0;while(1){if(!dc(c,I[c+84|0]?b:H[H[c+68>>2]+(b<<2)>>2],F[c+24|0],a)){break c}b=b+1|0;h=j>>>0<=b>>>0;if((b|0)!=(j|0)){continue}break}break c}o=e&252;m=e&3;p=e>>>0<4;e=0;while(1){if(!dc(c,I[c+84|0]?e:H[H[c+68>>2]+(e<<2)>>2],F[c+24|0],a)){break c}n=H[d>>2];l=0;b=0;h=0;if(!p){while(1){f=(g<<2)+n|0;i=b<<2;H[f>>2]=H[i+a>>2];H[f+4>>2]=H[(i|4)+a>>2];H[f+8>>2]=H[(i|8)+a>>2];H[f+12>>2]=H[(i|12)+a>>2];b=b+4|0;g=g+4|0;h=h+4|0;if((o|0)!=(h|0)){continue}break}}if(m){while(1){H[(g<<2)+n>>2]=H[(b<<2)+a>>2];b=b+1|0;g=g+1|0;l=l+1|0;if((l|0)!=(m|0)){continue}break}}e=e+1|0;h=j>>>0<=e>>>0;if((e|0)!=(j|0)){continue}break}break b}sa();v()}if(!a){break a}}oa(a)}ca=k+16|0;return h|0}function ge(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;a=0;k=ca-16|0;ca=k;j=H[b+80>>2];e=I[c+24|0];b=N(j,e);a:{b:{c:{d:{f=H[c+28>>2];if(!(!I[c+84|0]|(f|0)!=5&(f|0)!=6)){e=H[c+48>>2];c=H[H[c>>2]>>2];H[k+8>>2]=0;H[k>>2]=0;H[k+4>>2]=0;if(b){if((b|0)<0){break d}b=b<<2;a=pa(b);g=qa(a,c+e|0,b)+b|0}b=H[d>>2];if(b){H[d+4>>2]=b;oa(b)}H[d+8>>2]=g;H[d+4>>2]=g;H[d>>2]=a;h=1;break a}if(e){f=e<<2;a=pa(f);ra(a,0,f)}i=H[d>>2];f=H[d+4>>2]-i>>2;e:{if(f>>>0>>0){ya(d,b-f|0);break e}if(b>>>0>=f>>>0){break e}H[d+4>>2]=i+(b<<2)}if(!j){h=1;break c}if(!e){b=0;while(1){if(!ec(c,I[c+84|0]?b:H[H[c+68>>2]+(b<<2)>>2],F[c+24|0],a)){break c}b=b+1|0;h=j>>>0<=b>>>0;if((b|0)!=(j|0)){continue}break}break c}o=e&252;m=e&3;p=e>>>0<4;e=0;while(1){if(!ec(c,I[c+84|0]?e:H[H[c+68>>2]+(e<<2)>>2],F[c+24|0],a)){break c}n=H[d>>2];l=0;b=0;h=0;if(!p){while(1){f=(g<<2)+n|0;i=b<<2;H[f>>2]=H[i+a>>2];H[f+4>>2]=H[(i|4)+a>>2];H[f+8>>2]=H[(i|8)+a>>2];H[f+12>>2]=H[(i|12)+a>>2];b=b+4|0;g=g+4|0;h=h+4|0;if((o|0)!=(h|0)){continue}break}}if(m){while(1){H[(g<<2)+n>>2]=H[(b<<2)+a>>2];b=b+1|0;g=g+1|0;l=l+1|0;if((l|0)!=(m|0)){continue}break}}e=e+1|0;h=j>>>0<=e>>>0;if((e|0)!=(j|0)){continue}break}break b}sa();v()}if(!a){break a}}oa(a)}ca=k+16|0;return h|0}function tg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;a=0;k=ca-16|0;ca=k;j=H[b+80>>2];e=I[c+24|0];b=N(j,e);a:{b:{c:{d:{f=H[c+28>>2];if(!(!I[c+84|0]|(f|0)!=3&(f|0)!=4)){e=H[c+48>>2];c=H[H[c>>2]>>2];H[k+8>>2]=0;H[k>>2]=0;H[k+4>>2]=0;if(b){if((b|0)<0){break d}b=b<<1;a=pa(b);g=qa(a,c+e|0,b)+b|0}b=H[d>>2];if(b){H[d+4>>2]=b;oa(b)}H[d+8>>2]=g;H[d+4>>2]=g;H[d>>2]=a;h=1;break a}if(e){f=e<<1;a=pa(f);ra(a,0,f)}i=H[d>>2];f=H[d+4>>2]-i>>1;e:{if(f>>>0>>0){qe(d,b-f|0);break e}if(b>>>0>=f>>>0){break e}H[d+4>>2]=i+(b<<1)}if(!j){h=1;break c}if(!e){b=0;while(1){if(!gc(c,I[c+84|0]?b:H[H[c+68>>2]+(b<<2)>>2],F[c+24|0],a)){break c}b=b+1|0;h=j>>>0<=b>>>0;if((b|0)!=(j|0)){continue}break}break c}o=e&252;m=e&3;p=e>>>0<4;e=0;while(1){if(!gc(c,I[c+84|0]?e:H[H[c+68>>2]+(e<<2)>>2],F[c+24|0],a)){break c}n=H[d>>2];l=0;b=0;h=0;if(!p){while(1){f=(g<<1)+n|0;i=b<<1;G[f>>1]=J[i+a>>1];G[f+2>>1]=J[(i|2)+a>>1];G[f+4>>1]=J[(i|4)+a>>1];G[f+6>>1]=J[(i|6)+a>>1];b=b+4|0;g=g+4|0;h=h+4|0;if((o|0)!=(h|0)){continue}break}}if(m){while(1){G[(g<<1)+n>>1]=J[(b<<1)+a>>1];b=b+1|0;g=g+1|0;l=l+1|0;if((l|0)!=(m|0)){continue}break}}e=e+1|0;h=j>>>0<=e>>>0;if((e|0)!=(j|0)){continue}break}break b}sa();v()}if(!a){break a}}oa(a)}ca=k+16|0;return h|0}function sg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;a=0;k=ca-16|0;ca=k;j=H[b+80>>2];e=I[c+24|0];b=N(j,e);a:{b:{c:{d:{f=H[c+28>>2];if(!(!I[c+84|0]|(f|0)!=3&(f|0)!=4)){e=H[c+48>>2];c=H[H[c>>2]>>2];H[k+8>>2]=0;H[k>>2]=0;H[k+4>>2]=0;if(b){if((b|0)<0){break d}b=b<<1;a=pa(b);g=qa(a,c+e|0,b)+b|0}b=H[d>>2];if(b){H[d+4>>2]=b;oa(b)}H[d+8>>2]=g;H[d+4>>2]=g;H[d>>2]=a;h=1;break a}if(e){f=e<<1;a=pa(f);ra(a,0,f)}i=H[d>>2];f=H[d+4>>2]-i>>1;e:{if(f>>>0>>0){qe(d,b-f|0);break e}if(b>>>0>=f>>>0){break e}H[d+4>>2]=i+(b<<1)}if(!j){h=1;break c}if(!e){b=0;while(1){if(!fc(c,I[c+84|0]?b:H[H[c+68>>2]+(b<<2)>>2],F[c+24|0],a)){break c}b=b+1|0;h=j>>>0<=b>>>0;if((b|0)!=(j|0)){continue}break}break c}o=e&252;m=e&3;p=e>>>0<4;e=0;while(1){if(!fc(c,I[c+84|0]?e:H[H[c+68>>2]+(e<<2)>>2],F[c+24|0],a)){break c}n=H[d>>2];l=0;b=0;h=0;if(!p){while(1){f=(g<<1)+n|0;i=b<<1;G[f>>1]=J[i+a>>1];G[f+2>>1]=J[(i|2)+a>>1];G[f+4>>1]=J[(i|4)+a>>1];G[f+6>>1]=J[(i|6)+a>>1];b=b+4|0;g=g+4|0;h=h+4|0;if((o|0)!=(h|0)){continue}break}}if(m){while(1){G[(g<<1)+n>>1]=J[(b<<1)+a>>1];b=b+1|0;g=g+1|0;l=l+1|0;if((l|0)!=(m|0)){continue}break}}e=e+1|0;h=j>>>0<=e>>>0;if((e|0)!=(j|0)){continue}break}break b}sa();v()}if(!a){break a}}oa(a)}ca=k+16|0;return h|0}function Ce(a,b){var c=0,d=0,e=0,f=0,g=0;f=-1;d=-1;a:{if((b|0)==-1){break a}d=b+1|0;f=(d>>>0)%3|0?d:b-2|0;d=b-1|0;if((b>>>0)%3|0){break a}d=b+2|0}b:{c:{d:{switch(H[a+168>>2]){case 0:case 1:e=H[a+148>>2];c=1;b=H[a+156>>2];g=b+(((f|0)==-1?-1:H[H[e>>2]+(f<<2)>>2])<<2)|0;H[g>>2]=H[g>>2]+1;b=(((d|0)==-1?-1:H[H[e>>2]+(d<<2)>>2])<<2)+b|0;break c;case 5:e=H[a+148>>2];c=-1;c=((b|0)!=-1?H[H[e>>2]+(b<<2)>>2]:c)<<2;b=H[a+156>>2];c=c+b|0;H[c>>2]=H[c>>2]+1;c=(((f|0)==-1?-1:H[H[e>>2]+(f<<2)>>2])<<2)+b|0;H[c>>2]=H[c>>2]+1;c=2;b=(((d|0)==-1?-1:H[H[e>>2]+(d<<2)>>2])<<2)+b|0;break c;case 3:e=H[a+148>>2];c=-1;c=((b|0)!=-1?H[H[e>>2]+(b<<2)>>2]:c)<<2;b=H[a+156>>2];c=c+b|0;H[c>>2]=H[c>>2]+1;c=(((f|0)==-1?-1:H[H[e>>2]+(f<<2)>>2])<<2)+b|0;H[c>>2]=H[c>>2]+2;c=1;b=(((d|0)==-1?-1:H[H[e>>2]+(d<<2)>>2])<<2)+b|0;break c;case 7:break d;default:break b}}e=H[a+148>>2];c=-1;c=((b|0)!=-1?H[H[e>>2]+(b<<2)>>2]:c)<<2;b=H[a+156>>2];c=c+b|0;H[c>>2]=H[c>>2]+2;c=(((f|0)==-1?-1:H[H[e>>2]+(f<<2)>>2])<<2)+b|0;H[c>>2]=H[c>>2]+2;c=2;b=(((d|0)==-1?-1:H[H[e>>2]+(d<<2)>>2])<<2)+b|0}H[b>>2]=H[b>>2]+c}c=a;b=H[H[a+156>>2]+(((f|0)==-1?-1:H[H[H[a+148>>2]>>2]+(f<<2)>>2])<<2)>>2];d=H[a+180>>2];a=H[a+176>>2];H[c+172>>2]=(a|0)<=(b|0)?((b|0)<(d|0)?b:d)-a|0:0}function Ac(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;H[a+16>>2]=0;H[a+20>>2]=0;H[a+8>>2]=0;H[a>>2]=0;H[a+4>>2]=0;H[a+24>>2]=0;f=H[b+4>>2];g=H[b>>2];e=f-g|0;c=(e|0)/20|0;a:{if((f|0)==(g|0)){break a}b:{if(c>>>0<214748365){f=pa(e);H[a+20>>2]=f;H[a+16>>2]=f;H[a+24>>2]=f+N(c,20);c=H[b>>2];g=H[b+4>>2];if((c|0)==(g|0)){break a}b=f;while(1){e=H[c+4>>2];H[b>>2]=H[c>>2];H[b+4>>2]=e;H[b+16>>2]=H[c+16>>2];e=H[c+12>>2];H[b+8>>2]=H[c+8>>2];H[b+12>>2]=e;b=b+20|0;c=c+20|0;if((g|0)!=(c|0)){continue}break}g=0;H[a+28>>2]=0;H[a+20>>2]=b;if((b|0)!=(f|0)){b=(b-f|0)/20|0;e=b>>>0<=1?1:b;h=e&3;b=0;c=0;if(e-1>>>0>=3){i=e&-4;e=0;while(1){d=f+N(b,20)|0;d=N(H[d+16>>2],H[d+12>>2]);c=c>>>0>d>>>0?c:d;d=f+N(b|1,20)|0;d=N(H[d+16>>2],H[d+12>>2]);c=c>>>0>d>>>0?c:d;d=f+N(b|2,20)|0;d=N(H[d+16>>2],H[d+12>>2]);c=c>>>0>d>>>0?c:d;d=f+N(b|3,20)|0;d=N(H[d+16>>2],H[d+12>>2]);c=c>>>0>d>>>0?c:d;b=b+4|0;e=e+4|0;if((i|0)!=(e|0)){continue}break}}if(h){while(1){e=f+N(b,20)|0;e=N(H[e+16>>2],H[e+12>>2]);c=c>>>0>e>>>0?c:e;b=b+1|0;g=g+1|0;if((h|0)!=(g|0)){continue}break}}if(!c){H[a+12>>2]=0;return a}if((c|0)<0){break b}g=pa(c);b=ra(g,0,c);f=b+c|0;H[a+8>>2]=f;H[a+4>>2]=f;H[a>>2]=b}H[a+12>>2]=g;return a}sa();v()}sa();v()}H[a+28>>2]=0;H[a+12>>2]=0;return a}function Dh(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;a:{b=H[a+32>>2];f=H[b+8>>2];h=H[b+12>>2];g=H[b+20>>2];c=H[b+16>>2];e=0;b:{if((h|0)<=(g|0)&c>>>0>=f>>>0|(g|0)>(h|0)){break b}f=I[H[b>>2]+c|0];e=b;b=g;c=c+1|0;b=c?b:b+1|0;H[e+16>>2]=c;H[e+20>>2]=b;c:{if(!f){break c}while(1){if(ea[H[H[a>>2]+16>>2]](a,d)|0){d=d+1|0;if((f|0)!=(d|0)){continue}break c}break}return 0}d=H[a+8>>2];b=H[a+12>>2];if((d|0)!=(b|0)){while(1){c=H[d>>2];if(!(ea[H[H[c>>2]+8>>2]](c,a,H[a+4>>2])|0)){break a}d=d+4|0;if((b|0)!=(d|0)){continue}break}}d:{if(!f){break d}d=0;while(1){b=H[H[a+8>>2]+(d<<2)>>2];if(!(ea[H[H[b>>2]+12>>2]](b,H[a+32>>2])|0)){break a}d=d+1|0;if((f|0)!=(d|0)){continue}break}if(!f){break d}i=a+20|0;b=0;while(1){d=0;j=b<<2;c=H[j+H[a+8>>2]>>2];k=ea[H[H[c>>2]+24>>2]](c)|0;if((k|0)>0){while(1){c=H[H[a+8>>2]+j>>2];c=ea[H[H[c>>2]+20>>2]](c,d)|0;e=H[a+20>>2];g=H[a+24>>2]-e>>2;e:{if(c>>>0>>0){break e}h=c+1|0;if(h>>>0>g>>>0){ya(i,h-g|0);e=H[i>>2];break e}if(g>>>0<=h>>>0){break e}H[a+24>>2]=(h<<2)+e}H[(c<<2)+e>>2]=b;d=d+1|0;if((k|0)!=(d|0)){continue}break}}b=b+1|0;if((f|0)!=(b|0)){continue}break}}e=0;if(!(ea[H[H[a>>2]+28>>2]](a)|0)){break b}e=ea[H[H[a>>2]+32>>2]](a)|0}return e|0}return 0}function ta(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;i=ca-16|0;ca=i;f=H[b+20>>2];d=H[b+12>>2];c=H[b+16>>2];a:{if((f|0)>=(d|0)&c>>>0>=K[b+8>>2]|(d|0)<(f|0)){break a}F[a+12|0]=I[c+H[b>>2]|0];c=H[b+20>>2];g=c;f=H[b+16>>2];e=f+1|0;c=e?c:c+1|0;H[b+16>>2]=e;H[b+20>>2]=c;b:{if(J[b+38>>1]<=513){d=H[b+8>>2];c=H[b+12>>2];h=c;c=g;f=f+5|0;c=f>>>0<5?c+1|0:c;if(d>>>0>>0&(c|0)>=(h|0)|(c|0)>(h|0)){break a}e=e+H[b>>2]|0;e=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);H[b+16>>2]=f;H[b+20>>2]=c;break b}if(!Qe(1,i+12|0,b)){break a}f=H[b+16>>2];c=H[b+20>>2];d=H[b+8>>2];h=H[b+12>>2];e=H[i+12>>2]}g=d-f|0;d=h-(c+(d>>>0>>0)|0)|0;if((d|0)<=0&e>>>0>g>>>0|(d|0)<0|(e|0)<=0){break a}j=H[b>>2]+f|0;H[a>>2]=j;c:{d:{h=e-1|0;g=h+j|0;d=I[g|0];e:{if(d>>>0<=63){H[a+4>>2]=h;g=I[g|0]&63;break e}f:{switch((d>>>6|0)-1|0){case 1:break d;case 0:break f;default:break a}}if(e>>>0<2){break a}d=e-2|0;H[a+4>>2]=d;d=d+j|0;g=I[d+1|0]<<8&16128|I[d|0]}H[a+8>>2]=g+4096;break c}if(e>>>0<3){break a}d=e-3|0;H[a+4>>2]=d;g=a;a=d+j|0;a=I[a+1|0]<<8|I[a+2|0]<<16&4128768|I[a|0];H[g+8>>2]=a+4096;if(a>>>0>1044479){break a}}a=e+f|0;c=a>>>0>>0?c+1|0:c;H[b+16>>2]=a;H[b+20>>2]=c;k=1}ca=i+16|0;return k}function Wf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0;Xd(a,b,c);c=H[a+84>>2];d=H[a+88>>2]-c>>2;a:{if((d|0)>(b|0)){break a}b=b+1|0;if(b>>>0>d>>>0){b:{d=b-d|0;e=H[a+92>>2];c=H[a+88>>2];if(d>>>0<=e-c>>2>>>0){c:{if(!d){break c}b=c;e=d&7;if(e){while(1){H[b>>2]=1;b=b+4|0;f=f+1|0;if((e|0)!=(f|0)){continue}break}}c=(d<<2)+c|0;if((d-1&1073741823)>>>0<7){break c}while(1){H[b+24>>2]=1;H[b+28>>2]=1;H[b+16>>2]=1;H[b+20>>2]=1;H[b+8>>2]=1;H[b+12>>2]=1;H[b>>2]=1;H[b+4>>2]=1;b=b+32|0;if((c|0)!=(b|0)){continue}break}}H[a+88>>2]=c;break b}d:{b=c;c=H[a+84>>2];i=b-c|0;g=i>>2;b=g+d|0;if(b>>>0<1073741824){e=e-c|0;h=e>>>1|0;e=e>>>0>=2147483644?1073741823:b>>>0>>0?h:b;if(e){if(e>>>0>=1073741824){break d}j=pa(e<<2)}g=(g<<2)+j|0;b=g;h=d&7;if(h){while(1){H[b>>2]=1;b=b+4|0;f=f+1|0;if((h|0)!=(f|0)){continue}break}}f=g+(d<<2)|0;if((d-1&1073741823)>>>0>=7){while(1){H[b+24>>2]=1;H[b+28>>2]=1;H[b+16>>2]=1;H[b+20>>2]=1;H[b+8>>2]=1;H[b+12>>2]=1;H[b>>2]=1;H[b+4>>2]=1;b=b+32|0;if((f|0)!=(b|0)){continue}break}}b=va(j,c,i);H[a+88>>2]=f;H[a+84>>2]=b;H[a+92>>2]=b+(e<<2);if(c){oa(c)}break b}sa();v()}wa();v()}return}if(b>>>0>=d>>>0){break a}H[a+88>>2]=c+(b<<2)}}function qb(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;d=H[a+8>>2];e=H[a+4>>2];if(d-e>>2>>>0>=b>>>0){a:{if(!b){break a}d=e;g=b&7;if(g){while(1){H[d>>2]=H[c>>2];d=d+4|0;f=f+1|0;if((g|0)!=(f|0)){continue}break}}e=(b<<2)+e|0;if((b-1&1073741823)>>>0<7){break a}while(1){H[d>>2]=H[c>>2];H[d+4>>2]=H[c>>2];H[d+8>>2]=H[c>>2];H[d+12>>2]=H[c>>2];H[d+16>>2]=H[c>>2];H[d+20>>2]=H[c>>2];H[d+24>>2]=H[c>>2];H[d+28>>2]=H[c>>2];d=d+32|0;if((e|0)!=(d|0)){continue}break}}H[a+4>>2]=e;return}b:{i=H[a>>2];f=e-i>>2;h=f+b|0;if(h>>>0<1073741824){j=d-i|0;d=j>>>1|0;h=j>>>0>=2147483644?1073741823:d>>>0>h>>>0?d:h;if(h){if(h>>>0>=1073741824){break b}k=pa(h<<2)}f=(f<<2)+k|0;d=f;j=b&7;if(j){while(1){H[d>>2]=H[c>>2];d=d+4|0;g=g+1|0;if((j|0)!=(g|0)){continue}break}}g=(b<<2)+f|0;if((b-1&1073741823)>>>0>=7){while(1){H[d>>2]=H[c>>2];H[d+4>>2]=H[c>>2];H[d+8>>2]=H[c>>2];H[d+12>>2]=H[c>>2];H[d+16>>2]=H[c>>2];H[d+20>>2]=H[c>>2];H[d+24>>2]=H[c>>2];H[d+28>>2]=H[c>>2];d=d+32|0;if((g|0)!=(d|0)){continue}break}}if((e|0)!=(i|0)){while(1){f=f-4|0;e=e-4|0;H[f>>2]=H[e>>2];if((e|0)!=(i|0)){continue}break}}H[a+8>>2]=(h<<2)+k;H[a+4>>2]=g;H[a>>2]=f;if(i){oa(i)}return}sa();v()}wa();v()}function Kc(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;d=H[a+8>>2];e=H[a>>2];if(d-e>>2>>>0>=b>>>0){f=H[a+4>>2];h=f-e>>2;i=b>>>0>h>>>0?h:b;a:{if(!i){break a}d=e;g=i;j=g&7;if(j){while(1){H[d>>2]=H[c>>2];g=g-1|0;d=d+4|0;k=k+1|0;if((k|0)!=(j|0)){continue}break}}if(i>>>0<8){break a}while(1){H[d>>2]=H[c>>2];H[d+4>>2]=H[c>>2];H[d+8>>2]=H[c>>2];H[d+12>>2]=H[c>>2];H[d+16>>2]=H[c>>2];H[d+20>>2]=H[c>>2];H[d+24>>2]=H[c>>2];H[d+28>>2]=H[c>>2];d=d+32|0;g=g-8|0;if(g){continue}break}}if(b>>>0>h>>>0){b=(b-h<<2)+f|0;while(1){H[f>>2]=H[c>>2];f=f+4|0;if((b|0)!=(f|0)){continue}break}H[a+4>>2]=b;return}H[a+4>>2]=e+(b<<2);return}if(e){H[a+4>>2]=e;oa(e);H[a+8>>2]=0;H[a>>2]=0;H[a+4>>2]=0;d=0}b:{if(b>>>0>=1073741824){break b}e=d>>>1|0;d=d>>>0>=2147483644?1073741823:b>>>0>>0?e:b;if(d>>>0>=1073741824){break b}d=d<<2;e=pa(d);H[a>>2]=e;H[a+8>>2]=d+e;c=H[c>>2];d=e;g=b&7;if(g){while(1){H[d>>2]=c;d=d+4|0;f=f+1|0;if((g|0)!=(f|0)){continue}break}}e=e+(b<<2)|0;if((b-1&1073741823)>>>0>=7){while(1){H[d+28>>2]=c;H[d+24>>2]=c;H[d+20>>2]=c;H[d+16>>2]=c;H[d+12>>2]=c;H[d+8>>2]=c;H[d+4>>2]=c;H[d>>2]=c;d=d+32|0;if((e|0)!=(d|0)){continue}break}}H[a+4>>2]=e;return}sa();v()}function Me(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;h=ca-16|0;ca=h;a:{b:{if(J[b+38>>1]<=511){e=H[b+8>>2];c=H[b+12>>2];i=c;f=H[b+20>>2];d=H[b+16>>2];g=d+8|0;f=g>>>0<8?f+1|0:f;if(e>>>0>>0&(c|0)<=(f|0)|(c|0)<(f|0)){break a}d=d+H[b>>2]|0;c=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);d=I[d+4|0]|I[d+5|0]<<8|(I[d+6|0]<<16|I[d+7|0]<<24);H[b+16>>2]=g;H[b+20>>2]=f;break b}if(!gb(1,h+8|0,b)){break a}g=H[b+16>>2];f=H[b+20>>2];e=H[b+8>>2];i=H[b+12>>2];c=H[h+8>>2];d=H[h+12>>2]}j=e-g|0;e=i-(f+(e>>>0>>0)|0)|0;if((e|0)==(d|0)&c>>>0>j>>>0|d>>>0>e>>>0){break a}e=d+f|0;f=c+g|0;e=f>>>0>>0?e+1|0:e;H[b+16>>2]=f;H[b+20>>2]=e;if((c|0)<=0){break a}b=H[b>>2]+g|0;H[a+40>>2]=b;g=c-1|0;e=b+g|0;f=I[e|0];c:{if(f>>>0<=63){H[a+44>>2]=g;b=I[e|0]&63;break c}d:{switch((f>>>6|0)-1|0){case 0:if(c>>>0<2){break a}c=c-2|0;H[a+44>>2]=c;b=b+c|0;b=I[b+1|0]<<8&16128|I[b|0];break c;case 1:if(c>>>0<3){break a}c=c-3|0;H[a+44>>2]=c;b=b+c|0;b=I[b+1|0]<<8|I[b+2|0]<<16&4128768|I[b|0];break c;default:break d}}c=c-4|0;H[a+44>>2]=c;b=b+c|0;b=(I[b|0]|I[b+1|0]<<8|(I[b+2|0]<<16|I[b+3|0]<<24))&1073741823}H[a+48>>2]=b+16384;k=b>>>0<4177920}ca=h+16|0;return k}function Ua(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;f=(c>>>0)/3|0;j=H[(H[H[a+8>>2]+96>>2]+N(f,12)|0)+(c-N(f,3)<<2)>>2];a:{h=H[H[a+12>>2]+4>>2];e=H[h+4>>2];if((e|0)!=H[h+8>>2]){H[e>>2]=j;H[h+4>>2]=e+4;break a}b:{i=H[h>>2];f=e-i|0;g=f>>2;d=g+1|0;if(d>>>0<1073741824){k=g<<2;g=f>>>1|0;g=f>>>0>=2147483644?1073741823:d>>>0>>0?g:d;if(g){if(g>>>0>=1073741824){break b}f=pa(g<<2)}else{f=0}d=k+f|0;H[d>>2]=j;j=d+4|0;if((e|0)!=(i|0)){while(1){d=d-4|0;e=e-4|0;H[d>>2]=H[e>>2];if((e|0)!=(i|0)){continue}break}}H[h+8>>2]=f+(g<<2);H[h+4>>2]=j;H[h>>2]=d;if(i){oa(i)}break a}sa();v()}wa();v()}c:{d:{h=H[a+4>>2];e=H[h+4>>2];e:{if((e|0)!=H[h+8>>2]){H[e>>2]=c;H[h+4>>2]=e+4;break e}i=H[h>>2];f=e-i|0;j=f>>2;d=j+1|0;if(d>>>0>=1073741824){break d}g=f>>>1|0;g=f>>>0>=2147483644?1073741823:d>>>0>>0?g:d;if(g){if(g>>>0>=1073741824){break c}f=pa(g<<2)}else{f=0}d=f+(j<<2)|0;H[d>>2]=c;c=d+4|0;if((e|0)!=(i|0)){while(1){d=d-4|0;e=e-4|0;H[d>>2]=H[e>>2];if((e|0)!=(i|0)){continue}break}}H[h+8>>2]=f+(g<<2);H[h+4>>2]=c;H[h>>2]=d;if(!i){break e}oa(i)}a=H[a+4>>2];H[H[a+12>>2]+(b<<2)>>2]=H[a+24>>2];H[a+24>>2]=H[a+24>>2]+1;return}sa();v()}wa();v()}function Wb(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0;h=d-c|0;if((h|0)<=0){return}a:{e=H[a+8>>2];i=H[a+4>>2];if((e-i|0)>=(h|0)){j=i-b|0;if((j|0)>=(h|0)){f=i;g=d;break a}f=i;g=c+j|0;if((g|0)!=(d|0)){e=g;while(1){F[f|0]=I[e|0];f=f+1|0;e=e+1|0;if((e|0)!=(d|0)){continue}break}}H[a+4>>2]=f;if((j|0)>0){break a}return}k=H[a>>2];g=(i-k|0)+h|0;if((g|0)>=0){j=b-k|0;f=e-k|0;e=f<<1;f=f>>>0>=1073741823?2147483647:e>>>0>g>>>0?e:g;if(f){e=pa(f)}else{e=0}g=j+e|0;if((c|0)!=(d|0)){g=qa(g,c,h)+h|0}d=va(e,k,j);c=i-b|0;b=va(g,b,c);H[a+8>>2]=e+f;H[a+4>>2]=b+c;H[a>>2]=d;if(k){oa(k)}return}sa();v()}e=f;d=e-h|0;if(i>>>0>d>>>0){while(1){F[e|0]=I[d|0];e=e+1|0;d=d+1|0;if(i>>>0>d>>>0){continue}break}}H[a+4>>2]=e;a=b+h|0;if((a|0)!=(f|0)){a=f-a|0;va(f-a|0,b,a)}if((c|0)==(g|0)){return}f=(c^-1)+g|0;a=g-c&7;b:{if(!a){e=b;break b}d=0;e=b;while(1){F[e|0]=I[c|0];e=e+1|0;c=c+1|0;d=d+1|0;if((a|0)!=(d|0)){continue}break}}if(f>>>0<7){return}while(1){F[e|0]=I[c|0];F[e+1|0]=I[c+1|0];F[e+2|0]=I[c+2|0];F[e+3|0]=I[c+3|0];F[e+4|0]=I[c+4|0];F[e+5|0]=I[c+5|0];F[e+6|0]=I[c+6|0];F[e+7|0]=I[c+7|0];e=e+8|0;c=c+8|0;if((g|0)!=(c|0)){continue}break}}function qa(a,b,c){var d=0,e=0,f=0;if(c>>>0>=512){ba(a|0,b|0,c|0);return a}e=a+c|0;a:{if(!((a^b)&3)){b:{if(!(a&3)){c=a;break b}if(!c){c=a;break b}c=a;while(1){F[c|0]=I[b|0];b=b+1|0;c=c+1|0;if(!(c&3)){break b}if(c>>>0>>0){continue}break}}d=e&-4;c:{if(d>>>0<64){break c}f=d+-64|0;if(f>>>0>>0){break c}while(1){H[c>>2]=H[b>>2];H[c+4>>2]=H[b+4>>2];H[c+8>>2]=H[b+8>>2];H[c+12>>2]=H[b+12>>2];H[c+16>>2]=H[b+16>>2];H[c+20>>2]=H[b+20>>2];H[c+24>>2]=H[b+24>>2];H[c+28>>2]=H[b+28>>2];H[c+32>>2]=H[b+32>>2];H[c+36>>2]=H[b+36>>2];H[c+40>>2]=H[b+40>>2];H[c+44>>2]=H[b+44>>2];H[c+48>>2]=H[b+48>>2];H[c+52>>2]=H[b+52>>2];H[c+56>>2]=H[b+56>>2];H[c+60>>2]=H[b+60>>2];b=b- -64|0;c=c- -64|0;if(f>>>0>=c>>>0){continue}break}}if(c>>>0>=d>>>0){break a}while(1){H[c>>2]=H[b>>2];b=b+4|0;c=c+4|0;if(d>>>0>c>>>0){continue}break}break a}if(e>>>0<4){c=a;break a}d=e-4|0;if(d>>>0>>0){c=a;break a}c=a;while(1){F[c|0]=I[b|0];F[c+1|0]=I[b+1|0];F[c+2|0]=I[b+2|0];F[c+3|0]=I[b+3|0];b=b+4|0;c=c+4|0;if(d>>>0>=c>>>0){continue}break}}if(c>>>0>>0){while(1){F[c|0]=I[b|0];b=b+1|0;c=c+1|0;if((e|0)!=(c|0)){continue}break}}return a}function ub(a,b){var c=0,d=0,e=0,f=0,g=0;d=ca-16|0;ca=d;H[a+12>>2]=b;H[a+8>>2]=0;H[a>>2]=0;H[a+4>>2]=0;c=a+16|0;H[c>>2]=0;H[c+4>>2]=0;F[c+5|0]=0;F[c+6|0]=0;F[c+7|0]=0;F[c+8|0]=0;F[c+9|0]=0;F[c+10|0]=0;F[c+11|0]=0;F[c+12|0]=0;H[a+32>>2]=0;H[a+36>>2]=0;H[a+48>>2]=0;H[a+40>>2]=0;H[a+44>>2]=0;H[a+52>>2]=0;H[a+56>>2]=0;H[a+68>>2]=0;H[a+60>>2]=0;H[a+64>>2]=0;H[a+72>>2]=0;H[a+76>>2]=0;H[a+88>>2]=0;H[a+80>>2]=0;H[a+84>>2]=0;H[a+100>>2]=0;H[a+92>>2]=0;H[a+96>>2]=0;g=a+116|0;a:{b:{if(b){if(b>>>0<1073741824){break b}sa();v()}H[a+104>>2]=0;H[a+108>>2]=0;H[a+112>>2]=0;H[d+8>>2]=0;H[d>>2]=0;H[d+4>>2]=0;c=1;break a}c=b<<2;e=pa(c);H[a+92>>2]=e;f=c+e|0;H[a+100>>2]=f;ra(e,0,c);H[a+112>>2]=0;H[a+104>>2]=0;H[a+108>>2]=0;H[a+96>>2]=f;e=pa(c);H[a+104>>2]=e;f=c+e|0;H[a+112>>2]=f;ra(e,0,c);H[a+108>>2]=f;e=pa(c);H[d>>2]=e;f=c+e|0;H[d+8>>2]=f;ra(e,0,c);H[d+4>>2]=f;c=b<<5|1}tb(g,c,d);e=H[d>>2];if(e){H[d+4>>2]=e;oa(e)}H[d+8>>2]=0;H[d>>2]=0;H[d+4>>2]=0;if(b){b=b<<2;e=pa(b);H[d>>2]=e;f=b+e|0;H[d+8>>2]=f;ra(e,0,b);H[d+4>>2]=f}tb(a+128|0,c,d);b=H[d>>2];if(b){H[d+4>>2]=b;oa(b)}ca=d+16|0;return a}function ze(a){a=a|0;var b=0,c=0,d=0,e=0,f=0;H[a>>2]=11484;d=a+232|0;b=H[d+196>>2];if(b){H[d+200>>2]=b;oa(b)}c=H[d+184>>2];if(c){b=c;e=H[d+188>>2];if((b|0)!=(e|0)){while(1){b=e-12|0;f=H[b>>2];if(f){H[e-8>>2]=f;oa(f)}e=b;if((b|0)!=(c|0)){continue}break}b=H[d+184>>2]}H[d+188>>2]=c;oa(b)}b=H[d+156>>2];if(b){H[d+160>>2]=b;oa(b)}c=H[d+136>>2];H[d+136>>2]=0;if(c){e=c-4|0;b=H[e>>2];if(b){b=c+(b<<4)|0;while(1){b=b-16|0;if((c|0)!=(b|0)){continue}break}}oa(e)}Yc(a+216|0);b=H[a+196>>2];if(b){H[a+200>>2]=b;oa(b)}b=H[a+184>>2];if(b){H[a+188>>2]=b;oa(b)}b=H[a+172>>2];if(b){H[a+176>>2]=b;oa(b)}b=H[a+160>>2];if(b){H[a+164>>2]=b;oa(b)}b=H[a+144>>2];if(b){while(1){c=H[b>>2];oa(b);b=c;if(b){continue}break}}b=H[a+136>>2];H[a+136>>2]=0;if(b){oa(b)}b=H[a+120>>2];if(b){oa(b)}b=H[a+108>>2];if(b){oa(b)}b=H[a+96>>2];if(b){oa(b)}b=H[a+72>>2];if(b){H[a+76>>2]=b;oa(b)}b=H[a+60>>2];if(b){oa(b)}b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}b=H[a+36>>2];if(b){H[a+40>>2]=b;oa(b)}b=H[a+24>>2];if(b){H[a+28>>2]=b;oa(b)}b=H[a+12>>2];if(b){H[a+16>>2]=b;oa(b)}b=H[a+8>>2];H[a+8>>2]=0;if(b){cb(b)}return a|0}function Pa(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;d=H[a+8>>2];e=H[a+4>>2];if(d-e>>2>>>0>=b>>>0){a:{if(!b){break a}d=e;f=b&7;if(f){while(1){H[d>>2]=H[c>>2];d=d+4|0;h=h+1|0;if((f|0)!=(h|0)){continue}break}}e=(b<<2)+e|0;if((b-1&1073741823)>>>0<7){break a}while(1){H[d>>2]=H[c>>2];H[d+4>>2]=H[c>>2];H[d+8>>2]=H[c>>2];H[d+12>>2]=H[c>>2];H[d+16>>2]=H[c>>2];H[d+20>>2]=H[c>>2];H[d+24>>2]=H[c>>2];H[d+28>>2]=H[c>>2];d=d+32|0;if((e|0)!=(d|0)){continue}break}}H[a+4>>2]=e;return}b:{i=H[a>>2];j=e-i|0;f=j>>2;g=f+b|0;if(g>>>0<1073741824){d=d-i|0;e=d>>>1|0;g=d>>>0>=2147483644?1073741823:e>>>0>g>>>0?e:g;if(g){if(g>>>0>=1073741824){break b}k=pa(g<<2)}f=(f<<2)+k|0;d=f;e=b&7;if(e){while(1){H[d>>2]=H[c>>2];d=d+4|0;h=h+1|0;if((e|0)!=(h|0)){continue}break}}e=f+(b<<2)|0;if((b-1&1073741823)>>>0>=7){while(1){H[d>>2]=H[c>>2];H[d+4>>2]=H[c>>2];H[d+8>>2]=H[c>>2];H[d+12>>2]=H[c>>2];H[d+16>>2]=H[c>>2];H[d+20>>2]=H[c>>2];H[d+24>>2]=H[c>>2];H[d+28>>2]=H[c>>2];d=d+32|0;if((e|0)!=(d|0)){continue}break}}b=va(k,i,j);H[a+4>>2]=e;H[a>>2]=b;H[a+8>>2]=b+(g<<2);if(i){oa(i)}return}sa();v()}wa();v()}function Cc(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;if(I[a+11|0]>>>7|0){d=H[a+4>>2]}else{d=I[a+11|0]&127}if(d>>>0>>0){h=ca-16|0;ca=h;b=b-d|0;if(b){g=I[a+11|0]>>>7|0?(H[a+8>>2]&2147483647)-1|0:10;if(I[a+11|0]>>>7|0){d=H[a+4>>2]}else{d=I[a+11|0]&127}i=d+b|0;if(g-d>>>0>>0){a:{e=ca-16|0;ca=e;c=i-g|0;if(c>>>0<=2147483631-g>>>0){if(I[a+11|0]>>>7|0){f=H[a>>2]}else{f=a}if(g>>>0<1073741799){H[e+12>>2]=g<<1;H[e>>2]=c+g;c=ca-16|0;ca=c;ca=c+16|0;c=e+12|0;c=H[(K[e>>2]>2]?c:e)>>2];if(c>>>0>=11){j=c+16&-16;c=j-1|0;c=(c|0)==11?j:c}else{c=10}c=c+1|0}else{c=2147483631}Zb(e,c);c=H[e>>2];if(d){yb(c,f,d)}if((g|0)!=10){oa(f)}H[a>>2]=c;H[a+8>>2]=H[a+8>>2]&-2147483648|H[e+4>>2]&2147483647;H[a+8>>2]=H[a+8>>2]|-2147483648;ca=e+16|0;break a}Na();v()}}f=d;if(I[a+11|0]>>>7|0){d=H[a>>2]}else{d=a}f=f+d|0;e=ca-16|0;ca=e;F[e+15|0]=0;while(1){if(b){F[f|0]=I[e+15|0];b=b-1|0;f=f+1|0;continue}break}ca=e+16|0;Id(a,i);F[h+15|0]=0;F[d+i|0]=I[h+15|0]}ca=h+16|0;return}if(I[a+11|0]>>>7|0){d=H[a>>2]}else{d=a}f=ca-16|0;ca=f;Id(a,b);F[f+15|0]=0;F[b+d|0]=I[f+15|0];ca=f+16|0}function Jc(a,b){var c=0,d=0,e=0,f=0,g=0,h=0;g=ca-16|0;ca=g;a:{b:{if(b){H[a+88>>2]=0;H[a+92>>2]=0;d=H[a+84>>2];H[a+84>>2]=0;if(d){oa(d)}H[a+76>>2]=0;H[a+80>>2]=0;d=H[a+72>>2];H[a+72>>2]=0;if(d){oa(d)}d=H[b>>2];c=H[b+4>>2];F[g+15|0]=0;Oa(a,c-d>>2,g+15|0);d=H[b+28>>2];c=H[b+24>>2];F[g+14|0]=0;Oa(a+12|0,d-c>>2,g+14|0);Kc(a+28|0,H[b+4>>2]-H[b>>2]>>2,13708);c=H[b+28>>2]-H[b+24>>2]|0;f=c>>2;e=H[a+52>>2];c:{if(f>>>0<=H[a+60>>2]-e>>2>>>0){break c}if((c|0)<0){break b}d=H[a+56>>2];c=pa(c);f=c+(f<<2)|0;h=c+(d-e&-4)|0;c=h;if((d|0)!=(e|0)){while(1){c=c-4|0;d=d-4|0;H[c>>2]=H[d>>2];if((d|0)!=(e|0)){continue}break}}H[a+60>>2]=f;H[a+56>>2]=h;H[a+52>>2]=c;if(!e){break c}oa(e)}c=H[b+28>>2]-H[b+24>>2]|0;f=c>>2;e=H[a+40>>2];d:{if(f>>>0<=H[a+48>>2]-e>>2>>>0){break d}if((c|0)<0){break a}d=H[a+44>>2];c=pa(c);f=c+(f<<2)|0;h=c+(d-e&-4)|0;c=h;if((d|0)!=(e|0)){while(1){c=c-4|0;d=d-4|0;H[c>>2]=H[d>>2];if((d|0)!=(e|0)){continue}break}}H[a+48>>2]=f;H[a+44>>2]=h;H[a+40>>2]=c;if(!e){break d}oa(e)}F[a+24|0]=1;H[a+64>>2]=b}ca=g+16|0;return}sa();v()}sa();v()}function wb(a,b){var c=0,d=0,e=0,f=0,g=0;c=ca-16|0;ca=c;H[a+12>>2]=b;H[a+8>>2]=0;H[a>>2]=0;H[a+4>>2]=0;H[a+16>>2]=0;H[a+20>>2]=0;H[a+32>>2]=0;H[a+24>>2]=0;H[a+28>>2]=0;H[a+36>>2]=0;H[a+40>>2]=0;H[a+52>>2]=0;H[a+44>>2]=0;H[a+48>>2]=0;H[a+56>>2]=0;H[a+60>>2]=0;H[a+72>>2]=0;H[a+64>>2]=0;H[a+68>>2]=0;H[a+76>>2]=0;H[a+80>>2]=0;H[a+92>>2]=0;H[a+84>>2]=0;H[a+88>>2]=0;H[a+104>>2]=0;H[a+96>>2]=0;H[a+100>>2]=0;g=a+120|0;a:{b:{if(b){if(b>>>0<1073741824){break b}sa();v()}H[a+108>>2]=0;H[a+112>>2]=0;H[a+116>>2]=0;H[c+8>>2]=0;H[c>>2]=0;H[c+4>>2]=0;e=1;break a}e=b<<2;d=pa(e);H[a+96>>2]=d;f=d+e|0;H[a+104>>2]=f;ra(d,0,e);H[a+116>>2]=0;H[a+108>>2]=0;H[a+112>>2]=0;H[a+100>>2]=f;d=pa(e);H[a+108>>2]=d;f=d+e|0;H[a+116>>2]=f;ra(d,0,e);H[a+112>>2]=f;d=pa(e);H[c>>2]=d;f=d+e|0;H[c+8>>2]=f;ra(d,0,e);H[c+4>>2]=f;e=b<<5|1}tb(g,e,c);d=H[c>>2];if(d){H[c+4>>2]=d;oa(d)}H[c+8>>2]=0;H[c>>2]=0;H[c+4>>2]=0;if(b){b=b<<2;d=pa(b);H[c>>2]=d;f=b+d|0;H[c+8>>2]=f;ra(d,0,b);H[c+4>>2]=f}tb(a+132|0,e,c);b=H[c>>2];if(b){H[c+4>>2]=b;oa(b)}ca=c+16|0;return a}function Sb(a,b){var c=0,d=0,e=0;c=(a|0)==(b|0);F[b+12|0]=c;a:{if(c){break a}while(1){d=H[b+8>>2];if(I[d+12|0]){break a}b:{c=H[d+8>>2];e=H[c>>2];if((e|0)==(d|0)){e=H[c+4>>2];if(!(!e|I[e+12|0])){break b}c:{if(H[d>>2]==(b|0)){b=d;break c}b=H[d+4>>2];a=H[b>>2];H[d+4>>2]=a;if(a){H[a+8>>2]=d;c=H[d+8>>2]}H[b+8>>2]=c;a=H[d+8>>2];H[((H[a>>2]!=(d|0))<<2)+a>>2]=b;H[b>>2]=d;H[d+8>>2]=b;c=H[b+8>>2];d=H[c>>2]}F[b+12|0]=1;F[c+12|0]=0;a=H[d+4>>2];H[c>>2]=a;if(a){H[a+8>>2]=c}H[d+8>>2]=H[c+8>>2];a=H[c+8>>2];H[((H[a>>2]!=(c|0))<<2)+a>>2]=d;H[d+4>>2]=c;H[c+8>>2]=d;return}if(!(I[e+12|0]|!e)){break b}d:{if(H[d>>2]!=(b|0)){b=d;break d}a=H[b+4>>2];H[d>>2]=a;if(a){H[a+8>>2]=d;c=H[d+8>>2]}H[b+8>>2]=c;a=H[d+8>>2];H[((H[a>>2]!=(d|0))<<2)+a>>2]=b;H[b+4>>2]=d;H[d+8>>2]=b;c=H[b+8>>2]}F[b+12|0]=1;F[c+12|0]=0;a=H[c+4>>2];b=H[a>>2];H[c+4>>2]=b;if(b){H[b+8>>2]=c}H[a+8>>2]=H[c+8>>2];b=H[c+8>>2];H[((H[b>>2]!=(c|0))<<2)+b>>2]=a;H[a>>2]=c;H[c+8>>2]=a;break a}F[d+12|0]=1;F[c+12|0]=(a|0)==(c|0);F[e+12|0]=1;b=c;if((c|0)!=(a|0)){continue}break}}}function Tj(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;a:{b:{c:{d:{e:{f:{g:{h:{i:{j:{k:{if(b){if(!c){break k}if(!d){break j}e=Q(d)-Q(b)|0;if(e>>>0<=31){break i}break c}if((d|0)==1|d>>>0>1){break c}da=0;a=(a>>>0)/(c>>>0)|0;break a}if(!a){break h}if(!d|d-1&d){break g}a=b>>>Qj(d)|0;da=0;break a}if(!(c-1&c)){break f}h=(Q(c)+33|0)-Q(b)|0;g=0-h|0;break d}h=e+1|0;g=63-e|0;break d}da=0;a=(b>>>0)/(d>>>0)|0;break a}e=Q(d)-Q(b)|0;if(e>>>0<31){break e}break c}if((c|0)==1){break b}d=Qj(c);c=d&31;if((d&63)>>>0>=32){a=b>>>c|0}else{e=b>>>c|0;a=((1<>>c}da=e;break a}h=e+1|0;g=63-e|0}e=h&63;f=e&31;if(e>>>0>=32){e=0;i=b>>>f|0}else{e=b>>>f|0;i=((1<>>f}g=g&63;f=g&31;if(g>>>0>=32){b=a<>>32-f|b<>>31;e=i<<1|b>>>31;f=m-(j+(e>>>0>g>>>0)|0)>>31;k=c&f;i=e-k|0;e=j-((d&f)+(e>>>0>>0)|0)|0;b=b<<1|a>>>31;a=l|a<<1;l=f&1;h=h-1|0;if(h){continue}break}}da=b<<1|a>>>31;a=l|a<<1;break a}a=0;b=0}da=b}return a}function rc(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;k=H[b+16>>2];h=H[c+4>>2]-k|0;e=H[c>>2]-k|0;H[c>>2]=e;H[c+4>>2]=h;g=H[b+16>>2];f=h>>31;i=(f^h)-f|0;f=e>>31;l=g>>>0>=i+((f^e)-f|0)>>>0;a:{if(l){f=h;break a}b:{c:{if((e|0)>=0){f=1;i=1;if((h|0)>=0){break b}j=1;f=-1;i=-1;if(e){break c}break b}j=-1;f=-1;i=-1;if((h|0)<=0){break b}}f=(h|0)<=0?-1:1;i=j}j=N(g,i);e=(e<<1)-j|0;i=(N(f,i)|0)>=0;g=N(f,g);f=((i?0-e|0:e)+g|0)/2|0;H[c+4>>2]=f;m=c;c=(h<<1)-g|0;e=(j+(i?0-c|0:c)|0)/2|0;H[m>>2]=e;g=H[b+16>>2]}c=H[d+4>>2]+f|0;e=H[d>>2]+e|0;d:{if((g|0)<(e|0)){e=e-H[b+4>>2]|0;break d}if((0-g|0)<=(e|0)){break d}e=H[b+4>>2]+e|0}e:{if((c|0)>(g|0)){c=c-H[b+4>>2]|0;break e}if((0-g|0)<=(c|0)){break e}c=H[b+4>>2]+c|0}f:{if(l){g=c;break f}g:{h:{if((e|0)>=0){b=1;f=1;if((c|0)>=0){break g}d=1;b=-1;f=-1;if(e){break h}break g}d=-1;b=-1;f=-1;if((c|0)<=0){break g}}b=(c|0)<=0?-1:1;f=d}d=N(f,g);h=(e<<1)-d|0;f=(N(b,f)|0)>=0;b=N(b,g);g=((f?0-h|0:h)+b|0)/2|0;b=(c<<1)-b|0;e=(d+(f?0-b|0:b)|0)/2|0}c=a;H[c>>2]=e+k;H[c+4>>2]=g+k}function Wh(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0;g=ca-16|0;ca=g;e=H[a+4>>2];d=H[e>>2];a:{b=H[a+12>>2];c=H[b+28>>2]-H[b+24>>2]|0;f=c>>2;b:{if(f>>>0<=H[e+8>>2]-d>>2>>>0){break b}if((c|0)<0){break a}b=H[e+4>>2];c=pa(c);f=c+(f<<2)|0;h=c+(b-d&-4)|0;c=h;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;H[c>>2]=H[b>>2];if((b|0)!=(d|0)){continue}break}}H[e+8>>2]=f;H[e+4>>2]=h;H[e>>2]=c;if(!d){break b}oa(d)}b=H[a+12>>2];c=H[b+28>>2];b=H[b+24>>2];H[g+12>>2]=0;b=c-b>>2;d=a+96|0;e=H[d>>2];c=H[a+100>>2]-e>>2;c:{if(b>>>0>c>>>0){Pa(d,b-c|0,g+12|0);break c}if(b>>>0>=c>>>0){break c}H[a+100>>2]=e+(b<<2)}e=a+8|0;b=H[a+116>>2];d:{if(b){d=H[b>>2];if((d|0)==H[b+4>>2]){c=1;break d}b=0;while(1){c=ye(e,H[(b<<2)+d>>2]);if(!c){break d}f=H[a+116>>2];d=H[f>>2];b=b+1|0;if(b>>>0>2]-d>>2>>>0){continue}break}break d}c=1;a=H[a+12>>2];a=H[a+4>>2]-H[a>>2]|0;if(a>>>0<12){break d}a=(a>>2>>>0)/3|0;b=0;while(1){c=ye(e,N(b,3));if(!c){break d}b=b+1|0;if((a|0)!=(b|0)){continue}break}}ca=g+16|0;return c|0}sa();v()}function gj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;c=H[b+88>>2];if(!(!c|H[c>>2]!=1)){e=H[c+8>>2];H[a+4>>2]=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);f=a+8|0;d=I[b+24|0];h=H[a+8>>2];g=H[a+12>>2]-h>>2;a:{if(d>>>0>g>>>0){ya(f,d-g|0);d=I[b+24|0];e=H[c+8>>2];break a}if(d>>>0>=g>>>0){break a}H[a+12>>2]=h+(d<<2)}b:{if(!d){b=4;break b}h=d&3;f=H[f>>2];c:{if(d-1>>>0<3){b=4;d=0;break c}k=d&252;d=0;b=4;while(1){g=d<<2;c=b+e|0;H[g+f>>2]=I[c|0]|I[c+1|0]<<8|(I[c+2|0]<<16|I[c+3|0]<<24);H[f+(g|4)>>2]=I[c+4|0]|I[c+5|0]<<8|(I[c+6|0]<<16|I[c+7|0]<<24);H[f+(g|8)>>2]=I[c+8|0]|I[c+9|0]<<8|(I[c+10|0]<<16|I[c+11|0]<<24);H[f+(g|12)>>2]=I[c+12|0]|I[c+13|0]<<8|(I[c+14|0]<<16|I[c+15|0]<<24);d=d+4|0;b=b+16|0;i=i+4|0;if((k|0)!=(i|0)){continue}break}}if(!h){break b}while(1){c=b+e|0;H[f+(d<<2)>>2]=I[c|0]|I[c+1|0]<<8|(I[c+2|0]<<16|I[c+3|0]<<24);d=d+1|0;b=b+4|0;j=j+1|0;if((h|0)!=(j|0)){continue}break}}d=a;a=b+e|0;H[d+20>>2]=I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24);d=1}return d|0}function se(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0;a:{b:{c:{if(!b){if((d|0)<0){break a}f=H[a+4>>2];b=H[a>>2];d=f-b|0;if(c>>>0>d>>>0){g=c-d|0;e=H[a+8>>2];if(g>>>0<=e-f>>>0){i=a,j=ra(f,0,g)+g|0,H[i+4>>2]=j;break c}if((c|0)<0){break b}f=e-b|0;e=f<<1;f=f>>>0>=1073741823?2147483647:c>>>0>>0?e:c;e=pa(f);ra(e+d|0,0,g);d=va(e,b,d);H[a+8>>2]=d+f;H[a+4>>2]=c+d;H[a>>2]=d;if(!b){break c}oa(b);break c}if(c>>>0>=d>>>0){break c}H[a+4>>2]=b+c;break c}if((d|0)<0){break a}e=H[a+4>>2];f=H[a>>2];g=e-f|0;d:{if((d|0)<=0&c>>>0<=g>>>0|(d|0)<0){break d}if(c>>>0>g>>>0){d=c-g|0;h=H[a+8>>2];if(d>>>0<=h-e>>>0){i=a,j=ra(e,0,d)+d|0,H[i+4>>2]=j;break d}if((c|0)<0){break b}e=h-f|0;h=e<<1;e=e>>>0>=1073741823?2147483647:c>>>0>>0?h:c;h=pa(e);ra(h+g|0,0,d);d=va(h,f,g);H[a+8>>2]=d+e;H[a+4>>2]=c+d;H[a>>2]=d;if(!f){break d}oa(f);break d}if(c>>>0>=g>>>0){break d}H[a+4>>2]=c+f}if(!c){break c}va(H[a>>2],b,c)}b=H[a+28>>2];c=H[a+24>>2]+1|0;b=c?b:b+1|0;H[a+24>>2]=c;H[a+28>>2]=b;g=1;break a}sa();v()}return g}function Jh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;k=H[a+12>>2];c=H[a+68>>2];d=H[c+80>>2];F[b+84|0]=0;n=b+68|0;i=H[b+68>>2];e=H[b+72>>2]-i>>2;a:{if(e>>>0>>0){qb(n,d-e|0,12372);c=H[a+68>>2];d=H[c+80>>2];break a}if(d>>>0>=e>>>0){break a}H[b+72>>2]=i+(d<<2)}b=H[c+100>>2];e=H[c+96>>2];i=(b-e|0)/12|0;m=1;b:{if((b|0)==(e|0)){break b}k=H[k+28>>2];f=H[k>>2];if((f|0)==-1){return 0}o=i>>>0<=1?1:i;c=e;b=0;m=0;while(1){g=H[c>>2];if(g>>>0>=d>>>0){break b}j=H[H[a+72>>2]+12>>2];h=H[j+(f<<2)>>2];if(h>>>0>=d>>>0){break b}f=H[n>>2];H[f+(g<<2)>>2]=h;g=k+(l<<2)|0;h=H[g+4>>2];if((h|0)==-1){break b}l=H[c+4>>2];if(l>>>0>=d>>>0){break b}h=H[(h<<2)+j>>2];if(h>>>0>=d>>>0){break b}H[f+(l<<2)>>2]=h;g=H[g+8>>2];if((g|0)==-1){break b}c=H[c+8>>2];if(c>>>0>=d>>>0){break b}j=H[(g<<2)+j>>2];if(j>>>0>=d>>>0){break b}H[f+(c<<2)>>2]=j;b=b+1|0;m=i>>>0<=b>>>0;if((b|0)==(o|0)){break b}c=e+N(b,12)|0;l=N(b,3);f=H[k+(l<<2)>>2];if((f|0)!=-1){continue}break}}return m|0}function Gh(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;h=H[d+80>>2];e=ca-48|0;ca=e;a=H[a+4>>2];m=a-2|0;a:{if(m>>>0>28){break a}j=H[H[d>>2]>>2]+H[d+48>>2]|0;H[e+16>>2]=a;a=-1<>2]=a^-1;a=-2-a|0;H[e+24>>2]=a;H[e+32>>2]=(a|0)/2;L[e+28>>2]=O(2)/O(a|0);f=H[c>>2];if((f|0)!=H[c+4>>2]){a=0;d=0;while(1){g=H[(d<<2)+f>>2];h=e+36|0;k=H[H[b>>2]>>2];l=H[b+48>>2];f=H[b+40>>2];i=H[b+44>>2];if(!I[b+84|0]){g=H[H[b+68>>2]+(g<<2)>>2]}g=Rj(f,i,g,0);i=g;g=g+l|0;qa(h,g+k|0,f);he(e+16|0,h,e+12|0,e+8|0);f=a<<2;H[f+j>>2]=H[e+12>>2];H[(f|4)+j>>2]=H[e+8>>2];a=a+2|0;d=d+1|0;f=H[c>>2];if(d>>>0>2]-f>>2>>>0){continue}break}break a}if(!h){break a}d=0;a=0;while(1){k=e+36|0;l=H[H[b>>2]>>2];i=H[b+48>>2];c=H[b+40>>2];f=Rj(c,H[b+44>>2],I[b+84|0]?a:H[H[b+68>>2]+(a<<2)>>2],0);g=f;f=f+i|0;qa(k,f+l|0,c);he(e+16|0,k,e+12|0,e+8|0);c=d<<2;H[c+j>>2]=H[e+12>>2];H[(c|4)+j>>2]=H[e+8>>2];d=d+2|0;a=a+1|0;if((h|0)!=(a|0)){continue}break}}ca=e+48|0;return m>>>0<29|0}function Re(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=O(0),j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0;k=ca-16|0;ca=k;if(H[c+28>>2]==9){d=H[a+4>>2];h=I[c+24|0];e=h<<2;f=pa(e);l=k+8|0;H[l>>2]=1065353216;i=L[a+20>>2];d=-1<0){L[l>>2]=i/O(d|0)}o=(d|0)>0;a:{if(!o){break a}j=H[c+80>>2];if(!j){break a}if(h){p=H[H[b>>2]>>2]+H[b+48>>2]|0;t=h&254;u=h&1;b=0;while(1){m=H[a+8>>2];i=L[l>>2];d=0;n=0;if((h|0)!=1){while(1){g=d<<2;q=(b<<2)+p|0;L[g+f>>2]=O(i*O(H[q>>2]))+L[g+m>>2];g=g|4;L[g+f>>2]=O(i*O(H[q+4>>2]))+L[g+m>>2];d=d+2|0;b=b+2|0;n=n+2|0;if((t|0)!=(n|0)){continue}break}}if(u){d=d<<2;L[d+f>>2]=O(i*O(H[(b<<2)+p>>2]))+L[d+m>>2];b=b+1|0}qa(H[H[c+64>>2]>>2]+r|0,f,e);r=e+r|0;s=s+1|0;if((s|0)!=(j|0)){continue}break}break a}b=0;if((j|0)!=1){a=j&-2;d=0;while(1){qa(H[H[c+64>>2]>>2]+b|0,f,e);b=b+e|0;qa(b+H[H[c+64>>2]>>2]|0,f,e);b=b+e|0;d=d+2|0;if((a|0)!=(d|0)){continue}break}}if(!(j&1)){break a}qa(H[H[c+64>>2]>>2]+b|0,f,e)}oa(f)}ca=k+16|0;return o|0}function Xh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;c=H[a+12>>2];d=H[a+108>>2];e=H[d+80>>2];F[b+84|0]=0;m=b+68|0;h=H[b+68>>2];f=H[b+72>>2]-h>>2;a:{if(f>>>0>>0){qb(m,e-f|0,12372);d=H[a+108>>2];e=H[d+80>>2];break a}if(e>>>0>=f>>>0){break a}H[b+72>>2]=h+(e<<2)}b=H[d+100>>2];f=H[d+96>>2];h=(b-f|0)/12|0;k=1;b:{if((b|0)==(f|0)){break b}n=h>>>0<=1?1:h;o=H[c>>2];c=0;d=f;b=0;k=0;while(1){c=(c<<2)+o|0;i=H[c>>2];if((i|0)==-1){break b}g=H[d>>2];if(g>>>0>=e>>>0){break b}l=H[H[a+112>>2]+12>>2];j=H[l+(i<<2)>>2];if(j>>>0>=e>>>0){break b}i=H[m>>2];H[i+(g<<2)>>2]=j;g=H[c+4>>2];if((g|0)==-1){break b}j=H[d+4>>2];if(j>>>0>=e>>>0){break b}g=H[(g<<2)+l>>2];if(g>>>0>=e>>>0){break b}H[i+(j<<2)>>2]=g;c=H[c+8>>2];if((c|0)==-1){break b}d=H[d+8>>2];if(d>>>0>=e>>>0){break b}c=H[(c<<2)+l>>2];if(c>>>0>=e>>>0){break b}H[i+(d<<2)>>2]=c;b=b+1|0;k=h>>>0<=b>>>0;if((b|0)==(n|0)){break b}c=N(b,3);d=f+N(b,12)|0;if((b|0)!=1431655765){continue}break}}return k|0}function Ph(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;c=H[a+12>>2];d=H[a+68>>2];e=H[d+80>>2];F[b+84|0]=0;m=b+68|0;h=H[b+68>>2];f=H[b+72>>2]-h>>2;a:{if(f>>>0>>0){qb(m,e-f|0,12372);d=H[a+68>>2];e=H[d+80>>2];break a}if(e>>>0>=f>>>0){break a}H[b+72>>2]=h+(e<<2)}b=H[d+100>>2];f=H[d+96>>2];h=(b-f|0)/12|0;k=1;b:{if((b|0)==(f|0)){break b}n=h>>>0<=1?1:h;o=H[c>>2];c=0;d=f;b=0;k=0;while(1){c=(c<<2)+o|0;i=H[c>>2];if((i|0)==-1){break b}g=H[d>>2];if(g>>>0>=e>>>0){break b}l=H[H[a+72>>2]+12>>2];j=H[l+(i<<2)>>2];if(j>>>0>=e>>>0){break b}i=H[m>>2];H[i+(g<<2)>>2]=j;g=H[c+4>>2];if((g|0)==-1){break b}j=H[d+4>>2];if(j>>>0>=e>>>0){break b}g=H[(g<<2)+l>>2];if(g>>>0>=e>>>0){break b}H[i+(j<<2)>>2]=g;c=H[c+8>>2];if((c|0)==-1){break b}d=H[d+8>>2];if(d>>>0>=e>>>0){break b}c=H[(c<<2)+l>>2];if(c>>>0>=e>>>0){break b}H[i+(d<<2)>>2]=c;b=b+1|0;k=h>>>0<=b>>>0;if((b|0)==(n|0)){break b}c=N(b,3);d=f+N(b,12)|0;if((b|0)!=1431655765){continue}break}}return k|0}function Wa(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;d=ca-16|0;ca=d;a:{f=H[a+4>>2];b:{if(f>>>0>>0){e=b-f|0;c=H[a+8>>2];g=c<<5;c:{if(!(e>>>0>g>>>0|f>>>0>g-e>>>0)){H[a+4>>2]=b;h=f&31;b=H[a>>2]+(f>>>3&536870908)|0;break c}H[d+8>>2]=0;H[d>>2]=0;H[d+4>>2]=0;if((b|0)<0){break a}if(g>>>0<=1073741822){c=c<<6;b=b+31&-32;b=b>>>0>>0?c:b}else{b=2147483647}pb(d,b);f=H[a+4>>2];H[d+4>>2]=f+e;i=H[a>>2];b=H[d>>2];d:{if((f|0)<=0){break d}c=f>>>5|0;if(f>>>0>=32){va(b,i,c<<2)}g=c<<2;b=g+b|0;h=f&31;if(h){c=-1>>>32-h|0;H[b>>2]=H[b>>2]&(c^-1)|H[i+g>>2]&c}i=H[a>>2]}H[a>>2]=H[d>>2];H[d>>2]=i;c=H[a+4>>2];H[a+4>>2]=H[d+4>>2];H[d+4>>2]=c;c=H[a+8>>2];H[a+8>>2]=H[d+8>>2];H[d+8>>2]=c;if(!i){break c}oa(i)}if(!e){break b}if(h){c=32-h|0;a=c>>>0>>0?c:e;H[b>>2]=H[b>>2]&(-1<>>c-a^-1);e=e-a|0;b=b+4|0}a=e>>>5|0;if(e>>>0>=32){ra(b,0,a<<2)}if((e&-32)==(e|0)){break b}a=(a<<2)+b|0;H[a>>2]=H[a>>2]&(-1>>>32-(e&31)^-1);break b}H[a+4>>2]=b}ca=d+16|0;return}sa();v()}function Je(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0;e=H[a+12>>2];i=H[a+8>>2];d=e-i>>2;b=I[b+24|0];a:{if(d>>>0>>0){ya(a+8|0,b-d|0);i=H[a+8>>2];e=H[a+12>>2];break a}if(b>>>0>=d>>>0){break a}e=(b<<2)+i|0;H[a+12>>2]=e}b=0;f=H[c+8>>2];h=H[c+12>>2];j=H[c+20>>2];e=e-i|0;d=H[c+16>>2];g=e+d|0;j=e>>>0>g>>>0?j+1|0:j;b:{if(f>>>0>>0&(h|0)<=(j|0)|(h|0)<(j|0)){break b}qa(i,d+H[c>>2]|0,e);d=H[c+20>>2];g=e;e=e+H[c+16>>2]|0;d=g>>>0>e>>>0?d+1|0:d;H[c+16>>2]=e;H[c+20>>2]=d;f=H[c+8>>2];h=H[c+12>>2];g=e+4|0;d=g>>>0<4?d+1|0:d;if(f>>>0>>0&(d|0)>=(h|0)|(d|0)>(h|0)){break b}d=e+H[c>>2]|0;H[a+20>>2]=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);d=H[c+20>>2];g=d;f=d;e=H[c+16>>2];d=e+4|0;f=d>>>0<4?f+1|0:f;H[c+16>>2]=d;H[c+20>>2]=f;h=H[c+12>>2];if((f|0)>=(h|0)&d>>>0>=K[c+8>>2]|(f|0)>(h|0)){break b}f=I[d+H[c>>2]|0];d=g;e=e+5|0;d=e>>>0<5?d+1|0:d;H[c+16>>2]=e;H[c+20>>2]=d;if(f-1>>>0>29){break b}H[a+4>>2]=f;b=1}return b|0}function qd(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;a:{f=H[a+4>>2];b:{if((f|0)!=H[a>>2]){c=f;break b}g=H[a+8>>2];c=H[a+12>>2];if(g>>>0>>0){e=((c-g>>2)+1|0)/2<<2;c=e+g|0;if((f|0)!=(g|0)){d=g-f|0;c=c-d|0;va(c,f,d);f=H[a+8>>2]}H[a+4>>2]=c;H[a+8>>2]=e+f;break b}d=(c|0)==(f|0)?1:c-f>>1;if(d>>>0>=1073741824){break a}c=d<<2;i=pa(c);k=i+c|0;c=(d+3&-4)+i|0;h=c;c:{if((f|0)==(g|0)){break c}g=g-f|0;l=g&-4;e=c;d=f;j=g-4|0;g=(j>>>2|0)+1&7;if(g){h=0;while(1){H[e>>2]=H[d>>2];d=d+4|0;e=e+4|0;h=h+1|0;if((g|0)!=(h|0)){continue}break}}h=c+l|0;if(j>>>0<28){break c}while(1){H[e>>2]=H[d>>2];H[e+4>>2]=H[d+4>>2];H[e+8>>2]=H[d+8>>2];H[e+12>>2]=H[d+12>>2];H[e+16>>2]=H[d+16>>2];H[e+20>>2]=H[d+20>>2];H[e+24>>2]=H[d+24>>2];H[e+28>>2]=H[d+28>>2];d=d+32|0;e=e+32|0;if((h|0)!=(e|0)){continue}break}}H[a+12>>2]=k;H[a+8>>2]=h;H[a+4>>2]=c;H[a>>2]=i;if(!f){break b}oa(f);c=H[a+4>>2]}H[c-4>>2]=H[b>>2];H[a+4>>2]=H[a+4>>2]-4;return}wa();v()}function sb(a,b){var c=0;a:{if(!ta(a,b)){break a}if(!ta(a+16|0,b)){break a}if(!ta(a+32|0,b)){break a}if(!ta(a+48|0,b)){break a}if(!ta(a- -64|0,b)){break a}if(!ta(a+80|0,b)){break a}if(!ta(a+96|0,b)){break a}if(!ta(a+112|0,b)){break a}if(!ta(a+128|0,b)){break a}if(!ta(a+144|0,b)){break a}if(!ta(a+160|0,b)){break a}if(!ta(a+176|0,b)){break a}if(!ta(a+192|0,b)){break a}if(!ta(a+208|0,b)){break a}if(!ta(a+224|0,b)){break a}if(!ta(a+240|0,b)){break a}if(!ta(a+256|0,b)){break a}if(!ta(a+272|0,b)){break a}if(!ta(a+288|0,b)){break a}if(!ta(a+304|0,b)){break a}if(!ta(a+320|0,b)){break a}if(!ta(a+336|0,b)){break a}if(!ta(a+352|0,b)){break a}if(!ta(a+368|0,b)){break a}if(!ta(a+384|0,b)){break a}if(!ta(a+400|0,b)){break a}if(!ta(a+416|0,b)){break a}if(!ta(a+432|0,b)){break a}if(!ta(a+448|0,b)){break a}if(!ta(a+464|0,b)){break a}if(!ta(a+480|0,b)){break a}if(!ta(a+496|0,b)){break a}c=ta(a+512|0,b)}return c}function qf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;a:{if(!ke(a,b)){break a}h=a+36|0;g=ea[H[H[a>>2]+24>>2]](a)|0;e=H[a+40>>2];d=H[a+36>>2];c=e-d>>2;b:{if(g>>>0>c>>>0){Vb(h,g-c|0);break b}if(c>>>0<=g>>>0){break b}d=d+(g<<2)|0;if((d|0)!=(e|0)){while(1){e=e-4|0;c=H[e>>2];H[e>>2]=0;if(c){ea[H[H[c>>2]+4>>2]](c)}if((d|0)!=(e|0)){continue}break}}H[a+40>>2]=d}c=1;if((g|0)<=0){break a}e=0;while(1){c:{c=H[b+20>>2];f=H[b+12>>2];d=H[b+16>>2];if((c|0)>=(f|0)&d>>>0>=K[b+8>>2]|(c|0)>(f|0)){break c}f=I[H[b>>2]+d|0];d=d+1|0;c=d?c:c+1|0;H[b+16>>2]=d;H[b+20>>2]=c;d=ea[H[H[a>>2]+48>>2]](a,f)|0;f=e<<2;i=f+H[a+36>>2]|0;c=H[i>>2];H[i>>2]=d;if(c){ea[H[H[c>>2]+4>>2]](c)}c=H[H[h>>2]+f>>2];if(!c){break c}if(!(k=c,l=ea[H[H[a>>2]+28>>2]](a)|0,m=ea[H[H[a>>2]+20>>2]](a,e)|0,j=H[H[c>>2]+8>>2],ea[j](k|0,l|0,m|0)|0)){break c}c=1;e=e+1|0;if((g|0)!=(e|0)){continue}break a}break}c=0}return c|0}function he(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;j=+L[b>>2];k=+L[b+4>>2];l=+L[b+8>>2];g=P(j)+P(k)+P(l);a:{if(!(g>1e-6)){j=1;k=0;e=0;break a}g=1/g;k=g*k;j=g*j;e=g*l<0}h=H[a+16>>2];l=+(h|0);g=T(j*l+.5);b:{if(P(g)<2147483648){m=~~g;break b}m=-2147483648}f=m>>31;i=(f^m)-f|0;g=T(k*l+.5);c:{if(P(g)<2147483648){f=~~g;break c}f=-2147483648}b=f>>31;b=h-(i+((f^b)-b|0)|0)|0;i=(b|0)>0?b:0;e=e?0-i|0:i;f=f+(b>>31&((f|0)>0?b:0-b|0))|0;d:{if((m|0)>=0){b=e+h|0;a=H[a+8>>2];e=h+f|0;break d}b=f>>31;b=(b^f)-b|0;a=H[a+8>>2];b=(e|0)<0?b:a-b|0;e=(f|0)<0?i:a-i|0}e:{if(!(b|e)){b=a;break e}if(!((a|0)!=(b|0)|e)){b=a;break e}if(!((a|0)!=(e|0)|b)){b=a;break e}if(!((b|0)<=(h|0)|e)){b=(h<<1)-b|0;a=0;break e}if(!((a|0)!=(e|0)|(b|0)>=(h|0))){b=(h<<1)-b|0;break e}if(!((a|0)!=(b|0)|(e|0)>=(h|0))){b=a;a=(h<<1)-e|0;break e}if(b){a=e;break e}b=0;if((e|0)<=(h|0)){a=e;break e}a=(h<<1)-e|0}H[c>>2]=a;H[d>>2]=b}function Ve(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=H[b+8>>2];h=H[b+12>>2];c=H[b+20>>2];i=c;k=H[b+16>>2];d=k+4|0;c=d>>>0<4?c+1|0:c;a:{if(d>>>0>g>>>0&(c|0)>=(h|0)|(c|0)>(h|0)){break a}l=H[b>>2];f=k+l|0;e=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);H[b+16>>2]=d;H[b+20>>2]=c;c=i;f=k+8|0;c=f>>>0<8?c+1|0:c;if(f>>>0>g>>>0&(c|0)>=(h|0)|(c|0)>(h|0)){break a}d=d+l|0;j=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=f;H[b+20>>2]=c;if((e|0)>(j|0)){break a}H[a+16>>2]=j;H[a+12>>2]=e;d=j-e|0;e=(j>>31)-((e>>31)+(e>>>0>j>>>0)|0)|0;if(!e&d>>>0>2147483646|e){break a}d=d+1|0;H[a+20>>2]=d;e=d>>>1|0;H[a+24>>2]=e;H[a+28>>2]=0-e;if(!(d&1)){H[a+24>>2]=e-1}if(J[b+38>>1]<=513){if((c|0)>=(h|0)&f>>>0>=g>>>0|(c|0)>(h|0)){break a}g=I[f+l|0];c=i;i=k+9|0;c=i>>>0<9?c+1|0:c;H[b+16>>2]=i;H[b+20>>2]=c;if(g>>>0>1){break a}H[a+88>>2]=g}m=ta(a+112|0,b)}return m|0}function Hc(a,b){var c=0,d=0,e=0,f=0,g=0,h=0;g=H[a>>2];c=g+(b>>>3&536870908)|0;H[c>>2]=H[c>>2]|1<>2];e=(b|0)==-1;d=-1;a:{if(e){break a}c=b+1|0;c=(c>>>0)%3|0?c:b-2|0;d=-1;if((c|0)==-1){break a}d=H[H[f>>2]+(c<<2)>>2]}c=H[a+12>>2];h=(d>>>3&536870908)+c|0;H[h>>2]=H[h>>2]|1<>>0)%3|0){e=b-1|0;break e}e=b+2|0;d=-1;if((e|0)==-1){break d}}d=H[H[f>>2]+(e<<2)>>2]}e=(d>>>3&536870908)+c|0;H[e>>2]=H[e>>2]|1<>2]+(b<<2)>>2];if((b|0)==-1){break b}F[a+24|0]=0;a=(b>>>3&536870908)+g|0;H[a>>2]=H[a>>2]|1<>>0)%3|0?a:b-2|0;if((a|0)!=-1){d=H[H[f>>2]+(a<<2)>>2]}a=c+(d>>>3&536870908)|0;H[a>>2]=H[a>>2]|1<>>0)%3|0){b=b-1|0;break g}b=b+2|0;a=-1;if((b|0)==-1){break f}}a=H[H[f>>2]+(b<<2)>>2]}b=1<>>3&536870908)|0;c=H[a>>2];break c}a=c+536870908|0;b=H[c+536870908>>2];c=-2147483648}H[a>>2]=b|c}}function Fd(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=O(0),f=O(0),g=O(0),h=O(0),i=O(0),j=0,k=O(0),l=O(0),m=O(0),n=O(0),o=0;a:{if(H[c+28>>2]!=9|I[c+24|0]!=3){break a}a=H[a+4>>2];if(a-2>>>0>28){break a}o=1;j=H[c+80>>2];if(!j){break a}k=O(O(2)/O((1<>2]>>2]+H[c+48>>2]|0;a=H[H[b>>2]>>2]+H[b+48>>2]|0;b=0;while(1){g=O(0);l=O(0);m=O(0);e=O(O(O(H[a>>2])*k)+O(-1));f=O(O(O(H[a+4>>2])*k)+O(-1));i=O(O(O(1)-O(P(e)))-O(P(f)));h=O(S(O(-i),O(0)));n=O(-h);f=O(f+(f>>8;F[c+10|0]=d>>>16;F[c+11|0]=d>>>24;d=(w(l),y(2));F[c+4|0]=d;F[c+5|0]=d>>>8;F[c+6|0]=d>>>16;F[c+7|0]=d>>>24;d=(w(g),y(2));F[c|0]=d;F[c+1|0]=d>>>8;F[c+2|0]=d>>>16;F[c+3|0]=d>>>24;c=c+12|0;b=b+1|0;if((j|0)!=(b|0)){continue}break}}return o|0}function Vd(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0;a:{if(b>>>0<=63){b=0;a=H[a+12>>2];if(a>>>0<2){break a}b=a-1|0;e=b&3;d=H[c>>2];c=0;b:{if(a-2>>>0<3){a=1;b=0;break b}f=b&-4;b=0;a=1;while(1){g=a+3|0;h=a+2|0;i=a+1|0;b=K[d+(b<<2)>>2]>K[d+(a<<2)>>2]?a:b;b=K[d+(b<<2)>>2]>K[d+(i<<2)>>2]?i:b;b=K[d+(b<<2)>>2]>K[d+(h<<2)>>2]?h:b;b=K[d+(b<<2)>>2]>K[d+(g<<2)>>2]?g:b;a=a+4|0;j=j+4|0;if((f|0)!=(j|0)){continue}break}}if(!e){break a}while(1){b=K[d+(b<<2)>>2]>K[d+(a<<2)>>2]?a:b;a=a+1|0;c=c+1|0;if((e|0)!=(c|0)){continue}break}break a}b=H[a+580>>2];d=32-b|0;if((d|0)>=4){c=H[a+576>>2];if((c|0)==H[a+568>>2]){return 0}d=H[c>>2];e=b+4|0;H[a+580>>2]=e;b=d<>>28|0;if((e|0)!=32){break a}H[a+580>>2]=0;H[a+576>>2]=c+4;return b}c=H[a+576>>2];e=c+4|0;if((e|0)==H[a+568>>2]){return 0}f=H[c>>2];H[a+576>>2]=e;H[a+580>>2]=b-28;a=60-b|0;b=H[c+4>>2]>>>a|f<>>a-d}return b}function Ae(a){a=a|0;var b=0,c=0,d=0,e=0;H[a>>2]=11436;b=H[a+388>>2];if(b){H[a+392>>2]=b;oa(b)}d=H[a+368>>2];H[a+368>>2]=0;if(d){e=d-4|0;b=H[e>>2];if(b){c=(b<<4)+d|0;while(1){c=c-16|0;if((d|0)!=(c|0)){continue}break}}oa(e)}Yc(a+216|0);b=H[a+196>>2];if(b){H[a+200>>2]=b;oa(b)}b=H[a+184>>2];if(b){H[a+188>>2]=b;oa(b)}b=H[a+172>>2];if(b){H[a+176>>2]=b;oa(b)}b=H[a+160>>2];if(b){H[a+164>>2]=b;oa(b)}c=H[a+144>>2];if(c){while(1){b=H[c>>2];oa(c);c=b;if(b){continue}break}}b=H[a+136>>2];H[a+136>>2]=0;if(b){oa(b)}b=H[a+120>>2];if(b){oa(b)}b=H[a+108>>2];if(b){oa(b)}b=H[a+96>>2];if(b){oa(b)}b=H[a+72>>2];if(b){H[a+76>>2]=b;oa(b)}b=H[a+60>>2];if(b){oa(b)}b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}b=H[a+36>>2];if(b){H[a+40>>2]=b;oa(b)}b=H[a+24>>2];if(b){H[a+28>>2]=b;oa(b)}b=H[a+12>>2];if(b){H[a+16>>2]=b;oa(b)}b=H[a+8>>2];H[a+8>>2]=0;if(b){cb(b)}return a|0}function Sg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0;a:{a=ca-32|0;ca=a;e=Ma(c);if(e>>>0<2147483632){b:{c:{if(e>>>0>=11){g=(e|15)+1|0;f=pa(g);H[a+24>>2]=g|-2147483648;H[a+16>>2]=f;H[a+20>>2]=e;g=e+f|0;break c}F[a+27|0]=e;f=a+16|0;g=e+f|0;if(!e){break b}}qa(f,c,e)}F[g|0]=0;H[a+8>>2]=0;H[a>>2]=0;H[a+4>>2]=0;d:{c=nb(b,a+16|0);if((c|0)==(b+4|0)){break d}b=H[c+28>>2];e=H[c+32>>2];if((b|0)==(e|0)){break d}b=e-b|0;if(b&3){break d}e=b>>>2|0;f=H[a+4>>2];b=H[a>>2];g=f-b>>2;e:{if(e>>>0>g>>>0){ya(a,e-g|0);b=H[a>>2];f=H[a+4>>2];break e}if(e>>>0>=g>>>0){break e}f=(e<<2)+b|0;H[a+4>>2]=f}if((b|0)!=(f|0)){e=b;b=H[c+28>>2];qa(e,b,H[c+32>>2]-b|0);break d}Ca();v()}b=H[d>>2];if(b){H[d+4>>2]=b;oa(b)}H[d>>2]=H[a>>2];H[d+4>>2]=H[a+4>>2];H[d+8>>2]=H[a+8>>2];if(F[a+27|0]<0){oa(H[a+16>>2])}ca=a+32|0;break a}Na();v()}}function Be(a){a=a|0;var b=0,c=0,d=0,e=0;H[a>>2]=11384;d=H[a+368>>2];H[a+368>>2]=0;if(d){e=d-4|0;b=H[e>>2];if(b){c=(b<<4)+d|0;while(1){c=c-16|0;if((d|0)!=(c|0)){continue}break}}oa(e)}Yc(a+216|0);b=H[a+196>>2];if(b){H[a+200>>2]=b;oa(b)}b=H[a+184>>2];if(b){H[a+188>>2]=b;oa(b)}b=H[a+172>>2];if(b){H[a+176>>2]=b;oa(b)}b=H[a+160>>2];if(b){H[a+164>>2]=b;oa(b)}c=H[a+144>>2];if(c){while(1){b=H[c>>2];oa(c);c=b;if(b){continue}break}}b=H[a+136>>2];H[a+136>>2]=0;if(b){oa(b)}b=H[a+120>>2];if(b){oa(b)}b=H[a+108>>2];if(b){oa(b)}b=H[a+96>>2];if(b){oa(b)}b=H[a+72>>2];if(b){H[a+76>>2]=b;oa(b)}b=H[a+60>>2];if(b){oa(b)}b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}b=H[a+36>>2];if(b){H[a+40>>2]=b;oa(b)}b=H[a+24>>2];if(b){H[a+28>>2]=b;oa(b)}b=H[a+12>>2];if(b){H[a+16>>2]=b;oa(b)}b=H[a+8>>2];H[a+8>>2]=0;if(b){cb(b)}return a|0}function Ug(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0;d=ca-16|0;ca=d;a:{e=Ma(c);if(e>>>0<2147483632){b:{c:{if(e>>>0>=11){f=(e|15)+1|0;a=pa(f);H[d+8>>2]=f|-2147483648;H[d>>2]=a;H[d+4>>2]=e;f=a+e|0;break c}F[d+11|0]=e;f=d+e|0;a=d;if(!e){break b}}qa(a,c,e)}F[f|0]=0;c=I[d+11|0];e=c<<24>>24;b=H[b+4>>2];a=0;d:{if(!b){break d}a=c;c=(e|0)<0;a=c?H[d+4>>2]:a;f=c?H[d>>2]:d;while(1){c=I[b+27|0];g=c<<24>>24<0;c=g?H[b+20>>2]:c;i=c>>>0>>0;e:{f:{g:{h:{i:{j:{h=i?c:a;if(h){g=g?H[b+16>>2]:b+16|0;j=Fa(f,g,h);if(j){break j}if(a>>>0>=c>>>0){break i}break e}if(a>>>0>=c>>>0){break h}break e}if((j|0)<0){break e}}c=Fa(g,f,h);if(c){break g}}if(i){break f}a=1;break d}if((c|0)<0){break f}a=1;break d}b=b+4|0}b=H[b>>2];if(b){continue}break}a=0}if((e|0)<0){oa(H[d>>2])}ca=d+16|0;break a}Na();v()}return a|0}function fd(a,b){var c=0,d=0;c=H[b+8>>2];H[a+4>>2]=H[b+4>>2];H[a+8>>2]=c;H[a+20>>2]=H[b+20>>2];c=H[b+16>>2];H[a+12>>2]=H[b+12>>2];H[a+16>>2]=c;a:{b:{if((a|0)!=(b|0)){c=H[b+28>>2];if(c){d=H[a+24>>2];if(H[a+32>>2]<<5>>>0>>0){if(d){oa(d);H[a+32>>2]=0;H[a+24>>2]=0;H[a+28>>2]=0;c=H[b+28>>2]}if((c|0)<0){break b}c=(c-1>>>5|0)+1|0;d=pa(c<<2);H[a+32>>2]=c;H[a+28>>2]=0;H[a+24>>2]=d;c=H[b+28>>2]}va(d,H[b+24>>2],(c-1>>>3&536870908)+4|0);c=H[b+28>>2]}else{c=0}H[a+28>>2]=c;c=H[b+40>>2];if(c){d=H[a+36>>2];if(H[a+44>>2]<<5>>>0>>0){if(d){oa(d);H[a+44>>2]=0;H[a+36>>2]=0;H[a+40>>2]=0;c=H[b+40>>2]}if((c|0)<0){break a}c=(c-1>>>5|0)+1|0;d=pa(c<<2);H[a+44>>2]=c;H[a+40>>2]=0;H[a+36>>2]=d;c=H[b+40>>2]}va(d,H[b+36>>2],(c-1>>>3&536870908)+4|0);b=H[b+40>>2]}else{b=0}H[a+40>>2]=b}return}sa();v()}sa();v()}function uc(a){var b=0,c=0,d=0;b=H[a+8>>2];d=H[a>>2];a:{if(I[a+12|0]){b:{c:{d:{e:{if((b|0)==-1){break e}c=b+1|0;b=(c>>>0)%3|0?c:b-2|0;if((b|0)==-1){break e}b=H[H[d+12>>2]+(b<<2)>>2];if((b|0)!=-1){break d}}H[a+8>>2]=-1;break c}c=b+1|0;b=(c>>>0)%3|0?c:b-2|0;H[a+8>>2]=b;if((b|0)!=-1){break b}}c=H[a+4>>2];b=-1;f:{if((c|0)==-1){break f}g:{if((c>>>0)%3|0){c=c-1|0;break g}c=c+2|0;b=-1;if((c|0)==-1){break f}}c=H[H[d+12>>2]+(c<<2)>>2];b=-1;if((c|0)==-1){break f}b=c-1|0;if((c>>>0)%3|0){break f}b=c+2|0}F[a+12|0]=0;H[a+8>>2]=b;return}if((b|0)!=H[a+4>>2]){break a}H[a+8>>2]=-1;return}c=-1;h:{if((b|0)==-1){break h}i:{if((b>>>0)%3|0){b=b-1|0;break i}b=b+2|0;c=-1;if((b|0)==-1){break h}}b=H[H[d+12>>2]+(b<<2)>>2];c=-1;if((b|0)==-1){break h}c=b-1|0;if((b>>>0)%3|0){break h}c=b+2|0}H[a+8>>2]=c}}function Rf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0;f=ca-32|0;ca=f;d=H[a+28>>2];H[f+16>>2]=d;g=H[a+20>>2];H[f+28>>2]=c;H[f+24>>2]=b;b=g-d|0;H[f+20>>2]=b;g=b+c|0;i=2;a:{b:{b=f+16|0;d=Z(H[a+60>>2],b|0,2,f+12|0)|0;if(d){H[3992]=d;d=-1}else{d=0}c:{d:{if(d){d=b;break d}while(1){e=H[f+12>>2];if((e|0)==(g|0)){break c}if((e|0)<0){d=b;break b}h=H[b+4>>2];j=h>>>0>>0;d=(j<<3)+b|0;h=e-(j?h:0)|0;H[d>>2]=h+H[d>>2];b=(j?12:4)+b|0;H[b>>2]=H[b>>2]-h;g=g-e|0;b=d;i=i-j|0;e=Z(H[a+60>>2],b|0,i|0,f+12|0)|0;if(e){H[3992]=e;e=-1}else{e=0}if(!e){continue}break}}if((g|0)!=-1){break b}}b=H[a+44>>2];H[a+28>>2]=b;H[a+20>>2]=b;H[a+16>>2]=b+H[a+48>>2];a=c;break a}H[a+28>>2]=0;H[a+16>>2]=0;H[a+20>>2]=0;H[a>>2]=H[a>>2]|32;a=0;if((i|0)==2){break a}a=c-H[d+4>>2]|0}ca=f+32|0;return a|0}function Ih(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0;e=H[a+4>>2];d=H[e>>2];a:{b=H[a+12>>2];c=H[b+56>>2]-H[b+52>>2]|0;f=c>>2;b:{if(f>>>0<=H[e+8>>2]-d>>2>>>0){break b}if((c|0)<0){break a}b=H[e+4>>2];c=pa(c);f=c+(f<<2)|0;g=c+(b-d&-4)|0;c=g;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;H[c>>2]=H[b>>2];if((b|0)!=(d|0)){continue}break}}H[e+8>>2]=f;H[e+4>>2]=g;H[e>>2]=c;if(!d){break b}oa(d)}e=a+8|0;b=H[a+76>>2];c:{if(b){d=H[b>>2];if((d|0)==H[b+4>>2]){return 1}b=0;while(1){c=we(e,H[(b<<2)+d>>2]);if(!c){break c}f=H[a+76>>2];d=H[f>>2];b=b+1|0;if(b>>>0>2]-d>>2>>>0){continue}break}break c}c=1;a=H[H[a+12>>2]+64>>2];a=H[a+4>>2]-H[a>>2]|0;if(a>>>0<12){break c}a=(a>>2>>>0)/3|0;b=0;while(1){c=we(e,N(b,3));if(!c){break c}b=b+1|0;if((a|0)!=(b|0)){continue}break}}return c|0}sa();v()}function Oh(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0;e=H[a+4>>2];d=H[e>>2];a:{b=H[a+12>>2];c=H[b+28>>2]-H[b+24>>2]|0;f=c>>2;b:{if(f>>>0<=H[e+8>>2]-d>>2>>>0){break b}if((c|0)<0){break a}b=H[e+4>>2];c=pa(c);f=c+(f<<2)|0;g=c+(b-d&-4)|0;c=g;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;H[c>>2]=H[b>>2];if((b|0)!=(d|0)){continue}break}}H[e+8>>2]=f;H[e+4>>2]=g;H[e>>2]=c;if(!d){break b}oa(d)}e=a+8|0;b=H[a+76>>2];c:{if(b){d=H[b>>2];if((d|0)==H[b+4>>2]){return 1}b=0;while(1){c=xe(e,H[(b<<2)+d>>2]);if(!c){break c}f=H[a+76>>2];d=H[f>>2];b=b+1|0;if(b>>>0>2]-d>>2>>>0){continue}break}break c}c=1;a=H[a+12>>2];a=H[a+4>>2]-H[a>>2]|0;if(a>>>0<12){break c}a=(a>>2>>>0)/3|0;b=0;while(1){c=xe(e,N(b,3));if(!c){break c}b=b+1|0;if((a|0)!=(b|0)){continue}break}}return c|0}sa();v()}function Te(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;g=H[b+8>>2];h=H[b+12>>2];c=H[b+20>>2];i=c;e=H[b+16>>2];d=e+4|0;c=d>>>0<4?c+1|0:c;a:{if(d>>>0>g>>>0&(c|0)>=(h|0)|(c|0)>(h|0)){break a}j=H[b>>2];f=e+j|0;f=I[f|0]|I[f+1|0]<<8|(I[f+2|0]<<16|I[f+3|0]<<24);H[b+16>>2]=d;H[b+20>>2]=c;k=J[b+38>>1];if(k>>>0<=513){c=i;d=e+8|0;c=d>>>0<8?c+1|0:c;if(d>>>0>g>>>0&(c|0)>=(h|0)|(c|0)>(h|0)){break a}H[b+16>>2]=d;H[b+20>>2]=c}if(!(f&1)){break a}e=Q(f)^31;if(e-1>>>0>28){break a}H[a+8>>2]=e+1;i=-2<>2]=e;H[a+12>>2]=i^-1;H[a+24>>2]=e>>1;L[a+20>>2]=O(2)/O(e|0);if(k>>>0<=513){if((c|0)>=(h|0)&d>>>0>=g>>>0|(c|0)>(h|0)){break a}g=I[d+j|0];d=d+1|0;c=d?c:c+1|0;H[b+16>>2]=d;H[b+20>>2]=c;if(g>>>0>1){break a}H[a+72>>2]=g}l=ta(a+96|0,b)}return l|0}function Se(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;f=H[b+8>>2];g=H[b+12>>2];c=H[b+20>>2];h=c;i=H[b+16>>2];e=i+4|0;c=e>>>0<4?c+1|0:c;a:{if(e>>>0>f>>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break a}j=H[b>>2];d=i+j|0;d=I[d|0]|I[d+1|0]<<8|(I[d+2|0]<<16|I[d+3|0]<<24);H[b+16>>2]=e;H[b+20>>2]=c;c=h;e=i+8|0;c=e>>>0<8?c+1|0:c;if(e>>>0>f>>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break a}H[b+16>>2]=e;H[b+20>>2]=c;if(!(d&1)){break a}d=Q(d)^31;if(d-1>>>0>28){break a}H[a+8>>2]=d+1;k=-2<>2]=d;H[a+12>>2]=k^-1;H[a+24>>2]=d>>1;L[a+20>>2]=O(2)/O(d|0);if(J[b+38>>1]<=513){if((c|0)>=(g|0)&e>>>0>=f>>>0|(c|0)>(g|0)){break a}c=I[e+j|0];f=i+9|0;h=f>>>0<9?h+1|0:h;H[b+16>>2]=f;H[b+20>>2]=h;if(c>>>0>1){break a}H[a+72>>2]=c}l=ta(a+96|0,b)}return l|0} -function va(a,b,c){var d=0,e=0;a:{if((a|0)==(b|0)){break a}e=a+c|0;if(b-e>>>0<=0-(c<<1)>>>0){return qa(a,b,c)}d=(a^b)&3;b:{c:{if(a>>>0>>0){if(d){d=a;break b}if(!(a&3)){d=a;break c}d=a;while(1){if(!c){break a}F[d|0]=I[b|0];b=b+1|0;c=c-1|0;d=d+1|0;if(d&3){continue}break}break c}d:{if(d){break d}if(e&3){while(1){if(!c){break a}c=c-1|0;d=c+a|0;F[d|0]=I[b+c|0];if(d&3){continue}break}}if(c>>>0<=3){break d}while(1){c=c-4|0;H[c+a>>2]=H[b+c>>2];if(c>>>0>3){continue}break}}if(!c){break a}while(1){c=c-1|0;F[c+a|0]=I[b+c|0];if(c){continue}break}break a}if(c>>>0<=3){break b}while(1){H[d>>2]=H[b>>2];b=b+4|0;d=d+4|0;c=c-4|0;if(c>>>0>3){continue}break}}if(!c){break a}while(1){F[d|0]=I[b|0];d=d+1|0;b=b+1|0;c=c-1|0;if(c){continue}break}}return a}function ff(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;h=H[c+12>>2];f=h;e=H[c+20>>2];i=H[c+8>>2];g=H[c+16>>2];a:{if((f|0)<=(e|0)&i>>>0<=g>>>0|(e|0)>(f|0)){break a}j=H[c>>2];k=F[j+g|0];d=e;f=g+1|0;d=f?d:d+1|0;H[c+16>>2]=f;H[c+20>>2]=d;b:{if((k|0)==-2){break b}if((d|0)>=(h|0)&f>>>0>=i>>>0|(d|0)>(h|0)){break a}d=F[f+j|0];g=g+2|0;e=g>>>0<2?e+1|0:e;H[c+16>>2]=g;H[c+20>>2]=e;if((d-4&255)>>>0<251){break a}e=ea[H[H[a>>2]+40>>2]](a,k,d)|0;d=H[a+20>>2];H[a+20>>2]=e;if(!d){break b}ea[H[H[d>>2]+4>>2]](d)}d=H[a+20>>2];if(d){if(!(ea[H[H[a>>2]+28>>2]](a,d)|0)){break a}}if(!(ea[H[H[a>>2]+36>>2]](a,b,c)|0)){break a}c=H[a+4>>2];if(!(!c|I[c+36|0]>1)){if(!(ea[H[H[a>>2]+48>>2]](a,H[b+4>>2]-H[b>>2]>>2)|0)){break a}}l=1}return l|0}function Vb(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;d=H[a+8>>2];c=H[a+4>>2];if(d-c>>2>>>0>=b>>>0){if(b){b=b<<2;c=ra(c,0,b)+b|0}H[a+4>>2]=c;return}a:{b:{c:{g=H[a>>2];f=c-g>>2;e=f+b|0;if(e>>>0<1073741824){d=d-g|0;h=d>>>1|0;e=d>>>0>=2147483644?1073741823:e>>>0>>0?h:e;if(e){if(e>>>0>=1073741824){break c}i=pa(e<<2)}d=(f<<2)+i|0;f=b<<2;b=ra(d,0,f);f=b+f|0;e=(e<<2)+i|0;if((c|0)==(g|0)){break b}while(1){c=c-4|0;b=H[c>>2];H[c>>2]=0;d=d-4|0;H[d>>2]=b;if((c|0)!=(g|0)){continue}break}H[a+8>>2]=e;b=H[a+4>>2];H[a+4>>2]=f;c=H[a>>2];H[a>>2]=d;if((b|0)==(c|0)){break a}while(1){b=b-4|0;a=H[b>>2];H[b>>2]=0;if(a){ea[H[H[a>>2]+4>>2]](a)}if((b|0)!=(c|0)){continue}break}break a}sa();v()}wa();v()}H[a+8>>2]=e;H[a+4>>2]=f;H[a>>2]=b}if(c){oa(c)}}function Md(a,b,c){a:{switch(b-9|0){case 0:b=H[c>>2];H[c>>2]=b+4;H[a>>2]=H[b>>2];return;case 6:b=H[c>>2];H[c>>2]=b+4;b=G[b>>1];H[a>>2]=b;H[a+4>>2]=b>>31;return;case 7:b=H[c>>2];H[c>>2]=b+4;H[a>>2]=J[b>>1];H[a+4>>2]=0;return;case 8:b=H[c>>2];H[c>>2]=b+4;b=F[b|0];H[a>>2]=b;H[a+4>>2]=b>>31;return;case 9:b=H[c>>2];H[c>>2]=b+4;H[a>>2]=I[b|0];H[a+4>>2]=0;return;case 16:b=H[c>>2]+7&-8;H[c>>2]=b+8;M[a>>3]=M[b>>3];return;case 17:v();default:return;case 1:case 4:case 14:b=H[c>>2];H[c>>2]=b+4;b=H[b>>2];H[a>>2]=b;H[a+4>>2]=b>>31;return;case 2:case 5:case 11:case 15:b=H[c>>2];H[c>>2]=b+4;H[a>>2]=H[b>>2];H[a+4>>2]=0;return;case 3:case 10:case 12:case 13:break a}}b=H[c>>2]+7&-8;H[c>>2]=b+8;c=H[b+4>>2];H[a>>2]=H[b>>2];H[a+4>>2]=c}function Ed(a,b){var c=0,d=0,e=0;c=ca+-64|0;ca=c;d=H[a>>2];e=H[d-4>>2];d=H[d-8>>2];H[c+32>>2]=0;H[c+36>>2]=0;H[c+40>>2]=0;H[c+44>>2]=0;H[c+48>>2]=0;H[c+52>>2]=0;F[c+55|0]=0;F[c+56|0]=0;F[c+57|0]=0;F[c+58|0]=0;F[c+59|0]=0;F[c+60|0]=0;F[c+61|0]=0;F[c+62|0]=0;H[c+24>>2]=0;H[c+28>>2]=0;H[c+20>>2]=0;H[c+16>>2]=14924;H[c+12>>2]=a;H[c+8>>2]=b;a=a+d|0;d=0;a:{if(Ya(e,b,0)){H[c+56>>2]=1;ea[H[H[e>>2]+20>>2]](e,c+8|0,a,a,1,0);d=H[c+32>>2]==1?a:0;break a}ea[H[H[e>>2]+24>>2]](e,c+8|0,a,1,0);b:{switch(H[c+44>>2]){case 0:d=H[c+48>>2]==1?H[c+36>>2]==1?H[c+40>>2]==1?H[c+28>>2]:0:0:0;break a;case 1:break b;default:break a}}if(H[c+32>>2]!=1){if(H[c+48>>2]|H[c+36>>2]!=1|H[c+40>>2]!=1){break a}}d=H[c+24>>2]}ca=c- -64|0;return d}function ua(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;H[a+16>>2]=0;e=H[a>>2];H[a+4>>2]=e;H[a+12>>2]=e;e=H[b+8>>2];c=H[b+12>>2];h=c;d=H[b+20>>2];f=H[b+16>>2];g=f+4|0;d=g>>>0<4?d+1|0:d;a:{if(e>>>0>>0&(d|0)>=(c|0)|(d|0)>(c|0)){break a}c=f+H[b>>2]|0;c=I[c|0]|I[c+1|0]<<8|(I[c+2|0]<<16|I[c+3|0]<<24);H[b+16>>2]=g;H[b+20>>2]=d;if(!c|c&3){break a}f=h-(d+(e>>>0>>0)|0)|0;if(e-g>>>0>>0&(f|0)<=0|(f|0)<0){break a}if(c>>>0>=4){ya(a,c>>>2|0);h=H[b+12>>2];g=H[b+16>>2];d=H[b+20>>2];e=H[b+8>>2]}f=c+g|0;d=f>>>0>>0?d+1|0:d;if(e>>>0>>0&(d|0)>=(h|0)|(d|0)>(h|0)){break a}qa(H[a>>2],H[b>>2]+g|0,c);d=H[b+20>>2];e=c+H[b+16>>2]|0;d=e>>>0>>0?d+1|0:d;H[b+16>>2]=e;H[b+20>>2]=d;H[a+16>>2]=0;H[a+12>>2]=H[a>>2];i=1}return i}function de(a,b){var c=0,d=0,e=0,f=0;d=-1;e=-1;f=-1;a:{b:{if((b|0)==-1){break b}e=H[H[H[a+4>>2]+12>>2]+(b<<2)>>2];c=b+1|0;c=(c>>>0)%3|0?c:b-2|0;if((c|0)>=0){f=(c>>>0)/3|0;f=H[(H[H[a>>2]+96>>2]+N(f,12)|0)+(c-N(f,3)<<2)>>2]}c:{if((e|0)==-1){break c}c=((e>>>0)%3|0?-1:2)+e|0;if((c|0)<0){break c}d=(c>>>0)/3|0;d=H[(H[H[a>>2]+96>>2]+N(d,12)|0)+(c-N(d,3)<<2)>>2]}c=-1;if((d|0)!=(f|0)){break a}f=-1;d:{b=((b>>>0)%3|0?-1:2)+b|0;if((b|0)>=0){d=(b>>>0)/3|0;d=H[(H[H[a>>2]+96>>2]+N(d,12)|0)+(b-N(d,3)<<2)>>2];if((e|0)==-1){break b}break d}d=-1;if((e|0)!=-1){break d}break b}b=e+1|0;b=(b>>>0)%3|0?b:e-2|0;if((b|0)<0){break b}c=H[H[a>>2]+96>>2];a=(b>>>0)/3|0;f=H[(c+N(a,12)|0)+(b-N(a,3)<<2)>>2]}c=(d|0)!=(f|0)?-1:e}return c}function Ah(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0;c=pa(72);H[c+4>>2]=0;H[c+8>>2]=0;H[c>>2]=1984;H[c+12>>2]=0;H[c+16>>2]=0;H[c+20>>2]=0;H[c+24>>2]=0;H[c+28>>2]=0;H[c+32>>2]=0;H[c+36>>2]=0;H[c+40>>2]=0;H[c>>2]=2128;H[c+44>>2]=0;H[c+48>>2]=0;H[c+52>>2]=0;H[c+56>>2]=0;H[c+60>>2]=0;H[c+64>>2]=0;H[c+68>>2]=0;h=c;a:{if((b|0)>=0){g=a+8|0;c=H[a+12>>2];e=H[a+8>>2];f=c-e>>2;b:{if((f|0)>(b|0)){break b}d=b+1|0;if(b>>>0>=f>>>0){Vb(g,d-f|0);break b}if(d>>>0>=f>>>0){break b}e=(d<<2)+e|0;if((e|0)!=(c|0)){while(1){c=c-4|0;d=H[c>>2];H[c>>2]=0;if(d){ea[H[H[d>>2]+4>>2]](d)}if((c|0)!=(e|0)){continue}break}}H[a+12>>2]=e}a=H[g>>2]+(b<<2)|0;c=H[a>>2];H[a>>2]=h;if(!c){break a}}ea[H[H[c>>2]+4>>2]](c)}return(b^-1)>>>31|0}function ra(a,b,c){var d=0,e=0,f=0,g=0;a:{if(!c){break a}F[a|0]=b;d=a+c|0;F[d-1|0]=b;if(c>>>0<3){break a}F[a+2|0]=b;F[a+1|0]=b;F[d-3|0]=b;F[d-2|0]=b;if(c>>>0<7){break a}F[a+3|0]=b;F[d-4|0]=b;if(c>>>0<9){break a}d=0-a&3;e=d+a|0;b=N(b&255,16843009);H[e>>2]=b;d=c-d&-4;c=d+e|0;H[c-4>>2]=b;if(d>>>0<9){break a}H[e+8>>2]=b;H[e+4>>2]=b;H[c-8>>2]=b;H[c-12>>2]=b;if(d>>>0<25){break a}H[e+24>>2]=b;H[e+20>>2]=b;H[e+16>>2]=b;H[e+12>>2]=b;H[c-16>>2]=b;H[c-20>>2]=b;H[c-24>>2]=b;H[c-28>>2]=b;g=e&4|24;c=d-g|0;if(c>>>0<32){break a}d=Rj(b,0,1,1);f=da;b=e+g|0;while(1){H[b+24>>2]=d;H[b+28>>2]=f;H[b+16>>2]=d;H[b+20>>2]=f;H[b+8>>2]=d;H[b+12>>2]=f;H[b>>2]=d;H[b+4>>2]=f;b=b+32|0;c=c-32|0;if(c>>>0>31){continue}break}}return a}function Mj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;d=H[b+8>>2];e=H[b+12>>2];g=e;e=H[b+20>>2];k=e;h=H[b+16>>2];c=h+4|0;e=c>>>0<4?e+1|0:e;i=c;a:{if(c>>>0>d>>>0&(e|0)>=(g|0)|(e|0)>(g|0)){break a}j=H[b>>2];c=j+h|0;f=I[c|0]|I[c+1|0]<<8|(I[c+2|0]<<16|I[c+3|0]<<24);H[b+16>>2]=i;H[b+20>>2]=e;c=d;d=k;e=h+8|0;d=e>>>0<8?d+1|0:d;if(c>>>0>>0&(d|0)>=(g|0)|(d|0)>(g|0)){break a}c=i+j|0;c=I[c|0]|I[c+1|0]<<8|(I[c+2|0]<<16|I[c+3|0]<<24);H[b+16>>2]=e;H[b+20>>2]=d;if((c|0)<(f|0)){break a}H[a+16>>2]=c;H[a+12>>2]=f;d=(c>>31)-((f>>31)+(c>>>0>>0)|0)|0;b=c-f|0;if(!d&b>>>0>2147483646|d){break a}l=1;d=b+1|0;H[a+20>>2]=d;b=d>>>1|0;H[a+24>>2]=b;H[a+28>>2]=0-b;if(d&1){break a}H[a+24>>2]=b-1}return l|0}function sd(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;e=a+16|0;d=H[e>>2];a:{if(!d){break a}f=H[b>>2];b=e;while(1){g=(f|0)>H[d+16>>2];b=g?b:d;d=H[(g?d+4|0:d)>>2];if(d){continue}break}if((b|0)==(e|0)|(f|0)>2]){break a}d=H[b+24>>2];if(!d){break a}f=b+20|0;b=I[c+11|0];e=b<<24>>24<0;g=e?H[c>>2]:c;b=e?H[c+4>>2]:b;while(1){e=I[d+27|0];h=e<<24>>24<0;e=h?H[d+20>>2]:e;j=e>>>0>>0;b:{c:{d:{e:{f:{g:{i=j?e:b;if(i){h=h?H[d+16>>2]:d+16|0;k=Fa(g,h,i);if(k){break g}if(b>>>0>=e>>>0){break f}break b}if(b>>>0>=e>>>0){break e}break b}if((k|0)<0){break b}}e=Fa(h,g,i);if(e){break d}}if(j){break c}return Tc(f,c)}if((e|0)<0){break c}return Tc(f,c)}d=d+4|0}d=H[d>>2];if(d){continue}break}}return Tc(a,c)}function be(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;d=ca-16|0;ca=d;f=H[a+24>>2];k=H[a+28>>2];a:{if((f|0)!=(k|0)){while(1){H[d+8>>2]=0;H[d>>2]=0;H[d+4>>2]=0;a=$d(H[f>>2],b,d);g=I[d+11|0];h=g<<24>>24;i=3;b:{c:{d:{if(!a){break d}i=0;a=I[c+11|0];e=a<<24>>24;j=(h|0)<0?H[d+4>>2]:g;if((j|0)!=(((e|0)<0?H[c+4>>2]:a)|0)){break d}a=(e|0)<0?H[c>>2]:c;e=(h|0)<0;e:{if(!e){e=d;if(!h){break e}while(1){if(I[e|0]!=I[a|0]){break d}a=a+1|0;e=e+1|0;g=g-1|0;if(g){continue}break}break e}if(!j){break e}if(Fa(e?H[d>>2]:d,a,j)){break c}}l=H[f>>2];i=1}if((h|0)>=0){break b}}oa(H[d>>2])}f:{switch(i|0){case 0:case 3:break f;default:break a}}f=f+4|0;if((k|0)!=(f|0)){continue}break}}l=0}ca=d+16|0;return l}function Cb(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0;f=c-b|0;h=f>>2;d=H[a+8>>2];e=H[a>>2];if(h>>>0<=d-e>>2>>>0){d=H[a+4>>2];g=d-e|0;f=g+b|0;i=g>>2;g=i>>>0>>0?f:c;if((g|0)!=(b|0)){while(1){H[e>>2]=H[b>>2];e=e+4|0;b=b+4|0;if((g|0)!=(b|0)){continue}break}}if(h>>>0>i>>>0){if((c|0)!=(g|0)){while(1){H[d>>2]=H[f>>2];d=d+4|0;f=f+4|0;if((f|0)!=(c|0)){continue}break}}H[a+4>>2]=d;return}H[a+4>>2]=e;return}if(e){H[a+4>>2]=e;oa(e);H[a+8>>2]=0;H[a>>2]=0;H[a+4>>2]=0;d=0}a:{if((f|0)<0){break a}e=d>>>1|0;d=d>>>0>=2147483644?1073741823:e>>>0>h>>>0?e:h;if(d>>>0>=1073741824){break a}e=d<<2;d=pa(e);H[a>>2]=d;H[a+8>>2]=d+e;if((b|0)!=(c|0)){c=b;b=(f-4&-4)+4|0;d=qa(d,c,b)+b|0}H[a+4>>2]=d;return}sa();v()}function Oa(a,b,c){var d=0,e=0,f=0;e=ca-16|0;ca=e;H[a+4>>2]=0;a:{b:{if(!b){break b}f=H[a+8>>2];d=f<<5;c:{if(d>>>0>=b>>>0){H[a+4>>2]=b;break c}H[e+8>>2]=0;H[e>>2]=0;H[e+4>>2]=0;if((b|0)<0){break a}if(d>>>0<=1073741822){f=f<<6;d=b+31&-32;d=d>>>0>>0?f:d}else{d=2147483647}pb(e,d);f=H[a>>2];H[a>>2]=H[e>>2];H[e>>2]=f;d=H[a+4>>2];H[a+4>>2]=b;H[e+4>>2]=d;d=H[a+8>>2];H[a+8>>2]=H[e+8>>2];H[e+8>>2]=d;if(!f){break c}oa(f)}d=b>>>5|0;a=H[a>>2];if(I[c|0]){if(b>>>0>=32){ra(a,255,d<<2)}if((b&-32)==(b|0)){break b}a=a+(d<<2)|0;H[a>>2]=H[a>>2]|-1>>>32-(b&31);break b}if(b>>>0>=32){ra(a,0,d<<2)}if((b&-32)==(b|0)){break b}a=a+(d<<2)|0;H[a>>2]=H[a>>2]&(-1>>>32-(b&31)^-1)}ca=e+16|0;return}sa();v()}function Hg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0;e=ca-32|0;ca=e;a:{b:{f=Ma(c);if(f>>>0<2147483632){c:{d:{if(f>>>0>=11){a=(f|15)+1|0;g=pa(a);H[e+24>>2]=a|-2147483648;H[e+16>>2]=g;H[e+20>>2]=f;a=f+g|0;break d}F[e+27|0]=f;g=e+16|0;a=f+g|0;if(!f){break c}}qa(g,c,f)}F[a|0]=0;c=Ma(d);if(c>>>0>=2147483632){break b}e:{f:{if(c>>>0>=11){f=(c|15)+1|0;a=pa(f);H[e+8>>2]=f|-2147483648;H[e>>2]=a;H[e+4>>2]=c;g=a+c|0;break f}F[e+11|0]=c;g=c+e|0;a=e;if(!c){break e}}qa(a,d,c)}F[g|0]=0;c=H[b+4>>2];a=-1;g:{if(!c){break g}c=be(c,e+16|0,e);a=-1;if(!c){break g}a=Yd(b,H[c+24>>2])}if(F[e+11|0]<0){oa(H[e>>2])}if(F[e+27|0]<0){oa(H[e+16>>2])}ca=e+32|0;break a}Na();v()}Na();v()}return a|0}function jb(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;b=H[b>>2];h=H[b+8>>2];i=H[b+4>>2];j=H[b>>2];d=H[a>>2];b=H[d+4>>2];a=H[d+8>>2];if(b>>>0>>0){H[b+8>>2]=h;H[b+4>>2]=i;H[b>>2]=j;H[d+4>>2]=b+12;return}a:{e=H[d>>2];g=(b-e|0)/12|0;c=g+1|0;if(c>>>0<357913942){f=(a-e|0)/12|0;a=f<<1;c=f>>>0>=178956970?357913941:a>>>0>c>>>0?a:c;if(c){if(c>>>0>=357913942){break a}f=pa(N(c,12))}else{f=0}a=f+N(g,12)|0;H[a+8>>2]=h;H[a+4>>2]=i;H[a>>2]=j;g=a+12|0;if((b|0)!=(e|0)){while(1){a=a-12|0;b=b-12|0;H[a>>2]=H[b>>2];H[a+4>>2]=H[b+4>>2];H[a+8>>2]=H[b+8>>2];if((b|0)!=(e|0)){continue}break}}H[d+8>>2]=f+N(c,12);H[d+4>>2]=g;H[d>>2]=a;if(e){oa(e)}return}sa();v()}wa();v()}function lf(a,b){a=a|0;b=b|0;a=0;a:{switch(b|0){case 0:a=pa(20);H[a+12>>2]=-1;H[a+16>>2]=0;H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=2232;return a|0;case 1:a=pa(24);H[a+12>>2]=-1;H[a+16>>2]=0;H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=2232;H[a+20>>2]=0;H[a>>2]=2448;return a|0;case 2:a=pa(48);H[a+12>>2]=-1;H[a+16>>2]=0;H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=2232;H[a+20>>2]=0;H[a>>2]=2448;H[a+24>>2]=1832;H[a>>2]=11048;H[a+32>>2]=0;H[a+36>>2]=0;H[a+28>>2]=-1;H[a+40>>2]=0;H[a+44>>2]=0;return a|0;case 3:a=pa(32);H[a+12>>2]=-1;H[a+16>>2]=0;H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=2232;H[a+20>>2]=0;H[a>>2]=2448;H[a+24>>2]=1032;H[a>>2]=7028;H[a+28>>2]=-1;break;default:break a}}return a|0}function tf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;f=H[b>>2];b=H[b+4>>2];d=H[H[a+8>>2]+40>>2];j=d;m=pa((d|0)<0?-1:d);i=b-f|0;e=1;a:{if((i|0)<4){break a}b=0;g=H[c+16>>2];k=d;f=g+d|0;d=0+H[c+20>>2]|0;d=f>>>0>>0?d+1|0:d;h=H[c+12>>2];e=0;if(K[c+8>>2]>>0&(d|0)>=(h|0)|(d|0)>(h|0)){break a}e=i>>2;i=(e|0)<=1?1:e;while(1){b:{g=qa(m,H[c>>2]+g|0,j);H[c+16>>2]=f;H[c+20>>2]=d;qa(H[H[H[a+8>>2]+64>>2]>>2]+b|0,g,j);l=l+1|0;if((i|0)==(l|0)){break b}b=b+j|0;d=n+H[c+20>>2]|0;g=H[c+16>>2];f=k+g|0;d=f>>>0>>0?d+1|0:d;h=H[c+12>>2];if((d|0)<=(h|0)&K[c+8>>2]>=f>>>0|(d|0)<(h|0)){continue}}break}e=(e|0)<=(l|0)}oa(m);return e|0}function Ti(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0;H[b>>2]=1;f=b+8|0;c=H[b+8>>2];d=H[b+12>>2]-c|0;if(d>>>0<=4294967291){kc(f,d+4|0);c=H[f>>2]}c=c+d|0;d=H[a+4>>2];F[c|0]=d;F[c+1|0]=d>>>8;F[c+2|0]=d>>>16;F[c+3|0]=d>>>24;c=H[a+8>>2];if((c|0)!=H[a+12>>2]){d=0;while(1){g=(d<<2)+c|0;c=H[b+8>>2];e=H[b+12>>2]-c|0;if(e>>>0<=4294967291){kc(f,e+4|0);c=H[f>>2]}c=c+e|0;e=H[g>>2];F[c|0]=e;F[c+1|0]=e>>>8;F[c+2|0]=e>>>16;F[c+3|0]=e>>>24;d=d+1|0;c=H[a+8>>2];if(d>>>0>2]-c>>2>>>0){continue}break}}c=H[b+12>>2];b=H[b+8>>2];c=c-b|0;if(c>>>0<=4294967291){kc(f,c+4|0);b=H[f>>2]}b=b+c|0;a=H[a+20>>2];F[b|0]=a;F[b+1|0]=a>>>8;F[b+2|0]=a>>>16;F[b+3|0]=a>>>24}function Aa(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0;f=c-b|0;g=f>>2;d=H[a+8>>2];e=H[a>>2];if(g>>>0<=d-e>>2>>>0){f=H[a+4>>2]-e|0;d=f+b|0;h=f>>2;f=h>>>0>>0?d:c;i=f-b|0;if((b|0)!=(f|0)){va(e,b,i)}if(g>>>0>h>>>0){b=H[a+4>>2];if((c|0)!=(f|0)){while(1){H[b>>2]=H[d>>2];b=b+4|0;d=d+4|0;if((d|0)!=(c|0)){continue}break}}H[a+4>>2]=b;return}H[a+4>>2]=e+i;return}if(e){H[a+4>>2]=e;oa(e);H[a+8>>2]=0;H[a>>2]=0;H[a+4>>2]=0;d=0}a:{if((f|0)<0){break a}e=d>>>1|0;d=d>>>0>=2147483644?1073741823:e>>>0>g>>>0?e:g;if(d>>>0>=1073741824){break a}e=d<<2;d=pa(e);H[a>>2]=d;H[a+8>>2]=d+e;if((b|0)!=(c|0)){c=b;b=(f-4&-4)+4|0;d=qa(d,c,b)+b|0}H[a+4>>2]=d;return}sa();v()}function Rb(a,b){var c=0,d=0,e=0,f=0,g=0,h=0;c=H[a+4>>2];if((c|0)!=H[a+8>>2]){e=H[b+4>>2];H[c>>2]=H[b>>2];H[c+4>>2]=e;H[c+8>>2]=H[b+8>>2];H[a+4>>2]=c+12;return}a:{g=H[a>>2];d=(c-g|0)/12|0;e=d+1|0;if(e>>>0<357913942){f=d<<1;f=d>>>0>=178956970?357913941:e>>>0>>0?f:e;if(f){if(f>>>0>=357913942){break a}e=pa(N(f,12))}else{e=0}d=e+N(d,12)|0;h=H[b+4>>2];H[d>>2]=H[b>>2];H[d+4>>2]=h;H[d+8>>2]=H[b+8>>2];b=d+12|0;if((c|0)!=(g|0)){while(1){c=c-12|0;h=H[c+4>>2];d=d-12|0;H[d>>2]=H[c>>2];H[d+4>>2]=h;H[d+8>>2]=H[c+8>>2];if((c|0)!=(g|0)){continue}break}c=H[a>>2]}H[a+8>>2]=e+N(f,12);H[a+4>>2]=b;H[a>>2]=d;if(c){oa(c)}return}sa();v()}wa();v()}function Qi(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;f=ca-32|0;ca=f;g=e>>>0>1073741823?-1:e<<2;l=ra(pa(g),0,g);g=l;i=H[g>>2];g=H[g+4>>2];k=H[b+4>>2];H[f+24>>2]=H[b>>2];H[f+28>>2]=k;H[f+8>>2]=i;H[f+12>>2]=g;i=a+8|0;rc(f+16|0,i,f+8|0,f+24|0);H[c>>2]=H[f+16>>2];H[c+4>>2]=H[f+20>>2];if((d|0)>(e|0)){k=0-e<<2;a=e;while(1){h=a<<2;g=h+c|0;j=g+k|0;m=H[j>>2];j=H[j+4>>2];h=b+h|0;n=H[h+4>>2];H[f+24>>2]=H[h>>2];H[f+28>>2]=n;H[f+8>>2]=m;H[f+12>>2]=j;rc(f+16|0,i,f+8|0,f+24|0);H[g>>2]=H[f+16>>2];H[g+4>>2]=H[f+20>>2];a=a+e|0;if((d|0)>(a|0)){continue}break}}oa(l);ca=f+32|0;return 1}function Hi(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;f=ca-32|0;ca=f;h=e>>>0>1073741823?-1:e<<2;h=ra(pa(h),0,h);g=H[b>>2];i=H[b+4>>2];k=H[h+4>>2];H[f+16>>2]=H[h>>2];H[f+20>>2]=k;H[f+8>>2]=g;H[f+12>>2]=i;i=a+8|0;qc(f+24|0,i,f+16|0,f+8|0);H[c>>2]=H[f+24>>2];H[c+4>>2]=H[f+28>>2];if((d|0)>(e|0)){k=0-e<<2;a=e;while(1){g=a<<2;j=g+b|0;m=H[j>>2];j=H[j+4>>2];g=c+g|0;l=g+k|0;n=H[l+4>>2];H[f+16>>2]=H[l>>2];H[f+20>>2]=n;H[f+8>>2]=m;H[f+12>>2]=j;qc(f+24|0,i,f+16|0,f+8|0);H[g>>2]=H[f+24>>2];H[g+4>>2]=H[f+28>>2];a=a+e|0;if((d|0)>(a|0)){continue}break}}oa(h);ca=f+32|0;return 1}function Ag(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0;a:{if(K[b+80>>2]>65535){break a}a=H[b+100>>2];b=H[b+96>>2];e=(a-b|0)/12|0;f=N(e,6);g=(f|0)==(c|0);if((a|0)==(b|0)|(c|0)!=(f|0)){break a}g=1;c=e>>>0<=1?1:e;i=c&1;a=0;if(e>>>0>=2){j=c&-2;c=0;while(1){f=N(a,6);h=f+d|0;e=b+N(a,12)|0;G[h>>1]=H[e>>2];G[(f|2)+d>>1]=H[e+4>>2];G[h+4>>1]=H[e+8>>2];f=a|1;e=N(f,6)+d|0;f=b+N(f,12)|0;G[e>>1]=H[f>>2];G[e+2>>1]=H[f+4>>2];G[e+4>>1]=H[f+8>>2];a=a+2|0;c=c+2|0;if((j|0)!=(c|0)){continue}break}}if(!i){break a}c=N(a,6)+d|0;a=b+N(a,12)|0;G[c>>1]=H[a>>2];G[c+2>>1]=H[a+4>>2];G[c+4>>1]=H[a+8>>2]}return g|0}function Gd(a,b,c,d,e,f,g){var h=0,i=0,j=0;h=ca-16|0;ca=h;if((b^-1)+2147483631>>>0>=c>>>0){if(I[a+11|0]>>>7|0){i=H[a>>2]}else{i=a}if(b>>>0<1073741799){H[h+12>>2]=b<<1;H[h>>2]=b+c;c=ca-16|0;ca=c;ca=c+16|0;c=h+12|0;c=H[(K[h>>2]>2]?c:h)>>2];if(c>>>0>=11){j=c+16&-16;c=j-1|0;c=(c|0)==11?j:c}else{c=10}c=c+1|0}else{c=2147483631}Zb(h,c);c=H[h>>2];if(f){yb(c,g,f)}g=d-e|0;if((d|0)!=(e|0)){yb(c+f|0,e+i|0,g)}if((b|0)!=10){oa(i)}H[a>>2]=c;H[a+8>>2]=H[a+8>>2]&-2147483648|H[h+4>>2]&2147483647;H[a+8>>2]=H[a+8>>2]|-2147483648;b=a;a=f+g|0;H[b+4>>2]=a;F[h+12|0]=0;F[a+c|0]=I[h+12|0];ca=h+16|0;return}Na();v()}function Rg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0;a=ca-32|0;ca=a;H[a+24>>2]=0;H[a+28>>2]=0;a:{d=Ma(c);if(d>>>0<2147483632){b:{c:{if(d>>>0>=11){e=(d|15)+1|0;f=pa(e);H[a+16>>2]=e|-2147483648;H[a+8>>2]=f;H[a+12>>2]=d;e=d+f|0;break c}F[a+19|0]=d;f=a+8|0;e=f+d|0;if(!d){break b}}qa(f,c,d)}F[e|0]=0;c=b+4|0;b=nb(b,a+8|0);d:{if((c|0)==(b|0)){break d}c=H[b+32>>2];b=H[b+28>>2];if((c-b|0)!=8){break d}c=I[b+4|0]|I[b+5|0]<<8|(I[b+6|0]<<16|I[b+7|0]<<24);H[a+24>>2]=I[b|0]|I[b+1|0]<<8|(I[b+2|0]<<16|I[b+3|0]<<24);H[a+28>>2]=c}g=M[a+24>>3];if(F[a+19|0]<0){oa(H[a+8>>2])}ca=a+32|0;break a}Na();v()}return+g}function uf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0;f=1;a:{if((ea[H[H[b>>2]+20>>2]](b)|0)<=0){break a}while(1){f=0;c=Zd(H[H[a+4>>2]+4>>2],ea[H[H[b>>2]+24>>2]](b,g)|0);if((c|0)==-1){break a}e=H[a+4>>2];b:{if(I[e+36|0]<=1){if(ea[H[H[b>>2]+28>>2]](b,H[H[H[e+4>>2]+8>>2]+(c<<2)>>2])|0){break b}break a}d=0;c:{if((c|0)<0){break c}h=H[e+4>>2];if(H[h+12>>2]-H[h+8>>2]>>2<=(c|0)){break c}d=H[H[e+8>>2]+(H[H[e+20>>2]+(c<<2)>>2]<<2)>>2];d=ea[H[H[d>>2]+32>>2]](d,c)|0}if(!d){break a}if(!(ea[H[H[b>>2]+28>>2]](b,d)|0)){break a}}f=1;g=g+1|0;if((ea[H[H[b>>2]+20>>2]](b)|0)>(g|0)){continue}break}}return f|0}function tb(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0;H[a+8>>2]=0;H[a>>2]=0;H[a+4>>2]=0;a:{b:{if(b){if(b>>>0>=357913942){break b}b=N(b,12);d=pa(b);H[a+4>>2]=d;H[a>>2]=d;e=b+d|0;H[a+8>>2]=e;f=H[c+4>>2];g=H[c>>2];c:{if((f|0)==(g|0)){b=b-12|0;ra(d,0,(b-((b>>>0)%12|0)|0)+12|0);break c}h=f-g|0;if((h|0)<0){break a}i=h&-4;while(1){H[d+8>>2]=0;H[d>>2]=0;H[d+4>>2]=0;b=pa(h);H[d>>2]=b;H[d+8>>2]=b+i;c=g;while(1){H[b>>2]=H[c>>2];b=b+4|0;c=c+4|0;if((f|0)!=(c|0)){continue}break}H[d+4>>2]=b;d=d+12|0;if((e|0)!=(d|0)){continue}break}}H[a+4>>2]=e}return}sa();v()}H[d+8>>2]=0;H[d>>2]=0;H[d+4>>2]=0;sa();v()}function Vi(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;c=H[b+8>>2];d=H[b+12>>2];g=d;d=H[b+20>>2];i=d;h=H[b+16>>2];f=h+4|0;d=f>>>0<4?d+1|0:d;a:{if(c>>>0>>0&(d|0)>=(g|0)|(d|0)>(g|0)){break a}e=h+H[b>>2]|0;e=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);H[b+16>>2]=f;H[b+20>>2]=d;if(J[b+38>>1]<=513){f=c;c=i;d=h+8|0;c=d>>>0<8?c+1|0:c;if(d>>>0>f>>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break a}H[b+16>>2]=d;H[b+20>>2]=c}if(!(e&1)){break a}b=Q(e)^31;if(b-1>>>0>28){break a}j=1;H[a+8>>2]=b+1;b=-2<>2]=c;H[a+12>>2]=b^-1;H[a+24>>2]=c>>1;L[a+20>>2]=O(2)/O(c|0)}return j|0}function Lc(a,b,c){var d=0,e=0,f=0,g=0;a:{f=b>>>0<1431655766&(b|c)>=0;b:{if(!f){break b}b=N(b,3);Kc(a,b,13648);Kc(a+12|0,b,13652);d=H[a+24>>2];c:{if(H[a+32>>2]-d>>2>>>0>=c>>>0){break c}if(c>>>0>=1073741824){break a}b=H[a+28>>2];e=c<<2;c=pa(e);e=c+e|0;g=c+(b-d&-4)|0;c=g;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;H[c>>2]=H[b>>2];if((b|0)!=(d|0)){continue}break}}H[a+32>>2]=e;H[a+28>>2]=g;H[a+24>>2]=c;if(!d){break c}oa(d)}H[a+80>>2]=0;H[a+84>>2]=0;b=H[a+76>>2];H[a+76>>2]=0;if(b){oa(b)}H[a+68>>2]=0;H[a+72>>2]=0;b=a- -64|0;a=H[b>>2];H[b>>2]=0;if(!a){break b}oa(a)}return f}sa();v()}function Fe(a){var b=0,c=0,d=0,e=0,f=0;f=1;c=H[a+140>>2];a:{if((c|0)<=0){break a}b=c<<4;d=pa(c>>>0>268435455?-1:b|4);H[d>>2]=c;d=d+4|0;c=d+b|0;b=d;while(1){H[b>>2]=0;H[b+4>>2]=0;F[b+5|0]=0;F[b+6|0]=0;F[b+7|0]=0;F[b+8|0]=0;F[b+9|0]=0;F[b+10|0]=0;F[b+11|0]=0;F[b+12|0]=0;b=b+16|0;if((c|0)!=(b|0)){continue}break}e=H[a+136>>2];H[a+136>>2]=d;if(e){c=e-4|0;d=H[c>>2];if(d){b=(d<<4)+e|0;while(1){b=b-16|0;if((e|0)!=(b|0)){continue}break}}oa(c)}b=0;if(H[a+140>>2]<=0){break a}while(1){f=ta(H[a+136>>2]+(b<<4)|0,a);if(!f){break a}b=b+1|0;if((b|0)>2]){continue}break}}return f}function mb(a,b){var c=0,d=0,e=0,f=0,g=0;a:{if(H[a+64>>2]){break a}c=pa(32);H[c+16>>2]=0;H[c+20>>2]=0;H[c+8>>2]=0;H[c>>2]=0;H[c+4>>2]=0;H[c+24>>2]=0;H[c+28>>2]=0;d=H[a+64>>2];H[a+64>>2]=c;if(!d){break a}c=H[d>>2];if(c){H[d+4>>2]=c;oa(c)}oa(d)}d=H[a+64>>2];c=H[a+28>>2]-1|0;if(c>>>0<=10){c=H[(c<<2)+13584>>2]}else{c=-1}c=N(c,I[a+24|0]);f=c>>31;g=se(d,0,Rj(c,f,b,0),da);if(g){d=H[a+64>>2];H[a>>2]=d;e=H[d+20>>2];H[a+8>>2]=H[d+16>>2];H[a+12>>2]=e;e=H[d+24>>2];d=H[d+28>>2];H[a+48>>2]=0;H[a+52>>2]=0;H[a+40>>2]=c;H[a+44>>2]=f;H[a+16>>2]=e;H[a+20>>2]=d;H[a+80>>2]=b}return g}function jc(a,b){var c=0;c=H[b+4>>2];H[a>>2]=H[b>>2];H[a+4>>2]=c;c=H[b+60>>2];H[a+56>>2]=H[b+56>>2];H[a+60>>2]=c;c=H[b+52>>2];H[a+48>>2]=H[b+48>>2];H[a+52>>2]=c;c=H[b+44>>2];H[a+40>>2]=H[b+40>>2];H[a+44>>2]=c;c=H[b+36>>2];H[a+32>>2]=H[b+32>>2];H[a+36>>2]=c;c=H[b+28>>2];H[a+24>>2]=H[b+24>>2];H[a+28>>2]=c;c=H[b+20>>2];H[a+16>>2]=H[b+16>>2];H[a+20>>2]=c;c=H[b+12>>2];H[a+8>>2]=H[b+8>>2];H[a+12>>2]=c;H[a+88>>2]=0;H[a+64>>2]=0;H[a+68>>2]=0;H[a+72>>2]=0;H[a+76>>2]=0;F[a+77|0]=0;F[a+78|0]=0;F[a+79|0]=0;F[a+80|0]=0;F[a+81|0]=0;F[a+82|0]=0;F[a+83|0]=0;F[a+84|0]=0;return a}function zg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0;a=H[b+100>>2];b=H[b+96>>2];h=a-b|0;a:{if((h|0)!=(c|0)|(a|0)==(b|0)){break a}g=(c|0)/12|0;e=g>>>0<=1?1:g;j=e&1;a=0;if(g>>>0>=2){k=e&-2;g=0;while(1){e=N(a,12);i=e+d|0;f=b+e|0;H[i>>2]=H[f>>2];H[(e|4)+d>>2]=H[f+4>>2];H[i+8>>2]=H[f+8>>2];f=N(a|1,12);e=f+d|0;f=b+f|0;H[e>>2]=H[f>>2];H[e+4>>2]=H[f+4>>2];H[e+8>>2]=H[f+8>>2];a=a+2|0;g=g+2|0;if((k|0)!=(g|0)){continue}break}}if(!j){break a}e=d;d=N(a,12);a=e+d|0;b=b+d|0;H[a>>2]=H[b>>2];H[a+4>>2]=H[b+4>>2];H[a+8>>2]=H[b+8>>2]}return(c|0)==(h|0)|0}function Mi(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;c=H[b+8>>2];d=H[b+12>>2];g=d;d=H[b+20>>2];i=d;h=H[b+16>>2];f=h+4|0;d=f>>>0<4?d+1|0:d;a:{if(c>>>0>>0&(d|0)>=(g|0)|(d|0)>(g|0)){break a}e=h+H[b>>2]|0;e=I[e|0]|I[e+1|0]<<8|(I[e+2|0]<<16|I[e+3|0]<<24);H[b+16>>2]=f;H[b+20>>2]=d;f=c;c=i;d=h+8|0;c=d>>>0<8?c+1|0:c;if(d>>>0>f>>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break a}H[b+16>>2]=d;H[b+20>>2]=c;if(!(e&1)){break a}b=Q(e)^31;if(b-1>>>0>28){break a}j=1;H[a+8>>2]=b+1;b=-2<>2]=c;H[a+12>>2]=b^-1;H[a+24>>2]=c>>1;L[a+20>>2]=O(2)/O(c|0)}return j|0}function nb(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;f=a+4|0;a=H[a+4>>2];a:{b:{if(!a){break b}d=I[b+11|0];c=d<<24>>24<0;g=c?H[b>>2]:b;d=c?H[b+4>>2]:d;b=f;while(1){e=I[a+27|0];c=e<<24>>24<0;e=c?H[a+20>>2]:e;h=e>>>0>d>>>0;i=h?d:e;c:{if(i){c=Fa(c?H[a+16>>2]:a+16|0,g,i);if(c){break c}}c=d>>>0>e>>>0?-1:h}c=(c|0)<0;b=c?b:a;a=H[(c?a+4|0:a)>>2];if(a){continue}break}if((b|0)==(f|0)){break b}c=I[b+27|0];a=c<<24>>24<0;d:{c=a?H[b+20>>2]:c;e=c>>>0>>0?c:d;if(e){a=Fa(g,a?H[b+16>>2]:b+16|0,e);if(a){break d}}if(c>>>0>d>>>0){break b}break a}if((a|0)>=0){break a}}b=f}return b}function Jf(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;if(Ya(a,H[b+8>>2],e)){if(!(H[b+28>>2]==1|H[b+4>>2]!=(c|0))){H[b+28>>2]=d}return}a:{if(Ya(a,H[b>>2],e)){if(!(H[b+16>>2]!=(c|0)&H[b+20>>2]!=(c|0))){if((d|0)!=1){break a}H[b+32>>2]=1;return}H[b+32>>2]=d;b:{if(H[b+44>>2]==4){break b}G[b+52>>1]=0;a=H[a+8>>2];ea[H[H[a>>2]+20>>2]](a,b,c,c,1,e);if(I[b+53|0]){H[b+44>>2]=3;if(!I[b+52|0]){break b}break a}H[b+44>>2]=4}H[b+20>>2]=c;H[b+40>>2]=H[b+40>>2]+1;if(H[b+36>>2]!=1|H[b+24>>2]!=2){break a}F[b+54|0]=1;return}a=H[a+8>>2];ea[H[H[a>>2]+24>>2]](a,b,c,d,e)}}function Db(a,b,c){var d=0,e=0,f=0,g=0;a:{b:{if(!b){break b}if(J[a+38>>1]<=513){f=H[a+12>>2];d=H[a+20>>2];b=H[a+16>>2];g=b+8|0;d=g>>>0<8?d+1|0:d;e=0;if(K[a+8>>2]>>0&(d|0)>=(f|0)|(d|0)>(f|0)){break a}b=b+H[a>>2]|0;d=I[b+4|0]|I[b+5|0]<<8|(I[b+6|0]<<16|I[b+7|0]<<24);H[c>>2]=I[b|0]|I[b+1|0]<<8|(I[b+2|0]<<16|I[b+3|0]<<24);H[c+4>>2]=d;b=H[a+20>>2];c=H[a+16>>2]+8|0;b=c>>>0<8?b+1|0:b;H[a+16>>2]=c;H[a+20>>2]=b;break b}e=0;if(!re(1,c,a)){break a}}F[a+36|0]=1;H[a+32>>2]=0;b=H[a+16>>2];c=b+H[a>>2]|0;H[a+24>>2]=c;H[a+28>>2]=(H[a+8>>2]-b|0)+c;e=1}return e}function ve(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0;f=pa(64);c=pa(12);H[c+8>>2]=H[H[a+4>>2]+80>>2];H[c>>2]=13216;H[c+4>>2]=0;f=od(f,c);a:{b:{if((b|0)<0){c=f;break b}h=a+8|0;c=H[a+12>>2];e=H[a+8>>2];g=c-e>>2;c:{if((g|0)>(b|0)){break c}d=b+1|0;if(b>>>0>=g>>>0){Vb(h,d-g|0);break c}if(d>>>0>=g>>>0){break c}e=e+(d<<2)|0;if((e|0)!=(c|0)){while(1){c=c-4|0;d=H[c>>2];H[c>>2]=0;if(d){ea[H[H[d>>2]+4>>2]](d)}if((c|0)!=(e|0)){continue}break}}H[a+12>>2]=e}a=H[h>>2]+(b<<2)|0;c=H[a>>2];H[a>>2]=f;if(!c){break a}}ea[H[H[c>>2]+4>>2]](c)}return(b^-1)>>>31|0}function Qd(a,b){var c=0,d=0,e=0,f=0;d=ca-16|0;ca=d;H[d+12>>2]=b;c=ca-208|0;ca=c;H[c+204>>2]=b;b=c+160|0;ra(b,0,40);H[c+200>>2]=H[c+204>>2];a:{if((Od(0,a,c+200|0,c+80|0,b)|0)<0){break a}f=H[3941]>=0;b=H[3922];if(H[3940]<=0){H[3922]=b&-33}b:{c:{d:{if(!H[3934]){H[3934]=80;H[3929]=0;H[3926]=0;H[3927]=0;e=H[3933];H[3933]=c;break d}if(H[3926]){break c}}if(Sd(15688)){break b}}Od(15688,a,c+200|0,c+80|0,c+160|0)}if(e){ea[H[3931]](15688,0,0)|0;H[3934]=0;H[3933]=e;H[3929]=0;H[3926]=0;H[3927]=0}H[3922]=H[3922]|b&32;if(!f){break a}}ca=c+208|0;ca=d+16|0}function pf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0;c=H[a+60>>2];a:{if(!c){break a}H[c+4>>2]=a+48;if(!(ea[H[H[c>>2]+12>>2]](c)|0)){break a}b:{c=ea[H[H[a>>2]+24>>2]](a)|0;if((c|0)<=0){break b}while(1){c:{f=H[(ea[H[H[a>>2]+28>>2]](a)|0)+4>>2];g=ea[H[H[a>>2]+20>>2]](a,d)|0;e=H[a+60>>2];if(!(ea[H[H[e>>2]+8>>2]](e,H[H[f+8>>2]+(g<<2)>>2])|0)){break c}d=d+1|0;if((c|0)!=(d|0)){continue}break b}break}return 0}d=0;if(!(ea[H[H[a>>2]+36>>2]](a,b)|0)){break a}if(!(ea[H[H[a>>2]+40>>2]](a,b)|0)){break a}d=ea[H[H[a>>2]+44>>2]](a)|0}return d|0}function id(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0;c=H[a+216>>2];if((c|0)!=H[a+220>>2]){while(1){a:{c=H[N(e,144)+c>>2];if((c|0)<0){break a}d=H[a+4>>2];f=H[d+8>>2];if((c|0)>=H[d+12>>2]-f>>2){break a}d=0;c=H[(c<<2)+f>>2];if((ea[H[H[c>>2]+24>>2]](c)|0)<=0){break a}while(1){if((ea[H[H[c>>2]+20>>2]](c,d)|0)!=(b|0)){d=d+1|0;if((ea[H[H[c>>2]+24>>2]](c)|0)>(d|0)){continue}break a}break}a=H[a+216>>2]+N(e,144)|0;return(I[a+100|0]?a+4|0:0)|0}e=e+1|0;c=H[a+216>>2];if(e>>>0<(H[a+220>>2]-c|0)/144>>>0){continue}break}}return 0}function xb(a){var b=0,c=0,d=0,e=0;c=H[a+132>>2];if(c){d=c;b=H[a+136>>2];if((c|0)!=(b|0)){while(1){d=b-12|0;e=H[d>>2];if(e){H[b-8>>2]=e;oa(e)}b=d;if((c|0)!=(b|0)){continue}break}d=H[a+132>>2]}H[a+136>>2]=c;oa(d)}c=H[a+120>>2];if(c){d=c;b=H[a+124>>2];if((c|0)!=(b|0)){while(1){d=b-12|0;e=H[d>>2];if(e){H[b-8>>2]=e;oa(e)}b=d;if((c|0)!=(b|0)){continue}break}d=H[a+120>>2]}H[a+124>>2]=c;oa(d)}b=H[a+108>>2];if(b){H[a+112>>2]=b;oa(b)}b=H[a+96>>2];if(b){H[a+100>>2]=b;oa(b)}Za(a+76|0);Za(a+56|0);Za(a+36|0);Za(a+16|0)}function rd(a){a=a|0;var b=0,c=0,d=0;H[a>>2]=2128;d=H[a+60>>2];if(d){b=d;c=H[a- -64>>2];if((b|0)!=(c|0)){while(1){c=c-4|0;b=H[c>>2];H[c>>2]=0;if(b){Ga(b)}if((c|0)!=(d|0)){continue}break}b=H[a+60>>2]}H[a+64>>2]=d;oa(b)}b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}d=H[a+36>>2];if(d){b=d;c=H[a+40>>2];if((b|0)!=(c|0)){while(1){c=c-24|0;ea[H[H[c>>2]>>2]](c)|0;if((c|0)!=(d|0)){continue}break}b=H[a+36>>2]}H[a+40>>2]=d;oa(b)}H[a>>2]=1984;b=H[a+16>>2];if(b){H[a+20>>2]=b;oa(b)}b=H[a+4>>2];if(b){H[a+8>>2]=b;oa(b)}return a|0}function ue(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;c=H[a+8>>2];d=H[a+4>>2];if(c-d>>2>>>0>=b>>>0){if(b){b=b<<2;d=ra(d,0,b)+b|0}H[a+4>>2]=d;return}a:{f=H[a>>2];g=d-f>>2;e=g+b|0;if(e>>>0<1073741824){c=c-f|0;h=c>>>1|0;e=c>>>0>=2147483644?1073741823:e>>>0>>0?h:e;if(e){if(e>>>0>=1073741824){break a}i=pa(e<<2)}c=(g<<2)+i|0;b=b<<2;b=ra(c,0,b)+b|0;if((d|0)!=(f|0)){while(1){c=c-4|0;d=d-4|0;H[c>>2]=H[d>>2];if((d|0)!=(f|0)){continue}break}}H[a+8>>2]=(e<<2)+i;H[a+4>>2]=b;H[a>>2]=c;if(f){oa(f)}return}sa();v()}wa();v()}function rb(a){var b=0,c=0,d=0,e=0,f=0;d=H[a+8>>2];a:{if(I[d+84|0]){break a}b=H[a+16>>2];if(!b|!I[b+84|0]){break a}c=H[d+72>>2];e=H[d+68>>2];F[b+84|0]=0;c=c-e>>2;f=H[b+68>>2];e=H[b+72>>2]-f>>2;b:{if(c>>>0>e>>>0){qb(b+68|0,c-e|0,2316);d=H[a+8>>2];break b}if(c>>>0>=e>>>0){break b}H[b+72>>2]=f+(c<<2)}if(I[d+84|0]){break a}c=H[d+68>>2];if((c|0)==H[d+72>>2]){break a}e=H[H[a+16>>2]+68>>2];b=0;while(1){f=b<<2;H[f+e>>2]=H[c+f>>2];b=b+1|0;c=H[d+68>>2];if(b>>>0>2]-c>>2>>>0){continue}break}}return H[a+16>>2]}function Lg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0;e=ca+-64|0;ca=e;f=Ha(e+8|0);H[f+16>>2]=0;H[f+20>>2]=0;H[f>>2]=b;H[f+8>>2]=c;H[f+12>>2]=0;b=e+48|0;Pe(b,a,f,d);H[a+24>>2]=H[e+48>>2];f=a+24|0;a:{if((f|0)==(b|0)){break a}b=a+28|0;c=e+48|4;g=I[e+63|0];d=g<<24>>24;if(F[a+39|0]>=0){if((d|0)>=0){a=H[c+4>>2];H[b>>2]=H[c>>2];H[b+4>>2]=a;H[b+8>>2]=H[c+8>>2];break a}Xb(b,H[e+52>>2],H[e+56>>2]);break a}a=(d|0)<0;Yb(b,a?H[e+52>>2]:c,a?H[e+56>>2]:g)}if(F[e+63|0]<0){oa(H[e+52>>2])}ca=e- -64|0;return f|0}function Kg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0;e=ca+-64|0;ca=e;f=Ha(e+8|0);H[f+16>>2]=0;H[f+20>>2]=0;H[f>>2]=b;H[f+8>>2]=c;H[f+12>>2]=0;b=e+48|0;Oe(b,a,f,d);H[a+24>>2]=H[e+48>>2];f=a+24|0;a:{if((f|0)==(b|0)){break a}b=a+28|0;c=e+48|4;g=I[e+63|0];d=g<<24>>24;if(F[a+39|0]>=0){if((d|0)>=0){a=H[c+4>>2];H[b>>2]=H[c>>2];H[b+4>>2]=a;H[b+8>>2]=H[c+8>>2];break a}Xb(b,H[e+52>>2],H[e+56>>2]);break a}a=(d|0)<0;Yb(b,a?H[e+52>>2]:c,a?H[e+56>>2]:g)}if(F[e+63|0]<0){oa(H[e+52>>2])}ca=e- -64|0;return f|0}function Ig(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0;a=ca-32|0;ca=a;a:{d=Ma(c);if(d>>>0<2147483632){b:{c:{if(d>>>0>=11){e=(d|15)+1|0;f=pa(e);H[a+24>>2]=e|-2147483648;H[a+16>>2]=f;H[a+20>>2]=d;e=d+f|0;break c}F[a+27|0]=d;f=a+16|0;e=f+d|0;if(!d){break b}}qa(f,c,d)}F[e|0]=0;F[a+4|0]=0;H[a>>2]=1701667182;F[a+11|0]=4;d=H[b+4>>2];c=-1;d:{if(!d){break d}d=be(d,a,a+16|0);c=-1;if(!d){break d}c=Yd(b,H[d+24>>2])}b=c;if(F[a+11|0]<0){oa(H[a>>2])}if(F[a+27|0]<0){oa(H[a+16>>2])}ca=a+32|0;break a}Na();v()}return b|0}function hd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0;c=H[a+216>>2];if((c|0)!=H[a+220>>2]){while(1){a:{c=H[N(e,144)+c>>2];if((c|0)<0){break a}d=H[a+4>>2];f=H[d+8>>2];if((c|0)>=H[d+12>>2]-f>>2){break a}d=0;c=H[(c<<2)+f>>2];if((ea[H[H[c>>2]+24>>2]](c)|0)<=0){break a}while(1){if((ea[H[H[c>>2]+20>>2]](c,d)|0)!=(b|0)){d=d+1|0;if((ea[H[H[c>>2]+24>>2]](c)|0)>(d|0)){continue}break a}break}return(H[a+216>>2]+N(e,144)|0)+104|0}e=e+1|0;c=H[a+216>>2];if(e>>>0<(H[a+220>>2]-c|0)/144>>>0){continue}break}}return a+184|0}function ab(a){var b=0,c=0,d=0,e=0;c=H[a+640>>2];if(c){d=c;b=H[a+644>>2];if((c|0)!=(b|0)){while(1){d=b-12|0;e=H[d>>2];if(e){H[b-8>>2]=e;oa(e)}b=d;if((c|0)!=(b|0)){continue}break}d=H[a+640>>2]}H[a+644>>2]=c;oa(d)}c=H[a+628>>2];if(c){d=c;b=H[a+632>>2];if((c|0)!=(b|0)){while(1){d=b-12|0;e=H[d>>2];if(e){H[b-8>>2]=e;oa(e)}b=d;if((c|0)!=(b|0)){continue}break}d=H[a+628>>2]}H[a+632>>2]=c;oa(d)}b=H[a+616>>2];if(b){H[a+620>>2]=b;oa(b)}b=H[a+604>>2];if(b){H[a+608>>2]=b;oa(b)}Za(a+584|0);Za(a+564|0);Za(a+544|0)}function Tg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0;d=ca-16|0;ca=d;H[d+12>>2]=0;a:{e=Ma(c);if(e>>>0<2147483632){b:{c:{if(e>>>0>=11){f=(e|15)+1|0;a=pa(f);H[d+8>>2]=f|-2147483648;H[d>>2]=a;H[d+4>>2]=e;f=a+e|0;break c}F[d+11|0]=e;f=d+e|0;a=d;if(!e){break b}}qa(a,c,e)}F[f|0]=0;a=nb(b,d);d:{if((a|0)==(b+4|0)){break d}b=H[a+32>>2];a=H[a+28>>2];if((b-a|0)!=4){break d}H[d+12>>2]=I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24)}a=H[d+12>>2];if(F[d+11|0]<0){oa(H[d>>2])}ca=d+16|0;break a}Na();v()}return a|0}function vb(a){var b=0,c=0,d=0,e=0;c=H[a+128>>2];if(c){d=c;b=H[a+132>>2];if((c|0)!=(b|0)){while(1){d=b-12|0;e=H[d>>2];if(e){H[b-8>>2]=e;oa(e)}b=d;if((c|0)!=(b|0)){continue}break}d=H[a+128>>2]}H[a+132>>2]=c;oa(d)}c=H[a+116>>2];if(c){d=c;b=H[a+120>>2];if((c|0)!=(b|0)){while(1){d=b-12|0;e=H[d>>2];if(e){H[b-8>>2]=e;oa(e)}b=d;if((c|0)!=(b|0)){continue}break}d=H[a+116>>2]}H[a+120>>2]=c;oa(d)}b=H[a+104>>2];if(b){H[a+108>>2]=b;oa(b)}b=H[a+92>>2];if(b){H[a+96>>2]=b;oa(b)}Za(a+72|0);Za(a+52|0);Za(a+32|0)}function kc(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;a:{c=H[a+4>>2];e=H[a>>2];d=c-e|0;b:{if(d>>>0>>0){g=b-d|0;f=H[a+8>>2];if(g>>>0<=f-c>>>0){h=a,i=ra(c,0,g)+g|0,H[h+4>>2]=i;break b}if((b|0)<0){break a}c=f-e|0;f=c<<1;c=c>>>0>=1073741823?2147483647:b>>>0>>0?f:b;f=pa(c);ra(f+d|0,0,g);d=va(f,e,d);H[a+8>>2]=d+c;H[a+4>>2]=b+d;H[a>>2]=d;if(!e){break b}oa(e);break b}if(b>>>0>=d>>>0){break b}H[a+4>>2]=b+e}b=H[a+28>>2];c=b;d=b+1|0;b=H[a+24>>2]+1|0;e=b?c:d;H[a+24>>2]=b;H[a+28>>2]=e;return}sa();v()}function Ka(a,b){var c=0,d=0,e=0,f=0,g=0,h=0;e=H[a+4>>2];if((e|0)!=H[a+8>>2]){H[e>>2]=H[b>>2];H[a+4>>2]=e+4;return}a:{g=H[a>>2];f=e-g|0;c=f>>2;d=c+1|0;if(d>>>0<1073741824){h=c<<2;c=f>>>1|0;c=f>>>0>=2147483644?1073741823:c>>>0>d>>>0?c:d;if(c){if(c>>>0>=1073741824){break a}f=pa(c<<2)}else{f=0}d=h+f|0;H[d>>2]=H[b>>2];b=d+4|0;if((e|0)!=(g|0)){while(1){d=d-4|0;e=e-4|0;H[d>>2]=H[e>>2];if((e|0)!=(g|0)){continue}break}}H[a+8>>2]=f+(c<<2);H[a+4>>2]=b;H[a>>2]=d;if(g){oa(g)}return}sa();v()}wa();v()}function Ia(a){H[a>>2]=-1;H[a+4>>2]=0;H[a+8>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;F[a+28|0]=1;H[a+20>>2]=0;H[a+24>>2]=0;H[a+12>>2]=0;H[a+16>>2]=0;H[a+40>>2]=0;H[a+44>>2]=0;H[a+48>>2]=0;H[a+52>>2]=0;H[a+56>>2]=0;H[a+60>>2]=0;H[a+64>>2]=0;H[a+68>>2]=0;H[a+76>>2]=0;H[a+80>>2]=0;H[a+84>>2]=0;H[a+88>>2]=0;H[a+92>>2]=0;H[a+96>>2]=0;H[a+72>>2]=a+4;H[a+104>>2]=0;H[a+108>>2]=0;F[a+100|0]=1;H[a+112>>2]=0;H[a+116>>2]=0;H[a+120>>2]=0;H[a+124>>2]=0;H[a+128>>2]=0;H[a+132>>2]=0;H[a+136>>2]=0;H[a+140>>2]=0}function Ld(a,b){if(!a){return 0}a:{b:{if(a){if(b>>>0<=127){break b}c:{if(!H[H[4292]>>2]){if((b&-128)==57216){break b}break c}if(b>>>0<=2047){F[a+1|0]=b&63|128;F[a|0]=b>>>6|192;a=2;break a}if(!((b&-8192)!=57344&b>>>0>=55296)){F[a+2|0]=b&63|128;F[a|0]=b>>>12|224;F[a+1|0]=b>>>6&63|128;a=3;break a}if(b-65536>>>0<=1048575){F[a+3|0]=b&63|128;F[a|0]=b>>>18|240;F[a+2|0]=b>>>6&63|128;F[a+1|0]=b>>>12&63|128;a=4;break a}}H[3992]=25;a=-1}else{a=1}break a}F[a|0]=b;a=1}return a}function Hb(a,b){var c=0,d=0,e=0,f=0;d=H[a+12>>2];c=H[a+16>>2]-d>>2;a:{if(c>>>0>>0){ya(a+12|0,b-c|0);break a}if(b>>>0>=c>>>0){break a}H[a+16>>2]=d+(b<<2)}b:{c=H[a>>2];c:{if(H[a+8>>2]-c>>2>>>0>=b>>>0){break c}if(b>>>0>=1073741824){break b}d=H[a+4>>2];e=b<<2;b=pa(e);e=b+e|0;f=b+(d-c&-4)|0;b=f;if((c|0)!=(d|0)){while(1){b=b-4|0;d=d-4|0;H[b>>2]=H[d>>2];if((c|0)!=(d|0)){continue}break}}H[a+8>>2]=e;H[a+4>>2]=f;H[a>>2]=b;if(!c){break c}oa(c)}return}sa();v()}function _b(a){a=a|0;var b=0,c=0,d=0;H[a>>2]=13724;b=H[a+68>>2];if(b){H[a+72>>2]=b;oa(b)}b=H[a+56>>2];if(b){H[a+60>>2]=b;oa(b)}b=H[a+44>>2];if(b){H[a+48>>2]=b;oa(b)}b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}b=H[a+20>>2];if(b){H[a+24>>2]=b;oa(b)}b=H[a+8>>2];if(b){d=b;c=H[a+12>>2];if((b|0)!=(c|0)){while(1){c=c-4|0;d=H[c>>2];H[c>>2]=0;if(d){Ga(d)}if((b|0)!=(c|0)){continue}break}d=H[a+8>>2]}H[a+12>>2]=b;oa(d)}b=H[a+4>>2];H[a+4>>2]=0;if(b){Uc(b)}return a|0}function yb(a,b,c){var d=0,e=0,f=0,g=0,h=0;f=ca-16|0;ca=f;d=ca-32|0;ca=d;e=ca-16|0;ca=e;H[e+12>>2]=b;H[e+8>>2]=b+c;H[d+24>>2]=H[e+12>>2];H[d+28>>2]=H[e+8>>2];ca=e+16|0;c=ca-16|0;ca=c;h=H[d+28>>2];e=H[d+24>>2];g=h-e|0;if((e|0)!=(h|0)){va(a,e,g)}H[c+12>>2]=e+g;H[c+8>>2]=a+g;H[d+16>>2]=H[c+12>>2];H[d+20>>2]=H[c+8>>2];ca=c+16|0;H[d+12>>2]=(H[d+16>>2]-b|0)+b;H[d+8>>2]=(H[d+20>>2]-a|0)+a;H[f+8>>2]=H[d+12>>2];H[f+12>>2]=H[d+8>>2];ca=d+32|0;ca=f+16|0}function ya(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;e=H[a+8>>2];c=H[a+4>>2];if(e-c>>2>>>0>=b>>>0){if(b){b=b<<2;c=ra(c,0,b)+b|0}H[a+4>>2]=c;return}a:{f=c;c=H[a>>2];g=f-c|0;h=g>>2;d=h+b|0;if(d>>>0<1073741824){e=e-c|0;f=e>>>1|0;d=e>>>0>=2147483644?1073741823:d>>>0>>0?f:d;if(d){if(d>>>0>=1073741824){break a}i=pa(d<<2)}b=b<<2;e=ra((h<<2)+i|0,0,b);f=d<<2;d=va(i,c,g);H[a+8>>2]=f+d;H[a+4>>2]=b+e;H[a>>2]=d;if(c){oa(c)}return}sa();v()}wa();v()}function Tc(a,b){var c=0,d=0,e=0,f=0;c=a+4|0;a=nb(a,b);a:{if((c|0)==(a|0)){break a}b=a+28|0;b=F[a+39|0]<0?H[b>>2]:b;while(1){a=b;b=a+1|0;c=F[a|0];if((c|0)==32|c-9>>>0<5){continue}break}b:{c:{d:{c=F[a|0];switch(c-43|0){case 0:break c;case 2:break d;default:break b}}e=1}c=F[b|0];a=b}if(c-48>>>0<10){while(1){d=(N(d,10)-F[a|0]|0)+48|0;b=F[a+1|0];a=a+1|0;if(b-48>>>0<10){continue}break}}a=e?d:0-d|0;if((a|0)==-1){break a}f=(a|0)!=0}return f}function bb(a,b){var c=0,d=0,e=0,f=0,g=0,h=0;a=H[a>>2];c=H[a+4>>2];e=H[a+8>>2];if(c>>>0>>0){H[c>>2]=H[b>>2];H[a+4>>2]=c+4;return}a:{d=c;c=H[a>>2];g=d-c|0;d=g>>2;f=d+1|0;if(f>>>0<1073741824){h=d<<2;e=e-c|0;d=e>>>1|0;f=e>>>0>=2147483644?1073741823:f>>>0>>0?d:f;if(f){if(f>>>0>=1073741824){break a}e=pa(f<<2)}else{e=0}d=h+e|0;H[d>>2]=H[b>>2];b=va(e,c,g);H[a+8>>2]=b+(f<<2);H[a+4>>2]=d+4;H[a>>2]=b;if(c){oa(c)}return}sa();v()}wa();v()}function ob(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;e=H[a+8>>2];c=H[a+4>>2];if(e-c>>3>>>0>=b>>>0){if(b){b=b<<3;c=ra(c,0,b)+b|0}H[a+4>>2]=c;return}a:{f=c;c=H[a>>2];g=f-c|0;h=g>>3;d=h+b|0;if(d>>>0<536870912){e=e-c|0;f=e>>>2|0;d=e>>>0>=2147483640?536870911:d>>>0>>0?f:d;if(d){if(d>>>0>=536870912){break a}i=pa(d<<3)}b=b<<3;e=ra((h<<3)+i|0,0,b);f=d<<3;d=va(i,c,g);H[a+8>>2]=f+d;H[a+4>>2]=b+e;H[a>>2]=d;if(c){oa(c)}return}sa();v()}wa();v()}function kf(a){a=a|0;var b=0,c=0,d=0;H[a>>2]=2328;b=H[a+60>>2];H[a+60>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}d=H[a+36>>2];if(d){c=H[a+40>>2];b=d;if((c|0)!=(b|0)){while(1){c=c-4|0;b=H[c>>2];H[c>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}if((c|0)!=(d|0)){continue}break}b=H[a+36>>2]}H[a+40>>2]=d;oa(b)}H[a>>2]=1984;b=H[a+16>>2];if(b){H[a+20>>2]=b;oa(b)}b=H[a+4>>2];if(b){H[a+8>>2]=b;oa(b)}return a|0}function jf(a){a=a|0;var b=0,c=0,d=0;H[a>>2]=2328;b=H[a+60>>2];H[a+60>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}d=H[a+36>>2];if(d){c=H[a+40>>2];b=d;if((c|0)!=(b|0)){while(1){c=c-4|0;b=H[c>>2];H[c>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}if((c|0)!=(d|0)){continue}break}b=H[a+36>>2]}H[a+40>>2]=d;oa(b)}H[a>>2]=1984;b=H[a+16>>2];if(b){H[a+20>>2]=b;oa(b)}b=H[a+4>>2];if(b){H[a+8>>2]=b;oa(b)}oa(a)}function xi(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0;d=ca-16|0;ca=d;e=H[a+4>>2];a:{if((e|0)==-1){break a}c=H[b+20>>2];if(!!H[b+16>>2]&(c|0)>=0|(c|0)>0){break a}Wb(b,H[b+4>>2],H[a+8>>2],H[a+12>>2]);c=H[b+20>>2];if(!!H[b+16>>2]&(c|0)>=0|(c|0)>0){break a}Wb(b,H[b+4>>2],a+20|0,a+24|0);c=H[b+20>>2];f=H[b+16>>2];F[d+15|0]=H[a+4>>2];if(!!f&(c|0)>=0|(c|0)>0){break a}Wb(b,H[b+4>>2],d+15|0,d+16|0)}ca=d+16|0;return(e|0)!=-1|0}function Eh(a){a=a|0;var b=0,c=0,d=0,e=0,f=0;a:{b=H[a+8>>2];b:{if((b|0)<0){break b}c=H[a+4>>2];e=H[c>>2];d=H[c+4>>2]-e>>2;c:{if(d>>>0>>0){ue(c,b-d|0);f=H[a+8>>2];break c}f=b;if(b>>>0>=d>>>0){break c}H[c+4>>2]=e+(b<<2);f=b}d=f;if((d|0)<=0){break b}a=H[a+4>>2];c=H[a>>2];e=H[a+4>>2]-c>>2;a=0;while(1){if((a|0)==(e|0)){break a}H[c+(a<<2)>>2]=a;a=a+1|0;if((d|0)!=(a|0)){continue}break}}return(b^-1)>>>31|0}Ca();v()}function qe(a,b){var c=0,d=0,e=0,f=0,g=0,h=0;e=H[a+8>>2];c=H[a+4>>2];if(e-c>>1>>>0>=b>>>0){if(b){b=b<<1;c=ra(c,0,b)+b|0}H[a+4>>2]=c;return}a:{f=c;c=H[a>>2];g=f-c|0;f=g>>1;d=f+b|0;if((d|0)>=0){e=e-c|0;d=e>>>0>=2147483646?2147483647:d>>>0>>0?e:d;if(d){if((d|0)<0){break a}h=pa(d<<1)}b=b<<1;e=ra((f<<1)+h|0,0,b);f=d<<1;d=va(h,c,g);H[a+8>>2]=f+d;H[a+4>>2]=b+e;H[a>>2]=d;if(c){oa(c)}return}sa();v()}wa();v()}function ng(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0;d=ca-16|0;ca=d;Pe(d,a,b,c);H[a+24>>2]=H[d>>2];e=a+24|0;a:{if((e|0)==(d|0)){break a}b=a+28|0;c=d|4;f=I[d+15|0];g=f<<24>>24;if(F[a+39|0]>=0){if((g|0)>=0){a=H[c+4>>2];H[b>>2]=H[c>>2];H[b+4>>2]=a;H[b+8>>2]=H[c+8>>2];break a}Xb(b,H[d+4>>2],H[d+8>>2]);break a}a=(g|0)<0;Yb(b,a?H[d+4>>2]:c,a?H[d+8>>2]:f)}if(F[d+15|0]<0){oa(H[d+4>>2])}ca=d+16|0;return e|0}function mg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0;d=ca-16|0;ca=d;Oe(d,a,b,c);H[a+24>>2]=H[d>>2];e=a+24|0;a:{if((e|0)==(d|0)){break a}b=a+28|0;c=d|4;f=I[d+15|0];g=f<<24>>24;if(F[a+39|0]>=0){if((g|0)>=0){a=H[c+4>>2];H[b>>2]=H[c>>2];H[b+4>>2]=a;H[b+8>>2]=H[c+8>>2];break a}Xb(b,H[d+4>>2],H[d+8>>2]);break a}a=(g|0)<0;Yb(b,a?H[d+4>>2]:c,a?H[d+8>>2]:f)}if(F[d+15|0]<0){oa(H[d+4>>2])}ca=d+16|0;return e|0}function za(a,b,c){var d=0,e=0,f=0,g=0;e=ca-16|0;ca=e;a:{b:{if(c>>>0<11){d=a;F[a+11|0]=I[a+11|0]&128|c;F[a+11|0]=I[a+11|0]&127;break b}if(c>>>0>2147483631){break a}g=e+8|0;if(c>>>0>=11){f=c+16&-16;d=f-1|0;d=(d|0)==11?f:d}else{d=10}Zb(g,d+1|0);d=H[e+8>>2];H[a>>2]=d;H[a+8>>2]=H[a+8>>2]&-2147483648|H[e+12>>2]&2147483647;H[a+8>>2]=H[a+8>>2]|-2147483648;H[a+4>>2]=c}yb(d,b,c+1|0);ca=e+16|0;return}Na();v()}function Qg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0;d=ca-16|0;ca=d;a:{e=Ma(c);if(e>>>0<2147483632){b:{c:{if(e>>>0>=11){g=(e|15)+1|0;f=pa(g);H[d+8>>2]=g|-2147483648;H[d>>2]=f;H[d+4>>2]=e;g=e+f|0;break c}F[d+11|0]=e;g=d+e|0;f=d;if(!e){break b}}qa(f,c,e)}F[g|0]=0;f=a+16|0;c=$d(b,d,f);b=H[a+16>>2];a=F[a+27|0];if(F[d+11|0]<0){oa(H[d>>2])}ca=d+16|0;a=c?(a|0)<0?b:f:0;break a}Na();v()}return a|0}function Mc(a,b){var c=0,d=0,e=0;c=H[a+4>>2];d=c+b|0;H[a+4>>2]=d;if(!((d-1^c-1)>>>0<32?c:0)){H[H[a>>2]+((d>>>0>=33?d-1>>>5|0:0)<<2)>>2]=0}a:{if(!b){break a}a=H[a>>2]+(c>>>3&536870908)|0;c=c&31;if(c){d=32-c|0;e=b>>>0>d>>>0?d:b;H[a>>2]=H[a>>2]&(-1<>>d-e^-1);b=b-e|0;a=a+4|0}c=b>>>5|0;if(b>>>0>=32){ra(a,0,c<<2)}if((b&-32)==(b|0)){break a}a=(c<<2)+a|0;H[a>>2]=H[a>>2]&(-1>>>32-(b&31)^-1)}}function Fc(a,b,c){var d=0,e=0,f=0;d=H[c+16>>2];a:{if(!d){if(Sd(c)){break a}d=H[c+16>>2]}f=H[c+20>>2];if(d-f>>>0>>0){return ea[H[c+36>>2]](c,a,b)|0}b:{if(H[c+80>>2]<0){d=0;break b}e=b;while(1){d=e;if(!d){d=0;break b}e=d-1|0;if(I[e+a|0]!=10){continue}break}e=ea[H[c+36>>2]](c,a,d)|0;if(e>>>0>>0){break a}a=a+d|0;b=b-d|0;f=H[c+20>>2]}qa(f,a,b);H[c+20>>2]=H[c+20>>2]+b;e=b+d|0}return e}function ad(a){var b=0,c=0,d=0,e=0;if(I[a+76|0]){F[a+76|0]=0;e=H[a+60>>2];c=H[a+72>>2]+7|0;b=c>>>0<7?1:b;d=b<<29|c>>>3;c=d+H[a+56>>2]|0;b=(b>>>3|0)+e|0;H[a+56>>2]=c;H[a+60>>2]=c>>>0>>0?b+1|0:b}if(J[a+38>>1]<=513){F[a+132|0]=0;e=H[a+116>>2];b=0;c=H[a+128>>2]+7|0;b=c>>>0<7?1:b;d=b<<29|c>>>3;c=d+H[a+112>>2]|0;b=(b>>>3|0)+e|0;H[a+112>>2]=c;H[a+116>>2]=c>>>0>>0?b+1|0:b}}function re(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>10){break a}d=H[c+20>>2];f=H[c+12>>2];e=H[c+16>>2];if((d|0)>=(f|0)&e>>>0>=K[c+8>>2]|(d|0)>(f|0)){break a}f=F[e+H[c>>2]|0];e=e+1|0;d=e?d:d+1|0;H[c+16>>2]=e;H[c+20>>2]=d;d=f;b:{if((d|0)<0){if(!re(a+1|0,b,c)){break a}a=H[b>>2];d=d&127|a<<7;a=H[b+4>>2]<<7|a>>>25;break b}d=d&255;a=0}H[b>>2]=d;H[b+4>>2]=a;g=1}return g}function gb(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>10){break a}d=H[c+20>>2];f=H[c+12>>2];e=H[c+16>>2];if((d|0)>=(f|0)&e>>>0>=K[c+8>>2]|(d|0)>(f|0)){break a}f=F[e+H[c>>2]|0];e=e+1|0;d=e?d:d+1|0;H[c+16>>2]=e;H[c+20>>2]=d;d=f;b:{if((d|0)<0){if(!gb(a+1|0,b,c)){break a}a=H[b>>2];d=d&127|a<<7;a=H[b+4>>2]<<7|a>>>25;break b}d=d&255;a=0}H[b>>2]=d;H[b+4>>2]=a;g=1}return g}function Nh(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0;e=ca+-64|0;ca=e;d=ea[H[H[a>>2]+44>>2]](a,b)|0;a=ea[H[H[a>>2]+40>>2]](a,b)|0;f=Eb(e);g=H[b+56>>2];h=d&255;i=a;a=a-1|0;if(a>>>0<=10){a=H[(a<<2)+13584>>2]}else{a=-1}d=N(a,d);lc(f,g,h,i,0,d,d>>31);a=jc(pa(96),f);mb(a,c);F[a+84|0]=1;H[a+72>>2]=H[a+68>>2];H[a+60>>2]=H[b+60>>2];ca=e- -64|0;return a|0}function If(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;if(Ya(a,H[b+8>>2],e)){if(!(H[b+28>>2]==1|H[b+4>>2]!=(c|0))){H[b+28>>2]=d}return}a:{if(!Ya(a,H[b>>2],e)){break a}if(!(H[b+16>>2]!=(c|0)&H[b+20>>2]!=(c|0))){if((d|0)!=1){break a}H[b+32>>2]=1;return}H[b+20>>2]=c;H[b+32>>2]=d;H[b+40>>2]=H[b+40>>2]+1;if(!(H[b+36>>2]!=1|H[b+24>>2]!=2)){F[b+54|0]=1}H[b+44>>2]=4}}function Bh(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0;e=H[a+32>>2];b=e;h=H[b+8>>2];g=H[b+12>>2];c=H[b+16>>2];b=H[b+20>>2];f=c+4|0;b=f>>>0<4?b+1|0:b;d=0;a:{if(f>>>0>h>>>0&(b|0)>=(g|0)|(b|0)>(g|0)){break a}c=H[e>>2]+c|0;c=I[c|0]|I[c+1|0]<<8|(I[c+2|0]<<16|I[c+3|0]<<24);H[e+16>>2]=f;H[e+20>>2]=b;d=0;if((c|0)<0){break a}H[H[a+4>>2]+80>>2]=c;d=1}return d|0}function qi(a){a=a|0;var b=0,c=0,d=0;H[a>>2]=11276;b=H[a+48>>2];H[a+48>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}H[a>>2]=13280;b=H[a+20>>2];if(b){H[a+24>>2]=b;oa(b)}d=H[a+8>>2];if(d){c=H[a+12>>2];b=d;if((c|0)!=(b|0)){while(1){c=c-4|0;b=H[c>>2];H[c>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}if((c|0)!=(d|0)){continue}break}b=H[a+8>>2]}H[a+12>>2]=d;oa(b)}return a|0}function Ee(a,b){var c=0,d=0,e=0,f=0;H[a+144>>2]=b;c=H[(ea[H[H[b>>2]+32>>2]](b)|0)+32>>2];c=H[c>>2]+H[c+16>>2]|0;d=H[(ea[H[H[b>>2]+32>>2]](b)|0)+32>>2];d=H[d+8>>2]-H[d+16>>2]|0;e=a,f=J[H[(ea[H[H[b>>2]+32>>2]](b)|0)+32>>2]+38>>1],G[e+38>>1]=f;H[a>>2]=c;H[a+16>>2]=0;H[a+20>>2]=0;H[a+8>>2]=d;H[a+12>>2]=0;e=a,f=ea[H[H[b>>2]+36>>2]](b)|0,H[e+148>>2]=f}function Cd(a,b,c,d){F[a+53|0]=1;a:{if(H[a+4>>2]!=(c|0)){break a}F[a+52|0]=1;c=H[a+16>>2];b:{if(!c){H[a+36>>2]=1;H[a+24>>2]=d;H[a+16>>2]=b;if((d|0)!=1){break a}if(H[a+48>>2]==1){break b}break a}if((b|0)==(c|0)){c=H[a+24>>2];if((c|0)==2){H[a+24>>2]=d;c=d}if(H[a+48>>2]!=1){break a}if((c|0)==1){break b}break a}H[a+36>>2]=H[a+36>>2]+1}F[a+54|0]=1}}function pi(a){a=a|0;var b=0,c=0,d=0;H[a>>2]=11276;b=H[a+48>>2];H[a+48>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}H[a>>2]=13280;b=H[a+20>>2];if(b){H[a+24>>2]=b;oa(b)}d=H[a+8>>2];if(d){c=H[a+12>>2];b=d;if((c|0)!=(b|0)){while(1){c=c-4|0;b=H[c>>2];H[c>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}if((c|0)!=(d|0)){continue}break}b=H[a+8>>2]}H[a+12>>2]=d;oa(b)}oa(a)}function zh(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0;e=H[a+32>>2];b=e;g=H[b+8>>2];d=H[b+12>>2];c=H[b+16>>2];b=H[b+20>>2];f=d;d=c+4|0;b=d>>>0<4?b+1|0:b;if((f|0)>=(b|0)&d>>>0<=g>>>0|(b|0)<(f|0)){c=H[e>>2]+c|0;c=I[c|0]|I[c+1|0]<<8|(I[c+2|0]<<16|I[c+3|0]<<24);H[e+16>>2]=d;H[e+20>>2]=b;H[H[a+4>>2]+80>>2]=c}return(b|0)<=(f|0)&d>>>0<=g>>>0|(b|0)<(f|0)}function Mf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;e=ca+-64|0;ca=e;d=1;a:{if(Ya(a,b,0)){break a}d=0;if(!b){break a}b=Ed(b,14972);d=0;if(!b){break a}d=e+8|0;ra(d|4,0,52);H[e+56>>2]=1;H[e+20>>2]=-1;H[e+16>>2]=a;H[e+8>>2]=b;ea[H[H[b>>2]+28>>2]](b,d,H[c>>2],1);a=H[e+32>>2];if((a|0)==1){H[c>>2]=H[e+24>>2]}d=(a|0)==1}ca=e- -64|0;return d|0}function Ie(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=ca-16|0;ca=d;H[a+4>>2]=b;b=H[b+64>>2];e=H[b>>2];b=H[b+4>>2];F[d+15|0]=0;Oa(a+24|0,(b-e>>2>>>0)/3|0,d+15|0);b=H[a+4>>2];e=H[b+56>>2];b=H[b+52>>2];F[d+14|0]=0;Oa(a+36|0,e-b>>2,d+14|0);b=H[c+12>>2];H[a+16>>2]=H[c+8>>2];H[a+20>>2]=b;b=H[c+4>>2];H[a+8>>2]=H[c>>2];H[a+12>>2]=b;ca=d+16|0}function pc(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;if(!b){H[c>>2]=0;return}h=0-I[a+12|0]&255;e=H[a+4>>2];d=H[a+8>>2];i=H[a>>2];while(1){j=f<<1;if(!((e|0)<=0|d>>>0>4095)){e=e-1|0;H[a+4>>2]=e;d=I[e+i|0]|d<<8}g=d&255;f=g>>>0>>0;k=g;g=N(d>>>8|0,h);d=f?k+g|0:d-(h+g|0)|0;H[a+8>>2]=d;f=f|j;b=b-1|0;if(b){continue}break}H[c>>2]=f}function yg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0;a=ca-16|0;ca=a;f=F[b+24|0];e=H[3411];H[a+8>>2]=H[3410];H[a+12>>2]=e;e=H[3409];H[a>>2]=H[3408];H[a+4>>2]=e;e=Va(b,c,f,a);if(e){b=0;if(f){c=(f&255)<<2;b=pa(c);g=qa(b,a,c)+c|0}c=H[d>>2];if(c){H[d+4>>2]=c;oa(c)}H[d+8>>2]=g;H[d+4>>2]=g;H[d>>2]=b}ca=a+16|0;return e|0}function of(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0;f=ea[H[H[a>>2]+24>>2]](a)|0;c=1;a:{if((f|0)<=0){break a}d=H[H[a+36>>2]>>2];g=a+48|0;c=0;if(!(ea[H[H[d>>2]+16>>2]](d,g,b)|0)){break a}while(1){e=e+1|0;if((f|0)!=(e|0)){d=H[H[a+36>>2]+(e<<2)>>2];if(ea[H[H[d>>2]+16>>2]](d,g,b)|0){continue}}break}c=(e|0)>=(f|0)}return c|0}function nf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0;f=ea[H[H[a>>2]+24>>2]](a)|0;c=1;a:{if((f|0)<=0){break a}d=H[H[a+36>>2]>>2];g=a+48|0;c=0;if(!(ea[H[H[d>>2]+20>>2]](d,g,b)|0)){break a}while(1){e=e+1|0;if((f|0)!=(e|0)){d=H[H[a+36>>2]+(e<<2)>>2];if(ea[H[H[d>>2]+20>>2]](d,g,b)|0){continue}}break}c=(e|0)>=(f|0)}return c|0}function _c(a,b){var c=0,d=0;a:{c=H[a+4>>2];d=H[a+8>>2];if((c|0)==d<<5){if((c+1|0)<0){break a}if(c>>>0<=1073741822){d=d<<6;c=(c&-32)+32|0;c=c>>>0>>0?d:c}else{c=2147483647}pb(a,c);c=H[a+4>>2]}H[a+4>>2]=c+1;d=1<>2]+(c>>>3&536870908)|0;if(I[b|0]){H[a>>2]=d|H[a>>2];return}H[a>>2]=H[a>>2]&(d^-1);return}sa();v()}function $h(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=ca-16|0;ca=d;H[a+4>>2]=b;e=H[b>>2];b=H[b+4>>2];F[d+15|0]=0;Oa(a+24|0,(b-e>>2>>>0)/3|0,d+15|0);b=H[a+4>>2];e=H[b+28>>2];b=H[b+24>>2];F[d+14|0]=0;Oa(a+36|0,e-b>>2,d+14|0);b=H[c+12>>2];H[a+16>>2]=H[c+8>>2];H[a+20>>2]=b;b=H[c+4>>2];H[a+8>>2]=H[c>>2];H[a+12>>2]=b;ca=d+16|0}function $b(a){var b=0;H[a>>2]=0;H[a+4>>2]=0;H[a+56>>2]=0;H[a+48>>2]=0;H[a+52>>2]=0;H[a+40>>2]=0;H[a+44>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;H[a+24>>2]=0;H[a+28>>2]=0;H[a+16>>2]=0;H[a+20>>2]=0;H[a+8>>2]=0;H[a+12>>2]=0;b=a- -64|0;H[b>>2]=0;H[b+4>>2]=0;H[a+72>>2]=0;H[a+76>>2]=0;H[a+80>>2]=0;H[a+84>>2]=0;H[a+60>>2]=a;return a}function td(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=H[c+20>>2];e=H[c+12>>2];f=H[c+16>>2];if((d|0)>=(e|0)&f>>>0>=K[c+8>>2]|(d|0)>(e|0)){break a}e=I[H[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;H[c+16>>2]=f;H[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!td(a+1|0,b,c)){break a}e=d&127|H[b>>2]<<7}H[b>>2]=e;g=1}return g} -function hb(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=H[c+20>>2];e=H[c+12>>2];f=H[c+16>>2];if((d|0)>=(e|0)&f>>>0>=K[c+8>>2]|(d|0)>(e|0)){break a}e=I[H[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;H[c+16>>2]=f;H[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!hb(a+1|0,b,c)){break a}e=d&127|H[b>>2]<<7}H[b>>2]=e;g=1}return g}function Xa(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=H[c+20>>2];e=H[c+12>>2];f=H[c+16>>2];if((d|0)>=(e|0)&f>>>0>=K[c+8>>2]|(d|0)>(e|0)){break a}e=I[H[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;H[c+16>>2]=f;H[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!Xa(a+1|0,b,c)){break a}e=d&127|H[b>>2]<<7}H[b>>2]=e;g=1}return g}function Qe(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=H[c+20>>2];e=H[c+12>>2];f=H[c+16>>2];if((d|0)>=(e|0)&f>>>0>=K[c+8>>2]|(d|0)>(e|0)){break a}e=I[H[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;H[c+16>>2]=f;H[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!Qe(a+1|0,b,c)){break a}e=d&127|H[b>>2]<<7}H[b>>2]=e;g=1}return g}function Pc(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=H[c+20>>2];e=H[c+12>>2];f=H[c+16>>2];if((d|0)>=(e|0)&f>>>0>=K[c+8>>2]|(d|0)>(e|0)){break a}e=I[H[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;H[c+16>>2]=f;H[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!Pc(a+1|0,b,c)){break a}e=d&127|H[b>>2]<<7}H[b>>2]=e;g=1}return g}function Fb(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=H[c+20>>2];e=H[c+12>>2];f=H[c+16>>2];if((d|0)>=(e|0)&f>>>0>=K[c+8>>2]|(d|0)>(e|0)){break a}e=I[H[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;H[c+16>>2]=f;H[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!Fb(a+1|0,b,c)){break a}e=d&127|H[b>>2]<<7}H[b>>2]=e;g=1}return g}function Ea(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=H[c+20>>2];e=H[c+12>>2];f=H[c+16>>2];if((d|0)>=(e|0)&f>>>0>=K[c+8>>2]|(d|0)>(e|0)){break a}e=I[H[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;H[c+16>>2]=f;H[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!Ea(a+1|0,b,c)){break a}e=d&127|H[b>>2]<<7}H[b>>2]=e;g=1}return g}function Bb(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=H[c+20>>2];e=H[c+12>>2];f=H[c+16>>2];if((d|0)>=(e|0)&f>>>0>=K[c+8>>2]|(d|0)>(e|0)){break a}e=I[H[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;H[c+16>>2]=f;H[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!Bb(a+1|0,b,c)){break a}e=d&127|H[b>>2]<<7}H[b>>2]=e;g=1}return g}function Fa(a,b,c){var d=0,e=0;a:{b:{if(c>>>0>=4){if((a|b)&3){break b}while(1){if(H[a>>2]!=H[b>>2]){break b}b=b+4|0;a=a+4|0;c=c-4|0;if(c>>>0>3){continue}break}}if(!c){break a}}while(1){d=I[a|0];e=I[b|0];if((d|0)==(e|0)){b=b+1|0;a=a+1|0;c=c-1|0;if(c){continue}break a}break}return d-e|0}return 0}function Yc(a){var b=0,c=0,d=0,e=0;d=H[a>>2];if(d){e=d;c=H[a+4>>2];if((d|0)!=(c|0)){while(1){e=c-144|0;b=H[e+132>>2];if(b){H[c-8>>2]=b;oa(b)}b=H[c-28>>2];if(b){H[c-24>>2]=b;oa(b)}b=H[c-40>>2];if(b){H[c-36>>2]=b;oa(b)}oc(c-140|0);c=e;if((d|0)!=(c|0)){continue}break}e=H[a>>2]}H[a+4>>2]=d;oa(e)}}function Dg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=H[b+4>>2];a:{if(!d){break a}b=H[H[H[b+8>>2]+(c<<2)>>2]+60>>2];if((b|0)<0){break a}a=H[d+24>>2];c=H[d+28>>2];if((a|0)==(c|0)){break a}b:{while(1){e=H[a>>2];if((b|0)==H[e+24>>2]){break b}a=a+4|0;if((c|0)!=(a|0)){continue}break}e=0}}return e|0}function Zh(a){a=a|0;var b=0;H[a+8>>2]=12384;H[a>>2]=12172;b=H[a+96>>2];if(b){H[a+100>>2]=b;oa(b)}b=H[a+80>>2];if(b){H[a+84>>2]=b;oa(b)}b=H[a+68>>2];if(b){H[a+72>>2]=b;oa(b)}b=H[a+56>>2];if(b){H[a+60>>2]=b;oa(b)}H[a+8>>2]=12620;b=H[a+44>>2];if(b){oa(b)}b=H[a+32>>2];if(b){oa(b)}return a|0}function Uc(a){var b=0,c=0,d=0;if(a){d=H[a+24>>2];if(d){b=d;c=H[a+28>>2];if((b|0)!=(c|0)){while(1){c=c-4|0;b=H[c>>2];H[c>>2]=0;if(b){Ra(b+12|0,H[b+16>>2]);Qa(b,H[b+4>>2]);oa(b)}if((c|0)!=(d|0)){continue}break}b=H[a+24>>2]}H[a+28>>2]=d;oa(b)}Ra(a+12|0,H[a+16>>2]);Qa(a,H[a+4>>2]);oa(a)}}function Yh(a){a=a|0;var b=0;H[a+8>>2]=12384;H[a>>2]=12172;b=H[a+96>>2];if(b){H[a+100>>2]=b;oa(b)}b=H[a+80>>2];if(b){H[a+84>>2]=b;oa(b)}b=H[a+68>>2];if(b){H[a+72>>2]=b;oa(b)}b=H[a+56>>2];if(b){H[a+60>>2]=b;oa(b)}H[a+8>>2]=12620;b=H[a+44>>2];if(b){oa(b)}b=H[a+32>>2];if(b){oa(b)}oa(a)}function vi(a){a=a|0;var b=0,c=0,d=0;H[a>>2]=13280;b=H[a+20>>2];if(b){H[a+24>>2]=b;oa(b)}d=H[a+8>>2];if(d){c=H[a+12>>2];b=d;if((c|0)!=(b|0)){while(1){c=c-4|0;b=H[c>>2];H[c>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}if((c|0)!=(d|0)){continue}break}b=H[a+8>>2]}H[a+12>>2]=d;oa(b)}return a|0}function xc(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0;h=H[c+8>>2];e=H[c+16>>2];g=H[c+12>>2];f=g;d=H[c+20>>2];if(h>>>0>e>>>0&(f|0)>=(d|0)|(d|0)<(f|0)){b=I[H[c>>2]+e|0];i=e+1|0;f=i?d:d+1|0;H[c+16>>2]=i;H[c+20>>2]=f;H[a+4>>2]=b}return e>>>0>>0&(d|0)<=(g|0)|(d|0)<(g|0)}function Wc(a){a=a|0;var b=0,c=0,d=0;H[a>>2]=13280;b=H[a+20>>2];if(b){H[a+24>>2]=b;oa(b)}d=H[a+8>>2];if(d){c=H[a+12>>2];b=d;if((c|0)!=(b|0)){while(1){c=c-4|0;b=H[c>>2];H[c>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}if((c|0)!=(d|0)){continue}break}b=H[a+8>>2]}H[a+12>>2]=d;oa(b)}oa(a)}function Ya(a,b,c){var d=0;if(!c){return H[a+4>>2]==H[b+4>>2]}if((a|0)==(b|0)){return 1}d=H[a+4>>2];a=I[d|0];c=H[b+4>>2];b=I[c|0];a:{if(!a|(b|0)!=(a|0)){break a}while(1){b=I[c+1|0];a=I[d+1|0];if(!a){break a}c=c+1|0;d=d+1|0;if((a|0)==(b|0)){continue}break}}return(a|0)==(b|0)}function _h(a){a=a|0;var b=0;H[a>>2]=12384;b=H[a+88>>2];if(b){H[a+92>>2]=b;oa(b)}b=H[a+72>>2];if(b){H[a+76>>2]=b;oa(b)}b=H[a+60>>2];if(b){H[a- -64>>2]=b;oa(b)}b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}H[a>>2]=12620;b=H[a+36>>2];if(b){oa(b)}b=H[a+24>>2];if(b){oa(b)}return a|0}function Fg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=H[b+12>>2];b=H[b+8>>2];a=0;a:{if((d|0)==(b|0)){break a}a=d-b>>2;d=a>>>0<=1?1:a;a=0;b:{while(1){e=H[b+(a<<2)>>2];if(H[e+60>>2]==(c|0)){break b}a=a+1|0;if((d|0)!=(a|0)){continue}break}a=0;break a}a=(a|0)!=-1?e:0}return a|0}function ae(a,b){var c=0,d=0,e=0;H[a+8>>2]=0;H[a>>2]=0;H[a+4>>2]=0;a:{c=H[b+4>>2];d=H[b>>2];b:{if((c|0)==(d|0)){a=c;break b}c=c-d|0;if((c|0)<0){break a}d=c;e=pa(c);c=ra(e,0,c);d=d+c|0;H[a+8>>2]=d;H[a+4>>2]=d;H[a>>2]=c;c=H[b>>2];a=H[b+4>>2]}qa(e,c,a-c|0);return}sa();v()}function ed(a){var b=0,c=0,d=0,e=0;c=H[a+4>>2];d=H[a>>2];if((c|0)!=(d|0)){while(1){e=c-144|0;b=H[e+132>>2];if(b){H[c-8>>2]=b;oa(b)}b=H[c-28>>2];if(b){H[c-24>>2]=b;oa(b)}b=H[c-40>>2];if(b){H[c-36>>2]=b;oa(b)}oc(c-140|0);c=e;if((d|0)!=(c|0)){continue}break}}H[a+4>>2]=d}function Vh(a){a=a|0;var b=0;H[a>>2]=12384;b=H[a+88>>2];if(b){H[a+92>>2]=b;oa(b)}b=H[a+72>>2];if(b){H[a+76>>2]=b;oa(b)}b=H[a+60>>2];if(b){H[a- -64>>2]=b;oa(b)}b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}H[a>>2]=12620;b=H[a+36>>2];if(b){oa(b)}b=H[a+24>>2];if(b){oa(b)}oa(a)}function cb(a){var b=0;if(a){b=H[a+76>>2];if(b){H[a+80>>2]=b;oa(b)}b=H[a- -64>>2];if(b){H[a+68>>2]=b;oa(b)}b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}b=H[a+24>>2];if(b){H[a+28>>2]=b;oa(b)}b=H[a+12>>2];if(b){H[a+16>>2]=b;oa(b)}b=H[a>>2];if(b){H[a+4>>2]=b;oa(b)}oa(a)}}function Jd(a,b,c){var d=0,e=0,f=0,g=0;f=ca-16|0;ca=f;d=ca-16|0;ca=d;b=b-a>>2;while(1){if(b){H[d+12>>2]=a;e=b>>>1|0;H[d+12>>2]=H[d+12>>2]+(e<<2);g=(e^-1)+b|0;b=e;e=K[H[d+12>>2]>>2]>2];b=e?g:b;a=e?H[d+12>>2]+4|0:a;continue}break}ca=d+16|0;ca=f+16|0;return a}function oc(a){var b=0;b=H[a+84>>2];if(b){H[a+88>>2]=b;oa(b)}b=H[a+72>>2];if(b){H[a+76>>2]=b;oa(b)}b=H[a+52>>2];if(b){H[a+56>>2]=b;oa(b)}b=H[a+40>>2];if(b){H[a+44>>2]=b;oa(b)}b=H[a+28>>2];if(b){H[a+32>>2]=b;oa(b)}b=H[a+12>>2];if(b){oa(b)}a=H[a>>2];if(a){oa(a)}}function Xc(a,b){var c=0,d=0;d=pa(40);H[d>>2]=-1;c=d+8|0;H[c+16>>2]=0;H[c+20>>2]=0;H[c+8>>2]=0;H[c>>2]=0;H[c+4>>2]=0;H[c+24>>2]=0;H[c+28>>2]=0;ea[H[H[a>>2]+16>>2]](a,d);a=H[b+88>>2];H[b+88>>2]=d;if(a){b=H[a+8>>2];if(b){H[a+12>>2]=b;oa(b)}oa(a)}return 1}function Ma(a){var b=0,c=0,d=0;b=a;a:{if(b&3){while(1){if(!I[b|0]){break a}b=b+1|0;if(b&3){continue}break}}while(1){c=b;b=b+4|0;d=H[c>>2];if(!((d^-1)&d-16843009&-2139062144)){continue}break}while(1){b=c;c=b+1|0;if(I[b|0]){continue}break}}return b-a|0}function Ba(a){var b=0,c=0,d=0,e=0,f=0;d=I[a+12|0];c=H[a+8>>2];a:{if(c>>>0>4095){break a}b=H[a+4>>2];if((b|0)<=0){break a}b=b-1|0;H[a+4>>2]=b;c=I[b+H[a>>2]|0]|c<<8}d=0-d&255;b=N(d,c>>>8|0);e=c&255;f=e>>>0>>0;H[a+8>>2]=f?b+e|0:c-(b+d|0)|0;return f}function od(a,b){H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=1984;H[a+12>>2]=0;H[a+16>>2]=0;H[a+20>>2]=0;H[a+24>>2]=0;H[a+28>>2]=0;H[a+32>>2]=0;H[a+36>>2]=0;H[a+40>>2]=0;H[a>>2]=2328;H[a+60>>2]=b;H[a+44>>2]=0;H[a+48>>2]=0;H[a+52>>2]=0;H[a+56>>2]=0;return a}function mc(a,b){var c=0,d=0,e=0;c=Ma(b);if(c>>>0<2147483632){a:{b:{if(c>>>0>=11){d=(c|15)+1|0;e=pa(d);H[a+8>>2]=d|-2147483648;H[a>>2]=e;H[a+4>>2]=c;d=c+e|0;break b}F[a+11|0]=c;d=a+c|0;e=a;if(!c){break a}}va(e,b,c)}F[d|0]=0;return a}Na();v()}function Ng(a){a=a|0;var b=0,c=0,d=0;if(a){if(F[a+27|0]<0){oa(H[a+16>>2])}b=H[a>>2];if(b){c=b;d=H[a+4>>2];if((b|0)!=(d|0)){while(1){c=d-12|0;if(F[d-1|0]<0){oa(H[c>>2])}d=c;if((d|0)!=(b|0)){continue}break}c=H[a>>2]}H[a+4>>2]=b;oa(c)}oa(a)}}function Jb(a,b){var c=0,d=0,e=0;a:{c=H[a>>2];b:{if(H[a+8>>2]-c>>2>>>0>=b>>>0){break b}if(b>>>0>=1073741824){break a}d=H[a+4>>2]-c|0;e=b<<2;b=va(pa(e),c,d);H[a+8>>2]=b+e;H[a+4>>2]=b+d;H[a>>2]=b;if(!c){break b}oa(c)}return}sa();v()}function Ga(a){a=a|0;var b=0,c=0;if(a){b=H[a+88>>2];H[a+88>>2]=0;if(b){c=H[b+8>>2];if(c){H[b+12>>2]=c;oa(c)}oa(b)}b=H[a+68>>2];if(b){H[a+72>>2]=b;oa(b)}b=H[a+64>>2];H[a+64>>2]=0;if(b){c=H[b>>2];if(c){H[b+4>>2]=c;oa(c)}oa(b)}oa(a)}}function Nd(a){var b=0,c=0,d=0;if(F[H[a>>2]]-48>>>0>=10){return 0}while(1){d=H[a>>2];c=-1;if(b>>>0<=214748364){c=F[d|0]-48|0;b=N(b,10);c=(c|0)>(b^2147483647)?-1:c+b|0}H[a>>2]=d+1;b=c;if(F[d+1|0]-48>>>0<10){continue}break}return b}function Cg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;b=H[b+96>>2];a=pa(12);b=b+N(c,12)|0;c=H[b+4>>2];H[a>>2]=H[b>>2];H[a+4>>2]=c;H[a+8>>2]=H[b+8>>2];b=H[d>>2];if(b){H[d+4>>2]=b;oa(b)}H[d>>2]=a;a=a+12|0;H[d+8>>2]=a;H[d+4>>2]=a;return 1}function Ai(a){a=a|0;var b=0;H[a+24>>2]=1832;H[a>>2]=11048;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}H[a>>2]=2448;b=H[a+20>>2];H[a+20>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}H[a>>2]=2232;b=H[a+16>>2];H[a+16>>2]=0;if(b){Ga(b)}return a|0}function Sj(a,b,c,d){var e=0,f=0,g=0,h=0;f=b^d;g=f>>31;e=b>>31;a=a^e;h=a-e|0;e=(b^e)-((a>>>0>>0)+e|0)|0;a=d>>31;b=c^a;f=f>>31;a=Tj(h,e,b-a|0,(a^d)-((a>>>0>b>>>0)+a|0)|0)^f;b=a-f|0;da=(g^da)-((a>>>0>>0)+g|0)|0;return b}function yi(a){a=a|0;var b=0;H[a+24>>2]=1832;H[a>>2]=11048;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}H[a>>2]=2448;b=H[a+20>>2];H[a+20>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}H[a>>2]=2232;b=H[a+16>>2];H[a+16>>2]=0;if(b){Ga(b)}oa(a)}function Yb(a,b,c){var d=0,e=0,f=0;e=ca-16|0;ca=e;d=H[a+8>>2]&2147483647;a:{if(d>>>0>c>>>0){d=H[a>>2];H[a+4>>2]=c;yb(d,b,c);F[e+15|0]=0;F[c+d|0]=I[e+15|0];break a}f=a;a=H[a+4>>2];Gd(f,d-1|0,(c-d|0)+1|0,a,a,c,b)}ca=e+16|0}function Bf(a,b){a=a|0;b=b|0;var c=0,d=0;c=ca-16|0;ca=c;a=H[a+4>>2];a:{if((a|0)==-1){break a}F[c+15|0]=a;d=H[b+20>>2];if(!!H[b+16>>2]&(d|0)>=0|(d|0)>0){break a}Wb(b,H[b+4>>2],c+15|0,c+16|0)}ca=c+16|0;return(a|0)!=-1|0}function Xb(a,b,c){var d=0,e=0;d=ca-16|0;ca=d;a:{if(c>>>0<=10){F[a+11|0]=I[a+11|0]&128|c;F[a+11|0]=I[a+11|0]&127;yb(a,b,c);F[d+15|0]=0;F[a+c|0]=I[d+15|0];break a}e=a;a=I[a+11|0]&127;Gd(e,10,c-10|0,a,a,c,b)}ca=d+16|0}function Rj(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0;e=c>>>16|0;f=a>>>16|0;j=N(e,f);g=c&65535;h=a&65535;i=N(g,h);f=(i>>>16|0)+N(f,g)|0;e=(f&65535)+N(e,h)|0;da=(N(b,c)+j|0)+N(a,d)+(f>>>16)+(e>>>16)|0;return i&65535|e<<16}function Dd(a,b,c){var d=0;d=H[a+16>>2];if(!d){H[a+36>>2]=1;H[a+24>>2]=c;H[a+16>>2]=b;return}a:{if((b|0)==(d|0)){if(H[a+24>>2]!=2){break a}H[a+24>>2]=c;return}F[a+54|0]=1;H[a+24>>2]=2;H[a+36>>2]=H[a+36>>2]+1}}function th(){var a=0;a=Eb(pa(96));H[a+64>>2]=0;H[a+68>>2]=0;H[a+88>>2]=0;H[a+72>>2]=0;H[a+76>>2]=0;F[a+77|0]=0;F[a+78|0]=0;F[a+79|0]=0;F[a+80|0]=0;F[a+81|0]=0;F[a+82|0]=0;F[a+83|0]=0;F[a+84|0]=0;return a|0}function zi(a,b){a=a|0;b=b|0;var c=0,d=0;H[b>>2]=2;c=H[b+8>>2];d=H[b+12>>2]-c|0;if(d>>>0<=4294967291){kc(b+8|0,d+4|0);c=H[b+8>>2]}b=c+d|0;a=H[a+4>>2];F[b|0]=a;F[b+1|0]=a>>>8;F[b+2|0]=a>>>16;F[b+3|0]=a>>>24}function rj(a){a=a|0;var b=0;H[a>>2]=5580;b=H[a+96>>2];if(b){oa(b)}b=H[a+84>>2];if(b){oa(b)}b=H[a+72>>2];if(b){oa(b)}b=H[a+60>>2];if(b){oa(b)}H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}return a|0}function ib(a,b,c,d,e){var f=0;f=ca-256|0;ca=f;if(!(e&73728|(c|0)<=(d|0))){d=c-d|0;c=d>>>0<256;ra(f,b&255,c?d:256);if(!c){while(1){Ab(a,f,256);d=d-256|0;if(d>>>0>255){continue}break}}Ab(a,f,d)}ca=f+256|0}function Ij(a){a=a|0;var b=0;H[a>>2]=3564;b=H[a+96>>2];if(b){oa(b)}b=H[a+84>>2];if(b){oa(b)}b=H[a+72>>2];if(b){oa(b)}b=H[a+60>>2];if(b){oa(b)}H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}return a|0}function Ch(a){a=a|0;var b=0,c=0,d=0;b=H[a+8>>2];d=H[a+12>>2];if((b|0)==(d|0)){return 1}while(1){c=H[b>>2];c=ea[H[H[c>>2]+16>>2]](c,H[a+32>>2])|0;if(c){b=b+4|0;if((d|0)!=(b|0)){continue}}break}return c|0}function Yd(a,b){var c=0,d=0;c=H[a+8>>2];a=H[a+12>>2];if((c|0)!=(a|0)){a=a-c>>2;d=a>>>0<=1?1:a;a=0;while(1){if(H[H[(a<<2)+c>>2]+60>>2]==(b|0)){return a}a=a+1|0;if((d|0)!=(a|0)){continue}break}}return-1}function qj(a){a=a|0;var b=0;H[a>>2]=5580;b=H[a+96>>2];if(b){oa(b)}b=H[a+84>>2];if(b){oa(b)}b=H[a+72>>2];if(b){oa(b)}b=H[a+60>>2];if(b){oa(b)}H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}oa(a)}function Hj(a){a=a|0;var b=0;H[a>>2]=3564;b=H[a+96>>2];if(b){oa(b)}b=H[a+84>>2];if(b){oa(b)}b=H[a+72>>2];if(b){oa(b)}b=H[a+60>>2];if(b){oa(b)}H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}oa(a)}function $d(a,b,c){var d=0,e=0;d=a+4|0;a=nb(a,b);a:{if((d|0)==(a|0)){break a}b=H[a+32>>2];d=H[a+28>>2];if((b|0)==(d|0)){break a}Cc(c,b-d|0);c=Dc(c);b=H[a+28>>2];qa(c,b,H[a+32>>2]-b|0);e=1}return e}function Qf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0;e=ca-16|0;ca=e;a=_(H[a+60>>2],b|0,c|0,d&255,e+8|0)|0;if(a){H[3992]=a;a=-1}else{a=0}ca=e+16|0;da=a?-1:H[e+12>>2];return(a?-1:H[e+8>>2])|0}function Sd(a){var b=0;b=H[a+72>>2];H[a+72>>2]=b-1|b;b=H[a>>2];if(b&8){H[a>>2]=b|32;return-1}H[a+4>>2]=0;H[a+8>>2]=0;b=H[a+44>>2];H[a+28>>2]=b;H[a+20>>2]=b;H[a+16>>2]=b+H[a+48>>2];return 0}function Eb(a){H[a+8>>2]=0;H[a+12>>2]=0;H[a>>2]=0;H[a+40>>2]=0;H[a+44>>2]=0;H[a+28>>2]=9;F[a+24|0]=1;H[a+56>>2]=-1;H[a+60>>2]=0;H[a+16>>2]=0;H[a+20>>2]=0;H[a+48>>2]=0;H[a+52>>2]=0;return a}function hf(a,b){a=a|0;b=b|0;var c=0,d=0;d=H[a+16>>2];c=0;a:{if(H[a+20>>2]-d>>2<=(b|0)){break a}b=H[(b<<2)+d>>2];c=0;if((b|0)<0){break a}c=rb(H[H[a+36>>2]+(b<<2)>>2])}return c|0}function Mg(){var a=0,b=0;a=pa(40);H[a+4>>2]=0;H[a+8>>2]=0;H[a+24>>2]=0;H[a+28>>2]=0;b=a+16|0;H[b>>2]=0;H[b+4>>2]=0;H[a>>2]=a+4;H[a+12>>2]=b;H[a+32>>2]=0;H[a+36>>2]=0;return a|0}function Vf(a,b){a=a|0;b=b|0;var c=0,d=0;Wd(a,b);a:{if((b|0)<0){break a}d=H[a+88>>2];c=H[a+84>>2];if(d-c>>2<=(b|0)){break a}c=(b<<2)+c|0;b=c+4|0;va(c,b,d-b|0);H[a+88>>2]=d-4}}function Rh(a){a=a|0;var b=0;H[a+8>>2]=12804;H[a>>2]=12640;b=H[a+56>>2];if(b){H[a+60>>2]=b;oa(b)}H[a+8>>2]=12620;b=H[a+44>>2];if(b){oa(b)}b=H[a+32>>2];if(b){oa(b)}return a|0}function Lh(a){a=a|0;var b=0;H[a+8>>2]=11872;H[a>>2]=12932;b=H[a+56>>2];if(b){H[a+60>>2]=b;oa(b)}H[a+8>>2]=12124;b=H[a+44>>2];if(b){oa(b)}b=H[a+32>>2];if(b){oa(b)}return a|0}function zb(a){var b=0,c=0;b=H[3958];c=a+7&-8;a=b+c|0;a:{if(a>>>0<=b>>>0?c:0){break a}if(a>>>0>fa()<<16>>>0){if(!($(a|0)|0)){break a}}H[3958]=a;return b}H[3992]=48;return-1}function bj(a,b,c){a=a|0;b=b|0;c=c|0;var d=0;H[a+4>>2]=b;b=H[H[H[b+4>>2]+8>>2]+(c<<2)>>2];H[a+12>>2]=c;H[a+8>>2]=b;a=H[a+8>>2];if(I[a+24|0]==3){d=H[a+28>>2]==9}return d|0}function wf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=H[a+8>>2];a:{if(!I[d+24|0]){break a}if(!mb(d,H[b+4>>2]-H[b>>2]>>2)){break a}e=ea[H[H[a>>2]+32>>2]](a,b,c)|0}return e|0}function Qh(a){a=a|0;var b=0;H[a+8>>2]=12804;H[a>>2]=12640;b=H[a+56>>2];if(b){H[a+60>>2]=b;oa(b)}H[a+8>>2]=12620;b=H[a+44>>2];if(b){oa(b)}b=H[a+32>>2];if(b){oa(b)}oa(a)}function Kh(a){a=a|0;var b=0;H[a+8>>2]=11872;H[a>>2]=12932;b=H[a+56>>2];if(b){H[a+60>>2]=b;oa(b)}H[a+8>>2]=12124;b=H[a+44>>2];if(b){oa(b)}b=H[a+32>>2];if(b){oa(b)}oa(a)}function nj(a){a=a|0;var b=0;H[a>>2]=5816;b=H[a+76>>2];if(b){oa(b)}b=H[a+68>>2];H[a+68>>2]=0;if(b){oa(b)}H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}return a|0}function Ra(a,b){if(b){Ra(a,H[b>>2]);Ra(a,H[b+4>>2]);a=H[b+28>>2];H[b+28>>2]=0;if(a){Ra(a+12|0,H[a+16>>2]);Qa(a,H[a+4>>2]);oa(a)}if(F[b+27|0]<0){oa(H[b+16>>2])}oa(b)}}function Gi(a,b,c){a=a|0;b=b|0;c=c|0;var d=0;H[a+4>>2]=b;d=H[H[H[b+4>>2]+8>>2]+(c<<2)>>2];H[a+12>>2]=c;H[a+8>>2]=d;return H[H[H[H[b+4>>2]+8>>2]+(c<<2)>>2]+28>>2]==9|0}function Ej(a){a=a|0;var b=0;H[a>>2]=3812;b=H[a+76>>2];if(b){oa(b)}b=H[a+68>>2];H[a+68>>2]=0;if(b){oa(b)}H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}return a|0}function Vc(a){H[a+40>>2]=0;H[a+4>>2]=0;H[a+8>>2]=0;H[a>>2]=13280;H[a+12>>2]=0;H[a+16>>2]=0;H[a+20>>2]=0;H[a+24>>2]=0;H[a+28>>2]=0;H[a+32>>2]=0;G[a+36>>1]=0;return a}function Hd(a,b){var c=0,d=0,e=0,f=0;H[a>>2]=15260;H[a>>2]=15372;c=Ma(b);d=pa(c+13|0);H[d+8>>2]=0;H[d+4>>2]=c;H[d>>2]=c;e=a,f=qa(d+12|0,b,c+1|0),H[e+4>>2]=f;return a}function jg(a,b){a=a|0;b=b|0;var c=0;a:{if(!(ea[H[H[a>>2]+36>>2]](a,b)|0)){break a}if(!(ea[H[H[a>>2]+40>>2]](a,b)|0)){break a}c=ea[H[H[a>>2]+44>>2]](a)|0}return c|0}function mj(a){a=a|0;var b=0;H[a>>2]=5816;b=H[a+76>>2];if(b){oa(b)}b=H[a+68>>2];H[a+68>>2]=0;if(b){oa(b)}H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}oa(a)}function Dj(a){a=a|0;var b=0;H[a>>2]=3812;b=H[a+76>>2];if(b){oa(b)}b=H[a+68>>2];H[a+68>>2]=0;if(b){oa(b)}H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}oa(a)}function Xe(a){a=a|0;var b=0;a:{if(!H[a- -64>>2]|!H[a+68>>2]|(!H[a+44>>2]|!H[a+48>>2])){break a}if(!H[a+52>>2]|!H[a+56>>2]){break a}b=H[a+92>>2]!=-1}return b|0}function cf(a){a=a|0;var b=0;H[a>>2]=2448;b=H[a+20>>2];H[a+20>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}H[a>>2]=2232;b=H[a+16>>2];H[a+16>>2]=0;if(b){Ga(b)}return a|0}function Pj(a,b){a=a|0;b=b|0;var c=0;b=H[b+88>>2];if(!(!b|H[b>>2]!=2)){c=a;a=H[b+8>>2];H[c+4>>2]=I[a|0]|I[a+1|0]<<8|(I[a+2|0]<<16|I[a+3|0]<<24);c=1}return c|0}function tc(a){a=a|0;var b=0;a:{if(!H[a+48>>2]|!H[a+52>>2]|(!H[a+28>>2]|!H[a+32>>2])){break a}if(!H[a+36>>2]|!H[a+40>>2]){break a}b=H[a+76>>2]!=-1}return b|0}function Sh(a){a=a|0;var b=0;H[a>>2]=12804;b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}H[a>>2]=12620;b=H[a+36>>2];if(b){oa(b)}b=H[a+24>>2];if(b){oa(b)}return a|0}function He(a){a=a|0;var b=0;H[a>>2]=11872;b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}H[a>>2]=12124;b=H[a+36>>2];if(b){oa(b)}b=H[a+24>>2];if(b){oa(b)}return a|0}function bf(a){a=a|0;var b=0;H[a>>2]=2448;b=H[a+20>>2];H[a+20>>2]=0;if(b){ea[H[H[b>>2]+4>>2]](b)}H[a>>2]=2232;b=H[a+16>>2];H[a+16>>2]=0;if(b){Ga(b)}oa(a)}function wh(){var a=0,b=0;b=pa(40);H[b>>2]=-1;a=b+8|0;H[a+16>>2]=0;H[a+20>>2]=0;H[a+8>>2]=0;H[a>>2]=0;H[a+4>>2]=0;H[a+24>>2]=0;H[a+28>>2]=0;return b|0}function gf(a,b){a=a|0;b=b|0;var c=0,d=0;d=H[a+4>>2];a:{if(d){c=1;if(I[d+36|0]<2){break a}}c=ea[H[H[a>>2]+48>>2]](a,H[b+4>>2]-H[b>>2]>>2)|0}return c|0}function ci(a){a=a|0;var b=0;H[a>>2]=11872;b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}H[a>>2]=12124;b=H[a+36>>2];if(b){oa(b)}b=H[a+24>>2];if(b){oa(b)}oa(a)}function Mh(a){a=a|0;var b=0;H[a>>2]=12804;b=H[a+48>>2];if(b){H[a+52>>2]=b;oa(b)}H[a>>2]=12620;b=H[a+36>>2];if(b){oa(b)}b=H[a+24>>2];if(b){oa(b)}oa(a)}function Ha(a){H[a+8>>2]=0;H[a+12>>2]=0;H[a>>2]=0;H[a+16>>2]=0;H[a+20>>2]=0;H[a+32>>2]=0;H[a+24>>2]=0;H[a+28>>2]=0;G[a+38>>1]=0;F[a+36|0]=0;return a}function Hf(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;if(Ya(a,H[b+8>>2],f)){Cd(b,c,d,e);return}a=H[a+8>>2];ea[H[H[a>>2]+20>>2]](a,b,c,d,e,f)}function Ei(a,b,c){a=a|0;b=b|0;c=c|0;a:{if(I[H[a+4>>2]+36|0]>=2){b=0;if(!(ea[H[H[a>>2]+52>>2]](a)|0)){break a}}b=Xc(a+24|0,H[a+16>>2])}return b|0}function Fi(a,b,c){a=a|0;b=b|0;c=c|0;var d=0;a:{if(I[H[a+4>>2]+36|0]<=1){d=0;if(!(ea[H[H[a>>2]+52>>2]](a)|0)){break a}}d=nd(a,b,c)}return d|0}function gh(){var a=0;a=_d(pa(108));H[a+84>>2]=0;H[a+88>>2]=0;H[a>>2]=13664;H[a+92>>2]=0;H[a+96>>2]=0;H[a+100>>2]=0;H[a+104>>2]=0;return a|0}function Zd(a,b){var c=0;c=-1;a:{if((b|0)==-1|(b|0)>4){break a}b=N(b,12)+a|0;a=H[b+20>>2];if((H[b+24>>2]-a|0)<=0){break a}c=H[a>>2]}return c}function lc(a,b,c,d,e,f,g){H[a>>2]=0;H[a+56>>2]=b;H[a+48>>2]=0;H[a+52>>2]=0;H[a+40>>2]=f;H[a+44>>2]=g;F[a+32|0]=e;H[a+28>>2]=d;F[a+24|0]=c}function aj(a,b,c){a=a|0;b=b|0;c=c|0;var d=0;a:{if(I[H[a+4>>2]+36|0]<=1){d=0;if(!xc(a+24|0,H[a+8>>2],c)){break a}}d=nd(a,b,c)}return d|0}function $i(a,b,c){a=a|0;b=b|0;c=c|0;a:{if(I[H[a+4>>2]+36|0]>=2){b=0;if(!xc(a+24|0,rb(a),c)){break a}}b=Xc(a+24|0,H[a+16>>2])}return b|0}function Yf(a){a=a|0;var b=0;H[a>>2]=13664;b=H[a+96>>2];if(b){H[a+100>>2]=b;oa(b)}b=H[a+84>>2];if(b){H[a+88>>2]=b;oa(b)}return _b(a)|0}function Dc(a){var b=0;if(I[a+11|0]>>>7|0){b=H[a+4>>2]}else{b=I[a+11|0]&127}if(!b){af(1232);v()}if(I[a+11|0]>>>7|0){a=H[a>>2]}return a}function Xf(a){a=a|0;var b=0;H[a>>2]=13664;b=H[a+96>>2];if(b){H[a+100>>2]=b;oa(b)}b=H[a+84>>2];if(b){H[a+88>>2]=b;oa(b)}oa(_b(a))}function zj(a){a=a|0;var b=0;H[a>>2]=4040;b=H[a+76>>2];if(b){oa(b)}H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}return a|0}function jj(a){a=a|0;var b=0;H[a>>2]=6032;b=H[a+76>>2];if(b){oa(b)}H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}return a|0}function Qa(a,b){if(b){Qa(a,H[b>>2]);Qa(a,H[b+4>>2]);a=H[b+28>>2];if(a){H[b+32>>2]=a;oa(a)}if(F[b+27|0]<0){oa(H[b+16>>2])}oa(b)}}function Vg(){var a=0;a=pa(28);H[a>>2]=0;H[a+4>>2]=0;H[a+24>>2]=0;H[a+16>>2]=0;H[a+20>>2]=0;H[a+8>>2]=0;H[a+12>>2]=0;return a|0}function wg(a){a=a|0;var b=0;H[a>>2]=1984;b=H[a+16>>2];if(b){H[a+20>>2]=b;oa(b)}b=H[a+4>>2];if(b){H[a+8>>2]=b;oa(b)}return a|0}function eh(){var a=0,b=0;a=pa(24);H[a+4>>2]=0;H[a+8>>2]=0;b=a+16|0;H[b>>2]=0;H[b+4>>2]=0;H[a>>2]=a+4;H[a+12>>2]=b;return a|0}function Kf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;if(Ya(a,H[b+8>>2],0)){Dd(b,c,d);return}a=H[a+8>>2];ea[H[H[a>>2]+28>>2]](a,b,c,d)}function yj(a){a=a|0;var b=0;H[a>>2]=4040;b=H[a+76>>2];if(b){oa(b)}H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}oa(a)}function ij(a){a=a|0;var b=0;H[a>>2]=6032;b=H[a+76>>2];if(b){oa(b)}H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}oa(a)}function pa(a){var b=0;a=a?a:1;a:{while(1){b=Ec(a);if(b){break a}b=H[4422];if(b){ea[b|0]();continue}break}X();v()}return b}function Kb(a,b){if(b){Kb(a,H[b>>2]);Kb(a,H[b+4>>2]);if(F[b+39|0]<0){oa(H[b+28>>2])}if(F[b+27|0]<0){oa(H[b+16>>2])}oa(b)}}function Ad(a){a=a|0;var b=0,c=0;H[a>>2]=15372;b=H[a+4>>2]-12|0;c=H[b+8>>2]-1|0;H[b+8>>2]=c;if((c|0)<0){oa(b)}return a|0}function lh(){var a=0;a=pa(24);H[a+8>>2]=0;H[a+12>>2]=0;H[a+4>>2]=-1;H[a>>2]=1832;H[a+16>>2]=0;H[a+20>>2]=0;return a|0}function pd(a,b,c){a=a|0;b=b|0;c=c|0;H[a+4>>2]=b;b=H[H[H[b+4>>2]+8>>2]+(c<<2)>>2];H[a+12>>2]=c;H[a+8>>2]=b;return 1}function wc(a){a=a|0;var b=0;if(!(!H[a+60>>2]|!H[a+44>>2]|(!H[a+48>>2]|!H[a+52>>2]))){b=H[a+56>>2]!=0}return b|0}function Id(a,b){if(I[a+11|0]>>>7|0){H[a+4>>2]=b;return}F[a+11|0]=I[a+11|0]&128|b;F[a+11|0]=I[a+11|0]&127}function wj(a){a=a|0;var b=0;H[a>>2]=4276;H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}return a|0}function fj(a){a=a|0;var b=0;H[a>>2]=6256;H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}return a|0}function bi(a){a=a|0;var b=0;H[a>>2]=12124;b=H[a+36>>2];if(b){oa(b)}b=H[a+24>>2];if(b){oa(b)}return a|0}function Uh(a){a=a|0;var b=0;H[a>>2]=12620;b=H[a+36>>2];if(b){oa(b)}b=H[a+24>>2];if(b){oa(b)}return a|0}function lg(a){a=a|0;if(a){if(F[a+39|0]<0){oa(H[a+28>>2])}Oc(a+12|0,H[a+16>>2]);Kb(a,H[a+4>>2]);oa(a)}}function Pb(a){a=a|0;var b=0;if(!(!H[a+52>>2]|(!H[a+44>>2]|!H[a+48>>2]))){b=H[a+56>>2]!=0}return b|0}function vj(a){a=a|0;var b=0;H[a>>2]=4276;H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}oa(a)}function vc(a,b){a=a|0;b=b|0;var c=0;if(!(H[b+56>>2]|!b|I[b+24|0]!=3)){H[a+60>>2]=b;c=1}return c|0}function ej(a){a=a|0;var b=0;H[a>>2]=6256;H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}oa(a)}function ai(a){a=a|0;var b=0;H[a>>2]=12124;b=H[a+36>>2];if(b){oa(b)}b=H[a+24>>2];if(b){oa(b)}oa(a)}function Th(a){a=a|0;var b=0;H[a>>2]=12620;b=H[a+36>>2];if(b){oa(b)}b=H[a+24>>2];if(b){oa(b)}oa(a)}function xh(a,b,c){a=a|0;b=b|0;c=c|0;H[a+16>>2]=0;H[a+20>>2]=0;H[a>>2]=b;H[a+8>>2]=c;H[a+12>>2]=0}function We(a,b){a=a|0;b=b|0;var c=0;if(!(H[b+56>>2]|I[b+24|0]!=3)){H[a- -64>>2]=b;c=1}return c|0}function yc(a){var b=0;b=H[a+16>>2];if(b){H[a+20>>2]=b;oa(b)}b=H[a>>2];if(b){H[a+4>>2]=b;oa(b)}}function sc(a,b){a=a|0;b=b|0;var c=0;if(!(H[b+56>>2]|I[b+24|0]!=3)){H[a+48>>2]=b;c=1}return c|0}function Gf(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;if(Ya(a,H[b+8>>2],f)){Cd(b,c,d,e)}}function wa(){var a=0;a=Bc(4);H[a>>2]=15260;H[a>>2]=15220;H[a>>2]=15240;Y(a|0,15352,14);v()}function sf(a){a=a|0;var b=0;H[a>>2]=2232;b=H[a+16>>2];H[a+16>>2]=0;if(b){Ga(b)}return a|0}function Kj(a){a=a|0;var b=0;H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}return a|0}function mi(a){a=a|0;var b=0;H[a>>2]=1832;b=H[a+8>>2];if(b){H[a+12>>2]=b;oa(b)}return a|0}function Ci(a){a=a|0;var b=0;b=rb(a);return Je(a+24|0,b?b:H[a+8>>2],H[H[a+4>>2]+32>>2])|0}function rf(a){a=a|0;var b=0;H[a>>2]=2232;b=H[a+16>>2];H[a+16>>2]=0;if(b){Ga(b)}oa(a)}function ji(a){a=a|0;var b=0;H[a>>2]=1832;b=H[a+8>>2];if(b){H[a+12>>2]=b;oa(b)}oa(a)} -function Ub(a){a=a|0;var b=0;H[a>>2]=3272;b=H[a+32>>2];if(b){H[a+36>>2]=b;oa(b)}oa(a)}function Za(a){var b=0;H[a+16>>2]=0;b=H[a>>2];H[a+4>>2]=b;H[a+12>>2]=b;if(b){oa(b)}}function Oc(a,b){if(b){Oc(a,H[b>>2]);Oc(a,H[b+4>>2]);Kb(b+20|0,H[b+24>>2]);oa(b)}}function wi(a){a=a|0;if(!H[a+44>>2]){return 0}return ea[H[H[a>>2]+48>>2]](a)|0}function vh(a){a=a|0;var b=0;if(a){b=H[a+8>>2];if(b){H[a+12>>2]=b;oa(b)}oa(a)}}function Uj(a){var b=0;while(1){if(a){a=a-1&a;b=b+1|0;continue}break}return b}function Lf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;if(Ya(a,H[b+8>>2],0)){Dd(b,c,d)}}function ui(a,b){a=a|0;b=b|0;a=H[a+48>>2];return ea[H[H[a>>2]+20>>2]](a,b)|0}function ni(a,b){a=a|0;b=b|0;a=H[a+48>>2];return ea[H[H[a>>2]+12>>2]](a,b)|0}function li(a,b){a=a|0;b=b|0;a=H[a+48>>2];return ea[H[H[a>>2]+16>>2]](a,b)|0}function lb(){var a=0;a=pa(12);H[a>>2]=0;H[a+4>>2]=0;H[a+8>>2]=0;return a|0}function kb(a){a=a|0;var b=0;if(a){b=H[a>>2];if(b){H[a+4>>2]=b;oa(b)}oa(a)}}function Vj(a){var b=0;b=a&31;a=0-a&31;return(-1>>>b&-2)<>>a} -function dh(a,b,c){a=a|0;b=b|0;c=c|0;H[a+32>>2]=c;H[a+28>>2]=b;return 1}function ch(a){a=a|0;if(a){Ra(a+12|0,H[a+16>>2]);Qa(a,H[a+4>>2]);oa(a)}}function Rd(a,b,c){a:{if(H[c+76>>2]<0){a=Fc(a,b,c);break a}a=Fc(a,b,c)}}function Mb(a,b){a=a|0;b=b|0;if(b>>>0<=1){H[a+28>>2]=b}return b>>>0<2|0}function Fh(a,b){a=a|0;b=b|0;F[b+84|0]=1;H[b+72>>2]=H[b+68>>2];return 1}function si(a){a=a|0;a=H[a+48>>2];return ea[H[H[a>>2]+24>>2]](a)|0}function ri(a){a=a|0;a=H[a+48>>2];return ea[H[H[a>>2]+28>>2]](a)|0}function oi(a){a=a|0;a=H[a+48>>2];return ea[H[H[a>>2]+36>>2]](a)|0}function ih(){var a=0;a=pa(8);H[a+4>>2]=-1;H[a>>2]=1032;return a|0}function Gg(a,b,c){a=a|0;b=b|0;c=c|0;return H[H[b+8>>2]+(c<<2)>>2]}function _i(a,b){a=a|0;b=b|0;return Fd(a+24|0,rb(a),H[a+8>>2])|0}function Bi(a,b){a=a|0;b=b|0;return Re(a+24|0,rb(a),H[a+8>>2])|0}function xf(a,b){a=a|0;b=b|0;H[a+12>>2]=-1;H[a+8>>2]=b;return 1}function ne(a,b){a=a|0;b=b|0;return ea[H[H[a>>2]+12>>2]](a,b)|0}function Ff(a){a=a|0;if(!a){return 0}return(Ed(a,15068)|0)!=0|0}function Di(a,b){a=a|0;b=b|0;return ea[H[H[a>>2]+56>>2]](a,b)|0}function $g(a){a=a|0;if(a){if(F[a+15|0]<0){oa(H[a+4>>2])}oa(a)}}function kh(a,b){a=a|0;b=b|0;return O(L[H[a+8>>2]+(b<<2)>>2])}function af(a){a=Hd(Bc(8),a);H[a>>2]=15472;Y(a|0,15504,1);v()}function Ue(a){a=Hd(Bc(8),a);H[a>>2]=15420;Y(a|0,15452,1);v()}function _g(a,b){a=a|0;b=b|0;return O(L[H[a>>2]+(b<<2)>>2])}function fh(a){a=a|0;return(H[a+100>>2]-H[a+96>>2]|0)/12|0}function ah(a){a=a|0;return(F[a+15|0]<0?H[a+4>>2]:a+4|0)|0}function _f(a,b){a=a|0;b=b|0;return H[H[a+4>>2]+(b<<2)>>2]}function Pf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;da=0;return 0}function Ke(a){a=Vc(a);H[a+44>>2]=0;H[a>>2]=11180;return a}function ie(a,b){a=a|0;b=b|0;return H[H[a>>2]+(b<<2)>>2]}function Xg(a,b){a=a|0;b=b|0;return G[H[a>>2]+(b<<1)>>1]}function Wg(a,b){a=a|0;b=b|0;return J[H[a>>2]+(b<<1)>>1]}function Zb(a,b){var c=0;c=pa(b);H[a+4>>2]=b;H[a>>2]=c}function Jg(a,b,c){a=a|0;b=b|0;c=c|0;return Zd(b,c)|0}function _d(a){H[a>>2]=13724;ra(a+4|0,0,80);return a}function me(a){a=a|0;return H[a+12>>2]-H[a+8>>2]>>2}function Qj(a){if(a){return 31-Q(a-1^a)|0}return 32}function cc(a){a=a|0;if(a){ea[H[H[a>>2]+4>>2]](a)}}function Zg(a,b){a=a|0;b=b|0;return F[H[a>>2]+b|0]}function Yg(a,b){a=a|0;b=b|0;return I[H[a>>2]+b|0]}function Uf(a){a=a|0;return H[a+8>>2]-H[a+4>>2]>>2}function jd(a,b){a=a|0;b=b|0;H[a+4>>2]=b;return 1}function je(a){a=a|0;return H[a+4>>2]-H[a>>2]>>1}function Qc(a){a=a|0;return H[a+4>>2]-H[a>>2]>>2}function le(a){a=a|0;return H[a+4>>2]-H[a>>2]|0}function Ab(a,b,c){if(!(I[a|0]&32)){Fc(b,c,a)}}function vf(a,b,c){a=a|0;b=b|0;c=c|0;return 1}function hi(a,b){a=a|0;b=b|0;return I[b+24|0]}function Pg(a,b){a=a|0;b=b|0;return H[b+8>>2]}function Nj(a){a=a|0;return I[H[a+8>>2]+24|0]}function Li(a){a=a|0;H[a>>2]=10032;return a|0}function Eg(a,b){a=a|0;b=b|0;return H[b+4>>2]}function Yi(a){a=a|0;H[a>>2]=7144;return a|0}function Ui(a){a=a|0;H[a>>2]=8080;return a|0}function Sf(a){a=a|0;return aa(H[a+60>>2])|0}function Pi(a){a=a|0;H[a>>2]=9028;return a|0}function jh(a){a=a|0;return O(L[a+20>>2])}function Ji(a){a=a|0;H[a>>2]=10032;oa(a)}function Xi(a){a=a|0;H[a>>2]=7144;oa(a)}function Si(a){a=a|0;H[a>>2]=8080;oa(a)}function Oi(a){a=a|0;H[a>>2]=9028;oa(a)}function sh(a){a=a|0;return H[a+88>>2]}function rh(a){a=a|0;return H[a+56>>2]}function oh(a){a=a|0;return H[a+40>>2]}function nh(a){a=a|0;return H[a+48>>2]}function mh(a){a=a|0;return H[a+60>>2]}function eb(a){a=a|0;return H[a+28>>2]}function df(){H[4292]=17048;H[4274]=42}function Rc(a){a=a|0;return H[a+80>>2]}function qh(a){a=a|0;return F[a+24|0]}function ph(a){a=a|0;return I[a+32|0]}function md(a,b){a=a|0;b=b|0;return-1}function db(a){a=a|0;return H[a+4>>2]}function bh(a){a=a|0;return!H[a>>2]|0}function _e(a,b){a=a|0;b=b|0;return 6}function Zc(a){a=a|0;return H[a+8>>2]}function Pd(a,b){a=a|0;b=b|0;return 1}function Ja(a,b){a=a|0;b=b|0;return 0}function Bj(a,b){a=a|0;b=b|0;return 2}function Bc(a){return Ec(a+80|0)+80|0}function pe(a){a=a|0;return H[a>>2]}function yh(){return Ha(pa(40))|0}function uh(){return Eb(pa(64))|0}function hh(){return _d(pa(84))|0}function Sc(a){a=a|0;if(a){oa(a)}}function zc(a){a=a|0;Ad(a);oa(a)}function Ef(a){a=a|0;return 1171}function Df(a){a=a|0;return 1245}function Cf(a){a=a|0;return 1211}function Ta(a){a=a|0;return a|0}function yf(a){a=a|0;oa(rd(a))}function fi(a){a=a|0;oa(Be(a))}function ei(a){a=a|0;oa(Ae(a))}function di(a){a=a|0;oa(ze(a))}function Tf(a){a=a|0;oa(_b(a))}function ld(a){a=a|0;return 3}function _a(a){a=a|0;return 0}function Ze(a){a=a|0;return 5}function Tb(a){a=a|0;return 2}function Ob(a){a=a|0;return 6}function Da(a){a=a|0;return 1}function $e(a){a=a|0;return 4}function sa(){Ue(1164);v()}function Na(){Ue(1232);v()}function La(a){a=a|0;oa(a)}function Ca(){af(1164);v()}function fb(a){a=a|0;v()}function eg(){return 10}function dg(){return 11}function cg(){return 12}function kg(){return 5}function ig(){return 6}function hg(){return 7}function gg(){return 8}function fg(){return 9}function fe(){return 3}function ee(){return 4}function bg(){return-2}function bc(){return-1}function ag(){return-3}function ac(){return 1}function Zf(){return-5}function Qb(){return 0}function Nc(){return 2}function $f(){return-4}function Nf(){X();v()}function Td(a){a=a|0} -// EMSCRIPTEN_END_FUNCS -e=I;p(q);var ea=c([null,Ad,Ta,La,Tb,Pj,zi,Gh,Fd,Bf,xc,Nh,_e,Bj,Ta,mi,ji,Da,gj,Ti,Ki,Re,xi,Je,_e,hi,wg,fb,dh,ke,jg,_f,Uf,eb,Ja,Nf,Pd,Da,rd,yf,Of,Af,zf,sf,rf,pd,xf,wf,vf,Pd,uf,tf,kf,jf,qf,pf,hf,of,nf,mf,lf,cf,bf,pd,gf,ff,nd,ef,Nj,Oj,Kj,Ub,Da,db,Pb,_a,md,Ja,_a,Da,Mj,Lj,fb,fb,Ub,Tb,Pb,Jj,Ij,Hj,$e,Pb,Gj,Fj,Ej,Dj,ld,wc,Da,Ja,vc,Cj,Aj,zj,yj,Ze,wc,Da,Ja,vc,Ye,xj,wj,vj,Ob,Xe,Da,Ja,We,Ve,uj,Ta,La,Mb,eb,Nb,fb,Ub,Da,Pb,tj,fb,Ub,Tb,Pb,sj,rj,qj,$e,Pb,pj,oj,nj,mj,ld,wc,Da,Ja,vc,lj,kj,jj,ij,Ze,wc,Da,Ja,vc,Ye,hj,fj,ej,Ob,Xe,Da,Ja,We,Ve,dj,Ta,La,Mb,eb,Lb,fb,Ub,_a,Da,cj,cf,bf,bj,$i,aj,Zi,Tb,_i,Yi,Xi,Ob,db,tc,Da,Ja,sc,Da,Tb,Te,Wi,Ta,La,Mb,eb,Nb,Ui,Si,Ob,tc,Da,Ja,sc,Te,Ri,Ta,La,Mb,eb,Lb,Ta,La,_a,Da,_a,md,Ja,Vi,Qi,Pi,Oi,Ob,db,tc,Da,Ja,sc,Da,ld,Se,Ni,Ta,La,Mb,eb,Nb,Li,Ji,Ob,tc,Da,Ja,sc,Se,Ii,Ta,La,Mb,eb,Lb,La,_a,Da,_a,md,Ja,Mi,Hi,Ai,yi,Gi,Ei,Fi,Di,Ci,Bi,vi,fb,Da,Da,wi,Dh,Ch,Da,_a,Ja,Ja,qi,pi,ti,ui,ri,oi,ni,li,si,Be,fi,jd,id,hd,gd,ki,Da,db,Zc,Ae,ei,jd,id,hd,gd,ii,Da,db,Zc,ze,di,jd,id,hd,gd,gi,Da,db,Zc,He,ci,Ie,bi,ai,Zh,Yh,Xh,Wh,_h,Vh,$h,Uh,Th,Rh,Qh,Ph,Oh,Sh,Mh,Lh,Kh,Jh,Ih,Wc,ve,Hh,Ta,La,Fh,Eh,fb,_a,Da,Wc,Ah,Bh,Wc,ve,zh,Yf,Xf,Wf,Vf,_b,Tf,Xd,Wd,Sf,Rf,Qf,_a,Pf,Ta,La,Td,Td,Mf,Gf,If,Lf,La,Hf,Jf,Kf,La,Df,La,Cf,La,Ef,zc,db,zc,zc]);function fa(){return E.byteLength/65536|0}function ka(la){la=la|0;var ga=fa()|0;var ha=ga+la|0;if(ga=endIdx))++endPtr;if(endPtr-idx>16&&heapOrArray.buffer&&UTF8Decoder){return UTF8Decoder.decode(heapOrArray.subarray(idx,endPtr))}var str="";while(idx>10,56320|ch&1023)}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(HEAPU8,ptr,maxBytesToRead):""}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function lengthBytesUTF8(str){var len=0;for(var i=0;i=55296&&c<=57343){len+=4;++i}else{len+=3}}return len}var HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateMemoryViews(){var b=wasmMemory.buffer;Module["HEAP8"]=HEAP8=new Int8Array(b);Module["HEAP16"]=HEAP16=new Int16Array(b);Module["HEAP32"]=HEAP32=new Int32Array(b);Module["HEAPU8"]=HEAPU8=new Uint8Array(b);Module["HEAPU16"]=HEAPU16=new Uint16Array(b);Module["HEAPU32"]=HEAPU32=new Uint32Array(b);Module["HEAPF32"]=HEAPF32=new Float32Array(b);Module["HEAPF64"]=HEAPF64=new Float64Array(b)}var INITIAL_MEMORY=Module["INITIAL_MEMORY"]||16777216;assert(INITIAL_MEMORY>=65536,"INITIAL_MEMORY should be larger than STACK_SIZE, was "+INITIAL_MEMORY+"! (STACK_SIZE="+65536+")");if(Module["wasmMemory"]){wasmMemory=Module["wasmMemory"]}else{wasmMemory=new WebAssembly.Memory({"initial":INITIAL_MEMORY/65536,"maximum":2147483648/65536})}updateMemoryViews();INITIAL_MEMORY=wasmMemory.buffer.byteLength;var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;function keepRuntimeAlive(){return noExitRuntime}function preRun(){if(Module["preRun"]){if(typeof Module["preRun"]=="function")Module["preRun"]=[Module["preRun"]];while(Module["preRun"].length){addOnPreRun(Module["preRun"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function postRun(){if(Module["postRun"]){if(typeof Module["postRun"]=="function")Module["postRun"]=[Module["postRun"]];while(Module["postRun"].length){addOnPostRun(Module["postRun"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnInit(cb){__ATINIT__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){runDependencies++;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}function abort(what){if(Module["onAbort"]){Module["onAbort"](what)}what="Aborted("+what+")";err(what);ABORT=true;EXITSTATUS=1;what+=". Build with -sASSERTIONS for more info.";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}var dataURIPrefix="data:application/octet-stream;base64,";function isDataURI(filename){return filename.startsWith(dataURIPrefix)}function isFileURI(filename){return filename.startsWith("file://")}var wasmBinaryFile;wasmBinaryFile="draco_decoder.wasm";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}var binary=tryParseAsDataURI(file);if(binary){return binary}if(readBinary){return readBinary(file)}throw"both async and sync fetching of the wasm failed"}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch=="function"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){if(!response["ok"]){throw"failed to load wasm binary file at '"+wasmBinaryFile+"'"}return response["arrayBuffer"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={"a":wasmImports};function receiveInstance(instance,module){var exports=instance.exports;Module["asm"]=exports;wasmTable=Module["asm"]["j"];addOnInit(Module["asm"]["i"]);removeRunDependency("wasm-instantiate")}addRunDependency("wasm-instantiate");function receiveInstantiationResult(result){receiveInstance(result["instance"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(function(instance){return instance}).then(receiver,function(reason){err("failed to asynchronously prepare wasm: "+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming=="function"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&!ENVIRONMENT_IS_NODE&&typeof fetch=="function"){return fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiationResult,function(reason){err("wasm streaming compile failed: "+reason);err("falling back to ArrayBuffer instantiation");return instantiateArrayBuffer(receiveInstantiationResult)})})}else{return instantiateArrayBuffer(receiveInstantiationResult)}}if(Module["instantiateWasm"]){try{var exports=Module["instantiateWasm"](info,receiveInstance);return exports}catch(e){err("Module.instantiateWasm callback failed with error: "+e);readyPromiseReject(e)}}instantiateAsync().catch(readyPromiseReject);return{}}function ExitStatus(status){this.name="ExitStatus";this.message="Program terminated with exit("+status+")";this.status=status}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){callbacks.shift()(Module)}}function intArrayToString(array){var ret=[];for(var i=0;i255){chr&=255}ret.push(String.fromCharCode(chr))}return ret.join("")}function ExceptionInfo(excPtr){this.excPtr=excPtr;this.ptr=excPtr-24;this.set_type=function(type){HEAPU32[this.ptr+4>>2]=type};this.get_type=function(){return HEAPU32[this.ptr+4>>2]};this.set_destructor=function(destructor){HEAPU32[this.ptr+8>>2]=destructor};this.get_destructor=function(){return HEAPU32[this.ptr+8>>2]};this.set_refcount=function(refcount){HEAP32[this.ptr>>2]=refcount};this.set_caught=function(caught){caught=caught?1:0;HEAP8[this.ptr+12>>0]=caught};this.get_caught=function(){return HEAP8[this.ptr+12>>0]!=0};this.set_rethrown=function(rethrown){rethrown=rethrown?1:0;HEAP8[this.ptr+13>>0]=rethrown};this.get_rethrown=function(){return HEAP8[this.ptr+13>>0]!=0};this.init=function(type,destructor){this.set_adjusted_ptr(0);this.set_type(type);this.set_destructor(destructor);this.set_refcount(0);this.set_caught(false);this.set_rethrown(false)};this.add_ref=function(){var value=HEAP32[this.ptr>>2];HEAP32[this.ptr>>2]=value+1};this.release_ref=function(){var prev=HEAP32[this.ptr>>2];HEAP32[this.ptr>>2]=prev-1;return prev===1};this.set_adjusted_ptr=function(adjustedPtr){HEAPU32[this.ptr+16>>2]=adjustedPtr};this.get_adjusted_ptr=function(){return HEAPU32[this.ptr+16>>2]};this.get_exception_ptr=function(){var isPointer=___cxa_is_pointer_type(this.get_type());if(isPointer){return HEAPU32[this.excPtr>>2]}var adjusted=this.get_adjusted_ptr();if(adjusted!==0)return adjusted;return this.excPtr}}var exceptionLast=0;var uncaughtExceptionCount=0;function ___cxa_throw(ptr,type,destructor){var info=new ExceptionInfo(ptr);info.init(type,destructor);exceptionLast=ptr;uncaughtExceptionCount++;throw ptr}function _abort(){abort("")}function _emscripten_memcpy_big(dest,src,num){HEAPU8.copyWithin(dest,src,src+num)}function getHeapMax(){return 2147483648}function emscripten_realloc_buffer(size){var b=wasmMemory.buffer;try{wasmMemory.grow(size-b.byteLength+65535>>>16);updateMemoryViews();return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=HEAPU8.length;requestedSize=requestedSize>>>0;var maxHeapSize=getHeapMax();if(requestedSize>maxHeapSize){return false}let alignUp=(x,multiple)=>x+(multiple-x%multiple)%multiple;for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var SYSCALLS={varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret}};function _fd_close(fd){return 52}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){return 70}var printCharBuffers=[null,[],[]];function printChar(stream,curr){var buffer=printCharBuffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}}function _fd_write(fd,iov,iovcnt,pnum){var num=0;for(var i=0;i>2];var len=HEAPU32[iov+4>>2];iov+=8;for(var j=0;j>2]=num;return 0}function intArrayFromString(stringy,dontAddNull,length){var len=length>0?length:lengthBytesUTF8(stringy)+1;var u8array=new Array(len);var numBytesWritten=stringToUTF8Array(stringy,u8array,0,u8array.length);if(dontAddNull)u8array.length=numBytesWritten;return u8array}var decodeBase64=typeof atob=="function"?atob:function(input){var keyStr="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";var output="";var chr1,chr2,chr3;var enc1,enc2,enc3,enc4;var i=0;input=input.replace(/[^A-Za-z0-9\+\/\=]/g,"");do{enc1=keyStr.indexOf(input.charAt(i++));enc2=keyStr.indexOf(input.charAt(i++));enc3=keyStr.indexOf(input.charAt(i++));enc4=keyStr.indexOf(input.charAt(i++));chr1=enc1<<2|enc2>>4;chr2=(enc2&15)<<4|enc3>>2;chr3=(enc3&3)<<6|enc4;output=output+String.fromCharCode(chr1);if(enc3!==64){output=output+String.fromCharCode(chr2)}if(enc4!==64){output=output+String.fromCharCode(chr3)}}while(i0){return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module["calledRun"]=true;if(ABORT)return;initRuntime();readyPromiseResolve(Module);if(Module["onRuntimeInitialized"])Module["onRuntimeInitialized"]();postRun()}if(Module["setStatus"]){Module["setStatus"]("Running...");setTimeout(function(){setTimeout(function(){Module["setStatus"]("")},1);doRun()},1)}else{doRun()}}if(Module["preInit"]){if(typeof Module["preInit"]=="function")Module["preInit"]=[Module["preInit"]];while(Module["preInit"].length>0){Module["preInit"].pop()()}}run();function WrapperObject(){}WrapperObject.prototype=Object.create(WrapperObject.prototype);WrapperObject.prototype.constructor=WrapperObject;WrapperObject.prototype.__class__=WrapperObject;WrapperObject.__cache__={};Module["WrapperObject"]=WrapperObject;function getCache(__class__){return(__class__||WrapperObject).__cache__}Module["getCache"]=getCache;function wrapPointer(ptr,__class__){var cache=getCache(__class__);var ret=cache[ptr];if(ret)return ret;ret=Object.create((__class__||WrapperObject).prototype);ret.ptr=ptr;return cache[ptr]=ret}Module["wrapPointer"]=wrapPointer;function castObject(obj,__class__){return wrapPointer(obj.ptr,__class__)}Module["castObject"]=castObject;Module["NULL"]=wrapPointer(0);function destroy(obj){if(!obj["__destroy__"])throw"Error: Cannot destroy object. (Did you create it yourself?)";obj["__destroy__"]();delete getCache(obj.__class__)[obj.ptr]}Module["destroy"]=destroy;function compare(obj1,obj2){return obj1.ptr===obj2.ptr}Module["compare"]=compare;function getPointer(obj){return obj.ptr}Module["getPointer"]=getPointer;function getClass(obj){return obj.__class__}Module["getClass"]=getClass;var ensureCache={buffer:0,size:0,pos:0,temps:[],needed:0,prepare:function(){if(ensureCache.needed){for(var i=0;i=ensureCache.size){assert(len>0);ensureCache.needed+=len;ret=Module["_malloc"](len);ensureCache.temps.push(ret)}else{ret=ensureCache.buffer+ensureCache.pos;ensureCache.pos+=len}return ret},copy:function(array,view,offset){offset>>>=0;var bytes=view.BYTES_PER_ELEMENT;switch(bytes){case 2:offset>>>=1;break;case 4:offset>>>=2;break;case 8:offset>>>=3;break}for(var i=0;i 3) return false + if (version[0] == 1 && version[1] >= 0 && version[1] <= 5) return true + if (version[0] != 0 || version[1] > 10) return false + return true + } + Module['isVersionSupported'] = isVersionSupported + var moduleOverrides = Object.assign({}, Module) + var arguments_ = [] + var thisProgram = './this.program' + var quit_ = (status, toThrow) => { + throw toThrow + } + var ENVIRONMENT_IS_WEB = typeof window == 'object' + var ENVIRONMENT_IS_WORKER = typeof importScripts == 'function' + var ENVIRONMENT_IS_NODE = + typeof process == 'object' && + typeof process.versions == 'object' && + typeof process.versions.node == 'string' + var scriptDirectory = '' + function locateFile(path) { + if (Module['locateFile']) { + return Module['locateFile'](path, scriptDirectory) + } + return scriptDirectory + path + } + var read_, readAsync, readBinary, setWindowTitle + function logExceptionOnExit(e) { + if (e instanceof ExitStatus) return + let toLog = e + err('exiting due to exception: ' + toLog) + } + if (ENVIRONMENT_IS_NODE) { + var fs = require('fs') + var nodePath = require('path') + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = nodePath.dirname(scriptDirectory) + '/' + } else { + scriptDirectory = __dirname + '/' + } + read_ = (filename, binary) => { + var ret = tryParseAsDataURI(filename) + if (ret) { + return binary ? ret : ret.toString() + } + filename = isFileURI(filename) + ? new URL(filename) + : nodePath.normalize(filename) + return fs.readFileSync(filename, binary ? undefined : 'utf8') + } + readBinary = (filename) => { + var ret = read_(filename, true) + if (!ret.buffer) { + ret = new Uint8Array(ret) + } + return ret + } + readAsync = (filename, onload, onerror) => { + var ret = tryParseAsDataURI(filename) + if (ret) { + onload(ret) + } + filename = isFileURI(filename) + ? new URL(filename) + : nodePath.normalize(filename) + fs.readFile(filename, function (err, data) { + if (err) onerror(err) + else onload(data.buffer) + }) + } + if (process['argv'].length > 1) { + thisProgram = process['argv'][1].replace(/\\/g, '/') + } + arguments_ = process['argv'].slice(2) + quit_ = (status, toThrow) => { + if (keepRuntimeAlive()) { + process['exitCode'] = status + throw toThrow + } + logExceptionOnExit(toThrow) + process['exit'](status) + } + Module['inspect'] = function () { + return '[Emscripten Module object]' + } + } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = self.location.href + } else if (typeof document != 'undefined' && document.currentScript) { + scriptDirectory = document.currentScript.src + } + if (_scriptDir) { + scriptDirectory = _scriptDir + } + if (scriptDirectory.indexOf('blob:') !== 0) { + scriptDirectory = scriptDirectory.substr( + 0, + scriptDirectory.replace(/[?#].*/, '').lastIndexOf('/') + 1, + ) + } else { + scriptDirectory = '' + } + { + read_ = (url) => { + try { + var xhr = new XMLHttpRequest() + xhr.open('GET', url, false) + xhr.send(null) + return xhr.responseText + } catch (err) { + var data = tryParseAsDataURI(url) + if (data) { + return intArrayToString(data) + } + throw err + } + } + if (ENVIRONMENT_IS_WORKER) { + readBinary = (url) => { + try { + var xhr = new XMLHttpRequest() + xhr.open('GET', url, false) + xhr.responseType = 'arraybuffer' + xhr.send(null) + return new Uint8Array(xhr.response) + } catch (err) { + var data = tryParseAsDataURI(url) + if (data) { + return data + } + throw err + } + } + } + readAsync = (url, onload, onerror) => { + var xhr = new XMLHttpRequest() + xhr.open('GET', url, true) + xhr.responseType = 'arraybuffer' + xhr.onload = () => { + if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { + onload(xhr.response) + return + } + var data = tryParseAsDataURI(url) + if (data) { + onload(data.buffer) + return + } + onerror() + } + xhr.onerror = onerror + xhr.send(null) + } + } + setWindowTitle = (title) => (document.title = title) + } else { + } + var out = Module['print'] || console.log.bind(console) + var err = Module['printErr'] || console.warn.bind(console) + Object.assign(Module, moduleOverrides) + moduleOverrides = null + if (Module['arguments']) arguments_ = Module['arguments'] + if (Module['thisProgram']) thisProgram = Module['thisProgram'] + if (Module['quit']) quit_ = Module['quit'] + var wasmBinary + if (Module['wasmBinary']) wasmBinary = Module['wasmBinary'] + var noExitRuntime = Module['noExitRuntime'] || true + var WebAssembly = { + Memory: function (opts) { + this.buffer = new ArrayBuffer(opts['initial'] * 65536) + }, + Module: function (binary) {}, + Instance: function (module, info) { + this.exports = // EMSCRIPTEN_START_ASM + (function instantiate(na) { + function c(d) { + d.set = function (a, b) { + this[a] = b + } + d.get = function (a) { + return this[a] + } + return d + } + var e + var f = new Uint8Array(123) + for (var a = 25; a >= 0; --a) { + f[48 + a] = 52 + a + f[65 + a] = a + f[97 + a] = 26 + a + } + f[43] = 62 + f[47] = 63 + function l(m, n, o) { + var g, + h, + a = 0, + i = n, + j = o.length, + k = n + ((j * 3) >> 2) - (o[j - 2] == '=') - (o[j - 1] == '=') + for (; a < j; a += 4) { + g = f[o.charCodeAt(a + 1)] + h = f[o.charCodeAt(a + 2)] + m[i++] = (f[o.charCodeAt(a)] << 2) | (g >> 4) + if (i < k) m[i++] = (g << 4) | (h >> 2) + if (i < k) m[i++] = (h << 6) | f[o.charCodeAt(a + 3)] + } + } + function p(q) { + l( + e, + 1028, + 'YAQAAAIAAAADAAAABAAAAAUAAAAGAAAABwAAAAgAAAAJAAAACgAAAAsAAAAMAAAADQAAAE41ZHJhY28yOEF0dHJpYnV0ZU9jdGFoZWRyb25UcmFuc2Zvcm1FAAAYOwAAOAQAALAHAAAtKyAgIDBYMHgAX19uZXh0X3ByaW1lIG92ZXJmbG93AHZlY3RvcgBzdGQ6OmV4Y2VwdGlvbgBza2lwX2F0dHJpYnV0ZV90cmFuc2Zvcm0AYmFkX2FycmF5X25ld19sZW5ndGgAYmFzaWNfc3RyaW5nAHN0ZDo6YmFkX2FsbG9jAERSQUNPAFVzaW5nIGluY29tcGF0aWJsZSBkZWNvZGVyIGZvciB0aGUgaW5wdXQgZ2VvbWV0cnkuAEZhaWxlZCB0byBkZWNvZGUgcG9pbnQgYXR0cmlidXRlcy4ARmFpbGVkIHRvIGluaXRpYWxpemUgdGhlIGRlY29kZXIuAFVua25vd24gbWlub3IgdmVyc2lvbi4AVW5rbm93biBtYWpvciB2ZXJzaW9uLgBJbnB1dCBpcyBub3QgYSBtZXNoLgBVbnN1cHBvcnRlZCBnZW9tZXRyeSB0eXBlLgBOb3QgYSBEcmFjbyBmaWxlLgBJbnB1dCBpcyBub3QgYSBwb2ludCBjbG91ZC4AVW5zdXBwb3J0ZWQgZW5jb2RpbmcgbWV0aG9kLgBGYWlsZWQgdG8gZGVjb2RlIG1ldGFkYXRhLgBGYWlsZWQgdG8gZGVjb2RlIGdlb21ldHJ5IGRhdGEuAChudWxsKQBQdXJlIHZpcnR1YWwgZnVuY3Rpb24gY2FsbGVkIQBLZFRyZWVBdHRyaWJ1dGVzRGVjb2RlcjogY29tcHJlc3Npb24gbGV2ZWwgJWkgbm90IHN1cHBvcnRlZC4KAEZsb2F0UG9pbnRzVHJlZURlY29kZXI6IGNvbXByZXNzaW9uIGxldmVsICVpIG5vdCBzdXBwb3J0ZWQuCgBWZXJzaW9uIG5vdCBzdXBwb3J0ZWQuIAoATWV0aG9kIG5vdCBzdXBwb3J0ZWQuIAoAAAAAAACEBwAADwAAABAAAAARAAAAEgAAABMAAAAUAAAAFQAAABYAAAAXAAAACwAAABgAAAAZAAAATjVkcmFjbzMwQXR0cmlidXRlUXVhbnRpemF0aW9uVHJhbnNmb3JtRQAAAAAYOwAAWAcAALAHAABONWRyYWNvMThBdHRyaWJ1dGVUcmFuc2Zvcm1FAAAAAPA6AACQBwAAAAAAADwIAAAaAAAAGwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAjAAAAJAAAACUAAABONWRyYWNvMTdBdHRyaWJ1dGVzRGVjb2RlckUATjVkcmFjbzI2QXR0cmlidXRlc0RlY29kZXJJbnRlcmZhY2VFAAAAAPA6AAAMCAAAGDsAAPAHAAA0CAAAAAAAAKQIAAAmAAAAJwAAABwAAAAdAAAAHgAAAB8AAAAgAAAAIQAAACIAAAAoAAAAKQAAACoAAABONWRyYWNvMjNLZFRyZWVBdHRyaWJ1dGVzRGVjb2RlckUAAAAYOwAAgAgAADwIAAAAAAAABAkAACsAAAAsAAAALQAAAC4AAAAvAAAAMAAAADEAAAAyAAAAMwAAAE41ZHJhY28yNlNlcXVlbnRpYWxBdHRyaWJ1dGVEZWNvZGVyRQAAAADwOgAA3AgAAP////8AAAAAfAkAADQAAAA1AAAAHAAAADYAAAA3AAAAHwAAACAAAAAhAAAAOAAAADkAAAA6AAAAOwAAADwAAABONWRyYWNvMzdTZXF1ZW50aWFsQXR0cmlidXRlRGVjb2RlcnNDb250cm9sbGVyRQAYOwAATAkAADwIAAAAAAAA8AkAAD0AAAA+AAAAPwAAAC4AAAAvAAAAMAAAAEAAAAAyAAAAQQAAAEIAAABDAAAARAAAAEUAAABONWRyYWNvMzNTZXF1ZW50aWFsSW50ZWdlckF0dHJpYnV0ZURlY29kZXJFABg7AADECQAABAkAAAAAAAB8DAAARgAAAEcAAABIAAAASQAAAEoAAABLAAAATAAAAE0AAABOAAAATwAAAFAAAABRAAAATjVkcmFjbzQwTWVzaFByZWRpY3Rpb25TY2hlbWVQYXJhbGxlbG9ncmFtRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28yN01lc2hQcmVkaWN0aW9uU2NoZW1lRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28yM1ByZWRpY3Rpb25TY2hlbWVEZWNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRUVFAE41ZHJhY28zN1ByZWRpY3Rpb25TY2hlbWVUeXBlZERlY29kZXJJbnRlcmZhY2VJaWlFRQBONWRyYWNvMzJQcmVkaWN0aW9uU2NoZW1lRGVjb2RlckludGVyZmFjZUUATjVkcmFjbzI1UHJlZGljdGlvblNjaGVtZUludGVyZmFjZUUA8DoAACAMAAAYOwAA9QsAAEQMAAAYOwAAwQsAAEwMAAAYOwAAbQsAAFgMAAAYOwAA1woAAGQMAAAYOwAANAoAAHAMAAAAAAAAcAwAAEYAAABSAAAAIwAAAEkAAAAjAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAIwAAAAAAAABkDAAARgAAAFMAAAAjAAAASQAAACMAAABLAAAATAAAAE0AAABOAAAATwAAAFAAAAAjAAAAAAAAANgNAABGAAAAVAAAAFUAAABJAAAAVgAAAEsAAABMAAAATQAAAE4AAABPAAAAUAAAAFcAAABONWRyYWNvNDVNZXNoUHJlZGljdGlvblNjaGVtZU11bHRpUGFyYWxsZWxvZ3JhbURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQAYOwAAMA0AAHAMAAAAAAAA0A4AAFgAAABZAAAAWgAAAEkAAABbAAAASwAAAEwAAABNAAAATgAAAE8AAABcAAAAXQAAAE41ZHJhY281Nk1lc2hQcmVkaWN0aW9uU2NoZW1lQ29uc3RyYWluZWRNdWx0aVBhcmFsbGVsb2dyYW1EZWNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUAABg7AAAcDgAAcAwAAAAAAAC0DwAAXgAAAF8AAABgAAAASQAAAGEAAABiAAAAYwAAAGQAAABOAAAATwAAAGUAAABmAAAATjVkcmFjbzM2TWVzaFByZWRpY3Rpb25TY2hlbWVUZXhDb29yZHNEZWNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUAABg7AAAUDwAAcAwAAAAAAACgEAAAZwAAAGgAAABpAAAASQAAAGoAAABrAAAAbAAAAG0AAABOAAAATwAAAG4AAABvAAAATjVkcmFjbzQ0TWVzaFByZWRpY3Rpb25TY2hlbWVUZXhDb29yZHNQb3J0YWJsZURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQAAGDsAAPgPAABwDAAAAAAAAIwRAABwAAAAcQAAAHIAAABJAAAAcwAAAHQAAAB1AAAAdgAAAE4AAABPAAAAdwAAAHgAAABONWRyYWNvNDJNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbERlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQAAAAAYOwAA5BAAAHAMAAAAAAAAFBMAAHkAAAB6AAAAewAAAHwAAAB9AAAATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JBcmVhSWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JCYXNlSWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUAAADwOgAAXxIAABg7AAC0EQAADBMAAAAAAAAMEwAAeQAAAH4AAAAjAAAAfAAAACMAAAAAAAAAoBQAAEYAAAB/AAAAgAAAAEkAAACBAAAASwAAAEwAAABNAAAATgAAAE8AAABQAAAAggAAAE41ZHJhY280ME1lc2hQcmVkaWN0aW9uU2NoZW1lUGFyYWxsZWxvZ3JhbURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28yN01lc2hQcmVkaWN0aW9uU2NoZW1lRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUAABg7AAAKFAAAZAwAABg7AAB0EwAAlBQAAAAAAACUFAAARgAAAIMAAAAjAAAASQAAACMAAABLAAAATAAAAE0AAABOAAAATwAAAFAAAAAjAAAAAAAAALgVAABGAAAAhAAAAIUAAABJAAAAhgAAAEsAAABMAAAATQAAAE4AAABPAAAAUAAAAIcAAABONWRyYWNvNDVNZXNoUHJlZGljdGlvblNjaGVtZU11bHRpUGFyYWxsZWxvZ3JhbURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAAAYOwAAHBUAAJQUAAAAAAAApBYAAIgAAACJAAAAigAAAEkAAACLAAAASwAAAEwAAABNAAAATgAAAE8AAACMAAAAjQAAAE41ZHJhY281Nk1lc2hQcmVkaWN0aW9uU2NoZW1lQ29uc3RyYWluZWRNdWx0aVBhcmFsbGVsb2dyYW1EZWNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQAAABg7AAD8FQAAlBQAAAAAAAB8FwAAjgAAAI8AAACQAAAASQAAAJEAAACSAAAAkwAAAJQAAABOAAAATwAAAJUAAACWAAAATjVkcmFjbzM2TWVzaFByZWRpY3Rpb25TY2hlbWVUZXhDb29yZHNEZWNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQAAABg7AADoFgAAlBQAAAAAAABcGAAAlwAAAJgAAACZAAAASQAAAJoAAACbAAAAnAAAAJ0AAABOAAAATwAAAJ4AAACfAAAATjVkcmFjbzQ0TWVzaFByZWRpY3Rpb25TY2hlbWVUZXhDb29yZHNQb3J0YWJsZURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAAAAGDsAAMAXAACUFAAAAAAAADgZAACgAAAAoQAAAKIAAABJAAAAowAAAKQAAAClAAAApgAAAE4AAABPAAAApwAAAKgAAABONWRyYWNvNDJNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbERlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFABg7AACgGAAAlBQAAAAAAACkGgAAqQAAAKoAAACrAAAArAAAAK0AAABONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckFyZWFJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUA8DoAAP4ZAAAYOwAAYBkAAJwaAAAAAAAAnBoAAKkAAACuAAAAIwAAAKwAAAAjAAAAAAAAAGAbAABGAAAArwAAALAAAABJAAAAsQAAAEsAAABMAAAATQAAAE4AAABPAAAAUAAAALIAAABONWRyYWNvMjhQcmVkaWN0aW9uU2NoZW1lRGVsdGFEZWNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRUVFAAAAABg7AAAEGwAAZAwAAAAAAADUGwAAswAAALQAAAC1AAAALgAAAC8AAAC2AAAAQAAAADIAAABBAAAAtwAAALgAAAC5AAAAugAAAE41ZHJhY28zMlNlcXVlbnRpYWxOb3JtYWxBdHRyaWJ1dGVEZWNvZGVyRQAAGDsAAKgbAADwCQAAAAAAAOAdAAC7AAAAvAAAAL0AAAC+AAAAvwAAAMAAAADBAAAAwgAAAMMAAADEAAAAxQAAAMYAAABONWRyYWNvNDJNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbERlY29kZXJJaU5TXzQ5UHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25EZWNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28yN01lc2hQcmVkaWN0aW9uU2NoZW1lRGVjb2RlcklpTlNfNDlQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkRlY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzIzUHJlZGljdGlvblNjaGVtZURlY29kZXJJaU5TXzQ5UHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25EZWNvZGluZ1RyYW5zZm9ybUlpRUVFRQAYOwAAaR0AAFgMAAAYOwAAyBwAAMgdAAAYOwAAGBwAANQdAAAAAAAAfB8AAMcAAADIAAAAyQAAAMoAAADLAAAATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JBcmVhSWlOU180OVByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uRGVjb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckJhc2VJaU5TXzQ5UHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25EZWNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAPA6AAC+HgAAGDsAAAgeAAB0HwAAAAAAAAQhAADMAAAAzQAAAM4AAAC+AAAAzwAAANAAAADRAAAA0gAAAMMAAADEAAAA0wAAANQAAABONWRyYWNvNDJNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbERlY29kZXJJaU5TXzQ5UHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25EZWNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzI3TWVzaFByZWRpY3Rpb25TY2hlbWVEZWNvZGVySWlOU180OVByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uRGVjb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAAAYOwAAYyAAAMgdAAAYOwAAwB8AAPggAAAAAAAAiCIAANUAAADWAAAA1wAAANgAAADZAAAATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JBcmVhSWlOU180OVByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uRGVjb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfNDlQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkRlY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQAAAPA6AADVIQAAGDsAACwhAACAIgAAAAAAADAjAADaAAAA2wAAANwAAAC+AAAA3QAAAN4AAADfAAAA4AAAAMMAAADEAAAA4QAAAOIAAABONWRyYWNvMjhQcmVkaWN0aW9uU2NoZW1lRGVsdGFEZWNvZGVySWlOU180OVByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uRGVjb2RpbmdUcmFuc2Zvcm1JaUVFRUUAGDsAAMwiAADIHQAAAAAAAGQlAADjAAAA5AAAAOUAAADmAAAA5wAAAOgAAADpAAAA6gAAAOsAAADsAAAA7QAAAO4AAABONWRyYWNvNDJNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbERlY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRGVjb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZURlY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRGVjb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjNQcmVkaWN0aW9uU2NoZW1lRGVjb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWREZWNvZGluZ1RyYW5zZm9ybUlpRUVFRQAAGDsAAN8kAABYDAAAGDsAADEkAABMJQAAGDsAAHQjAABYJQAAAAAAABwnAADvAAAA8AAAAPEAAADyAAAA8wAAAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQXJlYUlpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWREZWNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWREZWNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAAAA8DoAAE8mAAAYOwAAjCUAABQnAAAAAAAAwCgAAPQAAAD1AAAA9gAAAOYAAAD3AAAA+AAAAPkAAAD6AAAA6wAAAOwAAAD7AAAA/AAAAE41ZHJhY280Mk1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsRGVjb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWREZWNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzI3TWVzaFByZWRpY3Rpb25TY2hlbWVEZWNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZERlY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQAAAAAYOwAAECgAAEwlAAAYOwAAYCcAALQoAAAAAAAAXCoAAP0AAAD+AAAA/wAAAAABAAABAQAATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JBcmVhSWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZERlY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckJhc2VJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRGVjb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAPA6AACeKQAAGDsAAOgoAABUKgAAAAAAABQrAADaAAAAAgEAAAMBAADmAAAABAEAAAUBAAAGAQAABwEAAOsAAADsAAAACAEAAAkBAABONWRyYWNvMjhQcmVkaWN0aW9uU2NoZW1lRGVsdGFEZWNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZERlY29kaW5nVHJhbnNmb3JtSWlFRUVFAAAAABg7AACgKgAATCUAAAAAAACYKwAACgEAAAsBAAAMAQAALgAAAC8AAAANAQAAQAAAADIAAABBAAAADgEAAEMAAABEAAAADwEAABABAAARAQAATjVkcmFjbzM4U2VxdWVudGlhbFF1YW50aXphdGlvbkF0dHJpYnV0ZURlY29kZXJFAAAAABg7AABkKwAA8AkAAAAAAAD4KwAAEgEAABMBAAAUAQAAFQEAACMAAAAWAQAAFwEAABgBAAAZAQAAGgEAABsBAAAcAQAAIwAAAE41ZHJhY28xMU1lc2hEZWNvZGVyRQAAABg7AADgKwAATDQAAAAAAABkLAAAHQEAAB4BAAAUAQAAHwEAACABAAAWAQAAFwEAABgBAAAhAQAAIgEAACMBAAAkAQAAJQEAAE41ZHJhY28yMk1lc2hFZGdlYnJlYWtlckRlY29kZXJFAAAAABg7AABALAAA+CsAAAAAAACILQAAJgEAACcBAAAoAQAAKQEAACoBAAArAQAALAEAAC0BAAAuAQAALwEAAP////8AAAAA7C0AADABAAAxAQAAMgEAADMBAAA0AQAANQEAADYBAAA3AQAAOAEAADkBAAAAAAAATC4AADoBAAA7AQAAPAEAAD0BAAA+AQAAPwEAAEABAABBAQAAQgEAAEMBAABONWRyYWNvMjZNZXNoRWRnZWJyZWFrZXJEZWNvZGVySW1wbElOU18zMU1lc2hFZGdlYnJlYWtlclRyYXZlcnNhbERlY29kZXJFRUUATjVkcmFjbzM1TWVzaEVkZ2VicmVha2VyRGVjb2RlckltcGxJbnRlcmZhY2VFAAAA8DoAAFAtAAAYOwAABC0AAIAtAABONWRyYWNvMjZNZXNoRWRnZWJyZWFrZXJEZWNvZGVySW1wbElOU180MU1lc2hFZGdlYnJlYWtlclRyYXZlcnNhbFByZWRpY3RpdmVEZWNvZGVyRUVFAAAAGDsAAJQtAACALQAATjVkcmFjbzI2TWVzaEVkZ2VicmVha2VyRGVjb2RlckltcGxJTlNfMzhNZXNoRWRnZWJyZWFrZXJUcmF2ZXJzYWxWYWxlbmNlRGVjb2RlckVFRQAAGDsAAPgtAACALQAAAAAAAEgvAABEAQAARQEAAEYBAABONWRyYWNvMTlEZXB0aEZpcnN0VHJhdmVyc2VySU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRU5TXzM2TWVzaEF0dHJpYnV0ZUluZGljZXNFbmNvZGluZ09ic2VydmVySVMxX0VFRUUATjVkcmFjbzEzVHJhdmVyc2VyQmFzZUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVOU18zNk1lc2hBdHRyaWJ1dGVJbmRpY2VzRW5jb2RpbmdPYnNlcnZlcklTMV9FRUVFAPA6AADZLgAAGDsAAGwuAABALwAAAAAAAEAvAABHAQAASAEAAEYB', + ) + l( + e, + 12148, + 'AQAAAAMAAAAFAAAABwAAAAAAAABIMAAASQEAAEoBAABLAQAATAEAAE41ZHJhY28yMk1lc2hUcmF2ZXJzYWxTZXF1ZW5jZXJJTlNfMjhNYXhQcmVkaWN0aW9uRGVncmVlVHJhdmVyc2VySU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzJfRUVFRUVFAE41ZHJhY28xNVBvaW50c1NlcXVlbmNlckUAAAAA8DoAACMwAAAYOwAAnC8AAEAwAAD/////AAAAADgxAABNAQAATgEAAE8BAABONWRyYWNvMjhNYXhQcmVkaWN0aW9uRGVncmVlVHJhdmVyc2VySU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQBONWRyYWNvMTNUcmF2ZXJzZXJCYXNlSU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQAA8DoAANUwAAAYOwAAbDAAADAxAAAAAAAAMDEAAFABAABRAQAATwEAAAAAAADwMQAAUgEAAFMBAABUAQAAVQEAAE41ZHJhY28yMk1lc2hUcmF2ZXJzYWxTZXF1ZW5jZXJJTlNfMTlEZXB0aEZpcnN0VHJhdmVyc2VySU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzJfRUVFRUVFAAAAGDsAAHAxAABAMAAAAAAAAHAyAABWAQAAVwEAAE8BAABONWRyYWNvMTlEZXB0aEZpcnN0VHJhdmVyc2VySU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQAYOwAAEDIAADAxAAAAAAAAIDMAAFgBAABZAQAAWgEAAFsBAABONWRyYWNvMjJNZXNoVHJhdmVyc2FsU2VxdWVuY2VySU5TXzE5RGVwdGhGaXJzdFRyYXZlcnNlcklOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVOU18zNk1lc2hBdHRyaWJ1dGVJbmRpY2VzRW5jb2RpbmdPYnNlcnZlcklTMl9FRUVFRUUAABg7AACUMgAAQDA=', + ) + l( + e, + 13108, + 'jDMAABIBAABcAQAAFAEAABUBAABdAQAAFgEAABcBAAAYAQAAGQEAABoBAAAbAQAAHAEAAF4BAABONWRyYWNvMjFNZXNoU2VxdWVudGlhbERlY29kZXJFABg7AABsMwAA+CsAAAAAAADMMwAAXwEAAGABAABhAQAAYgEAAE41ZHJhY28xNUxpbmVhclNlcXVlbmNlckUAAAAYOwAAsDMAAEAwAAAAAAAATDQAABIBAABjAQAAZAEAABUBAAAjAAAAZQEAABcBAAAYAQAAGQE=', + ) + l( + e, + 13328, + 'RmFpbGVkIHRvIHBhcnNlIERyYWNvIGhlYWRlci4ATjVkcmFjbzE3UG9pbnRDbG91ZERlY29kZXJFAAAA8DoAAC40AAAAAAAApDQAABIBAABmAQAAZAEAABUBAABnAQAAaAEAABcBAAAYAQAAGQEAAE41ZHJhY28yM1BvaW50Q2xvdWRLZFRyZWVEZWNvZGVyRQAAABg7AACANAAATDQAAAAAAAAENQAAEgEAAGkBAABkAQAAFQEAAGoBAABrAQAAFwEAABgBAAAZAQAATjVkcmFjbzI3UG9pbnRDbG91ZFNlcXVlbnRpYWxEZWNvZGVyRQAAABg7AADcNAAATDQAAAEAAAABAAAAAgAAAAIAAAAEAAAABAAAAAgAAAAIAAAABAAAAAgAAAAB', + ) + l( + e, + 13635, + 'wAAAAMAAAADAAAAAwP//////////AAAAAIA1AABsAQAAbQEAAG4BAABvAQAATjVkcmFjbzRNZXNoRQAAABg7AABwNQAAxDUAAP////8AAAAAAAAAAMQ1AABwAQAAcQEAAHIBAABzAQAATjVkcmFjbzEwUG9pbnRDbG91ZEUAAAAA8DoAAKw1AAC4PAAAGQAKABkZGQAAAAAFAAAAAAAACQAAAAALAAAAAAAAAAAZABEKGRkZAwoHAAEACQsYAAAJBgsAAAsABhkAAAAZGRk=', + ) + l(e, 13857, 'DgAAAAAAAAAAGQAKDRkZGQANAAACAAkOAAAACQAOAAAO') + l(e, 13915, 'DA==') + l(e, 13927, 'EwAAAAATAAAAAAkMAAAAAAAMAAAM') + l(e, 13973, 'EA==') + l(e, 13985, 'DwAAAAQPAAAAAAkQAAAAAAAQAAAQ') + l(e, 14031, 'Eg==') + l(e, 14043, 'EQAAAAARAAAAAAkSAAAAAAASAAASAAAaAAAAGhoa') + l(e, 14098, 'GgAAABoaGgAAAAAAAAk=') + l(e, 14147, 'FA==') + l(e, 14159, 'FwAAAAAXAAAAAAkUAAAAAAAUAAAU') + l(e, 14205, 'Fg==') + l( + e, + 14217, + 'FQAAAAAVAAAAAAkWAAAAAAAWAAAWAAAwMTIzNDU2Nzg5QUJDREVGAAAAAAIAAAADAAAABQAAAAcAAAALAAAADQAAABEAAAATAAAAFwAAAB0AAAAfAAAAJQAAACkAAAArAAAALwAAADUAAAA7AAAAPQAAAEMAAABHAAAASQAAAE8AAABTAAAAWQAAAGEAAABlAAAAZwAAAGsAAABtAAAAcQAAAH8AAACDAAAAiQAAAIsAAACVAAAAlwAAAJ0AAACjAAAApwAAAK0AAACzAAAAtQAAAL8AAADBAAAAxQAAAMcAAADTAAAAAQAAAAsAAAANAAAAEQAAABMAAAAXAAAAHQAAAB8AAAAlAAAAKQAAACsAAAAvAAAANQAAADsAAAA9AAAAQwAAAEcAAABJAAAATwAAAFMAAABZAAAAYQAAAGUAAABnAAAAawAAAG0AAABxAAAAeQAAAH8AAACDAAAAiQAAAIsAAACPAAAAlQAAAJcAAACdAAAAowAAAKcAAACpAAAArQAAALMAAAC1AAAAuwAAAL8AAADBAAAAxQAAAMcAAADRAAAAAAAAAAoAAABkAAAA6AMAABAnAACghgEAQEIPAICWmAAA4fUFAMqaOwAAAAAAAAAAMDAwMTAyMDMwNDA1MDYwNzA4MDkxMDExMTIxMzE0MTUxNjE3MTgxOTIwMjEyMjIzMjQyNTI2MjcyODI5MzAzMTMyMzMzNDM1MzYzNzM4Mzk0MDQxNDI0MzQ0NDU0NjQ3NDg0OTUwNTE1MjUzNTQ1NTU2NTc1ODU5NjA2MTYyNjM2NDY1NjY2NzY4Njk3MDcxNzI3Mzc0NzU3Njc3Nzg3OTgwODE4MjgzODQ4NTg2ODc4ODg5OTA5MTkyOTM5NDk1OTY5Nzk4OTlOMTBfX2N4eGFiaXYxMTZfX3NoaW1fdHlwZV9pbmZvRQAAAAAYOwAAKDoAAKw8AABOMTBfX2N4eGFiaXYxMTdfX2NsYXNzX3R5cGVfaW5mb0UAAAAYOwAAWDoAAEw6AABOMTBfX2N4eGFiaXYxMTdfX3BiYXNlX3R5cGVfaW5mb0UAAAAYOwAAiDoAAEw6AABOMTBfX2N4eGFiaXYxMTlfX3BvaW50ZXJfdHlwZV9pbmZvRQAYOwAAuDoAAKw6AAAAAAAAfDoAAHkBAAB6AQAAewEAAHwBAAB9AQAAfgEAAH8BAACAAQAAAAAAAGA7AAB5AQAAgQEAAHsBAAB8AQAAfQEAAIIBAACDAQAAhAEAAE4xMF9fY3h4YWJpdjEyMF9fc2lfY2xhc3NfdHlwZV9pbmZvRQAAAAAYOwAAODsAAHw6AAAAAAAA0DsAAA4AAACFAQAAhgEAAAAAAAD4OwAADgAAAIcBAACIAQAAAAAAALg7AAAOAAAAiQEAAIoBAABTdDlleGNlcHRpb24AAAAA8DoAAKg7AABTdDliYWRfYWxsb2MAAAAAGDsAAMA7AAC4OwAAU3QyMGJhZF9hcnJheV9uZXdfbGVuZ3RoAAAAABg7AADcOwAA0DsAAAAAAAAoPAAAAQAAAIsBAACMAQAAU3QxMWxvZ2ljX2Vycm9yABg7AAAYPAAAuDsAAAAAAABcPAAAAQAAAI0BAACMAQAAU3QxMmxlbmd0aF9lcnJvcgAAAAAYOwAASDwAACg8AAAAAAAAkDwAAAEAAACOAQAAjAEAAFN0MTJvdXRfb2ZfcmFuZ2UAAAAAGDsAAHw8AAAoPAAAU3Q5dHlwZV9pbmZvAAAAAPA6AACcPA==', + ) + l(e, 15544, 'BQ==') + l(e, 15556, 'dAE=') + l(e, 15580, 'dQEAAHYBAABsPg==') + l(e, 15604, 'Ag==') + l(e, 15620, '//////////8=') + l(e, 15688, 'BQ==') + l(e, 15700, 'dwE=') + l(e, 15724, 'dQEAAHgBAAB4PgAAAAQ=') + l(e, 15748, 'AQ==') + l(e, 15764, '/////wo=') + l(e, 15832, 'IEUB') + } + var r = new ArrayBuffer(16) + var s = new Int32Array(r) + var t = new Float32Array(r) + var u = new Float64Array(r) + function v() { + throw new Error('abort') + } + function w(x) { + t[2] = x + } + function y(z) { + return s[z] + } + function A(z, x) { + s[z] = x + } + function B() { + return t[2] + } + function ma(q) { + var C = q.a + var D = C.a + var E = D.buffer + D.grow = ka + var F = new Int8Array(E) + var G = new Int16Array(E) + var H = new Int32Array(E) + var I = new Uint8Array(E) + var J = new Uint16Array(E) + var K = new Uint32Array(E) + var L = new Float32Array(E) + var M = new Float64Array(E) + var N = Math.imul + var O = Math.fround + var P = Math.abs + var Q = Math.clz32 + var R = Math.min + var S = Math.max + var T = Math.floor + var U = Math.ceil + var V = Math.trunc + var W = Math.sqrt + var X = C.b + var Y = C.c + var Z = C.d + var _ = C.e + var $ = C.f + var aa = C.g + var ba = C.h + var ca = 83232 + var da = 0 + // EMSCRIPTEN_START_FUNCS + function Ud(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0 + B = (ca - 672) | 0 + ca = B + k = H[(b + 8) >> 2] + s = H[(b + 12) >> 2] + d = H[(b + 20) >> 2] + e = H[(b + 16) >> 2] + g = (e + 4) | 0 + d = g >>> 0 < 4 ? (d + 1) | 0 : d + a: { + b: { + c: { + if ( + ((g >>> 0 > k >>> 0) & ((d | 0) >= (s | 0))) | + ((d | 0) > (s | 0)) + ) { + break c + } + d = (e + H[b >> 2]) | 0 + H[a >> 2] = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + d = H[(b + 20) >> 2] + k = d + g = H[(b + 16) >> 2] + e = (g + 4) | 0 + d = e >>> 0 < 4 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = d + if (K[a >> 2] > 31) { + break c + } + s = H[(b + 8) >> 2] + y = H[(b + 12) >> 2] + d = k + g = (g + 8) | 0 + d = g >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((g >>> 0 > s >>> 0) & ((d | 0) >= (y | 0))) | + ((d | 0) > (y | 0)) + ) { + break c + } + d = (e + H[b >> 2]) | 0 + H[(a + 4) >> 2] = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + d = H[(b + 20) >> 2] + k = d + g = H[(b + 16) >> 2] + e = (g + 4) | 0 + d = e >>> 0 < 4 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = d + s = H[(b + 8) >> 2] + y = H[(b + 12) >> 2] + d = k + g = (g + 8) | 0 + d = g >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((g >>> 0 > s >>> 0) & ((d | 0) >= (y | 0))) | + ((d | 0) > (y | 0)) + ) { + break c + } + d = (e + H[b >> 2]) | 0 + H[(a + 12) >> 2] = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + d = H[(b + 20) >> 2] + k = d + g = H[(b + 16) >> 2] + e = (g + 4) | 0 + d = e >>> 0 < 4 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = d + d = H[(a + 20) >> 2] + x = H[(a + 12) >> 2] + if ((x | 0) != (d | 0) ? d : 0) { + break c + } + s = H[(b + 8) >> 2] + y = H[(b + 12) >> 2] + d = k + g = (g + 8) | 0 + d = g >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((g >>> 0 > s >>> 0) & ((d | 0) >= (y | 0))) | + ((d | 0) > (y | 0)) + ) { + break c + } + d = (e + H[b >> 2]) | 0 + e = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(a + 16) >> 2] = e + g = H[(b + 20) >> 2] + d = (H[(b + 16) >> 2] + 4) | 0 + g = d >>> 0 < 4 ? (g + 1) | 0 : g + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = g + if (e >>> 0 >= 7) { + H[B >> 2] = e + Qd(1713, B) + break c + } + H[(B + 664) >> 2] = c + d: { + if (!x) { + break d + } + e: { + k = H[c >> 2] + if ( + x >>> 0 <= + (((H[(c + 8) >> 2] - k) | 0) / 12) >>> 0 + ) { + break e + } + if (x >>> 0 < 357913942) { + l = H[(c + 4) >> 2] + d = N(x, 12) + e = pa(d) + g = (d + e) | 0 + e = (e + N((((l - k) | 0) / 12) | 0, 12)) | 0 + d = e + if ((k | 0) != (l | 0)) { + while (1) { + d = (d - 12) | 0 + l = (l - 12) | 0 + H[d >> 2] = H[l >> 2] + H[(d + 4) >> 2] = H[(l + 4) >> 2] + H[(d + 8) >> 2] = H[(l + 8) >> 2] + if ((k | 0) != (l | 0)) { + continue + } + break + } + } + H[(c + 8) >> 2] = g + H[(c + 4) >> 2] = e + H[c >> 2] = d + if (!k) { + break e + } + oa(k) + break e + } + break b + } + f: { + switch (H[(a + 16) >> 2]) { + case 0: + i = wb((B + 8) | 0, 3) + z = (B + 664) | 0 + k = H[(b + 8) >> 2] + n = H[(b + 12) >> 2] + d = H[(b + 20) >> 2] + e = H[(b + 16) >> 2] + g = (e + 4) | 0 + d = g >>> 0 < 4 ? (d + 1) | 0 : d + g: { + if ( + ((g >>> 0 > k >>> 0) & ((d | 0) >= (n | 0))) | + ((d | 0) > (n | 0)) + ) { + break g + } + d = (e + H[b >> 2]) | 0 + H[i >> 2] = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + d = H[(b + 20) >> 2] + k = d + g = H[(b + 16) >> 2] + e = (g + 4) | 0 + d = e >>> 0 < 4 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = d + if (K[i >> 2] > 32) { + break g + } + n = H[(b + 8) >> 2] + s = H[(b + 12) >> 2] + d = k + g = (g + 8) | 0 + d = g >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((g >>> 0 > n >>> 0) & ((d | 0) >= (s | 0))) | + ((d | 0) > (s | 0)) + ) { + break g + } + d = (e + H[b >> 2]) | 0 + e = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + H[(i + 4) >> 2] = e + g = H[(b + 20) >> 2] + d = (H[(b + 16) >> 2] + 4) | 0 + g = d >>> 0 < 4 ? (g + 1) | 0 : g + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = g + if (!e) { + break g + } + H[(i + 8) >> 2] = 0 + if (!ua((i + 16) | 0, b)) { + break g + } + if (!ua((i + 36) | 0, b)) { + break g + } + if (!ua((i + 56) | 0, b)) { + break g + } + if (!ua((i + 76) | 0, b)) { + break g + } + A = H[(i + 4) >> 2] + d = 0 + g = 0 + f = (ca - 32) | 0 + ca = f + m = H[(i + 12) >> 2] + H[(f + 16) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + if (m) { + if (m >>> 0 >= 1073741824) { + break b + } + b = m << 2 + g = pa(b) + H[(f + 8) >> 2] = g + d = (b + g) | 0 + H[(f + 16) >> 2] = d + ra(g, 0, b) + H[(f + 12) >> 2] = d + } + e = H[(i + 120) >> 2] + b = H[e >> 2] + if (b) { + H[(e + 4) >> 2] = b + oa(b) + m = H[(i + 12) >> 2] + g = H[(f + 8) >> 2] + d = H[(f + 12) >> 2] + } + H[(e + 4) >> 2] = d + H[e >> 2] = g + H[(e + 8) >> 2] = H[(f + 16) >> 2] + g = 0 + H[(f + 16) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + h: { + if (m) { + if (m >>> 0 >= 1073741824) { + break b + } + b = m << 2 + w = pa(b) + H[(f + 8) >> 2] = w + g = (b + w) | 0 + H[(f + 16) >> 2] = g + ra(w, 0, b) + H[(f + 12) >> 2] = g + } + d = H[(i + 132) >> 2] + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + w = H[(f + 8) >> 2] + g = H[(f + 12) >> 2] + } + H[(d + 4) >> 2] = g + H[d >> 2] = w + H[(d + 8) >> 2] = H[(f + 16) >> 2] + H[(f + 24) >> 2] = 0 + H[(f + 28) >> 2] = 0 + H[(f + 16) >> 2] = 0 + H[(f + 20) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + xa((f + 8) | 0) + d = (H[(f + 24) >> 2] + H[(f + 28) >> 2]) | 0 + b = ((d >>> 0) / 341) | 0 + b = + (H[(H[(f + 12) >> 2] + (b << 2)) >> 2] + + N((d - N(b, 341)) | 0, 12)) | + 0 + H[(b + 4) >> 2] = 0 + H[(b + 8) >> 2] = 0 + H[b >> 2] = A + m = (H[(f + 28) >> 2] + 1) | 0 + H[(f + 28) >> 2] = m + i: { + if (!m) { + break i + } + y = (i + 96) | 0 + while (1) { + n = H[(f + 12) >> 2] + g = H[(f + 24) >> 2] + e = (m - 1) | 0 + d = (g + e) | 0 + b = ((d >>> 0) / 341) | 0 + b = + (H[(n + (b << 2)) >> 2] + + N((d - N(b, 341)) | 0, 12)) | + 0 + o = H[(b + 8) >> 2] + k = H[(b + 4) >> 2] + t = H[b >> 2] + H[(f + 28) >> 2] = e + b = H[(f + 16) >> 2] + if ( + (((((b | 0) != (n | 0) + ? (N((b - n) >> 2, 341) - 1) | 0 + : 0) - + ((g + m) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(b - 4) >> 2]) + H[(f + 16) >> 2] = H[(f + 16) >> 2] - 4 + } + b = 0 + if (t >>> 0 > A >>> 0) { + break i + } + d = H[(i + 12) >> 2] + m = + (k | 0) != ((d - 1) | 0) + ? (k + 1) | 0 + : 0 + if (m >>> 0 >= d >>> 0) { + break i + } + q = N(o, 12) + p = (q + H[(i + 132) >> 2]) | 0 + l = (q + H[(i + 120) >> 2]) | 0 + g = H[i >> 2] + r = m << 2 + e = H[(r + H[p >> 2]) >> 2] + j: { + k: { + if ((g | 0) == (e | 0)) { + if (!t) { + break k + } + while (1) { + d = H[l >> 2] + x = H[(d + 8) >> 2] + s = H[(d + 4) >> 2] + n = H[d >> 2] + q = H[z >> 2] + m = H[(q + 4) >> 2] + d = H[(q + 8) >> 2] + l: { + if (m >>> 0 < d >>> 0) { + H[(m + 8) >> 2] = x + H[(m + 4) >> 2] = s + H[m >> 2] = n + H[(q + 4) >> 2] = m + 12 + break l + } + r = H[q >> 2] + g = (((m - r) | 0) / 12) | 0 + k = (g + 1) | 0 + if (k >>> 0 >= 357913942) { + break b + } + e = (((d - r) | 0) / 12) | 0 + d = e << 1 + k = + e >>> 0 >= 178956970 + ? 357913941 + : d >>> 0 > k >>> 0 + ? d + : k + if (k) { + if (k >>> 0 >= 357913942) { + break a + } + d = pa(N(k, 12)) + } else { + d = 0 + } + w = (d + N(g, 12)) | 0 + H[(w + 8) >> 2] = x + H[(w + 4) >> 2] = s + H[w >> 2] = n + e = (w + 12) | 0 + if ((m | 0) != (r | 0)) { + while (1) { + w = (w - 12) | 0 + m = (m - 12) | 0 + H[w >> 2] = H[m >> 2] + H[(w + 4) >> 2] = + H[(m + 4) >> 2] + H[(w + 8) >> 2] = + H[(m + 8) >> 2] + if ((m | 0) != (r | 0)) { + continue + } + break + } + } + H[(q + 8) >> 2] = d + N(k, 12) + H[(q + 4) >> 2] = e + H[q >> 2] = w + if (!r) { + break l + } + oa(r) + } + H[(i + 8) >> 2] = + H[(i + 8) >> 2] + 1 + b = (b + 1) | 0 + if ((t | 0) != (b | 0)) { + continue + } + break + } + break k + } + m: { + n: { + o: { + p: { + if (t >>> 0 <= 2) { + d = H[(i + 108) >> 2] + H[d >> 2] = m + w = 1 + g = H[(i + 12) >> 2] + if (g >>> 0 > 1) { + break p + } + break m + } + if ( + K[(i + 8) >> 2] > + K[(i + 4) >> 2] + ) { + break i + } + b = H[(i + 120) >> 2] + s = (o + 1) | 0 + x = N(s, 12) + d = (b + x) | 0 + if ((d | 0) != (l | 0)) { + Aa( + d, + H[l >> 2], + H[(l + 4) >> 2], + ) + b = H[(i + 120) >> 2] + } + b = (r + H[(b + x) >> 2]) | 0 + H[b >> 2] = + H[b >> 2] + + (1 << (g + (e ^ -1))) + n = Q(t) ^ 31 + k = H[(i + 32) >> 2] + e = (32 - k) | 0 + q: { + if ((n | 0) <= (e | 0)) { + e = H[(i + 28) >> 2] + if ( + (e | 0) == + H[(i + 20) >> 2] + ) { + break o + } + d = H[e >> 2] + b = (k + n) | 0 + H[(i + 32) >> 2] = b + w = + ((d << k) >>> + (32 - n)) | + 0 + if ((b | 0) != 32) { + break q + } + H[(i + 32) >> 2] = 0 + H[(i + 28) >> 2] = e + 4 + break q + } + g = H[(i + 28) >> 2] + b = (g + 4) | 0 + if ( + (b | 0) == + H[(i + 20) >> 2] + ) { + break o + } + d = H[g >> 2] + H[(i + 28) >> 2] = b + b = (n - e) | 0 + H[(i + 32) >> 2] = b + w = + (H[(g + 4) >> 2] >>> + (32 - b)) | + ((d << k) >>> (32 - n)) + } + d = (t >>> 1) | 0 + if (w >>> 0 > d >>> 0) { + break i + } + break n + } + while (1) { + m = + ((g - 1) | 0) != (m | 0) + ? (m + 1) | 0 + : 0 + H[(d + (w << 2)) >> 2] = m + g = H[(i + 12) >> 2] + w = (w + 1) | 0 + if (g >>> 0 > w >>> 0) { + continue + } + break + } + break m + } + d = (t >>> 1) | 0 + w = 0 + } + r: { + s: { + e = (d - w) | 0 + b = (t - e) | 0 + t: { + if ((b | 0) == (e | 0)) { + b = e + break t + } + n = H[(i + 88) >> 2] + if ( + (n | 0) == + H[(i + 80) >> 2] + ) { + break s + } + k = H[n >> 2] + g = H[(i + 92) >> 2] + d = (g + 1) | 0 + H[(i + 92) >> 2] = d + g = k & (-2147483648 >>> g) + u: { + if ((d | 0) == 32) { + H[(i + 92) >> 2] = 0 + H[(i + 88) >> 2] = n + 4 + if (g) { + break u + } + break s + } + if (!g) { + break s + } + } + } + d = b + b = e + break r + } + d = e + } + n = H[(i + 132) >> 2] + k = (n + q) | 0 + g = H[k >> 2] + e = (g + r) | 0 + H[e >> 2] = H[e >> 2] + 1 + Aa((n + x) | 0, g, H[(k + 4) >> 2]) + if (b) { + g = + (H[(f + 28) >> 2] + + H[(f + 24) >> 2]) | + 0 + e = H[(f + 16) >> 2] + w = H[(f + 12) >> 2] + if ( + (g | 0) == + (((e | 0) != (w | 0) + ? (N((e - w) >> 2, 341) - 1) | + 0 + : 0) | + 0) + ) { + xa((f + 8) | 0) + w = H[(f + 12) >> 2] + g = + (H[(f + 24) >> 2] + + H[(f + 28) >> 2]) | + 0 + } + e = ((g >>> 0) / 341) | 0 + e = + (H[((e << 2) + w) >> 2] + + N((g - N(e, 341)) | 0, 12)) | + 0 + H[(e + 8) >> 2] = o + H[(e + 4) >> 2] = m + H[e >> 2] = b + H[(f + 28) >> 2] = + H[(f + 28) >> 2] + 1 + } + if (!d) { + break k + } + g = + (H[(f + 28) >> 2] + + H[(f + 24) >> 2]) | + 0 + b = H[(f + 16) >> 2] + w = H[(f + 12) >> 2] + if ( + (g | 0) == + (((b | 0) != (w | 0) + ? (N((b - w) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((f + 8) | 0) + w = H[(f + 12) >> 2] + g = + (H[(f + 24) >> 2] + + H[(f + 28) >> 2]) | + 0 + } + b = ((g >>> 0) / 341) | 0 + b = + (H[((b << 2) + w) >> 2] + + N((g - N(b, 341)) | 0, 12)) | + 0 + H[(b + 8) >> 2] = s + H[(b + 4) >> 2] = m + H[b >> 2] = d + m = (H[(f + 28) >> 2] + 1) | 0 + H[(f + 28) >> 2] = m + break j + } + if (!t) { + break k + } + while (1) { + if (H[(i + 12) >> 2]) { + o = H[(i + 40) >> 2] + n = H[p >> 2] + w = H[(i + 96) >> 2] + k = H[(i + 108) >> 2] + m = 0 + while (1) { + q = (k + (m << 2)) | 0 + H[(w + (H[q >> 2] << 2)) >> 2] = + 0 + g = H[i >> 2] + e = H[q >> 2] << 2 + d = H[(e + n) >> 2] + v: { + if ((g | 0) == (d | 0)) { + break v + } + r = (e + w) | 0 + u = (g - d) | 0 + x = H[(i + 52) >> 2] + g = (32 - x) | 0 + if ((u | 0) <= (g | 0)) { + e = H[(i + 48) >> 2] + if ((e | 0) == (o | 0)) { + break i + } + H[r >> 2] = + (H[e >> 2] << x) >>> + (32 - u) + d = + (u + H[(i + 52) >> 2]) | 0 + H[(i + 52) >> 2] = d + if ((d | 0) != 32) { + break v + } + H[(i + 52) >> 2] = 0 + H[(i + 48) >> 2] = e + 4 + break v + } + s = H[(i + 48) >> 2] + d = (s + 4) | 0 + if ((d | 0) == (o | 0)) { + break i + } + e = H[s >> 2] + H[(i + 48) >> 2] = d + d = (u - g) | 0 + H[(i + 52) >> 2] = d + H[r >> 2] = + (H[(s + 4) >> 2] >>> + (32 - d)) | + ((e << x) >>> (32 - u)) + } + e = H[q >> 2] << 2 + d = (e + w) | 0 + H[d >> 2] = + H[d >> 2] | + H[(e + H[l >> 2]) >> 2] + m = (m + 1) | 0 + if ( + m >>> 0 < + K[(i + 12) >> 2] + ) { + continue + } + break + } + } + jb(z, y) + H[(i + 8) >> 2] = + H[(i + 8) >> 2] + 1 + b = (b + 1) | 0 + if ((t | 0) != (b | 0)) { + continue + } + break + } + } + m = H[(f + 28) >> 2] + } + if (m) { + continue + } + break + } + } + H[(f + 28) >> 2] = 0 + w = H[(f + 16) >> 2] + m = H[(f + 12) >> 2] + g = (w - m) | 0 + if (g >>> 0 >= 9) { + while (1) { + oa(H[m >> 2]) + m = (H[(f + 12) >> 2] + 4) | 0 + H[(f + 12) >> 2] = m + w = H[(f + 16) >> 2] + g = (w - m) | 0 + if (g >>> 0 > 8) { + continue + } + break + } + } + b = 170 + w: { + switch ((((g >>> 2) | 0) - 1) | 0) { + case 1: + b = 341 + case 0: + H[(f + 24) >> 2] = b + break + default: + break w + } + } + x: { + if ((m | 0) == (w | 0)) { + break x + } + while (1) { + oa(H[m >> 2]) + m = (m + 4) | 0 + if ((w | 0) != (m | 0)) { + continue + } + break + } + d = H[(f + 16) >> 2] + b = H[(f + 12) >> 2] + if ((d | 0) == (b | 0)) { + break x + } + H[(f + 16) >> 2] = + d + ((((b - d) | 0) + 3) & -4) + } + b = H[(f + 8) >> 2] + if (b) { + oa(b) + } + ca = (f + 32) | 0 + break h + } + } + xb(i) + break d + case 1: + i = wb((B + 8) | 0, 3) + A = (B + 664) | 0 + k = H[(b + 8) >> 2] + n = H[(b + 12) >> 2] + d = H[(b + 20) >> 2] + e = H[(b + 16) >> 2] + g = (e + 4) | 0 + d = g >>> 0 < 4 ? (d + 1) | 0 : d + y: { + if ( + ((g >>> 0 > k >>> 0) & ((d | 0) >= (n | 0))) | + ((d | 0) > (n | 0)) + ) { + break y + } + d = (e + H[b >> 2]) | 0 + H[i >> 2] = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + d = H[(b + 20) >> 2] + k = d + g = H[(b + 16) >> 2] + e = (g + 4) | 0 + d = e >>> 0 < 4 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = d + if (K[i >> 2] > 32) { + break y + } + n = H[(b + 8) >> 2] + s = H[(b + 12) >> 2] + d = k + g = (g + 8) | 0 + d = g >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((g >>> 0 > n >>> 0) & ((d | 0) >= (s | 0))) | + ((d | 0) > (s | 0)) + ) { + break y + } + d = (e + H[b >> 2]) | 0 + e = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + H[(i + 4) >> 2] = e + g = H[(b + 20) >> 2] + d = (H[(b + 16) >> 2] + 4) | 0 + g = d >>> 0 < 4 ? (g + 1) | 0 : g + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = g + if (!e) { + break y + } + H[(i + 8) >> 2] = 0 + if (!ua((i + 16) | 0, b)) { + break y + } + if (!ua((i + 36) | 0, b)) { + break y + } + if (!ua((i + 56) | 0, b)) { + break y + } + if (!ua((i + 76) | 0, b)) { + break y + } + p = H[(i + 4) >> 2] + d = 0 + f = (ca - 32) | 0 + ca = f + m = H[(i + 12) >> 2] + H[(f + 16) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + if (m) { + if (m >>> 0 >= 1073741824) { + break b + } + b = m << 2 + t = pa(b) + H[(f + 8) >> 2] = t + d = (b + t) | 0 + H[(f + 16) >> 2] = d + ra(t, 0, b) + H[(f + 12) >> 2] = d + } + e = H[(i + 120) >> 2] + b = H[e >> 2] + if (b) { + H[(e + 4) >> 2] = b + oa(b) + m = H[(i + 12) >> 2] + t = H[(f + 8) >> 2] + d = H[(f + 12) >> 2] + } + H[(e + 4) >> 2] = d + H[e >> 2] = t + H[(e + 8) >> 2] = H[(f + 16) >> 2] + t = 0 + H[(f + 16) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + z: { + if (m) { + if (m >>> 0 >= 1073741824) { + break b + } + b = m << 2 + o = pa(b) + H[(f + 8) >> 2] = o + t = (b + o) | 0 + H[(f + 16) >> 2] = t + ra(o, 0, b) + H[(f + 12) >> 2] = t + } + d = H[(i + 132) >> 2] + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + t = H[(f + 12) >> 2] + o = H[(f + 8) >> 2] + } + H[(d + 4) >> 2] = t + H[d >> 2] = o + H[(d + 8) >> 2] = H[(f + 16) >> 2] + H[(f + 24) >> 2] = 0 + H[(f + 28) >> 2] = 0 + H[(f + 16) >> 2] = 0 + H[(f + 20) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + xa((f + 8) | 0) + d = (H[(f + 24) >> 2] + H[(f + 28) >> 2]) | 0 + b = ((d >>> 0) / 341) | 0 + b = + (H[(H[(f + 12) >> 2] + (b << 2)) >> 2] + + N((d - N(b, 341)) | 0, 12)) | + 0 + H[(b + 4) >> 2] = 0 + H[(b + 8) >> 2] = 0 + H[b >> 2] = p + m = (H[(f + 28) >> 2] + 1) | 0 + H[(f + 28) >> 2] = m + A: { + if (!m) { + break A + } + s = (i + 96) | 0 + while (1) { + k = H[(f + 12) >> 2] + g = H[(f + 24) >> 2] + e = (m - 1) | 0 + d = (g + e) | 0 + b = ((d >>> 0) / 341) | 0 + b = + (H[(k + (b << 2)) >> 2] + + N((d - N(b, 341)) | 0, 12)) | + 0 + q = H[(b + 8) >> 2] + d = H[(b + 4) >> 2] + l = H[b >> 2] + H[(f + 28) >> 2] = e + b = H[(f + 16) >> 2] + if ( + (((((b | 0) != (k | 0) + ? (N((b - k) >> 2, 341) - 1) | 0 + : 0) - + ((g + m) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(b - 4) >> 2]) + H[(f + 16) >> 2] = H[(f + 16) >> 2] - 4 + } + if (l >>> 0 > p >>> 0) { + break A + } + b = H[(i + 12) >> 2] + m = + (d | 0) != ((b - 1) | 0) + ? (d + 1) | 0 + : 0 + if (m >>> 0 >= b >>> 0) { + break A + } + b = H[(i + 120) >> 2] + r = N(q, 12) + u = (b + r) | 0 + e = H[i >> 2] + x = m << 2 + n = (r + H[(i + 132) >> 2]) | 0 + d = H[(x + H[n >> 2]) >> 2] + B: { + C: { + if ((e | 0) == (d | 0)) { + x = 0 + if (!l) { + break C + } + while (1) { + b = H[u >> 2] + y = H[(b + 8) >> 2] + n = H[(b + 4) >> 2] + k = H[b >> 2] + q = H[A >> 2] + m = H[(q + 4) >> 2] + b = H[(q + 8) >> 2] + D: { + if (m >>> 0 < b >>> 0) { + H[(m + 8) >> 2] = y + H[(m + 4) >> 2] = n + H[m >> 2] = k + H[(q + 4) >> 2] = m + 12 + break D + } + r = H[q >> 2] + e = (((m - r) | 0) / 12) | 0 + g = (e + 1) | 0 + if (g >>> 0 >= 357913942) { + break b + } + d = (((b - r) | 0) / 12) | 0 + b = d << 1 + g = + d >>> 0 >= 178956970 + ? 357913941 + : b >>> 0 > g >>> 0 + ? b + : g + if (g) { + if (g >>> 0 >= 357913942) { + break a + } + b = pa(N(g, 12)) + } else { + b = 0 + } + o = (b + N(e, 12)) | 0 + H[(o + 8) >> 2] = y + H[(o + 4) >> 2] = n + H[o >> 2] = k + d = (o + 12) | 0 + if ((m | 0) != (r | 0)) { + while (1) { + o = (o - 12) | 0 + m = (m - 12) | 0 + H[o >> 2] = H[m >> 2] + H[(o + 4) >> 2] = + H[(m + 4) >> 2] + H[(o + 8) >> 2] = + H[(m + 8) >> 2] + if ((m | 0) != (r | 0)) { + continue + } + break + } + } + H[(q + 8) >> 2] = b + N(g, 12) + H[(q + 4) >> 2] = d + H[q >> 2] = o + if (!r) { + break D + } + oa(r) + } + H[(i + 8) >> 2] = + H[(i + 8) >> 2] + 1 + x = (x + 1) | 0 + if ((l | 0) != (x | 0)) { + continue + } + break + } + break C + } + E: { + F: { + G: { + H: { + if (l >>> 0 <= 2) { + b = H[(i + 108) >> 2] + H[b >> 2] = m + o = 1 + t = H[(i + 12) >> 2] + if (t >>> 0 > 1) { + break H + } + break E + } + if ( + K[(i + 8) >> 2] > + K[(i + 4) >> 2] + ) { + break A + } + k = b + b = (r + 12) | 0 + Aa( + (k + b) | 0, + H[u >> 2], + H[(u + 4) >> 2], + ) + b = + (x + + H[ + (b + + H[(i + 120) >> 2]) >> + 2 + ]) | + 0 + H[b >> 2] = + H[b >> 2] + + (1 << (e + (d ^ -1))) + n = Q(l) ^ 31 + k = H[(i + 32) >> 2] + e = (32 - k) | 0 + I: { + if ((n | 0) <= (e | 0)) { + e = H[(i + 28) >> 2] + if ( + (e | 0) == + H[(i + 20) >> 2] + ) { + break G + } + d = H[e >> 2] + b = (k + n) | 0 + H[(i + 32) >> 2] = b + d = + ((d << k) >>> + (32 - n)) | + 0 + if ((b | 0) != 32) { + break I + } + H[(i + 32) >> 2] = 0 + H[(i + 28) >> 2] = e + 4 + break I + } + g = H[(i + 28) >> 2] + b = (g + 4) | 0 + if ( + (b | 0) == + H[(i + 20) >> 2] + ) { + break G + } + d = H[g >> 2] + H[(i + 28) >> 2] = b + b = (n - e) | 0 + H[(i + 32) >> 2] = b + d = + (H[(g + 4) >> 2] >>> + (32 - b)) | + ((d << k) >>> (32 - n)) + } + o = (l >>> 1) | 0 + if (o >>> 0 < d >>> 0) { + break A + } + break F + } + while (1) { + m = + ((t - 1) | 0) != (m | 0) + ? (m + 1) | 0 + : 0 + H[(b + (o << 2)) >> 2] = m + o = (o + 1) | 0 + t = H[(i + 12) >> 2] + if (o >>> 0 < t >>> 0) { + continue + } + break + } + break E + } + o = (l >>> 1) | 0 + d = 0 + } + y = (q + 1) | 0 + J: { + K: { + e = (o - d) | 0 + d = (l - e) | 0 + L: { + if ((d | 0) == (e | 0)) { + b = e + break L + } + n = H[(i + 88) >> 2] + if ( + (n | 0) == + H[(i + 80) >> 2] + ) { + break K + } + k = H[n >> 2] + g = H[(i + 92) >> 2] + b = (g + 1) | 0 + H[(i + 92) >> 2] = b + g = k & (-2147483648 >>> g) + M: { + if ((b | 0) == 32) { + H[(i + 92) >> 2] = 0 + H[(i + 88) >> 2] = n + 4 + if (g) { + break M + } + break K + } + if (!g) { + break K + } + } + b = d + } + d = e + break J + } + b = e + } + n = H[(i + 132) >> 2] + k = (n + r) | 0 + g = H[k >> 2] + e = (g + x) | 0 + H[e >> 2] = H[e >> 2] + 1 + Aa( + (n + N(y, 12)) | 0, + g, + H[(k + 4) >> 2], + ) + if (d) { + t = + (H[(f + 28) >> 2] + + H[(f + 24) >> 2]) | + 0 + e = H[(f + 16) >> 2] + o = H[(f + 12) >> 2] + if ( + (t | 0) == + (((e | 0) != (o | 0) + ? (N((e - o) >> 2, 341) - 1) | + 0 + : 0) | + 0) + ) { + xa((f + 8) | 0) + t = + (H[(f + 24) >> 2] + + H[(f + 28) >> 2]) | + 0 + o = H[(f + 12) >> 2] + } + e = ((t >>> 0) / 341) | 0 + e = + (H[(o + (e << 2)) >> 2] + + N((t - N(e, 341)) | 0, 12)) | + 0 + H[(e + 8) >> 2] = q + H[(e + 4) >> 2] = m + H[e >> 2] = d + H[(f + 28) >> 2] = + H[(f + 28) >> 2] + 1 + } + if (!b) { + break C + } + t = + (H[(f + 28) >> 2] + + H[(f + 24) >> 2]) | + 0 + d = H[(f + 16) >> 2] + o = H[(f + 12) >> 2] + if ( + (t | 0) == + (((d | 0) != (o | 0) + ? (N((d - o) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((f + 8) | 0) + t = + (H[(f + 24) >> 2] + + H[(f + 28) >> 2]) | + 0 + o = H[(f + 12) >> 2] + } + d = ((t >>> 0) / 341) | 0 + d = + (H[(o + (d << 2)) >> 2] + + N((t - N(d, 341)) | 0, 12)) | + 0 + H[(d + 8) >> 2] = y + H[(d + 4) >> 2] = m + H[d >> 2] = b + m = (H[(f + 28) >> 2] + 1) | 0 + H[(f + 28) >> 2] = m + break B + } + t = 0 + if (!l) { + break C + } + while (1) { + if (H[(i + 12) >> 2]) { + o = H[(i + 40) >> 2] + k = H[n >> 2] + z = H[(i + 96) >> 2] + g = H[(i + 108) >> 2] + m = 0 + while (1) { + q = (g + (m << 2)) | 0 + H[(z + (H[q >> 2] << 2)) >> 2] = + 0 + e = H[i >> 2] + d = H[q >> 2] << 2 + b = H[(d + k) >> 2] + N: { + if ((e | 0) == (b | 0)) { + break N + } + r = (d + z) | 0 + w = (e - b) | 0 + x = H[(i + 52) >> 2] + e = (32 - x) | 0 + if ((w | 0) <= (e | 0)) { + d = H[(i + 48) >> 2] + if ((d | 0) == (o | 0)) { + break A + } + H[r >> 2] = + (H[d >> 2] << x) >>> + (32 - w) + b = + (w + H[(i + 52) >> 2]) | 0 + H[(i + 52) >> 2] = b + if ((b | 0) != 32) { + break N + } + H[(i + 52) >> 2] = 0 + H[(i + 48) >> 2] = d + 4 + break N + } + y = H[(i + 48) >> 2] + b = (y + 4) | 0 + if ((b | 0) == (o | 0)) { + break A + } + d = H[y >> 2] + H[(i + 48) >> 2] = b + b = (w - e) | 0 + H[(i + 52) >> 2] = b + H[r >> 2] = + (H[(y + 4) >> 2] >>> + (32 - b)) | + ((d << x) >>> (32 - w)) + } + d = H[q >> 2] << 2 + b = (d + z) | 0 + H[b >> 2] = + H[b >> 2] | + H[(d + H[u >> 2]) >> 2] + m = (m + 1) | 0 + if ( + m >>> 0 < + K[(i + 12) >> 2] + ) { + continue + } + break + } + } + jb(A, s) + H[(i + 8) >> 2] = + H[(i + 8) >> 2] + 1 + t = (t + 1) | 0 + if ((l | 0) != (t | 0)) { + continue + } + break + } + } + m = H[(f + 28) >> 2] + } + if (m) { + continue + } + break + } + } + H[(f + 28) >> 2] = 0 + o = H[(f + 16) >> 2] + m = H[(f + 12) >> 2] + t = (o - m) | 0 + if (t >>> 0 >= 9) { + while (1) { + oa(H[m >> 2]) + m = (H[(f + 12) >> 2] + 4) | 0 + H[(f + 12) >> 2] = m + o = H[(f + 16) >> 2] + t = (o - m) | 0 + if (t >>> 0 > 8) { + continue + } + break + } + } + b = 170 + O: { + switch ((((t >>> 2) | 0) - 1) | 0) { + case 1: + b = 341 + case 0: + H[(f + 24) >> 2] = b + break + default: + break O + } + } + P: { + if ((m | 0) == (o | 0)) { + break P + } + while (1) { + oa(H[m >> 2]) + m = (m + 4) | 0 + if ((o | 0) != (m | 0)) { + continue + } + break + } + d = H[(f + 16) >> 2] + b = H[(f + 12) >> 2] + if ((d | 0) == (b | 0)) { + break P + } + H[(f + 16) >> 2] = + d + ((((b - d) | 0) + 3) & -4) + } + b = H[(f + 8) >> 2] + if (b) { + oa(b) + } + ca = (f + 32) | 0 + break z + } + } + xb(i) + break d + case 2: + f = ub((B + 8) | 0, 3) + w = (B + 664) | 0 + k = H[(b + 8) >> 2] + n = H[(b + 12) >> 2] + d = H[(b + 20) >> 2] + e = H[(b + 16) >> 2] + g = (e + 4) | 0 + d = g >>> 0 < 4 ? (d + 1) | 0 : d + Q: { + if ( + ((g >>> 0 > k >>> 0) & ((d | 0) >= (n | 0))) | + ((d | 0) > (n | 0)) + ) { + break Q + } + d = (e + H[b >> 2]) | 0 + H[f >> 2] = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + d = H[(b + 20) >> 2] + k = d + g = H[(b + 16) >> 2] + e = (g + 4) | 0 + d = e >>> 0 < 4 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = d + if (K[f >> 2] > 32) { + break Q + } + n = H[(b + 8) >> 2] + s = H[(b + 12) >> 2] + d = k + g = (g + 8) | 0 + d = g >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((g >>> 0 > n >>> 0) & ((d | 0) >= (s | 0))) | + ((d | 0) > (s | 0)) + ) { + break Q + } + d = (e + H[b >> 2]) | 0 + e = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + H[(f + 4) >> 2] = e + g = H[(b + 20) >> 2] + d = (H[(b + 16) >> 2] + 4) | 0 + g = d >>> 0 < 4 ? (g + 1) | 0 : g + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = g + if (!e) { + break Q + } + H[(f + 8) >> 2] = 0 + if (!ta((f + 16) | 0, b)) { + break Q + } + if (!ua((f + 32) | 0, b)) { + break Q + } + if (!ua((f + 52) | 0, b)) { + break Q + } + if (!ua((f + 72) | 0, b)) { + break Q + } + z = H[(f + 4) >> 2] + g = 0 + b = 0 + h = (ca - 32) | 0 + ca = h + j = H[(f + 12) >> 2] + H[(h + 16) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[(h + 12) >> 2] = 0 + if (j) { + if (j >>> 0 >= 1073741824) { + break b + } + d = j << 2 + g = pa(d) + H[(h + 8) >> 2] = g + b = (d + g) | 0 + H[(h + 16) >> 2] = b + ra(g, 0, d) + H[(h + 12) >> 2] = b + } + e = H[(f + 116) >> 2] + d = H[e >> 2] + if (d) { + H[(e + 4) >> 2] = d + oa(d) + j = H[(f + 12) >> 2] + g = H[(h + 8) >> 2] + b = H[(h + 12) >> 2] + } + H[(e + 4) >> 2] = b + H[e >> 2] = g + H[(e + 8) >> 2] = H[(h + 16) >> 2] + g = 0 + H[(h + 16) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[(h + 12) >> 2] = 0 + R: { + if (j) { + if (j >>> 0 >= 1073741824) { + break b + } + b = j << 2 + u = pa(b) + H[(h + 8) >> 2] = u + g = (b + u) | 0 + H[(h + 16) >> 2] = g + ra(u, 0, b) + H[(h + 12) >> 2] = g + } + d = H[(f + 128) >> 2] + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + u = H[(h + 8) >> 2] + g = H[(h + 12) >> 2] + } + H[(d + 4) >> 2] = g + H[d >> 2] = u + H[(d + 8) >> 2] = H[(h + 16) >> 2] + H[(h + 24) >> 2] = 0 + H[(h + 28) >> 2] = 0 + H[(h + 16) >> 2] = 0 + H[(h + 20) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[(h + 12) >> 2] = 0 + xa((h + 8) | 0) + d = (H[(h + 24) >> 2] + H[(h + 28) >> 2]) | 0 + b = ((d >>> 0) / 341) | 0 + b = + (H[(H[(h + 12) >> 2] + (b << 2)) >> 2] + + N((d - N(b, 341)) | 0, 12)) | + 0 + H[(b + 4) >> 2] = 0 + H[(b + 8) >> 2] = 0 + H[b >> 2] = z + j = (H[(h + 28) >> 2] + 1) | 0 + H[(h + 28) >> 2] = j + S: { + if (!j) { + break S + } + x = (f + 92) | 0 + y = (f + 16) | 0 + while (1) { + n = H[(h + 12) >> 2] + g = H[(h + 24) >> 2] + e = (j - 1) | 0 + d = (g + e) | 0 + b = ((d >>> 0) / 341) | 0 + b = + (H[(n + (b << 2)) >> 2] + + N((d - N(b, 341)) | 0, 12)) | + 0 + p = H[(b + 8) >> 2] + k = H[(b + 4) >> 2] + i = H[b >> 2] + H[(h + 28) >> 2] = e + b = H[(h + 16) >> 2] + if ( + (((((b | 0) != (n | 0) + ? (N((b - n) >> 2, 341) - 1) | 0 + : 0) - + ((g + j) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(b - 4) >> 2]) + H[(h + 16) >> 2] = H[(h + 16) >> 2] - 4 + } + d = 0 + if (i >>> 0 > z >>> 0) { + break S + } + b = H[(f + 12) >> 2] + j = + (k | 0) != ((b - 1) | 0) + ? (k + 1) | 0 + : 0 + if (j >>> 0 >= b >>> 0) { + break S + } + o = N(p, 12) + A = (o + H[(f + 128) >> 2]) | 0 + t = (o + H[(f + 116) >> 2]) | 0 + g = H[f >> 2] + q = j << 2 + e = H[(q + H[A >> 2]) >> 2] + T: { + if ((g | 0) == (e | 0)) { + if (!i) { + break T + } + while (1) { + b = H[t >> 2] + r = H[(b + 8) >> 2] + s = H[(b + 4) >> 2] + n = H[b >> 2] + o = H[w >> 2] + j = H[(o + 4) >> 2] + b = H[(o + 8) >> 2] + U: { + if (j >>> 0 < b >>> 0) { + H[(j + 8) >> 2] = r + H[(j + 4) >> 2] = s + H[j >> 2] = n + H[(o + 4) >> 2] = j + 12 + break U + } + q = H[o >> 2] + g = (((j - q) | 0) / 12) | 0 + k = (g + 1) | 0 + if (k >>> 0 >= 357913942) { + break b + } + e = (((b - q) | 0) / 12) | 0 + b = e << 1 + k = + e >>> 0 >= 178956970 + ? 357913941 + : b >>> 0 > k >>> 0 + ? b + : k + if (k) { + if (k >>> 0 >= 357913942) { + break a + } + b = pa(N(k, 12)) + } else { + b = 0 + } + u = (b + N(g, 12)) | 0 + H[(u + 8) >> 2] = r + H[(u + 4) >> 2] = s + H[u >> 2] = n + e = (u + 12) | 0 + if ((j | 0) != (q | 0)) { + while (1) { + u = (u - 12) | 0 + j = (j - 12) | 0 + H[u >> 2] = H[j >> 2] + H[(u + 4) >> 2] = + H[(j + 4) >> 2] + H[(u + 8) >> 2] = + H[(j + 8) >> 2] + if ((j | 0) != (q | 0)) { + continue + } + break + } + } + H[(o + 8) >> 2] = b + N(k, 12) + H[(o + 4) >> 2] = e + H[o >> 2] = u + if (!q) { + break U + } + oa(q) + } + H[(f + 8) >> 2] = + H[(f + 8) >> 2] + 1 + d = (d + 1) | 0 + if ((i | 0) != (d | 0)) { + continue + } + break + } + break T + } + V: { + W: { + X: { + Y: { + if (i >>> 0 <= 2) { + b = H[(f + 104) >> 2] + H[b >> 2] = j + u = 1 + g = H[(f + 12) >> 2] + if (g >>> 0 > 1) { + break Y + } + break V + } + if ( + K[(f + 8) >> 2] > + K[(f + 4) >> 2] + ) { + break S + } + b = H[(f + 116) >> 2] + s = (p + 1) | 0 + r = N(s, 12) + d = (b + r) | 0 + if ((d | 0) != (t | 0)) { + Aa( + d, + H[t >> 2], + H[(t + 4) >> 2], + ) + b = H[(f + 116) >> 2] + } + b = (q + H[(b + r) >> 2]) | 0 + H[b >> 2] = + H[b >> 2] + + (1 << (g + (e ^ -1))) + H[(h + 4) >> 2] = 0 + pc(y, Q(i) ^ 31, (h + 4) | 0) + d = (i >>> 1) | 0 + b = H[(h + 4) >> 2] + if (d >>> 0 < b >>> 0) { + break S + } + e = (d - b) | 0 + d = (i - e) | 0 + Z: { + if ((d | 0) == (e | 0)) { + b = e + break Z + } + n = H[(f + 84) >> 2] + if ( + (n | 0) == + H[(f + 76) >> 2] + ) { + break X + } + k = H[n >> 2] + g = H[(f + 88) >> 2] + b = (g + 1) | 0 + H[(f + 88) >> 2] = b + g = k & (-2147483648 >>> g) + _: { + if ((b | 0) == 32) { + H[(f + 88) >> 2] = 0 + H[(f + 84) >> 2] = n + 4 + if (g) { + break _ + } + break X + } + if (!g) { + break X + } + } + b = d + } + d = e + break W + } + while (1) { + j = + ((g - 1) | 0) != (j | 0) + ? (j + 1) | 0 + : 0 + H[(b + (u << 2)) >> 2] = j + g = H[(f + 12) >> 2] + u = (u + 1) | 0 + if (g >>> 0 > u >>> 0) { + continue + } + break + } + break V + } + b = e + } + n = H[(f + 128) >> 2] + k = (n + o) | 0 + g = H[k >> 2] + e = (g + q) | 0 + H[e >> 2] = H[e >> 2] + 1 + Aa((n + r) | 0, g, H[(k + 4) >> 2]) + if (d) { + g = + (H[(h + 28) >> 2] + + H[(h + 24) >> 2]) | + 0 + e = H[(h + 16) >> 2] + u = H[(h + 12) >> 2] + if ( + (g | 0) == + (((e | 0) != (u | 0) + ? (N((e - u) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((h + 8) | 0) + u = H[(h + 12) >> 2] + g = + (H[(h + 24) >> 2] + + H[(h + 28) >> 2]) | + 0 + } + e = ((g >>> 0) / 341) | 0 + e = + (H[((e << 2) + u) >> 2] + + N((g - N(e, 341)) | 0, 12)) | + 0 + H[(e + 8) >> 2] = p + H[(e + 4) >> 2] = j + H[e >> 2] = d + H[(h + 28) >> 2] = + H[(h + 28) >> 2] + 1 + } + if (!b) { + break T + } + g = + (H[(h + 28) >> 2] + + H[(h + 24) >> 2]) | + 0 + d = H[(h + 16) >> 2] + u = H[(h + 12) >> 2] + if ( + (g | 0) == + (((d | 0) != (u | 0) + ? (N((d - u) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((h + 8) | 0) + u = H[(h + 12) >> 2] + g = + (H[(h + 24) >> 2] + + H[(h + 28) >> 2]) | + 0 + } + d = ((g >>> 0) / 341) | 0 + d = + (H[((d << 2) + u) >> 2] + + N((g - N(d, 341)) | 0, 12)) | + 0 + H[(d + 8) >> 2] = s + H[(d + 4) >> 2] = j + H[d >> 2] = b + H[(h + 28) >> 2] = + H[(h + 28) >> 2] + 1 + break T + } + if (!i) { + break T + } + while (1) { + if (H[(f + 12) >> 2]) { + p = H[(f + 36) >> 2] + n = H[A >> 2] + u = H[(f + 92) >> 2] + k = H[(f + 104) >> 2] + j = 0 + while (1) { + o = (k + (j << 2)) | 0 + H[(u + (H[o >> 2] << 2)) >> 2] = 0 + g = H[f >> 2] + e = H[o >> 2] << 2 + b = H[(e + n) >> 2] + $: { + if ((g | 0) == (b | 0)) { + break $ + } + q = (e + u) | 0 + l = (g - b) | 0 + r = H[(f + 48) >> 2] + g = (32 - r) | 0 + if ((l | 0) <= (g | 0)) { + e = H[(f + 44) >> 2] + if ((e | 0) == (p | 0)) { + break S + } + H[q >> 2] = + (H[e >> 2] << r) >>> + (32 - l) + b = (l + H[(f + 48) >> 2]) | 0 + H[(f + 48) >> 2] = b + if ((b | 0) != 32) { + break $ + } + H[(f + 48) >> 2] = 0 + H[(f + 44) >> 2] = e + 4 + break $ + } + s = H[(f + 44) >> 2] + b = (s + 4) | 0 + if ((b | 0) == (p | 0)) { + break S + } + e = H[s >> 2] + H[(f + 44) >> 2] = b + b = (l - g) | 0 + H[(f + 48) >> 2] = b + H[q >> 2] = + (H[(s + 4) >> 2] >>> + (32 - b)) | + ((e << r) >>> (32 - l)) + } + e = H[o >> 2] << 2 + b = (e + u) | 0 + H[b >> 2] = + H[b >> 2] | + H[(e + H[t >> 2]) >> 2] + j = (j + 1) | 0 + if (j >>> 0 < K[(f + 12) >> 2]) { + continue + } + break + } + } + jb(w, x) + H[(f + 8) >> 2] = H[(f + 8) >> 2] + 1 + d = (d + 1) | 0 + if ((i | 0) != (d | 0)) { + continue + } + break + } + } + j = H[(h + 28) >> 2] + if (j) { + continue + } + break + } + } + H[(h + 28) >> 2] = 0 + u = H[(h + 16) >> 2] + j = H[(h + 12) >> 2] + g = (u - j) | 0 + if (g >>> 0 >= 9) { + while (1) { + oa(H[j >> 2]) + j = (H[(h + 12) >> 2] + 4) | 0 + H[(h + 12) >> 2] = j + u = H[(h + 16) >> 2] + g = (u - j) | 0 + if (g >>> 0 > 8) { + continue + } + break + } + } + b = 170 + aa: { + switch ((((g >>> 2) | 0) - 1) | 0) { + case 1: + b = 341 + case 0: + H[(h + 24) >> 2] = b + break + default: + break aa + } + } + ba: { + if ((j | 0) == (u | 0)) { + break ba + } + while (1) { + oa(H[j >> 2]) + j = (j + 4) | 0 + if ((u | 0) != (j | 0)) { + continue + } + break + } + d = H[(h + 16) >> 2] + b = H[(h + 12) >> 2] + if ((d | 0) == (b | 0)) { + break ba + } + H[(h + 16) >> 2] = + d + ((((b - d) | 0) + 3) & -4) + } + b = H[(h + 8) >> 2] + if (b) { + oa(b) + } + ca = (h + 32) | 0 + break R + } + } + vb(f) + break d + case 3: + i = ub((B + 8) | 0, 3) + z = (B + 664) | 0 + k = H[(b + 8) >> 2] + n = H[(b + 12) >> 2] + d = H[(b + 20) >> 2] + e = H[(b + 16) >> 2] + g = (e + 4) | 0 + d = g >>> 0 < 4 ? (d + 1) | 0 : d + ca: { + if ( + ((g >>> 0 > k >>> 0) & ((d | 0) >= (n | 0))) | + ((d | 0) > (n | 0)) + ) { + break ca + } + d = (e + H[b >> 2]) | 0 + H[i >> 2] = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + d = H[(b + 20) >> 2] + k = d + g = H[(b + 16) >> 2] + e = (g + 4) | 0 + d = e >>> 0 < 4 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = d + if (K[i >> 2] > 32) { + break ca + } + n = H[(b + 8) >> 2] + s = H[(b + 12) >> 2] + d = k + g = (g + 8) | 0 + d = g >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((g >>> 0 > n >>> 0) & ((d | 0) >= (s | 0))) | + ((d | 0) > (s | 0)) + ) { + break ca + } + d = (e + H[b >> 2]) | 0 + e = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + H[(i + 4) >> 2] = e + g = H[(b + 20) >> 2] + d = (H[(b + 16) >> 2] + 4) | 0 + g = d >>> 0 < 4 ? (g + 1) | 0 : g + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = g + if (!e) { + break ca + } + H[(i + 8) >> 2] = 0 + if (!ta((i + 16) | 0, b)) { + break ca + } + if (!ua((i + 32) | 0, b)) { + break ca + } + if (!ua((i + 52) | 0, b)) { + break ca + } + if (!ua((i + 72) | 0, b)) { + break ca + } + A = H[(i + 4) >> 2] + d = 0 + f = (ca - 32) | 0 + ca = f + j = H[(i + 12) >> 2] + H[(f + 16) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + if (j) { + if (j >>> 0 >= 1073741824) { + break b + } + b = j << 2 + m = pa(b) + H[(f + 8) >> 2] = m + d = (b + m) | 0 + H[(f + 16) >> 2] = d + ra(m, 0, b) + H[(f + 12) >> 2] = d + } + e = H[(i + 116) >> 2] + b = H[e >> 2] + if (b) { + H[(e + 4) >> 2] = b + oa(b) + j = H[(i + 12) >> 2] + m = H[(f + 8) >> 2] + d = H[(f + 12) >> 2] + } + H[(e + 4) >> 2] = d + H[e >> 2] = m + H[(e + 8) >> 2] = H[(f + 16) >> 2] + m = 0 + H[(f + 16) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + da: { + if (j) { + if (j >>> 0 >= 1073741824) { + break b + } + b = j << 2 + p = pa(b) + H[(f + 8) >> 2] = p + m = (b + p) | 0 + H[(f + 16) >> 2] = m + ra(p, 0, b) + H[(f + 12) >> 2] = m + } + d = H[(i + 128) >> 2] + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + m = H[(f + 12) >> 2] + p = H[(f + 8) >> 2] + } + H[(d + 4) >> 2] = m + H[d >> 2] = p + H[(d + 8) >> 2] = H[(f + 16) >> 2] + H[(f + 24) >> 2] = 0 + H[(f + 28) >> 2] = 0 + H[(f + 16) >> 2] = 0 + H[(f + 20) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + xa((f + 8) | 0) + d = (H[(f + 24) >> 2] + H[(f + 28) >> 2]) | 0 + b = ((d >>> 0) / 341) | 0 + b = + (H[(H[(f + 12) >> 2] + (b << 2)) >> 2] + + N((d - N(b, 341)) | 0, 12)) | + 0 + H[(b + 4) >> 2] = 0 + H[(b + 8) >> 2] = 0 + H[b >> 2] = A + j = (H[(f + 28) >> 2] + 1) | 0 + H[(f + 28) >> 2] = j + ea: { + if (!j) { + break ea + } + y = (i + 92) | 0 + s = (i + 16) | 0 + while (1) { + k = H[(f + 12) >> 2] + g = H[(f + 24) >> 2] + e = (j - 1) | 0 + d = (g + e) | 0 + b = ((d >>> 0) / 341) | 0 + b = + (H[(k + (b << 2)) >> 2] + + N((d - N(b, 341)) | 0, 12)) | + 0 + o = H[(b + 8) >> 2] + d = H[(b + 4) >> 2] + t = H[b >> 2] + H[(f + 28) >> 2] = e + b = H[(f + 16) >> 2] + if ( + (((((b | 0) != (k | 0) + ? (N((b - k) >> 2, 341) - 1) | 0 + : 0) - + ((g + j) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(b - 4) >> 2]) + H[(f + 16) >> 2] = H[(f + 16) >> 2] - 4 + } + if (t >>> 0 > A >>> 0) { + break ea + } + b = H[(i + 12) >> 2] + j = + (d | 0) != ((b - 1) | 0) + ? (d + 1) | 0 + : 0 + if (j >>> 0 >= b >>> 0) { + break ea + } + b = H[(i + 116) >> 2] + q = N(o, 12) + l = (b + q) | 0 + e = H[i >> 2] + r = j << 2 + n = (q + H[(i + 128) >> 2]) | 0 + d = H[(r + H[n >> 2]) >> 2] + fa: { + if ((e | 0) == (d | 0)) { + r = 0 + if (!t) { + break fa + } + while (1) { + b = H[l >> 2] + x = H[(b + 8) >> 2] + n = H[(b + 4) >> 2] + k = H[b >> 2] + o = H[z >> 2] + j = H[(o + 4) >> 2] + b = H[(o + 8) >> 2] + ga: { + if (j >>> 0 < b >>> 0) { + H[(j + 8) >> 2] = x + H[(j + 4) >> 2] = n + H[j >> 2] = k + H[(o + 4) >> 2] = j + 12 + break ga + } + q = H[o >> 2] + e = (((j - q) | 0) / 12) | 0 + g = (e + 1) | 0 + if (g >>> 0 >= 357913942) { + break b + } + d = (((b - q) | 0) / 12) | 0 + b = d << 1 + g = + d >>> 0 >= 178956970 + ? 357913941 + : b >>> 0 > g >>> 0 + ? b + : g + if (g) { + if (g >>> 0 >= 357913942) { + break a + } + b = pa(N(g, 12)) + } else { + b = 0 + } + p = (b + N(e, 12)) | 0 + H[(p + 8) >> 2] = x + H[(p + 4) >> 2] = n + H[p >> 2] = k + d = (p + 12) | 0 + if ((j | 0) != (q | 0)) { + while (1) { + p = (p - 12) | 0 + j = (j - 12) | 0 + H[p >> 2] = H[j >> 2] + H[(p + 4) >> 2] = + H[(j + 4) >> 2] + H[(p + 8) >> 2] = + H[(j + 8) >> 2] + if ((j | 0) != (q | 0)) { + continue + } + break + } + } + H[(o + 8) >> 2] = b + N(g, 12) + H[(o + 4) >> 2] = d + H[o >> 2] = p + if (!q) { + break ga + } + oa(q) + } + H[(i + 8) >> 2] = + H[(i + 8) >> 2] + 1 + r = (r + 1) | 0 + if ((t | 0) != (r | 0)) { + continue + } + break + } + break fa + } + ha: { + ia: { + ja: { + ka: { + if (t >>> 0 <= 2) { + b = H[(i + 104) >> 2] + H[b >> 2] = j + p = 1 + m = H[(i + 12) >> 2] + if (m >>> 0 > 1) { + break ka + } + break ha + } + if ( + K[(i + 8) >> 2] > + K[(i + 4) >> 2] + ) { + break ea + } + k = b + b = (q + 12) | 0 + Aa( + (k + b) | 0, + H[l >> 2], + H[(l + 4) >> 2], + ) + b = + (r + + H[ + (b + H[(i + 116) >> 2]) >> + 2 + ]) | + 0 + H[b >> 2] = + H[b >> 2] + + (1 << (e + (d ^ -1))) + H[(f + 4) >> 2] = 0 + pc(s, Q(t) ^ 31, (f + 4) | 0) + d = (t >>> 1) | 0 + b = H[(f + 4) >> 2] + if (d >>> 0 < b >>> 0) { + break ea + } + x = (o + 1) | 0 + e = (d - b) | 0 + d = (t - e) | 0 + la: { + if ((d | 0) == (e | 0)) { + b = e + break la + } + n = H[(i + 84) >> 2] + if ( + (n | 0) == + H[(i + 76) >> 2] + ) { + break ja + } + k = H[n >> 2] + g = H[(i + 88) >> 2] + b = (g + 1) | 0 + H[(i + 88) >> 2] = b + g = k & (-2147483648 >>> g) + ma: { + if ((b | 0) == 32) { + H[(i + 88) >> 2] = 0 + H[(i + 84) >> 2] = n + 4 + if (g) { + break ma + } + break ja + } + if (!g) { + break ja + } + } + b = d + } + d = e + break ia + } + while (1) { + j = + ((m - 1) | 0) != (j | 0) + ? (j + 1) | 0 + : 0 + H[(b + (p << 2)) >> 2] = j + m = H[(i + 12) >> 2] + p = (p + 1) | 0 + if (m >>> 0 > p >>> 0) { + continue + } + break + } + break ha + } + b = e + } + n = H[(i + 128) >> 2] + k = (n + q) | 0 + g = H[k >> 2] + e = (g + r) | 0 + H[e >> 2] = H[e >> 2] + 1 + Aa( + (n + N(x, 12)) | 0, + g, + H[(k + 4) >> 2], + ) + if (d) { + m = + (H[(f + 28) >> 2] + + H[(f + 24) >> 2]) | + 0 + e = H[(f + 16) >> 2] + p = H[(f + 12) >> 2] + if ( + (m | 0) == + (((e | 0) != (p | 0) + ? (N((e - p) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((f + 8) | 0) + m = + (H[(f + 24) >> 2] + + H[(f + 28) >> 2]) | + 0 + p = H[(f + 12) >> 2] + } + e = ((m >>> 0) / 341) | 0 + e = + (H[(p + (e << 2)) >> 2] + + N((m - N(e, 341)) | 0, 12)) | + 0 + H[(e + 8) >> 2] = o + H[(e + 4) >> 2] = j + H[e >> 2] = d + H[(f + 28) >> 2] = + H[(f + 28) >> 2] + 1 + } + if (!b) { + break fa + } + m = + (H[(f + 28) >> 2] + + H[(f + 24) >> 2]) | + 0 + d = H[(f + 16) >> 2] + p = H[(f + 12) >> 2] + if ( + (m | 0) == + (((d | 0) != (p | 0) + ? (N((d - p) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((f + 8) | 0) + m = + (H[(f + 24) >> 2] + + H[(f + 28) >> 2]) | + 0 + p = H[(f + 12) >> 2] + } + d = ((m >>> 0) / 341) | 0 + d = + (H[(p + (d << 2)) >> 2] + + N((m - N(d, 341)) | 0, 12)) | + 0 + H[(d + 8) >> 2] = x + H[(d + 4) >> 2] = j + H[d >> 2] = b + H[(f + 28) >> 2] = + H[(f + 28) >> 2] + 1 + break fa + } + m = 0 + if (!t) { + break fa + } + while (1) { + if (H[(i + 12) >> 2]) { + p = H[(i + 36) >> 2] + k = H[n >> 2] + w = H[(i + 92) >> 2] + g = H[(i + 104) >> 2] + j = 0 + while (1) { + o = (g + (j << 2)) | 0 + H[(w + (H[o >> 2] << 2)) >> 2] = 0 + e = H[i >> 2] + d = H[o >> 2] << 2 + b = H[(d + k) >> 2] + na: { + if ((e | 0) == (b | 0)) { + break na + } + q = (d + w) | 0 + u = (e - b) | 0 + r = H[(i + 48) >> 2] + e = (32 - r) | 0 + if ((u | 0) <= (e | 0)) { + d = H[(i + 44) >> 2] + if ((d | 0) == (p | 0)) { + break ea + } + H[q >> 2] = + (H[d >> 2] << r) >>> + (32 - u) + b = (u + H[(i + 48) >> 2]) | 0 + H[(i + 48) >> 2] = b + if ((b | 0) != 32) { + break na + } + H[(i + 48) >> 2] = 0 + H[(i + 44) >> 2] = d + 4 + break na + } + x = H[(i + 44) >> 2] + b = (x + 4) | 0 + if ((b | 0) == (p | 0)) { + break ea + } + d = H[x >> 2] + H[(i + 44) >> 2] = b + b = (u - e) | 0 + H[(i + 48) >> 2] = b + H[q >> 2] = + (H[(x + 4) >> 2] >>> + (32 - b)) | + ((d << r) >>> (32 - u)) + } + d = H[o >> 2] << 2 + b = (d + w) | 0 + H[b >> 2] = + H[b >> 2] | + H[(d + H[l >> 2]) >> 2] + j = (j + 1) | 0 + if (j >>> 0 < K[(i + 12) >> 2]) { + continue + } + break + } + } + jb(z, y) + H[(i + 8) >> 2] = H[(i + 8) >> 2] + 1 + m = (m + 1) | 0 + if ((t | 0) != (m | 0)) { + continue + } + break + } + } + j = H[(f + 28) >> 2] + if (j) { + continue + } + break + } + } + H[(f + 28) >> 2] = 0 + p = H[(f + 16) >> 2] + j = H[(f + 12) >> 2] + m = (p - j) | 0 + if (m >>> 0 >= 9) { + while (1) { + oa(H[j >> 2]) + j = (H[(f + 12) >> 2] + 4) | 0 + H[(f + 12) >> 2] = j + p = H[(f + 16) >> 2] + m = (p - j) | 0 + if (m >>> 0 > 8) { + continue + } + break + } + } + b = 170 + oa: { + switch ((((m >>> 2) | 0) - 1) | 0) { + case 1: + b = 341 + case 0: + H[(f + 24) >> 2] = b + break + default: + break oa + } + } + pa: { + if ((j | 0) == (p | 0)) { + break pa + } + while (1) { + oa(H[j >> 2]) + j = (j + 4) | 0 + if ((p | 0) != (j | 0)) { + continue + } + break + } + d = H[(f + 16) >> 2] + b = H[(f + 12) >> 2] + if ((d | 0) == (b | 0)) { + break pa + } + H[(f + 16) >> 2] = + d + ((((b - d) | 0) + 3) & -4) + } + b = H[(f + 8) >> 2] + if (b) { + oa(b) + } + ca = (f + 32) | 0 + break da + } + } + vb(i) + break d + case 4: + f = $a((B + 8) | 0, 3) + w = (B + 664) | 0 + k = H[(b + 8) >> 2] + n = H[(b + 12) >> 2] + d = H[(b + 20) >> 2] + e = H[(b + 16) >> 2] + g = (e + 4) | 0 + d = g >>> 0 < 4 ? (d + 1) | 0 : d + qa: { + if ( + ((g >>> 0 > k >>> 0) & ((d | 0) >= (n | 0))) | + ((d | 0) > (n | 0)) + ) { + break qa + } + d = (e + H[b >> 2]) | 0 + H[f >> 2] = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + d = H[(b + 20) >> 2] + k = d + g = H[(b + 16) >> 2] + e = (g + 4) | 0 + d = e >>> 0 < 4 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = d + if (K[f >> 2] > 32) { + break qa + } + n = H[(b + 8) >> 2] + s = H[(b + 12) >> 2] + d = k + g = (g + 8) | 0 + d = g >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((g >>> 0 > n >>> 0) & ((d | 0) >= (s | 0))) | + ((d | 0) > (s | 0)) + ) { + break qa + } + d = (e + H[b >> 2]) | 0 + e = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + H[(f + 4) >> 2] = e + g = H[(b + 20) >> 2] + d = (H[(b + 16) >> 2] + 4) | 0 + g = d >>> 0 < 4 ? (g + 1) | 0 : g + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = g + if (!e) { + break qa + } + H[(f + 8) >> 2] = 0 + if (!sb((f + 16) | 0, b)) { + break qa + } + if (!ua((f + 544) | 0, b)) { + break qa + } + if (!ua((f + 564) | 0, b)) { + break qa + } + if (!ua((f + 584) | 0, b)) { + break qa + } + z = H[(f + 4) >> 2] + l = 0 + b = 0 + h = (ca - 32) | 0 + ca = h + d = H[(f + 12) >> 2] + H[(h + 16) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[(h + 12) >> 2] = 0 + if (d) { + if (d >>> 0 >= 1073741824) { + break b + } + e = d << 2 + l = pa(e) + H[(h + 8) >> 2] = l + b = (e + l) | 0 + H[(h + 16) >> 2] = b + ra(l, 0, e) + H[(h + 12) >> 2] = b + } + g = H[(f + 628) >> 2] + e = H[g >> 2] + if (e) { + H[(g + 4) >> 2] = e + oa(e) + d = H[(f + 12) >> 2] + l = H[(h + 8) >> 2] + b = H[(h + 12) >> 2] + } + H[(g + 4) >> 2] = b + H[g >> 2] = l + H[(g + 8) >> 2] = H[(h + 16) >> 2] + l = 0 + H[(h + 16) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[(h + 12) >> 2] = 0 + ra: { + if (d) { + if (d >>> 0 >= 1073741824) { + break b + } + b = d << 2 + j = pa(b) + H[(h + 8) >> 2] = j + l = (b + j) | 0 + H[(h + 16) >> 2] = l + ra(j, 0, b) + H[(h + 12) >> 2] = l + } + d = H[(f + 640) >> 2] + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + j = H[(h + 8) >> 2] + l = H[(h + 12) >> 2] + } + H[(d + 4) >> 2] = l + H[d >> 2] = j + H[(d + 8) >> 2] = H[(h + 16) >> 2] + H[(h + 24) >> 2] = 0 + H[(h + 28) >> 2] = 0 + H[(h + 16) >> 2] = 0 + H[(h + 20) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[(h + 12) >> 2] = 0 + xa((h + 8) | 0) + d = (H[(h + 24) >> 2] + H[(h + 28) >> 2]) | 0 + b = ((d >>> 0) / 341) | 0 + b = + (H[(H[(h + 12) >> 2] + (b << 2)) >> 2] + + N((d - N(b, 341)) | 0, 12)) | + 0 + H[(b + 4) >> 2] = 0 + H[(b + 8) >> 2] = 0 + H[b >> 2] = z + d = (H[(h + 28) >> 2] + 1) | 0 + H[(h + 28) >> 2] = d + sa: { + if (!d) { + break sa + } + x = (f + 604) | 0 + y = (f + 16) | 0 + while (1) { + n = H[(h + 12) >> 2] + k = H[(h + 24) >> 2] + g = (d - 1) | 0 + e = (k + g) | 0 + b = ((e >>> 0) / 341) | 0 + b = + (H[(n + (b << 2)) >> 2] + + N((e - N(b, 341)) | 0, 12)) | + 0 + p = H[(b + 8) >> 2] + e = H[(b + 4) >> 2] + i = H[b >> 2] + H[(h + 28) >> 2] = g + b = H[(h + 16) >> 2] + if ( + (((((b | 0) != (n | 0) + ? (N((b - n) >> 2, 341) - 1) | 0 + : 0) - + ((d + k) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(b - 4) >> 2]) + H[(h + 16) >> 2] = H[(h + 16) >> 2] - 4 + } + if (i >>> 0 > z >>> 0) { + break sa + } + b = H[(f + 12) >> 2] + j = + (e | 0) != ((b - 1) | 0) + ? (e + 1) | 0 + : 0 + if (j >>> 0 >= b >>> 0) { + break sa + } + o = N(p, 12) + A = (o + H[(f + 640) >> 2]) | 0 + t = (o + H[(f + 628) >> 2]) | 0 + g = H[f >> 2] + q = j << 2 + e = H[(q + H[A >> 2]) >> 2] + ta: { + ua: { + if ((g | 0) == (e | 0)) { + o = 0 + if (!i) { + break ua + } + while (1) { + b = H[t >> 2] + r = H[(b + 8) >> 2] + s = H[(b + 4) >> 2] + n = H[b >> 2] + p = H[w >> 2] + d = H[(p + 4) >> 2] + b = H[(p + 8) >> 2] + va: { + if (d >>> 0 < b >>> 0) { + H[(d + 8) >> 2] = r + H[(d + 4) >> 2] = s + H[d >> 2] = n + H[(p + 4) >> 2] = d + 12 + break va + } + q = H[p >> 2] + g = (((d - q) | 0) / 12) | 0 + k = (g + 1) | 0 + if (k >>> 0 >= 357913942) { + break b + } + e = (((b - q) | 0) / 12) | 0 + b = e << 1 + k = + e >>> 0 >= 178956970 + ? 357913941 + : b >>> 0 > k >>> 0 + ? b + : k + if (k) { + if (k >>> 0 >= 357913942) { + break a + } + b = pa(N(k, 12)) + } else { + b = 0 + } + j = (b + N(g, 12)) | 0 + H[(j + 8) >> 2] = r + H[(j + 4) >> 2] = s + H[j >> 2] = n + e = (j + 12) | 0 + if ((d | 0) != (q | 0)) { + while (1) { + j = (j - 12) | 0 + d = (d - 12) | 0 + H[j >> 2] = H[d >> 2] + H[(j + 4) >> 2] = + H[(d + 4) >> 2] + H[(j + 8) >> 2] = + H[(d + 8) >> 2] + if ((d | 0) != (q | 0)) { + continue + } + break + } + } + H[(p + 8) >> 2] = b + N(k, 12) + H[(p + 4) >> 2] = e + H[p >> 2] = j + if (!q) { + break va + } + oa(q) + } + H[(f + 8) >> 2] = + H[(f + 8) >> 2] + 1 + o = (o + 1) | 0 + if ((i | 0) != (o | 0)) { + continue + } + break + } + break ua + } + wa: { + xa: { + ya: { + if (i >>> 0 <= 2) { + b = H[(f + 616) >> 2] + H[b >> 2] = j + d = 1 + l = H[(f + 12) >> 2] + if (l >>> 0 > 1) { + break ya + } + break wa + } + if ( + K[(f + 8) >> 2] > + K[(f + 4) >> 2] + ) { + break sa + } + b = H[(f + 628) >> 2] + s = (p + 1) | 0 + r = N(s, 12) + d = (b + r) | 0 + if ((d | 0) != (t | 0)) { + Aa( + d, + H[t >> 2], + H[(t + 4) >> 2], + ) + b = H[(f + 628) >> 2] + } + b = (q + H[(b + r) >> 2]) | 0 + H[b >> 2] = + H[b >> 2] + + (1 << (g + (e ^ -1))) + l = 0 + d = 0 + b = Q(i) ^ 31 + if (!b) { + d = (i >>> 1) | 0 + break xa + } + while (1) { + l = + Ba((y + (d << 4)) | 0) | + (l << 1) + d = (d + 1) | 0 + if ((b | 0) != (d | 0)) { + continue + } + break + } + d = (i >>> 1) | 0 + if (l >>> 0 <= d >>> 0) { + break xa + } + break sa + } + while (1) { + j = + ((l - 1) | 0) != (j | 0) + ? (j + 1) | 0 + : 0 + H[(b + (d << 2)) >> 2] = j + d = (d + 1) | 0 + l = H[(f + 12) >> 2] + if (d >>> 0 < l >>> 0) { + continue + } + break + } + break wa + } + za: { + Aa: { + e = (d - l) | 0 + d = (i - e) | 0 + Ba: { + if ((d | 0) == (e | 0)) { + b = e + break Ba + } + n = H[(f + 596) >> 2] + if ( + (n | 0) == + H[(f + 588) >> 2] + ) { + break Aa + } + k = H[n >> 2] + g = H[(f + 600) >> 2] + b = (g + 1) | 0 + H[(f + 600) >> 2] = b + g = k & (-2147483648 >>> g) + Ca: { + if ((b | 0) == 32) { + H[(f + 600) >> 2] = 0 + H[(f + 596) >> 2] = n + 4 + if (g) { + break Ca + } + break Aa + } + if (!g) { + break Aa + } + } + b = d + } + d = e + break za + } + b = e + } + n = H[(f + 640) >> 2] + k = (n + o) | 0 + g = H[k >> 2] + e = (g + q) | 0 + H[e >> 2] = H[e >> 2] + 1 + Aa((n + r) | 0, g, H[(k + 4) >> 2]) + if (d) { + g = + (H[(h + 28) >> 2] + + H[(h + 24) >> 2]) | + 0 + e = H[(h + 16) >> 2] + l = H[(h + 12) >> 2] + if ( + (g | 0) == + (((e | 0) != (l | 0) + ? (N((e - l) >> 2, 341) - 1) | + 0 + : 0) | + 0) + ) { + xa((h + 8) | 0) + l = H[(h + 12) >> 2] + g = + (H[(h + 24) >> 2] + + H[(h + 28) >> 2]) | + 0 + } + e = ((g >>> 0) / 341) | 0 + e = + (H[((e << 2) + l) >> 2] + + N((g - N(e, 341)) | 0, 12)) | + 0 + H[(e + 8) >> 2] = p + H[(e + 4) >> 2] = j + H[e >> 2] = d + H[(h + 28) >> 2] = + H[(h + 28) >> 2] + 1 + } + if (!b) { + break ua + } + l = + (H[(h + 28) >> 2] + + H[(h + 24) >> 2]) | + 0 + e = H[(h + 16) >> 2] + d = H[(h + 12) >> 2] + if ( + (l | 0) == + (((d | 0) != (e | 0) + ? (N((e - d) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((h + 8) | 0) + l = + (H[(h + 24) >> 2] + + H[(h + 28) >> 2]) | + 0 + e = H[(h + 12) >> 2] + } else { + e = d + } + d = ((l >>> 0) / 341) | 0 + d = + (H[(e + (d << 2)) >> 2] + + N((l - N(d, 341)) | 0, 12)) | + 0 + H[(d + 8) >> 2] = s + H[(d + 4) >> 2] = j + H[d >> 2] = b + d = (H[(h + 28) >> 2] + 1) | 0 + H[(h + 28) >> 2] = d + break ta + } + j = 0 + if (!i) { + break ua + } + while (1) { + if (H[(f + 12) >> 2]) { + p = H[(f + 548) >> 2] + n = H[A >> 2] + u = H[(f + 604) >> 2] + k = H[(f + 616) >> 2] + d = 0 + while (1) { + o = (k + (d << 2)) | 0 + H[(u + (H[o >> 2] << 2)) >> 2] = + 0 + g = H[f >> 2] + e = H[o >> 2] << 2 + b = H[(e + n) >> 2] + Da: { + if ((g | 0) == (b | 0)) { + break Da + } + q = (e + u) | 0 + l = (g - b) | 0 + r = H[(f + 560) >> 2] + g = (32 - r) | 0 + if ((l | 0) <= (g | 0)) { + e = H[(f + 556) >> 2] + if ((e | 0) == (p | 0)) { + break sa + } + H[q >> 2] = + (H[e >> 2] << r) >>> + (32 - l) + b = + (l + H[(f + 560) >> 2]) | + 0 + H[(f + 560) >> 2] = b + if ((b | 0) != 32) { + break Da + } + H[(f + 560) >> 2] = 0 + H[(f + 556) >> 2] = e + 4 + break Da + } + s = H[(f + 556) >> 2] + b = (s + 4) | 0 + if ((b | 0) == (p | 0)) { + break sa + } + e = H[s >> 2] + H[(f + 556) >> 2] = b + b = (l - g) | 0 + H[(f + 560) >> 2] = b + H[q >> 2] = + (H[(s + 4) >> 2] >>> + (32 - b)) | + ((e << r) >>> (32 - l)) + } + e = H[o >> 2] << 2 + b = (e + u) | 0 + H[b >> 2] = + H[b >> 2] | + H[(e + H[t >> 2]) >> 2] + d = (d + 1) | 0 + if ( + d >>> 0 < + K[(f + 12) >> 2] + ) { + continue + } + break + } + } + jb(w, x) + H[(f + 8) >> 2] = + H[(f + 8) >> 2] + 1 + j = (j + 1) | 0 + if ((i | 0) != (j | 0)) { + continue + } + break + } + } + d = H[(h + 28) >> 2] + } + if (d) { + continue + } + break + } + } + H[(h + 28) >> 2] = 0 + j = H[(h + 16) >> 2] + d = H[(h + 12) >> 2] + l = (j - d) | 0 + if (l >>> 0 >= 9) { + while (1) { + oa(H[d >> 2]) + d = (H[(h + 12) >> 2] + 4) | 0 + H[(h + 12) >> 2] = d + j = H[(h + 16) >> 2] + l = (j - d) | 0 + if (l >>> 0 > 8) { + continue + } + break + } + } + b = 170 + Ea: { + switch ((((l >>> 2) | 0) - 1) | 0) { + case 1: + b = 341 + case 0: + H[(h + 24) >> 2] = b + break + default: + break Ea + } + } + Fa: { + if ((d | 0) == (j | 0)) { + break Fa + } + while (1) { + oa(H[d >> 2]) + d = (d + 4) | 0 + if ((j | 0) != (d | 0)) { + continue + } + break + } + d = H[(h + 16) >> 2] + b = H[(h + 12) >> 2] + if ((d | 0) == (b | 0)) { + break Fa + } + H[(h + 16) >> 2] = + d + ((((b - d) | 0) + 3) & -4) + } + b = H[(h + 8) >> 2] + if (b) { + oa(b) + } + ca = (h + 32) | 0 + break ra + } + } + ab(f) + break d + case 5: + f = $a((B + 8) | 0, 3) + w = (B + 664) | 0 + k = H[(b + 8) >> 2] + n = H[(b + 12) >> 2] + d = H[(b + 20) >> 2] + e = H[(b + 16) >> 2] + g = (e + 4) | 0 + d = g >>> 0 < 4 ? (d + 1) | 0 : d + Ga: { + if ( + ((g >>> 0 > k >>> 0) & ((d | 0) >= (n | 0))) | + ((d | 0) > (n | 0)) + ) { + break Ga + } + d = (e + H[b >> 2]) | 0 + H[f >> 2] = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + d = H[(b + 20) >> 2] + k = d + g = H[(b + 16) >> 2] + e = (g + 4) | 0 + d = e >>> 0 < 4 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = d + if (K[f >> 2] > 32) { + break Ga + } + n = H[(b + 8) >> 2] + s = H[(b + 12) >> 2] + d = k + g = (g + 8) | 0 + d = g >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((g >>> 0 > n >>> 0) & ((d | 0) >= (s | 0))) | + ((d | 0) > (s | 0)) + ) { + break Ga + } + d = (e + H[b >> 2]) | 0 + e = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + H[(f + 4) >> 2] = e + g = H[(b + 20) >> 2] + d = (H[(b + 16) >> 2] + 4) | 0 + g = d >>> 0 < 4 ? (g + 1) | 0 : g + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = g + if (!e) { + break Ga + } + H[(f + 8) >> 2] = 0 + if (!sb((f + 16) | 0, b)) { + break Ga + } + if (!ua((f + 544) | 0, b)) { + break Ga + } + if (!ua((f + 564) | 0, b)) { + break Ga + } + if (!ua((f + 584) | 0, b)) { + break Ga + } + z = H[(f + 4) >> 2] + l = 0 + b = 0 + h = (ca - 32) | 0 + ca = h + d = H[(f + 12) >> 2] + H[(h + 16) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[(h + 12) >> 2] = 0 + if (d) { + if (d >>> 0 >= 1073741824) { + break b + } + e = d << 2 + l = pa(e) + H[(h + 8) >> 2] = l + b = (e + l) | 0 + H[(h + 16) >> 2] = b + ra(l, 0, e) + H[(h + 12) >> 2] = b + } + g = H[(f + 628) >> 2] + e = H[g >> 2] + if (e) { + H[(g + 4) >> 2] = e + oa(e) + d = H[(f + 12) >> 2] + l = H[(h + 8) >> 2] + b = H[(h + 12) >> 2] + } + H[(g + 4) >> 2] = b + H[g >> 2] = l + H[(g + 8) >> 2] = H[(h + 16) >> 2] + l = 0 + H[(h + 16) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[(h + 12) >> 2] = 0 + Ha: { + if (d) { + if (d >>> 0 >= 1073741824) { + break b + } + b = d << 2 + p = pa(b) + H[(h + 8) >> 2] = p + l = (b + p) | 0 + H[(h + 16) >> 2] = l + ra(p, 0, b) + H[(h + 12) >> 2] = l + } + d = H[(f + 640) >> 2] + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + l = H[(h + 12) >> 2] + p = H[(h + 8) >> 2] + } + H[(d + 4) >> 2] = l + H[d >> 2] = p + H[(d + 8) >> 2] = H[(h + 16) >> 2] + H[(h + 24) >> 2] = 0 + H[(h + 28) >> 2] = 0 + H[(h + 16) >> 2] = 0 + H[(h + 20) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[(h + 12) >> 2] = 0 + xa((h + 8) | 0) + d = (H[(h + 24) >> 2] + H[(h + 28) >> 2]) | 0 + b = ((d >>> 0) / 341) | 0 + b = + (H[(H[(h + 12) >> 2] + (b << 2)) >> 2] + + N((d - N(b, 341)) | 0, 12)) | + 0 + H[(b + 4) >> 2] = 0 + H[(b + 8) >> 2] = 0 + H[b >> 2] = z + d = (H[(h + 28) >> 2] + 1) | 0 + H[(h + 28) >> 2] = d + Ia: { + if (!d) { + break Ia + } + x = (f + 604) | 0 + y = (f + 16) | 0 + while (1) { + n = H[(h + 12) >> 2] + k = H[(h + 24) >> 2] + g = (d - 1) | 0 + e = (k + g) | 0 + b = ((e >>> 0) / 341) | 0 + b = + (H[(n + (b << 2)) >> 2] + + N((e - N(b, 341)) | 0, 12)) | + 0 + o = H[(b + 8) >> 2] + e = H[(b + 4) >> 2] + i = H[b >> 2] + H[(h + 28) >> 2] = g + b = H[(h + 16) >> 2] + if ( + (((((b | 0) != (n | 0) + ? (N((b - n) >> 2, 341) - 1) | 0 + : 0) - + ((d + k) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(b - 4) >> 2]) + H[(h + 16) >> 2] = H[(h + 16) >> 2] - 4 + } + if (i >>> 0 > z >>> 0) { + break Ia + } + m = 0 + b = H[(f + 12) >> 2] + p = + (e | 0) != ((b - 1) | 0) + ? (e + 1) | 0 + : 0 + if (p >>> 0 >= b >>> 0) { + break Ia + } + b = H[(f + 628) >> 2] + q = N(o, 12) + t = (b + q) | 0 + e = H[f >> 2] + r = p << 2 + s = (q + H[(f + 640) >> 2]) | 0 + d = H[(r + H[s >> 2]) >> 2] + Ja: { + Ka: { + if ((e | 0) == (d | 0)) { + if (!i) { + break Ka + } + while (1) { + b = H[t >> 2] + r = H[(b + 8) >> 2] + s = H[(b + 4) >> 2] + n = H[b >> 2] + o = H[w >> 2] + d = H[(o + 4) >> 2] + b = H[(o + 8) >> 2] + La: { + if (d >>> 0 < b >>> 0) { + H[(d + 8) >> 2] = r + H[(d + 4) >> 2] = s + H[d >> 2] = n + H[(o + 4) >> 2] = d + 12 + break La + } + q = H[o >> 2] + g = (((d - q) | 0) / 12) | 0 + k = (g + 1) | 0 + if (k >>> 0 >= 357913942) { + break b + } + e = (((b - q) | 0) / 12) | 0 + b = e << 1 + k = + e >>> 0 >= 178956970 + ? 357913941 + : b >>> 0 > k >>> 0 + ? b + : k + if (k) { + if (k >>> 0 >= 357913942) { + break a + } + b = pa(N(k, 12)) + } else { + b = 0 + } + p = (b + N(g, 12)) | 0 + H[(p + 8) >> 2] = r + H[(p + 4) >> 2] = s + H[p >> 2] = n + e = (p + 12) | 0 + if ((d | 0) != (q | 0)) { + while (1) { + p = (p - 12) | 0 + d = (d - 12) | 0 + H[p >> 2] = H[d >> 2] + H[(p + 4) >> 2] = + H[(d + 4) >> 2] + H[(p + 8) >> 2] = + H[(d + 8) >> 2] + if ((d | 0) != (q | 0)) { + continue + } + break + } + } + H[(o + 8) >> 2] = b + N(k, 12) + H[(o + 4) >> 2] = e + H[o >> 2] = p + if (!q) { + break La + } + oa(q) + } + H[(f + 8) >> 2] = + H[(f + 8) >> 2] + 1 + m = (m + 1) | 0 + if ((i | 0) != (m | 0)) { + continue + } + break + } + break Ka + } + Ma: { + Na: { + Oa: { + if (i >>> 0 <= 2) { + b = H[(f + 616) >> 2] + H[b >> 2] = p + d = 1 + l = H[(f + 12) >> 2] + if (l >>> 0 > 1) { + break Oa + } + break Ma + } + if ( + K[(f + 8) >> 2] > + K[(f + 4) >> 2] + ) { + break Ia + } + k = b + b = (q + 12) | 0 + Aa( + (k + b) | 0, + H[t >> 2], + H[(t + 4) >> 2], + ) + b = + (r + + H[ + (b + H[(f + 628) >> 2]) >> + 2 + ]) | + 0 + H[b >> 2] = + H[b >> 2] + + (1 << (e + (d ^ -1))) + l = 0 + d = 0 + b = Q(i) ^ 31 + if (!b) { + d = (i >>> 1) | 0 + break Na + } + while (1) { + l = + Ba((y + (d << 4)) | 0) | + (l << 1) + d = (d + 1) | 0 + if ((b | 0) != (d | 0)) { + continue + } + break + } + d = (i >>> 1) | 0 + if (l >>> 0 <= d >>> 0) { + break Na + } + break Ia + } + while (1) { + p = + ((l - 1) | 0) != (p | 0) + ? (p + 1) | 0 + : 0 + H[(b + (d << 2)) >> 2] = p + d = (d + 1) | 0 + l = H[(f + 12) >> 2] + if (d >>> 0 < l >>> 0) { + continue + } + break + } + break Ma + } + s = (o + 1) | 0 + Pa: { + Qa: { + e = (d - l) | 0 + d = (i - e) | 0 + Ra: { + if ((d | 0) == (e | 0)) { + b = e + break Ra + } + n = H[(f + 596) >> 2] + if ( + (n | 0) == + H[(f + 588) >> 2] + ) { + break Qa + } + k = H[n >> 2] + g = H[(f + 600) >> 2] + b = (g + 1) | 0 + H[(f + 600) >> 2] = b + g = k & (-2147483648 >>> g) + Sa: { + if ((b | 0) == 32) { + H[(f + 600) >> 2] = 0 + H[(f + 596) >> 2] = n + 4 + if (g) { + break Sa + } + break Qa + } + if (!g) { + break Qa + } + } + b = d + } + d = e + break Pa + } + b = e + } + n = H[(f + 640) >> 2] + k = (n + q) | 0 + g = H[k >> 2] + e = (g + r) | 0 + H[e >> 2] = H[e >> 2] + 1 + Aa( + (n + N(s, 12)) | 0, + g, + H[(k + 4) >> 2], + ) + if (d) { + m = + (H[(h + 28) >> 2] + + H[(h + 24) >> 2]) | + 0 + e = H[(h + 16) >> 2] + l = H[(h + 12) >> 2] + if ( + (m | 0) == + (((e | 0) != (l | 0) + ? (N((e - l) >> 2, 341) - 1) | + 0 + : 0) | + 0) + ) { + xa((h + 8) | 0) + m = + (H[(h + 24) >> 2] + + H[(h + 28) >> 2]) | + 0 + l = H[(h + 12) >> 2] + } + e = ((m >>> 0) / 341) | 0 + e = + (H[(l + (e << 2)) >> 2] + + N((m - N(e, 341)) | 0, 12)) | + 0 + H[(e + 8) >> 2] = o + H[(e + 4) >> 2] = p + H[e >> 2] = d + H[(h + 28) >> 2] = + H[(h + 28) >> 2] + 1 + } + if (!b) { + break Ka + } + l = + (H[(h + 28) >> 2] + + H[(h + 24) >> 2]) | + 0 + e = H[(h + 16) >> 2] + d = H[(h + 12) >> 2] + if ( + (l | 0) == + (((d | 0) != (e | 0) + ? (N((e - d) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((h + 8) | 0) + l = + (H[(h + 24) >> 2] + + H[(h + 28) >> 2]) | + 0 + e = H[(h + 12) >> 2] + } else { + e = d + } + d = ((l >>> 0) / 341) | 0 + d = + (H[(e + (d << 2)) >> 2] + + N((l - N(d, 341)) | 0, 12)) | + 0 + H[(d + 8) >> 2] = s + H[(d + 4) >> 2] = p + H[d >> 2] = b + d = (H[(h + 28) >> 2] + 1) | 0 + H[(h + 28) >> 2] = d + break Ja + } + if (!i) { + break Ka + } + while (1) { + if (H[(f + 12) >> 2]) { + A = H[(f + 548) >> 2] + n = H[s >> 2] + u = H[(f + 604) >> 2] + k = H[(f + 616) >> 2] + d = 0 + while (1) { + p = (k + (d << 2)) | 0 + H[(u + (H[p >> 2] << 2)) >> 2] = + 0 + g = H[f >> 2] + e = H[p >> 2] << 2 + b = H[(e + n) >> 2] + Ta: { + if ((g | 0) == (b | 0)) { + break Ta + } + o = (e + u) | 0 + l = (g - b) | 0 + q = H[(f + 560) >> 2] + g = (32 - q) | 0 + if ((l | 0) <= (g | 0)) { + e = H[(f + 556) >> 2] + if ((e | 0) == (A | 0)) { + break Ia + } + H[o >> 2] = + (H[e >> 2] << q) >>> + (32 - l) + b = + (l + H[(f + 560) >> 2]) | + 0 + H[(f + 560) >> 2] = b + if ((b | 0) != 32) { + break Ta + } + H[(f + 560) >> 2] = 0 + H[(f + 556) >> 2] = e + 4 + break Ta + } + r = H[(f + 556) >> 2] + b = (r + 4) | 0 + if ((b | 0) == (A | 0)) { + break Ia + } + e = H[r >> 2] + H[(f + 556) >> 2] = b + b = (l - g) | 0 + H[(f + 560) >> 2] = b + H[o >> 2] = + (H[(r + 4) >> 2] >>> + (32 - b)) | + ((e << q) >>> (32 - l)) + } + e = H[p >> 2] << 2 + b = (e + u) | 0 + H[b >> 2] = + H[b >> 2] | + H[(e + H[t >> 2]) >> 2] + d = (d + 1) | 0 + if ( + d >>> 0 < + K[(f + 12) >> 2] + ) { + continue + } + break + } + } + jb(w, x) + H[(f + 8) >> 2] = + H[(f + 8) >> 2] + 1 + m = (m + 1) | 0 + if ((i | 0) != (m | 0)) { + continue + } + break + } + } + d = H[(h + 28) >> 2] + } + if (d) { + continue + } + break + } + } + H[(h + 28) >> 2] = 0 + p = H[(h + 16) >> 2] + d = H[(h + 12) >> 2] + l = (p - d) | 0 + if (l >>> 0 >= 9) { + while (1) { + oa(H[d >> 2]) + d = (H[(h + 12) >> 2] + 4) | 0 + H[(h + 12) >> 2] = d + p = H[(h + 16) >> 2] + l = (p - d) | 0 + if (l >>> 0 > 8) { + continue + } + break + } + } + b = 170 + Ua: { + switch ((((l >>> 2) | 0) - 1) | 0) { + case 1: + b = 341 + case 0: + H[(h + 24) >> 2] = b + break + default: + break Ua + } + } + Va: { + if ((d | 0) == (p | 0)) { + break Va + } + while (1) { + oa(H[d >> 2]) + d = (d + 4) | 0 + if ((p | 0) != (d | 0)) { + continue + } + break + } + d = H[(h + 16) >> 2] + b = H[(h + 12) >> 2] + if ((d | 0) == (b | 0)) { + break Va + } + H[(h + 16) >> 2] = + d + ((((b - d) | 0) + 3) & -4) + } + b = H[(h + 8) >> 2] + if (b) { + oa(b) + } + ca = (h + 32) | 0 + break Ha + } + } + ab(f) + break d + case 6: + break f + default: + break c + } + } + f = $a((B + 8) | 0, 3) + w = (B + 664) | 0 + k = H[(b + 8) >> 2] + n = H[(b + 12) >> 2] + d = H[(b + 20) >> 2] + e = H[(b + 16) >> 2] + g = (e + 4) | 0 + d = g >>> 0 < 4 ? (d + 1) | 0 : d + Wa: { + if ( + ((g >>> 0 > k >>> 0) & ((d | 0) >= (n | 0))) | + ((d | 0) > (n | 0)) + ) { + break Wa + } + d = (e + H[b >> 2]) | 0 + H[f >> 2] = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + d = H[(b + 20) >> 2] + k = d + g = H[(b + 16) >> 2] + e = (g + 4) | 0 + d = e >>> 0 < 4 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = d + if (K[f >> 2] > 32) { + break Wa + } + n = H[(b + 8) >> 2] + s = H[(b + 12) >> 2] + d = k + g = (g + 8) | 0 + d = g >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((g >>> 0 > n >>> 0) & ((d | 0) >= (s | 0))) | + ((d | 0) > (s | 0)) + ) { + break Wa + } + d = (e + H[b >> 2]) | 0 + e = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(f + 4) >> 2] = e + g = H[(b + 20) >> 2] + d = (H[(b + 16) >> 2] + 4) | 0 + g = d >>> 0 < 4 ? (g + 1) | 0 : g + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = g + if (!e) { + break Wa + } + H[(f + 8) >> 2] = 0 + if (!sb((f + 16) | 0, b)) { + break Wa + } + if (!ua((f + 544) | 0, b)) { + break Wa + } + if (!ua((f + 564) | 0, b)) { + break Wa + } + if (!ua((f + 584) | 0, b)) { + break Wa + } + z = H[(f + 4) >> 2] + l = 0 + b = 0 + h = (ca - 32) | 0 + ca = h + d = H[(f + 12) >> 2] + H[(h + 16) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[(h + 12) >> 2] = 0 + if (d) { + if (d >>> 0 >= 1073741824) { + break b + } + e = d << 2 + l = pa(e) + H[(h + 8) >> 2] = l + b = (e + l) | 0 + H[(h + 16) >> 2] = b + ra(l, 0, e) + H[(h + 12) >> 2] = b + } + g = H[(f + 628) >> 2] + e = H[g >> 2] + if (e) { + H[(g + 4) >> 2] = e + oa(e) + d = H[(f + 12) >> 2] + l = H[(h + 8) >> 2] + b = H[(h + 12) >> 2] + } + H[(g + 4) >> 2] = b + H[g >> 2] = l + H[(g + 8) >> 2] = H[(h + 16) >> 2] + l = 0 + H[(h + 16) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[(h + 12) >> 2] = 0 + Xa: { + if (d) { + if (d >>> 0 >= 1073741824) { + break b + } + b = d << 2 + j = pa(b) + H[(h + 8) >> 2] = j + l = (b + j) | 0 + H[(h + 16) >> 2] = l + ra(j, 0, b) + H[(h + 12) >> 2] = l + } + d = H[(f + 640) >> 2] + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + j = H[(h + 8) >> 2] + l = H[(h + 12) >> 2] + } + H[(d + 4) >> 2] = l + H[d >> 2] = j + H[(d + 8) >> 2] = H[(h + 16) >> 2] + H[(h + 24) >> 2] = 0 + H[(h + 28) >> 2] = 0 + H[(h + 16) >> 2] = 0 + H[(h + 20) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[(h + 12) >> 2] = 0 + xa((h + 8) | 0) + d = (H[(h + 24) >> 2] + H[(h + 28) >> 2]) | 0 + b = ((d >>> 0) / 341) | 0 + b = + (H[(H[(h + 12) >> 2] + (b << 2)) >> 2] + + N((d - N(b, 341)) | 0, 12)) | + 0 + H[(b + 4) >> 2] = 0 + H[(b + 8) >> 2] = 0 + H[b >> 2] = z + d = (H[(h + 28) >> 2] + 1) | 0 + H[(h + 28) >> 2] = d + Ya: { + if (!d) { + break Ya + } + x = (f + 604) | 0 + y = (f + 16) | 0 + while (1) { + n = H[(h + 12) >> 2] + k = H[(h + 24) >> 2] + g = (d - 1) | 0 + e = (k + g) | 0 + b = ((e >>> 0) / 341) | 0 + b = + (H[(n + (b << 2)) >> 2] + + N((e - N(b, 341)) | 0, 12)) | + 0 + p = H[(b + 8) >> 2] + i = H[b >> 2] + H[(h + 28) >> 2] = g + b = H[(h + 16) >> 2] + if ( + (((((b | 0) != (n | 0) + ? (N((b - n) >> 2, 341) - 1) | 0 + : 0) - + ((d + k) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(b - 4) >> 2]) + H[(h + 16) >> 2] = H[(h + 16) >> 2] - 4 + } + if (i >>> 0 > z >>> 0) { + break Ya + } + b = H[(f + 628) >> 2] + o = N(p, 12) + A = (o + H[(f + 640) >> 2]) | 0 + j = Vd(f, i, A) + if (j >>> 0 >= K[(f + 12) >> 2]) { + break Ya + } + t = (b + o) | 0 + g = H[f >> 2] + q = j << 2 + e = H[(q + H[A >> 2]) >> 2] + Za: { + _a: { + if ((g | 0) == (e | 0)) { + o = 0 + if (!i) { + break _a + } + while (1) { + b = H[t >> 2] + r = H[(b + 8) >> 2] + s = H[(b + 4) >> 2] + n = H[b >> 2] + p = H[w >> 2] + d = H[(p + 4) >> 2] + b = H[(p + 8) >> 2] + $a: { + if (d >>> 0 < b >>> 0) { + H[(d + 8) >> 2] = r + H[(d + 4) >> 2] = s + H[d >> 2] = n + H[(p + 4) >> 2] = d + 12 + break $a + } + q = H[p >> 2] + g = (((d - q) | 0) / 12) | 0 + k = (g + 1) | 0 + if (k >>> 0 >= 357913942) { + break b + } + e = (((b - q) | 0) / 12) | 0 + b = e << 1 + k = + e >>> 0 >= 178956970 + ? 357913941 + : b >>> 0 > k >>> 0 + ? b + : k + if (k) { + if (k >>> 0 >= 357913942) { + break a + } + b = pa(N(k, 12)) + } else { + b = 0 + } + j = (b + N(g, 12)) | 0 + H[(j + 8) >> 2] = r + H[(j + 4) >> 2] = s + H[j >> 2] = n + e = (j + 12) | 0 + if ((d | 0) != (q | 0)) { + while (1) { + j = (j - 12) | 0 + d = (d - 12) | 0 + H[j >> 2] = H[d >> 2] + H[(j + 4) >> 2] = H[(d + 4) >> 2] + H[(j + 8) >> 2] = H[(d + 8) >> 2] + if ((d | 0) != (q | 0)) { + continue + } + break + } + } + H[(p + 8) >> 2] = b + N(k, 12) + H[(p + 4) >> 2] = e + H[p >> 2] = j + if (!q) { + break $a + } + oa(q) + } + H[(f + 8) >> 2] = H[(f + 8) >> 2] + 1 + o = (o + 1) | 0 + if ((i | 0) != (o | 0)) { + continue + } + break + } + break _a + } + ab: { + bb: { + cb: { + if (i >>> 0 <= 2) { + b = H[(f + 616) >> 2] + H[b >> 2] = j + d = 1 + l = H[(f + 12) >> 2] + if (l >>> 0 > 1) { + break cb + } + break ab + } + if ( + K[(f + 8) >> 2] > K[(f + 4) >> 2] + ) { + break Ya + } + b = H[(f + 628) >> 2] + s = (p + 1) | 0 + r = N(s, 12) + d = (b + r) | 0 + if ((d | 0) != (t | 0)) { + Aa(d, H[t >> 2], H[(t + 4) >> 2]) + b = H[(f + 628) >> 2] + } + b = (q + H[(b + r) >> 2]) | 0 + H[b >> 2] = + H[b >> 2] + (1 << (g + (e ^ -1))) + l = 0 + d = 0 + b = Q(i) ^ 31 + if (!b) { + d = (i >>> 1) | 0 + break bb + } + while (1) { + l = + Ba((y + (d << 4)) | 0) | (l << 1) + d = (d + 1) | 0 + if ((b | 0) != (d | 0)) { + continue + } + break + } + d = (i >>> 1) | 0 + if (l >>> 0 <= d >>> 0) { + break bb + } + break Ya + } + while (1) { + j = + ((l - 1) | 0) != (j | 0) + ? (j + 1) | 0 + : 0 + H[(b + (d << 2)) >> 2] = j + d = (d + 1) | 0 + l = H[(f + 12) >> 2] + if (d >>> 0 < l >>> 0) { + continue + } + break + } + break ab + } + db: { + eb: { + e = (d - l) | 0 + d = (i - e) | 0 + fb: { + if ((d | 0) == (e | 0)) { + b = e + break fb + } + n = H[(f + 596) >> 2] + if ((n | 0) == H[(f + 588) >> 2]) { + break eb + } + k = H[n >> 2] + g = H[(f + 600) >> 2] + b = (g + 1) | 0 + H[(f + 600) >> 2] = b + g = k & (-2147483648 >>> g) + gb: { + if ((b | 0) == 32) { + H[(f + 600) >> 2] = 0 + H[(f + 596) >> 2] = n + 4 + if (g) { + break gb + } + break eb + } + if (!g) { + break eb + } + } + b = d + } + d = e + break db + } + b = e + } + n = H[(f + 640) >> 2] + k = (n + o) | 0 + g = H[k >> 2] + e = (g + q) | 0 + H[e >> 2] = H[e >> 2] + 1 + Aa((n + r) | 0, g, H[(k + 4) >> 2]) + if (d) { + g = + (H[(h + 28) >> 2] + + H[(h + 24) >> 2]) | + 0 + e = H[(h + 16) >> 2] + l = H[(h + 12) >> 2] + if ( + (g | 0) == + (((e | 0) != (l | 0) + ? (N((e - l) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((h + 8) | 0) + l = H[(h + 12) >> 2] + g = + (H[(h + 24) >> 2] + + H[(h + 28) >> 2]) | + 0 + } + e = ((g >>> 0) / 341) | 0 + e = + (H[((e << 2) + l) >> 2] + + N((g - N(e, 341)) | 0, 12)) | + 0 + H[(e + 8) >> 2] = p + H[(e + 4) >> 2] = j + H[e >> 2] = d + H[(h + 28) >> 2] = H[(h + 28) >> 2] + 1 + } + if (!b) { + break _a + } + l = + (H[(h + 28) >> 2] + H[(h + 24) >> 2]) | + 0 + e = H[(h + 16) >> 2] + d = H[(h + 12) >> 2] + if ( + (l | 0) == + (((d | 0) != (e | 0) + ? (N((e - d) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((h + 8) | 0) + l = + (H[(h + 24) >> 2] + + H[(h + 28) >> 2]) | + 0 + e = H[(h + 12) >> 2] + } else { + e = d + } + d = ((l >>> 0) / 341) | 0 + d = + (H[(e + (d << 2)) >> 2] + + N((l - N(d, 341)) | 0, 12)) | + 0 + H[(d + 8) >> 2] = s + H[(d + 4) >> 2] = j + H[d >> 2] = b + d = (H[(h + 28) >> 2] + 1) | 0 + H[(h + 28) >> 2] = d + break Za + } + j = 0 + if (!i) { + break _a + } + while (1) { + if (H[(f + 12) >> 2]) { + p = H[(f + 548) >> 2] + n = H[A >> 2] + u = H[(f + 604) >> 2] + k = H[(f + 616) >> 2] + d = 0 + while (1) { + o = (k + (d << 2)) | 0 + H[(u + (H[o >> 2] << 2)) >> 2] = 0 + g = H[f >> 2] + e = H[o >> 2] << 2 + b = H[(e + n) >> 2] + hb: { + if ((g | 0) == (b | 0)) { + break hb + } + q = (e + u) | 0 + l = (g - b) | 0 + r = H[(f + 560) >> 2] + g = (32 - r) | 0 + if ((l | 0) <= (g | 0)) { + e = H[(f + 556) >> 2] + if ((e | 0) == (p | 0)) { + break Ya + } + H[q >> 2] = + (H[e >> 2] << r) >>> (32 - l) + b = (l + H[(f + 560) >> 2]) | 0 + H[(f + 560) >> 2] = b + if ((b | 0) != 32) { + break hb + } + H[(f + 560) >> 2] = 0 + H[(f + 556) >> 2] = e + 4 + break hb + } + s = H[(f + 556) >> 2] + b = (s + 4) | 0 + if ((b | 0) == (p | 0)) { + break Ya + } + e = H[s >> 2] + H[(f + 556) >> 2] = b + b = (l - g) | 0 + H[(f + 560) >> 2] = b + H[q >> 2] = + (H[(s + 4) >> 2] >>> (32 - b)) | + ((e << r) >>> (32 - l)) + } + e = H[o >> 2] << 2 + b = (e + u) | 0 + H[b >> 2] = + H[b >> 2] | H[(e + H[t >> 2]) >> 2] + d = (d + 1) | 0 + if (d >>> 0 < K[(f + 12) >> 2]) { + continue + } + break + } + } + jb(w, x) + H[(f + 8) >> 2] = H[(f + 8) >> 2] + 1 + j = (j + 1) | 0 + if ((i | 0) != (j | 0)) { + continue + } + break + } + } + d = H[(h + 28) >> 2] + } + if (d) { + continue + } + break + } + } + H[(h + 28) >> 2] = 0 + j = H[(h + 16) >> 2] + d = H[(h + 12) >> 2] + l = (j - d) | 0 + if (l >>> 0 >= 9) { + while (1) { + oa(H[d >> 2]) + d = (H[(h + 12) >> 2] + 4) | 0 + H[(h + 12) >> 2] = d + j = H[(h + 16) >> 2] + l = (j - d) | 0 + if (l >>> 0 > 8) { + continue + } + break + } + } + b = 170 + ib: { + switch ((((l >>> 2) | 0) - 1) | 0) { + case 1: + b = 341 + case 0: + H[(h + 24) >> 2] = b + break + default: + break ib + } + } + jb: { + if ((d | 0) == (j | 0)) { + break jb + } + while (1) { + oa(H[d >> 2]) + d = (d + 4) | 0 + if ((j | 0) != (d | 0)) { + continue + } + break + } + d = H[(h + 16) >> 2] + b = H[(h + 12) >> 2] + if ((d | 0) == (b | 0)) { + break jb + } + H[(h + 16) >> 2] = d + ((((b - d) | 0) + 3) & -4) + } + b = H[(h + 8) >> 2] + if (b) { + oa(b) + } + ca = (h + 32) | 0 + break Xa + } + } + ab(f) + } + n = + H[(a + 12) >> 2] == + ((((H[(c + 4) >> 2] - H[c >> 2]) | 0) / 12) | 0) + } + ca = (B + 672) | 0 + return n + } + sa() + v() + } + wa() + v() + } + function kd(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + if (!a) { + return 1 + } + e = H[(c + 20) >> 2] + g = H[(c + 12) >> 2] + i = H[(c + 16) >> 2] + a: { + if ( + (((e | 0) >= (g | 0)) & (i >>> 0 >= K[(c + 8) >> 2])) | + ((e | 0) > (g | 0)) + ) { + break a + } + g = I[(i + H[c >> 2]) | 0] + i = (i + 1) | 0 + e = i ? e : (e + 1) | 0 + H[(c + 16) >> 2] = i + H[(c + 20) >> 2] = e + b: { + switch (g | 0) { + case 0: + e = a + f = b + i = d + a = 0 + d = 0 + m = (ca + -64) | 0 + ca = m + H[(m + 56) >> 2] = 0 + H[(m + 48) >> 2] = 0 + H[(m + 52) >> 2] = 0 + H[(m + 40) >> 2] = 0 + H[(m + 44) >> 2] = 0 + H[(m + 32) >> 2] = 0 + H[(m + 36) >> 2] = 0 + H[(m + 24) >> 2] = 0 + H[(m + 28) >> 2] = 0 + H[(m + 16) >> 2] = 0 + H[(m + 20) >> 2] = 0 + H[(m + 8) >> 2] = 0 + H[(m + 12) >> 2] = 0 + c: { + if (!Ne((m + 8) | 0, c)) { + break c + } + if ( + !Me((m + 8) | 0, c) | (H[(m + 20) >> 2] ? 0 : e) + ) { + break c + } + Db(c, 0, 0) + if (e) { + s = f << 2 + t = H[(m + 36) >> 2] + w = H[(m + 48) >> 2] + x = H[(m + 24) >> 2] + l = H[(m + 56) >> 2] + j = H[(m + 52) >> 2] + while (1) { + d: { + if (l >>> 0 > 16383) { + break d + } + while (1) { + if ((j | 0) <= 0) { + break d + } + j = (j - 1) | 0 + H[(m + 52) >> 2] = j + l = I[(j + w) | 0] | (l << 8) + H[(m + 56) >> 2] = l + if (l >>> 0 < 16384) { + continue + } + break + } + } + a = l & 4095 + r = H[((a << 2) + x) >> 2] + b = ((r << 3) + t) | 0 + l = + (((N(H[b >> 2], (l >>> 12) | 0) + a) | 0) - + H[(b + 4) >> 2]) | + 0 + H[(m + 56) >> 2] = l + if ((f | 0) > 0) { + a = 0 + if (!I[(c + 36) | 0] | (r >>> 0 > 32)) { + break c + } + g = (d + f) | 0 + e: { + if (!r) { + ra((i + (d << 2)) | 0, 0, s) + break e + } + y = r & -2 + z = r & 1 + b = H[(c + 32) >> 2] + h = H[(c + 28) >> 2] + n = H[(c + 24) >> 2] + while (1) { + k = 0 + a = b + o = 0 + q = 0 + if ((r | 0) != 1) { + while (1) { + p = (n + ((a >>> 3) | 0)) | 0 + f: { + if (p >>> 0 >= h >>> 0) { + p = 0 + break f + } + p = I[p | 0] + b = (a + 1) | 0 + H[(c + 32) >> 2] = b + p = (p >>> (a & 7)) & 1 + a = b + } + p = (p << k) | o + o = 0 + u = (n + ((a >>> 3) | 0)) | 0 + if (u >>> 0 < h >>> 0) { + o = I[u | 0] + b = (a + 1) | 0 + H[(c + 32) >> 2] = b + o = (o >>> (a & 7)) & 1 + a = b + } + u = k | 1 + k = (k + 2) | 0 + o = p | (o << u) + q = (q + 2) | 0 + if ((y | 0) != (q | 0)) { + continue + } + break + } + } + q = (i + (d << 2)) | 0 + if (z) { + p = (n + ((a >>> 3) | 0)) | 0 + if (p >>> 0 < h >>> 0) { + p = I[p | 0] + b = (a + 1) | 0 + H[(c + 32) >> 2] = b + a = (p >>> (a & 7)) & 1 + } else { + a = 0 + } + o = (a << k) | o + } + H[q >> 2] = o + d = (d + 1) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + d = g + } + v = (f + v) | 0 + if (e >>> 0 > v >>> 0) { + continue + } + break + } + } + F[(c + 36) | 0] = 0 + b = H[(c + 20) >> 2] + e = 0 + d = (H[(c + 32) >> 2] + 7) | 0 + e = d >>> 0 < 7 ? 1 : e + d = ((e & 7) << 29) | (d >>> 3) + a = (d + H[(c + 16) >> 2]) | 0 + e = (((e >>> 3) | 0) + b) | 0 + H[(c + 16) >> 2] = a + H[(c + 20) >> 2] = a >>> 0 < d >>> 0 ? (e + 1) | 0 : e + a = 1 + } + b = H[(m + 36) >> 2] + if (b) { + H[(m + 40) >> 2] = b + oa(b) + } + b = H[(m + 24) >> 2] + if (b) { + H[(m + 28) >> 2] = b + oa(b) + } + b = H[(m + 8) >> 2] + if (b) { + H[(m + 12) >> 2] = b + oa(b) + } + ca = (m - -64) | 0 + return a + case 1: + break b + default: + break a + } + } + b = 0 + e = H[(c + 20) >> 2] + g = H[(c + 12) >> 2] + i = H[(c + 16) >> 2] + g: { + if ( + (((e | 0) >= (g | 0)) & (i >>> 0 >= K[(c + 8) >> 2])) | + ((e | 0) > (g | 0)) + ) { + break g + } + g = I[(i + H[c >> 2]) | 0] + i = (i + 1) | 0 + e = i ? e : (e + 1) | 0 + H[(c + 16) >> 2] = i + H[(c + 20) >> 2] = e + h: { + switch ((g - 1) | 0) { + case 8: + g = a + r = d + i = (ca + -64) | 0 + ca = i + H[(i + 56) >> 2] = 0 + H[(i + 48) >> 2] = 0 + H[(i + 52) >> 2] = 0 + H[(i + 40) >> 2] = 0 + H[(i + 44) >> 2] = 0 + H[(i + 32) >> 2] = 0 + H[(i + 36) >> 2] = 0 + H[(i + 24) >> 2] = 0 + H[(i + 28) >> 2] = 0 + H[(i + 16) >> 2] = 0 + H[(i + 20) >> 2] = 0 + H[(i + 8) >> 2] = 0 + H[(i + 12) >> 2] = 0 + j = (i + 8) | 0 + a = J[(c + 38) >> 1] + i: { + j: { + if (!a) { + break j + } + k: { + if (a >>> 0 <= 511) { + d = H[(c + 8) >> 2] + b = H[(c + 12) >> 2] + e = H[(c + 20) >> 2] + a = H[(c + 16) >> 2] + f = (a + 4) | 0 + e = f >>> 0 < 4 ? (e + 1) | 0 : e + if ( + ((d >>> 0 < f >>> 0) & + ((b | 0) <= (e | 0))) | + ((b | 0) < (e | 0)) + ) { + break j + } + a = (a + H[c >> 2]) | 0 + h = + I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | + (I[(a + 3) | 0] << 24)) + H[(j + 12) >> 2] = h + e = H[(c + 20) >> 2] + f = (H[(c + 16) >> 2] + 4) | 0 + e = f >>> 0 < 4 ? (e + 1) | 0 : e + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + break k + } + if (!hb(1, (j + 12) | 0, c)) { + break j + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + h = H[(j + 12) >> 2] + } + a = H[(c + 8) >> 2] + d = (a - f) | 0 + a = + (H[(c + 12) >> 2] - + (((a >>> 0 < f >>> 0) + e) | 0)) | + 0 + if ( + ((d >>> 0 < (h >>> 6) >>> 0) & ((a | 0) <= 0)) | + ((a | 0) < 0) + ) { + break j + } + b = H[j >> 2] + a = (H[(j + 4) >> 2] - b) >> 2 + l: { + if (a >>> 0 < h >>> 0) { + ya(j, (h - a) | 0) + h = H[(j + 12) >> 2] + break l + } + if (a >>> 0 <= h >>> 0) { + break l + } + H[(j + 4) >> 2] = b + (h << 2) + } + d = 1 + if (!h) { + break i + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + s = H[j >> 2] + m = H[(c + 8) >> 2] + n = H[(c + 12) >> 2] + b = 0 + while (1) { + d = 0 + if ( + (((e | 0) >= (n | 0)) & + (f >>> 0 >= m >>> 0)) | + ((e | 0) > (n | 0)) + ) { + break i + } + d = H[c >> 2] + p = I[(d + f) | 0] + f = (f + 1) | 0 + e = f ? e : (e + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + a = (p >>> 2) | 0 + l = 0 + m: { + n: { + o: { + p: { + t = p & 3 + switch (t | 0) { + case 0: + break n + case 3: + break p + default: + break o + } + } + a = (a + b) | 0 + d = 0 + if (a >>> 0 >= h >>> 0) { + break i + } + ra( + (s + (b << 2)) | 0, + 0, + ((p & 252) + 4) | 0, + ) + b = a + break m + } + while (1) { + if ( + ((f | 0) == (m | 0)) & + ((e | 0) == (n | 0)) + ) { + break j + } + h = I[(d + f) | 0] + f = (f + 1) | 0 + e = f ? e : (e + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + a = (h << ((l << 3) | 6)) | a + l = (l + 1) | 0 + if ((t | 0) != (l | 0)) { + continue + } + break + } + } + H[(s + (b << 2)) >> 2] = a + } + b = (b + 1) | 0 + h = H[(j + 12) >> 2] + if (b >>> 0 < h >>> 0) { + continue + } + break + } + a = (j + 16) | 0 + n = H[j >> 2] + d = H[(j + 16) >> 2] + b = (H[(j + 20) >> 2] - d) | 0 + q: { + if (b >>> 0 <= 32767) { + ya(a, (8192 - ((b >>> 2) | 0)) | 0) + break q + } + if ((b | 0) == 32768) { + break q + } + H[(j + 20) >> 2] = d + 32768 + } + d = (j + 28) | 0 + b = H[d >> 2] + f = (H[(j + 32) >> 2] - b) >> 3 + r: { + if (f >>> 0 < h >>> 0) { + ob(d, (h - f) | 0) + b = H[d >> 2] + break r + } + if (f >>> 0 > h >>> 0) { + H[(j + 32) >> 2] = (h << 3) + b + } + if (!h) { + break j + } + } + m = H[a >> 2] + f = 0 + d = 0 + while (1) { + e = (n + (f << 2)) | 0 + j = H[e >> 2] + l = ((f << 3) + b) | 0 + a = d + H[(l + 4) >> 2] = a + H[l >> 2] = j + e = H[e >> 2] + d = (e + a) | 0 + if (d >>> 0 > 8192) { + break j + } + s: { + if (a >>> 0 >= d >>> 0) { + break s + } + l = 0 + j = e & 7 + if (j) { + while (1) { + H[(m + (a << 2)) >> 2] = f + a = (a + 1) | 0 + l = (l + 1) | 0 + if ((j | 0) != (l | 0)) { + continue + } + break + } + } + if ((e - 1) >>> 0 <= 6) { + break s + } + while (1) { + e = (m + (a << 2)) | 0 + H[e >> 2] = f + H[(e + 28) >> 2] = f + H[(e + 24) >> 2] = f + H[(e + 20) >> 2] = f + H[(e + 16) >> 2] = f + H[(e + 12) >> 2] = f + H[(e + 8) >> 2] = f + H[(e + 4) >> 2] = f + a = (a + 8) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + f = (f + 1) | 0 + if ((h | 0) != (f | 0)) { + continue + } + break + } + k = (d | 0) == 8192 + } + d = k + } + t: { + if (!d | (H[(i + 20) >> 2] ? 0 : g)) { + break t + } + d = 0 + m = (ca - 16) | 0 + ca = m + u: { + v: { + if (J[(c + 38) >> 1] <= 511) { + b = H[(c + 8) >> 2] + a = H[(c + 12) >> 2] + h = a + e = H[(c + 20) >> 2] + k = H[(c + 16) >> 2] + f = (k + 8) | 0 + e = f >>> 0 < 8 ? (e + 1) | 0 : e + if ( + ((b >>> 0 < f >>> 0) & + ((a | 0) <= (e | 0))) | + ((a | 0) < (e | 0)) + ) { + break u + } + k = (k + H[c >> 2]) | 0 + a = + I[k | 0] | + (I[(k + 1) | 0] << 8) | + ((I[(k + 2) | 0] << 16) | + (I[(k + 3) | 0] << 24)) + k = + I[(k + 4) | 0] | + (I[(k + 5) | 0] << 8) | + ((I[(k + 6) | 0] << 16) | + (I[(k + 7) | 0] << 24)) + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + break v + } + if (!gb(1, (m + 8) | 0, c)) { + break u + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + b = H[(c + 8) >> 2] + h = H[(c + 12) >> 2] + a = H[(m + 8) >> 2] + k = H[(m + 12) >> 2] + } + j = (b - f) | 0 + b = (h - (((b >>> 0 < f >>> 0) + e) | 0)) | 0 + if ( + (((b | 0) == (k | 0)) & (a >>> 0 > j >>> 0)) | + (b >>> 0 < k >>> 0) + ) { + break u + } + e = (e + k) | 0 + b = (a + f) | 0 + e = b >>> 0 < a >>> 0 ? (e + 1) | 0 : e + H[(c + 16) >> 2] = b + H[(c + 20) >> 2] = e + if ((a | 0) <= 0) { + break u + } + b = (H[c >> 2] + f) | 0 + H[(i + 48) >> 2] = b + c = (a - 1) | 0 + f = (c + b) | 0 + e = I[f | 0] + w: { + if (e >>> 0 <= 63) { + H[(i + 52) >> 2] = c + a = I[f | 0] & 63 + break w + } + x: { + switch ((((e >>> 6) | 0) - 1) | 0) { + case 0: + if (a >>> 0 < 2) { + break u + } + a = (a - 2) | 0 + H[(i + 52) >> 2] = a + a = (a + b) | 0 + a = + ((I[(a + 1) | 0] << 8) & 16128) | + I[a | 0] + break w + case 1: + if (a >>> 0 < 3) { + break u + } + a = (a - 3) | 0 + H[(i + 52) >> 2] = a + a = (a + b) | 0 + a = + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) & 4128768) | + I[a | 0] + break w + default: + break x + } + } + a = (a - 4) | 0 + H[(i + 52) >> 2] = a + a = (a + b) | 0 + a = + (I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | + (I[(a + 3) | 0] << 24))) & + 1073741823 + } + H[(i + 56) >> 2] = a + 32768 + d = a >>> 0 < 8355840 + } + ca = (m + 16) | 0 + if (!d) { + break t + } + if (!g) { + o = 1 + break t + } + b = H[(i + 52) >> 2] + a = H[(i + 56) >> 2] + c = H[(i + 36) >> 2] + d = H[(i + 48) >> 2] + f = H[(i + 24) >> 2] + while (1) { + y: { + if (a >>> 0 > 32767) { + break y + } + while (1) { + if ((b | 0) <= 0) { + break y + } + b = (b - 1) | 0 + H[(i + 52) >> 2] = b + a = I[(b + d) | 0] | (a << 8) + H[(i + 56) >> 2] = a + if (a >>> 0 < 32768) { + continue + } + break + } + } + e = a & 8191 + o = H[(f + (e << 2)) >> 2] + k = (c + (o << 3)) | 0 + a = + (((N(H[k >> 2], (a >>> 13) | 0) + e) | 0) - + H[(k + 4) >> 2]) | + 0 + H[(i + 56) >> 2] = a + H[(r + (q << 2)) >> 2] = o + o = 1 + q = (q + 1) | 0 + if ((g | 0) != (q | 0)) { + continue + } + break + } + } + a = H[(i + 36) >> 2] + if (a) { + H[(i + 40) >> 2] = a + oa(a) + } + a = H[(i + 24) >> 2] + if (a) { + H[(i + 28) >> 2] = a + oa(a) + } + a = H[(i + 8) >> 2] + if (a) { + H[(i + 12) >> 2] = a + oa(a) + } + ca = (i - -64) | 0 + b = o + break g + case 9: + m = a + r = d + g = (ca + -64) | 0 + ca = g + H[(g + 56) >> 2] = 0 + H[(g + 48) >> 2] = 0 + H[(g + 52) >> 2] = 0 + H[(g + 40) >> 2] = 0 + H[(g + 44) >> 2] = 0 + H[(g + 32) >> 2] = 0 + H[(g + 36) >> 2] = 0 + H[(g + 24) >> 2] = 0 + H[(g + 28) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + j = (g + 8) | 0 + a = J[(c + 38) >> 1] + z: { + A: { + if (!a) { + break A + } + B: { + if (a >>> 0 <= 511) { + d = H[(c + 8) >> 2] + b = H[(c + 12) >> 2] + e = H[(c + 20) >> 2] + a = H[(c + 16) >> 2] + f = (a + 4) | 0 + e = f >>> 0 < 4 ? (e + 1) | 0 : e + if ( + ((d >>> 0 < f >>> 0) & + ((b | 0) <= (e | 0))) | + ((b | 0) < (e | 0)) + ) { + break A + } + a = (a + H[c >> 2]) | 0 + h = + I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | + (I[(a + 3) | 0] << 24)) + H[(j + 12) >> 2] = h + e = H[(c + 20) >> 2] + f = (H[(c + 16) >> 2] + 4) | 0 + e = f >>> 0 < 4 ? (e + 1) | 0 : e + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + break B + } + if (!hb(1, (j + 12) | 0, c)) { + break A + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + h = H[(j + 12) >> 2] + } + a = H[(c + 8) >> 2] + d = (a - f) | 0 + a = + (H[(c + 12) >> 2] - + (((a >>> 0 < f >>> 0) + e) | 0)) | + 0 + if ( + ((d >>> 0 < (h >>> 6) >>> 0) & ((a | 0) <= 0)) | + ((a | 0) < 0) + ) { + break A + } + b = H[j >> 2] + a = (H[(j + 4) >> 2] - b) >> 2 + C: { + if (a >>> 0 < h >>> 0) { + ya(j, (h - a) | 0) + h = H[(j + 12) >> 2] + break C + } + if (a >>> 0 <= h >>> 0) { + break C + } + H[(j + 4) >> 2] = b + (h << 2) + } + d = 1 + if (!h) { + break z + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + s = H[j >> 2] + i = H[(c + 8) >> 2] + n = H[(c + 12) >> 2] + b = 0 + while (1) { + d = 0 + if ( + (((e | 0) >= (n | 0)) & + (f >>> 0 >= i >>> 0)) | + ((e | 0) > (n | 0)) + ) { + break z + } + d = H[c >> 2] + p = I[(d + f) | 0] + f = (f + 1) | 0 + e = f ? e : (e + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + a = (p >>> 2) | 0 + l = 0 + D: { + E: { + F: { + G: { + t = p & 3 + switch (t | 0) { + case 0: + break E + case 3: + break G + default: + break F + } + } + a = (a + b) | 0 + d = 0 + if (a >>> 0 >= h >>> 0) { + break z + } + ra( + (s + (b << 2)) | 0, + 0, + ((p & 252) + 4) | 0, + ) + b = a + break D + } + while (1) { + if ( + ((f | 0) == (i | 0)) & + ((e | 0) == (n | 0)) + ) { + break A + } + h = I[(d + f) | 0] + f = (f + 1) | 0 + e = f ? e : (e + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + a = (h << ((l << 3) | 6)) | a + l = (l + 1) | 0 + if ((t | 0) != (l | 0)) { + continue + } + break + } + } + H[(s + (b << 2)) >> 2] = a + } + b = (b + 1) | 0 + h = H[(j + 12) >> 2] + if (b >>> 0 < h >>> 0) { + continue + } + break + } + a = (j + 16) | 0 + n = H[j >> 2] + d = H[(j + 16) >> 2] + b = (H[(j + 20) >> 2] - d) | 0 + H: { + if (b >>> 0 <= 131071) { + ya(a, (32768 - ((b >>> 2) | 0)) | 0) + break H + } + if ((b | 0) == 131072) { + break H + } + H[(j + 20) >> 2] = d + 131072 + } + d = (j + 28) | 0 + b = H[d >> 2] + f = (H[(j + 32) >> 2] - b) >> 3 + I: { + if (f >>> 0 < h >>> 0) { + ob(d, (h - f) | 0) + b = H[d >> 2] + break I + } + if (f >>> 0 > h >>> 0) { + H[(j + 32) >> 2] = (h << 3) + b + } + if (!h) { + break A + } + } + i = H[a >> 2] + f = 0 + d = 0 + while (1) { + e = (n + (f << 2)) | 0 + j = H[e >> 2] + l = ((f << 3) + b) | 0 + a = d + H[(l + 4) >> 2] = a + H[l >> 2] = j + e = H[e >> 2] + d = (e + a) | 0 + if (d >>> 0 > 32768) { + break A + } + J: { + if (a >>> 0 >= d >>> 0) { + break J + } + l = 0 + j = e & 7 + if (j) { + while (1) { + H[(i + (a << 2)) >> 2] = f + a = (a + 1) | 0 + l = (l + 1) | 0 + if ((j | 0) != (l | 0)) { + continue + } + break + } + } + if ((e - 1) >>> 0 <= 6) { + break J + } + while (1) { + e = (i + (a << 2)) | 0 + H[e >> 2] = f + H[(e + 28) >> 2] = f + H[(e + 24) >> 2] = f + H[(e + 20) >> 2] = f + H[(e + 16) >> 2] = f + H[(e + 12) >> 2] = f + H[(e + 8) >> 2] = f + H[(e + 4) >> 2] = f + a = (a + 8) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + f = (f + 1) | 0 + if ((h | 0) != (f | 0)) { + continue + } + break + } + k = (d | 0) == 32768 + } + d = k + } + K: { + if (!d | (H[(g + 20) >> 2] ? 0 : m)) { + break K + } + d = 0 + j = (ca - 16) | 0 + ca = j + L: { + M: { + if (J[(c + 38) >> 1] <= 511) { + b = H[(c + 8) >> 2] + a = H[(c + 12) >> 2] + h = a + e = H[(c + 20) >> 2] + k = H[(c + 16) >> 2] + f = (k + 8) | 0 + e = f >>> 0 < 8 ? (e + 1) | 0 : e + if ( + ((b >>> 0 < f >>> 0) & + ((a | 0) <= (e | 0))) | + ((a | 0) < (e | 0)) + ) { + break L + } + k = (k + H[c >> 2]) | 0 + a = + I[k | 0] | + (I[(k + 1) | 0] << 8) | + ((I[(k + 2) | 0] << 16) | + (I[(k + 3) | 0] << 24)) + k = + I[(k + 4) | 0] | + (I[(k + 5) | 0] << 8) | + ((I[(k + 6) | 0] << 16) | + (I[(k + 7) | 0] << 24)) + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + break M + } + if (!gb(1, (j + 8) | 0, c)) { + break L + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + b = H[(c + 8) >> 2] + h = H[(c + 12) >> 2] + a = H[(j + 8) >> 2] + k = H[(j + 12) >> 2] + } + i = (b - f) | 0 + b = (h - (((b >>> 0 < f >>> 0) + e) | 0)) | 0 + if ( + (((b | 0) == (k | 0)) & (a >>> 0 > i >>> 0)) | + (b >>> 0 < k >>> 0) + ) { + break L + } + i = (e + k) | 0 + b = (a + f) | 0 + i = b >>> 0 < a >>> 0 ? (i + 1) | 0 : i + H[(c + 16) >> 2] = b + H[(c + 20) >> 2] = i + if ((a | 0) <= 0) { + break L + } + b = (H[c >> 2] + f) | 0 + H[(g + 48) >> 2] = b + c = (a - 1) | 0 + f = (c + b) | 0 + e = I[f | 0] + N: { + if (e >>> 0 <= 63) { + H[(g + 52) >> 2] = c + a = I[f | 0] & 63 + break N + } + O: { + switch ((((e >>> 6) | 0) - 1) | 0) { + case 0: + if (a >>> 0 < 2) { + break L + } + a = (a - 2) | 0 + H[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + ((I[(a + 1) | 0] << 8) & 16128) | + I[a | 0] + break N + case 1: + if (a >>> 0 < 3) { + break L + } + a = (a - 3) | 0 + H[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) & 4128768) | + I[a | 0] + break N + default: + break O + } + } + a = (a - 4) | 0 + H[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + (I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | + (I[(a + 3) | 0] << 24))) & + 1073741823 + } + H[(g + 56) >> 2] = a + 131072 + d = a >>> 0 < 33423360 + } + ca = (j + 16) | 0 + if (!d) { + break K + } + if (!m) { + o = 1 + break K + } + b = H[(g + 52) >> 2] + a = H[(g + 56) >> 2] + c = H[(g + 36) >> 2] + d = H[(g + 48) >> 2] + f = H[(g + 24) >> 2] + while (1) { + P: { + if (a >>> 0 > 131071) { + break P + } + while (1) { + if ((b | 0) <= 0) { + break P + } + b = (b - 1) | 0 + H[(g + 52) >> 2] = b + a = I[(b + d) | 0] | (a << 8) + H[(g + 56) >> 2] = a + if (a >>> 0 < 131072) { + continue + } + break + } + } + e = a & 32767 + o = H[(f + (e << 2)) >> 2] + k = (c + (o << 3)) | 0 + a = + (((N(H[k >> 2], (a >>> 15) | 0) + e) | 0) - + H[(k + 4) >> 2]) | + 0 + H[(g + 56) >> 2] = a + H[(r + (q << 2)) >> 2] = o + o = 1 + q = (q + 1) | 0 + if ((m | 0) != (q | 0)) { + continue + } + break + } + } + a = H[(g + 36) >> 2] + if (a) { + H[(g + 40) >> 2] = a + oa(a) + } + a = H[(g + 24) >> 2] + if (a) { + H[(g + 28) >> 2] = a + oa(a) + } + a = H[(g + 8) >> 2] + if (a) { + H[(g + 12) >> 2] = a + oa(a) + } + ca = (g - -64) | 0 + b = o + break g + case 10: + m = a + j = d + g = (ca + -64) | 0 + ca = g + H[(g + 56) >> 2] = 0 + H[(g + 48) >> 2] = 0 + H[(g + 52) >> 2] = 0 + H[(g + 40) >> 2] = 0 + H[(g + 44) >> 2] = 0 + H[(g + 32) >> 2] = 0 + H[(g + 36) >> 2] = 0 + H[(g + 24) >> 2] = 0 + H[(g + 28) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + n = (g + 8) | 0 + a = J[(c + 38) >> 1] + Q: { + R: { + if (!a) { + break R + } + S: { + if (a >>> 0 <= 511) { + d = H[(c + 8) >> 2] + b = H[(c + 12) >> 2] + e = H[(c + 20) >> 2] + a = H[(c + 16) >> 2] + f = (a + 4) | 0 + e = f >>> 0 < 4 ? (e + 1) | 0 : e + if ( + ((d >>> 0 < f >>> 0) & + ((b | 0) <= (e | 0))) | + ((b | 0) < (e | 0)) + ) { + break R + } + a = (a + H[c >> 2]) | 0 + h = + I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | + (I[(a + 3) | 0] << 24)) + H[(n + 12) >> 2] = h + e = H[(c + 20) >> 2] + f = (H[(c + 16) >> 2] + 4) | 0 + e = f >>> 0 < 4 ? (e + 1) | 0 : e + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + break S + } + if (!hb(1, (n + 12) | 0, c)) { + break R + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + h = H[(n + 12) >> 2] + } + a = H[(c + 8) >> 2] + d = (a - f) | 0 + a = + (H[(c + 12) >> 2] - + (((a >>> 0 < f >>> 0) + e) | 0)) | + 0 + if ( + ((d >>> 0 < (h >>> 6) >>> 0) & ((a | 0) <= 0)) | + ((a | 0) < 0) + ) { + break R + } + b = H[n >> 2] + a = (H[(n + 4) >> 2] - b) >> 2 + T: { + if (a >>> 0 < h >>> 0) { + ya(n, (h - a) | 0) + h = H[(n + 12) >> 2] + break T + } + if (a >>> 0 <= h >>> 0) { + break T + } + H[(n + 4) >> 2] = b + (h << 2) + } + d = 1 + if (!h) { + break Q + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + t = H[n >> 2] + r = H[(c + 8) >> 2] + p = H[(c + 12) >> 2] + b = 0 + while (1) { + d = 0 + if ( + (((e | 0) >= (p | 0)) & + (f >>> 0 >= r >>> 0)) | + ((e | 0) > (p | 0)) + ) { + break Q + } + d = H[c >> 2] + s = I[(d + f) | 0] + f = (f + 1) | 0 + i = f ? e : (e + 1) | 0 + H[(c + 16) >> 2] = f + e = i + H[(c + 20) >> 2] = e + a = (s >>> 2) | 0 + l = 0 + U: { + V: { + W: { + X: { + i = s & 3 + switch (i | 0) { + case 0: + break V + case 3: + break X + default: + break W + } + } + a = (a + b) | 0 + d = 0 + if (a >>> 0 >= h >>> 0) { + break Q + } + ra( + (t + (b << 2)) | 0, + 0, + ((s & 252) + 4) | 0, + ) + b = a + break U + } + while (1) { + if ( + ((f | 0) == (r | 0)) & + ((e | 0) == (p | 0)) + ) { + break R + } + h = I[(d + f) | 0] + f = (f + 1) | 0 + e = f ? e : (e + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + a = (h << ((l << 3) | 6)) | a + l = (l + 1) | 0 + if ((i | 0) != (l | 0)) { + continue + } + break + } + } + H[(t + (b << 2)) >> 2] = a + } + b = (b + 1) | 0 + h = H[(n + 12) >> 2] + if (b >>> 0 < h >>> 0) { + continue + } + break + } + a = (n + 16) | 0 + r = H[n >> 2] + d = H[(n + 16) >> 2] + b = (H[(n + 20) >> 2] - d) | 0 + Y: { + if (b >>> 0 <= 262143) { + ya(a, (65536 - ((b >>> 2) | 0)) | 0) + break Y + } + if ((b | 0) == 262144) { + break Y + } + H[(n + 20) >> 2] = d + 262144 + } + d = (n + 28) | 0 + b = H[d >> 2] + f = (H[(n + 32) >> 2] - b) >> 3 + Z: { + if (f >>> 0 < h >>> 0) { + ob(d, (h - f) | 0) + b = H[d >> 2] + break Z + } + if (f >>> 0 > h >>> 0) { + H[(n + 32) >> 2] = (h << 3) + b + } + if (!h) { + break R + } + } + i = H[a >> 2] + f = 0 + d = 0 + while (1) { + e = (r + (f << 2)) | 0 + l = H[e >> 2] + n = ((f << 3) + b) | 0 + a = d + H[(n + 4) >> 2] = a + H[n >> 2] = l + e = H[e >> 2] + d = (e + a) | 0 + if (d >>> 0 > 65536) { + break R + } + _: { + if (a >>> 0 >= d >>> 0) { + break _ + } + l = 0 + n = e & 7 + if (n) { + while (1) { + H[(i + (a << 2)) >> 2] = f + a = (a + 1) | 0 + l = (l + 1) | 0 + if ((n | 0) != (l | 0)) { + continue + } + break + } + } + if ((e - 1) >>> 0 <= 6) { + break _ + } + while (1) { + e = (i + (a << 2)) | 0 + H[e >> 2] = f + H[(e + 28) >> 2] = f + H[(e + 24) >> 2] = f + H[(e + 20) >> 2] = f + H[(e + 16) >> 2] = f + H[(e + 12) >> 2] = f + H[(e + 8) >> 2] = f + H[(e + 4) >> 2] = f + a = (a + 8) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + f = (f + 1) | 0 + if ((h | 0) != (f | 0)) { + continue + } + break + } + k = (d | 0) == 65536 + } + d = k + } + $: { + if (!d | (H[(g + 20) >> 2] ? 0 : m)) { + break $ + } + d = 0 + i = (ca - 16) | 0 + ca = i + aa: { + ba: { + if (J[(c + 38) >> 1] <= 511) { + b = H[(c + 8) >> 2] + a = H[(c + 12) >> 2] + h = a + e = H[(c + 20) >> 2] + k = H[(c + 16) >> 2] + f = (k + 8) | 0 + e = f >>> 0 < 8 ? (e + 1) | 0 : e + if ( + ((b >>> 0 < f >>> 0) & + ((a | 0) <= (e | 0))) | + ((a | 0) < (e | 0)) + ) { + break aa + } + k = (k + H[c >> 2]) | 0 + a = + I[k | 0] | + (I[(k + 1) | 0] << 8) | + ((I[(k + 2) | 0] << 16) | + (I[(k + 3) | 0] << 24)) + k = + I[(k + 4) | 0] | + (I[(k + 5) | 0] << 8) | + ((I[(k + 6) | 0] << 16) | + (I[(k + 7) | 0] << 24)) + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + break ba + } + if (!gb(1, (i + 8) | 0, c)) { + break aa + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + b = H[(c + 8) >> 2] + h = H[(c + 12) >> 2] + a = H[(i + 8) >> 2] + k = H[(i + 12) >> 2] + } + r = (b - f) | 0 + b = (h - (((b >>> 0 < f >>> 0) + e) | 0)) | 0 + if ( + (((b | 0) == (k | 0)) & (a >>> 0 > r >>> 0)) | + (b >>> 0 < k >>> 0) + ) { + break aa + } + e = (e + k) | 0 + b = (a + f) | 0 + e = b >>> 0 < a >>> 0 ? (e + 1) | 0 : e + H[(c + 16) >> 2] = b + H[(c + 20) >> 2] = e + if ((a | 0) <= 0) { + break aa + } + b = (H[c >> 2] + f) | 0 + H[(g + 48) >> 2] = b + c = (a - 1) | 0 + f = (c + b) | 0 + e = I[f | 0] + ca: { + if (e >>> 0 <= 63) { + H[(g + 52) >> 2] = c + a = I[f | 0] & 63 + break ca + } + da: { + switch ((((e >>> 6) | 0) - 1) | 0) { + case 0: + if (a >>> 0 < 2) { + break aa + } + a = (a - 2) | 0 + H[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + ((I[(a + 1) | 0] << 8) & 16128) | + I[a | 0] + break ca + case 1: + if (a >>> 0 < 3) { + break aa + } + a = (a - 3) | 0 + H[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) & 4128768) | + I[a | 0] + break ca + default: + break da + } + } + a = (a - 4) | 0 + H[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + (I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | + (I[(a + 3) | 0] << 24))) & + 1073741823 + } + H[(g + 56) >> 2] = a + 262144 + d = a >>> 0 < 66846720 + } + ca = (i + 16) | 0 + if (!d) { + break $ + } + if (!m) { + o = 1 + break $ + } + b = H[(g + 52) >> 2] + a = H[(g + 56) >> 2] + c = H[(g + 36) >> 2] + d = H[(g + 48) >> 2] + f = H[(g + 24) >> 2] + while (1) { + ea: { + if (a >>> 0 > 262143) { + break ea + } + while (1) { + if ((b | 0) <= 0) { + break ea + } + b = (b - 1) | 0 + H[(g + 52) >> 2] = b + a = I[(b + d) | 0] | (a << 8) + H[(g + 56) >> 2] = a + if (a >>> 0 < 262144) { + continue + } + break + } + } + e = a & 65535 + o = H[(f + (e << 2)) >> 2] + k = (c + (o << 3)) | 0 + a = + (((N(H[k >> 2], (a >>> 16) | 0) + e) | 0) - + H[(k + 4) >> 2]) | + 0 + H[(g + 56) >> 2] = a + H[(j + (q << 2)) >> 2] = o + o = 1 + q = (q + 1) | 0 + if ((m | 0) != (q | 0)) { + continue + } + break + } + } + a = H[(g + 36) >> 2] + if (a) { + H[(g + 40) >> 2] = a + oa(a) + } + a = H[(g + 24) >> 2] + if (a) { + H[(g + 28) >> 2] = a + oa(a) + } + a = H[(g + 8) >> 2] + if (a) { + H[(g + 12) >> 2] = a + oa(a) + } + ca = (g - -64) | 0 + b = o + break g + case 11: + m = a + r = d + g = (ca + -64) | 0 + ca = g + H[(g + 56) >> 2] = 0 + H[(g + 48) >> 2] = 0 + H[(g + 52) >> 2] = 0 + H[(g + 40) >> 2] = 0 + H[(g + 44) >> 2] = 0 + H[(g + 32) >> 2] = 0 + H[(g + 36) >> 2] = 0 + H[(g + 24) >> 2] = 0 + H[(g + 28) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + j = (g + 8) | 0 + a = J[(c + 38) >> 1] + fa: { + ga: { + if (!a) { + break ga + } + ha: { + if (a >>> 0 <= 511) { + d = H[(c + 8) >> 2] + b = H[(c + 12) >> 2] + e = H[(c + 20) >> 2] + a = H[(c + 16) >> 2] + f = (a + 4) | 0 + e = f >>> 0 < 4 ? (e + 1) | 0 : e + if ( + ((d >>> 0 < f >>> 0) & + ((b | 0) <= (e | 0))) | + ((b | 0) < (e | 0)) + ) { + break ga + } + a = (a + H[c >> 2]) | 0 + h = + I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | + (I[(a + 3) | 0] << 24)) + H[(j + 12) >> 2] = h + i = H[(c + 20) >> 2] + f = (H[(c + 16) >> 2] + 4) | 0 + i = f >>> 0 < 4 ? (i + 1) | 0 : i + H[(c + 16) >> 2] = f + e = i + H[(c + 20) >> 2] = e + break ha + } + if (!hb(1, (j + 12) | 0, c)) { + break ga + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + h = H[(j + 12) >> 2] + } + a = H[(c + 8) >> 2] + d = (a - f) | 0 + a = + (H[(c + 12) >> 2] - + (((a >>> 0 < f >>> 0) + e) | 0)) | + 0 + if ( + ((d >>> 0 < (h >>> 6) >>> 0) & ((a | 0) <= 0)) | + ((a | 0) < 0) + ) { + break ga + } + b = H[j >> 2] + a = (H[(j + 4) >> 2] - b) >> 2 + ia: { + if (a >>> 0 < h >>> 0) { + ya(j, (h - a) | 0) + h = H[(j + 12) >> 2] + break ia + } + if (a >>> 0 <= h >>> 0) { + break ia + } + H[(j + 4) >> 2] = b + (h << 2) + } + d = 1 + if (!h) { + break fa + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + s = H[j >> 2] + i = H[(c + 8) >> 2] + n = H[(c + 12) >> 2] + b = 0 + while (1) { + d = 0 + if ( + (((e | 0) >= (n | 0)) & + (f >>> 0 >= i >>> 0)) | + ((e | 0) > (n | 0)) + ) { + break fa + } + d = H[c >> 2] + p = I[(d + f) | 0] + f = (f + 1) | 0 + e = f ? e : (e + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + a = (p >>> 2) | 0 + l = 0 + ja: { + ka: { + la: { + ma: { + t = p & 3 + switch (t | 0) { + case 0: + break ka + case 3: + break ma + default: + break la + } + } + a = (a + b) | 0 + d = 0 + if (a >>> 0 >= h >>> 0) { + break fa + } + ra( + (s + (b << 2)) | 0, + 0, + ((p & 252) + 4) | 0, + ) + b = a + break ja + } + while (1) { + if ( + ((f | 0) == (i | 0)) & + ((e | 0) == (n | 0)) + ) { + break ga + } + h = I[(d + f) | 0] + f = (f + 1) | 0 + e = f ? e : (e + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + a = (h << ((l << 3) | 6)) | a + l = (l + 1) | 0 + if ((t | 0) != (l | 0)) { + continue + } + break + } + } + H[(s + (b << 2)) >> 2] = a + } + b = (b + 1) | 0 + h = H[(j + 12) >> 2] + if (b >>> 0 < h >>> 0) { + continue + } + break + } + a = (j + 16) | 0 + n = H[j >> 2] + d = H[(j + 16) >> 2] + b = (H[(j + 20) >> 2] - d) | 0 + na: { + if (b >>> 0 <= 1048575) { + ya(a, (262144 - ((b >>> 2) | 0)) | 0) + break na + } + if ((b | 0) == 1048576) { + break na + } + H[(j + 20) >> 2] = d - -1048576 + } + d = (j + 28) | 0 + b = H[d >> 2] + f = (H[(j + 32) >> 2] - b) >> 3 + oa: { + if (f >>> 0 < h >>> 0) { + ob(d, (h - f) | 0) + b = H[d >> 2] + break oa + } + if (f >>> 0 > h >>> 0) { + H[(j + 32) >> 2] = (h << 3) + b + } + if (!h) { + break ga + } + } + i = H[a >> 2] + f = 0 + d = 0 + while (1) { + e = (n + (f << 2)) | 0 + j = H[e >> 2] + l = ((f << 3) + b) | 0 + a = d + H[(l + 4) >> 2] = a + H[l >> 2] = j + e = H[e >> 2] + d = (e + a) | 0 + if (d >>> 0 > 262144) { + break ga + } + pa: { + if (a >>> 0 >= d >>> 0) { + break pa + } + l = 0 + j = e & 7 + if (j) { + while (1) { + H[(i + (a << 2)) >> 2] = f + a = (a + 1) | 0 + l = (l + 1) | 0 + if ((j | 0) != (l | 0)) { + continue + } + break + } + } + if ((e - 1) >>> 0 <= 6) { + break pa + } + while (1) { + e = (i + (a << 2)) | 0 + H[e >> 2] = f + H[(e + 28) >> 2] = f + H[(e + 24) >> 2] = f + H[(e + 20) >> 2] = f + H[(e + 16) >> 2] = f + H[(e + 12) >> 2] = f + H[(e + 8) >> 2] = f + H[(e + 4) >> 2] = f + a = (a + 8) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + f = (f + 1) | 0 + if ((h | 0) != (f | 0)) { + continue + } + break + } + k = (d | 0) == 262144 + } + d = k + } + qa: { + if (!d | (H[(g + 20) >> 2] ? 0 : m)) { + break qa + } + d = 0 + j = (ca - 16) | 0 + ca = j + ra: { + sa: { + if (J[(c + 38) >> 1] <= 511) { + b = H[(c + 8) >> 2] + a = H[(c + 12) >> 2] + h = a + i = H[(c + 20) >> 2] + k = H[(c + 16) >> 2] + f = (k + 8) | 0 + i = f >>> 0 < 8 ? (i + 1) | 0 : i + e = i + if ( + ((b >>> 0 < f >>> 0) & + ((e | 0) >= (a | 0))) | + ((a | 0) < (e | 0)) + ) { + break ra + } + k = (k + H[c >> 2]) | 0 + a = + I[k | 0] | + (I[(k + 1) | 0] << 8) | + ((I[(k + 2) | 0] << 16) | + (I[(k + 3) | 0] << 24)) + k = + I[(k + 4) | 0] | + (I[(k + 5) | 0] << 8) | + ((I[(k + 6) | 0] << 16) | + (I[(k + 7) | 0] << 24)) + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + break sa + } + if (!gb(1, (j + 8) | 0, c)) { + break ra + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + b = H[(c + 8) >> 2] + h = H[(c + 12) >> 2] + a = H[(j + 8) >> 2] + k = H[(j + 12) >> 2] + } + i = (b - f) | 0 + b = (h - (((b >>> 0 < f >>> 0) + e) | 0)) | 0 + if ( + (((b | 0) == (k | 0)) & (a >>> 0 > i >>> 0)) | + (b >>> 0 < k >>> 0) + ) { + break ra + } + e = (e + k) | 0 + b = (a + f) | 0 + e = b >>> 0 < a >>> 0 ? (e + 1) | 0 : e + H[(c + 16) >> 2] = b + H[(c + 20) >> 2] = e + if ((a | 0) <= 0) { + break ra + } + b = (H[c >> 2] + f) | 0 + H[(g + 48) >> 2] = b + c = (a - 1) | 0 + f = (c + b) | 0 + e = I[f | 0] + ta: { + if (e >>> 0 <= 63) { + H[(g + 52) >> 2] = c + a = I[f | 0] & 63 + break ta + } + ua: { + switch ((((e >>> 6) | 0) - 1) | 0) { + case 0: + if (a >>> 0 < 2) { + break ra + } + a = (a - 2) | 0 + H[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + ((I[(a + 1) | 0] << 8) & 16128) | + I[a | 0] + break ta + case 1: + if (a >>> 0 < 3) { + break ra + } + a = (a - 3) | 0 + H[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) & 4128768) | + I[a | 0] + break ta + default: + break ua + } + } + a = (a - 4) | 0 + H[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + (I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | + (I[(a + 3) | 0] << 24))) & + 1073741823 + } + H[(g + 56) >> 2] = a - -1048576 + d = a >>> 0 < 267386880 + } + ca = (j + 16) | 0 + if (!d) { + break qa + } + if (!m) { + o = 1 + break qa + } + b = H[(g + 52) >> 2] + a = H[(g + 56) >> 2] + c = H[(g + 36) >> 2] + d = H[(g + 48) >> 2] + f = H[(g + 24) >> 2] + while (1) { + va: { + if (a >>> 0 > 1048575) { + break va + } + while (1) { + if ((b | 0) <= 0) { + break va + } + b = (b - 1) | 0 + H[(g + 52) >> 2] = b + a = I[(b + d) | 0] | (a << 8) + H[(g + 56) >> 2] = a + if (a >>> 0 < 1048576) { + continue + } + break + } + } + e = a & 262143 + o = H[(f + (e << 2)) >> 2] + k = (c + (o << 3)) | 0 + a = + (((N(H[k >> 2], (a >>> 18) | 0) + e) | 0) - + H[(k + 4) >> 2]) | + 0 + H[(g + 56) >> 2] = a + H[(r + (q << 2)) >> 2] = o + o = 1 + q = (q + 1) | 0 + if ((m | 0) != (q | 0)) { + continue + } + break + } + } + a = H[(g + 36) >> 2] + if (a) { + H[(g + 40) >> 2] = a + oa(a) + } + a = H[(g + 24) >> 2] + if (a) { + H[(g + 28) >> 2] = a + oa(a) + } + a = H[(g + 8) >> 2] + if (a) { + H[(g + 12) >> 2] = a + oa(a) + } + ca = (g - -64) | 0 + b = o + break g + case 12: + m = a + r = d + g = (ca + -64) | 0 + ca = g + H[(g + 56) >> 2] = 0 + H[(g + 48) >> 2] = 0 + H[(g + 52) >> 2] = 0 + H[(g + 40) >> 2] = 0 + H[(g + 44) >> 2] = 0 + H[(g + 32) >> 2] = 0 + H[(g + 36) >> 2] = 0 + H[(g + 24) >> 2] = 0 + H[(g + 28) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + j = (g + 8) | 0 + a = J[(c + 38) >> 1] + wa: { + xa: { + if (!a) { + break xa + } + ya: { + if (a >>> 0 <= 511) { + d = H[(c + 8) >> 2] + b = H[(c + 12) >> 2] + i = H[(c + 20) >> 2] + a = H[(c + 16) >> 2] + f = (a + 4) | 0 + i = f >>> 0 < 4 ? (i + 1) | 0 : i + if ( + ((d >>> 0 < f >>> 0) & + ((b | 0) <= (i | 0))) | + ((b | 0) < (i | 0)) + ) { + break xa + } + a = (a + H[c >> 2]) | 0 + h = + I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | + (I[(a + 3) | 0] << 24)) + H[(j + 12) >> 2] = h + e = H[(c + 20) >> 2] + f = (H[(c + 16) >> 2] + 4) | 0 + e = f >>> 0 < 4 ? (e + 1) | 0 : e + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + break ya + } + if (!hb(1, (j + 12) | 0, c)) { + break xa + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + h = H[(j + 12) >> 2] + } + a = H[(c + 8) >> 2] + d = (a - f) | 0 + a = + (H[(c + 12) >> 2] - + (((a >>> 0 < f >>> 0) + e) | 0)) | + 0 + if ( + ((d >>> 0 < (h >>> 6) >>> 0) & ((a | 0) <= 0)) | + ((a | 0) < 0) + ) { + break xa + } + b = H[j >> 2] + a = (H[(j + 4) >> 2] - b) >> 2 + za: { + if (a >>> 0 < h >>> 0) { + ya(j, (h - a) | 0) + h = H[(j + 12) >> 2] + break za + } + if (a >>> 0 <= h >>> 0) { + break za + } + H[(j + 4) >> 2] = b + (h << 2) + } + d = 1 + if (!h) { + break wa + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + s = H[j >> 2] + i = H[(c + 8) >> 2] + n = H[(c + 12) >> 2] + b = 0 + while (1) { + d = 0 + if ( + (((e | 0) >= (n | 0)) & + (f >>> 0 >= i >>> 0)) | + ((e | 0) > (n | 0)) + ) { + break wa + } + d = H[c >> 2] + p = I[(d + f) | 0] + f = (f + 1) | 0 + e = f ? e : (e + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + a = (p >>> 2) | 0 + l = 0 + Aa: { + Ba: { + Ca: { + Da: { + t = p & 3 + switch (t | 0) { + case 0: + break Ba + case 3: + break Da + default: + break Ca + } + } + a = (a + b) | 0 + d = 0 + if (a >>> 0 >= h >>> 0) { + break wa + } + ra( + (s + (b << 2)) | 0, + 0, + ((p & 252) + 4) | 0, + ) + b = a + break Aa + } + while (1) { + if ( + ((f | 0) == (i | 0)) & + ((e | 0) == (n | 0)) + ) { + break xa + } + h = I[(d + f) | 0] + f = (f + 1) | 0 + e = f ? e : (e + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + a = (h << ((l << 3) | 6)) | a + l = (l + 1) | 0 + if ((t | 0) != (l | 0)) { + continue + } + break + } + } + H[(s + (b << 2)) >> 2] = a + } + b = (b + 1) | 0 + h = H[(j + 12) >> 2] + if (b >>> 0 < h >>> 0) { + continue + } + break + } + a = (j + 16) | 0 + n = H[j >> 2] + d = H[(j + 16) >> 2] + b = (H[(j + 20) >> 2] - d) | 0 + Ea: { + if (b >>> 0 <= 2097151) { + ya(a, (524288 - ((b >>> 2) | 0)) | 0) + break Ea + } + if ((b | 0) == 2097152) { + break Ea + } + H[(j + 20) >> 2] = d + 2097152 + } + d = (j + 28) | 0 + b = H[d >> 2] + f = (H[(j + 32) >> 2] - b) >> 3 + Fa: { + if (f >>> 0 < h >>> 0) { + ob(d, (h - f) | 0) + b = H[d >> 2] + break Fa + } + if (f >>> 0 > h >>> 0) { + H[(j + 32) >> 2] = (h << 3) + b + } + if (!h) { + break xa + } + } + i = H[a >> 2] + f = 0 + d = 0 + while (1) { + e = (n + (f << 2)) | 0 + j = H[e >> 2] + l = ((f << 3) + b) | 0 + a = d + H[(l + 4) >> 2] = a + H[l >> 2] = j + e = H[e >> 2] + d = (e + a) | 0 + if (d >>> 0 > 524288) { + break xa + } + Ga: { + if (a >>> 0 >= d >>> 0) { + break Ga + } + l = 0 + j = e & 7 + if (j) { + while (1) { + H[(i + (a << 2)) >> 2] = f + a = (a + 1) | 0 + l = (l + 1) | 0 + if ((j | 0) != (l | 0)) { + continue + } + break + } + } + if ((e - 1) >>> 0 <= 6) { + break Ga + } + while (1) { + e = (i + (a << 2)) | 0 + H[e >> 2] = f + H[(e + 28) >> 2] = f + H[(e + 24) >> 2] = f + H[(e + 20) >> 2] = f + H[(e + 16) >> 2] = f + H[(e + 12) >> 2] = f + H[(e + 8) >> 2] = f + H[(e + 4) >> 2] = f + a = (a + 8) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + f = (f + 1) | 0 + if ((h | 0) != (f | 0)) { + continue + } + break + } + k = (d | 0) == 524288 + } + d = k + } + Ha: { + if (!d | (H[(g + 20) >> 2] ? 0 : m)) { + break Ha + } + d = 0 + i = (ca - 16) | 0 + ca = i + Ia: { + Ja: { + if (J[(c + 38) >> 1] <= 511) { + b = H[(c + 8) >> 2] + a = H[(c + 12) >> 2] + h = a + e = H[(c + 20) >> 2] + k = H[(c + 16) >> 2] + f = (k + 8) | 0 + e = f >>> 0 < 8 ? (e + 1) | 0 : e + if ( + ((b >>> 0 < f >>> 0) & + ((a | 0) <= (e | 0))) | + ((a | 0) < (e | 0)) + ) { + break Ia + } + k = (k + H[c >> 2]) | 0 + a = + I[k | 0] | + (I[(k + 1) | 0] << 8) | + ((I[(k + 2) | 0] << 16) | + (I[(k + 3) | 0] << 24)) + k = + I[(k + 4) | 0] | + (I[(k + 5) | 0] << 8) | + ((I[(k + 6) | 0] << 16) | + (I[(k + 7) | 0] << 24)) + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = e + break Ja + } + if (!gb(1, (i + 8) | 0, c)) { + break Ia + } + f = H[(c + 16) >> 2] + e = H[(c + 20) >> 2] + b = H[(c + 8) >> 2] + h = H[(c + 12) >> 2] + a = H[(i + 8) >> 2] + k = H[(i + 12) >> 2] + } + j = (b - f) | 0 + b = (h - (((b >>> 0 < f >>> 0) + e) | 0)) | 0 + if ( + (((b | 0) == (k | 0)) & (a >>> 0 > j >>> 0)) | + (b >>> 0 < k >>> 0) + ) { + break Ia + } + e = (e + k) | 0 + b = (a + f) | 0 + e = b >>> 0 < a >>> 0 ? (e + 1) | 0 : e + H[(c + 16) >> 2] = b + H[(c + 20) >> 2] = e + if ((a | 0) <= 0) { + break Ia + } + b = (H[c >> 2] + f) | 0 + H[(g + 48) >> 2] = b + c = (a - 1) | 0 + f = (c + b) | 0 + e = I[f | 0] + Ka: { + if (e >>> 0 <= 63) { + H[(g + 52) >> 2] = c + a = I[f | 0] & 63 + break Ka + } + La: { + switch ((((e >>> 6) | 0) - 1) | 0) { + case 0: + if (a >>> 0 < 2) { + break Ia + } + a = (a - 2) | 0 + H[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + ((I[(a + 1) | 0] << 8) & 16128) | + I[a | 0] + break Ka + case 1: + if (a >>> 0 < 3) { + break Ia + } + a = (a - 3) | 0 + H[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) & 4128768) | + I[a | 0] + break Ka + default: + break La + } + } + a = (a - 4) | 0 + H[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + (I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | + (I[(a + 3) | 0] << 24))) & + 1073741823 + } + H[(g + 56) >> 2] = a + 2097152 + d = a >>> 0 < 534773760 + } + ca = (i + 16) | 0 + if (!d) { + break Ha + } + if (!m) { + o = 1 + break Ha + } + b = H[(g + 52) >> 2] + a = H[(g + 56) >> 2] + c = H[(g + 36) >> 2] + d = H[(g + 48) >> 2] + f = H[(g + 24) >> 2] + while (1) { + Ma: { + if (a >>> 0 > 2097151) { + break Ma + } + while (1) { + if ((b | 0) <= 0) { + break Ma + } + b = (b - 1) | 0 + H[(g + 52) >> 2] = b + a = I[(b + d) | 0] | (a << 8) + H[(g + 56) >> 2] = a + if (a >>> 0 < 2097152) { + continue + } + break + } + } + e = a & 524287 + o = H[(f + (e << 2)) >> 2] + k = (c + (o << 3)) | 0 + a = + (((N(H[k >> 2], (a >>> 19) | 0) + e) | 0) - + H[(k + 4) >> 2]) | + 0 + H[(g + 56) >> 2] = a + H[(r + (q << 2)) >> 2] = o + o = 1 + q = (q + 1) | 0 + if ((m | 0) != (q | 0)) { + continue + } + break + } + } + a = H[(g + 36) >> 2] + if (a) { + H[(g + 40) >> 2] = a + oa(a) + } + a = H[(g + 24) >> 2] + if (a) { + H[(g + 28) >> 2] = a + oa(a) + } + a = H[(g + 8) >> 2] + if (a) { + H[(g + 12) >> 2] = a + oa(a) + } + ca = (g - -64) | 0 + b = o + break g + case 17: + b = Le(a, c, d) + break g + case 0: + case 1: + case 2: + case 3: + case 4: + case 5: + case 6: + case 7: + b = (ca + -64) | 0 + ca = b + H[(b + 56) >> 2] = 0 + H[(b + 48) >> 2] = 0 + H[(b + 52) >> 2] = 0 + H[(b + 40) >> 2] = 0 + H[(b + 44) >> 2] = 0 + H[(b + 32) >> 2] = 0 + H[(b + 36) >> 2] = 0 + H[(b + 24) >> 2] = 0 + H[(b + 28) >> 2] = 0 + H[(b + 16) >> 2] = 0 + H[(b + 20) >> 2] = 0 + H[(b + 8) >> 2] = 0 + H[(b + 12) >> 2] = 0 + Na: { + if ( + !Ne((b + 8) | 0, c) | (H[(b + 20) >> 2] ? 0 : a) + ) { + break Na + } + if (!Me((b + 8) | 0, c)) { + break Na + } + if (!a) { + f = 1 + break Na + } + e = H[(b + 52) >> 2] + c = H[(b + 56) >> 2] + k = H[(b + 36) >> 2] + i = H[(b + 48) >> 2] + g = H[(b + 24) >> 2] + while (1) { + Oa: { + if (c >>> 0 > 16383) { + break Oa + } + while (1) { + if ((e | 0) <= 0) { + break Oa + } + e = (e - 1) | 0 + H[(b + 52) >> 2] = e + c = I[(e + i) | 0] | (c << 8) + H[(b + 56) >> 2] = c + if (c >>> 0 < 16384) { + continue + } + break + } + } + f = c & 4095 + m = H[(g + (f << 2)) >> 2] + r = (k + (m << 3)) | 0 + c = + (((N(H[r >> 2], (c >>> 12) | 0) + f) | 0) - + H[(r + 4) >> 2]) | + 0 + H[(b + 56) >> 2] = c + H[((o << 2) + d) >> 2] = m + f = 1 + o = (o + 1) | 0 + if ((o | 0) != (a | 0)) { + continue + } + break + } + } + a = H[(b + 36) >> 2] + if (a) { + H[(b + 40) >> 2] = a + oa(a) + } + a = H[(b + 24) >> 2] + if (a) { + H[(b + 28) >> 2] = a + oa(a) + } + a = H[(b + 8) >> 2] + if (a) { + H[(b + 12) >> 2] = a + oa(a) + } + ca = (b - -64) | 0 + b = f + break g + case 13: + case 14: + case 15: + case 16: + break h + default: + break g + } + } + b = Le(a, c, d) + } + f = b + } + return f + } + function gi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + L = 0, + M = 0, + O = 0, + P = 0, + Q = 0, + R = 0 + s = (ca + -64) | 0 + ca = s + H[(a + 132) >> 2] = 0 + if (H[(a + 148) >> 2]) { + c = H[(a + 144) >> 2] + if (c) { + while (1) { + d = H[c >> 2] + oa(c) + c = d + if (c) { + continue + } + break + } + } + c = 0 + H[(a + 144) >> 2] = 0 + d = H[(a + 140) >> 2] + a: { + if (!d) { + break a + } + if (d >>> 0 >= 4) { + g = d & -4 + while (1) { + e = c << 2 + H[(e + H[(a + 136) >> 2]) >> 2] = 0 + H[(H[(a + 136) >> 2] + (e | 4)) >> 2] = 0 + H[(H[(a + 136) >> 2] + (e | 8)) >> 2] = 0 + H[(H[(a + 136) >> 2] + (e | 12)) >> 2] = 0 + c = (c + 4) | 0 + b = (b + 4) | 0 + if ((g | 0) != (b | 0)) { + continue + } + break + } + } + b = d & 3 + if (!b) { + break a + } + while (1) { + H[(H[(a + 136) >> 2] + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + u = (u + 1) | 0 + if ((b | 0) != (u | 0)) { + continue + } + break + } + } + H[(a + 148) >> 2] = 0 + } + b: { + c: { + d: { + c = H[(a + 4) >> 2] + u = I[(c + 36) | 0] + b = (u << 8) | I[(c + 37) | 0] + if (b >>> 0 <= 513) { + i = H[(c + 32) >> 2] + e: { + if (b >>> 0 <= 511) { + b = H[(i + 20) >> 2] + e = H[(i + 16) >> 2] + d = (e + 4) | 0 + b = d >>> 0 < 4 ? (b + 1) | 0 : b + g = b + h = H[(i + 12) >> 2] + if ( + ((K[(i + 8) >> 2] < d >>> 0) & + ((b | 0) >= (h | 0))) | + ((b | 0) > (h | 0)) + ) { + break d + } + b = (e + H[i >> 2]) | 0 + b = + I[b | 0] | + (I[(b + 1) | 0] << 8) | + ((I[(b + 2) | 0] << 16) | (I[(b + 3) | 0] << 24)) + H[(i + 16) >> 2] = d + H[(i + 20) >> 2] = g + break e + } + if (!Ea(1, s, i)) { + break d + } + c = H[(a + 4) >> 2] + u = I[(c + 36) | 0] + b = H[s >> 2] + } + H[(a + 132) >> 2] = b + } + g = H[(c + 32) >> 2] + f: { + g: { + h: { + if ((u & 255) >>> 0 <= 1) { + u = 0 + d = H[(g + 20) >> 2] + e = H[(g + 16) >> 2] + b = (e + 4) | 0 + d = b >>> 0 < 4 ? (d + 1) | 0 : d + i = H[(g + 12) >> 2] + if ( + ((K[(g + 8) >> 2] < b >>> 0) & + ((i | 0) <= (d | 0))) | + ((d | 0) > (i | 0)) + ) { + break c + } + e = (e + H[g >> 2]) | 0 + e = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | + (I[(e + 3) | 0] << 24)) + H[(s + 60) >> 2] = e + H[(g + 16) >> 2] = b + H[(g + 20) >> 2] = d + H[(a + 156) >> 2] = e + n = (a + 156) | 0 + break h + } + u = 0 + if (!Ea(1, (s + 60) | 0, g)) { + break c + } + c = H[(a + 4) >> 2] + b = I[(c + 36) | 0] + H[(a + 156) >> 2] = H[(s + 60) >> 2] + n = (a + 156) | 0 + if (b >>> 0 > 1) { + break g + } + } + g = H[(c + 32) >> 2] + h = H[(g + 8) >> 2] + i = H[(g + 12) >> 2] + c = H[(g + 20) >> 2] + d = H[(g + 16) >> 2] + b = (d + 4) | 0 + c = b >>> 0 < 4 ? (c + 1) | 0 : c + e = b + if ( + ((b >>> 0 > h >>> 0) & ((c | 0) >= (i | 0))) | + ((c | 0) > (i | 0)) + ) { + break c + } + b = (d + H[g >> 2]) | 0 + b = + I[b | 0] | + (I[(b + 1) | 0] << 8) | + ((I[(b + 2) | 0] << 16) | (I[(b + 3) | 0] << 24)) + H[(s + 56) >> 2] = b + H[(g + 16) >> 2] = e + H[(g + 20) >> 2] = c + break f + } + if (!Ea(1, (s + 56) | 0, H[(c + 32) >> 2])) { + break c + } + b = H[(s + 56) >> 2] + } + if ( + (b >>> 0 > 1431655765) | + (K[n >> 2] > N(b, 3) >>> 0) + ) { + break c + } + f = H[(a + 4) >> 2] + g = H[(f + 32) >> 2] + c = g + e = H[(c + 8) >> 2] + i = H[(c + 16) >> 2] + j = H[(c + 12) >> 2] + d = H[(c + 20) >> 2] + c = d + if ( + (((j | 0) <= (c | 0)) & (e >>> 0 <= i >>> 0)) | + ((c | 0) > (j | 0)) + ) { + break c + } + n = H[g >> 2] + o = I[(n + i) | 0] + h = (i + 1) | 0 + c = h ? c : (c + 1) | 0 + H[(g + 16) >> 2] = h + H[(g + 20) >> 2] = c + i: { + if (I[(f + 36) | 0] <= 1) { + f = e + c = j + e = (i + 5) | 0 + d = e >>> 0 < 5 ? (d + 1) | 0 : d + if ( + (((c | 0) <= (d | 0)) & (e >>> 0 > f >>> 0)) | + ((c | 0) < (d | 0)) + ) { + break c + } + c = (h + n) | 0 + n = + I[c | 0] | + (I[(c + 1) | 0] << 8) | + ((I[(c + 2) | 0] << 16) | (I[(c + 3) | 0] << 24)) + H[(s + 52) >> 2] = n + H[(g + 16) >> 2] = e + H[(g + 20) >> 2] = d + break i + } + if (!Ea(1, (s + 52) | 0, g)) { + break c + } + n = H[(s + 52) >> 2] + } + if ( + (b >>> 0 < n >>> 0) | + (((((n >>> 0) / 3) | 0) + n) >>> 0 < b >>> 0) + ) { + break c + } + c = H[(a + 4) >> 2] + i = H[(c + 32) >> 2] + j: { + if (I[(c + 36) | 0] <= 1) { + c = H[(i + 20) >> 2] + e = H[(i + 16) >> 2] + d = (e + 4) | 0 + c = d >>> 0 < 4 ? (c + 1) | 0 : c + g = d + f = K[(i + 8) >> 2] < d >>> 0 + d = H[(i + 12) >> 2] + if ( + (f & ((d | 0) <= (c | 0))) | + ((c | 0) > (d | 0)) + ) { + break c + } + d = (e + H[i >> 2]) | 0 + d = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(s + 48) >> 2] = d + H[(i + 16) >> 2] = g + H[(i + 20) >> 2] = c + break j + } + if (!Ea(1, (s + 48) | 0, i)) { + break c + } + d = H[(s + 48) >> 2] + } + if (d >>> 0 > n >>> 0) { + break c + } + H[(a + 28) >> 2] = H[(a + 24) >> 2] + e = $b(pa(88)) + c = H[(a + 8) >> 2] + H[(a + 8) >> 2] = e + if (c) { + cb(c) + if (!H[(a + 8) >> 2]) { + break c + } + } + H[(a + 164) >> 2] = H[(a + 160) >> 2] + Jb((a + 160) | 0, b) + H[(a + 176) >> 2] = H[(a + 172) >> 2] + Jb((a + 172) | 0, b) + H[(a - -64) >> 2] = 0 + H[(a + 92) >> 2] = -1 + H[(a + 84) >> 2] = -1 + H[(a + 88) >> 2] = -1 + H[(a + 40) >> 2] = H[(a + 36) >> 2] + H[(a + 52) >> 2] = H[(a + 48) >> 2] + H[(a + 76) >> 2] = H[(a + 72) >> 2] + B = (a + 216) | 0 + ed(B) + dd(B, o) + if ( + !Lc(H[(a + 8) >> 2], b, (H[(a + 156) >> 2] + d) | 0) + ) { + break c + } + c = H[(a + 156) >> 2] + F[s | 0] = 1 + Oa((a + 120) | 0, (c + d) | 0, s) + c = H[(a + 4) >> 2] + b = J[(c + 36) >> 1] + b = ((b << 8) | (b >>> 8)) & 65535 + k: { + if (b >>> 0 <= 513) { + i = H[(c + 32) >> 2] + l: { + if (b >>> 0 <= 511) { + b = H[(i + 20) >> 2] + e = H[(i + 16) >> 2] + c = (e + 4) | 0 + b = c >>> 0 < 4 ? (b + 1) | 0 : b + g = b + h = H[(i + 12) >> 2] + if ( + ((K[(i + 8) >> 2] < c >>> 0) & + ((b | 0) >= (h | 0))) | + ((b | 0) > (h | 0)) + ) { + break c + } + b = (e + H[i >> 2]) | 0 + b = + I[b | 0] | + (I[(b + 1) | 0] << 8) | + ((I[(b + 2) | 0] << 16) | + (I[(b + 3) | 0] << 24)) + H[(i + 16) >> 2] = c + H[(i + 20) >> 2] = g + break l + } + if (!Ea(1, (s + 44) | 0, i)) { + break c + } + b = H[(s + 44) >> 2] + } + if (!b) { + break c + } + c = H[(H[(a + 4) >> 2] + 32) >> 2] + e = H[(c + 8) >> 2] + g = H[(c + 16) >> 2] + i = (e - g) | 0 + c = + (H[(c + 12) >> 2] - + ((H[(c + 20) >> 2] + (e >>> 0 < g >>> 0)) | 0)) | + 0 + if ( + (((c | 0) <= 0) & (b >>> 0 > i >>> 0)) | + ((c | 0) < 0) + ) { + break c + } + c = Ha(s) + e = H[(H[(a + 4) >> 2] + 32) >> 2] + g = H[(e + 16) >> 2] + i = (((g + H[e >> 2]) | 0) + b) | 0 + g = (H[(e + 8) >> 2] - g) | 0 + G[(c + 38) >> 1] = J[(e + 38) >> 1] + H[c >> 2] = i + H[(c + 16) >> 2] = 0 + H[(c + 20) >> 2] = 0 + H[(c + 8) >> 2] = g - b + H[(c + 12) >> 2] = 0 + C = Ib(a, c) + if ((C | 0) == -1) { + break c + } + M = C >> 31 + break k + } + C = -1 + M = -1 + if ((Ib(a, H[(c + 32) >> 2]) | 0) == -1) { + break c + } + } + e = (a + 232) | 0 + Ee(e, a) + H[(a + 372) >> 2] = o + H[(a + 384) >> 2] = H[(a + 156) >> 2] + d + O = Ha(s) + g = O + b = 0 + j = (ca - 16) | 0 + ca = j + m: { + n: { + c = H[(e + 144) >> 2] + c = + J[((ea[H[(H[c >> 2] + 32) >> 2]](c) | 0) + 36) >> 1] + if ((((c << 8) | (c >>> 8)) & 65535) >>> 0 <= 513) { + c = H[(e + 4) >> 2] + H[(e + 40) >> 2] = H[e >> 2] + H[(e + 44) >> 2] = c + c = H[(e + 36) >> 2] + H[(e + 72) >> 2] = H[(e + 32) >> 2] + H[(e + 76) >> 2] = c + d = H[(e + 28) >> 2] + c = (e - -64) | 0 + H[c >> 2] = H[(e + 24) >> 2] + H[(c + 4) >> 2] = d + c = H[(e + 20) >> 2] + H[(e + 56) >> 2] = H[(e + 16) >> 2] + H[(e + 60) >> 2] = c + c = H[(e + 12) >> 2] + H[(e + 48) >> 2] = H[(e + 8) >> 2] + H[(e + 52) >> 2] = c + if (!Db((e + 40) | 0, 1, (j + 8) | 0)) { + break n + } + c = H[(e + 44) >> 2] + H[e >> 2] = H[(e + 40) >> 2] + H[(e + 4) >> 2] = c + c = H[(e + 76) >> 2] + H[(e + 32) >> 2] = H[(e + 72) >> 2] + H[(e + 36) >> 2] = c + c = H[(e + 68) >> 2] + H[(e + 24) >> 2] = H[(e + 64) >> 2] + H[(e + 28) >> 2] = c + c = H[(e + 60) >> 2] + h = c + d = H[(e + 56) >> 2] + H[(e + 16) >> 2] = d + H[(e + 20) >> 2] = c + i = H[(e + 52) >> 2] + f = i + c = H[(e + 48) >> 2] + H[(e + 8) >> 2] = c + H[(e + 12) >> 2] = f + o = (c - d) | 0 + k = H[(j + 12) >> 2] + c = (f - (((c >>> 0 < d >>> 0) + h) | 0)) | 0 + i = H[(j + 8) >> 2] + if ( + (((k | 0) == (c | 0)) & (o >>> 0 < i >>> 0)) | + (c >>> 0 < k >>> 0) + ) { + break n + } + c = (h + k) | 0 + f = d + d = (d + i) | 0 + c = f >>> 0 > d >>> 0 ? (c + 1) | 0 : c + H[(e + 16) >> 2] = d + H[(e + 20) >> 2] = c + } + o: { + if (J[(e + 38) >> 1] <= 513) { + c = H[(e + 4) >> 2] + H[(e + 96) >> 2] = H[e >> 2] + H[(e + 100) >> 2] = c + c = H[(e + 36) >> 2] + H[(e + 128) >> 2] = H[(e + 32) >> 2] + H[(e + 132) >> 2] = c + c = H[(e + 28) >> 2] + H[(e + 120) >> 2] = H[(e + 24) >> 2] + H[(e + 124) >> 2] = c + c = H[(e + 20) >> 2] + H[(e + 112) >> 2] = H[(e + 16) >> 2] + H[(e + 116) >> 2] = c + c = H[(e + 12) >> 2] + H[(e + 104) >> 2] = H[(e + 8) >> 2] + H[(e + 108) >> 2] = c + if (!Db((e + 96) | 0, 1, (j + 8) | 0)) { + break n + } + c = H[(e + 100) >> 2] + H[e >> 2] = H[(e + 96) >> 2] + H[(e + 4) >> 2] = c + c = H[(e + 132) >> 2] + H[(e + 32) >> 2] = H[(e + 128) >> 2] + H[(e + 36) >> 2] = c + c = H[(e + 124) >> 2] + H[(e + 24) >> 2] = H[(e + 120) >> 2] + H[(e + 28) >> 2] = c + d = H[(e + 116) >> 2] + h = d + c = H[(e + 112) >> 2] + H[(e + 16) >> 2] = c + H[(e + 20) >> 2] = d + i = H[(e + 108) >> 2] + f = i + d = H[(e + 104) >> 2] + H[(e + 8) >> 2] = d + H[(e + 12) >> 2] = f + o = (d - c) | 0 + k = H[(j + 12) >> 2] + d = (f - (((c >>> 0 > d >>> 0) + h) | 0)) | 0 + i = H[(j + 8) >> 2] + if ( + (((k | 0) == (d | 0)) & (o >>> 0 < i >>> 0)) | + (d >>> 0 < k >>> 0) + ) { + break n + } + d = (h + k) | 0 + f = c + c = (c + i) | 0 + d = f >>> 0 > c >>> 0 ? (d + 1) | 0 : d + H[(e + 16) >> 2] = c + H[(e + 20) >> 2] = d + break o + } + if (!ta((e + 80) | 0, e)) { + break m + } + } + if (!Fe(e)) { + break m + } + c = H[(e + 4) >> 2] + H[g >> 2] = H[e >> 2] + H[(g + 4) >> 2] = c + c = H[(e + 36) >> 2] + H[(g + 32) >> 2] = H[(e + 32) >> 2] + H[(g + 36) >> 2] = c + c = H[(e + 28) >> 2] + H[(g + 24) >> 2] = H[(e + 24) >> 2] + H[(g + 28) >> 2] = c + c = H[(e + 20) >> 2] + H[(g + 16) >> 2] = H[(e + 16) >> 2] + H[(g + 20) >> 2] = c + c = H[(e + 12) >> 2] + H[(g + 8) >> 2] = H[(e + 8) >> 2] + H[(g + 12) >> 2] = c + c = H[(e + 144) >> 2] + c = + J[((ea[H[(H[c >> 2] + 32) >> 2]](c) | 0) + 36) >> 1] + p: { + if ((((c << 8) | (c >>> 8)) & 65535) >>> 0 <= 513) { + c = H[(e + 144) >> 2] + q: { + if ( + I[ + ((ea[H[(H[c >> 2] + 32) >> 2]](c) | 0) + + 36) | + 0 + ] <= 1 + ) { + c = H[(g + 20) >> 2] + i = H[(g + 16) >> 2] + d = (i + 4) | 0 + c = d >>> 0 < 4 ? (c + 1) | 0 : c + h = d + f = K[(g + 8) >> 2] < d >>> 0 + d = H[(g + 12) >> 2] + if ( + (f & ((d | 0) <= (c | 0))) | + ((c | 0) > (d | 0)) + ) { + break m + } + d = (i + H[g >> 2]) | 0 + d = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + H[(g + 16) >> 2] = h + H[(g + 20) >> 2] = c + break q + } + if (!Ea(1, (j + 8) | 0, g)) { + break m + } + d = H[(j + 8) >> 2] + } + c = H[(e + 152) >> 2] + if (d >>> 0 >= c >>> 0) { + break m + } + d = H[(g + 20) >> 2] + h = H[(g + 12) >> 2] + i = H[(g + 16) >> 2] + if ( + (((d | 0) >= (h | 0)) & + (i >>> 0 >= K[(g + 8) >> 2])) | + ((d | 0) > (h | 0)) + ) { + break m + } + h = I[(i + H[g >> 2]) | 0] + i = (i + 1) | 0 + d = i ? d : (d + 1) | 0 + H[(g + 16) >> 2] = i + H[(g + 20) >> 2] = d + if (h) { + break m + } + H[(e + 176) >> 2] = 2 + H[(e + 180) >> 2] = 7 + break p + } + H[(e + 176) >> 2] = 2 + H[(e + 180) >> 2] = 7 + c = H[(e + 152) >> 2] + } + if ((c | 0) < 0) { + break m + } + H[(j + 8) >> 2] = 0 + b = 2 + h = H[(e + 156) >> 2] + i = (H[(e + 160) >> 2] - h) >> 2 + r: { + if (i >>> 0 < c >>> 0) { + Pa((e + 156) | 0, (c - i) | 0, (j + 8) | 0) + b = H[(e + 176) >> 2] + d = H[(e + 180) >> 2] + break r + } + d = 7 + if (c >>> 0 >= i >>> 0) { + break r + } + H[(e + 160) >> 2] = h + (c << 2) + } + i = (e + 184) | 0 + b = (((d - b) | 0) + 1) | 0 + c = H[(e + 188) >> 2] + h = H[(e + 184) >> 2] + d = (((c - h) | 0) / 12) | 0 + s: { + if (b >>> 0 > d >>> 0) { + o = 0 + d = (b - d) | 0 + f = H[(i + 8) >> 2] + c = H[(i + 4) >> 2] + t: { + if (d >>> 0 <= (((f - c) | 0) / 12) >>> 0) { + if (d) { + b = c + c = (N(d, 12) - 12) | 0 + c = + (((c - ((c >>> 0) % 12 | 0)) | 0) + 12) | + 0 + c = (ra(b, 0, c) + c) | 0 + } + H[(i + 4) >> 2] = c + break t + } + u: { + v: { + w: { + h = H[i >> 2] + k = (((c - h) | 0) / 12) | 0 + b = (k + d) | 0 + if (b >>> 0 < 357913942) { + f = (((f - h) | 0) / 12) | 0 + l = f << 1 + f = + f >>> 0 >= 178956970 + ? 357913941 + : b >>> 0 < l >>> 0 + ? l + : b + if (f) { + if (f >>> 0 >= 357913942) { + break w + } + o = pa(N(f, 12)) + } + b = (N(k, 12) + o) | 0 + d = (N(d, 12) - 12) | 0 + k = + (((d - ((d >>> 0) % 12 | 0)) | 0) + + 12) | + 0 + d = ra(b, 0, k) + k = (d + k) | 0 + f = (N(f, 12) + o) | 0 + if ((c | 0) == (h | 0)) { + break v + } + while (1) { + b = (b - 12) | 0 + c = (c - 12) | 0 + H[b >> 2] = H[c >> 2] + H[(b + 4) >> 2] = H[(c + 4) >> 2] + H[(b + 8) >> 2] = H[(c + 8) >> 2] + H[(c + 8) >> 2] = 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + if ((c | 0) != (h | 0)) { + continue + } + break + } + H[(i + 8) >> 2] = f + d = H[(i + 4) >> 2] + H[(i + 4) >> 2] = k + c = H[i >> 2] + H[i >> 2] = b + if ((c | 0) == (d | 0)) { + break u + } + while (1) { + b = (d - 12) | 0 + h = H[b >> 2] + if (h) { + H[(d - 8) >> 2] = h + oa(h) + } + d = b + if ((b | 0) != (c | 0)) { + continue + } + break + } + break u + } + break b + } + wa() + v() + } + H[(i + 8) >> 2] = f + H[(i + 4) >> 2] = k + H[i >> 2] = d + } + if (c) { + oa(c) + } + } + d = H[(e + 188) >> 2] + break s + } + if (b >>> 0 >= d >>> 0) { + d = c + break s + } + d = (h + N(b, 12)) | 0 + if ((d | 0) != (c | 0)) { + while (1) { + b = (c - 12) | 0 + h = H[b >> 2] + if (h) { + H[(c - 8) >> 2] = h + oa(h) + } + c = b + if ((d | 0) != (b | 0)) { + continue + } + break + } + } + H[(e + 188) >> 2] = d + } + f = (e + 196) | 0 + b = H[(e + 184) >> 2] + c = (((d - b) | 0) / 12) | 0 + o = H[(e + 196) >> 2] + h = (H[(e + 200) >> 2] - o) >> 2 + x: { + if (c >>> 0 > h >>> 0) { + ya(f, (c - h) | 0) + b = H[(e + 184) >> 2] + d = H[(e + 188) >> 2] + break x + } + if (c >>> 0 >= h >>> 0) { + break x + } + H[(e + 200) >> 2] = o + (c << 2) + } + if ((b | 0) == (d | 0)) { + b = 1 + break m + } + c = 0 + while (1) { + if (!Ea(1, (j + 8) | 0, g)) { + break n + } + b = H[(e + 148) >> 2] + d = + ((((H[(b + 4) >> 2] - H[b >> 2]) >> 2) >>> 0) / + 3) | + 0 + b = H[(j + 8) >> 2] + if (d >>> 0 < b >>> 0) { + break n + } + if (b) { + k = N(c, 12) + h = (k + H[i >> 2]) | 0 + d = H[h >> 2] + o = (H[(h + 4) >> 2] - d) >> 2 + y: { + if (o >>> 0 < b >>> 0) { + ya(h, (b - o) | 0) + d = H[(k + H[i >> 2]) >> 2] + break y + } + if (b >>> 0 >= o >>> 0) { + break y + } + H[(h + 4) >> 2] = (b << 2) + d + } + kd(b, 1, g, d) + H[(H[f >> 2] + (c << 2)) >> 2] = b + } + b = 1 + c = (c + 1) | 0 + if ( + c >>> 0 < + (((H[(e + 188) >> 2] - H[(e + 184) >> 2]) | 0) / + 12) >>> + 0 + ) { + continue + } + break + } + break m + } + b = 0 + } + ca = (j + 16) | 0 + z: { + if (!b) { + break z + } + d = 0 + c = 0 + g = 0 + i = 0 + o = 0 + l = (ca - 96) | 0 + ca = l + H[(l + 72) >> 2] = 0 + H[(l + 64) >> 2] = 0 + H[(l + 68) >> 2] = 0 + H[(l + 48) >> 2] = 0 + H[(l + 52) >> 2] = 0 + H[(l + 40) >> 2] = 0 + H[(l + 44) >> 2] = 0 + H[(l + 56) >> 2] = 1065353216 + H[(l + 32) >> 2] = 0 + H[(l + 24) >> 2] = 0 + H[(l + 28) >> 2] = 0 + j = a + L = H[(a + 124) >> 2] + A: { + B: { + C: { + D: { + E: { + if ((n | 0) <= 0) { + break E + } + r = (j + 232) | 0 + P = H[(j + 216) >> 2] != H[(j + 220) >> 2] + D = 1 + while (1) { + h = i + i = (h + 1) | 0 + a = H[(r + 172) >> 2] + F: { + G: { + if ((a | 0) != -1) { + b = (H[(r + 196) >> 2] + (a << 2)) | 0 + f = H[b >> 2] + a = (f - 1) | 0 + H[b >> 2] = a + b = 9 + if ((f | 0) <= 0) { + break F + } + a = + H[ + (H[ + (H[(r + 184) >> 2] + + N(H[(r + 172) >> 2], 12)) >> + 2 + ] + + (a << 2)) >> + 2 + ] + if (a >>> 0 > 4) { + break F + } + b = H[((a << 2) + 12144) >> 2] + break G + } + b = 7 + a = H[(r + 144) >> 2] + a = + J[ + ((ea[H[(H[a >> 2] + 32) >> 2]](a) | + 0) + + 36) >> + 1 + ] + if ( + ((((a << 8) | (a >>> 8)) & 65535) >>> + 0 > + 513) | + !I[(r + 76) | 0] + ) { + break G + } + b = 0 + m = H[(r - -64) >> 2] + k = H[(r + 72) >> 2] + a = (m + ((k >>> 3) | 0)) | 0 + p = H[(r + 68) >> 2] + if (a >>> 0 >= p >>> 0) { + break G + } + f = I[a | 0] + a = (k + 1) | 0 + H[(r + 72) >> 2] = a + f = (f >>> (k & 7)) & 1 + if (!f) { + break G + } + q = (a >>> 3) | 0 + b = (m + q) | 0 + H: { + if (b >>> 0 >= p >>> 0) { + b = a + a = 0 + break H + } + t = I[b | 0] + b = (k + 2) | 0 + H[(r + 72) >> 2] = b + q = (b >>> 3) | 0 + a = (t >>> (a & 7)) & 1 + } + k = (m + q) | 0 + if (k >>> 0 < p >>> 0) { + k = I[k | 0] + H[(r + 72) >> 2] = b + 1 + b = ((k >>> (b & 7)) << 1) & 2 + } else { + b = 0 + } + b = ((a | b) << 1) | f + } + H[(r + 168) >> 2] = b + } + a = b + I: { + J: { + if (!a) { + if ((c | 0) == (g | 0)) { + b = -1 + break D + } + d = -1 + m = H[(j + 8) >> 2] + t = H[(m + 24) >> 2] + D = (c - 4) | 0 + f = H[D >> 2] + a = -1 + K: { + if ((f | 0) == -1) { + break K + } + k = (f + 1) | 0 + k = + (k >>> 0) % 3 | 0 + ? k + : (f - 2) | 0 + a = -1 + if ((k | 0) == -1) { + break K + } + a = H[(H[m >> 2] + (k << 2)) >> 2] + } + b = H[(t + (a << 2)) >> 2] + if ((b | 0) != -1) { + d = (b + 1) | 0 + d = + (d >>> 0) % 3 | 0 + ? d + : (b - 2) | 0 + } + if ((d | 0) == (f | 0)) { + b = -1 + break D + } + if ((f | 0) != -1) { + b = -1 + if ( + H[ + (H[(m + 12) >> 2] + (f << 2)) >> + 2 + ] != -1 + ) { + break D + } + } + k = H[(m + 12) >> 2] + if ((d | 0) != -1) { + b = -1 + if (H[(k + (d << 2)) >> 2] != -1) { + break D + } + } + p = N(h, 3) + b = (p + 1) | 0 + H[(k + (f << 2)) >> 2] = b + w = b << 2 + H[(w + k) >> 2] = f + q = (p + 2) | 0 + H[(k + (d << 2)) >> 2] = q + y = q << 2 + H[(y + k) >> 2] = d + k = -1 + h = -1 + L: { + if ((f | 0) == -1) { + break L + } + M: { + if ((f >>> 0) % 3 | 0) { + b = (f - 1) | 0 + break M + } + b = (f + 2) | 0 + h = -1 + if ((b | 0) == -1) { + break L + } + } + h = H[(H[m >> 2] + (b << 2)) >> 2] + } + N: { + if ((d | 0) == -1) { + break N + } + b = (d + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (d - 2) | 0 + if ((b | 0) == -1) { + break N + } + k = H[(H[m >> 2] + (b << 2)) >> 2] + } + b = -1 + if ( + ((a | 0) == (h | 0)) | + ((a | 0) == (k | 0)) + ) { + break D + } + b = H[m >> 2] + H[(b + (p << 2)) >> 2] = a + H[(b + w) >> 2] = k + H[(b + y) >> 2] = h + if ((h | 0) != -1) { + H[(t + (h << 2)) >> 2] = q + } + b = + (H[(j + 120) >> 2] + + ((a >>> 3) & 536870908)) | + 0 + d = H[b >> 2] + ;(Q = b), + (R = Vj(a) & d), + (H[Q >> 2] = R) + H[D >> 2] = p + k = H[(c - 4) >> 2] + break J + } + b = -1 + O: { + P: { + Q: { + R: { + S: { + T: { + U: { + V: { + W: { + switch ((a - 1) | 0) { + case 2: + case 4: + if ( + (c | 0) == + (g | 0) + ) { + break D + } + t = (c - 4) | 0 + d = H[t >> 2] + f = + H[(j + 8) >> 2] + m = + H[(f + 12) >> 2] + if ( + ((d | 0) != + -1) & + (H[ + (m + + (d << 2)) >> + 2 + ] != + -1) + ) { + break D + } + k = N(h, 3) + p = (a | 0) == 5 + q = + (k + + (p ? 2 : 1)) | + 0 + w = q << 2 + H[(w + m) >> 2] = + d + H[ + (m + + (d << 2)) >> + 2 + ] = q + Ka( + (f + 24) | 0, + 11424, + ) + a = + H[(j + 8) >> 2] + m = + H[(a + 24) >> 2] + if ( + (H[ + (a + 28) >> 2 + ] - + m) >> + 2 > + (L | 0) + ) { + break D + } + a = H[a >> 2] + y = (a + w) | 0 + b = + H[(f + 28) >> 2] + f = + H[(f + 24) >> 2] + w = + (((b - f) >> + 2) - + 1) | + 0 + H[y >> 2] = w + if ( + (b | 0) != + (f | 0) + ) { + H[ + (m + + (w << 2)) >> + 2 + ] = q + } + b = p + ? k + : (k + 2) | 0 + q = + (a + + ((k + p) << + 2)) | + 0 + X: { + if ( + (d | 0) == + -1 + ) { + H[ + (a + + (b << + 2)) >> + 2 + ] = -1 + b = -1 + break X + } + Y: { + Z: { + _: { + if ( + (d >>> + 0) % + 3 | + 0 + ) { + f = + (d - + 1) | + 0 + break _ + } + f = + (d + + 2) | + 0 + if ( + (f | + 0) == + -1 + ) { + break Z + } + } + f = + H[ + (a + + (f << + 2)) >> + 2 + ] + H[ + (a + + (b << + 2)) >> + 2 + ] = f + if ( + (f | 0) == + -1 + ) { + break Y + } + H[ + (m + + (f << + 2)) >> + 2 + ] = b + break Y + } + H[ + (a + + (b << + 2)) >> + 2 + ] = -1 + } + f = (d + 1) | 0 + d = + (f >>> 0) % + 3 | + 0 + ? f + : (d - 2) | + 0 + b = -1 + if ( + (d | 0) == + -1 + ) { + break X + } + b = + H[ + (a + + (d << + 2)) >> + 2 + ] + } + H[q >> 2] = b + H[t >> 2] = k + break V + case 0: + if ( + (c | 0) == + (d | 0) + ) { + break D + } + a = (c - 4) | 0 + m = H[a >> 2] + H[(l + 68) >> 2] = + a + p = + H[(l + 44) >> 2] + $: { + if (!p) { + c = a + break $ + } + f = + H[ + (l + 40) >> + 2 + ] + q = + Uj(p) >>> 0 > + 1 + b = + h & + (p + + 2147483647) + aa: { + if (!q) { + break aa + } + b = h + if ( + b >>> 0 < + p >>> 0 + ) { + break aa + } + b = + (h >>> 0) % + (p >>> + 0) | + 0 + } + k = b + b = + H[ + (f + + (k << + 2)) >> + 2 + ] + if (!b) { + c = a + break $ + } + b = H[b >> 2] + if (!b) { + c = a + break $ + } + ba: { + if (!q) { + f = + (p - 1) | + 0 + while (1) { + p = + H[ + (b + + 4) >> + 2 + ] + ca: { + if ( + (p | + 0) != + (h | + 0) + ) { + if ( + (k | + 0) == + (f & + p) + ) { + break ca + } + c = a + break $ + } + if ( + (h | + 0) == + H[ + (b + + 8) >> + 2 + ] + ) { + break ba + } + } + b = + H[ + b >> 2 + ] + if (b) { + continue + } + break + } + c = a + break $ + } + while (1) { + f = + H[ + (b + + 4) >> + 2 + ] + da: { + if ( + (f | + 0) != + (h | 0) + ) { + if ( + f >>> + 0 >= + p >>> + 0 + ) { + f = + (f >>> + 0) % + (p >>> + 0) | + 0 + } + if ( + (f | + 0) == + (k | + 0) + ) { + break da + } + c = a + break $ + } + if ( + (h | + 0) == + H[ + (b + + 8) >> + 2 + ] + ) { + break ba + } + } + b = + H[b >> 2] + if (b) { + continue + } + break + } + c = a + break $ + } + if ( + (a | 0) != + (x | 0) + ) { + H[a >> 2] = + H[ + (b + + 12) >> + 2 + ] + H[ + (l + 68) >> + 2 + ] = c + break $ + } + a = (x - d) | 0 + g = a >> 2 + c = (g + 1) | 0 + if ( + c >>> 0 >= + 1073741824 + ) { + break b + } + f = + (a >>> 1) | 0 + f = + a >>> 0 >= + 2147483644 + ? 1073741823 + : c >>> 0 < + f >>> 0 + ? f + : c + if (f) { + if ( + f >>> 0 >= + 1073741824 + ) { + break B + } + a = pa(f << 2) + } else { + a = 0 + } + g = + (a + + (g << 2)) | + 0 + H[g >> 2] = + H[ + (b + 12) >> + 2 + ] + c = (g + 4) | 0 + if ( + (d | 0) != + (x | 0) + ) { + while (1) { + g = + (g - 4) | + 0 + x = + (x - 4) | + 0 + H[g >> 2] = + H[x >> 2] + if ( + (d | 0) != + (x | 0) + ) { + continue + } + break + } + } + x = + (a + + (f << 2)) | + 0 + H[ + (l + 72) >> 2 + ] = x + H[ + (l + 68) >> 2 + ] = c + H[ + (l + 64) >> 2 + ] = g + if (d) { + oa(d) + } + } + if ( + (c | 0) == + (g | 0) + ) { + break P + } + w = (c - 4) | 0 + a = H[w >> 2] + if ( + (a | 0) == + (m | 0) + ) { + break P + } + b = (a | 0) == -1 + p = + H[(j + 8) >> 2] + if ( + !b & + (H[ + (H[ + (p + 12) >> + 2 + ] + + (a << 2)) >> + 2 + ] != + -1) + ) { + break P + } + q = + H[(p + 12) >> 2] + if ( + ((m | 0) != + -1) & + (H[ + (q + + (m << 2)) >> + 2 + ] != + -1) + ) { + break P + } + k = N(h, 3) + t = (k + 2) | 0 + H[ + (q + + (a << 2)) >> + 2 + ] = t + h = t << 2 + H[(h + q) >> 2] = + a + d = (k + 1) | 0 + H[ + (q + + (m << 2)) >> + 2 + ] = d + y = d << 2 + H[(y + q) >> 2] = + m + if (b) { + break T + } + if ( + (a >>> 0) % 3 | + 0 + ) { + f = (a - 1) | 0 + break S + } + f = (a + 2) | 0 + if ( + (f | 0) != + -1 + ) { + break S + } + d = H[p >> 2] + f = -1 + break R + case 6: + break W + default: + break D + } + } + k = H[(j + 8) >> 2] + Ka((k + 24) | 0, 11424) + f = H[(j + 8) >> 2] + a = N(h, 3) + m = H[(k + 28) >> 2] + p = H[(k + 24) >> 2] + q = (m - p) | 0 + k = q >> 2 + t = (k - 1) | 0 + H[ + (H[f >> 2] + + (a << 2)) >> + 2 + ] = t + Ka((f + 24) | 0, 11424) + w = (a + 1) | 0 + H[ + (H[f >> 2] + + (w << 2)) >> + 2 + ] = + ((H[(f + 28) >> 2] - + H[(f + 24) >> 2]) >> + 2) - + 1 + f = H[(j + 8) >> 2] + Ka((f + 24) | 0, 11424) + y = (a + 2) | 0 + H[ + (H[f >> 2] + + (y << 2)) >> + 2 + ] = + ((H[(f + 28) >> 2] - + H[(f + 24) >> 2]) >> + 2) - + 1 + E = H[(j + 8) >> 2] + f = H[(E + 24) >> 2] + if ( + (H[(E + 28) >> 2] - + f) >> + 2 > + (L | 0) + ) { + break D + } + ea: { + fa: { + if ( + (m | 0) != + (p | 0) + ) { + H[ + (f + + (t << 2)) >> + 2 + ] = a + b = 0 + if ( + (q | 0) == + -4 + ) { + break fa + } + } + H[ + (f + (k << 2)) >> + 2 + ] = w + b = (k + 1) | 0 + if ((b | 0) == -1) { + break ea + } + } + H[ + (f + (b << 2)) >> 2 + ] = y + } + if ( + (c | 0) != + (x | 0) + ) { + H[c >> 2] = a + c = (c + 4) | 0 + H[(l + 68) >> 2] = c + break U + } + b = (c - d) | 0 + k = b >> 2 + g = (k + 1) | 0 + if ( + g >>> 0 >= + 1073741824 + ) { + break b + } + f = (b >>> 1) | 0 + b = + b >>> 0 >= 2147483644 + ? 1073741823 + : g >>> 0 < f >>> 0 + ? f + : g + if (b) { + if ( + b >>> 0 >= + 1073741824 + ) { + break B + } + f = pa(b << 2) + } else { + f = 0 + } + g = (f + (k << 2)) | 0 + H[g >> 2] = a + x = (f + (b << 2)) | 0 + a = (g + 4) | 0 + if ( + (c | 0) != + (d | 0) + ) { + while (1) { + g = (g - 4) | 0 + c = (c - 4) | 0 + H[g >> 2] = + H[c >> 2] + if ( + (c | 0) != + (d | 0) + ) { + continue + } + break + } + } + H[(l + 72) >> 2] = x + H[(l + 68) >> 2] = a + H[(l + 64) >> 2] = g + if (d) { + oa(d) + } + c = a + } + d = g + } + Ce(r, H[(c - 4) >> 2]) + a = H[(j + 40) >> 2] + if ( + (a | 0) == + H[(j + 36) >> 2] + ) { + break I + } + b = (a - 12) | 0 + f = H[(b + 4) >> 2] + h = ((h ^ -1) + n) | 0 + if (f >>> 0 > h >>> 0) { + break P + } + if ((f | 0) != (h | 0)) { + break I + } + k = I[(a - 4) | 0] + f = H[b >> 2] + H[(j + 40) >> 2] = b + if ((f | 0) < 0) { + break P + } + m = (c - 4) | 0 + a = H[m >> 2] + H[(l + 20) >> 2] = + (f ^ -1) + n + b = (l + 20) | 0 + H[(l + 88) >> 2] = b + Gb( + l, + (l + 40) | 0, + b, + (l + 88) | 0, + ) + f = H[l >> 2] + ga: { + if (k & 1) { + b = -1 + if ((a | 0) == -1) { + break ga + } + b = (a + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (a - 2) | 0 + break ga + } + b = -1 + if ((a | 0) == -1) { + break ga + } + b = (a - 1) | 0 + if ((a >>> 0) % 3 | 0) { + break ga + } + b = (a + 2) | 0 + } + H[(f + 12) >> 2] = b + b = H[(j + 40) >> 2] + if ( + (b | 0) == + H[(j + 36) >> 2] + ) { + break I + } + while (1) { + a = (b - 12) | 0 + f = H[(a + 4) >> 2] + if (f >>> 0 > h >>> 0) { + break P + } + if ((f | 0) != (h | 0)) { + break I + } + f = I[(b - 4) | 0] + b = H[a >> 2] + H[(j + 40) >> 2] = a + if ((b | 0) < 0) { + break P + } + a = H[m >> 2] + H[(l + 20) >> 2] = + (b ^ -1) + n + b = (l + 20) | 0 + H[(l + 88) >> 2] = b + Gb( + l, + (l + 40) | 0, + b, + (l + 88) | 0, + ) + k = H[l >> 2] + ha: { + if (f & 1) { + b = -1 + if ((a | 0) == -1) { + break ha + } + b = (a + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (a - 2) | 0 + break ha + } + b = -1 + if ((a | 0) == -1) { + break ha + } + b = (a - 1) | 0 + if ((a >>> 0) % 3 | 0) { + break ha + } + b = (a + 2) | 0 + } + H[(k + 12) >> 2] = b + b = H[(j + 40) >> 2] + if ( + (b | 0) != + H[(j + 36) >> 2] + ) { + continue + } + break + } + break I + } + f = -1 + d = H[p >> 2] + H[(d + (k << 2)) >> 2] = -1 + b = -1 + break Q + } + d = H[p >> 2] + f = H[(d + (f << 2)) >> 2] + } + H[((k << 2) + d) >> 2] = f + E = (a + 1) | 0 + a = + (E >>> 0) % 3 | 0 + ? E + : (a - 2) | 0 + b = -1 + if ((a | 0) == -1) { + break Q + } + b = H[((a << 2) + d) >> 2] + } + H[(d + y) >> 2] = b + ia: { + if ((m | 0) == -1) { + H[(d + h) >> 2] = -1 + t = -1 + a = -1 + break ia + } + ja: { + ka: { + la: { + if ((m >>> 0) % 3 | 0) { + b = (m - 1) | 0 + break la + } + b = (m + 2) | 0 + if ((b | 0) == -1) { + break ka + } + } + a = H[((b << 2) + d) >> 2] + H[(d + h) >> 2] = a + if ((a | 0) == -1) { + break ja + } + H[ + (H[(p + 24) >> 2] + + (a << 2)) >> + 2 + ] = t + break ja + } + H[(d + h) >> 2] = -1 + } + t = -1 + b = (m + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (m - 2) | 0 + a = -1 + if ((b | 0) == -1) { + break ia + } + t = H[((b << 2) + d) >> 2] + a = b + } + b = H[(j + 388) >> 2] + h = f << 2 + m = (b + h) | 0 + y = b + b = t << 2 + H[m >> 2] = + H[m >> 2] + H[(y + b) >> 2] + m = b + b = H[(p + 24) >> 2] + m = (m + b) | 0 + if ((f | 0) != -1) { + H[(b + h) >> 2] = H[m >> 2] + } + b = a + while (1) { + if ((b | 0) == -1) { + break O + } + H[((b << 2) + d) >> 2] = f + p = (b + 1) | 0 + b = + (p >>> 0) % 3 | 0 + ? p + : (b - 2) | 0 + h = -1 + ma: { + if ((b | 0) == -1) { + break ma + } + b = H[(q + (b << 2)) >> 2] + h = -1 + if ((b | 0) == -1) { + break ma + } + h = (b + 1) | 0 + h = + (h >>> 0) % 3 | 0 + ? h + : (b - 2) | 0 + } + b = h + if ((a | 0) != (b | 0)) { + continue + } + break + } + } + b = -1 + if (!D) { + break E + } + break D + } + H[m >> 2] = -1 + na: { + if (P) { + break na + } + if ((z | 0) != (A | 0)) { + H[A >> 2] = t + A = (A + 4) | 0 + H[(l + 28) >> 2] = A + break na + } + a = (z - o) | 0 + h = a >> 2 + b = (h + 1) | 0 + if (b >>> 0 >= 1073741824) { + break b + } + d = (a >>> 1) | 0 + d = + a >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 < d >>> 0 + ? d + : b + if (d) { + if (d >>> 0 >= 1073741824) { + break B + } + a = pa(d << 2) + } else { + a = 0 + } + b = (a + (h << 2)) | 0 + H[b >> 2] = t + A = (b + 4) | 0 + if ((o | 0) != (z | 0)) { + while (1) { + b = (b - 4) | 0 + z = (z - 4) | 0 + H[b >> 2] = H[z >> 2] + if ((o | 0) != (z | 0)) { + continue + } + break + } + } + z = (a + (d << 2)) | 0 + H[(l + 32) >> 2] = z + H[(l + 28) >> 2] = A + H[(l + 24) >> 2] = b + if (o) { + oa(o) + } + o = b + } + H[w >> 2] = k + } + Ce(r, k) + d = g + } + D = (i | 0) < (n | 0) + if ((i | 0) != (n | 0)) { + continue + } + break + } + i = n + } + b = -1 + d = H[(j + 8) >> 2] + if ( + (H[(d + 28) >> 2] - H[(d + 24) >> 2]) >> 2 > + (L | 0) + ) { + break D + } + if ((c | 0) != (g | 0)) { + x = (j + 72) | 0 + h = (j + 60) | 0 + p = (j + 312) | 0 + while (1) { + c = (c - 4) | 0 + o = H[c >> 2] + H[(l + 68) >> 2] = c + oa: { + pa: { + qa: { + if (J[(j + 270) >> 1] <= 513) { + if (!I[(j + 364) | 0]) { + break pa + } + a = H[(j + 360) >> 2] + b = + (H[(j + 352) >> 2] + + ((a >>> 3) | 0)) | + 0 + if (b >>> 0 >= K[(j + 356) >> 2]) { + break qa + } + b = I[b | 0] + H[(j + 360) >> 2] = a + 1 + if (!((b >>> (a & 7)) & 1)) { + break qa + } + break pa + } + if (Ba(p)) { + break pa + } + } + b = H[(j + 64) >> 2] + a = H[(j + 68) >> 2] + if ((b | 0) == a << 5) { + if (((b + 1) | 0) < 0) { + break b + } + if (b >>> 0 <= 1073741822) { + a = a << 6 + b = ((b & -32) + 32) | 0 + a = a >>> 0 > b >>> 0 ? a : b + } else { + a = 2147483647 + } + pb(h, a) + b = H[(j + 64) >> 2] + } + H[(j + 64) >> 2] = b + 1 + a = + (H[(j + 60) >> 2] + + ((b >>> 3) & 536870908)) | + 0 + d = H[a >> 2] + ;(Q = a), + (R = Vj(b) & d), + (H[Q >> 2] = R) + b = H[(j + 76) >> 2] + if ((b | 0) != H[(j + 80) >> 2]) { + H[b >> 2] = o + H[(j + 76) >> 2] = b + 4 + break oa + } + d = H[x >> 2] + a = (b - d) | 0 + k = a >> 2 + f = (k + 1) | 0 + if (f >>> 0 < 1073741824) { + n = (a >>> 1) | 0 + n = + a >>> 0 >= 2147483644 + ? 1073741823 + : f >>> 0 < n >>> 0 + ? n + : f + if (n) { + if (n >>> 0 >= 1073741824) { + break B + } + a = pa(n << 2) + } else { + a = 0 + } + f = (a + (k << 2)) | 0 + H[f >> 2] = o + o = (f + 4) | 0 + if ((b | 0) != (d | 0)) { + while (1) { + f = (f - 4) | 0 + b = (b - 4) | 0 + H[f >> 2] = H[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + H[(j + 80) >> 2] = a + (n << 2) + H[(j + 76) >> 2] = o + H[(j + 72) >> 2] = f + if (!d) { + break oa + } + oa(d) + break oa + } + break b + } + m = H[(j + 8) >> 2] + r = H[m >> 2] + if ( + (((((H[(m + 4) >> 2] - r) >> 2) >>> 0) / + 3) | + 0) <= + (i | 0) + ) { + b = -1 + break D + } + d = -1 + q = H[(m + 24) >> 2] + n = -1 + ra: { + if ((o | 0) == -1) { + break ra + } + g = (o + 1) | 0 + g = (g >>> 0) % 3 | 0 ? g : (o - 2) | 0 + n = -1 + if ((g | 0) == -1) { + break ra + } + n = H[(r + (g << 2)) >> 2] + } + a = H[(q + (n << 2)) >> 2] + sa: { + if ((a | 0) == -1) { + k = 1 + f = -1 + break sa + } + k = 1 + f = -1 + b = (a + 1) | 0 + a = (b >>> 0) % 3 | 0 ? b : (a - 2) | 0 + if ((a | 0) == -1) { + break sa + } + k = 0 + d = a + b = (a + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (a - 2) | 0 + if ((b | 0) != -1) { + f = H[(r + (b << 2)) >> 2] + } + } + b = -1 + g = -1 + a = H[(q + (f << 2)) >> 2] + if ((a | 0) != -1) { + g = (a + 1) | 0 + g = (g >>> 0) % 3 | 0 ? g : (a - 2) | 0 + } + if ( + ((d | 0) == (o | 0)) | + ((g | 0) == (o | 0)) | + ((((o | 0) != -1) & + (H[ + (H[(m + 12) >> 2] + (o << 2)) >> 2 + ] != + -1)) | + ((d | 0) == (g | 0))) + ) { + break D + } + if ( + !k & + (H[ + (H[(m + 12) >> 2] + (d << 2)) >> 2 + ] != + -1) + ) { + break D + } + k = -1 + a = H[(m + 12) >> 2] + m = -1 + ta: { + if ((g | 0) == -1) { + break ta + } + if (H[(a + (g << 2)) >> 2] != -1) { + break D + } + b = (g + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (g - 2) | 0 + m = -1 + if ((b | 0) == -1) { + break ta + } + m = H[(r + (b << 2)) >> 2] + } + b = N(i, 3) + H[l >> 2] = b + H[(a + (b << 2)) >> 2] = o + H[(a + (o << 2)) >> 2] = b + b = (H[l >> 2] + 1) | 0 + H[(a + (b << 2)) >> 2] = d + H[(a + (d << 2)) >> 2] = b + b = (H[l >> 2] + 2) | 0 + H[(a + (b << 2)) >> 2] = g + H[(a + (g << 2)) >> 2] = b + a = H[l >> 2] + H[(r + (a << 2)) >> 2] = f + b = (a + 1) | 0 + d = (r + (b << 2)) | 0 + H[d >> 2] = m + g = (a + 2) | 0 + o = (r + (g << 2)) | 0 + H[o >> 2] = n + a = H[(j + 120) >> 2] + f = b ? f : -1 + n = (a + ((f >>> 3) & 536870908)) | 0 + r = H[n >> 2] + ;(Q = n), (R = Vj(f) & r), (H[Q >> 2] = R) + k = (b | 0) != -1 ? H[d >> 2] : k + b = (a + ((k >>> 3) & 536870908)) | 0 + d = H[b >> 2] + ;(Q = b), (R = Vj(k) & d), (H[Q >> 2] = R) + b = -1 + b = (g | 0) != -1 ? H[o >> 2] : b + a = (a + ((b >>> 3) & 536870908)) | 0 + d = H[a >> 2] + ;(Q = a), (R = Vj(b) & d), (H[Q >> 2] = R) + F[(l + 88) | 0] = 1 + _c(h, (l + 88) | 0) + Ka(x, l) + i = (i + 1) | 0 + g = H[(l + 64) >> 2] + } + if ((c | 0) != (g | 0)) { + continue + } + break + } + d = H[(j + 8) >> 2] + } + b = -1 + if ( + (((((H[(d + 4) >> 2] - H[d >> 2]) >> 2) >>> + 0) / + 3) | + 0) != + (i | 0) + ) { + break D + } + b = (H[(d + 28) >> 2] - H[(d + 24) >> 2]) >> 2 + i = H[(l + 24) >> 2] + f = H[(l + 28) >> 2] + if ((i | 0) == (f | 0)) { + break C + } + while (1) { + a = H[i >> 2] + h = H[(d + 24) >> 2] + c = (b - 1) | 0 + g = (h + (c << 2)) | 0 + if (H[g >> 2] == -1) { + while (1) { + c = (b - 2) | 0 + b = (b - 1) | 0 + g = (h + (c << 2)) | 0 + if (H[g >> 2] == -1) { + continue + } + break + } + } + if (a >>> 0 <= c >>> 0) { + H[l >> 2] = d + g = H[g >> 2] + F[(l + 12) | 0] = 1 + H[(l + 8) >> 2] = g + H[(l + 4) >> 2] = g + if ((g | 0) != -1) { + while (1) { + d = + (H[H[(j + 8) >> 2] >> 2] + (g << 2)) | + 0 + if (H[d >> 2] != (c | 0)) { + b = -1 + break D + } + H[d >> 2] = a + uc(l) + g = H[(l + 8) >> 2] + if ((g | 0) != -1) { + continue + } + break + } + d = H[(j + 8) >> 2] + } + h = H[(d + 24) >> 2] + g = (h + (c << 2)) | 0 + if ((a | 0) != -1) { + H[(h + (a << 2)) >> 2] = H[g >> 2] + } + H[g >> 2] = -1 + g = 1 << a + h = H[(j + 120) >> 2] + a = (h + ((a >>> 3) & 536870908)) | 0 + h = (h + ((c >>> 3) & 536870908)) | 0 + c = 1 << c + if (H[h >> 2] & c) { + g = g | H[a >> 2] + } else { + g = H[a >> 2] & (g ^ -1) + } + H[a >> 2] = g + H[h >> 2] = H[h >> 2] & (c ^ -1) + b = (b - 1) | 0 + } + i = (i + 4) | 0 + if ((f | 0) != (i | 0)) { + continue + } + break + } + } + i = H[(l + 24) >> 2] + } + if (i) { + oa(i) + } + a = H[(l + 48) >> 2] + if (a) { + while (1) { + c = H[a >> 2] + oa(a) + a = c + if (a) { + continue + } + break + } + } + a = H[(l + 40) >> 2] + H[(l + 40) >> 2] = 0 + if (a) { + oa(a) + } + a = H[(l + 64) >> 2] + if (a) { + H[(l + 68) >> 2] = a + oa(a) + } + ca = (l + 96) | 0 + break A + } + wa() + v() + } + if ((b | 0) == -1) { + break z + } + a = O + c = H[(a + 16) >> 2] + d = (c + H[a >> 2]) | 0 + c = (H[(a + 8) >> 2] - c) | 0 + a = H[(H[(j + 4) >> 2] + 32) >> 2] + G[(a + 38) >> 1] = J[(a + 38) >> 1] + H[a >> 2] = d + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[(a + 8) >> 2] = c + H[(a + 12) >> 2] = 0 + a = H[(j + 4) >> 2] + c = J[(a + 36) >> 1] + g = (c << 8) | (c >>> 8) + if ((g & 65535) >>> 0 <= 513) { + a = H[(a + 32) >> 2] + c = H[(a + 16) >> 2] + d = (M + H[(a + 20) >> 2]) | 0 + c = (c + C) | 0 + d = c >>> 0 < C >>> 0 ? (d + 1) | 0 : d + H[(a + 16) >> 2] = c + H[(a + 20) >> 2] = d + } + ua: { + if (H[(j + 216) >> 2] == H[(j + 220) >> 2]) { + break ua + } + c = H[(j + 8) >> 2] + a = H[c >> 2] + c = H[(c + 4) >> 2] + va: { + if ((g & 65535) >>> 0 >= 513) { + if ((a | 0) == (c | 0)) { + break ua + } + c = 0 + break va + } + if ((a | 0) == (c | 0)) { + break ua + } + c = 0 + while (1) { + if (cd(j, c)) { + c = (c + 3) | 0 + a = H[(j + 8) >> 2] + if ( + c >>> 0 < + ((H[(a + 4) >> 2] - H[a >> 2]) >> 2) >>> 0 + ) { + continue + } + break ua + } + break + } + break z + } + while (1) { + if (bd(j, c)) { + c = (c + 3) | 0 + a = H[(j + 8) >> 2] + if ( + c >>> 0 < + ((H[(a + 4) >> 2] - H[a >> 2]) >> 2) >>> 0 + ) { + continue + } + break ua + } + break + } + break z + } + ad(e) + c = H[(j + 216) >> 2] + if ((c | 0) != H[(j + 220) >> 2]) { + n = 0 + while (1) { + d = N(n, 144) + Jc((((d + c) | 0) + 4) | 0, H[(j + 8) >> 2]) + a = H[B >> 2] + e = (a + d) | 0 + c = H[(e + 132) >> 2] + e = H[(e + 136) >> 2] + if ((c | 0) != (e | 0)) { + while (1) { + Hc((((d + H[B >> 2]) | 0) + 4) | 0, H[c >> 2]) + c = (c + 4) | 0 + if ((e | 0) != (c | 0)) { + continue + } + break + } + a = H[B >> 2] + } + if (!Ic((((a + d) | 0) + 4) | 0)) { + break z + } + n = (n + 1) | 0 + c = H[(j + 216) >> 2] + if ( + n >>> 0 < + (((H[(j + 220) >> 2] - c) | 0) / 144) >>> 0 + ) { + continue + } + break + } + } + a = H[(j + 8) >> 2] + Hb( + (j + 184) | 0, + (H[(a + 28) >> 2] - H[(a + 24) >> 2]) >> 2, + ) + u = H[(j + 216) >> 2] + if ((u | 0) != H[(j + 220) >> 2]) { + c = 0 + while (1) { + a = (N(c, 144) + u) | 0 + d = (H[(a + 60) >> 2] - H[(a + 56) >> 2]) >> 2 + f = (a + 104) | 0 + a = H[(j + 8) >> 2] + a = (H[(a + 28) >> 2] - H[(a + 24) >> 2]) >> 2 + Hb(f, (a | 0) < (d | 0) ? d : a) + c = (c + 1) | 0 + u = H[(j + 216) >> 2] + if ( + c >>> 0 < + (((H[(j + 220) >> 2] - u) | 0) / 144) >>> 0 + ) { + continue + } + break + } + } + u = $c(j, b) + } + break c + } + u = 0 + } + ca = (s - -64) | 0 + return u | 0 + } + sa() + v() + } + function ii(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + L = 0, + M = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0 + u = (ca + -64) | 0 + ca = u + H[(a + 132) >> 2] = 0 + if (H[(a + 148) >> 2]) { + c = H[(a + 144) >> 2] + if (c) { + while (1) { + b = H[c >> 2] + oa(c) + c = b + if (b) { + continue + } + break + } + } + c = 0 + H[(a + 144) >> 2] = 0 + l = H[(a + 140) >> 2] + a: { + if (!l) { + break a + } + if (l >>> 0 >= 4) { + b = l & -4 + while (1) { + e = c << 2 + H[(e + H[(a + 136) >> 2]) >> 2] = 0 + H[(H[(a + 136) >> 2] + (e | 4)) >> 2] = 0 + H[(H[(a + 136) >> 2] + (e | 8)) >> 2] = 0 + H[(H[(a + 136) >> 2] + (e | 12)) >> 2] = 0 + c = (c + 4) | 0 + f = (f + 4) | 0 + if ((b | 0) != (f | 0)) { + continue + } + break + } + } + b = l & 3 + if (!b) { + break a + } + while (1) { + H[(H[(a + 136) >> 2] + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + w = (w + 1) | 0 + if ((b | 0) != (w | 0)) { + continue + } + break + } + } + H[(a + 148) >> 2] = 0 + } + b: { + c: { + c = H[(a + 4) >> 2] + w = I[(c + 36) | 0] + b = (w << 8) | I[(c + 37) | 0] + if (b >>> 0 <= 513) { + g = H[(c + 32) >> 2] + d: { + if (b >>> 0 <= 511) { + f = H[(g + 20) >> 2] + l = H[(g + 16) >> 2] + e = (l + 4) | 0 + f = e >>> 0 < 4 ? (f + 1) | 0 : f + b = f + d = H[(g + 12) >> 2] + if ( + ((K[(g + 8) >> 2] < e >>> 0) & + ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break c + } + f = (l + H[g >> 2]) | 0 + f = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | (I[(f + 3) | 0] << 24)) + H[(g + 16) >> 2] = e + H[(g + 20) >> 2] = b + break d + } + if (!Ea(1, u, g)) { + break c + } + c = H[(a + 4) >> 2] + w = I[(c + 36) | 0] + f = H[u >> 2] + } + H[(a + 132) >> 2] = f + } + d = H[(c + 32) >> 2] + e: { + f: { + g: { + if ((w & 255) >>> 0 <= 1) { + w = 0 + b = H[(d + 20) >> 2] + e = H[(d + 16) >> 2] + f = (e + 4) | 0 + b = f >>> 0 < 4 ? (b + 1) | 0 : b + l = H[(d + 12) >> 2] + if ( + ((K[(d + 8) >> 2] < f >>> 0) & + ((l | 0) <= (b | 0))) | + ((b | 0) > (l | 0)) + ) { + break b + } + e = (e + H[d >> 2]) | 0 + e = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + H[(u + 60) >> 2] = e + H[(d + 16) >> 2] = f + H[(d + 20) >> 2] = b + H[(a + 156) >> 2] = e + t = (a + 156) | 0 + break g + } + w = 0 + if (!Ea(1, (u + 60) | 0, d)) { + break b + } + c = H[(a + 4) >> 2] + b = I[(c + 36) | 0] + H[(a + 156) >> 2] = H[(u + 60) >> 2] + t = (a + 156) | 0 + if (b >>> 0 > 1) { + break f + } + } + d = H[(c + 32) >> 2] + e = H[(d + 8) >> 2] + l = H[(d + 12) >> 2] + c = H[(d + 20) >> 2] + f = H[(d + 16) >> 2] + b = (f + 4) | 0 + c = b >>> 0 < 4 ? (c + 1) | 0 : c + if ( + ((b >>> 0 > e >>> 0) & ((c | 0) >= (l | 0))) | + ((c | 0) > (l | 0)) + ) { + break b + } + f = (f + H[d >> 2]) | 0 + f = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | (I[(f + 3) | 0] << 24)) + H[(u + 56) >> 2] = f + H[(d + 16) >> 2] = b + H[(d + 20) >> 2] = c + break e + } + if (!Ea(1, (u + 56) | 0, H[(c + 32) >> 2])) { + break b + } + f = H[(u + 56) >> 2] + } + if ((f >>> 0 > 1431655765) | (K[t >> 2] > N(f, 3) >>> 0)) { + break b + } + E = H[(a + 4) >> 2] + x = H[(E + 32) >> 2] + c = H[(x + 8) >> 2] + d = H[(x + 12) >> 2] + b = H[(x + 20) >> 2] + h = H[(x + 16) >> 2] + if ( + (((d | 0) <= (b | 0)) & (h >>> 0 >= c >>> 0)) | + ((b | 0) > (d | 0)) + ) { + break b + } + j = H[x >> 2] + k = I[(j + h) | 0] + e = x + l = (h + 1) | 0 + g = l ? b : (b + 1) | 0 + H[(e + 16) >> 2] = l + H[(e + 20) >> 2] = g + h: { + if (I[(E + 36) | 0] <= 1) { + e = c + c = (h + 5) | 0 + b = c >>> 0 < 5 ? (b + 1) | 0 : b + if ( + ((c >>> 0 > e >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break b + } + e = (j + l) | 0 + t = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + H[(u + 52) >> 2] = t + H[(x + 16) >> 2] = c + H[(x + 20) >> 2] = b + break h + } + if (!Ea(1, (u + 52) | 0, x)) { + break b + } + t = H[(u + 52) >> 2] + } + if ( + (f >>> 0 < t >>> 0) | + (((((t >>> 0) / 3) | 0) + t) >>> 0 < f >>> 0) + ) { + break b + } + c = H[(a + 4) >> 2] + d = H[(c + 32) >> 2] + i: { + if (I[(c + 36) | 0] <= 1) { + c = H[(d + 20) >> 2] + b = H[(d + 16) >> 2] + e = (b + 4) | 0 + c = e >>> 0 < 4 ? (c + 1) | 0 : c + l = H[(d + 12) >> 2] + if ( + ((K[(d + 8) >> 2] < e >>> 0) & ((l | 0) <= (c | 0))) | + ((c | 0) > (l | 0)) + ) { + break b + } + b = (b + H[d >> 2]) | 0 + b = + I[b | 0] | + (I[(b + 1) | 0] << 8) | + ((I[(b + 2) | 0] << 16) | (I[(b + 3) | 0] << 24)) + H[(u + 48) >> 2] = b + H[(d + 16) >> 2] = e + H[(d + 20) >> 2] = c + break i + } + if (!Ea(1, (u + 48) | 0, d)) { + break b + } + b = H[(u + 48) >> 2] + } + if (b >>> 0 > t >>> 0) { + break b + } + H[(a + 28) >> 2] = H[(a + 24) >> 2] + c = $b(pa(88)) + e = H[(a + 8) >> 2] + H[(a + 8) >> 2] = c + if (e) { + cb(e) + if (!H[(a + 8) >> 2]) { + break b + } + } + H[(a + 164) >> 2] = H[(a + 160) >> 2] + Jb((a + 160) | 0, f) + H[(a + 176) >> 2] = H[(a + 172) >> 2] + Jb((a + 172) | 0, f) + H[(a - -64) >> 2] = 0 + H[(a + 92) >> 2] = -1 + H[(a + 84) >> 2] = -1 + H[(a + 88) >> 2] = -1 + H[(a + 40) >> 2] = H[(a + 36) >> 2] + H[(a + 52) >> 2] = H[(a + 48) >> 2] + H[(a + 76) >> 2] = H[(a + 72) >> 2] + M = (a + 216) | 0 + ed(M) + dd(M, k) + if (!Lc(H[(a + 8) >> 2], f, (H[(a + 156) >> 2] + b) | 0)) { + break b + } + c = H[(a + 156) >> 2] + F[u | 0] = 1 + Oa((a + 120) | 0, (b + c) | 0, u) + f = H[(a + 4) >> 2] + c = J[(f + 36) >> 1] + c = ((c << 8) | (c >>> 8)) & 65535 + j: { + if (c >>> 0 <= 513) { + g = H[(f + 32) >> 2] + k: { + if (c >>> 0 <= 511) { + f = H[(g + 20) >> 2] + l = H[(g + 16) >> 2] + e = (l + 4) | 0 + f = e >>> 0 < 4 ? (f + 1) | 0 : f + c = f + d = H[(g + 12) >> 2] + if ( + ((K[(g + 8) >> 2] < e >>> 0) & + ((c | 0) >= (d | 0))) | + ((c | 0) > (d | 0)) + ) { + break b + } + f = (l + H[g >> 2]) | 0 + f = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | (I[(f + 3) | 0] << 24)) + H[(g + 16) >> 2] = e + H[(g + 20) >> 2] = c + break k + } + if (!Ea(1, (u + 44) | 0, g)) { + break b + } + f = H[(u + 44) >> 2] + } + if (!f) { + break b + } + d = H[(H[(a + 4) >> 2] + 32) >> 2] + l = H[(d + 8) >> 2] + c = H[(d + 16) >> 2] + e = (l - c) | 0 + c = + (H[(d + 12) >> 2] - + ((H[(d + 20) >> 2] + (c >>> 0 > l >>> 0)) | 0)) | + 0 + if ( + (((c | 0) <= 0) & (f >>> 0 > e >>> 0)) | + ((c | 0) < 0) + ) { + break b + } + g = Ha(u) + d = H[(H[(a + 4) >> 2] + 32) >> 2] + l = H[(d + 16) >> 2] + e = (((l + H[d >> 2]) | 0) + f) | 0 + c = (H[(d + 8) >> 2] - l) | 0 + G[(g + 38) >> 1] = J[(d + 38) >> 1] + H[g >> 2] = e + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + H[(g + 8) >> 2] = c - f + H[(g + 12) >> 2] = 0 + c = Ib(a, g) + if ((c | 0) == -1) { + break b + } + E = c + P = c >> 31 + break j + } + E = -1 + P = -1 + if ((Ib(a, H[(f + 32) >> 2]) | 0) == -1) { + break b + } + } + B = (a + 232) | 0 + Ee(B, a) + H[(a + 372) >> 2] = k + H[(a + 384) >> 2] = H[(a + 156) >> 2] + b + x = Ha(u) + g = x + d = 0 + l = (ca - 16) | 0 + ca = l + l: { + if (!Ge(B, g)) { + break l + } + b = H[(g + 20) >> 2] + f = H[(g + 16) >> 2] + c = (f + 4) | 0 + b = c >>> 0 < 4 ? (b + 1) | 0 : b + e = H[(g + 12) >> 2] + if ( + ((K[(g + 8) >> 2] < c >>> 0) & ((e | 0) <= (b | 0))) | + ((b | 0) > (e | 0)) + ) { + break l + } + f = (f + H[g >> 2]) | 0 + f = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | (I[(f + 3) | 0] << 24)) + H[(g + 16) >> 2] = c + H[(g + 20) >> 2] = b + if ((f | 0) < 0) { + break l + } + b = f + f = H[(B + 152) >> 2] + if ((b | 0) >= (f | 0)) { + break l + } + H[(l + 12) >> 2] = 0 + c = H[(B + 156) >> 2] + b = (H[(B + 160) >> 2] - c) >> 2 + m: { + if (b >>> 0 < f >>> 0) { + Pa((B + 156) | 0, (f - b) | 0, (l + 12) | 0) + break m + } + if (b >>> 0 <= f >>> 0) { + break m + } + H[(B + 160) >> 2] = c + (f << 2) + } + d = ta((B + 168) | 0, g) + } + ca = (l + 16) | 0 + n: { + if (!d) { + break n + } + d = 0 + c = 0 + f = 0 + l = 0 + i = (ca - 96) | 0 + ca = i + H[(i + 72) >> 2] = 0 + H[(i + 64) >> 2] = 0 + H[(i + 68) >> 2] = 0 + H[(i + 48) >> 2] = 0 + H[(i + 52) >> 2] = 0 + H[(i + 40) >> 2] = 0 + H[(i + 44) >> 2] = 0 + H[(i + 56) >> 2] = 1065353216 + H[(i + 32) >> 2] = 0 + H[(i + 24) >> 2] = 0 + H[(i + 28) >> 2] = 0 + g = a + O = H[(a + 124) >> 2] + o: { + p: { + q: { + r: { + s: { + t: { + if ((t | 0) <= 0) { + break t + } + z = (g + 400) | 0 + Q = (g + 232) | 0 + C = H[(g + 216) >> 2] != H[(g + 220) >> 2] + y = 1 + while (1) { + e = l + l = (e + 1) | 0 + u: { + v: { + w: { + x: { + y: { + if (H[(g + 420) >> 2] != -1) { + if (Ba(z)) { + break y + } + } + if (!I[(g + 308) | 0]) { + break x + } + z: { + o = H[(g + 296) >> 2] + r = H[(g + 304) >> 2] + a = (o + ((r >>> 3) | 0)) | 0 + k = H[(g + 300) >> 2] + if (a >>> 0 >= k >>> 0) { + break z + } + b = I[a | 0] + a = (r + 1) | 0 + H[(g + 304) >> 2] = a + h = (b >>> (r & 7)) & 1 + if (!h) { + break z + } + n = (a >>> 3) | 0 + b = (o + n) | 0 + A: { + if (b >>> 0 >= k >>> 0) { + b = a + a = 0 + break A + } + j = I[b | 0] + b = (r + 2) | 0 + H[(g + 304) >> 2] = b + n = (b >>> 3) | 0 + a = (j >>> (a & 7)) & 1 + } + j = (n + o) | 0 + if (j >>> 0 < k >>> 0) { + j = I[j | 0] + H[(g + 304) >> 2] = b + 1 + b = ((j >>> (b & 7)) << 1) & 2 + } else { + b = 0 + } + p = ((a | b) << 1) | h + H[(g + 416) >> 2] = p + break w + } + H[(g + 416) >> 2] = 0 + break x + } + p = H[(g + 420) >> 2] + H[(g + 416) >> 2] = p + if (p) { + break w + } + } + if ((c | 0) == (f | 0)) { + b = -1 + break s + } + p = -1 + n = H[(g + 8) >> 2] + o = H[(n + 24) >> 2] + j = (c - 4) | 0 + m = H[j >> 2] + d = -1 + B: { + if ((m | 0) == -1) { + break B + } + b = (m + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (m - 2) | 0 + d = -1 + if ((b | 0) == -1) { + break B + } + d = H[(H[n >> 2] + (b << 2)) >> 2] + } + b = H[(o + (d << 2)) >> 2] + if ((b | 0) != -1) { + a = (b + 1) | 0 + p = + (a >>> 0) % 3 | 0 + ? a + : (b - 2) | 0 + } + if ((m | 0) == (p | 0)) { + b = -1 + break s + } + if ((m | 0) != -1) { + b = -1 + if ( + H[ + (H[(n + 12) >> 2] + (m << 2)) >> + 2 + ] != -1 + ) { + break s + } + } + k = H[(n + 12) >> 2] + if ((p | 0) != -1) { + b = -1 + if (H[(k + (p << 2)) >> 2] != -1) { + break s + } + } + q = N(e, 3) + a = (q + 1) | 0 + H[(k + (m << 2)) >> 2] = a + h = a << 2 + H[(h + k) >> 2] = m + r = (q + 2) | 0 + H[(k + (p << 2)) >> 2] = r + e = r << 2 + H[(e + k) >> 2] = p + k = -1 + a = -1 + C: { + if ((m | 0) == -1) { + break C + } + D: { + if ((m >>> 0) % 3 | 0) { + b = (m - 1) | 0 + break D + } + b = (m + 2) | 0 + a = -1 + if ((b | 0) == -1) { + break C + } + } + a = H[(H[n >> 2] + (b << 2)) >> 2] + } + E: { + if ((p | 0) == -1) { + break E + } + b = (p + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (p - 2) | 0 + if ((b | 0) == -1) { + break E + } + k = H[(H[n >> 2] + (b << 2)) >> 2] + } + b = -1 + if ( + ((a | 0) == (d | 0)) | + ((d | 0) == (k | 0)) + ) { + break s + } + b = H[n >> 2] + H[(b + (q << 2)) >> 2] = d + H[(b + h) >> 2] = k + H[(b + e) >> 2] = a + if ((a | 0) != -1) { + H[(o + (a << 2)) >> 2] = r + } + b = + (H[(g + 120) >> 2] + + ((d >>> 3) & 536870908)) | + 0 + a = H[b >> 2] + ;(R = b), + (S = Vj(d) & a), + (H[R >> 2] = S) + H[j >> 2] = q + p = H[(c - 4) >> 2] + break v + } + b = -1 + F: { + G: { + H: { + I: { + J: { + K: { + L: { + M: { + N: { + O: { + P: { + switch ( + (p - 1) | + 0 + ) { + case 2: + case 4: + if ( + (c | 0) == + (f | 0) + ) { + break s + } + h = + (c - 4) | 0 + m = H[h >> 2] + r = + H[ + (g + 8) >> + 2 + ] + d = + H[ + (r + + 12) >> + 2 + ] + if ( + ((m | 0) != + -1) & + (H[ + (d + + (m << + 2)) >> + 2 + ] != + -1) + ) { + break s + } + q = N(e, 3) + k = + (p | 0) == 5 + j = + (q + + (k + ? 2 + : 1)) | + 0 + a = j << 2 + H[ + (a + d) >> 2 + ] = m + H[ + (d + + (m << + 2)) >> + 2 + ] = j + Ka( + (r + 24) | + 0, + 11424, + ) + d = + H[ + (g + 8) >> + 2 + ] + o = + H[ + (d + + 24) >> + 2 + ] + if ( + (H[ + (d + + 28) >> + 2 + ] - + o) >> + 2 > + (O | 0) + ) { + break s + } + n = H[d >> 2] + p = + (n + a) | 0 + d = + H[ + (r + + 28) >> + 2 + ] + b = + H[ + (r + + 24) >> + 2 + ] + a = + (((d - b) >> + 2) - + 1) | + 0 + H[p >> 2] = a + if ( + (b | 0) != + (d | 0) + ) { + H[ + (o + + (a << + 2)) >> + 2 + ] = j + } + d = k + ? q + : (q + 2) | + 0 + j = + (n + + ((k + + q) << + 2)) | + 0 + Q: { + if ( + (m | 0) == + -1 + ) { + H[ + (n + + (d << + 2)) >> + 2 + ] = -1 + b = -1 + break Q + } + R: { + S: { + T: { + if ( + (m >>> + 0) % + 3 | + 0 + ) { + a = + (m - + 1) | + 0 + break T + } + a = + (m + + 2) | + 0 + if ( + (a | + 0) == + -1 + ) { + break S + } + } + a = + H[ + (n + + (a << + 2)) >> + 2 + ] + H[ + (n + + (d << + 2)) >> + 2 + ] = a + if ( + (a | + 0) == + -1 + ) { + break R + } + H[ + (o + + (a << + 2)) >> + 2 + ] = d + break R + } + H[ + (n + + (d << + 2)) >> + 2 + ] = -1 + } + a = + (m + 1) | + 0 + a = + (a >>> + 0) % + 3 | + 0 + ? a + : (m - + 2) | + 0 + b = -1 + if ( + (a | 0) == + -1 + ) { + break Q + } + b = + H[ + (n + + (a << + 2)) >> + 2 + ] + } + H[j >> 2] = b + H[h >> 2] = q + break O + case 0: + if ( + (c | 0) == + (d | 0) + ) { + break s + } + a = + (c - 4) | 0 + m = H[a >> 2] + H[ + (i + 68) >> + 2 + ] = a + k = + H[ + (i + + 44) >> + 2 + ] + U: { + if (!k) { + c = a + break U + } + o = + H[ + (i + + 40) >> + 2 + ] + h = + Uj(k) >>> + 0 > + 1 + b = + e & + (k + + 2147483647) + V: { + if (!h) { + break V + } + b = e + if ( + b >>> + 0 < + k >>> 0 + ) { + break V + } + b = + (e >>> + 0) % + (k >>> + 0) | + 0 + } + j = b + b = + H[ + (o + + (j << + 2)) >> + 2 + ] + if (!b) { + c = a + break U + } + b = + H[b >> 2] + if (!b) { + c = a + break U + } + W: { + if (!h) { + k = + (k - + 1) | + 0 + while ( + 1 + ) { + h = + H[ + (b + + 4) >> + 2 + ] + X: { + if ( + (h | + 0) != + (e | + 0) + ) { + if ( + (j | + 0) == + (h & + k) + ) { + break X + } + c = + a + break U + } + if ( + (e | + 0) == + H[ + (b + + 8) >> + 2 + ] + ) { + break W + } + } + b = + H[ + b >> + 2 + ] + if ( + b + ) { + continue + } + break + } + c = a + break U + } + while ( + 1 + ) { + h = + H[ + (b + + 4) >> + 2 + ] + Y: { + if ( + (h | + 0) != + (e | + 0) + ) { + if ( + h >>> + 0 >= + k >>> + 0 + ) { + h = + (h >>> + 0) % + (k >>> + 0) | + 0 + } + if ( + (h | + 0) == + (j | + 0) + ) { + break Y + } + c = + a + break U + } + if ( + (e | + 0) == + H[ + (b + + 8) >> + 2 + ] + ) { + break W + } + } + b = + H[ + b >> + 2 + ] + if (b) { + continue + } + break + } + c = a + break U + } + if ( + (a | 0) != + (A | 0) + ) { + H[ + a >> 2 + ] = + H[ + (b + + 12) >> + 2 + ] + H[ + (i + + 68) >> + 2 + ] = c + break U + } + h = + (A - d) | + 0 + c = h >> 2 + f = + (c + 1) | + 0 + if ( + f >>> 0 >= + 1073741824 + ) { + break M + } + a = + (h >>> + 1) | + 0 + h = + h >>> 0 >= + 2147483644 + ? 1073741823 + : a >>> + 0 > + f >>> + 0 + ? a + : f + if (h) { + if ( + h >>> + 0 >= + 1073741824 + ) { + break p + } + a = pa( + h << 2, + ) + } else { + a = 0 + } + f = + (a + + (c << + 2)) | + 0 + H[f >> 2] = + H[ + (b + + 12) >> + 2 + ] + c = + (f + 4) | + 0 + if ( + (d | 0) != + (A | 0) + ) { + while ( + 1 + ) { + f = + (f - + 4) | + 0 + A = + (A - + 4) | + 0 + H[ + f >> 2 + ] = + H[ + A >> + 2 + ] + if ( + (d | + 0) != + (A | + 0) + ) { + continue + } + break + } + } + A = + (a + + (h << + 2)) | + 0 + H[ + (i + + 72) >> + 2 + ] = A + H[ + (i + + 68) >> + 2 + ] = c + H[ + (i + + 64) >> + 2 + ] = f + if (d) { + oa(d) + } + } + if ( + (c | 0) == + (f | 0) + ) { + break G + } + j = + (c - 4) | 0 + n = H[j >> 2] + if ( + (n | 0) == + (m | 0) + ) { + break G + } + d = + (n | 0) == + -1 + q = + H[ + (g + 8) >> + 2 + ] + if ( + !d & + (H[ + (H[ + (q + + 12) >> + 2 + ] + + (n << + 2)) >> + 2 + ] != + -1) + ) { + break G + } + r = + H[ + (q + + 12) >> + 2 + ] + if ( + ((m | 0) != + -1) & + (H[ + (r + + (m << + 2)) >> + 2 + ] != + -1) + ) { + break G + } + p = N(e, 3) + e = + (p + 2) | 0 + H[ + (r + + (n << + 2)) >> + 2 + ] = e + o = e << 2 + H[ + (o + r) >> 2 + ] = n + a = + (p + 1) | 0 + H[ + (r + + (m << + 2)) >> + 2 + ] = a + b = a << 2 + H[ + (b + r) >> 2 + ] = m + if (d) { + break L + } + if ( + (n >>> 0) % + 3 | + 0 + ) { + k = + (n - 1) | + 0 + break J + } + k = + (n + 2) | 0 + if ( + (k | 0) != + -1 + ) { + break J + } + d = H[q >> 2] + a = -1 + break I + case 6: + break P + default: + break s + } + } + a = H[(g + 8) >> 2] + Ka( + (a + 24) | 0, + 11424, + ) + h = H[(g + 8) >> 2] + p = N(e, 3) + q = H[(a + 28) >> 2] + r = H[(a + 24) >> 2] + o = (q - r) | 0 + n = o >> 2 + k = (n - 1) | 0 + H[ + (H[h >> 2] + + (p << 2)) >> + 2 + ] = k + Ka( + (h + 24) | 0, + 11424, + ) + j = (p + 1) | 0 + H[ + (H[h >> 2] + + (j << 2)) >> + 2 + ] = + ((H[ + (h + 28) >> 2 + ] - + H[ + (h + 24) >> 2 + ]) >> + 2) - + 1 + a = H[(g + 8) >> 2] + Ka( + (a + 24) | 0, + 11424, + ) + h = (p + 2) | 0 + H[ + (H[a >> 2] + + (h << 2)) >> + 2 + ] = + ((H[ + (a + 28) >> 2 + ] - + H[ + (a + 24) >> 2 + ]) >> + 2) - + 1 + a = H[(g + 8) >> 2] + m = H[(a + 24) >> 2] + if ( + (H[ + (a + 28) >> 2 + ] - + m) >> + 2 > + (O | 0) + ) { + break s + } + Z: { + _: { + if ( + (q | 0) != + (r | 0) + ) { + H[ + (m + + (k << + 2)) >> + 2 + ] = p + b = 0 + if ( + (o | 0) == + -4 + ) { + break _ + } + } + H[ + (m + + (n << 2)) >> + 2 + ] = j + b = (n + 1) | 0 + if ( + (b | 0) == + -1 + ) { + break Z + } + } + H[ + (m + + (b << 2)) >> + 2 + ] = h + } + if ( + (c | 0) != + (A | 0) + ) { + H[c >> 2] = p + c = (c + 4) | 0 + H[(i + 68) >> 2] = + c + break N + } + h = (c - d) | 0 + b = h >> 2 + f = (b + 1) | 0 + if ( + f >>> 0 >= + 1073741824 + ) { + break K + } + a = (h >>> 1) | 0 + h = + h >>> 0 >= + 2147483644 + ? 1073741823 + : a >>> 0 > + f >>> 0 + ? a + : f + if (h) { + if ( + h >>> 0 >= + 1073741824 + ) { + break p + } + a = pa(h << 2) + } else { + a = 0 + } + f = + (a + (b << 2)) | 0 + H[f >> 2] = p + A = + (a + (h << 2)) | 0 + a = (f + 4) | 0 + if ( + (c | 0) != + (d | 0) + ) { + while (1) { + f = (f - 4) | 0 + c = (c - 4) | 0 + H[f >> 2] = + H[c >> 2] + if ( + (c | 0) != + (d | 0) + ) { + continue + } + break + } + } + H[(i + 72) >> 2] = A + H[(i + 68) >> 2] = a + H[(i + 64) >> 2] = f + if (d) { + oa(d) + } + c = a + } + d = f + } + De(Q, H[(c - 4) >> 2]) + h = H[(g + 40) >> 2] + if ( + (h | 0) == + H[(g + 36) >> 2] + ) { + break u + } + b = (h - 12) | 0 + a = H[(b + 4) >> 2] + k = ((e ^ -1) + t) | 0 + if (a >>> 0 > k >>> 0) { + break G + } + if ( + (a | 0) != + (k | 0) + ) { + break u + } + e = I[(h - 4) | 0] + a = H[b >> 2] + H[(g + 40) >> 2] = b + if ((a | 0) < 0) { + break G + } + h = (c - 4) | 0 + j = H[h >> 2] + H[(i + 20) >> 2] = + (a ^ -1) + t + a = (i + 20) | 0 + H[(i + 88) >> 2] = a + Gb( + i, + (i + 40) | 0, + a, + (i + 88) | 0, + ) + b = H[i >> 2] + $: { + if (e & 1) { + a = -1 + if ((j | 0) == -1) { + break $ + } + a = (j + 1) | 0 + a = + (a >>> 0) % 3 | 0 + ? a + : (j - 2) | 0 + break $ + } + a = -1 + if ((j | 0) == -1) { + break $ + } + a = (j - 1) | 0 + if ( + (j >>> 0) % 3 | + 0 + ) { + break $ + } + a = (j + 2) | 0 + } + H[(b + 12) >> 2] = a + b = H[(g + 40) >> 2] + if ( + (b | 0) == + H[(g + 36) >> 2] + ) { + break u + } + while (1) { + j = (b - 12) | 0 + a = H[(j + 4) >> 2] + if ( + a >>> 0 > + k >>> 0 + ) { + break G + } + if ( + (a | 0) != + (k | 0) + ) { + break u + } + e = I[(b - 4) | 0] + a = H[j >> 2] + H[(g + 40) >> 2] = j + if ((a | 0) < 0) { + break G + } + j = H[h >> 2] + H[(i + 20) >> 2] = + (a ^ -1) + t + a = (i + 20) | 0 + H[(i + 88) >> 2] = a + Gb( + i, + (i + 40) | 0, + a, + (i + 88) | 0, + ) + b = H[i >> 2] + aa: { + if (e & 1) { + a = -1 + if ( + (j | 0) == + -1 + ) { + break aa + } + a = (j + 1) | 0 + a = + (a >>> 0) % 3 | + 0 + ? a + : (j - 2) | 0 + break aa + } + a = -1 + if ((j | 0) == -1) { + break aa + } + a = (j - 1) | 0 + if ( + (j >>> 0) % 3 | + 0 + ) { + break aa + } + a = (j + 2) | 0 + } + H[(b + 12) >> 2] = a + b = H[(g + 40) >> 2] + if ( + (b | 0) != + H[(g + 36) >> 2] + ) { + continue + } + break + } + break u + } + sa() + v() + } + k = -1 + d = H[q >> 2] + H[(d + (p << 2)) >> 2] = -1 + h = -1 + break H + } + sa() + v() + } + d = H[q >> 2] + a = H[(d + (k << 2)) >> 2] + } + k = a + H[((p << 2) + d) >> 2] = a + a = (n + 1) | 0 + a = + (a >>> 0) % 3 | 0 + ? a + : (n - 2) | 0 + h = -1 + if ((a | 0) == -1) { + break H + } + h = H[((a << 2) + d) >> 2] + } + H[(b + d) >> 2] = h + ba: { + if ((m | 0) == -1) { + H[(d + o) >> 2] = -1 + n = -1 + a = -1 + break ba + } + ca: { + da: { + ea: { + if ((m >>> 0) % 3 | 0) { + b = (m - 1) | 0 + break ea + } + b = (m + 2) | 0 + if ((b | 0) == -1) { + break da + } + } + a = H[((b << 2) + d) >> 2] + H[(d + o) >> 2] = a + if ((a | 0) == -1) { + break ca + } + H[ + (H[(q + 24) >> 2] + + (a << 2)) >> + 2 + ] = e + break ca + } + H[(d + o) >> 2] = -1 + } + n = -1 + b = (m + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (m - 2) | 0 + a = -1 + if ((b | 0) == -1) { + break ba + } + n = H[((b << 2) + d) >> 2] + a = b + } + h = H[(g + 388) >> 2] + e = k << 2 + b = (h + e) | 0 + o = b + m = H[b >> 2] + b = n << 2 + H[o >> 2] = m + H[(b + h) >> 2] + h = b + b = H[(q + 24) >> 2] + o = (h + b) | 0 + if ((k | 0) != -1) { + H[(b + e) >> 2] = H[o >> 2] + } + b = a + while (1) { + if ((b | 0) == -1) { + break F + } + H[((b << 2) + d) >> 2] = k + h = (b + 1) | 0 + b = + (h >>> 0) % 3 | 0 + ? h + : (b - 2) | 0 + e = -1 + fa: { + if ((b | 0) == -1) { + break fa + } + h = H[(r + (b << 2)) >> 2] + e = -1 + if ((h | 0) == -1) { + break fa + } + b = (h + 1) | 0 + e = + (b >>> 0) % 3 | 0 + ? b + : (h - 2) | 0 + } + b = e + if ((a | 0) != (b | 0)) { + continue + } + break + } + } + b = -1 + if (!(y & 1)) { + break t + } + break s + } + H[o >> 2] = -1 + ga: { + if (C) { + break ga + } + if ((D | 0) != (L | 0)) { + H[L >> 2] = n + L = (L + 4) | 0 + H[(i + 28) >> 2] = L + break ga + } + d = (D - s) | 0 + b = d >> 2 + e = (b + 1) | 0 + if (e >>> 0 >= 1073741824) { + break q + } + a = (d >>> 1) | 0 + e = + d >>> 0 >= 2147483644 + ? 1073741823 + : a >>> 0 > e >>> 0 + ? a + : e + if (e) { + if (e >>> 0 >= 1073741824) { + break p + } + a = pa(e << 2) + } else { + a = 0 + } + b = (a + (b << 2)) | 0 + H[b >> 2] = n + L = (b + 4) | 0 + if ((s | 0) != (D | 0)) { + while (1) { + b = (b - 4) | 0 + D = (D - 4) | 0 + H[b >> 2] = H[D >> 2] + if ((s | 0) != (D | 0)) { + continue + } + break + } + } + D = (a + (e << 2)) | 0 + H[(i + 32) >> 2] = D + H[(i + 28) >> 2] = L + H[(i + 24) >> 2] = b + if (s) { + oa(s) + } + s = b + } + H[j >> 2] = p + } + De(Q, p) + d = f + } + y = (l | 0) < (t | 0) + if ((l | 0) != (t | 0)) { + continue + } + break + } + l = t + } + b = -1 + y = H[(g + 8) >> 2] + if ( + (H[(y + 28) >> 2] - H[(y + 24) >> 2]) >> 2 > + (O | 0) + ) { + break s + } + if ((c | 0) != (f | 0)) { + r = (g + 72) | 0 + j = (g + 60) | 0 + t = (g + 312) | 0 + while (1) { + c = (c - 4) | 0 + z = H[c >> 2] + H[(i + 68) >> 2] = c + ha: { + ia: { + ja: { + if (J[(g + 270) >> 1] <= 513) { + if (!I[(g + 364) | 0]) { + break ia + } + b = H[(g + 360) >> 2] + a = + (H[(g + 352) >> 2] + + ((b >>> 3) | 0)) | + 0 + if (a >>> 0 >= K[(g + 356) >> 2]) { + break ja + } + a = I[a | 0] + H[(g + 360) >> 2] = b + 1 + if (!((a >>> (b & 7)) & 1)) { + break ja + } + break ia + } + if (Ba(t)) { + break ia + } + } + ka: { + la: { + b = H[(g + 64) >> 2] + e = H[(g + 68) >> 2] + if ((b | 0) == e << 5) { + if (((b + 1) | 0) < 0) { + break la + } + if (b >>> 0 <= 1073741822) { + e = e << 6 + b = ((b & -32) + 32) | 0 + a = b >>> 0 < e >>> 0 ? e : b + } else { + a = 2147483647 + } + pb(j, a) + b = H[(g + 64) >> 2] + } + H[(g + 64) >> 2] = b + 1 + e = + (H[(g + 60) >> 2] + + ((b >>> 3) & 536870908)) | + 0 + a = H[e >> 2] + ;(R = e), + (S = Vj(b) & a), + (H[R >> 2] = S) + b = H[(g + 76) >> 2] + if ((b | 0) != H[(g + 80) >> 2]) { + H[b >> 2] = z + H[(g + 76) >> 2] = b + 4 + break ha + } + s = H[r >> 2] + h = (b - s) | 0 + e = h >> 2 + d = (e + 1) | 0 + if (d >>> 0 >= 1073741824) { + break ka + } + a = (h >>> 1) | 0 + h = + h >>> 0 >= 2147483644 + ? 1073741823 + : a >>> 0 > d >>> 0 + ? a + : d + if (h) { + if (h >>> 0 >= 1073741824) { + break p + } + a = pa(h << 2) + } else { + a = 0 + } + d = (a + (e << 2)) | 0 + H[d >> 2] = z + e = (d + 4) | 0 + if ((b | 0) != (s | 0)) { + while (1) { + d = (d - 4) | 0 + b = (b - 4) | 0 + H[d >> 2] = H[b >> 2] + if ((b | 0) != (s | 0)) { + continue + } + break + } + } + H[(g + 80) >> 2] = a + (h << 2) + H[(g + 76) >> 2] = e + H[(g + 72) >> 2] = d + if (!s) { + break ha + } + oa(s) + break ha + } + sa() + v() + } + sa() + v() + } + q = H[(g + 8) >> 2] + C = H[q >> 2] + if ( + (((((H[(q + 4) >> 2] - C) >> 2) >>> 0) / + 3) | + 0) <= + (l | 0) + ) { + b = -1 + break s + } + f = -1 + b = -1 + d = -1 + s = H[(q + 24) >> 2] + e = -1 + ma: { + if ((z | 0) == -1) { + break ma + } + a = (z + 1) | 0 + a = (a >>> 0) % 3 | 0 ? a : (z - 2) | 0 + e = -1 + if ((a | 0) == -1) { + break ma + } + e = H[(C + (a << 2)) >> 2] + } + o = H[(s + (e << 2)) >> 2] + na: { + if ((o | 0) == -1) { + k = 1 + a = -1 + break na + } + k = 1 + h = (o + 1) | 0 + h = (h >>> 0) % 3 | 0 ? h : (o - 2) | 0 + a = -1 + if ((h | 0) == -1) { + break na + } + k = 0 + a = (h + 1) | 0 + f = h + a = (a >>> 0) % 3 | 0 ? a : (f - 2) | 0 + if ((a | 0) != -1) { + a = H[(C + (a << 2)) >> 2] + } else { + a = -1 + } + } + h = H[((a << 2) + s) >> 2] + if ((h | 0) != -1) { + d = (h + 1) | 0 + d = (d >>> 0) % 3 | 0 ? d : (h - 2) | 0 + } + if ( + ((f | 0) == (z | 0)) | + ((d | 0) == (z | 0)) | + ((((z | 0) != -1) & + (H[ + (H[(q + 12) >> 2] + (z << 2)) >> 2 + ] != + -1)) | + ((d | 0) == (f | 0))) + ) { + break s + } + if ( + !k & + (H[ + (H[(q + 12) >> 2] + (f << 2)) >> 2 + ] != + -1) + ) { + break s + } + k = -1 + s = H[(q + 12) >> 2] + h = -1 + oa: { + if ((d | 0) == -1) { + break oa + } + if (H[(s + (d << 2)) >> 2] != -1) { + break s + } + b = (d + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (d - 2) | 0 + h = -1 + if ((b | 0) == -1) { + break oa + } + h = H[(C + (b << 2)) >> 2] + } + b = N(l, 3) + H[i >> 2] = b + H[(s + (b << 2)) >> 2] = z + H[(s + (z << 2)) >> 2] = b + b = (H[i >> 2] + 1) | 0 + H[(s + (b << 2)) >> 2] = f + H[(s + (f << 2)) >> 2] = b + b = (H[i >> 2] + 2) | 0 + H[(s + (b << 2)) >> 2] = d + H[(s + (d << 2)) >> 2] = b + b = H[i >> 2] + H[(C + (b << 2)) >> 2] = a + o = (b + 1) | 0 + s = (C + (o << 2)) | 0 + H[s >> 2] = h + h = (b + 2) | 0 + d = (C + (h << 2)) | 0 + H[d >> 2] = e + e = H[(g + 120) >> 2] + f = o ? a : -1 + b = (e + ((f >>> 3) & 536870908)) | 0 + a = H[b >> 2] + ;(R = b), (S = Vj(f) & a), (H[R >> 2] = S) + k = (o | 0) != -1 ? H[s >> 2] : k + b = (e + ((k >>> 3) & 536870908)) | 0 + a = H[b >> 2] + ;(R = b), (S = Vj(k) & a), (H[R >> 2] = S) + b = -1 + b = (h | 0) != -1 ? H[d >> 2] : b + f = (e + ((b >>> 3) & 536870908)) | 0 + a = H[f >> 2] + ;(R = f), (S = Vj(b) & a), (H[R >> 2] = S) + F[(i + 88) | 0] = 1 + _c(j, (i + 88) | 0) + Ka(r, i) + l = (l + 1) | 0 + f = H[(i + 64) >> 2] + } + if ((c | 0) != (f | 0)) { + continue + } + break + } + y = H[(g + 8) >> 2] + } + b = -1 + if ( + (((((H[(y + 4) >> 2] - H[y >> 2]) >> 2) >>> + 0) / + 3) | + 0) != + (l | 0) + ) { + break s + } + b = (H[(y + 28) >> 2] - H[(y + 24) >> 2]) >> 2 + l = H[(i + 24) >> 2] + e = H[(i + 28) >> 2] + if ((l | 0) == (e | 0)) { + break r + } + while (1) { + j = H[l >> 2] + a = H[(y + 24) >> 2] + c = (b - 1) | 0 + d = (a + (c << 2)) | 0 + if (H[d >> 2] == -1) { + while (1) { + c = (b - 2) | 0 + b = (b - 1) | 0 + d = (a + (c << 2)) | 0 + if (H[d >> 2] == -1) { + continue + } + break + } + } + if (c >>> 0 >= j >>> 0) { + H[i >> 2] = y + d = H[d >> 2] + F[(i + 12) | 0] = 1 + H[(i + 8) >> 2] = d + H[(i + 4) >> 2] = d + if ((d | 0) != -1) { + while (1) { + a = + (H[H[(g + 8) >> 2] >> 2] + (d << 2)) | + 0 + if (H[a >> 2] != (c | 0)) { + b = -1 + break s + } + H[a >> 2] = j + uc(i) + d = H[(i + 8) >> 2] + if ((d | 0) != -1) { + continue + } + break + } + y = H[(g + 8) >> 2] + } + a = H[(y + 24) >> 2] + f = (a + (c << 2)) | 0 + if ((j | 0) != -1) { + H[(a + (j << 2)) >> 2] = H[f >> 2] + } + H[f >> 2] = -1 + h = 1 << j + a = H[(g + 120) >> 2] + f = (a + ((j >>> 3) & 536870908)) | 0 + d = (a + ((c >>> 3) & 536870908)) | 0 + a = 1 << c + if (H[d >> 2] & a) { + c = h | H[f >> 2] + } else { + c = H[f >> 2] & (h ^ -1) + } + H[f >> 2] = c + H[d >> 2] = H[d >> 2] & (a ^ -1) + b = (b - 1) | 0 + } + l = (l + 4) | 0 + if ((e | 0) != (l | 0)) { + continue + } + break + } + } + l = H[(i + 24) >> 2] + } + if (l) { + oa(l) + } + a = H[(i + 48) >> 2] + if (a) { + while (1) { + c = H[a >> 2] + oa(a) + a = c + if (a) { + continue + } + break + } + } + a = H[(i + 40) >> 2] + H[(i + 40) >> 2] = 0 + if (a) { + oa(a) + } + a = H[(i + 64) >> 2] + if (a) { + H[(i + 68) >> 2] = a + oa(a) + } + ca = (i + 96) | 0 + break o + } + sa() + v() + } + wa() + v() + } + f = b + if ((b | 0) == -1) { + break n + } + b = H[(x + 16) >> 2] + c = (b + H[x >> 2]) | 0 + a = (H[(x + 8) >> 2] - b) | 0 + b = H[(H[(g + 4) >> 2] + 32) >> 2] + G[(b + 38) >> 1] = J[(b + 38) >> 1] + H[b >> 2] = c + H[(b + 16) >> 2] = 0 + H[(b + 20) >> 2] = 0 + H[(b + 8) >> 2] = a + H[(b + 12) >> 2] = 0 + b = H[(g + 4) >> 2] + a = J[(b + 36) >> 1] + c = (a << 8) | (a >>> 8) + if ((c & 65535) >>> 0 <= 513) { + b = H[(b + 32) >> 2] + e = b + a = H[(b + 16) >> 2] + b = (P + H[(b + 20) >> 2]) | 0 + a = (a + E) | 0 + b = a >>> 0 < E >>> 0 ? (b + 1) | 0 : b + H[(e + 16) >> 2] = a + H[(e + 20) >> 2] = b + } + pa: { + if (H[(g + 216) >> 2] == H[(g + 220) >> 2]) { + break pa + } + a = H[(g + 8) >> 2] + b = H[a >> 2] + a = H[(a + 4) >> 2] + qa: { + if ((c & 65535) >>> 0 >= 513) { + if ((a | 0) == (b | 0)) { + break pa + } + c = 0 + break qa + } + if ((a | 0) == (b | 0)) { + break pa + } + c = 0 + while (1) { + if (cd(g, c)) { + c = (c + 3) | 0 + a = H[(g + 8) >> 2] + if ( + c >>> 0 < + ((H[(a + 4) >> 2] - H[a >> 2]) >> 2) >>> 0 + ) { + continue + } + break pa + } + break + } + break n + } + while (1) { + if (bd(g, c)) { + c = (c + 3) | 0 + a = H[(g + 8) >> 2] + if ( + c >>> 0 < + ((H[(a + 4) >> 2] - H[a >> 2]) >> 2) >>> 0 + ) { + continue + } + break pa + } + break + } + break n + } + ad(B) + c = H[(g + 216) >> 2] + if ((c | 0) != H[(g + 220) >> 2]) { + t = 0 + while (1) { + e = N(t, 144) + Jc((((e + c) | 0) + 4) | 0, H[(g + 8) >> 2]) + a = H[M >> 2] + b = (a + e) | 0 + c = H[(b + 132) >> 2] + b = H[(b + 136) >> 2] + if ((c | 0) != (b | 0)) { + while (1) { + Hc((((e + H[M >> 2]) | 0) + 4) | 0, H[c >> 2]) + c = (c + 4) | 0 + if ((b | 0) != (c | 0)) { + continue + } + break + } + a = H[M >> 2] + } + if (!Ic((((a + e) | 0) + 4) | 0)) { + break n + } + t = (t + 1) | 0 + c = H[(g + 216) >> 2] + if ( + t >>> 0 < + (((H[(g + 220) >> 2] - c) | 0) / 144) >>> 0 + ) { + continue + } + break + } + } + a = H[(g + 8) >> 2] + Hb( + (g + 184) | 0, + (H[(a + 28) >> 2] - H[(a + 24) >> 2]) >> 2, + ) + w = H[(g + 216) >> 2] + if ((w | 0) != H[(g + 220) >> 2]) { + c = 0 + while (1) { + a = (N(c, 144) + w) | 0 + b = (H[(a + 60) >> 2] - H[(a + 56) >> 2]) >> 2 + e = (a + 104) | 0 + a = H[(g + 8) >> 2] + a = (H[(a + 28) >> 2] - H[(a + 24) >> 2]) >> 2 + Hb(e, (a | 0) < (b | 0) ? b : a) + c = (c + 1) | 0 + w = H[(g + 216) >> 2] + if ( + c >>> 0 < + (((H[(g + 220) >> 2] - w) | 0) / 144) >>> 0 + ) { + continue + } + break + } + } + w = $c(g, f) + } + break b + } + w = 0 + } + ca = (u - -64) | 0 + return w | 0 + } + function ki(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + L = 0, + M = 0, + O = 0, + P = 0, + Q = 0 + t = (ca + -64) | 0 + ca = t + H[(a + 132) >> 2] = 0 + if (H[(a + 148) >> 2]) { + d = H[(a + 144) >> 2] + if (d) { + while (1) { + b = H[d >> 2] + oa(d) + d = b + if (b) { + continue + } + break + } + } + d = 0 + H[(a + 144) >> 2] = 0 + k = H[(a + 140) >> 2] + a: { + if (!k) { + break a + } + if (k >>> 0 >= 4) { + b = k & -4 + while (1) { + c = d << 2 + H[(c + H[(a + 136) >> 2]) >> 2] = 0 + H[(H[(a + 136) >> 2] + (c | 4)) >> 2] = 0 + H[(H[(a + 136) >> 2] + (c | 8)) >> 2] = 0 + H[(H[(a + 136) >> 2] + (c | 12)) >> 2] = 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((b | 0) != (e | 0)) { + continue + } + break + } + } + b = k & 3 + if (!b) { + break a + } + while (1) { + H[(H[(a + 136) >> 2] + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + x = (x + 1) | 0 + if ((b | 0) != (x | 0)) { + continue + } + break + } + } + H[(a + 148) >> 2] = 0 + } + b: { + c: { + d = H[(a + 4) >> 2] + x = I[(d + 36) | 0] + b = (x << 8) | I[(d + 37) | 0] + if (b >>> 0 <= 513) { + f = H[(d + 32) >> 2] + d: { + if (b >>> 0 <= 511) { + b = H[(f + 20) >> 2] + e = H[(f + 16) >> 2] + c = (e + 4) | 0 + b = c >>> 0 < 4 ? (b + 1) | 0 : b + k = H[(f + 12) >> 2] + if ( + ((K[(f + 8) >> 2] < c >>> 0) & + ((k | 0) <= (b | 0))) | + ((b | 0) > (k | 0)) + ) { + break c + } + e = (e + H[f >> 2]) | 0 + e = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + H[(f + 16) >> 2] = c + H[(f + 20) >> 2] = b + break d + } + if (!Ea(1, t, f)) { + break c + } + d = H[(a + 4) >> 2] + x = I[(d + 36) | 0] + e = H[t >> 2] + } + H[(a + 132) >> 2] = e + } + f = H[(d + 32) >> 2] + e: { + f: { + g: { + if ((x & 255) >>> 0 <= 1) { + x = 0 + b = H[(f + 20) >> 2] + c = H[(f + 16) >> 2] + e = (c + 4) | 0 + b = e >>> 0 < 4 ? (b + 1) | 0 : b + k = H[(f + 12) >> 2] + if ( + ((K[(f + 8) >> 2] < e >>> 0) & + ((k | 0) <= (b | 0))) | + ((b | 0) > (k | 0)) + ) { + break b + } + c = (c + H[f >> 2]) | 0 + c = + I[c | 0] | + (I[(c + 1) | 0] << 8) | + ((I[(c + 2) | 0] << 16) | (I[(c + 3) | 0] << 24)) + H[(t + 60) >> 2] = c + H[(f + 16) >> 2] = e + H[(f + 20) >> 2] = b + H[(a + 156) >> 2] = c + l = (a + 156) | 0 + break g + } + x = 0 + if (!Ea(1, (t + 60) | 0, f)) { + break b + } + d = H[(a + 4) >> 2] + b = I[(d + 36) | 0] + H[(a + 156) >> 2] = H[(t + 60) >> 2] + l = (a + 156) | 0 + if (b >>> 0 > 1) { + break f + } + } + f = H[(d + 32) >> 2] + c = H[(f + 8) >> 2] + k = H[(f + 12) >> 2] + d = H[(f + 20) >> 2] + e = H[(f + 16) >> 2] + b = (e + 4) | 0 + d = b >>> 0 < 4 ? (d + 1) | 0 : d + if ( + ((b >>> 0 > c >>> 0) & ((d | 0) >= (k | 0))) | + ((d | 0) > (k | 0)) + ) { + break b + } + e = (e + H[f >> 2]) | 0 + e = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + H[(t + 56) >> 2] = e + H[(f + 16) >> 2] = b + H[(f + 20) >> 2] = d + break e + } + if (!Ea(1, (t + 56) | 0, H[(d + 32) >> 2])) { + break b + } + e = H[(t + 56) >> 2] + } + if ((e >>> 0 > 1431655765) | (K[l >> 2] > N(e, 3) >>> 0)) { + break b + } + j = H[(a + 4) >> 2] + y = H[(j + 32) >> 2] + d = H[(y + 8) >> 2] + f = H[(y + 12) >> 2] + b = H[(y + 20) >> 2] + m = H[(y + 16) >> 2] + if ( + (((f | 0) <= (b | 0)) & (m >>> 0 >= d >>> 0)) | + ((b | 0) > (f | 0)) + ) { + break b + } + l = H[y >> 2] + g = I[(l + m) | 0] + c = y + k = (m + 1) | 0 + C = k ? b : (b + 1) | 0 + H[(c + 16) >> 2] = k + H[(c + 20) >> 2] = C + h: { + if (I[(j + 36) | 0] <= 1) { + c = d + d = (m + 5) | 0 + b = d >>> 0 < 5 ? (b + 1) | 0 : b + if ( + ((c >>> 0 < d >>> 0) & ((b | 0) >= (f | 0))) | + ((b | 0) > (f | 0)) + ) { + break b + } + c = (k + l) | 0 + l = + I[c | 0] | + (I[(c + 1) | 0] << 8) | + ((I[(c + 2) | 0] << 16) | (I[(c + 3) | 0] << 24)) + H[(t + 52) >> 2] = l + H[(y + 16) >> 2] = d + H[(y + 20) >> 2] = b + break h + } + if (!Ea(1, (t + 52) | 0, y)) { + break b + } + l = H[(t + 52) >> 2] + } + if ( + (e >>> 0 < l >>> 0) | + (((((l >>> 0) / 3) | 0) + l) >>> 0 < e >>> 0) + ) { + break b + } + d = H[(a + 4) >> 2] + f = H[(d + 32) >> 2] + i: { + if (I[(d + 36) | 0] <= 1) { + d = H[(f + 20) >> 2] + b = H[(f + 16) >> 2] + c = (b + 4) | 0 + d = c >>> 0 < 4 ? (d + 1) | 0 : d + k = H[(f + 12) >> 2] + if ( + ((K[(f + 8) >> 2] < c >>> 0) & ((k | 0) <= (d | 0))) | + ((d | 0) > (k | 0)) + ) { + break b + } + b = (b + H[f >> 2]) | 0 + b = + I[b | 0] | + (I[(b + 1) | 0] << 8) | + ((I[(b + 2) | 0] << 16) | (I[(b + 3) | 0] << 24)) + H[(t + 48) >> 2] = b + H[(f + 16) >> 2] = c + H[(f + 20) >> 2] = d + break i + } + if (!Ea(1, (t + 48) | 0, f)) { + break b + } + b = H[(t + 48) >> 2] + } + if (b >>> 0 > l >>> 0) { + break b + } + H[(a + 28) >> 2] = H[(a + 24) >> 2] + d = $b(pa(88)) + c = H[(a + 8) >> 2] + H[(a + 8) >> 2] = d + if (c) { + cb(c) + if (!H[(a + 8) >> 2]) { + break b + } + } + H[(a + 164) >> 2] = H[(a + 160) >> 2] + Jb((a + 160) | 0, e) + H[(a + 176) >> 2] = H[(a + 172) >> 2] + Jb((a + 172) | 0, e) + H[(a - -64) >> 2] = 0 + H[(a + 92) >> 2] = -1 + H[(a + 84) >> 2] = -1 + H[(a + 88) >> 2] = -1 + H[(a + 40) >> 2] = H[(a + 36) >> 2] + H[(a + 52) >> 2] = H[(a + 48) >> 2] + H[(a + 76) >> 2] = H[(a + 72) >> 2] + E = (a + 216) | 0 + ed(E) + dd(E, g) + if (!Lc(H[(a + 8) >> 2], e, (H[(a + 156) >> 2] + b) | 0)) { + break b + } + d = H[(a + 156) >> 2] + F[t | 0] = 1 + Oa((a + 120) | 0, (b + d) | 0, t) + b = H[(a + 4) >> 2] + d = J[(b + 36) >> 1] + d = ((d << 8) | (d >>> 8)) & 65535 + j: { + if (d >>> 0 <= 513) { + k = H[(b + 32) >> 2] + k: { + if (d >>> 0 <= 511) { + b = H[(k + 20) >> 2] + e = H[(k + 16) >> 2] + d = (e + 4) | 0 + b = d >>> 0 < 4 ? (b + 1) | 0 : b + c = H[(k + 12) >> 2] + if ( + ((K[(k + 8) >> 2] < d >>> 0) & + ((c | 0) <= (b | 0))) | + ((b | 0) > (c | 0)) + ) { + break b + } + e = (e + H[k >> 2]) | 0 + e = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + H[(k + 16) >> 2] = d + H[(k + 20) >> 2] = b + break k + } + if (!Ea(1, (t + 44) | 0, k)) { + break b + } + e = H[(t + 44) >> 2] + } + if (!e) { + break b + } + k = H[(H[(a + 4) >> 2] + 32) >> 2] + c = H[(k + 8) >> 2] + d = H[(k + 16) >> 2] + b = (c - d) | 0 + d = + (H[(k + 12) >> 2] - + ((H[(k + 20) >> 2] + (c >>> 0 < d >>> 0)) | 0)) | + 0 + if ( + ((b >>> 0 < e >>> 0) & ((d | 0) <= 0)) | + ((d | 0) < 0) + ) { + break b + } + f = Ha(t) + k = H[(H[(a + 4) >> 2] + 32) >> 2] + c = H[(k + 16) >> 2] + b = (((c + H[k >> 2]) | 0) + e) | 0 + d = (H[(k + 8) >> 2] - c) | 0 + G[(f + 38) >> 1] = J[(k + 38) >> 1] + H[f >> 2] = b + H[(f + 16) >> 2] = 0 + H[(f + 20) >> 2] = 0 + H[(f + 8) >> 2] = d - e + H[(f + 12) >> 2] = 0 + d = Ib(a, f) + if ((d | 0) == -1) { + break b + } + y = d + M = d >> 31 + break j + } + y = -1 + M = -1 + if ((Ib(a, H[(b + 32) >> 2]) | 0) == -1) { + break b + } + } + O = (a + 232) | 0 + e = O + H[(e + 144) >> 2] = a + d = H[((ea[H[(H[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2] + b = (H[d >> 2] + H[(d + 16) >> 2]) | 0 + d = H[((ea[H[(H[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2] + d = (H[(d + 8) >> 2] - H[(d + 16) >> 2]) | 0 + ;(P = e), + (Q = + J[ + (H[ + ((ea[H[(H[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2 + ] + + 38) >> + 1 + ]), + (G[(P + 38) >> 1] = Q) + H[e >> 2] = b + H[(e + 16) >> 2] = 0 + H[(e + 20) >> 2] = 0 + H[(e + 8) >> 2] = d + H[(e + 12) >> 2] = 0 + H[(a + 372) >> 2] = g + C = Ha(t) + l: { + if (!Ge(e, C)) { + break l + } + b = 0 + d = 0 + e = 0 + k = 0 + i = (ca - 96) | 0 + ca = i + H[(i + 72) >> 2] = 0 + H[(i + 64) >> 2] = 0 + H[(i + 68) >> 2] = 0 + H[(i + 48) >> 2] = 0 + H[(i + 52) >> 2] = 0 + H[(i + 40) >> 2] = 0 + H[(i + 44) >> 2] = 0 + H[(i + 56) >> 2] = 1065353216 + H[(i + 32) >> 2] = 0 + H[(i + 24) >> 2] = 0 + H[(i + 28) >> 2] = 0 + h = a + L = H[(a + 124) >> 2] + m: { + n: { + o: { + p: { + q: { + r: { + if ((l | 0) <= 0) { + break r + } + A = H[(h + 216) >> 2] != H[(h + 220) >> 2] + s = 1 + while (1) { + f = k + k = (f + 1) | 0 + s: { + t: { + u: { + v: { + w: { + x: { + y: { + z: { + A: { + B: { + C: { + D: { + E: { + F: { + G: { + if ( + !I[ + (h + + 308) | + 0 + ] + ) { + break G + } + u = + H[ + (h + + 296) >> + 2 + ] + g = + H[ + (h + + 304) >> + 2 + ] + a = + (u + + ((g >>> + 3) | + 0)) | + 0 + p = + H[ + (h + + 300) >> + 2 + ] + if ( + a >>> 0 >= + p >>> 0 + ) { + break G + } + c = I[a | 0] + a = + (g + 1) | 0 + H[ + (h + 304) >> + 2 + ] = a + m = + (c >>> + (g & 7)) & + 1 + if (!m) { + break G + } + n = 0 + j = + (a >>> 3) | + 0 + c = + (u + j) | 0 + H: { + if ( + c >>> 0 >= + p >>> 0 + ) { + g = a + a = 0 + break H + } + c = I[c | 0] + g = + (g + 2) | + 0 + H[ + (h + + 304) >> + 2 + ] = g + j = + (g >>> + 3) | + 0 + a = + (c >>> + (a & + 7)) & + 1 + } + c = + (j + u) | 0 + if ( + c >>> 0 < + p >>> 0 + ) { + c = I[c | 0] + H[ + (h + + 304) >> + 2 + ] = g + 1 + n = + ((c >>> + (g & + 7)) << + 1) & + 2 + } + j = -1 + a = + m | + ((a | n) << + 1) + switch ( + (a - 1) | + 0 + ) { + case 6: + break D + case 0: + break E + case 2: + case 4: + break F + default: + break q + } + } + if ( + (d | 0) == + (e | 0) + ) { + j = -1 + break q + } + g = -1 + q = + H[ + (h + 8) >> 2 + ] + u = + H[ + (q + 24) >> + 2 + ] + p = (d - 4) | 0 + s = H[p >> 2] + c = -1 + I: { + if ( + (s | 0) == + -1 + ) { + break I + } + b = + (s + 1) | 0 + b = + (b >>> 0) % + 3 | + 0 + ? b + : (s - + 2) | + 0 + c = -1 + if ( + (b | 0) == + -1 + ) { + break I + } + c = + H[ + (H[ + q >> 2 + ] + + (b << + 2)) >> + 2 + ] + } + b = + H[ + (u + + (c << + 2)) >> + 2 + ] + if ( + (b | 0) != + -1 + ) { + a = + (b + 1) | 0 + g = + (a >>> 0) % + 3 | + 0 + ? a + : (b - + 2) | + 0 + } + if ( + (g | 0) == + (s | 0) + ) { + j = -1 + break q + } + if ( + (s | 0) != + -1 + ) { + j = -1 + if ( + H[ + (H[ + (q + + 12) >> + 2 + ] + + (s << + 2)) >> + 2 + ] != -1 + ) { + break q + } + } + b = + H[ + (q + 12) >> + 2 + ] + if ( + (g | 0) != + -1 + ) { + j = -1 + if ( + H[ + (b + + (g << + 2)) >> + 2 + ] != -1 + ) { + break q + } + } + n = N(f, 3) + a = (n + 1) | 0 + H[ + (b + + (s << 2)) >> + 2 + ] = a + m = a << 2 + H[ + (m + b) >> 2 + ] = s + r = (n + 2) | 0 + H[ + (b + + (g << 2)) >> + 2 + ] = r + f = r << 2 + H[ + (f + b) >> 2 + ] = g + o = -1 + a = -1 + J: { + if ( + (s | 0) == + -1 + ) { + break J + } + K: { + if ( + (s >>> + 0) % + 3 | + 0 + ) { + b = + (s - + 1) | + 0 + break K + } + b = + (s + 2) | + 0 + a = -1 + if ( + (b | 0) == + -1 + ) { + break J + } + } + a = + H[ + (H[ + q >> 2 + ] + + (b << + 2)) >> + 2 + ] + } + L: { + if ( + (g | 0) == + -1 + ) { + break L + } + b = + (g + 1) | 0 + b = + (b >>> 0) % + 3 | + 0 + ? b + : (g - + 2) | + 0 + if ( + (b | 0) == + -1 + ) { + break L + } + o = + H[ + (H[ + q >> 2 + ] + + (b << + 2)) >> + 2 + ] + } + j = -1 + if ( + ((a | 0) == + (c | 0)) | + ((c | 0) == + (o | 0)) + ) { + break q + } + b = H[q >> 2] + H[ + (b + + (n << 2)) >> + 2 + ] = c + H[ + (b + m) >> 2 + ] = o + H[ + (b + f) >> 2 + ] = a + if ( + (a | 0) != + -1 + ) { + H[ + (u + + (a << + 2)) >> + 2 + ] = r + } + b = + (H[ + (h + 120) >> + 2 + ] + + ((c >>> 3) & + 536870908)) | + 0 + a = H[b >> 2] + ;(P = b), + (Q = + Vj(c) & a), + (H[P >> 2] = + Q) + H[p >> 2] = n + b = e + break s + } + if ( + (d | 0) == + (e | 0) + ) { + break q + } + m = (d - 4) | 0 + n = H[m >> 2] + r = + H[(h + 8) >> 2] + b = + H[(r + 12) >> 2] + if ( + ((n | 0) != + -1) & + (H[ + (b + + (n << 2)) >> + 2 + ] != + -1) + ) { + break q + } + o = N(f, 3) + p = (a | 0) == 5 + g = + (o + + (p ? 2 : 1)) | + 0 + a = g << 2 + H[(a + b) >> 2] = + n + H[ + (b + + (n << 2)) >> + 2 + ] = g + Ka( + (r + 24) | 0, + 11424, + ) + b = + H[(h + 8) >> 2] + u = + H[(b + 24) >> 2] + if ( + (H[ + (b + 28) >> 2 + ] - + u) >> + 2 > + (L | 0) + ) { + break q + } + j = H[b >> 2] + q = (j + a) | 0 + c = + H[(r + 28) >> 2] + b = + H[(r + 24) >> 2] + a = + (((c - b) >> + 2) - + 1) | + 0 + H[q >> 2] = a + if ( + (b | 0) != + (c | 0) + ) { + H[ + (u + + (a << 2)) >> + 2 + ] = g + } + c = p + ? o + : (o + 2) | 0 + g = + (j + + ((o + p) << + 2)) | + 0 + M: { + if ( + (n | 0) == + -1 + ) { + H[ + (j + + (c << + 2)) >> + 2 + ] = -1 + b = -1 + break M + } + N: { + O: { + P: { + if ( + (n >>> + 0) % + 3 | + 0 + ) { + a = + (n - + 1) | + 0 + break P + } + a = + (n + + 2) | + 0 + if ( + (a | + 0) == + -1 + ) { + break O + } + } + a = + H[ + (j + + (a << + 2)) >> + 2 + ] + H[ + (j + + (c << + 2)) >> + 2 + ] = a + if ( + (a | 0) == + -1 + ) { + break N + } + H[ + (u + + (a << + 2)) >> + 2 + ] = c + break N + } + H[ + (j + + (c << + 2)) >> + 2 + ] = -1 + } + a = (n + 1) | 0 + a = + (a >>> 0) % + 3 | + 0 + ? a + : (n - 2) | + 0 + b = -1 + if ( + (a | 0) == + -1 + ) { + break M + } + b = + H[ + (j + + (a << + 2)) >> + 2 + ] + } + H[g >> 2] = b + H[m >> 2] = o + b = e + break y + } + if ( + (b | 0) == + (d | 0) + ) { + break q + } + a = (d - 4) | 0 + q = H[a >> 2] + H[(i + 68) >> 2] = a + p = H[(i + 44) >> 2] + Q: { + if (!p) { + d = a + break Q + } + g = + H[(i + 40) >> 2] + j = + Uj(p) >>> 0 > 1 + c = + f & + (p + 2147483647) + R: { + if (!j) { + break R + } + c = f + if ( + c >>> 0 < + p >>> 0 + ) { + break R + } + c = + (f >>> 0) % + (p >>> 0) | + 0 + } + m = c + c = + H[ + (g + + (m << 2)) >> + 2 + ] + if (!c) { + d = a + break Q + } + g = H[c >> 2] + if (!g) { + d = a + break Q + } + S: { + if (!j) { + j = + (p - 1) | 0 + while (1) { + c = + H[ + (g + + 4) >> + 2 + ] + T: { + if ( + (c | + 0) != + (f | 0) + ) { + if ( + (m | + 0) == + (c & + j) + ) { + break T + } + d = a + break Q + } + if ( + (f | + 0) == + H[ + (g + + 8) >> + 2 + ] + ) { + break S + } + } + g = + H[g >> 2] + if (g) { + continue + } + break + } + d = a + break Q + } + while (1) { + c = + H[ + (g + 4) >> + 2 + ] + U: { + if ( + (c | 0) != + (f | 0) + ) { + if ( + c >>> + 0 >= + p >>> 0 + ) { + c = + (c >>> + 0) % + (p >>> + 0) | + 0 + } + if ( + (c | + 0) == + (m | 0) + ) { + break U + } + d = a + break Q + } + if ( + (f | 0) == + H[ + (g + + 8) >> + 2 + ] + ) { + break S + } + } + g = H[g >> 2] + if (g) { + continue + } + break + } + d = a + break Q + } + if ( + (a | 0) != + (z | 0) + ) { + H[a >> 2] = + H[ + (g + 12) >> + 2 + ] + H[ + (i + 68) >> 2 + ] = d + break Q + } + c = (z - b) | 0 + d = c >> 2 + e = (d + 1) | 0 + if ( + e >>> 0 >= + 1073741824 + ) { + break C + } + a = (c >>> 1) | 0 + c = + c >>> 0 >= + 2147483644 + ? 1073741823 + : a >>> 0 > + e >>> 0 + ? a + : e + if (c) { + if ( + c >>> 0 >= + 1073741824 + ) { + break n + } + a = pa(c << 2) + } else { + a = 0 + } + e = + (a + (d << 2)) | + 0 + H[e >> 2] = + H[(g + 12) >> 2] + d = (e + 4) | 0 + if ( + (b | 0) != + (z | 0) + ) { + while (1) { + e = + (e - 4) | 0 + z = + (z - 4) | 0 + H[e >> 2] = + H[z >> 2] + if ( + (b | 0) != + (z | 0) + ) { + continue + } + break + } + } + z = + (a + (c << 2)) | + 0 + H[(i + 72) >> 2] = + z + H[(i + 68) >> 2] = + d + H[(i + 64) >> 2] = + e + if (b) { + oa(b) + } + } + if ( + (d | 0) == + (e | 0) + ) { + break u + } + g = (d - 4) | 0 + n = H[g >> 2] + if ( + (n | 0) == + (q | 0) + ) { + break u + } + b = (n | 0) == -1 + o = H[(h + 8) >> 2] + if ( + !b & + (H[ + (H[ + (o + 12) >> 2 + ] + + (n << 2)) >> + 2 + ] != + -1) + ) { + break u + } + r = H[(o + 12) >> 2] + if ( + ((q | 0) != -1) & + (H[ + (r + + (q << 2)) >> + 2 + ] != + -1) + ) { + break u + } + u = N(f, 3) + f = (u + 2) | 0 + H[ + (r + (n << 2)) >> + 2 + ] = f + p = f << 2 + H[(p + r) >> 2] = n + a = (u + 1) | 0 + H[ + (r + (q << 2)) >> + 2 + ] = a + c = a << 2 + H[(c + r) >> 2] = q + if (b) { + break B + } + if ( + (n >>> 0) % 3 | + 0 + ) { + m = (n - 1) | 0 + break x + } + m = (n + 2) | 0 + if ((m | 0) != -1) { + break x + } + a = H[o >> 2] + b = -1 + break w + } + a = H[(h + 8) >> 2] + Ka( + (a + 24) | 0, + 11424, + ) + c = H[(h + 8) >> 2] + q = N(f, 3) + r = H[(a + 28) >> 2] + u = H[(a + 24) >> 2] + p = (r - u) | 0 + o = p >> 2 + g = (o - 1) | 0 + H[ + (H[c >> 2] + + (q << 2)) >> + 2 + ] = g + Ka( + (c + 24) | 0, + 11424, + ) + m = (q + 1) | 0 + H[ + (H[c >> 2] + + (m << 2)) >> + 2 + ] = + ((H[(c + 28) >> 2] - + H[ + (c + 24) >> 2 + ]) >> + 2) - + 1 + a = H[(h + 8) >> 2] + Ka( + (a + 24) | 0, + 11424, + ) + c = (q + 2) | 0 + H[ + (H[a >> 2] + + (c << 2)) >> + 2 + ] = + ((H[(a + 28) >> 2] - + H[ + (a + 24) >> 2 + ]) >> + 2) - + 1 + a = H[(h + 8) >> 2] + n = H[(a + 24) >> 2] + if ( + (H[(a + 28) >> 2] - + n) >> + 2 > + (L | 0) + ) { + break q + } + V: { + W: { + if ( + (r | 0) != + (u | 0) + ) { + H[ + (n + + (g << 2)) >> + 2 + ] = q + j = 0 + if ( + (p | 0) == + -4 + ) { + break W + } + } + H[ + (n + + (o << 2)) >> + 2 + ] = m + j = (o + 1) | 0 + if ( + (j | 0) == + -1 + ) { + break V + } + } + H[ + (n + (j << 2)) >> + 2 + ] = c + } + if ( + (d | 0) != + (z | 0) + ) { + H[d >> 2] = q + d = (d + 4) | 0 + H[(i + 68) >> 2] = d + break y + } + m = (d - b) | 0 + e = m >> 2 + c = (e + 1) | 0 + if ( + c >>> 0 >= + 1073741824 + ) { + break A + } + a = (m >>> 1) | 0 + c = + m >>> 0 >= + 2147483644 + ? 1073741823 + : a >>> 0 > + c >>> 0 + ? a + : c + if (c) { + if ( + c >>> 0 >= + 1073741824 + ) { + break n + } + a = pa(c << 2) + } else { + a = 0 + } + e = (a + (e << 2)) | 0 + H[e >> 2] = q + z = (a + (c << 2)) | 0 + a = (e + 4) | 0 + if ( + (b | 0) != + (d | 0) + ) { + while (1) { + e = (e - 4) | 0 + d = (d - 4) | 0 + H[e >> 2] = + H[d >> 2] + if ( + (b | 0) != + (d | 0) + ) { + continue + } + break + } + } + H[(i + 72) >> 2] = z + H[(i + 68) >> 2] = a + H[(i + 64) >> 2] = e + if (!b) { + break z + } + oa(b) + break z + } + sa() + v() + } + m = -1 + a = H[o >> 2] + H[(a + (u << 2)) >> 2] = + -1 + j = -1 + break v + } + sa() + v() + } + d = a + b = e + } + m = H[(h + 40) >> 2] + if ( + (m | 0) == + H[(h + 36) >> 2] + ) { + break s + } + c = (m - 12) | 0 + a = H[(c + 4) >> 2] + j = ((f ^ -1) + l) | 0 + if (a >>> 0 > j >>> 0) { + break u + } + if ((a | 0) != (j | 0)) { + break s + } + f = I[(m - 4) | 0] + a = H[c >> 2] + H[(h + 40) >> 2] = c + if ((a | 0) < 0) { + break u + } + m = (d - 4) | 0 + g = H[m >> 2] + H[(i + 20) >> 2] = (a ^ -1) + l + a = (i + 20) | 0 + H[(i + 88) >> 2] = a + Gb( + i, + (i + 40) | 0, + a, + (i + 88) | 0, + ) + c = H[i >> 2] + X: { + if (f & 1) { + a = -1 + if ((g | 0) == -1) { + break X + } + a = (g + 1) | 0 + a = + (a >>> 0) % 3 | 0 + ? a + : (g - 2) | 0 + break X + } + a = -1 + if ((g | 0) == -1) { + break X + } + a = (g - 1) | 0 + if ((g >>> 0) % 3 | 0) { + break X + } + a = (g + 2) | 0 + } + H[(c + 12) >> 2] = a + g = H[(h + 40) >> 2] + if ( + (g | 0) == + H[(h + 36) >> 2] + ) { + break s + } + while (1) { + c = (g - 12) | 0 + a = H[(c + 4) >> 2] + if (a >>> 0 > j >>> 0) { + break u + } + if ((a | 0) != (j | 0)) { + break s + } + f = I[(g - 4) | 0] + a = H[c >> 2] + H[(h + 40) >> 2] = c + if ((a | 0) < 0) { + break u + } + g = H[m >> 2] + H[(i + 20) >> 2] = + (a ^ -1) + l + a = (i + 20) | 0 + H[(i + 88) >> 2] = a + Gb( + i, + (i + 40) | 0, + a, + (i + 88) | 0, + ) + c = H[i >> 2] + Y: { + if (f & 1) { + a = -1 + if ((g | 0) == -1) { + break Y + } + a = (g + 1) | 0 + a = + (a >>> 0) % 3 | 0 + ? a + : (g - 2) | 0 + break Y + } + a = -1 + if ((g | 0) == -1) { + break Y + } + a = (g - 1) | 0 + if ((g >>> 0) % 3 | 0) { + break Y + } + a = (g + 2) | 0 + } + H[(c + 12) >> 2] = a + g = H[(h + 40) >> 2] + if ( + (g | 0) != + H[(h + 36) >> 2] + ) { + continue + } + break + } + break s + } + a = H[o >> 2] + b = H[(a + (m << 2)) >> 2] + } + m = b + H[((u << 2) + a) >> 2] = b + b = (n + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (n - 2) | 0 + j = -1 + if ((b | 0) == -1) { + break v + } + j = H[((b << 2) + a) >> 2] + } + H[(a + c) >> 2] = j + Z: { + if ((q | 0) == -1) { + H[(a + p) >> 2] = -1 + n = -1 + c = -1 + break Z + } + _: { + $: { + aa: { + if ((q >>> 0) % 3 | 0) { + b = (q - 1) | 0 + break aa + } + b = (q + 2) | 0 + if ((b | 0) == -1) { + break $ + } + } + b = H[((b << 2) + a) >> 2] + H[(a + p) >> 2] = b + if ((b | 0) == -1) { + break _ + } + H[ + (H[(o + 24) >> 2] + + (b << 2)) >> + 2 + ] = f + break _ + } + H[(a + p) >> 2] = -1 + } + n = -1 + b = (q + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (q - 2) | 0 + c = -1 + if ((b | 0) == -1) { + break Z + } + n = H[((b << 2) + a) >> 2] + c = b + } + b = H[(o + 24) >> 2] + p = (b + (n << 2)) | 0 + if ((m | 0) != -1) { + H[(b + (m << 2)) >> 2] = H[p >> 2] + } + b = c + while (1) { + if ((b | 0) == -1) { + break t + } + H[((b << 2) + a) >> 2] = m + j = (b + 1) | 0 + b = + (j >>> 0) % 3 | 0 + ? j + : (b - 2) | 0 + f = -1 + ba: { + if ((b | 0) == -1) { + break ba + } + j = H[(r + (b << 2)) >> 2] + f = -1 + if ((j | 0) == -1) { + break ba + } + b = (j + 1) | 0 + f = + (b >>> 0) % 3 | 0 + ? b + : (j - 2) | 0 + } + b = f + if ((c | 0) != (b | 0)) { + continue + } + break + } + } + j = -1 + if (!(s & 1)) { + break r + } + break q + } + H[p >> 2] = -1 + ca: { + if (A) { + break ca + } + if ((B | 0) != (D | 0)) { + H[D >> 2] = n + D = (D + 4) | 0 + H[(i + 28) >> 2] = D + break ca + } + f = (B - w) | 0 + b = f >> 2 + c = (b + 1) | 0 + if (c >>> 0 >= 1073741824) { + break o + } + a = (f >>> 1) | 0 + c = + f >>> 0 >= 2147483644 + ? 1073741823 + : a >>> 0 > c >>> 0 + ? a + : c + if (c) { + if (c >>> 0 >= 1073741824) { + break n + } + a = pa(c << 2) + } else { + a = 0 + } + b = (a + (b << 2)) | 0 + H[b >> 2] = n + D = (b + 4) | 0 + if ((w | 0) != (B | 0)) { + while (1) { + b = (b - 4) | 0 + B = (B - 4) | 0 + H[b >> 2] = H[B >> 2] + if ((w | 0) != (B | 0)) { + continue + } + break + } + } + B = (a + (c << 2)) | 0 + H[(i + 32) >> 2] = B + H[(i + 28) >> 2] = D + H[(i + 24) >> 2] = b + if (w) { + oa(w) + } + w = b + } + H[g >> 2] = u + b = e + } + s = (k | 0) < (l | 0) + if ((k | 0) != (l | 0)) { + continue + } + break + } + k = l + } + j = -1 + a = H[(h + 8) >> 2] + if ( + (H[(a + 28) >> 2] - H[(a + 24) >> 2]) >> 2 > + (L | 0) + ) { + break q + } + if ((d | 0) != (e | 0)) { + u = (h + 72) | 0 + m = (h + 60) | 0 + p = (h + 312) | 0 + while (1) { + d = (d - 4) | 0 + o = H[d >> 2] + H[(i + 68) >> 2] = d + da: { + ea: { + fa: { + if (J[(h + 270) >> 1] <= 513) { + if (!I[(h + 364) | 0]) { + break ea + } + b = H[(h + 360) >> 2] + a = + (H[(h + 352) >> 2] + + ((b >>> 3) | 0)) | + 0 + if (a >>> 0 >= K[(h + 356) >> 2]) { + break fa + } + a = I[a | 0] + H[(h + 360) >> 2] = b + 1 + if (!((a >>> (b & 7)) & 1)) { + break fa + } + break ea + } + if (Ba(p)) { + break ea + } + } + ga: { + ha: { + b = H[(h + 64) >> 2] + c = H[(h + 68) >> 2] + if ((b | 0) == c << 5) { + if (((b + 1) | 0) < 0) { + break ha + } + if (b >>> 0 <= 1073741822) { + c = c << 6 + b = ((b & -32) + 32) | 0 + a = b >>> 0 < c >>> 0 ? c : b + } else { + a = 2147483647 + } + pb(m, a) + b = H[(h + 64) >> 2] + } + H[(h + 64) >> 2] = b + 1 + c = + (H[(h + 60) >> 2] + + ((b >>> 3) & 536870908)) | + 0 + a = H[c >> 2] + ;(P = c), + (Q = Vj(b) & a), + (H[P >> 2] = Q) + b = H[(h + 76) >> 2] + if ((b | 0) != H[(h + 80) >> 2]) { + H[b >> 2] = o + H[(h + 76) >> 2] = b + 4 + break da + } + l = H[u >> 2] + w = (b - l) | 0 + c = w >> 2 + f = (c + 1) | 0 + if (f >>> 0 >= 1073741824) { + break ga + } + a = (w >>> 1) | 0 + f = + w >>> 0 >= 2147483644 + ? 1073741823 + : a >>> 0 > f >>> 0 + ? a + : f + if (f) { + if (f >>> 0 >= 1073741824) { + break n + } + a = pa(f << 2) + } else { + a = 0 + } + g = (a + (c << 2)) | 0 + H[g >> 2] = o + c = (g + 4) | 0 + if ((b | 0) != (l | 0)) { + while (1) { + g = (g - 4) | 0 + b = (b - 4) | 0 + H[g >> 2] = H[b >> 2] + if ((b | 0) != (l | 0)) { + continue + } + break + } + } + H[(h + 80) >> 2] = a + (f << 2) + H[(h + 76) >> 2] = c + H[(h + 72) >> 2] = g + if (!l) { + break da + } + oa(l) + break da + } + sa() + v() + } + sa() + v() + } + r = H[(h + 8) >> 2] + A = H[r >> 2] + if ( + (((((H[(r + 4) >> 2] - A) >> 2) >>> 0) / + 3) | + 0) <= + (k | 0) + ) { + j = -1 + break q + } + a = -1 + j = -1 + b = -1 + w = H[(r + 24) >> 2] + f = -1 + ia: { + if ((o | 0) == -1) { + break ia + } + e = (o + 1) | 0 + e = (e >>> 0) % 3 | 0 ? e : (o - 2) | 0 + f = -1 + if ((e | 0) == -1) { + break ia + } + f = H[(A + (e << 2)) >> 2] + } + l = H[(w + (f << 2)) >> 2] + ja: { + if ((l | 0) == -1) { + g = 1 + e = -1 + break ja + } + g = 1 + c = (l + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (l - 2) | 0 + e = -1 + if ((c | 0) == -1) { + break ja + } + g = 0 + a = c + e = (a + 1) | 0 + e = (e >>> 0) % 3 | 0 ? e : (a - 2) | 0 + if ((e | 0) != -1) { + e = H[(A + (e << 2)) >> 2] + } else { + e = -1 + } + } + c = H[((e << 2) + w) >> 2] + if ((c | 0) != -1) { + b = (c + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (c - 2) | 0 + } + if ( + ((a | 0) == (o | 0)) | + ((b | 0) == (o | 0)) | + ((((o | 0) != -1) & + (H[ + (H[(r + 12) >> 2] + (o << 2)) >> 2 + ] != + -1)) | + ((a | 0) == (b | 0))) + ) { + break q + } + if ( + !g & + (H[ + (H[(r + 12) >> 2] + (a << 2)) >> 2 + ] != + -1) + ) { + break q + } + g = -1 + l = H[(r + 12) >> 2] + w = -1 + ka: { + if ((b | 0) == -1) { + break ka + } + if (H[(l + (b << 2)) >> 2] != -1) { + break q + } + c = (b + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + w = -1 + if ((c | 0) == -1) { + break ka + } + w = H[(A + (c << 2)) >> 2] + } + c = N(k, 3) + H[i >> 2] = c + H[(l + (c << 2)) >> 2] = o + H[(l + (o << 2)) >> 2] = c + c = (H[i >> 2] + 1) | 0 + H[(l + (c << 2)) >> 2] = a + H[(l + (a << 2)) >> 2] = c + a = (H[i >> 2] + 2) | 0 + H[(l + (a << 2)) >> 2] = b + H[(l + (b << 2)) >> 2] = a + a = H[i >> 2] + H[(A + (a << 2)) >> 2] = e + j = (a + 1) | 0 + l = (A + (j << 2)) | 0 + H[l >> 2] = w + w = (a + 2) | 0 + c = (A + (w << 2)) | 0 + H[c >> 2] = f + f = H[(h + 120) >> 2] + e = j ? e : -1 + b = (f + ((e >>> 3) & 536870908)) | 0 + a = H[b >> 2] + ;(P = b), (Q = Vj(e) & a), (H[P >> 2] = Q) + g = (j | 0) != -1 ? H[l >> 2] : g + b = (f + ((g >>> 3) & 536870908)) | 0 + a = H[b >> 2] + ;(P = b), (Q = Vj(g) & a), (H[P >> 2] = Q) + b = -1 + b = (w | 0) != -1 ? H[c >> 2] : b + e = (f + ((b >>> 3) & 536870908)) | 0 + a = H[e >> 2] + ;(P = e), (Q = Vj(b) & a), (H[P >> 2] = Q) + F[(i + 88) | 0] = 1 + _c(m, (i + 88) | 0) + Ka(u, i) + k = (k + 1) | 0 + e = H[(i + 64) >> 2] + } + if ((d | 0) != (e | 0)) { + continue + } + break + } + a = H[(h + 8) >> 2] + } + j = -1 + if ( + (((((H[(a + 4) >> 2] - H[a >> 2]) >> 2) >>> + 0) / + 3) | + 0) != + (k | 0) + ) { + break q + } + j = (H[(a + 28) >> 2] - H[(a + 24) >> 2]) >> 2 + s = H[(i + 24) >> 2] + c = H[(i + 28) >> 2] + if ((s | 0) == (c | 0)) { + break p + } + while (1) { + k = H[s >> 2] + d = H[(a + 24) >> 2] + b = (j - 1) | 0 + g = (d + (b << 2)) | 0 + if (H[g >> 2] == -1) { + while (1) { + b = (j - 2) | 0 + j = (j - 1) | 0 + g = (d + (b << 2)) | 0 + if (H[g >> 2] == -1) { + continue + } + break + } + } + if (b >>> 0 >= k >>> 0) { + H[i >> 2] = a + g = H[g >> 2] + F[(i + 12) | 0] = 1 + H[(i + 8) >> 2] = g + H[(i + 4) >> 2] = g + if ((g | 0) != -1) { + while (1) { + a = + (H[H[(h + 8) >> 2] >> 2] + (g << 2)) | + 0 + if (H[a >> 2] != (b | 0)) { + j = -1 + break q + } + H[a >> 2] = k + uc(i) + g = H[(i + 8) >> 2] + if ((g | 0) != -1) { + continue + } + break + } + a = H[(h + 8) >> 2] + } + d = H[(a + 24) >> 2] + e = (d + (b << 2)) | 0 + if ((k | 0) != -1) { + H[(d + (k << 2)) >> 2] = H[e >> 2] + } + H[e >> 2] = -1 + f = 1 << k + d = H[(h + 120) >> 2] + e = (d + ((k >>> 3) & 536870908)) | 0 + k = (d + ((b >>> 3) & 536870908)) | 0 + d = 1 << b + if (H[k >> 2] & d) { + b = f | H[e >> 2] + } else { + b = H[e >> 2] & (f ^ -1) + } + H[e >> 2] = b + H[k >> 2] = H[k >> 2] & (d ^ -1) + j = (j - 1) | 0 + } + s = (s + 4) | 0 + if ((c | 0) != (s | 0)) { + continue + } + break + } + } + s = H[(i + 24) >> 2] + } + if (s) { + oa(s) + } + a = H[(i + 48) >> 2] + if (a) { + while (1) { + d = H[a >> 2] + oa(a) + a = d + if (a) { + continue + } + break + } + } + a = H[(i + 40) >> 2] + H[(i + 40) >> 2] = 0 + if (a) { + oa(a) + } + a = H[(i + 64) >> 2] + if (a) { + H[(i + 68) >> 2] = a + oa(a) + } + ca = (i + 96) | 0 + a = j + break m + } + sa() + v() + } + wa() + v() + } + e = a + if ((a | 0) == -1) { + break l + } + b = H[(C + 16) >> 2] + d = (b + H[C >> 2]) | 0 + a = (H[(C + 8) >> 2] - b) | 0 + b = H[(H[(h + 4) >> 2] + 32) >> 2] + G[(b + 38) >> 1] = J[(b + 38) >> 1] + H[b >> 2] = d + H[(b + 16) >> 2] = 0 + H[(b + 20) >> 2] = 0 + H[(b + 8) >> 2] = a + H[(b + 12) >> 2] = 0 + b = H[(h + 4) >> 2] + a = J[(b + 36) >> 1] + d = (a << 8) | (a >>> 8) + if ((d & 65535) >>> 0 <= 513) { + b = H[(b + 32) >> 2] + c = b + a = H[(b + 16) >> 2] + b = (M + H[(b + 20) >> 2]) | 0 + a = (a + y) | 0 + b = a >>> 0 < y >>> 0 ? (b + 1) | 0 : b + H[(c + 16) >> 2] = a + H[(c + 20) >> 2] = b + } + la: { + if (H[(h + 216) >> 2] == H[(h + 220) >> 2]) { + break la + } + a = H[(h + 8) >> 2] + b = H[a >> 2] + a = H[(a + 4) >> 2] + ma: { + if ((d & 65535) >>> 0 >= 513) { + if ((a | 0) == (b | 0)) { + break la + } + d = 0 + break ma + } + if ((a | 0) == (b | 0)) { + break la + } + d = 0 + while (1) { + if (cd(h, d)) { + d = (d + 3) | 0 + a = H[(h + 8) >> 2] + if ( + d >>> 0 < + ((H[(a + 4) >> 2] - H[a >> 2]) >> 2) >>> 0 + ) { + continue + } + break la + } + break + } + break l + } + while (1) { + if (bd(h, d)) { + d = (d + 3) | 0 + a = H[(h + 8) >> 2] + if ( + d >>> 0 < + ((H[(a + 4) >> 2] - H[a >> 2]) >> 2) >>> 0 + ) { + continue + } + break la + } + break + } + break l + } + ad(O) + d = H[(h + 216) >> 2] + if ((d | 0) != H[(h + 220) >> 2]) { + l = 0 + while (1) { + c = N(l, 144) + Jc((((c + d) | 0) + 4) | 0, H[(h + 8) >> 2]) + a = H[E >> 2] + b = (a + c) | 0 + d = H[(b + 132) >> 2] + b = H[(b + 136) >> 2] + if ((d | 0) != (b | 0)) { + while (1) { + Hc((((c + H[E >> 2]) | 0) + 4) | 0, H[d >> 2]) + d = (d + 4) | 0 + if ((b | 0) != (d | 0)) { + continue + } + break + } + a = H[E >> 2] + } + if (!Ic((((a + c) | 0) + 4) | 0)) { + break l + } + l = (l + 1) | 0 + d = H[(h + 216) >> 2] + if ( + l >>> 0 < + (((H[(h + 220) >> 2] - d) | 0) / 144) >>> 0 + ) { + continue + } + break + } + } + a = H[(h + 8) >> 2] + Hb( + (h + 184) | 0, + (H[(a + 28) >> 2] - H[(a + 24) >> 2]) >> 2, + ) + x = H[(h + 216) >> 2] + if ((x | 0) != H[(h + 220) >> 2]) { + d = 0 + while (1) { + a = (N(d, 144) + x) | 0 + b = (H[(a + 60) >> 2] - H[(a + 56) >> 2]) >> 2 + c = (a + 104) | 0 + a = H[(h + 8) >> 2] + a = (H[(a + 28) >> 2] - H[(a + 24) >> 2]) >> 2 + Hb(c, (a | 0) < (b | 0) ? b : a) + d = (d + 1) | 0 + x = H[(h + 216) >> 2] + if ( + d >>> 0 < + (((H[(h + 220) >> 2] - x) | 0) / 144) >>> 0 + ) { + continue + } + break + } + } + x = $c(h, e) + } + break b + } + x = 0 + } + ca = (t - -64) | 0 + return x | 0 + } + function Bg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + G = 0, + J = 0, + K = 0, + L = 0, + M = 0, + O = 0 + B = c + c = 0 + m = (ca - 96) | 0 + ca = m + l = (m + 16) | 0 + ra(l, 0, 76) + H[(m + 92) >> 2] = -1 + H[(m + 8) >> 2] = 0 + H[m >> 2] = 0 + H[(m + 4) >> 2] = 0 + r = (ca - 16) | 0 + ca = r + H[(l + 68) >> 2] = 0 + H[(l + 72) >> 2] = 0 + H[l >> 2] = b + s = (ca - 16) | 0 + ca = s + u = b + a = H[(b + 20) >> 2] + a: { + if (((H[(b + 24) >> 2] - a) | 0) <= 0) { + break a + } + a = H[a >> 2] + if ((a | 0) == -1) { + break a + } + c = H[(H[(u + 8) >> 2] + (a << 2)) >> 2] + } + b: { + c: { + d: { + if (!c) { + a = 0 + break d + } + a = H[(u + 100) >> 2] + e = H[(u + 96) >> 2] + H[(s + 8) >> 2] = 0 + H[s >> 2] = 0 + H[(s + 4) >> 2] = 0 + f = (a - e) | 0 + b = ((f | 0) / 12) | 0 + e: { + if ((a | 0) == (e | 0)) { + break e + } + if (b >>> 0 >= 357913942) { + break c + } + d = pa(f) + H[s >> 2] = d + H[(s + 8) >> 2] = d + N(b, 12) + a = 0 + n = d + f = (f - 12) | 0 + d = (((f - ((f >>> 0) % 12 | 0)) | 0) + 12) | 0 + f = ra(n, 0, d) + H[(s + 4) >> 2] = d + f + if (I[(c + 84) | 0]) { + c = b >>> 0 <= 1 ? 1 : b + h = c & 1 + if (b >>> 0 >= 2) { + g = c & -2 + c = 0 + while (1) { + d = N(a, 12) + b = (d + e) | 0 + i = H[(b + 4) >> 2] + j = H[b >> 2] + d = (d + f) | 0 + H[(d + 8) >> 2] = H[(b + 8) >> 2] + H[d >> 2] = j + H[(d + 4) >> 2] = i + d = N(a | 1, 12) + b = (d + e) | 0 + i = H[(b + 4) >> 2] + j = H[b >> 2] + d = (d + f) | 0 + H[(d + 8) >> 2] = H[(b + 8) >> 2] + H[d >> 2] = j + H[(d + 4) >> 2] = i + a = (a + 2) | 0 + c = (c + 2) | 0 + if ((g | 0) != (c | 0)) { + continue + } + break + } + } + if (!h) { + break e + } + b = N(a, 12) + a = (b + e) | 0 + c = H[(a + 4) >> 2] + e = H[a >> 2] + b = (b + f) | 0 + H[(b + 8) >> 2] = H[(a + 8) >> 2] + H[b >> 2] = e + H[(b + 4) >> 2] = c + break e + } + h = b >>> 0 <= 1 ? 1 : b + a = H[(c + 68) >> 2] + c = 0 + while (1) { + d = N(c, 12) + b = (d + e) | 0 + g = H[(a + (H[b >> 2] << 2)) >> 2] + i = H[(a + (H[(b + 4) >> 2] << 2)) >> 2] + d = (d + f) | 0 + H[(d + 8) >> 2] = H[(a + (H[(b + 8) >> 2] << 2)) >> 2] + H[(d + 4) >> 2] = i + H[d >> 2] = g + c = (c + 1) | 0 + if ((h | 0) != (c | 0)) { + continue + } + break + } + } + d = 0 + E = (ca - 16) | 0 + ca = E + h = pa(88) + $b(h) + C = (ca - 16) | 0 + ca = C + H[(h + 80) >> 2] = 0 + H[(h + 84) >> 2] = 0 + a = H[(h + 76) >> 2] + H[(h + 76) >> 2] = 0 + if (a) { + oa(a) + } + H[(h + 68) >> 2] = 0 + H[(h + 72) >> 2] = 0 + b = (h - -64) | 0 + a = H[b >> 2] + H[b >> 2] = 0 + if (a) { + oa(a) + } + g = H[(s + 4) >> 2] + b = H[s >> 2] + c = (((g - b) | 0) / 12) | 0 + a = N(c, 3) + f = H[h >> 2] + e = (H[(h + 4) >> 2] - f) >> 2 + f: { + if (a >>> 0 > e >>> 0) { + ue(h, (a - e) | 0) + g = H[(s + 4) >> 2] + b = H[s >> 2] + c = (((g - b) | 0) / 12) | 0 + break f + } + if (a >>> 0 >= e >>> 0) { + break f + } + H[(h + 4) >> 2] = f + (a << 2) + } + g: { + if ((b | 0) == (g | 0)) { + break g + } + e = c >>> 0 <= 1 ? 1 : c + g = e & 1 + a = H[h >> 2] + if (c >>> 0 >= 2) { + i = e & -2 + c = 0 + while (1) { + e = N(d, 12) + j = (e + a) | 0 + f = (b + e) | 0 + H[j >> 2] = H[f >> 2] + H[(a + (e | 4)) >> 2] = H[(f + 4) >> 2] + H[(j + 8) >> 2] = H[(f + 8) >> 2] + f = N(d | 1, 12) + e = (f + a) | 0 + f = (b + f) | 0 + H[e >> 2] = H[f >> 2] + H[(e + 4) >> 2] = H[(f + 4) >> 2] + H[(e + 8) >> 2] = H[(f + 8) >> 2] + d = (d + 2) | 0 + c = (c + 2) | 0 + if ((i | 0) != (c | 0)) { + continue + } + break + } + } + if (!g) { + break g + } + c = N(d, 12) + a = (c + a) | 0 + b = (b + c) | 0 + H[a >> 2] = H[b >> 2] + H[(a + 4) >> 2] = H[(b + 4) >> 2] + H[(a + 8) >> 2] = H[(b + 8) >> 2] + } + H[(C + 12) >> 2] = -1 + a = 0 + e = 0 + g = 0 + f = (ca - 32) | 0 + ca = f + h: { + i: { + w = (C + 12) | 0 + j: { + if (!w) { + break j + } + c = H[(h + 4) >> 2] + j = H[h >> 2] + d = (c - j) | 0 + i = d >> 2 + n = H[(h + 12) >> 2] + b = (H[(h + 16) >> 2] - n) >> 2 + k: { + if (i >>> 0 > b >>> 0) { + qb((h + 12) | 0, (i - b) | 0, 13652) + c = H[(h + 4) >> 2] + j = H[h >> 2] + d = (c - j) | 0 + i = d >> 2 + break k + } + if (b >>> 0 <= i >>> 0) { + break k + } + H[(h + 16) >> 2] = n + (i << 2) + } + H[(f + 24) >> 2] = 0 + H[(f + 16) >> 2] = 0 + H[(f + 20) >> 2] = 0 + b = (c | 0) == (j | 0) + if (!b) { + if ((d | 0) < 0) { + break i + } + e = pa(d) + H[(f + 20) >> 2] = e + H[(f + 16) >> 2] = e + H[(f + 24) >> 2] = (i << 2) + e + } + l: { + m: { + n: { + o: { + p: { + if (d) { + while (1) { + i = H[((a << 2) + j) >> 2] + b = (H[(f + 20) >> 2] - e) >> 2 + q: { + if (i >>> 0 < b >>> 0) { + break q + } + H[f >> 2] = 0 + d = (i + 1) | 0 + if (d >>> 0 > b >>> 0) { + Pa((f + 16) | 0, (d - b) | 0, f) + j = H[h >> 2] + c = H[(h + 4) >> 2] + e = H[(f + 16) >> 2] + break q + } + if (b >>> 0 <= d >>> 0) { + break q + } + H[(f + 20) >> 2] = (d << 2) + e + } + b = ((i << 2) + e) | 0 + H[b >> 2] = H[b >> 2] + 1 + a = (a + 1) | 0 + d = (c - j) | 0 + i = d >> 2 + if (a >>> 0 < i >>> 0) { + continue + } + break + } + break p + } + d = 0 + if (!b) { + break o + } + break n + } + if ((c | 0) == (j | 0)) { + d = 0 + break n + } + if (d >>> 0 >= 2147483645) { + break m + } + } + d = pa(d << 1) + ra(d, 255, i << 3) + } + H[(f + 8) >> 2] = 0 + H[f >> 2] = 0 + H[(f + 4) >> 2] = 0 + b = H[(f + 20) >> 2] + a = (b - e) | 0 + t = a >> 2 + r: { + s: { + if ((b | 0) == (e | 0)) { + break s + } + if ((a | 0) < 0) { + break r + } + q = pa(a) + H[f >> 2] = q + H[(f + 8) >> 2] = (t << 2) + q + b = ra(q, 0, a) + H[(f + 4) >> 2] = b + a + c = t >>> 0 <= 1 ? 1 : t + n = c & 3 + a = 0 + if ((c - 1) >>> 0 >= 3) { + o = c & -4 + while (1) { + c = g << 2 + H[(c + b) >> 2] = a + x = c | 4 + a = (H[(c + e) >> 2] + a) | 0 + H[(x + b) >> 2] = a + y = c | 8 + a = (a + H[(e + x) >> 2]) | 0 + H[(y + b) >> 2] = a + c = c | 12 + a = (a + H[(e + y) >> 2]) | 0 + H[(c + b) >> 2] = a + a = (a + H[(c + e) >> 2]) | 0 + g = (g + 4) | 0 + p = (p + 4) | 0 + if ((o | 0) != (p | 0)) { + continue + } + break + } + } + if (!n) { + break s + } + while (1) { + c = g << 2 + H[(c + b) >> 2] = a + g = (g + 1) | 0 + a = (H[(c + e) >> 2] + a) | 0 + k = (k + 1) | 0 + if ((n | 0) != (k | 0)) { + continue + } + break + } + } + if (!i) { + break l + } + x = H[(h + 40) >> 2] + y = H[(h + 12) >> 2] + n = 0 + while (1) { + G = n << 2 + a = (G + j) | 0 + k = -1 + c = (n + 1) | 0 + b = (c >>> 0) % 3 | 0 ? c : (n - 2) | 0 + if ((b | 0) != -1) { + k = H[((b << 2) + j) >> 2] + } + b = H[a >> 2] + t: { + u: { + if (!((n >>> 0) % 3 | 0)) { + p = -1 + a = (n + 2) | 0 + if ((a | 0) != -1) { + p = H[((a << 2) + j) >> 2] + } + if ( + !( + ((b | 0) == (k | 0)) | + ((b | 0) == (p | 0)) + ) & + ((k | 0) != (p | 0)) + ) { + break u + } + x = (x + 1) | 0 + H[(h + 40) >> 2] = x + c = (n + 3) | 0 + break t + } + p = H[(a - 4) >> 2] + } + a = p << 2 + A = H[(a + e) >> 2] + v: { + w: { + if ((A | 0) <= 0) { + break w + } + a = H[(a + q) >> 2] + g = 0 + while (1) { + o = ((a << 3) + d) | 0 + z = H[o >> 2] + if ((z | 0) == -1) { + break w + } + x: { + if ((k | 0) != (z | 0)) { + break x + } + o = H[(o + 4) >> 2] + if ((o | 0) != -1) { + z = H[((o << 2) + j) >> 2] + } else { + z = -1 + } + if ((z | 0) == (b | 0)) { + break x + } + while (1) { + y: { + b = a + g = (g + 1) | 0 + if ((A | 0) <= (g | 0)) { + break y + } + a = (b + 1) | 0 + J = ((a << 3) + d) | 0 + z = H[J >> 2] + K = ((b << 3) + d) | 0 + H[(K + 4) >> 2] = + H[(J + 4) >> 2] + H[K >> 2] = z + if ((z | 0) != -1) { + continue + } + } + break + } + H[((b << 3) + d) >> 2] = -1 + if ((o | 0) == -1) { + break w + } + H[(y + G) >> 2] = o + H[(y + (o << 2)) >> 2] = n + break v + } + a = (a + 1) | 0 + g = (g + 1) | 0 + if ((A | 0) != (g | 0)) { + continue + } + break + } + } + a = k << 2 + k = H[(a + e) >> 2] + if ((k | 0) <= 0) { + break v + } + a = H[(a + q) >> 2] + g = 0 + while (1) { + b = ((a << 3) + d) | 0 + if (H[b >> 2] == -1) { + H[b >> 2] = p + H[(b + 4) >> 2] = n + break v + } + a = (a + 1) | 0 + g = (g + 1) | 0 + if ((k | 0) != (g | 0)) { + continue + } + break + } + } + } + n = c + if (n >>> 0 < i >>> 0) { + continue + } + break + } + break l + } + break i + } + sa() + v() + } + H[w >> 2] = t + if (q) { + oa(q) + } + if (d) { + oa(d) + } + a = H[(f + 16) >> 2] + if (!a) { + break j + } + H[(f + 20) >> 2] = a + oa(a) + } + ca = (f + 32) | 0 + x = (w | 0) != 0 + if (x) { + k = (ca - 32) | 0 + ca = k + a = H[h >> 2] + g = H[(h + 4) >> 2] + H[(k + 24) >> 2] = 0 + H[(k + 16) >> 2] = 0 + H[(k + 20) >> 2] = 0 + if ((a | 0) == (g | 0)) { + c = g + } else { + a = (g - a) | 0 + if ((a | 0) < 0) { + break i + } + a = a >> 2 + b = ((((a - 1) >>> 5) | 0) + 1) | 0 + c = pa(b << 2) + H[(k + 24) >> 2] = b + H[(k + 20) >> 2] = 0 + H[(k + 16) >> 2] = c + Mc((k + 16) | 0, a) + g = H[h >> 2] + c = H[(h + 4) >> 2] + } + H[(k + 8) >> 2] = 0 + H[k >> 2] = 0 + while (1) { + z: { + o = 0 + i = 0 + if ((c | 0) == (g | 0)) { + break z + } + while (1) { + b = H[(k + 16) >> 2] + A: { + if ( + (H[(b + ((i >>> 3) & 536870908)) >> 2] >>> + i) & + 1 + ) { + break A + } + c = H[k >> 2] + H[(k + 4) >> 2] = c + e = H[(h + 12) >> 2] + a = i + while (1) { + B: { + f = (a + 1) | 0 + d = a + a = (f >>> 0) % 3 | 0 ? f : (a - 2) | 0 + if ((a | 0) == -1) { + break B + } + a = H[(e + (a << 2)) >> 2] + if ((a | 0) == -1) { + break B + } + f = (a + 1) | 0 + a = (f >>> 0) % 3 | 0 ? f : (a - 2) | 0 + if ( + ((i | 0) == (a | 0)) | + ((a | 0) == -1) + ) { + break B + } + if ( + !( + (H[ + (b + ((a >>> 3) & 536870908)) >> 2 + ] >>> + a) & + 1 + ) + ) { + continue + } + } + break + } + j = d + C: { + D: { + E: { + while (1) { + a = + (H[(k + 16) >> 2] + + ((j >>> 3) & 536870908)) | + 0 + H[a >> 2] = H[a >> 2] | (1 << j) + a = (j + 1) | 0 + f = + (a >>> 0) % 3 | 0 + ? a + : (j - 2) | 0 + g = H[h >> 2] + y = (j >>> 0) % 3 | 0 + b = ((y ? -1 : 2) + j) | 0 + n = H[k >> 2] + A = (n | 0) == (c | 0) + F: { + if (A) { + break F + } + w = H[((f << 2) + g) >> 2] + q = H[(h + 12) >> 2] + a = n + if ((b | 0) != -1) { + e = (q + (b << 2)) | 0 + while (1) { + G: { + if ((w | 0) != H[a >> 2]) { + break G + } + p = H[(a + 4) >> 2] + t = H[e >> 2] + if ((p | 0) == (t | 0)) { + break G + } + e = b + c = -1 + a = -1 + if ((p | 0) == -1) { + break C + } + break D + } + a = (a + 8) | 0 + if ((c | 0) != (a | 0)) { + continue + } + break + } + break F + } + while (1) { + if ((w | 0) == H[a >> 2]) { + t = -1 + e = -1 + p = H[(a + 4) >> 2] + if ((p | 0) != -1) { + break D + } + } + a = (a + 8) | 0 + if ((c | 0) != (a | 0)) { + continue + } + break + } + } + b = H[((b << 2) + g) >> 2] + H: { + if (H[(k + 8) >> 2] != (c | 0)) { + H[c >> 2] = b + H[(c + 4) >> 2] = f + c = (c + 8) | 0 + H[(k + 4) >> 2] = c + break H + } + a = (c - n) | 0 + p = a >> 3 + e = (p + 1) | 0 + if (e >>> 0 >= 536870912) { + break i + } + g = (a >>> 2) | 0 + g = + a >>> 0 >= 2147483640 + ? 536870911 + : e >>> 0 < g >>> 0 + ? g + : e + if (g) { + if (g >>> 0 >= 536870912) { + break E + } + e = pa(g << 3) + } else { + e = 0 + } + a = (e + (p << 3)) | 0 + H[a >> 2] = b + H[(a + 4) >> 2] = f + b = (a + 8) | 0 + if (!A) { + while (1) { + c = (c - 8) | 0 + f = H[(c + 4) >> 2] + a = (a - 8) | 0 + H[a >> 2] = H[c >> 2] + H[(a + 4) >> 2] = f + if ((c | 0) != (n | 0)) { + continue + } + break + } + c = H[k >> 2] + } + H[(k + 8) >> 2] = e + (g << 3) + H[(k + 4) >> 2] = b + H[k >> 2] = a + if (c) { + oa(c) + } + c = b + } + I: { + J: { + if (y) { + a = (j - 1) | 0 + break J + } + a = (j + 2) | 0 + if ((a | 0) == -1) { + break I + } + } + a = + H[ + (H[(h + 12) >> 2] + + (a << 2)) >> + 2 + ] + if ((a | 0) == -1) { + break I + } + j = + (a + + ((a >>> 0) % 3 | 0 + ? -1 + : 2)) | + 0 + if ((d | 0) == (j | 0)) { + break I + } + if ((j | 0) != -1) { + continue + } + } + break + } + g = H[h >> 2] + break A + } + wa() + v() + } + c = H[(q + (p << 2)) >> 2] + b = e + a = p + } + if ((t | 0) != -1) { + H[(q + (t << 2)) >> 2] = -1 + } + if ((c | 0) != -1) { + H[(q + (c << 2)) >> 2] = -1 + } + H[(q + (b << 2)) >> 2] = -1 + H[(q + (a << 2)) >> 2] = -1 + o = 1 + } + i = (i + 1) | 0 + c = H[(h + 4) >> 2] + if (i >>> 0 < ((c - g) >> 2) >>> 0) { + continue + } + break + } + if (o) { + continue + } + } + break + } + a = H[k >> 2] + if (a) { + oa(a) + } + a = H[(k + 16) >> 2] + if (a) { + oa(a) + } + ca = (k + 32) | 0 + n = 0 + g = (ca - 32) | 0 + ca = g + e = H[(C + 12) >> 2] + H[(h + 36) >> 2] = e + p = (h + 24) | 0 + b = H[(h + 24) >> 2] + a = (H[(h + 28) >> 2] - b) >> 2 + K: { + L: { + if (a >>> 0 < e >>> 0) { + qb(p, (e - a) | 0, 13652) + H[(g + 24) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + break L + } + if (a >>> 0 > e >>> 0) { + H[(h + 28) >> 2] = b + (e << 2) + } + H[(g + 24) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + if (!e) { + break K + } + } + if ((e | 0) < 0) { + break i + } + a = ((((e - 1) >>> 5) | 0) + 1) | 0 + b = pa(a << 2) + H[(g + 24) >> 2] = a + H[(g + 20) >> 2] = 0 + H[(g + 16) >> 2] = b + Mc((g + 16) | 0, e) + } + a = H[h >> 2] + b = H[(h + 4) >> 2] + H[(g + 8) >> 2] = 0 + H[g >> 2] = 0 + H[(g + 4) >> 2] = 0 + M: { + if ((a | 0) == (b | 0)) { + a = b + } else { + a = (b - a) | 0 + if ((a | 0) < 0) { + break i + } + a = a >> 2 + b = ((((a - 1) >>> 5) | 0) + 1) | 0 + c = pa(b << 2) + H[(g + 8) >> 2] = b + H[(g + 4) >> 2] = 0 + H[g >> 2] = c + Mc(g, a) + b = H[h >> 2] + a = H[(h + 4) >> 2] + } + if ((a - b) >>> 0 < 12) { + break M + } + N: { + while (1) { + q = N(n, 3) + d = ((q << 2) + b) | 0 + f = H[d >> 2] + c = -1 + i = (q + 1) | 0 + if ((i | 0) != -1) { + c = H[((i << 2) + b) >> 2] + } + O: { + if ((c | 0) == (f | 0)) { + break O + } + i = f + f = H[(d + 8) >> 2] + if ( + ((i | 0) == (f | 0)) | + ((c | 0) == (f | 0)) + ) { + break O + } + k = 0 + i = H[g >> 2] + while (1) { + f = (k + q) | 0 + if ( + !( + (H[ + (((f >>> 3) & 536870908) + i) >> 2 + ] >>> + f) & + 1 + ) + ) { + a = H[((f << 2) + b) >> 2] + c = 1 << a + d = H[(g + 16) >> 2] + b = (a >>> 5) | 0 + i = H[(d + (b << 2)) >> 2] + t = c & i + if (t) { + c = H[(h + 28) >> 2] + P: { + if ((c | 0) != H[(h + 32) >> 2]) { + H[c >> 2] = -1 + H[(h + 28) >> 2] = c + 4 + break P + } + i = H[p >> 2] + b = (c - i) | 0 + o = b >> 2 + d = (o + 1) | 0 + if (d >>> 0 >= 1073741824) { + break i + } + j = (b >>> 1) | 0 + j = + b >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < j >>> 0 + ? j + : d + if (j) { + if (j >>> 0 >= 1073741824) { + break N + } + b = pa(j << 2) + } else { + b = 0 + } + d = (b + (o << 2)) | 0 + H[d >> 2] = -1 + o = (d + 4) | 0 + if ((c | 0) != (i | 0)) { + while (1) { + d = (d - 4) | 0 + c = (c - 4) | 0 + H[d >> 2] = H[c >> 2] + if ((c | 0) != (i | 0)) { + continue + } + break + } + } + H[(h + 32) >> 2] = b + (j << 2) + H[(h + 28) >> 2] = o + H[(h + 24) >> 2] = d + if (!i) { + break P + } + oa(i) + } + c = H[(h + 52) >> 2] + Q: { + if ((c | 0) != H[(h + 56) >> 2]) { + H[c >> 2] = a + H[(h + 52) >> 2] = c + 4 + break Q + } + i = H[(h + 48) >> 2] + b = (c - i) | 0 + o = b >> 2 + d = (o + 1) | 0 + if (d >>> 0 >= 1073741824) { + break i + } + j = (b >>> 1) | 0 + j = + b >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < j >>> 0 + ? j + : d + if (j) { + if (j >>> 0 >= 1073741824) { + break N + } + b = pa(j << 2) + } else { + b = 0 + } + d = (b + (o << 2)) | 0 + H[d >> 2] = a + a = (d + 4) | 0 + if ((c | 0) != (i | 0)) { + while (1) { + d = (d - 4) | 0 + c = (c - 4) | 0 + H[d >> 2] = H[c >> 2] + if ((c | 0) != (i | 0)) { + continue + } + break + } + } + H[(h + 56) >> 2] = b + (j << 2) + H[(h + 52) >> 2] = a + H[(h + 48) >> 2] = d + if (!i) { + break Q + } + oa(i) + } + c = H[(g + 20) >> 2] + a = H[(g + 24) >> 2] + if ((c | 0) == a << 5) { + if (((c + 1) | 0) < 0) { + break i + } + b = (g + 16) | 0 + if (c >>> 0 <= 1073741822) { + a = a << 6 + c = ((c & -32) + 32) | 0 + a = a >>> 0 > c >>> 0 ? a : c + } else { + a = 2147483647 + } + pb(b, a) + c = H[(g + 20) >> 2] + } + H[(g + 20) >> 2] = c + 1 + d = H[(g + 16) >> 2] + a = (d + ((c >>> 3) & 536870908)) | 0 + b = H[a >> 2] + ;(M = a), + (O = Vj(c) & b), + (H[M >> 2] = O) + c = 1 << e + b = (e >>> 5) | 0 + i = H[((b << 2) + d) >> 2] + a = e + e = (a + 1) | 0 + } + H[((b << 2) + d) >> 2] = c | i + o = (H[(h + 24) >> 2] + (a << 2)) | 0 + j = H[(h + 12) >> 2] + b = H[h >> 2] + i = H[g >> 2] + c = f + R: { + S: { + T: { + while (1) { + if ((c | 0) == -1) { + break T + } + d = + (((c >>> 3) & 536870908) + + i) | + 0 + H[d >> 2] = H[d >> 2] | (1 << c) + H[o >> 2] = c + if (t) { + H[((c << 2) + b) >> 2] = a + } + w = (c + 1) | 0 + c = + (w >>> 0) % 3 | 0 + ? w + : (c - 2) | 0 + d = -1 + U: { + if ((c | 0) == -1) { + break U + } + c = H[(j + (c << 2)) >> 2] + d = -1 + if ((c | 0) == -1) { + break U + } + d = (c + 1) | 0 + d = + (d >>> 0) % 3 | 0 + ? d + : (c - 2) | 0 + } + c = d + if ((f | 0) != (c | 0)) { + continue + } + break + } + if ((f | 0) != -1) { + break R + } + c = 1 + break S + } + if ((f >>> 0) % 3 | 0) { + c = (f - 1) | 0 + break S + } + c = (f + 2) | 0 + if ((c | 0) == -1) { + break R + } + } + c = H[(j + (c << 2)) >> 2] + if ((c | 0) == -1) { + break R + } + V: { + if ((c >>> 0) % 3 | 0) { + c = (c - 1) | 0 + break V + } + c = (c + 2) | 0 + if ((c | 0) == -1) { + break R + } + } + f = H[(h + 12) >> 2] + b = H[h >> 2] + while (1) { + d = + (((c >>> 3) & 536870908) + i) | 0 + H[d >> 2] = H[d >> 2] | (1 << c) + if (t) { + H[((c << 2) + b) >> 2] = a + } + W: { + if ((c >>> 0) % 3 | 0) { + c = (c - 1) | 0 + break W + } + c = (c + 2) | 0 + if ((c | 0) == -1) { + break R + } + } + c = H[(f + (c << 2)) >> 2] + if ((c | 0) == -1) { + break R + } + c = + (c + + ((c >>> 0) % 3 | 0 ? -1 : 2)) | + 0 + if ((c | 0) != -1) { + continue + } + break + } + } + } + k = (k + 1) | 0 + if ((k | 0) != 3) { + continue + } + break + } + b = H[h >> 2] + a = H[(h + 4) >> 2] + } + n = (n + 1) | 0 + if ( + n >>> 0 < + ((((a - b) >> 2) >>> 0) / 3) >>> 0 + ) { + continue + } + break + } + break M + } + wa() + v() + } + c = 0 + H[(h + 44) >> 2] = 0 + a = H[(g + 16) >> 2] + b = H[(g + 20) >> 2] + if (b) { + e = b & 31 + b = (((b >>> 3) & 536870908) + a) | 0 + d = a + i = 0 + while (1) { + if (!((H[d >> 2] >>> c) & 1)) { + i = (i + 1) | 0 + H[(h + 44) >> 2] = i + } + f = (c | 0) == 31 + c = f ? 0 : (c + 1) | 0 + d = ((f << 2) + d) | 0 + if ( + ((b | 0) != (d | 0)) | + ((c | 0) != (e | 0)) + ) { + continue + } + break + } + } + b = H[g >> 2] + if (b) { + oa(b) + a = H[(g + 16) >> 2] + } + if (a) { + oa(a) + } + ca = (g + 32) | 0 + } + ca = (C + 16) | 0 + if (!x) { + H[(E + 8) >> 2] = 0 + cb(h) + h = 0 + } + ca = (E + 16) | 0 + a = h + break h + } + sa() + v() + } + b = H[s >> 2] + if (!b) { + break d + } + H[(s + 4) >> 2] = b + oa(b) + } + ca = (s + 16) | 0 + break b + } + sa() + v() + } + c = H[(l + 4) >> 2] + b = a + H[(l + 4) >> 2] = a + if (c) { + cb(c) + b = H[(l + 4) >> 2] + } + X: { + if (!b) { + break X + } + a = H[(u + 100) >> 2] + c = H[(u + 96) >> 2] + F[(r + 12) | 0] = 0 + Oa((l + 56) | 0, (((a - c) | 0) / 12) | 0, (r + 12) | 0) + a = H[(u + 100) >> 2] + c = H[(u + 96) >> 2] + if ((a | 0) == (c | 0)) { + break X + } + while (1) { + if ( + !( + (H[ + (H[(l + 56) >> 2] + ((D >>> 3) & 536870908)) >> 2 + ] >>> + D) & + 1 + ) + ) { + a = N(D, 3) + Gc(l, 0, a) + c = H[(l + 8) >> 2] + e = H[(l + 12) >> 2] + Gc(l, 1, (a + 1) | 0) + f = H[(l + 20) >> 2] + d = H[(l + 24) >> 2] + Gc(l, 2, (a + 2) | 0) + n = (c | 0) == (e | 0) ? -1 : 0 + a = (d - f) >> 2 + c = (e - c) >> 2 + e = a >>> 0 > c >>> 0 + c = + ((H[(l + 36) >> 2] - H[(l + 32) >> 2]) >> 2) >>> 0 > + (e ? a : c) >>> 0 + ? 2 + : e + ? 1 + : n + Y: { + if (H[(l + 68) >> 2] <= 0) { + break Y + } + H[(r + 12) >> 2] = H[(l + 76) >> 2] + H[(r + 8) >> 2] = m + bb((r + 8) | 0, (r + 12) | 0) + a = H[((((c << 2) + l) | 0) + 44) >> 2] + if ((a | 0) < 0) { + a = -1 + } else { + e = ((a >>> 0) / 3) | 0 + a = + H[ + (((H[(H[l >> 2] + 96) >> 2] + N(e, 12)) | 0) + + ((a - N(e, 3)) << 2)) >> + 2 + ] + } + H[(r + 12) >> 2] = a + H[(r + 8) >> 2] = m + bb((r + 8) | 0, (r + 12) | 0) + e = H[(l + 72) >> 2] + H[(l + 72) >> 2] = e + 2 + if (!(e & 1)) { + break Y + } + H[(r + 12) >> 2] = a + H[(r + 8) >> 2] = m + bb((r + 8) | 0, (r + 12) | 0) + H[(l + 72) >> 2] = H[(l + 72) >> 2] + 1 + } + d = 0 + e = (ca - 16) | 0 + ca = e + H[(l + 68) >> 2] = H[(l + 68) >> 2] + 1 + a = (N(c, 12) + l) | 0 + a = (H[(a + 12) >> 2] - H[(a + 8) >> 2]) | 0 + if ((a | 0) > 0) { + a = (a >>> 2) | 0 + h = a >>> 0 <= 1 ? 1 : a + c = H[((((c << 2) + l) | 0) + 44) >> 2] + while (1) { + a = c + f = ((a >>> 0) / 3) | 0 + c = (a | 0) == -1 + g = c ? -1 : f + i = (H[(l + 56) >> 2] + ((g >>> 3) & 536870908)) | 0 + H[i >> 2] = H[i >> 2] | (1 << g) + H[(l + 72) >> 2] = H[(l + 72) >> 2] + 1 + Z: { + _: { + $: { + aa: { + ba: { + if (!d) { + ca: { + if ((a | 0) >= 0) { + H[(e + 12) >> 2] = + H[ + (((H[(H[l >> 2] + 96) >> 2] + + N(f, 12)) | + 0) + + ((a >>> 0) % 3 << 2)) >> + 2 + ] + H[(e + 8) >> 2] = m + bb((e + 8) | 0, (e + 12) | 0) + break ca + } + H[(e + 12) >> 2] = -1 + H[(e + 8) >> 2] = m + bb((e + 8) | 0, (e + 12) | 0) + if (c) { + break ba + } + } + c = -1 + f = (a + 1) | 0 + f = (f >>> 0) % 3 | 0 ? f : (a - 2) | 0 + if ((f | 0) >= 0) { + g = ((f >>> 0) / 3) | 0 + f = + H[ + (((H[(H[l >> 2] + 96) >> 2] + + N(g, 12)) | + 0) + + ((f - N(g, 3)) << 2)) >> + 2 + ] + } else { + f = -1 + } + H[(e + 12) >> 2] = f + H[(e + 8) >> 2] = m + bb((e + 8) | 0, (e + 12) | 0) + f = (((a >>> 0) % 3 | 0 ? -1 : 2) + a) | 0 + if ((f | 0) < 0) { + break aa + } + c = ((f >>> 0) / 3) | 0 + c = + H[ + (((H[(H[l >> 2] + 96) >> 2] + + N(c, 12)) | + 0) + + ((f - N(c, 3)) << 2)) >> + 2 + ] + break aa + } + c = + (a | 0) < 0 + ? -1 + : H[ + (((H[(H[l >> 2] + 96) >> 2] + + N(f, 12)) | + 0) + + ((a >>> 0) % 3 << 2)) >> + 2 + ] + H[(l + 76) >> 2] = c + H[(e + 12) >> 2] = c + H[(e + 8) >> 2] = m + bb((e + 8) | 0, (e + 12) | 0) + if (d & 1) { + c = -1 + if ((a | 0) == -1) { + break Z + } + if ((N(f, 3) | 0) != (a | 0)) { + a = (a - 1) | 0 + break _ + } + a = (a + 2) | 0 + break $ + } + c = -1 + if ((a | 0) == -1) { + break Z + } + c = (a + 1) | 0 + a = (c >>> 0) % 3 | 0 ? c : (a - 2) | 0 + break $ + } + c = -1 + H[(e + 12) >> 2] = -1 + H[(e + 8) >> 2] = m + bb((e + 8) | 0, (e + 12) | 0) + } + H[(l + 76) >> 2] = c + H[(e + 12) >> 2] = c + H[(e + 8) >> 2] = m + bb((e + 8) | 0, (e + 12) | 0) + } + c = -1 + if ((a | 0) == -1) { + break Z + } + } + c = + H[ + (H[(H[(l + 4) >> 2] + 12) >> 2] + (a << 2)) >> 2 + ] + } + d = (d + 1) | 0 + if ((h | 0) != (d | 0)) { + continue + } + break + } + } + ca = (e + 16) | 0 + c = H[(u + 96) >> 2] + a = H[(u + 100) >> 2] + } + D = (D + 1) | 0 + if (D >>> 0 < (((a - c) | 0) / 12) >>> 0) { + continue + } + break + } + } + ca = (r + 16) | 0 + da: { + if (b) { + a = H[B >> 2] + if (a) { + H[(B + 4) >> 2] = a + oa(a) + } + H[B >> 2] = H[m >> 2] + H[(B + 4) >> 2] = H[(m + 4) >> 2] + H[(B + 8) >> 2] = H[(m + 8) >> 2] + L = H[(m + 84) >> 2] + break da + } + a = H[m >> 2] + if (!a) { + break da + } + H[(m + 4) >> 2] = a + oa(a) + } + a = H[(m + 72) >> 2] + if (a) { + oa(a) + } + a = H[(m + 48) >> 2] + if (a) { + H[(m + 52) >> 2] = a + oa(a) + } + a = H[(m + 36) >> 2] + if (a) { + H[(m + 40) >> 2] = a + oa(a) + } + a = H[(m + 24) >> 2] + if (a) { + H[(m + 28) >> 2] = a + oa(a) + } + a = H[(m + 20) >> 2] + H[(m + 20) >> 2] = 0 + if (a) { + cb(a) + } + ca = (m + 96) | 0 + return L | 0 + } + function qg(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + i = b + a = 0 + b = 0 + a: { + b: { + switch ((d - 1) | 0) { + case 0: + j = H[(i + 80) >> 2] + h = I[(c + 24) | 0] + c: { + if ((N(j, h) | 0) != (e | 0)) { + break c + } + d = H[(c + 28) >> 2] != 1 + b = I[(c + 84) | 0] + if (!(d | !b)) { + qa(f, (H[H[c >> 2] >> 2] + H[(c + 48) >> 2]) | 0, e) + b = 1 + break c + } + if (h) { + a = pa(h) + ra(a, 0, h) + } + d: { + if (!j) { + b = 1 + break d + } + if (!d) { + if (h) { + d = 0 + e = 0 + while (1) { + i = (d + f) | 0 + k = H[H[c >> 2] >> 2] + m = H[(c + 48) >> 2] + g = H[(c + 40) >> 2] + b = Rj( + g, + H[(c + 44) >> 2], + I[(c + 84) | 0] + ? e + : H[(H[(c + 68) >> 2] + (e << 2)) >> 2], + 0, + ) + n = b + b = (b + m) | 0 + qa(i, qa(a, (b + k) | 0, g), h) + d = (d + h) | 0 + b = 1 + e = (e + 1) | 0 + if ((j | 0) != (e | 0)) { + continue + } + break + } + break d + } + if (b) { + b = 1 + h = H[c >> 2] + e = H[(c + 48) >> 2] + f = H[(c + 40) >> 2] + i = H[(c + 44) >> 2] + if ((j | 0) != 1) { + g = j & -2 + c = 0 + d = 0 + while (1) { + k = H[h >> 2] + m = (Rj(f, i, c, 0) + e) | 0 + k = qa(a, (k + m) | 0, f) + m = H[h >> 2] + n = (Rj(f, i, c | 1, 0) + e) | 0 + qa(k, (m + n) | 0, f) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + g = c + } + if (!(j & 1)) { + break d + } + c = H[h >> 2] + d = (Rj(g, 0, f, i) + e) | 0 + qa(a, (c + d) | 0, f) + break d + } + b = 1 + h = H[c >> 2] + e = H[(c + 48) >> 2] + g = H[(c + 68) >> 2] + f = H[(c + 40) >> 2] + i = H[(c + 44) >> 2] + c = 0 + if ((j | 0) != 1) { + k = j & -2 + d = 0 + while (1) { + m = H[h >> 2] + n = c << 2 + l = (Rj(f, i, H[(n + g) >> 2], 0) + e) | 0 + m = qa(a, (m + l) | 0, f) + l = H[h >> 2] + n = + (Rj(f, i, H[(g + (n | 4)) >> 2], 0) + e) | 0 + qa(m, (l + n) | 0, f) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((k | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break d + } + d = H[h >> 2] + c = (Rj(f, i, H[(g + (c << 2)) >> 2], 0) + e) | 0 + qa(a, (c + d) | 0, f) + break d + } + b = 0 + if (!h) { + d = 0 + while (1) { + if ( + !ic( + c, + I[(c + 84) | 0] + ? d + : H[(H[(c + 68) >> 2] + (d << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break d + } + d = (d + 1) | 0 + b = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + break d + } + d = 0 + e = 0 + while (1) { + if ( + !ic( + c, + I[(c + 84) | 0] + ? e + : H[(H[(c + 68) >> 2] + (e << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break d + } + qa((d + f) | 0, a, h) + d = (d + h) | 0 + e = (e + 1) | 0 + b = j >>> 0 <= e >>> 0 + if ((e | 0) != (j | 0)) { + continue + } + break + } + } + if (!a) { + break c + } + oa(a) + } + break a + case 2: + n = I[(c + 24) | 0] + l = n << 1 + j = H[(i + 80) >> 2] + e: { + if ((N(l, j) | 0) != (e | 0)) { + break e + } + i = H[(c + 28) >> 2] != 3 + d = I[(c + 84) | 0] + if (!(i | !d)) { + qa(f, (H[H[c >> 2] >> 2] + H[(c + 48) >> 2]) | 0, e) + a = 1 + break e + } + f: { + if (!n) { + e = 0 + break f + } + e = pa(l) + ra(e, 0, l) + } + g: { + if (!j) { + a = 1 + break g + } + if (!i) { + o = H[(c + 68) >> 2] + k = H[c >> 2] + b = H[(c + 48) >> 2] + i = H[(c + 40) >> 2] + m = H[(c + 44) >> 2] + if (n) { + if (!d) { + c = 0 + d = 0 + while (1) { + a = 1 + g = H[k >> 2] + p = + (Rj(i, m, H[(o + (d << 2)) >> 2], 0) + + b) | + 0 + qa( + ((c << 1) + f) | 0, + qa(e, (g + p) | 0, i), + l, + ) + c = (c + n) | 0 + d = (d + 1) | 0 + if ((j | 0) != (d | 0)) { + continue + } + break + } + break g + } + c = 0 + while (1) { + a = 1 + o = H[k >> 2] + p = (Rj(g, h, i, m) + b) | 0 + qa( + ((c << 1) + f) | 0, + qa(e, (o + p) | 0, i), + l, + ) + c = (c + n) | 0 + d = h + g = (g + 1) | 0 + d = g ? d : (d + 1) | 0 + h = d + if (((j | 0) != (g | 0)) | d) { + continue + } + break + } + break g + } + if (!d) { + a = 1 + c = 0 + if ((j | 0) != 1) { + f = j & -2 + d = 0 + while (1) { + h = H[k >> 2] + g = c << 2 + n = (Rj(i, m, H[(g + o) >> 2], 0) + b) | 0 + h = qa(e, (h + n) | 0, i) + n = H[k >> 2] + g = + (Rj(i, m, H[(o + (g | 4)) >> 2], 0) + b) | + 0 + qa(h, (g + n) | 0, i) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break g + } + d = H[k >> 2] + b = + (Rj(i, m, H[(o + (c << 2)) >> 2], 0) + b) | 0 + qa(e, (b + d) | 0, i) + break g + } + n = j & 1 + a = 1 + if ((j | 0) != 1) { + j = j & -2 + f = 0 + c = 0 + while (1) { + d = H[k >> 2] + l = (Rj(g, h, i, m) + b) | 0 + d = qa(e, (d + l) | 0, i) + l = H[k >> 2] + o = (Rj(i, m, g | 1, h) + b) | 0 + qa(d, (l + o) | 0, i) + g = (g + 2) | 0 + h = g >>> 0 < 2 ? (h + 1) | 0 : h + f = (f + 2) | 0 + d = f >>> 0 < 2 ? (c + 1) | 0 : c + c = d + if (((f | 0) != (j | 0)) | c) { + continue + } + break + } + } + if (!n) { + break g + } + c = H[k >> 2] + b = (Rj(g, h, i, m) + b) | 0 + qa(e, (b + c) | 0, i) + break g + } + if (!n) { + d = 0 + while (1) { + if ( + !gc( + c, + I[(c + 84) | 0] + ? d + : H[(H[(c + 68) >> 2] + (d << 2)) >> 2], + F[(c + 24) | 0], + e, + ) + ) { + break g + } + d = (d + 1) | 0 + a = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + break g + } + d = 0 + while (1) { + if ( + !gc( + c, + I[(c + 84) | 0] + ? d + : H[(H[(c + 68) >> 2] + (d << 2)) >> 2], + F[(c + 24) | 0], + e, + ) + ) { + break g + } + qa(((b << 1) + f) | 0, e, l) + b = (b + n) | 0 + d = (d + 1) | 0 + a = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + } + if (!e) { + break e + } + oa(e) + } + b = a + break a + case 4: + l = I[(c + 24) | 0] + o = l << 2 + j = H[(i + 80) >> 2] + h: { + if ((N(o, j) | 0) != (e | 0)) { + break h + } + i = H[(c + 28) >> 2] != 5 + d = I[(c + 84) | 0] + if (!(i | !d)) { + qa(f, (H[H[c >> 2] >> 2] + H[(c + 48) >> 2]) | 0, e) + b = 1 + break h + } + i: { + if (!l) { + e = 0 + break i + } + e = pa(o) + ra(e, 0, o) + } + b = 1 + j: { + if (!j) { + break j + } + if (!i) { + a = H[(c + 68) >> 2] + m = H[c >> 2] + i = H[(c + 48) >> 2] + k = H[(c + 40) >> 2] + n = H[(c + 44) >> 2] + if (l) { + if (!d) { + c = 0 + d = 0 + while (1) { + g = H[m >> 2] + p = + (Rj(k, n, H[(a + (d << 2)) >> 2], 0) + + i) | + 0 + qa( + ((c << 2) + f) | 0, + qa(e, (g + p) | 0, k), + o, + ) + c = (c + l) | 0 + d = (d + 1) | 0 + if ((j | 0) != (d | 0)) { + continue + } + break + } + break j + } + c = 0 + while (1) { + d = H[m >> 2] + p = (Rj(g, h, k, n) + i) | 0 + qa( + ((c << 2) + f) | 0, + qa(e, (d + p) | 0, k), + o, + ) + c = (c + l) | 0 + g = (g + 1) | 0 + a = g ? h : (h + 1) | 0 + h = a + if (((j | 0) != (g | 0)) | h) { + continue + } + break + } + break j + } + if (!d) { + c = 0 + if ((j | 0) != 1) { + f = j & -2 + d = 0 + while (1) { + h = H[m >> 2] + g = c << 2 + l = (Rj(k, n, H[(g + a) >> 2], 0) + i) | 0 + h = qa(e, (h + l) | 0, k) + l = H[m >> 2] + g = + (Rj(k, n, H[(a + (g | 4)) >> 2], 0) + i) | + 0 + qa(h, (g + l) | 0, k) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break j + } + d = H[m >> 2] + a = + (Rj(k, n, H[(a + (c << 2)) >> 2], 0) + i) | 0 + qa(e, (a + d) | 0, k) + break j + } + l = j & 1 + if ((j | 0) != 1) { + j = j & -2 + f = 0 + c = 0 + while (1) { + a = H[m >> 2] + d = (Rj(g, h, k, n) + i) | 0 + a = qa(e, (a + d) | 0, k) + d = H[m >> 2] + o = (Rj(k, n, g | 1, h) + i) | 0 + qa(a, (d + o) | 0, k) + d = h + g = (g + 2) | 0 + h = g >>> 0 < 2 ? (d + 1) | 0 : d + f = (f + 2) | 0 + a = f >>> 0 < 2 ? (c + 1) | 0 : c + c = a + if (((f | 0) != (j | 0)) | c) { + continue + } + break + } + } + if (!l) { + break j + } + a = H[m >> 2] + c = (Rj(g, h, k, n) + i) | 0 + qa(e, (a + c) | 0, k) + break j + } + b = 0 + if (!l) { + d = 0 + while (1) { + if ( + !ec( + c, + I[(c + 84) | 0] + ? d + : H[(H[(c + 68) >> 2] + (d << 2)) >> 2], + F[(c + 24) | 0], + e, + ) + ) { + break j + } + d = (d + 1) | 0 + b = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + break j + } + d = 0 + while (1) { + if ( + !ec( + c, + I[(c + 84) | 0] + ? d + : H[(H[(c + 68) >> 2] + (d << 2)) >> 2], + F[(c + 24) | 0], + e, + ) + ) { + break j + } + qa(((a << 2) + f) | 0, e, o) + a = (a + l) | 0 + d = (d + 1) | 0 + b = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + } + if (!e) { + break h + } + oa(e) + } + break a + case 1: + j = H[(i + 80) >> 2] + h = I[(c + 24) | 0] + k: { + if ((N(j, h) | 0) != (e | 0)) { + break k + } + d = H[(c + 28) >> 2] != 2 + b = I[(c + 84) | 0] + if (!(d | !b)) { + qa(f, (H[H[c >> 2] >> 2] + H[(c + 48) >> 2]) | 0, e) + b = 1 + break k + } + if (h) { + a = pa(h) + ra(a, 0, h) + } + l: { + if (!j) { + b = 1 + break l + } + if (!d) { + if (h) { + d = 0 + e = 0 + while (1) { + i = (d + f) | 0 + k = H[H[c >> 2] >> 2] + m = H[(c + 48) >> 2] + g = H[(c + 40) >> 2] + b = Rj( + g, + H[(c + 44) >> 2], + I[(c + 84) | 0] + ? e + : H[(H[(c + 68) >> 2] + (e << 2)) >> 2], + 0, + ) + n = b + b = (b + m) | 0 + qa(i, qa(a, (b + k) | 0, g), h) + d = (d + h) | 0 + b = 1 + e = (e + 1) | 0 + if ((j | 0) != (e | 0)) { + continue + } + break + } + break l + } + if (b) { + b = 1 + h = H[c >> 2] + e = H[(c + 48) >> 2] + f = H[(c + 40) >> 2] + i = H[(c + 44) >> 2] + if ((j | 0) != 1) { + g = j & -2 + c = 0 + d = 0 + while (1) { + k = H[h >> 2] + m = (Rj(f, i, c, 0) + e) | 0 + k = qa(a, (k + m) | 0, f) + m = H[h >> 2] + n = (Rj(f, i, c | 1, 0) + e) | 0 + qa(k, (m + n) | 0, f) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + g = c + } + if (!(j & 1)) { + break l + } + c = H[h >> 2] + d = (Rj(g, 0, f, i) + e) | 0 + qa(a, (c + d) | 0, f) + break l + } + b = 1 + h = H[c >> 2] + e = H[(c + 48) >> 2] + g = H[(c + 68) >> 2] + f = H[(c + 40) >> 2] + i = H[(c + 44) >> 2] + c = 0 + if ((j | 0) != 1) { + k = j & -2 + d = 0 + while (1) { + m = H[h >> 2] + n = c << 2 + l = (Rj(f, i, H[(n + g) >> 2], 0) + e) | 0 + m = qa(a, (m + l) | 0, f) + l = H[h >> 2] + n = + (Rj(f, i, H[(g + (n | 4)) >> 2], 0) + e) | 0 + qa(m, (l + n) | 0, f) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((k | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break l + } + d = H[h >> 2] + c = (Rj(f, i, H[(g + (c << 2)) >> 2], 0) + e) | 0 + qa(a, (c + d) | 0, f) + break l + } + b = 0 + if (!h) { + d = 0 + while (1) { + if ( + !hc( + c, + I[(c + 84) | 0] + ? d + : H[(H[(c + 68) >> 2] + (d << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break l + } + d = (d + 1) | 0 + b = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + break l + } + d = 0 + e = 0 + while (1) { + if ( + !hc( + c, + I[(c + 84) | 0] + ? e + : H[(H[(c + 68) >> 2] + (e << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break l + } + qa((d + f) | 0, a, h) + d = (d + h) | 0 + e = (e + 1) | 0 + b = j >>> 0 <= e >>> 0 + if ((e | 0) != (j | 0)) { + continue + } + break + } + } + if (!a) { + break k + } + oa(a) + } + break a + case 3: + n = I[(c + 24) | 0] + l = n << 1 + j = H[(i + 80) >> 2] + m: { + if ((N(l, j) | 0) != (e | 0)) { + break m + } + i = H[(c + 28) >> 2] != 4 + d = I[(c + 84) | 0] + if (!(i | !d)) { + qa(f, (H[H[c >> 2] >> 2] + H[(c + 48) >> 2]) | 0, e) + a = 1 + break m + } + n: { + if (!n) { + e = 0 + break n + } + e = pa(l) + ra(e, 0, l) + } + o: { + if (!j) { + a = 1 + break o + } + if (!i) { + o = H[(c + 68) >> 2] + k = H[c >> 2] + b = H[(c + 48) >> 2] + i = H[(c + 40) >> 2] + m = H[(c + 44) >> 2] + if (n) { + if (!d) { + c = 0 + d = 0 + while (1) { + a = 1 + g = H[k >> 2] + p = + (Rj(i, m, H[(o + (d << 2)) >> 2], 0) + + b) | + 0 + qa( + ((c << 1) + f) | 0, + qa(e, (g + p) | 0, i), + l, + ) + c = (c + n) | 0 + d = (d + 1) | 0 + if ((j | 0) != (d | 0)) { + continue + } + break + } + break o + } + c = 0 + while (1) { + a = 1 + o = H[k >> 2] + p = (Rj(g, h, i, m) + b) | 0 + qa( + ((c << 1) + f) | 0, + qa(e, (o + p) | 0, i), + l, + ) + c = (c + n) | 0 + d = h + g = (g + 1) | 0 + d = g ? d : (d + 1) | 0 + h = d + if (((j | 0) != (g | 0)) | d) { + continue + } + break + } + break o + } + if (!d) { + a = 1 + c = 0 + if ((j | 0) != 1) { + f = j & -2 + d = 0 + while (1) { + h = H[k >> 2] + g = c << 2 + n = (Rj(i, m, H[(g + o) >> 2], 0) + b) | 0 + h = qa(e, (h + n) | 0, i) + n = H[k >> 2] + g = + (Rj(i, m, H[(o + (g | 4)) >> 2], 0) + b) | + 0 + qa(h, (g + n) | 0, i) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break o + } + d = H[k >> 2] + b = + (Rj(i, m, H[(o + (c << 2)) >> 2], 0) + b) | 0 + qa(e, (b + d) | 0, i) + break o + } + n = j & 1 + a = 1 + if ((j | 0) != 1) { + j = j & -2 + f = 0 + c = 0 + while (1) { + d = H[k >> 2] + l = (Rj(g, h, i, m) + b) | 0 + d = qa(e, (d + l) | 0, i) + l = H[k >> 2] + o = (Rj(i, m, g | 1, h) + b) | 0 + qa(d, (l + o) | 0, i) + g = (g + 2) | 0 + h = g >>> 0 < 2 ? (h + 1) | 0 : h + f = (f + 2) | 0 + d = f >>> 0 < 2 ? (c + 1) | 0 : c + c = d + if (((f | 0) != (j | 0)) | c) { + continue + } + break + } + } + if (!n) { + break o + } + c = H[k >> 2] + b = (Rj(g, h, i, m) + b) | 0 + qa(e, (b + c) | 0, i) + break o + } + if (!n) { + d = 0 + while (1) { + if ( + !fc( + c, + I[(c + 84) | 0] + ? d + : H[(H[(c + 68) >> 2] + (d << 2)) >> 2], + F[(c + 24) | 0], + e, + ) + ) { + break o + } + d = (d + 1) | 0 + a = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + break o + } + d = 0 + while (1) { + if ( + !fc( + c, + I[(c + 84) | 0] + ? d + : H[(H[(c + 68) >> 2] + (d << 2)) >> 2], + F[(c + 24) | 0], + e, + ) + ) { + break o + } + qa(((b << 1) + f) | 0, e, l) + b = (b + n) | 0 + d = (d + 1) | 0 + a = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + } + if (!e) { + break m + } + oa(e) + } + b = a + break a + case 5: + l = I[(c + 24) | 0] + o = l << 2 + j = H[(i + 80) >> 2] + p: { + if ((N(o, j) | 0) != (e | 0)) { + break p + } + i = H[(c + 28) >> 2] != 6 + d = I[(c + 84) | 0] + if (!(i | !d)) { + qa(f, (H[H[c >> 2] >> 2] + H[(c + 48) >> 2]) | 0, e) + b = 1 + break p + } + q: { + if (!l) { + e = 0 + break q + } + e = pa(o) + ra(e, 0, o) + } + b = 1 + r: { + if (!j) { + break r + } + if (!i) { + a = H[(c + 68) >> 2] + m = H[c >> 2] + i = H[(c + 48) >> 2] + k = H[(c + 40) >> 2] + n = H[(c + 44) >> 2] + if (l) { + if (!d) { + c = 0 + d = 0 + while (1) { + g = H[m >> 2] + p = + (Rj(k, n, H[(a + (d << 2)) >> 2], 0) + + i) | + 0 + qa( + ((c << 2) + f) | 0, + qa(e, (g + p) | 0, k), + o, + ) + c = (c + l) | 0 + d = (d + 1) | 0 + if ((j | 0) != (d | 0)) { + continue + } + break + } + break r + } + c = 0 + while (1) { + d = H[m >> 2] + p = (Rj(g, h, k, n) + i) | 0 + qa( + ((c << 2) + f) | 0, + qa(e, (d + p) | 0, k), + o, + ) + c = (c + l) | 0 + g = (g + 1) | 0 + a = g ? h : (h + 1) | 0 + h = a + if (((j | 0) != (g | 0)) | h) { + continue + } + break + } + break r + } + if (!d) { + c = 0 + if ((j | 0) != 1) { + f = j & -2 + d = 0 + while (1) { + h = H[m >> 2] + g = c << 2 + l = (Rj(k, n, H[(g + a) >> 2], 0) + i) | 0 + h = qa(e, (h + l) | 0, k) + l = H[m >> 2] + g = + (Rj(k, n, H[(a + (g | 4)) >> 2], 0) + i) | + 0 + qa(h, (g + l) | 0, k) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break r + } + d = H[m >> 2] + a = + (Rj(k, n, H[(a + (c << 2)) >> 2], 0) + i) | 0 + qa(e, (a + d) | 0, k) + break r + } + l = j & 1 + if ((j | 0) != 1) { + j = j & -2 + f = 0 + c = 0 + while (1) { + a = H[m >> 2] + d = (Rj(g, h, k, n) + i) | 0 + a = qa(e, (a + d) | 0, k) + d = H[m >> 2] + o = (Rj(k, n, g | 1, h) + i) | 0 + qa(a, (d + o) | 0, k) + d = h + g = (g + 2) | 0 + h = g >>> 0 < 2 ? (d + 1) | 0 : d + f = (f + 2) | 0 + a = f >>> 0 < 2 ? (c + 1) | 0 : c + c = a + if (((f | 0) != (j | 0)) | c) { + continue + } + break + } + } + if (!l) { + break r + } + a = H[m >> 2] + c = (Rj(g, h, k, n) + i) | 0 + qa(e, (a + c) | 0, k) + break r + } + b = 0 + if (!l) { + d = 0 + while (1) { + if ( + !dc( + c, + I[(c + 84) | 0] + ? d + : H[(H[(c + 68) >> 2] + (d << 2)) >> 2], + F[(c + 24) | 0], + e, + ) + ) { + break r + } + d = (d + 1) | 0 + b = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + break r + } + d = 0 + while (1) { + if ( + !dc( + c, + I[(c + 84) | 0] + ? d + : H[(H[(c + 68) >> 2] + (d << 2)) >> 2], + F[(c + 24) | 0], + e, + ) + ) { + break r + } + qa(((a << 2) + f) | 0, e, o) + a = (a + l) | 0 + d = (d + 1) | 0 + b = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + } + if (!e) { + break p + } + oa(e) + } + break a + case 8: + p = I[(c + 24) | 0] + q = p << 2 + k = H[(i + 80) >> 2] + s: { + if ((N(q, k) | 0) != (e | 0)) { + break s + } + i = H[(c + 28) >> 2] + t: { + if (!p) { + break t + } + a = pa(q) + d = a + m = (q - 4) | 0 + l = (((m >>> 2) | 0) + 1) & 7 + if (l) { + e = 0 + while (1) { + H[d >> 2] = -1073741824 + d = (d + 4) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + if (m >>> 0 < 28) { + break t + } + e = ((p << 2) + a) | 0 + while (1) { + H[(d + 24) >> 2] = -1073741824 + H[(d + 28) >> 2] = -1073741824 + H[(d + 16) >> 2] = -1073741824 + H[(d + 20) >> 2] = -1073741824 + H[(d + 8) >> 2] = -1073741824 + H[(d + 12) >> 2] = -1073741824 + H[d >> 2] = -1073741824 + H[(d + 4) >> 2] = -1073741824 + d = (d + 32) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + u: { + if (!k) { + b = 1 + break u + } + if ((i | 0) == 9) { + r = H[(c + 68) >> 2] + l = H[c >> 2] + i = H[(c + 48) >> 2] + s = I[(c + 84) | 0] + m = H[(c + 44) >> 2] + c = H[(c + 40) >> 2] + o = c + if (p) { + e = 0 + d = 0 + while (1) { + h = ((e << 2) + f) | 0 + g = H[l >> 2] + b = + (Rj( + c, + m, + s ? d : H[(r + (d << 2)) >> 2], + 0, + ) + + i) | + 0 + qa(h, qa(a, (b + g) | 0, o), q) + e = (e + p) | 0 + b = 1 + d = (d + 1) | 0 + if ((k | 0) != (d | 0)) { + continue + } + break + } + break u + } + if (!s) { + b = 1 + d = 0 + if ((k | 0) != 1) { + f = k & -2 + e = 0 + while (1) { + h = H[l >> 2] + g = d << 2 + j = (Rj(c, m, H[(g + r) >> 2], 0) + i) | 0 + h = qa(a, (h + j) | 0, o) + j = H[l >> 2] + g = + (Rj(c, m, H[(r + (g | 4)) >> 2], 0) + i) | + 0 + qa(h, (j + g) | 0, o) + d = (d + 2) | 0 + e = (e + 2) | 0 + if ((f | 0) != (e | 0)) { + continue + } + break + } + } + if (!(k & 1)) { + break u + } + e = H[l >> 2] + c = + (Rj(c, m, H[(r + (d << 2)) >> 2], 0) + i) | 0 + qa(a, (c + e) | 0, o) + break u + } + f = k & 1 + b = 1 + if ((k | 0) != 1) { + k = k & -2 + while (1) { + d = H[l >> 2] + e = (Rj(g, h, c, m) + i) | 0 + d = qa(a, (d + e) | 0, o) + e = H[l >> 2] + p = (Rj(c, m, g | 1, h) + i) | 0 + qa(d, (e + p) | 0, o) + g = (g + 2) | 0 + h = g >>> 0 < 2 ? (h + 1) | 0 : h + d = j + e = (n + 2) | 0 + d = e >>> 0 < 2 ? (d + 1) | 0 : d + n = e + j = d + if (((e | 0) != (k | 0)) | d) { + continue + } + break + } + } + if (!f) { + break u + } + d = H[l >> 2] + c = (Rj(g, h, c, m) + i) | 0 + qa(a, (c + d) | 0, o) + break u + } + if (!p) { + d = 0 + while (1) { + if ( + !Va( + c, + I[(c + 84) | 0] + ? d + : H[(H[(c + 68) >> 2] + (d << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break u + } + d = (d + 1) | 0 + b = k >>> 0 <= d >>> 0 + if ((d | 0) != (k | 0)) { + continue + } + break + } + break u + } + e = 0 + d = 0 + while (1) { + if ( + !Va( + c, + I[(c + 84) | 0] + ? d + : H[(H[(c + 68) >> 2] + (d << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break u + } + qa(((e << 2) + f) | 0, a, q) + e = (e + p) | 0 + d = (d + 1) | 0 + b = k >>> 0 <= d >>> 0 + if ((d | 0) != (k | 0)) { + continue + } + break + } + } + if (!a) { + break s + } + oa(a) + } + a = b + break + default: + break b + } + } + b = a + } + return b | 0 + } + function ef(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + i = (ca - 48) | 0 + ca = i + a: { + b: { + if ((c | 0) != 1) { + break b + } + c = H[(a + 4) >> 2] + g = H[(a + 12) >> 2] + H[(i + 40) >> 2] = 0 + a = i + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + H[(a + 24) >> 2] = 0 + H[(a + 28) >> 2] = 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[(a + 12) >> 2] = 0 + e = (a + 8) | 0 + c: { + if ((b | 0) == -2) { + break c + } + l = H[(H[(H[(c + 4) >> 2] + 8) >> 2] + (g << 2)) >> 2] + if ((ea[H[(H[c >> 2] + 8) >> 2]](c) | 0) == 1) { + a = J[(c + 36) >> 1] + j = ((a << 8) | (a >>> 8)) & 65535 + a = 0 + h = (ca - 32) | 0 + ca = h + d = H[(H[(H[(c + 4) >> 2] + 8) >> 2] + (g << 2)) >> 2] + d: { + if ( + ((ea[H[(H[c >> 2] + 8) >> 2]](c) | 0) != 1) | + ((b - 1) >>> 0 > 5) + ) { + break d + } + k = ea[H[(H[c >> 2] + 36) >> 2]](c) | 0 + f = ea[H[(H[c >> 2] + 44) >> 2]](c, g) | 0 + if (!k | !f) { + break d + } + a = ea[H[(H[c >> 2] + 40) >> 2]](c, g) | 0 + if (a) { + c = H[(c + 44) >> 2] + H[(h + 12) >> 2] = a + H[(h + 8) >> 2] = c + H[(h + 20) >> 2] = f + H[(h + 16) >> 2] = f + 12 + c = (h + 8) | 0 + a = 0 + e: { + f: { + switch ((b - 1) | 0) { + case 0: + a = pa(60) + H[(a + 4) >> 2] = d + H[a >> 2] = 3272 + b = H[(e + 4) >> 2] + H[(a + 8) >> 2] = H[e >> 2] + H[(a + 12) >> 2] = b + b = H[(e + 12) >> 2] + H[(a + 16) >> 2] = H[(e + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(e + 20) >> 2] + H[(a + 24) >> 2] = H[(e + 16) >> 2] + H[(a + 28) >> 2] = b + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + d = H[(e + 24) >> 2] + f = H[(e + 28) >> 2] + if ((d | 0) != (f | 0)) { + g = (f - d) | 0 + if ((g | 0) < 0) { + break a + } + b = pa(g) + H[(a + 32) >> 2] = b + H[(a + 40) >> 2] = (g & -4) + b + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + H[(a + 36) >> 2] = b + } + b = H[(c + 4) >> 2] + H[(a + 44) >> 2] = H[c >> 2] + H[(a + 48) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 52) >> 2] = H[(c + 8) >> 2] + H[(a + 56) >> 2] = b + H[a >> 2] = 2564 + break e + case 1: + a = pa(60) + H[(a + 4) >> 2] = d + H[a >> 2] = 3272 + b = H[(e + 4) >> 2] + H[(a + 8) >> 2] = H[e >> 2] + H[(a + 12) >> 2] = b + b = H[(e + 12) >> 2] + H[(a + 16) >> 2] = H[(e + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(e + 20) >> 2] + H[(a + 24) >> 2] = H[(e + 16) >> 2] + H[(a + 28) >> 2] = b + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + d = H[(e + 24) >> 2] + f = H[(e + 28) >> 2] + if ((d | 0) != (f | 0)) { + g = (f - d) | 0 + if ((g | 0) < 0) { + break a + } + b = pa(g) + H[(a + 32) >> 2] = b + H[(a + 40) >> 2] = (g & -4) + b + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + H[(a + 36) >> 2] = b + } + b = H[(c + 4) >> 2] + H[(a + 44) >> 2] = H[c >> 2] + H[(a + 48) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 52) >> 2] = H[(c + 8) >> 2] + H[(a + 56) >> 2] = b + H[a >> 2] = 3328 + break e + case 3: + a = pa(112) + H[(a + 4) >> 2] = d + H[a >> 2] = 3272 + b = H[(e + 4) >> 2] + H[(a + 8) >> 2] = H[e >> 2] + H[(a + 12) >> 2] = b + b = H[(e + 12) >> 2] + H[(a + 16) >> 2] = H[(e + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(e + 20) >> 2] + H[(a + 24) >> 2] = H[(e + 16) >> 2] + H[(a + 28) >> 2] = b + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + d = H[(e + 24) >> 2] + f = H[(e + 28) >> 2] + if ((d | 0) != (f | 0)) { + g = (f - d) | 0 + if ((g | 0) < 0) { + break a + } + b = pa(g) + H[(a + 32) >> 2] = b + H[(a + 40) >> 2] = (g & -4) + b + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + H[(a + 36) >> 2] = b + } + b = H[(c + 4) >> 2] + H[(a + 44) >> 2] = H[c >> 2] + H[(a + 48) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 52) >> 2] = H[(c + 8) >> 2] + H[(a + 56) >> 2] = b + H[(a + 60) >> 2] = 0 + H[(a + 64) >> 2] = 0 + H[a >> 2] = 3564 + H[(a + 68) >> 2] = 0 + H[(a + 72) >> 2] = 0 + H[(a + 76) >> 2] = 0 + H[(a + 80) >> 2] = 0 + H[(a + 84) >> 2] = 0 + H[(a + 88) >> 2] = 0 + H[(a + 92) >> 2] = 0 + H[(a + 96) >> 2] = 0 + H[(a + 100) >> 2] = 0 + H[(a + 104) >> 2] = 0 + H[(a + 108) >> 2] = 0 + break e + case 2: + a = pa(92) + H[(a + 4) >> 2] = d + H[a >> 2] = 3272 + b = H[(e + 4) >> 2] + H[(a + 8) >> 2] = H[e >> 2] + H[(a + 12) >> 2] = b + b = H[(e + 12) >> 2] + H[(a + 16) >> 2] = H[(e + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(e + 20) >> 2] + H[(a + 24) >> 2] = H[(e + 16) >> 2] + H[(a + 28) >> 2] = b + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + d = H[(e + 24) >> 2] + f = H[(e + 28) >> 2] + if ((d | 0) != (f | 0)) { + g = (f - d) | 0 + if ((g | 0) < 0) { + break a + } + b = pa(g) + H[(a + 32) >> 2] = b + H[(a + 40) >> 2] = (g & -4) + b + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + H[(a + 36) >> 2] = b + } + b = H[(c + 4) >> 2] + H[(a + 44) >> 2] = H[c >> 2] + H[(a + 48) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 52) >> 2] = H[(c + 8) >> 2] + H[(a + 56) >> 2] = b + H[(a + 60) >> 2] = 0 + H[(a + 64) >> 2] = 0 + H[a >> 2] = 3812 + H[(a + 68) >> 2] = 0 + H[(a + 72) >> 2] = 0 + H[(a + 76) >> 2] = 0 + H[(a + 80) >> 2] = 0 + H[(a + 84) >> 2] = 0 + H[(a + 88) >> 2] = j + break e + case 4: + a = pa(104) + H[(a + 4) >> 2] = d + H[a >> 2] = 3272 + b = H[(e + 4) >> 2] + H[(a + 8) >> 2] = H[e >> 2] + H[(a + 12) >> 2] = b + b = H[(e + 12) >> 2] + H[(a + 16) >> 2] = H[(e + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(e + 20) >> 2] + H[(a + 24) >> 2] = H[(e + 16) >> 2] + H[(a + 28) >> 2] = b + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + d = H[(e + 24) >> 2] + f = H[(e + 28) >> 2] + if ((d | 0) != (f | 0)) { + g = (f - d) | 0 + if ((g | 0) < 0) { + break a + } + b = pa(g) + H[(a + 32) >> 2] = b + H[(a + 40) >> 2] = (g & -4) + b + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + H[(a + 36) >> 2] = b + } + b = H[(c + 4) >> 2] + H[(a + 44) >> 2] = H[c >> 2] + H[(a + 48) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 52) >> 2] = H[(c + 8) >> 2] + H[(a + 56) >> 2] = b + H[(a + 84) >> 2] = 0 + H[(a + 76) >> 2] = 0 + H[(a + 80) >> 2] = 0 + H[(a + 60) >> 2] = 0 + H[(a + 64) >> 2] = 0 + H[a >> 2] = 4040 + b = H[(c + 4) >> 2] + H[(a + 88) >> 2] = H[c >> 2] + H[(a + 92) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 96) >> 2] = H[(c + 8) >> 2] + H[(a + 100) >> 2] = b + break e + case 5: + break f + default: + break e + } + } + a = pa(128) + H[(a + 4) >> 2] = d + H[a >> 2] = 3272 + b = H[(e + 4) >> 2] + H[(a + 8) >> 2] = H[e >> 2] + H[(a + 12) >> 2] = b + b = H[(e + 12) >> 2] + H[(a + 16) >> 2] = H[(e + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(e + 20) >> 2] + H[(a + 24) >> 2] = H[(e + 16) >> 2] + H[(a + 28) >> 2] = b + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + g: { + b = H[(e + 28) >> 2] + d = H[(e + 24) >> 2] + if ((b | 0) != (d | 0)) { + d = (b - d) | 0 + if ((d | 0) < 0) { + break a + } + b = pa(d) + H[(a + 36) >> 2] = b + H[(a + 32) >> 2] = b + H[(a + 40) >> 2] = (d & -4) + b + d = H[(e + 24) >> 2] + f = H[(e + 28) >> 2] + if ((d | 0) != (f | 0)) { + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 36) >> 2] = b + } + H[a >> 2] = 3216 + b = H[(c + 4) >> 2] + H[(a + 44) >> 2] = H[c >> 2] + H[(a + 48) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 52) >> 2] = H[(c + 8) >> 2] + H[(a + 56) >> 2] = b + b = (a - -64) | 0 + H[b >> 2] = 0 + H[(b + 4) >> 2] = 0 + H[(a + 60) >> 2] = 4904 + H[a >> 2] = 4276 + b = H[(c + 4) >> 2] + H[(a + 72) >> 2] = H[c >> 2] + H[(a + 76) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 80) >> 2] = H[(c + 8) >> 2] + H[(a + 84) >> 2] = b + H[(a + 104) >> 2] = 1065353216 + H[(a + 108) >> 2] = -1 + H[(a + 96) >> 2] = -1 + H[(a + 100) >> 2] = -1 + H[(a + 88) >> 2] = 1 + H[(a + 92) >> 2] = -1 + H[(a + 60) >> 2] = 4512 + H[(a + 112) >> 2] = 0 + H[(a + 116) >> 2] = 0 + F[(a + 117) | 0] = 0 + F[(a + 118) | 0] = 0 + F[(a + 119) | 0] = 0 + F[(a + 120) | 0] = 0 + F[(a + 121) | 0] = 0 + F[(a + 122) | 0] = 0 + F[(a + 123) | 0] = 0 + F[(a + 124) | 0] = 0 + break g + } + } + break d + } + a = H[(c + 44) >> 2] + H[(h + 12) >> 2] = k + H[(h + 8) >> 2] = a + H[(h + 20) >> 2] = f + H[(h + 16) >> 2] = f + 12 + c = (h + 8) | 0 + a = 0 + h: { + i: { + switch ((b - 1) | 0) { + case 0: + a = pa(60) + H[(a + 4) >> 2] = d + H[a >> 2] = 3272 + b = H[(e + 4) >> 2] + H[(a + 8) >> 2] = H[e >> 2] + H[(a + 12) >> 2] = b + b = H[(e + 12) >> 2] + H[(a + 16) >> 2] = H[(e + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(e + 20) >> 2] + H[(a + 24) >> 2] = H[(e + 16) >> 2] + H[(a + 28) >> 2] = b + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + d = H[(e + 24) >> 2] + f = H[(e + 28) >> 2] + if ((d | 0) != (f | 0)) { + g = (f - d) | 0 + if ((g | 0) < 0) { + break a + } + b = pa(g) + H[(a + 32) >> 2] = b + H[(a + 40) >> 2] = (g & -4) + b + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + H[(a + 36) >> 2] = b + } + b = H[(c + 4) >> 2] + H[(a + 44) >> 2] = H[c >> 2] + H[(a + 48) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 52) >> 2] = H[(c + 8) >> 2] + H[(a + 56) >> 2] = b + H[a >> 2] = 4932 + break h + case 1: + a = pa(60) + H[(a + 4) >> 2] = d + H[a >> 2] = 3272 + b = H[(e + 4) >> 2] + H[(a + 8) >> 2] = H[e >> 2] + H[(a + 12) >> 2] = b + b = H[(e + 12) >> 2] + H[(a + 16) >> 2] = H[(e + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(e + 20) >> 2] + H[(a + 24) >> 2] = H[(e + 16) >> 2] + H[(a + 28) >> 2] = b + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + d = H[(e + 24) >> 2] + f = H[(e + 28) >> 2] + if ((d | 0) != (f | 0)) { + g = (f - d) | 0 + if ((g | 0) < 0) { + break a + } + b = pa(g) + H[(a + 32) >> 2] = b + H[(a + 40) >> 2] = (g & -4) + b + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + H[(a + 36) >> 2] = b + } + b = H[(c + 4) >> 2] + H[(a + 44) >> 2] = H[c >> 2] + H[(a + 48) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 52) >> 2] = H[(c + 8) >> 2] + H[(a + 56) >> 2] = b + H[a >> 2] = 5356 + break h + case 3: + a = pa(112) + H[(a + 4) >> 2] = d + H[a >> 2] = 3272 + b = H[(e + 4) >> 2] + H[(a + 8) >> 2] = H[e >> 2] + H[(a + 12) >> 2] = b + b = H[(e + 12) >> 2] + H[(a + 16) >> 2] = H[(e + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(e + 20) >> 2] + H[(a + 24) >> 2] = H[(e + 16) >> 2] + H[(a + 28) >> 2] = b + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + d = H[(e + 24) >> 2] + f = H[(e + 28) >> 2] + if ((d | 0) != (f | 0)) { + g = (f - d) | 0 + if ((g | 0) < 0) { + break a + } + b = pa(g) + H[(a + 32) >> 2] = b + H[(a + 40) >> 2] = (g & -4) + b + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + H[(a + 36) >> 2] = b + } + b = H[(c + 4) >> 2] + H[(a + 44) >> 2] = H[c >> 2] + H[(a + 48) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 52) >> 2] = H[(c + 8) >> 2] + H[(a + 56) >> 2] = b + H[(a + 60) >> 2] = 0 + H[(a + 64) >> 2] = 0 + H[a >> 2] = 5580 + H[(a + 68) >> 2] = 0 + H[(a + 72) >> 2] = 0 + H[(a + 76) >> 2] = 0 + H[(a + 80) >> 2] = 0 + H[(a + 84) >> 2] = 0 + H[(a + 88) >> 2] = 0 + H[(a + 92) >> 2] = 0 + H[(a + 96) >> 2] = 0 + H[(a + 100) >> 2] = 0 + H[(a + 104) >> 2] = 0 + H[(a + 108) >> 2] = 0 + break h + case 2: + a = pa(92) + H[(a + 4) >> 2] = d + H[a >> 2] = 3272 + b = H[(e + 4) >> 2] + H[(a + 8) >> 2] = H[e >> 2] + H[(a + 12) >> 2] = b + b = H[(e + 12) >> 2] + H[(a + 16) >> 2] = H[(e + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(e + 20) >> 2] + H[(a + 24) >> 2] = H[(e + 16) >> 2] + H[(a + 28) >> 2] = b + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + d = H[(e + 24) >> 2] + f = H[(e + 28) >> 2] + if ((d | 0) != (f | 0)) { + g = (f - d) | 0 + if ((g | 0) < 0) { + break a + } + b = pa(g) + H[(a + 32) >> 2] = b + H[(a + 40) >> 2] = (g & -4) + b + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + H[(a + 36) >> 2] = b + } + b = H[(c + 4) >> 2] + H[(a + 44) >> 2] = H[c >> 2] + H[(a + 48) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 52) >> 2] = H[(c + 8) >> 2] + H[(a + 56) >> 2] = b + H[(a + 60) >> 2] = 0 + H[(a + 64) >> 2] = 0 + H[a >> 2] = 5816 + H[(a + 68) >> 2] = 0 + H[(a + 72) >> 2] = 0 + H[(a + 76) >> 2] = 0 + H[(a + 80) >> 2] = 0 + H[(a + 84) >> 2] = 0 + H[(a + 88) >> 2] = j + break h + case 4: + a = pa(104) + H[(a + 4) >> 2] = d + H[a >> 2] = 3272 + b = H[(e + 4) >> 2] + H[(a + 8) >> 2] = H[e >> 2] + H[(a + 12) >> 2] = b + b = H[(e + 12) >> 2] + H[(a + 16) >> 2] = H[(e + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(e + 20) >> 2] + H[(a + 24) >> 2] = H[(e + 16) >> 2] + H[(a + 28) >> 2] = b + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + d = H[(e + 24) >> 2] + f = H[(e + 28) >> 2] + if ((d | 0) != (f | 0)) { + g = (f - d) | 0 + if ((g | 0) < 0) { + break a + } + b = pa(g) + H[(a + 32) >> 2] = b + H[(a + 40) >> 2] = (g & -4) + b + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + H[(a + 36) >> 2] = b + } + b = H[(c + 4) >> 2] + H[(a + 44) >> 2] = H[c >> 2] + H[(a + 48) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 52) >> 2] = H[(c + 8) >> 2] + H[(a + 56) >> 2] = b + H[(a + 84) >> 2] = 0 + H[(a + 76) >> 2] = 0 + H[(a + 80) >> 2] = 0 + H[(a + 60) >> 2] = 0 + H[(a + 64) >> 2] = 0 + H[a >> 2] = 6032 + b = H[(c + 4) >> 2] + H[(a + 88) >> 2] = H[c >> 2] + H[(a + 92) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 96) >> 2] = H[(c + 8) >> 2] + H[(a + 100) >> 2] = b + break h + case 5: + break i + default: + break h + } + } + a = pa(128) + H[(a + 4) >> 2] = d + H[a >> 2] = 3272 + b = H[(e + 4) >> 2] + H[(a + 8) >> 2] = H[e >> 2] + H[(a + 12) >> 2] = b + b = H[(e + 12) >> 2] + H[(a + 16) >> 2] = H[(e + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(e + 20) >> 2] + H[(a + 24) >> 2] = H[(e + 16) >> 2] + H[(a + 28) >> 2] = b + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + j: { + b = H[(e + 28) >> 2] + d = H[(e + 24) >> 2] + if ((b | 0) != (d | 0)) { + d = (b - d) | 0 + if ((d | 0) < 0) { + break a + } + b = pa(d) + H[(a + 36) >> 2] = b + H[(a + 32) >> 2] = b + H[(a + 40) >> 2] = (d & -4) + b + d = H[(e + 24) >> 2] + f = H[(e + 28) >> 2] + if ((d | 0) != (f | 0)) { + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 36) >> 2] = b + } + H[a >> 2] = 5300 + b = H[(c + 4) >> 2] + H[(a + 44) >> 2] = H[c >> 2] + H[(a + 48) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 52) >> 2] = H[(c + 8) >> 2] + H[(a + 56) >> 2] = b + b = (a - -64) | 0 + H[b >> 2] = 0 + H[(b + 4) >> 2] = 0 + H[(a + 60) >> 2] = 6840 + H[a >> 2] = 6256 + b = H[(c + 4) >> 2] + H[(a + 72) >> 2] = H[c >> 2] + H[(a + 76) >> 2] = b + b = H[(c + 12) >> 2] + H[(a + 80) >> 2] = H[(c + 8) >> 2] + H[(a + 84) >> 2] = b + H[(a + 104) >> 2] = 1065353216 + H[(a + 108) >> 2] = -1 + H[(a + 96) >> 2] = -1 + H[(a + 100) >> 2] = -1 + H[(a + 88) >> 2] = 1 + H[(a + 92) >> 2] = -1 + H[(a + 60) >> 2] = 6476 + H[(a + 112) >> 2] = 0 + H[(a + 116) >> 2] = 0 + F[(a + 117) | 0] = 0 + F[(a + 118) | 0] = 0 + F[(a + 119) | 0] = 0 + F[(a + 120) | 0] = 0 + F[(a + 121) | 0] = 0 + F[(a + 122) | 0] = 0 + F[(a + 123) | 0] = 0 + F[(a + 124) | 0] = 0 + break j + } + } + } + ca = (h + 32) | 0 + d = a + if (a) { + break c + } + } + d = pa(44) + H[(d + 4) >> 2] = l + H[d >> 2] = 3272 + a = H[(e + 4) >> 2] + H[(d + 8) >> 2] = H[e >> 2] + H[(d + 12) >> 2] = a + a = H[(e + 12) >> 2] + H[(d + 16) >> 2] = H[(e + 8) >> 2] + H[(d + 20) >> 2] = a + a = H[(e + 20) >> 2] + H[(d + 24) >> 2] = H[(e + 16) >> 2] + H[(d + 28) >> 2] = a + H[(d + 40) >> 2] = 0 + H[(d + 32) >> 2] = 0 + H[(d + 36) >> 2] = 0 + c = H[(e + 24) >> 2] + a = H[(e + 28) >> 2] + if ((c | 0) != (a | 0)) { + b = (a - c) | 0 + if ((b | 0) < 0) { + break a + } + e = pa(b) + H[(d + 32) >> 2] = e + H[(d + 40) >> 2] = (b & -4) + e + while (1) { + H[e >> 2] = H[c >> 2] + e = (e + 4) | 0 + c = (c + 4) | 0 + if ((a | 0) != (c | 0)) { + continue + } + break + } + H[(d + 36) >> 2] = e + } + H[d >> 2] = 6868 + break c + } + e = d + a = H[(i + 32) >> 2] + if (!a) { + break b + } + H[(i + 36) >> 2] = a + oa(a) + } + ca = (i + 48) | 0 + return e | 0 + } + sa() + v() + } + function Ec(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + l = (ca - 16) | 0 + ca = l + a: { + b: { + c: { + d: { + e: { + f: { + g: { + h: { + i: { + if (a >>> 0 <= 244) { + g = H[4298] + h = a >>> 0 < 11 ? 16 : (a + 11) & -8 + c = (h >>> 3) | 0 + b = (g >>> c) | 0 + if (b & 3) { + c = (c + ((b ^ -1) & 1)) | 0 + a = c << 3 + b = (a + 17232) | 0 + d = H[(a + 17240) >> 2] + a = H[(d + 8) >> 2] + j: { + if ((b | 0) == (a | 0)) { + ;(m = 17192), + (n = Vj(c) & g), + (H[m >> 2] = n) + break j + } + H[(a + 12) >> 2] = b + H[(b + 8) >> 2] = a + } + a = (d + 8) | 0 + b = c << 3 + H[(d + 4) >> 2] = b | 3 + b = (b + d) | 0 + H[(b + 4) >> 2] = H[(b + 4) >> 2] | 1 + break a + } + k = H[4300] + if (k >>> 0 >= h >>> 0) { + break i + } + if (b) { + a = 2 << c + a = ((0 - a) | a) & (b << c) + d = Qj((0 - a) & a) + a = d << 3 + b = (a + 17232) | 0 + e = H[(a + 17240) >> 2] + a = H[(e + 8) >> 2] + k: { + if ((b | 0) == (a | 0)) { + g = Vj(d) & g + H[4298] = g + break k + } + H[(a + 12) >> 2] = b + H[(b + 8) >> 2] = a + } + H[(e + 4) >> 2] = h | 3 + c = (e + h) | 0 + a = d << 3 + d = (a - h) | 0 + H[(c + 4) >> 2] = d | 1 + H[(a + e) >> 2] = d + if (k) { + b = ((k & -8) + 17232) | 0 + f = H[4303] + a = 1 << (k >>> 3) + l: { + if (!(a & g)) { + H[4298] = a | g + a = b + break l + } + a = H[(b + 8) >> 2] + } + H[(b + 8) >> 2] = f + H[(a + 12) >> 2] = f + H[(f + 12) >> 2] = b + H[(f + 8) >> 2] = a + } + a = (e + 8) | 0 + H[4303] = c + H[4300] = d + break a + } + j = H[4299] + if (!j) { + break i + } + c = H[((Qj((0 - j) & j) << 2) + 17496) >> 2] + f = ((H[(c + 4) >> 2] & -8) - h) | 0 + b = c + while (1) { + m: { + a = H[(b + 16) >> 2] + if (!a) { + a = H[(b + 20) >> 2] + if (!a) { + break m + } + } + b = ((H[(a + 4) >> 2] & -8) - h) | 0 + d = b >>> 0 < f >>> 0 + f = d ? b : f + c = d ? a : c + b = a + continue + } + break + } + i = H[(c + 24) >> 2] + d = H[(c + 12) >> 2] + if ((d | 0) != (c | 0)) { + a = H[(c + 8) >> 2] + H[(a + 12) >> 2] = d + H[(d + 8) >> 2] = a + break b + } + b = (c + 20) | 0 + a = H[b >> 2] + if (!a) { + a = H[(c + 16) >> 2] + if (!a) { + break h + } + b = (c + 16) | 0 + } + while (1) { + e = b + d = a + b = (a + 20) | 0 + a = H[b >> 2] + if (a) { + continue + } + b = (d + 16) | 0 + a = H[(d + 16) >> 2] + if (a) { + continue + } + break + } + H[e >> 2] = 0 + break b + } + h = -1 + if (a >>> 0 > 4294967231) { + break i + } + a = (a + 11) | 0 + h = a & -8 + j = H[4299] + if (!j) { + break i + } + f = (0 - h) | 0 + g = 0 + n: { + if (h >>> 0 < 256) { + break n + } + g = 31 + if (h >>> 0 > 16777215) { + break n + } + a = Q((a >>> 8) | 0) + g = + (((((h >>> (38 - a)) & 1) - (a << 1)) | + 0) + + 62) | + 0 + } + b = H[((g << 2) + 17496) >> 2] + o: { + p: { + q: { + if (!b) { + a = 0 + break q + } + a = 0 + c = + h << + ((g | 0) != 31 + ? (25 - ((g >>> 1) | 0)) | 0 + : 0) + while (1) { + r: { + e = ((H[(b + 4) >> 2] & -8) - h) | 0 + if (e >>> 0 >= f >>> 0) { + break r + } + d = b + f = e + if (e) { + break r + } + f = 0 + a = b + break p + } + e = H[(b + 20) >> 2] + b = + H[ + (((((c >>> 29) & 4) + b) | 0) + + 16) >> + 2 + ] + a = e + ? (e | 0) == (b | 0) + ? a + : e + : a + c = c << 1 + if (b) { + continue + } + break + } + } + if (!(a | d)) { + d = 0 + a = 2 << g + a = ((0 - a) | a) & j + if (!a) { + break i + } + a = + H[ + ((Qj(a & (0 - a)) << 2) + 17496) >> + 2 + ] + } + if (!a) { + break o + } + } + while (1) { + b = ((H[(a + 4) >> 2] & -8) - h) | 0 + c = b >>> 0 < f >>> 0 + f = c ? b : f + d = c ? a : d + b = H[(a + 16) >> 2] + if (b) { + a = b + } else { + a = H[(a + 20) >> 2] + } + if (a) { + continue + } + break + } + } + if (!d | ((H[4300] - h) >>> 0 <= f >>> 0)) { + break i + } + g = H[(d + 24) >> 2] + c = H[(d + 12) >> 2] + if ((d | 0) != (c | 0)) { + a = H[(d + 8) >> 2] + H[(a + 12) >> 2] = c + H[(c + 8) >> 2] = a + break c + } + b = (d + 20) | 0 + a = H[b >> 2] + if (!a) { + a = H[(d + 16) >> 2] + if (!a) { + break g + } + b = (d + 16) | 0 + } + while (1) { + e = b + c = a + b = (a + 20) | 0 + a = H[b >> 2] + if (a) { + continue + } + b = (c + 16) | 0 + a = H[(c + 16) >> 2] + if (a) { + continue + } + break + } + H[e >> 2] = 0 + break c + } + a = H[4300] + if (a >>> 0 >= h >>> 0) { + d = H[4303] + b = (a - h) | 0 + s: { + if (b >>> 0 >= 16) { + c = (d + h) | 0 + H[(c + 4) >> 2] = b | 1 + H[(a + d) >> 2] = b + H[(d + 4) >> 2] = h | 3 + break s + } + H[(d + 4) >> 2] = a | 3 + a = (a + d) | 0 + H[(a + 4) >> 2] = H[(a + 4) >> 2] | 1 + c = 0 + b = 0 + } + H[4300] = b + H[4303] = c + a = (d + 8) | 0 + break a + } + i = H[4301] + if (i >>> 0 > h >>> 0) { + b = (i - h) | 0 + H[4301] = b + c = H[4304] + a = (c + h) | 0 + H[4304] = a + H[(a + 4) >> 2] = b | 1 + H[(c + 4) >> 2] = h | 3 + a = (c + 8) | 0 + break a + } + a = 0 + j = (h + 47) | 0 + if (H[4416]) { + c = H[4418] + } else { + H[4419] = -1 + H[4420] = -1 + H[4417] = 4096 + H[4418] = 4096 + H[4416] = ((l + 12) & -16) ^ 1431655768 + H[4421] = 0 + H[4409] = 0 + c = 4096 + } + e = (j + c) | 0 + f = (0 - c) | 0 + b = e & f + if (b >>> 0 <= h >>> 0) { + break a + } + d = H[4408] + if (d) { + c = H[4406] + g = (c + b) | 0 + if ( + (d >>> 0 < g >>> 0) | + (c >>> 0 >= g >>> 0) + ) { + break a + } + } + t: { + if (!(I[17636] & 4)) { + u: { + v: { + w: { + x: { + d = H[4304] + if (d) { + a = 17640 + while (1) { + c = H[a >> 2] + if ( + (c >>> 0 <= d >>> 0) & + (d >>> 0 < + (c + H[(a + 4) >> 2]) >>> 0) + ) { + break x + } + a = H[(a + 8) >> 2] + if (a) { + continue + } + break + } + } + c = zb(0) + if ((c | 0) == -1) { + break u + } + g = b + d = H[4417] + a = (d - 1) | 0 + if (a & c) { + g = + (((b - c) | 0) + + ((a + c) & (0 - d))) | + 0 + } + if (g >>> 0 <= h >>> 0) { + break u + } + d = H[4408] + if (d) { + a = H[4406] + f = (a + g) | 0 + if ( + (d >>> 0 < f >>> 0) | + (a >>> 0 >= f >>> 0) + ) { + break u + } + } + a = zb(g) + if ((c | 0) != (a | 0)) { + break w + } + break t + } + g = f & (e - i) + c = zb(g) + if ( + (c | 0) == + ((H[a >> 2] + H[(a + 4) >> 2]) | 0) + ) { + break v + } + a = c + } + if ((a | 0) == -1) { + break u + } + if ((h + 48) >>> 0 <= g >>> 0) { + c = a + break t + } + c = H[4418] + c = (c + ((j - g) | 0)) & (0 - c) + if ((zb(c) | 0) == -1) { + break u + } + g = (c + g) | 0 + c = a + break t + } + if ((c | 0) != -1) { + break t + } + } + H[4409] = H[4409] | 4 + } + c = zb(b) + a = zb(0) + if ( + ((c | 0) == -1) | + ((a | 0) == -1) | + (a >>> 0 <= c >>> 0) + ) { + break d + } + g = (a - c) | 0 + if (g >>> 0 <= (h + 40) >>> 0) { + break d + } + } + a = (H[4406] + g) | 0 + H[4406] = a + if (a >>> 0 > K[4407]) { + H[4407] = a + } + y: { + e = H[4304] + if (e) { + a = 17640 + while (1) { + d = H[a >> 2] + b = H[(a + 4) >> 2] + if (((d + b) | 0) == (c | 0)) { + break y + } + a = H[(a + 8) >> 2] + if (a) { + continue + } + break + } + break f + } + a = H[4302] + if (!(a >>> 0 <= c >>> 0 ? a : 0)) { + H[4302] = c + } + a = 0 + H[4411] = g + H[4410] = c + H[4306] = -1 + H[4307] = H[4416] + H[4413] = 0 + while (1) { + d = a << 3 + b = (d + 17232) | 0 + H[(d + 17240) >> 2] = b + H[(d + 17244) >> 2] = b + a = (a + 1) | 0 + if ((a | 0) != 32) { + continue + } + break + } + d = (g - 40) | 0 + a = (c + 8) & 7 ? (-8 - c) & 7 : 0 + b = (d - a) | 0 + H[4301] = b + a = (a + c) | 0 + H[4304] = a + H[(a + 4) >> 2] = b | 1 + H[(((c + d) | 0) + 4) >> 2] = 40 + H[4305] = H[4420] + break e + } + if ( + (I[(a + 12) | 0] & 8) | + (d >>> 0 > e >>> 0) | + (c >>> 0 <= e >>> 0) + ) { + break f + } + H[(a + 4) >> 2] = b + g + a = (e + 8) & 7 ? (-8 - e) & 7 : 0 + c = (a + e) | 0 + H[4304] = c + b = (H[4301] + g) | 0 + a = (b - a) | 0 + H[4301] = a + H[(c + 4) >> 2] = a | 1 + H[(((b + e) | 0) + 4) >> 2] = 40 + H[4305] = H[4420] + break e + } + d = 0 + break b + } + c = 0 + break c + } + if (K[4302] > c >>> 0) { + H[4302] = c + } + b = (c + g) | 0 + a = 17640 + z: { + A: { + B: { + C: { + D: { + E: { + while (1) { + if ((b | 0) != H[a >> 2]) { + a = H[(a + 8) >> 2] + if (a) { + continue + } + break E + } + break + } + if (!(I[(a + 12) | 0] & 8)) { + break D + } + } + a = 17640 + while (1) { + b = H[a >> 2] + if (b >>> 0 <= e >>> 0) { + f = (b + H[(a + 4) >> 2]) | 0 + if (f >>> 0 > e >>> 0) { + break C + } + } + a = H[(a + 8) >> 2] + continue + } + } + H[a >> 2] = c + H[(a + 4) >> 2] = H[(a + 4) >> 2] + g + j = (((c + 8) & 7 ? (-8 - c) & 7 : 0) + c) | 0 + H[(j + 4) >> 2] = h | 3 + g = (b + ((b + 8) & 7 ? (-8 - b) & 7 : 0)) | 0 + i = (h + j) | 0 + a = (g - i) | 0 + if ((e | 0) == (g | 0)) { + H[4304] = i + a = (H[4301] + a) | 0 + H[4301] = a + H[(i + 4) >> 2] = a | 1 + break A + } + if (H[4303] == (g | 0)) { + H[4303] = i + a = (H[4300] + a) | 0 + H[4300] = a + H[(i + 4) >> 2] = a | 1 + H[(a + i) >> 2] = a + break A + } + f = H[(g + 4) >> 2] + if ((f & 3) == 1) { + e = f & -8 + F: { + if (f >>> 0 <= 255) { + d = H[(g + 8) >> 2] + b = (f >>> 3) | 0 + c = H[(g + 12) >> 2] + if ((c | 0) == (d | 0)) { + ;(m = 17192), + (n = H[4298] & Vj(b)), + (H[m >> 2] = n) + break F + } + H[(d + 12) >> 2] = c + H[(c + 8) >> 2] = d + break F + } + h = H[(g + 24) >> 2] + c = H[(g + 12) >> 2] + G: { + if ((g | 0) != (c | 0)) { + b = H[(g + 8) >> 2] + H[(b + 12) >> 2] = c + H[(c + 8) >> 2] = b + break G + } + H: { + f = (g + 20) | 0 + b = H[f >> 2] + if (b) { + break H + } + f = (g + 16) | 0 + b = H[f >> 2] + if (b) { + break H + } + c = 0 + break G + } + while (1) { + d = f + c = b + f = (c + 20) | 0 + b = H[f >> 2] + if (b) { + continue + } + f = (c + 16) | 0 + b = H[(c + 16) >> 2] + if (b) { + continue + } + break + } + H[d >> 2] = 0 + } + if (!h) { + break F + } + d = H[(g + 28) >> 2] + b = ((d << 2) + 17496) | 0 + I: { + if (H[b >> 2] == (g | 0)) { + H[b >> 2] = c + if (c) { + break I + } + ;(m = 17196), + (n = H[4299] & Vj(d)), + (H[m >> 2] = n) + break F + } + H[ + (h + + (H[(h + 16) >> 2] == (g | 0) + ? 16 + : 20)) >> + 2 + ] = c + if (!c) { + break F + } + } + H[(c + 24) >> 2] = h + b = H[(g + 16) >> 2] + if (b) { + H[(c + 16) >> 2] = b + H[(b + 24) >> 2] = c + } + b = H[(g + 20) >> 2] + if (!b) { + break F + } + H[(c + 20) >> 2] = b + H[(b + 24) >> 2] = c + } + g = (e + g) | 0 + f = H[(g + 4) >> 2] + a = (a + e) | 0 + } + H[(g + 4) >> 2] = f & -2 + H[(i + 4) >> 2] = a | 1 + H[(a + i) >> 2] = a + if (a >>> 0 <= 255) { + b = ((a & -8) + 17232) | 0 + c = H[4298] + a = 1 << (a >>> 3) + J: { + if (!(c & a)) { + H[4298] = a | c + a = b + break J + } + a = H[(b + 8) >> 2] + } + H[(b + 8) >> 2] = i + H[(a + 12) >> 2] = i + H[(i + 12) >> 2] = b + H[(i + 8) >> 2] = a + break A + } + f = 31 + if (a >>> 0 <= 16777215) { + b = Q((a >>> 8) | 0) + f = + (((((a >>> (38 - b)) & 1) - (b << 1)) | + 0) + + 62) | + 0 + } + H[(i + 28) >> 2] = f + H[(i + 16) >> 2] = 0 + H[(i + 20) >> 2] = 0 + b = ((f << 2) + 17496) | 0 + d = H[4299] + c = 1 << f + K: { + if (!(d & c)) { + H[4299] = c | d + H[b >> 2] = i + break K + } + f = + a << + ((f | 0) != 31 + ? (25 - ((f >>> 1) | 0)) | 0 + : 0) + c = H[b >> 2] + while (1) { + b = c + if ((H[(c + 4) >> 2] & -8) == (a | 0)) { + break B + } + c = (f >>> 29) | 0 + f = f << 1 + d = ((c & 4) + b) | 0 + c = H[(d + 16) >> 2] + if (c) { + continue + } + break + } + H[(d + 16) >> 2] = i + } + H[(i + 24) >> 2] = b + H[(i + 12) >> 2] = i + H[(i + 8) >> 2] = i + break A + } + d = (g - 40) | 0 + a = (c + 8) & 7 ? (-8 - c) & 7 : 0 + b = (d - a) | 0 + H[4301] = b + a = (a + c) | 0 + H[4304] = a + H[(a + 4) >> 2] = b | 1 + H[(((c + d) | 0) + 4) >> 2] = 40 + H[4305] = H[4420] + a = + (((f + ((f - 39) & 7 ? (39 - f) & 7 : 0)) | + 0) - + 47) | + 0 + d = a >>> 0 < (e + 16) >>> 0 ? e : a + H[(d + 4) >> 2] = 27 + a = H[4413] + H[(d + 16) >> 2] = H[4412] + H[(d + 20) >> 2] = a + a = H[4411] + H[(d + 8) >> 2] = H[4410] + H[(d + 12) >> 2] = a + H[4412] = d + 8 + H[4411] = g + H[4410] = c + H[4413] = 0 + a = (d + 24) | 0 + while (1) { + H[(a + 4) >> 2] = 7 + b = (a + 8) | 0 + a = (a + 4) | 0 + if (b >>> 0 < f >>> 0) { + continue + } + break + } + if ((d | 0) == (e | 0)) { + break e + } + H[(d + 4) >> 2] = H[(d + 4) >> 2] & -2 + f = (d - e) | 0 + H[(e + 4) >> 2] = f | 1 + H[d >> 2] = f + if (f >>> 0 <= 255) { + b = ((f & -8) + 17232) | 0 + c = H[4298] + a = 1 << (f >>> 3) + L: { + if (!(c & a)) { + H[4298] = a | c + a = b + break L + } + a = H[(b + 8) >> 2] + } + H[(b + 8) >> 2] = e + H[(a + 12) >> 2] = e + H[(e + 12) >> 2] = b + H[(e + 8) >> 2] = a + break e + } + a = 31 + if (f >>> 0 <= 16777215) { + a = Q((f >>> 8) | 0) + a = + (((((f >>> (38 - a)) & 1) - (a << 1)) | 0) + + 62) | + 0 + } + H[(e + 28) >> 2] = a + H[(e + 16) >> 2] = 0 + H[(e + 20) >> 2] = 0 + b = ((a << 2) + 17496) | 0 + d = H[4299] + c = 1 << a + M: { + if (!(d & c)) { + H[4299] = c | d + H[b >> 2] = e + break M + } + a = + f << + ((a | 0) != 31 + ? (25 - ((a >>> 1) | 0)) | 0 + : 0) + d = H[b >> 2] + while (1) { + b = d + if ((f | 0) == (H[(b + 4) >> 2] & -8)) { + break z + } + c = (a >>> 29) | 0 + a = a << 1 + c = ((c & 4) + b) | 0 + d = H[(c + 16) >> 2] + if (d) { + continue + } + break + } + H[(c + 16) >> 2] = e + } + H[(e + 24) >> 2] = b + H[(e + 12) >> 2] = e + H[(e + 8) >> 2] = e + break e + } + a = H[(b + 8) >> 2] + H[(a + 12) >> 2] = i + H[(b + 8) >> 2] = i + H[(i + 24) >> 2] = 0 + H[(i + 12) >> 2] = b + H[(i + 8) >> 2] = a + } + a = (j + 8) | 0 + break a + } + a = H[(b + 8) >> 2] + H[(a + 12) >> 2] = e + H[(b + 8) >> 2] = e + H[(e + 24) >> 2] = 0 + H[(e + 12) >> 2] = b + H[(e + 8) >> 2] = a + } + a = H[4301] + if (a >>> 0 <= h >>> 0) { + break d + } + b = (a - h) | 0 + H[4301] = b + c = H[4304] + a = (c + h) | 0 + H[4304] = a + H[(a + 4) >> 2] = b | 1 + H[(c + 4) >> 2] = h | 3 + a = (c + 8) | 0 + break a + } + H[3992] = 48 + a = 0 + break a + } + N: { + if (!g) { + break N + } + b = H[(d + 28) >> 2] + a = ((b << 2) + 17496) | 0 + O: { + if (H[a >> 2] == (d | 0)) { + H[a >> 2] = c + if (c) { + break O + } + j = Vj(b) & j + H[4299] = j + break N + } + H[(g + (H[(g + 16) >> 2] == (d | 0) ? 16 : 20)) >> 2] = + c + if (!c) { + break N + } + } + H[(c + 24) >> 2] = g + a = H[(d + 16) >> 2] + if (a) { + H[(c + 16) >> 2] = a + H[(a + 24) >> 2] = c + } + a = H[(d + 20) >> 2] + if (!a) { + break N + } + H[(c + 20) >> 2] = a + H[(a + 24) >> 2] = c + } + P: { + if (f >>> 0 <= 15) { + a = (f + h) | 0 + H[(d + 4) >> 2] = a | 3 + a = (a + d) | 0 + H[(a + 4) >> 2] = H[(a + 4) >> 2] | 1 + break P + } + H[(d + 4) >> 2] = h | 3 + e = (d + h) | 0 + H[(e + 4) >> 2] = f | 1 + H[(e + f) >> 2] = f + if (f >>> 0 <= 255) { + b = ((f & -8) + 17232) | 0 + c = H[4298] + a = 1 << (f >>> 3) + Q: { + if (!(c & a)) { + H[4298] = a | c + a = b + break Q + } + a = H[(b + 8) >> 2] + } + H[(b + 8) >> 2] = e + H[(a + 12) >> 2] = e + H[(e + 12) >> 2] = b + H[(e + 8) >> 2] = a + break P + } + a = 31 + if (f >>> 0 <= 16777215) { + a = Q((f >>> 8) | 0) + a = (((((f >>> (38 - a)) & 1) - (a << 1)) | 0) + 62) | 0 + } + H[(e + 28) >> 2] = a + H[(e + 16) >> 2] = 0 + H[(e + 20) >> 2] = 0 + b = ((a << 2) + 17496) | 0 + R: { + c = 1 << a + S: { + if (!(c & j)) { + H[4299] = c | j + H[b >> 2] = e + break S + } + a = + f << + ((a | 0) != 31 ? (25 - ((a >>> 1) | 0)) | 0 : 0) + h = H[b >> 2] + while (1) { + b = h + if ((H[(b + 4) >> 2] & -8) == (f | 0)) { + break R + } + c = (a >>> 29) | 0 + a = a << 1 + c = ((c & 4) + b) | 0 + h = H[(c + 16) >> 2] + if (h) { + continue + } + break + } + H[(c + 16) >> 2] = e + } + H[(e + 24) >> 2] = b + H[(e + 12) >> 2] = e + H[(e + 8) >> 2] = e + break P + } + a = H[(b + 8) >> 2] + H[(a + 12) >> 2] = e + H[(b + 8) >> 2] = e + H[(e + 24) >> 2] = 0 + H[(e + 12) >> 2] = b + H[(e + 8) >> 2] = a + } + a = (d + 8) | 0 + break a + } + T: { + if (!i) { + break T + } + b = H[(c + 28) >> 2] + a = ((b << 2) + 17496) | 0 + U: { + if (H[a >> 2] == (c | 0)) { + H[a >> 2] = d + if (d) { + break U + } + ;(m = 17196), (n = Vj(b) & j), (H[m >> 2] = n) + break T + } + H[(i + (H[(i + 16) >> 2] == (c | 0) ? 16 : 20)) >> 2] = d + if (!d) { + break T + } + } + H[(d + 24) >> 2] = i + a = H[(c + 16) >> 2] + if (a) { + H[(d + 16) >> 2] = a + H[(a + 24) >> 2] = d + } + a = H[(c + 20) >> 2] + if (!a) { + break T + } + H[(d + 20) >> 2] = a + H[(a + 24) >> 2] = d + } + V: { + if (f >>> 0 <= 15) { + a = (f + h) | 0 + H[(c + 4) >> 2] = a | 3 + a = (a + c) | 0 + H[(a + 4) >> 2] = H[(a + 4) >> 2] | 1 + break V + } + H[(c + 4) >> 2] = h | 3 + d = (c + h) | 0 + H[(d + 4) >> 2] = f | 1 + H[(d + f) >> 2] = f + if (k) { + b = ((k & -8) + 17232) | 0 + e = H[4303] + a = 1 << (k >>> 3) + W: { + if (!(a & g)) { + H[4298] = a | g + a = b + break W + } + a = H[(b + 8) >> 2] + } + H[(b + 8) >> 2] = e + H[(a + 12) >> 2] = e + H[(e + 12) >> 2] = b + H[(e + 8) >> 2] = a + } + H[4303] = d + H[4300] = f + } + a = (c + 8) | 0 + } + ca = (l + 16) | 0 + return a | 0 + } + function ce(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + m = (ca - 32) | 0 + ca = m + o = pa(12) + H[(o + 8) >> 2] = 0 + H[(o + 4) >> 2] = b + H[o >> 2] = 0 + s = (o + 12) | 0 + b = s + a: { + b: { + c: { + while (1) { + b = (b - 12) | 0 + w = H[(b + 8) >> 2] + j = H[(b + 4) >> 2] + t = H[b >> 2] + if (t) { + if ((w | 0) > 1e3) { + break a + } + H[(m + 24) >> 2] = 0 + H[(m + 16) >> 2] = 0 + H[(m + 20) >> 2] = 0 + d = 1 + c = H[a >> 2] + e = H[(c + 8) >> 2] + h = H[(c + 12) >> 2] + g = H[(c + 20) >> 2] + f = H[(c + 16) >> 2] + d: { + if ( + (((h | 0) <= (g | 0)) & (f >>> 0 >= e >>> 0)) | + ((g | 0) > (h | 0)) + ) { + break d + } + e = I[(f + H[c >> 2]) | 0] + h = c + c = g + f = (f + 1) | 0 + c = f ? c : (c + 1) | 0 + H[(h + 16) >> 2] = f + H[(h + 20) >> 2] = c + Cc((m + 16) | 0, e) + if (e) { + c = H[a >> 2] + n = Dc((m + 16) | 0) + p = H[(c + 8) >> 2] + g = H[(c + 12) >> 2] + h = H[(c + 20) >> 2] + f = H[(c + 16) >> 2] + k = (f + e) | 0 + h = k >>> 0 < e >>> 0 ? (h + 1) | 0 : h + if ( + (((g | 0) <= (h | 0)) & (k >>> 0 > p >>> 0)) | + ((g | 0) < (h | 0)) + ) { + break d + } + qa(n, (f + H[c >> 2]) | 0, e) + d = H[(c + 20) >> 2] + f = e + e = (e + H[(c + 16) >> 2]) | 0 + d = f >>> 0 > e >>> 0 ? (d + 1) | 0 : d + H[(c + 16) >> 2] = e + H[(c + 20) >> 2] = d + } + j = pa(24) + c = j + H[(c + 4) >> 2] = 0 + H[(c + 8) >> 2] = 0 + c = (c + 16) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + H[j >> 2] = j + 4 + H[(j + 12) >> 2] = c + e = (ca - 32) | 0 + ca = e + h = (t + 12) | 0 + c = (m + 16) | 0 + u = nb(h, c) + i = (t + 16) | 0 + e: { + if ((u | 0) == (i | 0)) { + H[(e + 16) >> 2] = c + f: { + g: { + d = H[(h + 4) >> 2] + h: { + if (!d) { + f = (h + 4) | 0 + c = f + break h + } + f = I[(c + 11) | 0] + g = (f << 24) >> 24 < 0 + n = g ? H[c >> 2] : c + g = g ? H[(c + 4) >> 2] : f + while (1) { + c = d + d = I[(c + 27) | 0] + f = (d << 24) >> 24 < 0 + d = f ? H[(c + 20) >> 2] : d + p = d >>> 0 < g >>> 0 + i: { + j: { + k: { + l: { + k = p ? d : g + m: { + if (k) { + f = f + ? H[(c + 16) >> 2] + : (c + 16) | 0 + q = Fa(n, f, k) + if (!q) { + if (d >>> 0 > g >>> 0) { + break m + } + break l + } + if ((q | 0) >= 0) { + break l + } + break m + } + if (d >>> 0 <= g >>> 0) { + break k + } + } + f = c + d = H[c >> 2] + if (d) { + continue + } + break h + } + d = Fa(f, n, k) + if (d) { + break j + } + } + if (p) { + break i + } + break g + } + if ((d | 0) >= 0) { + break g + } + } + d = H[(c + 4) >> 2] + if (d) { + continue + } + break + } + f = (c + 4) | 0 + } + d = pa(32) + n = (d + 16) | 0 + g = H[(e + 16) >> 2] + n: { + if (F[(g + 11) | 0] >= 0) { + p = H[(g + 4) >> 2] + H[n >> 2] = H[g >> 2] + H[(n + 4) >> 2] = p + H[(n + 8) >> 2] = H[(g + 8) >> 2] + break n + } + za(n, H[g >> 2], H[(g + 4) >> 2]) + } + H[(d + 8) >> 2] = c + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + H[(d + 28) >> 2] = 0 + H[f >> 2] = d + c = d + g = H[H[h >> 2] >> 2] + if (g) { + H[h >> 2] = g + c = H[f >> 2] + } + Sb(H[(h + 4) >> 2], c) + H[(h + 8) >> 2] = H[(h + 8) >> 2] + 1 + c = 1 + break f + } + d = c + c = 0 + } + F[(e + 28) | 0] = c + H[(e + 24) >> 2] = d + d = H[(e + 24) >> 2] + c = H[(d + 28) >> 2] + H[(d + 28) >> 2] = j + if (!c) { + break e + } + Ra((c + 12) | 0, H[(c + 16) >> 2]) + Qa(c, H[(c + 4) >> 2]) + oa(c) + break e + } + if (!j) { + break e + } + Ra((j + 12) | 0, H[(j + 16) >> 2]) + Qa(j, H[(j + 4) >> 2]) + oa(j) + } + ca = (e + 32) | 0 + d = (i | 0) != (u | 0) + } + if (F[(m + 27) | 0] < 0) { + oa(H[(m + 16) >> 2]) + } + if (d) { + break a + } + } + if (!j) { + break a + } + H[(m + 16) >> 2] = 0 + if (!Bb(1, (m + 16) | 0, H[a >> 2])) { + break a + } + q = 0 + x = H[(m + 16) >> 2] + if (x) { + while (1) { + d = 0 + i = (ca - 32) | 0 + ca = i + H[(i + 24) >> 2] = 0 + H[(i + 16) >> 2] = 0 + H[(i + 20) >> 2] = 0 + c = H[a >> 2] + f = H[(c + 8) >> 2] + o: { + p: { + h = H[(c + 12) >> 2] + g = H[(c + 20) >> 2] + e = H[(c + 16) >> 2] + q: { + if ( + (((h | 0) <= (g | 0)) & + (e >>> 0 >= f >>> 0)) | + ((g | 0) > (h | 0)) + ) { + break q + } + f = I[(e + H[c >> 2]) | 0] + h = c + c = g + e = (e + 1) | 0 + c = e ? c : (c + 1) | 0 + H[(h + 16) >> 2] = e + H[(h + 20) >> 2] = c + Cc((i + 16) | 0, f) + if (f) { + e = H[a >> 2] + n = Dc((i + 16) | 0) + p = H[(e + 8) >> 2] + g = H[(e + 12) >> 2] + c = H[(e + 20) >> 2] + h = H[(e + 16) >> 2] + k = (h + f) | 0 + c = k >>> 0 < f >>> 0 ? (c + 1) | 0 : c + if ( + ((k >>> 0 > p >>> 0) & + ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break q + } + qa(n, (h + H[e >> 2]) | 0, f) + c = H[(e + 20) >> 2] + g = f + f = (f + H[(e + 16) >> 2]) | 0 + c = g >>> 0 > f >>> 0 ? (c + 1) | 0 : c + H[(e + 16) >> 2] = f + H[(e + 20) >> 2] = c + } + H[(i + 12) >> 2] = 0 + if (!Bb(1, (i + 12) | 0, H[a >> 2])) { + break q + } + f = H[(i + 12) >> 2] + if (!f) { + break q + } + e = H[a >> 2] + c = H[(e + 8) >> 2] + h = H[(e + 16) >> 2] + g = (c - h) | 0 + c = + (H[(e + 12) >> 2] - + ((H[(e + 20) >> 2] + + (c >>> 0 < h >>> 0)) | + 0)) | + 0 + if ( + (((c | 0) <= 0) & (f >>> 0 > g >>> 0)) | + ((c | 0) < 0) + ) { + break q + } + H[(i + 8) >> 2] = 0 + H[i >> 2] = 0 + H[(i + 4) >> 2] = 0 + if ((f | 0) < 0) { + break p + } + d = pa(f) + H[i >> 2] = d + c = (d + f) | 0 + H[(i + 8) >> 2] = c + l = ra(d, 0, f) + H[(i + 4) >> 2] = c + h = H[(e + 12) >> 2] + y = h + p = H[(e + 8) >> 2] + c = H[(e + 20) >> 2] + k = H[(e + 16) >> 2] + g = (f + k) | 0 + c = g >>> 0 < f >>> 0 ? (c + 1) | 0 : c + u = g + n = c + r: { + if ( + (((c | 0) <= (h | 0)) & + (g >>> 0 <= p >>> 0)) | + ((c | 0) < (h | 0)) + ) { + qa(l, (H[e >> 2] + k) | 0, f) + d = H[(e + 20) >> 2] + c = (f + H[(e + 16) >> 2]) | 0 + d = c >>> 0 < f >>> 0 ? (d + 1) | 0 : d + H[(e + 16) >> 2] = c + H[(e + 20) >> 2] = d + h = (ca - 48) | 0 + ca = h + e = nb(j, (i + 16) | 0) + if ((e | 0) != ((j + 4) | 0)) { + c = H[(e + 4) >> 2] + s: { + if (!c) { + c = e + while (1) { + d = H[(c + 8) >> 2] + f = H[d >> 2] != (c | 0) + c = d + if (f) { + continue + } + break + } + break s + } + while (1) { + d = c + c = H[c >> 2] + if (c) { + continue + } + break + } + } + if ((e | 0) == H[j >> 2]) { + H[j >> 2] = d + } + H[(j + 8) >> 2] = H[(j + 8) >> 2] - 1 + f = H[(j + 4) >> 2] + t: { + u: { + g = e + d = e + e = H[d >> 2] + if (e) { + c = H[(g + 4) >> 2] + if (!c) { + break u + } + while (1) { + d = c + c = H[c >> 2] + if (c) { + continue + } + break + } + } + e = H[(d + 4) >> 2] + if (e) { + break u + } + e = 0 + k = 1 + break t + } + H[(e + 8) >> 2] = H[(d + 8) >> 2] + k = 0 + } + l = H[(d + 8) >> 2] + c = H[l >> 2] + v: { + if ((d | 0) == (c | 0)) { + H[l >> 2] = e + if ((d | 0) == (f | 0)) { + c = 0 + f = e + break v + } + c = H[(l + 4) >> 2] + break v + } + H[(l + 4) >> 2] = e + } + r = !I[(d + 12) | 0] + if ((d | 0) != (g | 0)) { + l = H[(g + 8) >> 2] + H[(d + 8) >> 2] = l + H[ + (l + + (((g | 0) != + H[H[(g + 8) >> 2] >> 2]) << + 2)) >> + 2 + ] = d + l = H[g >> 2] + H[d >> 2] = l + H[(l + 8) >> 2] = d + l = H[(g + 4) >> 2] + H[(d + 4) >> 2] = l + if (l) { + H[(l + 8) >> 2] = d + } + F[(d + 12) | 0] = I[(g + 12) | 0] + f = (f | 0) == (g | 0) ? d : f + } + w: { + if (r | !f) { + break w + } + if (k) { + while (1) { + e = I[(c + 12) | 0] + x: { + d = H[(c + 8) >> 2] + if (H[d >> 2] != (c | 0)) { + if (!e) { + F[(c + 12) | 0] = 1 + F[(d + 12) | 0] = 0 + e = H[(d + 4) >> 2] + k = H[e >> 2] + H[(d + 4) >> 2] = k + if (k) { + H[(k + 8) >> 2] = d + } + H[(e + 8) >> 2] = + H[(d + 8) >> 2] + k = H[(d + 8) >> 2] + H[ + ((((d | 0) != + H[k >> 2]) << + 2) + + k) >> + 2 + ] = e + H[e >> 2] = d + H[(d + 8) >> 2] = e + d = c + c = H[c >> 2] + f = + (c | 0) == (f | 0) ? d : f + c = H[(c + 4) >> 2] + } + y: { + z: { + d = H[c >> 2] + A: { + if ( + !(I[(d + 12) | 0] + ? 0 + : d) + ) { + e = H[(c + 4) >> 2] + if ( + I[(e + 12) | 0] + ? 0 + : e + ) { + break A + } + F[(c + 12) | 0] = 0 + c = H[(c + 8) >> 2] + B: { + if ( + (f | 0) == + (c | 0) + ) { + c = f + break B + } + if ( + I[(c + 12) | 0] + ) { + break x + } + } + F[(c + 12) | 0] = 1 + break w + } + e = H[(c + 4) >> 2] + if (!e) { + break z + } + } + if (I[(e + 12) | 0]) { + break z + } + d = c + break y + } + F[(d + 12) | 0] = 1 + F[(c + 12) | 0] = 0 + e = H[(d + 4) >> 2] + H[c >> 2] = e + if (e) { + H[(e + 8) >> 2] = c + } + H[(d + 8) >> 2] = + H[(c + 8) >> 2] + e = H[(c + 8) >> 2] + H[ + (((H[e >> 2] != + (c | 0)) << + 2) + + e) >> + 2 + ] = d + H[(d + 4) >> 2] = c + H[(c + 8) >> 2] = d + e = c + } + c = H[(d + 8) >> 2] + F[(d + 12) | 0] = + I[(c + 12) | 0] + F[(c + 12) | 0] = 1 + F[(e + 12) | 0] = 1 + d = H[(c + 4) >> 2] + e = H[d >> 2] + H[(c + 4) >> 2] = e + if (e) { + H[(e + 8) >> 2] = c + } + H[(d + 8) >> 2] = + H[(c + 8) >> 2] + e = H[(c + 8) >> 2] + H[ + ((((c | 0) != H[e >> 2]) << + 2) + + e) >> + 2 + ] = d + H[d >> 2] = c + H[(c + 8) >> 2] = d + break w + } + if (!e) { + F[(c + 12) | 0] = 1 + F[(d + 12) | 0] = 0 + e = H[(c + 4) >> 2] + H[d >> 2] = e + if (e) { + H[(e + 8) >> 2] = d + } + H[(c + 8) >> 2] = + H[(d + 8) >> 2] + e = H[(d + 8) >> 2] + H[ + ((((d | 0) != H[e >> 2]) << + 2) + + e) >> + 2 + ] = c + H[(c + 4) >> 2] = d + H[(d + 8) >> 2] = c + f = (d | 0) == (f | 0) ? c : f + c = H[d >> 2] + } + e = H[c >> 2] + C: { + if (!(!e | I[(e + 12) | 0])) { + d = c + break C + } + d = H[(c + 4) >> 2] + if ( + !(I[(d + 12) | 0] ? 0 : d) + ) { + F[(c + 12) | 0] = 0 + c = H[(c + 8) >> 2] + if ( + (c | 0) != (f | 0) + ? I[(c + 12) | 0] + : 0 + ) { + break x + } + F[(c + 12) | 0] = 1 + break w + } + if (e) { + if (!I[(e + 12) | 0]) { + d = c + break C + } + d = H[(c + 4) >> 2] + } + F[(d + 12) | 0] = 1 + F[(c + 12) | 0] = 0 + e = H[d >> 2] + H[(c + 4) >> 2] = e + if (e) { + H[(e + 8) >> 2] = c + } + H[(d + 8) >> 2] = + H[(c + 8) >> 2] + e = H[(c + 8) >> 2] + H[ + (((H[e >> 2] != (c | 0)) << + 2) + + e) >> + 2 + ] = d + H[d >> 2] = c + H[(c + 8) >> 2] = d + e = c + } + c = H[(d + 8) >> 2] + F[(d + 12) | 0] = + I[(c + 12) | 0] + F[(c + 12) | 0] = 1 + F[(e + 12) | 0] = 1 + d = H[c >> 2] + e = H[(d + 4) >> 2] + H[c >> 2] = e + if (e) { + H[(e + 8) >> 2] = c + } + H[(d + 8) >> 2] = + H[(c + 8) >> 2] + e = H[(c + 8) >> 2] + H[ + ((((c | 0) != H[e >> 2]) << + 2) + + e) >> + 2 + ] = d + H[(d + 4) >> 2] = c + H[(c + 8) >> 2] = d + break w + } + d = c + c = H[(c + 8) >> 2] + c = + H[ + ((((d | 0) == H[c >> 2]) << + 2) + + c) >> + 2 + ] + continue + } + } + F[(e + 12) | 0] = 1 + } + c = H[(g + 28) >> 2] + if (c) { + H[(g + 32) >> 2] = c + oa(c) + } + if (F[(g + 27) | 0] < 0) { + oa(H[(g + 16) >> 2]) + } + oa(g) + } + H[(h + 8) >> 2] = 0 + H[h >> 2] = 0 + H[(h + 4) >> 2] = 0 + c = H[(i + 4) >> 2] + d = H[i >> 2] + f = (c - d) | 0 + e = 0 + D: { + E: { + if ((c | 0) != (d | 0)) { + if ((f | 0) < 0) { + break E + } + e = pa(f) + c = ra(e, 0, f) + g = (c + f) | 0 + H[(h + 8) >> 2] = g + H[(h + 4) >> 2] = g + H[h >> 2] = c + c = d + } + qa(e, c, f) + F: { + if (F[(i + 27) | 0] >= 0) { + H[(h + 24) >> 2] = + H[(i + 24) >> 2] + c = H[(i + 20) >> 2] + H[(h + 16) >> 2] = + H[(i + 16) >> 2] + H[(h + 20) >> 2] = c + break F + } + za( + (h + 16) | 0, + H[(i + 16) >> 2], + H[(i + 20) >> 2], + ) + } + ae((h + 28) | 0, h) + f = (h + 16) | 0 + c = f + G: { + H: { + d = H[(j + 4) >> 2] + I: { + if (!d) { + e = (j + 4) | 0 + c = e + break I + } + e = I[(c + 11) | 0] + g = (e << 24) >> 24 < 0 + k = g ? H[c >> 2] : c + g = g ? H[(c + 4) >> 2] : e + while (1) { + c = d + d = I[(c + 27) | 0] + e = (d << 24) >> 24 < 0 + d = e ? H[(c + 20) >> 2] : d + l = d >>> 0 < g >>> 0 + J: { + K: { + L: { + M: { + r = l ? d : g + N: { + if (r) { + e = e + ? H[ + (c + 16) >> + 2 + ] + : (c + 16) | 0 + z = Fa(k, e, r) + if (!z) { + if ( + d >>> 0 > + g >>> 0 + ) { + break N + } + break M + } + if ( + (z | 0) >= + 0 + ) { + break M + } + break N + } + if ( + d >>> 0 <= + g >>> 0 + ) { + break L + } + } + e = c + d = H[c >> 2] + if (d) { + continue + } + break I + } + d = Fa(e, k, r) + if (d) { + break K + } + } + if (l) { + break J + } + break H + } + if ((d | 0) >= 0) { + break H + } + } + d = H[(c + 4) >> 2] + if (d) { + continue + } + break + } + e = (c + 4) | 0 + } + d = pa(40) + H[(d + 24) >> 2] = H[(f + 8) >> 2] + g = H[(f + 4) >> 2] + H[(d + 16) >> 2] = H[f >> 2] + H[(d + 20) >> 2] = g + H[f >> 2] = 0 + H[(f + 4) >> 2] = 0 + H[(f + 8) >> 2] = 0 + ae((d + 28) | 0, (f + 12) | 0) + H[(d + 8) >> 2] = c + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + H[e >> 2] = d + c = d + f = H[H[j >> 2] >> 2] + if (f) { + H[j >> 2] = f + c = H[e >> 2] + } + Sb(H[(j + 4) >> 2], c) + H[(j + 8) >> 2] = + H[(j + 8) >> 2] + 1 + c = 1 + break G + } + d = c + c = 0 + } + F[(h + 44) | 0] = c + H[(h + 40) >> 2] = d + c = H[(h + 28) >> 2] + if (c) { + H[(h + 32) >> 2] = c + oa(c) + } + if (F[(h + 27) | 0] < 0) { + oa(H[(h + 16) >> 2]) + } + c = H[h >> 2] + if (c) { + H[(h + 4) >> 2] = c + oa(c) + } + ca = (h + 48) | 0 + break D + } + sa() + v() + } + d = H[i >> 2] + if (!d) { + break r + } + } + H[(i + 4) >> 2] = d + oa(d) + } + d = + (((n | 0) <= (y | 0)) & + (p >>> 0 >= u >>> 0)) | + ((n | 0) < (y | 0)) + } + if (F[(i + 27) | 0] < 0) { + oa(H[(i + 16) >> 2]) + } + ca = (i + 32) | 0 + break o + } + sa() + v() + } + if (!d) { + break a + } + q = (q + 1) | 0 + if ((x | 0) != (q | 0)) { + continue + } + break + } + } + H[(m + 12) >> 2] = 0 + if (!Bb(1, (m + 12) | 0, H[a >> 2])) { + break a + } + c = H[a >> 2] + e = H[(c + 8) >> 2] + f = H[(c + 16) >> 2] + h = (e - f) | 0 + d = H[(m + 12) >> 2] + c = + (H[(c + 12) >> 2] - + ((H[(c + 20) >> 2] + (e >>> 0 < f >>> 0)) | 0)) | + 0 + if ( + ((h >>> 0 < d >>> 0) & ((c | 0) <= 0)) | + ((c | 0) < 0) + ) { + break a + } + if (d) { + q = 0 + h = (((t | 0) != 0) + w) | 0 + while (1) { + O: { + if (b >>> 0 < s >>> 0) { + H[(b + 8) >> 2] = h + H[(b + 4) >> 2] = 0 + H[b >> 2] = j + b = (b + 12) | 0 + d = H[(m + 12) >> 2] + break O + } + c = (b - o) | 0 + g = ((c | 0) / 12) | 0 + b = (g + 1) | 0 + if (b >>> 0 >= 357913942) { + break c + } + e = (((s - o) | 0) / 12) | 0 + f = e << 1 + e = + e >>> 0 >= 178956970 + ? 357913941 + : b >>> 0 < f >>> 0 + ? f + : b + if (e) { + if (e >>> 0 >= 357913942) { + break b + } + f = pa(N(e, 12)) + } else { + f = 0 + } + b = (f + N(g, 12)) | 0 + H[(b + 8) >> 2] = h + H[(b + 4) >> 2] = 0 + H[b >> 2] = j + c = va((b + N(((c | 0) / -12) | 0, 12)) | 0, o, c) + s = (f + N(e, 12)) | 0 + b = (b + 12) | 0 + if (o) { + oa(o) + } + o = c + } + q = (q + 1) | 0 + if (q >>> 0 < d >>> 0) { + continue + } + break + } + } + if ((b | 0) != (o | 0)) { + continue + } + break + } + A = 1 + break a + } + sa() + v() + } + wa() + v() + } + if (o) { + oa(o) + } + ca = (m + 32) | 0 + return A + } + function Af(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = O(0), + q = 0, + r = 0 + e = (ca - 720) | 0 + ca = e + a: { + b: { + c: { + d: { + e: { + f: { + g: { + h: { + i: { + if (J[(b + 38) >> 1] >= 515) { + H[(e + 680) >> 2] = 0 + H[(e + 672) >> 2] = 0 + H[(e + 676) >> 2] = 0 + if ( + (ea[H[(H[a >> 2] + 24) >> 2]](a) | 0) <= + 0 + ) { + break d + } + while (1) { + c = ea[H[(H[a >> 2] + 20) >> 2]](a, n) | 0 + d = + H[ + (H[ + (H[ + ((ea[H[(H[a >> 2] + 28) >> 2]]( + a, + ) | + 0) + + 4) >> + 2 + ] + + 8) >> + 2 + ] + + (c << 2)) >> + 2 + ] + if (H[(d + 28) >> 2] == 9) { + f = H[(e + 672) >> 2] + c = (H[(e + 676) >> 2] - f) >> 2 + k = I[(d + 24) | 0] + j: { + if (c >>> 0 < k >>> 0) { + ya((e + 672) | 0, (k - c) | 0) + break j + } + if (c >>> 0 <= k >>> 0) { + break j + } + H[(e + 676) >> 2] = f + (k << 2) + } + j = 0 + i = H[(b + 8) >> 2] + h = H[(b + 12) >> 2] + c = H[(b + 20) >> 2] + d = k << 2 + f = H[(b + 16) >> 2] + l = (f + d) | 0 + c = d >>> 0 > l >>> 0 ? (c + 1) | 0 : c + if ( + ((i >>> 0 < l >>> 0) & + ((c | 0) >= (h | 0))) | + ((c | 0) > (h | 0)) + ) { + break b + } + qa( + H[(e + 672) >> 2], + (f + H[b >> 2]) | 0, + d, + ) + c = H[(b + 20) >> 2] + f = d + d = (d + H[(b + 16) >> 2]) | 0 + c = f >>> 0 > d >>> 0 ? (c + 1) | 0 : c + i = d + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + l = H[(b + 12) >> 2] + g = H[(b + 8) >> 2] + h = (d + 4) | 0 + f = h >>> 0 < 4 ? (c + 1) | 0 : c + d = f + if ( + ((g >>> 0 < h >>> 0) & + ((d | 0) >= (l | 0))) | + ((d | 0) > (l | 0)) + ) { + break b + } + o = H[b >> 2] + f = (o + i) | 0 + f = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | + (I[(f + 3) | 0] << 24)) + H[(b + 16) >> 2] = h + H[(b + 20) >> 2] = d + if ( + ((g >>> 0 <= h >>> 0) & + ((d | 0) >= (l | 0))) | + ((d | 0) > (l | 0)) + ) { + break b + } + d = I[(h + o) | 0] + h = (i + 5) | 0 + c = h >>> 0 < 5 ? (c + 1) | 0 : c + H[(b + 16) >> 2] = h + H[(b + 20) >> 2] = c + if (d >>> 0 > 31) { + break b + } + p = (A(2, f), B()) + H[(e + 20) >> 2] = -1 + H[(e + 16) >> 2] = 1832 + H[(e + 32) >> 2] = 0 + H[(e + 36) >> 2] = 0 + H[(e + 24) >> 2] = 0 + H[(e + 28) >> 2] = 0 + c = H[(e + 672) >> 2] + o = (d - 1) | 0 + if (o >>> 0 <= 29) { + H[(e + 20) >> 2] = d + k: { + h = (c + (k << 2)) | 0 + l = (h - c) | 0 + f = l >> 2 + i = H[(e + 32) >> 2] + d = H[(e + 24) >> 2] + if ( + f >>> 0 <= + ((i - d) >> 2) >>> 0 + ) { + i = (H[(e + 28) >> 2] - d) | 0 + l = i >> 2 + i = + f >>> 0 > l >>> 0 + ? (c + i) | 0 + : h + g = (i - c) | 0 + if ((c | 0) != (i | 0)) { + va(d, c, g) + } + if (f >>> 0 > l >>> 0) { + c = (h - i) | 0 + d = H[(e + 28) >> 2] + if ((h | 0) != (i | 0)) { + va(d, i, c) + } + H[(e + 28) >> 2] = c + d + break k + } + H[(e + 28) >> 2] = d + g + break k + } + if (d) { + H[(e + 28) >> 2] = d + oa(d) + H[(e + 32) >> 2] = 0 + H[(e + 24) >> 2] = 0 + H[(e + 28) >> 2] = 0 + i = 0 + } + l: { + if ((l | 0) < 0) { + break l + } + d = (i >>> 1) | 0 + d = + i >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 > f >>> 0 + ? d + : f + if (d >>> 0 >= 1073741824) { + break l + } + i = d << 2 + d = pa(i) + H[(e + 28) >> 2] = d + H[(e + 24) >> 2] = d + H[(e + 32) >> 2] = d + i + if ((c | 0) != (h | 0)) { + qa(d, c, l) + } + H[(e + 28) >> 2] = d + (f << 2) + break k + } + sa() + v() + } + L[(e + 36) >> 2] = p + } + m: { + if (o >>> 0 >= 30) { + break m + } + if ( + !Xc( + (e + 16) | 0, + H[ + (H[(a + 60) >> 2] + + ((((H[(a + 40) >> 2] - + H[(a + 36) >> 2]) | + 0) / + 24) << + 2)) >> + 2 + ], + ) + ) { + break m + } + c = H[(a + 40) >> 2] + n: { + if ((c | 0) != H[(a + 44) >> 2]) { + H[c >> 2] = 1832 + d = H[(e + 20) >> 2] + H[(c + 16) >> 2] = 0 + H[(c + 8) >> 2] = 0 + H[(c + 12) >> 2] = 0 + H[(c + 4) >> 2] = d + d = H[(e + 28) >> 2] + f = H[(e + 24) >> 2] + if ((d | 0) != (f | 0)) { + d = (d - f) | 0 + if ((d | 0) < 0) { + break i + } + g = pa(d) + H[(c + 12) >> 2] = g + H[(c + 8) >> 2] = g + H[(c + 16) >> 2] = (d & -4) + g + k = H[(e + 24) >> 2] + d = H[(e + 28) >> 2] + if ((k | 0) != (d | 0)) { + while (1) { + L[g >> 2] = L[k >> 2] + g = (g + 4) | 0 + k = (k + 4) | 0 + if ((d | 0) != (k | 0)) { + continue + } + break + } + } + H[(c + 12) >> 2] = g + } + L[(c + 20) >> 2] = + L[(e + 36) >> 2] + H[(a + 40) >> 2] = c + 24 + break n + } + d = 0 + o: { + p: { + q: { + r: { + j = H[(a + 40) >> 2] + f = H[(a + 36) >> 2] + i = (((j - f) | 0) / 24) | 0 + c = (i + 1) | 0 + if (c >>> 0 < 178956971) { + h = + (((H[(a + 44) >> 2] - + f) | + 0) / + 24) | + 0 + l = h << 1 + h = + h >>> 0 >= 89478485 + ? 178956970 + : c >>> 0 < l >>> 0 + ? l + : c + if (h) { + if ( + h >>> 0 >= + 178956971 + ) { + break r + } + d = pa(N(h, 24)) + } + g = (N(i, 24) + d) | 0 + H[g >> 2] = 1832 + c = H[(e + 20) >> 2] + H[(g + 16) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + H[(g + 4) >> 2] = c + c = H[(e + 24) >> 2] + i = H[(e + 28) >> 2] + if ((c | 0) != (i | 0)) { + l = (i - c) | 0 + if ((l | 0) < 0) { + break q + } + k = pa(l) + H[(g + 8) >> 2] = k + H[(g + 16) >> 2] = + (l & -4) + k + while (1) { + L[k >> 2] = L[c >> 2] + k = (k + 4) | 0 + c = (c + 4) | 0 + if ( + (i | 0) != + (c | 0) + ) { + continue + } + break + } + H[(g + 12) >> 2] = k + } + c = (N(h, 24) + d) | 0 + L[(g + 20) >> 2] = + L[(e + 36) >> 2] + d = (g + 24) | 0 + if ((f | 0) == (j | 0)) { + break p + } + while (1) { + g = (g - 24) | 0 + H[g >> 2] = 1832 + j = (j - 24) | 0 + H[(g + 4) >> 2] = + H[(j + 4) >> 2] + H[(g + 8) >> 2] = + H[(j + 8) >> 2] + H[(g + 12) >> 2] = + H[(j + 12) >> 2] + H[(g + 16) >> 2] = + H[(j + 16) >> 2] + H[(j + 16) >> 2] = 0 + H[(j + 8) >> 2] = 0 + H[(j + 12) >> 2] = 0 + L[(g + 20) >> 2] = + L[(j + 20) >> 2] + if ( + (f | 0) != + (j | 0) + ) { + continue + } + break + } + H[(a + 44) >> 2] = c + k = H[(a + 40) >> 2] + H[(a + 40) >> 2] = d + j = H[(a + 36) >> 2] + H[(a + 36) >> 2] = g + if ((j | 0) == (k | 0)) { + break o + } + while (1) { + k = (k - 24) | 0 + ea[H[H[k >> 2] >> 2]]( + k, + ) | 0 + if ( + (j | 0) != + (k | 0) + ) { + continue + } + break + } + break o + } + sa() + v() + } + wa() + v() + } + sa() + v() + } + H[(a + 44) >> 2] = c + H[(a + 40) >> 2] = d + H[(a + 36) >> 2] = g + } + if (j) { + oa(j) + } + } + j = 1 + } + H[(e + 16) >> 2] = 1832 + c = H[(e + 24) >> 2] + if (c) { + H[(e + 28) >> 2] = c + oa(c) + } + if (!j) { + break c + } + } + n = (n + 1) | 0 + if ( + (ea[H[(H[a >> 2] + 24) >> 2]](a) | 0) > + (n | 0) + ) { + continue + } + break + } + break d + } + k = ea[H[(H[a >> 2] + 24) >> 2]](a) | 0 + H[(e + 712) >> 2] = 0 + H[(e + 704) >> 2] = 0 + H[(e + 708) >> 2] = 0 + if (k) { + if (k >>> 0 >= 214748365) { + break h + } + c = N(k, 20) + d = pa(c) + H[(e + 704) >> 2] = d + H[(e + 712) >> 2] = c + d + c = (c - 20) | 0 + c = + (((c - ((c >>> 0) % 20 | 0)) | 0) + 20) | + 0 + ;(q = e), + (r = (ra(d, 0, c) + c) | 0), + (H[(q + 708) >> 2] = r) + while (1) { + c = ea[H[(H[a >> 2] + 20) >> 2]](a, m) | 0 + d = + H[ + (H[ + (H[ + ((ea[H[(H[a >> 2] + 28) >> 2]]( + a, + ) | + 0) + + 4) >> + 2 + ] + + 8) >> + 2 + ] + + (c << 2)) >> + 2 + ] + f = H[(d + 28) >> 2] + c = (f - 1) | 0 + if (c >>> 0 <= 10) { + c = H[((c << 2) + 13584) >> 2] + } else { + c = -1 + } + h = (c | 0) > 0 ? c : 0 + if (h >>> 0 > 4) { + break f + } + c = (H[(e + 704) >> 2] + N(m, 20)) | 0 + i = I[(d + 24) | 0] + H[(c + 16) >> 2] = i + H[(c + 12) >> 2] = h + H[(c + 8) >> 2] = f + H[(c + 4) >> 2] = g + H[c >> 2] = d + g = (g + i) | 0 + m = (m + 1) | 0 + if ((k | 0) != (m | 0)) { + continue + } + break + } + } + c = ea[H[(H[a >> 2] + 20) >> 2]](a, 0) | 0 + m = + H[ + (H[ + (H[ + ((ea[H[(H[a >> 2] + 28) >> 2]](a) | + 0) + + 4) >> + 2 + ] + + 8) >> + 2 + ] + + (c << 2)) >> + 2 + ] + F[(m + 84) | 0] = 1 + H[(m + 72) >> 2] = H[(m + 68) >> 2] + h = H[(b + 12) >> 2] + c = h + d = H[(b + 20) >> 2] + f = H[(b + 8) >> 2] + i = H[(b + 16) >> 2] + if ( + (((c | 0) <= (d | 0)) & + (f >>> 0 <= i >>> 0)) | + ((c | 0) < (d | 0)) + ) { + break f + } + n = H[b >> 2] + o = I[(n + i) | 0] + c = d + l = (i + 1) | 0 + c = l ? c : (c + 1) | 0 + H[(b + 16) >> 2] = l + H[(b + 20) >> 2] = c + s: { + switch (o | 0) { + case 0: + a = H[(e + 704) >> 2] + if ( + ((H[(e + 708) >> 2] - a) | 0) != + 20 + ) { + break e + } + if (H[(a + 16) >> 2] != 3) { + break f + } + t: { + if ( + ((f >>> 0 <= l >>> 0) & + ((c | 0) >= (h | 0))) | + ((c | 0) > (h | 0)) + ) { + break t + } + c = d + a = (i + 2) | 0 + c = a >>> 0 < 2 ? (c + 1) | 0 : c + l = a + H[(b + 16) >> 2] = a + H[(b + 20) >> 2] = c + c = d + a = (i + 6) | 0 + c = a >>> 0 < 6 ? (c + 1) | 0 : c + if ( + ((a >>> 0 > f >>> 0) & + ((c | 0) >= (h | 0))) | + ((c | 0) > (h | 0)) + ) { + break t + } + d = (l + n) | 0 + d = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = a + H[(b + 20) >> 2] = c + mb(m, d) + j = (e + 672) | 0 + H[(j + 20) >> 2] = 0 + H[(j + 12) >> 2] = 0 + H[(j + 16) >> 2] = 0 + H[j >> 2] = 0 + H[(j + 4) >> 2] = 0 + H[(j + 20) >> 2] = d + d = Ac((e + 16) | 0, (e + 704) | 0) + k = 0 + g = (ca - 32) | 0 + ca = g + H[(g + 24) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + f = H[(b + 12) >> 2] + m = f + i = H[(b + 8) >> 2] + c = H[(b + 20) >> 2] + l = c + h = H[(b + 16) >> 2] + a = (h + 4) | 0 + c = a >>> 0 < 4 ? (c + 1) | 0 : c + u: { + if ( + ((a >>> 0 > i >>> 0) & + ((c | 0) >= (f | 0))) | + ((c | 0) > (f | 0)) + ) { + break u + } + n = H[b >> 2] + f = (n + h) | 0 + f = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | + (I[(f + 3) | 0] << 24)) + H[(b + 16) >> 2] = a + H[(b + 20) >> 2] = c + v: { + w: { + switch ((f - 2) | 0) { + case 1: + if ( + (((c | 0) >= (m | 0)) & + (a >>> 0 >= i >>> 0)) | + ((c | 0) > (m | 0)) + ) { + break u + } + a = F[(a + n) | 0] + c = l + f = (h + 5) | 0 + c = + f >>> 0 < 5 + ? (c + 1) | 0 + : c + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = c + H[(j + 8) >> 2] = a + if ((a | 0) == 1) { + if ( + Ud(j, b, (g + 16) | 0) + ) { + break v + } + break u + } + Rd(1799, 23, H[3443]) + break u + default: + Rd(1774, 24, H[3443]) + break u + case 0: + break w + } + } + if (!Ud(j, b, (g + 16) | 0)) { + break u + } + } + H[(g + 8) >> 2] = H[(g + 16) >> 2] + H[g >> 2] = H[(g + 20) >> 2] + c = (ca - 32) | 0 + ca = c + a = H[j >> 2] + p = L[(j + 4) >> 2] + H[(c + 24) >> 2] = 1065353216 + h = (-1 << a) ^ -1 + a = h + if ((a | 0) > 0) { + L[(c + 24) >> 2] = p / O(a | 0) + } + m = H[(g + 8) >> 2] + n = H[g >> 2] + if ((m | 0) != (n | 0)) { + a = H[(d + 28) >> 2] + while (1) { + b = H[m >> 2] + f = H[(m + 4) >> 2] + p = L[(c + 24) >> 2] + L[(c + 16) >> 2] = + p * + O((H[(m + 8) >> 2] - h) | 0) + L[(c + 12) >> 2] = + p * O((f - h) | 0) + L[(c + 8) >> 2] = + p * O((b - h) | 0) + b = a + i = H[(d + 16) >> 2] + f = H[i >> 2] + if (!I[(f + 84) | 0]) { + b = + H[ + (H[(f + 68) >> 2] + + (a << 2)) >> + 2 + ] + } + if ( + K[(f + 80) >> 2] > + b >>> 0 + ) { + a = H[(f + 40) >> 2] + qa( + (H[H[f >> 2] >> 2] + + N(a, b)) | + 0, + (((c + 8) | 0) + + (H[(i + 4) >> 2] << 2)) | + 0, + a, + ) + n = H[g >> 2] + a = H[(d + 28) >> 2] + } + a = (a + 1) | 0 + H[(d + 28) >> 2] = a + m = (m + 12) | 0 + if ((n | 0) != (m | 0)) { + continue + } + break + } + } + ca = (c + 32) | 0 + k = 1 + } + a = H[(g + 16) >> 2] + if (a) { + H[(g + 20) >> 2] = a + oa(a) + } + ca = (g + 32) | 0 + yc(d) + j = 1 + if (k) { + break f + } + } + j = 0 + break f + case 1: + break s + default: + break f + } + } + if ( + ((f >>> 0 <= l >>> 0) & + ((c | 0) >= (h | 0))) | + ((c | 0) > (h | 0)) + ) { + break f + } + o = I[(l + n) | 0] + c = d + l = (i + 2) | 0 + c = l >>> 0 < 2 ? (c + 1) | 0 : c + H[(b + 16) >> 2] = l + H[(b + 20) >> 2] = c + if (o >>> 0 >= 7) { + H[e >> 2] = o + Qd(1651, e) + break f + } + c = d + d = (i + 6) | 0 + c = d >>> 0 < 6 ? (c + 1) | 0 : c + if ( + ((d >>> 0 > f >>> 0) & + ((c | 0) >= (h | 0))) | + ((c | 0) > (h | 0)) + ) { + break f + } + f = (l + n) | 0 + f = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | + (I[(f + 3) | 0] << 24)) + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + if (k) { + m = 0 + while (1) { + c = ea[H[(H[a >> 2] + 20) >> 2]](a, m) | 0 + c = + H[ + (H[ + (H[ + ((ea[H[(H[a >> 2] + 28) >> 2]]( + a, + ) | + 0) + + 4) >> + 2 + ] + + 8) >> + 2 + ] + + (c << 2)) >> + 2 + ] + mb(c, f) + F[(c + 84) | 0] = 1 + H[(c + 72) >> 2] = H[(c + 68) >> 2] + m = (m + 1) | 0 + if ((k | 0) != (m | 0)) { + continue + } + break + } + } + a = Ac((e + 672) | 0, (e + 704) | 0) + x: { + y: { + switch (o | 0) { + case 1: + c = wb((e + 16) | 0, g) + b = zd(c, b, a, -1) + xb(c) + if (!b) { + break g + } + break x + case 2: + c = ub((e + 16) | 0, g) + b = yd(c, b, a, -1) + vb(c) + if (!b) { + break g + } + break x + case 3: + c = ub((e + 16) | 0, g) + b = xd(c, b, a, -1) + vb(c) + if (!b) { + break g + } + break x + case 4: + c = $a((e + 16) | 0, g) + b = wd(c, b, a, -1) + ab(c) + if (!b) { + break g + } + break x + case 5: + c = $a((e + 16) | 0, g) + b = vd(c, b, a, -1) + ab(c) + if (!b) { + break g + } + break x + case 6: + c = $a((e + 16) | 0, g) + b = ud(c, b, a, -1) + ab(c) + if (b) { + break x + } + break g + case 0: + break y + default: + break g + } + } + c = wb((e + 16) | 0, g) + b = Bd(c, b, a, -1) + xb(c) + if (!b) { + break g + } + } + yc(a) + j = 1 + break f + } + sa() + v() + } + sa() + v() + } + yc(a) + } + a = H[(e + 704) >> 2] + } + if (!a) { + break a + } + H[(e + 708) >> 2] = a + oa(a) + break a + } + j = 1 + if (H[(a + 52) >> 2] == H[(a + 48) >> 2]) { + break b + } + while (1) { + if (!td(1, (e + 16) | 0, b)) { + break c + } + c = H[(a + 48) >> 2] + d = H[(e + 16) >> 2] + H[(c + (m << 2)) >> 2] = (d >>> 1) ^ (0 - (d & 1)) + m = (m + 1) | 0 + if (m >>> 0 < ((H[(a + 52) >> 2] - c) >> 2) >>> 0) { + continue + } + break + } + break b + } + j = 0 + } + a = H[(e + 672) >> 2] + if (!a) { + break a + } + H[(e + 676) >> 2] = a + oa(a) + } + ca = (e + 720) | 0 + return j | 0 + } + function te(a, b, c, d, e) { + var f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + h = (ca - 32) | 0 + ca = h + H[(b + 32) >> 2] = d + H[(b + 40) >> 2] = c + H[(b + 4) >> 2] = e + nc(a, d, (h + 16) | 0) + a: { + if (H[a >> 2]) { + break a + } + if (F[(a + 15) | 0] < 0) { + oa(H[(a + 4) >> 2]) + } + d = I[(h + 23) | 0] + if ((ea[H[(H[b >> 2] + 8) >> 2]](b) | 0) != (d | 0)) { + b = pa(64) + F[(b + 50) | 0] = 0 + c = I[1314] | (I[1315] << 8) + F[(b + 48) | 0] = c + F[(b + 49) | 0] = c >>> 8 + c = + I[1310] | + (I[1311] << 8) | + ((I[1312] << 16) | (I[1313] << 24)) + d = + I[1306] | + (I[1307] << 8) | + ((I[1308] << 16) | (I[1309] << 24)) + F[(b + 40) | 0] = d + F[(b + 41) | 0] = d >>> 8 + F[(b + 42) | 0] = d >>> 16 + F[(b + 43) | 0] = d >>> 24 + F[(b + 44) | 0] = c + F[(b + 45) | 0] = c >>> 8 + F[(b + 46) | 0] = c >>> 16 + F[(b + 47) | 0] = c >>> 24 + c = + I[1302] | + (I[1303] << 8) | + ((I[1304] << 16) | (I[1305] << 24)) + d = + I[1298] | + (I[1299] << 8) | + ((I[1300] << 16) | (I[1301] << 24)) + F[(b + 32) | 0] = d + F[(b + 33) | 0] = d >>> 8 + F[(b + 34) | 0] = d >>> 16 + F[(b + 35) | 0] = d >>> 24 + F[(b + 36) | 0] = c + F[(b + 37) | 0] = c >>> 8 + F[(b + 38) | 0] = c >>> 16 + F[(b + 39) | 0] = c >>> 24 + c = + I[1294] | + (I[1295] << 8) | + ((I[1296] << 16) | (I[1297] << 24)) + d = + I[1290] | + (I[1291] << 8) | + ((I[1292] << 16) | (I[1293] << 24)) + F[(b + 24) | 0] = d + F[(b + 25) | 0] = d >>> 8 + F[(b + 26) | 0] = d >>> 16 + F[(b + 27) | 0] = d >>> 24 + F[(b + 28) | 0] = c + F[(b + 29) | 0] = c >>> 8 + F[(b + 30) | 0] = c >>> 16 + F[(b + 31) | 0] = c >>> 24 + c = + I[1286] | + (I[1287] << 8) | + ((I[1288] << 16) | (I[1289] << 24)) + d = + I[1282] | + (I[1283] << 8) | + ((I[1284] << 16) | (I[1285] << 24)) + F[(b + 16) | 0] = d + F[(b + 17) | 0] = d >>> 8 + F[(b + 18) | 0] = d >>> 16 + F[(b + 19) | 0] = d >>> 24 + F[(b + 20) | 0] = c + F[(b + 21) | 0] = c >>> 8 + F[(b + 22) | 0] = c >>> 16 + F[(b + 23) | 0] = c >>> 24 + c = + I[1278] | + (I[1279] << 8) | + ((I[1280] << 16) | (I[1281] << 24)) + d = + I[1274] | + (I[1275] << 8) | + ((I[1276] << 16) | (I[1277] << 24)) + F[(b + 8) | 0] = d + F[(b + 9) | 0] = d >>> 8 + F[(b + 10) | 0] = d >>> 16 + F[(b + 11) | 0] = d >>> 24 + F[(b + 12) | 0] = c + F[(b + 13) | 0] = c >>> 8 + F[(b + 14) | 0] = c >>> 16 + F[(b + 15) | 0] = c >>> 24 + c = + I[1270] | + (I[1271] << 8) | + ((I[1272] << 16) | (I[1273] << 24)) + d = + I[1266] | + (I[1267] << 8) | + ((I[1268] << 16) | (I[1269] << 24)) + F[b | 0] = d + F[(b + 1) | 0] = d >>> 8 + F[(b + 2) | 0] = d >>> 16 + F[(b + 3) | 0] = d >>> 24 + F[(b + 4) | 0] = c + F[(b + 5) | 0] = c >>> 8 + F[(b + 6) | 0] = c >>> 16 + F[(b + 7) | 0] = c >>> 24 + H[a >> 2] = -1 + za((a + 4) | 0, b, 50) + oa(b) + break a + } + c = I[(h + 21) | 0] + F[(b + 36) | 0] = c + e = I[(h + 22) | 0] + F[(b + 37) | 0] = e + if (((c - 3) & 255) >>> 0 <= 253) { + b = pa(32) + F[(b + 22) | 0] = 0 + c = + I[1427] | + (I[1428] << 8) | + ((I[1429] << 16) | (I[1430] << 24)) + d = + I[1423] | + (I[1424] << 8) | + ((I[1425] << 16) | (I[1426] << 24)) + F[(b + 14) | 0] = d + F[(b + 15) | 0] = d >>> 8 + F[(b + 16) | 0] = d >>> 16 + F[(b + 17) | 0] = d >>> 24 + F[(b + 18) | 0] = c + F[(b + 19) | 0] = c >>> 8 + F[(b + 20) | 0] = c >>> 16 + F[(b + 21) | 0] = c >>> 24 + c = + I[1421] | + (I[1422] << 8) | + ((I[1423] << 16) | (I[1424] << 24)) + d = + I[1417] | + (I[1418] << 8) | + ((I[1419] << 16) | (I[1420] << 24)) + F[(b + 8) | 0] = d + F[(b + 9) | 0] = d >>> 8 + F[(b + 10) | 0] = d >>> 16 + F[(b + 11) | 0] = d >>> 24 + F[(b + 12) | 0] = c + F[(b + 13) | 0] = c >>> 8 + F[(b + 14) | 0] = c >>> 16 + F[(b + 15) | 0] = c >>> 24 + c = + I[1413] | + (I[1414] << 8) | + ((I[1415] << 16) | (I[1416] << 24)) + d = + I[1409] | + (I[1410] << 8) | + ((I[1411] << 16) | (I[1412] << 24)) + F[b | 0] = d + F[(b + 1) | 0] = d >>> 8 + F[(b + 2) | 0] = d >>> 16 + F[(b + 3) | 0] = d >>> 24 + F[(b + 4) | 0] = c + F[(b + 5) | 0] = c >>> 8 + F[(b + 6) | 0] = c >>> 16 + F[(b + 7) | 0] = c >>> 24 + H[a >> 2] = -5 + za((a + 4) | 0, b, 22) + oa(b) + break a + } + if (!(((c | 0) != 2) | (e >>> 0 <= (d ? 2 : 3) >>> 0))) { + b = pa(32) + F[(b + 22) | 0] = 0 + c = + I[1404] | + (I[1405] << 8) | + ((I[1406] << 16) | (I[1407] << 24)) + d = + I[1400] | + (I[1401] << 8) | + ((I[1402] << 16) | (I[1403] << 24)) + F[(b + 14) | 0] = d + F[(b + 15) | 0] = d >>> 8 + F[(b + 16) | 0] = d >>> 16 + F[(b + 17) | 0] = d >>> 24 + F[(b + 18) | 0] = c + F[(b + 19) | 0] = c >>> 8 + F[(b + 20) | 0] = c >>> 16 + F[(b + 21) | 0] = c >>> 24 + c = + I[1398] | + (I[1399] << 8) | + ((I[1400] << 16) | (I[1401] << 24)) + d = + I[1394] | + (I[1395] << 8) | + ((I[1396] << 16) | (I[1397] << 24)) + F[(b + 8) | 0] = d + F[(b + 9) | 0] = d >>> 8 + F[(b + 10) | 0] = d >>> 16 + F[(b + 11) | 0] = d >>> 24 + F[(b + 12) | 0] = c + F[(b + 13) | 0] = c >>> 8 + F[(b + 14) | 0] = c >>> 16 + F[(b + 15) | 0] = c >>> 24 + c = + I[1390] | + (I[1391] << 8) | + ((I[1392] << 16) | (I[1393] << 24)) + d = + I[1386] | + (I[1387] << 8) | + ((I[1388] << 16) | (I[1389] << 24)) + F[b | 0] = d + F[(b + 1) | 0] = d >>> 8 + F[(b + 2) | 0] = d >>> 16 + F[(b + 3) | 0] = d >>> 24 + F[(b + 4) | 0] = c + F[(b + 5) | 0] = c >>> 8 + F[(b + 6) | 0] = c >>> 16 + F[(b + 7) | 0] = c >>> 24 + H[a >> 2] = -5 + za((a + 4) | 0, b, 22) + oa(b) + break a + } + c = e | (c << 8) + G[(H[(b + 32) >> 2] + 38) >> 1] = c + b: { + if (((c & 65535) >>> 0 < 259) | (G[(h + 26) >> 1] >= 0)) { + break b + } + i = (ca - 16) | 0 + ca = i + e = pa(36) + c = e + H[(c + 4) >> 2] = 0 + H[(c + 8) >> 2] = 0 + H[(c + 24) >> 2] = 0 + H[(c + 28) >> 2] = 0 + c = (c + 16) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + H[e >> 2] = e + 4 + H[(e + 32) >> 2] = 0 + H[(e + 12) >> 2] = c + H[i >> 2] = 0 + d = H[(b + 32) >> 2] + j = (ca - 16) | 0 + ca = j + c = 0 + c: { + if (!e) { + break c + } + H[i >> 2] = d + H[(j + 12) >> 2] = 0 + c = 0 + if (!Bb(1, (j + 12) | 0, d)) { + break c + } + m = H[(j + 12) >> 2] + if (m) { + while (1) { + d: { + if (Bb(1, (j + 8) | 0, H[i >> 2])) { + c = pa(28) + H[(c + 4) >> 2] = 0 + H[(c + 8) >> 2] = 0 + d = (c + 16) | 0 + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + H[c >> 2] = c + 4 + H[(c + 12) >> 2] = d + H[(c + 24) >> 2] = H[(j + 8) >> 2] + if (ce(i, c)) { + break d + } + Ra((c + 12) | 0, H[(c + 16) >> 2]) + Qa(c, H[(c + 4) >> 2]) + oa(c) + } + c = 0 + break c + } + f = (ca - 16) | 0 + ca = f + H[(f + 8) >> 2] = c + e: { + if (!c) { + break e + } + d = H[(e + 28) >> 2] + f: { + if (d >>> 0 < K[(e + 32) >> 2]) { + H[(f + 8) >> 2] = 0 + H[d >> 2] = c + H[(e + 28) >> 2] = d + 4 + break f + } + d = 0 + g: { + h: { + i: { + g = H[(e + 24) >> 2] + l = (H[(e + 28) >> 2] - g) >> 2 + c = (l + 1) | 0 + if (c >>> 0 < 1073741824) { + g = (H[(e + 32) >> 2] - g) | 0 + k = (g >>> 1) | 0 + g = + g >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < k >>> 0 + ? k + : c + if (g) { + if (g >>> 0 >= 1073741824) { + break i + } + d = pa(g << 2) + } + k = H[(f + 8) >> 2] + H[(f + 8) >> 2] = 0 + c = ((l << 2) + d) | 0 + H[c >> 2] = k + g = ((g << 2) + d) | 0 + l = (c + 4) | 0 + d = H[(e + 28) >> 2] + k = H[(e + 24) >> 2] + if ((d | 0) == (k | 0)) { + break h + } + while (1) { + d = (d - 4) | 0 + o = H[d >> 2] + H[d >> 2] = 0 + c = (c - 4) | 0 + H[c >> 2] = o + if ((d | 0) != (k | 0)) { + continue + } + break + } + H[(e + 32) >> 2] = g + g = H[(e + 28) >> 2] + H[(e + 28) >> 2] = l + d = H[(e + 24) >> 2] + H[(e + 24) >> 2] = c + if ((d | 0) == (g | 0)) { + break g + } + while (1) { + g = (g - 4) | 0 + c = H[g >> 2] + H[g >> 2] = 0 + if (c) { + Ra((c + 12) | 0, H[(c + 16) >> 2]) + Qa(c, H[(c + 4) >> 2]) + oa(c) + } + if ((d | 0) != (g | 0)) { + continue + } + break + } + break g + } + sa() + v() + } + wa() + v() + } + H[(e + 32) >> 2] = g + H[(e + 28) >> 2] = l + H[(e + 24) >> 2] = c + } + if (d) { + oa(d) + } + } + c = H[(f + 8) >> 2] + H[(f + 8) >> 2] = 0 + if (!c) { + break e + } + Ra((c + 12) | 0, H[(c + 16) >> 2]) + Qa(c, H[(c + 4) >> 2]) + oa(c) + } + ca = (f + 16) | 0 + n = (n + 1) | 0 + if ((m | 0) != (n | 0)) { + continue + } + break + } + } + c = ce(i, e) + } + ca = (j + 16) | 0 + j: { + if (c) { + d = H[(b + 4) >> 2] + c = H[(d + 4) >> 2] + H[(d + 4) >> 2] = e + if (c) { + Uc(c) + } + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[(a + 12) >> 2] = 0 + break j + } + c = pa(32) + F[(c + 26) | 0] = 0 + d = I[1579] | (I[1580] << 8) + F[(c + 24) | 0] = d + F[(c + 25) | 0] = d >>> 8 + d = + I[1575] | + (I[1576] << 8) | + ((I[1577] << 16) | (I[1578] << 24)) + f = + I[1571] | + (I[1572] << 8) | + ((I[1573] << 16) | (I[1574] << 24)) + F[(c + 16) | 0] = f + F[(c + 17) | 0] = f >>> 8 + F[(c + 18) | 0] = f >>> 16 + F[(c + 19) | 0] = f >>> 24 + F[(c + 20) | 0] = d + F[(c + 21) | 0] = d >>> 8 + F[(c + 22) | 0] = d >>> 16 + F[(c + 23) | 0] = d >>> 24 + d = + I[1567] | + (I[1568] << 8) | + ((I[1569] << 16) | (I[1570] << 24)) + f = + I[1563] | + (I[1564] << 8) | + ((I[1565] << 16) | (I[1566] << 24)) + F[(c + 8) | 0] = f + F[(c + 9) | 0] = f >>> 8 + F[(c + 10) | 0] = f >>> 16 + F[(c + 11) | 0] = f >>> 24 + F[(c + 12) | 0] = d + F[(c + 13) | 0] = d >>> 8 + F[(c + 14) | 0] = d >>> 16 + F[(c + 15) | 0] = d >>> 24 + d = + I[1559] | + (I[1560] << 8) | + ((I[1561] << 16) | (I[1562] << 24)) + f = + I[1555] | + (I[1556] << 8) | + ((I[1557] << 16) | (I[1558] << 24)) + F[c | 0] = f + F[(c + 1) | 0] = f >>> 8 + F[(c + 2) | 0] = f >>> 16 + F[(c + 3) | 0] = f >>> 24 + F[(c + 4) | 0] = d + F[(c + 5) | 0] = d >>> 8 + F[(c + 6) | 0] = d >>> 16 + F[(c + 7) | 0] = d >>> 24 + H[a >> 2] = -1 + za((a + 4) | 0, c, 26) + oa(c) + H[(i + 8) >> 2] = 0 + Uc(e) + } + ca = (i + 16) | 0 + if (H[a >> 2]) { + break a + } + if (F[(a + 15) | 0] >= 0) { + break b + } + oa(H[(a + 4) >> 2]) + } + if (!(ea[H[(H[b >> 2] + 12) >> 2]](b) | 0)) { + b = pa(48) + F[(b + 33) | 0] = 0 + F[(b + 32) | 0] = I[1384] + c = + I[1380] | + (I[1381] << 8) | + ((I[1382] << 16) | (I[1383] << 24)) + d = + I[1376] | + (I[1377] << 8) | + ((I[1378] << 16) | (I[1379] << 24)) + F[(b + 24) | 0] = d + F[(b + 25) | 0] = d >>> 8 + F[(b + 26) | 0] = d >>> 16 + F[(b + 27) | 0] = d >>> 24 + F[(b + 28) | 0] = c + F[(b + 29) | 0] = c >>> 8 + F[(b + 30) | 0] = c >>> 16 + F[(b + 31) | 0] = c >>> 24 + c = + I[1372] | + (I[1373] << 8) | + ((I[1374] << 16) | (I[1375] << 24)) + d = + I[1368] | + (I[1369] << 8) | + ((I[1370] << 16) | (I[1371] << 24)) + F[(b + 16) | 0] = d + F[(b + 17) | 0] = d >>> 8 + F[(b + 18) | 0] = d >>> 16 + F[(b + 19) | 0] = d >>> 24 + F[(b + 20) | 0] = c + F[(b + 21) | 0] = c >>> 8 + F[(b + 22) | 0] = c >>> 16 + F[(b + 23) | 0] = c >>> 24 + c = + I[1364] | + (I[1365] << 8) | + ((I[1366] << 16) | (I[1367] << 24)) + d = + I[1360] | + (I[1361] << 8) | + ((I[1362] << 16) | (I[1363] << 24)) + F[(b + 8) | 0] = d + F[(b + 9) | 0] = d >>> 8 + F[(b + 10) | 0] = d >>> 16 + F[(b + 11) | 0] = d >>> 24 + F[(b + 12) | 0] = c + F[(b + 13) | 0] = c >>> 8 + F[(b + 14) | 0] = c >>> 16 + F[(b + 15) | 0] = c >>> 24 + c = + I[1356] | + (I[1357] << 8) | + ((I[1358] << 16) | (I[1359] << 24)) + d = + I[1352] | + (I[1353] << 8) | + ((I[1354] << 16) | (I[1355] << 24)) + F[b | 0] = d + F[(b + 1) | 0] = d >>> 8 + F[(b + 2) | 0] = d >>> 16 + F[(b + 3) | 0] = d >>> 24 + F[(b + 4) | 0] = c + F[(b + 5) | 0] = c >>> 8 + F[(b + 6) | 0] = c >>> 16 + F[(b + 7) | 0] = c >>> 24 + H[a >> 2] = -1 + za((a + 4) | 0, b, 33) + oa(b) + break a + } + if (!(ea[H[(H[b >> 2] + 20) >> 2]](b) | 0)) { + b = mc(h, 1582) + H[a >> 2] = -1 + a = (a + 4) | 0 + if (F[(b + 11) | 0] >= 0) { + c = H[(b + 4) >> 2] + H[a >> 2] = H[b >> 2] + H[(a + 4) >> 2] = c + H[(a + 8) >> 2] = H[(b + 8) >> 2] + break a + } + za(a, H[b >> 2], H[(b + 4) >> 2]) + if (F[(b + 11) | 0] >= 0) { + break a + } + oa(H[b >> 2]) + break a + } + if (!(ea[H[(H[b >> 2] + 24) >> 2]](b) | 0)) { + b = mc(h, 1317) + H[a >> 2] = -1 + a = (a + 4) | 0 + if (F[(b + 11) | 0] >= 0) { + c = H[(b + 4) >> 2] + H[a >> 2] = H[b >> 2] + H[(a + 4) >> 2] = c + H[(a + 8) >> 2] = H[(b + 8) >> 2] + break a + } + za(a, H[b >> 2], H[(b + 4) >> 2]) + if (F[(b + 11) | 0] >= 0) { + break a + } + oa(H[b >> 2]) + break a + } + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[(a + 12) >> 2] = 0 + } + ca = (h + 32) | 0 + } + function pg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + m = (ca - 16) | 0 + ca = m + H[(m + 12) >> 2] = b + b = pa(32) + H[m >> 2] = b + H[(m + 4) >> 2] = 24 + H[(m + 8) >> 2] = -2147483616 + c = + I[1206] | (I[1207] << 8) | ((I[1208] << 16) | (I[1209] << 24)) + d = + I[1202] | (I[1203] << 8) | ((I[1204] << 16) | (I[1205] << 24)) + F[(b + 16) | 0] = d + F[(b + 17) | 0] = d >>> 8 + F[(b + 18) | 0] = d >>> 16 + F[(b + 19) | 0] = d >>> 24 + F[(b + 20) | 0] = c + F[(b + 21) | 0] = c >>> 8 + F[(b + 22) | 0] = c >>> 16 + F[(b + 23) | 0] = c >>> 24 + c = + I[1198] | (I[1199] << 8) | ((I[1200] << 16) | (I[1201] << 24)) + d = + I[1194] | (I[1195] << 8) | ((I[1196] << 16) | (I[1197] << 24)) + F[(b + 8) | 0] = d + F[(b + 9) | 0] = d >>> 8 + F[(b + 10) | 0] = d >>> 16 + F[(b + 11) | 0] = d >>> 24 + F[(b + 12) | 0] = c + F[(b + 13) | 0] = c >>> 8 + F[(b + 14) | 0] = c >>> 16 + F[(b + 15) | 0] = c >>> 24 + c = + I[1190] | (I[1191] << 8) | ((I[1192] << 16) | (I[1193] << 24)) + d = + I[1186] | (I[1187] << 8) | ((I[1188] << 16) | (I[1189] << 24)) + F[b | 0] = d + F[(b + 1) | 0] = d >>> 8 + F[(b + 2) | 0] = d >>> 16 + F[(b + 3) | 0] = d >>> 24 + F[(b + 4) | 0] = c + F[(b + 5) | 0] = c >>> 8 + F[(b + 6) | 0] = c >>> 16 + F[(b + 7) | 0] = c >>> 24 + F[(b + 24) | 0] = 0 + l = (ca - 48) | 0 + ca = l + f = H[(m + 12) >> 2] + d = a + a = (a + 16) | 0 + b = H[a >> 2] + a: { + b: { + if (!b) { + break b + } + c = a + while (1) { + e = (f | 0) > H[(b + 16) >> 2] + c = e ? c : b + b = H[(e ? (b + 4) | 0 : b) >> 2] + if (b) { + continue + } + break + } + if ((a | 0) == (c | 0)) { + break b + } + if ((f | 0) >= H[(c + 16) >> 2]) { + break a + } + } + H[(l + 28) >> 2] = 0 + H[(l + 32) >> 2] = 0 + y = (l + 24) | 0 + H[(l + 24) >> 2] = y | 4 + a = (l + 16) | 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(l + 8) >> 2] = f + H[(l + 12) >> 2] = a + t = (l + 8) | 0 + a = t + x = (ca - 16) | 0 + ca = x + u = (d + 12) | 0 + c = H[(u + 4) >> 2] + c: { + d: { + if (!c) { + o = (u + 4) | 0 + d = o + break d + } + a = H[a >> 2] + while (1) { + d = c + b = H[(c + 16) >> 2] + if ((b | 0) > (a | 0)) { + o = d + c = H[d >> 2] + if (c) { + continue + } + break d + } + if ((a | 0) <= (b | 0)) { + g = d + a = 0 + break c + } + c = H[(d + 4) >> 2] + if (c) { + continue + } + break + } + o = (d + 4) | 0 + } + g = pa(32) + b = H[t >> 2] + q = (g + 24) | 0 + a = q + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(g + 16) >> 2] = b + r = (g + 20) | 0 + H[r >> 2] = a + c = H[(t + 4) >> 2] + z = (t + 8) | 0 + if ((c | 0) != (z | 0)) { + while (1) { + p = (ca - 16) | 0 + ca = p + a = (p + 8) | 0 + k = (c + 16) | 0 + e: { + f: { + g: { + h: { + i: { + j: { + k: { + f = q + e = (r + 4) | 0 + l: { + if ((f | 0) == (e | 0)) { + break l + } + b = I[(f + 27) | 0] + h = (b << 24) >> 24 < 0 + i = I[(k + 11) | 0] + n = (i << 24) >> 24 + j = (n | 0) < 0 + i = j ? H[(k + 4) >> 2] : i + b = h ? H[(f + 20) >> 2] : b + s = i >>> 0 > b >>> 0 + w = s ? b : i + if (w) { + j = j ? H[k >> 2] : k + h = h + ? H[(f + 16) >> 2] + : (f + 16) | 0 + A = Fa(j, h, w) + if (!A) { + if (b >>> 0 > i >>> 0) { + break l + } + break k + } + if ((A | 0) >= 0) { + break k + } + break l + } + if (b >>> 0 <= i >>> 0) { + break j + } + } + h = H[f >> 2] + m: { + a = f + n: { + if ((a | 0) == H[r >> 2]) { + break n + } + o: { + if (!h) { + b = f + while (1) { + a = H[(b + 8) >> 2] + i = H[a >> 2] == (b | 0) + b = a + if (i) { + continue + } + break + } + break o + } + b = h + while (1) { + a = b + b = H[(b + 4) >> 2] + if (b) { + continue + } + break + } + } + i = I[(k + 11) | 0] + s = (i << 24) >> 24 + b = (s | 0) < 0 + j = I[(a + 27) | 0] + n = (j << 24) >> 24 < 0 + p: { + i = b ? H[(k + 4) >> 2] : i + j = n ? H[(a + 20) >> 2] : j + w = i >>> 0 < j >>> 0 ? i : j + if (w) { + b = Fa( + n + ? H[(a + 16) >> 2] + : (a + 16) | 0, + b ? H[k >> 2] : k, + w, + ) + if (b) { + break p + } + } + if (i >>> 0 > j >>> 0) { + break n + } + break m + } + if ((b | 0) >= 0) { + break m + } + } + if (!h) { + H[(p + 12) >> 2] = f + a = f + break e + } + H[(p + 12) >> 2] = a + a = (a + 4) | 0 + break e + } + b = H[e >> 2] + if (!b) { + H[(p + 12) >> 2] = e + a = e + break e + } + h = (s | 0) < 0 ? H[k >> 2] : k + f = e + while (1) { + a = b + b = I[(b + 27) | 0] + e = (b << 24) >> 24 < 0 + b = e ? H[(a + 20) >> 2] : b + k = b >>> 0 < i >>> 0 + q: { + r: { + s: { + t: { + n = k ? b : i + u: { + if (n) { + e = e + ? H[(a + 16) >> 2] + : (a + 16) | 0 + j = Fa(h, e, n) + if (!j) { + if (b >>> 0 > i >>> 0) { + break u + } + break t + } + if ((j | 0) >= 0) { + break t + } + break u + } + if (b >>> 0 <= i >>> 0) { + break s + } + } + f = a + b = H[a >> 2] + if (b) { + continue + } + break g + } + b = Fa(e, h, n) + if (b) { + break r + } + } + if (k) { + break q + } + break g + } + if ((b | 0) >= 0) { + break g + } + } + f = (a + 4) | 0 + b = H[(a + 4) >> 2] + if (b) { + continue + } + break + } + break g + } + b = Fa(h, j, w) + if (b) { + break i + } + } + if (s) { + break h + } + break f + } + if ((b | 0) >= 0) { + break f + } + } + h = H[(f + 4) >> 2] + v: { + if (!h) { + b = f + while (1) { + a = H[(b + 8) >> 2] + j = H[a >> 2] != (b | 0) + b = a + if (j) { + continue + } + break + } + break v + } + b = h + while (1) { + a = b + b = H[b >> 2] + if (b) { + continue + } + break + } + } + w: { + x: { + if ((a | 0) == (e | 0)) { + break x + } + j = I[(a + 27) | 0] + b = (j << 24) >> 24 < 0 + y: { + j = b ? H[(a + 20) >> 2] : j + s = i >>> 0 > j >>> 0 ? j : i + if (s) { + b = Fa( + (n | 0) < 0 ? H[k >> 2] : k, + b ? H[(a + 16) >> 2] : (a + 16) | 0, + s, + ) + if (b) { + break y + } + } + if (i >>> 0 < j >>> 0) { + break x + } + break w + } + if ((b | 0) >= 0) { + break w + } + } + if (!h) { + H[(p + 12) >> 2] = f + a = (f + 4) | 0 + break e + } + H[(p + 12) >> 2] = a + break e + } + b = H[e >> 2] + if (!b) { + H[(p + 12) >> 2] = e + a = e + break e + } + h = (n | 0) < 0 ? H[k >> 2] : k + f = e + while (1) { + a = b + b = I[(b + 27) | 0] + e = (b << 24) >> 24 < 0 + b = e ? H[(a + 20) >> 2] : b + k = b >>> 0 < i >>> 0 + z: { + A: { + B: { + C: { + n = k ? b : i + D: { + if (n) { + e = e + ? H[(a + 16) >> 2] + : (a + 16) | 0 + j = Fa(h, e, n) + if (!j) { + if (b >>> 0 > i >>> 0) { + break D + } + break C + } + if ((j | 0) >= 0) { + break C + } + break D + } + if (b >>> 0 <= i >>> 0) { + break B + } + } + f = a + b = H[a >> 2] + if (b) { + continue + } + break g + } + b = Fa(e, h, n) + if (b) { + break A + } + } + if (k) { + break z + } + break g + } + if ((b | 0) >= 0) { + break g + } + } + f = (a + 4) | 0 + b = H[(a + 4) >> 2] + if (b) { + continue + } + break + } + } + H[(p + 12) >> 2] = a + a = f + break e + } + H[(p + 12) >> 2] = f + H[a >> 2] = f + } + f = a + a = H[a >> 2] + if (a) { + b = 0 + } else { + a = pa(40) + b = (a + 16) | 0 + E: { + if (F[(c + 27) | 0] >= 0) { + e = H[(c + 20) >> 2] + H[b >> 2] = H[(c + 16) >> 2] + H[(b + 4) >> 2] = e + H[(b + 8) >> 2] = H[(c + 24) >> 2] + break E + } + za(b, H[(c + 16) >> 2], H[(c + 20) >> 2]) + } + b = (a + 28) | 0 + F: { + if (F[(c + 39) | 0] >= 0) { + e = H[(c + 32) >> 2] + H[b >> 2] = H[(c + 28) >> 2] + H[(b + 4) >> 2] = e + H[(b + 8) >> 2] = H[(c + 36) >> 2] + break F + } + za(b, H[(c + 28) >> 2], H[(c + 32) >> 2]) + } + H[(a + 8) >> 2] = H[(p + 12) >> 2] + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[f >> 2] = a + b = a + e = H[H[r >> 2] >> 2] + if (e) { + H[r >> 2] = e + b = H[f >> 2] + } + Sb(H[(r + 4) >> 2], b) + H[(r + 8) >> 2] = H[(r + 8) >> 2] + 1 + b = 1 + } + F[(x + 12) | 0] = b + H[(x + 8) >> 2] = a + ca = (p + 16) | 0 + b = H[(c + 4) >> 2] + G: { + if (b) { + while (1) { + c = b + b = H[b >> 2] + if (b) { + continue + } + break G + } + } + while (1) { + a = c + c = H[(c + 8) >> 2] + if ((a | 0) != H[c >> 2]) { + continue + } + break + } + } + if ((c | 0) != (z | 0)) { + continue + } + break + } + } + H[(g + 8) >> 2] = d + H[g >> 2] = 0 + H[(g + 4) >> 2] = 0 + H[o >> 2] = g + c = g + a = H[H[u >> 2] >> 2] + if (a) { + H[u >> 2] = a + c = H[o >> 2] + } + Sb(H[(u + 4) >> 2], c) + H[(u + 8) >> 2] = H[(u + 8) >> 2] + 1 + a = 1 + } + F[(l + 44) | 0] = a + H[(l + 40) >> 2] = g + ca = (x + 16) | 0 + c = H[(l + 40) >> 2] + Kb(t | 4, H[(l + 16) >> 2]) + Kb(y, H[(l + 28) >> 2]) + } + f = (ca - 48) | 0 + ca = f + d = (f + 8) | 0 + g = (ca - 32) | 0 + ca = g + o = (g + 32) | 0 + b = o + a = (g + 21) | 0 + H: { + if ((b | 0) == (a | 0)) { + break H + } + } + e = (b - a) | 0 + I: { + if ((e | 0) <= 9) { + h = 61 + if ((e | 0) < ((K[3660] <= 1) | 0)) { + break I + } + } + F[a | 0] = 49 + b = (a + 1) | 0 + h = 0 + } + H[(g + 12) >> 2] = h + H[(g + 8) >> 2] = b + h = (ca - 16) | 0 + ca = h + e = (ca - 16) | 0 + ca = e + J: { + q = H[(g + 8) >> 2] + g = (q - a) | 0 + if (g >>> 0 <= 2147483631) { + K: { + if (g >>> 0 < 11) { + F[(d + 11) | 0] = g | (I[(d + 11) | 0] & 128) + F[(d + 11) | 0] = I[(d + 11) | 0] & 127 + b = d + break K + } + t = (e + 8) | 0 + if (g >>> 0 >= 11) { + k = (g + 16) & -16 + b = (k - 1) | 0 + b = (b | 0) == 11 ? k : b + } else { + b = 10 + } + Zb(t, (b + 1) | 0) + b = H[(e + 8) >> 2] + H[d >> 2] = b + H[(d + 8) >> 2] = + (H[(d + 8) >> 2] & -2147483648) | + (H[(e + 12) >> 2] & 2147483647) + H[(d + 8) >> 2] = H[(d + 8) >> 2] | -2147483648 + H[(d + 4) >> 2] = g + } + while (1) { + if ((a | 0) != (q | 0)) { + F[b | 0] = I[a | 0] + b = (b + 1) | 0 + a = (a + 1) | 0 + continue + } + break + } + F[(e + 7) | 0] = 0 + F[b | 0] = I[(e + 7) | 0] + ca = (e + 16) | 0 + break J + } + Na() + v() + } + ca = (h + 16) | 0 + ca = o + H[(f + 32) >> 2] = m + L: { + M: { + a = (c + 20) | 0 + d = H[(a + 4) >> 2] + N: { + if (!d) { + g = (a + 4) | 0 + c = g + break N + } + b = I[(m + 11) | 0] + c = (b << 24) >> 24 < 0 + e = c ? H[m >> 2] : m + b = c ? H[(m + 4) >> 2] : b + while (1) { + c = d + d = I[(c + 27) | 0] + g = (d << 24) >> 24 < 0 + d = g ? H[(c + 20) >> 2] : d + o = d >>> 0 < b >>> 0 + O: { + P: { + Q: { + R: { + h = o ? d : b + S: { + if (h) { + g = g ? H[(c + 16) >> 2] : (c + 16) | 0 + q = Fa(e, g, h) + if (!q) { + if (b >>> 0 < d >>> 0) { + break S + } + break R + } + if ((q | 0) >= 0) { + break R + } + break S + } + if (b >>> 0 >= d >>> 0) { + break Q + } + } + g = c + d = H[c >> 2] + if (d) { + continue + } + break N + } + d = Fa(g, e, h) + if (d) { + break P + } + } + if (o) { + break O + } + break M + } + if ((d | 0) >= 0) { + break M + } + } + d = H[(c + 4) >> 2] + if (d) { + continue + } + break + } + g = (c + 4) | 0 + } + d = pa(40) + e = (d + 16) | 0 + b = H[(f + 32) >> 2] + T: { + if (F[(b + 11) | 0] >= 0) { + o = H[(b + 4) >> 2] + H[e >> 2] = H[b >> 2] + H[(e + 4) >> 2] = o + H[(e + 8) >> 2] = H[(b + 8) >> 2] + break T + } + za(e, H[b >> 2], H[(b + 4) >> 2]) + } + H[(d + 8) >> 2] = c + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + H[(d + 36) >> 2] = 0 + H[(d + 28) >> 2] = 0 + H[(d + 32) >> 2] = 0 + H[g >> 2] = d + c = d + b = H[H[a >> 2] >> 2] + if (b) { + H[a >> 2] = b + c = H[g >> 2] + } + Sb(H[(a + 4) >> 2], c) + H[(a + 8) >> 2] = H[(a + 8) >> 2] + 1 + a = 1 + break L + } + d = c + a = 0 + } + F[(f + 44) | 0] = a + H[(f + 40) >> 2] = d + a = H[(f + 40) >> 2] + if (F[(a + 39) | 0] < 0) { + oa(H[(a + 28) >> 2]) + } + b = H[(f + 12) >> 2] + H[(a + 28) >> 2] = H[(f + 8) >> 2] + H[(a + 32) >> 2] = b + H[(a + 36) >> 2] = H[(f + 16) >> 2] + ca = (f + 48) | 0 + ca = (l + 48) | 0 + if (F[(m + 11) | 0] < 0) { + oa(H[m >> 2]) + } + ca = (m + 16) | 0 + } + function Bd(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0 + j = H[(b + 8) >> 2] + e = H[(b + 12) >> 2] + g = H[(b + 20) >> 2] + h = H[(b + 16) >> 2] + k = (h + 4) | 0 + g = k >>> 0 < 4 ? (g + 1) | 0 : g + a: { + if ( + ((j >>> 0 < k >>> 0) & ((e | 0) <= (g | 0))) | + ((e | 0) < (g | 0)) + ) { + break a + } + h = (h + H[b >> 2]) | 0 + H[a >> 2] = + I[h | 0] | + (I[(h + 1) | 0] << 8) | + ((I[(h + 2) | 0] << 16) | (I[(h + 3) | 0] << 24)) + h = H[(b + 20) >> 2] + e = h + j = H[(b + 16) >> 2] + g = (j + 4) | 0 + h = g >>> 0 < 4 ? (e + 1) | 0 : e + H[(b + 16) >> 2] = g + H[(b + 20) >> 2] = h + if (K[a >> 2] > 32) { + break a + } + l = H[(b + 8) >> 2] + k = H[(b + 12) >> 2] + h = e + e = (j + 8) | 0 + h = e >>> 0 < 8 ? (h + 1) | 0 : h + if ( + ((e >>> 0 > l >>> 0) & ((h | 0) >= (k | 0))) | + ((h | 0) > (k | 0)) + ) { + break a + } + h = (H[b >> 2] + g) | 0 + g = + I[h | 0] | + (I[(h + 1) | 0] << 8) | + ((I[(h + 2) | 0] << 16) | (I[(h + 3) | 0] << 24)) + H[(a + 4) >> 2] = g + h = H[(b + 20) >> 2] + e = (H[(b + 16) >> 2] + 4) | 0 + h = e >>> 0 < 4 ? (h + 1) | 0 : h + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = h + if (!g) { + return 1 + } + if (d >>> 0 < g >>> 0) { + break a + } + H[(a + 8) >> 2] = 0 + if (!ua((a + 16) | 0, b)) { + break a + } + if (!ua((a + 36) | 0, b)) { + break a + } + if (!ua((a + 56) | 0, b)) { + break a + } + if (!ua((a + 76) | 0, b)) { + break a + } + s = H[(a + 4) >> 2] + h = c + b = 0 + g = 0 + e = (ca - 32) | 0 + ca = e + d = a + a = H[(a + 12) >> 2] + H[(e + 16) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + b: { + c: { + if (a) { + if (a >>> 0 >= 1073741824) { + break c + } + c = a << 2 + b = pa(c) + H[(e + 8) >> 2] = b + g = (b + c) | 0 + H[(e + 16) >> 2] = g + ra(b, 0, c) + H[(e + 12) >> 2] = g + } + c = H[(d + 120) >> 2] + i = H[c >> 2] + if (i) { + H[(c + 4) >> 2] = i + oa(i) + g = H[(e + 12) >> 2] + b = H[(e + 8) >> 2] + a = H[(d + 12) >> 2] + } + H[(c + 4) >> 2] = g + H[c >> 2] = b + H[(c + 8) >> 2] = H[(e + 16) >> 2] + b = 0 + H[(e + 16) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + d: { + if (a) { + if (a >>> 0 >= 1073741824) { + break d + } + a = a << 2 + f = pa(a) + H[(e + 8) >> 2] = f + b = (a + f) | 0 + H[(e + 16) >> 2] = b + ra(f, 0, a) + H[(e + 12) >> 2] = b + } + a = H[(d + 132) >> 2] + c = H[a >> 2] + if (c) { + H[(a + 4) >> 2] = c + oa(c) + f = H[(e + 8) >> 2] + b = H[(e + 12) >> 2] + } + H[(a + 4) >> 2] = b + H[a >> 2] = f + H[(a + 8) >> 2] = H[(e + 16) >> 2] + H[(e + 24) >> 2] = 0 + H[(e + 28) >> 2] = 0 + H[(e + 16) >> 2] = 0 + H[(e + 20) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + xa((e + 8) | 0) + a = (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | 0 + b = ((a >>> 0) / 341) | 0 + a = + (H[(H[(e + 12) >> 2] + (b << 2)) >> 2] + + N((a - N(b, 341)) | 0, 12)) | + 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = s + c = 1 + a = (H[(e + 28) >> 2] + 1) | 0 + H[(e + 28) >> 2] = a + e: { + if (!a) { + break e + } + while (1) { + b = H[(e + 12) >> 2] + f = H[(e + 24) >> 2] + k = (a - 1) | 0 + c = (f + k) | 0 + i = ((c >>> 0) / 341) | 0 + c = + (H[(b + (i << 2)) >> 2] + + N((c - N(i, 341)) | 0, 12)) | + 0 + g = H[(c + 8) >> 2] + i = H[(c + 4) >> 2] + j = H[c >> 2] + H[(e + 28) >> 2] = k + c = H[(e + 16) >> 2] + if ( + (((((b | 0) != (c | 0) + ? (N((c - b) >> 2, 341) - 1) | 0 + : 0) - + ((a + f) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(c - 4) >> 2]) + H[(e + 16) >> 2] = H[(e + 16) >> 2] - 4 + } + c = 0 + if (j >>> 0 > s >>> 0) { + break e + } + b = H[(d + 12) >> 2] + a = ((b - 1) | 0) != (i | 0) ? (i + 1) | 0 : 0 + if (a >>> 0 >= b >>> 0) { + break e + } + f = N(g, 12) + o = (f + H[(d + 132) >> 2]) | 0 + k = (f + H[(d + 120) >> 2]) | 0 + i = H[d >> 2] + l = a << 2 + m = H[(l + H[o >> 2]) >> 2] + f: { + g: { + if ((i | 0) == (m | 0)) { + if (!j) { + break g + } + o = 0 + b = H[(h + 20) >> 2] + g = H[(h + 16) >> 2] + if ((b | 0) == (g | 0)) { + a = H[(d + 8) >> 2] + H[(h + 28) >> 2] = j + H[(h + 28) >> 2] + H[(d + 8) >> 2] = a + j + break g + } + while (1) { + c = (b | 0) == (g | 0) + a = b + i = 0 + b = g + h: { + if (c) { + break h + } + while (1) { + f = H[(h + 28) >> 2] + b = a + c = (N(i, 20) + g) | 0 + l = H[c >> 2] + if (!I[(l + 84) | 0]) { + f = + H[ + (H[(l + 68) >> 2] + (f << 2)) >> 2 + ] + } + if (K[(l + 80) >> 2] <= f >>> 0) { + break h + } + m = + (H[k >> 2] + (H[(c + 4) >> 2] << 2)) | + 0 + g = H[(c + 12) >> 2] + b = m + i: { + if (g >>> 0 > 3) { + break i + } + a = 0 + b = H[(h + 12) >> 2] + if (!H[(c + 16) >> 2]) { + break i + } + while (1) { + b = qa(b, (m + (a << 2)) | 0, g) + g = H[(c + 12) >> 2] + b = (b + g) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(c + 16) >> 2]) { + continue + } + break + } + b = H[(h + 12) >> 2] + } + a = H[(l + 40) >> 2] + qa( + (H[H[l >> 2] >> 2] + N(a, f)) | 0, + b, + a, + ) + i = (i + 1) | 0 + a = H[(h + 20) >> 2] + b = a + g = H[(h + 16) >> 2] + if ( + i >>> 0 < + (((b - g) | 0) / 20) >>> 0 + ) { + continue + } + break + } + } + H[(h + 28) >> 2] = H[(h + 28) >> 2] + 1 + H[(d + 8) >> 2] = H[(d + 8) >> 2] + 1 + o = (o + 1) | 0 + if ((j | 0) != (o | 0)) { + continue + } + break + } + break g + } + j: { + k: { + l: { + m: { + if (j >>> 0 <= 2) { + c = H[(d + 108) >> 2] + H[c >> 2] = a + f = 1 + b = H[(d + 12) >> 2] + if (b >>> 0 > 1) { + break m + } + break j + } + if (K[(d + 8) >> 2] > K[(d + 4) >> 2]) { + break e + } + b = H[(d + 120) >> 2] + n = (g + 1) | 0 + o = N(n, 12) + p = (b + o) | 0 + if ((p | 0) != (k | 0)) { + Aa(p, H[k >> 2], H[(k + 4) >> 2]) + b = H[(d + 120) >> 2] + } + b = (l + H[(b + o) >> 2]) | 0 + H[b >> 2] = + H[b >> 2] + (1 << (i + (m ^ -1))) + b = Q(j) ^ 31 + i = H[(d + 32) >> 2] + m = (32 - i) | 0 + n: { + if ((b | 0) <= (m | 0)) { + k = H[(d + 28) >> 2] + if ((k | 0) == H[(d + 20) >> 2]) { + break l + } + m = H[k >> 2] + p = (b + i) | 0 + H[(d + 32) >> 2] = p + b = ((m << i) >>> (32 - b)) | 0 + if ((p | 0) != 32) { + break n + } + H[(d + 32) >> 2] = 0 + H[(d + 28) >> 2] = k + 4 + break n + } + k = H[(d + 28) >> 2] + p = (k + 4) | 0 + if ((p | 0) == H[(d + 20) >> 2]) { + break l + } + r = H[k >> 2] + H[(d + 28) >> 2] = p + m = (b - m) | 0 + H[(d + 32) >> 2] = m + b = + (H[(k + 4) >> 2] >>> (32 - m)) | + ((r << i) >>> (32 - b)) + } + i = (j >>> 1) | 0 + if (i >>> 0 < b >>> 0) { + break e + } + break k + } + while (1) { + a = + ((b - 1) | 0) != (a | 0) + ? (a + 1) | 0 + : 0 + H[(c + (f << 2)) >> 2] = a + b = H[(d + 12) >> 2] + f = (f + 1) | 0 + if (b >>> 0 > f >>> 0) { + continue + } + break + } + break j + } + i = (j >>> 1) | 0 + b = 0 + } + o: { + p: { + b = (i - b) | 0 + c = (j - b) | 0 + q: { + if ((c | 0) == (b | 0)) { + c = b + break q + } + i = H[(d + 88) >> 2] + if ((i | 0) == H[(d + 80) >> 2]) { + break p + } + j = H[i >> 2] + k = H[(d + 92) >> 2] + m = (k + 1) | 0 + H[(d + 92) >> 2] = m + j = j & (-2147483648 >>> k) + r: { + if ((m | 0) == 32) { + H[(d + 92) >> 2] = 0 + H[(d + 88) >> 2] = i + 4 + if (j) { + break r + } + break p + } + if (!j) { + break p + } + } + } + i = c + c = b + break o + } + i = b + } + b = H[(d + 132) >> 2] + j = (b + f) | 0 + f = H[j >> 2] + k = (f + l) | 0 + H[k >> 2] = H[k >> 2] + 1 + Aa((b + o) | 0, f, H[(j + 4) >> 2]) + if (c) { + b = + (H[(e + 28) >> 2] + H[(e + 24) >> 2]) | 0 + j = H[(e + 16) >> 2] + f = H[(e + 12) >> 2] + if ( + (b | 0) == + (((f | 0) != (j | 0) + ? (N((j - f) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((e + 8) | 0) + f = H[(e + 12) >> 2] + b = + (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | + 0 + } + j = ((b >>> 0) / 341) | 0 + b = + (H[((j << 2) + f) >> 2] + + N((b - N(j, 341)) | 0, 12)) | + 0 + H[(b + 8) >> 2] = g + H[(b + 4) >> 2] = a + H[b >> 2] = c + H[(e + 28) >> 2] = H[(e + 28) >> 2] + 1 + } + if (!i) { + break g + } + b = (H[(e + 28) >> 2] + H[(e + 24) >> 2]) | 0 + c = H[(e + 16) >> 2] + f = H[(e + 12) >> 2] + if ( + (b | 0) == + (((c | 0) != (f | 0) + ? (N((c - f) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((e + 8) | 0) + f = H[(e + 12) >> 2] + b = + (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | 0 + } + c = ((b >>> 0) / 341) | 0 + b = + (H[((c << 2) + f) >> 2] + + N((b - N(c, 341)) | 0, 12)) | + 0 + H[(b + 8) >> 2] = n + H[(b + 4) >> 2] = a + H[b >> 2] = i + a = (H[(e + 28) >> 2] + 1) | 0 + H[(e + 28) >> 2] = a + break f + } + m = 0 + if (!j) { + break g + } + while (1) { + if (H[(d + 12) >> 2]) { + i = H[(d + 40) >> 2] + p = H[o >> 2] + c = H[(d + 96) >> 2] + r = H[(d + 108) >> 2] + a = 0 + while (1) { + g = (r + (a << 2)) | 0 + H[(c + (H[g >> 2] << 2)) >> 2] = 0 + b = H[d >> 2] + f = H[g >> 2] << 2 + l = H[(f + p) >> 2] + s: { + if ((b | 0) == (l | 0)) { + break s + } + f = (c + f) | 0 + b = (b - l) | 0 + l = H[(d + 52) >> 2] + q = (32 - l) | 0 + if ((b | 0) <= (q | 0)) { + n = H[(d + 48) >> 2] + if ((n | 0) == (i | 0)) { + c = 0 + break e + } + H[f >> 2] = + (H[n >> 2] << l) >>> (32 - b) + b = (b + H[(d + 52) >> 2]) | 0 + H[(d + 52) >> 2] = b + if ((b | 0) != 32) { + break s + } + H[(d + 52) >> 2] = 0 + H[(d + 48) >> 2] = n + 4 + break s + } + n = H[(d + 48) >> 2] + t = (n + 4) | 0 + if ((i | 0) == (t | 0)) { + c = 0 + break e + } + u = H[n >> 2] + H[(d + 48) >> 2] = t + q = (b - q) | 0 + H[(d + 52) >> 2] = q + H[f >> 2] = + (H[(n + 4) >> 2] >>> (32 - q)) | + ((u << l) >>> (32 - b)) + } + b = H[g >> 2] << 2 + g = (b + c) | 0 + H[g >> 2] = + H[g >> 2] | H[(b + H[k >> 2]) >> 2] + a = (a + 1) | 0 + if (a >>> 0 < K[(d + 12) >> 2]) { + continue + } + break + } + } + i = 0 + a = H[(h + 16) >> 2] + t: { + if ((a | 0) == H[(h + 20) >> 2]) { + break t + } + while (1) { + f = H[(h + 28) >> 2] + c = (N(i, 20) + a) | 0 + l = H[c >> 2] + if (!I[(l + 84) | 0]) { + f = + H[(H[(l + 68) >> 2] + (f << 2)) >> 2] + } + if (K[(l + 80) >> 2] <= f >>> 0) { + break t + } + n = + (H[(d + 96) >> 2] + + (H[(c + 4) >> 2] << 2)) | + 0 + g = H[(c + 12) >> 2] + b = n + u: { + if (g >>> 0 > 3) { + break u + } + a = 0 + b = H[(h + 12) >> 2] + if (!H[(c + 16) >> 2]) { + break u + } + while (1) { + b = qa(b, (n + (a << 2)) | 0, g) + g = H[(c + 12) >> 2] + b = (b + g) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(c + 16) >> 2]) { + continue + } + break + } + b = H[(h + 12) >> 2] + } + a = H[(l + 40) >> 2] + qa( + (H[H[l >> 2] >> 2] + N(a, f)) | 0, + b, + a, + ) + i = (i + 1) | 0 + a = H[(h + 16) >> 2] + if ( + i >>> 0 < + (((H[(h + 20) >> 2] - a) | 0) / 20) >>> + 0 + ) { + continue + } + break + } + } + H[(h + 28) >> 2] = H[(h + 28) >> 2] + 1 + H[(d + 8) >> 2] = H[(d + 8) >> 2] + 1 + m = (m + 1) | 0 + if ((j | 0) != (m | 0)) { + continue + } + break + } + } + a = H[(e + 28) >> 2] + } + if (a) { + continue + } + break + } + c = 1 + } + H[(e + 28) >> 2] = 0 + f = H[(e + 16) >> 2] + a = H[(e + 12) >> 2] + b = (f - a) | 0 + if (b >>> 0 >= 9) { + while (1) { + oa(H[a >> 2]) + a = (H[(e + 12) >> 2] + 4) | 0 + H[(e + 12) >> 2] = a + f = H[(e + 16) >> 2] + b = (f - a) | 0 + if (b >>> 0 > 8) { + continue + } + break + } + } + g = 170 + v: { + switch ((((b >>> 2) | 0) - 1) | 0) { + case 1: + g = 341 + case 0: + H[(e + 24) >> 2] = g + break + default: + break v + } + } + w: { + if ((a | 0) == (f | 0)) { + break w + } + while (1) { + oa(H[a >> 2]) + a = (a + 4) | 0 + if ((f | 0) != (a | 0)) { + continue + } + break + } + a = H[(e + 16) >> 2] + b = H[(e + 12) >> 2] + if ((a | 0) == (b | 0)) { + break w + } + H[(e + 16) >> 2] = a + ((((b - a) | 0) + 3) & -4) + } + a = H[(e + 8) >> 2] + if (a) { + oa(a) + } + ca = (e + 32) | 0 + break b + } + sa() + v() + } + sa() + v() + } + i = c + } + return i + } + function zd(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0 + j = H[(b + 8) >> 2] + l = H[(b + 12) >> 2] + k = H[(b + 20) >> 2] + i = H[(b + 16) >> 2] + f = (i + 4) | 0 + k = f >>> 0 < 4 ? (k + 1) | 0 : k + a: { + if ( + ((f >>> 0 > j >>> 0) & ((k | 0) >= (l | 0))) | + ((k | 0) > (l | 0)) + ) { + break a + } + i = (i + H[b >> 2]) | 0 + H[a >> 2] = + I[i | 0] | + (I[(i + 1) | 0] << 8) | + ((I[(i + 2) | 0] << 16) | (I[(i + 3) | 0] << 24)) + i = H[(b + 20) >> 2] + j = i + f = H[(b + 16) >> 2] + i = (f + 4) | 0 + l = i >>> 0 < 4 ? (j + 1) | 0 : j + H[(b + 16) >> 2] = i + H[(b + 20) >> 2] = l + if (K[a >> 2] > 32) { + break a + } + l = H[(b + 8) >> 2] + k = H[(b + 12) >> 2] + f = (f + 8) | 0 + j = f >>> 0 < 8 ? (j + 1) | 0 : j + if ( + (((k | 0) <= (j | 0)) & (f >>> 0 > l >>> 0)) | + ((k | 0) < (j | 0)) + ) { + break a + } + i = (H[b >> 2] + i) | 0 + f = + I[i | 0] | + (I[(i + 1) | 0] << 8) | + ((I[(i + 2) | 0] << 16) | (I[(i + 3) | 0] << 24)) + H[(a + 4) >> 2] = f + j = H[(b + 20) >> 2] + i = (H[(b + 16) >> 2] + 4) | 0 + j = i >>> 0 < 4 ? (j + 1) | 0 : j + H[(b + 16) >> 2] = i + H[(b + 20) >> 2] = j + if (!f) { + return 1 + } + if (d >>> 0 < f >>> 0) { + break a + } + H[(a + 8) >> 2] = 0 + if (!ua((a + 16) | 0, b)) { + break a + } + if (!ua((a + 36) | 0, b)) { + break a + } + if (!ua((a + 56) | 0, b)) { + break a + } + if (!ua((a + 76) | 0, b)) { + break a + } + t = H[(a + 4) >> 2] + i = c + b = 0 + c = 0 + e = (ca - 32) | 0 + ca = e + f = a + a = H[(a + 12) >> 2] + H[(e + 16) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + b: { + c: { + if (a) { + if (a >>> 0 >= 1073741824) { + break c + } + d = a << 2 + b = pa(d) + H[(e + 8) >> 2] = b + c = (b + d) | 0 + H[(e + 16) >> 2] = c + ra(b, 0, d) + H[(e + 12) >> 2] = c + } + g = H[(f + 120) >> 2] + d = H[g >> 2] + if (d) { + H[(g + 4) >> 2] = d + oa(d) + c = H[(e + 12) >> 2] + b = H[(e + 8) >> 2] + a = H[(f + 12) >> 2] + } + H[(g + 4) >> 2] = c + H[g >> 2] = b + H[(g + 8) >> 2] = H[(e + 16) >> 2] + b = 0 + H[(e + 16) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + d: { + if (a) { + if (a >>> 0 >= 1073741824) { + break d + } + a = a << 2 + h = pa(a) + H[(e + 8) >> 2] = h + b = (a + h) | 0 + H[(e + 16) >> 2] = b + ra(h, 0, a) + H[(e + 12) >> 2] = b + } + c = H[(f + 132) >> 2] + a = H[c >> 2] + if (a) { + H[(c + 4) >> 2] = a + oa(a) + h = H[(e + 8) >> 2] + b = H[(e + 12) >> 2] + } + H[(c + 4) >> 2] = b + H[c >> 2] = h + H[(c + 8) >> 2] = H[(e + 16) >> 2] + H[(e + 24) >> 2] = 0 + H[(e + 28) >> 2] = 0 + H[(e + 16) >> 2] = 0 + H[(e + 20) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + xa((e + 8) | 0) + b = (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | 0 + a = ((b >>> 0) / 341) | 0 + a = + (H[(H[(e + 12) >> 2] + (a << 2)) >> 2] + + N((b - N(a, 341)) | 0, 12)) | + 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = t + d = 1 + a = (H[(e + 28) >> 2] + 1) | 0 + H[(e + 28) >> 2] = a + e: { + if (!a) { + break e + } + while (1) { + j = H[(e + 12) >> 2] + g = H[(e + 24) >> 2] + d = (a - 1) | 0 + c = (g + d) | 0 + b = ((c >>> 0) / 341) | 0 + b = + (H[(j + (b << 2)) >> 2] + + N((c - N(b, 341)) | 0, 12)) | + 0 + n = H[(b + 8) >> 2] + c = H[(b + 4) >> 2] + m = H[b >> 2] + H[(e + 28) >> 2] = d + b = H[(e + 16) >> 2] + if ( + (((((b | 0) != (j | 0) + ? (N((b - j) >> 2, 341) - 1) | 0 + : 0) - + ((a + g) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(b - 4) >> 2]) + H[(e + 16) >> 2] = H[(e + 16) >> 2] - 4 + } + if (m >>> 0 > t >>> 0) { + d = 0 + break e + } + d = 0 + b = H[(f + 12) >> 2] + a = (c | 0) != ((b - 1) | 0) ? (c + 1) | 0 : 0 + if (a >>> 0 >= b >>> 0) { + break e + } + b = H[(f + 120) >> 2] + o = N(n, 12) + q = (b + o) | 0 + g = H[f >> 2] + h = a << 2 + l = (o + H[(f + 132) >> 2]) | 0 + c = H[(h + H[l >> 2]) >> 2] + f: { + g: { + if ((g | 0) == (c | 0)) { + if (!m) { + break g + } + h = 0 + b = H[(i + 20) >> 2] + c = H[(i + 16) >> 2] + if ((b | 0) == (c | 0)) { + a = H[(f + 8) >> 2] + H[(i + 28) >> 2] = m + H[(i + 28) >> 2] + H[(f + 8) >> 2] = a + m + break g + } + while (1) { + d = (b | 0) == (c | 0) + a = b + g = 0 + b = c + h: { + if (d) { + break h + } + while (1) { + d = H[(i + 28) >> 2] + b = a + k = (N(g, 20) + c) | 0 + l = H[k >> 2] + if (!I[(l + 84) | 0]) { + d = + H[ + (H[(l + 68) >> 2] + (d << 2)) >> 2 + ] + } + if (K[(l + 80) >> 2] <= d >>> 0) { + break h + } + j = + (H[q >> 2] + (H[(k + 4) >> 2] << 2)) | + 0 + c = H[(k + 12) >> 2] + b = j + i: { + if (c >>> 0 > 3) { + break i + } + a = 0 + b = H[(i + 12) >> 2] + if (!H[(k + 16) >> 2]) { + break i + } + while (1) { + b = qa(b, (j + (a << 2)) | 0, c) + c = H[(k + 12) >> 2] + b = (b + c) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(k + 16) >> 2]) { + continue + } + break + } + b = H[(i + 12) >> 2] + } + a = H[(l + 40) >> 2] + qa( + (H[H[l >> 2] >> 2] + N(a, d)) | 0, + b, + a, + ) + g = (g + 1) | 0 + a = H[(i + 20) >> 2] + b = a + c = H[(i + 16) >> 2] + if ( + g >>> 0 < + (((b - c) | 0) / 20) >>> 0 + ) { + continue + } + break + } + } + H[(i + 28) >> 2] = H[(i + 28) >> 2] + 1 + H[(f + 8) >> 2] = H[(f + 8) >> 2] + 1 + h = (h + 1) | 0 + if ((m | 0) != (h | 0)) { + continue + } + break + } + break g + } + j: { + k: { + l: { + m: { + if (m >>> 0 <= 2) { + c = H[(f + 108) >> 2] + H[c >> 2] = a + h = 1 + b = H[(f + 12) >> 2] + if (b >>> 0 > 1) { + break m + } + break j + } + if (K[(f + 8) >> 2] > K[(f + 4) >> 2]) { + break e + } + j = b + b = (o + 12) | 0 + Aa( + (j + b) | 0, + H[q >> 2], + H[(q + 4) >> 2], + ) + b = + (h + + H[(b + H[(f + 120) >> 2]) >> 2]) | + 0 + H[b >> 2] = + H[b >> 2] + (1 << (g + (c ^ -1))) + k = Q(m) ^ 31 + l = H[(f + 32) >> 2] + g = (32 - l) | 0 + n: { + if ((k | 0) <= (g | 0)) { + g = H[(f + 28) >> 2] + if ((g | 0) == H[(f + 20) >> 2]) { + break l + } + c = H[g >> 2] + b = (k + l) | 0 + H[(f + 32) >> 2] = b + c = ((c << l) >>> (32 - k)) | 0 + if ((b | 0) != 32) { + break n + } + H[(f + 32) >> 2] = 0 + H[(f + 28) >> 2] = g + 4 + break n + } + j = H[(f + 28) >> 2] + b = (j + 4) | 0 + if ((b | 0) == H[(f + 20) >> 2]) { + break l + } + c = H[j >> 2] + H[(f + 28) >> 2] = b + b = (k - g) | 0 + H[(f + 32) >> 2] = b + c = + (H[(j + 4) >> 2] >>> (32 - b)) | + ((c << l) >>> (32 - k)) + } + g = (m >>> 1) | 0 + if (g >>> 0 < c >>> 0) { + break e + } + break k + } + while (1) { + a = + ((b - 1) | 0) != (a | 0) + ? (a + 1) | 0 + : 0 + H[(c + (h << 2)) >> 2] = a + b = H[(f + 12) >> 2] + h = (h + 1) | 0 + if (b >>> 0 > h >>> 0) { + continue + } + break + } + break j + } + g = (m >>> 1) | 0 + c = 0 + } + k = (n + 1) | 0 + o: { + p: { + b = (g - c) | 0 + c = (m - b) | 0 + q: { + if ((c | 0) == (b | 0)) { + c = b + break q + } + l = H[(f + 88) >> 2] + if ((l | 0) == H[(f + 80) >> 2]) { + break p + } + j = H[l >> 2] + g = H[(f + 92) >> 2] + d = (g + 1) | 0 + H[(f + 92) >> 2] = d + g = j & (-2147483648 >>> g) + r: { + if ((d | 0) == 32) { + H[(f + 92) >> 2] = 0 + H[(f + 88) >> 2] = l + 4 + if (g) { + break r + } + break p + } + if (!g) { + break p + } + } + } + g = c + c = b + break o + } + g = b + } + l = H[(f + 132) >> 2] + j = (l + o) | 0 + d = H[j >> 2] + b = (d + h) | 0 + H[b >> 2] = H[b >> 2] + 1 + Aa((l + N(k, 12)) | 0, d, H[(j + 4) >> 2]) + if (c) { + b = + (H[(e + 28) >> 2] + H[(e + 24) >> 2]) | 0 + d = H[(e + 16) >> 2] + h = H[(e + 12) >> 2] + if ( + (b | 0) == + (((d | 0) != (h | 0) + ? (N((d - h) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((e + 8) | 0) + h = H[(e + 12) >> 2] + b = + (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | + 0 + } + d = ((b >>> 0) / 341) | 0 + b = + (H[((d << 2) + h) >> 2] + + N((b - N(d, 341)) | 0, 12)) | + 0 + H[(b + 8) >> 2] = n + H[(b + 4) >> 2] = a + H[b >> 2] = c + H[(e + 28) >> 2] = H[(e + 28) >> 2] + 1 + } + if (!g) { + break g + } + b = (H[(e + 28) >> 2] + H[(e + 24) >> 2]) | 0 + c = H[(e + 16) >> 2] + h = H[(e + 12) >> 2] + if ( + (b | 0) == + (((c | 0) != (h | 0) + ? (N((c - h) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((e + 8) | 0) + h = H[(e + 12) >> 2] + b = + (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | 0 + } + c = ((b >>> 0) / 341) | 0 + b = + (H[((c << 2) + h) >> 2] + + N((b - N(c, 341)) | 0, 12)) | + 0 + H[(b + 8) >> 2] = k + H[(b + 4) >> 2] = a + H[b >> 2] = g + a = (H[(e + 28) >> 2] + 1) | 0 + H[(e + 28) >> 2] = a + break f + } + r = 0 + if (!m) { + break g + } + while (1) { + if (H[(f + 12) >> 2]) { + u = H[(f + 40) >> 2] + j = H[l >> 2] + s = H[(f + 96) >> 2] + g = H[(f + 108) >> 2] + a = 0 + while (1) { + n = ((a << 2) + g) | 0 + H[(s + (H[n >> 2] << 2)) >> 2] = 0 + d = H[f >> 2] + c = H[n >> 2] << 2 + b = H[(c + j) >> 2] + s: { + if ((d | 0) == (b | 0)) { + break s + } + o = (c + s) | 0 + p = (d - b) | 0 + h = H[(f + 52) >> 2] + d = (32 - h) | 0 + if ((p | 0) <= (d | 0)) { + c = H[(f + 48) >> 2] + if ((c | 0) == (u | 0)) { + d = 0 + break e + } + H[o >> 2] = + (H[c >> 2] << h) >>> (32 - p) + b = (p + H[(f + 52) >> 2]) | 0 + H[(f + 52) >> 2] = b + if ((b | 0) != 32) { + break s + } + H[(f + 52) >> 2] = 0 + H[(f + 48) >> 2] = c + 4 + break s + } + k = H[(f + 48) >> 2] + b = (k + 4) | 0 + if ((u | 0) == (b | 0)) { + d = 0 + break e + } + c = H[k >> 2] + H[(f + 48) >> 2] = b + b = (p - d) | 0 + H[(f + 52) >> 2] = b + H[o >> 2] = + (H[(k + 4) >> 2] >>> (32 - b)) | + ((c << h) >>> (32 - p)) + } + c = H[n >> 2] << 2 + b = (c + s) | 0 + H[b >> 2] = + H[b >> 2] | H[(c + H[q >> 2]) >> 2] + a = (a + 1) | 0 + if (a >>> 0 < K[(f + 12) >> 2]) { + continue + } + break + } + } + g = 0 + a = H[(i + 16) >> 2] + t: { + if ((a | 0) == H[(i + 20) >> 2]) { + break t + } + while (1) { + d = H[(i + 28) >> 2] + h = (N(g, 20) + a) | 0 + k = H[h >> 2] + if (!I[(k + 84) | 0]) { + d = + H[(H[(k + 68) >> 2] + (d << 2)) >> 2] + } + if (K[(k + 80) >> 2] <= d >>> 0) { + break t + } + j = + (H[(f + 96) >> 2] + + (H[(h + 4) >> 2] << 2)) | + 0 + c = H[(h + 12) >> 2] + b = j + u: { + if (c >>> 0 > 3) { + break u + } + a = 0 + b = H[(i + 12) >> 2] + if (!H[(h + 16) >> 2]) { + break u + } + while (1) { + b = qa(b, (j + (a << 2)) | 0, c) + c = H[(h + 12) >> 2] + b = (b + c) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(h + 16) >> 2]) { + continue + } + break + } + b = H[(i + 12) >> 2] + } + a = H[(k + 40) >> 2] + qa( + (H[H[k >> 2] >> 2] + N(a, d)) | 0, + b, + a, + ) + g = (g + 1) | 0 + a = H[(i + 16) >> 2] + if ( + g >>> 0 < + (((H[(i + 20) >> 2] - a) | 0) / 20) >>> + 0 + ) { + continue + } + break + } + } + H[(i + 28) >> 2] = H[(i + 28) >> 2] + 1 + H[(f + 8) >> 2] = H[(f + 8) >> 2] + 1 + r = (r + 1) | 0 + if ((m | 0) != (r | 0)) { + continue + } + break + } + } + a = H[(e + 28) >> 2] + } + if (a) { + continue + } + break + } + d = 1 + } + H[(e + 28) >> 2] = 0 + h = H[(e + 16) >> 2] + a = H[(e + 12) >> 2] + b = (h - a) | 0 + if (b >>> 0 >= 9) { + while (1) { + oa(H[a >> 2]) + a = (H[(e + 12) >> 2] + 4) | 0 + H[(e + 12) >> 2] = a + h = H[(e + 16) >> 2] + b = (h - a) | 0 + if (b >>> 0 > 8) { + continue + } + break + } + } + c = 170 + v: { + switch ((((b >>> 2) | 0) - 1) | 0) { + case 1: + c = 341 + case 0: + H[(e + 24) >> 2] = c + break + default: + break v + } + } + w: { + if ((a | 0) == (h | 0)) { + break w + } + while (1) { + oa(H[a >> 2]) + a = (a + 4) | 0 + if ((h | 0) != (a | 0)) { + continue + } + break + } + b = H[(e + 16) >> 2] + a = H[(e + 12) >> 2] + if ((b | 0) == (a | 0)) { + break w + } + H[(e + 16) >> 2] = b + ((((a - b) | 0) + 3) & -4) + } + a = H[(e + 8) >> 2] + if (a) { + oa(a) + } + ca = (e + 32) | 0 + g = d + break b + } + sa() + v() + } + sa() + v() + } + } + return g + } + function wd(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0 + i = H[(b + 8) >> 2] + j = H[(b + 12) >> 2] + n = H[(b + 20) >> 2] + e = H[(b + 16) >> 2] + h = (e + 4) | 0 + n = h >>> 0 < 4 ? (n + 1) | 0 : n + a: { + if ( + ((i >>> 0 < h >>> 0) & ((j | 0) <= (n | 0))) | + ((j | 0) < (n | 0)) + ) { + break a + } + e = (e + H[b >> 2]) | 0 + H[a >> 2] = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + e = H[(b + 20) >> 2] + i = e + h = H[(b + 16) >> 2] + e = (h + 4) | 0 + j = e >>> 0 < 4 ? (i + 1) | 0 : i + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = j + if (K[a >> 2] > 32) { + break a + } + j = H[(b + 8) >> 2] + n = H[(b + 12) >> 2] + h = (h + 8) | 0 + i = h >>> 0 < 8 ? (i + 1) | 0 : i + if ( + ((h >>> 0 > j >>> 0) & ((i | 0) >= (n | 0))) | + ((i | 0) > (n | 0)) + ) { + break a + } + e = (H[b >> 2] + e) | 0 + h = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + H[(a + 4) >> 2] = h + i = H[(b + 20) >> 2] + e = (H[(b + 16) >> 2] + 4) | 0 + i = e >>> 0 < 4 ? (i + 1) | 0 : i + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = i + if (!h) { + return 1 + } + if (d >>> 0 < h >>> 0) { + break a + } + H[(a + 8) >> 2] = 0 + if (!sb((a + 16) | 0, b)) { + break a + } + if (!ua((a + 544) | 0, b)) { + break a + } + if (!ua((a + 564) | 0, b)) { + break a + } + if (!ua((a + 584) | 0, b)) { + break a + } + u = H[(a + 4) >> 2] + d = c + b = 0 + c = 0 + f = (ca - 32) | 0 + ca = f + g = a + a = H[(a + 12) >> 2] + H[(f + 16) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + b: { + c: { + if (a) { + if (a >>> 0 >= 1073741824) { + break c + } + e = a << 2 + b = pa(e) + H[(f + 8) >> 2] = b + c = (b + e) | 0 + H[(f + 16) >> 2] = c + ra(b, 0, e) + H[(f + 12) >> 2] = c + } + h = H[(g + 628) >> 2] + e = H[h >> 2] + if (e) { + H[(h + 4) >> 2] = e + oa(e) + c = H[(f + 12) >> 2] + b = H[(f + 8) >> 2] + a = H[(g + 12) >> 2] + } + H[(h + 4) >> 2] = c + H[h >> 2] = b + H[(h + 8) >> 2] = H[(f + 16) >> 2] + b = 0 + H[(f + 16) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + d: { + if (a) { + if (a >>> 0 >= 1073741824) { + break d + } + a = a << 2 + k = pa(a) + H[(f + 8) >> 2] = k + b = (a + k) | 0 + H[(f + 16) >> 2] = b + ra(k, 0, a) + H[(f + 12) >> 2] = b + } + c = H[(g + 640) >> 2] + a = H[c >> 2] + if (a) { + H[(c + 4) >> 2] = a + oa(a) + k = H[(f + 8) >> 2] + b = H[(f + 12) >> 2] + } + H[(c + 4) >> 2] = b + H[c >> 2] = k + H[(c + 8) >> 2] = H[(f + 16) >> 2] + H[(f + 24) >> 2] = 0 + H[(f + 28) >> 2] = 0 + H[(f + 16) >> 2] = 0 + H[(f + 20) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + xa((f + 8) | 0) + b = (H[(f + 24) >> 2] + H[(f + 28) >> 2]) | 0 + a = ((b >>> 0) / 341) | 0 + a = + (H[(H[(f + 12) >> 2] + (a << 2)) >> 2] + + N((b - N(a, 341)) | 0, 12)) | + 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = u + c = 1 + a = (H[(f + 28) >> 2] + 1) | 0 + H[(f + 28) >> 2] = a + e: { + if (!a) { + break e + } + n = (g + 16) | 0 + while (1) { + j = H[(f + 12) >> 2] + h = H[(f + 24) >> 2] + e = (a - 1) | 0 + c = (h + e) | 0 + b = ((c >>> 0) / 341) | 0 + b = + (H[(j + (b << 2)) >> 2] + + N((c - N(b, 341)) | 0, 12)) | + 0 + q = H[(b + 8) >> 2] + i = H[(b + 4) >> 2] + o = H[b >> 2] + H[(f + 28) >> 2] = e + b = H[(f + 16) >> 2] + if ( + (((((b | 0) != (j | 0) + ? (N((b - j) >> 2, 341) - 1) | 0 + : 0) - + ((a + h) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(b - 4) >> 2]) + H[(f + 16) >> 2] = H[(f + 16) >> 2] - 4 + } + c = 0 + if (o >>> 0 > u >>> 0) { + break e + } + a = H[(g + 12) >> 2] + k = (i | 0) != ((a - 1) | 0) ? (i + 1) | 0 : 0 + if (k >>> 0 >= a >>> 0) { + break e + } + p = N(q, 12) + w = (p + H[(g + 640) >> 2]) | 0 + r = (p + H[(g + 628) >> 2]) | 0 + h = H[g >> 2] + l = k << 2 + e = H[(l + H[w >> 2]) >> 2] + f: { + g: { + if ((h | 0) == (e | 0)) { + if (!o) { + break g + } + c = H[(d + 16) >> 2] + b = H[(d + 20) >> 2] + m = 0 + while (1) { + e = (b | 0) == (c | 0) + a = b + j = 0 + b = c + h: { + if (e) { + break h + } + while (1) { + l = H[(d + 28) >> 2] + b = a + i = (N(j, 20) + c) | 0 + h = H[i >> 2] + if (!I[(h + 84) | 0]) { + l = + H[ + (H[(h + 68) >> 2] + (l << 2)) >> 2 + ] + } + if (K[(h + 80) >> 2] <= l >>> 0) { + break h + } + e = + (H[r >> 2] + (H[(i + 4) >> 2] << 2)) | + 0 + c = H[(i + 12) >> 2] + b = e + i: { + if (c >>> 0 > 3) { + break i + } + a = 0 + b = H[(d + 12) >> 2] + if (!H[(i + 16) >> 2]) { + break i + } + while (1) { + b = qa(b, (e + (a << 2)) | 0, c) + c = H[(i + 12) >> 2] + b = (b + c) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(i + 16) >> 2]) { + continue + } + break + } + b = H[(d + 12) >> 2] + } + a = H[(h + 40) >> 2] + qa( + (H[H[h >> 2] >> 2] + N(a, l)) | 0, + b, + a, + ) + a = H[(d + 20) >> 2] + b = a + j = (j + 1) | 0 + c = H[(d + 16) >> 2] + if ( + j >>> 0 < + (((a - c) | 0) / 20) >>> 0 + ) { + continue + } + break + } + } + H[(d + 28) >> 2] = H[(d + 28) >> 2] + 1 + H[(g + 8) >> 2] = H[(g + 8) >> 2] + 1 + m = (m + 1) | 0 + if ((o | 0) != (m | 0)) { + continue + } + break + } + break g + } + j: { + k: { + l: { + if (o >>> 0 <= 2) { + c = H[(g + 616) >> 2] + H[c >> 2] = k + a = 1 + b = H[(g + 12) >> 2] + if (b >>> 0 > 1) { + break l + } + break j + } + if (K[(g + 8) >> 2] > K[(g + 4) >> 2]) { + break e + } + a = H[(g + 628) >> 2] + j = (q + 1) | 0 + m = N(j, 12) + b = (a + m) | 0 + if ((b | 0) != (r | 0)) { + Aa(b, H[r >> 2], H[(r + 4) >> 2]) + a = H[(g + 628) >> 2] + } + a = (l + H[(a + m) >> 2]) | 0 + H[a >> 2] = + H[a >> 2] + (1 << (h + (e ^ -1))) + b = 0 + a = 0 + c = Q(o) ^ 31 + if (!c) { + a = (o >>> 1) | 0 + break k + } + while (1) { + b = Ba(((a << 4) + n) | 0) | (b << 1) + a = (a + 1) | 0 + if ((c | 0) != (a | 0)) { + continue + } + break + } + a = (o >>> 1) | 0 + if (b >>> 0 <= a >>> 0) { + break k + } + c = 0 + break e + } + while (1) { + k = + ((b - 1) | 0) != (k | 0) + ? (k + 1) | 0 + : 0 + H[(c + (a << 2)) >> 2] = k + a = (a + 1) | 0 + b = H[(g + 12) >> 2] + if (a >>> 0 < b >>> 0) { + continue + } + break + } + break j + } + m: { + n: { + b = (a - b) | 0 + a = (o - b) | 0 + o: { + if ((a | 0) == (b | 0)) { + a = b + break o + } + i = H[(g + 596) >> 2] + if ((i | 0) == H[(g + 588) >> 2]) { + break n + } + h = H[i >> 2] + e = H[(g + 600) >> 2] + c = (e + 1) | 0 + H[(g + 600) >> 2] = c + e = h & (-2147483648 >>> e) + p: { + if ((c | 0) == 32) { + H[(g + 600) >> 2] = 0 + H[(g + 596) >> 2] = i + 4 + if (e) { + break p + } + break n + } + if (!e) { + break n + } + } + } + c = a + a = b + break m + } + c = b + } + i = H[(g + 640) >> 2] + h = (i + p) | 0 + e = H[h >> 2] + b = (e + l) | 0 + H[b >> 2] = H[b >> 2] + 1 + Aa((i + m) | 0, e, H[(h + 4) >> 2]) + if (a) { + m = + (H[(f + 28) >> 2] + H[(f + 24) >> 2]) | 0 + e = H[(f + 16) >> 2] + b = H[(f + 12) >> 2] + if ( + (m | 0) == + (((b | 0) != (e | 0) + ? (N((e - b) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((f + 8) | 0) + m = + (H[(f + 24) >> 2] + H[(f + 28) >> 2]) | + 0 + e = H[(f + 12) >> 2] + } else { + e = b + } + b = ((m >>> 0) / 341) | 0 + b = + (H[(e + (b << 2)) >> 2] + + N((m - N(b, 341)) | 0, 12)) | + 0 + H[(b + 8) >> 2] = q + H[(b + 4) >> 2] = k + H[b >> 2] = a + H[(f + 28) >> 2] = H[(f + 28) >> 2] + 1 + } + if (!c) { + break g + } + b = (H[(f + 28) >> 2] + H[(f + 24) >> 2]) | 0 + e = H[(f + 16) >> 2] + a = H[(f + 12) >> 2] + if ( + (b | 0) == + (((a | 0) != (e | 0) + ? (N((e - a) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((f + 8) | 0) + b = + (H[(f + 24) >> 2] + H[(f + 28) >> 2]) | 0 + e = H[(f + 12) >> 2] + } else { + e = a + } + a = ((b >>> 0) / 341) | 0 + a = + (H[(e + (a << 2)) >> 2] + + N((b - N(a, 341)) | 0, 12)) | + 0 + H[(a + 8) >> 2] = j + H[(a + 4) >> 2] = k + H[a >> 2] = c + a = (H[(f + 28) >> 2] + 1) | 0 + H[(f + 28) >> 2] = a + break f + } + k = 0 + if (!o) { + break g + } + while (1) { + if (H[(g + 12) >> 2]) { + q = H[(g + 548) >> 2] + i = H[w >> 2] + t = H[(g + 604) >> 2] + h = H[(g + 616) >> 2] + a = 0 + while (1) { + p = ((a << 2) + h) | 0 + H[(t + (H[p >> 2] << 2)) >> 2] = 0 + e = H[g >> 2] + c = H[p >> 2] << 2 + b = H[(c + i) >> 2] + q: { + if ((e | 0) == (b | 0)) { + break q + } + l = (c + t) | 0 + s = (e - b) | 0 + m = H[(g + 560) >> 2] + e = (32 - m) | 0 + if ((s | 0) <= (e | 0)) { + c = H[(g + 556) >> 2] + if ((c | 0) == (q | 0)) { + c = 0 + break e + } + H[l >> 2] = + (H[c >> 2] << m) >>> (32 - s) + b = (s + H[(g + 560) >> 2]) | 0 + H[(g + 560) >> 2] = b + if ((b | 0) != 32) { + break q + } + H[(g + 560) >> 2] = 0 + H[(g + 556) >> 2] = c + 4 + break q + } + j = H[(g + 556) >> 2] + b = (j + 4) | 0 + if ((q | 0) == (b | 0)) { + c = 0 + break e + } + c = H[j >> 2] + H[(g + 556) >> 2] = b + b = (s - e) | 0 + H[(g + 560) >> 2] = b + H[l >> 2] = + (H[(j + 4) >> 2] >>> (32 - b)) | + ((c << m) >>> (32 - s)) + } + c = H[p >> 2] << 2 + b = (c + t) | 0 + H[b >> 2] = + H[b >> 2] | H[(c + H[r >> 2]) >> 2] + a = (a + 1) | 0 + if (a >>> 0 < K[(g + 12) >> 2]) { + continue + } + break + } + } + j = 0 + a = H[(d + 16) >> 2] + r: { + if ((a | 0) == H[(d + 20) >> 2]) { + break r + } + while (1) { + l = H[(d + 28) >> 2] + i = (N(j, 20) + a) | 0 + h = H[i >> 2] + if (!I[(h + 84) | 0]) { + l = + H[(H[(h + 68) >> 2] + (l << 2)) >> 2] + } + if (K[(h + 80) >> 2] <= l >>> 0) { + break r + } + e = + (H[(g + 604) >> 2] + + (H[(i + 4) >> 2] << 2)) | + 0 + c = H[(i + 12) >> 2] + b = e + s: { + if (c >>> 0 > 3) { + break s + } + a = 0 + b = H[(d + 12) >> 2] + if (!H[(i + 16) >> 2]) { + break s + } + while (1) { + b = qa(b, (e + (a << 2)) | 0, c) + c = H[(i + 12) >> 2] + b = (b + c) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(i + 16) >> 2]) { + continue + } + break + } + b = H[(d + 12) >> 2] + } + a = H[(h + 40) >> 2] + qa( + (H[H[h >> 2] >> 2] + N(a, l)) | 0, + b, + a, + ) + j = (j + 1) | 0 + a = H[(d + 16) >> 2] + if ( + j >>> 0 < + (((H[(d + 20) >> 2] - a) | 0) / 20) >>> + 0 + ) { + continue + } + break + } + } + H[(d + 28) >> 2] = H[(d + 28) >> 2] + 1 + H[(g + 8) >> 2] = H[(g + 8) >> 2] + 1 + k = (k + 1) | 0 + if ((o | 0) != (k | 0)) { + continue + } + break + } + } + a = H[(f + 28) >> 2] + } + if (a) { + continue + } + break + } + c = 1 + } + H[(f + 28) >> 2] = 0 + k = H[(f + 16) >> 2] + a = H[(f + 12) >> 2] + b = (k - a) | 0 + if (b >>> 0 >= 9) { + while (1) { + oa(H[a >> 2]) + a = (H[(f + 12) >> 2] + 4) | 0 + H[(f + 12) >> 2] = a + k = H[(f + 16) >> 2] + b = (k - a) | 0 + if (b >>> 0 > 8) { + continue + } + break + } + } + d = 170 + t: { + switch ((((b >>> 2) | 0) - 1) | 0) { + case 1: + d = 341 + case 0: + H[(f + 24) >> 2] = d + break + default: + break t + } + } + u: { + if ((a | 0) == (k | 0)) { + break u + } + while (1) { + oa(H[a >> 2]) + a = (a + 4) | 0 + if ((k | 0) != (a | 0)) { + continue + } + break + } + b = H[(f + 16) >> 2] + a = H[(f + 12) >> 2] + if ((b | 0) == (a | 0)) { + break u + } + H[(f + 16) >> 2] = b + ((((a - b) | 0) + 3) & -4) + } + a = H[(f + 8) >> 2] + if (a) { + oa(a) + } + ca = (f + 32) | 0 + break b + } + sa() + v() + } + sa() + v() + } + g = c + } + return g + } + function ud(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0 + i = H[(b + 8) >> 2] + k = H[(b + 12) >> 2] + o = H[(b + 20) >> 2] + e = H[(b + 16) >> 2] + h = (e + 4) | 0 + o = h >>> 0 < 4 ? (o + 1) | 0 : o + a: { + if ( + ((i >>> 0 < h >>> 0) & ((k | 0) <= (o | 0))) | + ((k | 0) < (o | 0)) + ) { + break a + } + e = (e + H[b >> 2]) | 0 + H[a >> 2] = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + e = H[(b + 20) >> 2] + i = e + h = H[(b + 16) >> 2] + e = (h + 4) | 0 + k = e >>> 0 < 4 ? (i + 1) | 0 : i + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = k + if (K[a >> 2] > 32) { + break a + } + k = H[(b + 8) >> 2] + o = H[(b + 12) >> 2] + h = (h + 8) | 0 + i = h >>> 0 < 8 ? (i + 1) | 0 : i + if ( + ((h >>> 0 > k >>> 0) & ((i | 0) >= (o | 0))) | + ((i | 0) > (o | 0)) + ) { + break a + } + e = (H[b >> 2] + e) | 0 + h = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + H[(a + 4) >> 2] = h + i = H[(b + 20) >> 2] + e = (H[(b + 16) >> 2] + 4) | 0 + i = e >>> 0 < 4 ? (i + 1) | 0 : i + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = i + if (!h) { + return 1 + } + if (d >>> 0 < h >>> 0) { + break a + } + H[(a + 8) >> 2] = 0 + if (!sb((a + 16) | 0, b)) { + break a + } + if (!ua((a + 544) | 0, b)) { + break a + } + if (!ua((a + 564) | 0, b)) { + break a + } + if (!ua((a + 584) | 0, b)) { + break a + } + w = H[(a + 4) >> 2] + d = c + b = 0 + c = 0 + f = (ca - 32) | 0 + ca = f + g = a + a = H[(a + 12) >> 2] + H[(f + 16) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + b: { + c: { + if (a) { + if (a >>> 0 >= 1073741824) { + break c + } + e = a << 2 + b = pa(e) + H[(f + 8) >> 2] = b + c = (b + e) | 0 + H[(f + 16) >> 2] = c + ra(b, 0, e) + H[(f + 12) >> 2] = c + } + h = H[(g + 628) >> 2] + e = H[h >> 2] + if (e) { + H[(h + 4) >> 2] = e + oa(e) + c = H[(f + 12) >> 2] + b = H[(f + 8) >> 2] + a = H[(g + 12) >> 2] + } + H[(h + 4) >> 2] = c + H[h >> 2] = b + H[(h + 8) >> 2] = H[(f + 16) >> 2] + b = 0 + H[(f + 16) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + d: { + if (a) { + if (a >>> 0 >= 1073741824) { + break d + } + a = a << 2 + j = pa(a) + H[(f + 8) >> 2] = j + b = (a + j) | 0 + H[(f + 16) >> 2] = b + ra(j, 0, a) + H[(f + 12) >> 2] = b + } + c = H[(g + 640) >> 2] + a = H[c >> 2] + if (a) { + H[(c + 4) >> 2] = a + oa(a) + j = H[(f + 8) >> 2] + b = H[(f + 12) >> 2] + } + H[(c + 4) >> 2] = b + H[c >> 2] = j + H[(c + 8) >> 2] = H[(f + 16) >> 2] + H[(f + 24) >> 2] = 0 + H[(f + 28) >> 2] = 0 + H[(f + 16) >> 2] = 0 + H[(f + 20) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + xa((f + 8) | 0) + b = (H[(f + 24) >> 2] + H[(f + 28) >> 2]) | 0 + a = ((b >>> 0) / 341) | 0 + a = + (H[(H[(f + 12) >> 2] + (a << 2)) >> 2] + + N((b - N(a, 341)) | 0, 12)) | + 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = w + c = 1 + a = (H[(f + 28) >> 2] + 1) | 0 + H[(f + 28) >> 2] = a + e: { + if (!a) { + break e + } + o = (g + 16) | 0 + while (1) { + i = H[(f + 12) >> 2] + h = H[(f + 24) >> 2] + e = (a - 1) | 0 + c = (h + e) | 0 + b = ((c >>> 0) / 341) | 0 + b = + (H[(i + (b << 2)) >> 2] + + N((c - N(b, 341)) | 0, 12)) | + 0 + q = H[(b + 8) >> 2] + n = H[b >> 2] + H[(f + 28) >> 2] = e + b = H[(f + 16) >> 2] + if ( + (((((b | 0) != (i | 0) + ? (N((b - i) >> 2, 341) - 1) | 0 + : 0) - + ((a + h) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(b - 4) >> 2]) + H[(f + 16) >> 2] = H[(f + 16) >> 2] - 4 + } + c = 0 + if (n >>> 0 > w >>> 0) { + break e + } + a = H[(g + 628) >> 2] + p = N(q, 12) + t = (p + H[(g + 640) >> 2]) | 0 + j = Vd(g, n, t) + if (j >>> 0 >= K[(g + 12) >> 2]) { + break e + } + r = (a + p) | 0 + h = H[g >> 2] + l = j << 2 + e = H[(l + H[t >> 2]) >> 2] + f: { + g: { + if ((h | 0) == (e | 0)) { + if (!n) { + break g + } + c = H[(d + 16) >> 2] + b = H[(d + 20) >> 2] + m = 0 + while (1) { + e = (b | 0) == (c | 0) + a = b + k = 0 + b = c + h: { + if (e) { + break h + } + while (1) { + l = H[(d + 28) >> 2] + b = a + i = (N(k, 20) + c) | 0 + h = H[i >> 2] + if (!I[(h + 84) | 0]) { + l = + H[ + (H[(h + 68) >> 2] + (l << 2)) >> 2 + ] + } + if (K[(h + 80) >> 2] <= l >>> 0) { + break h + } + e = + (H[r >> 2] + (H[(i + 4) >> 2] << 2)) | + 0 + c = H[(i + 12) >> 2] + b = e + i: { + if (c >>> 0 > 3) { + break i + } + a = 0 + b = H[(d + 12) >> 2] + if (!H[(i + 16) >> 2]) { + break i + } + while (1) { + b = qa(b, (e + (a << 2)) | 0, c) + c = H[(i + 12) >> 2] + b = (b + c) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(i + 16) >> 2]) { + continue + } + break + } + b = H[(d + 12) >> 2] + } + a = H[(h + 40) >> 2] + qa( + (H[H[h >> 2] >> 2] + N(a, l)) | 0, + b, + a, + ) + a = H[(d + 20) >> 2] + b = a + k = (k + 1) | 0 + c = H[(d + 16) >> 2] + if ( + k >>> 0 < + (((a - c) | 0) / 20) >>> 0 + ) { + continue + } + break + } + } + H[(d + 28) >> 2] = H[(d + 28) >> 2] + 1 + H[(g + 8) >> 2] = H[(g + 8) >> 2] + 1 + m = (m + 1) | 0 + if ((n | 0) != (m | 0)) { + continue + } + break + } + break g + } + j: { + k: { + l: { + if (n >>> 0 <= 2) { + c = H[(g + 616) >> 2] + H[c >> 2] = j + a = 1 + b = H[(g + 12) >> 2] + if (b >>> 0 > 1) { + break l + } + break j + } + if (K[(g + 8) >> 2] > K[(g + 4) >> 2]) { + break e + } + a = H[(g + 628) >> 2] + k = (q + 1) | 0 + m = N(k, 12) + b = (a + m) | 0 + if ((b | 0) != (r | 0)) { + Aa(b, H[r >> 2], H[(r + 4) >> 2]) + a = H[(g + 628) >> 2] + } + a = (l + H[(a + m) >> 2]) | 0 + H[a >> 2] = + H[a >> 2] + (1 << (h + (e ^ -1))) + b = 0 + a = 0 + c = Q(n) ^ 31 + if (!c) { + a = (n >>> 1) | 0 + break k + } + while (1) { + b = Ba(((a << 4) + o) | 0) | (b << 1) + a = (a + 1) | 0 + if ((c | 0) != (a | 0)) { + continue + } + break + } + a = (n >>> 1) | 0 + if (b >>> 0 <= a >>> 0) { + break k + } + c = 0 + break e + } + while (1) { + j = + ((b - 1) | 0) != (j | 0) + ? (j + 1) | 0 + : 0 + H[(c + (a << 2)) >> 2] = j + a = (a + 1) | 0 + b = H[(g + 12) >> 2] + if (a >>> 0 < b >>> 0) { + continue + } + break + } + break j + } + m: { + n: { + b = (a - b) | 0 + a = (n - b) | 0 + o: { + if ((a | 0) == (b | 0)) { + a = b + break o + } + i = H[(g + 596) >> 2] + if ((i | 0) == H[(g + 588) >> 2]) { + break n + } + h = H[i >> 2] + e = H[(g + 600) >> 2] + c = (e + 1) | 0 + H[(g + 600) >> 2] = c + e = h & (-2147483648 >>> e) + p: { + if ((c | 0) == 32) { + H[(g + 600) >> 2] = 0 + H[(g + 596) >> 2] = i + 4 + if (e) { + break p + } + break n + } + if (!e) { + break n + } + } + } + c = a + a = b + break m + } + c = b + } + i = H[(g + 640) >> 2] + h = (i + p) | 0 + e = H[h >> 2] + b = (e + l) | 0 + H[b >> 2] = H[b >> 2] + 1 + Aa((i + m) | 0, e, H[(h + 4) >> 2]) + if (a) { + m = + (H[(f + 28) >> 2] + H[(f + 24) >> 2]) | 0 + e = H[(f + 16) >> 2] + b = H[(f + 12) >> 2] + if ( + (m | 0) == + (((b | 0) != (e | 0) + ? (N((e - b) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((f + 8) | 0) + m = + (H[(f + 24) >> 2] + H[(f + 28) >> 2]) | + 0 + e = H[(f + 12) >> 2] + } else { + e = b + } + b = ((m >>> 0) / 341) | 0 + b = + (H[(e + (b << 2)) >> 2] + + N((m - N(b, 341)) | 0, 12)) | + 0 + H[(b + 8) >> 2] = q + H[(b + 4) >> 2] = j + H[b >> 2] = a + H[(f + 28) >> 2] = H[(f + 28) >> 2] + 1 + } + if (!c) { + break g + } + b = (H[(f + 28) >> 2] + H[(f + 24) >> 2]) | 0 + e = H[(f + 16) >> 2] + a = H[(f + 12) >> 2] + if ( + (b | 0) == + (((a | 0) != (e | 0) + ? (N((e - a) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((f + 8) | 0) + b = + (H[(f + 24) >> 2] + H[(f + 28) >> 2]) | 0 + e = H[(f + 12) >> 2] + } else { + e = a + } + a = ((b >>> 0) / 341) | 0 + a = + (H[(e + (a << 2)) >> 2] + + N((b - N(a, 341)) | 0, 12)) | + 0 + H[(a + 8) >> 2] = k + H[(a + 4) >> 2] = j + H[a >> 2] = c + a = (H[(f + 28) >> 2] + 1) | 0 + H[(f + 28) >> 2] = a + break f + } + j = 0 + if (!n) { + break g + } + while (1) { + if (H[(g + 12) >> 2]) { + q = H[(g + 548) >> 2] + i = H[t >> 2] + u = H[(g + 604) >> 2] + h = H[(g + 616) >> 2] + a = 0 + while (1) { + p = ((a << 2) + h) | 0 + H[(u + (H[p >> 2] << 2)) >> 2] = 0 + e = H[g >> 2] + c = H[p >> 2] << 2 + b = H[(c + i) >> 2] + q: { + if ((e | 0) == (b | 0)) { + break q + } + l = (c + u) | 0 + s = (e - b) | 0 + m = H[(g + 560) >> 2] + e = (32 - m) | 0 + if ((s | 0) <= (e | 0)) { + c = H[(g + 556) >> 2] + if ((c | 0) == (q | 0)) { + c = 0 + break e + } + H[l >> 2] = + (H[c >> 2] << m) >>> (32 - s) + b = (s + H[(g + 560) >> 2]) | 0 + H[(g + 560) >> 2] = b + if ((b | 0) != 32) { + break q + } + H[(g + 560) >> 2] = 0 + H[(g + 556) >> 2] = c + 4 + break q + } + k = H[(g + 556) >> 2] + b = (k + 4) | 0 + if ((q | 0) == (b | 0)) { + c = 0 + break e + } + c = H[k >> 2] + H[(g + 556) >> 2] = b + b = (s - e) | 0 + H[(g + 560) >> 2] = b + H[l >> 2] = + (H[(k + 4) >> 2] >>> (32 - b)) | + ((c << m) >>> (32 - s)) + } + c = H[p >> 2] << 2 + b = (c + u) | 0 + H[b >> 2] = + H[b >> 2] | H[(c + H[r >> 2]) >> 2] + a = (a + 1) | 0 + if (a >>> 0 < K[(g + 12) >> 2]) { + continue + } + break + } + } + k = 0 + a = H[(d + 16) >> 2] + r: { + if ((a | 0) == H[(d + 20) >> 2]) { + break r + } + while (1) { + l = H[(d + 28) >> 2] + i = (N(k, 20) + a) | 0 + h = H[i >> 2] + if (!I[(h + 84) | 0]) { + l = + H[(H[(h + 68) >> 2] + (l << 2)) >> 2] + } + if (K[(h + 80) >> 2] <= l >>> 0) { + break r + } + e = + (H[(g + 604) >> 2] + + (H[(i + 4) >> 2] << 2)) | + 0 + c = H[(i + 12) >> 2] + b = e + s: { + if (c >>> 0 > 3) { + break s + } + a = 0 + b = H[(d + 12) >> 2] + if (!H[(i + 16) >> 2]) { + break s + } + while (1) { + b = qa(b, (e + (a << 2)) | 0, c) + c = H[(i + 12) >> 2] + b = (b + c) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(i + 16) >> 2]) { + continue + } + break + } + b = H[(d + 12) >> 2] + } + a = H[(h + 40) >> 2] + qa( + (H[H[h >> 2] >> 2] + N(a, l)) | 0, + b, + a, + ) + k = (k + 1) | 0 + a = H[(d + 16) >> 2] + if ( + k >>> 0 < + (((H[(d + 20) >> 2] - a) | 0) / 20) >>> + 0 + ) { + continue + } + break + } + } + H[(d + 28) >> 2] = H[(d + 28) >> 2] + 1 + H[(g + 8) >> 2] = H[(g + 8) >> 2] + 1 + j = (j + 1) | 0 + if ((n | 0) != (j | 0)) { + continue + } + break + } + } + a = H[(f + 28) >> 2] + } + if (a) { + continue + } + break + } + c = 1 + } + H[(f + 28) >> 2] = 0 + j = H[(f + 16) >> 2] + a = H[(f + 12) >> 2] + b = (j - a) | 0 + if (b >>> 0 >= 9) { + while (1) { + oa(H[a >> 2]) + a = (H[(f + 12) >> 2] + 4) | 0 + H[(f + 12) >> 2] = a + j = H[(f + 16) >> 2] + b = (j - a) | 0 + if (b >>> 0 > 8) { + continue + } + break + } + } + d = 170 + t: { + switch ((((b >>> 2) | 0) - 1) | 0) { + case 1: + d = 341 + case 0: + H[(f + 24) >> 2] = d + break + default: + break t + } + } + u: { + if ((a | 0) == (j | 0)) { + break u + } + while (1) { + oa(H[a >> 2]) + a = (a + 4) | 0 + if ((j | 0) != (a | 0)) { + continue + } + break + } + b = H[(f + 16) >> 2] + a = H[(f + 12) >> 2] + if ((b | 0) == (a | 0)) { + break u + } + H[(f + 16) >> 2] = b + ((((a - b) | 0) + 3) & -4) + } + a = H[(f + 8) >> 2] + if (a) { + oa(a) + } + ca = (f + 32) | 0 + break b + } + sa() + v() + } + sa() + v() + } + g = c + } + return g + } + function vd(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0 + i = H[(b + 8) >> 2] + k = H[(b + 12) >> 2] + m = H[(b + 20) >> 2] + f = H[(b + 16) >> 2] + h = (f + 4) | 0 + m = h >>> 0 < 4 ? (m + 1) | 0 : m + a: { + if ( + ((i >>> 0 < h >>> 0) & ((k | 0) <= (m | 0))) | + ((k | 0) < (m | 0)) + ) { + break a + } + f = (f + H[b >> 2]) | 0 + H[a >> 2] = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | (I[(f + 3) | 0] << 24)) + f = H[(b + 20) >> 2] + i = f + h = H[(b + 16) >> 2] + f = (h + 4) | 0 + k = f >>> 0 < 4 ? (i + 1) | 0 : i + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = k + if (K[a >> 2] > 32) { + break a + } + k = H[(b + 8) >> 2] + m = H[(b + 12) >> 2] + h = (h + 8) | 0 + i = h >>> 0 < 8 ? (i + 1) | 0 : i + if ( + ((h >>> 0 > k >>> 0) & ((i | 0) >= (m | 0))) | + ((i | 0) > (m | 0)) + ) { + break a + } + f = (f + H[b >> 2]) | 0 + h = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | (I[(f + 3) | 0] << 24)) + H[(a + 4) >> 2] = h + i = H[(b + 20) >> 2] + f = (H[(b + 16) >> 2] + 4) | 0 + i = f >>> 0 < 4 ? (i + 1) | 0 : i + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = i + if (!h) { + return 1 + } + if (d >>> 0 < h >>> 0) { + break a + } + H[(a + 8) >> 2] = 0 + if (!sb((a + 16) | 0, b)) { + break a + } + if (!ua((a + 544) | 0, b)) { + break a + } + if (!ua((a + 564) | 0, b)) { + break a + } + if (!ua((a + 584) | 0, b)) { + break a + } + u = H[(a + 4) >> 2] + b = 0 + e = (ca - 32) | 0 + ca = e + f = a + a = H[(a + 12) >> 2] + H[(e + 16) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + b: { + c: { + if (a) { + if (a >>> 0 >= 1073741824) { + break c + } + d = a << 2 + b = pa(d) + H[(e + 8) >> 2] = b + g = (b + d) | 0 + H[(e + 16) >> 2] = g + ra(b, 0, d) + H[(e + 12) >> 2] = g + } + h = H[(f + 628) >> 2] + d = H[h >> 2] + if (d) { + H[(h + 4) >> 2] = d + oa(d) + g = H[(e + 12) >> 2] + b = H[(e + 8) >> 2] + a = H[(f + 12) >> 2] + } + H[(h + 4) >> 2] = g + H[h >> 2] = b + H[(h + 8) >> 2] = H[(e + 16) >> 2] + b = 0 + H[(e + 16) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + d: { + if (a) { + if (a >>> 0 >= 1073741824) { + break d + } + a = a << 2 + j = pa(a) + H[(e + 8) >> 2] = j + b = (a + j) | 0 + H[(e + 16) >> 2] = b + ra(j, 0, a) + H[(e + 12) >> 2] = b + } + d = H[(f + 640) >> 2] + a = H[d >> 2] + if (a) { + H[(d + 4) >> 2] = a + oa(a) + j = H[(e + 8) >> 2] + b = H[(e + 12) >> 2] + } + H[(d + 4) >> 2] = b + H[d >> 2] = j + H[(d + 8) >> 2] = H[(e + 16) >> 2] + H[(e + 24) >> 2] = 0 + H[(e + 28) >> 2] = 0 + H[(e + 16) >> 2] = 0 + H[(e + 20) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + xa((e + 8) | 0) + b = (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | 0 + a = ((b >>> 0) / 341) | 0 + a = + (H[(H[(e + 12) >> 2] + (a << 2)) >> 2] + + N((b - N(a, 341)) | 0, 12)) | + 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = u + d = 1 + a = (H[(e + 28) >> 2] + 1) | 0 + H[(e + 28) >> 2] = a + e: { + if (!a) { + break e + } + m = (f + 16) | 0 + while (1) { + k = H[(e + 12) >> 2] + h = H[(e + 24) >> 2] + g = (a - 1) | 0 + d = (h + g) | 0 + b = ((d >>> 0) / 341) | 0 + b = + (H[(k + (b << 2)) >> 2] + + N((d - N(b, 341)) | 0, 12)) | + 0 + q = H[(b + 8) >> 2] + i = H[(b + 4) >> 2] + n = H[b >> 2] + H[(e + 28) >> 2] = g + b = H[(e + 16) >> 2] + if ( + (((((b | 0) != (k | 0) + ? (N((b - k) >> 2, 341) - 1) | 0 + : 0) - + ((a + h) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(b - 4) >> 2]) + H[(e + 16) >> 2] = H[(e + 16) >> 2] - 4 + } + if (n >>> 0 > u >>> 0) { + d = 0 + break e + } + d = 0 + a = H[(f + 12) >> 2] + j = (i | 0) != ((a - 1) | 0) ? (i + 1) | 0 : 0 + if (j >>> 0 >= a >>> 0) { + break e + } + a = H[(f + 628) >> 2] + o = N(q, 12) + s = (a + o) | 0 + g = H[f >> 2] + l = j << 2 + k = (o + H[(f + 640) >> 2]) | 0 + b = H[(l + H[k >> 2]) >> 2] + f: { + g: { + if ((g | 0) == (b | 0)) { + if (!n) { + break g + } + g = H[(c + 16) >> 2] + b = H[(c + 20) >> 2] + p = 0 + while (1) { + d = (b | 0) == (g | 0) + a = b + j = 0 + b = g + h: { + if (d) { + break h + } + while (1) { + d = H[(c + 28) >> 2] + b = a + k = (N(j, 20) + g) | 0 + i = H[k >> 2] + if (!I[(i + 84) | 0]) { + d = + H[ + (H[(i + 68) >> 2] + (d << 2)) >> 2 + ] + } + if (K[(i + 80) >> 2] <= d >>> 0) { + break h + } + h = + (H[s >> 2] + (H[(k + 4) >> 2] << 2)) | + 0 + g = H[(k + 12) >> 2] + b = h + i: { + if (g >>> 0 > 3) { + break i + } + a = 0 + b = H[(c + 12) >> 2] + if (!H[(k + 16) >> 2]) { + break i + } + while (1) { + b = qa(b, (h + (a << 2)) | 0, g) + g = H[(k + 12) >> 2] + b = (b + g) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(k + 16) >> 2]) { + continue + } + break + } + b = H[(c + 12) >> 2] + } + a = H[(i + 40) >> 2] + qa( + (H[H[i >> 2] >> 2] + N(a, d)) | 0, + b, + a, + ) + a = H[(c + 20) >> 2] + b = a + j = (j + 1) | 0 + g = H[(c + 16) >> 2] + if ( + j >>> 0 < + (((a - g) | 0) / 20) >>> 0 + ) { + continue + } + break + } + } + H[(c + 28) >> 2] = H[(c + 28) >> 2] + 1 + H[(f + 8) >> 2] = H[(f + 8) >> 2] + 1 + p = (p + 1) | 0 + if ((p | 0) != (n | 0)) { + continue + } + break + } + break g + } + j: { + k: { + l: { + if (n >>> 0 <= 2) { + d = H[(f + 616) >> 2] + H[d >> 2] = j + a = 1 + b = H[(f + 12) >> 2] + if (b >>> 0 > 1) { + break l + } + break j + } + if (K[(f + 8) >> 2] > K[(f + 4) >> 2]) { + break e + } + d = a + a = (o + 12) | 0 + Aa( + (d + a) | 0, + H[s >> 2], + H[(s + 4) >> 2], + ) + a = + (l + H[(a + H[(f + 628) >> 2]) >> 2]) | + 0 + H[a >> 2] = + H[a >> 2] + (1 << (g + (b ^ -1))) + b = 0 + a = 0 + d = Q(n) ^ 31 + if (!d) { + a = (n >>> 1) | 0 + break k + } + while (1) { + b = Ba(((a << 4) + m) | 0) | (b << 1) + a = (a + 1) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + a = (n >>> 1) | 0 + if (b >>> 0 <= a >>> 0) { + break k + } + d = 0 + break e + } + while (1) { + j = + ((b - 1) | 0) != (j | 0) + ? (j + 1) | 0 + : 0 + H[(d + (a << 2)) >> 2] = j + a = (a + 1) | 0 + b = H[(f + 12) >> 2] + if (a >>> 0 < b >>> 0) { + continue + } + break + } + break j + } + k = (q + 1) | 0 + m: { + n: { + b = (a - b) | 0 + a = (n - b) | 0 + o: { + if ((a | 0) == (b | 0)) { + a = b + break o + } + i = H[(f + 596) >> 2] + if ((i | 0) == H[(f + 588) >> 2]) { + break n + } + h = H[i >> 2] + g = H[(f + 600) >> 2] + d = (g + 1) | 0 + H[(f + 600) >> 2] = d + g = h & (-2147483648 >>> g) + p: { + if ((d | 0) == 32) { + H[(f + 600) >> 2] = 0 + H[(f + 596) >> 2] = i + 4 + if (g) { + break p + } + break n + } + if (!g) { + break n + } + } + } + d = a + a = b + break m + } + d = b + } + i = H[(f + 640) >> 2] + h = (i + o) | 0 + g = H[h >> 2] + b = (g + l) | 0 + H[b >> 2] = H[b >> 2] + 1 + Aa((i + N(k, 12)) | 0, g, H[(h + 4) >> 2]) + if (a) { + h = + (H[(e + 28) >> 2] + H[(e + 24) >> 2]) | 0 + g = H[(e + 16) >> 2] + b = H[(e + 12) >> 2] + if ( + (h | 0) == + (((b | 0) != (g | 0) + ? (N((g - b) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((e + 8) | 0) + h = + (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | + 0 + g = H[(e + 12) >> 2] + } else { + g = b + } + b = ((h >>> 0) / 341) | 0 + b = + (H[(g + (b << 2)) >> 2] + + N((h - N(b, 341)) | 0, 12)) | + 0 + H[(b + 8) >> 2] = q + H[(b + 4) >> 2] = j + H[b >> 2] = a + H[(e + 28) >> 2] = H[(e + 28) >> 2] + 1 + } + if (!d) { + break g + } + b = (H[(e + 28) >> 2] + H[(e + 24) >> 2]) | 0 + g = H[(e + 16) >> 2] + a = H[(e + 12) >> 2] + if ( + (b | 0) == + (((a | 0) != (g | 0) + ? (N((g - a) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((e + 8) | 0) + b = + (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | 0 + g = H[(e + 12) >> 2] + } else { + g = a + } + a = ((b >>> 0) / 341) | 0 + a = + (H[(g + (a << 2)) >> 2] + + N((b - N(a, 341)) | 0, 12)) | + 0 + H[(a + 8) >> 2] = k + H[(a + 4) >> 2] = j + H[a >> 2] = d + a = (H[(e + 28) >> 2] + 1) | 0 + H[(e + 28) >> 2] = a + break f + } + p = 0 + if (!n) { + break g + } + while (1) { + if (H[(f + 12) >> 2]) { + w = H[(f + 548) >> 2] + i = H[k >> 2] + t = H[(f + 604) >> 2] + h = H[(f + 616) >> 2] + a = 0 + while (1) { + j = (h + (a << 2)) | 0 + H[((H[j >> 2] << 2) + t) >> 2] = 0 + g = H[f >> 2] + d = H[j >> 2] << 2 + b = H[(d + i) >> 2] + q: { + if ((g | 0) == (b | 0)) { + break q + } + q = (d + t) | 0 + r = (g - b) | 0 + o = H[(f + 560) >> 2] + g = (32 - o) | 0 + if ((r | 0) <= (g | 0)) { + d = H[(f + 556) >> 2] + if ((d | 0) == (w | 0)) { + d = 0 + break e + } + H[q >> 2] = + (H[d >> 2] << o) >>> (32 - r) + b = (H[(f + 560) >> 2] + r) | 0 + H[(f + 560) >> 2] = b + if ((b | 0) != 32) { + break q + } + H[(f + 560) >> 2] = 0 + H[(f + 556) >> 2] = d + 4 + break q + } + l = H[(f + 556) >> 2] + b = (l + 4) | 0 + if ((b | 0) == (w | 0)) { + d = 0 + break e + } + d = H[l >> 2] + H[(f + 556) >> 2] = b + b = (r - g) | 0 + H[(f + 560) >> 2] = b + H[q >> 2] = + (H[(l + 4) >> 2] >>> (32 - b)) | + ((d << o) >>> (32 - r)) + } + d = H[j >> 2] << 2 + b = (d + t) | 0 + H[b >> 2] = + H[b >> 2] | H[(d + H[s >> 2]) >> 2] + a = (a + 1) | 0 + if (a >>> 0 < K[(f + 12) >> 2]) { + continue + } + break + } + } + j = 0 + a = H[(c + 16) >> 2] + r: { + if ((a | 0) == H[(c + 20) >> 2]) { + break r + } + while (1) { + d = H[(c + 28) >> 2] + l = (N(j, 20) + a) | 0 + i = H[l >> 2] + if (!I[(i + 84) | 0]) { + d = + H[(H[(i + 68) >> 2] + (d << 2)) >> 2] + } + if (K[(i + 80) >> 2] <= d >>> 0) { + break r + } + h = + (H[(f + 604) >> 2] + + (H[(l + 4) >> 2] << 2)) | + 0 + g = H[(l + 12) >> 2] + b = h + s: { + if (g >>> 0 > 3) { + break s + } + a = 0 + b = H[(c + 12) >> 2] + if (!H[(l + 16) >> 2]) { + break s + } + while (1) { + b = qa(b, (h + (a << 2)) | 0, g) + g = H[(l + 12) >> 2] + b = (b + g) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(l + 16) >> 2]) { + continue + } + break + } + b = H[(c + 12) >> 2] + } + a = H[(i + 40) >> 2] + qa( + (H[H[i >> 2] >> 2] + N(a, d)) | 0, + b, + a, + ) + j = (j + 1) | 0 + a = H[(c + 16) >> 2] + if ( + j >>> 0 < + (((H[(c + 20) >> 2] - a) | 0) / 20) >>> + 0 + ) { + continue + } + break + } + } + H[(c + 28) >> 2] = H[(c + 28) >> 2] + 1 + H[(f + 8) >> 2] = H[(f + 8) >> 2] + 1 + p = (p + 1) | 0 + if ((p | 0) != (n | 0)) { + continue + } + break + } + } + a = H[(e + 28) >> 2] + } + if (a) { + continue + } + break + } + d = 1 + } + H[(e + 28) >> 2] = 0 + j = H[(e + 16) >> 2] + a = H[(e + 12) >> 2] + b = (j - a) | 0 + if (b >>> 0 >= 9) { + while (1) { + oa(H[a >> 2]) + a = (H[(e + 12) >> 2] + 4) | 0 + H[(e + 12) >> 2] = a + j = H[(e + 16) >> 2] + b = (j - a) | 0 + if (b >>> 0 > 8) { + continue + } + break + } + } + g = 170 + t: { + switch ((((b >>> 2) | 0) - 1) | 0) { + case 1: + g = 341 + case 0: + H[(e + 24) >> 2] = g + break + default: + break t + } + } + u: { + if ((a | 0) == (j | 0)) { + break u + } + while (1) { + oa(H[a >> 2]) + a = (a + 4) | 0 + if ((j | 0) != (a | 0)) { + continue + } + break + } + b = H[(e + 16) >> 2] + a = H[(e + 12) >> 2] + if ((b | 0) == (a | 0)) { + break u + } + H[(e + 16) >> 2] = b + ((((a - b) | 0) + 3) & -4) + } + a = H[(e + 8) >> 2] + if (a) { + oa(a) + } + ca = (e + 32) | 0 + break b + } + sa() + v() + } + sa() + v() + } + g = d + } + return g + } + function yd(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0 + j = H[(b + 8) >> 2] + e = H[(b + 12) >> 2] + g = H[(b + 20) >> 2] + h = H[(b + 16) >> 2] + l = (h + 4) | 0 + g = l >>> 0 < 4 ? (g + 1) | 0 : g + a: { + if ( + ((j >>> 0 < l >>> 0) & ((e | 0) <= (g | 0))) | + ((e | 0) < (g | 0)) + ) { + break a + } + h = (h + H[b >> 2]) | 0 + H[a >> 2] = + I[h | 0] | + (I[(h + 1) | 0] << 8) | + ((I[(h + 2) | 0] << 16) | (I[(h + 3) | 0] << 24)) + h = H[(b + 20) >> 2] + e = h + j = H[(b + 16) >> 2] + g = (j + 4) | 0 + h = g >>> 0 < 4 ? (e + 1) | 0 : e + H[(b + 16) >> 2] = g + H[(b + 20) >> 2] = h + if (K[a >> 2] > 32) { + break a + } + k = H[(b + 8) >> 2] + l = H[(b + 12) >> 2] + h = e + e = (j + 8) | 0 + h = e >>> 0 < 8 ? (h + 1) | 0 : h + if ( + ((e >>> 0 > k >>> 0) & ((h | 0) >= (l | 0))) | + ((h | 0) > (l | 0)) + ) { + break a + } + h = (H[b >> 2] + g) | 0 + g = + I[h | 0] | + (I[(h + 1) | 0] << 8) | + ((I[(h + 2) | 0] << 16) | (I[(h + 3) | 0] << 24)) + H[(a + 4) >> 2] = g + h = H[(b + 20) >> 2] + e = (H[(b + 16) >> 2] + 4) | 0 + h = e >>> 0 < 4 ? (h + 1) | 0 : h + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = h + if (!g) { + return 1 + } + if (d >>> 0 < g >>> 0) { + break a + } + H[(a + 8) >> 2] = 0 + if (!ta((a + 16) | 0, b)) { + break a + } + if (!ua((a + 32) | 0, b)) { + break a + } + if (!ua((a + 52) | 0, b)) { + break a + } + if (!ua((a + 72) | 0, b)) { + break a + } + r = H[(a + 4) >> 2] + h = c + b = 0 + g = 0 + e = (ca - 32) | 0 + ca = e + d = a + a = H[(a + 12) >> 2] + H[(e + 16) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + b: { + c: { + if (a) { + if (a >>> 0 >= 1073741824) { + break c + } + c = a << 2 + b = pa(c) + H[(e + 8) >> 2] = b + g = (b + c) | 0 + H[(e + 16) >> 2] = g + ra(b, 0, c) + H[(e + 12) >> 2] = g + } + c = H[(d + 116) >> 2] + i = H[c >> 2] + if (i) { + H[(c + 4) >> 2] = i + oa(i) + g = H[(e + 12) >> 2] + b = H[(e + 8) >> 2] + a = H[(d + 12) >> 2] + } + H[(c + 4) >> 2] = g + H[c >> 2] = b + H[(c + 8) >> 2] = H[(e + 16) >> 2] + b = 0 + H[(e + 16) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + d: { + if (a) { + if (a >>> 0 >= 1073741824) { + break d + } + a = a << 2 + f = pa(a) + H[(e + 8) >> 2] = f + b = (a + f) | 0 + H[(e + 16) >> 2] = b + ra(f, 0, a) + H[(e + 12) >> 2] = b + } + a = H[(d + 128) >> 2] + c = H[a >> 2] + if (c) { + H[(a + 4) >> 2] = c + oa(c) + f = H[(e + 8) >> 2] + b = H[(e + 12) >> 2] + } + H[(a + 4) >> 2] = b + H[a >> 2] = f + H[(a + 8) >> 2] = H[(e + 16) >> 2] + H[(e + 24) >> 2] = 0 + H[(e + 28) >> 2] = 0 + H[(e + 16) >> 2] = 0 + H[(e + 20) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + xa((e + 8) | 0) + a = (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | 0 + b = ((a >>> 0) / 341) | 0 + a = + (H[(H[(e + 12) >> 2] + (b << 2)) >> 2] + + N((a - N(b, 341)) | 0, 12)) | + 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = r + c = 1 + a = (H[(e + 28) >> 2] + 1) | 0 + H[(e + 28) >> 2] = a + e: { + if (!a) { + break e + } + t = (d + 16) | 0 + while (1) { + b = H[(e + 12) >> 2] + f = H[(e + 24) >> 2] + l = (a - 1) | 0 + c = (f + l) | 0 + i = ((c >>> 0) / 341) | 0 + c = + (H[(b + (i << 2)) >> 2] + + N((c - N(i, 341)) | 0, 12)) | + 0 + g = H[(c + 8) >> 2] + i = H[(c + 4) >> 2] + j = H[c >> 2] + H[(e + 28) >> 2] = l + c = H[(e + 16) >> 2] + if ( + (((((b | 0) != (c | 0) + ? (N((c - b) >> 2, 341) - 1) | 0 + : 0) - + ((a + f) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(c - 4) >> 2]) + H[(e + 16) >> 2] = H[(e + 16) >> 2] - 4 + } + c = 0 + if (j >>> 0 > r >>> 0) { + break e + } + b = H[(d + 12) >> 2] + a = ((b - 1) | 0) != (i | 0) ? (i + 1) | 0 : 0 + if (a >>> 0 >= b >>> 0) { + break e + } + f = N(g, 12) + o = (f + H[(d + 128) >> 2]) | 0 + l = (f + H[(d + 116) >> 2]) | 0 + i = H[d >> 2] + k = a << 2 + n = H[(k + H[o >> 2]) >> 2] + f: { + if ((i | 0) == (n | 0)) { + if (!j) { + break f + } + o = 0 + b = H[(h + 20) >> 2] + g = H[(h + 16) >> 2] + if ((b | 0) == (g | 0)) { + a = H[(d + 8) >> 2] + H[(h + 28) >> 2] = j + H[(h + 28) >> 2] + H[(d + 8) >> 2] = a + j + break f + } + while (1) { + c = (b | 0) == (g | 0) + a = b + i = 0 + b = g + g: { + if (c) { + break g + } + while (1) { + f = H[(h + 28) >> 2] + b = a + c = (N(i, 20) + g) | 0 + k = H[c >> 2] + if (!I[(k + 84) | 0]) { + f = + H[(H[(k + 68) >> 2] + (f << 2)) >> 2] + } + if (K[(k + 80) >> 2] <= f >>> 0) { + break g + } + n = + (H[l >> 2] + (H[(c + 4) >> 2] << 2)) | 0 + g = H[(c + 12) >> 2] + b = n + h: { + if (g >>> 0 > 3) { + break h + } + a = 0 + b = H[(h + 12) >> 2] + if (!H[(c + 16) >> 2]) { + break h + } + while (1) { + b = qa(b, (n + (a << 2)) | 0, g) + g = H[(c + 12) >> 2] + b = (b + g) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(c + 16) >> 2]) { + continue + } + break + } + b = H[(h + 12) >> 2] + } + a = H[(k + 40) >> 2] + qa( + (H[H[k >> 2] >> 2] + N(a, f)) | 0, + b, + a, + ) + i = (i + 1) | 0 + a = H[(h + 20) >> 2] + b = a + g = H[(h + 16) >> 2] + if ( + i >>> 0 < + (((b - g) | 0) / 20) >>> 0 + ) { + continue + } + break + } + } + H[(h + 28) >> 2] = H[(h + 28) >> 2] + 1 + H[(d + 8) >> 2] = H[(d + 8) >> 2] + 1 + o = (o + 1) | 0 + if ((j | 0) != (o | 0)) { + continue + } + break + } + break f + } + i: { + j: { + k: { + l: { + if (j >>> 0 <= 2) { + c = H[(d + 104) >> 2] + H[c >> 2] = a + f = 1 + b = H[(d + 12) >> 2] + if (b >>> 0 > 1) { + break l + } + break i + } + if (K[(d + 8) >> 2] > K[(d + 4) >> 2]) { + break e + } + b = H[(d + 116) >> 2] + m = (g + 1) | 0 + o = N(m, 12) + q = (b + o) | 0 + if ((q | 0) != (l | 0)) { + Aa(q, H[l >> 2], H[(l + 4) >> 2]) + b = H[(d + 116) >> 2] + } + b = (k + H[(b + o) >> 2]) | 0 + H[b >> 2] = + H[b >> 2] + (1 << (i + (n ^ -1))) + H[(e + 4) >> 2] = 0 + pc(t, Q(j) ^ 31, (e + 4) | 0) + b = (j >>> 1) | 0 + i = H[(e + 4) >> 2] + if (b >>> 0 < i >>> 0) { + break e + } + b = (b - i) | 0 + c = (j - b) | 0 + m: { + if ((c | 0) == (b | 0)) { + c = b + break m + } + i = H[(d + 84) >> 2] + if ((i | 0) == H[(d + 76) >> 2]) { + break k + } + j = H[i >> 2] + l = H[(d + 88) >> 2] + n = (l + 1) | 0 + H[(d + 88) >> 2] = n + j = j & (-2147483648 >>> l) + n: { + if ((n | 0) == 32) { + H[(d + 88) >> 2] = 0 + H[(d + 84) >> 2] = i + 4 + if (j) { + break n + } + break k + } + if (!j) { + break k + } + } + } + i = c + c = b + break j + } + while (1) { + a = + ((b - 1) | 0) != (a | 0) + ? (a + 1) | 0 + : 0 + H[(c + (f << 2)) >> 2] = a + b = H[(d + 12) >> 2] + f = (f + 1) | 0 + if (b >>> 0 > f >>> 0) { + continue + } + break + } + break i + } + i = b + } + b = H[(d + 128) >> 2] + j = (b + f) | 0 + f = H[j >> 2] + l = (f + k) | 0 + H[l >> 2] = H[l >> 2] + 1 + Aa((b + o) | 0, f, H[(j + 4) >> 2]) + if (c) { + b = (H[(e + 28) >> 2] + H[(e + 24) >> 2]) | 0 + j = H[(e + 16) >> 2] + f = H[(e + 12) >> 2] + if ( + (b | 0) == + (((f | 0) != (j | 0) + ? (N((j - f) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((e + 8) | 0) + f = H[(e + 12) >> 2] + b = + (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | 0 + } + j = ((b >>> 0) / 341) | 0 + b = + (H[((j << 2) + f) >> 2] + + N((b - N(j, 341)) | 0, 12)) | + 0 + H[(b + 8) >> 2] = g + H[(b + 4) >> 2] = a + H[b >> 2] = c + H[(e + 28) >> 2] = H[(e + 28) >> 2] + 1 + } + if (!i) { + break f + } + b = (H[(e + 28) >> 2] + H[(e + 24) >> 2]) | 0 + c = H[(e + 16) >> 2] + f = H[(e + 12) >> 2] + if ( + (b | 0) == + (((c | 0) != (f | 0) + ? (N((c - f) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((e + 8) | 0) + f = H[(e + 12) >> 2] + b = (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | 0 + } + c = ((b >>> 0) / 341) | 0 + b = + (H[((c << 2) + f) >> 2] + + N((b - N(c, 341)) | 0, 12)) | + 0 + H[(b + 8) >> 2] = m + H[(b + 4) >> 2] = a + H[b >> 2] = i + H[(e + 28) >> 2] = H[(e + 28) >> 2] + 1 + break f + } + n = 0 + if (!j) { + break f + } + while (1) { + if (H[(d + 12) >> 2]) { + i = H[(d + 36) >> 2] + q = H[o >> 2] + c = H[(d + 92) >> 2] + u = H[(d + 104) >> 2] + a = 0 + while (1) { + g = ((a << 2) + u) | 0 + H[(c + (H[g >> 2] << 2)) >> 2] = 0 + b = H[d >> 2] + f = H[g >> 2] << 2 + k = H[(f + q) >> 2] + o: { + if ((b | 0) == (k | 0)) { + break o + } + f = (c + f) | 0 + b = (b - k) | 0 + k = H[(d + 48) >> 2] + p = (32 - k) | 0 + if ((b | 0) <= (p | 0)) { + m = H[(d + 44) >> 2] + if ((m | 0) == (i | 0)) { + c = 0 + break e + } + H[f >> 2] = + (H[m >> 2] << k) >>> (32 - b) + b = (b + H[(d + 48) >> 2]) | 0 + H[(d + 48) >> 2] = b + if ((b | 0) != 32) { + break o + } + H[(d + 48) >> 2] = 0 + H[(d + 44) >> 2] = m + 4 + break o + } + m = H[(d + 44) >> 2] + s = (m + 4) | 0 + if ((i | 0) == (s | 0)) { + c = 0 + break e + } + w = H[m >> 2] + H[(d + 44) >> 2] = s + p = (b - p) | 0 + H[(d + 48) >> 2] = p + H[f >> 2] = + (H[(m + 4) >> 2] >>> (32 - p)) | + ((w << k) >>> (32 - b)) + } + b = H[g >> 2] << 2 + g = (b + c) | 0 + H[g >> 2] = + H[g >> 2] | H[(b + H[l >> 2]) >> 2] + a = (a + 1) | 0 + if (a >>> 0 < K[(d + 12) >> 2]) { + continue + } + break + } + } + i = 0 + a = H[(h + 16) >> 2] + p: { + if ((a | 0) == H[(h + 20) >> 2]) { + break p + } + while (1) { + f = H[(h + 28) >> 2] + c = (N(i, 20) + a) | 0 + k = H[c >> 2] + if (!I[(k + 84) | 0]) { + f = H[(H[(k + 68) >> 2] + (f << 2)) >> 2] + } + if (K[(k + 80) >> 2] <= f >>> 0) { + break p + } + m = + (H[(d + 92) >> 2] + + (H[(c + 4) >> 2] << 2)) | + 0 + g = H[(c + 12) >> 2] + b = m + q: { + if (g >>> 0 > 3) { + break q + } + a = 0 + b = H[(h + 12) >> 2] + if (!H[(c + 16) >> 2]) { + break q + } + while (1) { + b = qa(b, (m + (a << 2)) | 0, g) + g = H[(c + 12) >> 2] + b = (b + g) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(c + 16) >> 2]) { + continue + } + break + } + b = H[(h + 12) >> 2] + } + a = H[(k + 40) >> 2] + qa((H[H[k >> 2] >> 2] + N(a, f)) | 0, b, a) + i = (i + 1) | 0 + a = H[(h + 16) >> 2] + if ( + i >>> 0 < + (((H[(h + 20) >> 2] - a) | 0) / 20) >>> 0 + ) { + continue + } + break + } + } + H[(h + 28) >> 2] = H[(h + 28) >> 2] + 1 + H[(d + 8) >> 2] = H[(d + 8) >> 2] + 1 + n = (n + 1) | 0 + if ((j | 0) != (n | 0)) { + continue + } + break + } + } + a = H[(e + 28) >> 2] + if (a) { + continue + } + break + } + c = 1 + } + H[(e + 28) >> 2] = 0 + f = H[(e + 16) >> 2] + a = H[(e + 12) >> 2] + b = (f - a) | 0 + if (b >>> 0 >= 9) { + while (1) { + oa(H[a >> 2]) + a = (H[(e + 12) >> 2] + 4) | 0 + H[(e + 12) >> 2] = a + f = H[(e + 16) >> 2] + b = (f - a) | 0 + if (b >>> 0 > 8) { + continue + } + break + } + } + g = 170 + r: { + switch ((((b >>> 2) | 0) - 1) | 0) { + case 1: + g = 341 + case 0: + H[(e + 24) >> 2] = g + break + default: + break r + } + } + s: { + if ((a | 0) == (f | 0)) { + break s + } + while (1) { + oa(H[a >> 2]) + a = (a + 4) | 0 + if ((f | 0) != (a | 0)) { + continue + } + break + } + a = H[(e + 16) >> 2] + b = H[(e + 12) >> 2] + if ((a | 0) == (b | 0)) { + break s + } + H[(e + 16) >> 2] = a + ((((b - a) | 0) + 3) & -4) + } + a = H[(e + 8) >> 2] + if (a) { + oa(a) + } + ca = (e + 32) | 0 + break b + } + sa() + v() + } + sa() + v() + } + i = c + } + return i + } + function xd(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0 + i = H[(b + 8) >> 2] + k = H[(b + 12) >> 2] + n = H[(b + 20) >> 2] + h = H[(b + 16) >> 2] + f = (h + 4) | 0 + n = f >>> 0 < 4 ? (n + 1) | 0 : n + a: { + if ( + (((k | 0) <= (n | 0)) & (f >>> 0 > i >>> 0)) | + ((k | 0) < (n | 0)) + ) { + break a + } + h = (h + H[b >> 2]) | 0 + H[a >> 2] = + I[h | 0] | + (I[(h + 1) | 0] << 8) | + ((I[(h + 2) | 0] << 16) | (I[(h + 3) | 0] << 24)) + h = H[(b + 20) >> 2] + i = h + f = H[(b + 16) >> 2] + h = (f + 4) | 0 + k = h >>> 0 < 4 ? (i + 1) | 0 : i + H[(b + 16) >> 2] = h + H[(b + 20) >> 2] = k + if (K[a >> 2] > 32) { + break a + } + k = H[(b + 8) >> 2] + n = H[(b + 12) >> 2] + f = (f + 8) | 0 + i = f >>> 0 < 8 ? (i + 1) | 0 : i + if ( + ((f >>> 0 > k >>> 0) & ((i | 0) >= (n | 0))) | + ((i | 0) > (n | 0)) + ) { + break a + } + h = (H[b >> 2] + h) | 0 + f = + I[h | 0] | + (I[(h + 1) | 0] << 8) | + ((I[(h + 2) | 0] << 16) | (I[(h + 3) | 0] << 24)) + H[(a + 4) >> 2] = f + i = H[(b + 20) >> 2] + h = (H[(b + 16) >> 2] + 4) | 0 + i = h >>> 0 < 4 ? (i + 1) | 0 : i + H[(b + 16) >> 2] = h + H[(b + 20) >> 2] = i + if (!f) { + return 1 + } + if (d >>> 0 < f >>> 0) { + break a + } + H[(a + 8) >> 2] = 0 + if (!ta((a + 16) | 0, b)) { + break a + } + if (!ua((a + 32) | 0, b)) { + break a + } + if (!ua((a + 52) | 0, b)) { + break a + } + if (!ua((a + 72) | 0, b)) { + break a + } + u = H[(a + 4) >> 2] + h = c + b = 0 + c = 0 + e = (ca - 32) | 0 + ca = e + f = a + a = H[(a + 12) >> 2] + H[(e + 16) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + b: { + c: { + if (a) { + if (a >>> 0 >= 1073741824) { + break c + } + d = a << 2 + b = pa(d) + H[(e + 8) >> 2] = b + c = (b + d) | 0 + H[(e + 16) >> 2] = c + ra(b, 0, d) + H[(e + 12) >> 2] = c + } + j = H[(f + 116) >> 2] + d = H[j >> 2] + if (d) { + H[(j + 4) >> 2] = d + oa(d) + c = H[(e + 12) >> 2] + b = H[(e + 8) >> 2] + a = H[(f + 12) >> 2] + } + H[(j + 4) >> 2] = c + H[j >> 2] = b + H[(j + 8) >> 2] = H[(e + 16) >> 2] + b = 0 + H[(e + 16) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + d: { + if (a) { + if (a >>> 0 >= 1073741824) { + break d + } + a = a << 2 + g = pa(a) + H[(e + 8) >> 2] = g + b = (a + g) | 0 + H[(e + 16) >> 2] = b + ra(g, 0, a) + H[(e + 12) >> 2] = b + } + c = H[(f + 128) >> 2] + a = H[c >> 2] + if (a) { + H[(c + 4) >> 2] = a + oa(a) + g = H[(e + 8) >> 2] + b = H[(e + 12) >> 2] + } + H[(c + 4) >> 2] = b + H[c >> 2] = g + H[(c + 8) >> 2] = H[(e + 16) >> 2] + H[(e + 24) >> 2] = 0 + H[(e + 28) >> 2] = 0 + H[(e + 16) >> 2] = 0 + H[(e + 20) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + xa((e + 8) | 0) + b = (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | 0 + a = ((b >>> 0) / 341) | 0 + a = + (H[(H[(e + 12) >> 2] + (a << 2)) >> 2] + + N((b - N(a, 341)) | 0, 12)) | + 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = u + d = 1 + a = (H[(e + 28) >> 2] + 1) | 0 + H[(e + 28) >> 2] = a + e: { + if (!a) { + break e + } + n = (f + 16) | 0 + while (1) { + i = H[(e + 12) >> 2] + j = H[(e + 24) >> 2] + d = (a - 1) | 0 + c = (j + d) | 0 + b = ((c >>> 0) / 341) | 0 + b = + (H[(i + (b << 2)) >> 2] + + N((c - N(b, 341)) | 0, 12)) | + 0 + o = H[(b + 8) >> 2] + c = H[(b + 4) >> 2] + m = H[b >> 2] + H[(e + 28) >> 2] = d + b = H[(e + 16) >> 2] + if ( + (((((b | 0) != (i | 0) + ? (N((b - i) >> 2, 341) - 1) | 0 + : 0) - + ((a + j) | 0)) | + 0) + + 1) >>> + 0 >= + 682 + ) { + oa(H[(b - 4) >> 2]) + H[(e + 16) >> 2] = H[(e + 16) >> 2] - 4 + } + if (m >>> 0 > u >>> 0) { + d = 0 + break e + } + d = 0 + b = H[(f + 12) >> 2] + a = (c | 0) != ((b - 1) | 0) ? (c + 1) | 0 : 0 + if (a >>> 0 >= b >>> 0) { + break e + } + b = H[(f + 116) >> 2] + p = N(o, 12) + r = (b + p) | 0 + j = H[f >> 2] + g = a << 2 + k = (p + H[(f + 128) >> 2]) | 0 + c = H[(g + H[k >> 2]) >> 2] + f: { + if ((j | 0) == (c | 0)) { + if (!m) { + break f + } + b = H[(h + 20) >> 2] + c = H[(h + 16) >> 2] + if ((b | 0) == (c | 0)) { + a = H[(f + 8) >> 2] + H[(h + 28) >> 2] = m + H[(h + 28) >> 2] + H[(f + 8) >> 2] = a + m + break f + } + while (1) { + i = (b | 0) == (c | 0) + a = b + j = 0 + b = c + g: { + if (i) { + break g + } + while (1) { + g = H[(h + 28) >> 2] + b = a + l = (N(j, 20) + c) | 0 + k = H[l >> 2] + if (!I[(k + 84) | 0]) { + g = + H[(H[(k + 68) >> 2] + (g << 2)) >> 2] + } + if (K[(k + 80) >> 2] <= g >>> 0) { + break g + } + i = + (H[r >> 2] + (H[(l + 4) >> 2] << 2)) | 0 + c = H[(l + 12) >> 2] + b = i + h: { + if (c >>> 0 > 3) { + break h + } + a = 0 + b = H[(h + 12) >> 2] + if (!H[(l + 16) >> 2]) { + break h + } + while (1) { + b = qa(b, (i + (a << 2)) | 0, c) + c = H[(l + 12) >> 2] + b = (b + c) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(l + 16) >> 2]) { + continue + } + break + } + b = H[(h + 12) >> 2] + } + a = H[(k + 40) >> 2] + qa( + (H[H[k >> 2] >> 2] + N(a, g)) | 0, + b, + a, + ) + j = (j + 1) | 0 + a = H[(h + 20) >> 2] + b = a + c = H[(h + 16) >> 2] + if ( + j >>> 0 < + (((b - c) | 0) / 20) >>> 0 + ) { + continue + } + break + } + } + H[(h + 28) >> 2] = H[(h + 28) >> 2] + 1 + H[(f + 8) >> 2] = H[(f + 8) >> 2] + 1 + d = (d + 1) | 0 + if ((m | 0) != (d | 0)) { + continue + } + break + } + break f + } + i: { + j: { + k: { + l: { + if (m >>> 0 <= 2) { + c = H[(f + 104) >> 2] + H[c >> 2] = a + g = 1 + b = H[(f + 12) >> 2] + if (b >>> 0 > 1) { + break l + } + break i + } + if (K[(f + 8) >> 2] > K[(f + 4) >> 2]) { + break e + } + i = b + b = (p + 12) | 0 + Aa( + (i + b) | 0, + H[r >> 2], + H[(r + 4) >> 2], + ) + b = + (g + H[(b + H[(f + 116) >> 2]) >> 2]) | + 0 + H[b >> 2] = + H[b >> 2] + (1 << (j + (c ^ -1))) + H[(e + 4) >> 2] = 0 + pc(n, Q(m) ^ 31, (e + 4) | 0) + c = (m >>> 1) | 0 + b = H[(e + 4) >> 2] + if (c >>> 0 < b >>> 0) { + break e + } + l = (o + 1) | 0 + b = (c - b) | 0 + c = (m - b) | 0 + m: { + if ((c | 0) == (b | 0)) { + c = b + break m + } + k = H[(f + 84) >> 2] + if ((k | 0) == H[(f + 76) >> 2]) { + break k + } + i = H[k >> 2] + j = H[(f + 88) >> 2] + d = (j + 1) | 0 + H[(f + 88) >> 2] = d + j = i & (-2147483648 >>> j) + n: { + if ((d | 0) == 32) { + H[(f + 88) >> 2] = 0 + H[(f + 84) >> 2] = k + 4 + if (j) { + break n + } + break k + } + if (!j) { + break k + } + } + } + j = c + c = b + break j + } + while (1) { + a = + ((b - 1) | 0) != (a | 0) + ? (a + 1) | 0 + : 0 + H[(c + (g << 2)) >> 2] = a + b = H[(f + 12) >> 2] + g = (g + 1) | 0 + if (b >>> 0 > g >>> 0) { + continue + } + break + } + break i + } + j = b + } + k = H[(f + 128) >> 2] + i = (k + p) | 0 + d = H[i >> 2] + b = (d + g) | 0 + H[b >> 2] = H[b >> 2] + 1 + Aa((k + N(l, 12)) | 0, d, H[(i + 4) >> 2]) + if (c) { + b = (H[(e + 28) >> 2] + H[(e + 24) >> 2]) | 0 + d = H[(e + 16) >> 2] + g = H[(e + 12) >> 2] + if ( + (b | 0) == + (((d | 0) != (g | 0) + ? (N((d - g) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((e + 8) | 0) + g = H[(e + 12) >> 2] + b = + (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | 0 + } + d = ((b >>> 0) / 341) | 0 + b = + (H[((d << 2) + g) >> 2] + + N((b - N(d, 341)) | 0, 12)) | + 0 + H[(b + 8) >> 2] = o + H[(b + 4) >> 2] = a + H[b >> 2] = c + H[(e + 28) >> 2] = H[(e + 28) >> 2] + 1 + } + if (!j) { + break f + } + b = (H[(e + 28) >> 2] + H[(e + 24) >> 2]) | 0 + c = H[(e + 16) >> 2] + g = H[(e + 12) >> 2] + if ( + (b | 0) == + (((c | 0) != (g | 0) + ? (N((c - g) >> 2, 341) - 1) | 0 + : 0) | + 0) + ) { + xa((e + 8) | 0) + g = H[(e + 12) >> 2] + b = (H[(e + 24) >> 2] + H[(e + 28) >> 2]) | 0 + } + c = ((b >>> 0) / 341) | 0 + b = + (H[((c << 2) + g) >> 2] + + N((b - N(c, 341)) | 0, 12)) | + 0 + H[(b + 8) >> 2] = l + H[(b + 4) >> 2] = a + H[b >> 2] = j + H[(e + 28) >> 2] = H[(e + 28) >> 2] + 1 + break f + } + s = 0 + if (!m) { + break f + } + while (1) { + if (H[(f + 12) >> 2]) { + w = H[(f + 36) >> 2] + i = H[k >> 2] + t = H[(f + 92) >> 2] + j = H[(f + 104) >> 2] + a = 0 + while (1) { + o = ((a << 2) + j) | 0 + H[(t + (H[o >> 2] << 2)) >> 2] = 0 + d = H[f >> 2] + c = H[o >> 2] << 2 + b = H[(c + i) >> 2] + o: { + if ((d | 0) == (b | 0)) { + break o + } + p = (c + t) | 0 + q = (d - b) | 0 + g = H[(f + 48) >> 2] + d = (32 - g) | 0 + if ((q | 0) <= (d | 0)) { + c = H[(f + 44) >> 2] + if ((c | 0) == (w | 0)) { + d = 0 + break e + } + H[p >> 2] = + (H[c >> 2] << g) >>> (32 - q) + b = (q + H[(f + 48) >> 2]) | 0 + H[(f + 48) >> 2] = b + if ((b | 0) != 32) { + break o + } + H[(f + 48) >> 2] = 0 + H[(f + 44) >> 2] = c + 4 + break o + } + l = H[(f + 44) >> 2] + b = (l + 4) | 0 + if ((w | 0) == (b | 0)) { + d = 0 + break e + } + c = H[l >> 2] + H[(f + 44) >> 2] = b + b = (q - d) | 0 + H[(f + 48) >> 2] = b + H[p >> 2] = + (H[(l + 4) >> 2] >>> (32 - b)) | + ((c << g) >>> (32 - q)) + } + c = H[o >> 2] << 2 + b = (c + t) | 0 + H[b >> 2] = + H[b >> 2] | H[(c + H[r >> 2]) >> 2] + a = (a + 1) | 0 + if (a >>> 0 < K[(f + 12) >> 2]) { + continue + } + break + } + } + j = 0 + a = H[(h + 16) >> 2] + p: { + if ((a | 0) == H[(h + 20) >> 2]) { + break p + } + while (1) { + g = H[(h + 28) >> 2] + l = (N(j, 20) + a) | 0 + i = H[l >> 2] + if (!I[(i + 84) | 0]) { + g = H[(H[(i + 68) >> 2] + (g << 2)) >> 2] + } + if (K[(i + 80) >> 2] <= g >>> 0) { + break p + } + d = + (H[(f + 92) >> 2] + + (H[(l + 4) >> 2] << 2)) | + 0 + c = H[(l + 12) >> 2] + b = d + q: { + if (c >>> 0 > 3) { + break q + } + a = 0 + b = H[(h + 12) >> 2] + if (!H[(l + 16) >> 2]) { + break q + } + while (1) { + b = qa(b, (d + (a << 2)) | 0, c) + c = H[(l + 12) >> 2] + b = (b + c) | 0 + a = (a + 1) | 0 + if (a >>> 0 < K[(l + 16) >> 2]) { + continue + } + break + } + b = H[(h + 12) >> 2] + } + a = H[(i + 40) >> 2] + qa((H[H[i >> 2] >> 2] + N(a, g)) | 0, b, a) + j = (j + 1) | 0 + a = H[(h + 16) >> 2] + if ( + j >>> 0 < + (((H[(h + 20) >> 2] - a) | 0) / 20) >>> 0 + ) { + continue + } + break + } + } + H[(h + 28) >> 2] = H[(h + 28) >> 2] + 1 + H[(f + 8) >> 2] = H[(f + 8) >> 2] + 1 + s = (s + 1) | 0 + if ((m | 0) != (s | 0)) { + continue + } + break + } + } + a = H[(e + 28) >> 2] + if (a) { + continue + } + break + } + d = 1 + } + H[(e + 28) >> 2] = 0 + g = H[(e + 16) >> 2] + a = H[(e + 12) >> 2] + b = (g - a) | 0 + if (b >>> 0 >= 9) { + while (1) { + oa(H[a >> 2]) + a = (H[(e + 12) >> 2] + 4) | 0 + H[(e + 12) >> 2] = a + g = H[(e + 16) >> 2] + b = (g - a) | 0 + if (b >>> 0 > 8) { + continue + } + break + } + } + c = 170 + r: { + switch ((((b >>> 2) | 0) - 1) | 0) { + case 1: + c = 341 + case 0: + H[(e + 24) >> 2] = c + break + default: + break r + } + } + s: { + if ((a | 0) == (g | 0)) { + break s + } + while (1) { + oa(H[a >> 2]) + a = (a + 4) | 0 + if ((g | 0) != (a | 0)) { + continue + } + break + } + b = H[(e + 16) >> 2] + a = H[(e + 12) >> 2] + if ((b | 0) == (a | 0)) { + break s + } + H[(e + 16) >> 2] = b + ((((a - b) | 0) + 3) & -4) + } + a = H[(e + 8) >> 2] + if (a) { + oa(a) + } + ca = (e + 32) | 0 + j = d + break b + } + sa() + v() + } + sa() + v() + } + } + return j + } + function $c(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0 + h = (ca - 32) | 0 + ca = h + g = H[(H[(a + 4) >> 2] + 44) >> 2] + c = H[(a + 8) >> 2] + d = H[c >> 2] + c = H[(c + 4) >> 2] + H[(h + 24) >> 2] = 0 + H[(h + 16) >> 2] = 0 + H[(h + 20) >> 2] = 0 + d = ((((c - d) >> 2) >>> 0) / 3) | 0 + c = H[(g + 96) >> 2] + f = (((H[(g + 100) >> 2] - c) | 0) / 12) | 0 + a: { + if (d >>> 0 > f >>> 0) { + e = (d - f) | 0 + i = H[(g + 104) >> 2] + c = H[(g + 100) >> 2] + if (e >>> 0 <= (((i - c) | 0) / 12) >>> 0) { + b: { + if (!e) { + break b + } + d = c + f = (N(e, 12) - 12) | 0 + i = ((((f >>> 0) / 12) | 0) + 1) & 3 + if (i) { + while (1) { + l = H[(h + 20) >> 2] + H[d >> 2] = H[(h + 16) >> 2] + H[(d + 4) >> 2] = l + H[(d + 8) >> 2] = H[(h + 24) >> 2] + d = (d + 12) | 0 + j = (j + 1) | 0 + if ((i | 0) != (j | 0)) { + continue + } + break + } + } + c = (N(e, 12) + c) | 0 + if (f >>> 0 < 36) { + break b + } + while (1) { + f = H[(h + 20) >> 2] + H[d >> 2] = H[(h + 16) >> 2] + H[(d + 4) >> 2] = f + H[(d + 8) >> 2] = H[(h + 24) >> 2] + H[(d + 20) >> 2] = H[(h + 24) >> 2] + f = H[(h + 20) >> 2] + H[(d + 12) >> 2] = H[(h + 16) >> 2] + H[(d + 16) >> 2] = f + H[(d + 32) >> 2] = H[(h + 24) >> 2] + f = H[(h + 20) >> 2] + H[(d + 24) >> 2] = H[(h + 16) >> 2] + H[(d + 28) >> 2] = f + f = H[(h + 20) >> 2] + H[(d + 36) >> 2] = H[(h + 16) >> 2] + H[(d + 40) >> 2] = f + H[(d + 44) >> 2] = H[(h + 24) >> 2] + d = (d + 48) | 0 + if ((d | 0) != (c | 0)) { + continue + } + break + } + } + H[(g + 100) >> 2] = c + break a + } + c: { + f = H[(g + 96) >> 2] + n = (((c - f) | 0) / 12) | 0 + d = (n + e) | 0 + if (d >>> 0 < 357913942) { + f = (((i - f) | 0) / 12) | 0 + i = f << 1 + i = + f >>> 0 >= 178956970 + ? 357913941 + : d >>> 0 < i >>> 0 + ? i + : d + if (i) { + if (i >>> 0 >= 357913942) { + break c + } + l = pa(N(i, 12)) + } + f = (N(n, 12) + l) | 0 + d = f + e = N(e, 12) + n = (e - 12) | 0 + q = ((((n >>> 0) / 12) | 0) + 1) & 3 + if (q) { + while (1) { + r = H[(h + 20) >> 2] + H[d >> 2] = H[(h + 16) >> 2] + H[(d + 4) >> 2] = r + H[(d + 8) >> 2] = H[(h + 24) >> 2] + d = (d + 12) | 0 + j = (j + 1) | 0 + if ((q | 0) != (j | 0)) { + continue + } + break + } + } + e = (e + f) | 0 + if (n >>> 0 >= 36) { + while (1) { + j = H[(h + 20) >> 2] + H[d >> 2] = H[(h + 16) >> 2] + H[(d + 4) >> 2] = j + H[(d + 8) >> 2] = H[(h + 24) >> 2] + H[(d + 20) >> 2] = H[(h + 24) >> 2] + j = H[(h + 20) >> 2] + H[(d + 12) >> 2] = H[(h + 16) >> 2] + H[(d + 16) >> 2] = j + H[(d + 32) >> 2] = H[(h + 24) >> 2] + j = H[(h + 20) >> 2] + H[(d + 24) >> 2] = H[(h + 16) >> 2] + H[(d + 28) >> 2] = j + j = H[(h + 20) >> 2] + H[(d + 36) >> 2] = H[(h + 16) >> 2] + H[(d + 40) >> 2] = j + H[(d + 44) >> 2] = H[(h + 24) >> 2] + d = (d + 48) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + j = H[(g + 96) >> 2] + if ((j | 0) != (c | 0)) { + while (1) { + c = (c - 12) | 0 + n = H[(c + 4) >> 2] + f = (f - 12) | 0 + d = f + H[d >> 2] = H[c >> 2] + H[(d + 4) >> 2] = n + H[(d + 8) >> 2] = H[(c + 8) >> 2] + if ((c | 0) != (j | 0)) { + continue + } + break + } + c = H[(g + 96) >> 2] + } + H[(g + 104) >> 2] = N(i, 12) + l + H[(g + 100) >> 2] = e + H[(g + 96) >> 2] = f + if (c) { + oa(c) + } + break a + } + sa() + v() + } + wa() + v() + } + if (d >>> 0 >= f >>> 0) { + break a + } + H[(g + 100) >> 2] = c + N(d, 12) + } + d: { + if (H[(a + 216) >> 2] == H[(a + 220) >> 2]) { + j = H[(a + 4) >> 2] + c = H[(j + 44) >> 2] + d = H[(c + 100) >> 2] + f = H[(c + 96) >> 2] + if ((d | 0) != (f | 0)) { + c = (((d - f) | 0) / 12) | 0 + o = c >>> 0 <= 1 ? 1 : c + c = 0 + while (1) { + d = H[(a + 8) >> 2] + i = (f + N(c, 12)) | 0 + g = N(c, 3) + e: { + f: { + if ((g | 0) == -1) { + e = H[(((H[d >> 2] + (g << 2)) | 0) + 4) >> 2] + k = -1 + g = 1 + break f + } + e = -1 + k = H[(H[d >> 2] + (g << 2)) >> 2] + l = (g + 1) | 0 + if ((l | 0) == -1) { + g = 0 + break f + } + e = H[(H[d >> 2] + (l << 2)) >> 2] + g = (g + 2) | 0 + m = -1 + if ((g | 0) == -1) { + break e + } + } + m = H[(H[d >> 2] + (g << 2)) >> 2] + } + H[(i + 8) >> 2] = m + H[(i + 4) >> 2] = e + H[i >> 2] = k + c = (c + 1) | 0 + if ((o | 0) != (c | 0)) { + continue + } + break + } + } + H[(H[(j + 4) >> 2] + 80) >> 2] = b + c = 1 + break d + } + d = 0 + H[(h + 24) >> 2] = 0 + H[(h + 16) >> 2] = 0 + H[(h + 20) >> 2] = 0 + l = H[(a + 8) >> 2] + c = H[l >> 2] + g = H[(l + 4) >> 2] + H[(h + 8) >> 2] = 0 + H[h >> 2] = 0 + H[(h + 4) >> 2] = 0 + b = 0 + g: { + h: { + i: { + j: { + k: { + l: { + if ((c | 0) != (g | 0)) { + c = (g - c) | 0 + if ((c | 0) < 0) { + break l + } + b = pa(c) + H[h >> 2] = b + H[(h + 8) >> 2] = (c & -4) + b + ;(u = h), + (w = (ra(b, 0, c) + c) | 0), + (H[(u + 4) >> 2] = w) + } + c = H[(l + 24) >> 2] + if (((H[(l + 28) >> 2] - c) | 0) < 4) { + break h + } + f = 0 + while (1) { + g = H[((p << 2) + c) >> 2] + m: { + if ((g | 0) == -1) { + break m + } + n: { + if ( + (H[ + (H[(a + 120) >> 2] + + ((p >>> 3) & 536870908)) >> + 2 + ] >>> + p) & + 1 + ) { + break n + } + n = H[(a + 216) >> 2] + c = H[(a + 220) >> 2] + if ((n | 0) == (c | 0)) { + break n + } + e = (g + 2) | 0 + i = (g >>> 0) % 3 | 0 + q = i ? (g - 1) | 0 : e + c = (((c - n) | 0) / 144) | 0 + r = c >>> 0 <= 1 ? 1 : c + j = 0 + t = ((i | 0) != 0) | ((e | 0) != -1) + while (1) { + s = g << 2 + i = (N(j, 144) + n) | 0 + c = H[(s + H[H[(i + 68) >> 2] >> 2]) >> 2] + o: { + if ( + !( + (H[ + (H[(i + 16) >> 2] + + ((c >>> 3) & 536870908)) >> + 2 + ] >>> + c) & + 1 + ) + ) { + break o + } + c = -1 + p: { + if (!t) { + break p + } + e = + H[ + (H[(l + 12) >> 2] + (q << 2)) >> 2 + ] + c = -1 + if ((e | 0) == -1) { + break p + } + c = (e - 1) | 0 + if ((e >>> 0) % 3 | 0) { + break p + } + c = (e + 2) | 0 + } + if ((g | 0) == (c | 0)) { + break o + } + e = s + s = H[(i + 32) >> 2] + i = H[(e + s) >> 2] + while (1) { + e = 0 + if ((c | 0) == -1) { + break g + } + if ( + (i | 0) != + H[(s + (c << 2)) >> 2] + ) { + g = c + break n + } + q: { + r: { + if ((c >>> 0) % 3 | 0) { + e = (c - 1) | 0 + break r + } + e = (c + 2) | 0 + m = -1 + if ((e | 0) == -1) { + break q + } + } + c = + H[ + (H[(l + 12) >> 2] + (e << 2)) >> + 2 + ] + m = -1 + if ((c | 0) == -1) { + break q + } + m = (c - 1) | 0 + if ((c >>> 0) % 3 | 0) { + break q + } + m = (c + 2) | 0 + } + c = m + if ((g | 0) != (c | 0)) { + continue + } + break + } + } + j = (j + 1) | 0 + if ((r | 0) != (j | 0)) { + continue + } + break + } + } + i = (k - f) | 0 + e = i >> 2 + H[((g << 2) + b) >> 2] = e + s: { + if (k >>> 0 < o >>> 0) { + H[k >> 2] = g + k = (k + 4) | 0 + H[(h + 20) >> 2] = k + break s + } + c = (e + 1) | 0 + if (c >>> 0 >= 1073741824) { + break k + } + d = (o - f) | 0 + k = (d >>> 1) | 0 + c = + d >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < k >>> 0 + ? k + : c + if (c) { + if (c >>> 0 >= 1073741824) { + break j + } + d = pa(c << 2) + } else { + d = 0 + } + e = (d + (e << 2)) | 0 + H[e >> 2] = g + m = c << 2 + c = va(d, f, i) + o = (m + c) | 0 + H[(h + 24) >> 2] = o + k = (e + 4) | 0 + H[(h + 20) >> 2] = k + H[(h + 16) >> 2] = c + if (f) { + oa(f) + l = H[(a + 8) >> 2] + } + f = c + } + if ((g | 0) == -1) { + break m + } + t: { + if ((g >>> 0) % 3 | 0) { + c = (g - 1) | 0 + break t + } + c = (g + 2) | 0 + if ((c | 0) == -1) { + break m + } + } + c = H[(H[(l + 12) >> 2] + (c << 2)) >> 2] + if ((c | 0) == -1) { + break m + } + c = (c + ((c >>> 0) % 3 | 0 ? -1 : 2)) | 0 + if ((c | 0) == -1) { + break m + } + e = g + if ((c | 0) == (g | 0)) { + break m + } + while (1) { + i = c + u: { + v: { + c = H[(a + 220) >> 2] + j = H[(a + 216) >> 2] + if ((c | 0) == (j | 0)) { + break v + } + c = (((c - j) | 0) / 144) | 0 + n = c >>> 0 <= 1 ? 1 : c + c = 0 + while (1) { + q = + H[(((j + N(c, 144)) | 0) + 32) >> 2] + r = i << 2 + if ( + H[(q + r) >> 2] == + H[(q + (e << 2)) >> 2] + ) { + c = (c + 1) | 0 + if ((n | 0) != (c | 0)) { + continue + } + break v + } + break + } + j = (k - d) | 0 + e = j >> 2 + H[(b + r) >> 2] = e + if (k >>> 0 < o >>> 0) { + H[k >> 2] = i + k = (k + 4) | 0 + H[(h + 20) >> 2] = k + f = d + break u + } + c = (e + 1) | 0 + if (c >>> 0 >= 1073741824) { + break i + } + f = (o - d) | 0 + k = (f >>> 1) | 0 + c = + f >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < k >>> 0 + ? k + : c + if (c) { + if (c >>> 0 >= 1073741824) { + break j + } + f = pa(c << 2) + } else { + f = 0 + } + e = (f + (e << 2)) | 0 + H[e >> 2] = i + m = c << 2 + c = va(f, d, j) + o = (m + c) | 0 + H[(h + 24) >> 2] = o + k = (e + 4) | 0 + H[(h + 20) >> 2] = k + H[(h + 16) >> 2] = c + if (!d) { + d = c + break u + } + oa(d) + l = H[(a + 8) >> 2] + d = c + break u + } + H[((i << 2) + b) >> 2] = + H[((e << 2) + b) >> 2] + } + if ((i | 0) == -1) { + break m + } + w: { + if ((i >>> 0) % 3 | 0) { + c = (i - 1) | 0 + break w + } + c = (i + 2) | 0 + if ((c | 0) == -1) { + break m + } + } + c = H[(H[(l + 12) >> 2] + (c << 2)) >> 2] + if ((c | 0) == -1) { + break m + } + c = (c + ((c >>> 0) % 3 | 0 ? -1 : 2)) | 0 + if ((c | 0) == -1) { + break m + } + e = i + if ((c | 0) != (g | 0)) { + continue + } + break + } + } + p = (p + 1) | 0 + c = H[(l + 24) >> 2] + if ((p | 0) < (H[(l + 28) >> 2] - c) >> 2) { + continue + } + break + } + break h + } + sa() + v() + } + sa() + v() + } + wa() + v() + } + sa() + v() + } + i = H[(a + 4) >> 2] + a = H[(i + 44) >> 2] + c = H[(a + 100) >> 2] + a = H[(a + 96) >> 2] + x: { + if ((c | 0) == (a | 0)) { + break x + } + g = (((c - a) | 0) / 12) | 0 + f = g >>> 0 <= 1 ? 1 : g + l = f & 1 + c = 0 + if (g >>> 0 >= 2) { + j = f & -2 + g = 0 + while (1) { + e = N(c, 12) + f = (e + b) | 0 + o = H[f >> 2] + p = H[(f + 4) >> 2] + e = (a + e) | 0 + H[(e + 8) >> 2] = H[(f + 8) >> 2] + H[e >> 2] = o + H[(e + 4) >> 2] = p + e = N(c | 1, 12) + f = (e + b) | 0 + o = H[f >> 2] + p = H[(f + 4) >> 2] + e = (a + e) | 0 + H[(e + 8) >> 2] = H[(f + 8) >> 2] + H[e >> 2] = o + H[(e + 4) >> 2] = p + c = (c + 2) | 0 + g = (g + 2) | 0 + if ((j | 0) != (g | 0)) { + continue + } + break + } + } + if (!l) { + break x + } + g = N(c, 12) + c = (g + b) | 0 + f = H[c >> 2] + e = H[(c + 4) >> 2] + a = (a + g) | 0 + H[(a + 8) >> 2] = H[(c + 8) >> 2] + H[a >> 2] = f + H[(a + 4) >> 2] = e + } + H[(H[(i + 4) >> 2] + 80) >> 2] = (k - d) >> 2 + e = 1 + } + c = e + if (b) { + oa(b) + } + if (!d) { + break d + } + H[(h + 20) >> 2] = d + oa(d) + } + ca = (h + 32) | 0 + return c + } + function Fj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + O = 0, + P = 0 + g = (ca + -64) | 0 + ca = g + H[(a + 8) >> 2] = e + y = (a + 32) | 0 + f = H[y >> 2] + d = (H[(a + 36) >> 2] - f) >> 2 + a: { + b: { + if (d >>> 0 < e >>> 0) { + ya(y, (e - d) | 0) + H[(g + 56) >> 2] = 0 + H[(g + 60) >> 2] = 0 + H[(g + 48) >> 2] = 0 + H[(g + 52) >> 2] = 0 + H[(g + 40) >> 2] = 0 + H[(g + 44) >> 2] = 0 + H[(g + 32) >> 2] = 0 + H[(g + 36) >> 2] = 0 + H[(g + 24) >> 2] = 0 + H[(g + 28) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + H[g >> 2] = 0 + break b + } + if (d >>> 0 > e >>> 0) { + H[(a + 36) >> 2] = f + (e << 2) + } + H[(g + 56) >> 2] = 0 + H[(g + 60) >> 2] = 0 + H[(g + 48) >> 2] = 0 + H[(g + 52) >> 2] = 0 + H[(g + 40) >> 2] = 0 + H[(g + 44) >> 2] = 0 + H[(g + 32) >> 2] = 0 + H[(g + 36) >> 2] = 0 + H[(g + 24) >> 2] = 0 + H[(g + 28) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + H[g >> 2] = 0 + d = 0 + if (!e) { + break a + } + } + Pa((g + 16) | 0, e, g) + h = H[(g + 28) >> 2] + d = H[(g + 32) >> 2] + } + H[g >> 2] = 0 + d = (d - h) >> 2 + c: { + if (d >>> 0 >= e >>> 0) { + if (d >>> 0 <= e >>> 0) { + break c + } + H[(g + 32) >> 2] = (e << 2) + h + break c + } + Pa((g + 16) | 12, (e - d) | 0, g) + } + H[g >> 2] = 0 + f = H[(g + 40) >> 2] + d = (H[(g + 44) >> 2] - f) >> 2 + d: { + if (d >>> 0 >= e >>> 0) { + if (d >>> 0 <= e >>> 0) { + break d + } + H[(g + 44) >> 2] = f + (e << 2) + break d + } + Pa((g + 40) | 0, (e - d) | 0, g) + } + H[g >> 2] = 0 + f = H[(g + 52) >> 2] + d = (H[(g + 56) >> 2] - f) >> 2 + e: { + if (d >>> 0 >= e >>> 0) { + if (d >>> 0 <= e >>> 0) { + break e + } + H[(g + 56) >> 2] = f + (e << 2) + break e + } + Pa((g + 52) | 0, (e - d) | 0, g) + } + f: { + if (H[(a + 8) >> 2] <= 0) { + break f + } + i = H[(g + 16) >> 2] + j = H[(a + 32) >> 2] + h = 0 + while (1) { + d = h << 2 + f = H[(d + i) >> 2] + m = H[(a + 16) >> 2] + g: { + if ((f | 0) > (m | 0)) { + H[(d + j) >> 2] = m + break g + } + d = (d + j) | 0 + m = H[(a + 12) >> 2] + if ((m | 0) > (f | 0)) { + H[d >> 2] = m + break g + } + H[d >> 2] = f + } + h = (h + 1) | 0 + d = H[(a + 8) >> 2] + if ((h | 0) < (d | 0)) { + continue + } + break + } + if ((d | 0) <= 0) { + break f + } + d = 0 + while (1) { + i = d << 2 + f = (i + c) | 0 + i = (H[(b + i) >> 2] + H[(j + i) >> 2]) | 0 + H[f >> 2] = i + h: { + if ((i | 0) > H[(a + 16) >> 2]) { + i = (i - H[(a + 20) >> 2]) | 0 + } else { + if ((i | 0) >= H[(a + 12) >> 2]) { + break h + } + i = (i + H[(a + 20) >> 2]) | 0 + } + H[f >> 2] = i + } + d = (d + 1) | 0 + if ((d | 0) < H[(a + 8) >> 2]) { + continue + } + break + } + } + G = H[(a + 52) >> 2] + t = H[(a + 48) >> 2] + z = pa(16) + d = z + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + H[(d + 8) >> 2] = 0 + H[(d + 12) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[g >> 2] = 0 + H[(g + 4) >> 2] = 0 + i: { + if (e) { + if (e >>> 0 >= 1073741824) { + break i + } + d = e << 2 + r = pa(d) + H[g >> 2] = r + H[(g + 8) >> 2] = d + r + ra(r, 0, d) + } + A = 1 + d = H[(a + 56) >> 2] + B = H[d >> 2] + d = (H[(d + 4) >> 2] - B) | 0 + j: { + if ((d | 0) < 8) { + break j + } + w = d >> 2 + I = (w | 0) <= 2 ? 2 : w + J = w >>> 0 <= 1 ? 1 : w + C = e & -2 + D = e & 1 + K = e & -4 + E = e & 3 + F = (e - 1) | 0 + L = e << 2 + M = e >>> 0 < 4 + A = 0 + m = 1 + while (1) { + k: { + l: { + m: { + n: { + if ((m | 0) != (J | 0)) { + o: { + p: { + f = H[((m << 2) + B) >> 2] + if ((f | 0) == -1) { + break p + } + k = 1 + d = (f + 2) | 0 + j = (f >>> 0) % 3 | 0 + x = j ? (f - 1) | 0 : d + s = 1 << x + n = H[t >> 2] + O = (n + ((x >>> 3) & 536870908)) | 0 + i = 0 + P = ((j | 0) != 0) | ((d | 0) != -1) + d = f + q: { + while (1) { + r: { + if ( + (H[ + (n + ((d >>> 3) & 536870908)) >> 2 + ] >>> + d) & + 1 + ) { + break r + } + j = + H[ + (H[(H[(t + 64) >> 2] + 12) >> 2] + + (d << 2)) >> + 2 + ] + if ((j | 0) == -1) { + break r + } + l = H[G >> 2] + h = H[(t + 28) >> 2] + p = + H[ + (l + + (H[(h + (j << 2)) >> 2] << + 2)) >> + 2 + ] + if ((p | 0) >= (m | 0)) { + break r + } + q = (j + 1) | 0 + q = + H[ + (l + + (H[ + (h + + (((q >>> 0) % 3 | 0 + ? q + : (j - 2) | 0) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] + if ((q | 0) >= (m | 0)) { + break r + } + h = + H[ + (l + + (H[ + (h + + ((j + + ((j >>> 0) % 3 | 0 + ? -1 + : 2)) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] + if ((h | 0) >= (m | 0)) { + break r + } + s: { + if (!e) { + break s + } + j = + H[ + (((g + 16) | 0) + N(i, 12)) >> 2 + ] + l = N(e, h) + q = N(e, q) + p = N(e, p) + h = 0 + o = 0 + if (F) { + while (1) { + H[(j + (h << 2)) >> 2] = + ((H[ + (((h + l) << 2) + c) >> 2 + ] + + H[ + (((h + q) << 2) + c) >> 2 + ]) | + 0) - + H[(((h + p) << 2) + c) >> 2] + u = h | 1 + H[(j + (u << 2)) >> 2] = + ((H[ + (((l + u) << 2) + c) >> 2 + ] + + H[ + (((q + u) << 2) + c) >> 2 + ]) | + 0) - + H[(((p + u) << 2) + c) >> 2] + h = (h + 2) | 0 + o = (o + 2) | 0 + if ((C | 0) != (o | 0)) { + continue + } + break + } + } + if (!D) { + break s + } + H[(j + (h << 2)) >> 2] = + ((H[(((h + l) << 2) + c) >> 2] + + H[(((h + q) << 2) + c) >> 2]) | + 0) - + H[(((h + p) << 2) + c) >> 2] + } + j = 4 + i = (i + 1) | 0 + if ((i | 0) == 4) { + break q + } + } + t: { + if (k & 1) { + h = (d - 2) | 0 + j = (d + 1) | 0 + d = -1 + j = (j >>> 0) % 3 | 0 ? j : h + if ( + ((j | 0) == -1) | + ((H[ + (n + ((j >>> 3) & 536870908)) >> + 2 + ] >>> + j) & + 1) + ) { + break t + } + j = + H[ + (H[ + (H[(t + 64) >> 2] + 12) >> 2 + ] + + (j << 2)) >> + 2 + ] + if ((j | 0) == -1) { + break t + } + d = (j + 1) | 0 + d = + (d >>> 0) % 3 | 0 + ? d + : (j - 2) | 0 + break t + } + u: { + if ((d >>> 0) % 3 | 0) { + h = (d - 1) | 0 + break u + } + h = (d + 2) | 0 + d = -1 + if ((h | 0) == -1) { + break t + } + } + d = -1 + if ( + (H[ + (n + ((h >>> 3) & 536870908)) >> 2 + ] >>> + h) & + 1 + ) { + break t + } + j = + H[ + (H[(H[(t + 64) >> 2] + 12) >> 2] + + (h << 2)) >> + 2 + ] + if ((j | 0) == -1) { + break t + } + if ((j >>> 0) % 3 | 0) { + d = (j - 1) | 0 + break t + } + d = (j + 2) | 0 + } + v: { + if ((d | 0) == (f | 0)) { + break v + } + if (((d | 0) == -1) & k) { + if (!P | (s & H[O >> 2])) { + break v + } + d = + H[ + (H[ + (H[(t + 64) >> 2] + 12) >> 2 + ] + + (x << 2)) >> + 2 + ] + if ((d | 0) == -1) { + break v + } + k = 0 + d = + (d >>> 0) % 3 | 0 + ? (d - 1) | 0 + : (d + 2) | 0 + } + if ((d | 0) != -1) { + continue + } + } + break + } + j = i + if ((j | 0) <= 0) { + break p + } + } + if (e) { + ra(r, 0, L) + } + d = (j - 1) | 0 + q = ((d << 2) + z) | 0 + d = (N(d, 12) + a) | 0 + u = d + x = H[(d - -64) >> 2] + k = 0 + d = H[g >> 2] + f = 0 + while (1) { + i = H[q >> 2] + H[q >> 2] = i + 1 + if (i >>> 0 >= x >>> 0) { + break j + } + w: { + if ( + (H[ + (H[(u + 60) >> 2] + + ((i >>> 3) & 536870908)) >> + 2 + ] >>> + i) & + 1 + ) { + break w + } + f = (f + 1) | 0 + if (!e) { + break w + } + n = H[(((g + 16) | 0) + N(k, 12)) >> 2] + i = 0 + h = 0 + p = 0 + if (!M) { + while (1) { + l = h << 2 + o = (l + d) | 0 + H[o >> 2] = + H[(l + n) >> 2] + H[o >> 2] + o = l | 4 + s = (o + d) | 0 + H[s >> 2] = + H[(n + o) >> 2] + H[s >> 2] + o = l | 8 + s = (o + d) | 0 + H[s >> 2] = + H[(n + o) >> 2] + H[s >> 2] + l = l | 12 + o = (l + d) | 0 + H[o >> 2] = + H[(l + n) >> 2] + H[o >> 2] + h = (h + 4) | 0 + p = (p + 4) | 0 + if ((K | 0) != (p | 0)) { + continue + } + break + } + } + if (!E) { + break w + } + while (1) { + l = h << 2 + p = (l + d) | 0 + H[p >> 2] = + H[(l + n) >> 2] + H[p >> 2] + h = (h + 1) | 0 + i = (i + 1) | 0 + if ((E | 0) != (i | 0)) { + continue + } + break + } + } + k = (k + 1) | 0 + if ((k | 0) != (j | 0)) { + continue + } + break + } + i = N(e, m) + if (!f) { + break o + } + if (!e) { + break l + } + h = 0 + d = 0 + if (F) { + break n + } + break m + } + i = N(e, m) + } + if (H[(a + 8) >> 2] <= 0) { + break k + } + k = ((N((m - 1) | 0, e) << 2) + c) | 0 + j = H[y >> 2] + h = 0 + while (1) { + d = h << 2 + f = H[(d + k) >> 2] + n = H[(a + 16) >> 2] + x: { + if ((f | 0) > (n | 0)) { + H[(d + j) >> 2] = n + break x + } + d = (d + j) | 0 + n = H[(a + 12) >> 2] + if ((n | 0) > (f | 0)) { + H[d >> 2] = n + break x + } + H[d >> 2] = f + } + h = (h + 1) | 0 + f = H[(a + 8) >> 2] + if ((h | 0) < (f | 0)) { + continue + } + break + } + d = 0 + if ((f | 0) <= 0) { + break k + } + f = i << 2 + h = (f + c) | 0 + k = (b + f) | 0 + while (1) { + i = d << 2 + f = (i + h) | 0 + i = (H[(i + k) >> 2] + H[(j + i) >> 2]) | 0 + H[f >> 2] = i + y: { + if ((i | 0) > H[(a + 16) >> 2]) { + i = (i - H[(a + 20) >> 2]) | 0 + } else { + if ((i | 0) >= H[(a + 12) >> 2]) { + break y + } + i = (i + H[(a + 20) >> 2]) | 0 + } + H[f >> 2] = i + } + d = (d + 1) | 0 + if ((d | 0) < H[(a + 8) >> 2]) { + continue + } + break + } + break k + } + Ca() + v() + } + while (1) { + j = h << 2 + k = (j + r) | 0 + H[k >> 2] = H[k >> 2] / (f | 0) + j = ((j | 4) + r) | 0 + H[j >> 2] = H[j >> 2] / (f | 0) + h = (h + 2) | 0 + d = (d + 2) | 0 + if ((C | 0) != (d | 0)) { + continue + } + break + } + } + if (!D) { + break l + } + d = ((h << 2) + r) | 0 + H[d >> 2] = H[d >> 2] / (f | 0) + } + if (H[(a + 8) >> 2] <= 0) { + break k + } + j = H[y >> 2] + h = 0 + while (1) { + d = h << 2 + f = H[(d + r) >> 2] + k = H[(a + 16) >> 2] + z: { + if ((f | 0) > (k | 0)) { + H[(d + j) >> 2] = k + break z + } + d = (d + j) | 0 + k = H[(a + 12) >> 2] + if ((k | 0) > (f | 0)) { + H[d >> 2] = k + break z + } + H[d >> 2] = f + } + h = (h + 1) | 0 + f = H[(a + 8) >> 2] + if ((h | 0) < (f | 0)) { + continue + } + break + } + d = 0 + if ((f | 0) <= 0) { + break k + } + f = i << 2 + h = (f + c) | 0 + k = (b + f) | 0 + while (1) { + i = d << 2 + f = (i + h) | 0 + i = (H[(i + k) >> 2] + H[(j + i) >> 2]) | 0 + H[f >> 2] = i + A: { + if ((i | 0) > H[(a + 16) >> 2]) { + i = (i - H[(a + 20) >> 2]) | 0 + } else { + if ((i | 0) >= H[(a + 12) >> 2]) { + break A + } + i = (i + H[(a + 20) >> 2]) | 0 + } + H[f >> 2] = i + } + d = (d + 1) | 0 + if ((d | 0) < H[(a + 8) >> 2]) { + continue + } + break + } + } + m = (m + 1) | 0 + A = (w | 0) <= (m | 0) + if ((m | 0) != (I | 0)) { + continue + } + break + } + } + a = H[g >> 2] + if (a) { + oa(a) + } + oa(z) + a = H[(g + 52) >> 2] + if (a) { + H[(g + 56) >> 2] = a + oa(a) + } + a = H[(g + 40) >> 2] + if (a) { + H[(g + 44) >> 2] = a + oa(a) + } + a = H[(g + 28) >> 2] + if (a) { + H[(g + 32) >> 2] = a + oa(a) + } + a = H[(g + 16) >> 2] + if (a) { + H[(g + 20) >> 2] = a + oa(a) + } + ca = (g - -64) | 0 + return A | 0 + } + sa() + v() + } + function oj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0 + h = (ca + -64) | 0 + ca = h + H[(a + 8) >> 2] = e + x = (a + 32) | 0 + f = H[x >> 2] + d = (H[(a + 36) >> 2] - f) >> 2 + a: { + b: { + if (d >>> 0 < e >>> 0) { + ya(x, (e - d) | 0) + H[(h + 56) >> 2] = 0 + H[(h + 60) >> 2] = 0 + H[(h + 48) >> 2] = 0 + H[(h + 52) >> 2] = 0 + H[(h + 40) >> 2] = 0 + H[(h + 44) >> 2] = 0 + H[(h + 32) >> 2] = 0 + H[(h + 36) >> 2] = 0 + H[(h + 24) >> 2] = 0 + H[(h + 28) >> 2] = 0 + H[(h + 16) >> 2] = 0 + H[(h + 20) >> 2] = 0 + H[h >> 2] = 0 + break b + } + if (d >>> 0 > e >>> 0) { + H[(a + 36) >> 2] = f + (e << 2) + } + H[(h + 56) >> 2] = 0 + H[(h + 60) >> 2] = 0 + H[(h + 48) >> 2] = 0 + H[(h + 52) >> 2] = 0 + H[(h + 40) >> 2] = 0 + H[(h + 44) >> 2] = 0 + H[(h + 32) >> 2] = 0 + H[(h + 36) >> 2] = 0 + H[(h + 24) >> 2] = 0 + H[(h + 28) >> 2] = 0 + H[(h + 16) >> 2] = 0 + H[(h + 20) >> 2] = 0 + H[h >> 2] = 0 + d = 0 + if (!e) { + break a + } + } + Pa((h + 16) | 0, e, h) + i = H[(h + 28) >> 2] + d = H[(h + 32) >> 2] + } + H[h >> 2] = 0 + d = (d - i) >> 2 + c: { + if (d >>> 0 >= e >>> 0) { + if (d >>> 0 <= e >>> 0) { + break c + } + H[(h + 32) >> 2] = (e << 2) + i + break c + } + Pa((h + 16) | 12, (e - d) | 0, h) + } + H[h >> 2] = 0 + f = H[(h + 40) >> 2] + d = (H[(h + 44) >> 2] - f) >> 2 + d: { + if (d >>> 0 >= e >>> 0) { + if (d >>> 0 <= e >>> 0) { + break d + } + H[(h + 44) >> 2] = f + (e << 2) + break d + } + Pa((h + 40) | 0, (e - d) | 0, h) + } + H[h >> 2] = 0 + f = H[(h + 52) >> 2] + d = (H[(h + 56) >> 2] - f) >> 2 + e: { + if (d >>> 0 >= e >>> 0) { + if (d >>> 0 <= e >>> 0) { + break e + } + H[(h + 56) >> 2] = f + (e << 2) + break e + } + Pa((h + 52) | 0, (e - d) | 0, h) + } + f: { + if (H[(a + 8) >> 2] <= 0) { + break f + } + g = H[(h + 16) >> 2] + j = H[(a + 32) >> 2] + i = 0 + while (1) { + d = i << 2 + f = H[(d + g) >> 2] + m = H[(a + 16) >> 2] + g: { + if ((f | 0) > (m | 0)) { + H[(d + j) >> 2] = m + break g + } + d = (d + j) | 0 + m = H[(a + 12) >> 2] + if ((m | 0) > (f | 0)) { + H[d >> 2] = m + break g + } + H[d >> 2] = f + } + i = (i + 1) | 0 + d = H[(a + 8) >> 2] + if ((i | 0) < (d | 0)) { + continue + } + break + } + if ((d | 0) <= 0) { + break f + } + d = 0 + while (1) { + g = d << 2 + f = (g + c) | 0 + g = (H[(b + g) >> 2] + H[(g + j) >> 2]) | 0 + H[f >> 2] = g + h: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break h + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[f >> 2] = g + } + d = (d + 1) | 0 + if ((d | 0) < H[(a + 8) >> 2]) { + continue + } + break + } + } + G = H[(a + 52) >> 2] + A = H[(a + 48) >> 2] + y = pa(16) + d = y + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + H[(d + 8) >> 2] = 0 + H[(d + 12) >> 2] = 0 + H[(h + 8) >> 2] = 0 + H[h >> 2] = 0 + H[(h + 4) >> 2] = 0 + i: { + if (e) { + if (e >>> 0 >= 1073741824) { + break i + } + d = e << 2 + t = pa(d) + H[h >> 2] = t + H[(h + 8) >> 2] = d + t + ra(t, 0, d) + } + z = 1 + d = H[(a + 56) >> 2] + B = H[d >> 2] + d = (H[(d + 4) >> 2] - B) | 0 + j: { + if ((d | 0) < 8) { + break j + } + w = d >> 2 + I = (w | 0) <= 2 ? 2 : w + J = w >>> 0 <= 1 ? 1 : w + C = e & -2 + D = e & 1 + K = e & -4 + E = e & 3 + F = (e - 1) | 0 + L = e << 2 + M = e >>> 0 < 4 + z = 0 + m = 1 + while (1) { + k: { + l: { + m: { + n: { + if ((m | 0) != (J | 0)) { + o: { + p: { + f = H[((m << 2) + B) >> 2] + if ((f | 0) == -1) { + break p + } + n = H[(A + 12) >> 2] + d = (f + 2) | 0 + g = (f >>> 0) % 3 | 0 + q = (n + ((g ? (f - 1) | 0 : d) << 2)) | 0 + j = 0 + u = ((g | 0) != 0) | ((d | 0) != -1) + k = 1 + d = f + q: { + while (1) { + g = H[(n + (d << 2)) >> 2] + r: { + if ((g | 0) == -1) { + break r + } + l = -1 + p = H[G >> 2] + r = H[A >> 2] + i = + (p + + (H[(r + (g << 2)) >> 2] << 2)) | + 0 + o = (g + 1) | 0 + o = + (o >>> 0) % 3 | 0 ? o : (g - 2) | 0 + if ((o | 0) != -1) { + l = H[(r + (o << 2)) >> 2] + } + o = H[i >> 2] + s: { + t: { + if ((g >>> 0) % 3 | 0) { + i = (g - 1) | 0 + break t + } + i = (g + 2) | 0 + s = -1 + if ((i | 0) == -1) { + break s + } + } + s = H[(r + (i << 2)) >> 2] + } + if ((m | 0) <= (o | 0)) { + break r + } + i = H[(p + (l << 2)) >> 2] + if ((i | 0) >= (m | 0)) { + break r + } + l = H[(p + (s << 2)) >> 2] + if ((l | 0) >= (m | 0)) { + break r + } + g = + H[(((h + 16) | 0) + N(j, 12)) >> 2] + u: { + if (!e) { + break u + } + l = N(e, l) + r = N(e, i) + p = N(e, o) + i = 0 + s = 0 + if (F) { + while (1) { + H[(g + (i << 2)) >> 2] = + ((H[ + (((i + l) << 2) + c) >> 2 + ] + + H[ + (((i + r) << 2) + c) >> 2 + ]) | + 0) - + H[(((i + p) << 2) + c) >> 2] + o = i | 1 + H[(g + (o << 2)) >> 2] = + ((H[ + (((l + o) << 2) + c) >> 2 + ] + + H[ + (((o + r) << 2) + c) >> 2 + ]) | + 0) - + H[(((o + p) << 2) + c) >> 2] + i = (i + 2) | 0 + s = (s + 2) | 0 + if ((C | 0) != (s | 0)) { + continue + } + break + } + } + if (!D) { + break u + } + H[(g + (i << 2)) >> 2] = + ((H[(((i + l) << 2) + c) >> 2] + + H[(((i + r) << 2) + c) >> 2]) | + 0) - + H[(((i + p) << 2) + c) >> 2] + } + g = 4 + j = (j + 1) | 0 + if ((j | 0) == 4) { + break q + } + } + v: { + if (k & 1) { + i = (d + 1) | 0 + d = + (i >>> 0) % 3 | 0 + ? i + : (d - 2) | 0 + g = -1 + if ((d | 0) == -1) { + break v + } + d = H[(n + (d << 2)) >> 2] + g = -1 + if ((d | 0) == -1) { + break v + } + g = (d + 1) | 0 + g = + (g >>> 0) % 3 | 0 + ? g + : (d - 2) | 0 + break v + } + w: { + if ((d >>> 0) % 3 | 0) { + i = (d - 1) | 0 + break w + } + i = (d + 2) | 0 + g = -1 + if ((i | 0) == -1) { + break v + } + } + d = H[(n + (i << 2)) >> 2] + g = -1 + if ((d | 0) == -1) { + break v + } + g = (d - 1) | 0 + if ((d >>> 0) % 3 | 0) { + break v + } + g = (d + 2) | 0 + } + d = g + x: { + if ((f | 0) == (d | 0)) { + break x + } + if (((d | 0) == -1) & k) { + if (!u) { + break x + } + d = H[q >> 2] + if ((d | 0) == -1) { + break x + } + k = 0 + d = + (d >>> 0) % 3 | 0 + ? (d - 1) | 0 + : (d + 2) | 0 + } + if ((d | 0) != -1) { + continue + } + } + break + } + g = j + if ((g | 0) <= 0) { + break p + } + } + if (e) { + ra(t, 0, L) + } + d = (g - 1) | 0 + r = ((d << 2) + y) | 0 + d = (N(d, 12) + a) | 0 + o = d + s = H[(d - -64) >> 2] + k = 0 + d = H[h >> 2] + f = 0 + while (1) { + j = H[r >> 2] + H[r >> 2] = j + 1 + if (j >>> 0 >= s >>> 0) { + break j + } + y: { + if ( + (H[ + (H[(o + 60) >> 2] + + ((j >>> 3) & 536870908)) >> + 2 + ] >>> + j) & + 1 + ) { + break y + } + f = (f + 1) | 0 + if (!e) { + break y + } + j = H[(((h + 16) | 0) + N(k, 12)) >> 2] + l = 0 + i = 0 + p = 0 + if (!M) { + while (1) { + n = i << 2 + q = (n + d) | 0 + H[q >> 2] = + H[(j + n) >> 2] + H[q >> 2] + q = n | 4 + u = (q + d) | 0 + H[u >> 2] = + H[(j + q) >> 2] + H[u >> 2] + q = n | 8 + u = (q + d) | 0 + H[u >> 2] = + H[(j + q) >> 2] + H[u >> 2] + n = n | 12 + q = (n + d) | 0 + H[q >> 2] = + H[(j + n) >> 2] + H[q >> 2] + i = (i + 4) | 0 + p = (p + 4) | 0 + if ((K | 0) != (p | 0)) { + continue + } + break + } + } + if (!E) { + break y + } + while (1) { + n = i << 2 + p = (n + d) | 0 + H[p >> 2] = + H[(j + n) >> 2] + H[p >> 2] + i = (i + 1) | 0 + l = (l + 1) | 0 + if ((E | 0) != (l | 0)) { + continue + } + break + } + } + k = (k + 1) | 0 + if ((k | 0) != (g | 0)) { + continue + } + break + } + g = N(e, m) + if (!f) { + break o + } + if (!e) { + break l + } + i = 0 + d = 0 + if (F) { + break n + } + break m + } + g = N(e, m) + } + if (H[(a + 8) >> 2] <= 0) { + break k + } + k = ((N((m - 1) | 0, e) << 2) + c) | 0 + j = H[x >> 2] + i = 0 + while (1) { + d = i << 2 + f = H[(d + k) >> 2] + l = H[(a + 16) >> 2] + z: { + if ((f | 0) > (l | 0)) { + H[(d + j) >> 2] = l + break z + } + d = (d + j) | 0 + l = H[(a + 12) >> 2] + if ((l | 0) > (f | 0)) { + H[d >> 2] = l + break z + } + H[d >> 2] = f + } + i = (i + 1) | 0 + f = H[(a + 8) >> 2] + if ((i | 0) < (f | 0)) { + continue + } + break + } + d = 0 + if ((f | 0) <= 0) { + break k + } + f = g << 2 + i = (f + c) | 0 + k = (b + f) | 0 + while (1) { + g = d << 2 + f = (g + i) | 0 + g = (H[(g + k) >> 2] + H[(g + j) >> 2]) | 0 + H[f >> 2] = g + A: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break A + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[f >> 2] = g + } + d = (d + 1) | 0 + if ((d | 0) < H[(a + 8) >> 2]) { + continue + } + break + } + break k + } + Ca() + v() + } + while (1) { + j = i << 2 + k = (j + t) | 0 + H[k >> 2] = H[k >> 2] / (f | 0) + j = ((j | 4) + t) | 0 + H[j >> 2] = H[j >> 2] / (f | 0) + i = (i + 2) | 0 + d = (d + 2) | 0 + if ((C | 0) != (d | 0)) { + continue + } + break + } + } + if (!D) { + break l + } + d = ((i << 2) + t) | 0 + H[d >> 2] = H[d >> 2] / (f | 0) + } + if (H[(a + 8) >> 2] <= 0) { + break k + } + j = H[x >> 2] + i = 0 + while (1) { + d = i << 2 + f = H[(d + t) >> 2] + k = H[(a + 16) >> 2] + B: { + if ((f | 0) > (k | 0)) { + H[(d + j) >> 2] = k + break B + } + d = (d + j) | 0 + k = H[(a + 12) >> 2] + if ((k | 0) > (f | 0)) { + H[d >> 2] = k + break B + } + H[d >> 2] = f + } + i = (i + 1) | 0 + f = H[(a + 8) >> 2] + if ((i | 0) < (f | 0)) { + continue + } + break + } + d = 0 + if ((f | 0) <= 0) { + break k + } + f = g << 2 + i = (f + c) | 0 + k = (b + f) | 0 + while (1) { + g = d << 2 + f = (g + i) | 0 + g = (H[(g + k) >> 2] + H[(g + j) >> 2]) | 0 + H[f >> 2] = g + C: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break C + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[f >> 2] = g + } + d = (d + 1) | 0 + if ((d | 0) < H[(a + 8) >> 2]) { + continue + } + break + } + } + m = (m + 1) | 0 + z = (w | 0) <= (m | 0) + if ((m | 0) != (I | 0)) { + continue + } + break + } + } + a = H[h >> 2] + if (a) { + oa(a) + } + oa(y) + a = H[(h + 52) >> 2] + if (a) { + H[(h + 56) >> 2] = a + oa(a) + } + a = H[(h + 40) >> 2] + if (a) { + H[(h + 44) >> 2] = a + oa(a) + } + a = H[(h + 28) >> 2] + if (a) { + H[(h + 32) >> 2] = a + oa(a) + } + a = H[(h + 16) >> 2] + if (a) { + H[(h + 20) >> 2] = a + oa(a) + } + ca = (h - -64) | 0 + return z | 0 + } + sa() + v() + } + function Od(a, b, c, d, e) { + var f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0 + i = (ca - 80) | 0 + ca = i + H[(i + 76) >> 2] = b + y = (i + 55) | 0 + r = (i + 56) | 0 + a: { + b: { + c: { + d: { + e: while (1) { + h = b + if ((o ^ 2147483647) < (f | 0)) { + break d + } + o = (f + o) | 0 + f: { + g: { + h: { + f = h + g = I[f | 0] + if (g) { + while (1) { + i: { + b = g & 255 + j: { + if (!b) { + b = f + break j + } + if ((b | 0) != 37) { + break i + } + g = f + while (1) { + if (I[(g + 1) | 0] != 37) { + b = g + break j + } + f = (f + 1) | 0 + j = I[(g + 2) | 0] + b = (g + 2) | 0 + g = b + if ((j | 0) == 37) { + continue + } + break + } + } + f = (f - h) | 0 + x = o ^ 2147483647 + if ((f | 0) > (x | 0)) { + break d + } + if (a) { + Ab(a, h, f) + } + if (f) { + continue e + } + H[(i + 76) >> 2] = b + f = (b + 1) | 0 + p = -1 + if ( + !( + (I[(b + 2) | 0] != 36) | + ((F[(b + 1) | 0] - 48) >>> 0 >= 10) + ) + ) { + p = (F[(b + 1) | 0] - 48) | 0 + s = 1 + f = (b + 3) | 0 + } + H[(i + 76) >> 2] = f + n = 0 + g = F[f | 0] + b = (g - 32) | 0 + k: { + if (b >>> 0 > 31) { + k = f + break k + } + k = f + b = 1 << b + if (!(b & 75913)) { + break k + } + while (1) { + k = (f + 1) | 0 + H[(i + 76) >> 2] = k + n = b | n + g = F[(f + 1) | 0] + b = (g - 32) | 0 + if (b >>> 0 >= 32) { + break k + } + f = k + b = 1 << b + if (b & 75913) { + continue + } + break + } + } + l: { + if ((g | 0) == 42) { + m: { + if ( + !( + (I[(k + 2) | 0] != 36) | + ((F[(k + 1) | 0] - 48) >>> 0 >= + 10) + ) + ) { + H[ + ((((F[(k + 1) | 0] << 2) + e) | + 0) - + 192) >> + 2 + ] = 10 + g = (k + 3) | 0 + s = 1 + b = + H[ + ((((F[(k + 1) | 0] << 3) + + d) | + 0) - + 384) >> + 2 + ] + break m + } + if (s) { + break h + } + g = (k + 1) | 0 + if (!a) { + H[(i + 76) >> 2] = g + s = 0 + q = 0 + break l + } + b = H[c >> 2] + H[c >> 2] = b + 4 + s = 0 + b = H[b >> 2] + } + H[(i + 76) >> 2] = g + q = b + if ((b | 0) >= 0) { + break l + } + q = (0 - q) | 0 + n = n | 8192 + break l + } + q = Nd((i + 76) | 0) + if ((q | 0) < 0) { + break d + } + g = H[(i + 76) >> 2] + } + f = 0 + m = -1 + n: { + if (I[g | 0] != 46) { + b = g + u = 0 + break n + } + if (I[(g + 1) | 0] == 42) { + o: { + if ( + !( + (I[(g + 3) | 0] != 36) | + ((F[(g + 2) | 0] - 48) >>> 0 >= + 10) + ) + ) { + H[ + ((((F[(g + 2) | 0] << 2) + e) | + 0) - + 192) >> + 2 + ] = 10 + b = (g + 4) | 0 + m = + H[ + ((((F[(g + 2) | 0] << 3) + + d) | + 0) - + 384) >> + 2 + ] + break o + } + if (s) { + break h + } + b = (g + 2) | 0 + m = 0 + if (!a) { + break o + } + j = H[c >> 2] + H[c >> 2] = j + 4 + m = H[j >> 2] + } + H[(i + 76) >> 2] = b + u = ((m ^ -1) >>> 31) | 0 + break n + } + H[(i + 76) >> 2] = g + 1 + m = Nd((i + 76) | 0) + b = H[(i + 76) >> 2] + u = 1 + } + while (1) { + g = f + k = 28 + l = b + f = F[b | 0] + if ((f - 123) >>> 0 < 4294967238) { + break c + } + b = (l + 1) | 0 + f = + I[(((f + N(g, 58)) | 0) + 13711) | 0] + if ((f - 1) >>> 0 < 8) { + continue + } + break + } + H[(i + 76) >> 2] = b + p: { + q: { + if ((f | 0) != 27) { + if (!f) { + break c + } + if ((p | 0) >= 0) { + H[((p << 2) + e) >> 2] = f + j = ((p << 3) + d) | 0 + f = H[(j + 4) >> 2] + H[(i + 64) >> 2] = H[j >> 2] + H[(i + 68) >> 2] = f + break q + } + if (!a) { + break f + } + Md((i - -64) | 0, f, c) + break p + } + if ((p | 0) >= 0) { + break c + } + } + f = 0 + if (!a) { + continue e + } + } + j = n & -65537 + n = n & 8192 ? j : n + p = 0 + t = 1132 + k = r + r: { + s: { + t: { + u: { + v: { + w: { + x: { + y: { + z: { + A: { + B: { + C: { + D: { + E: { + F: { + G: { + f = + F[l | 0] + f = g + ? (f & + 15) == + 3 + ? f & + -33 + : f + : f + switch ( + (f - + 88) | + 0 + ) { + case 11: + break r + case 9: + case 13: + case 14: + case 15: + break s + case 27: + break x + case 12: + case 17: + break A + case 23: + break B + case 0: + case 32: + break C + case 24: + break D + case 22: + break E + case 29: + break F + case 1: + case 2: + case 3: + case 4: + case 5: + case 6: + case 7: + case 8: + case 10: + case 16: + case 18: + case 19: + case 20: + case 21: + case 25: + case 26: + case 28: + case 30: + case 31: + break g + default: + break G + } + } + H: { + switch ( + (f - + 65) | + 0 + ) { + case 0: + case 4: + case 5: + case 6: + break s + case 2: + break v + case 1: + case 3: + break g + default: + break H + } + } + if ( + (f | 0) == + 83 + ) { + break w + } + break g + } + l = + H[ + (i + + 64) >> + 2 + ] + j = + H[ + (i + + 68) >> + 2 + ] + t = 1132 + break z + } + f = 0 + I: { + switch ( + g & 255 + ) { + case 0: + H[ + H[ + (i + + 64) >> + 2 + ] >> 2 + ] = o + continue e + case 1: + H[ + H[ + (i + + 64) >> + 2 + ] >> 2 + ] = o + continue e + case 2: + h = + H[ + (i + + 64) >> + 2 + ] + H[ + h >> 2 + ] = o + H[ + (h + + 4) >> + 2 + ] = + o >> 31 + continue e + case 3: + G[ + H[ + (i + + 64) >> + 2 + ] >> 1 + ] = o + continue e + case 4: + F[ + H[ + (i + + 64) >> + 2 + ] + ] = o + continue e + case 6: + H[ + H[ + (i + + 64) >> + 2 + ] >> 2 + ] = o + continue e + case 7: + break I + default: + continue e + } + } + h = + H[ + (i + 64) >> + 2 + ] + H[h >> 2] = o + H[ + (h + 4) >> 2 + ] = o >> 31 + continue e + } + m = + m >>> 0 <= 8 + ? 8 + : m + n = n | 8 + f = 120 + } + h = r + l = H[(i + 64) >> 2] + j = H[(i + 68) >> 2] + if (l | j) { + z = f & 32 + while (1) { + h = (h - 1) | 0 + F[h | 0] = + z | + I[ + ((l & 15) + + 14240) | + 0 + ] + w = + (!j & + (l >>> 0 > + 15)) | + ((j | 0) != 0) + g = j + j = + (g >>> 4) | 0 + l = + ((g & 15) << + 28) | + (l >>> 4) + if (w) { + continue + } + break + } + } + if ( + !( + H[ + (i + 64) >> 2 + ] | + H[(i + 68) >> 2] + ) | !(n & 8) + ) { + break y + } + t = + (((f >>> 4) | 0) + + 1132) | + 0 + p = 2 + break y + } + f = r + h = H[(i + 68) >> 2] + j = h + l = H[(i + 64) >> 2] + if (h | l) { + while (1) { + f = (f - 1) | 0 + F[f | 0] = + (l & 7) | 48 + g = + (!j & + (l >>> 0 > + 7)) | + ((j | 0) != 0) + h = j + j = (h >>> 3) | 0 + l = + ((h & 7) << + 29) | + (l >>> 3) + if (g) { + continue + } + break + } + } + h = f + if (!(n & 8)) { + break y + } + f = (r - h) | 0 + m = + (f | 0) < (m | 0) + ? m + : (f + 1) | 0 + break y + } + l = H[(i + 64) >> 2] + h = H[(i + 68) >> 2] + j = h + if ((h | 0) < 0) { + f = + (0 - + ((((l | 0) != 0) + + j) | + 0)) | + 0 + j = f + l = (0 - l) | 0 + H[(i + 64) >> 2] = l + H[(i + 68) >> 2] = f + p = 1 + t = 1132 + break z + } + if (n & 2048) { + p = 1 + t = 1133 + break z + } + p = n & 1 + t = p ? 1134 : 1132 + } + g = r + if (j) { + while (1) { + g = (g - 1) | 0 + f = j + w = Tj(l, f, 10, 0) + h = da + ;(A = g), + (B = + (l - + Rj( + w, + h, + 10, + 0, + )) | + 48), + (F[A | 0] = B) + l = w + j = h + if (f >>> 0 > 9) { + continue + } + break + } + } + h = l + if (h) { + while (1) { + g = (g - 1) | 0 + f = + ((h >>> 0) / 10) | 0 + F[g | 0] = + (h - N(f, 10)) | 48 + j = h >>> 0 > 9 + h = f + if (j) { + continue + } + break + } + } + h = g + } + if ((m | 0) < 0 ? u : 0) { + break d + } + n = u ? n & -65537 : n + f = H[(i + 64) >> 2] + j = H[(i + 68) >> 2] + if (!(m | ((f | j) != 0))) { + h = r + m = 0 + break g + } + f = + (!(f | j) + + ((r - h) | 0)) | + 0 + m = + (f | 0) < (m | 0) ? m : f + break g + } + g = + m >>> 0 >= 2147483647 + ? 2147483647 + : m + k = g + n = (g | 0) != 0 + h = H[(i + 64) >> 2] + h = h ? h : 1614 + f = h + J: { + K: { + L: { + M: { + if (!(f & 3) | !g) { + break M + } + while (1) { + if (!I[f | 0]) { + break L + } + k = (k - 1) | 0 + n = (k | 0) != 0 + f = (f + 1) | 0 + if (!(f & 3)) { + break M + } + if (k) { + continue + } + break + } + } + if (!n) { + break K + } + if ( + !( + !I[f | 0] | + (k >>> 0 < 4) + ) + ) { + while (1) { + l = H[f >> 2] + if ( + (l ^ -1) & + (l - 16843009) & + -2139062144 + ) { + break L + } + f = (f + 4) | 0 + k = (k - 4) | 0 + if (k >>> 0 > 3) { + continue + } + break + } + } + if (!k) { + break K + } + } + while (1) { + if (!I[f | 0]) { + break J + } + f = (f + 1) | 0 + k = (k - 1) | 0 + if (k) { + continue + } + break + } + } + f = 0 + } + f = f ? (f - h) | 0 : g + k = (f + h) | 0 + if ((m | 0) >= 0) { + n = j + m = f + break g + } + n = j + m = f + if (I[k | 0]) { + break d + } + break g + } + if (m) { + g = H[(i + 64) >> 2] + break u + } + f = 0 + ib(a, 32, q, 0, n) + break t + } + H[(i + 12) >> 2] = 0 + H[(i + 8) >> 2] = H[(i + 64) >> 2] + g = (i + 8) | 0 + H[(i + 64) >> 2] = g + m = -1 + } + f = 0 + N: { + while (1) { + h = H[g >> 2] + if (!h) { + break N + } + j = Ld((i + 4) | 0, h) + h = (j | 0) < 0 + if ( + !( + h | + (j >>> 0 > (m - f) >>> 0) + ) + ) { + g = (g + 4) | 0 + f = (f + j) | 0 + if (m >>> 0 > f >>> 0) { + continue + } + break N + } + break + } + if (h) { + break b + } + } + k = 61 + if ((f | 0) < 0) { + break c + } + ib(a, 32, q, f, n) + if (!f) { + f = 0 + break t + } + k = 0 + g = H[(i + 64) >> 2] + while (1) { + h = H[g >> 2] + if (!h) { + break t + } + h = Ld((i + 4) | 0, h) + k = (h + k) | 0 + if (k >>> 0 > f >>> 0) { + break t + } + Ab(a, (i + 4) | 0, h) + g = (g + 4) | 0 + if (f >>> 0 > k >>> 0) { + continue + } + break + } + } + ib(a, 32, q, f, n ^ 8192) + f = (f | 0) < (q | 0) ? q : f + continue e + } + if ((m | 0) < 0 ? u : 0) { + break d + } + v() + } + F[(i + 55) | 0] = H[(i + 64) >> 2] + m = 1 + h = y + n = j + break g + } + g = I[(f + 1) | 0] + f = (f + 1) | 0 + continue + } + } + if (a) { + break a + } + if (!s) { + break f + } + f = 1 + while (1) { + a = H[((f << 2) + e) >> 2] + if (a) { + Md(((f << 3) + d) | 0, a, c) + o = 1 + f = (f + 1) | 0 + if ((f | 0) != 10) { + continue + } + break a + } + break + } + o = 1 + if (f >>> 0 >= 10) { + break a + } + while (1) { + if (H[((f << 2) + e) >> 2]) { + break h + } + f = (f + 1) | 0 + if ((f | 0) != 10) { + continue + } + break + } + break a + } + k = 28 + break c + } + l = (k - h) | 0 + j = (m | 0) > (l | 0) ? m : l + if ((j | 0) > (p ^ 2147483647)) { + break d + } + k = 61 + g = (j + p) | 0 + f = (g | 0) < (q | 0) ? q : g + if ((x | 0) < (f | 0)) { + break c + } + ib(a, 32, f, g, n) + Ab(a, t, p) + ib(a, 48, f, g, n ^ 65536) + ib(a, 48, j, l, 0) + Ab(a, h, l) + ib(a, 32, f, g, n ^ 8192) + continue + } + break + } + o = 0 + break a + } + k = 61 + } + H[3992] = k + } + o = -1 + } + ca = (i + 80) | 0 + return o + } + function hj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + G = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0 + a: { + b: { + if ((e | 0) != 2) { + break b + } + H[(a + 8) >> 2] = 2 + H[(a - -64) >> 2] = f + M = (a + 32) | 0 + e = H[M >> 2] + d = (H[(a + 36) >> 2] - e) | 0 + c: { + if (d >>> 0 <= 7) { + ya(M, (2 - ((d >>> 2) | 0)) | 0) + break c + } + if ((d | 0) == 8) { + break c + } + H[(a + 36) >> 2] = e + 8 + } + i = 1 + d = H[(a + 56) >> 2] + d = (H[(d + 4) >> 2] - H[d >> 2]) | 0 + if ((d | 0) <= 0) { + break b + } + o = (a + 60) | 0 + d = (d >>> 2) | 0 + X = d >>> 0 <= 1 ? 1 : d + Y = (a + 68) | 0 + d = 0 + while (1) { + f = H[(a + 56) >> 2] + e = H[f >> 2] + if (((H[(f + 4) >> 2] - e) >> 2) >>> 0 <= d >>> 0) { + break a + } + k = (ca - 80) | 0 + ca = k + f = -1 + d: { + e: { + e = H[(e + (d << 2)) >> 2] + if ((e | 0) == -1) { + break e + } + i = H[(o + 32) >> 2] + g = (e + 1) | 0 + g = (g >>> 0) % 3 | 0 ? g : (e - 2) | 0 + if ((g | 0) != -1) { + f = H[(H[i >> 2] + (g << 2)) >> 2] + } + p = -1 + e = (e + ((e >>> 0) % 3 | 0 ? -1 : 2)) | 0 + if ((e | 0) != -1) { + p = H[(H[i >> 2] + (e << 2)) >> 2] + } + i = H[(o + 36) >> 2] + e = H[i >> 2] + i = (H[(i + 4) >> 2] - e) >> 2 + if ((i >>> 0 <= f >>> 0) | (i >>> 0 <= p >>> 0)) { + break e + } + f: { + g: { + h: { + i: { + j: { + k: { + j = H[(e + (p << 2)) >> 2] + f = H[(e + (f << 2)) >> 2] + if ( + ((j | 0) >= (d | 0)) | + ((f | 0) >= (d | 0)) + ) { + break k + } + i = ((j << 3) + c) | 0 + w = H[(i + 4) >> 2] + g = ((f << 3) + c) | 0 + e = H[(g + 4) >> 2] + l = H[i >> 2] + i = H[g >> 2] + if ( + !( + ((l | 0) != (i | 0)) | + ((e | 0) != (w | 0)) + ) + ) { + H[(o + 8) >> 2] = i + H[(o + 12) >> 2] = e + break j + } + p = H[(H[(o + 4) >> 2] + (d << 2)) >> 2] + H[(k + 72) >> 2] = 0 + H[(k + 76) >> 2] = 0 + g = (k - -64) | 0 + H[g >> 2] = 0 + H[(g + 4) >> 2] = 0 + H[(k + 56) >> 2] = 0 + H[(k + 60) >> 2] = 0 + g = H[o >> 2] + if (!I[(g + 84) | 0]) { + p = + H[(H[(g + 68) >> 2] + (p << 2)) >> 2] + } + Sa(g, p, F[(g + 24) | 0], (k + 56) | 0) + p = H[(H[(o + 4) >> 2] + (f << 2)) >> 2] + H[(k + 48) >> 2] = 0 + H[(k + 52) >> 2] = 0 + H[(k + 40) >> 2] = 0 + H[(k + 44) >> 2] = 0 + H[(k + 32) >> 2] = 0 + H[(k + 36) >> 2] = 0 + g = H[o >> 2] + if (!I[(g + 84) | 0]) { + p = + H[(H[(g + 68) >> 2] + (p << 2)) >> 2] + } + Sa(g, p, F[(g + 24) | 0], (k + 32) | 0) + p = H[(H[(o + 4) >> 2] + (j << 2)) >> 2] + H[(k + 24) >> 2] = 0 + H[(k + 28) >> 2] = 0 + H[(k + 16) >> 2] = 0 + H[(k + 20) >> 2] = 0 + H[(k + 8) >> 2] = 0 + H[(k + 12) >> 2] = 0 + g = H[o >> 2] + if (!I[(g + 84) | 0]) { + p = + H[(H[(g + 68) >> 2] + (p << 2)) >> 2] + } + Sa(g, p, F[(g + 24) | 0], (k + 8) | 0) + g = H[(k + 16) >> 2] + n = H[(k + 40) >> 2] + x = (g - n) | 0 + N = H[(k + 44) >> 2] + g = + (H[(k + 20) >> 2] - + ((N + (g >>> 0 < n >>> 0)) | 0)) | + 0 + E = g + j = Rj(x, g, x, g) + q = da + g = H[(k + 8) >> 2] + z = H[(k + 32) >> 2] + A = (g - z) | 0 + O = H[(k + 36) >> 2] + g = + (H[(k + 12) >> 2] - + ((O + (g >>> 0 < z >>> 0)) | 0)) | + 0 + G = g + h = j + j = Rj(A, g, A, g) + g = (h + j) | 0 + h = (da + q) | 0 + h = g >>> 0 < j >>> 0 ? (h + 1) | 0 : h + j = H[(k + 24) >> 2] + B = H[(k + 48) >> 2] + C = (j - B) | 0 + P = H[(k + 52) >> 2] + j = + (H[(k + 28) >> 2] - + ((P + (j >>> 0 < B >>> 0)) | 0)) | + 0 + J = j + m = g + g = Rj(C, j, C, j) + r = (m + g) | 0 + h = (da + h) | 0 + s = g >>> 0 > r >>> 0 ? (h + 1) | 0 : h + if (!(s | r)) { + break k + } + p = 0 + D = Tj(-1, 2147483647, r, s) + f = i >> 31 + R = f + h = f >> 31 + Q = i + g = h + q = i ^ g + i = (q - g) | 0 + f = + ((f ^ g) - + (((g >>> 0 > q >>> 0) + g) | 0)) | + 0 + g = f + f = e >> 31 + S = f + K = e + e = f >> 31 + q = K ^ e + m = (q - e) | 0 + h = f >> 31 + e = + ((h ^ f) - + (((e >>> 0 > q >>> 0) + h) | 0)) | + 0 + f = + (((g | 0) == (e | 0)) & + (i >>> 0 > m >>> 0)) | + (e >>> 0 < g >>> 0) + i = f ? i : m + j = da + e = f ? g : e + if ( + (((j | 0) == (e | 0)) & + (i >>> 0 > D >>> 0)) | + (e >>> 0 > j >>> 0) + ) { + break f + } + i = H[(k + 64) >> 2] + T = H[(k + 68) >> 2] + e = Rj( + (i - n) | 0, + (T - (((i >>> 0 < n >>> 0) + N) | 0)) | + 0, + x, + E, + ) + f = da + g = H[(k + 56) >> 2] + U = H[(k + 60) >> 2] + j = Rj( + (g - z) | 0, + (U - (((g >>> 0 < z >>> 0) + O) | 0)) | + 0, + A, + G, + ) + e = (j + e) | 0 + h = (da + f) | 0 + h = e >>> 0 < j >>> 0 ? (h + 1) | 0 : h + f = e + m = H[(k + 72) >> 2] + V = H[(k + 76) >> 2] + e = Rj( + (m - B) | 0, + (V - (((m >>> 0 < B >>> 0) + P) | 0)) | + 0, + C, + J, + ) + j = (f + e) | 0 + f = (da + h) | 0 + q = e >>> 0 > j >>> 0 ? (f + 1) | 0 : f + e = l + D = (e - Q) | 0 + e = + ((e >> 31) - + (((e >>> 0 < Q >>> 0) + R) | 0)) | + 0 + W = e + l = e >> 31 + y = l ^ D + f = (y - l) | 0 + h = e >> 31 + e = + ((h ^ e) - + (((l >>> 0 > y >>> 0) + h) | 0)) | + 0 + h = e + y = (w - K) | 0 + e = + ((w >> 31) - + (((w >>> 0 < K >>> 0) + S) | 0)) | + 0 + w = e + l = f + t = e >> 31 + u = t ^ y + L = (u - t) | 0 + f = e >> 31 + e = + ((f ^ e) - + (((t >>> 0 > u >>> 0) + f) | 0)) | + 0 + f = + (((h | 0) == (e | 0)) & + (l >>> 0 > L >>> 0)) | + (e >>> 0 < h >>> 0) + f = + Tj( + -1, + 2147483647, + f ? l : L, + f ? h : e, + ) >>> + 0 < + j >>> 0 + e = da + if ( + (f & ((e | 0) <= (q | 0))) | + ((e | 0) < (q | 0)) + ) { + break f + } + e = G >> 31 + f = e + l = e ^ A + e = (l - e) | 0 + f = + ((f ^ G) - + (((f >>> 0 > l >>> 0) + f) | 0)) | + 0 + h = E >> 31 + t = h ^ x + u = (t - h) | 0 + l = + ((h ^ E) - + (((h >>> 0 > t >>> 0) + h) | 0)) | + 0 + h = + (((f | 0) == (l | 0)) & + (e >>> 0 > u >>> 0)) | + (f >>> 0 > l >>> 0) + e = h ? e : u + f = h ? f : l + h = J >> 31 + L = e + t = h ^ C + u = (t - h) | 0 + l = + ((h ^ J) - + (((h >>> 0 > t >>> 0) + h) | 0)) | + 0 + e = + (((f | 0) == (l | 0)) & + (e >>> 0 > u >>> 0)) | + (f >>> 0 > l >>> 0) + f = + Tj( + -1, + 2147483647, + e ? L : u, + e ? f : l, + ) >>> + 0 < + j >>> 0 + e = da + if ( + (f & ((e | 0) <= (q | 0))) | + ((e | 0) < (q | 0)) + ) { + break f + } + l = 1 + e = 0 + f = n + n = Sj(Rj(j, q, x, E), da, r, s) + f = (f + n) | 0 + h = (da + N) | 0 + h = f >>> 0 < n >>> 0 ? (h + 1) | 0 : h + n = (i - f) | 0 + f = + (T - (((f >>> 0 > i >>> 0) + h) | 0)) | + 0 + n = Rj(n, f, n, f) + x = da + f = g + h = Sj(Rj(j, q, A, G), da, r, s) + i = (h + z) | 0 + g = (da + O) | 0 + g = h >>> 0 > i >>> 0 ? (g + 1) | 0 : g + h = (f - i) | 0 + f = + (U - (((f >>> 0 < i >>> 0) + g) | 0)) | + 0 + g = Rj(h, f, h, f) + i = (g + n) | 0 + f = (da + x) | 0 + f = g >>> 0 > i >>> 0 ? (f + 1) | 0 : f + n = i + g = Sj(Rj(j, q, C, J), da, r, s) + i = (g + B) | 0 + h = (da + P) | 0 + h = g >>> 0 > i >>> 0 ? (h + 1) | 0 : h + g = (m - i) | 0 + i = + (V - (((i >>> 0 > m >>> 0) + h) | 0)) | + 0 + m = Rj(g, i, g, i) + i = (m + n) | 0 + g = (da + f) | 0 + f = Rj( + i, + i >>> 0 < m >>> 0 ? (g + 1) | 0 : g, + r, + s, + ) + i = da + m = i + if (!i & (f >>> 0 <= 1)) { + break i + } + h = f + while (1) { + g = (e << 1) | (l >>> 31) + l = l << 1 + e = g + n = + (!i & (h >>> 0 > 7)) | ((i | 0) != 0) + h = ((i & 3) << 30) | (h >>> 2) + i = (i >>> 2) | 0 + if (n) { + continue + } + break + } + break h + } + if ((d | 0) > (f | 0)) { + e = f << 1 + } else { + if ((d | 0) <= 0) { + H[(o + 8) >> 2] = 0 + H[(o + 12) >> 2] = 0 + break j + } + e = ((d << 1) - 2) | 0 + } + e = ((e << 2) + c) | 0 + H[(o + 8) >> 2] = H[e >> 2] + H[(o + 12) >> 2] = H[(e + 4) >> 2] + } + p = 1 + break f + } + e = m + l = f + if ((f - 1) | 0) { + break g + } + } + while (1) { + i = Tj(f, m, l, e) + h = (e + da) | 0 + e = (i + l) | 0 + h = e >>> 0 < l >>> 0 ? (h + 1) | 0 : h + l = ((h & 1) << 31) | (e >>> 1) + e = (h >>> 1) | 0 + i = Rj(l, e, l, e) + g = da + if ( + (((m | 0) == (g | 0)) & (f >>> 0 < i >>> 0)) | + (g >>> 0 > m >>> 0) + ) { + continue + } + break + } + } + f = H[(o + 20) >> 2] + if (!f) { + break f + } + g = (f - 1) | 0 + h = + H[ + (H[(o + 16) >> 2] + ((g >>> 3) & 536870908)) >> + 2 + ] + H[(o + 20) >> 2] = g + p = 1 + f = Rj(j, q, y, w) + i = da + n = Rj(r, s, K, S) + m = (n + f) | 0 + f = (da + i) | 0 + f = m >>> 0 < n >>> 0 ? (f + 1) | 0 : f + i = Rj(l, e, D, W) + g = (h >>> g) & 1 + h = g ? (0 - i) | 0 : i + m = (h + m) | 0 + n = f + f = da + i = + (n + + (g + ? (0 - ((f + ((i | 0) != 0)) | 0)) | 0 + : f)) | + 0 + ;(Z = o), + (_ = Sj( + m, + h >>> 0 > m >>> 0 ? (i + 1) | 0 : i, + r, + s, + )), + (H[(Z + 12) >> 2] = _) + f = Rj(j, q, D, W) + i = da + j = Rj(r, s, Q, R) + f = (j + f) | 0 + h = (da + i) | 0 + e = Rj(l, e, y, w) + i = (0 - e) | 0 + l = da + h = + ((f >>> 0 < j >>> 0 ? (h + 1) | 0 : h) + + (g + ? l + : (0 - ((((e | 0) != 0) + l) | 0)) | 0)) | + 0 + i = g ? e : i + f = (i + f) | 0 + ;(Z = o), + (_ = Sj( + f, + f >>> 0 < i >>> 0 ? (h + 1) | 0 : h, + r, + s, + )), + (H[(Z + 8) >> 2] = _) + } + ca = (k + 80) | 0 + e = p + break d + } + Ca() + v() + } + i = e + if (!e) { + return 0 + } + l: { + if (H[(a + 8) >> 2] <= 0) { + break l + } + l = H[M >> 2] + e = 0 + while (1) { + f = e << 2 + g = H[(f + Y) >> 2] + j = H[(a + 16) >> 2] + m: { + if ((g | 0) > (j | 0)) { + H[(f + l) >> 2] = j + break m + } + f = (f + l) | 0 + j = H[(a + 12) >> 2] + if ((j | 0) > (g | 0)) { + H[f >> 2] = j + break m + } + H[f >> 2] = g + } + e = (e + 1) | 0 + g = H[(a + 8) >> 2] + if ((e | 0) < (g | 0)) { + continue + } + break + } + f = 0 + if ((g | 0) <= 0) { + break l + } + e = d << 3 + j = (e + c) | 0 + q = (b + e) | 0 + while (1) { + g = f << 2 + e = (g + j) | 0 + g = (H[(g + q) >> 2] + H[(g + l) >> 2]) | 0 + H[e >> 2] = g + n: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break n + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[e >> 2] = g + } + f = (f + 1) | 0 + if ((f | 0) < H[(a + 8) >> 2]) { + continue + } + break + } + } + d = (d + 1) | 0 + if ((X | 0) != (d | 0)) { + continue + } + break + } + } + return i | 0 + } + Ca() + v() + } + function xj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + G = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0 + a: { + b: { + if ((e | 0) != 2) { + break b + } + H[(a + 8) >> 2] = 2 + H[(a - -64) >> 2] = f + M = (a + 32) | 0 + e = H[M >> 2] + d = (H[(a + 36) >> 2] - e) | 0 + c: { + if (d >>> 0 <= 7) { + ya(M, (2 - ((d >>> 2) | 0)) | 0) + break c + } + if ((d | 0) == 8) { + break c + } + H[(a + 36) >> 2] = e + 8 + } + p = 1 + d = H[(a + 56) >> 2] + d = (H[(d + 4) >> 2] - H[d >> 2]) | 0 + if ((d | 0) <= 0) { + break b + } + o = (a + 60) | 0 + d = (d >>> 2) | 0 + X = d >>> 0 <= 1 ? 1 : d + Y = (a + 68) | 0 + d = 0 + while (1) { + e = H[(a + 56) >> 2] + h = H[e >> 2] + if (((H[(e + 4) >> 2] - h) >> 2) >>> 0 <= d >>> 0) { + break a + } + k = (ca - 80) | 0 + ca = k + f = -1 + h = H[(h + (d << 2)) >> 2] + e = -1 + d: { + if ((h | 0) == -1) { + break d + } + e = (h + 1) | 0 + f = (e >>> 0) % 3 | 0 ? e : (h - 2) | 0 + e = (h - 1) | 0 + if ((h >>> 0) % 3 | 0) { + break d + } + e = (h + 2) | 0 + } + g = H[(o + 36) >> 2] + h = H[g >> 2] + e: { + f: { + g: { + h: { + i: { + g = (H[(g + 4) >> 2] - h) >> 2 + i = f << 2 + f = H[(H[(o + 32) >> 2] + 28) >> 2] + j = H[(i + f) >> 2] + if (g >>> 0 <= j >>> 0) { + break i + } + e = H[(f + (e << 2)) >> 2] + if (e >>> 0 >= g >>> 0) { + break i + } + j: { + k: { + l = H[(h + (e << 2)) >> 2] + f = H[(h + (j << 2)) >> 2] + if ( + ((l | 0) >= (d | 0)) | + ((f | 0) >= (d | 0)) + ) { + break k + } + h = ((l << 3) + c) | 0 + w = H[(h + 4) >> 2] + g = ((f << 3) + c) | 0 + e = H[(g + 4) >> 2] + j = H[h >> 2] + h = H[g >> 2] + if ( + !( + ((j | 0) != (h | 0)) | + ((e | 0) != (w | 0)) + ) + ) { + H[(o + 8) >> 2] = h + H[(o + 12) >> 2] = e + break j + } + p = H[(H[(o + 4) >> 2] + (d << 2)) >> 2] + H[(k + 72) >> 2] = 0 + H[(k + 76) >> 2] = 0 + g = (k - -64) | 0 + H[g >> 2] = 0 + H[(g + 4) >> 2] = 0 + H[(k + 56) >> 2] = 0 + H[(k + 60) >> 2] = 0 + g = H[o >> 2] + if (!I[(g + 84) | 0]) { + p = H[(H[(g + 68) >> 2] + (p << 2)) >> 2] + } + Sa(g, p, F[(g + 24) | 0], (k + 56) | 0) + p = H[(H[(o + 4) >> 2] + (f << 2)) >> 2] + H[(k + 48) >> 2] = 0 + H[(k + 52) >> 2] = 0 + H[(k + 40) >> 2] = 0 + H[(k + 44) >> 2] = 0 + H[(k + 32) >> 2] = 0 + H[(k + 36) >> 2] = 0 + g = H[o >> 2] + if (!I[(g + 84) | 0]) { + p = H[(H[(g + 68) >> 2] + (p << 2)) >> 2] + } + Sa(g, p, F[(g + 24) | 0], (k + 32) | 0) + p = H[(H[(o + 4) >> 2] + (l << 2)) >> 2] + H[(k + 24) >> 2] = 0 + H[(k + 28) >> 2] = 0 + H[(k + 16) >> 2] = 0 + H[(k + 20) >> 2] = 0 + H[(k + 8) >> 2] = 0 + H[(k + 12) >> 2] = 0 + g = H[o >> 2] + if (!I[(g + 84) | 0]) { + p = H[(H[(g + 68) >> 2] + (p << 2)) >> 2] + } + Sa(g, p, F[(g + 24) | 0], (k + 8) | 0) + g = H[(k + 16) >> 2] + n = H[(k + 40) >> 2] + x = (g - n) | 0 + N = H[(k + 44) >> 2] + g = + (H[(k + 20) >> 2] - + ((N + (g >>> 0 < n >>> 0)) | 0)) | + 0 + E = g + l = Rj(x, g, x, g) + q = da + g = H[(k + 8) >> 2] + z = H[(k + 32) >> 2] + A = (g - z) | 0 + O = H[(k + 36) >> 2] + g = + (H[(k + 12) >> 2] - + ((O + (g >>> 0 < z >>> 0)) | 0)) | + 0 + G = g + i = l + l = Rj(A, g, A, g) + g = (i + l) | 0 + i = (da + q) | 0 + i = g >>> 0 < l >>> 0 ? (i + 1) | 0 : i + l = H[(k + 24) >> 2] + B = H[(k + 48) >> 2] + C = (l - B) | 0 + P = H[(k + 52) >> 2] + l = + (H[(k + 28) >> 2] - + ((P + (l >>> 0 < B >>> 0)) | 0)) | + 0 + J = l + m = g + g = Rj(C, l, C, l) + r = (m + g) | 0 + i = (da + i) | 0 + s = g >>> 0 > r >>> 0 ? (i + 1) | 0 : i + if (!(s | r)) { + break k + } + p = 0 + D = Tj(-1, 2147483647, r, s) + f = h >> 31 + R = f + i = f >> 31 + Q = h + g = i + q = h ^ g + h = (q - g) | 0 + f = + ((f ^ g) - + (((g >>> 0 > q >>> 0) + g) | 0)) | + 0 + g = f + f = e >> 31 + S = f + K = e + e = f >> 31 + q = K ^ e + m = (q - e) | 0 + i = f >> 31 + e = + ((i ^ f) - + (((e >>> 0 > q >>> 0) + i) | 0)) | + 0 + f = + (((g | 0) == (e | 0)) & + (h >>> 0 > m >>> 0)) | + (e >>> 0 < g >>> 0) + h = f ? h : m + l = da + e = f ? g : e + if ( + (((l | 0) == (e | 0)) & + (h >>> 0 > D >>> 0)) | + (e >>> 0 > l >>> 0) + ) { + break e + } + h = H[(k + 64) >> 2] + T = H[(k + 68) >> 2] + e = Rj( + (h - n) | 0, + (T - (((h >>> 0 < n >>> 0) + N) | 0)) | 0, + x, + E, + ) + f = da + g = H[(k + 56) >> 2] + U = H[(k + 60) >> 2] + l = Rj( + (g - z) | 0, + (U - (((g >>> 0 < z >>> 0) + O) | 0)) | 0, + A, + G, + ) + e = (l + e) | 0 + i = (da + f) | 0 + i = e >>> 0 < l >>> 0 ? (i + 1) | 0 : i + f = e + m = H[(k + 72) >> 2] + V = H[(k + 76) >> 2] + e = Rj( + (m - B) | 0, + (V - (((m >>> 0 < B >>> 0) + P) | 0)) | 0, + C, + J, + ) + l = (f + e) | 0 + f = (da + i) | 0 + q = e >>> 0 > l >>> 0 ? (f + 1) | 0 : f + e = j + D = (e - Q) | 0 + e = + ((e >> 31) - + (((e >>> 0 < Q >>> 0) + R) | 0)) | + 0 + W = e + j = e >> 31 + y = j ^ D + f = (y - j) | 0 + i = e >> 31 + e = + ((i ^ e) - + (((j >>> 0 > y >>> 0) + i) | 0)) | + 0 + i = e + y = (w - K) | 0 + e = + ((w >> 31) - + (((w >>> 0 < K >>> 0) + S) | 0)) | + 0 + w = e + j = f + t = e >> 31 + u = t ^ y + L = (u - t) | 0 + f = e >> 31 + e = + ((f ^ e) - + (((t >>> 0 > u >>> 0) + f) | 0)) | + 0 + f = + (((i | 0) == (e | 0)) & + (j >>> 0 > L >>> 0)) | + (e >>> 0 < i >>> 0) + f = + Tj( + -1, + 2147483647, + f ? j : L, + f ? i : e, + ) >>> + 0 < + l >>> 0 + e = da + if ( + (f & ((e | 0) <= (q | 0))) | + ((e | 0) < (q | 0)) + ) { + break e + } + e = G >> 31 + f = e + j = e ^ A + e = (j - e) | 0 + f = + ((f ^ G) - + (((f >>> 0 > j >>> 0) + f) | 0)) | + 0 + i = E >> 31 + t = i ^ x + u = (t - i) | 0 + j = + ((i ^ E) - + (((i >>> 0 > t >>> 0) + i) | 0)) | + 0 + i = + (((f | 0) == (j | 0)) & + (e >>> 0 > u >>> 0)) | + (f >>> 0 > j >>> 0) + e = i ? e : u + f = i ? f : j + i = J >> 31 + L = e + t = i ^ C + u = (t - i) | 0 + j = + ((i ^ J) - + (((i >>> 0 > t >>> 0) + i) | 0)) | + 0 + e = + (((f | 0) == (j | 0)) & + (e >>> 0 > u >>> 0)) | + (f >>> 0 > j >>> 0) + f = + Tj( + -1, + 2147483647, + e ? L : u, + e ? f : j, + ) >>> + 0 < + l >>> 0 + e = da + if ( + (f & ((e | 0) <= (q | 0))) | + ((e | 0) < (q | 0)) + ) { + break e + } + j = 1 + e = 0 + f = n + n = Sj(Rj(l, q, x, E), da, r, s) + f = (f + n) | 0 + i = (da + N) | 0 + i = f >>> 0 < n >>> 0 ? (i + 1) | 0 : i + n = (h - f) | 0 + f = + (T - (((f >>> 0 > h >>> 0) + i) | 0)) | 0 + n = Rj(n, f, n, f) + x = da + f = g + i = Sj(Rj(l, q, A, G), da, r, s) + h = (i + z) | 0 + g = (da + O) | 0 + g = h >>> 0 < i >>> 0 ? (g + 1) | 0 : g + i = (f - h) | 0 + f = + (U - (((f >>> 0 < h >>> 0) + g) | 0)) | 0 + g = Rj(i, f, i, f) + h = (g + n) | 0 + f = (da + x) | 0 + f = h >>> 0 < g >>> 0 ? (f + 1) | 0 : f + n = h + g = Sj(Rj(l, q, C, J), da, r, s) + h = (g + B) | 0 + i = (da + P) | 0 + i = h >>> 0 < g >>> 0 ? (i + 1) | 0 : i + g = (m - h) | 0 + h = + (V - (((h >>> 0 > m >>> 0) + i) | 0)) | 0 + m = Rj(g, h, g, h) + h = (m + n) | 0 + g = (da + f) | 0 + f = Rj( + h, + h >>> 0 < m >>> 0 ? (g + 1) | 0 : g, + r, + s, + ) + h = da + m = h + if (!h & (f >>> 0 <= 1)) { + break h + } + i = f + while (1) { + g = (e << 1) | (j >>> 31) + j = j << 1 + e = g + n = (!h & (i >>> 0 > 7)) | ((h | 0) != 0) + i = ((h & 3) << 30) | (i >>> 2) + h = (h >>> 2) | 0 + if (n) { + continue + } + break + } + break g + } + if ((d | 0) > (f | 0)) { + e = f << 1 + } else { + if ((d | 0) <= 0) { + H[(o + 8) >> 2] = 0 + H[(o + 12) >> 2] = 0 + break j + } + e = ((d << 1) - 2) | 0 + } + e = ((e << 2) + c) | 0 + H[(o + 8) >> 2] = H[e >> 2] + H[(o + 12) >> 2] = H[(e + 4) >> 2] + } + p = 1 + break e + } + Ca() + v() + } + e = m + j = f + if ((f - 1) | 0) { + break f + } + } + while (1) { + h = Tj(f, m, j, e) + i = (e + da) | 0 + e = (h + j) | 0 + i = e >>> 0 < j >>> 0 ? (i + 1) | 0 : i + j = ((i & 1) << 31) | (e >>> 1) + e = (i >>> 1) | 0 + h = Rj(j, e, j, e) + g = da + if ( + (((m | 0) == (g | 0)) & (f >>> 0 < h >>> 0)) | + (g >>> 0 > m >>> 0) + ) { + continue + } + break + } + } + f = H[(o + 20) >> 2] + if (!f) { + break e + } + g = (f - 1) | 0 + i = H[(H[(o + 16) >> 2] + ((g >>> 3) & 536870908)) >> 2] + H[(o + 20) >> 2] = g + p = 1 + f = Rj(l, q, y, w) + h = da + n = Rj(r, s, K, S) + m = (n + f) | 0 + f = (da + h) | 0 + f = m >>> 0 < n >>> 0 ? (f + 1) | 0 : f + h = Rj(j, e, D, W) + g = (i >>> g) & 1 + i = g ? (0 - h) | 0 : h + m = (i + m) | 0 + n = f + f = da + h = + (n + (g ? (0 - ((f + ((h | 0) != 0)) | 0)) | 0 : f)) | + 0 + ;(Z = o), + (_ = Sj( + m, + i >>> 0 > m >>> 0 ? (h + 1) | 0 : h, + r, + s, + )), + (H[(Z + 12) >> 2] = _) + f = Rj(l, q, D, W) + h = da + l = Rj(r, s, Q, R) + f = (l + f) | 0 + i = (da + h) | 0 + e = Rj(j, e, y, w) + h = (0 - e) | 0 + j = da + i = + ((f >>> 0 < l >>> 0 ? (i + 1) | 0 : i) + + (g ? j : (0 - ((((e | 0) != 0) + j) | 0)) | 0)) | + 0 + h = g ? e : h + f = (h + f) | 0 + ;(Z = o), + (_ = Sj( + f, + f >>> 0 < h >>> 0 ? (i + 1) | 0 : i, + r, + s, + )), + (H[(Z + 8) >> 2] = _) + } + ca = (k + 80) | 0 + if (!p) { + return 0 + } + l: { + if (H[(a + 8) >> 2] <= 0) { + break l + } + g = H[M >> 2] + e = 0 + while (1) { + f = e << 2 + h = H[(f + Y) >> 2] + j = H[(a + 16) >> 2] + m: { + if ((h | 0) > (j | 0)) { + H[(f + g) >> 2] = j + break m + } + f = (f + g) | 0 + j = H[(a + 12) >> 2] + if ((j | 0) > (h | 0)) { + H[f >> 2] = j + break m + } + H[f >> 2] = h + } + e = (e + 1) | 0 + h = H[(a + 8) >> 2] + if ((e | 0) < (h | 0)) { + continue + } + break + } + f = 0 + if ((h | 0) <= 0) { + break l + } + e = d << 3 + j = (e + c) | 0 + l = (b + e) | 0 + while (1) { + h = f << 2 + e = (h + j) | 0 + h = (H[(h + l) >> 2] + H[(h + g) >> 2]) | 0 + H[e >> 2] = h + n: { + if ((h | 0) > H[(a + 16) >> 2]) { + i = (h - H[(a + 20) >> 2]) | 0 + } else { + if ((h | 0) >= H[(a + 12) >> 2]) { + break n + } + i = (h + H[(a + 20) >> 2]) | 0 + } + H[e >> 2] = i + } + f = (f + 1) | 0 + if ((f | 0) < H[(a + 8) >> 2]) { + continue + } + break + } + } + d = (d + 1) | 0 + if ((X | 0) != (d | 0)) { + continue + } + break + } + } + return p | 0 + } + Ca() + v() + } + function $a(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + e = (ca - 16) | 0 + ca = e + H[(a + 12) >> 2] = b + H[(a + 8) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + d = (a + 16) | 0 + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + F[(d + 5) | 0] = 0 + F[(d + 6) | 0] = 0 + F[(d + 7) | 0] = 0 + F[(d + 8) | 0] = 0 + F[(d + 9) | 0] = 0 + F[(d + 10) | 0] = 0 + F[(d + 11) | 0] = 0 + F[(d + 12) | 0] = 0 + c = (d + 16) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 32) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 48) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d - -64) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 80) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 96) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 112) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 128) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 144) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 160) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 176) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 192) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 208) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 224) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 240) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 256) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 272) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 288) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 304) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 320) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 336) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 352) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 368) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 384) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 400) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 416) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 432) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 448) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 464) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c = (d + 480) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + d = (d + 496) | 0 + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + F[(d + 5) | 0] = 0 + F[(d + 6) | 0] = 0 + F[(d + 7) | 0] = 0 + F[(d + 8) | 0] = 0 + F[(d + 9) | 0] = 0 + F[(d + 10) | 0] = 0 + F[(d + 11) | 0] = 0 + F[(d + 12) | 0] = 0 + H[(a + 528) >> 2] = 0 + H[(a + 532) >> 2] = 0 + F[(a + 533) | 0] = 0 + F[(a + 534) | 0] = 0 + F[(a + 535) | 0] = 0 + F[(a + 536) | 0] = 0 + F[(a + 537) | 0] = 0 + F[(a + 538) | 0] = 0 + F[(a + 539) | 0] = 0 + F[(a + 540) | 0] = 0 + H[(a + 544) >> 2] = 0 + H[(a + 548) >> 2] = 0 + H[(a + 560) >> 2] = 0 + H[(a + 552) >> 2] = 0 + H[(a + 556) >> 2] = 0 + H[(a + 564) >> 2] = 0 + H[(a + 568) >> 2] = 0 + H[(a + 580) >> 2] = 0 + H[(a + 572) >> 2] = 0 + H[(a + 576) >> 2] = 0 + H[(a + 584) >> 2] = 0 + H[(a + 588) >> 2] = 0 + H[(a + 600) >> 2] = 0 + H[(a + 592) >> 2] = 0 + H[(a + 596) >> 2] = 0 + H[(a + 612) >> 2] = 0 + H[(a + 604) >> 2] = 0 + H[(a + 608) >> 2] = 0 + g = (a + 628) | 0 + a: { + b: { + if (b) { + if (b >>> 0 < 1073741824) { + break b + } + sa() + v() + } + H[(a + 616) >> 2] = 0 + H[(a + 620) >> 2] = 0 + H[(a + 624) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[e >> 2] = 0 + H[(e + 4) >> 2] = 0 + d = 1 + break a + } + d = b << 2 + c = pa(d) + H[(a + 604) >> 2] = c + f = (c + d) | 0 + H[(a + 612) >> 2] = f + ra(c, 0, d) + H[(a + 624) >> 2] = 0 + H[(a + 616) >> 2] = 0 + H[(a + 620) >> 2] = 0 + H[(a + 608) >> 2] = f + c = pa(d) + H[(a + 616) >> 2] = c + f = (c + d) | 0 + H[(a + 624) >> 2] = f + ra(c, 0, d) + H[(a + 620) >> 2] = f + c = pa(d) + H[e >> 2] = c + f = (c + d) | 0 + H[(e + 8) >> 2] = f + ra(c, 0, d) + H[(e + 4) >> 2] = f + d = (b << 5) | 1 + } + tb(g, d, e) + c = H[e >> 2] + if (c) { + H[(e + 4) >> 2] = c + oa(c) + } + H[(e + 8) >> 2] = 0 + H[e >> 2] = 0 + H[(e + 4) >> 2] = 0 + if (b) { + b = b << 2 + c = pa(b) + H[e >> 2] = c + f = (b + c) | 0 + H[(e + 8) >> 2] = f + ra(c, 0, b) + H[(e + 4) >> 2] = f + } + tb((a + 640) | 0, d, e) + b = H[e >> 2] + if (b) { + H[(e + 4) >> 2] = b + oa(b) + } + ca = (e + 16) | 0 + return a + } + function gc(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = O(0), + n = O(0), + o = 0 + a: { + b: { + if (!d) { + break b + } + c: { + switch ((H[(a + 28) >> 2] - 1) | 0) { + case 0: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + G[((g << 1) + d) >> 1] = F[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 1: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + G[((g << 1) + d) >> 1] = I[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 2: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + G[((g << 1) + d) >> 1] = J[b >> 1] + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 3: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + return 0 + } + e = G[b >> 1] + if ((e | 0) < 0) { + break b + } + G[((g << 1) + d) >> 1] = e + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 4: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + e = H[b >> 2] + if ((e + 32768) >>> 0 > 65535) { + break b + } + G[((g << 1) + d) >> 1] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 5: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + e = H[b >> 2] + if (e >>> 0 > 32767) { + break b + } + G[((g << 1) + d) >> 1] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 6: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + k = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= k >>> 0) { + break b + } + h = H[(b + 4) >> 2] + e = H[b >> 2] + i = (e + 32768) | 0 + h = i >>> 0 < 32768 ? (h + 1) | 0 : h + if ((!h & (i >>> 0 > 65535)) | h) { + break b + } + G[((g << 1) + d) >> 1] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 7: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + k = H[(b + 4) >> 2] + e = H[b >> 2] + if ((!k & (e >>> 0 > 32767)) | k) { + break b + } + G[((g << 1) + d) >> 1] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 8: + d: { + e: { + e = I[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break e + } + e = H[a >> 2] + j = H[e >> 2] + g = j + f = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = H[(e + 4) >> 2] + e = (f - j) | 0 + if (!I[(a + 32) | 0]) { + j = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = L[g >> 2] + if ( + (m >= O(32767)) | + (m < O(-32768)) | + (m != m) + ) { + break d + } + n = O(P(m)) + if (n == O(Infinity)) { + break d + } + e = ((b << 1) + d) | 0 + if (n < O(2147483648)) { + i = ~~m + } else { + i = -2147483648 + } + G[e >> 1] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + j = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = L[g >> 2] + if ( + (m >= O(32767)) | + (m < O(-32768)) | + ((O(P(m)) == O(Infinity)) | (m != m)) + ) { + break d + } + if ((m < O(0)) | (m > O(1))) { + break d + } + e = ((b << 1) + d) | 0 + l = T(+m * 32767 + 0.5) + f: { + if (P(l) < 2147483648) { + i = ~~l + break f + } + i = -2147483648 + } + G[e >> 1] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + j = 1 + if (c >>> 0 <= e >>> 0) { + break d + } + ra(((e << 1) + d) | 0, 0, (c - e) << 1) + } + return j + case 9: + g: { + h: { + e = I[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break h + } + e = H[a >> 2] + j = H[e >> 2] + g = j + f = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = H[(e + 4) >> 2] + e = (f - j) | 0 + if (!I[(a + 32) | 0]) { + j = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + l = M[g >> 3] + if ((l >= 32767) | (l < -32768) | (l != l)) { + break g + } + o = P(l) + if (o == Infinity) { + break g + } + e = ((b << 1) + d) | 0 + if (o < 2147483648) { + i = ~~l + } else { + i = -2147483648 + } + G[e >> 1] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + j = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + l = M[g >> 3] + if ( + (l >= 32767) | + (l < -32768) | + ((P(l) == Infinity) | (l != l)) + ) { + break g + } + if ((l < 0) | (l > 1)) { + break g + } + e = ((b << 1) + d) | 0 + l = T(l * 32767 + 0.5) + i: { + if (P(l) < 2147483648) { + i = ~~l + break i + } + i = -2147483648 + } + G[e >> 1] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + j = 1 + if (c >>> 0 <= e >>> 0) { + break g + } + ra(((e << 1) + d) | 0, 0, (c - e) << 1) + } + return j + case 10: + break c + default: + break b + } + } + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + G[((g << 1) + d) >> 1] = I[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + ra(((e << 1) + d) | 0, 0, ((c & 255) - e) << 1) + } + return j + } + ra(((e << 1) + d) | 0, 0, ((c & 255) - e) << 1) + return 1 + } + function ec(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = O(0), + n = O(0), + o = 0 + a: { + b: { + if (!d) { + break b + } + c: { + switch ((H[(a + 28) >> 2] - 1) | 0) { + case 0: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = F[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 1: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = I[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 2: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = G[b >> 1] + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 3: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = J[b >> 1] + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 4: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = H[b >> 2] + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 5: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + return 0 + } + e = H[b >> 2] + if ((e | 0) < 0) { + break b + } + H[((g << 2) + d) >> 2] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 6: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + k = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= k >>> 0) { + break b + } + h = H[(b + 4) >> 2] + e = H[b >> 2] + if ( + (e - -2147483648) >>> 0 < 2147483648 + ? (h + 1) | 0 + : h + ) { + break b + } + H[((g << 2) + d) >> 2] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 7: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + k = H[(b + 4) >> 2] + e = H[b >> 2] + if ((!k & (e >>> 0 > 2147483647)) | k) { + break b + } + H[((g << 2) + d) >> 2] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 8: + d: { + e: { + e = I[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break e + } + e = H[a >> 2] + j = H[e >> 2] + g = j + f = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = H[(e + 4) >> 2] + e = (f - j) | 0 + if (!I[(a + 32) | 0]) { + j = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = L[g >> 2] + if ( + (m >= O(2147483648)) | + (m < O(-2147483648)) | + (m != m) + ) { + break d + } + n = O(P(m)) + if (n == O(Infinity)) { + break d + } + e = ((b << 2) + d) | 0 + if (n < O(2147483648)) { + i = ~~m + } else { + i = -2147483648 + } + H[e >> 2] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + j = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = L[g >> 2] + if ( + (m >= O(2147483648)) | + (m < O(-2147483648)) | + ((O(P(m)) == O(Infinity)) | (m != m)) + ) { + break d + } + if ((m < O(0)) | (m > O(1))) { + break d + } + e = ((b << 2) + d) | 0 + l = T(+m * 2147483647 + 0.5) + f: { + if (P(l) < 2147483648) { + i = ~~l + break f + } + i = -2147483648 + } + H[e >> 2] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + j = 1 + if (c >>> 0 <= e >>> 0) { + break d + } + ra(((e << 2) + d) | 0, 0, (c - e) << 2) + } + return j + case 9: + g: { + h: { + e = I[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break h + } + e = H[a >> 2] + j = H[e >> 2] + g = j + f = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = H[(e + 4) >> 2] + e = (f - j) | 0 + if (!I[(a + 32) | 0]) { + j = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + l = M[g >> 3] + if ( + (l >= 2147483647) | + (l < -2147483648) | + (l != l) + ) { + break g + } + o = P(l) + if (o == Infinity) { + break g + } + e = ((b << 2) + d) | 0 + if (o < 2147483648) { + i = ~~l + } else { + i = -2147483648 + } + H[e >> 2] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + j = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + l = M[g >> 3] + if ( + (l >= 2147483647) | + (l < -2147483648) | + ((P(l) == Infinity) | (l != l)) + ) { + break g + } + if ((l < 0) | (l > 1)) { + break g + } + e = ((b << 2) + d) | 0 + l = T(l * 2147483647 + 0.5) + i: { + if (P(l) < 2147483648) { + i = ~~l + break i + } + i = -2147483648 + } + H[e >> 2] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + j = 1 + if (c >>> 0 <= e >>> 0) { + break g + } + ra(((e << 2) + d) | 0, 0, (c - e) << 2) + } + return j + case 10: + break c + default: + break b + } + } + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = I[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + ra(((e << 2) + d) | 0, 0, ((c & 255) - e) << 2) + } + return j + } + ra(((e << 2) + d) | 0, 0, ((c & 255) - e) << 2) + return 1 + } + function fc(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = O(0) + a: { + b: { + if (!d) { + break b + } + c: { + switch ((H[(a + 28) >> 2] - 1) | 0) { + case 0: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + return 0 + } + e = F[b | 0] + if ((e | 0) < 0) { + break b + } + G[((g << 1) + d) >> 1] = e & 255 + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 1: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + G[((g << 1) + d) >> 1] = I[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 2: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + return 0 + } + e = G[b >> 1] + if ((e | 0) < 0) { + break b + } + G[((g << 1) + d) >> 1] = e + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 3: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + G[((g << 1) + d) >> 1] = J[b >> 1] + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 4: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + e = H[b >> 2] + if (e >>> 0 > 65535) { + break b + } + G[((g << 1) + d) >> 1] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 5: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + e = H[b >> 2] + if (e >>> 0 > 65535) { + break b + } + G[((g << 1) + d) >> 1] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 6: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + k = H[(b + 4) >> 2] + e = H[b >> 2] + if ((!k & (e >>> 0 > 65535)) | k) { + break b + } + G[((g << 1) + d) >> 1] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 7: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + k = H[(b + 4) >> 2] + e = H[b >> 2] + if ((!k & (e >>> 0 > 65535)) | k) { + break b + } + G[((g << 1) + d) >> 1] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 8: + d: { + e: { + e = I[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break e + } + e = H[a >> 2] + l = H[e >> 2] + g = l + f = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = H[(e + 4) >> 2] + e = (f - l) | 0 + if (!I[(a + 32) | 0]) { + l = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = L[g >> 2] + if ( + (m >= O(65535)) | + (m < O(0)) | + ((O(P(m)) == O(Infinity)) | (m != m)) + ) { + break d + } + e = ((b << 1) + d) | 0 + if ((m < O(4294967296)) & (m >= O(0))) { + i = ~~m >>> 0 + } else { + i = 0 + } + G[e >> 1] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + l = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = L[g >> 2] + if ( + (m >= O(65535)) | + (m < O(0)) | + ((O(P(m)) == O(Infinity)) | (m != m)) + ) { + break d + } + if (m > O(1)) { + break d + } + e = ((b << 1) + d) | 0 + j = T(+m * 65535 + 0.5) + f: { + if ((j < 4294967296) & (j >= 0)) { + i = ~~j >>> 0 + break f + } + i = 0 + } + G[e >> 1] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + l = 1 + if (c >>> 0 <= e >>> 0) { + break d + } + ra(((e << 1) + d) | 0, 0, (c - e) << 1) + } + return l + case 9: + g: { + h: { + e = I[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break h + } + e = H[a >> 2] + l = H[e >> 2] + g = l + f = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = H[(e + 4) >> 2] + e = (f - l) | 0 + if (!I[(a + 32) | 0]) { + l = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + j = M[g >> 3] + if ( + (j >= 65535) | + (j < 0) | + ((P(j) == Infinity) | (j != j)) + ) { + break g + } + e = ((b << 1) + d) | 0 + if ((j < 4294967296) & (j >= 0)) { + i = ~~j >>> 0 + } else { + i = 0 + } + G[e >> 1] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + l = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + j = M[g >> 3] + if ( + (j >= 65535) | + (j < 0) | + ((P(j) == Infinity) | (j != j)) + ) { + break g + } + if (j > 1) { + break g + } + e = ((b << 1) + d) | 0 + j = T(j * 65535 + 0.5) + i: { + if ((j < 4294967296) & (j >= 0)) { + i = ~~j >>> 0 + break i + } + i = 0 + } + G[e >> 1] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + l = 1 + if (c >>> 0 <= e >>> 0) { + break g + } + ra(((e << 1) + d) | 0, 0, (c - e) << 1) + } + return l + case 10: + break c + default: + break b + } + } + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + k = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + G[((g << 1) + d) >> 1] = I[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + ra(((e << 1) + d) | 0, 0, ((c & 255) - e) << 1) + } + return l + } + ra(((e << 1) + d) | 0, 0, ((c & 255) - e) << 1) + return 1 + } + function Sa(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = O(0), + l = 0, + m = 0, + n = O(0), + o = 0 + a: { + if (!d) { + break a + } + b: { + c: { + switch ((H[(a + 28) >> 2] - 1) | 0) { + case 0: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + i = F[b | 0] + H[e >> 2] = i + H[(e + 4) >> 2] = i >> 31 + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 1: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + H[e >> 2] = I[b | 0] + H[(e + 4) >> 2] = 0 + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 2: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + i = G[b >> 1] + H[e >> 2] = i + H[(e + 4) >> 2] = i >> 31 + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 3: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + H[e >> 2] = J[b >> 1] + H[(e + 4) >> 2] = 0 + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 4: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + i = H[b >> 2] + H[e >> 2] = i + H[(e + 4) >> 2] = i >> 31 + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 5: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + H[e >> 2] = H[b >> 2] + H[(e + 4) >> 2] = 0 + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 6: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + i = H[(b + 4) >> 2] + e = ((g << 3) + d) | 0 + H[e >> 2] = H[b >> 2] + H[(e + 4) >> 2] = i + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 7: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = H[b >> 2] + i = H[(b + 4) >> 2] + if ((i | 0) < 0) { + break a + } + j = ((g << 3) + d) | 0 + H[j >> 2] = e + H[(j + 4) >> 2] = i + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 8: + d: { + e = I[(a + 24) | 0] + f = c & 255 + if (!(e >>> 0 < f >>> 0 ? e : f)) { + break d + } + if (I[(a + 32) | 0]) { + break a + } + e = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + j = b + b = (b + e) | 0 + e = H[a >> 2] + i = H[(e + 4) >> 2] + e = H[e >> 2] + if ((b | 0) >= ((i - e) | 0)) { + break a + } + g = (b + e) | 0 + h = c & 255 + b = 0 + while (1) { + k = L[g >> 2] + if ( + (k >= O(0x8000000000000000)) | + (k < O(-0x8000000000000000)) | + (k != k) + ) { + break a + } + n = O(P(k)) + if (n == O(Infinity)) { + break a + } + e = ((b << 3) + d) | 0 + e: { + if (n < O(0x8000000000000000)) { + j = + O(P(k)) >= O(1) + ? ~~(k > O(0) + ? O( + R( + O( + T( + O( + k * + O( + 2.3283064365386963e-10, + ), + ), + ), + ), + O(4294967296), + ), + ) + : O( + U( + O( + O(k - O((~~k >>> 0) >>> 0)) * + O(2.3283064365386963e-10), + ), + ), + )) >>> 0 + : 0 + m = ~~k >>> 0 + break e + } + j = -2147483648 + m = 0 + } + H[e >> 2] = m + H[(e + 4) >> 2] = j + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (e >>> 0 < h >>> 0 ? e : h) >>> 0 + ) { + break d + } + g = (g + 4) | 0 + if (i >>> 0 > g >>> 0) { + continue + } + break + } + break a + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 9: + f: { + e = I[(a + 24) | 0] + f = c & 255 + if (!(e >>> 0 < f >>> 0 ? e : f)) { + break f + } + if (I[(a + 32) | 0]) { + break a + } + e = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + j = b + b = (b + e) | 0 + e = H[a >> 2] + i = H[(e + 4) >> 2] + e = H[e >> 2] + if ((b | 0) >= ((i - e) | 0)) { + break a + } + g = (b + e) | 0 + h = c & 255 + b = 0 + while (1) { + l = M[g >> 3] + if ( + (l >= 0x8000000000000000) | + (l < -0x8000000000000000) | + (l != l) + ) { + break a + } + o = P(l) + if (o == Infinity) { + break a + } + e = ((b << 3) + d) | 0 + g: { + if (o < 0x8000000000000000) { + j = + P(l) >= 1 + ? ~~(l > 0 + ? R( + T(l * 2.3283064365386963e-10), + 4294967295, + ) + : U( + (l - +((~~l >>> 0) >>> 0)) * + 2.3283064365386963e-10, + )) >>> 0 + : 0 + m = ~~l >>> 0 + break g + } + j = -2147483648 + m = 0 + } + H[e >> 2] = m + H[(e + 4) >> 2] = j + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (e >>> 0 < h >>> 0 ? e : h) >>> 0 + ) { + break f + } + g = (g + 8) | 0 + if (i >>> 0 > g >>> 0) { + continue + } + break + } + break a + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 10: + break c + default: + break a + } + } + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + H[e >> 2] = I[b | 0] + H[(e + 4) >> 2] = 0 + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + } + ra(d, 0, a << 3) + } + } + function Oj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + j = a + a: { + b: { + c: { + d: { + e: { + f: { + g: { + h: { + a = H[(a + 8) >> 2] + switch ((H[(a + 28) >> 2] - 1) | 0) { + case 4: + break c + case 5: + break d + case 2: + break e + case 3: + break f + case 0: + break g + case 1: + break h + default: + break a + } + } + f = I[(a + 24) | 0] + c = pa(f) + a = H[(j + 16) >> 2] + if (H[(a + 80) >> 2]) { + g = (H[H[a >> 2] >> 2] + H[(a + 48) >> 2]) | 0 + } else { + g = 0 + } + if (!b) { + break b + } + if (f) { + o = f & 252 + l = f & 3 + h = f >>> 0 < 4 + while (1) { + a = 0 + e = 0 + if (!h) { + while (1) { + k = (g + (d << 2)) | 0 + F[(a + c) | 0] = H[k >> 2] + F[((a | 1) + c) | 0] = H[(k + 4) >> 2] + F[((a | 2) + c) | 0] = H[(k + 8) >> 2] + F[((a | 3) + c) | 0] = H[(k + 12) >> 2] + a = (a + 4) | 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((o | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + if (l) { + while (1) { + F[(a + c) | 0] = H[(g + (d << 2)) >> 2] + a = (a + 1) | 0 + d = (d + 1) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + + m) | + 0, + c, + f, + ) + m = (f + m) | 0 + n = (n + 1) | 0 + if ((n | 0) != (b | 0)) { + continue + } + break + } + break b + } + a = 0 + if ((b | 0) != 1) { + g = b & -2 + while (1) { + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + + a) | + 0, + c, + f, + ) + a = (a + f) | 0 + qa( + (a + + H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2]) | + 0, + c, + f, + ) + a = (a + f) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if (!(b & 1)) { + break b + } + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | + 0, + c, + f, + ) + break b + } + f = I[(a + 24) | 0] + c = pa(f) + a = H[(j + 16) >> 2] + if (H[(a + 80) >> 2]) { + g = (H[H[a >> 2] >> 2] + H[(a + 48) >> 2]) | 0 + } else { + g = 0 + } + if (!b) { + break b + } + if (f) { + o = f & 252 + l = f & 3 + h = f >>> 0 < 4 + while (1) { + a = 0 + e = 0 + if (!h) { + while (1) { + k = (g + (d << 2)) | 0 + F[(a + c) | 0] = H[k >> 2] + F[((a | 1) + c) | 0] = H[(k + 4) >> 2] + F[((a | 2) + c) | 0] = H[(k + 8) >> 2] + F[((a | 3) + c) | 0] = H[(k + 12) >> 2] + a = (a + 4) | 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((o | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + if (l) { + while (1) { + F[(a + c) | 0] = H[(g + (d << 2)) >> 2] + a = (a + 1) | 0 + d = (d + 1) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + m) | + 0, + c, + f, + ) + m = (f + m) | 0 + n = (n + 1) | 0 + if ((n | 0) != (b | 0)) { + continue + } + break + } + break b + } + a = 0 + if ((b | 0) != 1) { + g = b & -2 + while (1) { + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | + 0, + c, + f, + ) + a = (a + f) | 0 + qa( + (a + H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2]) | + 0, + c, + f, + ) + a = (a + f) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if (!(b & 1)) { + break b + } + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, + c, + f, + ) + break b + } + h = I[(a + 24) | 0] + i = h << 1 + c = pa(i) + a = H[(j + 16) >> 2] + if (H[(a + 80) >> 2]) { + g = (H[H[a >> 2] >> 2] + H[(a + 48) >> 2]) | 0 + } else { + g = 0 + } + if (!b) { + break b + } + if (h) { + o = h & 252 + l = h & 3 + h = h >>> 0 < 4 + while (1) { + a = 0 + e = 0 + if (!h) { + while (1) { + f = a << 1 + k = (g + (d << 2)) | 0 + G[(f + c) >> 1] = H[k >> 2] + G[((f | 2) + c) >> 1] = H[(k + 4) >> 2] + G[((f | 4) + c) >> 1] = H[(k + 8) >> 2] + G[((f | 6) + c) >> 1] = H[(k + 12) >> 2] + a = (a + 4) | 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((o | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + if (l) { + while (1) { + G[((a << 1) + c) >> 1] = + H[(g + (d << 2)) >> 2] + a = (a + 1) | 0 + d = (d + 1) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + n) | + 0, + c, + i, + ) + n = (i + n) | 0 + m = (m + 1) | 0 + if ((m | 0) != (b | 0)) { + continue + } + break + } + break b + } + a = 0 + if ((b | 0) != 1) { + g = b & -2 + while (1) { + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | + 0, + c, + i, + ) + a = (a + i) | 0 + qa( + (a + H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2]) | + 0, + c, + i, + ) + a = (a + i) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if (!(b & 1)) { + break b + } + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, + c, + i, + ) + break b + } + h = I[(a + 24) | 0] + i = h << 1 + c = pa(i) + a = H[(j + 16) >> 2] + if (H[(a + 80) >> 2]) { + g = (H[H[a >> 2] >> 2] + H[(a + 48) >> 2]) | 0 + } else { + g = 0 + } + if (!b) { + break b + } + if (h) { + o = h & 252 + l = h & 3 + h = h >>> 0 < 4 + while (1) { + a = 0 + e = 0 + if (!h) { + while (1) { + f = a << 1 + k = (g + (d << 2)) | 0 + G[(f + c) >> 1] = H[k >> 2] + G[((f | 2) + c) >> 1] = H[(k + 4) >> 2] + G[((f | 4) + c) >> 1] = H[(k + 8) >> 2] + G[((f | 6) + c) >> 1] = H[(k + 12) >> 2] + a = (a + 4) | 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((o | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + if (l) { + while (1) { + G[((a << 1) + c) >> 1] = H[(g + (d << 2)) >> 2] + a = (a + 1) | 0 + d = (d + 1) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + n) | 0, + c, + i, + ) + n = (i + n) | 0 + m = (m + 1) | 0 + if ((m | 0) != (b | 0)) { + continue + } + break + } + break b + } + a = 0 + if ((b | 0) != 1) { + g = b & -2 + while (1) { + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, + c, + i, + ) + a = (a + i) | 0 + qa( + (a + H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2]) | 0, + c, + i, + ) + a = (a + i) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if (!(b & 1)) { + break b + } + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, + c, + i, + ) + break b + } + h = I[(a + 24) | 0] + i = h << 2 + c = pa(i) + a = H[(j + 16) >> 2] + if (H[(a + 80) >> 2]) { + g = (H[H[a >> 2] >> 2] + H[(a + 48) >> 2]) | 0 + } else { + g = 0 + } + if (!b) { + break b + } + if (h) { + o = h & 252 + l = h & 3 + h = h >>> 0 < 4 + while (1) { + a = 0 + e = 0 + if (!h) { + while (1) { + f = a << 2 + k = (g + (d << 2)) | 0 + H[(f + c) >> 2] = H[k >> 2] + H[((f | 4) + c) >> 2] = H[(k + 4) >> 2] + H[((f | 8) + c) >> 2] = H[(k + 8) >> 2] + H[((f | 12) + c) >> 2] = H[(k + 12) >> 2] + a = (a + 4) | 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((o | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + if (l) { + while (1) { + H[((a << 2) + c) >> 2] = H[(g + (d << 2)) >> 2] + a = (a + 1) | 0 + d = (d + 1) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + n) | 0, + c, + i, + ) + n = (i + n) | 0 + m = (m + 1) | 0 + if ((m | 0) != (b | 0)) { + continue + } + break + } + break b + } + a = 0 + if ((b | 0) != 1) { + g = b & -2 + while (1) { + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, + c, + i, + ) + a = (a + i) | 0 + qa( + (a + H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2]) | 0, + c, + i, + ) + a = (a + i) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if (!(b & 1)) { + break b + } + qa((H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, c, i) + break b + } + h = I[(a + 24) | 0] + i = h << 2 + c = pa(i) + a = H[(j + 16) >> 2] + if (H[(a + 80) >> 2]) { + g = (H[H[a >> 2] >> 2] + H[(a + 48) >> 2]) | 0 + } else { + g = 0 + } + if (!b) { + break b + } + if (h) { + o = h & 252 + l = h & 3 + h = h >>> 0 < 4 + while (1) { + a = 0 + e = 0 + if (!h) { + while (1) { + f = a << 2 + k = (g + (d << 2)) | 0 + H[(f + c) >> 2] = H[k >> 2] + H[((f | 4) + c) >> 2] = H[(k + 4) >> 2] + H[((f | 8) + c) >> 2] = H[(k + 8) >> 2] + H[((f | 12) + c) >> 2] = H[(k + 12) >> 2] + a = (a + 4) | 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((o | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + if (l) { + while (1) { + H[((a << 2) + c) >> 2] = H[(g + (d << 2)) >> 2] + a = (a + 1) | 0 + d = (d + 1) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + n) | 0, + c, + i, + ) + n = (i + n) | 0 + m = (m + 1) | 0 + if ((m | 0) != (b | 0)) { + continue + } + break + } + break b + } + a = 0 + if ((b | 0) != 1) { + g = b & -2 + while (1) { + qa( + (H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, + c, + i, + ) + a = (a + i) | 0 + qa( + (a + H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2]) | 0, + c, + i, + ) + a = (a + i) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if (!(b & 1)) { + break b + } + qa((H[H[(H[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, c, i) + } + oa(c) + c = 1 + } + return c | 0 + } + function dc(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = O(0) + a: { + b: { + if (!d) { + break b + } + c: { + switch ((H[(a + 28) >> 2] - 1) | 0) { + case 0: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + l = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = F[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 1: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + l = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = I[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 2: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + l = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = G[b >> 1] + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 3: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + l = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = J[b >> 1] + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 4: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + l = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = H[b >> 2] + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 5: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + l = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = H[b >> 2] + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 6: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + l = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + e = H[b >> 2] + if (H[(b + 4) >> 2]) { + break b + } + H[((g << 2) + d) >> 2] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 7: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + l = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + e = H[b >> 2] + if (H[(b + 4) >> 2]) { + break b + } + H[((g << 2) + d) >> 2] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 8: + d: { + e: { + e = I[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break e + } + e = H[a >> 2] + k = H[e >> 2] + g = k + f = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = H[(e + 4) >> 2] + e = (f - k) | 0 + if (!I[(a + 32) | 0]) { + k = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = L[g >> 2] + if ( + (m >= O(4294967296)) | + (m < O(0)) | + ((O(P(m)) == O(Infinity)) | (m != m)) + ) { + break d + } + e = ((b << 2) + d) | 0 + if ((m < O(4294967296)) & (m >= O(0))) { + i = ~~m >>> 0 + } else { + i = 0 + } + H[e >> 2] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + k = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = L[g >> 2] + if ( + (m >= O(4294967296)) | + (m < O(0)) | + ((O(P(m)) == O(Infinity)) | (m != m)) + ) { + break d + } + if (m > O(1)) { + break d + } + e = ((b << 2) + d) | 0 + j = T(+m * 4294967295 + 0.5) + f: { + if ((j < 4294967296) & (j >= 0)) { + i = ~~j >>> 0 + break f + } + i = 0 + } + H[e >> 2] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + k = 1 + if (c >>> 0 <= e >>> 0) { + break d + } + ra(((e << 2) + d) | 0, 0, (c - e) << 2) + } + return k + case 9: + g: { + h: { + e = I[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break h + } + e = H[a >> 2] + k = H[e >> 2] + g = k + f = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = H[(e + 4) >> 2] + e = (f - k) | 0 + if (!I[(a + 32) | 0]) { + k = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + j = M[g >> 3] + if ( + (j >= 4294967295) | + (j < 0) | + ((P(j) == Infinity) | (j != j)) + ) { + break g + } + e = ((b << 2) + d) | 0 + if ((j < 4294967296) & (j >= 0)) { + i = ~~j >>> 0 + } else { + i = 0 + } + H[e >> 2] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + k = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + j = M[g >> 3] + if ( + (j >= 4294967295) | + (j < 0) | + ((P(j) == Infinity) | (j != j)) + ) { + break g + } + if (j > 1) { + break g + } + e = ((b << 2) + d) | 0 + j = T(j * 4294967295 + 0.5) + i: { + if ((j < 4294967296) & (j >= 0)) { + i = ~~j >>> 0 + break i + } + i = 0 + } + H[e >> 2] = i + b = (b + 1) | 0 + e = I[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + k = 1 + if (c >>> 0 <= e >>> 0) { + break g + } + ra(((e << 2) + d) | 0, 0, (c - e) << 2) + } + return k + case 10: + break c + default: + break b + } + } + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + h = H[e >> 2] + l = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + H[((g << 2) + d) >> 2] = I[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + ra(((e << 2) + d) | 0, 0, ((c & 255) - e) << 2) + } + return k + } + ra(((e << 2) + d) | 0, 0, ((c & 255) - e) << 2) + return 1 + } + function ye(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + a: { + b: { + c: { + d: { + e: { + if (H[(a + 92) >> 2] == H[(a + 88) >> 2]) { + break e + } + c = H[(a + 52) >> 2] + f: { + if ((c | 0) != H[(a + 56) >> 2]) { + H[c >> 2] = b + H[(a + 52) >> 2] = c + 4 + break f + } + h = H[(a + 48) >> 2] + g = (c - h) | 0 + d = g >> 2 + f = (d + 1) | 0 + if (f >>> 0 >= 1073741824) { + break a + } + e = (g >>> 1) | 0 + g = + g >>> 0 >= 2147483644 + ? 1073741823 + : f >>> 0 < e >>> 0 + ? e + : f + if (g) { + if (g >>> 0 >= 1073741824) { + break d + } + e = pa(g << 2) + } else { + e = 0 + } + f = (e + (d << 2)) | 0 + H[f >> 2] = b + d = (f + 4) | 0 + if ((c | 0) != (h | 0)) { + while (1) { + f = (f - 4) | 0 + c = (c - 4) | 0 + H[f >> 2] = H[c >> 2] + if ((c | 0) != (h | 0)) { + continue + } + break + } + } + H[(a + 56) >> 2] = e + (g << 2) + H[(a + 52) >> 2] = d + H[(a + 48) >> 2] = f + if (!h) { + break f + } + oa(h) + } + H[(a + 84) >> 2] = 0 + c = -1 + e = -1 + g: { + if ((b | 0) == -1) { + break g + } + d = H[(a + 4) >> 2] + e = (b + 1) | 0 + e = (e >>> 0) % 3 | 0 ? e : (b - 2) | 0 + if ((e | 0) != -1) { + c = H[(H[d >> 2] + (e << 2)) >> 2] + } + h: { + if ((b >>> 0) % 3 | 0) { + l = (b - 1) | 0 + break h + } + l = (b + 2) | 0 + e = -1 + if ((l | 0) == -1) { + break g + } + } + e = H[(H[d >> 2] + (l << 2)) >> 2] + } + i = (e >>> 3) & 536870908 + d = H[(a + 36) >> 2] + h = (d + ((c >>> 3) & 536870908)) | 0 + g = H[h >> 2] + f = 1 << c + if (!(g & f)) { + H[h >> 2] = f | g + f = (a + 8) | 0 + if ((b | 0) != -1) { + d = (b + 1) | 0 + d = (d >>> 0) % 3 | 0 ? d : (b - 2) | 0 + } else { + d = -1 + } + Ua(f, c, d) + d = H[(a + 36) >> 2] + } + f = (d + i) | 0 + d = H[f >> 2] + c = 1 << e + if (!(d & c)) { + H[f >> 2] = c | d + d = (a + 8) | 0 + c = -1 + i: { + if ((b | 0) == -1) { + break i + } + c = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break i + } + c = (b + 2) | 0 + } + Ua(d, e, c) + } + c = -1 + c = + (b | 0) != -1 + ? H[(H[H[(a + 4) >> 2] >> 2] + (b << 2)) >> 2] + : c + f = (H[(a + 36) >> 2] + ((c >>> 3) & 536870908)) | 0 + d = H[f >> 2] + e = 1 << c + if (!(d & e)) { + H[f >> 2] = d | e + Ua((a + 8) | 0, c, b) + } + d = H[(a + 84) >> 2] + if ((d | 0) > 2) { + break e + } + while (1) { + e = (N(d, 12) + a) | 0 + b = H[(e + 52) >> 2] + if ((b | 0) == H[(e + 48) >> 2]) { + d = (d + 1) | 0 + if ((d | 0) != 3) { + continue + } + break e + } + b = (b - 4) | 0 + c = H[b >> 2] + H[(e + 52) >> 2] = b + H[(a + 84) >> 2] = d + if ((c | 0) == -1) { + break e + } + f = H[(a + 24) >> 2] + b = ((c >>> 0) / 3) | 0 + j: { + if ( + (H[(f + ((b >>> 3) & 268435452)) >> 2] >>> b) & + 1 + ) { + break j + } + k: { + while (1) { + k = ((c >>> 0) / 3) | 0 + b = (((k >>> 3) & 268435452) + f) | 0 + H[b >> 2] = H[b >> 2] | (1 << k) + d = -1 + l: { + m: { + n: { + o: { + p: { + q: { + r: { + s: { + d = + (c | 0) != -1 + ? H[ + (H[ + H[(a + 4) >> 2] >> 2 + ] + + (c << 2)) >> + 2 + ] + : d + f = + (H[(a + 36) >> 2] + + ((d >>> 3) & 536870908)) | + 0 + e = H[f >> 2] + b = 1 << d + if (!(e & b)) { + H[f >> 2] = b | e + i = + H[ + (((H[ + (H[(a + 16) >> 2] + + 96) >> + 2 + ] + + N(k, 12)) | + 0) + + ((c >>> 0) % 3 << + 2)) >> + 2 + ] + l = + H[ + (H[(a + 20) >> 2] + + 4) >> + 2 + ] + f = H[(l + 4) >> 2] + t: { + if ( + (f | 0) != + H[(l + 8) >> 2] + ) { + H[f >> 2] = i + H[(l + 4) >> 2] = f + 4 + break t + } + j = H[l >> 2] + h = (f - j) | 0 + g = h >> 2 + e = (g + 1) | 0 + if ( + e >>> 0 >= + 1073741824 + ) { + break s + } + b = (h >>> 1) | 0 + h = + h >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 > e >>> 0 + ? b + : e + if (h) { + if ( + h >>> 0 >= + 1073741824 + ) { + break d + } + e = pa(h << 2) + } else { + e = 0 + } + b = (e + (g << 2)) | 0 + H[b >> 2] = i + g = (b + 4) | 0 + if ((f | 0) != (j | 0)) { + while (1) { + b = (b - 4) | 0 + f = (f - 4) | 0 + H[b >> 2] = H[f >> 2] + if ( + (f | 0) != + (j | 0) + ) { + continue + } + break + } + } + H[(l + 8) >> 2] = + e + (h << 2) + H[(l + 4) >> 2] = g + H[l >> 2] = b + if (!j) { + break t + } + oa(j) + } + j = H[(a + 12) >> 2] + f = H[(j + 4) >> 2] + u: { + if ( + (f | 0) != + H[(j + 8) >> 2] + ) { + H[f >> 2] = c + H[(j + 4) >> 2] = f + 4 + break u + } + i = H[j >> 2] + h = (f - i) | 0 + g = h >> 2 + e = (g + 1) | 0 + if ( + e >>> 0 >= + 1073741824 + ) { + break r + } + b = (h >>> 1) | 0 + h = + h >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 > e >>> 0 + ? b + : e + if (h) { + if ( + h >>> 0 >= + 1073741824 + ) { + break d + } + e = pa(h << 2) + } else { + e = 0 + } + b = (e + (g << 2)) | 0 + H[b >> 2] = c + g = (b + 4) | 0 + if ((f | 0) != (i | 0)) { + while (1) { + b = (b - 4) | 0 + f = (f - 4) | 0 + H[b >> 2] = H[f >> 2] + if ( + (f | 0) != + (i | 0) + ) { + continue + } + break + } + } + H[(j + 8) >> 2] = + e + (h << 2) + H[(j + 4) >> 2] = g + H[j >> 2] = b + if (!i) { + break u + } + oa(i) + } + b = H[(a + 12) >> 2] + H[ + (H[(b + 12) >> 2] + + (d << 2)) >> + 2 + ] = H[(b + 24) >> 2] + H[(b + 24) >> 2] = + H[(b + 24) >> 2] + 1 + } + if ((c | 0) == -1) { + break k + } + g = H[(a + 4) >> 2] + f = -1 + b = (c + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (c - 2) | 0 + if ((b | 0) != -1) { + f = + H[ + (H[(g + 12) >> 2] + + (b << 2)) >> + 2 + ] + } + v: { + w: { + if ( + (N(k, 3) | 0) != + (c | 0) + ) { + d = (c - 1) | 0 + break w + } + d = (c + 2) | 0 + c = -1 + if ((d | 0) == -1) { + break v + } + } + c = + H[ + (H[(g + 12) >> 2] + + (d << 2)) >> + 2 + ] + } + d = (c | 0) == -1 + e = ((c >>> 0) / 3) | 0 + if ((f | 0) != -1) { + b = ((f >>> 0) / 3) | 0 + b = + H[ + (H[(a + 24) >> 2] + + ((b >>> 3) & + 268435452)) >> + 2 + ] & + (1 << b) + if (d) { + break q + } + l = (b | 0) != 0 + break p + } + l = 1 + if (!d) { + break p + } + break k + } + sa() + v() + } + sa() + v() + } + if (!b) { + break o + } + break k + } + b = d ? -1 : e + x: { + if ( + (H[ + (H[(a + 24) >> 2] + + ((b >>> 3) & 536870908)) >> + 2 + ] >>> + b) & + 1 + ) { + break x + } + k = 0 + b = H[(H[g >> 2] + (c << 2)) >> 2] + if ( + !( + (H[ + (H[(a + 36) >> 2] + + ((b >>> 3) & 536870908)) >> + 2 + ] >>> + b) & + 1 + ) + ) { + b = + (H[(a + 88) >> 2] + (b << 2)) | + 0 + e = H[b >> 2] + H[b >> 2] = e + 1 + k = (e | 0) <= 0 ? 2 : 1 + } + if ( + (H[(a + 84) >> 2] >= (k | 0)) & + l + ) { + break m + } + j = (N(k, 12) + a) | 0 + b = H[(j + 52) >> 2] + y: { + if ((b | 0) != H[(j + 56) >> 2]) { + H[b >> 2] = c + H[(j + 52) >> 2] = b + 4 + break y + } + i = H[(j + 48) >> 2] + h = (b - i) | 0 + d = h >> 2 + g = (d + 1) | 0 + if (g >>> 0 >= 1073741824) { + break c + } + e = (h >>> 1) | 0 + g = + h >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 > g >>> 0 + ? e + : g + if (g) { + if (g >>> 0 >= 1073741824) { + break d + } + e = pa(g << 2) + } else { + e = 0 + } + d = (e + (d << 2)) | 0 + H[d >> 2] = c + c = (d + 4) | 0 + if ((b | 0) != (i | 0)) { + while (1) { + d = (d - 4) | 0 + b = (b - 4) | 0 + H[d >> 2] = H[b >> 2] + if ((b | 0) != (i | 0)) { + continue + } + break + } + } + H[(j + 48) >> 2] = d + H[(j + 52) >> 2] = c + H[(j + 56) >> 2] = e + (g << 2) + if (!i) { + break y + } + oa(i) + } + if (H[(a + 84) >> 2] <= (k | 0)) { + break x + } + H[(a + 84) >> 2] = k + } + if (l) { + break k + } + c = -1 + if ((f | 0) == -1) { + break n + } + } + c = + H[ + (H[H[(a + 4) >> 2] >> 2] + + (f << 2)) >> + 2 + ] + } + b = 0 + if ( + !( + (H[ + (H[(a + 36) >> 2] + + ((c >>> 3) & 536870908)) >> + 2 + ] >>> + c) & + 1 + ) + ) { + b = (H[(a + 88) >> 2] + (c << 2)) | 0 + c = H[b >> 2] + H[b >> 2] = c + 1 + b = (c | 0) <= 0 ? 2 : 1 + } + if (H[(a + 84) >> 2] < (b | 0)) { + break l + } + c = f + } + f = H[(a + 24) >> 2] + continue + } + break + } + k = (N(b, 12) + a) | 0 + c = H[(k + 52) >> 2] + z: { + if ((c | 0) != H[(k + 56) >> 2]) { + H[c >> 2] = f + H[(k + 52) >> 2] = c + 4 + break z + } + i = H[(k + 48) >> 2] + h = (c - i) | 0 + d = h >> 2 + g = (d + 1) | 0 + if (g >>> 0 >= 1073741824) { + break b + } + e = (h >>> 1) | 0 + g = + h >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 > g >>> 0 + ? e + : g + if (g) { + if (g >>> 0 >= 1073741824) { + break d + } + e = pa(g << 2) + } else { + e = 0 + } + d = (e + (d << 2)) | 0 + H[d >> 2] = f + f = (d + 4) | 0 + if ((c | 0) != (i | 0)) { + while (1) { + d = (d - 4) | 0 + c = (c - 4) | 0 + H[d >> 2] = H[c >> 2] + if ((c | 0) != (i | 0)) { + continue + } + break + } + } + H[(k + 48) >> 2] = d + H[(k + 52) >> 2] = f + H[(k + 56) >> 2] = e + (g << 2) + if (!i) { + break z + } + oa(i) + } + d = H[(a + 84) >> 2] + if ((d | 0) <= (b | 0)) { + break j + } + H[(a + 84) >> 2] = b + d = b + break j + } + d = H[(a + 84) >> 2] + } + if ((d | 0) < 3) { + continue + } + break + } + } + return 1 + } + wa() + v() + } + sa() + v() + } + sa() + v() + } + sa() + v() + } + function gd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + n = (ca - 96) | 0 + ca = n + o = H[(a + 4) >> 2] + d = H[(o + 32) >> 2] + i = H[(d + 8) >> 2] + j = H[(d + 12) >> 2] + e = j + c = H[(d + 20) >> 2] + f = H[(d + 16) >> 2] + a: { + if ( + (((e | 0) <= (c | 0)) & (f >>> 0 >= i >>> 0)) | + ((c | 0) > (e | 0)) + ) { + break a + } + p = H[d >> 2] + g = I[(p + f) | 0] + h = (f + 1) | 0 + e = h ? c : (c + 1) | 0 + H[(d + 16) >> 2] = h + H[(d + 20) >> 2] = e + if ( + (((e | 0) >= (j | 0)) & (h >>> 0 >= i >>> 0)) | + ((e | 0) > (j | 0)) + ) { + break a + } + m = I[(h + p) | 0] + h = (f + 2) | 0 + e = h >>> 0 < 2 ? (c + 1) | 0 : c + H[(d + 16) >> 2] = h + H[(d + 20) >> 2] = e + l = (g << 24) >> 24 + b: { + if ((l | 0) >= 0) { + k = H[(a + 216) >> 2] + if ( + g >>> 0 >= + (((H[(a + 220) >> 2] - k) | 0) / 144) >>> 0 + ) { + break a + } + k = (k + N(g, 144)) | 0 + if (H[k >> 2] < 0) { + break b + } + break a + } + if (H[(a + 212) >> 2] >= 0) { + break a + } + k = (a + 212) | 0 + } + H[k >> 2] = b + c: { + d: { + e: { + f: { + g: { + h: { + k = J[(o + 36) >> 1] + i: { + if ( + (((k << 8) | (k >>> 8)) & 65535) >>> 0 >= + 258 + ) { + if ( + (((e | 0) >= (j | 0)) & + (h >>> 0 >= i >>> 0)) | + ((e | 0) > (j | 0)) + ) { + break a + } + e = I[(h + p) | 0] + f = (f + 3) | 0 + c = f >>> 0 < 3 ? (c + 1) | 0 : c + H[(d + 16) >> 2] = f + H[(d + 20) >> 2] = c + if (e >>> 0 > 1) { + break a + } + d = e >>> 0 < 2 ? e : 0 + if (!m) { + break i + } + if (!d) { + break h + } + break a + } + if (m) { + break g + } + d = 0 + } + if ((l | 0) < 0) { + e = (a + 184) | 0 + } else { + c = (H[(a + 216) >> 2] + N(g, 144)) | 0 + F[(c + 100) | 0] = 0 + e = (c + 104) | 0 + } + if ((d | 0) != 1) { + break e + } + c = (ca - 112) | 0 + ca = c + h = H[(H[(a + 4) >> 2] + 44) >> 2] + d = pa(120) + H[d >> 2] = 12172 + H[(d + 4) >> 2] = 0 + H[(d + 116) >> 2] = 0 + H[(d + 112) >> 2] = e + H[(d + 108) >> 2] = h + H[(d + 12) >> 2] = 0 + H[(d + 16) >> 2] = 0 + H[(d + 20) >> 2] = 0 + H[(d + 24) >> 2] = 0 + H[(d + 28) >> 2] = 0 + H[(d + 32) >> 2] = 0 + H[(d + 36) >> 2] = 0 + H[(d + 40) >> 2] = 0 + H[(d + 44) >> 2] = 0 + H[(d + 48) >> 2] = 0 + H[(d + 52) >> 2] = 0 + H[(d + 56) >> 2] = 0 + H[(d + 60) >> 2] = 0 + H[(d + 8) >> 2] = 12384 + f = (d - -64) | 0 + H[f >> 2] = 0 + H[(f + 4) >> 2] = 0 + H[(d + 72) >> 2] = 0 + H[(d + 76) >> 2] = 0 + H[(d + 80) >> 2] = 0 + H[(d + 84) >> 2] = 0 + H[(d + 88) >> 2] = 0 + H[(d + 104) >> 2] = 0 + H[(d + 96) >> 2] = 0 + H[(d + 100) >> 2] = 0 + f = H[(a + 8) >> 2] + H[(c + 48) >> 2] = 0 + H[(c + 52) >> 2] = 0 + H[(c + 40) >> 2] = 0 + H[(c + 44) >> 2] = 0 + i = (c + 32) | 0 + H[i >> 2] = 0 + H[(i + 4) >> 2] = 0 + H[(c + 24) >> 2] = 0 + H[(c + 28) >> 2] = 0 + g = (c - -64) | 0 + H[g >> 2] = 0 + H[(g + 4) >> 2] = 0 + H[(c + 72) >> 2] = 0 + H[(c + 76) >> 2] = 0 + H[(c + 80) >> 2] = 0 + H[(c + 84) >> 2] = 0 + H[(c + 88) >> 2] = 0 + H[(c + 104) >> 2] = 0 + H[(c + 16) >> 2] = 0 + H[(c + 20) >> 2] = 0 + H[(c + 56) >> 2] = 0 + H[(c + 60) >> 2] = 0 + H[(c + 8) >> 2] = 12384 + H[(c + 96) >> 2] = 0 + H[(c + 100) >> 2] = 0 + H[(c + 12) >> 2] = f + g = H[f >> 2] + j = H[(f + 4) >> 2] + F[(c + 111) | 0] = 0 + m = i + i = (c + 111) | 0 + Oa(m, ((((j - g) >> 2) >>> 0) / 3) | 0, i) + g = H[(c + 12) >> 2] + j = H[(g + 28) >> 2] + g = H[(g + 24) >> 2] + F[(c + 111) | 0] = 0 + Oa((c + 44) | 0, (j - g) >> 2, i) + H[(c + 28) >> 2] = d + H[(c + 24) >> 2] = h + H[(c + 20) >> 2] = e + H[(c + 16) >> 2] = f + f = (d + 8) | 0 + e = (c + 8) | 0 + fd(f, e) + j: { + if ((e | 0) == (f | 0)) { + H[(d + 92) >> 2] = H[(e + 84) >> 2] + break j + } + Cb( + (d + 56) | 0, + H[(e + 48) >> 2], + H[(e + 52) >> 2], + ) + Cb( + (d + 68) | 0, + H[(e + 60) >> 2], + H[(e - -64) >> 2], + ) + Cb( + (d + 80) | 0, + H[(e + 72) >> 2], + H[(e + 76) >> 2], + ) + H[(d + 92) >> 2] = H[(e + 84) >> 2] + Aa( + (d + 96) | 0, + H[(e + 88) >> 2], + H[(e + 92) >> 2], + ) + } + H[(c + 8) >> 2] = 12384 + e = H[(c + 96) >> 2] + if (e) { + H[(c + 100) >> 2] = e + oa(e) + } + e = H[(c + 80) >> 2] + if (e) { + H[(c + 84) >> 2] = e + oa(e) + } + e = H[(c + 68) >> 2] + if (e) { + H[(c + 72) >> 2] = e + oa(e) + } + e = H[(c + 56) >> 2] + if (e) { + H[(c + 60) >> 2] = e + oa(e) + } + H[(c + 8) >> 2] = 12620 + e = H[(c + 44) >> 2] + if (e) { + oa(e) + } + e = H[(c + 32) >> 2] + if (e) { + oa(e) + } + ca = (c + 112) | 0 + break d + } + if ((l | 0) >= 0) { + break f + } + break a + } + if ((l | 0) < 0) { + break a + } + } + e = H[(a + 216) >> 2] + c = H[(o + 44) >> 2] + d = pa(80) + H[d >> 2] = 12932 + H[(d + 4) >> 2] = 0 + H[(d + 76) >> 2] = 0 + H[(d + 68) >> 2] = c + H[(d + 8) >> 2] = 11872 + H[(d + 12) >> 2] = 0 + H[(d + 16) >> 2] = 0 + H[(d + 20) >> 2] = 0 + H[(d + 24) >> 2] = 0 + H[(d + 28) >> 2] = 0 + H[(d + 32) >> 2] = 0 + H[(d + 36) >> 2] = 0 + H[(d + 40) >> 2] = 0 + H[(d + 44) >> 2] = 0 + H[(d + 48) >> 2] = 0 + H[(d + 52) >> 2] = 0 + e = (e + N(g, 144)) | 0 + f = (e + 104) | 0 + H[(d + 72) >> 2] = f + H[(d - -64) >> 2] = 0 + H[(d + 56) >> 2] = 0 + H[(d + 60) >> 2] = 0 + H[(n + 24) >> 2] = c + c = n + H[(c + 68) >> 2] = 0 + H[(c + 72) >> 2] = 0 + H[(c + 60) >> 2] = 0 + H[(c + 64) >> 2] = 0 + H[(c + 52) >> 2] = 0 + H[(c + 56) >> 2] = 0 + H[(c + 44) >> 2] = 0 + H[(c + 48) >> 2] = 0 + H[(c + 84) >> 2] = 0 + H[(c + 88) >> 2] = 0 + H[(c + 76) >> 2] = 0 + H[(c + 80) >> 2] = 0 + H[(c + 28) >> 2] = d + h = H[(c + 28) >> 2] + H[(c + 8) >> 2] = H[(c + 24) >> 2] + H[(c + 12) >> 2] = h + H[(c + 20) >> 2] = f + f = (e + 4) | 0 + H[(c + 16) >> 2] = f + H[(c + 36) >> 2] = 0 + H[(c + 40) >> 2] = 0 + H[(c + 32) >> 2] = 11872 + e = H[(c + 20) >> 2] + H[c >> 2] = H[(c + 16) >> 2] + H[(c + 4) >> 2] = e + e = (c + 32) | 0 + Ie(e, f, c) + c = (d + 8) | 0 + fd(c, e) + if ((c | 0) != (e | 0)) { + Cb((d + 56) | 0, H[(e + 48) >> 2], H[(e + 52) >> 2]) + } + He(e) + break c + } + c = (ca + -64) | 0 + ca = c + h = H[(H[(a + 4) >> 2] + 44) >> 2] + d = pa(80) + H[d >> 2] = 12640 + H[(d + 4) >> 2] = 0 + H[(d + 76) >> 2] = 0 + H[(d + 72) >> 2] = e + H[(d + 68) >> 2] = h + H[(d + 8) >> 2] = 12804 + H[(d + 12) >> 2] = 0 + H[(d + 16) >> 2] = 0 + H[(d + 20) >> 2] = 0 + H[(d + 24) >> 2] = 0 + H[(d + 28) >> 2] = 0 + H[(d + 32) >> 2] = 0 + H[(d + 36) >> 2] = 0 + H[(d + 40) >> 2] = 0 + H[(d + 44) >> 2] = 0 + H[(d + 48) >> 2] = 0 + H[(d + 52) >> 2] = 0 + H[(d - -64) >> 2] = 0 + i = (d + 56) | 0 + f = i + H[f >> 2] = 0 + H[(f + 4) >> 2] = 0 + f = H[(a + 8) >> 2] + H[(c + 40) >> 2] = 0 + H[(c + 44) >> 2] = 0 + H[(c + 32) >> 2] = 0 + H[(c + 36) >> 2] = 0 + g = (c + 24) | 0 + H[g >> 2] = 0 + H[(g + 4) >> 2] = 0 + H[(c + 16) >> 2] = 0 + H[(c + 20) >> 2] = 0 + H[(c + 56) >> 2] = 0 + H[(c + 8) >> 2] = 0 + H[(c + 12) >> 2] = 0 + H[(c + 48) >> 2] = 0 + H[(c + 52) >> 2] = 0 + H[c >> 2] = 12804 + H[(c + 4) >> 2] = f + j = H[f >> 2] + l = H[(f + 4) >> 2] + F[(c + 63) | 0] = 0 + m = g + g = (c + 63) | 0 + Oa(m, ((((l - j) >> 2) >>> 0) / 3) | 0, g) + j = H[(c + 4) >> 2] + l = H[(j + 28) >> 2] + j = H[(j + 24) >> 2] + F[(c + 63) | 0] = 0 + Oa((c + 36) | 0, (l - j) >> 2, g) + H[(c + 20) >> 2] = d + H[(c + 16) >> 2] = h + H[(c + 12) >> 2] = e + H[(c + 8) >> 2] = f + fd((d + 8) | 0, c) + Cb(i, H[(c + 48) >> 2], H[(c + 52) >> 2]) + H[c >> 2] = 12804 + e = H[(c + 48) >> 2] + if (e) { + H[(c + 52) >> 2] = e + oa(e) + } + H[c >> 2] = 12620 + e = H[(c + 36) >> 2] + if (e) { + oa(e) + } + e = H[(c + 24) >> 2] + if (e) { + oa(e) + } + ca = (c - -64) | 0 + } + if (!d) { + break a + } + } + d = od(pa(64), d) + c = H[(a + 4) >> 2] + a = d + d = b + k: { + l: { + if ((d | 0) >= 0) { + h = (c + 8) | 0 + b = H[(c + 12) >> 2] + i = H[(c + 8) >> 2] + e = (b - i) >> 2 + m: { + if ((e | 0) > (d | 0)) { + break m + } + f = (d + 1) | 0 + if (d >>> 0 >= e >>> 0) { + Vb(h, (f - e) | 0) + break m + } + if (e >>> 0 <= f >>> 0) { + break m + } + f = (i + (f << 2)) | 0 + if ((f | 0) != (b | 0)) { + while (1) { + b = (b - 4) | 0 + e = H[b >> 2] + H[b >> 2] = 0 + if (e) { + ea[H[(H[e >> 2] + 4) >> 2]](e) + } + if ((b | 0) != (f | 0)) { + continue + } + break + } + } + H[(c + 12) >> 2] = f + } + c = (H[h >> 2] + (d << 2)) | 0 + b = H[c >> 2] + H[c >> 2] = a + if (b) { + break l + } + break k + } + b = a + if (!a) { + break k + } + } + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + q = ((d ^ -1) >>> 31) | 0 + } + ca = (n + 96) | 0 + return q | 0 + } + function Kd(a) { + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + e = (ca - 16) | 0 + ca = e + H[(e + 12) >> 2] = a + a: { + if (a >>> 0 <= 211) { + d = H[Jd(14256, 14448, (e + 12) | 0) >> 2] + break a + } + if (a >>> 0 >= 4294967292) { + X() + v() + } + f = ((a >>> 0) / 210) | 0 + d = N(f, 210) + H[(e + 8) >> 2] = a - d + g = (Jd(14448, 14640, (e + 8) | 0) - 14448) >> 2 + while (1) { + d = (H[((g << 2) + 14448) >> 2] + d) | 0 + a = 5 + while (1) { + b: { + if ((a | 0) == 47) { + a = 211 + while (1) { + b = ((d >>> 0) / (a >>> 0)) | 0 + if (b >>> 0 < a >>> 0) { + break a + } + if ((N(a, b) | 0) == (d | 0)) { + break b + } + b = (a + 10) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 12) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 16) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 18) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 22) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 28) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 30) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 36) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 40) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 42) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 46) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 52) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 58) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 60) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 66) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 70) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 72) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 78) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 82) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 88) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 96) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 100) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 102) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 106) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 108) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 112) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 120) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 126) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 130) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 136) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 138) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 142) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 148) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 150) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 156) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 162) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 166) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 168) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 172) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 178) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 180) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 186) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 190) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 192) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 196) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 198) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((N(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 208) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + a = (a + 210) | 0 + if ((N(b, c) | 0) != (d | 0)) { + continue + } + break + } + break b + } + b = H[((a << 2) + 14256) >> 2] + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + a = (a + 1) | 0 + if ((N(b, c) | 0) != (d | 0)) { + continue + } + } + break + } + d = (g + 1) | 0 + a = (d | 0) == 48 + g = a ? 0 : d + f = (a + f) | 0 + d = N(f, 210) + continue + } + } + ca = (e + 16) | 0 + return d + } + function Ib(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + j = (ca - 16) | 0 + ca = j + a: { + b: { + c: { + d: { + if (I[(H[(a + 4) >> 2] + 36) | 0] <= 1) { + k = -1 + c = H[(b + 20) >> 2] + d = H[(b + 16) >> 2] + e = (d + 4) | 0 + c = e >>> 0 < 4 ? (c + 1) | 0 : c + g = H[(b + 12) >> 2] + if ( + ((K[(b + 8) >> 2] < e >>> 0) & + ((g | 0) <= (c | 0))) | + ((c | 0) > (g | 0)) + ) { + break c + } + d = (d + H[b >> 2]) | 0 + l = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(j + 12) >> 2] = l + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = c + break d + } + k = -1 + if (!Ea(1, (j + 12) | 0, b)) { + break c + } + l = H[(j + 12) >> 2] + } + e: { + f: { + g: { + h: { + i: { + if (!l) { + break i + } + c = H[(a + 8) >> 2] + if ( + ((((H[(c + 4) >> 2] - H[c >> 2]) >> 2) >>> + 0) / + 3) >>> + 0 < + l >>> 0 + ) { + break c + } + c = J[(H[(a + 4) >> 2] + 36) >> 1] + if ( + (((c << 8) | (c >>> 8)) & 65535) >>> 0 >= + 258 + ) { + j: { + while (1) { + if (!Ea(1, (j + 8) | 0, b)) { + break c + } + c = H[(j + 8) >> 2] + if (!Ea(1, (j + 8) | 0, b)) { + break c + } + f = (c + f) | 0 + c = H[(j + 8) >> 2] + if (f >>> 0 < c >>> 0) { + break c + } + g = (f - c) | 0 + c = H[(a + 40) >> 2] + k: { + if ((c | 0) != H[(a + 44) >> 2]) { + H[(c + 4) >> 2] = f + H[c >> 2] = g + H[(a + 40) >> 2] = c + 12 + l = H[(j + 12) >> 2] + break k + } + m = H[(a + 36) >> 2] + d = (c - m) | 0 + o = ((d | 0) / 12) | 0 + e = (o + 1) | 0 + if (e >>> 0 >= 357913942) { + break j + } + c = o << 1 + h = + o >>> 0 >= 178956970 + ? 357913941 + : c >>> 0 > e >>> 0 + ? c + : e + if (h) { + if (h >>> 0 >= 357913942) { + break b + } + i = pa(N(h, 12)) + } else { + i = 0 + } + e = (i + N(o, 12)) | 0 + H[(e + 4) >> 2] = f + H[e >> 2] = g + c = va( + (e + N(((d | 0) / -12) | 0, 12)) | 0, + m, + d, + ) + H[(a + 44) >> 2] = i + N(h, 12) + H[(a + 40) >> 2] = e + 12 + H[(a + 36) >> 2] = c + if (!m) { + break k + } + oa(m) + } + p = (p + 1) | 0 + if (l >>> 0 > p >>> 0) { + continue + } + break + } + k = 0 + Db(b, 0, 0) + if (l) { + while (1) { + e = I[(b + 36) | 0] + c = J[(H[(a + 4) >> 2] + 36) >> 1] + l: { + m: { + if ( + (((c << 8) | (c >>> 8)) & + 65535) >>> + 0 <= + 513 + ) { + if (!e) { + break l + } + p = 0 + c = H[(b + 32) >> 2] + n = (c >>> 3) | 0 + g = H[(b + 24) >> 2] + e = (n + g) | 0 + d = H[(b + 28) >> 2] + n: { + if (e >>> 0 >= d >>> 0) { + f = c + break n + } + e = I[e | 0] + f = (c + 1) | 0 + H[(b + 32) >> 2] = f + n = (f >>> 3) | 0 + p = (e >>> (c & 7)) & 1 + } + if (d >>> 0 > (g + n) >>> 0) { + break m + } + break l + } + if (!e) { + break l + } + p = 0 + f = H[(b + 32) >> 2] + c = + (H[(b + 24) >> 2] + + ((f >>> 3) | 0)) | + 0 + if (c >>> 0 >= K[(b + 28) >> 2]) { + break l + } + p = (I[c | 0] >>> (f & 7)) & 1 + } + H[(b + 32) >> 2] = f + 1 + } + c = (H[(a + 36) >> 2] + N(k, 12)) | 0 + F[(c + 8) | 0] = + (I[(c + 8) | 0] & 254) | (p & 1) + k = (k + 1) | 0 + if ((k | 0) != (l | 0)) { + continue + } + break + } + } + F[(b + 36) | 0] = 0 + f = H[(b + 20) >> 2] + e = 0 + d = (H[(b + 32) >> 2] + 7) | 0 + e = d >>> 0 < 7 ? 1 : e + c = (e >>> 3) | 0 + e = ((e & 7) << 29) | (d >>> 3) + d = (e + H[(b + 16) >> 2]) | 0 + c = (c + f) | 0 + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = + d >>> 0 < e >>> 0 ? (c + 1) | 0 : c + break i + } + sa() + v() + } + while (1) { + d = H[(b + 8) >> 2] + c = H[(b + 12) >> 2] + g = c + c = H[(b + 20) >> 2] + e = c + h = H[(b + 16) >> 2] + f = (h + 4) | 0 + c = f >>> 0 < 4 ? (c + 1) | 0 : c + i = f + if ( + ((f >>> 0 > d >>> 0) & + ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break c + } + m = H[b >> 2] + f = (m + h) | 0 + o = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | + (I[(f + 3) | 0] << 24)) + H[(b + 16) >> 2] = i + H[(b + 20) >> 2] = c + c = e + f = (h + 8) | 0 + c = f >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((d >>> 0 < f >>> 0) & + ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break c + } + i = (i + m) | 0 + i = + I[i | 0] | + (I[(i + 1) | 0] << 8) | + ((I[(i + 2) | 0] << 16) | + (I[(i + 3) | 0] << 24)) + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = c + if ( + ((d >>> 0 <= f >>> 0) & + ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break c + } + d = I[(f + m) | 0] + c = (h + 9) | 0 + e = c >>> 0 < 9 ? (e + 1) | 0 : e + H[(b + 16) >> 2] = c + H[(b + 20) >> 2] = e + f = d & 1 + c = H[(a + 40) >> 2] + o: { + if ((c | 0) != H[(a + 44) >> 2]) { + F[(c + 8) | 0] = f + H[(c + 4) >> 2] = i + H[c >> 2] = o + H[(a + 40) >> 2] = c + 12 + l = H[(j + 12) >> 2] + break o + } + m = H[(a + 36) >> 2] + d = (c - m) | 0 + h = ((d | 0) / 12) | 0 + e = (h + 1) | 0 + if (e >>> 0 >= 357913942) { + break h + } + c = h << 1 + g = + h >>> 0 >= 178956970 + ? 357913941 + : c >>> 0 > e >>> 0 + ? c + : e + if (g) { + if (g >>> 0 >= 357913942) { + break b + } + e = pa(N(g, 12)) + } else { + e = 0 + } + h = (e + N(h, 12)) | 0 + F[(h + 8) | 0] = f + H[(h + 4) >> 2] = i + H[h >> 2] = o + c = va( + (h + N(((d | 0) / -12) | 0, 12)) | 0, + m, + d, + ) + H[(a + 44) >> 2] = e + N(g, 12) + H[(a + 40) >> 2] = h + 12 + H[(a + 36) >> 2] = c + if (!m) { + break o + } + oa(m) + } + n = (n + 1) | 0 + if (l >>> 0 > n >>> 0) { + continue + } + break + } + } + H[(j + 8) >> 2] = 0 + c = J[(H[(a + 4) >> 2] + 36) >> 1] + c = ((c << 8) | (c >>> 8)) & 65535 + p: { + if (c >>> 0 <= 511) { + k = -1 + c = H[(b + 20) >> 2] + d = H[(b + 16) >> 2] + e = (d + 4) | 0 + c = e >>> 0 < 4 ? (c + 1) | 0 : c + f = H[(b + 12) >> 2] + if ( + ((K[(b + 8) >> 2] < e >>> 0) & + ((f | 0) <= (c | 0))) | + ((c | 0) > (f | 0)) + ) { + break c + } + d = (d + H[b >> 2]) | 0 + f = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | + (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = c + break p + } + if ((c | 0) != 512) { + break e + } + k = -1 + if (!Ea(1, (j + 8) | 0, b)) { + break c + } + f = H[(j + 8) >> 2] + } + if (!f) { + break e + } + c = J[(H[(a + 4) >> 2] + 36) >> 1] + if ( + (((c << 8) | (c >>> 8)) & 65535) >>> 0 < + 258 + ) { + break f + } + n = 0 + l = 0 + while (1) { + if (!Ea(1, (j + 4) | 0, b)) { + break c + } + l = (H[(j + 4) >> 2] + l) | 0 + c = H[(a + 52) >> 2] + q: { + if ((c | 0) != H[(a + 56) >> 2]) { + H[c >> 2] = l + H[(a + 52) >> 2] = c + 4 + break q + } + i = H[(a + 48) >> 2] + g = (c - i) | 0 + e = g >> 2 + d = (e + 1) | 0 + if (d >>> 0 >= 1073741824) { + break g + } + c = (g >>> 1) | 0 + d = + g >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 > d >>> 0 + ? c + : d + if (d) { + if (d >>> 0 >= 1073741824) { + break b + } + c = pa(d << 2) + } else { + c = 0 + } + e = (c + (e << 2)) | 0 + H[e >> 2] = l + c = va(c, i, g) + H[(a + 56) >> 2] = c + (d << 2) + H[(a + 52) >> 2] = e + 4 + H[(a + 48) >> 2] = c + if (!i) { + break q + } + oa(i) + } + n = (n + 1) | 0 + if ((n | 0) != (f | 0)) { + continue + } + break + } + break e + } + sa() + v() + } + sa() + v() + } + k = 0 + while (1) { + c = H[(b + 20) >> 2] + d = H[(b + 16) >> 2] + e = (d + 4) | 0 + c = e >>> 0 < 4 ? (c + 1) | 0 : c + g = H[(b + 12) >> 2] + if ( + ((K[(b + 8) >> 2] < e >>> 0) & + ((g | 0) <= (c | 0))) | + ((c | 0) > (g | 0)) + ) { + k = -1 + break c + } + d = (d + H[b >> 2]) | 0 + g = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = c + c = H[(a + 52) >> 2] + r: { + if ((c | 0) != H[(a + 56) >> 2]) { + H[c >> 2] = g + H[(a + 52) >> 2] = c + 4 + break r + } + h = H[(a + 48) >> 2] + i = (c - h) | 0 + e = i >> 2 + d = (e + 1) | 0 + if (d >>> 0 >= 1073741824) { + break a + } + c = (i >>> 1) | 0 + d = + i >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 > d >>> 0 + ? c + : d + if (d) { + if (d >>> 0 >= 1073741824) { + break b + } + c = pa(d << 2) + } else { + c = 0 + } + e = (c + (e << 2)) | 0 + H[e >> 2] = g + c = va(c, h, i) + H[(a + 56) >> 2] = c + (d << 2) + H[(a + 52) >> 2] = e + 4 + H[(a + 48) >> 2] = c + if (!h) { + break r + } + oa(h) + } + k = (k + 1) | 0 + if ((k | 0) != (f | 0)) { + continue + } + break + } + } + k = H[(b + 16) >> 2] + } + ca = (j + 16) | 0 + return k + } + wa() + v() + } + sa() + v() + } + function Va(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = O(0), + k = 0, + l = 0 + a: { + if (!d) { + break a + } + b: { + c: { + switch ((H[(a + 28) >> 2] - 1) | 0) { + case 0: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + g = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = H[(e + 4) >> 2] + i = I[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = O(F[b | 0]) + L[((h << 2) + d) >> 2] = i ? O(j / O(127)) : j + b = (b + 1) | 0 + h = (h + 1) | 0 + e = I[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 1: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + g = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = H[(e + 4) >> 2] + i = I[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = O(I[b | 0]) + L[((h << 2) + d) >> 2] = i ? O(j / O(255)) : j + b = (b + 1) | 0 + h = (h + 1) | 0 + e = I[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 2: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + g = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = H[(e + 4) >> 2] + i = I[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = O(G[b >> 1]) + L[((h << 2) + d) >> 2] = i ? O(j / O(32767)) : j + b = (b + 2) | 0 + h = (h + 1) | 0 + e = I[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 3: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + g = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = H[(e + 4) >> 2] + i = I[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = O(J[b >> 1]) + L[((h << 2) + d) >> 2] = i ? O(j / O(65535)) : j + b = (b + 2) | 0 + h = (h + 1) | 0 + e = I[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 4: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + g = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = H[(e + 4) >> 2] + i = I[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = O(H[b >> 2]) + L[((h << 2) + d) >> 2] = i + ? O(j * O(4.656612873077393e-10)) + : j + b = (b + 4) | 0 + h = (h + 1) | 0 + e = I[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 5: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + g = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = H[(e + 4) >> 2] + i = I[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = O(K[b >> 2]) + L[((h << 2) + d) >> 2] = i + ? O(j * O(2.3283064365386963e-10)) + : j + b = (b + 4) | 0 + h = (h + 1) | 0 + e = I[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 6: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + g = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = H[(e + 4) >> 2] + i = I[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = O(+K[b >> 2] + +H[(b + 4) >> 2] * 4294967296) + L[((h << 2) + d) >> 2] = i + ? O(j * O(10842021724855044e-35)) + : j + b = (b + 8) | 0 + h = (h + 1) | 0 + e = I[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 7: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + g = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = H[(e + 4) >> 2] + i = I[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = O(+K[b >> 2] + +K[(b + 4) >> 2] * 4294967296) + L[((h << 2) + d) >> 2] = i + ? O(j * O(5.421010862427522e-20)) + : j + b = (b + 8) | 0 + h = (h + 1) | 0 + e = I[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 8: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + g = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + L[((h << 2) + d) >> 2] = L[b >> 2] + b = (b + 4) | 0 + h = (h + 1) | 0 + e = I[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 9: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + g = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + L[((h << 2) + d) >> 2] = M[b >> 3] + b = (b + 8) | 0 + h = (h + 1) | 0 + e = I[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 10: + break c + default: + break a + } + } + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[a >> 2] + g = H[e >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = H[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + L[((h << 2) + d) >> 2] = I[b | 0] ? O(1) : O(0) + b = (b + 1) | 0 + h = (h + 1) | 0 + e = I[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + } + ra(d, 0, a << 2) + } + return l + } + function ic(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = O(0), + m = O(0) + a: { + b: { + if (!d) { + break b + } + c: { + switch ((H[(a + 28) >> 2] - 1) | 0) { + case 0: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + F[(d + g) | 0] = I[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 1: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + return 0 + } + e = F[b | 0] + if ((e | 0) < 0) { + break b + } + F[(d + g) | 0] = e + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 2: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = J[b >> 1] + if (((e + 128) & 65535) >>> 0 > 255) { + break b + } + F[(d + g) | 0] = e + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 3: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = J[b >> 1] + if (e >>> 0 > 127) { + break b + } + F[(d + g) | 0] = e + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 4: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = H[b >> 2] + if ((e + 128) >>> 0 > 255) { + break b + } + F[(d + g) | 0] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 5: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = H[b >> 2] + if (e >>> 0 > 127) { + break b + } + F[(d + g) | 0] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 6: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + i = H[(b + 4) >> 2] + e = H[b >> 2] + h = (e + 128) | 0 + i = h >>> 0 < 128 ? (i + 1) | 0 : i + if ((!i & (h >>> 0 > 255)) | i) { + break b + } + F[(d + g) | 0] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 7: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + i = H[(b + 4) >> 2] + e = H[b >> 2] + if ((!i & (e >>> 0 > 127)) | i) { + break b + } + F[(d + g) | 0] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 8: + e = I[(a + 24) | 0] + c = c & 255 + d: { + if (c >>> 0 > e >>> 0 ? e : c) { + e = H[H[a >> 2] >> 2] + f = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + f) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break d + } + l = L[b >> 2] + if ((l >= O(127)) | (l < O(-128)) | (l != l)) { + break d + } + m = O(P(l)) + if (m == O(Infinity)) { + break d + } + e = (d + g) | 0 + e: { + f: { + if (I[(a + 32) | 0]) { + if ((l < O(0)) | (l > O(1))) { + break d + } + j = T(+l * 127 + 0.5) + if (!(P(j) < 2147483648)) { + break f + } + h = ~~j + break e + } + if (!(m < O(2147483648))) { + break f + } + h = ~~l + break e + } + h = -2147483648 + } + F[e | 0] = h + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if ( + g >>> 0 < + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + continue + } + break + } + } + k = 1 + if (c >>> 0 <= e >>> 0) { + break d + } + ra((d + e) | 0, 0, (c - e) | 0) + } + return k + case 9: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + j = M[b >> 3] + if ( + (j >= 127) | + (j < -128) | + ((P(j) == Infinity) | (j != j)) + ) { + break b + } + e = (d + g) | 0 + if (I[(a + 32) | 0]) { + if ((j < 0) | (j > 1)) { + break b + } + j = T(j * 127 + 0.5) + } + g: { + if (P(j) < 2147483648) { + h = ~~j + break g + } + h = -2147483648 + } + F[e | 0] = h + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 10: + break c + default: + break b + } + } + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + F[(d + g) | 0] = I[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + ra((d + e) | 0, 0, ((c & 255) - e) | 0) + } + return k + } + ra((d + e) | 0, 0, ((c & 255) - e) | 0) + return 1 + } + function hc(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = O(0) + a: { + b: { + if (!d) { + break b + } + c: { + switch ((H[(a + 28) >> 2] - 1) | 0) { + case 0: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + return 0 + } + e = F[b | 0] + if ((e | 0) < 0) { + break b + } + F[(d + g) | 0] = e + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 1: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + F[(d + g) | 0] = I[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 2: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = J[b >> 1] + if (e >>> 0 > 255) { + break b + } + F[(d + g) | 0] = e + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 3: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = J[b >> 1] + if (e >>> 0 > 255) { + break b + } + F[(d + g) | 0] = e + b = (b + 2) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 4: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = H[b >> 2] + if (e >>> 0 > 255) { + break b + } + F[(d + g) | 0] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 5: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = H[b >> 2] + if (e >>> 0 > 255) { + break b + } + F[(d + g) | 0] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 6: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + i = H[(b + 4) >> 2] + e = H[b >> 2] + if ((!i & (e >>> 0 > 255)) | i) { + break b + } + F[(d + g) | 0] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 7: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + i = H[(b + 4) >> 2] + e = H[b >> 2] + if ((!i & (e >>> 0 > 255)) | i) { + break b + } + F[(d + g) | 0] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 8: + e = I[(a + 24) | 0] + c = c & 255 + d: { + if (c >>> 0 > e >>> 0 ? e : c) { + e = H[H[a >> 2] >> 2] + f = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + f) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break d + } + l = L[b >> 2] + if ( + (l >= O(255)) | + (l < O(0)) | + ((O(P(l)) == O(Infinity)) | (l != l)) + ) { + break d + } + e = (d + g) | 0 + e: { + f: { + if (I[(a + 32) | 0]) { + if (l > O(1)) { + break d + } + j = T(+l * 255 + 0.5) + if (!((j < 4294967296) & (j >= 0))) { + break f + } + h = ~~j >>> 0 + break e + } + if (!((l < O(4294967296)) & (l >= O(0)))) { + break f + } + h = ~~l >>> 0 + break e + } + h = 0 + } + F[e | 0] = h + b = (b + 4) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if ( + g >>> 0 < + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + continue + } + break + } + } + k = 1 + if (c >>> 0 <= e >>> 0) { + break d + } + ra((d + e) | 0, 0, (c - e) | 0) + } + return k + case 9: + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + j = M[b >> 3] + if ( + (j >= 255) | + (j < 0) | + ((P(j) == Infinity) | (j != j)) + ) { + break b + } + e = (d + g) | 0 + if (I[(a + 32) | 0]) { + if (j > 1) { + break b + } + j = T(j * 255 + 0.5) + } + g: { + if ((j < 4294967296) & (j >= 0)) { + h = ~~j >>> 0 + break g + } + h = 0 + } + F[e | 0] = h + b = (b + 8) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 10: + break c + default: + break b + } + } + e = I[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = H[H[a >> 2] >> 2] + i = H[(a + 48) >> 2] + b = Rj(H[(a + 40) >> 2], H[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (K[(H[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + F[(d + g) | 0] = I[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = I[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + ra((d + e) | 0, 0, ((c & 255) - e) | 0) + } + return k + } + ra((d + e) | 0, 0, ((c & 255) - e) | 0) + return 1 + } + function Hh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + g = (ca - 32) | 0 + ca = g + i = H[(a + 32) >> 2] + b = J[(a + 36) >> 1] + a: { + b: { + if ((((b << 8) | (b >>> 8)) & 65535) >>> 0 <= 513) { + b = H[(i + 8) >> 2] + d = H[(i + 12) >> 2] + c = b + b = H[(i + 20) >> 2] + e = b + j = H[(i + 16) >> 2] + f = (j + 4) | 0 + b = f >>> 0 < 4 ? (b + 1) | 0 : b + if ( + ((c >>> 0 < f >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break a + } + n = H[i >> 2] + k = (n + j) | 0 + k = + I[k | 0] | + (I[(k + 1) | 0] << 8) | + ((I[(k + 2) | 0] << 16) | (I[(k + 3) | 0] << 24)) + H[(i + 16) >> 2] = f + H[(i + 20) >> 2] = b + h = c + c = d + b = e + d = (j + 8) | 0 + b = d >>> 0 < 8 ? (b + 1) | 0 : b + if ( + ((d >>> 0 > h >>> 0) & ((b | 0) >= (c | 0))) | + ((b | 0) > (c | 0)) + ) { + break a + } + c = (f + n) | 0 + n = + I[c | 0] | + (I[(c + 1) | 0] << 8) | + ((I[(c + 2) | 0] << 16) | (I[(c + 3) | 0] << 24)) + H[(i + 16) >> 2] = d + H[(i + 20) >> 2] = b + break b + } + if (!Fb(1, (g + 28) | 0, i)) { + break a + } + if (!Fb(1, (g + 24) | 0, H[(a + 32) >> 2])) { + break a + } + k = H[(g + 28) >> 2] + n = H[(g + 24) >> 2] + } + if (k >>> 0 > 1431655765) { + break a + } + d = H[(a + 32) >> 2] + b = d + j = H[(b + 8) >> 2] + c = H[(b + 16) >> 2] + f = H[(b + 12) >> 2] + b = H[(b + 20) >> 2] + e = Sj( + (j - c) | 0, + (f - ((b + (c >>> 0 > j >>> 0)) | 0)) | 0, + 3, + 0, + ) + if (!da & (e >>> 0 < k >>> 0)) { + break a + } + e = Rj(k, 0, 3, 0) + if ( + (!da & (e >>> 0 < n >>> 0)) | + ((((b | 0) >= (f | 0)) & (c >>> 0 >= j >>> 0)) | + ((b | 0) > (f | 0))) + ) { + break a + } + j = I[(c + H[d >> 2]) | 0] + c = (c + 1) | 0 + b = c ? b : (b + 1) | 0 + H[(d + 16) >> 2] = c + H[(d + 20) >> 2] = b + c: { + d: { + if (!j) { + d = 0 + c = (ca - 32) | 0 + ca = c + H[(c + 24) >> 2] = 0 + H[(c + 16) >> 2] = 0 + H[(c + 20) >> 2] = 0 + e: { + f: { + b = N(k, 3) + if (b) { + if (b >>> 0 >= 1073741824) { + break f + } + j = N(k, 12) + d = pa(j) + ra(d, 0, j) + } + b = kd(b, 1, H[(a + 32) >> 2], d) + g: { + h: { + if (!(!k | !b)) { + j = 0 + while (1) { + i: { + b = ((j << 2) + d) | 0 + f = H[b >> 2] + e = (f >>> 1) | 0 + f = ((f & 1 ? (0 - e) | 0 : e) + l) | 0 + if ((f | 0) < 0) { + break i + } + H[c >> 2] = f + e = H[(b + 4) >> 2] + h = (e >>> 1) | 0 + f = (f + (e & 1 ? (0 - h) | 0 : h)) | 0 + if ((f | 0) < 0) { + break i + } + H[(c + 4) >> 2] = f + b = H[(b + 8) >> 2] + e = (b >>> 1) | 0 + l = (f + (b & 1 ? (0 - e) | 0 : e)) | 0 + if ((l | 0) < 0) { + break i + } + H[(c + 8) >> 2] = l + Rb((H[(a + 44) >> 2] + 96) | 0, c) + j = (j + 3) | 0 + b = 1 + o = (o + 1) | 0 + if ((o | 0) != (k | 0)) { + continue + } + break h + } + break + } + b = 0 + break h + } + if (!d) { + break g + } + } + oa(d) + } + ca = (c + 32) | 0 + break e + } + sa() + v() + } + if (b) { + break d + } + break a + } + if (n >>> 0 <= 255) { + if (!k) { + break d + } + while (1) { + j: { + H[(g + 16) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + d = H[(a + 32) >> 2] + b = d + j = H[(b + 16) >> 2] + e = H[(b + 8) >> 2] + c = H[(b + 20) >> 2] + h = H[(b + 12) >> 2] + b = h + if ( + ((e >>> 0 <= j >>> 0) & ((c | 0) >= (b | 0))) | + ((b | 0) < (c | 0)) + ) { + break j + } + i = H[d >> 2] + l = I[(i + j) | 0] + b = c + f = (j + 1) | 0 + b = f ? b : (b + 1) | 0 + H[(d + 16) >> 2] = f + H[(d + 20) >> 2] = b + H[(g + 8) >> 2] = l + l = + ((e >>> 0 < j >>> 0) & ((c | 0) >= (h | 0))) | + ((c | 0) > (h | 0)) + e = l ? j : e + h = l ? c : h + if (((e | 0) == (f | 0)) & ((h | 0) == (b | 0))) { + break j + } + l = I[(f + i) | 0] + b = c + f = (j + 2) | 0 + b = f >>> 0 < 2 ? (b + 1) | 0 : b + H[(d + 16) >> 2] = f + H[(d + 20) >> 2] = b + H[(g + 12) >> 2] = l + if (((e | 0) == (f | 0)) & ((b | 0) == (h | 0))) { + break j + } + f = I[(f + i) | 0] + b = c + c = (j + 3) | 0 + b = c >>> 0 < 3 ? (b + 1) | 0 : b + H[(d + 16) >> 2] = c + H[(d + 20) >> 2] = b + H[(g + 16) >> 2] = f + Rb((H[(a + 44) >> 2] + 96) | 0, (g + 8) | 0) + m = (m + 1) | 0 + if ((m | 0) != (k | 0)) { + continue + } + break d + } + break + } + m = 0 + break a + } + if (n >>> 0 <= 65535) { + if (!k) { + break d + } + while (1) { + k: { + H[(g + 16) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + i = H[(a + 32) >> 2] + b = i + c = H[(b + 8) >> 2] + d = H[(b + 12) >> 2] + f = H[(b + 16) >> 2] + b = H[(b + 20) >> 2] + j = b + e = (f + 2) | 0 + b = e >>> 0 < 2 ? (b + 1) | 0 : b + if ( + ((c >>> 0 < e >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break k + } + l = H[i >> 2] + h = (l + f) | 0 + h = I[h | 0] | (I[(h + 1) | 0] << 8) + H[(i + 16) >> 2] = e + H[(i + 20) >> 2] = b + H[(g + 8) >> 2] = h + b = j + h = (f + 4) | 0 + b = h >>> 0 < 4 ? (b + 1) | 0 : b + if ( + ((c >>> 0 < h >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break k + } + e = (e + l) | 0 + e = I[e | 0] | (I[(e + 1) | 0] << 8) + H[(i + 16) >> 2] = h + H[(i + 20) >> 2] = b + H[(g + 12) >> 2] = e + e = c + b = j + c = (f + 6) | 0 + b = c >>> 0 < 6 ? (b + 1) | 0 : b + if ( + ((c >>> 0 > e >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break k + } + d = (h + l) | 0 + d = I[d | 0] | (I[(d + 1) | 0] << 8) + H[(i + 16) >> 2] = c + H[(i + 20) >> 2] = b + H[(g + 16) >> 2] = d + Rb((H[(a + 44) >> 2] + 96) | 0, (g + 8) | 0) + m = (m + 1) | 0 + if ((m | 0) != (k | 0)) { + continue + } + break d + } + break + } + m = 0 + break a + } + l: { + if (n >>> 0 > 2097151) { + break l + } + b = J[(a + 36) >> 1] + if ((((b << 8) | (b >>> 8)) & 65535) >>> 0 < 514) { + break l + } + if (!k) { + break d + } + while (1) { + m: { + H[(g + 16) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + if (!Fb(1, (g + 4) | 0, H[(a + 32) >> 2])) { + break m + } + H[(g + 8) >> 2] = H[(g + 4) >> 2] + if (!Fb(1, (g + 4) | 0, H[(a + 32) >> 2])) { + break m + } + H[(g + 12) >> 2] = H[(g + 4) >> 2] + if (!Fb(1, (g + 4) | 0, H[(a + 32) >> 2])) { + break m + } + H[(g + 16) >> 2] = H[(g + 4) >> 2] + Rb((H[(a + 44) >> 2] + 96) | 0, (g + 8) | 0) + m = (m + 1) | 0 + if ((m | 0) != (k | 0)) { + continue + } + break d + } + break + } + m = 0 + break a + } + if (!k) { + break d + } + while (1) { + H[(g + 16) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + i = H[(a + 32) >> 2] + b = i + c = H[(b + 8) >> 2] + d = H[(b + 12) >> 2] + f = H[(b + 16) >> 2] + b = H[(b + 20) >> 2] + j = b + e = (f + 4) | 0 + b = e >>> 0 < 4 ? (b + 1) | 0 : b + if ( + ((c >>> 0 < e >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break c + } + l = H[i >> 2] + h = (l + f) | 0 + h = + I[h | 0] | + (I[(h + 1) | 0] << 8) | + ((I[(h + 2) | 0] << 16) | (I[(h + 3) | 0] << 24)) + H[(i + 16) >> 2] = e + H[(i + 20) >> 2] = b + H[(g + 8) >> 2] = h + b = j + h = (f + 8) | 0 + b = h >>> 0 < 8 ? (b + 1) | 0 : b + if ( + ((c >>> 0 < h >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break c + } + e = (e + l) | 0 + e = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + H[(i + 16) >> 2] = h + H[(i + 20) >> 2] = b + H[(g + 12) >> 2] = e + e = c + b = j + c = (f + 12) | 0 + b = c >>> 0 < 12 ? (b + 1) | 0 : b + if ( + ((c >>> 0 > e >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break c + } + d = (h + l) | 0 + d = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(i + 16) >> 2] = c + H[(i + 20) >> 2] = b + H[(g + 16) >> 2] = d + Rb((H[(a + 44) >> 2] + 96) | 0, (g + 8) | 0) + m = (m + 1) | 0 + if ((m | 0) != (k | 0)) { + continue + } + break + } + } + H[(H[(a + 4) >> 2] + 80) >> 2] = n + m = 1 + break a + } + m = 0 + } + ca = (g + 32) | 0 + return m | 0 + } + function zf(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = O(0), + w = 0 + p = (ca - 16) | 0 + ca = p + a: { + if ( + !( + (H[(a + 60) >> 2] != H[(a - -64) >> 2]) | + (H[(a + 48) >> 2] != H[(a + 52) >> 2]) + ) + ) { + j = 1 + break a + } + j = 1 + if ((ea[H[(H[a >> 2] + 24) >> 2]](a) | 0) <= 0) { + break a + } + while (1) { + b: { + b = ea[H[(H[a >> 2] + 20) >> 2]](a, w) | 0 + c: { + d: { + e: { + f = + H[ + (H[ + (H[ + ((ea[H[(H[a >> 2] + 28) >> 2]](a) | 0) + + 4) >> + 2 + ] + + 8) >> + 2 + ] + + (b << 2)) >> + 2 + ] + switch ((H[(f + 28) >> 2] - 1) | 0) { + case 8: + break d + case 0: + case 2: + case 4: + break e + default: + break c + } + } + b = I[(f + 24) | 0] + f: { + if (!b) { + n = 0 + j = 0 + break f + } + j = 0 + b = b << 2 + n = pa(b) + ra(n, 0, b) + b = I[(f + 24) | 0] + if (!b) { + break f + } + b = b << 2 + j = pa(b) + ra(j, 0, b) + } + g: { + h: { + i: { + switch ((H[(f + 28) >> 2] - 1) | 0) { + case 4: + i = 0 + h = 0 + d = 0 + b = 0 + k = 0 + e = I[(f + 24) | 0] + j: { + if (!e) { + g = 0 + break j + } + e = e << 2 + h = pa(e) + ra(h, 0, e) + g = pa(e) + ra(g, 0, e) + } + k: { + if (H[(f + 80) >> 2]) { + while (1) { + o = H[f >> 2] + c = H[o >> 2] + m = H[(f + 48) >> 2] + e = H[(f + 40) >> 2] + l = Rj(e, H[(f + 44) >> 2], d, b) + m = (m + l) | 0 + s = (c + m) | 0 + c = e + m = qa(h, s, c) + l = I[(f + 24) | 0] + if (l) { + t = H[(a + 48) >> 2] + e = 0 + while (1) { + r = e << 2 + s = H[(r + m) >> 2] + if ((s | 0) < 0) { + break k + } + H[(g + r) >> 2] = + s + H[(t + ((e + u) << 2)) >> 2] + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + qa((H[o >> 2] + N(d, c)) | 0, g, c) + d = (d + 1) | 0 + b = d ? b : (b + 1) | 0 + if ( + !b & + (K[(f + 80) >> 2] > d >>> 0) + ) { + continue + } + break + } + } + k = 1 + } + if (g) { + oa(g) + } + if (h) { + oa(h) + } + if (k) { + break h + } + break g + case 2: + g = 0 + e = 0 + d = 0 + b = 0 + c = I[(f + 24) | 0] + if (c) { + c = c << 1 + e = pa(c) + ra(e, 0, c) + g = pa(c) + ra(g, 0, c) + } + if (H[(f + 80) >> 2]) { + while (1) { + l = H[f >> 2] + h = H[l >> 2] + i = H[(f + 48) >> 2] + c = H[(f + 40) >> 2] + k = Rj(c, H[(f + 44) >> 2], d, b) + i = (i + k) | 0 + k = qa(e, (h + i) | 0, c) + o = I[(f + 24) | 0] + l: { + if (!o) { + break l + } + m = H[(a + 48) >> 2] + h = 0 + if ((o | 0) != 1) { + t = o & 254 + i = 0 + while (1) { + r = h << 1 + G[(r + g) >> 1] = + J[(k + r) >> 1] + + J[(m + ((h + u) << 2)) >> 1] + r = h | 1 + s = r << 1 + G[(s + g) >> 1] = + J[(k + s) >> 1] + + J[(m + ((r + u) << 2)) >> 1] + h = (h + 2) | 0 + i = (i + 2) | 0 + if ((t | 0) != (i | 0)) { + continue + } + break + } + } + if (!(o & 1)) { + break l + } + i = h << 1 + G[(i + g) >> 1] = + J[(i + k) >> 1] + + J[(m + ((h + u) << 2)) >> 1] + } + qa((H[l >> 2] + N(d, c)) | 0, g, c) + d = (d + 1) | 0 + b = d ? b : (b + 1) | 0 + if (!b & (K[(f + 80) >> 2] > d >>> 0)) { + continue + } + break + } + } + if (g) { + oa(g) + } + if (e) { + oa(e) + } + break h + case 0: + break i + default: + break h + } + } + h = 0 + e = 0 + d = 0 + b = 0 + c = I[(f + 24) | 0] + if (c) { + e = pa(c) + ra(e, 0, c) + h = pa(c) + ra(h, 0, c) + } + if (H[(f + 80) >> 2]) { + while (1) { + t = H[f >> 2] + g = H[t >> 2] + i = H[(f + 48) >> 2] + c = H[(f + 40) >> 2] + k = Rj(c, H[(f + 44) >> 2], d, b) + i = (i + k) | 0 + k = qa(e, (g + i) | 0, c) + o = I[(f + 24) | 0] + m: { + if (!o) { + break m + } + m = H[(a + 48) >> 2] + g = 0 + if ((o | 0) != 1) { + r = o & 254 + i = 0 + while (1) { + F[(g + h) | 0] = + I[(g + k) | 0] + + I[(m + ((g + u) << 2)) | 0] + l = g | 1 + F[(l + h) | 0] = + I[(k + l) | 0] + + I[(m + ((l + u) << 2)) | 0] + g = (g + 2) | 0 + i = (i + 2) | 0 + if ((r | 0) != (i | 0)) { + continue + } + break + } + } + if (!(o & 1)) { + break m + } + F[(g + h) | 0] = + I[(g + k) | 0] + + I[(m + ((g + u) << 2)) | 0] + } + qa((H[t >> 2] + N(d, c)) | 0, h, c) + d = (d + 1) | 0 + b = d ? b : (b + 1) | 0 + if (!b & (K[(f + 80) >> 2] > d >>> 0)) { + continue + } + break + } + } + if (h) { + oa(h) + } + if (e) { + oa(e) + } + } + u = (I[(f + 24) | 0] + u) | 0 + i = 1 + } + if (j) { + oa(j) + } + if (n) { + oa(n) + } + if (i) { + break c + } + j = 0 + break a + } + e = H[(H[(a + 60) >> 2] + (q << 2)) >> 2] + h = H[(a + 36) >> 2] + g = H[((ea[H[(H[a >> 2] + 28) >> 2]](a) | 0) + 40) >> 2] + H[(p + 12) >> 2] = H[(f + 56) >> 2] + b = pa(32) + H[p >> 2] = b + H[(p + 4) >> 2] = 24 + H[(p + 8) >> 2] = -2147483616 + d = + I[1206] | + (I[1207] << 8) | + ((I[1208] << 16) | (I[1209] << 24)) + c = + I[1202] | + (I[1203] << 8) | + ((I[1204] << 16) | (I[1205] << 24)) + F[(b + 16) | 0] = c + F[(b + 17) | 0] = c >>> 8 + F[(b + 18) | 0] = c >>> 16 + F[(b + 19) | 0] = c >>> 24 + F[(b + 20) | 0] = d + F[(b + 21) | 0] = d >>> 8 + F[(b + 22) | 0] = d >>> 16 + F[(b + 23) | 0] = d >>> 24 + d = + I[1198] | + (I[1199] << 8) | + ((I[1200] << 16) | (I[1201] << 24)) + c = + I[1194] | + (I[1195] << 8) | + ((I[1196] << 16) | (I[1197] << 24)) + F[(b + 8) | 0] = c + F[(b + 9) | 0] = c >>> 8 + F[(b + 10) | 0] = c >>> 16 + F[(b + 11) | 0] = c >>> 24 + F[(b + 12) | 0] = d + F[(b + 13) | 0] = d >>> 8 + F[(b + 14) | 0] = d >>> 16 + F[(b + 15) | 0] = d >>> 24 + d = + I[1190] | + (I[1191] << 8) | + ((I[1192] << 16) | (I[1193] << 24)) + c = + I[1186] | + (I[1187] << 8) | + ((I[1188] << 16) | (I[1189] << 24)) + F[b | 0] = c + F[(b + 1) | 0] = c >>> 8 + F[(b + 2) | 0] = c >>> 16 + F[(b + 3) | 0] = c >>> 24 + F[(b + 4) | 0] = d + F[(b + 5) | 0] = d >>> 8 + F[(b + 6) | 0] = d >>> 16 + F[(b + 7) | 0] = d >>> 24 + F[(b + 24) | 0] = 0 + d = sd(g, (p + 12) | 0, p) + if (F[(p + 11) | 0] < 0) { + oa(H[p >> 2]) + } + b = (q + 1) | 0 + n: { + if (d) { + oe(f, e) + break n + } + g = (h + N(q, 24)) | 0 + q = H[(g + 4) >> 2] + c = I[(f + 24) | 0] + h = c << 2 + d = pa(h) + H[p >> 2] = 1065353216 + v = L[(g + 20) >> 2] + q = (-1 << q) ^ -1 + if ((q | 0) > 0) { + L[p >> 2] = v / O(q | 0) + } + if ((q | 0) <= 0) { + break b + } + o: { + if (!H[(e + 80) >> 2]) { + break o + } + if (!c) { + n = 0 + j = 0 + while (1) { + qa((H[H[(f + 64) >> 2] >> 2] + j) | 0, d, h) + j = (h + j) | 0 + n = (n + 1) | 0 + if (n >>> 0 < K[(e + 80) >> 2]) { + continue + } + break + } + break o + } + o = (H[H[e >> 2] >> 2] + H[(e + 48) >> 2]) | 0 + t = c & 254 + r = c & 1 + i = 0 + k = 0 + j = 0 + while (1) { + q = H[(g + 8) >> 2] + v = L[p >> 2] + n = 0 + m = 0 + if ((c | 0) != 1) { + while (1) { + l = n << 2 + s = (o + (j << 2)) | 0 + L[(l + d) >> 2] = + O(v * O(H[s >> 2])) + L[(l + q) >> 2] + l = l | 4 + L[(l + d) >> 2] = + O(v * O(H[(s + 4) >> 2])) + L[(l + q) >> 2] + n = (n + 2) | 0 + j = (j + 2) | 0 + m = (m + 2) | 0 + if ((t | 0) != (m | 0)) { + continue + } + break + } + } + if (r) { + n = n << 2 + L[(n + d) >> 2] = + O(v * O(H[(o + (j << 2)) >> 2])) + + L[(n + q) >> 2] + j = (j + 1) | 0 + } + qa((H[H[(f + 64) >> 2] >> 2] + k) | 0, d, h) + k = (h + k) | 0 + i = (i + 1) | 0 + if (i >>> 0 < K[(e + 80) >> 2]) { + continue + } + break + } + } + oa(d) + } + q = b + } + j = 1 + w = (w + 1) | 0 + if ((ea[H[(H[a >> 2] + 24) >> 2]](a) | 0) > (w | 0)) { + continue + } + break a + } + break + } + oa(d) + j = 0 + } + ca = (p + 16) | 0 + return j | 0 + } + function Le(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + g = (ca + -64) | 0 + ca = g + H[(g + 56) >> 2] = 0 + H[(g + 48) >> 2] = 0 + H[(g + 52) >> 2] = 0 + H[(g + 40) >> 2] = 0 + H[(g + 44) >> 2] = 0 + H[(g + 32) >> 2] = 0 + H[(g + 36) >> 2] = 0 + H[(g + 24) >> 2] = 0 + H[(g + 28) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + j = (g + 8) | 0 + d = J[(b + 38) >> 1] + a: { + b: { + if (!d) { + break b + } + c: { + if (d >>> 0 <= 511) { + h = H[(b + 8) >> 2] + f = H[(b + 12) >> 2] + e = H[(b + 20) >> 2] + d = H[(b + 16) >> 2] + i = (d + 4) | 0 + e = i >>> 0 < 4 ? (e + 1) | 0 : e + if ( + ((h >>> 0 < i >>> 0) & ((e | 0) >= (f | 0))) | + ((e | 0) > (f | 0)) + ) { + break b + } + d = (d + H[b >> 2]) | 0 + l = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(j + 12) >> 2] = l + e = H[(b + 20) >> 2] + d = (H[(b + 16) >> 2] + 4) | 0 + e = d >>> 0 < 4 ? (e + 1) | 0 : e + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = e + break c + } + if (!hb(1, (j + 12) | 0, b)) { + break b + } + d = H[(b + 16) >> 2] + e = H[(b + 20) >> 2] + l = H[(j + 12) >> 2] + } + f = H[(b + 8) >> 2] + i = (f - d) | 0 + d = (H[(b + 12) >> 2] - (((d >>> 0 > f >>> 0) + e) | 0)) | 0 + if ( + ((i >>> 0 < (l >>> 6) >>> 0) & ((d | 0) <= 0)) | + ((d | 0) < 0) + ) { + break b + } + e = H[j >> 2] + d = (H[(j + 4) >> 2] - e) >> 2 + d: { + if (d >>> 0 < l >>> 0) { + ya(j, (l - d) | 0) + l = H[(j + 12) >> 2] + break d + } + if (d >>> 0 <= l >>> 0) { + break d + } + H[(j + 4) >> 2] = e + (l << 2) + } + i = 1 + if (!l) { + break a + } + d = H[(b + 16) >> 2] + e = H[(b + 20) >> 2] + r = H[j >> 2] + k = H[(b + 8) >> 2] + o = H[(b + 12) >> 2] + h = 0 + while (1) { + i = 0 + if ( + (((e | 0) >= (o | 0)) & (d >>> 0 >= k >>> 0)) | + ((e | 0) > (o | 0)) + ) { + break a + } + i = H[b >> 2] + p = I[(i + d) | 0] + d = (d + 1) | 0 + e = d ? e : (e + 1) | 0 + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = e + f = (p >>> 2) | 0 + m = 0 + e: { + f: { + g: { + h: { + s = p & 3 + switch (s | 0) { + case 0: + break f + case 3: + break h + default: + break g + } + } + f = (f + h) | 0 + i = 0 + if (f >>> 0 >= l >>> 0) { + break a + } + ra((r + (h << 2)) | 0, 0, ((p & 252) + 4) | 0) + h = f + break e + } + while (1) { + if (((d | 0) == (k | 0)) & ((e | 0) == (o | 0))) { + break b + } + l = I[(d + i) | 0] + d = (d + 1) | 0 + e = d ? e : (e + 1) | 0 + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = e + f = (l << ((m << 3) | 6)) | f + m = (m + 1) | 0 + if ((s | 0) != (m | 0)) { + continue + } + break + } + } + H[(r + (h << 2)) >> 2] = f + } + l = H[(j + 12) >> 2] + h = (h + 1) | 0 + if (l >>> 0 > h >>> 0) { + continue + } + break + } + d = (j + 16) | 0 + o = H[j >> 2] + f = H[(j + 16) >> 2] + e = (H[(j + 20) >> 2] - f) | 0 + i: { + if (e >>> 0 <= 4194303) { + ya(d, (1048576 - ((e >>> 2) | 0)) | 0) + break i + } + if ((e | 0) == 4194304) { + break i + } + H[(j + 20) >> 2] = f + 4194304 + } + e = (j + 28) | 0 + h = H[e >> 2] + f = (H[(j + 32) >> 2] - h) >> 3 + j: { + if (f >>> 0 < l >>> 0) { + ob(e, (l - f) | 0) + h = H[e >> 2] + break j + } + if (f >>> 0 > l >>> 0) { + H[(j + 32) >> 2] = (l << 3) + h + } + if (!l) { + break b + } + } + k = H[d >> 2] + d = 0 + i = 0 + while (1) { + e = (o + (d << 2)) | 0 + j = H[e >> 2] + m = ((d << 3) + h) | 0 + f = i + H[(m + 4) >> 2] = f + H[m >> 2] = j + e = H[e >> 2] + i = (e + f) | 0 + if (i >>> 0 > 1048576) { + break b + } + k: { + if (f >>> 0 >= i >>> 0) { + break k + } + m = 0 + j = e & 7 + if (j) { + while (1) { + H[(k + (f << 2)) >> 2] = d + f = (f + 1) | 0 + m = (m + 1) | 0 + if ((j | 0) != (m | 0)) { + continue + } + break + } + } + if ((e - 1) >>> 0 <= 6) { + break k + } + while (1) { + e = (k + (f << 2)) | 0 + H[e >> 2] = d + H[(e + 28) >> 2] = d + H[(e + 24) >> 2] = d + H[(e + 20) >> 2] = d + H[(e + 16) >> 2] = d + H[(e + 12) >> 2] = d + H[(e + 8) >> 2] = d + H[(e + 4) >> 2] = d + f = (f + 8) | 0 + if ((i | 0) != (f | 0)) { + continue + } + break + } + } + d = (d + 1) | 0 + if ((l | 0) != (d | 0)) { + continue + } + break + } + n = (i | 0) == 1048576 + } + i = n + } + l: { + if (!i | (H[(g + 20) >> 2] ? 0 : a)) { + break l + } + i = 0 + n = (ca - 16) | 0 + ca = n + m: { + n: { + if (J[(b + 38) >> 1] <= 511) { + h = H[(b + 8) >> 2] + f = H[(b + 12) >> 2] + j = f + e = H[(b + 20) >> 2] + k = H[(b + 16) >> 2] + d = (k + 8) | 0 + e = d >>> 0 < 8 ? (e + 1) | 0 : e + if ( + ((d >>> 0 > h >>> 0) & ((e | 0) >= (f | 0))) | + ((e | 0) > (f | 0)) + ) { + break m + } + k = (k + H[b >> 2]) | 0 + f = + I[k | 0] | + (I[(k + 1) | 0] << 8) | + ((I[(k + 2) | 0] << 16) | (I[(k + 3) | 0] << 24)) + k = + I[(k + 4) | 0] | + (I[(k + 5) | 0] << 8) | + ((I[(k + 6) | 0] << 16) | (I[(k + 7) | 0] << 24)) + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = e + break n + } + if (!gb(1, (n + 8) | 0, b)) { + break m + } + d = H[(b + 16) >> 2] + e = H[(b + 20) >> 2] + h = H[(b + 8) >> 2] + j = H[(b + 12) >> 2] + f = H[(n + 8) >> 2] + k = H[(n + 12) >> 2] + } + l = (h - d) | 0 + h = (j - (((d >>> 0 > h >>> 0) + e) | 0)) | 0 + if ( + (((h | 0) == (k | 0)) & (f >>> 0 > l >>> 0)) | + (h >>> 0 < k >>> 0) + ) { + break m + } + e = (e + k) | 0 + h = (d + f) | 0 + e = h >>> 0 < f >>> 0 ? (e + 1) | 0 : e + H[(b + 16) >> 2] = h + H[(b + 20) >> 2] = e + if ((f | 0) <= 0) { + break m + } + b = (H[b >> 2] + d) | 0 + H[(g + 48) >> 2] = b + d = (f - 1) | 0 + e = (d + b) | 0 + h = I[e | 0] + o: { + if (h >>> 0 <= 63) { + H[(g + 52) >> 2] = d + b = I[e | 0] & 63 + break o + } + p: { + switch ((((h >>> 6) | 0) - 1) | 0) { + case 0: + if (f >>> 0 < 2) { + break m + } + d = (f - 2) | 0 + H[(g + 52) >> 2] = d + b = (b + d) | 0 + b = ((I[(b + 1) | 0] << 8) & 16128) | I[b | 0] + break o + case 1: + if (f >>> 0 < 3) { + break m + } + d = (f - 3) | 0 + H[(g + 52) >> 2] = d + b = (b + d) | 0 + b = + (I[(b + 1) | 0] << 8) | + ((I[(b + 2) | 0] << 16) & 4128768) | + I[b | 0] + break o + default: + break p + } + } + d = (f - 4) | 0 + H[(g + 52) >> 2] = d + b = (b + d) | 0 + b = + (I[b | 0] | + (I[(b + 1) | 0] << 8) | + ((I[(b + 2) | 0] << 16) | (I[(b + 3) | 0] << 24))) & + 1073741823 + } + H[(g + 56) >> 2] = b + 4194304 + i = b >>> 0 < 1069547520 + } + ca = (n + 16) | 0 + if (!i) { + break l + } + if (!a) { + t = 1 + break l + } + b = H[(g + 52) >> 2] + f = H[(g + 56) >> 2] + d = H[(g + 36) >> 2] + e = H[(g + 48) >> 2] + h = H[(g + 24) >> 2] + while (1) { + q: { + if (f >>> 0 > 4194303) { + break q + } + while (1) { + if ((b | 0) <= 0) { + break q + } + b = (b - 1) | 0 + H[(g + 52) >> 2] = b + f = I[(b + e) | 0] | (f << 8) + H[(g + 56) >> 2] = f + if (f >>> 0 < 4194304) { + continue + } + break + } + } + i = f & 1048575 + k = H[(h + (i << 2)) >> 2] + n = (d + (k << 3)) | 0 + f = + (((N(H[n >> 2], (f >>> 20) | 0) + i) | 0) - + H[(n + 4) >> 2]) | + 0 + H[(g + 56) >> 2] = f + H[((q << 2) + c) >> 2] = k + t = 1 + q = (q + 1) | 0 + if ((q | 0) != (a | 0)) { + continue + } + break + } + } + a = H[(g + 36) >> 2] + if (a) { + H[(g + 40) >> 2] = a + oa(a) + } + a = H[(g + 24) >> 2] + if (a) { + H[(g + 28) >> 2] = a + oa(a) + } + a = H[(g + 8) >> 2] + if (a) { + H[(g + 12) >> 2] = a + oa(a) + } + ca = (g - -64) | 0 + return t + } + function nc(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + e = (ca - 48) | 0 + ca = e + f = J[6677] | (J[6678] << 16) + d = J[6675] | (J[6676] << 16) + G[(e + 38) >> 1] = d + G[(e + 40) >> 1] = d >>> 16 + G[(e + 42) >> 1] = f + G[(e + 44) >> 1] = f >>> 16 + d = H[3337] + H[(e + 32) >> 2] = H[3336] + H[(e + 36) >> 2] = d + d = H[3335] + H[(e + 24) >> 2] = H[3334] + H[(e + 28) >> 2] = d + d = H[3333] + H[(e + 16) >> 2] = H[3332] + H[(e + 20) >> 2] = d + g = H[(b + 8) >> 2] + i = H[(b + 12) >> 2] + h = H[(b + 20) >> 2] + d = H[(b + 16) >> 2] + f = (d + 5) | 0 + h = f >>> 0 < 5 ? (h + 1) | 0 : h + a: { + b: { + if ( + ((g >>> 0 < f >>> 0) & ((h | 0) >= (i | 0))) | + ((h | 0) > (i | 0)) + ) { + d = Ma((e + 16) | 0) + if (d >>> 0 >= 2147483632) { + break a + } + c: { + d: { + if (d >>> 0 >= 11) { + b = ((d | 15) + 1) | 0 + c = pa(b) + H[(e + 8) >> 2] = b | -2147483648 + H[e >> 2] = c + H[(e + 4) >> 2] = d + b = (c + d) | 0 + break d + } + F[(e + 11) | 0] = d + b = (d + e) | 0 + c = e + if (!d) { + break c + } + } + qa(c, (e + 16) | 0, d) + } + F[b | 0] = 0 + H[a >> 2] = -2 + b = (a + 4) | 0 + if (F[(e + 11) | 0] >= 0) { + a = H[(e + 4) >> 2] + H[b >> 2] = H[e >> 2] + H[(b + 4) >> 2] = a + H[(b + 8) >> 2] = H[(e + 8) >> 2] + break b + } + za(b, H[e >> 2], H[(e + 4) >> 2]) + if (F[(e + 11) | 0] >= 0) { + break b + } + oa(H[e >> 2]) + break b + } + f = (d + H[b >> 2]) | 0 + d = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | (I[(f + 3) | 0] << 24)) + F[c | 0] = d + F[(c + 1) | 0] = d >>> 8 + F[(c + 2) | 0] = d >>> 16 + F[(c + 3) | 0] = d >>> 24 + F[(c + 4) | 0] = I[(f + 4) | 0] + d = H[(b + 20) >> 2] + f = (H[(b + 16) >> 2] + 5) | 0 + d = f >>> 0 < 5 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = d + if (Fa(c, 1260, 5)) { + d = pa(32) + F[(d + 17) | 0] = 0 + F[(d + 16) | 0] = I[1496] + c = + I[1492] | + (I[1493] << 8) | + ((I[1494] << 16) | (I[1495] << 24)) + b = + I[1488] | + (I[1489] << 8) | + ((I[1490] << 16) | (I[1491] << 24)) + F[(d + 8) | 0] = b + F[(d + 9) | 0] = b >>> 8 + F[(d + 10) | 0] = b >>> 16 + F[(d + 11) | 0] = b >>> 24 + F[(d + 12) | 0] = c + F[(d + 13) | 0] = c >>> 8 + F[(d + 14) | 0] = c >>> 16 + F[(d + 15) | 0] = c >>> 24 + c = + I[1484] | + (I[1485] << 8) | + ((I[1486] << 16) | (I[1487] << 24)) + b = + I[1480] | + (I[1481] << 8) | + ((I[1482] << 16) | (I[1483] << 24)) + F[d | 0] = b + F[(d + 1) | 0] = b >>> 8 + F[(d + 2) | 0] = b >>> 16 + F[(d + 3) | 0] = b >>> 24 + F[(d + 4) | 0] = c + F[(d + 5) | 0] = c >>> 8 + F[(d + 6) | 0] = c >>> 16 + F[(d + 7) | 0] = c >>> 24 + H[a >> 2] = -1 + za((a + 4) | 0, d, 17) + oa(d) + break b + } + g = H[(b + 12) >> 2] + if ( + (((g | 0) <= (d | 0)) & (K[(b + 8) >> 2] <= f >>> 0)) | + ((d | 0) > (g | 0)) + ) { + d = Ma((e + 16) | 0) + if (d >>> 0 >= 2147483632) { + break a + } + e: { + f: { + if (d >>> 0 >= 11) { + b = ((d | 15) + 1) | 0 + c = pa(b) + H[(e + 8) >> 2] = b | -2147483648 + H[e >> 2] = c + H[(e + 4) >> 2] = d + b = (c + d) | 0 + break f + } + F[(e + 11) | 0] = d + b = (d + e) | 0 + c = e + if (!d) { + break e + } + } + qa(c, (e + 16) | 0, d) + } + F[b | 0] = 0 + H[a >> 2] = -2 + b = (a + 4) | 0 + if (F[(e + 11) | 0] >= 0) { + a = H[(e + 4) >> 2] + H[b >> 2] = H[e >> 2] + H[(b + 4) >> 2] = a + H[(b + 8) >> 2] = H[(e + 8) >> 2] + break b + } + za(b, H[e >> 2], H[(e + 4) >> 2]) + if (F[(e + 11) | 0] >= 0) { + break b + } + oa(H[e >> 2]) + break b + } + F[(c + 5) | 0] = I[(f + H[b >> 2]) | 0] + g = H[(b + 20) >> 2] + d = (H[(b + 16) >> 2] + 1) | 0 + g = d ? g : (g + 1) | 0 + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = g + f = H[(b + 12) >> 2] + if ( + (((f | 0) <= (g | 0)) & (K[(b + 8) >> 2] <= d >>> 0)) | + ((g | 0) > (f | 0)) + ) { + d = Ma((e + 16) | 0) + if (d >>> 0 >= 2147483632) { + break a + } + g: { + h: { + if (d >>> 0 >= 11) { + b = ((d | 15) + 1) | 0 + c = pa(b) + H[(e + 8) >> 2] = b | -2147483648 + H[e >> 2] = c + H[(e + 4) >> 2] = d + b = (c + d) | 0 + break h + } + F[(e + 11) | 0] = d + b = (d + e) | 0 + c = e + if (!d) { + break g + } + } + qa(c, (e + 16) | 0, d) + } + F[b | 0] = 0 + H[a >> 2] = -2 + b = (a + 4) | 0 + if (F[(e + 11) | 0] >= 0) { + a = H[(e + 4) >> 2] + H[b >> 2] = H[e >> 2] + H[(b + 4) >> 2] = a + H[(b + 8) >> 2] = H[(e + 8) >> 2] + break b + } + za(b, H[e >> 2], H[(e + 4) >> 2]) + if (F[(e + 11) | 0] >= 0) { + break b + } + oa(H[e >> 2]) + break b + } + F[(c + 6) | 0] = I[(d + H[b >> 2]) | 0] + h = H[(b + 20) >> 2] + d = (H[(b + 16) >> 2] + 1) | 0 + h = d ? h : (h + 1) | 0 + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = h + f = H[(b + 12) >> 2] + if ( + (((f | 0) <= (h | 0)) & (K[(b + 8) >> 2] <= d >>> 0)) | + ((f | 0) < (h | 0)) + ) { + d = Ma((e + 16) | 0) + if (d >>> 0 >= 2147483632) { + break a + } + i: { + j: { + if (d >>> 0 >= 11) { + b = ((d | 15) + 1) | 0 + c = pa(b) + H[(e + 8) >> 2] = b | -2147483648 + H[e >> 2] = c + H[(e + 4) >> 2] = d + b = (c + d) | 0 + break j + } + F[(e + 11) | 0] = d + b = (d + e) | 0 + c = e + if (!d) { + break i + } + } + qa(c, (e + 16) | 0, d) + } + F[b | 0] = 0 + H[a >> 2] = -2 + b = (a + 4) | 0 + if (F[(e + 11) | 0] >= 0) { + a = H[(e + 4) >> 2] + H[b >> 2] = H[e >> 2] + H[(b + 4) >> 2] = a + H[(b + 8) >> 2] = H[(e + 8) >> 2] + break b + } + za(b, H[e >> 2], H[(e + 4) >> 2]) + if (F[(e + 11) | 0] >= 0) { + break b + } + oa(H[e >> 2]) + break b + } + F[(c + 7) | 0] = I[(d + H[b >> 2]) | 0] + g = H[(b + 20) >> 2] + d = (H[(b + 16) >> 2] + 1) | 0 + g = d ? g : (g + 1) | 0 + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = g + f = H[(b + 12) >> 2] + if ( + (((f | 0) <= (g | 0)) & (K[(b + 8) >> 2] <= d >>> 0)) | + ((g | 0) > (f | 0)) + ) { + c = mc(e, (e + 16) | 0) + H[a >> 2] = -2 + b = (a + 4) | 0 + if (F[(c + 11) | 0] >= 0) { + a = H[(c + 4) >> 2] + H[b >> 2] = H[c >> 2] + H[(b + 4) >> 2] = a + H[(b + 8) >> 2] = H[(c + 8) >> 2] + break b + } + za(b, H[c >> 2], H[(c + 4) >> 2]) + if (F[(c + 11) | 0] >= 0) { + break b + } + oa(H[c >> 2]) + break b + } + F[(c + 8) | 0] = I[(d + H[b >> 2]) | 0] + d = H[(b + 20) >> 2] + g = H[(b + 16) >> 2] + f = (g + 1) | 0 + i = f ? d : (d + 1) | 0 + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = i + i = H[(b + 8) >> 2] + h = H[(b + 12) >> 2] + g = (g + 3) | 0 + d = g >>> 0 < 3 ? (d + 1) | 0 : d + if ( + ((g >>> 0 > i >>> 0) & ((d | 0) >= (h | 0))) | + ((d | 0) > (h | 0)) + ) { + c = mc(e, (e + 16) | 0) + H[a >> 2] = -2 + b = (a + 4) | 0 + if (F[(c + 11) | 0] >= 0) { + a = H[(c + 4) >> 2] + H[b >> 2] = H[c >> 2] + H[(b + 4) >> 2] = a + H[(b + 8) >> 2] = H[(c + 8) >> 2] + break b + } + za(b, H[c >> 2], H[(c + 4) >> 2]) + if (F[(c + 11) | 0] >= 0) { + break b + } + oa(H[c >> 2]) + break b + } + d = c + c = (H[b >> 2] + f) | 0 + G[(d + 10) >> 1] = I[c | 0] | (I[(c + 1) | 0] << 8) + g = H[(b + 20) >> 2] + c = (H[(b + 16) >> 2] + 2) | 0 + g = c >>> 0 < 2 ? (g + 1) | 0 : g + H[(b + 16) >> 2] = c + H[(b + 20) >> 2] = g + H[(a + 8) >> 2] = 0 + H[(a + 12) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + } + ca = (e + 48) | 0 + return + } + Na() + v() + } + function Nb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0 + e = (ca - 96) | 0 + ca = e + f = H[(a + 16) >> 2] + F[(e + 92) | 0] = 1 + H[(e + 88) >> 2] = b + H[(e + 84) >> 2] = b + H[(e + 80) >> 2] = f + j = H[(a + 20) >> 2] + d = H[j >> 2] + a: { + b: { + f = H[(H[(f + 28) >> 2] + (b << 2)) >> 2] + if (f >>> 0 < ((H[(j + 4) >> 2] - d) >> 2) >>> 0) { + d = + H[ + (H[(a + 8) >> 2] + (H[(d + (f << 2)) >> 2] << 2)) >> 2 + ] + f = H[(a + 4) >> 2] + if (!I[(f + 84) | 0]) { + d = H[(H[(f + 68) >> 2] + (d << 2)) >> 2] + } + H[(e + 72) >> 2] = 0 + H[(e + 76) >> 2] = 0 + j = (e - -64) | 0 + H[j >> 2] = 0 + H[(j + 4) >> 2] = 0 + H[(e + 56) >> 2] = 0 + H[(e + 60) >> 2] = 0 + Sa(f, d, F[(f + 24) | 0], (e + 56) | 0) + if ((b | 0) != -1) { + f = (b + 1) | 0 + j = (f >>> 0) % 3 | 0 ? f : (b - 2) | 0 + m = (((b >>> 0) % 3 | 0 ? -1 : 2) + b) | 0 + while (1) { + d = j + f = m + c: { + if (!H[(a + 28) >> 2]) { + break c + } + f = (b + 1) | 0 + d = (f >>> 0) % 3 | 0 ? f : (b - 2) | 0 + f = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break c + } + f = (b + 2) | 0 + } + n = H[(a + 20) >> 2] + b = H[n >> 2] + d = + H[(H[(H[(a + 16) >> 2] + 28) >> 2] + (d << 2)) >> 2] + if (d >>> 0 >= ((H[(n + 4) >> 2] - b) >> 2) >>> 0) { + break b + } + d = + H[ + (H[(a + 8) >> 2] + + (H[(b + (d << 2)) >> 2] << 2)) >> + 2 + ] + b = H[(a + 4) >> 2] + if (!I[(b + 84) | 0]) { + d = H[(H[(b + 68) >> 2] + (d << 2)) >> 2] + } + H[(e + 48) >> 2] = 0 + H[(e + 52) >> 2] = 0 + H[(e + 40) >> 2] = 0 + H[(e + 44) >> 2] = 0 + H[(e + 32) >> 2] = 0 + H[(e + 36) >> 2] = 0 + Sa(b, d, F[(b + 24) | 0], (e + 32) | 0) + d = H[(a + 20) >> 2] + b = H[d >> 2] + f = + H[(H[(H[(a + 16) >> 2] + 28) >> 2] + (f << 2)) >> 2] + if (f >>> 0 >= ((H[(d + 4) >> 2] - b) >> 2) >>> 0) { + break a + } + d = + H[ + (H[(a + 8) >> 2] + + (H[(b + (f << 2)) >> 2] << 2)) >> + 2 + ] + b = H[(a + 4) >> 2] + if (!I[(b + 84) | 0]) { + d = H[(H[(b + 68) >> 2] + (d << 2)) >> 2] + } + H[(e + 24) >> 2] = 0 + H[(e + 28) >> 2] = 0 + H[(e + 16) >> 2] = 0 + H[(e + 20) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + Sa(b, d, F[(b + 24) | 0], (e + 8) | 0) + g = H[(e + 8) >> 2] + b = H[(e + 56) >> 2] + d = (g - b) | 0 + p = H[(e + 60) >> 2] + t = + (H[(e + 12) >> 2] - + ((p + (b >>> 0 > g >>> 0)) | 0)) | + 0 + h = H[(e + 40) >> 2] + f = H[(e + 64) >> 2] + n = (h - f) | 0 + u = H[(e + 68) >> 2] + y = + (H[(e + 44) >> 2] - + ((u + (f >>> 0 > h >>> 0)) | 0)) | + 0 + g = Rj(d, t, n, y) + w = (o - g) | 0 + x = (i - ((da + (g >>> 0 > o >>> 0)) | 0)) | 0 + i = w + h = H[(e + 16) >> 2] + g = (h - f) | 0 + u = + (H[(e + 20) >> 2] - + (((f >>> 0 > h >>> 0) + u) | 0)) | + 0 + k = H[(e + 32) >> 2] + h = (k - b) | 0 + w = + (H[(e + 36) >> 2] - + (((b >>> 0 > k >>> 0) + p) | 0)) | + 0 + b = Rj(g, u, h, w) + o = (i + b) | 0 + i = (da + x) | 0 + i = b >>> 0 > o >>> 0 ? (i + 1) | 0 : i + b = l + l = d + p = t + k = H[(e + 48) >> 2] + f = H[(e + 72) >> 2] + d = (k - f) | 0 + t = H[(e + 76) >> 2] + x = + (H[(e + 52) >> 2] - + ((t + (f >>> 0 > k >>> 0)) | 0)) | + 0 + l = Rj(l, p, d, x) + k = (b + l) | 0 + b = (da + q) | 0 + b = k >>> 0 < l >>> 0 ? (b + 1) | 0 : b + l = H[(e + 24) >> 2] + p = (l - f) | 0 + f = + (H[(e + 28) >> 2] - + (((f >>> 0 > l >>> 0) + t) | 0)) | + 0 + q = Rj(p, f, h, w) + l = (k - q) | 0 + q = (b - ((da + (k >>> 0 < q >>> 0)) | 0)) | 0 + b = Rj(g, u, d, x) + d = (r - b) | 0 + b = (s - ((da + (b >>> 0 > r >>> 0)) | 0)) | 0 + s = Rj(p, f, n, y) + r = (s + d) | 0 + b = (da + b) | 0 + s = r >>> 0 < s >>> 0 ? (b + 1) | 0 : b + b = H[(e + 88) >> 2] + f = H[(e + 80) >> 2] + d: { + if (I[(e + 92) | 0]) { + e: { + f: { + g: { + h: { + if ((b | 0) == -1) { + break h + } + d = (b + 1) | 0 + b = (d >>> 0) % 3 | 0 ? d : (b - 2) | 0 + if ( + ((b | 0) == -1) | + ((H[ + (H[f >> 2] + + ((b >>> 3) & 536870908)) >> + 2 + ] >>> + b) & + 1) + ) { + break h + } + b = + H[ + (H[(H[(f + 64) >> 2] + 12) >> 2] + + (b << 2)) >> + 2 + ] + if ((b | 0) != -1) { + break g + } + } + H[(e + 88) >> 2] = -1 + break f + } + d = (b + 1) | 0 + b = (d >>> 0) % 3 | 0 ? d : (b - 2) | 0 + H[(e + 88) >> 2] = b + if ((b | 0) != -1) { + break e + } + } + b = H[(e + 84) >> 2] + d = -1 + i: { + if ((b | 0) == -1) { + break i + } + j: { + if ((b >>> 0) % 3 | 0) { + b = (b - 1) | 0 + break j + } + b = (b + 2) | 0 + d = -1 + if ((b | 0) == -1) { + break i + } + } + d = -1 + if ( + (H[ + (H[f >> 2] + ((b >>> 3) & 536870908)) >> 2 + ] >>> + b) & + 1 + ) { + break i + } + b = + H[ + (H[(H[(f + 64) >> 2] + 12) >> 2] + + (b << 2)) >> + 2 + ] + d = -1 + if ((b | 0) == -1) { + break i + } + d = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break i + } + d = (b + 2) | 0 + } + F[(e + 92) | 0] = 0 + H[(e + 88) >> 2] = d + break d + } + if ((b | 0) != H[(e + 84) >> 2]) { + break d + } + H[(e + 88) >> 2] = -1 + break d + } + d = -1 + k: { + if ((b | 0) == -1) { + break k + } + l: { + if ((b >>> 0) % 3 | 0) { + b = (b - 1) | 0 + break l + } + b = (b + 2) | 0 + d = -1 + if ((b | 0) == -1) { + break k + } + } + d = -1 + if ( + (H[ + (H[f >> 2] + ((b >>> 3) & 536870908)) >> 2 + ] >>> + b) & + 1 + ) { + break k + } + b = + H[ + (H[(H[(f + 64) >> 2] + 12) >> 2] + + (b << 2)) >> + 2 + ] + d = -1 + if ((b | 0) == -1) { + break k + } + d = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break k + } + d = (b + 2) | 0 + } + H[(e + 88) >> 2] = d + } + b = H[(e + 88) >> 2] + if ((b | 0) != -1) { + continue + } + break + } + } + b = s >> 31 + f = b ^ r + d = (f - b) | 0 + b = ((b ^ s) - (((b >>> 0 > f >>> 0) + b) | 0)) | 0 + m = -1 + f = 2147483647 + g = q >> 31 + h = g ^ l + j = (h - g) | 0 + n = ((g ^ q) - (((h >>> 0 < g >>> 0) + g) | 0)) | 0 + h = n + k = j ^ -1 + g = h ^ 2147483647 + n = i + m: { + n: { + if (!H[(a + 28) >> 2]) { + if ( + (((b | 0) == (g | 0)) & (d >>> 0 > k >>> 0)) | + (b >>> 0 > g >>> 0) + ) { + break m + } + b = (b + h) | 0 + a = (d + j) | 0 + b = a >>> 0 < j >>> 0 ? (b + 1) | 0 : b + f = a + g = i + a = g >> 31 + d = a + m = d ^ o + a = (m - d) | 0 + i = a + d = ((d ^ g) - (((d >>> 0 > m >>> 0) + d) | 0)) | 0 + a = (a + f) | 0 + d = d ^ 2147483647 + i = + (((d | 0) == (b | 0)) & + ((i ^ -1) >>> 0 < f >>> 0)) | + (b >>> 0 > d >>> 0) + a = i ? -1 : a + if ( + (!(i & 0) & ((a | 0) <= 536870912)) | + ((a | 0) < 536870912) + ) { + break m + } + b = 0 + a = (a >>> 29) | 0 + break n + } + o: { + if ( + (((b | 0) == (g | 0)) & (d >>> 0 > k >>> 0)) | + (b >>> 0 > g >>> 0) + ) { + break o + } + b = (b + h) | 0 + a = (d + j) | 0 + b = a >>> 0 < j >>> 0 ? (b + 1) | 0 : b + k = i + d = i >> 31 + h = d ^ o + i = (h - d) | 0 + j = ((d ^ k) - (((d >>> 0 > h >>> 0) + d) | 0)) | 0 + g = j ^ 2147483647 + d = a + a = i + if ( + (((g | 0) == (b | 0)) & + (d >>> 0 > (a ^ -1) >>> 0)) | + (b >>> 0 > g >>> 0) + ) { + break o + } + b = (b + j) | 0 + m = (a + d) | 0 + b = m >>> 0 < a >>> 0 ? (b + 1) | 0 : b + f = b + if (!b & (m >>> 0 < 536870913)) { + break m + } + } + b = (f >>> 29) | 0 + a = ((f & 536870911) << 3) | (m >>> 29) + } + o = Sj(o, n, a, b) + l = Sj(l, q, a, b) + r = Sj(r, s, a, b) + } + H[(c + 8) >> 2] = o + H[(c + 4) >> 2] = l + H[c >> 2] = r + ca = (e + 96) | 0 + return + } + Ca() + v() + } + Ca() + v() + } + Ca() + v() + } + function Jj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0 + H[(a + 8) >> 2] = e + r = (a + 32) | 0 + g = H[r >> 2] + f = (H[(a + 36) >> 2] - g) >> 2 + a: { + if (f >>> 0 < e >>> 0) { + ya(r, (e - f) | 0) + d = H[(a + 8) >> 2] + break a + } + d = e + if (d >>> 0 >= f >>> 0) { + break a + } + H[(a + 36) >> 2] = g + (e << 2) + d = e + } + w = e << 2 + f = e >>> 0 > 1073741823 ? -1 : w + m = ra(pa(f), 0, f) + p = ra(pa(f), 0, f) + b: { + if ((d | 0) <= 0) { + break b + } + i = H[(a + 32) >> 2] + while (1) { + d = h << 2 + f = H[(d + m) >> 2] + g = H[(a + 16) >> 2] + c: { + if ((f | 0) > (g | 0)) { + H[(d + i) >> 2] = g + break c + } + d = (d + i) | 0 + g = H[(a + 12) >> 2] + if ((g | 0) > (f | 0)) { + H[d >> 2] = g + break c + } + H[d >> 2] = f + } + d = H[(a + 8) >> 2] + h = (h + 1) | 0 + if ((d | 0) > (h | 0)) { + continue + } + break + } + if ((d | 0) <= 0) { + break b + } + f = 0 + while (1) { + g = f << 2 + d = (g + c) | 0 + g = (H[(b + g) >> 2] + H[(g + i) >> 2]) | 0 + H[d >> 2] = g + d: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break d + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[d >> 2] = g + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + } + f = H[(a + 56) >> 2] + x = H[f >> 2] + f = (H[(f + 4) >> 2] - x) | 0 + if ((f | 0) >= 5) { + D = H[(a + 52) >> 2] + s = H[(a + 48) >> 2] + u = (f >>> 2) | 0 + E = u >>> 0 <= 2 ? 2 : u + y = e & -2 + z = e & 1 + F = e & -4 + A = e & 3 + B = (e - 1) | 0 + n = 1 + while (1) { + e: { + f: { + g: { + h: { + if ((n | 0) != (u | 0)) { + g = H[((n << 2) + x) >> 2] + t = (e | 0) <= 0 + if (!t) { + ra(m, 0, w) + } + if ((g | 0) == -1) { + i = N(e, n) + break f + } + C = H[s >> 2] + l = 0 + f = g + while (1) { + i: { + if ( + (H[(((f >>> 3) & 536870908) + C) >> 2] >>> + f) & + 1 + ) { + break i + } + i = + H[ + (H[(H[(s + 64) >> 2] + 12) >> 2] + + (f << 2)) >> + 2 + ] + if ((i | 0) == -1) { + break i + } + j = H[D >> 2] + h = H[(s + 28) >> 2] + o = + H[(j + (H[(h + (i << 2)) >> 2] << 2)) >> 2] + if ((o | 0) >= (n | 0)) { + break i + } + k = (i + 1) | 0 + k = + H[ + (j + + (H[ + (h + + (((k >>> 0) % 3 | 0 + ? k + : (i - 2) | 0) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] + if ((k | 0) >= (n | 0)) { + break i + } + i = + H[ + (j + + (H[ + (h + + ((i + + ((i >>> 0) % 3 | 0 ? -1 : 2)) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] + if ((i | 0) >= (n | 0)) { + break i + } + j: { + if (t) { + break j + } + i = N(e, i) + j = N(e, k) + o = N(e, o) + h = 0 + q = 0 + if (B) { + while (1) { + H[((h << 2) + p) >> 2] = + ((H[(((h + i) << 2) + c) >> 2] + + H[(((h + j) << 2) + c) >> 2]) | + 0) - + H[(((h + o) << 2) + c) >> 2] + k = h | 1 + H[((k << 2) + p) >> 2] = + ((H[(((i + k) << 2) + c) >> 2] + + H[(((j + k) << 2) + c) >> 2]) | + 0) - + H[(((k + o) << 2) + c) >> 2] + h = (h + 2) | 0 + q = (q + 2) | 0 + if ((y | 0) != (q | 0)) { + continue + } + break + } + } + if (z) { + H[((h << 2) + p) >> 2] = + ((H[(((h + i) << 2) + c) >> 2] + + H[(((h + j) << 2) + c) >> 2]) | + 0) - + H[(((h + o) << 2) + c) >> 2] + } + if (t) { + break j + } + o = 0 + h = 0 + i = 0 + if (e >>> 0 > 3) { + while (1) { + j = h << 2 + k = (j + m) | 0 + H[k >> 2] = H[(j + p) >> 2] + H[k >> 2] + k = j | 4 + q = (k + m) | 0 + H[q >> 2] = H[(k + p) >> 2] + H[q >> 2] + k = j | 8 + q = (k + m) | 0 + H[q >> 2] = H[(k + p) >> 2] + H[q >> 2] + j = j | 12 + k = (j + m) | 0 + H[k >> 2] = H[(j + p) >> 2] + H[k >> 2] + h = (h + 4) | 0 + i = (i + 4) | 0 + if ((F | 0) != (i | 0)) { + continue + } + break + } + } + if (!A) { + break j + } + while (1) { + i = h << 2 + j = (i + m) | 0 + H[j >> 2] = H[(i + p) >> 2] + H[j >> 2] + h = (h + 1) | 0 + o = (o + 1) | 0 + if ((A | 0) != (o | 0)) { + continue + } + break + } + } + l = (l + 1) | 0 + } + k: { + l: { + if ((f >>> 0) % 3 | 0) { + h = (f - 1) | 0 + break l + } + h = (f + 2) | 0 + i = -1 + if ((h | 0) == -1) { + break k + } + } + i = -1 + if ( + (H[(((h >>> 3) & 536870908) + C) >> 2] >>> + h) & + 1 + ) { + break k + } + f = + H[ + (H[(H[(s + 64) >> 2] + 12) >> 2] + + (h << 2)) >> + 2 + ] + i = -1 + if ((f | 0) == -1) { + break k + } + i = (f - 1) | 0 + if ((f >>> 0) % 3 | 0) { + break k + } + i = (f + 2) | 0 + } + f = i + if (((g | 0) != (f | 0)) & ((f | 0) != -1)) { + continue + } + break + } + i = N(e, n) + if (!l) { + break f + } + if (t) { + break g + } + h = 0 + f = 0 + if (!B) { + break h + } + while (1) { + g = h << 2 + j = (g + m) | 0 + H[j >> 2] = H[j >> 2] / (l | 0) + g = ((g | 4) + m) | 0 + H[g >> 2] = H[g >> 2] / (l | 0) + h = (h + 2) | 0 + f = (f + 2) | 0 + if ((y | 0) != (f | 0)) { + continue + } + break + } + break h + } + Ca() + v() + } + if (!z) { + break g + } + f = ((h << 2) + m) | 0 + H[f >> 2] = H[f >> 2] / (l | 0) + } + if ((d | 0) <= 0) { + break e + } + l = H[r >> 2] + h = 0 + while (1) { + d = h << 2 + f = H[(d + m) >> 2] + g = H[(a + 16) >> 2] + m: { + if ((f | 0) > (g | 0)) { + H[(d + l) >> 2] = g + break m + } + d = (d + l) | 0 + g = H[(a + 12) >> 2] + if ((g | 0) > (f | 0)) { + H[d >> 2] = g + break m + } + H[d >> 2] = f + } + d = H[(a + 8) >> 2] + h = (h + 1) | 0 + if ((d | 0) > (h | 0)) { + continue + } + break + } + f = 0 + if ((d | 0) <= 0) { + break e + } + d = i << 2 + i = (d + c) | 0 + h = (b + d) | 0 + while (1) { + g = f << 2 + d = (g + i) | 0 + g = (H[(h + g) >> 2] + H[(g + l) >> 2]) | 0 + H[d >> 2] = g + n: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break n + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[d >> 2] = g + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + break e + } + if ((d | 0) <= 0) { + break e + } + g = ((N((n - 1) | 0, e) << 2) + c) | 0 + l = H[r >> 2] + h = 0 + while (1) { + d = h << 2 + f = H[(d + g) >> 2] + j = H[(a + 16) >> 2] + o: { + if ((f | 0) > (j | 0)) { + H[(d + l) >> 2] = j + break o + } + d = (d + l) | 0 + j = H[(a + 12) >> 2] + if ((j | 0) > (f | 0)) { + H[d >> 2] = j + break o + } + H[d >> 2] = f + } + d = H[(a + 8) >> 2] + h = (h + 1) | 0 + if ((d | 0) > (h | 0)) { + continue + } + break + } + f = 0 + if ((d | 0) <= 0) { + break e + } + d = i << 2 + i = (d + c) | 0 + h = (b + d) | 0 + while (1) { + g = f << 2 + d = (g + i) | 0 + g = (H[(h + g) >> 2] + H[(g + l) >> 2]) | 0 + H[d >> 2] = g + p: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break p + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[d >> 2] = g + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + } + n = (n + 1) | 0 + if ((E | 0) != (n | 0)) { + continue + } + break + } + } + oa(p) + oa(m) + return 1 + } + function sj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0 + H[(a + 8) >> 2] = e + r = (a + 32) | 0 + f = H[r >> 2] + j = (H[(a + 36) >> 2] - f) >> 2 + a: { + if (j >>> 0 < e >>> 0) { + ya(r, (e - j) | 0) + d = H[(a + 8) >> 2] + break a + } + d = e + if (e >>> 0 >= j >>> 0) { + break a + } + H[(a + 36) >> 2] = f + (e << 2) + d = e + } + u = e << 2 + f = e >>> 0 > 1073741823 ? -1 : u + m = ra(pa(f), 0, f) + p = ra(pa(f), 0, f) + b: { + if ((d | 0) <= 0) { + break b + } + i = H[(a + 32) >> 2] + while (1) { + f = h << 2 + j = H[(f + m) >> 2] + d = H[(a + 16) >> 2] + c: { + if ((j | 0) > (d | 0)) { + H[(f + i) >> 2] = d + break c + } + f = (f + i) | 0 + d = H[(a + 12) >> 2] + if ((d | 0) > (j | 0)) { + H[f >> 2] = d + break c + } + H[f >> 2] = j + } + d = H[(a + 8) >> 2] + h = (h + 1) | 0 + if ((d | 0) > (h | 0)) { + continue + } + break + } + if ((d | 0) <= 0) { + break b + } + f = 0 + while (1) { + j = f << 2 + d = (j + c) | 0 + j = (H[(b + j) >> 2] + H[(j + i) >> 2]) | 0 + H[d >> 2] = j + d: { + if ((j | 0) > H[(a + 16) >> 2]) { + j = (j - H[(a + 20) >> 2]) | 0 + } else { + if ((j | 0) >= H[(a + 12) >> 2]) { + break d + } + j = (j + H[(a + 20) >> 2]) | 0 + } + H[d >> 2] = j + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + } + f = H[(a + 56) >> 2] + w = H[f >> 2] + f = (H[(f + 4) >> 2] - w) | 0 + if ((f | 0) >= 5) { + D = H[(a + 52) >> 2] + x = H[(a + 48) >> 2] + t = (f >>> 2) | 0 + E = t >>> 0 <= 2 ? 2 : t + y = e & -2 + z = e & 1 + F = e & -4 + A = e & 3 + B = (e - 1) | 0 + n = 1 + while (1) { + e: { + f: { + g: { + h: { + if ((n | 0) != (t | 0)) { + j = H[((n << 2) + w) >> 2] + s = (e | 0) <= 0 + if (!s) { + ra(m, 0, u) + } + if ((j | 0) == -1) { + g = N(e, n) + break f + } + C = H[(x + 12) >> 2] + q = 0 + f = j + while (1) { + h = H[((f << 2) + C) >> 2] + i: { + if ((h | 0) == -1) { + break i + } + o = H[D >> 2] + l = H[x >> 2] + k = + H[(o + (H[(l + (h << 2)) >> 2] << 2)) >> 2] + i = (h + 1) | 0 + i = (i >>> 0) % 3 | 0 ? i : (h - 2) | 0 + if ((i | 0) != -1) { + g = H[(l + (i << 2)) >> 2] + } else { + g = -1 + } + j: { + k: { + if ((h >>> 0) % 3 | 0) { + h = (h - 1) | 0 + break k + } + h = (h + 2) | 0 + i = -1 + if ((h | 0) == -1) { + break j + } + } + i = H[(l + (h << 2)) >> 2] + } + if ((k | 0) >= (n | 0)) { + break i + } + g = H[((g << 2) + o) >> 2] + if ((g | 0) >= (n | 0)) { + break i + } + i = H[(o + (i << 2)) >> 2] + if ((i | 0) >= (n | 0)) { + break i + } + l: { + if (s) { + break l + } + l = N(e, i) + o = N(e, g) + k = N(e, k) + h = 0 + i = 0 + if (B) { + while (1) { + H[((h << 2) + p) >> 2] = + ((H[(((h + l) << 2) + c) >> 2] + + H[(((h + o) << 2) + c) >> 2]) | + 0) - + H[(((h + k) << 2) + c) >> 2] + g = h | 1 + H[((g << 2) + p) >> 2] = + ((H[(((g + l) << 2) + c) >> 2] + + H[(((g + o) << 2) + c) >> 2]) | + 0) - + H[(((g + k) << 2) + c) >> 2] + h = (h + 2) | 0 + i = (i + 2) | 0 + if ((y | 0) != (i | 0)) { + continue + } + break + } + } + if (z) { + H[((h << 2) + p) >> 2] = + ((H[(((h + l) << 2) + c) >> 2] + + H[(((h + o) << 2) + c) >> 2]) | + 0) - + H[(((h + k) << 2) + c) >> 2] + } + if (s) { + break l + } + o = 0 + h = 0 + k = 0 + if (e >>> 0 > 3) { + while (1) { + l = h << 2 + i = (l + m) | 0 + H[i >> 2] = H[(l + p) >> 2] + H[i >> 2] + g = l | 4 + i = (g + m) | 0 + H[i >> 2] = H[(g + p) >> 2] + H[i >> 2] + g = l | 8 + i = (g + m) | 0 + H[i >> 2] = H[(g + p) >> 2] + H[i >> 2] + g = l | 12 + i = (g + m) | 0 + H[i >> 2] = H[(g + p) >> 2] + H[i >> 2] + h = (h + 4) | 0 + k = (k + 4) | 0 + if ((F | 0) != (k | 0)) { + continue + } + break + } + } + if (!A) { + break l + } + while (1) { + g = h << 2 + i = (g + m) | 0 + H[i >> 2] = H[(g + p) >> 2] + H[i >> 2] + h = (h + 1) | 0 + o = (o + 1) | 0 + if ((A | 0) != (o | 0)) { + continue + } + break + } + } + q = (q + 1) | 0 + } + m: { + n: { + if ((f >>> 0) % 3 | 0) { + h = (f - 1) | 0 + break n + } + h = (f + 2) | 0 + g = -1 + if ((h | 0) == -1) { + break m + } + } + f = H[((h << 2) + C) >> 2] + g = -1 + if ((f | 0) == -1) { + break m + } + g = (f - 1) | 0 + if ((f >>> 0) % 3 | 0) { + break m + } + g = (f + 2) | 0 + } + f = g + if (((j | 0) != (f | 0)) & ((f | 0) != -1)) { + continue + } + break + } + g = N(e, n) + if (!q) { + break f + } + if (s) { + break g + } + h = 0 + f = 0 + if (!B) { + break h + } + while (1) { + i = h << 2 + j = (i + m) | 0 + H[j >> 2] = H[j >> 2] / (q | 0) + j = ((i | 4) + m) | 0 + H[j >> 2] = H[j >> 2] / (q | 0) + h = (h + 2) | 0 + f = (f + 2) | 0 + if ((y | 0) != (f | 0)) { + continue + } + break + } + break h + } + Ca() + v() + } + if (!z) { + break g + } + f = ((h << 2) + m) | 0 + H[f >> 2] = H[f >> 2] / (q | 0) + } + if ((d | 0) <= 0) { + break e + } + k = H[r >> 2] + h = 0 + while (1) { + f = h << 2 + j = H[(f + m) >> 2] + d = H[(a + 16) >> 2] + o: { + if ((j | 0) > (d | 0)) { + H[(f + k) >> 2] = d + break o + } + f = (f + k) | 0 + d = H[(a + 12) >> 2] + if ((d | 0) > (j | 0)) { + H[f >> 2] = d + break o + } + H[f >> 2] = j + } + d = H[(a + 8) >> 2] + h = (h + 1) | 0 + if ((d | 0) > (h | 0)) { + continue + } + break + } + f = 0 + if ((d | 0) <= 0) { + break e + } + d = g << 2 + i = (d + c) | 0 + j = (b + d) | 0 + while (1) { + g = f << 2 + d = (g + i) | 0 + g = (H[(g + j) >> 2] + H[(g + k) >> 2]) | 0 + H[d >> 2] = g + p: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break p + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[d >> 2] = g + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + break e + } + if ((d | 0) <= 0) { + break e + } + f = ((N((n - 1) | 0, e) << 2) + c) | 0 + k = H[r >> 2] + h = 0 + while (1) { + j = h << 2 + i = H[(j + f) >> 2] + d = H[(a + 16) >> 2] + q: { + if ((i | 0) > (d | 0)) { + H[(j + k) >> 2] = d + break q + } + j = (j + k) | 0 + d = H[(a + 12) >> 2] + if ((d | 0) > (i | 0)) { + H[j >> 2] = d + break q + } + H[j >> 2] = i + } + d = H[(a + 8) >> 2] + h = (h + 1) | 0 + if ((d | 0) > (h | 0)) { + continue + } + break + } + f = 0 + if ((d | 0) <= 0) { + break e + } + d = g << 2 + i = (d + c) | 0 + j = (b + d) | 0 + while (1) { + g = f << 2 + d = (g + i) | 0 + g = (H[(g + j) >> 2] + H[(g + k) >> 2]) | 0 + H[d >> 2] = g + r: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break r + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[d >> 2] = g + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + } + n = (n + 1) | 0 + if ((E | 0) != (n | 0)) { + continue + } + break + } + } + oa(p) + oa(m) + return 1 + } + function xa(a) { + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + f = (ca - 32) | 0 + ca = f + a: { + b = H[(a + 16) >> 2] + b: { + if (b >>> 0 >= 341) { + H[(a + 16) >> 2] = b - 341 + b = H[(a + 4) >> 2] + j = H[b >> 2] + c = (b + 4) | 0 + H[(a + 4) >> 2] = c + b = H[(a + 8) >> 2] + c: { + if ((b | 0) != H[(a + 12) >> 2]) { + d = b + break c + } + k = H[a >> 2] + if (k >>> 0 < c >>> 0) { + e = (((((c - k) >> 2) + 1) | 0) / -2) << 2 + b = (b - c) | 0 + d = (va((e + c) | 0, c, b) + b) | 0 + H[(a + 8) >> 2] = d + H[(a + 4) >> 2] = e + H[(a + 4) >> 2] + break c + } + d = (b | 0) == (k | 0) ? 1 : (b - k) >> 1 + if (d >>> 0 >= 1073741824) { + break a + } + e = d << 2 + h = pa(e) + l = (e + h) | 0 + e = (h + (d & -4)) | 0 + d = e + d: { + if ((b | 0) == (c | 0)) { + break d + } + b = (b - c) | 0 + m = b & -4 + i = (b - 4) | 0 + g = (((i >>> 2) | 0) + 1) & 7 + e: { + if (!g) { + b = e + break e + } + d = 0 + b = e + while (1) { + H[b >> 2] = H[c >> 2] + c = (c + 4) | 0 + b = (b + 4) | 0 + d = (d + 1) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + d = (e + m) | 0 + if (i >>> 0 < 28) { + break d + } + while (1) { + H[b >> 2] = H[c >> 2] + H[(b + 4) >> 2] = H[(c + 4) >> 2] + H[(b + 8) >> 2] = H[(c + 8) >> 2] + H[(b + 12) >> 2] = H[(c + 12) >> 2] + H[(b + 16) >> 2] = H[(c + 16) >> 2] + H[(b + 20) >> 2] = H[(c + 20) >> 2] + H[(b + 24) >> 2] = H[(c + 24) >> 2] + H[(b + 28) >> 2] = H[(c + 28) >> 2] + c = (c + 32) | 0 + b = (b + 32) | 0 + if ((d | 0) != (b | 0)) { + continue + } + break + } + } + H[(a + 12) >> 2] = l + H[(a + 8) >> 2] = d + H[(a + 4) >> 2] = e + H[a >> 2] = h + if (!k) { + break c + } + oa(k) + d = H[(a + 8) >> 2] + } + H[d >> 2] = j + H[(a + 8) >> 2] = H[(a + 8) >> 2] + 4 + break b + } + c = H[(a + 8) >> 2] + b = H[(a + 4) >> 2] + l = (c - b) | 0 + h = l >> 2 + g = H[(a + 12) >> 2] + d = H[a >> 2] + e = (g - d) | 0 + if (h >>> 0 < (e >> 2) >>> 0) { + if ((c | 0) != (g | 0)) { + ;(n = f), (o = pa(4092)), (H[(n + 8) >> 2] = o) + d = a + f: { + g: { + b = H[(a + 8) >> 2] + h: { + if ((b | 0) != H[(a + 12) >> 2]) { + e = b + break h + } + c = H[(d + 4) >> 2] + h = H[d >> 2] + if (c >>> 0 > h >>> 0) { + g = (((((c - h) >> 2) + 1) | 0) / -2) << 2 + a = (b - c) | 0 + e = (va((g + c) | 0, c, a) + a) | 0 + H[(d + 8) >> 2] = e + H[(d + 4) >> 2] = g + H[(d + 4) >> 2] + break h + } + e = (b | 0) == (h | 0) ? 1 : (b - h) >> 1 + if (e >>> 0 >= 1073741824) { + break g + } + a = e << 2 + j = pa(a) + l = (a + j) | 0 + a = (j + (e & -4)) | 0 + e = a + i: { + if ((b | 0) == (c | 0)) { + break i + } + b = (b - c) | 0 + m = b & -4 + i = (b - 4) | 0 + g = (((i >>> 2) | 0) + 1) & 7 + j: { + if (!g) { + b = a + break j + } + e = 0 + b = a + while (1) { + H[b >> 2] = H[c >> 2] + c = (c + 4) | 0 + b = (b + 4) | 0 + e = (e + 1) | 0 + if ((g | 0) != (e | 0)) { + continue + } + break + } + } + e = (a + m) | 0 + if (i >>> 0 < 28) { + break i + } + while (1) { + H[b >> 2] = H[c >> 2] + H[(b + 4) >> 2] = H[(c + 4) >> 2] + H[(b + 8) >> 2] = H[(c + 8) >> 2] + H[(b + 12) >> 2] = H[(c + 12) >> 2] + H[(b + 16) >> 2] = H[(c + 16) >> 2] + H[(b + 20) >> 2] = H[(c + 20) >> 2] + H[(b + 24) >> 2] = H[(c + 24) >> 2] + H[(b + 28) >> 2] = H[(c + 28) >> 2] + c = (c + 32) | 0 + b = (b + 32) | 0 + if ((e | 0) != (b | 0)) { + continue + } + break + } + } + H[(d + 12) >> 2] = l + H[(d + 8) >> 2] = e + H[(d + 4) >> 2] = a + H[d >> 2] = j + if (!h) { + break h + } + oa(h) + e = H[(d + 8) >> 2] + } + H[e >> 2] = H[(f + 8) >> 2] + H[(d + 8) >> 2] = H[(d + 8) >> 2] + 4 + break f + } + wa() + v() + } + break b + } + ;(n = f), (o = pa(4092)), (H[(n + 8) >> 2] = o) + qd(a, (f + 8) | 0) + b = H[(a + 4) >> 2] + j = H[b >> 2] + c = (b + 4) | 0 + H[(a + 4) >> 2] = c + b = H[(a + 8) >> 2] + k: { + if ((b | 0) != H[(a + 12) >> 2]) { + d = b + break k + } + k = H[a >> 2] + if (k >>> 0 < c >>> 0) { + e = (((((c - k) >> 2) + 1) | 0) / -2) << 2 + b = (b - c) | 0 + d = (va((e + c) | 0, c, b) + b) | 0 + H[(a + 8) >> 2] = d + H[(a + 4) >> 2] = e + H[(a + 4) >> 2] + break k + } + d = (b | 0) == (k | 0) ? 1 : (b - k) >> 1 + if (d >>> 0 >= 1073741824) { + break a + } + e = d << 2 + h = pa(e) + l = (e + h) | 0 + e = (h + (d & -4)) | 0 + d = e + l: { + if ((b | 0) == (c | 0)) { + break l + } + b = (b - c) | 0 + m = b & -4 + i = (b - 4) | 0 + g = (((i >>> 2) | 0) + 1) & 7 + m: { + if (!g) { + b = e + break m + } + d = 0 + b = e + while (1) { + H[b >> 2] = H[c >> 2] + c = (c + 4) | 0 + b = (b + 4) | 0 + d = (d + 1) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + d = (e + m) | 0 + if (i >>> 0 < 28) { + break l + } + while (1) { + H[b >> 2] = H[c >> 2] + H[(b + 4) >> 2] = H[(c + 4) >> 2] + H[(b + 8) >> 2] = H[(c + 8) >> 2] + H[(b + 12) >> 2] = H[(c + 12) >> 2] + H[(b + 16) >> 2] = H[(c + 16) >> 2] + H[(b + 20) >> 2] = H[(c + 20) >> 2] + H[(b + 24) >> 2] = H[(c + 24) >> 2] + H[(b + 28) >> 2] = H[(c + 28) >> 2] + c = (c + 32) | 0 + b = (b + 32) | 0 + if ((d | 0) != (b | 0)) { + continue + } + break + } + } + H[(a + 12) >> 2] = l + H[(a + 8) >> 2] = d + H[(a + 4) >> 2] = e + H[a >> 2] = h + if (!k) { + break k + } + oa(k) + d = H[(a + 8) >> 2] + } + H[d >> 2] = j + H[(a + 8) >> 2] = H[(a + 8) >> 2] + 4 + break b + } + H[(f + 24) >> 2] = a + 12 + m = (d | 0) == (g | 0) ? 1 : e >> 1 + if (m >>> 0 >= 1073741824) { + break a + } + e = m << 2 + g = pa(e) + H[(f + 8) >> 2] = g + j = (e + g) | 0 + H[(f + 20) >> 2] = j + d = ((h << 2) + g) | 0 + H[(f + 12) >> 2] = d + i = pa(4092) + n: { + if ((h | 0) != (m | 0)) { + break n + } + if ((l | 0) > 0) { + d = (((((h + 1) | 0) / -2) << 2) + d) | 0 + H[(f + 12) >> 2] = d + break n + } + d = (b | 0) == (c | 0) ? 1 : l >> 1 + if (d >>> 0 >= 1073741824) { + break a + } + b = d << 2 + e = pa(b) + H[(f + 8) >> 2] = e + j = (b + e) | 0 + H[(f + 20) >> 2] = j + d = (e + (d & -4)) | 0 + H[(f + 12) >> 2] = d + oa(g) + b = H[(a + 4) >> 2] + c = H[(a + 8) >> 2] + g = e + } + H[d >> 2] = i + i = (d + 4) | 0 + H[(f + 16) >> 2] = i + e = b + if ((b | 0) != (c | 0)) { + while (1) { + c = (c - 4) | 0 + qd((f + 8) | 0, c) + if (H[(a + 4) >> 2] != (c | 0)) { + continue + } + break + } + j = H[(f + 20) >> 2] + i = H[(f + 16) >> 2] + d = H[(f + 12) >> 2] + g = H[(f + 8) >> 2] + e = c + b = H[(a + 8) >> 2] + } + c = H[a >> 2] + H[a >> 2] = g + H[(f + 8) >> 2] = c + H[(a + 4) >> 2] = d + H[(f + 12) >> 2] = e + H[(a + 8) >> 2] = i + H[(f + 16) >> 2] = b + d = H[(a + 12) >> 2] + H[(a + 12) >> 2] = j + H[(f + 20) >> 2] = d + if ((b | 0) != (e | 0)) { + H[(f + 16) >> 2] = ((((e - b) | 0) + 3) & -4) + b + } + if (!c) { + break b + } + oa(c) + } + ca = (f + 32) | 0 + return + } + wa() + v() + } + function Aj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = O(0), + j = 0, + k = 0, + l = 0, + m = O(0), + n = O(0), + o = O(0), + p = O(0), + q = O(0), + r = 0, + s = O(0), + t = O(0), + u = O(0), + w = O(0), + x = 0, + y = O(0), + z = O(0), + A = O(0), + B = 0 + a: { + b: { + if ((e | 0) != 2) { + break b + } + H[(a + 64) >> 2] = f + H[(a + 72) >> 2] = 2 + e = pa(8) + d = H[(a + 68) >> 2] + H[(a + 68) >> 2] = e + if (d) { + oa(d) + } + H[(a + 8) >> 2] = 2 + x = (a + 32) | 0 + e = H[x >> 2] + d = (H[(a + 36) >> 2] - e) | 0 + c: { + if (d >>> 0 <= 7) { + ya(x, (2 - ((d >>> 2) | 0)) | 0) + break c + } + if ((d | 0) == 8) { + break c + } + H[(a + 36) >> 2] = e + 8 + } + h = 1 + d = H[(a + 56) >> 2] + d = (H[(d + 4) >> 2] - H[d >> 2]) | 0 + if ((d | 0) <= 0) { + break b + } + d = (d >>> 2) | 0 + B = d >>> 0 <= 1 ? 1 : d + d = 0 + while (1) { + e = H[(a + 56) >> 2] + h = H[e >> 2] + if (((H[(e + 4) >> 2] - h) >> 2) >>> 0 <= d >>> 0) { + break a + } + q = O(0) + g = (ca - 48) | 0 + ca = g + e = -1 + h = H[(h + (d << 2)) >> 2] + f = -1 + d: { + if ((h | 0) == -1) { + break d + } + e = (h + 1) | 0 + e = (e >>> 0) % 3 | 0 ? e : (h - 2) | 0 + f = (h - 1) | 0 + if ((h >>> 0) % 3 | 0) { + break d + } + f = (h + 2) | 0 + } + j = H[(a + 52) >> 2] + h = H[j >> 2] + e: { + f: { + j = (H[(j + 4) >> 2] - h) >> 2 + l = e << 2 + e = H[(H[(a + 48) >> 2] + 28) >> 2] + r = H[(l + e) >> 2] + if (j >>> 0 <= r >>> 0) { + break f + } + e = H[(e + (f << 2)) >> 2] + if (e >>> 0 >= j >>> 0) { + break f + } + j = H[(h + (e << 2)) >> 2] + f = H[(h + (r << 2)) >> 2] + g: { + if ( + !(((j | 0) >= (d | 0)) | ((f | 0) >= (d | 0))) + ) { + e = H[(a + 72) >> 2] + h = ((N(e, j) << 2) + c) | 0 + m = O(H[(h + 4) >> 2]) + e = ((N(e, f) << 2) + c) | 0 + p = O(H[(e + 4) >> 2]) + y = O(H[e >> 2]) + n = O(H[h >> 2]) + if (!((y != n) | (m != p))) { + h = +m > 2147483647 + e = H[(a + 68) >> 2] + if (O(P(m)) < O(2147483648)) { + f = ~~m + } else { + f = -2147483648 + } + H[(e + 4) >> 2] = + m < O(-2147483648) + ? -2147483648 + : h + ? -2147483648 + : f + h = +n > 2147483647 + if (O(P(n)) < O(2147483648)) { + f = ~~n + } else { + f = -2147483648 + } + H[e >> 2] = + n < O(-2147483648) + ? -2147483648 + : h + ? -2147483648 + : f + f = 1 + break g + } + e = H[(H[(a + 64) >> 2] + (d << 2)) >> 2] + H[(g + 40) >> 2] = 0 + H[(g + 32) >> 2] = 0 + H[(g + 36) >> 2] = 0 + h = H[(a + 60) >> 2] + if (!I[(h + 84) | 0]) { + e = H[(H[(h + 68) >> 2] + (e << 2)) >> 2] + } + Va(h, e, F[(h + 24) | 0], (g + 32) | 0) + f = H[(H[(a + 64) >> 2] + (f << 2)) >> 2] + H[(g + 24) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + e = H[(a + 60) >> 2] + if (!I[(e + 84) | 0]) { + f = H[(H[(e + 68) >> 2] + (f << 2)) >> 2] + } + Va(e, f, F[(e + 24) | 0], (g + 16) | 0) + f = H[(H[(a + 64) >> 2] + (j << 2)) >> 2] + H[(g + 8) >> 2] = 0 + H[g >> 2] = 0 + H[(g + 4) >> 2] = 0 + e = H[(a + 60) >> 2] + if (!I[(e + 84) | 0]) { + f = H[(H[(e + 68) >> 2] + (f << 2)) >> 2] + } + Va(e, f, F[(e + 24) | 0], g) + o = L[(g + 24) >> 2] + s = O(L[(g + 8) >> 2] - o) + t = L[(g + 20) >> 2] + u = O(L[(g + 4) >> 2] - t) + A = L[(g + 16) >> 2] + w = O(L[g >> 2] - A) + z = O(O(s * s) + O(O(u * u) + O(O(w * w) + O(0)))) + h: { + if (H[(a + 88) >> 2] >= 258) { + i = O(0) + if (!(z > O(0))) { + break h + } + } + i = O(L[(g + 40) >> 2] - o) + o = O(L[(g + 36) >> 2] - t) + t = O(L[(g + 32) >> 2] - A) + q = O( + O( + O(s * i) + O(O(u * o) + O(O(w * t) + O(0))), + ) / z, + ) + i = O(i - O(s * q)) + s = O(i * i) + i = O(o - O(u * q)) + o = O(i * i) + i = O(t - O(w * q)) + i = O( + W(O(O(s + O(o + O(O(i * i) + O(0)))) / z)), + ) + } + f = H[(a + 80) >> 2] + if (f) { + e = (f - 1) | 0 + h = + H[ + (H[(a + 76) >> 2] + + ((e >>> 3) & 536870908)) >> + 2 + ] + H[(a + 80) >> 2] = e + m = O(m - p) + o = O(O(m * q) + p) + n = O(n - y) + p = O(n * i) + e = (h >>> e) & 1 + p = O(o + (e ? p : O(-p))) + i = O(i * m) + k = T( + +O(O(O(n * q) + y) + (e ? O(-i) : i)) + 0.5, + ) + i: { + if ( + (k < -2147483648) | + (k != k) | + (k > 2147483647) + ) { + e = H[(a + 68) >> 2] + H[e >> 2] = -2147483648 + break i + } + e = H[(a + 68) >> 2] + if (P(k) < 2147483648) { + h = ~~k + } else { + h = -2147483648 + } + H[e >> 2] = h + } + k = T(+p + 0.5) + j = k > 2147483647 + if (P(k) < 2147483648) { + h = ~~k + } else { + h = -2147483648 + } + H[(e + 4) >> 2] = + k < -2147483648 + ? -2147483648 + : k != k + ? -2147483648 + : j + ? -2147483648 + : h + } + f = (f | 0) != 0 + break g + } + j: { + if ((d | 0) > (f | 0)) { + e = H[(a + 72) >> 2] + h = N(f, e) + break j + } + if ((d | 0) <= 0) { + f = 1 + if (H[(a + 72) >> 2] <= 0) { + break g + } + h = H[(a + 68) >> 2] + e = 0 + while (1) { + H[(h + (e << 2)) >> 2] = 0 + e = (e + 1) | 0 + if ((e | 0) < H[(a + 72) >> 2]) { + continue + } + break + } + break g + } + e = H[(a + 72) >> 2] + h = N(e, (d - 1) | 0) + } + f = 1 + if ((e | 0) <= 0) { + break g + } + j = H[(a + 68) >> 2] + e = 0 + while (1) { + H[(j + (e << 2)) >> 2] = + H[(((e + h) << 2) + c) >> 2] + e = (e + 1) | 0 + if ((e | 0) < H[(a + 72) >> 2]) { + continue + } + break + } + } + ca = (g + 48) | 0 + break e + } + Ca() + v() + } + h = f + if (!h) { + return 0 + } + k: { + if (H[(a + 8) >> 2] <= 0) { + break k + } + r = H[(a + 68) >> 2] + j = H[x >> 2] + e = 0 + while (1) { + f = e << 2 + g = H[(f + r) >> 2] + l = H[(a + 16) >> 2] + l: { + if ((g | 0) > (l | 0)) { + H[(f + j) >> 2] = l + break l + } + f = (f + j) | 0 + l = H[(a + 12) >> 2] + if ((l | 0) > (g | 0)) { + H[f >> 2] = l + break l + } + H[f >> 2] = g + } + e = (e + 1) | 0 + g = H[(a + 8) >> 2] + if ((e | 0) < (g | 0)) { + continue + } + break + } + f = 0 + if ((g | 0) <= 0) { + break k + } + e = d << 3 + r = (e + c) | 0 + l = (b + e) | 0 + while (1) { + g = f << 2 + e = (g + r) | 0 + g = (H[(g + l) >> 2] + H[(g + j) >> 2]) | 0 + H[e >> 2] = g + m: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break m + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[e >> 2] = g + } + f = (f + 1) | 0 + if ((f | 0) < H[(a + 8) >> 2]) { + continue + } + break + } + } + d = (d + 1) | 0 + if ((B | 0) != (d | 0)) { + continue + } + break + } + } + return h | 0 + } + Ca() + v() + } + function kj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = O(0), + j = 0, + k = 0, + l = O(0), + m = O(0), + n = O(0), + o = O(0), + p = 0, + q = O(0), + r = O(0), + s = O(0), + t = O(0), + u = O(0), + w = 0, + x = O(0), + y = O(0), + z = 0, + A = O(0), + B = 0 + a: { + b: { + if ((e | 0) != 2) { + break b + } + H[(a + 64) >> 2] = f + H[(a + 72) >> 2] = 2 + e = pa(8) + d = H[(a + 68) >> 2] + H[(a + 68) >> 2] = e + if (d) { + oa(d) + } + H[(a + 8) >> 2] = 2 + w = (a + 32) | 0 + e = H[w >> 2] + d = (H[(a + 36) >> 2] - e) | 0 + c: { + if (d >>> 0 <= 7) { + ya(w, (2 - ((d >>> 2) | 0)) | 0) + break c + } + if ((d | 0) == 8) { + break c + } + H[(a + 36) >> 2] = e + 8 + } + h = 1 + d = H[(a + 56) >> 2] + d = (H[(d + 4) >> 2] - H[d >> 2]) | 0 + if ((d | 0) <= 0) { + break b + } + d = (d >>> 2) | 0 + B = d >>> 0 <= 1 ? 1 : d + d = 0 + while (1) { + f = H[(a + 56) >> 2] + e = H[f >> 2] + if (((H[(f + 4) >> 2] - e) >> 2) >>> 0 <= d >>> 0) { + break a + } + q = O(0) + g = (ca - 48) | 0 + ca = g + h = -1 + d: { + e: { + e = H[(e + (d << 2)) >> 2] + if ((e | 0) == -1) { + break e + } + j = H[(a + 48) >> 2] + f = (e + 1) | 0 + f = (f >>> 0) % 3 | 0 ? f : (e - 2) | 0 + if ((f | 0) != -1) { + h = H[(H[j >> 2] + (f << 2)) >> 2] + } + f = -1 + e = (e + ((e >>> 0) % 3 | 0 ? -1 : 2)) | 0 + if ((e | 0) != -1) { + f = H[(H[j >> 2] + (e << 2)) >> 2] + } + e = H[(a + 52) >> 2] + j = H[e >> 2] + e = (H[(e + 4) >> 2] - j) >> 2 + if ((e >>> 0 <= h >>> 0) | (e >>> 0 <= f >>> 0)) { + break e + } + e = H[(j + (h << 2)) >> 2] + j = H[(j + (f << 2)) >> 2] + f: { + if ( + !(((d | 0) <= (e | 0)) | ((j | 0) >= (d | 0))) + ) { + f = H[(a + 72) >> 2] + h = ((N(f, j) << 2) + c) | 0 + l = O(H[(h + 4) >> 2]) + f = ((N(e, f) << 2) + c) | 0 + o = O(H[(f + 4) >> 2]) + x = O(H[f >> 2]) + m = O(H[h >> 2]) + if (!((x != m) | (l != o))) { + h = +l > 2147483647 + e = H[(a + 68) >> 2] + if (O(P(l)) < O(2147483648)) { + f = ~~l + } else { + f = -2147483648 + } + H[(e + 4) >> 2] = + l < O(-2147483648) + ? -2147483648 + : h + ? -2147483648 + : f + h = +m > 2147483647 + if (O(P(m)) < O(2147483648)) { + f = ~~m + } else { + f = -2147483648 + } + H[e >> 2] = + m < O(-2147483648) + ? -2147483648 + : h + ? -2147483648 + : f + h = 1 + break f + } + f = H[(H[(a + 64) >> 2] + (d << 2)) >> 2] + H[(g + 40) >> 2] = 0 + H[(g + 32) >> 2] = 0 + H[(g + 36) >> 2] = 0 + h = H[(a + 60) >> 2] + if (!I[(h + 84) | 0]) { + f = H[(H[(h + 68) >> 2] + (f << 2)) >> 2] + } + Va(h, f, F[(h + 24) | 0], (g + 32) | 0) + f = H[(H[(a + 64) >> 2] + (e << 2)) >> 2] + H[(g + 24) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + e = H[(a + 60) >> 2] + if (!I[(e + 84) | 0]) { + f = H[(H[(e + 68) >> 2] + (f << 2)) >> 2] + } + Va(e, f, F[(e + 24) | 0], (g + 16) | 0) + h = H[(H[(a + 64) >> 2] + (j << 2)) >> 2] + H[(g + 8) >> 2] = 0 + H[g >> 2] = 0 + H[(g + 4) >> 2] = 0 + e = H[(a + 60) >> 2] + if (!I[(e + 84) | 0]) { + h = H[(H[(e + 68) >> 2] + (h << 2)) >> 2] + } + Va(e, h, F[(e + 24) | 0], g) + n = L[(g + 24) >> 2] + r = O(L[(g + 8) >> 2] - n) + s = L[(g + 20) >> 2] + t = O(L[(g + 4) >> 2] - s) + A = L[(g + 16) >> 2] + u = O(L[g >> 2] - A) + y = O(O(r * r) + O(O(t * t) + O(O(u * u) + O(0)))) + g: { + if (H[(a + 88) >> 2] >= 258) { + i = O(0) + if (!(y > O(0))) { + break g + } + } + i = O(L[(g + 40) >> 2] - n) + n = O(L[(g + 36) >> 2] - s) + s = O(L[(g + 32) >> 2] - A) + q = O( + O( + O(r * i) + O(O(t * n) + O(O(u * s) + O(0))), + ) / y, + ) + i = O(i - O(r * q)) + r = O(i * i) + i = O(n - O(t * q)) + n = O(i * i) + i = O(s - O(u * q)) + i = O( + W(O(O(r + O(n + O(O(i * i) + O(0)))) / y)), + ) + } + e = H[(a + 80) >> 2] + if (e) { + f = (e - 1) | 0 + h = + H[ + (H[(a + 76) >> 2] + + ((f >>> 3) & 536870908)) >> + 2 + ] + H[(a + 80) >> 2] = f + l = O(l - o) + n = O(O(l * q) + o) + m = O(m - x) + o = O(m * i) + f = (h >>> f) & 1 + o = O(n + (f ? o : O(-o))) + i = O(i * l) + k = T( + +O(O(O(m * q) + x) + (f ? O(-i) : i)) + 0.5, + ) + h: { + if ( + (k < -2147483648) | + (k != k) | + (k > 2147483647) + ) { + h = H[(a + 68) >> 2] + H[h >> 2] = -2147483648 + break h + } + h = H[(a + 68) >> 2] + if (P(k) < 2147483648) { + f = ~~k + } else { + f = -2147483648 + } + H[h >> 2] = f + } + k = T(+o + 0.5) + j = k > 2147483647 + if (P(k) < 2147483648) { + f = ~~k + } else { + f = -2147483648 + } + H[(h + 4) >> 2] = + k < -2147483648 + ? -2147483648 + : k != k + ? -2147483648 + : j + ? -2147483648 + : f + } + h = (e | 0) != 0 + break f + } + i: { + if ((d | 0) > (e | 0)) { + f = H[(a + 72) >> 2] + e = N(e, f) + break i + } + if ((d | 0) <= 0) { + h = 1 + if (H[(a + 72) >> 2] <= 0) { + break f + } + e = H[(a + 68) >> 2] + f = 0 + while (1) { + H[(e + (f << 2)) >> 2] = 0 + f = (f + 1) | 0 + if ((f | 0) < H[(a + 72) >> 2]) { + continue + } + break + } + break f + } + f = H[(a + 72) >> 2] + e = N(f, (d - 1) | 0) + } + h = 1 + if ((f | 0) <= 0) { + break f + } + j = H[(a + 68) >> 2] + f = 0 + while (1) { + H[(j + (f << 2)) >> 2] = + H[(((e + f) << 2) + c) >> 2] + f = (f + 1) | 0 + if ((f | 0) < H[(a + 72) >> 2]) { + continue + } + break + } + } + ca = (g + 48) | 0 + break d + } + Ca() + v() + } + if (!h) { + return 0 + } + j: { + if (H[(a + 8) >> 2] <= 0) { + break j + } + z = H[(a + 68) >> 2] + j = H[w >> 2] + e = 0 + while (1) { + f = e << 2 + g = H[(f + z) >> 2] + p = H[(a + 16) >> 2] + k: { + if ((g | 0) > (p | 0)) { + H[(f + j) >> 2] = p + break k + } + f = (f + j) | 0 + p = H[(a + 12) >> 2] + if ((p | 0) > (g | 0)) { + H[f >> 2] = p + break k + } + H[f >> 2] = g + } + e = (e + 1) | 0 + g = H[(a + 8) >> 2] + if ((e | 0) < (g | 0)) { + continue + } + break + } + f = 0 + if ((g | 0) <= 0) { + break j + } + e = d << 3 + z = (e + c) | 0 + p = (b + e) | 0 + while (1) { + g = f << 2 + e = (g + z) | 0 + g = (H[(g + p) >> 2] + H[(g + j) >> 2]) | 0 + H[e >> 2] = g + l: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break l + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[e >> 2] = g + } + f = (f + 1) | 0 + if ((f | 0) < H[(a + 8) >> 2]) { + continue + } + break + } + } + d = (d + 1) | 0 + if ((B | 0) != (d | 0)) { + continue + } + break + } + } + return h | 0 + } + Ca() + v() + } + function Of(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + f = (ca - 704) | 0 + ca = f + n = 1 + a: { + b: { + c: { + d: { + if (J[(b + 38) >> 1] < 515) { + break d + } + n = 0 + c = H[(b + 20) >> 2] + d = H[(b + 12) >> 2] + g = H[(b + 16) >> 2] + if ( + (((c | 0) >= (d | 0)) & + (g >>> 0 >= K[(b + 8) >> 2])) | + ((c | 0) > (d | 0)) + ) { + break d + } + p = I[(H[b >> 2] + g) | 0] + g = (g + 1) | 0 + c = g ? c : (c + 1) | 0 + H[(b + 16) >> 2] = g + H[(b + 20) >> 2] = c + g = + H[ + (H[ + ((ea[H[(H[a >> 2] + 28) >> 2]](a) | 0) + 4) >> 2 + ] + + 80) >> + 2 + ] + c = ea[H[(H[a >> 2] + 24) >> 2]](a) | 0 + H[(f + 40) >> 2] = 0 + H[(f + 32) >> 2] = 0 + H[(f + 36) >> 2] = 0 + if (c) { + if (c >>> 0 >= 214748365) { + break c + } + c = N(c, 20) + d = pa(c) + H[(f + 32) >> 2] = d + H[(f + 40) >> 2] = c + d + c = (c - 20) | 0 + c = (((c - ((c >>> 0) % 20 | 0)) | 0) + 20) | 0 + ;(q = f), + (r = (ra(d, 0, c) + c) | 0), + (H[(q + 36) >> 2] = r) + } + e: { + if ((ea[H[(H[a >> 2] + 24) >> 2]](a) | 0) > 0) { + while (1) { + c = ea[H[(H[a >> 2] + 20) >> 2]](a, l) | 0 + c = + H[ + (H[ + (H[ + ((ea[H[(H[a >> 2] + 28) >> 2]](a) | 0) + + 4) >> + 2 + ] + + 8) >> + 2 + ] + + (c << 2)) >> + 2 + ] + mb(c, g) + F[(c + 84) | 0] = 1 + H[(c + 72) >> 2] = H[(c + 68) >> 2] + d = H[(c + 28) >> 2] + if (d >>> 0 > 9) { + break e + } + f: { + g: { + h: { + e = 1 << d + if (!(e & 42)) { + if (e & 84) { + break f + } + if ((d | 0) != 9) { + break e + } + d = I[(c + 24) | 0] + e = Eb((f + 48) | 0) + i = N(d, H[3401]) + lc( + e, + H[(c + 56) >> 2], + d, + 6, + 0, + i, + i >> 31, + ) + c = jc(pa(96), e) + H[f >> 2] = c + F[(c + 84) | 0] = 1 + H[(c + 72) >> 2] = H[(c + 68) >> 2] + mb(c, g) + c = H[(a + 64) >> 2] + if (c >>> 0 >= K[(a + 68) >> 2]) { + break h + } + d = H[f >> 2] + H[f >> 2] = 0 + H[c >> 2] = d + c = (c + 4) | 0 + H[(a + 64) >> 2] = c + break g + } + j = 0 + if (!I[(c + 24) | 0]) { + break f + } + while (1) { + d = H[(a + 52) >> 2] + i = H[(a + 56) >> 2] + i: { + if (d >>> 0 < i >>> 0) { + H[d >> 2] = 0 + H[(a + 52) >> 2] = d + 4 + break i + } + e = d + d = H[(a + 48) >> 2] + m = (e - d) | 0 + k = m >> 2 + e = (k + 1) | 0 + if (e >>> 0 >= 1073741824) { + break b + } + o = k << 2 + i = (i - d) | 0 + k = (i >>> 1) | 0 + e = + i >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 < k >>> 0 + ? k + : e + if (e) { + if (e >>> 0 >= 1073741824) { + break a + } + i = pa(e << 2) + } else { + i = 0 + } + k = (o + i) | 0 + H[k >> 2] = 0 + o = e << 2 + e = va(i, d, m) + H[(a + 56) >> 2] = o + e + H[(a + 52) >> 2] = k + 4 + H[(a + 48) >> 2] = e + if (!d) { + break i + } + oa(d) + } + j = (j + 1) | 0 + if (j >>> 0 < I[(c + 24) | 0]) { + continue + } + break + } + break f + } + c = 0 + j: { + k: { + l: { + e = H[(a + 60) >> 2] + i = (H[(a + 64) >> 2] - e) >> 2 + d = (i + 1) | 0 + if (d >>> 0 < 1073741824) { + e = (H[(a + 68) >> 2] - e) | 0 + j = (e >>> 1) | 0 + e = + e >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < j >>> 0 + ? j + : d + if (e) { + if (e >>> 0 >= 1073741824) { + break l + } + c = pa(e << 2) + } + j = H[f >> 2] + H[f >> 2] = 0 + d = ((i << 2) + c) | 0 + H[d >> 2] = j + e = ((e << 2) + c) | 0 + i = (d + 4) | 0 + c = H[(a + 64) >> 2] + j = H[(a + 60) >> 2] + if ((c | 0) == (j | 0)) { + break k + } + while (1) { + c = (c - 4) | 0 + m = H[c >> 2] + H[c >> 2] = 0 + d = (d - 4) | 0 + H[d >> 2] = m + if ((c | 0) != (j | 0)) { + continue + } + break + } + H[(a + 68) >> 2] = e + e = H[(a + 64) >> 2] + H[(a + 64) >> 2] = i + c = H[(a + 60) >> 2] + H[(a + 60) >> 2] = d + if ((c | 0) == (e | 0)) { + break j + } + while (1) { + e = (e - 4) | 0 + d = H[e >> 2] + H[e >> 2] = 0 + if (d) { + Ga(d) + } + if ((c | 0) != (e | 0)) { + continue + } + break + } + break j + } + sa() + v() + } + wa() + v() + } + H[(a + 68) >> 2] = e + H[(a + 64) >> 2] = i + H[(a + 60) >> 2] = d + } + if (c) { + oa(c) + } + c = H[(a + 64) >> 2] + } + c = H[(c - 4) >> 2] + d = H[f >> 2] + H[f >> 2] = 0 + if (!d) { + break f + } + Ga(d) + } + i = H[(c + 28) >> 2] + d = (i - 1) | 0 + if (d >>> 0 <= 10) { + e = H[((d << 2) + 13584) >> 2] + } else { + e = -1 + } + d = (H[(f + 32) >> 2] + N(l, 20)) | 0 + j = I[(c + 24) | 0] + H[(d + 16) >> 2] = j + H[(d + 12) >> 2] = (e | 0) > 0 ? e : 0 + H[(d + 8) >> 2] = i + H[(d + 4) >> 2] = h + H[d >> 2] = c + h = (h + j) | 0 + l = (l + 1) | 0 + if ( + (ea[H[(H[a >> 2] + 24) >> 2]](a) | 0) > + (l | 0) + ) { + continue + } + break + } + } + a = Ac(f, (f + 32) | 0) + m: { + n: { + o: { + switch (p | 0) { + case 0: + c = wb((f + 48) | 0, h) + b = Bd(c, b, a, g) + h = H[(c + 8) >> 2] + xb(c) + if (!b) { + break m + } + if ((h | 0) == (g | 0)) { + break n + } + break m + case 1: + c = wb((f + 48) | 0, h) + b = zd(c, b, a, g) + h = H[(c + 8) >> 2] + xb(c) + if (!b) { + break m + } + if ((h | 0) == (g | 0)) { + break n + } + break m + case 2: + c = ub((f + 48) | 0, h) + b = yd(c, b, a, g) + h = H[(c + 8) >> 2] + vb(c) + if (!b) { + break m + } + if ((h | 0) == (g | 0)) { + break n + } + break m + case 3: + c = ub((f + 48) | 0, h) + b = xd(c, b, a, g) + h = H[(c + 8) >> 2] + vb(c) + if (!b) { + break m + } + if ((h | 0) == (g | 0)) { + break n + } + break m + case 4: + c = $a((f + 48) | 0, h) + b = wd(c, b, a, g) + h = H[(c + 8) >> 2] + ab(c) + if (!b) { + break m + } + if ((h | 0) == (g | 0)) { + break n + } + break m + case 5: + c = $a((f + 48) | 0, h) + b = vd(c, b, a, g) + h = H[(c + 8) >> 2] + ab(c) + if (!b) { + break m + } + if ((h | 0) == (g | 0)) { + break n + } + break m + case 6: + break o + default: + break m + } + } + c = $a((f + 48) | 0, h) + b = ud(c, b, a, g) + h = H[(c + 8) >> 2] + ab(c) + if (!b | ((h | 0) != (g | 0))) { + break m + } + } + n = 1 + } + b = H[(a + 16) >> 2] + if (b) { + H[(a + 20) >> 2] = b + oa(b) + } + b = H[a >> 2] + if (!b) { + break e + } + H[(a + 4) >> 2] = b + oa(b) + } + a = H[(f + 32) >> 2] + if (!a) { + break d + } + H[(f + 36) >> 2] = a + oa(a) + } + ca = (f + 704) | 0 + return n | 0 + } + sa() + v() + } + sa() + v() + } + wa() + v() + } + function Zi(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + e = (ca - 32) | 0 + ca = e + a: { + b: { + switch ((c - 2) | 0) { + case 0: + c = H[(a + 4) >> 2] + f = H[(a + 12) >> 2] + H[(e + 24) >> 2] = -1 + H[(e + 16) >> 2] = -1 + H[(e + 20) >> 2] = 1065353216 + H[(e + 8) >> 2] = -1 + H[(e + 12) >> 2] = -1 + if ((b | 0) == -2) { + break a + } + i = H[(H[(H[(c + 4) >> 2] + 8) >> 2] + (f << 2)) >> 2] + if ((ea[H[(H[c >> 2] + 8) >> 2]](c) | 0) == 1) { + h = H[(H[(H[(c + 4) >> 2] + 8) >> 2] + (f << 2)) >> 2] + c: { + if ( + ((ea[H[(H[c >> 2] + 8) >> 2]](c) | 0) != 1) | + ((b - 1) >>> 0 > 5) + ) { + break c + } + g = ea[H[(H[c >> 2] + 36) >> 2]](c) | 0 + a = ea[H[(H[c >> 2] + 44) >> 2]](c, f) | 0 + if (!g | !a) { + break c + } + f = ea[H[(H[c >> 2] + 40) >> 2]](c, f) | 0 + d: { + if (f) { + if ((b | 0) != 6) { + break c + } + b = H[(c + 44) >> 2] + d = pa(112) + H[(d + 4) >> 2] = h + c = H[(e + 12) >> 2] + H[(d + 8) >> 2] = H[(e + 8) >> 2] + H[(d + 12) >> 2] = c + c = H[(e + 20) >> 2] + H[(d + 16) >> 2] = H[(e + 16) >> 2] + H[(d + 20) >> 2] = c + H[(d + 24) >> 2] = H[(e + 24) >> 2] + H[(d + 40) >> 2] = a + c = (a + 12) | 0 + H[(d + 36) >> 2] = c + H[(d + 32) >> 2] = f + H[(d + 28) >> 2] = b + H[(d + 68) >> 2] = a + H[(d - -64) >> 2] = c + H[(d + 60) >> 2] = f + H[(d + 56) >> 2] = b + H[(d + 48) >> 2] = 0 + H[(d + 52) >> 2] = 0 + H[d >> 2] = 7144 + H[(d + 88) >> 2] = 1065353216 + H[(d + 92) >> 2] = -1 + H[(d + 80) >> 2] = -1 + H[(d + 84) >> 2] = -1 + H[(d + 72) >> 2] = 1 + H[(d + 76) >> 2] = -1 + H[(d + 44) >> 2] = 7668 + a = (d + 96) | 0 + break d + } + if ((b | 0) != 6) { + break c + } + b = H[(c + 44) >> 2] + d = pa(112) + H[(d + 4) >> 2] = h + c = H[(e + 12) >> 2] + H[(d + 8) >> 2] = H[(e + 8) >> 2] + H[(d + 12) >> 2] = c + c = H[(e + 20) >> 2] + H[(d + 16) >> 2] = H[(e + 16) >> 2] + H[(d + 20) >> 2] = c + H[(d + 24) >> 2] = H[(e + 24) >> 2] + H[(d + 40) >> 2] = a + c = (a + 12) | 0 + H[(d + 36) >> 2] = c + H[(d + 32) >> 2] = g + H[(d + 28) >> 2] = b + H[(d + 68) >> 2] = a + H[(d - -64) >> 2] = c + H[(d + 60) >> 2] = g + H[(d + 56) >> 2] = b + H[(d + 48) >> 2] = 0 + H[(d + 52) >> 2] = 0 + H[d >> 2] = 8080 + H[(d + 88) >> 2] = 1065353216 + H[(d + 92) >> 2] = -1 + H[(d + 80) >> 2] = -1 + H[(d + 84) >> 2] = -1 + H[(d + 72) >> 2] = 1 + H[(d + 76) >> 2] = -1 + H[(d + 44) >> 2] = 8472 + a = (d + 96) | 0 + } + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + F[(a + 5) | 0] = 0 + F[(a + 6) | 0] = 0 + F[(a + 7) | 0] = 0 + F[(a + 8) | 0] = 0 + F[(a + 9) | 0] = 0 + F[(a + 10) | 0] = 0 + F[(a + 11) | 0] = 0 + F[(a + 12) | 0] = 0 + } + if (d) { + break a + } + } + d = pa(28) + H[(d + 4) >> 2] = i + a = H[(e + 12) >> 2] + H[(d + 8) >> 2] = H[(e + 8) >> 2] + H[(d + 12) >> 2] = a + a = H[(e + 20) >> 2] + H[(d + 16) >> 2] = H[(e + 16) >> 2] + H[(d + 20) >> 2] = a + H[(d + 24) >> 2] = H[(e + 24) >> 2] + H[d >> 2] = 8860 + break a + case 1: + break b + default: + break a + } + } + c = H[(a + 4) >> 2] + f = H[(a + 12) >> 2] + H[(e + 24) >> 2] = -1 + H[(e + 16) >> 2] = -1 + H[(e + 20) >> 2] = 1065353216 + H[(e + 8) >> 2] = -1 + H[(e + 12) >> 2] = -1 + if ((b | 0) == -2) { + break a + } + i = H[(H[(H[(c + 4) >> 2] + 8) >> 2] + (f << 2)) >> 2] + if ((ea[H[(H[c >> 2] + 8) >> 2]](c) | 0) == 1) { + h = H[(H[(H[(c + 4) >> 2] + 8) >> 2] + (f << 2)) >> 2] + e: { + if ( + ((ea[H[(H[c >> 2] + 8) >> 2]](c) | 0) != 1) | + ((b - 1) >>> 0 > 5) + ) { + break e + } + g = ea[H[(H[c >> 2] + 36) >> 2]](c) | 0 + a = ea[H[(H[c >> 2] + 44) >> 2]](c, f) | 0 + if (!g | !a) { + break e + } + f = ea[H[(H[c >> 2] + 40) >> 2]](c, f) | 0 + f: { + if (f) { + if ((b | 0) != 6) { + break e + } + b = H[(c + 44) >> 2] + d = pa(112) + H[(d + 4) >> 2] = h + c = H[(e + 12) >> 2] + H[(d + 8) >> 2] = H[(e + 8) >> 2] + H[(d + 12) >> 2] = c + c = H[(e + 20) >> 2] + H[(d + 16) >> 2] = H[(e + 16) >> 2] + H[(d + 20) >> 2] = c + H[(d + 24) >> 2] = H[(e + 24) >> 2] + H[(d + 40) >> 2] = a + c = (a + 12) | 0 + H[(d + 36) >> 2] = c + H[(d + 32) >> 2] = f + H[(d + 28) >> 2] = b + H[(d + 68) >> 2] = a + H[(d - -64) >> 2] = c + H[(d + 60) >> 2] = f + H[(d + 56) >> 2] = b + H[(d + 48) >> 2] = 0 + H[(d + 52) >> 2] = 0 + H[d >> 2] = 9028 + H[(d + 88) >> 2] = 1065353216 + H[(d + 92) >> 2] = -1 + H[(d + 80) >> 2] = -1 + H[(d + 84) >> 2] = -1 + H[(d + 72) >> 2] = 1 + H[(d + 76) >> 2] = -1 + H[(d + 44) >> 2] = 9592 + a = (d + 96) | 0 + break f + } + if ((b | 0) != 6) { + break e + } + b = H[(c + 44) >> 2] + d = pa(112) + H[(d + 4) >> 2] = h + c = H[(e + 12) >> 2] + H[(d + 8) >> 2] = H[(e + 8) >> 2] + H[(d + 12) >> 2] = c + c = H[(e + 20) >> 2] + H[(d + 16) >> 2] = H[(e + 16) >> 2] + H[(d + 20) >> 2] = c + H[(d + 24) >> 2] = H[(e + 24) >> 2] + H[(d + 40) >> 2] = a + c = (a + 12) | 0 + H[(d + 36) >> 2] = c + H[(d + 32) >> 2] = g + H[(d + 28) >> 2] = b + H[(d + 68) >> 2] = a + H[(d - -64) >> 2] = c + H[(d + 60) >> 2] = g + H[(d + 56) >> 2] = b + H[(d + 48) >> 2] = 0 + H[(d + 52) >> 2] = 0 + H[d >> 2] = 10032 + H[(d + 88) >> 2] = 1065353216 + H[(d + 92) >> 2] = -1 + H[(d + 80) >> 2] = -1 + H[(d + 84) >> 2] = -1 + H[(d + 72) >> 2] = 1 + H[(d + 76) >> 2] = -1 + H[(d + 44) >> 2] = 10452 + a = (d + 96) | 0 + } + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + F[(a + 5) | 0] = 0 + F[(a + 6) | 0] = 0 + F[(a + 7) | 0] = 0 + F[(a + 8) | 0] = 0 + F[(a + 9) | 0] = 0 + F[(a + 10) | 0] = 0 + F[(a + 11) | 0] = 0 + F[(a + 12) | 0] = 0 + } + if (d) { + break a + } + } + d = pa(28) + H[(d + 4) >> 2] = i + a = H[(e + 12) >> 2] + H[(d + 8) >> 2] = H[(e + 8) >> 2] + H[(d + 12) >> 2] = a + a = H[(e + 20) >> 2] + H[(d + 16) >> 2] = H[(e + 16) >> 2] + H[(d + 20) >> 2] = a + H[(d + 24) >> 2] = H[(e + 24) >> 2] + H[d >> 2] = 10864 + } + ca = (e + 32) | 0 + return d | 0 + } + function Ki(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = O(0), + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = O(0), + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0 + if (H[c >> 2] == H[(c + 4) >> 2]) { + m = H[(d + 80) >> 2] + u = (ca - 16) | 0 + ca = u + g = H[(a + 4) >> 2] + k = I[(b + 24) | 0] + h = H[(d + 48) >> 2] + n = H[H[d >> 2] >> 2] + c = (u + 8) | 0 + H[c >> 2] = 1065353216 + d = c + L[c >> 2] = O((-1 << g) ^ -1) / L[(a + 20) >> 2] + c = pa(k << 2) + a: { + if (!m | !k) { + break a + } + p = (h + n) | 0 + o = L[d >> 2] + n = H[(a + 8) >> 2] + v = H[b >> 2] + d = H[(b + 48) >> 2] + g = H[(b + 40) >> 2] + w = H[(b + 44) >> 2] + if (!I[(b + 84) | 0]) { + f = H[(b + 68) >> 2] + s = k & 254 + t = k & 1 + a = 0 + while (1) { + b = H[v >> 2] + l = (Rj(g, w, H[(f + (i << 2)) >> 2], 0) + d) | 0 + h = qa(c, (b + l) | 0, g) + b = 0 + q = 0 + if ((k | 0) != 1) { + while (1) { + l = (p + (a << 2)) | 0 + j = b << 2 + e = O( + T( + O( + O(o * O(L[(j + h) >> 2] - L[(n + j) >> 2])) + + O(0.5), + ), + ), + ) + b: { + if (O(P(e)) < O(2147483648)) { + r = ~~e + break b + } + r = -2147483648 + } + H[l >> 2] = r + j = j | 4 + e = O( + T( + O( + O(o * O(L[(j + h) >> 2] - L[(n + j) >> 2])) + + O(0.5), + ), + ), + ) + c: { + if (O(P(e)) < O(2147483648)) { + j = ~~e + break c + } + j = -2147483648 + } + H[(l + 4) >> 2] = j + b = (b + 2) | 0 + a = (a + 2) | 0 + q = (q + 2) | 0 + if ((s | 0) != (q | 0)) { + continue + } + break + } + } + if (t) { + l = (p + (a << 2)) | 0 + b = b << 2 + e = O( + T( + O( + O(o * O(L[(b + h) >> 2] - L[(b + n) >> 2])) + + O(0.5), + ), + ), + ) + d: { + if (O(P(e)) < O(2147483648)) { + b = ~~e + break d + } + b = -2147483648 + } + H[l >> 2] = b + a = (a + 1) | 0 + } + i = (i + 1) | 0 + if ((m | 0) != (i | 0)) { + continue + } + break + } + break a + } + s = k & 254 + t = k & 1 + a = 0 + while (1) { + b = H[v >> 2] + h = (Rj(g, w, i, l) + d) | 0 + j = qa(c, (b + h) | 0, g) + b = 0 + q = 0 + if ((k | 0) != 1) { + while (1) { + h = (p + (a << 2)) | 0 + f = b << 2 + e = O( + T( + O( + O(o * O(L[(f + j) >> 2] - L[(f + n) >> 2])) + + O(0.5), + ), + ), + ) + e: { + if (O(P(e)) < O(2147483648)) { + r = ~~e + break e + } + r = -2147483648 + } + H[h >> 2] = r + f = f | 4 + e = O( + T( + O( + O(o * O(L[(f + j) >> 2] - L[(f + n) >> 2])) + + O(0.5), + ), + ), + ) + f: { + if (O(P(e)) < O(2147483648)) { + f = ~~e + break f + } + f = -2147483648 + } + H[(h + 4) >> 2] = f + b = (b + 2) | 0 + a = (a + 2) | 0 + q = (q + 2) | 0 + if ((s | 0) != (q | 0)) { + continue + } + break + } + } + if (t) { + h = (p + (a << 2)) | 0 + b = b << 2 + e = O( + T( + O( + O(o * O(L[(b + j) >> 2] - L[(b + n) >> 2])) + + O(0.5), + ), + ), + ) + g: { + if (O(P(e)) < O(2147483648)) { + b = ~~e + break g + } + b = -2147483648 + } + H[h >> 2] = b + a = (a + 1) | 0 + } + b = l + i = (i + 1) | 0 + b = i ? b : (b + 1) | 0 + l = b + if (((i | 0) != (m | 0)) | b) { + continue + } + break + } + } + oa(c) + ca = (u + 16) | 0 + return 1 + } + j = (ca - 16) | 0 + ca = j + m = H[(a + 4) >> 2] + i = I[(b + 24) | 0] + g = H[(d + 48) >> 2] + h = H[H[d >> 2] >> 2] + d = (j + 8) | 0 + H[d >> 2] = 1065353216 + l = d + L[d >> 2] = O((-1 << m) ^ -1) / L[(a + 20) >> 2] + d = pa(i << 2) + m = H[(c + 4) >> 2] + q = H[c >> 2] + h: { + if (!i | ((m | 0) == (q | 0))) { + break h + } + n = (h + g) | 0 + c = (m - q) >> 2 + u = c >>> 0 <= 1 ? 1 : c + o = L[l >> 2] + h = H[(a + 8) >> 2] + v = H[b >> 2] + l = H[(b + 48) >> 2] + m = H[(b + 40) >> 2] + w = H[(b + 44) >> 2] + if (I[(b + 84) | 0]) { + s = i & 254 + t = i & 1 + a = 0 + c = 0 + while (1) { + b = H[v >> 2] + g = (Rj(m, w, H[(q + (c << 2)) >> 2], 0) + l) | 0 + p = qa(d, (b + g) | 0, m) + b = 0 + k = 0 + if ((i | 0) != 1) { + while (1) { + g = (n + (a << 2)) | 0 + f = b << 2 + e = O( + T( + O( + O(o * O(L[(f + p) >> 2] - L[(h + f) >> 2])) + + O(0.5), + ), + ), + ) + i: { + if (O(P(e)) < O(2147483648)) { + r = ~~e + break i + } + r = -2147483648 + } + H[g >> 2] = r + f = f | 4 + e = O( + T( + O( + O(o * O(L[(f + p) >> 2] - L[(h + f) >> 2])) + + O(0.5), + ), + ), + ) + j: { + if (O(P(e)) < O(2147483648)) { + f = ~~e + break j + } + f = -2147483648 + } + H[(g + 4) >> 2] = f + b = (b + 2) | 0 + a = (a + 2) | 0 + k = (k + 2) | 0 + if ((s | 0) != (k | 0)) { + continue + } + break + } + } + if (t) { + g = (n + (a << 2)) | 0 + b = b << 2 + e = O( + T( + O( + O(o * O(L[(b + p) >> 2] - L[(b + h) >> 2])) + + O(0.5), + ), + ), + ) + k: { + if (O(P(e)) < O(2147483648)) { + b = ~~e + break k + } + b = -2147483648 + } + H[g >> 2] = b + a = (a + 1) | 0 + } + c = (c + 1) | 0 + if ((u | 0) != (c | 0)) { + continue + } + break + } + break h + } + s = H[(b + 68) >> 2] + t = i & 254 + x = i & 1 + a = 0 + c = 0 + while (1) { + b = H[v >> 2] + g = + (Rj( + m, + w, + H[(s + (H[(q + (c << 2)) >> 2] << 2)) >> 2], + 0, + ) + + l) | + 0 + p = qa(d, (b + g) | 0, m) + b = 0 + k = 0 + if ((i | 0) != 1) { + while (1) { + g = (n + (a << 2)) | 0 + f = b << 2 + e = O( + T( + O( + O(o * O(L[(f + p) >> 2] - L[(h + f) >> 2])) + + O(0.5), + ), + ), + ) + l: { + if (O(P(e)) < O(2147483648)) { + r = ~~e + break l + } + r = -2147483648 + } + H[g >> 2] = r + f = f | 4 + e = O( + T( + O( + O(o * O(L[(f + p) >> 2] - L[(h + f) >> 2])) + + O(0.5), + ), + ), + ) + m: { + if (O(P(e)) < O(2147483648)) { + f = ~~e + break m + } + f = -2147483648 + } + H[(g + 4) >> 2] = f + b = (b + 2) | 0 + a = (a + 2) | 0 + k = (k + 2) | 0 + if ((t | 0) != (k | 0)) { + continue + } + break + } + } + if (x) { + g = (n + (a << 2)) | 0 + b = b << 2 + e = O( + T( + O( + O(o * O(L[(b + p) >> 2] - L[(b + h) >> 2])) + + O(0.5), + ), + ), + ) + n: { + if (O(P(e)) < O(2147483648)) { + b = ~~e + break n + } + b = -2147483648 + } + H[g >> 2] = b + a = (a + 1) | 0 + } + c = (c + 1) | 0 + if ((u | 0) != (c | 0)) { + continue + } + break + } + } + oa(d) + ca = (j + 16) | 0 + return 1 + } + function dd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + c = H[(a + 4) >> 2] + e = H[a >> 2] + f = (((c - e) | 0) / 144) | 0 + if (f >>> 0 < b >>> 0) { + e = a + b = (b - f) | 0 + h = H[(a + 8) >> 2] + c = H[(a + 4) >> 2] + a: { + if (b >>> 0 <= (((h - c) | 0) / 144) >>> 0) { + b: { + if (!b) { + break b + } + a = c + f = b & 7 + if (f) { + while (1) { + Ia(a) + a = (a + 144) | 0 + d = (d + 1) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + c = (N(b, 144) + c) | 0 + if (((b - 1) & 268435455) >>> 0 < 7) { + break b + } + while (1) { + Ia(a) + Ia((a + 144) | 0) + Ia((a + 288) | 0) + Ia((a + 432) | 0) + Ia((a + 576) | 0) + Ia((a + 720) | 0) + Ia((a + 864) | 0) + Ia((a + 1008) | 0) + a = (a + 1152) | 0 + if ((c | 0) != (a | 0)) { + continue + } + break + } + } + H[(e + 4) >> 2] = c + break a + } + c: { + d: { + e: { + a = c + c = H[e >> 2] + i = (((a - c) | 0) / 144) | 0 + a = (i + b) | 0 + if (a >>> 0 < 29826162) { + c = (((h - c) | 0) / 144) | 0 + f = c << 1 + f = + c >>> 0 >= 14913080 + ? 29826161 + : a >>> 0 < f >>> 0 + ? f + : a + if (f) { + if (f >>> 0 >= 29826162) { + break e + } + g = pa(N(f, 144)) + } + c = (N(i, 144) + g) | 0 + a = c + h = b & 7 + if (h) { + while (1) { + Ia(a) + a = (a + 144) | 0 + d = (d + 1) | 0 + if ((h | 0) != (d | 0)) { + continue + } + break + } + } + h = (N(b, 144) + c) | 0 + if (((b - 1) & 268435455) >>> 0 >= 7) { + while (1) { + Ia(a) + Ia((a + 144) | 0) + Ia((a + 288) | 0) + Ia((a + 432) | 0) + Ia((a + 576) | 0) + Ia((a + 720) | 0) + Ia((a + 864) | 0) + Ia((a + 1008) | 0) + a = (a + 1152) | 0 + if ((h | 0) != (a | 0)) { + continue + } + break + } + } + b = (N(f, 144) + g) | 0 + d = H[(e + 4) >> 2] + f = H[e >> 2] + if ((d | 0) == (f | 0)) { + break d + } + while (1) { + c = (c - 144) | 0 + d = (d - 144) | 0 + a = d + H[c >> 2] = H[a >> 2] + H[(c + 4) >> 2] = H[(a + 4) >> 2] + H[(c + 8) >> 2] = H[(a + 8) >> 2] + H[(c + 12) >> 2] = H[(a + 12) >> 2] + H[(a + 12) >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[(c + 16) >> 2] = H[(a + 16) >> 2] + H[(c + 20) >> 2] = H[(a + 20) >> 2] + H[(c + 24) >> 2] = H[(a + 24) >> 2] + H[(a + 24) >> 2] = 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + g = I[(a + 28) | 0] + H[(c + 40) >> 2] = 0 + H[(c + 32) >> 2] = 0 + H[(c + 36) >> 2] = 0 + F[(c + 28) | 0] = g + H[(c + 32) >> 2] = H[(a + 32) >> 2] + H[(c + 36) >> 2] = H[(a + 36) >> 2] + H[(c + 40) >> 2] = H[(a + 40) >> 2] + H[(a + 40) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + H[(c + 52) >> 2] = 0 + H[(c + 44) >> 2] = 0 + H[(c + 48) >> 2] = 0 + H[(c + 44) >> 2] = H[(a + 44) >> 2] + H[(c + 48) >> 2] = H[(a + 48) >> 2] + H[(c + 52) >> 2] = H[(a + 52) >> 2] + H[(a + 52) >> 2] = 0 + H[(a + 44) >> 2] = 0 + H[(a + 48) >> 2] = 0 + g = (c - -64) | 0 + H[g >> 2] = 0 + H[(c + 56) >> 2] = 0 + H[(c + 60) >> 2] = 0 + H[(c + 56) >> 2] = H[(a + 56) >> 2] + H[(c + 60) >> 2] = H[(a + 60) >> 2] + i = g + g = (a - -64) | 0 + H[i >> 2] = H[g >> 2] + H[g >> 2] = 0 + H[(a + 56) >> 2] = 0 + H[(a + 60) >> 2] = 0 + H[(c + 68) >> 2] = H[(a + 68) >> 2] + g = H[(a + 72) >> 2] + H[(c + 84) >> 2] = 0 + H[(c + 76) >> 2] = 0 + H[(c + 80) >> 2] = 0 + H[(c + 72) >> 2] = g + H[(c + 76) >> 2] = H[(a + 76) >> 2] + H[(c + 80) >> 2] = H[(a + 80) >> 2] + H[(c + 84) >> 2] = H[(a + 84) >> 2] + H[(a + 84) >> 2] = 0 + H[(a + 76) >> 2] = 0 + H[(a + 80) >> 2] = 0 + H[(c + 96) >> 2] = 0 + H[(c + 88) >> 2] = 0 + H[(c + 92) >> 2] = 0 + H[(c + 88) >> 2] = H[(a + 88) >> 2] + H[(c + 92) >> 2] = H[(a + 92) >> 2] + H[(c + 96) >> 2] = H[(a + 96) >> 2] + H[(a + 96) >> 2] = 0 + H[(a + 88) >> 2] = 0 + H[(a + 92) >> 2] = 0 + g = I[(a + 100) | 0] + H[(c + 112) >> 2] = 0 + H[(c + 104) >> 2] = 0 + H[(c + 108) >> 2] = 0 + F[(c + 100) | 0] = g + H[(c + 104) >> 2] = H[(a + 104) >> 2] + H[(c + 108) >> 2] = H[(a + 108) >> 2] + H[(c + 112) >> 2] = H[(a + 112) >> 2] + H[(a + 112) >> 2] = 0 + H[(a + 104) >> 2] = 0 + H[(a + 108) >> 2] = 0 + H[(c + 124) >> 2] = 0 + H[(c + 116) >> 2] = 0 + H[(c + 120) >> 2] = 0 + H[(c + 116) >> 2] = H[(a + 116) >> 2] + H[(c + 120) >> 2] = H[(a + 120) >> 2] + H[(c + 124) >> 2] = H[(a + 124) >> 2] + H[(a + 124) >> 2] = 0 + H[(a + 116) >> 2] = 0 + H[(a + 120) >> 2] = 0 + g = H[(a + 128) >> 2] + H[(c + 140) >> 2] = 0 + H[(c + 132) >> 2] = 0 + H[(c + 136) >> 2] = 0 + H[(c + 128) >> 2] = g + H[(c + 132) >> 2] = H[(a + 132) >> 2] + H[(c + 136) >> 2] = H[(a + 136) >> 2] + H[(c + 140) >> 2] = H[(a + 140) >> 2] + H[(a + 140) >> 2] = 0 + H[(a + 132) >> 2] = 0 + H[(a + 136) >> 2] = 0 + if ((a | 0) != (f | 0)) { + continue + } + break + } + H[(e + 8) >> 2] = b + a = H[(e + 4) >> 2] + H[(e + 4) >> 2] = h + d = H[e >> 2] + H[e >> 2] = c + if ((a | 0) == (d | 0)) { + break c + } + while (1) { + b = (a - 144) | 0 + c = H[(b + 132) >> 2] + if (c) { + H[(a - 8) >> 2] = c + oa(c) + } + c = H[(a - 28) >> 2] + if (c) { + H[(a - 24) >> 2] = c + oa(c) + } + c = H[(a - 40) >> 2] + if (c) { + H[(a - 36) >> 2] = c + oa(c) + } + oc((a - 140) | 0) + a = b + if ((d | 0) != (a | 0)) { + continue + } + break + } + break c + } + sa() + v() + } + wa() + v() + } + H[(e + 8) >> 2] = b + H[(e + 4) >> 2] = h + H[e >> 2] = c + } + if (d) { + oa(d) + } + } + return + } + if (b >>> 0 < f >>> 0) { + e = (e + N(b, 144)) | 0 + if ((e | 0) != (c | 0)) { + while (1) { + b = (c - 144) | 0 + d = H[(b + 132) >> 2] + if (d) { + H[(c - 8) >> 2] = d + oa(d) + } + d = H[(c - 28) >> 2] + if (d) { + H[(c - 24) >> 2] = d + oa(d) + } + d = H[(c - 40) >> 2] + if (d) { + H[(c - 36) >> 2] = d + oa(d) + } + oc((c - 140) | 0) + c = b + if ((e | 0) != (c | 0)) { + continue + } + break + } + } + H[(a + 4) >> 2] = e + } + } + function Pe(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + f = (ca - 80) | 0 + ca = f + e = H[(c + 36) >> 2] + H[(f + 72) >> 2] = H[(c + 32) >> 2] + H[(f + 76) >> 2] = e + g = H[(c + 28) >> 2] + e = (f - -64) | 0 + H[e >> 2] = H[(c + 24) >> 2] + H[(e + 4) >> 2] = g + e = H[(c + 20) >> 2] + H[(f + 56) >> 2] = H[(c + 16) >> 2] + H[(f + 60) >> 2] = e + e = H[(c + 12) >> 2] + H[(f + 48) >> 2] = H[(c + 8) >> 2] + H[(f + 52) >> 2] = e + e = H[(c + 4) >> 2] + H[(f + 40) >> 2] = H[c >> 2] + H[(f + 44) >> 2] = e + nc(a, (f + 40) | 0, (f + 24) | 0) + a: { + if (H[a >> 2]) { + break a + } + if (F[(a + 15) | 0] < 0) { + oa(H[(a + 4) >> 2]) + } + if (I[(f + 31) | 0]) { + b = pa(32) + F[(b + 27) | 0] = 0 + c = + I[1521] | + (I[1522] << 8) | + ((I[1523] << 16) | (I[1524] << 24)) + F[(b + 23) | 0] = c + F[(b + 24) | 0] = c >>> 8 + F[(b + 25) | 0] = c >>> 16 + F[(b + 26) | 0] = c >>> 24 + c = + I[1518] | + (I[1519] << 8) | + ((I[1520] << 16) | (I[1521] << 24)) + d = + I[1514] | + (I[1515] << 8) | + ((I[1516] << 16) | (I[1517] << 24)) + F[(b + 16) | 0] = d + F[(b + 17) | 0] = d >>> 8 + F[(b + 18) | 0] = d >>> 16 + F[(b + 19) | 0] = d >>> 24 + F[(b + 20) | 0] = c + F[(b + 21) | 0] = c >>> 8 + F[(b + 22) | 0] = c >>> 16 + F[(b + 23) | 0] = c >>> 24 + c = + I[1510] | + (I[1511] << 8) | + ((I[1512] << 16) | (I[1513] << 24)) + d = + I[1506] | + (I[1507] << 8) | + ((I[1508] << 16) | (I[1509] << 24)) + F[(b + 8) | 0] = d + F[(b + 9) | 0] = d >>> 8 + F[(b + 10) | 0] = d >>> 16 + F[(b + 11) | 0] = d >>> 24 + F[(b + 12) | 0] = c + F[(b + 13) | 0] = c >>> 8 + F[(b + 14) | 0] = c >>> 16 + F[(b + 15) | 0] = c >>> 24 + c = + I[1502] | + (I[1503] << 8) | + ((I[1504] << 16) | (I[1505] << 24)) + d = + I[1498] | + (I[1499] << 8) | + ((I[1500] << 16) | (I[1501] << 24)) + F[b | 0] = d + F[(b + 1) | 0] = d >>> 8 + F[(b + 2) | 0] = d >>> 16 + F[(b + 3) | 0] = d >>> 24 + F[(b + 4) | 0] = c + F[(b + 5) | 0] = c >>> 8 + F[(b + 6) | 0] = c >>> 16 + F[(b + 7) | 0] = c >>> 24 + H[a >> 2] = -1 + za((a + 4) | 0, b, 27) + oa(b) + break a + } + i = (ca - 16) | 0 + ca = i + b: { + c: { + switch (F[(f + 32) | 0]) { + case 0: + e = pa(44) + H[e >> 2] = 0 + H[(e + 4) >> 2] = 0 + H[(e + 40) >> 2] = 0 + H[(e + 32) >> 2] = 0 + H[(e + 36) >> 2] = 0 + H[(e + 24) >> 2] = 0 + H[(e + 28) >> 2] = 0 + H[(e + 16) >> 2] = 0 + H[(e + 20) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + e = Vc(e) + H[e >> 2] = 13496 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + H[f >> 2] = 0 + H[(f + 4) >> 2] = 0 + H[(f + 16) >> 2] = e + break b + case 1: + e = pa(44) + H[e >> 2] = 0 + H[(e + 4) >> 2] = 0 + H[(e + 40) >> 2] = 0 + H[(e + 32) >> 2] = 0 + H[(e + 36) >> 2] = 0 + H[(e + 24) >> 2] = 0 + H[(e + 28) >> 2] = 0 + H[(e + 16) >> 2] = 0 + H[(e + 20) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + e = Vc(e) + H[e >> 2] = 13404 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + H[f >> 2] = 0 + H[(f + 4) >> 2] = 0 + H[(f + 16) >> 2] = e + break b + default: + break c + } + } + g = pa(32) + F[(g + 28) | 0] = 0 + e = + I[1550] | + (I[1551] << 8) | + ((I[1552] << 16) | (I[1553] << 24)) + F[(g + 24) | 0] = e + F[(g + 25) | 0] = e >>> 8 + F[(g + 26) | 0] = e >>> 16 + F[(g + 27) | 0] = e >>> 24 + e = + I[1546] | + (I[1547] << 8) | + ((I[1548] << 16) | (I[1549] << 24)) + h = + I[1542] | + (I[1543] << 8) | + ((I[1544] << 16) | (I[1545] << 24)) + F[(g + 16) | 0] = h + F[(g + 17) | 0] = h >>> 8 + F[(g + 18) | 0] = h >>> 16 + F[(g + 19) | 0] = h >>> 24 + F[(g + 20) | 0] = e + F[(g + 21) | 0] = e >>> 8 + F[(g + 22) | 0] = e >>> 16 + F[(g + 23) | 0] = e >>> 24 + e = + I[1538] | + (I[1539] << 8) | + ((I[1540] << 16) | (I[1541] << 24)) + h = + I[1534] | + (I[1535] << 8) | + ((I[1536] << 16) | (I[1537] << 24)) + F[(g + 8) | 0] = h + F[(g + 9) | 0] = h >>> 8 + F[(g + 10) | 0] = h >>> 16 + F[(g + 11) | 0] = h >>> 24 + F[(g + 12) | 0] = e + F[(g + 13) | 0] = e >>> 8 + F[(g + 14) | 0] = e >>> 16 + F[(g + 15) | 0] = e >>> 24 + e = + I[1530] | + (I[1531] << 8) | + ((I[1532] << 16) | (I[1533] << 24)) + h = + I[1526] | + (I[1527] << 8) | + ((I[1528] << 16) | (I[1529] << 24)) + F[g | 0] = h + F[(g + 1) | 0] = h >>> 8 + F[(g + 2) | 0] = h >>> 16 + F[(g + 3) | 0] = h >>> 24 + F[(g + 4) | 0] = e + F[(g + 5) | 0] = e >>> 8 + F[(g + 6) | 0] = e >>> 16 + F[(g + 7) | 0] = e >>> 24 + H[i >> 2] = -1 + e = i | 4 + za(e, g, 28) + j = F[(i + 15) | 0] + H[f >> 2] = H[i >> 2] + h = (f + 4) | 0 + d: { + if ((j | 0) >= 0) { + j = H[(e + 4) >> 2] + H[h >> 2] = H[e >> 2] + H[(h + 4) >> 2] = j + H[(h + 8) >> 2] = H[(e + 8) >> 2] + H[(f + 16) >> 2] = 0 + break d + } + za(h, H[(i + 4) >> 2], H[(i + 8) >> 2]) + e = F[(i + 15) | 0] + H[(f + 16) >> 2] = 0 + if ((e | 0) >= 0) { + break d + } + oa(H[(i + 4) >> 2]) + } + oa(g) + } + ca = (i + 16) | 0 + e = H[f >> 2] + e: { + if (e) { + H[a >> 2] = e + a = (a + 4) | 0 + if (F[(f + 15) | 0] >= 0) { + b = f | 4 + c = H[(b + 4) >> 2] + H[a >> 2] = H[b >> 2] + H[(a + 4) >> 2] = c + H[(a + 8) >> 2] = H[(b + 8) >> 2] + break e + } + za(a, H[(f + 4) >> 2], H[(f + 8) >> 2]) + break e + } + e = H[(f + 16) >> 2] + H[(f + 16) >> 2] = 0 + te(a, e, b, c, d) + if (!H[a >> 2]) { + if (F[(a + 15) | 0] < 0) { + oa(H[(a + 4) >> 2]) + } + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[(a + 12) >> 2] = 0 + } + ea[H[(H[e >> 2] + 4) >> 2]](e) + } + a = H[(f + 16) >> 2] + H[(f + 16) >> 2] = 0 + if (a) { + ea[H[(H[a >> 2] + 4) >> 2]](a) + } + if (F[(f + 15) | 0] >= 0) { + break a + } + oa(H[(f + 4) >> 2]) + } + ca = (f + 80) | 0 + } + function Ic(a) { + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + H[(a + 56) >> 2] = H[(a + 52) >> 2] + H[(a + 44) >> 2] = H[(a + 40) >> 2] + b = H[(a + 64) >> 2] + c = H[(b + 24) >> 2] + if ((c | 0) == H[(b + 28) >> 2]) { + return 1 + } + a: { + b: { + c: { + while (1) { + g = i + i = H[((k << 2) + c) >> 2] + d: { + if ((i | 0) == -1) { + i = g + break d + } + b = H[(a + 56) >> 2] + e: { + if ((b | 0) != H[(a + 60) >> 2]) { + H[b >> 2] = g + H[(a + 56) >> 2] = b + 4 + break e + } + d = H[(a + 52) >> 2] + e = (b - d) | 0 + h = e >> 2 + c = (h + 1) | 0 + if (c >>> 0 >= 1073741824) { + break c + } + f = (e >>> 1) | 0 + f = + e >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < f >>> 0 + ? f + : c + if (f) { + if (f >>> 0 >= 1073741824) { + break b + } + e = pa(f << 2) + } else { + e = 0 + } + c = (e + (h << 2)) | 0 + H[c >> 2] = g + h = (c + 4) | 0 + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + H[c >> 2] = H[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 60) >> 2] = e + (f << 2) + H[(a + 56) >> 2] = h + H[(a + 52) >> 2] = c + if (!d) { + break e + } + oa(d) + } + f: { + g: { + if ( + !( + (H[ + (H[(a + 12) >> 2] + + ((k >>> 3) & 536870908)) >> + 2 + ] >>> + k) & + 1 + ) + ) { + break g + } + e = (i + 1) | 0 + e = (e >>> 0) % 3 | 0 ? e : (i - 2) | 0 + if ( + ((e | 0) == -1) | + ((H[ + (H[a >> 2] + ((e >>> 3) & 536870908)) >> 2 + ] >>> + e) & + 1) + ) { + break g + } + e = + H[ + (H[(H[(a + 64) >> 2] + 12) >> 2] + + (e << 2)) >> + 2 + ] + if ((e | 0) == -1) { + break g + } + b = (e + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (e - 2) | 0 + if ((b | 0) == -1) { + break g + } + c = H[(a + 64) >> 2] + f = H[a >> 2] + while (1) { + e = b + b = -1 + d = (e + 1) | 0 + d = (d >>> 0) % 3 | 0 ? d : (e - 2) | 0 + h: { + if ( + ((d | 0) == -1) | + ((H[(f + ((d >>> 3) & 536870908)) >> 2] >>> + d) & + 1) + ) { + break h + } + d = H[(H[(c + 12) >> 2] + (d << 2)) >> 2] + if ((d | 0) == -1) { + break h + } + b = (d + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (d - 2) | 0 + } + if ((b | 0) != (i | 0)) { + if ((b | 0) == -1) { + break f + } + continue + } + break + } + return 0 + } + e = i + } + H[(H[(a + 28) >> 2] + (e << 2)) >> 2] = g + b = H[(a + 44) >> 2] + i: { + if ((b | 0) != H[(a + 48) >> 2]) { + H[b >> 2] = e + H[(a + 44) >> 2] = b + 4 + break i + } + d = H[(a + 40) >> 2] + i = (b - d) | 0 + h = i >> 2 + c = (h + 1) | 0 + if (c >>> 0 >= 1073741824) { + break a + } + f = (i >>> 1) | 0 + f = + i >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < f >>> 0 + ? f + : c + if (f) { + if (f >>> 0 >= 1073741824) { + break b + } + i = pa(f << 2) + } else { + i = 0 + } + c = (i + (h << 2)) | 0 + H[c >> 2] = e + h = (c + 4) | 0 + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + H[c >> 2] = H[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 48) >> 2] = i + (f << 2) + H[(a + 44) >> 2] = h + H[(a + 40) >> 2] = c + if (!d) { + break i + } + oa(d) + } + i = (g + 1) | 0 + b = H[(a + 64) >> 2] + if ((e | 0) == -1) { + break d + } + j: { + if ((e >>> 0) % 3 | 0) { + c = (e - 1) | 0 + break j + } + c = (e + 2) | 0 + if ((c | 0) == -1) { + break d + } + } + d = H[(H[(b + 12) >> 2] + (c << 2)) >> 2] + if ((d | 0) == -1) { + break d + } + f = (d + ((d >>> 0) % 3 | 0 ? -1 : 2)) | 0 + if (((f | 0) == -1) | ((e | 0) == (f | 0))) { + break d + } + while (1) { + b = (f + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (f - 2) | 0 + if ( + (H[(H[a >> 2] + ((b >>> 3) & 536870908)) >> 2] >>> + b) & + 1 + ) { + b = H[(a + 56) >> 2] + k: { + if ((b | 0) != H[(a + 60) >> 2]) { + H[b >> 2] = i + H[(a + 56) >> 2] = b + 4 + break k + } + d = H[(a + 52) >> 2] + g = (b - d) | 0 + j = g >> 2 + c = (j + 1) | 0 + if (c >>> 0 >= 1073741824) { + break c + } + h = (g >>> 1) | 0 + h = + g >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < h >>> 0 + ? h + : c + if (h) { + if (h >>> 0 >= 1073741824) { + break b + } + g = pa(h << 2) + } else { + g = 0 + } + c = (g + (j << 2)) | 0 + H[c >> 2] = i + j = (c + 4) | 0 + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + H[c >> 2] = H[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 60) >> 2] = g + (h << 2) + H[(a + 56) >> 2] = j + H[(a + 52) >> 2] = c + if (!d) { + break k + } + oa(d) + } + d = (i + 1) | 0 + b = H[(a + 44) >> 2] + l: { + if ((b | 0) != H[(a + 48) >> 2]) { + H[b >> 2] = f + H[(a + 44) >> 2] = b + 4 + break l + } + h = H[(a + 40) >> 2] + g = (b - h) | 0 + l = g >> 2 + c = (l + 1) | 0 + if (c >>> 0 >= 1073741824) { + break a + } + j = (g >>> 1) | 0 + j = + g >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < j >>> 0 + ? j + : c + if (j) { + if (j >>> 0 >= 1073741824) { + break b + } + g = pa(j << 2) + } else { + g = 0 + } + c = (g + (l << 2)) | 0 + H[c >> 2] = f + l = (c + 4) | 0 + if ((b | 0) != (h | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + H[c >> 2] = H[b >> 2] + if ((b | 0) != (h | 0)) { + continue + } + break + } + } + H[(a + 48) >> 2] = g + (j << 2) + H[(a + 44) >> 2] = l + H[(a + 40) >> 2] = c + if (!h) { + break l + } + oa(h) + } + g = i + i = d + } + H[(H[(a + 28) >> 2] + (f << 2)) >> 2] = g + b = H[(a + 64) >> 2] + m: { + if ((f >>> 0) % 3 | 0) { + c = (f - 1) | 0 + break m + } + c = (f + 2) | 0 + if ((c | 0) == -1) { + break d + } + } + d = H[(H[(b + 12) >> 2] + (c << 2)) >> 2] + if ((d | 0) == -1) { + break d + } + f = (d + ((d >>> 0) % 3 | 0 ? -1 : 2)) | 0 + if ((f | 0) == -1) { + break d + } + if ((e | 0) != (f | 0)) { + continue + } + break + } + } + k = (k + 1) | 0 + c = H[(b + 24) >> 2] + if (k >>> 0 < ((H[(b + 28) >> 2] - c) >> 2) >>> 0) { + continue + } + break + } + return 1 + } + sa() + v() + } + wa() + v() + } + sa() + v() + } + function ti(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + c = H[(a + 32) >> 2] + d = H[(c + 16) >> 2] + e = H[(c + 12) >> 2] + b = H[(c + 20) >> 2] + if ( + ((K[(c + 8) >> 2] > d >>> 0) & ((e | 0) >= (b | 0))) | + ((b | 0) < (e | 0)) + ) { + e = I[(H[c >> 2] + d) | 0] + d = (d + 1) | 0 + b = d ? b : (b + 1) | 0 + H[(c + 16) >> 2] = d + H[(c + 20) >> 2] = b + b = H[(a + 48) >> 2] + H[(a + 48) >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + a: { + b: { + c: { + d: { + switch (e | 0) { + case 0: + b = pa(384) + H[b >> 2] = 11384 + ra((b + 4) | 0, 0, 80) + H[(b + 96) >> 2] = 0 + H[(b + 100) >> 2] = 0 + H[(b + 92) >> 2] = -1 + H[(b + 84) >> 2] = -1 + H[(b + 88) >> 2] = -1 + H[(b + 104) >> 2] = 0 + H[(b + 108) >> 2] = 0 + H[(b + 112) >> 2] = 0 + H[(b + 116) >> 2] = 0 + H[(b + 120) >> 2] = 0 + H[(b + 124) >> 2] = 0 + H[(b + 128) >> 2] = 0 + H[(b + 132) >> 2] = 0 + H[(b + 136) >> 2] = 0 + H[(b + 140) >> 2] = 0 + H[(b + 144) >> 2] = 0 + H[(b + 148) >> 2] = 0 + H[(b + 156) >> 2] = 0 + H[(b + 160) >> 2] = 0 + H[(b + 152) >> 2] = 1065353216 + H[(b + 164) >> 2] = 0 + H[(b + 168) >> 2] = 0 + H[(b + 172) >> 2] = 0 + H[(b + 176) >> 2] = 0 + H[(b + 180) >> 2] = 0 + H[(b + 184) >> 2] = 0 + H[(b + 188) >> 2] = 0 + H[(b + 192) >> 2] = 0 + H[(b + 196) >> 2] = 0 + H[(b + 200) >> 2] = 0 + H[(b + 204) >> 2] = 0 + H[(b + 208) >> 2] = 0 + H[(b + 212) >> 2] = -1 + H[(b + 216) >> 2] = 0 + H[(b + 220) >> 2] = 0 + H[(b + 224) >> 2] = 0 + Ha((b + 232) | 0) + Ha((b + 272) | 0) + c = (b + 312) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + Ha((b + 328) | 0) + H[(b + 376) >> 2] = 0 + H[(b + 368) >> 2] = 0 + H[(b + 372) >> 2] = 0 + break c + case 1: + b = pa(424) + H[b >> 2] = 11436 + ra((b + 4) | 0, 0, 80) + H[(b + 96) >> 2] = 0 + H[(b + 100) >> 2] = 0 + H[(b + 92) >> 2] = -1 + H[(b + 84) >> 2] = -1 + H[(b + 88) >> 2] = -1 + H[(b + 104) >> 2] = 0 + H[(b + 108) >> 2] = 0 + H[(b + 112) >> 2] = 0 + H[(b + 116) >> 2] = 0 + H[(b + 120) >> 2] = 0 + H[(b + 124) >> 2] = 0 + H[(b + 128) >> 2] = 0 + H[(b + 132) >> 2] = 0 + H[(b + 136) >> 2] = 0 + H[(b + 140) >> 2] = 0 + H[(b + 144) >> 2] = 0 + H[(b + 148) >> 2] = 0 + H[(b + 156) >> 2] = 0 + H[(b + 160) >> 2] = 0 + H[(b + 152) >> 2] = 1065353216 + H[(b + 164) >> 2] = 0 + H[(b + 168) >> 2] = 0 + H[(b + 172) >> 2] = 0 + H[(b + 176) >> 2] = 0 + H[(b + 180) >> 2] = 0 + H[(b + 184) >> 2] = 0 + H[(b + 188) >> 2] = 0 + H[(b + 192) >> 2] = 0 + H[(b + 196) >> 2] = 0 + H[(b + 200) >> 2] = 0 + H[(b + 204) >> 2] = 0 + H[(b + 208) >> 2] = 0 + H[(b + 212) >> 2] = -1 + H[(b + 216) >> 2] = 0 + H[(b + 220) >> 2] = 0 + H[(b + 224) >> 2] = 0 + Ha((b + 232) | 0) + Ha((b + 272) | 0) + c = (b + 312) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + Ha((b + 328) | 0) + H[(b + 392) >> 2] = 0 + H[(b + 396) >> 2] = 0 + H[(b + 384) >> 2] = 0 + H[(b + 388) >> 2] = 0 + H[(b + 376) >> 2] = 0 + H[(b + 380) >> 2] = 0 + H[(b + 368) >> 2] = 0 + H[(b + 372) >> 2] = 0 + c = (b + 400) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + H[(b + 416) >> 2] = -1 + H[(b + 420) >> 2] = -1 + break c + case 2: + break d + default: + break b + } + } + b = pa(440) + H[b >> 2] = 11484 + ra((b + 4) | 0, 0, 80) + H[(b + 96) >> 2] = 0 + H[(b + 100) >> 2] = 0 + H[(b + 92) >> 2] = -1 + H[(b + 84) >> 2] = -1 + H[(b + 88) >> 2] = -1 + H[(b + 104) >> 2] = 0 + H[(b + 108) >> 2] = 0 + H[(b + 112) >> 2] = 0 + H[(b + 116) >> 2] = 0 + H[(b + 120) >> 2] = 0 + H[(b + 124) >> 2] = 0 + H[(b + 128) >> 2] = 0 + H[(b + 132) >> 2] = 0 + H[(b + 136) >> 2] = 0 + H[(b + 140) >> 2] = 0 + H[(b + 144) >> 2] = 0 + H[(b + 148) >> 2] = 0 + H[(b + 156) >> 2] = 0 + H[(b + 160) >> 2] = 0 + H[(b + 152) >> 2] = 1065353216 + H[(b + 164) >> 2] = 0 + H[(b + 168) >> 2] = 0 + H[(b + 172) >> 2] = 0 + H[(b + 176) >> 2] = 0 + H[(b + 180) >> 2] = 0 + H[(b + 184) >> 2] = 0 + H[(b + 188) >> 2] = 0 + H[(b + 192) >> 2] = 0 + H[(b + 196) >> 2] = 0 + H[(b + 200) >> 2] = 0 + H[(b + 204) >> 2] = 0 + H[(b + 208) >> 2] = 0 + H[(b + 212) >> 2] = -1 + H[(b + 216) >> 2] = 0 + H[(b + 220) >> 2] = 0 + H[(b + 224) >> 2] = 0 + Ha((b + 232) | 0) + Ha((b + 272) | 0) + c = (b + 312) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + Ha((b + 328) | 0) + H[(b + 392) >> 2] = 0 + H[(b + 396) >> 2] = 0 + H[(b + 384) >> 2] = 0 + H[(b + 388) >> 2] = 0 + H[(b + 376) >> 2] = 0 + H[(b + 380) >> 2] = 0 + H[(b + 368) >> 2] = 0 + H[(b + 372) >> 2] = 0 + H[(b + 416) >> 2] = 0 + H[(b + 420) >> 2] = 0 + H[(b + 408) >> 2] = 2 + H[(b + 412) >> 2] = 7 + H[(b + 400) >> 2] = -1 + H[(b + 404) >> 2] = -1 + H[(b + 424) >> 2] = 0 + H[(b + 428) >> 2] = 0 + H[(b + 432) >> 2] = 0 + H[(b + 436) >> 2] = 0 + } + c = H[(a + 48) >> 2] + H[(a + 48) >> 2] = b + if (!c) { + break a + } + ea[H[(H[c >> 2] + 4) >> 2]](c) + } + b = H[(a + 48) >> 2] + if (b) { + break a + } + return 0 + } + a = ea[H[(H[b >> 2] + 8) >> 2]](b, a) | 0 + } else { + a = 0 + } + return a | 0 + } + function Lb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0 + f = (ca - 96) | 0 + ca = f + e = H[(a + 16) >> 2] + F[(f + 92) | 0] = 1 + H[(f + 88) >> 2] = b + H[(f + 84) >> 2] = b + H[(f + 80) >> 2] = e + a: { + if ((b | 0) == -1) { + break a + } + j = H[(a + 20) >> 2] + d = H[j >> 2] + e = H[(H[e >> 2] + (b << 2)) >> 2] + if (e >>> 0 >= ((H[(j + 4) >> 2] - d) >> 2) >>> 0) { + break a + } + e = H[(H[(a + 8) >> 2] + (H[(d + (e << 2)) >> 2] << 2)) >> 2] + d = H[(a + 4) >> 2] + if (!I[(d + 84) | 0]) { + e = H[(H[(d + 68) >> 2] + (e << 2)) >> 2] + } + H[(f + 72) >> 2] = 0 + H[(f + 76) >> 2] = 0 + j = (f - -64) | 0 + H[j >> 2] = 0 + H[(j + 4) >> 2] = 0 + H[(f + 56) >> 2] = 0 + H[(f + 60) >> 2] = 0 + Sa(d, e, F[(d + 24) | 0], (f + 56) | 0) + e = (b + 1) | 0 + j = (e >>> 0) % 3 | 0 ? e : (b - 2) | 0 + n = (((b >>> 0) % 3 | 0 ? -1 : 2) + b) | 0 + b: { + c: { + while (1) { + d = j + e = n + d: { + if (!H[(a + 28) >> 2]) { + break d + } + e = (b + 1) | 0 + d = (e >>> 0) % 3 | 0 ? e : (b - 2) | 0 + e = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break d + } + e = (b + 2) | 0 + } + if ((d | 0) == -1) { + break b + } + m = H[(a + 20) >> 2] + b = H[m >> 2] + d = H[(H[H[(a + 16) >> 2] >> 2] + (d << 2)) >> 2] + if (d >>> 0 >= ((H[(m + 4) >> 2] - b) >> 2) >>> 0) { + break b + } + d = + H[ + (H[(a + 8) >> 2] + (H[((d << 2) + b) >> 2] << 2)) >> + 2 + ] + b = H[(a + 4) >> 2] + if (!I[(b + 84) | 0]) { + d = H[(H[(b + 68) >> 2] + (d << 2)) >> 2] + } + H[(f + 48) >> 2] = 0 + H[(f + 52) >> 2] = 0 + H[(f + 40) >> 2] = 0 + H[(f + 44) >> 2] = 0 + H[(f + 32) >> 2] = 0 + H[(f + 36) >> 2] = 0 + Sa(b, d, F[(b + 24) | 0], (f + 32) | 0) + if ((e | 0) == -1) { + break c + } + d = H[(a + 20) >> 2] + b = H[d >> 2] + e = H[(H[H[(a + 16) >> 2] >> 2] + (e << 2)) >> 2] + if (e >>> 0 >= ((H[(d + 4) >> 2] - b) >> 2) >>> 0) { + break c + } + d = + H[ + (H[(a + 8) >> 2] + (H[(b + (e << 2)) >> 2] << 2)) >> + 2 + ] + b = H[(a + 4) >> 2] + if (!I[(b + 84) | 0]) { + d = H[(H[(b + 68) >> 2] + (d << 2)) >> 2] + } + H[(f + 24) >> 2] = 0 + H[(f + 28) >> 2] = 0 + H[(f + 16) >> 2] = 0 + H[(f + 20) >> 2] = 0 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + Sa(b, d, F[(b + 24) | 0], (f + 8) | 0) + g = H[(f + 8) >> 2] + b = H[(f + 56) >> 2] + d = (g - b) | 0 + p = H[(f + 60) >> 2] + t = + (H[(f + 12) >> 2] - ((p + (b >>> 0 > g >>> 0)) | 0)) | + 0 + i = H[(f + 40) >> 2] + e = H[(f + 64) >> 2] + m = (i - e) | 0 + u = H[(f + 68) >> 2] + y = + (H[(f + 44) >> 2] - ((u + (e >>> 0 > i >>> 0)) | 0)) | + 0 + g = Rj(d, t, m, y) + w = (o - g) | 0 + x = (h - ((da + (g >>> 0 > o >>> 0)) | 0)) | 0 + h = w + i = H[(f + 16) >> 2] + g = (i - e) | 0 + u = + (H[(f + 20) >> 2] - (((e >>> 0 > i >>> 0) + u) | 0)) | + 0 + k = H[(f + 32) >> 2] + i = (k - b) | 0 + w = + (H[(f + 36) >> 2] - (((b >>> 0 > k >>> 0) + p) | 0)) | + 0 + b = Rj(g, u, i, w) + o = (h + b) | 0 + h = (da + x) | 0 + h = b >>> 0 > o >>> 0 ? (h + 1) | 0 : h + b = l + l = d + p = t + k = H[(f + 48) >> 2] + e = H[(f + 72) >> 2] + d = (k - e) | 0 + t = H[(f + 76) >> 2] + x = + (H[(f + 52) >> 2] - ((t + (e >>> 0 > k >>> 0)) | 0)) | + 0 + l = Rj(l, p, d, x) + k = (b + l) | 0 + b = (da + q) | 0 + b = k >>> 0 < l >>> 0 ? (b + 1) | 0 : b + l = H[(f + 24) >> 2] + p = (l - e) | 0 + e = + (H[(f + 28) >> 2] - (((e >>> 0 > l >>> 0) + t) | 0)) | + 0 + q = Rj(p, e, i, w) + l = (k - q) | 0 + q = (b - ((da + (k >>> 0 < q >>> 0)) | 0)) | 0 + b = Rj(g, u, d, x) + d = (r - b) | 0 + b = (s - ((da + (b >>> 0 > r >>> 0)) | 0)) | 0 + s = Rj(p, e, m, y) + r = (s + d) | 0 + b = (da + b) | 0 + s = r >>> 0 < s >>> 0 ? (b + 1) | 0 : b + uc((f + 80) | 0) + b = H[(f + 88) >> 2] + if ((b | 0) != -1) { + continue + } + break + } + b = s >> 31 + e = b ^ r + d = (e - b) | 0 + b = ((b ^ s) - (((b >>> 0 > e >>> 0) + b) | 0)) | 0 + n = -1 + e = 2147483647 + m = q >> 31 + g = m + i = g ^ l + j = (i - g) | 0 + m = ((g ^ q) - (((i >>> 0 < g >>> 0) + g) | 0)) | 0 + i = m + k = j ^ -1 + g = i ^ 2147483647 + m = h + e: { + f: { + if (!H[(a + 28) >> 2]) { + if ( + (((b | 0) == (g | 0)) & (d >>> 0 > k >>> 0)) | + (b >>> 0 > g >>> 0) + ) { + break e + } + b = (b + i) | 0 + a = (d + j) | 0 + b = a >>> 0 < j >>> 0 ? (b + 1) | 0 : b + e = a + g = h + a = g >> 31 + d = a + n = d ^ o + a = (n - d) | 0 + h = a + d = ((d ^ g) - (((d >>> 0 > n >>> 0) + d) | 0)) | 0 + a = (a + e) | 0 + d = d ^ 2147483647 + h = + (((d | 0) == (b | 0)) & + ((h ^ -1) >>> 0 < e >>> 0)) | + (b >>> 0 > d >>> 0) + a = h ? -1 : a + if ( + (!(h & 0) & ((a | 0) <= 536870912)) | + ((a | 0) < 536870912) + ) { + break e + } + b = 0 + a = (a >>> 29) | 0 + break f + } + g: { + if ( + (((b | 0) == (g | 0)) & (d >>> 0 > k >>> 0)) | + (b >>> 0 > g >>> 0) + ) { + break g + } + b = (b + i) | 0 + a = (d + j) | 0 + b = a >>> 0 < j >>> 0 ? (b + 1) | 0 : b + k = h + h = h >> 31 + g = h + i = g ^ o + h = (i - g) | 0 + j = ((g ^ k) - (((g >>> 0 > i >>> 0) + g) | 0)) | 0 + g = j ^ 2147483647 + d = a + a = h + if ( + (((g | 0) == (b | 0)) & + (d >>> 0 > (a ^ -1) >>> 0)) | + (b >>> 0 > g >>> 0) + ) { + break g + } + b = (b + j) | 0 + n = (a + d) | 0 + b = n >>> 0 < a >>> 0 ? (b + 1) | 0 : b + e = b + if (!b & (n >>> 0 < 536870913)) { + break e + } + } + b = (e >>> 29) | 0 + a = ((e & 536870911) << 3) | (n >>> 29) + } + o = Sj(o, m, a, b) + l = Sj(l, q, a, b) + r = Sj(r, s, a, b) + } + H[(c + 8) >> 2] = o + H[(c + 4) >> 2] = l + H[c >> 2] = r + ca = (f + 96) | 0 + return + } + Ca() + v() + } + Ca() + v() + } + Ca() + v() + } + function Wd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + a: { + if ((b | 0) < 0) { + break a + } + c = H[(a + 12) >> 2] + d = H[(a + 8) >> 2] + if (((c - d) >> 2) >>> 0 <= b >>> 0) { + break a + } + d = (d + (b << 2)) | 0 + e = H[d >> 2] + i = H[(e + 60) >> 2] + f = H[(e + 56) >> 2] + e = (d + 4) | 0 + if ((e | 0) != (c | 0)) { + while (1) { + h = H[e >> 2] + H[e >> 2] = 0 + g = H[d >> 2] + H[d >> 2] = h + if (g) { + Ga(g) + } + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((e | 0) != (c | 0)) { + continue + } + break + } + c = H[(a + 12) >> 2] + } + if ((c | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + e = H[c >> 2] + H[c >> 2] = 0 + if (e) { + Ga(e) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 12) >> 2] = d + g = H[(a + 4) >> 2] + b: { + if (!g | ((i | 0) < 0)) { + break b + } + c = H[(g + 24) >> 2] + d = H[(g + 28) >> 2] + if ((c | 0) == (d | 0)) { + break b + } + while (1) { + if ((i | 0) == H[(H[c >> 2] + 24) >> 2]) { + d = (c + 4) | 0 + i = H[(g + 28) >> 2] + if ((d | 0) != (i | 0)) { + while (1) { + h = H[d >> 2] + H[d >> 2] = 0 + e = H[c >> 2] + H[c >> 2] = h + if (e) { + Ra((e + 12) | 0, H[(e + 16) >> 2]) + Qa(e, H[(e + 4) >> 2]) + oa(e) + } + c = (c + 4) | 0 + d = (d + 4) | 0 + if ((i | 0) != (d | 0)) { + continue + } + break + } + d = H[(g + 28) >> 2] + } + if ((c | 0) != (d | 0)) { + while (1) { + d = (d - 4) | 0 + e = H[d >> 2] + H[d >> 2] = 0 + if (e) { + Ra((e + 12) | 0, H[(e + 16) >> 2]) + Qa(e, H[(e + 4) >> 2]) + oa(e) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + } + H[(g + 28) >> 2] = c + break b + } + c = (c + 4) | 0 + if ((d | 0) != (c | 0)) { + continue + } + break + } + } + c: { + if ((f | 0) > 4) { + break c + } + d: { + e = (N(f, 12) + a) | 0 + c = H[(e + 20) >> 2] + d = H[(e + 24) >> 2] + if ((c | 0) == (d | 0)) { + break d + } + while (1) { + if (H[c >> 2] == (b | 0)) { + break d + } + c = (c + 4) | 0 + if ((d | 0) != (c | 0)) { + continue + } + break + } + break c + } + if ((c | 0) == (d | 0)) { + break c + } + f = c + c = (c + 4) | 0 + va(f, c, (d - c) | 0) + H[(e + 24) >> 2] = d - 4 + } + c = H[(a + 24) >> 2] + d = H[(a + 20) >> 2] + e: { + if ((c | 0) == (d | 0)) { + break e + } + e = (c - d) | 0 + c = e >> 2 + g = c >>> 0 <= 1 ? 1 : c + i = g & 1 + c = 0 + if (e >>> 0 >= 8) { + g = g & -2 + e = 0 + while (1) { + f = c << 2 + h = (f + d) | 0 + j = H[h >> 2] + if ((j | 0) > (b | 0)) { + H[h >> 2] = j - 1 + } + f = (d + (f | 4)) | 0 + h = H[f >> 2] + if ((h | 0) > (b | 0)) { + H[f >> 2] = h - 1 + } + c = (c + 2) | 0 + e = (e + 2) | 0 + if ((g | 0) != (e | 0)) { + continue + } + break + } + } + if (!i) { + break e + } + c = (d + (c << 2)) | 0 + d = H[c >> 2] + if ((d | 0) <= (b | 0)) { + break e + } + H[c >> 2] = d - 1 + } + c = H[(a + 36) >> 2] + d = H[(a + 32) >> 2] + f: { + if ((c | 0) == (d | 0)) { + break f + } + e = (c - d) | 0 + c = e >> 2 + g = c >>> 0 <= 1 ? 1 : c + i = g & 1 + c = 0 + if (e >>> 0 >= 8) { + g = g & -2 + e = 0 + while (1) { + f = c << 2 + h = (f + d) | 0 + j = H[h >> 2] + if ((j | 0) > (b | 0)) { + H[h >> 2] = j - 1 + } + f = (d + (f | 4)) | 0 + h = H[f >> 2] + if ((h | 0) > (b | 0)) { + H[f >> 2] = h - 1 + } + c = (c + 2) | 0 + e = (e + 2) | 0 + if ((g | 0) != (e | 0)) { + continue + } + break + } + } + if (!i) { + break f + } + c = (d + (c << 2)) | 0 + d = H[c >> 2] + if ((d | 0) <= (b | 0)) { + break f + } + H[c >> 2] = d - 1 + } + c = H[(a + 48) >> 2] + d = H[(a + 44) >> 2] + g: { + if ((c | 0) == (d | 0)) { + break g + } + e = (c - d) | 0 + c = e >> 2 + g = c >>> 0 <= 1 ? 1 : c + i = g & 1 + c = 0 + if (e >>> 0 >= 8) { + g = g & -2 + e = 0 + while (1) { + f = c << 2 + h = (f + d) | 0 + j = H[h >> 2] + if ((j | 0) > (b | 0)) { + H[h >> 2] = j - 1 + } + f = (d + (f | 4)) | 0 + h = H[f >> 2] + if ((h | 0) > (b | 0)) { + H[f >> 2] = h - 1 + } + c = (c + 2) | 0 + e = (e + 2) | 0 + if ((g | 0) != (e | 0)) { + continue + } + break + } + } + if (!i) { + break g + } + c = (d + (c << 2)) | 0 + d = H[c >> 2] + if ((d | 0) <= (b | 0)) { + break g + } + H[c >> 2] = d - 1 + } + c = H[(a + 60) >> 2] + d = H[(a + 56) >> 2] + h: { + if ((c | 0) == (d | 0)) { + break h + } + e = (c - d) | 0 + c = e >> 2 + g = c >>> 0 <= 1 ? 1 : c + i = g & 1 + c = 0 + if (e >>> 0 >= 8) { + g = g & -2 + e = 0 + while (1) { + f = c << 2 + h = (f + d) | 0 + j = H[h >> 2] + if ((j | 0) > (b | 0)) { + H[h >> 2] = j - 1 + } + f = (d + (f | 4)) | 0 + h = H[f >> 2] + if ((h | 0) > (b | 0)) { + H[f >> 2] = h - 1 + } + c = (c + 2) | 0 + e = (e + 2) | 0 + if ((g | 0) != (e | 0)) { + continue + } + break + } + } + if (!i) { + break h + } + c = (d + (c << 2)) | 0 + d = H[c >> 2] + if ((d | 0) <= (b | 0)) { + break h + } + H[c >> 2] = d - 1 + } + c = H[(a + 72) >> 2] + a = H[(a + 68) >> 2] + if ((c | 0) == (a | 0)) { + break a + } + d = (c - a) | 0 + c = d >> 2 + e = c >>> 0 <= 1 ? 1 : c + g = e & 1 + c = 0 + if (d >>> 0 >= 8) { + d = e & -2 + e = 0 + while (1) { + i = c << 2 + f = (i + a) | 0 + h = H[f >> 2] + if ((h | 0) > (b | 0)) { + H[f >> 2] = h - 1 + } + i = (a + (i | 4)) | 0 + f = H[i >> 2] + if ((f | 0) > (b | 0)) { + H[i >> 2] = f - 1 + } + c = (c + 2) | 0 + e = (e + 2) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!g) { + break a + } + f = b + a = (a + (c << 2)) | 0 + b = H[a >> 2] + if ((f | 0) >= (b | 0)) { + break a + } + H[a >> 2] = b - 1 + } + } + function oa(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + a: { + if (!a) { + break a + } + d = (a - 8) | 0 + b = H[(a - 4) >> 2] + a = b & -8 + f = (d + a) | 0 + b: { + if (b & 1) { + break b + } + if (!(b & 3)) { + break a + } + b = H[d >> 2] + d = (d - b) | 0 + if (d >>> 0 < K[4302]) { + break a + } + a = (a + b) | 0 + if (H[4303] != (d | 0)) { + if (b >>> 0 <= 255) { + e = H[(d + 8) >> 2] + b = (b >>> 3) | 0 + c = H[(d + 12) >> 2] + if ((c | 0) == (e | 0)) { + ;(i = 17192), (j = H[4298] & Vj(b)), (H[i >> 2] = j) + break b + } + H[(e + 12) >> 2] = c + H[(c + 8) >> 2] = e + break b + } + h = H[(d + 24) >> 2] + b = H[(d + 12) >> 2] + c: { + if ((d | 0) != (b | 0)) { + c = H[(d + 8) >> 2] + H[(c + 12) >> 2] = b + H[(b + 8) >> 2] = c + break c + } + d: { + e = (d + 20) | 0 + c = H[e >> 2] + if (c) { + break d + } + e = (d + 16) | 0 + c = H[e >> 2] + if (c) { + break d + } + b = 0 + break c + } + while (1) { + g = e + b = c + e = (b + 20) | 0 + c = H[e >> 2] + if (c) { + continue + } + e = (b + 16) | 0 + c = H[(b + 16) >> 2] + if (c) { + continue + } + break + } + H[g >> 2] = 0 + } + if (!h) { + break b + } + e = H[(d + 28) >> 2] + c = ((e << 2) + 17496) | 0 + e: { + if (H[c >> 2] == (d | 0)) { + H[c >> 2] = b + if (b) { + break e + } + ;(i = 17196), (j = H[4299] & Vj(e)), (H[i >> 2] = j) + break b + } + H[(h + (H[(h + 16) >> 2] == (d | 0) ? 16 : 20)) >> 2] = + b + if (!b) { + break b + } + } + H[(b + 24) >> 2] = h + c = H[(d + 16) >> 2] + if (c) { + H[(b + 16) >> 2] = c + H[(c + 24) >> 2] = b + } + c = H[(d + 20) >> 2] + if (!c) { + break b + } + H[(b + 20) >> 2] = c + H[(c + 24) >> 2] = b + break b + } + b = H[(f + 4) >> 2] + if ((b & 3) != 3) { + break b + } + H[4300] = a + H[(f + 4) >> 2] = b & -2 + H[(d + 4) >> 2] = a | 1 + H[(a + d) >> 2] = a + return + } + if (d >>> 0 >= f >>> 0) { + break a + } + b = H[(f + 4) >> 2] + if (!(b & 1)) { + break a + } + f: { + if (!(b & 2)) { + if (H[4304] == (f | 0)) { + H[4304] = d + a = (H[4301] + a) | 0 + H[4301] = a + H[(d + 4) >> 2] = a | 1 + if (H[4303] != (d | 0)) { + break a + } + H[4300] = 0 + H[4303] = 0 + return + } + if (H[4303] == (f | 0)) { + H[4303] = d + a = (H[4300] + a) | 0 + H[4300] = a + H[(d + 4) >> 2] = a | 1 + H[(a + d) >> 2] = a + return + } + a = ((b & -8) + a) | 0 + g: { + if (b >>> 0 <= 255) { + e = H[(f + 8) >> 2] + b = (b >>> 3) | 0 + c = H[(f + 12) >> 2] + if ((c | 0) == (e | 0)) { + ;(i = 17192), (j = H[4298] & Vj(b)), (H[i >> 2] = j) + break g + } + H[(e + 12) >> 2] = c + H[(c + 8) >> 2] = e + break g + } + h = H[(f + 24) >> 2] + b = H[(f + 12) >> 2] + h: { + if ((f | 0) != (b | 0)) { + c = H[(f + 8) >> 2] + H[(c + 12) >> 2] = b + H[(b + 8) >> 2] = c + break h + } + i: { + e = (f + 20) | 0 + c = H[e >> 2] + if (c) { + break i + } + e = (f + 16) | 0 + c = H[e >> 2] + if (c) { + break i + } + b = 0 + break h + } + while (1) { + g = e + b = c + e = (b + 20) | 0 + c = H[e >> 2] + if (c) { + continue + } + e = (b + 16) | 0 + c = H[(b + 16) >> 2] + if (c) { + continue + } + break + } + H[g >> 2] = 0 + } + if (!h) { + break g + } + e = H[(f + 28) >> 2] + c = ((e << 2) + 17496) | 0 + j: { + if (H[c >> 2] == (f | 0)) { + H[c >> 2] = b + if (b) { + break j + } + ;(i = 17196), (j = H[4299] & Vj(e)), (H[i >> 2] = j) + break g + } + H[ + (h + (H[(h + 16) >> 2] == (f | 0) ? 16 : 20)) >> 2 + ] = b + if (!b) { + break g + } + } + H[(b + 24) >> 2] = h + c = H[(f + 16) >> 2] + if (c) { + H[(b + 16) >> 2] = c + H[(c + 24) >> 2] = b + } + c = H[(f + 20) >> 2] + if (!c) { + break g + } + H[(b + 20) >> 2] = c + H[(c + 24) >> 2] = b + } + H[(d + 4) >> 2] = a | 1 + H[(a + d) >> 2] = a + if (H[4303] != (d | 0)) { + break f + } + H[4300] = a + return + } + H[(f + 4) >> 2] = b & -2 + H[(d + 4) >> 2] = a | 1 + H[(a + d) >> 2] = a + } + if (a >>> 0 <= 255) { + b = ((a & -8) + 17232) | 0 + c = H[4298] + a = 1 << (a >>> 3) + k: { + if (!(c & a)) { + H[4298] = a | c + a = b + break k + } + a = H[(b + 8) >> 2] + } + H[(b + 8) >> 2] = d + H[(a + 12) >> 2] = d + H[(d + 12) >> 2] = b + H[(d + 8) >> 2] = a + return + } + e = 31 + if (a >>> 0 <= 16777215) { + b = Q((a >>> 8) | 0) + e = (((((a >>> (38 - b)) & 1) - (b << 1)) | 0) + 62) | 0 + } + H[(d + 28) >> 2] = e + H[(d + 16) >> 2] = 0 + H[(d + 20) >> 2] = 0 + g = ((e << 2) + 17496) | 0 + l: { + m: { + c = H[4299] + b = 1 << e + n: { + if (!(c & b)) { + H[4299] = b | c + H[g >> 2] = d + H[(d + 24) >> 2] = g + break n + } + e = + a << ((e | 0) != 31 ? (25 - ((e >>> 1) | 0)) | 0 : 0) + b = H[g >> 2] + while (1) { + c = b + if ((H[(b + 4) >> 2] & -8) == (a | 0)) { + break m + } + b = (e >>> 29) | 0 + e = e << 1 + g = (c + (b & 4)) | 0 + b = H[(g + 16) >> 2] + if (b) { + continue + } + break + } + H[(g + 16) >> 2] = d + H[(d + 24) >> 2] = c + } + H[(d + 12) >> 2] = d + H[(d + 8) >> 2] = d + break l + } + a = H[(c + 8) >> 2] + H[(a + 12) >> 2] = d + H[(c + 8) >> 2] = d + H[(d + 24) >> 2] = 0 + H[(d + 12) >> 2] = c + H[(d + 8) >> 2] = a + } + a = (H[4306] - 1) | 0 + H[4306] = a ? a : -1 + } + } + function tj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0 + H[(a + 8) >> 2] = e + n = (a + 32) | 0 + h = H[n >> 2] + f = (H[(a + 36) >> 2] - h) >> 2 + a: { + if (f >>> 0 < e >>> 0) { + ya(n, (e - f) | 0) + d = H[(a + 8) >> 2] + break a + } + d = e + if (d >>> 0 >= f >>> 0) { + break a + } + H[(a + 36) >> 2] = h + (e << 2) + d = e + } + s = H[(a + 52) >> 2] + p = H[(a + 48) >> 2] + f = 0 + h = e >>> 0 > 1073741823 ? -1 : e << 2 + m = ra(pa(h), 0, h) + b: { + if ((d | 0) <= 0) { + break b + } + g = H[(a + 32) >> 2] + while (1) { + d = f << 2 + h = H[(d + m) >> 2] + j = H[(a + 16) >> 2] + c: { + if ((h | 0) > (j | 0)) { + H[(d + g) >> 2] = j + break c + } + d = (d + g) | 0 + j = H[(a + 12) >> 2] + if ((j | 0) > (h | 0)) { + H[d >> 2] = j + break c + } + H[d >> 2] = h + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + if ((d | 0) <= 0) { + break b + } + f = 0 + while (1) { + h = f << 2 + d = (h + c) | 0 + h = (H[(b + h) >> 2] + H[(g + h) >> 2]) | 0 + H[d >> 2] = h + d: { + if ((h | 0) > H[(a + 16) >> 2]) { + i = (h - H[(a + 20) >> 2]) | 0 + } else { + if ((h | 0) >= H[(a + 12) >> 2]) { + break d + } + i = (h + H[(a + 20) >> 2]) | 0 + } + H[d >> 2] = i + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + } + f = H[(a + 56) >> 2] + q = H[f >> 2] + f = (H[(f + 4) >> 2] - q) | 0 + if ((f | 0) >= 5) { + o = (f >>> 2) | 0 + t = o >>> 0 <= 2 ? 2 : o + u = e & -2 + w = e & 1 + h = 1 + while (1) { + e: { + f: { + if ((h | 0) != (o | 0)) { + r = N(e, h) + f = H[((h << 2) + q) >> 2] + if ((f | 0) == -1) { + break f + } + f = H[(H[(p + 12) >> 2] + (f << 2)) >> 2] + if ((f | 0) == -1) { + break f + } + j = H[s >> 2] + g = H[p >> 2] + k = H[(j + (H[(g + (f << 2)) >> 2] << 2)) >> 2] + i = (f + 1) | 0 + i = (i >>> 0) % 3 | 0 ? i : (f - 2) | 0 + if ((i | 0) != -1) { + i = H[(g + (i << 2)) >> 2] + } else { + i = -1 + } + g: { + h: { + if ((f >>> 0) % 3 | 0) { + f = (f - 1) | 0 + break h + } + f = (f + 2) | 0 + l = -1 + if ((f | 0) == -1) { + break g + } + } + l = H[(g + (f << 2)) >> 2] + } + if ((h | 0) <= (k | 0)) { + break f + } + f = H[((i << 2) + j) >> 2] + if ((f | 0) >= (h | 0)) { + break f + } + g = H[(j + (l << 2)) >> 2] + if ((g | 0) >= (h | 0)) { + break f + } + i: { + if ((e | 0) <= 0) { + break i + } + g = N(e, g) + j = N(e, f) + k = N(e, k) + f = 0 + l = 0 + if ((e | 0) != 1) { + while (1) { + H[((f << 2) + m) >> 2] = + ((H[(((f + g) << 2) + c) >> 2] + + H[(((f + j) << 2) + c) >> 2]) | + 0) - + H[(((f + k) << 2) + c) >> 2] + i = f | 1 + H[((i << 2) + m) >> 2] = + ((H[(((g + i) << 2) + c) >> 2] + + H[(((j + i) << 2) + c) >> 2]) | + 0) - + H[(((i + k) << 2) + c) >> 2] + f = (f + 2) | 0 + l = (l + 2) | 0 + if ((u | 0) != (l | 0)) { + continue + } + break + } + } + if (!w) { + break i + } + H[((f << 2) + m) >> 2] = + ((H[(((f + g) << 2) + c) >> 2] + + H[(((f + j) << 2) + c) >> 2]) | + 0) - + H[(((f + k) << 2) + c) >> 2] + } + if ((d | 0) <= 0) { + break e + } + j = H[n >> 2] + f = 0 + while (1) { + d = f << 2 + g = H[(d + m) >> 2] + k = H[(a + 16) >> 2] + j: { + if ((g | 0) > (k | 0)) { + H[(d + j) >> 2] = k + break j + } + d = (d + j) | 0 + k = H[(a + 12) >> 2] + if ((k | 0) > (g | 0)) { + H[d >> 2] = k + break j + } + H[d >> 2] = g + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + f = 0 + if ((d | 0) <= 0) { + break e + } + d = r << 2 + k = (d + c) | 0 + i = (b + d) | 0 + while (1) { + g = f << 2 + d = (g + k) | 0 + g = (H[(g + i) >> 2] + H[(g + j) >> 2]) | 0 + H[d >> 2] = g + k: { + if ((g | 0) > H[(a + 16) >> 2]) { + l = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break k + } + l = (g + H[(a + 20) >> 2]) | 0 + } + H[d >> 2] = l + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + break e + } + Ca() + v() + } + if ((d | 0) <= 0) { + break e + } + k = ((N((h - 1) | 0, e) << 2) + c) | 0 + j = H[n >> 2] + f = 0 + while (1) { + d = f << 2 + g = H[(d + k) >> 2] + i = H[(a + 16) >> 2] + l: { + if ((g | 0) > (i | 0)) { + H[(d + j) >> 2] = i + break l + } + d = (d + j) | 0 + i = H[(a + 12) >> 2] + if ((i | 0) > (g | 0)) { + H[d >> 2] = i + break l + } + H[d >> 2] = g + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + f = 0 + if ((d | 0) <= 0) { + break e + } + d = r << 2 + k = (d + c) | 0 + i = (b + d) | 0 + while (1) { + g = f << 2 + d = (g + k) | 0 + g = (H[(g + i) >> 2] + H[(g + j) >> 2]) | 0 + H[d >> 2] = g + m: { + if ((g | 0) > H[(a + 16) >> 2]) { + l = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break m + } + l = (g + H[(a + 20) >> 2]) | 0 + } + H[d >> 2] = l + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + } + h = (h + 1) | 0 + if ((t | 0) != (h | 0)) { + continue + } + break + } + } + oa(m) + return 1 + } + function we(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + if ((b | 0) == -1) { + return 1 + } + g = ((b >>> 0) / 3) | 0 + if ( + !( + (H[(H[(a + 24) >> 2] + ((g >>> 3) & 268435452)) >> 2] >>> + g) & + 1 + ) + ) { + e = H[(a + 48) >> 2] + H[(a + 52) >> 2] = e + a: { + if ((e | 0) != H[(a + 56) >> 2]) { + H[e >> 2] = b + H[(a + 52) >> 2] = e + 4 + break a + } + d = pa(4) + H[d >> 2] = b + c = (d + 4) | 0 + H[(a + 56) >> 2] = c + H[(a + 52) >> 2] = c + H[(a + 48) >> 2] = d + if (!e) { + break a + } + oa(e) + } + c = (b + 1) | 0 + i = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + c = H[(H[(a + 4) >> 2] + 28) >> 2] + k = H[((i << 2) + c) >> 2] + if ((k | 0) == -1) { + return 0 + } + e = (((b - N(g, 3)) | 0 ? -1 : 2) + b) | 0 + j = H[(c + (e << 2)) >> 2] + if ((j | 0) == -1) { + return 0 + } + b = H[(a + 36) >> 2] + g = (b + ((k >>> 3) & 536870908)) | 0 + d = H[g >> 2] + c = 1 << k + if (!(d & c)) { + H[g >> 2] = c | d + Ua((a + 8) | 0, k, i) + b = H[(a + 36) >> 2] + } + d = (((j >>> 3) & 536870908) + b) | 0 + c = H[d >> 2] + b = 1 << j + if (!(c & b)) { + H[d >> 2] = b | c + Ua((a + 8) | 0, j, e) + } + f = H[(a + 52) >> 2] + if ((f | 0) == H[(a + 48) >> 2]) { + return 1 + } + k = (a + 8) | 0 + while (1) { + b: { + c: { + f = (f - 4) | 0 + b = H[f >> 2] + if ((b | 0) == -1) { + break c + } + c = ((b >>> 0) / 3) | 0 + g = (H[(a + 24) >> 2] + ((c >>> 3) & 268435452)) | 0 + d = H[g >> 2] + c = 1 << c + if (d & c) { + break c + } + H[g >> 2] = c | d + h = H[(a + 4) >> 2] + c = H[(H[(h + 28) >> 2] + (b << 2)) >> 2] + if ((c | 0) == -1) { + return 0 + } + while (1) { + d = b + d: { + e: { + j = + (H[(a + 36) >> 2] + ((c >>> 3) & 536870908)) | 0 + i = H[j >> 2] + e = 1 << c + if (i & e) { + break e + } + f: { + g = H[(H[(h + 40) >> 2] + (c << 2)) >> 2] + g: { + if ((g | 0) == -1) { + break g + } + b = (g + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (g - 2) | 0 + if ( + ((b | 0) == -1) | + ((H[ + (H[h >> 2] + ((b >>> 3) & 536870908)) >> 2 + ] >>> + b) & + 1) + ) { + break g + } + g = + H[ + (H[(H[(h + 64) >> 2] + 12) >> 2] + + (b << 2)) >> + 2 + ] + if ((g | 0) != -1) { + break f + } + } + H[j >> 2] = e | i + Ua(k, c, d) + h = H[(a + 4) >> 2] + break e + } + H[j >> 2] = e | i + Ua(k, c, d) + h = H[(a + 4) >> 2] + b = (g + 1) | 0 + if ( + (((b >>> 0) % 3 | 0 ? b : (g - 2) | 0) | 0) == + -1 + ) { + break e + } + b = -1 + h: { + if ((d | 0) == -1) { + break h + } + c = (d + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (d - 2) | 0 + if ( + ((c | 0) == -1) | + ((H[ + (H[h >> 2] + ((c >>> 3) & 536870908)) >> 2 + ] >>> + c) & + 1) + ) { + break h + } + b = + H[ + (H[(H[(h + 64) >> 2] + 12) >> 2] + + (c << 2)) >> + 2 + ] + } + c = ((b >>> 0) / 3) | 0 + d = 1 << c + f = H[(a + 24) >> 2] + e = (c >>> 5) | 0 + j = H[(f + (e << 2)) >> 2] + break d + } + i: { + j: { + if ((d | 0) == -1) { + break j + } + c = -1 + b = (d + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (d - 2) | 0 + if ( + !( + ((b | 0) == -1) | + ((H[ + (H[h >> 2] + ((b >>> 3) & 536870908)) >> 2 + ] >>> + b) & + 1) + ) + ) { + c = + H[ + (H[(H[(h + 64) >> 2] + 12) >> 2] + + (b << 2)) >> + 2 + ] + } + k: { + l: { + if ((d >>> 0) % 3 | 0) { + f = (d - 1) | 0 + break l + } + f = (d + 2) | 0 + b = -1 + if ((f | 0) == -1) { + break k + } + } + b = -1 + if ( + (H[ + (H[h >> 2] + ((f >>> 3) & 536870908)) >> 2 + ] >>> + f) & + 1 + ) { + break k + } + b = + H[ + (H[(H[(h + 64) >> 2] + 12) >> 2] + + (f << 2)) >> + 2 + ] + } + g = (b | 0) == -1 + i = g ? -1 : ((b >>> 0) / 3) | 0 + if ((c | 0) != -1) { + f = H[(a + 24) >> 2] + d = ((c >>> 0) / 3) | 0 + e = (d >>> 5) | 0 + j = H[(f + (e << 2)) >> 2] + d = 1 << d + if (!(j & d)) { + break i + } + } + if (g) { + break j + } + d = 1 << i + f = H[(a + 24) >> 2] + e = (i >>> 5) | 0 + j = H[(f + (e << 2)) >> 2] + if (!(d & j)) { + break d + } + } + f = (H[(a + 52) >> 2] - 4) | 0 + H[(a + 52) >> 2] = f + break b + } + if (g) { + b = c + break d + } + if ( + (H[(((i >>> 3) & 536870908) + f) >> 2] >>> i) & + 1 + ) { + b = c + break d + } + h = H[(a + 52) >> 2] + H[(h - 4) >> 2] = b + if (H[(a + 56) >> 2] != (h | 0)) { + H[h >> 2] = c + f = (h + 4) | 0 + break c + } + m: { + i = H[(a + 48) >> 2] + e = (h - i) | 0 + g = e >> 2 + d = (g + 1) | 0 + if (d >>> 0 < 1073741824) { + b = (e >>> 1) | 0 + e = + e >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 > d >>> 0 + ? b + : d + if (e) { + if (e >>> 0 >= 1073741824) { + break m + } + d = pa(e << 2) + } else { + d = 0 + } + b = (d + (g << 2)) | 0 + H[b >> 2] = c + f = (b + 4) | 0 + if ((h | 0) != (i | 0)) { + while (1) { + b = (b - 4) | 0 + h = (h - 4) | 0 + H[b >> 2] = H[h >> 2] + if ((h | 0) != (i | 0)) { + continue + } + break + } + } + H[(a + 56) >> 2] = d + (e << 2) + H[(a + 52) >> 2] = f + H[(a + 48) >> 2] = b + if (!i) { + break b + } + oa(i) + f = H[(a + 52) >> 2] + break b + } + sa() + v() + } + wa() + v() + } + H[((e << 2) + f) >> 2] = d | j + c = H[(H[(h + 28) >> 2] + (b << 2)) >> 2] + if ((c | 0) != -1) { + continue + } + break + } + return 0 + } + H[(a + 52) >> 2] = f + } + if (H[(a + 48) >> 2] != (f | 0)) { + continue + } + break + } + } + return 1 + } + function Lj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0 + H[(a + 8) >> 2] = e + m = (a + 32) | 0 + h = H[m >> 2] + f = (H[(a + 36) >> 2] - h) >> 2 + a: { + if (f >>> 0 < e >>> 0) { + ya(m, (e - f) | 0) + d = H[(a + 8) >> 2] + break a + } + d = e + if (d >>> 0 >= f >>> 0) { + break a + } + H[(a + 36) >> 2] = h + (e << 2) + d = e + } + s = H[(a + 52) >> 2] + n = H[(a + 48) >> 2] + f = 0 + h = e >>> 0 > 1073741823 ? -1 : e << 2 + l = ra(pa(h), 0, h) + b: { + if ((d | 0) <= 0) { + break b + } + g = H[(a + 32) >> 2] + while (1) { + d = f << 2 + h = H[(d + l) >> 2] + i = H[(a + 16) >> 2] + c: { + if ((h | 0) > (i | 0)) { + H[(d + g) >> 2] = i + break c + } + d = (d + g) | 0 + i = H[(a + 12) >> 2] + if ((i | 0) > (h | 0)) { + H[d >> 2] = i + break c + } + H[d >> 2] = h + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + if ((d | 0) <= 0) { + break b + } + f = 0 + while (1) { + h = f << 2 + d = (h + c) | 0 + h = (H[(b + h) >> 2] + H[(g + h) >> 2]) | 0 + H[d >> 2] = h + d: { + if ((h | 0) > H[(a + 16) >> 2]) { + h = (h - H[(a + 20) >> 2]) | 0 + } else { + if ((h | 0) >= H[(a + 12) >> 2]) { + break d + } + h = (h + H[(a + 20) >> 2]) | 0 + } + H[d >> 2] = h + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + } + f = H[(a + 56) >> 2] + q = H[f >> 2] + f = (H[(f + 4) >> 2] - q) | 0 + if ((f | 0) >= 5) { + o = (f >>> 2) | 0 + t = o >>> 0 <= 2 ? 2 : o + u = e & -2 + w = e & 1 + h = 1 + while (1) { + e: { + f: { + if ((h | 0) != (o | 0)) { + r = N(e, h) + f = H[((h << 2) + q) >> 2] + if ( + ((f | 0) == -1) | + ((H[(H[n >> 2] + ((f >>> 3) & 536870908)) >> 2] >>> + f) & + 1) + ) { + break f + } + f = + H[(H[(H[(n + 64) >> 2] + 12) >> 2] + (f << 2)) >> 2] + if ((f | 0) == -1) { + break f + } + i = H[s >> 2] + g = H[(n + 28) >> 2] + k = H[(i + (H[(g + (f << 2)) >> 2] << 2)) >> 2] + if ((k | 0) >= (h | 0)) { + break f + } + j = (f + 1) | 0 + j = + H[ + (i + + (H[ + (g + + (((j >>> 0) % 3 | 0 ? j : (f - 2) | 0) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] + if ((j | 0) >= (h | 0)) { + break f + } + f = + H[ + (i + + (H[ + (g + + ((f + ((f >>> 0) % 3 | 0 ? -1 : 2)) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] + if ((f | 0) >= (h | 0)) { + break f + } + g: { + if ((e | 0) <= 0) { + break g + } + g = N(e, f) + i = N(e, j) + k = N(e, k) + f = 0 + p = 0 + if ((e | 0) != 1) { + while (1) { + H[((f << 2) + l) >> 2] = + ((H[(((f + g) << 2) + c) >> 2] + + H[(((f + i) << 2) + c) >> 2]) | + 0) - + H[(((f + k) << 2) + c) >> 2] + j = f | 1 + H[((j << 2) + l) >> 2] = + ((H[(((g + j) << 2) + c) >> 2] + + H[(((i + j) << 2) + c) >> 2]) | + 0) - + H[(((k + j) << 2) + c) >> 2] + f = (f + 2) | 0 + p = (p + 2) | 0 + if ((u | 0) != (p | 0)) { + continue + } + break + } + } + if (!w) { + break g + } + H[((f << 2) + l) >> 2] = + ((H[(((f + g) << 2) + c) >> 2] + + H[(((f + i) << 2) + c) >> 2]) | + 0) - + H[(((f + k) << 2) + c) >> 2] + } + if ((d | 0) <= 0) { + break e + } + i = H[m >> 2] + f = 0 + while (1) { + d = f << 2 + g = H[(d + l) >> 2] + k = H[(a + 16) >> 2] + h: { + if ((g | 0) > (k | 0)) { + H[(d + i) >> 2] = k + break h + } + d = (d + i) | 0 + k = H[(a + 12) >> 2] + if ((k | 0) > (g | 0)) { + H[d >> 2] = k + break h + } + H[d >> 2] = g + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + f = 0 + if ((d | 0) <= 0) { + break e + } + d = r << 2 + k = (d + c) | 0 + j = (b + d) | 0 + while (1) { + g = f << 2 + d = (g + k) | 0 + g = (H[(g + j) >> 2] + H[(g + i) >> 2]) | 0 + H[d >> 2] = g + i: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break i + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[d >> 2] = g + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + break e + } + Ca() + v() + } + if ((d | 0) <= 0) { + break e + } + k = ((N((h - 1) | 0, e) << 2) + c) | 0 + i = H[m >> 2] + f = 0 + while (1) { + d = f << 2 + g = H[(d + k) >> 2] + j = H[(a + 16) >> 2] + j: { + if ((g | 0) > (j | 0)) { + H[(d + i) >> 2] = j + break j + } + d = (d + i) | 0 + j = H[(a + 12) >> 2] + if ((j | 0) > (g | 0)) { + H[d >> 2] = j + break j + } + H[d >> 2] = g + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + f = 0 + if ((d | 0) <= 0) { + break e + } + d = r << 2 + k = (d + c) | 0 + j = (b + d) | 0 + while (1) { + g = f << 2 + d = (g + k) | 0 + g = (H[(g + j) >> 2] + H[(g + i) >> 2]) | 0 + H[d >> 2] = g + k: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break k + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[d >> 2] = g + } + d = H[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + } + h = (h + 1) | 0 + if ((t | 0) != (h | 0)) { + continue + } + break + } + } + oa(l) + return 1 + } + function Gb(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = O(0), + k = 0, + l = 0, + m = O(0) + i = H[c >> 2] + a: { + b: { + f = H[(b + 4) >> 2] + if (!f) { + break b + } + g = Uj(f) + c: { + if (g >>> 0 >= 2) { + e = i + if (f >>> 0 <= e >>> 0) { + e = (i >>> 0) % (f >>> 0) | 0 + } + c = H[(H[b >> 2] + (e << 2)) >> 2] + if (!c) { + break b + } + if (g >>> 0 <= 1) { + break c + } + while (1) { + c = H[c >> 2] + if (!c) { + break b + } + g = H[(c + 4) >> 2] + if ((g | 0) != (i | 0)) { + if (f >>> 0 <= g >>> 0) { + g = (g >>> 0) % (f >>> 0) | 0 + } + if ((e | 0) != (g | 0)) { + break b + } + } + if (H[(c + 8) >> 2] != (i | 0)) { + continue + } + break + } + b = 0 + break a + } + e = (f - 1) & i + c = H[(H[b >> 2] + (e << 2)) >> 2] + if (!c) { + break b + } + } + h = (f - 1) | 0 + while (1) { + c = H[c >> 2] + if (!c) { + break b + } + g = H[(c + 4) >> 2] + if (((g | 0) != (i | 0)) & ((g & h) != (e | 0))) { + break b + } + if (H[(c + 8) >> 2] != (i | 0)) { + continue + } + break + } + b = 0 + break a + } + c = pa(16) + d = H[H[d >> 2] >> 2] + H[(c + 12) >> 2] = 0 + H[(c + 8) >> 2] = d + H[(c + 4) >> 2] = i + H[c >> 2] = 0 + m = O((H[(b + 12) >> 2] + 1) >>> 0) + j = L[(b + 16) >> 2] + d: { + if (m > O(j * O(f >>> 0)) ? 0 : f) { + break d + } + e = 2 + d = (((f - 1) & f) != 0) | (f >>> 0 < 3) | (f << 1) + j = O(U(O(m / j))) + e: { + if ((j < O(4294967296)) & (j >= O(0))) { + g = ~~j >>> 0 + break e + } + g = 0 + } + d = d >>> 0 > g >>> 0 ? d : g + f: { + if ((d | 0) == 1) { + break f + } + if (!(d & (d - 1))) { + e = d + break f + } + e = Kd(d) + f = H[(b + 4) >> 2] + } + g: { + if (e >>> 0 <= f >>> 0) { + if (e >>> 0 >= f >>> 0) { + break g + } + g = f >>> 0 < 3 + j = O(U(O(O(K[(b + 12) >> 2]) / L[(b + 16) >> 2]))) + h: { + if ((j < O(4294967296)) & (j >= O(0))) { + d = ~~j >>> 0 + break h + } + d = 0 + } + i: { + j: { + if (g) { + break j + } + if (Uj(f) >>> 0 > 1) { + break j + } + d = d >>> 0 < 2 ? d : 1 << (32 - Q((d - 1) | 0)) + break i + } + d = Kd(d) + } + e = d >>> 0 < e >>> 0 ? e : d + if (f >>> 0 <= e >>> 0) { + break g + } + } + f = 0 + g = 0 + h = e + k: { + l: { + m: { + n: { + if (e) { + if (h >>> 0 >= 1073741824) { + break n + } + d = pa(h << 2) + e = H[b >> 2] + H[b >> 2] = d + if (e) { + oa(e) + } + H[(b + 4) >> 2] = h + d = 0 + if (h >>> 0 >= 4) { + e = h & -4 + while (1) { + k = d << 2 + H[(k + H[b >> 2]) >> 2] = 0 + H[(H[b >> 2] + (k | 4)) >> 2] = 0 + H[(H[b >> 2] + (k | 8)) >> 2] = 0 + H[(H[b >> 2] + (k | 12)) >> 2] = 0 + d = (d + 4) | 0 + g = (g + 4) | 0 + if ((e | 0) != (g | 0)) { + continue + } + break + } + } + e = h & 3 + if (e) { + while (1) { + H[(H[b >> 2] + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + f = (f + 1) | 0 + if ((e | 0) != (f | 0)) { + continue + } + break + } + } + e = H[(b + 8) >> 2] + if (!e) { + break k + } + d = (b + 8) | 0 + f = H[(e + 4) >> 2] + g = Uj(h) + if (g >>> 0 < 2) { + break m + } + f = + f >>> 0 >= h >>> 0 + ? (f >>> 0) % (h >>> 0) | 0 + : f + H[(H[b >> 2] + (f << 2)) >> 2] = d + d = H[e >> 2] + if (!d) { + break k + } + if (g >>> 0 <= 1) { + break l + } + while (1) { + g = H[(d + 4) >> 2] + if (h >>> 0 <= g >>> 0) { + g = (g >>> 0) % (h >>> 0) | 0 + } + o: { + if ((f | 0) == (g | 0)) { + e = d + break o + } + l = g << 2 + k = (l + H[b >> 2]) | 0 + if (!H[k >> 2]) { + H[k >> 2] = e + e = d + f = g + break o + } + H[e >> 2] = H[d >> 2] + H[d >> 2] = H[H[(l + H[b >> 2]) >> 2] >> 2] + H[H[(l + H[b >> 2]) >> 2] >> 2] = d + } + d = H[e >> 2] + if (d) { + continue + } + break + } + break k + } + d = H[b >> 2] + H[b >> 2] = 0 + if (d) { + oa(d) + } + H[(b + 4) >> 2] = 0 + break k + } + wa() + v() + } + f = (h - 1) & f + H[(H[b >> 2] + (f << 2)) >> 2] = d + d = H[e >> 2] + if (!d) { + break k + } + } + k = (h - 1) | 0 + while (1) { + g = k & H[(d + 4) >> 2] + p: { + if ((g | 0) == (f | 0)) { + e = d + break p + } + l = g << 2 + h = (l + H[b >> 2]) | 0 + if (H[h >> 2]) { + H[e >> 2] = H[d >> 2] + H[d >> 2] = H[H[(l + H[b >> 2]) >> 2] >> 2] + H[H[(l + H[b >> 2]) >> 2] >> 2] = d + break p + } + H[h >> 2] = e + e = d + f = g + } + d = H[e >> 2] + if (d) { + continue + } + break + } + } + } + f = H[(b + 4) >> 2] + d = (f - 1) | 0 + if (!(d & f)) { + e = d & i + break d + } + if (f >>> 0 > i >>> 0) { + e = i + break d + } + e = (i >>> 0) % (f >>> 0) | 0 + } + e = (H[b >> 2] + (e << 2)) | 0 + d = H[e >> 2] + q: { + r: { + if (!d) { + d = (b + 8) | 0 + H[c >> 2] = H[d >> 2] + H[(b + 8) >> 2] = c + H[e >> 2] = d + d = H[c >> 2] + if (!d) { + break q + } + d = H[(d + 4) >> 2] + e = (f - 1) | 0 + s: { + if (!(e & f)) { + d = d & e + break s + } + if (d >>> 0 < f >>> 0) { + break s + } + d = (d >>> 0) % (f >>> 0) | 0 + } + d = (H[b >> 2] + (d << 2)) | 0 + break r + } + H[c >> 2] = H[d >> 2] + } + H[d >> 2] = c + } + H[(b + 12) >> 2] = H[(b + 12) >> 2] + 1 + b = 1 + } + F[(a + 4) | 0] = b + H[a >> 2] = c + } + function Oe(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + f = (ca - 80) | 0 + ca = f + e = H[(c + 36) >> 2] + H[(f + 72) >> 2] = H[(c + 32) >> 2] + H[(f + 76) >> 2] = e + g = H[(c + 28) >> 2] + e = (f - -64) | 0 + H[e >> 2] = H[(c + 24) >> 2] + H[(e + 4) >> 2] = g + e = H[(c + 20) >> 2] + H[(f + 56) >> 2] = H[(c + 16) >> 2] + H[(f + 60) >> 2] = e + e = H[(c + 12) >> 2] + H[(f + 48) >> 2] = H[(c + 8) >> 2] + H[(f + 52) >> 2] = e + e = H[(c + 4) >> 2] + H[(f + 40) >> 2] = H[c >> 2] + H[(f + 44) >> 2] = e + nc(a, (f + 40) | 0, (f + 24) | 0) + a: { + if (H[a >> 2]) { + break a + } + if (F[(a + 15) | 0] < 0) { + oa(H[(a + 4) >> 2]) + } + if (I[(f + 31) | 0] != 1) { + b = pa(32) + F[(b + 20) | 0] = 0 + c = + I[1448] | + (I[1449] << 8) | + ((I[1450] << 16) | (I[1451] << 24)) + F[(b + 16) | 0] = c + F[(b + 17) | 0] = c >>> 8 + F[(b + 18) | 0] = c >>> 16 + F[(b + 19) | 0] = c >>> 24 + c = + I[1444] | + (I[1445] << 8) | + ((I[1446] << 16) | (I[1447] << 24)) + d = + I[1440] | + (I[1441] << 8) | + ((I[1442] << 16) | (I[1443] << 24)) + F[(b + 8) | 0] = d + F[(b + 9) | 0] = d >>> 8 + F[(b + 10) | 0] = d >>> 16 + F[(b + 11) | 0] = d >>> 24 + F[(b + 12) | 0] = c + F[(b + 13) | 0] = c >>> 8 + F[(b + 14) | 0] = c >>> 16 + F[(b + 15) | 0] = c >>> 24 + c = + I[1436] | + (I[1437] << 8) | + ((I[1438] << 16) | (I[1439] << 24)) + d = + I[1432] | + (I[1433] << 8) | + ((I[1434] << 16) | (I[1435] << 24)) + F[b | 0] = d + F[(b + 1) | 0] = d >>> 8 + F[(b + 2) | 0] = d >>> 16 + F[(b + 3) | 0] = d >>> 24 + F[(b + 4) | 0] = c + F[(b + 5) | 0] = c >>> 8 + F[(b + 6) | 0] = c >>> 16 + F[(b + 7) | 0] = c >>> 24 + H[a >> 2] = -1 + za((a + 4) | 0, b, 20) + oa(b) + break a + } + i = (ca - 16) | 0 + ca = i + b: { + c: { + switch (I[(f + 32) | 0]) { + case 0: + e = Ke(pa(48)) + H[e >> 2] = 13112 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + H[f >> 2] = 0 + H[(f + 4) >> 2] = 0 + H[(f + 16) >> 2] = e + break b + case 1: + e = Ke(pa(52)) + H[(e + 48) >> 2] = 0 + H[e >> 2] = 11276 + H[(f + 8) >> 2] = 0 + H[(f + 12) >> 2] = 0 + H[f >> 2] = 0 + H[(f + 4) >> 2] = 0 + H[(f + 16) >> 2] = e + break b + default: + break c + } + } + g = pa(32) + F[(g + 28) | 0] = 0 + e = + I[1550] | + (I[1551] << 8) | + ((I[1552] << 16) | (I[1553] << 24)) + F[(g + 24) | 0] = e + F[(g + 25) | 0] = e >>> 8 + F[(g + 26) | 0] = e >>> 16 + F[(g + 27) | 0] = e >>> 24 + e = + I[1546] | + (I[1547] << 8) | + ((I[1548] << 16) | (I[1549] << 24)) + h = + I[1542] | + (I[1543] << 8) | + ((I[1544] << 16) | (I[1545] << 24)) + F[(g + 16) | 0] = h + F[(g + 17) | 0] = h >>> 8 + F[(g + 18) | 0] = h >>> 16 + F[(g + 19) | 0] = h >>> 24 + F[(g + 20) | 0] = e + F[(g + 21) | 0] = e >>> 8 + F[(g + 22) | 0] = e >>> 16 + F[(g + 23) | 0] = e >>> 24 + e = + I[1538] | + (I[1539] << 8) | + ((I[1540] << 16) | (I[1541] << 24)) + h = + I[1534] | + (I[1535] << 8) | + ((I[1536] << 16) | (I[1537] << 24)) + F[(g + 8) | 0] = h + F[(g + 9) | 0] = h >>> 8 + F[(g + 10) | 0] = h >>> 16 + F[(g + 11) | 0] = h >>> 24 + F[(g + 12) | 0] = e + F[(g + 13) | 0] = e >>> 8 + F[(g + 14) | 0] = e >>> 16 + F[(g + 15) | 0] = e >>> 24 + e = + I[1530] | + (I[1531] << 8) | + ((I[1532] << 16) | (I[1533] << 24)) + h = + I[1526] | + (I[1527] << 8) | + ((I[1528] << 16) | (I[1529] << 24)) + F[g | 0] = h + F[(g + 1) | 0] = h >>> 8 + F[(g + 2) | 0] = h >>> 16 + F[(g + 3) | 0] = h >>> 24 + F[(g + 4) | 0] = e + F[(g + 5) | 0] = e >>> 8 + F[(g + 6) | 0] = e >>> 16 + F[(g + 7) | 0] = e >>> 24 + H[i >> 2] = -1 + e = i | 4 + za(e, g, 28) + j = F[(i + 15) | 0] + H[f >> 2] = H[i >> 2] + h = (f + 4) | 0 + d: { + if ((j | 0) >= 0) { + j = H[(e + 4) >> 2] + H[h >> 2] = H[e >> 2] + H[(h + 4) >> 2] = j + H[(h + 8) >> 2] = H[(e + 8) >> 2] + H[(f + 16) >> 2] = 0 + break d + } + za(h, H[(i + 4) >> 2], H[(i + 8) >> 2]) + e = F[(i + 15) | 0] + H[(f + 16) >> 2] = 0 + if ((e | 0) >= 0) { + break d + } + oa(H[(i + 4) >> 2]) + } + oa(g) + } + ca = (i + 16) | 0 + e = H[f >> 2] + e: { + if (e) { + H[a >> 2] = e + a = (a + 4) | 0 + if (F[(f + 15) | 0] >= 0) { + b = f | 4 + c = H[(b + 4) >> 2] + H[a >> 2] = H[b >> 2] + H[(a + 4) >> 2] = c + H[(a + 8) >> 2] = H[(b + 8) >> 2] + break e + } + za(a, H[(f + 4) >> 2], H[(f + 8) >> 2]) + break e + } + e = H[(f + 16) >> 2] + H[(f + 16) >> 2] = 0 + H[(e + 44) >> 2] = d + te(a, e, b, c, d) + if (!H[a >> 2]) { + if (F[(a + 15) | 0] < 0) { + oa(H[(a + 4) >> 2]) + } + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[(a + 12) >> 2] = 0 + } + ea[H[(H[e >> 2] + 4) >> 2]](e) + } + a = H[(f + 16) >> 2] + H[(f + 16) >> 2] = 0 + if (a) { + ea[H[(H[a >> 2] + 4) >> 2]](a) + } + if (F[(f + 15) | 0] >= 0) { + break a + } + oa(H[(f + 4) >> 2]) + } + ca = (f + 80) | 0 + } + function Gc(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + j = (N(b, 12) + a) | 0 + H[(j + 12) >> 2] = H[(j + 8) >> 2] + m = (c | 0) == -1 ? -1 : ((c >>> 0) / 3) | 0 + d = 1 + k = c + a: { + b: { + c: { + while (1) { + d: { + l = d + if (!d) { + if ((k | 0) == -1) { + break d + } + if ( + (de(a, (((k >>> 0) % 3 | 0 ? -1 : 2) + k) | 0) | + 0) == + -1 + ) { + break a + } + c = (k + 1) | 0 + d = (c >>> 0) % 3 | 0 ? c : (k - 2) | 0 + if ((d | 0) == -1) { + break a + } + c = (d + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (d - 2) | 0 + if ((c | 0) == -1) { + break a + } + d = + H[ + (H[(H[(a + 4) >> 2] + 12) >> 2] + (c << 2)) >> 2 + ] + if ((d | 0) == -1) { + break a + } + c = (d + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (d - 2) | 0 + if ((c | 0) == -1) { + break a + } + m = ((c >>> 0) / 3) | 0 + } + e: { + d = (H[(a + 56) >> 2] + ((m >>> 3) & 536870908)) | 0 + h = H[d >> 2] + e = 1 << m + if (h & e) { + break e + } + f = 0 + while (1) { + H[d >> 2] = e | h + d = H[(j + 12) >> 2] + f: { + if ((d | 0) != H[(j + 16) >> 2]) { + H[d >> 2] = m + H[(j + 12) >> 2] = d + 4 + break f + } + n = H[(j + 8) >> 2] + h = (d - n) | 0 + e = h >> 2 + i = (e + 1) | 0 + if (i >>> 0 >= 1073741824) { + break c + } + g = (h >>> 1) | 0 + i = + h >>> 0 >= 2147483644 + ? 1073741823 + : i >>> 0 < g >>> 0 + ? g + : i + if (i) { + if (i >>> 0 >= 1073741824) { + break b + } + g = pa(i << 2) + } else { + g = 0 + } + h = (g + (e << 2)) | 0 + H[h >> 2] = m + e = (h + 4) | 0 + if ((d | 0) != (n | 0)) { + while (1) { + h = (h - 4) | 0 + d = (d - 4) | 0 + H[h >> 2] = H[d >> 2] + if ((d | 0) != (n | 0)) { + continue + } + break + } + } + H[(j + 8) >> 2] = h + H[(j + 12) >> 2] = e + H[(j + 16) >> 2] = g + (i << 2) + if (!n) { + break f + } + oa(n) + } + g = (f + 1) | 0 + g: { + h: { + i: { + if (!f) { + break i + } + if (g & 1) { + if ((c | 0) == -1) { + c = -1 + break g + } + d = (c + 1) | 0 + c = (d >>> 0) % 3 | 0 ? d : (c - 2) | 0 + break i + } + k = l ? k : c + if ((c | 0) == -1) { + c = -1 + break g + } + if ((c >>> 0) % 3 | 0) { + d = (c - 1) | 0 + break h + } + c = (c + 2) | 0 + } + d = c + c = -1 + if ((d | 0) == -1) { + break g + } + } + c = + H[ + (H[(H[(a + 4) >> 2] + 12) >> 2] + + (d << 2)) >> + 2 + ] + h = -1 + f = -1 + e = (d + 1) | 0 + e = (e >>> 0) % 3 | 0 ? e : (d - 2) | 0 + if ((e | 0) >= 0) { + f = ((e >>> 0) / 3) | 0 + f = + H[ + (((H[(H[a >> 2] + 96) >> 2] + N(f, 12)) | + 0) + + ((e - N(f, 3)) << 2)) >> + 2 + ] + } + j: { + if ((c | 0) == -1) { + break j + } + i = (((c >>> 0) % 3 | 0 ? -1 : 2) + c) | 0 + if ((i | 0) < 0) { + break j + } + e = ((i >>> 0) / 3) | 0 + h = + H[ + (((H[(H[a >> 2] + 96) >> 2] + N(e, 12)) | + 0) + + ((i - N(e, 3)) << 2)) >> + 2 + ] + } + if ((f | 0) != (h | 0)) { + c = -1 + break g + } + k: { + l: { + f = (((d >>> 0) % 3 | 0 ? -1 : 2) + d) | 0 + if ((f | 0) >= 0) { + d = ((f >>> 0) / 3) | 0 + if ((c | 0) != -1) { + break l + } + c = -1 + break g + } + d = -1 + if ((c | 0) != -1) { + break k + } + c = -1 + break g + } + d = + H[ + (((H[(H[a >> 2] + 96) >> 2] + N(d, 12)) | + 0) + + ((f - N(d, 3)) << 2)) >> + 2 + ] + } + f = (c + 1) | 0 + e = (f >>> 0) % 3 | 0 ? f : (c - 2) | 0 + if ((e | 0) >= 0) { + f = ((e >>> 0) / 3) | 0 + f = + H[ + (((H[(H[a >> 2] + 96) >> 2] + N(f, 12)) | + 0) + + ((e - N(f, 3)) << 2)) >> + 2 + ] + } else { + f = -1 + } + if ((f | 0) != (d | 0)) { + c = -1 + break g + } + f = g + m = ((c >>> 0) / 3) | 0 + d = + (H[(a + 56) >> 2] + ((m >>> 3) & 268435452)) | + 0 + h = H[d >> 2] + e = 1 << m + if (!(h & e)) { + continue + } + } + break + } + if (l | !(g & 1)) { + break e + } + l = (H[(j + 12) >> 2] - 4) | 0 + g = H[l >> 2] + d = (H[(a + 56) >> 2] + ((g >>> 3) & 536870908)) | 0 + c = H[d >> 2] + ;(o = d), (p = Vj(g) & c), (H[o >> 2] = p) + H[(j + 12) >> 2] = l + break a + } + d = 0 + if (l) { + continue + } + break a + } + break + } + k = -1 + de(a, -1) + break a + } + sa() + v() + } + wa() + v() + } + H[((((b << 2) + a) | 0) + 44) >> 2] = k + b = H[(j + 12) >> 2] + i = H[(j + 8) >> 2] + m: { + if ((b | 0) == (i | 0)) { + break m + } + c = (b - i) | 0 + b = c >> 2 + b = b >>> 0 <= 1 ? 1 : b + k = b & 1 + e = H[(a + 56) >> 2] + d = 0 + if (c >>> 0 >= 8) { + f = b & -2 + c = 0 + while (1) { + l = d << 2 + g = H[(l + i) >> 2] + b = (e + ((g >>> 3) & 536870908)) | 0 + a = H[b >> 2] + ;(o = b), (p = Vj(g) & a), (H[o >> 2] = p) + g = H[(i + (l | 4)) >> 2] + b = (e + ((g >>> 3) & 536870908)) | 0 + a = H[b >> 2] + ;(o = b), (p = Vj(g) & a), (H[o >> 2] = p) + d = (d + 2) | 0 + c = (c + 2) | 0 + if ((f | 0) != (c | 0)) { + continue + } + break + } + } + if (!k) { + break m + } + c = H[(i + (d << 2)) >> 2] + b = (e + ((c >>> 3) & 536870908)) | 0 + a = H[b >> 2] + ;(o = b), (p = Vj(c) & a), (H[o >> 2] = p) + } + } + function Gj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + h = (ca - 32) | 0 + ca = h + a: { + if (J[(b + 38) >> 1] <= 513) { + c = H[(b + 20) >> 2] + f = H[(b + 12) >> 2] + d = H[(b + 16) >> 2] + if ( + (((c | 0) >= (f | 0)) & (d >>> 0 >= K[(b + 8) >> 2])) | + ((c | 0) > (f | 0)) + ) { + break a + } + f = I[(d + H[b >> 2]) | 0] + d = (d + 1) | 0 + c = d ? c : (c + 1) | 0 + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + if (f) { + break a + } + } + b: { + if (!Xa(1, (h + 28) | 0, b)) { + break b + } + d = H[(h + 28) >> 2] + c = H[(H[(a + 48) >> 2] + 64) >> 2] + if (d >>> 0 > ((H[(c + 4) >> 2] - H[c >> 2]) >> 2) >>> 0) { + break b + } + c: { + if (d) { + Wa((a + 60) | 0, d) + c = (h + 8) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + if (!ta(c, b)) { + break c + } + while (1) { + f = 1 << e + j = Ba(c) + g = (H[(a + 60) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | H[g >> 2] + } else { + i = H[g >> 2] & (f ^ -1) + } + H[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!Xa(1, (h + 28) | 0, b)) { + break b + } + d = H[(h + 28) >> 2] + c = H[(H[(a + 48) >> 2] + 64) >> 2] + if ( + d >>> 0 > + ((H[(c + 4) >> 2] - H[c >> 2]) >> 2) >>> 0 + ) { + break b + } + if (d) { + e = 0 + Wa((a + 72) | 0, d) + c = (h + 8) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + if (!ta(c, b)) { + break c + } + while (1) { + f = 1 << e + j = Ba(c) + g = (H[(a + 72) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | H[g >> 2] + } else { + i = H[g >> 2] & (f ^ -1) + } + H[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!Xa(1, (h + 28) | 0, b)) { + break b + } + d = H[(h + 28) >> 2] + c = H[(H[(a + 48) >> 2] + 64) >> 2] + if ( + d >>> 0 > + ((H[(c + 4) >> 2] - H[c >> 2]) >> 2) >>> 0 + ) { + break b + } + if (d) { + e = 0 + Wa((a + 84) | 0, d) + c = (h + 8) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + if (!ta(c, b)) { + break c + } + while (1) { + f = 1 << e + j = Ba(c) + g = (H[(a + 84) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | H[g >> 2] + } else { + i = H[g >> 2] & (f ^ -1) + } + H[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!Xa(1, (h + 28) | 0, b)) { + break b + } + d = H[(h + 28) >> 2] + c = H[(H[(a + 48) >> 2] + 64) >> 2] + if ( + d >>> 0 > + ((H[(c + 4) >> 2] - H[c >> 2]) >> 2) >>> 0 + ) { + break b + } + if (d) { + e = 0 + Wa((a + 96) | 0, d) + c = (h + 8) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + if (!ta(c, b)) { + break c + } + while (1) { + f = 1 << e + j = Ba(c) + g = (H[(a + 96) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | H[g >> 2] + } else { + i = H[g >> 2] & (f ^ -1) + } + H[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + c = H[(b + 8) >> 2] + f = H[(b + 12) >> 2] + d = c + c = H[(b + 20) >> 2] + i = c + g = H[(b + 16) >> 2] + j = (g + 4) | 0 + c = j >>> 0 < 4 ? (c + 1) | 0 : c + if ( + ((d >>> 0 < j >>> 0) & ((c | 0) >= (f | 0))) | + ((c | 0) > (f | 0)) + ) { + break a + } + m = H[b >> 2] + k = (m + g) | 0 + l = + I[k | 0] | + (I[(k + 1) | 0] << 8) | + ((I[(k + 2) | 0] << 16) | (I[(k + 3) | 0] << 24)) + H[(b + 16) >> 2] = j + H[(b + 20) >> 2] = c + k = d + d = f + c = i + f = (g + 8) | 0 + c = f >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((f >>> 0 > k >>> 0) & ((c | 0) >= (d | 0))) | + ((c | 0) > (d | 0)) + ) { + break a + } + d = (j + m) | 0 + d = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = c + if ((d | 0) < (l | 0)) { + break a + } + H[(a + 16) >> 2] = d + H[(a + 12) >> 2] = l + c = + ((d >> 31) - (((l >> 31) + (d >>> 0 < l >>> 0)) | 0)) | + 0 + b = (d - l) | 0 + if ((!c & (b >>> 0 > 2147483646)) | c) { + break a + } + e = 1 + b = (b + 1) | 0 + H[(a + 20) >> 2] = b + c = (b >>> 1) | 0 + H[(a + 24) >> 2] = c + H[(a + 28) >> 2] = 0 - c + if (b & 1) { + break a + } + H[(a + 24) >> 2] = c - 1 + break a + } + } + e = 0 + } + ca = (h + 32) | 0 + return e | 0 + } + function pj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + h = (ca - 32) | 0 + ca = h + a: { + if (J[(b + 38) >> 1] <= 513) { + c = H[(b + 20) >> 2] + f = H[(b + 12) >> 2] + d = H[(b + 16) >> 2] + if ( + (((c | 0) >= (f | 0)) & (d >>> 0 >= K[(b + 8) >> 2])) | + ((c | 0) > (f | 0)) + ) { + break a + } + f = I[(d + H[b >> 2]) | 0] + d = (d + 1) | 0 + c = d ? c : (c + 1) | 0 + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + if (f) { + break a + } + } + b: { + if (!Xa(1, (h + 28) | 0, b)) { + break b + } + d = H[(h + 28) >> 2] + c = H[(a + 48) >> 2] + if (d >>> 0 > ((H[(c + 4) >> 2] - H[c >> 2]) >> 2) >>> 0) { + break b + } + c: { + if (d) { + Wa((a + 60) | 0, d) + c = (h + 8) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + if (!ta(c, b)) { + break c + } + while (1) { + f = 1 << e + j = Ba(c) + g = (H[(a + 60) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | H[g >> 2] + } else { + i = H[g >> 2] & (f ^ -1) + } + H[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!Xa(1, (h + 28) | 0, b)) { + break b + } + d = H[(h + 28) >> 2] + c = H[(a + 48) >> 2] + if ( + d >>> 0 > + ((H[(c + 4) >> 2] - H[c >> 2]) >> 2) >>> 0 + ) { + break b + } + if (d) { + e = 0 + Wa((a + 72) | 0, d) + c = (h + 8) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + if (!ta(c, b)) { + break c + } + while (1) { + f = 1 << e + j = Ba(c) + g = (H[(a + 72) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | H[g >> 2] + } else { + i = H[g >> 2] & (f ^ -1) + } + H[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!Xa(1, (h + 28) | 0, b)) { + break b + } + d = H[(h + 28) >> 2] + c = H[(a + 48) >> 2] + if ( + d >>> 0 > + ((H[(c + 4) >> 2] - H[c >> 2]) >> 2) >>> 0 + ) { + break b + } + if (d) { + e = 0 + Wa((a + 84) | 0, d) + c = (h + 8) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + if (!ta(c, b)) { + break c + } + while (1) { + f = 1 << e + j = Ba(c) + g = (H[(a + 84) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | H[g >> 2] + } else { + i = H[g >> 2] & (f ^ -1) + } + H[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!Xa(1, (h + 28) | 0, b)) { + break b + } + d = H[(h + 28) >> 2] + c = H[(a + 48) >> 2] + if ( + d >>> 0 > + ((H[(c + 4) >> 2] - H[c >> 2]) >> 2) >>> 0 + ) { + break b + } + if (d) { + e = 0 + Wa((a + 96) | 0, d) + c = (h + 8) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + if (!ta(c, b)) { + break c + } + while (1) { + f = 1 << e + j = Ba(c) + g = (H[(a + 96) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | H[g >> 2] + } else { + i = H[g >> 2] & (f ^ -1) + } + H[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + c = H[(b + 8) >> 2] + f = H[(b + 12) >> 2] + d = c + c = H[(b + 20) >> 2] + i = c + g = H[(b + 16) >> 2] + j = (g + 4) | 0 + c = j >>> 0 < 4 ? (c + 1) | 0 : c + if ( + ((d >>> 0 < j >>> 0) & ((c | 0) >= (f | 0))) | + ((c | 0) > (f | 0)) + ) { + break a + } + m = H[b >> 2] + k = (m + g) | 0 + l = + I[k | 0] | + (I[(k + 1) | 0] << 8) | + ((I[(k + 2) | 0] << 16) | (I[(k + 3) | 0] << 24)) + H[(b + 16) >> 2] = j + H[(b + 20) >> 2] = c + k = d + d = f + c = i + f = (g + 8) | 0 + c = f >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((f >>> 0 > k >>> 0) & ((c | 0) >= (d | 0))) | + ((c | 0) > (d | 0)) + ) { + break a + } + d = (j + m) | 0 + d = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = c + if ((d | 0) < (l | 0)) { + break a + } + H[(a + 16) >> 2] = d + H[(a + 12) >> 2] = l + c = + ((d >> 31) - (((l >> 31) + (d >>> 0 < l >>> 0)) | 0)) | + 0 + b = (d - l) | 0 + if ((!c & (b >>> 0 > 2147483646)) | c) { + break a + } + e = 1 + b = (b + 1) | 0 + H[(a + 20) >> 2] = b + c = (b >>> 1) | 0 + H[(a + 24) >> 2] = c + H[(a + 28) >> 2] = 0 - c + if (b & 1) { + break a + } + H[(a + 24) >> 2] = c - 1 + break a + } + } + e = 0 + } + ca = (h + 32) | 0 + return e | 0 + } + function xe(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + if ((b | 0) == -1) { + return 1 + } + g = ((b >>> 0) / 3) | 0 + if ( + !( + (H[(H[(a + 24) >> 2] + ((g >>> 3) & 268435452)) >> 2] >>> + g) & + 1 + ) + ) { + f = H[(a + 48) >> 2] + H[(a + 52) >> 2] = f + a: { + if ((f | 0) != H[(a + 56) >> 2]) { + H[f >> 2] = b + H[(a + 52) >> 2] = f + 4 + break a + } + d = pa(4) + H[d >> 2] = b + c = (d + 4) | 0 + H[(a + 56) >> 2] = c + H[(a + 52) >> 2] = c + H[(a + 48) >> 2] = d + if (!f) { + break a + } + oa(f) + } + e = -1 + d = H[(a + 4) >> 2] + c = (b + 1) | 0 + i = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + if ((i | 0) != -1) { + e = H[(H[d >> 2] + (i << 2)) >> 2] + } + b: { + h = (b - N(g, 3)) | 0 + if (h) { + c = (b - 1) | 0 + break b + } + c = (b + 2) | 0 + if ((c | 0) != -1) { + break b + } + return 0 + } + if ((e | 0) == -1) { + return 0 + } + j = H[(H[d >> 2] + (c << 2)) >> 2] + if ((j | 0) == -1) { + return 0 + } + c = H[(a + 36) >> 2] + f = (c + ((e >>> 3) & 536870908)) | 0 + g = H[f >> 2] + d = 1 << e + if (!(g & d)) { + H[f >> 2] = d | g + Ua((a + 8) | 0, e, i) + c = H[(a + 36) >> 2] + } + g = (((j >>> 3) & 536870908) + c) | 0 + d = H[g >> 2] + c = 1 << j + if (!(d & c)) { + H[g >> 2] = c | d + Ua((a + 8) | 0, j, ((h ? -1 : 2) + b) | 0) + } + c = H[(a + 52) >> 2] + if ((c | 0) == H[(a + 48) >> 2]) { + return 1 + } + j = (a + 8) | 0 + while (1) { + c: { + d: { + c = (c - 4) | 0 + b = H[c >> 2] + if ((b | 0) == -1) { + break d + } + d = ((b >>> 0) / 3) | 0 + f = (H[(a + 24) >> 2] + ((d >>> 3) & 268435452)) | 0 + g = H[f >> 2] + d = 1 << d + if (g & d) { + break d + } + H[f >> 2] = d | g + while (1) { + i = H[(a + 4) >> 2] + e = H[(H[i >> 2] + (b << 2)) >> 2] + if ((e | 0) == -1) { + return 0 + } + e: { + f: { + h = + (H[(a + 36) >> 2] + ((e >>> 3) & 536870908)) | 0 + f = H[h >> 2] + g = 1 << e + if (f & g) { + break f + } + g: { + d = H[(H[(i + 24) >> 2] + (e << 2)) >> 2] + h: { + if ((d | 0) == -1) { + break h + } + c = (d + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (d - 2) | 0 + if ((c | 0) == -1) { + break h + } + d = H[(H[(i + 12) >> 2] + (c << 2)) >> 2] + if ((d | 0) != -1) { + break g + } + } + H[h >> 2] = f | g + Ua(j, e, b) + break f + } + H[h >> 2] = f | g + Ua(j, e, b) + c = (d + 1) | 0 + if ( + (((c >>> 0) % 3 | 0 ? c : (d - 2) | 0) | 0) == + -1 + ) { + break f + } + c = (b - 2) | 0 + d = (b + 1) | 0 + b = -1 + c = (d >>> 0) % 3 | 0 ? d : c + if ((c | 0) != -1) { + b = + H[ + (H[(H[(a + 4) >> 2] + 12) >> 2] + + (c << 2)) >> + 2 + ] + } + c = ((b >>> 0) / 3) | 0 + d = 1 << c + e = H[(a + 24) >> 2] + f = (c >>> 5) | 0 + i = H[(e + (f << 2)) >> 2] + break e + } + c = -1 + g = H[(a + 4) >> 2] + d = (b + 1) | 0 + d = (d >>> 0) % 3 | 0 ? d : (b - 2) | 0 + if ((d | 0) != -1) { + c = H[(H[(g + 12) >> 2] + (d << 2)) >> 2] + } + i: { + j: { + if ((b >>> 0) % 3 | 0) { + e = (b - 1) | 0 + break j + } + e = (b + 2) | 0 + b = -1 + if ((e | 0) == -1) { + break i + } + } + b = H[(H[(g + 12) >> 2] + (e << 2)) >> 2] + } + g = (b | 0) == -1 + h = g ? -1 : ((b >>> 0) / 3) | 0 + k: { + if ((c | 0) != -1) { + e = H[(a + 24) >> 2] + d = ((c >>> 0) / 3) | 0 + f = (d >>> 5) | 0 + i = H[(e + (f << 2)) >> 2] + d = 1 << d + if (!(i & d)) { + break k + } + } + if (!g) { + d = 1 << h + e = H[(a + 24) >> 2] + f = (h >>> 5) | 0 + i = H[(e + (f << 2)) >> 2] + if (!(d & i)) { + break e + } + } + c = (H[(a + 52) >> 2] - 4) | 0 + H[(a + 52) >> 2] = c + break c + } + if (g) { + b = c + break e + } + if ( + (H[(((h >>> 3) & 536870908) + e) >> 2] >>> h) & + 1 + ) { + b = c + break e + } + e = H[(a + 52) >> 2] + H[(e - 4) >> 2] = b + if (H[(a + 56) >> 2] != (e | 0)) { + H[e >> 2] = c + c = (e + 4) | 0 + break d + } + l: { + h = H[(a + 48) >> 2] + f = (e - h) | 0 + g = f >> 2 + d = (g + 1) | 0 + if (d >>> 0 < 1073741824) { + b = (f >>> 1) | 0 + f = + f >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 > d >>> 0 + ? b + : d + if (f) { + if (f >>> 0 >= 1073741824) { + break l + } + d = pa(f << 2) + } else { + d = 0 + } + b = (d + (g << 2)) | 0 + H[b >> 2] = c + c = (b + 4) | 0 + if ((e | 0) != (h | 0)) { + while (1) { + b = (b - 4) | 0 + e = (e - 4) | 0 + H[b >> 2] = H[e >> 2] + if ((e | 0) != (h | 0)) { + continue + } + break + } + } + H[(a + 56) >> 2] = d + (f << 2) + H[(a + 52) >> 2] = c + H[(a + 48) >> 2] = b + if (!h) { + break c + } + oa(h) + c = H[(a + 52) >> 2] + break c + } + sa() + v() + } + wa() + v() + } + H[((f << 2) + e) >> 2] = d | i + if ((b | 0) != -1) { + continue + } + break + } + return 0 + } + H[(a + 52) >> 2] = c + } + if (H[(a + 48) >> 2] != (c | 0)) { + continue + } + break + } + } + return 1 + } + function uj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + g = (ca - 32) | 0 + ca = g + H[(a + 68) >> 2] = f + d = H[(a + 56) >> 2] + e = H[d >> 2] + d = H[(d + 4) >> 2] + H[(g + 24) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + a: { + d = (d - e) | 0 + if ((d | 0) > 0) { + m = (a + 60) | 0 + d = (d >>> 2) | 0 + n = d >>> 0 <= 1 ? 1 : d + o = (a + 112) | 0 + while (1) { + e = H[(a + 56) >> 2] + d = H[e >> 2] + if (((H[(e + 4) >> 2] - d) >> 2) >>> 0 <= j >>> 0) { + break a + } + Nb(m, H[(d + (j << 2)) >> 2], (g + 16) | 0) + i = H[(g + 20) >> 2] + d = i >> 31 + h = H[(g + 16) >> 2] + e = h >> 31 + f = ((d ^ i) - d + ((e ^ h) - e)) | 0 + k = H[(g + 24) >> 2] + d = k >> 31 + e = ((d ^ k) - d) | 0 + d = 0 + l = e + e = (e + f) | 0 + d = l >>> 0 > e >>> 0 ? 1 : d + b: { + if (!(d | e)) { + H[(g + 16) >> 2] = H[(a + 108) >> 2] + break b + } + f = H[(a + 108) >> 2] + l = f >> 31 + h = Sj(Rj(f, l, h, h >> 31), da, e, d) + H[(g + 16) >> 2] = h + d = Sj(Rj(f, l, i, i >> 31), da, e, d) + H[(g + 20) >> 2] = d + e = d + d = d >> 31 + e = ((e ^ d) - d) | 0 + d = h >> 31 + d = (e + (((d ^ h) - d) | 0)) | 0 + if ((k | 0) >= 0) { + H[(g + 24) >> 2] = f - d + break b + } + H[(g + 24) >> 2] = d - f + } + d = Ba(o) + f = H[(g + 16) >> 2] + c: { + if (d) { + H[(g + 24) >> 2] = 0 - H[(g + 24) >> 2] + e = (0 - H[(g + 20) >> 2]) | 0 + H[(g + 20) >> 2] = e + f = (0 - f) | 0 + H[(g + 16) >> 2] = f + break c + } + e = H[(g + 20) >> 2] + } + d: { + if ((f | 0) >= 0) { + f = H[(a + 108) >> 2] + d = (f + H[(g + 24) >> 2]) | 0 + f = (e + f) | 0 + break d + } + e: { + if ((e | 0) < 0) { + d = H[(g + 24) >> 2] + f = d >> 31 + f = ((d ^ f) - f) | 0 + break e + } + d = H[(g + 24) >> 2] + f = d >> 31 + f = (H[(a + 100) >> 2] + ((f - (d ^ f)) | 0)) | 0 + } + if ((d | 0) < 0) { + d = e >> 31 + d = ((d ^ e) - d) | 0 + break d + } + d = e >> 31 + d = (H[(a + 100) >> 2] + ((d - (d ^ e)) | 0)) | 0 + } + e = H[(a + 100) >> 2] + f: { + if (!(d | f)) { + d = e + f = d + break f + } + if (!(((d | 0) != (e | 0)) | f)) { + f = d + break f + } + if (!(((e | 0) != (f | 0)) | d)) { + d = f + break f + } + g: { + if (f) { + break g + } + i = H[(a + 108) >> 2] + if ((i | 0) >= (d | 0)) { + break g + } + d = ((i << 1) - d) | 0 + f = 0 + break f + } + h: { + if ((e | 0) != (f | 0)) { + break h + } + i = H[(a + 108) >> 2] + if ((i | 0) <= (d | 0)) { + break h + } + d = ((i << 1) - d) | 0 + break f + } + i: { + if ((d | 0) != (e | 0)) { + break i + } + e = H[(a + 108) >> 2] + if ((e | 0) <= (f | 0)) { + break i + } + f = ((e << 1) - f) | 0 + break f + } + if (d) { + break f + } + d = 0 + e = H[(a + 108) >> 2] + if ((e | 0) >= (f | 0)) { + break f + } + f = ((e << 1) - f) | 0 + } + H[(g + 12) >> 2] = d + H[(g + 8) >> 2] = f + j: { + if (H[(a + 8) >> 2] <= 0) { + break j + } + i = H[(a + 32) >> 2] + f = 0 + while (1) { + d = f << 2 + e = H[(d + ((g + 8) | 0)) >> 2] + h = H[(a + 16) >> 2] + k: { + if ((e | 0) > (h | 0)) { + H[(d + i) >> 2] = h + break k + } + d = (d + i) | 0 + h = H[(a + 12) >> 2] + if ((h | 0) > (e | 0)) { + H[d >> 2] = h + break k + } + H[d >> 2] = e + } + f = (f + 1) | 0 + e = H[(a + 8) >> 2] + if ((f | 0) < (e | 0)) { + continue + } + break + } + d = 0 + if ((e | 0) <= 0) { + break j + } + e = j << 3 + h = (e + c) | 0 + k = (b + e) | 0 + while (1) { + f = d << 2 + e = (f + h) | 0 + f = (H[(f + k) >> 2] + H[(f + i) >> 2]) | 0 + H[e >> 2] = f + l: { + if ((f | 0) > H[(a + 16) >> 2]) { + f = (f - H[(a + 20) >> 2]) | 0 + } else { + if ((f | 0) >= H[(a + 12) >> 2]) { + break l + } + f = (f + H[(a + 20) >> 2]) | 0 + } + H[e >> 2] = f + } + d = (d + 1) | 0 + if ((d | 0) < H[(a + 8) >> 2]) { + continue + } + break + } + } + j = (j + 1) | 0 + if ((n | 0) != (j | 0)) { + continue + } + break + } + } + ca = (g + 32) | 0 + return 1 + } + Ca() + v() + } + function dj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + g = (ca - 32) | 0 + ca = g + H[(a + 68) >> 2] = f + d = H[(a + 56) >> 2] + e = H[d >> 2] + d = H[(d + 4) >> 2] + H[(g + 24) >> 2] = 0 + H[(g + 16) >> 2] = 0 + H[(g + 20) >> 2] = 0 + a: { + d = (d - e) | 0 + if ((d | 0) > 0) { + m = (a + 60) | 0 + d = (d >>> 2) | 0 + n = d >>> 0 <= 1 ? 1 : d + o = (a + 112) | 0 + while (1) { + e = H[(a + 56) >> 2] + d = H[e >> 2] + if (((H[(e + 4) >> 2] - d) >> 2) >>> 0 <= j >>> 0) { + break a + } + Lb(m, H[(d + (j << 2)) >> 2], (g + 16) | 0) + i = H[(g + 20) >> 2] + d = i >> 31 + h = H[(g + 16) >> 2] + e = h >> 31 + f = ((d ^ i) - d + ((e ^ h) - e)) | 0 + k = H[(g + 24) >> 2] + d = k >> 31 + e = ((d ^ k) - d) | 0 + d = 0 + l = e + e = (e + f) | 0 + d = l >>> 0 > e >>> 0 ? 1 : d + b: { + if (!(d | e)) { + H[(g + 16) >> 2] = H[(a + 108) >> 2] + break b + } + f = H[(a + 108) >> 2] + l = f >> 31 + h = Sj(Rj(f, l, h, h >> 31), da, e, d) + H[(g + 16) >> 2] = h + d = Sj(Rj(f, l, i, i >> 31), da, e, d) + H[(g + 20) >> 2] = d + e = d + d = d >> 31 + e = ((e ^ d) - d) | 0 + d = h >> 31 + d = (e + (((d ^ h) - d) | 0)) | 0 + if ((k | 0) >= 0) { + H[(g + 24) >> 2] = f - d + break b + } + H[(g + 24) >> 2] = d - f + } + d = Ba(o) + f = H[(g + 16) >> 2] + c: { + if (d) { + H[(g + 24) >> 2] = 0 - H[(g + 24) >> 2] + e = (0 - H[(g + 20) >> 2]) | 0 + H[(g + 20) >> 2] = e + f = (0 - f) | 0 + H[(g + 16) >> 2] = f + break c + } + e = H[(g + 20) >> 2] + } + d: { + if ((f | 0) >= 0) { + f = H[(a + 108) >> 2] + d = (f + H[(g + 24) >> 2]) | 0 + f = (e + f) | 0 + break d + } + e: { + if ((e | 0) < 0) { + d = H[(g + 24) >> 2] + f = d >> 31 + f = ((d ^ f) - f) | 0 + break e + } + d = H[(g + 24) >> 2] + f = d >> 31 + f = (H[(a + 100) >> 2] + ((f - (d ^ f)) | 0)) | 0 + } + if ((d | 0) < 0) { + d = e >> 31 + d = ((d ^ e) - d) | 0 + break d + } + d = e >> 31 + d = (H[(a + 100) >> 2] + ((d - (d ^ e)) | 0)) | 0 + } + e = H[(a + 100) >> 2] + f: { + if (!(d | f)) { + d = e + f = d + break f + } + if (!(((d | 0) != (e | 0)) | f)) { + f = d + break f + } + if (!(((e | 0) != (f | 0)) | d)) { + d = f + break f + } + g: { + if (f) { + break g + } + i = H[(a + 108) >> 2] + if ((i | 0) >= (d | 0)) { + break g + } + d = ((i << 1) - d) | 0 + f = 0 + break f + } + h: { + if ((e | 0) != (f | 0)) { + break h + } + i = H[(a + 108) >> 2] + if ((i | 0) <= (d | 0)) { + break h + } + d = ((i << 1) - d) | 0 + break f + } + i: { + if ((d | 0) != (e | 0)) { + break i + } + e = H[(a + 108) >> 2] + if ((e | 0) <= (f | 0)) { + break i + } + f = ((e << 1) - f) | 0 + break f + } + if (d) { + break f + } + d = 0 + e = H[(a + 108) >> 2] + if ((e | 0) >= (f | 0)) { + break f + } + f = ((e << 1) - f) | 0 + } + H[(g + 12) >> 2] = d + H[(g + 8) >> 2] = f + j: { + if (H[(a + 8) >> 2] <= 0) { + break j + } + i = H[(a + 32) >> 2] + f = 0 + while (1) { + d = f << 2 + e = H[(d + ((g + 8) | 0)) >> 2] + h = H[(a + 16) >> 2] + k: { + if ((e | 0) > (h | 0)) { + H[(d + i) >> 2] = h + break k + } + d = (d + i) | 0 + h = H[(a + 12) >> 2] + if ((h | 0) > (e | 0)) { + H[d >> 2] = h + break k + } + H[d >> 2] = e + } + f = (f + 1) | 0 + e = H[(a + 8) >> 2] + if ((f | 0) < (e | 0)) { + continue + } + break + } + d = 0 + if ((e | 0) <= 0) { + break j + } + e = j << 3 + h = (e + c) | 0 + k = (b + e) | 0 + while (1) { + f = d << 2 + e = (f + h) | 0 + f = (H[(f + k) >> 2] + H[(f + i) >> 2]) | 0 + H[e >> 2] = f + l: { + if ((f | 0) > H[(a + 16) >> 2]) { + f = (f - H[(a + 20) >> 2]) | 0 + } else { + if ((f | 0) >= H[(a + 12) >> 2]) { + break l + } + f = (f + H[(a + 20) >> 2]) | 0 + } + H[e >> 2] = f + } + d = (d + 1) | 0 + if ((d | 0) < H[(a + 8) >> 2]) { + continue + } + break + } + } + j = (j + 1) | 0 + if ((n | 0) != (j | 0)) { + continue + } + break + } + } + ca = (g + 32) | 0 + return 1 + } + Ca() + v() + } + function ke(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + h = (ca - 80) | 0 + ca = h + a: { + b: { + if (I[(H[(a + 28) >> 2] + 36) | 0] <= 1) { + d = H[(b + 20) >> 2] + f = H[(b + 16) >> 2] + c = (f + 4) | 0 + d = c >>> 0 < 4 ? (d + 1) | 0 : d + g = H[(b + 12) >> 2] + if ( + ((K[(b + 8) >> 2] < c >>> 0) & ((g | 0) <= (d | 0))) | + ((d | 0) > (g | 0)) + ) { + break a + } + f = (f + H[b >> 2]) | 0 + j = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | (I[(f + 3) | 0] << 24)) + H[(b + 16) >> 2] = c + H[(b + 20) >> 2] = d + break b + } + if (!Pc(1, (h + 76) | 0, b)) { + break a + } + j = H[(h + 76) >> 2] + } + if (!j) { + break a + } + d = H[(b + 8) >> 2] + c = H[(b + 16) >> 2] + d = Rj( + (d - c) | 0, + (H[(b + 12) >> 2] - + ((H[(b + 20) >> 2] + (c >>> 0 > d >>> 0)) | 0)) | + 0, + 5, + 0, + ) + c = da + if (((d >>> 0 < j >>> 0) & ((c | 0) <= 0)) | ((c | 0) < 0)) { + break a + } + c = H[(a + 4) >> 2] + d = (H[(a + 8) >> 2] - c) >> 2 + c: { + if (d >>> 0 < j >>> 0) { + ya((a + 4) | 0, (j - d) | 0) + break c + } + if (d >>> 0 <= j >>> 0) { + break c + } + H[(a + 8) >> 2] = c + (j << 2) + } + p = (a + 16) | 0 + l = H[(a + 32) >> 2] + while (1) { + i = H[(b + 12) >> 2] + c = i + d = H[(b + 20) >> 2] + e = H[(b + 8) >> 2] + f = H[(b + 16) >> 2] + if ( + (((c | 0) <= (d | 0)) & (e >>> 0 <= f >>> 0)) | + ((c | 0) < (d | 0)) + ) { + e = 0 + break a + } + n = H[b >> 2] + q = I[(n + f) | 0] + c = d + g = (f + 1) | 0 + c = g ? c : (c + 1) | 0 + H[(b + 16) >> 2] = g + H[(b + 20) >> 2] = c + if ( + ((e >>> 0 <= g >>> 0) & ((c | 0) >= (i | 0))) | + ((c | 0) > (i | 0)) + ) { + e = 0 + break a + } + g = I[(g + n) | 0] + c = d + k = (f + 2) | 0 + c = k >>> 0 < 2 ? (c + 1) | 0 : c + H[(b + 16) >> 2] = k + H[(b + 20) >> 2] = c + if ( + ((e >>> 0 <= k >>> 0) & ((c | 0) >= (i | 0))) | + ((c | 0) > (i | 0)) + ) { + e = 0 + break a + } + k = I[(k + n) | 0] + c = d + m = (f + 3) | 0 + c = m >>> 0 < 3 ? (c + 1) | 0 : c + H[(b + 16) >> 2] = m + H[(b + 20) >> 2] = c + if ( + ((e >>> 0 <= m >>> 0) & ((c | 0) >= (i | 0))) | + ((c | 0) > (i | 0)) + ) { + e = 0 + break a + } + e = I[(m + n) | 0] + c = d + d = (f + 4) | 0 + c = d >>> 0 < 4 ? (c + 1) | 0 : c + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + if (q >>> 0 > 4) { + e = 0 + break a + } + if (((g - 12) & 255) >>> 0 < 245) { + e = 0 + break a + } + if (!k) { + e = 0 + break a + } + m = Eb((h + 8) | 0) + i = (e | 0) != 0 + d = (g - 1) | 0 + if (d >>> 0 <= 10) { + c = H[((d << 2) + 13584) >> 2] + } else { + c = -1 + } + d = N(c, k) + lc(m, q, k, g, i, d, d >> 31) + d: { + d = J[(H[(a + 28) >> 2] + 36) >> 1] + e: { + if ((((d << 8) | (d >>> 8)) & 65535) >>> 0 <= 258) { + c = H[(b + 20) >> 2] + f = H[(b + 16) >> 2] + d = (f + 2) | 0 + c = d >>> 0 < 2 ? (c + 1) | 0 : c + e = H[(b + 12) >> 2] + if ( + ((K[(b + 8) >> 2] < d >>> 0) & + ((e | 0) <= (c | 0))) | + ((c | 0) > (e | 0)) + ) { + break d + } + f = (f + H[b >> 2]) | 0 + e = I[f | 0] | (I[(f + 1) | 0] << 8) + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + break e + } + if (!Pc(1, (h + 4) | 0, b)) { + break d + } + e = H[(h + 4) >> 2] + } + H[(h + 68) >> 2] = e + d = jc(pa(96), m) + ea[H[(H[l >> 2] + 8) >> 2]]( + l, + (H[(l + 12) >> 2] - H[(l + 8) >> 2]) >> 2, + d, + ) + d = (((H[(l + 12) >> 2] - H[(l + 8) >> 2]) >> 2) - 1) | 0 + f = d << 2 + H[(H[(f + H[(l + 8) >> 2]) >> 2] + 60) >> 2] = e + H[(H[(a + 4) >> 2] + (o << 2)) >> 2] = d + e = H[(a + 16) >> 2] + c = (H[(a + 20) >> 2] - e) >> 2 + f: { + if ((c | 0) > (d | 0)) { + break f + } + H[h >> 2] = -1 + d = (d + 1) | 0 + if (d >>> 0 > c >>> 0) { + Pa(p, (d - c) | 0, h) + e = H[p >> 2] + break f + } + if (c >>> 0 <= d >>> 0) { + break f + } + H[(a + 20) >> 2] = (d << 2) + e + } + H[(e + f) >> 2] = o + e = 1 + o = (o + 1) | 0 + if ((o | 0) != (j | 0)) { + continue + } + break a + } + break + } + e = 0 + } + ca = (h + 80) | 0 + return e | 0 + } + function nd(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + n = ea[H[(H[a >> 2] + 44) >> 2]](a) | 0 + a: { + if ((n | 0) <= 0) { + break a + } + i = (H[(b + 4) >> 2] - H[b >> 2]) >> 2 + e = (ca + -64) | 0 + ca = e + f = Eb(e) + d = N(H[3400], n) + lc( + f, + H[(H[(a + 8) >> 2] + 56) >> 2], + n & 255, + 5, + 0, + d, + d >> 31, + ) + f = jc(pa(96), f) + F[(f + 84) | 0] = 1 + H[(f + 72) >> 2] = H[(f + 68) >> 2] + mb(f, i) + H[(f + 60) >> 2] = H[(H[(a + 8) >> 2] + 60) >> 2] + d = H[(a + 16) >> 2] + H[(a + 16) >> 2] = f + if (d) { + Ga(d) + } + ca = (e - -64) | 0 + h = H[(a + 16) >> 2] + if (!H[(h + 80) >> 2]) { + break a + } + j = H[H[h >> 2] >> 2] + if (!j) { + break a + } + m = H[(c + 12) >> 2] + e = m + d = H[(c + 20) >> 2] + g = H[(c + 8) >> 2] + k = H[(c + 16) >> 2] + if ( + (((e | 0) <= (d | 0)) & (g >>> 0 <= k >>> 0)) | + ((d | 0) > (e | 0)) + ) { + break a + } + l = N(i, n) + i = (j + H[(h + 48) >> 2]) | 0 + h = H[c >> 2] + j = I[(h + k) | 0] + e = (k + 1) | 0 + f = e ? d : (d + 1) | 0 + H[(c + 16) >> 2] = e + H[(c + 20) >> 2] = f + b: { + c: { + if (j) { + if (kd(l, n, c, i)) { + break c + } + break a + } + if ( + (((f | 0) >= (m | 0)) & (e >>> 0 >= g >>> 0)) | + ((f | 0) > (m | 0)) + ) { + break a + } + g = I[(e + h) | 0] + f = (k + 2) | 0 + d = f >>> 0 < 2 ? (d + 1) | 0 : d + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = d + d = H[(H[(a + 16) >> 2] + 64) >> 2] + d = (H[(d + 4) >> 2] - H[d >> 2]) | 0 + if ((g | 0) == H[3400]) { + e = l << 2 + if (e >>> 0 > d >>> 0) { + break a + } + g = H[(c + 8) >> 2] + k = H[(c + 12) >> 2] + j = H[(c + 20) >> 2] + d = H[(c + 16) >> 2] + f = (e + d) | 0 + j = f >>> 0 < e >>> 0 ? (j + 1) | 0 : j + if ( + ((f >>> 0 > g >>> 0) & ((j | 0) >= (k | 0))) | + ((j | 0) > (k | 0)) + ) { + break a + } + qa(i, (d + H[c >> 2]) | 0, e) + f = H[(c + 20) >> 2] + d = (e + H[(c + 16) >> 2]) | 0 + f = d >>> 0 < e >>> 0 ? (f + 1) | 0 : f + H[(c + 16) >> 2] = d + H[(c + 20) >> 2] = f + break c + } + if (d >>> 0 < N(g, l) >>> 0) { + break a + } + d = H[(c + 8) >> 2] + f = H[(c + 16) >> 2] + e = (d - f) | 0 + m = d >>> 0 < f >>> 0 + d = H[(c + 20) >> 2] + k = (H[(c + 12) >> 2] - ((m + d) | 0)) | 0 + m = Rj(g, 0, l, 0) >>> 0 > e >>> 0 + e = da + if ((m & ((e | 0) >= (k | 0))) | ((e | 0) > (k | 0))) { + break a + } + e = 1 + if (!l) { + break b + } + h = 0 + while (1) { + k = H[(c + 8) >> 2] + j = H[(c + 12) >> 2] + e = (f + g) | 0 + d = e >>> 0 < g >>> 0 ? (d + 1) | 0 : d + if ( + ((e >>> 0 > k >>> 0) & ((d | 0) >= (j | 0))) | + ((d | 0) > (j | 0)) + ) { + return 0 + } + qa((i + (h << 2)) | 0, (H[c >> 2] + f) | 0, g) + d = H[(c + 20) >> 2] + f = (g + H[(c + 16) >> 2]) | 0 + d = f >>> 0 < g >>> 0 ? (d + 1) | 0 : d + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = d + h = (h + 1) | 0 + if ((l | 0) != (h | 0)) { + continue + } + break + } + } + e = 1 + if (!l) { + break b + } + d = H[(a + 20) >> 2] + if (d) { + e = 0 + if (ea[H[(H[d >> 2] + 32) >> 2]](d) | 0) { + break b + } + } + g = 0 + h = 0 + d: { + if ((l | 0) <= 0) { + break d + } + if ((l | 0) != 1) { + f = l & -2 + while (1) { + e = g << 2 + d = H[(e + i) >> 2] + H[(e + i) >> 2] = (0 - (d & 1)) ^ (d >>> 1) + d = e | 4 + e = H[(d + i) >> 2] + H[(d + i) >> 2] = (0 - (e & 1)) ^ (e >>> 1) + g = (g + 2) | 0 + h = (h + 2) | 0 + if ((f | 0) != (h | 0)) { + continue + } + break + } + } + if (!(l & 1)) { + break d + } + d = g << 2 + f = H[(d + i) >> 2] + H[(d + i) >> 2] = (0 - (f & 1)) ^ (f >>> 1) + } + e = 0 + } + d = e + f = H[(a + 20) >> 2] + e: { + if (!f) { + break e + } + if (!(ea[H[(H[f >> 2] + 40) >> 2]](f, c) | 0)) { + break a + } + if (d) { + break e + } + a = H[(a + 20) >> 2] + if ( + !( + ea[H[(H[a >> 2] + 44) >> 2]](a, i, i, l, n, H[b >> 2]) | + 0 + ) + ) { + break a + } + } + o = 1 + } + return o | 0 + } + function pb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + h = (ca - 32) | 0 + ca = h + a: { + b: { + if ((H[(a + 8) >> 2] << 5) >>> 0 >= b >>> 0) { + break b + } + if ((b | 0) < 0) { + break a + } + b = ((((b - 1) >>> 5) | 0) + 1) | 0 + c = pa(b << 2) + H[(h + 24) >> 2] = b + H[(h + 20) >> 2] = 0 + H[(h + 16) >> 2] = c + b = H[a >> 2] + H[(h + 12) >> 2] = 0 + H[(h + 8) >> 2] = b + c = H[(a + 4) >> 2] + H[(h + 4) >> 2] = c & 31 + H[h >> 2] = b + ((c >>> 3) & 536870908) + e = (ca - 32) | 0 + ca = e + i = H[(h + 4) >> 2] + g = H[(h + 12) >> 2] + j = H[h >> 2] + d = H[(h + 8) >> 2] + b = (((i - g) | 0) + ((j - d) << 3)) | 0 + f = H[(h + 20) >> 2] + c = (b + f) | 0 + H[(h + 20) >> 2] = c + if (!(((c - 1) ^ (f - 1)) >>> 0 < 32 ? f : 0)) { + H[ + (H[(h + 16) >> 2] + + ((c >>> 0 >= 33 ? ((c - 1) >>> 5) | 0 : 0) << 2)) >> + 2 + ] = 0 + } + c = (H[(h + 16) >> 2] + ((f >>> 3) & 536870908)) | 0 + f = f & 31 + c: { + if ((f | 0) == (g | 0)) { + if ((b | 0) <= 0) { + break c + } + if (g) { + i = (32 - g) | 0 + f = (b | 0) < (i | 0) ? b : i + i = (-1 << g) & (-1 >>> (i - f)) + H[c >> 2] = (H[c >> 2] & (i ^ -1)) | (i & H[d >> 2]) + d = (d + 4) | 0 + c = ((((g + f) >>> 3) & 536870908) + c) | 0 + b = (b - f) | 0 + } + g = ((b | 0) / 32) | 0 + if ((b + 31) >>> 0 >= 63) { + va(c, d, g << 2) + } + b = (b - (g << 5)) | 0 + if ((b | 0) <= 0) { + break c + } + f = c + c = g << 2 + g = (f + c) | 0 + b = (-1 >>> (32 - b)) | 0 + H[g >> 2] = + (H[g >> 2] & (b ^ -1)) | (b & H[(c + d) >> 2]) + break c + } + H[(e + 28) >> 2] = g + H[(e + 24) >> 2] = d + H[(e + 20) >> 2] = i + H[(e + 16) >> 2] = j + H[(e + 12) >> 2] = f + H[(e + 8) >> 2] = c + b = H[(e + 28) >> 2] + c = H[(e + 24) >> 2] + g = + (((H[(e + 20) >> 2] - b) | 0) + + ((H[(e + 16) >> 2] - c) << 3)) | + 0 + d: { + if ((g | 0) <= 0) { + b = H[(e + 12) >> 2] + d = H[(e + 8) >> 2] + break d + } + e: { + if (!b) { + b = H[(e + 12) >> 2] + break e + } + d = H[(e + 12) >> 2] + j = (32 - d) | 0 + k = (32 - b) | 0 + f = (g | 0) < (k | 0) ? g : k + i = f >>> 0 > j >>> 0 ? j : f + l = H[(e + 8) >> 2] + m = H[l >> 2] & (((-1 << d) & (-1 >>> (j - i))) ^ -1) + j = H[c >> 2] & ((-1 << b) & (-1 >>> (k - f))) + H[l >> 2] = + m | + (b >>> 0 < d >>> 0 + ? j << (d - b) + : (j >>> (b - d)) | 0) + c = (d + i) | 0 + b = c & 31 + H[(e + 12) >> 2] = b + d = (l + ((c >>> 3) & 536870908)) | 0 + H[(e + 8) >> 2] = d + c = (f - i) | 0 + if ((c | 0) > 0) { + H[d >> 2] = + (H[d >> 2] & ((-1 >>> (32 - c)) ^ -1)) | + (j >>> (i + H[(e + 28) >> 2])) + H[(e + 12) >> 2] = c + b = c + } + g = (g - f) | 0 + c = (H[(e + 24) >> 2] + 4) | 0 + H[(e + 24) >> 2] = c + } + i = -1 << b + f = (32 - b) | 0 + if ((g | 0) >= 32) { + j = i ^ -1 + while (1) { + d = H[(e + 8) >> 2] + c = H[c >> 2] + H[d >> 2] = (j & H[d >> 2]) | (c << b) + H[(e + 8) >> 2] = d + 4 + H[(d + 4) >> 2] = (i & H[(d + 4) >> 2]) | (c >>> f) + c = (H[(e + 24) >> 2] + 4) | 0 + H[(e + 24) >> 2] = c + d = g >>> 0 > 63 + g = (g - 32) | 0 + if (d) { + continue + } + break + } + } + d = H[(e + 8) >> 2] + if ((g | 0) <= 0) { + break d + } + j = f + f = (g | 0) > (f | 0) ? f : g + j = H[d >> 2] & ((i & (-1 >>> (j - f))) ^ -1) + i = H[c >> 2] & (-1 >>> (32 - g)) + H[d >> 2] = j | (i << b) + b = (b + f) | 0 + c = b & 31 + H[(e + 12) >> 2] = c + d = (((b >>> 3) & 536870908) + d) | 0 + H[(e + 8) >> 2] = d + b = (g - f) | 0 + if ((b | 0) <= 0) { + b = c + break d + } + H[d >> 2] = + (H[d >> 2] & ((-1 >>> (32 - b)) ^ -1)) | (i >>> f) + H[(e + 12) >> 2] = b + } + H[(e + 4) >> 2] = b + H[e >> 2] = d + } + ca = (e + 32) | 0 + b = H[a >> 2] + H[a >> 2] = H[(h + 16) >> 2] + H[(h + 16) >> 2] = b + c = H[(a + 4) >> 2] + H[(a + 4) >> 2] = H[(h + 20) >> 2] + H[(h + 20) >> 2] = c + c = H[(a + 8) >> 2] + H[(a + 8) >> 2] = H[(h + 24) >> 2] + H[(h + 24) >> 2] = c + if (!b) { + break b + } + oa(b) + } + ca = (h + 32) | 0 + return + } + sa() + v() + } + function Ne(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + c = J[(b + 38) >> 1] + a: { + if (!c) { + break a + } + b: { + if (c >>> 0 <= 511) { + g = H[(b + 8) >> 2] + e = H[(b + 12) >> 2] + d = H[(b + 20) >> 2] + c = H[(b + 16) >> 2] + i = (c + 4) | 0 + d = i >>> 0 < 4 ? (d + 1) | 0 : d + if ( + ((g >>> 0 < i >>> 0) & ((d | 0) >= (e | 0))) | + ((d | 0) > (e | 0)) + ) { + break a + } + c = (c + H[b >> 2]) | 0 + f = + I[c | 0] | + (I[(c + 1) | 0] << 8) | + ((I[(c + 2) | 0] << 16) | (I[(c + 3) | 0] << 24)) + H[(a + 12) >> 2] = f + d = H[(b + 20) >> 2] + c = (H[(b + 16) >> 2] + 4) | 0 + d = c >>> 0 < 4 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = c + H[(b + 20) >> 2] = d + break b + } + if (!hb(1, (a + 12) | 0, b)) { + break a + } + c = H[(b + 16) >> 2] + d = H[(b + 20) >> 2] + f = H[(a + 12) >> 2] + } + e = H[(b + 8) >> 2] + i = (e - c) | 0 + c = (H[(b + 12) >> 2] - ((d + (c >>> 0 > e >>> 0)) | 0)) | 0 + if ( + ((i >>> 0 < (f >>> 6) >>> 0) & ((c | 0) <= 0)) | + ((c | 0) < 0) + ) { + break a + } + d = H[a >> 2] + c = (H[(a + 4) >> 2] - d) >> 2 + c: { + if (c >>> 0 < f >>> 0) { + ya(a, (f - c) | 0) + f = H[(a + 12) >> 2] + break c + } + if (c >>> 0 <= f >>> 0) { + break c + } + H[(a + 4) >> 2] = d + (f << 2) + } + if (!f) { + return 1 + } + c = H[(b + 16) >> 2] + d = H[(b + 20) >> 2] + l = H[a >> 2] + i = H[(b + 8) >> 2] + j = H[(b + 12) >> 2] + g = 0 + while (1) { + if ( + (((d | 0) >= (j | 0)) & (c >>> 0 >= i >>> 0)) | + ((d | 0) > (j | 0)) + ) { + return 0 + } + m = H[b >> 2] + k = I[(m + c) | 0] + c = (c + 1) | 0 + d = c ? d : (d + 1) | 0 + H[(b + 16) >> 2] = c + H[(b + 20) >> 2] = d + e = (k >>> 2) | 0 + h = 0 + d: { + e: { + f: { + g: { + n = k & 3 + switch (n | 0) { + case 0: + break e + case 3: + break g + default: + break f + } + } + e = (e + g) | 0 + if (e >>> 0 >= f >>> 0) { + return 0 + } + ra((l + (g << 2)) | 0, 0, ((k & 252) + 4) | 0) + g = e + break d + } + while (1) { + if (((c | 0) == (i | 0)) & ((d | 0) == (j | 0))) { + break a + } + f = I[(c + m) | 0] + c = (c + 1) | 0 + d = c ? d : (d + 1) | 0 + H[(b + 16) >> 2] = c + H[(b + 20) >> 2] = d + e = (f << ((h << 3) | 6)) | e + h = (h + 1) | 0 + if ((n | 0) != (h | 0)) { + continue + } + break + } + } + H[(l + (g << 2)) >> 2] = e + } + f = H[(a + 12) >> 2] + g = (g + 1) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + b = (a + 16) | 0 + i = H[a >> 2] + d = H[(a + 16) >> 2] + c = (H[(a + 20) >> 2] - d) | 0 + h: { + if (c >>> 0 <= 16383) { + ya(b, (4096 - ((c >>> 2) | 0)) | 0) + break h + } + if ((c | 0) == 16384) { + break h + } + H[(a + 20) >> 2] = d + 16384 + } + c = (a + 28) | 0 + g = H[c >> 2] + d = (H[(a + 32) >> 2] - g) >> 3 + i: { + if (d >>> 0 < f >>> 0) { + ob(c, (f - d) | 0) + g = H[c >> 2] + break i + } + if (d >>> 0 > f >>> 0) { + H[(a + 32) >> 2] = (f << 3) + g + } + if (!f) { + break a + } + } + d = H[b >> 2] + b = 0 + a = 0 + while (1) { + c = (i + (b << 2)) | 0 + h = H[c >> 2] + e = a + j = ((b << 3) + g) | 0 + H[(j + 4) >> 2] = a + H[j >> 2] = h + c = H[c >> 2] + a = (c + a) | 0 + if (a >>> 0 > 4096) { + break a + } + j: { + if (a >>> 0 <= e >>> 0) { + break j + } + h = 0 + j = c & 7 + if (j) { + while (1) { + H[(d + (e << 2)) >> 2] = b + e = (e + 1) | 0 + h = (h + 1) | 0 + if ((j | 0) != (h | 0)) { + continue + } + break + } + } + if ((c - 1) >>> 0 <= 6) { + break j + } + while (1) { + c = (d + (e << 2)) | 0 + H[c >> 2] = b + H[(c + 28) >> 2] = b + H[(c + 24) >> 2] = b + H[(c + 20) >> 2] = b + H[(c + 16) >> 2] = b + H[(c + 12) >> 2] = b + H[(c + 8) >> 2] = b + H[(c + 4) >> 2] = b + e = (e + 8) | 0 + if ((e | 0) != (a | 0)) { + continue + } + break + } + } + b = (b + 1) | 0 + if ((f | 0) != (b | 0)) { + continue + } + break + } + o = (a | 0) == 4096 + } + return o + } + function Ni(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + g = (ca - 48) | 0 + ca = g + d = H[(a + 8) >> 2] + if ((d - 2) >>> 0 <= 28) { + H[(a + 76) >> 2] = d + e = -1 << d + d = (-2 - e) | 0 + H[(a + 84) >> 2] = d + H[(a + 80) >> 2] = e ^ -1 + H[(a + 92) >> 2] = (d | 0) / 2 + L[(a + 88) >> 2] = O(2) / O(d | 0) + } + H[(a + 52) >> 2] = f + d = H[(a + 40) >> 2] + e = H[d >> 2] + d = H[(d + 4) >> 2] + H[(g + 16) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + a: { + d = (d - e) | 0 + if ((d | 0) > 0) { + m = (a + 8) | 0 + n = (a + 44) | 0 + d = (d >>> 2) | 0 + o = d >>> 0 <= 1 ? 1 : d + p = (a + 96) | 0 + while (1) { + e = H[(a + 40) >> 2] + d = H[e >> 2] + if (((H[(e + 4) >> 2] - d) >> 2) >>> 0 <= j >>> 0) { + break a + } + Nb(n, H[(d + (j << 2)) >> 2], (g + 8) | 0) + h = H[(g + 12) >> 2] + d = h >> 31 + i = H[(g + 8) >> 2] + e = i >> 31 + f = ((d ^ h) - d + ((e ^ i) - e)) | 0 + l = H[(g + 16) >> 2] + d = l >> 31 + e = ((d ^ l) - d) | 0 + d = 0 + k = e + e = (e + f) | 0 + d = k >>> 0 > e >>> 0 ? 1 : d + b: { + if (!(d | e)) { + H[(g + 8) >> 2] = H[(a + 92) >> 2] + break b + } + f = H[(a + 92) >> 2] + k = f >> 31 + i = Sj(Rj(f, k, i, i >> 31), da, e, d) + H[(g + 8) >> 2] = i + d = Sj(Rj(f, k, h, h >> 31), da, e, d) + H[(g + 12) >> 2] = d + e = d >> 31 + e = ((d ^ e) - e) | 0 + d = i >> 31 + d = (e + (((d ^ i) - d) | 0)) | 0 + if ((l | 0) >= 0) { + H[(g + 16) >> 2] = f - d + break b + } + H[(g + 16) >> 2] = d - f + } + d = Ba(p) + f = H[(g + 8) >> 2] + c: { + if (d) { + H[(g + 16) >> 2] = 0 - H[(g + 16) >> 2] + e = (0 - H[(g + 12) >> 2]) | 0 + H[(g + 12) >> 2] = e + f = (0 - f) | 0 + H[(g + 8) >> 2] = f + break c + } + e = H[(g + 12) >> 2] + } + d: { + if ((f | 0) >= 0) { + f = H[(a + 92) >> 2] + d = (f + H[(g + 16) >> 2]) | 0 + f = (e + f) | 0 + break d + } + e: { + if ((e | 0) < 0) { + d = H[(g + 16) >> 2] + f = d >> 31 + f = ((d ^ f) - f) | 0 + break e + } + d = H[(g + 16) >> 2] + f = d >> 31 + f = (H[(a + 84) >> 2] + ((f - (d ^ f)) | 0)) | 0 + } + if ((d | 0) < 0) { + d = e >> 31 + d = ((d ^ e) - d) | 0 + break d + } + d = e >> 31 + d = (H[(a + 84) >> 2] + ((d - (d ^ e)) | 0)) | 0 + } + e = H[(a + 84) >> 2] + f: { + if (!(d | f)) { + d = e + f = d + break f + } + if (!(((d | 0) != (e | 0)) | f)) { + f = d + break f + } + if (!(((e | 0) != (f | 0)) | d)) { + d = f + break f + } + g: { + if (f) { + break g + } + h = H[(a + 92) >> 2] + if ((h | 0) >= (d | 0)) { + break g + } + d = ((h << 1) - d) | 0 + f = 0 + break f + } + h: { + if ((e | 0) != (f | 0)) { + break h + } + h = H[(a + 92) >> 2] + if ((h | 0) <= (d | 0)) { + break h + } + d = ((h << 1) - d) | 0 + break f + } + i: { + if ((d | 0) != (e | 0)) { + break i + } + e = H[(a + 92) >> 2] + if ((e | 0) <= (f | 0)) { + break i + } + f = ((e << 1) - f) | 0 + break f + } + if (d) { + break f + } + d = 0 + e = H[(a + 92) >> 2] + if ((e | 0) >= (f | 0)) { + break f + } + f = ((e << 1) - f) | 0 + } + e = j << 3 + h = (e + b) | 0 + i = H[h >> 2] + h = H[(h + 4) >> 2] + H[(g + 36) >> 2] = d + H[(g + 32) >> 2] = f + H[(g + 24) >> 2] = i + H[(g + 28) >> 2] = h + qc((g + 40) | 0, m, (g + 32) | 0, (g + 24) | 0) + d = (c + e) | 0 + H[d >> 2] = H[(g + 40) >> 2] + H[(d + 4) >> 2] = H[(g + 44) >> 2] + j = (j + 1) | 0 + if ((o | 0) != (j | 0)) { + continue + } + break + } + } + ca = (g + 48) | 0 + return 1 + } + Ca() + v() + } + function Ii(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + g = (ca - 48) | 0 + ca = g + d = H[(a + 8) >> 2] + if ((d - 2) >>> 0 <= 28) { + H[(a + 76) >> 2] = d + e = -1 << d + d = (-2 - e) | 0 + H[(a + 84) >> 2] = d + H[(a + 80) >> 2] = e ^ -1 + H[(a + 92) >> 2] = (d | 0) / 2 + L[(a + 88) >> 2] = O(2) / O(d | 0) + } + H[(a + 52) >> 2] = f + d = H[(a + 40) >> 2] + e = H[d >> 2] + d = H[(d + 4) >> 2] + H[(g + 16) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + a: { + d = (d - e) | 0 + if ((d | 0) > 0) { + m = (a + 8) | 0 + n = (a + 44) | 0 + d = (d >>> 2) | 0 + o = d >>> 0 <= 1 ? 1 : d + p = (a + 96) | 0 + while (1) { + e = H[(a + 40) >> 2] + d = H[e >> 2] + if (((H[(e + 4) >> 2] - d) >> 2) >>> 0 <= j >>> 0) { + break a + } + Lb(n, H[(d + (j << 2)) >> 2], (g + 8) | 0) + h = H[(g + 12) >> 2] + d = h >> 31 + i = H[(g + 8) >> 2] + e = i >> 31 + f = ((d ^ h) - d + ((e ^ i) - e)) | 0 + l = H[(g + 16) >> 2] + d = l >> 31 + e = ((d ^ l) - d) | 0 + d = 0 + k = e + e = (e + f) | 0 + d = k >>> 0 > e >>> 0 ? 1 : d + b: { + if (!(d | e)) { + H[(g + 8) >> 2] = H[(a + 92) >> 2] + break b + } + f = H[(a + 92) >> 2] + k = f >> 31 + i = Sj(Rj(f, k, i, i >> 31), da, e, d) + H[(g + 8) >> 2] = i + d = Sj(Rj(f, k, h, h >> 31), da, e, d) + H[(g + 12) >> 2] = d + e = d >> 31 + e = ((d ^ e) - e) | 0 + d = i >> 31 + d = (e + (((d ^ i) - d) | 0)) | 0 + if ((l | 0) >= 0) { + H[(g + 16) >> 2] = f - d + break b + } + H[(g + 16) >> 2] = d - f + } + d = Ba(p) + f = H[(g + 8) >> 2] + c: { + if (d) { + H[(g + 16) >> 2] = 0 - H[(g + 16) >> 2] + e = (0 - H[(g + 12) >> 2]) | 0 + H[(g + 12) >> 2] = e + f = (0 - f) | 0 + H[(g + 8) >> 2] = f + break c + } + e = H[(g + 12) >> 2] + } + d: { + if ((f | 0) >= 0) { + f = H[(a + 92) >> 2] + d = (f + H[(g + 16) >> 2]) | 0 + f = (e + f) | 0 + break d + } + e: { + if ((e | 0) < 0) { + d = H[(g + 16) >> 2] + f = d >> 31 + f = ((d ^ f) - f) | 0 + break e + } + d = H[(g + 16) >> 2] + f = d >> 31 + f = (H[(a + 84) >> 2] + ((f - (d ^ f)) | 0)) | 0 + } + if ((d | 0) < 0) { + d = e >> 31 + d = ((d ^ e) - d) | 0 + break d + } + d = e >> 31 + d = (H[(a + 84) >> 2] + ((d - (d ^ e)) | 0)) | 0 + } + e = H[(a + 84) >> 2] + f: { + if (!(d | f)) { + d = e + f = d + break f + } + if (!(((d | 0) != (e | 0)) | f)) { + f = d + break f + } + if (!(((e | 0) != (f | 0)) | d)) { + d = f + break f + } + g: { + if (f) { + break g + } + h = H[(a + 92) >> 2] + if ((h | 0) >= (d | 0)) { + break g + } + d = ((h << 1) - d) | 0 + f = 0 + break f + } + h: { + if ((e | 0) != (f | 0)) { + break h + } + h = H[(a + 92) >> 2] + if ((h | 0) <= (d | 0)) { + break h + } + d = ((h << 1) - d) | 0 + break f + } + i: { + if ((d | 0) != (e | 0)) { + break i + } + e = H[(a + 92) >> 2] + if ((e | 0) <= (f | 0)) { + break i + } + f = ((e << 1) - f) | 0 + break f + } + if (d) { + break f + } + d = 0 + e = H[(a + 92) >> 2] + if ((e | 0) >= (f | 0)) { + break f + } + f = ((e << 1) - f) | 0 + } + e = j << 3 + h = (e + b) | 0 + i = H[h >> 2] + h = H[(h + 4) >> 2] + H[(g + 36) >> 2] = d + H[(g + 32) >> 2] = f + H[(g + 24) >> 2] = i + H[(g + 28) >> 2] = h + qc((g + 40) | 0, m, (g + 32) | 0, (g + 24) | 0) + d = (c + e) | 0 + H[d >> 2] = H[(g + 40) >> 2] + H[(d + 4) >> 2] = H[(g + 44) >> 2] + j = (j + 1) | 0 + if ((o | 0) != (j | 0)) { + continue + } + break + } + } + ca = (g + 48) | 0 + return 1 + } + Ca() + v() + } + function Wi(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + g = (ca - 48) | 0 + ca = g + d = H[(a + 8) >> 2] + if ((d - 2) >>> 0 <= 28) { + H[(a + 76) >> 2] = d + e = -1 << d + d = (-2 - e) | 0 + H[(a + 84) >> 2] = d + H[(a + 80) >> 2] = e ^ -1 + H[(a + 92) >> 2] = (d | 0) / 2 + L[(a + 88) >> 2] = O(2) / O(d | 0) + } + H[(a + 52) >> 2] = f + d = H[(a + 40) >> 2] + e = H[d >> 2] + d = H[(d + 4) >> 2] + H[(g + 16) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + a: { + d = (d - e) | 0 + if ((d | 0) > 0) { + m = (a + 8) | 0 + n = (a + 44) | 0 + d = (d >>> 2) | 0 + o = d >>> 0 <= 1 ? 1 : d + p = (a + 96) | 0 + while (1) { + e = H[(a + 40) >> 2] + d = H[e >> 2] + if (((H[(e + 4) >> 2] - d) >> 2) >>> 0 <= j >>> 0) { + break a + } + Nb(n, H[(d + (j << 2)) >> 2], (g + 8) | 0) + h = H[(g + 12) >> 2] + d = h >> 31 + i = H[(g + 8) >> 2] + e = i >> 31 + f = ((d ^ h) - d + ((e ^ i) - e)) | 0 + l = H[(g + 16) >> 2] + d = l >> 31 + e = ((d ^ l) - d) | 0 + d = 0 + k = e + e = (e + f) | 0 + d = k >>> 0 > e >>> 0 ? 1 : d + b: { + if (!(d | e)) { + H[(g + 8) >> 2] = H[(a + 92) >> 2] + break b + } + f = H[(a + 92) >> 2] + k = f >> 31 + i = Sj(Rj(f, k, i, i >> 31), da, e, d) + H[(g + 8) >> 2] = i + d = Sj(Rj(f, k, h, h >> 31), da, e, d) + H[(g + 12) >> 2] = d + e = d >> 31 + e = ((d ^ e) - e) | 0 + d = i >> 31 + d = (e + (((d ^ i) - d) | 0)) | 0 + if ((l | 0) >= 0) { + H[(g + 16) >> 2] = f - d + break b + } + H[(g + 16) >> 2] = d - f + } + d = Ba(p) + f = H[(g + 8) >> 2] + c: { + if (d) { + H[(g + 16) >> 2] = 0 - H[(g + 16) >> 2] + e = (0 - H[(g + 12) >> 2]) | 0 + H[(g + 12) >> 2] = e + f = (0 - f) | 0 + H[(g + 8) >> 2] = f + break c + } + e = H[(g + 12) >> 2] + } + d: { + if ((f | 0) >= 0) { + f = H[(a + 92) >> 2] + d = (f + H[(g + 16) >> 2]) | 0 + f = (e + f) | 0 + break d + } + e: { + if ((e | 0) < 0) { + d = H[(g + 16) >> 2] + f = d >> 31 + f = ((d ^ f) - f) | 0 + break e + } + d = H[(g + 16) >> 2] + f = d >> 31 + f = (H[(a + 84) >> 2] + ((f - (d ^ f)) | 0)) | 0 + } + if ((d | 0) < 0) { + d = e >> 31 + d = ((d ^ e) - d) | 0 + break d + } + d = e >> 31 + d = (H[(a + 84) >> 2] + ((d - (d ^ e)) | 0)) | 0 + } + e = H[(a + 84) >> 2] + f: { + if (!(d | f)) { + d = e + f = d + break f + } + if (!(((d | 0) != (e | 0)) | f)) { + f = d + break f + } + if (!(((e | 0) != (f | 0)) | d)) { + d = f + break f + } + g: { + if (f) { + break g + } + h = H[(a + 92) >> 2] + if ((h | 0) >= (d | 0)) { + break g + } + d = ((h << 1) - d) | 0 + f = 0 + break f + } + h: { + if ((e | 0) != (f | 0)) { + break h + } + h = H[(a + 92) >> 2] + if ((h | 0) <= (d | 0)) { + break h + } + d = ((h << 1) - d) | 0 + break f + } + i: { + if ((d | 0) != (e | 0)) { + break i + } + e = H[(a + 92) >> 2] + if ((e | 0) <= (f | 0)) { + break i + } + f = ((e << 1) - f) | 0 + break f + } + if (d) { + break f + } + d = 0 + e = H[(a + 92) >> 2] + if ((e | 0) >= (f | 0)) { + break f + } + f = ((e << 1) - f) | 0 + } + e = j << 3 + h = (e + b) | 0 + i = H[(h + 4) >> 2] + H[(g + 40) >> 2] = H[h >> 2] + H[(g + 44) >> 2] = i + H[(g + 28) >> 2] = d + H[(g + 24) >> 2] = f + rc((g + 32) | 0, m, (g + 24) | 0, (g + 40) | 0) + d = (c + e) | 0 + H[d >> 2] = H[(g + 32) >> 2] + H[(d + 4) >> 2] = H[(g + 36) >> 2] + j = (j + 1) | 0 + if ((o | 0) != (j | 0)) { + continue + } + break + } + } + ca = (g + 48) | 0 + return 1 + } + Ca() + v() + } + function Ri(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + g = (ca - 48) | 0 + ca = g + d = H[(a + 8) >> 2] + if ((d - 2) >>> 0 <= 28) { + H[(a + 76) >> 2] = d + e = -1 << d + d = (-2 - e) | 0 + H[(a + 84) >> 2] = d + H[(a + 80) >> 2] = e ^ -1 + H[(a + 92) >> 2] = (d | 0) / 2 + L[(a + 88) >> 2] = O(2) / O(d | 0) + } + H[(a + 52) >> 2] = f + d = H[(a + 40) >> 2] + e = H[d >> 2] + d = H[(d + 4) >> 2] + H[(g + 16) >> 2] = 0 + H[(g + 8) >> 2] = 0 + H[(g + 12) >> 2] = 0 + a: { + d = (d - e) | 0 + if ((d | 0) > 0) { + m = (a + 8) | 0 + n = (a + 44) | 0 + d = (d >>> 2) | 0 + o = d >>> 0 <= 1 ? 1 : d + p = (a + 96) | 0 + while (1) { + e = H[(a + 40) >> 2] + d = H[e >> 2] + if (((H[(e + 4) >> 2] - d) >> 2) >>> 0 <= j >>> 0) { + break a + } + Lb(n, H[(d + (j << 2)) >> 2], (g + 8) | 0) + h = H[(g + 12) >> 2] + d = h >> 31 + i = H[(g + 8) >> 2] + e = i >> 31 + f = ((d ^ h) - d + ((e ^ i) - e)) | 0 + l = H[(g + 16) >> 2] + d = l >> 31 + e = ((d ^ l) - d) | 0 + d = 0 + k = e + e = (e + f) | 0 + d = k >>> 0 > e >>> 0 ? 1 : d + b: { + if (!(d | e)) { + H[(g + 8) >> 2] = H[(a + 92) >> 2] + break b + } + f = H[(a + 92) >> 2] + k = f >> 31 + i = Sj(Rj(f, k, i, i >> 31), da, e, d) + H[(g + 8) >> 2] = i + d = Sj(Rj(f, k, h, h >> 31), da, e, d) + H[(g + 12) >> 2] = d + e = d >> 31 + e = ((d ^ e) - e) | 0 + d = i >> 31 + d = (e + (((d ^ i) - d) | 0)) | 0 + if ((l | 0) >= 0) { + H[(g + 16) >> 2] = f - d + break b + } + H[(g + 16) >> 2] = d - f + } + d = Ba(p) + f = H[(g + 8) >> 2] + c: { + if (d) { + H[(g + 16) >> 2] = 0 - H[(g + 16) >> 2] + e = (0 - H[(g + 12) >> 2]) | 0 + H[(g + 12) >> 2] = e + f = (0 - f) | 0 + H[(g + 8) >> 2] = f + break c + } + e = H[(g + 12) >> 2] + } + d: { + if ((f | 0) >= 0) { + f = H[(a + 92) >> 2] + d = (f + H[(g + 16) >> 2]) | 0 + f = (e + f) | 0 + break d + } + e: { + if ((e | 0) < 0) { + d = H[(g + 16) >> 2] + f = d >> 31 + f = ((d ^ f) - f) | 0 + break e + } + d = H[(g + 16) >> 2] + f = d >> 31 + f = (H[(a + 84) >> 2] + ((f - (d ^ f)) | 0)) | 0 + } + if ((d | 0) < 0) { + d = e >> 31 + d = ((d ^ e) - d) | 0 + break d + } + d = e >> 31 + d = (H[(a + 84) >> 2] + ((d - (d ^ e)) | 0)) | 0 + } + e = H[(a + 84) >> 2] + f: { + if (!(d | f)) { + d = e + f = d + break f + } + if (!(((d | 0) != (e | 0)) | f)) { + f = d + break f + } + if (!(((e | 0) != (f | 0)) | d)) { + d = f + break f + } + g: { + if (f) { + break g + } + h = H[(a + 92) >> 2] + if ((h | 0) >= (d | 0)) { + break g + } + d = ((h << 1) - d) | 0 + f = 0 + break f + } + h: { + if ((e | 0) != (f | 0)) { + break h + } + h = H[(a + 92) >> 2] + if ((h | 0) <= (d | 0)) { + break h + } + d = ((h << 1) - d) | 0 + break f + } + i: { + if ((d | 0) != (e | 0)) { + break i + } + e = H[(a + 92) >> 2] + if ((e | 0) <= (f | 0)) { + break i + } + f = ((e << 1) - f) | 0 + break f + } + if (d) { + break f + } + d = 0 + e = H[(a + 92) >> 2] + if ((e | 0) >= (f | 0)) { + break f + } + f = ((e << 1) - f) | 0 + } + e = j << 3 + h = (e + b) | 0 + i = H[(h + 4) >> 2] + H[(g + 40) >> 2] = H[h >> 2] + H[(g + 44) >> 2] = i + H[(g + 28) >> 2] = d + H[(g + 24) >> 2] = f + rc((g + 32) | 0, m, (g + 24) | 0, (g + 40) | 0) + d = (c + e) | 0 + H[d >> 2] = H[(g + 32) >> 2] + H[(d + 4) >> 2] = H[(g + 36) >> 2] + j = (j + 1) | 0 + if ((o | 0) != (j | 0)) { + continue + } + break + } + } + ca = (g + 48) | 0 + return 1 + } + Ca() + v() + } + function Ge(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + f = (ca - 16) | 0 + ca = f + c = H[(a + 4) >> 2] + H[(a + 40) >> 2] = H[a >> 2] + H[(a + 44) >> 2] = c + c = H[(a + 36) >> 2] + H[(a + 72) >> 2] = H[(a + 32) >> 2] + H[(a + 76) >> 2] = c + d = H[(a + 28) >> 2] + c = (a - -64) | 0 + H[c >> 2] = H[(a + 24) >> 2] + H[(c + 4) >> 2] = d + c = H[(a + 20) >> 2] + H[(a + 56) >> 2] = H[(a + 16) >> 2] + H[(a + 60) >> 2] = c + c = H[(a + 12) >> 2] + H[(a + 48) >> 2] = H[(a + 8) >> 2] + H[(a + 52) >> 2] = c + a: { + b: { + if (Db((a + 40) | 0, 1, (f + 8) | 0)) { + c = H[(a + 44) >> 2] + H[a >> 2] = H[(a + 40) >> 2] + H[(a + 4) >> 2] = c + c = H[(a + 76) >> 2] + H[(a + 32) >> 2] = H[(a + 72) >> 2] + H[(a + 36) >> 2] = c + c = H[(a + 68) >> 2] + H[(a + 24) >> 2] = H[(a + 64) >> 2] + H[(a + 28) >> 2] = c + d = H[(a + 60) >> 2] + h = d + c = H[(a + 56) >> 2] + H[(a + 16) >> 2] = c + H[(a + 20) >> 2] = d + e = H[(a + 52) >> 2] + d = H[(a + 48) >> 2] + H[(a + 8) >> 2] = d + H[(a + 12) >> 2] = e + i = (d - c) | 0 + g = H[(f + 12) >> 2] + e = (e - (((c >>> 0 > d >>> 0) + h) | 0)) | 0 + d = H[(f + 8) >> 2] + if ( + (((g | 0) == (e | 0)) & (i >>> 0 >= d >>> 0)) | + (e >>> 0 > g >>> 0) + ) { + break b + } + } + c = 0 + break a + } + e = (h + g) | 0 + c = (c + d) | 0 + e = c >>> 0 < d >>> 0 ? (e + 1) | 0 : e + H[(a + 16) >> 2] = c + H[(a + 20) >> 2] = e + c: { + if (J[(a + 38) >> 1] <= 513) { + c = H[(a + 4) >> 2] + H[(a + 96) >> 2] = H[a >> 2] + H[(a + 100) >> 2] = c + c = H[(a + 36) >> 2] + H[(a + 128) >> 2] = H[(a + 32) >> 2] + H[(a + 132) >> 2] = c + c = H[(a + 28) >> 2] + H[(a + 120) >> 2] = H[(a + 24) >> 2] + H[(a + 124) >> 2] = c + c = H[(a + 20) >> 2] + H[(a + 112) >> 2] = H[(a + 16) >> 2] + H[(a + 116) >> 2] = c + c = H[(a + 12) >> 2] + H[(a + 104) >> 2] = H[(a + 8) >> 2] + H[(a + 108) >> 2] = c + d: { + if (Db((a + 96) | 0, 1, (f + 8) | 0)) { + c = H[(a + 100) >> 2] + H[a >> 2] = H[(a + 96) >> 2] + H[(a + 4) >> 2] = c + c = H[(a + 132) >> 2] + H[(a + 32) >> 2] = H[(a + 128) >> 2] + H[(a + 36) >> 2] = c + c = H[(a + 124) >> 2] + H[(a + 24) >> 2] = H[(a + 120) >> 2] + H[(a + 28) >> 2] = c + d = H[(a + 116) >> 2] + h = d + c = H[(a + 112) >> 2] + H[(a + 16) >> 2] = c + H[(a + 20) >> 2] = d + e = H[(a + 108) >> 2] + d = H[(a + 104) >> 2] + H[(a + 8) >> 2] = d + H[(a + 12) >> 2] = e + i = (d - c) | 0 + g = H[(f + 12) >> 2] + e = (e - (((c >>> 0 > d >>> 0) + h) | 0)) | 0 + d = H[(f + 8) >> 2] + if ( + (((g | 0) == (e | 0)) & (i >>> 0 >= d >>> 0)) | + (e >>> 0 > g >>> 0) + ) { + break d + } + } + c = 0 + break a + } + e = (h + g) | 0 + c = (c + d) | 0 + e = c >>> 0 < d >>> 0 ? (e + 1) | 0 : e + H[(a + 16) >> 2] = c + H[(a + 20) >> 2] = e + break c + } + c = 0 + if (!ta((a + 80) | 0, a)) { + break a + } + } + c = 0 + if (!Fe(a)) { + break a + } + c = H[(a + 4) >> 2] + H[b >> 2] = H[a >> 2] + H[(b + 4) >> 2] = c + c = H[(a + 36) >> 2] + H[(b + 32) >> 2] = H[(a + 32) >> 2] + H[(b + 36) >> 2] = c + c = H[(a + 28) >> 2] + H[(b + 24) >> 2] = H[(a + 24) >> 2] + H[(b + 28) >> 2] = c + c = H[(a + 20) >> 2] + H[(b + 16) >> 2] = H[(a + 16) >> 2] + H[(b + 20) >> 2] = c + c = H[(a + 12) >> 2] + H[(b + 8) >> 2] = H[(a + 8) >> 2] + H[(b + 12) >> 2] = c + c = 1 + } + ca = (f + 16) | 0 + return c + } + function oe(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + if (!H[(a + 64) >> 2]) { + c = pa(32) + H[(c + 16) >> 2] = 0 + H[(c + 20) >> 2] = 0 + H[(c + 8) >> 2] = 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + H[(c + 24) >> 2] = 0 + H[(c + 28) >> 2] = 0 + d = H[(a + 64) >> 2] + H[(a + 64) >> 2] = c + if (d) { + c = H[d >> 2] + if (c) { + H[(d + 4) >> 2] = c + oa(c) + } + oa(d) + c = H[(a + 64) >> 2] + } + H[a >> 2] = c + d = H[(c + 20) >> 2] + H[(a + 8) >> 2] = H[(c + 16) >> 2] + H[(a + 12) >> 2] = d + d = H[(c + 24) >> 2] + c = H[(c + 28) >> 2] + H[(a + 48) >> 2] = 0 + H[(a + 52) >> 2] = 0 + H[(a + 40) >> 2] = 0 + H[(a + 44) >> 2] = 0 + H[(a + 16) >> 2] = d + H[(a + 20) >> 2] = c + } + a: { + F[(a + 24) | 0] = I[(b + 24) | 0] + H[(a + 28) >> 2] = H[(b + 28) >> 2] + F[(a + 32) | 0] = I[(b + 32) | 0] + c = H[(b + 44) >> 2] + H[(a + 40) >> 2] = H[(b + 40) >> 2] + H[(a + 44) >> 2] = c + c = H[(b + 52) >> 2] + H[(a + 48) >> 2] = H[(b + 48) >> 2] + H[(a + 52) >> 2] = c + H[(a + 56) >> 2] = H[(b + 56) >> 2] + c = H[(b + 12) >> 2] + H[(a + 8) >> 2] = H[(b + 8) >> 2] + H[(a + 12) >> 2] = c + c = H[(b + 20) >> 2] + H[(a + 16) >> 2] = H[(b + 16) >> 2] + H[(a + 20) >> 2] = c + H[(a + 60) >> 2] = H[(b + 60) >> 2] + c = H[b >> 2] + b: { + if (!c) { + H[a >> 2] = 0 + d = 1 + break b + } + g = H[a >> 2] + d = 0 + if (!g) { + break b + } + d = H[c >> 2] + c = (H[(c + 4) >> 2] - d) | 0 + se(g, d, c, 0) + d = 1 + } + c: { + if (!d) { + break c + } + F[(a + 84) | 0] = I[(b + 84) | 0] + H[(a + 80) >> 2] = H[(b + 80) >> 2] + if ((a | 0) != (b | 0)) { + Cb((a + 68) | 0, H[(b + 68) >> 2], H[(b + 72) >> 2]) + } + f = H[(b + 88) >> 2] + d: { + if (f) { + e = pa(40) + b = H[f >> 2] + H[(e + 16) >> 2] = 0 + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + H[e >> 2] = b + c = H[(f + 12) >> 2] + b = H[(f + 8) >> 2] + if ((c | 0) != (b | 0)) { + c = (c - b) | 0 + if ((c | 0) < 0) { + break a + } + b = pa(c) + H[(e + 12) >> 2] = b + H[(e + 8) >> 2] = b + H[(e + 16) >> 2] = b + c + c = H[(f + 8) >> 2] + h = H[(f + 12) >> 2] + e: { + if ((c | 0) == (h | 0)) { + break e + } + g = ((c ^ -1) + h) | 0 + d = (h - c) & 7 + if (d) { + while (1) { + F[b | 0] = I[c | 0] + b = (b + 1) | 0 + c = (c + 1) | 0 + i = (i + 1) | 0 + if ((d | 0) != (i | 0)) { + continue + } + break + } + } + if (g >>> 0 < 7) { + break e + } + while (1) { + F[b | 0] = I[c | 0] + F[(b + 1) | 0] = I[(c + 1) | 0] + F[(b + 2) | 0] = I[(c + 2) | 0] + F[(b + 3) | 0] = I[(c + 3) | 0] + F[(b + 4) | 0] = I[(c + 4) | 0] + F[(b + 5) | 0] = I[(c + 5) | 0] + F[(b + 6) | 0] = I[(c + 6) | 0] + F[(b + 7) | 0] = I[(c + 7) | 0] + b = (b + 8) | 0 + c = (c + 8) | 0 + if ((h | 0) != (c | 0)) { + continue + } + break + } + } + H[(e + 12) >> 2] = b + } + b = H[(f + 36) >> 2] + H[(e + 32) >> 2] = H[(f + 32) >> 2] + H[(e + 36) >> 2] = b + b = H[(f + 28) >> 2] + H[(e + 24) >> 2] = H[(f + 24) >> 2] + H[(e + 28) >> 2] = b + b = H[(a + 88) >> 2] + H[(a + 88) >> 2] = e + if (b) { + break d + } + break c + } + b = H[(a + 88) >> 2] + H[(a + 88) >> 2] = 0 + if (!b) { + break c + } + } + a = H[(b + 8) >> 2] + if (a) { + H[(b + 12) >> 2] = a + oa(a) + } + oa(b) + } + return + } + sa() + v() + } + function og(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0 + f = (ca - 32) | 0 + ca = f + e = (f + 8) | 0 + c = (ca - 80) | 0 + ca = c + a = H[(b + 36) >> 2] + H[(c + 72) >> 2] = H[(b + 32) >> 2] + H[(c + 76) >> 2] = a + d = H[(b + 28) >> 2] + a = (c - -64) | 0 + H[a >> 2] = H[(b + 24) >> 2] + H[(a + 4) >> 2] = d + a = H[(b + 20) >> 2] + H[(c + 56) >> 2] = H[(b + 16) >> 2] + H[(c + 60) >> 2] = a + a = H[(b + 12) >> 2] + H[(c + 48) >> 2] = H[(b + 8) >> 2] + H[(c + 52) >> 2] = a + a = H[(b + 4) >> 2] + H[(c + 40) >> 2] = H[b >> 2] + H[(c + 44) >> 2] = a + nc((c + 8) | 0, (c + 40) | 0, (c + 24) | 0) + a = H[(c + 8) >> 2] + a: { + if (a) { + H[e >> 2] = a + a = (e + 4) | 0 + if (F[(c + 23) | 0] >= 0) { + b = (c + 8) | 4 + e = H[(b + 4) >> 2] + H[a >> 2] = H[b >> 2] + H[(a + 4) >> 2] = e + H[(a + 8) >> 2] = H[(b + 8) >> 2] + break a + } + za(a, H[(c + 12) >> 2], H[(c + 16) >> 2]) + if (F[(c + 23) | 0] >= 0) { + break a + } + oa(H[(c + 12) >> 2]) + break a + } + if (F[(c + 23) | 0] < 0) { + oa(H[(c + 12) >> 2]) + } + a = I[(c + 31) | 0] + if (a >>> 0 >= 2) { + b = pa(32) + F[(b + 26) | 0] = 0 + a = I[1477] | (I[1478] << 8) + F[(b + 24) | 0] = a + F[(b + 25) | 0] = a >>> 8 + a = + I[1473] | + (I[1474] << 8) | + ((I[1475] << 16) | (I[1476] << 24)) + d = + I[1469] | + (I[1470] << 8) | + ((I[1471] << 16) | (I[1472] << 24)) + F[(b + 16) | 0] = d + F[(b + 17) | 0] = d >>> 8 + F[(b + 18) | 0] = d >>> 16 + F[(b + 19) | 0] = d >>> 24 + F[(b + 20) | 0] = a + F[(b + 21) | 0] = a >>> 8 + F[(b + 22) | 0] = a >>> 16 + F[(b + 23) | 0] = a >>> 24 + a = + I[1465] | + (I[1466] << 8) | + ((I[1467] << 16) | (I[1468] << 24)) + d = + I[1461] | + (I[1462] << 8) | + ((I[1463] << 16) | (I[1464] << 24)) + F[(b + 8) | 0] = d + F[(b + 9) | 0] = d >>> 8 + F[(b + 10) | 0] = d >>> 16 + F[(b + 11) | 0] = d >>> 24 + F[(b + 12) | 0] = a + F[(b + 13) | 0] = a >>> 8 + F[(b + 14) | 0] = a >>> 16 + F[(b + 15) | 0] = a >>> 24 + a = + I[1457] | + (I[1458] << 8) | + ((I[1459] << 16) | (I[1460] << 24)) + d = + I[1453] | + (I[1454] << 8) | + ((I[1455] << 16) | (I[1456] << 24)) + F[b | 0] = d + F[(b + 1) | 0] = d >>> 8 + F[(b + 2) | 0] = d >>> 16 + F[(b + 3) | 0] = d >>> 24 + F[(b + 4) | 0] = a + F[(b + 5) | 0] = a >>> 8 + F[(b + 6) | 0] = a >>> 16 + F[(b + 7) | 0] = a >>> 24 + H[(c + 8) >> 2] = -1 + a = (c + 8) | 4 + za(a, b, 26) + d = F[(c + 23) | 0] + H[e >> 2] = H[(c + 8) >> 2] + e = (e + 4) | 0 + if ((d | 0) >= 0) { + d = H[(a + 4) >> 2] + H[e >> 2] = H[a >> 2] + H[(e + 4) >> 2] = d + H[(e + 8) >> 2] = H[(a + 8) >> 2] + oa(b) + break a + } + za(e, H[(c + 12) >> 2], H[(c + 16) >> 2]) + if (F[(c + 23) | 0] < 0) { + oa(H[(c + 12) >> 2]) + } + oa(b) + break a + } + H[e >> 2] = 0 + H[(e + 4) >> 2] = 0 + H[(e + 16) >> 2] = a + H[(e + 8) >> 2] = 0 + H[(e + 12) >> 2] = 0 + } + ca = (c + 80) | 0 + a = H[(f + 24) >> 2] + if (F[(f + 23) | 0] < 0) { + oa(H[(f + 12) >> 2]) + } + ca = (f + 32) | 0 + return a | 0 + } + function Xd(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + k = (ca - 16) | 0 + ca = k + H[(k + 8) >> 2] = c + h = H[(a + 12) >> 2] + d = H[(a + 8) >> 2] + g = (h - d) >> 2 + a: { + if ((g | 0) > (b | 0)) { + break a + } + e = (b + 1) | 0 + if (e >>> 0 > g >>> 0) { + l = (e - g) | 0 + f = H[(a + 16) >> 2] + d = H[(a + 12) >> 2] + if (l >>> 0 <= ((f - d) >> 2) >>> 0) { + if (l) { + e = d + d = l << 2 + d = (ra(e, 0, d) + d) | 0 + } + H[(a + 12) >> 2] = d + break a + } + b: { + c: { + d: { + m = H[(a + 8) >> 2] + g = (d - m) >> 2 + i = (g + l) | 0 + if (i >>> 0 < 1073741824) { + e = (f - m) | 0 + f = (e >>> 1) | 0 + e = + e >>> 0 >= 2147483644 + ? 1073741823 + : f >>> 0 > i >>> 0 + ? f + : i + if (e) { + if (e >>> 0 >= 1073741824) { + break d + } + j = pa(e << 2) + } + h = ((g << 2) + j) | 0 + f = l << 2 + i = ra(h, 0, f) + g = (f + i) | 0 + e = ((e << 2) + j) | 0 + if ((d | 0) == (m | 0)) { + break c + } + while (1) { + d = (d - 4) | 0 + f = H[d >> 2] + H[d >> 2] = 0 + h = (h - 4) | 0 + H[h >> 2] = f + if ((d | 0) != (m | 0)) { + continue + } + break + } + H[(a + 16) >> 2] = e + e = H[(a + 12) >> 2] + H[(a + 12) >> 2] = g + d = H[(a + 8) >> 2] + H[(a + 8) >> 2] = h + if ((d | 0) == (e | 0)) { + break b + } + while (1) { + e = (e - 4) | 0 + f = H[e >> 2] + H[e >> 2] = 0 + if (f) { + Ga(f) + } + if ((d | 0) != (e | 0)) { + continue + } + break + } + break b + } + sa() + v() + } + wa() + v() + } + H[(a + 16) >> 2] = e + H[(a + 12) >> 2] = g + H[(a + 8) >> 2] = i + } + if (d) { + oa(d) + } + break a + } + if (e >>> 0 >= g >>> 0) { + break a + } + d = (d + (e << 2)) | 0 + if ((d | 0) != (h | 0)) { + while (1) { + h = (h - 4) | 0 + c = H[h >> 2] + H[h >> 2] = 0 + if (c) { + Ga(c) + } + if ((d | 0) != (h | 0)) { + continue + } + break + } + c = H[(k + 8) >> 2] + } + H[(a + 12) >> 2] = d + } + e: { + f: { + d = H[(c + 56) >> 2] + g: { + if ((d | 0) > 4) { + break g + } + j = (N(d, 12) + a) | 0 + d = H[(j + 24) >> 2] + if ((d | 0) != H[(j + 28) >> 2]) { + H[d >> 2] = b + H[(j + 24) >> 2] = d + 4 + break g + } + i = H[(j + 20) >> 2] + g = (d - i) | 0 + f = g >> 2 + e = (f + 1) | 0 + if (e >>> 0 >= 1073741824) { + break f + } + d = (g >>> 1) | 0 + e = + g >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 > e >>> 0 + ? d + : e + if (e) { + if (e >>> 0 >= 1073741824) { + break e + } + d = pa(e << 2) + } else { + d = 0 + } + f = (d + (f << 2)) | 0 + H[f >> 2] = b + d = va(d, i, g) + H[(j + 20) >> 2] = d + H[(j + 24) >> 2] = f + 4 + H[(j + 28) >> 2] = d + (e << 2) + if (!i) { + break g + } + oa(i) + } + H[(c + 60) >> 2] = b + a = H[(a + 8) >> 2] + H[(k + 8) >> 2] = 0 + a = (a + (b << 2)) | 0 + b = H[a >> 2] + H[a >> 2] = c + if (b) { + Ga(b) + } + a = H[(k + 8) >> 2] + H[(k + 8) >> 2] = 0 + if (a) { + Ga(a) + } + ca = (k + 16) | 0 + return + } + sa() + v() + } + wa() + v() + } + function Og(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + i = c + d = a + a: { + if (H[(a + 12) >> 2] == (b | 0)) { + break a + } + a = b + b = H[(d + 4) >> 2] + e = H[d >> 2] + if ((b | 0) != (e | 0)) { + while (1) { + c = (b - 12) | 0 + if (F[(b - 1) | 0] < 0) { + oa(H[c >> 2]) + } + b = c + if ((e | 0) != (b | 0)) { + continue + } + break + } + } + H[(d + 12) >> 2] = a + H[(d + 4) >> 2] = e + c = H[a >> 2] + j = (a + 4) | 0 + if ((c | 0) == (j | 0)) { + break a + } + while (1) { + a = H[(d + 4) >> 2] + b: { + if ((a | 0) != H[(d + 8) >> 2]) { + c: { + if (F[(c + 27) | 0] >= 0) { + b = H[(c + 20) >> 2] + H[a >> 2] = H[(c + 16) >> 2] + H[(a + 4) >> 2] = b + H[(a + 8) >> 2] = H[(c + 24) >> 2] + break c + } + za(a, H[(c + 16) >> 2], H[(c + 20) >> 2]) + } + H[(d + 4) >> 2] = a + 12 + break b + } + g = 0 + d: { + e: { + f: { + a = H[(d + 4) >> 2] + e = H[d >> 2] + f = (((a - e) | 0) / 12) | 0 + b = (f + 1) | 0 + if (b >>> 0 < 357913942) { + h = (((H[(d + 8) >> 2] - e) | 0) / 12) | 0 + k = h << 1 + b = + h >>> 0 >= 178956970 + ? 357913941 + : b >>> 0 < k >>> 0 + ? k + : b + if (b) { + if (b >>> 0 >= 357913942) { + break f + } + g = pa(N(b, 12)) + } + h = N(b, 12) + b = (N(f, 12) + g) | 0 + g: { + if (F[(c + 27) | 0] >= 0) { + f = H[(c + 20) >> 2] + H[b >> 2] = H[(c + 16) >> 2] + H[(b + 4) >> 2] = f + H[(b + 8) >> 2] = H[(c + 24) >> 2] + break g + } + za(b, H[(c + 16) >> 2], H[(c + 20) >> 2]) + e = H[d >> 2] + a = H[(d + 4) >> 2] + } + g = (g + h) | 0 + f = (b + 12) | 0 + if ((a | 0) == (e | 0)) { + break e + } + while (1) { + a = (a - 12) | 0 + h = H[(a + 4) >> 2] + b = (b - 12) | 0 + H[b >> 2] = H[a >> 2] + H[(b + 4) >> 2] = h + H[(b + 8) >> 2] = H[(a + 8) >> 2] + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + if ((a | 0) != (e | 0)) { + continue + } + break + } + H[(d + 8) >> 2] = g + a = H[(d + 4) >> 2] + H[(d + 4) >> 2] = f + e = H[d >> 2] + H[d >> 2] = b + if ((a | 0) == (e | 0)) { + break d + } + while (1) { + b = (a - 12) | 0 + if (F[(a - 1) | 0] < 0) { + oa(H[b >> 2]) + } + a = b + if ((e | 0) != (b | 0)) { + continue + } + break + } + break d + } + sa() + v() + } + wa() + v() + } + H[(d + 8) >> 2] = g + H[(d + 4) >> 2] = f + H[d >> 2] = b + } + if (e) { + oa(e) + } + } + b = H[(c + 4) >> 2] + h: { + if (b) { + while (1) { + a = b + b = H[b >> 2] + if (b) { + continue + } + break h + } + } + while (1) { + a = H[(c + 8) >> 2] + b = H[a >> 2] != (c | 0) + c = a + if (b) { + continue + } + break + } + } + c = a + if ((j | 0) != (a | 0)) { + continue + } + break + } + } + a = 0 + i: { + if ((i | 0) < 0) { + break i + } + b = H[d >> 2] + if ((((H[(d + 4) >> 2] - b) | 0) / 12) >>> 0 <= i >>> 0) { + break i + } + a = (b + N(i, 12)) | 0 + a = F[(a + 11) | 0] < 0 ? H[a >> 2] : a + } + return a | 0 + } + function bd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + i = (ca - 16) | 0 + ca = i + H[i >> 2] = b + f = -1 + a: { + if ((b | 0) == -1) { + H[(i + 4) >> 2] = -1 + break a + } + f = (b + 1) | 0 + H[(i + 4) >> 2] = (f >>> 0) % 3 | 0 ? f : (b - 2) | 0 + if ((b >>> 0) % 3 | 0) { + f = (b - 1) | 0 + break a + } + f = (b + 2) | 0 + } + H[(i + 8) >> 2] = f + n = ((b >>> 0) / 3) | 0 + b: { + c: { + d: { + while (1) { + e: { + f: { + j = H[((l << 2) + i) >> 2] + if ((j | 0) != -1) { + f = + H[ + (H[(H[(a + 8) >> 2] + 12) >> 2] + (j << 2)) >> + 2 + ] + if ((f | 0) != -1) { + break f + } + } + f = 0 + g = H[(a + 216) >> 2] + if ((g | 0) == H[(a + 220) >> 2]) { + break e + } + while (1) { + g = (N(f, 144) + g) | 0 + d = H[(g + 136) >> 2] + c = H[(g + 140) >> 2] + g: { + if (d >>> 0 < c >>> 0) { + H[d >> 2] = j + H[(g + 136) >> 2] = d + 4 + break g + } + e = d + d = H[(g + 132) >> 2] + k = (e - d) | 0 + e = k >> 2 + h = (e + 1) | 0 + if (h >>> 0 >= 1073741824) { + break d + } + m = e << 2 + c = (c - d) | 0 + e = (c >>> 1) | 0 + h = + c >>> 0 >= 2147483644 + ? 1073741823 + : h >>> 0 < e >>> 0 + ? e + : h + if (h) { + if (h >>> 0 >= 1073741824) { + break c + } + c = pa(h << 2) + } else { + c = 0 + } + e = (m + c) | 0 + H[e >> 2] = j + c = va(c, d, k) + H[(g + 132) >> 2] = c + H[(g + 136) >> 2] = e + 4 + H[(g + 140) >> 2] = c + (h << 2) + if (!d) { + break g + } + oa(d) + } + f = (f + 1) | 0 + g = H[(a + 216) >> 2] + if ( + f >>> 0 < + (((H[(a + 220) >> 2] - g) | 0) / 144) >>> 0 + ) { + continue + } + break + } + break e + } + if ( + ((b | 0) == -1) | + (((f >>> 0) / 3) >>> 0 < n >>> 0) + ) { + break e + } + f = 0 + if (H[(a + 220) >> 2] == H[(a + 216) >> 2]) { + break e + } + while (1) { + h: { + if (!Ba((H[(a + 368) >> 2] + (f << 4)) | 0)) { + break h + } + g = (H[(a + 216) >> 2] + N(f, 144)) | 0 + d = H[(g + 136) >> 2] + c = H[(g + 140) >> 2] + if (d >>> 0 < c >>> 0) { + H[d >> 2] = j + H[(g + 136) >> 2] = d + 4 + break h + } + e = d + d = H[(g + 132) >> 2] + k = (e - d) | 0 + e = k >> 2 + h = (e + 1) | 0 + if (h >>> 0 >= 1073741824) { + break b + } + m = e << 2 + c = (c - d) | 0 + e = (c >>> 1) | 0 + h = + c >>> 0 >= 2147483644 + ? 1073741823 + : h >>> 0 < e >>> 0 + ? e + : h + if (h) { + if (h >>> 0 >= 1073741824) { + break c + } + c = pa(h << 2) + } else { + c = 0 + } + e = (m + c) | 0 + H[e >> 2] = j + c = va(c, d, k) + H[(g + 132) >> 2] = c + H[(g + 136) >> 2] = e + 4 + H[(g + 140) >> 2] = c + (h << 2) + if (!d) { + break h + } + oa(d) + } + f = (f + 1) | 0 + if ( + f >>> 0 < + (((H[(a + 220) >> 2] - H[(a + 216) >> 2]) | 0) / + 144) >>> + 0 + ) { + continue + } + break + } + } + l = (l + 1) | 0 + if ((l | 0) != 3) { + continue + } + break + } + ca = (i + 16) | 0 + return 1 + } + sa() + v() + } + wa() + v() + } + sa() + v() + } + function cd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + h = (ca - 16) | 0 + ca = h + H[h >> 2] = b + c = -1 + a: { + if ((b | 0) == -1) { + H[(h + 4) >> 2] = -1 + break a + } + c = (b + 1) | 0 + H[(h + 4) >> 2] = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + if ((b >>> 0) % 3 | 0) { + c = (b - 1) | 0 + break a + } + c = (b + 2) | 0 + } + H[(h + 8) >> 2] = c + b: { + c: { + while (1) { + i = H[((k << 2) + h) >> 2] + d: { + if ( + !( + ((i | 0) == -1) | + (H[ + (H[(H[(a + 8) >> 2] + 12) >> 2] + (i << 2)) >> 2 + ] == + -1) + ) + ) { + b = 0 + if (H[(a + 220) >> 2] == H[(a + 216) >> 2]) { + break d + } + while (1) { + e: { + f: { + if (!Ba((H[(a + 368) >> 2] + (b << 4)) | 0)) { + break f + } + c = (H[(a + 216) >> 2] + N(b, 144)) | 0 + e = H[(c + 136) >> 2] + d = H[(c + 140) >> 2] + if (e >>> 0 < d >>> 0) { + H[e >> 2] = i + H[(c + 136) >> 2] = e + 4 + break f + } + f = e + e = H[(c + 132) >> 2] + j = (f - e) | 0 + f = j >> 2 + g = (f + 1) | 0 + if (g >>> 0 >= 1073741824) { + break e + } + l = f << 2 + d = (d - e) | 0 + f = (d >>> 1) | 0 + g = + d >>> 0 >= 2147483644 + ? 1073741823 + : g >>> 0 < f >>> 0 + ? f + : g + if (g) { + if (g >>> 0 >= 1073741824) { + break b + } + d = pa(g << 2) + } else { + d = 0 + } + f = (l + d) | 0 + H[f >> 2] = i + d = va(d, e, j) + H[(c + 132) >> 2] = d + H[(c + 136) >> 2] = f + 4 + H[(c + 140) >> 2] = d + (g << 2) + if (!e) { + break f + } + oa(e) + } + b = (b + 1) | 0 + if ( + b >>> 0 < + (((H[(a + 220) >> 2] - H[(a + 216) >> 2]) | 0) / + 144) >>> + 0 + ) { + continue + } + break d + } + break + } + sa() + v() + } + b = 0 + c = H[(a + 216) >> 2] + if ((c | 0) == H[(a + 220) >> 2]) { + break d + } + while (1) { + c = (N(b, 144) + c) | 0 + e = H[(c + 136) >> 2] + d = H[(c + 140) >> 2] + g: { + if (e >>> 0 < d >>> 0) { + H[e >> 2] = i + H[(c + 136) >> 2] = e + 4 + break g + } + f = e + e = H[(c + 132) >> 2] + j = (f - e) | 0 + f = j >> 2 + g = (f + 1) | 0 + if (g >>> 0 >= 1073741824) { + break c + } + l = f << 2 + d = (d - e) | 0 + f = (d >>> 1) | 0 + g = + d >>> 0 >= 2147483644 + ? 1073741823 + : g >>> 0 < f >>> 0 + ? f + : g + if (g) { + if (g >>> 0 >= 1073741824) { + break b + } + d = pa(g << 2) + } else { + d = 0 + } + f = (l + d) | 0 + H[f >> 2] = i + d = va(d, e, j) + H[(c + 132) >> 2] = d + H[(c + 136) >> 2] = f + 4 + H[(c + 140) >> 2] = d + (g << 2) + if (!e) { + break g + } + oa(e) + } + b = (b + 1) | 0 + c = H[(a + 216) >> 2] + if ( + b >>> 0 < + (((H[(a + 220) >> 2] - c) | 0) / 144) >>> 0 + ) { + continue + } + break + } + } + k = (k + 1) | 0 + if ((k | 0) != 3) { + continue + } + break + } + ca = (h + 16) | 0 + return 1 + } + sa() + v() + } + wa() + v() + } + function vg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + m = (ca - 16) | 0 + ca = m + l = H[(b + 80) >> 2] + e = I[(c + 24) | 0] + a = N(l, e) + a: { + b: { + c: { + d: { + b = H[(c + 28) >> 2] + if ( + !( + !I[(c + 84) | 0] | + (((b | 0) != 1) & ((b | 0) != 2)) + ) + ) { + b = H[(c + 48) >> 2] + c = H[H[c >> 2] >> 2] + H[(m + 8) >> 2] = 0 + H[m >> 2] = 0 + H[(m + 4) >> 2] = 0 + if (a) { + if ((a | 0) < 0) { + break d + } + f = pa(a) + h = (qa(f, (b + c) | 0, a) + a) | 0 + } + a = H[d >> 2] + if (a) { + H[(d + 4) >> 2] = a + oa(a) + } + H[(d + 8) >> 2] = h + H[(d + 4) >> 2] = h + H[d >> 2] = f + b = 1 + break a + } + if (e) { + f = pa(e) + ra(f, 0, e) + } + e: { + i = H[(d + 4) >> 2] + b = H[d >> 2] + g = (i - b) | 0 + f: { + if (g >>> 0 < a >>> 0) { + k = (a - g) | 0 + j = H[(d + 8) >> 2] + if (k >>> 0 <= (j - i) >>> 0) { + ;(n = d), + (o = (ra(i, 0, k) + k) | 0), + (H[(n + 4) >> 2] = o) + break f + } + if ((a | 0) < 0) { + break e + } + i = (j - b) | 0 + j = i << 1 + i = + i >>> 0 >= 1073741823 + ? 2147483647 + : a >>> 0 < j >>> 0 + ? j + : a + j = pa(i) + ra((j + g) | 0, 0, k) + g = va(j, b, g) + H[(d + 8) >> 2] = g + i + H[(d + 4) >> 2] = a + g + H[d >> 2] = g + if (!b) { + break f + } + oa(b) + break f + } + if (a >>> 0 >= g >>> 0) { + break f + } + H[(d + 4) >> 2] = a + b + } + if (!l) { + b = 1 + break c + } + if (!e) { + b = 0 + a = 0 + while (1) { + if ( + !ic( + c, + I[(c + 84) | 0] + ? a + : H[(H[(c + 68) >> 2] + (a << 2)) >> 2], + F[(c + 24) | 0], + f, + ) + ) { + break c + } + a = (a + 1) | 0 + b = l >>> 0 <= a >>> 0 + if ((a | 0) != (l | 0)) { + continue + } + break + } + break c + } + i = e & 252 + g = e & 3 + b = 0 + j = e >>> 0 < 4 + e = 0 + while (1) { + if ( + !ic( + c, + I[(c + 84) | 0] + ? e + : H[(H[(c + 68) >> 2] + (e << 2)) >> 2], + F[(c + 24) | 0], + f, + ) + ) { + break c + } + b = 0 + a = 0 + k = 0 + if (!j) { + while (1) { + F[(H[d >> 2] + h) | 0] = I[(a + f) | 0] + F[(((H[d >> 2] + h) | 0) + 1) | 0] = + I[((a | 1) + f) | 0] + F[(((H[d >> 2] + h) | 0) + 2) | 0] = + I[((a | 2) + f) | 0] + F[(((H[d >> 2] + h) | 0) + 3) | 0] = + I[((a | 3) + f) | 0] + a = (a + 4) | 0 + h = (h + 4) | 0 + k = (k + 4) | 0 + if ((i | 0) != (k | 0)) { + continue + } + break + } + } + if (g) { + while (1) { + F[(H[d >> 2] + h) | 0] = I[(a + f) | 0] + a = (a + 1) | 0 + h = (h + 1) | 0 + b = (b + 1) | 0 + if ((g | 0) != (b | 0)) { + continue + } + break + } + } + e = (e + 1) | 0 + b = l >>> 0 <= e >>> 0 + if ((e | 0) != (l | 0)) { + continue + } + break + } + break b + } + sa() + v() + } + sa() + v() + } + if (!f) { + break a + } + } + oa(f) + } + ca = (m + 16) | 0 + return b & 1 + } + function ug(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + m = (ca - 16) | 0 + ca = m + l = H[(b + 80) >> 2] + e = I[(c + 24) | 0] + a = N(l, e) + a: { + b: { + c: { + d: { + b = H[(c + 28) >> 2] + if ( + !( + !I[(c + 84) | 0] | + (((b | 0) != 1) & ((b | 0) != 2)) + ) + ) { + b = H[(c + 48) >> 2] + c = H[H[c >> 2] >> 2] + H[(m + 8) >> 2] = 0 + H[m >> 2] = 0 + H[(m + 4) >> 2] = 0 + if (a) { + if ((a | 0) < 0) { + break d + } + f = pa(a) + h = (qa(f, (b + c) | 0, a) + a) | 0 + } + a = H[d >> 2] + if (a) { + H[(d + 4) >> 2] = a + oa(a) + } + H[(d + 8) >> 2] = h + H[(d + 4) >> 2] = h + H[d >> 2] = f + b = 1 + break a + } + if (e) { + f = pa(e) + ra(f, 0, e) + } + e: { + i = H[(d + 4) >> 2] + b = H[d >> 2] + g = (i - b) | 0 + f: { + if (g >>> 0 < a >>> 0) { + k = (a - g) | 0 + j = H[(d + 8) >> 2] + if (k >>> 0 <= (j - i) >>> 0) { + ;(n = d), + (o = (ra(i, 0, k) + k) | 0), + (H[(n + 4) >> 2] = o) + break f + } + if ((a | 0) < 0) { + break e + } + i = (j - b) | 0 + j = i << 1 + i = + i >>> 0 >= 1073741823 + ? 2147483647 + : a >>> 0 < j >>> 0 + ? j + : a + j = pa(i) + ra((j + g) | 0, 0, k) + g = va(j, b, g) + H[(d + 8) >> 2] = g + i + H[(d + 4) >> 2] = a + g + H[d >> 2] = g + if (!b) { + break f + } + oa(b) + break f + } + if (a >>> 0 >= g >>> 0) { + break f + } + H[(d + 4) >> 2] = a + b + } + if (!l) { + b = 1 + break c + } + if (!e) { + b = 0 + a = 0 + while (1) { + if ( + !hc( + c, + I[(c + 84) | 0] + ? a + : H[(H[(c + 68) >> 2] + (a << 2)) >> 2], + F[(c + 24) | 0], + f, + ) + ) { + break c + } + a = (a + 1) | 0 + b = l >>> 0 <= a >>> 0 + if ((a | 0) != (l | 0)) { + continue + } + break + } + break c + } + i = e & 252 + g = e & 3 + b = 0 + j = e >>> 0 < 4 + e = 0 + while (1) { + if ( + !hc( + c, + I[(c + 84) | 0] + ? e + : H[(H[(c + 68) >> 2] + (e << 2)) >> 2], + F[(c + 24) | 0], + f, + ) + ) { + break c + } + b = 0 + a = 0 + k = 0 + if (!j) { + while (1) { + F[(H[d >> 2] + h) | 0] = I[(a + f) | 0] + F[(((H[d >> 2] + h) | 0) + 1) | 0] = + I[((a | 1) + f) | 0] + F[(((H[d >> 2] + h) | 0) + 2) | 0] = + I[((a | 2) + f) | 0] + F[(((H[d >> 2] + h) | 0) + 3) | 0] = + I[((a | 3) + f) | 0] + a = (a + 4) | 0 + h = (h + 4) | 0 + k = (k + 4) | 0 + if ((i | 0) != (k | 0)) { + continue + } + break + } + } + if (g) { + while (1) { + F[(H[d >> 2] + h) | 0] = I[(a + f) | 0] + a = (a + 1) | 0 + h = (h + 1) | 0 + b = (b + 1) | 0 + if ((g | 0) != (b | 0)) { + continue + } + break + } + } + e = (e + 1) | 0 + b = l >>> 0 <= e >>> 0 + if ((e | 0) != (l | 0)) { + continue + } + break + } + break b + } + sa() + v() + } + sa() + v() + } + if (!f) { + break a + } + } + oa(f) + } + ca = (m + 16) | 0 + return b & 1 + } + function qc(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + k = H[(b + 16) >> 2] + h = (H[(c + 4) >> 2] - k) | 0 + e = (H[c >> 2] - k) | 0 + H[c >> 2] = e + f = h + H[(c + 4) >> 2] = f + l = H[(b + 16) >> 2] + f = f >> 31 + g = ((h ^ f) - f) | 0 + f = e >> 31 + m = l >>> 0 >= (g + (((f ^ e) - f) | 0)) >>> 0 + a: { + if (m) { + f = h + break a + } + b: { + c: { + if ((e | 0) >= 0) { + g = 1 + j = 1 + if ((h | 0) >= 0) { + break b + } + i = 1 + g = -1 + j = -1 + if (e) { + break c + } + break b + } + i = -1 + g = -1 + j = -1 + if ((h | 0) <= 0) { + break b + } + } + g = (h | 0) <= 0 ? -1 : 1 + j = i + } + n = N(j, l) + f = ((e << 1) - n) | 0 + i = (N(g, j) | 0) >= 0 + e = N(g, l) + f = ((((i ? (0 - f) | 0 : f) + e) | 0) / 2) | 0 + H[(c + 4) >> 2] = f + e = ((h << 1) - e) | 0 + e = ((((i ? (0 - e) | 0 : e) + n) | 0) / 2) | 0 + H[c >> 2] = e + } + d: { + e: { + f: { + g: { + h: { + i: { + j: { + if (e) { + if ((e | 0) < 0) { + break j + } + if ((f | 0) >= 0) { + break i + } + break f + } + if (f) { + break h + } + j = 1 + g = 0 + f = 0 + i = 0 + break d + } + j = 1 + if ((f | 0) > 0) { + break g + } + i = (f | 0) > 0 ? 3 : 0 + g = f + f = e + break d + } + g = (0 - f) | 0 + f = (0 - e) | 0 + i = 2 + break e + } + if ((f | 0) <= 0) { + break f + } + } + f = (0 - f) | 0 + g = e + i = 3 + break e + } + g = (0 - e) | 0 + i = 1 + } + H[c >> 2] = f + H[(c + 4) >> 2] = g + j = 0 + } + e = (H[d >> 2] + f) | 0 + h = H[(b + 16) >> 2] + k: { + if ((e | 0) > (h | 0)) { + e = (e - H[(b + 4) >> 2]) | 0 + break k + } + if (((0 - h) | 0) <= (e | 0)) { + break k + } + e = (H[(b + 4) >> 2] + e) | 0 + } + c = (H[(d + 4) >> 2] + g) | 0 + l: { + if ((h | 0) < (c | 0)) { + c = (c - H[(b + 4) >> 2]) | 0 + break l + } + if (((0 - h) | 0) <= (c | 0)) { + break l + } + c = (H[(b + 4) >> 2] + c) | 0 + } + m: { + if (j) { + b = c + break m + } + b = c + n: { + o: { + p: { + d = (4 - i) | 0 + switch (((d >>> 0 < 4 ? d : (0 - i) | 0) - 1) | 0) { + case 2: + break n + case 1: + break o + case 0: + break p + default: + break m + } + } + b = (0 - e) | 0 + e = c + break m + } + b = (0 - c) | 0 + e = (0 - e) | 0 + break m + } + b = e + e = (0 - c) | 0 + } + q: { + if (m) { + c = b + break q + } + r: { + s: { + if ((e | 0) >= 0) { + c = 1 + f = 1 + if ((b | 0) >= 0) { + break r + } + d = 1 + c = -1 + f = -1 + if (e) { + break s + } + break r + } + d = -1 + c = -1 + f = -1 + if ((b | 0) <= 0) { + break r + } + } + c = (b | 0) <= 0 ? -1 : 1 + f = d + } + d = e << 1 + e = N(f, h) + d = (d - e) | 0 + f = (N(c, f) | 0) >= 0 + g = f ? (0 - d) | 0 : d + d = N(c, h) + c = (((g + d) | 0) / 2) | 0 + b = ((b << 1) - d) | 0 + e = (((e + (f ? (0 - b) | 0 : b)) | 0) / 2) | 0 + } + b = a + H[b >> 2] = e + k + H[(b + 4) >> 2] = c + k + } + function Cj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + j = (ca - 32) | 0 + ca = j + H[(j + 28) >> 2] = 0 + a: { + b: { + if (J[(b + 38) >> 1] <= 513) { + c = H[(b + 20) >> 2] + d = H[(b + 16) >> 2] + e = (d + 4) | 0 + c = e >>> 0 < 4 ? (c + 1) | 0 : c + h = H[(b + 12) >> 2] + if ( + ((K[(b + 8) >> 2] < e >>> 0) & ((h | 0) <= (c | 0))) | + ((c | 0) > (h | 0)) + ) { + break a + } + d = (d + H[b >> 2]) | 0 + f = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = c + break b + } + if (!Xa(1, (j + 28) | 0, b)) { + break a + } + f = H[(j + 28) >> 2] + } + if (!f) { + break a + } + c = H[(H[(a + 48) >> 2] + 64) >> 2] + if (((H[(c + 4) >> 2] - H[c >> 2]) >> 2) >>> 0 < f >>> 0) { + break a + } + Wa((a + 76) | 0, f) + c = (j + 8) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c: { + if (!ta(c, b)) { + break c + } + h = 1 + while (1) { + d = 1 << i + e = Ba(c) + g = (H[(a + 76) >> 2] + ((i >>> 3) & 536870908)) | 0 + e = e ^ h + if (e & 1) { + d = H[g >> 2] & (d ^ -1) + } else { + d = d | H[g >> 2] + } + h = e ^ 1 + H[g >> 2] = d + i = (i + 1) | 0 + if ((f | 0) != (i | 0)) { + continue + } + break + } + c = H[(b + 8) >> 2] + e = H[(b + 12) >> 2] + g = e + e = H[(b + 20) >> 2] + h = e + f = H[(b + 16) >> 2] + d = (f + 4) | 0 + e = d >>> 0 < 4 ? (e + 1) | 0 : e + i = d + if ( + ((d >>> 0 > c >>> 0) & ((e | 0) >= (g | 0))) | + ((e | 0) > (g | 0)) + ) { + break c + } + l = H[b >> 2] + d = (l + f) | 0 + k = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = i + H[(b + 20) >> 2] = e + d = c + c = h + e = (f + 8) | 0 + c = e >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((d >>> 0 < e >>> 0) & ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break c + } + d = (i + l) | 0 + d = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = c + if ((d | 0) < (k | 0)) { + break c + } + H[(a + 16) >> 2] = d + H[(a + 12) >> 2] = k + c = + ((d >> 31) - (((k >> 31) + (d >>> 0 < k >>> 0)) | 0)) | 0 + b = (d - k) | 0 + if ((!c & (b >>> 0 > 2147483646)) | c) { + break c + } + m = 1 + c = (b + 1) | 0 + H[(a + 20) >> 2] = c + b = (c >>> 1) | 0 + H[(a + 24) >> 2] = b + H[(a + 28) >> 2] = 0 - b + if (c & 1) { + break c + } + H[(a + 24) >> 2] = b - 1 + } + } + ca = (j + 32) | 0 + return m | 0 + } + function lj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + j = (ca - 32) | 0 + ca = j + H[(j + 28) >> 2] = 0 + a: { + b: { + if (J[(b + 38) >> 1] <= 513) { + c = H[(b + 20) >> 2] + d = H[(b + 16) >> 2] + e = (d + 4) | 0 + c = e >>> 0 < 4 ? (c + 1) | 0 : c + h = H[(b + 12) >> 2] + if ( + ((K[(b + 8) >> 2] < e >>> 0) & ((h | 0) <= (c | 0))) | + ((c | 0) > (h | 0)) + ) { + break a + } + d = (d + H[b >> 2]) | 0 + f = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = c + break b + } + if (!Xa(1, (j + 28) | 0, b)) { + break a + } + f = H[(j + 28) >> 2] + } + if (!f) { + break a + } + c = H[(a + 48) >> 2] + if (((H[(c + 4) >> 2] - H[c >> 2]) >> 2) >>> 0 < f >>> 0) { + break a + } + Wa((a + 76) | 0, f) + c = (j + 8) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + c: { + if (!ta(c, b)) { + break c + } + h = 1 + while (1) { + d = 1 << i + e = Ba(c) + g = (H[(a + 76) >> 2] + ((i >>> 3) & 536870908)) | 0 + e = e ^ h + if (e & 1) { + d = H[g >> 2] & (d ^ -1) + } else { + d = d | H[g >> 2] + } + h = e ^ 1 + H[g >> 2] = d + i = (i + 1) | 0 + if ((f | 0) != (i | 0)) { + continue + } + break + } + c = H[(b + 8) >> 2] + e = H[(b + 12) >> 2] + g = e + e = H[(b + 20) >> 2] + h = e + f = H[(b + 16) >> 2] + d = (f + 4) | 0 + e = d >>> 0 < 4 ? (e + 1) | 0 : e + i = d + if ( + ((d >>> 0 > c >>> 0) & ((e | 0) >= (g | 0))) | + ((e | 0) > (g | 0)) + ) { + break c + } + l = H[b >> 2] + d = (l + f) | 0 + k = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = i + H[(b + 20) >> 2] = e + d = c + c = h + e = (f + 8) | 0 + c = e >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((d >>> 0 < e >>> 0) & ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break c + } + d = (i + l) | 0 + d = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = c + if ((d | 0) < (k | 0)) { + break c + } + H[(a + 16) >> 2] = d + H[(a + 12) >> 2] = k + c = + ((d >> 31) - (((k >> 31) + (d >>> 0 < k >>> 0)) | 0)) | 0 + b = (d - k) | 0 + if ((!c & (b >>> 0 > 2147483646)) | c) { + break c + } + m = 1 + c = (b + 1) | 0 + H[(a + 20) >> 2] = c + b = (c >>> 1) | 0 + H[(a + 24) >> 2] = b + H[(a + 28) >> 2] = 0 - b + if (c & 1) { + break c + } + H[(a + 24) >> 2] = b - 1 + } + } + ca = (j + 32) | 0 + return m | 0 + } + function cj(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + H[(a + 8) >> 2] = e + m = (a + 32) | 0 + h = H[m >> 2] + g = (H[(a + 36) >> 2] - h) >> 2 + a: { + if (g >>> 0 < e >>> 0) { + ya(m, (e - g) | 0) + f = H[(a + 8) >> 2] + break a + } + f = e + if (f >>> 0 >= g >>> 0) { + break a + } + H[(a + 36) >> 2] = h + (e << 2) + f = e + } + g = e >>> 0 > 1073741823 ? -1 : e << 2 + n = ra(pa(g), 0, g) + b: { + if ((f | 0) <= 0) { + break b + } + h = H[(a + 32) >> 2] + while (1) { + f = i << 2 + g = H[(f + n) >> 2] + j = H[(a + 16) >> 2] + c: { + if ((g | 0) > (j | 0)) { + H[(f + h) >> 2] = j + break c + } + f = (f + h) | 0 + j = H[(a + 12) >> 2] + if ((j | 0) > (g | 0)) { + H[f >> 2] = j + break c + } + H[f >> 2] = g + } + f = H[(a + 8) >> 2] + i = (i + 1) | 0 + if ((f | 0) > (i | 0)) { + continue + } + break + } + if ((f | 0) <= 0) { + break b + } + i = 0 + while (1) { + g = i << 2 + f = (g + c) | 0 + g = (H[(b + g) >> 2] + H[(g + h) >> 2]) | 0 + H[f >> 2] = g + d: { + if ((g | 0) > H[(a + 16) >> 2]) { + g = (g - H[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= H[(a + 12) >> 2]) { + break d + } + g = (g + H[(a + 20) >> 2]) | 0 + } + H[f >> 2] = g + } + f = H[(a + 8) >> 2] + i = (i + 1) | 0 + if ((f | 0) > (i | 0)) { + continue + } + break + } + } + if (!(((d | 0) <= (e | 0)) | ((f | 0) <= 0))) { + p = (0 - e) << 2 + g = e + while (1) { + e: { + if ((f | 0) <= 0) { + break e + } + l = g << 2 + o = (l + c) | 0 + q = (o + p) | 0 + j = H[m >> 2] + i = 0 + while (1) { + f = i << 2 + h = H[(f + q) >> 2] + k = H[(a + 16) >> 2] + f: { + if ((h | 0) > (k | 0)) { + H[(f + j) >> 2] = k + break f + } + f = (f + j) | 0 + k = H[(a + 12) >> 2] + if ((k | 0) > (h | 0)) { + H[f >> 2] = k + break f + } + H[f >> 2] = h + } + f = H[(a + 8) >> 2] + i = (i + 1) | 0 + if ((f | 0) > (i | 0)) { + continue + } + break + } + i = 0 + if ((f | 0) <= 0) { + break e + } + l = (b + l) | 0 + while (1) { + h = i << 2 + f = (h + o) | 0 + h = (H[(h + l) >> 2] + H[(h + j) >> 2]) | 0 + H[f >> 2] = h + g: { + if ((h | 0) > H[(a + 16) >> 2]) { + h = (h - H[(a + 20) >> 2]) | 0 + } else { + if ((h | 0) >= H[(a + 12) >> 2]) { + break g + } + h = (h + H[(a + 20) >> 2]) | 0 + } + H[f >> 2] = h + } + f = H[(a + 8) >> 2] + i = (i + 1) | 0 + if ((f | 0) > (i | 0)) { + continue + } + break + } + } + g = (e + g) | 0 + if ((g | 0) < (d | 0)) { + continue + } + break + } + } + oa(n) + return 1 + } + function De(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + d = -1 + f = -1 + a: { + if ((b | 0) == -1) { + break a + } + c = (b + 1) | 0 + d = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + f = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break a + } + f = (b + 2) | 0 + } + b: { + c: { + d: { + e: { + f: { + g: { + e = H[(a + 184) >> 2] + switch (e | 0) { + case 7: + break d + case 3: + break e + case 5: + break f + case 0: + case 1: + break g + default: + break b + } + } + g = H[(a + 148) >> 2] + c = -1 + e = 1 + d = + ((d | 0) != -1 + ? H[(H[g >> 2] + (d << 2)) >> 2] + : c) << 2 + c = H[(a + 156) >> 2] + d = (d + c) | 0 + H[d >> 2] = H[d >> 2] + 1 + c = + ((((f | 0) == -1 + ? -1 + : H[(H[g >> 2] + (f << 2)) >> 2]) << + 2) + + c) | + 0 + break c + } + g = H[(a + 148) >> 2] + c = H[(a + 156) >> 2] + e = + (c + + (((b | 0) == -1 + ? -1 + : H[(H[g >> 2] + (b << 2)) >> 2]) << + 2)) | + 0 + H[e >> 2] = H[e >> 2] + 1 + d = + ((((d | 0) == -1 + ? -1 + : H[(H[g >> 2] + (d << 2)) >> 2]) << + 2) + + c) | + 0 + H[d >> 2] = H[d >> 2] + 1 + e = 2 + c = + ((((f | 0) == -1 + ? -1 + : H[(H[g >> 2] + (f << 2)) >> 2]) << + 2) + + c) | + 0 + break c + } + g = H[(a + 148) >> 2] + c = H[(a + 156) >> 2] + e = + (c + + (((b | 0) == -1 + ? -1 + : H[(H[g >> 2] + (b << 2)) >> 2]) << + 2)) | + 0 + H[e >> 2] = H[e >> 2] + 1 + d = + ((((d | 0) == -1 + ? -1 + : H[(H[g >> 2] + (d << 2)) >> 2]) << + 2) + + c) | + 0 + H[d >> 2] = H[d >> 2] + 2 + e = 1 + c = + ((((f | 0) == -1 + ? -1 + : H[(H[g >> 2] + (f << 2)) >> 2]) << + 2) + + c) | + 0 + break c + } + g = H[(a + 148) >> 2] + c = H[(a + 156) >> 2] + e = + (c + + (((b | 0) == -1 + ? -1 + : H[(H[g >> 2] + (b << 2)) >> 2]) << + 2)) | + 0 + H[e >> 2] = H[e >> 2] + 2 + d = + ((((d | 0) == -1 ? -1 : H[(H[g >> 2] + (d << 2)) >> 2]) << + 2) + + c) | + 0 + H[d >> 2] = H[d >> 2] + 2 + e = 2 + c = + ((((f | 0) == -1 ? -1 : H[(H[g >> 2] + (f << 2)) >> 2]) << + 2) + + c) | + 0 + } + H[c >> 2] = H[c >> 2] + e + e = H[(a + 184) >> 2] + } + h: { + switch (e | 0) { + case 0: + case 5: + f = H[(a + 156) >> 2] + c = -1 + i: { + if ((b | 0) == -1) { + break i + } + d = (b + 1) | 0 + b = (d >>> 0) % 3 | 0 ? d : (b - 2) | 0 + c = -1 + if ((b | 0) == -1) { + break i + } + c = H[(H[H[(a + 148) >> 2] >> 2] + (b << 2)) >> 2] + } + if (H[(f + (c << 2)) >> 2] <= 5) { + H[(a + 188) >> 2] = 5 + return + } + H[(a + 188) >> 2] = 0 + return + default: + break h + } + } + H[(a + 188) >> 2] = -1 + } + function xg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + j = H[(b + 80) >> 2] + b = I[(c + 24) | 0] + g = N(j, b) + a: { + if (!b) { + break a + } + h = b << 2 + f = pa(h) + a = f + k = b & 7 + if (k) { + while (1) { + H[a >> 2] = -1073741824 + a = (a + 4) | 0 + e = (e + 1) | 0 + if ((k | 0) != (e | 0)) { + continue + } + break + } + } + if (((b - 1) & 1073741823) >>> 0 < 7) { + break a + } + e = (f + h) | 0 + while (1) { + H[(a + 24) >> 2] = -1073741824 + H[(a + 28) >> 2] = -1073741824 + H[(a + 16) >> 2] = -1073741824 + H[(a + 20) >> 2] = -1073741824 + H[(a + 8) >> 2] = -1073741824 + H[(a + 12) >> 2] = -1073741824 + H[a >> 2] = -1073741824 + H[(a + 4) >> 2] = -1073741824 + a = (a + 32) | 0 + if ((e | 0) != (a | 0)) { + continue + } + break + } + } + e = H[d >> 2] + a = (H[(d + 4) >> 2] - e) >> 2 + b: { + if (a >>> 0 < g >>> 0) { + ya(d, (g - a) | 0) + break b + } + if (a >>> 0 <= g >>> 0) { + break b + } + H[(d + 4) >> 2] = e + (g << 2) + } + c: { + d: { + e: { + if (!j) { + i = 1 + break e + } + if (!b) { + a = 0 + while (1) { + if ( + !Va( + c, + I[(c + 84) | 0] + ? a + : H[(H[(c + 68) >> 2] + (a << 2)) >> 2], + F[(c + 24) | 0], + f, + ) + ) { + break e + } + a = (a + 1) | 0 + i = j >>> 0 <= a >>> 0 + if ((a | 0) != (j | 0)) { + continue + } + break + } + break e + } + n = b & 252 + k = b & 3 + o = b >>> 0 < 4 + e = 0 + b = 0 + while (1) { + if ( + !Va( + c, + I[(c + 84) | 0] + ? b + : H[(H[(c + 68) >> 2] + (b << 2)) >> 2], + F[(c + 24) | 0], + f, + ) + ) { + break e + } + m = H[d >> 2] + i = 0 + a = 0 + l = 0 + if (!o) { + while (1) { + g = ((e << 2) + m) | 0 + h = a << 2 + L[g >> 2] = L[(h + f) >> 2] + L[(g + 4) >> 2] = L[((h | 4) + f) >> 2] + L[(g + 8) >> 2] = L[((h | 8) + f) >> 2] + L[(g + 12) >> 2] = L[((h | 12) + f) >> 2] + a = (a + 4) | 0 + e = (e + 4) | 0 + l = (l + 4) | 0 + if ((n | 0) != (l | 0)) { + continue + } + break + } + } + if (k) { + while (1) { + L[((e << 2) + m) >> 2] = L[((a << 2) + f) >> 2] + a = (a + 1) | 0 + e = (e + 1) | 0 + i = (i + 1) | 0 + if ((k | 0) != (i | 0)) { + continue + } + break + } + } + b = (b + 1) | 0 + i = j >>> 0 <= b >>> 0 + if ((b | 0) != (j | 0)) { + continue + } + break + } + break d + } + if (!f) { + break c + } + } + oa(f) + } + return i | 0 + } + function mf(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + e = (ca - 16) | 0 + ca = e + h = 1 + i = ea[H[(H[a >> 2] + 24) >> 2]](a) | 0 + a: { + if ((i | 0) <= 0) { + break a + } + l = (a + 48) | 0 + h = 0 + while (1) { + b: { + c: { + if ( + !H[((ea[H[(H[a >> 2] + 28) >> 2]](a) | 0) + 40) >> 2] + ) { + break c + } + j = f << 2 + g = H[(j + H[(a + 36) >> 2]) >> 2] + b = H[(g + 8) >> 2] + k = rb(g) + if (!k) { + break c + } + g = H[((ea[H[(H[a >> 2] + 28) >> 2]](a) | 0) + 40) >> 2] + H[(e + 12) >> 2] = H[(b + 56) >> 2] + b = pa(32) + H[e >> 2] = b + H[(e + 4) >> 2] = 24 + H[(e + 8) >> 2] = -2147483616 + c = + I[1206] | + (I[1207] << 8) | + ((I[1208] << 16) | (I[1209] << 24)) + d = + I[1202] | + (I[1203] << 8) | + ((I[1204] << 16) | (I[1205] << 24)) + F[(b + 16) | 0] = d + F[(b + 17) | 0] = d >>> 8 + F[(b + 18) | 0] = d >>> 16 + F[(b + 19) | 0] = d >>> 24 + F[(b + 20) | 0] = c + F[(b + 21) | 0] = c >>> 8 + F[(b + 22) | 0] = c >>> 16 + F[(b + 23) | 0] = c >>> 24 + c = + I[1198] | + (I[1199] << 8) | + ((I[1200] << 16) | (I[1201] << 24)) + d = + I[1194] | + (I[1195] << 8) | + ((I[1196] << 16) | (I[1197] << 24)) + F[(b + 8) | 0] = d + F[(b + 9) | 0] = d >>> 8 + F[(b + 10) | 0] = d >>> 16 + F[(b + 11) | 0] = d >>> 24 + F[(b + 12) | 0] = c + F[(b + 13) | 0] = c >>> 8 + F[(b + 14) | 0] = c >>> 16 + F[(b + 15) | 0] = c >>> 24 + c = + I[1190] | + (I[1191] << 8) | + ((I[1192] << 16) | (I[1193] << 24)) + d = + I[1186] | + (I[1187] << 8) | + ((I[1188] << 16) | (I[1189] << 24)) + F[b | 0] = d + F[(b + 1) | 0] = d >>> 8 + F[(b + 2) | 0] = d >>> 16 + F[(b + 3) | 0] = d >>> 24 + F[(b + 4) | 0] = c + F[(b + 5) | 0] = c >>> 8 + F[(b + 6) | 0] = c >>> 16 + F[(b + 7) | 0] = c >>> 24 + F[(b + 24) | 0] = 0 + b = sd(g, (e + 12) | 0, e) + if (F[(e + 11) | 0] < 0) { + oa(H[e >> 2]) + } + if (!b) { + break c + } + oe(H[(H[(H[(a + 36) >> 2] + j) >> 2] + 8) >> 2], k) + break b + } + b = H[(H[(a + 36) >> 2] + (f << 2)) >> 2] + if (!(ea[H[(H[b >> 2] + 24) >> 2]](b, l) | 0)) { + break a + } + } + f = (f + 1) | 0 + h = (i | 0) <= (f | 0) + if ((f | 0) != (i | 0)) { + continue + } + break + } + } + ca = (e + 16) | 0 + return h | 0 + } + function Ye(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + k = (ca - 16) | 0 + ca = k + c = H[(b + 20) >> 2] + d = H[(b + 16) >> 2] + e = (d + 4) | 0 + c = e >>> 0 < 4 ? (c + 1) | 0 : c + g = H[(b + 12) >> 2] + a: { + if ( + ((K[(b + 8) >> 2] < e >>> 0) & ((g | 0) <= (c | 0))) | + ((c | 0) > (g | 0)) + ) { + break a + } + d = (d + H[b >> 2]) | 0 + h = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = c + if ((h | 0) < 0) { + break a + } + Wa((a + 76) | 0, h) + c = k + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + b: { + if (!ta(c, b)) { + break b + } + if (h) { + g = 1 + while (1) { + d = 1 << i + e = Ba(c) + f = (H[(a + 76) >> 2] + ((i >>> 3) & 536870908)) | 0 + e = e ^ g + if (e & 1) { + d = H[f >> 2] & (d ^ -1) + } else { + d = d | H[f >> 2] + } + g = e ^ 1 + H[f >> 2] = d + i = (i + 1) | 0 + if ((h | 0) != (i | 0)) { + continue + } + break + } + } + i = 0 + c = H[(b + 8) >> 2] + e = H[(b + 12) >> 2] + f = e + e = H[(b + 20) >> 2] + g = e + l = H[(b + 16) >> 2] + d = (l + 4) | 0 + e = d >>> 0 < 4 ? (e + 1) | 0 : e + h = d + if ( + ((d >>> 0 > c >>> 0) & ((e | 0) >= (f | 0))) | + ((e | 0) > (f | 0)) + ) { + break b + } + m = H[b >> 2] + d = (m + l) | 0 + j = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = h + H[(b + 20) >> 2] = e + d = c + c = g + e = (l + 8) | 0 + c = e >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((d >>> 0 < e >>> 0) & ((c | 0) >= (f | 0))) | + ((c | 0) > (f | 0)) + ) { + break b + } + d = (h + m) | 0 + d = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = c + if ((d | 0) < (j | 0)) { + break b + } + H[(a + 16) >> 2] = d + H[(a + 12) >> 2] = j + c = + ((d >> 31) - (((j >> 31) + (d >>> 0 < j >>> 0)) | 0)) | 0 + b = (d - j) | 0 + if ((!c & (b >>> 0 > 2147483646)) | c) { + break b + } + i = 1 + c = (b + 1) | 0 + H[(a + 20) >> 2] = c + b = (c >>> 1) | 0 + H[(a + 24) >> 2] = b + H[(a + 28) >> 2] = 0 - b + if (c & 1) { + break b + } + H[(a + 24) >> 2] = b - 1 + } + } + ca = (k + 16) | 0 + return i | 0 + } + function rg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + a = 0 + k = (ca - 16) | 0 + ca = k + j = H[(b + 80) >> 2] + e = I[(c + 24) | 0] + b = N(j, e) + a: { + b: { + c: { + d: { + f = H[(c + 28) >> 2] + if ( + !( + !I[(c + 84) | 0] | + (((f | 0) != 5) & ((f | 0) != 6)) + ) + ) { + e = H[(c + 48) >> 2] + c = H[H[c >> 2] >> 2] + H[(k + 8) >> 2] = 0 + H[k >> 2] = 0 + H[(k + 4) >> 2] = 0 + if (b) { + if ((b | 0) < 0) { + break d + } + b = b << 2 + a = pa(b) + g = (qa(a, (c + e) | 0, b) + b) | 0 + } + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + } + H[(d + 8) >> 2] = g + H[(d + 4) >> 2] = g + H[d >> 2] = a + h = 1 + break a + } + if (e) { + f = e << 2 + a = pa(f) + ra(a, 0, f) + } + i = H[d >> 2] + f = (H[(d + 4) >> 2] - i) >> 2 + e: { + if (f >>> 0 < b >>> 0) { + ya(d, (b - f) | 0) + break e + } + if (b >>> 0 >= f >>> 0) { + break e + } + H[(d + 4) >> 2] = i + (b << 2) + } + if (!j) { + h = 1 + break c + } + if (!e) { + b = 0 + while (1) { + if ( + !dc( + c, + I[(c + 84) | 0] + ? b + : H[(H[(c + 68) >> 2] + (b << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break c + } + b = (b + 1) | 0 + h = j >>> 0 <= b >>> 0 + if ((b | 0) != (j | 0)) { + continue + } + break + } + break c + } + o = e & 252 + m = e & 3 + p = e >>> 0 < 4 + e = 0 + while (1) { + if ( + !dc( + c, + I[(c + 84) | 0] + ? e + : H[(H[(c + 68) >> 2] + (e << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break c + } + n = H[d >> 2] + l = 0 + b = 0 + h = 0 + if (!p) { + while (1) { + f = ((g << 2) + n) | 0 + i = b << 2 + H[f >> 2] = H[(i + a) >> 2] + H[(f + 4) >> 2] = H[((i | 4) + a) >> 2] + H[(f + 8) >> 2] = H[((i | 8) + a) >> 2] + H[(f + 12) >> 2] = H[((i | 12) + a) >> 2] + b = (b + 4) | 0 + g = (g + 4) | 0 + h = (h + 4) | 0 + if ((o | 0) != (h | 0)) { + continue + } + break + } + } + if (m) { + while (1) { + H[((g << 2) + n) >> 2] = H[((b << 2) + a) >> 2] + b = (b + 1) | 0 + g = (g + 1) | 0 + l = (l + 1) | 0 + if ((l | 0) != (m | 0)) { + continue + } + break + } + } + e = (e + 1) | 0 + h = j >>> 0 <= e >>> 0 + if ((e | 0) != (j | 0)) { + continue + } + break + } + break b + } + sa() + v() + } + if (!a) { + break a + } + } + oa(a) + } + ca = (k + 16) | 0 + return h | 0 + } + function ge(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + a = 0 + k = (ca - 16) | 0 + ca = k + j = H[(b + 80) >> 2] + e = I[(c + 24) | 0] + b = N(j, e) + a: { + b: { + c: { + d: { + f = H[(c + 28) >> 2] + if ( + !( + !I[(c + 84) | 0] | + (((f | 0) != 5) & ((f | 0) != 6)) + ) + ) { + e = H[(c + 48) >> 2] + c = H[H[c >> 2] >> 2] + H[(k + 8) >> 2] = 0 + H[k >> 2] = 0 + H[(k + 4) >> 2] = 0 + if (b) { + if ((b | 0) < 0) { + break d + } + b = b << 2 + a = pa(b) + g = (qa(a, (c + e) | 0, b) + b) | 0 + } + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + } + H[(d + 8) >> 2] = g + H[(d + 4) >> 2] = g + H[d >> 2] = a + h = 1 + break a + } + if (e) { + f = e << 2 + a = pa(f) + ra(a, 0, f) + } + i = H[d >> 2] + f = (H[(d + 4) >> 2] - i) >> 2 + e: { + if (f >>> 0 < b >>> 0) { + ya(d, (b - f) | 0) + break e + } + if (b >>> 0 >= f >>> 0) { + break e + } + H[(d + 4) >> 2] = i + (b << 2) + } + if (!j) { + h = 1 + break c + } + if (!e) { + b = 0 + while (1) { + if ( + !ec( + c, + I[(c + 84) | 0] + ? b + : H[(H[(c + 68) >> 2] + (b << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break c + } + b = (b + 1) | 0 + h = j >>> 0 <= b >>> 0 + if ((b | 0) != (j | 0)) { + continue + } + break + } + break c + } + o = e & 252 + m = e & 3 + p = e >>> 0 < 4 + e = 0 + while (1) { + if ( + !ec( + c, + I[(c + 84) | 0] + ? e + : H[(H[(c + 68) >> 2] + (e << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break c + } + n = H[d >> 2] + l = 0 + b = 0 + h = 0 + if (!p) { + while (1) { + f = ((g << 2) + n) | 0 + i = b << 2 + H[f >> 2] = H[(i + a) >> 2] + H[(f + 4) >> 2] = H[((i | 4) + a) >> 2] + H[(f + 8) >> 2] = H[((i | 8) + a) >> 2] + H[(f + 12) >> 2] = H[((i | 12) + a) >> 2] + b = (b + 4) | 0 + g = (g + 4) | 0 + h = (h + 4) | 0 + if ((o | 0) != (h | 0)) { + continue + } + break + } + } + if (m) { + while (1) { + H[((g << 2) + n) >> 2] = H[((b << 2) + a) >> 2] + b = (b + 1) | 0 + g = (g + 1) | 0 + l = (l + 1) | 0 + if ((l | 0) != (m | 0)) { + continue + } + break + } + } + e = (e + 1) | 0 + h = j >>> 0 <= e >>> 0 + if ((e | 0) != (j | 0)) { + continue + } + break + } + break b + } + sa() + v() + } + if (!a) { + break a + } + } + oa(a) + } + ca = (k + 16) | 0 + return h | 0 + } + function tg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + a = 0 + k = (ca - 16) | 0 + ca = k + j = H[(b + 80) >> 2] + e = I[(c + 24) | 0] + b = N(j, e) + a: { + b: { + c: { + d: { + f = H[(c + 28) >> 2] + if ( + !( + !I[(c + 84) | 0] | + (((f | 0) != 3) & ((f | 0) != 4)) + ) + ) { + e = H[(c + 48) >> 2] + c = H[H[c >> 2] >> 2] + H[(k + 8) >> 2] = 0 + H[k >> 2] = 0 + H[(k + 4) >> 2] = 0 + if (b) { + if ((b | 0) < 0) { + break d + } + b = b << 1 + a = pa(b) + g = (qa(a, (c + e) | 0, b) + b) | 0 + } + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + } + H[(d + 8) >> 2] = g + H[(d + 4) >> 2] = g + H[d >> 2] = a + h = 1 + break a + } + if (e) { + f = e << 1 + a = pa(f) + ra(a, 0, f) + } + i = H[d >> 2] + f = (H[(d + 4) >> 2] - i) >> 1 + e: { + if (f >>> 0 < b >>> 0) { + qe(d, (b - f) | 0) + break e + } + if (b >>> 0 >= f >>> 0) { + break e + } + H[(d + 4) >> 2] = i + (b << 1) + } + if (!j) { + h = 1 + break c + } + if (!e) { + b = 0 + while (1) { + if ( + !gc( + c, + I[(c + 84) | 0] + ? b + : H[(H[(c + 68) >> 2] + (b << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break c + } + b = (b + 1) | 0 + h = j >>> 0 <= b >>> 0 + if ((b | 0) != (j | 0)) { + continue + } + break + } + break c + } + o = e & 252 + m = e & 3 + p = e >>> 0 < 4 + e = 0 + while (1) { + if ( + !gc( + c, + I[(c + 84) | 0] + ? e + : H[(H[(c + 68) >> 2] + (e << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break c + } + n = H[d >> 2] + l = 0 + b = 0 + h = 0 + if (!p) { + while (1) { + f = ((g << 1) + n) | 0 + i = b << 1 + G[f >> 1] = J[(i + a) >> 1] + G[(f + 2) >> 1] = J[((i | 2) + a) >> 1] + G[(f + 4) >> 1] = J[((i | 4) + a) >> 1] + G[(f + 6) >> 1] = J[((i | 6) + a) >> 1] + b = (b + 4) | 0 + g = (g + 4) | 0 + h = (h + 4) | 0 + if ((o | 0) != (h | 0)) { + continue + } + break + } + } + if (m) { + while (1) { + G[((g << 1) + n) >> 1] = J[((b << 1) + a) >> 1] + b = (b + 1) | 0 + g = (g + 1) | 0 + l = (l + 1) | 0 + if ((l | 0) != (m | 0)) { + continue + } + break + } + } + e = (e + 1) | 0 + h = j >>> 0 <= e >>> 0 + if ((e | 0) != (j | 0)) { + continue + } + break + } + break b + } + sa() + v() + } + if (!a) { + break a + } + } + oa(a) + } + ca = (k + 16) | 0 + return h | 0 + } + function sg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + a = 0 + k = (ca - 16) | 0 + ca = k + j = H[(b + 80) >> 2] + e = I[(c + 24) | 0] + b = N(j, e) + a: { + b: { + c: { + d: { + f = H[(c + 28) >> 2] + if ( + !( + !I[(c + 84) | 0] | + (((f | 0) != 3) & ((f | 0) != 4)) + ) + ) { + e = H[(c + 48) >> 2] + c = H[H[c >> 2] >> 2] + H[(k + 8) >> 2] = 0 + H[k >> 2] = 0 + H[(k + 4) >> 2] = 0 + if (b) { + if ((b | 0) < 0) { + break d + } + b = b << 1 + a = pa(b) + g = (qa(a, (c + e) | 0, b) + b) | 0 + } + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + } + H[(d + 8) >> 2] = g + H[(d + 4) >> 2] = g + H[d >> 2] = a + h = 1 + break a + } + if (e) { + f = e << 1 + a = pa(f) + ra(a, 0, f) + } + i = H[d >> 2] + f = (H[(d + 4) >> 2] - i) >> 1 + e: { + if (f >>> 0 < b >>> 0) { + qe(d, (b - f) | 0) + break e + } + if (b >>> 0 >= f >>> 0) { + break e + } + H[(d + 4) >> 2] = i + (b << 1) + } + if (!j) { + h = 1 + break c + } + if (!e) { + b = 0 + while (1) { + if ( + !fc( + c, + I[(c + 84) | 0] + ? b + : H[(H[(c + 68) >> 2] + (b << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break c + } + b = (b + 1) | 0 + h = j >>> 0 <= b >>> 0 + if ((b | 0) != (j | 0)) { + continue + } + break + } + break c + } + o = e & 252 + m = e & 3 + p = e >>> 0 < 4 + e = 0 + while (1) { + if ( + !fc( + c, + I[(c + 84) | 0] + ? e + : H[(H[(c + 68) >> 2] + (e << 2)) >> 2], + F[(c + 24) | 0], + a, + ) + ) { + break c + } + n = H[d >> 2] + l = 0 + b = 0 + h = 0 + if (!p) { + while (1) { + f = ((g << 1) + n) | 0 + i = b << 1 + G[f >> 1] = J[(i + a) >> 1] + G[(f + 2) >> 1] = J[((i | 2) + a) >> 1] + G[(f + 4) >> 1] = J[((i | 4) + a) >> 1] + G[(f + 6) >> 1] = J[((i | 6) + a) >> 1] + b = (b + 4) | 0 + g = (g + 4) | 0 + h = (h + 4) | 0 + if ((o | 0) != (h | 0)) { + continue + } + break + } + } + if (m) { + while (1) { + G[((g << 1) + n) >> 1] = J[((b << 1) + a) >> 1] + b = (b + 1) | 0 + g = (g + 1) | 0 + l = (l + 1) | 0 + if ((l | 0) != (m | 0)) { + continue + } + break + } + } + e = (e + 1) | 0 + h = j >>> 0 <= e >>> 0 + if ((e | 0) != (j | 0)) { + continue + } + break + } + break b + } + sa() + v() + } + if (!a) { + break a + } + } + oa(a) + } + ca = (k + 16) | 0 + return h | 0 + } + function Ce(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + f = -1 + d = -1 + a: { + if ((b | 0) == -1) { + break a + } + d = (b + 1) | 0 + f = (d >>> 0) % 3 | 0 ? d : (b - 2) | 0 + d = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break a + } + d = (b + 2) | 0 + } + b: { + c: { + d: { + switch (H[(a + 168) >> 2]) { + case 0: + case 1: + e = H[(a + 148) >> 2] + c = 1 + b = H[(a + 156) >> 2] + g = + (b + + (((f | 0) == -1 + ? -1 + : H[(H[e >> 2] + (f << 2)) >> 2]) << + 2)) | + 0 + H[g >> 2] = H[g >> 2] + 1 + b = + ((((d | 0) == -1 + ? -1 + : H[(H[e >> 2] + (d << 2)) >> 2]) << + 2) + + b) | + 0 + break c + case 5: + e = H[(a + 148) >> 2] + c = -1 + c = + ((b | 0) != -1 + ? H[(H[e >> 2] + (b << 2)) >> 2] + : c) << 2 + b = H[(a + 156) >> 2] + c = (c + b) | 0 + H[c >> 2] = H[c >> 2] + 1 + c = + ((((f | 0) == -1 + ? -1 + : H[(H[e >> 2] + (f << 2)) >> 2]) << + 2) + + b) | + 0 + H[c >> 2] = H[c >> 2] + 1 + c = 2 + b = + ((((d | 0) == -1 + ? -1 + : H[(H[e >> 2] + (d << 2)) >> 2]) << + 2) + + b) | + 0 + break c + case 3: + e = H[(a + 148) >> 2] + c = -1 + c = + ((b | 0) != -1 + ? H[(H[e >> 2] + (b << 2)) >> 2] + : c) << 2 + b = H[(a + 156) >> 2] + c = (c + b) | 0 + H[c >> 2] = H[c >> 2] + 1 + c = + ((((f | 0) == -1 + ? -1 + : H[(H[e >> 2] + (f << 2)) >> 2]) << + 2) + + b) | + 0 + H[c >> 2] = H[c >> 2] + 2 + c = 1 + b = + ((((d | 0) == -1 + ? -1 + : H[(H[e >> 2] + (d << 2)) >> 2]) << + 2) + + b) | + 0 + break c + case 7: + break d + default: + break b + } + } + e = H[(a + 148) >> 2] + c = -1 + c = + ((b | 0) != -1 ? H[(H[e >> 2] + (b << 2)) >> 2] : c) << 2 + b = H[(a + 156) >> 2] + c = (c + b) | 0 + H[c >> 2] = H[c >> 2] + 2 + c = + ((((f | 0) == -1 ? -1 : H[(H[e >> 2] + (f << 2)) >> 2]) << + 2) + + b) | + 0 + H[c >> 2] = H[c >> 2] + 2 + c = 2 + b = + ((((d | 0) == -1 ? -1 : H[(H[e >> 2] + (d << 2)) >> 2]) << + 2) + + b) | + 0 + } + H[b >> 2] = H[b >> 2] + c + } + c = a + b = + H[ + (H[(a + 156) >> 2] + + (((f | 0) == -1 + ? -1 + : H[(H[H[(a + 148) >> 2] >> 2] + (f << 2)) >> 2]) << + 2)) >> + 2 + ] + d = H[(a + 180) >> 2] + a = H[(a + 176) >> 2] + H[(c + 172) >> 2] = + (a | 0) <= (b | 0) ? (((b | 0) < (d | 0) ? b : d) - a) | 0 : 0 + } + function Ac(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 24) >> 2] = 0 + f = H[(b + 4) >> 2] + g = H[b >> 2] + e = (f - g) | 0 + c = ((e | 0) / 20) | 0 + a: { + if ((f | 0) == (g | 0)) { + break a + } + b: { + if (c >>> 0 < 214748365) { + f = pa(e) + H[(a + 20) >> 2] = f + H[(a + 16) >> 2] = f + H[(a + 24) >> 2] = f + N(c, 20) + c = H[b >> 2] + g = H[(b + 4) >> 2] + if ((c | 0) == (g | 0)) { + break a + } + b = f + while (1) { + e = H[(c + 4) >> 2] + H[b >> 2] = H[c >> 2] + H[(b + 4) >> 2] = e + H[(b + 16) >> 2] = H[(c + 16) >> 2] + e = H[(c + 12) >> 2] + H[(b + 8) >> 2] = H[(c + 8) >> 2] + H[(b + 12) >> 2] = e + b = (b + 20) | 0 + c = (c + 20) | 0 + if ((g | 0) != (c | 0)) { + continue + } + break + } + g = 0 + H[(a + 28) >> 2] = 0 + H[(a + 20) >> 2] = b + if ((b | 0) != (f | 0)) { + b = (((b - f) | 0) / 20) | 0 + e = b >>> 0 <= 1 ? 1 : b + h = e & 3 + b = 0 + c = 0 + if ((e - 1) >>> 0 >= 3) { + i = e & -4 + e = 0 + while (1) { + d = (f + N(b, 20)) | 0 + d = N(H[(d + 16) >> 2], H[(d + 12) >> 2]) + c = c >>> 0 > d >>> 0 ? c : d + d = (f + N(b | 1, 20)) | 0 + d = N(H[(d + 16) >> 2], H[(d + 12) >> 2]) + c = c >>> 0 > d >>> 0 ? c : d + d = (f + N(b | 2, 20)) | 0 + d = N(H[(d + 16) >> 2], H[(d + 12) >> 2]) + c = c >>> 0 > d >>> 0 ? c : d + d = (f + N(b | 3, 20)) | 0 + d = N(H[(d + 16) >> 2], H[(d + 12) >> 2]) + c = c >>> 0 > d >>> 0 ? c : d + b = (b + 4) | 0 + e = (e + 4) | 0 + if ((i | 0) != (e | 0)) { + continue + } + break + } + } + if (h) { + while (1) { + e = (f + N(b, 20)) | 0 + e = N(H[(e + 16) >> 2], H[(e + 12) >> 2]) + c = c >>> 0 > e >>> 0 ? c : e + b = (b + 1) | 0 + g = (g + 1) | 0 + if ((h | 0) != (g | 0)) { + continue + } + break + } + } + if (!c) { + H[(a + 12) >> 2] = 0 + return a + } + if ((c | 0) < 0) { + break b + } + g = pa(c) + b = ra(g, 0, c) + f = (b + c) | 0 + H[(a + 8) >> 2] = f + H[(a + 4) >> 2] = f + H[a >> 2] = b + } + H[(a + 12) >> 2] = g + return a + } + sa() + v() + } + sa() + v() + } + H[(a + 28) >> 2] = 0 + H[(a + 12) >> 2] = 0 + return a + } + function Dh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + a: { + b = H[(a + 32) >> 2] + f = H[(b + 8) >> 2] + h = H[(b + 12) >> 2] + g = H[(b + 20) >> 2] + c = H[(b + 16) >> 2] + e = 0 + b: { + if ( + (((h | 0) <= (g | 0)) & (c >>> 0 >= f >>> 0)) | + ((g | 0) > (h | 0)) + ) { + break b + } + f = I[(H[b >> 2] + c) | 0] + e = b + b = g + c = (c + 1) | 0 + b = c ? b : (b + 1) | 0 + H[(e + 16) >> 2] = c + H[(e + 20) >> 2] = b + c: { + if (!f) { + break c + } + while (1) { + if (ea[H[(H[a >> 2] + 16) >> 2]](a, d) | 0) { + d = (d + 1) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break c + } + break + } + return 0 + } + d = H[(a + 8) >> 2] + b = H[(a + 12) >> 2] + if ((d | 0) != (b | 0)) { + while (1) { + c = H[d >> 2] + if ( + !( + ea[H[(H[c >> 2] + 8) >> 2]](c, a, H[(a + 4) >> 2]) | + 0 + ) + ) { + break a + } + d = (d + 4) | 0 + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + d: { + if (!f) { + break d + } + d = 0 + while (1) { + b = H[(H[(a + 8) >> 2] + (d << 2)) >> 2] + if ( + !( + ea[H[(H[b >> 2] + 12) >> 2]](b, H[(a + 32) >> 2]) | + 0 + ) + ) { + break a + } + d = (d + 1) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + if (!f) { + break d + } + i = (a + 20) | 0 + b = 0 + while (1) { + d = 0 + j = b << 2 + c = H[(j + H[(a + 8) >> 2]) >> 2] + k = ea[H[(H[c >> 2] + 24) >> 2]](c) | 0 + if ((k | 0) > 0) { + while (1) { + c = H[(H[(a + 8) >> 2] + j) >> 2] + c = ea[H[(H[c >> 2] + 20) >> 2]](c, d) | 0 + e = H[(a + 20) >> 2] + g = (H[(a + 24) >> 2] - e) >> 2 + e: { + if (c >>> 0 < g >>> 0) { + break e + } + h = (c + 1) | 0 + if (h >>> 0 > g >>> 0) { + ya(i, (h - g) | 0) + e = H[i >> 2] + break e + } + if (g >>> 0 <= h >>> 0) { + break e + } + H[(a + 24) >> 2] = (h << 2) + e + } + H[((c << 2) + e) >> 2] = b + d = (d + 1) | 0 + if ((k | 0) != (d | 0)) { + continue + } + break + } + } + b = (b + 1) | 0 + if ((f | 0) != (b | 0)) { + continue + } + break + } + } + e = 0 + if (!(ea[H[(H[a >> 2] + 28) >> 2]](a) | 0)) { + break b + } + e = ea[H[(H[a >> 2] + 32) >> 2]](a) | 0 + } + return e | 0 + } + return 0 + } + function ta(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + i = (ca - 16) | 0 + ca = i + f = H[(b + 20) >> 2] + d = H[(b + 12) >> 2] + c = H[(b + 16) >> 2] + a: { + if ( + (((f | 0) >= (d | 0)) & (c >>> 0 >= K[(b + 8) >> 2])) | + ((d | 0) < (f | 0)) + ) { + break a + } + F[(a + 12) | 0] = I[(c + H[b >> 2]) | 0] + c = H[(b + 20) >> 2] + g = c + f = H[(b + 16) >> 2] + e = (f + 1) | 0 + c = e ? c : (c + 1) | 0 + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = c + b: { + if (J[(b + 38) >> 1] <= 513) { + d = H[(b + 8) >> 2] + c = H[(b + 12) >> 2] + h = c + c = g + f = (f + 5) | 0 + c = f >>> 0 < 5 ? (c + 1) | 0 : c + if ( + ((d >>> 0 < f >>> 0) & ((c | 0) >= (h | 0))) | + ((c | 0) > (h | 0)) + ) { + break a + } + e = (e + H[b >> 2]) | 0 + e = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = c + break b + } + if (!Qe(1, (i + 12) | 0, b)) { + break a + } + f = H[(b + 16) >> 2] + c = H[(b + 20) >> 2] + d = H[(b + 8) >> 2] + h = H[(b + 12) >> 2] + e = H[(i + 12) >> 2] + } + g = (d - f) | 0 + d = (h - ((c + (d >>> 0 < f >>> 0)) | 0)) | 0 + if ( + (((d | 0) <= 0) & (e >>> 0 > g >>> 0)) | + ((d | 0) < 0) | + ((e | 0) <= 0) + ) { + break a + } + j = (H[b >> 2] + f) | 0 + H[a >> 2] = j + c: { + d: { + h = (e - 1) | 0 + g = (h + j) | 0 + d = I[g | 0] + e: { + if (d >>> 0 <= 63) { + H[(a + 4) >> 2] = h + g = I[g | 0] & 63 + break e + } + f: { + switch ((((d >>> 6) | 0) - 1) | 0) { + case 1: + break d + case 0: + break f + default: + break a + } + } + if (e >>> 0 < 2) { + break a + } + d = (e - 2) | 0 + H[(a + 4) >> 2] = d + d = (d + j) | 0 + g = ((I[(d + 1) | 0] << 8) & 16128) | I[d | 0] + } + H[(a + 8) >> 2] = g + 4096 + break c + } + if (e >>> 0 < 3) { + break a + } + d = (e - 3) | 0 + H[(a + 4) >> 2] = d + g = a + a = (d + j) | 0 + a = + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) & 4128768) | + I[a | 0] + H[(g + 8) >> 2] = a + 4096 + if (a >>> 0 > 1044479) { + break a + } + } + a = (e + f) | 0 + c = a >>> 0 < e >>> 0 ? (c + 1) | 0 : c + H[(b + 16) >> 2] = a + H[(b + 20) >> 2] = c + k = 1 + } + ca = (i + 16) | 0 + return k + } + function Wf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + Xd(a, b, c) + c = H[(a + 84) >> 2] + d = (H[(a + 88) >> 2] - c) >> 2 + a: { + if ((d | 0) > (b | 0)) { + break a + } + b = (b + 1) | 0 + if (b >>> 0 > d >>> 0) { + b: { + d = (b - d) | 0 + e = H[(a + 92) >> 2] + c = H[(a + 88) >> 2] + if (d >>> 0 <= ((e - c) >> 2) >>> 0) { + c: { + if (!d) { + break c + } + b = c + e = d & 7 + if (e) { + while (1) { + H[b >> 2] = 1 + b = (b + 4) | 0 + f = (f + 1) | 0 + if ((e | 0) != (f | 0)) { + continue + } + break + } + } + c = ((d << 2) + c) | 0 + if (((d - 1) & 1073741823) >>> 0 < 7) { + break c + } + while (1) { + H[(b + 24) >> 2] = 1 + H[(b + 28) >> 2] = 1 + H[(b + 16) >> 2] = 1 + H[(b + 20) >> 2] = 1 + H[(b + 8) >> 2] = 1 + H[(b + 12) >> 2] = 1 + H[b >> 2] = 1 + H[(b + 4) >> 2] = 1 + b = (b + 32) | 0 + if ((c | 0) != (b | 0)) { + continue + } + break + } + } + H[(a + 88) >> 2] = c + break b + } + d: { + b = c + c = H[(a + 84) >> 2] + i = (b - c) | 0 + g = i >> 2 + b = (g + d) | 0 + if (b >>> 0 < 1073741824) { + e = (e - c) | 0 + h = (e >>> 1) | 0 + e = + e >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 < h >>> 0 + ? h + : b + if (e) { + if (e >>> 0 >= 1073741824) { + break d + } + j = pa(e << 2) + } + g = ((g << 2) + j) | 0 + b = g + h = d & 7 + if (h) { + while (1) { + H[b >> 2] = 1 + b = (b + 4) | 0 + f = (f + 1) | 0 + if ((h | 0) != (f | 0)) { + continue + } + break + } + } + f = (g + (d << 2)) | 0 + if (((d - 1) & 1073741823) >>> 0 >= 7) { + while (1) { + H[(b + 24) >> 2] = 1 + H[(b + 28) >> 2] = 1 + H[(b + 16) >> 2] = 1 + H[(b + 20) >> 2] = 1 + H[(b + 8) >> 2] = 1 + H[(b + 12) >> 2] = 1 + H[b >> 2] = 1 + H[(b + 4) >> 2] = 1 + b = (b + 32) | 0 + if ((f | 0) != (b | 0)) { + continue + } + break + } + } + b = va(j, c, i) + H[(a + 88) >> 2] = f + H[(a + 84) >> 2] = b + H[(a + 92) >> 2] = b + (e << 2) + if (c) { + oa(c) + } + break b + } + sa() + v() + } + wa() + v() + } + return + } + if (b >>> 0 >= d >>> 0) { + break a + } + H[(a + 88) >> 2] = c + (b << 2) + } + } + function qb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = H[(a + 8) >> 2] + e = H[(a + 4) >> 2] + if (((d - e) >> 2) >>> 0 >= b >>> 0) { + a: { + if (!b) { + break a + } + d = e + g = b & 7 + if (g) { + while (1) { + H[d >> 2] = H[c >> 2] + d = (d + 4) | 0 + f = (f + 1) | 0 + if ((g | 0) != (f | 0)) { + continue + } + break + } + } + e = ((b << 2) + e) | 0 + if (((b - 1) & 1073741823) >>> 0 < 7) { + break a + } + while (1) { + H[d >> 2] = H[c >> 2] + H[(d + 4) >> 2] = H[c >> 2] + H[(d + 8) >> 2] = H[c >> 2] + H[(d + 12) >> 2] = H[c >> 2] + H[(d + 16) >> 2] = H[c >> 2] + H[(d + 20) >> 2] = H[c >> 2] + H[(d + 24) >> 2] = H[c >> 2] + H[(d + 28) >> 2] = H[c >> 2] + d = (d + 32) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 4) >> 2] = e + return + } + b: { + i = H[a >> 2] + f = (e - i) >> 2 + h = (f + b) | 0 + if (h >>> 0 < 1073741824) { + j = (d - i) | 0 + d = (j >>> 1) | 0 + h = + j >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 > h >>> 0 + ? d + : h + if (h) { + if (h >>> 0 >= 1073741824) { + break b + } + k = pa(h << 2) + } + f = ((f << 2) + k) | 0 + d = f + j = b & 7 + if (j) { + while (1) { + H[d >> 2] = H[c >> 2] + d = (d + 4) | 0 + g = (g + 1) | 0 + if ((j | 0) != (g | 0)) { + continue + } + break + } + } + g = ((b << 2) + f) | 0 + if (((b - 1) & 1073741823) >>> 0 >= 7) { + while (1) { + H[d >> 2] = H[c >> 2] + H[(d + 4) >> 2] = H[c >> 2] + H[(d + 8) >> 2] = H[c >> 2] + H[(d + 12) >> 2] = H[c >> 2] + H[(d + 16) >> 2] = H[c >> 2] + H[(d + 20) >> 2] = H[c >> 2] + H[(d + 24) >> 2] = H[c >> 2] + H[(d + 28) >> 2] = H[c >> 2] + d = (d + 32) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if ((e | 0) != (i | 0)) { + while (1) { + f = (f - 4) | 0 + e = (e - 4) | 0 + H[f >> 2] = H[e >> 2] + if ((e | 0) != (i | 0)) { + continue + } + break + } + } + H[(a + 8) >> 2] = (h << 2) + k + H[(a + 4) >> 2] = g + H[a >> 2] = f + if (i) { + oa(i) + } + return + } + sa() + v() + } + wa() + v() + } + function Kc(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = H[(a + 8) >> 2] + e = H[a >> 2] + if (((d - e) >> 2) >>> 0 >= b >>> 0) { + f = H[(a + 4) >> 2] + h = (f - e) >> 2 + i = b >>> 0 > h >>> 0 ? h : b + a: { + if (!i) { + break a + } + d = e + g = i + j = g & 7 + if (j) { + while (1) { + H[d >> 2] = H[c >> 2] + g = (g - 1) | 0 + d = (d + 4) | 0 + k = (k + 1) | 0 + if ((k | 0) != (j | 0)) { + continue + } + break + } + } + if (i >>> 0 < 8) { + break a + } + while (1) { + H[d >> 2] = H[c >> 2] + H[(d + 4) >> 2] = H[c >> 2] + H[(d + 8) >> 2] = H[c >> 2] + H[(d + 12) >> 2] = H[c >> 2] + H[(d + 16) >> 2] = H[c >> 2] + H[(d + 20) >> 2] = H[c >> 2] + H[(d + 24) >> 2] = H[c >> 2] + H[(d + 28) >> 2] = H[c >> 2] + d = (d + 32) | 0 + g = (g - 8) | 0 + if (g) { + continue + } + break + } + } + if (b >>> 0 > h >>> 0) { + b = (((b - h) << 2) + f) | 0 + while (1) { + H[f >> 2] = H[c >> 2] + f = (f + 4) | 0 + if ((b | 0) != (f | 0)) { + continue + } + break + } + H[(a + 4) >> 2] = b + return + } + H[(a + 4) >> 2] = e + (b << 2) + return + } + if (e) { + H[(a + 4) >> 2] = e + oa(e) + H[(a + 8) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + d = 0 + } + b: { + if (b >>> 0 >= 1073741824) { + break b + } + e = (d >>> 1) | 0 + d = + d >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 < e >>> 0 + ? e + : b + if (d >>> 0 >= 1073741824) { + break b + } + d = d << 2 + e = pa(d) + H[a >> 2] = e + H[(a + 8) >> 2] = d + e + c = H[c >> 2] + d = e + g = b & 7 + if (g) { + while (1) { + H[d >> 2] = c + d = (d + 4) | 0 + f = (f + 1) | 0 + if ((g | 0) != (f | 0)) { + continue + } + break + } + } + e = (e + (b << 2)) | 0 + if (((b - 1) & 1073741823) >>> 0 >= 7) { + while (1) { + H[(d + 28) >> 2] = c + H[(d + 24) >> 2] = c + H[(d + 20) >> 2] = c + H[(d + 16) >> 2] = c + H[(d + 12) >> 2] = c + H[(d + 8) >> 2] = c + H[(d + 4) >> 2] = c + H[d >> 2] = c + d = (d + 32) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 4) >> 2] = e + return + } + sa() + v() + } + function Me(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + h = (ca - 16) | 0 + ca = h + a: { + b: { + if (J[(b + 38) >> 1] <= 511) { + e = H[(b + 8) >> 2] + c = H[(b + 12) >> 2] + i = c + f = H[(b + 20) >> 2] + d = H[(b + 16) >> 2] + g = (d + 8) | 0 + f = g >>> 0 < 8 ? (f + 1) | 0 : f + if ( + ((e >>> 0 < g >>> 0) & ((c | 0) <= (f | 0))) | + ((c | 0) < (f | 0)) + ) { + break a + } + d = (d + H[b >> 2]) | 0 + c = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + d = + I[(d + 4) | 0] | + (I[(d + 5) | 0] << 8) | + ((I[(d + 6) | 0] << 16) | (I[(d + 7) | 0] << 24)) + H[(b + 16) >> 2] = g + H[(b + 20) >> 2] = f + break b + } + if (!gb(1, (h + 8) | 0, b)) { + break a + } + g = H[(b + 16) >> 2] + f = H[(b + 20) >> 2] + e = H[(b + 8) >> 2] + i = H[(b + 12) >> 2] + c = H[(h + 8) >> 2] + d = H[(h + 12) >> 2] + } + j = (e - g) | 0 + e = (i - ((f + (e >>> 0 < g >>> 0)) | 0)) | 0 + if ( + (((e | 0) == (d | 0)) & (c >>> 0 > j >>> 0)) | + (d >>> 0 > e >>> 0) + ) { + break a + } + e = (d + f) | 0 + f = (c + g) | 0 + e = f >>> 0 < g >>> 0 ? (e + 1) | 0 : e + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = e + if ((c | 0) <= 0) { + break a + } + b = (H[b >> 2] + g) | 0 + H[(a + 40) >> 2] = b + g = (c - 1) | 0 + e = (b + g) | 0 + f = I[e | 0] + c: { + if (f >>> 0 <= 63) { + H[(a + 44) >> 2] = g + b = I[e | 0] & 63 + break c + } + d: { + switch ((((f >>> 6) | 0) - 1) | 0) { + case 0: + if (c >>> 0 < 2) { + break a + } + c = (c - 2) | 0 + H[(a + 44) >> 2] = c + b = (b + c) | 0 + b = ((I[(b + 1) | 0] << 8) & 16128) | I[b | 0] + break c + case 1: + if (c >>> 0 < 3) { + break a + } + c = (c - 3) | 0 + H[(a + 44) >> 2] = c + b = (b + c) | 0 + b = + (I[(b + 1) | 0] << 8) | + ((I[(b + 2) | 0] << 16) & 4128768) | + I[b | 0] + break c + default: + break d + } + } + c = (c - 4) | 0 + H[(a + 44) >> 2] = c + b = (b + c) | 0 + b = + (I[b | 0] | + (I[(b + 1) | 0] << 8) | + ((I[(b + 2) | 0] << 16) | (I[(b + 3) | 0] << 24))) & + 1073741823 + } + H[(a + 48) >> 2] = b + 16384 + k = b >>> 0 < 4177920 + } + ca = (h + 16) | 0 + return k + } + function Ua(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + f = ((c >>> 0) / 3) | 0 + j = + H[ + (((H[(H[(a + 8) >> 2] + 96) >> 2] + N(f, 12)) | 0) + + ((c - N(f, 3)) << 2)) >> + 2 + ] + a: { + h = H[(H[(a + 12) >> 2] + 4) >> 2] + e = H[(h + 4) >> 2] + if ((e | 0) != H[(h + 8) >> 2]) { + H[e >> 2] = j + H[(h + 4) >> 2] = e + 4 + break a + } + b: { + i = H[h >> 2] + f = (e - i) | 0 + g = f >> 2 + d = (g + 1) | 0 + if (d >>> 0 < 1073741824) { + k = g << 2 + g = (f >>> 1) | 0 + g = + f >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < g >>> 0 + ? g + : d + if (g) { + if (g >>> 0 >= 1073741824) { + break b + } + f = pa(g << 2) + } else { + f = 0 + } + d = (k + f) | 0 + H[d >> 2] = j + j = (d + 4) | 0 + if ((e | 0) != (i | 0)) { + while (1) { + d = (d - 4) | 0 + e = (e - 4) | 0 + H[d >> 2] = H[e >> 2] + if ((e | 0) != (i | 0)) { + continue + } + break + } + } + H[(h + 8) >> 2] = f + (g << 2) + H[(h + 4) >> 2] = j + H[h >> 2] = d + if (i) { + oa(i) + } + break a + } + sa() + v() + } + wa() + v() + } + c: { + d: { + h = H[(a + 4) >> 2] + e = H[(h + 4) >> 2] + e: { + if ((e | 0) != H[(h + 8) >> 2]) { + H[e >> 2] = c + H[(h + 4) >> 2] = e + 4 + break e + } + i = H[h >> 2] + f = (e - i) | 0 + j = f >> 2 + d = (j + 1) | 0 + if (d >>> 0 >= 1073741824) { + break d + } + g = (f >>> 1) | 0 + g = + f >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < g >>> 0 + ? g + : d + if (g) { + if (g >>> 0 >= 1073741824) { + break c + } + f = pa(g << 2) + } else { + f = 0 + } + d = (f + (j << 2)) | 0 + H[d >> 2] = c + c = (d + 4) | 0 + if ((e | 0) != (i | 0)) { + while (1) { + d = (d - 4) | 0 + e = (e - 4) | 0 + H[d >> 2] = H[e >> 2] + if ((e | 0) != (i | 0)) { + continue + } + break + } + } + H[(h + 8) >> 2] = f + (g << 2) + H[(h + 4) >> 2] = c + H[h >> 2] = d + if (!i) { + break e + } + oa(i) + } + a = H[(a + 4) >> 2] + H[(H[(a + 12) >> 2] + (b << 2)) >> 2] = H[(a + 24) >> 2] + H[(a + 24) >> 2] = H[(a + 24) >> 2] + 1 + return + } + sa() + v() + } + wa() + v() + } + function Wb(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + h = (d - c) | 0 + if ((h | 0) <= 0) { + return + } + a: { + e = H[(a + 8) >> 2] + i = H[(a + 4) >> 2] + if (((e - i) | 0) >= (h | 0)) { + j = (i - b) | 0 + if ((j | 0) >= (h | 0)) { + f = i + g = d + break a + } + f = i + g = (c + j) | 0 + if ((g | 0) != (d | 0)) { + e = g + while (1) { + F[f | 0] = I[e | 0] + f = (f + 1) | 0 + e = (e + 1) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 4) >> 2] = f + if ((j | 0) > 0) { + break a + } + return + } + k = H[a >> 2] + g = (((i - k) | 0) + h) | 0 + if ((g | 0) >= 0) { + j = (b - k) | 0 + f = (e - k) | 0 + e = f << 1 + f = + f >>> 0 >= 1073741823 + ? 2147483647 + : e >>> 0 > g >>> 0 + ? e + : g + if (f) { + e = pa(f) + } else { + e = 0 + } + g = (j + e) | 0 + if ((c | 0) != (d | 0)) { + g = (qa(g, c, h) + h) | 0 + } + d = va(e, k, j) + c = (i - b) | 0 + b = va(g, b, c) + H[(a + 8) >> 2] = e + f + H[(a + 4) >> 2] = b + c + H[a >> 2] = d + if (k) { + oa(k) + } + return + } + sa() + v() + } + e = f + d = (e - h) | 0 + if (i >>> 0 > d >>> 0) { + while (1) { + F[e | 0] = I[d | 0] + e = (e + 1) | 0 + d = (d + 1) | 0 + if (i >>> 0 > d >>> 0) { + continue + } + break + } + } + H[(a + 4) >> 2] = e + a = (b + h) | 0 + if ((a | 0) != (f | 0)) { + a = (f - a) | 0 + va((f - a) | 0, b, a) + } + if ((c | 0) == (g | 0)) { + return + } + f = ((c ^ -1) + g) | 0 + a = (g - c) & 7 + b: { + if (!a) { + e = b + break b + } + d = 0 + e = b + while (1) { + F[e | 0] = I[c | 0] + e = (e + 1) | 0 + c = (c + 1) | 0 + d = (d + 1) | 0 + if ((a | 0) != (d | 0)) { + continue + } + break + } + } + if (f >>> 0 < 7) { + return + } + while (1) { + F[e | 0] = I[c | 0] + F[(e + 1) | 0] = I[(c + 1) | 0] + F[(e + 2) | 0] = I[(c + 2) | 0] + F[(e + 3) | 0] = I[(c + 3) | 0] + F[(e + 4) | 0] = I[(c + 4) | 0] + F[(e + 5) | 0] = I[(c + 5) | 0] + F[(e + 6) | 0] = I[(c + 6) | 0] + F[(e + 7) | 0] = I[(c + 7) | 0] + e = (e + 8) | 0 + c = (c + 8) | 0 + if ((g | 0) != (c | 0)) { + continue + } + break + } + } + function qa(a, b, c) { + var d = 0, + e = 0, + f = 0 + if (c >>> 0 >= 512) { + ba(a | 0, b | 0, c | 0) + return a + } + e = (a + c) | 0 + a: { + if (!((a ^ b) & 3)) { + b: { + if (!(a & 3)) { + c = a + break b + } + if (!c) { + c = a + break b + } + c = a + while (1) { + F[c | 0] = I[b | 0] + b = (b + 1) | 0 + c = (c + 1) | 0 + if (!(c & 3)) { + break b + } + if (c >>> 0 < e >>> 0) { + continue + } + break + } + } + d = e & -4 + c: { + if (d >>> 0 < 64) { + break c + } + f = (d + -64) | 0 + if (f >>> 0 < c >>> 0) { + break c + } + while (1) { + H[c >> 2] = H[b >> 2] + H[(c + 4) >> 2] = H[(b + 4) >> 2] + H[(c + 8) >> 2] = H[(b + 8) >> 2] + H[(c + 12) >> 2] = H[(b + 12) >> 2] + H[(c + 16) >> 2] = H[(b + 16) >> 2] + H[(c + 20) >> 2] = H[(b + 20) >> 2] + H[(c + 24) >> 2] = H[(b + 24) >> 2] + H[(c + 28) >> 2] = H[(b + 28) >> 2] + H[(c + 32) >> 2] = H[(b + 32) >> 2] + H[(c + 36) >> 2] = H[(b + 36) >> 2] + H[(c + 40) >> 2] = H[(b + 40) >> 2] + H[(c + 44) >> 2] = H[(b + 44) >> 2] + H[(c + 48) >> 2] = H[(b + 48) >> 2] + H[(c + 52) >> 2] = H[(b + 52) >> 2] + H[(c + 56) >> 2] = H[(b + 56) >> 2] + H[(c + 60) >> 2] = H[(b + 60) >> 2] + b = (b - -64) | 0 + c = (c - -64) | 0 + if (f >>> 0 >= c >>> 0) { + continue + } + break + } + } + if (c >>> 0 >= d >>> 0) { + break a + } + while (1) { + H[c >> 2] = H[b >> 2] + b = (b + 4) | 0 + c = (c + 4) | 0 + if (d >>> 0 > c >>> 0) { + continue + } + break + } + break a + } + if (e >>> 0 < 4) { + c = a + break a + } + d = (e - 4) | 0 + if (d >>> 0 < a >>> 0) { + c = a + break a + } + c = a + while (1) { + F[c | 0] = I[b | 0] + F[(c + 1) | 0] = I[(b + 1) | 0] + F[(c + 2) | 0] = I[(b + 2) | 0] + F[(c + 3) | 0] = I[(b + 3) | 0] + b = (b + 4) | 0 + c = (c + 4) | 0 + if (d >>> 0 >= c >>> 0) { + continue + } + break + } + } + if (c >>> 0 < e >>> 0) { + while (1) { + F[c | 0] = I[b | 0] + b = (b + 1) | 0 + c = (c + 1) | 0 + if ((e | 0) != (c | 0)) { + continue + } + break + } + } + return a + } + function ub(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + d = (ca - 16) | 0 + ca = d + H[(a + 12) >> 2] = b + H[(a + 8) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + c = (a + 16) | 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + F[(c + 5) | 0] = 0 + F[(c + 6) | 0] = 0 + F[(c + 7) | 0] = 0 + F[(c + 8) | 0] = 0 + F[(c + 9) | 0] = 0 + F[(c + 10) | 0] = 0 + F[(c + 11) | 0] = 0 + F[(c + 12) | 0] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + H[(a + 48) >> 2] = 0 + H[(a + 40) >> 2] = 0 + H[(a + 44) >> 2] = 0 + H[(a + 52) >> 2] = 0 + H[(a + 56) >> 2] = 0 + H[(a + 68) >> 2] = 0 + H[(a + 60) >> 2] = 0 + H[(a + 64) >> 2] = 0 + H[(a + 72) >> 2] = 0 + H[(a + 76) >> 2] = 0 + H[(a + 88) >> 2] = 0 + H[(a + 80) >> 2] = 0 + H[(a + 84) >> 2] = 0 + H[(a + 100) >> 2] = 0 + H[(a + 92) >> 2] = 0 + H[(a + 96) >> 2] = 0 + g = (a + 116) | 0 + a: { + b: { + if (b) { + if (b >>> 0 < 1073741824) { + break b + } + sa() + v() + } + H[(a + 104) >> 2] = 0 + H[(a + 108) >> 2] = 0 + H[(a + 112) >> 2] = 0 + H[(d + 8) >> 2] = 0 + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + c = 1 + break a + } + c = b << 2 + e = pa(c) + H[(a + 92) >> 2] = e + f = (c + e) | 0 + H[(a + 100) >> 2] = f + ra(e, 0, c) + H[(a + 112) >> 2] = 0 + H[(a + 104) >> 2] = 0 + H[(a + 108) >> 2] = 0 + H[(a + 96) >> 2] = f + e = pa(c) + H[(a + 104) >> 2] = e + f = (c + e) | 0 + H[(a + 112) >> 2] = f + ra(e, 0, c) + H[(a + 108) >> 2] = f + e = pa(c) + H[d >> 2] = e + f = (c + e) | 0 + H[(d + 8) >> 2] = f + ra(e, 0, c) + H[(d + 4) >> 2] = f + c = (b << 5) | 1 + } + tb(g, c, d) + e = H[d >> 2] + if (e) { + H[(d + 4) >> 2] = e + oa(e) + } + H[(d + 8) >> 2] = 0 + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + if (b) { + b = b << 2 + e = pa(b) + H[d >> 2] = e + f = (b + e) | 0 + H[(d + 8) >> 2] = f + ra(e, 0, b) + H[(d + 4) >> 2] = f + } + tb((a + 128) | 0, c, d) + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + } + ca = (d + 16) | 0 + return a + } + function ze(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0 + H[a >> 2] = 11484 + d = (a + 232) | 0 + b = H[(d + 196) >> 2] + if (b) { + H[(d + 200) >> 2] = b + oa(b) + } + c = H[(d + 184) >> 2] + if (c) { + b = c + e = H[(d + 188) >> 2] + if ((b | 0) != (e | 0)) { + while (1) { + b = (e - 12) | 0 + f = H[b >> 2] + if (f) { + H[(e - 8) >> 2] = f + oa(f) + } + e = b + if ((b | 0) != (c | 0)) { + continue + } + break + } + b = H[(d + 184) >> 2] + } + H[(d + 188) >> 2] = c + oa(b) + } + b = H[(d + 156) >> 2] + if (b) { + H[(d + 160) >> 2] = b + oa(b) + } + c = H[(d + 136) >> 2] + H[(d + 136) >> 2] = 0 + if (c) { + e = (c - 4) | 0 + b = H[e >> 2] + if (b) { + b = (c + (b << 4)) | 0 + while (1) { + b = (b - 16) | 0 + if ((c | 0) != (b | 0)) { + continue + } + break + } + } + oa(e) + } + Yc((a + 216) | 0) + b = H[(a + 196) >> 2] + if (b) { + H[(a + 200) >> 2] = b + oa(b) + } + b = H[(a + 184) >> 2] + if (b) { + H[(a + 188) >> 2] = b + oa(b) + } + b = H[(a + 172) >> 2] + if (b) { + H[(a + 176) >> 2] = b + oa(b) + } + b = H[(a + 160) >> 2] + if (b) { + H[(a + 164) >> 2] = b + oa(b) + } + b = H[(a + 144) >> 2] + if (b) { + while (1) { + c = H[b >> 2] + oa(b) + b = c + if (b) { + continue + } + break + } + } + b = H[(a + 136) >> 2] + H[(a + 136) >> 2] = 0 + if (b) { + oa(b) + } + b = H[(a + 120) >> 2] + if (b) { + oa(b) + } + b = H[(a + 108) >> 2] + if (b) { + oa(b) + } + b = H[(a + 96) >> 2] + if (b) { + oa(b) + } + b = H[(a + 72) >> 2] + if (b) { + H[(a + 76) >> 2] = b + oa(b) + } + b = H[(a + 60) >> 2] + if (b) { + oa(b) + } + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + b = H[(a + 36) >> 2] + if (b) { + H[(a + 40) >> 2] = b + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + H[(a + 28) >> 2] = b + oa(b) + } + b = H[(a + 12) >> 2] + if (b) { + H[(a + 16) >> 2] = b + oa(b) + } + b = H[(a + 8) >> 2] + H[(a + 8) >> 2] = 0 + if (b) { + cb(b) + } + return a | 0 + } + function Pa(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = H[(a + 8) >> 2] + e = H[(a + 4) >> 2] + if (((d - e) >> 2) >>> 0 >= b >>> 0) { + a: { + if (!b) { + break a + } + d = e + f = b & 7 + if (f) { + while (1) { + H[d >> 2] = H[c >> 2] + d = (d + 4) | 0 + h = (h + 1) | 0 + if ((f | 0) != (h | 0)) { + continue + } + break + } + } + e = ((b << 2) + e) | 0 + if (((b - 1) & 1073741823) >>> 0 < 7) { + break a + } + while (1) { + H[d >> 2] = H[c >> 2] + H[(d + 4) >> 2] = H[c >> 2] + H[(d + 8) >> 2] = H[c >> 2] + H[(d + 12) >> 2] = H[c >> 2] + H[(d + 16) >> 2] = H[c >> 2] + H[(d + 20) >> 2] = H[c >> 2] + H[(d + 24) >> 2] = H[c >> 2] + H[(d + 28) >> 2] = H[c >> 2] + d = (d + 32) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 4) >> 2] = e + return + } + b: { + i = H[a >> 2] + j = (e - i) | 0 + f = j >> 2 + g = (f + b) | 0 + if (g >>> 0 < 1073741824) { + d = (d - i) | 0 + e = (d >>> 1) | 0 + g = + d >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 > g >>> 0 + ? e + : g + if (g) { + if (g >>> 0 >= 1073741824) { + break b + } + k = pa(g << 2) + } + f = ((f << 2) + k) | 0 + d = f + e = b & 7 + if (e) { + while (1) { + H[d >> 2] = H[c >> 2] + d = (d + 4) | 0 + h = (h + 1) | 0 + if ((e | 0) != (h | 0)) { + continue + } + break + } + } + e = (f + (b << 2)) | 0 + if (((b - 1) & 1073741823) >>> 0 >= 7) { + while (1) { + H[d >> 2] = H[c >> 2] + H[(d + 4) >> 2] = H[c >> 2] + H[(d + 8) >> 2] = H[c >> 2] + H[(d + 12) >> 2] = H[c >> 2] + H[(d + 16) >> 2] = H[c >> 2] + H[(d + 20) >> 2] = H[c >> 2] + H[(d + 24) >> 2] = H[c >> 2] + H[(d + 28) >> 2] = H[c >> 2] + d = (d + 32) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + b = va(k, i, j) + H[(a + 4) >> 2] = e + H[a >> 2] = b + H[(a + 8) >> 2] = b + (g << 2) + if (i) { + oa(i) + } + return + } + sa() + v() + } + wa() + v() + } + function Cc(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + if ((I[(a + 11) | 0] >>> 7) | 0) { + d = H[(a + 4) >> 2] + } else { + d = I[(a + 11) | 0] & 127 + } + if (d >>> 0 < b >>> 0) { + h = (ca - 16) | 0 + ca = h + b = (b - d) | 0 + if (b) { + g = + (I[(a + 11) | 0] >>> 7) | 0 + ? ((H[(a + 8) >> 2] & 2147483647) - 1) | 0 + : 10 + if ((I[(a + 11) | 0] >>> 7) | 0) { + d = H[(a + 4) >> 2] + } else { + d = I[(a + 11) | 0] & 127 + } + i = (d + b) | 0 + if ((g - d) >>> 0 < b >>> 0) { + a: { + e = (ca - 16) | 0 + ca = e + c = (i - g) | 0 + if (c >>> 0 <= (2147483631 - g) >>> 0) { + if ((I[(a + 11) | 0] >>> 7) | 0) { + f = H[a >> 2] + } else { + f = a + } + if (g >>> 0 < 1073741799) { + H[(e + 12) >> 2] = g << 1 + H[e >> 2] = c + g + c = (ca - 16) | 0 + ca = c + ca = (c + 16) | 0 + c = (e + 12) | 0 + c = H[(K[e >> 2] < K[c >> 2] ? c : e) >> 2] + if (c >>> 0 >= 11) { + j = (c + 16) & -16 + c = (j - 1) | 0 + c = (c | 0) == 11 ? j : c + } else { + c = 10 + } + c = (c + 1) | 0 + } else { + c = 2147483631 + } + Zb(e, c) + c = H[e >> 2] + if (d) { + yb(c, f, d) + } + if ((g | 0) != 10) { + oa(f) + } + H[a >> 2] = c + H[(a + 8) >> 2] = + (H[(a + 8) >> 2] & -2147483648) | + (H[(e + 4) >> 2] & 2147483647) + H[(a + 8) >> 2] = H[(a + 8) >> 2] | -2147483648 + ca = (e + 16) | 0 + break a + } + Na() + v() + } + } + f = d + if ((I[(a + 11) | 0] >>> 7) | 0) { + d = H[a >> 2] + } else { + d = a + } + f = (f + d) | 0 + e = (ca - 16) | 0 + ca = e + F[(e + 15) | 0] = 0 + while (1) { + if (b) { + F[f | 0] = I[(e + 15) | 0] + b = (b - 1) | 0 + f = (f + 1) | 0 + continue + } + break + } + ca = (e + 16) | 0 + Id(a, i) + F[(h + 15) | 0] = 0 + F[(d + i) | 0] = I[(h + 15) | 0] + } + ca = (h + 16) | 0 + return + } + if ((I[(a + 11) | 0] >>> 7) | 0) { + d = H[a >> 2] + } else { + d = a + } + f = (ca - 16) | 0 + ca = f + Id(a, b) + F[(f + 15) | 0] = 0 + F[(b + d) | 0] = I[(f + 15) | 0] + ca = (f + 16) | 0 + } + function Jc(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + g = (ca - 16) | 0 + ca = g + a: { + b: { + if (b) { + H[(a + 88) >> 2] = 0 + H[(a + 92) >> 2] = 0 + d = H[(a + 84) >> 2] + H[(a + 84) >> 2] = 0 + if (d) { + oa(d) + } + H[(a + 76) >> 2] = 0 + H[(a + 80) >> 2] = 0 + d = H[(a + 72) >> 2] + H[(a + 72) >> 2] = 0 + if (d) { + oa(d) + } + d = H[b >> 2] + c = H[(b + 4) >> 2] + F[(g + 15) | 0] = 0 + Oa(a, (c - d) >> 2, (g + 15) | 0) + d = H[(b + 28) >> 2] + c = H[(b + 24) >> 2] + F[(g + 14) | 0] = 0 + Oa((a + 12) | 0, (d - c) >> 2, (g + 14) | 0) + Kc( + (a + 28) | 0, + (H[(b + 4) >> 2] - H[b >> 2]) >> 2, + 13708, + ) + c = (H[(b + 28) >> 2] - H[(b + 24) >> 2]) | 0 + f = c >> 2 + e = H[(a + 52) >> 2] + c: { + if (f >>> 0 <= ((H[(a + 60) >> 2] - e) >> 2) >>> 0) { + break c + } + if ((c | 0) < 0) { + break b + } + d = H[(a + 56) >> 2] + c = pa(c) + f = (c + (f << 2)) | 0 + h = (c + ((d - e) & -4)) | 0 + c = h + if ((d | 0) != (e | 0)) { + while (1) { + c = (c - 4) | 0 + d = (d - 4) | 0 + H[c >> 2] = H[d >> 2] + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + H[(a + 60) >> 2] = f + H[(a + 56) >> 2] = h + H[(a + 52) >> 2] = c + if (!e) { + break c + } + oa(e) + } + c = (H[(b + 28) >> 2] - H[(b + 24) >> 2]) | 0 + f = c >> 2 + e = H[(a + 40) >> 2] + d: { + if (f >>> 0 <= ((H[(a + 48) >> 2] - e) >> 2) >>> 0) { + break d + } + if ((c | 0) < 0) { + break a + } + d = H[(a + 44) >> 2] + c = pa(c) + f = (c + (f << 2)) | 0 + h = (c + ((d - e) & -4)) | 0 + c = h + if ((d | 0) != (e | 0)) { + while (1) { + c = (c - 4) | 0 + d = (d - 4) | 0 + H[c >> 2] = H[d >> 2] + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + H[(a + 48) >> 2] = f + H[(a + 44) >> 2] = h + H[(a + 40) >> 2] = c + if (!e) { + break d + } + oa(e) + } + F[(a + 24) | 0] = 1 + H[(a + 64) >> 2] = b + } + ca = (g + 16) | 0 + return + } + sa() + v() + } + sa() + v() + } + function wb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + c = (ca - 16) | 0 + ca = c + H[(a + 12) >> 2] = b + H[(a + 8) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 24) >> 2] = 0 + H[(a + 28) >> 2] = 0 + H[(a + 36) >> 2] = 0 + H[(a + 40) >> 2] = 0 + H[(a + 52) >> 2] = 0 + H[(a + 44) >> 2] = 0 + H[(a + 48) >> 2] = 0 + H[(a + 56) >> 2] = 0 + H[(a + 60) >> 2] = 0 + H[(a + 72) >> 2] = 0 + H[(a + 64) >> 2] = 0 + H[(a + 68) >> 2] = 0 + H[(a + 76) >> 2] = 0 + H[(a + 80) >> 2] = 0 + H[(a + 92) >> 2] = 0 + H[(a + 84) >> 2] = 0 + H[(a + 88) >> 2] = 0 + H[(a + 104) >> 2] = 0 + H[(a + 96) >> 2] = 0 + H[(a + 100) >> 2] = 0 + g = (a + 120) | 0 + a: { + b: { + if (b) { + if (b >>> 0 < 1073741824) { + break b + } + sa() + v() + } + H[(a + 108) >> 2] = 0 + H[(a + 112) >> 2] = 0 + H[(a + 116) >> 2] = 0 + H[(c + 8) >> 2] = 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + e = 1 + break a + } + e = b << 2 + d = pa(e) + H[(a + 96) >> 2] = d + f = (d + e) | 0 + H[(a + 104) >> 2] = f + ra(d, 0, e) + H[(a + 116) >> 2] = 0 + H[(a + 108) >> 2] = 0 + H[(a + 112) >> 2] = 0 + H[(a + 100) >> 2] = f + d = pa(e) + H[(a + 108) >> 2] = d + f = (d + e) | 0 + H[(a + 116) >> 2] = f + ra(d, 0, e) + H[(a + 112) >> 2] = f + d = pa(e) + H[c >> 2] = d + f = (d + e) | 0 + H[(c + 8) >> 2] = f + ra(d, 0, e) + H[(c + 4) >> 2] = f + e = (b << 5) | 1 + } + tb(g, e, c) + d = H[c >> 2] + if (d) { + H[(c + 4) >> 2] = d + oa(d) + } + H[(c + 8) >> 2] = 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + if (b) { + b = b << 2 + d = pa(b) + H[c >> 2] = d + f = (b + d) | 0 + H[(c + 8) >> 2] = f + ra(d, 0, b) + H[(c + 4) >> 2] = f + } + tb((a + 132) | 0, e, c) + b = H[c >> 2] + if (b) { + H[(c + 4) >> 2] = b + oa(b) + } + ca = (c + 16) | 0 + return a + } + function Sb(a, b) { + var c = 0, + d = 0, + e = 0 + c = (a | 0) == (b | 0) + F[(b + 12) | 0] = c + a: { + if (c) { + break a + } + while (1) { + d = H[(b + 8) >> 2] + if (I[(d + 12) | 0]) { + break a + } + b: { + c = H[(d + 8) >> 2] + e = H[c >> 2] + if ((e | 0) == (d | 0)) { + e = H[(c + 4) >> 2] + if (!(!e | I[(e + 12) | 0])) { + break b + } + c: { + if (H[d >> 2] == (b | 0)) { + b = d + break c + } + b = H[(d + 4) >> 2] + a = H[b >> 2] + H[(d + 4) >> 2] = a + if (a) { + H[(a + 8) >> 2] = d + c = H[(d + 8) >> 2] + } + H[(b + 8) >> 2] = c + a = H[(d + 8) >> 2] + H[(((H[a >> 2] != (d | 0)) << 2) + a) >> 2] = b + H[b >> 2] = d + H[(d + 8) >> 2] = b + c = H[(b + 8) >> 2] + d = H[c >> 2] + } + F[(b + 12) | 0] = 1 + F[(c + 12) | 0] = 0 + a = H[(d + 4) >> 2] + H[c >> 2] = a + if (a) { + H[(a + 8) >> 2] = c + } + H[(d + 8) >> 2] = H[(c + 8) >> 2] + a = H[(c + 8) >> 2] + H[(((H[a >> 2] != (c | 0)) << 2) + a) >> 2] = d + H[(d + 4) >> 2] = c + H[(c + 8) >> 2] = d + return + } + if (!(I[(e + 12) | 0] | !e)) { + break b + } + d: { + if (H[d >> 2] != (b | 0)) { + b = d + break d + } + a = H[(b + 4) >> 2] + H[d >> 2] = a + if (a) { + H[(a + 8) >> 2] = d + c = H[(d + 8) >> 2] + } + H[(b + 8) >> 2] = c + a = H[(d + 8) >> 2] + H[(((H[a >> 2] != (d | 0)) << 2) + a) >> 2] = b + H[(b + 4) >> 2] = d + H[(d + 8) >> 2] = b + c = H[(b + 8) >> 2] + } + F[(b + 12) | 0] = 1 + F[(c + 12) | 0] = 0 + a = H[(c + 4) >> 2] + b = H[a >> 2] + H[(c + 4) >> 2] = b + if (b) { + H[(b + 8) >> 2] = c + } + H[(a + 8) >> 2] = H[(c + 8) >> 2] + b = H[(c + 8) >> 2] + H[(((H[b >> 2] != (c | 0)) << 2) + b) >> 2] = a + H[a >> 2] = c + H[(c + 8) >> 2] = a + break a + } + F[(d + 12) | 0] = 1 + F[(c + 12) | 0] = (a | 0) == (c | 0) + F[(e + 12) | 0] = 1 + b = c + if ((c | 0) != (a | 0)) { + continue + } + break + } + } + } + function Tj(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + a: { + b: { + c: { + d: { + e: { + f: { + g: { + h: { + i: { + j: { + k: { + if (b) { + if (!c) { + break k + } + if (!d) { + break j + } + e = (Q(d) - Q(b)) | 0 + if (e >>> 0 <= 31) { + break i + } + break c + } + if (((d | 0) == 1) | (d >>> 0 > 1)) { + break c + } + da = 0 + a = ((a >>> 0) / (c >>> 0)) | 0 + break a + } + if (!a) { + break h + } + if (!d | ((d - 1) & d)) { + break g + } + a = (b >>> Qj(d)) | 0 + da = 0 + break a + } + if (!((c - 1) & c)) { + break f + } + h = (((Q(c) + 33) | 0) - Q(b)) | 0 + g = (0 - h) | 0 + break d + } + h = (e + 1) | 0 + g = (63 - e) | 0 + break d + } + da = 0 + a = ((b >>> 0) / (d >>> 0)) | 0 + break a + } + e = (Q(d) - Q(b)) | 0 + if (e >>> 0 < 31) { + break e + } + break c + } + if ((c | 0) == 1) { + break b + } + d = Qj(c) + c = d & 31 + if ((d & 63) >>> 0 >= 32) { + a = (b >>> c) | 0 + } else { + e = (b >>> c) | 0 + a = ((((1 << c) - 1) & b) << (32 - c)) | (a >>> c) + } + da = e + break a + } + h = (e + 1) | 0 + g = (63 - e) | 0 + } + e = h & 63 + f = e & 31 + if (e >>> 0 >= 32) { + e = 0 + i = (b >>> f) | 0 + } else { + e = (b >>> f) | 0 + i = ((((1 << f) - 1) & b) << (32 - f)) | (a >>> f) + } + g = g & 63 + f = g & 31 + if (g >>> 0 >= 32) { + b = a << f + a = 0 + } else { + b = (((1 << f) - 1) & (a >>> (32 - f))) | (b << f) + a = a << f + } + if (h) { + f = (d - 1) | 0 + g = (c - 1) | 0 + m = (g | 0) != -1 ? (f + 1) | 0 : f + while (1) { + j = (e << 1) | (i >>> 31) + e = (i << 1) | (b >>> 31) + f = (m - ((j + (e >>> 0 > g >>> 0)) | 0)) >> 31 + k = c & f + i = (e - k) | 0 + e = (j - (((d & f) + (e >>> 0 < k >>> 0)) | 0)) | 0 + b = (b << 1) | (a >>> 31) + a = l | (a << 1) + l = f & 1 + h = (h - 1) | 0 + if (h) { + continue + } + break + } + } + da = (b << 1) | (a >>> 31) + a = l | (a << 1) + break a + } + a = 0 + b = 0 + } + da = b + } + return a + } + function rc(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + k = H[(b + 16) >> 2] + h = (H[(c + 4) >> 2] - k) | 0 + e = (H[c >> 2] - k) | 0 + H[c >> 2] = e + H[(c + 4) >> 2] = h + g = H[(b + 16) >> 2] + f = h >> 31 + i = ((f ^ h) - f) | 0 + f = e >> 31 + l = g >>> 0 >= (i + (((f ^ e) - f) | 0)) >>> 0 + a: { + if (l) { + f = h + break a + } + b: { + c: { + if ((e | 0) >= 0) { + f = 1 + i = 1 + if ((h | 0) >= 0) { + break b + } + j = 1 + f = -1 + i = -1 + if (e) { + break c + } + break b + } + j = -1 + f = -1 + i = -1 + if ((h | 0) <= 0) { + break b + } + } + f = (h | 0) <= 0 ? -1 : 1 + i = j + } + j = N(g, i) + e = ((e << 1) - j) | 0 + i = (N(f, i) | 0) >= 0 + g = N(f, g) + f = ((((i ? (0 - e) | 0 : e) + g) | 0) / 2) | 0 + H[(c + 4) >> 2] = f + m = c + c = ((h << 1) - g) | 0 + e = (((j + (i ? (0 - c) | 0 : c)) | 0) / 2) | 0 + H[m >> 2] = e + g = H[(b + 16) >> 2] + } + c = (H[(d + 4) >> 2] + f) | 0 + e = (H[d >> 2] + e) | 0 + d: { + if ((g | 0) < (e | 0)) { + e = (e - H[(b + 4) >> 2]) | 0 + break d + } + if (((0 - g) | 0) <= (e | 0)) { + break d + } + e = (H[(b + 4) >> 2] + e) | 0 + } + e: { + if ((c | 0) > (g | 0)) { + c = (c - H[(b + 4) >> 2]) | 0 + break e + } + if (((0 - g) | 0) <= (c | 0)) { + break e + } + c = (H[(b + 4) >> 2] + c) | 0 + } + f: { + if (l) { + g = c + break f + } + g: { + h: { + if ((e | 0) >= 0) { + b = 1 + f = 1 + if ((c | 0) >= 0) { + break g + } + d = 1 + b = -1 + f = -1 + if (e) { + break h + } + break g + } + d = -1 + b = -1 + f = -1 + if ((c | 0) <= 0) { + break g + } + } + b = (c | 0) <= 0 ? -1 : 1 + f = d + } + d = N(f, g) + h = ((e << 1) - d) | 0 + f = (N(b, f) | 0) >= 0 + b = N(b, g) + g = ((((f ? (0 - h) | 0 : h) + b) | 0) / 2) | 0 + b = ((c << 1) - b) | 0 + e = (((d + (f ? (0 - b) | 0 : b)) | 0) / 2) | 0 + } + c = a + H[c >> 2] = e + k + H[(c + 4) >> 2] = g + k + } + function Wh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + g = (ca - 16) | 0 + ca = g + e = H[(a + 4) >> 2] + d = H[e >> 2] + a: { + b = H[(a + 12) >> 2] + c = (H[(b + 28) >> 2] - H[(b + 24) >> 2]) | 0 + f = c >> 2 + b: { + if (f >>> 0 <= ((H[(e + 8) >> 2] - d) >> 2) >>> 0) { + break b + } + if ((c | 0) < 0) { + break a + } + b = H[(e + 4) >> 2] + c = pa(c) + f = (c + (f << 2)) | 0 + h = (c + ((b - d) & -4)) | 0 + c = h + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + H[c >> 2] = H[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + H[(e + 8) >> 2] = f + H[(e + 4) >> 2] = h + H[e >> 2] = c + if (!d) { + break b + } + oa(d) + } + b = H[(a + 12) >> 2] + c = H[(b + 28) >> 2] + b = H[(b + 24) >> 2] + H[(g + 12) >> 2] = 0 + b = (c - b) >> 2 + d = (a + 96) | 0 + e = H[d >> 2] + c = (H[(a + 100) >> 2] - e) >> 2 + c: { + if (b >>> 0 > c >>> 0) { + Pa(d, (b - c) | 0, (g + 12) | 0) + break c + } + if (b >>> 0 >= c >>> 0) { + break c + } + H[(a + 100) >> 2] = e + (b << 2) + } + e = (a + 8) | 0 + b = H[(a + 116) >> 2] + d: { + if (b) { + d = H[b >> 2] + if ((d | 0) == H[(b + 4) >> 2]) { + c = 1 + break d + } + b = 0 + while (1) { + c = ye(e, H[((b << 2) + d) >> 2]) + if (!c) { + break d + } + f = H[(a + 116) >> 2] + d = H[f >> 2] + b = (b + 1) | 0 + if (b >>> 0 < ((H[(f + 4) >> 2] - d) >> 2) >>> 0) { + continue + } + break + } + break d + } + c = 1 + a = H[(a + 12) >> 2] + a = (H[(a + 4) >> 2] - H[a >> 2]) | 0 + if (a >>> 0 < 12) { + break d + } + a = (((a >> 2) >>> 0) / 3) | 0 + b = 0 + while (1) { + c = ye(e, N(b, 3)) + if (!c) { + break d + } + b = (b + 1) | 0 + if ((a | 0) != (b | 0)) { + continue + } + break + } + } + ca = (g + 16) | 0 + return c | 0 + } + sa() + v() + } + function gj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + c = H[(b + 88) >> 2] + if (!(!c | (H[c >> 2] != 1))) { + e = H[(c + 8) >> 2] + H[(a + 4) >> 2] = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + f = (a + 8) | 0 + d = I[(b + 24) | 0] + h = H[(a + 8) >> 2] + g = (H[(a + 12) >> 2] - h) >> 2 + a: { + if (d >>> 0 > g >>> 0) { + ya(f, (d - g) | 0) + d = I[(b + 24) | 0] + e = H[(c + 8) >> 2] + break a + } + if (d >>> 0 >= g >>> 0) { + break a + } + H[(a + 12) >> 2] = h + (d << 2) + } + b: { + if (!d) { + b = 4 + break b + } + h = d & 3 + f = H[f >> 2] + c: { + if ((d - 1) >>> 0 < 3) { + b = 4 + d = 0 + break c + } + k = d & 252 + d = 0 + b = 4 + while (1) { + g = d << 2 + c = (b + e) | 0 + H[(g + f) >> 2] = + I[c | 0] | + (I[(c + 1) | 0] << 8) | + ((I[(c + 2) | 0] << 16) | (I[(c + 3) | 0] << 24)) + H[(f + (g | 4)) >> 2] = + I[(c + 4) | 0] | + (I[(c + 5) | 0] << 8) | + ((I[(c + 6) | 0] << 16) | (I[(c + 7) | 0] << 24)) + H[(f + (g | 8)) >> 2] = + I[(c + 8) | 0] | + (I[(c + 9) | 0] << 8) | + ((I[(c + 10) | 0] << 16) | (I[(c + 11) | 0] << 24)) + H[(f + (g | 12)) >> 2] = + I[(c + 12) | 0] | + (I[(c + 13) | 0] << 8) | + ((I[(c + 14) | 0] << 16) | (I[(c + 15) | 0] << 24)) + d = (d + 4) | 0 + b = (b + 16) | 0 + i = (i + 4) | 0 + if ((k | 0) != (i | 0)) { + continue + } + break + } + } + if (!h) { + break b + } + while (1) { + c = (b + e) | 0 + H[(f + (d << 2)) >> 2] = + I[c | 0] | + (I[(c + 1) | 0] << 8) | + ((I[(c + 2) | 0] << 16) | (I[(c + 3) | 0] << 24)) + d = (d + 1) | 0 + b = (b + 4) | 0 + j = (j + 1) | 0 + if ((h | 0) != (j | 0)) { + continue + } + break + } + } + d = a + a = (b + e) | 0 + H[(d + 20) >> 2] = + I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | (I[(a + 3) | 0] << 24)) + d = 1 + } + return d | 0 + } + function se(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + a: { + b: { + c: { + if (!b) { + if ((d | 0) < 0) { + break a + } + f = H[(a + 4) >> 2] + b = H[a >> 2] + d = (f - b) | 0 + if (c >>> 0 > d >>> 0) { + g = (c - d) | 0 + e = H[(a + 8) >> 2] + if (g >>> 0 <= (e - f) >>> 0) { + ;(i = a), + (j = (ra(f, 0, g) + g) | 0), + (H[(i + 4) >> 2] = j) + break c + } + if ((c | 0) < 0) { + break b + } + f = (e - b) | 0 + e = f << 1 + f = + f >>> 0 >= 1073741823 + ? 2147483647 + : c >>> 0 < e >>> 0 + ? e + : c + e = pa(f) + ra((e + d) | 0, 0, g) + d = va(e, b, d) + H[(a + 8) >> 2] = d + f + H[(a + 4) >> 2] = c + d + H[a >> 2] = d + if (!b) { + break c + } + oa(b) + break c + } + if (c >>> 0 >= d >>> 0) { + break c + } + H[(a + 4) >> 2] = b + c + break c + } + if ((d | 0) < 0) { + break a + } + e = H[(a + 4) >> 2] + f = H[a >> 2] + g = (e - f) | 0 + d: { + if ( + (((d | 0) <= 0) & (c >>> 0 <= g >>> 0)) | + ((d | 0) < 0) + ) { + break d + } + if (c >>> 0 > g >>> 0) { + d = (c - g) | 0 + h = H[(a + 8) >> 2] + if (d >>> 0 <= (h - e) >>> 0) { + ;(i = a), + (j = (ra(e, 0, d) + d) | 0), + (H[(i + 4) >> 2] = j) + break d + } + if ((c | 0) < 0) { + break b + } + e = (h - f) | 0 + h = e << 1 + e = + e >>> 0 >= 1073741823 + ? 2147483647 + : c >>> 0 < h >>> 0 + ? h + : c + h = pa(e) + ra((h + g) | 0, 0, d) + d = va(h, f, g) + H[(a + 8) >> 2] = d + e + H[(a + 4) >> 2] = c + d + H[a >> 2] = d + if (!f) { + break d + } + oa(f) + break d + } + if (c >>> 0 >= g >>> 0) { + break d + } + H[(a + 4) >> 2] = c + f + } + if (!c) { + break c + } + va(H[a >> 2], b, c) + } + b = H[(a + 28) >> 2] + c = (H[(a + 24) >> 2] + 1) | 0 + b = c ? b : (b + 1) | 0 + H[(a + 24) >> 2] = c + H[(a + 28) >> 2] = b + g = 1 + break a + } + sa() + v() + } + return g + } + function Jh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + k = H[(a + 12) >> 2] + c = H[(a + 68) >> 2] + d = H[(c + 80) >> 2] + F[(b + 84) | 0] = 0 + n = (b + 68) | 0 + i = H[(b + 68) >> 2] + e = (H[(b + 72) >> 2] - i) >> 2 + a: { + if (e >>> 0 < d >>> 0) { + qb(n, (d - e) | 0, 12372) + c = H[(a + 68) >> 2] + d = H[(c + 80) >> 2] + break a + } + if (d >>> 0 >= e >>> 0) { + break a + } + H[(b + 72) >> 2] = i + (d << 2) + } + b = H[(c + 100) >> 2] + e = H[(c + 96) >> 2] + i = (((b - e) | 0) / 12) | 0 + m = 1 + b: { + if ((b | 0) == (e | 0)) { + break b + } + k = H[(k + 28) >> 2] + f = H[k >> 2] + if ((f | 0) == -1) { + return 0 + } + o = i >>> 0 <= 1 ? 1 : i + c = e + b = 0 + m = 0 + while (1) { + g = H[c >> 2] + if (g >>> 0 >= d >>> 0) { + break b + } + j = H[(H[(a + 72) >> 2] + 12) >> 2] + h = H[(j + (f << 2)) >> 2] + if (h >>> 0 >= d >>> 0) { + break b + } + f = H[n >> 2] + H[(f + (g << 2)) >> 2] = h + g = (k + (l << 2)) | 0 + h = H[(g + 4) >> 2] + if ((h | 0) == -1) { + break b + } + l = H[(c + 4) >> 2] + if (l >>> 0 >= d >>> 0) { + break b + } + h = H[((h << 2) + j) >> 2] + if (h >>> 0 >= d >>> 0) { + break b + } + H[(f + (l << 2)) >> 2] = h + g = H[(g + 8) >> 2] + if ((g | 0) == -1) { + break b + } + c = H[(c + 8) >> 2] + if (c >>> 0 >= d >>> 0) { + break b + } + j = H[((g << 2) + j) >> 2] + if (j >>> 0 >= d >>> 0) { + break b + } + H[(f + (c << 2)) >> 2] = j + b = (b + 1) | 0 + m = i >>> 0 <= b >>> 0 + if ((b | 0) == (o | 0)) { + break b + } + c = (e + N(b, 12)) | 0 + l = N(b, 3) + f = H[(k + (l << 2)) >> 2] + if ((f | 0) != -1) { + continue + } + break + } + } + return m | 0 + } + function Gh(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + h = H[(d + 80) >> 2] + e = (ca - 48) | 0 + ca = e + a = H[(a + 4) >> 2] + m = (a - 2) | 0 + a: { + if (m >>> 0 > 28) { + break a + } + j = (H[H[d >> 2] >> 2] + H[(d + 48) >> 2]) | 0 + H[(e + 16) >> 2] = a + a = -1 << a + H[(e + 20) >> 2] = a ^ -1 + a = (-2 - a) | 0 + H[(e + 24) >> 2] = a + H[(e + 32) >> 2] = (a | 0) / 2 + L[(e + 28) >> 2] = O(2) / O(a | 0) + f = H[c >> 2] + if ((f | 0) != H[(c + 4) >> 2]) { + a = 0 + d = 0 + while (1) { + g = H[((d << 2) + f) >> 2] + h = (e + 36) | 0 + k = H[H[b >> 2] >> 2] + l = H[(b + 48) >> 2] + f = H[(b + 40) >> 2] + i = H[(b + 44) >> 2] + if (!I[(b + 84) | 0]) { + g = H[(H[(b + 68) >> 2] + (g << 2)) >> 2] + } + g = Rj(f, i, g, 0) + i = g + g = (g + l) | 0 + qa(h, (g + k) | 0, f) + he((e + 16) | 0, h, (e + 12) | 0, (e + 8) | 0) + f = a << 2 + H[(f + j) >> 2] = H[(e + 12) >> 2] + H[((f | 4) + j) >> 2] = H[(e + 8) >> 2] + a = (a + 2) | 0 + d = (d + 1) | 0 + f = H[c >> 2] + if (d >>> 0 < ((H[(c + 4) >> 2] - f) >> 2) >>> 0) { + continue + } + break + } + break a + } + if (!h) { + break a + } + d = 0 + a = 0 + while (1) { + k = (e + 36) | 0 + l = H[H[b >> 2] >> 2] + i = H[(b + 48) >> 2] + c = H[(b + 40) >> 2] + f = Rj( + c, + H[(b + 44) >> 2], + I[(b + 84) | 0] + ? a + : H[(H[(b + 68) >> 2] + (a << 2)) >> 2], + 0, + ) + g = f + f = (f + i) | 0 + qa(k, (f + l) | 0, c) + he((e + 16) | 0, k, (e + 12) | 0, (e + 8) | 0) + c = d << 2 + H[(c + j) >> 2] = H[(e + 12) >> 2] + H[((c | 4) + j) >> 2] = H[(e + 8) >> 2] + d = (d + 2) | 0 + a = (a + 1) | 0 + if ((h | 0) != (a | 0)) { + continue + } + break + } + } + ca = (e + 48) | 0 + return (m >>> 0 < 29) | 0 + } + function Re(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = O(0), + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0 + k = (ca - 16) | 0 + ca = k + if (H[(c + 28) >> 2] == 9) { + d = H[(a + 4) >> 2] + h = I[(c + 24) | 0] + e = h << 2 + f = pa(e) + l = (k + 8) | 0 + H[l >> 2] = 1065353216 + i = L[(a + 20) >> 2] + d = (-1 << d) ^ -1 + if ((d | 0) > 0) { + L[l >> 2] = i / O(d | 0) + } + o = (d | 0) > 0 + a: { + if (!o) { + break a + } + j = H[(c + 80) >> 2] + if (!j) { + break a + } + if (h) { + p = (H[H[b >> 2] >> 2] + H[(b + 48) >> 2]) | 0 + t = h & 254 + u = h & 1 + b = 0 + while (1) { + m = H[(a + 8) >> 2] + i = L[l >> 2] + d = 0 + n = 0 + if ((h | 0) != 1) { + while (1) { + g = d << 2 + q = ((b << 2) + p) | 0 + L[(g + f) >> 2] = + O(i * O(H[q >> 2])) + L[(g + m) >> 2] + g = g | 4 + L[(g + f) >> 2] = + O(i * O(H[(q + 4) >> 2])) + L[(g + m) >> 2] + d = (d + 2) | 0 + b = (b + 2) | 0 + n = (n + 2) | 0 + if ((t | 0) != (n | 0)) { + continue + } + break + } + } + if (u) { + d = d << 2 + L[(d + f) >> 2] = + O(i * O(H[((b << 2) + p) >> 2])) + L[(d + m) >> 2] + b = (b + 1) | 0 + } + qa((H[H[(c + 64) >> 2] >> 2] + r) | 0, f, e) + r = (e + r) | 0 + s = (s + 1) | 0 + if ((s | 0) != (j | 0)) { + continue + } + break + } + break a + } + b = 0 + if ((j | 0) != 1) { + a = j & -2 + d = 0 + while (1) { + qa((H[H[(c + 64) >> 2] >> 2] + b) | 0, f, e) + b = (b + e) | 0 + qa((b + H[H[(c + 64) >> 2] >> 2]) | 0, f, e) + b = (b + e) | 0 + d = (d + 2) | 0 + if ((a | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break a + } + qa((H[H[(c + 64) >> 2] >> 2] + b) | 0, f, e) + } + oa(f) + } + ca = (k + 16) | 0 + return o | 0 + } + function Xh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + c = H[(a + 12) >> 2] + d = H[(a + 108) >> 2] + e = H[(d + 80) >> 2] + F[(b + 84) | 0] = 0 + m = (b + 68) | 0 + h = H[(b + 68) >> 2] + f = (H[(b + 72) >> 2] - h) >> 2 + a: { + if (f >>> 0 < e >>> 0) { + qb(m, (e - f) | 0, 12372) + d = H[(a + 108) >> 2] + e = H[(d + 80) >> 2] + break a + } + if (e >>> 0 >= f >>> 0) { + break a + } + H[(b + 72) >> 2] = h + (e << 2) + } + b = H[(d + 100) >> 2] + f = H[(d + 96) >> 2] + h = (((b - f) | 0) / 12) | 0 + k = 1 + b: { + if ((b | 0) == (f | 0)) { + break b + } + n = h >>> 0 <= 1 ? 1 : h + o = H[c >> 2] + c = 0 + d = f + b = 0 + k = 0 + while (1) { + c = ((c << 2) + o) | 0 + i = H[c >> 2] + if ((i | 0) == -1) { + break b + } + g = H[d >> 2] + if (g >>> 0 >= e >>> 0) { + break b + } + l = H[(H[(a + 112) >> 2] + 12) >> 2] + j = H[(l + (i << 2)) >> 2] + if (j >>> 0 >= e >>> 0) { + break b + } + i = H[m >> 2] + H[(i + (g << 2)) >> 2] = j + g = H[(c + 4) >> 2] + if ((g | 0) == -1) { + break b + } + j = H[(d + 4) >> 2] + if (j >>> 0 >= e >>> 0) { + break b + } + g = H[((g << 2) + l) >> 2] + if (g >>> 0 >= e >>> 0) { + break b + } + H[(i + (j << 2)) >> 2] = g + c = H[(c + 8) >> 2] + if ((c | 0) == -1) { + break b + } + d = H[(d + 8) >> 2] + if (d >>> 0 >= e >>> 0) { + break b + } + c = H[((c << 2) + l) >> 2] + if (c >>> 0 >= e >>> 0) { + break b + } + H[(i + (d << 2)) >> 2] = c + b = (b + 1) | 0 + k = h >>> 0 <= b >>> 0 + if ((b | 0) == (n | 0)) { + break b + } + c = N(b, 3) + d = (f + N(b, 12)) | 0 + if ((b | 0) != 1431655765) { + continue + } + break + } + } + return k | 0 + } + function Ph(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + c = H[(a + 12) >> 2] + d = H[(a + 68) >> 2] + e = H[(d + 80) >> 2] + F[(b + 84) | 0] = 0 + m = (b + 68) | 0 + h = H[(b + 68) >> 2] + f = (H[(b + 72) >> 2] - h) >> 2 + a: { + if (f >>> 0 < e >>> 0) { + qb(m, (e - f) | 0, 12372) + d = H[(a + 68) >> 2] + e = H[(d + 80) >> 2] + break a + } + if (e >>> 0 >= f >>> 0) { + break a + } + H[(b + 72) >> 2] = h + (e << 2) + } + b = H[(d + 100) >> 2] + f = H[(d + 96) >> 2] + h = (((b - f) | 0) / 12) | 0 + k = 1 + b: { + if ((b | 0) == (f | 0)) { + break b + } + n = h >>> 0 <= 1 ? 1 : h + o = H[c >> 2] + c = 0 + d = f + b = 0 + k = 0 + while (1) { + c = ((c << 2) + o) | 0 + i = H[c >> 2] + if ((i | 0) == -1) { + break b + } + g = H[d >> 2] + if (g >>> 0 >= e >>> 0) { + break b + } + l = H[(H[(a + 72) >> 2] + 12) >> 2] + j = H[(l + (i << 2)) >> 2] + if (j >>> 0 >= e >>> 0) { + break b + } + i = H[m >> 2] + H[(i + (g << 2)) >> 2] = j + g = H[(c + 4) >> 2] + if ((g | 0) == -1) { + break b + } + j = H[(d + 4) >> 2] + if (j >>> 0 >= e >>> 0) { + break b + } + g = H[((g << 2) + l) >> 2] + if (g >>> 0 >= e >>> 0) { + break b + } + H[(i + (j << 2)) >> 2] = g + c = H[(c + 8) >> 2] + if ((c | 0) == -1) { + break b + } + d = H[(d + 8) >> 2] + if (d >>> 0 >= e >>> 0) { + break b + } + c = H[((c << 2) + l) >> 2] + if (c >>> 0 >= e >>> 0) { + break b + } + H[(i + (d << 2)) >> 2] = c + b = (b + 1) | 0 + k = h >>> 0 <= b >>> 0 + if ((b | 0) == (n | 0)) { + break b + } + c = N(b, 3) + d = (f + N(b, 12)) | 0 + if ((b | 0) != 1431655765) { + continue + } + break + } + } + return k | 0 + } + function Wa(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + d = (ca - 16) | 0 + ca = d + a: { + f = H[(a + 4) >> 2] + b: { + if (f >>> 0 < b >>> 0) { + e = (b - f) | 0 + c = H[(a + 8) >> 2] + g = c << 5 + c: { + if ( + !((e >>> 0 > g >>> 0) | (f >>> 0 > (g - e) >>> 0)) + ) { + H[(a + 4) >> 2] = b + h = f & 31 + b = (H[a >> 2] + ((f >>> 3) & 536870908)) | 0 + break c + } + H[(d + 8) >> 2] = 0 + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + if ((b | 0) < 0) { + break a + } + if (g >>> 0 <= 1073741822) { + c = c << 6 + b = (b + 31) & -32 + b = b >>> 0 < c >>> 0 ? c : b + } else { + b = 2147483647 + } + pb(d, b) + f = H[(a + 4) >> 2] + H[(d + 4) >> 2] = f + e + i = H[a >> 2] + b = H[d >> 2] + d: { + if ((f | 0) <= 0) { + break d + } + c = (f >>> 5) | 0 + if (f >>> 0 >= 32) { + va(b, i, c << 2) + } + g = c << 2 + b = (g + b) | 0 + h = f & 31 + if (h) { + c = (-1 >>> (32 - h)) | 0 + H[b >> 2] = + (H[b >> 2] & (c ^ -1)) | (H[(i + g) >> 2] & c) + } + i = H[a >> 2] + } + H[a >> 2] = H[d >> 2] + H[d >> 2] = i + c = H[(a + 4) >> 2] + H[(a + 4) >> 2] = H[(d + 4) >> 2] + H[(d + 4) >> 2] = c + c = H[(a + 8) >> 2] + H[(a + 8) >> 2] = H[(d + 8) >> 2] + H[(d + 8) >> 2] = c + if (!i) { + break c + } + oa(i) + } + if (!e) { + break b + } + if (h) { + c = (32 - h) | 0 + a = c >>> 0 < e >>> 0 ? c : e + H[b >> 2] = + H[b >> 2] & (((-1 << h) & (-1 >>> (c - a))) ^ -1) + e = (e - a) | 0 + b = (b + 4) | 0 + } + a = (e >>> 5) | 0 + if (e >>> 0 >= 32) { + ra(b, 0, a << 2) + } + if ((e & -32) == (e | 0)) { + break b + } + a = ((a << 2) + b) | 0 + H[a >> 2] = H[a >> 2] & ((-1 >>> (32 - (e & 31))) ^ -1) + break b + } + H[(a + 4) >> 2] = b + } + ca = (d + 16) | 0 + return + } + sa() + v() + } + function Je(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + e = H[(a + 12) >> 2] + i = H[(a + 8) >> 2] + d = (e - i) >> 2 + b = I[(b + 24) | 0] + a: { + if (d >>> 0 < b >>> 0) { + ya((a + 8) | 0, (b - d) | 0) + i = H[(a + 8) >> 2] + e = H[(a + 12) >> 2] + break a + } + if (b >>> 0 >= d >>> 0) { + break a + } + e = ((b << 2) + i) | 0 + H[(a + 12) >> 2] = e + } + b = 0 + f = H[(c + 8) >> 2] + h = H[(c + 12) >> 2] + j = H[(c + 20) >> 2] + e = (e - i) | 0 + d = H[(c + 16) >> 2] + g = (e + d) | 0 + j = e >>> 0 > g >>> 0 ? (j + 1) | 0 : j + b: { + if ( + ((f >>> 0 < g >>> 0) & ((h | 0) <= (j | 0))) | + ((h | 0) < (j | 0)) + ) { + break b + } + qa(i, (d + H[c >> 2]) | 0, e) + d = H[(c + 20) >> 2] + g = e + e = (e + H[(c + 16) >> 2]) | 0 + d = g >>> 0 > e >>> 0 ? (d + 1) | 0 : d + H[(c + 16) >> 2] = e + H[(c + 20) >> 2] = d + f = H[(c + 8) >> 2] + h = H[(c + 12) >> 2] + g = (e + 4) | 0 + d = g >>> 0 < 4 ? (d + 1) | 0 : d + if ( + ((f >>> 0 < g >>> 0) & ((d | 0) >= (h | 0))) | + ((d | 0) > (h | 0)) + ) { + break b + } + d = (e + H[c >> 2]) | 0 + H[(a + 20) >> 2] = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + d = H[(c + 20) >> 2] + g = d + f = d + e = H[(c + 16) >> 2] + d = (e + 4) | 0 + f = d >>> 0 < 4 ? (f + 1) | 0 : f + H[(c + 16) >> 2] = d + H[(c + 20) >> 2] = f + h = H[(c + 12) >> 2] + if ( + (((f | 0) >= (h | 0)) & (d >>> 0 >= K[(c + 8) >> 2])) | + ((f | 0) > (h | 0)) + ) { + break b + } + f = I[(d + H[c >> 2]) | 0] + d = g + e = (e + 5) | 0 + d = e >>> 0 < 5 ? (d + 1) | 0 : d + H[(c + 16) >> 2] = e + H[(c + 20) >> 2] = d + if ((f - 1) >>> 0 > 29) { + break b + } + H[(a + 4) >> 2] = f + b = 1 + } + return b | 0 + } + function qd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + a: { + f = H[(a + 4) >> 2] + b: { + if ((f | 0) != H[a >> 2]) { + c = f + break b + } + g = H[(a + 8) >> 2] + c = H[(a + 12) >> 2] + if (g >>> 0 < c >>> 0) { + e = (((((c - g) >> 2) + 1) | 0) / 2) << 2 + c = (e + g) | 0 + if ((f | 0) != (g | 0)) { + d = (g - f) | 0 + c = (c - d) | 0 + va(c, f, d) + f = H[(a + 8) >> 2] + } + H[(a + 4) >> 2] = c + H[(a + 8) >> 2] = e + f + break b + } + d = (c | 0) == (f | 0) ? 1 : (c - f) >> 1 + if (d >>> 0 >= 1073741824) { + break a + } + c = d << 2 + i = pa(c) + k = (i + c) | 0 + c = (((d + 3) & -4) + i) | 0 + h = c + c: { + if ((f | 0) == (g | 0)) { + break c + } + g = (g - f) | 0 + l = g & -4 + e = c + d = f + j = (g - 4) | 0 + g = (((j >>> 2) | 0) + 1) & 7 + if (g) { + h = 0 + while (1) { + H[e >> 2] = H[d >> 2] + d = (d + 4) | 0 + e = (e + 4) | 0 + h = (h + 1) | 0 + if ((g | 0) != (h | 0)) { + continue + } + break + } + } + h = (c + l) | 0 + if (j >>> 0 < 28) { + break c + } + while (1) { + H[e >> 2] = H[d >> 2] + H[(e + 4) >> 2] = H[(d + 4) >> 2] + H[(e + 8) >> 2] = H[(d + 8) >> 2] + H[(e + 12) >> 2] = H[(d + 12) >> 2] + H[(e + 16) >> 2] = H[(d + 16) >> 2] + H[(e + 20) >> 2] = H[(d + 20) >> 2] + H[(e + 24) >> 2] = H[(d + 24) >> 2] + H[(e + 28) >> 2] = H[(d + 28) >> 2] + d = (d + 32) | 0 + e = (e + 32) | 0 + if ((h | 0) != (e | 0)) { + continue + } + break + } + } + H[(a + 12) >> 2] = k + H[(a + 8) >> 2] = h + H[(a + 4) >> 2] = c + H[a >> 2] = i + if (!f) { + break b + } + oa(f) + c = H[(a + 4) >> 2] + } + H[(c - 4) >> 2] = H[b >> 2] + H[(a + 4) >> 2] = H[(a + 4) >> 2] - 4 + return + } + wa() + v() + } + function sb(a, b) { + var c = 0 + a: { + if (!ta(a, b)) { + break a + } + if (!ta((a + 16) | 0, b)) { + break a + } + if (!ta((a + 32) | 0, b)) { + break a + } + if (!ta((a + 48) | 0, b)) { + break a + } + if (!ta((a - -64) | 0, b)) { + break a + } + if (!ta((a + 80) | 0, b)) { + break a + } + if (!ta((a + 96) | 0, b)) { + break a + } + if (!ta((a + 112) | 0, b)) { + break a + } + if (!ta((a + 128) | 0, b)) { + break a + } + if (!ta((a + 144) | 0, b)) { + break a + } + if (!ta((a + 160) | 0, b)) { + break a + } + if (!ta((a + 176) | 0, b)) { + break a + } + if (!ta((a + 192) | 0, b)) { + break a + } + if (!ta((a + 208) | 0, b)) { + break a + } + if (!ta((a + 224) | 0, b)) { + break a + } + if (!ta((a + 240) | 0, b)) { + break a + } + if (!ta((a + 256) | 0, b)) { + break a + } + if (!ta((a + 272) | 0, b)) { + break a + } + if (!ta((a + 288) | 0, b)) { + break a + } + if (!ta((a + 304) | 0, b)) { + break a + } + if (!ta((a + 320) | 0, b)) { + break a + } + if (!ta((a + 336) | 0, b)) { + break a + } + if (!ta((a + 352) | 0, b)) { + break a + } + if (!ta((a + 368) | 0, b)) { + break a + } + if (!ta((a + 384) | 0, b)) { + break a + } + if (!ta((a + 400) | 0, b)) { + break a + } + if (!ta((a + 416) | 0, b)) { + break a + } + if (!ta((a + 432) | 0, b)) { + break a + } + if (!ta((a + 448) | 0, b)) { + break a + } + if (!ta((a + 464) | 0, b)) { + break a + } + if (!ta((a + 480) | 0, b)) { + break a + } + if (!ta((a + 496) | 0, b)) { + break a + } + c = ta((a + 512) | 0, b) + } + return c + } + function qf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + a: { + if (!ke(a, b)) { + break a + } + h = (a + 36) | 0 + g = ea[H[(H[a >> 2] + 24) >> 2]](a) | 0 + e = H[(a + 40) >> 2] + d = H[(a + 36) >> 2] + c = (e - d) >> 2 + b: { + if (g >>> 0 > c >>> 0) { + Vb(h, (g - c) | 0) + break b + } + if (c >>> 0 <= g >>> 0) { + break b + } + d = (d + (g << 2)) | 0 + if ((d | 0) != (e | 0)) { + while (1) { + e = (e - 4) | 0 + c = H[e >> 2] + H[e >> 2] = 0 + if (c) { + ea[H[(H[c >> 2] + 4) >> 2]](c) + } + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + H[(a + 40) >> 2] = d + } + c = 1 + if ((g | 0) <= 0) { + break a + } + e = 0 + while (1) { + c: { + c = H[(b + 20) >> 2] + f = H[(b + 12) >> 2] + d = H[(b + 16) >> 2] + if ( + (((c | 0) >= (f | 0)) & (d >>> 0 >= K[(b + 8) >> 2])) | + ((c | 0) > (f | 0)) + ) { + break c + } + f = I[(H[b >> 2] + d) | 0] + d = (d + 1) | 0 + c = d ? c : (c + 1) | 0 + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + d = ea[H[(H[a >> 2] + 48) >> 2]](a, f) | 0 + f = e << 2 + i = (f + H[(a + 36) >> 2]) | 0 + c = H[i >> 2] + H[i >> 2] = d + if (c) { + ea[H[(H[c >> 2] + 4) >> 2]](c) + } + c = H[(H[h >> 2] + f) >> 2] + if (!c) { + break c + } + if ( + !((k = c), + (l = ea[H[(H[a >> 2] + 28) >> 2]](a) | 0), + (m = ea[H[(H[a >> 2] + 20) >> 2]](a, e) | 0), + (j = H[(H[c >> 2] + 8) >> 2]), + ea[j](k | 0, l | 0, m | 0) | 0) + ) { + break c + } + c = 1 + e = (e + 1) | 0 + if ((g | 0) != (e | 0)) { + continue + } + break a + } + break + } + c = 0 + } + return c | 0 + } + function he(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + j = +L[b >> 2] + k = +L[(b + 4) >> 2] + l = +L[(b + 8) >> 2] + g = P(j) + P(k) + P(l) + a: { + if (!(g > 1e-6)) { + j = 1 + k = 0 + e = 0 + break a + } + g = 1 / g + k = g * k + j = g * j + e = g * l < 0 + } + h = H[(a + 16) >> 2] + l = +(h | 0) + g = T(j * l + 0.5) + b: { + if (P(g) < 2147483648) { + m = ~~g + break b + } + m = -2147483648 + } + f = m >> 31 + i = ((f ^ m) - f) | 0 + g = T(k * l + 0.5) + c: { + if (P(g) < 2147483648) { + f = ~~g + break c + } + f = -2147483648 + } + b = f >> 31 + b = (h - ((i + (((f ^ b) - b) | 0)) | 0)) | 0 + i = (b | 0) > 0 ? b : 0 + e = e ? (0 - i) | 0 : i + f = (f + ((b >> 31) & ((f | 0) > 0 ? b : (0 - b) | 0))) | 0 + d: { + if ((m | 0) >= 0) { + b = (e + h) | 0 + a = H[(a + 8) >> 2] + e = (h + f) | 0 + break d + } + b = f >> 31 + b = ((b ^ f) - b) | 0 + a = H[(a + 8) >> 2] + b = (e | 0) < 0 ? b : (a - b) | 0 + e = (f | 0) < 0 ? i : (a - i) | 0 + } + e: { + if (!(b | e)) { + b = a + break e + } + if (!(((a | 0) != (b | 0)) | e)) { + b = a + break e + } + if (!(((a | 0) != (e | 0)) | b)) { + b = a + break e + } + if (!(((b | 0) <= (h | 0)) | e)) { + b = ((h << 1) - b) | 0 + a = 0 + break e + } + if (!(((a | 0) != (e | 0)) | ((b | 0) >= (h | 0)))) { + b = ((h << 1) - b) | 0 + break e + } + if (!(((a | 0) != (b | 0)) | ((e | 0) >= (h | 0)))) { + b = a + a = ((h << 1) - e) | 0 + break e + } + if (b) { + a = e + break e + } + b = 0 + if ((e | 0) <= (h | 0)) { + a = e + break e + } + a = ((h << 1) - e) | 0 + } + H[c >> 2] = a + H[d >> 2] = b + } + function Ve(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = H[(b + 8) >> 2] + h = H[(b + 12) >> 2] + c = H[(b + 20) >> 2] + i = c + k = H[(b + 16) >> 2] + d = (k + 4) | 0 + c = d >>> 0 < 4 ? (c + 1) | 0 : c + a: { + if ( + ((d >>> 0 > g >>> 0) & ((c | 0) >= (h | 0))) | + ((c | 0) > (h | 0)) + ) { + break a + } + l = H[b >> 2] + f = (k + l) | 0 + e = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | (I[(f + 3) | 0] << 24)) + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + c = i + f = (k + 8) | 0 + c = f >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((f >>> 0 > g >>> 0) & ((c | 0) >= (h | 0))) | + ((c | 0) > (h | 0)) + ) { + break a + } + d = (d + l) | 0 + j = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = c + if ((e | 0) > (j | 0)) { + break a + } + H[(a + 16) >> 2] = j + H[(a + 12) >> 2] = e + d = (j - e) | 0 + e = ((j >> 31) - (((e >> 31) + (e >>> 0 > j >>> 0)) | 0)) | 0 + if ((!e & (d >>> 0 > 2147483646)) | e) { + break a + } + d = (d + 1) | 0 + H[(a + 20) >> 2] = d + e = (d >>> 1) | 0 + H[(a + 24) >> 2] = e + H[(a + 28) >> 2] = 0 - e + if (!(d & 1)) { + H[(a + 24) >> 2] = e - 1 + } + if (J[(b + 38) >> 1] <= 513) { + if ( + (((c | 0) >= (h | 0)) & (f >>> 0 >= g >>> 0)) | + ((c | 0) > (h | 0)) + ) { + break a + } + g = I[(f + l) | 0] + c = i + i = (k + 9) | 0 + c = i >>> 0 < 9 ? (c + 1) | 0 : c + H[(b + 16) >> 2] = i + H[(b + 20) >> 2] = c + if (g >>> 0 > 1) { + break a + } + H[(a + 88) >> 2] = g + } + m = ta((a + 112) | 0, b) + } + return m | 0 + } + function Hc(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + g = H[a >> 2] + c = (g + ((b >>> 3) & 536870908)) | 0 + H[c >> 2] = H[c >> 2] | (1 << b) + f = H[(a + 64) >> 2] + e = (b | 0) == -1 + d = -1 + a: { + if (e) { + break a + } + c = (b + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + d = -1 + if ((c | 0) == -1) { + break a + } + d = H[(H[f >> 2] + (c << 2)) >> 2] + } + c = H[(a + 12) >> 2] + h = (((d >>> 3) & 536870908) + c) | 0 + H[h >> 2] = H[h >> 2] | (1 << d) + b: { + c: { + if (!e) { + d: { + e: { + if ((b >>> 0) % 3 | 0) { + e = (b - 1) | 0 + break e + } + e = (b + 2) | 0 + d = -1 + if ((e | 0) == -1) { + break d + } + } + d = H[(H[f >> 2] + (e << 2)) >> 2] + } + e = (((d >>> 3) & 536870908) + c) | 0 + H[e >> 2] = H[e >> 2] | (1 << d) + d = -1 + b = H[(H[(f + 12) >> 2] + (b << 2)) >> 2] + if ((b | 0) == -1) { + break b + } + F[(a + 24) | 0] = 0 + a = (((b >>> 3) & 536870908) + g) | 0 + H[a >> 2] = H[a >> 2] | (1 << b) + a = (b + 1) | 0 + a = (a >>> 0) % 3 | 0 ? a : (b - 2) | 0 + if ((a | 0) != -1) { + d = H[(H[f >> 2] + (a << 2)) >> 2] + } + a = (c + ((d >>> 3) & 536870908)) | 0 + H[a >> 2] = H[a >> 2] | (1 << d) + f: { + g: { + if ((b >>> 0) % 3 | 0) { + b = (b - 1) | 0 + break g + } + b = (b + 2) | 0 + a = -1 + if ((b | 0) == -1) { + break f + } + } + a = H[(H[f >> 2] + (b << 2)) >> 2] + } + b = 1 << a + a = (c + ((a >>> 3) & 536870908)) | 0 + c = H[a >> 2] + break c + } + a = (c + 536870908) | 0 + b = H[(c + 536870908) >> 2] + c = -2147483648 + } + H[a >> 2] = b | c + } + } + function Fd(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = O(0), + f = O(0), + g = O(0), + h = O(0), + i = O(0), + j = 0, + k = O(0), + l = O(0), + m = O(0), + n = O(0), + o = 0 + a: { + if ((H[(c + 28) >> 2] != 9) | (I[(c + 24) | 0] != 3)) { + break a + } + a = H[(a + 4) >> 2] + if ((a - 2) >>> 0 > 28) { + break a + } + o = 1 + j = H[(c + 80) >> 2] + if (!j) { + break a + } + k = O(O(2) / O(((1 << a) - 2) | 0)) + c = (H[H[c >> 2] >> 2] + H[(c + 48) >> 2]) | 0 + a = (H[H[b >> 2] >> 2] + H[(b + 48) >> 2]) | 0 + b = 0 + while (1) { + g = O(0) + l = O(0) + m = O(0) + e = O(O(O(H[a >> 2]) * k) + O(-1)) + f = O(O(O(H[(a + 4) >> 2]) * k) + O(-1)) + i = O(O(O(1) - O(P(e))) - O(P(f))) + h = O(S(O(-i), O(0))) + n = O(-h) + f = O(f + (f < O(0) ? h : n)) + e = O(e + (e < O(0) ? h : n)) + h = O(O(f * f) + O(O(i * i) + O(e * e))) + if (!(+h < 1e-6)) { + g = O(O(1) / O(W(h))) + m = O(f * g) + l = O(e * g) + g = O(i * g) + } + a = (a + 8) | 0 + d = (w(m), y(2)) + F[(c + 8) | 0] = d + F[(c + 9) | 0] = d >>> 8 + F[(c + 10) | 0] = d >>> 16 + F[(c + 11) | 0] = d >>> 24 + d = (w(l), y(2)) + F[(c + 4) | 0] = d + F[(c + 5) | 0] = d >>> 8 + F[(c + 6) | 0] = d >>> 16 + F[(c + 7) | 0] = d >>> 24 + d = (w(g), y(2)) + F[c | 0] = d + F[(c + 1) | 0] = d >>> 8 + F[(c + 2) | 0] = d >>> 16 + F[(c + 3) | 0] = d >>> 24 + c = (c + 12) | 0 + b = (b + 1) | 0 + if ((j | 0) != (b | 0)) { + continue + } + break + } + } + return o | 0 + } + function Vd(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + a: { + if (b >>> 0 <= 63) { + b = 0 + a = H[(a + 12) >> 2] + if (a >>> 0 < 2) { + break a + } + b = (a - 1) | 0 + e = b & 3 + d = H[c >> 2] + c = 0 + b: { + if ((a - 2) >>> 0 < 3) { + a = 1 + b = 0 + break b + } + f = b & -4 + b = 0 + a = 1 + while (1) { + g = (a + 3) | 0 + h = (a + 2) | 0 + i = (a + 1) | 0 + b = + K[(d + (b << 2)) >> 2] > K[(d + (a << 2)) >> 2] + ? a + : b + b = + K[(d + (b << 2)) >> 2] > K[(d + (i << 2)) >> 2] + ? i + : b + b = + K[(d + (b << 2)) >> 2] > K[(d + (h << 2)) >> 2] + ? h + : b + b = + K[(d + (b << 2)) >> 2] > K[(d + (g << 2)) >> 2] + ? g + : b + a = (a + 4) | 0 + j = (j + 4) | 0 + if ((f | 0) != (j | 0)) { + continue + } + break + } + } + if (!e) { + break a + } + while (1) { + b = + K[(d + (b << 2)) >> 2] > K[(d + (a << 2)) >> 2] ? a : b + a = (a + 1) | 0 + c = (c + 1) | 0 + if ((e | 0) != (c | 0)) { + continue + } + break + } + break a + } + b = H[(a + 580) >> 2] + d = (32 - b) | 0 + if ((d | 0) >= 4) { + c = H[(a + 576) >> 2] + if ((c | 0) == H[(a + 568) >> 2]) { + return 0 + } + d = H[c >> 2] + e = (b + 4) | 0 + H[(a + 580) >> 2] = e + b = ((d << b) >>> 28) | 0 + if ((e | 0) != 32) { + break a + } + H[(a + 580) >> 2] = 0 + H[(a + 576) >> 2] = c + 4 + return b + } + c = H[(a + 576) >> 2] + e = (c + 4) | 0 + if ((e | 0) == H[(a + 568) >> 2]) { + return 0 + } + f = H[c >> 2] + H[(a + 576) >> 2] = e + H[(a + 580) >> 2] = b - 28 + a = (60 - b) | 0 + b = (H[(c + 4) >> 2] >>> a) | ((f << b) >>> (a - d)) + } + return b + } + function Ae(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + H[a >> 2] = 11436 + b = H[(a + 388) >> 2] + if (b) { + H[(a + 392) >> 2] = b + oa(b) + } + d = H[(a + 368) >> 2] + H[(a + 368) >> 2] = 0 + if (d) { + e = (d - 4) | 0 + b = H[e >> 2] + if (b) { + c = ((b << 4) + d) | 0 + while (1) { + c = (c - 16) | 0 + if ((d | 0) != (c | 0)) { + continue + } + break + } + } + oa(e) + } + Yc((a + 216) | 0) + b = H[(a + 196) >> 2] + if (b) { + H[(a + 200) >> 2] = b + oa(b) + } + b = H[(a + 184) >> 2] + if (b) { + H[(a + 188) >> 2] = b + oa(b) + } + b = H[(a + 172) >> 2] + if (b) { + H[(a + 176) >> 2] = b + oa(b) + } + b = H[(a + 160) >> 2] + if (b) { + H[(a + 164) >> 2] = b + oa(b) + } + c = H[(a + 144) >> 2] + if (c) { + while (1) { + b = H[c >> 2] + oa(c) + c = b + if (b) { + continue + } + break + } + } + b = H[(a + 136) >> 2] + H[(a + 136) >> 2] = 0 + if (b) { + oa(b) + } + b = H[(a + 120) >> 2] + if (b) { + oa(b) + } + b = H[(a + 108) >> 2] + if (b) { + oa(b) + } + b = H[(a + 96) >> 2] + if (b) { + oa(b) + } + b = H[(a + 72) >> 2] + if (b) { + H[(a + 76) >> 2] = b + oa(b) + } + b = H[(a + 60) >> 2] + if (b) { + oa(b) + } + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + b = H[(a + 36) >> 2] + if (b) { + H[(a + 40) >> 2] = b + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + H[(a + 28) >> 2] = b + oa(b) + } + b = H[(a + 12) >> 2] + if (b) { + H[(a + 16) >> 2] = b + oa(b) + } + b = H[(a + 8) >> 2] + H[(a + 8) >> 2] = 0 + if (b) { + cb(b) + } + return a | 0 + } + function Sg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0 + a: { + a = (ca - 32) | 0 + ca = a + e = Ma(c) + if (e >>> 0 < 2147483632) { + b: { + c: { + if (e >>> 0 >= 11) { + g = ((e | 15) + 1) | 0 + f = pa(g) + H[(a + 24) >> 2] = g | -2147483648 + H[(a + 16) >> 2] = f + H[(a + 20) >> 2] = e + g = (e + f) | 0 + break c + } + F[(a + 27) | 0] = e + f = (a + 16) | 0 + g = (e + f) | 0 + if (!e) { + break b + } + } + qa(f, c, e) + } + F[g | 0] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + d: { + c = nb(b, (a + 16) | 0) + if ((c | 0) == ((b + 4) | 0)) { + break d + } + b = H[(c + 28) >> 2] + e = H[(c + 32) >> 2] + if ((b | 0) == (e | 0)) { + break d + } + b = (e - b) | 0 + if (b & 3) { + break d + } + e = (b >>> 2) | 0 + f = H[(a + 4) >> 2] + b = H[a >> 2] + g = (f - b) >> 2 + e: { + if (e >>> 0 > g >>> 0) { + ya(a, (e - g) | 0) + b = H[a >> 2] + f = H[(a + 4) >> 2] + break e + } + if (e >>> 0 >= g >>> 0) { + break e + } + f = ((e << 2) + b) | 0 + H[(a + 4) >> 2] = f + } + if ((b | 0) != (f | 0)) { + e = b + b = H[(c + 28) >> 2] + qa(e, b, (H[(c + 32) >> 2] - b) | 0) + break d + } + Ca() + v() + } + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + } + H[d >> 2] = H[a >> 2] + H[(d + 4) >> 2] = H[(a + 4) >> 2] + H[(d + 8) >> 2] = H[(a + 8) >> 2] + if (F[(a + 27) | 0] < 0) { + oa(H[(a + 16) >> 2]) + } + ca = (a + 32) | 0 + break a + } + Na() + v() + } + } + function Be(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + H[a >> 2] = 11384 + d = H[(a + 368) >> 2] + H[(a + 368) >> 2] = 0 + if (d) { + e = (d - 4) | 0 + b = H[e >> 2] + if (b) { + c = ((b << 4) + d) | 0 + while (1) { + c = (c - 16) | 0 + if ((d | 0) != (c | 0)) { + continue + } + break + } + } + oa(e) + } + Yc((a + 216) | 0) + b = H[(a + 196) >> 2] + if (b) { + H[(a + 200) >> 2] = b + oa(b) + } + b = H[(a + 184) >> 2] + if (b) { + H[(a + 188) >> 2] = b + oa(b) + } + b = H[(a + 172) >> 2] + if (b) { + H[(a + 176) >> 2] = b + oa(b) + } + b = H[(a + 160) >> 2] + if (b) { + H[(a + 164) >> 2] = b + oa(b) + } + c = H[(a + 144) >> 2] + if (c) { + while (1) { + b = H[c >> 2] + oa(c) + c = b + if (b) { + continue + } + break + } + } + b = H[(a + 136) >> 2] + H[(a + 136) >> 2] = 0 + if (b) { + oa(b) + } + b = H[(a + 120) >> 2] + if (b) { + oa(b) + } + b = H[(a + 108) >> 2] + if (b) { + oa(b) + } + b = H[(a + 96) >> 2] + if (b) { + oa(b) + } + b = H[(a + 72) >> 2] + if (b) { + H[(a + 76) >> 2] = b + oa(b) + } + b = H[(a + 60) >> 2] + if (b) { + oa(b) + } + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + b = H[(a + 36) >> 2] + if (b) { + H[(a + 40) >> 2] = b + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + H[(a + 28) >> 2] = b + oa(b) + } + b = H[(a + 12) >> 2] + if (b) { + H[(a + 16) >> 2] = b + oa(b) + } + b = H[(a + 8) >> 2] + H[(a + 8) >> 2] = 0 + if (b) { + cb(b) + } + return a | 0 + } + function Ug(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = (ca - 16) | 0 + ca = d + a: { + e = Ma(c) + if (e >>> 0 < 2147483632) { + b: { + c: { + if (e >>> 0 >= 11) { + f = ((e | 15) + 1) | 0 + a = pa(f) + H[(d + 8) >> 2] = f | -2147483648 + H[d >> 2] = a + H[(d + 4) >> 2] = e + f = (a + e) | 0 + break c + } + F[(d + 11) | 0] = e + f = (d + e) | 0 + a = d + if (!e) { + break b + } + } + qa(a, c, e) + } + F[f | 0] = 0 + c = I[(d + 11) | 0] + e = (c << 24) >> 24 + b = H[(b + 4) >> 2] + a = 0 + d: { + if (!b) { + break d + } + a = c + c = (e | 0) < 0 + a = c ? H[(d + 4) >> 2] : a + f = c ? H[d >> 2] : d + while (1) { + c = I[(b + 27) | 0] + g = (c << 24) >> 24 < 0 + c = g ? H[(b + 20) >> 2] : c + i = c >>> 0 < a >>> 0 + e: { + f: { + g: { + h: { + i: { + j: { + h = i ? c : a + if (h) { + g = g ? H[(b + 16) >> 2] : (b + 16) | 0 + j = Fa(f, g, h) + if (j) { + break j + } + if (a >>> 0 >= c >>> 0) { + break i + } + break e + } + if (a >>> 0 >= c >>> 0) { + break h + } + break e + } + if ((j | 0) < 0) { + break e + } + } + c = Fa(g, f, h) + if (c) { + break g + } + } + if (i) { + break f + } + a = 1 + break d + } + if ((c | 0) < 0) { + break f + } + a = 1 + break d + } + b = (b + 4) | 0 + } + b = H[b >> 2] + if (b) { + continue + } + break + } + a = 0 + } + if ((e | 0) < 0) { + oa(H[d >> 2]) + } + ca = (d + 16) | 0 + break a + } + Na() + v() + } + return a | 0 + } + function fd(a, b) { + var c = 0, + d = 0 + c = H[(b + 8) >> 2] + H[(a + 4) >> 2] = H[(b + 4) >> 2] + H[(a + 8) >> 2] = c + H[(a + 20) >> 2] = H[(b + 20) >> 2] + c = H[(b + 16) >> 2] + H[(a + 12) >> 2] = H[(b + 12) >> 2] + H[(a + 16) >> 2] = c + a: { + b: { + if ((a | 0) != (b | 0)) { + c = H[(b + 28) >> 2] + if (c) { + d = H[(a + 24) >> 2] + if ((H[(a + 32) >> 2] << 5) >>> 0 < c >>> 0) { + if (d) { + oa(d) + H[(a + 32) >> 2] = 0 + H[(a + 24) >> 2] = 0 + H[(a + 28) >> 2] = 0 + c = H[(b + 28) >> 2] + } + if ((c | 0) < 0) { + break b + } + c = ((((c - 1) >>> 5) | 0) + 1) | 0 + d = pa(c << 2) + H[(a + 32) >> 2] = c + H[(a + 28) >> 2] = 0 + H[(a + 24) >> 2] = d + c = H[(b + 28) >> 2] + } + va( + d, + H[(b + 24) >> 2], + ((((c - 1) >>> 3) & 536870908) + 4) | 0, + ) + c = H[(b + 28) >> 2] + } else { + c = 0 + } + H[(a + 28) >> 2] = c + c = H[(b + 40) >> 2] + if (c) { + d = H[(a + 36) >> 2] + if ((H[(a + 44) >> 2] << 5) >>> 0 < c >>> 0) { + if (d) { + oa(d) + H[(a + 44) >> 2] = 0 + H[(a + 36) >> 2] = 0 + H[(a + 40) >> 2] = 0 + c = H[(b + 40) >> 2] + } + if ((c | 0) < 0) { + break a + } + c = ((((c - 1) >>> 5) | 0) + 1) | 0 + d = pa(c << 2) + H[(a + 44) >> 2] = c + H[(a + 40) >> 2] = 0 + H[(a + 36) >> 2] = d + c = H[(b + 40) >> 2] + } + va( + d, + H[(b + 36) >> 2], + ((((c - 1) >>> 3) & 536870908) + 4) | 0, + ) + b = H[(b + 40) >> 2] + } else { + b = 0 + } + H[(a + 40) >> 2] = b + } + return + } + sa() + v() + } + sa() + v() + } + function uc(a) { + var b = 0, + c = 0, + d = 0 + b = H[(a + 8) >> 2] + d = H[a >> 2] + a: { + if (I[(a + 12) | 0]) { + b: { + c: { + d: { + e: { + if ((b | 0) == -1) { + break e + } + c = (b + 1) | 0 + b = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + if ((b | 0) == -1) { + break e + } + b = H[(H[(d + 12) >> 2] + (b << 2)) >> 2] + if ((b | 0) != -1) { + break d + } + } + H[(a + 8) >> 2] = -1 + break c + } + c = (b + 1) | 0 + b = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + H[(a + 8) >> 2] = b + if ((b | 0) != -1) { + break b + } + } + c = H[(a + 4) >> 2] + b = -1 + f: { + if ((c | 0) == -1) { + break f + } + g: { + if ((c >>> 0) % 3 | 0) { + c = (c - 1) | 0 + break g + } + c = (c + 2) | 0 + b = -1 + if ((c | 0) == -1) { + break f + } + } + c = H[(H[(d + 12) >> 2] + (c << 2)) >> 2] + b = -1 + if ((c | 0) == -1) { + break f + } + b = (c - 1) | 0 + if ((c >>> 0) % 3 | 0) { + break f + } + b = (c + 2) | 0 + } + F[(a + 12) | 0] = 0 + H[(a + 8) >> 2] = b + return + } + if ((b | 0) != H[(a + 4) >> 2]) { + break a + } + H[(a + 8) >> 2] = -1 + return + } + c = -1 + h: { + if ((b | 0) == -1) { + break h + } + i: { + if ((b >>> 0) % 3 | 0) { + b = (b - 1) | 0 + break i + } + b = (b + 2) | 0 + c = -1 + if ((b | 0) == -1) { + break h + } + } + b = H[(H[(d + 12) >> 2] + (b << 2)) >> 2] + c = -1 + if ((b | 0) == -1) { + break h + } + c = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break h + } + c = (b + 2) | 0 + } + H[(a + 8) >> 2] = c + } + } + function Rf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + f = (ca - 32) | 0 + ca = f + d = H[(a + 28) >> 2] + H[(f + 16) >> 2] = d + g = H[(a + 20) >> 2] + H[(f + 28) >> 2] = c + H[(f + 24) >> 2] = b + b = (g - d) | 0 + H[(f + 20) >> 2] = b + g = (b + c) | 0 + i = 2 + a: { + b: { + b = (f + 16) | 0 + d = Z(H[(a + 60) >> 2], b | 0, 2, (f + 12) | 0) | 0 + if (d) { + H[3992] = d + d = -1 + } else { + d = 0 + } + c: { + d: { + if (d) { + d = b + break d + } + while (1) { + e = H[(f + 12) >> 2] + if ((e | 0) == (g | 0)) { + break c + } + if ((e | 0) < 0) { + d = b + break b + } + h = H[(b + 4) >> 2] + j = h >>> 0 < e >>> 0 + d = ((j << 3) + b) | 0 + h = (e - (j ? h : 0)) | 0 + H[d >> 2] = h + H[d >> 2] + b = ((j ? 12 : 4) + b) | 0 + H[b >> 2] = H[b >> 2] - h + g = (g - e) | 0 + b = d + i = (i - j) | 0 + e = + Z(H[(a + 60) >> 2], b | 0, i | 0, (f + 12) | 0) | 0 + if (e) { + H[3992] = e + e = -1 + } else { + e = 0 + } + if (!e) { + continue + } + break + } + } + if ((g | 0) != -1) { + break b + } + } + b = H[(a + 44) >> 2] + H[(a + 28) >> 2] = b + H[(a + 20) >> 2] = b + H[(a + 16) >> 2] = b + H[(a + 48) >> 2] + a = c + break a + } + H[(a + 28) >> 2] = 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[a >> 2] = H[a >> 2] | 32 + a = 0 + if ((i | 0) == 2) { + break a + } + a = (c - H[(d + 4) >> 2]) | 0 + } + ca = (f + 32) | 0 + return a | 0 + } + function Ih(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + e = H[(a + 4) >> 2] + d = H[e >> 2] + a: { + b = H[(a + 12) >> 2] + c = (H[(b + 56) >> 2] - H[(b + 52) >> 2]) | 0 + f = c >> 2 + b: { + if (f >>> 0 <= ((H[(e + 8) >> 2] - d) >> 2) >>> 0) { + break b + } + if ((c | 0) < 0) { + break a + } + b = H[(e + 4) >> 2] + c = pa(c) + f = (c + (f << 2)) | 0 + g = (c + ((b - d) & -4)) | 0 + c = g + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + H[c >> 2] = H[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + H[(e + 8) >> 2] = f + H[(e + 4) >> 2] = g + H[e >> 2] = c + if (!d) { + break b + } + oa(d) + } + e = (a + 8) | 0 + b = H[(a + 76) >> 2] + c: { + if (b) { + d = H[b >> 2] + if ((d | 0) == H[(b + 4) >> 2]) { + return 1 + } + b = 0 + while (1) { + c = we(e, H[((b << 2) + d) >> 2]) + if (!c) { + break c + } + f = H[(a + 76) >> 2] + d = H[f >> 2] + b = (b + 1) | 0 + if (b >>> 0 < ((H[(f + 4) >> 2] - d) >> 2) >>> 0) { + continue + } + break + } + break c + } + c = 1 + a = H[(H[(a + 12) >> 2] + 64) >> 2] + a = (H[(a + 4) >> 2] - H[a >> 2]) | 0 + if (a >>> 0 < 12) { + break c + } + a = (((a >> 2) >>> 0) / 3) | 0 + b = 0 + while (1) { + c = we(e, N(b, 3)) + if (!c) { + break c + } + b = (b + 1) | 0 + if ((a | 0) != (b | 0)) { + continue + } + break + } + } + return c | 0 + } + sa() + v() + } + function Oh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + e = H[(a + 4) >> 2] + d = H[e >> 2] + a: { + b = H[(a + 12) >> 2] + c = (H[(b + 28) >> 2] - H[(b + 24) >> 2]) | 0 + f = c >> 2 + b: { + if (f >>> 0 <= ((H[(e + 8) >> 2] - d) >> 2) >>> 0) { + break b + } + if ((c | 0) < 0) { + break a + } + b = H[(e + 4) >> 2] + c = pa(c) + f = (c + (f << 2)) | 0 + g = (c + ((b - d) & -4)) | 0 + c = g + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + H[c >> 2] = H[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + H[(e + 8) >> 2] = f + H[(e + 4) >> 2] = g + H[e >> 2] = c + if (!d) { + break b + } + oa(d) + } + e = (a + 8) | 0 + b = H[(a + 76) >> 2] + c: { + if (b) { + d = H[b >> 2] + if ((d | 0) == H[(b + 4) >> 2]) { + return 1 + } + b = 0 + while (1) { + c = xe(e, H[((b << 2) + d) >> 2]) + if (!c) { + break c + } + f = H[(a + 76) >> 2] + d = H[f >> 2] + b = (b + 1) | 0 + if (b >>> 0 < ((H[(f + 4) >> 2] - d) >> 2) >>> 0) { + continue + } + break + } + break c + } + c = 1 + a = H[(a + 12) >> 2] + a = (H[(a + 4) >> 2] - H[a >> 2]) | 0 + if (a >>> 0 < 12) { + break c + } + a = (((a >> 2) >>> 0) / 3) | 0 + b = 0 + while (1) { + c = xe(e, N(b, 3)) + if (!c) { + break c + } + b = (b + 1) | 0 + if ((a | 0) != (b | 0)) { + continue + } + break + } + } + return c | 0 + } + sa() + v() + } + function Te(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + g = H[(b + 8) >> 2] + h = H[(b + 12) >> 2] + c = H[(b + 20) >> 2] + i = c + e = H[(b + 16) >> 2] + d = (e + 4) | 0 + c = d >>> 0 < 4 ? (c + 1) | 0 : c + a: { + if ( + ((d >>> 0 > g >>> 0) & ((c | 0) >= (h | 0))) | + ((c | 0) > (h | 0)) + ) { + break a + } + j = H[b >> 2] + f = (e + j) | 0 + f = + I[f | 0] | + (I[(f + 1) | 0] << 8) | + ((I[(f + 2) | 0] << 16) | (I[(f + 3) | 0] << 24)) + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + k = J[(b + 38) >> 1] + if (k >>> 0 <= 513) { + c = i + d = (e + 8) | 0 + c = d >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((d >>> 0 > g >>> 0) & ((c | 0) >= (h | 0))) | + ((c | 0) > (h | 0)) + ) { + break a + } + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + } + if (!(f & 1)) { + break a + } + e = Q(f) ^ 31 + if ((e - 1) >>> 0 > 28) { + break a + } + H[(a + 8) >> 2] = e + 1 + i = -2 << e + e = i ^ -2 + H[(a + 16) >> 2] = e + H[(a + 12) >> 2] = i ^ -1 + H[(a + 24) >> 2] = e >> 1 + L[(a + 20) >> 2] = O(2) / O(e | 0) + if (k >>> 0 <= 513) { + if ( + (((c | 0) >= (h | 0)) & (d >>> 0 >= g >>> 0)) | + ((c | 0) > (h | 0)) + ) { + break a + } + g = I[(d + j) | 0] + d = (d + 1) | 0 + c = d ? c : (c + 1) | 0 + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + if (g >>> 0 > 1) { + break a + } + H[(a + 72) >> 2] = g + } + l = ta((a + 96) | 0, b) + } + return l | 0 + } + function Se(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + f = H[(b + 8) >> 2] + g = H[(b + 12) >> 2] + c = H[(b + 20) >> 2] + h = c + i = H[(b + 16) >> 2] + e = (i + 4) | 0 + c = e >>> 0 < 4 ? (c + 1) | 0 : c + a: { + if ( + ((e >>> 0 > f >>> 0) & ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break a + } + j = H[b >> 2] + d = (i + j) | 0 + d = + I[d | 0] | + (I[(d + 1) | 0] << 8) | + ((I[(d + 2) | 0] << 16) | (I[(d + 3) | 0] << 24)) + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = c + c = h + e = (i + 8) | 0 + c = e >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((e >>> 0 > f >>> 0) & ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break a + } + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = c + if (!(d & 1)) { + break a + } + d = Q(d) ^ 31 + if ((d - 1) >>> 0 > 28) { + break a + } + H[(a + 8) >> 2] = d + 1 + k = -2 << d + d = k ^ -2 + H[(a + 16) >> 2] = d + H[(a + 12) >> 2] = k ^ -1 + H[(a + 24) >> 2] = d >> 1 + L[(a + 20) >> 2] = O(2) / O(d | 0) + if (J[(b + 38) >> 1] <= 513) { + if ( + (((c | 0) >= (g | 0)) & (e >>> 0 >= f >>> 0)) | + ((c | 0) > (g | 0)) + ) { + break a + } + c = I[(e + j) | 0] + f = (i + 9) | 0 + h = f >>> 0 < 9 ? (h + 1) | 0 : h + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = h + if (c >>> 0 > 1) { + break a + } + H[(a + 72) >> 2] = c + } + l = ta((a + 96) | 0, b) + } + return l | 0 + } + function va(a, b, c) { + var d = 0, + e = 0 + a: { + if ((a | 0) == (b | 0)) { + break a + } + e = (a + c) | 0 + if ((b - e) >>> 0 <= (0 - (c << 1)) >>> 0) { + return qa(a, b, c) + } + d = (a ^ b) & 3 + b: { + c: { + if (a >>> 0 < b >>> 0) { + if (d) { + d = a + break b + } + if (!(a & 3)) { + d = a + break c + } + d = a + while (1) { + if (!c) { + break a + } + F[d | 0] = I[b | 0] + b = (b + 1) | 0 + c = (c - 1) | 0 + d = (d + 1) | 0 + if (d & 3) { + continue + } + break + } + break c + } + d: { + if (d) { + break d + } + if (e & 3) { + while (1) { + if (!c) { + break a + } + c = (c - 1) | 0 + d = (c + a) | 0 + F[d | 0] = I[(b + c) | 0] + if (d & 3) { + continue + } + break + } + } + if (c >>> 0 <= 3) { + break d + } + while (1) { + c = (c - 4) | 0 + H[(c + a) >> 2] = H[(b + c) >> 2] + if (c >>> 0 > 3) { + continue + } + break + } + } + if (!c) { + break a + } + while (1) { + c = (c - 1) | 0 + F[(c + a) | 0] = I[(b + c) | 0] + if (c) { + continue + } + break + } + break a + } + if (c >>> 0 <= 3) { + break b + } + while (1) { + H[d >> 2] = H[b >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + c = (c - 4) | 0 + if (c >>> 0 > 3) { + continue + } + break + } + } + if (!c) { + break a + } + while (1) { + F[d | 0] = I[b | 0] + d = (d + 1) | 0 + b = (b + 1) | 0 + c = (c - 1) | 0 + if (c) { + continue + } + break + } + } + return a + } + function ff(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + h = H[(c + 12) >> 2] + f = h + e = H[(c + 20) >> 2] + i = H[(c + 8) >> 2] + g = H[(c + 16) >> 2] + a: { + if ( + (((f | 0) <= (e | 0)) & (i >>> 0 <= g >>> 0)) | + ((e | 0) > (f | 0)) + ) { + break a + } + j = H[c >> 2] + k = F[(j + g) | 0] + d = e + f = (g + 1) | 0 + d = f ? d : (d + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = d + b: { + if ((k | 0) == -2) { + break b + } + if ( + (((d | 0) >= (h | 0)) & (f >>> 0 >= i >>> 0)) | + ((d | 0) > (h | 0)) + ) { + break a + } + d = F[(f + j) | 0] + g = (g + 2) | 0 + e = g >>> 0 < 2 ? (e + 1) | 0 : e + H[(c + 16) >> 2] = g + H[(c + 20) >> 2] = e + if (((d - 4) & 255) >>> 0 < 251) { + break a + } + e = ea[H[(H[a >> 2] + 40) >> 2]](a, k, d) | 0 + d = H[(a + 20) >> 2] + H[(a + 20) >> 2] = e + if (!d) { + break b + } + ea[H[(H[d >> 2] + 4) >> 2]](d) + } + d = H[(a + 20) >> 2] + if (d) { + if (!(ea[H[(H[a >> 2] + 28) >> 2]](a, d) | 0)) { + break a + } + } + if (!(ea[H[(H[a >> 2] + 36) >> 2]](a, b, c) | 0)) { + break a + } + c = H[(a + 4) >> 2] + if (!(!c | (I[(c + 36) | 0] > 1))) { + if ( + !( + ea[H[(H[a >> 2] + 48) >> 2]]( + a, + (H[(b + 4) >> 2] - H[b >> 2]) >> 2, + ) | 0 + ) + ) { + break a + } + } + l = 1 + } + return l | 0 + } + function Vb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + d = H[(a + 8) >> 2] + c = H[(a + 4) >> 2] + if (((d - c) >> 2) >>> 0 >= b >>> 0) { + if (b) { + b = b << 2 + c = (ra(c, 0, b) + b) | 0 + } + H[(a + 4) >> 2] = c + return + } + a: { + b: { + c: { + g = H[a >> 2] + f = (c - g) >> 2 + e = (f + b) | 0 + if (e >>> 0 < 1073741824) { + d = (d - g) | 0 + h = (d >>> 1) | 0 + e = + d >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 < h >>> 0 + ? h + : e + if (e) { + if (e >>> 0 >= 1073741824) { + break c + } + i = pa(e << 2) + } + d = ((f << 2) + i) | 0 + f = b << 2 + b = ra(d, 0, f) + f = (b + f) | 0 + e = ((e << 2) + i) | 0 + if ((c | 0) == (g | 0)) { + break b + } + while (1) { + c = (c - 4) | 0 + b = H[c >> 2] + H[c >> 2] = 0 + d = (d - 4) | 0 + H[d >> 2] = b + if ((c | 0) != (g | 0)) { + continue + } + break + } + H[(a + 8) >> 2] = e + b = H[(a + 4) >> 2] + H[(a + 4) >> 2] = f + c = H[a >> 2] + H[a >> 2] = d + if ((b | 0) == (c | 0)) { + break a + } + while (1) { + b = (b - 4) | 0 + a = H[b >> 2] + H[b >> 2] = 0 + if (a) { + ea[H[(H[a >> 2] + 4) >> 2]](a) + } + if ((b | 0) != (c | 0)) { + continue + } + break + } + break a + } + sa() + v() + } + wa() + v() + } + H[(a + 8) >> 2] = e + H[(a + 4) >> 2] = f + H[a >> 2] = b + } + if (c) { + oa(c) + } + } + function Md(a, b, c) { + a: { + switch ((b - 9) | 0) { + case 0: + b = H[c >> 2] + H[c >> 2] = b + 4 + H[a >> 2] = H[b >> 2] + return + case 6: + b = H[c >> 2] + H[c >> 2] = b + 4 + b = G[b >> 1] + H[a >> 2] = b + H[(a + 4) >> 2] = b >> 31 + return + case 7: + b = H[c >> 2] + H[c >> 2] = b + 4 + H[a >> 2] = J[b >> 1] + H[(a + 4) >> 2] = 0 + return + case 8: + b = H[c >> 2] + H[c >> 2] = b + 4 + b = F[b | 0] + H[a >> 2] = b + H[(a + 4) >> 2] = b >> 31 + return + case 9: + b = H[c >> 2] + H[c >> 2] = b + 4 + H[a >> 2] = I[b | 0] + H[(a + 4) >> 2] = 0 + return + case 16: + b = (H[c >> 2] + 7) & -8 + H[c >> 2] = b + 8 + M[a >> 3] = M[b >> 3] + return + case 17: + v() + default: + return + case 1: + case 4: + case 14: + b = H[c >> 2] + H[c >> 2] = b + 4 + b = H[b >> 2] + H[a >> 2] = b + H[(a + 4) >> 2] = b >> 31 + return + case 2: + case 5: + case 11: + case 15: + b = H[c >> 2] + H[c >> 2] = b + 4 + H[a >> 2] = H[b >> 2] + H[(a + 4) >> 2] = 0 + return + case 3: + case 10: + case 12: + case 13: + break a + } + } + b = (H[c >> 2] + 7) & -8 + H[c >> 2] = b + 8 + c = H[(b + 4) >> 2] + H[a >> 2] = H[b >> 2] + H[(a + 4) >> 2] = c + } + function Ed(a, b) { + var c = 0, + d = 0, + e = 0 + c = (ca + -64) | 0 + ca = c + d = H[a >> 2] + e = H[(d - 4) >> 2] + d = H[(d - 8) >> 2] + H[(c + 32) >> 2] = 0 + H[(c + 36) >> 2] = 0 + H[(c + 40) >> 2] = 0 + H[(c + 44) >> 2] = 0 + H[(c + 48) >> 2] = 0 + H[(c + 52) >> 2] = 0 + F[(c + 55) | 0] = 0 + F[(c + 56) | 0] = 0 + F[(c + 57) | 0] = 0 + F[(c + 58) | 0] = 0 + F[(c + 59) | 0] = 0 + F[(c + 60) | 0] = 0 + F[(c + 61) | 0] = 0 + F[(c + 62) | 0] = 0 + H[(c + 24) >> 2] = 0 + H[(c + 28) >> 2] = 0 + H[(c + 20) >> 2] = 0 + H[(c + 16) >> 2] = 14924 + H[(c + 12) >> 2] = a + H[(c + 8) >> 2] = b + a = (a + d) | 0 + d = 0 + a: { + if (Ya(e, b, 0)) { + H[(c + 56) >> 2] = 1 + ea[H[(H[e >> 2] + 20) >> 2]](e, (c + 8) | 0, a, a, 1, 0) + d = H[(c + 32) >> 2] == 1 ? a : 0 + break a + } + ea[H[(H[e >> 2] + 24) >> 2]](e, (c + 8) | 0, a, 1, 0) + b: { + switch (H[(c + 44) >> 2]) { + case 0: + d = + H[(c + 48) >> 2] == 1 + ? H[(c + 36) >> 2] == 1 + ? H[(c + 40) >> 2] == 1 + ? H[(c + 28) >> 2] + : 0 + : 0 + : 0 + break a + case 1: + break b + default: + break a + } + } + if (H[(c + 32) >> 2] != 1) { + if ( + H[(c + 48) >> 2] | + (H[(c + 36) >> 2] != 1) | + (H[(c + 40) >> 2] != 1) + ) { + break a + } + } + d = H[(c + 24) >> 2] + } + ca = (c - -64) | 0 + return d + } + function ua(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + H[(a + 16) >> 2] = 0 + e = H[a >> 2] + H[(a + 4) >> 2] = e + H[(a + 12) >> 2] = e + e = H[(b + 8) >> 2] + c = H[(b + 12) >> 2] + h = c + d = H[(b + 20) >> 2] + f = H[(b + 16) >> 2] + g = (f + 4) | 0 + d = g >>> 0 < 4 ? (d + 1) | 0 : d + a: { + if ( + ((e >>> 0 < g >>> 0) & ((d | 0) >= (c | 0))) | + ((d | 0) > (c | 0)) + ) { + break a + } + c = (f + H[b >> 2]) | 0 + c = + I[c | 0] | + (I[(c + 1) | 0] << 8) | + ((I[(c + 2) | 0] << 16) | (I[(c + 3) | 0] << 24)) + H[(b + 16) >> 2] = g + H[(b + 20) >> 2] = d + if (!c | (c & 3)) { + break a + } + f = (h - ((d + (e >>> 0 < g >>> 0)) | 0)) | 0 + if ( + (((e - g) >>> 0 < c >>> 0) & ((f | 0) <= 0)) | + ((f | 0) < 0) + ) { + break a + } + if (c >>> 0 >= 4) { + ya(a, (c >>> 2) | 0) + h = H[(b + 12) >> 2] + g = H[(b + 16) >> 2] + d = H[(b + 20) >> 2] + e = H[(b + 8) >> 2] + } + f = (c + g) | 0 + d = f >>> 0 < c >>> 0 ? (d + 1) | 0 : d + if ( + ((e >>> 0 < f >>> 0) & ((d | 0) >= (h | 0))) | + ((d | 0) > (h | 0)) + ) { + break a + } + qa(H[a >> 2], (H[b >> 2] + g) | 0, c) + d = H[(b + 20) >> 2] + e = (c + H[(b + 16) >> 2]) | 0 + d = e >>> 0 < c >>> 0 ? (d + 1) | 0 : d + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = d + H[(a + 16) >> 2] = 0 + H[(a + 12) >> 2] = H[a >> 2] + i = 1 + } + return i + } + function de(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0 + d = -1 + e = -1 + f = -1 + a: { + b: { + if ((b | 0) == -1) { + break b + } + e = H[(H[(H[(a + 4) >> 2] + 12) >> 2] + (b << 2)) >> 2] + c = (b + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + if ((c | 0) >= 0) { + f = ((c >>> 0) / 3) | 0 + f = + H[ + (((H[(H[a >> 2] + 96) >> 2] + N(f, 12)) | 0) + + ((c - N(f, 3)) << 2)) >> + 2 + ] + } + c: { + if ((e | 0) == -1) { + break c + } + c = (((e >>> 0) % 3 | 0 ? -1 : 2) + e) | 0 + if ((c | 0) < 0) { + break c + } + d = ((c >>> 0) / 3) | 0 + d = + H[ + (((H[(H[a >> 2] + 96) >> 2] + N(d, 12)) | 0) + + ((c - N(d, 3)) << 2)) >> + 2 + ] + } + c = -1 + if ((d | 0) != (f | 0)) { + break a + } + f = -1 + d: { + b = (((b >>> 0) % 3 | 0 ? -1 : 2) + b) | 0 + if ((b | 0) >= 0) { + d = ((b >>> 0) / 3) | 0 + d = + H[ + (((H[(H[a >> 2] + 96) >> 2] + N(d, 12)) | 0) + + ((b - N(d, 3)) << 2)) >> + 2 + ] + if ((e | 0) == -1) { + break b + } + break d + } + d = -1 + if ((e | 0) != -1) { + break d + } + break b + } + b = (e + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (e - 2) | 0 + if ((b | 0) < 0) { + break b + } + c = H[(H[a >> 2] + 96) >> 2] + a = ((b >>> 0) / 3) | 0 + f = H[(((c + N(a, 12)) | 0) + ((b - N(a, 3)) << 2)) >> 2] + } + c = (d | 0) != (f | 0) ? -1 : e + } + return c + } + function Ah(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + c = pa(72) + H[(c + 4) >> 2] = 0 + H[(c + 8) >> 2] = 0 + H[c >> 2] = 1984 + H[(c + 12) >> 2] = 0 + H[(c + 16) >> 2] = 0 + H[(c + 20) >> 2] = 0 + H[(c + 24) >> 2] = 0 + H[(c + 28) >> 2] = 0 + H[(c + 32) >> 2] = 0 + H[(c + 36) >> 2] = 0 + H[(c + 40) >> 2] = 0 + H[c >> 2] = 2128 + H[(c + 44) >> 2] = 0 + H[(c + 48) >> 2] = 0 + H[(c + 52) >> 2] = 0 + H[(c + 56) >> 2] = 0 + H[(c + 60) >> 2] = 0 + H[(c + 64) >> 2] = 0 + H[(c + 68) >> 2] = 0 + h = c + a: { + if ((b | 0) >= 0) { + g = (a + 8) | 0 + c = H[(a + 12) >> 2] + e = H[(a + 8) >> 2] + f = (c - e) >> 2 + b: { + if ((f | 0) > (b | 0)) { + break b + } + d = (b + 1) | 0 + if (b >>> 0 >= f >>> 0) { + Vb(g, (d - f) | 0) + break b + } + if (d >>> 0 >= f >>> 0) { + break b + } + e = ((d << 2) + e) | 0 + if ((e | 0) != (c | 0)) { + while (1) { + c = (c - 4) | 0 + d = H[c >> 2] + H[c >> 2] = 0 + if (d) { + ea[H[(H[d >> 2] + 4) >> 2]](d) + } + if ((c | 0) != (e | 0)) { + continue + } + break + } + } + H[(a + 12) >> 2] = e + } + a = (H[g >> 2] + (b << 2)) | 0 + c = H[a >> 2] + H[a >> 2] = h + if (!c) { + break a + } + } + ea[H[(H[c >> 2] + 4) >> 2]](c) + } + return ((b ^ -1) >>> 31) | 0 + } + function ra(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (!c) { + break a + } + F[a | 0] = b + d = (a + c) | 0 + F[(d - 1) | 0] = b + if (c >>> 0 < 3) { + break a + } + F[(a + 2) | 0] = b + F[(a + 1) | 0] = b + F[(d - 3) | 0] = b + F[(d - 2) | 0] = b + if (c >>> 0 < 7) { + break a + } + F[(a + 3) | 0] = b + F[(d - 4) | 0] = b + if (c >>> 0 < 9) { + break a + } + d = (0 - a) & 3 + e = (d + a) | 0 + b = N(b & 255, 16843009) + H[e >> 2] = b + d = (c - d) & -4 + c = (d + e) | 0 + H[(c - 4) >> 2] = b + if (d >>> 0 < 9) { + break a + } + H[(e + 8) >> 2] = b + H[(e + 4) >> 2] = b + H[(c - 8) >> 2] = b + H[(c - 12) >> 2] = b + if (d >>> 0 < 25) { + break a + } + H[(e + 24) >> 2] = b + H[(e + 20) >> 2] = b + H[(e + 16) >> 2] = b + H[(e + 12) >> 2] = b + H[(c - 16) >> 2] = b + H[(c - 20) >> 2] = b + H[(c - 24) >> 2] = b + H[(c - 28) >> 2] = b + g = (e & 4) | 24 + c = (d - g) | 0 + if (c >>> 0 < 32) { + break a + } + d = Rj(b, 0, 1, 1) + f = da + b = (e + g) | 0 + while (1) { + H[(b + 24) >> 2] = d + H[(b + 28) >> 2] = f + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = f + H[(b + 8) >> 2] = d + H[(b + 12) >> 2] = f + H[b >> 2] = d + H[(b + 4) >> 2] = f + b = (b + 32) | 0 + c = (c - 32) | 0 + if (c >>> 0 > 31) { + continue + } + break + } + } + return a + } + function Mj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + d = H[(b + 8) >> 2] + e = H[(b + 12) >> 2] + g = e + e = H[(b + 20) >> 2] + k = e + h = H[(b + 16) >> 2] + c = (h + 4) | 0 + e = c >>> 0 < 4 ? (e + 1) | 0 : e + i = c + a: { + if ( + ((c >>> 0 > d >>> 0) & ((e | 0) >= (g | 0))) | + ((e | 0) > (g | 0)) + ) { + break a + } + j = H[b >> 2] + c = (j + h) | 0 + f = + I[c | 0] | + (I[(c + 1) | 0] << 8) | + ((I[(c + 2) | 0] << 16) | (I[(c + 3) | 0] << 24)) + H[(b + 16) >> 2] = i + H[(b + 20) >> 2] = e + c = d + d = k + e = (h + 8) | 0 + d = e >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((c >>> 0 < e >>> 0) & ((d | 0) >= (g | 0))) | + ((d | 0) > (g | 0)) + ) { + break a + } + c = (i + j) | 0 + c = + I[c | 0] | + (I[(c + 1) | 0] << 8) | + ((I[(c + 2) | 0] << 16) | (I[(c + 3) | 0] << 24)) + H[(b + 16) >> 2] = e + H[(b + 20) >> 2] = d + if ((c | 0) < (f | 0)) { + break a + } + H[(a + 16) >> 2] = c + H[(a + 12) >> 2] = f + d = ((c >> 31) - (((f >> 31) + (c >>> 0 < f >>> 0)) | 0)) | 0 + b = (c - f) | 0 + if ((!d & (b >>> 0 > 2147483646)) | d) { + break a + } + l = 1 + d = (b + 1) | 0 + H[(a + 20) >> 2] = d + b = (d >>> 1) | 0 + H[(a + 24) >> 2] = b + H[(a + 28) >> 2] = 0 - b + if (d & 1) { + break a + } + H[(a + 24) >> 2] = b - 1 + } + return l | 0 + } + function sd(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + e = (a + 16) | 0 + d = H[e >> 2] + a: { + if (!d) { + break a + } + f = H[b >> 2] + b = e + while (1) { + g = (f | 0) > H[(d + 16) >> 2] + b = g ? b : d + d = H[(g ? (d + 4) | 0 : d) >> 2] + if (d) { + continue + } + break + } + if (((b | 0) == (e | 0)) | ((f | 0) < H[(b + 16) >> 2])) { + break a + } + d = H[(b + 24) >> 2] + if (!d) { + break a + } + f = (b + 20) | 0 + b = I[(c + 11) | 0] + e = (b << 24) >> 24 < 0 + g = e ? H[c >> 2] : c + b = e ? H[(c + 4) >> 2] : b + while (1) { + e = I[(d + 27) | 0] + h = (e << 24) >> 24 < 0 + e = h ? H[(d + 20) >> 2] : e + j = e >>> 0 < b >>> 0 + b: { + c: { + d: { + e: { + f: { + g: { + i = j ? e : b + if (i) { + h = h ? H[(d + 16) >> 2] : (d + 16) | 0 + k = Fa(g, h, i) + if (k) { + break g + } + if (b >>> 0 >= e >>> 0) { + break f + } + break b + } + if (b >>> 0 >= e >>> 0) { + break e + } + break b + } + if ((k | 0) < 0) { + break b + } + } + e = Fa(h, g, i) + if (e) { + break d + } + } + if (j) { + break c + } + return Tc(f, c) + } + if ((e | 0) < 0) { + break c + } + return Tc(f, c) + } + d = (d + 4) | 0 + } + d = H[d >> 2] + if (d) { + continue + } + break + } + } + return Tc(a, c) + } + function be(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + d = (ca - 16) | 0 + ca = d + f = H[(a + 24) >> 2] + k = H[(a + 28) >> 2] + a: { + if ((f | 0) != (k | 0)) { + while (1) { + H[(d + 8) >> 2] = 0 + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + a = $d(H[f >> 2], b, d) + g = I[(d + 11) | 0] + h = (g << 24) >> 24 + i = 3 + b: { + c: { + d: { + if (!a) { + break d + } + i = 0 + a = I[(c + 11) | 0] + e = (a << 24) >> 24 + j = (h | 0) < 0 ? H[(d + 4) >> 2] : g + if ( + (j | 0) != + (((e | 0) < 0 ? H[(c + 4) >> 2] : a) | 0) + ) { + break d + } + a = (e | 0) < 0 ? H[c >> 2] : c + e = (h | 0) < 0 + e: { + if (!e) { + e = d + if (!h) { + break e + } + while (1) { + if (I[e | 0] != I[a | 0]) { + break d + } + a = (a + 1) | 0 + e = (e + 1) | 0 + g = (g - 1) | 0 + if (g) { + continue + } + break + } + break e + } + if (!j) { + break e + } + if (Fa(e ? H[d >> 2] : d, a, j)) { + break c + } + } + l = H[f >> 2] + i = 1 + } + if ((h | 0) >= 0) { + break b + } + } + oa(H[d >> 2]) + } + f: { + switch (i | 0) { + case 0: + case 3: + break f + default: + break a + } + } + f = (f + 4) | 0 + if ((k | 0) != (f | 0)) { + continue + } + break + } + } + l = 0 + } + ca = (d + 16) | 0 + return l + } + function Cb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + f = (c - b) | 0 + h = f >> 2 + d = H[(a + 8) >> 2] + e = H[a >> 2] + if (h >>> 0 <= ((d - e) >> 2) >>> 0) { + d = H[(a + 4) >> 2] + g = (d - e) | 0 + f = (g + b) | 0 + i = g >> 2 + g = i >>> 0 < h >>> 0 ? f : c + if ((g | 0) != (b | 0)) { + while (1) { + H[e >> 2] = H[b >> 2] + e = (e + 4) | 0 + b = (b + 4) | 0 + if ((g | 0) != (b | 0)) { + continue + } + break + } + } + if (h >>> 0 > i >>> 0) { + if ((c | 0) != (g | 0)) { + while (1) { + H[d >> 2] = H[f >> 2] + d = (d + 4) | 0 + f = (f + 4) | 0 + if ((f | 0) != (c | 0)) { + continue + } + break + } + } + H[(a + 4) >> 2] = d + return + } + H[(a + 4) >> 2] = e + return + } + if (e) { + H[(a + 4) >> 2] = e + oa(e) + H[(a + 8) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + d = 0 + } + a: { + if ((f | 0) < 0) { + break a + } + e = (d >>> 1) | 0 + d = + d >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 > h >>> 0 + ? e + : h + if (d >>> 0 >= 1073741824) { + break a + } + e = d << 2 + d = pa(e) + H[a >> 2] = d + H[(a + 8) >> 2] = d + e + if ((b | 0) != (c | 0)) { + c = b + b = (((f - 4) & -4) + 4) | 0 + d = (qa(d, c, b) + b) | 0 + } + H[(a + 4) >> 2] = d + return + } + sa() + v() + } + function Oa(a, b, c) { + var d = 0, + e = 0, + f = 0 + e = (ca - 16) | 0 + ca = e + H[(a + 4) >> 2] = 0 + a: { + b: { + if (!b) { + break b + } + f = H[(a + 8) >> 2] + d = f << 5 + c: { + if (d >>> 0 >= b >>> 0) { + H[(a + 4) >> 2] = b + break c + } + H[(e + 8) >> 2] = 0 + H[e >> 2] = 0 + H[(e + 4) >> 2] = 0 + if ((b | 0) < 0) { + break a + } + if (d >>> 0 <= 1073741822) { + f = f << 6 + d = (b + 31) & -32 + d = d >>> 0 < f >>> 0 ? f : d + } else { + d = 2147483647 + } + pb(e, d) + f = H[a >> 2] + H[a >> 2] = H[e >> 2] + H[e >> 2] = f + d = H[(a + 4) >> 2] + H[(a + 4) >> 2] = b + H[(e + 4) >> 2] = d + d = H[(a + 8) >> 2] + H[(a + 8) >> 2] = H[(e + 8) >> 2] + H[(e + 8) >> 2] = d + if (!f) { + break c + } + oa(f) + } + d = (b >>> 5) | 0 + a = H[a >> 2] + if (I[c | 0]) { + if (b >>> 0 >= 32) { + ra(a, 255, d << 2) + } + if ((b & -32) == (b | 0)) { + break b + } + a = (a + (d << 2)) | 0 + H[a >> 2] = H[a >> 2] | (-1 >>> (32 - (b & 31))) + break b + } + if (b >>> 0 >= 32) { + ra(a, 0, d << 2) + } + if ((b & -32) == (b | 0)) { + break b + } + a = (a + (d << 2)) | 0 + H[a >> 2] = H[a >> 2] & ((-1 >>> (32 - (b & 31))) ^ -1) + } + ca = (e + 16) | 0 + return + } + sa() + v() + } + function Hg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0 + e = (ca - 32) | 0 + ca = e + a: { + b: { + f = Ma(c) + if (f >>> 0 < 2147483632) { + c: { + d: { + if (f >>> 0 >= 11) { + a = ((f | 15) + 1) | 0 + g = pa(a) + H[(e + 24) >> 2] = a | -2147483648 + H[(e + 16) >> 2] = g + H[(e + 20) >> 2] = f + a = (f + g) | 0 + break d + } + F[(e + 27) | 0] = f + g = (e + 16) | 0 + a = (f + g) | 0 + if (!f) { + break c + } + } + qa(g, c, f) + } + F[a | 0] = 0 + c = Ma(d) + if (c >>> 0 >= 2147483632) { + break b + } + e: { + f: { + if (c >>> 0 >= 11) { + f = ((c | 15) + 1) | 0 + a = pa(f) + H[(e + 8) >> 2] = f | -2147483648 + H[e >> 2] = a + H[(e + 4) >> 2] = c + g = (a + c) | 0 + break f + } + F[(e + 11) | 0] = c + g = (c + e) | 0 + a = e + if (!c) { + break e + } + } + qa(a, d, c) + } + F[g | 0] = 0 + c = H[(b + 4) >> 2] + a = -1 + g: { + if (!c) { + break g + } + c = be(c, (e + 16) | 0, e) + a = -1 + if (!c) { + break g + } + a = Yd(b, H[(c + 24) >> 2]) + } + if (F[(e + 11) | 0] < 0) { + oa(H[e >> 2]) + } + if (F[(e + 27) | 0] < 0) { + oa(H[(e + 16) >> 2]) + } + ca = (e + 32) | 0 + break a + } + Na() + v() + } + Na() + v() + } + return a | 0 + } + function jb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + b = H[b >> 2] + h = H[(b + 8) >> 2] + i = H[(b + 4) >> 2] + j = H[b >> 2] + d = H[a >> 2] + b = H[(d + 4) >> 2] + a = H[(d + 8) >> 2] + if (b >>> 0 < a >>> 0) { + H[(b + 8) >> 2] = h + H[(b + 4) >> 2] = i + H[b >> 2] = j + H[(d + 4) >> 2] = b + 12 + return + } + a: { + e = H[d >> 2] + g = (((b - e) | 0) / 12) | 0 + c = (g + 1) | 0 + if (c >>> 0 < 357913942) { + f = (((a - e) | 0) / 12) | 0 + a = f << 1 + c = + f >>> 0 >= 178956970 + ? 357913941 + : a >>> 0 > c >>> 0 + ? a + : c + if (c) { + if (c >>> 0 >= 357913942) { + break a + } + f = pa(N(c, 12)) + } else { + f = 0 + } + a = (f + N(g, 12)) | 0 + H[(a + 8) >> 2] = h + H[(a + 4) >> 2] = i + H[a >> 2] = j + g = (a + 12) | 0 + if ((b | 0) != (e | 0)) { + while (1) { + a = (a - 12) | 0 + b = (b - 12) | 0 + H[a >> 2] = H[b >> 2] + H[(a + 4) >> 2] = H[(b + 4) >> 2] + H[(a + 8) >> 2] = H[(b + 8) >> 2] + if ((b | 0) != (e | 0)) { + continue + } + break + } + } + H[(d + 8) >> 2] = f + N(c, 12) + H[(d + 4) >> 2] = g + H[d >> 2] = a + if (e) { + oa(e) + } + return + } + sa() + v() + } + wa() + v() + } + function lf(a, b) { + a = a | 0 + b = b | 0 + a = 0 + a: { + switch (b | 0) { + case 0: + a = pa(20) + H[(a + 12) >> 2] = -1 + H[(a + 16) >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = 2232 + return a | 0 + case 1: + a = pa(24) + H[(a + 12) >> 2] = -1 + H[(a + 16) >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = 2232 + H[(a + 20) >> 2] = 0 + H[a >> 2] = 2448 + return a | 0 + case 2: + a = pa(48) + H[(a + 12) >> 2] = -1 + H[(a + 16) >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = 2232 + H[(a + 20) >> 2] = 0 + H[a >> 2] = 2448 + H[(a + 24) >> 2] = 1832 + H[a >> 2] = 11048 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + H[(a + 28) >> 2] = -1 + H[(a + 40) >> 2] = 0 + H[(a + 44) >> 2] = 0 + return a | 0 + case 3: + a = pa(32) + H[(a + 12) >> 2] = -1 + H[(a + 16) >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = 2232 + H[(a + 20) >> 2] = 0 + H[a >> 2] = 2448 + H[(a + 24) >> 2] = 1032 + H[a >> 2] = 7028 + H[(a + 28) >> 2] = -1 + break + default: + break a + } + } + return a | 0 + } + function tf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + f = H[b >> 2] + b = H[(b + 4) >> 2] + d = H[(H[(a + 8) >> 2] + 40) >> 2] + j = d + m = pa((d | 0) < 0 ? -1 : d) + i = (b - f) | 0 + e = 1 + a: { + if ((i | 0) < 4) { + break a + } + b = 0 + g = H[(c + 16) >> 2] + k = d + f = (g + d) | 0 + d = (0 + H[(c + 20) >> 2]) | 0 + d = f >>> 0 < k >>> 0 ? (d + 1) | 0 : d + h = H[(c + 12) >> 2] + e = 0 + if ( + ((K[(c + 8) >> 2] < f >>> 0) & ((d | 0) >= (h | 0))) | + ((d | 0) > (h | 0)) + ) { + break a + } + e = i >> 2 + i = (e | 0) <= 1 ? 1 : e + while (1) { + b: { + g = qa(m, (H[c >> 2] + g) | 0, j) + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = d + qa((H[H[(H[(a + 8) >> 2] + 64) >> 2] >> 2] + b) | 0, g, j) + l = (l + 1) | 0 + if ((i | 0) == (l | 0)) { + break b + } + b = (b + j) | 0 + d = (n + H[(c + 20) >> 2]) | 0 + g = H[(c + 16) >> 2] + f = (k + g) | 0 + d = f >>> 0 < k >>> 0 ? (d + 1) | 0 : d + h = H[(c + 12) >> 2] + if ( + (((d | 0) <= (h | 0)) & (K[(c + 8) >> 2] >= f >>> 0)) | + ((d | 0) < (h | 0)) + ) { + continue + } + } + break + } + e = (e | 0) <= (l | 0) + } + oa(m) + return e | 0 + } + function Ti(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + H[b >> 2] = 1 + f = (b + 8) | 0 + c = H[(b + 8) >> 2] + d = (H[(b + 12) >> 2] - c) | 0 + if (d >>> 0 <= 4294967291) { + kc(f, (d + 4) | 0) + c = H[f >> 2] + } + c = (c + d) | 0 + d = H[(a + 4) >> 2] + F[c | 0] = d + F[(c + 1) | 0] = d >>> 8 + F[(c + 2) | 0] = d >>> 16 + F[(c + 3) | 0] = d >>> 24 + c = H[(a + 8) >> 2] + if ((c | 0) != H[(a + 12) >> 2]) { + d = 0 + while (1) { + g = ((d << 2) + c) | 0 + c = H[(b + 8) >> 2] + e = (H[(b + 12) >> 2] - c) | 0 + if (e >>> 0 <= 4294967291) { + kc(f, (e + 4) | 0) + c = H[f >> 2] + } + c = (c + e) | 0 + e = H[g >> 2] + F[c | 0] = e + F[(c + 1) | 0] = e >>> 8 + F[(c + 2) | 0] = e >>> 16 + F[(c + 3) | 0] = e >>> 24 + d = (d + 1) | 0 + c = H[(a + 8) >> 2] + if (d >>> 0 < ((H[(a + 12) >> 2] - c) >> 2) >>> 0) { + continue + } + break + } + } + c = H[(b + 12) >> 2] + b = H[(b + 8) >> 2] + c = (c - b) | 0 + if (c >>> 0 <= 4294967291) { + kc(f, (c + 4) | 0) + b = H[f >> 2] + } + b = (b + c) | 0 + a = H[(a + 20) >> 2] + F[b | 0] = a + F[(b + 1) | 0] = a >>> 8 + F[(b + 2) | 0] = a >>> 16 + F[(b + 3) | 0] = a >>> 24 + } + function Aa(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + f = (c - b) | 0 + g = f >> 2 + d = H[(a + 8) >> 2] + e = H[a >> 2] + if (g >>> 0 <= ((d - e) >> 2) >>> 0) { + f = (H[(a + 4) >> 2] - e) | 0 + d = (f + b) | 0 + h = f >> 2 + f = h >>> 0 < g >>> 0 ? d : c + i = (f - b) | 0 + if ((b | 0) != (f | 0)) { + va(e, b, i) + } + if (g >>> 0 > h >>> 0) { + b = H[(a + 4) >> 2] + if ((c | 0) != (f | 0)) { + while (1) { + H[b >> 2] = H[d >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((d | 0) != (c | 0)) { + continue + } + break + } + } + H[(a + 4) >> 2] = b + return + } + H[(a + 4) >> 2] = e + i + return + } + if (e) { + H[(a + 4) >> 2] = e + oa(e) + H[(a + 8) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + d = 0 + } + a: { + if ((f | 0) < 0) { + break a + } + e = (d >>> 1) | 0 + d = + d >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 > g >>> 0 + ? e + : g + if (d >>> 0 >= 1073741824) { + break a + } + e = d << 2 + d = pa(e) + H[a >> 2] = d + H[(a + 8) >> 2] = d + e + if ((b | 0) != (c | 0)) { + c = b + b = (((f - 4) & -4) + 4) | 0 + d = (qa(d, c, b) + b) | 0 + } + H[(a + 4) >> 2] = d + return + } + sa() + v() + } + function Rb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + c = H[(a + 4) >> 2] + if ((c | 0) != H[(a + 8) >> 2]) { + e = H[(b + 4) >> 2] + H[c >> 2] = H[b >> 2] + H[(c + 4) >> 2] = e + H[(c + 8) >> 2] = H[(b + 8) >> 2] + H[(a + 4) >> 2] = c + 12 + return + } + a: { + g = H[a >> 2] + d = (((c - g) | 0) / 12) | 0 + e = (d + 1) | 0 + if (e >>> 0 < 357913942) { + f = d << 1 + f = + d >>> 0 >= 178956970 + ? 357913941 + : e >>> 0 < f >>> 0 + ? f + : e + if (f) { + if (f >>> 0 >= 357913942) { + break a + } + e = pa(N(f, 12)) + } else { + e = 0 + } + d = (e + N(d, 12)) | 0 + h = H[(b + 4) >> 2] + H[d >> 2] = H[b >> 2] + H[(d + 4) >> 2] = h + H[(d + 8) >> 2] = H[(b + 8) >> 2] + b = (d + 12) | 0 + if ((c | 0) != (g | 0)) { + while (1) { + c = (c - 12) | 0 + h = H[(c + 4) >> 2] + d = (d - 12) | 0 + H[d >> 2] = H[c >> 2] + H[(d + 4) >> 2] = h + H[(d + 8) >> 2] = H[(c + 8) >> 2] + if ((c | 0) != (g | 0)) { + continue + } + break + } + c = H[a >> 2] + } + H[(a + 8) >> 2] = e + N(f, 12) + H[(a + 4) >> 2] = b + H[a >> 2] = d + if (c) { + oa(c) + } + return + } + sa() + v() + } + wa() + v() + } + function Qi(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + f = (ca - 32) | 0 + ca = f + g = e >>> 0 > 1073741823 ? -1 : e << 2 + l = ra(pa(g), 0, g) + g = l + i = H[g >> 2] + g = H[(g + 4) >> 2] + k = H[(b + 4) >> 2] + H[(f + 24) >> 2] = H[b >> 2] + H[(f + 28) >> 2] = k + H[(f + 8) >> 2] = i + H[(f + 12) >> 2] = g + i = (a + 8) | 0 + rc((f + 16) | 0, i, (f + 8) | 0, (f + 24) | 0) + H[c >> 2] = H[(f + 16) >> 2] + H[(c + 4) >> 2] = H[(f + 20) >> 2] + if ((d | 0) > (e | 0)) { + k = (0 - e) << 2 + a = e + while (1) { + h = a << 2 + g = (h + c) | 0 + j = (g + k) | 0 + m = H[j >> 2] + j = H[(j + 4) >> 2] + h = (b + h) | 0 + n = H[(h + 4) >> 2] + H[(f + 24) >> 2] = H[h >> 2] + H[(f + 28) >> 2] = n + H[(f + 8) >> 2] = m + H[(f + 12) >> 2] = j + rc((f + 16) | 0, i, (f + 8) | 0, (f + 24) | 0) + H[g >> 2] = H[(f + 16) >> 2] + H[(g + 4) >> 2] = H[(f + 20) >> 2] + a = (a + e) | 0 + if ((d | 0) > (a | 0)) { + continue + } + break + } + } + oa(l) + ca = (f + 32) | 0 + return 1 + } + function Hi(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + f = (ca - 32) | 0 + ca = f + h = e >>> 0 > 1073741823 ? -1 : e << 2 + h = ra(pa(h), 0, h) + g = H[b >> 2] + i = H[(b + 4) >> 2] + k = H[(h + 4) >> 2] + H[(f + 16) >> 2] = H[h >> 2] + H[(f + 20) >> 2] = k + H[(f + 8) >> 2] = g + H[(f + 12) >> 2] = i + i = (a + 8) | 0 + qc((f + 24) | 0, i, (f + 16) | 0, (f + 8) | 0) + H[c >> 2] = H[(f + 24) >> 2] + H[(c + 4) >> 2] = H[(f + 28) >> 2] + if ((d | 0) > (e | 0)) { + k = (0 - e) << 2 + a = e + while (1) { + g = a << 2 + j = (g + b) | 0 + m = H[j >> 2] + j = H[(j + 4) >> 2] + g = (c + g) | 0 + l = (g + k) | 0 + n = H[(l + 4) >> 2] + H[(f + 16) >> 2] = H[l >> 2] + H[(f + 20) >> 2] = n + H[(f + 8) >> 2] = m + H[(f + 12) >> 2] = j + qc((f + 24) | 0, i, (f + 16) | 0, (f + 8) | 0) + H[g >> 2] = H[(f + 24) >> 2] + H[(g + 4) >> 2] = H[(f + 28) >> 2] + a = (a + e) | 0 + if ((d | 0) > (a | 0)) { + continue + } + break + } + } + oa(h) + ca = (f + 32) | 0 + return 1 + } + function Ag(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + a: { + if (K[(b + 80) >> 2] > 65535) { + break a + } + a = H[(b + 100) >> 2] + b = H[(b + 96) >> 2] + e = (((a - b) | 0) / 12) | 0 + f = N(e, 6) + g = (f | 0) == (c | 0) + if (((a | 0) == (b | 0)) | ((c | 0) != (f | 0))) { + break a + } + g = 1 + c = e >>> 0 <= 1 ? 1 : e + i = c & 1 + a = 0 + if (e >>> 0 >= 2) { + j = c & -2 + c = 0 + while (1) { + f = N(a, 6) + h = (f + d) | 0 + e = (b + N(a, 12)) | 0 + G[h >> 1] = H[e >> 2] + G[((f | 2) + d) >> 1] = H[(e + 4) >> 2] + G[(h + 4) >> 1] = H[(e + 8) >> 2] + f = a | 1 + e = (N(f, 6) + d) | 0 + f = (b + N(f, 12)) | 0 + G[e >> 1] = H[f >> 2] + G[(e + 2) >> 1] = H[(f + 4) >> 2] + G[(e + 4) >> 1] = H[(f + 8) >> 2] + a = (a + 2) | 0 + c = (c + 2) | 0 + if ((j | 0) != (c | 0)) { + continue + } + break + } + } + if (!i) { + break a + } + c = (N(a, 6) + d) | 0 + a = (b + N(a, 12)) | 0 + G[c >> 1] = H[a >> 2] + G[(c + 2) >> 1] = H[(a + 4) >> 2] + G[(c + 4) >> 1] = H[(a + 8) >> 2] + } + return g | 0 + } + function Gd(a, b, c, d, e, f, g) { + var h = 0, + i = 0, + j = 0 + h = (ca - 16) | 0 + ca = h + if (((b ^ -1) + 2147483631) >>> 0 >= c >>> 0) { + if ((I[(a + 11) | 0] >>> 7) | 0) { + i = H[a >> 2] + } else { + i = a + } + if (b >>> 0 < 1073741799) { + H[(h + 12) >> 2] = b << 1 + H[h >> 2] = b + c + c = (ca - 16) | 0 + ca = c + ca = (c + 16) | 0 + c = (h + 12) | 0 + c = H[(K[h >> 2] < K[c >> 2] ? c : h) >> 2] + if (c >>> 0 >= 11) { + j = (c + 16) & -16 + c = (j - 1) | 0 + c = (c | 0) == 11 ? j : c + } else { + c = 10 + } + c = (c + 1) | 0 + } else { + c = 2147483631 + } + Zb(h, c) + c = H[h >> 2] + if (f) { + yb(c, g, f) + } + g = (d - e) | 0 + if ((d | 0) != (e | 0)) { + yb((c + f) | 0, (e + i) | 0, g) + } + if ((b | 0) != 10) { + oa(i) + } + H[a >> 2] = c + H[(a + 8) >> 2] = + (H[(a + 8) >> 2] & -2147483648) | + (H[(h + 4) >> 2] & 2147483647) + H[(a + 8) >> 2] = H[(a + 8) >> 2] | -2147483648 + b = a + a = (f + g) | 0 + H[(b + 4) >> 2] = a + F[(h + 12) | 0] = 0 + F[(a + c) | 0] = I[(h + 12) | 0] + ca = (h + 16) | 0 + return + } + Na() + v() + } + function Rg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0 + a = (ca - 32) | 0 + ca = a + H[(a + 24) >> 2] = 0 + H[(a + 28) >> 2] = 0 + a: { + d = Ma(c) + if (d >>> 0 < 2147483632) { + b: { + c: { + if (d >>> 0 >= 11) { + e = ((d | 15) + 1) | 0 + f = pa(e) + H[(a + 16) >> 2] = e | -2147483648 + H[(a + 8) >> 2] = f + H[(a + 12) >> 2] = d + e = (d + f) | 0 + break c + } + F[(a + 19) | 0] = d + f = (a + 8) | 0 + e = (f + d) | 0 + if (!d) { + break b + } + } + qa(f, c, d) + } + F[e | 0] = 0 + c = (b + 4) | 0 + b = nb(b, (a + 8) | 0) + d: { + if ((c | 0) == (b | 0)) { + break d + } + c = H[(b + 32) >> 2] + b = H[(b + 28) >> 2] + if (((c - b) | 0) != 8) { + break d + } + c = + I[(b + 4) | 0] | + (I[(b + 5) | 0] << 8) | + ((I[(b + 6) | 0] << 16) | (I[(b + 7) | 0] << 24)) + H[(a + 24) >> 2] = + I[b | 0] | + (I[(b + 1) | 0] << 8) | + ((I[(b + 2) | 0] << 16) | (I[(b + 3) | 0] << 24)) + H[(a + 28) >> 2] = c + } + g = M[(a + 24) >> 3] + if (F[(a + 19) | 0] < 0) { + oa(H[(a + 8) >> 2]) + } + ca = (a + 32) | 0 + break a + } + Na() + v() + } + return +g + } + function uf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + f = 1 + a: { + if ((ea[H[(H[b >> 2] + 20) >> 2]](b) | 0) <= 0) { + break a + } + while (1) { + f = 0 + c = Zd( + H[(H[(a + 4) >> 2] + 4) >> 2], + ea[H[(H[b >> 2] + 24) >> 2]](b, g) | 0, + ) + if ((c | 0) == -1) { + break a + } + e = H[(a + 4) >> 2] + b: { + if (I[(e + 36) | 0] <= 1) { + if ( + ea[H[(H[b >> 2] + 28) >> 2]]( + b, + H[(H[(H[(e + 4) >> 2] + 8) >> 2] + (c << 2)) >> 2], + ) | 0 + ) { + break b + } + break a + } + d = 0 + c: { + if ((c | 0) < 0) { + break c + } + h = H[(e + 4) >> 2] + if ( + (H[(h + 12) >> 2] - H[(h + 8) >> 2]) >> 2 <= + (c | 0) + ) { + break c + } + d = + H[ + (H[(e + 8) >> 2] + + (H[(H[(e + 20) >> 2] + (c << 2)) >> 2] << 2)) >> + 2 + ] + d = ea[H[(H[d >> 2] + 32) >> 2]](d, c) | 0 + } + if (!d) { + break a + } + if (!(ea[H[(H[b >> 2] + 28) >> 2]](b, d) | 0)) { + break a + } + } + f = 1 + g = (g + 1) | 0 + if ((ea[H[(H[b >> 2] + 20) >> 2]](b) | 0) > (g | 0)) { + continue + } + break + } + } + return f | 0 + } + function tb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + a: { + b: { + if (b) { + if (b >>> 0 >= 357913942) { + break b + } + b = N(b, 12) + d = pa(b) + H[(a + 4) >> 2] = d + H[a >> 2] = d + e = (b + d) | 0 + H[(a + 8) >> 2] = e + f = H[(c + 4) >> 2] + g = H[c >> 2] + c: { + if ((f | 0) == (g | 0)) { + b = (b - 12) | 0 + ra(d, 0, (((b - ((b >>> 0) % 12 | 0)) | 0) + 12) | 0) + break c + } + h = (f - g) | 0 + if ((h | 0) < 0) { + break a + } + i = h & -4 + while (1) { + H[(d + 8) >> 2] = 0 + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + b = pa(h) + H[d >> 2] = b + H[(d + 8) >> 2] = b + i + c = g + while (1) { + H[b >> 2] = H[c >> 2] + b = (b + 4) | 0 + c = (c + 4) | 0 + if ((f | 0) != (c | 0)) { + continue + } + break + } + H[(d + 4) >> 2] = b + d = (d + 12) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 4) >> 2] = e + } + return + } + sa() + v() + } + H[(d + 8) >> 2] = 0 + H[d >> 2] = 0 + H[(d + 4) >> 2] = 0 + sa() + v() + } + function Vi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = H[(b + 8) >> 2] + d = H[(b + 12) >> 2] + g = d + d = H[(b + 20) >> 2] + i = d + h = H[(b + 16) >> 2] + f = (h + 4) | 0 + d = f >>> 0 < 4 ? (d + 1) | 0 : d + a: { + if ( + ((c >>> 0 < f >>> 0) & ((d | 0) >= (g | 0))) | + ((d | 0) > (g | 0)) + ) { + break a + } + e = (h + H[b >> 2]) | 0 + e = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = d + if (J[(b + 38) >> 1] <= 513) { + f = c + c = i + d = (h + 8) | 0 + c = d >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((d >>> 0 > f >>> 0) & ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break a + } + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + } + if (!(e & 1)) { + break a + } + b = Q(e) ^ 31 + if ((b - 1) >>> 0 > 28) { + break a + } + j = 1 + H[(a + 8) >> 2] = b + 1 + b = -2 << b + c = b ^ -2 + H[(a + 16) >> 2] = c + H[(a + 12) >> 2] = b ^ -1 + H[(a + 24) >> 2] = c >> 1 + L[(a + 20) >> 2] = O(2) / O(c | 0) + } + return j | 0 + } + function Lc(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + f = (b >>> 0 < 1431655766) & ((b | c) >= 0) + b: { + if (!f) { + break b + } + b = N(b, 3) + Kc(a, b, 13648) + Kc((a + 12) | 0, b, 13652) + d = H[(a + 24) >> 2] + c: { + if (((H[(a + 32) >> 2] - d) >> 2) >>> 0 >= c >>> 0) { + break c + } + if (c >>> 0 >= 1073741824) { + break a + } + b = H[(a + 28) >> 2] + e = c << 2 + c = pa(e) + e = (c + e) | 0 + g = (c + ((b - d) & -4)) | 0 + c = g + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + H[c >> 2] = H[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 32) >> 2] = e + H[(a + 28) >> 2] = g + H[(a + 24) >> 2] = c + if (!d) { + break c + } + oa(d) + } + H[(a + 80) >> 2] = 0 + H[(a + 84) >> 2] = 0 + b = H[(a + 76) >> 2] + H[(a + 76) >> 2] = 0 + if (b) { + oa(b) + } + H[(a + 68) >> 2] = 0 + H[(a + 72) >> 2] = 0 + b = (a - -64) | 0 + a = H[b >> 2] + H[b >> 2] = 0 + if (!a) { + break b + } + oa(a) + } + return f + } + sa() + v() + } + function Fe(a) { + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0 + f = 1 + c = H[(a + 140) >> 2] + a: { + if ((c | 0) <= 0) { + break a + } + b = c << 4 + d = pa(c >>> 0 > 268435455 ? -1 : b | 4) + H[d >> 2] = c + d = (d + 4) | 0 + c = (d + b) | 0 + b = d + while (1) { + H[b >> 2] = 0 + H[(b + 4) >> 2] = 0 + F[(b + 5) | 0] = 0 + F[(b + 6) | 0] = 0 + F[(b + 7) | 0] = 0 + F[(b + 8) | 0] = 0 + F[(b + 9) | 0] = 0 + F[(b + 10) | 0] = 0 + F[(b + 11) | 0] = 0 + F[(b + 12) | 0] = 0 + b = (b + 16) | 0 + if ((c | 0) != (b | 0)) { + continue + } + break + } + e = H[(a + 136) >> 2] + H[(a + 136) >> 2] = d + if (e) { + c = (e - 4) | 0 + d = H[c >> 2] + if (d) { + b = ((d << 4) + e) | 0 + while (1) { + b = (b - 16) | 0 + if ((e | 0) != (b | 0)) { + continue + } + break + } + } + oa(c) + } + b = 0 + if (H[(a + 140) >> 2] <= 0) { + break a + } + while (1) { + f = ta((H[(a + 136) >> 2] + (b << 4)) | 0, a) + if (!f) { + break a + } + b = (b + 1) | 0 + if ((b | 0) < H[(a + 140) >> 2]) { + continue + } + break + } + } + return f + } + function mb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (H[(a + 64) >> 2]) { + break a + } + c = pa(32) + H[(c + 16) >> 2] = 0 + H[(c + 20) >> 2] = 0 + H[(c + 8) >> 2] = 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + H[(c + 24) >> 2] = 0 + H[(c + 28) >> 2] = 0 + d = H[(a + 64) >> 2] + H[(a + 64) >> 2] = c + if (!d) { + break a + } + c = H[d >> 2] + if (c) { + H[(d + 4) >> 2] = c + oa(c) + } + oa(d) + } + d = H[(a + 64) >> 2] + c = (H[(a + 28) >> 2] - 1) | 0 + if (c >>> 0 <= 10) { + c = H[((c << 2) + 13584) >> 2] + } else { + c = -1 + } + c = N(c, I[(a + 24) | 0]) + f = c >> 31 + g = se(d, 0, Rj(c, f, b, 0), da) + if (g) { + d = H[(a + 64) >> 2] + H[a >> 2] = d + e = H[(d + 20) >> 2] + H[(a + 8) >> 2] = H[(d + 16) >> 2] + H[(a + 12) >> 2] = e + e = H[(d + 24) >> 2] + d = H[(d + 28) >> 2] + H[(a + 48) >> 2] = 0 + H[(a + 52) >> 2] = 0 + H[(a + 40) >> 2] = c + H[(a + 44) >> 2] = f + H[(a + 16) >> 2] = e + H[(a + 20) >> 2] = d + H[(a + 80) >> 2] = b + } + return g + } + function jc(a, b) { + var c = 0 + c = H[(b + 4) >> 2] + H[a >> 2] = H[b >> 2] + H[(a + 4) >> 2] = c + c = H[(b + 60) >> 2] + H[(a + 56) >> 2] = H[(b + 56) >> 2] + H[(a + 60) >> 2] = c + c = H[(b + 52) >> 2] + H[(a + 48) >> 2] = H[(b + 48) >> 2] + H[(a + 52) >> 2] = c + c = H[(b + 44) >> 2] + H[(a + 40) >> 2] = H[(b + 40) >> 2] + H[(a + 44) >> 2] = c + c = H[(b + 36) >> 2] + H[(a + 32) >> 2] = H[(b + 32) >> 2] + H[(a + 36) >> 2] = c + c = H[(b + 28) >> 2] + H[(a + 24) >> 2] = H[(b + 24) >> 2] + H[(a + 28) >> 2] = c + c = H[(b + 20) >> 2] + H[(a + 16) >> 2] = H[(b + 16) >> 2] + H[(a + 20) >> 2] = c + c = H[(b + 12) >> 2] + H[(a + 8) >> 2] = H[(b + 8) >> 2] + H[(a + 12) >> 2] = c + H[(a + 88) >> 2] = 0 + H[(a + 64) >> 2] = 0 + H[(a + 68) >> 2] = 0 + H[(a + 72) >> 2] = 0 + H[(a + 76) >> 2] = 0 + F[(a + 77) | 0] = 0 + F[(a + 78) | 0] = 0 + F[(a + 79) | 0] = 0 + F[(a + 80) | 0] = 0 + F[(a + 81) | 0] = 0 + F[(a + 82) | 0] = 0 + F[(a + 83) | 0] = 0 + F[(a + 84) | 0] = 0 + return a + } + function zg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + a = H[(b + 100) >> 2] + b = H[(b + 96) >> 2] + h = (a - b) | 0 + a: { + if (((h | 0) != (c | 0)) | ((a | 0) == (b | 0))) { + break a + } + g = ((c | 0) / 12) | 0 + e = g >>> 0 <= 1 ? 1 : g + j = e & 1 + a = 0 + if (g >>> 0 >= 2) { + k = e & -2 + g = 0 + while (1) { + e = N(a, 12) + i = (e + d) | 0 + f = (b + e) | 0 + H[i >> 2] = H[f >> 2] + H[((e | 4) + d) >> 2] = H[(f + 4) >> 2] + H[(i + 8) >> 2] = H[(f + 8) >> 2] + f = N(a | 1, 12) + e = (f + d) | 0 + f = (b + f) | 0 + H[e >> 2] = H[f >> 2] + H[(e + 4) >> 2] = H[(f + 4) >> 2] + H[(e + 8) >> 2] = H[(f + 8) >> 2] + a = (a + 2) | 0 + g = (g + 2) | 0 + if ((k | 0) != (g | 0)) { + continue + } + break + } + } + if (!j) { + break a + } + e = d + d = N(a, 12) + a = (e + d) | 0 + b = (b + d) | 0 + H[a >> 2] = H[b >> 2] + H[(a + 4) >> 2] = H[(b + 4) >> 2] + H[(a + 8) >> 2] = H[(b + 8) >> 2] + } + return ((c | 0) == (h | 0)) | 0 + } + function Mi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = H[(b + 8) >> 2] + d = H[(b + 12) >> 2] + g = d + d = H[(b + 20) >> 2] + i = d + h = H[(b + 16) >> 2] + f = (h + 4) | 0 + d = f >>> 0 < 4 ? (d + 1) | 0 : d + a: { + if ( + ((c >>> 0 < f >>> 0) & ((d | 0) >= (g | 0))) | + ((d | 0) > (g | 0)) + ) { + break a + } + e = (h + H[b >> 2]) | 0 + e = + I[e | 0] | + (I[(e + 1) | 0] << 8) | + ((I[(e + 2) | 0] << 16) | (I[(e + 3) | 0] << 24)) + H[(b + 16) >> 2] = f + H[(b + 20) >> 2] = d + f = c + c = i + d = (h + 8) | 0 + c = d >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((d >>> 0 > f >>> 0) & ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break a + } + H[(b + 16) >> 2] = d + H[(b + 20) >> 2] = c + if (!(e & 1)) { + break a + } + b = Q(e) ^ 31 + if ((b - 1) >>> 0 > 28) { + break a + } + j = 1 + H[(a + 8) >> 2] = b + 1 + b = -2 << b + c = b ^ -2 + H[(a + 16) >> 2] = c + H[(a + 12) >> 2] = b ^ -1 + H[(a + 24) >> 2] = c >> 1 + L[(a + 20) >> 2] = O(2) / O(c | 0) + } + return j | 0 + } + function nb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + f = (a + 4) | 0 + a = H[(a + 4) >> 2] + a: { + b: { + if (!a) { + break b + } + d = I[(b + 11) | 0] + c = (d << 24) >> 24 < 0 + g = c ? H[b >> 2] : b + d = c ? H[(b + 4) >> 2] : d + b = f + while (1) { + e = I[(a + 27) | 0] + c = (e << 24) >> 24 < 0 + e = c ? H[(a + 20) >> 2] : e + h = e >>> 0 > d >>> 0 + i = h ? d : e + c: { + if (i) { + c = Fa(c ? H[(a + 16) >> 2] : (a + 16) | 0, g, i) + if (c) { + break c + } + } + c = d >>> 0 > e >>> 0 ? -1 : h + } + c = (c | 0) < 0 + b = c ? b : a + a = H[(c ? (a + 4) | 0 : a) >> 2] + if (a) { + continue + } + break + } + if ((b | 0) == (f | 0)) { + break b + } + c = I[(b + 27) | 0] + a = (c << 24) >> 24 < 0 + d: { + c = a ? H[(b + 20) >> 2] : c + e = c >>> 0 < d >>> 0 ? c : d + if (e) { + a = Fa(g, a ? H[(b + 16) >> 2] : (b + 16) | 0, e) + if (a) { + break d + } + } + if (c >>> 0 > d >>> 0) { + break b + } + break a + } + if ((a | 0) >= 0) { + break a + } + } + b = f + } + return b + } + function Jf(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + if (Ya(a, H[(b + 8) >> 2], e)) { + if ( + !((H[(b + 28) >> 2] == 1) | (H[(b + 4) >> 2] != (c | 0))) + ) { + H[(b + 28) >> 2] = d + } + return + } + a: { + if (Ya(a, H[b >> 2], e)) { + if ( + !( + (H[(b + 16) >> 2] != (c | 0)) & + (H[(b + 20) >> 2] != (c | 0)) + ) + ) { + if ((d | 0) != 1) { + break a + } + H[(b + 32) >> 2] = 1 + return + } + H[(b + 32) >> 2] = d + b: { + if (H[(b + 44) >> 2] == 4) { + break b + } + G[(b + 52) >> 1] = 0 + a = H[(a + 8) >> 2] + ea[H[(H[a >> 2] + 20) >> 2]](a, b, c, c, 1, e) + if (I[(b + 53) | 0]) { + H[(b + 44) >> 2] = 3 + if (!I[(b + 52) | 0]) { + break b + } + break a + } + H[(b + 44) >> 2] = 4 + } + H[(b + 20) >> 2] = c + H[(b + 40) >> 2] = H[(b + 40) >> 2] + 1 + if ((H[(b + 36) >> 2] != 1) | (H[(b + 24) >> 2] != 2)) { + break a + } + F[(b + 54) | 0] = 1 + return + } + a = H[(a + 8) >> 2] + ea[H[(H[a >> 2] + 24) >> 2]](a, b, c, d, e) + } + } + function Db(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + b: { + if (!b) { + break b + } + if (J[(a + 38) >> 1] <= 513) { + f = H[(a + 12) >> 2] + d = H[(a + 20) >> 2] + b = H[(a + 16) >> 2] + g = (b + 8) | 0 + d = g >>> 0 < 8 ? (d + 1) | 0 : d + e = 0 + if ( + ((K[(a + 8) >> 2] < g >>> 0) & ((d | 0) >= (f | 0))) | + ((d | 0) > (f | 0)) + ) { + break a + } + b = (b + H[a >> 2]) | 0 + d = + I[(b + 4) | 0] | + (I[(b + 5) | 0] << 8) | + ((I[(b + 6) | 0] << 16) | (I[(b + 7) | 0] << 24)) + H[c >> 2] = + I[b | 0] | + (I[(b + 1) | 0] << 8) | + ((I[(b + 2) | 0] << 16) | (I[(b + 3) | 0] << 24)) + H[(c + 4) >> 2] = d + b = H[(a + 20) >> 2] + c = (H[(a + 16) >> 2] + 8) | 0 + b = c >>> 0 < 8 ? (b + 1) | 0 : b + H[(a + 16) >> 2] = c + H[(a + 20) >> 2] = b + break b + } + e = 0 + if (!re(1, c, a)) { + break a + } + } + F[(a + 36) | 0] = 1 + H[(a + 32) >> 2] = 0 + b = H[(a + 16) >> 2] + c = (b + H[a >> 2]) | 0 + H[(a + 24) >> 2] = c + H[(a + 28) >> 2] = ((H[(a + 8) >> 2] - b) | 0) + c + e = 1 + } + return e + } + function ve(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + f = pa(64) + c = pa(12) + H[(c + 8) >> 2] = H[(H[(a + 4) >> 2] + 80) >> 2] + H[c >> 2] = 13216 + H[(c + 4) >> 2] = 0 + f = od(f, c) + a: { + b: { + if ((b | 0) < 0) { + c = f + break b + } + h = (a + 8) | 0 + c = H[(a + 12) >> 2] + e = H[(a + 8) >> 2] + g = (c - e) >> 2 + c: { + if ((g | 0) > (b | 0)) { + break c + } + d = (b + 1) | 0 + if (b >>> 0 >= g >>> 0) { + Vb(h, (d - g) | 0) + break c + } + if (d >>> 0 >= g >>> 0) { + break c + } + e = (e + (d << 2)) | 0 + if ((e | 0) != (c | 0)) { + while (1) { + c = (c - 4) | 0 + d = H[c >> 2] + H[c >> 2] = 0 + if (d) { + ea[H[(H[d >> 2] + 4) >> 2]](d) + } + if ((c | 0) != (e | 0)) { + continue + } + break + } + } + H[(a + 12) >> 2] = e + } + a = (H[h >> 2] + (b << 2)) | 0 + c = H[a >> 2] + H[a >> 2] = f + if (!c) { + break a + } + } + ea[H[(H[c >> 2] + 4) >> 2]](c) + } + return ((b ^ -1) >>> 31) | 0 + } + function Qd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0 + d = (ca - 16) | 0 + ca = d + H[(d + 12) >> 2] = b + c = (ca - 208) | 0 + ca = c + H[(c + 204) >> 2] = b + b = (c + 160) | 0 + ra(b, 0, 40) + H[(c + 200) >> 2] = H[(c + 204) >> 2] + a: { + if ((Od(0, a, (c + 200) | 0, (c + 80) | 0, b) | 0) < 0) { + break a + } + f = H[3941] >= 0 + b = H[3922] + if (H[3940] <= 0) { + H[3922] = b & -33 + } + b: { + c: { + d: { + if (!H[3934]) { + H[3934] = 80 + H[3929] = 0 + H[3926] = 0 + H[3927] = 0 + e = H[3933] + H[3933] = c + break d + } + if (H[3926]) { + break c + } + } + if (Sd(15688)) { + break b + } + } + Od(15688, a, (c + 200) | 0, (c + 80) | 0, (c + 160) | 0) + } + if (e) { + ea[H[3931]](15688, 0, 0) | 0 + H[3934] = 0 + H[3933] = e + H[3929] = 0 + H[3926] = 0 + H[3927] = 0 + } + H[3922] = H[3922] | (b & 32) + if (!f) { + break a + } + } + ca = (c + 208) | 0 + ca = (d + 16) | 0 + } + function pf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + c = H[(a + 60) >> 2] + a: { + if (!c) { + break a + } + H[(c + 4) >> 2] = a + 48 + if (!(ea[H[(H[c >> 2] + 12) >> 2]](c) | 0)) { + break a + } + b: { + c = ea[H[(H[a >> 2] + 24) >> 2]](a) | 0 + if ((c | 0) <= 0) { + break b + } + while (1) { + c: { + f = H[((ea[H[(H[a >> 2] + 28) >> 2]](a) | 0) + 4) >> 2] + g = ea[H[(H[a >> 2] + 20) >> 2]](a, d) | 0 + e = H[(a + 60) >> 2] + if ( + !( + ea[H[(H[e >> 2] + 8) >> 2]]( + e, + H[(H[(f + 8) >> 2] + (g << 2)) >> 2], + ) | 0 + ) + ) { + break c + } + d = (d + 1) | 0 + if ((c | 0) != (d | 0)) { + continue + } + break b + } + break + } + return 0 + } + d = 0 + if (!(ea[H[(H[a >> 2] + 36) >> 2]](a, b) | 0)) { + break a + } + if (!(ea[H[(H[a >> 2] + 40) >> 2]](a, b) | 0)) { + break a + } + d = ea[H[(H[a >> 2] + 44) >> 2]](a) | 0 + } + return d | 0 + } + function id(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0 + c = H[(a + 216) >> 2] + if ((c | 0) != H[(a + 220) >> 2]) { + while (1) { + a: { + c = H[(N(e, 144) + c) >> 2] + if ((c | 0) < 0) { + break a + } + d = H[(a + 4) >> 2] + f = H[(d + 8) >> 2] + if ((c | 0) >= (H[(d + 12) >> 2] - f) >> 2) { + break a + } + d = 0 + c = H[((c << 2) + f) >> 2] + if ((ea[H[(H[c >> 2] + 24) >> 2]](c) | 0) <= 0) { + break a + } + while (1) { + if ( + (ea[H[(H[c >> 2] + 20) >> 2]](c, d) | 0) != + (b | 0) + ) { + d = (d + 1) | 0 + if ((ea[H[(H[c >> 2] + 24) >> 2]](c) | 0) > (d | 0)) { + continue + } + break a + } + break + } + a = (H[(a + 216) >> 2] + N(e, 144)) | 0 + return (I[(a + 100) | 0] ? (a + 4) | 0 : 0) | 0 + } + e = (e + 1) | 0 + c = H[(a + 216) >> 2] + if (e >>> 0 < (((H[(a + 220) >> 2] - c) | 0) / 144) >>> 0) { + continue + } + break + } + } + return 0 + } + function xb(a) { + var b = 0, + c = 0, + d = 0, + e = 0 + c = H[(a + 132) >> 2] + if (c) { + d = c + b = H[(a + 136) >> 2] + if ((c | 0) != (b | 0)) { + while (1) { + d = (b - 12) | 0 + e = H[d >> 2] + if (e) { + H[(b - 8) >> 2] = e + oa(e) + } + b = d + if ((c | 0) != (b | 0)) { + continue + } + break + } + d = H[(a + 132) >> 2] + } + H[(a + 136) >> 2] = c + oa(d) + } + c = H[(a + 120) >> 2] + if (c) { + d = c + b = H[(a + 124) >> 2] + if ((c | 0) != (b | 0)) { + while (1) { + d = (b - 12) | 0 + e = H[d >> 2] + if (e) { + H[(b - 8) >> 2] = e + oa(e) + } + b = d + if ((c | 0) != (b | 0)) { + continue + } + break + } + d = H[(a + 120) >> 2] + } + H[(a + 124) >> 2] = c + oa(d) + } + b = H[(a + 108) >> 2] + if (b) { + H[(a + 112) >> 2] = b + oa(b) + } + b = H[(a + 96) >> 2] + if (b) { + H[(a + 100) >> 2] = b + oa(b) + } + Za((a + 76) | 0) + Za((a + 56) | 0) + Za((a + 36) | 0) + Za((a + 16) | 0) + } + function rd(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + H[a >> 2] = 2128 + d = H[(a + 60) >> 2] + if (d) { + b = d + c = H[(a - -64) >> 2] + if ((b | 0) != (c | 0)) { + while (1) { + c = (c - 4) | 0 + b = H[c >> 2] + H[c >> 2] = 0 + if (b) { + Ga(b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = H[(a + 60) >> 2] + } + H[(a + 64) >> 2] = d + oa(b) + } + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + d = H[(a + 36) >> 2] + if (d) { + b = d + c = H[(a + 40) >> 2] + if ((b | 0) != (c | 0)) { + while (1) { + c = (c - 24) | 0 + ea[H[H[c >> 2] >> 2]](c) | 0 + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = H[(a + 36) >> 2] + } + H[(a + 40) >> 2] = d + oa(b) + } + H[a >> 2] = 1984 + b = H[(a + 16) >> 2] + if (b) { + H[(a + 20) >> 2] = b + oa(b) + } + b = H[(a + 4) >> 2] + if (b) { + H[(a + 8) >> 2] = b + oa(b) + } + return a | 0 + } + function ue(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + c = H[(a + 8) >> 2] + d = H[(a + 4) >> 2] + if (((c - d) >> 2) >>> 0 >= b >>> 0) { + if (b) { + b = b << 2 + d = (ra(d, 0, b) + b) | 0 + } + H[(a + 4) >> 2] = d + return + } + a: { + f = H[a >> 2] + g = (d - f) >> 2 + e = (g + b) | 0 + if (e >>> 0 < 1073741824) { + c = (c - f) | 0 + h = (c >>> 1) | 0 + e = + c >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 < h >>> 0 + ? h + : e + if (e) { + if (e >>> 0 >= 1073741824) { + break a + } + i = pa(e << 2) + } + c = ((g << 2) + i) | 0 + b = b << 2 + b = (ra(c, 0, b) + b) | 0 + if ((d | 0) != (f | 0)) { + while (1) { + c = (c - 4) | 0 + d = (d - 4) | 0 + H[c >> 2] = H[d >> 2] + if ((d | 0) != (f | 0)) { + continue + } + break + } + } + H[(a + 8) >> 2] = (e << 2) + i + H[(a + 4) >> 2] = b + H[a >> 2] = c + if (f) { + oa(f) + } + return + } + sa() + v() + } + wa() + v() + } + function rb(a) { + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0 + d = H[(a + 8) >> 2] + a: { + if (I[(d + 84) | 0]) { + break a + } + b = H[(a + 16) >> 2] + if (!b | !I[(b + 84) | 0]) { + break a + } + c = H[(d + 72) >> 2] + e = H[(d + 68) >> 2] + F[(b + 84) | 0] = 0 + c = (c - e) >> 2 + f = H[(b + 68) >> 2] + e = (H[(b + 72) >> 2] - f) >> 2 + b: { + if (c >>> 0 > e >>> 0) { + qb((b + 68) | 0, (c - e) | 0, 2316) + d = H[(a + 8) >> 2] + break b + } + if (c >>> 0 >= e >>> 0) { + break b + } + H[(b + 72) >> 2] = f + (c << 2) + } + if (I[(d + 84) | 0]) { + break a + } + c = H[(d + 68) >> 2] + if ((c | 0) == H[(d + 72) >> 2]) { + break a + } + e = H[(H[(a + 16) >> 2] + 68) >> 2] + b = 0 + while (1) { + f = b << 2 + H[(f + e) >> 2] = H[(c + f) >> 2] + b = (b + 1) | 0 + c = H[(d + 68) >> 2] + if (b >>> 0 < ((H[(d + 72) >> 2] - c) >> 2) >>> 0) { + continue + } + break + } + } + return H[(a + 16) >> 2] + } + function Lg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0 + e = (ca + -64) | 0 + ca = e + f = Ha((e + 8) | 0) + H[(f + 16) >> 2] = 0 + H[(f + 20) >> 2] = 0 + H[f >> 2] = b + H[(f + 8) >> 2] = c + H[(f + 12) >> 2] = 0 + b = (e + 48) | 0 + Pe(b, a, f, d) + H[(a + 24) >> 2] = H[(e + 48) >> 2] + f = (a + 24) | 0 + a: { + if ((f | 0) == (b | 0)) { + break a + } + b = (a + 28) | 0 + c = (e + 48) | 4 + g = I[(e + 63) | 0] + d = (g << 24) >> 24 + if (F[(a + 39) | 0] >= 0) { + if ((d | 0) >= 0) { + a = H[(c + 4) >> 2] + H[b >> 2] = H[c >> 2] + H[(b + 4) >> 2] = a + H[(b + 8) >> 2] = H[(c + 8) >> 2] + break a + } + Xb(b, H[(e + 52) >> 2], H[(e + 56) >> 2]) + break a + } + a = (d | 0) < 0 + Yb(b, a ? H[(e + 52) >> 2] : c, a ? H[(e + 56) >> 2] : g) + } + if (F[(e + 63) | 0] < 0) { + oa(H[(e + 52) >> 2]) + } + ca = (e - -64) | 0 + return f | 0 + } + function Kg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0 + e = (ca + -64) | 0 + ca = e + f = Ha((e + 8) | 0) + H[(f + 16) >> 2] = 0 + H[(f + 20) >> 2] = 0 + H[f >> 2] = b + H[(f + 8) >> 2] = c + H[(f + 12) >> 2] = 0 + b = (e + 48) | 0 + Oe(b, a, f, d) + H[(a + 24) >> 2] = H[(e + 48) >> 2] + f = (a + 24) | 0 + a: { + if ((f | 0) == (b | 0)) { + break a + } + b = (a + 28) | 0 + c = (e + 48) | 4 + g = I[(e + 63) | 0] + d = (g << 24) >> 24 + if (F[(a + 39) | 0] >= 0) { + if ((d | 0) >= 0) { + a = H[(c + 4) >> 2] + H[b >> 2] = H[c >> 2] + H[(b + 4) >> 2] = a + H[(b + 8) >> 2] = H[(c + 8) >> 2] + break a + } + Xb(b, H[(e + 52) >> 2], H[(e + 56) >> 2]) + break a + } + a = (d | 0) < 0 + Yb(b, a ? H[(e + 52) >> 2] : c, a ? H[(e + 56) >> 2] : g) + } + if (F[(e + 63) | 0] < 0) { + oa(H[(e + 52) >> 2]) + } + ca = (e - -64) | 0 + return f | 0 + } + function Ig(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0 + a = (ca - 32) | 0 + ca = a + a: { + d = Ma(c) + if (d >>> 0 < 2147483632) { + b: { + c: { + if (d >>> 0 >= 11) { + e = ((d | 15) + 1) | 0 + f = pa(e) + H[(a + 24) >> 2] = e | -2147483648 + H[(a + 16) >> 2] = f + H[(a + 20) >> 2] = d + e = (d + f) | 0 + break c + } + F[(a + 27) | 0] = d + f = (a + 16) | 0 + e = (f + d) | 0 + if (!d) { + break b + } + } + qa(f, c, d) + } + F[e | 0] = 0 + F[(a + 4) | 0] = 0 + H[a >> 2] = 1701667182 + F[(a + 11) | 0] = 4 + d = H[(b + 4) >> 2] + c = -1 + d: { + if (!d) { + break d + } + d = be(d, a, (a + 16) | 0) + c = -1 + if (!d) { + break d + } + c = Yd(b, H[(d + 24) >> 2]) + } + b = c + if (F[(a + 11) | 0] < 0) { + oa(H[a >> 2]) + } + if (F[(a + 27) | 0] < 0) { + oa(H[(a + 16) >> 2]) + } + ca = (a + 32) | 0 + break a + } + Na() + v() + } + return b | 0 + } + function hd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0 + c = H[(a + 216) >> 2] + if ((c | 0) != H[(a + 220) >> 2]) { + while (1) { + a: { + c = H[(N(e, 144) + c) >> 2] + if ((c | 0) < 0) { + break a + } + d = H[(a + 4) >> 2] + f = H[(d + 8) >> 2] + if ((c | 0) >= (H[(d + 12) >> 2] - f) >> 2) { + break a + } + d = 0 + c = H[((c << 2) + f) >> 2] + if ((ea[H[(H[c >> 2] + 24) >> 2]](c) | 0) <= 0) { + break a + } + while (1) { + if ( + (ea[H[(H[c >> 2] + 20) >> 2]](c, d) | 0) != + (b | 0) + ) { + d = (d + 1) | 0 + if ((ea[H[(H[c >> 2] + 24) >> 2]](c) | 0) > (d | 0)) { + continue + } + break a + } + break + } + return (((H[(a + 216) >> 2] + N(e, 144)) | 0) + 104) | 0 + } + e = (e + 1) | 0 + c = H[(a + 216) >> 2] + if (e >>> 0 < (((H[(a + 220) >> 2] - c) | 0) / 144) >>> 0) { + continue + } + break + } + } + return (a + 184) | 0 + } + function ab(a) { + var b = 0, + c = 0, + d = 0, + e = 0 + c = H[(a + 640) >> 2] + if (c) { + d = c + b = H[(a + 644) >> 2] + if ((c | 0) != (b | 0)) { + while (1) { + d = (b - 12) | 0 + e = H[d >> 2] + if (e) { + H[(b - 8) >> 2] = e + oa(e) + } + b = d + if ((c | 0) != (b | 0)) { + continue + } + break + } + d = H[(a + 640) >> 2] + } + H[(a + 644) >> 2] = c + oa(d) + } + c = H[(a + 628) >> 2] + if (c) { + d = c + b = H[(a + 632) >> 2] + if ((c | 0) != (b | 0)) { + while (1) { + d = (b - 12) | 0 + e = H[d >> 2] + if (e) { + H[(b - 8) >> 2] = e + oa(e) + } + b = d + if ((c | 0) != (b | 0)) { + continue + } + break + } + d = H[(a + 628) >> 2] + } + H[(a + 632) >> 2] = c + oa(d) + } + b = H[(a + 616) >> 2] + if (b) { + H[(a + 620) >> 2] = b + oa(b) + } + b = H[(a + 604) >> 2] + if (b) { + H[(a + 608) >> 2] = b + oa(b) + } + Za((a + 584) | 0) + Za((a + 564) | 0) + Za((a + 544) | 0) + } + function Tg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0 + d = (ca - 16) | 0 + ca = d + H[(d + 12) >> 2] = 0 + a: { + e = Ma(c) + if (e >>> 0 < 2147483632) { + b: { + c: { + if (e >>> 0 >= 11) { + f = ((e | 15) + 1) | 0 + a = pa(f) + H[(d + 8) >> 2] = f | -2147483648 + H[d >> 2] = a + H[(d + 4) >> 2] = e + f = (a + e) | 0 + break c + } + F[(d + 11) | 0] = e + f = (d + e) | 0 + a = d + if (!e) { + break b + } + } + qa(a, c, e) + } + F[f | 0] = 0 + a = nb(b, d) + d: { + if ((a | 0) == ((b + 4) | 0)) { + break d + } + b = H[(a + 32) >> 2] + a = H[(a + 28) >> 2] + if (((b - a) | 0) != 4) { + break d + } + H[(d + 12) >> 2] = + I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | (I[(a + 3) | 0] << 24)) + } + a = H[(d + 12) >> 2] + if (F[(d + 11) | 0] < 0) { + oa(H[d >> 2]) + } + ca = (d + 16) | 0 + break a + } + Na() + v() + } + return a | 0 + } + function vb(a) { + var b = 0, + c = 0, + d = 0, + e = 0 + c = H[(a + 128) >> 2] + if (c) { + d = c + b = H[(a + 132) >> 2] + if ((c | 0) != (b | 0)) { + while (1) { + d = (b - 12) | 0 + e = H[d >> 2] + if (e) { + H[(b - 8) >> 2] = e + oa(e) + } + b = d + if ((c | 0) != (b | 0)) { + continue + } + break + } + d = H[(a + 128) >> 2] + } + H[(a + 132) >> 2] = c + oa(d) + } + c = H[(a + 116) >> 2] + if (c) { + d = c + b = H[(a + 120) >> 2] + if ((c | 0) != (b | 0)) { + while (1) { + d = (b - 12) | 0 + e = H[d >> 2] + if (e) { + H[(b - 8) >> 2] = e + oa(e) + } + b = d + if ((c | 0) != (b | 0)) { + continue + } + break + } + d = H[(a + 116) >> 2] + } + H[(a + 120) >> 2] = c + oa(d) + } + b = H[(a + 104) >> 2] + if (b) { + H[(a + 108) >> 2] = b + oa(b) + } + b = H[(a + 92) >> 2] + if (b) { + H[(a + 96) >> 2] = b + oa(b) + } + Za((a + 72) | 0) + Za((a + 52) | 0) + Za((a + 32) | 0) + } + function kc(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + a: { + c = H[(a + 4) >> 2] + e = H[a >> 2] + d = (c - e) | 0 + b: { + if (d >>> 0 < b >>> 0) { + g = (b - d) | 0 + f = H[(a + 8) >> 2] + if (g >>> 0 <= (f - c) >>> 0) { + ;(h = a), + (i = (ra(c, 0, g) + g) | 0), + (H[(h + 4) >> 2] = i) + break b + } + if ((b | 0) < 0) { + break a + } + c = (f - e) | 0 + f = c << 1 + c = + c >>> 0 >= 1073741823 + ? 2147483647 + : b >>> 0 < f >>> 0 + ? f + : b + f = pa(c) + ra((f + d) | 0, 0, g) + d = va(f, e, d) + H[(a + 8) >> 2] = d + c + H[(a + 4) >> 2] = b + d + H[a >> 2] = d + if (!e) { + break b + } + oa(e) + break b + } + if (b >>> 0 >= d >>> 0) { + break b + } + H[(a + 4) >> 2] = b + e + } + b = H[(a + 28) >> 2] + c = b + d = (b + 1) | 0 + b = (H[(a + 24) >> 2] + 1) | 0 + e = b ? c : d + H[(a + 24) >> 2] = b + H[(a + 28) >> 2] = e + return + } + sa() + v() + } + function Ka(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + e = H[(a + 4) >> 2] + if ((e | 0) != H[(a + 8) >> 2]) { + H[e >> 2] = H[b >> 2] + H[(a + 4) >> 2] = e + 4 + return + } + a: { + g = H[a >> 2] + f = (e - g) | 0 + c = f >> 2 + d = (c + 1) | 0 + if (d >>> 0 < 1073741824) { + h = c << 2 + c = (f >>> 1) | 0 + c = + f >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 > d >>> 0 + ? c + : d + if (c) { + if (c >>> 0 >= 1073741824) { + break a + } + f = pa(c << 2) + } else { + f = 0 + } + d = (h + f) | 0 + H[d >> 2] = H[b >> 2] + b = (d + 4) | 0 + if ((e | 0) != (g | 0)) { + while (1) { + d = (d - 4) | 0 + e = (e - 4) | 0 + H[d >> 2] = H[e >> 2] + if ((e | 0) != (g | 0)) { + continue + } + break + } + } + H[(a + 8) >> 2] = f + (c << 2) + H[(a + 4) >> 2] = b + H[a >> 2] = d + if (g) { + oa(g) + } + return + } + sa() + v() + } + wa() + v() + } + function Ia(a) { + H[a >> 2] = -1 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + F[(a + 28) | 0] = 1 + H[(a + 20) >> 2] = 0 + H[(a + 24) >> 2] = 0 + H[(a + 12) >> 2] = 0 + H[(a + 16) >> 2] = 0 + H[(a + 40) >> 2] = 0 + H[(a + 44) >> 2] = 0 + H[(a + 48) >> 2] = 0 + H[(a + 52) >> 2] = 0 + H[(a + 56) >> 2] = 0 + H[(a + 60) >> 2] = 0 + H[(a + 64) >> 2] = 0 + H[(a + 68) >> 2] = 0 + H[(a + 76) >> 2] = 0 + H[(a + 80) >> 2] = 0 + H[(a + 84) >> 2] = 0 + H[(a + 88) >> 2] = 0 + H[(a + 92) >> 2] = 0 + H[(a + 96) >> 2] = 0 + H[(a + 72) >> 2] = a + 4 + H[(a + 104) >> 2] = 0 + H[(a + 108) >> 2] = 0 + F[(a + 100) | 0] = 1 + H[(a + 112) >> 2] = 0 + H[(a + 116) >> 2] = 0 + H[(a + 120) >> 2] = 0 + H[(a + 124) >> 2] = 0 + H[(a + 128) >> 2] = 0 + H[(a + 132) >> 2] = 0 + H[(a + 136) >> 2] = 0 + H[(a + 140) >> 2] = 0 + } + function Ld(a, b) { + if (!a) { + return 0 + } + a: { + b: { + if (a) { + if (b >>> 0 <= 127) { + break b + } + c: { + if (!H[H[4292] >> 2]) { + if ((b & -128) == 57216) { + break b + } + break c + } + if (b >>> 0 <= 2047) { + F[(a + 1) | 0] = (b & 63) | 128 + F[a | 0] = (b >>> 6) | 192 + a = 2 + break a + } + if (!(((b & -8192) != 57344) & (b >>> 0 >= 55296))) { + F[(a + 2) | 0] = (b & 63) | 128 + F[a | 0] = (b >>> 12) | 224 + F[(a + 1) | 0] = ((b >>> 6) & 63) | 128 + a = 3 + break a + } + if ((b - 65536) >>> 0 <= 1048575) { + F[(a + 3) | 0] = (b & 63) | 128 + F[a | 0] = (b >>> 18) | 240 + F[(a + 2) | 0] = ((b >>> 6) & 63) | 128 + F[(a + 1) | 0] = ((b >>> 12) & 63) | 128 + a = 4 + break a + } + } + H[3992] = 25 + a = -1 + } else { + a = 1 + } + break a + } + F[a | 0] = b + a = 1 + } + return a + } + function Hb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0 + d = H[(a + 12) >> 2] + c = (H[(a + 16) >> 2] - d) >> 2 + a: { + if (c >>> 0 < b >>> 0) { + ya((a + 12) | 0, (b - c) | 0) + break a + } + if (b >>> 0 >= c >>> 0) { + break a + } + H[(a + 16) >> 2] = d + (b << 2) + } + b: { + c = H[a >> 2] + c: { + if (((H[(a + 8) >> 2] - c) >> 2) >>> 0 >= b >>> 0) { + break c + } + if (b >>> 0 >= 1073741824) { + break b + } + d = H[(a + 4) >> 2] + e = b << 2 + b = pa(e) + e = (b + e) | 0 + f = (b + ((d - c) & -4)) | 0 + b = f + if ((c | 0) != (d | 0)) { + while (1) { + b = (b - 4) | 0 + d = (d - 4) | 0 + H[b >> 2] = H[d >> 2] + if ((c | 0) != (d | 0)) { + continue + } + break + } + } + H[(a + 8) >> 2] = e + H[(a + 4) >> 2] = f + H[a >> 2] = b + if (!c) { + break c + } + oa(c) + } + return + } + sa() + v() + } + function _b(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + H[a >> 2] = 13724 + b = H[(a + 68) >> 2] + if (b) { + H[(a + 72) >> 2] = b + oa(b) + } + b = H[(a + 56) >> 2] + if (b) { + H[(a + 60) >> 2] = b + oa(b) + } + b = H[(a + 44) >> 2] + if (b) { + H[(a + 48) >> 2] = b + oa(b) + } + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + b = H[(a + 20) >> 2] + if (b) { + H[(a + 24) >> 2] = b + oa(b) + } + b = H[(a + 8) >> 2] + if (b) { + d = b + c = H[(a + 12) >> 2] + if ((b | 0) != (c | 0)) { + while (1) { + c = (c - 4) | 0 + d = H[c >> 2] + H[c >> 2] = 0 + if (d) { + Ga(d) + } + if ((b | 0) != (c | 0)) { + continue + } + break + } + d = H[(a + 8) >> 2] + } + H[(a + 12) >> 2] = b + oa(d) + } + b = H[(a + 4) >> 2] + H[(a + 4) >> 2] = 0 + if (b) { + Uc(b) + } + return a | 0 + } + function yb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + f = (ca - 16) | 0 + ca = f + d = (ca - 32) | 0 + ca = d + e = (ca - 16) | 0 + ca = e + H[(e + 12) >> 2] = b + H[(e + 8) >> 2] = b + c + H[(d + 24) >> 2] = H[(e + 12) >> 2] + H[(d + 28) >> 2] = H[(e + 8) >> 2] + ca = (e + 16) | 0 + c = (ca - 16) | 0 + ca = c + h = H[(d + 28) >> 2] + e = H[(d + 24) >> 2] + g = (h - e) | 0 + if ((e | 0) != (h | 0)) { + va(a, e, g) + } + H[(c + 12) >> 2] = e + g + H[(c + 8) >> 2] = a + g + H[(d + 16) >> 2] = H[(c + 12) >> 2] + H[(d + 20) >> 2] = H[(c + 8) >> 2] + ca = (c + 16) | 0 + H[(d + 12) >> 2] = ((H[(d + 16) >> 2] - b) | 0) + b + H[(d + 8) >> 2] = ((H[(d + 20) >> 2] - a) | 0) + a + H[(f + 8) >> 2] = H[(d + 12) >> 2] + H[(f + 12) >> 2] = H[(d + 8) >> 2] + ca = (d + 32) | 0 + ca = (f + 16) | 0 + } + function ya(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + e = H[(a + 8) >> 2] + c = H[(a + 4) >> 2] + if (((e - c) >> 2) >>> 0 >= b >>> 0) { + if (b) { + b = b << 2 + c = (ra(c, 0, b) + b) | 0 + } + H[(a + 4) >> 2] = c + return + } + a: { + f = c + c = H[a >> 2] + g = (f - c) | 0 + h = g >> 2 + d = (h + b) | 0 + if (d >>> 0 < 1073741824) { + e = (e - c) | 0 + f = (e >>> 1) | 0 + d = + e >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < f >>> 0 + ? f + : d + if (d) { + if (d >>> 0 >= 1073741824) { + break a + } + i = pa(d << 2) + } + b = b << 2 + e = ra(((h << 2) + i) | 0, 0, b) + f = d << 2 + d = va(i, c, g) + H[(a + 8) >> 2] = f + d + H[(a + 4) >> 2] = b + e + H[a >> 2] = d + if (c) { + oa(c) + } + return + } + sa() + v() + } + wa() + v() + } + function Tc(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0 + c = (a + 4) | 0 + a = nb(a, b) + a: { + if ((c | 0) == (a | 0)) { + break a + } + b = (a + 28) | 0 + b = F[(a + 39) | 0] < 0 ? H[b >> 2] : b + while (1) { + a = b + b = (a + 1) | 0 + c = F[a | 0] + if (((c | 0) == 32) | ((c - 9) >>> 0 < 5)) { + continue + } + break + } + b: { + c: { + d: { + c = F[a | 0] + switch ((c - 43) | 0) { + case 0: + break c + case 2: + break d + default: + break b + } + } + e = 1 + } + c = F[b | 0] + a = b + } + if ((c - 48) >>> 0 < 10) { + while (1) { + d = (((N(d, 10) - F[a | 0]) | 0) + 48) | 0 + b = F[(a + 1) | 0] + a = (a + 1) | 0 + if ((b - 48) >>> 0 < 10) { + continue + } + break + } + } + a = e ? d : (0 - d) | 0 + if ((a | 0) == -1) { + break a + } + f = (a | 0) != 0 + } + return f + } + function bb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + a = H[a >> 2] + c = H[(a + 4) >> 2] + e = H[(a + 8) >> 2] + if (c >>> 0 < e >>> 0) { + H[c >> 2] = H[b >> 2] + H[(a + 4) >> 2] = c + 4 + return + } + a: { + d = c + c = H[a >> 2] + g = (d - c) | 0 + d = g >> 2 + f = (d + 1) | 0 + if (f >>> 0 < 1073741824) { + h = d << 2 + e = (e - c) | 0 + d = (e >>> 1) | 0 + f = + e >>> 0 >= 2147483644 + ? 1073741823 + : f >>> 0 < d >>> 0 + ? d + : f + if (f) { + if (f >>> 0 >= 1073741824) { + break a + } + e = pa(f << 2) + } else { + e = 0 + } + d = (h + e) | 0 + H[d >> 2] = H[b >> 2] + b = va(e, c, g) + H[(a + 8) >> 2] = b + (f << 2) + H[(a + 4) >> 2] = d + 4 + H[a >> 2] = b + if (c) { + oa(c) + } + return + } + sa() + v() + } + wa() + v() + } + function ob(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + e = H[(a + 8) >> 2] + c = H[(a + 4) >> 2] + if (((e - c) >> 3) >>> 0 >= b >>> 0) { + if (b) { + b = b << 3 + c = (ra(c, 0, b) + b) | 0 + } + H[(a + 4) >> 2] = c + return + } + a: { + f = c + c = H[a >> 2] + g = (f - c) | 0 + h = g >> 3 + d = (h + b) | 0 + if (d >>> 0 < 536870912) { + e = (e - c) | 0 + f = (e >>> 2) | 0 + d = + e >>> 0 >= 2147483640 + ? 536870911 + : d >>> 0 < f >>> 0 + ? f + : d + if (d) { + if (d >>> 0 >= 536870912) { + break a + } + i = pa(d << 3) + } + b = b << 3 + e = ra(((h << 3) + i) | 0, 0, b) + f = d << 3 + d = va(i, c, g) + H[(a + 8) >> 2] = f + d + H[(a + 4) >> 2] = b + e + H[a >> 2] = d + if (c) { + oa(c) + } + return + } + sa() + v() + } + wa() + v() + } + function kf(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + H[a >> 2] = 2328 + b = H[(a + 60) >> 2] + H[(a + 60) >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + d = H[(a + 36) >> 2] + if (d) { + c = H[(a + 40) >> 2] + b = d + if ((c | 0) != (b | 0)) { + while (1) { + c = (c - 4) | 0 + b = H[c >> 2] + H[c >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = H[(a + 36) >> 2] + } + H[(a + 40) >> 2] = d + oa(b) + } + H[a >> 2] = 1984 + b = H[(a + 16) >> 2] + if (b) { + H[(a + 20) >> 2] = b + oa(b) + } + b = H[(a + 4) >> 2] + if (b) { + H[(a + 8) >> 2] = b + oa(b) + } + return a | 0 + } + function jf(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + H[a >> 2] = 2328 + b = H[(a + 60) >> 2] + H[(a + 60) >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + d = H[(a + 36) >> 2] + if (d) { + c = H[(a + 40) >> 2] + b = d + if ((c | 0) != (b | 0)) { + while (1) { + c = (c - 4) | 0 + b = H[c >> 2] + H[c >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = H[(a + 36) >> 2] + } + H[(a + 40) >> 2] = d + oa(b) + } + H[a >> 2] = 1984 + b = H[(a + 16) >> 2] + if (b) { + H[(a + 20) >> 2] = b + oa(b) + } + b = H[(a + 4) >> 2] + if (b) { + H[(a + 8) >> 2] = b + oa(b) + } + oa(a) + } + function xi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0 + d = (ca - 16) | 0 + ca = d + e = H[(a + 4) >> 2] + a: { + if ((e | 0) == -1) { + break a + } + c = H[(b + 20) >> 2] + if ((!!H[(b + 16) >> 2] & ((c | 0) >= 0)) | ((c | 0) > 0)) { + break a + } + Wb(b, H[(b + 4) >> 2], H[(a + 8) >> 2], H[(a + 12) >> 2]) + c = H[(b + 20) >> 2] + if ((!!H[(b + 16) >> 2] & ((c | 0) >= 0)) | ((c | 0) > 0)) { + break a + } + Wb(b, H[(b + 4) >> 2], (a + 20) | 0, (a + 24) | 0) + c = H[(b + 20) >> 2] + f = H[(b + 16) >> 2] + F[(d + 15) | 0] = H[(a + 4) >> 2] + if ((!!f & ((c | 0) >= 0)) | ((c | 0) > 0)) { + break a + } + Wb(b, H[(b + 4) >> 2], (d + 15) | 0, (d + 16) | 0) + } + ca = (d + 16) | 0 + return ((e | 0) != -1) | 0 + } + function Eh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0 + a: { + b = H[(a + 8) >> 2] + b: { + if ((b | 0) < 0) { + break b + } + c = H[(a + 4) >> 2] + e = H[c >> 2] + d = (H[(c + 4) >> 2] - e) >> 2 + c: { + if (d >>> 0 < b >>> 0) { + ue(c, (b - d) | 0) + f = H[(a + 8) >> 2] + break c + } + f = b + if (b >>> 0 >= d >>> 0) { + break c + } + H[(c + 4) >> 2] = e + (b << 2) + f = b + } + d = f + if ((d | 0) <= 0) { + break b + } + a = H[(a + 4) >> 2] + c = H[a >> 2] + e = (H[(a + 4) >> 2] - c) >> 2 + a = 0 + while (1) { + if ((a | 0) == (e | 0)) { + break a + } + H[(c + (a << 2)) >> 2] = a + a = (a + 1) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + return ((b ^ -1) >>> 31) | 0 + } + Ca() + v() + } + function qe(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + e = H[(a + 8) >> 2] + c = H[(a + 4) >> 2] + if (((e - c) >> 1) >>> 0 >= b >>> 0) { + if (b) { + b = b << 1 + c = (ra(c, 0, b) + b) | 0 + } + H[(a + 4) >> 2] = c + return + } + a: { + f = c + c = H[a >> 2] + g = (f - c) | 0 + f = g >> 1 + d = (f + b) | 0 + if ((d | 0) >= 0) { + e = (e - c) | 0 + d = + e >>> 0 >= 2147483646 + ? 2147483647 + : d >>> 0 < e >>> 0 + ? e + : d + if (d) { + if ((d | 0) < 0) { + break a + } + h = pa(d << 1) + } + b = b << 1 + e = ra(((f << 1) + h) | 0, 0, b) + f = d << 1 + d = va(h, c, g) + H[(a + 8) >> 2] = f + d + H[(a + 4) >> 2] = b + e + H[a >> 2] = d + if (c) { + oa(c) + } + return + } + sa() + v() + } + wa() + v() + } + function ng(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0 + d = (ca - 16) | 0 + ca = d + Pe(d, a, b, c) + H[(a + 24) >> 2] = H[d >> 2] + e = (a + 24) | 0 + a: { + if ((e | 0) == (d | 0)) { + break a + } + b = (a + 28) | 0 + c = d | 4 + f = I[(d + 15) | 0] + g = (f << 24) >> 24 + if (F[(a + 39) | 0] >= 0) { + if ((g | 0) >= 0) { + a = H[(c + 4) >> 2] + H[b >> 2] = H[c >> 2] + H[(b + 4) >> 2] = a + H[(b + 8) >> 2] = H[(c + 8) >> 2] + break a + } + Xb(b, H[(d + 4) >> 2], H[(d + 8) >> 2]) + break a + } + a = (g | 0) < 0 + Yb(b, a ? H[(d + 4) >> 2] : c, a ? H[(d + 8) >> 2] : f) + } + if (F[(d + 15) | 0] < 0) { + oa(H[(d + 4) >> 2]) + } + ca = (d + 16) | 0 + return e | 0 + } + function mg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0 + d = (ca - 16) | 0 + ca = d + Oe(d, a, b, c) + H[(a + 24) >> 2] = H[d >> 2] + e = (a + 24) | 0 + a: { + if ((e | 0) == (d | 0)) { + break a + } + b = (a + 28) | 0 + c = d | 4 + f = I[(d + 15) | 0] + g = (f << 24) >> 24 + if (F[(a + 39) | 0] >= 0) { + if ((g | 0) >= 0) { + a = H[(c + 4) >> 2] + H[b >> 2] = H[c >> 2] + H[(b + 4) >> 2] = a + H[(b + 8) >> 2] = H[(c + 8) >> 2] + break a + } + Xb(b, H[(d + 4) >> 2], H[(d + 8) >> 2]) + break a + } + a = (g | 0) < 0 + Yb(b, a ? H[(d + 4) >> 2] : c, a ? H[(d + 8) >> 2] : f) + } + if (F[(d + 15) | 0] < 0) { + oa(H[(d + 4) >> 2]) + } + ca = (d + 16) | 0 + return e | 0 + } + function za(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + e = (ca - 16) | 0 + ca = e + a: { + b: { + if (c >>> 0 < 11) { + d = a + F[(a + 11) | 0] = (I[(a + 11) | 0] & 128) | c + F[(a + 11) | 0] = I[(a + 11) | 0] & 127 + break b + } + if (c >>> 0 > 2147483631) { + break a + } + g = (e + 8) | 0 + if (c >>> 0 >= 11) { + f = (c + 16) & -16 + d = (f - 1) | 0 + d = (d | 0) == 11 ? f : d + } else { + d = 10 + } + Zb(g, (d + 1) | 0) + d = H[(e + 8) >> 2] + H[a >> 2] = d + H[(a + 8) >> 2] = + (H[(a + 8) >> 2] & -2147483648) | + (H[(e + 12) >> 2] & 2147483647) + H[(a + 8) >> 2] = H[(a + 8) >> 2] | -2147483648 + H[(a + 4) >> 2] = c + } + yb(d, b, (c + 1) | 0) + ca = (e + 16) | 0 + return + } + Na() + v() + } + function Qg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0 + d = (ca - 16) | 0 + ca = d + a: { + e = Ma(c) + if (e >>> 0 < 2147483632) { + b: { + c: { + if (e >>> 0 >= 11) { + g = ((e | 15) + 1) | 0 + f = pa(g) + H[(d + 8) >> 2] = g | -2147483648 + H[d >> 2] = f + H[(d + 4) >> 2] = e + g = (e + f) | 0 + break c + } + F[(d + 11) | 0] = e + g = (d + e) | 0 + f = d + if (!e) { + break b + } + } + qa(f, c, e) + } + F[g | 0] = 0 + f = (a + 16) | 0 + c = $d(b, d, f) + b = H[(a + 16) >> 2] + a = F[(a + 27) | 0] + if (F[(d + 11) | 0] < 0) { + oa(H[d >> 2]) + } + ca = (d + 16) | 0 + a = c ? ((a | 0) < 0 ? b : f) : 0 + break a + } + Na() + v() + } + return a | 0 + } + function Mc(a, b) { + var c = 0, + d = 0, + e = 0 + c = H[(a + 4) >> 2] + d = (c + b) | 0 + H[(a + 4) >> 2] = d + if (!(((d - 1) ^ (c - 1)) >>> 0 < 32 ? c : 0)) { + H[ + (H[a >> 2] + + ((d >>> 0 >= 33 ? ((d - 1) >>> 5) | 0 : 0) << 2)) >> + 2 + ] = 0 + } + a: { + if (!b) { + break a + } + a = (H[a >> 2] + ((c >>> 3) & 536870908)) | 0 + c = c & 31 + if (c) { + d = (32 - c) | 0 + e = b >>> 0 > d >>> 0 ? d : b + H[a >> 2] = + H[a >> 2] & (((-1 << c) & (-1 >>> (d - e))) ^ -1) + b = (b - e) | 0 + a = (a + 4) | 0 + } + c = (b >>> 5) | 0 + if (b >>> 0 >= 32) { + ra(a, 0, c << 2) + } + if ((b & -32) == (b | 0)) { + break a + } + a = ((c << 2) + a) | 0 + H[a >> 2] = H[a >> 2] & ((-1 >>> (32 - (b & 31))) ^ -1) + } + } + function Fc(a, b, c) { + var d = 0, + e = 0, + f = 0 + d = H[(c + 16) >> 2] + a: { + if (!d) { + if (Sd(c)) { + break a + } + d = H[(c + 16) >> 2] + } + f = H[(c + 20) >> 2] + if ((d - f) >>> 0 < b >>> 0) { + return ea[H[(c + 36) >> 2]](c, a, b) | 0 + } + b: { + if (H[(c + 80) >> 2] < 0) { + d = 0 + break b + } + e = b + while (1) { + d = e + if (!d) { + d = 0 + break b + } + e = (d - 1) | 0 + if (I[(e + a) | 0] != 10) { + continue + } + break + } + e = ea[H[(c + 36) >> 2]](c, a, d) | 0 + if (e >>> 0 < d >>> 0) { + break a + } + a = (a + d) | 0 + b = (b - d) | 0 + f = H[(c + 20) >> 2] + } + qa(f, a, b) + H[(c + 20) >> 2] = H[(c + 20) >> 2] + b + e = (b + d) | 0 + } + return e + } + function ad(a) { + var b = 0, + c = 0, + d = 0, + e = 0 + if (I[(a + 76) | 0]) { + F[(a + 76) | 0] = 0 + e = H[(a + 60) >> 2] + c = (H[(a + 72) >> 2] + 7) | 0 + b = c >>> 0 < 7 ? 1 : b + d = (b << 29) | (c >>> 3) + c = (d + H[(a + 56) >> 2]) | 0 + b = (((b >>> 3) | 0) + e) | 0 + H[(a + 56) >> 2] = c + H[(a + 60) >> 2] = c >>> 0 < d >>> 0 ? (b + 1) | 0 : b + } + if (J[(a + 38) >> 1] <= 513) { + F[(a + 132) | 0] = 0 + e = H[(a + 116) >> 2] + b = 0 + c = (H[(a + 128) >> 2] + 7) | 0 + b = c >>> 0 < 7 ? 1 : b + d = (b << 29) | (c >>> 3) + c = (d + H[(a + 112) >> 2]) | 0 + b = (((b >>> 3) | 0) + e) | 0 + H[(a + 112) >> 2] = c + H[(a + 116) >> 2] = c >>> 0 < d >>> 0 ? (b + 1) | 0 : b + } + } + function re(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 10) { + break a + } + d = H[(c + 20) >> 2] + f = H[(c + 12) >> 2] + e = H[(c + 16) >> 2] + if ( + (((d | 0) >= (f | 0)) & (e >>> 0 >= K[(c + 8) >> 2])) | + ((d | 0) > (f | 0)) + ) { + break a + } + f = F[(e + H[c >> 2]) | 0] + e = (e + 1) | 0 + d = e ? d : (d + 1) | 0 + H[(c + 16) >> 2] = e + H[(c + 20) >> 2] = d + d = f + b: { + if ((d | 0) < 0) { + if (!re((a + 1) | 0, b, c)) { + break a + } + a = H[b >> 2] + d = (d & 127) | (a << 7) + a = (H[(b + 4) >> 2] << 7) | (a >>> 25) + break b + } + d = d & 255 + a = 0 + } + H[b >> 2] = d + H[(b + 4) >> 2] = a + g = 1 + } + return g + } + function gb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 10) { + break a + } + d = H[(c + 20) >> 2] + f = H[(c + 12) >> 2] + e = H[(c + 16) >> 2] + if ( + (((d | 0) >= (f | 0)) & (e >>> 0 >= K[(c + 8) >> 2])) | + ((d | 0) > (f | 0)) + ) { + break a + } + f = F[(e + H[c >> 2]) | 0] + e = (e + 1) | 0 + d = e ? d : (d + 1) | 0 + H[(c + 16) >> 2] = e + H[(c + 20) >> 2] = d + d = f + b: { + if ((d | 0) < 0) { + if (!gb((a + 1) | 0, b, c)) { + break a + } + a = H[b >> 2] + d = (d & 127) | (a << 7) + a = (H[(b + 4) >> 2] << 7) | (a >>> 25) + break b + } + d = d & 255 + a = 0 + } + H[b >> 2] = d + H[(b + 4) >> 2] = a + g = 1 + } + return g + } + function Nh(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + e = (ca + -64) | 0 + ca = e + d = ea[H[(H[a >> 2] + 44) >> 2]](a, b) | 0 + a = ea[H[(H[a >> 2] + 40) >> 2]](a, b) | 0 + f = Eb(e) + g = H[(b + 56) >> 2] + h = d & 255 + i = a + a = (a - 1) | 0 + if (a >>> 0 <= 10) { + a = H[((a << 2) + 13584) >> 2] + } else { + a = -1 + } + d = N(a, d) + lc(f, g, h, i, 0, d, d >> 31) + a = jc(pa(96), f) + mb(a, c) + F[(a + 84) | 0] = 1 + H[(a + 72) >> 2] = H[(a + 68) >> 2] + H[(a + 60) >> 2] = H[(b + 60) >> 2] + ca = (e - -64) | 0 + return a | 0 + } + function If(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + if (Ya(a, H[(b + 8) >> 2], e)) { + if ( + !((H[(b + 28) >> 2] == 1) | (H[(b + 4) >> 2] != (c | 0))) + ) { + H[(b + 28) >> 2] = d + } + return + } + a: { + if (!Ya(a, H[b >> 2], e)) { + break a + } + if ( + !( + (H[(b + 16) >> 2] != (c | 0)) & + (H[(b + 20) >> 2] != (c | 0)) + ) + ) { + if ((d | 0) != 1) { + break a + } + H[(b + 32) >> 2] = 1 + return + } + H[(b + 20) >> 2] = c + H[(b + 32) >> 2] = d + H[(b + 40) >> 2] = H[(b + 40) >> 2] + 1 + if (!((H[(b + 36) >> 2] != 1) | (H[(b + 24) >> 2] != 2))) { + F[(b + 54) | 0] = 1 + } + H[(b + 44) >> 2] = 4 + } + } + function Bh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + e = H[(a + 32) >> 2] + b = e + h = H[(b + 8) >> 2] + g = H[(b + 12) >> 2] + c = H[(b + 16) >> 2] + b = H[(b + 20) >> 2] + f = (c + 4) | 0 + b = f >>> 0 < 4 ? (b + 1) | 0 : b + d = 0 + a: { + if ( + ((f >>> 0 > h >>> 0) & ((b | 0) >= (g | 0))) | + ((b | 0) > (g | 0)) + ) { + break a + } + c = (H[e >> 2] + c) | 0 + c = + I[c | 0] | + (I[(c + 1) | 0] << 8) | + ((I[(c + 2) | 0] << 16) | (I[(c + 3) | 0] << 24)) + H[(e + 16) >> 2] = f + H[(e + 20) >> 2] = b + d = 0 + if ((c | 0) < 0) { + break a + } + H[(H[(a + 4) >> 2] + 80) >> 2] = c + d = 1 + } + return d | 0 + } + function qi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + H[a >> 2] = 11276 + b = H[(a + 48) >> 2] + H[(a + 48) >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + H[a >> 2] = 13280 + b = H[(a + 20) >> 2] + if (b) { + H[(a + 24) >> 2] = b + oa(b) + } + d = H[(a + 8) >> 2] + if (d) { + c = H[(a + 12) >> 2] + b = d + if ((c | 0) != (b | 0)) { + while (1) { + c = (c - 4) | 0 + b = H[c >> 2] + H[c >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = H[(a + 8) >> 2] + } + H[(a + 12) >> 2] = d + oa(b) + } + return a | 0 + } + function Ee(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0 + H[(a + 144) >> 2] = b + c = H[((ea[H[(H[b >> 2] + 32) >> 2]](b) | 0) + 32) >> 2] + c = (H[c >> 2] + H[(c + 16) >> 2]) | 0 + d = H[((ea[H[(H[b >> 2] + 32) >> 2]](b) | 0) + 32) >> 2] + d = (H[(d + 8) >> 2] - H[(d + 16) >> 2]) | 0 + ;(e = a), + (f = + J[ + (H[((ea[H[(H[b >> 2] + 32) >> 2]](b) | 0) + 32) >> 2] + + 38) >> + 1 + ]), + (G[(e + 38) >> 1] = f) + H[a >> 2] = c + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[(a + 8) >> 2] = d + H[(a + 12) >> 2] = 0 + ;(e = a), + (f = ea[H[(H[b >> 2] + 36) >> 2]](b) | 0), + (H[(e + 148) >> 2] = f) + } + function Cd(a, b, c, d) { + F[(a + 53) | 0] = 1 + a: { + if (H[(a + 4) >> 2] != (c | 0)) { + break a + } + F[(a + 52) | 0] = 1 + c = H[(a + 16) >> 2] + b: { + if (!c) { + H[(a + 36) >> 2] = 1 + H[(a + 24) >> 2] = d + H[(a + 16) >> 2] = b + if ((d | 0) != 1) { + break a + } + if (H[(a + 48) >> 2] == 1) { + break b + } + break a + } + if ((b | 0) == (c | 0)) { + c = H[(a + 24) >> 2] + if ((c | 0) == 2) { + H[(a + 24) >> 2] = d + c = d + } + if (H[(a + 48) >> 2] != 1) { + break a + } + if ((c | 0) == 1) { + break b + } + break a + } + H[(a + 36) >> 2] = H[(a + 36) >> 2] + 1 + } + F[(a + 54) | 0] = 1 + } + } + function pi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + H[a >> 2] = 11276 + b = H[(a + 48) >> 2] + H[(a + 48) >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + H[a >> 2] = 13280 + b = H[(a + 20) >> 2] + if (b) { + H[(a + 24) >> 2] = b + oa(b) + } + d = H[(a + 8) >> 2] + if (d) { + c = H[(a + 12) >> 2] + b = d + if ((c | 0) != (b | 0)) { + while (1) { + c = (c - 4) | 0 + b = H[c >> 2] + H[c >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = H[(a + 8) >> 2] + } + H[(a + 12) >> 2] = d + oa(b) + } + oa(a) + } + function zh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + e = H[(a + 32) >> 2] + b = e + g = H[(b + 8) >> 2] + d = H[(b + 12) >> 2] + c = H[(b + 16) >> 2] + b = H[(b + 20) >> 2] + f = d + d = (c + 4) | 0 + b = d >>> 0 < 4 ? (b + 1) | 0 : b + if ( + (((f | 0) >= (b | 0)) & (d >>> 0 <= g >>> 0)) | + ((b | 0) < (f | 0)) + ) { + c = (H[e >> 2] + c) | 0 + c = + I[c | 0] | + (I[(c + 1) | 0] << 8) | + ((I[(c + 2) | 0] << 16) | (I[(c + 3) | 0] << 24)) + H[(e + 16) >> 2] = d + H[(e + 20) >> 2] = b + H[(H[(a + 4) >> 2] + 80) >> 2] = c + } + return ( + (((b | 0) <= (f | 0)) & (d >>> 0 <= g >>> 0)) | + ((b | 0) < (f | 0)) + ) + } + function Mf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + e = (ca + -64) | 0 + ca = e + d = 1 + a: { + if (Ya(a, b, 0)) { + break a + } + d = 0 + if (!b) { + break a + } + b = Ed(b, 14972) + d = 0 + if (!b) { + break a + } + d = (e + 8) | 0 + ra(d | 4, 0, 52) + H[(e + 56) >> 2] = 1 + H[(e + 20) >> 2] = -1 + H[(e + 16) >> 2] = a + H[(e + 8) >> 2] = b + ea[H[(H[b >> 2] + 28) >> 2]](b, d, H[c >> 2], 1) + a = H[(e + 32) >> 2] + if ((a | 0) == 1) { + H[c >> 2] = H[(e + 24) >> 2] + } + d = (a | 0) == 1 + } + ca = (e - -64) | 0 + return d | 0 + } + function Ie(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = (ca - 16) | 0 + ca = d + H[(a + 4) >> 2] = b + b = H[(b + 64) >> 2] + e = H[b >> 2] + b = H[(b + 4) >> 2] + F[(d + 15) | 0] = 0 + Oa((a + 24) | 0, ((((b - e) >> 2) >>> 0) / 3) | 0, (d + 15) | 0) + b = H[(a + 4) >> 2] + e = H[(b + 56) >> 2] + b = H[(b + 52) >> 2] + F[(d + 14) | 0] = 0 + Oa((a + 36) | 0, (e - b) >> 2, (d + 14) | 0) + b = H[(c + 12) >> 2] + H[(a + 16) >> 2] = H[(c + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(c + 4) >> 2] + H[(a + 8) >> 2] = H[c >> 2] + H[(a + 12) >> 2] = b + ca = (d + 16) | 0 + } + function pc(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + if (!b) { + H[c >> 2] = 0 + return + } + h = (0 - I[(a + 12) | 0]) & 255 + e = H[(a + 4) >> 2] + d = H[(a + 8) >> 2] + i = H[a >> 2] + while (1) { + j = f << 1 + if (!(((e | 0) <= 0) | (d >>> 0 > 4095))) { + e = (e - 1) | 0 + H[(a + 4) >> 2] = e + d = I[(e + i) | 0] | (d << 8) + } + g = d & 255 + f = g >>> 0 < h >>> 0 + k = g + g = N((d >>> 8) | 0, h) + d = f ? (k + g) | 0 : (d - ((h + g) | 0)) | 0 + H[(a + 8) >> 2] = d + f = f | j + b = (b - 1) | 0 + if (b) { + continue + } + break + } + H[c >> 2] = f + } + function yg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0 + a = (ca - 16) | 0 + ca = a + f = F[(b + 24) | 0] + e = H[3411] + H[(a + 8) >> 2] = H[3410] + H[(a + 12) >> 2] = e + e = H[3409] + H[a >> 2] = H[3408] + H[(a + 4) >> 2] = e + e = Va(b, c, f, a) + if (e) { + b = 0 + if (f) { + c = (f & 255) << 2 + b = pa(c) + g = (qa(b, a, c) + c) | 0 + } + c = H[d >> 2] + if (c) { + H[(d + 4) >> 2] = c + oa(c) + } + H[(d + 8) >> 2] = g + H[(d + 4) >> 2] = g + H[d >> 2] = b + } + ca = (a + 16) | 0 + return e | 0 + } + function of(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + f = ea[H[(H[a >> 2] + 24) >> 2]](a) | 0 + c = 1 + a: { + if ((f | 0) <= 0) { + break a + } + d = H[H[(a + 36) >> 2] >> 2] + g = (a + 48) | 0 + c = 0 + if (!(ea[H[(H[d >> 2] + 16) >> 2]](d, g, b) | 0)) { + break a + } + while (1) { + e = (e + 1) | 0 + if ((f | 0) != (e | 0)) { + d = H[(H[(a + 36) >> 2] + (e << 2)) >> 2] + if (ea[H[(H[d >> 2] + 16) >> 2]](d, g, b) | 0) { + continue + } + } + break + } + c = (e | 0) >= (f | 0) + } + return c | 0 + } + function nf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + f = ea[H[(H[a >> 2] + 24) >> 2]](a) | 0 + c = 1 + a: { + if ((f | 0) <= 0) { + break a + } + d = H[H[(a + 36) >> 2] >> 2] + g = (a + 48) | 0 + c = 0 + if (!(ea[H[(H[d >> 2] + 20) >> 2]](d, g, b) | 0)) { + break a + } + while (1) { + e = (e + 1) | 0 + if ((f | 0) != (e | 0)) { + d = H[(H[(a + 36) >> 2] + (e << 2)) >> 2] + if (ea[H[(H[d >> 2] + 20) >> 2]](d, g, b) | 0) { + continue + } + } + break + } + c = (e | 0) >= (f | 0) + } + return c | 0 + } + function _c(a, b) { + var c = 0, + d = 0 + a: { + c = H[(a + 4) >> 2] + d = H[(a + 8) >> 2] + if ((c | 0) == d << 5) { + if (((c + 1) | 0) < 0) { + break a + } + if (c >>> 0 <= 1073741822) { + d = d << 6 + c = ((c & -32) + 32) | 0 + c = c >>> 0 < d >>> 0 ? d : c + } else { + c = 2147483647 + } + pb(a, c) + c = H[(a + 4) >> 2] + } + H[(a + 4) >> 2] = c + 1 + d = 1 << c + a = (H[a >> 2] + ((c >>> 3) & 536870908)) | 0 + if (I[b | 0]) { + H[a >> 2] = d | H[a >> 2] + return + } + H[a >> 2] = H[a >> 2] & (d ^ -1) + return + } + sa() + v() + } + function $h(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = (ca - 16) | 0 + ca = d + H[(a + 4) >> 2] = b + e = H[b >> 2] + b = H[(b + 4) >> 2] + F[(d + 15) | 0] = 0 + Oa((a + 24) | 0, ((((b - e) >> 2) >>> 0) / 3) | 0, (d + 15) | 0) + b = H[(a + 4) >> 2] + e = H[(b + 28) >> 2] + b = H[(b + 24) >> 2] + F[(d + 14) | 0] = 0 + Oa((a + 36) | 0, (e - b) >> 2, (d + 14) | 0) + b = H[(c + 12) >> 2] + H[(a + 16) >> 2] = H[(c + 8) >> 2] + H[(a + 20) >> 2] = b + b = H[(c + 4) >> 2] + H[(a + 8) >> 2] = H[c >> 2] + H[(a + 12) >> 2] = b + ca = (d + 16) | 0 + } + function $b(a) { + var b = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 56) >> 2] = 0 + H[(a + 48) >> 2] = 0 + H[(a + 52) >> 2] = 0 + H[(a + 40) >> 2] = 0 + H[(a + 44) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + H[(a + 24) >> 2] = 0 + H[(a + 28) >> 2] = 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[(a + 12) >> 2] = 0 + b = (a - -64) | 0 + H[b >> 2] = 0 + H[(b + 4) >> 2] = 0 + H[(a + 72) >> 2] = 0 + H[(a + 76) >> 2] = 0 + H[(a + 80) >> 2] = 0 + H[(a + 84) >> 2] = 0 + H[(a + 60) >> 2] = a + return a + } + function td(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = H[(c + 20) >> 2] + e = H[(c + 12) >> 2] + f = H[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= K[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = I[(H[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!td((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (H[b >> 2] << 7) + } + H[b >> 2] = e + g = 1 + } + return g + } + function hb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = H[(c + 20) >> 2] + e = H[(c + 12) >> 2] + f = H[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= K[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = I[(H[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!hb((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (H[b >> 2] << 7) + } + H[b >> 2] = e + g = 1 + } + return g + } + function Xa(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = H[(c + 20) >> 2] + e = H[(c + 12) >> 2] + f = H[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= K[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = I[(H[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!Xa((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (H[b >> 2] << 7) + } + H[b >> 2] = e + g = 1 + } + return g + } + function Qe(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = H[(c + 20) >> 2] + e = H[(c + 12) >> 2] + f = H[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= K[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = I[(H[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!Qe((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (H[b >> 2] << 7) + } + H[b >> 2] = e + g = 1 + } + return g + } + function Pc(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = H[(c + 20) >> 2] + e = H[(c + 12) >> 2] + f = H[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= K[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = I[(H[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!Pc((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (H[b >> 2] << 7) + } + H[b >> 2] = e + g = 1 + } + return g + } + function Fb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = H[(c + 20) >> 2] + e = H[(c + 12) >> 2] + f = H[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= K[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = I[(H[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!Fb((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (H[b >> 2] << 7) + } + H[b >> 2] = e + g = 1 + } + return g + } + function Ea(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = H[(c + 20) >> 2] + e = H[(c + 12) >> 2] + f = H[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= K[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = I[(H[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!Ea((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (H[b >> 2] << 7) + } + H[b >> 2] = e + g = 1 + } + return g + } + function Bb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = H[(c + 20) >> 2] + e = H[(c + 12) >> 2] + f = H[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= K[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = I[(H[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + H[(c + 16) >> 2] = f + H[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!Bb((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (H[b >> 2] << 7) + } + H[b >> 2] = e + g = 1 + } + return g + } + function Fa(a, b, c) { + var d = 0, + e = 0 + a: { + b: { + if (c >>> 0 >= 4) { + if ((a | b) & 3) { + break b + } + while (1) { + if (H[a >> 2] != H[b >> 2]) { + break b + } + b = (b + 4) | 0 + a = (a + 4) | 0 + c = (c - 4) | 0 + if (c >>> 0 > 3) { + continue + } + break + } + } + if (!c) { + break a + } + } + while (1) { + d = I[a | 0] + e = I[b | 0] + if ((d | 0) == (e | 0)) { + b = (b + 1) | 0 + a = (a + 1) | 0 + c = (c - 1) | 0 + if (c) { + continue + } + break a + } + break + } + return (d - e) | 0 + } + return 0 + } + function Yc(a) { + var b = 0, + c = 0, + d = 0, + e = 0 + d = H[a >> 2] + if (d) { + e = d + c = H[(a + 4) >> 2] + if ((d | 0) != (c | 0)) { + while (1) { + e = (c - 144) | 0 + b = H[(e + 132) >> 2] + if (b) { + H[(c - 8) >> 2] = b + oa(b) + } + b = H[(c - 28) >> 2] + if (b) { + H[(c - 24) >> 2] = b + oa(b) + } + b = H[(c - 40) >> 2] + if (b) { + H[(c - 36) >> 2] = b + oa(b) + } + oc((c - 140) | 0) + c = e + if ((d | 0) != (c | 0)) { + continue + } + break + } + e = H[a >> 2] + } + H[(a + 4) >> 2] = d + oa(e) + } + } + function Dg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = H[(b + 4) >> 2] + a: { + if (!d) { + break a + } + b = H[(H[(H[(b + 8) >> 2] + (c << 2)) >> 2] + 60) >> 2] + if ((b | 0) < 0) { + break a + } + a = H[(d + 24) >> 2] + c = H[(d + 28) >> 2] + if ((a | 0) == (c | 0)) { + break a + } + b: { + while (1) { + e = H[a >> 2] + if ((b | 0) == H[(e + 24) >> 2]) { + break b + } + a = (a + 4) | 0 + if ((c | 0) != (a | 0)) { + continue + } + break + } + e = 0 + } + } + return e | 0 + } + function Zh(a) { + a = a | 0 + var b = 0 + H[(a + 8) >> 2] = 12384 + H[a >> 2] = 12172 + b = H[(a + 96) >> 2] + if (b) { + H[(a + 100) >> 2] = b + oa(b) + } + b = H[(a + 80) >> 2] + if (b) { + H[(a + 84) >> 2] = b + oa(b) + } + b = H[(a + 68) >> 2] + if (b) { + H[(a + 72) >> 2] = b + oa(b) + } + b = H[(a + 56) >> 2] + if (b) { + H[(a + 60) >> 2] = b + oa(b) + } + H[(a + 8) >> 2] = 12620 + b = H[(a + 44) >> 2] + if (b) { + oa(b) + } + b = H[(a + 32) >> 2] + if (b) { + oa(b) + } + return a | 0 + } + function Uc(a) { + var b = 0, + c = 0, + d = 0 + if (a) { + d = H[(a + 24) >> 2] + if (d) { + b = d + c = H[(a + 28) >> 2] + if ((b | 0) != (c | 0)) { + while (1) { + c = (c - 4) | 0 + b = H[c >> 2] + H[c >> 2] = 0 + if (b) { + Ra((b + 12) | 0, H[(b + 16) >> 2]) + Qa(b, H[(b + 4) >> 2]) + oa(b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = H[(a + 24) >> 2] + } + H[(a + 28) >> 2] = d + oa(b) + } + Ra((a + 12) | 0, H[(a + 16) >> 2]) + Qa(a, H[(a + 4) >> 2]) + oa(a) + } + } + function Yh(a) { + a = a | 0 + var b = 0 + H[(a + 8) >> 2] = 12384 + H[a >> 2] = 12172 + b = H[(a + 96) >> 2] + if (b) { + H[(a + 100) >> 2] = b + oa(b) + } + b = H[(a + 80) >> 2] + if (b) { + H[(a + 84) >> 2] = b + oa(b) + } + b = H[(a + 68) >> 2] + if (b) { + H[(a + 72) >> 2] = b + oa(b) + } + b = H[(a + 56) >> 2] + if (b) { + H[(a + 60) >> 2] = b + oa(b) + } + H[(a + 8) >> 2] = 12620 + b = H[(a + 44) >> 2] + if (b) { + oa(b) + } + b = H[(a + 32) >> 2] + if (b) { + oa(b) + } + oa(a) + } + function vi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + H[a >> 2] = 13280 + b = H[(a + 20) >> 2] + if (b) { + H[(a + 24) >> 2] = b + oa(b) + } + d = H[(a + 8) >> 2] + if (d) { + c = H[(a + 12) >> 2] + b = d + if ((c | 0) != (b | 0)) { + while (1) { + c = (c - 4) | 0 + b = H[c >> 2] + H[c >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = H[(a + 8) >> 2] + } + H[(a + 12) >> 2] = d + oa(b) + } + return a | 0 + } + function xc(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + h = H[(c + 8) >> 2] + e = H[(c + 16) >> 2] + g = H[(c + 12) >> 2] + f = g + d = H[(c + 20) >> 2] + if ( + ((h >>> 0 > e >>> 0) & ((f | 0) >= (d | 0))) | + ((d | 0) < (f | 0)) + ) { + b = I[(H[c >> 2] + e) | 0] + i = (e + 1) | 0 + f = i ? d : (d + 1) | 0 + H[(c + 16) >> 2] = i + H[(c + 20) >> 2] = f + H[(a + 4) >> 2] = b + } + return ( + ((e >>> 0 < h >>> 0) & ((d | 0) <= (g | 0))) | + ((d | 0) < (g | 0)) + ) + } + function Wc(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + H[a >> 2] = 13280 + b = H[(a + 20) >> 2] + if (b) { + H[(a + 24) >> 2] = b + oa(b) + } + d = H[(a + 8) >> 2] + if (d) { + c = H[(a + 12) >> 2] + b = d + if ((c | 0) != (b | 0)) { + while (1) { + c = (c - 4) | 0 + b = H[c >> 2] + H[c >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = H[(a + 8) >> 2] + } + H[(a + 12) >> 2] = d + oa(b) + } + oa(a) + } + function Ya(a, b, c) { + var d = 0 + if (!c) { + return H[(a + 4) >> 2] == H[(b + 4) >> 2] + } + if ((a | 0) == (b | 0)) { + return 1 + } + d = H[(a + 4) >> 2] + a = I[d | 0] + c = H[(b + 4) >> 2] + b = I[c | 0] + a: { + if (!a | ((b | 0) != (a | 0))) { + break a + } + while (1) { + b = I[(c + 1) | 0] + a = I[(d + 1) | 0] + if (!a) { + break a + } + c = (c + 1) | 0 + d = (d + 1) | 0 + if ((a | 0) == (b | 0)) { + continue + } + break + } + } + return (a | 0) == (b | 0) + } + function _h(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 12384 + b = H[(a + 88) >> 2] + if (b) { + H[(a + 92) >> 2] = b + oa(b) + } + b = H[(a + 72) >> 2] + if (b) { + H[(a + 76) >> 2] = b + oa(b) + } + b = H[(a + 60) >> 2] + if (b) { + H[(a - -64) >> 2] = b + oa(b) + } + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + H[a >> 2] = 12620 + b = H[(a + 36) >> 2] + if (b) { + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + oa(b) + } + return a | 0 + } + function Fg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = H[(b + 12) >> 2] + b = H[(b + 8) >> 2] + a = 0 + a: { + if ((d | 0) == (b | 0)) { + break a + } + a = (d - b) >> 2 + d = a >>> 0 <= 1 ? 1 : a + a = 0 + b: { + while (1) { + e = H[(b + (a << 2)) >> 2] + if (H[(e + 60) >> 2] == (c | 0)) { + break b + } + a = (a + 1) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + a = 0 + break a + } + a = (a | 0) != -1 ? e : 0 + } + return a | 0 + } + function ae(a, b) { + var c = 0, + d = 0, + e = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + a: { + c = H[(b + 4) >> 2] + d = H[b >> 2] + b: { + if ((c | 0) == (d | 0)) { + a = c + break b + } + c = (c - d) | 0 + if ((c | 0) < 0) { + break a + } + d = c + e = pa(c) + c = ra(e, 0, c) + d = (d + c) | 0 + H[(a + 8) >> 2] = d + H[(a + 4) >> 2] = d + H[a >> 2] = c + c = H[b >> 2] + a = H[(b + 4) >> 2] + } + qa(e, c, (a - c) | 0) + return + } + sa() + v() + } + function ed(a) { + var b = 0, + c = 0, + d = 0, + e = 0 + c = H[(a + 4) >> 2] + d = H[a >> 2] + if ((c | 0) != (d | 0)) { + while (1) { + e = (c - 144) | 0 + b = H[(e + 132) >> 2] + if (b) { + H[(c - 8) >> 2] = b + oa(b) + } + b = H[(c - 28) >> 2] + if (b) { + H[(c - 24) >> 2] = b + oa(b) + } + b = H[(c - 40) >> 2] + if (b) { + H[(c - 36) >> 2] = b + oa(b) + } + oc((c - 140) | 0) + c = e + if ((d | 0) != (c | 0)) { + continue + } + break + } + } + H[(a + 4) >> 2] = d + } + function Vh(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 12384 + b = H[(a + 88) >> 2] + if (b) { + H[(a + 92) >> 2] = b + oa(b) + } + b = H[(a + 72) >> 2] + if (b) { + H[(a + 76) >> 2] = b + oa(b) + } + b = H[(a + 60) >> 2] + if (b) { + H[(a - -64) >> 2] = b + oa(b) + } + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + H[a >> 2] = 12620 + b = H[(a + 36) >> 2] + if (b) { + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + oa(b) + } + oa(a) + } + function cb(a) { + var b = 0 + if (a) { + b = H[(a + 76) >> 2] + if (b) { + H[(a + 80) >> 2] = b + oa(b) + } + b = H[(a - -64) >> 2] + if (b) { + H[(a + 68) >> 2] = b + oa(b) + } + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + H[(a + 28) >> 2] = b + oa(b) + } + b = H[(a + 12) >> 2] + if (b) { + H[(a + 16) >> 2] = b + oa(b) + } + b = H[a >> 2] + if (b) { + H[(a + 4) >> 2] = b + oa(b) + } + oa(a) + } + } + function Jd(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + f = (ca - 16) | 0 + ca = f + d = (ca - 16) | 0 + ca = d + b = (b - a) >> 2 + while (1) { + if (b) { + H[(d + 12) >> 2] = a + e = (b >>> 1) | 0 + H[(d + 12) >> 2] = H[(d + 12) >> 2] + (e << 2) + g = ((e ^ -1) + b) | 0 + b = e + e = K[H[(d + 12) >> 2] >> 2] < K[c >> 2] + b = e ? g : b + a = e ? (H[(d + 12) >> 2] + 4) | 0 : a + continue + } + break + } + ca = (d + 16) | 0 + ca = (f + 16) | 0 + return a + } + function oc(a) { + var b = 0 + b = H[(a + 84) >> 2] + if (b) { + H[(a + 88) >> 2] = b + oa(b) + } + b = H[(a + 72) >> 2] + if (b) { + H[(a + 76) >> 2] = b + oa(b) + } + b = H[(a + 52) >> 2] + if (b) { + H[(a + 56) >> 2] = b + oa(b) + } + b = H[(a + 40) >> 2] + if (b) { + H[(a + 44) >> 2] = b + oa(b) + } + b = H[(a + 28) >> 2] + if (b) { + H[(a + 32) >> 2] = b + oa(b) + } + b = H[(a + 12) >> 2] + if (b) { + oa(b) + } + a = H[a >> 2] + if (a) { + oa(a) + } + } + function Xc(a, b) { + var c = 0, + d = 0 + d = pa(40) + H[d >> 2] = -1 + c = (d + 8) | 0 + H[(c + 16) >> 2] = 0 + H[(c + 20) >> 2] = 0 + H[(c + 8) >> 2] = 0 + H[c >> 2] = 0 + H[(c + 4) >> 2] = 0 + H[(c + 24) >> 2] = 0 + H[(c + 28) >> 2] = 0 + ea[H[(H[a >> 2] + 16) >> 2]](a, d) + a = H[(b + 88) >> 2] + H[(b + 88) >> 2] = d + if (a) { + b = H[(a + 8) >> 2] + if (b) { + H[(a + 12) >> 2] = b + oa(b) + } + oa(a) + } + return 1 + } + function Ma(a) { + var b = 0, + c = 0, + d = 0 + b = a + a: { + if (b & 3) { + while (1) { + if (!I[b | 0]) { + break a + } + b = (b + 1) | 0 + if (b & 3) { + continue + } + break + } + } + while (1) { + c = b + b = (b + 4) | 0 + d = H[c >> 2] + if (!((d ^ -1) & (d - 16843009) & -2139062144)) { + continue + } + break + } + while (1) { + b = c + c = (b + 1) | 0 + if (I[b | 0]) { + continue + } + break + } + } + return (b - a) | 0 + } + function Ba(a) { + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0 + d = I[(a + 12) | 0] + c = H[(a + 8) >> 2] + a: { + if (c >>> 0 > 4095) { + break a + } + b = H[(a + 4) >> 2] + if ((b | 0) <= 0) { + break a + } + b = (b - 1) | 0 + H[(a + 4) >> 2] = b + c = I[(b + H[a >> 2]) | 0] | (c << 8) + } + d = (0 - d) & 255 + b = N(d, (c >>> 8) | 0) + e = c & 255 + f = e >>> 0 < d >>> 0 + H[(a + 8) >> 2] = f ? (b + e) | 0 : (c - ((b + d) | 0)) | 0 + return f + } + function od(a, b) { + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = 1984 + H[(a + 12) >> 2] = 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[(a + 24) >> 2] = 0 + H[(a + 28) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + H[(a + 40) >> 2] = 0 + H[a >> 2] = 2328 + H[(a + 60) >> 2] = b + H[(a + 44) >> 2] = 0 + H[(a + 48) >> 2] = 0 + H[(a + 52) >> 2] = 0 + H[(a + 56) >> 2] = 0 + return a + } + function mc(a, b) { + var c = 0, + d = 0, + e = 0 + c = Ma(b) + if (c >>> 0 < 2147483632) { + a: { + b: { + if (c >>> 0 >= 11) { + d = ((c | 15) + 1) | 0 + e = pa(d) + H[(a + 8) >> 2] = d | -2147483648 + H[a >> 2] = e + H[(a + 4) >> 2] = c + d = (c + e) | 0 + break b + } + F[(a + 11) | 0] = c + d = (a + c) | 0 + e = a + if (!c) { + break a + } + } + va(e, b, c) + } + F[d | 0] = 0 + return a + } + Na() + v() + } + function Ng(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + if (a) { + if (F[(a + 27) | 0] < 0) { + oa(H[(a + 16) >> 2]) + } + b = H[a >> 2] + if (b) { + c = b + d = H[(a + 4) >> 2] + if ((b | 0) != (d | 0)) { + while (1) { + c = (d - 12) | 0 + if (F[(d - 1) | 0] < 0) { + oa(H[c >> 2]) + } + d = c + if ((d | 0) != (b | 0)) { + continue + } + break + } + c = H[a >> 2] + } + H[(a + 4) >> 2] = b + oa(c) + } + oa(a) + } + } + function Jb(a, b) { + var c = 0, + d = 0, + e = 0 + a: { + c = H[a >> 2] + b: { + if (((H[(a + 8) >> 2] - c) >> 2) >>> 0 >= b >>> 0) { + break b + } + if (b >>> 0 >= 1073741824) { + break a + } + d = (H[(a + 4) >> 2] - c) | 0 + e = b << 2 + b = va(pa(e), c, d) + H[(a + 8) >> 2] = b + e + H[(a + 4) >> 2] = b + d + H[a >> 2] = b + if (!c) { + break b + } + oa(c) + } + return + } + sa() + v() + } + function Ga(a) { + a = a | 0 + var b = 0, + c = 0 + if (a) { + b = H[(a + 88) >> 2] + H[(a + 88) >> 2] = 0 + if (b) { + c = H[(b + 8) >> 2] + if (c) { + H[(b + 12) >> 2] = c + oa(c) + } + oa(b) + } + b = H[(a + 68) >> 2] + if (b) { + H[(a + 72) >> 2] = b + oa(b) + } + b = H[(a + 64) >> 2] + H[(a + 64) >> 2] = 0 + if (b) { + c = H[b >> 2] + if (c) { + H[(b + 4) >> 2] = c + oa(c) + } + oa(b) + } + oa(a) + } + } + function Nd(a) { + var b = 0, + c = 0, + d = 0 + if ((F[H[a >> 2]] - 48) >>> 0 >= 10) { + return 0 + } + while (1) { + d = H[a >> 2] + c = -1 + if (b >>> 0 <= 214748364) { + c = (F[d | 0] - 48) | 0 + b = N(b, 10) + c = (c | 0) > (b ^ 2147483647) ? -1 : (c + b) | 0 + } + H[a >> 2] = d + 1 + b = c + if ((F[(d + 1) | 0] - 48) >>> 0 < 10) { + continue + } + break + } + return b + } + function Cg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + b = H[(b + 96) >> 2] + a = pa(12) + b = (b + N(c, 12)) | 0 + c = H[(b + 4) >> 2] + H[a >> 2] = H[b >> 2] + H[(a + 4) >> 2] = c + H[(a + 8) >> 2] = H[(b + 8) >> 2] + b = H[d >> 2] + if (b) { + H[(d + 4) >> 2] = b + oa(b) + } + H[d >> 2] = a + a = (a + 12) | 0 + H[(d + 8) >> 2] = a + H[(d + 4) >> 2] = a + return 1 + } + function Ai(a) { + a = a | 0 + var b = 0 + H[(a + 24) >> 2] = 1832 + H[a >> 2] = 11048 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + H[a >> 2] = 2448 + b = H[(a + 20) >> 2] + H[(a + 20) >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + H[a >> 2] = 2232 + b = H[(a + 16) >> 2] + H[(a + 16) >> 2] = 0 + if (b) { + Ga(b) + } + return a | 0 + } + function Sj(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0 + f = b ^ d + g = f >> 31 + e = b >> 31 + a = a ^ e + h = (a - e) | 0 + e = ((b ^ e) - (((a >>> 0 < e >>> 0) + e) | 0)) | 0 + a = d >> 31 + b = c ^ a + f = f >> 31 + a = + Tj( + h, + e, + (b - a) | 0, + ((a ^ d) - (((a >>> 0 > b >>> 0) + a) | 0)) | 0, + ) ^ f + b = (a - f) | 0 + da = ((g ^ da) - (((a >>> 0 < f >>> 0) + g) | 0)) | 0 + return b + } + function yi(a) { + a = a | 0 + var b = 0 + H[(a + 24) >> 2] = 1832 + H[a >> 2] = 11048 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + H[a >> 2] = 2448 + b = H[(a + 20) >> 2] + H[(a + 20) >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + H[a >> 2] = 2232 + b = H[(a + 16) >> 2] + H[(a + 16) >> 2] = 0 + if (b) { + Ga(b) + } + oa(a) + } + function Yb(a, b, c) { + var d = 0, + e = 0, + f = 0 + e = (ca - 16) | 0 + ca = e + d = H[(a + 8) >> 2] & 2147483647 + a: { + if (d >>> 0 > c >>> 0) { + d = H[a >> 2] + H[(a + 4) >> 2] = c + yb(d, b, c) + F[(e + 15) | 0] = 0 + F[(c + d) | 0] = I[(e + 15) | 0] + break a + } + f = a + a = H[(a + 4) >> 2] + Gd(f, (d - 1) | 0, (((c - d) | 0) + 1) | 0, a, a, c, b) + } + ca = (e + 16) | 0 + } + function Bf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + c = (ca - 16) | 0 + ca = c + a = H[(a + 4) >> 2] + a: { + if ((a | 0) == -1) { + break a + } + F[(c + 15) | 0] = a + d = H[(b + 20) >> 2] + if ((!!H[(b + 16) >> 2] & ((d | 0) >= 0)) | ((d | 0) > 0)) { + break a + } + Wb(b, H[(b + 4) >> 2], (c + 15) | 0, (c + 16) | 0) + } + ca = (c + 16) | 0 + return ((a | 0) != -1) | 0 + } + function Xb(a, b, c) { + var d = 0, + e = 0 + d = (ca - 16) | 0 + ca = d + a: { + if (c >>> 0 <= 10) { + F[(a + 11) | 0] = (I[(a + 11) | 0] & 128) | c + F[(a + 11) | 0] = I[(a + 11) | 0] & 127 + yb(a, b, c) + F[(d + 15) | 0] = 0 + F[(a + c) | 0] = I[(d + 15) | 0] + break a + } + e = a + a = I[(a + 11) | 0] & 127 + Gd(e, 10, (c - 10) | 0, a, a, c, b) + } + ca = (d + 16) | 0 + } + function Rj(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + e = (c >>> 16) | 0 + f = (a >>> 16) | 0 + j = N(e, f) + g = c & 65535 + h = a & 65535 + i = N(g, h) + f = (((i >>> 16) | 0) + N(f, g)) | 0 + e = ((f & 65535) + N(e, h)) | 0 + da = + (((N(b, c) + j) | 0) + N(a, d) + (f >>> 16) + (e >>> 16)) | 0 + return (i & 65535) | (e << 16) + } + function Dd(a, b, c) { + var d = 0 + d = H[(a + 16) >> 2] + if (!d) { + H[(a + 36) >> 2] = 1 + H[(a + 24) >> 2] = c + H[(a + 16) >> 2] = b + return + } + a: { + if ((b | 0) == (d | 0)) { + if (H[(a + 24) >> 2] != 2) { + break a + } + H[(a + 24) >> 2] = c + return + } + F[(a + 54) | 0] = 1 + H[(a + 24) >> 2] = 2 + H[(a + 36) >> 2] = H[(a + 36) >> 2] + 1 + } + } + function th() { + var a = 0 + a = Eb(pa(96)) + H[(a + 64) >> 2] = 0 + H[(a + 68) >> 2] = 0 + H[(a + 88) >> 2] = 0 + H[(a + 72) >> 2] = 0 + H[(a + 76) >> 2] = 0 + F[(a + 77) | 0] = 0 + F[(a + 78) | 0] = 0 + F[(a + 79) | 0] = 0 + F[(a + 80) | 0] = 0 + F[(a + 81) | 0] = 0 + F[(a + 82) | 0] = 0 + F[(a + 83) | 0] = 0 + F[(a + 84) | 0] = 0 + return a | 0 + } + function zi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + H[b >> 2] = 2 + c = H[(b + 8) >> 2] + d = (H[(b + 12) >> 2] - c) | 0 + if (d >>> 0 <= 4294967291) { + kc((b + 8) | 0, (d + 4) | 0) + c = H[(b + 8) >> 2] + } + b = (c + d) | 0 + a = H[(a + 4) >> 2] + F[b | 0] = a + F[(b + 1) | 0] = a >>> 8 + F[(b + 2) | 0] = a >>> 16 + F[(b + 3) | 0] = a >>> 24 + } + function rj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 5580 + b = H[(a + 96) >> 2] + if (b) { + oa(b) + } + b = H[(a + 84) >> 2] + if (b) { + oa(b) + } + b = H[(a + 72) >> 2] + if (b) { + oa(b) + } + b = H[(a + 60) >> 2] + if (b) { + oa(b) + } + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + return a | 0 + } + function ib(a, b, c, d, e) { + var f = 0 + f = (ca - 256) | 0 + ca = f + if (!((e & 73728) | ((c | 0) <= (d | 0)))) { + d = (c - d) | 0 + c = d >>> 0 < 256 + ra(f, b & 255, c ? d : 256) + if (!c) { + while (1) { + Ab(a, f, 256) + d = (d - 256) | 0 + if (d >>> 0 > 255) { + continue + } + break + } + } + Ab(a, f, d) + } + ca = (f + 256) | 0 + } + function Ij(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 3564 + b = H[(a + 96) >> 2] + if (b) { + oa(b) + } + b = H[(a + 84) >> 2] + if (b) { + oa(b) + } + b = H[(a + 72) >> 2] + if (b) { + oa(b) + } + b = H[(a + 60) >> 2] + if (b) { + oa(b) + } + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + return a | 0 + } + function Ch(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = H[(a + 8) >> 2] + d = H[(a + 12) >> 2] + if ((b | 0) == (d | 0)) { + return 1 + } + while (1) { + c = H[b >> 2] + c = ea[H[(H[c >> 2] + 16) >> 2]](c, H[(a + 32) >> 2]) | 0 + if (c) { + b = (b + 4) | 0 + if ((d | 0) != (b | 0)) { + continue + } + } + break + } + return c | 0 + } + function Yd(a, b) { + var c = 0, + d = 0 + c = H[(a + 8) >> 2] + a = H[(a + 12) >> 2] + if ((c | 0) != (a | 0)) { + a = (a - c) >> 2 + d = a >>> 0 <= 1 ? 1 : a + a = 0 + while (1) { + if (H[(H[((a << 2) + c) >> 2] + 60) >> 2] == (b | 0)) { + return a + } + a = (a + 1) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + return -1 + } + function qj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 5580 + b = H[(a + 96) >> 2] + if (b) { + oa(b) + } + b = H[(a + 84) >> 2] + if (b) { + oa(b) + } + b = H[(a + 72) >> 2] + if (b) { + oa(b) + } + b = H[(a + 60) >> 2] + if (b) { + oa(b) + } + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + oa(a) + } + function Hj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 3564 + b = H[(a + 96) >> 2] + if (b) { + oa(b) + } + b = H[(a + 84) >> 2] + if (b) { + oa(b) + } + b = H[(a + 72) >> 2] + if (b) { + oa(b) + } + b = H[(a + 60) >> 2] + if (b) { + oa(b) + } + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + oa(a) + } + function $d(a, b, c) { + var d = 0, + e = 0 + d = (a + 4) | 0 + a = nb(a, b) + a: { + if ((d | 0) == (a | 0)) { + break a + } + b = H[(a + 32) >> 2] + d = H[(a + 28) >> 2] + if ((b | 0) == (d | 0)) { + break a + } + Cc(c, (b - d) | 0) + c = Dc(c) + b = H[(a + 28) >> 2] + qa(c, b, (H[(a + 32) >> 2] - b) | 0) + e = 1 + } + return e + } + function Qf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0 + e = (ca - 16) | 0 + ca = e + a = _(H[(a + 60) >> 2], b | 0, c | 0, d & 255, (e + 8) | 0) | 0 + if (a) { + H[3992] = a + a = -1 + } else { + a = 0 + } + ca = (e + 16) | 0 + da = a ? -1 : H[(e + 12) >> 2] + return (a ? -1 : H[(e + 8) >> 2]) | 0 + } + function Sd(a) { + var b = 0 + b = H[(a + 72) >> 2] + H[(a + 72) >> 2] = (b - 1) | b + b = H[a >> 2] + if (b & 8) { + H[a >> 2] = b | 32 + return -1 + } + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + b = H[(a + 44) >> 2] + H[(a + 28) >> 2] = b + H[(a + 20) >> 2] = b + H[(a + 16) >> 2] = b + H[(a + 48) >> 2] + return 0 + } + function Eb(a) { + H[(a + 8) >> 2] = 0 + H[(a + 12) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 40) >> 2] = 0 + H[(a + 44) >> 2] = 0 + H[(a + 28) >> 2] = 9 + F[(a + 24) | 0] = 1 + H[(a + 56) >> 2] = -1 + H[(a + 60) >> 2] = 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[(a + 48) >> 2] = 0 + H[(a + 52) >> 2] = 0 + return a + } + function hf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + d = H[(a + 16) >> 2] + c = 0 + a: { + if ((H[(a + 20) >> 2] - d) >> 2 <= (b | 0)) { + break a + } + b = H[((b << 2) + d) >> 2] + c = 0 + if ((b | 0) < 0) { + break a + } + c = rb(H[(H[(a + 36) >> 2] + (b << 2)) >> 2]) + } + return c | 0 + } + function Mg() { + var a = 0, + b = 0 + a = pa(40) + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[(a + 24) >> 2] = 0 + H[(a + 28) >> 2] = 0 + b = (a + 16) | 0 + H[b >> 2] = 0 + H[(b + 4) >> 2] = 0 + H[a >> 2] = a + 4 + H[(a + 12) >> 2] = b + H[(a + 32) >> 2] = 0 + H[(a + 36) >> 2] = 0 + return a | 0 + } + function Vf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + Wd(a, b) + a: { + if ((b | 0) < 0) { + break a + } + d = H[(a + 88) >> 2] + c = H[(a + 84) >> 2] + if ((d - c) >> 2 <= (b | 0)) { + break a + } + c = ((b << 2) + c) | 0 + b = (c + 4) | 0 + va(c, b, (d - b) | 0) + H[(a + 88) >> 2] = d - 4 + } + } + function Rh(a) { + a = a | 0 + var b = 0 + H[(a + 8) >> 2] = 12804 + H[a >> 2] = 12640 + b = H[(a + 56) >> 2] + if (b) { + H[(a + 60) >> 2] = b + oa(b) + } + H[(a + 8) >> 2] = 12620 + b = H[(a + 44) >> 2] + if (b) { + oa(b) + } + b = H[(a + 32) >> 2] + if (b) { + oa(b) + } + return a | 0 + } + function Lh(a) { + a = a | 0 + var b = 0 + H[(a + 8) >> 2] = 11872 + H[a >> 2] = 12932 + b = H[(a + 56) >> 2] + if (b) { + H[(a + 60) >> 2] = b + oa(b) + } + H[(a + 8) >> 2] = 12124 + b = H[(a + 44) >> 2] + if (b) { + oa(b) + } + b = H[(a + 32) >> 2] + if (b) { + oa(b) + } + return a | 0 + } + function zb(a) { + var b = 0, + c = 0 + b = H[3958] + c = (a + 7) & -8 + a = (b + c) | 0 + a: { + if (a >>> 0 <= b >>> 0 ? c : 0) { + break a + } + if (a >>> 0 > (fa() << 16) >>> 0) { + if (!($(a | 0) | 0)) { + break a + } + } + H[3958] = a + return b + } + H[3992] = 48 + return -1 + } + function bj(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0 + H[(a + 4) >> 2] = b + b = H[(H[(H[(b + 4) >> 2] + 8) >> 2] + (c << 2)) >> 2] + H[(a + 12) >> 2] = c + H[(a + 8) >> 2] = b + a = H[(a + 8) >> 2] + if (I[(a + 24) | 0] == 3) { + d = H[(a + 28) >> 2] == 9 + } + return d | 0 + } + function wf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = H[(a + 8) >> 2] + a: { + if (!I[(d + 24) | 0]) { + break a + } + if (!mb(d, (H[(b + 4) >> 2] - H[b >> 2]) >> 2)) { + break a + } + e = ea[H[(H[a >> 2] + 32) >> 2]](a, b, c) | 0 + } + return e | 0 + } + function Qh(a) { + a = a | 0 + var b = 0 + H[(a + 8) >> 2] = 12804 + H[a >> 2] = 12640 + b = H[(a + 56) >> 2] + if (b) { + H[(a + 60) >> 2] = b + oa(b) + } + H[(a + 8) >> 2] = 12620 + b = H[(a + 44) >> 2] + if (b) { + oa(b) + } + b = H[(a + 32) >> 2] + if (b) { + oa(b) + } + oa(a) + } + function Kh(a) { + a = a | 0 + var b = 0 + H[(a + 8) >> 2] = 11872 + H[a >> 2] = 12932 + b = H[(a + 56) >> 2] + if (b) { + H[(a + 60) >> 2] = b + oa(b) + } + H[(a + 8) >> 2] = 12124 + b = H[(a + 44) >> 2] + if (b) { + oa(b) + } + b = H[(a + 32) >> 2] + if (b) { + oa(b) + } + oa(a) + } + function nj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 5816 + b = H[(a + 76) >> 2] + if (b) { + oa(b) + } + b = H[(a + 68) >> 2] + H[(a + 68) >> 2] = 0 + if (b) { + oa(b) + } + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + return a | 0 + } + function Ra(a, b) { + if (b) { + Ra(a, H[b >> 2]) + Ra(a, H[(b + 4) >> 2]) + a = H[(b + 28) >> 2] + H[(b + 28) >> 2] = 0 + if (a) { + Ra((a + 12) | 0, H[(a + 16) >> 2]) + Qa(a, H[(a + 4) >> 2]) + oa(a) + } + if (F[(b + 27) | 0] < 0) { + oa(H[(b + 16) >> 2]) + } + oa(b) + } + } + function Gi(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0 + H[(a + 4) >> 2] = b + d = H[(H[(H[(b + 4) >> 2] + 8) >> 2] + (c << 2)) >> 2] + H[(a + 12) >> 2] = c + H[(a + 8) >> 2] = d + return ( + (H[ + (H[(H[(H[(b + 4) >> 2] + 8) >> 2] + (c << 2)) >> 2] + 28) >> + 2 + ] == + 9) | + 0 + ) + } + function Ej(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 3812 + b = H[(a + 76) >> 2] + if (b) { + oa(b) + } + b = H[(a + 68) >> 2] + H[(a + 68) >> 2] = 0 + if (b) { + oa(b) + } + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + return a | 0 + } + function Vc(a) { + H[(a + 40) >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = 13280 + H[(a + 12) >> 2] = 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[(a + 24) >> 2] = 0 + H[(a + 28) >> 2] = 0 + H[(a + 32) >> 2] = 0 + G[(a + 36) >> 1] = 0 + return a + } + function Hd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0 + H[a >> 2] = 15260 + H[a >> 2] = 15372 + c = Ma(b) + d = pa((c + 13) | 0) + H[(d + 8) >> 2] = 0 + H[(d + 4) >> 2] = c + H[d >> 2] = c + ;(e = a), + (f = qa((d + 12) | 0, b, (c + 1) | 0)), + (H[(e + 4) >> 2] = f) + return a + } + function jg(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + a: { + if (!(ea[H[(H[a >> 2] + 36) >> 2]](a, b) | 0)) { + break a + } + if (!(ea[H[(H[a >> 2] + 40) >> 2]](a, b) | 0)) { + break a + } + c = ea[H[(H[a >> 2] + 44) >> 2]](a) | 0 + } + return c | 0 + } + function mj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 5816 + b = H[(a + 76) >> 2] + if (b) { + oa(b) + } + b = H[(a + 68) >> 2] + H[(a + 68) >> 2] = 0 + if (b) { + oa(b) + } + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + oa(a) + } + function Dj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 3812 + b = H[(a + 76) >> 2] + if (b) { + oa(b) + } + b = H[(a + 68) >> 2] + H[(a + 68) >> 2] = 0 + if (b) { + oa(b) + } + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + oa(a) + } + function Xe(a) { + a = a | 0 + var b = 0 + a: { + if ( + !H[(a - -64) >> 2] | + !H[(a + 68) >> 2] | + (!H[(a + 44) >> 2] | !H[(a + 48) >> 2]) + ) { + break a + } + if (!H[(a + 52) >> 2] | !H[(a + 56) >> 2]) { + break a + } + b = H[(a + 92) >> 2] != -1 + } + return b | 0 + } + function cf(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 2448 + b = H[(a + 20) >> 2] + H[(a + 20) >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + H[a >> 2] = 2232 + b = H[(a + 16) >> 2] + H[(a + 16) >> 2] = 0 + if (b) { + Ga(b) + } + return a | 0 + } + function Pj(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + b = H[(b + 88) >> 2] + if (!(!b | (H[b >> 2] != 2))) { + c = a + a = H[(b + 8) >> 2] + H[(c + 4) >> 2] = + I[a | 0] | + (I[(a + 1) | 0] << 8) | + ((I[(a + 2) | 0] << 16) | (I[(a + 3) | 0] << 24)) + c = 1 + } + return c | 0 + } + function tc(a) { + a = a | 0 + var b = 0 + a: { + if ( + !H[(a + 48) >> 2] | + !H[(a + 52) >> 2] | + (!H[(a + 28) >> 2] | !H[(a + 32) >> 2]) + ) { + break a + } + if (!H[(a + 36) >> 2] | !H[(a + 40) >> 2]) { + break a + } + b = H[(a + 76) >> 2] != -1 + } + return b | 0 + } + function Sh(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 12804 + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + H[a >> 2] = 12620 + b = H[(a + 36) >> 2] + if (b) { + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + oa(b) + } + return a | 0 + } + function He(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 11872 + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + H[a >> 2] = 12124 + b = H[(a + 36) >> 2] + if (b) { + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + oa(b) + } + return a | 0 + } + function bf(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 2448 + b = H[(a + 20) >> 2] + H[(a + 20) >> 2] = 0 + if (b) { + ea[H[(H[b >> 2] + 4) >> 2]](b) + } + H[a >> 2] = 2232 + b = H[(a + 16) >> 2] + H[(a + 16) >> 2] = 0 + if (b) { + Ga(b) + } + oa(a) + } + function wh() { + var a = 0, + b = 0 + b = pa(40) + H[b >> 2] = -1 + a = (b + 8) | 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 24) >> 2] = 0 + H[(a + 28) >> 2] = 0 + return b | 0 + } + function gf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + d = H[(a + 4) >> 2] + a: { + if (d) { + c = 1 + if (I[(d + 36) | 0] < 2) { + break a + } + } + c = + ea[H[(H[a >> 2] + 48) >> 2]]( + a, + (H[(b + 4) >> 2] - H[b >> 2]) >> 2, + ) | 0 + } + return c | 0 + } + function ci(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 11872 + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + H[a >> 2] = 12124 + b = H[(a + 36) >> 2] + if (b) { + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + oa(b) + } + oa(a) + } + function Mh(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 12804 + b = H[(a + 48) >> 2] + if (b) { + H[(a + 52) >> 2] = b + oa(b) + } + H[a >> 2] = 12620 + b = H[(a + 36) >> 2] + if (b) { + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + oa(b) + } + oa(a) + } + function Ha(a) { + H[(a + 8) >> 2] = 0 + H[(a + 12) >> 2] = 0 + H[a >> 2] = 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[(a + 32) >> 2] = 0 + H[(a + 24) >> 2] = 0 + H[(a + 28) >> 2] = 0 + G[(a + 38) >> 1] = 0 + F[(a + 36) | 0] = 0 + return a + } + function Hf(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + if (Ya(a, H[(b + 8) >> 2], f)) { + Cd(b, c, d, e) + return + } + a = H[(a + 8) >> 2] + ea[H[(H[a >> 2] + 20) >> 2]](a, b, c, d, e, f) + } + function Ei(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + a: { + if (I[(H[(a + 4) >> 2] + 36) | 0] >= 2) { + b = 0 + if (!(ea[H[(H[a >> 2] + 52) >> 2]](a) | 0)) { + break a + } + } + b = Xc((a + 24) | 0, H[(a + 16) >> 2]) + } + return b | 0 + } + function Fi(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0 + a: { + if (I[(H[(a + 4) >> 2] + 36) | 0] <= 1) { + d = 0 + if (!(ea[H[(H[a >> 2] + 52) >> 2]](a) | 0)) { + break a + } + } + d = nd(a, b, c) + } + return d | 0 + } + function gh() { + var a = 0 + a = _d(pa(108)) + H[(a + 84) >> 2] = 0 + H[(a + 88) >> 2] = 0 + H[a >> 2] = 13664 + H[(a + 92) >> 2] = 0 + H[(a + 96) >> 2] = 0 + H[(a + 100) >> 2] = 0 + H[(a + 104) >> 2] = 0 + return a | 0 + } + function Zd(a, b) { + var c = 0 + c = -1 + a: { + if (((b | 0) == -1) | ((b | 0) > 4)) { + break a + } + b = (N(b, 12) + a) | 0 + a = H[(b + 20) >> 2] + if (((H[(b + 24) >> 2] - a) | 0) <= 0) { + break a + } + c = H[a >> 2] + } + return c + } + function lc(a, b, c, d, e, f, g) { + H[a >> 2] = 0 + H[(a + 56) >> 2] = b + H[(a + 48) >> 2] = 0 + H[(a + 52) >> 2] = 0 + H[(a + 40) >> 2] = f + H[(a + 44) >> 2] = g + F[(a + 32) | 0] = e + H[(a + 28) >> 2] = d + F[(a + 24) | 0] = c + } + function aj(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0 + a: { + if (I[(H[(a + 4) >> 2] + 36) | 0] <= 1) { + d = 0 + if (!xc((a + 24) | 0, H[(a + 8) >> 2], c)) { + break a + } + } + d = nd(a, b, c) + } + return d | 0 + } + function $i(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + a: { + if (I[(H[(a + 4) >> 2] + 36) | 0] >= 2) { + b = 0 + if (!xc((a + 24) | 0, rb(a), c)) { + break a + } + } + b = Xc((a + 24) | 0, H[(a + 16) >> 2]) + } + return b | 0 + } + function Yf(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 13664 + b = H[(a + 96) >> 2] + if (b) { + H[(a + 100) >> 2] = b + oa(b) + } + b = H[(a + 84) >> 2] + if (b) { + H[(a + 88) >> 2] = b + oa(b) + } + return _b(a) | 0 + } + function Dc(a) { + var b = 0 + if ((I[(a + 11) | 0] >>> 7) | 0) { + b = H[(a + 4) >> 2] + } else { + b = I[(a + 11) | 0] & 127 + } + if (!b) { + af(1232) + v() + } + if ((I[(a + 11) | 0] >>> 7) | 0) { + a = H[a >> 2] + } + return a + } + function Xf(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 13664 + b = H[(a + 96) >> 2] + if (b) { + H[(a + 100) >> 2] = b + oa(b) + } + b = H[(a + 84) >> 2] + if (b) { + H[(a + 88) >> 2] = b + oa(b) + } + oa(_b(a)) + } + function zj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 4040 + b = H[(a + 76) >> 2] + if (b) { + oa(b) + } + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + return a | 0 + } + function jj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 6032 + b = H[(a + 76) >> 2] + if (b) { + oa(b) + } + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + return a | 0 + } + function Qa(a, b) { + if (b) { + Qa(a, H[b >> 2]) + Qa(a, H[(b + 4) >> 2]) + a = H[(b + 28) >> 2] + if (a) { + H[(b + 32) >> 2] = a + oa(a) + } + if (F[(b + 27) | 0] < 0) { + oa(H[(b + 16) >> 2]) + } + oa(b) + } + } + function Vg() { + var a = 0 + a = pa(28) + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 24) >> 2] = 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[(a + 8) >> 2] = 0 + H[(a + 12) >> 2] = 0 + return a | 0 + } + function wg(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 1984 + b = H[(a + 16) >> 2] + if (b) { + H[(a + 20) >> 2] = b + oa(b) + } + b = H[(a + 4) >> 2] + if (b) { + H[(a + 8) >> 2] = b + oa(b) + } + return a | 0 + } + function eh() { + var a = 0, + b = 0 + a = pa(24) + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + b = (a + 16) | 0 + H[b >> 2] = 0 + H[(b + 4) >> 2] = 0 + H[a >> 2] = a + 4 + H[(a + 12) >> 2] = b + return a | 0 + } + function Kf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + if (Ya(a, H[(b + 8) >> 2], 0)) { + Dd(b, c, d) + return + } + a = H[(a + 8) >> 2] + ea[H[(H[a >> 2] + 28) >> 2]](a, b, c, d) + } + function yj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 4040 + b = H[(a + 76) >> 2] + if (b) { + oa(b) + } + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + oa(a) + } + function ij(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 6032 + b = H[(a + 76) >> 2] + if (b) { + oa(b) + } + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + oa(a) + } + function pa(a) { + var b = 0 + a = a ? a : 1 + a: { + while (1) { + b = Ec(a) + if (b) { + break a + } + b = H[4422] + if (b) { + ea[b | 0]() + continue + } + break + } + X() + v() + } + return b + } + function Kb(a, b) { + if (b) { + Kb(a, H[b >> 2]) + Kb(a, H[(b + 4) >> 2]) + if (F[(b + 39) | 0] < 0) { + oa(H[(b + 28) >> 2]) + } + if (F[(b + 27) | 0] < 0) { + oa(H[(b + 16) >> 2]) + } + oa(b) + } + } + function Ad(a) { + a = a | 0 + var b = 0, + c = 0 + H[a >> 2] = 15372 + b = (H[(a + 4) >> 2] - 12) | 0 + c = (H[(b + 8) >> 2] - 1) | 0 + H[(b + 8) >> 2] = c + if ((c | 0) < 0) { + oa(b) + } + return a | 0 + } + function lh() { + var a = 0 + a = pa(24) + H[(a + 8) >> 2] = 0 + H[(a + 12) >> 2] = 0 + H[(a + 4) >> 2] = -1 + H[a >> 2] = 1832 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + return a | 0 + } + function pd(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + H[(a + 4) >> 2] = b + b = H[(H[(H[(b + 4) >> 2] + 8) >> 2] + (c << 2)) >> 2] + H[(a + 12) >> 2] = c + H[(a + 8) >> 2] = b + return 1 + } + function wc(a) { + a = a | 0 + var b = 0 + if ( + !( + !H[(a + 60) >> 2] | + !H[(a + 44) >> 2] | + (!H[(a + 48) >> 2] | !H[(a + 52) >> 2]) + ) + ) { + b = H[(a + 56) >> 2] != 0 + } + return b | 0 + } + function Id(a, b) { + if ((I[(a + 11) | 0] >>> 7) | 0) { + H[(a + 4) >> 2] = b + return + } + F[(a + 11) | 0] = (I[(a + 11) | 0] & 128) | b + F[(a + 11) | 0] = I[(a + 11) | 0] & 127 + } + function wj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 4276 + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + return a | 0 + } + function fj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 6256 + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + return a | 0 + } + function bi(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 12124 + b = H[(a + 36) >> 2] + if (b) { + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + oa(b) + } + return a | 0 + } + function Uh(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 12620 + b = H[(a + 36) >> 2] + if (b) { + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + oa(b) + } + return a | 0 + } + function lg(a) { + a = a | 0 + if (a) { + if (F[(a + 39) | 0] < 0) { + oa(H[(a + 28) >> 2]) + } + Oc((a + 12) | 0, H[(a + 16) >> 2]) + Kb(a, H[(a + 4) >> 2]) + oa(a) + } + } + function Pb(a) { + a = a | 0 + var b = 0 + if ( + !(!H[(a + 52) >> 2] | (!H[(a + 44) >> 2] | !H[(a + 48) >> 2])) + ) { + b = H[(a + 56) >> 2] != 0 + } + return b | 0 + } + function vj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 4276 + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + oa(a) + } + function vc(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (!(H[(b + 56) >> 2] | !b | (I[(b + 24) | 0] != 3))) { + H[(a + 60) >> 2] = b + c = 1 + } + return c | 0 + } + function ej(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 6256 + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + oa(a) + } + function ai(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 12124 + b = H[(a + 36) >> 2] + if (b) { + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + oa(b) + } + oa(a) + } + function Th(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 12620 + b = H[(a + 36) >> 2] + if (b) { + oa(b) + } + b = H[(a + 24) >> 2] + if (b) { + oa(b) + } + oa(a) + } + function xh(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + H[(a + 16) >> 2] = 0 + H[(a + 20) >> 2] = 0 + H[a >> 2] = b + H[(a + 8) >> 2] = c + H[(a + 12) >> 2] = 0 + } + function We(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (!(H[(b + 56) >> 2] | (I[(b + 24) | 0] != 3))) { + H[(a - -64) >> 2] = b + c = 1 + } + return c | 0 + } + function yc(a) { + var b = 0 + b = H[(a + 16) >> 2] + if (b) { + H[(a + 20) >> 2] = b + oa(b) + } + b = H[a >> 2] + if (b) { + H[(a + 4) >> 2] = b + oa(b) + } + } + function sc(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (!(H[(b + 56) >> 2] | (I[(b + 24) | 0] != 3))) { + H[(a + 48) >> 2] = b + c = 1 + } + return c | 0 + } + function Gf(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + if (Ya(a, H[(b + 8) >> 2], f)) { + Cd(b, c, d, e) + } + } + function wa() { + var a = 0 + a = Bc(4) + H[a >> 2] = 15260 + H[a >> 2] = 15220 + H[a >> 2] = 15240 + Y(a | 0, 15352, 14) + v() + } + function sf(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 2232 + b = H[(a + 16) >> 2] + H[(a + 16) >> 2] = 0 + if (b) { + Ga(b) + } + return a | 0 + } + function Kj(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + return a | 0 + } + function mi(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 1832 + b = H[(a + 8) >> 2] + if (b) { + H[(a + 12) >> 2] = b + oa(b) + } + return a | 0 + } + function Ci(a) { + a = a | 0 + var b = 0 + b = rb(a) + return ( + Je( + (a + 24) | 0, + b ? b : H[(a + 8) >> 2], + H[(H[(a + 4) >> 2] + 32) >> 2], + ) | 0 + ) + } + function rf(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 2232 + b = H[(a + 16) >> 2] + H[(a + 16) >> 2] = 0 + if (b) { + Ga(b) + } + oa(a) + } + function ji(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 1832 + b = H[(a + 8) >> 2] + if (b) { + H[(a + 12) >> 2] = b + oa(b) + } + oa(a) + } + function Ub(a) { + a = a | 0 + var b = 0 + H[a >> 2] = 3272 + b = H[(a + 32) >> 2] + if (b) { + H[(a + 36) >> 2] = b + oa(b) + } + oa(a) + } + function Za(a) { + var b = 0 + H[(a + 16) >> 2] = 0 + b = H[a >> 2] + H[(a + 4) >> 2] = b + H[(a + 12) >> 2] = b + if (b) { + oa(b) + } + } + function Oc(a, b) { + if (b) { + Oc(a, H[b >> 2]) + Oc(a, H[(b + 4) >> 2]) + Kb((b + 20) | 0, H[(b + 24) >> 2]) + oa(b) + } + } + function wi(a) { + a = a | 0 + if (!H[(a + 44) >> 2]) { + return 0 + } + return ea[H[(H[a >> 2] + 48) >> 2]](a) | 0 + } + function vh(a) { + a = a | 0 + var b = 0 + if (a) { + b = H[(a + 8) >> 2] + if (b) { + H[(a + 12) >> 2] = b + oa(b) + } + oa(a) + } + } + function Uj(a) { + var b = 0 + while (1) { + if (a) { + a = (a - 1) & a + b = (b + 1) | 0 + continue + } + break + } + return b + } + function Lf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + if (Ya(a, H[(b + 8) >> 2], 0)) { + Dd(b, c, d) + } + } + function ui(a, b) { + a = a | 0 + b = b | 0 + a = H[(a + 48) >> 2] + return ea[H[(H[a >> 2] + 20) >> 2]](a, b) | 0 + } + function ni(a, b) { + a = a | 0 + b = b | 0 + a = H[(a + 48) >> 2] + return ea[H[(H[a >> 2] + 12) >> 2]](a, b) | 0 + } + function li(a, b) { + a = a | 0 + b = b | 0 + a = H[(a + 48) >> 2] + return ea[H[(H[a >> 2] + 16) >> 2]](a, b) | 0 + } + function lb() { + var a = 0 + a = pa(12) + H[a >> 2] = 0 + H[(a + 4) >> 2] = 0 + H[(a + 8) >> 2] = 0 + return a | 0 + } + function kb(a) { + a = a | 0 + var b = 0 + if (a) { + b = H[a >> 2] + if (b) { + H[(a + 4) >> 2] = b + oa(b) + } + oa(a) + } + } + function Vj(a) { + var b = 0 + b = a & 31 + a = (0 - a) & 31 + return (((-1 >>> b) & -2) << b) | (((-1 << a) & -2) >>> a) + } + function dh(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + H[(a + 32) >> 2] = c + H[(a + 28) >> 2] = b + return 1 + } + function ch(a) { + a = a | 0 + if (a) { + Ra((a + 12) | 0, H[(a + 16) >> 2]) + Qa(a, H[(a + 4) >> 2]) + oa(a) + } + } + function Rd(a, b, c) { + a: { + if (H[(c + 76) >> 2] < 0) { + a = Fc(a, b, c) + break a + } + a = Fc(a, b, c) + } + } + function Mb(a, b) { + a = a | 0 + b = b | 0 + if (b >>> 0 <= 1) { + H[(a + 28) >> 2] = b + } + return (b >>> 0 < 2) | 0 + } + function Fh(a, b) { + a = a | 0 + b = b | 0 + F[(b + 84) | 0] = 1 + H[(b + 72) >> 2] = H[(b + 68) >> 2] + return 1 + } + function si(a) { + a = a | 0 + a = H[(a + 48) >> 2] + return ea[H[(H[a >> 2] + 24) >> 2]](a) | 0 + } + function ri(a) { + a = a | 0 + a = H[(a + 48) >> 2] + return ea[H[(H[a >> 2] + 28) >> 2]](a) | 0 + } + function oi(a) { + a = a | 0 + a = H[(a + 48) >> 2] + return ea[H[(H[a >> 2] + 36) >> 2]](a) | 0 + } + function ih() { + var a = 0 + a = pa(8) + H[(a + 4) >> 2] = -1 + H[a >> 2] = 1032 + return a | 0 + } + function Gg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return H[(H[(b + 8) >> 2] + (c << 2)) >> 2] + } + function _i(a, b) { + a = a | 0 + b = b | 0 + return Fd((a + 24) | 0, rb(a), H[(a + 8) >> 2]) | 0 + } + function Bi(a, b) { + a = a | 0 + b = b | 0 + return Re((a + 24) | 0, rb(a), H[(a + 8) >> 2]) | 0 + } + function xf(a, b) { + a = a | 0 + b = b | 0 + H[(a + 12) >> 2] = -1 + H[(a + 8) >> 2] = b + return 1 + } + function ne(a, b) { + a = a | 0 + b = b | 0 + return ea[H[(H[a >> 2] + 12) >> 2]](a, b) | 0 + } + function Ff(a) { + a = a | 0 + if (!a) { + return 0 + } + return ((Ed(a, 15068) | 0) != 0) | 0 + } + function Di(a, b) { + a = a | 0 + b = b | 0 + return ea[H[(H[a >> 2] + 56) >> 2]](a, b) | 0 + } + function $g(a) { + a = a | 0 + if (a) { + if (F[(a + 15) | 0] < 0) { + oa(H[(a + 4) >> 2]) + } + oa(a) + } + } + function kh(a, b) { + a = a | 0 + b = b | 0 + return O(L[(H[(a + 8) >> 2] + (b << 2)) >> 2]) + } + function af(a) { + a = Hd(Bc(8), a) + H[a >> 2] = 15472 + Y(a | 0, 15504, 1) + v() + } + function Ue(a) { + a = Hd(Bc(8), a) + H[a >> 2] = 15420 + Y(a | 0, 15452, 1) + v() + } + function _g(a, b) { + a = a | 0 + b = b | 0 + return O(L[(H[a >> 2] + (b << 2)) >> 2]) + } + function fh(a) { + a = a | 0 + return (((H[(a + 100) >> 2] - H[(a + 96) >> 2]) | 0) / 12) | 0 + } + function ah(a) { + a = a | 0 + return (F[(a + 15) | 0] < 0 ? H[(a + 4) >> 2] : (a + 4) | 0) | 0 + } + function _f(a, b) { + a = a | 0 + b = b | 0 + return H[(H[(a + 4) >> 2] + (b << 2)) >> 2] + } + function Pf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + da = 0 + return 0 + } + function Ke(a) { + a = Vc(a) + H[(a + 44) >> 2] = 0 + H[a >> 2] = 11180 + return a + } + function ie(a, b) { + a = a | 0 + b = b | 0 + return H[(H[a >> 2] + (b << 2)) >> 2] + } + function Xg(a, b) { + a = a | 0 + b = b | 0 + return G[(H[a >> 2] + (b << 1)) >> 1] + } + function Wg(a, b) { + a = a | 0 + b = b | 0 + return J[(H[a >> 2] + (b << 1)) >> 1] + } + function Zb(a, b) { + var c = 0 + c = pa(b) + H[(a + 4) >> 2] = b + H[a >> 2] = c + } + function Jg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return Zd(b, c) | 0 + } + function _d(a) { + H[a >> 2] = 13724 + ra((a + 4) | 0, 0, 80) + return a + } + function me(a) { + a = a | 0 + return (H[(a + 12) >> 2] - H[(a + 8) >> 2]) >> 2 + } + function Qj(a) { + if (a) { + return (31 - Q((a - 1) ^ a)) | 0 + } + return 32 + } + function cc(a) { + a = a | 0 + if (a) { + ea[H[(H[a >> 2] + 4) >> 2]](a) + } + } + function Zg(a, b) { + a = a | 0 + b = b | 0 + return F[(H[a >> 2] + b) | 0] + } + function Yg(a, b) { + a = a | 0 + b = b | 0 + return I[(H[a >> 2] + b) | 0] + } + function Uf(a) { + a = a | 0 + return (H[(a + 8) >> 2] - H[(a + 4) >> 2]) >> 2 + } + function jd(a, b) { + a = a | 0 + b = b | 0 + H[(a + 4) >> 2] = b + return 1 + } + function je(a) { + a = a | 0 + return (H[(a + 4) >> 2] - H[a >> 2]) >> 1 + } + function Qc(a) { + a = a | 0 + return (H[(a + 4) >> 2] - H[a >> 2]) >> 2 + } + function le(a) { + a = a | 0 + return (H[(a + 4) >> 2] - H[a >> 2]) | 0 + } + function Ab(a, b, c) { + if (!(I[a | 0] & 32)) { + Fc(b, c, a) + } + } + function vf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return 1 + } + function hi(a, b) { + a = a | 0 + b = b | 0 + return I[(b + 24) | 0] + } + function Pg(a, b) { + a = a | 0 + b = b | 0 + return H[(b + 8) >> 2] + } + function Nj(a) { + a = a | 0 + return I[(H[(a + 8) >> 2] + 24) | 0] + } + function Li(a) { + a = a | 0 + H[a >> 2] = 10032 + return a | 0 + } + function Eg(a, b) { + a = a | 0 + b = b | 0 + return H[(b + 4) >> 2] + } + function Yi(a) { + a = a | 0 + H[a >> 2] = 7144 + return a | 0 + } + function Ui(a) { + a = a | 0 + H[a >> 2] = 8080 + return a | 0 + } + function Sf(a) { + a = a | 0 + return aa(H[(a + 60) >> 2]) | 0 + } + function Pi(a) { + a = a | 0 + H[a >> 2] = 9028 + return a | 0 + } + function jh(a) { + a = a | 0 + return O(L[(a + 20) >> 2]) + } + function Ji(a) { + a = a | 0 + H[a >> 2] = 10032 + oa(a) + } + function Xi(a) { + a = a | 0 + H[a >> 2] = 7144 + oa(a) + } + function Si(a) { + a = a | 0 + H[a >> 2] = 8080 + oa(a) + } + function Oi(a) { + a = a | 0 + H[a >> 2] = 9028 + oa(a) + } + function sh(a) { + a = a | 0 + return H[(a + 88) >> 2] + } + function rh(a) { + a = a | 0 + return H[(a + 56) >> 2] + } + function oh(a) { + a = a | 0 + return H[(a + 40) >> 2] + } + function nh(a) { + a = a | 0 + return H[(a + 48) >> 2] + } + function mh(a) { + a = a | 0 + return H[(a + 60) >> 2] + } + function eb(a) { + a = a | 0 + return H[(a + 28) >> 2] + } + function df() { + H[4292] = 17048 + H[4274] = 42 + } + function Rc(a) { + a = a | 0 + return H[(a + 80) >> 2] + } + function qh(a) { + a = a | 0 + return F[(a + 24) | 0] + } + function ph(a) { + a = a | 0 + return I[(a + 32) | 0] + } + function md(a, b) { + a = a | 0 + b = b | 0 + return -1 + } + function db(a) { + a = a | 0 + return H[(a + 4) >> 2] + } + function bh(a) { + a = a | 0 + return !H[a >> 2] | 0 + } + function _e(a, b) { + a = a | 0 + b = b | 0 + return 6 + } + function Zc(a) { + a = a | 0 + return H[(a + 8) >> 2] + } + function Pd(a, b) { + a = a | 0 + b = b | 0 + return 1 + } + function Ja(a, b) { + a = a | 0 + b = b | 0 + return 0 + } + function Bj(a, b) { + a = a | 0 + b = b | 0 + return 2 + } + function Bc(a) { + return (Ec((a + 80) | 0) + 80) | 0 + } + function pe(a) { + a = a | 0 + return H[a >> 2] + } + function yh() { + return Ha(pa(40)) | 0 + } + function uh() { + return Eb(pa(64)) | 0 + } + function hh() { + return _d(pa(84)) | 0 + } + function Sc(a) { + a = a | 0 + if (a) { + oa(a) + } + } + function zc(a) { + a = a | 0 + Ad(a) + oa(a) + } + function Ef(a) { + a = a | 0 + return 1171 + } + function Df(a) { + a = a | 0 + return 1245 + } + function Cf(a) { + a = a | 0 + return 1211 + } + function Ta(a) { + a = a | 0 + return a | 0 + } + function yf(a) { + a = a | 0 + oa(rd(a)) + } + function fi(a) { + a = a | 0 + oa(Be(a)) + } + function ei(a) { + a = a | 0 + oa(Ae(a)) + } + function di(a) { + a = a | 0 + oa(ze(a)) + } + function Tf(a) { + a = a | 0 + oa(_b(a)) + } + function ld(a) { + a = a | 0 + return 3 + } + function _a(a) { + a = a | 0 + return 0 + } + function Ze(a) { + a = a | 0 + return 5 + } + function Tb(a) { + a = a | 0 + return 2 + } + function Ob(a) { + a = a | 0 + return 6 + } + function Da(a) { + a = a | 0 + return 1 + } + function $e(a) { + a = a | 0 + return 4 + } + function sa() { + Ue(1164) + v() + } + function Na() { + Ue(1232) + v() + } + function La(a) { + a = a | 0 + oa(a) + } + function Ca() { + af(1164) + v() + } + function fb(a) { + a = a | 0 + v() + } + function eg() { + return 10 + } + function dg() { + return 11 + } + function cg() { + return 12 + } + function kg() { + return 5 + } + function ig() { + return 6 + } + function hg() { + return 7 + } + function gg() { + return 8 + } + function fg() { + return 9 + } + function fe() { + return 3 + } + function ee() { + return 4 + } + function bg() { + return -2 + } + function bc() { + return -1 + } + function ag() { + return -3 + } + function ac() { + return 1 + } + function Zf() { + return -5 + } + function Qb() { + return 0 + } + function Nc() { + return 2 + } + function $f() { + return -4 + } + function Nf() { + X() + v() + } + function Td(a) { + a = a | 0 + } + // EMSCRIPTEN_END_FUNCS + e = I + p(q) + var ea = c([ + null, + Ad, + Ta, + La, + Tb, + Pj, + zi, + Gh, + Fd, + Bf, + xc, + Nh, + _e, + Bj, + Ta, + mi, + ji, + Da, + gj, + Ti, + Ki, + Re, + xi, + Je, + _e, + hi, + wg, + fb, + dh, + ke, + jg, + _f, + Uf, + eb, + Ja, + Nf, + Pd, + Da, + rd, + yf, + Of, + Af, + zf, + sf, + rf, + pd, + xf, + wf, + vf, + Pd, + uf, + tf, + kf, + jf, + qf, + pf, + hf, + of, + nf, + mf, + lf, + cf, + bf, + pd, + gf, + ff, + nd, + ef, + Nj, + Oj, + Kj, + Ub, + Da, + db, + Pb, + _a, + md, + Ja, + _a, + Da, + Mj, + Lj, + fb, + fb, + Ub, + Tb, + Pb, + Jj, + Ij, + Hj, + $e, + Pb, + Gj, + Fj, + Ej, + Dj, + ld, + wc, + Da, + Ja, + vc, + Cj, + Aj, + zj, + yj, + Ze, + wc, + Da, + Ja, + vc, + Ye, + xj, + wj, + vj, + Ob, + Xe, + Da, + Ja, + We, + Ve, + uj, + Ta, + La, + Mb, + eb, + Nb, + fb, + Ub, + Da, + Pb, + tj, + fb, + Ub, + Tb, + Pb, + sj, + rj, + qj, + $e, + Pb, + pj, + oj, + nj, + mj, + ld, + wc, + Da, + Ja, + vc, + lj, + kj, + jj, + ij, + Ze, + wc, + Da, + Ja, + vc, + Ye, + hj, + fj, + ej, + Ob, + Xe, + Da, + Ja, + We, + Ve, + dj, + Ta, + La, + Mb, + eb, + Lb, + fb, + Ub, + _a, + Da, + cj, + cf, + bf, + bj, + $i, + aj, + Zi, + Tb, + _i, + Yi, + Xi, + Ob, + db, + tc, + Da, + Ja, + sc, + Da, + Tb, + Te, + Wi, + Ta, + La, + Mb, + eb, + Nb, + Ui, + Si, + Ob, + tc, + Da, + Ja, + sc, + Te, + Ri, + Ta, + La, + Mb, + eb, + Lb, + Ta, + La, + _a, + Da, + _a, + md, + Ja, + Vi, + Qi, + Pi, + Oi, + Ob, + db, + tc, + Da, + Ja, + sc, + Da, + ld, + Se, + Ni, + Ta, + La, + Mb, + eb, + Nb, + Li, + Ji, + Ob, + tc, + Da, + Ja, + sc, + Se, + Ii, + Ta, + La, + Mb, + eb, + Lb, + La, + _a, + Da, + _a, + md, + Ja, + Mi, + Hi, + Ai, + yi, + Gi, + Ei, + Fi, + Di, + Ci, + Bi, + vi, + fb, + Da, + Da, + wi, + Dh, + Ch, + Da, + _a, + Ja, + Ja, + qi, + pi, + ti, + ui, + ri, + oi, + ni, + li, + si, + Be, + fi, + jd, + id, + hd, + gd, + ki, + Da, + db, + Zc, + Ae, + ei, + jd, + id, + hd, + gd, + ii, + Da, + db, + Zc, + ze, + di, + jd, + id, + hd, + gd, + gi, + Da, + db, + Zc, + He, + ci, + Ie, + bi, + ai, + Zh, + Yh, + Xh, + Wh, + _h, + Vh, + $h, + Uh, + Th, + Rh, + Qh, + Ph, + Oh, + Sh, + Mh, + Lh, + Kh, + Jh, + Ih, + Wc, + ve, + Hh, + Ta, + La, + Fh, + Eh, + fb, + _a, + Da, + Wc, + Ah, + Bh, + Wc, + ve, + zh, + Yf, + Xf, + Wf, + Vf, + _b, + Tf, + Xd, + Wd, + Sf, + Rf, + Qf, + _a, + Pf, + Ta, + La, + Td, + Td, + Mf, + Gf, + If, + Lf, + La, + Hf, + Jf, + Kf, + La, + Df, + La, + Cf, + La, + Ef, + zc, + db, + zc, + zc, + ]) + function fa() { + return (E.byteLength / 65536) | 0 + } + function ka(la) { + la = la | 0 + var ga = fa() | 0 + var ha = (ga + la) | 0 + if (ga < ha && ha < 65536) { + var ia = new ArrayBuffer(N(ha, 65536)) + var ja = new Int8Array(ia) + ja.set(F) + F = new Int8Array(ia) + G = new Int16Array(ia) + H = new Int32Array(ia) + I = new Uint8Array(ia) + J = new Uint16Array(ia) + K = new Uint32Array(ia) + L = new Float32Array(ia) + M = new Float64Array(ia) + E = ia + D.buffer = E + e = I + } + return ga + } + return { + i: df, + j: ea, + k: Sc, + l: yh, + m: xh, + n: Sc, + o: wh, + p: pe, + q: vh, + r: uh, + s: Sc, + t: th, + u: Rc, + v: sh, + w: rh, + x: eb, + y: qh, + z: ph, + A: oh, + B: nh, + C: mh, + D: Ga, + E: lh, + F: ne, + G: db, + H: kh, + I: jh, + J: cc, + K: ih, + L: ne, + M: db, + N: cc, + O: hh, + P: me, + Q: Rc, + R: cc, + S: gh, + T: fh, + U: me, + V: Rc, + W: cc, + X: eh, + Y: ch, + Z: pe, + _: bh, + $: ah, + aa: $g, + ba: lb, + ca: _g, + da: Qc, + ea: kb, + fa: lb, + ga: Zg, + ha: le, + ia: kb, + ja: lb, + ka: Yg, + la: le, + ma: kb, + na: lb, + oa: Xg, + pa: je, + qa: kb, + ra: lb, + sa: Wg, + ta: je, + ua: kb, + va: lb, + wa: ie, + xa: Qc, + ya: kb, + za: lb, + Aa: ie, + Ba: Qc, + Ca: kb, + Da: Vg, + Ea: Ug, + Fa: Tg, + Ga: Sg, + Ha: Rg, + Ia: Qg, + Ja: Pg, + Ka: Og, + La: Ng, + Ma: Mg, + Na: Lg, + Oa: Kg, + Pa: Jg, + Qa: Ig, + Ra: Hg, + Sa: Gg, + Ta: Fg, + Ua: Eg, + Va: Dg, + Wa: Cg, + Xa: Bg, + Ya: Ag, + Za: zg, + _a: yg, + $a: xg, + ab: ge, + bb: vg, + cb: ug, + db: tg, + eb: sg, + fb: ge, + gb: rg, + hb: qg, + ib: pg, + jb: og, + kb: ng, + lb: mg, + mb: lg, + nb: bc, + ob: Qb, + pb: ac, + qb: Nc, + rb: bc, + sb: Qb, + tb: ac, + ub: Nc, + vb: fe, + wb: ee, + xb: bc, + yb: Qb, + zb: ac, + Ab: Qb, + Bb: ac, + Cb: Nc, + Db: fe, + Eb: ee, + Fb: kg, + Gb: ig, + Hb: hg, + Ib: gg, + Jb: fg, + Kb: eg, + Lb: dg, + Mb: cg, + Nb: Qb, + Ob: bc, + Pb: bg, + Qb: ag, + Rb: $f, + Sb: Zf, + Tb: Ec, + Ub: oa, + Vb: Ff, + } + } + return ma(na) + })( + // EMSCRIPTEN_END_ASM + info, + ) + }, + instantiate: function (binary, info) { + return { + then: function (ok) { + var module = new WebAssembly.Module(binary) + ok({ instance: new WebAssembly.Instance(module, info) }) + }, + } + }, + RuntimeError: Error, + } + wasmBinary = [] + if (typeof WebAssembly != 'object') { + abort('no native wasm support detected') + } + var wasmMemory + var ABORT = false + var EXITSTATUS + function assert(condition, text) { + if (!condition) { + abort(text) + } + } + var UTF8Decoder = + typeof TextDecoder != 'undefined' ? new TextDecoder('utf8') : undefined + function UTF8ArrayToString(heapOrArray, idx, maxBytesToRead) { + var endIdx = idx + maxBytesToRead + var endPtr = idx + while (heapOrArray[endPtr] && !(endPtr >= endIdx)) ++endPtr + if (endPtr - idx > 16 && heapOrArray.buffer && UTF8Decoder) { + return UTF8Decoder.decode(heapOrArray.subarray(idx, endPtr)) + } + var str = '' + while (idx < endPtr) { + var u0 = heapOrArray[idx++] + if (!(u0 & 128)) { + str += String.fromCharCode(u0) + continue + } + var u1 = heapOrArray[idx++] & 63 + if ((u0 & 224) == 192) { + str += String.fromCharCode(((u0 & 31) << 6) | u1) + continue + } + var u2 = heapOrArray[idx++] & 63 + if ((u0 & 240) == 224) { + u0 = ((u0 & 15) << 12) | (u1 << 6) | u2 + } else { + u0 = + ((u0 & 7) << 18) | + (u1 << 12) | + (u2 << 6) | + (heapOrArray[idx++] & 63) + } + if (u0 < 65536) { + str += String.fromCharCode(u0) + } else { + var ch = u0 - 65536 + str += String.fromCharCode(55296 | (ch >> 10), 56320 | (ch & 1023)) + } + } + return str + } + function UTF8ToString(ptr, maxBytesToRead) { + return ptr ? UTF8ArrayToString(HEAPU8, ptr, maxBytesToRead) : '' + } + function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) { + if (!(maxBytesToWrite > 0)) return 0 + var startIdx = outIdx + var endIdx = outIdx + maxBytesToWrite - 1 + for (var i = 0; i < str.length; ++i) { + var u = str.charCodeAt(i) + if (u >= 55296 && u <= 57343) { + var u1 = str.charCodeAt(++i) + u = (65536 + ((u & 1023) << 10)) | (u1 & 1023) + } + if (u <= 127) { + if (outIdx >= endIdx) break + heap[outIdx++] = u + } else if (u <= 2047) { + if (outIdx + 1 >= endIdx) break + heap[outIdx++] = 192 | (u >> 6) + heap[outIdx++] = 128 | (u & 63) + } else if (u <= 65535) { + if (outIdx + 2 >= endIdx) break + heap[outIdx++] = 224 | (u >> 12) + heap[outIdx++] = 128 | ((u >> 6) & 63) + heap[outIdx++] = 128 | (u & 63) + } else { + if (outIdx + 3 >= endIdx) break + heap[outIdx++] = 240 | (u >> 18) + heap[outIdx++] = 128 | ((u >> 12) & 63) + heap[outIdx++] = 128 | ((u >> 6) & 63) + heap[outIdx++] = 128 | (u & 63) + } + } + heap[outIdx] = 0 + return outIdx - startIdx + } + function lengthBytesUTF8(str) { + var len = 0 + for (var i = 0; i < str.length; ++i) { + var c = str.charCodeAt(i) + if (c <= 127) { + len++ + } else if (c <= 2047) { + len += 2 + } else if (c >= 55296 && c <= 57343) { + len += 4 + ++i + } else { + len += 3 + } + } + return len + } + var HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64 + function updateMemoryViews() { + var b = wasmMemory.buffer + Module['HEAP8'] = HEAP8 = new Int8Array(b) + Module['HEAP16'] = HEAP16 = new Int16Array(b) + Module['HEAP32'] = HEAP32 = new Int32Array(b) + Module['HEAPU8'] = HEAPU8 = new Uint8Array(b) + Module['HEAPU16'] = HEAPU16 = new Uint16Array(b) + Module['HEAPU32'] = HEAPU32 = new Uint32Array(b) + Module['HEAPF32'] = HEAPF32 = new Float32Array(b) + Module['HEAPF64'] = HEAPF64 = new Float64Array(b) + } + var INITIAL_MEMORY = Module['INITIAL_MEMORY'] || 16777216 + assert( + INITIAL_MEMORY >= 65536, + 'INITIAL_MEMORY should be larger than STACK_SIZE, was ' + + INITIAL_MEMORY + + '! (STACK_SIZE=' + + 65536 + + ')', + ) + if (Module['wasmMemory']) { + wasmMemory = Module['wasmMemory'] + } else { + wasmMemory = new WebAssembly.Memory({ + initial: INITIAL_MEMORY / 65536, + maximum: 2147483648 / 65536, + }) + } + updateMemoryViews() + INITIAL_MEMORY = wasmMemory.buffer.byteLength + var wasmTable + var __ATPRERUN__ = [] + var __ATINIT__ = [] + var __ATPOSTRUN__ = [] + var runtimeInitialized = false + function keepRuntimeAlive() { + return noExitRuntime + } + function preRun() { + if (Module['preRun']) { + if (typeof Module['preRun'] == 'function') + Module['preRun'] = [Module['preRun']] + while (Module['preRun'].length) { + addOnPreRun(Module['preRun'].shift()) + } + } + callRuntimeCallbacks(__ATPRERUN__) + } + function initRuntime() { + runtimeInitialized = true + callRuntimeCallbacks(__ATINIT__) + } + function postRun() { + if (Module['postRun']) { + if (typeof Module['postRun'] == 'function') + Module['postRun'] = [Module['postRun']] + while (Module['postRun'].length) { + addOnPostRun(Module['postRun'].shift()) + } + } + callRuntimeCallbacks(__ATPOSTRUN__) + } + function addOnPreRun(cb) { + __ATPRERUN__.unshift(cb) + } + function addOnInit(cb) { + __ATINIT__.unshift(cb) + } + function addOnPostRun(cb) { + __ATPOSTRUN__.unshift(cb) + } + var runDependencies = 0 + var runDependencyWatcher = null + var dependenciesFulfilled = null + function addRunDependency(id) { + runDependencies++ + if (Module['monitorRunDependencies']) { + Module['monitorRunDependencies'](runDependencies) + } + } + function removeRunDependency(id) { + runDependencies-- + if (Module['monitorRunDependencies']) { + Module['monitorRunDependencies'](runDependencies) + } + if (runDependencies == 0) { + if (runDependencyWatcher !== null) { + clearInterval(runDependencyWatcher) + runDependencyWatcher = null + } + if (dependenciesFulfilled) { + var callback = dependenciesFulfilled + dependenciesFulfilled = null + callback() + } + } + } + function abort(what) { + if (Module['onAbort']) { + Module['onAbort'](what) + } + what = 'Aborted(' + what + ')' + err(what) + ABORT = true + EXITSTATUS = 1 + what += '. Build with -sASSERTIONS for more info.' + var e = new WebAssembly.RuntimeError(what) + readyPromiseReject(e) + throw e + } + var dataURIPrefix = 'data:application/octet-stream;base64,' + function isDataURI(filename) { + return filename.startsWith(dataURIPrefix) + } + function isFileURI(filename) { + return filename.startsWith('file://') + } + var wasmBinaryFile + wasmBinaryFile = 'draco_decoder.wasm' + if (!isDataURI(wasmBinaryFile)) { + wasmBinaryFile = locateFile(wasmBinaryFile) + } + function getBinary(file) { + try { + if (file == wasmBinaryFile && wasmBinary) { + return new Uint8Array(wasmBinary) + } + var binary = tryParseAsDataURI(file) + if (binary) { + return binary + } + if (readBinary) { + return readBinary(file) + } + throw 'both async and sync fetching of the wasm failed' + } catch (err) { + abort(err) + } + } + function getBinaryPromise() { + if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) { + if (typeof fetch == 'function' && !isFileURI(wasmBinaryFile)) { + return fetch(wasmBinaryFile, { credentials: 'same-origin' }) + .then(function (response) { + if (!response['ok']) { + throw ( + "failed to load wasm binary file at '" + wasmBinaryFile + "'" + ) + } + return response['arrayBuffer']() + }) + .catch(function () { + return getBinary(wasmBinaryFile) + }) + } else { + if (readAsync) { + return new Promise(function (resolve, reject) { + readAsync( + wasmBinaryFile, + function (response) { + resolve(new Uint8Array(response)) + }, + reject, + ) + }) + } + } + } + return Promise.resolve().then(function () { + return getBinary(wasmBinaryFile) + }) + } + function createWasm() { + var info = { a: wasmImports } + function receiveInstance(instance, module) { + var exports = instance.exports + Module['asm'] = exports + wasmTable = Module['asm']['j'] + addOnInit(Module['asm']['i']) + removeRunDependency('wasm-instantiate') + } + addRunDependency('wasm-instantiate') + function receiveInstantiationResult(result) { + receiveInstance(result['instance']) + } + function instantiateArrayBuffer(receiver) { + return getBinaryPromise() + .then(function (binary) { + return WebAssembly.instantiate(binary, info) + }) + .then(function (instance) { + return instance + }) + .then(receiver, function (reason) { + err('failed to asynchronously prepare wasm: ' + reason) + abort(reason) + }) + } + function instantiateAsync() { + if ( + !wasmBinary && + typeof WebAssembly.instantiateStreaming == 'function' && + !isDataURI(wasmBinaryFile) && + !isFileURI(wasmBinaryFile) && + !ENVIRONMENT_IS_NODE && + typeof fetch == 'function' + ) { + return fetch(wasmBinaryFile, { credentials: 'same-origin' }).then( + function (response) { + var result = WebAssembly.instantiateStreaming(response, info) + return result.then(receiveInstantiationResult, function (reason) { + err('wasm streaming compile failed: ' + reason) + err('falling back to ArrayBuffer instantiation') + return instantiateArrayBuffer(receiveInstantiationResult) + }) + }, + ) + } else { + return instantiateArrayBuffer(receiveInstantiationResult) + } + } + if (Module['instantiateWasm']) { + try { + var exports = Module['instantiateWasm'](info, receiveInstance) + return exports + } catch (e) { + err('Module.instantiateWasm callback failed with error: ' + e) + readyPromiseReject(e) + } + } + instantiateAsync().catch(readyPromiseReject) + return {} + } + function ExitStatus(status) { + this.name = 'ExitStatus' + this.message = 'Program terminated with exit(' + status + ')' + this.status = status + } + function callRuntimeCallbacks(callbacks) { + while (callbacks.length > 0) { + callbacks.shift()(Module) + } + } + function intArrayToString(array) { + var ret = [] + for (var i = 0; i < array.length; i++) { + var chr = array[i] + if (chr > 255) { + chr &= 255 + } + ret.push(String.fromCharCode(chr)) + } + return ret.join('') + } + function ExceptionInfo(excPtr) { + this.excPtr = excPtr + this.ptr = excPtr - 24 + this.set_type = function (type) { + HEAPU32[(this.ptr + 4) >> 2] = type + } + this.get_type = function () { + return HEAPU32[(this.ptr + 4) >> 2] + } + this.set_destructor = function (destructor) { + HEAPU32[(this.ptr + 8) >> 2] = destructor + } + this.get_destructor = function () { + return HEAPU32[(this.ptr + 8) >> 2] + } + this.set_refcount = function (refcount) { + HEAP32[this.ptr >> 2] = refcount + } + this.set_caught = function (caught) { + caught = caught ? 1 : 0 + HEAP8[(this.ptr + 12) >> 0] = caught + } + this.get_caught = function () { + return HEAP8[(this.ptr + 12) >> 0] != 0 + } + this.set_rethrown = function (rethrown) { + rethrown = rethrown ? 1 : 0 + HEAP8[(this.ptr + 13) >> 0] = rethrown + } + this.get_rethrown = function () { + return HEAP8[(this.ptr + 13) >> 0] != 0 + } + this.init = function (type, destructor) { + this.set_adjusted_ptr(0) + this.set_type(type) + this.set_destructor(destructor) + this.set_refcount(0) + this.set_caught(false) + this.set_rethrown(false) + } + this.add_ref = function () { + var value = HEAP32[this.ptr >> 2] + HEAP32[this.ptr >> 2] = value + 1 + } + this.release_ref = function () { + var prev = HEAP32[this.ptr >> 2] + HEAP32[this.ptr >> 2] = prev - 1 + return prev === 1 + } + this.set_adjusted_ptr = function (adjustedPtr) { + HEAPU32[(this.ptr + 16) >> 2] = adjustedPtr + } + this.get_adjusted_ptr = function () { + return HEAPU32[(this.ptr + 16) >> 2] + } + this.get_exception_ptr = function () { + var isPointer = ___cxa_is_pointer_type(this.get_type()) + if (isPointer) { + return HEAPU32[this.excPtr >> 2] + } + var adjusted = this.get_adjusted_ptr() + if (adjusted !== 0) return adjusted + return this.excPtr + } + } + var exceptionLast = 0 + var uncaughtExceptionCount = 0 + function ___cxa_throw(ptr, type, destructor) { + var info = new ExceptionInfo(ptr) + info.init(type, destructor) + exceptionLast = ptr + uncaughtExceptionCount++ + throw ptr + } + function _abort() { + abort('') + } + function _emscripten_memcpy_big(dest, src, num) { + HEAPU8.copyWithin(dest, src, src + num) + } + function getHeapMax() { + return 2147483648 + } + function emscripten_realloc_buffer(size) { + var b = wasmMemory.buffer + try { + wasmMemory.grow((size - b.byteLength + 65535) >>> 16) + updateMemoryViews() + return 1 + } catch (e) {} + } + function _emscripten_resize_heap(requestedSize) { + var oldSize = HEAPU8.length + requestedSize = requestedSize >>> 0 + var maxHeapSize = getHeapMax() + if (requestedSize > maxHeapSize) { + return false + } + let alignUp = (x, multiple) => + x + ((multiple - (x % multiple)) % multiple) + for (var cutDown = 1; cutDown <= 4; cutDown *= 2) { + var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown) + overGrownHeapSize = Math.min( + overGrownHeapSize, + requestedSize + 100663296, + ) + var newSize = Math.min( + maxHeapSize, + alignUp(Math.max(requestedSize, overGrownHeapSize), 65536), + ) + var replacement = emscripten_realloc_buffer(newSize) + if (replacement) { + return true + } + } + return false + } + var SYSCALLS = { + varargs: undefined, + get: function () { + SYSCALLS.varargs += 4 + var ret = HEAP32[(SYSCALLS.varargs - 4) >> 2] + return ret + }, + getStr: function (ptr) { + var ret = UTF8ToString(ptr) + return ret + }, + } + function _fd_close(fd) { + return 52 + } + function _fd_seek(fd, offset_low, offset_high, whence, newOffset) { + return 70 + } + var printCharBuffers = [null, [], []] + function printChar(stream, curr) { + var buffer = printCharBuffers[stream] + if (curr === 0 || curr === 10) { + ;(stream === 1 ? out : err)(UTF8ArrayToString(buffer, 0)) + buffer.length = 0 + } else { + buffer.push(curr) + } + } + function _fd_write(fd, iov, iovcnt, pnum) { + var num = 0 + for (var i = 0; i < iovcnt; i++) { + var ptr = HEAPU32[iov >> 2] + var len = HEAPU32[(iov + 4) >> 2] + iov += 8 + for (var j = 0; j < len; j++) { + printChar(fd, HEAPU8[ptr + j]) + } + num += len + } + HEAPU32[pnum >> 2] = num + return 0 + } + function intArrayFromString(stringy, dontAddNull, length) { + var len = length > 0 ? length : lengthBytesUTF8(stringy) + 1 + var u8array = new Array(len) + var numBytesWritten = stringToUTF8Array( + stringy, + u8array, + 0, + u8array.length, + ) + if (dontAddNull) u8array.length = numBytesWritten + return u8array + } + var decodeBase64 = + typeof atob == 'function' + ? atob + : function (input) { + var keyStr = + 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=' + var output = '' + var chr1, chr2, chr3 + var enc1, enc2, enc3, enc4 + var i = 0 + input = input.replace(/[^A-Za-z0-9\+\/\=]/g, '') + do { + enc1 = keyStr.indexOf(input.charAt(i++)) + enc2 = keyStr.indexOf(input.charAt(i++)) + enc3 = keyStr.indexOf(input.charAt(i++)) + enc4 = keyStr.indexOf(input.charAt(i++)) + chr1 = (enc1 << 2) | (enc2 >> 4) + chr2 = ((enc2 & 15) << 4) | (enc3 >> 2) + chr3 = ((enc3 & 3) << 6) | enc4 + output = output + String.fromCharCode(chr1) + if (enc3 !== 64) { + output = output + String.fromCharCode(chr2) + } + if (enc4 !== 64) { + output = output + String.fromCharCode(chr3) + } + } while (i < input.length) + return output + } + function intArrayFromBase64(s) { + if (typeof ENVIRONMENT_IS_NODE == 'boolean' && ENVIRONMENT_IS_NODE) { + var buf = Buffer.from(s, 'base64') + return new Uint8Array( + buf['buffer'], + buf['byteOffset'], + buf['byteLength'], + ) + } + try { + var decoded = decodeBase64(s) + var bytes = new Uint8Array(decoded.length) + for (var i = 0; i < decoded.length; ++i) { + bytes[i] = decoded.charCodeAt(i) + } + return bytes + } catch (_) { + throw new Error('Converting base64 string to bytes failed.') + } + } + function tryParseAsDataURI(filename) { + if (!isDataURI(filename)) { + return + } + return intArrayFromBase64(filename.slice(dataURIPrefix.length)) + } + var wasmImports = { + c: ___cxa_throw, + b: _abort, + h: _emscripten_memcpy_big, + f: _emscripten_resize_heap, + g: _fd_close, + e: _fd_seek, + d: _fd_write, + a: wasmMemory, + } + var asm = createWasm() + var ___wasm_call_ctors = function () { + return (___wasm_call_ctors = Module['asm']['i']).apply(null, arguments) + } + var _emscripten_bind_VoidPtr___destroy___0 = (Module[ + '_emscripten_bind_VoidPtr___destroy___0' + ] = function () { + return (_emscripten_bind_VoidPtr___destroy___0 = Module[ + '_emscripten_bind_VoidPtr___destroy___0' + ] = + Module['asm']['k']).apply(null, arguments) + }) + var _emscripten_bind_DecoderBuffer_DecoderBuffer_0 = (Module[ + '_emscripten_bind_DecoderBuffer_DecoderBuffer_0' + ] = function () { + return (_emscripten_bind_DecoderBuffer_DecoderBuffer_0 = Module[ + '_emscripten_bind_DecoderBuffer_DecoderBuffer_0' + ] = + Module['asm']['l']).apply(null, arguments) + }) + var _emscripten_bind_DecoderBuffer_Init_2 = (Module[ + '_emscripten_bind_DecoderBuffer_Init_2' + ] = function () { + return (_emscripten_bind_DecoderBuffer_Init_2 = Module[ + '_emscripten_bind_DecoderBuffer_Init_2' + ] = + Module['asm']['m']).apply(null, arguments) + }) + var _emscripten_bind_DecoderBuffer___destroy___0 = (Module[ + '_emscripten_bind_DecoderBuffer___destroy___0' + ] = function () { + return (_emscripten_bind_DecoderBuffer___destroy___0 = Module[ + '_emscripten_bind_DecoderBuffer___destroy___0' + ] = + Module['asm']['n']).apply(null, arguments) + }) + var _emscripten_bind_AttributeTransformData_AttributeTransformData_0 = + (Module[ + '_emscripten_bind_AttributeTransformData_AttributeTransformData_0' + ] = function () { + return (_emscripten_bind_AttributeTransformData_AttributeTransformData_0 = + Module[ + '_emscripten_bind_AttributeTransformData_AttributeTransformData_0' + ] = + Module['asm']['o']).apply(null, arguments) + }) + var _emscripten_bind_AttributeTransformData_transform_type_0 = (Module[ + '_emscripten_bind_AttributeTransformData_transform_type_0' + ] = function () { + return (_emscripten_bind_AttributeTransformData_transform_type_0 = Module[ + '_emscripten_bind_AttributeTransformData_transform_type_0' + ] = + Module['asm']['p']).apply(null, arguments) + }) + var _emscripten_bind_AttributeTransformData___destroy___0 = (Module[ + '_emscripten_bind_AttributeTransformData___destroy___0' + ] = function () { + return (_emscripten_bind_AttributeTransformData___destroy___0 = Module[ + '_emscripten_bind_AttributeTransformData___destroy___0' + ] = + Module['asm']['q']).apply(null, arguments) + }) + var _emscripten_bind_GeometryAttribute_GeometryAttribute_0 = (Module[ + '_emscripten_bind_GeometryAttribute_GeometryAttribute_0' + ] = function () { + return (_emscripten_bind_GeometryAttribute_GeometryAttribute_0 = Module[ + '_emscripten_bind_GeometryAttribute_GeometryAttribute_0' + ] = + Module['asm']['r']).apply(null, arguments) + }) + var _emscripten_bind_GeometryAttribute___destroy___0 = (Module[ + '_emscripten_bind_GeometryAttribute___destroy___0' + ] = function () { + return (_emscripten_bind_GeometryAttribute___destroy___0 = Module[ + '_emscripten_bind_GeometryAttribute___destroy___0' + ] = + Module['asm']['s']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_PointAttribute_0 = (Module[ + '_emscripten_bind_PointAttribute_PointAttribute_0' + ] = function () { + return (_emscripten_bind_PointAttribute_PointAttribute_0 = Module[ + '_emscripten_bind_PointAttribute_PointAttribute_0' + ] = + Module['asm']['t']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_size_0 = (Module[ + '_emscripten_bind_PointAttribute_size_0' + ] = function () { + return (_emscripten_bind_PointAttribute_size_0 = Module[ + '_emscripten_bind_PointAttribute_size_0' + ] = + Module['asm']['u']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_GetAttributeTransformData_0 = (Module[ + '_emscripten_bind_PointAttribute_GetAttributeTransformData_0' + ] = function () { + return (_emscripten_bind_PointAttribute_GetAttributeTransformData_0 = + Module['_emscripten_bind_PointAttribute_GetAttributeTransformData_0'] = + Module['asm']['v']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_attribute_type_0 = (Module[ + '_emscripten_bind_PointAttribute_attribute_type_0' + ] = function () { + return (_emscripten_bind_PointAttribute_attribute_type_0 = Module[ + '_emscripten_bind_PointAttribute_attribute_type_0' + ] = + Module['asm']['w']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_data_type_0 = (Module[ + '_emscripten_bind_PointAttribute_data_type_0' + ] = function () { + return (_emscripten_bind_PointAttribute_data_type_0 = Module[ + '_emscripten_bind_PointAttribute_data_type_0' + ] = + Module['asm']['x']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_num_components_0 = (Module[ + '_emscripten_bind_PointAttribute_num_components_0' + ] = function () { + return (_emscripten_bind_PointAttribute_num_components_0 = Module[ + '_emscripten_bind_PointAttribute_num_components_0' + ] = + Module['asm']['y']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_normalized_0 = (Module[ + '_emscripten_bind_PointAttribute_normalized_0' + ] = function () { + return (_emscripten_bind_PointAttribute_normalized_0 = Module[ + '_emscripten_bind_PointAttribute_normalized_0' + ] = + Module['asm']['z']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_byte_stride_0 = (Module[ + '_emscripten_bind_PointAttribute_byte_stride_0' + ] = function () { + return (_emscripten_bind_PointAttribute_byte_stride_0 = Module[ + '_emscripten_bind_PointAttribute_byte_stride_0' + ] = + Module['asm']['A']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_byte_offset_0 = (Module[ + '_emscripten_bind_PointAttribute_byte_offset_0' + ] = function () { + return (_emscripten_bind_PointAttribute_byte_offset_0 = Module[ + '_emscripten_bind_PointAttribute_byte_offset_0' + ] = + Module['asm']['B']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_unique_id_0 = (Module[ + '_emscripten_bind_PointAttribute_unique_id_0' + ] = function () { + return (_emscripten_bind_PointAttribute_unique_id_0 = Module[ + '_emscripten_bind_PointAttribute_unique_id_0' + ] = + Module['asm']['C']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute___destroy___0 = (Module[ + '_emscripten_bind_PointAttribute___destroy___0' + ] = function () { + return (_emscripten_bind_PointAttribute___destroy___0 = Module[ + '_emscripten_bind_PointAttribute___destroy___0' + ] = + Module['asm']['D']).apply(null, arguments) + }) + var _emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0 = + (Module[ + '_emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0' + ] = function () { + return (_emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0 = + Module[ + '_emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0' + ] = + Module['asm']['E']).apply(null, arguments) + }) + var _emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1 = + (Module[ + '_emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1' + ] = function () { + return (_emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1 = + Module[ + '_emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1' + ] = + Module['asm']['F']).apply(null, arguments) + }) + var _emscripten_bind_AttributeQuantizationTransform_quantization_bits_0 = + (Module[ + '_emscripten_bind_AttributeQuantizationTransform_quantization_bits_0' + ] = function () { + return (_emscripten_bind_AttributeQuantizationTransform_quantization_bits_0 = + Module[ + '_emscripten_bind_AttributeQuantizationTransform_quantization_bits_0' + ] = + Module['asm']['G']).apply(null, arguments) + }) + var _emscripten_bind_AttributeQuantizationTransform_min_value_1 = (Module[ + '_emscripten_bind_AttributeQuantizationTransform_min_value_1' + ] = function () { + return (_emscripten_bind_AttributeQuantizationTransform_min_value_1 = + Module['_emscripten_bind_AttributeQuantizationTransform_min_value_1'] = + Module['asm']['H']).apply(null, arguments) + }) + var _emscripten_bind_AttributeQuantizationTransform_range_0 = (Module[ + '_emscripten_bind_AttributeQuantizationTransform_range_0' + ] = function () { + return (_emscripten_bind_AttributeQuantizationTransform_range_0 = Module[ + '_emscripten_bind_AttributeQuantizationTransform_range_0' + ] = + Module['asm']['I']).apply(null, arguments) + }) + var _emscripten_bind_AttributeQuantizationTransform___destroy___0 = (Module[ + '_emscripten_bind_AttributeQuantizationTransform___destroy___0' + ] = function () { + return (_emscripten_bind_AttributeQuantizationTransform___destroy___0 = + Module[ + '_emscripten_bind_AttributeQuantizationTransform___destroy___0' + ] = + Module['asm']['J']).apply(null, arguments) + }) + var _emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0 = + (Module[ + '_emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0' + ] = function () { + return (_emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0 = + Module[ + '_emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0' + ] = + Module['asm']['K']).apply(null, arguments) + }) + var _emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1 = + (Module[ + '_emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1' + ] = function () { + return (_emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1 = + Module[ + '_emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1' + ] = + Module['asm']['L']).apply(null, arguments) + }) + var _emscripten_bind_AttributeOctahedronTransform_quantization_bits_0 = + (Module[ + '_emscripten_bind_AttributeOctahedronTransform_quantization_bits_0' + ] = function () { + return (_emscripten_bind_AttributeOctahedronTransform_quantization_bits_0 = + Module[ + '_emscripten_bind_AttributeOctahedronTransform_quantization_bits_0' + ] = + Module['asm']['M']).apply(null, arguments) + }) + var _emscripten_bind_AttributeOctahedronTransform___destroy___0 = (Module[ + '_emscripten_bind_AttributeOctahedronTransform___destroy___0' + ] = function () { + return (_emscripten_bind_AttributeOctahedronTransform___destroy___0 = + Module['_emscripten_bind_AttributeOctahedronTransform___destroy___0'] = + Module['asm']['N']).apply(null, arguments) + }) + var _emscripten_bind_PointCloud_PointCloud_0 = (Module[ + '_emscripten_bind_PointCloud_PointCloud_0' + ] = function () { + return (_emscripten_bind_PointCloud_PointCloud_0 = Module[ + '_emscripten_bind_PointCloud_PointCloud_0' + ] = + Module['asm']['O']).apply(null, arguments) + }) + var _emscripten_bind_PointCloud_num_attributes_0 = (Module[ + '_emscripten_bind_PointCloud_num_attributes_0' + ] = function () { + return (_emscripten_bind_PointCloud_num_attributes_0 = Module[ + '_emscripten_bind_PointCloud_num_attributes_0' + ] = + Module['asm']['P']).apply(null, arguments) + }) + var _emscripten_bind_PointCloud_num_points_0 = (Module[ + '_emscripten_bind_PointCloud_num_points_0' + ] = function () { + return (_emscripten_bind_PointCloud_num_points_0 = Module[ + '_emscripten_bind_PointCloud_num_points_0' + ] = + Module['asm']['Q']).apply(null, arguments) + }) + var _emscripten_bind_PointCloud___destroy___0 = (Module[ + '_emscripten_bind_PointCloud___destroy___0' + ] = function () { + return (_emscripten_bind_PointCloud___destroy___0 = Module[ + '_emscripten_bind_PointCloud___destroy___0' + ] = + Module['asm']['R']).apply(null, arguments) + }) + var _emscripten_bind_Mesh_Mesh_0 = (Module['_emscripten_bind_Mesh_Mesh_0'] = + function () { + return (_emscripten_bind_Mesh_Mesh_0 = Module[ + '_emscripten_bind_Mesh_Mesh_0' + ] = + Module['asm']['S']).apply(null, arguments) + }) + var _emscripten_bind_Mesh_num_faces_0 = (Module[ + '_emscripten_bind_Mesh_num_faces_0' + ] = function () { + return (_emscripten_bind_Mesh_num_faces_0 = Module[ + '_emscripten_bind_Mesh_num_faces_0' + ] = + Module['asm']['T']).apply(null, arguments) + }) + var _emscripten_bind_Mesh_num_attributes_0 = (Module[ + '_emscripten_bind_Mesh_num_attributes_0' + ] = function () { + return (_emscripten_bind_Mesh_num_attributes_0 = Module[ + '_emscripten_bind_Mesh_num_attributes_0' + ] = + Module['asm']['U']).apply(null, arguments) + }) + var _emscripten_bind_Mesh_num_points_0 = (Module[ + '_emscripten_bind_Mesh_num_points_0' + ] = function () { + return (_emscripten_bind_Mesh_num_points_0 = Module[ + '_emscripten_bind_Mesh_num_points_0' + ] = + Module['asm']['V']).apply(null, arguments) + }) + var _emscripten_bind_Mesh___destroy___0 = (Module[ + '_emscripten_bind_Mesh___destroy___0' + ] = function () { + return (_emscripten_bind_Mesh___destroy___0 = Module[ + '_emscripten_bind_Mesh___destroy___0' + ] = + Module['asm']['W']).apply(null, arguments) + }) + var _emscripten_bind_Metadata_Metadata_0 = (Module[ + '_emscripten_bind_Metadata_Metadata_0' + ] = function () { + return (_emscripten_bind_Metadata_Metadata_0 = Module[ + '_emscripten_bind_Metadata_Metadata_0' + ] = + Module['asm']['X']).apply(null, arguments) + }) + var _emscripten_bind_Metadata___destroy___0 = (Module[ + '_emscripten_bind_Metadata___destroy___0' + ] = function () { + return (_emscripten_bind_Metadata___destroy___0 = Module[ + '_emscripten_bind_Metadata___destroy___0' + ] = + Module['asm']['Y']).apply(null, arguments) + }) + var _emscripten_bind_Status_code_0 = (Module[ + '_emscripten_bind_Status_code_0' + ] = function () { + return (_emscripten_bind_Status_code_0 = Module[ + '_emscripten_bind_Status_code_0' + ] = + Module['asm']['Z']).apply(null, arguments) + }) + var _emscripten_bind_Status_ok_0 = (Module['_emscripten_bind_Status_ok_0'] = + function () { + return (_emscripten_bind_Status_ok_0 = Module[ + '_emscripten_bind_Status_ok_0' + ] = + Module['asm']['_']).apply(null, arguments) + }) + var _emscripten_bind_Status_error_msg_0 = (Module[ + '_emscripten_bind_Status_error_msg_0' + ] = function () { + return (_emscripten_bind_Status_error_msg_0 = Module[ + '_emscripten_bind_Status_error_msg_0' + ] = + Module['asm']['$']).apply(null, arguments) + }) + var _emscripten_bind_Status___destroy___0 = (Module[ + '_emscripten_bind_Status___destroy___0' + ] = function () { + return (_emscripten_bind_Status___destroy___0 = Module[ + '_emscripten_bind_Status___destroy___0' + ] = + Module['asm']['aa']).apply(null, arguments) + }) + var _emscripten_bind_DracoFloat32Array_DracoFloat32Array_0 = (Module[ + '_emscripten_bind_DracoFloat32Array_DracoFloat32Array_0' + ] = function () { + return (_emscripten_bind_DracoFloat32Array_DracoFloat32Array_0 = Module[ + '_emscripten_bind_DracoFloat32Array_DracoFloat32Array_0' + ] = + Module['asm']['ba']).apply(null, arguments) + }) + var _emscripten_bind_DracoFloat32Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoFloat32Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoFloat32Array_GetValue_1 = Module[ + '_emscripten_bind_DracoFloat32Array_GetValue_1' + ] = + Module['asm']['ca']).apply(null, arguments) + }) + var _emscripten_bind_DracoFloat32Array_size_0 = (Module[ + '_emscripten_bind_DracoFloat32Array_size_0' + ] = function () { + return (_emscripten_bind_DracoFloat32Array_size_0 = Module[ + '_emscripten_bind_DracoFloat32Array_size_0' + ] = + Module['asm']['da']).apply(null, arguments) + }) + var _emscripten_bind_DracoFloat32Array___destroy___0 = (Module[ + '_emscripten_bind_DracoFloat32Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoFloat32Array___destroy___0 = Module[ + '_emscripten_bind_DracoFloat32Array___destroy___0' + ] = + Module['asm']['ea']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt8Array_DracoInt8Array_0 = (Module[ + '_emscripten_bind_DracoInt8Array_DracoInt8Array_0' + ] = function () { + return (_emscripten_bind_DracoInt8Array_DracoInt8Array_0 = Module[ + '_emscripten_bind_DracoInt8Array_DracoInt8Array_0' + ] = + Module['asm']['fa']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt8Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoInt8Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoInt8Array_GetValue_1 = Module[ + '_emscripten_bind_DracoInt8Array_GetValue_1' + ] = + Module['asm']['ga']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt8Array_size_0 = (Module[ + '_emscripten_bind_DracoInt8Array_size_0' + ] = function () { + return (_emscripten_bind_DracoInt8Array_size_0 = Module[ + '_emscripten_bind_DracoInt8Array_size_0' + ] = + Module['asm']['ha']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt8Array___destroy___0 = (Module[ + '_emscripten_bind_DracoInt8Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoInt8Array___destroy___0 = Module[ + '_emscripten_bind_DracoInt8Array___destroy___0' + ] = + Module['asm']['ia']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt8Array_DracoUInt8Array_0 = (Module[ + '_emscripten_bind_DracoUInt8Array_DracoUInt8Array_0' + ] = function () { + return (_emscripten_bind_DracoUInt8Array_DracoUInt8Array_0 = Module[ + '_emscripten_bind_DracoUInt8Array_DracoUInt8Array_0' + ] = + Module['asm']['ja']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt8Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoUInt8Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoUInt8Array_GetValue_1 = Module[ + '_emscripten_bind_DracoUInt8Array_GetValue_1' + ] = + Module['asm']['ka']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt8Array_size_0 = (Module[ + '_emscripten_bind_DracoUInt8Array_size_0' + ] = function () { + return (_emscripten_bind_DracoUInt8Array_size_0 = Module[ + '_emscripten_bind_DracoUInt8Array_size_0' + ] = + Module['asm']['la']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt8Array___destroy___0 = (Module[ + '_emscripten_bind_DracoUInt8Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoUInt8Array___destroy___0 = Module[ + '_emscripten_bind_DracoUInt8Array___destroy___0' + ] = + Module['asm']['ma']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt16Array_DracoInt16Array_0 = (Module[ + '_emscripten_bind_DracoInt16Array_DracoInt16Array_0' + ] = function () { + return (_emscripten_bind_DracoInt16Array_DracoInt16Array_0 = Module[ + '_emscripten_bind_DracoInt16Array_DracoInt16Array_0' + ] = + Module['asm']['na']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt16Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoInt16Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoInt16Array_GetValue_1 = Module[ + '_emscripten_bind_DracoInt16Array_GetValue_1' + ] = + Module['asm']['oa']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt16Array_size_0 = (Module[ + '_emscripten_bind_DracoInt16Array_size_0' + ] = function () { + return (_emscripten_bind_DracoInt16Array_size_0 = Module[ + '_emscripten_bind_DracoInt16Array_size_0' + ] = + Module['asm']['pa']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt16Array___destroy___0 = (Module[ + '_emscripten_bind_DracoInt16Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoInt16Array___destroy___0 = Module[ + '_emscripten_bind_DracoInt16Array___destroy___0' + ] = + Module['asm']['qa']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt16Array_DracoUInt16Array_0 = (Module[ + '_emscripten_bind_DracoUInt16Array_DracoUInt16Array_0' + ] = function () { + return (_emscripten_bind_DracoUInt16Array_DracoUInt16Array_0 = Module[ + '_emscripten_bind_DracoUInt16Array_DracoUInt16Array_0' + ] = + Module['asm']['ra']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt16Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoUInt16Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoUInt16Array_GetValue_1 = Module[ + '_emscripten_bind_DracoUInt16Array_GetValue_1' + ] = + Module['asm']['sa']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt16Array_size_0 = (Module[ + '_emscripten_bind_DracoUInt16Array_size_0' + ] = function () { + return (_emscripten_bind_DracoUInt16Array_size_0 = Module[ + '_emscripten_bind_DracoUInt16Array_size_0' + ] = + Module['asm']['ta']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt16Array___destroy___0 = (Module[ + '_emscripten_bind_DracoUInt16Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoUInt16Array___destroy___0 = Module[ + '_emscripten_bind_DracoUInt16Array___destroy___0' + ] = + Module['asm']['ua']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt32Array_DracoInt32Array_0 = (Module[ + '_emscripten_bind_DracoInt32Array_DracoInt32Array_0' + ] = function () { + return (_emscripten_bind_DracoInt32Array_DracoInt32Array_0 = Module[ + '_emscripten_bind_DracoInt32Array_DracoInt32Array_0' + ] = + Module['asm']['va']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt32Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoInt32Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoInt32Array_GetValue_1 = Module[ + '_emscripten_bind_DracoInt32Array_GetValue_1' + ] = + Module['asm']['wa']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt32Array_size_0 = (Module[ + '_emscripten_bind_DracoInt32Array_size_0' + ] = function () { + return (_emscripten_bind_DracoInt32Array_size_0 = Module[ + '_emscripten_bind_DracoInt32Array_size_0' + ] = + Module['asm']['xa']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt32Array___destroy___0 = (Module[ + '_emscripten_bind_DracoInt32Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoInt32Array___destroy___0 = Module[ + '_emscripten_bind_DracoInt32Array___destroy___0' + ] = + Module['asm']['ya']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt32Array_DracoUInt32Array_0 = (Module[ + '_emscripten_bind_DracoUInt32Array_DracoUInt32Array_0' + ] = function () { + return (_emscripten_bind_DracoUInt32Array_DracoUInt32Array_0 = Module[ + '_emscripten_bind_DracoUInt32Array_DracoUInt32Array_0' + ] = + Module['asm']['za']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt32Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoUInt32Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoUInt32Array_GetValue_1 = Module[ + '_emscripten_bind_DracoUInt32Array_GetValue_1' + ] = + Module['asm']['Aa']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt32Array_size_0 = (Module[ + '_emscripten_bind_DracoUInt32Array_size_0' + ] = function () { + return (_emscripten_bind_DracoUInt32Array_size_0 = Module[ + '_emscripten_bind_DracoUInt32Array_size_0' + ] = + Module['asm']['Ba']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt32Array___destroy___0 = (Module[ + '_emscripten_bind_DracoUInt32Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoUInt32Array___destroy___0 = Module[ + '_emscripten_bind_DracoUInt32Array___destroy___0' + ] = + Module['asm']['Ca']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_MetadataQuerier_0 = (Module[ + '_emscripten_bind_MetadataQuerier_MetadataQuerier_0' + ] = function () { + return (_emscripten_bind_MetadataQuerier_MetadataQuerier_0 = Module[ + '_emscripten_bind_MetadataQuerier_MetadataQuerier_0' + ] = + Module['asm']['Da']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_HasEntry_2 = (Module[ + '_emscripten_bind_MetadataQuerier_HasEntry_2' + ] = function () { + return (_emscripten_bind_MetadataQuerier_HasEntry_2 = Module[ + '_emscripten_bind_MetadataQuerier_HasEntry_2' + ] = + Module['asm']['Ea']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_GetIntEntry_2 = (Module[ + '_emscripten_bind_MetadataQuerier_GetIntEntry_2' + ] = function () { + return (_emscripten_bind_MetadataQuerier_GetIntEntry_2 = Module[ + '_emscripten_bind_MetadataQuerier_GetIntEntry_2' + ] = + Module['asm']['Fa']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_GetIntEntryArray_3 = (Module[ + '_emscripten_bind_MetadataQuerier_GetIntEntryArray_3' + ] = function () { + return (_emscripten_bind_MetadataQuerier_GetIntEntryArray_3 = Module[ + '_emscripten_bind_MetadataQuerier_GetIntEntryArray_3' + ] = + Module['asm']['Ga']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_GetDoubleEntry_2 = (Module[ + '_emscripten_bind_MetadataQuerier_GetDoubleEntry_2' + ] = function () { + return (_emscripten_bind_MetadataQuerier_GetDoubleEntry_2 = Module[ + '_emscripten_bind_MetadataQuerier_GetDoubleEntry_2' + ] = + Module['asm']['Ha']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_GetStringEntry_2 = (Module[ + '_emscripten_bind_MetadataQuerier_GetStringEntry_2' + ] = function () { + return (_emscripten_bind_MetadataQuerier_GetStringEntry_2 = Module[ + '_emscripten_bind_MetadataQuerier_GetStringEntry_2' + ] = + Module['asm']['Ia']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_NumEntries_1 = (Module[ + '_emscripten_bind_MetadataQuerier_NumEntries_1' + ] = function () { + return (_emscripten_bind_MetadataQuerier_NumEntries_1 = Module[ + '_emscripten_bind_MetadataQuerier_NumEntries_1' + ] = + Module['asm']['Ja']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_GetEntryName_2 = (Module[ + '_emscripten_bind_MetadataQuerier_GetEntryName_2' + ] = function () { + return (_emscripten_bind_MetadataQuerier_GetEntryName_2 = Module[ + '_emscripten_bind_MetadataQuerier_GetEntryName_2' + ] = + Module['asm']['Ka']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier___destroy___0 = (Module[ + '_emscripten_bind_MetadataQuerier___destroy___0' + ] = function () { + return (_emscripten_bind_MetadataQuerier___destroy___0 = Module[ + '_emscripten_bind_MetadataQuerier___destroy___0' + ] = + Module['asm']['La']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_Decoder_0 = (Module[ + '_emscripten_bind_Decoder_Decoder_0' + ] = function () { + return (_emscripten_bind_Decoder_Decoder_0 = Module[ + '_emscripten_bind_Decoder_Decoder_0' + ] = + Module['asm']['Ma']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_DecodeArrayToPointCloud_3 = (Module[ + '_emscripten_bind_Decoder_DecodeArrayToPointCloud_3' + ] = function () { + return (_emscripten_bind_Decoder_DecodeArrayToPointCloud_3 = Module[ + '_emscripten_bind_Decoder_DecodeArrayToPointCloud_3' + ] = + Module['asm']['Na']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_DecodeArrayToMesh_3 = (Module[ + '_emscripten_bind_Decoder_DecodeArrayToMesh_3' + ] = function () { + return (_emscripten_bind_Decoder_DecodeArrayToMesh_3 = Module[ + '_emscripten_bind_Decoder_DecodeArrayToMesh_3' + ] = + Module['asm']['Oa']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeId_2 = (Module[ + '_emscripten_bind_Decoder_GetAttributeId_2' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeId_2 = Module[ + '_emscripten_bind_Decoder_GetAttributeId_2' + ] = + Module['asm']['Pa']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeIdByName_2 = (Module[ + '_emscripten_bind_Decoder_GetAttributeIdByName_2' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeIdByName_2 = Module[ + '_emscripten_bind_Decoder_GetAttributeIdByName_2' + ] = + Module['asm']['Qa']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3' + ] = + Module['asm']['Ra']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttribute_2 = (Module[ + '_emscripten_bind_Decoder_GetAttribute_2' + ] = function () { + return (_emscripten_bind_Decoder_GetAttribute_2 = Module[ + '_emscripten_bind_Decoder_GetAttribute_2' + ] = + Module['asm']['Sa']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeByUniqueId_2 = (Module[ + '_emscripten_bind_Decoder_GetAttributeByUniqueId_2' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeByUniqueId_2 = Module[ + '_emscripten_bind_Decoder_GetAttributeByUniqueId_2' + ] = + Module['asm']['Ta']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetMetadata_1 = (Module[ + '_emscripten_bind_Decoder_GetMetadata_1' + ] = function () { + return (_emscripten_bind_Decoder_GetMetadata_1 = Module[ + '_emscripten_bind_Decoder_GetMetadata_1' + ] = + Module['asm']['Ua']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeMetadata_2 = (Module[ + '_emscripten_bind_Decoder_GetAttributeMetadata_2' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeMetadata_2 = Module[ + '_emscripten_bind_Decoder_GetAttributeMetadata_2' + ] = + Module['asm']['Va']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetFaceFromMesh_3 = (Module[ + '_emscripten_bind_Decoder_GetFaceFromMesh_3' + ] = function () { + return (_emscripten_bind_Decoder_GetFaceFromMesh_3 = Module[ + '_emscripten_bind_Decoder_GetFaceFromMesh_3' + ] = + Module['asm']['Wa']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetTriangleStripsFromMesh_2 = (Module[ + '_emscripten_bind_Decoder_GetTriangleStripsFromMesh_2' + ] = function () { + return (_emscripten_bind_Decoder_GetTriangleStripsFromMesh_2 = Module[ + '_emscripten_bind_Decoder_GetTriangleStripsFromMesh_2' + ] = + Module['asm']['Xa']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetTrianglesUInt16Array_3 = (Module[ + '_emscripten_bind_Decoder_GetTrianglesUInt16Array_3' + ] = function () { + return (_emscripten_bind_Decoder_GetTrianglesUInt16Array_3 = Module[ + '_emscripten_bind_Decoder_GetTrianglesUInt16Array_3' + ] = + Module['asm']['Ya']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetTrianglesUInt32Array_3 = (Module[ + '_emscripten_bind_Decoder_GetTrianglesUInt32Array_3' + ] = function () { + return (_emscripten_bind_Decoder_GetTrianglesUInt32Array_3 = Module[ + '_emscripten_bind_Decoder_GetTrianglesUInt32Array_3' + ] = + Module['asm']['Za']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeFloat_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeFloat_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeFloat_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeFloat_3' + ] = + Module['asm']['_a']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3' + ] = + Module['asm']['$a']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeIntForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeIntForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeIntForAllPoints_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeIntForAllPoints_3' + ] = + Module['asm']['ab']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3' + ] = + Module['asm']['bb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3' + ] = + Module['asm']['cb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3' + ] = + Module['asm']['db']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3 = + Module['_emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3'] = + Module['asm']['eb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3' + ] = + Module['asm']['fb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3 = + Module['_emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3'] = + Module['asm']['gb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5 = (Module[ + '_emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5 = + Module['_emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5'] = + Module['asm']['hb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_SkipAttributeTransform_1 = (Module[ + '_emscripten_bind_Decoder_SkipAttributeTransform_1' + ] = function () { + return (_emscripten_bind_Decoder_SkipAttributeTransform_1 = Module[ + '_emscripten_bind_Decoder_SkipAttributeTransform_1' + ] = + Module['asm']['ib']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1 = (Module[ + '_emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1' + ] = function () { + return (_emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1 = + Module['_emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1'] = + Module['asm']['jb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_DecodeBufferToPointCloud_2 = (Module[ + '_emscripten_bind_Decoder_DecodeBufferToPointCloud_2' + ] = function () { + return (_emscripten_bind_Decoder_DecodeBufferToPointCloud_2 = Module[ + '_emscripten_bind_Decoder_DecodeBufferToPointCloud_2' + ] = + Module['asm']['kb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_DecodeBufferToMesh_2 = (Module[ + '_emscripten_bind_Decoder_DecodeBufferToMesh_2' + ] = function () { + return (_emscripten_bind_Decoder_DecodeBufferToMesh_2 = Module[ + '_emscripten_bind_Decoder_DecodeBufferToMesh_2' + ] = + Module['asm']['lb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder___destroy___0 = (Module[ + '_emscripten_bind_Decoder___destroy___0' + ] = function () { + return (_emscripten_bind_Decoder___destroy___0 = Module[ + '_emscripten_bind_Decoder___destroy___0' + ] = + Module['asm']['mb']).apply(null, arguments) + }) + var _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM = + (Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM' + ] = function () { + return (_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM = + Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM' + ] = + Module['asm']['nb']).apply(null, arguments) + }) + var _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM = + (Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM' + ] = function () { + return (_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM = + Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM' + ] = + Module['asm']['ob']).apply(null, arguments) + }) + var _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM = + (Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM' + ] = function () { + return (_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM = + Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM' + ] = + Module['asm']['pb']).apply(null, arguments) + }) + var _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM = + (Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM' + ] = function () { + return (_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM = + Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM' + ] = + Module['asm']['qb']).apply(null, arguments) + }) + var _emscripten_enum_draco_GeometryAttribute_Type_INVALID = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_INVALID' + ] = function () { + return (_emscripten_enum_draco_GeometryAttribute_Type_INVALID = Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_INVALID' + ] = + Module['asm']['rb']).apply(null, arguments) + }) + var _emscripten_enum_draco_GeometryAttribute_Type_POSITION = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_POSITION' + ] = function () { + return (_emscripten_enum_draco_GeometryAttribute_Type_POSITION = Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_POSITION' + ] = + Module['asm']['sb']).apply(null, arguments) + }) + var _emscripten_enum_draco_GeometryAttribute_Type_NORMAL = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_NORMAL' + ] = function () { + return (_emscripten_enum_draco_GeometryAttribute_Type_NORMAL = Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_NORMAL' + ] = + Module['asm']['tb']).apply(null, arguments) + }) + var _emscripten_enum_draco_GeometryAttribute_Type_COLOR = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_COLOR' + ] = function () { + return (_emscripten_enum_draco_GeometryAttribute_Type_COLOR = Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_COLOR' + ] = + Module['asm']['ub']).apply(null, arguments) + }) + var _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD' + ] = function () { + return (_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD = Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD' + ] = + Module['asm']['vb']).apply(null, arguments) + }) + var _emscripten_enum_draco_GeometryAttribute_Type_GENERIC = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_GENERIC' + ] = function () { + return (_emscripten_enum_draco_GeometryAttribute_Type_GENERIC = Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_GENERIC' + ] = + Module['asm']['wb']).apply(null, arguments) + }) + var _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE = + (Module[ + '_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE' + ] = function () { + return (_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE = + Module[ + '_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE' + ] = + Module['asm']['xb']).apply(null, arguments) + }) + var _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD = (Module[ + '_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD' + ] = function () { + return (_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD = Module[ + '_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD' + ] = + Module['asm']['yb']).apply(null, arguments) + }) + var _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH = (Module[ + '_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH' + ] = function () { + return (_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH = + Module['_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH'] = + Module['asm']['zb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_INVALID = (Module[ + '_emscripten_enum_draco_DataType_DT_INVALID' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_INVALID = Module[ + '_emscripten_enum_draco_DataType_DT_INVALID' + ] = + Module['asm']['Ab']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_INT8 = (Module[ + '_emscripten_enum_draco_DataType_DT_INT8' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_INT8 = Module[ + '_emscripten_enum_draco_DataType_DT_INT8' + ] = + Module['asm']['Bb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_UINT8 = (Module[ + '_emscripten_enum_draco_DataType_DT_UINT8' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_UINT8 = Module[ + '_emscripten_enum_draco_DataType_DT_UINT8' + ] = + Module['asm']['Cb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_INT16 = (Module[ + '_emscripten_enum_draco_DataType_DT_INT16' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_INT16 = Module[ + '_emscripten_enum_draco_DataType_DT_INT16' + ] = + Module['asm']['Db']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_UINT16 = (Module[ + '_emscripten_enum_draco_DataType_DT_UINT16' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_UINT16 = Module[ + '_emscripten_enum_draco_DataType_DT_UINT16' + ] = + Module['asm']['Eb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_INT32 = (Module[ + '_emscripten_enum_draco_DataType_DT_INT32' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_INT32 = Module[ + '_emscripten_enum_draco_DataType_DT_INT32' + ] = + Module['asm']['Fb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_UINT32 = (Module[ + '_emscripten_enum_draco_DataType_DT_UINT32' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_UINT32 = Module[ + '_emscripten_enum_draco_DataType_DT_UINT32' + ] = + Module['asm']['Gb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_INT64 = (Module[ + '_emscripten_enum_draco_DataType_DT_INT64' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_INT64 = Module[ + '_emscripten_enum_draco_DataType_DT_INT64' + ] = + Module['asm']['Hb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_UINT64 = (Module[ + '_emscripten_enum_draco_DataType_DT_UINT64' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_UINT64 = Module[ + '_emscripten_enum_draco_DataType_DT_UINT64' + ] = + Module['asm']['Ib']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_FLOAT32 = (Module[ + '_emscripten_enum_draco_DataType_DT_FLOAT32' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_FLOAT32 = Module[ + '_emscripten_enum_draco_DataType_DT_FLOAT32' + ] = + Module['asm']['Jb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_FLOAT64 = (Module[ + '_emscripten_enum_draco_DataType_DT_FLOAT64' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_FLOAT64 = Module[ + '_emscripten_enum_draco_DataType_DT_FLOAT64' + ] = + Module['asm']['Kb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_BOOL = (Module[ + '_emscripten_enum_draco_DataType_DT_BOOL' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_BOOL = Module[ + '_emscripten_enum_draco_DataType_DT_BOOL' + ] = + Module['asm']['Lb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_TYPES_COUNT = (Module[ + '_emscripten_enum_draco_DataType_DT_TYPES_COUNT' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_TYPES_COUNT = Module[ + '_emscripten_enum_draco_DataType_DT_TYPES_COUNT' + ] = + Module['asm']['Mb']).apply(null, arguments) + }) + var _emscripten_enum_draco_StatusCode_OK = (Module[ + '_emscripten_enum_draco_StatusCode_OK' + ] = function () { + return (_emscripten_enum_draco_StatusCode_OK = Module[ + '_emscripten_enum_draco_StatusCode_OK' + ] = + Module['asm']['Nb']).apply(null, arguments) + }) + var _emscripten_enum_draco_StatusCode_DRACO_ERROR = (Module[ + '_emscripten_enum_draco_StatusCode_DRACO_ERROR' + ] = function () { + return (_emscripten_enum_draco_StatusCode_DRACO_ERROR = Module[ + '_emscripten_enum_draco_StatusCode_DRACO_ERROR' + ] = + Module['asm']['Ob']).apply(null, arguments) + }) + var _emscripten_enum_draco_StatusCode_IO_ERROR = (Module[ + '_emscripten_enum_draco_StatusCode_IO_ERROR' + ] = function () { + return (_emscripten_enum_draco_StatusCode_IO_ERROR = Module[ + '_emscripten_enum_draco_StatusCode_IO_ERROR' + ] = + Module['asm']['Pb']).apply(null, arguments) + }) + var _emscripten_enum_draco_StatusCode_INVALID_PARAMETER = (Module[ + '_emscripten_enum_draco_StatusCode_INVALID_PARAMETER' + ] = function () { + return (_emscripten_enum_draco_StatusCode_INVALID_PARAMETER = Module[ + '_emscripten_enum_draco_StatusCode_INVALID_PARAMETER' + ] = + Module['asm']['Qb']).apply(null, arguments) + }) + var _emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION = (Module[ + '_emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION' + ] = function () { + return (_emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION = Module[ + '_emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION' + ] = + Module['asm']['Rb']).apply(null, arguments) + }) + var _emscripten_enum_draco_StatusCode_UNKNOWN_VERSION = (Module[ + '_emscripten_enum_draco_StatusCode_UNKNOWN_VERSION' + ] = function () { + return (_emscripten_enum_draco_StatusCode_UNKNOWN_VERSION = Module[ + '_emscripten_enum_draco_StatusCode_UNKNOWN_VERSION' + ] = + Module['asm']['Sb']).apply(null, arguments) + }) + var ___errno_location = function () { + return (___errno_location = Module['asm']['__errno_location']).apply( + null, + arguments, + ) + } + var _malloc = (Module['_malloc'] = function () { + return (_malloc = Module['_malloc'] = Module['asm']['Tb']).apply( + null, + arguments, + ) + }) + var _free = (Module['_free'] = function () { + return (_free = Module['_free'] = Module['asm']['Ub']).apply( + null, + arguments, + ) + }) + var ___cxa_is_pointer_type = function () { + return (___cxa_is_pointer_type = Module['asm']['Vb']).apply( + null, + arguments, + ) + } + var ___start_em_js = (Module['___start_em_js'] = 15856) + var ___stop_em_js = (Module['___stop_em_js'] = 15954) + var calledRun + dependenciesFulfilled = function runCaller() { + if (!calledRun) run() + if (!calledRun) dependenciesFulfilled = runCaller + } + function run() { + if (runDependencies > 0) { + return + } + preRun() + if (runDependencies > 0) { + return + } + function doRun() { + if (calledRun) return + calledRun = true + Module['calledRun'] = true + if (ABORT) return + initRuntime() + readyPromiseResolve(Module) + if (Module['onRuntimeInitialized']) Module['onRuntimeInitialized']() + postRun() + } + if (Module['setStatus']) { + Module['setStatus']('Running...') + setTimeout(function () { + setTimeout(function () { + Module['setStatus']('') + }, 1) + doRun() + }, 1) + } else { + doRun() + } + } + if (Module['preInit']) { + if (typeof Module['preInit'] == 'function') + Module['preInit'] = [Module['preInit']] + while (Module['preInit'].length > 0) { + Module['preInit'].pop()() + } + } + run() + function WrapperObject() {} + WrapperObject.prototype = Object.create(WrapperObject.prototype) + WrapperObject.prototype.constructor = WrapperObject + WrapperObject.prototype.__class__ = WrapperObject + WrapperObject.__cache__ = {} + Module['WrapperObject'] = WrapperObject + function getCache(__class__) { + return (__class__ || WrapperObject).__cache__ + } + Module['getCache'] = getCache + function wrapPointer(ptr, __class__) { + var cache = getCache(__class__) + var ret = cache[ptr] + if (ret) return ret + ret = Object.create((__class__ || WrapperObject).prototype) + ret.ptr = ptr + return (cache[ptr] = ret) + } + Module['wrapPointer'] = wrapPointer + function castObject(obj, __class__) { + return wrapPointer(obj.ptr, __class__) + } + Module['castObject'] = castObject + Module['NULL'] = wrapPointer(0) + function destroy(obj) { + if (!obj['__destroy__']) + throw 'Error: Cannot destroy object. (Did you create it yourself?)' + obj['__destroy__']() + delete getCache(obj.__class__)[obj.ptr] + } + Module['destroy'] = destroy + function compare(obj1, obj2) { + return obj1.ptr === obj2.ptr + } + Module['compare'] = compare + function getPointer(obj) { + return obj.ptr + } + Module['getPointer'] = getPointer + function getClass(obj) { + return obj.__class__ + } + Module['getClass'] = getClass + var ensureCache = { + buffer: 0, + size: 0, + pos: 0, + temps: [], + needed: 0, + prepare: function () { + if (ensureCache.needed) { + for (var i = 0; i < ensureCache.temps.length; i++) { + Module['_free'](ensureCache.temps[i]) + } + ensureCache.temps.length = 0 + Module['_free'](ensureCache.buffer) + ensureCache.buffer = 0 + ensureCache.size += ensureCache.needed + ensureCache.needed = 0 + } + if (!ensureCache.buffer) { + ensureCache.size += 128 + ensureCache.buffer = Module['_malloc'](ensureCache.size) + assert(ensureCache.buffer) + } + ensureCache.pos = 0 + }, + alloc: function (array, view) { + assert(ensureCache.buffer) + var bytes = view.BYTES_PER_ELEMENT + var len = array.length * bytes + len = (len + 7) & -8 + var ret + if (ensureCache.pos + len >= ensureCache.size) { + assert(len > 0) + ensureCache.needed += len + ret = Module['_malloc'](len) + ensureCache.temps.push(ret) + } else { + ret = ensureCache.buffer + ensureCache.pos + ensureCache.pos += len + } + return ret + }, + copy: function (array, view, offset) { + offset >>>= 0 + var bytes = view.BYTES_PER_ELEMENT + switch (bytes) { + case 2: + offset >>>= 1 + break + case 4: + offset >>>= 2 + break + case 8: + offset >>>= 3 + break + } + for (var i = 0; i < array.length; i++) { + view[offset + i] = array[i] + } + }, + } + function ensureString(value) { + if (typeof value === 'string') { + var intArray = intArrayFromString(value) + var offset = ensureCache.alloc(intArray, HEAP8) + ensureCache.copy(intArray, HEAP8, offset) + return offset + } + return value + } + function ensureInt8(value) { + if (typeof value === 'object') { + var offset = ensureCache.alloc(value, HEAP8) + ensureCache.copy(value, HEAP8, offset) + return offset + } + return value + } + function VoidPtr() { + throw 'cannot construct a VoidPtr, no constructor in IDL' + } + VoidPtr.prototype = Object.create(WrapperObject.prototype) + VoidPtr.prototype.constructor = VoidPtr + VoidPtr.prototype.__class__ = VoidPtr + VoidPtr.__cache__ = {} + Module['VoidPtr'] = VoidPtr + VoidPtr.prototype['__destroy__'] = VoidPtr.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_VoidPtr___destroy___0(self) + } + function DecoderBuffer() { + this.ptr = _emscripten_bind_DecoderBuffer_DecoderBuffer_0() + getCache(DecoderBuffer)[this.ptr] = this + } + DecoderBuffer.prototype = Object.create(WrapperObject.prototype) + DecoderBuffer.prototype.constructor = DecoderBuffer + DecoderBuffer.prototype.__class__ = DecoderBuffer + DecoderBuffer.__cache__ = {} + Module['DecoderBuffer'] = DecoderBuffer + DecoderBuffer.prototype['Init'] = DecoderBuffer.prototype.Init = function ( + data, + data_size, + ) { + var self = this.ptr + ensureCache.prepare() + if (typeof data == 'object') { + data = ensureInt8(data) + } + if (data_size && typeof data_size === 'object') data_size = data_size.ptr + _emscripten_bind_DecoderBuffer_Init_2(self, data, data_size) + } + DecoderBuffer.prototype['__destroy__'] = + DecoderBuffer.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DecoderBuffer___destroy___0(self) + } + function AttributeTransformData() { + this.ptr = + _emscripten_bind_AttributeTransformData_AttributeTransformData_0() + getCache(AttributeTransformData)[this.ptr] = this + } + AttributeTransformData.prototype = Object.create(WrapperObject.prototype) + AttributeTransformData.prototype.constructor = AttributeTransformData + AttributeTransformData.prototype.__class__ = AttributeTransformData + AttributeTransformData.__cache__ = {} + Module['AttributeTransformData'] = AttributeTransformData + AttributeTransformData.prototype['transform_type'] = + AttributeTransformData.prototype.transform_type = function () { + var self = this.ptr + return _emscripten_bind_AttributeTransformData_transform_type_0(self) + } + AttributeTransformData.prototype['__destroy__'] = + AttributeTransformData.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_AttributeTransformData___destroy___0(self) + } + function GeometryAttribute() { + this.ptr = _emscripten_bind_GeometryAttribute_GeometryAttribute_0() + getCache(GeometryAttribute)[this.ptr] = this + } + GeometryAttribute.prototype = Object.create(WrapperObject.prototype) + GeometryAttribute.prototype.constructor = GeometryAttribute + GeometryAttribute.prototype.__class__ = GeometryAttribute + GeometryAttribute.__cache__ = {} + Module['GeometryAttribute'] = GeometryAttribute + GeometryAttribute.prototype['__destroy__'] = + GeometryAttribute.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_GeometryAttribute___destroy___0(self) + } + function PointAttribute() { + this.ptr = _emscripten_bind_PointAttribute_PointAttribute_0() + getCache(PointAttribute)[this.ptr] = this + } + PointAttribute.prototype = Object.create(WrapperObject.prototype) + PointAttribute.prototype.constructor = PointAttribute + PointAttribute.prototype.__class__ = PointAttribute + PointAttribute.__cache__ = {} + Module['PointAttribute'] = PointAttribute + PointAttribute.prototype['size'] = PointAttribute.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_size_0(self) + } + PointAttribute.prototype['GetAttributeTransformData'] = + PointAttribute.prototype.GetAttributeTransformData = function () { + var self = this.ptr + return wrapPointer( + _emscripten_bind_PointAttribute_GetAttributeTransformData_0(self), + AttributeTransformData, + ) + } + PointAttribute.prototype['attribute_type'] = + PointAttribute.prototype.attribute_type = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_attribute_type_0(self) + } + PointAttribute.prototype['data_type'] = PointAttribute.prototype.data_type = + function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_data_type_0(self) + } + PointAttribute.prototype['num_components'] = + PointAttribute.prototype.num_components = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_num_components_0(self) + } + PointAttribute.prototype['normalized'] = + PointAttribute.prototype.normalized = function () { + var self = this.ptr + return !!_emscripten_bind_PointAttribute_normalized_0(self) + } + PointAttribute.prototype['byte_stride'] = + PointAttribute.prototype.byte_stride = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_byte_stride_0(self) + } + PointAttribute.prototype['byte_offset'] = + PointAttribute.prototype.byte_offset = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_byte_offset_0(self) + } + PointAttribute.prototype['unique_id'] = PointAttribute.prototype.unique_id = + function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_unique_id_0(self) + } + PointAttribute.prototype['__destroy__'] = + PointAttribute.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_PointAttribute___destroy___0(self) + } + function AttributeQuantizationTransform() { + this.ptr = + _emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0() + getCache(AttributeQuantizationTransform)[this.ptr] = this + } + AttributeQuantizationTransform.prototype = Object.create( + WrapperObject.prototype, + ) + AttributeQuantizationTransform.prototype.constructor = + AttributeQuantizationTransform + AttributeQuantizationTransform.prototype.__class__ = + AttributeQuantizationTransform + AttributeQuantizationTransform.__cache__ = {} + Module['AttributeQuantizationTransform'] = AttributeQuantizationTransform + AttributeQuantizationTransform.prototype['InitFromAttribute'] = + AttributeQuantizationTransform.prototype.InitFromAttribute = function ( + att, + ) { + var self = this.ptr + if (att && typeof att === 'object') att = att.ptr + return !!_emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1( + self, + att, + ) + } + AttributeQuantizationTransform.prototype['quantization_bits'] = + AttributeQuantizationTransform.prototype.quantization_bits = function () { + var self = this.ptr + return _emscripten_bind_AttributeQuantizationTransform_quantization_bits_0( + self, + ) + } + AttributeQuantizationTransform.prototype['min_value'] = + AttributeQuantizationTransform.prototype.min_value = function (axis) { + var self = this.ptr + if (axis && typeof axis === 'object') axis = axis.ptr + return _emscripten_bind_AttributeQuantizationTransform_min_value_1( + self, + axis, + ) + } + AttributeQuantizationTransform.prototype['range'] = + AttributeQuantizationTransform.prototype.range = function () { + var self = this.ptr + return _emscripten_bind_AttributeQuantizationTransform_range_0(self) + } + AttributeQuantizationTransform.prototype['__destroy__'] = + AttributeQuantizationTransform.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_AttributeQuantizationTransform___destroy___0(self) + } + function AttributeOctahedronTransform() { + this.ptr = + _emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0() + getCache(AttributeOctahedronTransform)[this.ptr] = this + } + AttributeOctahedronTransform.prototype = Object.create( + WrapperObject.prototype, + ) + AttributeOctahedronTransform.prototype.constructor = + AttributeOctahedronTransform + AttributeOctahedronTransform.prototype.__class__ = + AttributeOctahedronTransform + AttributeOctahedronTransform.__cache__ = {} + Module['AttributeOctahedronTransform'] = AttributeOctahedronTransform + AttributeOctahedronTransform.prototype['InitFromAttribute'] = + AttributeOctahedronTransform.prototype.InitFromAttribute = function ( + att, + ) { + var self = this.ptr + if (att && typeof att === 'object') att = att.ptr + return !!_emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1( + self, + att, + ) + } + AttributeOctahedronTransform.prototype['quantization_bits'] = + AttributeOctahedronTransform.prototype.quantization_bits = function () { + var self = this.ptr + return _emscripten_bind_AttributeOctahedronTransform_quantization_bits_0( + self, + ) + } + AttributeOctahedronTransform.prototype['__destroy__'] = + AttributeOctahedronTransform.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_AttributeOctahedronTransform___destroy___0(self) + } + function PointCloud() { + this.ptr = _emscripten_bind_PointCloud_PointCloud_0() + getCache(PointCloud)[this.ptr] = this + } + PointCloud.prototype = Object.create(WrapperObject.prototype) + PointCloud.prototype.constructor = PointCloud + PointCloud.prototype.__class__ = PointCloud + PointCloud.__cache__ = {} + Module['PointCloud'] = PointCloud + PointCloud.prototype['num_attributes'] = + PointCloud.prototype.num_attributes = function () { + var self = this.ptr + return _emscripten_bind_PointCloud_num_attributes_0(self) + } + PointCloud.prototype['num_points'] = PointCloud.prototype.num_points = + function () { + var self = this.ptr + return _emscripten_bind_PointCloud_num_points_0(self) + } + PointCloud.prototype['__destroy__'] = PointCloud.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_PointCloud___destroy___0(self) + } + function Mesh() { + this.ptr = _emscripten_bind_Mesh_Mesh_0() + getCache(Mesh)[this.ptr] = this + } + Mesh.prototype = Object.create(WrapperObject.prototype) + Mesh.prototype.constructor = Mesh + Mesh.prototype.__class__ = Mesh + Mesh.__cache__ = {} + Module['Mesh'] = Mesh + Mesh.prototype['num_faces'] = Mesh.prototype.num_faces = function () { + var self = this.ptr + return _emscripten_bind_Mesh_num_faces_0(self) + } + Mesh.prototype['num_attributes'] = Mesh.prototype.num_attributes = + function () { + var self = this.ptr + return _emscripten_bind_Mesh_num_attributes_0(self) + } + Mesh.prototype['num_points'] = Mesh.prototype.num_points = function () { + var self = this.ptr + return _emscripten_bind_Mesh_num_points_0(self) + } + Mesh.prototype['__destroy__'] = Mesh.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_Mesh___destroy___0(self) + } + function Metadata() { + this.ptr = _emscripten_bind_Metadata_Metadata_0() + getCache(Metadata)[this.ptr] = this + } + Metadata.prototype = Object.create(WrapperObject.prototype) + Metadata.prototype.constructor = Metadata + Metadata.prototype.__class__ = Metadata + Metadata.__cache__ = {} + Module['Metadata'] = Metadata + Metadata.prototype['__destroy__'] = Metadata.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_Metadata___destroy___0(self) + } + function Status() { + throw 'cannot construct a Status, no constructor in IDL' + } + Status.prototype = Object.create(WrapperObject.prototype) + Status.prototype.constructor = Status + Status.prototype.__class__ = Status + Status.__cache__ = {} + Module['Status'] = Status + Status.prototype['code'] = Status.prototype.code = function () { + var self = this.ptr + return _emscripten_bind_Status_code_0(self) + } + Status.prototype['ok'] = Status.prototype.ok = function () { + var self = this.ptr + return !!_emscripten_bind_Status_ok_0(self) + } + Status.prototype['error_msg'] = Status.prototype.error_msg = function () { + var self = this.ptr + return UTF8ToString(_emscripten_bind_Status_error_msg_0(self)) + } + Status.prototype['__destroy__'] = Status.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_Status___destroy___0(self) + } + function DracoFloat32Array() { + this.ptr = _emscripten_bind_DracoFloat32Array_DracoFloat32Array_0() + getCache(DracoFloat32Array)[this.ptr] = this + } + DracoFloat32Array.prototype = Object.create(WrapperObject.prototype) + DracoFloat32Array.prototype.constructor = DracoFloat32Array + DracoFloat32Array.prototype.__class__ = DracoFloat32Array + DracoFloat32Array.__cache__ = {} + Module['DracoFloat32Array'] = DracoFloat32Array + DracoFloat32Array.prototype['GetValue'] = + DracoFloat32Array.prototype.GetValue = function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoFloat32Array_GetValue_1(self, index) + } + DracoFloat32Array.prototype['size'] = DracoFloat32Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoFloat32Array_size_0(self) + } + DracoFloat32Array.prototype['__destroy__'] = + DracoFloat32Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoFloat32Array___destroy___0(self) + } + function DracoInt8Array() { + this.ptr = _emscripten_bind_DracoInt8Array_DracoInt8Array_0() + getCache(DracoInt8Array)[this.ptr] = this + } + DracoInt8Array.prototype = Object.create(WrapperObject.prototype) + DracoInt8Array.prototype.constructor = DracoInt8Array + DracoInt8Array.prototype.__class__ = DracoInt8Array + DracoInt8Array.__cache__ = {} + Module['DracoInt8Array'] = DracoInt8Array + DracoInt8Array.prototype['GetValue'] = DracoInt8Array.prototype.GetValue = + function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoInt8Array_GetValue_1(self, index) + } + DracoInt8Array.prototype['size'] = DracoInt8Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoInt8Array_size_0(self) + } + DracoInt8Array.prototype['__destroy__'] = + DracoInt8Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoInt8Array___destroy___0(self) + } + function DracoUInt8Array() { + this.ptr = _emscripten_bind_DracoUInt8Array_DracoUInt8Array_0() + getCache(DracoUInt8Array)[this.ptr] = this + } + DracoUInt8Array.prototype = Object.create(WrapperObject.prototype) + DracoUInt8Array.prototype.constructor = DracoUInt8Array + DracoUInt8Array.prototype.__class__ = DracoUInt8Array + DracoUInt8Array.__cache__ = {} + Module['DracoUInt8Array'] = DracoUInt8Array + DracoUInt8Array.prototype['GetValue'] = DracoUInt8Array.prototype.GetValue = + function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoUInt8Array_GetValue_1(self, index) + } + DracoUInt8Array.prototype['size'] = DracoUInt8Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoUInt8Array_size_0(self) + } + DracoUInt8Array.prototype['__destroy__'] = + DracoUInt8Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoUInt8Array___destroy___0(self) + } + function DracoInt16Array() { + this.ptr = _emscripten_bind_DracoInt16Array_DracoInt16Array_0() + getCache(DracoInt16Array)[this.ptr] = this + } + DracoInt16Array.prototype = Object.create(WrapperObject.prototype) + DracoInt16Array.prototype.constructor = DracoInt16Array + DracoInt16Array.prototype.__class__ = DracoInt16Array + DracoInt16Array.__cache__ = {} + Module['DracoInt16Array'] = DracoInt16Array + DracoInt16Array.prototype['GetValue'] = DracoInt16Array.prototype.GetValue = + function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoInt16Array_GetValue_1(self, index) + } + DracoInt16Array.prototype['size'] = DracoInt16Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoInt16Array_size_0(self) + } + DracoInt16Array.prototype['__destroy__'] = + DracoInt16Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoInt16Array___destroy___0(self) + } + function DracoUInt16Array() { + this.ptr = _emscripten_bind_DracoUInt16Array_DracoUInt16Array_0() + getCache(DracoUInt16Array)[this.ptr] = this + } + DracoUInt16Array.prototype = Object.create(WrapperObject.prototype) + DracoUInt16Array.prototype.constructor = DracoUInt16Array + DracoUInt16Array.prototype.__class__ = DracoUInt16Array + DracoUInt16Array.__cache__ = {} + Module['DracoUInt16Array'] = DracoUInt16Array + DracoUInt16Array.prototype['GetValue'] = + DracoUInt16Array.prototype.GetValue = function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoUInt16Array_GetValue_1(self, index) + } + DracoUInt16Array.prototype['size'] = DracoUInt16Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoUInt16Array_size_0(self) + } + DracoUInt16Array.prototype['__destroy__'] = + DracoUInt16Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoUInt16Array___destroy___0(self) + } + function DracoInt32Array() { + this.ptr = _emscripten_bind_DracoInt32Array_DracoInt32Array_0() + getCache(DracoInt32Array)[this.ptr] = this + } + DracoInt32Array.prototype = Object.create(WrapperObject.prototype) + DracoInt32Array.prototype.constructor = DracoInt32Array + DracoInt32Array.prototype.__class__ = DracoInt32Array + DracoInt32Array.__cache__ = {} + Module['DracoInt32Array'] = DracoInt32Array + DracoInt32Array.prototype['GetValue'] = DracoInt32Array.prototype.GetValue = + function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoInt32Array_GetValue_1(self, index) + } + DracoInt32Array.prototype['size'] = DracoInt32Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoInt32Array_size_0(self) + } + DracoInt32Array.prototype['__destroy__'] = + DracoInt32Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoInt32Array___destroy___0(self) + } + function DracoUInt32Array() { + this.ptr = _emscripten_bind_DracoUInt32Array_DracoUInt32Array_0() + getCache(DracoUInt32Array)[this.ptr] = this + } + DracoUInt32Array.prototype = Object.create(WrapperObject.prototype) + DracoUInt32Array.prototype.constructor = DracoUInt32Array + DracoUInt32Array.prototype.__class__ = DracoUInt32Array + DracoUInt32Array.__cache__ = {} + Module['DracoUInt32Array'] = DracoUInt32Array + DracoUInt32Array.prototype['GetValue'] = + DracoUInt32Array.prototype.GetValue = function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoUInt32Array_GetValue_1(self, index) + } + DracoUInt32Array.prototype['size'] = DracoUInt32Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoUInt32Array_size_0(self) + } + DracoUInt32Array.prototype['__destroy__'] = + DracoUInt32Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoUInt32Array___destroy___0(self) + } + function MetadataQuerier() { + this.ptr = _emscripten_bind_MetadataQuerier_MetadataQuerier_0() + getCache(MetadataQuerier)[this.ptr] = this + } + MetadataQuerier.prototype = Object.create(WrapperObject.prototype) + MetadataQuerier.prototype.constructor = MetadataQuerier + MetadataQuerier.prototype.__class__ = MetadataQuerier + MetadataQuerier.__cache__ = {} + Module['MetadataQuerier'] = MetadataQuerier + MetadataQuerier.prototype['HasEntry'] = MetadataQuerier.prototype.HasEntry = + function (metadata, entry_name) { + var self = this.ptr + ensureCache.prepare() + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + if (entry_name && typeof entry_name === 'object') + entry_name = entry_name.ptr + else entry_name = ensureString(entry_name) + return !!_emscripten_bind_MetadataQuerier_HasEntry_2( + self, + metadata, + entry_name, + ) + } + MetadataQuerier.prototype['GetIntEntry'] = + MetadataQuerier.prototype.GetIntEntry = function (metadata, entry_name) { + var self = this.ptr + ensureCache.prepare() + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + if (entry_name && typeof entry_name === 'object') + entry_name = entry_name.ptr + else entry_name = ensureString(entry_name) + return _emscripten_bind_MetadataQuerier_GetIntEntry_2( + self, + metadata, + entry_name, + ) + } + MetadataQuerier.prototype['GetIntEntryArray'] = + MetadataQuerier.prototype.GetIntEntryArray = function ( + metadata, + entry_name, + out_values, + ) { + var self = this.ptr + ensureCache.prepare() + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + if (entry_name && typeof entry_name === 'object') + entry_name = entry_name.ptr + else entry_name = ensureString(entry_name) + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + _emscripten_bind_MetadataQuerier_GetIntEntryArray_3( + self, + metadata, + entry_name, + out_values, + ) + } + MetadataQuerier.prototype['GetDoubleEntry'] = + MetadataQuerier.prototype.GetDoubleEntry = function ( + metadata, + entry_name, + ) { + var self = this.ptr + ensureCache.prepare() + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + if (entry_name && typeof entry_name === 'object') + entry_name = entry_name.ptr + else entry_name = ensureString(entry_name) + return _emscripten_bind_MetadataQuerier_GetDoubleEntry_2( + self, + metadata, + entry_name, + ) + } + MetadataQuerier.prototype['GetStringEntry'] = + MetadataQuerier.prototype.GetStringEntry = function ( + metadata, + entry_name, + ) { + var self = this.ptr + ensureCache.prepare() + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + if (entry_name && typeof entry_name === 'object') + entry_name = entry_name.ptr + else entry_name = ensureString(entry_name) + return UTF8ToString( + _emscripten_bind_MetadataQuerier_GetStringEntry_2( + self, + metadata, + entry_name, + ), + ) + } + MetadataQuerier.prototype['NumEntries'] = + MetadataQuerier.prototype.NumEntries = function (metadata) { + var self = this.ptr + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + return _emscripten_bind_MetadataQuerier_NumEntries_1(self, metadata) + } + MetadataQuerier.prototype['GetEntryName'] = + MetadataQuerier.prototype.GetEntryName = function (metadata, entry_id) { + var self = this.ptr + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + if (entry_id && typeof entry_id === 'object') entry_id = entry_id.ptr + return UTF8ToString( + _emscripten_bind_MetadataQuerier_GetEntryName_2( + self, + metadata, + entry_id, + ), + ) + } + MetadataQuerier.prototype['__destroy__'] = + MetadataQuerier.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_MetadataQuerier___destroy___0(self) + } + function Decoder() { + this.ptr = _emscripten_bind_Decoder_Decoder_0() + getCache(Decoder)[this.ptr] = this + } + Decoder.prototype = Object.create(WrapperObject.prototype) + Decoder.prototype.constructor = Decoder + Decoder.prototype.__class__ = Decoder + Decoder.__cache__ = {} + Module['Decoder'] = Decoder + Decoder.prototype['DecodeArrayToPointCloud'] = + Decoder.prototype.DecodeArrayToPointCloud = function ( + data, + data_size, + out_point_cloud, + ) { + var self = this.ptr + ensureCache.prepare() + if (typeof data == 'object') { + data = ensureInt8(data) + } + if (data_size && typeof data_size === 'object') + data_size = data_size.ptr + if (out_point_cloud && typeof out_point_cloud === 'object') + out_point_cloud = out_point_cloud.ptr + return wrapPointer( + _emscripten_bind_Decoder_DecodeArrayToPointCloud_3( + self, + data, + data_size, + out_point_cloud, + ), + Status, + ) + } + Decoder.prototype['DecodeArrayToMesh'] = + Decoder.prototype.DecodeArrayToMesh = function ( + data, + data_size, + out_mesh, + ) { + var self = this.ptr + ensureCache.prepare() + if (typeof data == 'object') { + data = ensureInt8(data) + } + if (data_size && typeof data_size === 'object') + data_size = data_size.ptr + if (out_mesh && typeof out_mesh === 'object') out_mesh = out_mesh.ptr + return wrapPointer( + _emscripten_bind_Decoder_DecodeArrayToMesh_3( + self, + data, + data_size, + out_mesh, + ), + Status, + ) + } + Decoder.prototype['GetAttributeId'] = Decoder.prototype.GetAttributeId = + function (pc, type) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (type && typeof type === 'object') type = type.ptr + return _emscripten_bind_Decoder_GetAttributeId_2(self, pc, type) + } + Decoder.prototype['GetAttributeIdByName'] = + Decoder.prototype.GetAttributeIdByName = function (pc, name) { + var self = this.ptr + ensureCache.prepare() + if (pc && typeof pc === 'object') pc = pc.ptr + if (name && typeof name === 'object') name = name.ptr + else name = ensureString(name) + return _emscripten_bind_Decoder_GetAttributeIdByName_2(self, pc, name) + } + Decoder.prototype['GetAttributeIdByMetadataEntry'] = + Decoder.prototype.GetAttributeIdByMetadataEntry = function ( + pc, + name, + value, + ) { + var self = this.ptr + ensureCache.prepare() + if (pc && typeof pc === 'object') pc = pc.ptr + if (name && typeof name === 'object') name = name.ptr + else name = ensureString(name) + if (value && typeof value === 'object') value = value.ptr + else value = ensureString(value) + return _emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3( + self, + pc, + name, + value, + ) + } + Decoder.prototype['GetAttribute'] = Decoder.prototype.GetAttribute = + function (pc, att_id) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (att_id && typeof att_id === 'object') att_id = att_id.ptr + return wrapPointer( + _emscripten_bind_Decoder_GetAttribute_2(self, pc, att_id), + PointAttribute, + ) + } + Decoder.prototype['GetAttributeByUniqueId'] = + Decoder.prototype.GetAttributeByUniqueId = function (pc, unique_id) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (unique_id && typeof unique_id === 'object') + unique_id = unique_id.ptr + return wrapPointer( + _emscripten_bind_Decoder_GetAttributeByUniqueId_2( + self, + pc, + unique_id, + ), + PointAttribute, + ) + } + Decoder.prototype['GetMetadata'] = Decoder.prototype.GetMetadata = + function (pc) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + return wrapPointer( + _emscripten_bind_Decoder_GetMetadata_1(self, pc), + Metadata, + ) + } + Decoder.prototype['GetAttributeMetadata'] = + Decoder.prototype.GetAttributeMetadata = function (pc, att_id) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (att_id && typeof att_id === 'object') att_id = att_id.ptr + return wrapPointer( + _emscripten_bind_Decoder_GetAttributeMetadata_2(self, pc, att_id), + Metadata, + ) + } + Decoder.prototype['GetFaceFromMesh'] = Decoder.prototype.GetFaceFromMesh = + function (m, face_id, out_values) { + var self = this.ptr + if (m && typeof m === 'object') m = m.ptr + if (face_id && typeof face_id === 'object') face_id = face_id.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetFaceFromMesh_3( + self, + m, + face_id, + out_values, + ) + } + Decoder.prototype['GetTriangleStripsFromMesh'] = + Decoder.prototype.GetTriangleStripsFromMesh = function (m, strip_values) { + var self = this.ptr + if (m && typeof m === 'object') m = m.ptr + if (strip_values && typeof strip_values === 'object') + strip_values = strip_values.ptr + return _emscripten_bind_Decoder_GetTriangleStripsFromMesh_2( + self, + m, + strip_values, + ) + } + Decoder.prototype['GetTrianglesUInt16Array'] = + Decoder.prototype.GetTrianglesUInt16Array = function ( + m, + out_size, + out_values, + ) { + var self = this.ptr + if (m && typeof m === 'object') m = m.ptr + if (out_size && typeof out_size === 'object') out_size = out_size.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetTrianglesUInt16Array_3( + self, + m, + out_size, + out_values, + ) + } + Decoder.prototype['GetTrianglesUInt32Array'] = + Decoder.prototype.GetTrianglesUInt32Array = function ( + m, + out_size, + out_values, + ) { + var self = this.ptr + if (m && typeof m === 'object') m = m.ptr + if (out_size && typeof out_size === 'object') out_size = out_size.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetTrianglesUInt32Array_3( + self, + m, + out_size, + out_values, + ) + } + Decoder.prototype['GetAttributeFloat'] = + Decoder.prototype.GetAttributeFloat = function ( + pa, + att_index, + out_values, + ) { + var self = this.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (att_index && typeof att_index === 'object') + att_index = att_index.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeFloat_3( + self, + pa, + att_index, + out_values, + ) + } + Decoder.prototype['GetAttributeFloatForAllPoints'] = + Decoder.prototype.GetAttributeFloatForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeIntForAllPoints'] = + Decoder.prototype.GetAttributeIntForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeIntForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeInt8ForAllPoints'] = + Decoder.prototype.GetAttributeInt8ForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeUInt8ForAllPoints'] = + Decoder.prototype.GetAttributeUInt8ForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeInt16ForAllPoints'] = + Decoder.prototype.GetAttributeInt16ForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeUInt16ForAllPoints'] = + Decoder.prototype.GetAttributeUInt16ForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeInt32ForAllPoints'] = + Decoder.prototype.GetAttributeInt32ForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeUInt32ForAllPoints'] = + Decoder.prototype.GetAttributeUInt32ForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeDataArrayForAllPoints'] = + Decoder.prototype.GetAttributeDataArrayForAllPoints = function ( + pc, + pa, + data_type, + out_size, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (data_type && typeof data_type === 'object') + data_type = data_type.ptr + if (out_size && typeof out_size === 'object') out_size = out_size.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5( + self, + pc, + pa, + data_type, + out_size, + out_values, + ) + } + Decoder.prototype['SkipAttributeTransform'] = + Decoder.prototype.SkipAttributeTransform = function (att_type) { + var self = this.ptr + if (att_type && typeof att_type === 'object') att_type = att_type.ptr + _emscripten_bind_Decoder_SkipAttributeTransform_1(self, att_type) + } + Decoder.prototype['GetEncodedGeometryType_Deprecated'] = + Decoder.prototype.GetEncodedGeometryType_Deprecated = function ( + in_buffer, + ) { + var self = this.ptr + if (in_buffer && typeof in_buffer === 'object') + in_buffer = in_buffer.ptr + return _emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1( + self, + in_buffer, + ) + } + Decoder.prototype['DecodeBufferToPointCloud'] = + Decoder.prototype.DecodeBufferToPointCloud = function ( + in_buffer, + out_point_cloud, + ) { + var self = this.ptr + if (in_buffer && typeof in_buffer === 'object') + in_buffer = in_buffer.ptr + if (out_point_cloud && typeof out_point_cloud === 'object') + out_point_cloud = out_point_cloud.ptr + return wrapPointer( + _emscripten_bind_Decoder_DecodeBufferToPointCloud_2( + self, + in_buffer, + out_point_cloud, + ), + Status, + ) + } + Decoder.prototype['DecodeBufferToMesh'] = + Decoder.prototype.DecodeBufferToMesh = function (in_buffer, out_mesh) { + var self = this.ptr + if (in_buffer && typeof in_buffer === 'object') + in_buffer = in_buffer.ptr + if (out_mesh && typeof out_mesh === 'object') out_mesh = out_mesh.ptr + return wrapPointer( + _emscripten_bind_Decoder_DecodeBufferToMesh_2( + self, + in_buffer, + out_mesh, + ), + Status, + ) + } + Decoder.prototype['__destroy__'] = Decoder.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_Decoder___destroy___0(self) + } + ;(function () { + function setupEnums() { + Module['ATTRIBUTE_INVALID_TRANSFORM'] = + _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM() + Module['ATTRIBUTE_NO_TRANSFORM'] = + _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM() + Module['ATTRIBUTE_QUANTIZATION_TRANSFORM'] = + _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM() + Module['ATTRIBUTE_OCTAHEDRON_TRANSFORM'] = + _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM() + Module['INVALID'] = + _emscripten_enum_draco_GeometryAttribute_Type_INVALID() + Module['POSITION'] = + _emscripten_enum_draco_GeometryAttribute_Type_POSITION() + Module['NORMAL'] = + _emscripten_enum_draco_GeometryAttribute_Type_NORMAL() + Module['COLOR'] = _emscripten_enum_draco_GeometryAttribute_Type_COLOR() + Module['TEX_COORD'] = + _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD() + Module['GENERIC'] = + _emscripten_enum_draco_GeometryAttribute_Type_GENERIC() + Module['INVALID_GEOMETRY_TYPE'] = + _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE() + Module['POINT_CLOUD'] = + _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD() + Module['TRIANGULAR_MESH'] = + _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH() + Module['DT_INVALID'] = _emscripten_enum_draco_DataType_DT_INVALID() + Module['DT_INT8'] = _emscripten_enum_draco_DataType_DT_INT8() + Module['DT_UINT8'] = _emscripten_enum_draco_DataType_DT_UINT8() + Module['DT_INT16'] = _emscripten_enum_draco_DataType_DT_INT16() + Module['DT_UINT16'] = _emscripten_enum_draco_DataType_DT_UINT16() + Module['DT_INT32'] = _emscripten_enum_draco_DataType_DT_INT32() + Module['DT_UINT32'] = _emscripten_enum_draco_DataType_DT_UINT32() + Module['DT_INT64'] = _emscripten_enum_draco_DataType_DT_INT64() + Module['DT_UINT64'] = _emscripten_enum_draco_DataType_DT_UINT64() + Module['DT_FLOAT32'] = _emscripten_enum_draco_DataType_DT_FLOAT32() + Module['DT_FLOAT64'] = _emscripten_enum_draco_DataType_DT_FLOAT64() + Module['DT_BOOL'] = _emscripten_enum_draco_DataType_DT_BOOL() + Module['DT_TYPES_COUNT'] = + _emscripten_enum_draco_DataType_DT_TYPES_COUNT() + Module['OK'] = _emscripten_enum_draco_StatusCode_OK() + Module['DRACO_ERROR'] = _emscripten_enum_draco_StatusCode_DRACO_ERROR() + Module['IO_ERROR'] = _emscripten_enum_draco_StatusCode_IO_ERROR() + Module['INVALID_PARAMETER'] = + _emscripten_enum_draco_StatusCode_INVALID_PARAMETER() + Module['UNSUPPORTED_VERSION'] = + _emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION() + Module['UNKNOWN_VERSION'] = + _emscripten_enum_draco_StatusCode_UNKNOWN_VERSION() + } + if (runtimeInitialized) setupEnums() + else addOnInit(setupEnums) + })() + if (typeof Module['onModuleParsed'] === 'function') { + Module['onModuleParsed']() + } + Module['Decoder'].prototype.GetEncodedGeometryType = function (array) { + if (array.__class__ && array.__class__ === Module.DecoderBuffer) { + return Module.Decoder.prototype.GetEncodedGeometryType_Deprecated(array) + } + if (array.byteLength < 8) return Module.INVALID_GEOMETRY_TYPE + switch (array[7]) { + case 0: + return Module.POINT_CLOUD + case 1: + return Module.TRIANGULAR_MESH + default: + return Module.INVALID_GEOMETRY_TYPE + } + } - return DracoDecoderModule.ready -} -); -})(); + return DracoDecoderModule.ready + } +})() if (typeof exports === 'object' && typeof module === 'object') - module.exports = DracoDecoderModule; + module.exports = DracoDecoderModule else if (typeof define === 'function' && define['amd']) - define([], function() { return DracoDecoderModule; }); + define([], function () { + return DracoDecoderModule + }) else if (typeof exports === 'object') - exports["DracoDecoderModule"] = DracoDecoderModule; + exports['DracoDecoderModule'] = DracoDecoderModule diff --git a/public/draco/draco_encoder.js b/public/draco/draco_encoder.js index 2ace4372..cb5283a8 100644 --- a/public/draco/draco_encoder.js +++ b/public/draco/draco_encoder.js @@ -1,33 +1,91253 @@ -var DracoEncoderModule = function(DracoEncoderModule) { - DracoEncoderModule = DracoEncoderModule || {}; +var DracoEncoderModule = function (DracoEncoderModule) { + DracoEncoderModule = DracoEncoderModule || {} -var Module=typeof DracoEncoderModule!=="undefined"?DracoEncoderModule:{};var isRuntimeInitialized=false;var isModuleParsed=false;Module["onRuntimeInitialized"]=(function(){isRuntimeInitialized=true;if(isModuleParsed){if(typeof Module["onModuleLoaded"]==="function"){Module["onModuleLoaded"](Module)}}});Module["onModuleParsed"]=(function(){isModuleParsed=true;if(isRuntimeInitialized){if(typeof Module["onModuleLoaded"]==="function"){Module["onModuleLoaded"](Module)}}});function isVersionSupported(versionString){if(typeof versionString!=="string")return false;const version=versionString.split(".");if(version.length<2||version.length>3)return false;if(version[0]==1&&version[1]>=0&&version[1]<=3)return true;if(version[0]!=0||version[1]>10)return false;return true}Module["isVersionSupported"]=isVersionSupported;var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}Module["arguments"]=[];Module["thisProgram"]="./this.program";Module["quit"]=(function(status,toThrow){throw toThrow});Module["preRun"]=[];Module["postRun"]=[];var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;if(Module["ENVIRONMENT"]){if(Module["ENVIRONMENT"]==="WEB"){ENVIRONMENT_IS_WEB=true}else if(Module["ENVIRONMENT"]==="WORKER"){ENVIRONMENT_IS_WORKER=true}else if(Module["ENVIRONMENT"]==="NODE"){ENVIRONMENT_IS_NODE=true}else if(Module["ENVIRONMENT"]==="SHELL"){ENVIRONMENT_IS_SHELL=true}else{throw new Error("Module['ENVIRONMENT'] value is not valid. must be one of: WEB|WORKER|NODE|SHELL.")}}else{ENVIRONMENT_IS_WEB=typeof window==="object";ENVIRONMENT_IS_WORKER=typeof importScripts==="function";ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof require==="function"&&!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_WORKER;ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER}if(ENVIRONMENT_IS_NODE){var nodeFS;var nodePath;Module["read"]=function shell_read(filename,binary){var ret;ret=tryParseAsDataURI(filename);if(!ret){if(!nodeFS)nodeFS=require("fs");if(!nodePath)nodePath=require("path");filename=nodePath["normalize"](filename);ret=nodeFS["readFileSync"](filename)}return binary?ret:ret.toString()};Module["readBinary"]=function readBinary(filename){var ret=Module["read"](filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process["argv"].length>1){Module["thisProgram"]=process["argv"][1].replace(/\\/g,"/")}Module["arguments"]=process["argv"].slice(2);process["on"]("uncaughtException",(function(ex){if(!(ex instanceof ExitStatus)){throw ex}}));process["on"]("unhandledRejection",(function(reason,p){process["exit"](1)}));Module["inspect"]=(function(){return"[Emscripten Module object]"})}else if(ENVIRONMENT_IS_SHELL){if(typeof read!="undefined"){Module["read"]=function shell_read(f){var data=tryParseAsDataURI(f);if(data){return intArrayToString(data)}return read(f)}}Module["readBinary"]=function readBinary(f){var data;data=tryParseAsDataURI(f);if(data){return data}if(typeof readbuffer==="function"){return new Uint8Array(readbuffer(f))}data=read(f,"binary");assert(typeof data==="object");return data};if(typeof scriptArgs!="undefined"){Module["arguments"]=scriptArgs}else if(typeof arguments!="undefined"){Module["arguments"]=arguments}if(typeof quit==="function"){Module["quit"]=(function(status,toThrow){quit(status)})}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){Module["read"]=function shell_read(url){try{var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.send(null);return xhr.responseText}catch(err){var data=tryParseAsDataURI(url);if(data){return intArrayToString(data)}throw err}};if(ENVIRONMENT_IS_WORKER){Module["readBinary"]=function readBinary(url){try{var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.responseType="arraybuffer";xhr.send(null);return new Uint8Array(xhr.response)}catch(err){var data=tryParseAsDataURI(url);if(data){return data}throw err}}}Module["readAsync"]=function readAsync(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open("GET",url,true);xhr.responseType="arraybuffer";xhr.onload=function xhr_onload(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}var data=tryParseAsDataURI(url);if(data){onload(data.buffer);return}onerror()};xhr.onerror=onerror;xhr.send(null)};Module["setWindowTitle"]=(function(title){document.title=title})}Module["print"]=typeof console!=="undefined"?console.log.bind(console):typeof print!=="undefined"?print:null;Module["printErr"]=typeof printErr!=="undefined"?printErr:typeof console!=="undefined"&&console.warn.bind(console)||Module["print"];Module.print=Module["print"];Module.printErr=Module["printErr"];for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=undefined;var STACK_ALIGN=16;function staticAlloc(size){assert(!staticSealed);var ret=STATICTOP;STATICTOP=STATICTOP+size+15&-16;return ret}function dynamicAlloc(size){assert(DYNAMICTOP_PTR);var ret=HEAP32[DYNAMICTOP_PTR>>2];var end=ret+size+15&-16;HEAP32[DYNAMICTOP_PTR>>2]=end;if(end>=TOTAL_MEMORY){var success=enlargeMemory();if(!success){HEAP32[DYNAMICTOP_PTR>>2]=ret;return 0}}return ret}function alignMemory(size,factor){if(!factor)factor=STACK_ALIGN;var ret=size=Math.ceil(size/factor)*factor;return ret}function getNativeTypeSize(type){switch(type){case"i1":case"i8":return 1;case"i16":return 2;case"i32":return 4;case"i64":return 8;case"float":return 4;case"double":return 8;default:{if(type[type.length-1]==="*"){return 4}else if(type[0]==="i"){var bits=parseInt(type.substr(1));assert(bits%8===0);return bits/8}else{return 0}}}}function warnOnce(text){if(!warnOnce.shown)warnOnce.shown={};if(!warnOnce.shown[text]){warnOnce.shown[text]=1;Module.printErr(text)}}var jsCallStartIndex=1;var functionPointers=new Array(0);var funcWrappers={};function dynCall(sig,ptr,args){if(args&&args.length){return Module["dynCall_"+sig].apply(null,[ptr].concat(args))}else{return Module["dynCall_"+sig].call(null,ptr)}}var GLOBAL_BASE=8;var ABORT=0;var EXITSTATUS=0;function assert(condition,text){if(!condition){abort("Assertion failed: "+text)}}function getCFunc(ident){var func=Module["_"+ident];assert(func,"Cannot call unknown function "+ident+", make sure it is exported");return func}var JSfuncs={"stackSave":(function(){stackSave()}),"stackRestore":(function(){stackRestore()}),"arrayToC":(function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}),"stringToC":(function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret})};var toC={"string":JSfuncs["stringToC"],"array":JSfuncs["arrayToC"]};function ccall(ident,returnType,argTypes,args,opts){var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i>0]=value;break;case"i8":HEAP8[ptr>>0]=value;break;case"i16":HEAP16[ptr>>1]=value;break;case"i32":HEAP32[ptr>>2]=value;break;case"i64":tempI64=[value>>>0,(tempDouble=value,+Math_abs(tempDouble)>=+1?tempDouble>+0?(Math_min(+Math_floor(tempDouble/+4294967296),+4294967295)|0)>>>0:~~+Math_ceil((tempDouble- +(~~tempDouble>>>0))/+4294967296)>>>0:0)],HEAP32[ptr>>2]=tempI64[0],HEAP32[ptr+4>>2]=tempI64[1];break;case"float":HEAPF32[ptr>>2]=value;break;case"double":HEAPF64[ptr>>3]=value;break;default:abort("invalid type for setValue: "+type)}}var ALLOC_STATIC=2;var ALLOC_NONE=4;function allocate(slab,types,allocator,ptr){var zeroinit,size;if(typeof slab==="number"){zeroinit=true;size=slab}else{zeroinit=false;size=slab.length}var singleType=typeof types==="string"?types:null;var ret;if(allocator==ALLOC_NONE){ret=ptr}else{ret=[typeof _malloc==="function"?_malloc:staticAlloc,stackAlloc,staticAlloc,dynamicAlloc][allocator===undefined?ALLOC_STATIC:allocator](Math.max(size,singleType?1:types.length))}if(zeroinit){var stop;ptr=ret;assert((ret&3)==0);stop=ret+(size&~3);for(;ptr>2]=0}stop=ret+size;while(ptr>0]=0}return ret}if(singleType==="i8"){if(slab.subarray||slab.slice){HEAPU8.set(slab,ret)}else{HEAPU8.set(new Uint8Array(slab),ret)}return ret}var i=0,type,typeSize,previousType;while(i>0];hasUtf|=t;if(t==0&&!length)break;i++;if(length&&i==length)break}if(!length)length=i;var ret="";if(hasUtf<128){var MAX_CHUNK=1024;var curr;while(length>0){curr=String.fromCharCode.apply(String,HEAPU8.subarray(ptr,ptr+Math.min(length,MAX_CHUNK)));ret=ret?ret+curr:curr;ptr+=MAX_CHUNK;length-=MAX_CHUNK}return ret}return UTF8ToString(ptr)}var UTF8Decoder=typeof TextDecoder!=="undefined"?new TextDecoder("utf8"):undefined;function UTF8ArrayToString(u8Array,idx){var endPtr=idx;while(u8Array[endPtr])++endPtr;if(endPtr-idx>16&&u8Array.subarray&&UTF8Decoder){return UTF8Decoder.decode(u8Array.subarray(idx,endPtr))}else{var u0,u1,u2,u3,u4,u5;var str="";while(1){u0=u8Array[idx++];if(!u0)return str;if(!(u0&128)){str+=String.fromCharCode(u0);continue}u1=u8Array[idx++]&63;if((u0&224)==192){str+=String.fromCharCode((u0&31)<<6|u1);continue}u2=u8Array[idx++]&63;if((u0&240)==224){u0=(u0&15)<<12|u1<<6|u2}else{u3=u8Array[idx++]&63;if((u0&248)==240){u0=(u0&7)<<18|u1<<12|u2<<6|u3}else{u4=u8Array[idx++]&63;if((u0&252)==248){u0=(u0&3)<<24|u1<<18|u2<<12|u3<<6|u4}else{u5=u8Array[idx++]&63;u0=(u0&1)<<30|u1<<24|u2<<18|u3<<12|u4<<6|u5}}}if(u0<65536){str+=String.fromCharCode(u0)}else{var ch=u0-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}}}}function UTF8ToString(ptr){return UTF8ArrayToString(HEAPU8,ptr)}function stringToUTF8Array(str,outU8Array,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127){if(outIdx>=endIdx)break;outU8Array[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;outU8Array[outIdx++]=192|u>>6;outU8Array[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;outU8Array[outIdx++]=224|u>>12;outU8Array[outIdx++]=128|u>>6&63;outU8Array[outIdx++]=128|u&63}else if(u<=2097151){if(outIdx+3>=endIdx)break;outU8Array[outIdx++]=240|u>>18;outU8Array[outIdx++]=128|u>>12&63;outU8Array[outIdx++]=128|u>>6&63;outU8Array[outIdx++]=128|u&63}else if(u<=67108863){if(outIdx+4>=endIdx)break;outU8Array[outIdx++]=248|u>>24;outU8Array[outIdx++]=128|u>>18&63;outU8Array[outIdx++]=128|u>>12&63;outU8Array[outIdx++]=128|u>>6&63;outU8Array[outIdx++]=128|u&63}else{if(outIdx+5>=endIdx)break;outU8Array[outIdx++]=252|u>>30;outU8Array[outIdx++]=128|u>>24&63;outU8Array[outIdx++]=128|u>>18&63;outU8Array[outIdx++]=128|u>>12&63;outU8Array[outIdx++]=128|u>>6&63;outU8Array[outIdx++]=128|u&63}}outU8Array[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,HEAPU8,outPtr,maxBytesToWrite)}function lengthBytesUTF8(str){var len=0;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127){++len}else if(u<=2047){len+=2}else if(u<=65535){len+=3}else if(u<=2097151){len+=4}else if(u<=67108863){len+=5}else{len+=6}}return len}var UTF16Decoder=typeof TextDecoder!=="undefined"?new TextDecoder("utf-16le"):undefined;function demangle(func){return func}function demangleAll(text){var regex=/__Z[\w\d_]+/g;return text.replace(regex,(function(x){var y=demangle(x);return x===y?x:x+" ["+y+"]"}))}function jsStackTrace(){var err=new Error;if(!err.stack){try{throw new Error(0)}catch(e){err=e}if(!err.stack){return"(no stack trace available)"}}return err.stack.toString()}var WASM_PAGE_SIZE=65536;var ASMJS_PAGE_SIZE=16777216;var MIN_TOTAL_MEMORY=16777216;function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBuffer(buf){Module["buffer"]=buffer=buf}function updateGlobalBufferViews(){Module["HEAP8"]=HEAP8=new Int8Array(buffer);Module["HEAP16"]=HEAP16=new Int16Array(buffer);Module["HEAP32"]=HEAP32=new Int32Array(buffer);Module["HEAPU8"]=HEAPU8=new Uint8Array(buffer);Module["HEAPU16"]=HEAPU16=new Uint16Array(buffer);Module["HEAPU32"]=HEAPU32=new Uint32Array(buffer);Module["HEAPF32"]=HEAPF32=new Float32Array(buffer);Module["HEAPF64"]=HEAPF64=new Float64Array(buffer)}var STATIC_BASE,STATICTOP,staticSealed;var STACK_BASE,STACKTOP,STACK_MAX;var DYNAMIC_BASE,DYNAMICTOP_PTR;STATIC_BASE=STATICTOP=STACK_BASE=STACKTOP=STACK_MAX=DYNAMIC_BASE=DYNAMICTOP_PTR=0;staticSealed=false;function abortOnCannotGrowMemory(){abort("Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value "+TOTAL_MEMORY+", (2) compile with -s ALLOW_MEMORY_GROWTH=1 which allows increasing the size at runtime but prevents some optimizations, (3) set Module.TOTAL_MEMORY to a higher value before the program runs, or (4) if you want malloc to return NULL (0) instead of this abort, compile with -s ABORTING_MALLOC=0 ")}if(!Module["reallocBuffer"])Module["reallocBuffer"]=(function(size){var ret;try{if(ArrayBuffer.transfer){ret=ArrayBuffer.transfer(buffer,size)}else{var oldHEAP8=HEAP8;ret=new ArrayBuffer(size);var temp=new Int8Array(ret);temp.set(oldHEAP8)}}catch(e){return false}var success=_emscripten_replace_memory(ret);if(!success)return false;return ret});function enlargeMemory(){var PAGE_MULTIPLE=Module["usingWasm"]?WASM_PAGE_SIZE:ASMJS_PAGE_SIZE;var LIMIT=2147483648-PAGE_MULTIPLE;if(HEAP32[DYNAMICTOP_PTR>>2]>LIMIT){return false}var OLD_TOTAL_MEMORY=TOTAL_MEMORY;TOTAL_MEMORY=Math.max(TOTAL_MEMORY,MIN_TOTAL_MEMORY);while(TOTAL_MEMORY>2]){if(TOTAL_MEMORY<=536870912){TOTAL_MEMORY=alignUp(2*TOTAL_MEMORY,PAGE_MULTIPLE)}else{TOTAL_MEMORY=Math.min(alignUp((3*TOTAL_MEMORY+2147483648)/4,PAGE_MULTIPLE),LIMIT)}}var replacement=Module["reallocBuffer"](TOTAL_MEMORY);if(!replacement||replacement.byteLength!=TOTAL_MEMORY){TOTAL_MEMORY=OLD_TOTAL_MEMORY;return false}updateGlobalBuffer(replacement);updateGlobalBufferViews();return true}var byteLength;try{byteLength=Function.prototype.call.bind(Object.getOwnPropertyDescriptor(ArrayBuffer.prototype,"byteLength").get);byteLength(new ArrayBuffer(4))}catch(e){byteLength=(function(buffer){return buffer.byteLength})}var TOTAL_STACK=Module["TOTAL_STACK"]||5242880;var TOTAL_MEMORY=Module["TOTAL_MEMORY"]||16777216;if(TOTAL_MEMORY0){var callback=callbacks.shift();if(typeof callback=="function"){callback();continue}var func=callback.func;if(typeof func==="number"){if(callback.arg===undefined){Module["dynCall_v"](func)}else{Module["dynCall_vi"](func,callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATEXIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;var runtimeExited=false;function preRun(){if(Module["preRun"]){if(typeof Module["preRun"]=="function")Module["preRun"]=[Module["preRun"]];while(Module["preRun"].length){addOnPreRun(Module["preRun"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function ensureInitRuntime(){if(runtimeInitialized)return;runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function preMain(){callRuntimeCallbacks(__ATMAIN__)}function exitRuntime(){callRuntimeCallbacks(__ATEXIT__);runtimeExited=true}function postRun(){if(Module["postRun"]){if(typeof Module["postRun"]=="function")Module["postRun"]=[Module["postRun"]];while(Module["postRun"].length){addOnPostRun(Module["postRun"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPreMain(cb){__ATMAIN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}function writeArrayToMemory(array,buffer){HEAP8.set(array,buffer)}function writeAsciiToMemory(str,buffer,dontAddNull){for(var i=0;i>0]=str.charCodeAt(i)}if(!dontAddNull)HEAP8[buffer>>0]=0}var Math_abs=Math.abs;var Math_cos=Math.cos;var Math_sin=Math.sin;var Math_tan=Math.tan;var Math_acos=Math.acos;var Math_asin=Math.asin;var Math_atan=Math.atan;var Math_atan2=Math.atan2;var Math_exp=Math.exp;var Math_log=Math.log;var Math_sqrt=Math.sqrt;var Math_ceil=Math.ceil;var Math_floor=Math.floor;var Math_pow=Math.pow;var Math_imul=Math.imul;var Math_fround=Math.fround;var Math_round=Math.round;var Math_min=Math.min;var Math_max=Math.max;var Math_clz32=Math.clz32;var Math_trunc=Math.trunc;var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){runDependencies++;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module["preloadedImages"]={};Module["preloadedAudios"]={};var memoryInitializer=null;var dataURIPrefix="data:application/octet-stream;base64,";function isDataURI(filename){return String.prototype.startsWith?filename.startsWith(dataURIPrefix):filename.indexOf(dataURIPrefix)===0}STATIC_BASE=GLOBAL_BASE;STATICTOP=STATIC_BASE+18640;__ATINIT__.push();memoryInitializer="data:application/octet-stream;base64,vBoAACwbAADkGgAAehsAACAAAAAAAAAAvBoAAKEbAADkGgAAvhsAACAAAAAAAAAAvBoAAOcbAADkGgAAAxwAADgAAAAAAAAAvBoAACUcAADkGgAAShwAADgAAAAAAAAA5BoAAI4mAABQAAAAAAAAAOQaAAB6HAAAiAAAAAAAAADkGgAA0xwAAJgAAAAAAAAA5BoAACcdAACoAAAAAAAAAOQaAABbHQAAuAAAAAAAAAC8GgAAhh0AAOQaAACqHQAA0AAAAAAAAAC8GgAASB4AAOQaAADmHgAA6AAAAAAAAADkGgAAfh8AAIgAAAAAAAAA5BoAAAcgAADoAAAAAAAAAOQaAAChIAAA6AAAAAAAAADkGgAARyEAAOgAAAAAAAAA5BoAAN0hAAA4AQAAAAAAALwaAACIIgAA5BoAADMjAABQAQAAAAAAAOQaAADYIwAAiAAAAAAAAADkGgAAbiQAAFABAAAAAAAA5BoAABUlAABQAQAAAAAAAOQaAADIJQAAUAEAAAAAAADkGgAAqDEAAGgAAAAAAAAA5BoAALomAACwAQAAAAAAAOQaAAArJwAAmAAAAAAAAADkGgAAlycAANABAAAAAAAAvBoAAE0oAADkGgAAAykAAOgBAAAAAAAA5BoAALMpAACwAQAAAAAAAOQaAABUKgAA6AEAAAAAAADkGgAABisAAOgBAAAAAAAA5BoAAMQrAADoAQAAAAAAAOQaAAByLAAAOAIAAAAAAAC8GgAANS0AAOQaAAD4LQAAUAIAAAAAAADkGgAAtS4AALABAAAAAAAA5BoAAGMvAABQAgAAAAAAAOQaAAAiMAAAUAIAAAAAAADkGgAA7TAAAFACAAAAAAAA5BoAANMxAABoAAAAAAAAAOQaAABJMgAACAAAAAAAAAC8GgAAFjIAAOQaAABcMgAAsAIAAAAAAADkGgAAbDMAAHgDAAAAAAAA5BoAAOE3AABgAwAAAAAAALwaAAAsNAAA5BoAAJM0AADoAgAAAAAAAOQaAAAANQAAEAMAAAAAAAC8GgAAizUAALwaAAClNQAA5BoAAP81AAAYAwAAAAAAAOQaAABfNgAAEAMAAAAAAADkGgAA3TYAABgDAAAAAAAA5BoAAEY3AAAQAwAAAAAAALwaAAAtOAAA5BoAAFs4AABgAwAAAAAAAOQaAADMOAAAqAMAAAAAAADkGgAAEjkAAHgDAAAAAAAA5BoAAPg4AAAQAwAAAAAAALwaAAAyOQAA5BoAAAc6AACoAwAAAAAAAOQaAAApOgAAqAMAAAAAAADkGgAATzoAAOADAAAAAAAAvBoAAKE6AAC8GgAA0EQAAOQaAAAwRQAAAAQAAAAAAADkGgAA3UQAABAEAAAAAAAAvBoAAP5EAADkGgAAC0UAAPADAAAAAAAA5BoAABJGAADoAwAAAAAAAOQaAAAiRgAAKAQAAAAAAADkGgAAV0YAAAAEAAAAAAAA5BoAADNGAABIBAAAAAAAAAAAAAAIAAAAAQAAAAIAAAAAAAAAEAAAAAMAAAAEAAAAAQAAAAEAAAABAAAAAAAAACgAAAAFAAAABgAAAAIAAAACAAAAAgAAAP//////////AAAAADgAAAAHAAAACAAAAAEAAAADAAAAAQAAAAQAAAAFAAAAAgAAAAYAAAAHAAAAAwAAAAEAAAAIAAAAAAAAAEAAAAAJAAAACgAAAAEAAAADAAAABAAAAAQAAAAFAAAAAgAAAAYAAAAHAAAABQAAAAkAAAAKAAAAAAAAAFAAAAALAAAADAAAAAMAAAALAAAADAAAAAQAAAANAAAABgAAAAcAAAAOAAAADwAAAAUAAAAAAAAAWAAAAA0AAAAOAAAABgAAABAAAAAIAAAAEQAAABIAAAAHAAAAEwAAABQAAAAJAAAAFQAAABYAAAAKAAAAAQAAAAAAAABoAAAADwAAABAAAAAIAAAACwAAABcAAAAEAAAADQAAAAYAAAALAAAADgAAAA8AAAAJAAAAAgAAAAoAAAD/////AAAAAIgAAAARAAAAEgAAAAEAAAAMAAAAAQAAAA0AAAAYAAAAGQAAAA4AAAAPAAAAGgAAAAEAAAAAAAAAeAAAABEAAAATAAAAEAAAAAwAAAARAAAADQAAABgAAAAZAAAADgAAAA8AAAAaAAAAAQAAAAAAAAAYAQAAEQAAABQAAAASAAAADAAAABMAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAACAAAAAAAAAPgAAAAVAAAAFgAAABQAAAAMAAAAFQAAABYAAAAbAAAAHAAAAA4AAAAPAAAAHQAAAAMAAAAAAAAA2AAAABcAAAAYAAAAFwAAAAwAAAAYAAAAGQAAAB4AAAAfAAAADgAAAA8AAAAgAAAABAAAAAAAAADAAAAAGQAAABoAAAAhAAAAGgAAAAMAAAAAAAAA6AAAABEAAAAbAAAAAQAAAAwAAAABAAAADQAAABgAAAAZAAAADgAAAA8AAAAaAAAAAQAAAAAAAAAIAQAAHAAAAB0AAAAbAAAADAAAABwAAAANAAAAGAAAABkAAAAOAAAADwAAACIAAAAFAAAAAAAAAIABAAARAAAAHgAAAB0AAAAMAAAAHgAAAA0AAAAYAAAAGQAAAA4AAAAPAAAAGgAAAAYAAAAAAAAAYAEAAB8AAAAgAAAAHwAAAAwAAAAgAAAAIQAAACMAAAAkAAAADgAAAA8AAAAlAAAABwAAAAAAAABAAQAAIQAAACIAAAAiAAAADAAAACMAAAAkAAAAJgAAACcAAAAOAAAADwAAACgAAAAIAAAAAAAAACgBAAAjAAAAJAAAACkAAAAlAAAABAAAAAAAAABQAQAAEQAAACUAAAABAAAADAAAAAEAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAABAAAAAAAAAHABAAAmAAAAJwAAACYAAAAMAAAAJwAAAA0AAAAYAAAAGQAAAA4AAAAPAAAAKgAAAAkAAAAAAAAAkAEAACgAAAApAAAACwAAAAsAAAAXAAAABAAAACsAAAAoAAAAKQAAAA4AAAAPAAAACQAAAAUAAAAMAAAAAAAAAKABAAAqAAAAKwAAACoAAAArAAAALAAAAC0AAAAsAAAALQAAAC4AAAAvAAAALgAAAAoAAAAAAAAAGAIAACoAAAAsAAAAMAAAACsAAAAxAAAALQAAACwAAAAtAAAALgAAAC8AAAAuAAAACwAAAAAAAAAIAgAALQAAAC4AAAAyAAAAKwAAADMAAAAtAAAALAAAAC0AAAAuAAAALwAAAC8AAAAMAAAAAAAAAPgBAAAvAAAAMAAAADQAAAArAAAANQAAADYAAAAwAAAAMQAAAC4AAAAvAAAAMgAAAA0AAAAAAAAA2AEAADEAAAAyAAAANwAAACsAAAA4AAAAOQAAADMAAAA0AAAALgAAAC8AAAA1AAAADgAAAAAAAADAAQAAMwAAADQAAAA2AAAAOgAAAAYAAAAAAAAAgAIAACoAAAA1AAAAOwAAACsAAAA8AAAALQAAACwAAAAtAAAALgAAAC8AAAAuAAAADwAAAAAAAABwAgAANgAAADcAAAA9AAAAKwAAAD4AAAAtAAAALAAAAC0AAAAuAAAALwAAADcAAAAQAAAAAAAAAGACAAA4AAAAOQAAAD8AAAArAAAAQAAAAEEAAAA4AAAAOQAAAC4AAAAvAAAAOgAAABEAAAAAAAAAQAIAADoAAAA7AAAAQgAAACsAAABDAAAARAAAADsAAAA8AAAALgAAAC8AAAA9AAAAEgAAAAAAAAAoAgAAPAAAAD0AAAA+AAAARQAAAAcAAAAAAAAAkAIAAD4AAAA/AAAADQAAAAsAAAAXAAAABAAAAD8AAABGAAAARwAAAA4AAAAPAAAACQAAAAIAAAAOAAAAAAAAAKACAAABAAAAQAAAAAEAAAACAAAAAAAAALACAABBAAAAQgAAAAAAAAC4AgAAQQAAAEMAAAAAAAAAyAIAAEQAAABFAAAASAAAAEkAAABKAAAASwAAAAMAAABMAAAATQAAAEAAAABBAAAATgAAAEYAAABPAAAAQgAAAEMAAAAEAAAARwAAAAAAAADYAgAASAAAAEkAAABEAAAARQAAAEYAAABHAAAASAAAAAUAAABQAAAASQAAAFEAAAABAAAAAwAAAAAAAAADAAAAAAAAAAMAAAAAAAAAAwAAAAAAAAAAAwAASgAAAEsAAABKAAAAUgAAAAAAAADwAgAATAAAAE0AAAAIAAAAAAAAAOgCAABOAAAATwAAAAgAAAD/////AAAAADADAABQAAAAUQAAAEsAAABTAAAAAAAAACADAABSAAAAUwAAAAkAAAAAAAAAGAMAAFQAAABVAAAACQAAAAAAAABQAwAAVgAAAFcAAABMAAAAVAAAAAAAAABAAwAAWAAAAFkAAAAJAAAAAAAAAGgDAABaAAAAWwAAAE0AAABOAAAATwAAAFAAAABRAAAABgAAAFUAAABSAAAAVgAAAAAAAAABAAAABQAAAAIAAAAFAAAAAwAAAAUAAAAEAAAAAAAAAHgDAABcAAAAXQAAAEgAAAABAAAAVwAAAEsAAAADAAAATAAAAE0AAAABAAAAUwAAAE4AAAABAAAAWAAAAFQAAABVAAAAAQAAAAEAAAAAAAAAiAMAAFwAAABeAAAASAAAAFkAAABXAAAASwAAAAMAAABMAAAATQAAAFYAAABTAAAATgAAAF8AAABYAAAAVAAAAFUAAAAHAAAAYAAAAAAAAACYAwAAYQAAAGIAAABXAAAAWgAAAAAAAACoAwAAXAAAAGMAAABbAAAAAQAAAFcAAABLAAAACAAAAEwAAABNAAAAAQAAAFMAAABOAAAAAQAAAAAAAACwAwAAXAAAAGQAAABbAAAAXAAAAFcAAABLAAAACQAAAEwAAABNAAAAWAAAAFMAAABOAAAAZQAAAAAAAADAAwAAXAAAAGYAAABbAAAAXQAAAFcAAABLAAAACgAAAEwAAABNAAAAWQAAAFMAAABOAAAAZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAFZVVVUCAAAAAAAAAAIAAACamZmZAwAAAFZVVVUDAAAAJUmSJAMAAAAAAAAAAwAAAMhxHMcEAAAAmpmZmQQAAABGF110BAAAAFZVVVUEAAAAPLETOwQAAAAlSZIkBAAAABIREREEAAAAAAAAAAQAAADi4eHhBQAAAMhxHMcFAAAAy2sorwUAAACamZmZBQAAAIdhGIYFAAAARhdddAUAAACRhSxkBQAAAFZVVVUFAAAAexSuRwUAAAA8sRM7BQAAANtLaC8FAAAAJUmSJAUAAAASlnsaBQAAABIREREFAAAAhRBCCAUAAAAAAAAABQAAAAgffPAGAAAA4uHh4QYAAADVQR3UBgAAAMhxHMcGAAAATZHPugYAAADLayivBgAAAKVBGqQGAAAAmpmZmQYAAAD6GJyPBgAAAIdhGIYGAAAAGPQFfQYAAABGF110BgAAAG3BFmwGAAAAkYUsZAYAAAC6gphcBgAAAFZVVVUGAAAAcwpeTgYAAAB7FK5HBgAAAEJBQUEGAAAAPLETOwYAAACzzyE1BgAAANtLaC8GAAAAnxLkKQYAAAAlSZIkBgAAAN1HcB8GAAAAEpZ7GgYAAAD45bEVBgAAABIREREGAAAA/BSXDAYAAACFEEIIBgAAAAVBEAQGAAAAAAAAAAYAAAD5gR/4BwAAAAgffPAHAAAAwBoT6QcAAADi4eHhBwAAAGwH5toHAAAA1UEd1AcAAACRaIXNBwAAAMhxHMcHAAAAOXDgwAcAAABNkc+6BwAAAE8b6LQHAAAAy2sorwcAAAAH9o6pBwAAAKVBGqQHAAAAUunIngcAAACamZmZBwAAAM4Pi5QHAAAA+hicjwcAAAD3kMuKBwAAAIdhGIYHAAAAgoGBgQcAAAAY9AV9BwAAABjIpHgHAAAARhdddAcAAADBBS5wBwAAAG3BFmwHAAAAaYEWaAcAAACRhSxkBwAAAAYWWGAHAAAAuoKYXAcAAAAJI+1YBwAAAFZVVVUHAAAAr37QUQcAAABzCl5OBwAAAAZq/UoHAAAAexSuRwcAAABXhm9EBwAAAEJBQUEHAAAAz8siPgcAAAA8sRM7BwAAADmBEzgHAAAAs88hNQcAAACjND4yBwAAANtLaC8HAAAA2bSfLAcAAACfEuQpBwAAAIkLNScHAAAAJUmSJAcAAAATePshBwAAAN1HcB8HAAAA22rwHAcAAAASlnsaBwAAABmBERgHAAAA+OWxFQcAAAAUgVwTBwAAABIREREHAAAAv1bPDgcAAAD8FJcMBwAAAKcQaAoHAAAAhRBCCAcAAAAw3SQGBwAAAAVBEAQHAAAAEQgEAgcAAAAAAAAABwAAACDwB/wIAAAA+YEf+AgAAADlWUb0CAAAAAgffPAIAAAAMXvA7AgAAADAGhPpCAAAAJGsc+UIAAAA4uHh4QgAAABAbl3eCAAAAGwH5toIAAAATGV71wgAAADVQR3UCAAAAPdYy9AIAAAAkWiFzQgAAABWMEvKCAAAAMhxHMcIAAAAHfD4wwgAAAA5cODACAAAAJq40r0IAAAATZHPuggAAADew9a3CAAAAE8b6LQIAAAAB2QDsggAAADLayivCAAAAK0BV6wIAAAAB/aOqQgAAABuGtCmCAAAAKVBGqQIAAAAmD9toQgAAABS6cieCAAAAO8ULZwIAAAAmpmZmQgAAACBTw6XCAAAAM4Pi5QIAAAAnrQPkggAAAD6GJyPCAAAANQYMI0IAAAA95DLiggAAAALX26ICAAAAIdhGIYIAAAArHfJgwgAAACCgYGBCAAAANFfQH8IAAAAGPQFfQgAAACPINJ6CAAAABjIpHgIAAAARM59dggAAABGF110CAAAAPWHQnIIAAAAwQUucAgAAAC1dh9uCAAAAG3BFmwIAAAAFs0TaggAAABpgRZoCAAAAKbGHmYIAAAAkYUsZAgAAABxpz9iCAAAAAYWWGAIAAAAjrt1XggAAAC6gphcCAAAALFWwFoIAAAACSPtWAgAAADG0x5XCAAAAFZVVVUIAAAAkJSQUwgAAACvftBRCAAAAFEBFVAIAAAAcwpeTggAAABziKtMCAAAAAZq/UoIAAAAPJ5TSQgAAAB7FK5HCAAAAIC8DEYIAAAAV4ZvRAgAAABeYtZCCAAAAEJBQUEIAAAA/BOwPwgAAADPyyI+CAAAAEhamTwIAAAAPLETOwgAAADCwpE5CAAAADmBEzgIAAAAPt+YNggAAACzzyE1CAAAALZFrjMIAAAAozQ+MggAAAAUkNEwCAAAANtLaC8IAAAABVwCLggAAADZtJ8sCAAAANFKQCsIAAAAnxLkKQgAAAApAYsoCAAAAIkLNScIAAAACSfiJQgAAAAlSZIkCAAAAIpnRSMIAAAAE3j7IQgAAADHcLQgCAAAAN1HcB8IAAAAtPMuHggAAADbavAcCAAAAAWktBsIAAAAEpZ7GggAAAAJOEUZCAAAABmBERgIAAAAlWjgFggAAAD45bEVCAAAAOHwhRQIAAAAFIFcEwgAAAB2jjUSCAAAABIREREIAAAAEAHvDwgAAAC/Vs8OCAAAAIkKsg0IAAAA/BSXDAgAAADDbn4LCAAAAKcQaAoIAAAAkfNTCQgAAACFEEIICAAAAKVgMgcIAAAAMN0kBggAAAB+fxkFCAAAAAVBEAQIAAAAUhsJAwgAAAARCAQCCAAAAAIBAQEIAAAA/////wAAAADQAwAAaAAAAGkAAAAKAAAACwAAAF4AAABqAAAACwAAAP////8AAAAA4AMAAGsAAABsAAAADAAAAAwAAABeAAAAagAAAA0AAAD/////HBcAAAUAAAAAAAAAAAAAAF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8AAAAQAAAAyEgAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAP//////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJxIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAAABkAAAA6AMAABAnAACghgEAQEIPAICWmAAA4fUFX3CJAP8JLw8AAAAAAgAAAAMAAAAFAAAABwAAAAsAAAANAAAAEQAAABMAAAAXAAAAHQAAAB8AAAAlAAAAKQAAACsAAAAvAAAANQAAADsAAAA9AAAAQwAAAEcAAABJAAAATwAAAFMAAABZAAAAYQAAAGUAAABnAAAAawAAAG0AAABxAAAAfwAAAIMAAACJAAAAiwAAAJUAAACXAAAAnQAAAKMAAACnAAAArQAAALMAAAC1AAAAvwAAAMEAAADFAAAAxwAAANMAAAABAAAACwAAAA0AAAARAAAAEwAAABcAAAAdAAAAHwAAACUAAAApAAAAKwAAAC8AAAA1AAAAOwAAAD0AAABDAAAARwAAAEkAAABPAAAAUwAAAFkAAABhAAAAZQAAAGcAAABrAAAAbQAAAHEAAAB5AAAAfwAAAIMAAACJAAAAiwAAAI8AAACVAAAAlwAAAJ0AAACjAAAApwAAAKkAAACtAAAAswAAALUAAAC7AAAAvwAAAMEAAADFAAAAxwAAANEAAAACAAAAAAAAAPADAABtAAAAbgAAAG8AAABwAAAAEgAAAAEAAAABAAAAAwAAAAAAAAAYBAAAbQAAAHEAAABvAAAAcAAAABIAAAACAAAAAgAAAAQAAAAAAAAAKAQAAHIAAABzAAAAYAAAAAAAAAA4BAAAcgAAAHQAAABgAAAATjVkcmFjbzExRW5jb2RlckJhc2VJTlNfMThFbmNvZGVyT3B0aW9uc0Jhc2VJTlNfMTdHZW9tZXRyeUF0dHJpYnV0ZTRUeXBlRUVFRUUATjVkcmFjbzI4QXR0cmlidXRlT2N0YWhlZHJvblRyYW5zZm9ybUUATjVkcmFjbzE4QXR0cmlidXRlVHJhbnNmb3JtRQBONWRyYWNvMzBBdHRyaWJ1dGVRdWFudGl6YXRpb25UcmFuc2Zvcm1FAE41ZHJhY28xN0F0dHJpYnV0ZXNFbmNvZGVyRQBONWRyYWNvMjNLZFRyZWVBdHRyaWJ1dGVzRW5jb2RlckUATjVkcmFjbzI2U2VxdWVudGlhbEF0dHJpYnV0ZUVuY29kZXJFAE41ZHJhY28zN1NlcXVlbnRpYWxBdHRyaWJ1dGVFbmNvZGVyc0NvbnRyb2xsZXJFAE41ZHJhY28yOFByZWRpY3Rpb25TY2hlbWVEZWx0YUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFRUUATjVkcmFjbzIzUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFRUUATjVkcmFjbzM3UHJlZGljdGlvblNjaGVtZVR5cGVkRW5jb2RlckludGVyZmFjZUlpaUVFAE41ZHJhY28zMlByZWRpY3Rpb25TY2hlbWVFbmNvZGVySW50ZXJmYWNlRQBONWRyYWNvMjVQcmVkaWN0aW9uU2NoZW1lSW50ZXJmYWNlRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckFyZWFJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280NE1lc2hQcmVkaWN0aW9uU2NoZW1lVGV4Q29vcmRzUG9ydGFibGVFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNTZNZXNoUHJlZGljdGlvblNjaGVtZUNvbnN0cmFpbmVkTXVsdGlQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQwTWVzaFByZWRpY3Rpb25TY2hlbWVQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JBcmVhSWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JCYXNlSWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzI3TWVzaFByZWRpY3Rpb25TY2hlbWVFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ0TWVzaFByZWRpY3Rpb25TY2hlbWVUZXhDb29yZHNQb3J0YWJsZUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNTZNZXNoUHJlZGljdGlvblNjaGVtZUNvbnN0cmFpbmVkTXVsdGlQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280ME1lc2hQcmVkaWN0aW9uU2NoZW1lUGFyYWxsZWxvZ3JhbUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQB1c2VfYnVpbHRfaW5fYXR0cmlidXRlX2NvbXByZXNzaW9uAE41ZHJhY28zM1NlcXVlbnRpYWxJbnRlZ2VyQXR0cmlidXRlRW5jb2RlckUATjVkcmFjbzI4UHJlZGljdGlvblNjaGVtZURlbHRhRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVFRQBONWRyYWNvMjNQcmVkaWN0aW9uU2NoZW1lRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVFRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckFyZWFJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxFbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280NE1lc2hQcmVkaWN0aW9uU2NoZW1lVGV4Q29vcmRzUG9ydGFibGVFbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNTZNZXNoUHJlZGljdGlvblNjaGVtZUNvbnN0cmFpbmVkTXVsdGlQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQwTWVzaFByZWRpY3Rpb25TY2hlbWVQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JBcmVhSWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JCYXNlSWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxFbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzI3TWVzaFByZWRpY3Rpb25TY2hlbWVFbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ0TWVzaFByZWRpY3Rpb25TY2hlbWVUZXhDb29yZHNQb3J0YWJsZUVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNTZNZXNoUHJlZGljdGlvblNjaGVtZUNvbnN0cmFpbmVkTXVsdGlQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280ME1lc2hQcmVkaWN0aW9uU2NoZW1lUGFyYWxsZWxvZ3JhbUVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMzJTZXF1ZW50aWFsTm9ybWFsQXR0cmlidXRlRW5jb2RlckUATjVkcmFjbzM4U2VxdWVudGlhbFF1YW50aXphdGlvbkF0dHJpYnV0ZUVuY29kZXJFAHByZWRpY3Rpb25fc2NoZW1lAE41ZHJhY28xMUVuY29kZXJCYXNlSU5TXzE4RW5jb2Rlck9wdGlvbnNCYXNlSWlFRUVFAE41ZHJhY283RW5jb2RlckUAIABONWRyYWNvMTNFeHBlcnRFbmNvZGVyRQBlbmNvZGluZ19tZXRob2QAcXVhbnRpemF0aW9uX2JpdHMASW52YWxpZCBlbmNvZGluZyBtZXRob2QuAGVuY29kaW5nX3NwZWVkAGRlY29kaW5nX3NwZWVkAHF1YW50aXphdGlvbl9vcmlnaW4AcXVhbnRpemF0aW9uX3JhbmdlAHN5bWJvbF9lbmNvZGluZ19tZXRob2QAc3ltYm9sX2VuY29kaW5nX2NvbXByZXNzaW9uX2xldmVsAHN0YW5kYXJkX2VkZ2VicmVha2VyAHByZWRpY3RpdmVfZWRnZWJyZWFrZXIAZWRnZWJyZWFrZXJfbWV0aG9kAE41ZHJhY28yMk1lc2hFZGdlYnJlYWtlckVuY29kZXJFAEFsbCB0cmlhbmdsZXMgYXJlIGRlZ2VuZXJhdGUuAEZhaWxlZCB0byBwcm9jZXNzIG1lc2ggaG9sZXMuAEZhaWxlZCB0byBpbml0aWFsaXplIGF0dHJpYnV0ZSBkYXRhLgBGYWlsZWQgdG8gZW5jb2RlIG1lc2ggY29tcG9uZW50LgBGYWlsZWQgdG8gZW5jb2RlIHNwbGl0IGRhdGEuAE41ZHJhY28xM1RyYXZlcnNlckJhc2VJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQBONWRyYWNvMTlEZXB0aEZpcnN0VHJhdmVyc2VySU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRU5TXzM2TWVzaEF0dHJpYnV0ZUluZGljZXNFbmNvZGluZ09ic2VydmVySVMxX0VFRUUATjVkcmFjbzIyTWVzaFRyYXZlcnNhbFNlcXVlbmNlcklOU18xOURlcHRoRmlyc3RUcmF2ZXJzZXJJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzJfRUVFRUVFAE41ZHJhY28xNVBvaW50c1NlcXVlbmNlckUATjVkcmFjbzEzVHJhdmVyc2VyQmFzZUlOU18xMUNvcm5lclRhYmxlRU5TXzM2TWVzaEF0dHJpYnV0ZUluZGljZXNFbmNvZGluZ09ic2VydmVySVMxX0VFRUUATjVkcmFjbzE5RGVwdGhGaXJzdFRyYXZlcnNlcklOU18xMUNvcm5lclRhYmxlRU5TXzM2TWVzaEF0dHJpYnV0ZUluZGljZXNFbmNvZGluZ09ic2VydmVySVMxX0VFRUUATjVkcmFjbzIyTWVzaFRyYXZlcnNhbFNlcXVlbmNlcklOU18xOURlcHRoRmlyc3RUcmF2ZXJzZXJJTlNfMTFDb3JuZXJUYWJsZUVOU18zNk1lc2hBdHRyaWJ1dGVJbmRpY2VzRW5jb2RpbmdPYnNlcnZlcklTMl9FRUVFRUUATjVkcmFjbzI4TWF4UHJlZGljdGlvbkRlZ3JlZVRyYXZlcnNlcklOU18xMUNvcm5lclRhYmxlRU5TXzM2TWVzaEF0dHJpYnV0ZUluZGljZXNFbmNvZGluZ09ic2VydmVySVMxX0VFRUUATjVkcmFjbzIyTWVzaFRyYXZlcnNhbFNlcXVlbmNlcklOU18yOE1heFByZWRpY3Rpb25EZWdyZWVUcmF2ZXJzZXJJTlNfMTFDb3JuZXJUYWJsZUVOU18zNk1lc2hBdHRyaWJ1dGVJbmRpY2VzRW5jb2RpbmdPYnNlcnZlcklTMl9FRUVFRUUAc3BsaXRfbWVzaF9vbl9zZWFtcwBONWRyYWNvMjZNZXNoRWRnZWJyZWFrZXJFbmNvZGVySW1wbElOU18zMU1lc2hFZGdlYnJlYWtlclRyYXZlcnNhbEVuY29kZXJFRUUATjVkcmFjbzM1TWVzaEVkZ2VicmVha2VyRW5jb2RlckltcGxJbnRlcmZhY2VFAE41ZHJhY28yNk1lc2hFZGdlYnJlYWtlckVuY29kZXJJbXBsSU5TXzM4TWVzaEVkZ2VicmVha2VyVHJhdmVyc2FsVmFsZW5jZUVuY29kZXJFRUUAc3RvcmVfbnVtYmVyX29mX2VuY29kZWRfZmFjZXMATjVkcmFjbzExTWVzaEVuY29kZXJFAGNvbXByZXNzX2Nvbm5lY3Rpdml0eQBONWRyYWNvMTVMaW5lYXJTZXF1ZW5jZXJFAE41ZHJhY28yMU1lc2hTZXF1ZW50aWFsRW5jb2RlckUATjVkcmFjbzE3UG9pbnRDbG91ZEVuY29kZXJFAEludmFsaWQgaW5wdXQgZ2VvbWV0cnkuAEZhaWxlZCB0byBpbml0aWFsaXplIGVuY29kZXIuAEZhaWxlZCB0byBlbmNvZGUgaW50ZXJuYWwgZGF0YS4ARmFpbGVkIHRvIGVuY29kZSBwb2ludCBhdHRyaWJ1dGVzLgBzdG9yZV9udW1iZXJfb2ZfZW5jb2RlZF9wb2ludHMARmFpbGVkIHRvIGVuY29kZSBtZXRhZGF0YS4ARFJBQ08ATjVkcmFjbzIzUG9pbnRDbG91ZEtkVHJlZUVuY29kZXJFAE41ZHJhY28yN1BvaW50Q2xvdWRTZXF1ZW50aWFsRW5jb2RlckUATjVkcmFjbzRNZXNoRQBhbGxvY2F0b3I8VD46OmFsbG9jYXRlKHNpemVfdCBuKSAnbicgZXhjZWVkcyBtYXhpbXVtIHN1cHBvcnRlZCBzaXplAE41ZHJhY28xMFBvaW50Q2xvdWRFABEACgAREREAAAAABQAAAAAAAAkAAAAACwAAAAAAAAAAEQAPChEREQMKBwABEwkLCwAACQYLAAALAAYRAAAAERERAAAAAAAAAAAAAAAAAAAAAAsAAAAAAAAAABEACgoREREACgAAAgAJCwAAAAkACwAACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAAAAAAMAAAAAAwAAAAACQwAAAAAAAwAAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgAAAAAAAAAAAAAADQAAAAQNAAAAAAkOAAAAAAAOAAAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAA8AAAAADwAAAAAJEAAAAAAAEAAAEAAAEgAAABISEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASAAAAEhISAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAAAAAAAAAAAAAACgAAAAAKAAAAAAkLAAAAAAALAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAAAAAAAAAAAAwAAAAADAAAAAAJDAAAAAAADAAADAAALSsgICAwWDB4AChudWxsKQAtMFgrMFggMFgtMHgrMHggMHgAaW5mAElORgBOQU4AMDEyMzQ1Njc4OUFCQ0RFRi4AVCEiGQ0BAgMRSxwMEAQLHRIeJ2hub3BxYiAFBg8TFBUaCBYHKCQXGAkKDhsfJSODgn0mKis8PT4/Q0dKTVhZWltcXV5fYGFjZGVmZ2lqa2xyc3R5ent8AElsbGVnYWwgYnl0ZSBzZXF1ZW5jZQBEb21haW4gZXJyb3IAUmVzdWx0IG5vdCByZXByZXNlbnRhYmxlAE5vdCBhIHR0eQBQZXJtaXNzaW9uIGRlbmllZABPcGVyYXRpb24gbm90IHBlcm1pdHRlZABObyBzdWNoIGZpbGUgb3IgZGlyZWN0b3J5AE5vIHN1Y2ggcHJvY2VzcwBGaWxlIGV4aXN0cwBWYWx1ZSB0b28gbGFyZ2UgZm9yIGRhdGEgdHlwZQBObyBzcGFjZSBsZWZ0IG9uIGRldmljZQBPdXQgb2YgbWVtb3J5AFJlc291cmNlIGJ1c3kASW50ZXJydXB0ZWQgc3lzdGVtIGNhbGwAUmVzb3VyY2UgdGVtcG9yYXJpbHkgdW5hdmFpbGFibGUASW52YWxpZCBzZWVrAENyb3NzLWRldmljZSBsaW5rAFJlYWQtb25seSBmaWxlIHN5c3RlbQBEaXJlY3Rvcnkgbm90IGVtcHR5AENvbm5lY3Rpb24gcmVzZXQgYnkgcGVlcgBPcGVyYXRpb24gdGltZWQgb3V0AENvbm5lY3Rpb24gcmVmdXNlZABIb3N0IGlzIGRvd24ASG9zdCBpcyB1bnJlYWNoYWJsZQBBZGRyZXNzIGluIHVzZQBCcm9rZW4gcGlwZQBJL08gZXJyb3IATm8gc3VjaCBkZXZpY2Ugb3IgYWRkcmVzcwBCbG9jayBkZXZpY2UgcmVxdWlyZWQATm8gc3VjaCBkZXZpY2UATm90IGEgZGlyZWN0b3J5AElzIGEgZGlyZWN0b3J5AFRleHQgZmlsZSBidXN5AEV4ZWMgZm9ybWF0IGVycm9yAEludmFsaWQgYXJndW1lbnQAQXJndW1lbnQgbGlzdCB0b28gbG9uZwBTeW1ib2xpYyBsaW5rIGxvb3AARmlsZW5hbWUgdG9vIGxvbmcAVG9vIG1hbnkgb3BlbiBmaWxlcyBpbiBzeXN0ZW0ATm8gZmlsZSBkZXNjcmlwdG9ycyBhdmFpbGFibGUAQmFkIGZpbGUgZGVzY3JpcHRvcgBObyBjaGlsZCBwcm9jZXNzAEJhZCBhZGRyZXNzAEZpbGUgdG9vIGxhcmdlAFRvbyBtYW55IGxpbmtzAE5vIGxvY2tzIGF2YWlsYWJsZQBSZXNvdXJjZSBkZWFkbG9jayB3b3VsZCBvY2N1cgBTdGF0ZSBub3QgcmVjb3ZlcmFibGUAUHJldmlvdXMgb3duZXIgZGllZABPcGVyYXRpb24gY2FuY2VsZWQARnVuY3Rpb24gbm90IGltcGxlbWVudGVkAE5vIG1lc3NhZ2Ugb2YgZGVzaXJlZCB0eXBlAElkZW50aWZpZXIgcmVtb3ZlZABEZXZpY2Ugbm90IGEgc3RyZWFtAE5vIGRhdGEgYXZhaWxhYmxlAERldmljZSB0aW1lb3V0AE91dCBvZiBzdHJlYW1zIHJlc291cmNlcwBMaW5rIGhhcyBiZWVuIHNldmVyZWQAUHJvdG9jb2wgZXJyb3IAQmFkIG1lc3NhZ2UARmlsZSBkZXNjcmlwdG9yIGluIGJhZCBzdGF0ZQBOb3QgYSBzb2NrZXQARGVzdGluYXRpb24gYWRkcmVzcyByZXF1aXJlZABNZXNzYWdlIHRvbyBsYXJnZQBQcm90b2NvbCB3cm9uZyB0eXBlIGZvciBzb2NrZXQAUHJvdG9jb2wgbm90IGF2YWlsYWJsZQBQcm90b2NvbCBub3Qgc3VwcG9ydGVkAFNvY2tldCB0eXBlIG5vdCBzdXBwb3J0ZWQATm90IHN1cHBvcnRlZABQcm90b2NvbCBmYW1pbHkgbm90IHN1cHBvcnRlZABBZGRyZXNzIGZhbWlseSBub3Qgc3VwcG9ydGVkIGJ5IHByb3RvY29sAEFkZHJlc3Mgbm90IGF2YWlsYWJsZQBOZXR3b3JrIGlzIGRvd24ATmV0d29yayB1bnJlYWNoYWJsZQBDb25uZWN0aW9uIHJlc2V0IGJ5IG5ldHdvcmsAQ29ubmVjdGlvbiBhYm9ydGVkAE5vIGJ1ZmZlciBzcGFjZSBhdmFpbGFibGUAU29ja2V0IGlzIGNvbm5lY3RlZABTb2NrZXQgbm90IGNvbm5lY3RlZABDYW5ub3Qgc2VuZCBhZnRlciBzb2NrZXQgc2h1dGRvd24AT3BlcmF0aW9uIGFscmVhZHkgaW4gcHJvZ3Jlc3MAT3BlcmF0aW9uIGluIHByb2dyZXNzAFN0YWxlIGZpbGUgaGFuZGxlAFJlbW90ZSBJL08gZXJyb3IAUXVvdGEgZXhjZWVkZWQATm8gbWVkaXVtIGZvdW5kAFdyb25nIG1lZGl1bSB0eXBlAE5vIGVycm9yIGluZm9ybWF0aW9uAABpbmZpbml0eQBuYW4AJWQAJWYAdGVybWluYXRpbmcgd2l0aCAlcyBleGNlcHRpb24gb2YgdHlwZSAlczogJXMAdGVybWluYXRpbmcgd2l0aCAlcyBleGNlcHRpb24gb2YgdHlwZSAlcwB0ZXJtaW5hdGluZyB3aXRoICVzIGZvcmVpZ24gZXhjZXB0aW9uAHRlcm1pbmF0aW5nAHVuY2F1Z2h0AFN0OWV4Y2VwdGlvbgBOMTBfX2N4eGFiaXYxMTZfX3NoaW1fdHlwZV9pbmZvRQBTdDl0eXBlX2luZm8ATjEwX19jeHhhYml2MTIwX19zaV9jbGFzc190eXBlX2luZm9FAE4xMF9fY3h4YWJpdjExN19fY2xhc3NfdHlwZV9pbmZvRQBwdGhyZWFkX29uY2UgZmFpbHVyZSBpbiBfX2N4YV9nZXRfZ2xvYmFsc19mYXN0KCkAY2Fubm90IGNyZWF0ZSBwdGhyZWFkIGtleSBmb3IgX19jeGFfZ2V0X2dsb2JhbHMoKQBjYW5ub3QgemVybyBvdXQgdGhyZWFkIHZhbHVlIGZvciBfX2N4YV9nZXRfZ2xvYmFscygpAHRlcm1pbmF0ZV9oYW5kbGVyIHVuZXhwZWN0ZWRseSByZXR1cm5lZABTdDExbG9naWNfZXJyb3IAU3QxMmxlbmd0aF9lcnJvcgBOMTBfX2N4eGFiaXYxMTlfX3BvaW50ZXJfdHlwZV9pbmZvRQBOMTBfX2N4eGFiaXYxMTdfX3BiYXNlX3R5cGVfaW5mb0U=";var tempDoublePtr=STATICTOP;STATICTOP+=16;function ___cxa_allocate_exception(size){return _malloc(size)}function __ZSt18uncaught_exceptionv(){return!!__ZSt18uncaught_exceptionv.uncaught_exception}var EXCEPTIONS={last:0,caught:[],infos:{},deAdjust:(function(adjusted){if(!adjusted||EXCEPTIONS.infos[adjusted])return adjusted;for(var ptr in EXCEPTIONS.infos){var info=EXCEPTIONS.infos[ptr];if(info.adjusted===adjusted){return ptr}}return adjusted}),addRef:(function(ptr){if(!ptr)return;var info=EXCEPTIONS.infos[ptr];info.refcount++}),decRef:(function(ptr){if(!ptr)return;var info=EXCEPTIONS.infos[ptr];assert(info.refcount>0);info.refcount--;if(info.refcount===0&&!info.rethrown){if(info.destructor){Module["dynCall_vi"](info.destructor,ptr)}delete EXCEPTIONS.infos[ptr];___cxa_free_exception(ptr)}}),clearRef:(function(ptr){if(!ptr)return;var info=EXCEPTIONS.infos[ptr];info.refcount=0})};function ___cxa_begin_catch(ptr){var info=EXCEPTIONS.infos[ptr];if(info&&!info.caught){info.caught=true;__ZSt18uncaught_exceptionv.uncaught_exception--}if(info)info.rethrown=false;EXCEPTIONS.caught.push(ptr);EXCEPTIONS.addRef(EXCEPTIONS.deAdjust(ptr));return ptr}function ___cxa_pure_virtual(){ABORT=true;throw"Pure virtual function called!"}function ___resumeException(ptr){if(!EXCEPTIONS.last){EXCEPTIONS.last=ptr}throw ptr+" - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch."}function ___cxa_find_matching_catch(){var thrown=EXCEPTIONS.last;if(!thrown){return(setTempRet0(0),0)|0}var info=EXCEPTIONS.infos[thrown];var throwntype=info.type;if(!throwntype){return(setTempRet0(0),thrown)|0}var typeArray=Array.prototype.slice.call(arguments);var pointer=Module["___cxa_is_pointer_type"](throwntype);if(!___cxa_find_matching_catch.buffer)___cxa_find_matching_catch.buffer=_malloc(4);HEAP32[___cxa_find_matching_catch.buffer>>2]=thrown;thrown=___cxa_find_matching_catch.buffer;for(var i=0;i>2];info.adjusted=thrown;return(setTempRet0(typeArray[i]),thrown)|0}}thrown=HEAP32[thrown>>2];return(setTempRet0(throwntype),thrown)|0}function ___cxa_throw(ptr,type,destructor){EXCEPTIONS.infos[ptr]={ptr:ptr,adjusted:ptr,type:type,destructor:destructor,refcount:0,caught:false,rethrown:false};EXCEPTIONS.last=ptr;if(!("uncaught_exception"in __ZSt18uncaught_exceptionv)){__ZSt18uncaught_exceptionv.uncaught_exception=1}else{__ZSt18uncaught_exceptionv.uncaught_exception++}throw ptr+" - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch."}var cttz_i8=allocate([8,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0],"i8",ALLOC_STATIC);function ___gxx_personality_v0(){}var SYSCALLS={varargs:0,get:(function(varargs){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret}),getStr:(function(){var ret=Pointer_stringify(SYSCALLS.get());return ret}),get64:(function(){var low=SYSCALLS.get(),high=SYSCALLS.get();if(low>=0)assert(high===0);else assert(high===-1);return low}),getZero:(function(){assert(SYSCALLS.get()===0)})};function ___syscall140(which,varargs){SYSCALLS.varargs=varargs;try{var stream=SYSCALLS.getStreamFromFD(),offset_high=SYSCALLS.get(),offset_low=SYSCALLS.get(),result=SYSCALLS.get(),whence=SYSCALLS.get();var offset=offset_low;FS.llseek(stream,offset,whence);HEAP32[result>>2]=stream.position;if(stream.getdents&&offset===0&&whence===0)stream.getdents=null;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}function flush_NO_FILESYSTEM(){var fflush=Module["_fflush"];if(fflush)fflush(0);var printChar=___syscall146.printChar;if(!printChar)return;var buffers=___syscall146.buffers;if(buffers[1].length)printChar(1,10);if(buffers[2].length)printChar(2,10)}function ___syscall146(which,varargs){SYSCALLS.varargs=varargs;try{var stream=SYSCALLS.get(),iov=SYSCALLS.get(),iovcnt=SYSCALLS.get();var ret=0;if(!___syscall146.buffers){___syscall146.buffers=[null,[],[]];___syscall146.printChar=(function(stream,curr){var buffer=___syscall146.buffers[stream];assert(buffer);if(curr===0||curr===10){(stream===1?Module["print"]:Module["printErr"])(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}})}for(var i=0;i>2];var len=HEAP32[iov+(i*8+4)>>2];for(var j=0;j>2]=PTHREAD_SPECIFIC_NEXT_KEY;PTHREAD_SPECIFIC[PTHREAD_SPECIFIC_NEXT_KEY]=0;PTHREAD_SPECIFIC_NEXT_KEY++;return 0}function _pthread_once(ptr,func){if(!_pthread_once.seen)_pthread_once.seen={};if(ptr in _pthread_once.seen)return;Module["dynCall_v"](func);_pthread_once.seen[ptr]=1}function _pthread_setspecific(key,value){if(!(key in PTHREAD_SPECIFIC)){return ERRNO_CODES.EINVAL}PTHREAD_SPECIFIC[key]=value;return 0}function ___setErrNo(value){if(Module["___errno_location"])HEAP32[Module["___errno_location"]()>>2]=value;return value}DYNAMICTOP_PTR=staticAlloc(4);STACK_BASE=STACKTOP=alignMemory(STATICTOP);STACK_MAX=STACK_BASE+TOTAL_STACK;DYNAMIC_BASE=alignMemory(STACK_MAX);HEAP32[DYNAMICTOP_PTR>>2]=DYNAMIC_BASE;staticSealed=true;var ASSERTIONS=false;function intArrayFromString(stringy,dontAddNull,length){var len=length>0?length:lengthBytesUTF8(stringy)+1;var u8array=new Array(len);var numBytesWritten=stringToUTF8Array(stringy,u8array,0,u8array.length);if(dontAddNull)u8array.length=numBytesWritten;return u8array}function intArrayToString(array){var ret=[];for(var i=0;i255){if(ASSERTIONS){assert(false,"Character code "+chr+" ("+String.fromCharCode(chr)+") at offset "+i+" not in 0x00-0xFF.")}chr&=255}ret.push(String.fromCharCode(chr))}return ret.join("")}var decodeBase64=typeof atob==="function"?atob:(function(input){var keyStr="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";var output="";var chr1,chr2,chr3;var enc1,enc2,enc3,enc4;var i=0;input=input.replace(/[^A-Za-z0-9\+\/\=]/g,"");do{enc1=keyStr.indexOf(input.charAt(i++));enc2=keyStr.indexOf(input.charAt(i++));enc3=keyStr.indexOf(input.charAt(i++));enc4=keyStr.indexOf(input.charAt(i++));chr1=enc1<<2|enc2>>4;chr2=(enc2&15)<<4|enc3>>2;chr3=(enc3&3)<<6|enc4;output=output+String.fromCharCode(chr1);if(enc3!==64){output=output+String.fromCharCode(chr2)}if(enc4!==64){output=output+String.fromCharCode(chr3)}}while(i2147483648)return false;b=new a(newBuffer);d=new c(newBuffer);f=new e(newBuffer);h=new g(newBuffer);j=new i(newBuffer);l=new k(newBuffer);n=new m(newBuffer);p=new o(newBuffer);buffer=newBuffer;return true} -// EMSCRIPTEN_START_FUNCS -function wc(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0;if(!a)return;b=a+-8|0;c=f[4516]|0;d=f[a+-4>>2]|0;a=d&-8;e=b+a|0;do if(!(d&1)){g=f[b>>2]|0;if(!(d&3))return;h=b+(0-g)|0;i=g+a|0;if(h>>>0>>0)return;if((f[4517]|0)==(h|0)){j=e+4|0;k=f[j>>2]|0;if((k&3|0)!=3){l=h;m=i;n=h;break}f[4514]=i;f[j>>2]=k&-2;f[h+4>>2]=i|1;f[h+i>>2]=i;return}k=g>>>3;if(g>>>0<256){g=f[h+8>>2]|0;j=f[h+12>>2]|0;if((j|0)==(g|0)){f[4512]=f[4512]&~(1<>2]=j;f[j+8>>2]=g;l=h;m=i;n=h;break}}g=f[h+24>>2]|0;j=f[h+12>>2]|0;do if((j|0)==(h|0)){k=h+16|0;o=k+4|0;p=f[o>>2]|0;if(!p){q=f[k>>2]|0;if(!q){r=0;break}else{s=q;t=k}}else{s=p;t=o}while(1){o=s+20|0;p=f[o>>2]|0;if(p|0){s=p;t=o;continue}o=s+16|0;p=f[o>>2]|0;if(!p)break;else{s=p;t=o}}f[t>>2]=0;r=s}else{o=f[h+8>>2]|0;f[o+12>>2]=j;f[j+8>>2]=o;r=j}while(0);if(g){j=f[h+28>>2]|0;o=18352+(j<<2)|0;if((f[o>>2]|0)==(h|0)){f[o>>2]=r;if(!r){f[4513]=f[4513]&~(1<>2]|0)!=(h|0)&1)<<2)>>2]=r;if(!r){l=h;m=i;n=h;break}}f[r+24>>2]=g;j=h+16|0;o=f[j>>2]|0;if(o|0){f[r+16>>2]=o;f[o+24>>2]=r}o=f[j+4>>2]|0;if(o){f[r+20>>2]=o;f[o+24>>2]=r;l=h;m=i;n=h}else{l=h;m=i;n=h}}else{l=h;m=i;n=h}}else{l=b;m=a;n=b}while(0);if(n>>>0>=e>>>0)return;b=e+4|0;a=f[b>>2]|0;if(!(a&1))return;if(!(a&2)){if((f[4518]|0)==(e|0)){r=(f[4515]|0)+m|0;f[4515]=r;f[4518]=l;f[l+4>>2]=r|1;if((l|0)!=(f[4517]|0))return;f[4517]=0;f[4514]=0;return}if((f[4517]|0)==(e|0)){r=(f[4514]|0)+m|0;f[4514]=r;f[4517]=n;f[l+4>>2]=r|1;f[n+r>>2]=r;return}r=(a&-8)+m|0;s=a>>>3;do if(a>>>0<256){t=f[e+8>>2]|0;c=f[e+12>>2]|0;if((c|0)==(t|0)){f[4512]=f[4512]&~(1<>2]=c;f[c+8>>2]=t;break}}else{t=f[e+24>>2]|0;c=f[e+12>>2]|0;do if((c|0)==(e|0)){d=e+16|0;o=d+4|0;j=f[o>>2]|0;if(!j){p=f[d>>2]|0;if(!p){u=0;break}else{v=p;w=d}}else{v=j;w=o}while(1){o=v+20|0;j=f[o>>2]|0;if(j|0){v=j;w=o;continue}o=v+16|0;j=f[o>>2]|0;if(!j)break;else{v=j;w=o}}f[w>>2]=0;u=v}else{o=f[e+8>>2]|0;f[o+12>>2]=c;f[c+8>>2]=o;u=c}while(0);if(t|0){c=f[e+28>>2]|0;h=18352+(c<<2)|0;if((f[h>>2]|0)==(e|0)){f[h>>2]=u;if(!u){f[4513]=f[4513]&~(1<>2]|0)!=(e|0)&1)<<2)>>2]=u;if(!u)break}f[u+24>>2]=t;c=e+16|0;h=f[c>>2]|0;if(h|0){f[u+16>>2]=h;f[h+24>>2]=u}h=f[c+4>>2]|0;if(h|0){f[u+20>>2]=h;f[h+24>>2]=u}}}while(0);f[l+4>>2]=r|1;f[n+r>>2]=r;if((l|0)==(f[4517]|0)){f[4514]=r;return}else x=r}else{f[b>>2]=a&-2;f[l+4>>2]=m|1;f[n+m>>2]=m;x=m}m=x>>>3;if(x>>>0<256){n=18088+(m<<1<<2)|0;a=f[4512]|0;b=1<>2]|0;z=b}f[z>>2]=l;f[y+12>>2]=l;f[l+8>>2]=y;f[l+12>>2]=n;return}n=x>>>8;if(n)if(x>>>0>16777215)A=31;else{y=(n+1048320|0)>>>16&8;z=n<>>16&4;b=z<>>16&2;a=14-(n|y|z)+(b<>>15)|0;A=x>>>(a+7|0)&1|a<<1}else A=0;a=18352+(A<<2)|0;f[l+28>>2]=A;f[l+20>>2]=0;f[l+16>>2]=0;z=f[4513]|0;b=1<>>1)|0);n=f[a>>2]|0;while(1){if((f[n+4>>2]&-8|0)==(x|0)){B=73;break}C=n+16+(y>>>31<<2)|0;m=f[C>>2]|0;if(!m){B=72;break}else{y=y<<1;n=m}}if((B|0)==72){f[C>>2]=l;f[l+24>>2]=n;f[l+12>>2]=l;f[l+8>>2]=l;break}else if((B|0)==73){y=n+8|0;t=f[y>>2]|0;f[t+12>>2]=l;f[y>>2]=l;f[l+8>>2]=t;f[l+12>>2]=n;f[l+24>>2]=0;break}}else{f[4513]=z|b;f[a>>2]=l;f[l+24>>2]=a;f[l+12>>2]=l;f[l+8>>2]=l}while(0);l=(f[4520]|0)+-1|0;f[4520]=l;if(!l)D=18504;else return;while(1){l=f[D>>2]|0;if(!l)break;else D=l+8|0}f[4520]=-1;return}function xc(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=Oa,F=Oa,G=Oa,H=0,I=0,J=0,K=0;d=b[c+11>>0]|0;e=d<<24>>24<0;g=e?f[c>>2]|0:c;i=e?f[c+4>>2]|0:d&255;if(i>>>0>3){d=g;e=i;j=i;while(1){k=X(h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24,1540483477)|0;e=(X(k>>>24^k,1540483477)|0)^(X(e,1540483477)|0);j=j+-4|0;if(j>>>0<=3)break;else d=d+4|0}d=i+-4|0;j=d&-4;l=d-j|0;m=g+(j+4)|0;o=e}else{l=i;m=g;o=i}switch(l|0){case 3:{p=h[m+2>>0]<<16^o;q=6;break}case 2:{p=o;q=6;break}case 1:{r=o;q=7;break}default:s=o}if((q|0)==6){r=h[m+1>>0]<<8^p;q=7}if((q|0)==7)s=X(r^h[m>>0],1540483477)|0;m=X(s>>>13^s,1540483477)|0;s=m>>>15^m;m=a+4|0;r=f[m>>2]|0;p=(r|0)==0;a:do if(!p){o=r+-1|0;l=(o&r|0)==0;if(!l)if(s>>>0>>0)t=s;else t=(s>>>0)%(r>>>0)|0;else t=s&o;e=f[(f[a>>2]|0)+(t<<2)>>2]|0;if((e|0)!=0?(j=f[e>>2]|0,(j|0)!=0):0){e=(i|0)==0;if(l){if(e){l=j;while(1){d=f[l+4>>2]|0;if(!((d|0)==(s|0)|(d&o|0)==(t|0))){u=t;break a}d=b[l+8+11>>0]|0;if(!((d<<24>>24<0?f[l+12>>2]|0:d&255)|0)){v=l;break}l=f[l>>2]|0;if(!l){u=t;break a}}w=v+20|0;return w|0}else x=j;b:while(1){l=f[x+4>>2]|0;if(!((l|0)==(s|0)|(l&o|0)==(t|0))){u=t;break a}l=x+8|0;d=b[l+11>>0]|0;k=d<<24>>24<0;y=d&255;do if(((k?f[x+12>>2]|0:y)|0)==(i|0)){d=f[l>>2]|0;if(k)if(!(Pk(d,g,i)|0)){v=x;q=63;break b}else break;if((b[g>>0]|0)==(d&255)<<24>>24){d=l;z=y;A=g;do{z=z+-1|0;d=d+1|0;if(!z){v=x;q=63;break b}A=A+1|0}while((b[d>>0]|0)==(b[A>>0]|0))}}while(0);x=f[x>>2]|0;if(!x){u=t;break a}}if((q|0)==63){w=v+20|0;return w|0}}if(e){o=j;while(1){y=f[o+4>>2]|0;if((y|0)!=(s|0)){if(y>>>0>>0)B=y;else B=(y>>>0)%(r>>>0)|0;if((B|0)!=(t|0)){u=t;break a}}y=b[o+8+11>>0]|0;if(!((y<<24>>24<0?f[o+12>>2]|0:y&255)|0)){v=o;break}o=f[o>>2]|0;if(!o){u=t;break a}}w=v+20|0;return w|0}else C=j;c:while(1){o=f[C+4>>2]|0;if((o|0)!=(s|0)){if(o>>>0>>0)D=o;else D=(o>>>0)%(r>>>0)|0;if((D|0)!=(t|0)){u=t;break a}}o=C+8|0;e=b[o+11>>0]|0;y=e<<24>>24<0;l=e&255;do if(((y?f[C+12>>2]|0:l)|0)==(i|0)){e=f[o>>2]|0;if(y)if(!(Pk(e,g,i)|0)){v=C;q=63;break c}else break;if((b[g>>0]|0)==(e&255)<<24>>24){e=o;k=l;A=g;do{k=k+-1|0;e=e+1|0;if(!k){v=C;q=63;break c}A=A+1|0}while((b[e>>0]|0)==(b[A>>0]|0))}}while(0);C=f[C>>2]|0;if(!C){u=t;break a}}if((q|0)==63){w=v+20|0;return w|0}}else u=t}else u=0;while(0);t=dn(24)|0;dj(t+8|0,c);f[t+20>>2]=0;f[t+4>>2]=s;f[t>>2]=0;c=a+12|0;E=$(((f[c>>2]|0)+1|0)>>>0);F=$(r>>>0);G=$(n[a+16>>2]);do if(p|$(G*F)>>0<3|(r+-1&r|0)!=0)&1;g=~~$(W($(E/G)))>>>0;Ph(a,C>>>0>>0?g:C);C=f[m>>2]|0;g=C+-1|0;if(!(g&C)){H=C;I=g&s;break}if(s>>>0>>0){H=C;I=s}else{H=C;I=(s>>>0)%(C>>>0)|0}}else{H=r;I=u}while(0);u=(f[a>>2]|0)+(I<<2)|0;I=f[u>>2]|0;if(!I){r=a+8|0;f[t>>2]=f[r>>2];f[r>>2]=t;f[u>>2]=r;r=f[t>>2]|0;if(r|0){u=f[r+4>>2]|0;r=H+-1|0;if(r&H)if(u>>>0>>0)J=u;else J=(u>>>0)%(H>>>0)|0;else J=u&r;K=(f[a>>2]|0)+(J<<2)|0;q=61}}else{f[t>>2]=f[I>>2];K=I;q=61}if((q|0)==61)f[K>>2]=t;f[c>>2]=(f[c>>2]|0)+1;v=t;w=v+20|0;return w|0}function yc(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0.0,q=0.0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0.0,G=0.0,H=0,J=0,K=0,L=0,M=0,N=0,O=0.0,P=0,Q=0.0,R=0.0,S=0,T=0.0,U=0,V=0,W=0,X=0.0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0.0,da=0,ea=0.0;g=a+4|0;i=f[g>>2]|0;j=a+100|0;if(i>>>0<(f[j>>2]|0)>>>0){f[g>>2]=i+1;k=h[i>>0]|0;l=0}else{k=Di(a)|0;l=0}a:while(1){switch(k|0){case 46:{m=8;break a;break}case 48:break;default:{n=0;o=0;p=1.0;q=0.0;r=0;s=k;t=l;u=0;v=0;w=0;x=0;break a}}i=f[g>>2]|0;if(i>>>0<(f[j>>2]|0)>>>0){f[g>>2]=i+1;k=h[i>>0]|0;l=1;continue}else{k=Di(a)|0;l=1;continue}}if((m|0)==8){k=f[g>>2]|0;if(k>>>0<(f[j>>2]|0)>>>0){f[g>>2]=k+1;y=h[k>>0]|0}else y=Di(a)|0;if((y|0)==48){k=0;i=0;while(1){z=f[g>>2]|0;if(z>>>0<(f[j>>2]|0)>>>0){f[g>>2]=z+1;A=h[z>>0]|0}else A=Di(a)|0;z=Tn(k|0,i|0,-1,-1)|0;B=I;if((A|0)==48){k=z;i=B}else{n=1;o=0;p=1.0;q=0.0;r=0;s=A;t=1;u=0;v=0;w=z;x=B;break}}}else{n=1;o=0;p=1.0;q=0.0;r=0;s=y;t=l;u=0;v=0;w=0;x=0}}while(1){l=s+-48|0;y=s|32;if(l>>>0>=10){A=(s|0)==46;if(!(A|(y+-97|0)>>>0<6)){C=s;break}if(A)if(!n){D=1;E=o;F=p;G=q;H=r;J=t;K=v;L=u;M=v;N=u}else{C=46;break}else m=20}else m=20;if((m|0)==20){m=0;A=(s|0)>57?y+-87|0:l;do if(!((u|0)<0|(u|0)==0&v>>>0<8))if((u|0)<0|(u|0)==0&v>>>0<14){O=p*.0625;P=o;Q=O;R=q+O*+(A|0);S=r;break}else{l=(o|0)!=0|(A|0)==0;P=l?o:1;Q=p;R=l?q:q+p*.5;S=r;break}else{P=o;Q=p;R=q;S=A+(r<<4)|0}while(0);A=Tn(v|0,u|0,1,0)|0;D=n;E=P;F=Q;G=R;H=S;J=1;K=w;L=x;M=A;N=I}A=f[g>>2]|0;if(A>>>0<(f[j>>2]|0)>>>0){f[g>>2]=A+1;n=D;o=E;p=F;q=G;r=H;s=h[A>>0]|0;t=J;u=N;v=M;w=K;x=L;continue}else{n=D;o=E;p=F;q=G;r=H;s=Di(a)|0;t=J;u=N;v=M;w=K;x=L;continue}}do if(!t){L=(f[j>>2]|0)==0;if(!L)f[g>>2]=(f[g>>2]|0)+-1;if(e){if(!L)f[g>>2]=(f[g>>2]|0)+-1;if(!((n|0)==0|L))f[g>>2]=(f[g>>2]|0)+-1}else Rm(a,0);T=+(d|0)*0.0}else{L=(n|0)==0;K=L?v:w;M=L?u:x;if((u|0)<0|(u|0)==0&v>>>0<8){L=r;N=v;J=u;while(1){s=L<<4;H=N;N=Tn(N|0,J|0,1,0)|0;if(!((J|0)<0|(J|0)==0&H>>>0<7)){U=s;break}else{L=s;J=I}}}else U=r;if((C|32|0)==112){J=De(a,e)|0;L=I;if((J|0)==0&(L|0)==-2147483648){if(!e){Rm(a,0);T=0.0;break}if(!(f[j>>2]|0)){V=0;W=0}else{f[g>>2]=(f[g>>2]|0)+-1;V=0;W=0}}else{V=J;W=L}}else if(!(f[j>>2]|0)){V=0;W=0}else{f[g>>2]=(f[g>>2]|0)+-1;V=0;W=0}L=Rn(K|0,M|0,2)|0;J=Tn(L|0,I|0,-32,-1)|0;L=Tn(J|0,I|0,V|0,W|0)|0;J=I;if(!U){T=+(d|0)*0.0;break}N=0-c|0;s=((N|0)<0)<<31>>31;if((J|0)>(s|0)|(J|0)==(s|0)&L>>>0>N>>>0){N=ir()|0;f[N>>2]=34;T=+(d|0)*1797693134862315708145274.0e284*1797693134862315708145274.0e284;break}N=c+-106|0;s=((N|0)<0)<<31>>31;if((J|0)<(s|0)|(J|0)==(s|0)&L>>>0>>0){N=ir()|0;f[N>>2]=34;T=+(d|0)*2.2250738585072014e-308*2.2250738585072014e-308;break}if((U|0)>-1){G=q;N=U;s=L;H=J;while(1){E=!(G>=.5);o=N<<1|(E^1)&1;F=G+(E?G:G+-1.0);E=Tn(s|0,H|0,-1,-1)|0;D=I;if((o|0)>-1){G=F;N=o;s=E;H=D}else{X=F;Y=o;Z=E;_=D;break}}}else{X=q;Y=U;Z=L;_=J}H=((b|0)<0)<<31>>31;s=Vn(32,0,c|0,((c|0)<0)<<31>>31|0)|0;N=Tn(s|0,I|0,Z|0,_|0)|0;s=I;if((s|0)<(H|0)|(s|0)==(H|0)&N>>>0>>0)if((N|0)>0){$=N;m=59}else{aa=0;ba=84;m=61}else{$=b;m=59}if((m|0)==59)if(($|0)<53){aa=$;ba=84-$|0;m=61}else{ca=0.0;da=$;ea=+(d|0)}if((m|0)==61){G=+(d|0);ca=+Gq(+Wj(1.0,ba),G);da=aa;ea=G}N=(Y&1|0)==0&(X!=0.0&(da|0)<32);G=(N?0.0:X)*ea+(ca+ea*+((Y+(N&1)|0)>>>0))-ca;if(!(G!=0.0)){N=ir()|0;f[N>>2]=34}T=+Hq(G,Z)}while(0);return +T}function zc(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0;g=u;u=u+16|0;h=g+4|0;i=g;if(!(oh(a,d)|0)){j=0;u=g;return j|0}d=a+84|0;k=f[d>>2]|0;l=a+88|0;m=f[l>>2]|0;if((m|0)!=(k|0))f[l>>2]=m+(~((m+-4-k|0)>>>2)<<2);f[d>>2]=0;f[l>>2]=0;f[a+92>>2]=0;if(k|0)br(k);k=a+72|0;l=f[k>>2]|0;d=a+76|0;if((f[d>>2]|0)!=(l|0))f[d>>2]=l;f[k>>2]=0;f[d>>2]=0;f[a+80>>2]=0;if(l|0)br(l);l=a+64|0;d=f[l>>2]|0;if((f[d+4>>2]|0)!=(f[d>>2]|0)){k=a+12|0;m=e+84|0;n=e+68|0;o=c+96|0;p=a+24|0;q=0;r=d;do{f[i>>2]=(q>>>0)/3|0;f[h>>2]=f[i>>2];d=Rj(r,h)|0;r=f[l>>2]|0;do if(!d){s=f[(f[r+12>>2]|0)+(q<<2)>>2]|0;if((s|0)==-1){t=(f[a>>2]|0)+(q>>>5<<2)|0;f[t>>2]=f[t>>2]|1<<(q&31);t=q+1|0;v=((t>>>0)%3|0|0)==0?q+-2|0:t;if((v|0)==-1)w=-1;else w=f[(f[r>>2]|0)+(v<<2)>>2]|0;v=(f[k>>2]|0)+(w>>>5<<2)|0;f[v>>2]=f[v>>2]|1<<(w&31);v=(((q>>>0)%3|0|0)==0?2:-1)+q|0;if((v|0)==-1)x=-1;else x=f[(f[r>>2]|0)+(v<<2)>>2]|0;v=(f[k>>2]|0)+(x>>>5<<2)|0;f[v>>2]=f[v>>2]|1<<(x&31);break}if(s>>>0>=q>>>0){v=q+1|0;t=((v>>>0)%3|0|0)==0?q+-2|0:v;y=s+(((s>>>0)%3|0|0)==0?2:-1)|0;z=(t|0)==-1;if(!(b[m>>0]|0)){if(z)A=-1;else A=f[(f[o>>2]|0)+(((t|0)/3|0)*12|0)+(((t|0)%3|0)<<2)>>2]|0;B=(y|0)==-1;if(B)C=-1;else C=f[(f[o>>2]|0)+(((y|0)/3|0)*12|0)+(((y|0)%3|0)<<2)>>2]|0;D=f[n>>2]|0;if((f[D+(A<<2)>>2]|0)==(f[D+(C<<2)>>2]|0)){E=t+1|0;if(z)F=-1;else F=((E>>>0)%3|0|0)==0?t+-2|0:E;do if(!B)if(!((y>>>0)%3|0)){G=y+2|0;break}else{G=y+-1|0;break}else G=-1;while(0);if((F|0)==-1)H=-1;else H=f[(f[o>>2]|0)+(((F|0)/3|0)*12|0)+(((F|0)%3|0)<<2)>>2]|0;if((G|0)==-1)I=-1;else I=f[(f[o>>2]|0)+(((G|0)/3|0)*12|0)+(((G|0)%3|0)<<2)>>2]|0;if((f[D+(H<<2)>>2]|0)==(f[D+(I<<2)>>2]|0))break}}else{if(z)J=-1;else J=f[(f[o>>2]|0)+(((t|0)/3|0)*12|0)+(((t|0)%3|0)<<2)>>2]|0;B=(y|0)==-1;if(B)K=-1;else K=f[(f[o>>2]|0)+(((y|0)/3|0)*12|0)+(((y|0)%3|0)<<2)>>2]|0;if((J|0)==(K|0)){E=t+1|0;if(z)L=-1;else L=((E>>>0)%3|0|0)==0?t+-2|0:E;do if(!B)if(!((y>>>0)%3|0)){M=y+2|0;break}else{M=y+-1|0;break}else M=-1;while(0);if((L|0)==-1)N=-1;else N=f[(f[o>>2]|0)+(((L|0)/3|0)*12|0)+(((L|0)%3|0)<<2)>>2]|0;if((M|0)==-1)O=-1;else O=f[(f[o>>2]|0)+(((M|0)/3|0)*12|0)+(((M|0)%3|0)<<2)>>2]|0;if((N|0)==(O|0))break}}b[p>>0]=0;y=f[a>>2]|0;B=y+(q>>>5<<2)|0;f[B>>2]=f[B>>2]|1<<(q&31);B=y+(s>>>5<<2)|0;f[B>>2]=f[B>>2]|1<<(s&31);B=((v>>>0)%3|0|0)==0?q+-2|0:v;if((B|0)==-1)P=-1;else P=f[(f[r>>2]|0)+(B<<2)>>2]|0;B=(f[k>>2]|0)+(P>>>5<<2)|0;f[B>>2]=f[B>>2]|1<<(P&31);B=(((q>>>0)%3|0|0)==0?2:-1)+q|0;if((B|0)==-1)Q=-1;else Q=f[(f[r>>2]|0)+(B<<2)>>2]|0;B=(f[k>>2]|0)+(Q>>>5<<2)|0;f[B>>2]=f[B>>2]|1<<(Q&31);B=s+1|0;y=((B>>>0)%3|0|0)==0?s+-2|0:B;if((y|0)==-1)R=-1;else R=f[(f[r>>2]|0)+(y<<2)>>2]|0;y=(f[k>>2]|0)+(R>>>5<<2)|0;f[y>>2]=f[y>>2]|1<<(R&31);y=(((s>>>0)%3|0|0)==0?2:-1)+s|0;if((y|0)==-1)S=-1;else S=f[(f[r>>2]|0)+(y<<2)>>2]|0;y=(f[k>>2]|0)+(S>>>5<<2)|0;f[y>>2]=f[y>>2]|1<<(S&31)}}while(0);q=q+1|0}while(q>>>0<(f[r+4>>2]|0)-(f[r>>2]|0)>>2>>>0)}if((c|0)!=0&(e|0)!=0){Kc(a,c,e);j=1;u=g;return j|0}else{gd(a,0,0);j=1;u=g;return j|0}return 0}function Ac(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0;d=u;u=u+32|0;e=d+12|0;g=d+8|0;h=d+4|0;i=d;j=a+8|0;a:do if(f[j>>2]|0?(k=f[a>>2]|0,l=a+4|0,f[a>>2]=l,f[(f[l>>2]|0)+8>>2]=0,f[l>>2]=0,f[j>>2]=0,m=f[k+4>>2]|0,n=(m|0)==0?k:m,n|0):0){m=a+4|0;k=n;n=f[b>>2]|0;while(1){if((n|0)==(f[c>>2]|0))break;o=k+16|0;f[o>>2]=f[n+16>>2];if((k|0)!=(n|0)){f[h>>2]=f[n+20>>2];f[i>>2]=n+24;f[g>>2]=f[h>>2];f[e>>2]=f[i>>2];Hc(k+20|0,g,e)}p=k+8|0;q=f[p>>2]|0;do if(q){r=f[q>>2]|0;if((r|0)==(k|0)){f[q>>2]=0;s=f[q+4>>2]|0;if(!s){t=q;break}else v=s;while(1){s=f[v>>2]|0;if(s|0){v=s;continue}s=f[v+4>>2]|0;if(!s)break;else v=s}t=v;break}else{f[q+4>>2]=0;if(!r){t=q;break}else w=r;while(1){s=f[w>>2]|0;if(s|0){w=s;continue}s=f[w+4>>2]|0;if(!s)break;else w=s}t=w;break}}else t=0;while(0);q=f[l>>2]|0;do if(q){r=f[o>>2]|0;s=q;while(1){if((r|0)<(f[s+16>>2]|0)){x=f[s>>2]|0;if(!x){y=22;break}else z=x}else{A=s+4|0;x=f[A>>2]|0;if(!x){y=25;break}else z=x}s=z}if((y|0)==22){y=0;B=s;C=s;break}else if((y|0)==25){y=0;B=s;C=A;break}}else{B=l;C=l}while(0);f[k>>2]=0;f[k+4>>2]=0;f[p>>2]=B;f[C>>2]=k;q=f[f[a>>2]>>2]|0;if(!q)D=k;else{f[a>>2]=q;D=f[C>>2]|0}Ae(f[m>>2]|0,D);f[j>>2]=(f[j>>2]|0)+1;q=f[n+4>>2]|0;if(!q){o=n+8|0;r=f[o>>2]|0;if((f[r>>2]|0)==(n|0))E=r;else{r=o;do{o=f[r>>2]|0;r=o+8|0;x=f[r>>2]|0}while((f[x>>2]|0)!=(o|0));E=x}}else{r=q;while(1){p=f[r>>2]|0;if(!p)break;else r=p}E=r}f[b>>2]=E;if(!t)break a;else{k=t;n=E}}n=f[k+8>>2]|0;if(!n)F=k;else{m=n;while(1){n=f[m+8>>2]|0;if(!n)break;else m=n}F=m}Dj(a,F)}while(0);F=f[b>>2]|0;E=f[c>>2]|0;if((F|0)==(E|0)){u=d;return}c=a+4|0;t=a+4|0;D=F;while(1){tg(e,a,D+16|0);F=f[c>>2]|0;do if(F){C=f[e>>2]|0;B=f[C+16>>2]|0;A=F;while(1){if((B|0)<(f[A+16>>2]|0)){z=f[A>>2]|0;if(!z){y=43;break}else G=z}else{H=A+4|0;z=f[H>>2]|0;if(!z){y=46;break}else G=z}A=G}if((y|0)==43){y=0;I=A;J=A;K=C;break}else if((y|0)==46){y=0;I=A;J=H;K=C;break}}else{I=c;J=c;K=f[e>>2]|0}while(0);f[K>>2]=0;f[K+4>>2]=0;f[K+8>>2]=I;f[J>>2]=K;F=f[f[a>>2]>>2]|0;if(!F)L=K;else{f[a>>2]=F;L=f[J>>2]|0}Ae(f[t>>2]|0,L);f[j>>2]=(f[j>>2]|0)+1;F=f[D+4>>2]|0;if(!F){m=D+8|0;B=f[m>>2]|0;if((f[B>>2]|0)==(D|0))M=B;else{B=m;do{m=f[B>>2]|0;B=m+8|0;r=f[B>>2]|0}while((f[r>>2]|0)!=(m|0));M=r}}else{B=F;while(1){r=f[B>>2]|0;if(!r)break;else B=r}M=B}f[b>>2]=M;if((M|0)==(E|0))break;else D=M}u=d;return}function Bc(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0;g=a+8|0;Ah(g,b,d,e);d=e>>>0>1073741823?-1:e<<2;h=_q(d)|0;hj(h|0,0,d|0)|0;d=f[a+48>>2]|0;i=f[a+56>>2]|0;j=f[i>>2]|0;k=(f[i+4>>2]|0)-j|0;l=k>>2;a:do if((k|0)>4){m=f[a+52>>2]|0;n=a+16|0;o=a+32|0;p=a+12|0;q=a+28|0;r=a+20|0;s=a+24|0;t=d+12|0;u=(e|0)>0;v=j;w=l;while(1){x=w;w=w+-1|0;if(l>>>0<=w>>>0)break;y=f[v+(w<<2)>>2]|0;z=X(w,e)|0;if((y|0)!=-1?(A=f[(f[t>>2]|0)+(y<<2)>>2]|0,(A|0)!=-1):0){y=f[d>>2]|0;B=f[m>>2]|0;C=f[B+(f[y+(A<<2)>>2]<<2)>>2]|0;D=A+1|0;E=((D>>>0)%3|0|0)==0?A+-2|0:D;if((E|0)==-1)F=-1;else F=f[y+(E<<2)>>2]|0;E=f[B+(F<<2)>>2]|0;D=(((A>>>0)%3|0|0)==0?2:-1)+A|0;if((D|0)==-1)G=-1;else G=f[y+(D<<2)>>2]|0;D=f[B+(G<<2)>>2]|0;if((C|0)<(w|0)&(E|0)<(w|0)&(D|0)<(w|0)){B=X(C,e)|0;C=X(E,e)|0;E=X(D,e)|0;if(u){D=0;do{f[h+(D<<2)>>2]=(f[b+(D+E<<2)>>2]|0)+(f[b+(D+C<<2)>>2]|0)-(f[b+(D+B<<2)>>2]|0);D=D+1|0}while((D|0)!=(e|0))}D=b+(z<<2)|0;B=c+(z<<2)|0;C=f[g>>2]|0;if((C|0)>0){E=0;y=h;A=C;while(1){if((A|0)>0){C=0;do{H=f[y+(C<<2)>>2]|0;I=f[n>>2]|0;if((H|0)>(I|0)){J=f[o>>2]|0;f[J+(C<<2)>>2]=I;K=J}else{J=f[p>>2]|0;I=f[o>>2]|0;f[I+(C<<2)>>2]=(H|0)<(J|0)?J:H;K=I}C=C+1|0}while((C|0)<(f[g>>2]|0));L=K}else L=f[o>>2]|0;C=(f[D+(E<<2)>>2]|0)-(f[L+(E<<2)>>2]|0)|0;I=B+(E<<2)|0;f[I>>2]=C;if((C|0)>=(f[q>>2]|0)){if((C|0)>(f[s>>2]|0)){M=C-(f[r>>2]|0)|0;N=42}}else{M=(f[r>>2]|0)+C|0;N=42}if((N|0)==42){N=0;f[I>>2]=M}E=E+1|0;A=f[g>>2]|0;if((E|0)>=(A|0))break;else y=L}}}else N=16}else N=16;if((N|0)==16?(N=0,y=b+(z<<2)|0,A=c+(z<<2)|0,E=f[g>>2]|0,(E|0)>0):0){B=0;D=b+((X(x+-2|0,e)|0)<<2)|0;I=E;while(1){if((I|0)>0){E=0;do{C=f[D+(E<<2)>>2]|0;H=f[n>>2]|0;if((C|0)>(H|0)){J=f[o>>2]|0;f[J+(E<<2)>>2]=H;O=J}else{J=f[p>>2]|0;H=f[o>>2]|0;f[H+(E<<2)>>2]=(C|0)<(J|0)?J:C;O=H}E=E+1|0}while((E|0)<(f[g>>2]|0));P=O}else P=f[o>>2]|0;E=(f[y+(B<<2)>>2]|0)-(f[P+(B<<2)>>2]|0)|0;H=A+(B<<2)|0;f[H>>2]=E;if((E|0)>=(f[q>>2]|0)){if((E|0)>(f[s>>2]|0)){Q=E-(f[r>>2]|0)|0;N=29}}else{Q=(f[r>>2]|0)+E|0;N=29}if((N|0)==29){N=0;f[H>>2]=Q}B=B+1|0;I=f[g>>2]|0;if((B|0)>=(I|0))break;else D=P}}if((x|0)<=2)break a}mq(i)}while(0);if((e|0)>0)hj(h|0,0,e<<2|0)|0;e=f[g>>2]|0;if((e|0)<=0){$q(h);return 1}i=a+16|0;P=a+32|0;Q=a+12|0;O=a+28|0;L=a+20|0;M=a+24|0;a=0;K=h;G=e;while(1){if((G|0)>0){e=0;do{F=f[K+(e<<2)>>2]|0;d=f[i>>2]|0;if((F|0)>(d|0)){l=f[P>>2]|0;f[l+(e<<2)>>2]=d;R=l}else{l=f[Q>>2]|0;d=f[P>>2]|0;f[d+(e<<2)>>2]=(F|0)<(l|0)?l:F;R=d}e=e+1|0}while((e|0)<(f[g>>2]|0));S=R}else S=f[P>>2]|0;e=(f[b+(a<<2)>>2]|0)-(f[S+(a<<2)>>2]|0)|0;d=c+(a<<2)|0;f[d>>2]=e;if((e|0)>=(f[O>>2]|0)){if((e|0)>(f[M>>2]|0)){T=e-(f[L>>2]|0)|0;N=56}}else{T=(f[L>>2]|0)+e|0;N=56}if((N|0)==56){N=0;f[d>>2]=T}a=a+1|0;G=f[g>>2]|0;if((a|0)>=(G|0))break;else K=S}$q(h);return 1}function Cc(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0;g=a+8|0;Ah(g,b,d,e);d=e>>>0>1073741823?-1:e<<2;h=_q(d)|0;hj(h|0,0,d|0)|0;d=f[a+48>>2]|0;i=f[a+56>>2]|0;j=f[i>>2]|0;k=(f[i+4>>2]|0)-j|0;l=k>>2;a:do if((k|0)>4){m=f[a+52>>2]|0;n=a+16|0;o=a+32|0;p=a+12|0;q=a+28|0;r=a+20|0;s=a+24|0;t=d+64|0;u=d+28|0;v=(e|0)>0;w=j;x=l;while(1){y=x;x=x+-1|0;if(l>>>0<=x>>>0)break;z=f[w+(x<<2)>>2]|0;A=X(x,e)|0;if((((z|0)!=-1?(f[(f[d>>2]|0)+(z>>>5<<2)>>2]&1<<(z&31)|0)==0:0)?(B=f[(f[(f[t>>2]|0)+12>>2]|0)+(z<<2)>>2]|0,(B|0)!=-1):0)?(z=f[u>>2]|0,C=f[m>>2]|0,D=f[C+(f[z+(B<<2)>>2]<<2)>>2]|0,E=B+1|0,F=f[C+(f[z+((((E>>>0)%3|0|0)==0?B+-2|0:E)<<2)>>2]<<2)>>2]|0,E=f[C+(f[z+((((B>>>0)%3|0|0)==0?2:-1)+B<<2)>>2]<<2)>>2]|0,(D|0)<(x|0)&(F|0)<(x|0)&(E|0)<(x|0)):0){B=X(D,e)|0;D=X(F,e)|0;F=X(E,e)|0;if(v){E=0;do{f[h+(E<<2)>>2]=(f[b+(E+F<<2)>>2]|0)+(f[b+(E+D<<2)>>2]|0)-(f[b+(E+B<<2)>>2]|0);E=E+1|0}while((E|0)!=(e|0))}E=b+(A<<2)|0;B=c+(A<<2)|0;D=f[g>>2]|0;if((D|0)>0){F=0;z=h;C=D;while(1){if((C|0)>0){D=0;do{G=f[z+(D<<2)>>2]|0;H=f[n>>2]|0;if((G|0)>(H|0)){I=f[o>>2]|0;f[I+(D<<2)>>2]=H;J=I}else{I=f[p>>2]|0;H=f[o>>2]|0;f[H+(D<<2)>>2]=(G|0)<(I|0)?I:G;J=H}D=D+1|0}while((D|0)<(f[g>>2]|0));K=J}else K=f[o>>2]|0;D=(f[E+(F<<2)>>2]|0)-(f[K+(F<<2)>>2]|0)|0;H=B+(F<<2)|0;f[H>>2]=D;if((D|0)>=(f[q>>2]|0)){if((D|0)>(f[s>>2]|0)){L=D-(f[r>>2]|0)|0;M=39}}else{L=(f[r>>2]|0)+D|0;M=39}if((M|0)==39){M=0;f[H>>2]=L}F=F+1|0;C=f[g>>2]|0;if((F|0)>=(C|0))break;else z=K}}}else M=13;if((M|0)==13?(M=0,z=b+(A<<2)|0,C=c+(A<<2)|0,F=f[g>>2]|0,(F|0)>0):0){B=0;E=b+((X(y+-2|0,e)|0)<<2)|0;H=F;while(1){if((H|0)>0){F=0;do{D=f[E+(F<<2)>>2]|0;G=f[n>>2]|0;if((D|0)>(G|0)){I=f[o>>2]|0;f[I+(F<<2)>>2]=G;N=I}else{I=f[p>>2]|0;G=f[o>>2]|0;f[G+(F<<2)>>2]=(D|0)<(I|0)?I:D;N=G}F=F+1|0}while((F|0)<(f[g>>2]|0));O=N}else O=f[o>>2]|0;F=(f[z+(B<<2)>>2]|0)-(f[O+(B<<2)>>2]|0)|0;G=C+(B<<2)|0;f[G>>2]=F;if((F|0)>=(f[q>>2]|0)){if((F|0)>(f[s>>2]|0)){P=F-(f[r>>2]|0)|0;M=26}}else{P=(f[r>>2]|0)+F|0;M=26}if((M|0)==26){M=0;f[G>>2]=P}B=B+1|0;H=f[g>>2]|0;if((B|0)>=(H|0))break;else E=O}}if((y|0)<=2)break a}mq(i)}while(0);if((e|0)>0)hj(h|0,0,e<<2|0)|0;e=f[g>>2]|0;if((e|0)<=0){$q(h);return 1}i=a+16|0;O=a+32|0;P=a+12|0;N=a+28|0;K=a+20|0;L=a+24|0;a=0;J=h;d=e;while(1){if((d|0)>0){e=0;do{l=f[J+(e<<2)>>2]|0;j=f[i>>2]|0;if((l|0)>(j|0)){k=f[O>>2]|0;f[k+(e<<2)>>2]=j;Q=k}else{k=f[P>>2]|0;j=f[O>>2]|0;f[j+(e<<2)>>2]=(l|0)<(k|0)?k:l;Q=j}e=e+1|0}while((e|0)<(f[g>>2]|0));R=Q}else R=f[O>>2]|0;e=(f[b+(a<<2)>>2]|0)-(f[R+(a<<2)>>2]|0)|0;j=c+(a<<2)|0;f[j>>2]=e;if((e|0)>=(f[N>>2]|0)){if((e|0)>(f[L>>2]|0)){S=e-(f[K>>2]|0)|0;M=53}}else{S=(f[K>>2]|0)+e|0;M=53}if((M|0)==53){M=0;f[j>>2]=S}a=a+1|0;d=f[g>>2]|0;if((a|0)>=(d|0))break;else J=R}$q(h);return 1}function Dc(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0;h=u;u=u+48|0;i=h+28|0;j=h+24|0;k=h;l=h+12|0;m=h+40|0;if((c|0)<0){n=0;u=h;return n|0}if(!c){n=1;u=h;return n|0}o=(d|0)>1;p=o?d:1;f[k>>2]=0;d=k+4|0;f[d>>2]=0;f[k+8>>2]=0;$j(k,c);q=k+8|0;if(o){o=0;r=0;while(1){s=1;t=f[a+(r<<2)>>2]|0;do{v=f[a+(s+r<<2)>>2]|0;t=t>>>0>>0?v:t;s=s+1|0}while((s|0)!=(p|0));s=(_(t|0)|0)^31;v=t>>>0>o>>>0?t:o;w=(t|0)==0?1:s+1|0;f[i>>2]=w;s=f[d>>2]|0;if(s>>>0<(f[q>>2]|0)>>>0){f[s>>2]=w;f[d>>2]=s+4}else Ci(k,i);r=r+p|0;if((r|0)>=(c|0)){x=v;break}else o=v}}else{o=0;r=0;while(1){v=f[a+(o<<2)>>2]|0;s=(_(v|0)|0)^31;w=v>>>0>r>>>0?v:r;y=(v|0)==0?1:s+1|0;f[i>>2]=y;s=f[d>>2]|0;if(s>>>0<(f[q>>2]|0)>>>0){f[s>>2]=y;f[d>>2]=s+4}else Ci(k,i);o=o+p|0;if((o|0)>=(c|0)){x=w;break}else r=w}}f[l>>2]=0;r=l+4|0;f[r>>2]=0;f[l+8>>2]=0;o=f[k>>2]|0;q=(f[d>>2]|0)-o|0;w=q>>2;if(w){if(w>>>0>1073741823)mq(l);s=dn(q)|0;f[r>>2]=s;f[l>>2]=s;f[l+8>>2]=s+(w<<2);w=s;if((q|0)>0){y=s+(q>>>2<<2)|0;Rg(s|0,o|0,q|0)|0;f[r>>2]=y;q=y-w>>2;if((y|0)==(s|0)){z=q;A=s;B=0;C=0}else{y=0;o=0;v=0;while(1){D=Tn(o|0,v|0,f[s+(y<<2)>>2]|0,0)|0;E=I;y=y+1|0;if(y>>>0>=q>>>0){z=q;A=s;B=D;C=E;break}else{o=D;v=E}}}}else{F=w;G=18}}else{F=0;G=18}if((G|0)==18){z=0;A=F;B=0;C=0}F=rg(A,z,32,i)|0;z=I;A=f[i>>2]<<3;w=Rn(A|0,((A|0)<0)<<31>>31|0,1)|0;A=I;v=on(B|0,C|0,p|0,0)|0;C=Tn(F|0,z|0,v|0,I|0)|0;v=Tn(C|0,I|0,w|0,A|0)|0;A=I;w=f[l>>2]|0;if(w|0){l=f[r>>2]|0;if((l|0)!=(w|0))f[r>>2]=l+(~((l+-4-w|0)>>>2)<<2);br(w)}w=rg(a,c,x,i)|0;l=f[i>>2]|0;r=((x-l|0)/64|0)+l<<3;C=l<<3;z=Tn(w|0,I|0,C|0,((C|0)<0)<<31>>31|0)|0;C=Tn(z|0,I|0,r|0,((r|0)<0)<<31>>31|0)|0;r=I;z=(_((x>>>0>1?x:1)|0)|0)^30;if(e){f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;w=dn(32)|0;f[i>>2]=w;f[i+8>>2]=-2147483616;f[i+4>>2]=22;F=w;B=13044;o=F+22|0;do{b[F>>0]=b[B>>0]|0;F=F+1|0;B=B+1|0}while((F|0)<(o|0));b[w+22>>0]=0;w=(sh(e,i)|0)==0;if((b[i+11>>0]|0)<0)br(f[i>>2]|0);if(!w){f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;w=dn(32)|0;f[i>>2]=w;f[i+8>>2]=-2147483616;f[i+4>>2]=22;F=w;B=13044;o=F+22|0;do{b[F>>0]=b[B>>0]|0;F=F+1|0;B=B+1|0}while((F|0)<(o|0));b[w+22>>0]=0;w=Ck(e,i)|0;if((b[i+11>>0]|0)<0)br(f[i>>2]|0);H=w}else G=32}else G=32;if((G|0)==32)H=z>>>0<18&((A|0)>(r|0)|(A|0)==(r|0)&v>>>0>=C>>>0)&1;b[m>>0]=H;C=g+16|0;v=f[C+4>>2]|0;if(!((v|0)>0|(v|0)==0&(f[C>>2]|0)>>>0>0)){f[j>>2]=f[g+4>>2];f[i>>2]=f[j>>2];ye(g,i,m,m+1|0)|0}switch(H|0){case 0:{J=md(a,c,p,k,g)|0;break}case 1:{J=Nc(a,c,x,l,e,g)|0;break}default:J=0}g=f[k>>2]|0;if(g|0){k=f[d>>2]|0;if((k|0)!=(g|0))f[d>>2]=k+(~((k+-4-g|0)>>>2)<<2);br(g)}n=J;u=h;return n|0}function Ec(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0;if((b|0)<0)return;c=a+12|0;d=f[c>>2]|0;e=f[a+8>>2]|0;g=e;h=d;if(d-e>>2>>>0<=b>>>0)return;e=g+(b<<2)|0;d=f[(f[e>>2]|0)+56>>2]|0;i=f[(f[g+(b<<2)>>2]|0)+60>>2]|0;g=e+4|0;if((g|0)!=(h|0)){j=g;g=e;do{k=f[j>>2]|0;f[j>>2]=0;l=f[g>>2]|0;f[g>>2]=k;if(l|0){k=l+88|0;m=f[k>>2]|0;f[k>>2]=0;if(m|0){k=f[m+8>>2]|0;if(k|0){n=m+12|0;if((f[n>>2]|0)!=(k|0))f[n>>2]=k;br(k)}br(m)}m=f[l+68>>2]|0;if(m|0){k=l+72|0;n=f[k>>2]|0;if((n|0)!=(m|0))f[k>>2]=n+(~((n+-4-m|0)>>>2)<<2);br(m)}m=l+64|0;n=f[m>>2]|0;f[m>>2]=0;if(n|0){m=f[n>>2]|0;if(m|0){k=n+4|0;if((f[k>>2]|0)!=(m|0))f[k>>2]=m;br(m)}br(n)}br(l)}j=j+4|0;g=g+4|0}while((j|0)!=(h|0));j=f[c>>2]|0;if((j|0)!=(g|0)){o=g;p=j;q=24}}else{o=e;p=h;q=24}if((q|0)==24){q=p;do{p=q+-4|0;f[c>>2]=p;h=f[p>>2]|0;f[p>>2]=0;if(h|0){p=h+88|0;e=f[p>>2]|0;f[p>>2]=0;if(e|0){p=f[e+8>>2]|0;if(p|0){j=e+12|0;if((f[j>>2]|0)!=(p|0))f[j>>2]=p;br(p)}br(e)}e=f[h+68>>2]|0;if(e|0){p=h+72|0;j=f[p>>2]|0;if((j|0)!=(e|0))f[p>>2]=j+(~((j+-4-e|0)>>>2)<<2);br(e)}e=h+64|0;j=f[e>>2]|0;f[e>>2]=0;if(j|0){e=f[j>>2]|0;if(e|0){p=j+4|0;if((f[p>>2]|0)!=(e|0))f[p>>2]=e;br(e)}br(j)}br(h)}q=f[c>>2]|0}while((q|0)!=(o|0))}o=f[a+4>>2]|0;a:do if(o|0){q=o+44|0;c=f[q>>2]|0;h=f[o+40>>2]|0;while(1){if((h|0)==(c|0))break a;r=h+4|0;if((f[(f[h>>2]|0)+40>>2]|0)==(i|0))break;else h=r}if((r|0)!=(c|0)){j=r;e=h;do{p=f[j>>2]|0;f[j>>2]=0;g=f[e>>2]|0;f[e>>2]=p;if(g|0){Qi(g);br(g)}j=j+4|0;e=e+4|0}while((j|0)!=(c|0));j=f[q>>2]|0;if((j|0)==(e|0))break;else{s=e;t=j}}else{s=h;t=c}j=t;do{g=j+-4|0;f[q>>2]=g;p=f[g>>2]|0;f[g>>2]=0;if(p|0){Qi(p);br(p)}j=f[q>>2]|0}while((j|0)!=(s|0))}while(0);b:do if((d|0)<5){s=f[a+20+(d*12|0)>>2]|0;t=a+20+(d*12|0)+4|0;r=f[t>>2]|0;i=r;c:do if((s|0)==(r|0))u=s;else{o=s;while(1){if((f[o>>2]|0)==(b|0)){u=o;break c}o=o+4|0;if((o|0)==(r|0))break b}}while(0);if((u|0)!=(r|0)){s=u+4|0;o=i-s|0;j=o>>2;if(!j)v=r;else{Xl(u|0,s|0,o|0)|0;v=f[t>>2]|0}o=u+(j<<2)|0;if((v|0)!=(o|0))f[t>>2]=v+(~((v+-4-o|0)>>>2)<<2)}}while(0);v=f[a+24>>2]|0;u=f[a+20>>2]|0;d=u;if((v|0)!=(u|0)){o=v-u>>2;u=0;do{v=d+(u<<2)|0;j=f[v>>2]|0;if((j|0)>(b|0))f[v>>2]=j+-1;u=u+1|0}while(u>>>0>>0)}o=f[a+36>>2]|0;u=f[a+32>>2]|0;d=u;if((o|0)!=(u|0)){j=o-u>>2;u=0;do{o=d+(u<<2)|0;v=f[o>>2]|0;if((v|0)>(b|0))f[o>>2]=v+-1;u=u+1|0}while(u>>>0>>0)}j=f[a+48>>2]|0;u=f[a+44>>2]|0;d=u;if((j|0)!=(u|0)){v=j-u>>2;u=0;do{j=d+(u<<2)|0;o=f[j>>2]|0;if((o|0)>(b|0))f[j>>2]=o+-1;u=u+1|0}while(u>>>0>>0)}v=f[a+60>>2]|0;u=f[a+56>>2]|0;d=u;if((v|0)!=(u|0)){o=v-u>>2;u=0;do{v=d+(u<<2)|0;j=f[v>>2]|0;if((j|0)>(b|0))f[v>>2]=j+-1;u=u+1|0}while(u>>>0>>0)}o=f[a+72>>2]|0;u=f[a+68>>2]|0;a=u;if((o|0)==(u|0))return;d=o-u>>2;u=0;do{o=a+(u<<2)|0;j=f[o>>2]|0;if((j|0)>(b|0))f[o>>2]=j+-1;u=u+1|0}while(u>>>0>>0);return}function Fc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0;d=u;u=u+32|0;e=d+16|0;g=d;h=c+4|0;i=f[(f[h>>2]|0)+48>>2]|0;j=c+12|0;c=f[j>>2]|0;k=dn(32)|0;f[e>>2]=k;f[e+8>>2]=-2147483616;f[e+4>>2]=17;l=k;m=12932;n=l+17|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[k+17>>0]=0;k=i+16|0;o=f[k>>2]|0;if(o){p=k;q=o;a:while(1){o=q;while(1){if((f[o+16>>2]|0)>=(c|0))break;r=f[o+4>>2]|0;if(!r){s=p;break a}else o=r}q=f[o>>2]|0;if(!q){s=o;break}else p=o}if(((s|0)!=(k|0)?(c|0)>=(f[s+16>>2]|0):0)?(c=s+20|0,(sh(c,e)|0)!=0):0)t=yk(c,e,-1)|0;else v=10}else v=10;if((v|0)==10)t=yk(i,e,-1)|0;if((b[e+11>>0]|0)<0)br(f[e>>2]|0);i=(1<>2]=-1;f[e+4>>2]=-1;f[e+8>>2]=-1;f[e+12>>2]=-1;if(i&1|0?(t=(_(i|0)|0)^31,(t+-1|0)>>>0<=28):0){f[e>>2]=t+1;i=2<>2]=i+-1;t=i+-2|0;f[e+8>>2]=t;f[e+12>>2]=(t|0)/2|0}t=Ki(f[j>>2]|0,f[h>>2]|0)|0;i=f[(f[h>>2]|0)+48>>2]|0;c=f[j>>2]|0;s=dn(32)|0;f[g>>2]=s;f[g+8>>2]=-2147483616;f[g+4>>2]=17;l=s;m=12804;n=l+17|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[s+17>>0]=0;s=i+16|0;m=f[s>>2]|0;if(m){l=s;n=m;b:while(1){m=n;while(1){if((f[m+16>>2]|0)>=(c|0))break;k=f[m+4>>2]|0;if(!k){w=l;break b}else m=k}n=f[m>>2]|0;if(!n){w=m;break}else l=m}if(((w|0)!=(s|0)?(c|0)>=(f[w+16>>2]|0):0)?(c=w+20|0,(sh(c,g)|0)!=0):0)x=yk(c,g,t)|0;else v=25}else v=25;if((v|0)==25)x=yk(i,g,t)|0;if((b[g+11>>0]|0)<0)br(f[g>>2]|0);switch(x|0){case 6:{x=f[j>>2]|0;t=f[h>>2]|0;i=f[(f[(f[t+4>>2]|0)+8>>2]|0)+(x<<2)>>2]|0;do if((Qa[f[(f[t>>2]|0)+8>>2]&127](t)|0)==1){rf(g,t,6,x,e,514);c=f[g>>2]|0;if(!c){f[g>>2]=0;y=g;v=34;break}else{z=g;A=c;break}}else{y=g;v=34}while(0);if((v|0)==34){x=dn(24)|0;f[x+4>>2]=i;i=x+8|0;f[i>>2]=f[e>>2];f[i+4>>2]=f[e+4>>2];f[i+8>>2]=f[e+8>>2];f[i+12>>2]=f[e+12>>2];f[x>>2]=2320;i=x;f[g>>2]=i;z=y;A=i}f[a>>2]=A;f[z>>2]=0;u=d;return}case 0:{z=f[j>>2]|0;j=f[h>>2]|0;h=f[(f[(f[j+4>>2]|0)+8>>2]|0)+(z<<2)>>2]|0;do if((Qa[f[(f[j>>2]|0)+8>>2]&127](j)|0)==1){rf(g,j,0,z,e,514);A=f[g>>2]|0;if(!A){f[g>>2]=0;B=g;v=41;break}else{C=g;D=A;break}}else{B=g;v=41}while(0);if((v|0)==41){v=dn(24)|0;f[v+4>>2]=h;h=v+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[v>>2]=2320;e=v;f[g>>2]=e;C=B;D=e}f[a>>2]=D;f[C>>2]=0;u=d;return}default:{f[a>>2]=0;u=d;return}}}function Gc(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0;b=u;u=u+32|0;c=b+20|0;d=b+8|0;e=b;g=a+4|0;h=f[g>>2]|0;i=f[a>>2]|0;j=h-i|0;k=j>>2;f[c>>2]=0;l=c+4|0;f[l>>2]=0;m=c+8|0;f[m>>2]=0;n=i;if(k|0){if((j|0)<0)mq(c);j=((k+-1|0)>>>5)+1|0;o=dn(j<<2)|0;f[c>>2]=o;f[m>>2]=j;f[l>>2]=k;l=k>>>5;hj(o|0,0,l<<2|0)|0;j=k&31;k=o+(l<<2)|0;if(j|0)f[k>>2]=f[k>>2]&~(-1>>>(32-j|0))}f[d>>2]=0;j=d+4|0;f[j>>2]=0;f[d+8>>2]=0;k=a+12|0;l=e+4|0;o=d+8|0;m=n;n=h;h=i;while(1){if((n|0)==(h|0))break;else{p=0;q=0;r=h;s=m}while(1){i=f[c>>2]|0;do if(!(f[i+(q>>>5<<2)>>2]&1<<(q&31))){t=f[d>>2]|0;v=f[j>>2]|0;if((v|0)==(t|0))w=t;else{x=v+(~((v+-8-t|0)>>>3)<<3)|0;f[j>>2]=x;w=x}x=q;while(1){v=x+1|0;y=((v>>>0)%3|0|0)==0?x+-2|0:v;if((y|0)==-1){z=x;A=r;B=i;C=s;D=t;E=w;break}v=f[(f[k>>2]|0)+(y<<2)>>2]|0;y=v+1|0;if((v|0)==-1){z=x;A=r;B=i;C=s;D=t;E=w;break}F=((y>>>0)%3|0|0)==0?v+-2|0:y;if(!((F|0)!=(q|0)&(F|0)!=-1)){z=x;A=r;B=i;C=s;D=t;E=w;break}if(!(f[i+(F>>>5<<2)>>2]&1<<(F&31)))x=F;else{z=x;A=r;B=i;C=s;D=t;E=w;break}}a:while(1){t=B+(z>>>5<<2)|0;f[t>>2]=f[t>>2]|1<<(z&31);t=z+1|0;F=((t>>>0)%3|0|0)==0?z+-2|0:t;t=f[C+(F<<2)>>2]|0;G=(((z>>>0)%3|0|0)==0?2:-1)+z|0;if((D|0)!=(E|0))if((G|0)==-1){y=D;do{if((f[y>>2]|0)==(t|0)?(v=f[y+4>>2]|0,(v|0)!=-1):0){H=v;I=-1;J=-1;K=25;break a}y=y+8|0}while((y|0)!=(E|0))}else{y=D;do{if((f[y>>2]|0)==(t|0)?(L=f[y+4>>2]|0,M=f[(f[k>>2]|0)+(G<<2)>>2]|0,(M|0)!=(L|0)):0){K=24;break a}y=y+8|0}while((y|0)!=(E|0))}f[e>>2]=0;f[e>>2]=f[C+(G<<2)>>2];f[l>>2]=F;if((E|0)==(f[o>>2]|0))ei(d,e);else{y=e;t=f[y+4>>2]|0;v=E;f[v>>2]=f[y>>2];f[v+4>>2]=t;f[j>>2]=(f[j>>2]|0)+8}if((G|0)==-1){K=38;break}t=f[(f[k>>2]|0)+(G<<2)>>2]|0;if((t|0)==-1){K=38;break}v=t+(((t>>>0)%3|0|0)==0?2:-1)|0;if(!((v|0)!=(x|0)&(v|0)!=-1)){K=40;break}t=f[a>>2]|0;z=v;A=t;B=f[c>>2]|0;C=t;D=f[d>>2]|0;E=f[j>>2]|0}if((K|0)==24){K=0;if((L|0)==-1){N=-1;O=-1;P=M;Q=G}else{H=L;I=M;J=G;K=25}}else if((K|0)==38){K=0;K=40}if((K|0)==25){K=0;N=H;O=f[(f[k>>2]|0)+(H<<2)>>2]|0;P=I;Q=J}else if((K|0)==40){K=0;R=p;S=f[a>>2]|0;break}if((P|0)!=-1)f[(f[k>>2]|0)+(P<<2)>>2]=-1;x=f[k>>2]|0;if((O|0)!=-1)f[x+(O<<2)>>2]=-1;f[x+(Q<<2)>>2]=-1;f[x+(N<<2)>>2]=-1;R=1;S=A}else{R=p;S=r}while(0);q=q+1|0;T=f[g>>2]|0;s=S;if(q>>>0>=T-S>>2>>>0)break;else{p=R;r=S}}if(R){m=s;n=T;h=S}else break}S=f[d>>2]|0;if(S|0){d=f[j>>2]|0;if((d|0)!=(S|0))f[j>>2]=d+(~((d+-8-S|0)>>>3)<<3);br(S)}S=f[c>>2]|0;if(!S){u=b;return 1}br(S);u=b;return 1}function Hc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0;e=a+8|0;a:do if(f[e>>2]|0?(g=f[a>>2]|0,h=a+4|0,f[a>>2]=h,f[(f[h>>2]|0)+8>>2]=0,f[h>>2]=0,f[e>>2]=0,i=f[g+4>>2]|0,j=(i|0)==0?g:i,j|0):0){i=a+4|0;g=j;j=f[c>>2]|0;while(1){if((j|0)==(f[d>>2]|0))break;k=g+16|0;Ql(k,j+16|0)|0;Ql(g+28|0,j+28|0)|0;l=g+8|0;m=f[l>>2]|0;do if(m){n=f[m>>2]|0;if((n|0)==(g|0)){f[m>>2]=0;o=f[m+4>>2]|0;if(!o){p=m;break}else q=o;while(1){o=f[q>>2]|0;if(o|0){q=o;continue}o=f[q+4>>2]|0;if(!o)break;else q=o}p=q;break}else{f[m+4>>2]=0;if(!n){p=m;break}else r=n;while(1){o=f[r>>2]|0;if(o|0){r=o;continue}o=f[r+4>>2]|0;if(!o)break;else r=o}p=r;break}}else p=0;while(0);m=f[h>>2]|0;do if(m){n=b[k+11>>0]|0;o=n<<24>>24<0;s=o?f[g+20>>2]|0:n&255;n=o?f[k>>2]|0:k;o=m;while(1){t=o+16|0;u=b[t+11>>0]|0;v=u<<24>>24<0;w=v?f[o+20>>2]|0:u&255;u=w>>>0>>0?w:s;if((u|0)!=0?(x=Pk(n,v?f[t>>2]|0:t,u)|0,(x|0)!=0):0)if((x|0)<0)y=22;else y=24;else if(s>>>0>>0)y=22;else y=24;if((y|0)==22){y=0;w=f[o>>2]|0;if(!w){y=23;break}else z=w}else if((y|0)==24){y=0;A=o+4|0;w=f[A>>2]|0;if(!w){y=26;break}else z=w}o=z}if((y|0)==23){y=0;B=o;C=o;break}else if((y|0)==26){y=0;B=A;C=o;break}}else{B=h;C=h}while(0);f[g>>2]=0;f[g+4>>2]=0;f[l>>2]=C;f[B>>2]=g;m=f[f[a>>2]>>2]|0;if(!m)D=g;else{f[a>>2]=m;D=f[B>>2]|0}Ae(f[i>>2]|0,D);f[e>>2]=(f[e>>2]|0)+1;m=f[j+4>>2]|0;if(!m){k=j+8|0;s=f[k>>2]|0;if((f[s>>2]|0)==(j|0))E=s;else{s=k;do{k=f[s>>2]|0;s=k+8|0;n=f[s>>2]|0}while((f[n>>2]|0)!=(k|0));E=n}}else{s=m;while(1){l=f[s>>2]|0;if(!l)break;else s=l}E=s}f[c>>2]=E;if(!p)break a;else{g=p;j=E}}j=f[g+8>>2]|0;if(!j)F=g;else{i=j;while(1){j=f[i+8>>2]|0;if(!j)break;else i=j}F=i}sj(a,F)}while(0);F=f[c>>2]|0;E=f[d>>2]|0;if((F|0)==(E|0))return;else G=F;while(1){Qe(a,G+16|0)|0;F=f[G+4>>2]|0;if(!F){d=G+8|0;p=f[d>>2]|0;if((f[p>>2]|0)==(G|0))H=p;else{p=d;do{d=f[p>>2]|0;p=d+8|0;e=f[p>>2]|0}while((f[e>>2]|0)!=(d|0));H=e}}else{p=F;while(1){i=f[p>>2]|0;if(!i)break;else p=i}H=p}f[c>>2]=H;if((H|0)==(E|0))break;else G=H}return}function Ic(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0;g=u;u=u+16|0;h=g;i=c+4|0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;j=dn(16)|0;f[h>>2]=j;f[h+8>>2]=-2147483632;f[h+4>>2]=15;k=j;l=12916;m=k+15|0;do{b[k>>0]=b[l>>0]|0;k=k+1|0;l=l+1|0}while((k|0)<(m|0));b[j+15>>0]=0;j=yk(i,h,-1)|0;if((b[h+11>>0]|0)<0)br(f[h>>2]|0);switch(j|0){case 0:{n=dn(56)|0;k=n;m=k+56|0;do{f[k>>2]=0;k=k+4|0}while((k|0)<(m|0));zn(n);o=3728;p=n;break}case -1:{if((Yh(i)|0)==10){n=dn(56)|0;k=n;m=k+56|0;do{f[k>>2]=0;k=k+4|0}while((k|0)<(m|0));zn(n);o=3728;p=n}else q=6;break}default:q=6}a:do if((q|0)==6){n=d+8|0;r=d+12|0;s=f[r>>2]|0;t=f[n>>2]|0;b:do if((s-t|0)>0){v=h+8|0;w=h+4|0;x=c+20|0;y=h+11|0;z=0;A=t;B=s;c:while(1){C=f[(f[A+(z<<2)>>2]|0)+28>>2]|0;switch(C|0){case 9:{q=12;break}case 6:case 5:case 4:case 2:{D=A;E=B;break}default:{if((C|2|0)!=3)break c;if((C|0)==9)q=12;else{D=A;E=B}}}if((q|0)==12){q=0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;C=dn(32)|0;f[h>>2]=C;f[v>>2]=-2147483616;f[w>>2]=17;k=C;l=12932;m=k+17|0;do{b[k>>0]=b[l>>0]|0;k=k+1|0;l=l+1|0}while((k|0)<(m|0));b[C+17>>0]=0;F=f[x>>2]|0;if(F){G=x;H=F;d:while(1){F=H;while(1){if((f[F+16>>2]|0)>=0)break;I=f[F+4>>2]|0;if(!I){J=G;break d}else F=I}H=f[F>>2]|0;if(!H){J=F;break}else G=F}if(((J|0)!=(x|0)?(f[J+16>>2]|0)<=0:0)?(G=J+20|0,(sh(G,h)|0)!=0):0)K=yk(G,h,-1)|0;else q=21}else q=21;if((q|0)==21){q=0;K=yk(i,h,-1)|0}if((b[y>>0]|0)<0)br(f[h>>2]|0);if((K|0)<1)break;D=f[n>>2]|0;E=f[r>>2]|0}z=z+1|0;if((z|0)>=(E-D>>2|0))break b;else{A=D;B=E}}if((j|0)!=1){B=dn(56)|0;k=B;m=k+56|0;do{f[k>>2]=0;k=k+4|0}while((k|0)<(m|0));zn(B);o=3728;p=B;break a}f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;A=dn(32)|0;f[h>>2]=A;f[h+8>>2]=-2147483616;f[h+4>>2]=24;k=A;l=12950;m=k+24|0;do{b[k>>0]=b[l>>0]|0;k=k+1|0;l=l+1|0}while((k|0)<(m|0));b[A+24>>0]=0;f[a>>2]=-1;dj(a+4|0,h);if((b[h+11>>0]|0)<0)br(f[h>>2]|0);u=g;return}while(0);r=dn(56)|0;k=r;m=k+56|0;do{f[k>>2]=0;k=k+4|0}while((k|0)<(m|0));zn(r);o=3668;p=r}while(0);f[p>>2]=o;tp(p,d);Ad(a,p,i,e);if(!(f[a>>2]|0)){e=a+4|0;if((b[e+11>>0]|0)<0)br(f[e>>2]|0);f[c+40>>2]=f[p+52>>2];f[c+44>>2]=0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0}Va[f[(f[p>>2]|0)+4>>2]&127](p);u=g;return}function Jc(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0;b=u;u=u+32|0;c=b+4|0;d=b;e=a+16|0;g=f[e>>2]|0;if(g>>>0>112){f[e>>2]=g+-113;g=a+4|0;e=f[g>>2]|0;h=f[e>>2]|0;i=e+4|0;f[g>>2]=i;e=a+8|0;j=f[e>>2]|0;k=a+12|0;l=f[k>>2]|0;m=l;do if((j|0)==(l|0)){n=f[a>>2]|0;o=n;if(i>>>0>n>>>0){p=i;q=((p-o>>2)+1|0)/-2|0;r=i+(q<<2)|0;s=j-p|0;p=s>>2;if(!p)t=i;else{Xl(r|0,i|0,s|0)|0;t=f[g>>2]|0}s=r+(p<<2)|0;f[e>>2]=s;f[g>>2]=t+(q<<2);v=s;break}s=m-o>>1;o=(s|0)==0?1:s;if(o>>>0>1073741823){s=ra(8)|0;Wo(s,14941);f[s>>2]=6944;va(s|0,1080,114)}s=dn(o<<2)|0;q=s;p=s+(o>>>2<<2)|0;r=p;w=s+(o<<2)|0;if((i|0)==(j|0)){x=r;y=n}else{n=p;p=r;o=i;do{f[n>>2]=f[o>>2];n=p+4|0;p=n;o=o+4|0}while((o|0)!=(j|0));x=p;y=f[a>>2]|0}f[a>>2]=q;f[g>>2]=r;f[e>>2]=x;f[k>>2]=w;if(!y)v=x;else{br(y);v=f[e>>2]|0}}else v=j;while(0);f[v>>2]=h;f[e>>2]=(f[e>>2]|0)+4;u=b;return}e=a+8|0;h=f[e>>2]|0;v=a+4|0;j=h-(f[v>>2]|0)|0;y=a+12|0;x=f[y>>2]|0;k=x-(f[a>>2]|0)|0;if(j>>>0>=k>>>0){g=k>>1;k=(g|0)==0?1:g;f[c+12>>2]=0;f[c+16>>2]=a+12;if(k>>>0>1073741823){g=ra(8)|0;Wo(g,14941);f[g>>2]=6944;va(g|0,1080,114)}g=dn(k<<2)|0;f[c>>2]=g;i=g+(j>>2<<2)|0;j=c+8|0;f[j>>2]=i;m=c+4|0;f[m>>2]=i;i=c+12|0;f[i>>2]=g+(k<<2);k=dn(4068)|0;f[d>>2]=k;kg(c,d);d=f[e>>2]|0;while(1){z=f[v>>2]|0;if((d|0)==(z|0))break;k=d+-4|0;dg(c,k);d=k}k=z;z=f[a>>2]|0;f[a>>2]=f[c>>2];f[c>>2]=z;f[v>>2]=f[m>>2];f[m>>2]=k;m=f[e>>2]|0;f[e>>2]=f[j>>2];f[j>>2]=m;g=f[y>>2]|0;f[y>>2]=f[i>>2];f[i>>2]=g;g=m;if((d|0)!=(g|0))f[j>>2]=g+(~((g+-4-k|0)>>>2)<<2);if(z|0)br(z);u=b;return}if((x|0)!=(h|0)){h=dn(4068)|0;f[c>>2]=h;kg(a,c);u=b;return}h=dn(4068)|0;f[c>>2]=h;dg(a,c);c=f[v>>2]|0;h=f[c>>2]|0;x=c+4|0;f[v>>2]=x;c=f[e>>2]|0;z=f[y>>2]|0;k=z;do if((c|0)==(z|0)){g=f[a>>2]|0;j=g;if(x>>>0>g>>>0){d=x;m=((d-j>>2)+1|0)/-2|0;i=x+(m<<2)|0;t=c-d|0;d=t>>2;if(!d)A=x;else{Xl(i|0,x|0,t|0)|0;A=f[v>>2]|0}t=i+(d<<2)|0;f[e>>2]=t;f[v>>2]=A+(m<<2);B=t;break}t=k-j>>1;j=(t|0)==0?1:t;if(j>>>0>1073741823){t=ra(8)|0;Wo(t,14941);f[t>>2]=6944;va(t|0,1080,114)}t=dn(j<<2)|0;m=t;d=t+(j>>>2<<2)|0;i=d;l=t+(j<<2)|0;if((x|0)==(c|0)){C=i;D=g}else{g=d;d=i;j=x;do{f[g>>2]=f[j>>2];g=d+4|0;d=g;j=j+4|0}while((j|0)!=(c|0));C=d;D=f[a>>2]|0}f[a>>2]=m;f[v>>2]=i;f[e>>2]=C;f[y>>2]=l;if(!D)B=C;else{br(D);B=f[e>>2]|0}}else B=c;while(0);f[B>>2]=h;f[e>>2]=(f[e>>2]|0)+4;u=b;return}function Kc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0;e=u;u=u+16|0;g=e+8|0;h=e+4|0;i=e;j=a+64|0;k=f[j>>2]|0;if((f[k+28>>2]|0)==(f[k+24>>2]|0)){u=e;return}l=c+96|0;c=a+52|0;m=d+84|0;n=d+68|0;d=a+56|0;o=a+60|0;p=a+12|0;q=a+28|0;r=a+40|0;s=a+44|0;t=a+48|0;v=0;w=0;x=k;while(1){k=f[(f[x+24>>2]|0)+(w<<2)>>2]|0;if((k|0)==-1){y=v;z=x}else{A=v+1|0;B=f[(f[l>>2]|0)+(((k|0)/3|0)*12|0)+(((k|0)%3|0)<<2)>>2]|0;if(!(b[m>>0]|0))C=f[(f[n>>2]|0)+(B<<2)>>2]|0;else C=B;f[g>>2]=C;B=f[d>>2]|0;if(B>>>0<(f[o>>2]|0)>>>0){f[B>>2]=C;f[d>>2]=B+4}else Ci(c,g);f[g>>2]=k;f[h>>2]=0;a:do if(!(f[(f[p>>2]|0)+(w>>>5<<2)>>2]&1<<(w&31)))D=k;else{B=k+1|0;E=((B>>>0)%3|0|0)==0?k+-2|0:B;if(((E|0)!=-1?(f[(f[a>>2]|0)+(E>>>5<<2)>>2]&1<<(E&31)|0)==0:0)?(B=f[(f[(f[j>>2]|0)+12>>2]|0)+(E<<2)>>2]|0,E=B+1|0,(B|0)!=-1):0){F=((E>>>0)%3|0|0)==0?B+-2|0:E;f[h>>2]=F;if((F|0)==-1){D=k;break}else G=F;while(1){f[g>>2]=G;F=G+1|0;E=((F>>>0)%3|0|0)==0?G+-2|0:F;if((E|0)==-1)break;if(f[(f[a>>2]|0)+(E>>>5<<2)>>2]&1<<(E&31)|0)break;F=f[(f[(f[j>>2]|0)+12>>2]|0)+(E<<2)>>2]|0;E=F+1|0;if((F|0)==-1)break;B=((E>>>0)%3|0|0)==0?F+-2|0:E;f[h>>2]=B;if((B|0)==-1){D=G;break a}else G=B}f[h>>2]=-1;D=G;break}f[h>>2]=-1;D=k}while(0);f[(f[q>>2]|0)+(D<<2)>>2]=v;k=f[s>>2]|0;if((k|0)==(f[t>>2]|0))Ci(r,g);else{f[k>>2]=f[g>>2];f[s>>2]=k+4}k=f[j>>2]|0;B=f[g>>2]|0;b:do if(((B|0)!=-1?(E=(((B>>>0)%3|0|0)==0?2:-1)+B|0,(E|0)!=-1):0)?(F=f[(f[k+12>>2]|0)+(E<<2)>>2]|0,(F|0)!=-1):0){E=F+(((F>>>0)%3|0|0)==0?2:-1)|0;f[h>>2]=E;if((E|0)!=-1&(E|0)!=(B|0)){F=A;H=v;I=E;while(1){E=I+1|0;J=((E>>>0)%3|0|0)==0?I+-2|0:E;do if(f[(f[a>>2]|0)+(J>>>5<<2)>>2]&1<<(J&31)){E=F+1|0;K=f[(f[l>>2]|0)+(((I|0)/3|0)*12|0)+(((I|0)%3|0)<<2)>>2]|0;if(!(b[m>>0]|0))L=f[(f[n>>2]|0)+(K<<2)>>2]|0;else L=K;f[i>>2]=L;K=f[d>>2]|0;if(K>>>0<(f[o>>2]|0)>>>0){f[K>>2]=L;f[d>>2]=K+4}else Ci(c,i);K=f[s>>2]|0;if((K|0)==(f[t>>2]|0)){Ci(r,h);M=E;N=F;break}else{f[K>>2]=f[h>>2];f[s>>2]=K+4;M=E;N=F;break}}else{M=F;N=H}while(0);f[(f[q>>2]|0)+(f[h>>2]<<2)>>2]=N;O=f[j>>2]|0;J=f[h>>2]|0;if((J|0)==-1)break;E=(((J>>>0)%3|0|0)==0?2:-1)+J|0;if((E|0)==-1)break;J=f[(f[O+12>>2]|0)+(E<<2)>>2]|0;if((J|0)==-1)break;I=J+(((J>>>0)%3|0|0)==0?2:-1)|0;f[h>>2]=I;if(!((I|0)!=-1?(I|0)!=(f[g>>2]|0):0)){P=M;Q=O;break b}else{F=M;H=N}}f[h>>2]=-1;P=M;Q=O}else{P=A;Q=k}}else R=28;while(0);if((R|0)==28){R=0;f[h>>2]=-1;P=A;Q=k}y=P;z=Q}w=w+1|0;if(w>>>0>=(f[z+28>>2]|0)-(f[z+24>>2]|0)>>2>>>0)break;else{v=y;x=z}}u=e;return}function Lc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0.0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,D=0,E=0,F=0;switch(c|0){case 0:{e=-149;g=24;i=4;break}case 1:{e=-1074;g=53;i=4;break}case 2:{e=-1074;g=53;i=4;break}default:j=0.0}a:do if((i|0)==4){c=a+4|0;k=a+100|0;do{l=f[c>>2]|0;if(l>>>0<(f[k>>2]|0)>>>0){f[c>>2]=l+1;m=h[l>>0]|0}else m=Di(a)|0}while((tq(m)|0)!=0);b:do switch(m|0){case 43:case 45:{l=1-(((m|0)==45&1)<<1)|0;n=f[c>>2]|0;if(n>>>0<(f[k>>2]|0)>>>0){f[c>>2]=n+1;o=h[n>>0]|0;p=l;break b}else{o=Di(a)|0;p=l;break b}break}default:{o=m;p=1}}while(0);l=0;n=o;while(1){if((n|32|0)!=(b[17452+l>>0]|0)){q=l;r=n;break}do if(l>>>0<7){s=f[c>>2]|0;if(s>>>0<(f[k>>2]|0)>>>0){f[c>>2]=s+1;t=h[s>>0]|0;break}else{t=Di(a)|0;break}}else t=n;while(0);s=l+1|0;if(s>>>0<8){l=s;n=t}else{q=s;r=t;break}}c:do switch(q|0){case 8:break;case 3:{i=23;break}default:{n=(d|0)!=0;if(n&q>>>0>3)if((q|0)==8)break c;else{i=23;break c}d:do if(!q){l=0;s=r;while(1){if((s|32|0)!=(b[17461+l>>0]|0)){u=l;v=s;break d}do if(l>>>0<2){w=f[c>>2]|0;if(w>>>0<(f[k>>2]|0)>>>0){f[c>>2]=w+1;x=h[w>>0]|0;break}else{x=Di(a)|0;break}}else x=s;while(0);w=l+1|0;if(w>>>0<3){l=w;s=x}else{u=w;v=x;break}}}else{u=q;v=r}while(0);switch(u|0){case 3:{s=f[c>>2]|0;if(s>>>0<(f[k>>2]|0)>>>0){f[c>>2]=s+1;y=h[s>>0]|0}else y=Di(a)|0;if((y|0)==40)z=1;else{if(!(f[k>>2]|0)){j=B;break a}f[c>>2]=(f[c>>2]|0)+-1;j=B;break a}while(1){s=f[c>>2]|0;if(s>>>0<(f[k>>2]|0)>>>0){f[c>>2]=s+1;A=h[s>>0]|0}else A=Di(a)|0;if(!((A+-48|0)>>>0<10|(A+-65|0)>>>0<26)?!((A|0)==95|(A+-97|0)>>>0<26):0)break;z=z+1|0}if((A|0)==41){j=B;break a}s=(f[k>>2]|0)==0;if(!s)f[c>>2]=(f[c>>2]|0)+-1;if(!n){l=ir()|0;f[l>>2]=22;Rm(a,0);j=0.0;break a}if(!z){j=B;break a}else D=z;while(1){D=D+-1|0;if(!s)f[c>>2]=(f[c>>2]|0)+-1;if(!D){j=B;break a}}break}case 0:{if((v|0)==48){s=f[c>>2]|0;if(s>>>0<(f[k>>2]|0)>>>0){f[c>>2]=s+1;E=h[s>>0]|0}else E=Di(a)|0;if((E|32|0)==120){j=+yc(a,g,e,p,d);break a}if(!(f[k>>2]|0))F=48;else{f[c>>2]=(f[c>>2]|0)+-1;F=48}}else F=v;j=+ob(a,F,g,e,p,d);break a;break}default:{if(f[k>>2]|0)f[c>>2]=(f[c>>2]|0)+-1;s=ir()|0;f[s>>2]=22;Rm(a,0);j=0.0;break a}}}}while(0);if((i|0)==23){s=(f[k>>2]|0)==0;if(!s)f[c>>2]=(f[c>>2]|0)+-1;if((d|0)!=0&q>>>0>3){n=q;do{if(!s)f[c>>2]=(f[c>>2]|0)+-1;n=n+-1|0}while(n>>>0>3)}}j=+$($(p|0)*$(C))}while(0);return +j}function Mc(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0;b=u;u=u+16|0;c=b+4|0;d=b;e=f[a+64>>2]|0;if(!e){u=b;return}g=Qa[f[(f[e>>2]|0)+32>>2]&127](e)|0;if(!g){u=b;return}e=g+24|0;h=g+28|0;i=((f[h>>2]|0)-(f[e>>2]|0)>>2)-(f[g+44>>2]|0)|0;j=a+56|0;k=f[j>>2]|0;if(((f[k+12>>2]|0)-(f[k+8>>2]|0)|0)>4){f[c>>2]=0;l=c+4|0;f[l>>2]=0;f[c+8>>2]=0;m=c+8|0;n=0;o=k;while(1){if(!(f[(f[(f[o+8>>2]|0)+(n<<2)>>2]|0)+56>>2]|0))p=o;else{k=Ra[f[(f[a>>2]|0)+56>>2]&127](a,n)|0;f[d>>2]=k;q=k;do if(k|0){r=f[l>>2]|0;if((r|0)==(f[m>>2]|0)){Ci(c,d);break}else{f[r>>2]=q;f[l>>2]=(f[l>>2]|0)+4;break}}while(0);p=f[j>>2]|0}n=n+1|0;if((n|0)>=((f[p+12>>2]|0)-(f[p+8>>2]|0)>>2|0))break;else o=p}o=f[h>>2]|0;h=f[e>>2]|0;e=h;if((o|0)==(h|0)){s=i;t=f[c>>2]|0}else{n=o-h>>2;h=g+12|0;g=f[l>>2]|0;o=f[c>>2]|0;c=(g|0)==(o|0);j=o;d=g-o>>2;o=p+96|0;p=i;g=0;while(1){m=f[e+(g<<2)>>2]|0;if((m|0)==-1)v=p;else{q=f[o>>2]|0;k=f[q+(((m|0)/3|0)*12|0)+(((m|0)%3|0)<<2)>>2]|0;r=(((m>>>0)%3|0|0)==0?2:-1)+m|0;a:do if(((r|0)!=-1?(w=f[(f[h>>2]|0)+(r<<2)>>2]|0,(w|0)!=-1):0)?(x=w+(((w>>>0)%3|0|0)==0?2:-1)|0,(x|0)!=-1):0){if(c){w=0;y=x;z=k;while(1){A=z;z=f[q+(((y|0)/3|0)*12|0)+(((y|0)%3|0)<<2)>>2]|0;B=w+((z|0)!=(A|0)&1)|0;if((y|0)==(m|0)){C=B;break a}A=(((y>>>0)%3|0|0)==0?2:-1)+y|0;if((A|0)==-1){C=B;break a}D=f[(f[h>>2]|0)+(A<<2)>>2]|0;if((D|0)==-1){C=B;break a}y=D+(((D>>>0)%3|0|0)==0?2:-1)|0;if((y|0)==-1){C=B;break a}else w=B}}else{E=0;F=x;G=m;H=k}while(1){w=f[q+(((F|0)/3|0)*12|0)+(((F|0)%3|0)<<2)>>2]|0;b:do if((w|0)==(H|0)){y=0;while(1){z=f[(f[j+(y<<2)>>2]|0)+28>>2]|0;y=y+1|0;if((f[z+(F<<2)>>2]|0)!=(f[z+(G<<2)>>2]|0)){I=H;J=28;break b}if(y>>>0>=d>>>0){K=H;L=E;break}}}else{I=w;J=28}while(0);if((J|0)==28){J=0;K=I;L=E+1|0}if((F|0)==(m|0)){C=L;break a}w=(((F>>>0)%3|0|0)==0?2:-1)+F|0;if((w|0)==-1){C=L;break a}y=f[(f[h>>2]|0)+(w<<2)>>2]|0;if((y|0)==-1){C=L;break a}w=y+(((y>>>0)%3|0|0)==0?2:-1)|0;if((w|0)==-1){C=L;break}else{y=F;E=L;F=w;H=K;G=y}}}else C=0;while(0);m=f[e+(g<<2)>>2]|0;q=m+1|0;if(((m|0)!=-1?(k=((q>>>0)%3|0|0)==0?m+-2|0:q,(k|0)!=-1):0)?(q=f[(f[h>>2]|0)+(k<<2)>>2]|0,k=q+1|0,(q|0)!=-1):0)M=((((k>>>0)%3|0|0)==0?q+-2|0:k)|0)==-1;else M=1;v=C+p+(((C|0)!=0&(M^1))<<31>>31)|0}g=g+1|0;if(g>>>0>=n>>>0){s=v;t=j;break}else p=v}}if(t|0){v=f[l>>2]|0;if((v|0)!=(t|0))f[l>>2]=v+(~((v+-4-t|0)>>>2)<<2);br(t)}N=s}else N=i;f[a+52>>2]=N;u=b;return}function Nc(a,c,d,e,g,h){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;var i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;i=u;u=u+32|0;j=i+4|0;k=i;l=i+16|0;m=(_(e|0)|0)^31;if((e|0)>0)if(m>>>0>17){n=0;u=i;return n|0}else o=m+1|0;else o=1;do if(g){m=dn(48)|0;f[j>>2]=m;f[j+8>>2]=-2147483600;f[j+4>>2]=33;e=m;p=13067;q=e+33|0;do{b[e>>0]=b[p>>0]|0;e=e+1|0;p=p+1|0}while((e|0)<(q|0));b[m+33>>0]=0;r=(sh(g,j)|0)==0;if((b[j+11>>0]|0)<0)br(f[j>>2]|0);if(!r){r=dn(48)|0;f[j>>2]=r;f[j+8>>2]=-2147483600;f[j+4>>2]=33;e=r;p=13067;q=e+33|0;do{b[e>>0]=b[p>>0]|0;e=e+1|0;p=p+1|0}while((e|0)<(q|0));b[r+33>>0]=0;p=Ck(g,j)|0;if((b[j+11>>0]|0)<0)br(f[j>>2]|0);if((p|0)<4){s=o+-2|0;break}if((p|0)<6){s=o+-1|0;break}if((p|0)>9){s=o+2|0;break}else{s=o+((p|0)>7&1)|0;break}}else s=o}else s=o;while(0);o=(s|0)>1?s:1;s=(o|0)<18?o:18;b[l>>0]=s;o=h+16|0;g=f[o+4>>2]|0;if(!((g|0)>0|(g|0)==0&(f[o>>2]|0)>>>0>0)){f[k>>2]=f[h+4>>2];f[j>>2]=f[k>>2];ye(h,j,l,l+1|0)|0}do switch(s&31){case 1:case 0:{n=je(a,c,d,h)|0;u=i;return n|0}case 2:{n=ie(a,c,d,h)|0;u=i;return n|0}case 3:{n=he(a,c,d,h)|0;u=i;return n|0}case 4:{n=ge(a,c,d,h)|0;u=i;return n|0}case 5:{n=fe(a,c,d,h)|0;u=i;return n|0}case 6:{n=ee(a,c,d,h)|0;u=i;return n|0}case 7:{n=de(a,c,d,h)|0;u=i;return n|0}case 8:{n=ce(a,c,d,h)|0;u=i;return n|0}case 9:{n=be(a,c,d,h)|0;u=i;return n|0}case 10:{n=ae(a,c,d,h)|0;u=i;return n|0}case 11:{n=$d(a,c,d,h)|0;u=i;return n|0}case 12:{n=_d(a,c,d,h)|0;u=i;return n|0}case 13:{n=Zd(a,c,d,h)|0;u=i;return n|0}case 14:{n=Yd(a,c,d,h)|0;u=i;return n|0}case 15:{n=Xd(a,c,d,h)|0;u=i;return n|0}case 16:{n=Wd(a,c,d,h)|0;u=i;return n|0}case 17:{n=Vd(a,c,d,h)|0;u=i;return n|0}case 18:{n=Ud(a,c,d,h)|0;u=i;return n|0}default:{n=0;u=i;return n|0}}while(0);return 0}function Oc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*1048576.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==1048576){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;wb(z,A,g);a:do if((x|0)<1048576){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=1048576-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>1048576;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-1048576|0;m=x;while(1){v=1048576.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==1048576){C=p;D=1048576;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=1048576){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*9.5367431640625e-07)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function Pc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*1048576.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==1048576){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;xb(z,A,g);a:do if((x|0)<1048576){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=1048576-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>1048576;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-1048576|0;m=x;while(1){v=1048576.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==1048576){C=p;D=1048576;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=1048576){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*9.5367431640625e-07)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function Qc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*1048576.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==1048576){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;yb(z,A,g);a:do if((x|0)<1048576){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=1048576-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>1048576;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-1048576|0;m=x;while(1){v=1048576.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==1048576){C=p;D=1048576;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=1048576){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*9.5367431640625e-07)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function Rc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*1048576.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==1048576){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;zb(z,A,g);a:do if((x|0)<1048576){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=1048576-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>1048576;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-1048576|0;m=x;while(1){v=1048576.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==1048576){C=p;D=1048576;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=1048576){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*9.5367431640625e-07)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function Sc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*1048576.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==1048576){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Ab(z,A,g);a:do if((x|0)<1048576){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=1048576-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>1048576;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-1048576|0;m=x;while(1){v=1048576.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==1048576){C=p;D=1048576;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=1048576){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*9.5367431640625e-07)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function Tc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*524288.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==524288){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Eb(z,A,g);a:do if((x|0)<524288){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=524288-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>524288;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-524288|0;m=x;while(1){v=524288.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==524288){C=p;D=524288;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=524288){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*1.9073486328125e-06)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function Uc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*262144.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==262144){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Bb(z,A,g);a:do if((x|0)<262144){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=262144-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>262144;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-262144|0;m=x;while(1){v=262144.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==262144){C=p;D=262144;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=262144){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*3.814697265625e-06)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function Vc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*65536.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==65536){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Cb(z,A,g);a:do if((x|0)<65536){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=65536-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>65536;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-65536|0;m=x;while(1){v=65536.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==65536){C=p;D=65536;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=65536){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*.0000152587890625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function Wc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*32768.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==32768){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Db(z,A,g);a:do if((x|0)<32768){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=32768-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>32768;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-32768|0;m=x;while(1){v=32768.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==32768){C=p;D=32768;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=32768){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*.000030517578125)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function Xc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*8192.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==8192){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Fb(z,A,g);a:do if((x|0)<8192){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=8192-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>8192;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-8192|0;m=x;while(1){v=8192.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==8192){C=p;D=8192;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=8192){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*.0001220703125)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function Yc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Gb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function Zc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Hb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function _c(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Ib(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function $c(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Jb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function ad(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Kb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function bd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Lb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function cd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Mb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function dd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Tn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else dh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)mq(h);else{i=l<<2;t=dn(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;hj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Nb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);br(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Fg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=xe(a,d)|0;u=e;return w|0}function ed(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0;g=u;u=u+32|0;d=g+16|0;h=g+8|0;i=g;j=e>>>0>1073741823?-1:e<<2;k=_q(j)|0;hj(k|0,0,j|0)|0;j=f[a+28>>2]|0;l=a+36|0;m=f[l>>2]|0;n=f[m+4>>2]|0;o=f[m>>2]|0;p=n-o|0;a:do if((p|0)>4){q=p>>2;r=f[a+32>>2]|0;s=a+8|0;t=h+4|0;v=i+4|0;w=d+4|0;x=j+12|0;y=(e|0)>0;z=k+4|0;A=h+4|0;B=i+4|0;C=d+4|0;D=q+-1|0;if(n-o>>2>>>0>D>>>0){E=q;F=D;G=o}else{H=m;mq(H)}while(1){D=f[G+(F<<2)>>2]|0;q=X(F,e)|0;if((D|0)!=-1?(I=f[(f[x>>2]|0)+(D<<2)>>2]|0,(I|0)!=-1):0){D=f[j>>2]|0;J=f[r>>2]|0;K=f[J+(f[D+(I<<2)>>2]<<2)>>2]|0;L=I+1|0;M=((L>>>0)%3|0|0)==0?I+-2|0:L;if((M|0)==-1)N=-1;else N=f[D+(M<<2)>>2]|0;M=f[J+(N<<2)>>2]|0;L=(((I>>>0)%3|0|0)==0?2:-1)+I|0;if((L|0)==-1)O=-1;else O=f[D+(L<<2)>>2]|0;L=f[J+(O<<2)>>2]|0;if((K|0)<(F|0)&(M|0)<(F|0)&(L|0)<(F|0)){J=X(K,e)|0;K=X(M,e)|0;M=X(L,e)|0;if(y){L=0;do{f[k+(L<<2)>>2]=(f[b+(L+M<<2)>>2]|0)+(f[b+(L+K<<2)>>2]|0)-(f[b+(L+J<<2)>>2]|0);L=L+1|0}while((L|0)!=(e|0))}L=b+(q<<2)|0;J=c+(q<<2)|0;K=f[L+4>>2]|0;M=f[k>>2]|0;D=f[z>>2]|0;f[h>>2]=f[L>>2];f[A>>2]=K;f[i>>2]=M;f[B>>2]=D;Dd(d,s,h,i);f[J>>2]=f[d>>2];f[J+4>>2]=f[C>>2]}else P=15}else P=15;if((P|0)==15){P=0;J=b+(q<<2)|0;D=b+((X(E+-2|0,e)|0)<<2)|0;M=c+(q<<2)|0;K=f[J+4>>2]|0;L=f[D>>2]|0;I=f[D+4>>2]|0;f[h>>2]=f[J>>2];f[t>>2]=K;f[i>>2]=L;f[v>>2]=I;Dd(d,s,h,i);f[M>>2]=f[d>>2];f[M+4>>2]=f[w>>2]}if((E|0)<=2)break a;M=f[l>>2]|0;G=f[M>>2]|0;I=F+-1|0;if((f[M+4>>2]|0)-G>>2>>>0<=I>>>0){H=M;break}else{M=F;F=I;E=M}}mq(H)}while(0);if((e|0)<=0){Q=a+8|0;R=b+4|0;S=f[b>>2]|0;T=f[R>>2]|0;U=k+4|0;V=f[k>>2]|0;W=f[U>>2]|0;f[h>>2]=S;Y=h+4|0;f[Y>>2]=T;f[i>>2]=V;Z=i+4|0;f[Z>>2]=W;Dd(d,Q,h,i);_=f[d>>2]|0;f[c>>2]=_;$=d+4|0;aa=f[$>>2]|0;ba=c+4|0;f[ba>>2]=aa;$q(k);u=g;return 1}hj(k|0,0,e<<2|0)|0;Q=a+8|0;R=b+4|0;S=f[b>>2]|0;T=f[R>>2]|0;U=k+4|0;V=f[k>>2]|0;W=f[U>>2]|0;f[h>>2]=S;Y=h+4|0;f[Y>>2]=T;f[i>>2]=V;Z=i+4|0;f[Z>>2]=W;Dd(d,Q,h,i);_=f[d>>2]|0;f[c>>2]=_;$=d+4|0;aa=f[$>>2]|0;ba=c+4|0;f[ba>>2]=aa;$q(k);u=g;return 1}function fd(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0;d=u;u=u+32|0;e=d;g=d+20|0;h=d+24|0;i=d+8|0;j=f[a>>2]|0;k=j+8|0;l=j;j=f[l>>2]|0;m=f[l+4>>2]|0;l=Tn(j|0,m|0,f[k>>2]|0,f[k+4>>2]|0)|0;k=I;n=Tn(l|0,k|0,(l|0)==0&(k|0)==0&1|0,0)|0;k=~~((+(j>>>0)+4294967296.0*+(m>>>0))/(+(n>>>0)+4294967296.0*+(I>>>0))*256.0+.5)>>>0;n=k>>>0<255?k:255;k=n+((n|0)==0&1)&255;b[h>>0]=k;n=a+12|0;m=a+16|0;j=((f[m>>2]|0)-(f[n>>2]|0)<<1)+64|0;f[i>>2]=0;l=i+4|0;f[l>>2]=0;f[i+8>>2]=0;if(!j)o=0;else{if((j|0)<0)mq(i);p=dn(j)|0;f[l>>2]=p;f[i>>2]=p;f[i+8>>2]=p+j;q=j;j=p;do{b[j>>0]=0;j=(f[l>>2]|0)+1|0;f[l>>2]=j;q=q+-1|0}while((q|0)!=0);o=f[i>>2]|0}q=a+28|0;j=(f[q>>2]|0)+-1|0;a:do if((j|0)>-1){p=a+24|0;r=j;s=0;t=4096;v=k;while(1){w=(f[p>>2]&1<>>0>>0){y=s;z=t}else{b[o+s>>0]=t;y=s+1|0;z=t>>>8}on(f[3780+(x<<3)>>2]|0,0,z|0,0)|0;A=z+(w?0:0-v&255)+(X((z+I|0)>>>(f[3780+(x<<3)+4>>2]|0),256-x|0)|0)|0;x=r+-1|0;if((x|0)<=-1){B=y;C=A;break a}r=x;s=y;t=A;v=b[h>>0]|0}}else{B=0;C=4096}while(0);y=f[m>>2]|0;if((f[n>>2]|0)==(y|0)){D=B;E=C}else{z=B;B=C;C=y;while(1){C=C+-4|0;y=f[C>>2]|0;k=31;j=z;v=B;while(1){t=b[h>>0]|0;s=(1<>>0>>0){F=j;G=v}else{b[o+j>>0]=v;F=j+1|0;G=v>>>8}on(f[3780+(r<<3)>>2]|0,0,G|0,0)|0;v=G+(s?0:0-t&255)+(X((G+I|0)>>>(f[3780+(r<<3)+4>>2]|0),256-r|0)|0)|0;if((k|0)<=0)break;else{k=k+-1|0;j=F}}if((f[n>>2]|0)==(C|0)){D=F;E=v;break}else{z=F;B=v}}}B=E+-4096|0;do if(B>>>0>=64){if(B>>>0<16384){F=o+D|0;z=E+12288|0;b[F>>0]=z;H=2;J=z>>>8;K=F+1|0;L=25;break}if(B>>>0<4194304){F=o+D|0;z=E+8384512|0;b[F>>0]=z;b[F+1>>0]=z>>>8;H=3;J=z>>>16;K=F+2|0;L=25}else M=D}else{H=1;J=B;K=o+D|0;L=25}while(0);if((L|0)==25){b[K>>0]=J;M=H+D|0}D=c+16|0;H=D;J=f[H+4>>2]|0;if(!((J|0)>0|(J|0)==0&(f[H>>2]|0)>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];ye(c,e,h,h+1|0)|0}Nh(M,c)|0;h=f[i>>2]|0;H=D;D=f[H+4>>2]|0;if(!((D|0)>0|(D|0)==0&(f[H>>2]|0)>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];ye(c,e,h,h+M|0)|0}M=e;f[M>>2]=0;f[M+4>>2]=0;cf(a,2,e);e=f[a+12>>2]|0;M=f[m>>2]|0;if((M|0)!=(e|0))f[m>>2]=M+(~((M+-4-e|0)>>>2)<<2);f[a+24>>2]=0;f[q>>2]=0;q=f[i>>2]|0;if(!q){u=d;return}if((f[l>>2]|0)!=(q|0))f[l>>2]=q;br(q);u=d;return}function gd(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0;c=u;u=u+16|0;b=c+8|0;d=c+4|0;e=c;g=a+64|0;h=f[g>>2]|0;if((f[h+28>>2]|0)==(f[h+24>>2]|0)){u=c;return}i=a+52|0;j=a+56|0;k=a+60|0;l=a+12|0;m=a+28|0;n=a+40|0;o=a+44|0;p=a+48|0;q=0;r=0;s=h;while(1){h=f[(f[s+24>>2]|0)+(r<<2)>>2]|0;if((h|0)==-1){t=q;v=s}else{w=q+1|0;f[b>>2]=q;x=f[j>>2]|0;if((x|0)==(f[k>>2]|0))Ci(i,b);else{f[x>>2]=q;f[j>>2]=x+4}f[d>>2]=h;f[e>>2]=0;a:do if(!(f[(f[l>>2]|0)+(r>>>5<<2)>>2]&1<<(r&31)))y=h;else{x=h+1|0;z=((x>>>0)%3|0|0)==0?h+-2|0:x;if(((z|0)!=-1?(f[(f[a>>2]|0)+(z>>>5<<2)>>2]&1<<(z&31)|0)==0:0)?(x=f[(f[(f[g>>2]|0)+12>>2]|0)+(z<<2)>>2]|0,z=x+1|0,(x|0)!=-1):0){A=((z>>>0)%3|0|0)==0?x+-2|0:z;f[e>>2]=A;if((A|0)==-1){y=h;break}else B=A;while(1){f[d>>2]=B;A=B+1|0;z=((A>>>0)%3|0|0)==0?B+-2|0:A;if((z|0)==-1)break;if(f[(f[a>>2]|0)+(z>>>5<<2)>>2]&1<<(z&31)|0)break;A=f[(f[(f[g>>2]|0)+12>>2]|0)+(z<<2)>>2]|0;z=A+1|0;if((A|0)==-1)break;x=((z>>>0)%3|0|0)==0?A+-2|0:z;f[e>>2]=x;if((x|0)==-1){y=B;break a}else B=x}f[e>>2]=-1;y=B;break}f[e>>2]=-1;y=h}while(0);f[(f[m>>2]|0)+(y<<2)>>2]=f[b>>2];h=f[o>>2]|0;if((h|0)==(f[p>>2]|0))Ci(n,d);else{f[h>>2]=f[d>>2];f[o>>2]=h+4}h=f[g>>2]|0;x=f[d>>2]|0;b:do if(((x|0)!=-1?(z=(((x>>>0)%3|0|0)==0?2:-1)+x|0,(z|0)!=-1):0)?(A=f[(f[h+12>>2]|0)+(z<<2)>>2]|0,(A|0)!=-1):0){z=A+(((A>>>0)%3|0|0)==0?2:-1)|0;f[e>>2]=z;if((z|0)!=-1&(z|0)!=(x|0)){A=w;C=z;while(1){z=C+1|0;D=((z>>>0)%3|0|0)==0?C+-2|0:z;do if(f[(f[a>>2]|0)+(D>>>5<<2)>>2]&1<<(D&31)){z=A+1|0;f[b>>2]=A;E=f[j>>2]|0;if((E|0)==(f[k>>2]|0))Ci(i,b);else{f[E>>2]=A;f[j>>2]=E+4}E=f[o>>2]|0;if((E|0)==(f[p>>2]|0)){Ci(n,e);F=z;break}else{f[E>>2]=f[e>>2];f[o>>2]=E+4;F=z;break}}else F=A;while(0);f[(f[m>>2]|0)+(f[e>>2]<<2)>>2]=f[b>>2];G=f[g>>2]|0;D=f[e>>2]|0;if((D|0)==-1)break;z=(((D>>>0)%3|0|0)==0?2:-1)+D|0;if((z|0)==-1)break;D=f[(f[G+12>>2]|0)+(z<<2)>>2]|0;if((D|0)==-1)break;C=D+(((D>>>0)%3|0|0)==0?2:-1)|0;f[e>>2]=C;if(!((C|0)!=-1?(C|0)!=(f[d>>2]|0):0)){H=F;I=G;break b}else A=F}f[e>>2]=-1;H=F;I=G}else{H=w;I=h}}else J=26;while(0);if((J|0)==26){J=0;f[e>>2]=-1;H=w;I=h}t=H;v=I}r=r+1|0;if(r>>>0>=(f[v+28>>2]|0)-(f[v+24>>2]|0)>>2>>>0)break;else{q=t;s=v}}u=c;return}function hd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;h=a+124|0;f[h>>2]=(f[h>>2]|0)+1;h=a+88|0;i=a+120|0;j=f[i>>2]|0;k=j+1|0;do if((j|0)!=-1){l=((k>>>0)%3|0|0)==0?j+-2|0:k;if(!((j>>>0)%3|0)){m=j+2|0;n=l;break}else{m=j+-1|0;n=l;break}}else{m=-1;n=-1}while(0);k=a+104|0;l=a+92|0;o=f[l>>2]|0;p=o+(n<<2)|0;q=f[k>>2]|0;r=q+(f[p>>2]<<2)|0;s=f[r>>2]|0;switch(b|0){case 1:case 0:{f[r>>2]=s+-1;r=q+(f[o+(m<<2)>>2]<<2)|0;f[r>>2]=(f[r>>2]|0)+-1;if((b|0)==1){if((m|0)!=-1?(r=f[(f[(f[h>>2]|0)+12>>2]|0)+(m<<2)>>2]|0,(r|0)!=-1):0){t=a+64|0;v=1;w=r;while(1){r=f[t>>2]|0;x=f[(f[r>>2]|0)+36>>2]|0;f[e>>2]=(w>>>0)/3|0;f[d>>2]=f[e>>2];if(Ra[x&127](r,d)|0){y=v;break}r=w+1|0;x=((r>>>0)%3|0|0)==0?w+-2|0:r;if((x|0)==-1){z=12;break}w=f[(f[(f[h>>2]|0)+12>>2]|0)+(x<<2)>>2]|0;x=v+1|0;if((w|0)==-1){y=x;break}else v=x}if((z|0)==12)y=v+1|0;A=y;B=f[k>>2]|0;C=f[l>>2]|0}else{A=1;B=q;C=o}f[B+(f[C+(f[i>>2]<<2)>>2]<<2)>>2]=A;A=a+108|0;i=f[A>>2]|0;C=i-B>>2;B=i;if((n|0)!=-1?(i=f[(f[(f[h>>2]|0)+12>>2]|0)+(n<<2)>>2]|0,(i|0)!=-1):0){n=a+64|0;y=1;v=i;while(1){i=f[n>>2]|0;w=f[(f[i>>2]|0)+36>>2]|0;f[g>>2]=(v>>>0)/3|0;f[d>>2]=f[g>>2];if(Ra[w&127](i,d)|0){D=y;break}i=v+1|0;f[(f[l>>2]|0)+((((i>>>0)%3|0|0)==0?v+-2|0:i)<<2)>>2]=C;i=(((v>>>0)%3|0|0)==0?2:-1)+v|0;if((i|0)==-1){z=20;break}v=f[(f[(f[h>>2]|0)+12>>2]|0)+(i<<2)>>2]|0;i=y+1|0;if((v|0)==-1){D=i;break}else y=i}if((z|0)==20)D=y+1|0;E=D;F=f[A>>2]|0}else{E=1;F=B}f[d>>2]=E;if(F>>>0<(f[a+112>>2]|0)>>>0){f[F>>2]=E;f[A>>2]=F+4}else Ci(k,d)}break}case 5:{k=q+(f[o+(j<<2)>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-1;k=q+(f[p>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-1;k=q+(f[o+(m<<2)>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-2;break}case 3:{k=q+(f[o+(j<<2)>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-1;k=q+(f[p>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-2;k=q+(f[o+(m<<2)>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-1;break}case 7:{k=q+(f[o+(j<<2)>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-2;k=q+(f[p>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-2;k=q+(f[o+(m<<2)>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-2;break}default:{}}k=a+116|0;m=f[k>>2]|0;if((m|0)==-1){f[k>>2]=b;u=c;return}o=f[a+128>>2]|0;if((s|0)<(o|0))G=o;else{q=f[a+132>>2]|0;G=(s|0)>(q|0)?q:s}s=G-o|0;o=f[a+136>>2]|0;a=f[3384+(m<<2)>>2]|0;f[d>>2]=a;m=o+(s*12|0)+4|0;G=f[m>>2]|0;if(G>>>0<(f[o+(s*12|0)+8>>2]|0)>>>0){f[G>>2]=a;f[m>>2]=G+4}else Ci(o+(s*12|0)|0,d);f[k>>2]=b;u=c;return}function id(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,_=0,$=0;g=u;u=u+32|0;d=g+16|0;h=g+8|0;i=g;j=e>>>0>1073741823?-1:e<<2;k=_q(j)|0;hj(k|0,0,j|0)|0;j=f[a+28>>2]|0;l=a+36|0;m=f[l>>2]|0;n=f[m+4>>2]|0;o=f[m>>2]|0;p=n-o|0;a:do if((p|0)>4){q=p>>2;r=f[a+32>>2]|0;s=a+8|0;t=h+4|0;v=i+4|0;w=d+4|0;x=j+64|0;y=j+28|0;z=(e|0)>0;A=k+4|0;B=h+4|0;C=i+4|0;D=d+4|0;E=q+-1|0;if(n-o>>2>>>0>E>>>0){F=q;G=E;H=o}else{I=m;mq(I)}while(1){E=f[H+(G<<2)>>2]|0;q=X(G,e)|0;if((((E|0)!=-1?(f[(f[j>>2]|0)+(E>>>5<<2)>>2]&1<<(E&31)|0)==0:0)?(J=f[(f[(f[x>>2]|0)+12>>2]|0)+(E<<2)>>2]|0,(J|0)!=-1):0)?(E=f[y>>2]|0,K=f[r>>2]|0,L=f[K+(f[E+(J<<2)>>2]<<2)>>2]|0,M=J+1|0,N=f[K+(f[E+((((M>>>0)%3|0|0)==0?J+-2|0:M)<<2)>>2]<<2)>>2]|0,M=f[K+(f[E+((((J>>>0)%3|0|0)==0?2:-1)+J<<2)>>2]<<2)>>2]|0,(L|0)<(G|0)&(N|0)<(G|0)&(M|0)<(G|0)):0){J=X(L,e)|0;L=X(N,e)|0;N=X(M,e)|0;if(z){M=0;do{f[k+(M<<2)>>2]=(f[b+(M+N<<2)>>2]|0)+(f[b+(M+L<<2)>>2]|0)-(f[b+(M+J<<2)>>2]|0);M=M+1|0}while((M|0)!=(e|0))}M=b+(q<<2)|0;J=c+(q<<2)|0;L=f[M+4>>2]|0;N=f[k>>2]|0;E=f[A>>2]|0;f[h>>2]=f[M>>2];f[B>>2]=L;f[i>>2]=N;f[C>>2]=E;Dd(d,s,h,i);f[J>>2]=f[d>>2];f[J+4>>2]=f[D>>2]}else{J=b+(q<<2)|0;E=b+((X(F+-2|0,e)|0)<<2)|0;N=c+(q<<2)|0;L=f[J+4>>2]|0;M=f[E>>2]|0;K=f[E+4>>2]|0;f[h>>2]=f[J>>2];f[t>>2]=L;f[i>>2]=M;f[v>>2]=K;Dd(d,s,h,i);f[N>>2]=f[d>>2];f[N+4>>2]=f[w>>2]}if((F|0)<=2)break a;N=f[l>>2]|0;H=f[N>>2]|0;K=G+-1|0;if((f[N+4>>2]|0)-H>>2>>>0<=K>>>0){I=N;break}else{N=G;G=K;F=N}}mq(I)}while(0);if((e|0)<=0){O=a+8|0;P=b+4|0;Q=f[b>>2]|0;R=f[P>>2]|0;S=k+4|0;T=f[k>>2]|0;U=f[S>>2]|0;f[h>>2]=Q;V=h+4|0;f[V>>2]=R;f[i>>2]=T;W=i+4|0;f[W>>2]=U;Dd(d,O,h,i);Y=f[d>>2]|0;f[c>>2]=Y;Z=d+4|0;_=f[Z>>2]|0;$=c+4|0;f[$>>2]=_;$q(k);u=g;return 1}hj(k|0,0,e<<2|0)|0;O=a+8|0;P=b+4|0;Q=f[b>>2]|0;R=f[P>>2]|0;S=k+4|0;T=f[k>>2]|0;U=f[S>>2]|0;f[h>>2]=Q;V=h+4|0;f[V>>2]=R;f[i>>2]=T;W=i+4|0;f[W>>2]=U;Dd(d,O,h,i);Y=f[d>>2]|0;f[c>>2]=Y;Z=d+4|0;_=f[Z>>2]|0;$=c+4|0;f[$>>2]=_;$q(k);u=g;return 1}function jd(a,b){a=a|0;b=b|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0;c=a+4|0;if(!b){e=f[a>>2]|0;f[a>>2]=0;if(e|0)br(e);f[c>>2]=0;return}if(b>>>0>1073741823){e=ra(8)|0;Wo(e,14941);f[e>>2]=6944;va(e|0,1080,114)}e=dn(b<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)br(g);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;g=f[c>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=b+-1|0;i=(h&b|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(b>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=c;c=f[g>>2]|0;if(!c)return;else{k=j;l=g;m=c;n=g}a:while(1){g=l;c=m;j=n;b:while(1){c:do if(i){e=c;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0)){p=e;break c}q=(f[a>>2]|0)+(o<<2)|0;if(!(f[q>>2]|0)){r=e;s=o;t=q;break b}q=e+8|0;u=q+2|0;v=e+12|0;w=q+6|0;x=f[e>>2]|0;d:do if(!x)y=e;else{z=d[q>>1]|0;A=e;B=x;while(1){C=B+8|0;if(z<<16>>16!=(d[C>>1]|0)){y=A;break d}if((d[u>>1]|0)!=(d[C+2>>1]|0)){y=A;break d}if((d[v>>1]|0)!=(d[B+12>>1]|0)){y=A;break d}if((d[w>>1]|0)!=(d[C+6>>1]|0)){y=A;break d}C=f[B>>2]|0;if(!C){y=B;break}else{D=B;B=C;A=D}}}while(0);f[j>>2]=f[y>>2];f[y>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){E=43;break a}}}else{e=c;while(1){w=f[e+4>>2]|0;if(w>>>0>>0)F=w;else F=(w>>>0)%(b>>>0)|0;if((F|0)==(k|0)){p=e;break c}w=(f[a>>2]|0)+(F<<2)|0;if(!(f[w>>2]|0)){r=e;s=F;t=w;break b}w=e+8|0;v=w+2|0;u=e+12|0;x=w+6|0;q=f[e>>2]|0;e:do if(!q)G=e;else{A=d[w>>1]|0;B=e;z=q;while(1){D=z+8|0;if(A<<16>>16!=(d[D>>1]|0)){G=B;break e}if((d[v>>1]|0)!=(d[D+2>>1]|0)){G=B;break e}if((d[u>>1]|0)!=(d[z+12>>1]|0)){G=B;break e}if((d[x>>1]|0)!=(d[D+6>>1]|0)){G=B;break e}D=f[z>>2]|0;if(!D){G=z;break}else{C=z;z=D;B=C}}}while(0);f[j>>2]=f[G>>2];f[G>>2]=f[f[(f[a>>2]|0)+(F<<2)>>2]>>2];f[f[(f[a>>2]|0)+(F<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){E=43;break a}}}while(0);c=f[p>>2]|0;if(!c){E=43;break a}else{g=p;j=p}}f[t>>2]=j;m=f[r>>2]|0;if(!m){E=43;break}else{k=s;l=r;n=r}}if((E|0)==43)return}function kd(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0;d=a+4|0;if(!c){e=f[a>>2]|0;f[a>>2]=0;if(e|0)br(e);f[d>>2]=0;return}if(c>>>0>1073741823){e=ra(8)|0;Wo(e,14941);f[e>>2]=6944;va(e|0,1080,114)}e=dn(c<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)br(g);f[d>>2]=c;d=0;do{f[(f[a>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(c|0));d=a+8|0;g=f[d>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=c+-1|0;i=(h&c|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(c>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=d;d=f[g>>2]|0;if(!d)return;else{k=j;l=g;m=d;n=g}a:while(1){g=l;d=m;j=n;b:while(1){c:do if(i){e=d;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0)){p=e;break c}q=(f[a>>2]|0)+(o<<2)|0;if(!(f[q>>2]|0)){r=e;s=o;t=q;break b}q=e+8|0;u=q+1|0;v=q+2|0;w=q+3|0;x=f[e>>2]|0;d:do if(!x)y=e;else{z=b[q>>0]|0;A=e;B=x;while(1){C=B+8|0;if(z<<24>>24!=(b[C>>0]|0)){y=A;break d}if((b[u>>0]|0)!=(b[C+1>>0]|0)){y=A;break d}if((b[v>>0]|0)!=(b[C+2>>0]|0)){y=A;break d}if((b[w>>0]|0)!=(b[C+3>>0]|0)){y=A;break d}C=f[B>>2]|0;if(!C){y=B;break}else{D=B;B=C;A=D}}}while(0);f[j>>2]=f[y>>2];f[y>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){E=43;break a}}}else{e=d;while(1){w=f[e+4>>2]|0;if(w>>>0>>0)F=w;else F=(w>>>0)%(c>>>0)|0;if((F|0)==(k|0)){p=e;break c}w=(f[a>>2]|0)+(F<<2)|0;if(!(f[w>>2]|0)){r=e;s=F;t=w;break b}w=e+8|0;v=w+1|0;u=w+2|0;x=w+3|0;q=f[e>>2]|0;e:do if(!q)G=e;else{A=b[w>>0]|0;B=e;z=q;while(1){D=z+8|0;if(A<<24>>24!=(b[D>>0]|0)){G=B;break e}if((b[v>>0]|0)!=(b[D+1>>0]|0)){G=B;break e}if((b[u>>0]|0)!=(b[D+2>>0]|0)){G=B;break e}if((b[x>>0]|0)!=(b[D+3>>0]|0)){G=B;break e}D=f[z>>2]|0;if(!D){G=z;break}else{C=z;z=D;B=C}}}while(0);f[j>>2]=f[G>>2];f[G>>2]=f[f[(f[a>>2]|0)+(F<<2)>>2]>>2];f[f[(f[a>>2]|0)+(F<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){E=43;break a}}}while(0);d=f[p>>2]|0;if(!d){E=43;break a}else{g=p;j=p}}f[t>>2]=j;m=f[r>>2]|0;if(!m){E=43;break}else{k=s;l=r;n=r}}if((E|0)==43)return}function ld(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;c=a+4|0;if(!b){d=f[a>>2]|0;f[a>>2]=0;if(d|0)br(d);f[c>>2]=0;return}if(b>>>0>1073741823){d=ra(8)|0;Wo(d,14941);f[d>>2]=6944;va(d|0,1080,114)}d=dn(b<<2)|0;e=f[a>>2]|0;f[a>>2]=d;if(e|0)br(e);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;e=f[c>>2]|0;if(!e)return;d=f[e+4>>2]|0;g=b+-1|0;h=(g&b|0)==0;if(!h)if(d>>>0>>0)i=d;else i=(d>>>0)%(b>>>0)|0;else i=d&g;f[(f[a>>2]|0)+(i<<2)>>2]=c;c=f[e>>2]|0;if(!c)return;else{j=i;k=e;l=c;m=e}a:while(1){e=k;c=l;i=m;b:while(1){c:do if(h){d=c;while(1){n=f[d+4>>2]&g;if((n|0)==(j|0)){o=d;break c}p=(f[a>>2]|0)+(n<<2)|0;if(!(f[p>>2]|0)){q=d;r=n;s=p;break b}p=d+12|0;t=d+16|0;u=d+20|0;v=f[d>>2]|0;d:do if(!v)w=d;else{x=f[d+8>>2]|0;y=d;z=v;while(1){if((x|0)!=(f[z+8>>2]|0)){w=y;break d}if((f[p>>2]|0)!=(f[z+12>>2]|0)){w=y;break d}if((f[t>>2]|0)!=(f[z+16>>2]|0)){w=y;break d}if((f[u>>2]|0)!=(f[z+20>>2]|0)){w=y;break d}A=f[z>>2]|0;if(!A){w=z;break}else{B=z;z=A;y=B}}}while(0);f[i>>2]=f[w>>2];f[w>>2]=f[f[(f[a>>2]|0)+(n<<2)>>2]>>2];f[f[(f[a>>2]|0)+(n<<2)>>2]>>2]=d;d=f[e>>2]|0;if(!d){C=43;break a}}}else{d=c;while(1){u=f[d+4>>2]|0;if(u>>>0>>0)D=u;else D=(u>>>0)%(b>>>0)|0;if((D|0)==(j|0)){o=d;break c}u=(f[a>>2]|0)+(D<<2)|0;if(!(f[u>>2]|0)){q=d;r=D;s=u;break b}u=d+12|0;t=d+16|0;p=d+20|0;v=f[d>>2]|0;e:do if(!v)E=d;else{y=f[d+8>>2]|0;z=d;x=v;while(1){if((y|0)!=(f[x+8>>2]|0)){E=z;break e}if((f[u>>2]|0)!=(f[x+12>>2]|0)){E=z;break e}if((f[t>>2]|0)!=(f[x+16>>2]|0)){E=z;break e}if((f[p>>2]|0)!=(f[x+20>>2]|0)){E=z;break e}B=f[x>>2]|0;if(!B){E=x;break}else{A=x;x=B;z=A}}}while(0);f[i>>2]=f[E>>2];f[E>>2]=f[f[(f[a>>2]|0)+(D<<2)>>2]>>2];f[f[(f[a>>2]|0)+(D<<2)>>2]>>2]=d;d=f[e>>2]|0;if(!d){C=43;break a}}}while(0);c=f[o>>2]|0;if(!c){C=43;break a}else{e=o;i=o}}f[s>>2]=i;l=f[q>>2]|0;if(!l){C=43;break}else{j=r;k=q;m=q}}if((C|0)==43)return}function md(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0;i=u;u=u+352|0;j=i+340|0;k=i+336|0;l=i+80|0;m=i+48|0;n=i;hj(l|0,0,256)|0;o=f[e+4>>2]|0;p=f[e>>2]|0;q=p;if((o|0)!=(p|0)){r=o-p>>2;p=0;do{o=l+(f[q+(p<<2)>>2]<<3)|0;s=o;t=Tn(f[s>>2]|0,f[s+4>>2]|0,1,0)|0;s=o;f[s>>2]=t;f[s+4>>2]=I;p=p+1|0}while(p>>>0>>0)}Cn(m);r=Rn(c|0,((c|0)<0)<<31>>31|0,5)|0;p=I;q=n+40|0;s=q;f[s>>2]=0;f[s+4>>2]=0;s=n;t=s+36|0;do{f[s>>2]=0;s=s+4|0}while((s|0)<(t|0));$c(n,l,32,g)|0;l=n+16|0;s=Rn(f[l>>2]|0,f[l+4>>2]|0,1)|0;l=g+4|0;t=(f[l>>2]|0)-(f[g>>2]|0)|0;o=q;f[o>>2]=t;f[o+4>>2]=0;o=Tn(s|0,I|0,39,0)|0;s=Wn(o|0,I|0,3)|0;o=Tn(s|0,I|0,8,0)|0;s=Tn(o|0,I|0,t|0,0)|0;vl(g,s,I);s=n+24|0;f[s>>2]=(f[g>>2]|0)+(f[q>>2]|0);q=n+28|0;f[q>>2]=0;t=n+32|0;f[t>>2]=16384;li(m,r,p,0)|0;p=c-d|0;if((p|0)>-1){c=(d|0)>0;r=m+16|0;o=m+12|0;v=p;do{w=f[e>>2]|0;x=f[w+(((v|0)/(d|0)|0)<<2)>>2]|0;y=f[n>>2]|0;z=f[y+(x<<3)>>2]|0;A=f[t>>2]|0;B=z<<10;if(A>>>0>>0){C=A;D=w}else{w=A;do{A=f[s>>2]|0;E=f[q>>2]|0;f[q>>2]=E+1;b[A+E>>0]=w;w=(f[t>>2]|0)>>>8;f[t>>2]=w}while(w>>>0>=B>>>0);C=w;D=f[e>>2]|0}f[t>>2]=(((C>>>0)/(z>>>0)|0)<<12)+((C>>>0)%(z>>>0)|0)+(f[y+(x<<3)+4>>2]|0);B=p-v|0;E=f[D+(((B|0)/(d|0)|0)<<2)>>2]|0;if(c&(E|0)>0){A=0;do{F=f[a+(A+B<<2)>>2]|0;G=r;H=f[G+4>>2]|0;if((H|0)>0|(H|0)==0&(f[G>>2]|0)>>>0>0){G=f[o>>2]|0;H=G+4|0;J=0;K=f[H>>2]|0;do{L=K>>>3;M=K&7;N=(f[G>>2]|0)+L|0;b[N>>0]=(1<>0]|0);N=(f[G>>2]|0)+L|0;b[N>>0]=(F>>>J&1)<>0]|0);K=(f[H>>2]|0)+1|0;f[H>>2]=K;J=J+1|0}while((J|0)!=(E|0))}A=A+1|0}while((A|0)!=(d|0))}v=v-d|0}while((v|0)>-1)}Lf(n,g);Qf(m);v=f[m>>2]|0;d=m+4|0;o=g+16|0;r=f[o+4>>2]|0;if(!((r|0)>0|(r|0)==0&(f[o>>2]|0)>>>0>0)){o=(f[d>>2]|0)-v|0;f[k>>2]=f[l>>2];f[j>>2]=f[k>>2];ye(g,j,v,v+o|0)|0}o=f[n>>2]|0;if(o|0){v=n+4|0;n=f[v>>2]|0;if((n|0)!=(o|0))f[v>>2]=n+(~((n+-8-o|0)>>>3)<<3);br(o)}o=m+12|0;n=f[o>>2]|0;f[o>>2]=0;if(n|0)br(n);n=f[m>>2]|0;if(!n){u=i;return 1}if((f[d>>2]|0)!=(n|0))f[d>>2]=n;br(n);u=i;return 1}function nd(a,b){a=a|0;b=b|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0;c=a+4|0;if(!b){e=f[a>>2]|0;f[a>>2]=0;if(e|0)br(e);f[c>>2]=0;return}if(b>>>0>1073741823){e=ra(8)|0;Wo(e,14941);f[e>>2]=6944;va(e|0,1080,114)}e=dn(b<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)br(g);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;g=f[c>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=b+-1|0;i=(h&b|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(b>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=c;c=f[g>>2]|0;if(!c)return;else{k=j;l=g;m=c;n=g}a:while(1){g=l;c=m;j=n;b:while(1){c:do if(i){e=c;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0)){p=e;break c}q=(f[a>>2]|0)+(o<<2)|0;if(!(f[q>>2]|0)){r=e;s=o;t=q;break b}q=e+8|0;u=e+12|0;v=f[e>>2]|0;d:do if(!v)w=e;else{x=d[q>>1]|0;y=q+2|0;z=e;A=v;while(1){B=A+8|0;if(x<<16>>16!=(d[B>>1]|0)){w=z;break d}if((d[y>>1]|0)!=(d[B+2>>1]|0)){w=z;break d}if((d[u>>1]|0)!=(d[A+12>>1]|0)){w=z;break d}B=f[A>>2]|0;if(!B){w=A;break}else{C=A;A=B;z=C}}}while(0);f[j>>2]=f[w>>2];f[w>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){D=41;break a}}}else{e=c;while(1){u=f[e+4>>2]|0;if(u>>>0>>0)E=u;else E=(u>>>0)%(b>>>0)|0;if((E|0)==(k|0)){p=e;break c}u=(f[a>>2]|0)+(E<<2)|0;if(!(f[u>>2]|0)){r=e;s=E;t=u;break b}u=e+8|0;v=e+12|0;q=f[e>>2]|0;e:do if(!q)F=e;else{z=d[u>>1]|0;A=u+2|0;y=e;x=q;while(1){C=x+8|0;if(z<<16>>16!=(d[C>>1]|0)){F=y;break e}if((d[A>>1]|0)!=(d[C+2>>1]|0)){F=y;break e}if((d[v>>1]|0)!=(d[x+12>>1]|0)){F=y;break e}C=f[x>>2]|0;if(!C){F=x;break}else{B=x;x=C;y=B}}}while(0);f[j>>2]=f[F>>2];f[F>>2]=f[f[(f[a>>2]|0)+(E<<2)>>2]>>2];f[f[(f[a>>2]|0)+(E<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){D=41;break a}}}while(0);c=f[p>>2]|0;if(!c){D=41;break a}else{g=p;j=p}}f[t>>2]=j;m=f[r>>2]|0;if(!m){D=41;break}else{k=s;l=r;n=r}}if((D|0)==41)return}function od(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0;d=a+4|0;if(!c){e=f[a>>2]|0;f[a>>2]=0;if(e|0)br(e);f[d>>2]=0;return}if(c>>>0>1073741823){e=ra(8)|0;Wo(e,14941);f[e>>2]=6944;va(e|0,1080,114)}e=dn(c<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)br(g);f[d>>2]=c;d=0;do{f[(f[a>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(c|0));d=a+8|0;g=f[d>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=c+-1|0;i=(h&c|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(c>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=d;d=f[g>>2]|0;if(!d)return;else{k=j;l=g;m=d;n=g}a:while(1){g=l;d=m;j=n;b:while(1){c:do if(i){e=d;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0)){p=e;break c}q=(f[a>>2]|0)+(o<<2)|0;if(!(f[q>>2]|0)){r=e;s=o;t=q;break b}q=e+8|0;u=q+1|0;v=q+2|0;w=f[e>>2]|0;d:do if(!w)x=e;else{y=b[q>>0]|0;z=e;A=w;while(1){B=A+8|0;if(y<<24>>24!=(b[B>>0]|0)){x=z;break d}if((b[u>>0]|0)!=(b[B+1>>0]|0)){x=z;break d}if((b[v>>0]|0)!=(b[B+2>>0]|0)){x=z;break d}B=f[A>>2]|0;if(!B){x=A;break}else{C=A;A=B;z=C}}}while(0);f[j>>2]=f[x>>2];f[x>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){D=41;break a}}}else{e=d;while(1){v=f[e+4>>2]|0;if(v>>>0>>0)E=v;else E=(v>>>0)%(c>>>0)|0;if((E|0)==(k|0)){p=e;break c}v=(f[a>>2]|0)+(E<<2)|0;if(!(f[v>>2]|0)){r=e;s=E;t=v;break b}v=e+8|0;u=v+1|0;w=v+2|0;q=f[e>>2]|0;e:do if(!q)F=e;else{z=b[v>>0]|0;A=e;y=q;while(1){C=y+8|0;if(z<<24>>24!=(b[C>>0]|0)){F=A;break e}if((b[u>>0]|0)!=(b[C+1>>0]|0)){F=A;break e}if((b[w>>0]|0)!=(b[C+2>>0]|0)){F=A;break e}C=f[y>>2]|0;if(!C){F=y;break}else{B=y;y=C;A=B}}}while(0);f[j>>2]=f[F>>2];f[F>>2]=f[f[(f[a>>2]|0)+(E<<2)>>2]>>2];f[f[(f[a>>2]|0)+(E<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){D=41;break a}}}while(0);d=f[p>>2]|0;if(!d){D=41;break a}else{g=p;j=p}}f[t>>2]=j;m=f[r>>2]|0;if(!m){D=41;break}else{k=s;l=r;n=r}}if((D|0)==41)return}function pd(a,b){a=+a;b=+b;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,q=0,r=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0.0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0.0;p[s>>3]=a;c=f[s>>2]|0;d=f[s+4>>2]|0;p[s>>3]=b;e=f[s>>2]|0;g=f[s+4>>2]|0;h=Wn(c|0,d|0,52)|0;i=h&2047;h=Wn(e|0,g|0,52)|0;j=h&2047;h=d&-2147483648;k=Rn(e|0,g|0,1)|0;l=I;a:do if(!((k|0)==0&(l|0)==0)?(m=xo(b)|0,n=I&2147483647,!((i|0)==2047|(n>>>0>2146435072|(n|0)==2146435072&m>>>0>0))):0){m=Rn(c|0,d|0,1)|0;n=I;if(!(n>>>0>l>>>0|(n|0)==(l|0)&m>>>0>k>>>0))return +((m|0)==(k|0)&(n|0)==(l|0)?a*0.0:a);if(!i){n=Rn(c|0,d|0,12)|0;m=I;if((m|0)>-1|(m|0)==-1&n>>>0>4294967295){o=0;q=n;n=m;while(1){m=o+-1|0;q=Rn(q|0,n|0,1)|0;n=I;if(!((n|0)>-1|(n|0)==-1&q>>>0>4294967295)){r=m;break}else o=m}}else r=0;o=Rn(c|0,d|0,1-r|0)|0;t=r;u=o;v=I}else{t=i;u=c;v=d&1048575|1048576}if(!j){o=Rn(e|0,g|0,12)|0;q=I;if((q|0)>-1|(q|0)==-1&o>>>0>4294967295){n=0;m=o;o=q;while(1){q=n+-1|0;m=Rn(m|0,o|0,1)|0;o=I;if(!((o|0)>-1|(o|0)==-1&m>>>0>4294967295)){w=q;break}else n=q}}else w=0;n=Rn(e|0,g|0,1-w|0)|0;x=w;y=n;z=I}else{x=j;y=e;z=g&1048575|1048576}n=Vn(u|0,v|0,y|0,z|0)|0;m=I;o=(m|0)>-1|(m|0)==-1&n>>>0>4294967295;b:do if((t|0)>(x|0)){q=t;A=m;B=o;C=u;D=v;E=n;while(1){if(B)if((E|0)==0&(A|0)==0)break;else{F=E;G=A}else{F=C;G=D}H=Rn(F|0,G|0,1)|0;J=I;K=q+-1|0;L=Vn(H|0,J|0,y|0,z|0)|0;M=I;N=(M|0)>-1|(M|0)==-1&L>>>0>4294967295;if((K|0)>(x|0)){q=K;A=M;B=N;C=H;D=J;E=L}else{O=K;P=N;Q=L;R=M;S=H;T=J;break b}}U=a*0.0;break a}else{O=t;P=o;Q=n;R=m;S=u;T=v}while(0);if(P)if((Q|0)==0&(R|0)==0){U=a*0.0;break}else{V=R;W=Q}else{V=T;W=S}if(V>>>0<1048576|(V|0)==1048576&W>>>0<0){m=O;n=W;o=V;while(1){E=Rn(n|0,o|0,1)|0;D=I;C=m+-1|0;if(D>>>0<1048576|(D|0)==1048576&E>>>0<0){m=C;n=E;o=D}else{X=C;Y=E;Z=D;break}}}else{X=O;Y=W;Z=V}if((X|0)>0){o=Tn(Y|0,Z|0,0,-1048576)|0;n=I;m=Rn(X|0,0,52)|0;_=n|I;$=o|m}else{m=Wn(Y|0,Z|0,1-X|0)|0;_=I;$=m}f[s>>2]=$;f[s+4>>2]=_|h;U=+p[s>>3]}else aa=3;while(0);if((aa|0)==3){ba=a*b;U=ba/ba}return +U}function qd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0;c=a+4|0;if(!b){d=f[a>>2]|0;f[a>>2]=0;if(d|0)br(d);f[c>>2]=0;return}if(b>>>0>1073741823){d=ra(8)|0;Wo(d,14941);f[d>>2]=6944;va(d|0,1080,114)}d=dn(b<<2)|0;e=f[a>>2]|0;f[a>>2]=d;if(e|0)br(e);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;e=f[c>>2]|0;if(!e)return;d=f[e+4>>2]|0;g=b+-1|0;h=(g&b|0)==0;if(!h)if(d>>>0>>0)i=d;else i=(d>>>0)%(b>>>0)|0;else i=d&g;f[(f[a>>2]|0)+(i<<2)>>2]=c;c=f[e>>2]|0;if(!c)return;else{j=i;k=e;l=c;m=e}a:while(1){e=k;c=l;i=m;b:while(1){c:do if(h){d=c;while(1){n=f[d+4>>2]&g;if((n|0)==(j|0)){o=d;break c}p=(f[a>>2]|0)+(n<<2)|0;if(!(f[p>>2]|0)){q=d;r=n;s=p;break b}p=d+12|0;t=d+16|0;u=f[d>>2]|0;d:do if(!u)v=d;else{w=f[d+8>>2]|0;x=d;y=u;while(1){if((w|0)!=(f[y+8>>2]|0)){v=x;break d}if((f[p>>2]|0)!=(f[y+12>>2]|0)){v=x;break d}if((f[t>>2]|0)!=(f[y+16>>2]|0)){v=x;break d}z=f[y>>2]|0;if(!z){v=y;break}else{A=y;y=z;x=A}}}while(0);f[i>>2]=f[v>>2];f[v>>2]=f[f[(f[a>>2]|0)+(n<<2)>>2]>>2];f[f[(f[a>>2]|0)+(n<<2)>>2]>>2]=d;d=f[e>>2]|0;if(!d){B=41;break a}}}else{d=c;while(1){t=f[d+4>>2]|0;if(t>>>0>>0)C=t;else C=(t>>>0)%(b>>>0)|0;if((C|0)==(j|0)){o=d;break c}t=(f[a>>2]|0)+(C<<2)|0;if(!(f[t>>2]|0)){q=d;r=C;s=t;break b}t=d+12|0;p=d+16|0;u=f[d>>2]|0;e:do if(!u)D=d;else{x=f[d+8>>2]|0;y=d;w=u;while(1){if((x|0)!=(f[w+8>>2]|0)){D=y;break e}if((f[t>>2]|0)!=(f[w+12>>2]|0)){D=y;break e}if((f[p>>2]|0)!=(f[w+16>>2]|0)){D=y;break e}A=f[w>>2]|0;if(!A){D=w;break}else{z=w;w=A;y=z}}}while(0);f[i>>2]=f[D>>2];f[D>>2]=f[f[(f[a>>2]|0)+(C<<2)>>2]>>2];f[f[(f[a>>2]|0)+(C<<2)>>2]>>2]=d;d=f[e>>2]|0;if(!d){B=41;break a}}}while(0);c=f[o>>2]|0;if(!c){B=41;break a}else{e=o;i=o}}f[s>>2]=i;l=f[q>>2]|0;if(!l){B=41;break}else{j=r;k=q;m=q}}if((B|0)==41)return}function rd(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;d=a+4|0;if(!c){e=f[a>>2]|0;f[a>>2]=0;if(e|0)br(e);f[d>>2]=0;return}if(c>>>0>1073741823){e=ra(8)|0;Wo(e,14941);f[e>>2]=6944;va(e|0,1080,114)}e=dn(c<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)br(g);f[d>>2]=c;d=0;do{f[(f[a>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(c|0));d=a+8|0;g=f[d>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=c+-1|0;i=(h&c|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(c>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=d;d=f[g>>2]|0;if(!d)return;else{k=j;l=g;m=d;n=g}a:while(1){g=l;d=m;j=n;b:while(1){o=d;while(1){e=f[o+4>>2]|0;if(!i)if(e>>>0>>0)p=e;else p=(e>>>0)%(c>>>0)|0;else p=e&h;if((p|0)==(k|0))break;q=(f[a>>2]|0)+(p<<2)|0;if(!(f[q>>2]|0))break b;e=f[o>>2]|0;c:do if(!e)r=o;else{s=o+8|0;t=b[s+11>>0]|0;u=t<<24>>24<0;v=t&255;t=u?f[o+12>>2]|0:v;w=(t|0)==0;if(u){u=o;x=e;while(1){y=x+8|0;z=b[y+11>>0]|0;A=z<<24>>24<0;if((t|0)!=((A?f[x+12>>2]|0:z&255)|0)){r=u;break c}if(!w?Pk(f[s>>2]|0,A?f[y>>2]|0:y,t)|0:0){r=u;break c}y=f[x>>2]|0;if(!y){r=x;break c}else{A=x;x=y;u=A}}}if(w){u=o;x=e;while(1){A=b[x+8+11>>0]|0;if((A<<24>>24<0?f[x+12>>2]|0:A&255)|0){r=u;break c}A=f[x>>2]|0;if(!A){r=x;break c}else{y=x;x=A;u=y}}}u=o;x=e;while(1){w=x+8|0;y=b[w+11>>0]|0;A=y<<24>>24<0;if((t|0)!=((A?f[x+12>>2]|0:y&255)|0)){r=u;break c}y=A?f[w>>2]|0:w;if((b[y>>0]|0)==(f[s>>2]&255)<<24>>24){B=s;C=v;D=y}else{r=u;break c}while(1){C=C+-1|0;B=B+1|0;if(!C)break;D=D+1|0;if((b[B>>0]|0)!=(b[D>>0]|0)){r=u;break c}}y=f[x>>2]|0;if(!y){r=x;break}else{w=x;x=y;u=w}}}while(0);f[j>>2]=f[r>>2];f[r>>2]=f[f[(f[a>>2]|0)+(p<<2)>>2]>>2];f[f[(f[a>>2]|0)+(p<<2)>>2]>>2]=o;e=f[g>>2]|0;if(!e){E=43;break a}else o=e}d=f[o>>2]|0;if(!d){E=43;break a}else{g=o;j=o}}f[q>>2]=j;m=f[o>>2]|0;if(!m){E=43;break}else{k=p;l=o;n=o}}if((E|0)==43)return}function sd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=u;u=u+48|0;d=c+8|0;e=c+4|0;g=c;h=a+44|0;Nh(f[h>>2]|0,b)|0;if(f[h>>2]|0){rn(d);lk(d);i=f[h>>2]|0;if((i|0)>0){h=a+40|0;j=i;do{i=j;j=j+-1|0;Vi(d,(f[(f[h>>2]|0)+(j>>>5<<2)>>2]&1<<(j&31)|0)!=0)}while((i|0)>1)}fd(d,b);tj(d)}j=a+56|0;Nh(f[j>>2]|0,b)|0;if(f[j>>2]|0){rn(d);lk(d);h=f[j>>2]|0;if((h|0)>1){j=a+52|0;i=h;do{h=i;i=i+-2|0;Vi(d,(f[(f[j>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)!=0);k=h+-1|0;Vi(d,(f[(f[j>>2]|0)+(k>>>5<<2)>>2]&1<<(k&31)|0)!=0)}while((h|0)>3)}fd(d,b);tj(d)}j=a+68|0;Nh(f[j>>2]|0,b)|0;if(f[j>>2]|0){rn(d);lk(d);i=f[j>>2]|0;if((i|0)>2){j=a+64|0;h=i;do{i=h;h=h+-3|0;Vi(d,(f[(f[j>>2]|0)+(h>>>5<<2)>>2]&1<<(h&31)|0)!=0);k=i+-2|0;Vi(d,(f[(f[j>>2]|0)+(k>>>5<<2)>>2]&1<<(k&31)|0)!=0);k=i+-1|0;Vi(d,(f[(f[j>>2]|0)+(k>>>5<<2)>>2]&1<<(k&31)|0)!=0)}while((i|0)>5)}fd(d,b);tj(d)}j=a+80|0;Nh(f[j>>2]|0,b)|0;if(f[j>>2]|0){rn(d);lk(d);h=f[j>>2]|0;if((h|0)>3){j=a+76|0;i=h;do{h=i;i=i+-4|0;Vi(d,(f[(f[j>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)!=0);k=h+-3|0;Vi(d,(f[(f[j>>2]|0)+(k>>>5<<2)>>2]&1<<(k&31)|0)!=0);k=h+-2|0;Vi(d,(f[(f[j>>2]|0)+(k>>>5<<2)>>2]&1<<(k&31)|0)!=0);k=h+-1|0;Vi(d,(f[(f[j>>2]|0)+(k>>>5<<2)>>2]&1<<(k&31)|0)!=0)}while((h|0)>7)}fd(d,b);tj(d)}f[g>>2]=f[a+12>>2];j=b+16|0;i=j;h=f[i>>2]|0;k=f[i+4>>2]|0;if((k|0)>0|(k|0)==0&h>>>0>0){l=k;m=h}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;h=j;l=f[h+4>>2]|0;m=f[h>>2]|0}f[g>>2]=f[a+20>>2];if((l|0)>0|(l|0)==0&m>>>0>0){u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;u=c;return 1}function td(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=u;u=u+48|0;d=c+8|0;e=c+4|0;g=c;h=a+64|0;Nh(f[h>>2]|0,b)|0;if(f[h>>2]|0){rn(d);lk(d);i=f[h>>2]|0;if((i|0)>0){h=a+60|0;j=i;do{i=j;j=j+-1|0;Vi(d,(f[(f[h>>2]|0)+(j>>>5<<2)>>2]&1<<(j&31)|0)!=0)}while((i|0)>1)}fd(d,b);tj(d)}j=a+76|0;Nh(f[j>>2]|0,b)|0;if(f[j>>2]|0){rn(d);lk(d);h=f[j>>2]|0;if((h|0)>1){j=a+72|0;i=h;do{h=i;i=i+-2|0;Vi(d,(f[(f[j>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)!=0);k=h+-1|0;Vi(d,(f[(f[j>>2]|0)+(k>>>5<<2)>>2]&1<<(k&31)|0)!=0)}while((h|0)>3)}fd(d,b);tj(d)}j=a+88|0;Nh(f[j>>2]|0,b)|0;if(f[j>>2]|0){rn(d);lk(d);i=f[j>>2]|0;if((i|0)>2){j=a+84|0;h=i;do{i=h;h=h+-3|0;Vi(d,(f[(f[j>>2]|0)+(h>>>5<<2)>>2]&1<<(h&31)|0)!=0);k=i+-2|0;Vi(d,(f[(f[j>>2]|0)+(k>>>5<<2)>>2]&1<<(k&31)|0)!=0);k=i+-1|0;Vi(d,(f[(f[j>>2]|0)+(k>>>5<<2)>>2]&1<<(k&31)|0)!=0)}while((i|0)>5)}fd(d,b);tj(d)}j=a+100|0;Nh(f[j>>2]|0,b)|0;if(f[j>>2]|0){rn(d);lk(d);h=f[j>>2]|0;if((h|0)>3){j=a+96|0;i=h;do{h=i;i=i+-4|0;Vi(d,(f[(f[j>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)!=0);k=h+-3|0;Vi(d,(f[(f[j>>2]|0)+(k>>>5<<2)>>2]&1<<(k&31)|0)!=0);k=h+-2|0;Vi(d,(f[(f[j>>2]|0)+(k>>>5<<2)>>2]&1<<(k&31)|0)!=0);k=h+-1|0;Vi(d,(f[(f[j>>2]|0)+(k>>>5<<2)>>2]&1<<(k&31)|0)!=0)}while((h|0)>7)}fd(d,b);tj(d)}f[g>>2]=f[a+12>>2];j=b+16|0;i=j;h=f[i>>2]|0;k=f[i+4>>2]|0;if((k|0)>0|(k|0)==0&h>>>0>0){l=k;m=h}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;h=j;l=f[h+4>>2]|0;m=f[h>>2]|0}f[g>>2]=f[a+16>>2];if((l|0)>0|(l|0)==0&m>>>0>0){u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;u=c;return 1}function ud(a,b){a=a|0;b=b|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;c=a+4|0;if(!b){e=f[a>>2]|0;f[a>>2]=0;if(e|0)br(e);f[c>>2]=0;return}if(b>>>0>1073741823){e=ra(8)|0;Wo(e,14941);f[e>>2]=6944;va(e|0,1080,114)}e=dn(b<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)br(g);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;g=f[c>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=b+-1|0;i=(h&b|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(b>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=c;c=f[g>>2]|0;if(!c)return;else{k=j;l=g;m=c;n=g}a:while(1){g=l;c=m;j=n;b:while(1){c:do if(i){e=c;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0)){p=e;break c}q=(f[a>>2]|0)+(o<<2)|0;if(!(f[q>>2]|0)){r=e;s=o;t=q;break b}q=e+8|0;u=f[e>>2]|0;d:do if(!u)v=e;else{w=d[q>>1]|0;x=q+2|0;y=e;z=u;while(1){A=z+8|0;if(w<<16>>16!=(d[A>>1]|0)){v=y;break d}if((d[x>>1]|0)!=(d[A+2>>1]|0)){v=y;break d}A=f[z>>2]|0;if(!A){v=z;break}else{B=z;z=A;y=B}}}while(0);f[j>>2]=f[v>>2];f[v>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){C=39;break a}}}else{e=c;while(1){u=f[e+4>>2]|0;if(u>>>0>>0)D=u;else D=(u>>>0)%(b>>>0)|0;if((D|0)==(k|0)){p=e;break c}u=(f[a>>2]|0)+(D<<2)|0;if(!(f[u>>2]|0)){r=e;s=D;t=u;break b}u=e+8|0;q=f[e>>2]|0;e:do if(!q)E=e;else{y=d[u>>1]|0;z=u+2|0;x=e;w=q;while(1){B=w+8|0;if(y<<16>>16!=(d[B>>1]|0)){E=x;break e}if((d[z>>1]|0)!=(d[B+2>>1]|0)){E=x;break e}B=f[w>>2]|0;if(!B){E=w;break}else{A=w;w=B;x=A}}}while(0);f[j>>2]=f[E>>2];f[E>>2]=f[f[(f[a>>2]|0)+(D<<2)>>2]>>2];f[f[(f[a>>2]|0)+(D<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){C=39;break a}}}while(0);c=f[p>>2]|0;if(!c){C=39;break a}else{g=p;j=p}}f[t>>2]=j;m=f[r>>2]|0;if(!m){C=39;break}else{k=s;l=r;n=r}}if((C|0)==39)return}function vd(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;d=a+4|0;if(!c){e=f[a>>2]|0;f[a>>2]=0;if(e|0)br(e);f[d>>2]=0;return}if(c>>>0>1073741823){e=ra(8)|0;Wo(e,14941);f[e>>2]=6944;va(e|0,1080,114)}e=dn(c<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)br(g);f[d>>2]=c;d=0;do{f[(f[a>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(c|0));d=a+8|0;g=f[d>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=c+-1|0;i=(h&c|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(c>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=d;d=f[g>>2]|0;if(!d)return;else{k=j;l=g;m=d;n=g}a:while(1){g=l;d=m;j=n;b:while(1){c:do if(i){e=d;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0)){p=e;break c}q=(f[a>>2]|0)+(o<<2)|0;if(!(f[q>>2]|0)){r=e;s=o;t=q;break b}q=e+8|0;u=f[e>>2]|0;d:do if(!u)v=e;else{w=b[q>>0]|0;x=q+1|0;y=e;z=u;while(1){A=z+8|0;if(w<<24>>24!=(b[A>>0]|0)){v=y;break d}if((b[x>>0]|0)!=(b[A+1>>0]|0)){v=y;break d}A=f[z>>2]|0;if(!A){v=z;break}else{B=z;z=A;y=B}}}while(0);f[j>>2]=f[v>>2];f[v>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){C=39;break a}}}else{e=d;while(1){u=f[e+4>>2]|0;if(u>>>0>>0)D=u;else D=(u>>>0)%(c>>>0)|0;if((D|0)==(k|0)){p=e;break c}u=(f[a>>2]|0)+(D<<2)|0;if(!(f[u>>2]|0)){r=e;s=D;t=u;break b}u=e+8|0;q=f[e>>2]|0;e:do if(!q)E=e;else{y=b[u>>0]|0;z=u+1|0;x=e;w=q;while(1){B=w+8|0;if(y<<24>>24!=(b[B>>0]|0)){E=x;break e}if((b[z>>0]|0)!=(b[B+1>>0]|0)){E=x;break e}B=f[w>>2]|0;if(!B){E=w;break}else{A=w;w=B;x=A}}}while(0);f[j>>2]=f[E>>2];f[E>>2]=f[f[(f[a>>2]|0)+(D<<2)>>2]>>2];f[f[(f[a>>2]|0)+(D<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){C=39;break a}}}while(0);d=f[p>>2]|0;if(!d){C=39;break a}else{g=p;j=p}}f[t>>2]=j;m=f[r>>2]|0;if(!m){C=39;break}else{k=s;l=r;n=r}}if((C|0)==39)return}function wd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;c=u;u=u+48|0;d=c+32|0;e=c+28|0;g=c+16|0;h=c;i=a+16|0;j=f[i>>2]|0;if(j|0){k=f[b>>2]|0;l=i;m=j;a:while(1){j=m;while(1){if((f[j+16>>2]|0)>=(k|0))break;n=f[j+4>>2]|0;if(!n){o=l;break a}else j=n}m=f[j>>2]|0;if(!m){o=j;break}else l=j}if((o|0)!=(i|0)?(k|0)>=(f[o+16>>2]|0):0){p=o;q=p+20|0;u=c;return q|0}}wp(g);f[h>>2]=f[b>>2];b=h+4|0;f[h+8>>2]=0;o=h+12|0;f[o>>2]=0;k=h+8|0;f[b>>2]=k;l=f[g>>2]|0;m=g+4|0;if((l|0)!=(m|0)){n=k;r=l;while(1){l=r+16|0;f[e>>2]=n;f[d>>2]=f[e>>2];Wg(b,d,l,l)|0;l=f[r+4>>2]|0;if(!l){s=r+8|0;t=f[s>>2]|0;if((f[t>>2]|0)==(r|0))v=t;else{t=s;do{s=f[t>>2]|0;t=s+8|0;w=f[t>>2]|0}while((f[w>>2]|0)!=(s|0));v=w}}else{t=l;while(1){j=f[t>>2]|0;if(!j)break;else t=j}v=t}if((v|0)==(m|0))break;else r=v}}v=a+12|0;r=f[i>>2]|0;do if(r){d=f[h>>2]|0;e=a+16|0;n=r;while(1){l=f[n+16>>2]|0;if((d|0)<(l|0)){j=f[n>>2]|0;if(!j){x=23;break}else{y=n;z=j}}else{if((l|0)>=(d|0)){x=27;break}A=n+4|0;l=f[A>>2]|0;if(!l){x=26;break}else{y=A;z=l}}e=y;n=z}if((x|0)==23){B=n;C=n;break}else if((x|0)==26){B=n;C=A;break}else if((x|0)==27){B=n;C=e;break}}else{B=i;C=i}while(0);i=f[C>>2]|0;if(!i){x=dn(32)|0;f[x+16>>2]=f[h>>2];A=x+20|0;f[A>>2]=f[b>>2];z=x+24|0;y=f[h+8>>2]|0;f[z>>2]=y;r=f[o>>2]|0;f[x+28>>2]=r;if(!r)f[A>>2]=z;else{f[y+8>>2]=z;f[b>>2]=k;f[k>>2]=0;f[o>>2]=0}f[x>>2]=0;f[x+4>>2]=0;f[x+8>>2]=B;f[C>>2]=x;B=f[f[v>>2]>>2]|0;if(!B)D=x;else{f[v>>2]=B;D=f[C>>2]|0}Ae(f[a+16>>2]|0,D);D=a+20|0;f[D>>2]=(f[D>>2]|0)+1;E=x}else E=i;sj(h+4|0,f[k>>2]|0);sj(g,f[m>>2]|0);p=E;q=p+20|0;u=c;return q|0}function xd(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0;d=b[c+11>>0]|0;e=d<<24>>24<0;g=e?f[c>>2]|0:c;i=e?f[c+4>>2]|0:d&255;if(i>>>0>3){d=g;c=i;e=i;while(1){j=X(h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24,1540483477)|0;c=(X(j>>>24^j,1540483477)|0)^(X(c,1540483477)|0);e=e+-4|0;if(e>>>0<=3)break;else d=d+4|0}d=i+-4|0;e=d&-4;k=d-e|0;l=g+(e+4)|0;m=c}else{k=i;l=g;m=i}switch(k|0){case 3:{n=h[l+2>>0]<<16^m;o=6;break}case 2:{n=m;o=6;break}case 1:{p=m;o=7;break}default:q=m}if((o|0)==6){p=h[l+1>>0]<<8^n;o=7}if((o|0)==7)q=X(p^h[l>>0],1540483477)|0;l=X(q>>>13^q,1540483477)|0;q=l>>>15^l;l=f[a+4>>2]|0;if(!l){r=0;return r|0}p=l+-1|0;n=(p&l|0)==0;if(!n)if(q>>>0>>0)s=q;else s=(q>>>0)%(l>>>0)|0;else s=q&p;m=f[(f[a>>2]|0)+(s<<2)>>2]|0;if(!m){r=0;return r|0}a=f[m>>2]|0;if(!a){r=0;return r|0}m=(i|0)==0;if(n){n=a;a:while(1){k=f[n+4>>2]|0;c=(k|0)==(q|0);if(!(c|(k&p|0)==(s|0))){r=0;o=40;break}do if(c?(k=n+8|0,e=b[k+11>>0]|0,d=e<<24>>24<0,j=e&255,((d?f[n+12>>2]|0:j)|0)==(i|0)):0){e=f[k>>2]|0;t=d?e:k;if(d){if(m){r=n;o=40;break a}if(!(Pk(t,g,i)|0)){r=n;o=40;break a}else break}if(m){r=n;o=40;break a}if((b[g>>0]|0)==(e&255)<<24>>24){e=k;k=j;j=g;do{k=k+-1|0;e=e+1|0;if(!k){r=n;o=40;break a}j=j+1|0}while((b[e>>0]|0)==(b[j>>0]|0))}}while(0);n=f[n>>2]|0;if(!n){r=0;o=40;break}}if((o|0)==40)return r|0}else u=a;b:while(1){a=f[u+4>>2]|0;do if((a|0)==(q|0)){n=u+8|0;p=b[n+11>>0]|0;c=p<<24>>24<0;j=p&255;if(((c?f[u+12>>2]|0:j)|0)==(i|0)){p=f[n>>2]|0;e=c?p:n;if(c){if(m){r=u;o=40;break b}if(!(Pk(e,g,i)|0)){r=u;o=40;break b}else break}if(m){r=u;o=40;break b}if((b[g>>0]|0)==(p&255)<<24>>24){p=n;n=j;j=g;do{n=n+-1|0;p=p+1|0;if(!n){r=u;o=40;break b}j=j+1|0}while((b[p>>0]|0)==(b[j>>0]|0))}}}else{if(a>>>0>>0)v=a;else v=(a>>>0)%(l>>>0)|0;if((v|0)!=(s|0)){r=0;o=40;break b}}while(0);u=f[u>>2]|0;if(!u){r=0;o=40;break}}if((o|0)==40)return r|0;return 0}function yd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0;c=a+4|0;if(!b){d=f[a>>2]|0;f[a>>2]=0;if(d|0)br(d);f[c>>2]=0;return}if(b>>>0>1073741823){d=ra(8)|0;Wo(d,14941);f[d>>2]=6944;va(d|0,1080,114)}d=dn(b<<2)|0;e=f[a>>2]|0;f[a>>2]=d;if(e|0)br(e);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;e=f[c>>2]|0;if(!e)return;d=f[e+4>>2]|0;g=b+-1|0;h=(g&b|0)==0;if(!h)if(d>>>0>>0)i=d;else i=(d>>>0)%(b>>>0)|0;else i=d&g;f[(f[a>>2]|0)+(i<<2)>>2]=c;c=f[e>>2]|0;if(!c)return;else{j=i;k=e;l=c;m=e}a:while(1){e=k;c=l;i=m;b:while(1){c:do if(h){d=c;while(1){n=f[d+4>>2]&g;if((n|0)==(j|0)){o=d;break c}p=(f[a>>2]|0)+(n<<2)|0;if(!(f[p>>2]|0)){q=d;r=n;s=p;break b}p=d+12|0;t=f[d>>2]|0;d:do if(!t)u=d;else{v=f[d+8>>2]|0;w=d;x=t;while(1){if((v|0)!=(f[x+8>>2]|0)){u=w;break d}if((f[p>>2]|0)!=(f[x+12>>2]|0)){u=w;break d}y=f[x>>2]|0;if(!y){u=x;break}else{z=x;x=y;w=z}}}while(0);f[i>>2]=f[u>>2];f[u>>2]=f[f[(f[a>>2]|0)+(n<<2)>>2]>>2];f[f[(f[a>>2]|0)+(n<<2)>>2]>>2]=d;d=f[e>>2]|0;if(!d){A=39;break a}}}else{d=c;while(1){p=f[d+4>>2]|0;if(p>>>0>>0)B=p;else B=(p>>>0)%(b>>>0)|0;if((B|0)==(j|0)){o=d;break c}p=(f[a>>2]|0)+(B<<2)|0;if(!(f[p>>2]|0)){q=d;r=B;s=p;break b}p=d+12|0;t=f[d>>2]|0;e:do if(!t)C=d;else{w=f[d+8>>2]|0;x=d;v=t;while(1){if((w|0)!=(f[v+8>>2]|0)){C=x;break e}if((f[p>>2]|0)!=(f[v+12>>2]|0)){C=x;break e}z=f[v>>2]|0;if(!z){C=v;break}else{y=v;v=z;x=y}}}while(0);f[i>>2]=f[C>>2];f[C>>2]=f[f[(f[a>>2]|0)+(B<<2)>>2]>>2];f[f[(f[a>>2]|0)+(B<<2)>>2]>>2]=d;d=f[e>>2]|0;if(!d){A=39;break a}}}while(0);c=f[o>>2]|0;if(!c){A=39;break a}else{e=o;i=o}}f[s>>2]=i;l=f[q>>2]|0;if(!l){A=39;break}else{j=r;k=q;m=q}}if((A|0)==39)return}function zd(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0;h=a+4|0;i=f[c>>2]|0;c=i;do if((i|0)!=(h|0)){j=i+16|0;k=b[j+11>>0]|0;l=k<<24>>24<0;m=l?f[i+20>>2]|0:k&255;k=b[g+11>>0]|0;n=k<<24>>24<0;o=n?f[g+4>>2]|0:k&255;k=m>>>0>>0;p=k?m:o;if((p|0)!=0?(q=Pk(n?f[g>>2]|0:g,l?f[j>>2]|0:j,p)|0,(q|0)!=0):0){if((q|0)<0)break}else r=4;if((r|0)==4?o>>>0>>0:0)break;q=o>>>0>>0?o:m;if((q|0)!=0?(m=Pk(l?f[j>>2]|0:j,n?f[g>>2]|0:g,q)|0,(m|0)!=0):0){if((m|0)>=0)r=37}else r=21;if((r|0)==21?!k:0)r=37;if((r|0)==37){f[d>>2]=c;f[e>>2]=c;s=e;return s|0}k=f[i+4>>2]|0;m=(k|0)==0;if(m){q=i+8|0;j=f[q>>2]|0;if((f[j>>2]|0)==(i|0))t=j;else{j=q;do{q=f[j>>2]|0;j=q+8|0;l=f[j>>2]|0}while((f[l>>2]|0)!=(q|0));t=l}}else{j=k;while(1){l=f[j>>2]|0;if(!l)break;else j=l}t=j}do if((t|0)!=(h|0)){k=t+16|0;l=b[k+11>>0]|0;q=l<<24>>24<0;p=q?f[t+20>>2]|0:l&255;l=p>>>0>>0?p:o;if((l|0)!=0?(u=Pk(n?f[g>>2]|0:g,q?f[k>>2]|0:k,l)|0,(u|0)!=0):0){if((u|0)<0)break}else r=31;if((r|0)==31?o>>>0

>>0:0)break;s=hg(a,d,g)|0;return s|0}while(0);if(m){f[d>>2]=c;s=i+4|0;return s|0}else{f[d>>2]=t;s=t;return s|0}}while(0);t=f[i>>2]|0;do if((f[a>>2]|0)==(i|0))v=c;else{if(!t){h=i;while(1){e=f[h+8>>2]|0;if((f[e>>2]|0)==(h|0))h=e;else{w=e;break}}}else{h=t;while(1){m=f[h+4>>2]|0;if(!m){w=h;break}else h=m}}h=w;m=w+16|0;e=b[g+11>>0]|0;o=e<<24>>24<0;n=o?f[g+4>>2]|0:e&255;e=b[m+11>>0]|0;j=e<<24>>24<0;p=j?f[w+20>>2]|0:e&255;e=n>>>0

>>0?n:p;if((e|0)!=0?(u=Pk(j?f[m>>2]|0:m,o?f[g>>2]|0:g,e)|0,(u|0)!=0):0){if((u|0)<0){v=h;break}}else r=13;if((r|0)==13?p>>>0>>0:0){v=h;break}s=hg(a,d,g)|0;return s|0}while(0);if(!t){f[d>>2]=i;s=i;return s|0}else{f[d>>2]=v;s=v+4|0;return s|0}return 0}function Ad(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;g=u;u=u+16|0;h=g;f[c+48>>2]=d;f[c+44>>2]=e;e=f[c+8>>2]|0;i=c+12|0;j=f[i>>2]|0;if((j|0)!=(e|0)){k=j;do{j=k+-4|0;f[i>>2]=j;l=f[j>>2]|0;f[j>>2]=0;if(l|0)Va[f[(f[l>>2]|0)+4>>2]&127](l);k=f[i>>2]|0}while((k|0)!=(e|0))}e=f[c+20>>2]|0;k=c+24|0;i=f[k>>2]|0;if((i|0)!=(e|0))f[k>>2]=i+(~((i+-4-e|0)>>>2)<<2);e=f[c+32>>2]|0;i=c+36|0;k=f[i>>2]|0;if((k|0)!=(e|0))f[i>>2]=k+(~((k+-4-e|0)>>>2)<<2);if(!(f[c+4>>2]|0)){e=dn(32)|0;f[h>>2]=e;f[h+8>>2]=-2147483616;f[h+4>>2]=23;m=e;n=14670;o=m+23|0;do{b[m>>0]=b[n>>0]|0;m=m+1|0;n=n+1|0}while((m|0)<(o|0));b[e+23>>0]=0;f[a>>2]=-1;dj(a+4|0,h);if((b[h+11>>0]|0)<0)br(f[h>>2]|0);u=g;return}Jd(a,c);if(f[a>>2]|0){u=g;return}e=a+4|0;k=e+11|0;if((b[k>>0]|0)<0)br(f[e>>2]|0);Ji(a,c);if(f[a>>2]|0){u=g;return}if((b[k>>0]|0)<0)br(f[e>>2]|0);if(!(Qa[f[(f[c>>2]|0)+16>>2]&127](c)|0)){i=dn(32)|0;f[h>>2]=i;f[h+8>>2]=-2147483616;f[h+4>>2]=29;m=i;n=14694;o=m+29|0;do{b[m>>0]=b[n>>0]|0;m=m+1|0;n=n+1|0}while((m|0)<(o|0));b[i+29>>0]=0;f[a>>2]=-1;dj(e,h);if((b[h+11>>0]|0)<0)br(f[h>>2]|0);u=g;return}if(!(Qa[f[(f[c>>2]|0)+20>>2]&127](c)|0)){i=dn(32)|0;f[h>>2]=i;f[h+8>>2]=-2147483616;f[h+4>>2]=31;m=i;n=14724;o=m+31|0;do{b[m>>0]=b[n>>0]|0;m=m+1|0;n=n+1|0}while((m|0)<(o|0));b[i+31>>0]=0;f[a>>2]=-1;dj(e,h);if((b[h+11>>0]|0)<0)br(f[h>>2]|0);u=g;return}Wa[f[(f[c>>2]|0)+24>>2]&15](a,c);if(f[a>>2]|0){u=g;return}if((b[k>>0]|0)<0)br(f[e>>2]|0);if(!(Qa[f[(f[c>>2]|0)+28>>2]&127](c)|0)){k=dn(48)|0;f[h>>2]=k;f[h+8>>2]=-2147483600;f[h+4>>2]=34;m=k;n=14756;o=m+34|0;do{b[m>>0]=b[n>>0]|0;m=m+1|0;n=n+1|0}while((m|0)<(o|0));b[k+34>>0]=0;f[a>>2]=-1;dj(e,h);if((b[h+11>>0]|0)<0)br(f[h>>2]|0);u=g;return}e=dn(32)|0;f[h>>2]=e;f[h+8>>2]=-2147483616;f[h+4>>2]=30;m=e;n=14791;o=m+30|0;do{b[m>>0]=b[n>>0]|0;m=m+1|0;n=n+1|0}while((m|0)<(o|0));b[e+30>>0]=0;e=Oj(d,h,0)|0;if((b[h+11>>0]|0)<0)br(f[h>>2]|0);if(e)Va[f[(f[c>>2]|0)+48>>2]&127](c);f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=g;return}function Bd(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0;g=a;h=b;i=h;j=c;k=d;l=k;if(!i){m=(e|0)!=0;if(!l){if(m){f[e>>2]=(g>>>0)%(j>>>0);f[e+4>>2]=0}n=0;o=(g>>>0)/(j>>>0)>>>0;return (I=n,o)|0}else{if(!m){n=0;o=0;return (I=n,o)|0}f[e>>2]=a|0;f[e+4>>2]=b&0;n=0;o=0;return (I=n,o)|0}}m=(l|0)==0;do if(j){if(!m){p=(_(l|0)|0)-(_(i|0)|0)|0;if(p>>>0<=31){q=p+1|0;r=31-p|0;s=p-31>>31;t=q;u=g>>>(q>>>0)&s|i<>>(q>>>0)&s;w=0;x=g<>2]=a|0;f[e+4>>2]=h|b&0;n=0;o=0;return (I=n,o)|0}r=j-1|0;if(r&j|0){s=(_(j|0)|0)+33-(_(i|0)|0)|0;q=64-s|0;p=32-s|0;y=p>>31;z=s-32|0;A=z>>31;t=s;u=p-1>>31&i>>>(z>>>0)|(i<>>(s>>>0))&A;v=A&i>>>(s>>>0);w=g<>>(z>>>0))&y|g<>31;break}if(e|0){f[e>>2]=r&g;f[e+4>>2]=0}if((j|0)==1){n=h|b&0;o=a|0|0;return (I=n,o)|0}else{r=im(j|0)|0;n=i>>>(r>>>0)|0;o=i<<32-r|g>>>(r>>>0)|0;return (I=n,o)|0}}else{if(m){if(e|0){f[e>>2]=(i>>>0)%(j>>>0);f[e+4>>2]=0}n=0;o=(i>>>0)/(j>>>0)>>>0;return (I=n,o)|0}if(!g){if(e|0){f[e>>2]=0;f[e+4>>2]=(i>>>0)%(l>>>0)}n=0;o=(i>>>0)/(l>>>0)>>>0;return (I=n,o)|0}r=l-1|0;if(!(r&l)){if(e|0){f[e>>2]=a|0;f[e+4>>2]=r&i|b&0}n=0;o=i>>>((im(l|0)|0)>>>0);return (I=n,o)|0}r=(_(l|0)|0)-(_(i|0)|0)|0;if(r>>>0<=30){s=r+1|0;p=31-r|0;t=s;u=i<>>(s>>>0);v=i>>>(s>>>0);w=0;x=g<>2]=a|0;f[e+4>>2]=h|b&0;n=0;o=0;return (I=n,o)|0}while(0);if(!t){B=x;C=w;D=v;E=u;F=0;G=0}else{b=c|0|0;c=k|d&0;d=Tn(b|0,c|0,-1,-1)|0;k=I;h=x;x=w;w=v;v=u;u=t;t=0;do{a=h;h=x>>>31|h<<1;x=t|x<<1;g=v<<1|a>>>31|0;a=v>>>31|w<<1|0;Vn(d|0,k|0,g|0,a|0)|0;i=I;l=i>>31|((i|0)<0?-1:0)<<1;t=l&1;v=Vn(g|0,a|0,l&b|0,(((i|0)<0?-1:0)>>31|((i|0)<0?-1:0)<<1)&c|0)|0;w=I;u=u-1|0}while((u|0)!=0);B=h;C=x;D=w;E=v;F=0;G=t}t=C;C=0;if(e|0){f[e>>2]=E;f[e+4>>2]=D}n=(t|0)>>>31|(B|C)<<1|(C<<1|t>>>31)&0|F;o=(t<<1|0>>>31)&-2|G;return (I=n,o)|0}function Cd(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;c=u;u=u+32|0;d=c+4|0;e=c;g=c+16|0;h=a+48|0;i=f[h>>2]|0;j=dn(32)|0;f[d>>2]=j;f[d+8>>2]=-2147483616;f[d+4>>2]=20;k=j;l=13101;m=k+20|0;do{b[k>>0]=b[l>>0]|0;k=k+1|0;l=l+1|0}while((k|0)<(m|0));b[j+20>>0]=0;j=vk(i+24|0,d)|0;if((b[d+11>>0]|0)<0)br(f[d>>2]|0);i=f[h>>2]|0;n=dn(32)|0;f[d>>2]=n;f[d+8>>2]=-2147483616;f[d+4>>2]=22;k=n;l=13122;m=k+22|0;do{b[k>>0]=b[l>>0]|0;k=k+1|0;l=l+1|0}while((k|0)<(m|0));b[n+22>>0]=0;n=vk(i+24|0,d)|0;if((b[d+11>>0]|0)<0)br(f[d>>2]|0);i=a+64|0;o=f[i>>2]|0;f[i>>2]=0;if(o|0)Va[f[(f[o>>2]|0)+4>>2]&127](o);o=f[a+56>>2]|0;p=(((f[o+100>>2]|0)-(f[o+96>>2]|0)|0)/12|0)>>>0<1e3;o=f[h>>2]|0;q=dn(32)|0;f[d>>2]=q;f[d+8>>2]=-2147483616;f[d+4>>2]=18;k=q;l=13145;m=k+18|0;do{b[k>>0]=b[l>>0]|0;k=k+1|0;l=l+1|0}while((k|0)<(m|0));b[q+18>>0]=0;q=yk(o,d,-1)|0;if((b[d+11>>0]|0)<0)br(f[d>>2]|0);switch(q|0){case -1:{if(j?p|((Yh(f[h>>2]|0)|0)>4|n^1):0)r=13;else r=17;break}case 0:{if(j)r=13;else r=21;break}case 2:{r=17;break}default:r=21}if((r|0)==13){j=f[a+44>>2]|0;b[g>>0]=0;n=j+16|0;h=f[n+4>>2]|0;if(!((h|0)>0|(h|0)==0&(f[n>>2]|0)>>>0>0)){f[e>>2]=f[j+4>>2];f[d>>2]=f[e>>2];ye(j,d,g,g+1|0)|0}j=dn(296)|0;Ni(j);n=f[i>>2]|0;f[i>>2]=j;if(!n)s=j;else{Va[f[(f[n>>2]|0)+4>>2]&127](n);r=21}}else if((r|0)==17){n=f[a+44>>2]|0;b[g>>0]=2;j=n+16|0;h=f[j+4>>2]|0;if(!((h|0)>0|(h|0)==0&(f[j>>2]|0)>>>0>0)){f[e>>2]=f[n+4>>2];f[d>>2]=f[e>>2];ye(n,d,g,g+1|0)|0}g=dn(360)|0;ji(g);d=f[i>>2]|0;f[i>>2]=g;if(!d)s=g;else{Va[f[(f[d>>2]|0)+4>>2]&127](d);r=21}}if((r|0)==21){r=f[i>>2]|0;if(!r){t=0;u=c;return t|0}else s=r}t=Ra[f[(f[s>>2]|0)+8>>2]&127](s,a)|0;u=c;return t|0}function Dd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0;e=b+12|0;g=f[e>>2]|0;h=c+4|0;i=(f[h>>2]|0)-g|0;j=c;f[j>>2]=(f[c>>2]|0)-g;f[j+4>>2]=i;i=(f[d>>2]|0)-g|0;j=d+4|0;k=(f[j>>2]|0)-g|0;g=d;f[g>>2]=i;f[g+4>>2]=k;g=f[e>>2]|0;if((((k|0)>-1?k:0-k|0)+((i|0)>-1?i:0-i|0)|0)>(g|0)){l=f[c>>2]|0;m=f[h>>2]|0;if((l|0)>-1)if((m|0)<=-1)if((l|0)<1){n=-1;o=-1}else p=6;else{n=1;o=1}else if((m|0)<1){n=-1;o=-1}else p=6;if((p|0)==6){n=(l|0)>0?1:-1;o=(m|0)>0?1:-1}q=X(g,n)|0;r=X(g,o)|0;g=(l<<1)-q|0;f[c>>2]=g;l=(m<<1)-r|0;f[h>>2]=l;if((X(n,o)|0)>-1){o=0-l|0;f[c>>2]=o;s=0-g|0;t=o}else{f[c>>2]=l;s=g;t=l}f[c>>2]=(t+q|0)/2|0;f[h>>2]=(s+r|0)/2|0;r=f[d>>2]|0;s=f[j>>2]|0;if((r|0)>-1)if((s|0)<=-1)if((r|0)<1){u=-1;v=-1}else p=14;else{u=1;v=1}else if((s|0)<1){u=-1;v=-1}else p=14;if((p|0)==14){u=(r|0)>0?1:-1;v=(s|0)>0?1:-1}q=f[e>>2]|0;e=X(q,u)|0;t=X(q,v)|0;q=(r<<1)-e|0;f[d>>2]=q;r=(s<<1)-t|0;f[j>>2]=r;if((X(u,v)|0)>-1){v=0-r|0;f[d>>2]=v;w=0-q|0;x=v}else{f[d>>2]=r;w=q;x=r}r=(x+e|0)/2|0;f[d>>2]=r;e=(w+t|0)/2|0;f[j>>2]=e;y=r;z=e}else{y=i;z=k}if(!y)if(!z){A=y;B=z}else p=22;else if((y|0)<0&(z|0)<1){A=y;B=z}else p=22;if((p|0)==22){if(!y)C=(z|0)==0?0:(z|0)>0?3:1;else C=(y|0)>0?(z>>31)+2|0:(z|0)<1?0:3;z=f[c>>2]|0;y=f[h>>2]|0;switch(C|0){case 1:{C=c;f[C>>2]=y;f[C+4>>2]=0-z;D=f[j>>2]|0;E=0-(f[d>>2]|0)|0;break}case 2:{C=c;f[C>>2]=0-z;f[C+4>>2]=0-y;D=0-(f[d>>2]|0)|0;E=0-(f[j>>2]|0)|0;break}case 3:{C=c;f[C>>2]=0-y;f[C+4>>2]=z;D=0-(f[j>>2]|0)|0;E=f[d>>2]|0;break}default:{C=c;f[C>>2]=z;f[C+4>>2]=y;D=f[d>>2]|0;E=f[j>>2]|0}}j=d;f[j>>2]=D;f[j+4>>2]=E;A=D;B=E}E=(f[c>>2]|0)-A|0;f[a>>2]=E;A=(f[h>>2]|0)-B|0;B=a+4|0;f[B>>2]=A;if((E|0)<0)F=(f[b+4>>2]|0)+E|0;else F=E;f[a>>2]=F;if((A|0)>=0){G=A;f[B>>2]=G;return}G=(f[b+4>>2]|0)+A|0;f[B>>2]=G;return}function Ed(a,b){a=a|0;b=b|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0;c=a+4|0;if(!b){e=f[a>>2]|0;f[a>>2]=0;if(e|0)br(e);f[c>>2]=0;return}if(b>>>0>1073741823){e=ra(8)|0;Wo(e,14941);f[e>>2]=6944;va(e|0,1080,114)}e=dn(b<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)br(g);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;g=f[c>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=b+-1|0;i=(h&b|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(b>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=c;c=f[g>>2]|0;if(!c)return;else{k=j;l=g;m=c;n=g}a:while(1){b:do if(i){g=l;c=m;j=n;while(1){e=c;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0))break;p=(f[a>>2]|0)+(o<<2)|0;if(!(f[p>>2]|0)){q=e;r=j;s=o;t=p;break b}p=e+8|0;u=e;while(1){v=f[u>>2]|0;if(!v)break;if((d[p>>1]|0)==(d[v+8>>1]|0))u=v;else break}f[j>>2]=v;f[u>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;p=f[g>>2]|0;if(!p){w=37;break a}else e=p}c=f[e>>2]|0;if(!c){w=37;break a}else{g=e;j=e}}}else{j=l;g=m;c=n;while(1){p=g;while(1){x=f[p+4>>2]|0;if(x>>>0>>0)y=x;else y=(x>>>0)%(b>>>0)|0;if((y|0)==(k|0))break;x=(f[a>>2]|0)+(y<<2)|0;if(!(f[x>>2]|0)){q=p;r=c;s=y;t=x;break b}x=p+8|0;z=p;while(1){A=f[z>>2]|0;if(!A)break;if((d[x>>1]|0)==(d[A+8>>1]|0))z=A;else break}f[c>>2]=A;f[z>>2]=f[f[(f[a>>2]|0)+(y<<2)>>2]>>2];f[f[(f[a>>2]|0)+(y<<2)>>2]>>2]=p;x=f[j>>2]|0;if(!x){w=37;break a}else p=x}g=f[p>>2]|0;if(!g){w=37;break a}else{j=p;c=p}}}while(0);f[t>>2]=r;m=f[q>>2]|0;if(!m){w=37;break}else{k=s;l=q;n=q}}if((w|0)==37)return}function Fd(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0;d=a+4|0;if(!c){e=f[a>>2]|0;f[a>>2]=0;if(e|0)br(e);f[d>>2]=0;return}if(c>>>0>1073741823){e=ra(8)|0;Wo(e,14941);f[e>>2]=6944;va(e|0,1080,114)}e=dn(c<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)br(g);f[d>>2]=c;d=0;do{f[(f[a>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(c|0));d=a+8|0;g=f[d>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=c+-1|0;i=(h&c|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(c>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=d;d=f[g>>2]|0;if(!d)return;else{k=j;l=g;m=d;n=g}a:while(1){b:do if(i){g=l;d=m;j=n;while(1){e=d;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0))break;p=(f[a>>2]|0)+(o<<2)|0;if(!(f[p>>2]|0)){q=e;r=j;s=o;t=p;break b}p=e+8|0;u=e;while(1){v=f[u>>2]|0;if(!v)break;if((b[p>>0]|0)==(b[v+8>>0]|0))u=v;else break}f[j>>2]=v;f[u>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;p=f[g>>2]|0;if(!p){w=37;break a}else e=p}d=f[e>>2]|0;if(!d){w=37;break a}else{g=e;j=e}}}else{j=l;g=m;d=n;while(1){p=g;while(1){x=f[p+4>>2]|0;if(x>>>0>>0)y=x;else y=(x>>>0)%(c>>>0)|0;if((y|0)==(k|0))break;x=(f[a>>2]|0)+(y<<2)|0;if(!(f[x>>2]|0)){q=p;r=d;s=y;t=x;break b}x=p+8|0;z=p;while(1){A=f[z>>2]|0;if(!A)break;if((b[x>>0]|0)==(b[A+8>>0]|0))z=A;else break}f[d>>2]=A;f[z>>2]=f[f[(f[a>>2]|0)+(y<<2)>>2]>>2];f[f[(f[a>>2]|0)+(y<<2)>>2]>>2]=p;x=f[j>>2]|0;if(!x){w=37;break a}else p=x}g=f[p>>2]|0;if(!g){w=37;break a}else{j=p;d=p}}}while(0);f[t>>2]=r;m=f[q>>2]|0;if(!m){w=37;break}else{k=s;l=q;n=q}}if((w|0)==37)return}function Gd(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0;g=f[c>>2]|0;c=f[b>>2]|0;h=g-c|0;i=a+8|0;j=f[i>>2]|0;if(h>>>0<64){if(j>>>0<=1){k=0;return k|0}l=f[e>>2]|0;m=0;n=1;while(1){o=(f[l+(m<<2)>>2]|0)>>>0>(f[l+(n<<2)>>2]|0)>>>0?n:m;n=n+1|0;if(n>>>0>=j>>>0){k=o;break}else m=o}return k|0}if(j){j=f[a+1128>>2]|0;m=f[e>>2]|0;e=f[a+1140>>2]|0;n=f[d>>2]|0;d=b+4|0;l=b+8|0;if((g|0)==(c|0)){b=0;do{o=j+(b<<2)|0;f[o>>2]=0;p=(f[a>>2]|0)-(f[m+(b<<2)>>2]|0)|0;f[e+(b<<2)>>2]=p;if(p|0){p=f[o>>2]|0;q=h-p|0;f[o>>2]=q>>>0

>>0?p:q}b=b+1|0;q=f[i>>2]|0}while(b>>>0>>0);r=q}else{b=0;do{q=j+(b<<2)|0;f[q>>2]=0;p=(f[a>>2]|0)-(f[m+(b<<2)>>2]|0)|0;f[e+(b<<2)>>2]=p;if(p|0){o=(f[n+(b<<2)>>2]|0)+(1<>2]|0;s=f[(f[d>>2]|0)+24>>2]|0;t=c;u=f[q>>2]|0;do{v=s+((X(t,p)|0)<<2)+(b<<2)|0;u=u+((f[v>>2]|0)>>>0>>0&1)|0;f[q>>2]=u;t=t+1|0}while((t|0)!=(g|0));t=h-u|0;f[q>>2]=t>>>0>>0?u:t}b=b+1|0;t=f[i>>2]|0}while(b>>>0>>0);r=t}if(r){b=f[a+1140>>2]|0;i=a+1128|0;h=0;g=0;c=0;while(1){if(!(f[b+(g<<2)>>2]|0)){w=h;x=c}else{d=f[(f[i>>2]|0)+(g<<2)>>2]|0;l=h>>>0>>0;w=l?d:h;x=l?g:c}g=g+1|0;if(g>>>0>=r>>>0){y=x;break}else{h=w;c=x}}}else y=0}else y=0;x=a+1088|0;c=a+1104|0;w=f[c>>2]|0;h=32-w|0;if((h|0)<4){r=y&15;g=4-h|0;f[c>>2]=g;h=a+1100|0;i=f[h>>2]|r>>>g;f[h>>2]=i;g=a+1092|0;b=f[g>>2]|0;if((b|0)==(f[a+1096>>2]|0))Ci(x,h);else{f[b>>2]=i;f[g>>2]=b+4}f[h>>2]=r<<32-(f[c>>2]|0);k=y;return k|0}r=a+1100|0;h=f[r>>2]|y<<28>>>w;f[r>>2]=h;b=w+4|0;f[c>>2]=b;if((b|0)!=32){k=y;return k|0}b=a+1092|0;w=f[b>>2]|0;if((w|0)==(f[a+1096>>2]|0))Ci(x,r);else{f[w>>2]=h;f[b>>2]=w+4}f[r>>2]=0;f[c>>2]=0;k=y;return k|0}function Hd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0;c=a+4|0;if(!b){d=f[a>>2]|0;f[a>>2]=0;if(d|0)br(d);f[c>>2]=0;return}if(b>>>0>1073741823){d=ra(8)|0;Wo(d,14941);f[d>>2]=6944;va(d|0,1080,114)}d=dn(b<<2)|0;e=f[a>>2]|0;f[a>>2]=d;if(e|0)br(e);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;e=f[c>>2]|0;if(!e)return;d=f[e+4>>2]|0;g=b+-1|0;h=(g&b|0)==0;if(!h)if(d>>>0>>0)i=d;else i=(d>>>0)%(b>>>0)|0;else i=d&g;f[(f[a>>2]|0)+(i<<2)>>2]=c;c=f[e>>2]|0;if(!c)return;else{j=i;k=e;l=c;m=e}a:while(1){b:do if(h){e=k;c=l;i=m;while(1){d=c;while(1){n=f[d+4>>2]&g;if((n|0)==(j|0))break;o=(f[a>>2]|0)+(n<<2)|0;if(!(f[o>>2]|0)){p=d;q=i;r=n;s=o;break b}o=d+8|0;t=d;while(1){u=f[t>>2]|0;if(!u)break;if((f[o>>2]|0)==(f[u+8>>2]|0))t=u;else break}f[i>>2]=u;f[t>>2]=f[f[(f[a>>2]|0)+(n<<2)>>2]>>2];f[f[(f[a>>2]|0)+(n<<2)>>2]>>2]=d;o=f[e>>2]|0;if(!o){v=37;break a}else d=o}c=f[d>>2]|0;if(!c){v=37;break a}else{e=d;i=d}}}else{i=k;e=l;c=m;while(1){o=e;while(1){w=f[o+4>>2]|0;if(w>>>0>>0)x=w;else x=(w>>>0)%(b>>>0)|0;if((x|0)==(j|0))break;w=(f[a>>2]|0)+(x<<2)|0;if(!(f[w>>2]|0)){p=o;q=c;r=x;s=w;break b}w=o+8|0;y=o;while(1){z=f[y>>2]|0;if(!z)break;if((f[w>>2]|0)==(f[z+8>>2]|0))y=z;else break}f[c>>2]=z;f[y>>2]=f[f[(f[a>>2]|0)+(x<<2)>>2]>>2];f[f[(f[a>>2]|0)+(x<<2)>>2]>>2]=o;w=f[i>>2]|0;if(!w){v=37;break a}else o=w}e=f[o>>2]|0;if(!e){v=37;break a}else{i=o;c=o}}}while(0);f[s>>2]=q;l=f[p>>2]|0;if(!l){v=37;break}else{j=r;k=p;m=p}}if((v|0)==37)return}function Id(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;d=a+4|0;if(!c){e=f[a>>2]|0;f[a>>2]=0;if(e|0)br(e);f[d>>2]=0;return}if(c>>>0>1073741823){e=ra(8)|0;Wo(e,14941);f[e>>2]=6944;va(e|0,1080,114)}e=dn(c<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)br(g);f[d>>2]=c;d=0;do{f[(f[a>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(c|0));d=a+8|0;g=f[d>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=c+-1|0;i=(h&c|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(c>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=d;d=f[g>>2]|0;if(!d)return;e=a+24|0;k=j;j=g;l=d;d=g;a:while(1){g=j;m=l;n=d;b:while(1){o=m;while(1){p=f[o+4>>2]|0;if(!i)if(p>>>0>>0)q=p;else q=(p>>>0)%(c>>>0)|0;else q=p&h;if((q|0)==(k|0))break;r=(f[a>>2]|0)+(q<<2)|0;if(!(f[r>>2]|0))break b;p=f[o>>2]|0;c:do if(!p)s=o;else{t=f[o+8>>2]|0;u=f[e>>2]|0;v=f[u+8>>2]|0;w=(f[u+12>>2]|0)-v|0;u=v;v=w>>>2;if((w|0)>0){x=o;y=p}else{w=p;while(1){z=f[w>>2]|0;if(!z){s=w;break c}else w=z}}while(1){w=f[y+8>>2]|0;z=0;do{A=f[u+(z<<2)>>2]|0;if(!(b[A+84>>0]|0)){B=f[A+68>>2]|0;C=f[B+(w<<2)>>2]|0;D=f[B+(t<<2)>>2]|0}else{C=w;D=t}z=z+1|0;if((D|0)!=(C|0)){s=x;break c}}while((z|0)<(v|0));z=f[y>>2]|0;if(!z){s=y;break}else{w=y;y=z;x=w}}}while(0);f[n>>2]=f[s>>2];f[s>>2]=f[f[(f[a>>2]|0)+(q<<2)>>2]>>2];f[f[(f[a>>2]|0)+(q<<2)>>2]>>2]=o;p=f[g>>2]|0;if(!p){E=38;break a}else o=p}m=f[o>>2]|0;if(!m){E=38;break a}else{g=o;n=o}}f[r>>2]=n;l=f[o>>2]|0;if(!l){E=38;break}else{k=q;j=o;d=o}}if((E|0)==38)return}function Jd(a,c){a=a|0;c=c|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0;e=u;u=u+16|0;g=e+4|0;h=e;i=e+12|0;j=e+11|0;k=e+10|0;l=e+8|0;m=c+44|0;n=f[m>>2]|0;o=n+16|0;p=f[o+4>>2]|0;if(!((p|0)>0|(p|0)==0&(f[o>>2]|0)>>>0>0)){f[h>>2]=f[n+4>>2];f[g>>2]=f[h>>2];ye(n,g,14849,14854)|0}n=Qa[f[(f[c>>2]|0)+8>>2]&127](c)|0;b[i>>0]=n;b[j>>0]=2;b[k>>0]=(n&255|0)==0?3:2;n=f[m>>2]|0;o=n+16|0;p=f[o+4>>2]|0;if(!((p|0)>0|(p|0)==0&(f[o>>2]|0)>>>0>0)){f[h>>2]=f[n+4>>2];f[g>>2]=f[h>>2];ye(n,g,j,j+1|0)|0;j=f[m>>2]|0;o=j+16|0;p=f[o+4>>2]|0;if(!((p|0)>0|(p|0)==0&(f[o>>2]|0)>>>0>0)){f[h>>2]=f[j+4>>2];f[g>>2]=f[h>>2];ye(j,g,k,k+1|0)|0;k=f[m>>2]|0;o=k+16|0;p=f[o+4>>2]|0;if((p|0)>0|(p|0)==0&(f[o>>2]|0)>>>0>0){q=h;r=k}else{f[h>>2]=f[k+4>>2];f[g>>2]=f[h>>2];ye(k,g,i,i+1|0)|0;q=h;r=f[m>>2]|0}}else{s=h;t=j;v=6}}else{s=h;t=n;v=6}if((v|0)==6){q=h;r=t}t=Qa[f[(f[c>>2]|0)+12>>2]&127](c)|0;b[l>>0]=t;t=r+16|0;q=f[t+4>>2]|0;if(!((q|0)>0|(q|0)==0&(f[t>>2]|0)>>>0>0)){f[h>>2]=f[r+4>>2];f[g>>2]=f[h>>2];ye(r,g,l,l+1|0)|0}d[l>>1]=(f[(f[c+4>>2]|0)+4>>2]|0)==0?0:-32768;c=f[m>>2]|0;m=c+16|0;r=f[m+4>>2]|0;if((r|0)>0|(r|0)==0&(f[m>>2]|0)>>>0>0){f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}f[h>>2]=f[c+4>>2];f[g>>2]=f[h>>2];ye(c,g,l,l+2|0)|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}function Kd(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=Oa,x=0,y=Oa,z=Oa,A=Oa,B=Oa;e=u;u=u+16|0;g=e;h=a+4|0;if((f[h>>2]|0)!=-1){i=0;u=e;return i|0}f[h>>2]=d;d=b[c+24>>0]|0;h=d<<24>>24;j=a+20|0;n[j>>2]=$(0.0);f[g>>2]=0;k=g+4|0;f[k>>2]=0;f[g+8>>2]=0;do if(d<<24>>24)if(d<<24>>24<0)mq(g);else{l=h<<2;m=dn(l)|0;f[g>>2]=m;o=m+(h<<2)|0;f[g+8>>2]=o;hj(m|0,0,l|0)|0;l=m+(h<<2)|0;f[k>>2]=l;p=m;q=l;r=o;break}else{p=0;q=0;r=0}while(0);k=a+8|0;g=f[k>>2]|0;o=a+12|0;if(!g)s=a+16|0;else{l=f[o>>2]|0;if((l|0)!=(g|0))f[o>>2]=l+(~((l+-4-g|0)>>>2)<<2);br(g);g=a+16|0;f[g>>2]=0;f[o>>2]=0;f[k>>2]=0;s=g}f[k>>2]=p;f[o>>2]=q;f[s>>2]=r;r=h>>>0>1073741823?-1:h<<2;s=_q(r)|0;q=_q(r)|0;r=c+48|0;o=f[r>>2]|0;g=c+40|0;a=f[g>>2]|0;l=f[c>>2]|0;Rg(q|0,(f[l>>2]|0)+o|0,a|0)|0;Rg(p|0,(f[l>>2]|0)+o|0,a|0)|0;a=r;r=f[a>>2]|0;o=f[a+4>>2]|0;a=g;g=f[a>>2]|0;l=f[a+4>>2]|0;a=f[c>>2]|0;Rg(s|0,(f[a>>2]|0)+r|0,g|0)|0;p=f[c+80>>2]|0;a:do if(p>>>0>1){if(d<<24>>24<=0){c=1;while(1){m=on(g|0,l|0,c|0,0)|0;t=Tn(m|0,I|0,r|0,o|0)|0;Rg(q|0,(f[a>>2]|0)+t|0,g|0)|0;c=c+1|0;if(c>>>0>=p>>>0)break a}}c=f[k>>2]|0;t=1;do{m=on(g|0,l|0,t|0,0)|0;v=Tn(m|0,I|0,r|0,o|0)|0;Rg(q|0,(f[a>>2]|0)+v|0,g|0)|0;v=0;do{m=c+(v<<2)|0;w=$(n[m>>2]);x=q+(v<<2)|0;y=$(n[x>>2]);if(w>y){n[m>>2]=y;z=$(n[x>>2])}else z=y;x=s+(v<<2)|0;if($(n[x>>2])>2]=z;v=v+1|0}while((v|0)!=(h|0));t=t+1|0}while(t>>>0

>>0)}while(0);if(d<<24>>24>0){d=f[k>>2]|0;k=0;z=$(n[j>>2]);while(1){y=$(n[s+(k<<2)>>2]);w=$(y-$(n[d+(k<<2)>>2]));if(w>z){n[j>>2]=w;A=w}else A=z;k=k+1|0;if((k|0)==(h|0)){B=A;break}else z=A}}else B=$(n[j>>2]);if(B==$(0.0))n[j>>2]=$(1.0);$q(q);$q(s);i=1;u=e;return i|0}function Ld(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0;g=a+8|0;Ah(g,b,d,e);h=d-e|0;if((h|0)>0){d=0-e|0;i=a+16|0;j=a+32|0;k=a+12|0;l=a+28|0;m=a+20|0;n=a+24|0;o=h;h=f[g>>2]|0;while(1){p=b+(o<<2)|0;q=c+(o<<2)|0;if((h|0)>0){r=0;s=p+(d<<2)|0;t=h;while(1){if((t|0)>0){u=0;do{v=f[s+(u<<2)>>2]|0;w=f[i>>2]|0;if((v|0)>(w|0)){x=f[j>>2]|0;f[x+(u<<2)>>2]=w;y=x}else{x=f[k>>2]|0;w=f[j>>2]|0;f[w+(u<<2)>>2]=(v|0)<(x|0)?x:v;y=w}u=u+1|0}while((u|0)<(f[g>>2]|0));z=y}else z=f[j>>2]|0;u=(f[p+(r<<2)>>2]|0)-(f[z+(r<<2)>>2]|0)|0;w=q+(r<<2)|0;f[w>>2]=u;if((u|0)>=(f[l>>2]|0)){if((u|0)>(f[n>>2]|0)){A=u-(f[m>>2]|0)|0;B=31}}else{A=(f[m>>2]|0)+u|0;B=31}if((B|0)==31){B=0;f[w>>2]=A}r=r+1|0;w=f[g>>2]|0;if((r|0)>=(w|0)){C=w;break}else{s=z;t=w}}}else C=h;o=o-e|0;if((o|0)<=0){D=C;break}else h=C}}else D=f[g>>2]|0;C=e>>>0>1073741823?-1:e<<2;e=_q(C)|0;hj(e|0,0,C|0)|0;if((D|0)<=0){$q(e);return 1}C=a+16|0;h=a+32|0;o=a+12|0;z=a+28|0;A=a+20|0;m=a+24|0;a=0;n=e;l=D;while(1){if((l|0)>0){D=0;do{j=f[n+(D<<2)>>2]|0;y=f[C>>2]|0;if((j|0)>(y|0)){k=f[h>>2]|0;f[k+(D<<2)>>2]=y;E=k}else{k=f[o>>2]|0;y=f[h>>2]|0;f[y+(D<<2)>>2]=(j|0)<(k|0)?k:j;E=y}D=D+1|0}while((D|0)<(f[g>>2]|0));F=E}else F=f[h>>2]|0;D=(f[b+(a<<2)>>2]|0)-(f[F+(a<<2)>>2]|0)|0;y=c+(a<<2)|0;f[y>>2]=D;if((D|0)>=(f[z>>2]|0)){if((D|0)>(f[m>>2]|0)){G=D-(f[A>>2]|0)|0;B=16}}else{G=(f[A>>2]|0)+D|0;B=16}if((B|0)==16){B=0;f[y>>2]=G}a=a+1|0;l=f[g>>2]|0;if((a|0)>=(l|0))break;else n=F}$q(e);return 1}function Md(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0;e=f[a>>2]|0;g=e;h=(f[b>>2]|0)-g|0;b=e+(h>>2<<2)|0;i=f[c>>2]|0;c=f[d>>2]|0;d=c-i|0;j=d>>2;k=i;l=c;if((d|0)<=0){m=b;return m|0}d=a+8|0;n=f[d>>2]|0;o=a+4|0;p=f[o>>2]|0;q=p;if((j|0)<=(n-q>>2|0)){r=b;s=q-r|0;t=s>>2;if((j|0)>(t|0)){u=k+(t<<2)|0;t=u;if((u|0)==(l|0))v=p;else{w=l+-4-t|0;x=u;u=p;while(1){f[u>>2]=f[x>>2];x=x+4|0;if((x|0)==(l|0))break;else u=u+4|0}u=p+((w>>>2)+1<<2)|0;f[o>>2]=u;v=u}if((s|0)>0){y=t;z=v}else{m=b;return m|0}}else{y=c;z=p}c=z-(b+(j<<2))>>2;v=b+(c<<2)|0;if(v>>>0

>>0){t=(p+(0-c<<2)+~r|0)>>>2;r=v;s=z;while(1){f[s>>2]=f[r>>2];r=r+4|0;if(r>>>0>=p>>>0)break;else s=s+4|0}f[o>>2]=z+(t+1<<2)}if(c|0){c=v;v=z;do{c=c+-4|0;v=v+-4|0;f[v>>2]=f[c>>2]}while((c|0)!=(b|0))}c=y;if((k|0)==(c|0)){m=b;return m|0}else{A=b;B=k}while(1){f[A>>2]=f[B>>2];B=B+4|0;if((B|0)==(c|0)){m=b;break}else A=A+4|0}return m|0}A=(q-g>>2)+j|0;if(A>>>0>1073741823)mq(a);j=n-g|0;g=j>>1;n=j>>2>>>0<536870911?(g>>>0>>0?A:g):1073741823;g=b;A=h>>2;do if(n)if(n>>>0>1073741823){j=ra(8)|0;Wo(j,14941);f[j>>2]=6944;va(j|0,1080,114)}else{j=dn(n<<2)|0;C=j;D=j;break}else{C=0;D=0}while(0);j=D+(A<<2)|0;A=D+(n<<2)|0;if((l|0)==(k|0))E=j;else{n=((l+-4-i|0)>>>2)+1|0;i=k;k=j;while(1){f[k>>2]=f[i>>2];i=i+4|0;if((i|0)==(l|0))break;else k=k+4|0}E=j+(n<<2)|0}if((h|0)>0)Rg(C|0,e|0,h|0)|0;h=q-g|0;if((h|0)>0){Rg(E|0,b|0,h|0)|0;F=E+(h>>>2<<2)|0}else F=E;f[a>>2]=D;f[o>>2]=F;f[d>>2]=A;if(!e){m=j;return m|0}br(e);m=j;return m|0}function Nd(a,b,c,d,e,g,h){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;var i=0;switch(c|0){case 1:{c=dn(60)|0;f[c>>2]=1528;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[h+16>>2]=f[e+16>>2];f[h+20>>2]=f[e+20>>2];_j(c+32|0,e+24|0);h=c+44|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=1948;i=c;f[a>>2]=i;return}case 4:{c=dn(168)|0;Ei(c,d,e,g);i=c;f[a>>2]=i;return}case 5:{c=dn(104)|0;f[c>>2]=1528;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[h+16>>2]=f[e+16>>2];f[h+20>>2]=f[e+20>>2];_j(c+32|0,e+24|0);h=c+44|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2004;f[c+60>>2]=0;f[c+64>>2]=0;f[c+76>>2]=0;f[c+80>>2]=0;f[c+84>>2]=0;h=c+88|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];i=c;f[a>>2]=i;return}case 6:{c=dn(140)|0;f[c>>2]=1528;f[c+4>>2]=d;d=c+8|0;f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];f[d+8>>2]=f[e+8>>2];f[d+12>>2]=f[e+12>>2];f[d+16>>2]=f[e+16>>2];f[d+20>>2]=f[e+20>>2];_j(c+32|0,e+24|0);e=c+44|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c>>2]=2060;f[c+64>>2]=0;f[c+68>>2]=0;e=c+72|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c+60>>2]=2116;f[c+88>>2]=1;g=c+92|0;f[g>>2]=-1;f[g+4>>2]=-1;f[g+8>>2]=-1;f[g+12>>2]=-1;rn(c+108|0);i=c;f[a>>2]=i;return}default:{i=0;f[a>>2]=i;return}}}function Od(a,b,c,d,e,g,h){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;var i=0;switch(c|0){case 1:{c=dn(60)|0;f[c>>2]=1528;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[h+16>>2]=f[e+16>>2];f[h+20>>2]=f[e+20>>2];_j(c+32|0,e+24|0);h=c+44|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=1640;i=c;f[a>>2]=i;return}case 4:{c=dn(168)|0;Hi(c,d,e,g);i=c;f[a>>2]=i;return}case 5:{c=dn(104)|0;f[c>>2]=1528;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[h+16>>2]=f[e+16>>2];f[h+20>>2]=f[e+20>>2];_j(c+32|0,e+24|0);h=c+44|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=1696;f[c+60>>2]=0;f[c+64>>2]=0;f[c+76>>2]=0;f[c+80>>2]=0;f[c+84>>2]=0;h=c+88|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];i=c;f[a>>2]=i;return}case 6:{c=dn(140)|0;f[c>>2]=1528;f[c+4>>2]=d;d=c+8|0;f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];f[d+8>>2]=f[e+8>>2];f[d+12>>2]=f[e+12>>2];f[d+16>>2]=f[e+16>>2];f[d+20>>2]=f[e+20>>2];_j(c+32|0,e+24|0);e=c+44|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c>>2]=1752;f[c+64>>2]=0;f[c+68>>2]=0;e=c+72|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c+60>>2]=1808;f[c+88>>2]=1;g=c+92|0;f[g>>2]=-1;f[g+4>>2]=-1;f[g+8>>2]=-1;f[g+12>>2]=-1;rn(c+108|0);i=c;f[a>>2]=i;return}default:{i=0;f[a>>2]=i;return}}}function Pd(a,b,c,d,e,g,h){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;var i=0,j=0;switch(c|0){case 1:{c=dn(40)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2628;i=c;f[a>>2]=i;return}case 4:{c=dn(152)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2684;h=c+96|0;b=c+40|0;j=b+52|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(j|0));Sm(h);f[c+136>>2]=0;f[c+140>>2]=0;f[c+144>>2]=0;i=c;f[a>>2]=i;return}case 5:{c=dn(84)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2740;f[c+40>>2]=0;f[c+44>>2]=0;f[c+56>>2]=0;f[c+60>>2]=0;f[c+64>>2]=0;h=c+68|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];i=c;f[a>>2]=i;return}case 6:{c=dn(120)|0;f[c+4>>2]=d;d=c+8|0;f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];f[d+8>>2]=f[e+8>>2];f[d+12>>2]=f[e+12>>2];e=c+24|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c>>2]=2796;f[c+44>>2]=0;f[c+48>>2]=0;e=c+52|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c+40>>2]=2852;f[c+68>>2]=1;g=c+72|0;f[g>>2]=-1;f[g+4>>2]=-1;f[g+8>>2]=-1;f[g+12>>2]=-1;rn(c+88|0);i=c;f[a>>2]=i;return}default:{i=0;f[a>>2]=i;return}}}function Qd(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0;switch(b-a>>2|0){case 2:{d=b+-4|0;e=f[d>>2]|0;g=f[a>>2]|0;h=f[c>>2]|0;i=f[h>>2]|0;j=(f[h+4>>2]|0)-i>>3;if(j>>>0<=e>>>0)mq(h);k=i;if(j>>>0<=g>>>0)mq(h);if((f[k+(e<<3)>>2]|0)>>>0>=(f[k+(g<<3)>>2]|0)>>>0){l=1;return l|0}f[a>>2]=e;f[d>>2]=g;l=1;return l|0}case 3:{Cg(a,a+4|0,b+-4|0,c)|0;l=1;return l|0}case 4:{Qg(a,a+4|0,a+8|0,b+-4|0,c)|0;l=1;return l|0}case 5:{Tf(a,a+4|0,a+8|0,a+12|0,b+-4|0,c)|0;l=1;return l|0}case 1:case 0:{l=1;return l|0}default:{g=a+8|0;Cg(a,a+4|0,g,c)|0;d=a+12|0;a:do if((d|0)!=(b|0)){e=f[c>>2]|0;k=f[e>>2]|0;h=(f[e+4>>2]|0)-k>>3;j=k;k=d;i=0;m=g;b:while(1){n=f[k>>2]|0;o=f[m>>2]|0;if(h>>>0<=n>>>0){p=14;break}if(h>>>0<=o>>>0){p=16;break}q=j+(n<<3)|0;if((f[q>>2]|0)>>>0<(f[j+(o<<3)>>2]|0)>>>0){r=m;s=k;t=o;while(1){f[s>>2]=t;if((r|0)==(a|0)){u=a;break}o=r+-4|0;t=f[o>>2]|0;if(h>>>0<=t>>>0){p=20;break b}if((f[q>>2]|0)>>>0>=(f[j+(t<<3)>>2]|0)>>>0){u=r;break}else{v=r;r=o;s=v}}f[u>>2]=n;s=i+1|0;if((s|0)==8){w=0;x=(k+4|0)==(b|0);break a}else y=s}else y=i;s=k+4|0;if((s|0)==(b|0)){w=1;x=0;break a}else{r=k;k=s;i=y;m=r}}if((p|0)==14)mq(e);else if((p|0)==16)mq(e);else if((p|0)==20)mq(e)}else{w=1;x=0}while(0);l=x|w;return l|0}}return 0}function Rd(a,b,c,d,e,g,h){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;var i=0,j=0;switch(c|0){case 1:{c=dn(40)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2376;i=c;f[a>>2]=i;return}case 4:{c=dn(152)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2432;h=c+96|0;b=c+40|0;j=b+52|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(j|0));Sm(h);f[c+136>>2]=0;f[c+140>>2]=0;f[c+144>>2]=0;i=c;f[a>>2]=i;return}case 5:{c=dn(84)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2488;f[c+40>>2]=0;f[c+44>>2]=0;f[c+56>>2]=0;f[c+60>>2]=0;f[c+64>>2]=0;h=c+68|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];i=c;f[a>>2]=i;return}case 6:{c=dn(120)|0;f[c+4>>2]=d;d=c+8|0;f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];f[d+8>>2]=f[e+8>>2];f[d+12>>2]=f[e+12>>2];e=c+24|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c>>2]=2544;f[c+44>>2]=0;f[c+48>>2]=0;e=c+52|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c+40>>2]=2600;f[c+68>>2]=1;g=c+72|0;f[g>>2]=-1;f[g+4>>2]=-1;f[g+8>>2]=-1;f[g+12>>2]=-1;rn(c+88|0);i=c;f[a>>2]=i;return}default:{i=0;f[a>>2]=i;return}}}function Sd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=Oa,t=Oa,u=Oa,v=0,w=0,x=0,y=0,z=0;c=f[b>>2]|0;b=a+4|0;d=f[b>>2]|0;e=(d|0)==0;a:do if(!e){g=d+-1|0;h=(g&d|0)==0;if(!h)if(c>>>0>>0)i=c;else i=(c>>>0)%(d>>>0)|0;else i=g&c;j=f[(f[a>>2]|0)+(i<<2)>>2]|0;if(!j)k=i;else{if(h){h=j;while(1){l=f[h>>2]|0;if(!l){k=i;break a}m=f[l+4>>2]|0;if(!((m|0)==(c|0)|(m&g|0)==(i|0))){k=i;break a}if((f[l+8>>2]|0)==(c|0)){o=l;break}else h=l}p=o+12|0;return p|0}else q=j;while(1){h=f[q>>2]|0;if(!h){k=i;break a}g=f[h+4>>2]|0;if((g|0)!=(c|0)){if(g>>>0>>0)r=g;else r=(g>>>0)%(d>>>0)|0;if((r|0)!=(i|0)){k=i;break a}}if((f[h+8>>2]|0)==(c|0)){o=h;break}else q=h}p=o+12|0;return p|0}}else k=0;while(0);q=dn(16)|0;f[q+8>>2]=c;f[q+12>>2]=0;f[q+4>>2]=c;f[q>>2]=0;i=a+12|0;s=$(((f[i>>2]|0)+1|0)>>>0);t=$(d>>>0);u=$(n[a+16>>2]);do if(e|$(u*t)>>0<3|(d+-1&d|0)!=0)&1;j=~~$(W($(s/u)))>>>0;ti(a,r>>>0>>0?j:r);r=f[b>>2]|0;j=r+-1|0;if(!(j&r)){v=r;w=j&c;break}if(c>>>0>>0){v=r;w=c}else{v=r;w=(c>>>0)%(r>>>0)|0}}else{v=d;w=k}while(0);k=(f[a>>2]|0)+(w<<2)|0;w=f[k>>2]|0;if(!w){d=a+8|0;f[q>>2]=f[d>>2];f[d>>2]=q;f[k>>2]=d;d=f[q>>2]|0;if(d|0){k=f[d+4>>2]|0;d=v+-1|0;if(d&v)if(k>>>0>>0)x=k;else x=(k>>>0)%(v>>>0)|0;else x=k&d;y=(f[a>>2]|0)+(x<<2)|0;z=30}}else{f[q>>2]=f[w>>2];y=w;z=30}if((z|0)==30)f[y>>2]=q;f[i>>2]=(f[i>>2]|0)+1;o=q;p=o+12|0;return p|0}function Td(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0;c=u;u=u+16|0;d=c+4|0;e=c;f[a+64>>2]=b;g=a+128|0;f[g>>2]=2;h=a+132|0;f[h>>2]=7;i=Qa[f[(f[b>>2]|0)+32>>2]&127](b)|0;b=a+88|0;f[b>>2]=i;j=a+104|0;k=(f[i+28>>2]|0)-(f[i+24>>2]|0)>>2;i=a+108|0;l=f[i>>2]|0;m=f[j>>2]|0;n=l-m>>2;o=m;p=l;if(k>>>0<=n>>>0)if(k>>>0>>0?(q=o+(k<<2)|0,(q|0)!=(p|0)):0){o=p+(~((p+-4-q|0)>>>2)<<2)|0;f[i>>2]=o;r=o;s=m}else{r=l;s=m}else{oi(j,k-n|0);r=f[i>>2]|0;s=f[j>>2]|0}if((r|0)!=(s|0)){s=0;do{r=f[b>>2]|0;f[e>>2]=s;f[d>>2]=f[e>>2];n=Og(r,d)|0;r=f[j>>2]|0;f[r+(s<<2)>>2]=n;s=s+1|0}while(s>>>0<(f[i>>2]|0)-r>>2>>>0)}i=a+92|0;s=f[b>>2]|0;j=f[s>>2]|0;d=(f[s+4>>2]|0)-j>>2;e=a+96|0;r=f[e>>2]|0;n=f[i>>2]|0;k=r-n>>2;m=n;n=r;if(d>>>0<=k>>>0)if(d>>>0>>0?(r=m+(d<<2)|0,(r|0)!=(n|0)):0){f[e>>2]=n+(~((n+-4-r|0)>>>2)<<2);t=s;v=j}else{t=s;v=j}else{oi(i,d-k|0);k=f[b>>2]|0;t=k;v=f[k>>2]|0}k=f[t+4>>2]|0;if((k|0)!=(v|0)){v=f[i>>2]|0;i=f[t>>2]|0;t=k-i>>2;k=0;do{f[v+(k<<2)>>2]=f[i+(k<<2)>>2];k=k+1|0}while(k>>>0>>0)}t=(f[h>>2]|0)-(f[g>>2]|0)+1|0;g=a+136|0;h=a+140|0;a=f[h>>2]|0;k=f[g>>2]|0;i=(a-k|0)/12|0;v=a;if(t>>>0>i>>>0){vf(g,t-i|0);u=c;return 1}if(t>>>0>=i>>>0){u=c;return 1}i=k+(t*12|0)|0;if((i|0)==(v|0)){u=c;return 1}else w=v;while(1){v=w+-12|0;f[h>>2]=v;t=f[v>>2]|0;if(!t)x=v;else{v=w+-8|0;k=f[v>>2]|0;if((k|0)!=(t|0))f[v>>2]=k+(~((k+-4-t|0)>>>2)<<2);br(t);x=f[h>>2]|0}if((x|0)==(i|0))break;else w=x}u=c;return 1}function Ud(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));Oc(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=4194304;if(d){d=c;c=4194304;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<20)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}xf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function Vd(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));Pc(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=4194304;if(d){d=c;c=4194304;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<20)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}xf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function Wd(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));Qc(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=4194304;if(d){d=c;c=4194304;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<20)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}xf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function Xd(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));Rc(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=4194304;if(d){d=c;c=4194304;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<20)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}xf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function Yd(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));Sc(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=4194304;if(d){d=c;c=4194304;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<20)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}xf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function Zd(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));Tc(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=2097152;if(d){d=c;c=2097152;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<19)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}yf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function _d(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));Uc(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=1048576;if(d){d=c;c=1048576;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<18)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}zf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function $d(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));Vc(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=262144;if(d){d=c;c=262144;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<16)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Cf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function ae(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));Wc(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=131072;if(d){d=c;c=131072;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<15)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Df(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function be(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));Xc(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=32768;if(d){d=c;c=32768;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<13)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Ef(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function ce(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));Yc(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Lf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function de(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));Zc(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Lf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function ee(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));_c(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Lf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function fe(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));$c(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Lf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function ge(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));ad(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Lf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function he(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));bd(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Lf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function ie(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));cd(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Lf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function je(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)mq(h);else{l=dn(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;hj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Tn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;l=i;p=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(p|0));dd(i,n,o-n>>3,e)|0;n=i+16|0;o=Rn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Tn(o|0,I|0,39,0)|0;o=Wn(l|0,I|0,3)|0;l=Tn(o|0,I|0,8,0)|0;o=Tn(l|0,I|0,n|0,0)|0;vl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Lf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);br(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);br(e);u=g;return 1}function ke(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0;e=f[b>>2]|0;g=b+4|0;h=f[g>>2]|0;i=((f[c>>2]|0)-e<<3)+(f[c+4>>2]|0)-h|0;c=e;if((i|0)<=0){j=d+4|0;k=f[d>>2]|0;f[a>>2]=k;l=a+4|0;m=f[j>>2]|0;f[l>>2]=m;return}if(!h){e=d+4|0;n=i;o=e;p=c;q=f[e>>2]|0}else{e=32-h|0;r=(i|0)<(e|0)?i:e;s=-1>>>(e-r|0)&-1<>2];c=d+4|0;h=f[c>>2]|0;e=32-h|0;t=e>>>0>>0?e:r;u=f[d>>2]|0;v=f[u>>2]&~(-1>>>(e-t|0)&-1<>2]=v;h=f[c>>2]|0;e=f[g>>2]|0;f[u>>2]=(h>>>0>e>>>0?s<>>(e-h|0))|v;v=(f[c>>2]|0)+t|0;h=u+(v>>>5<<2)|0;f[d>>2]=h;u=v&31;f[c>>2]=u;v=r-t|0;if((v|0)>0){e=f[h>>2]&~(-1>>>(32-v|0));f[h>>2]=e;f[h>>2]=e|s>>>((f[g>>2]|0)+t|0);f[c>>2]=v;w=v}else w=u;u=(f[b>>2]|0)+4|0;f[b>>2]=u;n=i-r|0;o=c;p=u;q=w}w=32-q|0;u=-1<31){q=~u;c=~n;r=n+((c|0)>-64?c:-64)+32&-32;c=n;i=p;while(1){v=f[i>>2]|0;t=f[d>>2]|0;g=f[t>>2]&q;f[t>>2]=g;f[t>>2]=g|v<>2];g=t+4|0;f[d>>2]=g;f[g>>2]=f[g>>2]&u|v>>>w;i=(f[b>>2]|0)+4|0;f[b>>2]=i;if((c|0)<=63)break;else c=c+-32|0}x=n+-32-r|0;y=i}else{x=n;y=p}if((x|0)<=0){j=o;k=f[d>>2]|0;f[a>>2]=k;l=a+4|0;m=f[j>>2]|0;f[l>>2]=m;return}p=f[y>>2]&-1>>>(32-x|0);y=(w|0)<(x|0)?w:x;n=f[d>>2]|0;i=f[n>>2]&~(-1<>2]&-1>>>(w-y|0));f[n>>2]=i;f[n>>2]=i|p<>2];i=(f[o>>2]|0)+y|0;w=n+(i>>>5<<2)|0;f[d>>2]=w;f[o>>2]=i&31;i=x-y|0;if((i|0)<=0){j=o;k=f[d>>2]|0;f[a>>2]=k;l=a+4|0;m=f[j>>2]|0;f[l>>2]=m;return}f[w>>2]=f[w>>2]&~(-1>>>(32-i|0))|p>>>y;f[o>>2]=i;j=o;k=f[d>>2]|0;f[a>>2]=k;l=a+4|0;m=f[j>>2]|0;f[l>>2]=m;return}function le(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+9|0;i=d+8|0;j=f[(f[a+184>>2]|0)+(c<<2)>>2]&255;b[h>>0]=j;c=a+4|0;k=f[(f[c>>2]|0)+44>>2]|0;l=k+16|0;m=f[l+4>>2]|0;if((m|0)>0|(m|0)==0&(f[l>>2]|0)>>>0>0)n=j;else{f[g>>2]=f[k+4>>2];f[e>>2]=f[g>>2];ye(k,e,h,h+1|0)|0;n=b[h>>0]|0}a:do if(n<<24>>24>-1){k=a+172|0;j=f[(f[k>>2]|0)+((n<<24>>24)*136|0)>>2]|0;l=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+56|0;m=b[h>>0]|0;o=f[k>>2]|0;k=f[o+(m*136|0)+132>>2]|0;switch(f[(f[(f[l>>2]|0)+84>>2]|0)+(j<<2)>>2]|0){case 0:{p=k;q=7;break a;break}case 1:{if(b[o+(m*136|0)+28>>0]|0){p=k;q=7;break a}break}default:{}}m=f[(f[c>>2]|0)+44>>2]|0;b[i>>0]=1;o=m+16|0;j=f[o+4>>2]|0;if(!((j|0)>0|(j|0)==0&(f[o>>2]|0)>>>0>0)){f[g>>2]=f[m+4>>2];f[e>>2]=f[g>>2];ye(m,e,i,i+1|0)|0}r=k}else{p=f[a+68>>2]|0;q=7}while(0);if((q|0)==7){q=f[(f[c>>2]|0)+44>>2]|0;b[i>>0]=0;a=q+16|0;h=f[a+4>>2]|0;if(!((h|0)>0|(h|0)==0&(f[a>>2]|0)>>>0>0)){f[g>>2]=f[q+4>>2];f[e>>2]=f[g>>2];ye(q,e,i,i+1|0)|0}r=p}p=f[(f[c>>2]|0)+44>>2]|0;b[i>>0]=r;r=p+16|0;c=f[r+4>>2]|0;if((c|0)>0|(c|0)==0&(f[r>>2]|0)>>>0>0){u=d;return 1}f[g>>2]=f[p+4>>2];f[e>>2]=f[g>>2];ye(p,e,i,i+1|0)|0;u=d;return 1}function me(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0;h=u;u=u+16|0;i=h+4|0;j=h;k=a+60|0;f[a+64>>2]=g;g=a+8|0;Ah(g,b,d,e);d=a+56|0;l=f[d>>2]|0;m=f[l+4>>2]|0;n=f[l>>2]|0;o=m-n|0;if((o|0)<=0){u=h;return 1}p=(o>>>2)+-1|0;o=a+68|0;q=a+16|0;r=a+32|0;s=a+12|0;t=a+28|0;v=a+20|0;w=a+24|0;if(m-n>>2>>>0>p>>>0){x=p;y=n}else{z=l;mq(z)}while(1){f[j>>2]=f[y+(x<<2)>>2];f[i>>2]=f[j>>2];tb(k,i,b,x)|0;l=X(x,e)|0;n=b+(l<<2)|0;p=c+(l<<2)|0;l=f[g>>2]|0;if((l|0)>0){m=0;a=o;A=l;while(1){if((A|0)>0){l=0;do{B=f[a+(l<<2)>>2]|0;C=f[q>>2]|0;if((B|0)>(C|0)){D=f[r>>2]|0;f[D+(l<<2)>>2]=C;E=D}else{D=f[s>>2]|0;C=f[r>>2]|0;f[C+(l<<2)>>2]=(B|0)<(D|0)?D:B;E=C}l=l+1|0}while((l|0)<(f[g>>2]|0));F=E}else F=f[r>>2]|0;l=(f[n+(m<<2)>>2]|0)-(f[F+(m<<2)>>2]|0)|0;C=p+(m<<2)|0;f[C>>2]=l;if((l|0)>=(f[t>>2]|0)){if((l|0)>(f[w>>2]|0)){G=l-(f[v>>2]|0)|0;H=18}}else{G=(f[v>>2]|0)+l|0;H=18}if((H|0)==18){H=0;f[C>>2]=G}m=m+1|0;A=f[g>>2]|0;if((m|0)>=(A|0))break;else a=F}}x=x+-1|0;if((x|0)<=-1){H=3;break}a=f[d>>2]|0;y=f[a>>2]|0;if((f[a+4>>2]|0)-y>>2>>>0<=x>>>0){z=a;H=4;break}}if((H|0)==3){u=h;return 1}else if((H|0)==4)mq(z);return 0}function ne(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0;h=u;u=u+16|0;i=h+4|0;j=h;k=a+60|0;f[a+64>>2]=g;g=a+8|0;Ah(g,b,d,e);d=a+56|0;l=f[d>>2]|0;m=f[l+4>>2]|0;n=f[l>>2]|0;o=m-n|0;if((o|0)<=0){u=h;return 1}p=(o>>>2)+-1|0;o=a+68|0;q=a+16|0;r=a+32|0;s=a+12|0;t=a+28|0;v=a+20|0;w=a+24|0;if(m-n>>2>>>0>p>>>0){x=p;y=n}else{z=l;mq(z)}while(1){f[j>>2]=f[y+(x<<2)>>2];f[i>>2]=f[j>>2];sb(k,i,b,x)|0;l=X(x,e)|0;n=b+(l<<2)|0;p=c+(l<<2)|0;l=f[g>>2]|0;if((l|0)>0){m=0;a=o;A=l;while(1){if((A|0)>0){l=0;do{B=f[a+(l<<2)>>2]|0;C=f[q>>2]|0;if((B|0)>(C|0)){D=f[r>>2]|0;f[D+(l<<2)>>2]=C;E=D}else{D=f[s>>2]|0;C=f[r>>2]|0;f[C+(l<<2)>>2]=(B|0)<(D|0)?D:B;E=C}l=l+1|0}while((l|0)<(f[g>>2]|0));F=E}else F=f[r>>2]|0;l=(f[n+(m<<2)>>2]|0)-(f[F+(m<<2)>>2]|0)|0;C=p+(m<<2)|0;f[C>>2]=l;if((l|0)>=(f[t>>2]|0)){if((l|0)>(f[w>>2]|0)){G=l-(f[v>>2]|0)|0;H=18}}else{G=(f[v>>2]|0)+l|0;H=18}if((H|0)==18){H=0;f[C>>2]=G}m=m+1|0;A=f[g>>2]|0;if((m|0)>=(A|0))break;else a=F}}x=x+-1|0;if((x|0)<=-1){H=3;break}a=f[d>>2]|0;y=f[a>>2]|0;if((f[a+4>>2]|0)-y>>2>>>0<=x>>>0){z=a;H=4;break}}if((H|0)==3){u=h;return 1}else if((H|0)==4)mq(z);return 0}function oe(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0;b=u;u=u+16|0;c=b+4|0;d=b;e=a+12|0;g=f[e>>2]|0;h=(f[g+4>>2]|0)-(f[g>>2]|0)>>2;if(!h){u=b;return 1}i=a+152|0;j=a+140|0;k=a+144|0;l=a+148|0;a=0;m=g;while(1){f[d>>2]=(a>>>0)/3|0;f[c>>2]=f[d>>2];if(!(Rj(m,c)|0)?(g=f[e>>2]|0,(f[(f[g+12>>2]|0)+(a<<2)>>2]|0)==-1):0){n=a+1|0;o=((n>>>0)%3|0|0)==0?a+-2|0:n;if((o|0)==-1)p=-1;else p=f[(f[g>>2]|0)+(o<<2)>>2]|0;o=f[i>>2]|0;if((f[o+(p<<2)>>2]|0)==-1){g=f[k>>2]|0;n=f[l>>2]|0;if((g|0)==(n<<5|0)){if((g+1|0)<0){q=11;break}r=n<<6;n=g+32&-32;hi(j,g>>>0<1073741823?(r>>>0>>0?n:r):2147483647);s=f[k>>2]|0;t=f[i>>2]|0}else{s=g;t=o}f[k>>2]=s+1;o=(f[j>>2]|0)+(s>>>5<<2)|0;f[o>>2]=f[o>>2]&~(1<<(s&31));o=t+(p<<2)|0;if((f[o>>2]|0)==-1){r=a;n=o;while(1){f[n>>2]=g;o=r+1|0;a:do if((r|0)!=-1?(v=((o>>>0)%3|0|0)==0?r+-2|0:o,(v|0)!=-1):0){w=f[e>>2]|0;x=f[w+12>>2]|0;y=v;while(1){v=f[x+(y<<2)>>2]|0;if((v|0)==-1)break;z=v+1|0;A=((z>>>0)%3|0|0)==0?v+-2|0:z;if((A|0)==-1){B=-1;C=-1;break a}else y=A}x=y+1|0;A=((x>>>0)%3|0|0)==0?y+-2|0:x;if((A|0)==-1){B=y;C=-1}else{B=y;C=f[(f[w>>2]|0)+(A<<2)>>2]|0}}else{B=-1;C=-1}while(0);n=t+(C<<2)|0;if((f[n>>2]|0)!=-1)break;else r=B}}}}r=a+1|0;if(r>>>0>=h>>>0){q=3;break}a=r;m=f[e>>2]|0}if((q|0)==3){u=b;return 1}else if((q|0)==11)mq(j);return 0} -function pe(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;d=u;u=u+32|0;e=d+8|0;g=d;h=a+4|0;i=f[h>>2]|0;if(i>>>0>=b>>>0){f[h>>2]=b;u=d;return}j=a+8|0;k=f[j>>2]|0;l=k<<5;m=b-i|0;if(l>>>0>>0|i>>>0>(l-m|0)>>>0){f[e>>2]=0;n=e+4|0;f[n>>2]=0;o=e+8|0;f[o>>2]=0;if((b|0)<0)mq(a);p=k<<6;k=b+31&-32;hi(e,l>>>0<1073741823?(p>>>0>>0?k:p):2147483647);p=f[h>>2]|0;f[n>>2]=p+m;k=f[a>>2]|0;l=k;q=f[e>>2]|0;r=(l+(p>>>5<<2)-k<<3)+(p&31)|0;if((r|0)>0){p=r>>>5;Xl(q|0,k|0,p<<2|0)|0;k=r&31;r=q+(p<<2)|0;s=r;if(!k){t=0;v=s}else{w=-1>>>(32-k|0);f[r>>2]=f[r>>2]&~w|f[l+(p<<2)>>2]&w;t=k;v=s}}else{t=0;v=q}f[g>>2]=v;f[g+4>>2]=t;t=g;g=f[t>>2]|0;v=f[t+4>>2]|0;t=f[a>>2]|0;f[a>>2]=f[e>>2];f[e>>2]=t;e=f[h>>2]|0;f[h>>2]=f[n>>2];f[n>>2]=e;e=f[j>>2]|0;f[j>>2]=f[o>>2];f[o>>2]=e;if(t|0)br(t);x=g;y=v}else{v=(f[a>>2]|0)+(i>>>5<<2)|0;f[h>>2]=b;x=v;y=i&31}if(!m){u=d;return}i=(y|0)==0;v=x;if(c){if(i){z=m;A=x;B=v}else{c=32-y|0;b=c>>>0>m>>>0?m:c;f[v>>2]=f[v>>2]|-1>>>(c-b|0)&-1<>>5;hj(A|0,-1,c<<2|0)|0;A=z&31;z=B+(c<<2)|0;if(!A){u=d;return}f[z>>2]=f[z>>2]|-1>>>(32-A|0);u=d;return}else{if(i){C=m;D=x;E=v}else{x=32-y|0;i=x>>>0>m>>>0?m:x;f[v>>2]=f[v>>2]&~(-1>>>(x-i|0)&-1<>>5;hj(D|0,0,y<<2|0)|0;D=C&31;C=E+(y<<2)|0;if(!D){u=d;return}f[C>>2]=f[C>>2]&~(-1>>>(32-D|0));u=d;return}}function qe(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0;a=u;u=u+48|0;g=a+36|0;h=a+24|0;i=a+12|0;j=a;if(!c){k=0;u=a;return k|0}f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;l=vj(d)|0;if(l>>>0>4294967279)mq(g);if(l>>>0<11){b[g+11>>0]=l;if(!l)m=g;else{n=g;o=7}}else{p=l+16&-16;q=dn(p)|0;f[g>>2]=q;f[g+8>>2]=p|-2147483648;f[g+4>>2]=l;n=q;o=7}if((o|0)==7){Rg(n|0,d|0,l|0)|0;m=n}b[m+l>>0]=0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;l=vj(e)|0;if(l>>>0>4294967279)mq(h);if(l>>>0<11){b[h+11>>0]=l;if(!l)r=h;else{s=h;o=13}}else{m=l+16&-16;n=dn(m)|0;f[h>>2]=n;f[h+8>>2]=m|-2147483648;f[h+4>>2]=l;s=n;o=13}if((o|0)==13){Rg(s|0,e|0,l|0)|0;r=s}b[r+l>>0]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;l=vj(d)|0;if(l>>>0>4294967279)mq(i);if(l>>>0<11){b[i+11>>0]=l;if(!l)t=i;else{v=i;o=19}}else{r=l+16&-16;s=dn(r)|0;f[i>>2]=s;f[i+8>>2]=r|-2147483648;f[i+4>>2]=l;v=s;o=19}if((o|0)==19){Rg(v|0,d|0,l|0)|0;t=v}b[t+l>>0]=0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;l=vj(e)|0;if(l>>>0>4294967279)mq(j);if(l>>>0<11){b[j+11>>0]=l;if(!l)w=j;else{x=j;o=25}}else{t=l+16&-16;v=dn(t)|0;f[j>>2]=v;f[j+8>>2]=t|-2147483648;f[j+4>>2]=l;x=v;o=25}if((o|0)==25){Rg(x|0,e|0,l|0)|0;w=x}b[w+l>>0]=0;en(c,i,j);if((b[j+11>>0]|0)<0)br(f[j>>2]|0);if((b[i+11>>0]|0)<0)br(f[i>>2]|0);if((b[h+11>>0]|0)<0)br(f[h>>2]|0);if((b[g+11>>0]|0)<0)br(f[g>>2]|0);k=1;u=a;return k|0}function re(a,c){a=a|0;c=c|0;var d=0,e=0,g=0;f[a>>2]=f[c>>2];d=c+4|0;f[a+4>>2]=f[d>>2];e=c+8|0;f[a+8>>2]=f[e>>2];g=c+12|0;f[a+12>>2]=f[g>>2];f[d>>2]=0;f[e>>2]=0;f[g>>2]=0;g=c+16|0;f[a+16>>2]=f[g>>2];e=c+20|0;f[a+20>>2]=f[e>>2];d=c+24|0;f[a+24>>2]=f[d>>2];f[g>>2]=0;f[e>>2]=0;f[d>>2]=0;b[a+28>>0]=b[c+28>>0]|0;d=a+32|0;e=c+32|0;f[d>>2]=0;g=a+36|0;f[g>>2]=0;f[a+40>>2]=0;f[d>>2]=f[e>>2];d=c+36|0;f[g>>2]=f[d>>2];g=c+40|0;f[a+40>>2]=f[g>>2];f[g>>2]=0;f[d>>2]=0;f[e>>2]=0;e=a+44|0;d=c+44|0;f[e>>2]=0;g=a+48|0;f[g>>2]=0;f[a+52>>2]=0;f[e>>2]=f[d>>2];e=c+48|0;f[g>>2]=f[e>>2];g=c+52|0;f[a+52>>2]=f[g>>2];f[g>>2]=0;f[e>>2]=0;f[d>>2]=0;d=a+56|0;e=c+56|0;f[d>>2]=0;g=a+60|0;f[g>>2]=0;f[a+64>>2]=0;f[d>>2]=f[e>>2];d=c+60|0;f[g>>2]=f[d>>2];g=c+64|0;f[a+64>>2]=f[g>>2];f[g>>2]=0;f[d>>2]=0;f[e>>2]=0;f[a+68>>2]=f[c+68>>2];f[a+72>>2]=f[c+72>>2];e=a+76|0;d=c+76|0;f[e>>2]=0;g=a+80|0;f[g>>2]=0;f[a+84>>2]=0;f[e>>2]=f[d>>2];e=c+80|0;f[g>>2]=f[e>>2];g=c+84|0;f[a+84>>2]=f[g>>2];f[g>>2]=0;f[e>>2]=0;f[d>>2]=0;d=a+88|0;e=c+88|0;f[d>>2]=0;g=a+92|0;f[g>>2]=0;f[a+96>>2]=0;f[d>>2]=f[e>>2];d=c+92|0;f[g>>2]=f[d>>2];g=c+96|0;f[a+96>>2]=f[g>>2];f[g>>2]=0;f[d>>2]=0;f[e>>2]=0;b[a+100>>0]=b[c+100>>0]|0;e=a+104|0;d=c+104|0;f[e>>2]=0;g=a+108|0;f[g>>2]=0;f[a+112>>2]=0;f[e>>2]=f[d>>2];e=c+108|0;f[g>>2]=f[e>>2];g=c+112|0;f[a+112>>2]=f[g>>2];f[g>>2]=0;f[e>>2]=0;f[d>>2]=0;d=a+116|0;e=c+116|0;f[d>>2]=0;g=a+120|0;f[g>>2]=0;f[a+124>>2]=0;f[d>>2]=f[e>>2];d=c+120|0;f[g>>2]=f[d>>2];g=c+124|0;f[a+124>>2]=f[g>>2];f[g>>2]=0;f[d>>2]=0;f[e>>2]=0;f[a+128>>2]=f[c+128>>2];f[a+132>>2]=f[c+132>>2];return}function se(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0;h=u;u=u+48|0;i=h+36|0;j=h+24|0;k=h+8|0;l=h+4|0;m=h;n=e+4|0;Bh(i,c,(f[n>>2]|0)-(f[e>>2]|0)>>2,2,g,d,1);g=f[i>>2]|0;o=(f[f[g>>2]>>2]|0)+(f[g+48>>2]|0)|0;f[k>>2]=-1;f[k+4>>2]=-1;f[k+8>>2]=-1;f[k+12>>2]=-1;p=f[c+4>>2]|0;if((p+-2|0)>>>0<=28){f[k>>2]=p;c=1<>2]=c+-1;p=c+-2|0;f[k+8>>2]=p;f[k+12>>2]=(p|0)/2|0;p=f[e>>2]|0;if((f[n>>2]|0)==(p|0))q=g;else{c=d+84|0;r=d+68|0;s=d+48|0;t=d+40|0;v=0;w=0;x=p;while(1){p=f[x+(v<<2)>>2]|0;if(!(b[c>>0]|0))y=f[(f[r>>2]|0)+(p<<2)>>2]|0;else y=p;p=s;z=f[p>>2]|0;A=f[p+4>>2]|0;p=t;B=f[p>>2]|0;C=on(B|0,f[p+4>>2]|0,y|0,0)|0;p=Tn(C|0,I|0,z|0,A|0)|0;Rg(j|0,(f[f[d>>2]>>2]|0)+p|0,B|0)|0;df(k,j,l,m);f[o+(w<<2)>>2]=f[l>>2];f[o+((w|1)<<2)>>2]=f[m>>2];v=v+1|0;x=f[e>>2]|0;if(v>>>0>=(f[n>>2]|0)-x>>2>>>0)break;else w=w+2|0}q=f[i>>2]|0}f[a>>2]=q;f[i>>2]=0;u=h;return}f[a>>2]=0;f[i>>2]=0;if(!g){u=h;return}i=g+88|0;a=f[i>>2]|0;f[i>>2]=0;if(a|0){i=f[a+8>>2]|0;if(i|0){q=a+12|0;if((f[q>>2]|0)!=(i|0))f[q>>2]=i;br(i)}br(a)}a=f[g+68>>2]|0;if(a|0){i=g+72|0;q=f[i>>2]|0;if((q|0)!=(a|0))f[i>>2]=q+(~((q+-4-a|0)>>>2)<<2);br(a)}a=g+64|0;q=f[a>>2]|0;f[a>>2]=0;if(q|0){a=f[q>>2]|0;if(a|0){i=q+4|0;if((f[i>>2]|0)!=(a|0))f[i>>2]=a;br(a)}br(q)}br(g);u=h;return}function te(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=a+8|0;e=f[d>>2]|0;g=a+4|0;h=f[g>>2]|0;if(((e-h|0)/136|0)>>>0>=c>>>0){i=c;j=h;do{f[j>>2]=-1;Ek(j+4|0);b[j+100>>0]=1;k=j+104|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;f[k+16>>2]=0;f[k+20>>2]=0;f[k+24>>2]=0;j=(f[g>>2]|0)+136|0;f[g>>2]=j;i=i+-1|0}while((i|0)!=0);return}i=f[a>>2]|0;j=(h-i|0)/136|0;h=j+c|0;if(h>>>0>31580641)mq(a);k=(e-i|0)/136|0;i=k<<1;e=k>>>0<15790320?(i>>>0>>0?h:i):31580641;do if(e)if(e>>>0>31580641){i=ra(8)|0;Wo(i,14941);f[i>>2]=6944;va(i|0,1080,114)}else{l=dn(e*136|0)|0;break}else l=0;while(0);i=l+(j*136|0)|0;j=i;h=l+(e*136|0)|0;e=c;c=j;l=i;do{f[l>>2]=-1;Ek(l+4|0);b[l+100>>0]=1;k=l+104|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;f[k+16>>2]=0;f[k+20>>2]=0;f[k+24>>2]=0;l=c+136|0;c=l;e=e+-1|0}while((e|0)!=0);e=f[a>>2]|0;l=f[g>>2]|0;if((l|0)==(e|0)){m=j;n=e;o=e}else{k=l;l=j;j=i;do{k=k+-136|0;re(j+-136|0,k);j=l+-136|0;l=j}while((k|0)!=(e|0));m=l;n=f[a>>2]|0;o=f[g>>2]|0}f[a>>2]=m;f[g>>2]=c;f[d>>2]=h;h=n;if((o|0)!=(h|0)){d=o;do{o=f[d+-20>>2]|0;if(o|0){c=d+-16|0;g=f[c>>2]|0;if((g|0)!=(o|0))f[c>>2]=g+(~((g+-4-o|0)>>>2)<<2);br(o)}o=f[d+-32>>2]|0;if(o|0){g=d+-28|0;c=f[g>>2]|0;if((c|0)!=(o|0))f[g>>2]=c+(~((c+-4-o|0)>>>2)<<2);br(o)}yi(d+-132|0);d=d+-136|0}while((d|0)!=(h|0))}if(!n)return;br(n);return}function ue(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=f[b>>2]|0;b=a+12|0;d=(c|0)==-1;e=c+1|0;do if(!d){g=((e>>>0)%3|0|0)==0?c+-2|0:e;if(!((c>>>0)%3|0)){h=g;i=c+2|0;break}else{h=g;i=c+-1|0;break}}else{h=-1;i=-1}while(0);e=d?-1:(c>>>0)/3|0;g=a+28|0;j=(f[g>>2]|0)+(e>>>5<<2)|0;f[j>>2]=1<<(e&31)|f[j>>2];j=a+172|0;e=a+176|0;k=a+280|0;if(((!d?(d=f[(f[(f[b>>2]|0)+12>>2]|0)+(c<<2)>>2]|0,(d|0)!=-1):0)?(a=(d>>>0)/3|0,(f[(f[g>>2]|0)+(a>>>5<<2)>>2]&1<<(a&31)|0)==0):0)?(a=f[j>>2]|0,(f[e>>2]|0)!=(a|0)):0){d=c>>>5;l=1<<(c&31);c=0;m=a;do{a=(f[k>>2]|0)+(c<<5)|0;if(!(l&f[(f[m+(c*136|0)+4>>2]|0)+(d<<2)>>2]))Vi(a,0);else Vi(a,1);c=c+1|0;m=f[j>>2]|0}while(c>>>0<(((f[e>>2]|0)-m|0)/136|0)>>>0)}if((((h|0)!=-1?(m=f[(f[(f[b>>2]|0)+12>>2]|0)+(h<<2)>>2]|0,(m|0)!=-1):0)?(c=(m>>>0)/3|0,(f[(f[g>>2]|0)+(c>>>5<<2)>>2]&1<<(c&31)|0)==0):0)?(c=f[j>>2]|0,(f[e>>2]|0)!=(c|0)):0){m=h>>>5;d=1<<(h&31);h=0;l=c;do{c=(f[k>>2]|0)+(h<<5)|0;if(!(d&f[(f[l+(h*136|0)+4>>2]|0)+(m<<2)>>2]))Vi(c,0);else Vi(c,1);h=h+1|0;l=f[j>>2]|0}while(h>>>0<(((f[e>>2]|0)-l|0)/136|0)>>>0)}if((i|0)==-1)return 1;l=f[(f[(f[b>>2]|0)+12>>2]|0)+(i<<2)>>2]|0;if((l|0)==-1)return 1;b=(l>>>0)/3|0;if(f[(f[g>>2]|0)+(b>>>5<<2)>>2]&1<<(b&31)|0)return 1;b=f[j>>2]|0;if((f[e>>2]|0)==(b|0))return 1;g=i>>>5;l=1<<(i&31);i=0;h=b;do{b=(f[k>>2]|0)+(i<<5)|0;if(!(l&f[(f[h+(i*136|0)+4>>2]|0)+(g<<2)>>2]))Vi(b,0);else Vi(b,1);i=i+1|0;h=f[j>>2]|0}while(i>>>0<(((f[e>>2]|0)-h|0)/136|0)>>>0);return 1}function ve(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+8|0;i=a+4|0;j=a+8|0;Nh((f[j>>2]|0)-(f[i>>2]|0)>>2,c)|0;k=f[i>>2]|0;if((f[j>>2]|0)==(k|0)){u=d;return 1}l=a+32|0;a=c+16|0;m=c+4|0;n=h+1|0;o=h+1|0;p=h+1|0;q=h+1|0;r=0;s=k;do{k=f[(f[(f[l>>2]|0)+8>>2]|0)+(f[s+(r<<2)>>2]<<2)>>2]|0;b[h>>0]=f[k+56>>2];t=a;v=f[t>>2]|0;w=f[t+4>>2]|0;if((w|0)>0|(w|0)==0&v>>>0>0){x=w;y=v}else{f[g>>2]=f[m>>2];f[e>>2]=f[g>>2];ye(c,e,h,q)|0;v=a;x=f[v+4>>2]|0;y=f[v>>2]|0}b[h>>0]=f[k+28>>2];if((x|0)>0|(x|0)==0&y>>>0>0){z=x;A=y}else{f[g>>2]=f[m>>2];f[e>>2]=f[g>>2];ye(c,e,h,p)|0;v=a;z=f[v+4>>2]|0;A=f[v>>2]|0}b[h>>0]=b[k+24>>0]|0;if((z|0)>0|(z|0)==0&A>>>0>0){B=z;C=A}else{f[g>>2]=f[m>>2];f[e>>2]=f[g>>2];ye(c,e,h,o)|0;v=a;B=f[v+4>>2]|0;C=f[v>>2]|0}b[h>>0]=b[k+32>>0]|0;if(!((B|0)>0|(B|0)==0&C>>>0>0)){f[g>>2]=f[m>>2];f[e>>2]=f[g>>2];ye(c,e,h,n)|0}Nh(f[k+60>>2]|0,c)|0;r=r+1|0;s=f[i>>2]|0}while(r>>>0<(f[j>>2]|0)-s>>2>>>0);u=d;return 1}function we(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0;d=u;u=u+32|0;e=d+16|0;g=d+12|0;h=d+8|0;i=d+4|0;j=d;wp(a);f[a+16>>2]=0;f[a+20>>2]=0;f[a+12>>2]=a+16;k=a+24|0;wp(k);l=b+4|0;if((a|0)!=(l|0)){f[h>>2]=f[l>>2];f[i>>2]=b+8;f[g>>2]=f[h>>2];f[e>>2]=f[i>>2];Hc(a,g,e)}l=b+28|0;if((k|0)!=(l|0)){f[h>>2]=f[l>>2];f[i>>2]=b+32;f[g>>2]=f[h>>2];f[e>>2]=f[i>>2];Hc(k,g,e)}f[j>>2]=0;k=c+8|0;l=c+12|0;c=f[l>>2]|0;m=f[k>>2]|0;if((c-m|0)<=0){u=d;return}n=b+20|0;b=m;m=c;c=0;while(1){o=f[(f[b+(c<<2)>>2]|0)+56>>2]|0;p=f[n>>2]|0;if(p){q=n;r=p;a:while(1){p=r;while(1){if((f[p+16>>2]|0)>=(o|0))break;s=f[p+4>>2]|0;if(!s){t=q;break a}else p=s}r=f[p>>2]|0;if(!r){t=p;break}else q=p}if((t|0)!=(n|0)?(o|0)>=(f[t+16>>2]|0):0){q=t+20|0;r=wd(a,j)|0;if((r|0)!=(q|0)){f[h>>2]=f[q>>2];f[i>>2]=t+24;f[g>>2]=f[h>>2];f[e>>2]=f[i>>2];Hc(r,g,e)}v=f[j>>2]|0;w=f[k>>2]|0;x=f[l>>2]|0}else{v=c;w=b;x=m}}else{v=c;w=b;x=m}c=v+1|0;f[j>>2]=c;if((c|0)>=(x-w>>2|0))break;else{b=w;m=x}}u=d;return}function xe(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+8|0;i=a+12|0;Nh(f[i>>2]|0,c)|0;if(!(f[i>>2]|0)){j=1;u=d;return j|0}k=c+16|0;l=c+4|0;m=h+1|0;n=h+1|0;o=h+1|0;p=0;while(1){q=f[a>>2]|0;r=f[q+(p<<3)>>2]|0;if(r>>>0>63)if(r>>>0>16383)if(r>>>0>4194303){j=0;s=20;break}else{t=2;s=13}else{t=1;s=13}else if(!r){v=p+1|0;w=0;while(1){if(f[q+(v+w<<3)>>2]|0){x=w;break}y=w+1|0;if(y>>>0<63)w=y;else{x=y;break}}b[h>>0]=x<<2|3;w=k;v=f[w+4>>2]|0;if(!((v|0)>0|(v|0)==0&(f[w>>2]|0)>>>0>0)){f[g>>2]=f[l>>2];f[e>>2]=f[g>>2];ye(c,e,h,o)|0}z=x+p|0}else{t=0;s=13}if((s|0)==13){s=0;b[h>>0]=t|r<<2;w=k;v=f[w+4>>2]|0;if(!((v|0)>0|(v|0)==0&(f[w>>2]|0)>>>0>0)){f[g>>2]=f[l>>2];f[e>>2]=f[g>>2];ye(c,e,h,n)|0}if(!t)z=p;else{w=0;do{w=w+1|0;b[h>>0]=r>>>((w<<3)+-2|0);v=k;q=f[v+4>>2]|0;if(!((q|0)>0|(q|0)==0&(f[v>>2]|0)>>>0>0)){f[g>>2]=f[l>>2];f[e>>2]=f[g>>2];ye(c,e,h,m)|0}}while((w|0)<(t|0));z=p}}p=z+1|0;if(p>>>0>=(f[i>>2]|0)>>>0){j=1;s=20;break}}if((s|0)==20){u=d;return j|0}return 0}function ye(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;g=f[a>>2]|0;h=g;i=(f[c>>2]|0)-h|0;c=g+i|0;j=e-d|0;if((j|0)<=0){k=c;return k|0}l=a+8|0;m=f[l>>2]|0;n=a+4|0;o=f[n>>2]|0;p=o;if((j|0)<=(m-p|0)){q=p-c|0;if((j|0)>(q|0)){r=d+q|0;if((r|0)==(e|0))s=o;else{t=r;u=o;while(1){b[u>>0]=b[t>>0]|0;t=t+1|0;v=(f[n>>2]|0)+1|0;f[n>>2]=v;if((t|0)==(e|0)){s=v;break}else u=v}}if((q|0)>0){w=r;x=s}else{k=c;return k|0}}else{w=e;x=o}s=x-(c+j)|0;r=c+s|0;if(r>>>0>>0){q=r;r=x;do{b[r>>0]=b[q>>0]|0;q=q+1|0;r=(f[n>>2]|0)+1|0;f[n>>2]=r}while((q|0)!=(o|0))}if(s|0)Xl(x+(0-s)|0,c|0,s|0)|0;if((w|0)==(d|0)){k=c;return k|0}else{y=d;z=c}while(1){b[z>>0]=b[y>>0]|0;y=y+1|0;if((y|0)==(w|0)){k=c;break}else z=z+1|0}return k|0}z=p-h+j|0;if((z|0)<0)mq(a);j=m-h|0;h=j<<1;m=j>>>0<1073741823?(h>>>0>>0?z:h):2147483647;h=c;if(!m)A=0;else A=dn(m)|0;z=A+i|0;i=z;j=A+m|0;if((d|0)==(e|0)){B=i;C=g}else{g=d;d=i;i=z;do{b[i>>0]=b[g>>0]|0;i=d+1|0;d=i;g=g+1|0}while((g|0)!=(e|0));B=d;C=f[a>>2]|0}d=h-C|0;e=z+(0-d)|0;if((d|0)>0)Rg(e|0,C|0,d|0)|0;d=(f[n>>2]|0)-h|0;if((d|0)>0){h=B;Rg(h|0,c|0,d|0)|0;D=h+d|0;E=f[a>>2]|0}else{D=B;E=C}f[a>>2]=e;f[n>>2]=D;f[l>>2]=j;if(!E){k=z;return k|0}br(E);k=z;return k|0}function ze(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;e=u;u=u+16|0;g=e;h=f[(f[c+4>>2]|0)+(d<<2)>>2]|0;d=f[c+28>>2]|0;c=f[(f[(f[d+4>>2]|0)+8>>2]|0)+(h<<2)>>2]|0;switch(f[c+28>>2]|0){case 5:case 6:case 3:case 4:case 1:case 2:{i=dn(40)|0;Ao(i);j=i;k=j;f[a>>2]=k;u=e;return}case 9:{l=3;break}default:{}}if((l|0)==3){i=f[d+48>>2]|0;d=dn(32)|0;f[g>>2]=d;f[g+8>>2]=-2147483616;f[g+4>>2]=17;m=d;n=12932;o=m+17|0;do{b[m>>0]=b[n>>0]|0;m=m+1|0;n=n+1|0}while((m|0)<(o|0));b[d+17>>0]=0;d=i+16|0;n=f[d>>2]|0;if(n){p=d;q=n;a:while(1){n=q;while(1){if((f[n+16>>2]|0)>=(h|0))break;r=f[n+4>>2]|0;if(!r){s=p;break a}else n=r}q=f[n>>2]|0;if(!q){s=n;break}else p=n}if(((s|0)!=(d|0)?(h|0)>=(f[s+16>>2]|0):0)?(h=s+20|0,(sh(h,g)|0)!=0):0)t=yk(h,g,-1)|0;else l=12}else l=12;if((l|0)==12)t=yk(i,g,-1)|0;if((b[g+11>>0]|0)<0)br(f[g>>2]|0);if((t|0)>0)if((f[c+56>>2]|0)==1){c=dn(48)|0;m=c;o=m+48|0;do{f[m>>2]=0;m=m+4|0}while((m|0)<(o|0));Ao(c);f[c>>2]=2256;f[c+40>>2]=1152;f[c+44>>2]=-1;j=c;k=j;f[a>>2]=k;u=e;return}else{c=dn(64)|0;mm(c);j=c;k=j;f[a>>2]=k;u=e;return}}c=dn(36)|0;wm(c);j=c;k=j;f[a>>2]=k;u=e;return}function Ae(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;d=(c|0)==(a|0);b[c+12>>0]=d&1;if(d)return;else e=c;while(1){g=e+8|0;h=f[g>>2]|0;c=h+12|0;if(b[c>>0]|0){i=23;break}j=h+8|0;k=f[j>>2]|0;d=f[k>>2]|0;if((d|0)==(h|0)){l=f[k+4>>2]|0;if(!l){i=7;break}m=l+12|0;if(!(b[m>>0]|0))n=m;else{i=7;break}}else{if(!d){i=16;break}m=d+12|0;if(!(b[m>>0]|0))n=m;else{i=16;break}}b[c>>0]=1;c=(k|0)==(a|0);b[k+12>>0]=c&1;b[n>>0]=1;if(c){i=23;break}else e=k}if((i|0)==7){if((f[h>>2]|0)==(e|0)){o=h;p=k}else{n=h+4|0;a=f[n>>2]|0;c=f[a>>2]|0;f[n>>2]=c;if(!c)q=k;else{f[c+8>>2]=h;q=f[j>>2]|0}f[a+8>>2]=q;q=f[j>>2]|0;f[((f[q>>2]|0)==(h|0)?q:q+4|0)>>2]=a;f[a>>2]=h;f[j>>2]=a;o=a;p=f[a+8>>2]|0}b[o+12>>0]=1;b[p+12>>0]=0;o=f[p>>2]|0;a=o+4|0;q=f[a>>2]|0;f[p>>2]=q;if(q|0)f[q+8>>2]=p;q=p+8|0;f[o+8>>2]=f[q>>2];c=f[q>>2]|0;f[((f[c>>2]|0)==(p|0)?c:c+4|0)>>2]=o;f[a>>2]=p;f[q>>2]=o;return}else if((i|0)==16){if((f[h>>2]|0)==(e|0)){o=e+4|0;q=f[o>>2]|0;f[h>>2]=q;if(!q)r=k;else{f[q+8>>2]=h;r=f[j>>2]|0}f[g>>2]=r;r=f[j>>2]|0;f[((f[r>>2]|0)==(h|0)?r:r+4|0)>>2]=e;f[o>>2]=h;f[j>>2]=e;s=e;t=f[e+8>>2]|0}else{s=h;t=k}b[s+12>>0]=1;b[t+12>>0]=0;s=t+4|0;k=f[s>>2]|0;h=f[k>>2]|0;f[s>>2]=h;if(h|0)f[h+8>>2]=t;h=t+8|0;f[k+8>>2]=f[h>>2];s=f[h>>2]|0;f[((f[s>>2]|0)==(t|0)?s:s+4|0)>>2]=k;f[k>>2]=t;f[h>>2]=k;return}else if((i|0)==23)return}function Be(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=Oa,C=Oa;h=u;u=u+16|0;i=h;j=e+4|0;k=b[d+24>>0]|0;l=k<<24>>24;Bh(a,c,(f[j>>2]|0)-(f[e>>2]|0)>>2,l,g,d,1);g=f[a>>2]|0;a=(f[f[g>>2]>>2]|0)+(f[g+48>>2]|0)|0;g=f[c+4>>2]|0;sq(i);yo(i,$(n[c+20>>2]),(1<>>0>1073741823?-1:l<<2)|0;m=f[j>>2]|0;j=f[e>>2]|0;e=j;if((m|0)==(j|0)){$q(g);u=h;return}o=d+68|0;p=d+48|0;q=d+40|0;r=c+8|0;c=(b[d+84>>0]|0)==0;s=m-j>>2;if(k<<24>>24>0){t=0;v=0}else{k=0;do{j=f[e+(k<<2)>>2]|0;if(c)w=f[(f[o>>2]|0)+(j<<2)>>2]|0;else w=j;j=p;m=f[j>>2]|0;x=f[j+4>>2]|0;j=q;y=f[j>>2]|0;z=on(y|0,f[j+4>>2]|0,w|0,0)|0;j=Tn(z|0,I|0,m|0,x|0)|0;Rg(g|0,(f[f[d>>2]>>2]|0)+j|0,y|0)|0;k=k+1|0}while(k>>>0>>0);$q(g);u=h;return}while(1){k=f[e+(t<<2)>>2]|0;if(c)A=f[(f[o>>2]|0)+(k<<2)>>2]|0;else A=k;k=p;w=f[k>>2]|0;y=f[k+4>>2]|0;k=q;j=f[k>>2]|0;x=on(j|0,f[k+4>>2]|0,A|0,0)|0;k=Tn(x|0,I|0,w|0,y|0)|0;Rg(g|0,(f[f[d>>2]>>2]|0)+k|0,j|0)|0;j=f[r>>2]|0;B=$(n[i>>2]);k=0;y=v;while(1){C=$(n[g+(k<<2)>>2]);w=~~$(J($($(B*$(C-$(n[j+(k<<2)>>2])))+$(.5))));f[a+(y<<2)>>2]=w;k=k+1|0;if((k|0)==(l|0))break;else y=y+1|0}t=t+1|0;if(t>>>0>=s>>>0)break;else v=v+l|0}$q(g);u=h;return}function Ce(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0;d=f[b>>2]|0;b=a+12|0;e=(d|0)==-1;do if(e){g=1;h=-1;i=-1}else{j=d+(((d>>>0)%3|0|0)==0?2:-1)|0;if((j|0)!=-1){k=f[(f[b>>2]|0)+12>>2]|0;l=j;while(1){j=f[k+(l<<2)>>2]|0;if((j|0)==-1){m=0;n=l;break}o=j+1|0;l=((o>>>0)%3|0|0)==0?j+-2|0:o;if((l|0)==-1){m=1;n=-1;break}}if(e){g=m;h=-1;i=n;break}else{p=m;q=n}}else{p=1;q=-1}g=p;h=f[(f[f[b>>2]>>2]|0)+(d<<2)>>2]|0;i=q}while(0);if(c){c=(f[a+84>>2]|0)+(h>>>5<<2)|0;f[c>>2]=f[c>>2]|1<<(h&31);r=1}else r=0;c=f[(f[a+152>>2]|0)+(h<<2)>>2]|0;q=(f[a+140>>2]|0)+(c>>>5<<2)|0;f[q>>2]=f[q>>2]|1<<(c&31);if(!g){g=(((i>>>0)%3|0|0)==0?2:-1)+i|0;if((g|0)==-1){s=-1;t=i}else{s=f[(f[f[b>>2]>>2]|0)+(g<<2)>>2]|0;t=i}}else{s=-1;t=-1}if((s|0)==(h|0)){u=r;return u|0}i=f[a+84>>2]|0;a=r;r=s;s=t;while(1){t=i+(r>>>5<<2)|0;f[t>>2]=f[t>>2]|1<<(r&31);t=a+1|0;g=s+1|0;a:do if((s|0)!=-1?(c=((g>>>0)%3|0|0)==0?s+-2|0:g,(c|0)!=-1):0){q=f[b>>2]|0;d=f[q+12>>2]|0;p=c;while(1){c=f[d+(p<<2)>>2]|0;if((c|0)==-1)break;n=c+1|0;m=((n>>>0)%3|0|0)==0?c+-2|0:n;if((m|0)==-1){v=-1;w=-1;break a}else p=m}d=(((p>>>0)%3|0|0)==0?2:-1)+p|0;if((d|0)==-1){v=-1;w=p}else{v=f[(f[q>>2]|0)+(d<<2)>>2]|0;w=p}}else{v=-1;w=-1}while(0);if((v|0)==(h|0)){u=t;break}else{a=t;r=v;s=w}}return u|0}function De(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0;c=a+4|0;d=f[c>>2]|0;e=a+100|0;if(d>>>0<(f[e>>2]|0)>>>0){f[c>>2]=d+1;g=h[d>>0]|0}else g=Di(a)|0;switch(g|0){case 43:case 45:{d=(g|0)==45&1;i=f[c>>2]|0;if(i>>>0<(f[e>>2]|0)>>>0){f[c>>2]=i+1;j=h[i>>0]|0}else j=Di(a)|0;if((b|0)!=0&(j+-48|0)>>>0>9?(f[e>>2]|0)!=0:0){f[c>>2]=(f[c>>2]|0)+-1;k=d;l=j}else{k=d;l=j}break}default:{k=0;l=g}}if((l+-48|0)>>>0>9)if(!(f[e>>2]|0)){m=-2147483648;n=0}else{f[c>>2]=(f[c>>2]|0)+-1;m=-2147483648;n=0}else{g=0;j=l;while(1){g=j+-48+(g*10|0)|0;l=f[c>>2]|0;if(l>>>0<(f[e>>2]|0)>>>0){f[c>>2]=l+1;o=h[l>>0]|0}else o=Di(a)|0;if(!((o+-48|0)>>>0<10&(g|0)<214748364))break;else j=o}j=((g|0)<0)<<31>>31;if((o+-48|0)>>>0<10){l=o;d=g;b=j;while(1){i=on(d|0,b|0,10,0)|0;p=I;q=Tn(l|0,((l|0)<0)<<31>>31|0,-48,-1)|0;r=Tn(q|0,I|0,i|0,p|0)|0;p=I;i=f[c>>2]|0;if(i>>>0<(f[e>>2]|0)>>>0){f[c>>2]=i+1;s=h[i>>0]|0}else s=Di(a)|0;if((s+-48|0)>>>0<10&((p|0)<21474836|(p|0)==21474836&r>>>0<2061584302)){l=s;d=r;b=p}else{t=s;u=r;v=p;break}}}else{t=o;u=g;v=j}if((t+-48|0)>>>0<10)do{t=f[c>>2]|0;if(t>>>0<(f[e>>2]|0)>>>0){f[c>>2]=t+1;w=h[t>>0]|0}else w=Di(a)|0}while((w+-48|0)>>>0<10);if(f[e>>2]|0)f[c>>2]=(f[c>>2]|0)+-1;c=(k|0)!=0;k=Vn(0,0,u|0,v|0)|0;m=c?I:v;n=c?k:u}I=m;return n|0}function Ee(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;b=a+1176|0;c=f[b>>2]|0;if(c|0){d=a+1180|0;e=f[d>>2]|0;if((e|0)==(c|0))g=c;else{h=e;while(1){e=h+-12|0;f[d>>2]=e;i=f[e>>2]|0;if(!i)j=e;else{e=h+-8|0;k=f[e>>2]|0;if((k|0)!=(i|0))f[e>>2]=k+(~((k+-4-i|0)>>>2)<<2);br(i);j=f[d>>2]|0}if((j|0)==(c|0))break;else h=j}g=f[b>>2]|0}br(g)}g=a+1164|0;b=f[g>>2]|0;if(b|0){j=a+1168|0;h=f[j>>2]|0;if((h|0)==(b|0))l=b;else{c=h;while(1){h=c+-12|0;f[j>>2]=h;d=f[h>>2]|0;if(!d)m=h;else{h=c+-8|0;i=f[h>>2]|0;if((i|0)!=(d|0))f[h>>2]=i+(~((i+-4-d|0)>>>2)<<2);br(d);m=f[j>>2]|0}if((m|0)==(b|0))break;else c=m}l=f[g>>2]|0}br(l)}l=f[a+1152>>2]|0;if(l|0){g=a+1156|0;m=f[g>>2]|0;if((m|0)!=(l|0))f[g>>2]=m+(~((m+-4-l|0)>>>2)<<2);br(l)}l=f[a+1140>>2]|0;if(l|0){m=a+1144|0;g=f[m>>2]|0;if((g|0)!=(l|0))f[m>>2]=g+(~((g+-4-l|0)>>>2)<<2);br(l)}l=f[a+1128>>2]|0;if(!l){n=a+1108|0;dl(n);o=a+1088|0;dl(o);p=a+1068|0;dl(p);q=a+1036|0;tj(q);r=a+12|0;xh(r);return}g=a+1132|0;m=f[g>>2]|0;if((m|0)!=(l|0))f[g>>2]=m+(~((m+-4-l|0)>>>2)<<2);br(l);n=a+1108|0;dl(n);o=a+1088|0;dl(o);p=a+1068|0;dl(p);q=a+1036|0;tj(q);r=a+12|0;xh(r);return}function Fe(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;d=u;u=u+16|0;e=d;g=a+4|0;h=f[g>>2]|0;i=f[(f[a>>2]|0)+52>>2]|0;if(!h){if(!(Sa[i&31](a,c,0)|0)){j=0;u=d;return j|0}}else if(!(Sa[i&31](a,c,f[(f[h+4>>2]|0)+80>>2]|0)|0)){j=0;u=d;return j|0}if(!(b[a+28>>0]|0)){j=1;u=d;return j|0}h=f[a+8>>2]|0;i=f[a+32>>2]|0;a=f[h+80>>2]|0;f[e>>2]=0;k=e+4|0;f[k>>2]=0;f[e+8>>2]=0;do if(a)if(a>>>0>1073741823)mq(e);else{l=a<<2;m=dn(l)|0;f[e>>2]=m;n=m+(a<<2)|0;f[e+8>>2]=n;hj(m|0,0,l|0)|0;f[k>>2]=n;o=m;p=n;q=m;break}else{o=0;p=0;q=0}while(0);e=f[c+4>>2]|0;a=f[c>>2]|0;c=a;a:do if((e|0)!=(a|0)){m=e-a>>2;if(b[h+84>>0]|0){n=0;while(1){f[o+(f[c+(n<<2)>>2]<<2)>>2]=n;n=n+1|0;if(n>>>0>=m>>>0)break a}}n=f[h+68>>2]|0;l=0;do{f[o+(f[n+(f[c+(l<<2)>>2]<<2)>>2]<<2)>>2]=l;l=l+1|0}while(l>>>0>>0)}while(0);c=f[(f[(f[g>>2]|0)+4>>2]|0)+80>>2]|0;b:do if(c|0){g=f[i+68>>2]|0;if(b[h+84>>0]|0){a=0;while(1){f[g+(a<<2)>>2]=f[o+(a<<2)>>2];a=a+1|0;if(a>>>0>=c>>>0)break b}}a=f[h+68>>2]|0;e=0;do{f[g+(e<<2)>>2]=f[o+(f[a+(e<<2)>>2]<<2)>>2];e=e+1|0}while(e>>>0>>0)}while(0);if(o|0){if((p|0)!=(o|0))f[k>>2]=p+(~((p+-4-o|0)>>>2)<<2);br(q)}j=1;u=d;return j|0}function Ge(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;c=u;u=u+16|0;d=c;f[a>>2]=0;f[a+8>>2]=b;yh(a+12|0);rn(a+1036|0);to(a+1068|0);to(a+1088|0);to(a+1108|0);e=a+1128|0;f[e>>2]=0;g=a+1132|0;f[g>>2]=0;f[a+1136>>2]=0;h=(b|0)==0;do if(!h)if(b>>>0>1073741823)mq(e);else{i=b<<2;j=dn(i)|0;f[e>>2]=j;k=j+(b<<2)|0;f[a+1136>>2]=k;hj(j|0,0,i|0)|0;f[g>>2]=k;break}while(0);g=a+1140|0;f[g>>2]=0;e=a+1144|0;f[e>>2]=0;f[a+1148>>2]=0;if(!h){k=b<<2;i=dn(k)|0;f[g>>2]=i;g=i+(b<<2)|0;f[a+1148>>2]=g;hj(i|0,0,k|0)|0;f[e>>2]=g}g=a+1152|0;f[g>>2]=0;e=a+1156|0;f[e>>2]=0;f[a+1160>>2]=0;if(!h){k=b<<2;i=dn(k)|0;f[g>>2]=i;g=i+(b<<2)|0;f[a+1160>>2]=g;hj(i|0,0,k|0)|0;f[e>>2]=g}g=b<<5|1;f[d>>2]=0;e=d+4|0;f[e>>2]=0;f[d+8>>2]=0;if(!h){k=b<<2;i=dn(k)|0;f[d>>2]=i;j=i+(b<<2)|0;f[d+8>>2]=j;hj(i|0,0,k|0)|0;f[e>>2]=j}fk(a+1164|0,g,d);j=f[d>>2]|0;if(j|0){k=f[e>>2]|0;if((k|0)!=(j|0))f[e>>2]=k+(~((k+-4-j|0)>>>2)<<2);br(j)}f[d>>2]=0;j=d+4|0;f[j>>2]=0;f[d+8>>2]=0;if(!h){h=b<<2;k=dn(h)|0;f[d>>2]=k;e=k+(b<<2)|0;f[d+8>>2]=e;hj(k|0,0,h|0)|0;f[j>>2]=e}fk(a+1176|0,g,d);g=f[d>>2]|0;if(!g){u=c;return}d=f[j>>2]|0;if((d|0)!=(g|0))f[j>>2]=d+(~((d+-4-g|0)>>>2)<<2);br(g);u=c;return}function He(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0.0,D=0.0,E=0.0;g=u;u=u+16|0;h=g;i=b+16|0;f[a>>2]=f[i>>2];f[a+4>>2]=f[i+4>>2];f[a+8>>2]=f[i+8>>2];f[a+12>>2]=f[i+12>>2];f[a+16>>2]=f[i+16>>2];f[a+20>>2]=f[i+20>>2];j=a+8|0;f[j>>2]=(f[j>>2]|0)+d;j=(d|0)>0;if(j){k=b+4|0;l=a+16|0;m=a+12|0;n=f[b>>2]|0;o=n;q=0;r=o;s=n;n=o;while(1){o=f[c+(q<<2)>>2]|0;t=f[k>>2]|0;if(t-s>>2>>>0>o>>>0){v=r;w=n}else{x=o+1|0;f[h>>2]=0;y=t-s>>2;z=s;A=t;if(x>>>0<=y>>>0)if(x>>>0>>0?(t=z+(x<<2)|0,(t|0)!=(A|0)):0){f[k>>2]=A+(~((A+-4-t|0)>>>2)<<2);B=r}else B=r;else{kh(b,x-y|0,h);B=f[b>>2]|0}v=B;w=B}y=w+(o<<2)|0;x=f[y>>2]|0;s=w;if((x|0)<=1)if((x|0)==0?(f[l>>2]=(f[l>>2]|0)+1,o>>>0>(f[m>>2]|0)>>>0):0){f[m>>2]=o;C=0.0}else C=0.0;else{D=+(x|0);C=+Fg(D)*D}x=(f[y>>2]|0)+1|0;f[y>>2]=x;D=+(x|0);E=+Fg(D)*D-C;p[a>>3]=+p[a>>3]+E;q=q+1|0;if((q|0)==(d|0))break;else{r=v;n=w}}}if(e){f[i>>2]=f[a>>2];f[i+4>>2]=f[a+4>>2];f[i+8>>2]=f[a+8>>2];f[i+12>>2]=f[a+12>>2];f[i+16>>2]=f[a+16>>2];u=g;return}if(!j){u=g;return}j=f[b>>2]|0;b=0;do{a=j+(f[c+(b<<2)>>2]<<2)|0;f[a>>2]=(f[a>>2]|0)+-1;b=b+1|0}while((b|0)!=(d|0));u=g;return}function Ie(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0.0;a:do if(b>>>0<=20)do switch(b|0){case 9:{d=(f[c>>2]|0)+(4-1)&~(4-1);e=f[d>>2]|0;f[c>>2]=d+4;f[a>>2]=e;break a;break}case 10:{e=(f[c>>2]|0)+(4-1)&~(4-1);d=f[e>>2]|0;f[c>>2]=e+4;e=a;f[e>>2]=d;f[e+4>>2]=((d|0)<0)<<31>>31;break a;break}case 11:{d=(f[c>>2]|0)+(4-1)&~(4-1);e=f[d>>2]|0;f[c>>2]=d+4;d=a;f[d>>2]=e;f[d+4>>2]=0;break a;break}case 12:{d=(f[c>>2]|0)+(8-1)&~(8-1);e=d;g=f[e>>2]|0;h=f[e+4>>2]|0;f[c>>2]=d+8;d=a;f[d>>2]=g;f[d+4>>2]=h;break a;break}case 13:{h=(f[c>>2]|0)+(4-1)&~(4-1);d=f[h>>2]|0;f[c>>2]=h+4;h=(d&65535)<<16>>16;d=a;f[d>>2]=h;f[d+4>>2]=((h|0)<0)<<31>>31;break a;break}case 14:{h=(f[c>>2]|0)+(4-1)&~(4-1);d=f[h>>2]|0;f[c>>2]=h+4;h=a;f[h>>2]=d&65535;f[h+4>>2]=0;break a;break}case 15:{h=(f[c>>2]|0)+(4-1)&~(4-1);d=f[h>>2]|0;f[c>>2]=h+4;h=(d&255)<<24>>24;d=a;f[d>>2]=h;f[d+4>>2]=((h|0)<0)<<31>>31;break a;break}case 16:{h=(f[c>>2]|0)+(4-1)&~(4-1);d=f[h>>2]|0;f[c>>2]=h+4;h=a;f[h>>2]=d&255;f[h+4>>2]=0;break a;break}case 17:{h=(f[c>>2]|0)+(8-1)&~(8-1);i=+p[h>>3];f[c>>2]=h+8;p[a>>3]=i;break a;break}case 18:{h=(f[c>>2]|0)+(8-1)&~(8-1);i=+p[h>>3];f[c>>2]=h+8;p[a>>3]=i;break a;break}default:break a}while(0);while(0);return}function Je(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;c=u;u=u+16|0;d=c+4|0;e=c;g=c+8|0;if(!(Qa[f[(f[a>>2]|0)+32>>2]&127](a)|0)){h=0;u=c;return h|0}i=a+44|0;j=f[i>>2]|0;k=a+8|0;l=a+12|0;m=f[l>>2]|0;n=f[k>>2]|0;b[g>>0]=(m-n|0)>>>2;o=j+16|0;p=f[o+4>>2]|0;if((p|0)>0|(p|0)==0&(f[o>>2]|0)>>>0>0){q=k;r=n;s=m}else{f[e>>2]=f[j+4>>2];f[d>>2]=f[e>>2];ye(j,d,g,g+1|0)|0;q=k;r=f[k>>2]|0;s=f[l>>2]|0}a:do if((r|0)!=(s|0)){l=a+4|0;k=r;while(1){g=f[k>>2]|0;k=k+4|0;if(!(Sa[f[(f[g>>2]|0)+8>>2]&31](g,a,f[l>>2]|0)|0)){h=0;break}if((k|0)==(s|0))break a}u=c;return h|0}while(0);if(!(vc(a)|0)){h=0;u=c;return h|0}s=a+32|0;r=f[s>>2]|0;k=a+36|0;l=f[k>>2]|0;b:do if((r|0)!=(l|0)){g=r;do{if(!(Ra[f[(f[a>>2]|0)+40>>2]&127](a,f[g>>2]|0)|0)){h=0;t=18;break}g=g+4|0}while((g|0)!=(l|0));if((t|0)==18){u=c;return h|0}g=f[s>>2]|0;d=f[k>>2]|0;if((g|0)!=(d|0)){j=g;while(1){g=f[(f[q>>2]|0)+(f[j>>2]<<2)>>2]|0;j=j+4|0;if(!(Ra[f[(f[g>>2]|0)+12>>2]&127](g,f[i>>2]|0)|0)){h=0;break}if((j|0)==(d|0))break b}u=c;return h|0}}while(0);h=Qa[f[(f[a>>2]|0)+44>>2]&127](a)|0;u=c;return h|0}function Ke(a,b){a=a|0;b=b|0;fd(a,b);fd(a+32|0,b);fd(a+64|0,b);fd(a+96|0,b);fd(a+128|0,b);fd(a+160|0,b);fd(a+192|0,b);fd(a+224|0,b);fd(a+256|0,b);fd(a+288|0,b);fd(a+320|0,b);fd(a+352|0,b);fd(a+384|0,b);fd(a+416|0,b);fd(a+448|0,b);fd(a+480|0,b);fd(a+512|0,b);fd(a+544|0,b);fd(a+576|0,b);fd(a+608|0,b);fd(a+640|0,b);fd(a+672|0,b);fd(a+704|0,b);fd(a+736|0,b);fd(a+768|0,b);fd(a+800|0,b);fd(a+832|0,b);fd(a+864|0,b);fd(a+896|0,b);fd(a+928|0,b);fd(a+960|0,b);fd(a+992|0,b);fd(a+1024|0,b);return}function Le(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;e=u;u=u+64|0;g=e+60|0;h=e;i=dn(80)|0;j=f[c+8>>2]|0;f[i+4>>2]=0;f[i>>2]=3232;k=i+8|0;l=i+12|0;m=l+44|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(m|0));f[k>>2]=3256;n=i+56|0;f[n>>2]=0;f[i+60>>2]=0;f[i+64>>2]=0;f[i+68>>2]=j;f[i+72>>2]=d;o=i+76|0;f[o>>2]=0;p=i;q=f[c+12>>2]|0;r=h+4|0;l=r+4|0;m=l+40|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(m|0));f[h>>2]=3256;l=h+48|0;f[l>>2]=0;m=h+52|0;f[m>>2]=0;f[h+56>>2]=0;s=q;f[r>>2]=s;t=((f[s+4>>2]|0)-(f[q>>2]|0)>>2>>>0)/3|0;b[g>>0]=0;Xg(h+24|0,t,g);t=f[r>>2]|0;r=(f[t+28>>2]|0)-(f[t+24>>2]|0)>>2;b[g>>0]=0;Xg(h+36|0,r,g);f[h+8>>2]=q;f[h+12>>2]=d;f[h+16>>2]=j;f[h+20>>2]=i;f[o>>2]=c+72;ef(k,h)|0;Yf(n,f[l>>2]|0,f[m>>2]|0);f[a>>2]=p;f[h>>2]=3256;p=f[l>>2]|0;if(p|0){l=f[m>>2]|0;if((l|0)!=(p|0))f[m>>2]=l+(~((l+-4-p|0)>>>2)<<2);br(p)}f[h>>2]=3276;p=f[h+36>>2]|0;if(p|0)br(p);p=f[h+24>>2]|0;if(!p){u=e;return}br(p);u=e;return}function Me(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0;c=u;u=u+32|0;d=c;e=a+4|0;g=f[a>>2]|0;h=(f[e>>2]|0)-g>>2;i=h+1|0;if(i>>>0>1073741823)mq(a);j=a+8|0;k=(f[j>>2]|0)-g|0;g=k>>1;l=k>>2>>>0<536870911?(g>>>0>>0?i:g):1073741823;f[d+12>>2]=0;f[d+16>>2]=a+8;do if(l)if(l>>>0>1073741823){g=ra(8)|0;Wo(g,14941);f[g>>2]=6944;va(g|0,1080,114)}else{m=dn(l<<2)|0;break}else m=0;while(0);f[d>>2]=m;g=m+(h<<2)|0;h=d+8|0;i=d+4|0;f[i>>2]=g;k=m+(l<<2)|0;l=d+12|0;f[l>>2]=k;m=f[b>>2]|0;f[b>>2]=0;f[g>>2]=m;m=g+4|0;f[h>>2]=m;b=f[a>>2]|0;n=f[e>>2]|0;if((n|0)==(b|0)){o=g;p=l;q=h;r=b;s=m;t=n;v=k;w=o;f[a>>2]=w;f[i>>2]=r;f[e>>2]=s;f[q>>2]=t;x=f[j>>2]|0;f[j>>2]=v;f[p>>2]=x;f[d>>2]=r;Wh(d);u=c;return}else{y=n;z=g}do{y=y+-4|0;g=f[y>>2]|0;f[y>>2]=0;f[z+-4>>2]=g;z=(f[i>>2]|0)+-4|0;f[i>>2]=z}while((y|0)!=(b|0));o=z;p=l;q=h;r=f[a>>2]|0;s=f[h>>2]|0;t=f[e>>2]|0;v=f[l>>2]|0;w=o;f[a>>2]=w;f[i>>2]=r;f[e>>2]=s;f[q>>2]=t;x=f[j>>2]|0;f[j>>2]=v;f[p>>2]=x;f[d>>2]=r;Wh(d);u=c;return}function Ne(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;d=u;u=u+32|0;e=d+12|0;g=d;h=hl(c,0)|0;if(!h){f[a>>2]=0;u=d;return}i=f[c+100>>2]|0;j=f[c+96>>2]|0;c=i-j|0;k=(c|0)/12|0;f[e>>2]=0;l=e+4|0;f[l>>2]=0;f[e+8>>2]=0;m=j;do if(c)if(k>>>0>357913941)mq(e);else{n=dn(c)|0;f[e>>2]=n;f[e+8>>2]=n+(k*12|0);hj(n|0,0,c|0)|0;f[l>>2]=n+c;o=n;break}else o=0;while(0);f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;a:do if((i|0)!=(j|0)){c=g+4|0;n=g+8|0;if(b[h+84>>0]|0){p=0;while(1){q=m+(p*12|0)|0;f[g>>2]=f[q>>2];f[g+4>>2]=f[q+4>>2];f[g+8>>2]=f[q+8>>2];f[o+(p*12|0)>>2]=f[g>>2];f[o+(p*12|0)+4>>2]=f[c>>2];f[o+(p*12|0)+8>>2]=f[n>>2];p=p+1|0;if(p>>>0>=k>>>0)break a}}p=f[h+68>>2]|0;q=0;do{r=f[p+(f[m+(q*12|0)>>2]<<2)>>2]|0;f[g>>2]=r;s=f[p+(f[m+(q*12|0)+4>>2]<<2)>>2]|0;f[c>>2]=s;t=f[p+(f[m+(q*12|0)+8>>2]<<2)>>2]|0;f[n>>2]=t;f[o+(q*12|0)>>2]=r;f[o+(q*12|0)+4>>2]=s;f[o+(q*12|0)+8>>2]=t;q=q+1|0}while(q>>>0>>0)}while(0);Cj(a,e);a=f[e>>2]|0;if(a|0){e=f[l>>2]|0;if((e|0)!=(a|0))f[l>>2]=e+(~(((e+-12-a|0)>>>0)/12|0)*12|0);br(a)}u=d;return}function Oe(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;c=u;u=u+16|0;d=c;f[a>>2]=0;f[a+8>>2]=b;rn(a+12|0);to(a+44|0);to(a+64|0);to(a+84|0);e=a+104|0;f[e>>2]=0;g=a+108|0;f[g>>2]=0;f[a+112>>2]=0;h=(b|0)==0;do if(!h)if(b>>>0>1073741823)mq(e);else{i=b<<2;j=dn(i)|0;f[e>>2]=j;k=j+(b<<2)|0;f[a+112>>2]=k;hj(j|0,0,i|0)|0;f[g>>2]=k;break}while(0);g=a+116|0;f[g>>2]=0;e=a+120|0;f[e>>2]=0;f[a+124>>2]=0;if(!h){k=b<<2;i=dn(k)|0;f[g>>2]=i;g=i+(b<<2)|0;f[a+124>>2]=g;hj(i|0,0,k|0)|0;f[e>>2]=g}g=a+128|0;f[g>>2]=0;e=a+132|0;f[e>>2]=0;f[a+136>>2]=0;if(!h){k=b<<2;i=dn(k)|0;f[g>>2]=i;g=i+(b<<2)|0;f[a+136>>2]=g;hj(i|0,0,k|0)|0;f[e>>2]=g}g=b<<5|1;f[d>>2]=0;e=d+4|0;f[e>>2]=0;f[d+8>>2]=0;if(!h){k=b<<2;i=dn(k)|0;f[d>>2]=i;j=i+(b<<2)|0;f[d+8>>2]=j;hj(i|0,0,k|0)|0;f[e>>2]=j}fk(a+140|0,g,d);j=f[d>>2]|0;if(j|0){k=f[e>>2]|0;if((k|0)!=(j|0))f[e>>2]=k+(~((k+-4-j|0)>>>2)<<2);br(j)}f[d>>2]=0;j=d+4|0;f[j>>2]=0;f[d+8>>2]=0;if(!h){h=b<<2;k=dn(h)|0;f[d>>2]=k;e=k+(b<<2)|0;f[d+8>>2]=e;hj(k|0,0,h|0)|0;f[j>>2]=e}fk(a+152|0,g,d);g=f[d>>2]|0;if(!g){u=c;return}d=f[j>>2]|0;if((d|0)!=(g|0))f[j>>2]=d+(~((d+-4-g|0)>>>2)<<2);br(g);u=c;return}function Pe(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;c=u;u=u+16|0;d=c;f[a>>2]=0;f[a+8>>2]=b;to(a+12|0);to(a+32|0);to(a+52|0);to(a+72|0);e=a+92|0;f[e>>2]=0;g=a+96|0;f[g>>2]=0;f[a+100>>2]=0;h=(b|0)==0;do if(!h)if(b>>>0>1073741823)mq(e);else{i=b<<2;j=dn(i)|0;f[e>>2]=j;k=j+(b<<2)|0;f[a+100>>2]=k;hj(j|0,0,i|0)|0;f[g>>2]=k;break}while(0);g=a+104|0;f[g>>2]=0;e=a+108|0;f[e>>2]=0;f[a+112>>2]=0;if(!h){k=b<<2;i=dn(k)|0;f[g>>2]=i;g=i+(b<<2)|0;f[a+112>>2]=g;hj(i|0,0,k|0)|0;f[e>>2]=g}g=a+116|0;f[g>>2]=0;e=a+120|0;f[e>>2]=0;f[a+124>>2]=0;if(!h){k=b<<2;i=dn(k)|0;f[g>>2]=i;g=i+(b<<2)|0;f[a+124>>2]=g;hj(i|0,0,k|0)|0;f[e>>2]=g}g=b<<5|1;f[d>>2]=0;e=d+4|0;f[e>>2]=0;f[d+8>>2]=0;if(!h){k=b<<2;i=dn(k)|0;f[d>>2]=i;j=i+(b<<2)|0;f[d+8>>2]=j;hj(i|0,0,k|0)|0;f[e>>2]=j}fk(a+128|0,g,d);j=f[d>>2]|0;if(j|0){k=f[e>>2]|0;if((k|0)!=(j|0))f[e>>2]=k+(~((k+-4-j|0)>>>2)<<2);br(j)}f[d>>2]=0;j=d+4|0;f[j>>2]=0;f[d+8>>2]=0;if(!h){h=b<<2;k=dn(h)|0;f[d>>2]=k;e=k+(b<<2)|0;f[d+8>>2]=e;hj(k|0,0,h|0)|0;f[j>>2]=e}fk(a+140|0,g,d);g=f[d>>2]|0;if(!g){u=c;return}d=f[j>>2]|0;if((d|0)!=(g|0))f[j>>2]=d+(~((d+-4-g|0)>>>2)<<2);br(g);u=c;return}function Qe(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0;d=dn(40)|0;e=d+16|0;dj(e,c);dj(d+28|0,c+12|0);c=a+4|0;g=f[c>>2]|0;do if(g){h=b[d+27>>0]|0;i=h<<24>>24<0;j=i?f[d+20>>2]|0:h&255;h=i?f[e>>2]|0:e;i=g;while(1){k=i+16|0;l=b[k+11>>0]|0;m=l<<24>>24<0;n=m?f[i+20>>2]|0:l&255;l=n>>>0>>0?n:j;if((l|0)!=0?(o=Pk(h,m?f[k>>2]|0:k,l)|0,(o|0)!=0):0)if((o|0)<0)p=7;else p=9;else if(j>>>0>>0)p=7;else p=9;if((p|0)==7){p=0;n=f[i>>2]|0;if(!n){p=8;break}else q=n}else if((p|0)==9){p=0;r=i+4|0;n=f[r>>2]|0;if(!n){p=11;break}else q=n}i=q}if((p|0)==8){s=i;t=i;break}else if((p|0)==11){s=i;t=r;break}}else{s=c;t=c}while(0);f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=s;f[t>>2]=d;s=f[f[a>>2]>>2]|0;if(!s){u=d;v=a+4|0;w=f[v>>2]|0;Ae(w,u);x=a+8|0;y=f[x>>2]|0;z=y+1|0;f[x>>2]=z;return d|0}f[a>>2]=s;u=f[t>>2]|0;v=a+4|0;w=f[v>>2]|0;Ae(w,u);x=a+8|0;y=f[x>>2]|0;z=y+1|0;f[x>>2]=z;return d|0}function Re(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=Oa,B=Oa;g=u;u=u+16|0;h=g;i=b[d+24>>0]|0;j=i<<24>>24;Bh(a,c,e,j,0,d,1);k=f[a>>2]|0;a=(f[f[k>>2]>>2]|0)+(f[k+48>>2]|0)|0;k=f[c+4>>2]|0;sq(h);yo(h,$(n[c+20>>2]),(1<>>0>1073741823?-1:j<<2)|0;if(!e){$q(k);u=g;return}l=d+68|0;m=d+48|0;o=d+40|0;p=c+8|0;c=(b[d+84>>0]|0)==0;if(i<<24>>24>0){q=0;r=0}else{i=0;do{if(c)s=f[(f[l>>2]|0)+(i<<2)>>2]|0;else s=i;t=m;v=f[t>>2]|0;w=f[t+4>>2]|0;t=o;x=f[t>>2]|0;y=on(x|0,f[t+4>>2]|0,s|0,0)|0;t=Tn(y|0,I|0,v|0,w|0)|0;Rg(k|0,(f[f[d>>2]>>2]|0)+t|0,x|0)|0;i=i+1|0}while((i|0)!=(e|0));$q(k);u=g;return}while(1){if(c)z=f[(f[l>>2]|0)+(r<<2)>>2]|0;else z=r;i=m;s=f[i>>2]|0;x=f[i+4>>2]|0;i=o;t=f[i>>2]|0;w=on(t|0,f[i+4>>2]|0,z|0,0)|0;i=Tn(w|0,I|0,s|0,x|0)|0;Rg(k|0,(f[f[d>>2]>>2]|0)+i|0,t|0)|0;t=f[p>>2]|0;A=$(n[h>>2]);i=0;x=q;while(1){B=$(n[k+(i<<2)>>2]);s=~~$(J($($(A*$(B-$(n[t+(i<<2)>>2])))+$(.5))));f[a+(x<<2)>>2]=s;i=i+1|0;if((i|0)==(j|0))break;else x=x+1|0}r=r+1|0;if((r|0)==(e|0))break;else q=q+j|0}$q(k);u=g;return}function Se(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3340;ii(a+200|0);b=f[a+184>>2]|0;if(b|0){c=a+188|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}_i(a+172|0);b=f[a+152>>2]|0;if(b|0){d=a+156|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+140>>2]|0;if(b|0)br(b);b=f[a+128>>2]|0;if(b|0){c=b;do{b=c;c=f[c>>2]|0;br(b)}while((c|0)!=0)}c=a+120|0;b=f[c>>2]|0;f[c>>2]=0;if(b|0)br(b);b=f[a+108>>2]|0;if(b|0){c=a+112|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~(((d+-12-b|0)>>>0)/12|0)*12|0);br(b)}b=f[a+96>>2]|0;if(b|0){d=a+100|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+84>>2]|0;if(b|0)br(b);b=f[a+72>>2]|0;if(b|0){c=a+76|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+52>>2]|0;if(b|0){d=a+56|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+40>>2]|0;if(b|0){c=a+44|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+28>>2]|0;if(b|0)br(b);b=f[a+16>>2]|0;if(b|0){d=a+20|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=a+12|0;a=f[b>>2]|0;f[b>>2]=0;if(!a)return;ui(a);br(a);return}function Te(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;b=a+140|0;c=f[b>>2]|0;if(c|0){d=a+144|0;e=f[d>>2]|0;if((e|0)==(c|0))g=c;else{h=e;while(1){e=h+-12|0;f[d>>2]=e;i=f[e>>2]|0;if(!i)j=e;else{e=h+-8|0;k=f[e>>2]|0;if((k|0)!=(i|0))f[e>>2]=k+(~((k+-4-i|0)>>>2)<<2);br(i);j=f[d>>2]|0}if((j|0)==(c|0))break;else h=j}g=f[b>>2]|0}br(g)}g=a+128|0;b=f[g>>2]|0;if(b|0){j=a+132|0;h=f[j>>2]|0;if((h|0)==(b|0))l=b;else{c=h;while(1){h=c+-12|0;f[j>>2]=h;d=f[h>>2]|0;if(!d)m=h;else{h=c+-8|0;i=f[h>>2]|0;if((i|0)!=(d|0))f[h>>2]=i+(~((i+-4-d|0)>>>2)<<2);br(d);m=f[j>>2]|0}if((m|0)==(b|0))break;else c=m}l=f[g>>2]|0}br(l)}l=f[a+116>>2]|0;if(l|0){g=a+120|0;m=f[g>>2]|0;if((m|0)!=(l|0))f[g>>2]=m+(~((m+-4-l|0)>>>2)<<2);br(l)}l=f[a+104>>2]|0;if(l|0){m=a+108|0;g=f[m>>2]|0;if((g|0)!=(l|0))f[m>>2]=g+(~((g+-4-l|0)>>>2)<<2);br(l)}l=f[a+92>>2]|0;if(!l){n=a+72|0;dl(n);o=a+52|0;dl(o);p=a+32|0;dl(p);q=a+12|0;dl(q);return}g=a+96|0;m=f[g>>2]|0;if((m|0)!=(l|0))f[g>>2]=m+(~((m+-4-l|0)>>>2)<<2);br(l);n=a+72|0;dl(n);o=a+52|0;dl(o);p=a+32|0;dl(p);q=a+12|0;dl(q);return}function Ue(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;b=a+152|0;c=f[b>>2]|0;if(c|0){d=a+156|0;e=f[d>>2]|0;if((e|0)==(c|0))g=c;else{h=e;while(1){e=h+-12|0;f[d>>2]=e;i=f[e>>2]|0;if(!i)j=e;else{e=h+-8|0;k=f[e>>2]|0;if((k|0)!=(i|0))f[e>>2]=k+(~((k+-4-i|0)>>>2)<<2);br(i);j=f[d>>2]|0}if((j|0)==(c|0))break;else h=j}g=f[b>>2]|0}br(g)}g=a+140|0;b=f[g>>2]|0;if(b|0){j=a+144|0;h=f[j>>2]|0;if((h|0)==(b|0))l=b;else{c=h;while(1){h=c+-12|0;f[j>>2]=h;d=f[h>>2]|0;if(!d)m=h;else{h=c+-8|0;i=f[h>>2]|0;if((i|0)!=(d|0))f[h>>2]=i+(~((i+-4-d|0)>>>2)<<2);br(d);m=f[j>>2]|0}if((m|0)==(b|0))break;else c=m}l=f[g>>2]|0}br(l)}l=f[a+128>>2]|0;if(l|0){g=a+132|0;m=f[g>>2]|0;if((m|0)!=(l|0))f[g>>2]=m+(~((m+-4-l|0)>>>2)<<2);br(l)}l=f[a+116>>2]|0;if(l|0){m=a+120|0;g=f[m>>2]|0;if((g|0)!=(l|0))f[m>>2]=g+(~((g+-4-l|0)>>>2)<<2);br(l)}l=f[a+104>>2]|0;if(!l){n=a+84|0;dl(n);o=a+64|0;dl(o);p=a+44|0;dl(p);q=a+12|0;tj(q);return}g=a+108|0;m=f[g>>2]|0;if((m|0)!=(l|0))f[g>>2]=m+(~((m+-4-l|0)>>>2)<<2);br(l);n=a+84|0;dl(n);o=a+64|0;dl(o);p=a+44|0;dl(p);q=a+12|0;tj(q);return}function Ve(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3080;jj(a+200|0);b=f[a+184>>2]|0;if(b|0){c=a+188|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}_i(a+172|0);b=f[a+152>>2]|0;if(b|0){d=a+156|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+140>>2]|0;if(b|0)br(b);b=f[a+128>>2]|0;if(b|0){c=b;do{b=c;c=f[c>>2]|0;br(b)}while((c|0)!=0)}c=a+120|0;b=f[c>>2]|0;f[c>>2]=0;if(b|0)br(b);b=f[a+108>>2]|0;if(b|0){c=a+112|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~(((d+-12-b|0)>>>0)/12|0)*12|0);br(b)}b=f[a+96>>2]|0;if(b|0){d=a+100|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+84>>2]|0;if(b|0)br(b);b=f[a+72>>2]|0;if(b|0){c=a+76|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+52>>2]|0;if(b|0){d=a+56|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+40>>2]|0;if(b|0){c=a+44|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+28>>2]|0;if(b|0)br(b);b=f[a+16>>2]|0;if(b|0){d=a+20|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=a+12|0;a=f[b>>2]|0;f[b>>2]=0;if(!a)return;ui(a);br(a);return}function We(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=u;u=u+48|0;d=c+44|0;e=c+40|0;g=c+36|0;h=c+32|0;i=c;f[h>>2]=f[a+60>>2];j=b+16|0;k=j;l=f[k+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0)){f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,h,h+4|0)|0}rn(i);lk(i);if((f[h>>2]|0)>0){k=a+56|0;l=1;m=0;do{n=l;l=(f[(f[k>>2]|0)+(m>>>5<<2)>>2]&1<<(m&31)|0)!=0;Vi(i,n^l^1);m=m+1|0}while((m|0)<(f[h>>2]|0))}fd(i,b);f[g>>2]=f[a+12>>2];h=j;m=f[h>>2]|0;l=f[h+4>>2]|0;if((l|0)>0|(l|0)==0&m>>>0>0){o=l;p=m}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;m=j;o=f[m+4>>2]|0;p=f[m>>2]|0}f[g>>2]=f[a+20>>2];if((o|0)>0|(o|0)==0&p>>>0>0){tj(i);u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;tj(i);u=c;return 1}function Xe(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;d=f[c>>2]|0;c=f[d>>2]|0;e=f[a+4>>2]|0;g=f[d+4>>2]|0;h=e+-1|0;i=(h&e|0)==0;if(!i)if(g>>>0>>0)j=g;else j=(g>>>0)%(e>>>0)|0;else j=h&g;g=(f[a>>2]|0)+(j<<2)|0;k=f[g>>2]|0;while(1){l=f[k>>2]|0;if((l|0)==(d|0))break;else k=l}if((k|0)!=(a+8|0)){l=f[k+4>>2]|0;if(!i)if(l>>>0>>0)m=l;else m=(l>>>0)%(e>>>0)|0;else m=l&h;if((m|0)==(j|0)){n=c;o=21}else o=13}else o=13;do if((o|0)==13){if(c|0){m=f[c+4>>2]|0;if(!i)if(m>>>0>>0)p=m;else p=(m>>>0)%(e>>>0)|0;else p=m&h;if((p|0)==(j|0)){q=c;r=c;o=22;break}}f[g>>2]=0;n=f[d>>2]|0;o=21}while(0);if((o|0)==21){g=n;if(!n)s=g;else{q=n;r=g;o=22}}if((o|0)==22){o=f[q+4>>2]|0;if(!i)if(o>>>0>>0)t=o;else t=(o>>>0)%(e>>>0)|0;else t=o&h;if((t|0)==(j|0))s=r;else{f[(f[a>>2]|0)+(t<<2)>>2]=k;s=f[d>>2]|0}}f[k>>2]=s;f[d>>2]=0;s=a+12|0;f[s>>2]=(f[s>>2]|0)+-1;if(!d)return c|0;s=d+8|0;a=f[d+20>>2]|0;if(a|0){k=d+24|0;if((f[k>>2]|0)!=(a|0))f[k>>2]=a;br(a)}if((b[s+11>>0]|0)<0)br(f[s>>2]|0);br(d);return c|0}function Ye(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0;b=u;u=u+16|0;c=b+4|0;d=b;f[c>>2]=0;e=c+4|0;f[e>>2]=0;f[c+8>>2]=0;g=a+56|0;h=f[g>>2]|0;i=(f[h+100>>2]|0)-(f[h+96>>2]|0)|0;j=(i|0)/12|0;if(!i){k=0;l=0}else{i=c+8|0;m=0;n=0;o=h;h=0;p=0;while(1){q=f[o+96>>2]|0;r=f[q+(n*12|0)>>2]|0;s=r-m|0;t=((s|0)>-1?s:0-s|0)<<1|s>>>31;f[d>>2]=t;if((h|0)==(p|0)){Ci(c,d);v=f[e>>2]|0;w=f[i>>2]|0}else{f[h>>2]=t;t=h+4|0;f[e>>2]=t;v=t;w=p}t=f[q+(n*12|0)+4>>2]|0;s=t-r|0;r=((s|0)>-1?s:0-s|0)<<1|s>>>31;f[d>>2]=r;if((v|0)==(w|0)){Ci(c,d);x=f[e>>2]|0;y=f[i>>2]|0}else{f[v>>2]=r;r=v+4|0;f[e>>2]=r;x=r;y=w}r=f[q+(n*12|0)+8>>2]|0;q=r-t|0;t=((q|0)>-1?q:0-q|0)<<1|q>>>31;f[d>>2]=t;if((x|0)==(y|0))Ci(c,d);else{f[x>>2]=t;f[e>>2]=x+4}t=n+1|0;if(t>>>0>=j>>>0)break;m=r;n=t;o=f[g>>2]|0;h=f[e>>2]|0;p=f[i>>2]|0}k=f[c>>2]|0;l=f[e>>2]|0}Dc(k,l-k>>2,1,0,f[a+44>>2]|0)|0;a=f[c>>2]|0;if(!a){u=b;return 1}c=f[e>>2]|0;if((c|0)!=(a|0))f[e>>2]=c+(~((c+-4-a|0)>>>2)<<2);br(a);u=b;return 1}function Ze(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=f[a+12>>2]|0;e=a+108|0;g=f[e>>2]|0;h=f[g+80>>2]|0;b[c+84>>0]=0;i=c+68|0;j=c+72|0;k=f[j>>2]|0;l=f[i>>2]|0;m=k-l>>2;n=l;l=k;if(h>>>0<=m>>>0)if(h>>>0>>0?(k=n+(h<<2)|0,(k|0)!=(l|0)):0){f[j>>2]=l+(~((l+-4-k|0)>>>2)<<2);o=g;p=h}else{o=g;p=h}else{kh(i,h-m|0,3220);m=f[e>>2]|0;o=m;p=f[m+80>>2]|0}m=(f[o+100>>2]|0)-(f[o+96>>2]|0)|0;e=(m|0)/12|0;if(!m){q=1;return q|0}m=a+112|0;a=c+68|0;c=f[o+96>>2]|0;o=0;while(1){h=o*3|0;if((h|0)==-1){q=0;r=12;break}i=f[d>>2]|0;g=f[i+(h<<2)>>2]|0;if((g|0)==-1){q=0;r=12;break}k=f[(f[m>>2]|0)+12>>2]|0;l=f[k+(g<<2)>>2]|0;if(l>>>0>=p>>>0){q=0;r=12;break}g=f[a>>2]|0;f[g+(f[c+(o*12|0)>>2]<<2)>>2]=l;l=h+1|0;if((l|0)==-1){q=0;r=12;break}j=f[i+(l<<2)>>2]|0;if((j|0)==-1){q=0;r=12;break}l=f[k+(j<<2)>>2]|0;if(l>>>0>=p>>>0){q=0;r=12;break}f[g+(f[c+(o*12|0)+4>>2]<<2)>>2]=l;l=h+2|0;if((l|0)==-1){q=0;r=12;break}h=f[i+(l<<2)>>2]|0;if((h|0)==-1){q=0;r=12;break}l=f[k+(h<<2)>>2]|0;if(l>>>0>=p>>>0){q=0;r=12;break}f[g+(f[c+(o*12|0)+8>>2]<<2)>>2]=l;o=o+1|0;if(o>>>0>=e>>>0){q=1;r=12;break}}if((r|0)==12)return q|0;return 0}function _e(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=u;u=u+48|0;d=c+44|0;e=c+40|0;g=c+36|0;h=c+32|0;i=c;f[h>>2]=f[a+80>>2];j=b+16|0;k=j;l=f[k+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0)){f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,h,h+4|0)|0}rn(i);lk(i);if((f[h>>2]|0)>0){k=a+76|0;l=1;m=0;do{n=l;l=(f[(f[k>>2]|0)+(m>>>5<<2)>>2]&1<<(m&31)|0)!=0;Vi(i,n^l^1);m=m+1|0}while((m|0)<(f[h>>2]|0))}fd(i,b);f[g>>2]=f[a+12>>2];h=j;m=f[h>>2]|0;l=f[h+4>>2]|0;if((l|0)>0|(l|0)==0&m>>>0>0){o=l;p=m}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;m=j;o=f[m+4>>2]|0;p=f[m>>2]|0}f[g>>2]=f[a+16>>2];if((o|0)>0|(o|0)==0&p>>>0>0){tj(i);u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;tj(i);u=c;return 1}function $e(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;b=u;u=u+16|0;c=b+4|0;d=b;e=a+8|0;g=a+12|0;h=f[g>>2]|0;$j(f[a+4>>2]|0,(f[h+28>>2]|0)-(f[h+24>>2]|0)>>2);h=a+96|0;i=f[g>>2]|0;j=(f[i+28>>2]|0)-(f[i+24>>2]|0)>>2;f[c>>2]=0;i=a+100|0;k=f[i>>2]|0;l=f[h>>2]|0;m=k-l>>2;n=l;l=k;if(j>>>0<=m>>>0){if(j>>>0>>0?(k=n+(j<<2)|0,(k|0)!=(l|0)):0)f[i>>2]=l+(~((l+-4-k|0)>>>2)<<2)}else kh(h,j-m|0,c);m=a+116|0;a=f[m>>2]|0;if(!a){j=f[g>>2]|0;g=(f[j+4>>2]|0)-(f[j>>2]|0)>>2;j=(g>>>0)/3|0;if(g>>>0<=2){o=1;u=b;return o|0}g=0;while(1){f[d>>2]=g*3;f[c>>2]=f[d>>2];g=g+1|0;if(!(vb(e,c)|0)){o=0;p=15;break}if((g|0)>=(j|0)){o=1;p=15;break}}if((p|0)==15){u=b;return o|0}}else{j=f[a>>2]|0;if((f[a+4>>2]|0)==(j|0)){o=1;u=b;return o|0}a=0;g=j;while(1){f[d>>2]=f[g+(a<<2)>>2];f[c>>2]=f[d>>2];a=a+1|0;if(!(vb(e,c)|0)){o=0;p=15;break}j=f[m>>2]|0;g=f[j>>2]|0;if(a>>>0>=(f[j+4>>2]|0)-g>>2>>>0){o=1;p=15;break}}if((p|0)==15){u=b;return o|0}}return 0}function af(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=f[a+12>>2]|0;e=a+68|0;g=f[e>>2]|0;h=f[g+80>>2]|0;b[c+84>>0]=0;i=c+68|0;j=c+72|0;k=f[j>>2]|0;l=f[i>>2]|0;m=k-l>>2;n=l;l=k;if(h>>>0<=m>>>0)if(h>>>0>>0?(k=n+(h<<2)|0,(k|0)!=(l|0)):0){f[j>>2]=l+(~((l+-4-k|0)>>>2)<<2);o=g;p=h}else{o=g;p=h}else{kh(i,h-m|0,3220);m=f[e>>2]|0;o=m;p=f[m+80>>2]|0}m=(f[o+100>>2]|0)-(f[o+96>>2]|0)|0;e=(m|0)/12|0;if(!m){q=1;return q|0}m=a+72|0;a=c+68|0;c=f[o+96>>2]|0;o=0;while(1){h=o*3|0;if((h|0)==-1){q=0;r=12;break}i=f[d>>2]|0;g=f[i+(h<<2)>>2]|0;if((g|0)==-1){q=0;r=12;break}k=f[(f[m>>2]|0)+12>>2]|0;l=f[k+(g<<2)>>2]|0;if(l>>>0>=p>>>0){q=0;r=12;break}g=f[a>>2]|0;f[g+(f[c+(o*12|0)>>2]<<2)>>2]=l;l=h+1|0;if((l|0)==-1){q=0;r=12;break}j=f[i+(l<<2)>>2]|0;if((j|0)==-1){q=0;r=12;break}l=f[k+(j<<2)>>2]|0;if(l>>>0>=p>>>0){q=0;r=12;break}f[g+(f[c+(o*12|0)+4>>2]<<2)>>2]=l;l=h+2|0;if((l|0)==-1){q=0;r=12;break}h=f[i+(l<<2)>>2]|0;if((h|0)==-1){q=0;r=12;break}l=f[k+(h<<2)>>2]|0;if(l>>>0>=p>>>0){q=0;r=12;break}f[g+(f[c+(o*12|0)+8>>2]<<2)>>2]=l;o=o+1|0;if(o>>>0>=e>>>0){q=1;r=12;break}}if((r|0)==12)return q|0;return 0}function bf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;c=u;u=u+16|0;d=c+12|0;e=c+8|0;g=c+4|0;h=c;if(!b){i=dn(76)|0;j=dn(12)|0;k=f[(f[a+4>>2]|0)+80>>2]|0;f[j+4>>2]=0;f[j>>2]=3584;f[j+8>>2]=k;f[h>>2]=j;ml(i,h,0);j=i;f[g>>2]=j;i=a+12|0;k=f[i>>2]|0;if(k>>>0<(f[a+16>>2]|0)>>>0){f[g>>2]=0;f[k>>2]=j;f[i>>2]=k+4;l=g}else{yg(a+8|0,g);l=g}g=f[l>>2]|0;f[l>>2]=0;if(g|0)Va[f[(f[g>>2]|0)+4>>2]&127](g);g=f[h>>2]|0;f[h>>2]=0;if(!g){u=c;return 1}Va[f[(f[g>>2]|0)+4>>2]&127](g);u=c;return 1}g=f[f[a+8>>2]>>2]|0;f[d>>2]=b;a=g+4|0;h=g+8|0;l=f[h>>2]|0;if((l|0)==(f[g+12>>2]|0))Ci(a,d);else{f[l>>2]=b;f[h>>2]=l+4}l=f[d>>2]|0;b=g+16|0;k=g+20|0;g=f[k>>2]|0;i=f[b>>2]|0;j=g-i>>2;m=i;if((l|0)<(j|0)){n=m;o=l}else{i=l+1|0;f[e>>2]=-1;p=g;if(i>>>0<=j>>>0)if(i>>>0>>0?(g=m+(i<<2)|0,(g|0)!=(p|0)):0){f[k>>2]=p+(~((p+-4-g|0)>>>2)<<2);q=l;r=m}else{q=l;r=m}else{kh(b,i-j|0,e);q=f[d>>2]|0;r=f[b>>2]|0}n=r;o=q}f[n+(o<<2)>>2]=((f[h>>2]|0)-(f[a>>2]|0)>>2)+-1;u=c;return 1}function cf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0;d=a+8|0;e=f[d>>2]|0;g=f[a>>2]|0;h=g;do if(e-g>>3>>>0>=b>>>0){i=a+4|0;j=f[i>>2]|0;k=j-g>>3;l=k>>>0>>0;m=l?k:b;n=j;if(m|0){j=m;m=h;while(1){o=c;p=f[o+4>>2]|0;q=m;f[q>>2]=f[o>>2];f[q+4>>2]=p;j=j+-1|0;if(!j)break;else m=m+8|0}}if(!l){m=h+(b<<3)|0;if((m|0)==(n|0))return;else{r=i;s=n+(~((n+-8-m|0)>>>3)<<3)|0;break}}else{m=b-k|0;j=m;p=n;while(1){q=c;o=f[q+4>>2]|0;t=p;f[t>>2]=f[q>>2];f[t+4>>2]=o;j=j+-1|0;if(!j)break;else p=p+8|0}r=i;s=n+(m<<3)|0;break}}else{p=g;if(!g)u=e;else{j=a+4|0;k=f[j>>2]|0;if((k|0)!=(h|0))f[j>>2]=k+(~((k+-8-g|0)>>>3)<<3);br(p);f[d>>2]=0;f[j>>2]=0;f[a>>2]=0;u=0}if(b>>>0>536870911)mq(a);j=u>>2;p=u>>3>>>0<268435455?(j>>>0>>0?b:j):536870911;if(p>>>0>536870911)mq(a);j=dn(p<<3)|0;k=a+4|0;f[k>>2]=j;f[a>>2]=j;f[d>>2]=j+(p<<3);p=b;l=j;while(1){o=c;t=f[o+4>>2]|0;q=l;f[q>>2]=f[o>>2];f[q+4>>2]=t;p=p+-1|0;if(!p)break;else l=l+8|0}r=k;s=j+(b<<3)|0}while(0);f[r>>2]=s;return}function df(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0.0,g=0.0,h=0.0,i=0.0,j=0.0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0;e=+$(n[b>>2]);g=+K(+e);h=+$(n[b+4>>2]);i=g+ +K(+h);g=+$(n[b+8>>2]);j=i+ +K(+g);b=j>1.0e-06;i=1.0/j;k=f[a+12>>2]|0;j=+(k|0);l=~~+J(+((b?i*e:1.0)*j+.5));m=~~+J(+((b?i*h:0.0)*j+.5));o=(l|0)>-1;p=k-(o?l:0-l|0)-((m|0)>-1?m:0-m|0)|0;l=(p|0)<0;q=(l?((m|0)>0?p:0-p|0):0)+m|0;m=l?0:p;p=(b?i*g:0.0)<0.0?0-m|0:m;do if(!o){if((q|0)<0)r=(p|0)>-1?p:0-p|0;else r=(f[a+8>>2]|0)-((p|0)>-1?p:0-p|0)|0;if((p|0)<0){s=(q|0)>-1?q:0-q|0;t=r;break}else{s=(f[a+8>>2]|0)-((q|0)>-1?q:0-q|0)|0;t=r;break}}else{s=k+p|0;t=k+q|0}while(0);q=(t|0)==0;p=(s|0)==0;r=f[a+8>>2]|0;if(!(s|t)){u=r;v=r;f[c>>2]=u;f[d>>2]=v;return}a=(r|0)==(s|0);if(q&a){u=s;v=s;f[c>>2]=u;f[d>>2]=v;return}o=(r|0)==(t|0);if(p&o){u=t;v=t;f[c>>2]=u;f[d>>2]=v;return}if(q&(k|0)<(s|0)){u=0;v=(k<<1)-s|0;f[c>>2]=u;f[d>>2]=v;return}if(o&(k|0)>(s|0)){u=t;v=(k<<1)-s|0;f[c>>2]=u;f[d>>2]=v;return}if(a&(k|0)>(t|0)){u=(k<<1)-t|0;v=s;f[c>>2]=u;f[d>>2]=v;return}if(!p){u=t;v=s;f[c>>2]=u;f[d>>2]=v;return}u=(k|0)<(t|0)?(k<<1)-t|0:t;v=0;f[c>>2]=u;f[d>>2]=v;return}function ef(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;c=a+4|0;d=b+4|0;f[c>>2]=f[d>>2];f[c+4>>2]=f[d+4>>2];f[c+8>>2]=f[d+8>>2];f[c+12>>2]=f[d+12>>2];f[c+16>>2]=f[d+16>>2];d=a+24|0;c=b+24|0;if((a|0)==(b|0))return a|0;e=b+28|0;g=f[e>>2]|0;if(!g)h=0;else{i=a+32|0;do if(g>>>0>f[i>>2]<<5>>>0){j=f[d>>2]|0;if(!j)k=g;else{br(j);f[d>>2]=0;f[i>>2]=0;f[a+28>>2]=0;k=f[e>>2]|0}if((k|0)<0)mq(d);else{j=((k+-1|0)>>>5)+1|0;l=dn(j<<2)|0;f[d>>2]=l;f[a+28>>2]=0;f[i>>2]=j;m=f[e>>2]|0;n=l;break}}else{m=g;n=f[d>>2]|0}while(0);Xl(n|0,f[c>>2]|0,((m+-1|0)>>>5<<2)+4|0)|0;h=f[e>>2]|0}f[a+28>>2]=h;h=a+36|0;e=b+36|0;m=b+40|0;b=f[m>>2]|0;if(!b)o=0;else{c=a+44|0;do if(b>>>0>f[c>>2]<<5>>>0){n=f[h>>2]|0;if(!n)p=b;else{br(n);f[h>>2]=0;f[c>>2]=0;f[a+40>>2]=0;p=f[m>>2]|0}if((p|0)<0)mq(h);else{n=((p+-1|0)>>>5)+1|0;d=dn(n<<2)|0;f[h>>2]=d;f[a+40>>2]=0;f[c>>2]=n;q=f[m>>2]|0;r=d;break}}else{q=b;r=f[h>>2]|0}while(0);Xl(r|0,f[e>>2]|0,((q+-1|0)>>>5<<2)+4|0)|0;o=f[m>>2]|0}f[a+40>>2]=o;return a|0}function ff(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=u;u=u+32|0;h=g+12|0;i=g;f[a>>2]=f[d>>2];d=a+4|0;f[d>>2]=(f[c>>2]|0)-(f[b>>2]|0);j=e+16|0;k=j;l=f[k+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0)?(k=e+4|0,f[i>>2]=f[k>>2],f[h>>2]=f[i>>2],ye(e,h,a,a+4|0)|0,l=j,j=f[l+4>>2]|0,!((j|0)>0|(j|0)==0&(f[l>>2]|0)>>>0>0)):0){f[i>>2]=f[k>>2];f[h>>2]=f[i>>2];ye(e,h,d,d+4|0)|0;m=i}else m=i;if(!(f[d>>2]|0)){u=g;return 1}d=a+12|0;og(d);m=a+1068|0;Cm(m);k=a+1088|0;Cm(k);l=a+1108|0;Cm(l);f[i>>2]=f[b>>2];f[i+4>>2]=f[b+4>>2];f[i+8>>2]=f[b+8>>2];f[h>>2]=f[c>>2];f[h+4>>2]=f[c+4>>2];f[h+8>>2]=f[c+8>>2];jb(a,i,h);Ke(d,e);mg(m,e);mg(k,e);mg(l,e);u=g;return 1}function gf(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=u;u=u+32|0;h=g+12|0;i=g;f[a>>2]=f[d>>2];d=a+4|0;f[d>>2]=(f[c>>2]|0)-(f[b>>2]|0);j=e+16|0;k=j;l=f[k+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0)?(k=e+4|0,f[i>>2]=f[k>>2],f[h>>2]=f[i>>2],ye(e,h,a,a+4|0)|0,l=j,j=f[l+4>>2]|0,!((j|0)>0|(j|0)==0&(f[l>>2]|0)>>>0>0)):0){f[i>>2]=f[k>>2];f[h>>2]=f[i>>2];ye(e,h,d,d+4|0)|0;m=i}else m=i;if(!(f[d>>2]|0)){u=g;return 1}d=a+12|0;og(d);m=a+1068|0;Cm(m);k=a+1088|0;Cm(k);l=a+1108|0;Cm(l);f[i>>2]=f[b>>2];f[i+4>>2]=f[b+4>>2];f[i+8>>2]=f[b+8>>2];f[h>>2]=f[c>>2];f[h+4>>2]=f[c+4>>2];f[h+8>>2]=f[c+8>>2];mb(a,i,h);Ke(d,e);mg(m,e);mg(k,e);mg(l,e);u=g;return 1}function hf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0;c=u;u=u+32|0;d=c;e=a+8|0;g=f[e>>2]|0;h=a+4|0;i=f[h>>2]|0;j=i;if(g-i>>2>>>0>=b>>>0){hj(i|0,0,b<<2|0)|0;f[h>>2]=i+(b<<2);u=c;return}k=f[a>>2]|0;l=i-k>>2;m=l+b|0;n=k;if(m>>>0>1073741823)mq(a);o=g-k|0;p=o>>1;q=o>>2>>>0<536870911?(p>>>0>>0?m:p):1073741823;f[d+12>>2]=0;f[d+16>>2]=a+8;do if(q)if(q>>>0>1073741823){p=ra(8)|0;Wo(p,14941);f[p>>2]=6944;va(p|0,1080,114)}else{r=dn(q<<2)|0;break}else r=0;while(0);f[d>>2]=r;p=r+(l<<2)|0;l=d+8|0;m=d+4|0;f[m>>2]=p;o=r+(q<<2)|0;q=d+12|0;f[q>>2]=o;r=p+(b<<2)|0;hj(p|0,0,b<<2|0)|0;f[l>>2]=r;if((j|0)==(n|0)){s=p;t=q;v=l;w=k;x=r;y=i;z=o;A=g}else{g=j;j=p;do{g=g+-4|0;p=f[g>>2]|0;f[g>>2]=0;f[j+-4>>2]=p;j=(f[m>>2]|0)+-4|0;f[m>>2]=j}while((g|0)!=(n|0));s=j;t=q;v=l;w=f[a>>2]|0;x=f[l>>2]|0;y=f[h>>2]|0;z=f[q>>2]|0;A=f[e>>2]|0}f[a>>2]=s;f[m>>2]=w;f[h>>2]=x;f[v>>2]=y;f[e>>2]=z;f[t>>2]=A;f[d>>2]=w;Wh(d);u=c;return}function jf(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;d=u;u=u+16|0;h=d;i=f[a+124>>2]|0;if(!i){u=d;return}j=i+-1|0;k=(j&i|0)==0;if(!k)if(i>>>0>g>>>0)l=g;else l=(g>>>0)%(i>>>0)|0;else l=j&g;m=f[(f[a+120>>2]|0)+(l<<2)>>2]|0;if(!m){u=d;return}n=f[m>>2]|0;if(!n){u=d;return}a:do if(k){m=n;while(1){o=f[m+4>>2]|0;p=(o|0)==(g|0);if(!(p|(o&j|0)==(l|0))){q=24;break}if(p?(f[m+8>>2]|0)==(g|0):0){r=m;break a}m=f[m>>2]|0;if(!m){q=24;break}}if((q|0)==24){u=d;return}}else{m=n;while(1){p=f[m+4>>2]|0;if((p|0)==(g|0)){if((f[m+8>>2]|0)==(g|0)){r=m;break a}}else{if(p>>>0>>0)s=p;else s=(p>>>0)%(i>>>0)|0;if((s|0)!=(l|0)){q=24;break}}m=f[m>>2]|0;if(!m){q=24;break}}if((q|0)==24){u=d;return}}while(0);q=f[r+12>>2]|0;if((q|0)==-1){u=d;return}f[h>>2]=q;f[h+4>>2]=c;b[h+8>>0]=e&1;e=a+112|0;c=f[e>>2]|0;if((c|0)==(f[a+116>>2]|0))ki(a+108|0,h);else{f[c>>2]=f[h>>2];f[c+4>>2]=f[h+4>>2];f[c+8>>2]=f[h+8>>2];f[e>>2]=(f[e>>2]|0)+12}u=d;return}function kf(a,b){a=a|0;b=b|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;c=d[b>>1]|0;e=d[b+2>>1]|0;g=d[b+4>>1]|0;h=d[b+6>>1]|0;b=((((c^318)&65535)+239^e&65535)+239^g&65535)+239^h&65535;i=f[a+4>>2]|0;if(!i){j=0;return j|0}k=i+-1|0;l=(k&i|0)==0;if(!l)if(b>>>0>>0)m=b;else m=(b>>>0)%(i>>>0)|0;else m=b&k;n=f[(f[a>>2]|0)+(m<<2)>>2]|0;if(!n){j=0;return j|0}a=f[n>>2]|0;if(!a){j=0;return j|0}if(l){l=a;while(1){n=f[l+4>>2]|0;o=(n|0)==(b|0);if(!(o|(n&k|0)==(m|0))){j=0;p=25;break}if((((o?(o=l+8|0,(d[o>>1]|0)==c<<16>>16):0)?(d[o+2>>1]|0)==e<<16>>16:0)?(d[l+12>>1]|0)==g<<16>>16:0)?(d[o+6>>1]|0)==h<<16>>16:0){j=l;p=25;break}l=f[l>>2]|0;if(!l){j=0;p=25;break}}if((p|0)==25)return j|0}else q=a;while(1){a=f[q+4>>2]|0;if((a|0)==(b|0)){l=q+8|0;if((((d[l>>1]|0)==c<<16>>16?(d[l+2>>1]|0)==e<<16>>16:0)?(d[q+12>>1]|0)==g<<16>>16:0)?(d[l+6>>1]|0)==h<<16>>16:0){j=q;p=25;break}}else{if(a>>>0>>0)r=a;else r=(a>>>0)%(i>>>0)|0;if((r|0)!=(m|0)){j=0;p=25;break}}q=f[q>>2]|0;if(!q){j=0;p=25;break}}if((p|0)==25)return j|0;return 0}function lf(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=u;u=u+32|0;h=g+12|0;i=g;f[a>>2]=f[d>>2];d=a+4|0;f[d>>2]=(f[c>>2]|0)-(f[b>>2]|0);j=e+16|0;k=j;l=f[k+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0)?(k=e+4|0,f[i>>2]=f[k>>2],f[h>>2]=f[i>>2],ye(e,h,a,a+4|0)|0,l=j,j=f[l+4>>2]|0,!((j|0)>0|(j|0)==0&(f[l>>2]|0)>>>0>0)):0){f[i>>2]=f[k>>2];f[h>>2]=f[i>>2];ye(e,h,d,d+4|0)|0;m=i}else m=i;if(!(f[d>>2]|0)){u=g;return 1}d=a+12|0;Cm(d);m=a+32|0;Cm(m);k=a+52|0;Cm(k);l=a+72|0;Cm(l);f[i>>2]=f[b>>2];f[i+4>>2]=f[b+4>>2];f[i+8>>2]=f[b+8>>2];f[h>>2]=f[c>>2];f[h+4>>2]=f[c+4>>2];f[h+8>>2]=f[c+8>>2];hb(a,i,h);mg(d,e);mg(m,e);mg(k,e);mg(l,e);u=g;return 1}function mf(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=u;u=u+32|0;h=g+12|0;i=g;f[a>>2]=f[d>>2];d=a+4|0;f[d>>2]=(f[c>>2]|0)-(f[b>>2]|0);j=e+16|0;k=j;l=f[k+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0)?(k=e+4|0,f[i>>2]=f[k>>2],f[h>>2]=f[i>>2],ye(e,h,a,a+4|0)|0,l=j,j=f[l+4>>2]|0,!((j|0)>0|(j|0)==0&(f[l>>2]|0)>>>0>0)):0){f[i>>2]=f[k>>2];f[h>>2]=f[i>>2];ye(e,h,d,d+4|0)|0;m=i}else m=i;if(!(f[d>>2]|0)){u=g;return 1}d=a+12|0;lk(d);m=a+44|0;Cm(m);k=a+64|0;Cm(k);l=a+84|0;Cm(l);f[i>>2]=f[b>>2];f[i+4>>2]=f[b+4>>2];f[i+8>>2]=f[b+8>>2];f[h>>2]=f[c>>2];f[h+4>>2]=f[c+4>>2];f[h+8>>2]=f[c+8>>2];nb(a,i,h);fd(d,e);mg(m,e);mg(k,e);mg(l,e);u=g;return 1}function nf(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0;a=u;u=u+16|0;e=a+4|0;g=a;h=a+8|0;i=d+11|0;j=b[i>>0]|0;k=j<<24>>24<0;if(k){l=f[d+4>>2]|0;if(l>>>0>255){m=0;u=a;return m|0}else n=l}else n=j&255;if(!n){b[h>>0]=0;n=c+16|0;l=f[n+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[n>>2]|0)>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];ye(c,e,h,h+1|0)|0}m=1;u=a;return m|0}n=d+4|0;l=f[n>>2]|0;b[h>>0]=k?l:j&255;k=c+16|0;o=k;p=f[o>>2]|0;q=f[o+4>>2]|0;if((q|0)>0|(q|0)==0&p>>>0>0){r=j;s=q;t=p;v=l}else{f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];ye(c,e,h,h+1|0)|0;h=k;r=b[i>>0]|0;s=f[h+4>>2]|0;t=f[h>>2]|0;v=f[n>>2]|0}n=r<<24>>24<0;h=n?f[d>>2]|0:d;if(!((s|0)>0|(s|0)==0&t>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];ye(c,e,h,h+(n?v:r&255)|0)|0}m=1;u=a;return m|0}function of(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=a+4|0;d=f[a>>2]|0;e=((f[c>>2]|0)-d|0)/24|0;g=e+1|0;if(g>>>0>178956970)mq(a);h=a+8|0;i=((f[h>>2]|0)-d|0)/24|0;d=i<<1;j=i>>>0<89478485?(d>>>0>>0?g:d):178956970;do if(j)if(j>>>0>178956970){d=ra(8)|0;Wo(d,14941);f[d>>2]=6944;va(d|0,1080,114)}else{k=dn(j*24|0)|0;break}else k=0;while(0);d=k+(e*24|0)|0;g=d;i=k+(j*24|0)|0;f[d>>2]=1180;f[k+(e*24|0)+4>>2]=f[b+4>>2];_j(k+(e*24|0)+8|0,b+8|0);f[k+(e*24|0)+20>>2]=f[b+20>>2];b=d+24|0;e=f[a>>2]|0;k=f[c>>2]|0;if((k|0)==(e|0)){l=g;m=e;n=e}else{j=k;k=g;g=d;do{f[g+-24>>2]=1180;f[g+-20>>2]=f[j+-20>>2];d=g+-16|0;o=j+-16|0;f[d>>2]=0;p=g+-12|0;f[p>>2]=0;f[g+-8>>2]=0;f[d>>2]=f[o>>2];d=j+-12|0;f[p>>2]=f[d>>2];p=j+-8|0;f[g+-8>>2]=f[p>>2];f[p>>2]=0;f[d>>2]=0;f[o>>2]=0;f[g+-4>>2]=f[j+-4>>2];j=j+-24|0;g=k+-24|0;k=g}while((j|0)!=(e|0));l=k;m=f[a>>2]|0;n=f[c>>2]|0}f[a>>2]=l;f[c>>2]=b;f[h>>2]=i;i=m;if((n|0)!=(i|0)){h=n;do{h=h+-24|0;Va[f[f[h>>2]>>2]&127](h)}while((h|0)!=(i|0))}if(!m)return;br(m);return}function pf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=b[c>>0]|0;e=b[c+1>>0]|0;g=b[c+2>>0]|0;h=b[c+3>>0]|0;c=(((d&255^318)+239^e&255)+239^g&255)+239^h&255;i=f[a+4>>2]|0;if(!i){j=0;return j|0}k=i+-1|0;l=(k&i|0)==0;if(!l)if(c>>>0>>0)m=c;else m=(c>>>0)%(i>>>0)|0;else m=c&k;n=f[(f[a>>2]|0)+(m<<2)>>2]|0;if(!n){j=0;return j|0}a=f[n>>2]|0;if(!a){j=0;return j|0}if(l){l=a;while(1){n=f[l+4>>2]|0;o=(n|0)==(c|0);if(!(o|(n&k|0)==(m|0))){j=0;p=25;break}if((((o?(o=l+8|0,(b[o>>0]|0)==d<<24>>24):0)?(b[o+1>>0]|0)==e<<24>>24:0)?(b[o+2>>0]|0)==g<<24>>24:0)?(b[o+3>>0]|0)==h<<24>>24:0){j=l;p=25;break}l=f[l>>2]|0;if(!l){j=0;p=25;break}}if((p|0)==25)return j|0}else q=a;while(1){a=f[q+4>>2]|0;if((a|0)==(c|0)){l=q+8|0;if((((b[l>>0]|0)==d<<24>>24?(b[l+1>>0]|0)==e<<24>>24:0)?(b[l+2>>0]|0)==g<<24>>24:0)?(b[l+3>>0]|0)==h<<24>>24:0){j=q;p=25;break}}else{if(a>>>0>>0)r=a;else r=(a>>>0)%(i>>>0)|0;if((r|0)!=(m|0)){j=0;p=25;break}}q=f[q>>2]|0;if(!q){j=0;p=25;break}}if((p|0)==25)return j|0;return 0}function qf(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0;d=u;u=u+32|0;h=d+24|0;i=d+16|0;j=d;k=d+8|0;l=a+40|0;f[a+44>>2]=g;g=a+36|0;m=f[g>>2]|0;n=f[m+4>>2]|0;o=f[m>>2]|0;p=n-o|0;if((p|0)<=0){u=d;return 1}q=(p>>>2)+-1|0;p=a+8|0;r=a+48|0;s=a+52|0;a=i+4|0;t=j+4|0;v=h+4|0;if(n-o>>2>>>0>q>>>0){w=q;x=o}else{y=m;mq(y)}while(1){f[k>>2]=f[x+(w<<2)>>2];f[h>>2]=f[k>>2];tb(l,h,b,w)|0;m=X(w,e)|0;o=b+(m<<2)|0;q=c+(m<<2)|0;m=f[o+4>>2]|0;n=f[r>>2]|0;z=f[s>>2]|0;f[i>>2]=f[o>>2];f[a>>2]=m;f[j>>2]=n;f[t>>2]=z;Dd(h,p,i,j);f[q>>2]=f[h>>2];f[q+4>>2]=f[v>>2];w=w+-1|0;if((w|0)<=-1){A=3;break}q=f[g>>2]|0;x=f[q>>2]|0;if((f[q+4>>2]|0)-x>>2>>>0<=w>>>0){y=q;A=4;break}}if((A|0)==3){u=d;return 1}else if((A|0)==4)mq(y);return 0}function rf(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0;h=u;u=u+32|0;i=h;j=h+16|0;k=f[(f[(f[b+4>>2]|0)+8>>2]|0)+(d<<2)>>2]|0;do if((c+-1|0)>>>0<6&(Qa[f[(f[b>>2]|0)+8>>2]&127](b)|0)==1){l=Qa[f[(f[b>>2]|0)+52>>2]&127](b)|0;m=Ra[f[(f[b>>2]|0)+60>>2]&127](b,d)|0;if((l|0)==0|(m|0)==0){f[a>>2]=0;u=h;return}n=Ra[f[(f[b>>2]|0)+56>>2]&127](b,d)|0;if(!n){f[i>>2]=f[b+56>>2];f[i+4>>2]=l;f[i+12>>2]=m;f[i+8>>2]=m+12;Rd(a,j,c,k,e,i,g);if(!(f[a>>2]|0)){f[a>>2]=0;break}u=h;return}else{f[i>>2]=f[b+56>>2];f[i+4>>2]=n;f[i+12>>2]=m;f[i+8>>2]=m+12;Pd(a,j,c,k,e,i,g);if(!(f[a>>2]|0)){f[a>>2]=0;break}u=h;return}}while(0);f[a>>2]=0;u=h;return}function sf(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0;d=u;u=u+32|0;h=d+24|0;i=d+16|0;j=d;k=d+8|0;l=a+40|0;f[a+44>>2]=g;g=a+36|0;m=f[g>>2]|0;n=f[m+4>>2]|0;o=f[m>>2]|0;p=n-o|0;if((p|0)<=0){u=d;return 1}q=(p>>>2)+-1|0;p=a+8|0;r=a+48|0;s=a+52|0;a=i+4|0;t=j+4|0;v=h+4|0;if(n-o>>2>>>0>q>>>0){w=q;x=o}else{y=m;mq(y)}while(1){f[k>>2]=f[x+(w<<2)>>2];f[h>>2]=f[k>>2];sb(l,h,b,w)|0;m=X(w,e)|0;o=b+(m<<2)|0;q=c+(m<<2)|0;m=f[o+4>>2]|0;n=f[r>>2]|0;z=f[s>>2]|0;f[i>>2]=f[o>>2];f[a>>2]=m;f[j>>2]=n;f[t>>2]=z;Dd(h,p,i,j);f[q>>2]=f[h>>2];f[q+4>>2]=f[v>>2];w=w+-1|0;if((w|0)<=-1){A=3;break}q=f[g>>2]|0;x=f[q>>2]|0;if((f[q+4>>2]|0)-x>>2>>>0<=w>>>0){y=q;A=4;break}}if((A|0)==3){u=d;return 1}else if((A|0)==4)mq(y);return 0}function tf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;d=f[b>>2]|0;b=f[c>>2]|0;e=b-d>>2;g=a+8|0;h=f[g>>2]|0;i=f[a>>2]|0;j=i;k=b;if(e>>>0<=h-i>>2>>>0){l=a+4|0;m=(f[l>>2]|0)-i>>2;n=e>>>0>m>>>0;o=n?d+(m<<2)|0:b;b=o-d|0;m=b>>2;if(m|0)Xl(i|0,d|0,b|0)|0;b=j+(m<<2)|0;if(!n){n=f[l>>2]|0;if((n|0)==(b|0))return;f[l>>2]=n+(~((n+-4-b|0)>>>2)<<2);return}b=f[c>>2]|0;c=o;if((b|0)==(c|0))return;n=f[l>>2]|0;m=b+-4-o|0;o=c;c=n;while(1){f[c>>2]=f[o>>2];o=o+4|0;if((o|0)==(b|0))break;else c=c+4|0}f[l>>2]=n+((m>>>2)+1<<2);return}m=i;if(!i)p=h;else{h=a+4|0;n=f[h>>2]|0;if((n|0)!=(j|0))f[h>>2]=n+(~((n+-4-i|0)>>>2)<<2);br(m);f[g>>2]=0;f[h>>2]=0;f[a>>2]=0;p=0}if(e>>>0>1073741823)mq(a);h=p>>1;m=p>>2>>>0<536870911?(h>>>0>>0?e:h):1073741823;if(m>>>0>1073741823)mq(a);h=dn(m<<2)|0;e=a+4|0;f[e>>2]=h;f[a>>2]=h;f[g>>2]=h+(m<<2);m=d;if((k|0)==(m|0))return;g=k+-4-d|0;d=m;m=h;while(1){f[m>>2]=f[d>>2];d=d+4|0;if((d|0)==(k|0))break;else m=m+4|0}f[e>>2]=h+((g>>>2)+1<<2);return}function uf(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;e=u;u=u+112|0;g=e+100|0;h=e;i=dn(120)|0;j=f[c+8>>2]|0;f[i+4>>2]=0;f[i>>2]=3296;k=i+8|0;l=i+12|0;m=l+44|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(m|0));f[k>>2]=3320;l=i+56|0;m=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(m|0));f[i+96>>2]=0;f[i+100>>2]=0;f[i+104>>2]=0;f[i+108>>2]=j;f[i+112>>2]=d;k=i+116|0;f[k>>2]=0;n=i;o=f[c+12>>2]|0;p=h+4|0;l=p+4|0;m=l+40|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(m|0));f[h>>2]=3320;l=h+48|0;m=l+36|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(m|0));f[h+88>>2]=0;f[h+92>>2]=0;f[h+96>>2]=0;l=o;f[p>>2]=l;m=((f[l+4>>2]|0)-(f[o>>2]|0)>>2>>>0)/3|0;b[g>>0]=0;Xg(h+24|0,m,g);m=f[p>>2]|0;p=(f[m+28>>2]|0)-(f[m+24>>2]|0)>>2;b[g>>0]=0;Xg(h+36|0,p,g);f[h+8>>2]=o;f[h+12>>2]=d;f[h+16>>2]=j;f[h+20>>2]=i;f[k>>2]=c+72;fh(i,h);f[a>>2]=n;Gi(h);u=e;return}function vf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;c=a+8|0;d=f[c>>2]|0;e=a+4|0;g=f[e>>2]|0;h=g;if(((d-g|0)/12|0)>>>0>=b>>>0){hj(g|0,0,b*12|0)|0;f[e>>2]=h+(b*12|0);return}i=f[a>>2]|0;j=(g-i|0)/12|0;g=j+b|0;k=i;if(g>>>0>357913941)mq(a);l=(d-i|0)/12|0;d=l<<1;m=l>>>0<178956970?(d>>>0>>0?g:d):357913941;do if(m)if(m>>>0>357913941){d=ra(8)|0;Wo(d,14941);f[d>>2]=6944;va(d|0,1080,114)}else{n=dn(m*12|0)|0;break}else n=0;while(0);d=n+(j*12|0)|0;j=d;g=n+(m*12|0)|0;hj(d|0,0,b*12|0)|0;m=d+(b*12|0)|0;if((h|0)==(k|0)){o=j;p=i;q=h}else{i=h;h=j;j=d;do{d=j+-12|0;b=i;i=i+-12|0;f[d>>2]=0;n=j+-8|0;f[n>>2]=0;f[j+-4>>2]=0;f[d>>2]=f[i>>2];d=b+-8|0;f[n>>2]=f[d>>2];n=b+-4|0;f[j+-4>>2]=f[n>>2];f[n>>2]=0;f[d>>2]=0;f[i>>2]=0;j=h+-12|0;h=j}while((i|0)!=(k|0));o=h;p=f[a>>2]|0;q=f[e>>2]|0}f[a>>2]=o;f[e>>2]=m;f[c>>2]=g;g=p;if((q|0)!=(g|0)){c=q;do{q=c;c=c+-12|0;m=f[c>>2]|0;if(m|0){e=q+-8|0;q=f[e>>2]|0;if((q|0)!=(m|0))f[e>>2]=q+(~((q+-4-m|0)>>>2)<<2);br(m)}}while((c|0)!=(g|0))}if(!p)return;br(p);return}function wf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=f[a+12>>2]|0;e=a+68|0;g=f[e>>2]|0;h=f[g+80>>2]|0;b[c+84>>0]=0;i=c+68|0;j=c+72|0;k=f[j>>2]|0;l=f[i>>2]|0;m=k-l>>2;n=l;l=k;if(h>>>0<=m>>>0)if(h>>>0>>0?(k=n+(h<<2)|0,(k|0)!=(l|0)):0){f[j>>2]=l+(~((l+-4-k|0)>>>2)<<2);o=g;p=h}else{o=g;p=h}else{kh(i,h-m|0,3220);m=f[e>>2]|0;o=m;p=f[m+80>>2]|0}m=(f[o+100>>2]|0)-(f[o+96>>2]|0)|0;e=(m|0)/12|0;if(!m){q=1;return q|0}m=a+72|0;a=c+68|0;c=f[o+96>>2]|0;o=f[d+28>>2]|0;d=0;while(1){h=d*3|0;i=f[o+(h<<2)>>2]|0;if((i|0)==-1){q=0;r=11;break}g=f[(f[m>>2]|0)+12>>2]|0;k=f[g+(i<<2)>>2]|0;if(k>>>0>=p>>>0){q=0;r=11;break}i=f[a>>2]|0;f[i+(f[c+(d*12|0)>>2]<<2)>>2]=k;k=f[o+(h+1<<2)>>2]|0;if((k|0)==-1){q=0;r=11;break}l=f[g+(k<<2)>>2]|0;if(l>>>0>=p>>>0){q=0;r=11;break}f[i+(f[c+(d*12|0)+4>>2]<<2)>>2]=l;l=f[o+(h+2<<2)>>2]|0;if((l|0)==-1){q=0;r=11;break}h=f[g+(l<<2)>>2]|0;if(h>>>0>=p>>>0){q=0;r=11;break}f[i+(f[c+(d*12|0)+8>>2]<<2)>>2]=h;d=d+1|0;if(d>>>0>=e>>>0){q=1;r=11;break}}if((r|0)==11)return q|0;return 0}function xf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-4194304|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-4177920|0;b[m>>0]=n;b[m+1>>0]=n>>>8;o=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;n=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+4194304|0;b[n>>0]=m;b[n+1>>0]=m>>>8;b[n+2>>0]=m>>>16;o=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1077936128|0;b[m>>0]=n;b[m+1>>0]=n>>>8;b[m+2>>0]=n>>>16;b[m+3>>0]=n>>>24;o=(f[l>>2]|0)+4|0;break}else{o=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;o=(f[l>>2]|0)+1|0}while(0);k=((o|0)<0)<<31>>31;Cn(e);eh(o,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;Xl(h+a|0,h|0,o|0)|0;Rg(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Tn(a|0,0,o|0,k|0)|0;k=Tn(h|0,I|0,g|0,j|0)|0;vl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)br(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;br(c);u=d;return}function yf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-2097152|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-2080768|0;b[m>>0]=n;b[m+1>>0]=n>>>8;o=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;n=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+6291456|0;b[n>>0]=m;b[n+1>>0]=m>>>8;b[n+2>>0]=m>>>16;o=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1075838976|0;b[m>>0]=n;b[m+1>>0]=n>>>8;b[m+2>>0]=n>>>16;b[m+3>>0]=n>>>24;o=(f[l>>2]|0)+4|0;break}else{o=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;o=(f[l>>2]|0)+1|0}while(0);k=((o|0)<0)<<31>>31;Cn(e);eh(o,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;Xl(h+a|0,h|0,o|0)|0;Rg(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Tn(a|0,0,o|0,k|0)|0;k=Tn(h|0,I|0,g|0,j|0)|0;vl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)br(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;br(c);u=d;return}function zf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-1048576|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1032192|0;b[m>>0]=n;b[m+1>>0]=n>>>8;o=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;n=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+7340032|0;b[n>>0]=m;b[n+1>>0]=m>>>8;b[n+2>>0]=m>>>16;o=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1074790400|0;b[m>>0]=n;b[m+1>>0]=n>>>8;b[m+2>>0]=n>>>16;b[m+3>>0]=n>>>24;o=(f[l>>2]|0)+4|0;break}else{o=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;o=(f[l>>2]|0)+1|0}while(0);k=((o|0)<0)<<31>>31;Cn(e);eh(o,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;Xl(h+a|0,h|0,o|0)|0;Rg(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Tn(a|0,0,o|0,k|0)|0;k=Tn(h|0,I|0,g|0,j|0)|0;vl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)br(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;br(c);u=d;return}function Af(a,c,d,e,g,h,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;a=u;u=u+96|0;j=a;if(!c){k=-1;u=a;return k|0}Lm(j);yj(j,d,0,g&255,i,0,g<<1,0,0,0);i=uh(c,j,1,e)|0;d=f[(f[c+8>>2]|0)+(i<<2)>>2]|0;if(e|0){l=d+84|0;m=d+68|0;n=d+40|0;o=d+64|0;d=0;do{if(!(b[l>>0]|0))p=f[(f[m>>2]|0)+(d<<2)>>2]|0;else p=d;q=h+((X(d,g)|0)<<1)|0;r=n;s=f[r>>2]|0;t=on(s|0,f[r+4>>2]|0,p|0,0)|0;Rg((f[f[o>>2]>>2]|0)+t|0,q|0,s|0)|0;d=d+1|0}while((d|0)!=(e|0))}d=c+80|0;c=f[d>>2]|0;if(c)if((c|0)==(e|0))v=10;else w=-1;else{f[d>>2]=e;v=10}if((v|0)==10)w=i;i=j+88|0;v=f[i>>2]|0;f[i>>2]=0;if(v|0){i=f[v+8>>2]|0;if(i|0){e=v+12|0;if((f[e>>2]|0)!=(i|0))f[e>>2]=i;br(i)}br(v)}v=f[j+68>>2]|0;if(v|0){i=j+72|0;e=f[i>>2]|0;if((e|0)!=(v|0))f[i>>2]=e+(~((e+-4-v|0)>>>2)<<2);br(v)}v=j+64|0;j=f[v>>2]|0;f[v>>2]=0;if(j|0){v=f[j>>2]|0;if(v|0){e=j+4|0;if((f[e>>2]|0)!=(v|0))f[e>>2]=v;br(v)}br(j)}k=w;u=a;return k|0}function Bf(a,c,d,e,g,h,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;a=u;u=u+96|0;j=a;if(!c){k=-1;u=a;return k|0}Lm(j);yj(j,d,0,g&255,i,0,g<<2,0,0,0);i=uh(c,j,1,e)|0;d=f[(f[c+8>>2]|0)+(i<<2)>>2]|0;if(e|0){l=d+84|0;m=d+68|0;n=d+40|0;o=d+64|0;d=0;do{if(!(b[l>>0]|0))p=f[(f[m>>2]|0)+(d<<2)>>2]|0;else p=d;q=h+((X(d,g)|0)<<2)|0;r=n;s=f[r>>2]|0;t=on(s|0,f[r+4>>2]|0,p|0,0)|0;Rg((f[f[o>>2]>>2]|0)+t|0,q|0,s|0)|0;d=d+1|0}while((d|0)!=(e|0))}d=c+80|0;c=f[d>>2]|0;if(c)if((c|0)==(e|0))v=10;else w=-1;else{f[d>>2]=e;v=10}if((v|0)==10)w=i;i=j+88|0;v=f[i>>2]|0;f[i>>2]=0;if(v|0){i=f[v+8>>2]|0;if(i|0){e=v+12|0;if((f[e>>2]|0)!=(i|0))f[e>>2]=i;br(i)}br(v)}v=f[j+68>>2]|0;if(v|0){i=j+72|0;e=f[i>>2]|0;if((e|0)!=(v|0))f[i>>2]=e+(~((e+-4-v|0)>>>2)<<2);br(v)}v=j+64|0;j=f[v>>2]|0;f[v>>2]=0;if(j|0){v=f[j>>2]|0;if(v|0){e=j+4|0;if((f[e>>2]|0)!=(v|0))f[e>>2]=v;br(v)}br(j)}k=w;u=a;return k|0}function Cf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-262144|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-245760|0;b[m>>0]=n;b[m+1>>0]=n>>>8;o=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;n=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+8126464|0;b[n>>0]=m;b[n+1>>0]=m>>>8;b[n+2>>0]=m>>>16;o=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1074003968|0;b[m>>0]=n;b[m+1>>0]=n>>>8;b[m+2>>0]=n>>>16;b[m+3>>0]=n>>>24;o=(f[l>>2]|0)+4|0;break}else{o=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;o=(f[l>>2]|0)+1|0}while(0);k=((o|0)<0)<<31>>31;Cn(e);eh(o,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;Xl(h+a|0,h|0,o|0)|0;Rg(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Tn(a|0,0,o|0,k|0)|0;k=Tn(h|0,I|0,g|0,j|0)|0;vl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)br(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;br(c);u=d;return}function Df(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-131072|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-114688|0;b[m>>0]=n;b[m+1>>0]=n>>>8;o=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;n=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+8257536|0;b[n>>0]=m;b[n+1>>0]=m>>>8;b[n+2>>0]=m>>>16;o=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1073872896|0;b[m>>0]=n;b[m+1>>0]=n>>>8;b[m+2>>0]=n>>>16;b[m+3>>0]=n>>>24;o=(f[l>>2]|0)+4|0;break}else{o=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;o=(f[l>>2]|0)+1|0}while(0);k=((o|0)<0)<<31>>31;Cn(e);eh(o,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;Xl(h+a|0,h|0,o|0)|0;Rg(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Tn(a|0,0,o|0,k|0)|0;k=Tn(h|0,I|0,g|0,j|0)|0;vl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)br(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;br(c);u=d;return}function Ef(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-32768|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-16384|0;b[m>>0]=n;b[m+1>>0]=n>>>8;o=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;n=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+8355840|0;b[n>>0]=m;b[n+1>>0]=m>>>8;b[n+2>>0]=m>>>16;o=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1073774592|0;b[m>>0]=n;b[m+1>>0]=n>>>8;b[m+2>>0]=n>>>16;b[m+3>>0]=n>>>24;o=(f[l>>2]|0)+4|0;break}else{o=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;o=(f[l>>2]|0)+1|0}while(0);k=((o|0)<0)<<31>>31;Cn(e);eh(o,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;Xl(h+a|0,h|0,o|0)|0;Rg(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Tn(a|0,0,o|0,k|0)|0;k=Tn(h|0,I|0,g|0,j|0)|0;vl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)br(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;br(c);u=d;return}function Ff(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;c=f[b>>2]|0;d=f[b+4>>2]|0;e=f[b+8>>2]|0;g=f[b+12>>2]|0;b=(((c^318)+239^d)+239^e)+239^g;h=f[a+4>>2]|0;if(!h){i=0;return i|0}j=h+-1|0;k=(j&h|0)==0;if(!k)if(b>>>0>>0)l=b;else l=(b>>>0)%(h>>>0)|0;else l=b&j;m=f[(f[a>>2]|0)+(l<<2)>>2]|0;if(!m){i=0;return i|0}a=f[m>>2]|0;if(!a){i=0;return i|0}if(k){k=a;while(1){m=f[k+4>>2]|0;n=(m|0)==(b|0);if(!(n|(m&j|0)==(l|0))){i=0;o=25;break}if((((n?(f[k+8>>2]|0)==(c|0):0)?(f[k+12>>2]|0)==(d|0):0)?(f[k+16>>2]|0)==(e|0):0)?(f[k+20>>2]|0)==(g|0):0){i=k;o=25;break}k=f[k>>2]|0;if(!k){i=0;o=25;break}}if((o|0)==25)return i|0}else p=a;while(1){a=f[p+4>>2]|0;if((a|0)==(b|0)){if((((f[p+8>>2]|0)==(c|0)?(f[p+12>>2]|0)==(d|0):0)?(f[p+16>>2]|0)==(e|0):0)?(f[p+20>>2]|0)==(g|0):0){i=p;o=25;break}}else{if(a>>>0>>0)q=a;else q=(a>>>0)%(h>>>0)|0;if((q|0)!=(l|0)){i=0;o=25;break}}p=f[p>>2]|0;if(!p){i=0;o=25;break}}if((o|0)==25)return i|0;return 0}function Gf(a,c,d,e,g,h,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;a=u;u=u+96|0;j=a;if(!c){k=-1;u=a;return k|0}Lm(j);yj(j,d,0,g&255,i,0,g,0,0,0);i=uh(c,j,1,e)|0;d=f[(f[c+8>>2]|0)+(i<<2)>>2]|0;if(e|0){l=d+84|0;m=d+68|0;n=d+40|0;o=d+64|0;d=0;do{if(!(b[l>>0]|0))p=f[(f[m>>2]|0)+(d<<2)>>2]|0;else p=d;q=h+(X(d,g)|0)|0;r=n;s=f[r>>2]|0;t=on(s|0,f[r+4>>2]|0,p|0,0)|0;Rg((f[f[o>>2]>>2]|0)+t|0,q|0,s|0)|0;d=d+1|0}while((d|0)!=(e|0))}d=c+80|0;c=f[d>>2]|0;if(c)if((c|0)==(e|0))v=10;else w=-1;else{f[d>>2]=e;v=10}if((v|0)==10)w=i;i=j+88|0;v=f[i>>2]|0;f[i>>2]=0;if(v|0){i=f[v+8>>2]|0;if(i|0){e=v+12|0;if((f[e>>2]|0)!=(i|0))f[e>>2]=i;br(i)}br(v)}v=f[j+68>>2]|0;if(v|0){i=j+72|0;e=f[i>>2]|0;if((e|0)!=(v|0))f[i>>2]=e+(~((e+-4-v|0)>>>2)<<2);br(v)}v=j+64|0;j=f[v>>2]|0;f[v>>2]=0;if(j|0){v=f[j>>2]|0;if(v|0){e=j+4|0;if((f[e>>2]|0)!=(v|0))f[e>>2]=v;br(v)}br(j)}k=w;u=a;return k|0}function Hf(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0;h=u;u=u+32|0;i=h;j=h+16|0;k=f[(f[(f[b+4>>2]|0)+8>>2]|0)+(d<<2)>>2]|0;do if((c+-1|0)>>>0<6&(Qa[f[(f[b>>2]|0)+8>>2]&127](b)|0)==1){l=Qa[f[(f[b>>2]|0)+52>>2]&127](b)|0;m=Ra[f[(f[b>>2]|0)+60>>2]&127](b,d)|0;if((l|0)==0|(m|0)==0){f[a>>2]=0;u=h;return}n=Ra[f[(f[b>>2]|0)+56>>2]&127](b,d)|0;if(!n){f[i>>2]=f[b+56>>2];f[i+4>>2]=l;f[i+12>>2]=m;f[i+8>>2]=m+12;Od(a,j,c,k,e,i,g);if(!(f[a>>2]|0)){f[a>>2]=0;break}u=h;return}else{f[i>>2]=f[b+56>>2];f[i+4>>2]=n;f[i+12>>2]=m;f[i+8>>2]=m+12;Nd(a,j,c,k,e,i,g);if(!(f[a>>2]|0)){f[a>>2]=0;break}u=h;return}}while(0);f[a>>2]=0;u=h;return}function If(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0;e=f[d>>2]|0;g=f[d+4>>2]|0;if((e|0)==(g|0)){h=0;i=a+12|0;j=a+8|0}else{d=f[c>>2]|0;c=a+8|0;k=a+12|0;a=0;l=e;while(1){e=f[l>>2]|0;m=f[d+(e<<2)>>2]|0;if(m>>>0>>0)n=a;else{o=f[c>>2]|0;p=(f[k>>2]|0)-o|0;q=o;if((p|0)>0){o=p>>>2;p=0;do{r=f[q+(p<<2)>>2]|0;s=f[r+68>>2]|0;if(!(b[r+84>>0]|0))t=f[s+(e<<2)>>2]|0;else t=e;f[s+(m<<2)>>2]=t;p=p+1|0}while((p|0)<(o|0))}n=m+1|0}l=l+4|0;if((l|0)==(g|0)){h=n;i=k;j=c;break}else a=n}}n=f[i>>2]|0;a=f[j>>2]|0;if((n-a|0)>0){u=0;v=a;w=n}else return;while(1){n=f[v+(u<<2)>>2]|0;b[n+84>>0]=0;a=n+68|0;c=n+72|0;n=f[c>>2]|0;k=f[a>>2]|0;g=n-k>>2;l=k;k=n;if(h>>>0<=g>>>0)if(h>>>0>>0?(n=l+(h<<2)|0,(n|0)!=(k|0)):0){f[c>>2]=k+(~((k+-4-n|0)>>>2)<<2);x=v;y=w}else{x=v;y=w}else{kh(a,h-g|0,5908);x=f[j>>2]|0;y=f[i>>2]|0}u=u+1|0;if((u|0)>=(y-x>>2|0))break;else{v=x;w=y}}return}function Jf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=b;e=c-d>>2;g=a+8|0;h=f[g>>2]|0;i=f[a>>2]|0;j=i;if(e>>>0<=h-i>>2>>>0){k=a+4|0;l=(f[k>>2]|0)-i>>2;m=e>>>0>l>>>0;n=b+(l<<2)|0;l=m?n:c;o=l;p=o-d|0;q=p>>2;if(q|0)Xl(i|0,b|0,p|0)|0;p=j+(q<<2)|0;if(!m){m=f[k>>2]|0;if((m|0)==(p|0))return;f[k>>2]=m+(~((m+-4-p|0)>>>2)<<2);return}if((l|0)==(c|0))return;l=f[k>>2]|0;p=((c+-4-o|0)>>>2)+1|0;o=n;n=l;while(1){f[n>>2]=f[o>>2];o=o+4|0;if((o|0)==(c|0))break;else n=n+4|0}f[k>>2]=l+(p<<2);return}p=i;if(!i)r=h;else{h=a+4|0;l=f[h>>2]|0;if((l|0)!=(j|0))f[h>>2]=l+(~((l+-4-i|0)>>>2)<<2);br(p);f[g>>2]=0;f[h>>2]=0;f[a>>2]=0;r=0}if(e>>>0>1073741823)mq(a);h=r>>1;p=r>>2>>>0<536870911?(h>>>0>>0?e:h):1073741823;if(p>>>0>1073741823)mq(a);h=dn(p<<2)|0;e=a+4|0;f[e>>2]=h;f[a>>2]=h;f[g>>2]=h+(p<<2);if((b|0)==(c|0))return;p=((c+-4-d|0)>>>2)+1|0;d=b;b=h;while(1){f[b>>2]=f[d>>2];d=d+4|0;if((d|0)==(c|0))break;else b=b+4|0}f[e>>2]=h+(p<<2);return}function Kf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;c=u;u=u+16|0;d=c;e=a+76|0;g=f[e>>2]|0;h=a+80|0;i=f[h>>2]|0;if((i|0)!=(g|0))f[h>>2]=i+(~((i+-4-g|0)>>>2)<<2);f[e>>2]=0;f[h>>2]=0;f[a+84>>2]=0;if(g|0)br(g);g=a+64|0;h=f[g>>2]|0;e=a+68|0;if((f[e>>2]|0)!=(h|0))f[e>>2]=h;f[g>>2]=0;f[e>>2]=0;f[a+72>>2]=0;if(h|0)br(h);h=b+4|0;e=f[h>>2]|0;g=f[b>>2]|0;i=((e-g|0)/12|0)*3|0;j=a+4|0;k=f[j>>2]|0;l=f[a>>2]|0;m=k-l>>2;n=l;l=k;k=g;if(i>>>0<=m>>>0)if(i>>>0>>0?(o=n+(i<<2)|0,(o|0)!=(l|0)):0){f[j>>2]=l+(~((l+-4-o|0)>>>2)<<2);p=e;q=g;r=k}else{p=e;q=g;r=k}else{oi(a,i-m|0);m=f[b>>2]|0;p=f[h>>2]|0;q=m;r=m}if((p|0)!=(q|0)){q=f[a>>2]|0;m=(p-r|0)/12|0;p=0;do{h=p*3|0;f[q+(h<<2)>>2]=f[r+(p*12|0)>>2];f[q+(h+1<<2)>>2]=f[r+(p*12|0)+4>>2];f[q+(h+2<<2)>>2]=f[r+(p*12|0)+8>>2];p=p+1|0}while(p>>>0>>0)}f[d>>2]=-1;if(!(oc(a,d)|0)){s=0;u=c;return s|0}Gc(a)|0;fb(a,f[d>>2]|0)|0;s=1;u=c;return s|0}function Lf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-16384|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;b[m>>0]=j;b[m+1>>0]=j>>>8;n=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;o=j+8372224|0;b[m>>0]=o;b[m+1>>0]=o>>>8;b[m+2>>0]=o>>>16;n=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;o=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+-1073758208|0;b[o>>0]=m;b[o+1>>0]=m>>>8;b[o+2>>0]=m>>>16;b[o+3>>0]=m>>>24;n=(f[l>>2]|0)+4|0;break}else{n=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;n=(f[l>>2]|0)+1|0}while(0);k=((n|0)<0)<<31>>31;Cn(e);eh(n,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;Xl(h+a|0,h|0,n|0)|0;Rg(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Tn(a|0,0,n|0,k|0)|0;k=Tn(h|0,I|0,g|0,j|0)|0;vl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)br(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;br(c);u=d;return}function Mf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=b;e=c-d>>2;g=a+8|0;h=f[g>>2]|0;i=f[a>>2]|0;j=i;if(e>>>0<=h-i>>2>>>0){k=a+4|0;l=(f[k>>2]|0)-i>>2;m=e>>>0>l>>>0;n=b+(l<<2)|0;l=m?n:c;o=l;p=o-d|0;q=p>>2;if(q|0)Xl(i|0,b|0,p|0)|0;p=j+(q<<2)|0;if(!m){m=f[k>>2]|0;if((m|0)==(p|0))return;f[k>>2]=m+(~((m+-4-p|0)>>>2)<<2);return}if((l|0)==(c|0))return;l=f[k>>2]|0;p=c+-4-o|0;o=n;n=l;while(1){f[n>>2]=f[o>>2];o=o+4|0;if((o|0)==(c|0))break;else n=n+4|0}f[k>>2]=l+((p>>>2)+1<<2);return}p=i;if(!i)r=h;else{h=a+4|0;l=f[h>>2]|0;if((l|0)!=(j|0))f[h>>2]=l+(~((l+-4-i|0)>>>2)<<2);br(p);f[g>>2]=0;f[h>>2]=0;f[a>>2]=0;r=0}if(e>>>0>1073741823)mq(a);h=r>>1;p=r>>2>>>0<536870911?(h>>>0>>0?e:h):1073741823;if(p>>>0>1073741823)mq(a);h=dn(p<<2)|0;e=a+4|0;f[e>>2]=h;f[a>>2]=h;f[g>>2]=h+(p<<2);if((b|0)==(c|0))return;p=c+-4-d|0;d=b;b=h;while(1){f[b>>2]=f[d>>2];d=d+4|0;if((d|0)==(c|0))break;else b=b+4|0}f[e>>2]=h+((p>>>2)+1<<2);return}function Nf(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0;g=u;u=u+80|0;h=g;i=g+64|0;Al(h);j=f[(f[a+8>>2]|0)+56>>2]|0;k=X(Ll(5)|0,d)|0;yj(h,j,0,d&255,5,0,k,((k|0)<0)<<31>>31,0,0);k=dn(96)|0;nl(k,h);pj(k,c)|0;f[i>>2]=k;Wi(a,i);k=f[i>>2]|0;f[i>>2]=0;if(k|0){i=k+88|0;c=f[i>>2]|0;f[i>>2]=0;if(c|0){i=f[c+8>>2]|0;if(i|0){h=c+12|0;if((f[h>>2]|0)!=(i|0))f[h>>2]=i;br(i)}br(c)}c=f[k+68>>2]|0;if(c|0){i=k+72|0;h=f[i>>2]|0;if((h|0)!=(c|0))f[i>>2]=h+(~((h+-4-c|0)>>>2)<<2);br(c)}c=k+64|0;h=f[c>>2]|0;f[c>>2]=0;if(h|0){c=f[h>>2]|0;if(c|0){i=h+4|0;if((f[i>>2]|0)!=(c|0))f[i>>2]=c;br(c)}br(h)}br(k)}if(!e){u=g;return}k=f[a+32>>2]|0;b[k+84>>0]=0;a=k+68|0;h=k+72|0;k=f[h>>2]|0;c=f[a>>2]|0;i=k-c>>2;d=k;if(i>>>0>>0){kh(a,e-i|0,1516);u=g;return}if(i>>>0<=e>>>0){u=g;return}i=c+(e<<2)|0;if((i|0)==(d|0)){u=g;return}f[h>>2]=d+(~((d+-4-i|0)>>>2)<<2);u=g;return}function Of(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0;c=u;u=u+16|0;d=c+4|0;e=c;g=a+4|0;h=f[g>>2]|0;i=a+8|0;j=f[i>>2]|0;if((j|0)==(h|0))k=h;else{l=j+(~((j+-4-h|0)>>>2)<<2)|0;f[i>>2]=l;k=l}l=a+16|0;h=f[l>>2]|0;j=a+20|0;m=f[j>>2]|0;n=h;if((m|0)!=(h|0))f[j>>2]=m+(~((m+-4-n|0)>>>2)<<2);m=f[b>>2]|0;h=f[b+4>>2]|0;if((m|0)==(h|0)){u=c;return}b=a+12|0;a=m;m=k;k=n;while(1){n=f[a>>2]|0;f[d>>2]=n;if((m|0)==(f[b>>2]|0)){Ci(g,d);o=f[l>>2]|0}else{f[m>>2]=n;f[i>>2]=m+4;o=k}n=f[d>>2]|0;p=f[j>>2]|0;q=p-o>>2;r=o;if((n|0)<(q|0)){s=r;t=n;v=o}else{w=n+1|0;f[e>>2]=-1;x=p;if(w>>>0<=q>>>0)if(w>>>0>>0?(p=r+(w<<2)|0,(p|0)!=(x|0)):0){f[j>>2]=x+(~((x+-4-p|0)>>>2)<<2);y=n;z=r;A=o}else{y=n;z=r;A=o}else{kh(l,w-q|0,e);q=f[l>>2]|0;y=f[d>>2]|0;z=q;A=q}s=z;t=y;v=A}m=f[i>>2]|0;f[s+(t<<2)>>2]=(m-(f[g>>2]|0)>>2)+-1;a=a+4|0;if((a|0)==(h|0))break;else k=v}u=c;return}function Pf(a,b){a=a|0;b=b|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;c=d[b>>1]|0;e=d[b+2>>1]|0;g=d[b+4>>1]|0;b=(((c^318)&65535)+239^e&65535)+239^g&65535;h=f[a+4>>2]|0;if(!h){i=0;return i|0}j=h+-1|0;k=(j&h|0)==0;if(!k)if(b>>>0>>0)l=b;else l=(b>>>0)%(h>>>0)|0;else l=b&j;m=f[(f[a>>2]|0)+(l<<2)>>2]|0;if(!m){i=0;return i|0}a=f[m>>2]|0;if(!a){i=0;return i|0}if(k){k=a;while(1){m=f[k+4>>2]|0;n=(m|0)==(b|0);if(!(n|(m&j|0)==(l|0))){i=0;o=23;break}if(((n?(n=k+8|0,(d[n>>1]|0)==c<<16>>16):0)?(d[n+2>>1]|0)==e<<16>>16:0)?(d[k+12>>1]|0)==g<<16>>16:0){i=k;o=23;break}k=f[k>>2]|0;if(!k){i=0;o=23;break}}if((o|0)==23)return i|0}else p=a;while(1){a=f[p+4>>2]|0;if((a|0)==(b|0)){k=p+8|0;if(((d[k>>1]|0)==c<<16>>16?(d[k+2>>1]|0)==e<<16>>16:0)?(d[p+12>>1]|0)==g<<16>>16:0){i=p;o=23;break}}else{if(a>>>0>>0)q=a;else q=(a>>>0)%(h>>>0)|0;if((q|0)!=(l|0)){i=0;o=23;break}}p=f[p>>2]|0;if(!p){i=0;o=23;break}}if((o|0)==23)return i|0;return 0}function Qf(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;c=u;u=u+32|0;d=c;e=a+16|0;g=e;h=f[g>>2]|0;i=f[g+4>>2]|0;if(!((i|0)>0|(i|0)==0&h>>>0>0)){u=c;return}g=Tn(f[(f[a+12>>2]|0)+4>>2]|0,0,7,0)|0;j=Wn(g|0,I|0,3)|0;g=I;if(!(b[a+24>>0]|0)){k=a+4|0;l=k;m=k;n=h;o=i}else{k=f[a>>2]|0;p=a+4|0;q=k+((f[p>>2]|0)-k)|0;k=Tn(h|0,i|0,8,0)|0;i=q+(0-k)|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;b[d+24>>0]=0;eh(j,g,d)|0;k=d+4|0;q=(f[k>>2]|0)-(f[d>>2]|0)|0;Xl(i+q|0,i+8|0,j|0)|0;Rg(i|0,f[d>>2]|0,q|0)|0;i=e;h=Tn(f[i>>2]|0,f[i+4>>2]|0,8-q|0,0)|0;q=e;f[q>>2]=h;f[q+4>>2]=I;q=d+12|0;h=f[q>>2]|0;f[q>>2]=0;if(h|0)br(h);h=f[d>>2]|0;if(h|0){if((f[k>>2]|0)!=(h|0))f[k>>2]=h;br(h)}h=e;l=p;m=p;n=f[h>>2]|0;o=f[h+4>>2]|0}h=f[l>>2]|0;l=f[a>>2]|0;p=h-l|0;k=Vn(j|0,g|0,n|0,o|0)|0;o=Tn(k|0,I|0,p|0,0)|0;k=l;l=h;if(p>>>0>=o>>>0){if(p>>>0>o>>>0?(h=k+o|0,(h|0)!=(l|0)):0)f[m>>2]=h}else ri(a,o-p|0);p=e;f[p>>2]=0;f[p+4>>2]=0;u=c;return}function Rf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;f[c>>2]=1;d=a+4|0;e=c+8|0;g=c+12|0;c=f[e>>2]|0;i=(f[g>>2]|0)-c|0;if(i>>>0<4294967292){Bk(e,i+4|0,0);j=f[e>>2]|0}else j=c;c=j+i|0;i=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;b[c>>0]=i;b[c+1>>0]=i>>8;b[c+2>>0]=i>>16;b[c+3>>0]=i>>24;i=a+8|0;c=a+12|0;d=f[i>>2]|0;if((f[c>>2]|0)!=(d|0)){j=0;k=d;do{d=k+(j<<2)|0;l=f[e>>2]|0;m=(f[g>>2]|0)-l|0;if(m>>>0<4294967292){Bk(e,m+4|0,0);n=f[e>>2]|0}else n=l;l=n+m|0;m=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;b[l>>0]=m;b[l+1>>0]=m>>8;b[l+2>>0]=m>>16;b[l+3>>0]=m>>24;j=j+1|0;k=f[i>>2]|0}while(j>>>0<(f[c>>2]|0)-k>>2>>>0)}k=a+20|0;a=f[e>>2]|0;c=(f[g>>2]|0)-a|0;if(c>>>0<4294967292){Bk(e,c+4|0,0);o=f[e>>2]|0;p=o+c|0;q=h[k>>0]|h[k+1>>0]<<8|h[k+2>>0]<<16|h[k+3>>0]<<24;b[p>>0]=q;b[p+1>>0]=q>>8;b[p+2>>0]=q>>16;b[p+3>>0]=q>>24;return}else{o=a;p=o+c|0;q=h[k>>0]|h[k+1>>0]<<8|h[k+2>>0]<<16|h[k+3>>0]<<24;b[p>>0]=q;b[p+1>>0]=q>>8;b[p+2>>0]=q>>16;b[p+3>>0]=q>>24;return}}function Sf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=a+8|0;e=f[d>>2]|0;g=f[a>>2]|0;h=g;do if(e-g>>2>>>0>=b>>>0){i=a+4|0;j=f[i>>2]|0;k=j-g>>2;l=k>>>0>>0;m=l?k:b;n=j;if(m|0){j=m;m=h;while(1){f[m>>2]=f[c>>2];j=j+-1|0;if(!j)break;else m=m+4|0}}if(!l){m=h+(b<<2)|0;if((m|0)==(n|0))return;else{o=i;p=n+(~((n+-4-m|0)>>>2)<<2)|0;break}}else{m=b-k|0;j=m;q=n;while(1){f[q>>2]=f[c>>2];j=j+-1|0;if(!j)break;else q=q+4|0}o=i;p=n+(m<<2)|0;break}}else{q=g;if(!g)r=e;else{j=a+4|0;k=f[j>>2]|0;if((k|0)!=(h|0))f[j>>2]=k+(~((k+-4-g|0)>>>2)<<2);br(q);f[d>>2]=0;f[j>>2]=0;f[a>>2]=0;r=0}if(b>>>0>1073741823)mq(a);j=r>>1;q=r>>2>>>0<536870911?(j>>>0>>0?b:j):1073741823;if(q>>>0>1073741823)mq(a);j=dn(q<<2)|0;k=a+4|0;f[k>>2]=j;f[a>>2]=j;f[d>>2]=j+(q<<2);q=b;l=j;while(1){f[l>>2]=f[c>>2];q=q+-1|0;if(!q)break;else l=l+4|0}o=k;p=j+(b<<2)|0}while(0);f[o>>2]=p;return}function Tf(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0;h=Qg(a,b,c,d,g)|0;i=f[e>>2]|0;j=f[d>>2]|0;k=f[g>>2]|0;g=f[k>>2]|0;l=(f[k+4>>2]|0)-g>>3;if(l>>>0<=i>>>0)mq(k);m=g;if(l>>>0<=j>>>0)mq(k);if((f[m+(i<<3)>>2]|0)>>>0>=(f[m+(j<<3)>>2]|0)>>>0){n=h;return n|0}f[d>>2]=i;f[e>>2]=j;j=f[d>>2]|0;e=f[c>>2]|0;if(l>>>0<=j>>>0)mq(k);if(l>>>0<=e>>>0)mq(k);if((f[m+(j<<3)>>2]|0)>>>0>=(f[m+(e<<3)>>2]|0)>>>0){n=h+1|0;return n|0}f[c>>2]=j;f[d>>2]=e;e=f[c>>2]|0;d=f[b>>2]|0;if(l>>>0<=e>>>0)mq(k);if(l>>>0<=d>>>0)mq(k);if((f[m+(e<<3)>>2]|0)>>>0>=(f[m+(d<<3)>>2]|0)>>>0){n=h+2|0;return n|0}f[b>>2]=e;f[c>>2]=d;d=f[b>>2]|0;c=f[a>>2]|0;if(l>>>0<=d>>>0)mq(k);if(l>>>0<=c>>>0)mq(k);if((f[m+(d<<3)>>2]|0)>>>0>=(f[m+(c<<3)>>2]|0)>>>0){n=h+3|0;return n|0}f[a>>2]=d;f[b>>2]=c;n=h+4|0;return n|0}function Uf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;d=b[c>>0]|0;e=b[c+1>>0]|0;g=b[c+2>>0]|0;c=((d&255^318)+239^e&255)+239^g&255;h=f[a+4>>2]|0;if(!h){i=0;return i|0}j=h+-1|0;k=(j&h|0)==0;if(!k)if(c>>>0>>0)l=c;else l=(c>>>0)%(h>>>0)|0;else l=c&j;m=f[(f[a>>2]|0)+(l<<2)>>2]|0;if(!m){i=0;return i|0}a=f[m>>2]|0;if(!a){i=0;return i|0}if(k){k=a;while(1){m=f[k+4>>2]|0;n=(m|0)==(c|0);if(!(n|(m&j|0)==(l|0))){i=0;o=23;break}if(((n?(n=k+8|0,(b[n>>0]|0)==d<<24>>24):0)?(b[n+1>>0]|0)==e<<24>>24:0)?(b[n+2>>0]|0)==g<<24>>24:0){i=k;o=23;break}k=f[k>>2]|0;if(!k){i=0;o=23;break}}if((o|0)==23)return i|0}else p=a;while(1){a=f[p+4>>2]|0;if((a|0)==(c|0)){k=p+8|0;if(((b[k>>0]|0)==d<<24>>24?(b[k+1>>0]|0)==e<<24>>24:0)?(b[k+2>>0]|0)==g<<24>>24:0){i=p;o=23;break}}else{if(a>>>0>>0)q=a;else q=(a>>>0)%(h>>>0)|0;if((q|0)!=(l|0)){i=0;o=23;break}}p=f[p>>2]|0;if(!p){i=0;o=23;break}}if((o|0)==23)return i|0;return 0}function Vf(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;b=u;u=u+16|0;c=b;d=a+36|0;e=a+4|0;g=a+8|0;h=(f[g>>2]|0)-(f[e>>2]|0)>>2;i=a+40|0;j=f[i>>2]|0;k=f[d>>2]|0;l=j-k>>2;m=k;k=j;if(h>>>0<=l>>>0){if(h>>>0>>0?(j=m+(h<<2)|0,(j|0)!=(k|0)):0){m=k;do{k=m+-4|0;f[i>>2]=k;n=f[k>>2]|0;f[k>>2]=0;if(n|0)Va[f[(f[n>>2]|0)+4>>2]&127](n);m=f[i>>2]|0}while((m|0)!=(j|0))}}else ng(d,h-l|0);if((f[g>>2]|0)==(f[e>>2]|0)){o=1;u=b;return o|0}l=a+52|0;h=a+48|0;j=0;while(1){Xa[f[(f[a>>2]|0)+56>>2]&15](c,a,j);m=(f[d>>2]|0)+(j<<2)|0;i=f[c>>2]|0;f[c>>2]=0;n=f[m>>2]|0;f[m>>2]=i;if(n|0)Va[f[(f[n>>2]|0)+4>>2]&127](n);n=f[c>>2]|0;f[c>>2]=0;if(n|0)Va[f[(f[n>>2]|0)+4>>2]&127](n);n=f[(f[d>>2]|0)+(j<<2)>>2]|0;if(!n){o=0;p=19;break}if(j>>>0<(f[l>>2]|0)>>>0?f[(f[h>>2]|0)+(j>>>5<<2)>>2]&1<<(j&31)|0:0)Pp(n);j=j+1|0;if(j>>>0>=(f[g>>2]|0)-(f[e>>2]|0)>>2>>>0){o=1;p=19;break}}if((p|0)==19){u=b;return o|0}return 0}function Wf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=u;u=u+16|0;e=d+4|0;g=d;Nh(f[c+12>>2]|0,b)|0;h=f[c+8>>2]|0;a:do if(h|0){i=b+16|0;j=b+4|0;k=h;while(1){l=k;if(!(nf(0,b,l+8|0)|0)){m=0;break}n=l+20|0;o=(f[l+24>>2]|0)-(f[n>>2]|0)|0;Nh(o,b)|0;l=f[n>>2]|0;n=i;p=f[n+4>>2]|0;if(!((p|0)>0|(p|0)==0&(f[n>>2]|0)>>>0>0)){f[g>>2]=f[j>>2];f[e>>2]=f[g>>2];ye(b,e,l,l+o|0)|0}k=f[k>>2]|0;if(!k)break a}u=d;return m|0}while(0);Nh(f[c+32>>2]|0,b)|0;e=f[c+28>>2]|0;if(!e){m=1;u=d;return m|0}else q=e;while(1){e=q;if(!(nf(0,b,e+8|0)|0)){m=0;r=10;break}Wf(a,b,f[e+20>>2]|0)|0;q=f[q>>2]|0;if(!q){m=1;r=10;break}}if((r|0)==10){u=d;return m|0}return 0}function Xf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;h=a+8|0;i=a+12|0;j=f[h>>2]|0;if((f[i>>2]|0)==(j|0)){k=dn(76)|0;pn(k,b);l=k;f[g>>2]=l;k=f[i>>2]|0;if(k>>>0<(f[a+16>>2]|0)>>>0){f[g>>2]=0;f[k>>2]=l;f[i>>2]=k+4;m=g}else{yg(h,g);m=g}g=f[m>>2]|0;f[m>>2]=0;if(!g){u=c;return 1}Va[f[(f[g>>2]|0)+4>>2]&127](g);u=c;return 1}g=f[j>>2]|0;f[d>>2]=b;j=g+4|0;m=g+8|0;h=f[m>>2]|0;if((h|0)==(f[g+12>>2]|0))Ci(j,d);else{f[h>>2]=b;f[m>>2]=h+4}h=f[d>>2]|0;b=g+16|0;k=g+20|0;g=f[k>>2]|0;i=f[b>>2]|0;l=g-i>>2;a=i;if((h|0)<(l|0)){n=a;o=h}else{i=h+1|0;f[e>>2]=-1;p=g;if(i>>>0<=l>>>0)if(i>>>0>>0?(g=a+(i<<2)|0,(g|0)!=(p|0)):0){f[k>>2]=p+(~((p+-4-g|0)>>>2)<<2);q=h;r=a}else{q=h;r=a}else{kh(b,i-l|0,e);q=f[d>>2]|0;r=f[b>>2]|0}n=r;o=q}f[n+(o<<2)>>2]=((f[m>>2]|0)-(f[j>>2]|0)>>2)+-1;u=c;return 1}function Yf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;d=c;e=b;g=d-e|0;h=g>>2;i=a+8|0;j=f[i>>2]|0;k=f[a>>2]|0;l=k;if(h>>>0>j-k>>2>>>0){m=k;if(!k)n=j;else{j=a+4|0;o=f[j>>2]|0;if((o|0)!=(l|0))f[j>>2]=o+(~((o+-4-k|0)>>>2)<<2);br(m);f[i>>2]=0;f[j>>2]=0;f[a>>2]=0;n=0}if(h>>>0>1073741823)mq(a);j=n>>1;m=n>>2>>>0<536870911?(j>>>0>>0?h:j):1073741823;if(m>>>0>1073741823)mq(a);j=dn(m<<2)|0;n=a+4|0;f[n>>2]=j;f[a>>2]=j;f[i>>2]=j+(m<<2);if((g|0)<=0)return;Rg(j|0,b|0,g|0)|0;f[n>>2]=j+(g>>>2<<2);return}g=a+4|0;a=f[g>>2]|0;j=a-k>>2;k=h>>>0>j>>>0;h=k?b+(j<<2)|0:c;c=a;j=a;if((h|0)==(b|0))p=l;else{a=h+-4-e|0;e=b;b=l;while(1){f[b>>2]=f[e>>2];e=e+4|0;if((e|0)==(h|0))break;else b=b+4|0}p=l+((a>>>2)+1<<2)|0}if(k){k=d-h|0;if((k|0)<=0)return;Rg(j|0,h|0,k|0)|0;f[g>>2]=(f[g>>2]|0)+(k>>>2<<2);return}else{if((p|0)==(c|0))return;f[g>>2]=c+(~((c+-4-p|0)>>>2)<<2);return}}function Zf(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0;g=u;u=u+96|0;h=g+40|0;i=g;Gm(h,d);we(i,c,d);th(h,i);sj(i+24|0,f[i+28>>2]|0);Dj(i+12|0,f[i+16>>2]|0);sj(i,f[i+4>>2]|0);Si(a,h,e);if(!(f[a>>2]|0)){e=a+4|0;if((b[e+11>>0]|0)<0)br(f[e>>2]|0);f[c+40>>2]=f[h+40>>2];f[c+44>>2]=f[h+44>>2];f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0}f[h>>2]=2968;sj(h+28|0,f[h+32>>2]|0);Dj(h+16|0,f[h+20>>2]|0);sj(h+4|0,f[h+8>>2]|0);u=g;return}function _f(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=f[b>>2]|0;d=f[b+4>>2]|0;e=f[b+8>>2]|0;b=((c^318)+239^d)+239^e;g=f[a+4>>2]|0;if(!g){h=0;return h|0}i=g+-1|0;j=(i&g|0)==0;if(!j)if(b>>>0>>0)k=b;else k=(b>>>0)%(g>>>0)|0;else k=b&i;l=f[(f[a>>2]|0)+(k<<2)>>2]|0;if(!l){h=0;return h|0}a=f[l>>2]|0;if(!a){h=0;return h|0}if(j){j=a;while(1){l=f[j+4>>2]|0;m=(l|0)==(b|0);if(!(m|(l&i|0)==(k|0))){h=0;n=23;break}if(((m?(f[j+8>>2]|0)==(c|0):0)?(f[j+12>>2]|0)==(d|0):0)?(f[j+16>>2]|0)==(e|0):0){h=j;n=23;break}j=f[j>>2]|0;if(!j){h=0;n=23;break}}if((n|0)==23)return h|0}else o=a;while(1){a=f[o+4>>2]|0;if((a|0)==(b|0)){if(((f[o+8>>2]|0)==(c|0)?(f[o+12>>2]|0)==(d|0):0)?(f[o+16>>2]|0)==(e|0):0){h=o;n=23;break}}else{if(a>>>0>>0)p=a;else p=(a>>>0)%(g>>>0)|0;if((p|0)!=(k|0)){h=0;n=23;break}}o=f[o>>2]|0;if(!o){h=0;n=23;break}}if((n|0)==23)return h|0;return 0}function $f(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;e=u;u=u+16|0;g=e;if(!(ih(a,c,d)|0)){h=0;u=e;return h|0}if((b[(f[a+8>>2]|0)+24>>0]|0)!=3){h=0;u=e;return h|0}i=f[c+48>>2]|0;c=dn(32)|0;f[g>>2]=c;f[g+8>>2]=-2147483616;f[g+4>>2]=17;j=c;k=12932;l=j+17|0;do{b[j>>0]=b[k>>0]|0;j=j+1|0;k=k+1|0}while((j|0)<(l|0));b[c+17>>0]=0;c=i+16|0;k=f[c>>2]|0;if(k){j=c;l=k;a:while(1){k=l;while(1){if((f[k+16>>2]|0)>=(d|0))break;m=f[k+4>>2]|0;if(!m){n=j;break a}else k=m}l=f[k>>2]|0;if(!l){n=k;break}else j=k}if(((n|0)!=(c|0)?(f[n+16>>2]|0)<=(d|0):0)?(d=n+20|0,(sh(d,g)|0)!=0):0)o=yk(d,g,-1)|0;else p=12}else p=12;if((p|0)==12)o=yk(i,g,-1)|0;if((b[g+11>>0]|0)<0)br(f[g>>2]|0);if((o|0)<1){h=0;u=e;return h|0}tp(a+40|0,o);h=1;u=e;return h|0}function ag(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;e=c;g=d-e|0;h=a+8|0;i=f[h>>2]|0;j=f[a>>2]|0;k=j;if(g>>>0>(i-j|0)>>>0){if(!j)l=i;else{i=a+4|0;if((f[i>>2]|0)!=(k|0))f[i>>2]=k;br(k);f[h>>2]=0;f[i>>2]=0;f[a>>2]=0;l=0}if((g|0)<0)mq(a);i=l<<1;m=l>>>0<1073741823?(i>>>0>>0?g:i):2147483647;if((m|0)<0)mq(a);i=dn(m)|0;l=a+4|0;f[l>>2]=i;f[a>>2]=i;f[h>>2]=i+m;if((c|0)==(d|0))return;else{n=c;o=i}do{b[o>>0]=b[n>>0]|0;n=n+1|0;o=(f[l>>2]|0)+1|0;f[l>>2]=o}while((n|0)!=(d|0));return}n=a+4|0;a=(f[n>>2]|0)-j|0;j=g>>>0>a>>>0;g=c+a|0;a=j?g:d;if((a|0)==(c|0))p=k;else{o=c;c=k;while(1){b[c>>0]=b[o>>0]|0;o=o+1|0;if((o|0)==(a|0))break;else c=c+1|0}p=k+(a-e)|0}if(!j){if((f[n>>2]|0)==(p|0))return;f[n>>2]=p;return}if((a|0)==(d|0))return;a=g;g=f[n>>2]|0;do{b[g>>0]=b[a>>0]|0;a=a+1|0;g=(f[n>>2]|0)+1|0;f[n>>2]=g}while((a|0)!=(d|0));return}function bg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;d=c>>>1&1431655765|c<<1&-1431655766;c=d>>>2&858993459|d<<2&-858993460;d=c>>>4&252645135|c<<4&-252645136;c=d>>>8&16711935|d<<8&-16711936;d=32-b|0;e=(c>>>16|c<<16)>>>d;c=e-(e>>>1&1431655765)|0;g=(c>>>2&858993459)+(c&858993459)|0;c=(X((g>>>4)+g&252645135,16843009)|0)>>>24;g=b-c|0;h=f[a>>2]|0;i=h;j=Tn(f[i>>2]|0,f[i+4>>2]|0,g|0,((g|0)<0)<<31>>31|0)|0;g=h;f[g>>2]=j;f[g+4>>2]=I;g=h+8|0;h=g;j=Tn(f[h>>2]|0,f[h+4>>2]|0,c|0,0)|0;c=g;f[c>>2]=j;f[c+4>>2]=I;c=a+28|0;j=f[c>>2]|0;g=32-j|0;h=a+24|0;do if((g|0)>=(b|0)){i=-1>>>d<>2]&~i|i&e<>2]=k;i=j+b|0;f[c>>2]=i;if((i|0)!=32)return;i=a+16|0;l=f[i>>2]|0;if((l|0)==(f[a+20>>2]|0)){Ci(a+12|0,h);m=0;n=0;break}else{f[l>>2]=k;f[i>>2]=l+4;m=0;n=0;break}}else{l=-1>>>j<>2]&~l|l&e<>2]=i;l=a+16|0;k=f[l>>2]|0;if((k|0)==(f[a+20>>2]|0))Ci(a+12|0,h);else{f[k>>2]=i;f[l>>2]=k+4}k=b-g|0;m=k;n=-1>>>(32-k|0)&e>>>g}while(0);f[h>>2]=n;f[c>>2]=m;return}function cg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0;e=c&255;g=(d|0)!=0;a:do if(g&(a&3|0)!=0){h=c&255;i=a;j=d;while(1){if((b[i>>0]|0)==h<<24>>24){k=i;l=j;m=6;break a}n=i+1|0;o=j+-1|0;p=(o|0)!=0;if(p&(n&3|0)!=0){i=n;j=o}else{q=n;r=o;s=p;m=5;break}}}else{q=a;r=d;s=g;m=5}while(0);if((m|0)==5)if(s){k=q;l=r;m=6}else{t=q;u=0}b:do if((m|0)==6){q=c&255;if((b[k>>0]|0)==q<<24>>24){t=k;u=l}else{r=X(e,16843009)|0;c:do if(l>>>0>3){s=k;g=l;while(1){d=f[s>>2]^r;if((d&-2139062144^-2139062144)&d+-16843009|0)break;d=s+4|0;a=g+-4|0;if(a>>>0>3){s=d;g=a}else{v=d;w=a;m=11;break c}}x=s;y=g}else{v=k;w=l;m=11}while(0);if((m|0)==11)if(!w){t=v;u=0;break}else{x=v;y=w}while(1){if((b[x>>0]|0)==q<<24>>24){t=x;u=y;break b}r=x+1|0;y=y+-1|0;if(!y){t=r;u=0;break}else x=r}}}while(0);return (u|0?t:0)|0}function dg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0;c=a+4|0;d=f[c>>2]|0;e=f[a>>2]|0;g=e;do if((d|0)==(e|0)){h=a+8|0;i=f[h>>2]|0;j=a+12|0;k=f[j>>2]|0;l=k;if(i>>>0>>0){k=i;m=((l-k>>2)+1|0)/2|0;n=i+(m<<2)|0;o=k-d|0;k=o>>2;p=n+(0-k<<2)|0;if(!k){q=n;r=i}else{Xl(p|0,d|0,o|0)|0;q=p;r=f[h>>2]|0}f[c>>2]=q;f[h>>2]=r+(m<<2);s=q;break}m=l-g>>1;l=(m|0)==0?1:m;if(l>>>0>1073741823){m=ra(8)|0;Wo(m,14941);f[m>>2]=6944;va(m|0,1080,114)}m=dn(l<<2)|0;p=m;o=m+((l+3|0)>>>2<<2)|0;n=o;k=m+(l<<2)|0;if((d|0)==(i|0)){t=n;u=d}else{l=o;m=n;v=d;do{f[l>>2]=f[v>>2];l=m+4|0;m=l;v=v+4|0}while((v|0)!=(i|0));t=m;u=f[a>>2]|0}f[a>>2]=p;f[c>>2]=n;f[h>>2]=t;f[j>>2]=k;if(!u)s=o;else{br(u);s=f[c>>2]|0}}else s=d;while(0);f[s+-4>>2]=f[b>>2];f[c>>2]=(f[c>>2]|0)+-4;return}function eg(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+8|0;i=a+4|0;if((f[i>>2]|0)==-1){j=0;u=d;return j|0}k=f[a+8>>2]|0;l=c+16|0;m=l;n=f[m>>2]|0;o=f[m+4>>2]|0;if(!((o|0)>0|(o|0)==0&n>>>0>0)){m=(f[a+12>>2]|0)-k|0;p=c+4|0;f[g>>2]=f[p>>2];f[e>>2]=f[g>>2];ye(c,e,k,k+m|0)|0;m=l;k=f[m>>2]|0;q=f[m+4>>2]|0;m=a+20|0;if((q|0)>0|(q|0)==0&k>>>0>0){r=q;s=k;t=g}else{f[g>>2]=f[p>>2];f[e>>2]=f[g>>2];ye(c,e,m,m+4|0)|0;m=l;r=f[m+4>>2]|0;s=f[m>>2]|0;t=g}}else{r=o;s=n;t=g}b[h>>0]=f[i>>2];if(!((r|0)>0|(r|0)==0&s>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];ye(c,e,h,h+1|0)|0}j=1;u=d;return j|0}function fg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0;e=u;u=u+16|0;g=e+4|0;h=e;i=a+8|0;a=f[i>>2]|0;j=f[a+40>>2]|0;k=_q((j|0)>-1?j:-1)|0;l=c+4|0;m=f[l>>2]|0;n=f[c>>2]|0;if((m|0)==(n|0)){$q(k);u=e;return 1}o=d+16|0;p=d+4|0;q=k+j|0;j=0;r=n;n=a;s=a;a=m;while(1){m=f[r+(j<<2)>>2]|0;if(!(b[n+84>>0]|0))t=f[(f[n+68>>2]|0)+(m<<2)>>2]|0;else t=m;m=s+48|0;v=f[m>>2]|0;w=f[m+4>>2]|0;m=s+40|0;x=f[m>>2]|0;y=on(x|0,f[m+4>>2]|0,t|0,0)|0;m=Tn(y|0,I|0,v|0,w|0)|0;Rg(k|0,(f[f[s>>2]>>2]|0)+m|0,x|0)|0;x=o;m=f[x+4>>2]|0;if((m|0)>0|(m|0)==0&(f[x>>2]|0)>>>0>0){z=r;A=a}else{f[h>>2]=f[p>>2];f[g>>2]=f[h>>2];ye(d,g,k,q)|0;z=f[c>>2]|0;A=f[l>>2]|0}x=j+1|0;if(x>>>0>=A-z>>2>>>0)break;m=f[i>>2]|0;j=x;r=z;n=m;s=m;a=A}$q(k);u=e;return 1}function gg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;d=(f[b>>2]|0)*3|0;if((d|0)==-1){e=0;g=-1;f[c>>2]=g;return e|0}b=f[a+12>>2]|0;h=f[b+12>>2]|0;if((f[h+(d<<2)>>2]|0)==-1){e=0;g=d;f[c>>2]=g;return e|0}i=f[b>>2]|0;b=f[a+152>>2]|0;if((f[b+(f[i+(d<<2)>>2]<<2)>>2]|0)==-1){a=d+1|0;j=((a>>>0)%3|0|0)==0?d+-2|0:a;if((j|0)==-1){e=0;g=-1;f[c>>2]=g;return e|0}if((f[h+(j<<2)>>2]|0)==-1){e=0;g=j;f[c>>2]=g;return e|0}if((f[b+(f[i+(j<<2)>>2]<<2)>>2]|0)==-1){a=j+1|0;k=((a>>>0)%3|0|0)==0?j+-2|0:a;if((k|0)==-1){e=0;g=-1;f[c>>2]=g;return e|0}if((f[h+(k<<2)>>2]|0)==-1){e=0;g=k;f[c>>2]=g;return e|0}if((f[b+(f[i+(k<<2)>>2]<<2)>>2]|0)==-1){i=k+1|0;e=1;g=((i>>>0)%3|0|0)==0?k+-2|0:i;f[c>>2]=g;return e|0}else l=k}else l=j}else l=d;while(1){d=(((l>>>0)%3|0|0)==0?2:-1)+l|0;if((d|0)==-1)break;j=f[h+(d<<2)>>2]|0;if((j|0)==-1)break;d=j+(((j>>>0)%3|0|0)==0?2:-1)|0;if((d|0)==-1)break;else l=d}e=0;g=(((l>>>0)%3|0|0)==0?2:-1)+l|0;f[c>>2]=g;return e|0}function hg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;e=a+4|0;g=f[e>>2]|0;if(!g){f[c>>2]=e;h=e;return h|0}e=b[d+11>>0]|0;i=e<<24>>24<0;j=i?f[d+4>>2]|0:e&255;e=i?f[d>>2]|0:d;d=a+4|0;a=g;while(1){g=a+16|0;i=b[g+11>>0]|0;k=i<<24>>24<0;l=k?f[a+20>>2]|0:i&255;i=l>>>0>>0;m=i?l:j;if((m|0)!=0?(n=Pk(e,k?f[g>>2]|0:g,m)|0,(n|0)!=0):0)if((n|0)<0)o=8;else o=10;else if(j>>>0>>0)o=8;else o=10;if((o|0)==8){o=0;n=f[a>>2]|0;if(!n){o=9;break}else{p=a;q=n}}else if((o|0)==10){o=0;n=j>>>0>>0?j:l;if((n|0)!=0?(l=Pk(k?f[g>>2]|0:g,e,n)|0,(l|0)!=0):0){if((l|0)>=0){o=16;break}}else o=12;if((o|0)==12?(o=0,!i):0){o=16;break}r=a+4|0;i=f[r>>2]|0;if(!i){o=15;break}else{p=r;q=i}}d=p;a=q}if((o|0)==9){f[c>>2]=a;h=a;return h|0}else if((o|0)==15){f[c>>2]=a;h=r;return h|0}else if((o|0)==16){f[c>>2]=a;h=d;return h|0}return 0}function ig(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0;d=u;u=u+32|0;e=d+24|0;g=d+16|0;h=d+8|0;i=d;j=a+4|0;k=f[j>>2]|0;l=f[b>>2]|0;m=f[b+4>>2]|0;b=f[c>>2]|0;n=f[c+4>>2]|0;c=b-l<<3;f[j>>2]=k-m+n+c;j=(f[a>>2]|0)+(k>>>5<<2)|0;a=k&31;k=j;if((m|0)!=(a|0)){f[e>>2]=l;f[e+4>>2]=m;f[g>>2]=b;f[g+4>>2]=n;f[h>>2]=k;f[h+4>>2]=a;ke(i,e,g,h);u=d;return}h=n-m+c|0;c=l;if((h|0)>0){if(!m){o=h;p=j;q=0;r=l;s=c}else{l=32-m|0;n=(h|0)<(l|0)?h:l;g=-1>>>(l-n|0)&-1<>2]=f[j>>2]&~g|f[c>>2]&g;g=n+m|0;l=c+4|0;o=h-n|0;p=j+(g>>>5<<2)|0;q=g&31;r=l;s=l}l=(o|0)/32|0;Xl(p|0,r|0,l<<2|0)|0;r=o-(l<<5)|0;o=p+(l<<2)|0;p=o;if((r|0)>0){g=-1>>>(32-r|0);f[o>>2]=f[o>>2]&~g|f[s+(l<<2)>>2]&g;t=r;v=p}else{t=q;v=p}}else{t=m;v=k}f[i>>2]=v;f[i+4>>2]=t;u=d;return}function jg(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;g=u;u=u+16|0;h=g;i=c+4|0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;j=dn(16)|0;f[h>>2]=j;f[h+8>>2]=-2147483632;f[h+4>>2]=15;k=j;l=12916;m=k+15|0;do{b[k>>0]=b[l>>0]|0;k=k+1|0;l=l+1|0}while((k|0)<(m|0));b[j+15>>0]=0;j=yk(i,h,-1)|0;if((b[h+11>>0]|0)<0)br(f[h>>2]|0);switch(j|0){case -1:{if((Yh(i)|0)==10)n=6;else n=5;break}case 1:{n=5;break}default:n=6}if((n|0)==5){j=dn(68)|0;Xo(j);o=j}else if((n|0)==6){n=dn(64)|0;Gp(n);o=n}vo(o,d);Ad(a,o,i,e);if(f[a>>2]|0){p=f[o>>2]|0;q=p+4|0;r=f[q>>2]|0;Va[r&127](o);u=g;return}e=a+4|0;if((b[e+11>>0]|0)<0)br(f[e>>2]|0);f[c+40>>2]=f[o+52>>2];f[c+44>>2]=f[o+60>>2];f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;p=f[o>>2]|0;q=p+4|0;r=f[q>>2]|0;Va[r&127](o);u=g;return}function kg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0;c=a+8|0;d=f[c>>2]|0;e=a+12|0;g=f[e>>2]|0;h=g;do if((d|0)==(g|0)){i=a+4|0;j=f[i>>2]|0;k=f[a>>2]|0;l=k;if(j>>>0>k>>>0){m=j;n=((m-l>>2)+1|0)/-2|0;o=j+(n<<2)|0;p=d-m|0;m=p>>2;if(!m)q=j;else{Xl(o|0,j|0,p|0)|0;q=f[i>>2]|0}p=o+(m<<2)|0;f[c>>2]=p;f[i>>2]=q+(n<<2);r=p;break}p=h-l>>1;l=(p|0)==0?1:p;if(l>>>0>1073741823){p=ra(8)|0;Wo(p,14941);f[p>>2]=6944;va(p|0,1080,114)}p=dn(l<<2)|0;n=p;m=p+(l>>>2<<2)|0;o=m;s=p+(l<<2)|0;if((j|0)==(d|0)){t=o;u=k}else{k=m;m=o;l=j;do{f[k>>2]=f[l>>2];k=m+4|0;m=k;l=l+4|0}while((l|0)!=(d|0));t=m;u=f[a>>2]|0}f[a>>2]=n;f[i>>2]=o;f[c>>2]=t;f[e>>2]=s;if(!u)r=t;else{br(u);r=f[c>>2]|0}}else r=d;while(0);f[r>>2]=f[b>>2];f[c>>2]=(f[c>>2]|0)+4;return}function lg(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;b=u;u=u+16|0;c=b+4|0;d=b;e=a+8|0;g=a+12|0;h=f[g>>2]|0;$j(f[a+4>>2]|0,(f[h+56>>2]|0)-(f[h+52>>2]|0)>>2);h=a+76|0;a=f[h>>2]|0;if(!a){i=f[(f[g>>2]|0)+64>>2]|0;g=(f[i+4>>2]|0)-(f[i>>2]|0)>>2;i=(g>>>0)/3|0;if(g>>>0<=2){j=1;u=b;return j|0}g=0;while(1){f[d>>2]=g*3;f[c>>2]=f[d>>2];g=g+1|0;if(!(Tb(e,c)|0)){j=0;k=10;break}if((g|0)>=(i|0)){j=1;k=10;break}}if((k|0)==10){u=b;return j|0}}else{i=f[a>>2]|0;if((f[a+4>>2]|0)==(i|0)){j=1;u=b;return j|0}a=0;g=i;while(1){f[d>>2]=f[g+(a<<2)>>2];f[c>>2]=f[d>>2];a=a+1|0;if(!(Tb(e,c)|0)){j=0;k=10;break}i=f[h>>2]|0;g=f[i>>2]|0;if(a>>>0>=(f[i+4>>2]|0)-g>>2>>>0){j=1;k=10;break}}if((k|0)==10){u=b;return j|0}}return 0}function mg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;h=a+12|0;i=a+4|0;j=f[i>>2]|0;if((j|0)==(f[a+8>>2]|0)){Ci(a,h);k=f[i>>2]|0}else{f[j>>2]=f[h>>2];l=j+4|0;f[i>>2]=l;k=l}l=f[a>>2]|0;f[g>>2]=k-l;k=b+16|0;j=k;m=f[j+4>>2]|0;if(!((m|0)>0|(m|0)==0&(f[j>>2]|0)>>>0>0)){f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;j=f[a>>2]|0;m=f[g>>2]|0;g=k;k=f[g+4>>2]|0;if((k|0)>0|(k|0)==0&(f[g>>2]|0)>>>0>0){n=j;o=e}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,j,j+m|0)|0;n=f[a>>2]|0;o=e}}else{n=l;o=e}e=f[i>>2]|0;if((e|0)==(n|0)){f[h>>2]=0;p=a+16|0;f[p>>2]=0;u=c;return}f[i>>2]=e+(~((e+-4-n|0)>>>2)<<2);f[h>>2]=0;p=a+16|0;f[p>>2]=0;u=c;return}function ng(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;c=a+8|0;d=f[c>>2]|0;e=a+4|0;g=f[e>>2]|0;h=g;if(d-g>>2>>>0>=b>>>0){hj(g|0,0,b<<2|0)|0;f[e>>2]=g+(b<<2);return}i=f[a>>2]|0;j=g-i>>2;g=j+b|0;k=i;if(g>>>0>1073741823)mq(a);l=d-i|0;d=l>>1;m=l>>2>>>0<536870911?(d>>>0>>0?g:d):1073741823;do if(m)if(m>>>0>1073741823){d=ra(8)|0;Wo(d,14941);f[d>>2]=6944;va(d|0,1080,114)}else{n=dn(m<<2)|0;break}else n=0;while(0);d=n+(j<<2)|0;hj(d|0,0,b<<2|0)|0;b=d;j=n+(m<<2)|0;m=n+(g<<2)|0;if((h|0)==(k|0)){o=b;p=i;q=h}else{i=h;h=b;b=d;do{i=i+-4|0;d=f[i>>2]|0;f[i>>2]=0;f[b+-4>>2]=d;b=h+-4|0;h=b}while((i|0)!=(k|0));o=h;p=f[a>>2]|0;q=f[e>>2]|0}f[a>>2]=o;f[e>>2]=m;f[c>>2]=j;j=p;if((q|0)!=(j|0)){c=q;do{c=c+-4|0;q=f[c>>2]|0;f[c>>2]=0;if(q|0)Va[f[(f[q>>2]|0)+4>>2]&127](q)}while((c|0)!=(j|0))}if(!p)return;br(p);return}function og(a){a=a|0;lk(a);lk(a+32|0);lk(a+64|0);lk(a+96|0);lk(a+128|0);lk(a+160|0);lk(a+192|0);lk(a+224|0);lk(a+256|0);lk(a+288|0);lk(a+320|0);lk(a+352|0);lk(a+384|0);lk(a+416|0);lk(a+448|0);lk(a+480|0);lk(a+512|0);lk(a+544|0);lk(a+576|0);lk(a+608|0);lk(a+640|0);lk(a+672|0);lk(a+704|0);lk(a+736|0);lk(a+768|0);lk(a+800|0);lk(a+832|0);lk(a+864|0);lk(a+896|0);lk(a+928|0);lk(a+960|0);lk(a+992|0);lk(a+1024|0);return}function pg(a,c,d,e,g,h){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=$(h);var i=0,j=0,k=0,l=0,m=0,n=0;i=u;u=u+16|0;j=i;k=i+4|0;f[j>>2]=c;c=a+4|0;a=dn(32)|0;f[k>>2]=a;f[k+8>>2]=-2147483616;f[k+4>>2]=17;l=a;m=12932;n=l+17|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[a+17>>0]=0;Nj(wd(c,j)|0,k,d);if((b[k+11>>0]|0)<0)br(f[k>>2]|0);d=dn(32)|0;f[k>>2]=d;f[k+8>>2]=-2147483616;f[k+4>>2]=19;l=d;m=13005;n=l+19|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[d+19>>0]=0;ci(wd(c,j)|0,k,g,e);if((b[k+11>>0]|0)<0)br(f[k>>2]|0);e=dn(32)|0;f[k>>2]=e;f[k+8>>2]=-2147483616;f[k+4>>2]=18;l=e;m=13025;n=l+18|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[e+18>>0]=0;Lj(wd(c,j)|0,k,h);if((b[k+11>>0]|0)>=0){u=i;return}br(f[k>>2]|0);u=i;return}function qg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;d=c;e=b;g=d-e|0;h=g>>2;i=a+8|0;j=f[i>>2]|0;k=f[a>>2]|0;l=k;if(h>>>0<=j-k>>2>>>0){m=a+4|0;n=(f[m>>2]|0)-k>>2;o=h>>>0>n>>>0;p=o?b+(n<<2)|0:c;c=p;n=c-e|0;e=n>>2;if(e|0)Xl(k|0,b|0,n|0)|0;n=l+(e<<2)|0;if(o){o=d-c|0;if((o|0)<=0)return;Rg(f[m>>2]|0,p|0,o|0)|0;f[m>>2]=(f[m>>2]|0)+(o>>>2<<2);return}else{o=f[m>>2]|0;if((o|0)==(n|0))return;f[m>>2]=o+(~((o+-4-n|0)>>>2)<<2);return}}n=k;if(!k)q=j;else{j=a+4|0;o=f[j>>2]|0;if((o|0)!=(l|0))f[j>>2]=o+(~((o+-4-k|0)>>>2)<<2);br(n);f[i>>2]=0;f[j>>2]=0;f[a>>2]=0;q=0}if(h>>>0>1073741823)mq(a);j=q>>1;n=q>>2>>>0<536870911?(j>>>0>>0?h:j):1073741823;if(n>>>0>1073741823)mq(a);j=dn(n<<2)|0;h=a+4|0;f[h>>2]=j;f[a>>2]=j;f[i>>2]=j+(n<<2);if((g|0)<=0)return;Rg(j|0,b|0,g|0)|0;f[h>>2]=j+(g>>>2<<2);return}function rg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0.0,p=0,q=0.0,r=0.0,s=0.0,t=0,v=0.0;e=u;u=u+16|0;g=e;h=c+1|0;f[g>>2]=0;i=g+4|0;f[i>>2]=0;f[g+8>>2]=0;do if(h)if(h>>>0>1073741823)mq(g);else{j=dn(h<<2)|0;f[g>>2]=j;k=j+(h<<2)|0;f[g+8>>2]=k;hj(j|0,0,(c<<2)+4|0)|0;f[i>>2]=k;l=j;m=k;n=j;break}else{l=0;m=0;n=0}while(0);if((b|0)>0){g=0;do{j=l+(f[a+(g<<2)>>2]<<2)|0;f[j>>2]=(f[j>>2]|0)+1;g=g+1|0}while((g|0)!=(b|0))}o=+(b|0);if((c|0)<0){p=0;q=0.0}else{c=0;r=0.0;b=0;while(1){g=f[l+(b<<2)>>2]|0;s=+(g|0);if((g|0)>0){t=c+1|0;v=r+ +Fg(s/o)*s}else{t=c;v=r}b=b+1|0;if((b|0)==(h|0)){p=t;q=v;break}else{c=t;r=v}}}if(d|0)f[d>>2]=p;v=-q;p=~~v>>>0;d=+K(v)>=1.0?(v>0.0?~~+Y(+J(v/4294967296.0),4294967295.0)>>>0:~~+W((v-+(~~v>>>0))/4294967296.0)>>>0):0;if(!l){I=d;u=e;return p|0}if((m|0)!=(l|0))f[i>>2]=m+(~((m+-4-l|0)>>>2)<<2);br(n);I=d;u=e;return p|0}function sg(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;b=u;u=u+16|0;c=b+4|0;d=b;e=a+8|0;g=a+12|0;h=f[g>>2]|0;$j(f[a+4>>2]|0,(f[h+28>>2]|0)-(f[h+24>>2]|0)>>2);h=a+76|0;a=f[h>>2]|0;if(!a){i=f[g>>2]|0;g=(f[i+4>>2]|0)-(f[i>>2]|0)>>2;i=(g>>>0)/3|0;if(g>>>0<=2){j=1;u=b;return j|0}g=0;while(1){f[d>>2]=g*3;f[c>>2]=f[d>>2];g=g+1|0;if(!(Wb(e,c)|0)){j=0;k=10;break}if((g|0)>=(i|0)){j=1;k=10;break}}if((k|0)==10){u=b;return j|0}}else{i=f[a>>2]|0;if((f[a+4>>2]|0)==(i|0)){j=1;u=b;return j|0}a=0;g=i;while(1){f[d>>2]=f[g+(a<<2)>>2];f[c>>2]=f[d>>2];a=a+1|0;if(!(Wb(e,c)|0)){j=0;k=10;break}i=f[h>>2]|0;g=f[i>>2]|0;if(a>>>0>=(f[i+4>>2]|0)-g>>2>>>0){j=1;k=10;break}}if((k|0)==10){u=b;return j|0}}return 0}function tg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;e=u;u=u+16|0;g=e+4|0;h=e;i=dn(32)|0;f[a>>2]=i;f[a+4>>2]=c+4;c=a+8|0;b[c>>0]=0;f[i+16>>2]=f[d>>2];a=i+20|0;f[i+24>>2]=0;f[i+28>>2]=0;j=i+24|0;f[a>>2]=j;i=f[d+4>>2]|0;k=d+8|0;if((i|0)==(k|0)){b[c>>0]=1;u=e;return}d=j;j=i;while(1){i=j+16|0;f[h>>2]=d;f[g>>2]=f[h>>2];Wg(a,g,i,i)|0;i=f[j+4>>2]|0;if(!i){l=j+8|0;m=f[l>>2]|0;if((f[m>>2]|0)==(j|0))n=m;else{m=l;do{l=f[m>>2]|0;m=l+8|0;o=f[m>>2]|0}while((f[o>>2]|0)!=(l|0));n=o}}else{m=i;while(1){o=f[m>>2]|0;if(!o)break;else m=o}n=m}if((n|0)==(k|0))break;else j=n}b[c>>0]=1;u=e;return}function ug(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;d=u;u=u+16|0;e=d;f[e>>2]=b;g=a+8|0;if(((f[a+12>>2]|0)-(f[g>>2]|0)>>2|0)<=(b|0))jh(g,b+1|0);h=f[(f[c>>2]|0)+56>>2]|0;do if((h|0)<5){i=a+20+(h*12|0)+4|0;j=f[i>>2]|0;if((j|0)==(f[a+20+(h*12|0)+8>>2]|0)){Ci(a+20+(h*12|0)|0,e);break}else{f[j>>2]=b;f[i>>2]=j+4;break}}while(0);b=f[c>>2]|0;h=f[e>>2]|0;f[b+60>>2]=h;e=(f[g>>2]|0)+(h<<2)|0;f[c>>2]=0;c=f[e>>2]|0;f[e>>2]=b;if(!c){u=d;return}b=c+88|0;e=f[b>>2]|0;f[b>>2]=0;if(e|0){b=f[e+8>>2]|0;if(b|0){h=e+12|0;if((f[h>>2]|0)!=(b|0))f[h>>2]=b;br(b)}br(e)}e=f[c+68>>2]|0;if(e|0){b=c+72|0;h=f[b>>2]|0;if((h|0)!=(e|0))f[b>>2]=h+(~((h+-4-e|0)>>>2)<<2);br(e)}e=c+64|0;h=f[e>>2]|0;f[e>>2]=0;if(h|0){e=f[h>>2]|0;if(e|0){b=h+4|0;if((f[b>>2]|0)!=(e|0))f[b>>2]=e;br(e)}br(h)}br(c);u=d;return}function vg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;d=u;u=u+48|0;e=d+16|0;g=d;h=d+32|0;i=a+28|0;j=f[i>>2]|0;f[h>>2]=j;k=a+20|0;l=(f[k>>2]|0)-j|0;f[h+4>>2]=l;f[h+8>>2]=b;f[h+12>>2]=c;b=l+c|0;l=a+60|0;f[g>>2]=f[l>>2];f[g+4>>2]=h;f[g+8>>2]=2;j=ro(Aa(146,g|0)|0)|0;a:do if((b|0)!=(j|0)){g=2;m=b;n=h;o=j;while(1){if((o|0)<0)break;m=m-o|0;p=f[n+4>>2]|0;q=o>>>0>p>>>0;r=q?n+8|0:n;s=g+(q<<31>>31)|0;t=o-(q?p:0)|0;f[r>>2]=(f[r>>2]|0)+t;p=r+4|0;f[p>>2]=(f[p>>2]|0)-t;f[e>>2]=f[l>>2];f[e+4>>2]=r;f[e+8>>2]=s;o=ro(Aa(146,e|0)|0)|0;if((m|0)==(o|0)){v=3;break a}else{g=s;n=r}}f[a+16>>2]=0;f[i>>2]=0;f[k>>2]=0;f[a>>2]=f[a>>2]|32;if((g|0)==2)w=0;else w=c-(f[n+4>>2]|0)|0}else v=3;while(0);if((v|0)==3){v=f[a+44>>2]|0;f[a+16>>2]=v+(f[a+48>>2]|0);a=v;f[i>>2]=a;f[k>>2]=a;w=c}u=d;return w|0}function wg(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0;f[a>>2]=5880;b=f[a+68>>2]|0;if(b|0){c=a+72|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+56>>2]|0;if(b|0){d=a+60|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+44>>2]|0;if(b|0){c=a+48|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+32>>2]|0;if(b|0){d=a+36|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+20>>2]|0;if(b|0){c=a+24|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}Sh(a+8|0);b=a+4|0;a=f[b>>2]|0;f[b>>2]=0;if(!a)return;b=a+40|0;d=f[b>>2]|0;if(d|0){c=a+44|0;e=f[c>>2]|0;if((e|0)==(d|0))g=d;else{h=e;do{e=h+-4|0;f[c>>2]=e;i=f[e>>2]|0;f[e>>2]=0;if(i|0){Qi(i);br(i)}h=f[c>>2]|0}while((h|0)!=(d|0));g=f[b>>2]|0}br(g)}Qi(a);br(a);return}function xg(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;c=a+12|0;d=f[a>>2]|0;e=a+8|0;g=f[e>>2]|0;h=(g|0)==-1;if(!(b[c>>0]|0)){do if(((!h?(i=(((g>>>0)%3|0|0)==0?2:-1)+g|0,(i|0)!=-1):0)?(f[(f[d>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)==0:0)?(j=f[(f[(f[d+64>>2]|0)+12>>2]|0)+(i<<2)>>2]|0,(j|0)!=-1):0)if(!((j>>>0)%3|0)){k=j+2|0;break}else{k=j+-1|0;break}else k=-1;while(0);f[e>>2]=k;return}k=g+1|0;if(((!h?(h=((k>>>0)%3|0|0)==0?g+-2|0:k,(h|0)!=-1):0)?(f[(f[d>>2]|0)+(h>>>5<<2)>>2]&1<<(h&31)|0)==0:0)?(k=f[(f[(f[d+64>>2]|0)+12>>2]|0)+(h<<2)>>2]|0,h=k+1|0,(k|0)!=-1):0){g=((h>>>0)%3|0|0)==0?k+-2|0:h;f[e>>2]=g;if((g|0)!=-1){if((g|0)!=(f[a+4>>2]|0))return;f[e>>2]=-1;return}}else f[e>>2]=-1;g=f[a+4>>2]|0;do if((((g|0)!=-1?(a=(((g>>>0)%3|0|0)==0?2:-1)+g|0,(a|0)!=-1):0)?(f[(f[d>>2]|0)+(a>>>5<<2)>>2]&1<<(a&31)|0)==0:0)?(h=f[(f[(f[d+64>>2]|0)+12>>2]|0)+(a<<2)>>2]|0,(h|0)!=-1):0)if(!((h>>>0)%3|0)){l=h+2|0;break}else{l=h+-1|0;break}else l=-1;while(0);f[e>>2]=l;b[c>>0]=0;return}function yg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=a+4|0;d=f[a>>2]|0;e=(f[c>>2]|0)-d>>2;g=e+1|0;if(g>>>0>1073741823)mq(a);h=a+8|0;i=(f[h>>2]|0)-d|0;d=i>>1;j=i>>2>>>0<536870911?(d>>>0>>0?g:d):1073741823;do if(j)if(j>>>0>1073741823){d=ra(8)|0;Wo(d,14941);f[d>>2]=6944;va(d|0,1080,114)}else{k=dn(j<<2)|0;break}else k=0;while(0);d=k+(e<<2)|0;e=d;g=k+(j<<2)|0;j=f[b>>2]|0;f[b>>2]=0;f[d>>2]=j;j=d+4|0;b=f[a>>2]|0;k=f[c>>2]|0;if((k|0)==(b|0)){l=e;m=b;n=b}else{i=k;k=e;e=d;do{i=i+-4|0;d=f[i>>2]|0;f[i>>2]=0;f[e+-4>>2]=d;e=k+-4|0;k=e}while((i|0)!=(b|0));l=k;m=f[a>>2]|0;n=f[c>>2]|0}f[a>>2]=l;f[c>>2]=j;f[h>>2]=g;g=m;if((n|0)!=(g|0)){h=n;do{h=h+-4|0;n=f[h>>2]|0;f[h>>2]=0;if(n|0)Va[f[(f[n>>2]|0)+4>>2]&127](n)}while((h|0)!=(g|0))}if(!m)return;br(m);return}function zg(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=a+4|0;a=f[d>>2]|0;do if(a|0){e=b[c+11>>0]|0;g=e<<24>>24<0;h=g?f[c+4>>2]|0:e&255;e=g?f[c>>2]|0:c;g=d;i=a;a:while(1){j=i;while(1){k=j+16|0;l=b[k+11>>0]|0;m=l<<24>>24<0;n=m?f[j+20>>2]|0:l&255;l=h>>>0>>0?h:n;if((l|0)!=0?(o=Pk(m?f[k>>2]|0:k,e,l)|0,(o|0)!=0):0){if((o|0)>=0)break}else p=6;if((p|0)==6?(p=0,n>>>0>=h>>>0):0)break;n=f[j+4>>2]|0;if(!n){q=g;break a}else j=n}i=f[j>>2]|0;if(!i){q=j;break}else g=j}if((q|0)!=(d|0)){g=q+16|0;i=b[g+11>>0]|0;n=i<<24>>24<0;o=n?f[q+20>>2]|0:i&255;i=o>>>0>>0?o:h;if(i|0?(l=Pk(e,n?f[g>>2]|0:g,i)|0,l|0):0){if((l|0)<0)break;else r=q;return r|0}if(h>>>0>=o>>>0){r=q;return r|0}}}while(0);r=d;return r|0}function Ag(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;d=a+8|0;e=f[d>>2]|0;g=a+4|0;h=f[g>>2]|0;if(((e-h|0)/12|0)>>>0>=b>>>0){i=b;j=h;do{f[j>>2]=f[c>>2];f[j+4>>2]=f[c+4>>2];f[j+8>>2]=f[c+8>>2];j=(f[g>>2]|0)+12|0;f[g>>2]=j;i=i+-1|0}while((i|0)!=0);return}i=f[a>>2]|0;j=(h-i|0)/12|0;h=j+b|0;if(h>>>0>357913941)mq(a);k=(e-i|0)/12|0;i=k<<1;e=k>>>0<178956970?(i>>>0>>0?h:i):357913941;do if(e)if(e>>>0>357913941){i=ra(8)|0;Wo(i,14941);f[i>>2]=6944;va(i|0,1080,114)}else{l=dn(e*12|0)|0;break}else l=0;while(0);i=l+(j*12|0)|0;j=l+(e*12|0)|0;e=b;b=i;l=i;do{f[b>>2]=f[c>>2];f[b+4>>2]=f[c+4>>2];f[b+8>>2]=f[c+8>>2];b=l+12|0;l=b;e=e+-1|0}while((e|0)!=0);e=f[a>>2]|0;b=(f[g>>2]|0)-e|0;c=i+(((b|0)/-12|0)*12|0)|0;if((b|0)>0)Rg(c|0,e|0,b|0)|0;f[a>>2]=c;f[g>>2]=l;f[d>>2]=j;if(!e)return;br(e);return}function Bg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=a+4|0;d=f[a>>2]|0;e=(f[c>>2]|0)-d>>2;g=e+1|0;if(g>>>0>1073741823)mq(a);h=a+8|0;i=(f[h>>2]|0)-d|0;d=i>>1;j=i>>2>>>0<536870911?(d>>>0>>0?g:d):1073741823;do if(j)if(j>>>0>1073741823){d=ra(8)|0;Wo(d,14941);f[d>>2]=6944;va(d|0,1080,114)}else{k=dn(j<<2)|0;break}else k=0;while(0);d=k+(e<<2)|0;e=d;g=k+(j<<2)|0;j=f[b>>2]|0;f[b>>2]=0;f[d>>2]=j;j=d+4|0;b=f[a>>2]|0;k=f[c>>2]|0;if((k|0)==(b|0)){l=e;m=b;n=b}else{i=k;k=e;e=d;do{i=i+-4|0;d=f[i>>2]|0;f[i>>2]=0;f[e+-4>>2]=d;e=k+-4|0;k=e}while((i|0)!=(b|0));l=k;m=f[a>>2]|0;n=f[c>>2]|0}f[a>>2]=l;f[c>>2]=j;f[h>>2]=g;g=m;if((n|0)!=(g|0)){h=n;do{h=h+-4|0;n=f[h>>2]|0;f[h>>2]=0;if(n|0){Qi(n);br(n)}}while((h|0)!=(g|0))}if(!m)return;br(m);return}function Cg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;e=f[b>>2]|0;g=f[a>>2]|0;h=f[d>>2]|0;d=f[h>>2]|0;i=(f[h+4>>2]|0)-d>>3;if(i>>>0<=e>>>0)mq(h);j=d;if(i>>>0<=g>>>0)mq(h);d=f[j+(e<<3)>>2]|0;k=f[c>>2]|0;if(i>>>0<=k>>>0)mq(h);l=j+(g<<3)|0;m=(f[j+(k<<3)>>2]|0)>>>0>>0;if(d>>>0<(f[l>>2]|0)>>>0){if(m){f[a>>2]=k;f[c>>2]=g;n=1;return n|0}f[a>>2]=e;f[b>>2]=g;d=f[c>>2]|0;if(i>>>0<=d>>>0)mq(h);if((f[j+(d<<3)>>2]|0)>>>0>=(f[l>>2]|0)>>>0){n=1;return n|0}f[b>>2]=d;f[c>>2]=g;n=2;return n|0}if(!m){n=0;return n|0}f[b>>2]=k;f[c>>2]=e;e=f[b>>2]|0;c=f[a>>2]|0;if(i>>>0<=e>>>0)mq(h);if(i>>>0<=c>>>0)mq(h);if((f[j+(e<<3)>>2]|0)>>>0>=(f[j+(c<<3)>>2]|0)>>>0){n=1;return n|0}f[a>>2]=e;f[b>>2]=c;n=2;return n|0}function Dg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0;e=u;u=u+96|0;g=e+40|0;h=e;Am(g,c);we(h,b,c);th(g,h);sj(h+24|0,f[h+28>>2]|0);Dj(h+12|0,f[h+16>>2]|0);sj(h,f[h+4>>2]|0);Si(a,g,d);f[g>>2]=2968;sj(g+28|0,f[g+32>>2]|0);Dj(g+16|0,f[g+20>>2]|0);sj(g+4|0,f[g+8>>2]|0);u=e;return}function Eg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;a=u;u=u+16|0;e=a;if(!b){g=0;u=a;return g|0}h=b+96|0;i=b+100|0;f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;b=f[i>>2]|0;j=f[h>>2]|0;k=(b-j|0)/12|0;l=j;j=b;if(k>>>0>=c>>>0){if(k>>>0>c>>>0?(b=l+(c*12|0)|0,(b|0)!=(j|0)):0)f[i>>2]=j+(~(((j+-12-b|0)>>>0)/12|0)*12|0);if(!c){g=1;u=a;return g|0}}else Ag(h,c-k|0,e);k=0;b=f[h>>2]|0;while(1){j=k*3|0;l=f[d+(j<<2)>>2]|0;m=f[d+(j+1<<2)>>2]|0;n=f[d+(j+2<<2)>>2]|0;j=((f[i>>2]|0)-b|0)/12|0;o=k;k=k+1|0;if(o>>>0>>0){p=b;q=b}else{f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;Ag(h,k-j|0,e);j=f[h>>2]|0;p=j;q=j}f[p+(o*12|0)>>2]=l;f[p+(o*12|0)+4>>2]=m;f[p+(o*12|0)+8>>2]=n;if((k|0)==(c|0)){g=1;break}else b=q}u=a;return g|0}function Fg(a){a=+a;var b=0,c=0,d=0,e=0.0,g=0,h=0,i=0,j=0,k=0,l=0,m=0.0,n=0.0,o=0.0,q=0.0,r=0.0,t=0.0;p[s>>3]=a;b=f[s>>2]|0;c=f[s+4>>2]|0;d=(c|0)<0;do if(d|c>>>0<1048576){if((b|0)==0&(c&2147483647|0)==0){e=-1.0/(a*a);break}if(d){e=(a-a)/0.0;break}else{p[s>>3]=a*18014398509481984.0;g=f[s+4>>2]|0;h=-1077;i=g;j=f[s>>2]|0;k=g;l=9;break}}else if(c>>>0<=2146435071)if((b|0)==0&0==0&(c|0)==1072693248)e=0.0;else{h=-1023;i=c;j=b;k=c;l=9}else e=a;while(0);if((l|0)==9){l=i+614242|0;f[s>>2]=j;f[s+4>>2]=(l&1048575)+1072079006;a=+p[s>>3]+-1.0;m=a*a*.5;n=a/(a+2.0);o=n*n;q=o*o;p[s>>3]=a-m;j=f[s+4>>2]|0;f[s>>2]=0;f[s+4>>2]=j;r=+p[s>>3];t=a-r-m+n*(m+(q*(q*(q*.15313837699209373+.22222198432149784)+.3999999999940942)+o*(q*(q*(q*.14798198605116586+.1818357216161805)+.2857142874366239)+.6666666666666735)));q=r*1.4426950407214463;o=+(h+(l>>>20)|0);m=q+o;e=m+(q+(o-m)+(t*1.4426950407214463+(t+r)*1.6751713164886512e-10))}return +e}function Gg(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=u;u=u+16|0;e=d;g=dn(32)|0;f[e>>2]=g;f[e+8>>2]=-2147483616;f[e+4>>2]=17;h=g;i=12804;j=h+17|0;do{b[h>>0]=b[i>>0]|0;h=h+1|0;i=i+1|0}while((h|0)<(j|0));b[g+17>>0]=0;g=c+16|0;i=f[g>>2]|0;if(i){h=g;j=i;a:while(1){i=j;while(1){if((f[i+16>>2]|0)>=(a|0))break;k=f[i+4>>2]|0;if(!k){l=h;break a}else i=k}j=f[i>>2]|0;if(!j){l=i;break}else h=i}if(((l|0)!=(g|0)?(f[l+16>>2]|0)<=(a|0):0)?(a=l+20|0,(sh(a,e)|0)!=0):0)m=a;else n=10}else n=10;if((n|0)==10)m=c;c=yk(m,e,-1)|0;if((b[e+11>>0]|0)>=0){o=(c|0)==-1;p=c>>>0>6;q=p?-2:c;r=o?-1:q;u=d;return r|0}br(f[e>>2]|0);o=(c|0)==-1;p=c>>>0>6;q=p?-2:c;r=o?-1:q;u=d;return r|0}function Hg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0;d=u;u=u+16|0;e=d;g=f[c>>2]|0;f[c>>2]=0;f[e>>2]=g;ug(a,b,e);g=f[e>>2]|0;f[e>>2]=0;if(g|0){e=g+88|0;c=f[e>>2]|0;f[e>>2]=0;if(c|0){e=f[c+8>>2]|0;if(e|0){h=c+12|0;if((f[h>>2]|0)!=(e|0))f[h>>2]=e;br(e)}br(c)}c=f[g+68>>2]|0;if(c|0){e=g+72|0;h=f[e>>2]|0;if((h|0)!=(c|0))f[e>>2]=h+(~((h+-4-c|0)>>>2)<<2);br(c)}c=g+64|0;h=f[c>>2]|0;f[c>>2]=0;if(h|0){c=f[h>>2]|0;if(c|0){e=h+4|0;if((f[e>>2]|0)!=(c|0))f[e>>2]=c;br(c)}br(h)}br(g)}g=a+84|0;h=a+88|0;a=f[h>>2]|0;c=f[g>>2]|0;e=a-c>>2;if((e|0)>(b|0)){u=d;return}i=b+1|0;b=a;if(i>>>0>e>>>0){nh(g,i-e|0);u=d;return}if(i>>>0>=e>>>0){u=d;return}e=c+(i<<2)|0;if((e|0)==(b|0)){u=d;return}f[h>>2]=b+(~((b+-4-e|0)>>>2)<<2);u=d;return}function Ig(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+16|0;e=d;g=a+4|0;f[g>>2]=c;f[a+8>>2]=f[c+56>>2];h=f[a+184>>2]|0;i=a+188|0;j=f[i>>2]|0;if((j|0)!=(h|0))f[i>>2]=j+(~((j+-4-h|0)>>>2)<<2);h=f[c+48>>2]|0;c=dn(32)|0;f[e>>2]=c;f[e+8>>2]=-2147483616;f[e+4>>2]=19;j=c;i=14285;k=j+19|0;do{b[j>>0]=b[i>>0]|0;j=j+1|0;i=i+1|0}while((j|0)<(k|0));b[c+19>>0]=0;c=(sh(h,e)|0)==0;if((b[e+11>>0]|0)<0)br(f[e>>2]|0);h=f[(f[g>>2]|0)+48>>2]|0;if(c){c=(Yh(h)|0)>5&1;b[a+352>>0]=c;u=d;return 1}c=dn(32)|0;f[e>>2]=c;f[e+8>>2]=-2147483616;f[e+4>>2]=19;j=c;i=14285;k=j+19|0;do{b[j>>0]=b[i>>0]|0;j=j+1|0;i=i+1|0}while((j|0)<(k|0));b[c+19>>0]=0;c=(Oj(h,e,0)|0)&1;b[a+352>>0]=c;if((b[e+11>>0]|0)<0)br(f[e>>2]|0);u=d;return 1}function Jg(a){a=a|0;var c=0,d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0;c=a+108|0;d=(f[a+112>>2]|0)-(f[c>>2]|0)|0;e=(d|0)/12|0;g=a+4|0;Nh(e,f[(f[g>>2]|0)+44>>2]|0)|0;if(!d)return 1;d=0;a=0;while(1){i=f[c>>2]|0;j=i+(d*12|0)+4|0;Nh((f[j>>2]|0)-a|0,f[(f[g>>2]|0)+44>>2]|0)|0;Nh((f[j>>2]|0)-(f[i+(d*12|0)>>2]|0)|0,f[(f[g>>2]|0)+44>>2]|0)|0;d=d+1|0;if(d>>>0>=e>>>0)break;else a=f[j>>2]|0}li(f[(f[g>>2]|0)+44>>2]|0,e,0,0)|0;a=0;do{d=f[(f[g>>2]|0)+44>>2]|0;j=d+16|0;i=f[j+4>>2]|0;if((i|0)>0|(i|0)==0&(f[j>>2]|0)>>>0>0){j=f[d+12>>2]|0;d=j+4|0;i=f[d>>2]|0;k=b[(f[c>>2]|0)+(a*12|0)+8>>0]&1;l=i>>>3;m=i&7;i=(f[j>>2]|0)+l|0;b[i>>0]=(1<>0]|0);i=(f[j>>2]|0)+l|0;b[i>>0]=k<>0]|0);f[d>>2]=(f[d>>2]|0)+1}a=a+1|0}while(a>>>0>>0);Qf(f[(f[g>>2]|0)+44>>2]|0);return 1}function Kg(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+16|0;e=d;g=a+4|0;f[g>>2]=c;f[a+8>>2]=f[c+56>>2];h=f[a+184>>2]|0;i=a+188|0;j=f[i>>2]|0;if((j|0)!=(h|0))f[i>>2]=j+(~((j+-4-h|0)>>>2)<<2);h=f[c+48>>2]|0;c=dn(32)|0;f[e>>2]=c;f[e+8>>2]=-2147483616;f[e+4>>2]=19;j=c;i=14285;k=j+19|0;do{b[j>>0]=b[i>>0]|0;j=j+1|0;i=i+1|0}while((j|0)<(k|0));b[c+19>>0]=0;c=(sh(h,e)|0)==0;if((b[e+11>>0]|0)<0)br(f[e>>2]|0);h=f[(f[g>>2]|0)+48>>2]|0;if(c){c=(Yh(h)|0)>5&1;b[a+288>>0]=c;u=d;return 1}c=dn(32)|0;f[e>>2]=c;f[e+8>>2]=-2147483616;f[e+4>>2]=19;j=c;i=14285;k=j+19|0;do{b[j>>0]=b[i>>0]|0;j=j+1|0;i=i+1|0}while((j|0)<(k|0));b[c+19>>0]=0;c=(Oj(h,e,0)|0)&1;b[a+288>>0]=c;if((b[e+11>>0]|0)<0)br(f[e>>2]|0);u=d;return 1}function Lg(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;g=u;u=u+32|0;h=g+16|0;i=g+8|0;j=g;k=d-e|0;d=a+8|0;if((k|0)>0){a=0-e|0;l=i+4|0;m=j+4|0;n=h+4|0;o=k;do{k=b+(o<<2)|0;p=k+(a<<2)|0;q=c+(o<<2)|0;r=f[k+4>>2]|0;s=f[p>>2]|0;t=f[p+4>>2]|0;f[i>>2]=f[k>>2];f[l>>2]=r;f[j>>2]=s;f[m>>2]=t;Dd(h,d,i,j);f[q>>2]=f[h>>2];f[q+4>>2]=f[n>>2];o=o-e|0}while((o|0)>0)}o=e>>>0>1073741823?-1:e<<2;e=_q(o)|0;hj(e|0,0,o|0)|0;o=f[b+4>>2]|0;n=f[e>>2]|0;m=f[e+4>>2]|0;f[i>>2]=f[b>>2];f[i+4>>2]=o;f[j>>2]=n;f[j+4>>2]=m;Dd(h,d,i,j);f[c>>2]=f[h>>2];f[c+4>>2]=f[h+4>>2];$q(e);u=g;return 1}function Mg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=u;u=u+32|0;d=c+12|0;e=c;g=f[b+100>>2]|0;h=f[b+96>>2]|0;b=g-h|0;i=(b|0)/12|0;f[d>>2]=0;j=d+4|0;f[j>>2]=0;f[d+8>>2]=0;k=h;do if(b)if(i>>>0>357913941)mq(d);else{l=dn(b)|0;f[d>>2]=l;f[d+8>>2]=l+(i*12|0);hj(l|0,0,b|0)|0;f[j>>2]=l+b;m=l;break}else m=0;while(0);f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;if((g|0)!=(h|0)){h=e+4|0;g=e+8|0;b=0;do{l=k+(b*12|0)|0;f[e>>2]=f[l>>2];f[e+4>>2]=f[l+4>>2];f[e+8>>2]=f[l+8>>2];f[m+(b*12|0)>>2]=f[e>>2];f[m+(b*12|0)+4>>2]=f[h>>2];f[m+(b*12|0)+8>>2]=f[g>>2];b=b+1|0}while(b>>>0>>0)}Cj(a,d);a=f[d>>2]|0;if(!a){u=c;return}d=f[j>>2]|0;if((d|0)!=(a|0))f[j>>2]=d+(~(((d+-12-a|0)>>>0)/12|0)*12|0);br(a);u=c;return}function Ng(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;if(c>>>0>4294967279)mq(a);d=a+11|0;e=b[d>>0]|0;g=e<<24>>24<0;if(g){h=f[a+4>>2]|0;i=(f[a+8>>2]&2147483647)+-1|0}else{h=e&255;i=10}j=h>>>0>c>>>0?h:c;c=j>>>0<11;k=c?10:(j+16&-16)+-1|0;do if((k|0)!=(i|0)){do if(c){j=f[a>>2]|0;if(g){l=0;m=j;n=a;o=13}else{Lo(a,j,(e&255)+1|0)|0;br(j);o=16}}else{j=k+1|0;p=dn(j)|0;if(g){l=1;m=f[a>>2]|0;n=p;o=13;break}else{Lo(p,a,(e&255)+1|0)|0;q=p;r=j;s=a+4|0;o=15;break}}while(0);if((o|0)==13){j=a+4|0;Lo(n,m,(f[j>>2]|0)+1|0)|0;br(m);if(l){q=n;r=k+1|0;s=j;o=15}else o=16}if((o|0)==15){f[a+8>>2]=r|-2147483648;f[s>>2]=h;f[a>>2]=q;break}else if((o|0)==16){b[d>>0]=h;break}}while(0);return}function Og(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;c=f[b>>2]|0;if((c|0)==-1){d=-1;return d|0}b=f[(f[a+24>>2]|0)+(c<<2)>>2]|0;if((b|0)==-1){d=0;return d|0}c=a+12|0;a=0;e=0;g=b;a:while(1){b:do if(e){h=a+1|0;i=(((g>>>0)%3|0|0)==0?2:-1)+g|0;if((i|0)==-1){d=h;j=15;break a}k=f[(f[c>>2]|0)+(i<<2)>>2]|0;if((k|0)==-1){d=h;j=15;break a}if(!((k>>>0)%3|0)){l=k+2|0;m=h;break}else{l=k+-1|0;m=h;break}}else{h=a;k=g;while(1){i=h+1|0;n=k+1|0;o=((n>>>0)%3|0|0)==0?k+-2|0:n;if((o|0)==-1){l=b;m=i;break b}n=f[(f[c>>2]|0)+(o<<2)>>2]|0;o=n+1|0;if((n|0)==-1){l=b;m=i;break b}k=((o>>>0)%3|0|0)==0?n+-2|0:o;if((k|0)==-1){l=b;m=i;break b}if((k|0)==(b|0)){d=i;j=15;break a}else h=i}}while(0);if((l|0)==-1){d=m;j=15;break}else{a=m;e=1;g=l}}if((j|0)==15)return d|0;return 0}function Pg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;d=a+8|0;Cg(a,a+4|0,d,c)|0;e=a+12|0;if((e|0)==(b|0))return;g=f[c>>2]|0;c=f[g>>2]|0;h=(f[g+4>>2]|0)-c>>3;i=c;c=e;e=d;a:while(1){d=f[c>>2]|0;j=f[e>>2]|0;if(h>>>0<=d>>>0){k=5;break}if(h>>>0<=j>>>0){k=7;break}l=i+(d<<3)|0;if((f[l>>2]|0)>>>0<(f[i+(j<<3)>>2]|0)>>>0){m=e;n=c;o=j;while(1){f[n>>2]=o;if((m|0)==(a|0)){p=a;break}j=m+-4|0;o=f[j>>2]|0;if(h>>>0<=o>>>0){k=11;break a}if((f[l>>2]|0)>>>0>=(f[i+(o<<3)>>2]|0)>>>0){p=m;break}else{q=m;m=j;n=q}}f[p>>2]=d}n=c+4|0;if((n|0)==(b|0)){k=3;break}else{m=c;c=n;e=m}}if((k|0)==3)return;else if((k|0)==5)mq(g);else if((k|0)==7)mq(g);else if((k|0)==11)mq(g)}function Qg(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=Cg(a,b,c,e)|0;h=f[d>>2]|0;i=f[c>>2]|0;j=f[e>>2]|0;e=f[j>>2]|0;k=(f[j+4>>2]|0)-e>>3;if(k>>>0<=h>>>0)mq(j);l=e;if(k>>>0<=i>>>0)mq(j);if((f[l+(h<<3)>>2]|0)>>>0>=(f[l+(i<<3)>>2]|0)>>>0){m=g;return m|0}f[c>>2]=h;f[d>>2]=i;i=f[c>>2]|0;d=f[b>>2]|0;if(k>>>0<=i>>>0)mq(j);if(k>>>0<=d>>>0)mq(j);if((f[l+(i<<3)>>2]|0)>>>0>=(f[l+(d<<3)>>2]|0)>>>0){m=g+1|0;return m|0}f[b>>2]=i;f[c>>2]=d;d=f[b>>2]|0;c=f[a>>2]|0;if(k>>>0<=d>>>0)mq(j);if(k>>>0<=c>>>0)mq(j);if((f[l+(d<<3)>>2]|0)>>>0>=(f[l+(c<<3)>>2]|0)>>>0){m=g+2|0;return m|0}f[a>>2]=d;f[b>>2]=c;m=g+3|0;return m|0}function Rg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0;if((d|0)>=8192)return Da(a|0,c|0,d|0)|0;e=a|0;g=a+d|0;if((a&3)==(c&3)){while(a&3){if(!d)return e|0;b[a>>0]=b[c>>0]|0;a=a+1|0;c=c+1|0;d=d-1|0}h=g&-4|0;d=h-64|0;while((a|0)<=(d|0)){f[a>>2]=f[c>>2];f[a+4>>2]=f[c+4>>2];f[a+8>>2]=f[c+8>>2];f[a+12>>2]=f[c+12>>2];f[a+16>>2]=f[c+16>>2];f[a+20>>2]=f[c+20>>2];f[a+24>>2]=f[c+24>>2];f[a+28>>2]=f[c+28>>2];f[a+32>>2]=f[c+32>>2];f[a+36>>2]=f[c+36>>2];f[a+40>>2]=f[c+40>>2];f[a+44>>2]=f[c+44>>2];f[a+48>>2]=f[c+48>>2];f[a+52>>2]=f[c+52>>2];f[a+56>>2]=f[c+56>>2];f[a+60>>2]=f[c+60>>2];a=a+64|0;c=c+64|0}while((a|0)<(h|0)){f[a>>2]=f[c>>2];a=a+4|0;c=c+4|0}}else{h=g-4|0;while((a|0)<(h|0)){b[a>>0]=b[c>>0]|0;b[a+1>>0]=b[c+1>>0]|0;b[a+2>>0]=b[c+2>>0]|0;b[a+3>>0]=b[c+3>>0]|0;a=a+4|0;c=c+4|0}}while((a|0)<(g|0)){b[a>>0]=b[c>>0]|0;a=a+1|0;c=c+1|0}return e|0}function Sg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0;c=u;u=u+16|0;d=c+4|0;e=c;f[a>>2]=1216;g=a+4|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;f[g+16>>2]=0;f[g+20>>2]=0;f[g+24>>2]=0;f[g+28>>2]=0;f[d>>2]=b;b=a+4|0;g=a+8|0;Ci(b,d);h=f[d>>2]|0;i=a+20|0;j=f[i>>2]|0;k=a+16|0;a=f[k>>2]|0;l=j-a>>2;m=a;if((h|0)<(l|0)){n=m;o=h;p=f[g>>2]|0;q=f[b>>2]|0;r=p-q|0;s=r>>2;t=s+-1|0;v=n+(o<<2)|0;f[v>>2]=t;u=c;return}a=h+1|0;f[e>>2]=-1;w=j;if(a>>>0<=l>>>0)if(a>>>0>>0?(j=m+(a<<2)|0,(j|0)!=(w|0)):0){f[i>>2]=w+(~((w+-4-j|0)>>>2)<<2);x=h;y=m}else{x=h;y=m}else{kh(k,a-l|0,e);x=f[d>>2]|0;y=f[k>>2]|0}n=y;o=x;p=f[g>>2]|0;q=f[b>>2]|0;r=p-q|0;s=r>>2;t=s+-1|0;v=n+(o<<2)|0;f[v>>2]=t;u=c;return}function Tg(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;b=a+4|0;c=f[b>>2]|0;d=(f[c+12>>2]|0)-(f[c+8>>2]|0)|0;c=d>>2;a:do if((d|0)>0){e=0;while(1){if(!(Ra[f[(f[a>>2]|0)+36>>2]&127](a,e)|0)){g=0;break}e=e+1|0;h=f[b>>2]|0;i=(f[h+12>>2]|0)-(f[h+8>>2]|0)>>2;if((e|0)>=(i|0)){j=i;break a}}return g|0}else j=c;while(0);c=a+20|0;b=a+24|0;d=f[b>>2]|0;e=f[c>>2]|0;i=d-e>>2;h=e;e=d;if(j>>>0<=i>>>0){if(j>>>0>>0?(d=h+(j<<2)|0,(d|0)!=(e|0)):0)f[b>>2]=e+(~((e+-4-d|0)>>>2)<<2)}else oi(c,j-i|0);i=f[a+12>>2]|0;j=f[a+8>>2]|0;a=j;if((i|0)==(j|0)){g=1;return g|0}d=i-j>>2;j=0;do{i=f[a+(j<<2)>>2]|0;e=f[i+8>>2]|0;b=f[i+4>>2]|0;i=b;if((e|0)!=(b|0)?(h=f[c>>2]|0,k=e-b>>2,f[h+(f[i>>2]<<2)>>2]=j,k>>>0>1):0){b=1;do{f[h+(f[i+(b<<2)>>2]<<2)>>2]=j;b=b+1|0}while(b>>>0>>0)}j=j+1|0}while(j>>>0>>0);g=1;return g|0}function Ug(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;d=f[c+88>>2]|0;if(!d){e=0;return e|0}if((f[d>>2]|0)!=1){e=0;return e|0}g=d+8|0;d=f[g>>2]|0;f[a+4>>2]=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;i=a+8|0;j=c+24|0;c=b[j>>0]|0;k=c<<24>>24;l=a+12|0;m=f[l>>2]|0;n=f[i>>2]|0;o=m-n>>2;p=n;n=m;if(o>>>0>=k>>>0)if(o>>>0>k>>>0?(m=p+(k<<2)|0,(m|0)!=(n|0)):0){f[l>>2]=n+(~((n+-4-m|0)>>>2)<<2);q=c;r=d}else{q=c;r=d}else{oi(i,k-o|0);q=b[j>>0]|0;r=f[g>>2]|0}g=r+4|0;j=h[g>>0]|h[g+1>>0]<<8|h[g+2>>0]<<16|h[g+3>>0]<<24;if(q<<24>>24>0){g=f[i>>2]|0;i=q<<24>>24;q=j;o=4;k=0;while(1){f[g+(k<<2)>>2]=q;o=o+4|0;k=k+1|0;d=r+o|0;c=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;if((k|0)>=(i|0)){s=c;break}else q=c}}else s=j;f[a+20>>2]=s;e=1;return e|0}function Vg(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;do if(!(qp(a,f[c+8>>2]|0,g)|0)){if(!(qp(a,f[c>>2]|0,g)|0)){h=f[a+8>>2]|0;Za[f[(f[h>>2]|0)+24>>2]&3](h,c,d,e,g);break}if((f[c+16>>2]|0)!=(d|0)?(h=c+20|0,(f[h>>2]|0)!=(d|0)):0){f[c+32>>2]=e;i=c+44|0;if((f[i>>2]|0)==4)break;j=c+52|0;b[j>>0]=0;k=c+53|0;b[k>>0]=0;l=f[a+8>>2]|0;_a[f[(f[l>>2]|0)+20>>2]&3](l,c,d,d,1,g);if(b[k>>0]|0)if(!(b[j>>0]|0)){m=3;n=11}else o=3;else{m=4;n=11}if((n|0)==11){f[h>>2]=d;h=c+40|0;f[h>>2]=(f[h>>2]|0)+1;if((f[c+36>>2]|0)==1?(f[c+24>>2]|0)==2:0){b[c+54>>0]=1;o=m}else o=m}f[i>>2]=o;break}if((e|0)==1)f[c+32>>2]=1}else Om(0,c,d,e);while(0);return}function Wg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0;e=u;u=u+16|0;g=e+12|0;h=e+8|0;i=e;f[i>>2]=f[b>>2];f[g>>2]=f[i>>2];i=zd(a,g,h,e+4|0,c)|0;c=f[i>>2]|0;if(c|0){j=c;u=e;return j|0}c=dn(40)|0;dj(c+16|0,d);dj(c+28|0,d+12|0);d=f[h>>2]|0;f[c>>2]=0;f[c+4>>2]=0;f[c+8>>2]=d;f[i>>2]=c;d=f[f[a>>2]>>2]|0;if(!d)k=c;else{f[a>>2]=d;k=f[i>>2]|0}Ae(f[a+4>>2]|0,k);k=a+8|0;f[k>>2]=(f[k>>2]|0)+1;j=c;u=e;return j|0}function Xg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;e=u;u=u+16|0;g=e;h=a+4|0;f[h>>2]=0;if(!c){u=e;return}i=a+8|0;j=f[i>>2]|0;k=j<<5;if(k>>>0>>0){f[g>>2]=0;l=g+4|0;f[l>>2]=0;m=g+8|0;f[m>>2]=0;if((c|0)<0)mq(a);n=j<<6;j=c+31&-32;hi(g,k>>>0<1073741823?(n>>>0>>0?j:n):2147483647);n=f[a>>2]|0;f[a>>2]=f[g>>2];f[g>>2]=n;g=f[h>>2]|0;f[h>>2]=c;f[l>>2]=g;g=f[i>>2]|0;f[i>>2]=f[m>>2];f[m>>2]=g;if(n|0)br(n);o=a}else{f[h>>2]=c;o=a}a=f[o>>2]|0;o=a;h=a;a=c>>>5;n=a<<2;if(!(b[d>>0]|0)){hj(h|0,0,n|0)|0;d=c&31;g=o+(a<<2)|0;if(!d){u=e;return}f[g>>2]=f[g>>2]&~(-1>>>(32-d|0));u=e;return}else{hj(h|0,-1,n|0)|0;n=c&31;c=o+(a<<2)|0;if(!n){u=e;return}f[c>>2]=f[c>>2]|-1>>>(32-n|0);u=e;return}}function Yg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;f[g>>2]=f[a+12>>2];h=b+16|0;i=h;j=f[i>>2]|0;k=f[i+4>>2]|0;if((k|0)>0|(k|0)==0&j>>>0>0){l=k;m=j}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;j=h;l=f[j+4>>2]|0;m=f[j>>2]|0}f[g>>2]=f[a+20>>2];if((l|0)>0|(l|0)==0&m>>>0>0){n=a+88|0;fd(n,b);u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;n=a+88|0;fd(n,b);u=c;return 1}function Zg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;f[g>>2]=f[a+12>>2];h=b+16|0;i=h;j=f[i>>2]|0;k=f[i+4>>2]|0;if((k|0)>0|(k|0)==0&j>>>0>0){l=k;m=j}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;j=h;l=f[j+4>>2]|0;m=f[j>>2]|0}f[g>>2]=f[a+16>>2];if((l|0)>0|(l|0)==0&m>>>0>0){n=a+108|0;fd(n,b);u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;n=a+108|0;fd(n,b);u=c;return 1}function _g(a){a=a|0;var c=0,d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;c=a+32|0;d=f[a+64>>2]|0;e=(Qa[f[(f[d>>2]|0)+40>>2]&127](d)|0)+56|0;d=f[e>>2]|0;li(c,(((f[d+100>>2]|0)-(f[d+96>>2]|0)|0)/12|0)*3|0,0,1)|0;d=a+68|0;e=f[d>>2]|0;g=(f[a+72>>2]|0)-e|0;if((g|0)<=0){Qf(c);return}i=a+48|0;j=a+44|0;a=(g>>>2)+-1|0;g=e;while(1){e=f[g+(a<<2)>>2]|0;k=f[3124+(e<<2)>>2]|0;l=i;m=f[l+4>>2]|0;if((m|0)>0|(m|0)==0&(f[l>>2]|0)>>>0>0?(l=f[j>>2]|0,171>>>e&1|0):0){m=l+4|0;n=0;o=f[m>>2]|0;do{p=o>>>3;q=o&7;r=(f[l>>2]|0)+p|0;b[r>>0]=(1<>0]|0);r=(f[l>>2]|0)+p|0;b[r>>0]=(e>>>n&1)<>0]|0);o=(f[m>>2]|0)+1|0;f[m>>2]=o;n=n+1|0}while((n|0)!=(k|0))}k=a+-1|0;if((k|0)<=-1)break;a=k;g=f[d>>2]|0}Qf(c);return}function $g(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=u;u=u+48|0;h=g;i=g+32|0;if(!c){j=0;u=g;return j|0}Cn(h);do if((Tl(c,0)|0)!=-1){if(d){if(!(Qa[f[(f[c>>2]|0)+16>>2]&127](c)|0)){k=0;break}Va[f[(f[c>>2]|0)+20>>2]&127](c)}Dg(i,a,c,h);l=(f[i>>2]|0)==0;m=i+4|0;if((b[m+11>>0]|0)<0)br(f[m>>2]|0);if(l){l=f[h>>2]|0;m=h+4|0;ag(e,l,l+((f[m>>2]|0)-l)|0);k=(f[m>>2]|0)-(f[h>>2]|0)|0}else k=0}else k=0;while(0);e=h+12|0;i=f[e>>2]|0;f[e>>2]=0;if(i|0)br(i);i=f[h>>2]|0;if(i|0){e=h+4|0;if((f[e>>2]|0)!=(i|0))f[e>>2]=i;br(i)}j=k;u=g;return j|0}function ah(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;c=u;u=u+16|0;d=c;e=f[(f[a>>2]|0)+8>>2]|0;g=a+8|0;h=a+12|0;i=(f[h>>2]|0)-(f[g>>2]|0)>>2;j=f[b>>2]|0;f[b>>2]=0;f[d>>2]=j;Xa[e&15](a,i,d);i=f[d>>2]|0;f[d>>2]=0;if(!i){k=f[h>>2]|0;l=f[g>>2]|0;m=k-l|0;n=m>>2;o=n+-1|0;u=c;return o|0}d=i+88|0;a=f[d>>2]|0;f[d>>2]=0;if(a|0){d=f[a+8>>2]|0;if(d|0){e=a+12|0;if((f[e>>2]|0)!=(d|0))f[e>>2]=d;br(d)}br(a)}a=f[i+68>>2]|0;if(a|0){d=i+72|0;e=f[d>>2]|0;if((e|0)!=(a|0))f[d>>2]=e+(~((e+-4-a|0)>>>2)<<2);br(a)}a=i+64|0;e=f[a>>2]|0;f[a>>2]=0;if(e|0){a=f[e>>2]|0;if(a|0){d=e+4|0;if((f[d>>2]|0)!=(a|0))f[d>>2]=a;br(a)}br(e)}br(i);k=f[h>>2]|0;l=f[g>>2]|0;m=k-l|0;n=m>>2;o=n+-1|0;u=c;return o|0}function bh(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;if(b[a+352>>0]|0)return 1;c=a+8|0;d=f[c>>2]|0;e=(f[d+12>>2]|0)-(f[d+8>>2]|0)|0;d=e>>2;g=a+172|0;si(g,d+-1|0);if(!((d|0)!=1&(e|0)>0))return 1;e=a+12|0;a=0;h=0;while(1){i=f[(f[(f[c>>2]|0)+8>>2]|0)+(a<<2)>>2]|0;if(!(f[i+56>>2]|0))j=h;else{k=f[g>>2]|0;f[k+(h*136|0)>>2]=a;l=f[k+(h*136|0)+104>>2]|0;m=k+(h*136|0)+108|0;n=f[m>>2]|0;if((n|0)!=(l|0))f[m>>2]=n+(~((n+-4-l|0)>>>2)<<2);l=f[e>>2]|0;$j(k+(h*136|0)+104|0,(f[l+4>>2]|0)-(f[l>>2]|0)>>2);l=f[g>>2]|0;f[l+(h*136|0)+128>>2]=0;zc(l+(h*136|0)+4|0,f[c>>2]|0,f[e>>2]|0,i)|0;j=h+1|0}a=a+1|0;if((a|0)>=(d|0))break;else h=j}return 1}function ch(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;if(b[a+288>>0]|0)return 1;c=a+8|0;d=f[c>>2]|0;e=(f[d+12>>2]|0)-(f[d+8>>2]|0)|0;d=e>>2;g=a+172|0;si(g,d+-1|0);if(!((d|0)!=1&(e|0)>0))return 1;e=a+12|0;a=0;h=0;while(1){i=f[(f[(f[c>>2]|0)+8>>2]|0)+(a<<2)>>2]|0;if(!(f[i+56>>2]|0))j=h;else{k=f[g>>2]|0;f[k+(h*136|0)>>2]=a;l=f[k+(h*136|0)+104>>2]|0;m=k+(h*136|0)+108|0;n=f[m>>2]|0;if((n|0)!=(l|0))f[m>>2]=n+(~((n+-4-l|0)>>>2)<<2);l=f[e>>2]|0;$j(k+(h*136|0)+104|0,(f[l+4>>2]|0)-(f[l>>2]|0)>>2);l=f[g>>2]|0;f[l+(h*136|0)+128>>2]=0;zc(l+(h*136|0)+4|0,f[c>>2]|0,f[e>>2]|0,i)|0;j=h+1|0}a=a+1|0;if((a|0)>=(d|0))break;else h=j}return 1}function dh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;c=a+8|0;d=f[c>>2]|0;e=a+4|0;g=f[e>>2]|0;if(d-g>>3>>>0>=b>>>0){h=b;i=g;do{j=i;f[j>>2]=0;f[j+4>>2]=0;i=(f[e>>2]|0)+8|0;f[e>>2]=i;h=h+-1|0}while((h|0)!=0);return}h=f[a>>2]|0;i=g-h>>3;g=i+b|0;if(g>>>0>536870911)mq(a);j=d-h|0;h=j>>2;d=j>>3>>>0<268435455?(h>>>0>>0?g:h):536870911;do if(d)if(d>>>0>536870911){h=ra(8)|0;Wo(h,14941);f[h>>2]=6944;va(h|0,1080,114)}else{k=dn(d<<3)|0;break}else k=0;while(0);h=k+(i<<3)|0;i=k+(d<<3)|0;d=b;b=h;k=h;do{g=b;f[g>>2]=0;f[g+4>>2]=0;b=k+8|0;k=b;d=d+-1|0}while((d|0)!=0);d=f[a>>2]|0;b=(f[e>>2]|0)-d|0;g=h+(0-(b>>3)<<3)|0;if((b|0)>0)Rg(g|0,d|0,b|0)|0;f[a>>2]=g;f[e>>2]=k;f[c>>2]=i;if(!d)return;br(d);return}function eh(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;e=u;u=u+16|0;g=e+4|0;h=e;i=e+8|0;j=a&255;b[i>>0]=j&127;do if(c>>>0>0|(c|0)==0&a>>>0>127){b[i>>0]=j|-128;k=d+16|0;l=f[k+4>>2]|0;if((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0){m=0;break}else{f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];ye(d,g,i,i+1|0)|0;k=Wn(a|0,c|0,7)|0;m=eh(k,I,d)|0;break}}else{k=d+16|0;l=f[k+4>>2]|0;if((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0){m=0;break}f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];ye(d,g,i,i+1|0)|0;n=1;u=e;return n|0}while(0);n=m;u=e;return n|0}function fh(a,b){a=a|0;b=b|0;var c=0;c=a+8|0;ef(c,b)|0;if((c|0)==(b|0)){f[a+92>>2]=f[b+84>>2];return}else{Yf(a+56|0,f[b+48>>2]|0,f[b+52>>2]|0);Yf(a+68|0,f[b+60>>2]|0,f[b+64>>2]|0);Yf(a+80|0,f[b+72>>2]|0,f[b+76>>2]|0);f[a+92>>2]=f[b+84>>2];qg(a+96|0,f[b+88>>2]|0,f[b+92>>2]|0);return}}function gh(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0;g=f[(f[(f[d+4>>2]|0)+8>>2]|0)+(c<<2)>>2]|0;if((b|0)==-1)h=Ki(c,d)|0;else h=b;if((h|0)==-2)i=0;else{do if((Qa[f[(f[d>>2]|0)+8>>2]&127](d)|0)==1){Hf(a,d,h,c,e,514);if(!(f[a>>2]|0)){f[a>>2]=0;break}else return}while(0);c=dn(44)|0;f[c>>2]=1528;f[c+4>>2]=g;g=c+8|0;f[g>>2]=f[e>>2];f[g+4>>2]=f[e+4>>2];f[g+8>>2]=f[e+8>>2];f[g+12>>2]=f[e+12>>2];f[g+16>>2]=f[e+16>>2];f[g+20>>2]=f[e+20>>2];_j(c+32|0,e+24|0);f[c>>2]=1584;i=c}f[a>>2]=i;return}function hh(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;e=u;u=u+224|0;g=e+120|0;h=e+80|0;i=e;j=e+136|0;k=h;l=k+40|0;do{f[k>>2]=0;k=k+4|0}while((k|0)<(l|0));f[g>>2]=f[d>>2];if((qb(0,c,g,i,h)|0)<0)m=-1;else{if((f[a+76>>2]|0)>-1)n=gr(a)|0;else n=0;d=f[a>>2]|0;k=d&32;if((b[a+74>>0]|0)<1)f[a>>2]=d&-33;d=a+48|0;if(!(f[d>>2]|0)){l=a+44|0;o=f[l>>2]|0;f[l>>2]=j;p=a+28|0;f[p>>2]=j;q=a+20|0;f[q>>2]=j;f[d>>2]=80;r=a+16|0;f[r>>2]=j+80;j=qb(a,c,g,i,h)|0;if(!o)s=j;else{Sa[f[a+36>>2]&31](a,0,0)|0;t=(f[q>>2]|0)==0?-1:j;f[l>>2]=o;f[d>>2]=0;f[r>>2]=0;f[p>>2]=0;f[q>>2]=0;s=t}}else s=qb(a,c,g,i,h)|0;h=f[a>>2]|0;f[a>>2]=h|k;if(n|0)fr(a);m=(h&32|0)==0?s:-1}u=e;return m|0}function ih(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0;d=u;u=u+16|0;e=d;if(!(fn(a,b,c)|0)){g=0;u=d;return g|0}if((Qa[f[(f[a>>2]|0)+32>>2]&127](a)|0)<<24>>24==1?((f[(f[a+8>>2]|0)+28>>2]|0)+-1|0)>>>0>=6:0){g=0;u=d;return g|0}h=Gg(c,f[b+48>>2]|0)|0;Xa[f[(f[a>>2]|0)+48>>2]&15](e,a,h);h=a+36|0;b=f[e>>2]|0;f[e>>2]=0;c=f[h>>2]|0;f[h>>2]=b;if(!c){f[e>>2]=0;i=b}else{Va[f[(f[c>>2]|0)+4>>2]&127](c);c=f[e>>2]|0;f[e>>2]=0;if(c|0)Va[f[(f[c>>2]|0)+4>>2]&127](c);i=f[h>>2]|0}if(!i){g=1;u=d;return g|0}if(Ra[f[(f[a>>2]|0)+36>>2]&127](a,i)|0){g=1;u=d;return g|0}i=f[h>>2]|0;f[h>>2]=0;if(!i){g=1;u=d;return g|0}Va[f[(f[i>>2]|0)+4>>2]&127](i);g=1;u=d;return g|0}function jh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=a+4|0;d=f[c>>2]|0;e=f[a>>2]|0;g=d-e>>2;h=d;if(g>>>0>>0){hf(a,b-g|0);return}if(g>>>0<=b>>>0)return;g=e+(b<<2)|0;if((g|0)==(h|0))return;else i=h;do{h=i+-4|0;f[c>>2]=h;b=f[h>>2]|0;f[h>>2]=0;if(b|0){h=b+88|0;e=f[h>>2]|0;f[h>>2]=0;if(e|0){h=f[e+8>>2]|0;if(h|0){a=e+12|0;if((f[a>>2]|0)!=(h|0))f[a>>2]=h;br(h)}br(e)}e=f[b+68>>2]|0;if(e|0){h=b+72|0;a=f[h>>2]|0;if((a|0)!=(e|0))f[h>>2]=a+(~((a+-4-e|0)>>>2)<<2);br(e)}e=b+64|0;a=f[e>>2]|0;f[e>>2]=0;if(a|0){e=f[a>>2]|0;if(e|0){h=a+4|0;if((f[h>>2]|0)!=(e|0))f[h>>2]=e;br(e)}br(a)}br(b)}i=f[c>>2]|0}while((i|0)!=(g|0));return}function kh(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=a+8|0;e=f[d>>2]|0;g=a+4|0;h=f[g>>2]|0;i=h;if(e-h>>2>>>0>=b>>>0){j=b;k=i;while(1){f[k>>2]=f[c>>2];j=j+-1|0;if(!j)break;else k=k+4|0}f[g>>2]=i+(b<<2);return}i=f[a>>2]|0;k=h-i|0;h=k>>2;j=h+b|0;if(j>>>0>1073741823)mq(a);l=e-i|0;e=l>>1;m=l>>2>>>0<536870911?(e>>>0>>0?j:e):1073741823;do if(m)if(m>>>0>1073741823){e=ra(8)|0;Wo(e,14941);f[e>>2]=6944;va(e|0,1080,114)}else{e=dn(m<<2)|0;n=e;o=e;break}else{n=0;o=0}while(0);e=n+(h<<2)|0;h=n+(m<<2)|0;m=b;j=e;while(1){f[j>>2]=f[c>>2];m=m+-1|0;if(!m)break;else j=j+4|0}if((k|0)>0)Rg(o|0,i|0,k|0)|0;f[a>>2]=n;f[g>>2]=e+(b<<2);f[d>>2]=h;if(!i)return;br(i);return}function lh(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;e=(f[a>>2]|0)+1794895138|0;g=rp(f[a+8>>2]|0,e)|0;h=rp(f[a+12>>2]|0,e)|0;i=rp(f[a+16>>2]|0,e)|0;a:do if((g>>>0>>2>>>0?(j=c-(g<<2)|0,h>>>0>>0&i>>>0>>0):0)?((i|h)&3|0)==0:0){j=h>>>2;k=i>>>2;l=0;m=g;while(1){n=m>>>1;o=l+n|0;p=o<<1;q=p+j|0;r=rp(f[a+(q<<2)>>2]|0,e)|0;s=rp(f[a+(q+1<<2)>>2]|0,e)|0;if(!(s>>>0>>0&r>>>0<(c-s|0)>>>0)){t=0;break a}if(b[a+(s+r)>>0]|0){t=0;break a}r=bl(d,a+s|0)|0;if(!r)break;s=(r|0)<0;if((m|0)==1){t=0;break a}else{l=s?l:o;m=s?n:m-n|0}}m=p+k|0;l=rp(f[a+(m<<2)>>2]|0,e)|0;j=rp(f[a+(m+1<<2)>>2]|0,e)|0;if(j>>>0>>0&l>>>0<(c-j|0)>>>0)t=(b[a+(j+l)>>0]|0)==0?a+j|0:0;else t=0}else t=0;while(0);return t|0}function mh(a,c,e,g){a=a|0;c=c|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;h=u;u=u+64|0;i=h;j=f[a>>2]|0;k=a+(f[j+-8>>2]|0)|0;l=f[j+-4>>2]|0;f[i>>2]=e;f[i+4>>2]=a;f[i+8>>2]=c;f[i+12>>2]=g;g=i+16|0;c=i+20|0;a=i+24|0;j=i+28|0;m=i+32|0;n=i+40|0;o=g;p=o+36|0;do{f[o>>2]=0;o=o+4|0}while((o|0)<(p|0));d[g+36>>1]=0;b[g+38>>0]=0;a:do if(qp(l,e,0)|0){f[i+48>>2]=1;_a[f[(f[l>>2]|0)+20>>2]&3](l,i,k,k,1,0);q=(f[a>>2]|0)==1?k:0}else{Za[f[(f[l>>2]|0)+24>>2]&3](l,i,k,1,0);switch(f[i+36>>2]|0){case 0:{q=(f[n>>2]|0)==1&(f[j>>2]|0)==1&(f[m>>2]|0)==1?f[c>>2]|0:0;break a;break}case 1:break;default:{q=0;break a}}if((f[a>>2]|0)!=1?!((f[n>>2]|0)==0&(f[j>>2]|0)==1&(f[m>>2]|0)==1):0){q=0;break}q=f[g>>2]|0}while(0);u=h;return q|0}function nh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=a+8|0;d=f[c>>2]|0;e=a+4|0;g=f[e>>2]|0;h=g;if(d-g>>2>>>0>=b>>>0){i=b;j=h;while(1){f[j>>2]=1;i=i+-1|0;if(!i)break;else j=j+4|0}f[e>>2]=h+(b<<2);return}h=f[a>>2]|0;j=g-h|0;g=j>>2;i=g+b|0;if(i>>>0>1073741823)mq(a);k=d-h|0;d=k>>1;l=k>>2>>>0<536870911?(d>>>0>>0?i:d):1073741823;do if(l)if(l>>>0>1073741823){d=ra(8)|0;Wo(d,14941);f[d>>2]=6944;va(d|0,1080,114)}else{d=dn(l<<2)|0;m=d;n=d;break}else{m=0;n=0}while(0);d=m+(g<<2)|0;g=m+(l<<2)|0;l=b;i=d;while(1){f[i>>2]=1;l=l+-1|0;if(!l)break;else i=i+4|0}if((j|0)>0)Rg(n|0,h|0,j|0)|0;f[a>>2]=m;f[e>>2]=d+(b<<2);f[c>>2]=g;if(!h)return;br(h);return}function oh(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+16|0;e=d;if(!c){g=0;u=d;return g|0}h=a+84|0;i=f[h>>2]|0;j=a+88|0;k=f[j>>2]|0;if((k|0)!=(i|0))f[j>>2]=k+(~((k+-4-i|0)>>>2)<<2);f[h>>2]=0;f[j>>2]=0;f[a+92>>2]=0;if(i|0)br(i);i=a+72|0;j=f[i>>2]|0;h=a+76|0;if((f[h>>2]|0)!=(j|0))f[h>>2]=j;f[i>>2]=0;f[h>>2]=0;f[a+80>>2]=0;if(j|0)br(j);j=c+4|0;h=(f[j>>2]|0)-(f[c>>2]|0)>>2;b[e>>0]=0;Xg(a,h,e);h=c+24|0;i=c+28|0;k=(f[i>>2]|0)-(f[h>>2]|0)>>2;b[e>>0]=0;Xg(a+12|0,k,e);Sf(a+28|0,(f[j>>2]|0)-(f[c>>2]|0)>>2,5868);$j(a+52|0,(f[i>>2]|0)-(f[h>>2]|0)>>2);$j(a+40|0,(f[i>>2]|0)-(f[h>>2]|0)>>2);f[a+64>>2]=c;b[a+24>>0]=1;g=1;u=d;return g|0}function ph(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;c=a+12|0;d=f[a>>2]|0;e=a+8|0;g=f[e>>2]|0;h=(g|0)==-1;if(!(b[c>>0]|0)){do if((!h?(i=(((g>>>0)%3|0|0)==0?2:-1)+g|0,(i|0)!=-1):0)?(j=f[(f[d+12>>2]|0)+(i<<2)>>2]|0,(j|0)!=-1):0)if(!((j>>>0)%3|0)){k=j+2|0;break}else{k=j+-1|0;break}else k=-1;while(0);f[e>>2]=k;return}k=g+1|0;if((!h?(h=((k>>>0)%3|0|0)==0?g+-2|0:k,(h|0)!=-1):0)?(k=f[(f[d+12>>2]|0)+(h<<2)>>2]|0,h=k+1|0,(k|0)!=-1):0){g=((h>>>0)%3|0|0)==0?k+-2|0:h;f[e>>2]=g;if((g|0)!=-1){if((g|0)!=(f[a+4>>2]|0))return;f[e>>2]=-1;return}}else f[e>>2]=-1;g=f[a+4>>2]|0;do if(((g|0)!=-1?(a=(((g>>>0)%3|0|0)==0?2:-1)+g|0,(a|0)!=-1):0)?(h=f[(f[d+12>>2]|0)+(a<<2)>>2]|0,(h|0)!=-1):0)if(!((h>>>0)%3|0)){l=h+2|0;break}else{l=h+-1|0;break}else l=-1;while(0);f[e>>2]=l;b[c>>0]=0;return}function qh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){Id(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+20>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;Id(a,e);return}function rh(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;e=u;u=u+48|0;g=e;h=e+32|0;i=a+4|0;j=f[i>>2]|0;if(!j){k=0;u=e;return k|0}do if(c)if(Qa[f[(f[j>>2]|0)+16>>2]&127](j)|0){l=f[i>>2]|0;Va[f[(f[l>>2]|0)+20>>2]&127](l);break}else{k=0;u=e;return k|0}while(0);Cn(g);Si(h,f[a>>2]|0,g);a=(f[h>>2]|0)==0;i=h+4|0;if((b[i+11>>0]|0)<0)br(f[i>>2]|0);if(a){a=f[g>>2]|0;i=g+4|0;ag(d,a,a+((f[i>>2]|0)-a)|0);m=(f[i>>2]|0)-(f[g>>2]|0)|0}else m=0;i=g+12|0;a=f[i>>2]|0;f[i>>2]=0;if(a|0)br(a);a=f[g>>2]|0;if(a|0){i=g+4|0;if((f[i>>2]|0)!=(a|0))f[i>>2]=a;br(a)}k=m;u=e;return k|0}function sh(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;d=f[a+4>>2]|0;if(!d){e=0;return e|0}a=b[c+11>>0]|0;g=a<<24>>24<0;h=g?f[c+4>>2]|0:a&255;a=g?f[c>>2]|0:c;c=d;while(1){d=c+16|0;g=b[d+11>>0]|0;i=g<<24>>24<0;j=i?f[c+20>>2]|0:g&255;g=j>>>0>>0;k=g?j:h;if((k|0)!=0?(l=Pk(a,i?f[d>>2]|0:d,k)|0,(l|0)!=0):0)if((l|0)<0)m=7;else m=8;else if(h>>>0>>0)m=7;else m=8;if((m|0)==7){m=0;n=c}else if((m|0)==8){m=0;l=h>>>0>>0?h:j;if((l|0)!=0?(j=Pk(i?f[d>>2]|0:d,a,l)|0,(j|0)!=0):0){if((j|0)>=0){e=1;m=14;break}}else m=10;if((m|0)==10?(m=0,!g):0){e=1;m=14;break}n=c+4|0}c=f[n>>2]|0;if(!c){e=0;m=14;break}}if((m|0)==14)return e|0;return 0}function th(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0;c=u;u=u+16|0;d=c+12|0;e=c+8|0;g=c+4|0;h=c;i=a+4|0;j=(i|0)==(b|0);if(!j){f[g>>2]=f[b>>2];f[h>>2]=b+4;f[e>>2]=f[g>>2];f[d>>2]=f[h>>2];Hc(i,e,d)}if(!j){f[g>>2]=f[b+12>>2];f[h>>2]=b+16;f[e>>2]=f[g>>2];f[d>>2]=f[h>>2];Ac(a+16|0,e,d)}if(j){u=c;return}f[g>>2]=f[b+24>>2];f[h>>2]=b+28;f[e>>2]=f[g>>2];f[d>>2]=f[h>>2];Hc(a+28|0,e,d);u=c;return}function uh(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0;e=u;u=u+16|0;g=e+4|0;h=e;di(g,a,b,c,d);d=f[g>>2]|0;if(!d){i=-1;f[g>>2]=0;u=e;return i|0}f[g>>2]=0;f[h>>2]=d;d=ah(a,h)|0;a=f[h>>2]|0;f[h>>2]=0;if(!a){i=d;f[g>>2]=0;u=e;return i|0}h=a+88|0;c=f[h>>2]|0;f[h>>2]=0;if(c|0){h=f[c+8>>2]|0;if(h|0){b=c+12|0;if((f[b>>2]|0)!=(h|0))f[b>>2]=h;br(h)}br(c)}c=f[a+68>>2]|0;if(c|0){h=a+72|0;b=f[h>>2]|0;if((b|0)!=(c|0))f[h>>2]=b+(~((b+-4-c|0)>>>2)<<2);br(c)}c=a+64|0;b=f[c>>2]|0;f[c>>2]=0;if(b|0){c=f[b>>2]|0;if(c|0){h=b+4|0;if((f[h>>2]|0)!=(c|0))f[h>>2]=c;br(c)}br(b)}br(a);i=d;f[g>>2]=0;u=e;return i|0}function vh(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;e=u;u=u+16|0;g=e+4|0;h=e;i=f[a+8>>2]|0;j=i+24|0;k=b[j>>0]|0;l=c+4|0;Nf(a,(f[l>>2]|0)-(f[c>>2]|0)>>2,k,d);d=f[a+32>>2]|0;a=(f[f[d>>2]>>2]|0)+(f[d+48>>2]|0)|0;d=f[c>>2]|0;c=f[l>>2]|0;if((d|0)==(c|0)){m=1;u=e;return m|0}l=i+84|0;n=i+68|0;o=0;p=d;while(1){d=f[p>>2]|0;if(!(b[l>>0]|0))q=f[(f[n>>2]|0)+(d<<2)>>2]|0;else q=d;f[h>>2]=q;d=b[j>>0]|0;f[g>>2]=f[h>>2];if(!(Pb(i,g,d,a+(o<<2)|0)|0)){m=0;r=7;break}p=p+4|0;if((p|0)==(c|0)){m=1;r=7;break}else o=o+k|0}if((r|0)==7){u=e;return m|0}return 0}function wh(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0;f[a>>2]=1392;b=a+72|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0)Va[f[(f[c>>2]|0)+4>>2]&127](c);c=f[a+60>>2]|0;if(c|0){b=a+64|0;d=f[b>>2]|0;if((d|0)!=(c|0))f[b>>2]=d+(~((d+-4-c|0)>>>2)<<2);br(c)}c=f[a+48>>2]|0;if(c|0)br(c);c=a+36|0;d=f[c>>2]|0;if(d|0){b=a+40|0;e=f[b>>2]|0;if((e|0)==(d|0))g=d;else{h=e;do{e=h+-4|0;f[b>>2]=e;i=f[e>>2]|0;f[e>>2]=0;if(i|0)Va[f[(f[i>>2]|0)+4>>2]&127](i);h=f[b>>2]|0}while((h|0)!=(d|0));g=f[c>>2]|0}br(g)}f[a>>2]=1216;g=f[a+16>>2]|0;if(g|0){c=a+20|0;d=f[c>>2]|0;if((d|0)!=(g|0))f[c>>2]=d+(~((d+-4-g|0)>>>2)<<2);br(g)}g=f[a+4>>2]|0;if(!g)return;d=a+8|0;a=f[d>>2]|0;if((a|0)!=(g|0))f[d>>2]=a+(~((a+-4-g|0)>>>2)<<2);br(g);return}function xh(a){a=a|0;tj(a+992|0);tj(a+960|0);tj(a+928|0);tj(a+896|0);tj(a+864|0);tj(a+832|0);tj(a+800|0);tj(a+768|0);tj(a+736|0);tj(a+704|0);tj(a+672|0);tj(a+640|0);tj(a+608|0);tj(a+576|0);tj(a+544|0);tj(a+512|0);tj(a+480|0);tj(a+448|0);tj(a+416|0);tj(a+384|0);tj(a+352|0);tj(a+320|0);tj(a+288|0);tj(a+256|0);tj(a+224|0);tj(a+192|0);tj(a+160|0);tj(a+128|0);tj(a+96|0);tj(a+64|0);tj(a+32|0);tj(a);return}function yh(a){a=a|0;rn(a);rn(a+32|0);rn(a+64|0);rn(a+96|0);rn(a+128|0);rn(a+160|0);rn(a+192|0);rn(a+224|0);rn(a+256|0);rn(a+288|0);rn(a+320|0);rn(a+352|0);rn(a+384|0);rn(a+416|0);rn(a+448|0);rn(a+480|0);rn(a+512|0);rn(a+544|0);rn(a+576|0);rn(a+608|0);rn(a+640|0);rn(a+672|0);rn(a+704|0);rn(a+736|0);rn(a+768|0);rn(a+800|0);rn(a+832|0);rn(a+864|0);rn(a+896|0);rn(a+928|0);rn(a+960|0);rn(a+992|0);return}function zh(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0;a=u;u=u+16|0;e=a;if((c|0)<0|((b|0)==0|(d|0)==0)){g=0;u=a;return g|0}h=f[b+8>>2]|0;if(((f[b+12>>2]|0)-h>>2|0)<=(c|0)){g=0;u=a;return g|0}i=b+4|0;if(!(f[i>>2]|0)){j=dn(52)|0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;f[j+12>>2]=0;n[j+16>>2]=$(1.0);k=j+20|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;n[j+36>>2]=$(1.0);f[j+40>>2]=0;f[j+44>>2]=0;f[j+48>>2]=0;f[b+4>>2]=j}j=f[(f[h+(c<<2)>>2]|0)+60>>2]|0;c=dn(44)|0;Ub(c,d);f[c+40>>2]=j;j=f[i>>2]|0;f[e>>2]=c;gk(j,e)|0;j=f[e>>2]|0;f[e>>2]=0;if(!j){g=1;u=a;return g|0}Qi(j);br(j);g=1;u=a;return g|0}function Ah(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;f[a>>2]=d;e=a+24|0;g=a+28|0;h=f[g>>2]|0;i=f[e>>2]|0;j=h-i>>2;k=i;i=h;if(j>>>0>=d>>>0){if(j>>>0>d>>>0?(h=k+(d<<2)|0,(h|0)!=(i|0)):0)f[g>>2]=i+(~((i+-4-h|0)>>>2)<<2)}else oi(e,d-j|0);if(!c)return;j=f[b>>2]|0;if((c|0)>1){d=j;e=j;h=1;while(1){i=f[b+(h<<2)>>2]|0;g=(i|0)<(e|0);k=g?i:e;l=g?d:(i|0)>(d|0)?i:d;h=h+1|0;if((h|0)==(c|0)){m=l;n=k;break}else{d=l;e=k}}}else{m=j;n=j}f[a+4>>2]=n;f[a+8>>2]=m;j=Vn(m|0,((m|0)<0)<<31>>31|0,n|0,((n|0)<0)<<31>>31|0)|0;n=I;if(!(n>>>0<0|(n|0)==0&j>>>0<2147483647))return;n=j+1|0;f[a+12>>2]=n;j=(n|0)/2|0;m=a+16|0;f[m>>2]=j;f[a+20>>2]=0-j;if(n&1|0)return;f[m>>2]=j+-1;return}function Bh(a,c,d,e,g,h,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;var j=0,k=0;c=u;u=u+64|0;j=c;k=i?6:5;Al(j);i=f[h+56>>2]|0;h=X(Ll(k)|0,e)|0;yj(j,i,0,e&255,k,0,h,((h|0)<0)<<31>>31,0,0);h=dn(96)|0;nl(h,j);f[a>>2]=h;pj(h,d)|0;d=h+84|0;if(!g){b[d>>0]=1;a=f[h+68>>2]|0;j=h+72|0;k=f[j>>2]|0;if((k|0)==(a|0)){u=c;return}f[j>>2]=k+(~((k+-4-a|0)>>>2)<<2);u=c;return}b[d>>0]=0;d=h+68|0;a=h+72|0;h=f[a>>2]|0;k=f[d>>2]|0;j=h-k>>2;e=h;if(j>>>0>>0){kh(d,g-j|0,1200);u=c;return}if(j>>>0<=g>>>0){u=c;return}j=k+(g<<2)|0;if((j|0)==(e|0)){u=c;return}f[a>>2]=e+(~((e+-4-j|0)>>>2)<<2);u=c;return}function Ch(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){jd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;jd(a,e);return}function Dh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){nd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;nd(a,e);return}function Eh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){ud(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;ud(a,e);return}function Fh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){Ed(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;Ed(a,e);return}function Gh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){ld(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;ld(a,e);return}function Hh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){qd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;qd(a,e);return}function Ih(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){yd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;yd(a,e);return}function Jh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){kd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;kd(a,e);return}function Kh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){od(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;od(a,e);return}function Lh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){vd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;vd(a,e);return}function Mh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){Fd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;Fd(a,e);return}function Nh(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+8|0;b[h>>0]=a&127;do if(a>>>0>127){b[h>>0]=a|128;i=c+16|0;j=f[i+4>>2]|0;if((j|0)>0|(j|0)==0&(f[i>>2]|0)>>>0>0){k=0;break}else{f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];ye(c,e,h,h+1|0)|0;k=Nh(a>>>7,c)|0;break}}else{i=c+16|0;j=f[i+4>>2]|0;if((j|0)>0|(j|0)==0&(f[i>>2]|0)>>>0>0){k=0;break}f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];ye(c,e,h,h+1|0)|0;l=1;u=d;return l|0}while(0);l=k;u=d;return l|0}function Oh(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=u;u=u+16|0;e=d;Be(e,a+40|0,f[a+8>>2]|0,b,c);Wi(a,e);a=f[e>>2]|0;f[e>>2]=0;if(!a){u=d;return 1}e=a+88|0;c=f[e>>2]|0;f[e>>2]=0;if(c|0){e=f[c+8>>2]|0;if(e|0){b=c+12|0;if((f[b>>2]|0)!=(e|0))f[b>>2]=e;br(e)}br(c)}c=f[a+68>>2]|0;if(c|0){e=a+72|0;b=f[e>>2]|0;if((b|0)!=(c|0))f[e>>2]=b+(~((b+-4-c|0)>>>2)<<2);br(c)}c=a+64|0;b=f[c>>2]|0;f[c>>2]=0;if(b|0){c=f[b>>2]|0;if(c|0){e=b+4|0;if((f[e>>2]|0)!=(c|0))f[e>>2]=c;br(c)}br(b)}br(a);u=d;return 1}function Ph(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){rd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;rd(a,e);return}function Qh(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0;e=u;u=u+48|0;g=e;h=e+32|0;if(!c){i=0;u=e;return i|0}Cn(g);if((Tl(c,0)|0)!=-1?Qa[f[(f[c>>2]|0)+16>>2]&127](c)|0:0){Va[f[(f[c>>2]|0)+20>>2]&127](c);Zf(h,a,c,g);c=(f[h>>2]|0)==0;a=h+4|0;if((b[a+11>>0]|0)<0)br(f[a>>2]|0);if(c){c=f[g>>2]|0;a=g+4|0;ag(d,c,c+((f[a>>2]|0)-c)|0);j=(f[a>>2]|0)-(f[g>>2]|0)|0}else j=0}else j=0;a=g+12|0;c=f[a>>2]|0;f[a>>2]=0;if(c|0)br(c);c=f[g>>2]|0;if(c|0){a=g+4|0;if((f[a>>2]|0)!=(c|0))f[a>>2]=c;br(c)}i=j;u=e;return i|0}function Rh(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=u;u=u+16|0;e=d;se(e,a+40|0,f[a+8>>2]|0,b,c);Wi(a,e);a=f[e>>2]|0;f[e>>2]=0;if(!a){u=d;return 1}e=a+88|0;c=f[e>>2]|0;f[e>>2]=0;if(c|0){e=f[c+8>>2]|0;if(e|0){b=c+12|0;if((f[b>>2]|0)!=(e|0))f[b>>2]=e;br(e)}br(c)}c=f[a+68>>2]|0;if(c|0){e=a+72|0;b=f[e>>2]|0;if((b|0)!=(c|0))f[e>>2]=b+(~((b+-4-c|0)>>>2)<<2);br(c)}c=a+64|0;b=f[c>>2]|0;f[c>>2]=0;if(b|0){c=f[b>>2]|0;if(c|0){e=b+4|0;if((f[e>>2]|0)!=(c|0))f[e>>2]=c;br(c)}br(b)}br(a);u=d;return 1}function Sh(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0;b=f[a>>2]|0;if(!b)return;c=a+4|0;d=f[c>>2]|0;if((d|0)==(b|0))e=b;else{g=d;do{d=g+-4|0;f[c>>2]=d;h=f[d>>2]|0;f[d>>2]=0;if(h|0){d=h+88|0;i=f[d>>2]|0;f[d>>2]=0;if(i|0){d=f[i+8>>2]|0;if(d|0){j=i+12|0;if((f[j>>2]|0)!=(d|0))f[j>>2]=d;br(d)}br(i)}i=f[h+68>>2]|0;if(i|0){d=h+72|0;j=f[d>>2]|0;if((j|0)!=(i|0))f[d>>2]=j+(~((j+-4-i|0)>>>2)<<2);br(i)}i=h+64|0;j=f[i>>2]|0;f[i>>2]=0;if(j|0){i=f[j>>2]|0;if(i|0){d=j+4|0;if((f[d>>2]|0)!=(i|0))f[d>>2]=i;br(i)}br(j)}br(h)}g=f[c>>2]|0}while((g|0)!=(b|0));e=f[a>>2]|0}br(e);return}function Th(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;e=(d|0)<0;do if(!b){if(e){g=0;return g|0}h=a+4|0;i=f[h>>2]|0;j=f[a>>2]|0;k=i-j|0;if(k>>>0>>0){ri(a,c-k|0);break}if(k>>>0>c>>>0?(k=j+c|0,(k|0)!=(i|0)):0)f[h>>2]=k}else{if(e){g=0;return g|0}k=a+4|0;h=f[k>>2]|0;i=f[a>>2]|0;j=h-i|0;do if(0<(d|0)|0==(d|0)&j>>>0>>0){if(j>>>0>>0){ri(a,c-j|0);break}if(j>>>0>c>>>0?(l=i+c|0,(l|0)!=(h|0)):0){f[k>>2]=l;m=15}else m=15}else m=15;while(0);if((m|0)==15?(c|0)==0:0)break;Xl(f[a>>2]|0,b|0,c|0)|0}while(0);c=a+24|0;a=c;b=Tn(f[a>>2]|0,f[a+4>>2]|0,1,0)|0;a=c;f[a>>2]=b;f[a+4>>2]=I;g=1;return g|0}function Uh(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+8|0;if(!(ve(a,c)|0)){i=0;u=d;return i|0}j=a+36|0;k=a+40|0;a=f[j>>2]|0;if((f[k>>2]|0)==(a|0)){i=1;u=d;return i|0}l=c+16|0;m=c+4|0;n=h+1|0;o=0;p=a;do{a=f[p+(o<<2)>>2]|0;q=Qa[f[(f[a>>2]|0)+32>>2]&127](a)|0;b[h>>0]=q;q=l;a=f[q+4>>2]|0;if(!((a|0)>0|(a|0)==0&(f[q>>2]|0)>>>0>0)){f[g>>2]=f[m>>2];f[e>>2]=f[g>>2];ye(c,e,h,n)|0}o=o+1|0;p=f[j>>2]|0}while(o>>>0<(f[k>>2]|0)-p>>2>>>0);i=1;u=d;return i|0}function Vh(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=u;u=u+16|0;d=c;wp(a);f[a+16>>2]=0;f[a+20>>2]=0;f[a+12>>2]=a+16;e=a+24|0;wp(e);f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;a=dn(32)|0;f[d>>2]=a;f[d+8>>2]=-2147483616;f[d+4>>2]=20;g=a;h=13101;i=g+20|0;do{b[g>>0]=b[h>>0]|0;g=g+1|0;h=h+1|0}while((g|0)<(i|0));b[a+20>>0]=0;Mj(e,d,1);if((b[d+11>>0]|0)<0)br(f[d>>2]|0);f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;a=dn(32)|0;f[d>>2]=a;f[d+8>>2]=-2147483616;f[d+4>>2]=22;g=a;h=13122;i=g+22|0;do{b[g>>0]=b[h>>0]|0;g=g+1|0;h=h+1|0}while((g|0)<(i|0));b[a+22>>0]=0;Mj(e,d,1);if((b[d+11>>0]|0)>=0){u=c;return}br(f[d>>2]|0);u=c;return}function Wh(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0;b=f[a+4>>2]|0;c=a+8|0;d=f[c>>2]|0;if((d|0)!=(b|0)){e=d;do{d=e+-4|0;f[c>>2]=d;g=f[d>>2]|0;f[d>>2]=0;if(g|0){d=g+88|0;h=f[d>>2]|0;f[d>>2]=0;if(h|0){d=f[h+8>>2]|0;if(d|0){i=h+12|0;if((f[i>>2]|0)!=(d|0))f[i>>2]=d;br(d)}br(h)}h=f[g+68>>2]|0;if(h|0){d=g+72|0;i=f[d>>2]|0;if((i|0)!=(h|0))f[d>>2]=i+(~((i+-4-h|0)>>>2)<<2);br(h)}h=g+64|0;i=f[h>>2]|0;f[h>>2]=0;if(i|0){h=f[i>>2]|0;if(h|0){d=i+4|0;if((f[d>>2]|0)!=(h|0))f[d>>2]=h;br(h)}br(i)}br(g)}e=f[c>>2]|0}while((e|0)!=(b|0))}b=f[a>>2]|0;if(!b)return;br(b);return}function Xh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;f[g>>2]=f[a+12>>2];h=b+16|0;i=h;j=f[i>>2]|0;k=f[i+4>>2]|0;if((k|0)>0|(k|0)==0&j>>>0>0){l=k;m=j}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;j=h;l=f[j+4>>2]|0;m=f[j>>2]|0}f[g>>2]=f[a+20>>2];if((l|0)>0|(l|0)==0&m>>>0>0){u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;u=c;return 1}function Yh(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=u;u=u+16|0;d=c;e=dn(16)|0;f[d>>2]=e;f[d+8>>2]=-2147483632;f[d+4>>2]=14;g=e;h=12975;i=g+14|0;do{b[g>>0]=b[h>>0]|0;g=g+1|0;h=h+1|0}while((g|0)<(i|0));b[e+14>>0]=0;e=yk(a,d,-1)|0;if((b[d+11>>0]|0)<0)br(f[d>>2]|0);j=dn(16)|0;f[d>>2]=j;f[d+8>>2]=-2147483632;f[d+4>>2]=14;g=j;h=12990;i=g+14|0;do{b[g>>0]=b[h>>0]|0;g=g+1|0;h=h+1|0}while((g|0)<(i|0));b[j+14>>0]=0;j=yk(a,d,-1)|0;if((b[d+11>>0]|0)>=0){k=(e|0)<(j|0);l=k?j:e;m=(l|0)==-1;n=m?5:l;u=c;return n|0}br(f[d>>2]|0);k=(e|0)<(j|0);l=k?j:e;m=(l|0)==-1;n=m?5:l;u=c;return n|0}function Zh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;f[g>>2]=f[a+12>>2];h=b+16|0;i=h;j=f[i>>2]|0;k=f[i+4>>2]|0;if((k|0)>0|(k|0)==0&j>>>0>0){l=k;m=j}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;j=h;l=f[j+4>>2]|0;m=f[j>>2]|0}f[g>>2]=f[a+16>>2];if((l|0)>0|(l|0)==0&m>>>0>0){u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];ye(b,d,g,g+4|0)|0;u=c;return 1}function _h(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;g=dn(32)|0;f[a>>2]=g;f[a+4>>2]=c+8;c=a+8|0;b[c>>0]=0;h=g+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;h=g+20|0;i=e+12|0;f[h>>2]=0;f[g+24>>2]=0;f[g+28>>2]=0;g=e+16|0;e=f[g>>2]|0;j=f[i>>2]|0;k=e-j|0;if(!k){l=j;m=e;n=0}else{ri(h,k);l=f[i>>2]|0;m=f[g>>2]|0;n=f[h>>2]|0}Rg(n|0,l|0,m-l|0)|0;b[c>>0]=1;c=f[a>>2]|0;f[c+4>>2]=d;f[c>>2]=0;return}function $h(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0;b=a+32|0;fd(a,b);c=a+80|0;d=f[c>>2]|0;if((d|0?(e=a+84|0,(f[e>>2]|0)>0):0)?(fd(d,b),(f[e>>2]|0)>1):0){d=1;do{fd((f[c>>2]|0)+(d<<5)|0,b);d=d+1|0}while((d|0)<(f[e>>2]|0))}e=a+136|0;d=a+140|0;a=f[e>>2]|0;if((f[d>>2]|0)==(a|0))return;c=0;g=a;while(1){a=g;Nh((f[a+(c*12|0)+4>>2]|0)-(f[a+(c*12|0)>>2]|0)>>2,b)|0;a=f[e>>2]|0;h=f[a+(c*12|0)>>2]|0;i=(f[a+(c*12|0)+4>>2]|0)-h>>2;if(!i)j=a;else{Dc(h,i,1,0,b)|0;j=f[e>>2]|0}c=c+1|0;if(c>>>0>=(((f[d>>2]|0)-j|0)/12|0)>>>0)break;else g=j}return}function ai(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;e=d+16|0;g=f[e>>2]|0;if(!g)if(!(pl(d)|0)){h=f[e>>2]|0;i=5}else j=0;else{h=g;i=5}a:do if((i|0)==5){g=d+20|0;e=f[g>>2]|0;k=e;if((h-e|0)>>>0>>0){j=Sa[f[d+36>>2]&31](d,a,c)|0;break}b:do if((b[d+75>>0]|0)>-1){e=c;while(1){if(!e){l=0;m=a;n=c;o=k;break b}p=e+-1|0;if((b[a+p>>0]|0)==10)break;else e=p}p=Sa[f[d+36>>2]&31](d,a,e)|0;if(p>>>0>>0){j=p;break a}l=e;m=a+e|0;n=c-e|0;o=f[g>>2]|0}else{l=0;m=a;n=c;o=k}while(0);Rg(o|0,m|0,n|0)|0;f[g>>2]=(f[g>>2]|0)+n;j=l+n|0}while(0);return j|0}function bi(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=a+12|0;d=f[c>>2]|0;f[c>>2]=0;if(d|0){c=f[d+28>>2]|0;if(c|0){e=c;do{c=e;e=f[e>>2]|0;bi(c+8|0);br(c)}while((e|0)!=0)}e=d+20|0;c=f[e>>2]|0;f[e>>2]=0;if(c|0)br(c);c=f[d+8>>2]|0;if(c|0){e=c;do{c=e;e=f[e>>2]|0;g=c+8|0;h=f[c+20>>2]|0;if(h|0){i=c+24|0;if((f[i>>2]|0)!=(h|0))f[i>>2]=h;br(h)}if((b[g+11>>0]|0)<0)br(f[g>>2]|0);br(c)}while((e|0)!=0)}e=f[d>>2]|0;f[d>>2]=0;if(e|0)br(e);br(d)}if((b[a+11>>0]|0)>=0)return;br(f[a>>2]|0);return}function ci(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0;g=u;u=u+32|0;h=g+12|0;i=g;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;if((e|0)>0){j=i+11|0;k=i+4|0;l=0;do{if((l|0)>0)vn(h,12890)|0;cl(i,$(n[d+(l<<2)>>2]));m=b[j>>0]|0;o=m<<24>>24<0;$i(h,o?f[i>>2]|0:i,o?f[k>>2]|0:m&255)|0;if((b[j>>0]|0)<0)br(f[i>>2]|0);l=l+1|0}while((l|0)<(e|0))}Ql(mi(a,c)|0,h)|0;if((b[h+11>>0]|0)>=0){u=g;return}br(f[h>>2]|0);u=g;return}function di(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;if((f[d+56>>2]|0)==-1){h=0;f[a>>2]=h;return}i=dn(96)|0;nl(i,d);d=i;do if(!e){j=f[c+80>>2]|0;b[i+84>>0]=0;k=i+68|0;l=i+72|0;m=f[l>>2]|0;n=f[k>>2]|0;o=m-n>>2;p=m;if(j>>>0>o>>>0){kh(k,j-o|0,5908);break}if(j>>>0>>0?(o=n+(j<<2)|0,(o|0)!=(p|0)):0)f[l>>2]=p+(~((p+-4-o|0)>>>2)<<2)}else{b[i+84>>0]=1;o=f[i+68>>2]|0;p=i+72|0;l=f[p>>2]|0;if((l|0)!=(o|0))f[p>>2]=l+(~((l+-4-o|0)>>>2)<<2);f[i+80>>2]=f[c+80>>2]}while(0);if(!g){h=d;f[a>>2]=h;return}pj(i,g)|0;h=d;f[a>>2]=h;return}function ei(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=a+4|0;d=f[a>>2]|0;e=(f[c>>2]|0)-d|0;g=e>>3;h=g+1|0;if(h>>>0>536870911)mq(a);i=a+8|0;j=(f[i>>2]|0)-d|0;k=j>>2;l=j>>3>>>0<268435455?(k>>>0>>0?h:k):536870911;do if(l)if(l>>>0>536870911){k=ra(8)|0;Wo(k,14941);f[k>>2]=6944;va(k|0,1080,114)}else{k=dn(l<<3)|0;m=k;n=k;break}else{m=0;n=0}while(0);k=m+(g<<3)|0;g=b;b=f[g+4>>2]|0;h=k;f[h>>2]=f[g>>2];f[h+4>>2]=b;if((e|0)>0)Rg(n|0,d|0,e|0)|0;f[a>>2]=m;f[c>>2]=k+8;f[i>>2]=m+(l<<3);if(!d)return;br(d);return}function fi(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=u;u=u+16|0;d=c;if((Qa[f[(f[b>>2]|0)+20>>2]&127](b)|0)<=0){e=1;u=c;return e|0}g=a+4|0;h=a+20|0;i=a+24|0;j=a+16|0;a=0;while(1){k=f[(f[g>>2]|0)+4>>2]|0;l=Tl(k,Ra[f[(f[b>>2]|0)+24>>2]&127](b,a)|0)|0;f[d>>2]=l;if((l|0)==-1)break;k=f[h>>2]|0;if((k|0)==(f[i>>2]|0))Ci(j,d);else{f[k>>2]=l;f[h>>2]=k+4}al(f[g>>2]|0,f[d>>2]|0)|0;a=a+1|0;if((a|0)>=(Qa[f[(f[b>>2]|0)+20>>2]&127](b)|0)){e=1;m=9;break}}if((m|0)==9){u=c;return e|0}e=0;u=c;return e|0}function gi(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;f[a>>2]=1276;Sh(a+60|0);b=f[a+48>>2]|0;if(b|0){c=a+52|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=a+36|0;d=f[b>>2]|0;if(d|0){c=a+40|0;e=f[c>>2]|0;if((e|0)==(d|0))g=d;else{h=e;do{e=h+-24|0;f[c>>2]=e;Va[f[f[e>>2]>>2]&127](e);h=f[c>>2]|0}while((h|0)!=(d|0));g=f[b>>2]|0}br(g)}f[a>>2]=1216;g=f[a+16>>2]|0;if(g|0){b=a+20|0;d=f[b>>2]|0;if((d|0)!=(g|0))f[b>>2]=d+(~((d+-4-g|0)>>>2)<<2);br(g)}g=f[a+4>>2]|0;if(!g)return;d=a+8|0;a=f[d>>2]|0;if((a|0)!=(g|0))f[d>>2]=a+(~((a+-4-g|0)>>>2)<<2);br(g);return}function hi(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;c=u;u=u+32|0;d=c+16|0;e=c+8|0;g=c;h=a+8|0;if(f[h>>2]<<5>>>0>=b>>>0){u=c;return}f[d>>2]=0;i=d+4|0;f[i>>2]=0;j=d+8|0;f[j>>2]=0;if((b|0)<0)mq(d);k=((b+-1|0)>>>5)+1|0;b=dn(k<<2)|0;f[d>>2]=b;f[i>>2]=0;f[j>>2]=k;k=f[a>>2]|0;f[e>>2]=k;f[e+4>>2]=0;b=a+4|0;l=f[b>>2]|0;f[g>>2]=k+(l>>>5<<2);f[g+4>>2]=l&31;ig(d,e,g);g=f[a>>2]|0;f[a>>2]=f[d>>2];f[d>>2]=g;d=f[b>>2]|0;f[b>>2]=f[i>>2];f[i>>2]=d;d=f[h>>2]|0;f[h>>2]=f[j>>2];f[j>>2]=d;if(g|0)br(g);u=c;return}function ii(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;b=a+136|0;c=f[b>>2]|0;if(c|0){d=a+140|0;e=f[d>>2]|0;if((e|0)==(c|0))g=c;else{h=e;while(1){e=h+-12|0;f[d>>2]=e;i=f[e>>2]|0;if(!i)j=e;else{e=h+-8|0;k=f[e>>2]|0;if((k|0)!=(i|0))f[e>>2]=k+(~((k+-4-i|0)>>>2)<<2);br(i);j=f[d>>2]|0}if((j|0)==(c|0))break;else h=j}g=f[b>>2]|0}br(g)}g=f[a+104>>2]|0;if(g|0){b=a+108|0;j=f[b>>2]|0;if((j|0)!=(g|0))f[b>>2]=j+(~((j+-4-g|0)>>>2)<<2);br(g)}g=f[a+92>>2]|0;if(!g){jj(a);return}j=a+96|0;b=f[j>>2]|0;if((b|0)!=(g|0))f[j>>2]=b+(~((b+-4-g|0)>>>2)<<2);br(g);jj(a);return}function ji(a){a=a|0;var c=0,d=0,e=0,g=0;f[a>>2]=3340;c=a+72|0;d=a+136|0;e=a+4|0;g=e+64|0;do{f[e>>2]=0;e=e+4|0}while((e|0)<(g|0));e=c;g=e+64|0;do{f[e>>2]=0;e=e+4|0}while((e|0)<(g|0));n[d>>2]=$(1.0);d=a+140|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;f[a+164>>2]=-1;d=a+168|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;f[d+24>>2]=0;rn(a+200|0);Cn(a+232|0);d=a+316|0;e=a+264|0;g=e+52|0;do{f[e>>2]=0;e=e+4|0}while((e|0)<(g|0));f[d>>2]=-1;f[a+320>>2]=-1;f[a+324>>2]=0;f[a+328>>2]=2;f[a+332>>2]=7;f[a+336>>2]=0;f[a+340>>2]=0;f[a+344>>2]=0;b[a+352>>0]=0;return}function ki(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=a+4|0;d=f[a>>2]|0;e=(f[c>>2]|0)-d|0;g=(e|0)/12|0;h=g+1|0;if(h>>>0>357913941)mq(a);i=a+8|0;j=((f[i>>2]|0)-d|0)/12|0;k=j<<1;l=j>>>0<178956970?(k>>>0>>0?h:k):357913941;do if(l)if(l>>>0>357913941){k=ra(8)|0;Wo(k,14941);f[k>>2]=6944;va(k|0,1080,114)}else{m=dn(l*12|0)|0;break}else m=0;while(0);k=m+(g*12|0)|0;f[k>>2]=f[b>>2];f[k+4>>2]=f[b+4>>2];f[k+8>>2]=f[b+8>>2];b=k+(((e|0)/-12|0)*12|0)|0;if((e|0)>0)Rg(b|0,d|0,e|0)|0;f[a>>2]=b;f[c>>2]=k+12;f[i>>2]=m+(l*12|0);if(!d)return;br(d);return}function li(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;g=a+16|0;h=g;i=f[h+4>>2]|0;if((d|0)<0|(d|0)==0&c>>>0<1|((i|0)>0|(i|0)==0&(f[h>>2]|0)>>>0>0)){j=0;return j|0}b[a+24>>0]=e&1;h=Tn(c|0,d|0,7,0)|0;d=zk(h|0,I|0,8,0)|0;h=I;c=g;f[c>>2]=d;f[c+4>>2]=h;c=a+4|0;g=f[c>>2]|0;i=f[a>>2]|0;k=g-i|0;l=Tn(k|0,0,8,0)|0;m=e?l:k;l=Tn(m|0,(e?I:0)|0,d|0,h|0)|0;h=i;i=g;if(k>>>0>=l>>>0)if(k>>>0>l>>>0?(g=h+l|0,(g|0)!=(i|0)):0){f[c>>2]=g;n=h}else n=h;else{ri(a,l-k|0);n=f[a>>2]|0}k=dn(8)|0;f[k>>2]=n+m;f[k+4>>2]=0;m=a+12|0;a=f[m>>2]|0;f[m>>2]=k;if(!a){j=1;return j|0}br(a);j=1;return j|0}function mi(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0;c=u;u=u+16|0;d=c;e=hg(a,d,b)|0;g=f[e>>2]|0;if(g|0){h=g;i=h+28|0;u=c;return i|0}g=dn(40)|0;dj(g+16|0,b);b=g+28|0;f[b>>2]=0;f[b+4>>2]=0;f[b+8>>2]=0;b=f[d>>2]|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=b;f[e>>2]=g;b=f[f[a>>2]>>2]|0;if(!b)j=g;else{f[a>>2]=b;j=f[e>>2]|0}Ae(f[a+4>>2]|0,j);j=a+8|0;f[j>>2]=(f[j>>2]|0)+1;h=g;i=h+28|0;u=c;return i|0}function ni(a,c,d,e,g,h,i,j){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;j=j|0;var k=0,l=0,m=0,n=0,o=0,p=0;k=u;u=u+16|0;l=k;if((-18-c|0)>>>0>>0)mq(a);if((b[a+11>>0]|0)<0)m=f[a>>2]|0;else m=a;if(c>>>0<2147483623){n=d+c|0;d=c<<1;o=n>>>0>>0?d:n;p=o>>>0<11?11:o+16&-16}else p=-17;o=dn(p)|0;if(g|0)Lo(o,m,g)|0;if(i|0)Lo(o+g|0,j,i)|0;j=e-h|0;e=j-g|0;if(e|0)Lo(o+g+i|0,m+g+h|0,e)|0;if((c|0)!=10)br(m);f[a>>2]=o;f[a+8>>2]=p|-2147483648;p=j+i|0;f[a+4>>2]=p;b[l>>0]=0;Hp(o+p|0,l);u=k;return}function oi(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=a+8|0;d=f[c>>2]|0;e=a+4|0;g=f[e>>2]|0;if(d-g>>2>>>0>=b>>>0){hj(g|0,0,b<<2|0)|0;f[e>>2]=g+(b<<2);return}h=f[a>>2]|0;i=g-h|0;g=i>>2;j=g+b|0;if(j>>>0>1073741823)mq(a);k=d-h|0;d=k>>1;l=k>>2>>>0<536870911?(d>>>0>>0?j:d):1073741823;do if(l)if(l>>>0>1073741823){d=ra(8)|0;Wo(d,14941);f[d>>2]=6944;va(d|0,1080,114)}else{d=dn(l<<2)|0;m=d;n=d;break}else{m=0;n=0}while(0);d=m+(g<<2)|0;hj(d|0,0,b<<2|0)|0;if((i|0)>0)Rg(n|0,h|0,i|0)|0;f[a>>2]=m;f[e>>2]=d+(b<<2);f[c>>2]=m+(l<<2);if(!h)return;br(h);return}function pi(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;g=dn(32)|0;f[a>>2]=g;f[a+4>>2]=c+8;c=a+8|0;b[c>>0]=0;dj(g+8|0,e);h=g+20|0;i=e+12|0;f[h>>2]=0;f[g+24>>2]=0;f[g+28>>2]=0;g=e+16|0;e=f[g>>2]|0;j=f[i>>2]|0;k=e-j|0;if(!k){l=j;m=e;n=0}else{ri(h,k);l=f[i>>2]|0;m=f[g>>2]|0;n=f[h>>2]|0}Rg(n|0,l|0,m-l|0)|0;b[c>>0]=1;c=f[a>>2]|0;f[c+4>>2]=d;f[c>>2]=0;return}function qi(a,c,d){a=a|0;c=c|0;d=$(d);var e=0,g=0,h=0,i=0,j=0,k=0.0,l=0,m=0,n=0,o=0;e=u;u=u+16|0;g=e;h=c+11|0;i=b[h>>0]|0;if(i<<24>>24<0)j=f[c+4>>2]|0;else j=i&255;k=+d;l=j;j=i;while(1){if(j<<24>>24<0)m=f[c>>2]|0;else m=c;p[g>>3]=k;n=wn(m,l+1|0,17468,g)|0;if((n|0)>-1)if(n>>>0>l>>>0)o=n;else break;else o=l<<1|1;wj(c,o,0);l=o;j=b[h>>0]|0}wj(c,n,0);f[a>>2]=f[c>>2];f[a+4>>2]=f[c+4>>2];f[a+8>>2]=f[c+8>>2];a=0;while(1){if((a|0)==3)break;f[c+(a<<2)>>2]=0;a=a+1|0}u=e;return}function ri(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;d=a+8|0;e=f[d>>2]|0;g=a+4|0;h=f[g>>2]|0;if((e-h|0)>>>0>=c>>>0){i=c;j=h;do{b[j>>0]=0;j=(f[g>>2]|0)+1|0;f[g>>2]=j;i=i+-1|0}while((i|0)!=0);return}i=f[a>>2]|0;j=h-i|0;h=j+c|0;if((h|0)<0)mq(a);k=e-i|0;i=k<<1;e=k>>>0<1073741823?(i>>>0>>0?h:i):2147483647;if(!e)l=0;else l=dn(e)|0;i=l+j|0;j=l+e|0;e=c;c=i;l=i;do{b[l>>0]=0;l=c+1|0;c=l;e=e+-1|0}while((e|0)!=0);e=f[a>>2]|0;l=(f[g>>2]|0)-e|0;h=i+(0-l)|0;if((l|0)>0)Rg(h|0,e|0,l|0)|0;f[a>>2]=h;f[g>>2]=c;f[d>>2]=j;if(!e)return;br(e);return}function si(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=a+4|0;d=f[c>>2]|0;e=f[a>>2]|0;g=(d-e|0)/136|0;h=d;if(g>>>0>>0){te(a,b-g|0);return}if(g>>>0<=b>>>0)return;g=e+(b*136|0)|0;if((g|0)==(h|0))return;else i=h;do{f[c>>2]=i+-136;h=f[i+-20>>2]|0;if(h|0){b=i+-16|0;e=f[b>>2]|0;if((e|0)!=(h|0))f[b>>2]=e+(~((e+-4-h|0)>>>2)<<2);br(h)}h=f[i+-32>>2]|0;if(h|0){e=i+-28|0;b=f[e>>2]|0;if((b|0)!=(h|0))f[e>>2]=b+(~((b+-4-h|0)>>>2)<<2);br(h)}yi(i+-132|0);i=f[c>>2]|0}while((i|0)!=(g|0));return}function ti(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){Hd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;Hd(a,e);return}function ui(a){a=a|0;var b=0,c=0,d=0;b=f[a+76>>2]|0;if(b|0){c=a+80|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+64>>2]|0;if(b|0){d=a+68|0;if((f[d>>2]|0)!=(b|0))f[d>>2]=b;br(b)}b=f[a+48>>2]|0;if(b|0){d=a+52|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+24>>2]|0;if(b|0){c=a+28|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+12>>2]|0;if(b|0){d=a+16|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a>>2]|0;if(!b)return;c=a+4|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);br(b);return}function vi(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;e=u;u=u+16|0;g=e;h=c+11|0;i=b[h>>0]|0;if(i<<24>>24<0)j=f[c+4>>2]|0;else j=i&255;k=j;j=i;while(1){if(j<<24>>24<0)l=f[c>>2]|0;else l=c;f[g>>2]=d;m=wn(l,k+1|0,17465,g)|0;if((m|0)>-1)if(m>>>0>k>>>0)n=m;else break;else n=k<<1|1;wj(c,n,0);k=n;j=b[h>>0]|0}wj(c,m,0);f[a>>2]=f[c>>2];f[a+4>>2]=f[c+4>>2];f[a+8>>2]=f[c+8>>2];a=0;while(1){if((a|0)==3)break;f[c+(a<<2)>>2]=0;a=a+1|0}u=e;return}function wi(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;b=a+8|0;c=f[b>>2]|0;if((c|0)<0){d=0;return d|0}e=a+4|0;a=f[e>>2]|0;g=a+4|0;h=f[g>>2]|0;i=f[a>>2]|0;j=h-i>>2;k=i;i=h;if(c>>>0<=j>>>0)if(c>>>0>>0?(h=k+(c<<2)|0,(h|0)!=(i|0)):0){f[g>>2]=i+(~((i+-4-h|0)>>>2)<<2);l=c}else l=c;else{oi(a,c-j|0);l=f[b>>2]|0}if((l|0)<=0){d=1;return d|0}b=f[e>>2]|0;e=f[b>>2]|0;j=(f[b+4>>2]|0)-e>>2;c=e;e=0;while(1){if(j>>>0<=e>>>0){m=10;break}f[c+(e<<2)>>2]=e;e=e+1|0;if((e|0)>=(l|0)){d=1;m=12;break}}if((m|0)==10)mq(b);else if((m|0)==12)return d|0;return 0}function xi(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;d=u;u=u+16|0;e=d;g=dn(32)|0;f[e>>2]=g;f[e+8>>2]=-2147483616;f[e+4>>2]=30;h=g;i=14791;j=h+30|0;do{b[h>>0]=b[i>>0]|0;h=h+1|0;i=i+1|0}while((h|0)<(j|0));b[g+30>>0]=0;g=a+4|0;Mj(g,e,c);if((b[e+11>>0]|0)<0)br(f[e>>2]|0);a=dn(32)|0;f[e>>2]=a;f[e+8>>2]=-2147483616;f[e+4>>2]=29;h=a;i=14510;j=h+29|0;do{b[h>>0]=b[i>>0]|0;h=h+1|0;i=i+1|0}while((h|0)<(j|0));b[a+29>>0]=0;Mj(g,e,c);if((b[e+11>>0]|0)>=0){u=d;return}br(f[e>>2]|0);u=d;return}function yi(a){a=a|0;var b=0,c=0,d=0;b=f[a+84>>2]|0;if(b|0){c=a+88|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+72>>2]|0;if(b|0){d=a+76|0;if((f[d>>2]|0)!=(b|0))f[d>>2]=b;br(b)}b=f[a+52>>2]|0;if(b|0){d=a+56|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+40>>2]|0;if(b|0){c=a+44|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+28>>2]|0;if(b|0){d=a+32|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+12>>2]|0;if(b|0)br(b);b=f[a>>2]|0;if(!b)return;br(b);return}function zi(a){a=a|0;var b=0,c=0,d=0,e=0;f[a>>2]=1336;b=a+32|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0){b=c+88|0;d=f[b>>2]|0;f[b>>2]=0;if(d|0){b=f[d+8>>2]|0;if(b|0){e=d+12|0;if((f[e>>2]|0)!=(b|0))f[e>>2]=b;br(b)}br(d)}d=f[c+68>>2]|0;if(d|0){b=c+72|0;e=f[b>>2]|0;if((e|0)!=(d|0))f[b>>2]=e+(~((e+-4-d|0)>>>2)<<2);br(d)}d=c+64|0;e=f[d>>2]|0;f[d>>2]=0;if(e|0){d=f[e>>2]|0;if(d|0){b=e+4|0;if((f[b>>2]|0)!=(d|0))f[b>>2]=d;br(d)}br(e)}br(c)}c=f[a+16>>2]|0;if(!c)return;e=a+20|0;a=f[e>>2]|0;if((a|0)!=(c|0))f[e>>2]=a+(~((a+-4-c|0)>>>2)<<2);br(c);return}function Ai(){var a=0,b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;a=u;u=u+48|0;b=a+32|0;c=a+24|0;d=a+16|0;e=a;g=a+36|0;a=mn()|0;if(a|0?(h=f[a>>2]|0,h|0):0){a=h+48|0;i=f[a>>2]|0;j=f[a+4>>2]|0;if(!((i&-256|0)==1126902528&(j|0)==1129074247)){f[c>>2]=17607;Dn(17557,c)}if((i|0)==1126902529&(j|0)==1129074247)k=f[h+44>>2]|0;else k=h+80|0;f[g>>2]=k;k=f[h>>2]|0;h=f[k+4>>2]|0;if(Sa[f[(f[250]|0)+16>>2]&31](1e3,k,g)|0){k=f[g>>2]|0;g=Qa[f[(f[k>>2]|0)+8>>2]&127](k)|0;f[e>>2]=17607;f[e+4>>2]=h;f[e+8>>2]=g;Dn(17471,e)}else{f[d>>2]=17607;f[d+4>>2]=h;Dn(17516,d)}}Dn(17595,b)}function Bi(a,c,d){a=a|0;c=c|0;d=d|0;var e=0;do if(a){if(c>>>0<128){b[a>>0]=c;e=1;break}d=(Yq()|0)+188|0;if(!(f[f[d>>2]>>2]|0))if((c&-128|0)==57216){b[a>>0]=c;e=1;break}else{d=ir()|0;f[d>>2]=84;e=-1;break}if(c>>>0<2048){b[a>>0]=c>>>6|192;b[a+1>>0]=c&63|128;e=2;break}if(c>>>0<55296|(c&-8192|0)==57344){b[a>>0]=c>>>12|224;b[a+1>>0]=c>>>6&63|128;b[a+2>>0]=c&63|128;e=3;break}if((c+-65536|0)>>>0<1048576){b[a>>0]=c>>>18|240;b[a+1>>0]=c>>>12&63|128;b[a+2>>0]=c>>>6&63|128;b[a+3>>0]=c&63|128;e=4;break}else{d=ir()|0;f[d>>2]=84;e=-1;break}}else e=1;while(0);return e|0}function Ci(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=a+4|0;d=f[a>>2]|0;e=(f[c>>2]|0)-d|0;g=e>>2;h=g+1|0;if(h>>>0>1073741823)mq(a);i=a+8|0;j=(f[i>>2]|0)-d|0;k=j>>1;l=j>>2>>>0<536870911?(k>>>0>>0?h:k):1073741823;do if(l)if(l>>>0>1073741823){k=ra(8)|0;Wo(k,14941);f[k>>2]=6944;va(k|0,1080,114)}else{k=dn(l<<2)|0;m=k;n=k;break}else{m=0;n=0}while(0);k=m+(g<<2)|0;f[k>>2]=f[b>>2];if((e|0)>0)Rg(n|0,d|0,e|0)|0;f[a>>2]=m;f[c>>2]=k+4;f[i>>2]=m+(l<<2);if(!d)return;br(d);return}function Di(a){a=a|0;var c=0,d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;c=a+104|0;d=f[c>>2]|0;if((d|0)!=0?(f[a+108>>2]|0)>=(d|0):0)e=4;else{d=Qm(a)|0;if((d|0)>=0){g=f[c>>2]|0;c=a+8|0;if(g){i=f[c>>2]|0;j=f[a+4>>2]|0;k=g-(f[a+108>>2]|0)|0;g=i;if((i-j|0)<(k|0)){l=g;m=g}else{l=j+(k+-1)|0;m=g}}else{g=f[c>>2]|0;l=g;m=g}f[a+100>>2]=l;l=a+4|0;if(!m)n=f[l>>2]|0;else{g=f[l>>2]|0;l=a+108|0;f[l>>2]=m+1-g+(f[l>>2]|0);n=g}g=n+-1|0;if((d|0)==(h[g>>0]|0|0))o=d;else{b[g>>0]=d;o=d}}else e=4}if((e|0)==4){f[a+100>>2]=0;o=-1}return o|0}function Ei(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;f[a>>2]=1528;f[a+4>>2]=b;b=a+8|0;f[b>>2]=f[c>>2];f[b+4>>2]=f[c+4>>2];f[b+8>>2]=f[c+8>>2];f[b+12>>2]=f[c+12>>2];f[b+16>>2]=f[c+16>>2];f[b+20>>2]=f[c+20>>2];_j(a+32|0,c+24|0);f[a>>2]=2144;c=a+44|0;f[c>>2]=f[d>>2];f[c+4>>2]=f[d+4>>2];f[c+8>>2]=f[d+8>>2];f[c+12>>2]=f[d+12>>2];f[a>>2]=2200;d=a+112|0;c=a+60|0;b=c+52|0;do{f[c>>2]=0;c=c+4|0}while((c|0)<(b|0));Sm(d);f[a+152>>2]=0;f[a+156>>2]=0;f[a+160>>2]=0;return}function Fi(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0;e=u;u=u+16|0;g=e;h=dn(16)|0;f[g>>2]=h;f[g+8>>2]=-2147483632;f[g+4>>2]=14;i=h;j=12975;k=i+14|0;do{b[i>>0]=b[j>>0]|0;i=i+1|0;j=j+1|0}while((i|0)<(k|0));b[h+14>>0]=0;Nj(a,g,c);if((b[g+11>>0]|0)<0)br(f[g>>2]|0);c=dn(16)|0;f[g>>2]=c;f[g+8>>2]=-2147483632;f[g+4>>2]=14;i=c;j=12990;k=i+14|0;do{b[i>>0]=b[j>>0]|0;i=i+1|0;j=j+1|0}while((i|0)<(k|0));b[c+14>>0]=0;Nj(a,g,d);if((b[g+11>>0]|0)>=0){u=e;return}br(f[g>>2]|0);u=e;return}function Gi(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3320;b=f[a+88>>2]|0;if(b|0){c=a+92|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+72>>2]|0;if(b|0){d=a+76|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+60>>2]|0;if(b|0){c=a+64|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+48>>2]|0;if(b|0){d=a+52|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}f[a>>2]=3276;b=f[a+36>>2]|0;if(b|0)br(b);b=f[a+24>>2]|0;if(!b)return;br(b);return}function Hi(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;f[a>>2]=1528;f[a+4>>2]=b;b=a+8|0;f[b>>2]=f[c>>2];f[b+4>>2]=f[c+4>>2];f[b+8>>2]=f[c+8>>2];f[b+12>>2]=f[c+12>>2];f[b+16>>2]=f[c+16>>2];f[b+20>>2]=f[c+20>>2];_j(a+32|0,c+24|0);f[a>>2]=1836;c=a+44|0;f[c>>2]=f[d>>2];f[c+4>>2]=f[d+4>>2];f[c+8>>2]=f[d+8>>2];f[c+12>>2]=f[d+12>>2];f[a>>2]=1892;d=a+112|0;c=a+60|0;b=c+52|0;do{f[c>>2]=0;c=c+4|0}while((c|0)<(b|0));Sm(d);f[a+152>>2]=0;f[a+156>>2]=0;f[a+160>>2]=0;return}function Ii(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2200;b=f[a+152>>2]|0;if(b|0){c=a+156|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+112>>2]|0;if(b|0){d=a+116|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+96>>2]|0;if(b|0)br(b);b=f[a+84>>2]|0;if(b|0)br(b);b=f[a+72>>2]|0;if(b|0)br(b);b=f[a+60>>2]|0;if(b|0)br(b);f[a>>2]=1528;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);br(b);return}function Ji(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0;d=u;u=u+16|0;e=d;g=f[(f[c+4>>2]|0)+4>>2]|0;if(!g){f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=d;return}if(!(rj(d+12|0,f[c+44>>2]|0,g)|0)){g=dn(32)|0;f[e>>2]=g;f[e+8>>2]=-2147483616;f[e+4>>2]=26;c=g;h=14822;i=c+26|0;do{b[c>>0]=b[h>>0]|0;c=c+1|0;h=h+1|0}while((c|0)<(i|0));b[g+26>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0)}else{f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0}u=d;return}function Ki(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0;c=b+48|0;if((Yh(f[c>>2]|0)|0)>9){d=0;return d|0}if((Qa[f[(f[b>>2]|0)+8>>2]&127](b)|0)!=1){d=0;return d|0}e=b+4|0;b=(f[(f[(f[e>>2]|0)+8>>2]|0)+(a<<2)>>2]|0)+56|0;a=f[b>>2]|0;do if((a|0)==3)if((Yh(f[c>>2]|0)|0)<4){d=5;return d|0}else{g=f[b>>2]|0;break}else g=a;while(0);a=Yh(f[c>>2]|0)|0;if((g|0)==1){d=(a|0)<4?6:0;return d|0}if((a|0)>7){d=0;return d|0}if((Yh(f[c>>2]|0)|0)>1){d=1;return d|0}else return ((f[(f[e>>2]|0)+80>>2]|0)>>>0<40?1:4)|0;return 0}function Li(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=1892;b=f[a+152>>2]|0;if(b|0){c=a+156|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+112>>2]|0;if(b|0){d=a+116|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+96>>2]|0;if(b|0)br(b);b=f[a+84>>2]|0;if(b|0)br(b);b=f[a+72>>2]|0;if(b|0)br(b);b=f[a+60>>2]|0;if(b|0)br(b);f[a>>2]=1528;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);br(b);return}function Mi(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;g=u;u=u+128|0;h=g+124|0;i=g;j=i;k=6284;l=j+124|0;do{f[j>>2]=f[k>>2];j=j+4|0;k=k+4|0}while((j|0)<(l|0));if((c+-1|0)>>>0>2147483646)if(!c){m=h;n=1;o=4}else{h=ir()|0;f[h>>2]=75;p=-1}else{m=a;n=c;o=4}if((o|0)==4){o=-2-m|0;c=n>>>0>o>>>0?o:n;f[i+48>>2]=c;n=i+20|0;f[n>>2]=m;f[i+44>>2]=m;o=m+c|0;m=i+16|0;f[m>>2]=o;f[i+28>>2]=o;o=hh(i,d,e)|0;if(!c)p=o;else{c=f[n>>2]|0;b[c+(((c|0)==(f[m>>2]|0))<<31>>31)>>0]=0;p=o}}u=g;return p|0}function Ni(a){a=a|0;var c=0,d=0,e=0,g=0;f[a>>2]=3080;c=a+72|0;d=a+136|0;e=a+4|0;g=e+64|0;do{f[e>>2]=0;e=e+4|0}while((e|0)<(g|0));e=c;g=e+64|0;do{f[e>>2]=0;e=e+4|0}while((e|0)<(g|0));n[d>>2]=$(1.0);d=a+140|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;f[a+164>>2]=-1;d=a+168|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;f[d+24>>2]=0;rn(a+200|0);Cn(a+232|0);d=a+264|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;b[d+24>>0]=0;return}function Oi(a,c,d,e){a=a|0;c=c|0;d=d|0;e=+e;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;a=u;u=u+16|0;g=a;if(!c){h=0;u=a;return h|0}f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;i=vj(d)|0;if(i>>>0>4294967279)mq(g);if(i>>>0<11){b[g+11>>0]=i;if(!i)j=g;else{k=g;l=7}}else{m=i+16&-16;n=dn(m)|0;f[g>>2]=n;f[g+8>>2]=m|-2147483648;f[g+4>>2]=i;k=n;l=7}if((l|0)==7){Rg(k|0,d|0,i|0)|0;j=k}b[j+i>>0]=0;Ol(c,g,e);if((b[g+11>>0]|0)<0)br(f[g>>2]|0);h=1;u=a;return h|0}function Pi(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;a=u;u=u+16|0;g=a;if(!c){h=0;u=a;return h|0}f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;i=vj(d)|0;if(i>>>0>4294967279)mq(g);if(i>>>0<11){b[g+11>>0]=i;if(!i)j=g;else{k=g;l=7}}else{m=i+16&-16;n=dn(m)|0;f[g>>2]=n;f[g+8>>2]=m|-2147483648;f[g+4>>2]=i;k=n;l=7}if((l|0)==7){Rg(k|0,d|0,i|0)|0;j=k}b[j+i>>0]=0;Pl(c,g,e);if((b[g+11>>0]|0)<0)br(f[g>>2]|0);h=1;u=a;return h|0}function Qi(a){a=a|0;var c=0,d=0,e=0,g=0,h=0;c=f[a+28>>2]|0;if(c|0){d=c;do{c=d;d=f[d>>2]|0;e=c+8|0;g=c+20|0;h=f[g>>2]|0;f[g>>2]=0;if(h|0){Qi(h);br(h)}if((b[e+11>>0]|0)<0)br(f[e>>2]|0);br(c)}while((d|0)!=0)}d=a+20|0;c=f[d>>2]|0;f[d>>2]=0;if(c|0)br(c);c=f[a+8>>2]|0;if(c|0){d=c;do{c=d;d=f[d>>2]|0;e=c+8|0;h=f[c+20>>2]|0;if(h|0){g=c+24|0;if((f[g>>2]|0)!=(h|0))f[g>>2]=h;br(h)}if((b[e+11>>0]|0)<0)br(f[e>>2]|0);br(c)}while((d|0)!=0)}d=f[a>>2]|0;f[a>>2]=0;if(!d)return;br(d);return}function Ri(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+16|0;e=d;Wa[f[(f[c>>2]|0)+64>>2]&15](a,c);if(f[a>>2]|0){u=d;return}g=a+4|0;if((b[g+11>>0]|0)<0)br(f[g>>2]|0);g=f[c+48>>2]|0;h=dn(32)|0;f[e>>2]=h;f[e+8>>2]=-2147483616;f[e+4>>2]=29;i=h;j=14510;k=i+29|0;do{b[i>>0]=b[j>>0]|0;i=i+1|0;j=j+1|0}while((i|0)<(k|0));b[h+29>>0]=0;h=Oj(g,e,0)|0;if((b[e+11>>0]|0)<0)br(f[e>>2]|0);if(h)Va[f[(f[c>>2]|0)+68>>2]&127](c);f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=d;return}function Si(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0;e=u;u=u+16|0;g=e;h=f[c+48>>2]|0;if(!h){i=dn(32)|0;f[g>>2]=i;f[g+8>>2]=-2147483616;f[g+4>>2]=23;j=i;k=14670;l=j+23|0;do{b[j>>0]=b[k>>0]|0;j=j+1|0;k=k+1|0}while((j|0)<(l|0));b[i+23>>0]=0;f[a>>2]=-1;dj(a+4|0,g);if((b[g+11>>0]|0)<0)br(f[g>>2]|0);u=e;return}g=f[c+52>>2]|0;if(!g){Ic(a,c,h,d);u=e;return}else{jg(a,c,g,d);u=e;return}}function Ti(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;lk(a);b=a+84|0;c=f[b>>2]|0;if((c|0)<=0)return;d=c<<5;e=_q(c>>>0>134217727|d>>>0>4294967291?-1:d+4|0)|0;f[e>>2]=c;d=e+4|0;e=d+(c<<5)|0;c=d;do{rn(c);c=c+32|0}while((c|0)!=(e|0));e=a+80|0;a=f[e>>2]|0;f[e>>2]=d;if(a|0){d=a+-4|0;c=f[d>>2]|0;if(c|0){g=a+(c<<5)|0;do{g=g+-32|0;tj(g)}while((g|0)!=(a|0))}$q(d)}if((f[b>>2]|0)>0)h=0;else return;do{lk((f[e>>2]|0)+(h<<5)|0);h=h+1|0}while((h|0)<(f[b>>2]|0));return}function Ui(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;if(!b){d=0;return d|0}if(f[b+4>>2]|0){d=0;return d|0}a=dn(52)|0;Ub(a,c);f[a+40>>2]=0;f[a+44>>2]=0;f[a+48>>2]=0;c=b+4|0;b=f[c>>2]|0;f[c>>2]=a;if(!b){d=1;return d|0}a=b+40|0;c=f[a>>2]|0;if(c|0){e=b+44|0;g=f[e>>2]|0;if((g|0)==(c|0))h=c;else{i=g;do{g=i+-4|0;f[e>>2]=g;j=f[g>>2]|0;f[g>>2]=0;if(j|0){Qi(j);br(j)}i=f[e>>2]|0}while((i|0)!=(c|0));h=f[a>>2]|0}br(h)}Qi(b);br(b);d=1;return d|0}function Vi(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0;c=f[a>>2]|0;if(b){b=c+8|0;d=b;e=Tn(f[d>>2]|0,f[d+4>>2]|0,1,0)|0;d=b;f[d>>2]=e;f[d+4>>2]=I;d=a+28|0;e=f[d>>2]|0;b=a+24|0;f[b>>2]=f[b>>2]|1<>2]|0,f[e+4>>2]|0,1,0)|0;e=c;f[e>>2]=d;f[e+4>>2]=I;e=a+28|0;g=e;h=f[e>>2]|0}e=h+1|0;f[g>>2]=e;if((e|0)!=32)return;e=a+24|0;h=a+16|0;d=f[h>>2]|0;if((d|0)==(f[a+20>>2]|0))Ci(a+12|0,e);else{f[d>>2]=f[e>>2];f[h>>2]=d+4}f[g>>2]=0;f[e>>2]=0;return}function Wi(a,b){a=a|0;b=b|0;var c=0,d=0;c=a+32|0;a=f[b>>2]|0;f[b>>2]=0;b=f[c>>2]|0;f[c>>2]=a;if(!b)return;a=b+88|0;c=f[a>>2]|0;f[a>>2]=0;if(c|0){a=f[c+8>>2]|0;if(a|0){d=c+12|0;if((f[d>>2]|0)!=(a|0))f[d>>2]=a;br(a)}br(c)}c=f[b+68>>2]|0;if(c|0){a=b+72|0;d=f[a>>2]|0;if((d|0)!=(c|0))f[a>>2]=d+(~((d+-4-c|0)>>>2)<<2);br(c)}c=b+64|0;d=f[c>>2]|0;f[c>>2]=0;if(d|0){c=f[d>>2]|0;if(c|0){a=d+4|0;if((f[a>>2]|0)!=(c|0))f[a>>2]=c;br(c)}br(d)}br(b);return}function Xi(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;e=u;u=u+16|0;g=e;if(c|0){h=a+11|0;i=b[h>>0]|0;if(i<<24>>24<0){j=f[a+4>>2]|0;k=(f[a+8>>2]&2147483647)+-1|0}else{j=i&255;k=10}if((k-j|0)>>>0>>0){lj(a,k,c-k+j|0,j,j,0,0);l=b[h>>0]|0}else l=i;if(l<<24>>24<0)m=f[a>>2]|0;else m=a;On(m+j|0,c,d)|0;d=j+c|0;if((b[h>>0]|0)<0)f[a+4>>2]=d;else b[h>>0]=d;b[g>>0]=0;Hp(m+d|0,g)}u=e;return a|0}function Yi(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+48|0;e=d+4|0;g=d;h=f[b+12>>2]|0;i=f[b+4>>2]|0;b=e;j=b+36|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(j|0));gh(g,c,h,i,e);i=f[e+24>>2]|0;if(!i){k=f[g>>2]|0;f[a>>2]=k;u=d;return}h=e+28|0;e=f[h>>2]|0;if((e|0)!=(i|0))f[h>>2]=e+(~((e+-4-i|0)>>>2)<<2);br(i);k=f[g>>2]|0;f[a>>2]=k;u=d;return}function Zi(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;e=u;u=u+16|0;g=e;h=a+11|0;i=b[h>>0]|0;j=i<<24>>24<0;if(j)k=(f[a+8>>2]&2147483647)+-1|0;else k=10;do if(k>>>0>=d>>>0){if(j)l=f[a>>2]|0;else l=a;Jo(l,c,d)|0;b[g>>0]=0;Hp(l+d|0,g);if((b[h>>0]|0)<0){f[a+4>>2]=d;break}else{b[h>>0]=d;break}}else{if(j)m=f[a+4>>2]|0;else m=i&255;ni(a,k,d-k|0,m,0,m,d,c)}while(0);u=e;return a|0}function _i(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0;b=f[a>>2]|0;if(!b)return;c=a+4|0;d=f[c>>2]|0;if((d|0)==(b|0))e=b;else{g=d;do{f[c>>2]=g+-136;d=f[g+-20>>2]|0;if(d|0){h=g+-16|0;i=f[h>>2]|0;if((i|0)!=(d|0))f[h>>2]=i+(~((i+-4-d|0)>>>2)<<2);br(d)}d=f[g+-32>>2]|0;if(d|0){i=g+-28|0;h=f[i>>2]|0;if((h|0)!=(d|0))f[i>>2]=h+(~((h+-4-d|0)>>>2)<<2);br(d)}yi(g+-132|0);g=f[c>>2]|0}while((g|0)!=(b|0));e=f[a>>2]|0}br(e);return}function $i(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;e=u;u=u+16|0;g=e;h=a+11|0;i=b[h>>0]|0;j=i<<24>>24<0;if(j){k=f[a+4>>2]|0;l=(f[a+8>>2]&2147483647)+-1|0}else{k=i&255;l=10}if((l-k|0)>>>0>=d>>>0){if(d|0){if(j)m=f[a>>2]|0;else m=a;Lo(m+k|0,c,d)|0;j=k+d|0;if((b[h>>0]|0)<0)f[a+4>>2]=j;else b[h>>0]=j;b[g>>0]=0;Hp(m+j|0,g)}}else ni(a,l,d-l+k|0,k,k,0,d,c);u=e;return a|0}function aj(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;f[a>>2]=3608;b=f[a+32>>2]|0;if(b|0){c=a+36|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+20>>2]|0;if(b|0){d=a+24|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=a+8|0;c=f[b>>2]|0;if(!c)return;d=a+12|0;a=f[d>>2]|0;if((a|0)==(c|0))e=c;else{g=a;do{a=g+-4|0;f[d>>2]=a;h=f[a>>2]|0;f[a>>2]=0;if(h|0)Va[f[(f[h>>2]|0)+4>>2]&127](h);g=f[d>>2]|0}while((g|0)!=(c|0));e=f[b>>2]|0}br(e);return}function bj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=a+4|0;if((Qa[f[(f[b>>2]|0)+20>>2]&127](b)|0)<=0){d=1;return d|0}a=0;while(1){e=f[(f[c>>2]|0)+4>>2]|0;g=Tl(e,Ra[f[(f[b>>2]|0)+24>>2]&127](b,a)|0)|0;if((g|0)==-1){d=0;h=6;break}e=f[(f[b>>2]|0)+28>>2]|0;i=$k(f[c>>2]|0,g)|0;a=a+1|0;if(!(Ra[e&127](b,i)|0)){d=0;h=6;break}if((a|0)>=(Qa[f[(f[b>>2]|0)+20>>2]&127](b)|0)){d=1;h=6;break}}if((h|0)==6)return d|0;return 0}function cj(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;if(!(lo(a,b,c)|0)){d=0;return d|0}if(!(Qa[f[(f[a>>2]|0)+52>>2]&127](a)|0)){d=0;return d|0}c=a+4|0;e=a+8|0;g=f[c>>2]|0;if((f[e>>2]|0)==(g|0)){d=1;return d|0}h=a+36|0;a=0;i=g;while(1){g=f[(f[h>>2]|0)+(a<<2)>>2]|0;if(!(Sa[f[(f[g>>2]|0)+8>>2]&31](g,b,f[i+(a<<2)>>2]|0)|0)){d=0;j=7;break}a=a+1|0;i=f[c>>2]|0;if(a>>>0>=(f[e>>2]|0)-i>>2>>>0){d=1;j=7;break}}if((j|0)==7)return d|0;return 0}function dj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+16|0;e=d;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;if((b[c+11>>0]|0)<0){g=f[c>>2]|0;h=f[c+4>>2]|0;if(h>>>0>4294967279)mq(a);if(h>>>0<11){b[a+11>>0]=h;i=a}else{j=h+16&-16;k=dn(j)|0;f[a>>2]=k;f[a+8>>2]=j|-2147483648;f[a+4>>2]=h;i=k}Lo(i,g,h)|0;b[e>>0]=0;Hp(i+h|0,e)}else{f[a>>2]=f[c>>2];f[a+4>>2]=f[c+4>>2];f[a+8>>2]=f[c+8>>2]}u=d;return}function ej(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;f[g>>2]=f[(f[b+4>>2]|0)+80>>2];h=f[b+44>>2]|0;b=h+16|0;i=f[b+4>>2]|0;if((i|0)>0|(i|0)==0&(f[b>>2]|0)>>>0>0){f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=c;return}f[e>>2]=f[h+4>>2];f[d>>2]=f[e>>2];ye(h,d,g,g+4|0)|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=c;return}function fj(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0;b[c+53>>0]=1;do if((f[c+4>>2]|0)==(e|0)){b[c+52>>0]=1;a=c+16|0;h=f[a>>2]|0;if(!h){f[a>>2]=d;f[c+24>>2]=g;f[c+36>>2]=1;if(!((g|0)==1?(f[c+48>>2]|0)==1:0))break;b[c+54>>0]=1;break}if((h|0)!=(d|0)){h=c+36|0;f[h>>2]=(f[h>>2]|0)+1;b[c+54>>0]=1;break}h=c+24|0;a=f[h>>2]|0;if((a|0)==2){f[h>>2]=g;i=g}else i=a;if((i|0)==1?(f[c+48>>2]|0)==1:0)b[c+54>>0]=1}while(0);return}function gj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0;c=a+36|0;d=a+40|0;e=f[c>>2]|0;if((f[d>>2]|0)!=(e|0)){g=0;h=e;do{eg(h+(g*24|0)|0,b)|0;g=g+1|0;h=f[c>>2]|0}while(g>>>0<(((f[d>>2]|0)-h|0)/24|0)>>>0)}h=a+48|0;d=a+52|0;a=f[h>>2]|0;if((f[d>>2]|0)==(a|0))return 1;else{i=0;j=a}do{a=f[j+(i<<2)>>2]|0;Nh(a<<1^a>>31,b)|0;i=i+1|0;j=f[h>>2]|0}while(i>>>0<(f[d>>2]|0)-j>>2>>>0);return 1}function hj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0;e=a+d|0;c=c&255;if((d|0)>=67){while(a&3){b[a>>0]=c;a=a+1|0}g=e&-4|0;h=g-64|0;i=c|c<<8|c<<16|c<<24;while((a|0)<=(h|0)){f[a>>2]=i;f[a+4>>2]=i;f[a+8>>2]=i;f[a+12>>2]=i;f[a+16>>2]=i;f[a+20>>2]=i;f[a+24>>2]=i;f[a+28>>2]=i;f[a+32>>2]=i;f[a+36>>2]=i;f[a+40>>2]=i;f[a+44>>2]=i;f[a+48>>2]=i;f[a+52>>2]=i;f[a+56>>2]=i;f[a+60>>2]=i;a=a+64|0}while((a|0)<(g|0)){f[a>>2]=i;a=a+4|0}}while((a|0)<(e|0)){b[a>>0]=c;a=a+1|0}return e-d|0}function ij(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0;do if(!(qp(a,f[c+8>>2]|0,g)|0)){if(qp(a,f[c>>2]|0,g)|0){if((f[c+16>>2]|0)!=(d|0)?(h=c+20|0,(f[h>>2]|0)!=(d|0)):0){f[c+32>>2]=e;f[h>>2]=d;h=c+40|0;f[h>>2]=(f[h>>2]|0)+1;if((f[c+36>>2]|0)==1?(f[c+24>>2]|0)==2:0)b[c+54>>0]=1;f[c+44>>2]=4;break}if((e|0)==1)f[c+32>>2]=1}}else Om(0,c,d,e);while(0);return}function jj(a){a=a|0;var b=0,c=0,d=0,e=0;b=a+80|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0){b=c+-4|0;d=f[b>>2]|0;if(d|0){e=c+(d<<5)|0;do{e=e+-32|0;tj(e)}while((e|0)!=(c|0))}$q(b)}b=f[a+68>>2]|0;if(b|0){c=a+72|0;e=f[c>>2]|0;if((e|0)!=(b|0))f[c>>2]=e+(~((e+-4-b|0)>>>2)<<2);br(b)}b=a+44|0;e=f[b>>2]|0;f[b>>2]=0;if(e|0)br(e);e=f[a+32>>2]|0;if(!e){tj(a);return}b=a+36|0;if((f[b>>2]|0)!=(e|0))f[b>>2]=e;br(e);tj(a);return}function kj(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2684;b=f[a+136>>2]|0;if(b|0){c=a+140|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+96>>2]|0;if(b|0){d=a+100|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+76>>2]|0;if(b|0)br(b);b=f[a+64>>2]|0;if(b|0)br(b);b=f[a+52>>2]|0;if(b|0)br(b);b=f[a+40>>2]|0;if(!b)return;br(b);return}function lj(a,c,d,e,g,h,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;var j=0,k=0,l=0,m=0;if((-17-c|0)>>>0>>0)mq(a);if((b[a+11>>0]|0)<0)j=f[a>>2]|0;else j=a;if(c>>>0<2147483623){k=d+c|0;d=c<<1;l=k>>>0>>0?d:k;m=l>>>0<11?11:l+16&-16}else m=-17;l=dn(m)|0;if(g|0)Lo(l,j,g)|0;k=e-h-g|0;if(k|0)Lo(l+g+i|0,j+g+h|0,k)|0;if((c|0)!=10)br(j);f[a>>2]=l;f[a+8>>2]=m|-2147483648;return}function mj(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2432;b=f[a+136>>2]|0;if(b|0){c=a+140|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+96>>2]|0;if(b|0){d=a+100|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b)}b=f[a+76>>2]|0;if(b|0)br(b);b=f[a+64>>2]|0;if(b|0)br(b);b=f[a+52>>2]|0;if(b|0)br(b);b=f[a+40>>2]|0;if(!b)return;br(b);return}function nj(a,b){a=a|0;b=b|0;if(!b)return;else{nj(a,f[b>>2]|0);nj(a,f[b+4>>2]|0);sj(b+20|0,f[b+24>>2]|0);br(b);return}}function oj(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;If(a,b,c);c=f[a+100>>2]|0;d=f[a+96>>2]|0;a=d;if((c|0)==(d|0))return;e=f[b>>2]|0;b=(c-d|0)/12|0;d=0;do{c=a+(d*12|0)|0;f[c>>2]=f[e+(f[c>>2]<<2)>>2];c=a+(d*12|0)+4|0;f[c>>2]=f[e+(f[c>>2]<<2)>>2];c=a+(d*12|0)+8|0;f[c>>2]=f[e+(f[c>>2]<<2)>>2];d=d+1|0}while(d>>>0>>0);return}function pj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;d=a+64|0;if((f[d>>2]|0)==0?(e=dn(32)|0,tn(e),g=f[d>>2]|0,f[d>>2]=e,g|0):0){e=f[g>>2]|0;if(e|0){h=g+4|0;if((f[h>>2]|0)!=(e|0))f[h>>2]=e;br(e)}br(g)}g=Ll(f[a+28>>2]|0)|0;e=X(g,b[a+24>>0]|0)|0;g=((e|0)<0)<<31>>31;h=f[d>>2]|0;i=on(e|0,g|0,c|0,0)|0;if(!(Th(h,0,i,I)|0)){j=0;return j|0}Ak(a,f[d>>2]|0,e,g,0,0);f[a+80>>2]=c;j=1;return j|0}function qj(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;d=u;u=u+64|0;e=d;if(!(qp(a,b,0)|0))if((b|0)!=0?(g=mh(b,1024,1008,0)|0,(g|0)!=0):0){b=e+4|0;h=b+52|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(h|0));f[e>>2]=g;f[e+8>>2]=a;f[e+12>>2]=-1;f[e+48>>2]=1;Ya[f[(f[g>>2]|0)+28>>2]&7](g,e,f[c>>2]|0,1);if((f[e+24>>2]|0)==1){f[c>>2]=f[e+16>>2];i=1}else i=0;j=i}else j=0;else j=1;u=d;return j|0}function rj(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0;if(!c){d=0;return d|0}e=c+40|0;g=c+44|0;Nh((f[g>>2]|0)-(f[e>>2]|0)>>2,b)|0;h=f[e>>2]|0;e=f[g>>2]|0;if((h|0)!=(e|0)){g=h;do{h=f[g>>2]|0;if(h|0){Nh(f[h+40>>2]|0,b)|0;Wf(a,b,h)|0}g=g+4|0}while((g|0)!=(e|0))}Wf(a,b,c)|0;d=1;return d|0}function sj(a,c){a=a|0;c=c|0;var d=0;if(!c)return;sj(a,f[c>>2]|0);sj(a,f[c+4>>2]|0);a=c+16|0;d=c+28|0;if((b[d+11>>0]|0)<0)br(f[d>>2]|0);if((b[a+11>>0]|0)<0)br(f[a>>2]|0);br(c);return}function tj(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;b=u;u=u+16|0;c=b;d=c;f[d>>2]=0;f[d+4>>2]=0;cf(a,2,c);c=f[a+12>>2]|0;d=a+16|0;e=f[d>>2]|0;if((e|0)==(c|0))g=c;else{h=e+(~((e+-4-c|0)>>>2)<<2)|0;f[d>>2]=h;g=h}f[a+24>>2]=0;f[a+28>>2]=0;if(c|0){if((g|0)!=(c|0))f[d>>2]=g+(~((g+-4-c|0)>>>2)<<2);br(c)}c=f[a>>2]|0;if(!c){u=b;return}g=a+4|0;a=f[g>>2]|0;if((a|0)!=(c|0))f[g>>2]=a+(~((a+-8-c|0)>>>3)<<3);br(c);u=b;return} -function $a(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0;b=u;u=u+16|0;c=b;do if(a>>>0<245){d=a>>>0<11?16:a+11&-8;e=d>>>3;g=f[4512]|0;h=g>>>e;if(h&3|0){i=(h&1^1)+e|0;j=18088+(i<<1<<2)|0;k=j+8|0;l=f[k>>2]|0;m=l+8|0;n=f[m>>2]|0;if((n|0)==(j|0))f[4512]=g&~(1<>2]=j;f[k>>2]=n}n=i<<3;f[l+4>>2]=n|3;i=l+n+4|0;f[i>>2]=f[i>>2]|1;o=m;u=b;return o|0}m=f[4514]|0;if(d>>>0>m>>>0){if(h|0){i=2<>>12&16;e=i>>>n;i=e>>>5&8;h=e>>>i;e=h>>>2&4;l=h>>>e;h=l>>>1&2;k=l>>>h;l=k>>>1&1;j=(i|n|e|h|l)+(k>>>l)|0;l=18088+(j<<1<<2)|0;k=l+8|0;h=f[k>>2]|0;e=h+8|0;n=f[e>>2]|0;if((n|0)==(l|0)){i=g&~(1<>2]=l;f[k>>2]=n;p=g}n=j<<3;j=n-d|0;f[h+4>>2]=d|3;k=h+d|0;f[k+4>>2]=j|1;f[h+n>>2]=j;if(m|0){n=f[4517]|0;h=m>>>3;l=18088+(h<<1<<2)|0;i=1<>2]|0;r=i}f[r>>2]=n;f[q+12>>2]=n;f[n+8>>2]=q;f[n+12>>2]=l}f[4514]=j;f[4517]=k;o=e;u=b;return o|0}e=f[4513]|0;if(e){k=(e&0-e)+-1|0;j=k>>>12&16;l=k>>>j;k=l>>>5&8;n=l>>>k;l=n>>>2&4;i=n>>>l;n=i>>>1&2;h=i>>>n;i=h>>>1&1;s=f[18352+((k|j|l|n|i)+(h>>>i)<<2)>>2]|0;i=(f[s+4>>2]&-8)-d|0;h=f[s+16+(((f[s+16>>2]|0)==0&1)<<2)>>2]|0;if(!h){t=s;v=i}else{n=s;s=i;i=h;while(1){h=(f[i+4>>2]&-8)-d|0;l=h>>>0>>0;j=l?h:s;h=l?i:n;i=f[i+16+(((f[i+16>>2]|0)==0&1)<<2)>>2]|0;if(!i){t=h;v=j;break}else{n=h;s=j}}}s=t+d|0;if(s>>>0>t>>>0){n=f[t+24>>2]|0;i=f[t+12>>2]|0;do if((i|0)==(t|0)){j=t+20|0;h=f[j>>2]|0;if(!h){l=t+16|0;k=f[l>>2]|0;if(!k){w=0;break}else{x=k;y=l}}else{x=h;y=j}while(1){j=x+20|0;h=f[j>>2]|0;if(h|0){x=h;y=j;continue}j=x+16|0;h=f[j>>2]|0;if(!h)break;else{x=h;y=j}}f[y>>2]=0;w=x}else{j=f[t+8>>2]|0;f[j+12>>2]=i;f[i+8>>2]=j;w=i}while(0);do if(n|0){i=f[t+28>>2]|0;j=18352+(i<<2)|0;if((t|0)==(f[j>>2]|0)){f[j>>2]=w;if(!w){f[4513]=e&~(1<>2]|0)!=(t|0)&1)<<2)>>2]=w;if(!w)break}f[w+24>>2]=n;i=f[t+16>>2]|0;if(i|0){f[w+16>>2]=i;f[i+24>>2]=w}i=f[t+20>>2]|0;if(i|0){f[w+20>>2]=i;f[i+24>>2]=w}}while(0);if(v>>>0<16){n=v+d|0;f[t+4>>2]=n|3;e=t+n+4|0;f[e>>2]=f[e>>2]|1}else{f[t+4>>2]=d|3;f[s+4>>2]=v|1;f[s+v>>2]=v;if(m|0){e=f[4517]|0;n=m>>>3;i=18088+(n<<1<<2)|0;j=1<>2]|0;A=j}f[A>>2]=e;f[z+12>>2]=e;f[e+8>>2]=z;f[e+12>>2]=i}f[4514]=v;f[4517]=s}o=t+8|0;u=b;return o|0}else B=d}else B=d}else B=d}else if(a>>>0<=4294967231){i=a+11|0;e=i&-8;j=f[4513]|0;if(j){n=0-e|0;h=i>>>8;if(h)if(e>>>0>16777215)C=31;else{i=(h+1048320|0)>>>16&8;l=h<>>16&4;k=l<>>16&2;D=14-(h|i|l)+(k<>>15)|0;C=e>>>(D+7|0)&1|D<<1}else C=0;D=f[18352+(C<<2)>>2]|0;a:do if(!D){E=0;F=0;G=n;H=57}else{l=0;k=n;i=D;h=e<<((C|0)==31?0:25-(C>>>1)|0);I=0;while(1){J=(f[i+4>>2]&-8)-e|0;if(J>>>0>>0)if(!J){K=0;L=i;M=i;H=61;break a}else{N=i;O=J}else{N=l;O=k}J=f[i+20>>2]|0;i=f[i+16+(h>>>31<<2)>>2]|0;P=(J|0)==0|(J|0)==(i|0)?I:J;J=(i|0)==0;if(J){E=P;F=N;G=O;H=57;break}else{l=N;k=O;h=h<<((J^1)&1);I=P}}}while(0);if((H|0)==57){if((E|0)==0&(F|0)==0){D=2<>>12&16;d=D>>>n;D=d>>>5&8;s=d>>>D;d=s>>>2&4;g=s>>>d;s=g>>>1&2;m=g>>>s;g=m>>>1&1;Q=0;R=f[18352+((D|n|d|s|g)+(m>>>g)<<2)>>2]|0}else{Q=F;R=E}if(!R){S=Q;T=G}else{K=G;L=R;M=Q;H=61}}if((H|0)==61)while(1){H=0;g=(f[L+4>>2]&-8)-e|0;m=g>>>0>>0;s=m?g:K;g=m?L:M;L=f[L+16+(((f[L+16>>2]|0)==0&1)<<2)>>2]|0;if(!L){S=g;T=s;break}else{K=s;M=g;H=61}}if((S|0)!=0?T>>>0<((f[4514]|0)-e|0)>>>0:0){g=S+e|0;if(g>>>0<=S>>>0){o=0;u=b;return o|0}s=f[S+24>>2]|0;m=f[S+12>>2]|0;do if((m|0)==(S|0)){d=S+20|0;n=f[d>>2]|0;if(!n){D=S+16|0;I=f[D>>2]|0;if(!I){U=0;break}else{V=I;W=D}}else{V=n;W=d}while(1){d=V+20|0;n=f[d>>2]|0;if(n|0){V=n;W=d;continue}d=V+16|0;n=f[d>>2]|0;if(!n)break;else{V=n;W=d}}f[W>>2]=0;U=V}else{d=f[S+8>>2]|0;f[d+12>>2]=m;f[m+8>>2]=d;U=m}while(0);do if(s){m=f[S+28>>2]|0;d=18352+(m<<2)|0;if((S|0)==(f[d>>2]|0)){f[d>>2]=U;if(!U){d=j&~(1<>2]|0)!=(S|0)&1)<<2)>>2]=U;if(!U){X=j;break}}f[U+24>>2]=s;d=f[S+16>>2]|0;if(d|0){f[U+16>>2]=d;f[d+24>>2]=U}d=f[S+20>>2]|0;if(d){f[U+20>>2]=d;f[d+24>>2]=U;X=j}else X=j}else X=j;while(0);do if(T>>>0>=16){f[S+4>>2]=e|3;f[g+4>>2]=T|1;f[g+T>>2]=T;j=T>>>3;if(T>>>0<256){s=18088+(j<<1<<2)|0;d=f[4512]|0;m=1<>2]|0;Z=m}f[Z>>2]=g;f[Y+12>>2]=g;f[g+8>>2]=Y;f[g+12>>2]=s;break}s=T>>>8;if(s)if(T>>>0>16777215)_=31;else{m=(s+1048320|0)>>>16&8;d=s<>>16&4;j=d<>>16&2;n=14-(s|m|d)+(j<>>15)|0;_=T>>>(n+7|0)&1|n<<1}else _=0;n=18352+(_<<2)|0;f[g+28>>2]=_;d=g+16|0;f[d+4>>2]=0;f[d>>2]=0;d=1<<_;if(!(X&d)){f[4513]=X|d;f[n>>2]=g;f[g+24>>2]=n;f[g+12>>2]=g;f[g+8>>2]=g;break}d=T<<((_|0)==31?0:25-(_>>>1)|0);j=f[n>>2]|0;while(1){if((f[j+4>>2]&-8|0)==(T|0)){H=97;break}$=j+16+(d>>>31<<2)|0;n=f[$>>2]|0;if(!n){H=96;break}else{d=d<<1;j=n}}if((H|0)==96){f[$>>2]=g;f[g+24>>2]=j;f[g+12>>2]=g;f[g+8>>2]=g;break}else if((H|0)==97){d=j+8|0;n=f[d>>2]|0;f[n+12>>2]=g;f[d>>2]=g;f[g+8>>2]=n;f[g+12>>2]=j;f[g+24>>2]=0;break}}else{n=T+e|0;f[S+4>>2]=n|3;d=S+n+4|0;f[d>>2]=f[d>>2]|1}while(0);o=S+8|0;u=b;return o|0}else B=e}else B=e}else B=-1;while(0);S=f[4514]|0;if(S>>>0>=B>>>0){T=S-B|0;$=f[4517]|0;if(T>>>0>15){_=$+B|0;f[4517]=_;f[4514]=T;f[_+4>>2]=T|1;f[$+S>>2]=T;f[$+4>>2]=B|3}else{f[4514]=0;f[4517]=0;f[$+4>>2]=S|3;T=$+S+4|0;f[T>>2]=f[T>>2]|1}o=$+8|0;u=b;return o|0}$=f[4515]|0;if($>>>0>B>>>0){T=$-B|0;f[4515]=T;S=f[4518]|0;_=S+B|0;f[4518]=_;f[_+4>>2]=T|1;f[S+4>>2]=B|3;o=S+8|0;u=b;return o|0}if(!(f[4630]|0)){f[4632]=4096;f[4631]=4096;f[4633]=-1;f[4634]=-1;f[4635]=0;f[4623]=0;f[4630]=c&-16^1431655768;aa=4096}else aa=f[4632]|0;c=B+48|0;S=B+47|0;T=aa+S|0;_=0-aa|0;aa=T&_;if(aa>>>0<=B>>>0){o=0;u=b;return o|0}X=f[4622]|0;if(X|0?(Y=f[4620]|0,Z=Y+aa|0,Z>>>0<=Y>>>0|Z>>>0>X>>>0):0){o=0;u=b;return o|0}b:do if(!(f[4623]&4)){X=f[4518]|0;c:do if(X){Z=18496;while(1){Y=f[Z>>2]|0;if(Y>>>0<=X>>>0?(ba=Z+4|0,(Y+(f[ba>>2]|0)|0)>>>0>X>>>0):0)break;Y=f[Z+8>>2]|0;if(!Y){H=118;break c}else Z=Y}j=T-$&_;if(j>>>0<2147483647){Y=Fl(j|0)|0;if((Y|0)==((f[Z>>2]|0)+(f[ba>>2]|0)|0))if((Y|0)==(-1|0))ca=j;else{da=j;ea=Y;H=135;break b}else{fa=Y;ga=j;H=126}}else ca=0}else H=118;while(0);do if((H|0)==118){X=Fl(0)|0;if((X|0)!=(-1|0)?(e=X,j=f[4631]|0,Y=j+-1|0,U=((Y&e|0)==0?0:(Y+e&0-j)-e|0)+aa|0,e=f[4620]|0,j=U+e|0,U>>>0>B>>>0&U>>>0<2147483647):0){Y=f[4622]|0;if(Y|0?j>>>0<=e>>>0|j>>>0>Y>>>0:0){ca=0;break}Y=Fl(U|0)|0;if((Y|0)==(X|0)){da=U;ea=X;H=135;break b}else{fa=Y;ga=U;H=126}}else ca=0}while(0);do if((H|0)==126){U=0-ga|0;if(!(c>>>0>ga>>>0&(ga>>>0<2147483647&(fa|0)!=(-1|0))))if((fa|0)==(-1|0)){ca=0;break}else{da=ga;ea=fa;H=135;break b}Y=f[4632]|0;X=S-ga+Y&0-Y;if(X>>>0>=2147483647){da=ga;ea=fa;H=135;break b}if((Fl(X|0)|0)==(-1|0)){Fl(U|0)|0;ca=0;break}else{da=X+ga|0;ea=fa;H=135;break b}}while(0);f[4623]=f[4623]|4;ha=ca;H=133}else{ha=0;H=133}while(0);if(((H|0)==133?aa>>>0<2147483647:0)?(ca=Fl(aa|0)|0,aa=Fl(0)|0,fa=aa-ca|0,ga=fa>>>0>(B+40|0)>>>0,!((ca|0)==(-1|0)|ga^1|ca>>>0>>0&((ca|0)!=(-1|0)&(aa|0)!=(-1|0))^1)):0){da=ga?fa:ha;ea=ca;H=135}if((H|0)==135){ca=(f[4620]|0)+da|0;f[4620]=ca;if(ca>>>0>(f[4621]|0)>>>0)f[4621]=ca;ca=f[4518]|0;do if(ca){ha=18496;while(1){ia=f[ha>>2]|0;ja=ha+4|0;ka=f[ja>>2]|0;if((ea|0)==(ia+ka|0)){H=143;break}fa=f[ha+8>>2]|0;if(!fa)break;else ha=fa}if(((H|0)==143?(f[ha+12>>2]&8|0)==0:0)?ea>>>0>ca>>>0&ia>>>0<=ca>>>0:0){f[ja>>2]=ka+da;fa=(f[4515]|0)+da|0;ga=ca+8|0;aa=(ga&7|0)==0?0:0-ga&7;ga=ca+aa|0;S=fa-aa|0;f[4518]=ga;f[4515]=S;f[ga+4>>2]=S|1;f[ca+fa+4>>2]=40;f[4519]=f[4634];break}if(ea>>>0<(f[4516]|0)>>>0)f[4516]=ea;fa=ea+da|0;S=18496;while(1){if((f[S>>2]|0)==(fa|0)){H=151;break}ga=f[S+8>>2]|0;if(!ga){la=18496;break}else S=ga}if((H|0)==151)if(!(f[S+12>>2]&8)){f[S>>2]=ea;ha=S+4|0;f[ha>>2]=(f[ha>>2]|0)+da;ha=ea+8|0;ga=ea+((ha&7|0)==0?0:0-ha&7)|0;ha=fa+8|0;aa=fa+((ha&7|0)==0?0:0-ha&7)|0;ha=ga+B|0;c=aa-ga-B|0;f[ga+4>>2]=B|3;do if((ca|0)!=(aa|0)){if((f[4517]|0)==(aa|0)){ba=(f[4514]|0)+c|0;f[4514]=ba;f[4517]=ha;f[ha+4>>2]=ba|1;f[ha+ba>>2]=ba;break}ba=f[aa+4>>2]|0;if((ba&3|0)==1){_=ba&-8;$=ba>>>3;d:do if(ba>>>0<256){T=f[aa+8>>2]|0;X=f[aa+12>>2]|0;if((X|0)==(T|0)){f[4512]=f[4512]&~(1<<$);break}else{f[T+12>>2]=X;f[X+8>>2]=T;break}}else{T=f[aa+24>>2]|0;X=f[aa+12>>2]|0;do if((X|0)==(aa|0)){U=aa+16|0;Y=U+4|0;j=f[Y>>2]|0;if(!j){e=f[U>>2]|0;if(!e){ma=0;break}else{na=e;oa=U}}else{na=j;oa=Y}while(1){Y=na+20|0;j=f[Y>>2]|0;if(j|0){na=j;oa=Y;continue}Y=na+16|0;j=f[Y>>2]|0;if(!j)break;else{na=j;oa=Y}}f[oa>>2]=0;ma=na}else{Y=f[aa+8>>2]|0;f[Y+12>>2]=X;f[X+8>>2]=Y;ma=X}while(0);if(!T)break;X=f[aa+28>>2]|0;Y=18352+(X<<2)|0;do if((f[Y>>2]|0)!=(aa|0)){f[T+16+(((f[T+16>>2]|0)!=(aa|0)&1)<<2)>>2]=ma;if(!ma)break d}else{f[Y>>2]=ma;if(ma|0)break;f[4513]=f[4513]&~(1<>2]=T;X=aa+16|0;Y=f[X>>2]|0;if(Y|0){f[ma+16>>2]=Y;f[Y+24>>2]=ma}Y=f[X+4>>2]|0;if(!Y)break;f[ma+20>>2]=Y;f[Y+24>>2]=ma}while(0);pa=aa+_|0;qa=_+c|0}else{pa=aa;qa=c}$=pa+4|0;f[$>>2]=f[$>>2]&-2;f[ha+4>>2]=qa|1;f[ha+qa>>2]=qa;$=qa>>>3;if(qa>>>0<256){ba=18088+($<<1<<2)|0;Z=f[4512]|0;Y=1<<$;if(!(Z&Y)){f[4512]=Z|Y;ra=ba;sa=ba+8|0}else{Y=ba+8|0;ra=f[Y>>2]|0;sa=Y}f[sa>>2]=ha;f[ra+12>>2]=ha;f[ha+8>>2]=ra;f[ha+12>>2]=ba;break}ba=qa>>>8;do if(!ba)ta=0;else{if(qa>>>0>16777215){ta=31;break}Y=(ba+1048320|0)>>>16&8;Z=ba<>>16&4;X=Z<<$;Z=(X+245760|0)>>>16&2;j=14-($|Y|Z)+(X<>>15)|0;ta=qa>>>(j+7|0)&1|j<<1}while(0);ba=18352+(ta<<2)|0;f[ha+28>>2]=ta;_=ha+16|0;f[_+4>>2]=0;f[_>>2]=0;_=f[4513]|0;j=1<>2]=ha;f[ha+24>>2]=ba;f[ha+12>>2]=ha;f[ha+8>>2]=ha;break}j=qa<<((ta|0)==31?0:25-(ta>>>1)|0);_=f[ba>>2]|0;while(1){if((f[_+4>>2]&-8|0)==(qa|0)){H=192;break}ua=_+16+(j>>>31<<2)|0;ba=f[ua>>2]|0;if(!ba){H=191;break}else{j=j<<1;_=ba}}if((H|0)==191){f[ua>>2]=ha;f[ha+24>>2]=_;f[ha+12>>2]=ha;f[ha+8>>2]=ha;break}else if((H|0)==192){j=_+8|0;ba=f[j>>2]|0;f[ba+12>>2]=ha;f[j>>2]=ha;f[ha+8>>2]=ba;f[ha+12>>2]=_;f[ha+24>>2]=0;break}}else{ba=(f[4515]|0)+c|0;f[4515]=ba;f[4518]=ha;f[ha+4>>2]=ba|1}while(0);o=ga+8|0;u=b;return o|0}else la=18496;while(1){ha=f[la>>2]|0;if(ha>>>0<=ca>>>0?(va=ha+(f[la+4>>2]|0)|0,va>>>0>ca>>>0):0)break;la=f[la+8>>2]|0}ga=va+-47|0;ha=ga+8|0;c=ga+((ha&7|0)==0?0:0-ha&7)|0;ha=ca+16|0;ga=c>>>0>>0?ca:c;c=ga+8|0;aa=da+-40|0;fa=ea+8|0;S=(fa&7|0)==0?0:0-fa&7;fa=ea+S|0;ba=aa-S|0;f[4518]=fa;f[4515]=ba;f[fa+4>>2]=ba|1;f[ea+aa+4>>2]=40;f[4519]=f[4634];aa=ga+4|0;f[aa>>2]=27;f[c>>2]=f[4624];f[c+4>>2]=f[4625];f[c+8>>2]=f[4626];f[c+12>>2]=f[4627];f[4624]=ea;f[4625]=da;f[4627]=0;f[4626]=c;c=ga+24|0;do{ba=c;c=c+4|0;f[c>>2]=7}while((ba+8|0)>>>0>>0);if((ga|0)!=(ca|0)){c=ga-ca|0;f[aa>>2]=f[aa>>2]&-2;f[ca+4>>2]=c|1;f[ga>>2]=c;ba=c>>>3;if(c>>>0<256){fa=18088+(ba<<1<<2)|0;S=f[4512]|0;j=1<>2]|0;xa=j}f[xa>>2]=ca;f[wa+12>>2]=ca;f[ca+8>>2]=wa;f[ca+12>>2]=fa;break}fa=c>>>8;if(fa)if(c>>>0>16777215)ya=31;else{j=(fa+1048320|0)>>>16&8;S=fa<>>16&4;ba=S<>>16&2;Z=14-(fa|j|S)+(ba<>>15)|0;ya=c>>>(Z+7|0)&1|Z<<1}else ya=0;Z=18352+(ya<<2)|0;f[ca+28>>2]=ya;f[ca+20>>2]=0;f[ha>>2]=0;S=f[4513]|0;ba=1<>2]=ca;f[ca+24>>2]=Z;f[ca+12>>2]=ca;f[ca+8>>2]=ca;break}ba=c<<((ya|0)==31?0:25-(ya>>>1)|0);S=f[Z>>2]|0;while(1){if((f[S+4>>2]&-8|0)==(c|0)){H=213;break}za=S+16+(ba>>>31<<2)|0;Z=f[za>>2]|0;if(!Z){H=212;break}else{ba=ba<<1;S=Z}}if((H|0)==212){f[za>>2]=ca;f[ca+24>>2]=S;f[ca+12>>2]=ca;f[ca+8>>2]=ca;break}else if((H|0)==213){ba=S+8|0;c=f[ba>>2]|0;f[c+12>>2]=ca;f[ba>>2]=ca;f[ca+8>>2]=c;f[ca+12>>2]=S;f[ca+24>>2]=0;break}}}else{c=f[4516]|0;if((c|0)==0|ea>>>0>>0)f[4516]=ea;f[4624]=ea;f[4625]=da;f[4627]=0;f[4521]=f[4630];f[4520]=-1;f[4525]=18088;f[4524]=18088;f[4527]=18096;f[4526]=18096;f[4529]=18104;f[4528]=18104;f[4531]=18112;f[4530]=18112;f[4533]=18120;f[4532]=18120;f[4535]=18128;f[4534]=18128;f[4537]=18136;f[4536]=18136;f[4539]=18144;f[4538]=18144;f[4541]=18152;f[4540]=18152;f[4543]=18160;f[4542]=18160;f[4545]=18168;f[4544]=18168;f[4547]=18176;f[4546]=18176;f[4549]=18184;f[4548]=18184;f[4551]=18192;f[4550]=18192;f[4553]=18200;f[4552]=18200;f[4555]=18208;f[4554]=18208;f[4557]=18216;f[4556]=18216;f[4559]=18224;f[4558]=18224;f[4561]=18232;f[4560]=18232;f[4563]=18240;f[4562]=18240;f[4565]=18248;f[4564]=18248;f[4567]=18256;f[4566]=18256;f[4569]=18264;f[4568]=18264;f[4571]=18272;f[4570]=18272;f[4573]=18280;f[4572]=18280;f[4575]=18288;f[4574]=18288;f[4577]=18296;f[4576]=18296;f[4579]=18304;f[4578]=18304;f[4581]=18312;f[4580]=18312;f[4583]=18320;f[4582]=18320;f[4585]=18328;f[4584]=18328;f[4587]=18336;f[4586]=18336;c=da+-40|0;ba=ea+8|0;ha=(ba&7|0)==0?0:0-ba&7;ba=ea+ha|0;ga=c-ha|0;f[4518]=ba;f[4515]=ga;f[ba+4>>2]=ga|1;f[ea+c+4>>2]=40;f[4519]=f[4634]}while(0);ea=f[4515]|0;if(ea>>>0>B>>>0){da=ea-B|0;f[4515]=da;ea=f[4518]|0;ca=ea+B|0;f[4518]=ca;f[ca+4>>2]=da|1;f[ea+4>>2]=B|3;o=ea+8|0;u=b;return o|0}}ea=ir()|0;f[ea>>2]=12;o=0;u=b;return o|0}function ab(a,c,d,e,g,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0,Sa=0,Ta=0,Ua=0,Va=0.0,Wa=0,Xa=0,Ya=0,Za=0,_a=0,$a=0,ab=0,bb=0,cb=0,db=0,eb=0,fb=0,gb=0,hb=0,ib=0,jb=0,kb=0,lb=0,mb=0,nb=0,ob=0,pb=0,qb=0,rb=0,sb=0,tb=0,ub=0,vb=0,wb=0,xb=0,yb=0,zb=0,Ab=0,Bb=0,Cb=0,Db=0,Eb=0,Fb=0,Gb=0,Hb=0,Ib=0,Jb=0,Kb=0;i=u;u=u+240|0;j=i+104|0;k=i+224|0;l=i+176|0;m=i+160|0;n=i+228|0;o=i+72|0;p=i+40|0;q=i+132|0;r=i;s=i+172|0;t=i+156|0;v=i+152|0;w=i+148|0;x=i+144|0;y=i+128|0;z=a+8|0;Ah(z,c,e,g);e=f[a+48>>2]|0;A=f[a+52>>2]|0;B=l;C=B+48|0;do{f[B>>2]=0;B=B+4|0}while((B|0)<(C|0));if(!g){D=0;E=0}else{oi(l,g);D=f[l+12>>2]|0;E=f[l+16>>2]|0}B=l+16|0;C=E-D>>2;F=D;D=E;if(C>>>0>=g>>>0){if(C>>>0>g>>>0?(E=F+(g<<2)|0,(E|0)!=(D|0)):0)f[B>>2]=D+(~((D+-4-E|0)>>>2)<<2)}else oi(l+12|0,g-C|0);C=l+24|0;E=l+28|0;D=f[E>>2]|0;B=f[C>>2]|0;F=D-B>>2;G=B;B=D;if(F>>>0>=g>>>0){if(F>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[E>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else oi(C,g-F|0);F=l+36|0;C=l+40|0;D=f[C>>2]|0;B=f[F>>2]|0;E=D-B>>2;G=B;B=D;if(E>>>0>=g>>>0){if(E>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[C>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else oi(F,g-E|0);f[m>>2]=0;E=m+4|0;f[E>>2]=0;f[m+8>>2]=0;F=(g|0)==0;do if(!F)if(g>>>0>1073741823)mq(m);else{D=g<<2;B=dn(D)|0;f[m>>2]=B;C=B+(g<<2)|0;f[m+8>>2]=C;hj(B|0,0,D|0)|0;f[E>>2]=C;break}while(0);C=a+152|0;D=a+156|0;B=f[D>>2]|0;G=f[C>>2]|0;H=B-G>>2;L=G;G=B;if(H>>>0>=g>>>0){if(H>>>0>g>>>0?(B=L+(g<<2)|0,(B|0)!=(G|0)):0)f[D>>2]=G+(~((G+-4-B|0)>>>2)<<2)}else oi(C,g-H|0);f[o>>2]=0;f[o+4>>2]=0;f[o+8>>2]=0;f[o+12>>2]=0;f[o+16>>2]=0;f[o+20>>2]=0;f[o+24>>2]=0;f[o+28>>2]=0;f[p>>2]=0;f[p+4>>2]=0;f[p+8>>2]=0;f[p+12>>2]=0;f[p+16>>2]=0;f[p+20>>2]=0;f[p+24>>2]=0;f[p+28>>2]=0;f[q>>2]=0;H=q+4|0;f[H>>2]=0;f[q+8>>2]=0;if(F){M=0;N=0;O=0;P=0}else{F=g<<2;B=dn(F)|0;f[q>>2]=B;G=B+(g<<2)|0;f[q+8>>2]=G;hj(B|0,0,F|0)|0;f[H>>2]=G;M=B;N=G;O=G;P=B}B=a+56|0;G=f[B>>2]|0;F=f[G+4>>2]|0;D=f[G>>2]|0;L=F-D|0;a:do if((L|0)>4){Q=L>>>2;R=e+64|0;S=e+28|0;T=(g|0)>0;U=r+4|0;V=r+8|0;Z=r+12|0;_=a+152|0;$=a+112|0;aa=r+16|0;ba=r+28|0;ca=a+16|0;da=a+32|0;ea=a+12|0;fa=a+28|0;ga=a+20|0;ha=a+24|0;ia=r+28|0;ja=r+16|0;ka=r+20|0;la=r+32|0;ma=n+1|0;na=g<<2;oa=(g|0)==1;pa=Q+-1|0;if(F-D>>2>>>0>pa>>>0){qa=Q;ra=pa;sa=D;ta=M;ua=P;va=O;wa=M;xa=N;ya=M;za=N}else{Aa=G;mq(Aa)}b:while(1){pa=f[sa+(ra<<2)>>2]|0;Q=(((pa>>>0)%3|0|0)==0?2:-1)+pa|0;Ba=Q>>>5;Ca=1<<(Q&31);Da=(pa|0)==-1|(Q|0)==-1;Ea=1;Fa=0;Ga=pa;c:while(1){Ha=Ea^1;Ia=Fa;Ja=Ga;while(1){if((Ja|0)==-1){Ka=Ia;break c}La=f[l+(Ia*12|0)>>2]|0;if(((f[(f[e>>2]|0)+(Ja>>>5<<2)>>2]&1<<(Ja&31)|0)==0?(Ma=f[(f[(f[R>>2]|0)+12>>2]|0)+(Ja<<2)>>2]|0,(Ma|0)!=-1):0)?(Na=f[S>>2]|0,Oa=f[A>>2]|0,Pa=f[Oa+(f[Na+(Ma<<2)>>2]<<2)>>2]|0,Qa=Ma+1|0,Ra=f[Oa+(f[Na+((((Qa>>>0)%3|0|0)==0?Ma+-2|0:Qa)<<2)>>2]<<2)>>2]|0,Qa=f[Oa+(f[Na+((((Ma>>>0)%3|0|0)==0?2:-1)+Ma<<2)>>2]<<2)>>2]|0,(Pa|0)<(ra|0)&(Ra|0)<(ra|0)&(Qa|0)<(ra|0)):0){Ma=X(Pa,g)|0;Pa=X(Ra,g)|0;Ra=X(Qa,g)|0;if(T){Qa=0;do{f[La+(Qa<<2)>>2]=(f[c+(Qa+Ra<<2)>>2]|0)+(f[c+(Qa+Pa<<2)>>2]|0)-(f[c+(Qa+Ma<<2)>>2]|0);Qa=Qa+1|0}while((Qa|0)!=(g|0))}Qa=Ia+1|0;if((Qa|0)==4){Ka=4;break c}else Sa=Qa}else Sa=Ia;do if(Ea){Qa=Ja+1|0;Ma=((Qa>>>0)%3|0|0)==0?Ja+-2|0:Qa;if(((Ma|0)!=-1?(f[(f[e>>2]|0)+(Ma>>>5<<2)>>2]&1<<(Ma&31)|0)==0:0)?(Qa=f[(f[(f[R>>2]|0)+12>>2]|0)+(Ma<<2)>>2]|0,Ma=Qa+1|0,(Qa|0)!=-1):0)Ta=((Ma>>>0)%3|0|0)==0?Qa+-2|0:Ma;else Ta=-1}else{Ma=(((Ja>>>0)%3|0|0)==0?2:-1)+Ja|0;if(((Ma|0)!=-1?(f[(f[e>>2]|0)+(Ma>>>5<<2)>>2]&1<<(Ma&31)|0)==0:0)?(Qa=f[(f[(f[R>>2]|0)+12>>2]|0)+(Ma<<2)>>2]|0,(Qa|0)!=-1):0)if(!((Qa>>>0)%3|0)){Ta=Qa+2|0;break}else{Ta=Qa+-1|0;break}else Ta=-1}while(0);if((Ta|0)==(pa|0)){Ka=Sa;break c}if((Ta|0)!=-1|Ha){Ia=Sa;Ja=Ta}else break}if(Da){Ea=0;Fa=Sa;Ga=-1;continue}if(f[(f[e>>2]|0)+(Ba<<2)>>2]&Ca|0){Ea=0;Fa=Sa;Ga=-1;continue}Ja=f[(f[(f[R>>2]|0)+12>>2]|0)+(Q<<2)>>2]|0;if((Ja|0)==-1){Ea=0;Fa=Sa;Ga=-1;continue}if(!((Ja>>>0)%3|0)){Ea=0;Fa=Sa;Ga=Ja+2|0;continue}else{Ea=0;Fa=Sa;Ga=Ja+-1|0;continue}}Ga=X(ra,g)|0;f[r>>2]=0;f[U>>2]=0;b[V>>0]=0;f[Z>>2]=0;f[Z+4>>2]=0;f[Z+8>>2]=0;f[Z+12>>2]=0;f[Z+16>>2]=0;f[Z+20>>2]=0;f[Z+24>>2]=0;Fa=c+((X(qa+-2|0,g)|0)<<2)|0;Ea=c+(Ga<<2)|0;Q=f[_>>2]|0;if(T){Ca=0;Ba=0;while(1){Da=(f[Fa+(Ca<<2)>>2]|0)-(f[Ea+(Ca<<2)>>2]|0)|0;pa=((Da|0)>-1?Da:0-Da|0)+Ba|0;f[ta+(Ca<<2)>>2]=Da;f[Q+(Ca<<2)>>2]=Da<<1^Da>>31;Ca=Ca+1|0;if((Ca|0)==(g|0)){Ua=pa;break}else Ba=pa}}else Ua=0;ho(j,$,Q,g);Ba=Tk(j)|0;Ca=I;pa=om(j)|0;Da=Tn(pa|0,I|0,Ba|0,Ca|0)|0;Ca=I;Ba=(Ka|0)>0;if(Ba){pa=Ka+-1|0;Ja=p+(pa<<3)|0;Ia=Ja;Ha=Tn(f[Ia>>2]|0,f[Ia+4>>2]|0,Ka|0,((Ka|0)<0)<<31>>31|0)|0;Ia=I;Qa=Ja;f[Qa>>2]=Ha;f[Qa+4>>2]=Ia;Va=+W(+(+jm(Ha,f[o+(pa<<3)>>2]|0)*(+(Ha>>>0)+4294967296.0*+(Ia|0))));Ia=Tn(Da|0,Ca|0,~~Va>>>0|0,(+K(Va)>=1.0?(Va>0.0?~~+Y(+J(Va/4294967296.0),4294967295.0)>>>0:~~+W((Va-+(~~Va>>>0))/4294967296.0)>>>0):0)|0)|0;Wa=Ia}else Wa=Da;Da=r;f[Da>>2]=Wa;f[Da+4>>2]=Ua;b[V>>0]=0;f[Z>>2]=0;Mf(aa,Fa,Fa+(g<<2)|0);f[s>>2]=ua;f[t>>2]=va;f[k>>2]=f[s>>2];f[j>>2]=f[t>>2];tf(ba,k,j);if((Ka|0)<1){Xa=za;Ya=ya;Za=xa;_a=wa;$a=va;ab=ua;bb=ua}else{Da=n+Ka|0;Ia=f[q>>2]|0;Ca=Ka+-1|0;Ha=o+(Ca<<3)|0;pa=p+(Ca<<3)|0;Ca=Ia;Qa=f[H>>2]|0;Ja=Da+-1|0;Ma=(Ja|0)==(n|0);Pa=Da+-2|0;Ra=ma>>>0>>0;La=~Ka;Na=Ka+2+((La|0)>-2?La:-2)|0;La=Qa;Oa=Ja>>>0>n>>>0;cb=0;db=1;while(1){cb=cb+1|0;hj(n|0,1,Na|0)|0;hj(n|0,0,cb|0)|0;d:while(1){if(T){hj(f[m>>2]|0,0,na|0)|0;eb=f[m>>2]|0;fb=0;gb=0;while(1){if(!(b[n+fb>>0]|0)){hb=f[l+(fb*12|0)>>2]|0;ib=0;do{jb=eb+(ib<<2)|0;f[jb>>2]=(f[jb>>2]|0)+(f[hb+(ib<<2)>>2]|0);ib=ib+1|0}while((ib|0)!=(g|0));kb=(1<>0]|0))mb=(1<>2]|0;do if(T){f[fb>>2]=(f[fb>>2]|0)/(db|0)|0;if(!oa){gb=1;do{eb=fb+(gb<<2)|0;f[eb>>2]=(f[eb>>2]|0)/(db|0)|0;gb=gb+1|0}while((gb|0)!=(g|0));gb=f[_>>2]|0;if(T)nb=gb;else{ob=0;pb=gb;break}}else nb=f[_>>2]|0;gb=0;eb=0;while(1){ib=(f[fb+(gb<<2)>>2]|0)-(f[Ea+(gb<<2)>>2]|0)|0;hb=((ib|0)>-1?ib:0-ib|0)+eb|0;f[Ia+(gb<<2)>>2]=ib;f[nb+(gb<<2)>>2]=ib<<1^ib>>31;gb=gb+1|0;if((gb|0)==(g|0)){ob=hb;pb=nb;break}else eb=hb}}else{ob=0;pb=f[_>>2]|0}while(0);ho(j,$,pb,g);fb=Tk(j)|0;eb=I;gb=om(j)|0;hb=Tn(gb|0,I|0,fb|0,eb|0)|0;eb=I;if(Ba){fb=Ha;gb=Tn(f[fb>>2]|0,f[fb+4>>2]|0,db|0,0)|0;fb=pa;ib=f[fb>>2]|0;jb=f[fb+4>>2]|0;Va=+W(+(+jm(ib,gb)*(+(ib>>>0)+4294967296.0*+(jb|0))));jb=Tn(hb|0,eb|0,~~Va>>>0|0,(+K(Va)>=1.0?(Va>0.0?~~+Y(+J(Va/4294967296.0),4294967295.0)>>>0:~~+W((Va-+(~~Va>>>0))/4294967296.0)>>>0):0)|0)|0;qb=jb}else qb=hb;hb=f[r>>2]|0;if(!((qb|0)>=(hb|0)?!((qb|0)<=(hb|0)?(ob|0)<(f[U>>2]|0):0):0)){hb=r;f[hb>>2]=qb;f[hb+4>>2]=ob;b[V>>0]=lb;f[Z>>2]=db;f[v>>2]=f[m>>2];f[w>>2]=f[E>>2];f[k>>2]=f[v>>2];f[j>>2]=f[w>>2];tf(aa,k,j);f[x>>2]=Ca;f[y>>2]=Qa;f[k>>2]=f[x>>2];f[j>>2]=f[y>>2];tf(ba,k,j)}if(Ma)break;rb=b[Ja>>0]|0;hb=-1;jb=rb;while(1){eb=hb+-1|0;sb=Da+eb|0;ib=jb;jb=b[sb>>0]|0;if((jb&255)<(ib&255))break;if((sb|0)==(n|0)){tb=86;break d}else hb=eb}eb=Da+hb|0;if((jb&255)<(rb&255)){ub=Ja;vb=rb}else{ib=Da;gb=Ja;while(1){fb=gb+-1|0;if((jb&255)<(h[ib+-2>>0]|0)){ub=fb;vb=1;break}else{wb=gb;gb=fb;ib=wb}}}b[sb>>0]=vb;b[ub>>0]=jb;if((hb|0)<-1){xb=eb;yb=Ja}else continue;while(1){ib=b[xb>>0]|0;b[xb>>0]=b[yb>>0]|0;b[yb>>0]=ib;ib=xb+1|0;gb=yb+-1|0;if(ib>>>0>>0){xb=ib;yb=gb}else continue d}}if(((tb|0)==86?(tb=0,Oa):0)?(eb=b[n>>0]|0,b[n>>0]=rb,b[Ja>>0]=eb,Ra):0){eb=Pa;hb=ma;do{jb=b[hb>>0]|0;b[hb>>0]=b[eb>>0]|0;b[eb>>0]=jb;hb=hb+1|0;eb=eb+-1|0}while(hb>>>0>>0)}if((db|0)>=(Ka|0)){Xa=La;Ya=Ia;Za=La;_a=Ia;$a=Qa;ab=Ca;bb=Ia;break}else db=db+1|0}}if(Ba){db=f[Z>>2]|0;Ia=o+(Ka+-1<<3)|0;Ca=Ia;Qa=Tn(f[Ca>>2]|0,f[Ca+4>>2]|0,db|0,((db|0)<0)<<31>>31|0)|0;db=Ia;f[db>>2]=Qa;f[db+4>>2]=I}if(T){db=f[ba>>2]|0;Qa=f[C>>2]|0;Ia=0;do{Ca=f[db+(Ia<<2)>>2]|0;f[Qa+(Ia<<2)>>2]=Ca<<1^Ca>>31;Ia=Ia+1|0}while((Ia|0)!=(g|0));zb=Qa}else zb=f[C>>2]|0;go(j,$,zb,g);if(Ba){Qa=Ka+-1|0;Ab=a+60+(Qa*12|0)|0;Ia=a+60+(Qa*12|0)+4|0;db=a+60+(Qa*12|0)+8|0;Qa=0;do{Ca=f[Ia>>2]|0;La=f[db>>2]|0;Pa=(Ca|0)==(La<<5|0);if(!(1<>0])){if(Pa){if((Ca+1|0)<0){tb=114;break b}Ra=La<<6;Ja=Ca+32&-32;hi(Ab,Ca>>>0<1073741823?(Ra>>>0>>0?Ja:Ra):2147483647);Bb=f[Ia>>2]|0}else Bb=Ca;f[Ia>>2]=Bb+1;Ra=(f[Ab>>2]|0)+(Bb>>>5<<2)|0;f[Ra>>2]=f[Ra>>2]|1<<(Bb&31)}else{if(Pa){if((Ca+1|0)<0){tb=119;break b}Pa=La<<6;La=Ca+32&-32;hi(Ab,Ca>>>0<1073741823?(Pa>>>0>>0?La:Pa):2147483647);Cb=f[Ia>>2]|0}else Cb=Ca;f[Ia>>2]=Cb+1;Ca=(f[Ab>>2]|0)+(Cb>>>5<<2)|0;f[Ca>>2]=f[Ca>>2]&~(1<<(Cb&31))}Qa=Qa+1|0}while((Qa|0)<(Ka|0))}Qa=d+(Ga<<2)|0;Ia=f[z>>2]|0;if((Ia|0)>0){db=0;Ba=f[aa>>2]|0;Ca=Ia;while(1){if((Ca|0)>0){Ia=0;do{Pa=f[Ba+(Ia<<2)>>2]|0;La=f[ca>>2]|0;if((Pa|0)>(La|0)){Ra=f[da>>2]|0;f[Ra+(Ia<<2)>>2]=La;Db=Ra}else{Ra=f[ea>>2]|0;La=f[da>>2]|0;f[La+(Ia<<2)>>2]=(Pa|0)<(Ra|0)?Ra:Pa;Db=La}Ia=Ia+1|0}while((Ia|0)<(f[z>>2]|0));Eb=Db}else Eb=f[da>>2]|0;Ia=(f[Ea+(db<<2)>>2]|0)-(f[Eb+(db<<2)>>2]|0)|0;La=Qa+(db<<2)|0;f[La>>2]=Ia;do if((Ia|0)<(f[fa>>2]|0)){Fb=(f[ga>>2]|0)+Ia|0;tb=109}else{if((Ia|0)<=(f[ha>>2]|0))break;Fb=Ia-(f[ga>>2]|0)|0;tb=109}while(0);if((tb|0)==109){tb=0;f[La>>2]=Fb}db=db+1|0;Ca=f[z>>2]|0;if((db|0)>=(Ca|0))break;else Ba=Eb}}Ba=f[ia>>2]|0;if(Ba|0){Ca=f[la>>2]|0;if((Ca|0)!=(Ba|0))f[la>>2]=Ca+(~((Ca+-4-Ba|0)>>>2)<<2);br(Ba)}Ba=f[ja>>2]|0;if(Ba|0){Ca=f[ka>>2]|0;if((Ca|0)!=(Ba|0))f[ka>>2]=Ca+(~((Ca+-4-Ba|0)>>>2)<<2);br(Ba)}if((qa|0)<=2){Gb=_a;Hb=Za;break a}Ba=f[B>>2]|0;sa=f[Ba>>2]|0;Ca=ra+-1|0;if((f[Ba+4>>2]|0)-sa>>2>>>0<=Ca>>>0){Aa=Ba;tb=18;break}else{Ba=ra;ra=Ca;ta=bb;ua=ab;va=$a;wa=_a;xa=Za;ya=Ya;za=Xa;qa=Ba}}if((tb|0)==18)mq(Aa);else if((tb|0)==114)mq(Ab);else if((tb|0)==119)mq(Ab)}else{Gb=M;Hb=N}while(0);N=f[l>>2]|0;if((g|0)>0?(f[N>>2]=0,(g|0)!=1):0){M=1;do{f[N+(M<<2)>>2]=0;M=M+1|0}while((M|0)!=(g|0))}g=f[z>>2]|0;if((g|0)>0){M=a+16|0;Ab=a+32|0;Aa=a+12|0;qa=a+28|0;Xa=a+20|0;za=a+24|0;a=0;Ya=N;N=g;while(1){if((N|0)>0){g=0;do{ya=f[Ya+(g<<2)>>2]|0;Za=f[M>>2]|0;if((ya|0)>(Za|0)){xa=f[Ab>>2]|0;f[xa+(g<<2)>>2]=Za;Ib=xa}else{xa=f[Aa>>2]|0;Za=f[Ab>>2]|0;f[Za+(g<<2)>>2]=(ya|0)<(xa|0)?xa:ya;Ib=Za}g=g+1|0}while((g|0)<(f[z>>2]|0));Jb=Ib}else Jb=f[Ab>>2]|0;g=(f[c+(a<<2)>>2]|0)-(f[Jb+(a<<2)>>2]|0)|0;Za=d+(a<<2)|0;f[Za>>2]=g;if((g|0)>=(f[qa>>2]|0)){if((g|0)>(f[za>>2]|0)){Kb=g-(f[Xa>>2]|0)|0;tb=145}}else{Kb=(f[Xa>>2]|0)+g|0;tb=145}if((tb|0)==145){tb=0;f[Za>>2]=Kb}a=a+1|0;N=f[z>>2]|0;if((a|0)>=(N|0))break;else Ya=Jb}}if(Gb|0){if((Hb|0)!=(Gb|0))f[H>>2]=Hb+(~((Hb+-4-Gb|0)>>>2)<<2);br(Gb)}Gb=f[m>>2]|0;if(Gb|0){m=f[E>>2]|0;if((m|0)!=(Gb|0))f[E>>2]=m+(~((m+-4-Gb|0)>>>2)<<2);br(Gb)}Gb=f[l+36>>2]|0;if(Gb|0){m=l+40|0;E=f[m>>2]|0;if((E|0)!=(Gb|0))f[m>>2]=E+(~((E+-4-Gb|0)>>>2)<<2);br(Gb)}Gb=f[l+24>>2]|0;if(Gb|0){E=l+28|0;m=f[E>>2]|0;if((m|0)!=(Gb|0))f[E>>2]=m+(~((m+-4-Gb|0)>>>2)<<2);br(Gb)}Gb=f[l+12>>2]|0;if(Gb|0){m=l+16|0;E=f[m>>2]|0;if((E|0)!=(Gb|0))f[m>>2]=E+(~((E+-4-Gb|0)>>>2)<<2);br(Gb)}Gb=f[l>>2]|0;if(!Gb){u=i;return 1}E=l+4|0;l=f[E>>2]|0;if((l|0)!=(Gb|0))f[E>>2]=l+(~((l+-4-Gb|0)>>>2)<<2);br(Gb);u=i;return 1}function bb(a,c,d,e,g,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0,Sa=0,Ta=0,Ua=0,Va=0.0,Wa=0,Xa=0,Ya=0,Za=0,_a=0,$a=0,ab=0,bb=0,cb=0,db=0,eb=0,fb=0,gb=0,hb=0,ib=0,jb=0,kb=0,lb=0,mb=0,nb=0,ob=0,pb=0,qb=0,rb=0,sb=0,tb=0,ub=0,vb=0,wb=0,xb=0,yb=0,zb=0,Ab=0,Bb=0,Cb=0,Db=0,Eb=0,Fb=0,Gb=0,Hb=0,Ib=0,Jb=0,Kb=0,Lb=0,Mb=0;i=u;u=u+240|0;j=i+104|0;k=i+224|0;l=i+176|0;m=i+160|0;n=i+228|0;o=i+72|0;p=i+40|0;q=i+132|0;r=i;s=i+172|0;t=i+156|0;v=i+152|0;w=i+148|0;x=i+144|0;y=i+128|0;z=a+8|0;Ah(z,c,e,g);e=f[a+48>>2]|0;A=f[a+52>>2]|0;B=l;C=B+48|0;do{f[B>>2]=0;B=B+4|0}while((B|0)<(C|0));if(!g){D=0;E=0}else{oi(l,g);D=f[l+12>>2]|0;E=f[l+16>>2]|0}B=l+16|0;C=E-D>>2;F=D;D=E;if(C>>>0>=g>>>0){if(C>>>0>g>>>0?(E=F+(g<<2)|0,(E|0)!=(D|0)):0)f[B>>2]=D+(~((D+-4-E|0)>>>2)<<2)}else oi(l+12|0,g-C|0);C=l+24|0;E=l+28|0;D=f[E>>2]|0;B=f[C>>2]|0;F=D-B>>2;G=B;B=D;if(F>>>0>=g>>>0){if(F>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[E>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else oi(C,g-F|0);F=l+36|0;C=l+40|0;D=f[C>>2]|0;B=f[F>>2]|0;E=D-B>>2;G=B;B=D;if(E>>>0>=g>>>0){if(E>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[C>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else oi(F,g-E|0);f[m>>2]=0;E=m+4|0;f[E>>2]=0;f[m+8>>2]=0;F=(g|0)==0;do if(!F)if(g>>>0>1073741823)mq(m);else{D=g<<2;B=dn(D)|0;f[m>>2]=B;C=B+(g<<2)|0;f[m+8>>2]=C;hj(B|0,0,D|0)|0;f[E>>2]=C;break}while(0);C=a+152|0;D=a+156|0;B=f[D>>2]|0;G=f[C>>2]|0;H=B-G>>2;L=G;G=B;if(H>>>0>=g>>>0){if(H>>>0>g>>>0?(B=L+(g<<2)|0,(B|0)!=(G|0)):0)f[D>>2]=G+(~((G+-4-B|0)>>>2)<<2)}else oi(C,g-H|0);f[o>>2]=0;f[o+4>>2]=0;f[o+8>>2]=0;f[o+12>>2]=0;f[o+16>>2]=0;f[o+20>>2]=0;f[o+24>>2]=0;f[o+28>>2]=0;f[p>>2]=0;f[p+4>>2]=0;f[p+8>>2]=0;f[p+12>>2]=0;f[p+16>>2]=0;f[p+20>>2]=0;f[p+24>>2]=0;f[p+28>>2]=0;f[q>>2]=0;H=q+4|0;f[H>>2]=0;f[q+8>>2]=0;if(F){M=0;N=0;O=0;P=0}else{F=g<<2;B=dn(F)|0;f[q>>2]=B;G=B+(g<<2)|0;f[q+8>>2]=G;hj(B|0,0,F|0)|0;f[H>>2]=G;M=B;N=G;O=G;P=B}B=a+56|0;G=f[B>>2]|0;F=f[G+4>>2]|0;D=f[G>>2]|0;L=F-D|0;a:do if((L|0)>4){Q=L>>>2;R=e+12|0;S=(g|0)>0;T=r+4|0;U=r+8|0;V=r+12|0;Z=a+152|0;_=a+112|0;$=r+16|0;aa=r+28|0;ba=a+16|0;ca=a+32|0;da=a+12|0;ea=a+28|0;fa=a+20|0;ga=a+24|0;ha=r+28|0;ia=r+16|0;ja=r+20|0;ka=r+32|0;la=n+1|0;ma=g<<2;na=(g|0)==1;oa=Q+-1|0;if(F-D>>2>>>0>oa>>>0){pa=Q;qa=oa;ra=D;sa=M;ta=P;ua=O;va=M;wa=N;xa=M;ya=N}else{za=G;mq(za)}b:while(1){oa=f[ra+(qa<<2)>>2]|0;Q=(((oa>>>0)%3|0|0)==0?2:-1)+oa|0;Aa=(oa|0)==-1|(Q|0)==-1;Ba=1;Ca=0;Da=oa;c:while(1){Ea=Ba^1;Fa=Ca;Ga=Da;while(1){if((Ga|0)==-1){Ha=Fa;break c}Ia=f[l+(Fa*12|0)>>2]|0;Ja=f[R>>2]|0;Ka=f[Ja+(Ga<<2)>>2]|0;if((Ka|0)!=-1){La=f[e>>2]|0;Ma=f[A>>2]|0;Na=f[Ma+(f[La+(Ka<<2)>>2]<<2)>>2]|0;Oa=Ka+1|0;Pa=((Oa>>>0)%3|0|0)==0?Ka+-2|0:Oa;if((Pa|0)==-1)Qa=-1;else Qa=f[La+(Pa<<2)>>2]|0;Pa=f[Ma+(Qa<<2)>>2]|0;Oa=(((Ka>>>0)%3|0|0)==0?2:-1)+Ka|0;if((Oa|0)==-1)Ra=-1;else Ra=f[La+(Oa<<2)>>2]|0;Oa=f[Ma+(Ra<<2)>>2]|0;if((Na|0)<(qa|0)&(Pa|0)<(qa|0)&(Oa|0)<(qa|0)){Ma=X(Na,g)|0;Na=X(Pa,g)|0;Pa=X(Oa,g)|0;if(S){Oa=0;do{f[Ia+(Oa<<2)>>2]=(f[c+(Oa+Pa<<2)>>2]|0)+(f[c+(Oa+Na<<2)>>2]|0)-(f[c+(Oa+Ma<<2)>>2]|0);Oa=Oa+1|0}while((Oa|0)!=(g|0))}Oa=Fa+1|0;if((Oa|0)==4){Ha=4;break c}else Sa=Oa}else Sa=Fa}else Sa=Fa;do if(Ba){Oa=Ga+1|0;Ma=((Oa>>>0)%3|0|0)==0?Ga+-2|0:Oa;if((Ma|0)!=-1?(Oa=f[Ja+(Ma<<2)>>2]|0,Ma=Oa+1|0,(Oa|0)!=-1):0)Ta=((Ma>>>0)%3|0|0)==0?Oa+-2|0:Ma;else Ta=-1}else{Ma=(((Ga>>>0)%3|0|0)==0?2:-1)+Ga|0;if((Ma|0)!=-1?(Oa=f[Ja+(Ma<<2)>>2]|0,(Oa|0)!=-1):0)if(!((Oa>>>0)%3|0)){Ta=Oa+2|0;break}else{Ta=Oa+-1|0;break}else Ta=-1}while(0);if((Ta|0)==(oa|0)){Ha=Sa;break c}if((Ta|0)!=-1|Ea){Fa=Sa;Ga=Ta}else break}if(Aa){Ba=0;Ca=Sa;Da=-1;continue}Ga=f[Ja+(Q<<2)>>2]|0;if((Ga|0)==-1){Ba=0;Ca=Sa;Da=-1;continue}if(!((Ga>>>0)%3|0)){Ba=0;Ca=Sa;Da=Ga+2|0;continue}else{Ba=0;Ca=Sa;Da=Ga+-1|0;continue}}Da=X(qa,g)|0;f[r>>2]=0;f[T>>2]=0;b[U>>0]=0;f[V>>2]=0;f[V+4>>2]=0;f[V+8>>2]=0;f[V+12>>2]=0;f[V+16>>2]=0;f[V+20>>2]=0;f[V+24>>2]=0;Ca=c+((X(pa+-2|0,g)|0)<<2)|0;Ba=c+(Da<<2)|0;Q=f[Z>>2]|0;if(S){Aa=0;oa=0;while(1){Ga=(f[Ca+(Aa<<2)>>2]|0)-(f[Ba+(Aa<<2)>>2]|0)|0;Fa=((Ga|0)>-1?Ga:0-Ga|0)+oa|0;f[sa+(Aa<<2)>>2]=Ga;f[Q+(Aa<<2)>>2]=Ga<<1^Ga>>31;Aa=Aa+1|0;if((Aa|0)==(g|0)){Ua=Fa;break}else oa=Fa}}else Ua=0;ho(j,_,Q,g);oa=Tk(j)|0;Aa=I;Fa=om(j)|0;Ga=Tn(Fa|0,I|0,oa|0,Aa|0)|0;Aa=I;oa=(Ha|0)>0;if(oa){Fa=Ha+-1|0;Ea=p+(Fa<<3)|0;Oa=Ea;Ma=Tn(f[Oa>>2]|0,f[Oa+4>>2]|0,Ha|0,((Ha|0)<0)<<31>>31|0)|0;Oa=I;Na=Ea;f[Na>>2]=Ma;f[Na+4>>2]=Oa;Va=+W(+(+jm(Ma,f[o+(Fa<<3)>>2]|0)*(+(Ma>>>0)+4294967296.0*+(Oa|0))));Oa=Tn(Ga|0,Aa|0,~~Va>>>0|0,(+K(Va)>=1.0?(Va>0.0?~~+Y(+J(Va/4294967296.0),4294967295.0)>>>0:~~+W((Va-+(~~Va>>>0))/4294967296.0)>>>0):0)|0)|0;Wa=Oa}else Wa=Ga;Ga=r;f[Ga>>2]=Wa;f[Ga+4>>2]=Ua;b[U>>0]=0;f[V>>2]=0;Mf($,Ca,Ca+(g<<2)|0);f[s>>2]=ta;f[t>>2]=ua;f[k>>2]=f[s>>2];f[j>>2]=f[t>>2];tf(aa,k,j);if((Ha|0)<1){Xa=ya;Ya=xa;Za=wa;_a=va;$a=ua;ab=ta;bb=ta}else{Ga=n+Ha|0;Oa=f[q>>2]|0;Aa=Ha+-1|0;Ma=o+(Aa<<3)|0;Fa=p+(Aa<<3)|0;Aa=Oa;Na=f[H>>2]|0;Ea=Ga+-1|0;Pa=(Ea|0)==(n|0);Ia=Ga+-2|0;La=la>>>0>>0;Ka=~Ha;cb=Ha+2+((Ka|0)>-2?Ka:-2)|0;Ka=Na;db=Ea>>>0>n>>>0;eb=0;fb=1;while(1){eb=eb+1|0;hj(n|0,1,cb|0)|0;hj(n|0,0,eb|0)|0;d:while(1){if(S){hj(f[m>>2]|0,0,ma|0)|0;gb=f[m>>2]|0;hb=0;ib=0;while(1){if(!(b[n+hb>>0]|0)){jb=f[l+(hb*12|0)>>2]|0;kb=0;do{lb=gb+(kb<<2)|0;f[lb>>2]=(f[lb>>2]|0)+(f[jb+(kb<<2)>>2]|0);kb=kb+1|0}while((kb|0)!=(g|0));mb=(1<>0]|0))ob=(1<>2]|0;do if(S){f[hb>>2]=(f[hb>>2]|0)/(fb|0)|0;if(!na){ib=1;do{gb=hb+(ib<<2)|0;f[gb>>2]=(f[gb>>2]|0)/(fb|0)|0;ib=ib+1|0}while((ib|0)!=(g|0));ib=f[Z>>2]|0;if(S)pb=ib;else{qb=0;rb=ib;break}}else pb=f[Z>>2]|0;ib=0;gb=0;while(1){kb=(f[hb+(ib<<2)>>2]|0)-(f[Ba+(ib<<2)>>2]|0)|0;jb=((kb|0)>-1?kb:0-kb|0)+gb|0;f[Oa+(ib<<2)>>2]=kb;f[pb+(ib<<2)>>2]=kb<<1^kb>>31;ib=ib+1|0;if((ib|0)==(g|0)){qb=jb;rb=pb;break}else gb=jb}}else{qb=0;rb=f[Z>>2]|0}while(0);ho(j,_,rb,g);hb=Tk(j)|0;gb=I;ib=om(j)|0;jb=Tn(ib|0,I|0,hb|0,gb|0)|0;gb=I;if(oa){hb=Ma;ib=Tn(f[hb>>2]|0,f[hb+4>>2]|0,fb|0,0)|0;hb=Fa;kb=f[hb>>2]|0;lb=f[hb+4>>2]|0;Va=+W(+(+jm(kb,ib)*(+(kb>>>0)+4294967296.0*+(lb|0))));lb=Tn(jb|0,gb|0,~~Va>>>0|0,(+K(Va)>=1.0?(Va>0.0?~~+Y(+J(Va/4294967296.0),4294967295.0)>>>0:~~+W((Va-+(~~Va>>>0))/4294967296.0)>>>0):0)|0)|0;sb=lb}else sb=jb;jb=f[r>>2]|0;if(!((sb|0)>=(jb|0)?!((sb|0)<=(jb|0)?(qb|0)<(f[T>>2]|0):0):0)){jb=r;f[jb>>2]=sb;f[jb+4>>2]=qb;b[U>>0]=nb;f[V>>2]=fb;f[v>>2]=f[m>>2];f[w>>2]=f[E>>2];f[k>>2]=f[v>>2];f[j>>2]=f[w>>2];tf($,k,j);f[x>>2]=Aa;f[y>>2]=Na;f[k>>2]=f[x>>2];f[j>>2]=f[y>>2];tf(aa,k,j)}if(Pa)break;tb=b[Ea>>0]|0;jb=-1;lb=tb;while(1){gb=jb+-1|0;ub=Ga+gb|0;kb=lb;lb=b[ub>>0]|0;if((lb&255)<(kb&255))break;if((ub|0)==(n|0)){vb=86;break d}else jb=gb}gb=Ga+jb|0;if((lb&255)<(tb&255)){wb=Ea;xb=tb}else{kb=Ga;ib=Ea;while(1){hb=ib+-1|0;if((lb&255)<(h[kb+-2>>0]|0)){wb=hb;xb=1;break}else{yb=ib;ib=hb;kb=yb}}}b[ub>>0]=xb;b[wb>>0]=lb;if((jb|0)<-1){zb=gb;Ab=Ea}else continue;while(1){kb=b[zb>>0]|0;b[zb>>0]=b[Ab>>0]|0;b[Ab>>0]=kb;kb=zb+1|0;ib=Ab+-1|0;if(kb>>>0>>0){zb=kb;Ab=ib}else continue d}}if(((vb|0)==86?(vb=0,db):0)?(gb=b[n>>0]|0,b[n>>0]=tb,b[Ea>>0]=gb,La):0){gb=Ia;jb=la;do{lb=b[jb>>0]|0;b[jb>>0]=b[gb>>0]|0;b[gb>>0]=lb;jb=jb+1|0;gb=gb+-1|0}while(jb>>>0>>0)}if((fb|0)>=(Ha|0)){Xa=Ka;Ya=Oa;Za=Ka;_a=Oa;$a=Na;ab=Aa;bb=Oa;break}else fb=fb+1|0}}if(oa){fb=f[V>>2]|0;Oa=o+(Ha+-1<<3)|0;Aa=Oa;Na=Tn(f[Aa>>2]|0,f[Aa+4>>2]|0,fb|0,((fb|0)<0)<<31>>31|0)|0;fb=Oa;f[fb>>2]=Na;f[fb+4>>2]=I}if(S){fb=f[aa>>2]|0;Na=f[C>>2]|0;Oa=0;do{Aa=f[fb+(Oa<<2)>>2]|0;f[Na+(Oa<<2)>>2]=Aa<<1^Aa>>31;Oa=Oa+1|0}while((Oa|0)!=(g|0));Bb=Na}else Bb=f[C>>2]|0;go(j,_,Bb,g);if(oa){Na=Ha+-1|0;Cb=a+60+(Na*12|0)|0;Oa=a+60+(Na*12|0)+4|0;fb=a+60+(Na*12|0)+8|0;Na=0;do{Aa=f[Oa>>2]|0;Ka=f[fb>>2]|0;Ia=(Aa|0)==(Ka<<5|0);if(!(1<>0])){if(Ia){if((Aa+1|0)<0){vb=114;break b}La=Ka<<6;Ea=Aa+32&-32;hi(Cb,Aa>>>0<1073741823?(La>>>0>>0?Ea:La):2147483647);Db=f[Oa>>2]|0}else Db=Aa;f[Oa>>2]=Db+1;La=(f[Cb>>2]|0)+(Db>>>5<<2)|0;f[La>>2]=f[La>>2]|1<<(Db&31)}else{if(Ia){if((Aa+1|0)<0){vb=119;break b}Ia=Ka<<6;Ka=Aa+32&-32;hi(Cb,Aa>>>0<1073741823?(Ia>>>0>>0?Ka:Ia):2147483647);Eb=f[Oa>>2]|0}else Eb=Aa;f[Oa>>2]=Eb+1;Aa=(f[Cb>>2]|0)+(Eb>>>5<<2)|0;f[Aa>>2]=f[Aa>>2]&~(1<<(Eb&31))}Na=Na+1|0}while((Na|0)<(Ha|0))}Na=d+(Da<<2)|0;Oa=f[z>>2]|0;if((Oa|0)>0){fb=0;oa=f[$>>2]|0;Aa=Oa;while(1){if((Aa|0)>0){Oa=0;do{Ia=f[oa+(Oa<<2)>>2]|0;Ka=f[ba>>2]|0;if((Ia|0)>(Ka|0)){La=f[ca>>2]|0;f[La+(Oa<<2)>>2]=Ka;Fb=La}else{La=f[da>>2]|0;Ka=f[ca>>2]|0;f[Ka+(Oa<<2)>>2]=(Ia|0)<(La|0)?La:Ia;Fb=Ka}Oa=Oa+1|0}while((Oa|0)<(f[z>>2]|0));Gb=Fb}else Gb=f[ca>>2]|0;Oa=(f[Ba+(fb<<2)>>2]|0)-(f[Gb+(fb<<2)>>2]|0)|0;Ka=Na+(fb<<2)|0;f[Ka>>2]=Oa;do if((Oa|0)<(f[ea>>2]|0)){Hb=(f[fa>>2]|0)+Oa|0;vb=109}else{if((Oa|0)<=(f[ga>>2]|0))break;Hb=Oa-(f[fa>>2]|0)|0;vb=109}while(0);if((vb|0)==109){vb=0;f[Ka>>2]=Hb}fb=fb+1|0;Aa=f[z>>2]|0;if((fb|0)>=(Aa|0))break;else oa=Gb}}oa=f[ha>>2]|0;if(oa|0){Aa=f[ka>>2]|0;if((Aa|0)!=(oa|0))f[ka>>2]=Aa+(~((Aa+-4-oa|0)>>>2)<<2);br(oa)}oa=f[ia>>2]|0;if(oa|0){Aa=f[ja>>2]|0;if((Aa|0)!=(oa|0))f[ja>>2]=Aa+(~((Aa+-4-oa|0)>>>2)<<2);br(oa)}if((pa|0)<=2){Ib=_a;Jb=Za;break a}oa=f[B>>2]|0;ra=f[oa>>2]|0;Aa=qa+-1|0;if((f[oa+4>>2]|0)-ra>>2>>>0<=Aa>>>0){za=oa;vb=18;break}else{oa=qa;qa=Aa;sa=bb;ta=ab;ua=$a;va=_a;wa=Za;xa=Ya;ya=Xa;pa=oa}}if((vb|0)==18)mq(za);else if((vb|0)==114)mq(Cb);else if((vb|0)==119)mq(Cb)}else{Ib=M;Jb=N}while(0);N=f[l>>2]|0;if((g|0)>0?(f[N>>2]=0,(g|0)!=1):0){M=1;do{f[N+(M<<2)>>2]=0;M=M+1|0}while((M|0)!=(g|0))}g=f[z>>2]|0;if((g|0)>0){M=a+16|0;Cb=a+32|0;za=a+12|0;pa=a+28|0;Xa=a+20|0;ya=a+24|0;a=0;Ya=N;N=g;while(1){if((N|0)>0){g=0;do{xa=f[Ya+(g<<2)>>2]|0;Za=f[M>>2]|0;if((xa|0)>(Za|0)){wa=f[Cb>>2]|0;f[wa+(g<<2)>>2]=Za;Kb=wa}else{wa=f[za>>2]|0;Za=f[Cb>>2]|0;f[Za+(g<<2)>>2]=(xa|0)<(wa|0)?wa:xa;Kb=Za}g=g+1|0}while((g|0)<(f[z>>2]|0));Lb=Kb}else Lb=f[Cb>>2]|0;g=(f[c+(a<<2)>>2]|0)-(f[Lb+(a<<2)>>2]|0)|0;Za=d+(a<<2)|0;f[Za>>2]=g;if((g|0)>=(f[pa>>2]|0)){if((g|0)>(f[ya>>2]|0)){Mb=g-(f[Xa>>2]|0)|0;vb=145}}else{Mb=(f[Xa>>2]|0)+g|0;vb=145}if((vb|0)==145){vb=0;f[Za>>2]=Mb}a=a+1|0;N=f[z>>2]|0;if((a|0)>=(N|0))break;else Ya=Lb}}if(Ib|0){if((Jb|0)!=(Ib|0))f[H>>2]=Jb+(~((Jb+-4-Ib|0)>>>2)<<2);br(Ib)}Ib=f[m>>2]|0;if(Ib|0){m=f[E>>2]|0;if((m|0)!=(Ib|0))f[E>>2]=m+(~((m+-4-Ib|0)>>>2)<<2);br(Ib)}Ib=f[l+36>>2]|0;if(Ib|0){m=l+40|0;E=f[m>>2]|0;if((E|0)!=(Ib|0))f[m>>2]=E+(~((E+-4-Ib|0)>>>2)<<2);br(Ib)}Ib=f[l+24>>2]|0;if(Ib|0){E=l+28|0;m=f[E>>2]|0;if((m|0)!=(Ib|0))f[E>>2]=m+(~((m+-4-Ib|0)>>>2)<<2);br(Ib)}Ib=f[l+12>>2]|0;if(Ib|0){m=l+16|0;E=f[m>>2]|0;if((E|0)!=(Ib|0))f[m>>2]=E+(~((E+-4-Ib|0)>>>2)<<2);br(Ib)}Ib=f[l>>2]|0;if(!Ib){u=i;return 1}E=l+4|0;l=f[E>>2]|0;if((l|0)!=(Ib|0))f[E>>2]=l+(~((l+-4-Ib|0)>>>2)<<2);br(Ib);u=i;return 1}function cb(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;b=u;u=u+16|0;c=b;d=b+8|0;e=b+4|0;f[d>>2]=a;do if(a>>>0>=212){g=(a>>>0)/210|0;h=g*210|0;f[e>>2]=a-h;i=0;j=g;g=(zl(6640,6832,e,c)|0)-6640>>2;k=h;a:while(1){l=(f[6640+(g<<2)>>2]|0)+k|0;h=5;while(1){if(h>>>0>=47){m=211;n=i;o=8;break}p=f[6448+(h<<2)>>2]|0;q=(l>>>0)/(p>>>0)|0;if(q>>>0

>>0){o=106;break a}if((l|0)==(X(q,p)|0)){r=i;break}else h=h+1|0}b:do if((o|0)==8){c:while(1){o=0;h=(l>>>0)/(m>>>0)|0;do if(h>>>0>=m>>>0)if((l|0)!=(X(h,m)|0)){p=m+10|0;q=(l>>>0)/(p>>>0)|0;if(q>>>0>=p>>>0)if((l|0)!=(X(q,p)|0)){q=m+12|0;s=(l>>>0)/(q>>>0)|0;if(s>>>0>=q>>>0)if((l|0)!=(X(s,q)|0)){s=m+16|0;t=(l>>>0)/(s>>>0)|0;if(t>>>0>=s>>>0)if((l|0)!=(X(t,s)|0)){t=m+18|0;v=(l>>>0)/(t>>>0)|0;if(v>>>0>=t>>>0)if((l|0)!=(X(v,t)|0)){v=m+22|0;w=(l>>>0)/(v>>>0)|0;if(w>>>0>=v>>>0)if((l|0)!=(X(w,v)|0)){w=m+28|0;x=(l>>>0)/(w>>>0)|0;if(x>>>0>=w>>>0)if((l|0)==(X(x,w)|0)){y=w;z=9;A=n}else{x=m+30|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+36|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+40|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+42|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+46|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+52|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+58|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+60|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+66|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+70|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+72|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+78|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+82|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+88|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+96|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+100|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+102|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+106|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+108|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+112|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+120|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+126|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+130|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+136|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+138|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+142|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+148|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+150|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+156|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+162|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+166|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+168|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+172|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+178|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+180|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+186|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+190|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+192|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+196|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+198|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+208|0;B=(l>>>0)/(x>>>0)|0;C=B>>>0>>0;D=(l|0)==(X(B,x)|0);y=C|D?x:m+210|0;z=C?1:D?9:0;A=C?l:n}else{y=w;z=1;A=l}}else{y=v;z=9;A=n}else{y=v;z=1;A=l}}else{y=t;z=9;A=n}else{y=t;z=1;A=l}}else{y=s;z=9;A=n}else{y=s;z=1;A=l}}else{y=q;z=9;A=n}else{y=q;z=1;A=l}}else{y=p;z=9;A=n}else{y=p;z=1;A=l}}else{y=m;z=9;A=n}else{y=m;z=1;A=l}while(0);switch(z&15){case 9:{r=A;break b;break}case 0:{m=y;n=A;o=8;break}default:break c}}if(!z)r=A;else{o=107;break a}}while(0);h=g+1|0;p=(h|0)==48;q=j+(p&1)|0;i=r;j=q;g=p?0:h;k=q*210|0}if((o|0)==106){f[d>>2]=l;E=l;break}else if((o|0)==107){f[d>>2]=l;E=A;break}}else{k=zl(6448,6640,d,c)|0;E=f[k>>2]|0}while(0);u=b;return E|0}function db(a,c,d,e,g,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0,Sa=0,Ta=0.0,Ua=0,Va=0,Wa=0,Xa=0,Ya=0,Za=0,_a=0,$a=0,ab=0,bb=0,cb=0,db=0,eb=0,fb=0,gb=0,hb=0,ib=0,jb=0,kb=0,lb=0,mb=0,nb=0,ob=0,pb=0,qb=0,rb=0,sb=0,tb=0,ub=0,vb=0,wb=0,xb=0,yb=0,zb=0,Ab=0,Bb=0,Cb=0;i=u;u=u+256|0;e=i+104|0;j=i+240|0;k=i+224|0;l=i+160|0;m=i+140|0;n=i+248|0;o=i+72|0;p=i+40|0;q=i+128|0;r=i;s=i+232|0;t=i+220|0;v=i+216|0;w=i+212|0;x=i+208|0;y=i+152|0;z=f[a+28>>2]|0;A=f[a+32>>2]|0;B=l;C=B+48|0;do{f[B>>2]=0;B=B+4|0}while((B|0)<(C|0));if(!g){D=0;E=0}else{oi(l,g);D=f[l+12>>2]|0;E=f[l+16>>2]|0}B=l+16|0;C=E-D>>2;F=D;D=E;if(C>>>0>=g>>>0){if(C>>>0>g>>>0?(E=F+(g<<2)|0,(E|0)!=(D|0)):0)f[B>>2]=D+(~((D+-4-E|0)>>>2)<<2)}else oi(l+12|0,g-C|0);C=l+24|0;E=l+28|0;D=f[E>>2]|0;B=f[C>>2]|0;F=D-B>>2;G=B;B=D;if(F>>>0>=g>>>0){if(F>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[E>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else oi(C,g-F|0);F=l+36|0;C=l+40|0;D=f[C>>2]|0;B=f[F>>2]|0;E=D-B>>2;G=B;B=D;if(E>>>0>=g>>>0){if(E>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[C>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else oi(F,g-E|0);f[m>>2]=0;E=m+4|0;f[E>>2]=0;f[m+8>>2]=0;F=(g|0)==0;do if(!F)if(g>>>0>1073741823)mq(m);else{D=g<<2;B=dn(D)|0;f[m>>2]=B;C=B+(g<<2)|0;f[m+8>>2]=C;hj(B|0,0,D|0)|0;f[E>>2]=C;break}while(0);C=a+136|0;D=a+140|0;B=f[D>>2]|0;G=f[C>>2]|0;H=B-G>>2;L=G;G=B;if(H>>>0>=g>>>0){if(H>>>0>g>>>0?(B=L+(g<<2)|0,(B|0)!=(G|0)):0)f[D>>2]=G+(~((G+-4-B|0)>>>2)<<2)}else oi(C,g-H|0);f[o>>2]=0;f[o+4>>2]=0;f[o+8>>2]=0;f[o+12>>2]=0;f[o+16>>2]=0;f[o+20>>2]=0;f[o+24>>2]=0;f[o+28>>2]=0;f[p>>2]=0;f[p+4>>2]=0;f[p+8>>2]=0;f[p+12>>2]=0;f[p+16>>2]=0;f[p+20>>2]=0;f[p+24>>2]=0;f[p+28>>2]=0;f[q>>2]=0;H=q+4|0;f[H>>2]=0;f[q+8>>2]=0;if(F){M=0;N=0;O=0;P=0}else{F=g<<2;B=dn(F)|0;f[q>>2]=B;G=B+(g<<2)|0;f[q+8>>2]=G;hj(B|0,0,F|0)|0;f[H>>2]=G;M=B;N=G;O=G;P=B}B=a+36|0;G=f[B>>2]|0;F=f[G+4>>2]|0;D=f[G>>2]|0;L=F-D|0;a:do if((L|0)>4){Q=L>>>2;R=z+64|0;S=z+28|0;T=(g|0)>0;U=r+4|0;V=r+8|0;Z=r+12|0;_=a+136|0;$=a+96|0;aa=r+16|0;ba=r+28|0;ca=a+8|0;da=j+4|0;ea=k+4|0;fa=e+4|0;ga=r+28|0;ha=r+16|0;ia=r+20|0;ja=r+32|0;ka=n+1|0;la=g<<2;ma=(g|0)==1;na=Q+-1|0;if(F-D>>2>>>0>na>>>0){oa=Q;pa=na;qa=D;ra=M;sa=P;ta=O;ua=M;va=N;wa=M;xa=N}else{ya=G;mq(ya)}b:while(1){na=f[qa+(pa<<2)>>2]|0;Q=(((na>>>0)%3|0|0)==0?2:-1)+na|0;za=Q>>>5;Aa=1<<(Q&31);Ba=(na|0)==-1|(Q|0)==-1;Ca=1;Da=0;Ea=na;c:while(1){Fa=Ca^1;Ga=Da;Ha=Ea;while(1){if((Ha|0)==-1){Ia=Ga;break c}Ja=f[l+(Ga*12|0)>>2]|0;if(((f[(f[z>>2]|0)+(Ha>>>5<<2)>>2]&1<<(Ha&31)|0)==0?(Ka=f[(f[(f[R>>2]|0)+12>>2]|0)+(Ha<<2)>>2]|0,(Ka|0)!=-1):0)?(La=f[S>>2]|0,Ma=f[A>>2]|0,Na=f[Ma+(f[La+(Ka<<2)>>2]<<2)>>2]|0,Oa=Ka+1|0,Pa=f[Ma+(f[La+((((Oa>>>0)%3|0|0)==0?Ka+-2|0:Oa)<<2)>>2]<<2)>>2]|0,Oa=f[Ma+(f[La+((((Ka>>>0)%3|0|0)==0?2:-1)+Ka<<2)>>2]<<2)>>2]|0,(Na|0)<(pa|0)&(Pa|0)<(pa|0)&(Oa|0)<(pa|0)):0){Ka=X(Na,g)|0;Na=X(Pa,g)|0;Pa=X(Oa,g)|0;if(T){Oa=0;do{f[Ja+(Oa<<2)>>2]=(f[c+(Oa+Pa<<2)>>2]|0)+(f[c+(Oa+Na<<2)>>2]|0)-(f[c+(Oa+Ka<<2)>>2]|0);Oa=Oa+1|0}while((Oa|0)!=(g|0))}Oa=Ga+1|0;if((Oa|0)==4){Ia=4;break c}else Qa=Oa}else Qa=Ga;do if(Ca){Oa=Ha+1|0;Ka=((Oa>>>0)%3|0|0)==0?Ha+-2|0:Oa;if(((Ka|0)!=-1?(f[(f[z>>2]|0)+(Ka>>>5<<2)>>2]&1<<(Ka&31)|0)==0:0)?(Oa=f[(f[(f[R>>2]|0)+12>>2]|0)+(Ka<<2)>>2]|0,Ka=Oa+1|0,(Oa|0)!=-1):0)Ra=((Ka>>>0)%3|0|0)==0?Oa+-2|0:Ka;else Ra=-1}else{Ka=(((Ha>>>0)%3|0|0)==0?2:-1)+Ha|0;if(((Ka|0)!=-1?(f[(f[z>>2]|0)+(Ka>>>5<<2)>>2]&1<<(Ka&31)|0)==0:0)?(Oa=f[(f[(f[R>>2]|0)+12>>2]|0)+(Ka<<2)>>2]|0,(Oa|0)!=-1):0)if(!((Oa>>>0)%3|0)){Ra=Oa+2|0;break}else{Ra=Oa+-1|0;break}else Ra=-1}while(0);if((Ra|0)==(na|0)){Ia=Qa;break c}if((Ra|0)!=-1|Fa){Ga=Qa;Ha=Ra}else break}if(Ba){Ca=0;Da=Qa;Ea=-1;continue}if(f[(f[z>>2]|0)+(za<<2)>>2]&Aa|0){Ca=0;Da=Qa;Ea=-1;continue}Ha=f[(f[(f[R>>2]|0)+12>>2]|0)+(Q<<2)>>2]|0;if((Ha|0)==-1){Ca=0;Da=Qa;Ea=-1;continue}if(!((Ha>>>0)%3|0)){Ca=0;Da=Qa;Ea=Ha+2|0;continue}else{Ca=0;Da=Qa;Ea=Ha+-1|0;continue}}Ea=X(pa,g)|0;f[r>>2]=0;f[U>>2]=0;b[V>>0]=0;f[Z>>2]=0;f[Z+4>>2]=0;f[Z+8>>2]=0;f[Z+12>>2]=0;f[Z+16>>2]=0;f[Z+20>>2]=0;f[Z+24>>2]=0;Da=c+((X(oa+-2|0,g)|0)<<2)|0;Ca=c+(Ea<<2)|0;Q=f[_>>2]|0;if(T){Aa=0;za=0;while(1){Ba=(f[Da+(Aa<<2)>>2]|0)-(f[Ca+(Aa<<2)>>2]|0)|0;na=((Ba|0)>-1?Ba:0-Ba|0)+za|0;f[ra+(Aa<<2)>>2]=Ba;f[Q+(Aa<<2)>>2]=Ba<<1^Ba>>31;Aa=Aa+1|0;if((Aa|0)==(g|0)){Sa=na;break}else za=na}}else Sa=0;ho(e,$,Q,g);za=Tk(e)|0;Aa=I;na=om(e)|0;Ba=Tn(na|0,I|0,za|0,Aa|0)|0;Aa=I;za=(Ia|0)>0;if(za){na=Ia+-1|0;Ha=p+(na<<3)|0;Ga=Ha;Fa=Tn(f[Ga>>2]|0,f[Ga+4>>2]|0,Ia|0,((Ia|0)<0)<<31>>31|0)|0;Ga=I;Oa=Ha;f[Oa>>2]=Fa;f[Oa+4>>2]=Ga;Ta=+W(+(+jm(Fa,f[o+(na<<3)>>2]|0)*(+(Fa>>>0)+4294967296.0*+(Ga|0))));Ga=Tn(Ba|0,Aa|0,~~Ta>>>0|0,(+K(Ta)>=1.0?(Ta>0.0?~~+Y(+J(Ta/4294967296.0),4294967295.0)>>>0:~~+W((Ta-+(~~Ta>>>0))/4294967296.0)>>>0):0)|0)|0;Ua=Ga}else Ua=Ba;Ba=r;f[Ba>>2]=Ua;f[Ba+4>>2]=Sa;b[V>>0]=0;f[Z>>2]=0;Mf(aa,Da,Da+(g<<2)|0);f[s>>2]=sa;f[t>>2]=ta;f[j>>2]=f[s>>2];f[e>>2]=f[t>>2];tf(ba,j,e);if((Ia|0)<1){Va=xa;Wa=wa;Xa=va;Ya=ua;Za=ta;_a=sa;$a=sa}else{Ba=n+Ia|0;Ga=f[q>>2]|0;Aa=Ia+-1|0;Fa=o+(Aa<<3)|0;na=p+(Aa<<3)|0;Aa=Ga;Oa=f[H>>2]|0;Ha=Ba+-1|0;Ka=(Ha|0)==(n|0);Na=Ba+-2|0;Pa=ka>>>0>>0;Ja=~Ia;La=Ia+2+((Ja|0)>-2?Ja:-2)|0;Ja=Oa;Ma=Ha>>>0>n>>>0;ab=0;bb=1;while(1){ab=ab+1|0;hj(n|0,1,La|0)|0;hj(n|0,0,ab|0)|0;d:while(1){if(T){hj(f[m>>2]|0,0,la|0)|0;cb=f[m>>2]|0;db=0;eb=0;while(1){if(!(b[n+db>>0]|0)){fb=f[l+(db*12|0)>>2]|0;gb=0;do{hb=cb+(gb<<2)|0;f[hb>>2]=(f[hb>>2]|0)+(f[fb+(gb<<2)>>2]|0);gb=gb+1|0}while((gb|0)!=(g|0));ib=(1<>0]|0))kb=(1<>2]|0;do if(T){f[db>>2]=(f[db>>2]|0)/(bb|0)|0;if(!ma){eb=1;do{cb=db+(eb<<2)|0;f[cb>>2]=(f[cb>>2]|0)/(bb|0)|0;eb=eb+1|0}while((eb|0)!=(g|0));eb=f[_>>2]|0;if(T)lb=eb;else{mb=0;nb=eb;break}}else lb=f[_>>2]|0;eb=0;cb=0;while(1){gb=(f[db+(eb<<2)>>2]|0)-(f[Ca+(eb<<2)>>2]|0)|0;fb=((gb|0)>-1?gb:0-gb|0)+cb|0;f[Ga+(eb<<2)>>2]=gb;f[lb+(eb<<2)>>2]=gb<<1^gb>>31;eb=eb+1|0;if((eb|0)==(g|0)){mb=fb;nb=lb;break}else cb=fb}}else{mb=0;nb=f[_>>2]|0}while(0);ho(e,$,nb,g);db=Tk(e)|0;cb=I;eb=om(e)|0;fb=Tn(eb|0,I|0,db|0,cb|0)|0;cb=I;if(za){db=Fa;eb=Tn(f[db>>2]|0,f[db+4>>2]|0,bb|0,0)|0;db=na;gb=f[db>>2]|0;hb=f[db+4>>2]|0;Ta=+W(+(+jm(gb,eb)*(+(gb>>>0)+4294967296.0*+(hb|0))));hb=Tn(fb|0,cb|0,~~Ta>>>0|0,(+K(Ta)>=1.0?(Ta>0.0?~~+Y(+J(Ta/4294967296.0),4294967295.0)>>>0:~~+W((Ta-+(~~Ta>>>0))/4294967296.0)>>>0):0)|0)|0;ob=hb}else ob=fb;fb=f[r>>2]|0;if(!((ob|0)>=(fb|0)?!((ob|0)<=(fb|0)?(mb|0)<(f[U>>2]|0):0):0)){fb=r;f[fb>>2]=ob;f[fb+4>>2]=mb;b[V>>0]=jb;f[Z>>2]=bb;f[v>>2]=f[m>>2];f[w>>2]=f[E>>2];f[j>>2]=f[v>>2];f[e>>2]=f[w>>2];tf(aa,j,e);f[x>>2]=Aa;f[y>>2]=Oa;f[j>>2]=f[x>>2];f[e>>2]=f[y>>2];tf(ba,j,e)}if(Ka)break;pb=b[Ha>>0]|0;fb=-1;hb=pb;while(1){cb=fb+-1|0;qb=Ba+cb|0;gb=hb;hb=b[qb>>0]|0;if((hb&255)<(gb&255))break;if((qb|0)==(n|0)){rb=86;break d}else fb=cb}cb=Ba+fb|0;if((hb&255)<(pb&255)){sb=Ha;tb=pb}else{gb=Ba;eb=Ha;while(1){db=eb+-1|0;if((hb&255)<(h[gb+-2>>0]|0)){sb=db;tb=1;break}else{ub=eb;eb=db;gb=ub}}}b[qb>>0]=tb;b[sb>>0]=hb;if((fb|0)<-1){vb=cb;wb=Ha}else continue;while(1){gb=b[vb>>0]|0;b[vb>>0]=b[wb>>0]|0;b[wb>>0]=gb;gb=vb+1|0;eb=wb+-1|0;if(gb>>>0>>0){vb=gb;wb=eb}else continue d}}if(((rb|0)==86?(rb=0,Ma):0)?(cb=b[n>>0]|0,b[n>>0]=pb,b[Ha>>0]=cb,Pa):0){cb=Na;fb=ka;do{hb=b[fb>>0]|0;b[fb>>0]=b[cb>>0]|0;b[cb>>0]=hb;fb=fb+1|0;cb=cb+-1|0}while(fb>>>0>>0)}if((bb|0)>=(Ia|0)){Va=Ja;Wa=Ga;Xa=Ja;Ya=Ga;Za=Oa;_a=Aa;$a=Ga;break}else bb=bb+1|0}}if(za){bb=f[Z>>2]|0;Ga=o+(Ia+-1<<3)|0;Aa=Ga;Oa=Tn(f[Aa>>2]|0,f[Aa+4>>2]|0,bb|0,((bb|0)<0)<<31>>31|0)|0;bb=Ga;f[bb>>2]=Oa;f[bb+4>>2]=I}if(T){bb=f[ba>>2]|0;Oa=f[C>>2]|0;Ga=0;do{Aa=f[bb+(Ga<<2)>>2]|0;f[Oa+(Ga<<2)>>2]=Aa<<1^Aa>>31;Ga=Ga+1|0}while((Ga|0)!=(g|0));xb=Oa}else xb=f[C>>2]|0;go(e,$,xb,g);if(za){Oa=Ia+-1|0;yb=a+40+(Oa*12|0)|0;Ga=a+40+(Oa*12|0)+4|0;bb=a+40+(Oa*12|0)+8|0;Oa=0;do{Aa=f[Ga>>2]|0;Ja=f[bb>>2]|0;Na=(Aa|0)==(Ja<<5|0);if(!(1<>0])){if(Na){if((Aa+1|0)<0){rb=101;break b}Pa=Ja<<6;Ha=Aa+32&-32;hi(yb,Aa>>>0<1073741823?(Pa>>>0>>0?Ha:Pa):2147483647);zb=f[Ga>>2]|0}else zb=Aa;f[Ga>>2]=zb+1;Pa=(f[yb>>2]|0)+(zb>>>5<<2)|0;f[Pa>>2]=f[Pa>>2]|1<<(zb&31)}else{if(Na){if((Aa+1|0)<0){rb=106;break b}Na=Ja<<6;Ja=Aa+32&-32;hi(yb,Aa>>>0<1073741823?(Na>>>0>>0?Ja:Na):2147483647);Ab=f[Ga>>2]|0}else Ab=Aa;f[Ga>>2]=Ab+1;Aa=(f[yb>>2]|0)+(Ab>>>5<<2)|0;f[Aa>>2]=f[Aa>>2]&~(1<<(Ab&31))}Oa=Oa+1|0}while((Oa|0)<(Ia|0))}Oa=f[aa>>2]|0;Ga=d+(Ea<<2)|0;bb=f[Ca+4>>2]|0;za=f[Oa>>2]|0;Aa=f[Oa+4>>2]|0;f[j>>2]=f[Ca>>2];f[da>>2]=bb;f[k>>2]=za;f[ea>>2]=Aa;Dd(e,ca,j,k);f[Ga>>2]=f[e>>2];f[Ga+4>>2]=f[fa>>2];Ga=f[ga>>2]|0;if(Ga|0){Aa=f[ja>>2]|0;if((Aa|0)!=(Ga|0))f[ja>>2]=Aa+(~((Aa+-4-Ga|0)>>>2)<<2);br(Ga)}Ga=f[ha>>2]|0;if(Ga|0){Aa=f[ia>>2]|0;if((Aa|0)!=(Ga|0))f[ia>>2]=Aa+(~((Aa+-4-Ga|0)>>>2)<<2);br(Ga)}if((oa|0)<=2){Bb=Ya;Cb=Xa;break a}Ga=f[B>>2]|0;qa=f[Ga>>2]|0;Aa=pa+-1|0;if((f[Ga+4>>2]|0)-qa>>2>>>0<=Aa>>>0){ya=Ga;rb=18;break}else{Ga=pa;pa=Aa;ra=$a;sa=_a;ta=Za;ua=Ya;va=Xa;wa=Wa;xa=Va;oa=Ga}}if((rb|0)==18)mq(ya);else if((rb|0)==101)mq(yb);else if((rb|0)==106)mq(yb)}else{Bb=M;Cb=N}while(0);if((g|0)>0)hj(f[l>>2]|0,0,g<<2|0)|0;g=f[l>>2]|0;N=f[c+4>>2]|0;M=f[g>>2]|0;yb=f[g+4>>2]|0;f[j>>2]=f[c>>2];f[j+4>>2]=N;f[k>>2]=M;f[k+4>>2]=yb;Dd(e,a+8|0,j,k);f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];if(Bb|0){if((Cb|0)!=(Bb|0))f[H>>2]=Cb+(~((Cb+-4-Bb|0)>>>2)<<2);br(Bb)}Bb=f[m>>2]|0;if(Bb|0){m=f[E>>2]|0;if((m|0)!=(Bb|0))f[E>>2]=m+(~((m+-4-Bb|0)>>>2)<<2);br(Bb)}Bb=f[l+36>>2]|0;if(Bb|0){m=l+40|0;E=f[m>>2]|0;if((E|0)!=(Bb|0))f[m>>2]=E+(~((E+-4-Bb|0)>>>2)<<2);br(Bb)}Bb=f[l+24>>2]|0;if(Bb|0){E=l+28|0;m=f[E>>2]|0;if((m|0)!=(Bb|0))f[E>>2]=m+(~((m+-4-Bb|0)>>>2)<<2);br(Bb)}Bb=f[l+12>>2]|0;if(Bb|0){m=l+16|0;E=f[m>>2]|0;if((E|0)!=(Bb|0))f[m>>2]=E+(~((E+-4-Bb|0)>>>2)<<2);br(Bb)}Bb=f[l>>2]|0;if(!Bb){u=i;return 1}E=l+4|0;l=f[E>>2]|0;if((l|0)!=(Bb|0))f[E>>2]=l+(~((l+-4-Bb|0)>>>2)<<2);br(Bb);u=i;return 1}function eb(a,c,d,e,g,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0,Sa=0,Ta=0.0,Ua=0,Va=0,Wa=0,Xa=0,Ya=0,Za=0,_a=0,$a=0,ab=0,bb=0,cb=0,db=0,eb=0,fb=0,gb=0,hb=0,ib=0,jb=0,kb=0,lb=0,mb=0,nb=0,ob=0,pb=0,qb=0,rb=0,sb=0,tb=0,ub=0,vb=0,wb=0,xb=0,yb=0,zb=0,Ab=0,Bb=0,Cb=0,Db=0,Eb=0;i=u;u=u+256|0;e=i+104|0;j=i+240|0;k=i+224|0;l=i+160|0;m=i+140|0;n=i+248|0;o=i+72|0;p=i+40|0;q=i+128|0;r=i;s=i+232|0;t=i+220|0;v=i+216|0;w=i+212|0;x=i+208|0;y=i+152|0;z=f[a+28>>2]|0;A=f[a+32>>2]|0;B=l;C=B+48|0;do{f[B>>2]=0;B=B+4|0}while((B|0)<(C|0));if(!g){D=0;E=0}else{oi(l,g);D=f[l+12>>2]|0;E=f[l+16>>2]|0}B=l+16|0;C=E-D>>2;F=D;D=E;if(C>>>0>=g>>>0){if(C>>>0>g>>>0?(E=F+(g<<2)|0,(E|0)!=(D|0)):0)f[B>>2]=D+(~((D+-4-E|0)>>>2)<<2)}else oi(l+12|0,g-C|0);C=l+24|0;E=l+28|0;D=f[E>>2]|0;B=f[C>>2]|0;F=D-B>>2;G=B;B=D;if(F>>>0>=g>>>0){if(F>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[E>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else oi(C,g-F|0);F=l+36|0;C=l+40|0;D=f[C>>2]|0;B=f[F>>2]|0;E=D-B>>2;G=B;B=D;if(E>>>0>=g>>>0){if(E>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[C>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else oi(F,g-E|0);f[m>>2]=0;E=m+4|0;f[E>>2]=0;f[m+8>>2]=0;F=(g|0)==0;do if(!F)if(g>>>0>1073741823)mq(m);else{D=g<<2;B=dn(D)|0;f[m>>2]=B;C=B+(g<<2)|0;f[m+8>>2]=C;hj(B|0,0,D|0)|0;f[E>>2]=C;break}while(0);C=a+136|0;D=a+140|0;B=f[D>>2]|0;G=f[C>>2]|0;H=B-G>>2;L=G;G=B;if(H>>>0>=g>>>0){if(H>>>0>g>>>0?(B=L+(g<<2)|0,(B|0)!=(G|0)):0)f[D>>2]=G+(~((G+-4-B|0)>>>2)<<2)}else oi(C,g-H|0);f[o>>2]=0;f[o+4>>2]=0;f[o+8>>2]=0;f[o+12>>2]=0;f[o+16>>2]=0;f[o+20>>2]=0;f[o+24>>2]=0;f[o+28>>2]=0;f[p>>2]=0;f[p+4>>2]=0;f[p+8>>2]=0;f[p+12>>2]=0;f[p+16>>2]=0;f[p+20>>2]=0;f[p+24>>2]=0;f[p+28>>2]=0;f[q>>2]=0;H=q+4|0;f[H>>2]=0;f[q+8>>2]=0;if(F){M=0;N=0;O=0;P=0}else{F=g<<2;B=dn(F)|0;f[q>>2]=B;G=B+(g<<2)|0;f[q+8>>2]=G;hj(B|0,0,F|0)|0;f[H>>2]=G;M=B;N=G;O=G;P=B}B=a+36|0;G=f[B>>2]|0;F=f[G+4>>2]|0;D=f[G>>2]|0;L=F-D|0;a:do if((L|0)>4){Q=L>>>2;R=z+12|0;S=(g|0)>0;T=r+4|0;U=r+8|0;V=r+12|0;Z=a+136|0;_=a+96|0;$=r+16|0;aa=r+28|0;ba=a+8|0;ca=j+4|0;da=k+4|0;ea=e+4|0;fa=r+28|0;ga=r+16|0;ha=r+20|0;ia=r+32|0;ja=n+1|0;ka=g<<2;la=(g|0)==1;ma=Q+-1|0;if(F-D>>2>>>0>ma>>>0){na=Q;oa=ma;pa=M;qa=P;ra=O;sa=M;ta=N;ua=M;va=N;wa=D}else{xa=G;mq(xa)}b:while(1){ma=f[wa+(oa<<2)>>2]|0;Q=(((ma>>>0)%3|0|0)==0?2:-1)+ma|0;ya=(ma|0)==-1|(Q|0)==-1;za=1;Aa=0;Ba=ma;c:while(1){Ca=za^1;Da=Aa;Ea=Ba;while(1){if((Ea|0)==-1){Fa=Da;break c}Ga=f[l+(Da*12|0)>>2]|0;Ha=f[R>>2]|0;Ia=f[Ha+(Ea<<2)>>2]|0;if((Ia|0)!=-1){Ja=f[z>>2]|0;Ka=f[A>>2]|0;La=f[Ka+(f[Ja+(Ia<<2)>>2]<<2)>>2]|0;Ma=Ia+1|0;Na=((Ma>>>0)%3|0|0)==0?Ia+-2|0:Ma;if((Na|0)==-1)Oa=-1;else Oa=f[Ja+(Na<<2)>>2]|0;Na=f[Ka+(Oa<<2)>>2]|0;Ma=(((Ia>>>0)%3|0|0)==0?2:-1)+Ia|0;if((Ma|0)==-1)Pa=-1;else Pa=f[Ja+(Ma<<2)>>2]|0;Ma=f[Ka+(Pa<<2)>>2]|0;if((La|0)<(oa|0)&(Na|0)<(oa|0)&(Ma|0)<(oa|0)){Ka=X(La,g)|0;La=X(Na,g)|0;Na=X(Ma,g)|0;if(S){Ma=0;do{f[Ga+(Ma<<2)>>2]=(f[c+(Ma+Na<<2)>>2]|0)+(f[c+(Ma+La<<2)>>2]|0)-(f[c+(Ma+Ka<<2)>>2]|0);Ma=Ma+1|0}while((Ma|0)!=(g|0))}Ma=Da+1|0;if((Ma|0)==4){Fa=4;break c}else Qa=Ma}else Qa=Da}else Qa=Da;do if(za){Ma=Ea+1|0;Ka=((Ma>>>0)%3|0|0)==0?Ea+-2|0:Ma;if((Ka|0)!=-1?(Ma=f[Ha+(Ka<<2)>>2]|0,Ka=Ma+1|0,(Ma|0)!=-1):0)Ra=((Ka>>>0)%3|0|0)==0?Ma+-2|0:Ka;else Ra=-1}else{Ka=(((Ea>>>0)%3|0|0)==0?2:-1)+Ea|0;if((Ka|0)!=-1?(Ma=f[Ha+(Ka<<2)>>2]|0,(Ma|0)!=-1):0)if(!((Ma>>>0)%3|0)){Ra=Ma+2|0;break}else{Ra=Ma+-1|0;break}else Ra=-1}while(0);if((Ra|0)==(ma|0)){Fa=Qa;break c}if((Ra|0)!=-1|Ca){Da=Qa;Ea=Ra}else break}if(ya){za=0;Aa=Qa;Ba=-1;continue}Ea=f[Ha+(Q<<2)>>2]|0;if((Ea|0)==-1){za=0;Aa=Qa;Ba=-1;continue}if(!((Ea>>>0)%3|0)){za=0;Aa=Qa;Ba=Ea+2|0;continue}else{za=0;Aa=Qa;Ba=Ea+-1|0;continue}}Ba=X(oa,g)|0;f[r>>2]=0;f[T>>2]=0;b[U>>0]=0;f[V>>2]=0;f[V+4>>2]=0;f[V+8>>2]=0;f[V+12>>2]=0;f[V+16>>2]=0;f[V+20>>2]=0;f[V+24>>2]=0;Aa=c+((X(na+-2|0,g)|0)<<2)|0;za=c+(Ba<<2)|0;Q=f[Z>>2]|0;if(S){ya=0;ma=0;while(1){Ea=(f[Aa+(ya<<2)>>2]|0)-(f[za+(ya<<2)>>2]|0)|0;Da=((Ea|0)>-1?Ea:0-Ea|0)+ma|0;f[pa+(ya<<2)>>2]=Ea;f[Q+(ya<<2)>>2]=Ea<<1^Ea>>31;ya=ya+1|0;if((ya|0)==(g|0)){Sa=Da;break}else ma=Da}}else Sa=0;ho(e,_,Q,g);ma=Tk(e)|0;ya=I;Da=om(e)|0;Ea=Tn(Da|0,I|0,ma|0,ya|0)|0;ya=I;ma=(Fa|0)>0;if(ma){Da=Fa+-1|0;Ca=p+(Da<<3)|0;Ma=Ca;Ka=Tn(f[Ma>>2]|0,f[Ma+4>>2]|0,Fa|0,((Fa|0)<0)<<31>>31|0)|0;Ma=I;La=Ca;f[La>>2]=Ka;f[La+4>>2]=Ma;Ta=+W(+(+jm(Ka,f[o+(Da<<3)>>2]|0)*(+(Ka>>>0)+4294967296.0*+(Ma|0))));Ma=Tn(Ea|0,ya|0,~~Ta>>>0|0,(+K(Ta)>=1.0?(Ta>0.0?~~+Y(+J(Ta/4294967296.0),4294967295.0)>>>0:~~+W((Ta-+(~~Ta>>>0))/4294967296.0)>>>0):0)|0)|0;Ua=Ma}else Ua=Ea;Ea=r;f[Ea>>2]=Ua;f[Ea+4>>2]=Sa;b[U>>0]=0;f[V>>2]=0;Mf($,Aa,Aa+(g<<2)|0);f[s>>2]=qa;f[t>>2]=ra;f[j>>2]=f[s>>2];f[e>>2]=f[t>>2];tf(aa,j,e);if((Fa|0)<1){Va=va;Wa=ua;Xa=ta;Ya=sa;Za=ra;_a=qa;$a=qa}else{Ea=n+Fa|0;Ma=f[q>>2]|0;ya=Fa+-1|0;Ka=o+(ya<<3)|0;Da=p+(ya<<3)|0;ya=Ma;La=f[H>>2]|0;Ca=Ea+-1|0;Na=(Ca|0)==(n|0);Ga=Ea+-2|0;Ja=ja>>>0>>0;Ia=~Fa;ab=Fa+2+((Ia|0)>-2?Ia:-2)|0;Ia=La;bb=Ca>>>0>n>>>0;cb=0;db=1;while(1){cb=cb+1|0;hj(n|0,1,ab|0)|0;hj(n|0,0,cb|0)|0;d:while(1){if(S){hj(f[m>>2]|0,0,ka|0)|0;eb=f[m>>2]|0;fb=0;gb=0;while(1){if(!(b[n+fb>>0]|0)){hb=f[l+(fb*12|0)>>2]|0;ib=0;do{jb=eb+(ib<<2)|0;f[jb>>2]=(f[jb>>2]|0)+(f[hb+(ib<<2)>>2]|0);ib=ib+1|0}while((ib|0)!=(g|0));kb=(1<>0]|0))mb=(1<>2]|0;do if(S){f[fb>>2]=(f[fb>>2]|0)/(db|0)|0;if(!la){gb=1;do{eb=fb+(gb<<2)|0;f[eb>>2]=(f[eb>>2]|0)/(db|0)|0;gb=gb+1|0}while((gb|0)!=(g|0));gb=f[Z>>2]|0;if(S)nb=gb;else{ob=0;pb=gb;break}}else nb=f[Z>>2]|0;gb=0;eb=0;while(1){ib=(f[fb+(gb<<2)>>2]|0)-(f[za+(gb<<2)>>2]|0)|0;hb=((ib|0)>-1?ib:0-ib|0)+eb|0;f[Ma+(gb<<2)>>2]=ib;f[nb+(gb<<2)>>2]=ib<<1^ib>>31;gb=gb+1|0;if((gb|0)==(g|0)){ob=hb;pb=nb;break}else eb=hb}}else{ob=0;pb=f[Z>>2]|0}while(0);ho(e,_,pb,g);fb=Tk(e)|0;eb=I;gb=om(e)|0;hb=Tn(gb|0,I|0,fb|0,eb|0)|0;eb=I;if(ma){fb=Ka;gb=Tn(f[fb>>2]|0,f[fb+4>>2]|0,db|0,0)|0;fb=Da;ib=f[fb>>2]|0;jb=f[fb+4>>2]|0;Ta=+W(+(+jm(ib,gb)*(+(ib>>>0)+4294967296.0*+(jb|0))));jb=Tn(hb|0,eb|0,~~Ta>>>0|0,(+K(Ta)>=1.0?(Ta>0.0?~~+Y(+J(Ta/4294967296.0),4294967295.0)>>>0:~~+W((Ta-+(~~Ta>>>0))/4294967296.0)>>>0):0)|0)|0;qb=jb}else qb=hb;hb=f[r>>2]|0;if(!((qb|0)>=(hb|0)?!((qb|0)<=(hb|0)?(ob|0)<(f[T>>2]|0):0):0)){hb=r;f[hb>>2]=qb;f[hb+4>>2]=ob;b[U>>0]=lb;f[V>>2]=db;f[v>>2]=f[m>>2];f[w>>2]=f[E>>2];f[j>>2]=f[v>>2];f[e>>2]=f[w>>2];tf($,j,e);f[x>>2]=ya;f[y>>2]=La;f[j>>2]=f[x>>2];f[e>>2]=f[y>>2];tf(aa,j,e)}if(Na)break;rb=b[Ca>>0]|0;hb=-1;jb=rb;while(1){eb=hb+-1|0;sb=Ea+eb|0;ib=jb;jb=b[sb>>0]|0;if((jb&255)<(ib&255))break;if((sb|0)==(n|0)){tb=86;break d}else hb=eb}eb=Ea+hb|0;if((jb&255)<(rb&255)){ub=Ca;vb=rb}else{ib=Ea;gb=Ca;while(1){fb=gb+-1|0;if((jb&255)<(h[ib+-2>>0]|0)){ub=fb;vb=1;break}else{wb=gb;gb=fb;ib=wb}}}b[sb>>0]=vb;b[ub>>0]=jb;if((hb|0)<-1){xb=eb;yb=Ca}else continue;while(1){ib=b[xb>>0]|0;b[xb>>0]=b[yb>>0]|0;b[yb>>0]=ib;ib=xb+1|0;gb=yb+-1|0;if(ib>>>0>>0){xb=ib;yb=gb}else continue d}}if(((tb|0)==86?(tb=0,bb):0)?(eb=b[n>>0]|0,b[n>>0]=rb,b[Ca>>0]=eb,Ja):0){eb=Ga;hb=ja;do{jb=b[hb>>0]|0;b[hb>>0]=b[eb>>0]|0;b[eb>>0]=jb;hb=hb+1|0;eb=eb+-1|0}while(hb>>>0>>0)}if((db|0)>=(Fa|0)){Va=Ia;Wa=Ma;Xa=Ia;Ya=Ma;Za=La;_a=ya;$a=Ma;break}else db=db+1|0}}if(ma){db=f[V>>2]|0;Ma=o+(Fa+-1<<3)|0;ya=Ma;La=Tn(f[ya>>2]|0,f[ya+4>>2]|0,db|0,((db|0)<0)<<31>>31|0)|0;db=Ma;f[db>>2]=La;f[db+4>>2]=I}if(S){db=f[aa>>2]|0;La=f[C>>2]|0;Ma=0;do{ya=f[db+(Ma<<2)>>2]|0;f[La+(Ma<<2)>>2]=ya<<1^ya>>31;Ma=Ma+1|0}while((Ma|0)!=(g|0));zb=La}else zb=f[C>>2]|0;go(e,_,zb,g);if(ma){La=Fa+-1|0;Ab=a+40+(La*12|0)|0;Ma=a+40+(La*12|0)+4|0;db=a+40+(La*12|0)+8|0;La=0;do{ya=f[Ma>>2]|0;Ia=f[db>>2]|0;Ga=(ya|0)==(Ia<<5|0);if(!(1<>0])){if(Ga){if((ya+1|0)<0){tb=101;break b}Ja=Ia<<6;Ca=ya+32&-32;hi(Ab,ya>>>0<1073741823?(Ja>>>0>>0?Ca:Ja):2147483647);Bb=f[Ma>>2]|0}else Bb=ya;f[Ma>>2]=Bb+1;Ja=(f[Ab>>2]|0)+(Bb>>>5<<2)|0;f[Ja>>2]=f[Ja>>2]|1<<(Bb&31)}else{if(Ga){if((ya+1|0)<0){tb=106;break b}Ga=Ia<<6;Ia=ya+32&-32;hi(Ab,ya>>>0<1073741823?(Ga>>>0>>0?Ia:Ga):2147483647);Cb=f[Ma>>2]|0}else Cb=ya;f[Ma>>2]=Cb+1;ya=(f[Ab>>2]|0)+(Cb>>>5<<2)|0;f[ya>>2]=f[ya>>2]&~(1<<(Cb&31))}La=La+1|0}while((La|0)<(Fa|0))}La=f[$>>2]|0;Ma=d+(Ba<<2)|0;db=f[za+4>>2]|0;ma=f[La>>2]|0;ya=f[La+4>>2]|0;f[j>>2]=f[za>>2];f[ca>>2]=db;f[k>>2]=ma;f[da>>2]=ya;Dd(e,ba,j,k);f[Ma>>2]=f[e>>2];f[Ma+4>>2]=f[ea>>2];Ma=f[fa>>2]|0;if(Ma|0){ya=f[ia>>2]|0;if((ya|0)!=(Ma|0))f[ia>>2]=ya+(~((ya+-4-Ma|0)>>>2)<<2);br(Ma)}Ma=f[ga>>2]|0;if(Ma|0){ya=f[ha>>2]|0;if((ya|0)!=(Ma|0))f[ha>>2]=ya+(~((ya+-4-Ma|0)>>>2)<<2);br(Ma)}if((na|0)<=2){Db=Ya;Eb=Xa;break a}Ma=f[B>>2]|0;wa=f[Ma>>2]|0;ya=oa+-1|0;if((f[Ma+4>>2]|0)-wa>>2>>>0<=ya>>>0){xa=Ma;tb=18;break}else{Ma=oa;oa=ya;pa=$a;qa=_a;ra=Za;sa=Ya;ta=Xa;ua=Wa;va=Va;na=Ma}}if((tb|0)==18)mq(xa);else if((tb|0)==101)mq(Ab);else if((tb|0)==106)mq(Ab)}else{Db=M;Eb=N}while(0);if((g|0)>0)hj(f[l>>2]|0,0,g<<2|0)|0;g=f[l>>2]|0;N=f[c+4>>2]|0;M=f[g>>2]|0;Ab=f[g+4>>2]|0;f[j>>2]=f[c>>2];f[j+4>>2]=N;f[k>>2]=M;f[k+4>>2]=Ab;Dd(e,a+8|0,j,k);f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];if(Db|0){if((Eb|0)!=(Db|0))f[H>>2]=Eb+(~((Eb+-4-Db|0)>>>2)<<2);br(Db)}Db=f[m>>2]|0;if(Db|0){m=f[E>>2]|0;if((m|0)!=(Db|0))f[E>>2]=m+(~((m+-4-Db|0)>>>2)<<2);br(Db)}Db=f[l+36>>2]|0;if(Db|0){m=l+40|0;E=f[m>>2]|0;if((E|0)!=(Db|0))f[m>>2]=E+(~((E+-4-Db|0)>>>2)<<2);br(Db)}Db=f[l+24>>2]|0;if(Db|0){E=l+28|0;m=f[E>>2]|0;if((m|0)!=(Db|0))f[E>>2]=m+(~((m+-4-Db|0)>>>2)<<2);br(Db)}Db=f[l+12>>2]|0;if(Db|0){m=l+16|0;E=f[m>>2]|0;if((E|0)!=(Db|0))f[m>>2]=E+(~((E+-4-Db|0)>>>2)<<2);br(Db)}Db=f[l>>2]|0;if(!Db){u=i;return 1}E=l+4|0;l=f[E>>2]|0;if((l|0)!=(Db|0))f[E>>2]=l+(~((l+-4-Db|0)>>>2)<<2);br(Db);u=i;return 1}function fb(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0,Sa=0,Ta=0,Ua=0,Va=0,Wa=0,Xa=0,Ya=0,Za=0,_a=0,$a=0,ab=0,bb=0,cb=0,db=0,eb=0,fb=0,gb=0,hb=0,ib=0,jb=0,kb=0,lb=0,mb=0,nb=0,ob=0,pb=0,qb=0,rb=0,sb=0,tb=0,ub=0,vb=0,wb=0,xb=0,yb=0,zb=0,Ab=0,Bb=0,Cb=0,Db=0,Eb=0,Fb=0,Gb=0,Hb=0,Ib=0,Jb=0,Kb=0,Lb=0,Mb=0,Nb=0,Ob=0,Pb=0,Qb=0,Rb=0,Sb=0,Tb=0,Ub=0,Vb=0,Wb=0,Xb=0,Yb=0,Zb=0,_b=0;c=u;u=u+32|0;d=c+16|0;e=c+4|0;g=c;f[a+36>>2]=b;h=a+24|0;i=a+28|0;j=f[i>>2]|0;k=f[h>>2]|0;l=j-k>>2;m=k;k=j;if(l>>>0>=b>>>0){if(l>>>0>b>>>0?(j=m+(b<<2)|0,(j|0)!=(k|0)):0)f[i>>2]=k+(~((k+-4-j|0)>>>2)<<2)}else kh(h,b-l|0,5828);f[d>>2]=0;l=d+4|0;f[l>>2]=0;j=d+8|0;f[j>>2]=0;if(b){if((b|0)<0)mq(d);k=((b+-1|0)>>>5)+1|0;m=dn(k<<2)|0;f[d>>2]=m;f[j>>2]=k;f[l>>2]=b;k=b>>>5;hj(m|0,0,k<<2|0)|0;n=b&31;o=m+(k<<2)|0;k=m;if(!n){p=b;q=k;r=m}else{f[o>>2]=f[o>>2]&~(-1>>>(32-n|0));p=b;q=k;r=m}}else{p=0;q=0;r=0}m=a+4|0;k=f[a>>2]|0;n=(f[m>>2]|0)-k|0;o=n>>2;f[e>>2]=0;s=e+4|0;f[s>>2]=0;t=e+8|0;f[t>>2]=0;do if(o){if((n|0)<0)mq(e);v=((o+-1|0)>>>5)+1|0;w=dn(v<<2)|0;f[e>>2]=w;f[t>>2]=v;f[s>>2]=o;v=o>>>5;hj(w|0,0,v<<2|0)|0;x=o&31;y=w+(v<<2)|0;if(x|0)f[y>>2]=f[y>>2]&~(-1>>>(32-x|0));if(o>>>0>2){x=a+12|0;y=a+32|0;v=a+52|0;w=a+56|0;z=a+48|0;A=b;B=k;C=0;D=q;E=r;a:while(1){F=B;G=C*3|0;if((G|0)!=-1){H=f[F+(G<<2)>>2]|0;I=G+1|0;J=((I>>>0)%3|0|0)==0?G+-2|0:I;if((J|0)==-1)K=-1;else K=f[F+(J<<2)>>2]|0;J=(((G>>>0)%3|0|0)==0?2:-1)+G|0;if((J|0)==-1)L=-1;else L=f[F+(J<<2)>>2]|0;if((H|0)!=(K|0)?!((H|0)==(L|0)|(K|0)==(L|0)):0){H=0;J=A;F=E;I=D;while(1){M=H+G|0;if(!(f[(f[e>>2]|0)+(M>>>5<<2)>>2]&1<<(M&31))){N=f[(f[a>>2]|0)+(M<<2)>>2]|0;f[g>>2]=N;if(!(f[F+(N>>>5<<2)>>2]&1<<(N&31))){O=0;P=J;Q=N}else{N=f[i>>2]|0;if((N|0)==(f[y>>2]|0))Ci(h,5828);else{f[N>>2]=-1;f[i>>2]=N+4}N=f[v>>2]|0;if((N|0)==(f[w>>2]|0))Ci(z,g);else{f[N>>2]=f[g>>2];f[v>>2]=N+4}N=f[l>>2]|0;R=f[j>>2]|0;if((N|0)==(R<<5|0)){if((N+1|0)<0){S=50;break a}T=R<<6;R=N+32&-32;hi(d,N>>>0<1073741823?(T>>>0>>0?R:T):2147483647);U=f[l>>2]|0}else U=N;f[l>>2]=U+1;N=(f[d>>2]|0)+(U>>>5<<2)|0;f[N>>2]=f[N>>2]&~(1<<(U&31));f[g>>2]=J;O=1;P=J+1|0;Q=J}N=f[d>>2]|0;T=N+(Q>>>5<<2)|0;f[T>>2]=f[T>>2]|1<<(Q&31);T=N;b:do if(O){R=M;while(1){if((R|0)==-1){S=64;break b}V=(f[e>>2]|0)+(R>>>5<<2)|0;f[V>>2]=f[V>>2]|1<<(R&31);V=f[g>>2]|0;f[(f[h>>2]|0)+(V<<2)>>2]=R;f[(f[a>>2]|0)+(R<<2)>>2]=V;V=R+1|0;W=((V>>>0)%3|0|0)==0?R+-2|0:V;do if((W|0)==-1)X=-1;else{V=f[(f[x>>2]|0)+(W<<2)>>2]|0;Y=V+1|0;if((V|0)==-1){X=-1;break}X=((Y>>>0)%3|0|0)==0?V+-2|0:Y}while(0);if((X|0)==(M|0))break;else R=X}}else{R=M;while(1){if((R|0)==-1){S=64;break b}W=(f[e>>2]|0)+(R>>>5<<2)|0;f[W>>2]=f[W>>2]|1<<(R&31);f[(f[h>>2]|0)+(f[g>>2]<<2)>>2]=R;W=R+1|0;Y=((W>>>0)%3|0|0)==0?R+-2|0:W;do if((Y|0)==-1)Z=-1;else{W=f[(f[x>>2]|0)+(Y<<2)>>2]|0;V=W+1|0;if((W|0)==-1){Z=-1;break}Z=((V>>>0)%3|0|0)==0?W+-2|0:V}while(0);if((Z|0)==(M|0))break;else R=Z}}while(0);c:do if((S|0)==64){S=0;if((M|0)==-1)break;R=(((M>>>0)%3|0|0)==0?2:-1)+M|0;if((R|0)==-1)break;Y=f[(f[x>>2]|0)+(R<<2)>>2]|0;if((Y|0)==-1)break;R=Y+(((Y>>>0)%3|0|0)==0?2:-1)|0;if((R|0)==-1)break;if(!O){Y=R;while(1){V=(f[e>>2]|0)+(Y>>>5<<2)|0;f[V>>2]=f[V>>2]|1<<(Y&31);V=(((Y>>>0)%3|0|0)==0?2:-1)+Y|0;if((V|0)==-1)break c;W=f[(f[x>>2]|0)+(V<<2)>>2]|0;if((W|0)==-1)break c;Y=W+(((W>>>0)%3|0|0)==0?2:-1)|0;if((Y|0)==-1)break c}}Y=f[a>>2]|0;W=R;do{V=(f[e>>2]|0)+(W>>>5<<2)|0;f[V>>2]=f[V>>2]|1<<(W&31);f[Y+(W<<2)>>2]=f[g>>2];V=(((W>>>0)%3|0|0)==0?2:-1)+W|0;if((V|0)==-1)break c;_=f[(f[x>>2]|0)+(V<<2)>>2]|0;if((_|0)==-1)break c;W=_+(((_>>>0)%3|0|0)==0?2:-1)|0}while((W|0)!=-1)}while(0);$=P;aa=T;ba=N}else{$=J;aa=I;ba=F}if((H|0)<2){H=H+1|0;J=$;F=ba;I=aa}else{ca=$;da=aa;ea=ba;break}}}else{ca=A;da=D;ea=E}}else{ca=A;da=D;ea=E}C=C+1|0;B=f[a>>2]|0;if(C>>>0>=(((f[m>>2]|0)-B>>2>>>0)/3|0)>>>0){S=18;break}else{A=ca;D=da;E=ea}}if((S|0)==18){fa=da;ga=f[l>>2]|0;break}else if((S|0)==50)mq(d)}else{fa=q;ga=p}}else{fa=q;ga=p}while(0);p=a+44|0;f[p>>2]=0;a=fa;fa=ga>>>5;q=a+(fa<<2)|0;S=ga&31;ga=(fa|0)!=0;d:do if(fa|S|0)if(!S){l=a;da=0;ea=ga;while(1){e:do if(ea){if(!(f[l>>2]&1)){ca=da+1|0;f[p>>2]=ca;ha=ca}else ha=da;if(!(f[l>>2]&2)){ca=ha+1|0;f[p>>2]=ca;ia=ca}else ia=ha;if(!(f[l>>2]&4)){ca=ia+1|0;f[p>>2]=ca;ja=ca}else ja=ia;if(!(f[l>>2]&8)){ca=ja+1|0;f[p>>2]=ca;ka=ca}else ka=ja;if(!(f[l>>2]&16)){ca=ka+1|0;f[p>>2]=ca;la=ca}else la=ka;if(!(f[l>>2]&32)){ca=la+1|0;f[p>>2]=ca;ma=ca}else ma=la;if(!(f[l>>2]&64)){ca=ma+1|0;f[p>>2]=ca;na=ca}else na=ma;if(!(f[l>>2]&128)){ca=na+1|0;f[p>>2]=ca;oa=ca}else oa=na;if(!(f[l>>2]&256)){ca=oa+1|0;f[p>>2]=ca;pa=ca}else pa=oa;if(!(f[l>>2]&512)){ca=pa+1|0;f[p>>2]=ca;qa=ca}else qa=pa;if(!(f[l>>2]&1024)){ca=qa+1|0;f[p>>2]=ca;ra=ca}else ra=qa;if(!(f[l>>2]&2048)){ca=ra+1|0;f[p>>2]=ca;sa=ca}else sa=ra;if(!(f[l>>2]&4096)){ca=sa+1|0;f[p>>2]=ca;ta=ca}else ta=sa;if(!(f[l>>2]&8192)){ca=ta+1|0;f[p>>2]=ca;ua=ca}else ua=ta;if(!(f[l>>2]&16384)){ca=ua+1|0;f[p>>2]=ca;va=ca}else va=ua;if(!(f[l>>2]&32768)){ca=va+1|0;f[p>>2]=ca;wa=ca}else wa=va;if(!(f[l>>2]&65536)){ca=wa+1|0;f[p>>2]=ca;xa=ca}else xa=wa;if(!(f[l>>2]&131072)){ca=xa+1|0;f[p>>2]=ca;ya=ca}else ya=xa;if(!(f[l>>2]&262144)){ca=ya+1|0;f[p>>2]=ca;za=ca}else za=ya;if(!(f[l>>2]&524288)){ca=za+1|0;f[p>>2]=ca;Aa=ca}else Aa=za;if(!(f[l>>2]&1048576)){ca=Aa+1|0;f[p>>2]=ca;Ba=ca}else Ba=Aa;if(!(f[l>>2]&2097152)){ca=Ba+1|0;f[p>>2]=ca;Ca=ca}else Ca=Ba;if(!(f[l>>2]&4194304)){ca=Ca+1|0;f[p>>2]=ca;Da=ca}else Da=Ca;if(!(f[l>>2]&8388608)){ca=Da+1|0;f[p>>2]=ca;Ea=ca}else Ea=Da;if(!(f[l>>2]&16777216)){ca=Ea+1|0;f[p>>2]=ca;Fa=ca}else Fa=Ea;if(!(f[l>>2]&33554432)){ca=Fa+1|0;f[p>>2]=ca;Ga=ca}else Ga=Fa;if(!(f[l>>2]&67108864)){ca=Ga+1|0;f[p>>2]=ca;Ha=ca}else Ha=Ga;if(!(f[l>>2]&134217728)){ca=Ha+1|0;f[p>>2]=ca;Ia=ca}else Ia=Ha;if(!(f[l>>2]&268435456)){ca=Ia+1|0;f[p>>2]=ca;Ja=ca}else Ja=Ia;if(!(f[l>>2]&536870912)){ca=Ja+1|0;f[p>>2]=ca;Ka=ca}else Ka=Ja;if(!(f[l>>2]&1073741824)){ca=Ka+1|0;f[p>>2]=ca;La=ca}else La=Ka;if((f[l>>2]|0)<=-1){Ma=La;break}ca=La+1|0;f[p>>2]=ca;Ma=ca}else{ca=0;m=da;while(1){if(!(f[l>>2]&1<>2]=ba;Na=ba}else Na=m;if((ca|0)==31){Ma=Na;break e}ca=ca+1|0;if(!ca)break d;else m=Na}}while(0);l=l+4|0;if((q|0)==(l|0))break;else{da=Ma;ea=1}}}else{if(ga){ea=0;da=a;l=0;while(1){if(!(f[da>>2]&1)){m=l+1|0;f[p>>2]=m;Oa=m;Pa=m}else{Oa=l;Pa=ea}if(!(f[da>>2]&2)){m=Oa+1|0;f[p>>2]=m;Qa=m;Ra=m}else{Qa=Oa;Ra=Pa}if(!(f[da>>2]&4)){m=Qa+1|0;f[p>>2]=m;Sa=m;Ta=m}else{Sa=Qa;Ta=Ra}if(!(f[da>>2]&8)){m=Sa+1|0;f[p>>2]=m;Ua=m;Va=m}else{Ua=Sa;Va=Ta}if(!(f[da>>2]&16)){m=Ua+1|0;f[p>>2]=m;Wa=m;Xa=m}else{Wa=Ua;Xa=Va}if(!(f[da>>2]&32)){m=Wa+1|0;f[p>>2]=m;Ya=m;Za=m}else{Ya=Wa;Za=Xa}if(!(f[da>>2]&64)){m=Ya+1|0;f[p>>2]=m;_a=m;$a=m}else{_a=Ya;$a=Za}if(!(f[da>>2]&128)){m=_a+1|0;f[p>>2]=m;ab=m;bb=m}else{ab=_a;bb=$a}if(!(f[da>>2]&256)){m=ab+1|0;f[p>>2]=m;cb=m;db=m}else{cb=ab;db=bb}if(!(f[da>>2]&512)){m=cb+1|0;f[p>>2]=m;eb=m;fb=m}else{eb=cb;fb=db}if(!(f[da>>2]&1024)){m=eb+1|0;f[p>>2]=m;gb=m;hb=m}else{gb=eb;hb=fb}if(!(f[da>>2]&2048)){m=gb+1|0;f[p>>2]=m;ib=m;jb=m}else{ib=gb;jb=hb}if(!(f[da>>2]&4096)){m=ib+1|0;f[p>>2]=m;kb=m;lb=m}else{kb=ib;lb=jb}if(!(f[da>>2]&8192)){m=kb+1|0;f[p>>2]=m;mb=m;nb=m}else{mb=kb;nb=lb}if(!(f[da>>2]&16384)){m=mb+1|0;f[p>>2]=m;ob=m;pb=m}else{ob=mb;pb=nb}if(!(f[da>>2]&32768)){m=ob+1|0;f[p>>2]=m;qb=m;rb=m}else{qb=ob;rb=pb}if(!(f[da>>2]&65536)){m=qb+1|0;f[p>>2]=m;sb=m;tb=m}else{sb=qb;tb=rb}if(!(f[da>>2]&131072)){m=sb+1|0;f[p>>2]=m;ub=m;vb=m}else{ub=sb;vb=tb}if(!(f[da>>2]&262144)){m=ub+1|0;f[p>>2]=m;wb=m;xb=m}else{wb=ub;xb=vb}if(!(f[da>>2]&524288)){m=wb+1|0;f[p>>2]=m;yb=m;zb=m}else{yb=wb;zb=xb}if(!(f[da>>2]&1048576)){m=yb+1|0;f[p>>2]=m;Ab=m;Bb=m}else{Ab=yb;Bb=zb}if(!(f[da>>2]&2097152)){m=Ab+1|0;f[p>>2]=m;Cb=m;Db=m}else{Cb=Ab;Db=Bb}if(!(f[da>>2]&4194304)){m=Cb+1|0;f[p>>2]=m;Eb=m;Fb=m}else{Eb=Cb;Fb=Db}if(!(f[da>>2]&8388608)){m=Eb+1|0;f[p>>2]=m;Gb=m;Hb=m}else{Gb=Eb;Hb=Fb}if(!(f[da>>2]&16777216)){m=Gb+1|0;f[p>>2]=m;Ib=m;Jb=m}else{Ib=Gb;Jb=Hb}if(!(f[da>>2]&33554432)){m=Ib+1|0;f[p>>2]=m;Kb=m;Lb=m}else{Kb=Ib;Lb=Jb}if(!(f[da>>2]&67108864)){m=Kb+1|0;f[p>>2]=m;Mb=m;Nb=m}else{Mb=Kb;Nb=Lb}if(!(f[da>>2]&134217728)){m=Mb+1|0;f[p>>2]=m;Ob=m;Pb=m}else{Ob=Mb;Pb=Nb}if(!(f[da>>2]&268435456)){m=Ob+1|0;f[p>>2]=m;Qb=m;Rb=m}else{Qb=Ob;Rb=Pb}if(!(f[da>>2]&536870912)){m=Qb+1|0;f[p>>2]=m;Sb=m;Tb=m}else{Sb=Qb;Tb=Rb}if(!(f[da>>2]&1073741824)){m=Sb+1|0;f[p>>2]=m;Ub=m;Vb=m}else{Ub=Sb;Vb=Tb}if((f[da>>2]|0)>-1){m=Ub+1|0;f[p>>2]=m;Wb=m;Xb=m}else{Wb=Ub;Xb=Vb}m=da+4|0;if((q|0)==(m|0)){Yb=m;Zb=Xb;break}else{ea=Xb;da=m;l=Wb}}}else{Yb=a;Zb=0}l=0;da=Zb;while(1){if(!(f[Yb>>2]&1<>2]=ea;_b=ea}else _b=da;l=l+1|0;if((l|0)==(S|0))break;else da=_b}}while(0);_b=f[e>>2]|0;if(_b|0)br(_b);_b=f[d>>2]|0;if(!_b){u=c;return 1}br(_b);u=c;return 1}function gb(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=Oa,La=0,Ma=0,Na=0,Pa=0,Qa=Oa,Ra=0,Sa=0,Ta=0,Ua=0,Va=0;c=u;u=u+80|0;d=c+60|0;e=c+48|0;g=c+24|0;h=c+12|0;i=c;j=a+28|0;k=f[j>>2]|0;l=f[k+4>>2]|0;m=f[l+80>>2]|0;o=a+4|0;p=a+8|0;q=f[p>>2]|0;r=f[o>>2]|0;s=(q|0)==(r|0);t=r;if(s){f[a+72>>2]=0;v=1;u=c;return v|0}w=f[l+8>>2]|0;x=q-r>>2;r=0;q=0;do{r=r+(b[(f[w+(f[t+(q<<2)>>2]<<2)>>2]|0)+24>>0]|0)|0;q=q+1|0}while(q>>>0>>0);f[a+72>>2]=r;if(s){v=1;u=c;return v|0}s=g+4|0;r=g+8|0;x=d+8|0;q=d+4|0;w=d+11|0;y=g+12|0;z=d+8|0;A=d+4|0;B=d+11|0;C=h+4|0;D=h+8|0;E=i+8|0;F=i+4|0;G=d+11|0;H=d+4|0;I=i+11|0;J=d+8|0;K=d+4|0;L=d+11|0;M=d+11|0;N=d+4|0;O=h+8|0;P=a+40|0;Q=a+44|0;R=a+36|0;S=a+64|0;T=a+68|0;U=a+60|0;V=g+8|0;W=g+20|0;X=e+8|0;Y=e+4|0;Z=e+11|0;_=g+4|0;aa=g+8|0;ba=h+4|0;ca=h+8|0;da=h+8|0;ea=a+52|0;fa=a+56|0;ga=a+48|0;a=g+8|0;ha=0;ia=t;t=l;l=k;a:while(1){k=f[ia+(ha<<2)>>2]|0;ja=f[(f[t+8>>2]|0)+(k<<2)>>2]|0;switch(f[ja+28>>2]|0){case 9:{f[g>>2]=1180;f[s>>2]=-1;f[r>>2]=0;f[r+4>>2]=0;f[r+8>>2]=0;f[r+12>>2]=0;ka=f[l+48>>2]|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;la=dn(32)|0;f[d>>2]=la;f[x>>2]=-2147483616;f[q>>2]=17;ma=la;na=12932;oa=ma+17|0;do{b[ma>>0]=b[na>>0]|0;ma=ma+1|0;na=na+1|0}while((ma|0)<(oa|0));b[la+17>>0]=0;pa=ka+16|0;qa=f[pa>>2]|0;if(qa){ra=pa;sa=qa;b:while(1){qa=sa;while(1){if((f[qa+16>>2]|0)>=(k|0))break;ta=f[qa+4>>2]|0;if(!ta){ua=ra;break b}else qa=ta}sa=f[qa>>2]|0;if(!sa){ua=qa;break}else ra=qa}if(((ua|0)!=(pa|0)?(k|0)>=(f[ua+16>>2]|0):0)?(ra=ua+20|0,(sh(ra,d)|0)!=0):0)va=yk(ra,d,-1)|0;else wa=17}else wa=17;if((wa|0)==17){wa=0;va=yk(ka,d,-1)|0}if((b[w>>0]|0)<0)br(f[d>>2]|0);if((va|0)<1)xa=1;else{ra=f[(f[j>>2]|0)+48>>2]|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;sa=dn(32)|0;f[d>>2]=sa;f[z>>2]=-2147483616;f[A>>2]=19;ma=sa;na=13005;oa=ma+19|0;do{b[ma>>0]=b[na>>0]|0;ma=ma+1|0;na=na+1|0}while((ma|0)<(oa|0));b[sa+19>>0]=0;ka=ra+16|0;pa=f[ka>>2]|0;if(pa){la=ka;ta=pa;c:while(1){pa=ta;while(1){if((f[pa+16>>2]|0)>=(k|0))break;ya=f[pa+4>>2]|0;if(!ya){za=la;break c}else pa=ya}ta=f[pa>>2]|0;if(!ta){za=pa;break}else la=pa}if((za|0)!=(ka|0)?(k|0)>=(f[za+16>>2]|0):0)Aa=za+20|0;else wa=29}else wa=29;if((wa|0)==29){wa=0;Aa=ra}if(!(sh(Aa,d)|0))Ba=0;else{la=f[(f[j>>2]|0)+48>>2]|0;f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;ta=dn(32)|0;f[e>>2]=ta;f[X>>2]=-2147483616;f[Y>>2]=18;ma=ta;na=13025;oa=ma+18|0;do{b[ma>>0]=b[na>>0]|0;ma=ma+1|0;na=na+1|0}while((ma|0)<(oa|0));b[ta+18>>0]=0;ra=la+16|0;ka=f[ra>>2]|0;if(ka){sa=ra;qa=ka;d:while(1){ka=qa;while(1){if((f[ka+16>>2]|0)>=(k|0))break;ya=f[ka+4>>2]|0;if(!ya){Ca=sa;break d}else ka=ya}qa=f[ka>>2]|0;if(!qa){Ca=ka;break}else sa=ka}if((Ca|0)!=(ra|0)?(k|0)>=(f[Ca+16>>2]|0):0)Da=Ca+20|0;else wa=39}else wa=39;if((wa|0)==39){wa=0;Da=la}sa=(sh(Da,e)|0)!=0;if((b[Z>>0]|0)<0)br(f[e>>2]|0);Ba=sa}if((b[B>>0]|0)<0)br(f[d>>2]|0);if(Ba){sa=ja+24|0;qa=b[sa>>0]|0;ta=qa<<24>>24;f[h>>2]=0;f[C>>2]=0;f[D>>2]=0;if(!(qa<<24>>24))Ea=0;else{if(qa<<24>>24<0){wa=48;break a}qa=ta<<2;pa=dn(qa)|0;f[h>>2]=pa;ya=pa+(ta<<2)|0;f[O>>2]=ya;hj(pa|0,0,qa|0)|0;f[C>>2]=ya;Ea=pa}pa=f[(f[j>>2]|0)+48>>2]|0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;ya=dn(32)|0;f[i>>2]=ya;f[E>>2]=-2147483616;f[F>>2]=19;ma=ya;na=13005;oa=ma+19|0;do{b[ma>>0]=b[na>>0]|0;ma=ma+1|0;na=na+1|0}while((ma|0)<(oa|0));b[ya+19>>0]=0;la=b[sa>>0]|0;ra=la<<24>>24;qa=pa+16|0;ta=f[qa>>2]|0;if(ta){Fa=qa;Ga=ta;e:while(1){ta=Ga;while(1){if((f[ta+16>>2]|0)>=(k|0))break;Ha=f[ta+4>>2]|0;if(!Ha){Ia=Fa;break e}else ta=Ha}Ga=f[ta>>2]|0;if(!Ga){Ia=ta;break}else Fa=ta}if(((Ia|0)!=(qa|0)?(k|0)>=(f[Ia+16>>2]|0):0)?(Fa=Ia+20|0,(sh(Fa,i)|0)!=0):0){Ga=zg(Fa,i)|0;if((Ga|0)!=(Ia+24|0)){dj(d,Ga+28|0);Ga=b[M>>0]|0;Fa=Ga<<24>>24<0;if(!((Fa?f[N>>2]|0:Ga&255)|0))Ja=Ga;else{if(la<<24>>24>0){ya=Fa?f[d>>2]|0:d;Fa=0;do{Ka=$(pq(ya,e));ka=ya;ya=f[e>>2]|0;if((ka|0)==(ya|0))break;n[Ea+(Fa<<2)>>2]=Ka;Fa=Fa+1|0}while((Fa|0)<(ra|0));La=b[M>>0]|0}else La=Ga;Ja=La}if(Ja<<24>>24<0)br(f[d>>2]|0)}}else wa=69}else wa=69;if((wa|0)==69?(wa=0,Fa=zg(pa,i)|0,(Fa|0)!=(pa+4|0)):0){dj(d,Fa+28|0);Fa=b[G>>0]|0;ya=Fa<<24>>24<0;if(!((ya?f[H>>2]|0:Fa&255)|0))Ma=Fa;else{if(la<<24>>24>0){qa=ya?f[d>>2]|0:d;ya=0;do{Ka=$(pq(qa,e));ka=qa;qa=f[e>>2]|0;if((ka|0)==(qa|0))break;n[Ea+(ya<<2)>>2]=Ka;ya=ya+1|0}while((ya|0)<(ra|0));Na=b[G>>0]|0}else Na=Fa;Ma=Na}if(Ma<<24>>24<0)br(f[d>>2]|0)}if((b[I>>0]|0)<0)br(f[i>>2]|0);ra=f[(f[j>>2]|0)+48>>2]|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;ya=dn(32)|0;f[d>>2]=ya;f[J>>2]=-2147483616;f[K>>2]=18;ma=ya;na=13025;oa=ma+18|0;do{b[ma>>0]=b[na>>0]|0;ma=ma+1|0;na=na+1|0}while((ma|0)<(oa|0));b[ya+18>>0]=0;na=ra+16|0;ma=f[na>>2]|0;do if(ma){oa=na;Fa=ma;f:while(1){qa=Fa;while(1){if((f[qa+16>>2]|0)>=(k|0))break;la=f[qa+4>>2]|0;if(!la){Pa=oa;break f}else qa=la}Fa=f[qa>>2]|0;if(!Fa){Pa=qa;break}else oa=qa}if((Pa|0)!=(na|0)?(k|0)>=(f[Pa+16>>2]|0):0){oa=Pa+20|0;if(!(sh(oa,d)|0)){wa=91;break}Qa=$(kk(oa,d,$(1.0)))}else wa=91}else wa=91;while(0);if((wa|0)==91){wa=0;Qa=$(kk(ra,d,$(1.0)))}if((b[L>>0]|0)<0)br(f[d>>2]|0);wl(g,va,f[h>>2]|0,b[sa>>0]|0,Qa);k=f[h>>2]|0;if(k|0){na=f[C>>2]|0;if((na|0)!=(k|0))f[C>>2]=na+(~((na+-4-k|0)>>>2)<<2);br(k)}}else Kd(g,ja,va)|0;k=f[P>>2]|0;if((k|0)==(f[Q>>2]|0))of(R,g);else{f[k>>2]=1180;f[k+4>>2]=f[s>>2];Ra=k+8|0;f[Ra>>2]=0;na=k+12|0;f[na>>2]=0;f[k+16>>2]=0;ma=(f[y>>2]|0)-(f[V>>2]|0)|0;ya=ma>>2;if(ya|0){if(ya>>>0>1073741823){wa=103;break a}oa=dn(ma)|0;f[na>>2]=oa;f[Ra>>2]=oa;f[k+16>>2]=oa+(ya<<2);ya=f[V>>2]|0;ma=(f[y>>2]|0)-ya|0;if((ma|0)>0){Rg(oa|0,ya|0,ma|0)|0;f[na>>2]=oa+(ma>>>2<<2)}}f[k+20>>2]=f[W>>2];f[P>>2]=(f[P>>2]|0)+24}Re(d,g,ja,m);k=f[S>>2]|0;if(k>>>0<(f[T>>2]|0)>>>0){ma=f[d>>2]|0;f[d>>2]=0;f[k>>2]=ma;f[S>>2]=k+4}else Me(U,d);k=f[d>>2]|0;f[d>>2]=0;if(k|0){ma=k+88|0;oa=f[ma>>2]|0;f[ma>>2]=0;if(oa|0){ma=f[oa+8>>2]|0;if(ma|0){na=oa+12|0;if((f[na>>2]|0)!=(ma|0))f[na>>2]=ma;br(ma)}br(oa)}oa=f[k+68>>2]|0;if(oa|0){ma=k+72|0;na=f[ma>>2]|0;if((na|0)!=(oa|0))f[ma>>2]=na+(~((na+-4-oa|0)>>>2)<<2);br(oa)}oa=k+64|0;na=f[oa>>2]|0;f[oa>>2]=0;if(na|0){oa=f[na>>2]|0;if(oa|0){ma=na+4|0;if((f[ma>>2]|0)!=(oa|0))f[ma>>2]=oa;br(oa)}br(na)}br(k)}xa=0}f[g>>2]=1180;k=f[r>>2]|0;if(k|0){na=f[y>>2]|0;if((na|0)!=(k|0))f[y>>2]=na+(~((na+-4-k|0)>>>2)<<2);br(k)}if(xa|0){v=0;wa=169;break a}break}case 1:case 3:case 5:{k=ja+24|0;na=b[k>>0]|0;oa=na<<24>>24;f[g>>2]=0;f[_>>2]=0;f[aa>>2]=0;if(!(na<<24>>24))Sa=0;else{if(na<<24>>24<0){wa=137;break a}na=dn(oa<<2)|0;f[_>>2]=na;f[g>>2]=na;ma=na+(oa<<2)|0;f[a>>2]=ma;ya=oa;oa=na;while(1){f[oa>>2]=2147483647;ya=ya+-1|0;if(!ya)break;else oa=oa+4|0}f[_>>2]=ma;Sa=b[k>>0]|0}oa=Sa<<24>>24;f[h>>2]=0;f[ba>>2]=0;f[ca>>2]=0;if(!(Sa<<24>>24))Ta=0;else{if(Sa<<24>>24<0){wa=144;break a}ya=oa<<2;sa=dn(ya)|0;f[h>>2]=sa;ra=sa+(oa<<2)|0;f[da>>2]=ra;hj(sa|0,0,ya|0)|0;f[ba>>2]=ra;Ta=sa}sa=ja+80|0;ra=b[k>>0]|0;g:do if(!(f[sa>>2]|0))Ua=ra;else{ya=0;oa=ra;na=Ta;while(1){f[e>>2]=ya;f[d>>2]=f[e>>2];Pb(ja,d,oa,na)|0;Fa=b[k>>0]|0;if(Fa<<24>>24>0){ta=f[g>>2]|0;la=f[h>>2]|0;pa=Fa<<24>>24;Ga=0;do{ka=ta+(Ga<<2)|0;Ha=f[la+(Ga<<2)>>2]|0;if((f[ka>>2]|0)>(Ha|0))f[ka>>2]=Ha;Ga=Ga+1|0}while((Ga|0)<(pa|0))}pa=ya+1|0;if(pa>>>0>=(f[sa>>2]|0)>>>0){Ua=Fa;break g}ya=pa;oa=Fa;na=f[h>>2]|0}}while(0);if(Ua<<24>>24>0){sa=0;ja=Ua;while(1){ra=(f[g>>2]|0)+(sa<<2)|0;ma=f[ea>>2]|0;if((ma|0)==(f[fa>>2]|0)){Ci(ga,ra);Va=b[k>>0]|0}else{f[ma>>2]=f[ra>>2];f[ea>>2]=ma+4;Va=ja}sa=sa+1|0;if((sa|0)>=(Va<<24>>24|0))break;else ja=Va}}ja=f[h>>2]|0;if(ja|0){sa=f[ba>>2]|0;if((sa|0)!=(ja|0))f[ba>>2]=sa+(~((sa+-4-ja|0)>>>2)<<2);br(ja)}ja=f[g>>2]|0;if(ja|0){sa=f[_>>2]|0;if((sa|0)!=(ja|0))f[_>>2]=sa+(~((sa+-4-ja|0)>>>2)<<2);br(ja)}break}default:{}}ja=ha+1|0;sa=f[o>>2]|0;if(ja>>>0>=(f[p>>2]|0)-sa>>2>>>0){v=1;wa=169;break}k=f[j>>2]|0;ha=ja;ia=sa;t=f[k+4>>2]|0;l=k}if((wa|0)==48)mq(h);else if((wa|0)==103)mq(Ra);else if((wa|0)==137)mq(g);else if((wa|0)==144)mq(h);else if((wa|0)==169){u=c;return v|0}return 0}function hb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0;d=u;u=u+32|0;e=d;g=a+8|0;h=f[g>>2]|0;f[e>>2]=0;i=e+4|0;f[i>>2]=0;f[e+8>>2]=0;do if(h)if(h>>>0>1073741823)mq(e);else{j=h<<2;k=dn(j)|0;f[e>>2]=k;l=k+(h<<2)|0;f[e+8>>2]=l;hj(k|0,0,j|0)|0;f[i>>2]=l;m=l;n=k;break}else{m=0;n=0}while(0);k=a+128|0;l=f[k>>2]|0;j=f[l>>2]|0;o=l+4|0;if(!j){p=l+8|0;q=n;r=m;s=h}else{h=f[o>>2]|0;if((h|0)!=(j|0))f[o>>2]=h+(~((h+-4-j|0)>>>2)<<2);br(j);j=l+8|0;f[j>>2]=0;f[o>>2]=0;f[l>>2]=0;p=j;q=f[e>>2]|0;r=f[i>>2]|0;s=f[g>>2]|0}f[l>>2]=q;f[o>>2]=r;f[p>>2]=f[e+8>>2];f[e>>2]=0;p=e+4|0;f[p>>2]=0;f[e+8>>2]=0;do if(s)if(s>>>0>1073741823)mq(e);else{r=s<<2;o=dn(r)|0;f[e>>2]=o;q=o+(s<<2)|0;f[e+8>>2]=q;hj(o|0,0,r|0)|0;f[p>>2]=q;t=q;v=o;break}else{t=0;v=0}while(0);s=a+140|0;o=f[s>>2]|0;q=f[o>>2]|0;r=o+4|0;if(!q){w=o+8|0;x=v;y=t}else{t=f[r>>2]|0;if((t|0)!=(q|0))f[r>>2]=t+(~((t+-4-q|0)>>>2)<<2);br(q);q=o+8|0;f[q>>2]=0;f[r>>2]=0;f[o>>2]=0;w=q;x=f[e>>2]|0;y=f[p>>2]|0}f[o>>2]=x;f[r>>2]=y;f[w>>2]=f[e+8>>2];w=f[b>>2]|0;y=b+4|0;r=f[y>>2]|0;x=f[y+4>>2]|0;y=f[c>>2]|0;o=c+4|0;p=f[o>>2]|0;q=f[o+4>>2]|0;f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;f[e+12>>2]=0;f[e+16>>2]=0;f[e+20>>2]=0;o=e+8|0;t=e+4|0;v=e+16|0;l=e+20|0;i=r;Jc(e);j=f[t>>2]|0;h=(f[l>>2]|0)+(f[v>>2]|0)|0;if((f[o>>2]|0)==(j|0))z=0;else z=(f[j+(((h>>>0)/113|0)<<2)>>2]|0)+(((h>>>0)%113|0)*36|0)|0;f[z>>2]=w;h=z+4|0;f[h>>2]=r;f[h+4>>2]=x;f[z+12>>2]=y;h=z+16|0;f[h>>2]=p;f[h+4>>2]=q;f[z+24>>2]=0;f[z+28>>2]=y-w;f[z+32>>2]=0;z=(f[l>>2]|0)+1|0;f[l>>2]=z;if(z|0){w=a+116|0;y=a+48|0;h=a+44|0;j=a+36|0;m=a+40|0;n=a+32|0;A=b+8|0;B=c+8|0;C=a+28|0;D=a+24|0;E=a+16|0;F=a+20|0;G=a+12|0;H=a+88|0;I=a+84|0;J=a+76|0;K=a+80|0;L=a+72|0;M=i+4|0;N=i+24|0;O=i+24|0;P=p+24|0;Q=z;while(1){z=f[v>>2]|0;R=Q+-1|0;S=R+z|0;T=f[t>>2]|0;U=f[T+(((S>>>0)/113|0)<<2)>>2]|0;V=(S>>>0)%113|0;S=f[U+(V*36|0)>>2]|0;W=f[U+(V*36|0)+12>>2]|0;Y=f[U+(V*36|0)+24>>2]|0;Z=f[U+(V*36|0)+32>>2]|0;f[l>>2]=R;R=f[o>>2]|0;V=R-T>>2;if((1-Q-z+((V|0)==0?0:(V*113|0)+-1|0)|0)>>>0>225){br(f[R+-4>>2]|0);f[o>>2]=(f[o>>2]|0)+-4}f[b>>2]=S;f[c>>2]=W;R=f[k>>2]|0;V=((f[g>>2]|0)+-1|0)==(Y|0)?0:Y+1|0;Y=(f[s>>2]|0)+(Z*12|0)|0;z=W-S|0;T=(f[a>>2]|0)-(f[(f[Y>>2]|0)+(V<<2)>>2]|0)|0;a:do if(T){if(z>>>0<3){U=f[w>>2]|0;f[U>>2]=V;$=f[g>>2]|0;if($>>>0>1){aa=1;ba=$;ca=V;while(1){ca=(ca|0)==(ba+-1|0)?0:ca+1|0;f[U+(aa<<2)>>2]=ca;aa=aa+1|0;da=f[g>>2]|0;if(aa>>>0>=da>>>0){ea=da;break}else ba=da}}else ea=$;if(!z){fa=99;break}else{ga=0;ha=ea}while(1){ba=(f[N>>2]|0)+((X(f[M>>2]|0,S+ga|0)|0)<<2)|0;if(!ha)ia=0;else{aa=0;do{ca=f[(f[w>>2]|0)+(aa<<2)>>2]|0;U=(f[a>>2]|0)-(f[(f[Y>>2]|0)+(ca<<2)>>2]|0)|0;do if(U|0){da=f[y>>2]|0;ja=32-da|0;ka=32-U|0;la=f[ba+(ca<<2)>>2]<(ja|0)){ma=la>>>ka;ka=U-ja|0;f[y>>2]=ka;ja=f[h>>2]|ma>>>ka;f[h>>2]=ja;ka=f[j>>2]|0;if((ka|0)==(f[m>>2]|0))Ci(n,h);else{f[ka>>2]=ja;f[j>>2]=ka+4}f[h>>2]=ma<<32-(f[y>>2]|0);break}ma=f[h>>2]|la>>>da;f[h>>2]=ma;la=da+U|0;f[y>>2]=la;if((la|0)!=32)break;la=f[j>>2]|0;if((la|0)==(f[m>>2]|0))Ci(n,h);else{f[la>>2]=ma;f[j>>2]=la+4}f[h>>2]=0;f[y>>2]=0}while(0);aa=aa+1|0;U=f[g>>2]|0}while(aa>>>0>>0);ia=U}ga=ga+1|0;if(ga>>>0>=z>>>0){fa=99;break a}else ha=ia}}$=Z+1|0;qg(R+($*12|0)|0,f[R+(Z*12|0)>>2]|0,f[R+(Z*12|0)+4>>2]|0);aa=(f[(f[k>>2]|0)+($*12|0)>>2]|0)+(V<<2)|0;ba=(f[aa>>2]|0)+(1<>2]=ba;aa=f[A>>2]|0;U=f[B>>2]|0;b:do if((W|0)==(S|0))na=S;else{ca=f[O>>2]|0;if(!aa){if((f[ca+(V<<2)>>2]|0)>>>0>>0){na=W;break}else{oa=W;pa=S}while(1){la=oa;do{la=la+-1|0;if((pa|0)==(la|0)){na=pa;break b}ma=(f[P>>2]|0)+((X(la,U)|0)<<2)+(V<<2)|0}while((f[ma>>2]|0)>>>0>=ba>>>0);pa=pa+1|0;if((pa|0)==(la|0)){na=la;break b}else oa=la}}else{qa=W;ra=S}while(1){ma=ra;while(1){sa=ca+((X(ma,aa)|0)<<2)|0;if((f[sa+(V<<2)>>2]|0)>>>0>=ba>>>0){ta=qa;break}da=ma+1|0;if((da|0)==(qa|0)){na=qa;break b}else ma=da}while(1){ta=ta+-1|0;if((ma|0)==(ta|0)){na=ma;break b}ua=(f[P>>2]|0)+((X(ta,U)|0)<<2)|0;if((f[ua+(V<<2)>>2]|0)>>>0>>0){va=0;break}}do{la=sa+(va<<2)|0;da=ua+(va<<2)|0;ka=f[la>>2]|0;f[la>>2]=f[da>>2];f[da>>2]=ka;va=va+1|0}while((va|0)!=(aa|0));ra=ma+1|0;if((ra|0)==(ta|0)){na=ta;break}else qa=ta}}while(0);ba=(_(z|0)|0)^31;U=na-S|0;ca=W-na|0;ka=U>>>0>>0;if((U|0)!=(ca|0)){da=f[H>>2]|0;if(ka)f[I>>2]=f[I>>2]|1<<31-da;la=da+1|0;f[H>>2]=la;if((la|0)==32){la=f[J>>2]|0;if((la|0)==(f[K>>2]|0))Ci(L,I);else{f[la>>2]=f[I>>2];f[J>>2]=la+4}f[H>>2]=0;f[I>>2]=0}}la=z>>>1;do if(ka){da=f[C>>2]|0;ja=32-da|0;wa=32-ba|0;xa=la-U<(ja|0)){ya=xa>>>wa;wa=ba-ja|0;f[C>>2]=wa;ja=f[D>>2]|ya>>>wa;f[D>>2]=ja;wa=f[E>>2]|0;if((wa|0)==(f[F>>2]|0))Ci(G,D);else{f[wa>>2]=ja;f[E>>2]=wa+4}f[D>>2]=ya<<32-(f[C>>2]|0);break}ya=f[D>>2]|xa>>>da;f[D>>2]=ya;xa=da+ba|0;f[C>>2]=xa;if((xa|0)==32){xa=f[E>>2]|0;if((xa|0)==(f[F>>2]|0))Ci(G,D);else{f[xa>>2]=ya;f[E>>2]=xa+4}f[D>>2]=0;f[C>>2]=0}}else{xa=f[C>>2]|0;ya=32-xa|0;da=32-ba|0;wa=la-ca<(ya|0)){ja=wa>>>da;da=ba-ya|0;f[C>>2]=da;ya=f[D>>2]|ja>>>da;f[D>>2]=ya;da=f[E>>2]|0;if((da|0)==(f[F>>2]|0))Ci(G,D);else{f[da>>2]=ya;f[E>>2]=da+4}f[D>>2]=ja<<32-(f[C>>2]|0);break}ja=f[D>>2]|wa>>>xa;f[D>>2]=ja;wa=xa+ba|0;f[C>>2]=wa;if((wa|0)==32){wa=f[E>>2]|0;if((wa|0)==(f[F>>2]|0))Ci(G,D);else{f[wa>>2]=ja;f[E>>2]=wa+4}f[D>>2]=0;f[C>>2]=0}}while(0);ba=f[s>>2]|0;la=f[ba+(Z*12|0)>>2]|0;ka=la+(V<<2)|0;f[ka>>2]=(f[ka>>2]|0)+1;qg(ba+($*12|0)|0,la,f[ba+(Z*12|0)+4>>2]|0);if((na|0)!=(S|0)){ba=f[o>>2]|0;la=f[t>>2]|0;ka=ba-la>>2;wa=f[v>>2]|0;ja=f[l>>2]|0;if((((ka|0)==0?0:(ka*113|0)+-1|0)|0)==(ja+wa|0)){Jc(e);za=f[v>>2]|0;Aa=f[l>>2]|0;Ba=f[o>>2]|0;Ca=f[t>>2]|0}else{za=wa;Aa=ja;Ba=ba;Ca=la}la=Aa+za|0;if((Ba|0)==(Ca|0))Da=0;else Da=(f[Ca+(((la>>>0)/113|0)<<2)>>2]|0)+(((la>>>0)%113|0)*36|0)|0;f[Da>>2]=S;la=Da+4|0;f[la>>2]=r;f[la+4>>2]=x;f[Da+12>>2]=na;f[Da+16>>2]=i;f[Da+20>>2]=aa;f[Da+24>>2]=V;f[Da+28>>2]=U;f[Da+32>>2]=Z;f[l>>2]=(f[l>>2]|0)+1}if((W|0)!=(na|0)){la=f[o>>2]|0;ba=f[t>>2]|0;ja=la-ba>>2;wa=f[v>>2]|0;ka=f[l>>2]|0;if((((ja|0)==0?0:(ja*113|0)+-1|0)|0)==(ka+wa|0)){Jc(e);Ea=f[v>>2]|0;Fa=f[l>>2]|0;Ga=f[o>>2]|0;Ha=f[t>>2]|0}else{Ea=wa;Fa=ka;Ga=la;Ha=ba}ba=Fa+Ea|0;if((Ga|0)==(Ha|0))Ia=0;else Ia=(f[Ha+(((ba>>>0)/113|0)<<2)>>2]|0)+(((ba>>>0)%113|0)*36|0)|0;f[Ia>>2]=na;f[Ia+4>>2]=i;f[Ia+8>>2]=aa;f[Ia+12>>2]=W;ba=Ia+16|0;f[ba>>2]=p;f[ba+4>>2]=q;f[Ia+24>>2]=V;f[Ia+28>>2]=ca;f[Ia+32>>2]=$;ba=(f[l>>2]|0)+1|0;f[l>>2]=ba;Ja=ba}else fa=99}else fa=99;while(0);if((fa|0)==99){fa=0;Ja=f[l>>2]|0}if(!Ja)break;else Q=Ja}}Ja=f[t>>2]|0;Q=f[v>>2]|0;Ia=Ja+(((Q>>>0)/113|0)<<2)|0;q=f[o>>2]|0;p=q;i=Ja;if((q|0)==(Ja|0)){Ka=0;La=0}else{na=(f[Ia>>2]|0)+(((Q>>>0)%113|0)*36|0)|0;Ka=na;La=na}na=Ia;Ia=La;c:while(1){La=Ia;do{Q=La;if((Ka|0)==(Q|0))break c;La=Q+36|0}while((La-(f[na>>2]|0)|0)!=4068);La=na+4|0;na=La;Ia=f[La>>2]|0}f[l>>2]=0;l=p-i>>2;if(l>>>0>2){i=Ja;do{br(f[i>>2]|0);i=(f[t>>2]|0)+4|0;f[t>>2]=i;Ma=f[o>>2]|0;Na=Ma-i>>2}while(Na>>>0>2);Oa=Na;Pa=i;Qa=Ma}else{Oa=l;Pa=Ja;Qa=q}switch(Oa|0){case 1:{Ra=56;fa=113;break}case 2:{Ra=113;fa=113;break}default:{}}if((fa|0)==113)f[v>>2]=Ra;if((Pa|0)!=(Qa|0)){Ra=Pa;do{br(f[Ra>>2]|0);Ra=Ra+4|0}while((Ra|0)!=(Qa|0));Qa=f[t>>2]|0;t=f[o>>2]|0;if((t|0)!=(Qa|0))f[o>>2]=t+(~((t+-4-Qa|0)>>>2)<<2)}Qa=f[e>>2]|0;if(!Qa){u=d;return}br(Qa);u=d;return}function ib(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0;d=u;u=u+80|0;e=d+56|0;g=d+52|0;h=d+48|0;i=d+68|0;j=d;k=d+44|0;l=d+40|0;m=d+36|0;n=d+32|0;o=d+28|0;p=d+24|0;q=d+20|0;r=d+16|0;s=d+12|0;if(!(b[c+288>>0]|0)){Ne(e,f[c+8>>2]|0);t=c+12|0;v=f[e>>2]|0;f[e>>2]=0;w=f[t>>2]|0;f[t>>2]=v;if(w){ui(w);br(w);w=f[e>>2]|0;f[e>>2]=0;if(w|0){ui(w);br(w)}}else f[e>>2]=0}else{Mg(e,f[c+8>>2]|0);w=c+12|0;v=f[e>>2]|0;f[e>>2]=0;t=f[w>>2]|0;f[w>>2]=v;if(t){ui(t);br(t);t=f[e>>2]|0;f[e>>2]=0;if(t|0){ui(t);br(t)}}else f[e>>2]=0}t=c+12|0;v=f[t>>2]|0;if(v|0?(((f[v+4>>2]|0)-(f[v>>2]|0)>>2>>>0)/3|0|0)!=(f[v+40>>2]|0):0){w=c+200|0;f[c+264>>2]=c;x=c+4|0;Nh(((f[v+28>>2]|0)-(f[v+24>>2]|0)>>2)-(f[v+44>>2]|0)|0,f[(f[x>>2]|0)+44>>2]|0)|0;v=f[t>>2]|0;Nh((((f[v+4>>2]|0)-(f[v>>2]|0)>>2>>>0)/3|0)-(f[v+40>>2]|0)|0,f[(f[x>>2]|0)+44>>2]|0)|0;v=c+28|0;y=c+8|0;z=f[y>>2]|0;A=((f[z+100>>2]|0)-(f[z+96>>2]|0)|0)/12|0;b[e>>0]=0;Xg(v,A,e);A=f[t>>2]|0;z=(f[A+28>>2]|0)-(f[A+24>>2]|0)>>2;f[e>>2]=-1;Sf(c+52|0,z,e);z=c+40|0;A=f[z>>2]|0;B=c+44|0;C=f[B>>2]|0;if((C|0)!=(A|0))f[B>>2]=C+(~((C+-4-A|0)>>>2)<<2);A=f[t>>2]|0;C=(f[A+4>>2]|0)-(f[A>>2]|0)>>2;$j(z,C-((C>>>0)%3|0)|0);C=c+84|0;z=f[t>>2]|0;A=(f[z+28>>2]|0)-(f[z+24>>2]|0)>>2;b[e>>0]=0;Xg(C,A,e);A=c+96|0;z=f[A>>2]|0;B=c+100|0;D=f[B>>2]|0;if((D|0)!=(z|0))f[B>>2]=D+(~((D+-4-z|0)>>>2)<<2);f[c+164>>2]=-1;z=c+168|0;f[z>>2]=0;D=f[c+108>>2]|0;E=c+112|0;F=f[E>>2]|0;if((F|0)!=(D|0))f[E>>2]=F+(~(((F+-12-D|0)>>>0)/12|0)*12|0);D=c+132|0;if(f[D>>2]|0){F=c+128|0;E=f[F>>2]|0;if(E|0){G=E;do{E=G;G=f[G>>2]|0;br(E)}while((G|0)!=0)}f[F>>2]=0;F=f[c+124>>2]|0;if(F|0){G=c+120|0;E=0;do{f[(f[G>>2]|0)+(E<<2)>>2]=0;E=E+1|0}while((E|0)!=(F|0))}f[D>>2]=0}f[c+144>>2]=0;D=f[t>>2]|0;F=(f[D+28>>2]|0)-(f[D+24>>2]|0)>>2;f[e>>2]=-1;Sf(c+152|0,F,e);F=c+72|0;D=f[F>>2]|0;E=c+76|0;G=f[E>>2]|0;if((G|0)!=(D|0))f[E>>2]=G+(~((G+-4-D|0)>>>2)<<2);D=f[t>>2]|0;$j(F,((f[D+4>>2]|0)-(f[D>>2]|0)>>2>>>0)/3|0);f[c+64>>2]=0;if(!(oe(c)|0)){D=dn(32)|0;f[e>>2]=D;f[e+8>>2]=-2147483616;f[e+4>>2]=29;H=D;I=13227;J=H+29|0;do{b[H>>0]=b[I>>0]|0;H=H+1|0;I=I+1|0}while((H|0)<(J|0));b[D+29>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0);u=d;return}if(!(ch(c)|0)){D=dn(48)|0;f[e>>2]=D;f[e+8>>2]=-2147483600;f[e+4>>2]=36;H=D;I=13257;J=H+36|0;do{b[H>>0]=b[I>>0]|0;H=H+1|0;I=I+1|0}while((H|0)<(J|0));b[D+36>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0);u=d;return}D=c+172|0;G=c+176|0;K=(((f[G>>2]|0)-(f[D>>2]|0)|0)/136|0)&255;b[i>>0]=K;L=f[(f[x>>2]|0)+44>>2]|0;M=L+16|0;N=f[M+4>>2]|0;if((N|0)>0|(N|0)==0&(f[M>>2]|0)>>>0>0)O=K;else{f[g>>2]=f[L+4>>2];f[e>>2]=f[g>>2];ye(L,e,i,i+1|0)|0;O=b[i>>0]|0}i=c+284|0;f[i>>2]=O&255;O=f[t>>2]|0;L=(f[O+4>>2]|0)-(f[O>>2]|0)|0;O=L>>2;Ti(w);f[j>>2]=0;K=j+4|0;f[K>>2]=0;f[j+8>>2]=0;a:do if((L|0)>0){M=c+104|0;N=j+8|0;P=0;b:while(1){Q=(P>>>0)/3|0;R=Q>>>5;S=1<<(Q&31);if((f[(f[v>>2]|0)+(R<<2)>>2]&S|0)==0?(T=f[t>>2]|0,f[k>>2]=Q,f[e>>2]=f[k>>2],!(Rj(T,e)|0)):0){f[g>>2]=0;f[l>>2]=Q;f[e>>2]=f[l>>2];Q=gg(c,e,g)|0;Vi(w,Q);T=f[g>>2]|0;U=(T|0)==-1;do if(Q){do if(U){V=-1;W=-1;X=-1}else{Y=f[f[t>>2]>>2]|0;Z=f[Y+(T<<2)>>2]|0;_=T+1|0;$=((_>>>0)%3|0|0)==0?T+-2|0:_;if(($|0)==-1)aa=-1;else aa=f[Y+($<<2)>>2]|0;$=(((T>>>0)%3|0|0)==0?2:-1)+T|0;if(($|0)==-1){V=-1;W=aa;X=Z;break}V=f[Y+($<<2)>>2]|0;W=aa;X=Z}while(0);Z=f[C>>2]|0;$=Z+(X>>>5<<2)|0;f[$>>2]=f[$>>2]|1<<(X&31);$=Z+(W>>>5<<2)|0;f[$>>2]=f[$>>2]|1<<(W&31);$=Z+(V>>>5<<2)|0;f[$>>2]=f[$>>2]|1<<(V&31);f[e>>2]=1;$=f[B>>2]|0;if($>>>0<(f[M>>2]|0)>>>0){f[$>>2]=1;f[B>>2]=$+4}else Ci(A,e);$=(f[v>>2]|0)+(R<<2)|0;f[$>>2]=f[$>>2]|S;$=T+1|0;if(U)ba=-1;else ba=(($>>>0)%3|0|0)==0?T+-2|0:$;f[e>>2]=ba;Z=f[K>>2]|0;if(Z>>>0<(f[N>>2]|0)>>>0){f[Z>>2]=ba;f[K>>2]=Z+4}else Ci(j,e);if(U)break;Z=(($>>>0)%3|0|0)==0?T+-2|0:$;if((Z|0)==-1)break;$=f[(f[(f[t>>2]|0)+12>>2]|0)+(Z<<2)>>2]|0;Z=($|0)==-1;Y=Z?-1:($>>>0)/3|0;if(Z)break;if(f[(f[v>>2]|0)+(Y>>>5<<2)>>2]&1<<(Y&31)|0)break;f[m>>2]=$;f[e>>2]=f[m>>2];if(!(hc(c,e)|0)){ca=65;break b}}else{$=T+1|0;if(U)da=-1;else da=(($>>>0)%3|0|0)==0?T+-2|0:$;f[n>>2]=da;f[e>>2]=f[n>>2];Ce(c,e,1)|0;f[o>>2]=f[g>>2];f[e>>2]=f[o>>2];if(!(hc(c,e)|0)){ca=71;break b}}while(0)}P=P+1|0;if((P|0)>=(O|0)){ca=77;break a}}if((ca|0)==65){f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;P=dn(48)|0;f[e>>2]=P;f[e+8>>2]=-2147483600;f[e+4>>2]=32;H=P;I=13294;J=H+32|0;do{b[H>>0]=b[I>>0]|0;H=H+1|0;I=I+1|0}while((H|0)<(J|0));b[P+32>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0)}else if((ca|0)==71){f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;N=dn(48)|0;f[e>>2]=N;f[e+8>>2]=-2147483600;f[e+4>>2]=32;H=N;I=13294;J=H+32|0;do{b[H>>0]=b[I>>0]|0;H=H+1|0;I=I+1|0}while((H|0)<(J|0));b[N+32>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0)}}else ca=77;while(0);do if((ca|0)==77){O=f[F>>2]|0;o=f[E>>2]|0;n=o;if((O|0)!=(o|0)?(da=o+-4|0,O>>>0>>0):0){o=O;O=da;do{da=f[o>>2]|0;f[o>>2]=f[O>>2];f[O>>2]=da;o=o+4|0;O=O+-4|0}while(o>>>0>>0)}f[p>>2]=n;f[q>>2]=f[j>>2];f[r>>2]=f[K>>2];f[h>>2]=f[p>>2];f[g>>2]=f[q>>2];f[e>>2]=f[r>>2];Md(F,h,g,e)|0;if((f[G>>2]|0)!=(f[D>>2]|0)?(O=f[y>>2]|0,o=((f[O+100>>2]|0)-(f[O+96>>2]|0)|0)/12|0,b[e>>0]=0,Xg(v,o,e),o=f[F>>2]|0,O=f[E>>2]|0,(o|0)!=(O|0)):0){N=o;do{f[s>>2]=f[N>>2];f[e>>2]=f[s>>2];ue(c,e)|0;N=N+4|0}while((N|0)!=(O|0))}_g(w);O=c+232|0;fd(w,O);N=c+280|0;n=f[N>>2]|0;if((n|0?(f[i>>2]|0)>0:0)?(fd(n,O),(f[i>>2]|0)>1):0){n=1;do{fd((f[N>>2]|0)+(n<<5)|0,O);n=n+1|0}while((n|0)<(f[i>>2]|0))}Nh((f[c+272>>2]|0)-(f[c+268>>2]|0)>>2,f[(f[x>>2]|0)+44>>2]|0)|0;Nh(f[z>>2]|0,f[(f[x>>2]|0)+44>>2]|0)|0;if(Jg(c)|0){n=f[(f[x>>2]|0)+44>>2]|0;N=f[O>>2]|0;o=n+16|0;da=f[o+4>>2]|0;if(!((da|0)>0|(da|0)==0&(f[o>>2]|0)>>>0>0)){o=(f[c+236>>2]|0)-N|0;f[g>>2]=f[n+4>>2];f[e>>2]=f[g>>2];ye(n,e,N,N+o|0)|0}f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;break}else{f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;o=dn(32)|0;f[e>>2]=o;f[e+8>>2]=-2147483616;f[e+4>>2]=28;H=o;I=13327;J=H+28|0;do{b[H>>0]=b[I>>0]|0;H=H+1|0;I=I+1|0}while((H|0)<(J|0));b[o+28>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0);break}}while(0);g=f[j>>2]|0;if(g|0){j=f[K>>2]|0;if((j|0)!=(g|0))f[K>>2]=j+(~((j+-4-g|0)>>>2)<<2);br(g)}u=d;return}g=dn(32)|0;f[e>>2]=g;f[e+8>>2]=-2147483616;f[e+4>>2]=29;H=g;I=13197;J=H+29|0;do{b[H>>0]=b[I>>0]|0;H=H+1|0;I=I+1|0}while((H|0)<(J|0));b[g+29>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0);u=d;return}function jb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0;d=u;u=u+48|0;e=d+36|0;g=d+24|0;h=d;i=a+8|0;j=f[i>>2]|0;f[e>>2]=0;k=e+4|0;f[k>>2]=0;f[e+8>>2]=0;do if(j)if(j>>>0>1073741823)mq(e);else{l=j<<2;m=dn(l)|0;f[e>>2]=m;n=m+(j<<2)|0;f[e+8>>2]=n;hj(m|0,0,l|0)|0;f[k>>2]=n;o=n;p=m;break}else{o=0;p=0}while(0);m=a+1164|0;n=f[m>>2]|0;l=f[n>>2]|0;q=n+4|0;if(!l){r=n+8|0;s=p;t=o;v=j}else{j=f[q>>2]|0;if((j|0)!=(l|0))f[q>>2]=j+(~((j+-4-l|0)>>>2)<<2);br(l);l=n+8|0;f[l>>2]=0;f[q>>2]=0;f[n>>2]=0;r=l;s=f[e>>2]|0;t=f[k>>2]|0;v=f[i>>2]|0}f[n>>2]=s;f[q>>2]=t;f[r>>2]=f[e+8>>2];f[e>>2]=0;r=e+4|0;f[r>>2]=0;f[e+8>>2]=0;do if(v)if(v>>>0>1073741823)mq(e);else{t=v<<2;q=dn(t)|0;f[e>>2]=q;s=q+(v<<2)|0;f[e+8>>2]=s;hj(q|0,0,t|0)|0;f[r>>2]=s;w=s;x=q;break}else{w=0;x=0}while(0);v=a+1176|0;q=f[v>>2]|0;s=f[q>>2]|0;t=q+4|0;if(!s){y=q+8|0;z=x;A=w}else{w=f[t>>2]|0;if((w|0)!=(s|0))f[t>>2]=w+(~((w+-4-s|0)>>>2)<<2);br(s);s=q+8|0;f[s>>2]=0;f[t>>2]=0;f[q>>2]=0;y=s;z=f[e>>2]|0;A=f[r>>2]|0}f[q>>2]=z;f[t>>2]=A;f[y>>2]=f[e+8>>2];y=f[b>>2]|0;A=b+4|0;t=f[A>>2]|0;z=f[A+4>>2]|0;A=f[c>>2]|0;q=c+4|0;r=f[q>>2]|0;s=f[q+4>>2]|0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;f[h+12>>2]=0;f[h+16>>2]=0;f[h+20>>2]=0;q=h+8|0;w=h+4|0;x=h+16|0;n=h+20|0;k=t;Jc(h);l=f[w>>2]|0;j=(f[n>>2]|0)+(f[x>>2]|0)|0;if((f[q>>2]|0)==(l|0))B=0;else B=(f[l+(((j>>>0)/113|0)<<2)>>2]|0)+(((j>>>0)%113|0)*36|0)|0;f[B>>2]=y;j=B+4|0;f[j>>2]=t;f[j+4>>2]=z;f[B+12>>2]=A;j=B+16|0;f[j>>2]=r;f[j+4>>2]=s;f[B+24>>2]=0;f[B+28>>2]=A-y;f[B+32>>2]=0;B=(f[n>>2]|0)+1|0;f[n>>2]=B;if(B|0){y=a+1152|0;A=a+1084|0;j=a+1080|0;l=a+1072|0;o=a+1076|0;p=a+1068|0;C=b+8|0;D=c+8|0;E=a+1124|0;F=a+1120|0;G=a+1112|0;H=a+1116|0;I=a+1108|0;J=k+4|0;K=k+24|0;L=k+24|0;M=r+24|0;N=B;while(1){B=f[x>>2]|0;O=N+-1|0;P=O+B|0;Q=f[w>>2]|0;R=f[Q+(((P>>>0)/113|0)<<2)>>2]|0;S=(P>>>0)%113|0;P=f[R+(S*36|0)>>2]|0;T=f[R+(S*36|0)+12>>2]|0;U=f[R+(S*36|0)+24>>2]|0;V=f[R+(S*36|0)+32>>2]|0;f[n>>2]=O;O=f[q>>2]|0;S=O-Q>>2;if((1-N-B+((S|0)==0?0:(S*113|0)+-1|0)|0)>>>0>225){br(f[O+-4>>2]|0);f[q>>2]=(f[q>>2]|0)+-4}f[b>>2]=P;f[c>>2]=T;O=f[m>>2]|0;S=O+(V*12|0)|0;B=(f[v>>2]|0)+(V*12|0)|0;f[g>>2]=f[b>>2];f[g+4>>2]=f[b+4>>2];f[g+8>>2]=f[b+8>>2];f[e>>2]=f[c>>2];f[e+4>>2]=f[c+4>>2];f[e+8>>2]=f[c+8>>2];Q=Gd(a,g,e,S,B,U)|0;U=T-P|0;R=(f[a>>2]|0)-(f[(f[B>>2]|0)+(Q<<2)>>2]|0)|0;a:do if(R){if(U>>>0<3){W=f[y>>2]|0;f[W>>2]=Q;Y=f[i>>2]|0;if(Y>>>0>1){Z=1;$=Y;aa=Q;while(1){aa=(aa|0)==($+-1|0)?0:aa+1|0;f[W+(Z<<2)>>2]=aa;Z=Z+1|0;ba=f[i>>2]|0;if(Z>>>0>=ba>>>0){ca=ba;break}else $=ba}}else ca=Y;if(!U){da=87;break}else{ea=0;fa=ca}while(1){$=(f[K>>2]|0)+((X(f[J>>2]|0,P+ea|0)|0)<<2)|0;if(!fa)ga=0;else{Z=0;do{aa=f[(f[y>>2]|0)+(Z<<2)>>2]|0;W=(f[a>>2]|0)-(f[(f[B>>2]|0)+(aa<<2)>>2]|0)|0;do if(W|0){ba=f[A>>2]|0;ha=32-ba|0;ia=32-W|0;ja=f[$+(aa<<2)>>2]<(ha|0)){ka=ja>>>ia;ia=W-ha|0;f[A>>2]=ia;ha=f[j>>2]|ka>>>ia;f[j>>2]=ha;ia=f[l>>2]|0;if((ia|0)==(f[o>>2]|0))Ci(p,j);else{f[ia>>2]=ha;f[l>>2]=ia+4}f[j>>2]=ka<<32-(f[A>>2]|0);break}ka=f[j>>2]|ja>>>ba;f[j>>2]=ka;ja=ba+W|0;f[A>>2]=ja;if((ja|0)!=32)break;ja=f[l>>2]|0;if((ja|0)==(f[o>>2]|0))Ci(p,j);else{f[ja>>2]=ka;f[l>>2]=ja+4}f[j>>2]=0;f[A>>2]=0}while(0);Z=Z+1|0;W=f[i>>2]|0}while(Z>>>0>>0);ga=W}ea=ea+1|0;if(ea>>>0>=U>>>0){da=87;break a}else fa=ga}}Y=V+1|0;Z=f[m>>2]|0;$=Z+(Y*12|0)|0;if(($|0)==(S|0))la=Z;else{qg($,f[S>>2]|0,f[O+(V*12|0)+4>>2]|0);la=f[m>>2]|0}$=(f[la+(Y*12|0)>>2]|0)+(Q<<2)|0;Z=(f[$>>2]|0)+(1<>2]=Z;$=f[C>>2]|0;W=f[D>>2]|0;b:do if((T|0)==(P|0))ma=P;else{aa=f[L>>2]|0;if(!$){if((f[aa+(Q<<2)>>2]|0)>>>0>>0){ma=T;break}else{na=T;oa=P}while(1){ja=na;do{ja=ja+-1|0;if((oa|0)==(ja|0)){ma=oa;break b}ka=(f[M>>2]|0)+((X(ja,W)|0)<<2)+(Q<<2)|0}while((f[ka>>2]|0)>>>0>=Z>>>0);oa=oa+1|0;if((oa|0)==(ja|0)){ma=ja;break b}else na=ja}}else{pa=T;qa=P}while(1){ka=qa;while(1){ra=aa+((X(ka,$)|0)<<2)|0;if((f[ra+(Q<<2)>>2]|0)>>>0>=Z>>>0){sa=pa;break}ba=ka+1|0;if((ba|0)==(pa|0)){ma=pa;break b}else ka=ba}while(1){sa=sa+-1|0;if((ka|0)==(sa|0)){ma=ka;break b}ta=(f[M>>2]|0)+((X(sa,W)|0)<<2)|0;if((f[ta+(Q<<2)>>2]|0)>>>0>>0){ua=0;break}}do{ja=ra+(ua<<2)|0;ba=ta+(ua<<2)|0;ia=f[ja>>2]|0;f[ja>>2]=f[ba>>2];f[ba>>2]=ia;ua=ua+1|0}while((ua|0)!=($|0));qa=ka+1|0;if((qa|0)==(sa|0)){ma=sa;break}else pa=sa}}while(0);Z=(_(U|0)|0)^31;W=ma-P|0;aa=T-ma|0;ia=W>>>0>>0;if((W|0)!=(aa|0)){ba=f[E>>2]|0;if(ia)f[F>>2]=f[F>>2]|1<<31-ba;ja=ba+1|0;f[E>>2]=ja;if((ja|0)==32){ja=f[G>>2]|0;if((ja|0)==(f[H>>2]|0))Ci(I,F);else{f[ja>>2]=f[F>>2];f[G>>2]=ja+4}f[E>>2]=0;f[F>>2]=0}}ja=U>>>1;if(ia){ia=ja-W|0;if(Z|0){ba=0;ha=1<>>1}}}else{ha=ja-aa|0;if(Z|0){ba=0;ia=1<>>1}}}ia=f[v>>2]|0;Z=f[ia+(V*12|0)>>2]|0;ba=Z+(Q<<2)|0;f[ba>>2]=(f[ba>>2]|0)+1;qg(ia+(Y*12|0)|0,Z,f[ia+(V*12|0)+4>>2]|0);if((ma|0)!=(P|0)){ia=f[q>>2]|0;Z=f[w>>2]|0;ba=ia-Z>>2;ha=f[x>>2]|0;ja=f[n>>2]|0;if((((ba|0)==0?0:(ba*113|0)+-1|0)|0)==(ja+ha|0)){Jc(h);va=f[x>>2]|0;wa=f[n>>2]|0;xa=f[q>>2]|0;ya=f[w>>2]|0}else{va=ha;wa=ja;xa=ia;ya=Z}Z=wa+va|0;if((xa|0)==(ya|0))za=0;else za=(f[ya+(((Z>>>0)/113|0)<<2)>>2]|0)+(((Z>>>0)%113|0)*36|0)|0;f[za>>2]=P;Z=za+4|0;f[Z>>2]=t;f[Z+4>>2]=z;f[za+12>>2]=ma;f[za+16>>2]=k;f[za+20>>2]=$;f[za+24>>2]=Q;f[za+28>>2]=W;f[za+32>>2]=V;f[n>>2]=(f[n>>2]|0)+1}if((T|0)!=(ma|0)){Z=f[q>>2]|0;ia=f[w>>2]|0;ja=Z-ia>>2;ha=f[x>>2]|0;ba=f[n>>2]|0;if((((ja|0)==0?0:(ja*113|0)+-1|0)|0)==(ba+ha|0)){Jc(h);Aa=f[x>>2]|0;Ba=f[n>>2]|0;Ca=f[q>>2]|0;Da=f[w>>2]|0}else{Aa=ha;Ba=ba;Ca=Z;Da=ia}ia=Ba+Aa|0;if((Ca|0)==(Da|0))Ea=0;else Ea=(f[Da+(((ia>>>0)/113|0)<<2)>>2]|0)+(((ia>>>0)%113|0)*36|0)|0;f[Ea>>2]=ma;f[Ea+4>>2]=k;f[Ea+8>>2]=$;f[Ea+12>>2]=T;ia=Ea+16|0;f[ia>>2]=r;f[ia+4>>2]=s;f[Ea+24>>2]=Q;f[Ea+28>>2]=aa;f[Ea+32>>2]=Y;ia=(f[n>>2]|0)+1|0;f[n>>2]=ia;Fa=ia}else da=87}else da=87;while(0);if((da|0)==87){da=0;Fa=f[n>>2]|0}if(!Fa)break;else N=Fa}}Fa=f[w>>2]|0;N=f[x>>2]|0;Ea=Fa+(((N>>>0)/113|0)<<2)|0;s=f[q>>2]|0;r=s;k=Fa;if((s|0)==(Fa|0)){Ga=0;Ha=0}else{ma=(f[Ea>>2]|0)+(((N>>>0)%113|0)*36|0)|0;Ga=ma;Ha=ma}ma=Ea;Ea=Ha;c:while(1){Ha=Ea;do{N=Ha;if((Ga|0)==(N|0))break c;Ha=N+36|0}while((Ha-(f[ma>>2]|0)|0)!=4068);Ha=ma+4|0;ma=Ha;Ea=f[Ha>>2]|0}f[n>>2]=0;n=r-k>>2;if(n>>>0>2){k=Fa;do{br(f[k>>2]|0);k=(f[w>>2]|0)+4|0;f[w>>2]=k;Ia=f[q>>2]|0;Ja=Ia-k>>2}while(Ja>>>0>2);Ka=Ja;La=k;Ma=Ia}else{Ka=n;La=Fa;Ma=s}switch(Ka|0){case 1:{Na=56;da=101;break}case 2:{Na=113;da=101;break}default:{}}if((da|0)==101)f[x>>2]=Na;if((La|0)!=(Ma|0)){Na=La;do{br(f[Na>>2]|0);Na=Na+4|0}while((Na|0)!=(Ma|0));Ma=f[w>>2]|0;w=f[q>>2]|0;if((w|0)!=(Ma|0))f[q>>2]=w+(~((w+-4-Ma|0)>>>2)<<2)}Ma=f[h>>2]|0;if(!Ma){u=d;return}br(Ma);u=d;return}function kb(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0;d=u;u=u+1424|0;e=d+1408|0;g=d+1396|0;h=d+1420|0;i=d+1200|0;j=d+12|0;k=d;l=d+1384|0;m=d+1372|0;n=d+1360|0;o=d+1348|0;p=d+1336|0;q=d+1324|0;r=d+1312|0;s=d+1300|0;t=d+1288|0;v=d+1276|0;w=d+1264|0;x=d+1252|0;y=d+1240|0;z=d+1228|0;A=a+28|0;B=10-(Yh(f[(f[A>>2]|0)+48>>2]|0)|0)|0;C=(B|0)<6?B:6;b[h>>0]=C;if((C&255|0)==6?(f[a+72>>2]|0)>15:0)b[h>>0]=5;C=c+16|0;B=f[C+4>>2]|0;if(!((B|0)>0|(B|0)==0&(f[C>>2]|0)>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];ye(c,e,h,h+1|0)|0}C=f[A>>2]|0;B=f[(f[C+4>>2]|0)+80>>2]|0;D=a+72|0;E=f[D>>2]|0;f[i>>2]=B;F=i+4|0;f[F>>2]=E;f[i+8>>2]=E<<2;G=i+12|0;H=X(E,B)|0;f[G>>2]=0;J=i+16|0;f[J>>2]=0;f[i+20>>2]=0;do if(H)if(H>>>0>1073741823)mq(G);else{K=H<<2;L=dn(K)|0;f[G>>2]=L;M=L+(H<<2)|0;f[i+20>>2]=M;hj(L|0,0,K|0)|0;f[J>>2]=M;N=L;break}else N=0;while(0);H=i+24|0;f[H>>2]=N;G=a+4|0;L=a+8|0;M=f[G>>2]|0;a:do if((f[L>>2]|0)!=(M|0)){K=j+4|0;O=j+8|0;P=j+8|0;Q=(B|0)==0;R=j+4|0;S=j+8|0;T=k+4|0;U=k+8|0;V=k+8|0;W=a+48|0;Y=j+8|0;Z=a+60|0;$=0;aa=0;ba=0;ca=0;da=M;ea=C;b:while(1){fa=f[(f[(f[ea+4>>2]|0)+8>>2]|0)+(f[da+(ca<<2)>>2]<<2)>>2]|0;switch(f[fa+28>>2]|0){case 1:case 3:case 5:case 2:case 4:case 6:{ga=fa;ha=aa;break}case 9:{ga=f[(f[Z>>2]|0)+(aa<<2)>>2]|0;ha=aa+1|0;break}default:{ia=0;break a}}if(!ga){ia=0;break a}c:do switch(f[ga+28>>2]|0){case 6:{if(Q){ja=ba;ka=ga+24|0;break c}fa=ga+84|0;la=ga+68|0;ma=ga+48|0;na=ga+40|0;oa=ga+24|0;pa=0;do{if(!(b[fa>>0]|0))qa=f[(f[la>>2]|0)+(pa<<2)>>2]|0;else qa=pa;ra=ma;sa=f[ra>>2]|0;ta=f[ra+4>>2]|0;ra=na;ua=on(f[ra>>2]|0,f[ra+4>>2]|0,qa|0,0)|0;ra=Tn(ua|0,I|0,sa|0,ta|0)|0;Rg((f[H>>2]|0)+((X(f[F>>2]|0,pa)|0)<<2)+($<<2)|0,(f[f[ga>>2]>>2]|0)+ra|0,b[oa>>0]<<2|0)|0;pa=pa+1|0}while((pa|0)!=(B|0));ja=ba;ka=oa;break}case 1:case 3:case 5:{oa=ga+24|0;pa=b[oa>>0]|0;na=pa<<24>>24;f[j>>2]=0;f[R>>2]=0;f[S>>2]=0;if(!(pa<<24>>24))va=0;else{if(pa<<24>>24<0){wa=24;break b}pa=na<<2;ma=dn(pa)|0;f[j>>2]=ma;la=ma+(na<<2)|0;f[Y>>2]=la;hj(ma|0,0,pa|0)|0;f[R>>2]=la;va=b[oa>>0]|0}la=va<<24>>24;f[k>>2]=0;f[T>>2]=0;f[U>>2]=0;if(!(va<<24>>24)){xa=0;ya=0}else{if(va<<24>>24<0){wa=30;break b}pa=la<<2;ma=dn(pa)|0;f[k>>2]=ma;na=ma+(la<<2)|0;f[V>>2]=na;hj(ma|0,0,pa|0)|0;f[T>>2]=na;xa=ma;ya=ma}if(Q){za=ya;Aa=xa}else{ma=ga+84|0;na=ga+68|0;pa=0;do{if(!(b[ma>>0]|0))Ba=f[(f[na>>2]|0)+(pa<<2)>>2]|0;else Ba=pa;la=f[j>>2]|0;f[g>>2]=Ba;fa=b[oa>>0]|0;f[e>>2]=f[g>>2];Pb(ga,e,fa,la)|0;la=b[oa>>0]|0;fa=la<<24>>24;if(la<<24>>24>0){la=f[j>>2]|0;ra=f[W>>2]|0;ta=f[k>>2]|0;sa=0;do{f[ta+(sa<<2)>>2]=(f[la+(sa<<2)>>2]|0)-(f[ra+(sa+ba<<2)>>2]|0);sa=sa+1|0}while((sa|0)<(fa|0));Ca=ta}else Ca=f[k>>2]|0;Rg((f[H>>2]|0)+((X(f[F>>2]|0,pa)|0)<<2)+($<<2)|0,Ca|0,fa<<2|0)|0;pa=pa+1|0}while(pa>>>0>>0);pa=f[k>>2]|0;za=pa;Aa=pa}pa=ba+(b[oa>>0]|0)|0;if(za|0){na=f[T>>2]|0;if((na|0)!=(za|0))f[T>>2]=na+(~((na+-4-za|0)>>>2)<<2);br(Aa)}na=f[j>>2]|0;if(na|0){ma=f[R>>2]|0;if((ma|0)!=(na|0))f[R>>2]=ma+(~((ma+-4-na|0)>>>2)<<2);br(na)}ja=pa;ka=oa;break}default:{pa=ga+24|0;na=b[pa>>0]|0;ma=na<<24>>24;f[j>>2]=0;f[K>>2]=0;f[O>>2]=0;if(!(na<<24>>24)){Da=0;Ea=0}else{if(na<<24>>24<0){wa=53;break b}na=ma<<2;ta=dn(na)|0;f[j>>2]=ta;sa=ta+(ma<<2)|0;f[P>>2]=sa;hj(ta|0,0,na|0)|0;f[K>>2]=sa;Da=ta;Ea=ta}if(Q){Fa=Ea;Ga=Da}else{ta=ga+84|0;sa=ga+68|0;na=0;do{if(!(b[ta>>0]|0))Ha=f[(f[sa>>2]|0)+(na<<2)>>2]|0;else Ha=na;ma=f[j>>2]|0;f[g>>2]=Ha;ra=b[pa>>0]|0;f[e>>2]=f[g>>2];Ob(ga,e,ra,ma)|0;Rg((f[H>>2]|0)+((X(f[F>>2]|0,na)|0)<<2)+($<<2)|0,f[j>>2]|0,b[pa>>0]<<2|0)|0;na=na+1|0}while(na>>>0>>0);na=f[j>>2]|0;Fa=na;Ga=na}if(Fa|0){na=f[K>>2]|0;if((na|0)!=(Fa|0))f[K>>2]=na+(~((na+-4-Fa|0)>>>2)<<2);br(Ga)}ja=ba;ka=pa}}while(0);na=ca+1|0;sa=f[G>>2]|0;if(na>>>0>=(f[L>>2]|0)-sa>>2>>>0){wa=66;break}$=$+(b[ka>>0]|0)|0;aa=ha;ba=ja;ca=na;da=sa;ea=f[A>>2]|0}if((wa|0)==24)mq(j);else if((wa|0)==30)mq(k);else if((wa|0)==53)mq(j);else if((wa|0)==66){Ia=f[D>>2]|0;Ja=f[H>>2]|0;wa=67;break}}else{Ia=E;Ja=N;wa=67}while(0);d:do if((wa|0)==67){N=X(Ia,B)|0;if((N|0)>0){E=0;H=0;while(1){D=f[Ja+(E<<2)>>2]|0;if(!D)Ka=H;else{A=(_(D|0)|0)^31;Ka=(A|0)<(H|0)?H:A+1|0}E=E+1|0;if((E|0)>=(N|0)){La=Ka;break}else H=Ka}}else La=0;switch(b[h>>0]|0){case 6:{Ge(j,Ia);f[l>>2]=0;f[l+4>>2]=i;H=f[F>>2]|0;f[l+8>>2]=H;f[m>>2]=f[i>>2];f[m+4>>2]=i;f[m+8>>2]=H;f[k>>2]=La;f[g>>2]=f[l>>2];f[g+4>>2]=f[l+4>>2];f[g+8>>2]=f[l+8>>2];f[e>>2]=f[m>>2];f[e+4>>2]=f[m+4>>2];f[e+8>>2]=f[m+8>>2];H=ff(j,g,e,k,c)|0;Ee(j);if(!H){ia=0;break d}break}case 5:{Ge(j,Ia);f[n>>2]=0;f[n+4>>2]=i;H=f[F>>2]|0;f[n+8>>2]=H;f[o>>2]=f[i>>2];f[o+4>>2]=i;f[o+8>>2]=H;f[k>>2]=La;f[g>>2]=f[n>>2];f[g+4>>2]=f[n+4>>2];f[g+8>>2]=f[n+8>>2];f[e>>2]=f[o>>2];f[e+4>>2]=f[o+4>>2];f[e+8>>2]=f[o+8>>2];H=gf(j,g,e,k,c)|0;Ee(j);if(!H){ia=0;break d}break}case 4:{Ge(j,Ia);f[p>>2]=0;f[p+4>>2]=i;H=f[F>>2]|0;f[p+8>>2]=H;f[q>>2]=f[i>>2];f[q+4>>2]=i;f[q+8>>2]=H;f[k>>2]=La;f[g>>2]=f[p>>2];f[g+4>>2]=f[p+4>>2];f[g+8>>2]=f[p+8>>2];f[e>>2]=f[q>>2];f[e+4>>2]=f[q+4>>2];f[e+8>>2]=f[q+8>>2];H=gf(j,g,e,k,c)|0;Ee(j);if(!H){ia=0;break d}break}case 3:{Oe(j,Ia);f[r>>2]=0;f[r+4>>2]=i;H=f[F>>2]|0;f[r+8>>2]=H;f[s>>2]=f[i>>2];f[s+4>>2]=i;f[s+8>>2]=H;f[k>>2]=La;f[g>>2]=f[r>>2];f[g+4>>2]=f[r+4>>2];f[g+8>>2]=f[r+8>>2];f[e>>2]=f[s>>2];f[e+4>>2]=f[s+4>>2];f[e+8>>2]=f[s+8>>2];H=mf(j,g,e,k,c)|0;Ue(j);if(!H){ia=0;break d}break}case 2:{Oe(j,Ia);f[t>>2]=0;f[t+4>>2]=i;H=f[F>>2]|0;f[t+8>>2]=H;f[v>>2]=f[i>>2];f[v+4>>2]=i;f[v+8>>2]=H;f[k>>2]=La;f[g>>2]=f[t>>2];f[g+4>>2]=f[t+4>>2];f[g+8>>2]=f[t+8>>2];f[e>>2]=f[v>>2];f[e+4>>2]=f[v+4>>2];f[e+8>>2]=f[v+8>>2];H=mf(j,g,e,k,c)|0;Ue(j);if(!H){ia=0;break d}break}case 1:{Pe(j,Ia);f[w>>2]=0;f[w+4>>2]=i;H=f[F>>2]|0;f[w+8>>2]=H;f[x>>2]=f[i>>2];f[x+4>>2]=i;f[x+8>>2]=H;f[k>>2]=La;f[g>>2]=f[w>>2];f[g+4>>2]=f[w+4>>2];f[g+8>>2]=f[w+8>>2];f[e>>2]=f[x>>2];f[e+4>>2]=f[x+4>>2];f[e+8>>2]=f[x+8>>2];H=lf(j,g,e,k,c)|0;Te(j);if(!H){ia=0;break d}break}case 0:{Pe(j,Ia);f[y>>2]=0;f[y+4>>2]=i;H=f[F>>2]|0;f[y+8>>2]=H;f[z>>2]=f[i>>2];f[z+4>>2]=i;f[z+8>>2]=H;f[k>>2]=La;f[g>>2]=f[y>>2];f[g+4>>2]=f[y+4>>2];f[g+8>>2]=f[y+8>>2];f[e>>2]=f[z>>2];f[e+4>>2]=f[z+4>>2];f[e+8>>2]=f[z+8>>2];H=lf(j,g,e,k,c)|0;Te(j);if(!H){ia=0;break d}break}default:{ia=0;break d}}ia=1}while(0);j=f[i+12>>2]|0;if(!j){u=d;return ia|0}i=f[J>>2]|0;if((i|0)!=(j|0))f[J>>2]=i+(~((i+-4-j|0)>>>2)<<2);br(j);u=d;return ia|0}function lb(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0;d=u;u=u+80|0;e=d+56|0;g=d+52|0;h=d+48|0;i=d+68|0;j=d;k=d+44|0;l=d+40|0;m=d+36|0;n=d+32|0;o=d+28|0;p=d+24|0;q=d+20|0;r=d+16|0;s=d+12|0;if(!(b[c+352>>0]|0)){Ne(e,f[c+8>>2]|0);t=c+12|0;v=f[e>>2]|0;f[e>>2]=0;w=f[t>>2]|0;f[t>>2]=v;if(w){ui(w);br(w);w=f[e>>2]|0;f[e>>2]=0;if(w|0){ui(w);br(w)}}else f[e>>2]=0}else{Mg(e,f[c+8>>2]|0);w=c+12|0;v=f[e>>2]|0;f[e>>2]=0;t=f[w>>2]|0;f[w>>2]=v;if(t){ui(t);br(t);t=f[e>>2]|0;f[e>>2]=0;if(t|0){ui(t);br(t)}}else f[e>>2]=0}t=c+12|0;v=f[t>>2]|0;if(v|0?(((f[v+4>>2]|0)-(f[v>>2]|0)>>2>>>0)/3|0|0)!=(f[v+40>>2]|0):0){v=c+200|0;Td(v,c)|0;w=f[t>>2]|0;x=c+4|0;Nh(((f[w+28>>2]|0)-(f[w+24>>2]|0)>>2)-(f[w+44>>2]|0)|0,f[(f[x>>2]|0)+44>>2]|0)|0;w=f[t>>2]|0;Nh((((f[w+4>>2]|0)-(f[w>>2]|0)>>2>>>0)/3|0)-(f[w+40>>2]|0)|0,f[(f[x>>2]|0)+44>>2]|0)|0;w=c+28|0;y=c+8|0;z=f[y>>2]|0;A=((f[z+100>>2]|0)-(f[z+96>>2]|0)|0)/12|0;b[e>>0]=0;Xg(w,A,e);A=f[t>>2]|0;z=(f[A+28>>2]|0)-(f[A+24>>2]|0)>>2;f[e>>2]=-1;Sf(c+52|0,z,e);z=c+40|0;A=f[z>>2]|0;B=c+44|0;C=f[B>>2]|0;if((C|0)!=(A|0))f[B>>2]=C+(~((C+-4-A|0)>>>2)<<2);A=f[t>>2]|0;C=(f[A+4>>2]|0)-(f[A>>2]|0)>>2;$j(z,C-((C>>>0)%3|0)|0);C=c+84|0;z=f[t>>2]|0;A=(f[z+28>>2]|0)-(f[z+24>>2]|0)>>2;b[e>>0]=0;Xg(C,A,e);A=c+96|0;z=f[A>>2]|0;B=c+100|0;D=f[B>>2]|0;if((D|0)!=(z|0))f[B>>2]=D+(~((D+-4-z|0)>>>2)<<2);f[c+164>>2]=-1;z=c+168|0;f[z>>2]=0;D=f[c+108>>2]|0;E=c+112|0;F=f[E>>2]|0;if((F|0)!=(D|0))f[E>>2]=F+(~(((F+-12-D|0)>>>0)/12|0)*12|0);D=c+132|0;if(f[D>>2]|0){F=c+128|0;E=f[F>>2]|0;if(E|0){G=E;do{E=G;G=f[G>>2]|0;br(E)}while((G|0)!=0)}f[F>>2]=0;F=f[c+124>>2]|0;if(F|0){G=c+120|0;E=0;do{f[(f[G>>2]|0)+(E<<2)>>2]=0;E=E+1|0}while((E|0)!=(F|0))}f[D>>2]=0}f[c+144>>2]=0;D=f[t>>2]|0;F=(f[D+28>>2]|0)-(f[D+24>>2]|0)>>2;f[e>>2]=-1;Sf(c+152|0,F,e);F=c+72|0;D=f[F>>2]|0;E=c+76|0;G=f[E>>2]|0;if((G|0)!=(D|0))f[E>>2]=G+(~((G+-4-D|0)>>>2)<<2);D=f[t>>2]|0;$j(F,((f[D+4>>2]|0)-(f[D>>2]|0)>>2>>>0)/3|0);f[c+64>>2]=0;if(!(oe(c)|0)){D=dn(32)|0;f[e>>2]=D;f[e+8>>2]=-2147483616;f[e+4>>2]=29;H=D;I=13227;J=H+29|0;do{b[H>>0]=b[I>>0]|0;H=H+1|0;I=I+1|0}while((H|0)<(J|0));b[D+29>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0);u=d;return}if(!(bh(c)|0)){D=dn(48)|0;f[e>>2]=D;f[e+8>>2]=-2147483600;f[e+4>>2]=36;H=D;I=13257;J=H+36|0;do{b[H>>0]=b[I>>0]|0;H=H+1|0;I=I+1|0}while((H|0)<(J|0));b[D+36>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0);u=d;return}D=c+172|0;G=c+176|0;K=(((f[G>>2]|0)-(f[D>>2]|0)|0)/136|0)&255;b[i>>0]=K;L=f[(f[x>>2]|0)+44>>2]|0;M=L+16|0;N=f[M+4>>2]|0;if((N|0)>0|(N|0)==0&(f[M>>2]|0)>>>0>0)O=K;else{f[g>>2]=f[L+4>>2];f[e>>2]=f[g>>2];ye(L,e,i,i+1|0)|0;O=b[i>>0]|0}f[c+284>>2]=O&255;O=f[t>>2]|0;i=(f[O+4>>2]|0)-(f[O>>2]|0)|0;O=i>>2;Ti(v);f[j>>2]=0;L=j+4|0;f[L>>2]=0;f[j+8>>2]=0;a:do if((i|0)>0){K=c+104|0;M=j+8|0;N=0;b:while(1){P=(N>>>0)/3|0;Q=P>>>5;R=1<<(P&31);if((f[(f[w>>2]|0)+(Q<<2)>>2]&R|0)==0?(S=f[t>>2]|0,f[k>>2]=P,f[e>>2]=f[k>>2],!(Rj(S,e)|0)):0){f[g>>2]=0;f[l>>2]=P;f[e>>2]=f[l>>2];P=gg(c,e,g)|0;Vi(v,P);S=f[g>>2]|0;T=(S|0)==-1;do if(P){do if(T){U=-1;V=-1;W=-1}else{X=f[f[t>>2]>>2]|0;Y=f[X+(S<<2)>>2]|0;Z=S+1|0;_=((Z>>>0)%3|0|0)==0?S+-2|0:Z;if((_|0)==-1)$=-1;else $=f[X+(_<<2)>>2]|0;_=(((S>>>0)%3|0|0)==0?2:-1)+S|0;if((_|0)==-1){U=-1;V=$;W=Y;break}U=f[X+(_<<2)>>2]|0;V=$;W=Y}while(0);Y=f[C>>2]|0;_=Y+(W>>>5<<2)|0;f[_>>2]=f[_>>2]|1<<(W&31);_=Y+(V>>>5<<2)|0;f[_>>2]=f[_>>2]|1<<(V&31);_=Y+(U>>>5<<2)|0;f[_>>2]=f[_>>2]|1<<(U&31);f[e>>2]=1;_=f[B>>2]|0;if(_>>>0<(f[K>>2]|0)>>>0){f[_>>2]=1;f[B>>2]=_+4}else Ci(A,e);_=(f[w>>2]|0)+(Q<<2)|0;f[_>>2]=f[_>>2]|R;_=S+1|0;if(T)aa=-1;else aa=((_>>>0)%3|0|0)==0?S+-2|0:_;f[e>>2]=aa;Y=f[L>>2]|0;if(Y>>>0<(f[M>>2]|0)>>>0){f[Y>>2]=aa;f[L>>2]=Y+4}else Ci(j,e);if(T)break;Y=((_>>>0)%3|0|0)==0?S+-2|0:_;if((Y|0)==-1)break;_=f[(f[(f[t>>2]|0)+12>>2]|0)+(Y<<2)>>2]|0;Y=(_|0)==-1;X=Y?-1:(_>>>0)/3|0;if(Y)break;if(f[(f[w>>2]|0)+(X>>>5<<2)>>2]&1<<(X&31)|0)break;f[m>>2]=_;f[e>>2]=f[m>>2];if(!(Zb(c,e)|0)){ba=65;break b}}else{_=S+1|0;if(T)ca=-1;else ca=((_>>>0)%3|0|0)==0?S+-2|0:_;f[n>>2]=ca;f[e>>2]=f[n>>2];Ce(c,e,1)|0;f[o>>2]=f[g>>2];f[e>>2]=f[o>>2];if(!(Zb(c,e)|0)){ba=71;break b}}while(0)}N=N+1|0;if((N|0)>=(O|0)){ba=77;break a}}if((ba|0)==65){f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;N=dn(48)|0;f[e>>2]=N;f[e+8>>2]=-2147483600;f[e+4>>2]=32;H=N;I=13294;J=H+32|0;do{b[H>>0]=b[I>>0]|0;H=H+1|0;I=I+1|0}while((H|0)<(J|0));b[N+32>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0)}else if((ba|0)==71){f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;M=dn(48)|0;f[e>>2]=M;f[e+8>>2]=-2147483600;f[e+4>>2]=32;H=M;I=13294;J=H+32|0;do{b[H>>0]=b[I>>0]|0;H=H+1|0;I=I+1|0}while((H|0)<(J|0));b[M+32>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0)}}else ba=77;while(0);do if((ba|0)==77){O=f[F>>2]|0;o=f[E>>2]|0;n=o;if((O|0)!=(o|0)?(ca=o+-4|0,O>>>0>>0):0){o=O;O=ca;do{ca=f[o>>2]|0;f[o>>2]=f[O>>2];f[O>>2]=ca;o=o+4|0;O=O+-4|0}while(o>>>0>>0)}f[p>>2]=n;f[q>>2]=f[j>>2];f[r>>2]=f[L>>2];f[h>>2]=f[p>>2];f[g>>2]=f[q>>2];f[e>>2]=f[r>>2];Md(F,h,g,e)|0;if((f[G>>2]|0)!=(f[D>>2]|0)?(O=f[y>>2]|0,o=((f[O+100>>2]|0)-(f[O+96>>2]|0)|0)/12|0,b[e>>0]=0,Xg(w,o,e),o=f[F>>2]|0,O=f[E>>2]|0,(o|0)!=(O|0)):0){M=o;do{f[s>>2]=f[M>>2];f[e>>2]=f[s>>2];ue(c,e)|0;M=M+4|0}while((M|0)!=(O|0))}$h(v);Nh(f[c+324>>2]|0,f[(f[x>>2]|0)+44>>2]|0)|0;Nh(f[z>>2]|0,f[(f[x>>2]|0)+44>>2]|0)|0;if(Jg(c)|0){O=f[(f[x>>2]|0)+44>>2]|0;M=f[c+232>>2]|0;n=O+16|0;o=f[n+4>>2]|0;if(!((o|0)>0|(o|0)==0&(f[n>>2]|0)>>>0>0)){n=(f[c+236>>2]|0)-M|0;f[g>>2]=f[O+4>>2];f[e>>2]=f[g>>2];ye(O,e,M,M+n|0)|0}f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;break}else{f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;n=dn(32)|0;f[e>>2]=n;f[e+8>>2]=-2147483616;f[e+4>>2]=28;H=n;I=13327;J=H+28|0;do{b[H>>0]=b[I>>0]|0;H=H+1|0;I=I+1|0}while((H|0)<(J|0));b[n+28>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0);break}}while(0);g=f[j>>2]|0;if(g|0){j=f[L>>2]|0;if((j|0)!=(g|0))f[L>>2]=j+(~((j+-4-g|0)>>>2)<<2);br(g)}u=d;return}g=dn(32)|0;f[e>>2]=g;f[e+8>>2]=-2147483616;f[e+4>>2]=29;H=g;I=13197;J=H+29|0;do{b[H>>0]=b[I>>0]|0;H=H+1|0;I=I+1|0}while((H|0)<(J|0));b[g+29>>0]=0;f[a>>2]=-1;dj(a+4|0,e);if((b[e+11>>0]|0)<0)br(f[e>>2]|0);u=d;return}function mb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0;d=u;u=u+32|0;e=d;g=a+8|0;h=f[g>>2]|0;f[e>>2]=0;i=e+4|0;f[i>>2]=0;f[e+8>>2]=0;do if(h)if(h>>>0>1073741823)mq(e);else{j=h<<2;k=dn(j)|0;f[e>>2]=k;l=k+(h<<2)|0;f[e+8>>2]=l;hj(k|0,0,j|0)|0;f[i>>2]=l;m=l;n=k;break}else{m=0;n=0}while(0);k=a+1164|0;l=f[k>>2]|0;j=f[l>>2]|0;o=l+4|0;if(!j){p=l+8|0;q=n;r=m;s=h}else{h=f[o>>2]|0;if((h|0)!=(j|0))f[o>>2]=h+(~((h+-4-j|0)>>>2)<<2);br(j);j=l+8|0;f[j>>2]=0;f[o>>2]=0;f[l>>2]=0;p=j;q=f[e>>2]|0;r=f[i>>2]|0;s=f[g>>2]|0}f[l>>2]=q;f[o>>2]=r;f[p>>2]=f[e+8>>2];f[e>>2]=0;p=e+4|0;f[p>>2]=0;f[e+8>>2]=0;do if(s)if(s>>>0>1073741823)mq(e);else{r=s<<2;o=dn(r)|0;f[e>>2]=o;q=o+(s<<2)|0;f[e+8>>2]=q;hj(o|0,0,r|0)|0;f[p>>2]=q;t=q;v=o;break}else{t=0;v=0}while(0);s=a+1176|0;o=f[s>>2]|0;q=f[o>>2]|0;r=o+4|0;if(!q){w=o+8|0;x=v;y=t}else{t=f[r>>2]|0;if((t|0)!=(q|0))f[r>>2]=t+(~((t+-4-q|0)>>>2)<<2);br(q);q=o+8|0;f[q>>2]=0;f[r>>2]=0;f[o>>2]=0;w=q;x=f[e>>2]|0;y=f[p>>2]|0}f[o>>2]=x;f[r>>2]=y;f[w>>2]=f[e+8>>2];w=f[b>>2]|0;y=b+4|0;r=f[y>>2]|0;x=f[y+4>>2]|0;y=f[c>>2]|0;o=c+4|0;p=f[o>>2]|0;q=f[o+4>>2]|0;f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;f[e+12>>2]=0;f[e+16>>2]=0;f[e+20>>2]=0;o=e+8|0;t=e+4|0;v=e+16|0;l=e+20|0;i=r;Jc(e);j=f[t>>2]|0;h=(f[l>>2]|0)+(f[v>>2]|0)|0;if((f[o>>2]|0)==(j|0))z=0;else z=(f[j+(((h>>>0)/113|0)<<2)>>2]|0)+(((h>>>0)%113|0)*36|0)|0;f[z>>2]=w;h=z+4|0;f[h>>2]=r;f[h+4>>2]=x;f[z+12>>2]=y;h=z+16|0;f[h>>2]=p;f[h+4>>2]=q;f[z+24>>2]=0;f[z+28>>2]=y-w;f[z+32>>2]=0;z=(f[l>>2]|0)+1|0;f[l>>2]=z;if(z|0){w=a+1152|0;y=a+1084|0;h=a+1080|0;j=a+1072|0;m=a+1076|0;n=a+1068|0;A=b+8|0;B=c+8|0;C=a+1124|0;D=a+1120|0;E=a+1112|0;F=a+1116|0;G=a+1108|0;H=i+4|0;I=i+24|0;J=i+24|0;K=p+24|0;L=z;while(1){z=f[v>>2]|0;M=L+-1|0;N=M+z|0;O=f[t>>2]|0;P=f[O+(((N>>>0)/113|0)<<2)>>2]|0;Q=(N>>>0)%113|0;N=f[P+(Q*36|0)>>2]|0;R=f[P+(Q*36|0)+12>>2]|0;S=f[P+(Q*36|0)+24>>2]|0;T=f[P+(Q*36|0)+32>>2]|0;f[l>>2]=M;M=f[o>>2]|0;Q=M-O>>2;if((1-L-z+((Q|0)==0?0:(Q*113|0)+-1|0)|0)>>>0>225){br(f[M+-4>>2]|0);f[o>>2]=(f[o>>2]|0)+-4}f[b>>2]=N;f[c>>2]=R;M=f[k>>2]|0;Q=((f[g>>2]|0)+-1|0)==(S|0)?0:S+1|0;S=(f[s>>2]|0)+(T*12|0)|0;z=R-N|0;O=(f[a>>2]|0)-(f[(f[S>>2]|0)+(Q<<2)>>2]|0)|0;a:do if(O){if(z>>>0<3){P=f[w>>2]|0;f[P>>2]=Q;U=f[g>>2]|0;if(U>>>0>1){V=1;W=U;Y=Q;while(1){Y=(Y|0)==(W+-1|0)?0:Y+1|0;f[P+(V<<2)>>2]=Y;V=V+1|0;Z=f[g>>2]|0;if(V>>>0>=Z>>>0){$=Z;break}else W=Z}}else $=U;if(!z){aa=85;break}else{ba=0;ca=$}while(1){W=(f[I>>2]|0)+((X(f[H>>2]|0,N+ba|0)|0)<<2)|0;if(!ca)da=0;else{V=0;do{Y=f[(f[w>>2]|0)+(V<<2)>>2]|0;P=(f[a>>2]|0)-(f[(f[S>>2]|0)+(Y<<2)>>2]|0)|0;do if(P|0){Z=f[y>>2]|0;ea=32-Z|0;fa=32-P|0;ga=f[W+(Y<<2)>>2]<(ea|0)){ha=ga>>>fa;fa=P-ea|0;f[y>>2]=fa;ea=f[h>>2]|ha>>>fa;f[h>>2]=ea;fa=f[j>>2]|0;if((fa|0)==(f[m>>2]|0))Ci(n,h);else{f[fa>>2]=ea;f[j>>2]=fa+4}f[h>>2]=ha<<32-(f[y>>2]|0);break}ha=f[h>>2]|ga>>>Z;f[h>>2]=ha;ga=Z+P|0;f[y>>2]=ga;if((ga|0)!=32)break;ga=f[j>>2]|0;if((ga|0)==(f[m>>2]|0))Ci(n,h);else{f[ga>>2]=ha;f[j>>2]=ga+4}f[h>>2]=0;f[y>>2]=0}while(0);V=V+1|0;P=f[g>>2]|0}while(V>>>0

>>0);da=P}ba=ba+1|0;if(ba>>>0>=z>>>0){aa=85;break a}else ca=da}}U=T+1|0;qg(M+(U*12|0)|0,f[M+(T*12|0)>>2]|0,f[M+(T*12|0)+4>>2]|0);V=(f[(f[k>>2]|0)+(U*12|0)>>2]|0)+(Q<<2)|0;W=(f[V>>2]|0)+(1<>2]=W;V=f[A>>2]|0;P=f[B>>2]|0;b:do if((R|0)==(N|0))ia=N;else{Y=f[J>>2]|0;if(!V){if((f[Y+(Q<<2)>>2]|0)>>>0>>0){ia=R;break}else{ja=R;ka=N}while(1){ga=ja;do{ga=ga+-1|0;if((ka|0)==(ga|0)){ia=ka;break b}ha=(f[K>>2]|0)+((X(ga,P)|0)<<2)+(Q<<2)|0}while((f[ha>>2]|0)>>>0>=W>>>0);ka=ka+1|0;if((ka|0)==(ga|0)){ia=ga;break b}else ja=ga}}else{la=R;ma=N}while(1){ha=ma;while(1){na=Y+((X(ha,V)|0)<<2)|0;if((f[na+(Q<<2)>>2]|0)>>>0>=W>>>0){oa=la;break}Z=ha+1|0;if((Z|0)==(la|0)){ia=la;break b}else ha=Z}while(1){oa=oa+-1|0;if((ha|0)==(oa|0)){ia=ha;break b}pa=(f[K>>2]|0)+((X(oa,P)|0)<<2)|0;if((f[pa+(Q<<2)>>2]|0)>>>0>>0){qa=0;break}}do{ga=na+(qa<<2)|0;Z=pa+(qa<<2)|0;fa=f[ga>>2]|0;f[ga>>2]=f[Z>>2];f[Z>>2]=fa;qa=qa+1|0}while((qa|0)!=(V|0));ma=ha+1|0;if((ma|0)==(oa|0)){ia=oa;break}else la=oa}}while(0);W=(_(z|0)|0)^31;P=ia-N|0;Y=R-ia|0;fa=P>>>0>>0;if((P|0)!=(Y|0)){Z=f[C>>2]|0;if(fa)f[D>>2]=f[D>>2]|1<<31-Z;ga=Z+1|0;f[C>>2]=ga;if((ga|0)==32){ga=f[E>>2]|0;if((ga|0)==(f[F>>2]|0))Ci(G,D);else{f[ga>>2]=f[D>>2];f[E>>2]=ga+4}f[C>>2]=0;f[D>>2]=0}}ga=z>>>1;if(fa){fa=ga-P|0;if(W|0){Z=0;ea=1<>>1}}}else{ea=ga-Y|0;if(W|0){Z=0;fa=1<>>1}}}fa=f[s>>2]|0;W=f[fa+(T*12|0)>>2]|0;Z=W+(Q<<2)|0;f[Z>>2]=(f[Z>>2]|0)+1;qg(fa+(U*12|0)|0,W,f[fa+(T*12|0)+4>>2]|0);if((ia|0)!=(N|0)){fa=f[o>>2]|0;W=f[t>>2]|0;Z=fa-W>>2;ea=f[v>>2]|0;ga=f[l>>2]|0;if((((Z|0)==0?0:(Z*113|0)+-1|0)|0)==(ga+ea|0)){Jc(e);ra=f[v>>2]|0;sa=f[l>>2]|0;ta=f[o>>2]|0;ua=f[t>>2]|0}else{ra=ea;sa=ga;ta=fa;ua=W}W=sa+ra|0;if((ta|0)==(ua|0))va=0;else va=(f[ua+(((W>>>0)/113|0)<<2)>>2]|0)+(((W>>>0)%113|0)*36|0)|0;f[va>>2]=N;W=va+4|0;f[W>>2]=r;f[W+4>>2]=x;f[va+12>>2]=ia;f[va+16>>2]=i;f[va+20>>2]=V;f[va+24>>2]=Q;f[va+28>>2]=P;f[va+32>>2]=T;f[l>>2]=(f[l>>2]|0)+1}if((R|0)!=(ia|0)){W=f[o>>2]|0;fa=f[t>>2]|0;ga=W-fa>>2;ea=f[v>>2]|0;Z=f[l>>2]|0;if((((ga|0)==0?0:(ga*113|0)+-1|0)|0)==(Z+ea|0)){Jc(e);wa=f[v>>2]|0;xa=f[l>>2]|0;ya=f[o>>2]|0;za=f[t>>2]|0}else{wa=ea;xa=Z;ya=W;za=fa}fa=xa+wa|0;if((ya|0)==(za|0))Aa=0;else Aa=(f[za+(((fa>>>0)/113|0)<<2)>>2]|0)+(((fa>>>0)%113|0)*36|0)|0;f[Aa>>2]=ia;f[Aa+4>>2]=i;f[Aa+8>>2]=V;f[Aa+12>>2]=R;fa=Aa+16|0;f[fa>>2]=p;f[fa+4>>2]=q;f[Aa+24>>2]=Q;f[Aa+28>>2]=Y;f[Aa+32>>2]=U;fa=(f[l>>2]|0)+1|0;f[l>>2]=fa;Ba=fa}else aa=85}else aa=85;while(0);if((aa|0)==85){aa=0;Ba=f[l>>2]|0}if(!Ba)break;else L=Ba}}Ba=f[t>>2]|0;L=f[v>>2]|0;Aa=Ba+(((L>>>0)/113|0)<<2)|0;q=f[o>>2]|0;p=q;i=Ba;if((q|0)==(Ba|0)){Ca=0;Da=0}else{ia=(f[Aa>>2]|0)+(((L>>>0)%113|0)*36|0)|0;Ca=ia;Da=ia}ia=Aa;Aa=Da;c:while(1){Da=Aa;do{L=Da;if((Ca|0)==(L|0))break c;Da=L+36|0}while((Da-(f[ia>>2]|0)|0)!=4068);Da=ia+4|0;ia=Da;Aa=f[Da>>2]|0}f[l>>2]=0;l=p-i>>2;if(l>>>0>2){i=Ba;do{br(f[i>>2]|0);i=(f[t>>2]|0)+4|0;f[t>>2]=i;Ea=f[o>>2]|0;Fa=Ea-i>>2}while(Fa>>>0>2);Ga=Fa;Ha=i;Ia=Ea}else{Ga=l;Ha=Ba;Ia=q}switch(Ga|0){case 1:{Ja=56;aa=99;break}case 2:{Ja=113;aa=99;break}default:{}}if((aa|0)==99)f[v>>2]=Ja;if((Ha|0)!=(Ia|0)){Ja=Ha;do{br(f[Ja>>2]|0);Ja=Ja+4|0}while((Ja|0)!=(Ia|0));Ia=f[t>>2]|0;t=f[o>>2]|0;if((t|0)!=(Ia|0))f[o>>2]=t+(~((t+-4-Ia|0)>>>2)<<2)}Ia=f[e>>2]|0;if(!Ia){u=d;return}br(Ia);u=d;return}function nb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0;d=u;u=u+32|0;e=d;g=a+8|0;h=f[g>>2]|0;f[e>>2]=0;i=e+4|0;f[i>>2]=0;f[e+8>>2]=0;do if(h)if(h>>>0>1073741823)mq(e);else{j=h<<2;k=dn(j)|0;f[e>>2]=k;l=k+(h<<2)|0;f[e+8>>2]=l;hj(k|0,0,j|0)|0;f[i>>2]=l;m=l;n=k;break}else{m=0;n=0}while(0);k=a+140|0;l=f[k>>2]|0;j=f[l>>2]|0;o=l+4|0;if(!j){p=l+8|0;q=n;r=m;s=h}else{h=f[o>>2]|0;if((h|0)!=(j|0))f[o>>2]=h+(~((h+-4-j|0)>>>2)<<2);br(j);j=l+8|0;f[j>>2]=0;f[o>>2]=0;f[l>>2]=0;p=j;q=f[e>>2]|0;r=f[i>>2]|0;s=f[g>>2]|0}f[l>>2]=q;f[o>>2]=r;f[p>>2]=f[e+8>>2];f[e>>2]=0;p=e+4|0;f[p>>2]=0;f[e+8>>2]=0;do if(s)if(s>>>0>1073741823)mq(e);else{r=s<<2;o=dn(r)|0;f[e>>2]=o;q=o+(s<<2)|0;f[e+8>>2]=q;hj(o|0,0,r|0)|0;f[p>>2]=q;t=q;v=o;break}else{t=0;v=0}while(0);s=a+152|0;o=f[s>>2]|0;q=f[o>>2]|0;r=o+4|0;if(!q){w=o+8|0;x=v;y=t}else{t=f[r>>2]|0;if((t|0)!=(q|0))f[r>>2]=t+(~((t+-4-q|0)>>>2)<<2);br(q);q=o+8|0;f[q>>2]=0;f[r>>2]=0;f[o>>2]=0;w=q;x=f[e>>2]|0;y=f[p>>2]|0}f[o>>2]=x;f[r>>2]=y;f[w>>2]=f[e+8>>2];w=f[b>>2]|0;y=b+4|0;r=f[y>>2]|0;x=f[y+4>>2]|0;y=f[c>>2]|0;o=c+4|0;p=f[o>>2]|0;q=f[o+4>>2]|0;f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;f[e+12>>2]=0;f[e+16>>2]=0;f[e+20>>2]=0;o=e+8|0;t=e+4|0;v=e+16|0;l=e+20|0;i=r;Jc(e);j=f[t>>2]|0;h=(f[l>>2]|0)+(f[v>>2]|0)|0;if((f[o>>2]|0)==(j|0))z=0;else z=(f[j+(((h>>>0)/113|0)<<2)>>2]|0)+(((h>>>0)%113|0)*36|0)|0;f[z>>2]=w;h=z+4|0;f[h>>2]=r;f[h+4>>2]=x;f[z+12>>2]=y;h=z+16|0;f[h>>2]=p;f[h+4>>2]=q;f[z+24>>2]=0;f[z+28>>2]=y-w;f[z+32>>2]=0;z=(f[l>>2]|0)+1|0;f[l>>2]=z;if(z|0){w=a+128|0;y=a+60|0;h=a+56|0;j=a+48|0;m=a+52|0;n=a+44|0;A=b+8|0;B=c+8|0;C=a+12|0;D=a+100|0;E=a+96|0;F=a+88|0;G=a+92|0;H=a+84|0;I=i+4|0;J=i+24|0;K=i+24|0;L=p+24|0;M=z;while(1){z=f[v>>2]|0;N=M+-1|0;O=N+z|0;P=f[t>>2]|0;Q=f[P+(((O>>>0)/113|0)<<2)>>2]|0;R=(O>>>0)%113|0;O=f[Q+(R*36|0)>>2]|0;S=f[Q+(R*36|0)+12>>2]|0;T=f[Q+(R*36|0)+24>>2]|0;U=f[Q+(R*36|0)+32>>2]|0;f[l>>2]=N;N=f[o>>2]|0;R=N-P>>2;if((1-M-z+((R|0)==0?0:(R*113|0)+-1|0)|0)>>>0>225){br(f[N+-4>>2]|0);f[o>>2]=(f[o>>2]|0)+-4}f[b>>2]=O;f[c>>2]=S;N=f[k>>2]|0;R=((f[g>>2]|0)+-1|0)==(T|0)?0:T+1|0;T=(f[s>>2]|0)+(U*12|0)|0;z=S-O|0;P=(f[a>>2]|0)-(f[(f[T>>2]|0)+(R<<2)>>2]|0)|0;a:do if(P){if(z>>>0<3){Q=f[w>>2]|0;f[Q>>2]=R;V=f[g>>2]|0;if(V>>>0>1){W=1;Y=V;Z=R;while(1){Z=(Z|0)==(Y+-1|0)?0:Z+1|0;f[Q+(W<<2)>>2]=Z;W=W+1|0;$=f[g>>2]|0;if(W>>>0>=$>>>0){aa=$;break}else Y=$}}else aa=V;if(!z){ba=81;break}else{ca=0;da=aa}while(1){Y=(f[J>>2]|0)+((X(f[I>>2]|0,O+ca|0)|0)<<2)|0;if(!da)ea=0;else{W=0;do{Z=f[(f[w>>2]|0)+(W<<2)>>2]|0;Q=(f[a>>2]|0)-(f[(f[T>>2]|0)+(Z<<2)>>2]|0)|0;do if(Q|0){$=f[y>>2]|0;fa=32-$|0;ga=32-Q|0;ha=f[Y+(Z<<2)>>2]<(fa|0)){ia=ha>>>ga;ga=Q-fa|0;f[y>>2]=ga;fa=f[h>>2]|ia>>>ga;f[h>>2]=fa;ga=f[j>>2]|0;if((ga|0)==(f[m>>2]|0))Ci(n,h);else{f[ga>>2]=fa;f[j>>2]=ga+4}f[h>>2]=ia<<32-(f[y>>2]|0);break}ia=f[h>>2]|ha>>>$;f[h>>2]=ia;ha=$+Q|0;f[y>>2]=ha;if((ha|0)!=32)break;ha=f[j>>2]|0;if((ha|0)==(f[m>>2]|0))Ci(n,h);else{f[ha>>2]=ia;f[j>>2]=ha+4}f[h>>2]=0;f[y>>2]=0}while(0);W=W+1|0;Q=f[g>>2]|0}while(W>>>0>>0);ea=Q}ca=ca+1|0;if(ca>>>0>=z>>>0){ba=81;break a}else da=ea}}V=U+1|0;qg(N+(V*12|0)|0,f[N+(U*12|0)>>2]|0,f[N+(U*12|0)+4>>2]|0);W=(f[(f[k>>2]|0)+(V*12|0)>>2]|0)+(R<<2)|0;Y=(f[W>>2]|0)+(1<>2]=Y;W=f[A>>2]|0;Q=f[B>>2]|0;b:do if((S|0)==(O|0))ja=O;else{Z=f[K>>2]|0;if(!W){if((f[Z+(R<<2)>>2]|0)>>>0>>0){ja=S;break}else{ka=S;la=O}while(1){ha=ka;do{ha=ha+-1|0;if((la|0)==(ha|0)){ja=la;break b}ia=(f[L>>2]|0)+((X(ha,Q)|0)<<2)+(R<<2)|0}while((f[ia>>2]|0)>>>0>=Y>>>0);la=la+1|0;if((la|0)==(ha|0)){ja=ha;break b}else ka=ha}}else{ma=S;na=O}while(1){ia=na;while(1){oa=Z+((X(ia,W)|0)<<2)|0;if((f[oa+(R<<2)>>2]|0)>>>0>=Y>>>0){pa=ma;break}$=ia+1|0;if(($|0)==(ma|0)){ja=ma;break b}else ia=$}while(1){pa=pa+-1|0;if((ia|0)==(pa|0)){ja=ia;break b}qa=(f[L>>2]|0)+((X(pa,Q)|0)<<2)|0;if((f[qa+(R<<2)>>2]|0)>>>0>>0){ra=0;break}}do{ha=oa+(ra<<2)|0;$=qa+(ra<<2)|0;ga=f[ha>>2]|0;f[ha>>2]=f[$>>2];f[$>>2]=ga;ra=ra+1|0}while((ra|0)!=(W|0));na=ia+1|0;if((na|0)==(pa|0)){ja=pa;break}else ma=pa}}while(0);Y=(_(z|0)|0)^31;Q=ja-O|0;Z=S-ja|0;ga=Q>>>0>>0;if((Q|0)!=(Z|0)){$=f[D>>2]|0;if(ga)f[E>>2]=f[E>>2]|1<<31-$;ha=$+1|0;f[D>>2]=ha;if((ha|0)==32){ha=f[F>>2]|0;if((ha|0)==(f[G>>2]|0))Ci(H,E);else{f[ha>>2]=f[E>>2];f[F>>2]=ha+4}f[D>>2]=0;f[E>>2]=0}}ha=z>>>1;if(ga)bg(C,Y,ha-Q|0);else bg(C,Y,ha-Z|0);ha=f[s>>2]|0;Y=f[ha+(U*12|0)>>2]|0;ga=Y+(R<<2)|0;f[ga>>2]=(f[ga>>2]|0)+1;qg(ha+(V*12|0)|0,Y,f[ha+(U*12|0)+4>>2]|0);if((ja|0)!=(O|0)){ha=f[o>>2]|0;Y=f[t>>2]|0;ga=ha-Y>>2;$=f[v>>2]|0;fa=f[l>>2]|0;if((((ga|0)==0?0:(ga*113|0)+-1|0)|0)==(fa+$|0)){Jc(e);sa=f[v>>2]|0;ta=f[l>>2]|0;ua=f[o>>2]|0;va=f[t>>2]|0}else{sa=$;ta=fa;ua=ha;va=Y}Y=ta+sa|0;if((ua|0)==(va|0))wa=0;else wa=(f[va+(((Y>>>0)/113|0)<<2)>>2]|0)+(((Y>>>0)%113|0)*36|0)|0;f[wa>>2]=O;Y=wa+4|0;f[Y>>2]=r;f[Y+4>>2]=x;f[wa+12>>2]=ja;f[wa+16>>2]=i;f[wa+20>>2]=W;f[wa+24>>2]=R;f[wa+28>>2]=Q;f[wa+32>>2]=U;f[l>>2]=(f[l>>2]|0)+1}if((S|0)!=(ja|0)){Q=f[o>>2]|0;Y=f[t>>2]|0;ha=Q-Y>>2;fa=f[v>>2]|0;$=f[l>>2]|0;if((((ha|0)==0?0:(ha*113|0)+-1|0)|0)==($+fa|0)){Jc(e);xa=f[v>>2]|0;ya=f[l>>2]|0;za=f[o>>2]|0;Aa=f[t>>2]|0}else{xa=fa;ya=$;za=Q;Aa=Y}Y=ya+xa|0;if((za|0)==(Aa|0))Ba=0;else Ba=(f[Aa+(((Y>>>0)/113|0)<<2)>>2]|0)+(((Y>>>0)%113|0)*36|0)|0;f[Ba>>2]=ja;f[Ba+4>>2]=i;f[Ba+8>>2]=W;f[Ba+12>>2]=S;Y=Ba+16|0;f[Y>>2]=p;f[Y+4>>2]=q;f[Ba+24>>2]=R;f[Ba+28>>2]=Z;f[Ba+32>>2]=V;Z=(f[l>>2]|0)+1|0;f[l>>2]=Z;Ca=Z}else ba=81}else ba=81;while(0);if((ba|0)==81){ba=0;Ca=f[l>>2]|0}if(!Ca)break;else M=Ca}}Ca=f[t>>2]|0;M=f[v>>2]|0;Ba=Ca+(((M>>>0)/113|0)<<2)|0;q=f[o>>2]|0;p=q;i=Ca;if((q|0)==(Ca|0)){Da=0;Ea=0}else{ja=(f[Ba>>2]|0)+(((M>>>0)%113|0)*36|0)|0;Da=ja;Ea=ja}ja=Ba;Ba=Ea;c:while(1){Ea=Ba;do{M=Ea;if((Da|0)==(M|0))break c;Ea=M+36|0}while((Ea-(f[ja>>2]|0)|0)!=4068);Ea=ja+4|0;ja=Ea;Ba=f[Ea>>2]|0}f[l>>2]=0;l=p-i>>2;if(l>>>0>2){i=Ca;do{br(f[i>>2]|0);i=(f[t>>2]|0)+4|0;f[t>>2]=i;Fa=f[o>>2]|0;Ga=Fa-i>>2}while(Ga>>>0>2);Ha=Ga;Ia=i;Ja=Fa}else{Ha=l;Ia=Ca;Ja=q}switch(Ha|0){case 1:{Ka=56;ba=95;break}case 2:{Ka=113;ba=95;break}default:{}}if((ba|0)==95)f[v>>2]=Ka;if((Ia|0)!=(Ja|0)){Ka=Ia;do{br(f[Ka>>2]|0);Ka=Ka+4|0}while((Ka|0)!=(Ja|0));Ja=f[t>>2]|0;t=f[o>>2]|0;if((t|0)!=(Ja|0))f[o>>2]=t+(~((t+-4-Ja|0)>>>2)<<2)}Ja=f[e>>2]|0;if(!Ja){u=d;return}br(Ja);u=d;return}function ob(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0.0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0,Sa=0,Ta=0,Ua=0,Va=0,Wa=0,Xa=0,Ya=0,Za=0,_a=0,$a=0,ab=0,bb=0.0,cb=0,db=0,eb=0,fb=0,gb=0,hb=0,ib=0,jb=0.0,kb=0.0,lb=0.0,mb=0.0,nb=0.0,ob=0.0,pb=0.0,qb=0.0,rb=0.0,sb=0.0,tb=0;i=u;u=u+512|0;j=i;k=d+c|0;l=0-k|0;m=a+4|0;n=a+100|0;o=b;b=0;a:while(1){switch(o|0){case 46:{p=6;break a;break}case 48:break;default:{q=0;r=o;s=b;t=0;v=0;break a}}w=f[m>>2]|0;if(w>>>0<(f[n>>2]|0)>>>0){f[m>>2]=w+1;o=h[w>>0]|0;b=1;continue}else{o=Di(a)|0;b=1;continue}}if((p|0)==6){o=f[m>>2]|0;if(o>>>0<(f[n>>2]|0)>>>0){f[m>>2]=o+1;x=h[o>>0]|0}else x=Di(a)|0;if((x|0)==48){o=0;w=0;while(1){y=Tn(o|0,w|0,-1,-1)|0;z=I;A=f[m>>2]|0;if(A>>>0<(f[n>>2]|0)>>>0){f[m>>2]=A+1;B=h[A>>0]|0}else B=Di(a)|0;if((B|0)==48){o=y;w=z}else{q=1;r=B;s=1;t=y;v=z;break}}}else{q=1;r=x;s=b;t=0;v=0}}f[j>>2]=0;b=r+-48|0;x=(r|0)==46;b:do if(x|b>>>0<10){B=j+496|0;w=0;o=0;z=0;y=q;A=s;C=r;D=x;E=b;F=t;G=v;H=0;J=0;c:while(1){do if(D)if(!y){L=w;M=o;N=1;O=z;P=A;Q=H;R=J;S=H;T=J}else break c;else{U=Tn(H|0,J|0,1,0)|0;V=I;W=(C|0)!=48;if((o|0)>=125){if(!W){L=w;M=o;N=y;O=z;P=A;Q=F;R=G;S=U;T=V;break}f[B>>2]=f[B>>2]|1;L=w;M=o;N=y;O=z;P=A;Q=F;R=G;S=U;T=V;break}Y=j+(o<<2)|0;if(!w)Z=E;else Z=C+-48+((f[Y>>2]|0)*10|0)|0;f[Y>>2]=Z;Y=w+1|0;_=(Y|0)==9;L=_?0:Y;M=o+(_&1)|0;N=y;O=W?U:z;P=1;Q=F;R=G;S=U;T=V}while(0);V=f[m>>2]|0;if(V>>>0<(f[n>>2]|0)>>>0){f[m>>2]=V+1;$=h[V>>0]|0}else $=Di(a)|0;E=$+-48|0;D=($|0)==46;if(!(D|E>>>0<10)){aa=L;ba=M;ca=O;da=N;ea=$;fa=P;ga=S;ha=Q;ia=T;ja=R;p=29;break b}else{w=L;o=M;z=O;y=N;A=P;C=$;F=Q;G=R;H=S;J=T}}ka=w;la=o;ma=z;na=H;oa=J;pa=F;qa=G;ra=(A|0)!=0;p=37}else{aa=0;ba=0;ca=0;da=q;ea=r;fa=s;ga=0;ha=t;ia=0;ja=v;p=29}while(0);do if((p|0)==29){v=(da|0)==0;t=v?ga:ha;s=v?ia:ja;v=(fa|0)!=0;if(!(v&(ea|32|0)==101))if((ea|0)>-1){ka=aa;la=ba;ma=ca;na=ga;oa=ia;pa=t;qa=s;ra=v;p=37;break}else{sa=aa;ta=ba;ua=ca;va=ga;wa=ia;xa=v;ya=t;za=s;p=39;break}v=De(a,g)|0;r=I;if((v|0)==0&(r|0)==-2147483648){if(!g){Rm(a,0);Aa=0.0;break}if(!(f[n>>2]|0)){Ba=0;Ca=0}else{f[m>>2]=(f[m>>2]|0)+-1;Ba=0;Ca=0}}else{Ba=v;Ca=r}r=Tn(Ba|0,Ca|0,t|0,s|0)|0;Da=aa;Ea=ba;Fa=ca;Ga=r;Ha=ga;Ia=I;Ja=ia;p=41}while(0);if((p|0)==37)if(f[n>>2]|0){f[m>>2]=(f[m>>2]|0)+-1;if(ra){Da=ka;Ea=la;Fa=ma;Ga=pa;Ha=na;Ia=qa;Ja=oa;p=41}else p=40}else{sa=ka;ta=la;ua=ma;va=na;wa=oa;xa=ra;ya=pa;za=qa;p=39}if((p|0)==39)if(xa){Da=sa;Ea=ta;Fa=ua;Ga=ya;Ha=va;Ia=za;Ja=wa;p=41}else p=40;do if((p|0)==40){wa=ir()|0;f[wa>>2]=22;Rm(a,0);Aa=0.0}else if((p|0)==41){wa=f[j>>2]|0;if(!wa){Aa=+(e|0)*0.0;break}if(((Ja|0)<0|(Ja|0)==0&Ha>>>0<10)&((Ga|0)==(Ha|0)&(Ia|0)==(Ja|0))?(c|0)>30|(wa>>>c|0)==0:0){Aa=+(e|0)*+(wa>>>0);break}wa=(d|0)/-2|0;za=((wa|0)<0)<<31>>31;if((Ia|0)>(za|0)|(Ia|0)==(za|0)&Ga>>>0>wa>>>0){wa=ir()|0;f[wa>>2]=34;Aa=+(e|0)*1797693134862315708145274.0e284*1797693134862315708145274.0e284;break}wa=d+-106|0;za=((wa|0)<0)<<31>>31;if((Ia|0)<(za|0)|(Ia|0)==(za|0)&Ga>>>0>>0){wa=ir()|0;f[wa>>2]=34;Aa=+(e|0)*2.2250738585072014e-308*2.2250738585072014e-308;break}if(!Da)Ka=Ea;else{if((Da|0)<9){wa=j+(Ea<<2)|0;za=Da;va=f[wa>>2]|0;while(1){va=va*10|0;if((za|0)>=8)break;else za=za+1|0}f[wa>>2]=va}Ka=Ea+1|0}if((Fa|0)<9?(Fa|0)<=(Ga|0)&(Ga|0)<18:0){if((Ga|0)==9){Aa=+(e|0)*+((f[j>>2]|0)>>>0);break}if((Ga|0)<9){Aa=+(e|0)*+((f[j>>2]|0)>>>0)/+(f[6408+(8-Ga<<2)>>2]|0);break}za=c+27+(X(Ga,-3)|0)|0;A=f[j>>2]|0;if((za|0)>30|(A>>>za|0)==0){Aa=+(e|0)*+(A>>>0)*+(f[6408+(Ga+-10<<2)>>2]|0);break}}A=(Ga|0)%9|0;if(!A){La=0;Ma=Ka;Na=0;Oa=Ga}else{za=(Ga|0)>-1?A:A+9|0;A=f[6408+(8-za<<2)>>2]|0;if(Ka){G=1e9/(A|0)|0;F=0;J=0;H=Ga;z=0;do{o=j+(z<<2)|0;w=f[o>>2]|0;ya=((w>>>0)/(A>>>0)|0)+F|0;f[o>>2]=ya;F=X(G,(w>>>0)%(A>>>0)|0)|0;w=(z|0)==(J|0)&(ya|0)==0;H=w?H+-9|0:H;J=w?J+1&127:J;z=z+1|0}while((z|0)!=(Ka|0));if(!F){Pa=J;Qa=Ka;Ra=H}else{f[j+(Ka<<2)>>2]=F;Pa=J;Qa=Ka+1|0;Ra=H}}else{Pa=0;Qa=0;Ra=Ga}La=0;Ma=Qa;Na=Pa;Oa=9-za+Ra|0}d:while(1){z=(Oa|0)<18;A=(Oa|0)==18;G=j+(Na<<2)|0;va=La;wa=Ma;while(1){if(!z){if(!A){Sa=va;Ta=Na;Ua=Oa;Va=wa;break d}if((f[G>>2]|0)>>>0>=9007199){Sa=va;Ta=Na;Ua=18;Va=wa;break d}}w=0;Wa=wa;ya=wa+127|0;while(1){o=ya&127;ua=j+(o<<2)|0;ta=Rn(f[ua>>2]|0,0,29)|0;sa=Tn(ta|0,I|0,w|0,0)|0;ta=I;if(ta>>>0>0|(ta|0)==0&sa>>>0>1e9){xa=up(sa|0,ta|0,1e9,0)|0;qa=an(sa|0,ta|0,1e9,0)|0;Xa=xa;Ya=qa}else{Xa=0;Ya=sa}f[ua>>2]=Ya;ua=(o|0)==(Na|0);Wa=(Ya|0)==0&(((o|0)!=(Wa+127&127|0)|ua)^1)?o:Wa;if(ua)break;else{w=Xa;ya=o+-1|0}}va=va+-29|0;if(Xa|0)break;else wa=Wa}wa=Na+127&127;G=Wa+127&127;A=j+((Wa+126&127)<<2)|0;if((wa|0)==(Wa|0)){f[A>>2]=f[A>>2]|f[j+(G<<2)>>2];Za=G}else Za=Wa;f[j+(wa<<2)>>2]=Xa;La=va;Ma=Za;Na=wa;Oa=Oa+9|0}e:while(1){za=Va+1&127;H=j+((Va+127&127)<<2)|0;J=Sa;F=Ta;wa=Ua;while(1){G=(wa|0)==18;A=(wa|0)>27?9:1;_a=J;$a=F;while(1){z=0;while(1){ya=z+$a&127;if((ya|0)==(Va|0)){ab=2;p=88;break}w=f[j+(ya<<2)>>2]|0;ya=f[6440+(z<<2)>>2]|0;if(w>>>0>>0){ab=2;p=88;break}if(w>>>0>ya>>>0)break;ya=z+1|0;if((z|0)<1)z=ya;else{ab=ya;p=88;break}}if((p|0)==88?(p=0,G&(ab|0)==2):0){bb=0.0;cb=0;db=Va;break e}eb=A+_a|0;if(($a|0)==(Va|0)){_a=eb;$a=Va}else break}G=(1<>>A;fb=0;gb=$a;hb=wa;ya=$a;do{w=j+(ya<<2)|0;o=f[w>>2]|0;ua=(o>>>A)+fb|0;f[w>>2]=ua;fb=X(o&G,z)|0;o=(ya|0)==(gb|0)&(ua|0)==0;hb=o?hb+-9|0:hb;gb=o?gb+1&127:gb;ya=ya+1&127}while((ya|0)!=(Va|0));if(!fb){J=eb;F=gb;wa=hb;continue}if((za|0)!=(gb|0))break;f[H>>2]=f[H>>2]|1;J=eb;F=gb;wa=hb}f[j+(Va<<2)>>2]=fb;Sa=eb;Ta=gb;Ua=hb;Va=za}while(1){wa=cb+$a&127;F=db+1&127;if((wa|0)==(db|0)){f[j+(F+-1<<2)>>2]=0;ib=F}else ib=db;bb=bb*1.0e9+ +((f[j+(wa<<2)>>2]|0)>>>0);cb=cb+1|0;if((cb|0)==2)break;else db=ib}jb=+(e|0);kb=bb*jb;wa=_a+53|0;F=wa-d|0;J=(F|0)<(c|0);H=J?((F|0)>0?F:0):c;if((H|0)<53){lb=+Gq(+Wj(1.0,105-H|0),kb);mb=+Sq(kb,+Wj(1.0,53-H|0));nb=lb;ob=mb;pb=lb+(kb-mb)}else{nb=0.0;ob=0.0;pb=kb}va=$a+2&127;if((va|0)!=(ib|0)){ya=f[j+(va<<2)>>2]|0;do if(ya>>>0>=5e8){if((ya|0)!=5e8){qb=jb*.75+ob;break}if(($a+3&127|0)==(ib|0)){qb=jb*.5+ob;break}else{qb=jb*.75+ob;break}}else{if((ya|0)==0?($a+3&127|0)==(ib|0):0){qb=ob;break}qb=jb*.25+ob}while(0);if((53-H|0)>1?!(+Sq(qb,1.0)!=0.0):0)rb=qb+1.0;else rb=qb}else rb=ob;jb=pb+rb-nb;do if((wa&2147483647|0)>(-2-k|0)){ya=!(+K(+jb)>=9007199254740992.0);va=_a+((ya^1)&1)|0;kb=ya?jb:jb*.5;if((va+50|0)<=(l|0)?!(rb!=0.0&(J&((H|0)!=(F|0)|ya))):0){sb=kb;tb=va;break}ya=ir()|0;f[ya>>2]=34;sb=kb;tb=va}else{sb=jb;tb=_a}while(0);Aa=+Hq(sb,tb)}while(0);u=i;return +Aa}function pb(a,c,d,e,g,i){a=a|0;c=+c;d=d|0;e=e|0;g=g|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0.0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0.0,C=0,D=0.0,E=0,F=0,G=0,H=0.0,J=0,K=0,L=0,M=0,N=0,O=0.0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0.0,ga=0.0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0;j=u;u=u+560|0;k=j+8|0;l=j;m=j+524|0;n=m;o=j+512|0;f[l>>2]=0;p=o+12|0;xo(c)|0;if((I|0)<0){q=-c;r=1;s=15511}else{q=c;r=(g&2049|0)!=0&1;s=(g&2048|0)==0?((g&1|0)==0?15512:15517):15514}xo(q)|0;do if(0==0&(I&2146435072|0)==2146435072){t=(i&32|0)!=0;v=r+3|0;Hk(a,32,d,v,g&-65537);ep(a,s,r);ep(a,q!=q|0.0!=0.0?(t?17461:15538):t?15530:15534,3);Hk(a,32,d,v,g^8192);w=v}else{c=+Iq(q,l)*2.0;v=c!=0.0;if(v)f[l>>2]=(f[l>>2]|0)+-1;t=i|32;if((t|0)==97){x=i&32;y=(x|0)==0?s:s+9|0;z=r|2;A=12-e|0;do if(!(e>>>0>11|(A|0)==0)){B=8.0;C=A;do{C=C+-1|0;B=B*16.0}while((C|0)!=0);if((b[y>>0]|0)==45){D=-(B+(-c-B));break}else{D=c+B-B;break}}else D=c;while(0);A=f[l>>2]|0;C=(A|0)<0?0-A|0:A;E=Jj(C,((C|0)<0)<<31>>31,p)|0;if((E|0)==(p|0)){C=o+11|0;b[C>>0]=48;F=C}else F=E;b[F+-1>>0]=(A>>31&2)+43;A=F+-2|0;b[A>>0]=i+15;E=(e|0)<1;C=(g&8|0)==0;G=m;H=D;while(1){J=~~H;K=G+1|0;b[G>>0]=x|h[15542+J>>0];H=(H-+(J|0))*16.0;if((K-n|0)==1?!(C&(E&H==0.0)):0){b[K>>0]=46;L=G+2|0}else L=K;if(!(H!=0.0))break;else G=L}G=L;if((e|0)!=0?(-2-n+G|0)<(e|0):0){M=G-n|0;N=e+2|0}else{E=G-n|0;M=E;N=E}E=p-A|0;G=E+z+N|0;Hk(a,32,d,G,g);ep(a,y,z);Hk(a,48,d,G,g^65536);ep(a,m,M);Hk(a,48,N-M|0,0,0);ep(a,A,E);Hk(a,32,d,G,g^8192);w=G;break}G=(e|0)<0?6:e;if(v){E=(f[l>>2]|0)+-28|0;f[l>>2]=E;O=c*268435456.0;P=E}else{O=c;P=f[l>>2]|0}E=(P|0)<0?k:k+288|0;C=E;H=O;do{x=~~H>>>0;f[C>>2]=x;C=C+4|0;H=(H-+(x>>>0))*1.0e9}while(H!=0.0);if((P|0)>0){v=E;A=C;z=P;while(1){y=(z|0)<29?z:29;x=A+-4|0;if(x>>>0>=v>>>0){K=x;x=0;do{J=Rn(f[K>>2]|0,0,y|0)|0;Q=Tn(J|0,I|0,x|0,0)|0;J=I;R=an(Q|0,J|0,1e9,0)|0;f[K>>2]=R;x=up(Q|0,J|0,1e9,0)|0;K=K+-4|0}while(K>>>0>=v>>>0);if(x){K=v+-4|0;f[K>>2]=x;S=K}else S=v}else S=v;K=A;while(1){if(K>>>0<=S>>>0)break;J=K+-4|0;if(!(f[J>>2]|0))K=J;else break}x=(f[l>>2]|0)-y|0;f[l>>2]=x;if((x|0)>0){v=S;A=K;z=x}else{T=S;U=K;V=x;break}}}else{T=E;U=C;V=P}if((V|0)<0){z=((G+25|0)/9|0)+1|0;A=(t|0)==102;v=T;x=U;J=V;while(1){Q=0-J|0;R=(Q|0)<9?Q:9;if(v>>>0>>0){Q=(1<>>R;Y=0;Z=v;do{_=f[Z>>2]|0;f[Z>>2]=(_>>>R)+Y;Y=X(_&Q,W)|0;Z=Z+4|0}while(Z>>>0>>0);Z=(f[v>>2]|0)==0?v+4|0:v;if(!Y){$=Z;aa=x}else{f[x>>2]=Y;$=Z;aa=x+4|0}}else{$=(f[v>>2]|0)==0?v+4|0:v;aa=x}Z=A?E:$;W=(aa-Z>>2|0)>(z|0)?Z+(z<<2)|0:aa;J=(f[l>>2]|0)+R|0;f[l>>2]=J;if((J|0)>=0){ba=$;ca=W;break}else{v=$;x=W}}}else{ba=T;ca=U}x=E;if(ba>>>0>>0){v=(x-ba>>2)*9|0;J=f[ba>>2]|0;if(J>>>0<10)da=v;else{z=v;v=10;while(1){v=v*10|0;A=z+1|0;if(J>>>0>>0){da=A;break}else z=A}}}else da=0;z=(t|0)==103;v=(G|0)!=0;J=G-((t|0)!=102?da:0)+((v&z)<<31>>31)|0;if((J|0)<(((ca-x>>2)*9|0)+-9|0)){A=J+9216|0;J=E+4+(((A|0)/9|0)+-1024<<2)|0;C=(A|0)%9|0;if((C|0)<8){A=C;C=10;while(1){W=C*10|0;if((A|0)<7){A=A+1|0;C=W}else{ea=W;break}}}else ea=10;C=f[J>>2]|0;A=(C>>>0)%(ea>>>0)|0;t=(J+4|0)==(ca|0);if(!(t&(A|0)==0)){B=(((C>>>0)/(ea>>>0)|0)&1|0)==0?9007199254740992.0:9007199254740994.0;W=(ea|0)/2|0;H=A>>>0>>0?.5:t&(A|0)==(W|0)?1.0:1.5;if(!r){fa=H;ga=B}else{W=(b[s>>0]|0)==45;fa=W?-H:H;ga=W?-B:B}W=C-A|0;f[J>>2]=W;if(ga+fa!=ga){A=W+ea|0;f[J>>2]=A;if(A>>>0>999999999){A=ba;W=J;while(1){C=W+-4|0;f[W>>2]=0;if(C>>>0>>0){t=A+-4|0;f[t>>2]=0;ha=t}else ha=A;t=(f[C>>2]|0)+1|0;f[C>>2]=t;if(t>>>0>999999999){A=ha;W=C}else{ia=ha;ja=C;break}}}else{ia=ba;ja=J}W=(x-ia>>2)*9|0;A=f[ia>>2]|0;if(A>>>0<10){ka=ja;la=W;ma=ia}else{C=W;W=10;while(1){W=W*10|0;t=C+1|0;if(A>>>0>>0){ka=ja;la=t;ma=ia;break}else C=t}}}else{ka=J;la=da;ma=ba}}else{ka=J;la=da;ma=ba}C=ka+4|0;na=la;oa=ca>>>0>C>>>0?C:ca;pa=ma}else{na=da;oa=ca;pa=ba}C=oa;while(1){if(C>>>0<=pa>>>0){qa=0;break}W=C+-4|0;if(!(f[W>>2]|0))C=W;else{qa=1;break}}J=0-na|0;do if(z){W=G+((v^1)&1)|0;if((W|0)>(na|0)&(na|0)>-5){ra=i+-1|0;sa=W+-1-na|0}else{ra=i+-2|0;sa=W+-1|0}W=g&8;if(!W){if(qa?(A=f[C+-4>>2]|0,(A|0)!=0):0)if(!((A>>>0)%10|0)){t=0;Z=10;while(1){Z=Z*10|0;Q=t+1|0;if((A>>>0)%(Z>>>0)|0|0){ta=Q;break}else t=Q}}else ta=0;else ta=9;t=((C-x>>2)*9|0)+-9|0;if((ra|32|0)==102){Z=t-ta|0;A=(Z|0)>0?Z:0;ua=ra;va=(sa|0)<(A|0)?sa:A;wa=0;break}else{A=t+na-ta|0;t=(A|0)>0?A:0;ua=ra;va=(sa|0)<(t|0)?sa:t;wa=0;break}}else{ua=ra;va=sa;wa=W}}else{ua=i;va=G;wa=g&8}while(0);G=va|wa;x=(G|0)!=0&1;v=(ua|32|0)==102;if(v){xa=0;ya=(na|0)>0?na:0}else{z=(na|0)<0?J:na;t=Jj(z,((z|0)<0)<<31>>31,p)|0;z=p;if((z-t|0)<2){A=t;while(1){Z=A+-1|0;b[Z>>0]=48;if((z-Z|0)<2)A=Z;else{za=Z;break}}}else za=t;b[za+-1>>0]=(na>>31&2)+43;A=za+-2|0;b[A>>0]=ua;xa=A;ya=z-A|0}A=r+1+va+x+ya|0;Hk(a,32,d,A,g);ep(a,s,r);Hk(a,48,d,A,g^65536);if(v){J=pa>>>0>E>>>0?E:pa;Z=m+9|0;R=Z;Y=m+8|0;Q=J;do{K=Jj(f[Q>>2]|0,0,Z)|0;if((Q|0)==(J|0))if((K|0)==(Z|0)){b[Y>>0]=48;Aa=Y}else Aa=K;else if(K>>>0>m>>>0){hj(m|0,48,K-n|0)|0;y=K;while(1){_=y+-1|0;if(_>>>0>m>>>0)y=_;else{Aa=_;break}}}else Aa=K;ep(a,Aa,R-Aa|0);Q=Q+4|0}while(Q>>>0<=E>>>0);if(G|0)ep(a,15558,1);if(Q>>>0>>0&(va|0)>0){E=va;R=Q;while(1){Y=Jj(f[R>>2]|0,0,Z)|0;if(Y>>>0>m>>>0){hj(m|0,48,Y-n|0)|0;J=Y;while(1){v=J+-1|0;if(v>>>0>m>>>0)J=v;else{Ba=v;break}}}else Ba=Y;ep(a,Ba,(E|0)<9?E:9);R=R+4|0;J=E+-9|0;if(!(R>>>0>>0&(E|0)>9)){Ca=J;break}else E=J}}else Ca=va;Hk(a,48,Ca+9|0,9,0)}else{E=qa?C:pa+4|0;if((va|0)>-1){R=m+9|0;Z=(wa|0)==0;Q=R;G=0-n|0;J=m+8|0;K=va;v=pa;while(1){x=Jj(f[v>>2]|0,0,R)|0;if((x|0)==(R|0)){b[J>>0]=48;Da=J}else Da=x;do if((v|0)==(pa|0)){x=Da+1|0;ep(a,Da,1);if(Z&(K|0)<1){Ea=x;break}ep(a,15558,1);Ea=x}else{if(Da>>>0<=m>>>0){Ea=Da;break}hj(m|0,48,Da+G|0)|0;x=Da;while(1){z=x+-1|0;if(z>>>0>m>>>0)x=z;else{Ea=z;break}}}while(0);Y=Q-Ea|0;ep(a,Ea,(K|0)>(Y|0)?Y:K);x=K-Y|0;v=v+4|0;if(!(v>>>0>>0&(x|0)>-1)){Fa=x;break}else K=x}}else Fa=va;Hk(a,48,Fa+18|0,18,0);ep(a,xa,p-xa|0)}Hk(a,32,d,A,g^8192);w=A}while(0);u=j;return ((w|0)<(d|0)?d:w)|0}function qb(a,c,e,g,h){a=a|0;c=c|0;e=e|0;g=g|0;h=h|0;var i=0,j=0,k=0,l=0,m=0,n=0,o=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0;i=u;u=u+64|0;j=i+16|0;k=i;l=i+24|0;m=i+8|0;n=i+20|0;f[j>>2]=c;c=(a|0)!=0;o=l+40|0;q=o;r=l+39|0;l=m+4|0;s=0;t=0;v=0;a:while(1){do if((t|0)>-1)if((s|0)>(2147483647-t|0)){w=ir()|0;f[w>>2]=75;x=-1;break}else{x=s+t|0;break}else x=t;while(0);w=f[j>>2]|0;y=b[w>>0]|0;if(!(y<<24>>24)){z=88;break}else{A=y;B=w}b:while(1){switch(A<<24>>24){case 37:{C=B;D=B;z=9;break b;break}case 0:{E=B;break b;break}default:{}}y=B+1|0;f[j>>2]=y;A=b[y>>0]|0;B=y}c:do if((z|0)==9)while(1){z=0;if((b[D+1>>0]|0)!=37){E=C;break c}y=C+1|0;D=D+2|0;f[j>>2]=D;if((b[D>>0]|0)!=37){E=y;break}else{C=y;z=9}}while(0);y=E-w|0;if(c)ep(a,w,y);if(y|0){s=y;t=x;continue}y=(Pq(b[(f[j>>2]|0)+1>>0]|0)|0)==0;F=f[j>>2]|0;if(!y?(b[F+2>>0]|0)==36:0){G=(b[F+1>>0]|0)+-48|0;H=1;J=3}else{G=-1;H=v;J=1}y=F+J|0;f[j>>2]=y;F=b[y>>0]|0;K=(F<<24>>24)+-32|0;if(K>>>0>31|(1<>24)+-32|K;P=F+1|0;f[j>>2]=P;Q=b[P>>0]|0;R=(Q<<24>>24)+-32|0;if(R>>>0>31|(1<>24==42){if((Pq(b[N+1>>0]|0)|0)!=0?(F=f[j>>2]|0,(b[F+2>>0]|0)==36):0){O=F+1|0;f[h+((b[O>>0]|0)+-48<<2)>>2]=10;S=f[g+((b[O>>0]|0)+-48<<3)>>2]|0;T=1;U=F+3|0}else{if(H|0){V=-1;break}if(c){F=(f[e>>2]|0)+(4-1)&~(4-1);O=f[F>>2]|0;f[e>>2]=F+4;W=O}else W=0;S=W;T=0;U=(f[j>>2]|0)+1|0}f[j>>2]=U;O=(S|0)<0;X=O?0-S|0:S;Y=O?L|8192:L;Z=T;_=U}else{O=Cl(j)|0;if((O|0)<0){V=-1;break}X=O;Y=L;Z=H;_=f[j>>2]|0}do if((b[_>>0]|0)==46){if((b[_+1>>0]|0)!=42){f[j>>2]=_+1;O=Cl(j)|0;$=O;aa=f[j>>2]|0;break}if(Pq(b[_+2>>0]|0)|0?(O=f[j>>2]|0,(b[O+3>>0]|0)==36):0){F=O+2|0;f[h+((b[F>>0]|0)+-48<<2)>>2]=10;K=f[g+((b[F>>0]|0)+-48<<3)>>2]|0;F=O+4|0;f[j>>2]=F;$=K;aa=F;break}if(Z|0){V=-1;break a}if(c){F=(f[e>>2]|0)+(4-1)&~(4-1);K=f[F>>2]|0;f[e>>2]=F+4;ba=K}else ba=0;K=(f[j>>2]|0)+2|0;f[j>>2]=K;$=ba;aa=K}else{$=-1;aa=_}while(0);K=0;F=aa;while(1){if(((b[F>>0]|0)+-65|0)>>>0>57){V=-1;break a}O=F;F=F+1|0;f[j>>2]=F;ca=b[(b[O>>0]|0)+-65+(15030+(K*58|0))>>0]|0;da=ca&255;if((da+-1|0)>>>0>=8)break;else K=da}if(!(ca<<24>>24)){V=-1;break}O=(G|0)>-1;do if(ca<<24>>24==19)if(O){V=-1;break a}else z=50;else{if(O){f[h+(G<<2)>>2]=da;P=g+(G<<3)|0;Q=f[P+4>>2]|0;y=k;f[y>>2]=f[P>>2];f[y+4>>2]=Q;z=50;break}if(!c){V=0;break a}Ie(k,da,e);ea=f[j>>2]|0}while(0);if((z|0)==50){z=0;if(c)ea=F;else{s=0;t=x;v=Z;continue}}O=b[ea+-1>>0]|0;Q=(K|0)!=0&(O&15|0)==3?O&-33:O;O=Y&-65537;y=(Y&8192|0)==0?Y:O;d:do switch(Q|0){case 110:{switch((K&255)<<24>>24){case 0:{f[f[k>>2]>>2]=x;s=0;t=x;v=Z;continue a;break}case 1:{f[f[k>>2]>>2]=x;s=0;t=x;v=Z;continue a;break}case 2:{P=f[k>>2]|0;f[P>>2]=x;f[P+4>>2]=((x|0)<0)<<31>>31;s=0;t=x;v=Z;continue a;break}case 3:{d[f[k>>2]>>1]=x;s=0;t=x;v=Z;continue a;break}case 4:{b[f[k>>2]>>0]=x;s=0;t=x;v=Z;continue a;break}case 6:{f[f[k>>2]>>2]=x;s=0;t=x;v=Z;continue a;break}case 7:{P=f[k>>2]|0;f[P>>2]=x;f[P+4>>2]=((x|0)<0)<<31>>31;s=0;t=x;v=Z;continue a;break}default:{s=0;t=x;v=Z;continue a}}break}case 112:{fa=120;ga=$>>>0>8?$:8;ha=y|8;z=62;break}case 88:case 120:{fa=Q;ga=$;ha=y;z=62;break}case 111:{P=k;R=f[P>>2]|0;ia=f[P+4>>2]|0;P=Gl(R,ia,o)|0;ja=q-P|0;ka=P;la=0;ma=15494;na=(y&8|0)==0|($|0)>(ja|0)?$:ja+1|0;oa=y;pa=R;qa=ia;z=68;break}case 105:case 100:{ia=k;R=f[ia>>2]|0;ja=f[ia+4>>2]|0;if((ja|0)<0){ia=Vn(0,0,R|0,ja|0)|0;P=I;ra=k;f[ra>>2]=ia;f[ra+4>>2]=P;sa=1;ta=15494;ua=ia;va=P;z=67;break d}else{sa=(y&2049|0)!=0&1;ta=(y&2048|0)==0?((y&1|0)==0?15494:15496):15495;ua=R;va=ja;z=67;break d}break}case 117:{ja=k;sa=0;ta=15494;ua=f[ja>>2]|0;va=f[ja+4>>2]|0;z=67;break}case 99:{b[r>>0]=f[k>>2];wa=r;xa=0;ya=15494;za=o;Aa=1;Ba=O;break}case 109:{ja=ir()|0;Ca=kp(f[ja>>2]|0)|0;z=72;break}case 115:{ja=f[k>>2]|0;Ca=ja|0?ja:15504;z=72;break}case 67:{f[m>>2]=f[k>>2];f[l>>2]=0;f[k>>2]=m;Da=-1;Ea=m;z=76;break}case 83:{ja=f[k>>2]|0;if(!$){Hk(a,32,X,0,y);Fa=0;z=85}else{Da=$;Ea=ja;z=76}break}case 65:case 71:case 70:case 69:case 97:case 103:case 102:case 101:{s=pb(a,+p[k>>3],X,$,y,Q)|0;t=x;v=Z;continue a;break}default:{wa=w;xa=0;ya=15494;za=o;Aa=$;Ba=y}}while(0);e:do if((z|0)==62){z=0;w=k;Q=f[w>>2]|0;K=f[w+4>>2]|0;w=ol(Q,K,o,fa&32)|0;F=(ha&8|0)==0|(Q|0)==0&(K|0)==0;ka=w;la=F?0:2;ma=F?15494:15494+(fa>>4)|0;na=ga;oa=ha;pa=Q;qa=K;z=68}else if((z|0)==67){z=0;ka=Jj(ua,va,o)|0;la=sa;ma=ta;na=$;oa=y;pa=ua;qa=va;z=68}else if((z|0)==72){z=0;K=cg(Ca,0,$)|0;Q=(K|0)==0;wa=Ca;xa=0;ya=15494;za=Q?Ca+$|0:K;Aa=Q?$:K-Ca|0;Ba=O}else if((z|0)==76){z=0;K=Ea;Q=0;F=0;while(1){w=f[K>>2]|0;if(!w){Ga=Q;Ha=F;break}ja=Yo(n,w)|0;if((ja|0)<0|ja>>>0>(Da-Q|0)>>>0){Ga=Q;Ha=ja;break}w=ja+Q|0;if(Da>>>0>w>>>0){K=K+4|0;Q=w;F=ja}else{Ga=w;Ha=ja;break}}if((Ha|0)<0){V=-1;break a}Hk(a,32,X,Ga,y);if(!Ga){Fa=0;z=85}else{F=Ea;Q=0;while(1){K=f[F>>2]|0;if(!K){Fa=Ga;z=85;break e}ja=Yo(n,K)|0;Q=ja+Q|0;if((Q|0)>(Ga|0)){Fa=Ga;z=85;break e}ep(a,n,ja);if(Q>>>0>=Ga>>>0){Fa=Ga;z=85;break}else F=F+4|0}}}while(0);if((z|0)==68){z=0;O=(pa|0)!=0|(qa|0)!=0;F=(na|0)!=0|O;Q=q-ka+((O^1)&1)|0;wa=F?ka:o;xa=la;ya=ma;za=o;Aa=F?((na|0)>(Q|0)?na:Q):na;Ba=(na|0)>-1?oa&-65537:oa}else if((z|0)==85){z=0;Hk(a,32,X,Fa,y^8192);s=(X|0)>(Fa|0)?X:Fa;t=x;v=Z;continue}Q=za-wa|0;F=(Aa|0)<(Q|0)?Q:Aa;O=F+xa|0;ja=(X|0)<(O|0)?O:X;Hk(a,32,ja,O,Ba);ep(a,ya,xa);Hk(a,48,ja,O,Ba^65536);Hk(a,48,F,Q,0);ep(a,wa,Q);Hk(a,32,ja,O,Ba^8192);s=ja;t=x;v=Z}f:do if((z|0)==88)if(!a)if(v){Z=1;while(1){t=f[h+(Z<<2)>>2]|0;if(!t){Ia=Z;break}Ie(g+(Z<<3)|0,t,e);t=Z+1|0;if((Z|0)<9)Z=t;else{Ia=t;break}}if((Ia|0)<10){Z=Ia;while(1){if(f[h+(Z<<2)>>2]|0){V=-1;break f}if((Z|0)<9)Z=Z+1|0;else{V=1;break}}}else V=1}else V=0;else V=x;while(0);u=i;return V|0}function rb(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=Oa,ma=Oa,na=Oa,oa=0,pa=0,qa=0,ra=0,sa=0;c=u;u=u+64|0;d=c+28|0;e=c+16|0;g=c+4|0;h=c;i=a;j=a+80|0;k=f[j>>2]|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=i;l=d+20|0;n[l>>2]=$(1.0);f[d+24>>2]=i;qh(d,k);k=f[j>>2]|0;f[e>>2]=0;i=e+4|0;f[i>>2]=0;f[e+8>>2]=0;m=(k|0)==0;do if(!m)if(k>>>0>1073741823)mq(e);else{o=k<<2;p=dn(o)|0;f[e>>2]=p;q=p+(k<<2)|0;f[e+8>>2]=q;hj(p|0,0,o|0)|0;f[i>>2]=q;break}while(0);f[g>>2]=0;k=g+4|0;f[k>>2]=0;f[g+8>>2]=0;f[h>>2]=0;if(!m){m=d+16|0;q=d+4|0;o=d+12|0;p=d+8|0;r=g+8|0;s=d+24|0;t=0;v=0;while(1){w=f[m>>2]|0;x=f[w+8>>2]|0;y=(f[w+12>>2]|0)-x|0;w=(y|0)>0;z=x;if(w){x=y>>>2;A=0;B=0;while(1){C=f[z+(A<<2)>>2]|0;if(!(b[C+84>>0]|0))D=f[(f[C+68>>2]|0)+(v<<2)>>2]|0;else D=v;C=D+239^B;A=A+1|0;if((A|0)>=(x|0)){E=C;break}else B=C}}else E=0;B=f[q>>2]|0;x=(B|0)==0;a:do if(!x){A=B+-1|0;C=(A&B|0)==0;if(!C)if(E>>>0>>0)F=E;else F=(E>>>0)%(B>>>0)|0;else F=A&E;G=f[(f[d>>2]|0)+(F<<2)>>2]|0;if((G|0)!=0?(H=f[G>>2]|0,(H|0)!=0):0){G=f[s>>2]|0;I=G+8|0;J=G+12|0;b:do if(C){G=H;while(1){K=f[G+4>>2]|0;L=(K|0)==(E|0);if(!(L|(K&A|0)==(F|0))){M=44;break a}c:do if(L){K=f[G+8>>2]|0;N=f[I>>2]|0;O=(f[J>>2]|0)-N|0;P=N;if((O|0)<=0){Q=G;break b}N=O>>>2;O=0;while(1){R=f[P+(O<<2)>>2]|0;if(!(b[R+84>>0]|0)){S=f[R+68>>2]|0;T=f[S+(v<<2)>>2]|0;U=f[S+(K<<2)>>2]|0}else{T=v;U=K}O=O+1|0;if((U|0)!=(T|0))break c;if((O|0)>=(N|0)){V=G;M=42;break b}}}while(0);G=f[G>>2]|0;if(!G){M=44;break a}}}else{G=H;while(1){L=f[G+4>>2]|0;d:do if((L|0)!=(E|0)){if(L>>>0>>0)X=L;else X=(L>>>0)%(B>>>0)|0;if((X|0)!=(F|0)){M=44;break a}}else{N=f[G+8>>2]|0;O=f[I>>2]|0;K=(f[J>>2]|0)-O|0;P=O;if((K|0)<=0){Q=G;break b}O=K>>>2;K=0;while(1){S=f[P+(K<<2)>>2]|0;if(!(b[S+84>>0]|0)){R=f[S+68>>2]|0;Y=f[R+(v<<2)>>2]|0;Z=f[R+(N<<2)>>2]|0}else{Y=v;Z=N}K=K+1|0;if((Z|0)!=(Y|0))break d;if((K|0)>=(O|0)){V=G;M=42;break b}}}while(0);G=f[G>>2]|0;if(!G){M=44;break a}}}while(0);if((M|0)==42){M=0;if(!V){M=44;break}else Q=V}f[(f[e>>2]|0)+(v<<2)>>2]=f[Q+12>>2];_=t}else M=44}else M=44;while(0);do if((M|0)==44){M=0;if(w){J=y>>>2;I=0;H=0;while(1){A=f[z+(I<<2)>>2]|0;if(!(b[A+84>>0]|0))aa=f[(f[A+68>>2]|0)+(v<<2)>>2]|0;else aa=v;A=aa+239^H;I=I+1|0;if((I|0)>=(J|0)){ba=A;break}else H=A}}else ba=0;e:do if(!x){H=B+-1|0;J=(H&B|0)==0;if(!J)if(ba>>>0>>0)ca=ba;else ca=(ba>>>0)%(B>>>0)|0;else ca=H&ba;I=f[(f[d>>2]|0)+(ca<<2)>>2]|0;if((I|0)!=0?(A=f[I>>2]|0,(A|0)!=0):0){I=f[s>>2]|0;C=I+8|0;G=I+12|0;if(J){J=A;while(1){I=f[J+4>>2]|0;if(!((I|0)==(ba|0)|(I&H|0)==(ca|0))){da=ca;M=76;break e}I=f[J+8>>2]|0;L=f[C>>2]|0;O=(f[G>>2]|0)-L|0;K=L;if((O|0)<=0){ea=v;break e}L=O>>>2;O=0;while(1){N=f[K+(O<<2)>>2]|0;if(!(b[N+84>>0]|0)){P=f[N+68>>2]|0;fa=f[P+(v<<2)>>2]|0;ga=f[P+(I<<2)>>2]|0}else{fa=v;ga=I}O=O+1|0;if((ga|0)!=(fa|0))break;if((O|0)>=(L|0)){ea=v;break e}}J=f[J>>2]|0;if(!J){da=ca;M=76;break e}}}else ha=A;while(1){J=f[ha+4>>2]|0;if((J|0)!=(ba|0)){if(J>>>0>>0)ia=J;else ia=(J>>>0)%(B>>>0)|0;if((ia|0)!=(ca|0)){da=ca;M=76;break e}}J=f[ha+8>>2]|0;H=f[C>>2]|0;L=(f[G>>2]|0)-H|0;O=H;if((L|0)<=0){ea=v;break e}H=L>>>2;L=0;while(1){I=f[O+(L<<2)>>2]|0;if(!(b[I+84>>0]|0)){K=f[I+68>>2]|0;ja=f[K+(v<<2)>>2]|0;ka=f[K+(J<<2)>>2]|0}else{ja=v;ka=J}L=L+1|0;if((ka|0)!=(ja|0))break;if((L|0)>=(H|0)){ea=v;break e}}ha=f[ha>>2]|0;if(!ha){da=ca;M=76;break}}}else{da=ca;M=76}}else{da=0;M=76}while(0);if((M|0)==76){M=0;G=dn(16)|0;f[G+8>>2]=v;f[G+12>>2]=t;f[G+4>>2]=ba;f[G>>2]=0;la=$(((f[o>>2]|0)+1|0)>>>0);ma=$(B>>>0);na=$(n[l>>2]);do if(x|$(na*ma)>>0<3|(B+-1&B|0)!=0)&1;A=~~$(W($(la/na)))>>>0;qh(d,C>>>0>>0?A:C);C=f[q>>2]|0;A=C+-1|0;if(!(A&C)){oa=C;pa=A&ba;break}if(ba>>>0>>0){oa=C;pa=ba}else{oa=C;pa=(ba>>>0)%(C>>>0)|0}}else{oa=B;pa=da}while(0);C=(f[d>>2]|0)+(pa<<2)|0;A=f[C>>2]|0;if(!A){f[G>>2]=f[p>>2];f[p>>2]=G;f[C>>2]=p;C=f[G>>2]|0;if(C|0){H=f[C+4>>2]|0;C=oa+-1|0;if(C&oa)if(H>>>0>>0)qa=H;else qa=(H>>>0)%(oa>>>0)|0;else qa=H&C;ra=(f[d>>2]|0)+(qa<<2)|0;M=89}}else{f[G>>2]=f[A>>2];ra=A;M=89}if((M|0)==89){M=0;f[ra>>2]=G}f[o>>2]=(f[o>>2]|0)+1;ea=f[h>>2]|0}A=t+1|0;f[(f[e>>2]|0)+(ea<<2)>>2]=t;C=f[k>>2]|0;if((C|0)==(f[r>>2]|0)){Ci(g,h);_=A;break}else{f[C>>2]=f[h>>2];f[k>>2]=C+4;_=A;break}}while(0);v=(f[h>>2]|0)+1|0;f[h>>2]=v;sa=f[j>>2]|0;if(v>>>0>=sa>>>0)break;else t=_}if((_|0)!=(sa|0)){Xa[f[(f[a>>2]|0)+24>>2]&15](a,e,g);f[j>>2]=_}}_=f[g>>2]|0;if(_|0){g=f[k>>2]|0;if((g|0)!=(_|0))f[k>>2]=g+(~((g+-4-_|0)>>>2)<<2);br(_)}_=f[e>>2]|0;if(_|0){e=f[i>>2]|0;if((e|0)!=(_|0))f[i>>2]=e+(~((e+-4-_|0)>>>2)<<2);br(_)}_=f[d+8>>2]|0;if(_|0){e=_;do{_=e;e=f[e>>2]|0;br(_)}while((e|0)!=0)}e=f[d>>2]|0;f[d>>2]=0;if(!e){u=c;return}br(e);u=c;return}function sb(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0;g=u;u=u+80|0;h=g+76|0;i=g+72|0;j=g+48|0;k=g+24|0;l=g;m=a+32|0;n=f[c>>2]|0;c=n+1|0;if((n|0)!=-1){o=((c>>>0)%3|0|0)==0?n+-2|0:c;c=(((n>>>0)%3|0|0)==0?2:-1)+n|0;if((o|0)==-1)p=-1;else p=f[(f[f[m>>2]>>2]|0)+(o<<2)>>2]|0;if((c|0)==-1){q=p;r=-1}else{q=p;r=f[(f[f[m>>2]>>2]|0)+(c<<2)>>2]|0}}else{q=-1;r=-1}c=f[a+36>>2]|0;m=f[c>>2]|0;p=(f[c+4>>2]|0)-m>>2;if(p>>>0<=q>>>0)mq(c);o=m;m=f[o+(q<<2)>>2]|0;if(p>>>0<=r>>>0)mq(c);c=f[o+(r<<2)>>2]|0;r=(m|0)<(e|0);do if(r&(c|0)<(e|0)){o=m<<1;p=f[d+(o<<2)>>2]|0;q=((p|0)<0)<<31>>31;n=f[d+((o|1)<<2)>>2]|0;o=((n|0)<0)<<31>>31;s=c<<1;t=f[d+(s<<2)>>2]|0;v=f[d+((s|1)<<2)>>2]|0;if(!((t|0)!=(p|0)|(v|0)!=(n|0))){f[a+8>>2]=p;f[a+12>>2]=n;u=g;return 1}s=a+4|0;w=f[(f[s>>2]|0)+(e<<2)>>2]|0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;f[j+12>>2]=0;f[j+16>>2]=0;f[j+20>>2]=0;x=f[a>>2]|0;if(!(b[x+84>>0]|0))y=f[(f[x+68>>2]|0)+(w<<2)>>2]|0;else y=w;f[i>>2]=y;w=b[x+24>>0]|0;f[h>>2]=f[i>>2];ub(x,h,w,j)|0;w=f[(f[s>>2]|0)+(m<<2)>>2]|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;f[k+16>>2]=0;f[k+20>>2]=0;x=f[a>>2]|0;if(!(b[x+84>>0]|0))z=f[(f[x+68>>2]|0)+(w<<2)>>2]|0;else z=w;f[i>>2]=z;w=b[x+24>>0]|0;f[h>>2]=f[i>>2];ub(x,h,w,k)|0;w=f[(f[s>>2]|0)+(c<<2)>>2]|0;f[l>>2]=0;f[l+4>>2]=0;f[l+8>>2]=0;f[l+12>>2]=0;f[l+16>>2]=0;f[l+20>>2]=0;s=f[a>>2]|0;if(!(b[s+84>>0]|0))A=f[(f[s+68>>2]|0)+(w<<2)>>2]|0;else A=w;f[i>>2]=A;w=b[s+24>>0]|0;f[h>>2]=f[i>>2];ub(s,h,w,l)|0;w=l;s=k;x=f[s>>2]|0;B=f[s+4>>2]|0;s=Vn(f[w>>2]|0,f[w+4>>2]|0,x|0,B|0)|0;w=I;C=l+8|0;D=k+8|0;E=f[D>>2]|0;F=f[D+4>>2]|0;D=Vn(f[C>>2]|0,f[C+4>>2]|0,E|0,F|0)|0;C=I;G=l+16|0;H=k+16|0;J=f[H>>2]|0;K=f[H+4>>2]|0;H=Vn(f[G>>2]|0,f[G+4>>2]|0,J|0,K|0)|0;G=I;L=on(s|0,w|0,s|0,w|0)|0;M=I;N=on(D|0,C|0,D|0,C|0)|0;O=Tn(N|0,I|0,L|0,M|0)|0;M=I;L=on(H|0,G|0,H|0,G|0)|0;N=Tn(O|0,M|0,L|0,I|0)|0;L=I;if((N|0)==0&(L|0)==0)break;M=j;O=Vn(f[M>>2]|0,f[M+4>>2]|0,x|0,B|0)|0;B=I;x=j+8|0;M=Vn(f[x>>2]|0,f[x+4>>2]|0,E|0,F|0)|0;F=I;E=j+16|0;x=Vn(f[E>>2]|0,f[E+4>>2]|0,J|0,K|0)|0;K=I;J=on(O|0,B|0,s|0,w|0)|0;E=I;P=on(M|0,F|0,D|0,C|0)|0;Q=Tn(P|0,I|0,J|0,E|0)|0;E=I;J=on(x|0,K|0,H|0,G|0)|0;P=Tn(Q|0,E|0,J|0,I|0)|0;J=I;E=Vn(t|0,((t|0)<0)<<31>>31|0,p|0,q|0)|0;t=I;Q=Vn(v|0,((v|0)<0)<<31>>31|0,n|0,o|0)|0;v=I;R=on(N|0,L|0,p|0,q|0)|0;q=I;p=on(N|0,L|0,n|0,o|0)|0;o=I;n=on(P|0,J|0,E|0,t|0)|0;S=I;T=on(P|0,J|0,Q|0,v|0)|0;U=I;V=Tn(n|0,S|0,R|0,q|0)|0;q=I;R=Tn(T|0,U|0,p|0,o|0)|0;o=I;p=on(P|0,J|0,s|0,w|0)|0;w=I;s=on(P|0,J|0,D|0,C|0)|0;C=I;D=on(P|0,J|0,H|0,G|0)|0;G=I;H=zk(p|0,w|0,N|0,L|0)|0;w=I;p=zk(s|0,C|0,N|0,L|0)|0;C=I;s=zk(D|0,G|0,N|0,L|0)|0;G=I;D=Vn(O|0,B|0,H|0,w|0)|0;w=I;H=Vn(M|0,F|0,p|0,C|0)|0;C=I;p=Vn(x|0,K|0,s|0,G|0)|0;G=I;s=on(D|0,w|0,D|0,w|0)|0;w=I;D=on(H|0,C|0,H|0,C|0)|0;C=Tn(D|0,I|0,s|0,w|0)|0;w=I;s=on(p|0,G|0,p|0,G|0)|0;G=Tn(C|0,w|0,s|0,I|0)|0;s=I;w=Vn(0,0,E|0,t|0)|0;t=I;E=on(G|0,s|0,N|0,L|0)|0;s=I;switch(E|0){case 0:{if(!s){W=0;X=0}else{Y=1;Z=0;_=E;$=s;aa=23}break}case 1:{if(!s){ba=1;ca=0;aa=24}else{Y=1;Z=0;_=E;$=s;aa=23}break}default:{Y=1;Z=0;_=E;$=s;aa=23}}if((aa|0)==23)while(1){aa=0;G=Rn(Y|0,Z|0,1)|0;C=I;p=_;_=Wn(_|0,$|0,2)|0;if(!($>>>0>0|($|0)==0&p>>>0>7)){ba=G;ca=C;aa=24;break}else{Y=G;Z=C;$=I;aa=23}}if((aa|0)==24)while(1){aa=0;C=up(E|0,s|0,ba|0,ca|0)|0;G=Tn(C|0,I|0,ba|0,ca|0)|0;C=Wn(G|0,I|0,1)|0;G=I;p=on(C|0,G|0,C|0,G|0)|0;D=I;if(D>>>0>s>>>0|(D|0)==(s|0)&p>>>0>E>>>0){ba=C;ca=G;aa=24}else{W=C;X=G;break}}E=on(W|0,X|0,Q|0,v|0)|0;s=I;G=on(W|0,X|0,w|0,t|0)|0;C=I;p=Tn(E|0,s|0,V|0,q|0)|0;D=I;H=Tn(G|0,C|0,R|0,o|0)|0;K=I;x=zk(p|0,D|0,N|0,L|0)|0;D=I;p=zk(H|0,K|0,N|0,L|0)|0;K=I;H=Vn(V|0,q|0,E|0,s|0)|0;s=I;E=Vn(R|0,o|0,G|0,C|0)|0;C=I;G=zk(H|0,s|0,N|0,L|0)|0;s=I;H=zk(E|0,C|0,N|0,L|0)|0;C=I;E=e<<1;F=f[d+(E<<2)>>2]|0;M=((F|0)<0)<<31>>31;B=f[d+((E|1)<<2)>>2]|0;E=((B|0)<0)<<31>>31;O=Vn(F|0,M|0,x|0,D|0)|0;J=I;P=Vn(B|0,E|0,p|0,K|0)|0;U=I;T=on(O|0,J|0,O|0,J|0)|0;J=I;O=on(P|0,U|0,P|0,U|0)|0;U=Tn(O|0,I|0,T|0,J|0)|0;J=I;T=Vn(F|0,M|0,G|0,s|0)|0;M=I;F=Vn(B|0,E|0,H|0,C|0)|0;E=I;B=on(T|0,M|0,T|0,M|0)|0;M=I;T=on(F|0,E|0,F|0,E|0)|0;E=Tn(T|0,I|0,B|0,M|0)|0;M=I;B=a+16|0;T=a+20|0;F=f[T>>2]|0;O=f[a+24>>2]|0;P=(F|0)==(O<<5|0);if(J>>>0>>0|(J|0)==(M|0)&U>>>0>>0){do if(P)if((F+1|0)<0)mq(B);else{E=O<<6;U=F+32&-32;hi(B,F>>>0<1073741823?(E>>>0>>0?U:E):2147483647);da=f[T>>2]|0;break}else da=F;while(0);f[T>>2]=da+1;L=(f[B>>2]|0)+(da>>>5<<2)|0;f[L>>2]=f[L>>2]|1<<(da&31);ea=x;fa=p;ga=K;ha=D}else{do if(P)if((F+1|0)<0)mq(B);else{L=O<<6;N=F+32&-32;hi(B,F>>>0<1073741823?(L>>>0>>0?N:L):2147483647);ia=f[T>>2]|0;break}else ia=F;while(0);f[T>>2]=ia+1;F=(f[B>>2]|0)+(ia>>>5<<2)|0;f[F>>2]=f[F>>2]&~(1<<(ia&31));ea=G;fa=H;ga=C;ha=s}f[a+8>>2]=ea;f[a+12>>2]=fa;u=g;return 1}while(0);do if(r)ja=m<<1;else{if((e|0)>0){ja=(e<<1)+-2|0;break}fa=a+8|0;f[fa>>2]=0;f[fa+4>>2]=0;u=g;return 1}while(0);f[a+8>>2]=f[d+(ja<<2)>>2];f[a+12>>2]=f[d+(ja+1<<2)>>2];u=g;return 1}function tb(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0;g=u;u=u+80|0;h=g+76|0;i=g+72|0;j=g+48|0;k=g+24|0;l=g;m=a+32|0;n=f[c>>2]|0;c=n+1|0;do if((n|0)!=-1){o=((c>>>0)%3|0|0)==0?n+-2|0:c;if(!((n>>>0)%3|0)){p=n+2|0;q=o;break}else{p=n+-1|0;q=o;break}}else{p=-1;q=-1}while(0);n=f[(f[m>>2]|0)+28>>2]|0;m=f[n+(q<<2)>>2]|0;q=f[n+(p<<2)>>2]|0;p=f[a+36>>2]|0;n=f[p>>2]|0;c=(f[p+4>>2]|0)-n>>2;if(c>>>0<=m>>>0)mq(p);o=n;n=f[o+(m<<2)>>2]|0;if(c>>>0<=q>>>0)mq(p);p=f[o+(q<<2)>>2]|0;q=(n|0)<(e|0);do if(q&(p|0)<(e|0)){o=n<<1;c=f[d+(o<<2)>>2]|0;m=((c|0)<0)<<31>>31;r=f[d+((o|1)<<2)>>2]|0;o=((r|0)<0)<<31>>31;s=p<<1;t=f[d+(s<<2)>>2]|0;v=f[d+((s|1)<<2)>>2]|0;if(!((t|0)!=(c|0)|(v|0)!=(r|0))){f[a+8>>2]=c;f[a+12>>2]=r;u=g;return 1}s=a+4|0;w=f[(f[s>>2]|0)+(e<<2)>>2]|0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;f[j+12>>2]=0;f[j+16>>2]=0;f[j+20>>2]=0;x=f[a>>2]|0;if(!(b[x+84>>0]|0))y=f[(f[x+68>>2]|0)+(w<<2)>>2]|0;else y=w;f[i>>2]=y;w=b[x+24>>0]|0;f[h>>2]=f[i>>2];ub(x,h,w,j)|0;w=f[(f[s>>2]|0)+(n<<2)>>2]|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;f[k+16>>2]=0;f[k+20>>2]=0;x=f[a>>2]|0;if(!(b[x+84>>0]|0))z=f[(f[x+68>>2]|0)+(w<<2)>>2]|0;else z=w;f[i>>2]=z;w=b[x+24>>0]|0;f[h>>2]=f[i>>2];ub(x,h,w,k)|0;w=f[(f[s>>2]|0)+(p<<2)>>2]|0;f[l>>2]=0;f[l+4>>2]=0;f[l+8>>2]=0;f[l+12>>2]=0;f[l+16>>2]=0;f[l+20>>2]=0;s=f[a>>2]|0;if(!(b[s+84>>0]|0))A=f[(f[s+68>>2]|0)+(w<<2)>>2]|0;else A=w;f[i>>2]=A;w=b[s+24>>0]|0;f[h>>2]=f[i>>2];ub(s,h,w,l)|0;w=l;s=k;x=f[s>>2]|0;B=f[s+4>>2]|0;s=Vn(f[w>>2]|0,f[w+4>>2]|0,x|0,B|0)|0;w=I;C=l+8|0;D=k+8|0;E=f[D>>2]|0;F=f[D+4>>2]|0;D=Vn(f[C>>2]|0,f[C+4>>2]|0,E|0,F|0)|0;C=I;G=l+16|0;H=k+16|0;J=f[H>>2]|0;K=f[H+4>>2]|0;H=Vn(f[G>>2]|0,f[G+4>>2]|0,J|0,K|0)|0;G=I;L=on(s|0,w|0,s|0,w|0)|0;M=I;N=on(D|0,C|0,D|0,C|0)|0;O=Tn(N|0,I|0,L|0,M|0)|0;M=I;L=on(H|0,G|0,H|0,G|0)|0;N=Tn(O|0,M|0,L|0,I|0)|0;L=I;if((N|0)==0&(L|0)==0)break;M=j;O=Vn(f[M>>2]|0,f[M+4>>2]|0,x|0,B|0)|0;B=I;x=j+8|0;M=Vn(f[x>>2]|0,f[x+4>>2]|0,E|0,F|0)|0;F=I;E=j+16|0;x=Vn(f[E>>2]|0,f[E+4>>2]|0,J|0,K|0)|0;K=I;J=on(O|0,B|0,s|0,w|0)|0;E=I;P=on(M|0,F|0,D|0,C|0)|0;Q=Tn(P|0,I|0,J|0,E|0)|0;E=I;J=on(x|0,K|0,H|0,G|0)|0;P=Tn(Q|0,E|0,J|0,I|0)|0;J=I;E=Vn(t|0,((t|0)<0)<<31>>31|0,c|0,m|0)|0;t=I;Q=Vn(v|0,((v|0)<0)<<31>>31|0,r|0,o|0)|0;v=I;R=on(N|0,L|0,c|0,m|0)|0;m=I;c=on(N|0,L|0,r|0,o|0)|0;o=I;r=on(P|0,J|0,E|0,t|0)|0;S=I;T=on(P|0,J|0,Q|0,v|0)|0;U=I;V=Tn(r|0,S|0,R|0,m|0)|0;m=I;R=Tn(T|0,U|0,c|0,o|0)|0;o=I;c=on(P|0,J|0,s|0,w|0)|0;w=I;s=on(P|0,J|0,D|0,C|0)|0;C=I;D=on(P|0,J|0,H|0,G|0)|0;G=I;H=zk(c|0,w|0,N|0,L|0)|0;w=I;c=zk(s|0,C|0,N|0,L|0)|0;C=I;s=zk(D|0,G|0,N|0,L|0)|0;G=I;D=Vn(O|0,B|0,H|0,w|0)|0;w=I;H=Vn(M|0,F|0,c|0,C|0)|0;C=I;c=Vn(x|0,K|0,s|0,G|0)|0;G=I;s=on(D|0,w|0,D|0,w|0)|0;w=I;D=on(H|0,C|0,H|0,C|0)|0;C=Tn(D|0,I|0,s|0,w|0)|0;w=I;s=on(c|0,G|0,c|0,G|0)|0;G=Tn(C|0,w|0,s|0,I|0)|0;s=I;w=Vn(0,0,E|0,t|0)|0;t=I;E=on(G|0,s|0,N|0,L|0)|0;s=I;switch(E|0){case 0:{if(!s){W=0;X=0}else{Y=1;Z=0;_=E;$=s;aa=22}break}case 1:{if(!s){ba=1;ca=0;aa=23}else{Y=1;Z=0;_=E;$=s;aa=22}break}default:{Y=1;Z=0;_=E;$=s;aa=22}}if((aa|0)==22)while(1){aa=0;G=Rn(Y|0,Z|0,1)|0;C=I;c=_;_=Wn(_|0,$|0,2)|0;if(!($>>>0>0|($|0)==0&c>>>0>7)){ba=G;ca=C;aa=23;break}else{Y=G;Z=C;$=I;aa=22}}if((aa|0)==23)while(1){aa=0;C=up(E|0,s|0,ba|0,ca|0)|0;G=Tn(C|0,I|0,ba|0,ca|0)|0;C=Wn(G|0,I|0,1)|0;G=I;c=on(C|0,G|0,C|0,G|0)|0;D=I;if(D>>>0>s>>>0|(D|0)==(s|0)&c>>>0>E>>>0){ba=C;ca=G;aa=23}else{W=C;X=G;break}}E=on(W|0,X|0,Q|0,v|0)|0;s=I;G=on(W|0,X|0,w|0,t|0)|0;C=I;c=Tn(E|0,s|0,V|0,m|0)|0;D=I;H=Tn(G|0,C|0,R|0,o|0)|0;K=I;x=zk(c|0,D|0,N|0,L|0)|0;D=I;c=zk(H|0,K|0,N|0,L|0)|0;K=I;H=Vn(V|0,m|0,E|0,s|0)|0;s=I;E=Vn(R|0,o|0,G|0,C|0)|0;C=I;G=zk(H|0,s|0,N|0,L|0)|0;s=I;H=zk(E|0,C|0,N|0,L|0)|0;C=I;E=e<<1;F=f[d+(E<<2)>>2]|0;M=((F|0)<0)<<31>>31;B=f[d+((E|1)<<2)>>2]|0;E=((B|0)<0)<<31>>31;O=Vn(F|0,M|0,x|0,D|0)|0;J=I;P=Vn(B|0,E|0,c|0,K|0)|0;U=I;T=on(O|0,J|0,O|0,J|0)|0;J=I;O=on(P|0,U|0,P|0,U|0)|0;U=Tn(O|0,I|0,T|0,J|0)|0;J=I;T=Vn(F|0,M|0,G|0,s|0)|0;M=I;F=Vn(B|0,E|0,H|0,C|0)|0;E=I;B=on(T|0,M|0,T|0,M|0)|0;M=I;T=on(F|0,E|0,F|0,E|0)|0;E=Tn(T|0,I|0,B|0,M|0)|0;M=I;B=a+16|0;T=a+20|0;F=f[T>>2]|0;O=f[a+24>>2]|0;P=(F|0)==(O<<5|0);if(J>>>0>>0|(J|0)==(M|0)&U>>>0>>0){do if(P)if((F+1|0)<0)mq(B);else{E=O<<6;U=F+32&-32;hi(B,F>>>0<1073741823?(E>>>0>>0?U:E):2147483647);da=f[T>>2]|0;break}else da=F;while(0);f[T>>2]=da+1;L=(f[B>>2]|0)+(da>>>5<<2)|0;f[L>>2]=f[L>>2]|1<<(da&31);ea=x;fa=c;ga=K;ha=D}else{do if(P)if((F+1|0)<0)mq(B);else{L=O<<6;N=F+32&-32;hi(B,F>>>0<1073741823?(L>>>0>>0?N:L):2147483647);ia=f[T>>2]|0;break}else ia=F;while(0);f[T>>2]=ia+1;F=(f[B>>2]|0)+(ia>>>5<<2)|0;f[F>>2]=f[F>>2]&~(1<<(ia&31));ea=G;fa=H;ga=C;ha=s}f[a+8>>2]=ea;f[a+12>>2]=fa;u=g;return 1}while(0);do if(q)ja=n<<1;else{if((e|0)>0){ja=(e<<1)+-2|0;break}fa=a+8|0;f[fa>>2]=0;f[fa+4>>2]=0;u=g;return 1}while(0);f[a+8>>2]=f[d+(ja<<2)>>2];f[a+12>>2]=f[d+(ja+1<<2)>>2];u=g;return 1}function ub(a,c,e,g){a=a|0;c=c|0;e=e|0;g=g|0;var i=0,k=0,l=0,m=0,o=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=Oa,D=0,E=0.0,F=0,G=0;if(!g){i=0;return i|0}do switch(f[a+28>>2]|0){case 1:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){m=f[f[a>>2]>>2]|0;o=a+40|0;q=on(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;r=Tn(q|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=m+r|0;r=0;while(1){m=b[o>>0]|0;q=g+(r<<3)|0;f[q>>2]=m;f[q+4>>2]=((m|0)<0)<<31>>31;r=r+1|0;m=b[k>>0]|0;if((r|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){s=m;break}else o=o+1|0}}else s=l;o=s<<24>>24;if(s<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(o<<3)|0,0,(e<<24>>24)-o<<3|0)|0;i=1;return i|0}case 2:{o=a+24|0;r=b[o>>0]|0;if((r<<24>>24>e<<24>>24?e:r)<<24>>24>0){k=f[f[a>>2]>>2]|0;m=a+40|0;q=on(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;t=Tn(q|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=k+t|0;t=0;while(1){k=g+(t<<3)|0;f[k>>2]=h[m>>0];f[k+4>>2]=0;t=t+1|0;k=b[o>>0]|0;if((t|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){u=k;break}else m=m+1|0}}else u=r;m=u<<24>>24;if(u<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(m<<3)|0,0,(e<<24>>24)-m<<3|0)|0;i=1;return i|0}case 3:{m=a+24|0;t=b[m>>0]|0;if((t<<24>>24>e<<24>>24?e:t)<<24>>24>0){o=f[f[a>>2]>>2]|0;l=a+40|0;k=on(f[l>>2]|0,f[l+4>>2]|0,f[c>>2]|0,0)|0;l=a+48|0;q=Tn(k|0,I|0,f[l>>2]|0,f[l+4>>2]|0)|0;l=o+q|0;q=0;while(1){o=d[l>>1]|0;k=g+(q<<3)|0;f[k>>2]=o;f[k+4>>2]=((o|0)<0)<<31>>31;q=q+1|0;o=b[m>>0]|0;if((q|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){v=o;break}else l=l+2|0}}else v=t;l=v<<24>>24;if(v<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(l<<3)|0,0,(e<<24>>24)-l<<3|0)|0;i=1;return i|0}case 4:{l=a+24|0;q=b[l>>0]|0;if((q<<24>>24>e<<24>>24?e:q)<<24>>24>0){m=f[f[a>>2]>>2]|0;r=a+40|0;o=on(f[r>>2]|0,f[r+4>>2]|0,f[c>>2]|0,0)|0;r=a+48|0;k=Tn(o|0,I|0,f[r>>2]|0,f[r+4>>2]|0)|0;r=m+k|0;k=0;while(1){m=g+(k<<3)|0;f[m>>2]=j[r>>1];f[m+4>>2]=0;k=k+1|0;m=b[l>>0]|0;if((k|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){w=m;break}else r=r+2|0}}else w=q;r=w<<24>>24;if(w<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(r<<3)|0,0,(e<<24>>24)-r<<3|0)|0;i=1;return i|0}case 5:{r=a+24|0;k=b[r>>0]|0;if((k<<24>>24>e<<24>>24?e:k)<<24>>24>0){l=f[f[a>>2]>>2]|0;t=a+40|0;m=on(f[t>>2]|0,f[t+4>>2]|0,f[c>>2]|0,0)|0;t=a+48|0;o=Tn(m|0,I|0,f[t>>2]|0,f[t+4>>2]|0)|0;t=l+o|0;o=0;while(1){l=f[t>>2]|0;m=g+(o<<3)|0;f[m>>2]=l;f[m+4>>2]=((l|0)<0)<<31>>31;o=o+1|0;l=b[r>>0]|0;if((o|0)>=((l<<24>>24>e<<24>>24?e:l)<<24>>24|0)){x=l;break}else t=t+4|0}}else x=k;t=x<<24>>24;if(x<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(t<<3)|0,0,(e<<24>>24)-t<<3|0)|0;i=1;return i|0}case 6:{t=a+24|0;o=b[t>>0]|0;if((o<<24>>24>e<<24>>24?e:o)<<24>>24>0){r=f[f[a>>2]>>2]|0;q=a+40|0;l=on(f[q>>2]|0,f[q+4>>2]|0,f[c>>2]|0,0)|0;q=a+48|0;m=Tn(l|0,I|0,f[q>>2]|0,f[q+4>>2]|0)|0;q=r+m|0;m=0;while(1){r=g+(m<<3)|0;f[r>>2]=f[q>>2];f[r+4>>2]=0;m=m+1|0;r=b[t>>0]|0;if((m|0)>=((r<<24>>24>e<<24>>24?e:r)<<24>>24|0)){y=r;break}else q=q+4|0}}else y=o;q=y<<24>>24;if(y<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(q<<3)|0,0,(e<<24>>24)-q<<3|0)|0;i=1;return i|0}case 7:{q=a+24|0;m=b[q>>0]|0;if((m<<24>>24>e<<24>>24?e:m)<<24>>24>0){t=f[f[a>>2]>>2]|0;k=a+40|0;r=on(f[k>>2]|0,f[k+4>>2]|0,f[c>>2]|0,0)|0;k=a+48|0;l=Tn(r|0,I|0,f[k>>2]|0,f[k+4>>2]|0)|0;k=t+l|0;l=0;while(1){t=k;r=f[t+4>>2]|0;z=g+(l<<3)|0;f[z>>2]=f[t>>2];f[z+4>>2]=r;l=l+1|0;r=b[q>>0]|0;if((l|0)>=((r<<24>>24>e<<24>>24?e:r)<<24>>24|0)){A=r;break}else k=k+8|0}}else A=m;k=A<<24>>24;if(A<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(k<<3)|0,0,(e<<24>>24)-k<<3|0)|0;i=1;return i|0}case 8:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){q=f[f[a>>2]>>2]|0;o=a+40|0;r=on(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;z=Tn(r|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=q+z|0;z=0;while(1){q=o;r=f[q+4>>2]|0;t=g+(z<<3)|0;f[t>>2]=f[q>>2];f[t+4>>2]=r;z=z+1|0;r=b[k>>0]|0;if((z|0)>=((r<<24>>24>e<<24>>24?e:r)<<24>>24|0)){B=r;break}else o=o+8|0}}else B=l;o=B<<24>>24;if(B<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(o<<3)|0,0,(e<<24>>24)-o<<3|0)|0;i=1;return i|0}case 9:{o=a+24|0;z=b[o>>0]|0;if((z<<24>>24>e<<24>>24?e:z)<<24>>24>0){k=f[f[a>>2]>>2]|0;m=a+40|0;r=on(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;t=Tn(r|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=k+t|0;t=0;while(1){C=$(n[m>>2]);k=+K(+C)>=1.0?(+C>0.0?~~+Y(+J(+C/4294967296.0),4294967295.0)>>>0:~~+W((+C-+(~~+C>>>0))/4294967296.0)>>>0):0;r=g+(t<<3)|0;f[r>>2]=~~+C>>>0;f[r+4>>2]=k;t=t+1|0;k=b[o>>0]|0;if((t|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){D=k;break}else m=m+4|0}}else D=z;m=D<<24>>24;if(D<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(m<<3)|0,0,(e<<24>>24)-m<<3|0)|0;i=1;return i|0}case 10:{m=a+24|0;t=b[m>>0]|0;if((t<<24>>24>e<<24>>24?e:t)<<24>>24>0){o=f[f[a>>2]>>2]|0;l=a+40|0;k=on(f[l>>2]|0,f[l+4>>2]|0,f[c>>2]|0,0)|0;l=a+48|0;r=Tn(k|0,I|0,f[l>>2]|0,f[l+4>>2]|0)|0;l=o+r|0;r=0;while(1){E=+p[l>>3];o=+K(E)>=1.0?(E>0.0?~~+Y(+J(E/4294967296.0),4294967295.0)>>>0:~~+W((E-+(~~E>>>0))/4294967296.0)>>>0):0;k=g+(r<<3)|0;f[k>>2]=~~E>>>0;f[k+4>>2]=o;r=r+1|0;o=b[m>>0]|0;if((r|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){F=o;break}else l=l+8|0}}else F=t;l=F<<24>>24;if(F<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(l<<3)|0,0,(e<<24>>24)-l<<3|0)|0;i=1;return i|0}case 11:{l=a+24|0;r=b[l>>0]|0;if((r<<24>>24>e<<24>>24?e:r)<<24>>24>0){m=f[f[a>>2]>>2]|0;z=a+40|0;o=on(f[z>>2]|0,f[z+4>>2]|0,f[c>>2]|0,0)|0;z=a+48|0;k=Tn(o|0,I|0,f[z>>2]|0,f[z+4>>2]|0)|0;z=m+k|0;k=0;while(1){m=g+(k<<3)|0;f[m>>2]=h[z>>0];f[m+4>>2]=0;k=k+1|0;m=b[l>>0]|0;if((k|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){G=m;break}else z=z+1|0}}else G=r;z=G<<24>>24;if(G<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(z<<3)|0,0,(e<<24>>24)-z<<3|0)|0;i=1;return i|0}default:{i=0;return i|0}}while(0);return 0}function vb(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0;c=u;u=u+16|0;d=c+8|0;e=c;if((f[a+92>>2]|0)==(f[a+88>>2]|0)){u=c;return 1}g=a+52|0;h=f[g>>2]|0;if((h|0)==(f[a+56>>2]|0)){Ci(a+48|0,b);i=b}else{f[h>>2]=f[b>>2];f[g>>2]=h+4;i=b}b=a+84|0;f[b>>2]=0;h=a+4|0;g=f[h>>2]|0;j=f[i>>2]|0;k=j+1|0;if((j|0)!=-1){l=((k>>>0)%3|0|0)==0?j+-2|0:k;if((l|0)==-1)m=-1;else m=f[(f[g>>2]|0)+(l<<2)>>2]|0;l=(((j>>>0)%3|0|0)==0?2:-1)+j|0;if((l|0)==-1){n=m;o=-1}else{n=m;o=f[(f[g>>2]|0)+(l<<2)>>2]|0}}else{n=-1;o=-1}l=a+36|0;g=f[l>>2]|0;m=g+(n>>>5<<2)|0;j=1<<(n&31);k=f[m>>2]|0;if(!(k&j)){f[m>>2]=k|j;j=f[i>>2]|0;k=j+1|0;if((j|0)==-1)p=-1;else p=((k>>>0)%3|0|0)==0?j+-2|0:k;f[e>>2]=p;k=f[(f[(f[a+16>>2]|0)+96>>2]|0)+(((p>>>0)/3|0)*12|0)+(((p>>>0)%3|0)<<2)>>2]|0;p=f[a+20>>2]|0;f[d>>2]=k;j=f[p+4>>2]|0;p=j+4|0;m=f[p>>2]|0;if((m|0)==(f[j+8>>2]|0))Ci(j,d);else{f[m>>2]=k;f[p>>2]=m+4}m=a+12|0;p=f[m>>2]|0;k=p+4|0;j=f[k>>2]|0;if((j|0)==(f[p+8>>2]|0)){Ci(p,e);q=f[m>>2]|0}else{f[j>>2]=f[e>>2];f[k>>2]=j+4;q=p}p=q+24|0;f[(f[q+12>>2]|0)+(n<<2)>>2]=f[p>>2];f[p>>2]=(f[p>>2]|0)+1;r=f[l>>2]|0}else r=g;g=r+(o>>>5<<2)|0;r=1<<(o&31);p=f[g>>2]|0;if(!(p&r)){f[g>>2]=p|r;r=f[i>>2]|0;do if((r|0)!=-1)if(!((r>>>0)%3|0)){s=r+2|0;break}else{s=r+-1|0;break}else s=-1;while(0);f[e>>2]=s;r=f[(f[(f[a+16>>2]|0)+96>>2]|0)+(((s>>>0)/3|0)*12|0)+(((s>>>0)%3|0)<<2)>>2]|0;s=f[a+20>>2]|0;f[d>>2]=r;p=f[s+4>>2]|0;s=p+4|0;g=f[s>>2]|0;if((g|0)==(f[p+8>>2]|0))Ci(p,d);else{f[g>>2]=r;f[s>>2]=g+4}g=a+12|0;s=f[g>>2]|0;r=s+4|0;p=f[r>>2]|0;if((p|0)==(f[s+8>>2]|0)){Ci(s,e);t=f[g>>2]|0}else{f[p>>2]=f[e>>2];f[r>>2]=p+4;t=s}s=t+24|0;f[(f[t+12>>2]|0)+(o<<2)>>2]=f[s>>2];f[s>>2]=(f[s>>2]|0)+1}s=f[i>>2]|0;if((s|0)==-1)v=-1;else v=f[(f[f[h>>2]>>2]|0)+(s<<2)>>2]|0;s=(f[l>>2]|0)+(v>>>5<<2)|0;o=1<<(v&31);t=f[s>>2]|0;if(!(o&t)){f[s>>2]=t|o;o=f[i>>2]|0;f[e>>2]=o;t=f[(f[(f[a+16>>2]|0)+96>>2]|0)+(((o>>>0)/3|0)*12|0)+(((o>>>0)%3|0)<<2)>>2]|0;o=f[a+20>>2]|0;f[d>>2]=t;s=f[o+4>>2]|0;o=s+4|0;p=f[o>>2]|0;if((p|0)==(f[s+8>>2]|0))Ci(s,d);else{f[p>>2]=t;f[o>>2]=p+4}p=a+12|0;o=f[p>>2]|0;t=o+4|0;s=f[t>>2]|0;if((s|0)==(f[o+8>>2]|0)){Ci(o,e);w=f[p>>2]|0}else{f[s>>2]=f[e>>2];f[t>>2]=s+4;w=o}o=w+24|0;f[(f[w+12>>2]|0)+(v<<2)>>2]=f[o>>2];f[o>>2]=(f[o>>2]|0)+1}o=f[b>>2]|0;a:do if((o|0)<3){v=a+24|0;w=a+16|0;s=a+20|0;t=a+12|0;p=a+88|0;r=o;while(1){g=r;while(1){x=a+48+(g*12|0)+4|0;y=f[x>>2]|0;if((f[a+48+(g*12|0)>>2]|0)!=(y|0))break;if((g|0)<2)g=g+1|0;else break a}n=y+-4|0;q=f[n>>2]|0;f[x>>2]=n;f[b>>2]=g;f[i>>2]=q;if((q|0)==-1)break;n=(q>>>0)/3|0;j=f[v>>2]|0;do if(!(f[j+(n>>>5<<2)>>2]&1<<(n&31))){k=q;m=j;b:while(1){z=(k>>>0)/3|0;A=m+(z>>>5<<2)|0;f[A>>2]=1<<(z&31)|f[A>>2];A=f[i>>2]|0;if((A|0)==-1)B=-1;else B=f[(f[f[h>>2]>>2]|0)+(A<<2)>>2]|0;z=(f[l>>2]|0)+(B>>>5<<2)|0;C=1<<(B&31);D=f[z>>2]|0;if(!(C&D)){f[z>>2]=D|C;C=f[i>>2]|0;f[e>>2]=C;D=f[(f[(f[w>>2]|0)+96>>2]|0)+(((C>>>0)/3|0)*12|0)+(((C>>>0)%3|0)<<2)>>2]|0;C=f[s>>2]|0;f[d>>2]=D;z=f[C+4>>2]|0;C=z+4|0;E=f[C>>2]|0;if((E|0)==(f[z+8>>2]|0))Ci(z,d);else{f[E>>2]=D;f[C>>2]=E+4}E=f[t>>2]|0;C=E+4|0;D=f[C>>2]|0;if((D|0)==(f[E+8>>2]|0)){Ci(E,e);F=f[t>>2]|0}else{f[D>>2]=f[e>>2];f[C>>2]=D+4;F=E}E=F+24|0;f[(f[F+12>>2]|0)+(B<<2)>>2]=f[E>>2];f[E>>2]=(f[E>>2]|0)+1;G=f[i>>2]|0}else G=A;A=f[h>>2]|0;if((G|0)==-1){H=93;break}E=G+1|0;D=((E>>>0)%3|0|0)==0?G+-2|0:E;if((D|0)==-1)I=-1;else I=f[(f[A+12>>2]|0)+(D<<2)>>2]|0;D=(((G>>>0)%3|0|0)==0?2:-1)+G|0;if((D|0)==-1)J=-1;else J=f[(f[A+12>>2]|0)+(D<<2)>>2]|0;D=(I|0)==-1;E=D?-1:(I>>>0)/3|0;C=(J|0)==-1;z=C?-1:(J>>>0)/3|0;if(D)K=1;else K=(f[(f[v>>2]|0)+(E>>>5<<2)>>2]&1<<(E&31)|0)!=0;do if(C)if(K){H=93;break b}else H=82;else{if(f[(f[v>>2]|0)+(z>>>5<<2)>>2]&1<<(z&31)|0)if(K){H=93;break b}else{H=82;break}E=f[(f[A>>2]|0)+(J<<2)>>2]|0;if(!(1<<(E&31)&f[(f[l>>2]|0)+(E>>>5<<2)>>2])){L=(f[p>>2]|0)+(E<<2)|0;E=f[L>>2]|0;f[L>>2]=E+1;M=(E|0)>0?1:2}else M=0;if(K?(M|0)<=(f[b>>2]|0):0){N=J;break}f[d>>2]=J;E=a+48+(M*12|0)+4|0;L=f[E>>2]|0;if((L|0)==(f[a+48+(M*12|0)+8>>2]|0))Ci(a+48+(M*12|0)|0,d);else{f[L>>2]=J;f[E>>2]=L+4}if((f[b>>2]|0)>(M|0))f[b>>2]=M;if(K){H=93;break b}else H=82}while(0);if((H|0)==82){H=0;if(D)O=-1;else O=f[(f[f[h>>2]>>2]|0)+(I<<2)>>2]|0;if(!(1<<(O&31)&f[(f[l>>2]|0)+(O>>>5<<2)>>2])){A=(f[p>>2]|0)+(O<<2)|0;z=f[A>>2]|0;f[A>>2]=z+1;P=(z|0)>0?1:2}else P=0;if((P|0)>(f[b>>2]|0))break;else N=I}f[i>>2]=N;k=N;m=f[v>>2]|0}if((H|0)==93){H=0;Q=f[b>>2]|0;break}f[d>>2]=I;m=a+48+(P*12|0)+4|0;k=f[m>>2]|0;if((k|0)==(f[a+48+(P*12|0)+8>>2]|0))Ci(a+48+(P*12|0)|0,d);else{f[k>>2]=I;f[m>>2]=k+4}k=f[b>>2]|0;if((k|0)>(P|0)){f[b>>2]=P;R=P}else R=k;Q=R}else Q=g;while(0);if((Q|0)<3)r=Q;else break a}u=c;return 1}while(0);f[i>>2]=-1;u=c;return 1}function wb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}wb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;wb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function xb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}xb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;xb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function yb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}yb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;yb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function zb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}zb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;zb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Ab(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Ab(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Ab(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}} -function Bb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Bb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Bb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Cb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Cb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Cb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Db(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Db(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Db(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Eb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Eb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Eb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Fb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Fb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Fb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Gb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Gb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Gb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Hb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Hb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Hb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Ib(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Ib(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Ib(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Jb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Jb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Jb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Kb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Kb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Kb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Lb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Lb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Lb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Mb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Mb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Mb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Nb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=Tf(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Cg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=Qd(h,Y,c)|0;j=Y+4|0;if(Qd(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Nb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Nb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)mq(d);_=$;if(i>>>0<=Y>>>0)mq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Cg(h,h+4|0,e,c)|0;return}case 12:{Qg(h,h+4|0,h+8|0,e,c)|0;return}case 13:{Tf(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{Pg(h,a,c);return}case 20:{mq(p);break}case 22:{mq(p);break}case 26:{mq(p);break}case 32:{mq(p);break}case 38:{mq(A);break}case 40:{mq(A);break}case 46:{mq(A);break}case 47:{mq(A);break}case 51:{mq(p);break}case 57:{mq(R);break}case 59:{mq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)mq(S);else mq(S);break}case 66:{mq(S);break}case 72:{mq(Z);break}case 74:{mq(Z);break}case 84:return}}function Ob(a,c,e,g){a=a|0;c=c|0;e=e|0;g=g|0;var i=0,k=0,l=0,m=0,o=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0;if(!g){i=0;return i|0}do switch(f[a+28>>2]|0){case 1:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){m=f[f[a>>2]>>2]|0;o=a+40|0;q=on(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;r=Tn(q|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=m+r|0;r=0;while(1){f[g+(r<<2)>>2]=b[o>>0];r=r+1|0;m=b[k>>0]|0;if((r|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){s=m;break}else o=o+1|0}}else s=l;o=s<<24>>24;if(s<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(o<<2)|0,0,(e<<24>>24)-o<<2|0)|0;i=1;return i|0}case 2:{o=a+24|0;r=b[o>>0]|0;if((r<<24>>24>e<<24>>24?e:r)<<24>>24>0){k=f[f[a>>2]>>2]|0;m=a+40|0;q=on(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;t=Tn(q|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=k+t|0;t=0;while(1){f[g+(t<<2)>>2]=h[m>>0];t=t+1|0;k=b[o>>0]|0;if((t|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){u=k;break}else m=m+1|0}}else u=r;m=u<<24>>24;if(u<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(m<<2)|0,0,(e<<24>>24)-m<<2|0)|0;i=1;return i|0}case 3:{m=a+24|0;t=b[m>>0]|0;if((t<<24>>24>e<<24>>24?e:t)<<24>>24>0){o=f[f[a>>2]>>2]|0;l=a+40|0;k=on(f[l>>2]|0,f[l+4>>2]|0,f[c>>2]|0,0)|0;l=a+48|0;q=Tn(k|0,I|0,f[l>>2]|0,f[l+4>>2]|0)|0;l=o+q|0;q=0;while(1){f[g+(q<<2)>>2]=d[l>>1];q=q+1|0;o=b[m>>0]|0;if((q|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){v=o;break}else l=l+2|0}}else v=t;l=v<<24>>24;if(v<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(l<<2)|0,0,(e<<24>>24)-l<<2|0)|0;i=1;return i|0}case 4:{l=a+24|0;q=b[l>>0]|0;if((q<<24>>24>e<<24>>24?e:q)<<24>>24>0){m=f[f[a>>2]>>2]|0;r=a+40|0;o=on(f[r>>2]|0,f[r+4>>2]|0,f[c>>2]|0,0)|0;r=a+48|0;k=Tn(o|0,I|0,f[r>>2]|0,f[r+4>>2]|0)|0;r=m+k|0;k=0;while(1){f[g+(k<<2)>>2]=j[r>>1];k=k+1|0;m=b[l>>0]|0;if((k|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){w=m;break}else r=r+2|0}}else w=q;r=w<<24>>24;if(w<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(r<<2)|0,0,(e<<24>>24)-r<<2|0)|0;i=1;return i|0}case 5:{r=a+24|0;k=b[r>>0]|0;if((k<<24>>24>e<<24>>24?e:k)<<24>>24>0){l=f[f[a>>2]>>2]|0;t=a+40|0;m=on(f[t>>2]|0,f[t+4>>2]|0,f[c>>2]|0,0)|0;t=a+48|0;o=Tn(m|0,I|0,f[t>>2]|0,f[t+4>>2]|0)|0;t=l+o|0;o=0;while(1){f[g+(o<<2)>>2]=f[t>>2];o=o+1|0;l=b[r>>0]|0;if((o|0)>=((l<<24>>24>e<<24>>24?e:l)<<24>>24|0)){x=l;break}else t=t+4|0}}else x=k;t=x<<24>>24;if(x<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(t<<2)|0,0,(e<<24>>24)-t<<2|0)|0;i=1;return i|0}case 6:{t=a+24|0;o=b[t>>0]|0;if((o<<24>>24>e<<24>>24?e:o)<<24>>24>0){r=f[f[a>>2]>>2]|0;q=a+40|0;l=on(f[q>>2]|0,f[q+4>>2]|0,f[c>>2]|0,0)|0;q=a+48|0;m=Tn(l|0,I|0,f[q>>2]|0,f[q+4>>2]|0)|0;q=r+m|0;m=0;while(1){f[g+(m<<2)>>2]=f[q>>2];m=m+1|0;r=b[t>>0]|0;if((m|0)>=((r<<24>>24>e<<24>>24?e:r)<<24>>24|0)){y=r;break}else q=q+4|0}}else y=o;q=y<<24>>24;if(y<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(q<<2)|0,0,(e<<24>>24)-q<<2|0)|0;i=1;return i|0}case 7:{q=a+24|0;m=b[q>>0]|0;if((m<<24>>24>e<<24>>24?e:m)<<24>>24>0){t=f[f[a>>2]>>2]|0;k=a+40|0;r=on(f[k>>2]|0,f[k+4>>2]|0,f[c>>2]|0,0)|0;k=a+48|0;l=Tn(r|0,I|0,f[k>>2]|0,f[k+4>>2]|0)|0;k=t+l|0;l=0;while(1){f[g+(l<<2)>>2]=f[k>>2];l=l+1|0;t=b[q>>0]|0;if((l|0)>=((t<<24>>24>e<<24>>24?e:t)<<24>>24|0)){z=t;break}else k=k+8|0}}else z=m;k=z<<24>>24;if(z<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(k<<2)|0,0,(e<<24>>24)-k<<2|0)|0;i=1;return i|0}case 8:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){q=f[f[a>>2]>>2]|0;o=a+40|0;t=on(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;r=Tn(t|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=q+r|0;r=0;while(1){f[g+(r<<2)>>2]=f[o>>2];r=r+1|0;q=b[k>>0]|0;if((r|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){A=q;break}else o=o+8|0}}else A=l;o=A<<24>>24;if(A<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(o<<2)|0,0,(e<<24>>24)-o<<2|0)|0;i=1;return i|0}case 9:{o=a+24|0;r=b[o>>0]|0;if((r<<24>>24>e<<24>>24?e:r)<<24>>24>0){k=f[f[a>>2]>>2]|0;m=a+40|0;q=on(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;t=Tn(q|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=k+t|0;t=0;while(1){k=~~$(n[m>>2])>>>0;f[g+(t<<2)>>2]=k;t=t+1|0;k=b[o>>0]|0;if((t|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){B=k;break}else m=m+4|0}}else B=r;m=B<<24>>24;if(B<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(m<<2)|0,0,(e<<24>>24)-m<<2|0)|0;i=1;return i|0}case 10:{m=a+24|0;t=b[m>>0]|0;if((t<<24>>24>e<<24>>24?e:t)<<24>>24>0){o=f[f[a>>2]>>2]|0;l=a+40|0;k=on(f[l>>2]|0,f[l+4>>2]|0,f[c>>2]|0,0)|0;l=a+48|0;q=Tn(k|0,I|0,f[l>>2]|0,f[l+4>>2]|0)|0;l=o+q|0;q=0;while(1){f[g+(q<<2)>>2]=~~+p[l>>3]>>>0;q=q+1|0;o=b[m>>0]|0;if((q|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){C=o;break}else l=l+8|0}}else C=t;l=C<<24>>24;if(C<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(l<<2)|0,0,(e<<24>>24)-l<<2|0)|0;i=1;return i|0}case 11:{l=a+24|0;q=b[l>>0]|0;if((q<<24>>24>e<<24>>24?e:q)<<24>>24>0){m=f[f[a>>2]>>2]|0;r=a+40|0;o=on(f[r>>2]|0,f[r+4>>2]|0,f[c>>2]|0,0)|0;r=a+48|0;k=Tn(o|0,I|0,f[r>>2]|0,f[r+4>>2]|0)|0;r=m+k|0;k=0;while(1){f[g+(k<<2)>>2]=h[r>>0];k=k+1|0;m=b[l>>0]|0;if((k|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){D=m;break}else r=r+1|0}}else D=q;r=D<<24>>24;if(D<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(r<<2)|0,0,(e<<24>>24)-r<<2|0)|0;i=1;return i|0}default:{i=0;return i|0}}while(0);return 0}function Pb(a,c,e,g){a=a|0;c=c|0;e=e|0;g=g|0;var i=0,k=0,l=0,m=0,o=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0;if(!g){i=0;return i|0}do switch(f[a+28>>2]|0){case 1:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){m=f[f[a>>2]>>2]|0;o=a+40|0;q=on(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;r=Tn(q|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=m+r|0;r=0;while(1){f[g+(r<<2)>>2]=b[o>>0];r=r+1|0;m=b[k>>0]|0;if((r|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){s=m;break}else o=o+1|0}}else s=l;o=s<<24>>24;if(s<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(o<<2)|0,0,(e<<24>>24)-o<<2|0)|0;i=1;return i|0}case 2:{o=a+24|0;r=b[o>>0]|0;if((r<<24>>24>e<<24>>24?e:r)<<24>>24>0){k=f[f[a>>2]>>2]|0;m=a+40|0;q=on(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;t=Tn(q|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=k+t|0;t=0;while(1){f[g+(t<<2)>>2]=h[m>>0];t=t+1|0;k=b[o>>0]|0;if((t|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){u=k;break}else m=m+1|0}}else u=r;m=u<<24>>24;if(u<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(m<<2)|0,0,(e<<24>>24)-m<<2|0)|0;i=1;return i|0}case 3:{m=a+24|0;t=b[m>>0]|0;if((t<<24>>24>e<<24>>24?e:t)<<24>>24>0){o=f[f[a>>2]>>2]|0;l=a+40|0;k=on(f[l>>2]|0,f[l+4>>2]|0,f[c>>2]|0,0)|0;l=a+48|0;q=Tn(k|0,I|0,f[l>>2]|0,f[l+4>>2]|0)|0;l=o+q|0;q=0;while(1){f[g+(q<<2)>>2]=d[l>>1];q=q+1|0;o=b[m>>0]|0;if((q|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){v=o;break}else l=l+2|0}}else v=t;l=v<<24>>24;if(v<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(l<<2)|0,0,(e<<24>>24)-l<<2|0)|0;i=1;return i|0}case 4:{l=a+24|0;q=b[l>>0]|0;if((q<<24>>24>e<<24>>24?e:q)<<24>>24>0){m=f[f[a>>2]>>2]|0;r=a+40|0;o=on(f[r>>2]|0,f[r+4>>2]|0,f[c>>2]|0,0)|0;r=a+48|0;k=Tn(o|0,I|0,f[r>>2]|0,f[r+4>>2]|0)|0;r=m+k|0;k=0;while(1){f[g+(k<<2)>>2]=j[r>>1];k=k+1|0;m=b[l>>0]|0;if((k|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){w=m;break}else r=r+2|0}}else w=q;r=w<<24>>24;if(w<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(r<<2)|0,0,(e<<24>>24)-r<<2|0)|0;i=1;return i|0}case 5:{r=a+24|0;k=b[r>>0]|0;if((k<<24>>24>e<<24>>24?e:k)<<24>>24>0){l=f[f[a>>2]>>2]|0;t=a+40|0;m=on(f[t>>2]|0,f[t+4>>2]|0,f[c>>2]|0,0)|0;t=a+48|0;o=Tn(m|0,I|0,f[t>>2]|0,f[t+4>>2]|0)|0;t=l+o|0;o=0;while(1){f[g+(o<<2)>>2]=f[t>>2];o=o+1|0;l=b[r>>0]|0;if((o|0)>=((l<<24>>24>e<<24>>24?e:l)<<24>>24|0)){x=l;break}else t=t+4|0}}else x=k;t=x<<24>>24;if(x<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(t<<2)|0,0,(e<<24>>24)-t<<2|0)|0;i=1;return i|0}case 6:{t=a+24|0;o=b[t>>0]|0;if((o<<24>>24>e<<24>>24?e:o)<<24>>24>0){r=f[f[a>>2]>>2]|0;q=a+40|0;l=on(f[q>>2]|0,f[q+4>>2]|0,f[c>>2]|0,0)|0;q=a+48|0;m=Tn(l|0,I|0,f[q>>2]|0,f[q+4>>2]|0)|0;q=r+m|0;m=0;while(1){f[g+(m<<2)>>2]=f[q>>2];m=m+1|0;r=b[t>>0]|0;if((m|0)>=((r<<24>>24>e<<24>>24?e:r)<<24>>24|0)){y=r;break}else q=q+4|0}}else y=o;q=y<<24>>24;if(y<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(q<<2)|0,0,(e<<24>>24)-q<<2|0)|0;i=1;return i|0}case 7:{q=a+24|0;m=b[q>>0]|0;if((m<<24>>24>e<<24>>24?e:m)<<24>>24>0){t=f[f[a>>2]>>2]|0;k=a+40|0;r=on(f[k>>2]|0,f[k+4>>2]|0,f[c>>2]|0,0)|0;k=a+48|0;l=Tn(r|0,I|0,f[k>>2]|0,f[k+4>>2]|0)|0;k=t+l|0;l=0;while(1){f[g+(l<<2)>>2]=f[k>>2];l=l+1|0;t=b[q>>0]|0;if((l|0)>=((t<<24>>24>e<<24>>24?e:t)<<24>>24|0)){z=t;break}else k=k+8|0}}else z=m;k=z<<24>>24;if(z<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(k<<2)|0,0,(e<<24>>24)-k<<2|0)|0;i=1;return i|0}case 8:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){q=f[f[a>>2]>>2]|0;o=a+40|0;t=on(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;r=Tn(t|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=q+r|0;r=0;while(1){f[g+(r<<2)>>2]=f[o>>2];r=r+1|0;q=b[k>>0]|0;if((r|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){A=q;break}else o=o+8|0}}else A=l;o=A<<24>>24;if(A<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(o<<2)|0,0,(e<<24>>24)-o<<2|0)|0;i=1;return i|0}case 9:{o=a+24|0;r=b[o>>0]|0;if((r<<24>>24>e<<24>>24?e:r)<<24>>24>0){k=f[f[a>>2]>>2]|0;m=a+40|0;q=on(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;t=Tn(q|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=k+t|0;t=0;while(1){k=~~$(n[m>>2]);f[g+(t<<2)>>2]=k;t=t+1|0;k=b[o>>0]|0;if((t|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){B=k;break}else m=m+4|0}}else B=r;m=B<<24>>24;if(B<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(m<<2)|0,0,(e<<24>>24)-m<<2|0)|0;i=1;return i|0}case 10:{m=a+24|0;t=b[m>>0]|0;if((t<<24>>24>e<<24>>24?e:t)<<24>>24>0){o=f[f[a>>2]>>2]|0;l=a+40|0;k=on(f[l>>2]|0,f[l+4>>2]|0,f[c>>2]|0,0)|0;l=a+48|0;q=Tn(k|0,I|0,f[l>>2]|0,f[l+4>>2]|0)|0;l=o+q|0;q=0;while(1){f[g+(q<<2)>>2]=~~+p[l>>3];q=q+1|0;o=b[m>>0]|0;if((q|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){C=o;break}else l=l+8|0}}else C=t;l=C<<24>>24;if(C<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(l<<2)|0,0,(e<<24>>24)-l<<2|0)|0;i=1;return i|0}case 11:{l=a+24|0;q=b[l>>0]|0;if((q<<24>>24>e<<24>>24?e:q)<<24>>24>0){m=f[f[a>>2]>>2]|0;r=a+40|0;o=on(f[r>>2]|0,f[r+4>>2]|0,f[c>>2]|0,0)|0;r=a+48|0;k=Tn(o|0,I|0,f[r>>2]|0,f[r+4>>2]|0)|0;r=m+k|0;k=0;while(1){f[g+(k<<2)>>2]=h[r>>0];k=k+1|0;m=b[l>>0]|0;if((k|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){D=m;break}else r=r+1|0}}else D=q;r=D<<24>>24;if(D<<24>>24>=e<<24>>24){i=1;return i|0}hj(g+(r<<2)|0,0,(e<<24>>24)-r<<2|0)|0;i=1;return i|0}default:{i=0;return i|0}}while(0);return 0}function Qb(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=Oa,J=0,K=0,L=0,M=0,N=Oa;e=u;u=u+48|0;g=e+36|0;h=e+24|0;i=e+12|0;j=e;if(!(ih(a,c,d)|0)){k=0;u=e;return k|0}l=f[(f[(f[c+4>>2]|0)+8>>2]|0)+(d<<2)>>2]|0;if((f[l+28>>2]|0)!=9){k=0;u=e;return k|0}m=c+48|0;c=f[m>>2]|0;o=dn(32)|0;f[g>>2]=o;f[g+8>>2]=-2147483616;f[g+4>>2]=17;p=o;q=12932;r=p+17|0;do{b[p>>0]=b[q>>0]|0;p=p+1|0;q=q+1|0}while((p|0)<(r|0));b[o+17>>0]=0;o=c+16|0;s=f[o>>2]|0;if(s){t=o;v=s;a:while(1){s=v;while(1){if((f[s+16>>2]|0)>=(d|0))break;w=f[s+4>>2]|0;if(!w){x=t;break a}else s=w}v=f[s>>2]|0;if(!v){x=s;break}else t=s}if(((x|0)!=(o|0)?(f[x+16>>2]|0)<=(d|0):0)?(o=x+20|0,(sh(o,g)|0)!=0):0)y=yk(o,g,-1)|0;else z=12}else z=12;if((z|0)==12)y=yk(c,g,-1)|0;if((b[g+11>>0]|0)<0)br(f[g>>2]|0);if((y|0)<1){k=0;u=e;return k|0}c=f[m>>2]|0;o=dn(32)|0;f[g>>2]=o;f[g+8>>2]=-2147483616;f[g+4>>2]=19;p=o;q=13005;r=p+19|0;do{b[p>>0]=b[q>>0]|0;p=p+1|0;q=q+1|0}while((p|0)<(r|0));b[o+19>>0]=0;o=c+16|0;x=f[o>>2]|0;if(x){t=o;v=x;b:while(1){x=v;while(1){if((f[x+16>>2]|0)>=(d|0))break;w=f[x+4>>2]|0;if(!w){A=t;break b}else x=w}v=f[x>>2]|0;if(!v){A=x;break}else t=x}if((A|0)!=(o|0)?(f[A+16>>2]|0)<=(d|0):0)B=A+20|0;else z=24}else z=24;if((z|0)==24)B=c;if(!(sh(B,g)|0))C=0;else{B=f[m>>2]|0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;c=dn(32)|0;f[h>>2]=c;f[h+8>>2]=-2147483616;f[h+4>>2]=18;p=c;q=13025;r=p+18|0;do{b[p>>0]=b[q>>0]|0;p=p+1|0;q=q+1|0}while((p|0)<(r|0));b[c+18>>0]=0;c=B+16|0;A=f[c>>2]|0;if(A){o=c;t=A;c:while(1){A=t;while(1){if((f[A+16>>2]|0)>=(d|0))break;v=f[A+4>>2]|0;if(!v){D=o;break c}else A=v}t=f[A>>2]|0;if(!t){D=A;break}else o=A}if((D|0)!=(c|0)?(f[D+16>>2]|0)<=(d|0):0)E=D+20|0;else z=34}else z=34;if((z|0)==34)E=B;B=(sh(E,h)|0)!=0;if((b[h+11>>0]|0)<0)br(f[h>>2]|0);C=B}if((b[g+11>>0]|0)<0)br(f[g>>2]|0);if(!C){Kd(a+40|0,l,y)|0;k=1;u=e;return k|0}C=l+24|0;l=b[C>>0]|0;B=l<<24>>24;f[i>>2]=0;E=i+4|0;f[E>>2]=0;f[i+8>>2]=0;do if(l<<24>>24)if(l<<24>>24<0)mq(i);else{D=B<<2;c=dn(D)|0;f[i>>2]=c;o=c+(B<<2)|0;f[i+8>>2]=o;hj(c|0,0,D|0)|0;f[E>>2]=o;F=c;break}else F=0;while(0);B=f[m>>2]|0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;l=dn(32)|0;f[j>>2]=l;f[j+8>>2]=-2147483616;f[j+4>>2]=19;p=l;q=13005;r=p+19|0;do{b[p>>0]=b[q>>0]|0;p=p+1|0;q=q+1|0}while((p|0)<(r|0));b[l+19>>0]=0;l=b[C>>0]|0;c=l<<24>>24;o=B+16|0;D=f[o>>2]|0;if(D){t=o;x=D;d:while(1){D=x;while(1){if((f[D+16>>2]|0)>=(d|0))break;v=f[D+4>>2]|0;if(!v){G=t;break d}else D=v}x=f[D>>2]|0;if(!x){G=D;break}else t=D}if(((G|0)!=(o|0)?(f[G+16>>2]|0)<=(d|0):0)?(o=G+20|0,(sh(o,j)|0)!=0):0){t=zg(o,j)|0;if((t|0)!=(G+24|0)){dj(g,t+28|0);t=g+11|0;G=b[t>>0]|0;o=G<<24>>24<0;if(!((o?f[g+4>>2]|0:G&255)|0))H=G;else{if(l<<24>>24>0){x=o?f[g>>2]|0:g;o=0;do{I=$(pq(x,h));A=x;x=f[h>>2]|0;if((A|0)==(x|0))break;n[F+(o<<2)>>2]=I;o=o+1|0}while((o|0)<(c|0));J=b[t>>0]|0}else J=G;H=J}if(H<<24>>24<0)br(f[g>>2]|0)}}else z=64}else z=64;if((z|0)==64?(H=zg(B,j)|0,(H|0)!=(B+4|0)):0){dj(g,H+28|0);H=g+11|0;B=b[H>>0]|0;J=B<<24>>24<0;if(!((J?f[g+4>>2]|0:B&255)|0))K=B;else{if(l<<24>>24>0){l=J?f[g>>2]|0:g;J=0;do{I=$(pq(l,h));G=l;l=f[h>>2]|0;if((G|0)==(l|0))break;n[F+(J<<2)>>2]=I;J=J+1|0}while((J|0)<(c|0));L=b[H>>0]|0}else L=B;K=L}if(K<<24>>24<0)br(f[g>>2]|0)}if((b[j+11>>0]|0)<0)br(f[j>>2]|0);j=f[m>>2]|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;m=dn(32)|0;f[g>>2]=m;f[g+8>>2]=-2147483616;f[g+4>>2]=18;p=m;q=13025;r=p+18|0;do{b[p>>0]=b[q>>0]|0;p=p+1|0;q=q+1|0}while((p|0)<(r|0));b[m+18>>0]=0;m=j+16|0;q=f[m>>2]|0;if(q){p=m;r=q;e:while(1){q=r;while(1){if((f[q+16>>2]|0)>=(d|0))break;K=f[q+4>>2]|0;if(!K){M=p;break e}else q=K}r=f[q>>2]|0;if(!r){M=q;break}else p=q}if(((M|0)!=(m|0)?(f[M+16>>2]|0)<=(d|0):0)?(d=M+20|0,(sh(d,g)|0)!=0):0)N=$(kk(d,g,$(1.0)));else z=86}else z=86;if((z|0)==86)N=$(kk(j,g,$(1.0)));if((b[g+11>>0]|0)<0)br(f[g>>2]|0);wl(a+40|0,y,f[i>>2]|0,b[C>>0]|0,N);C=f[i>>2]|0;if(C|0){i=f[E>>2]|0;if((i|0)!=(C|0))f[E>>2]=i+(~((i+-4-C|0)>>>2)<<2);br(C)}k=1;u=e;return k|0}function Rb(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0;e=u;u=u+64|0;d=e+48|0;h=e+36|0;i=e+24|0;j=e+16|0;k=e+8|0;l=e;m=e+32|0;n=a+60|0;f[a+68>>2]=g;g=a+108|0;lk(g);o=a+56|0;p=f[o>>2]|0;q=(f[p+4>>2]|0)-(f[p>>2]|0)|0;r=q>>2;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;s=i;f[s>>2]=0;f[s+4>>2]=0;s=j;f[s>>2]=0;f[s+4>>2]=0;s=k;f[s>>2]=0;f[s+4>>2]=0;s=l;f[s>>2]=0;f[s+4>>2]=0;if((q|0)<=0){u=e;return 1}q=h+4|0;s=h+8|0;t=a+104|0;v=i+4|0;w=a+100|0;x=j+4|0;y=a+8|0;z=a+16|0;A=a+32|0;B=a+12|0;C=a+28|0;D=a+20|0;E=a+24|0;F=a+96|0;a=k+4|0;G=l+4|0;H=f[p>>2]|0;if((f[p+4>>2]|0)==(H|0)){J=p;mq(J)}else{K=0;L=H}while(1){f[m>>2]=f[L+(K<<2)>>2];f[d>>2]=f[m>>2];fc(n,d,h);H=f[h>>2]|0;p=(H|0)>-1?H:0-H|0;M=f[q>>2]|0;N=(M|0)>-1?M:0-M|0;O=Tn(N|0,((N|0)<0)<<31>>31|0,p|0,((p|0)<0)<<31>>31|0)|0;p=f[s>>2]|0;N=(p|0)>-1;P=N?p:0-p|0;p=Tn(O|0,I|0,P|0,((P|0)<0)<<31>>31|0)|0;P=I;if((p|0)==0&(P|0)==0){O=f[t>>2]|0;Q=O;R=h;S=M;T=O}else{O=f[t>>2]|0;U=((O|0)<0)<<31>>31;V=on(O|0,U|0,H|0,((H|0)<0)<<31>>31|0)|0;H=zk(V|0,I|0,p|0,P|0)|0;f[h>>2]=H;V=on(O|0,U|0,M|0,((M|0)<0)<<31>>31|0)|0;M=zk(V|0,I|0,p|0,P|0)|0;f[q>>2]=M;P=O-((H|0)>-1?H:0-H|0)-((M|0)>-1?M:0-M|0)|0;Q=N?P:0-P|0;R=s;S=M;T=O}f[R>>2]=Q;O=f[h>>2]|0;do if((O|0)<=-1){if((S|0)<0){M=f[s>>2]|0;W=(M|0)>-1?M:0-M|0;X=M}else{M=f[s>>2]|0;W=(f[w>>2]|0)-((M|0)>-1?M:0-M|0)|0;X=M}if((X|0)<0){Y=(S|0)>-1?S:0-S|0;Z=W;_=X;break}else{Y=(f[w>>2]|0)-((S|0)>-1?S:0-S|0)|0;Z=W;_=X;break}}else{M=f[s>>2]|0;Y=M+T|0;Z=T+S|0;_=M}while(0);M=(Z|0)==0;P=(Y|0)==0;N=f[w>>2]|0;do if(Y|Z){H=(N|0)==(Y|0);if(!(M&H)){p=(N|0)==(Z|0);if(!(P&p)){if(M&(T|0)<(Y|0)){$=0;aa=(T<<1)-Y|0;break}if(p&(T|0)>(Y|0)){$=Z;aa=(T<<1)-Y|0;break}if(H&(T|0)>(Z|0)){$=(T<<1)-Z|0;aa=Y;break}if(P){$=(T|0)<(Z|0)?(T<<1)-Z|0:Z;aa=0}else{$=Z;aa=Y}}else{$=Z;aa=Z}}else{$=Y;aa=Y}}else{$=N;aa=N}while(0);f[i>>2]=$;f[v>>2]=aa;P=0-S|0;M=0-_|0;f[h>>2]=0-O;f[q>>2]=P;f[s>>2]=M;if((O|0)<1){ba=T-_|0;ca=T-S|0}else{H=(_|0)<1?M:_;M=(S|0)<1?P:S;ba=(_|0)>0?M:N-M|0;ca=(S|0)>0?H:N-H|0}H=(ca|0)==0;M=(ba|0)==0;do if(((ba|ca|0)!=0?(P=(N|0)==(ba|0),!(H&P)):0)?(p=(N|0)==(ca|0),!(M&p)):0){if(H&(T|0)<(ba|0)){da=0;ea=(T<<1)-ba|0;break}if(p&(T|0)>(ba|0)){da=N;ea=(T<<1)-ba|0;break}if(P&(T|0)>(ca|0)){da=(T<<1)-ca|0;ea=N;break}if(M){da=(T|0)<(ca|0)?(T<<1)-ca|0:ca;ea=0}else{da=ca;ea=ba}}else{da=N;ea=N}while(0);f[j>>2]=da;f[x>>2]=ea;N=K<<1;M=b+(N<<2)|0;H=f[y>>2]|0;if((H|0)>0){O=0;P=i;p=H;while(1){if((p|0)>0){H=0;do{V=f[P+(H<<2)>>2]|0;U=f[z>>2]|0;if((V|0)>(U|0)){fa=f[A>>2]|0;f[fa+(H<<2)>>2]=U;ga=fa}else{fa=f[B>>2]|0;U=f[A>>2]|0;f[U+(H<<2)>>2]=(V|0)<(fa|0)?fa:V;ga=U}H=H+1|0;U=f[y>>2]|0}while((H|0)<(U|0));ha=ga;ia=U}else{ha=f[A>>2]|0;ia=p}H=(f[M+(O<<2)>>2]|0)-(f[ha+(O<<2)>>2]|0)|0;U=k+(O<<2)|0;f[U>>2]=H;ja=f[C>>2]|0;if((H|0)>=(ja|0)){if((H|0)>(f[E>>2]|0)){ka=H-(f[D>>2]|0)|0;la=52}}else{ka=(f[D>>2]|0)+H|0;la=52}if((la|0)==52){la=0;f[U>>2]=ka}O=O+1|0;if((O|0)>=(ia|0))break;else{P=ha;p=ia}}if((ia|0)>0){p=0;P=j;O=ia;U=ja;while(1){if((O|0)>0){H=0;do{V=f[P+(H<<2)>>2]|0;fa=f[z>>2]|0;if((V|0)>(fa|0))f[ha+(H<<2)>>2]=fa;else{fa=f[B>>2]|0;f[ha+(H<<2)>>2]=(V|0)<(fa|0)?fa:V}H=H+1|0;ma=f[y>>2]|0}while((H|0)<(ma|0));na=f[C>>2]|0;oa=ma}else{na=U;oa=O}H=(f[M+(p<<2)>>2]|0)-(f[ha+(p<<2)>>2]|0)|0;V=l+(p<<2)|0;f[V>>2]=H;if((H|0)>=(na|0)){if((H|0)>(f[E>>2]|0)){pa=H-(f[D>>2]|0)|0;la=65}}else{pa=(f[D>>2]|0)+H|0;la=65}if((la|0)==65){la=0;f[V>>2]=pa}p=p+1|0;if((p|0)>=(oa|0))break;else{P=ha;O=oa;U=na}}}}U=f[k>>2]|0;O=f[t>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))qa=(f[F>>2]|0)+U|0;else qa=U;else qa=U-(f[F>>2]|0)|0;f[k>>2]=qa;U=f[a>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))ra=(f[F>>2]|0)+U|0;else ra=U;else ra=U-(f[F>>2]|0)|0;f[a>>2]=ra;U=f[l>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))sa=(f[F>>2]|0)+U|0;else sa=U;else sa=U-(f[F>>2]|0)|0;f[l>>2]=sa;U=f[G>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))ta=(f[F>>2]|0)+U|0;else ta=U;else ta=U-(f[F>>2]|0)|0;f[G>>2]=ta;if((((ra|0)>-1?ra:0-ra|0)+((qa|0)>-1?qa:0-qa|0)|0)<(((sa|0)>-1?sa:0-sa|0)+((ta|0)>-1?ta:0-ta|0)|0)){Vi(g,0);ua=k}else{Vi(g,1);ua=l}U=f[ua>>2]|0;if((U|0)<0)va=(f[F>>2]|0)+U|0;else va=U;U=c+(N<<2)|0;f[U>>2]=va;O=f[ua+4>>2]|0;if((O|0)<0)wa=(f[F>>2]|0)+O|0;else wa=O;f[U+4>>2]=wa;K=K+1|0;if((K|0)>=(r|0)){la=3;break}U=f[o>>2]|0;L=f[U>>2]|0;if((f[U+4>>2]|0)-L>>2>>>0<=K>>>0){J=U;la=4;break}}if((la|0)==3){u=e;return 1}else if((la|0)==4)mq(J);return 0}function Sb(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0;e=u;u=u+64|0;d=e+48|0;h=e+36|0;i=e+24|0;j=e+16|0;k=e+8|0;l=e;m=e+32|0;n=a+60|0;f[a+68>>2]=g;g=a+108|0;lk(g);o=a+56|0;p=f[o>>2]|0;q=(f[p+4>>2]|0)-(f[p>>2]|0)|0;r=q>>2;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;s=i;f[s>>2]=0;f[s+4>>2]=0;s=j;f[s>>2]=0;f[s+4>>2]=0;s=k;f[s>>2]=0;f[s+4>>2]=0;s=l;f[s>>2]=0;f[s+4>>2]=0;if((q|0)<=0){u=e;return 1}q=h+4|0;s=h+8|0;t=a+104|0;v=i+4|0;w=a+100|0;x=j+4|0;y=a+8|0;z=a+16|0;A=a+32|0;B=a+12|0;C=a+28|0;D=a+20|0;E=a+24|0;F=a+96|0;a=k+4|0;G=l+4|0;H=f[p>>2]|0;if((f[p+4>>2]|0)==(H|0)){J=p;mq(J)}else{K=0;L=H}while(1){f[m>>2]=f[L+(K<<2)>>2];f[d>>2]=f[m>>2];$b(n,d,h);H=f[h>>2]|0;p=(H|0)>-1?H:0-H|0;M=f[q>>2]|0;N=(M|0)>-1?M:0-M|0;O=Tn(N|0,((N|0)<0)<<31>>31|0,p|0,((p|0)<0)<<31>>31|0)|0;p=f[s>>2]|0;N=(p|0)>-1;P=N?p:0-p|0;p=Tn(O|0,I|0,P|0,((P|0)<0)<<31>>31|0)|0;P=I;if((p|0)==0&(P|0)==0){O=f[t>>2]|0;Q=O;R=h;S=M;T=O}else{O=f[t>>2]|0;U=((O|0)<0)<<31>>31;V=on(O|0,U|0,H|0,((H|0)<0)<<31>>31|0)|0;H=zk(V|0,I|0,p|0,P|0)|0;f[h>>2]=H;V=on(O|0,U|0,M|0,((M|0)<0)<<31>>31|0)|0;M=zk(V|0,I|0,p|0,P|0)|0;f[q>>2]=M;P=O-((H|0)>-1?H:0-H|0)-((M|0)>-1?M:0-M|0)|0;Q=N?P:0-P|0;R=s;S=M;T=O}f[R>>2]=Q;O=f[h>>2]|0;do if((O|0)<=-1){if((S|0)<0){M=f[s>>2]|0;W=(M|0)>-1?M:0-M|0;X=M}else{M=f[s>>2]|0;W=(f[w>>2]|0)-((M|0)>-1?M:0-M|0)|0;X=M}if((X|0)<0){Y=(S|0)>-1?S:0-S|0;Z=W;_=X;break}else{Y=(f[w>>2]|0)-((S|0)>-1?S:0-S|0)|0;Z=W;_=X;break}}else{M=f[s>>2]|0;Y=M+T|0;Z=T+S|0;_=M}while(0);M=(Z|0)==0;P=(Y|0)==0;N=f[w>>2]|0;do if(Y|Z){H=(N|0)==(Y|0);if(!(M&H)){p=(N|0)==(Z|0);if(!(P&p)){if(M&(T|0)<(Y|0)){$=0;aa=(T<<1)-Y|0;break}if(p&(T|0)>(Y|0)){$=Z;aa=(T<<1)-Y|0;break}if(H&(T|0)>(Z|0)){$=(T<<1)-Z|0;aa=Y;break}if(P){$=(T|0)<(Z|0)?(T<<1)-Z|0:Z;aa=0}else{$=Z;aa=Y}}else{$=Z;aa=Z}}else{$=Y;aa=Y}}else{$=N;aa=N}while(0);f[i>>2]=$;f[v>>2]=aa;P=0-S|0;M=0-_|0;f[h>>2]=0-O;f[q>>2]=P;f[s>>2]=M;if((O|0)<1){ba=T-_|0;ca=T-S|0}else{H=(_|0)<1?M:_;M=(S|0)<1?P:S;ba=(_|0)>0?M:N-M|0;ca=(S|0)>0?H:N-H|0}H=(ca|0)==0;M=(ba|0)==0;do if(((ba|ca|0)!=0?(P=(N|0)==(ba|0),!(H&P)):0)?(p=(N|0)==(ca|0),!(M&p)):0){if(H&(T|0)<(ba|0)){da=0;ea=(T<<1)-ba|0;break}if(p&(T|0)>(ba|0)){da=N;ea=(T<<1)-ba|0;break}if(P&(T|0)>(ca|0)){da=(T<<1)-ca|0;ea=N;break}if(M){da=(T|0)<(ca|0)?(T<<1)-ca|0:ca;ea=0}else{da=ca;ea=ba}}else{da=N;ea=N}while(0);f[j>>2]=da;f[x>>2]=ea;N=K<<1;M=b+(N<<2)|0;H=f[y>>2]|0;if((H|0)>0){O=0;P=i;p=H;while(1){if((p|0)>0){H=0;do{V=f[P+(H<<2)>>2]|0;U=f[z>>2]|0;if((V|0)>(U|0)){fa=f[A>>2]|0;f[fa+(H<<2)>>2]=U;ga=fa}else{fa=f[B>>2]|0;U=f[A>>2]|0;f[U+(H<<2)>>2]=(V|0)<(fa|0)?fa:V;ga=U}H=H+1|0;U=f[y>>2]|0}while((H|0)<(U|0));ha=ga;ia=U}else{ha=f[A>>2]|0;ia=p}H=(f[M+(O<<2)>>2]|0)-(f[ha+(O<<2)>>2]|0)|0;U=k+(O<<2)|0;f[U>>2]=H;ja=f[C>>2]|0;if((H|0)>=(ja|0)){if((H|0)>(f[E>>2]|0)){ka=H-(f[D>>2]|0)|0;la=52}}else{ka=(f[D>>2]|0)+H|0;la=52}if((la|0)==52){la=0;f[U>>2]=ka}O=O+1|0;if((O|0)>=(ia|0))break;else{P=ha;p=ia}}if((ia|0)>0){p=0;P=j;O=ia;U=ja;while(1){if((O|0)>0){H=0;do{V=f[P+(H<<2)>>2]|0;fa=f[z>>2]|0;if((V|0)>(fa|0))f[ha+(H<<2)>>2]=fa;else{fa=f[B>>2]|0;f[ha+(H<<2)>>2]=(V|0)<(fa|0)?fa:V}H=H+1|0;ma=f[y>>2]|0}while((H|0)<(ma|0));na=f[C>>2]|0;oa=ma}else{na=U;oa=O}H=(f[M+(p<<2)>>2]|0)-(f[ha+(p<<2)>>2]|0)|0;V=l+(p<<2)|0;f[V>>2]=H;if((H|0)>=(na|0)){if((H|0)>(f[E>>2]|0)){pa=H-(f[D>>2]|0)|0;la=65}}else{pa=(f[D>>2]|0)+H|0;la=65}if((la|0)==65){la=0;f[V>>2]=pa}p=p+1|0;if((p|0)>=(oa|0))break;else{P=ha;O=oa;U=na}}}}U=f[k>>2]|0;O=f[t>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))qa=(f[F>>2]|0)+U|0;else qa=U;else qa=U-(f[F>>2]|0)|0;f[k>>2]=qa;U=f[a>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))ra=(f[F>>2]|0)+U|0;else ra=U;else ra=U-(f[F>>2]|0)|0;f[a>>2]=ra;U=f[l>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))sa=(f[F>>2]|0)+U|0;else sa=U;else sa=U-(f[F>>2]|0)|0;f[l>>2]=sa;U=f[G>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))ta=(f[F>>2]|0)+U|0;else ta=U;else ta=U-(f[F>>2]|0)|0;f[G>>2]=ta;if((((ra|0)>-1?ra:0-ra|0)+((qa|0)>-1?qa:0-qa|0)|0)<(((sa|0)>-1?sa:0-sa|0)+((ta|0)>-1?ta:0-ta|0)|0)){Vi(g,0);ua=k}else{Vi(g,1);ua=l}U=f[ua>>2]|0;if((U|0)<0)va=(f[F>>2]|0)+U|0;else va=U;U=c+(N<<2)|0;f[U>>2]=va;O=f[ua+4>>2]|0;if((O|0)<0)wa=(f[F>>2]|0)+O|0;else wa=O;f[U+4>>2]=wa;K=K+1|0;if((K|0)>=(r|0)){la=3;break}U=f[o>>2]|0;L=f[U>>2]|0;if((f[U+4>>2]|0)-L>>2>>>0<=K>>>0){J=U;la=4;break}}if((la|0)==3){u=e;return 1}else if((la|0)==4)mq(J);return 0}function Tb(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0;c=u;u=u+16|0;d=c+8|0;e=c;g=f[b>>2]|0;if((g|0)==-1){h=1;u=c;return h|0}i=(g>>>0)/3|0;j=a+24|0;if(f[(f[j>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0){h=1;u=c;return h|0}i=a+48|0;k=f[i>>2]|0;l=a+52|0;m=f[l>>2]|0;if((m|0)==(k|0))n=k;else{o=m+(~((m+-4-k|0)>>>2)<<2)|0;f[l>>2]=o;n=o}o=a+56|0;if((n|0)==(f[o>>2]|0))Ci(i,b);else{f[n>>2]=g;f[l>>2]=n+4}n=a+4|0;g=f[n>>2]|0;k=f[b>>2]|0;m=k+1|0;do if((k|0)!=-1){p=f[g+28>>2]|0;q=f[p+((((m>>>0)%3|0|0)==0?k+-2|0:m)<<2)>>2]|0;if(!((k>>>0)%3|0)){r=q;s=k+2|0;t=p;break}else{r=q;s=k+-1|0;t=p;break}}else{p=f[g+28>>2]|0;r=f[p+-4>>2]|0;s=-1;t=p}while(0);g=f[t+(s<<2)>>2]|0;if((r|0)==-1|(g|0)==-1){h=0;u=c;return h|0}s=a+36|0;t=f[s>>2]|0;k=t+(r>>>5<<2)|0;m=1<<(r&31);p=f[k>>2]|0;if(!(p&m)){f[k>>2]=p|m;m=f[b>>2]|0;p=m+1|0;if((m|0)==-1)v=-1;else v=((p>>>0)%3|0|0)==0?m+-2|0:p;f[e>>2]=v;p=f[(f[(f[a+16>>2]|0)+96>>2]|0)+(((v>>>0)/3|0)*12|0)+(((v>>>0)%3|0)<<2)>>2]|0;v=f[a+20>>2]|0;f[d>>2]=p;m=f[v+4>>2]|0;v=m+4|0;k=f[v>>2]|0;if((k|0)==(f[m+8>>2]|0))Ci(m,d);else{f[k>>2]=p;f[v>>2]=k+4}k=a+12|0;v=f[k>>2]|0;p=v+4|0;m=f[p>>2]|0;if((m|0)==(f[v+8>>2]|0)){Ci(v,e);w=f[k>>2]|0}else{f[m>>2]=f[e>>2];f[p>>2]=m+4;w=v}v=w+24|0;f[(f[w+12>>2]|0)+(r<<2)>>2]=f[v>>2];f[v>>2]=(f[v>>2]|0)+1;x=f[s>>2]|0}else x=t;t=x+(g>>>5<<2)|0;x=1<<(g&31);v=f[t>>2]|0;if(!(v&x)){f[t>>2]=v|x;x=f[b>>2]|0;do if((x|0)!=-1)if(!((x>>>0)%3|0)){y=x+2|0;break}else{y=x+-1|0;break}else y=-1;while(0);f[e>>2]=y;x=f[(f[(f[a+16>>2]|0)+96>>2]|0)+(((y>>>0)/3|0)*12|0)+(((y>>>0)%3|0)<<2)>>2]|0;y=f[a+20>>2]|0;f[d>>2]=x;v=f[y+4>>2]|0;y=v+4|0;t=f[y>>2]|0;if((t|0)==(f[v+8>>2]|0))Ci(v,d);else{f[t>>2]=x;f[y>>2]=t+4}t=a+12|0;y=f[t>>2]|0;x=y+4|0;v=f[x>>2]|0;if((v|0)==(f[y+8>>2]|0)){Ci(y,e);z=f[t>>2]|0}else{f[v>>2]=f[e>>2];f[x>>2]=v+4;z=y}y=z+24|0;f[(f[z+12>>2]|0)+(g<<2)>>2]=f[y>>2];f[y>>2]=(f[y>>2]|0)+1}y=f[i>>2]|0;g=f[l>>2]|0;if((y|0)==(g|0)){h=1;u=c;return h|0}z=a+16|0;v=a+20|0;x=a+12|0;a=g;g=y;a:while(1){y=f[a+-4>>2]|0;f[b>>2]=y;t=(y>>>0)/3|0;if((y|0)!=-1?(y=(f[j>>2]|0)+(t>>>5<<2)|0,r=1<<(t&31),t=f[y>>2]|0,(t&r|0)==0):0){f[y>>2]=t|r;r=f[n>>2]|0;t=f[b>>2]|0;y=f[(f[r+28>>2]|0)+(t<<2)>>2]|0;if((y|0)==-1){h=0;A=79;break}else{B=y;C=r;D=t}b:while(1){t=(f[s>>2]|0)+(B>>>5<<2)|0;r=1<<(B&31);y=f[t>>2]|0;do if(!(y&r)){w=f[(f[C+40>>2]|0)+(B<<2)>>2]|0;if((w|0)==-1)E=1;else{m=f[(f[f[C+64>>2]>>2]|0)+(w<<2)>>2]|0;E=(1<<(m&31)&f[(f[C+12>>2]|0)+(m>>>5<<2)>>2]|0)!=0}f[t>>2]=y|r;m=f[b>>2]|0;f[e>>2]=m;w=f[(f[(f[z>>2]|0)+96>>2]|0)+(((m>>>0)/3|0)*12|0)+(((m>>>0)%3|0)<<2)>>2]|0;m=f[v>>2]|0;f[d>>2]=w;p=f[m+4>>2]|0;m=p+4|0;k=f[m>>2]|0;if((k|0)==(f[p+8>>2]|0))Ci(p,d);else{f[k>>2]=w;f[m>>2]=k+4}k=f[x>>2]|0;m=k+4|0;w=f[m>>2]|0;if((w|0)==(f[k+8>>2]|0)){Ci(k,e);F=f[x>>2]|0}else{f[w>>2]=f[e>>2];f[m>>2]=w+4;F=k}k=F+24|0;f[(f[F+12>>2]|0)+(B<<2)>>2]=f[k>>2];f[k>>2]=(f[k>>2]|0)+1;k=f[n>>2]|0;w=f[b>>2]|0;if(E){G=w;H=k;A=59;break}m=w+1|0;do if((w|0)==-1)I=-1;else{p=((m>>>0)%3|0|0)==0?w+-2|0:m;if((p|0)==-1){I=-1;break}if(f[(f[k>>2]|0)+(p>>>5<<2)>>2]&1<<(p&31)|0){I=-1;break}I=f[(f[(f[k+64>>2]|0)+12>>2]|0)+(p<<2)>>2]|0}while(0);f[b>>2]=I;J=(I>>>0)/3|0;K=k}else{G=D;H=C;A=59}while(0);if((A|0)==59){A=0;r=G+1|0;if((G|0)==-1){A=60;break}y=((r>>>0)%3|0|0)==0?G+-2|0:r;do if((y|0)==-1)L=-1;else{if(f[(f[H>>2]|0)+(y>>>5<<2)>>2]&1<<(y&31)|0){L=-1;break}L=f[(f[(f[H+64>>2]|0)+12>>2]|0)+(y<<2)>>2]|0}while(0);f[d>>2]=L;y=(((G>>>0)%3|0|0)==0?2:-1)+G|0;do if((y|0)==-1)M=-1;else{if(f[(f[H>>2]|0)+(y>>>5<<2)>>2]&1<<(y&31)|0){M=-1;break}M=f[(f[(f[H+64>>2]|0)+12>>2]|0)+(y<<2)>>2]|0}while(0);y=(L|0)==-1;r=(L>>>0)/3|0;t=y?-1:r;m=(M|0)==-1;w=(M>>>0)/3|0;p=m?-1:w;do if(!y){q=f[j>>2]|0;if(f[q+(t>>>5<<2)>>2]&1<<(t&31)|0){A=69;break}if(m){N=L;O=r;break}if(!(f[q+(p>>>5<<2)>>2]&1<<(p&31))){A=74;break b}else{N=L;O=r}}else A=69;while(0);if((A|0)==69){A=0;if(m){A=71;break}if(!(f[(f[j>>2]|0)+(p>>>5<<2)>>2]&1<<(p&31))){N=M;O=w}else{A=71;break}}f[b>>2]=N;J=O;K=H}r=(f[j>>2]|0)+(J>>>5<<2)|0;f[r>>2]=f[r>>2]|1<<(J&31);D=f[b>>2]|0;B=f[(f[K+28>>2]|0)+(D<<2)>>2]|0;if((B|0)==-1){h=0;A=79;break a}else C=K}do if((A|0)==60){A=0;f[d>>2]=-1;A=71}else if((A|0)==74){A=0;r=f[l>>2]|0;f[r+-4>>2]=M;if((r|0)==(f[o>>2]|0)){Ci(i,d);P=f[l>>2]|0;break}else{f[r>>2]=f[d>>2];t=r+4|0;f[l>>2]=t;P=t;break}}while(0);if((A|0)==71){A=0;t=(f[l>>2]|0)+-4|0;f[l>>2]=t;P=t}Q=f[i>>2]|0;R=P}else{t=a+-4|0;f[l>>2]=t;Q=g;R=t}if((Q|0)==(R|0)){h=1;A=79;break}else{a=R;g=Q}}if((A|0)==79){u=c;return h|0}return 0}function Ub(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=Oa,V=Oa,Y=Oa,Z=0,_=0,aa=0,ba=0;d=u;u=u+16|0;e=d;g=a+16|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;n[g>>2]=$(1.0);i=a+20|0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;n[a+36>>2]=$(1.0);j=f[c+8>>2]|0;a:do if(j|0){k=a+4|0;l=a+12|0;m=a+8|0;o=j;p=j;while(1){q=o+8|0;r=b[q+11>>0]|0;s=r<<24>>24<0;t=s?f[q>>2]|0:q;v=s?f[o+12>>2]|0:r&255;if(v>>>0>3){r=t;s=v;w=v;while(1){x=X(h[r>>0]|h[r+1>>0]<<8|h[r+2>>0]<<16|h[r+3>>0]<<24,1540483477)|0;s=(X(x>>>24^x,1540483477)|0)^(X(s,1540483477)|0);w=w+-4|0;if(w>>>0<=3)break;else r=r+4|0}r=v+-4|0;w=r&-4;y=r-w|0;z=t+(w+4)|0;A=s}else{y=v;z=t;A=v}switch(y|0){case 3:{B=h[z+2>>0]<<16^A;C=8;break}case 2:{B=A;C=8;break}case 1:{D=A;C=9;break}default:E=A}if((C|0)==8){C=0;D=h[z+1>>0]<<8^B;C=9}if((C|0)==9){C=0;E=X(D^h[z>>0],1540483477)|0}w=X(E>>>13^E,1540483477)|0;r=w>>>15^w;w=f[k>>2]|0;x=(w|0)==0;b:do if(!x){F=w+-1|0;G=(F&w|0)==0;if(!G)if(r>>>0>>0)H=r;else H=(r>>>0)%(w>>>0)|0;else H=r&F;I=f[(f[a>>2]|0)+(H<<2)>>2]|0;if((I|0)!=0?(J=f[I>>2]|0,(J|0)!=0):0){I=(v|0)==0;if(G){if(I){G=J;while(1){K=f[G+4>>2]|0;if(!((K|0)==(r|0)|(K&F|0)==(H|0))){L=H;C=50;break b}K=b[G+8+11>>0]|0;if(!((K<<24>>24<0?f[G+12>>2]|0:K&255)|0))break b;G=f[G>>2]|0;if(!G){L=H;C=50;break b}}}else M=J;while(1){G=f[M+4>>2]|0;if(!((G|0)==(r|0)|(G&F|0)==(H|0))){L=H;C=50;break b}G=M+8|0;K=b[G+11>>0]|0;N=K<<24>>24<0;O=K&255;do if(((N?f[M+12>>2]|0:O)|0)==(v|0)){K=f[G>>2]|0;if(N)if(!(Pk(K,t,v)|0))break b;else break;if((b[t>>0]|0)==(K&255)<<24>>24){K=G;P=O;Q=t;do{P=P+-1|0;K=K+1|0;if(!P)break b;Q=Q+1|0}while((b[K>>0]|0)==(b[Q>>0]|0))}}while(0);M=f[M>>2]|0;if(!M){L=H;C=50;break b}}}if(I){F=J;while(1){O=f[F+4>>2]|0;if((O|0)!=(r|0)){if(O>>>0>>0)R=O;else R=(O>>>0)%(w>>>0)|0;if((R|0)!=(H|0)){L=H;C=50;break b}}O=b[F+8+11>>0]|0;if(!((O<<24>>24<0?f[F+12>>2]|0:O&255)|0))break b;F=f[F>>2]|0;if(!F){L=H;C=50;break b}}}else S=J;while(1){F=f[S+4>>2]|0;if((F|0)!=(r|0)){if(F>>>0>>0)T=F;else T=(F>>>0)%(w>>>0)|0;if((T|0)!=(H|0)){L=H;C=50;break b}}F=S+8|0;I=b[F+11>>0]|0;O=I<<24>>24<0;G=I&255;do if(((O?f[S+12>>2]|0:G)|0)==(v|0)){I=f[F>>2]|0;if(O)if(!(Pk(I,t,v)|0))break b;else break;if((b[t>>0]|0)==(I&255)<<24>>24){I=F;N=G;Q=t;do{N=N+-1|0;I=I+1|0;if(!N)break b;Q=Q+1|0}while((b[I>>0]|0)==(b[Q>>0]|0))}}while(0);S=f[S>>2]|0;if(!S){L=H;C=50;break}}}else{L=H;C=50}}else{L=0;C=50}while(0);if((C|0)==50){C=0;pi(e,a,r,q);U=$(((f[l>>2]|0)+1|0)>>>0);V=$(w>>>0);Y=$(n[g>>2]);do if(x|$(Y*V)>>0<3|(w+-1&w|0)!=0)&1;v=~~$(W($(U/Y)))>>>0;Ph(a,t>>>0>>0?v:t);t=f[k>>2]|0;v=t+-1|0;if(!(v&t)){Z=t;_=v&r;break}if(r>>>0>>0){Z=t;_=r}else{Z=t;_=(r>>>0)%(t>>>0)|0}}else{Z=w;_=L}while(0);w=f[(f[a>>2]|0)+(_<<2)>>2]|0;if(!w){f[f[e>>2]>>2]=f[m>>2];f[m>>2]=f[e>>2];f[(f[a>>2]|0)+(_<<2)>>2]=m;r=f[e>>2]|0;x=f[r>>2]|0;if(x|0){q=f[x+4>>2]|0;x=Z+-1|0;if(x&Z)if(q>>>0>>0)aa=q;else aa=(q>>>0)%(Z>>>0)|0;else aa=q&x;f[(f[a>>2]|0)+(aa<<2)>>2]=r}}else{f[f[e>>2]>>2]=f[w>>2];f[w>>2]=f[e>>2]}f[l>>2]=(f[l>>2]|0)+1}w=f[p>>2]|0;if(!w)break a;else{o=w;p=w}}}while(0);e=f[c+28>>2]|0;if(!e){u=d;return}else ba=e;do{e=ba;c=dn(40)|0;Ub(c,f[e+20>>2]|0);aa=xc(i,e+8|0)|0;e=f[aa>>2]|0;f[aa>>2]=c;if(e|0){c=f[e+28>>2]|0;if(c|0){aa=c;do{c=aa;aa=f[aa>>2]|0;bi(c+8|0);br(c)}while((aa|0)!=0)}aa=e+20|0;c=f[aa>>2]|0;f[aa>>2]=0;if(c|0)br(c);c=f[e+8>>2]|0;if(c|0){aa=c;do{c=aa;aa=f[aa>>2]|0;a=c+8|0;Z=f[c+20>>2]|0;if(Z|0){_=c+24|0;if((f[_>>2]|0)!=(Z|0))f[_>>2]=Z;br(Z)}if((b[a+11>>0]|0)<0)br(f[a>>2]|0);br(c)}while((aa|0)!=0)}aa=f[e>>2]|0;f[e>>2]=0;if(aa|0)br(aa);br(e)}ba=f[ba>>2]|0}while((ba|0)!=0);u=d;return}function Vb(a,c,e){a=a|0;c=c|0;e=e|0;var g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=Oa,fa=Oa,ga=Oa,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0;g=u;u=u+48|0;i=g+16|0;j=g+12|0;k=g;l=i+16|0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;n[l>>2]=$(1.0);m=a+80|0;o=f[m>>2]|0;f[k>>2]=0;p=k+4|0;f[p>>2]=0;f[k+8>>2]=0;if(o){if(o>>>0>1073741823)mq(k);q=o<<2;r=dn(q)|0;f[k>>2]=r;s=r+(o<<2)|0;f[k+8>>2]=s;hj(r|0,0,q|0)|0;f[p>>2]=s;s=c+48|0;q=c+40|0;o=i+4|0;t=i+12|0;v=i+8|0;w=a+40|0;x=a+64|0;y=f[e>>2]|0;e=r;z=0;A=0;B=r;C=r;D=0;E=r;while(1){r=s;F=f[r>>2]|0;G=f[r+4>>2]|0;r=q;H=on(f[r>>2]|0,f[r+4>>2]|0,y+z|0,0)|0;r=Tn(H|0,I|0,F|0,G|0)|0;G=(f[f[c>>2]>>2]|0)+r|0;r=h[G>>0]|h[G+1>>0]<<8|h[G+2>>0]<<16|h[G+3>>0]<<24;f[j>>2]=r;G=r&65535;F=r>>>16;H=F&65535;J=(r&65535^318)+239^F;F=(D|0)==0;a:do if(!F){K=D+-1|0;L=(K&D|0)==0;if(!L)if(J>>>0>>0)M=J;else M=(J>>>0)%(D>>>0)|0;else M=J&K;N=f[(f[i>>2]|0)+(M<<2)>>2]|0;do if(N|0?(O=f[N>>2]|0,O|0):0){b:do if(L){P=O;while(1){Q=f[P+4>>2]|0;R=(Q|0)==(J|0);if(!(R|(Q&K|0)==(M|0))){S=27;break b}if((R?(R=P+8|0,(d[R>>1]|0)==G<<16>>16):0)?(d[R+2>>1]|0)==H<<16>>16:0){T=P;S=26;break b}P=f[P>>2]|0;if(!P){S=27;break}}}else{P=O;while(1){R=f[P+4>>2]|0;if((R|0)==(J|0)){Q=P+8|0;if((d[Q>>1]|0)==G<<16>>16?(d[Q+2>>1]|0)==H<<16>>16:0){T=P;S=26;break b}}else{if(R>>>0>>0)U=R;else U=(R>>>0)%(D>>>0)|0;if((U|0)!=(M|0)){S=27;break b}}P=f[P>>2]|0;if(!P){S=27;break}}}while(0);if((S|0)==26){S=0;f[E+(z<<2)>>2]=f[T+12>>2];V=e;X=A;Y=C;Z=B;_=E;break a}else if((S|0)==27){S=0;if(F){aa=0;S=46;break a}else break}}while(0);K=D+-1|0;L=(K&D|0)==0;if(!L)if(J>>>0>>0)ba=J;else ba=(J>>>0)%(D>>>0)|0;else ba=K&J;N=f[(f[i>>2]|0)+(ba<<2)>>2]|0;if((N|0)!=0?(O=f[N>>2]|0,(O|0)!=0):0){if(L){L=O;while(1){N=f[L+4>>2]|0;if(!((N|0)==(J|0)|(N&K|0)==(ba|0))){aa=ba;S=46;break a}N=L+8|0;if((d[N>>1]|0)==G<<16>>16?(d[N+2>>1]|0)==H<<16>>16:0){S=61;break a}L=f[L>>2]|0;if(!L){aa=ba;S=46;break a}}}else ca=O;while(1){L=f[ca+4>>2]|0;if((L|0)!=(J|0)){if(L>>>0>>0)da=L;else da=(L>>>0)%(D>>>0)|0;if((da|0)!=(ba|0)){aa=ba;S=46;break a}}L=ca+8|0;if((d[L>>1]|0)==G<<16>>16?(d[L+2>>1]|0)==H<<16>>16:0){S=61;break a}ca=f[ca>>2]|0;if(!ca){aa=ba;S=46;break}}}else{aa=ba;S=46}}else{aa=0;S=46}while(0);if((S|0)==46){S=0;H=dn(16)|0;G=H+8|0;d[G>>1]=r;d[G+2>>1]=r>>>16;f[H+12>>2]=A;f[H+4>>2]=J;f[H>>2]=0;ea=$(((f[t>>2]|0)+1|0)>>>0);fa=$(D>>>0);ga=$(n[l>>2]);do if(F|$(ga*fa)>>0<3|(D+-1&D|0)!=0)&1;O=~~$(W($(ea/ga)))>>>0;Eh(i,G>>>0>>0?O:G);G=f[o>>2]|0;O=G+-1|0;if(!(O&G)){ha=G;ia=O&J;break}if(J>>>0>>0){ha=G;ia=J}else{ha=G;ia=(J>>>0)%(G>>>0)|0}}else{ha=D;ia=aa}while(0);J=(f[i>>2]|0)+(ia<<2)|0;F=f[J>>2]|0;if(!F){f[H>>2]=f[v>>2];f[v>>2]=H;f[J>>2]=v;J=f[H>>2]|0;if(J|0){r=f[J+4>>2]|0;J=ha+-1|0;if(J&ha)if(r>>>0>>0)ja=r;else ja=(r>>>0)%(ha>>>0)|0;else ja=r&J;ka=(f[i>>2]|0)+(ja<<2)|0;S=59}}else{f[H>>2]=f[F>>2];ka=F;S=59}if((S|0)==59){S=0;f[ka>>2]=H}f[t>>2]=(f[t>>2]|0)+1;S=61}if((S|0)==61){S=0;F=w;J=f[F>>2]|0;r=on(J|0,f[F+4>>2]|0,A|0,0)|0;Rg((f[f[x>>2]>>2]|0)+r|0,j|0,J|0)|0;J=f[k>>2]|0;f[J+(z<<2)>>2]=A;V=J;X=A+1|0;Y=J;Z=J;_=J}J=z+1|0;la=f[m>>2]|0;if(J>>>0>=la>>>0)break;e=V;z=J;A=X;B=Z;C=Y;D=f[o>>2]|0;E=_}if((X|0)==(la|0))ma=Z;else{Z=a+84|0;if(!(b[Z>>0]|0)){_=f[a+72>>2]|0;E=f[a+68>>2]|0;o=E;if((_|0)==(E|0))na=V;else{D=_-E>>2;E=0;do{_=o+(E<<2)|0;f[_>>2]=f[Y+(f[_>>2]<<2)>>2];E=E+1|0}while(E>>>0>>0);na=V}}else{b[Z>>0]=0;Z=a+68|0;V=a+72|0;D=f[V>>2]|0;E=f[Z>>2]|0;Y=D-E>>2;o=E;E=D;if(la>>>0<=Y>>>0)if(la>>>0>>0?(D=o+(la<<2)|0,(D|0)!=(E|0)):0){f[V>>2]=E+(~((E+-4-D|0)>>>2)<<2);oa=la}else oa=la;else{kh(Z,la-Y|0,1204);oa=f[m>>2]|0}Y=f[k>>2]|0;if(!oa)na=Y;else{k=f[a+68>>2]|0;a=0;do{f[k+(a<<2)>>2]=f[Y+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);na=Y}}f[m>>2]=X;ma=na}if(!ma)pa=X;else{na=f[p>>2]|0;if((na|0)!=(ma|0))f[p>>2]=na+(~((na+-4-ma|0)>>>2)<<2);br(ma);pa=X}}else pa=0;X=f[i+8>>2]|0;if(X|0){ma=X;do{X=ma;ma=f[ma>>2]|0;br(X)}while((ma|0)!=0)}ma=f[i>>2]|0;f[i>>2]=0;if(!ma){u=g;return pa|0}br(ma);u=g;return pa|0}function Wb(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0;c=u;u=u+16|0;d=c+8|0;e=c;g=f[b>>2]|0;if((g|0)==-1){h=1;u=c;return h|0}i=(g>>>0)/3|0;j=a+24|0;if(f[(f[j>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0){h=1;u=c;return h|0}i=a+48|0;k=f[i>>2]|0;l=a+52|0;m=f[l>>2]|0;if((m|0)==(k|0))n=k;else{o=m+(~((m+-4-k|0)>>>2)<<2)|0;f[l>>2]=o;n=o}o=a+56|0;if((n|0)==(f[o>>2]|0))Ci(i,b);else{f[n>>2]=g;f[l>>2]=n+4}n=a+4|0;g=f[n>>2]|0;k=f[b>>2]|0;m=k+1|0;if((k|0)==-1){h=0;u=c;return h|0}p=((m>>>0)%3|0|0)==0?k+-2|0:m;if((p|0)==-1)q=-1;else q=f[(f[g>>2]|0)+(p<<2)>>2]|0;p=(((k>>>0)%3|0|0)==0?2:-1)+k|0;if((p|0)==-1){h=0;u=c;return h|0}k=f[(f[g>>2]|0)+(p<<2)>>2]|0;if((q|0)==-1|(k|0)==-1){h=0;u=c;return h|0}p=a+36|0;g=f[p>>2]|0;m=g+(q>>>5<<2)|0;r=1<<(q&31);s=f[m>>2]|0;if(!(s&r)){f[m>>2]=s|r;r=f[b>>2]|0;s=r+1|0;if((r|0)==-1)t=-1;else t=((s>>>0)%3|0|0)==0?r+-2|0:s;f[e>>2]=t;s=f[(f[(f[a+16>>2]|0)+96>>2]|0)+(((t>>>0)/3|0)*12|0)+(((t>>>0)%3|0)<<2)>>2]|0;t=f[a+20>>2]|0;f[d>>2]=s;r=f[t+4>>2]|0;t=r+4|0;m=f[t>>2]|0;if((m|0)==(f[r+8>>2]|0))Ci(r,d);else{f[m>>2]=s;f[t>>2]=m+4}m=a+12|0;t=f[m>>2]|0;s=t+4|0;r=f[s>>2]|0;if((r|0)==(f[t+8>>2]|0)){Ci(t,e);v=f[m>>2]|0}else{f[r>>2]=f[e>>2];f[s>>2]=r+4;v=t}t=v+24|0;f[(f[v+12>>2]|0)+(q<<2)>>2]=f[t>>2];f[t>>2]=(f[t>>2]|0)+1;w=f[p>>2]|0}else w=g;g=w+(k>>>5<<2)|0;w=1<<(k&31);t=f[g>>2]|0;if(!(t&w)){f[g>>2]=t|w;w=f[b>>2]|0;do if((w|0)!=-1)if(!((w>>>0)%3|0)){x=w+2|0;break}else{x=w+-1|0;break}else x=-1;while(0);f[e>>2]=x;w=f[(f[(f[a+16>>2]|0)+96>>2]|0)+(((x>>>0)/3|0)*12|0)+(((x>>>0)%3|0)<<2)>>2]|0;x=f[a+20>>2]|0;f[d>>2]=w;t=f[x+4>>2]|0;x=t+4|0;g=f[x>>2]|0;if((g|0)==(f[t+8>>2]|0))Ci(t,d);else{f[g>>2]=w;f[x>>2]=g+4}g=a+12|0;x=f[g>>2]|0;w=x+4|0;t=f[w>>2]|0;if((t|0)==(f[x+8>>2]|0)){Ci(x,e);y=f[g>>2]|0}else{f[t>>2]=f[e>>2];f[w>>2]=t+4;y=x}x=y+24|0;f[(f[y+12>>2]|0)+(k<<2)>>2]=f[x>>2];f[x>>2]=(f[x>>2]|0)+1}x=f[i>>2]|0;k=f[l>>2]|0;if((x|0)==(k|0)){h=1;u=c;return h|0}y=a+16|0;t=a+20|0;w=a+12|0;a=k;k=x;a:while(1){x=f[a+-4>>2]|0;f[b>>2]=x;g=(x>>>0)/3|0;if((x|0)!=-1?(x=(f[j>>2]|0)+(g>>>5<<2)|0,q=1<<(g&31),g=f[x>>2]|0,(g&q|0)==0):0){f[x>>2]=g|q;q=f[b>>2]|0;if((q|0)==-1){h=0;z=80;break}g=f[n>>2]|0;x=q;b:while(1){q=f[(f[g>>2]|0)+(x<<2)>>2]|0;if((q|0)==-1){h=0;z=80;break a}v=(f[p>>2]|0)+(q>>>5<<2)|0;r=1<<(q&31);s=f[v>>2]|0;do if(!(s&r)){m=f[(f[g+24>>2]|0)+(q<<2)>>2]|0;A=m+1|0;do if((m|0)==-1)B=1;else{C=((A>>>0)%3|0|0)==0?m+-2|0:A;if((C|0)==-1){B=1;break}D=f[(f[g+12>>2]|0)+(C<<2)>>2]|0;C=D+1|0;if((D|0)==-1){B=1;break}B=((((C>>>0)%3|0|0)==0?D+-2|0:C)|0)==-1}while(0);f[v>>2]=s|r;A=f[b>>2]|0;f[e>>2]=A;m=f[(f[(f[y>>2]|0)+96>>2]|0)+(((A>>>0)/3|0)*12|0)+(((A>>>0)%3|0)<<2)>>2]|0;A=f[t>>2]|0;f[d>>2]=m;C=f[A+4>>2]|0;A=C+4|0;D=f[A>>2]|0;if((D|0)==(f[C+8>>2]|0))Ci(C,d);else{f[D>>2]=m;f[A>>2]=D+4}D=f[w>>2]|0;A=D+4|0;m=f[A>>2]|0;if((m|0)==(f[D+8>>2]|0)){Ci(D,e);E=f[w>>2]|0}else{f[m>>2]=f[e>>2];f[A>>2]=m+4;E=D}D=E+24|0;f[(f[E+12>>2]|0)+(q<<2)>>2]=f[D>>2];f[D>>2]=(f[D>>2]|0)+1;D=f[n>>2]|0;m=f[b>>2]|0;if(B)if((m|0)==-1){z=63;break b}else{F=m;G=D;z=64;break}do if((m|0)==-1)H=-1;else{A=m+1|0;C=((A>>>0)%3|0|0)==0?m+-2|0:A;if((C|0)==-1){H=-1;break}H=f[(f[D+12>>2]|0)+(C<<2)>>2]|0}while(0);f[b>>2]=H;I=(H>>>0)/3|0;J=D}else{F=x;G=g;z=64}while(0);if((z|0)==64){z=0;q=F+1|0;r=((q>>>0)%3|0|0)==0?F+-2|0:q;if((r|0)==-1)K=-1;else K=f[(f[G+12>>2]|0)+(r<<2)>>2]|0;f[d>>2]=K;r=(((F>>>0)%3|0|0)==0?2:-1)+F|0;if((r|0)==-1)L=-1;else L=f[(f[G+12>>2]|0)+(r<<2)>>2]|0;r=(K|0)==-1;q=(K>>>0)/3|0;s=r?-1:q;v=(L|0)==-1;m=(L>>>0)/3|0;C=v?-1:m;do if(!r){A=f[j>>2]|0;if(f[A+(s>>>5<<2)>>2]&1<<(s&31)|0){z=70;break}if(v){M=K;N=q;break}if(!(f[A+(C>>>5<<2)>>2]&1<<(C&31))){z=75;break b}else{M=K;N=q}}else z=70;while(0);if((z|0)==70){z=0;if(v){z=72;break}if(!(f[(f[j>>2]|0)+(C>>>5<<2)>>2]&1<<(C&31))){M=L;N=m}else{z=72;break}}f[b>>2]=M;I=N;J=G}q=(f[j>>2]|0)+(I>>>5<<2)|0;f[q>>2]=f[q>>2]|1<<(I&31);x=f[b>>2]|0;if((x|0)==-1){h=0;z=80;break a}else g=J}do if((z|0)==63){z=0;f[d>>2]=-1;z=72}else if((z|0)==75){z=0;g=f[l>>2]|0;f[g+-4>>2]=L;if((g|0)==(f[o>>2]|0)){Ci(i,d);O=f[l>>2]|0;break}else{f[g>>2]=f[d>>2];x=g+4|0;f[l>>2]=x;O=x;break}}while(0);if((z|0)==72){z=0;x=(f[l>>2]|0)+-4|0;f[l>>2]=x;O=x}P=f[i>>2]|0;Q=O}else{x=a+-4|0;f[l>>2]=x;P=k;Q=x}if((P|0)==(Q|0)){h=1;z=80;break}else{a=Q;k=P}}if((z|0)==80){u=c;return h|0}return 0}function Xb(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=Oa,da=Oa,ea=Oa,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0;e=u;u=u+48|0;g=e+20|0;i=e;j=e+8|0;k=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[k>>2]=$(1.0);l=a+80|0;m=f[l>>2]|0;f[j>>2]=0;o=j+4|0;f[o>>2]=0;f[j+8>>2]=0;if(m){if(m>>>0>1073741823)mq(j);p=m<<2;q=dn(p)|0;f[j>>2]=q;r=q+(m<<2)|0;f[j+8>>2]=r;hj(q|0,0,p|0)|0;f[o>>2]=r;r=c+48|0;p=c+40|0;m=g+4|0;s=g+12|0;t=g+8|0;v=a+40|0;w=a+64|0;x=f[d>>2]|0;d=q;y=0;z=0;A=q;B=q;C=q;q=0;while(1){D=r;E=f[D>>2]|0;F=f[D+4>>2]|0;D=p;G=on(f[D>>2]|0,f[D+4>>2]|0,x+y|0,0)|0;D=Tn(G|0,I|0,E|0,F|0)|0;F=(f[f[c>>2]>>2]|0)+D|0;D=F;E=h[D>>0]|h[D+1>>0]<<8|h[D+2>>0]<<16|h[D+3>>0]<<24;D=F+4|0;F=h[D>>0]|h[D+1>>0]<<8|h[D+2>>0]<<16|h[D+3>>0]<<24;D=i;f[D>>2]=E;f[D+4>>2]=F;D=(E^318)+239^F;G=(q|0)==0;a:do if(!G){H=q+-1|0;J=(H&q|0)==0;if(!J)if(D>>>0>>0)K=D;else K=(D>>>0)%(q>>>0)|0;else K=D&H;L=f[(f[g>>2]|0)+(K<<2)>>2]|0;do if(L|0?(M=f[L>>2]|0,M|0):0){b:do if(J){N=M;while(1){O=f[N+4>>2]|0;P=(O|0)==(D|0);if(!(P|(O&H|0)==(K|0))){Q=27;break b}if((P?(f[N+8>>2]|0)==(E|0):0)?(f[N+12>>2]|0)==(F|0):0){R=N;Q=26;break b}N=f[N>>2]|0;if(!N){Q=27;break}}}else{N=M;while(1){P=f[N+4>>2]|0;if((P|0)==(D|0)){if((f[N+8>>2]|0)==(E|0)?(f[N+12>>2]|0)==(F|0):0){R=N;Q=26;break b}}else{if(P>>>0>>0)S=P;else S=(P>>>0)%(q>>>0)|0;if((S|0)!=(K|0)){Q=27;break b}}N=f[N>>2]|0;if(!N){Q=27;break}}}while(0);if((Q|0)==26){Q=0;f[A+(y<<2)>>2]=f[R+16>>2];T=d;U=z;V=C;X=B;Y=A;break a}else if((Q|0)==27){Q=0;if(G){Z=0;Q=46;break a}else break}}while(0);H=q+-1|0;J=(H&q|0)==0;if(!J)if(D>>>0>>0)_=D;else _=(D>>>0)%(q>>>0)|0;else _=H&D;L=f[(f[g>>2]|0)+(_<<2)>>2]|0;if((L|0)!=0?(M=f[L>>2]|0,(M|0)!=0):0){if(J){J=M;while(1){L=f[J+4>>2]|0;if(!((L|0)==(D|0)|(L&H|0)==(_|0))){Z=_;Q=46;break a}if((f[J+8>>2]|0)==(E|0)?(f[J+12>>2]|0)==(F|0):0){Q=61;break a}J=f[J>>2]|0;if(!J){Z=_;Q=46;break a}}}else aa=M;while(1){J=f[aa+4>>2]|0;if((J|0)!=(D|0)){if(J>>>0>>0)ba=J;else ba=(J>>>0)%(q>>>0)|0;if((ba|0)!=(_|0)){Z=_;Q=46;break a}}if((f[aa+8>>2]|0)==(E|0)?(f[aa+12>>2]|0)==(F|0):0){Q=61;break a}aa=f[aa>>2]|0;if(!aa){Z=_;Q=46;break}}}else{Z=_;Q=46}}else{Z=0;Q=46}while(0);if((Q|0)==46){Q=0;M=dn(20)|0;J=M+8|0;f[J>>2]=E;f[J+4>>2]=F;f[M+16>>2]=z;f[M+4>>2]=D;f[M>>2]=0;ca=$(((f[s>>2]|0)+1|0)>>>0);da=$(q>>>0);ea=$(n[k>>2]);do if(G|$(ea*da)>>0<3|(q+-1&q|0)!=0)&1;H=~~$(W($(ca/ea)))>>>0;Ih(g,J>>>0>>0?H:J);J=f[m>>2]|0;H=J+-1|0;if(!(H&J)){fa=J;ga=H&D;break}if(D>>>0>>0){fa=J;ga=D}else{fa=J;ga=(D>>>0)%(J>>>0)|0}}else{fa=q;ga=Z}while(0);D=(f[g>>2]|0)+(ga<<2)|0;G=f[D>>2]|0;if(!G){f[M>>2]=f[t>>2];f[t>>2]=M;f[D>>2]=t;D=f[M>>2]|0;if(D|0){F=f[D+4>>2]|0;D=fa+-1|0;if(D&fa)if(F>>>0>>0)ha=F;else ha=(F>>>0)%(fa>>>0)|0;else ha=F&D;ia=(f[g>>2]|0)+(ha<<2)|0;Q=59}}else{f[M>>2]=f[G>>2];ia=G;Q=59}if((Q|0)==59){Q=0;f[ia>>2]=M}f[s>>2]=(f[s>>2]|0)+1;Q=61}if((Q|0)==61){Q=0;G=v;D=f[G>>2]|0;F=on(D|0,f[G+4>>2]|0,z|0,0)|0;Rg((f[f[w>>2]>>2]|0)+F|0,i|0,D|0)|0;D=f[j>>2]|0;f[D+(y<<2)>>2]=z;T=D;U=z+1|0;V=D;X=D;Y=D}D=y+1|0;ja=f[l>>2]|0;if(D>>>0>=ja>>>0)break;d=T;y=D;z=U;A=Y;B=X;C=V;q=f[m>>2]|0}if((U|0)==(ja|0))ka=X;else{X=a+84|0;if(!(b[X>>0]|0)){m=f[a+72>>2]|0;q=f[a+68>>2]|0;C=q;if((m|0)==(q|0))la=T;else{B=m-q>>2;q=0;do{m=C+(q<<2)|0;f[m>>2]=f[V+(f[m>>2]<<2)>>2];q=q+1|0}while(q>>>0>>0);la=T}}else{b[X>>0]=0;X=a+68|0;T=a+72|0;B=f[T>>2]|0;q=f[X>>2]|0;V=B-q>>2;C=q;q=B;if(ja>>>0<=V>>>0)if(ja>>>0>>0?(B=C+(ja<<2)|0,(B|0)!=(q|0)):0){f[T>>2]=q+(~((q+-4-B|0)>>>2)<<2);ma=ja}else ma=ja;else{kh(X,ja-V|0,1204);ma=f[l>>2]|0}V=f[j>>2]|0;if(!ma)la=V;else{j=f[a+68>>2]|0;a=0;do{f[j+(a<<2)>>2]=f[V+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);la=V}}f[l>>2]=U;ka=la}if(!ka)na=U;else{la=f[o>>2]|0;if((la|0)!=(ka|0))f[o>>2]=la+(~((la+-4-ka|0)>>>2)<<2);br(ka);na=U}}else na=0;U=f[g+8>>2]|0;if(U|0){ka=U;do{U=ka;ka=f[ka>>2]|0;br(U)}while((ka|0)!=0)}ka=f[g>>2]|0;f[g>>2]=0;if(!ka){u=e;return na|0}br(ka);u=e;return na|0}function Yb(a,c,e){a=a|0;c=c|0;e=e|0;var g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=Oa,fa=Oa,ga=Oa,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0;g=u;u=u+48|0;i=g+12|0;j=g+32|0;k=g;l=i+16|0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;n[l>>2]=$(1.0);m=a+80|0;o=f[m>>2]|0;f[k>>2]=0;p=k+4|0;f[p>>2]=0;f[k+8>>2]=0;if(o){if(o>>>0>1073741823)mq(k);q=o<<2;r=dn(q)|0;f[k>>2]=r;s=r+(o<<2)|0;f[k+8>>2]=s;hj(r|0,0,q|0)|0;f[p>>2]=s;s=c+48|0;q=c+40|0;o=i+4|0;t=i+12|0;v=i+8|0;w=a+40|0;x=a+64|0;y=f[e>>2]|0;e=r;z=0;A=0;B=r;C=r;D=0;E=r;while(1){r=s;F=f[r>>2]|0;G=f[r+4>>2]|0;r=q;H=on(f[r>>2]|0,f[r+4>>2]|0,y+z|0,0)|0;r=Tn(H|0,I|0,F|0,G|0)|0;G=(f[f[c>>2]>>2]|0)+r|0;r=h[G>>0]|h[G+1>>0]<<8;d[j>>1]=r;G=r&255;F=(r&65535)>>>8;H=F&255;J=((r&255^318)+239<<16>>16^F)&65535;F=(D|0)==0;a:do if(!F){K=D+-1|0;L=(K&D|0)==0;if(!L)if(D>>>0>J>>>0)M=J;else M=(J>>>0)%(D>>>0)|0;else M=K&J;N=f[(f[i>>2]|0)+(M<<2)>>2]|0;do if(N|0?(O=f[N>>2]|0,O|0):0){b:do if(L){P=O;while(1){Q=f[P+4>>2]|0;R=(Q|0)==(J|0);if(!(R|(Q&K|0)==(M|0))){S=27;break b}if((R?(R=P+8|0,(b[R>>0]|0)==G<<24>>24):0)?(b[R+1>>0]|0)==H<<24>>24:0){T=P;S=26;break b}P=f[P>>2]|0;if(!P){S=27;break}}}else{P=O;while(1){R=f[P+4>>2]|0;if((R|0)==(J|0)){Q=P+8|0;if((b[Q>>0]|0)==G<<24>>24?(b[Q+1>>0]|0)==H<<24>>24:0){T=P;S=26;break b}}else{if(R>>>0>>0)U=R;else U=(R>>>0)%(D>>>0)|0;if((U|0)!=(M|0)){S=27;break b}}P=f[P>>2]|0;if(!P){S=27;break}}}while(0);if((S|0)==26){S=0;f[E+(z<<2)>>2]=f[T+12>>2];V=e;X=A;Y=C;Z=B;_=E;break a}else if((S|0)==27){S=0;if(F){aa=0;S=46;break a}else break}}while(0);K=D+-1|0;L=(K&D|0)==0;if(!L)if(D>>>0>J>>>0)ba=J;else ba=(J>>>0)%(D>>>0)|0;else ba=K&J;N=f[(f[i>>2]|0)+(ba<<2)>>2]|0;if((N|0)!=0?(O=f[N>>2]|0,(O|0)!=0):0){if(L){L=O;while(1){N=f[L+4>>2]|0;if(!((N|0)==(J|0)|(N&K|0)==(ba|0))){aa=ba;S=46;break a}N=L+8|0;if((b[N>>0]|0)==G<<24>>24?(b[N+1>>0]|0)==H<<24>>24:0){S=61;break a}L=f[L>>2]|0;if(!L){aa=ba;S=46;break a}}}else ca=O;while(1){L=f[ca+4>>2]|0;if((L|0)!=(J|0)){if(L>>>0>>0)da=L;else da=(L>>>0)%(D>>>0)|0;if((da|0)!=(ba|0)){aa=ba;S=46;break a}}L=ca+8|0;if((b[L>>0]|0)==G<<24>>24?(b[L+1>>0]|0)==H<<24>>24:0){S=61;break a}ca=f[ca>>2]|0;if(!ca){aa=ba;S=46;break}}}else{aa=ba;S=46}}else{aa=0;S=46}while(0);if((S|0)==46){S=0;H=dn(16)|0;G=H+8|0;b[G>>0]=r;b[G+1>>0]=r>>8;f[H+12>>2]=A;f[H+4>>2]=J;f[H>>2]=0;ea=$(((f[t>>2]|0)+1|0)>>>0);fa=$(D>>>0);ga=$(n[l>>2]);do if(F|$(ga*fa)>>0<3|(D+-1&D|0)!=0)&1;O=~~$(W($(ea/ga)))>>>0;Lh(i,G>>>0>>0?O:G);G=f[o>>2]|0;O=G+-1|0;if(!(O&G)){ha=G;ia=O&J;break}if(G>>>0>J>>>0){ha=G;ia=J}else{ha=G;ia=(J>>>0)%(G>>>0)|0}}else{ha=D;ia=aa}while(0);J=(f[i>>2]|0)+(ia<<2)|0;F=f[J>>2]|0;if(!F){f[H>>2]=f[v>>2];f[v>>2]=H;f[J>>2]=v;J=f[H>>2]|0;if(J|0){r=f[J+4>>2]|0;J=ha+-1|0;if(J&ha)if(r>>>0>>0)ja=r;else ja=(r>>>0)%(ha>>>0)|0;else ja=r&J;ka=(f[i>>2]|0)+(ja<<2)|0;S=59}}else{f[H>>2]=f[F>>2];ka=F;S=59}if((S|0)==59){S=0;f[ka>>2]=H}f[t>>2]=(f[t>>2]|0)+1;S=61}if((S|0)==61){S=0;F=w;J=f[F>>2]|0;r=on(J|0,f[F+4>>2]|0,A|0,0)|0;Rg((f[f[x>>2]>>2]|0)+r|0,j|0,J|0)|0;J=f[k>>2]|0;f[J+(z<<2)>>2]=A;V=J;X=A+1|0;Y=J;Z=J;_=J}J=z+1|0;la=f[m>>2]|0;if(J>>>0>=la>>>0)break;e=V;z=J;A=X;B=Z;C=Y;D=f[o>>2]|0;E=_}if((X|0)==(la|0))ma=Z;else{Z=a+84|0;if(!(b[Z>>0]|0)){_=f[a+72>>2]|0;E=f[a+68>>2]|0;o=E;if((_|0)==(E|0))na=V;else{D=_-E>>2;E=0;do{_=o+(E<<2)|0;f[_>>2]=f[Y+(f[_>>2]<<2)>>2];E=E+1|0}while(E>>>0>>0);na=V}}else{b[Z>>0]=0;Z=a+68|0;V=a+72|0;D=f[V>>2]|0;E=f[Z>>2]|0;Y=D-E>>2;o=E;E=D;if(la>>>0<=Y>>>0)if(la>>>0>>0?(D=o+(la<<2)|0,(D|0)!=(E|0)):0){f[V>>2]=E+(~((E+-4-D|0)>>>2)<<2);oa=la}else oa=la;else{kh(Z,la-Y|0,1204);oa=f[m>>2]|0}Y=f[k>>2]|0;if(!oa)na=Y;else{k=f[a+68>>2]|0;a=0;do{f[k+(a<<2)>>2]=f[Y+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);na=Y}}f[m>>2]=X;ma=na}if(!ma)pa=X;else{na=f[p>>2]|0;if((na|0)!=(ma|0))f[p>>2]=na+(~((na+-4-ma|0)>>>2)<<2);br(ma);pa=X}}else pa=0;X=f[i+8>>2]|0;if(X|0){ma=X;do{X=ma;ma=f[ma>>2]|0;br(X)}while((ma|0)!=0)}ma=f[i>>2]|0;f[i>>2]=0;if(!ma){u=g;return pa|0}br(ma);u=g;return pa|0}function Zb(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0;c=u;u=u+16|0;d=c+8|0;e=c;g=c+4|0;h=a+16|0;i=f[h>>2]|0;j=a+20|0;k=f[j>>2]|0;if((k|0)==(i|0))l=i;else{m=k+(~((k+-4-i|0)>>>2)<<2)|0;f[j>>2]=m;l=m}m=a+24|0;if((l|0)==(f[m>>2]|0)){Ci(h,b);n=f[h>>2]|0;o=f[j>>2]|0}else{f[l>>2]=f[b>>2];k=l+4|0;f[j>>2]=k;n=i;o=k}k=f[a+8>>2]|0;i=(f[k+100>>2]|0)-(f[k+96>>2]|0)|0;k=(i|0)/12|0;if((n|0)==(o|0)){u=c;return 1}n=a+28|0;l=(i|0)>0;i=a+164|0;p=a+12|0;q=a+76|0;r=a+80|0;s=a+72|0;t=a+200|0;v=a+320|0;w=a+152|0;x=a+84|0;y=a+324|0;z=a+292|0;A=a+304|0;B=a+316|0;C=a+328|0;D=a+336|0;E=a+332|0;F=a+168|0;G=a+140|0;H=a+120|0;I=o;do{o=f[I+-4>>2]|0;f[b>>2]=o;a:do if((o|0)!=-1?(J=(o>>>0)/3|0,K=f[n>>2]|0,(f[K+(J>>>5<<2)>>2]&1<<(J&31)|0)==0):0){if(l){J=0;L=K;b:while(1){K=J+1|0;f[i>>2]=(f[i>>2]|0)+1;M=f[b>>2]|0;N=(M|0)==-1?-1:(M>>>0)/3|0;M=L+(N>>>5<<2)|0;f[M>>2]=1<<(N&31)|f[M>>2];M=f[q>>2]|0;if((M|0)==(f[r>>2]|0))Ci(s,b);else{f[M>>2]=f[b>>2];f[q>>2]=M+4}f[v>>2]=f[b>>2];M=f[b>>2]|0;if((M|0)==-1)O=-1;else O=f[(f[f[p>>2]>>2]|0)+(M<<2)>>2]|0;P=(f[(f[w>>2]|0)+(O<<2)>>2]|0)!=-1;Q=(f[x>>2]|0)+(O>>>5<<2)|0;R=1<<(O&31);S=f[Q>>2]|0;do if(!(S&R)){f[Q>>2]=S|R;if(P){T=f[b>>2]|0;U=38;break}f[y>>2]=(f[y>>2]|0)+1;V=f[v>>2]|0;W=V+1|0;do if((V|0)!=-1){X=((W>>>0)%3|0|0)==0?V+-2|0:W;if(!((V>>>0)%3|0)){Y=V+2|0;Z=X;break}else{Y=V+-1|0;Z=X;break}}else{Y=-1;Z=-1}while(0);V=f[z>>2]|0;W=f[A>>2]|0;X=W+(f[V+(Z<<2)>>2]<<2)|0;_=f[X>>2]|0;f[X>>2]=_+-1;X=W+(f[V+(Y<<2)>>2]<<2)|0;f[X>>2]=(f[X>>2]|0)+-1;X=f[B>>2]|0;if((X|0)!=-1){V=f[C>>2]|0;if((_|0)<(V|0))$=V;else{W=f[E>>2]|0;$=(_|0)>(W|0)?W:_}_=$-V|0;V=f[D>>2]|0;W=f[3384+(X<<2)>>2]|0;f[d>>2]=W;X=V+(_*12|0)+4|0;aa=f[X>>2]|0;if(aa>>>0<(f[V+(_*12|0)+8>>2]|0)>>>0){f[aa>>2]=W;f[X>>2]=aa+4}else Ci(V+(_*12|0)|0,d)}f[B>>2]=0;_=f[b>>2]|0;V=_+1|0;if((_|0)!=-1?(aa=((V>>>0)%3|0|0)==0?_+-2|0:V,(aa|0)!=-1):0)ba=f[(f[(f[p>>2]|0)+12>>2]|0)+(aa<<2)>>2]|0;else ba=-1;f[b>>2]=ba}else{T=M;U=38}while(0);if((U|0)==38){U=0;M=T+1|0;if((T|0)==-1){U=43;break}R=((M>>>0)%3|0|0)==0?T+-2|0:M;if((R|0)==-1)ca=-1;else ca=f[(f[(f[p>>2]|0)+12>>2]|0)+(R<<2)>>2]|0;f[e>>2]=ca;R=(((T>>>0)%3|0|0)==0?2:-1)+T|0;if((R|0)==-1)da=-1;else da=f[(f[(f[p>>2]|0)+12>>2]|0)+(R<<2)>>2]|0;R=(ca|0)==-1;S=R?-1:(ca>>>0)/3|0;ea=(da|0)==-1;fa=ea?-1:(da>>>0)/3|0;Q=((M>>>0)%3|0|0)==0?T+-2|0:M;if(((Q|0)!=-1?(M=f[(f[p>>2]|0)+12>>2]|0,aa=f[M+(Q<<2)>>2]|0,(aa|0)!=-1):0)?(Q=(aa>>>0)/3|0,aa=f[n>>2]|0,(f[aa+(Q>>>5<<2)>>2]&1<<(Q&31)|0)==0):0){Q=(((T>>>0)%3|0|0)==0?2:-1)+T|0;do if((Q|0)!=-1){V=f[M+(Q<<2)>>2]|0;if((V|0)==-1)break;_=(V>>>0)/3|0;if(!(f[aa+(_>>>5<<2)>>2]&1<<(_&31))){U=62;break b}}while(0);if(!ea)jf(a,f[i>>2]|0,N,0,fa);hd(t,3);ga=f[e>>2]|0}else{if(!R){jf(a,f[i>>2]|0,N,1,S);aa=f[b>>2]|0;if((aa|0)==-1){U=52;break}else ha=aa}else ha=T;aa=(((ha>>>0)%3|0|0)==0?2:-1)+ha|0;if((aa|0)==-1){U=52;break}Q=f[(f[(f[p>>2]|0)+12>>2]|0)+(aa<<2)>>2]|0;if((Q|0)==-1){U=52;break}aa=(Q>>>0)/3|0;if(f[(f[n>>2]|0)+(aa>>>5<<2)>>2]&1<<(aa&31)|0){U=52;break}hd(t,5);ga=da}f[b>>2]=ga}if((K|0)>=(k|0))break a;J=K;L=f[n>>2]|0}do if((U|0)==43){U=0;f[e>>2]=-1;U=54}else if((U|0)==52){U=0;if(ea)U=54;else{jf(a,f[i>>2]|0,N,0,fa);U=54}}else if((U|0)==62){U=0;hd(t,1);f[F>>2]=(f[F>>2]|0)+1;if(P?(L=f[(f[w>>2]|0)+(O<<2)>>2]|0,(1<<(L&31)&f[(f[G>>2]|0)+(L>>>5<<2)>>2]|0)==0):0){f[g>>2]=f[b>>2];f[d>>2]=f[g>>2];Ce(a,d,0)|0}L=f[i>>2]|0;f[d>>2]=N;J=Sd(H,d)|0;f[J>>2]=L;L=f[j>>2]|0;f[L+-4>>2]=da;if((L|0)==(f[m>>2]|0)){Ci(h,e);break}else{f[L>>2]=f[e>>2];f[j>>2]=L+4;break}}while(0);if((U|0)==54){U=0;hd(t,7);f[j>>2]=(f[j>>2]|0)+-4}}}else U=11;while(0);if((U|0)==11){U=0;f[j>>2]=I+-4}I=f[j>>2]|0}while((f[h>>2]|0)!=(I|0));u=c;return 1}function _b(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=Oa,K=Oa,L=Oa,M=0,N=0,O=0,P=0;e=u;u=u+64|0;g=e+40|0;i=e+16|0;j=e;k=xd(a,c)|0;if(k|0){f[i>>2]=k;f[g>>2]=f[i>>2];Xe(a,g)|0}f[j>>2]=0;k=j+4|0;f[k>>2]=0;f[j+8>>2]=0;ri(j,8);l=d;d=l;m=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;d=l+4|0;l=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;d=f[j>>2]|0;o=d;b[o>>0]=m;b[o+1>>0]=m>>8;b[o+2>>0]=m>>16;b[o+3>>0]=m>>24;m=d+4|0;b[m>>0]=l;b[m+1>>0]=l>>8;b[m+2>>0]=l>>16;b[m+3>>0]=l>>24;dj(i,c);c=i+12|0;f[c>>2]=0;l=i+16|0;f[l>>2]=0;f[i+20>>2]=0;m=f[k>>2]|0;d=f[j>>2]|0;o=m-d|0;if(!o){p=d;q=m;r=0}else{ri(c,o);p=f[j>>2]|0;q=f[k>>2]|0;r=f[c>>2]|0}Rg(r|0,p|0,q-p|0)|0;p=i+11|0;q=b[p>>0]|0;r=q<<24>>24<0;c=r?f[i>>2]|0:i;o=r?f[i+4>>2]|0:q&255;if(o>>>0>3){q=c;r=o;m=o;while(1){d=X(h[q>>0]|h[q+1>>0]<<8|h[q+2>>0]<<16|h[q+3>>0]<<24,1540483477)|0;r=(X(d>>>24^d,1540483477)|0)^(X(r,1540483477)|0);m=m+-4|0;if(m>>>0<=3)break;else q=q+4|0}q=o+-4|0;m=q&-4;s=q-m|0;t=c+(m+4)|0;v=r}else{s=o;t=c;v=o}switch(s|0){case 3:{w=h[t+2>>0]<<16^v;x=10;break}case 2:{w=v;x=10;break}case 1:{y=v;x=11;break}default:z=v}if((x|0)==10){y=h[t+1>>0]<<8^w;x=11}if((x|0)==11)z=X(y^h[t>>0],1540483477)|0;t=X(z>>>13^z,1540483477)|0;z=t>>>15^t;t=a+4|0;y=f[t>>2]|0;w=(y|0)==0;a:do if(!w){v=y+-1|0;s=(v&y|0)==0;if(!s)if(z>>>0>>0)A=z;else A=(z>>>0)%(y>>>0)|0;else A=z&v;r=f[(f[a>>2]|0)+(A<<2)>>2]|0;if((r|0)!=0?(m=f[r>>2]|0,(m|0)!=0):0){r=(o|0)==0;if(s){if(r){s=m;while(1){q=f[s+4>>2]|0;if(!((q|0)==(z|0)|(q&v|0)==(A|0))){B=A;x=52;break a}q=b[s+8+11>>0]|0;if(!((q<<24>>24<0?f[s+12>>2]|0:q&255)|0))break a;s=f[s>>2]|0;if(!s){B=A;x=52;break a}}}else C=m;while(1){s=f[C+4>>2]|0;if(!((s|0)==(z|0)|(s&v|0)==(A|0))){B=A;x=52;break a}s=C+8|0;q=b[s+11>>0]|0;d=q<<24>>24<0;D=q&255;do if(((d?f[C+12>>2]|0:D)|0)==(o|0)){q=f[s>>2]|0;if(d)if(!(Pk(q,c,o)|0))break a;else break;if((b[c>>0]|0)==(q&255)<<24>>24){q=s;E=D;F=c;do{E=E+-1|0;q=q+1|0;if(!E)break a;F=F+1|0}while((b[q>>0]|0)==(b[F>>0]|0))}}while(0);C=f[C>>2]|0;if(!C){B=A;x=52;break a}}}if(r){v=m;while(1){D=f[v+4>>2]|0;if((D|0)!=(z|0)){if(D>>>0>>0)G=D;else G=(D>>>0)%(y>>>0)|0;if((G|0)!=(A|0)){B=A;x=52;break a}}D=b[v+8+11>>0]|0;if(!((D<<24>>24<0?f[v+12>>2]|0:D&255)|0))break a;v=f[v>>2]|0;if(!v){B=A;x=52;break a}}}else H=m;while(1){v=f[H+4>>2]|0;if((v|0)!=(z|0)){if(v>>>0>>0)I=v;else I=(v>>>0)%(y>>>0)|0;if((I|0)!=(A|0)){B=A;x=52;break a}}v=H+8|0;r=b[v+11>>0]|0;D=r<<24>>24<0;s=r&255;do if(((D?f[H+12>>2]|0:s)|0)==(o|0)){r=f[v>>2]|0;if(D)if(!(Pk(r,c,o)|0))break a;else break;if((b[c>>0]|0)==(r&255)<<24>>24){r=v;d=s;F=c;do{d=d+-1|0;r=r+1|0;if(!d)break a;F=F+1|0}while((b[r>>0]|0)==(b[F>>0]|0))}}while(0);H=f[H>>2]|0;if(!H){B=A;x=52;break}}}else{B=A;x=52}}else{B=0;x=52}while(0);if((x|0)==52){_h(g,a,z,i);x=a+12|0;J=$(((f[x>>2]|0)+1|0)>>>0);K=$(y>>>0);L=$(n[a+16>>2]);do if(w|$(L*K)>>0<3|(y+-1&y|0)!=0)&1;H=~~$(W($(J/L)))>>>0;Ph(a,A>>>0>>0?H:A);A=f[t>>2]|0;H=A+-1|0;if(!(H&A)){M=A;N=H&z;break}if(z>>>0>>0){M=A;N=z}else{M=A;N=(z>>>0)%(A>>>0)|0}}else{M=y;N=B}while(0);B=f[(f[a>>2]|0)+(N<<2)>>2]|0;if(!B){y=a+8|0;f[f[g>>2]>>2]=f[y>>2];f[y>>2]=f[g>>2];f[(f[a>>2]|0)+(N<<2)>>2]=y;y=f[g>>2]|0;N=f[y>>2]|0;if(!N)O=g;else{z=f[N+4>>2]|0;N=M+-1|0;if(N&M)if(z>>>0>>0)P=z;else P=(z>>>0)%(M>>>0)|0;else P=z&N;f[(f[a>>2]|0)+(P<<2)>>2]=y;O=g}}else{f[f[g>>2]>>2]=f[B>>2];f[B>>2]=f[g>>2];O=g}f[x>>2]=(f[x>>2]|0)+1;f[O>>2]=0}O=f[i+12>>2]|0;if(O|0){if((f[l>>2]|0)!=(O|0))f[l>>2]=O;br(O)}if((b[p>>0]|0)<0)br(f[i>>2]|0);i=f[j>>2]|0;if(!i){u=e;return}if((f[k>>2]|0)!=(i|0))f[k>>2]=i;br(i);u=e;return}function $b(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0;e=u;u=u+96|0;g=e+92|0;h=e+88|0;i=e+72|0;j=e+48|0;k=e+24|0;l=e;m=a+16|0;n=f[m>>2]|0;o=f[c>>2]|0;f[i>>2]=n;f[i+4>>2]=o;c=i+8|0;f[c>>2]=o;b[i+12>>0]=1;p=(o|0)==-1;if(p)q=-1;else q=f[(f[n>>2]|0)+(o<<2)>>2]|0;n=a+20|0;r=f[n>>2]|0;s=f[r>>2]|0;if((f[r+4>>2]|0)-s>>2>>>0<=q>>>0)mq(r);r=a+8|0;t=f[(f[r>>2]|0)+(f[s+(q<<2)>>2]<<2)>>2]|0;q=a+4|0;s=f[q>>2]|0;if(!(b[s+84>>0]|0))v=f[(f[s+68>>2]|0)+(t<<2)>>2]|0;else v=t;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;f[j+12>>2]=0;f[j+16>>2]=0;f[j+20>>2]=0;f[h>>2]=v;v=b[s+24>>0]|0;f[g>>2]=f[h>>2];ub(s,g,v,j)|0;v=a+28|0;a=(f[v>>2]|0)==0;a:do if(!p){s=k+8|0;t=j+8|0;w=k+16|0;x=j+16|0;y=l+8|0;z=l+16|0;A=o;B=o;C=0;D=0;E=0;F=0;G=0;H=0;J=a;K=o;while(1){do if(J){L=K+1|0;if((K|0)==-1){M=A;N=-1;O=-1;P=-1;break}Q=((L>>>0)%3|0|0)==0?K+-2|0:L;if((A|0)!=-1)if(!((A>>>0)%3|0)){R=A;S=A+2|0;T=Q;U=A;V=19;break}else{R=A;S=A+-1|0;T=Q;U=A;V=19;break}else{R=-1;S=-1;T=Q;U=-1;V=19}}else{Q=B+1|0;L=((Q>>>0)%3|0|0)==0?B+-2|0:Q;if(!((B>>>0)%3|0)){R=A;S=B+2|0;T=L;U=K;V=19;break}else{R=A;S=B+-1|0;T=L;U=K;V=19;break}}while(0);if((V|0)==19){V=0;if((T|0)==-1){M=R;N=-1;O=S;P=U}else{M=R;N=f[(f[f[m>>2]>>2]|0)+(T<<2)>>2]|0;O=S;P=U}}W=f[n>>2]|0;L=f[W>>2]|0;if((f[W+4>>2]|0)-L>>2>>>0<=N>>>0){V=22;break}Q=f[(f[r>>2]|0)+(f[L+(N<<2)>>2]<<2)>>2]|0;L=f[q>>2]|0;if(!(b[L+84>>0]|0))X=f[(f[L+68>>2]|0)+(Q<<2)>>2]|0;else X=Q;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;f[k+16>>2]=0;f[k+20>>2]=0;f[h>>2]=X;Q=b[L+24>>0]|0;f[g>>2]=f[h>>2];ub(L,g,Q,k)|0;if((O|0)==-1)Y=-1;else Y=f[(f[f[m>>2]>>2]|0)+(O<<2)>>2]|0;Z=f[n>>2]|0;Q=f[Z>>2]|0;if((f[Z+4>>2]|0)-Q>>2>>>0<=Y>>>0){V=28;break}L=f[(f[r>>2]|0)+(f[Q+(Y<<2)>>2]<<2)>>2]|0;Q=f[q>>2]|0;if(!(b[Q+84>>0]|0))_=f[(f[Q+68>>2]|0)+(L<<2)>>2]|0;else _=L;f[l>>2]=0;f[l+4>>2]=0;f[l+8>>2]=0;f[l+12>>2]=0;f[l+16>>2]=0;f[l+20>>2]=0;f[h>>2]=_;L=b[Q+24>>0]|0;f[g>>2]=f[h>>2];ub(Q,g,L,l)|0;L=k;Q=j;$=f[Q>>2]|0;aa=f[Q+4>>2]|0;Q=Vn(f[L>>2]|0,f[L+4>>2]|0,$|0,aa|0)|0;L=I;ba=s;ca=t;da=f[ca>>2]|0;ea=f[ca+4>>2]|0;ca=Vn(f[ba>>2]|0,f[ba+4>>2]|0,da|0,ea|0)|0;ba=I;fa=w;ga=x;ha=f[ga>>2]|0;ia=f[ga+4>>2]|0;ga=Vn(f[fa>>2]|0,f[fa+4>>2]|0,ha|0,ia|0)|0;fa=I;ja=l;ka=Vn(f[ja>>2]|0,f[ja+4>>2]|0,$|0,aa|0)|0;aa=I;$=y;ja=Vn(f[$>>2]|0,f[$+4>>2]|0,da|0,ea|0)|0;ea=I;da=z;$=Vn(f[da>>2]|0,f[da+4>>2]|0,ha|0,ia|0)|0;ia=I;ha=on($|0,ia|0,ca|0,ba|0)|0;da=I;la=on(ja|0,ea|0,ga|0,fa|0)|0;ma=I;na=on(ka|0,aa|0,ga|0,fa|0)|0;fa=I;ga=on($|0,ia|0,Q|0,L|0)|0;ia=I;$=on(ja|0,ea|0,Q|0,L|0)|0;L=I;Q=on(ka|0,aa|0,ca|0,ba|0)|0;ba=I;ca=Vn(C|0,D|0,la|0,ma|0)|0;ma=Tn(ca|0,I|0,ha|0,da|0)|0;da=I;ha=Tn(na|0,fa|0,E|0,F|0)|0;fa=Vn(ha|0,I|0,ga|0,ia|0)|0;ia=I;ga=Vn(G|0,H|0,Q|0,ba|0)|0;ba=Tn(ga|0,I|0,$|0,L|0)|0;L=I;ph(i);B=f[c>>2]|0;$=(f[v>>2]|0)==0;if((B|0)==-1){oa=$;pa=da;qa=ma;ra=ia;sa=fa;ta=L;ua=ba;break a}else{A=M;C=ma;D=da;E=fa;F=ia;G=ba;H=L;J=$;K=P}}if((V|0)==22)mq(W);else if((V|0)==28)mq(Z)}else{oa=a;pa=0;qa=0;ra=0;sa=0;ta=0;ua=0}while(0);a=(pa|0)>-1|(pa|0)==-1&qa>>>0>4294967295;Z=Vn(0,0,qa|0,pa|0)|0;V=a?pa:I;W=(ra|0)>-1|(ra|0)==-1&sa>>>0>4294967295;P=Vn(0,0,sa|0,ra|0)|0;M=W?ra:I;v=(ta|0)>-1|(ta|0)==-1&ua>>>0>4294967295;c=Vn(0,0,ua|0,ta|0)|0;i=Tn((W?sa:P)|0,M|0,(v?ua:c)|0,(v?ta:I)|0)|0;v=Tn(i|0,I|0,(a?qa:Z)|0,V|0)|0;V=I;if(oa){if((v|0)<=536870912){va=qa;wa=sa;xa=ua;f[d>>2]=va;ya=d+4|0;f[ya>>2]=wa;za=d+8|0;f[za>>2]=xa;u=e;return}oa=Wn(v|0,V|0,29)|0;Z=oa&7;oa=zk(qa|0,pa|0,Z|0,0)|0;a=zk(sa|0,ra|0,Z|0,0)|0;i=zk(ua|0,ta|0,Z|0,0)|0;va=oa;wa=a;xa=i;f[d>>2]=va;ya=d+4|0;f[ya>>2]=wa;za=d+8|0;f[za>>2]=xa;u=e;return}else{if(!((V|0)>0|(V|0)==0&v>>>0>536870912)){va=qa;wa=sa;xa=ua;f[d>>2]=va;ya=d+4|0;f[ya>>2]=wa;za=d+8|0;f[za>>2]=xa;u=e;return}i=Wn(v|0,V|0,29)|0;V=I;v=zk(qa|0,pa|0,i|0,V|0)|0;pa=zk(sa|0,ra|0,i|0,V|0)|0;ra=zk(ua|0,ta|0,i|0,V|0)|0;va=v;wa=pa;xa=ra;f[d>>2]=va;ya=d+4|0;f[ya>>2]=wa;za=d+8|0;f[za>>2]=xa;u=e;return}}function ac(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=Oa,M=Oa,N=Oa,O=0,P=0,Q=0,R=0;e=u;u=u+64|0;g=e+40|0;i=e+16|0;j=e;k=xd(a,c)|0;if(k|0){f[i>>2]=k;f[g>>2]=f[i>>2];Xe(a,g)|0}f[j>>2]=0;k=j+4|0;f[k>>2]=0;f[j+8>>2]=0;l=d+11|0;m=b[l>>0]|0;o=d+4|0;p=f[o>>2]|0;q=m<<24>>24<0?p:m&255;if(!q){r=m;s=p;t=0}else{ri(j,q);r=b[l>>0]|0;s=f[o>>2]|0;t=f[j>>2]|0}o=r<<24>>24<0;Rg(t|0,(o?f[d>>2]|0:d)|0,(o?s:r&255)|0)|0;dj(i,c);c=i+12|0;f[c>>2]=0;r=i+16|0;f[r>>2]=0;f[i+20>>2]=0;s=f[k>>2]|0;o=f[j>>2]|0;d=s-o|0;if(!d){v=o;w=s;x=0}else{ri(c,d);v=f[j>>2]|0;w=f[k>>2]|0;x=f[c>>2]|0}Rg(x|0,v|0,w-v|0)|0;v=i+11|0;w=b[v>>0]|0;x=w<<24>>24<0;c=x?f[i>>2]|0:i;d=x?f[i+4>>2]|0:w&255;if(d>>>0>3){w=c;x=d;s=d;while(1){o=X(h[w>>0]|h[w+1>>0]<<8|h[w+2>>0]<<16|h[w+3>>0]<<24,1540483477)|0;x=(X(o>>>24^o,1540483477)|0)^(X(x,1540483477)|0);s=s+-4|0;if(s>>>0<=3)break;else w=w+4|0}w=d+-4|0;s=w&-4;y=w-s|0;z=c+(s+4)|0;A=x}else{y=d;z=c;A=d}switch(y|0){case 3:{B=h[z+2>>0]<<16^A;C=12;break}case 2:{B=A;C=12;break}case 1:{D=A;C=13;break}default:E=A}if((C|0)==12){D=h[z+1>>0]<<8^B;C=13}if((C|0)==13)E=X(D^h[z>>0],1540483477)|0;z=X(E>>>13^E,1540483477)|0;E=z>>>15^z;z=a+4|0;D=f[z>>2]|0;B=(D|0)==0;a:do if(!B){A=D+-1|0;y=(A&D|0)==0;if(!y)if(E>>>0>>0)F=E;else F=(E>>>0)%(D>>>0)|0;else F=E&A;x=f[(f[a>>2]|0)+(F<<2)>>2]|0;if((x|0)!=0?(s=f[x>>2]|0,(s|0)!=0):0){x=(d|0)==0;if(y){if(x){y=s;while(1){w=f[y+4>>2]|0;if(!((w|0)==(E|0)|(w&A|0)==(F|0))){G=F;C=54;break a}w=b[y+8+11>>0]|0;if(!((w<<24>>24<0?f[y+12>>2]|0:w&255)|0))break a;y=f[y>>2]|0;if(!y){G=F;C=54;break a}}}else H=s;while(1){y=f[H+4>>2]|0;if(!((y|0)==(E|0)|(y&A|0)==(F|0))){G=F;C=54;break a}y=H+8|0;w=b[y+11>>0]|0;o=w<<24>>24<0;t=w&255;do if(((o?f[H+12>>2]|0:t)|0)==(d|0)){w=f[y>>2]|0;if(o)if(!(Pk(w,c,d)|0))break a;else break;if((b[c>>0]|0)==(w&255)<<24>>24){w=y;l=t;q=c;do{l=l+-1|0;w=w+1|0;if(!l)break a;q=q+1|0}while((b[w>>0]|0)==(b[q>>0]|0))}}while(0);H=f[H>>2]|0;if(!H){G=F;C=54;break a}}}if(x){A=s;while(1){t=f[A+4>>2]|0;if((t|0)!=(E|0)){if(t>>>0>>0)I=t;else I=(t>>>0)%(D>>>0)|0;if((I|0)!=(F|0)){G=F;C=54;break a}}t=b[A+8+11>>0]|0;if(!((t<<24>>24<0?f[A+12>>2]|0:t&255)|0))break a;A=f[A>>2]|0;if(!A){G=F;C=54;break a}}}else J=s;while(1){A=f[J+4>>2]|0;if((A|0)!=(E|0)){if(A>>>0>>0)K=A;else K=(A>>>0)%(D>>>0)|0;if((K|0)!=(F|0)){G=F;C=54;break a}}A=J+8|0;x=b[A+11>>0]|0;t=x<<24>>24<0;y=x&255;do if(((t?f[J+12>>2]|0:y)|0)==(d|0)){x=f[A>>2]|0;if(t)if(!(Pk(x,c,d)|0))break a;else break;if((b[c>>0]|0)==(x&255)<<24>>24){x=A;o=y;q=c;do{o=o+-1|0;x=x+1|0;if(!o)break a;q=q+1|0}while((b[x>>0]|0)==(b[q>>0]|0))}}while(0);J=f[J>>2]|0;if(!J){G=F;C=54;break}}}else{G=F;C=54}}else{G=0;C=54}while(0);if((C|0)==54){_h(g,a,E,i);C=a+12|0;L=$(((f[C>>2]|0)+1|0)>>>0);M=$(D>>>0);N=$(n[a+16>>2]);do if(B|$(N*M)>>0<3|(D+-1&D|0)!=0)&1;J=~~$(W($(L/N)))>>>0;Ph(a,F>>>0>>0?J:F);F=f[z>>2]|0;J=F+-1|0;if(!(J&F)){O=F;P=J&E;break}if(E>>>0>>0){O=F;P=E}else{O=F;P=(E>>>0)%(F>>>0)|0}}else{O=D;P=G}while(0);G=f[(f[a>>2]|0)+(P<<2)>>2]|0;if(!G){D=a+8|0;f[f[g>>2]>>2]=f[D>>2];f[D>>2]=f[g>>2];f[(f[a>>2]|0)+(P<<2)>>2]=D;D=f[g>>2]|0;P=f[D>>2]|0;if(!P)Q=g;else{E=f[P+4>>2]|0;P=O+-1|0;if(P&O)if(E>>>0>>0)R=E;else R=(E>>>0)%(O>>>0)|0;else R=E&P;f[(f[a>>2]|0)+(R<<2)>>2]=D;Q=g}}else{f[f[g>>2]>>2]=f[G>>2];f[G>>2]=f[g>>2];Q=g}f[C>>2]=(f[C>>2]|0)+1;f[Q>>2]=0}Q=f[i+12>>2]|0;if(Q|0){if((f[r>>2]|0)!=(Q|0))f[r>>2]=Q;br(Q)}if((b[v>>0]|0)<0)br(f[i>>2]|0);i=f[j>>2]|0;if(!i){u=e;return}if((f[k>>2]|0)!=(i|0))f[k>>2]=i;br(i);u=e;return}function bc(a,c,e){a=a|0;c=c|0;e=e|0;var g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=Oa,fa=Oa,ga=Oa,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0;g=u;u=u+48|0;i=g+12|0;j=g+32|0;k=g;l=i+16|0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;n[l>>2]=$(1.0);m=a+80|0;o=f[m>>2]|0;f[k>>2]=0;p=k+4|0;f[p>>2]=0;f[k+8>>2]=0;if(o){if(o>>>0>1073741823)mq(k);q=o<<2;r=dn(q)|0;f[k>>2]=r;s=r+(o<<2)|0;f[k+8>>2]=s;hj(r|0,0,q|0)|0;f[p>>2]=s;s=c+48|0;q=c+40|0;o=i+4|0;t=i+12|0;v=i+8|0;w=a+40|0;x=a+64|0;y=f[e>>2]|0;e=0;z=r;A=0;B=0;C=r;D=r;E=r;while(1){r=s;F=f[r>>2]|0;G=f[r+4>>2]|0;r=q;H=on(f[r>>2]|0,f[r+4>>2]|0,y+A|0,0)|0;r=Tn(H|0,I|0,F|0,G|0)|0;G=(f[f[c>>2]>>2]|0)+r|0;r=h[G>>0]|h[G+1>>0]<<8;d[j>>1]=r;G=(r^318)&65535;a:do if(e){F=e+-1|0;H=(F&e|0)==0;if(!H)if(e>>>0>G>>>0)J=G;else J=(G>>>0)%(e>>>0)|0;else J=F&G;K=f[i>>2]|0;L=f[K+(J<<2)>>2]|0;b:do if(L|0?(M=f[L>>2]|0,M|0):0){c:do if(H){N=M;while(1){O=f[N+4>>2]|0;P=(O|0)==(G|0);if(!(P|(O&F|0)==(J|0)))break b;if(P?(d[N+8>>1]|0)==r<<16>>16:0){Q=N;break c}N=f[N>>2]|0;if(!N)break b}}else{N=M;while(1){P=f[N+4>>2]|0;if((P|0)==(G|0)){if((d[N+8>>1]|0)==r<<16>>16){Q=N;break c}}else{if(P>>>0>>0)R=P;else R=(P>>>0)%(e>>>0)|0;if((R|0)!=(J|0))break b}N=f[N>>2]|0;if(!N)break b}}while(0);f[E+(A<<2)>>2]=f[Q+12>>2];S=z;T=B;U=D;V=C;X=E;break a}while(0);if(!H)if(e>>>0>G>>>0)Y=G;else Y=(G>>>0)%(e>>>0)|0;else Y=F&G;L=f[K+(Y<<2)>>2]|0;if(!L){Z=Y;_=e;aa=0;ba=40}else{if(H){M=L;while(1){M=f[M>>2]|0;if(!M){Z=Y;_=e;aa=0;ba=40;break a}N=f[M+4>>2]|0;if(!((N|0)==(G|0)|(N&F|0)==(Y|0))){Z=Y;_=e;aa=0;ba=40;break a}if((d[M+8>>1]|0)==r<<16>>16){ba=55;break a}}}else ca=L;while(1){ca=f[ca>>2]|0;if(!ca){Z=Y;_=e;aa=0;ba=40;break a}M=f[ca+4>>2]|0;if((M|0)!=(G|0)){if(M>>>0>>0)da=M;else da=(M>>>0)%(e>>>0)|0;if((da|0)!=(Y|0)){Z=Y;_=e;aa=0;ba=40;break a}}if((d[ca+8>>1]|0)==r<<16>>16){ba=55;break}}}}else{Z=0;_=0;aa=1;ba=40}while(0);if((ba|0)==40){ba=0;L=dn(16)|0;d[L+8>>1]=r;f[L+12>>2]=B;f[L+4>>2]=G;f[L>>2]=0;ea=$(((f[t>>2]|0)+1|0)>>>0);fa=$(_>>>0);ga=$(n[l>>2]);do if(aa|$(ga*fa)>>0<3|(_+-1&_|0)!=0)&1;F=~~$(W($(ea/ga)))>>>0;Fh(i,M>>>0>>0?F:M);M=f[o>>2]|0;F=M+-1|0;if(!(F&M)){ha=M;ia=F&G;break}if(M>>>0>G>>>0){ha=M;ia=G}else{ha=M;ia=(G>>>0)%(M>>>0)|0}}else{ha=_;ia=Z}while(0);G=(f[i>>2]|0)+(ia<<2)|0;r=f[G>>2]|0;if(!r){f[L>>2]=f[v>>2];f[v>>2]=L;f[G>>2]=v;G=f[L>>2]|0;if(G|0){M=f[G+4>>2]|0;G=ha+-1|0;if(G&ha)if(M>>>0>>0)ja=M;else ja=(M>>>0)%(ha>>>0)|0;else ja=M&G;ka=(f[i>>2]|0)+(ja<<2)|0;ba=53}}else{f[L>>2]=f[r>>2];ka=r;ba=53}if((ba|0)==53){ba=0;f[ka>>2]=L}f[t>>2]=(f[t>>2]|0)+1;ba=55}if((ba|0)==55){ba=0;r=w;G=f[r>>2]|0;M=on(G|0,f[r+4>>2]|0,B|0,0)|0;Rg((f[f[x>>2]>>2]|0)+M|0,j|0,G|0)|0;G=f[k>>2]|0;f[G+(A<<2)>>2]=B;S=G;T=B+1|0;U=G;V=G;X=G}G=A+1|0;la=f[m>>2]|0;if(G>>>0>=la>>>0)break;e=f[o>>2]|0;z=S;A=G;B=T;C=V;D=U;E=X}if((T|0)==(la|0))ma=V;else{V=a+84|0;if(!(b[V>>0]|0)){X=f[a+72>>2]|0;E=f[a+68>>2]|0;D=E;if((X|0)==(E|0))na=S;else{C=X-E>>2;E=0;do{X=D+(E<<2)|0;f[X>>2]=f[U+(f[X>>2]<<2)>>2];E=E+1|0}while(E>>>0>>0);na=S}}else{b[V>>0]=0;V=a+68|0;S=a+72|0;C=f[S>>2]|0;E=f[V>>2]|0;U=C-E>>2;D=E;E=C;if(la>>>0<=U>>>0)if(la>>>0>>0?(C=D+(la<<2)|0,(C|0)!=(E|0)):0){f[S>>2]=E+(~((E+-4-C|0)>>>2)<<2);oa=la}else oa=la;else{kh(V,la-U|0,1204);oa=f[m>>2]|0}U=f[k>>2]|0;if(!oa)na=U;else{k=f[a+68>>2]|0;a=0;do{f[k+(a<<2)>>2]=f[U+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);na=U}}f[m>>2]=T;ma=na}if(!ma)pa=T;else{na=f[p>>2]|0;if((na|0)!=(ma|0))f[p>>2]=na+(~((na+-4-ma|0)>>>2)<<2);br(ma);pa=T}}else pa=0;T=f[i+8>>2]|0;if(T|0){ma=T;do{T=ma;ma=f[ma>>2]|0;br(T)}while((ma|0)!=0)}ma=f[i>>2]|0;f[i>>2]=0;if(!ma){u=g;return pa|0}br(ma);u=g;return pa|0}function cc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=Oa,K=Oa,L=Oa,M=0,N=0,O=0,P=0;e=u;u=u+64|0;g=e+40|0;i=e+16|0;j=e;k=xd(a,c)|0;if(k|0){f[i>>2]=k;f[g>>2]=f[i>>2];Xe(a,g)|0}f[j>>2]=0;k=j+4|0;f[k>>2]=0;f[j+8>>2]=0;ri(j,4);l=f[j>>2]|0;m=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;b[l>>0]=m;b[l+1>>0]=m>>8;b[l+2>>0]=m>>16;b[l+3>>0]=m>>24;dj(i,c);c=i+12|0;f[c>>2]=0;m=i+16|0;f[m>>2]=0;f[i+20>>2]=0;l=f[k>>2]|0;d=f[j>>2]|0;o=l-d|0;if(!o){p=d;q=l;r=0}else{ri(c,o);p=f[j>>2]|0;q=f[k>>2]|0;r=f[c>>2]|0}Rg(r|0,p|0,q-p|0)|0;p=i+11|0;q=b[p>>0]|0;r=q<<24>>24<0;c=r?f[i>>2]|0:i;o=r?f[i+4>>2]|0:q&255;if(o>>>0>3){q=c;r=o;l=o;while(1){d=X(h[q>>0]|h[q+1>>0]<<8|h[q+2>>0]<<16|h[q+3>>0]<<24,1540483477)|0;r=(X(d>>>24^d,1540483477)|0)^(X(r,1540483477)|0);l=l+-4|0;if(l>>>0<=3)break;else q=q+4|0}q=o+-4|0;l=q&-4;s=q-l|0;t=c+(l+4)|0;v=r}else{s=o;t=c;v=o}switch(s|0){case 3:{w=h[t+2>>0]<<16^v;x=10;break}case 2:{w=v;x=10;break}case 1:{y=v;x=11;break}default:z=v}if((x|0)==10){y=h[t+1>>0]<<8^w;x=11}if((x|0)==11)z=X(y^h[t>>0],1540483477)|0;t=X(z>>>13^z,1540483477)|0;z=t>>>15^t;t=a+4|0;y=f[t>>2]|0;w=(y|0)==0;a:do if(!w){v=y+-1|0;s=(v&y|0)==0;if(!s)if(z>>>0>>0)A=z;else A=(z>>>0)%(y>>>0)|0;else A=z&v;r=f[(f[a>>2]|0)+(A<<2)>>2]|0;if((r|0)!=0?(l=f[r>>2]|0,(l|0)!=0):0){r=(o|0)==0;if(s){if(r){s=l;while(1){q=f[s+4>>2]|0;if(!((q|0)==(z|0)|(q&v|0)==(A|0))){B=A;x=52;break a}q=b[s+8+11>>0]|0;if(!((q<<24>>24<0?f[s+12>>2]|0:q&255)|0))break a;s=f[s>>2]|0;if(!s){B=A;x=52;break a}}}else C=l;while(1){s=f[C+4>>2]|0;if(!((s|0)==(z|0)|(s&v|0)==(A|0))){B=A;x=52;break a}s=C+8|0;q=b[s+11>>0]|0;d=q<<24>>24<0;D=q&255;do if(((d?f[C+12>>2]|0:D)|0)==(o|0)){q=f[s>>2]|0;if(d)if(!(Pk(q,c,o)|0))break a;else break;if((b[c>>0]|0)==(q&255)<<24>>24){q=s;E=D;F=c;do{E=E+-1|0;q=q+1|0;if(!E)break a;F=F+1|0}while((b[q>>0]|0)==(b[F>>0]|0))}}while(0);C=f[C>>2]|0;if(!C){B=A;x=52;break a}}}if(r){v=l;while(1){D=f[v+4>>2]|0;if((D|0)!=(z|0)){if(D>>>0>>0)G=D;else G=(D>>>0)%(y>>>0)|0;if((G|0)!=(A|0)){B=A;x=52;break a}}D=b[v+8+11>>0]|0;if(!((D<<24>>24<0?f[v+12>>2]|0:D&255)|0))break a;v=f[v>>2]|0;if(!v){B=A;x=52;break a}}}else H=l;while(1){v=f[H+4>>2]|0;if((v|0)!=(z|0)){if(v>>>0>>0)I=v;else I=(v>>>0)%(y>>>0)|0;if((I|0)!=(A|0)){B=A;x=52;break a}}v=H+8|0;r=b[v+11>>0]|0;D=r<<24>>24<0;s=r&255;do if(((D?f[H+12>>2]|0:s)|0)==(o|0)){r=f[v>>2]|0;if(D)if(!(Pk(r,c,o)|0))break a;else break;if((b[c>>0]|0)==(r&255)<<24>>24){r=v;d=s;F=c;do{d=d+-1|0;r=r+1|0;if(!d)break a;F=F+1|0}while((b[r>>0]|0)==(b[F>>0]|0))}}while(0);H=f[H>>2]|0;if(!H){B=A;x=52;break}}}else{B=A;x=52}}else{B=0;x=52}while(0);if((x|0)==52){_h(g,a,z,i);x=a+12|0;J=$(((f[x>>2]|0)+1|0)>>>0);K=$(y>>>0);L=$(n[a+16>>2]);do if(w|$(L*K)>>0<3|(y+-1&y|0)!=0)&1;H=~~$(W($(J/L)))>>>0;Ph(a,A>>>0>>0?H:A);A=f[t>>2]|0;H=A+-1|0;if(!(H&A)){M=A;N=H&z;break}if(z>>>0>>0){M=A;N=z}else{M=A;N=(z>>>0)%(A>>>0)|0}}else{M=y;N=B}while(0);B=f[(f[a>>2]|0)+(N<<2)>>2]|0;if(!B){y=a+8|0;f[f[g>>2]>>2]=f[y>>2];f[y>>2]=f[g>>2];f[(f[a>>2]|0)+(N<<2)>>2]=y;y=f[g>>2]|0;N=f[y>>2]|0;if(!N)O=g;else{z=f[N+4>>2]|0;N=M+-1|0;if(N&M)if(z>>>0>>0)P=z;else P=(z>>>0)%(M>>>0)|0;else P=z&N;f[(f[a>>2]|0)+(P<<2)>>2]=y;O=g}}else{f[f[g>>2]>>2]=f[B>>2];f[B>>2]=f[g>>2];O=g}f[x>>2]=(f[x>>2]|0)+1;f[O>>2]=0}O=f[i+12>>2]|0;if(O|0){if((f[m>>2]|0)!=(O|0))f[m>>2]=O;br(O)}if((b[p>>0]|0)<0)br(f[i>>2]|0);i=f[j>>2]|0;if(!i){u=e;return}if((f[k>>2]|0)!=(i|0))f[k>>2]=i;br(i);u=e;return}function dc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=Oa,da=Oa,ea=Oa,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0;e=u;u=u+48|0;g=e+12|0;h=e+32|0;i=e;j=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[j>>2]=$(1.0);k=a+80|0;l=f[k>>2]|0;f[i>>2]=0;m=i+4|0;f[m>>2]=0;f[i+8>>2]=0;if(l){if(l>>>0>1073741823)mq(i);o=l<<2;p=dn(o)|0;f[i>>2]=p;q=p+(l<<2)|0;f[i+8>>2]=q;hj(p|0,0,o|0)|0;f[m>>2]=q;q=c+48|0;o=c+40|0;l=g+4|0;r=g+12|0;s=g+8|0;t=a+40|0;v=a+64|0;w=f[d>>2]|0;d=0;x=p;y=0;z=0;A=p;B=p;C=p;while(1){p=q;D=f[p>>2]|0;E=f[p+4>>2]|0;p=o;F=on(f[p>>2]|0,f[p+4>>2]|0,w+y|0,0)|0;p=Tn(F|0,I|0,D|0,E|0)|0;E=b[(f[f[c>>2]>>2]|0)+p>>0]|0;b[h>>0]=E;p=E&255^318;a:do if(d){D=d+-1|0;F=(D&d|0)==0;if(!F)if(p>>>0>>0)G=p;else G=(p>>>0)%(d>>>0)|0;else G=D&p;H=f[g>>2]|0;J=f[H+(G<<2)>>2]|0;b:do if(J|0?(K=f[J>>2]|0,K|0):0){c:do if(F){L=K;while(1){M=f[L+4>>2]|0;N=(M|0)==(p|0);if(!(N|(M&D|0)==(G|0)))break b;if(N?(b[L+8>>0]|0)==E<<24>>24:0){O=L;break c}L=f[L>>2]|0;if(!L)break b}}else{L=K;while(1){N=f[L+4>>2]|0;if((N|0)==(p|0)){if((b[L+8>>0]|0)==E<<24>>24){O=L;break c}}else{if(N>>>0>>0)P=N;else P=(N>>>0)%(d>>>0)|0;if((P|0)!=(G|0))break b}L=f[L>>2]|0;if(!L)break b}}while(0);f[C+(y<<2)>>2]=f[O+12>>2];Q=x;R=z;S=B;T=A;U=C;break a}while(0);if(!F)if(p>>>0>>0)V=p;else V=(p>>>0)%(d>>>0)|0;else V=D&p;J=f[H+(V<<2)>>2]|0;if(!J){X=V;Y=d;Z=0;_=40}else{if(F){K=J;while(1){K=f[K>>2]|0;if(!K){X=V;Y=d;Z=0;_=40;break a}L=f[K+4>>2]|0;if(!((L|0)==(p|0)|(L&D|0)==(V|0))){X=V;Y=d;Z=0;_=40;break a}if((b[K+8>>0]|0)==E<<24>>24){_=55;break a}}}else aa=J;while(1){aa=f[aa>>2]|0;if(!aa){X=V;Y=d;Z=0;_=40;break a}K=f[aa+4>>2]|0;if((K|0)!=(p|0)){if(K>>>0>>0)ba=K;else ba=(K>>>0)%(d>>>0)|0;if((ba|0)!=(V|0)){X=V;Y=d;Z=0;_=40;break a}}if((b[aa+8>>0]|0)==E<<24>>24){_=55;break}}}}else{X=0;Y=0;Z=1;_=40}while(0);if((_|0)==40){_=0;J=dn(16)|0;b[J+8>>0]=E;f[J+12>>2]=z;f[J+4>>2]=p;f[J>>2]=0;ca=$(((f[r>>2]|0)+1|0)>>>0);da=$(Y>>>0);ea=$(n[j>>2]);do if(Z|$(ea*da)>>0<3|(Y+-1&Y|0)!=0)&1;D=~~$(W($(ca/ea)))>>>0;Mh(g,K>>>0>>0?D:K);K=f[l>>2]|0;D=K+-1|0;if(!(D&K)){fa=K;ga=D&p;break}if(p>>>0>>0){fa=K;ga=p}else{fa=K;ga=(p>>>0)%(K>>>0)|0}}else{fa=Y;ga=X}while(0);p=(f[g>>2]|0)+(ga<<2)|0;E=f[p>>2]|0;if(!E){f[J>>2]=f[s>>2];f[s>>2]=J;f[p>>2]=s;p=f[J>>2]|0;if(p|0){K=f[p+4>>2]|0;p=fa+-1|0;if(p&fa)if(K>>>0>>0)ha=K;else ha=(K>>>0)%(fa>>>0)|0;else ha=K&p;ia=(f[g>>2]|0)+(ha<<2)|0;_=53}}else{f[J>>2]=f[E>>2];ia=E;_=53}if((_|0)==53){_=0;f[ia>>2]=J}f[r>>2]=(f[r>>2]|0)+1;_=55}if((_|0)==55){_=0;E=t;p=f[E>>2]|0;K=on(p|0,f[E+4>>2]|0,z|0,0)|0;Rg((f[f[v>>2]>>2]|0)+K|0,h|0,p|0)|0;p=f[i>>2]|0;f[p+(y<<2)>>2]=z;Q=p;R=z+1|0;S=p;T=p;U=p}p=y+1|0;ja=f[k>>2]|0;if(p>>>0>=ja>>>0)break;d=f[l>>2]|0;x=Q;y=p;z=R;A=T;B=S;C=U}if((R|0)==(ja|0))ka=T;else{T=a+84|0;if(!(b[T>>0]|0)){U=f[a+72>>2]|0;C=f[a+68>>2]|0;B=C;if((U|0)==(C|0))la=Q;else{A=U-C>>2;C=0;do{U=B+(C<<2)|0;f[U>>2]=f[S+(f[U>>2]<<2)>>2];C=C+1|0}while(C>>>0>>0);la=Q}}else{b[T>>0]=0;T=a+68|0;Q=a+72|0;A=f[Q>>2]|0;C=f[T>>2]|0;S=A-C>>2;B=C;C=A;if(ja>>>0<=S>>>0)if(ja>>>0>>0?(A=B+(ja<<2)|0,(A|0)!=(C|0)):0){f[Q>>2]=C+(~((C+-4-A|0)>>>2)<<2);ma=ja}else ma=ja;else{kh(T,ja-S|0,1204);ma=f[k>>2]|0}S=f[i>>2]|0;if(!ma)la=S;else{i=f[a+68>>2]|0;a=0;do{f[i+(a<<2)>>2]=f[S+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);la=S}}f[k>>2]=R;ka=la}if(!ka)na=R;else{la=f[m>>2]|0;if((la|0)!=(ka|0))f[m>>2]=la+(~((la+-4-ka|0)>>>2)<<2);br(ka);na=R}}else na=0;R=f[g+8>>2]|0;if(R|0){ka=R;do{R=ka;ka=f[ka>>2]|0;br(R)}while((ka|0)!=0)}ka=f[g>>2]|0;f[g>>2]=0;if(!ka){u=e;return na|0}br(ka);u=e;return na|0}function ec(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=Oa,ea=Oa,fa=Oa,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0;e=u;u=u+48|0;g=e+16|0;i=e+12|0;j=e;k=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[k>>2]=$(1.0);l=a+80|0;m=f[l>>2]|0;f[j>>2]=0;o=j+4|0;f[o>>2]=0;f[j+8>>2]=0;if(m){if(m>>>0>1073741823)mq(j);p=m<<2;q=dn(p)|0;f[j>>2]=q;r=q+(m<<2)|0;f[j+8>>2]=r;hj(q|0,0,p|0)|0;f[o>>2]=r;r=c+48|0;p=c+40|0;m=g+4|0;s=g+12|0;t=g+8|0;v=a+40|0;w=a+64|0;x=f[d>>2]|0;d=0;y=q;z=0;A=0;B=q;C=q;D=q;while(1){q=r;E=f[q>>2]|0;F=f[q+4>>2]|0;q=p;G=on(f[q>>2]|0,f[q+4>>2]|0,x+z|0,0)|0;q=Tn(G|0,I|0,E|0,F|0)|0;F=(f[f[c>>2]>>2]|0)+q|0;q=h[F>>0]|h[F+1>>0]<<8|h[F+2>>0]<<16|h[F+3>>0]<<24;f[i>>2]=q;F=q^318;a:do if(d){E=d+-1|0;G=(E&d|0)==0;if(!G)if(F>>>0>>0)H=F;else H=(F>>>0)%(d>>>0)|0;else H=E&F;J=f[g>>2]|0;K=f[J+(H<<2)>>2]|0;b:do if(K|0?(L=f[K>>2]|0,L|0):0){c:do if(G){M=L;while(1){N=f[M+4>>2]|0;O=(N|0)==(F|0);if(!(O|(N&E|0)==(H|0)))break b;if(O?(f[M+8>>2]|0)==(q|0):0){P=M;break c}M=f[M>>2]|0;if(!M)break b}}else{M=L;while(1){O=f[M+4>>2]|0;if((O|0)==(F|0)){if((f[M+8>>2]|0)==(q|0)){P=M;break c}}else{if(O>>>0>>0)Q=O;else Q=(O>>>0)%(d>>>0)|0;if((Q|0)!=(H|0))break b}M=f[M>>2]|0;if(!M)break b}}while(0);f[D+(z<<2)>>2]=f[P+12>>2];R=y;S=A;T=C;U=B;V=D;break a}while(0);if(!G)if(F>>>0>>0)X=F;else X=(F>>>0)%(d>>>0)|0;else X=E&F;K=f[J+(X<<2)>>2]|0;if(!K){Y=X;Z=d;_=0;aa=40}else{if(G){L=K;while(1){L=f[L>>2]|0;if(!L){Y=X;Z=d;_=0;aa=40;break a}M=f[L+4>>2]|0;if(!((M|0)==(F|0)|(M&E|0)==(X|0))){Y=X;Z=d;_=0;aa=40;break a}if((f[L+8>>2]|0)==(q|0)){aa=55;break a}}}else ba=K;while(1){ba=f[ba>>2]|0;if(!ba){Y=X;Z=d;_=0;aa=40;break a}L=f[ba+4>>2]|0;if((L|0)!=(F|0)){if(L>>>0>>0)ca=L;else ca=(L>>>0)%(d>>>0)|0;if((ca|0)!=(X|0)){Y=X;Z=d;_=0;aa=40;break a}}if((f[ba+8>>2]|0)==(q|0)){aa=55;break}}}}else{Y=0;Z=0;_=1;aa=40}while(0);if((aa|0)==40){aa=0;K=dn(16)|0;f[K+8>>2]=q;f[K+12>>2]=A;f[K+4>>2]=F;f[K>>2]=0;da=$(((f[s>>2]|0)+1|0)>>>0);ea=$(Z>>>0);fa=$(n[k>>2]);do if(_|$(fa*ea)>>0<3|(Z+-1&Z|0)!=0)&1;E=~~$(W($(da/fa)))>>>0;ti(g,L>>>0>>0?E:L);L=f[m>>2]|0;E=L+-1|0;if(!(E&L)){ga=L;ha=E&F;break}if(F>>>0>>0){ga=L;ha=F}else{ga=L;ha=(F>>>0)%(L>>>0)|0}}else{ga=Z;ha=Y}while(0);F=(f[g>>2]|0)+(ha<<2)|0;q=f[F>>2]|0;if(!q){f[K>>2]=f[t>>2];f[t>>2]=K;f[F>>2]=t;F=f[K>>2]|0;if(F|0){L=f[F+4>>2]|0;F=ga+-1|0;if(F&ga)if(L>>>0>>0)ia=L;else ia=(L>>>0)%(ga>>>0)|0;else ia=L&F;ja=(f[g>>2]|0)+(ia<<2)|0;aa=53}}else{f[K>>2]=f[q>>2];ja=q;aa=53}if((aa|0)==53){aa=0;f[ja>>2]=K}f[s>>2]=(f[s>>2]|0)+1;aa=55}if((aa|0)==55){aa=0;q=v;F=f[q>>2]|0;L=on(F|0,f[q+4>>2]|0,A|0,0)|0;Rg((f[f[w>>2]>>2]|0)+L|0,i|0,F|0)|0;F=f[j>>2]|0;f[F+(z<<2)>>2]=A;R=F;S=A+1|0;T=F;U=F;V=F}F=z+1|0;ka=f[l>>2]|0;if(F>>>0>=ka>>>0)break;d=f[m>>2]|0;y=R;z=F;A=S;B=U;C=T;D=V}if((S|0)==(ka|0))la=U;else{U=a+84|0;if(!(b[U>>0]|0)){V=f[a+72>>2]|0;D=f[a+68>>2]|0;C=D;if((V|0)==(D|0))ma=R;else{B=V-D>>2;D=0;do{V=C+(D<<2)|0;f[V>>2]=f[T+(f[V>>2]<<2)>>2];D=D+1|0}while(D>>>0>>0);ma=R}}else{b[U>>0]=0;U=a+68|0;R=a+72|0;B=f[R>>2]|0;D=f[U>>2]|0;T=B-D>>2;C=D;D=B;if(ka>>>0<=T>>>0)if(ka>>>0>>0?(B=C+(ka<<2)|0,(B|0)!=(D|0)):0){f[R>>2]=D+(~((D+-4-B|0)>>>2)<<2);na=ka}else na=ka;else{kh(U,ka-T|0,1204);na=f[l>>2]|0}T=f[j>>2]|0;if(!na)ma=T;else{j=f[a+68>>2]|0;a=0;do{f[j+(a<<2)>>2]=f[T+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);ma=T}}f[l>>2]=S;la=ma}if(!la)oa=S;else{ma=f[o>>2]|0;if((ma|0)!=(la|0))f[o>>2]=ma+(~((ma+-4-la|0)>>>2)<<2);br(la);oa=S}}else oa=0;S=f[g+8>>2]|0;if(S|0){la=S;do{S=la;la=f[la>>2]|0;br(S)}while((la|0)!=0)}la=f[g>>2]|0;f[g>>2]=0;if(!la){u=e;return oa|0}br(la);u=e;return oa|0}function fc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0;e=u;u=u+96|0;g=e+92|0;h=e+88|0;i=e+72|0;j=e+48|0;k=e+24|0;l=e;m=a+16|0;n=f[m>>2]|0;o=f[c>>2]|0;f[i>>2]=n;f[i+4>>2]=o;c=i+8|0;f[c>>2]=o;b[i+12>>0]=1;p=f[(f[n+28>>2]|0)+(o<<2)>>2]|0;n=a+20|0;q=f[n>>2]|0;r=f[q>>2]|0;if((f[q+4>>2]|0)-r>>2>>>0<=p>>>0)mq(q);q=a+8|0;s=f[(f[q>>2]|0)+(f[r+(p<<2)>>2]<<2)>>2]|0;p=a+4|0;r=f[p>>2]|0;if(!(b[r+84>>0]|0))t=f[(f[r+68>>2]|0)+(s<<2)>>2]|0;else t=s;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;f[j+12>>2]=0;f[j+16>>2]=0;f[j+20>>2]=0;f[h>>2]=t;t=b[r+24>>0]|0;f[g>>2]=f[h>>2];ub(r,g,t,j)|0;t=a+28|0;a=(f[t>>2]|0)==0;a:do if((o|0)!=-1){r=k+8|0;s=j+8|0;v=k+16|0;w=j+16|0;x=l+8|0;y=l+16|0;z=o;A=o;B=0;C=0;D=0;E=0;F=0;G=0;H=a;J=o;while(1){do if(H){K=J+1|0;if((J|0)!=-1){L=((K>>>0)%3|0|0)==0?J+-2|0:K;if((z|0)!=-1)if(!((z>>>0)%3|0)){M=z;N=z+2|0;O=L;P=z;break}else{M=z;N=z+-1|0;O=L;P=z;break}else{M=-1;N=-1;O=L;P=-1}}else{M=z;N=-1;O=-1;P=-1}}else{L=A+1|0;K=((L>>>0)%3|0|0)==0?A+-2|0:L;if(!((A>>>0)%3|0)){M=z;N=A+2|0;O=K;P=J;break}else{M=z;N=A+-1|0;O=K;P=J;break}}while(0);K=f[(f[(f[m>>2]|0)+28>>2]|0)+(O<<2)>>2]|0;Q=f[n>>2]|0;L=f[Q>>2]|0;if((f[Q+4>>2]|0)-L>>2>>>0<=K>>>0){R=17;break}S=f[(f[q>>2]|0)+(f[L+(K<<2)>>2]<<2)>>2]|0;K=f[p>>2]|0;if(!(b[K+84>>0]|0))T=f[(f[K+68>>2]|0)+(S<<2)>>2]|0;else T=S;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;f[k+16>>2]=0;f[k+20>>2]=0;f[h>>2]=T;S=b[K+24>>0]|0;f[g>>2]=f[h>>2];ub(K,g,S,k)|0;S=f[(f[(f[m>>2]|0)+28>>2]|0)+(N<<2)>>2]|0;U=f[n>>2]|0;K=f[U>>2]|0;if((f[U+4>>2]|0)-K>>2>>>0<=S>>>0){R=21;break}L=f[(f[q>>2]|0)+(f[K+(S<<2)>>2]<<2)>>2]|0;S=f[p>>2]|0;if(!(b[S+84>>0]|0))V=f[(f[S+68>>2]|0)+(L<<2)>>2]|0;else V=L;f[l>>2]=0;f[l+4>>2]=0;f[l+8>>2]=0;f[l+12>>2]=0;f[l+16>>2]=0;f[l+20>>2]=0;f[h>>2]=V;L=b[S+24>>0]|0;f[g>>2]=f[h>>2];ub(S,g,L,l)|0;L=k;S=j;K=f[S>>2]|0;W=f[S+4>>2]|0;S=Vn(f[L>>2]|0,f[L+4>>2]|0,K|0,W|0)|0;L=I;X=r;Y=s;Z=f[Y>>2]|0;_=f[Y+4>>2]|0;Y=Vn(f[X>>2]|0,f[X+4>>2]|0,Z|0,_|0)|0;X=I;$=v;aa=w;ba=f[aa>>2]|0;ca=f[aa+4>>2]|0;aa=Vn(f[$>>2]|0,f[$+4>>2]|0,ba|0,ca|0)|0;$=I;da=l;ea=Vn(f[da>>2]|0,f[da+4>>2]|0,K|0,W|0)|0;W=I;K=x;da=Vn(f[K>>2]|0,f[K+4>>2]|0,Z|0,_|0)|0;_=I;Z=y;K=Vn(f[Z>>2]|0,f[Z+4>>2]|0,ba|0,ca|0)|0;ca=I;ba=on(K|0,ca|0,Y|0,X|0)|0;Z=I;fa=on(da|0,_|0,aa|0,$|0)|0;ga=I;ha=on(ea|0,W|0,aa|0,$|0)|0;$=I;aa=on(K|0,ca|0,S|0,L|0)|0;ca=I;K=on(da|0,_|0,S|0,L|0)|0;L=I;S=on(ea|0,W|0,Y|0,X|0)|0;X=I;Y=Vn(B|0,C|0,fa|0,ga|0)|0;ga=Tn(Y|0,I|0,ba|0,Z|0)|0;Z=I;ba=Tn(ha|0,$|0,D|0,E|0)|0;$=Vn(ba|0,I|0,aa|0,ca|0)|0;ca=I;aa=Vn(F|0,G|0,S|0,X|0)|0;X=Tn(aa|0,I|0,K|0,L|0)|0;L=I;xg(i);A=f[c>>2]|0;K=(f[t>>2]|0)==0;if((A|0)==-1){ia=K;ja=Z;ka=ga;la=ca;ma=$;na=L;oa=X;break a}else{z=M;B=ga;C=Z;D=$;E=ca;F=X;G=L;H=K;J=P}}if((R|0)==17)mq(Q);else if((R|0)==21)mq(U)}else{ia=a;ja=0;ka=0;la=0;ma=0;na=0;oa=0}while(0);a=(ja|0)>-1|(ja|0)==-1&ka>>>0>4294967295;U=Vn(0,0,ka|0,ja|0)|0;R=a?ja:I;Q=(la|0)>-1|(la|0)==-1&ma>>>0>4294967295;P=Vn(0,0,ma|0,la|0)|0;M=Q?la:I;t=(na|0)>-1|(na|0)==-1&oa>>>0>4294967295;c=Vn(0,0,oa|0,na|0)|0;i=Tn((Q?ma:P)|0,M|0,(t?oa:c)|0,(t?na:I)|0)|0;t=Tn(i|0,I|0,(a?ka:U)|0,R|0)|0;R=I;if(ia){if((t|0)<=536870912){pa=ka;qa=ma;ra=oa;f[d>>2]=pa;sa=d+4|0;f[sa>>2]=qa;ta=d+8|0;f[ta>>2]=ra;u=e;return}ia=Wn(t|0,R|0,29)|0;U=ia&7;ia=zk(ka|0,ja|0,U|0,0)|0;a=zk(ma|0,la|0,U|0,0)|0;i=zk(oa|0,na|0,U|0,0)|0;pa=ia;qa=a;ra=i;f[d>>2]=pa;sa=d+4|0;f[sa>>2]=qa;ta=d+8|0;f[ta>>2]=ra;u=e;return}else{if(!((R|0)>0|(R|0)==0&t>>>0>536870912)){pa=ka;qa=ma;ra=oa;f[d>>2]=pa;sa=d+4|0;f[sa>>2]=qa;ta=d+8|0;f[ta>>2]=ra;u=e;return}i=Wn(t|0,R|0,29)|0;R=I;t=zk(ka|0,ja|0,i|0,R|0)|0;ja=zk(ma|0,la|0,i|0,R|0)|0;la=zk(oa|0,na|0,i|0,R|0)|0;pa=t;qa=ja;ra=la;f[d>>2]=pa;sa=d+4|0;f[sa>>2]=qa;ta=d+8|0;f[ta>>2]=ra;u=e;return}}function gc(a,c,e){a=a|0;c=c|0;e=e|0;var g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=Oa,V=Oa,X=Oa,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0;g=u;u=u+48|0;i=g+28|0;j=g+8|0;k=g;l=g+16|0;m=i+16|0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;n[m>>2]=$(1.0);o=a+80|0;p=f[o>>2]|0;f[l>>2]=0;q=l+4|0;f[q>>2]=0;f[l+8>>2]=0;if(p){if(p>>>0>1073741823)mq(l);r=p<<2;s=dn(r)|0;f[l>>2]=s;t=s+(p<<2)|0;f[l+8>>2]=t;hj(s|0,0,r|0)|0;f[q>>2]=t;t=f[e>>2]|0;e=c+48|0;r=c+40|0;s=i+4|0;p=i+12|0;v=i+8|0;w=a+40|0;x=a+64|0;y=0;z=0;while(1){A=e;B=f[A>>2]|0;C=f[A+4>>2]|0;A=r;D=on(f[A>>2]|0,f[A+4>>2]|0,t+y|0,0)|0;A=Tn(D|0,I|0,B|0,C|0)|0;C=(f[f[c>>2]>>2]|0)+A|0;A=C;B=h[A>>0]|h[A+1>>0]<<8|h[A+2>>0]<<16|h[A+3>>0]<<24;A=C+4|0;C=h[A>>0]|h[A+1>>0]<<8|h[A+2>>0]<<16|h[A+3>>0]<<24;A=j;f[A>>2]=B;f[A+4>>2]=C;A=k;f[A>>2]=B;f[A+4>>2]=C;C=kf(i,k)|0;if(!C){A=k;B=f[A>>2]|0;D=f[A+4>>2]|0;A=B&65535;E=Wn(B|0,D|0,16)|0;F=E&65535;G=D&65535;H=Wn(B|0,D|0,48)|0;J=H&65535;K=((((A^318)&65535)+239^E&65535)+239^D&65535)+239^H&65535;H=f[s>>2]|0;E=(H|0)==0;a:do if(!E){L=H+-1|0;M=(L&H|0)==0;if(!M)if(K>>>0>>0)N=K;else N=(K>>>0)%(H>>>0)|0;else N=K&L;O=f[(f[i>>2]|0)+(N<<2)>>2]|0;if((O|0)!=0?(P=f[O>>2]|0,(P|0)!=0):0){if(M){M=P;while(1){O=f[M+4>>2]|0;if(!((O|0)==(K|0)|(O&L|0)==(N|0))){Q=N;R=31;break a}O=M+8|0;if((((d[O>>1]|0)==A<<16>>16?(d[O+2>>1]|0)==F<<16>>16:0)?(d[M+12>>1]|0)==G<<16>>16:0)?(d[O+6>>1]|0)==J<<16>>16:0)break a;M=f[M>>2]|0;if(!M){Q=N;R=31;break a}}}else S=P;while(1){M=f[S+4>>2]|0;if((M|0)!=(K|0)){if(M>>>0>>0)T=M;else T=(M>>>0)%(H>>>0)|0;if((T|0)!=(N|0)){Q=N;R=31;break a}}M=S+8|0;if((((d[M>>1]|0)==A<<16>>16?(d[M+2>>1]|0)==F<<16>>16:0)?(d[S+12>>1]|0)==G<<16>>16:0)?(d[M+6>>1]|0)==J<<16>>16:0)break a;S=f[S>>2]|0;if(!S){Q=N;R=31;break}}}else{Q=N;R=31}}else{Q=0;R=31}while(0);if((R|0)==31){R=0;J=dn(20)|0;G=J+8|0;F=G;d[F>>1]=B;d[F+2>>1]=B>>>16;F=G+4|0;d[F>>1]=D;d[F+2>>1]=D>>>16;f[J+16>>2]=z;f[J+4>>2]=K;f[J>>2]=0;U=$(((f[p>>2]|0)+1|0)>>>0);V=$(H>>>0);X=$(n[m>>2]);do if(E|$(X*V)>>0<3|(H+-1&H|0)!=0)&1;G=~~$(W($(U/X)))>>>0;Ch(i,F>>>0>>0?G:F);F=f[s>>2]|0;G=F+-1|0;if(!(G&F)){Y=F;Z=G&K;break}if(K>>>0>>0){Y=F;Z=K}else{Y=F;Z=(K>>>0)%(F>>>0)|0}}else{Y=H;Z=Q}while(0);H=(f[i>>2]|0)+(Z<<2)|0;K=f[H>>2]|0;if(!K){f[J>>2]=f[v>>2];f[v>>2]=J;f[H>>2]=v;H=f[J>>2]|0;if(H|0){E=f[H+4>>2]|0;H=Y+-1|0;if(H&Y)if(E>>>0>>0)_=E;else _=(E>>>0)%(Y>>>0)|0;else _=E&H;aa=(f[i>>2]|0)+(_<<2)|0;R=44}}else{f[J>>2]=f[K>>2];aa=K;R=44}if((R|0)==44){R=0;f[aa>>2]=J}f[p>>2]=(f[p>>2]|0)+1}K=w;H=f[K>>2]|0;E=on(H|0,f[K+4>>2]|0,z|0,0)|0;Rg((f[f[x>>2]>>2]|0)+E|0,j|0,H|0)|0;H=f[l>>2]|0;f[H+(y<<2)>>2]=z;ba=z+1|0;ca=H}else{H=f[l>>2]|0;f[H+(y<<2)>>2]=f[C+16>>2];ba=z;ca=H}y=y+1|0;da=f[o>>2]|0;if(y>>>0>=da>>>0)break;else z=ba}if((ba|0)==(da|0))ea=ca;else{z=a+84|0;if(!(b[z>>0]|0)){y=f[a+72>>2]|0;j=f[a+68>>2]|0;x=j;if((y|0)==(j|0))fa=ca;else{w=y-j>>2;j=0;do{y=x+(j<<2)|0;f[y>>2]=f[ca+(f[y>>2]<<2)>>2];j=j+1|0}while(j>>>0>>0);fa=ca}}else{b[z>>0]=0;z=a+68|0;ca=a+72|0;w=f[ca>>2]|0;j=f[z>>2]|0;x=w-j>>2;y=j;j=w;if(da>>>0<=x>>>0)if(da>>>0>>0?(w=y+(da<<2)|0,(w|0)!=(j|0)):0){f[ca>>2]=j+(~((j+-4-w|0)>>>2)<<2);ga=da}else ga=da;else{kh(z,da-x|0,1204);ga=f[o>>2]|0}x=f[l>>2]|0;if(!ga)fa=x;else{l=f[a+68>>2]|0;a=0;do{f[l+(a<<2)>>2]=f[x+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);fa=x}}f[o>>2]=ba;ea=fa}if(!ea)ha=ba;else{fa=f[q>>2]|0;if((fa|0)!=(ea|0))f[q>>2]=fa+(~((fa+-4-ea|0)>>>2)<<2);br(ea);ha=ba}}else ha=0;ba=f[i+8>>2]|0;if(ba|0){ea=ba;do{ba=ea;ea=f[ea>>2]|0;br(ba)}while((ea|0)!=0)}ea=f[i>>2]|0;f[i>>2]=0;if(!ea){u=g;return ha|0}br(ea);u=g;return ha|0}function hc(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0;c=u;u=u+16|0;d=c+8|0;e=c;g=c+4|0;h=a+16|0;i=f[h>>2]|0;j=a+20|0;k=f[j>>2]|0;if((k|0)==(i|0))l=i;else{m=k+(~((k+-4-i|0)>>>2)<<2)|0;f[j>>2]=m;l=m}m=a+24|0;if((l|0)==(f[m>>2]|0)){Ci(h,b);n=f[h>>2]|0;o=f[j>>2]|0}else{f[l>>2]=f[b>>2];k=l+4|0;f[j>>2]=k;n=i;o=k}k=f[a+8>>2]|0;i=(f[k+100>>2]|0)-(f[k+96>>2]|0)|0;k=(i|0)/12|0;if((n|0)==(o|0)){u=c;return 1}n=a+28|0;l=(i|0)>0;i=a+164|0;p=a+12|0;q=a+76|0;r=a+80|0;s=a+72|0;t=a+152|0;v=a+84|0;w=a+272|0;x=a+276|0;y=a+268|0;z=a+168|0;A=a+140|0;B=a+120|0;C=o;do{o=f[C+-4>>2]|0;f[b>>2]=o;a:do if((o|0)!=-1?(D=(o>>>0)/3|0,E=f[n>>2]|0,(f[E+(D>>>5<<2)>>2]&1<<(D&31)|0)==0):0){if(l){D=0;F=E;b:while(1){E=D+1|0;f[i>>2]=(f[i>>2]|0)+1;G=f[b>>2]|0;H=(G|0)==-1?-1:(G>>>0)/3|0;G=F+(H>>>5<<2)|0;f[G>>2]=1<<(H&31)|f[G>>2];G=f[q>>2]|0;if((G|0)==(f[r>>2]|0))Ci(s,b);else{f[G>>2]=f[b>>2];f[q>>2]=G+4}G=f[b>>2]|0;if((G|0)==-1)I=-1;else I=f[(f[f[p>>2]>>2]|0)+(G<<2)>>2]|0;J=(f[(f[t>>2]|0)+(I<<2)>>2]|0)!=-1;K=(f[v>>2]|0)+(I>>>5<<2)|0;L=1<<(I&31);M=f[K>>2]|0;do if(!(M&L)){f[K>>2]=M|L;if(J){N=f[b>>2]|0;O=30;break}f[d>>2]=0;P=f[w>>2]|0;if((P|0)==(f[x>>2]|0))Ci(y,d);else{f[P>>2]=0;f[w>>2]=P+4}P=f[b>>2]|0;Q=P+1|0;if((P|0)!=-1?(R=((Q>>>0)%3|0|0)==0?P+-2|0:Q,(R|0)!=-1):0)S=f[(f[(f[p>>2]|0)+12>>2]|0)+(R<<2)>>2]|0;else S=-1;f[b>>2]=S}else{N=G;O=30}while(0);if((O|0)==30){O=0;G=N+1|0;if((N|0)==-1){O=35;break}L=((G>>>0)%3|0|0)==0?N+-2|0:G;if((L|0)==-1)T=-1;else T=f[(f[(f[p>>2]|0)+12>>2]|0)+(L<<2)>>2]|0;f[e>>2]=T;L=(((N>>>0)%3|0|0)==0?2:-1)+N|0;if((L|0)==-1)U=-1;else U=f[(f[(f[p>>2]|0)+12>>2]|0)+(L<<2)>>2]|0;L=(T|0)==-1;M=L?-1:(T>>>0)/3|0;V=(U|0)==-1;W=V?-1:(U>>>0)/3|0;K=((G>>>0)%3|0|0)==0?N+-2|0:G;if(((K|0)!=-1?(G=f[(f[p>>2]|0)+12>>2]|0,R=f[G+(K<<2)>>2]|0,(R|0)!=-1):0)?(K=(R>>>0)/3|0,R=f[n>>2]|0,(f[R+(K>>>5<<2)>>2]&1<<(K&31)|0)==0):0){K=(((N>>>0)%3|0|0)==0?2:-1)+N|0;do if((K|0)!=-1){Q=f[G+(K<<2)>>2]|0;if((Q|0)==-1)break;P=(Q>>>0)/3|0;if(!(f[R+(P>>>5<<2)>>2]&1<<(P&31))){O=63;break b}}while(0);if(!V)jf(a,f[i>>2]|0,H,0,W);f[d>>2]=3;R=f[w>>2]|0;if((R|0)==(f[x>>2]|0))Ci(y,d);else{f[R>>2]=3;f[w>>2]=R+4}X=f[e>>2]|0}else{if(!L){jf(a,f[i>>2]|0,H,1,M);R=f[b>>2]|0;if((R|0)==-1){O=44;break}else Y=R}else Y=N;R=(((Y>>>0)%3|0|0)==0?2:-1)+Y|0;if((R|0)==-1){O=44;break}K=f[(f[(f[p>>2]|0)+12>>2]|0)+(R<<2)>>2]|0;if((K|0)==-1){O=44;break}R=(K>>>0)/3|0;if(f[(f[n>>2]|0)+(R>>>5<<2)>>2]&1<<(R&31)|0){O=44;break}f[d>>2]=5;R=f[w>>2]|0;if((R|0)==(f[x>>2]|0))Ci(y,d);else{f[R>>2]=5;f[w>>2]=R+4}X=U}f[b>>2]=X}if((E|0)>=(k|0))break a;D=E;F=f[n>>2]|0}do if((O|0)==35){O=0;f[e>>2]=-1;O=46}else if((O|0)==44){O=0;if(V)O=46;else{jf(a,f[i>>2]|0,H,0,W);O=46}}else if((O|0)==63){O=0;f[d>>2]=1;F=f[w>>2]|0;if((F|0)==(f[x>>2]|0))Ci(y,d);else{f[F>>2]=1;f[w>>2]=F+4}f[z>>2]=(f[z>>2]|0)+1;if(J?(F=f[(f[t>>2]|0)+(I<<2)>>2]|0,(1<<(F&31)&f[(f[A>>2]|0)+(F>>>5<<2)>>2]|0)==0):0){f[g>>2]=f[b>>2];f[d>>2]=f[g>>2];Ce(a,d,0)|0}F=f[i>>2]|0;f[d>>2]=H;D=Sd(B,d)|0;f[D>>2]=F;F=f[j>>2]|0;f[F+-4>>2]=U;if((F|0)==(f[m>>2]|0)){Ci(h,e);break}else{f[F>>2]=f[e>>2];f[j>>2]=F+4;break}}while(0);if((O|0)==46){O=0;f[d>>2]=7;F=f[w>>2]|0;if((F|0)==(f[x>>2]|0))Ci(y,d);else{f[F>>2]=7;f[w>>2]=F+4}f[j>>2]=(f[j>>2]|0)+-4}}}else O=11;while(0);if((O|0)==11){O=0;f[j>>2]=C+-4}C=f[j>>2]|0}while((f[h>>2]|0)!=(C|0));u=c;return 1}function ic(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=Oa,V=Oa,X=Oa,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0;e=u;u=u+48|0;g=e+20|0;i=e+16|0;j=e+12|0;k=e;l=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[l>>2]=$(1.0);m=a+80|0;o=f[m>>2]|0;f[k>>2]=0;p=k+4|0;f[p>>2]=0;f[k+8>>2]=0;if(o){if(o>>>0>1073741823)mq(k);q=o<<2;r=dn(q)|0;f[k>>2]=r;s=r+(o<<2)|0;f[k+8>>2]=s;hj(r|0,0,q|0)|0;f[p>>2]=s;s=f[d>>2]|0;d=c+48|0;q=c+40|0;r=g+4|0;o=g+12|0;t=g+8|0;v=a+40|0;w=a+64|0;x=0;y=0;while(1){z=d;A=f[z>>2]|0;B=f[z+4>>2]|0;z=q;C=on(f[z>>2]|0,f[z+4>>2]|0,s+x|0,0)|0;z=Tn(C|0,I|0,A|0,B|0)|0;B=(f[f[c>>2]>>2]|0)+z|0;z=h[B>>0]|h[B+1>>0]<<8|h[B+2>>0]<<16|h[B+3>>0]<<24;f[i>>2]=z;f[j>>2]=z;z=pf(g,j)|0;if(!z){B=f[j>>2]|0;A=B&255;C=B>>>8;D=C&255;E=B>>>16;F=E&255;G=B>>>24;H=G&255;J=C&255;C=E&255;E=(((B&255^318)+239^J)+239^C)+239^G;G=f[r>>2]|0;K=(G|0)==0;a:do if(!K){L=G+-1|0;M=(L&G|0)==0;if(!M)if(E>>>0>>0)N=E;else N=(E>>>0)%(G>>>0)|0;else N=E&L;O=f[(f[g>>2]|0)+(N<<2)>>2]|0;if((O|0)!=0?(P=f[O>>2]|0,(P|0)!=0):0){if(M){M=P;while(1){O=f[M+4>>2]|0;if(!((O|0)==(E|0)|(O&L|0)==(N|0))){Q=N;R=31;break a}O=M+8|0;if((((b[O>>0]|0)==A<<24>>24?(b[O+1>>0]|0)==D<<24>>24:0)?(b[O+2>>0]|0)==F<<24>>24:0)?(b[O+3>>0]|0)==H<<24>>24:0)break a;M=f[M>>2]|0;if(!M){Q=N;R=31;break a}}}else S=P;while(1){M=f[S+4>>2]|0;if((M|0)!=(E|0)){if(M>>>0>>0)T=M;else T=(M>>>0)%(G>>>0)|0;if((T|0)!=(N|0)){Q=N;R=31;break a}}M=S+8|0;if((((b[M>>0]|0)==A<<24>>24?(b[M+1>>0]|0)==D<<24>>24:0)?(b[M+2>>0]|0)==F<<24>>24:0)?(b[M+3>>0]|0)==H<<24>>24:0)break a;S=f[S>>2]|0;if(!S){Q=N;R=31;break}}}else{Q=N;R=31}}else{Q=0;R=31}while(0);if((R|0)==31){R=0;H=dn(16)|0;F=H+8|0;D=B&-16776961|C<<16|J<<8;b[F>>0]=D;b[F+1>>0]=D>>8;b[F+2>>0]=D>>16;b[F+3>>0]=D>>24;f[H+12>>2]=y;f[H+4>>2]=E;f[H>>2]=0;U=$(((f[o>>2]|0)+1|0)>>>0);V=$(G>>>0);X=$(n[l>>2]);do if(K|$(X*V)>>0<3|(G+-1&G|0)!=0)&1;F=~~$(W($(U/X)))>>>0;Jh(g,D>>>0>>0?F:D);D=f[r>>2]|0;F=D+-1|0;if(!(F&D)){Y=D;Z=F&E;break}if(E>>>0>>0){Y=D;Z=E}else{Y=D;Z=(E>>>0)%(D>>>0)|0}}else{Y=G;Z=Q}while(0);G=(f[g>>2]|0)+(Z<<2)|0;E=f[G>>2]|0;if(!E){f[H>>2]=f[t>>2];f[t>>2]=H;f[G>>2]=t;G=f[H>>2]|0;if(G|0){K=f[G+4>>2]|0;G=Y+-1|0;if(G&Y)if(K>>>0>>0)_=K;else _=(K>>>0)%(Y>>>0)|0;else _=K&G;aa=(f[g>>2]|0)+(_<<2)|0;R=44}}else{f[H>>2]=f[E>>2];aa=E;R=44}if((R|0)==44){R=0;f[aa>>2]=H}f[o>>2]=(f[o>>2]|0)+1}E=v;G=f[E>>2]|0;K=on(G|0,f[E+4>>2]|0,y|0,0)|0;Rg((f[f[w>>2]>>2]|0)+K|0,i|0,G|0)|0;G=f[k>>2]|0;f[G+(x<<2)>>2]=y;ba=y+1|0;ca=G}else{G=f[k>>2]|0;f[G+(x<<2)>>2]=f[z+12>>2];ba=y;ca=G}x=x+1|0;da=f[m>>2]|0;if(x>>>0>=da>>>0)break;else y=ba}if((ba|0)==(da|0))ea=ca;else{y=a+84|0;if(!(b[y>>0]|0)){x=f[a+72>>2]|0;i=f[a+68>>2]|0;w=i;if((x|0)==(i|0))fa=ca;else{v=x-i>>2;i=0;do{x=w+(i<<2)|0;f[x>>2]=f[ca+(f[x>>2]<<2)>>2];i=i+1|0}while(i>>>0>>0);fa=ca}}else{b[y>>0]=0;y=a+68|0;ca=a+72|0;v=f[ca>>2]|0;i=f[y>>2]|0;w=v-i>>2;x=i;i=v;if(da>>>0<=w>>>0)if(da>>>0>>0?(v=x+(da<<2)|0,(v|0)!=(i|0)):0){f[ca>>2]=i+(~((i+-4-v|0)>>>2)<<2);ga=da}else ga=da;else{kh(y,da-w|0,1204);ga=f[m>>2]|0}w=f[k>>2]|0;if(!ga)fa=w;else{k=f[a+68>>2]|0;a=0;do{f[k+(a<<2)>>2]=f[w+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);fa=w}}f[m>>2]=ba;ea=fa}if(!ea)ha=ba;else{fa=f[p>>2]|0;if((fa|0)!=(ea|0))f[p>>2]=fa+(~((fa+-4-ea|0)>>>2)<<2);br(ea);ha=ba}}else ha=0;ba=f[g+8>>2]|0;if(ba|0){ea=ba;do{ba=ea;ea=f[ea>>2]|0;br(ba)}while((ea|0)!=0)}ea=f[g>>2]|0;f[g>>2]=0;if(!ea){u=e;return ha|0}br(ea);u=e;return ha|0}function jc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=Oa,V=Oa,X=Oa,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0;e=u;u=u+80|0;g=e+48|0;h=e+32|0;i=e+16|0;j=e;k=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[k>>2]=$(1.0);l=a+80|0;m=f[l>>2]|0;f[j>>2]=0;o=j+4|0;f[o>>2]=0;f[j+8>>2]=0;if(m){if(m>>>0>1073741823)mq(j);p=m<<2;q=dn(p)|0;f[j>>2]=q;r=q+(m<<2)|0;f[j+8>>2]=r;hj(q|0,0,p|0)|0;f[o>>2]=r;r=f[d>>2]|0;d=c+48|0;p=c+40|0;q=i+4|0;m=i+8|0;s=i+12|0;t=g+4|0;v=g+12|0;w=g+8|0;x=a+40|0;y=a+64|0;z=0;A=0;while(1){B=d;C=f[B>>2]|0;D=f[B+4>>2]|0;B=p;E=on(f[B>>2]|0,f[B+4>>2]|0,r+A|0,0)|0;B=Tn(E|0,I|0,C|0,D|0)|0;D=(f[f[c>>2]>>2]|0)+B|0;B=h;C=D;E=B+16|0;do{b[B>>0]=b[C>>0]|0;B=B+1|0;C=C+1|0}while((B|0)<(E|0));Xl(i|0,D|0,16)|0;C=Ff(g,i)|0;if(!C){B=f[i>>2]|0;E=f[q>>2]|0;F=f[m>>2]|0;G=f[s>>2]|0;H=(((B^318)+239^E)+239^F)+239^G;J=f[t>>2]|0;K=(J|0)==0;a:do if(!K){L=J+-1|0;M=(L&J|0)==0;if(!M)if(H>>>0>>0)N=H;else N=(H>>>0)%(J>>>0)|0;else N=H&L;O=f[(f[g>>2]|0)+(N<<2)>>2]|0;if((O|0)!=0?(P=f[O>>2]|0,(P|0)!=0):0){if(M){M=P;while(1){O=f[M+4>>2]|0;if(!((O|0)==(H|0)|(O&L|0)==(N|0))){Q=N;R=31;break a}if((((f[M+8>>2]|0)==(B|0)?(f[M+12>>2]|0)==(E|0):0)?(f[M+16>>2]|0)==(F|0):0)?(f[M+20>>2]|0)==(G|0):0)break a;M=f[M>>2]|0;if(!M){Q=N;R=31;break a}}}else S=P;while(1){M=f[S+4>>2]|0;if((M|0)!=(H|0)){if(M>>>0>>0)T=M;else T=(M>>>0)%(J>>>0)|0;if((T|0)!=(N|0)){Q=N;R=31;break a}}if((((f[S+8>>2]|0)==(B|0)?(f[S+12>>2]|0)==(E|0):0)?(f[S+16>>2]|0)==(F|0):0)?(f[S+20>>2]|0)==(G|0):0)break a;S=f[S>>2]|0;if(!S){Q=N;R=31;break}}}else{Q=N;R=31}}else{Q=0;R=31}while(0);if((R|0)==31){R=0;D=dn(28)|0;f[D+8>>2]=B;f[D+12>>2]=E;f[D+16>>2]=F;f[D+20>>2]=G;f[D+24>>2]=z;f[D+4>>2]=H;f[D>>2]=0;U=$(((f[v>>2]|0)+1|0)>>>0);V=$(J>>>0);X=$(n[k>>2]);do if(K|$(X*V)>>0<3|(J+-1&J|0)!=0)&1;M=~~$(W($(U/X)))>>>0;Gh(g,P>>>0>>0?M:P);P=f[t>>2]|0;M=P+-1|0;if(!(M&P)){Y=P;Z=M&H;break}if(H>>>0

>>0){Y=P;Z=H}else{Y=P;Z=(H>>>0)%(P>>>0)|0}}else{Y=J;Z=Q}while(0);J=(f[g>>2]|0)+(Z<<2)|0;H=f[J>>2]|0;if(!H){f[D>>2]=f[w>>2];f[w>>2]=D;f[J>>2]=w;J=f[D>>2]|0;if(J|0){K=f[J+4>>2]|0;J=Y+-1|0;if(J&Y)if(K>>>0>>0)_=K;else _=(K>>>0)%(Y>>>0)|0;else _=K&J;aa=(f[g>>2]|0)+(_<<2)|0;R=44}}else{f[D>>2]=f[H>>2];aa=H;R=44}if((R|0)==44){R=0;f[aa>>2]=D}f[v>>2]=(f[v>>2]|0)+1}H=x;J=f[H>>2]|0;K=on(J|0,f[H+4>>2]|0,z|0,0)|0;Rg((f[f[y>>2]>>2]|0)+K|0,h|0,J|0)|0;J=f[j>>2]|0;f[J+(A<<2)>>2]=z;ba=z+1|0;ca=J}else{J=f[j>>2]|0;f[J+(A<<2)>>2]=f[C+24>>2];ba=z;ca=J}A=A+1|0;da=f[l>>2]|0;if(A>>>0>=da>>>0)break;else z=ba}if((ba|0)==(da|0))ea=ca;else{z=a+84|0;if(!(b[z>>0]|0)){A=f[a+72>>2]|0;h=f[a+68>>2]|0;y=h;if((A|0)==(h|0))fa=ca;else{x=A-h>>2;h=0;do{A=y+(h<<2)|0;f[A>>2]=f[ca+(f[A>>2]<<2)>>2];h=h+1|0}while(h>>>0>>0);fa=ca}}else{b[z>>0]=0;z=a+68|0;ca=a+72|0;x=f[ca>>2]|0;h=f[z>>2]|0;y=x-h>>2;A=h;h=x;if(da>>>0<=y>>>0)if(da>>>0>>0?(x=A+(da<<2)|0,(x|0)!=(h|0)):0){f[ca>>2]=h+(~((h+-4-x|0)>>>2)<<2);ga=da}else ga=da;else{kh(z,da-y|0,1204);ga=f[l>>2]|0}y=f[j>>2]|0;if(!ga)fa=y;else{j=f[a+68>>2]|0;a=0;do{f[j+(a<<2)>>2]=f[y+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);fa=y}}f[l>>2]=ba;ea=fa}if(!ea)ha=ba;else{fa=f[o>>2]|0;if((fa|0)!=(ea|0))f[o>>2]=fa+(~((fa+-4-ea|0)>>>2)<<2);br(ea);ha=ba}}else ha=0;ba=f[g+8>>2]|0;if(ba|0){ea=ba;do{ba=ea;ea=f[ea>>2]|0;br(ba)}while((ea|0)!=0)}ea=f[g>>2]|0;f[g>>2]=0;if(!ea){u=e;return ha|0}br(ea);u=e;return ha|0}function kc(a,c,e){a=a|0;c=c|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=Oa,T=Oa,U=Oa,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0;g=u;u=u+48|0;h=g+12|0;i=g+38|0;j=g+32|0;k=g;l=h+16|0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;f[h+12>>2]=0;n[l>>2]=$(1.0);m=a+80|0;o=f[m>>2]|0;f[k>>2]=0;p=k+4|0;f[p>>2]=0;f[k+8>>2]=0;if(o){if(o>>>0>1073741823)mq(k);q=o<<2;r=dn(q)|0;f[k>>2]=r;s=r+(o<<2)|0;f[k+8>>2]=s;hj(r|0,0,q|0)|0;f[p>>2]=s;s=f[e>>2]|0;e=c+48|0;q=c+40|0;r=j+2|0;o=j+4|0;t=h+4|0;v=h+12|0;w=h+8|0;x=a+40|0;y=a+64|0;z=0;A=0;while(1){B=e;C=f[B>>2]|0;D=f[B+4>>2]|0;B=q;E=on(f[B>>2]|0,f[B+4>>2]|0,s+A|0,0)|0;B=Tn(E|0,I|0,C|0,D|0)|0;D=(f[f[c>>2]>>2]|0)+B|0;b[i>>0]=b[D>>0]|0;b[i+1>>0]=b[D+1>>0]|0;b[i+2>>0]=b[D+2>>0]|0;b[i+3>>0]=b[D+3>>0]|0;b[i+4>>0]=b[D+4>>0]|0;b[i+5>>0]=b[D+5>>0]|0;Xl(j|0,D|0,6)|0;D=Pf(h,j)|0;if(!D){B=d[j>>1]|0;C=d[r>>1]|0;E=d[o>>1]|0;F=(((B^318)&65535)+239^C&65535)+239^E&65535;G=f[t>>2]|0;H=(G|0)==0;a:do if(!H){J=G+-1|0;K=(J&G|0)==0;if(!K)if(F>>>0>>0)L=F;else L=(F>>>0)%(G>>>0)|0;else L=F&J;M=f[(f[h>>2]|0)+(L<<2)>>2]|0;if((M|0)!=0?(N=f[M>>2]|0,(N|0)!=0):0){if(K){K=N;while(1){M=f[K+4>>2]|0;if(!((M|0)==(F|0)|(M&J|0)==(L|0))){O=L;P=29;break a}M=K+8|0;if(((d[M>>1]|0)==B<<16>>16?(d[M+2>>1]|0)==C<<16>>16:0)?(d[K+12>>1]|0)==E<<16>>16:0)break a;K=f[K>>2]|0;if(!K){O=L;P=29;break a}}}else Q=N;while(1){K=f[Q+4>>2]|0;if((K|0)!=(F|0)){if(K>>>0>>0)R=K;else R=(K>>>0)%(G>>>0)|0;if((R|0)!=(L|0)){O=L;P=29;break a}}K=Q+8|0;if(((d[K>>1]|0)==B<<16>>16?(d[K+2>>1]|0)==C<<16>>16:0)?(d[Q+12>>1]|0)==E<<16>>16:0)break a;Q=f[Q>>2]|0;if(!Q){O=L;P=29;break}}}else{O=L;P=29}}else{O=0;P=29}while(0);if((P|0)==29){P=0;N=dn(20)|0;d[N+8>>1]=B;d[N+10>>1]=C;d[N+12>>1]=E;f[N+16>>2]=z;f[N+4>>2]=F;f[N>>2]=0;S=$(((f[v>>2]|0)+1|0)>>>0);T=$(G>>>0);U=$(n[l>>2]);do if(H|$(U*T)>>0<3|(G+-1&G|0)!=0)&1;J=~~$(W($(S/U)))>>>0;Dh(h,K>>>0>>0?J:K);K=f[t>>2]|0;J=K+-1|0;if(!(J&K)){V=K;X=J&F;break}if(F>>>0>>0){V=K;X=F}else{V=K;X=(F>>>0)%(K>>>0)|0}}else{V=G;X=O}while(0);G=(f[h>>2]|0)+(X<<2)|0;F=f[G>>2]|0;if(!F){f[N>>2]=f[w>>2];f[w>>2]=N;f[G>>2]=w;G=f[N>>2]|0;if(G|0){H=f[G+4>>2]|0;G=V+-1|0;if(G&V)if(H>>>0>>0)Y=H;else Y=(H>>>0)%(V>>>0)|0;else Y=H&G;Z=(f[h>>2]|0)+(Y<<2)|0;P=42}}else{f[N>>2]=f[F>>2];Z=F;P=42}if((P|0)==42){P=0;f[Z>>2]=N}f[v>>2]=(f[v>>2]|0)+1}F=x;G=f[F>>2]|0;H=on(G|0,f[F+4>>2]|0,z|0,0)|0;Rg((f[f[y>>2]>>2]|0)+H|0,i|0,G|0)|0;G=f[k>>2]|0;f[G+(A<<2)>>2]=z;_=z+1|0;aa=G}else{G=f[k>>2]|0;f[G+(A<<2)>>2]=f[D+16>>2];_=z;aa=G}A=A+1|0;ba=f[m>>2]|0;if(A>>>0>=ba>>>0)break;else z=_}if((_|0)==(ba|0))ca=aa;else{z=a+84|0;if(!(b[z>>0]|0)){A=f[a+72>>2]|0;i=f[a+68>>2]|0;y=i;if((A|0)==(i|0))da=aa;else{x=A-i>>2;i=0;do{A=y+(i<<2)|0;f[A>>2]=f[aa+(f[A>>2]<<2)>>2];i=i+1|0}while(i>>>0>>0);da=aa}}else{b[z>>0]=0;z=a+68|0;aa=a+72|0;x=f[aa>>2]|0;i=f[z>>2]|0;y=x-i>>2;A=i;i=x;if(ba>>>0<=y>>>0)if(ba>>>0>>0?(x=A+(ba<<2)|0,(x|0)!=(i|0)):0){f[aa>>2]=i+(~((i+-4-x|0)>>>2)<<2);ea=ba}else ea=ba;else{kh(z,ba-y|0,1204);ea=f[m>>2]|0}y=f[k>>2]|0;if(!ea)da=y;else{k=f[a+68>>2]|0;a=0;do{f[k+(a<<2)>>2]=f[y+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);da=y}}f[m>>2]=_;ca=da}if(!ca)fa=_;else{da=f[p>>2]|0;if((da|0)!=(ca|0))f[p>>2]=da+(~((da+-4-ca|0)>>>2)<<2);br(ca);fa=_}}else fa=0;_=f[h+8>>2]|0;if(_|0){ca=_;do{_=ca;ca=f[ca>>2]|0;br(_)}while((ca|0)!=0)}ca=f[h>>2]|0;f[h>>2]=0;if(!ca){u=g;return fa|0}br(ca);u=g;return fa|0}function lc(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0;d=u;u=u+80|0;e=d+72|0;g=d+64|0;h=d;i=d+68|0;j=d+60|0;k=a+352|0;if(b[k>>0]|0?(l=Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0,((f[l+12>>2]|0)-(f[l+8>>2]|0)|0)>0):0){l=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+8|0;m=f[f[l>>2]>>2]|0;f[e>>2]=c;l=m+4|0;n=m+8|0;o=f[n>>2]|0;if((o|0)==(f[m+12>>2]|0))Ci(l,e);else{f[o>>2]=c;f[n>>2]=o+4}o=f[e>>2]|0;p=m+16|0;q=m+20|0;m=f[q>>2]|0;r=f[p>>2]|0;s=m-r>>2;t=r;if((o|0)<(s|0)){v=t;w=o}else{r=o+1|0;f[g>>2]=-1;x=m;if(r>>>0<=s>>>0)if(r>>>0>>0?(m=t+(r<<2)|0,(m|0)!=(x|0)):0){f[q>>2]=x+(~((x+-4-m|0)>>>2)<<2);y=o;z=t}else{y=o;z=t}else{kh(p,r-s|0,g);y=f[e>>2]|0;z=f[p>>2]|0}v=z;w=y}f[v+(w<<2)>>2]=((f[n>>2]|0)-(f[l>>2]|0)>>2)+-1;A=1;u=d;return A|0}l=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+56|0;n=f[(f[(f[l>>2]|0)+84>>2]|0)+(c<<2)>>2]|0;l=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+4|0;w=f[(f[(f[l>>2]|0)+8>>2]|0)+(c<<2)>>2]|0;f[g>>2]=-1;l=a+172|0;v=f[a+176>>2]|0;y=f[l>>2]|0;z=y;a:do if((v|0)==(y|0))B=-1;else{p=(v-y|0)/136|0;s=0;while(1){if((f[z+(s*136|0)>>2]|0)==(c|0))break;r=s+1|0;if(r>>>0

>>0)s=r;else{B=-1;break a}}f[g>>2]=s;B=s}while(0);b:do if(!(b[k>>0]|0)){y=(f[w+56>>2]|0)==0;do if(!((n|0)==0|y)){if((n|0)==1?b[z+(B*136|0)+28>>0]|0:0)break;v=z+(B*136|0)+104|0;p=z+(B*136|0)+4|0;r=(f[z+(B*136|0)+60>>2]|0)-(f[z+(B*136|0)+56>>2]|0)>>2;f[e>>2]=-1;Sf(z+(B*136|0)+116|0,r,e);r=dn(80)|0;t=f[a+8>>2]|0;f[r+4>>2]=0;f[r>>2]=3164;o=r+8|0;m=r+12|0;x=m+44|0;do{f[m>>2]=0;m=m+4|0}while((m|0)<(x|0));f[o>>2]=3188;q=r+56|0;f[q>>2]=0;f[r+60>>2]=0;f[r+64>>2]=0;f[r+68>>2]=t;f[r+72>>2]=v;C=r+76|0;f[C>>2]=0;D=h+4|0;m=D+4|0;x=m+40|0;do{f[m>>2]=0;m=m+4|0}while((m|0)<(x|0));f[h>>2]=3188;m=h+48|0;f[m>>2]=0;x=h+52|0;f[x>>2]=0;f[h+56>>2]=0;f[D>>2]=p;E=f[z+(B*136|0)+68>>2]|0;F=((f[E+4>>2]|0)-(f[E>>2]|0)>>2>>>0)/3|0;b[e>>0]=0;Xg(h+24|0,F,e);F=f[D>>2]|0;E=(f[F+56>>2]|0)-(f[F+52>>2]|0)>>2;b[e>>0]=0;Xg(h+36|0,E,e);f[h+8>>2]=p;f[h+12>>2]=v;f[h+16>>2]=t;f[h+20>>2]=r;f[C>>2]=a+72;ef(o,h)|0;Yf(q,f[m>>2]|0,f[x>>2]|0);E=r;f[h>>2]=3188;F=f[m>>2]|0;if(F|0){m=f[x>>2]|0;if((m|0)!=(F|0))f[x>>2]=m+(~((m+-4-F|0)>>>2)<<2);br(F)}f[h>>2]=3208;F=f[h+36>>2]|0;if(F|0)br(F);F=f[h+24>>2]|0;if(F|0)br(F);G=0;H=E;I=42;break b}while(0);if(!y){s=f[a+12>>2]|0;E=(f[s+28>>2]|0)-(f[s+24>>2]|0)>>2;f[e>>2]=-1;Sf(z+(B*136|0)+116|0,E,e);b[(f[l>>2]|0)+((f[g>>2]|0)*136|0)+100>>0]=0;J=z+(B*136|0)+104|0;I=26}else I=24}else I=24;while(0);if((I|0)==24){J=a+40|0;I=26}if((I|0)==26){B=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+48|0;do if((Yh(f[B>>2]|0)|0)==0?(f[w+56>>2]|0)==0:0){if(b[k>>0]|0?(z=f[a+8>>2]|0,((f[z+12>>2]|0)-(f[z+8>>2]|0)|0)>=5):0){I=31;break}uf(e,a,J);K=1;L=f[e>>2]|0}else I=31;while(0);if((I|0)==31){Le(e,a,J);K=0;L=f[e>>2]|0}if(!L)M=0;else{G=K;H=L;I=42}}if((I|0)==42){I=f[g>>2]|0;if((I|0)==-1)N=a+68|0;else N=(f[l>>2]|0)+(I*136|0)+132|0;f[N>>2]=G;G=dn(76)|0;f[i>>2]=H;ml(G,i,c);c=G;G=f[i>>2]|0;f[i>>2]=0;if(G|0)Va[f[(f[G>>2]|0)+4>>2]&127](G);G=a+188|0;i=f[G>>2]|0;if((i|0)==(f[a+192>>2]|0))Ci(a+184|0,g);else{f[i>>2]=f[g>>2];f[G>>2]=i+4}i=Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0;f[j>>2]=c;a=i+12|0;G=f[a>>2]|0;if(G>>>0<(f[i+16>>2]|0)>>>0){f[j>>2]=0;f[G>>2]=c;f[a>>2]=G+4;O=j}else{yg(i+8|0,j);O=j}j=f[O>>2]|0;f[O>>2]=0;if(!j)M=1;else{Va[f[(f[j>>2]|0)+4>>2]&127](j);M=1}}A=M;u=d;return A|0}function mc(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0;d=u;u=u+80|0;e=d+72|0;g=d+64|0;h=d;i=d+68|0;j=d+60|0;k=a+288|0;if(b[k>>0]|0?(l=Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0,((f[l+12>>2]|0)-(f[l+8>>2]|0)|0)>0):0){l=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+8|0;m=f[f[l>>2]>>2]|0;f[e>>2]=c;l=m+4|0;n=m+8|0;o=f[n>>2]|0;if((o|0)==(f[m+12>>2]|0))Ci(l,e);else{f[o>>2]=c;f[n>>2]=o+4}o=f[e>>2]|0;p=m+16|0;q=m+20|0;m=f[q>>2]|0;r=f[p>>2]|0;s=m-r>>2;t=r;if((o|0)<(s|0)){v=t;w=o}else{r=o+1|0;f[g>>2]=-1;x=m;if(r>>>0<=s>>>0)if(r>>>0>>0?(m=t+(r<<2)|0,(m|0)!=(x|0)):0){f[q>>2]=x+(~((x+-4-m|0)>>>2)<<2);y=o;z=t}else{y=o;z=t}else{kh(p,r-s|0,g);y=f[e>>2]|0;z=f[p>>2]|0}v=z;w=y}f[v+(w<<2)>>2]=((f[n>>2]|0)-(f[l>>2]|0)>>2)+-1;A=1;u=d;return A|0}l=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+56|0;n=f[(f[(f[l>>2]|0)+84>>2]|0)+(c<<2)>>2]|0;l=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+4|0;w=f[(f[(f[l>>2]|0)+8>>2]|0)+(c<<2)>>2]|0;f[g>>2]=-1;l=a+172|0;v=f[a+176>>2]|0;y=f[l>>2]|0;z=y;a:do if((v|0)==(y|0))B=-1;else{p=(v-y|0)/136|0;s=0;while(1){if((f[z+(s*136|0)>>2]|0)==(c|0))break;r=s+1|0;if(r>>>0

>>0)s=r;else{B=-1;break a}}f[g>>2]=s;B=s}while(0);b:do if(!(b[k>>0]|0)){y=(f[w+56>>2]|0)==0;do if(!((n|0)==0|y)){if((n|0)==1?b[z+(B*136|0)+28>>0]|0:0)break;v=z+(B*136|0)+104|0;p=z+(B*136|0)+4|0;r=(f[z+(B*136|0)+60>>2]|0)-(f[z+(B*136|0)+56>>2]|0)>>2;f[e>>2]=-1;Sf(z+(B*136|0)+116|0,r,e);r=dn(80)|0;t=f[a+8>>2]|0;f[r+4>>2]=0;f[r>>2]=3164;o=r+8|0;m=r+12|0;x=m+44|0;do{f[m>>2]=0;m=m+4|0}while((m|0)<(x|0));f[o>>2]=3188;q=r+56|0;f[q>>2]=0;f[r+60>>2]=0;f[r+64>>2]=0;f[r+68>>2]=t;f[r+72>>2]=v;C=r+76|0;f[C>>2]=0;D=h+4|0;m=D+4|0;x=m+40|0;do{f[m>>2]=0;m=m+4|0}while((m|0)<(x|0));f[h>>2]=3188;m=h+48|0;f[m>>2]=0;x=h+52|0;f[x>>2]=0;f[h+56>>2]=0;f[D>>2]=p;E=f[z+(B*136|0)+68>>2]|0;F=((f[E+4>>2]|0)-(f[E>>2]|0)>>2>>>0)/3|0;b[e>>0]=0;Xg(h+24|0,F,e);F=f[D>>2]|0;E=(f[F+56>>2]|0)-(f[F+52>>2]|0)>>2;b[e>>0]=0;Xg(h+36|0,E,e);f[h+8>>2]=p;f[h+12>>2]=v;f[h+16>>2]=t;f[h+20>>2]=r;f[C>>2]=a+72;ef(o,h)|0;Yf(q,f[m>>2]|0,f[x>>2]|0);E=r;f[h>>2]=3188;F=f[m>>2]|0;if(F|0){m=f[x>>2]|0;if((m|0)!=(F|0))f[x>>2]=m+(~((m+-4-F|0)>>>2)<<2);br(F)}f[h>>2]=3208;F=f[h+36>>2]|0;if(F|0)br(F);F=f[h+24>>2]|0;if(F|0)br(F);G=0;H=E;I=42;break b}while(0);if(!y){s=f[a+12>>2]|0;E=(f[s+28>>2]|0)-(f[s+24>>2]|0)>>2;f[e>>2]=-1;Sf(z+(B*136|0)+116|0,E,e);b[(f[l>>2]|0)+((f[g>>2]|0)*136|0)+100>>0]=0;J=z+(B*136|0)+104|0;I=26}else I=24}else I=24;while(0);if((I|0)==24){J=a+40|0;I=26}if((I|0)==26){B=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+48|0;do if((Yh(f[B>>2]|0)|0)==0?(f[w+56>>2]|0)==0:0){if(b[k>>0]|0?(z=f[a+8>>2]|0,((f[z+12>>2]|0)-(f[z+8>>2]|0)|0)>=5):0){I=31;break}uf(e,a,J);K=1;L=f[e>>2]|0}else I=31;while(0);if((I|0)==31){Le(e,a,J);K=0;L=f[e>>2]|0}if(!L)M=0;else{G=K;H=L;I=42}}if((I|0)==42){I=f[g>>2]|0;if((I|0)==-1)N=a+68|0;else N=(f[l>>2]|0)+(I*136|0)+132|0;f[N>>2]=G;G=dn(76)|0;f[i>>2]=H;ml(G,i,c);c=G;G=f[i>>2]|0;f[i>>2]=0;if(G|0)Va[f[(f[G>>2]|0)+4>>2]&127](G);G=a+188|0;i=f[G>>2]|0;if((i|0)==(f[a+192>>2]|0))Ci(a+184|0,g);else{f[i>>2]=f[g>>2];f[G>>2]=i+4}i=Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0;f[j>>2]=c;a=i+12|0;G=f[a>>2]|0;if(G>>>0<(f[i+16>>2]|0)>>>0){f[j>>2]=0;f[G>>2]=c;f[a>>2]=G+4;O=j}else{yg(i+8|0,j);O=j}j=f[O>>2]|0;f[O>>2]=0;if(!j)M=1;else{Va[f[(f[j>>2]|0)+4>>2]&127](j);M=1}}A=M;u=d;return A|0}function nc(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0;e=u;u=u+64|0;d=e+48|0;h=e+40|0;i=e+32|0;j=e+16|0;k=e+8|0;l=e;m=e+28|0;n=a+8|0;o=f[n>>2]|0;if((o+-2|0)>>>0<=28){f[a+72>>2]=o;p=1<>2]=p+-1;o=p+-2|0;f[a+80>>2]=o;f[a+84>>2]=(o|0)/2|0}o=a+40|0;f[a+48>>2]=g;g=a+88|0;lk(g);p=a+36|0;q=f[p>>2]|0;r=(f[q+4>>2]|0)-(f[q>>2]|0)|0;s=r>>2;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;t=k;f[t>>2]=0;f[t+4>>2]=0;t=l;f[t>>2]=0;f[t+4>>2]=0;if((r|0)<=0){u=e;return 1}r=j+4|0;t=j+8|0;v=a+84|0;w=a+80|0;x=h+4|0;y=i+4|0;z=d+4|0;A=k+4|0;B=h+4|0;C=i+4|0;D=d+4|0;E=l+4|0;F=a+76|0;a=k+4|0;G=l+4|0;H=f[q>>2]|0;if((f[q+4>>2]|0)==(H|0)){J=q;mq(J)}else{K=0;L=H}while(1){f[m>>2]=f[L+(K<<2)>>2];f[d>>2]=f[m>>2];fc(o,d,j);H=f[j>>2]|0;q=(H|0)>-1?H:0-H|0;M=f[r>>2]|0;N=(M|0)>-1?M:0-M|0;O=Tn(N|0,((N|0)<0)<<31>>31|0,q|0,((q|0)<0)<<31>>31|0)|0;q=f[t>>2]|0;N=(q|0)>-1;P=N?q:0-q|0;q=Tn(O|0,I|0,P|0,((P|0)<0)<<31>>31|0)|0;P=I;if((q|0)==0&(P|0)==0){O=f[v>>2]|0;Q=O;R=j;S=M;T=O}else{O=f[v>>2]|0;U=((O|0)<0)<<31>>31;V=on(O|0,U|0,H|0,((H|0)<0)<<31>>31|0)|0;H=zk(V|0,I|0,q|0,P|0)|0;f[j>>2]=H;V=on(O|0,U|0,M|0,((M|0)<0)<<31>>31|0)|0;M=zk(V|0,I|0,q|0,P|0)|0;f[r>>2]=M;P=O-((H|0)>-1?H:0-H|0)-((M|0)>-1?M:0-M|0)|0;Q=N?P:0-P|0;R=t;S=M;T=O}f[R>>2]=Q;O=f[j>>2]|0;do if((O|0)<=-1){if((S|0)<0){M=f[t>>2]|0;W=(M|0)>-1?M:0-M|0;X=M}else{M=f[t>>2]|0;W=(f[w>>2]|0)-((M|0)>-1?M:0-M|0)|0;X=M}if((X|0)<0){Y=(S|0)>-1?S:0-S|0;Z=W;_=X;break}else{Y=(f[w>>2]|0)-((S|0)>-1?S:0-S|0)|0;Z=W;_=X;break}}else{M=f[t>>2]|0;Y=M+T|0;Z=T+S|0;_=M}while(0);M=(Z|0)==0;P=(Y|0)==0;N=f[w>>2]|0;do if(Y|Z){H=(N|0)==(Y|0);if(!(M&H)){q=(N|0)==(Z|0);if(!(P&q)){if(M&(T|0)<(Y|0)){$=0;aa=(T<<1)-Y|0;break}if(q&(T|0)>(Y|0)){$=Z;aa=(T<<1)-Y|0;break}if(H&(T|0)>(Z|0)){$=(T<<1)-Z|0;aa=Y;break}if(P){$=(T|0)<(Z|0)?(T<<1)-Z|0:Z;aa=0}else{$=Z;aa=Y}}else{$=Z;aa=Z}}else{$=Y;aa=Y}}else{$=N;aa=N}while(0);P=0-S|0;M=0-_|0;f[j>>2]=0-O;f[r>>2]=P;f[t>>2]=M;if((O|0)<1){ba=T-_|0;ca=T-S|0}else{H=(_|0)<1?M:_;M=(S|0)<1?P:S;ba=(_|0)>0?M:N-M|0;ca=(S|0)>0?H:N-H|0}H=(ca|0)==0;M=(ba|0)==0;do if(((ba|ca|0)!=0?(P=(N|0)==(ba|0),!(H&P)):0)?(q=(N|0)==(ca|0),!(M&q)):0){if(H&(T|0)<(ba|0)){da=0;ea=(T<<1)-ba|0;break}if(q&(T|0)>(ba|0)){da=N;ea=(T<<1)-ba|0;break}if(P&(T|0)>(ca|0)){da=(T<<1)-ca|0;ea=N;break}if(M){da=(T|0)<(ca|0)?(T<<1)-ca|0:ca;ea=0}else{da=ca;ea=ba}}else{da=N;ea=N}while(0);N=K<<1;M=b+(N<<2)|0;H=M+4|0;O=f[H>>2]|0;f[h>>2]=f[M>>2];f[x>>2]=O;f[i>>2]=$;f[y>>2]=aa;Dd(d,n,h,i);O=f[d>>2]|0;f[k>>2]=O;P=f[z>>2]|0;f[A>>2]=P;q=f[H>>2]|0;f[h>>2]=f[M>>2];f[B>>2]=q;f[i>>2]=da;f[C>>2]=ea;Dd(d,n,h,i);q=f[d>>2]|0;f[l>>2]=q;M=f[D>>2]|0;f[E>>2]=M;H=f[v>>2]|0;if((H|0)>=(O|0))if((O|0)<(0-H|0))fa=(f[F>>2]|0)+O|0;else fa=O;else fa=O-(f[F>>2]|0)|0;f[k>>2]=fa;if((H|0)>=(P|0))if((P|0)<(0-H|0))ga=(f[F>>2]|0)+P|0;else ga=P;else ga=P-(f[F>>2]|0)|0;f[a>>2]=ga;if((H|0)>=(q|0))if((q|0)<(0-H|0))ha=(f[F>>2]|0)+q|0;else ha=q;else ha=q-(f[F>>2]|0)|0;f[l>>2]=ha;if((H|0)>=(M|0))if((M|0)<(0-H|0))ia=(f[F>>2]|0)+M|0;else ia=M;else ia=M-(f[F>>2]|0)|0;f[G>>2]=ia;if((((ga|0)>-1?ga:0-ga|0)+((fa|0)>-1?fa:0-fa|0)|0)<(((ha|0)>-1?ha:0-ha|0)+((ia|0)>-1?ia:0-ia|0)|0)){Vi(g,0);ja=k}else{Vi(g,1);ja=l}M=f[ja>>2]|0;if((M|0)<0)ka=(f[F>>2]|0)+M|0;else ka=M;M=c+(N<<2)|0;f[M>>2]=ka;N=f[ja+4>>2]|0;if((N|0)<0)la=(f[F>>2]|0)+N|0;else la=N;f[M+4>>2]=la;K=K+1|0;if((K|0)>=(s|0)){ma=5;break}M=f[p>>2]|0;L=f[M>>2]|0;if((f[M+4>>2]|0)-L>>2>>>0<=K>>>0){J=M;ma=6;break}}if((ma|0)==5){u=e;return 1}else if((ma|0)==6)mq(J);return 0}function oc(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0;c=u;u=u+48|0;d=c+24|0;e=c+12|0;g=c;if(!b){h=0;u=c;return h|0}i=a+12|0;j=a+4|0;k=f[j>>2]|0;l=f[a>>2]|0;m=k-l>>2;n=a+16|0;o=f[n>>2]|0;p=f[i>>2]|0;q=o-p>>2;r=p;p=o;if(m>>>0<=q>>>0)if(m>>>0>>0?(o=r+(m<<2)|0,(o|0)!=(p|0)):0){f[n>>2]=p+(~((p+-4-o|0)>>>2)<<2);s=l;t=k}else{s=l;t=k}else{kh(i,m-q|0,5828);s=f[a>>2]|0;t=f[j>>2]|0}f[d>>2]=0;q=d+4|0;f[q>>2]=0;f[d+8>>2]=0;$j(d,t-s>>2);s=f[j>>2]|0;t=f[a>>2]|0;if((s|0)==(t|0)){v=s;w=s}else{m=f[d>>2]|0;k=m;l=k;o=0;p=s;s=k;k=t;t=m;while(1){m=f[k+(o<<2)>>2]|0;n=f[q>>2]|0;if(m>>>0>2>>>0){x=l;y=s;z=k;A=p}else{r=m+1|0;f[e>>2]=0;B=n-t>>2;C=t;D=n;if(r>>>0<=B>>>0)if(r>>>0>>0?(n=C+(r<<2)|0,(n|0)!=(D|0)):0){f[q>>2]=D+(~((D+-4-n|0)>>>2)<<2);E=l;F=p;G=k}else{E=l;F=p;G=k}else{kh(d,r-B|0,e);E=f[d>>2]|0;F=f[j>>2]|0;G=f[a>>2]|0}x=E;y=E;z=G;A=F}B=y+(m<<2)|0;f[B>>2]=(f[B>>2]|0)+1;o=o+1|0;if(o>>>0>=A-z>>2>>>0){v=z;w=A;break}else{l=x;p=A;s=y;k=z;t=y}}}y=w-v|0;v=y>>2;f[e>>2]=0;w=e+4|0;f[w>>2]=0;f[e+8>>2]=0;if(!v){H=0;I=0}else{if(v>>>0>536870911)mq(e);t=dn(y<<1)|0;f[w>>2]=t;f[e>>2]=t;y=t+(v<<3)|0;f[e+8>>2]=y;z=v;v=t;k=t;while(1){s=v;f[s>>2]=-1;f[s+4>>2]=-1;s=k+8|0;A=z+-1|0;if(!A)break;else{z=A;v=s;k=s}}f[w>>2]=y;H=t;I=t}t=f[q>>2]|0;y=f[d>>2]|0;k=t-y|0;v=k>>2;f[g>>2]=0;z=g+4|0;f[z>>2]=0;f[g+8>>2]=0;s=y;do if(v)if(v>>>0>1073741823)mq(g);else{A=dn(k)|0;f[g>>2]=A;p=A+(v<<2)|0;f[g+8>>2]=p;hj(A|0,0,k|0)|0;f[z>>2]=p;J=A;K=p;L=A;break}else{J=0;K=0;L=0}while(0);if((t|0)!=(y|0)){y=0;t=0;while(1){f[J+(t<<2)>>2]=y;k=t+1|0;if(k>>>0>>0){y=(f[s+(t<<2)>>2]|0)+y|0;t=k}else break}}t=f[j>>2]|0;j=f[a>>2]|0;y=j;if((t|0)!=(j|0)){k=a+40|0;a=t-j>>2;j=H;t=H;g=H;A=H;p=H;x=H;l=0;o=J;while(1){F=f[y+(l<<2)>>2]|0;G=l+1|0;E=((G>>>0)%3|0|0)==0?l+-2|0:G;if((E|0)==-1)M=-1;else M=f[y+(E<<2)>>2]|0;E=((l>>>0)%3|0|0)==0;G=(E?2:-1)+l|0;if((G|0)==-1)N=-1;else N=f[y+(G<<2)>>2]|0;if(E?(M|0)==(N|0)|((F|0)==(M|0)|(F|0)==(N|0)):0){f[k>>2]=(f[k>>2]|0)+1;O=j;P=t;Q=g;R=A;S=p;T=x;U=l+2|0;V=o}else W=51;a:do if((W|0)==51){W=0;E=f[s+(N<<2)>>2]|0;b:do if((E|0)>0){G=0;B=f[o+(N<<2)>>2]|0;while(1){m=f[p+(B<<3)>>2]|0;if((m|0)==-1){X=j;Y=t;Z=A;_=p;break b}if((m|0)==(M|0)){m=f[p+(B<<3)+4>>2]|0;if((m|0)==-1)$=-1;else $=f[y+(m<<2)>>2]|0;if((F|0)!=($|0))break}m=G+1|0;if((m|0)<(E|0)){G=m;B=B+1|0}else{X=j;Y=t;Z=A;_=p;break b}}m=f[A+(B<<3)+4>>2]|0;r=G;n=B;D=t;while(1){r=r+1|0;if((r|0)>=(E|0))break;C=n+1|0;f[D+(n<<3)>>2]=f[D+(C<<3)>>2];f[D+(n<<3)+4>>2]=f[D+(C<<3)+4>>2];if((f[j+(n<<3)>>2]|0)==-1)break;else{n=C;D=j}}f[g+(n<<3)>>2]=-1;if((m|0)==-1){X=g;Y=g;Z=g;_=g}else{D=f[i>>2]|0;f[D+(l<<2)>>2]=m;f[D+(m<<2)>>2]=l;O=g;P=g;Q=g;R=g;S=g;T=x;U=l;V=o;break a}}else{X=j;Y=t;Z=A;_=p}while(0);E=f[s+(M<<2)>>2]|0;if((E|0)>0){D=0;r=f[J+(M<<2)>>2]|0;while(1){aa=x+(r<<3)|0;if((f[aa>>2]|0)==-1)break;D=D+1|0;if((D|0)>=(E|0)){O=x;P=x;Q=x;R=x;S=x;T=x;U=l;V=J;break a}else r=r+1|0}f[aa>>2]=N;f[H+(r<<3)+4>>2]=l;O=H;P=H;Q=H;R=H;S=H;T=H;U=l;V=J}else{O=X;P=Y;Q=g;R=Z;S=_;T=x;U=l;V=o}}while(0);l=U+1|0;if(l>>>0>=a>>>0)break;else{j=O;t=P;g=Q;A=R;p=S;x=T;o=V}}}f[b>>2]=v;if(!J){ba=H;ca=I}else{if((K|0)!=(J|0))f[z>>2]=K+(~((K+-4-J|0)>>>2)<<2);br(L);L=f[e>>2]|0;ba=L;ca=L}if(ba|0){L=f[w>>2]|0;if((L|0)!=(ba|0))f[w>>2]=L+(~((L+-8-ba|0)>>>3)<<3);br(ca)}ca=f[d>>2]|0;if(ca|0){d=f[q>>2]|0;if((d|0)!=(ca|0))f[q>>2]=d+(~((d+-4-ca|0)>>>2)<<2);br(ca)}h=1;u=c;return h|0}function pc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=Oa,S=Oa,T=Oa,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0;e=u;u=u+48|0;g=e+12|0;h=e+35|0;i=e+32|0;j=e;k=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[k>>2]=$(1.0);l=a+80|0;m=f[l>>2]|0;f[j>>2]=0;o=j+4|0;f[o>>2]=0;f[j+8>>2]=0;if(m){if(m>>>0>1073741823)mq(j);p=m<<2;q=dn(p)|0;f[j>>2]=q;r=q+(m<<2)|0;f[j+8>>2]=r;hj(q|0,0,p|0)|0;f[o>>2]=r;r=f[d>>2]|0;d=c+48|0;p=c+40|0;q=i+1|0;m=i+2|0;s=g+4|0;t=g+12|0;v=g+8|0;w=a+40|0;x=a+64|0;y=0;z=0;while(1){A=d;B=f[A>>2]|0;C=f[A+4>>2]|0;A=p;D=on(f[A>>2]|0,f[A+4>>2]|0,r+y|0,0)|0;A=Tn(D|0,I|0,B|0,C|0)|0;C=(f[f[c>>2]>>2]|0)+A|0;b[h>>0]=b[C>>0]|0;b[h+1>>0]=b[C+1>>0]|0;b[h+2>>0]=b[C+2>>0]|0;Xl(i|0,C|0,3)|0;C=Uf(g,i)|0;if(!C){A=b[i>>0]|0;B=b[q>>0]|0;D=b[m>>0]|0;E=((A&255^318)+239^B&255)+239^D&255;F=f[s>>2]|0;G=(F|0)==0;a:do if(!G){H=F+-1|0;J=(H&F|0)==0;if(!J)if(E>>>0>>0)K=E;else K=(E>>>0)%(F>>>0)|0;else K=E&H;L=f[(f[g>>2]|0)+(K<<2)>>2]|0;if((L|0)!=0?(M=f[L>>2]|0,(M|0)!=0):0){if(J){J=M;while(1){L=f[J+4>>2]|0;if(!((L|0)==(E|0)|(L&H|0)==(K|0))){N=K;O=29;break a}L=J+8|0;if(((b[L>>0]|0)==A<<24>>24?(b[L+1>>0]|0)==B<<24>>24:0)?(b[L+2>>0]|0)==D<<24>>24:0)break a;J=f[J>>2]|0;if(!J){N=K;O=29;break a}}}else P=M;while(1){J=f[P+4>>2]|0;if((J|0)!=(E|0)){if(J>>>0>>0)Q=J;else Q=(J>>>0)%(F>>>0)|0;if((Q|0)!=(K|0)){N=K;O=29;break a}}J=P+8|0;if(((b[J>>0]|0)==A<<24>>24?(b[J+1>>0]|0)==B<<24>>24:0)?(b[J+2>>0]|0)==D<<24>>24:0)break a;P=f[P>>2]|0;if(!P){N=K;O=29;break}}}else{N=K;O=29}}else{N=0;O=29}while(0);if((O|0)==29){O=0;M=dn(16)|0;b[M+8>>0]=A;b[M+9>>0]=B;b[M+10>>0]=D;f[M+12>>2]=z;f[M+4>>2]=E;f[M>>2]=0;R=$(((f[t>>2]|0)+1|0)>>>0);S=$(F>>>0);T=$(n[k>>2]);do if(G|$(T*S)>>0<3|(F+-1&F|0)!=0)&1;H=~~$(W($(R/T)))>>>0;Kh(g,J>>>0>>0?H:J);J=f[s>>2]|0;H=J+-1|0;if(!(H&J)){U=J;V=H&E;break}if(E>>>0>>0){U=J;V=E}else{U=J;V=(E>>>0)%(J>>>0)|0}}else{U=F;V=N}while(0);F=(f[g>>2]|0)+(V<<2)|0;E=f[F>>2]|0;if(!E){f[M>>2]=f[v>>2];f[v>>2]=M;f[F>>2]=v;F=f[M>>2]|0;if(F|0){G=f[F+4>>2]|0;F=U+-1|0;if(F&U)if(G>>>0>>0)X=G;else X=(G>>>0)%(U>>>0)|0;else X=G&F;Y=(f[g>>2]|0)+(X<<2)|0;O=42}}else{f[M>>2]=f[E>>2];Y=E;O=42}if((O|0)==42){O=0;f[Y>>2]=M}f[t>>2]=(f[t>>2]|0)+1}E=w;F=f[E>>2]|0;G=on(F|0,f[E+4>>2]|0,z|0,0)|0;Rg((f[f[x>>2]>>2]|0)+G|0,h|0,F|0)|0;F=f[j>>2]|0;f[F+(y<<2)>>2]=z;Z=z+1|0;_=F}else{F=f[j>>2]|0;f[F+(y<<2)>>2]=f[C+12>>2];Z=z;_=F}y=y+1|0;aa=f[l>>2]|0;if(y>>>0>=aa>>>0)break;else z=Z}if((Z|0)==(aa|0))ba=_;else{z=a+84|0;if(!(b[z>>0]|0)){y=f[a+72>>2]|0;h=f[a+68>>2]|0;x=h;if((y|0)==(h|0))ca=_;else{w=y-h>>2;h=0;do{y=x+(h<<2)|0;f[y>>2]=f[_+(f[y>>2]<<2)>>2];h=h+1|0}while(h>>>0>>0);ca=_}}else{b[z>>0]=0;z=a+68|0;_=a+72|0;w=f[_>>2]|0;h=f[z>>2]|0;x=w-h>>2;y=h;h=w;if(aa>>>0<=x>>>0)if(aa>>>0>>0?(w=y+(aa<<2)|0,(w|0)!=(h|0)):0){f[_>>2]=h+(~((h+-4-w|0)>>>2)<<2);da=aa}else da=aa;else{kh(z,aa-x|0,1204);da=f[l>>2]|0}x=f[j>>2]|0;if(!da)ca=x;else{j=f[a+68>>2]|0;a=0;do{f[j+(a<<2)>>2]=f[x+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);ca=x}}f[l>>2]=Z;ba=ca}if(!ba)ea=Z;else{ca=f[o>>2]|0;if((ca|0)!=(ba|0))f[o>>2]=ca+(~((ca+-4-ba|0)>>>2)<<2);br(ba);ea=Z}}else ea=0;Z=f[g+8>>2]|0;if(Z|0){ba=Z;do{Z=ba;ba=f[ba>>2]|0;br(Z)}while((ba|0)!=0)}ba=f[g>>2]|0;f[g>>2]=0;if(!ba){u=e;return ea|0}br(ba);u=e;return ea|0}function qc(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0;e=u;u=u+64|0;d=e+48|0;h=e+40|0;i=e+32|0;j=e+16|0;k=e+8|0;l=e;m=e+28|0;n=a+8|0;o=f[n>>2]|0;if((o+-2|0)>>>0<=28){f[a+72>>2]=o;p=1<>2]=p+-1;o=p+-2|0;f[a+80>>2]=o;f[a+84>>2]=(o|0)/2|0}o=a+40|0;f[a+48>>2]=g;g=a+88|0;lk(g);p=a+36|0;q=f[p>>2]|0;r=(f[q+4>>2]|0)-(f[q>>2]|0)|0;s=r>>2;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;t=k;f[t>>2]=0;f[t+4>>2]=0;t=l;f[t>>2]=0;f[t+4>>2]=0;if((r|0)<=0){u=e;return 1}r=j+4|0;t=j+8|0;v=a+84|0;w=a+80|0;x=h+4|0;y=i+4|0;z=d+4|0;A=k+4|0;B=h+4|0;C=i+4|0;D=d+4|0;E=l+4|0;F=a+76|0;a=k+4|0;G=l+4|0;H=f[q>>2]|0;if((f[q+4>>2]|0)==(H|0)){J=q;mq(J)}else{K=0;L=H}while(1){f[m>>2]=f[L+(K<<2)>>2];f[d>>2]=f[m>>2];$b(o,d,j);H=f[j>>2]|0;q=(H|0)>-1?H:0-H|0;M=f[r>>2]|0;N=(M|0)>-1?M:0-M|0;O=Tn(N|0,((N|0)<0)<<31>>31|0,q|0,((q|0)<0)<<31>>31|0)|0;q=f[t>>2]|0;N=(q|0)>-1;P=N?q:0-q|0;q=Tn(O|0,I|0,P|0,((P|0)<0)<<31>>31|0)|0;P=I;if((q|0)==0&(P|0)==0){O=f[v>>2]|0;Q=O;R=j;S=M;T=O}else{O=f[v>>2]|0;U=((O|0)<0)<<31>>31;V=on(O|0,U|0,H|0,((H|0)<0)<<31>>31|0)|0;H=zk(V|0,I|0,q|0,P|0)|0;f[j>>2]=H;V=on(O|0,U|0,M|0,((M|0)<0)<<31>>31|0)|0;M=zk(V|0,I|0,q|0,P|0)|0;f[r>>2]=M;P=O-((H|0)>-1?H:0-H|0)-((M|0)>-1?M:0-M|0)|0;Q=N?P:0-P|0;R=t;S=M;T=O}f[R>>2]=Q;O=f[j>>2]|0;do if((O|0)<=-1){if((S|0)<0){M=f[t>>2]|0;W=(M|0)>-1?M:0-M|0;X=M}else{M=f[t>>2]|0;W=(f[w>>2]|0)-((M|0)>-1?M:0-M|0)|0;X=M}if((X|0)<0){Y=(S|0)>-1?S:0-S|0;Z=W;_=X;break}else{Y=(f[w>>2]|0)-((S|0)>-1?S:0-S|0)|0;Z=W;_=X;break}}else{M=f[t>>2]|0;Y=M+T|0;Z=T+S|0;_=M}while(0);M=(Z|0)==0;P=(Y|0)==0;N=f[w>>2]|0;do if(Y|Z){H=(N|0)==(Y|0);if(!(M&H)){q=(N|0)==(Z|0);if(!(P&q)){if(M&(T|0)<(Y|0)){$=0;aa=(T<<1)-Y|0;break}if(q&(T|0)>(Y|0)){$=Z;aa=(T<<1)-Y|0;break}if(H&(T|0)>(Z|0)){$=(T<<1)-Z|0;aa=Y;break}if(P){$=(T|0)<(Z|0)?(T<<1)-Z|0:Z;aa=0}else{$=Z;aa=Y}}else{$=Z;aa=Z}}else{$=Y;aa=Y}}else{$=N;aa=N}while(0);P=0-S|0;M=0-_|0;f[j>>2]=0-O;f[r>>2]=P;f[t>>2]=M;if((O|0)<1){ba=T-_|0;ca=T-S|0}else{H=(_|0)<1?M:_;M=(S|0)<1?P:S;ba=(_|0)>0?M:N-M|0;ca=(S|0)>0?H:N-H|0}H=(ca|0)==0;M=(ba|0)==0;do if(((ba|ca|0)!=0?(P=(N|0)==(ba|0),!(H&P)):0)?(q=(N|0)==(ca|0),!(M&q)):0){if(H&(T|0)<(ba|0)){da=0;ea=(T<<1)-ba|0;break}if(q&(T|0)>(ba|0)){da=N;ea=(T<<1)-ba|0;break}if(P&(T|0)>(ca|0)){da=(T<<1)-ca|0;ea=N;break}if(M){da=(T|0)<(ca|0)?(T<<1)-ca|0:ca;ea=0}else{da=ca;ea=ba}}else{da=N;ea=N}while(0);N=K<<1;M=b+(N<<2)|0;H=M+4|0;O=f[H>>2]|0;f[h>>2]=f[M>>2];f[x>>2]=O;f[i>>2]=$;f[y>>2]=aa;Dd(d,n,h,i);O=f[d>>2]|0;f[k>>2]=O;P=f[z>>2]|0;f[A>>2]=P;q=f[H>>2]|0;f[h>>2]=f[M>>2];f[B>>2]=q;f[i>>2]=da;f[C>>2]=ea;Dd(d,n,h,i);q=f[d>>2]|0;f[l>>2]=q;M=f[D>>2]|0;f[E>>2]=M;H=f[v>>2]|0;if((H|0)>=(O|0))if((O|0)<(0-H|0))fa=(f[F>>2]|0)+O|0;else fa=O;else fa=O-(f[F>>2]|0)|0;f[k>>2]=fa;if((H|0)>=(P|0))if((P|0)<(0-H|0))ga=(f[F>>2]|0)+P|0;else ga=P;else ga=P-(f[F>>2]|0)|0;f[a>>2]=ga;if((H|0)>=(q|0))if((q|0)<(0-H|0))ha=(f[F>>2]|0)+q|0;else ha=q;else ha=q-(f[F>>2]|0)|0;f[l>>2]=ha;if((H|0)>=(M|0))if((M|0)<(0-H|0))ia=(f[F>>2]|0)+M|0;else ia=M;else ia=M-(f[F>>2]|0)|0;f[G>>2]=ia;if((((ga|0)>-1?ga:0-ga|0)+((fa|0)>-1?fa:0-fa|0)|0)<(((ha|0)>-1?ha:0-ha|0)+((ia|0)>-1?ia:0-ia|0)|0)){Vi(g,0);ja=k}else{Vi(g,1);ja=l}M=f[ja>>2]|0;if((M|0)<0)ka=(f[F>>2]|0)+M|0;else ka=M;M=c+(N<<2)|0;f[M>>2]=ka;N=f[ja+4>>2]|0;if((N|0)<0)la=(f[F>>2]|0)+N|0;else la=N;f[M+4>>2]=la;K=K+1|0;if((K|0)>=(s|0)){ma=5;break}M=f[p>>2]|0;L=f[M>>2]|0;if((f[M+4>>2]|0)-L>>2>>>0<=K>>>0){J=M;ma=6;break}}if((ma|0)==5){u=e;return 1}else if((ma|0)==6)mq(J);return 0}function rc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=Oa,T=Oa,U=Oa,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0;e=u;u=u+64|0;g=e+36|0;h=e+24|0;i=e+12|0;j=e;k=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[k>>2]=$(1.0);l=a+80|0;m=f[l>>2]|0;f[j>>2]=0;o=j+4|0;f[o>>2]=0;f[j+8>>2]=0;if(m){if(m>>>0>1073741823)mq(j);p=m<<2;q=dn(p)|0;f[j>>2]=q;r=q+(m<<2)|0;f[j+8>>2]=r;hj(q|0,0,p|0)|0;f[o>>2]=r;r=f[d>>2]|0;d=c+48|0;p=c+40|0;q=i+4|0;m=i+8|0;s=g+4|0;t=g+12|0;v=g+8|0;w=a+40|0;x=a+64|0;y=0;z=0;while(1){A=d;B=f[A>>2]|0;C=f[A+4>>2]|0;A=p;D=on(f[A>>2]|0,f[A+4>>2]|0,r+z|0,0)|0;A=Tn(D|0,I|0,B|0,C|0)|0;C=(f[f[c>>2]>>2]|0)+A|0;A=h;B=C;D=A+12|0;do{b[A>>0]=b[B>>0]|0;A=A+1|0;B=B+1|0}while((A|0)<(D|0));Xl(i|0,C|0,12)|0;B=_f(g,i)|0;if(!B){A=f[i>>2]|0;D=f[q>>2]|0;E=f[m>>2]|0;F=((A^318)+239^D)+239^E;G=f[s>>2]|0;H=(G|0)==0;a:do if(!H){J=G+-1|0;K=(J&G|0)==0;if(!K)if(F>>>0>>0)L=F;else L=(F>>>0)%(G>>>0)|0;else L=F&J;M=f[(f[g>>2]|0)+(L<<2)>>2]|0;if((M|0)!=0?(N=f[M>>2]|0,(N|0)!=0):0){if(K){K=N;while(1){M=f[K+4>>2]|0;if(!((M|0)==(F|0)|(M&J|0)==(L|0))){O=L;P=29;break a}if(((f[K+8>>2]|0)==(A|0)?(f[K+12>>2]|0)==(D|0):0)?(f[K+16>>2]|0)==(E|0):0)break a;K=f[K>>2]|0;if(!K){O=L;P=29;break a}}}else Q=N;while(1){K=f[Q+4>>2]|0;if((K|0)!=(F|0)){if(K>>>0>>0)R=K;else R=(K>>>0)%(G>>>0)|0;if((R|0)!=(L|0)){O=L;P=29;break a}}if(((f[Q+8>>2]|0)==(A|0)?(f[Q+12>>2]|0)==(D|0):0)?(f[Q+16>>2]|0)==(E|0):0)break a;Q=f[Q>>2]|0;if(!Q){O=L;P=29;break}}}else{O=L;P=29}}else{O=0;P=29}while(0);if((P|0)==29){P=0;C=dn(24)|0;f[C+8>>2]=A;f[C+12>>2]=D;f[C+16>>2]=E;f[C+20>>2]=y;f[C+4>>2]=F;f[C>>2]=0;S=$(((f[t>>2]|0)+1|0)>>>0);T=$(G>>>0);U=$(n[k>>2]);do if(H|$(U*T)>>0<3|(G+-1&G|0)!=0)&1;K=~~$(W($(S/U)))>>>0;Hh(g,N>>>0>>0?K:N);N=f[s>>2]|0;K=N+-1|0;if(!(K&N)){V=N;X=K&F;break}if(F>>>0>>0){V=N;X=F}else{V=N;X=(F>>>0)%(N>>>0)|0}}else{V=G;X=O}while(0);G=(f[g>>2]|0)+(X<<2)|0;F=f[G>>2]|0;if(!F){f[C>>2]=f[v>>2];f[v>>2]=C;f[G>>2]=v;G=f[C>>2]|0;if(G|0){H=f[G+4>>2]|0;G=V+-1|0;if(G&V)if(H>>>0>>0)Y=H;else Y=(H>>>0)%(V>>>0)|0;else Y=H&G;Z=(f[g>>2]|0)+(Y<<2)|0;P=42}}else{f[C>>2]=f[F>>2];Z=F;P=42}if((P|0)==42){P=0;f[Z>>2]=C}f[t>>2]=(f[t>>2]|0)+1}F=w;G=f[F>>2]|0;H=on(G|0,f[F+4>>2]|0,y|0,0)|0;Rg((f[f[x>>2]>>2]|0)+H|0,h|0,G|0)|0;G=f[j>>2]|0;f[G+(z<<2)>>2]=y;_=y+1|0;aa=G}else{G=f[j>>2]|0;f[G+(z<<2)>>2]=f[B+20>>2];_=y;aa=G}z=z+1|0;ba=f[l>>2]|0;if(z>>>0>=ba>>>0)break;else y=_}if((_|0)==(ba|0))ca=aa;else{y=a+84|0;if(!(b[y>>0]|0)){z=f[a+72>>2]|0;h=f[a+68>>2]|0;x=h;if((z|0)==(h|0))da=aa;else{w=z-h>>2;h=0;do{z=x+(h<<2)|0;f[z>>2]=f[aa+(f[z>>2]<<2)>>2];h=h+1|0}while(h>>>0>>0);da=aa}}else{b[y>>0]=0;y=a+68|0;aa=a+72|0;w=f[aa>>2]|0;h=f[y>>2]|0;x=w-h>>2;z=h;h=w;if(ba>>>0<=x>>>0)if(ba>>>0>>0?(w=z+(ba<<2)|0,(w|0)!=(h|0)):0){f[aa>>2]=h+(~((h+-4-w|0)>>>2)<<2);ea=ba}else ea=ba;else{kh(y,ba-x|0,1204);ea=f[l>>2]|0}x=f[j>>2]|0;if(!ea)da=x;else{j=f[a+68>>2]|0;a=0;do{f[j+(a<<2)>>2]=f[x+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);da=x}}f[l>>2]=_;ca=da}if(!ca)fa=_;else{da=f[o>>2]|0;if((da|0)!=(ca|0))f[o>>2]=da+(~((da+-4-ca|0)>>>2)<<2);br(ca);fa=_}}else fa=0;_=f[g+8>>2]|0;if(_|0){ca=_;do{_=ca;ca=f[ca>>2]|0;br(_)}while((ca|0)!=0)}ca=f[g>>2]|0;f[g>>2]=0;if(!ca){u=e;return fa|0}br(ca);u=e;return fa|0}function sc(a,c){a=a|0;c=c|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0;e=u;u=u+32|0;g=e+4|0;h=e;i=e+16|0;j=c+56|0;k=f[j>>2]|0;l=(f[k+100>>2]|0)-(f[k+96>>2]|0)|0;k=(l|0)/12|0;m=c+44|0;Nh(k,f[m>>2]|0)|0;Nh(f[(f[j>>2]|0)+80>>2]|0,f[m>>2]|0)|0;n=f[c+48>>2]|0;o=dn(32)|0;f[g>>2]=o;f[g+8>>2]=-2147483616;f[g+4>>2]=21;p=o;q=14562;r=p+21|0;do{b[p>>0]=b[q>>0]|0;p=p+1|0;q=q+1|0}while((p|0)<(r|0));b[o+21>>0]=0;o=Oj(n,g,0)|0;if((b[g+11>>0]|0)<0)br(f[g>>2]|0);n=f[m>>2]|0;if(o){b[i>>0]=0;o=n+16|0;q=f[o+4>>2]|0;if(!((q|0)>0|(q|0)==0&(f[o>>2]|0)>>>0>0)){f[h>>2]=f[n+4>>2];f[g>>2]=f[h>>2];ye(n,g,i,i+1|0)|0}Ye(c)|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}b[i>>0]=1;c=n+16|0;o=f[c+4>>2]|0;if(!((o|0)>0|(o|0)==0&(f[c>>2]|0)>>>0>0)){f[h>>2]=f[n+4>>2];f[g>>2]=f[h>>2];ye(n,g,i,i+1|0)|0}n=f[j>>2]|0;c=f[n+80>>2]|0;if(c>>>0<256){if(!l){f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}o=i+1|0;q=i+1|0;p=i+1|0;r=0;s=n;while(1){t=f[s+96>>2]|0;v=f[m>>2]|0;b[i>>0]=f[t+(r*12|0)>>2];w=v+16|0;x=f[w>>2]|0;y=f[w+4>>2]|0;if((y|0)>0|(y|0)==0&x>>>0>0){z=x;A=v;B=y}else{f[h>>2]=f[v+4>>2];f[g>>2]=f[h>>2];ye(v,g,i,p)|0;v=f[m>>2]|0;y=v+16|0;z=f[y>>2]|0;A=v;B=f[y+4>>2]|0}b[i>>0]=f[t+(r*12|0)+4>>2];if((B|0)>0|(B|0)==0&z>>>0>0){C=B;D=z;E=A}else{f[h>>2]=f[A+4>>2];f[g>>2]=f[h>>2];ye(A,g,i,q)|0;y=f[m>>2]|0;v=y+16|0;C=f[v+4>>2]|0;D=f[v>>2]|0;E=y}b[i>>0]=f[t+(r*12|0)+8>>2];if(!((C|0)>0|(C|0)==0&D>>>0>0)){f[h>>2]=f[E+4>>2];f[g>>2]=f[h>>2];ye(E,g,i,o)|0}t=r+1|0;if(t>>>0>=k>>>0)break;r=t;s=f[j>>2]|0}f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}if(c>>>0<65536){if(!l){f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}s=i+2|0;r=i+2|0;o=i+2|0;E=0;D=n;while(1){C=f[D+96>>2]|0;q=f[m>>2]|0;d[i>>1]=f[C+(E*12|0)>>2];A=q+16|0;z=f[A>>2]|0;B=f[A+4>>2]|0;if((B|0)>0|(B|0)==0&z>>>0>0){F=B;G=z;H=q}else{f[h>>2]=f[q+4>>2];f[g>>2]=f[h>>2];ye(q,g,i,o)|0;q=f[m>>2]|0;z=q+16|0;F=f[z+4>>2]|0;G=f[z>>2]|0;H=q}d[i>>1]=f[C+(E*12|0)+4>>2];if((F|0)>0|(F|0)==0&G>>>0>0){I=F;J=G;K=H}else{f[h>>2]=f[H+4>>2];f[g>>2]=f[h>>2];ye(H,g,i,r)|0;q=f[m>>2]|0;z=q+16|0;I=f[z+4>>2]|0;J=f[z>>2]|0;K=q}d[i>>1]=f[C+(E*12|0)+8>>2];if(!((I|0)>0|(I|0)==0&J>>>0>0)){f[h>>2]=f[K+4>>2];f[g>>2]=f[h>>2];ye(K,g,i,s)|0}C=E+1|0;if(C>>>0>=k>>>0)break;E=C;D=f[j>>2]|0}f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}D=(l|0)!=0;if(c>>>0<2097152){if(D){L=0;M=n}else{f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}while(1){c=f[M+96>>2]|0;Nh(f[c+(L*12|0)>>2]|0,f[m>>2]|0)|0;Nh(f[c+(L*12|0)+4>>2]|0,f[m>>2]|0)|0;Nh(f[c+(L*12|0)+8>>2]|0,f[m>>2]|0)|0;c=L+1|0;if(c>>>0>=k>>>0)break;L=c;M=f[j>>2]|0}f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}if(!D){f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}D=0;M=n;while(1){n=(f[M+96>>2]|0)+(D*12|0)|0;L=f[m>>2]|0;c=L+16|0;l=f[c+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[c>>2]|0)>>>0>0)){f[h>>2]=f[L+4>>2];f[g>>2]=f[h>>2];ye(L,g,n,n+12|0)|0}n=D+1|0;if(n>>>0>=k>>>0)break;D=n;M=f[j>>2]|0}f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}function tc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0;e=u;u=u+32|0;g=e+16|0;h=e+12|0;i=e+8|0;j=e+4|0;k=e;switch(f[c+28>>2]|0){case 9:{l=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=l;f[g>>2]=f[h>>2];m=ec(a,c,g)|0;break}case 2:{f[i>>2]=l;f[g>>2]=f[i>>2];m=Xb(a,c,g)|0;break}case 3:{f[j>>2]=l;f[g>>2]=f[j>>2];m=rc(a,c,g)|0;break}case 4:{f[k>>2]=l;f[g>>2]=f[k>>2];m=jc(a,c,g)|0;break}default:m=0}n=m;break}case 1:{m=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=m;f[g>>2]=f[h>>2];o=dc(a,c,g)|0;break}case 2:{f[i>>2]=m;f[g>>2]=f[i>>2];o=Yb(a,c,g)|0;break}case 3:{f[j>>2]=m;f[g>>2]=f[j>>2];o=pc(a,c,g)|0;break}case 4:{f[k>>2]=m;f[g>>2]=f[k>>2];o=ic(a,c,g)|0;break}default:o=0}n=o;break}case 11:case 2:{o=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=o;f[g>>2]=f[h>>2];p=dc(a,c,g)|0;break}case 2:{f[i>>2]=o;f[g>>2]=f[i>>2];p=Yb(a,c,g)|0;break}case 3:{f[j>>2]=o;f[g>>2]=f[j>>2];p=pc(a,c,g)|0;break}case 4:{f[k>>2]=o;f[g>>2]=f[k>>2];p=ic(a,c,g)|0;break}default:p=0}n=p;break}case 4:{p=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=p;f[g>>2]=f[h>>2];q=bc(a,c,g)|0;break}case 2:{f[i>>2]=p;f[g>>2]=f[i>>2];q=Vb(a,c,g)|0;break}case 3:{f[j>>2]=p;f[g>>2]=f[j>>2];q=kc(a,c,g)|0;break}case 4:{f[k>>2]=p;f[g>>2]=f[k>>2];q=gc(a,c,g)|0;break}default:q=0}n=q;break}case 3:{q=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=q;f[g>>2]=f[h>>2];r=bc(a,c,g)|0;break}case 2:{f[i>>2]=q;f[g>>2]=f[i>>2];r=Vb(a,c,g)|0;break}case 3:{f[j>>2]=q;f[g>>2]=f[j>>2];r=kc(a,c,g)|0;break}case 4:{f[k>>2]=q;f[g>>2]=f[k>>2];r=gc(a,c,g)|0;break}default:r=0}n=r;break}case 6:{r=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=r;f[g>>2]=f[h>>2];s=ec(a,c,g)|0;break}case 2:{f[i>>2]=r;f[g>>2]=f[i>>2];s=Xb(a,c,g)|0;break}case 3:{f[j>>2]=r;f[g>>2]=f[j>>2];s=rc(a,c,g)|0;break}case 4:{f[k>>2]=r;f[g>>2]=f[k>>2];s=jc(a,c,g)|0;break}default:s=0}n=s;break}case 5:{s=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=s;f[g>>2]=f[h>>2];t=ec(a,c,g)|0;break}case 2:{f[i>>2]=s;f[g>>2]=f[i>>2];t=Xb(a,c,g)|0;break}case 3:{f[j>>2]=s;f[g>>2]=f[j>>2];t=rc(a,c,g)|0;break}case 4:{f[k>>2]=s;f[g>>2]=f[k>>2];t=jc(a,c,g)|0;break}default:t=0}n=t;break}default:{v=-1;u=e;return v|0}}v=(n|0)==0?-1:n;u=e;return v|0}function uc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;e=u;u=u+32|0;g=e+16|0;h=e+12|0;i=e+29|0;j=e;k=e+28|0;if(!(f[(f[a+8>>2]|0)+80>>2]|0)){l=1;u=e;return l|0}b[i>>0]=-2;m=a+36|0;n=f[m>>2]|0;if(n)if(Ra[f[(f[a>>2]|0)+40>>2]&127](a,n)|0){n=f[m>>2]|0;o=(Qa[f[(f[n>>2]|0)+8>>2]&127](n)|0)&255;b[i>>0]=o;p=5}else q=0;else p=5;if((p|0)==5){o=d+16|0;n=o;r=f[n+4>>2]|0;if(!((r|0)>0|(r|0)==0&(f[n>>2]|0)>>>0>0)){f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];ye(d,g,i,i+1|0)|0}i=f[m>>2]|0;if(i|0?(n=(Qa[f[(f[i>>2]|0)+36>>2]&127](i)|0)&255,b[j>>0]=n,n=o,i=f[n+4>>2]|0,!((i|0)>0|(i|0)==0&(f[n>>2]|0)>>>0>0)):0){f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];ye(d,g,j,j+1|0)|0}n=f[a+32>>2]|0;i=b[n+24>>0]|0;r=X(f[n+80>>2]|0,i)|0;s=(f[f[n>>2]>>2]|0)+(f[n+48>>2]|0)|0;f[j>>2]=0;n=j+4|0;f[n>>2]=0;f[j+8>>2]=0;t=(r|0)==0;do if(!t)if(r>>>0>1073741823)mq(j);else{v=r<<2;w=dn(v)|0;f[j>>2]=w;x=w+(r<<2)|0;f[j+8>>2]=x;hj(w|0,0,v|0)|0;f[n>>2]=x;y=w;break}else y=0;while(0);w=f[m>>2]|0;do if(w){Ta[f[(f[w>>2]|0)+44>>2]&31](w,s,y,r,i,f[c>>2]|0)|0;x=f[m>>2]|0;if(!x){z=s;A=f[j>>2]|0;p=20;break}if(!(Qa[f[(f[x>>2]|0)+32>>2]&127](x)|0)){x=f[j>>2]|0;z=f[m>>2]|0?x:s;A=x;p=20}}else{z=s;A=y;p=20}while(0);if((p|0)==20)km(z,r,A);A=a+4|0;a=f[A>>2]|0;do if(a){z=f[a+48>>2]|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;y=dn(48)|0;f[g>>2]=y;f[g+8>>2]=-2147483600;f[g+4>>2]=34;s=y;w=9835;x=s+34|0;do{b[s>>0]=b[w>>0]|0;s=s+1|0;w=w+1|0}while((s|0)<(x|0));b[y+34>>0]=0;w=Oj(z,g,1)|0;if((b[g+11>>0]|0)<0)br(f[g>>2]|0);if(!w){if(!t){w=f[j>>2]|0;s=0;x=0;do{x=f[w+(s<<2)>>2]|x;s=s+1|0}while((s|0)!=(r|0));if(x)B=((_(x|0)|0)>>>3^3)+1|0;else B=1}else B=1;b[k>>0]=0;s=o;w=f[s>>2]|0;z=f[s+4>>2]|0;if((z|0)>0|(z|0)==0&w>>>0>0){C=z;D=w}else{f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];ye(d,g,k,k+1|0)|0;w=o;C=f[w+4>>2]|0;D=f[w>>2]|0}b[k>>0]=B;if(!((C|0)>0|(C|0)==0&D>>>0>0)){f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];ye(d,g,k,k+1|0)|0}if((B|0)==(Ll(5)|0)){w=f[j>>2]|0;z=o;s=f[z+4>>2]|0;if(!((s|0)>0|(s|0)==0&(f[z>>2]|0)>>>0>0)){f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];ye(d,g,w,w+(r<<2)|0)|0}p=48;break}if(t)p=48;else{w=d+4|0;z=0;do{s=(f[j>>2]|0)+(z<<2)|0;y=o;v=f[y+4>>2]|0;if(!((v|0)>0|(v|0)==0&(f[y>>2]|0)>>>0>0)){f[h>>2]=f[w>>2];f[g>>2]=f[h>>2];ye(d,g,s,s+B|0)|0}z=z+1|0}while(z>>>0>>0);p=48}}else p=27}else p=27;while(0);if((p|0)==27){b[k>>0]=1;r=o;o=f[r+4>>2]|0;if(!((o|0)>0|(o|0)==0&(f[r>>2]|0)>>>0>0)){f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];ye(d,g,k,k+1|0)|0}wp(g);k=f[A>>2]|0;if(k|0)Pj(g,10-(Yh(f[k+48>>2]|0)|0)|0)|0;k=Dc(f[j>>2]|0,X((f[c+4>>2]|0)-(f[c>>2]|0)>>2,i)|0,i,g,d)|0;sj(g,f[g+4>>2]|0);if(k)p=48;else E=0}if((p|0)==48){p=f[m>>2]|0;if(!p)E=1;else{Ra[f[(f[p>>2]|0)+40>>2]&127](p,d)|0;E=1}}d=f[j>>2]|0;if(d|0){j=f[n>>2]|0;if((j|0)!=(d|0))f[n>>2]=j+(~((j+-4-d|0)>>>2)<<2);br(d)}q=E}l=q;u=e;return l|0}function vc(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0;b=u;u=u+48|0;c=b+24|0;d=b+12|0;e=b;g=a+32|0;h=a+8|0;i=a+12|0;j=f[i>>2]|0;k=f[h>>2]|0;l=j-k>>2;m=a+36|0;n=f[m>>2]|0;o=f[g>>2]|0;p=n-o>>2;q=o;o=n;n=k;if(l>>>0<=p>>>0)if(l>>>0

>>0?(r=q+(l<<2)|0,(r|0)!=(o|0)):0){f[m>>2]=o+(~((o+-4-r|0)>>>2)<<2);s=n;t=k;v=j}else{s=n;t=k;v=j}else{oi(g,l-p|0);p=f[h>>2]|0;s=p;t=p;v=f[i>>2]|0}p=v-t|0;l=p>>2;f[c>>2]=0;j=c+4|0;f[j>>2]=0;k=c+8|0;f[k>>2]=0;if(l|0){if((p|0)<0)mq(c);p=((l+-1|0)>>>5)+1|0;n=dn(p<<2)|0;f[c>>2]=n;f[k>>2]=p;f[j>>2]=l;j=l>>>5;hj(n|0,0,j<<2|0)|0;p=l&31;l=n+(j<<2)|0;if(p|0)f[l>>2]=f[l>>2]&~(-1>>>(32-p|0))}p=a+20|0;l=0;j=s;s=t;t=v;while(1){if(l>>>0>2>>>0){w=0;x=0;y=l;z=s;A=j}else{B=25;break}while(1){v=x>>>5;n=1<<(x&31);do if(!(f[(f[c>>2]|0)+(v<<2)>>2]&n)){k=f[A+(x<<2)>>2]|0;if((f[k+8>>2]|0)!=(f[k+4>>2]|0)){r=0;o=1;m=A;q=k;while(1){k=f[(f[q+4>>2]|0)+(r<<2)>>2]|0;C=0;D=m;while(1){E=f[D+(x<<2)>>2]|0;if((C|0)>=(Ra[f[(f[E>>2]|0)+24>>2]&127](E,k)|0)){F=o;break}E=f[(f[h>>2]|0)+(x<<2)>>2]|0;G=Sa[f[(f[E>>2]|0)+28>>2]&31](E,k,C)|0;if((G|0)!=(x|0)?(E=f[(f[p>>2]|0)+(G<<2)>>2]|0,(1<<(E&31)&f[(f[c>>2]|0)+(E>>>5<<2)>>2]|0)==0):0){F=0;break}C=C+1|0;D=f[h>>2]|0}r=r+1|0;m=f[h>>2]|0;q=f[m+(x<<2)>>2]|0;if(r>>>0>=(f[q+8>>2]|0)-(f[q+4>>2]|0)>>2>>>0)break;else o=F}o=m;if(F)H=o;else{I=w;J=y;K=o;break}}else H=z;f[(f[g>>2]|0)+(y<<2)>>2]=x;o=(f[c>>2]|0)+(v<<2)|0;f[o>>2]=f[o>>2]|n;I=1;J=y+1|0;K=H}else{I=w;J=y;K=z}while(0);x=x+1|0;L=f[i>>2]|0;M=L-K>>2;A=K;if(x>>>0>=M>>>0)break;else{w=I;y=J;z=K}}if(J>>>0>>0&(I^1)){N=0;break}else{l=J;j=A;s=K;t=L}}if((B|0)==25){f[d>>2]=0;B=d+4|0;f[B>>2]=0;f[d+8>>2]=0;L=f[a+4>>2]|0;a=(f[L+12>>2]|0)-(f[L+8>>2]|0)|0;L=a>>2;f[e>>2]=0;K=e+4|0;f[K>>2]=0;A=e+8|0;f[A>>2]=0;if(L|0){if((a|0)<0)mq(e);a=((L+-1|0)>>>5)+1|0;J=dn(a<<2)|0;f[e>>2]=J;f[A>>2]=a;f[K>>2]=L;K=L>>>5;hj(J|0,0,K<<2|0)|0;a=L&31;L=J+(K<<2)|0;if(a|0)f[L>>2]=f[L>>2]&~(-1>>>(32-a|0))}a:do if((t|0)==(s|0))O=1;else{a=0;L=j;K=s;J=t;while(1){A=f[(f[g>>2]|0)+(a<<2)>>2]|0;l=f[L+(A<<2)>>2]|0;I=(f[l+8>>2]|0)-(f[l+4>>2]|0)|0;l=I>>2;if((I|0)<8){P=K;Q=J}else{I=f[B>>2]|0;M=f[d>>2]|0;z=I-M>>2;y=M;M=I;if(l>>>0<=z>>>0)if(l>>>0>>0?(I=y+(l<<2)|0,(I|0)!=(M|0)):0){f[B>>2]=M+(~((M+-4-I|0)>>>2)<<2);R=0}else R=0;else{oi(d,l-z|0);R=0}while(1){if((R|0)<(l|0)){S=0;T=0;U=R}else break;while(1){z=f[(f[h>>2]|0)+(A<<2)>>2]|0;I=f[(f[z+4>>2]|0)+(S<<2)>>2]|0;M=S>>>5;y=1<<(S&31);if(!(f[(f[e>>2]|0)+(M<<2)>>2]&y)){w=0;x=1;H=z;while(1){if((w|0)>=(Ra[f[(f[H>>2]|0)+24>>2]&127](H,I)|0)){V=x;break}z=f[(f[h>>2]|0)+(A<<2)>>2]|0;F=Sa[f[(f[z>>2]|0)+28>>2]&31](z,I,w)|0;z=(f[(f[e>>2]|0)+(F>>>5<<2)>>2]&1<<(F&31)|0)!=0;F=x&z;if(!z){V=F;break}w=w+1|0;x=F;H=f[(f[h>>2]|0)+(A<<2)>>2]|0}if(V){f[(f[d>>2]|0)+(U<<2)>>2]=S;H=(f[e>>2]|0)+(M<<2)|0;f[H>>2]=f[H>>2]|y;W=1;X=U+1|0}else{W=T;X=U}}else{W=T;X=U}S=S+1|0;if((S|0)>=(l|0))break;else{T=W;U=X}}if(W|(X|0)>=(l|0))R=X;else{O=0;break a}}Of(f[(f[h>>2]|0)+(A<<2)>>2]|0,d);P=f[h>>2]|0;Q=f[i>>2]|0}a=a+1|0;if(a>>>0>=Q-P>>2>>>0){O=1;break}else{L=P;K=P;J=Q}}}while(0);Q=f[e>>2]|0;if(Q|0)br(Q);Q=f[d>>2]|0;if(Q|0){d=f[B>>2]|0;if((d|0)!=(Q|0))f[B>>2]=d+(~((d+-4-Q|0)>>>2)<<2);br(Q)}N=O}O=f[c>>2]|0;if(!O){u=b;return N|0}br(O);u=b;return N|0} -function uj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0;e=u;u=u+16|0;g=e;h=a+4|0;f[h>>2]=c;i=f[c+64>>2]|0;c=((f[i+4>>2]|0)-(f[i>>2]|0)>>2>>>0)/3|0;b[g>>0]=0;Xg(a+24|0,c,g);c=f[h>>2]|0;h=(f[c+56>>2]|0)-(f[c+52>>2]|0)>>2;b[g>>0]=0;Xg(a+36|0,h,g);g=a+8|0;f[g>>2]=f[d>>2];f[g+4>>2]=f[d+4>>2];f[g+8>>2]=f[d+8>>2];f[g+12>>2]=f[d+12>>2];u=e;return}function vj(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;c=a;a:do if(!(c&3)){d=a;e=4}else{g=a;h=c;while(1){if(!(b[g>>0]|0)){i=h;break a}j=g+1|0;h=j;if(!(h&3)){d=j;e=4;break}else g=j}}while(0);if((e|0)==4){e=d;while(1){k=f[e>>2]|0;if(!((k&-2139062144^-2139062144)&k+-16843009))e=e+4|0;else break}if(!((k&255)<<24>>24))l=e;else{k=e;while(1){e=k+1|0;if(!(b[e>>0]|0)){l=e;break}else k=e}}i=l}return i-c|0}function wj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0;e=u;u=u+16|0;g=e;h=a+11|0;i=b[h>>0]|0;j=i<<24>>24<0;if(j)k=f[a+4>>2]|0;else k=i&255;do if(k>>>0>=c>>>0)if(j){i=(f[a>>2]|0)+c|0;b[g>>0]=0;Hp(i,g);f[a+4>>2]=c;break}else{b[g>>0]=0;Hp(a+c|0,g);b[h>>0]=c;break}else Xi(a,c-k|0,d)|0;while(0);u=e;return}function xj(a){a=a|0;var b=0,c=0,d=0;if(!a)return;b=a+88|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0){b=f[c+8>>2]|0;if(b|0){d=c+12|0;if((f[d>>2]|0)!=(b|0))f[d>>2]=b;br(b)}br(c)}c=f[a+68>>2]|0;if(c|0){b=a+72|0;d=f[b>>2]|0;if((d|0)!=(c|0))f[b>>2]=d+(~((d+-4-c|0)>>>2)<<2);br(c)}c=a+64|0;d=f[c>>2]|0;f[c>>2]=0;if(d|0){c=f[d>>2]|0;if(c|0){b=d+4|0;if((f[b>>2]|0)!=(c|0))f[b>>2]=c;br(c)}br(d)}br(a);return}function yj(a,c,d,e,g,h,i,j,k,l){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;j=j|0;k=k|0;l=l|0;var m=0,n=0,o=0;f[a>>2]=d;if(d|0){m=d+16|0;n=f[m+4>>2]|0;o=a+8|0;f[o>>2]=f[m>>2];f[o+4>>2]=n;n=d+24|0;d=f[n+4>>2]|0;o=a+16|0;f[o>>2]=f[n>>2];f[o+4>>2]=d}b[a+24>>0]=e;f[a+28>>2]=g;b[a+32>>0]=h&1;h=a+40|0;f[h>>2]=i;f[h+4>>2]=j;j=a+48|0;f[j>>2]=k;f[j+4>>2]=l;f[a+56>>2]=c;return}function zj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;if((f[c+76>>2]|0)>=0?(gr(c)|0)!=0:0){d=a&255;e=a&255;if((e|0)!=(b[c+75>>0]|0)?(g=c+20|0,h=f[g>>2]|0,h>>>0<(f[c+16>>2]|0)>>>0):0){f[g>>2]=h+1;b[h>>0]=d;i=e}else i=Bj(c,a)|0;fr(c);j=i}else k=3;do if((k|0)==3){i=a&255;e=a&255;if((e|0)!=(b[c+75>>0]|0)?(d=c+20|0,h=f[d>>2]|0,h>>>0<(f[c+16>>2]|0)>>>0):0){f[d>>2]=h+1;b[h>>0]=i;j=e;break}j=Bj(c,a)|0}while(0);return j|0}function Aj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+8|0;i=f[a+4>>2]|0;if((i|0)==-1){j=0;u=d;return j|0}b[h>>0]=i;i=c+16|0;a=f[i+4>>2]|0;if(!((a|0)>0|(a|0)==0&(f[i>>2]|0)>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];ye(c,e,h,h+1|0)|0}j=1;u=d;return j|0}function Bj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0;d=u;u=u+16|0;e=d;g=c&255;b[e>>0]=g;i=a+16|0;j=f[i>>2]|0;if(!j)if(!(pl(a)|0)){k=f[i>>2]|0;l=4}else m=-1;else{k=j;l=4}do if((l|0)==4){j=a+20|0;i=f[j>>2]|0;if(i>>>0>>0?(n=c&255,(n|0)!=(b[a+75>>0]|0)):0){f[j>>2]=i+1;b[i>>0]=g;m=n;break}if((Sa[f[a+36>>2]&31](a,e,1)|0)==1)m=h[e>>0]|0;else m=-1}while(0);u=d;return m|0}function Cj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0;c=dn(88)|0;d=c+60|0;e=c;g=e+60|0;do{f[e>>2]=0;e=e+4|0}while((e|0)<(g|0));f[d>>2]=c;d=c+64|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;d=Kf(c,b)|0;f[a>>2]=d?c:0;a=d?0:c;if(d)return;ui(a);br(a);return}function Dj(a,b){a=a|0;b=b|0;if(!b)return;else{Dj(a,f[b>>2]|0);Dj(a,f[b+4>>2]|0);sj(b+20|0,f[b+24>>2]|0);br(b);return}}function Ej(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0;e=u;u=u+16|0;g=e;h=a+4|0;f[h>>2]=c;i=((f[c+4>>2]|0)-(f[c>>2]|0)>>2>>>0)/3|0;b[g>>0]=0;Xg(a+24|0,i,g);i=f[h>>2]|0;h=(f[i+28>>2]|0)-(f[i+24>>2]|0)>>2;b[g>>0]=0;Xg(a+36|0,h,g);g=a+8|0;f[g>>2]=f[d>>2];f[g+4>>2]=f[d+4>>2];f[g+8>>2]=f[d+8>>2];f[g+12>>2]=f[d+12>>2];u=e;return}function Fj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0;e=u;u=u+16|0;g=e;h=e+4|0;f[g>>2]=c;c=a+4|0;a=dn(32)|0;f[h>>2]=a;f[h+8>>2]=-2147483616;f[h+4>>2]=17;i=a;j=12932;k=i+17|0;do{b[i>>0]=b[j>>0]|0;i=i+1|0;j=j+1|0}while((i|0)<(k|0));b[a+17>>0]=0;Nj(wd(c,g)|0,h,d);if((b[h+11>>0]|0)>=0){u=e;return}br(f[h>>2]|0);u=e;return}function Gj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;c=f[a+16>>2]|0;if(((f[a+20>>2]|0)-c>>2|0)<=(b|0)){d=0;return d|0}e=f[c+(b<<2)>>2]|0;if((e|0)<0){d=0;return d|0}b=a+48|0;if((f[a+52>>2]|0)>>>0<=e>>>0)pe(b,e+1|0,0);c=(f[b>>2]|0)+(e>>>5<<2)|0;f[c>>2]=f[c>>2]|1<<(e&31);c=f[a+36>>2]|0;if((f[a+40>>2]|0)-c>>2>>>0<=e>>>0){d=1;return d|0}Pp(f[c+(e<<2)>>2]|0);d=1;return d|0}function Hj(a){a=a|0;if(!a)return;f[a>>2]=1136;sj(a+28|0,f[a+32>>2]|0);nj(a+16|0,f[a+20>>2]|0);sj(a+4|0,f[a+8>>2]|0);br(a);return}function Ij(a){a=a|0;f[a>>2]=1136;sj(a+28|0,f[a+32>>2]|0);nj(a+16|0,f[a+20>>2]|0);sj(a+4|0,f[a+8>>2]|0);return}function Jj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0;if(c>>>0>0|(c|0)==0&a>>>0>4294967295){e=d;f=a;g=c;while(1){c=an(f|0,g|0,10,0)|0;e=e+-1|0;b[e>>0]=c&255|48;c=f;f=up(f|0,g|0,10,0)|0;if(!(g>>>0>9|(g|0)==9&c>>>0>4294967295))break;else g=I}h=f;i=e}else{h=a;i=d}if(!h)j=i;else{d=h;h=i;while(1){i=h+-1|0;b[i>>0]=(d>>>0)%10|0|48;if(d>>>0<10){j=i;break}else{d=(d>>>0)/10|0;h=i}}}return j|0}function Kj(a){a=a|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;c=a;while(1){d=c+1|0;if(!(tq(b[c>>0]|0)|0))break;else c=d}a=b[c>>0]|0;switch(a<<24>>24|0){case 45:{e=1;f=5;break}case 43:{e=0;f=5;break}default:{g=0;h=c;i=a}}if((f|0)==5){g=e;h=d;i=b[d>>0]|0}if(!(Pq(i<<24>>24)|0))j=0;else{i=0;d=h;while(1){h=(i*10|0)+48-(b[d>>0]|0)|0;d=d+1|0;if(!(Pq(b[d>>0]|0)|0)){j=h;break}else i=h}}return (g|0?j:0-j|0)|0}function Lj(a,c,d){a=a|0;c=c|0;d=$(d);var e=0,g=0,h=0;e=u;u=u+16|0;g=e;cl(g,d);h=mi(a,c)|0;c=h+11|0;if((b[c>>0]|0)<0){b[f[h>>2]>>0]=0;f[h+4>>2]=0}else{b[h>>0]=0;b[c>>0]=0}Ng(h,0);f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];u=e;return}function Mj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0;e=u;u=u+16|0;g=e;fl(g,d&1);d=mi(a,c)|0;c=d+11|0;if((b[c>>0]|0)<0){b[f[d>>2]>>0]=0;f[d+4>>2]=0}else{b[d>>0]=0;b[c>>0]=0}Ng(d,0);f[d>>2]=f[g>>2];f[d+4>>2]=f[g+4>>2];f[d+8>>2]=f[g+8>>2];u=e;return}function Nj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0;e=u;u=u+16|0;g=e;fl(g,d);d=mi(a,c)|0;c=d+11|0;if((b[c>>0]|0)<0){b[f[d>>2]>>0]=0;f[d+4>>2]=0}else{b[d>>0]=0;b[c>>0]=0}Ng(d,0);f[d>>2]=f[g>>2];f[d+4>>2]=f[g+4>>2];f[d+8>>2]=f[g+8>>2];u=e;return}function Oj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0;e=zg(a,c)|0;if((e|0)==(a+4|0)){g=-1;h=(g|0)==-1;i=(g|0)!=0;j=h?d:i;return j|0}a=e+28|0;if((b[a+11>>0]|0)<0)k=f[a>>2]|0;else k=a;g=Kj(k)|0;h=(g|0)==-1;i=(g|0)!=0;j=h?d:i;return j|0}function Pj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+16|0;e=d;if(c>>>0>10){g=0;u=d;return g|0}h=dn(48)|0;f[e>>2]=h;f[e+8>>2]=-2147483600;f[e+4>>2]=33;i=h;j=13067;k=i+33|0;do{b[i>>0]=b[j>>0]|0;i=i+1|0;j=j+1|0}while((i|0)<(k|0));b[h+33>>0]=0;Nj(a,e,c);if((b[e+11>>0]|0)<0)br(f[e>>2]|0);g=1;u=d;return g|0}function Qj(a){a=a|0;f[a>>2]=1136;sj(a+28|0,f[a+32>>2]|0);nj(a+16|0,f[a+20>>2]|0);sj(a+4|0,f[a+8>>2]|0);br(a);return}function Rj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0;c=f[b>>2]|0;if((c|0)==-1)return 1;b=c*3|0;if((b|0)==-1)return 1;c=f[a>>2]|0;a=f[c+(b<<2)>>2]|0;d=b+1|0;e=((d>>>0)%3|0|0)==0?b+-2|0:d;if((e|0)==-1)g=-1;else g=f[c+(e<<2)>>2]|0;e=(((b>>>0)%3|0|0)==0?2:-1)+b|0;if((e|0)==-1)h=-1;else h=f[c+(e<<2)>>2]|0;if((a|0)==(g|0))return 1;else return (a|0)==(h|0)|(g|0)==(h|0)|0;return 0}function Sj(a){a=a|0;f[a>>2]=2968;sj(a+28|0,f[a+32>>2]|0);Dj(a+16|0,f[a+20>>2]|0);sj(a+4|0,f[a+8>>2]|0);return}function Tj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0;d=0;while(1){if((h[15560+d>>0]|0)==(a|0)){e=2;break}g=d+1|0;if((g|0)==87){i=15648;j=87;e=5;break}else d=g}if((e|0)==2)if(!d)k=15648;else{i=15648;j=d;e=5}if((e|0)==5)while(1){e=0;d=i;do{a=d;d=d+1|0}while((b[a>>0]|0)!=0);j=j+-1|0;if(!j){k=d;break}else{i=d;e=5}}return yq(k,f[c+20>>2]|0)|0}function Uj(a,b){a=+a;b=b|0;var c=0,d=0,e=0,g=0.0,h=0.0,i=0,j=0.0;p[s>>3]=a;c=f[s>>2]|0;d=f[s+4>>2]|0;e=Wn(c|0,d|0,52)|0;switch(e&2047){case 0:{if(a!=0.0){g=+Uj(a*18446744073709551616.0,b);h=g;i=(f[b>>2]|0)+-64|0}else{h=a;i=0}f[b>>2]=i;j=h;break}case 2047:{j=a;break}default:{f[b>>2]=(e&2047)+-1022;f[s>>2]=c;f[s+4>>2]=d&-2146435073|1071644672;j=+p[s>>3]}}return +j}function Vj(a){a=a|0;f[a>>2]=2968;sj(a+28|0,f[a+32>>2]|0);Dj(a+16|0,f[a+20>>2]|0);sj(a+4|0,f[a+8>>2]|0);br(a);return}function Wj(a,b){a=+a;b=b|0;var c=0.0,d=0,e=0,g=0.0,h=0;if((b|0)<=1023)if((b|0)<-1022){c=a*2.2250738585072014e-308;d=(b|0)<-2044;e=b+2044|0;g=d?c*2.2250738585072014e-308:c;h=d?((e|0)>-1022?e:-1022):b+1022|0}else{g=a;h=b}else{c=a*8988465674311579538646525.0e283;e=(b|0)>2046;d=b+-2046|0;g=e?c*8988465674311579538646525.0e283:c;h=e?((d|0)<1023?d:1023):b+-1023|0}b=Rn(h+1023|0,0,52)|0;h=I;f[s>>2]=b;f[s+4>>2]=h;return +(g*+p[s>>3])}function Xj(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;if(!(f[a+80>>2]|0)){b=0;return b|0}c=a+8|0;d=a+12|0;a=f[c>>2]|0;if(((f[d>>2]|0)-a|0)>0){e=0;g=a}else{b=1;return b|0}while(1){a=f[g+(e<<2)>>2]|0;e=e+1|0;if(!(yl(a,a)|0)){b=0;h=5;break}g=f[c>>2]|0;if((e|0)>=((f[d>>2]|0)-g>>2|0)){b=1;h=5;break}}if((h|0)==5)return b|0;return 0}function Yj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0;c=a+36|0;d=a+40|0;e=f[c>>2]|0;if((f[d>>2]|0)==(e|0)){g=1;return g|0}h=a+60|0;a=0;i=e;while(1){e=f[i+(a<<2)>>2]|0;a=a+1|0;if(!(Sa[f[(f[e>>2]|0)+20>>2]&31](e,h,b)|0)){g=0;j=5;break}i=f[c>>2]|0;if(a>>>0>=(f[d>>2]|0)-i>>2>>>0){g=1;j=5;break}}if((j|0)==5)return g|0;return 0}function Zj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=a+36|0;d=a+40|0;a=f[c>>2]|0;if((f[d>>2]|0)==(a|0)){e=1;return e|0}else{g=0;h=a}while(1){a=f[h+(g<<2)>>2]|0;g=g+1|0;if(!(Ra[f[(f[a>>2]|0)+24>>2]&127](a,b)|0)){e=0;i=4;break}h=f[c>>2]|0;if(g>>>0>=(f[d>>2]|0)-h>>2>>>0){e=1;i=4;break}}if((i|0)==4)return e|0;return 0}function _j(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0;f[a>>2]=0;c=a+4|0;f[c>>2]=0;f[a+8>>2]=0;d=b+4|0;e=(f[d>>2]|0)-(f[b>>2]|0)|0;g=e>>2;if(!g)return;if(g>>>0>1073741823)mq(a);h=dn(e)|0;f[c>>2]=h;f[a>>2]=h;f[a+8>>2]=h+(g<<2);g=f[b>>2]|0;b=(f[d>>2]|0)-g|0;if((b|0)<=0)return;Rg(h|0,g|0,b|0)|0;f[c>>2]=h+(b>>>2<<2);return}function $j(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0;c=a+8|0;d=f[a>>2]|0;if((f[c>>2]|0)-d>>2>>>0>=b>>>0)return;e=a+4|0;if(b>>>0>1073741823){g=ra(8)|0;Wo(g,14941);f[g>>2]=6944;va(g|0,1080,114)}g=(f[e>>2]|0)-d|0;h=dn(b<<2)|0;if((g|0)>0)Rg(h|0,d|0,g|0)|0;f[a>>2]=h;f[e>>2]=h+(g>>2<<2);f[c>>2]=h+(b<<2);if(!d)return;br(d);return}function ak(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0;b=a+36|0;c=a+40|0;d=f[b>>2]|0;if((f[c>>2]|0)==(d|0)){e=1;return e|0}g=a+60|0;a=0;h=d;while(1){d=f[h+(a<<2)>>2]|0;a=a+1|0;if(!(Ra[f[(f[d>>2]|0)+16>>2]&127](d,g)|0)){e=0;i=5;break}h=f[b>>2]|0;if(a>>>0>=(f[c>>2]|0)-h>>2>>>0){e=1;i=5;break}}if((i|0)==5)return e|0;return 0}function bk(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;d=u;u=u+16|0;e=d;g=dn(16)|0;f[e>>2]=g;f[e+8>>2]=-2147483632;f[e+4>>2]=15;h=g;i=12916;j=h+15|0;do{b[h>>0]=b[i>>0]|0;h=h+1|0;i=i+1|0}while((h|0)<(j|0));b[g+15>>0]=0;Nj(a+4|0,e,c);if((b[e+11>>0]|0)>=0){u=d;return}br(f[e>>2]|0);u=d;return}function ck(a,b){a=a|0;b=b|0;var c=0,d=0;f[a>>2]=0;f[a+4>>2]=b;if(b|0?(c=mh(b,992,976,0)|0,c|0):0){d=dn(56)|0;Gm(d,c);c=f[a>>2]|0;f[a>>2]=d;if(!c)return;Va[f[(f[c>>2]|0)+4>>2]&127](c);return}c=dn(56)|0;Am(c,b);b=f[a>>2]|0;f[a>>2]=c;if(!b)return;Va[f[(f[b>>2]|0)+4>>2]&127](b);return}function dk(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0;d=f[a+176>>2]|0;e=f[a+172>>2]|0;a=e;if((d|0)==(e|0))return 0;g=(d-e|0)/136|0;e=0;while(1){if((f[a+(e*136|0)>>2]|0)==(c|0)){h=4;break}d=e+1|0;if(d>>>0>>0)e=d;else{h=6;break}}if((h|0)==4)return ((b[a+(e*136|0)+100>>0]|0)==0?0:a+(e*136|0)+4|0)|0;else if((h|0)==6)return 0;return 0}function ek(a,b){a=a|0;b=b|0;var c=0,d=0;c=f[a+72>>2]|0;if(!c){d=0;return d|0}f[c+4>>2]=a+60;if(!(Qa[f[(f[c>>2]|0)+12>>2]&127](c)|0)){d=0;return d|0}if(!(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)){d=0;return d|0}if(!(Ra[f[(f[a>>2]|0)+44>>2]&127](a,b)|0)){d=0;return d|0}d=Ra[f[(f[a>>2]|0)+48>>2]&127](a,b)|0;return d|0}function fk(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;f[a>>2]=0;d=a+4|0;f[d>>2]=0;f[a+8>>2]=0;if(!b)return;if(b>>>0>357913941)mq(a);e=dn(b*12|0)|0;f[d>>2]=e;f[a>>2]=e;f[a+8>>2]=e+(b*12|0);a=b;b=e;do{_j(b,c);b=(f[d>>2]|0)+12|0;f[d>>2]=b;a=a+-1|0}while((a|0)!=0);return}function gk(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0;c=f[b>>2]|0;if(!c){d=0;return d|0}e=a+44|0;g=f[e>>2]|0;if(g>>>0<(f[a+48>>2]|0)>>>0){f[b>>2]=0;f[g>>2]=c;f[e>>2]=(f[e>>2]|0)+4;d=1;return d|0}else{Bg(a+40|0,b);d=1;return d|0}return 0}function hk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2880;f[a+40>>2]=1180;b=f[a+48>>2]|0;if(b|0){c=a+52|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}f[a>>2]=1460;b=a+36|0;d=f[b>>2]|0;f[b>>2]=0;if(!d){zi(a);br(a);return}Va[f[(f[d>>2]|0)+4>>2]&127](d);zi(a);br(a);return}function ik(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0;f[c>>2]=2;d=a+4|0;a=c+8|0;e=f[a>>2]|0;g=(f[c+12>>2]|0)-e|0;if(g>>>0<4294967292){Bk(a,g+4|0,0);i=f[a>>2]|0}else i=e;e=i+g|0;g=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;b[e>>0]=g;b[e+1>>0]=g>>8;b[e+2>>0]=g>>16;b[e+3>>0]=g>>24;return}function jk(a){a=a|0;var b=0,c=0,d=0,e=0;f[a>>2]=3164;b=a+8|0;f[b>>2]=3188;c=f[a+56>>2]|0;if(c|0){d=a+60|0;e=f[d>>2]|0;if((e|0)!=(c|0))f[d>>2]=e+(~((e+-4-c|0)>>>2)<<2);br(c)}f[b>>2]=3208;b=f[a+44>>2]|0;if(b|0)br(b);b=f[a+32>>2]|0;if(!b){br(a);return}br(b);br(a);return}function kk(a,c,d){a=a|0;c=c|0;d=$(d);var e=0,g=Oa,h=0;e=zg(a,c)|0;if((e|0)==(a+4|0)){g=d;return $(g)}a=e+28|0;if((b[a+11>>0]|0)<0)h=f[a>>2]|0;else h=a;g=$(+Xq(h));return $(g)}function lk(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;b=u;u=u+16|0;c=b;d=c;f[d>>2]=0;f[d+4>>2]=0;cf(a,2,c);c=f[a+12>>2]|0;d=a+16|0;e=f[d>>2]|0;if((e|0)==(c|0)){g=a+24|0;f[g>>2]=0;h=a+28|0;f[h>>2]=0;u=b;return}f[d>>2]=e+(~((e+-4-c|0)>>>2)<<2);g=a+24|0;f[g>>2]=0;h=a+28|0;f[h>>2]=0;u=b;return}function mk(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0;c=f[a+176>>2]|0;d=f[a+172>>2]|0;e=d;a:do if((c|0)!=(d|0)){g=(c-d|0)/136|0;h=0;while(1){if((f[e+(h*136|0)>>2]|0)==(b|0))break;i=h+1|0;if(i>>>0>>0)h=i;else break a}j=e+(h*136|0)+104|0;return j|0}while(0);j=a+40|0;return j|0}function nk(a){a=a|0;var b=0,c=0,d=0,e=0;f[a>>2]=3232;b=a+8|0;f[b>>2]=3256;c=f[a+56>>2]|0;if(c|0){d=a+60|0;e=f[d>>2]|0;if((e|0)!=(c|0))f[d>>2]=e+(~((e+-4-c|0)>>>2)<<2);br(c)}f[b>>2]=3276;b=f[a+44>>2]|0;if(b|0)br(b);b=f[a+32>>2]|0;if(!b){br(a);return}br(b);br(a);return}function ok(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2880;f[a+40>>2]=1180;b=f[a+48>>2]|0;if(b|0){c=a+52|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}f[a>>2]=1460;b=a+36|0;d=f[b>>2]|0;f[b>>2]=0;if(!d){zi(a);return}Va[f[(f[d>>2]|0)+4>>2]&127](d);zi(a);return}function pk(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0;Ec(a,b);if((b|0)<=-1)return;c=a+88|0;d=f[c>>2]|0;e=f[a+84>>2]|0;if((d-e>>2|0)<=(b|0))return;a=e+(b<<2)|0;b=a+4|0;e=d-b|0;g=e>>2;if(!g)h=d;else{Xl(a|0,b|0,e|0)|0;h=f[c>>2]|0}e=a+(g<<2)|0;if((h|0)==(e|0))return;f[c>>2]=h+(~((h+-4-e|0)>>>2)<<2);return}function qk(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;b=f[a+32>>2]|0;c=f[a+36>>2]|0;if((b|0)==(c|0)){d=1;return d|0}e=a+8|0;g=a+44|0;a=b;while(1){b=f[(f[e>>2]|0)+(f[a>>2]<<2)>>2]|0;a=a+4|0;if(!(Ra[f[(f[b>>2]|0)+20>>2]&127](b,f[g>>2]|0)|0)){d=0;h=5;break}if((a|0)==(c|0)){d=1;h=5;break}}if((h|0)==5)return d|0;return 0}function rk(a){a=a|0;var b=0,c=0,d=0,e=0;f[a>>2]=3164;b=a+8|0;f[b>>2]=3188;c=f[a+56>>2]|0;if(c|0){d=a+60|0;e=f[d>>2]|0;if((e|0)!=(c|0))f[d>>2]=e+(~((e+-4-c|0)>>>2)<<2);br(c)}f[b>>2]=3208;b=f[a+44>>2]|0;if(b|0)br(b);b=f[a+32>>2]|0;if(!b)return;br(b);return}function sk(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0.0;d=u;u=u+128|0;e=d;g=e;h=g+124|0;do{f[g>>2]=0;g=g+4|0}while((g|0)<(h|0));g=e+4|0;f[g>>2]=a;h=e+8|0;f[h>>2]=-1;f[e+44>>2]=a;f[e+76>>2]=-1;Rm(e,0);i=+Lc(e,c,1);c=(f[g>>2]|0)-(f[h>>2]|0)+(f[e+108>>2]|0)|0;if(b|0)f[b>>2]=c|0?a+c|0:a;u=d;return +i}function tk(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0;a=c+16|0;g=f[a>>2]|0;do if(g){if((g|0)!=(d|0)){h=c+36|0;f[h>>2]=(f[h>>2]|0)+1;f[c+24>>2]=2;b[c+54>>0]=1;break}h=c+24|0;if((f[h>>2]|0)==2)f[h>>2]=e}else{f[a>>2]=d;f[c+24>>2]=e;f[c+36>>2]=1}while(0);return}function uk(a){a=a|0;var c=0,d=0,e=0;c=a+74|0;d=b[c>>0]|0;b[c>>0]=d+255|d;d=a+20|0;c=a+28|0;if((f[d>>2]|0)>>>0>(f[c>>2]|0)>>>0)Sa[f[a+36>>2]&31](a,0,0)|0;f[a+16>>2]=0;f[c>>2]=0;f[d>>2]=0;d=f[a>>2]|0;if(!(d&4)){c=(f[a+44>>2]|0)+(f[a+48>>2]|0)|0;f[a+8>>2]=c;f[a+4>>2]=c;e=d<<27>>31}else{f[a>>2]=d|32;e=-1}return e|0}function vk(a,c){a=a|0;c=c|0;var d=0,e=0,g=0;d=zg(a,c)|0;if((d|0)==(a+4|0)){e=0;return e|0}a=d+28|0;if((b[a+11>>0]|0)<0)g=f[a>>2]|0;else g=a;e=((Kj(g)|0)+1|0)>>>0>1;return e|0}function wk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=5840;b=f[a+96>>2]|0;if(b|0){c=a+100|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~(((d+-12-b|0)>>>0)/12|0)*12|0);br(b)}b=f[a+84>>2]|0;if(!b){wg(a);br(a);return}d=a+88|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b);wg(a);br(a);return}function xk(a){a=a|0;var b=0,c=0,d=0,e=0;f[a>>2]=3232;b=a+8|0;f[b>>2]=3256;c=f[a+56>>2]|0;if(c|0){d=a+60|0;e=f[d>>2]|0;if((e|0)!=(c|0))f[d>>2]=e+(~((e+-4-c|0)>>>2)<<2);br(c)}f[b>>2]=3276;b=f[a+44>>2]|0;if(b|0)br(b);b=f[a+32>>2]|0;if(!b)return;br(b);return}function yk(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0;e=zg(a,c)|0;if((e|0)==(a+4|0)){g=d;return g|0}d=e+28|0;if((b[d+11>>0]|0)<0)h=f[d>>2]|0;else h=d;g=Kj(h)|0;return g|0}function zk(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0;e=b>>31|((b|0)<0?-1:0)<<1;f=((b|0)<0?-1:0)>>31|((b|0)<0?-1:0)<<1;g=d>>31|((d|0)<0?-1:0)<<1;h=((d|0)<0?-1:0)>>31|((d|0)<0?-1:0)<<1;i=Vn(e^a|0,f^b|0,e|0,f|0)|0;b=I;a=g^e;e=h^f;return Vn((Bd(i,b,Vn(g^c|0,h^d|0,g|0,h|0)|0,I,0)|0)^a|0,I^e|0,a|0,e|0)|0}function Ak(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0;f[a>>2]=b;h=b+16|0;i=f[h+4>>2]|0;j=a+8|0;f[j>>2]=f[h>>2];f[j+4>>2]=i;i=b+24|0;b=f[i+4>>2]|0;j=a+16|0;f[j>>2]=f[i>>2];f[j+4>>2]=b;b=a+40|0;f[b>>2]=c;f[b+4>>2]=d;d=a+48|0;f[d>>2]=e;f[d+4>>2]=g;return}function Bk(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0;c=a+4|0;d=f[c>>2]|0;e=f[a>>2]|0;g=d-e|0;h=e;e=d;if(g>>>0>=b>>>0){if(g>>>0>b>>>0?(d=h+b|0,(d|0)!=(e|0)):0)f[c>>2]=d}else ri(a,b-g|0);g=a+24|0;a=g;b=Tn(f[a>>2]|0,f[a+4>>2]|0,1,0)|0;a=g;f[a>>2]=b;f[a+4>>2]=I;return}function Ck(a,c){a=a|0;c=c|0;var d=0,e=0,g=0;d=zg(a,c)|0;if((d|0)==(a+4|0)){e=-1;return e|0}a=d+28|0;if((b[a+11>>0]|0)<0)g=f[a>>2]|0;else g=a;e=Kj(g)|0;return e|0}function Dk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=5840;b=f[a+96>>2]|0;if(b|0){c=a+100|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~(((d+-12-b|0)>>>0)/12|0)*12|0);br(b)}b=f[a+84>>2]|0;if(!b){wg(a);return}d=a+88|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);br(b);wg(a);return}function Ek(a){a=a|0;var c=0,d=0,e=0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;f[a+16>>2]=0;f[a+20>>2]=0;b[a+24>>0]=1;c=a+68|0;d=a+28|0;e=d+40|0;do{f[d>>2]=0;d=d+4|0}while((d|0)<(e|0));f[c>>2]=a;c=a+72|0;f[c>>2]=0;f[c+4>>2]=0;f[c+8>>2]=0;f[c+12>>2]=0;f[c+16>>2]=0;f[c+20>>2]=0;return}function Fk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3188;b=f[a+48>>2]|0;if(b|0){c=a+52|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}f[a>>2]=3208;b=f[a+36>>2]|0;if(b|0)br(b);b=f[a+24>>2]|0;if(!b){br(a);return}br(b);br(a);return}function Gk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2004;b=f[a+76>>2]|0;if(b|0)br(b);f[a>>2]=1528;b=f[a+32>>2]|0;if(!b){br(a);return}c=a+36|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b);br(a);return}function Hk(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var f=0,g=0,h=0;f=u;u=u+256|0;g=f;if((c|0)>(d|0)&(e&73728|0)==0){e=c-d|0;hj(g|0,b<<24>>24|0,(e>>>0<256?e:256)|0)|0;if(e>>>0>255){b=c-d|0;d=e;do{ep(a,g,256);d=d+-256|0}while(d>>>0>255);h=b&255}else h=e;ep(a,g,h)}u=f;return}function Ik(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3256;b=f[a+48>>2]|0;if(b|0){c=a+52|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}f[a>>2]=3276;b=f[a+36>>2]|0;if(b|0)br(b);b=f[a+24>>2]|0;if(!b){br(a);return}br(b);br(a);return}function Jk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=1696;b=f[a+76>>2]|0;if(b|0)br(b);f[a>>2]=1528;b=f[a+32>>2]|0;if(!b){br(a);return}c=a+36|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b);br(a);return}function Kk(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0;if(qp(a,f[b+8>>2]|0,g)|0)fj(0,b,c,d,e);else{h=f[a+8>>2]|0;_a[f[(f[h>>2]|0)+20>>2]&3](h,b,c,d,e,g)}return}function Lk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3188;b=f[a+48>>2]|0;if(b|0){c=a+52|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}f[a>>2]=3208;b=f[a+36>>2]|0;if(b|0)br(b);b=f[a+24>>2]|0;if(!b)return;br(b);return}function Mk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2060;tj(a+108|0);f[a>>2]=1528;b=f[a+32>>2]|0;if(!b){br(a);return}c=a+36|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b);br(a);return}function Nk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3256;b=f[a+48>>2]|0;if(b|0){c=a+52|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}f[a>>2]=3276;b=f[a+36>>2]|0;if(b|0)br(b);b=f[a+24>>2]|0;if(!b)return;br(b);return}function Ok(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=1752;tj(a+108|0);f[a>>2]=1528;b=f[a+32>>2]|0;if(!b){br(a);return}c=a+36|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b);br(a);return}function Pk(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0;a:do if(!d)e=0;else{f=a;g=d;h=c;while(1){i=b[f>>0]|0;j=b[h>>0]|0;if(i<<24>>24!=j<<24>>24)break;g=g+-1|0;if(!g){e=0;break a}else{f=f+1|0;h=h+1|0}}e=(i&255)-(j&255)|0}while(0);return e|0}function Qk(a){a=a|0;if(!(f[a+44>>2]|0))return 0;if(!(f[a+48>>2]|0))return 0;if(!(f[a+24>>2]|0))return 0;if(!(f[a+28>>2]|0))return 0;if(!(f[a+32>>2]|0))return 0;else return (f[a+36>>2]|0)!=0|0;return 0}function Rk(a){a=a|0;var b=0,c=0;f[a>>2]=2004;b=f[a+76>>2]|0;if(b|0)br(b);f[a>>2]=1528;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);br(b);return}function Sk(a){a=a|0;var c=0,d=0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;c=0;while(1){if((c|0)==3)break;f[a+(c<<2)>>2]=0;c=c+1|0}if((b[a+11>>0]|0)<0)d=(f[a+8>>2]&2147483647)+-1|0;else d=10;wj(a,d,0);return}function Tk(a){a=a|0;var b=0,c=0,d=0,e=0.0,g=0.0;b=f[a+8>>2]|0;if((b|0)<2){c=0;d=0;I=c;return d|0}e=+(b|0);g=+Fg(e)*e;e=+W(+(g-+p[a>>3]));c=+K(e)>=1.0?(e>0.0?~~+Y(+J(e/4294967296.0),4294967295.0)>>>0:~~+W((e-+(~~e>>>0))/4294967296.0)>>>0):0;d=~~e>>>0;I=c;return d|0}function Uk(a){a=a|0;var b=0,c=0;f[a>>2]=1696;b=f[a+76>>2]|0;if(b|0)br(b);f[a>>2]=1528;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);br(b);return}function Vk(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;c=f[a+16>>2]|0;if(((f[a+20>>2]|0)-c>>2|0)<=(b|0)){d=0;return d|0}e=f[c+(b<<2)>>2]|0;if((e|0)<0){d=0;return d|0}b=f[(f[a+36>>2]|0)+(e<<2)>>2]|0;e=f[b+32>>2]|0;if(e|0){d=e;return d|0}d=f[b+8>>2]|0;return d|0}function Wk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=1216;b=f[a+16>>2]|0;if(b|0){c=a+20|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b)}b=f[a+4>>2]|0;if(!b)return;d=a+8|0;a=f[d>>2]|0;if((a|0)!=(b|0))f[d>>2]=a+(~((a+-4-b|0)>>>2)<<2);br(b);return}function Xk(a){a=a|0;var b=0,c=0;f[a>>2]=2060;tj(a+108|0);f[a>>2]=1528;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);br(b);return}function Yk(a){a=a|0;if(!(f[a+64>>2]|0))return 0;if(!(f[a+68>>2]|0))return 0;if(!(f[a+44>>2]|0))return 0;if(!(f[a+48>>2]|0))return 0;if(!(f[a+52>>2]|0))return 0;else return (f[a+56>>2]|0)!=0|0;return 0}function Zk(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0;if(qp(a,f[b+8>>2]|0,0)|0)tk(0,b,c,d);else{e=f[a+8>>2]|0;Ya[f[(f[e>>2]|0)+28>>2]&7](e,b,c,d)}return}function _k(a){a=a|0;var b=0,c=0;f[a>>2]=1752;tj(a+108|0);f[a>>2]=1528;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);br(b);return}function $k(a,b){a=a|0;b=b|0;var c=0,d=0;if((b|0)<0){c=0;return c|0}d=f[a+4>>2]|0;if(((f[d+12>>2]|0)-(f[d+8>>2]|0)>>2|0)<=(b|0)){c=0;return c|0}d=f[(f[a+8>>2]|0)+(f[(f[a+20>>2]|0)+(b<<2)>>2]<<2)>>2]|0;c=Ra[f[(f[d>>2]|0)+36>>2]&127](d,b)|0;return c|0}function al(a,b){a=a|0;b=b|0;var c=0,d=0;if((b|0)<0){c=0;return c|0}d=f[a+4>>2]|0;if(((f[d+12>>2]|0)-(f[d+8>>2]|0)>>2|0)<=(b|0)){c=0;return c|0}d=f[(f[a+8>>2]|0)+(f[(f[a+20>>2]|0)+(b<<2)>>2]<<2)>>2]|0;c=Ra[f[(f[d>>2]|0)+32>>2]&127](d,b)|0;return c|0}function bl(a,c){a=a|0;c=c|0;var d=0,e=0,f=0,g=0;d=b[a>>0]|0;e=b[c>>0]|0;if(d<<24>>24==0?1:d<<24>>24!=e<<24>>24){f=e;g=d}else{d=c;c=a;do{c=c+1|0;d=d+1|0;a=b[c>>0]|0;e=b[d>>0]|0}while(!(a<<24>>24==0?1:a<<24>>24!=e<<24>>24));f=e;g=a}return (g&255)-(f&255)|0}function cl(a,b){a=a|0;b=$(b);var c=0,d=0;c=u;u=u+16|0;d=c;Sk(d);qi(a,d,b);Go(d);u=c;return}function dl(a){a=a|0;var b=0,c=0,d=0,e=0,g=0;b=f[a>>2]|0;c=a+4|0;d=f[c>>2]|0;if((d|0)==(b|0))e=b;else{g=d+(~((d+-4-b|0)>>>2)<<2)|0;f[c>>2]=g;e=g}f[a+12>>2]=0;f[a+16>>2]=0;if(!b)return;if((e|0)!=(b|0))f[c>>2]=e+(~((e+-4-b|0)>>>2)<<2);br(b);return}function el(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0;d=f[a+16>>2]|0;if(((f[a+20>>2]|0)-d>>2|0)<=(b|0)){e=-1;return e|0}g=f[d+(b<<2)>>2]|0;if((g|0)<0){e=-1;return e|0}e=f[(f[(f[(f[a+36>>2]|0)+(g<<2)>>2]|0)+16>>2]|0)+(c<<2)>>2]|0;return e|0}function fl(a,b){a=a|0;b=b|0;var c=0,d=0;c=u;u=u+16|0;d=c;Sk(d);vi(a,d,b);Go(d);u=c;return}function gl(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0;d=u;u=u+32|0;e=d;g=d+20|0;f[e>>2]=f[a+60>>2];f[e+4>>2]=0;f[e+8>>2]=b;f[e+12>>2]=g;f[e+16>>2]=c;if((ro(za(140,e|0)|0)|0)<0){f[g>>2]=-1;h=-1}else h=f[g>>2]|0;u=d;return h|0}function hl(a,b){a=a|0;b=b|0;var c=0,d=0;if((b|0)==-1|(b|0)>4){c=0;return c|0}d=f[a+20+(b*12|0)>>2]|0;if(((f[a+20+(b*12|0)+4>>2]|0)-d|0)<=0){c=0;return c|0}b=f[d>>2]|0;if((b|0)==-1){c=0;return c|0}c=f[(f[a+8>>2]|0)+(b<<2)>>2]|0;return c|0}function il(a){a=a|0;if(!(f[a+40>>2]|0))return 0;if(!(f[a+24>>2]|0))return 0;if(!(f[a+28>>2]|0))return 0;if(!(f[a+32>>2]|0))return 0;else return (f[a+36>>2]|0)!=0|0;return 0}function jl(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;c=f[a+16>>2]|0;if(((f[a+20>>2]|0)-c>>2|0)<=(b|0)){d=0;return d|0}e=f[c+(b<<2)>>2]|0;if((e|0)<0){d=0;return d|0}b=f[(f[a+36>>2]|0)+(e<<2)>>2]|0;d=(f[b+20>>2]|0)-(f[b+16>>2]|0)>>2;return d|0}function kl(a){a=a|0;var b=0;if(!(f[a+24>>2]|0)){b=0;return b|0}if(!(f[a+28>>2]|0)){b=0;return b|0}if(!(f[a+32>>2]|0)){b=0;return b|0}b=(f[a+36>>2]|0)!=0;return b|0}function ll(a){a=a|0;if(!(f[a+60>>2]|0))return 0;if(!(f[a+44>>2]|0))return 0;if(!(f[a+48>>2]|0))return 0;if(!(f[a+52>>2]|0))return 0;else return (f[a+56>>2]|0)!=0|0;return 0}function ml(a,b,c){a=a|0;b=b|0;c=c|0;var d=0;Sg(a,c);f[a>>2]=1392;c=a+72|0;d=a+36|0;a=d+36|0;do{f[d>>2]=0;d=d+4|0}while((d|0)<(a|0));d=f[b>>2]|0;f[b>>2]=0;f[c>>2]=d;return}function nl(a,c){a=a|0;c=c|0;var d=0,e=0;d=a;e=c;c=d+64|0;do{f[d>>2]=f[e>>2];d=d+4|0;e=e+4|0}while((d|0)<(c|0));e=a+64|0;f[a+88>>2]=0;f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;f[e+12>>2]=0;f[e+16>>2]=0;b[e+20>>0]=0;return}function ol(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var f=0,g=0;if((a|0)==0&(c|0)==0)f=d;else{g=d;d=c;c=a;while(1){a=g+-1|0;b[a>>0]=h[15542+(c&15)>>0]|0|e;c=Wn(c|0,d|0,4)|0;d=I;if((c|0)==0&(d|0)==0){f=a;break}else g=a}}return f|0}function pl(a){a=a|0;var c=0,d=0,e=0;c=a+74|0;d=b[c>>0]|0;b[c>>0]=d+255|d;d=f[a>>2]|0;if(!(d&8)){f[a+8>>2]=0;f[a+4>>2]=0;c=f[a+44>>2]|0;f[a+28>>2]=c;f[a+20>>2]=c;f[a+16>>2]=c+(f[a+48>>2]|0);e=0}else{f[a>>2]=d|32;e=-1}return e|0}function ql(a,b){a=a|0;b=b|0;var c=0,d=0;c=f[b+88>>2]|0;if(!c){d=0;return d|0}if((f[c>>2]|0)!=2){d=0;return d|0}b=f[c+8>>2]|0;f[a+4>>2]=h[b>>0]|h[b+1>>0]<<8|h[b+2>>0]<<16|h[b+3>>0]<<24;d=1;return d|0}function rl(a){a=a|0;var b=0;if(!(f[a+44>>2]|0)){b=0;return b|0}if(!(f[a+48>>2]|0)){b=0;return b|0}if(!(f[a+52>>2]|0)){b=0;return b|0}b=(f[a+56>>2]|0)!=0;return b|0}function sl(a){a=a|0;kj(a);br(a);return}function tl(a,c){a=a|0;c=c|0;var d=0;if(f[c+56>>2]|0){d=0;return d|0}if((b[c+24>>0]|0)!=3){d=0;return d|0}f[a+40>>2]=c;d=1;return d|0}function ul(a,c){a=a|0;c=c|0;var d=0;if(f[c+56>>2]|0){d=0;return d|0}if((b[c+24>>0]|0)!=3){d=0;return d|0}f[a+44>>2]=c;d=1;return d|0}function vl(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0;c=a+4|0;d=f[c>>2]|0;e=f[a>>2]|0;g=d-e|0;if(g>>>0>>0){ri(a,b-g|0);return}if(g>>>0<=b>>>0)return;g=e+b|0;if((g|0)==(d|0))return;f[c>>2]=g;return}function wl(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=$(e);f[a+4>>2]=b;Jf(a+8|0,c,c+(d<<2)|0);n[a+20>>2]=e;return}function xl(a,b){a=a|0;b=b|0;var c=0;if(!(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)){c=0;return c|0}if(!(Ra[f[(f[a>>2]|0)+44>>2]&127](a,b)|0)){c=0;return c|0}c=Ra[f[(f[a>>2]|0)+48>>2]&127](a,b)|0;return c|0}function yl(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;c=u;u=u+16|0;d=c+4|0;e=c;f[e>>2]=0;f[d>>2]=f[e>>2];e=tc(a,b,d)|0;u=c;return e|0}function zl(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0;d=f[c>>2]|0;c=a;e=b-a>>2;while(1){if(!e)break;a=(e|0)/2|0;b=c+(a<<2)|0;g=(f[b>>2]|0)>>>0>>0;c=g?b+4|0:c;e=g?e+-1-a|0:a}return c|0}function Al(a){a=a|0;var c=0;f[a>>2]=0;c=a+8|0;f[c>>2]=0;f[c+4>>2]=0;f[c+8>>2]=0;f[c+12>>2]=0;b[a+24>>0]=1;f[a+28>>2]=9;c=a+40|0;f[c>>2]=0;f[c+4>>2]=0;f[c+8>>2]=0;f[c+12>>2]=0;f[a+56>>2]=-1;f[a+60>>2]=0;return}function Bl(a){a=a|0;mj(a);br(a);return}function Cl(a){a=a|0;var c=0,d=0,e=0,g=0,h=0;if(!(Pq(b[f[a>>2]>>0]|0)|0))c=0;else{d=0;while(1){e=f[a>>2]|0;g=(d*10|0)+-48+(b[e>>0]|0)|0;h=e+1|0;f[a>>2]=h;if(!(Pq(b[h>>0]|0)|0)){c=g;break}else d=g}}return c|0}function Dl(a,c){a=a|0;c=c|0;var d=0;if(f[c+56>>2]|0){d=0;return d|0}if((b[c+24>>0]|0)!=3){d=0;return d|0}f[a+60>>2]=c;d=1;return d|0}function El(a,c){a=a|0;c=c|0;var d=0;if(f[c+56>>2]|0){d=0;return d|0}if((b[c+24>>0]|0)!=3){d=0;return d|0}f[a+64>>2]=c;d=1;return d|0}function Fl(a){a=a|0;var b=0,c=0;b=f[r>>2]|0;c=b+a|0;if((a|0)>0&(c|0)<(b|0)|(c|0)<0){ea()|0;ya(12);return -1}f[r>>2]=c;if((c|0)>(da()|0)?(ca()|0)==0:0){f[r>>2]=b;ya(12);return -1}return b|0}function Gl(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,f=0;if((a|0)==0&(c|0)==0)e=d;else{f=d;d=c;c=a;while(1){a=f+-1|0;b[a>>0]=c&7|48;c=Wn(c|0,d|0,3)|0;d=I;if((c|0)==0&(d|0)==0){e=a;break}else f=a}}return e|0}function Hl(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=1528;b=f[a+32>>2]|0;if(!b){br(a);return}c=a+36|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b);br(a);return}function Il(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;if(qp(a,f[b+8>>2]|0,g)|0)fj(0,b,c,d,e);return}function Jl(a){a=a|0;var b=0,c=0;b=f[a+64>>2]|0;if(!b)return;c=Qa[f[(f[b>>2]|0)+32>>2]&127](b)|0;if(!c)return;f[a+60>>2]=(((f[c+4>>2]|0)-(f[c>>2]|0)>>2>>>0)/3|0)-(f[c+40>>2]|0);return}function Kl(a){a=a|0;Ii(a);br(a);return}function Ll(a){a=a|0;var b=0;switch(a|0){case 11:case 2:case 1:{b=1;break}case 4:case 3:{b=2;break}case 6:case 5:{b=4;break}case 8:case 7:{b=8;break}case 9:{b=4;break}case 10:{b=8;break}default:b=-1}return b|0}function Ml(){var a=0,b=0;a=dn(40)|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;n[a+16>>2]=$(1.0);b=a+20|0;f[b>>2]=0;f[b+4>>2]=0;f[b+8>>2]=0;f[b+12>>2]=0;n[a+36>>2]=$(1.0);return a|0}function Nl(a,b){a=+a;b=+b;var c=0,d=0,e=0;p[s>>3]=a;c=f[s>>2]|0;d=f[s+4>>2]|0;p[s>>3]=b;e=f[s+4>>2]&-2147483648|d&2147483647;f[s>>2]=c;f[s+4>>2]=e;return +(+p[s>>3])}function Ol(a,b,c){a=a|0;b=b|0;c=+c;var d=0,e=0;d=u;u=u+16|0;e=d;p[e>>3]=c;_b(a,b,e);u=d;return}function Pl(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=u;u=u+16|0;e=d;f[e>>2]=c;cc(a,b,e);u=d;return}function Ql(a,c){a=a|0;c=c|0;var d=0,e=0;if((a|0)!=(c|0)){d=b[c+11>>0]|0;e=d<<24>>24<0;Zi(a,e?f[c>>2]|0:c,e?f[c+4>>2]|0:d&255)|0}return a|0}function Rl(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0;c=a&65535;d=b&65535;e=X(d,c)|0;f=a>>>16;a=(e>>>16)+(X(d,f)|0)|0;d=b>>>16;b=X(d,c)|0;return (I=(a>>>16)+(X(d,f)|0)+(((a&65535)+b|0)>>>16)|0,a+b<<16|e&65535|0)|0}function Sl(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;c=vj(b)|0;d=dn(c+13|0)|0;f[d>>2]=c;f[d+4>>2]=c;f[d+8>>2]=0;e=Sp(d)|0;Rg(e|0,b|0,c+1|0)|0;f[a>>2]=e;return}function Tl(a,b){a=a|0;b=b|0;var c=0,d=0;if((b|0)==-1|(b|0)>4){c=-1;return c|0}d=f[a+20+(b*12|0)>>2]|0;if(((f[a+20+(b*12|0)+4>>2]|0)-d|0)<=0){c=-1;return c|0}c=f[d>>2]|0;return c|0}function Ul(a){a=a|0;Li(a);br(a);return}function Vl(a){a=a|0;var b=0,c=0;f[a>>2]=1528;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);br(b);return}function Wl(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;if(qp(a,f[b+8>>2]|0,0)|0)tk(0,b,c,d);return}function Xl(a,c,d){a=a|0;c=c|0;d=d|0;var e=0;if((c|0)<(a|0)&(a|0)<(c+d|0)){e=a;c=c+d|0;a=a+d|0;while((d|0)>0){a=a-1|0;c=c-1|0;d=d-1|0;b[a>>0]=b[c>>0]|0}a=e}else Rg(a,c,d)|0;return a|0}function Yl(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=1180;b=f[a+8>>2]|0;if(!b){br(a);return}c=a+12|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);br(b);br(a);return}function Zl(a){a=a|0;var b=0;f[a>>2]=2740;b=f[a+56>>2]|0;if(!b){br(a);return}br(b);br(a);return}function _l(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0;d=u;u=u+16|0;e=d;f[e>>2]=f[c>>2];g=Sa[f[(f[a>>2]|0)+16>>2]&31](a,b,e)|0;if(g)f[c>>2]=f[e>>2];u=d;return g&1|0}function $l(a,b){a=a|0;b=b|0;var c=0;if(b>>>0>=2){c=0;return c|0}f[a+28>>2]=b;c=1;return c|0}function am(a){a=a|0;var b=0,c=0;f[a>>2]=3e3;b=a+64|0;c=f[b>>2]|0;f[b>>2]=0;if(!c){aj(a);return}Va[f[(f[c>>2]|0)+4>>2]&127](c);aj(a);return}function bm(){var a=0,b=0;a=mn()|0;if((a|0?(b=f[a>>2]|0,b|0):0)?(a=b+48|0,(f[a>>2]&-256|0)==1126902528?(f[a+4>>2]|0)==1129074247:0):0)Qo(f[b+12>>2]|0);Qo(bq()|0)}function cm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Bf(a,b,c,d,e,f,6)|0}function dm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Af(a,b,c,d,e,f,4)|0}function em(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Gf(a,b,c,d,e,f,2)|0}function fm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Af(a,b,c,d,e,f,3)|0}function gm(a){a=a|0;var b=0;f[a>>2]=2488;b=f[a+56>>2]|0;if(!b){br(a);return}br(b);br(a);return}function hm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Gf(a,b,c,d,e,f,1)|0}function im(a){a=a|0;var c=0;c=b[w+(a&255)>>0]|0;if((c|0)<8)return c|0;c=b[w+(a>>8&255)>>0]|0;if((c|0)<8)return c+8|0;c=b[w+(a>>16&255)>>0]|0;if((c|0)<8)return c+16|0;return (b[w+(a>>>24)>>0]|0)+24|0}function jm(a,b){a=a|0;b=b|0;var c=0.0,d=0.0,e=0.0,f=0.0;if(!a){c=0.0;return +c}if((b|0)==0|(a|0)==(b|0)){c=0.0;return +c}d=+(b>>>0)/+(a>>>0);e=1.0-d;f=d*+Fg(d);c=-(f+e*+Fg(e));return +c}function km(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;if((b|0)>0)d=0;else return;do{e=f[a+(d<<2)>>2]|0;f[c+(d<<2)>>2]=e<<1^e>>31;d=d+1|0}while((d|0)!=(b|0));return}function lm(a){a=a|0;var b=0,c=0;if(Eq(a)|0?(b=Zp(f[a>>2]|0)|0,a=b+8|0,c=f[a>>2]|0,f[a>>2]=c+-1,(c+-1|0)<0):0)br(b);return}function mm(a){a=a|0;var b=0;Ao(a);f[a>>2]=2880;f[a+40>>2]=1180;f[a+44>>2]=-1;b=a+48|0;f[b>>2]=0;f[b+4>>2]=0;f[b+8>>2]=0;f[b+12>>2]=0;return}function nm(a,c){a=a|0;c=c|0;var d=0;b[c+84>>0]=1;a=f[c+68>>2]|0;d=c+72|0;c=f[d>>2]|0;if((c|0)==(a|0))return 1;f[d>>2]=c+(~((c+-4-a|0)>>>2)<<2);return 1}function om(a){a=a|0;var b=0,c=0;b=f[a+16>>2]|0;c=(((f[a+12>>2]|0)+1-b|0)/64|0)+b<<3;a=b<<3;b=Tn(c|0,((c|0)<0)<<31>>31|0,a|0,((a|0)<0)<<31>>31|0)|0;return b|0}function pm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Bf(a,b,c,d,e,f,5)|0}function qm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Bf(a,b,c,d,e,f,9)|0}function rm(a){a=a|0;var b=0;f[a>>2]=3208;b=f[a+36>>2]|0;if(b|0)br(b);b=f[a+24>>2]|0;if(!b){br(a);return}br(b);br(a);return}function sm(a){a=a|0;var b=0;f[a>>2]=2740;b=f[a+56>>2]|0;if(!b)return;br(b);return}function tm(a){a=a|0;var b=0,c=0;f[a>>2]=1460;b=a+36|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0)Va[f[(f[c>>2]|0)+4>>2]&127](c);zi(a);br(a);return}function um(a){a=a|0;var b=0,c=0;f[a>>2]=1180;b=f[a+8>>2]|0;if(!b)return;c=a+12|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);br(b);return}function vm(a){a=a|0;var b=0;f[a>>2]=3276;b=f[a+36>>2]|0;if(b|0)br(b);b=f[a+24>>2]|0;if(!b){br(a);return}br(b);br(a);return}function wm(a){a=a|0;var c=0;f[a>>2]=1336;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=-1;c=a+16|0;f[a+32>>2]=0;f[c>>2]=0;f[c+4>>2]=0;f[c+8>>2]=0;b[c+12>>0]=0;return}function xm(a){a=a|0;f[a>>2]=3296;Gi(a+8|0);br(a);return}function ym(a){a=a|0;var b=0;f[a>>2]=2488;b=f[a+56>>2]|0;if(!b)return;br(b);return}function zm(a){a=a|0;var b=0,c=0;f[a>>2]=1460;b=a+36|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0)Va[f[(f[c>>2]|0)+4>>2]&127](c);zi(a);return}function Am(a,b){a=a|0;b=b|0;f[a>>2]=2968;Vh(a+4|0);f[a+40>>2]=0;f[a+44>>2]=0;f[a>>2]=2984;f[a+48>>2]=b;f[a+52>>2]=0;return}function Bm(a){a=a|0;var b=0,c=0;f[a>>2]=3e3;b=a+64|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0)Va[f[(f[c>>2]|0)+4>>2]&127](c);aj(a);br(a);return}function Cm(a){a=a|0;var b=0,c=0,d=0;b=f[a>>2]|0;c=a+4|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);f[a+12>>2]=0;f[a+16>>2]=0;return}function Dm(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0;d=a+20|0;e=f[d>>2]|0;g=(f[a+16>>2]|0)-e|0;a=g>>>0>c>>>0?c:g;Rg(e|0,b|0,a|0)|0;f[d>>2]=(f[d>>2]|0)+a;return c|0}function Em(a){a=a|0;var b=0;f[a>>2]=3208;b=f[a+36>>2]|0;if(b|0)br(b);b=f[a+24>>2]|0;if(!b)return;br(b);return}function Fm(a){a=a|0;f[a>>2]=3296;Gi(a+8|0);return}function Gm(a,b){a=a|0;b=b|0;f[a>>2]=2968;Vh(a+4|0);f[a+40>>2]=0;f[a+44>>2]=0;f[a>>2]=2984;f[a+48>>2]=b;f[a+52>>2]=b;return}function Hm(a){a=a|0;var b=0,c=0;b=f[a>>2]|0;if(!b)return;c=a+4|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-8-b|0)>>>3)<<3);br(b);return}function Im(a){a=a|0;var b=0,c=0;b=f[a>>2]|0;if(!b)return;c=a+4|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);br(b);return}function Jm(a,b){a=a|0;b=b|0;var c=0;c=f[b>>2]|0;return (1<<(c&31)&f[(f[a+28>>2]|0)+(c>>>5<<2)>>2]|0)!=0|0}function Km(a,b,c){a=a|0;b=b|0;c=c|0;return Sa[f[(f[a>>2]|0)+44>>2]&31](a,b,c)|0}function Lm(a){a=a|0;var c=0;Al(a);c=a+64|0;f[a+88>>2]=0;f[c>>2]=0;f[c+4>>2]=0;f[c+8>>2]=0;f[c+12>>2]=0;f[c+16>>2]=0;b[c+20>>0]=0;return}function Mm(a){a=a|0;f[a>>2]=2796;tj(a+88|0);br(a);return}function Nm(a){a=a|0;var b=0;f[a>>2]=3276;b=f[a+36>>2]|0;if(b|0)br(b);b=f[a+24>>2]|0;if(!b)return;br(b);return}function Om(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;if((f[b+4>>2]|0)==(c|0)?(c=b+28|0,(f[c>>2]|0)!=1):0)f[c>>2]=d;return}function Pm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=$(f);pg(a,b,c,d,e,f);return}function Qm(a){a=a|0;var b=0,c=0,d=0;b=u;u=u+16|0;c=b;if((uk(a)|0)==0?(Sa[f[a+32>>2]&31](a,c,1)|0)==1:0)d=h[c>>0]|0;else d=-1;u=b;return d|0}function Rm(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;f[a+104>>2]=b;c=f[a+8>>2]|0;d=f[a+4>>2]|0;e=c-d|0;f[a+108>>2]=e;f[a+100>>2]=(b|0)!=0&(e|0)>(b|0)?d+b|0:c;return}function Sm(a){a=a|0;var b=0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;b=a+16|0;f[b>>2]=0;f[b+4>>2]=0;f[b+8>>2]=0;f[b+12>>2]=0;f[b+16>>2]=0;return}function Tm(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=$(g);pg(f[a>>2]|0,b,c,d,e,g);return}function Um(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=$(f);Pm(a,b,c,d,e,f);return}function Vm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return cm(a,b,c,d,e,f)|0}function Wm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return dm(a,b,c,d,e,f)|0}function Xm(a){a=a|0;var b=0,c=0;if(!a)return;b=f[a>>2]|0;if(b|0){c=a+4|0;if((f[c>>2]|0)!=(b|0))f[c>>2]=b;br(b)}br(a);return}function Ym(a){a=a|0;f[a>>2]=2544;tj(a+88|0);br(a);return}function Zm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return em(a,b,c,d,e,f)|0}function _m(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return fm(a,b,c,d,e,f)|0}function $m(a){a=a|0;f[a>>2]=2796;tj(a+88|0);return}function an(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0;e=u;u=u+16|0;g=e|0;Bd(a,b,c,d,g)|0;u=e;return (I=f[g+4>>2]|0,f[g>>2]|0)|0}function bn(a){a=a|0;var b=0;$n(a);f[a>>2]=5840;b=a+84|0;f[b>>2]=0;f[b+4>>2]=0;f[b+8>>2]=0;f[b+12>>2]=0;f[b+16>>2]=0;f[b+20>>2]=0;return}function cn(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return hm(a,b,c,d,e,f)|0}function dn(a){a=a|0;var b=0,c=0;b=(a|0)==0?1:a;while(1){a=$a(b)|0;if(a|0){c=a;break}a=$p()|0;if(!a){c=0;break}Ua[a&3]()}return c|0}function en(a,b,c){a=a|0;b=b|0;c=c|0;ac(a,b,c);return}function fn(a,b,c){a=a|0;b=b|0;c=c|0;f[a+4>>2]=b;f[a+8>>2]=f[(f[(f[b+4>>2]|0)+8>>2]|0)+(c<<2)>>2];f[a+12>>2]=c;return 1}function gn(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return pm(a,b,c,d,e,f)|0}function hn(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return qm(a,b,c,d,e,f)|0}function jn(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=$(f);Tm(a,b,c,d,e,f);return}function kn(a){a=a|0;f[a>>2]=2544;tj(a+88|0);return}function ln(a){a=a|0;var b=0,c=0,d=0;b=u;u=u+16|0;c=b;d=dr(f[a+60>>2]|0)|0;f[c>>2]=d;d=ro(Ba(6,c|0)|0)|0;u=b;return d|0}function mn(){var a=0,b=0;a=u;u=u+16|0;if(!(Ka(18612,3)|0)){b=Ia(f[4654]|0)|0;u=a;return b|0}else Dn(17746,a);return 0}function nn(a){a=a|0;var b=0;if(!a)return;b=f[a>>2]|0;f[a>>2]=0;if(b|0)Va[f[(f[b>>2]|0)+4>>2]&127](b);br(a);return}function on(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0;e=a;a=c;c=Rl(e,a)|0;f=I;return (I=(X(b,a)|0)+(X(d,e)|0)+f|f&0,c|0|0)|0}function pn(a,b){a=a|0;b=b|0;Sg(a,b);f[a>>2]=1276;b=a+36|0;a=b+40|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(a|0));return}function qn(a){a=a|0;Gi(a);br(a);return}function rn(a){a=a|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;f[a+16>>2]=0;f[a+20>>2]=0;f[a+24>>2]=0;f[a+28>>2]=0;return}function sn(a){a=a|0;var b=0;b=u;u=u+16|0;wc(a);if(!(La(f[4654]|0,0)|0)){u=b;return}else Dn(17845,b)}function tn(a){a=a|0;var b=0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;b=a+16|0;f[b>>2]=0;f[b+4>>2]=0;f[b+8>>2]=0;f[b+12>>2]=0;return}function un(a,b){a=a|0;b=b|0;return eg(a+40|0,b)|0}function vn(a,b){a=a|0;b=b|0;return $i(a,b,Aq(b)|0)|0}function wn(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0;e=u;u=u+16|0;g=e;f[g>>2]=d;d=Mi(a,b,c,g)|0;u=e;return d|0}function xn(a,b){a=a|0;b=b|0;return Aj(a+40|0,b)|0}function yn(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return zh(a,b,c,d)|0}function zn(a){a=a|0;var b=0;f[a>>2]=3608;f[a+52>>2]=0;b=a+4|0;a=b+44|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(a|0));return}function An(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return $g(a,b,c,d)|0}function Bn(a,b){a=a|0;b=b|0;var c=0;c=f[a+64>>2]|0;return Ra[f[(f[c>>2]|0)+24>>2]&127](c,b)|0}function Cn(a){a=a|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;f[a+16>>2]=0;f[a+20>>2]=0;b[a+24>>0]=0;return}function Dn(a,b){a=a|0;b=b|0;var c=0,d=0;c=u;u=u+16|0;d=c;f[d>>2]=b;b=f[1478]|0;hh(b,a,d)|0;zj(10,b)|0;Ca()}function En(a,b,c,d,e,f,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;return Ta[a&31](b|0,c|0,d|0,e|0,f|0,g|0)|0}function Fn(a){a=a|0;var b=0;b=f[a+56>>2]|0;f[a+60>>2]=((f[b+100>>2]|0)-(f[b+96>>2]|0)|0)/12|0;return}function Gn(a,b){a=a|0;b=b|0;var c=0;c=f[a+64>>2]|0;return Ra[f[(f[c>>2]|0)+16>>2]&127](c,b)|0}function Hn(a,b){a=a|0;b=b|0;var c=0;c=f[a+64>>2]|0;return Ra[f[(f[c>>2]|0)+20>>2]&127](c,b)|0}function In(a,b){a=a|0;b=b|0;var c=0;c=f[a+64>>2]|0;return Ra[f[(f[c>>2]|0)+12>>2]&127](c,b)|0}function Jn(){var a=0;a=u;u=u+16|0;if(!(Ja(18616,117)|0)){u=a;return}else Dn(17795,a)}function Kn(a){a=a|0;f[a>>2]=1136;Vh(a+4|0);f[a+40>>2]=0;f[a+44>>2]=0;f[a>>2]=2944;return}function Ln(a){a=a|0;Se(a);br(a);return}function Mn(a,b,c,d,e,f,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;_a[a&3](b|0,c|0,d|0,e|0,f|0,g|0)}function Nn(a,b){a=a|0;b=b|0;var c=0;c=f[b+64>>2]|0;Wa[f[(f[c>>2]|0)+28>>2]&15](a,c);return}function On(a,b,c){a=a|0;b=b|0;c=c|0;if(b|0)hj(a|0,(zq(c)|0)&255|0,b|0)|0;return a|0}function Pn(a){a=a|0;return 4}function Qn(a,b,c){a=a|0;b=b|0;c=c|0;return Ui(0,b,c)|0}function Rn(a,b,c){a=a|0;b=b|0;c=c|0;if((c|0)<32){I=b<>>32-c;return a<>>0;return (I=b+d+(e>>>0>>0|0)>>>0,e|0)|0}function Un(a,b){a=a|0;b=b|0;var c=0;if(!b)c=0;else c=lh(f[b>>2]|0,f[b+4>>2]|0,a)|0;return (c|0?c:a)|0}function Vn(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0;e=b-d>>>0;e=b-d-(c>>>0>a>>>0|0)>>>0;return (I=e,a-c>>>0|0)|0}function Wn(a,b,c){a=a|0;b=b|0;c=c|0;if((c|0)<32){I=b>>>c;return a>>>c|(b&(1<>>c-32|0}function Xn(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return qe(a,b,c,d)|0}function Yn(a){a=a|0;Ve(a);br(a);return}function Zn(a,b,c,d){a=a|0;b=b|0;c=c|0;d=+d;return Oi(a,b,c,d)|0}function _n(a){a=a|0;return 5}function $n(a){a=a|0;var b=0;f[a>>2]=5880;b=a+4|0;a=b+80|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(a|0));return}function ao(a){a=a|0;return 6}function bo(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return Pi(a,b,c,d)|0}function co(a,b,c){a=a|0;b=b|0;c=c|0;Fj(a,b,c);return}function eo(a,b){a=a|0;b=b|0;xi(f[a>>2]|0,b);return}function fo(a,b,c){a=a|0;b=b|0;c=c|0;co(a,b,c);return}function go(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;He(a,b,c,d,1);return}function ho(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;He(a,b,c,d,0);return}function io(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return Eg(a,b,c,d)|0}function jo(a,b,c){a=a|0;b=b|0;c=c|0;return Qh(a,b,c)|0}function ko(a){a=a|0;var b=0;b=f[a+64>>2]|0;return Qa[f[(f[b>>2]|0)+32>>2]&127](b)|0}function lo(a,b,c){a=a|0;b=b|0;c=c|0;f[a+28>>2]=b;f[a+32>>2]=c;return 1}function mo(a,b){a=a|0;b=b|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;return}function no(a,b,c){a=a|0;b=b|0;c=c|0;Fj(f[a>>2]|0,b,c);return}function oo(a,b,c){a=a|0;b=b|0;c=c|0;return Ui(a,b,c)|0}function po(a,b,c){a=a|0;b=b|0;c=c|0;return Qn(a,b,c)|0}function qo(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;Za[a&3](b|0,c|0,d|0,e|0,f|0)}function ro(a){a=a|0;var b=0,c=0;if(a>>>0>4294963200){b=ir()|0;f[b>>2]=0-a;c=-1}else c=a;return c|0}function so(a,b,c){a=a|0;b=b|0;c=c|0;return rh(a,b,c)|0}function to(a){a=a|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;f[a+16>>2]=0;return}function uo(a,b){a=a|0;b=b|0;f[a+8>>2]=b;f[a+12>>2]=-1;return 1}function vo(a,b){a=a|0;b=b|0;f[a+56>>2]=b;tp(a,b);return}function wo(a,b,c){a=a|0;b=b|0;c=c|0;no(a,b,c);return}function xo(a){a=+a;var b=0;p[s>>3]=a;b=f[s>>2]|0;I=f[s+4>>2]|0;return b|0}function yo(a,b,c){a=a|0;b=$(b);c=c|0;var d=Oa;d=$($(c|0)/b);n[a>>2]=d;return}function zo(a,b){a=a|0;b=b|0;xi(a,b);return}function Ao(a){a=a|0;wm(a);f[a>>2]=1460;f[a+36>>2]=0;return}function Bo(a){a=a|0;zn(a);f[a>>2]=3424;f[a+56>>2]=0;f[a+60>>2]=0;return}function Co(a){a=a|0;var b=0;if(!a)b=0;else b=(mh(a,1024,1112,0)|0)!=0&1;return b|0}function Do(a,b,c){a=a|0;b=b|0;c=c|0;Eo(f[a>>2]|0,b,c);return}function Eo(a,b,c){a=a|0;b=b|0;c=c|0;Fi(a+4|0,b,c);return}function Fo(a){a=a|0;var b=0;b=dn(8)|0;ck(b,a);return b|0}function Go(a){a=a|0;if((b[a+11>>0]|0)<0)br(f[a>>2]|0);return}function Ho(a){a=a|0;if(!a)return;Va[f[(f[a>>2]|0)+4>>2]&127](a);return}function Io(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;Ya[a&7](b|0,c|0,d|0,e|0)}function Jo(a,b,c){a=a|0;b=b|0;c=c|0;if(c|0)Xl(a|0,b|0,c|0)|0;return a|0}function Ko(a,b,c){a=a|0;b=b|0;c=c|0;Do(a,b,c);return}function Lo(a,b,c){a=a|0;b=b|0;c=c|0;if(c|0)Rg(a|0,b|0,c|0)|0;return a|0}function Mo(a){a=a|0;f[a+52>>2]=f[(f[a+4>>2]|0)+80>>2];return}function No(a,b){a=a|0;b=b|0;eo(a,b);return}function Oo(a){a=a|0;f[a+52>>2]=f[(f[a+56>>2]|0)+80>>2];return}function Po(a,b){a=a|0;b=b|0;return -1}function Qo(a){a=a|0;var b=0;b=u;u=u+16|0;Ua[a&3]();Dn(17898,b)}function Ro(a){a=a|0;wh(a);br(a);return}function So(a,b,c){a=a|0;b=b|0;c=c|0;$o(a,b,c);return}function To(a,b){a=a|0;b=b|0;bk(f[a>>2]|0,b);return}function Uo(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return Sa[a&31](b|0,c|0,d|0)|0}function Vo(a,b){a=a|0;b=b|0;return (Jp(a,b)|0)<<24>>24|0}function Wo(a,b){a=a|0;b=b|0;f[a>>2]=6924;Sl(a+4|0,b);return}function Xo(a){a=a|0;Bo(a);f[a>>2]=3e3;f[a+64>>2]=0;return}function Yo(a,b){a=a|0;b=b|0;var c=0;if(!a)c=0;else c=Bi(a,b,0)|0;return c|0}function Zo(a,b){a=a|0;b=b|0;zo(a,b);return}function _o(a){a=a|0;return f[a+12>>2]|0}function $o(a,b,c){a=a|0;b=b|0;c=c|0;Eo(a,b,c);return}function ap(){var a=0;a=dn(64)|0;Al(a);return a|0}function bp(a,b){a=a|0;b=b|0;To(a,b);return}function cp(a){a=a|0;if(!a)return;Qi(a);br(a);return}function dp(a){a=a|0;return f[a+4>>2]|0}function ep(a,b,c){a=a|0;b=b|0;c=c|0;if(!(f[a>>2]&32))ai(b,c,a)|0;return}function fp(a){a=a|0;return Mp(a)|0}function gp(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;Xa[a&15](b|0,c|0,d|0)}function hp(){var a=0;a=dn(96)|0;Lm(a);return a|0}function ip(a){a=a|0;return Np(a)|0}function jp(a){a=a|0;var b=0;b=u;u=u+a|0;u=u+15&-16;return b|0}function kp(a){a=a|0;var b=0;b=(Yq()|0)+188|0;return Tj(a,f[b>>2]|0)|0}function lp(a){a=a|0;return ((f[a+100>>2]|0)-(f[a+96>>2]|0)|0)/12|0|0}function mp(a,b){a=a|0;b=b|0;vp(a,b);return}function np(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;aa(3);return 0}function op(){var a=0;a=dn(12)|0;Bp(a);return a|0}function pp(a){a=a|0;zi(a);br(a);return}function qp(a,b,c){a=a|0;b=b|0;c=c|0;return (a|0)==(b|0)|0}function rp(a,b){a=a|0;b=b|0;var c=0;c=Fp(a|0)|0;return ((b|0)==0?a:c)|0}function sp(a){a=a|0;return (f[a+12>>2]|0)-(f[a+8>>2]|0)>>2|0}function tp(a,b){a=a|0;b=b|0;f[a+4>>2]=b;return}function up(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return Bd(a,b,c,d,0)|0}function vp(a,b){a=a|0;b=b|0;bk(a,b);return}function wp(a){a=a|0;f[a+4>>2]=0;f[a+8>>2]=0;f[a>>2]=a+4;return}function xp(a){a=a|0;return nq(a)|0}function yp(){var a=0;a=dn(84)|0;$n(a);return a|0}function zp(a){a=a|0;gi(a);br(a);return}function Ap(a){a=a|0;return oq(a)|0}function Bp(a){a=a|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;return}function Cp(a){a=a|0;f[a>>2]=6924;lm(a+4|0);return}function Dp(a,b,c){a=a|0;b=b|0;c=c|0;return Ra[a&127](b|0,c|0)|0}function Ep(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;aa(10)}function Fp(a){a=a|0;return (a&255)<<24|(a>>8&255)<<16|(a>>16&255)<<8|a>>>24|0}function Gp(a){a=a|0;Bo(a);f[a>>2]=3504;return}function Hp(a,c){a=a|0;c=c|0;b[a>>0]=b[c>>0]|0;return}function Ip(a,b,c){a=a|0;b=b|0;c=c|0;return -1}function Jp(a,c){a=a|0;c=c|0;return b[(f[a>>2]|0)+c>>0]|0}function Kp(a){a=a|0;return (f[a+4>>2]|0)-(f[a>>2]|0)|0}function Lp(a){a=a|0;aj(a);br(a);return}function Mp(a){a=a|0;return f[(f[a>>2]|0)+40>>2]|0}function Np(a){a=a|0;return f[(f[a>>2]|0)+44>>2]|0}function Op(a){a=a|0;if(!a)return;br(a);return}function Pp(a){a=a|0;b[a+28>>0]=1;return}function Qp(a,b){a=a|0;b=b|0;if(!x){x=a;y=b}}function Rp(a,b){a=a|0;b=b|0;return 1}function Sp(a){a=a|0;return a+12|0}function Tp(a,b,c){a=a|0;b=b|0;c=c|0;Wa[a&15](b|0,c|0)}function Up(a,b){a=a|0;b=b|0;f[a+80>>2]=b;return}function Vp(){var a=0;a=dn(48)|0;Fq(a);return a|0}function Wp(a){a=a|0;return vq(a+4|0)|0}function Xp(){var a=0;a=dn(108)|0;bn(a);return a|0}function Yp(a){a=a|0;return (b[a+32>>0]|0)!=0|0}function Zp(a){a=a|0;return a+-12|0}function _p(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;aa(9)}function $p(){var a=0;a=f[4655]|0;f[4655]=a+0;return a|0}function aq(a){a=a|0;return f[a+56>>2]|0}function bq(){var a=0;a=f[1708]|0;f[1708]=a+0;return a|0}function cq(a){a=a|0;wg(a);br(a);return}function dq(a){a=a|0;fr(a);br(a);return}function eq(a){a=a|0;return b[a+24>>0]|0}function fq(a,b){a=a|0;b=b|0;return 0}function gq(a){a=a|0;return f[a+48>>2]|0}function hq(a,b){a=a|0;b=b|0;return Qa[a&127](b|0)|0}function iq(a){a=a|0;return f[a+60>>2]|0}function jq(a){a=a|0;return f[a+28>>2]|0}function kq(a){a=a|0;sa(a|0)|0;bm()}function lq(a){a=a|0;Cp(a);br(a);return}function mq(a){a=a|0;Ca()}function nq(a){a=a|0;return f[a+40>>2]|0}function oq(a){a=a|0;return f[a+44>>2]|0}function pq(a,b){a=a|0;b=b|0;return $(+sk(a,b,0))}function qq(a){a=a|0;return 3}function rq(a,b){a=a|0;b=b|0;u=a;v=b}function sq(a){a=a|0;n[a>>2]=$(1.0);return}function tq(a){a=a|0;return ((a|0)==32|(a+-9|0)>>>0<5)&1|0}function uq(a){a=a|0;return f[a+80>>2]|0}function vq(a){a=a|0;return f[a>>2]|0}function wq(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;aa(8)}function xq(a,b){a=a|0;b=b|0;Va[a&127](b|0)}function yq(a,b){a=a|0;b=b|0;return Un(a,b)|0}function zq(a){a=a|0;return a&255|0}function Aq(a){a=a|0;return vj(a)|0}function Bq(a,b){a=a|0;b=b|0;return +(+sk(a,b,1))}function Cq(a,b,c){a=a|0;b=b|0;c=c|0;aa(2);return 0}function Dq(a){a=a|0;return 2}function Eq(a){a=a|0;return 1}function Fq(a){a=a|0;Kn(a);return}function Gq(a,b){a=+a;b=+b;return +(+Nl(a,b))}function Hq(a,b){a=+a;b=b|0;return +(+Wj(a,b))}function Iq(a,b){a=+a;b=b|0;return +(+Uj(a,b))}function Jq(){return 3}function Kq(a,b,c){a=a|0;b=b|0;c=c|0;aa(7)}function Lq(){return 0}function Mq(){return -1}function Nq(){return dn(1)|0}function Oq(){return 4}function Pq(a){a=a|0;return (a+-48|0)>>>0<10|0}function Qq(){return 1}function Rq(){return 2}function Sq(a,b){a=+a;b=+b;return +(+pd(a,b))}function Tq(a,b){a=a|0;b=b|0;aa(1);return 0}function Uq(a){a=a|0;Ha()}function Vq(a){a=a|0;Ua[a&3]()}function Wq(){ua()}function Xq(a){a=a|0;return +(+Bq(a,0))}function Yq(){return lr()|0}function Zq(a,b){a=a|0;b=b|0;aa(6)}function _q(a){a=a|0;return dn(a)|0}function $q(a){a=a|0;br(a);return}function ar(a){a=a|0;u=a}function br(a){a=a|0;wc(a);return}function cr(a){a=a|0;I=a}function dr(a){a=a|0;return a|0}function er(a){a=a|0;aa(0);return 0}function fr(a){a=a|0;return}function gr(a){a=a|0;return 0}function hr(){return I|0}function ir(){return 18544}function jr(){return u|0}function kr(a){a=a|0;aa(5)}function lr(){return 6040}function mr(){aa(4)} + var Module = + typeof DracoEncoderModule !== 'undefined' ? DracoEncoderModule : {} + var isRuntimeInitialized = false + var isModuleParsed = false + Module['onRuntimeInitialized'] = function () { + isRuntimeInitialized = true + if (isModuleParsed) { + if (typeof Module['onModuleLoaded'] === 'function') { + Module['onModuleLoaded'](Module) + } + } + } + Module['onModuleParsed'] = function () { + isModuleParsed = true + if (isRuntimeInitialized) { + if (typeof Module['onModuleLoaded'] === 'function') { + Module['onModuleLoaded'](Module) + } + } + } + function isVersionSupported(versionString) { + if (typeof versionString !== 'string') return false + const version = versionString.split('.') + if (version.length < 2 || version.length > 3) return false + if (version[0] == 1 && version[1] >= 0 && version[1] <= 3) return true + if (version[0] != 0 || version[1] > 10) return false + return true + } + Module['isVersionSupported'] = isVersionSupported + var moduleOverrides = {} + var key + for (key in Module) { + if (Module.hasOwnProperty(key)) { + moduleOverrides[key] = Module[key] + } + } + Module['arguments'] = [] + Module['thisProgram'] = './this.program' + Module['quit'] = function (status, toThrow) { + throw toThrow + } + Module['preRun'] = [] + Module['postRun'] = [] + var ENVIRONMENT_IS_WEB = false + var ENVIRONMENT_IS_WORKER = false + var ENVIRONMENT_IS_NODE = false + var ENVIRONMENT_IS_SHELL = false + if (Module['ENVIRONMENT']) { + if (Module['ENVIRONMENT'] === 'WEB') { + ENVIRONMENT_IS_WEB = true + } else if (Module['ENVIRONMENT'] === 'WORKER') { + ENVIRONMENT_IS_WORKER = true + } else if (Module['ENVIRONMENT'] === 'NODE') { + ENVIRONMENT_IS_NODE = true + } else if (Module['ENVIRONMENT'] === 'SHELL') { + ENVIRONMENT_IS_SHELL = true + } else { + throw new Error( + "Module['ENVIRONMENT'] value is not valid. must be one of: WEB|WORKER|NODE|SHELL.", + ) + } + } else { + ENVIRONMENT_IS_WEB = typeof window === 'object' + ENVIRONMENT_IS_WORKER = typeof importScripts === 'function' + ENVIRONMENT_IS_NODE = + typeof process === 'object' && + typeof require === 'function' && + !ENVIRONMENT_IS_WEB && + !ENVIRONMENT_IS_WORKER + ENVIRONMENT_IS_SHELL = + !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER + } + if (ENVIRONMENT_IS_NODE) { + var nodeFS + var nodePath + Module['read'] = function shell_read(filename, binary) { + var ret + ret = tryParseAsDataURI(filename) + if (!ret) { + if (!nodeFS) nodeFS = require('fs') + if (!nodePath) nodePath = require('path') + filename = nodePath['normalize'](filename) + ret = nodeFS['readFileSync'](filename) + } + return binary ? ret : ret.toString() + } + Module['readBinary'] = function readBinary(filename) { + var ret = Module['read'](filename, true) + if (!ret.buffer) { + ret = new Uint8Array(ret) + } + assert(ret.buffer) + return ret + } + if (process['argv'].length > 1) { + Module['thisProgram'] = process['argv'][1].replace(/\\/g, '/') + } + Module['arguments'] = process['argv'].slice(2) + process['on']('uncaughtException', function (ex) { + if (!(ex instanceof ExitStatus)) { + throw ex + } + }) + process['on']('unhandledRejection', function (reason, p) { + process['exit'](1) + }) + Module['inspect'] = function () { + return '[Emscripten Module object]' + } + } else if (ENVIRONMENT_IS_SHELL) { + if (typeof read != 'undefined') { + Module['read'] = function shell_read(f) { + var data = tryParseAsDataURI(f) + if (data) { + return intArrayToString(data) + } + return read(f) + } + } + Module['readBinary'] = function readBinary(f) { + var data + data = tryParseAsDataURI(f) + if (data) { + return data + } + if (typeof readbuffer === 'function') { + return new Uint8Array(readbuffer(f)) + } + data = read(f, 'binary') + assert(typeof data === 'object') + return data + } + if (typeof scriptArgs != 'undefined') { + Module['arguments'] = scriptArgs + } else if (typeof arguments != 'undefined') { + Module['arguments'] = arguments + } + if (typeof quit === 'function') { + Module['quit'] = function (status, toThrow) { + quit(status) + } + } + } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { + Module['read'] = function shell_read(url) { + try { + var xhr = new XMLHttpRequest() + xhr.open('GET', url, false) + xhr.send(null) + return xhr.responseText + } catch (err) { + var data = tryParseAsDataURI(url) + if (data) { + return intArrayToString(data) + } + throw err + } + } + if (ENVIRONMENT_IS_WORKER) { + Module['readBinary'] = function readBinary(url) { + try { + var xhr = new XMLHttpRequest() + xhr.open('GET', url, false) + xhr.responseType = 'arraybuffer' + xhr.send(null) + return new Uint8Array(xhr.response) + } catch (err) { + var data = tryParseAsDataURI(url) + if (data) { + return data + } + throw err + } + } + } + Module['readAsync'] = function readAsync(url, onload, onerror) { + var xhr = new XMLHttpRequest() + xhr.open('GET', url, true) + xhr.responseType = 'arraybuffer' + xhr.onload = function xhr_onload() { + if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { + onload(xhr.response) + return + } + var data = tryParseAsDataURI(url) + if (data) { + onload(data.buffer) + return + } + onerror() + } + xhr.onerror = onerror + xhr.send(null) + } + Module['setWindowTitle'] = function (title) { + document.title = title + } + } + Module['print'] = + typeof console !== 'undefined' + ? console.log.bind(console) + : typeof print !== 'undefined' + ? print + : null + Module['printErr'] = + typeof printErr !== 'undefined' + ? printErr + : (typeof console !== 'undefined' && console.warn.bind(console)) || + Module['print'] + Module.print = Module['print'] + Module.printErr = Module['printErr'] + for (key in moduleOverrides) { + if (moduleOverrides.hasOwnProperty(key)) { + Module[key] = moduleOverrides[key] + } + } + moduleOverrides = undefined + var STACK_ALIGN = 16 + function staticAlloc(size) { + assert(!staticSealed) + var ret = STATICTOP + STATICTOP = (STATICTOP + size + 15) & -16 + return ret + } + function dynamicAlloc(size) { + assert(DYNAMICTOP_PTR) + var ret = HEAP32[DYNAMICTOP_PTR >> 2] + var end = (ret + size + 15) & -16 + HEAP32[DYNAMICTOP_PTR >> 2] = end + if (end >= TOTAL_MEMORY) { + var success = enlargeMemory() + if (!success) { + HEAP32[DYNAMICTOP_PTR >> 2] = ret + return 0 + } + } + return ret + } + function alignMemory(size, factor) { + if (!factor) factor = STACK_ALIGN + var ret = (size = Math.ceil(size / factor) * factor) + return ret + } + function getNativeTypeSize(type) { + switch (type) { + case 'i1': + case 'i8': + return 1 + case 'i16': + return 2 + case 'i32': + return 4 + case 'i64': + return 8 + case 'float': + return 4 + case 'double': + return 8 + default: { + if (type[type.length - 1] === '*') { + return 4 + } else if (type[0] === 'i') { + var bits = parseInt(type.substr(1)) + assert(bits % 8 === 0) + return bits / 8 + } else { + return 0 + } + } + } + } + function warnOnce(text) { + if (!warnOnce.shown) warnOnce.shown = {} + if (!warnOnce.shown[text]) { + warnOnce.shown[text] = 1 + Module.printErr(text) + } + } + var jsCallStartIndex = 1 + var functionPointers = new Array(0) + var funcWrappers = {} + function dynCall(sig, ptr, args) { + if (args && args.length) { + return Module['dynCall_' + sig].apply(null, [ptr].concat(args)) + } else { + return Module['dynCall_' + sig].call(null, ptr) + } + } + var GLOBAL_BASE = 8 + var ABORT = 0 + var EXITSTATUS = 0 + function assert(condition, text) { + if (!condition) { + abort('Assertion failed: ' + text) + } + } + function getCFunc(ident) { + var func = Module['_' + ident] + assert( + func, + 'Cannot call unknown function ' + ident + ', make sure it is exported', + ) + return func + } + var JSfuncs = { + stackSave: function () { + stackSave() + }, + stackRestore: function () { + stackRestore() + }, + arrayToC: function (arr) { + var ret = stackAlloc(arr.length) + writeArrayToMemory(arr, ret) + return ret + }, + stringToC: function (str) { + var ret = 0 + if (str !== null && str !== undefined && str !== 0) { + var len = (str.length << 2) + 1 + ret = stackAlloc(len) + stringToUTF8(str, ret, len) + } + return ret + }, + } + var toC = { string: JSfuncs['stringToC'], array: JSfuncs['arrayToC'] } + function ccall(ident, returnType, argTypes, args, opts) { + var func = getCFunc(ident) + var cArgs = [] + var stack = 0 + if (args) { + for (var i = 0; i < args.length; i++) { + var converter = toC[argTypes[i]] + if (converter) { + if (stack === 0) stack = stackSave() + cArgs[i] = converter(args[i]) + } else { + cArgs[i] = args[i] + } + } + } + var ret = func.apply(null, cArgs) + if (returnType === 'string') ret = Pointer_stringify(ret) + if (returnType === 'boolean') ret = Boolean(ret) + if (stack !== 0) { + stackRestore(stack) + } + return ret + } + function setValue(ptr, value, type, noSafe) { + type = type || 'i8' + if (type.charAt(type.length - 1) === '*') type = 'i32' + switch (type) { + case 'i1': + HEAP8[ptr >> 0] = value + break + case 'i8': + HEAP8[ptr >> 0] = value + break + case 'i16': + HEAP16[ptr >> 1] = value + break + case 'i32': + HEAP32[ptr >> 2] = value + break + case 'i64': + ;(tempI64 = [ + value >>> 0, + ((tempDouble = value), + +Math_abs(tempDouble) >= +1 + ? tempDouble > +0 + ? (Math_min(+Math_floor(tempDouble / +4294967296), +4294967295) | + 0) >>> + 0 + : ~~+Math_ceil( + (tempDouble - +(~~tempDouble >>> 0)) / +4294967296, + ) >>> 0 + : 0), + ]), + (HEAP32[ptr >> 2] = tempI64[0]), + (HEAP32[(ptr + 4) >> 2] = tempI64[1]) + break + case 'float': + HEAPF32[ptr >> 2] = value + break + case 'double': + HEAPF64[ptr >> 3] = value + break + default: + abort('invalid type for setValue: ' + type) + } + } + var ALLOC_STATIC = 2 + var ALLOC_NONE = 4 + function allocate(slab, types, allocator, ptr) { + var zeroinit, size + if (typeof slab === 'number') { + zeroinit = true + size = slab + } else { + zeroinit = false + size = slab.length + } + var singleType = typeof types === 'string' ? types : null + var ret + if (allocator == ALLOC_NONE) { + ret = ptr + } else { + ret = [ + typeof _malloc === 'function' ? _malloc : staticAlloc, + stackAlloc, + staticAlloc, + dynamicAlloc, + ][allocator === undefined ? ALLOC_STATIC : allocator]( + Math.max(size, singleType ? 1 : types.length), + ) + } + if (zeroinit) { + var stop + ptr = ret + assert((ret & 3) == 0) + stop = ret + (size & ~3) + for (; ptr < stop; ptr += 4) { + HEAP32[ptr >> 2] = 0 + } + stop = ret + size + while (ptr < stop) { + HEAP8[ptr++ >> 0] = 0 + } + return ret + } + if (singleType === 'i8') { + if (slab.subarray || slab.slice) { + HEAPU8.set(slab, ret) + } else { + HEAPU8.set(new Uint8Array(slab), ret) + } + return ret + } + var i = 0, + type, + typeSize, + previousType + while (i < size) { + var curr = slab[i] + type = singleType || types[i] + if (type === 0) { + i++ + continue + } + if (type == 'i64') type = 'i32' + setValue(ret + i, curr, type) + if (previousType !== type) { + typeSize = getNativeTypeSize(type) + previousType = type + } + i += typeSize + } + return ret + } + function Pointer_stringify(ptr, length) { + if (length === 0 || !ptr) return '' + var hasUtf = 0 + var t + var i = 0 + while (1) { + t = HEAPU8[(ptr + i) >> 0] + hasUtf |= t + if (t == 0 && !length) break + i++ + if (length && i == length) break + } + if (!length) length = i + var ret = '' + if (hasUtf < 128) { + var MAX_CHUNK = 1024 + var curr + while (length > 0) { + curr = String.fromCharCode.apply( + String, + HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK)), + ) + ret = ret ? ret + curr : curr + ptr += MAX_CHUNK + length -= MAX_CHUNK + } + return ret + } + return UTF8ToString(ptr) + } + var UTF8Decoder = + typeof TextDecoder !== 'undefined' ? new TextDecoder('utf8') : undefined + function UTF8ArrayToString(u8Array, idx) { + var endPtr = idx + while (u8Array[endPtr]) ++endPtr + if (endPtr - idx > 16 && u8Array.subarray && UTF8Decoder) { + return UTF8Decoder.decode(u8Array.subarray(idx, endPtr)) + } else { + var u0, u1, u2, u3, u4, u5 + var str = '' + while (1) { + u0 = u8Array[idx++] + if (!u0) return str + if (!(u0 & 128)) { + str += String.fromCharCode(u0) + continue + } + u1 = u8Array[idx++] & 63 + if ((u0 & 224) == 192) { + str += String.fromCharCode(((u0 & 31) << 6) | u1) + continue + } + u2 = u8Array[idx++] & 63 + if ((u0 & 240) == 224) { + u0 = ((u0 & 15) << 12) | (u1 << 6) | u2 + } else { + u3 = u8Array[idx++] & 63 + if ((u0 & 248) == 240) { + u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | u3 + } else { + u4 = u8Array[idx++] & 63 + if ((u0 & 252) == 248) { + u0 = ((u0 & 3) << 24) | (u1 << 18) | (u2 << 12) | (u3 << 6) | u4 + } else { + u5 = u8Array[idx++] & 63 + u0 = + ((u0 & 1) << 30) | + (u1 << 24) | + (u2 << 18) | + (u3 << 12) | + (u4 << 6) | + u5 + } + } + } + if (u0 < 65536) { + str += String.fromCharCode(u0) + } else { + var ch = u0 - 65536 + str += String.fromCharCode(55296 | (ch >> 10), 56320 | (ch & 1023)) + } + } + } + } + function UTF8ToString(ptr) { + return UTF8ArrayToString(HEAPU8, ptr) + } + function stringToUTF8Array(str, outU8Array, outIdx, maxBytesToWrite) { + if (!(maxBytesToWrite > 0)) return 0 + var startIdx = outIdx + var endIdx = outIdx + maxBytesToWrite - 1 + for (var i = 0; i < str.length; ++i) { + var u = str.charCodeAt(i) + if (u >= 55296 && u <= 57343) + u = (65536 + ((u & 1023) << 10)) | (str.charCodeAt(++i) & 1023) + if (u <= 127) { + if (outIdx >= endIdx) break + outU8Array[outIdx++] = u + } else if (u <= 2047) { + if (outIdx + 1 >= endIdx) break + outU8Array[outIdx++] = 192 | (u >> 6) + outU8Array[outIdx++] = 128 | (u & 63) + } else if (u <= 65535) { + if (outIdx + 2 >= endIdx) break + outU8Array[outIdx++] = 224 | (u >> 12) + outU8Array[outIdx++] = 128 | ((u >> 6) & 63) + outU8Array[outIdx++] = 128 | (u & 63) + } else if (u <= 2097151) { + if (outIdx + 3 >= endIdx) break + outU8Array[outIdx++] = 240 | (u >> 18) + outU8Array[outIdx++] = 128 | ((u >> 12) & 63) + outU8Array[outIdx++] = 128 | ((u >> 6) & 63) + outU8Array[outIdx++] = 128 | (u & 63) + } else if (u <= 67108863) { + if (outIdx + 4 >= endIdx) break + outU8Array[outIdx++] = 248 | (u >> 24) + outU8Array[outIdx++] = 128 | ((u >> 18) & 63) + outU8Array[outIdx++] = 128 | ((u >> 12) & 63) + outU8Array[outIdx++] = 128 | ((u >> 6) & 63) + outU8Array[outIdx++] = 128 | (u & 63) + } else { + if (outIdx + 5 >= endIdx) break + outU8Array[outIdx++] = 252 | (u >> 30) + outU8Array[outIdx++] = 128 | ((u >> 24) & 63) + outU8Array[outIdx++] = 128 | ((u >> 18) & 63) + outU8Array[outIdx++] = 128 | ((u >> 12) & 63) + outU8Array[outIdx++] = 128 | ((u >> 6) & 63) + outU8Array[outIdx++] = 128 | (u & 63) + } + } + outU8Array[outIdx] = 0 + return outIdx - startIdx + } + function stringToUTF8(str, outPtr, maxBytesToWrite) { + return stringToUTF8Array(str, HEAPU8, outPtr, maxBytesToWrite) + } + function lengthBytesUTF8(str) { + var len = 0 + for (var i = 0; i < str.length; ++i) { + var u = str.charCodeAt(i) + if (u >= 55296 && u <= 57343) + u = (65536 + ((u & 1023) << 10)) | (str.charCodeAt(++i) & 1023) + if (u <= 127) { + ++len + } else if (u <= 2047) { + len += 2 + } else if (u <= 65535) { + len += 3 + } else if (u <= 2097151) { + len += 4 + } else if (u <= 67108863) { + len += 5 + } else { + len += 6 + } + } + return len + } + var UTF16Decoder = + typeof TextDecoder !== 'undefined' ? new TextDecoder('utf-16le') : undefined + function demangle(func) { + return func + } + function demangleAll(text) { + var regex = /__Z[\w\d_]+/g + return text.replace(regex, function (x) { + var y = demangle(x) + return x === y ? x : x + ' [' + y + ']' + }) + } + function jsStackTrace() { + var err = new Error() + if (!err.stack) { + try { + throw new Error(0) + } catch (e) { + err = e + } + if (!err.stack) { + return '(no stack trace available)' + } + } + return err.stack.toString() + } + var WASM_PAGE_SIZE = 65536 + var ASMJS_PAGE_SIZE = 16777216 + var MIN_TOTAL_MEMORY = 16777216 + function alignUp(x, multiple) { + if (x % multiple > 0) { + x += multiple - (x % multiple) + } + return x + } + var buffer, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64 + function updateGlobalBuffer(buf) { + Module['buffer'] = buffer = buf + } + function updateGlobalBufferViews() { + Module['HEAP8'] = HEAP8 = new Int8Array(buffer) + Module['HEAP16'] = HEAP16 = new Int16Array(buffer) + Module['HEAP32'] = HEAP32 = new Int32Array(buffer) + Module['HEAPU8'] = HEAPU8 = new Uint8Array(buffer) + Module['HEAPU16'] = HEAPU16 = new Uint16Array(buffer) + Module['HEAPU32'] = HEAPU32 = new Uint32Array(buffer) + Module['HEAPF32'] = HEAPF32 = new Float32Array(buffer) + Module['HEAPF64'] = HEAPF64 = new Float64Array(buffer) + } + var STATIC_BASE, STATICTOP, staticSealed + var STACK_BASE, STACKTOP, STACK_MAX + var DYNAMIC_BASE, DYNAMICTOP_PTR + STATIC_BASE = + STATICTOP = + STACK_BASE = + STACKTOP = + STACK_MAX = + DYNAMIC_BASE = + DYNAMICTOP_PTR = + 0 + staticSealed = false + function abortOnCannotGrowMemory() { + abort( + 'Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value ' + + TOTAL_MEMORY + + ', (2) compile with -s ALLOW_MEMORY_GROWTH=1 which allows increasing the size at runtime but prevents some optimizations, (3) set Module.TOTAL_MEMORY to a higher value before the program runs, or (4) if you want malloc to return NULL (0) instead of this abort, compile with -s ABORTING_MALLOC=0 ', + ) + } + if (!Module['reallocBuffer']) + Module['reallocBuffer'] = function (size) { + var ret + try { + if (ArrayBuffer.transfer) { + ret = ArrayBuffer.transfer(buffer, size) + } else { + var oldHEAP8 = HEAP8 + ret = new ArrayBuffer(size) + var temp = new Int8Array(ret) + temp.set(oldHEAP8) + } + } catch (e) { + return false + } + var success = _emscripten_replace_memory(ret) + if (!success) return false + return ret + } + function enlargeMemory() { + var PAGE_MULTIPLE = Module['usingWasm'] ? WASM_PAGE_SIZE : ASMJS_PAGE_SIZE + var LIMIT = 2147483648 - PAGE_MULTIPLE + if (HEAP32[DYNAMICTOP_PTR >> 2] > LIMIT) { + return false + } + var OLD_TOTAL_MEMORY = TOTAL_MEMORY + TOTAL_MEMORY = Math.max(TOTAL_MEMORY, MIN_TOTAL_MEMORY) + while (TOTAL_MEMORY < HEAP32[DYNAMICTOP_PTR >> 2]) { + if (TOTAL_MEMORY <= 536870912) { + TOTAL_MEMORY = alignUp(2 * TOTAL_MEMORY, PAGE_MULTIPLE) + } else { + TOTAL_MEMORY = Math.min( + alignUp((3 * TOTAL_MEMORY + 2147483648) / 4, PAGE_MULTIPLE), + LIMIT, + ) + } + } + var replacement = Module['reallocBuffer'](TOTAL_MEMORY) + if (!replacement || replacement.byteLength != TOTAL_MEMORY) { + TOTAL_MEMORY = OLD_TOTAL_MEMORY + return false + } + updateGlobalBuffer(replacement) + updateGlobalBufferViews() + return true + } + var byteLength + try { + byteLength = Function.prototype.call.bind( + Object.getOwnPropertyDescriptor(ArrayBuffer.prototype, 'byteLength').get, + ) + byteLength(new ArrayBuffer(4)) + } catch (e) { + byteLength = function (buffer) { + return buffer.byteLength + } + } + var TOTAL_STACK = Module['TOTAL_STACK'] || 5242880 + var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 16777216 + if (TOTAL_MEMORY < TOTAL_STACK) + Module.printErr( + 'TOTAL_MEMORY should be larger than TOTAL_STACK, was ' + + TOTAL_MEMORY + + '! (TOTAL_STACK=' + + TOTAL_STACK + + ')', + ) + if (Module['buffer']) { + buffer = Module['buffer'] + } else { + { + buffer = new ArrayBuffer(TOTAL_MEMORY) + } + Module['buffer'] = buffer + } + updateGlobalBufferViews() + function getTotalMemory() { + return TOTAL_MEMORY + } + HEAP32[0] = 1668509029 + HEAP16[1] = 25459 + if (HEAPU8[2] !== 115 || HEAPU8[3] !== 99) + throw 'Runtime error: expected the system to be little-endian!' + function callRuntimeCallbacks(callbacks) { + while (callbacks.length > 0) { + var callback = callbacks.shift() + if (typeof callback == 'function') { + callback() + continue + } + var func = callback.func + if (typeof func === 'number') { + if (callback.arg === undefined) { + Module['dynCall_v'](func) + } else { + Module['dynCall_vi'](func, callback.arg) + } + } else { + func(callback.arg === undefined ? null : callback.arg) + } + } + } + var __ATPRERUN__ = [] + var __ATINIT__ = [] + var __ATMAIN__ = [] + var __ATEXIT__ = [] + var __ATPOSTRUN__ = [] + var runtimeInitialized = false + var runtimeExited = false + function preRun() { + if (Module['preRun']) { + if (typeof Module['preRun'] == 'function') + Module['preRun'] = [Module['preRun']] + while (Module['preRun'].length) { + addOnPreRun(Module['preRun'].shift()) + } + } + callRuntimeCallbacks(__ATPRERUN__) + } + function ensureInitRuntime() { + if (runtimeInitialized) return + runtimeInitialized = true + callRuntimeCallbacks(__ATINIT__) + } + function preMain() { + callRuntimeCallbacks(__ATMAIN__) + } + function exitRuntime() { + callRuntimeCallbacks(__ATEXIT__) + runtimeExited = true + } + function postRun() { + if (Module['postRun']) { + if (typeof Module['postRun'] == 'function') + Module['postRun'] = [Module['postRun']] + while (Module['postRun'].length) { + addOnPostRun(Module['postRun'].shift()) + } + } + callRuntimeCallbacks(__ATPOSTRUN__) + } + function addOnPreRun(cb) { + __ATPRERUN__.unshift(cb) + } + function addOnPreMain(cb) { + __ATMAIN__.unshift(cb) + } + function addOnPostRun(cb) { + __ATPOSTRUN__.unshift(cb) + } + function writeArrayToMemory(array, buffer) { + HEAP8.set(array, buffer) + } + function writeAsciiToMemory(str, buffer, dontAddNull) { + for (var i = 0; i < str.length; ++i) { + HEAP8[buffer++ >> 0] = str.charCodeAt(i) + } + if (!dontAddNull) HEAP8[buffer >> 0] = 0 + } + var Math_abs = Math.abs + var Math_cos = Math.cos + var Math_sin = Math.sin + var Math_tan = Math.tan + var Math_acos = Math.acos + var Math_asin = Math.asin + var Math_atan = Math.atan + var Math_atan2 = Math.atan2 + var Math_exp = Math.exp + var Math_log = Math.log + var Math_sqrt = Math.sqrt + var Math_ceil = Math.ceil + var Math_floor = Math.floor + var Math_pow = Math.pow + var Math_imul = Math.imul + var Math_fround = Math.fround + var Math_round = Math.round + var Math_min = Math.min + var Math_max = Math.max + var Math_clz32 = Math.clz32 + var Math_trunc = Math.trunc + var runDependencies = 0 + var runDependencyWatcher = null + var dependenciesFulfilled = null + function addRunDependency(id) { + runDependencies++ + if (Module['monitorRunDependencies']) { + Module['monitorRunDependencies'](runDependencies) + } + } + function removeRunDependency(id) { + runDependencies-- + if (Module['monitorRunDependencies']) { + Module['monitorRunDependencies'](runDependencies) + } + if (runDependencies == 0) { + if (runDependencyWatcher !== null) { + clearInterval(runDependencyWatcher) + runDependencyWatcher = null + } + if (dependenciesFulfilled) { + var callback = dependenciesFulfilled + dependenciesFulfilled = null + callback() + } + } + } + Module['preloadedImages'] = {} + Module['preloadedAudios'] = {} + var memoryInitializer = null + var dataURIPrefix = 'data:application/octet-stream;base64,' + function isDataURI(filename) { + return String.prototype.startsWith + ? filename.startsWith(dataURIPrefix) + : filename.indexOf(dataURIPrefix) === 0 + } + STATIC_BASE = GLOBAL_BASE + STATICTOP = STATIC_BASE + 18640 + __ATINIT__.push() + memoryInitializer = + 'data:application/octet-stream;base64,vBoAACwbAADkGgAAehsAACAAAAAAAAAAvBoAAKEbAADkGgAAvhsAACAAAAAAAAAAvBoAAOcbAADkGgAAAxwAADgAAAAAAAAAvBoAACUcAADkGgAAShwAADgAAAAAAAAA5BoAAI4mAABQAAAAAAAAAOQaAAB6HAAAiAAAAAAAAADkGgAA0xwAAJgAAAAAAAAA5BoAACcdAACoAAAAAAAAAOQaAABbHQAAuAAAAAAAAAC8GgAAhh0AAOQaAACqHQAA0AAAAAAAAAC8GgAASB4AAOQaAADmHgAA6AAAAAAAAADkGgAAfh8AAIgAAAAAAAAA5BoAAAcgAADoAAAAAAAAAOQaAAChIAAA6AAAAAAAAADkGgAARyEAAOgAAAAAAAAA5BoAAN0hAAA4AQAAAAAAALwaAACIIgAA5BoAADMjAABQAQAAAAAAAOQaAADYIwAAiAAAAAAAAADkGgAAbiQAAFABAAAAAAAA5BoAABUlAABQAQAAAAAAAOQaAADIJQAAUAEAAAAAAADkGgAAqDEAAGgAAAAAAAAA5BoAALomAACwAQAAAAAAAOQaAAArJwAAmAAAAAAAAADkGgAAlycAANABAAAAAAAAvBoAAE0oAADkGgAAAykAAOgBAAAAAAAA5BoAALMpAACwAQAAAAAAAOQaAABUKgAA6AEAAAAAAADkGgAABisAAOgBAAAAAAAA5BoAAMQrAADoAQAAAAAAAOQaAAByLAAAOAIAAAAAAAC8GgAANS0AAOQaAAD4LQAAUAIAAAAAAADkGgAAtS4AALABAAAAAAAA5BoAAGMvAABQAgAAAAAAAOQaAAAiMAAAUAIAAAAAAADkGgAA7TAAAFACAAAAAAAA5BoAANMxAABoAAAAAAAAAOQaAABJMgAACAAAAAAAAAC8GgAAFjIAAOQaAABcMgAAsAIAAAAAAADkGgAAbDMAAHgDAAAAAAAA5BoAAOE3AABgAwAAAAAAALwaAAAsNAAA5BoAAJM0AADoAgAAAAAAAOQaAAAANQAAEAMAAAAAAAC8GgAAizUAALwaAAClNQAA5BoAAP81AAAYAwAAAAAAAOQaAABfNgAAEAMAAAAAAADkGgAA3TYAABgDAAAAAAAA5BoAAEY3AAAQAwAAAAAAALwaAAAtOAAA5BoAAFs4AABgAwAAAAAAAOQaAADMOAAAqAMAAAAAAADkGgAAEjkAAHgDAAAAAAAA5BoAAPg4AAAQAwAAAAAAALwaAAAyOQAA5BoAAAc6AACoAwAAAAAAAOQaAAApOgAAqAMAAAAAAADkGgAATzoAAOADAAAAAAAAvBoAAKE6AAC8GgAA0EQAAOQaAAAwRQAAAAQAAAAAAADkGgAA3UQAABAEAAAAAAAAvBoAAP5EAADkGgAAC0UAAPADAAAAAAAA5BoAABJGAADoAwAAAAAAAOQaAAAiRgAAKAQAAAAAAADkGgAAV0YAAAAEAAAAAAAA5BoAADNGAABIBAAAAAAAAAAAAAAIAAAAAQAAAAIAAAAAAAAAEAAAAAMAAAAEAAAAAQAAAAEAAAABAAAAAAAAACgAAAAFAAAABgAAAAIAAAACAAAAAgAAAP//////////AAAAADgAAAAHAAAACAAAAAEAAAADAAAAAQAAAAQAAAAFAAAAAgAAAAYAAAAHAAAAAwAAAAEAAAAIAAAAAAAAAEAAAAAJAAAACgAAAAEAAAADAAAABAAAAAQAAAAFAAAAAgAAAAYAAAAHAAAABQAAAAkAAAAKAAAAAAAAAFAAAAALAAAADAAAAAMAAAALAAAADAAAAAQAAAANAAAABgAAAAcAAAAOAAAADwAAAAUAAAAAAAAAWAAAAA0AAAAOAAAABgAAABAAAAAIAAAAEQAAABIAAAAHAAAAEwAAABQAAAAJAAAAFQAAABYAAAAKAAAAAQAAAAAAAABoAAAADwAAABAAAAAIAAAACwAAABcAAAAEAAAADQAAAAYAAAALAAAADgAAAA8AAAAJAAAAAgAAAAoAAAD/////AAAAAIgAAAARAAAAEgAAAAEAAAAMAAAAAQAAAA0AAAAYAAAAGQAAAA4AAAAPAAAAGgAAAAEAAAAAAAAAeAAAABEAAAATAAAAEAAAAAwAAAARAAAADQAAABgAAAAZAAAADgAAAA8AAAAaAAAAAQAAAAAAAAAYAQAAEQAAABQAAAASAAAADAAAABMAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAACAAAAAAAAAPgAAAAVAAAAFgAAABQAAAAMAAAAFQAAABYAAAAbAAAAHAAAAA4AAAAPAAAAHQAAAAMAAAAAAAAA2AAAABcAAAAYAAAAFwAAAAwAAAAYAAAAGQAAAB4AAAAfAAAADgAAAA8AAAAgAAAABAAAAAAAAADAAAAAGQAAABoAAAAhAAAAGgAAAAMAAAAAAAAA6AAAABEAAAAbAAAAAQAAAAwAAAABAAAADQAAABgAAAAZAAAADgAAAA8AAAAaAAAAAQAAAAAAAAAIAQAAHAAAAB0AAAAbAAAADAAAABwAAAANAAAAGAAAABkAAAAOAAAADwAAACIAAAAFAAAAAAAAAIABAAARAAAAHgAAAB0AAAAMAAAAHgAAAA0AAAAYAAAAGQAAAA4AAAAPAAAAGgAAAAYAAAAAAAAAYAEAAB8AAAAgAAAAHwAAAAwAAAAgAAAAIQAAACMAAAAkAAAADgAAAA8AAAAlAAAABwAAAAAAAABAAQAAIQAAACIAAAAiAAAADAAAACMAAAAkAAAAJgAAACcAAAAOAAAADwAAACgAAAAIAAAAAAAAACgBAAAjAAAAJAAAACkAAAAlAAAABAAAAAAAAABQAQAAEQAAACUAAAABAAAADAAAAAEAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAABAAAAAAAAAHABAAAmAAAAJwAAACYAAAAMAAAAJwAAAA0AAAAYAAAAGQAAAA4AAAAPAAAAKgAAAAkAAAAAAAAAkAEAACgAAAApAAAACwAAAAsAAAAXAAAABAAAACsAAAAoAAAAKQAAAA4AAAAPAAAACQAAAAUAAAAMAAAAAAAAAKABAAAqAAAAKwAAACoAAAArAAAALAAAAC0AAAAsAAAALQAAAC4AAAAvAAAALgAAAAoAAAAAAAAAGAIAACoAAAAsAAAAMAAAACsAAAAxAAAALQAAACwAAAAtAAAALgAAAC8AAAAuAAAACwAAAAAAAAAIAgAALQAAAC4AAAAyAAAAKwAAADMAAAAtAAAALAAAAC0AAAAuAAAALwAAAC8AAAAMAAAAAAAAAPgBAAAvAAAAMAAAADQAAAArAAAANQAAADYAAAAwAAAAMQAAAC4AAAAvAAAAMgAAAA0AAAAAAAAA2AEAADEAAAAyAAAANwAAACsAAAA4AAAAOQAAADMAAAA0AAAALgAAAC8AAAA1AAAADgAAAAAAAADAAQAAMwAAADQAAAA2AAAAOgAAAAYAAAAAAAAAgAIAACoAAAA1AAAAOwAAACsAAAA8AAAALQAAACwAAAAtAAAALgAAAC8AAAAuAAAADwAAAAAAAABwAgAANgAAADcAAAA9AAAAKwAAAD4AAAAtAAAALAAAAC0AAAAuAAAALwAAADcAAAAQAAAAAAAAAGACAAA4AAAAOQAAAD8AAAArAAAAQAAAAEEAAAA4AAAAOQAAAC4AAAAvAAAAOgAAABEAAAAAAAAAQAIAADoAAAA7AAAAQgAAACsAAABDAAAARAAAADsAAAA8AAAALgAAAC8AAAA9AAAAEgAAAAAAAAAoAgAAPAAAAD0AAAA+AAAARQAAAAcAAAAAAAAAkAIAAD4AAAA/AAAADQAAAAsAAAAXAAAABAAAAD8AAABGAAAARwAAAA4AAAAPAAAACQAAAAIAAAAOAAAAAAAAAKACAAABAAAAQAAAAAEAAAACAAAAAAAAALACAABBAAAAQgAAAAAAAAC4AgAAQQAAAEMAAAAAAAAAyAIAAEQAAABFAAAASAAAAEkAAABKAAAASwAAAAMAAABMAAAATQAAAEAAAABBAAAATgAAAEYAAABPAAAAQgAAAEMAAAAEAAAARwAAAAAAAADYAgAASAAAAEkAAABEAAAARQAAAEYAAABHAAAASAAAAAUAAABQAAAASQAAAFEAAAABAAAAAwAAAAAAAAADAAAAAAAAAAMAAAAAAAAAAwAAAAAAAAAAAwAASgAAAEsAAABKAAAAUgAAAAAAAADwAgAATAAAAE0AAAAIAAAAAAAAAOgCAABOAAAATwAAAAgAAAD/////AAAAADADAABQAAAAUQAAAEsAAABTAAAAAAAAACADAABSAAAAUwAAAAkAAAAAAAAAGAMAAFQAAABVAAAACQAAAAAAAABQAwAAVgAAAFcAAABMAAAAVAAAAAAAAABAAwAAWAAAAFkAAAAJAAAAAAAAAGgDAABaAAAAWwAAAE0AAABOAAAATwAAAFAAAABRAAAABgAAAFUAAABSAAAAVgAAAAAAAAABAAAABQAAAAIAAAAFAAAAAwAAAAUAAAAEAAAAAAAAAHgDAABcAAAAXQAAAEgAAAABAAAAVwAAAEsAAAADAAAATAAAAE0AAAABAAAAUwAAAE4AAAABAAAAWAAAAFQAAABVAAAAAQAAAAEAAAAAAAAAiAMAAFwAAABeAAAASAAAAFkAAABXAAAASwAAAAMAAABMAAAATQAAAFYAAABTAAAATgAAAF8AAABYAAAAVAAAAFUAAAAHAAAAYAAAAAAAAACYAwAAYQAAAGIAAABXAAAAWgAAAAAAAACoAwAAXAAAAGMAAABbAAAAAQAAAFcAAABLAAAACAAAAEwAAABNAAAAAQAAAFMAAABOAAAAAQAAAAAAAACwAwAAXAAAAGQAAABbAAAAXAAAAFcAAABLAAAACQAAAEwAAABNAAAAWAAAAFMAAABOAAAAZQAAAAAAAADAAwAAXAAAAGYAAABbAAAAXQAAAFcAAABLAAAACgAAAEwAAABNAAAAWQAAAFMAAABOAAAAZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAFZVVVUCAAAAAAAAAAIAAACamZmZAwAAAFZVVVUDAAAAJUmSJAMAAAAAAAAAAwAAAMhxHMcEAAAAmpmZmQQAAABGF110BAAAAFZVVVUEAAAAPLETOwQAAAAlSZIkBAAAABIREREEAAAAAAAAAAQAAADi4eHhBQAAAMhxHMcFAAAAy2sorwUAAACamZmZBQAAAIdhGIYFAAAARhdddAUAAACRhSxkBQAAAFZVVVUFAAAAexSuRwUAAAA8sRM7BQAAANtLaC8FAAAAJUmSJAUAAAASlnsaBQAAABIREREFAAAAhRBCCAUAAAAAAAAABQAAAAgffPAGAAAA4uHh4QYAAADVQR3UBgAAAMhxHMcGAAAATZHPugYAAADLayivBgAAAKVBGqQGAAAAmpmZmQYAAAD6GJyPBgAAAIdhGIYGAAAAGPQFfQYAAABGF110BgAAAG3BFmwGAAAAkYUsZAYAAAC6gphcBgAAAFZVVVUGAAAAcwpeTgYAAAB7FK5HBgAAAEJBQUEGAAAAPLETOwYAAACzzyE1BgAAANtLaC8GAAAAnxLkKQYAAAAlSZIkBgAAAN1HcB8GAAAAEpZ7GgYAAAD45bEVBgAAABIREREGAAAA/BSXDAYAAACFEEIIBgAAAAVBEAQGAAAAAAAAAAYAAAD5gR/4BwAAAAgffPAHAAAAwBoT6QcAAADi4eHhBwAAAGwH5toHAAAA1UEd1AcAAACRaIXNBwAAAMhxHMcHAAAAOXDgwAcAAABNkc+6BwAAAE8b6LQHAAAAy2sorwcAAAAH9o6pBwAAAKVBGqQHAAAAUunIngcAAACamZmZBwAAAM4Pi5QHAAAA+hicjwcAAAD3kMuKBwAAAIdhGIYHAAAAgoGBgQcAAAAY9AV9BwAAABjIpHgHAAAARhdddAcAAADBBS5wBwAAAG3BFmwHAAAAaYEWaAcAAACRhSxkBwAAAAYWWGAHAAAAuoKYXAcAAAAJI+1YBwAAAFZVVVUHAAAAr37QUQcAAABzCl5OBwAAAAZq/UoHAAAAexSuRwcAAABXhm9EBwAAAEJBQUEHAAAAz8siPgcAAAA8sRM7BwAAADmBEzgHAAAAs88hNQcAAACjND4yBwAAANtLaC8HAAAA2bSfLAcAAACfEuQpBwAAAIkLNScHAAAAJUmSJAcAAAATePshBwAAAN1HcB8HAAAA22rwHAcAAAASlnsaBwAAABmBERgHAAAA+OWxFQcAAAAUgVwTBwAAABIREREHAAAAv1bPDgcAAAD8FJcMBwAAAKcQaAoHAAAAhRBCCAcAAAAw3SQGBwAAAAVBEAQHAAAAEQgEAgcAAAAAAAAABwAAACDwB/wIAAAA+YEf+AgAAADlWUb0CAAAAAgffPAIAAAAMXvA7AgAAADAGhPpCAAAAJGsc+UIAAAA4uHh4QgAAABAbl3eCAAAAGwH5toIAAAATGV71wgAAADVQR3UCAAAAPdYy9AIAAAAkWiFzQgAAABWMEvKCAAAAMhxHMcIAAAAHfD4wwgAAAA5cODACAAAAJq40r0IAAAATZHPuggAAADew9a3CAAAAE8b6LQIAAAAB2QDsggAAADLayivCAAAAK0BV6wIAAAAB/aOqQgAAABuGtCmCAAAAKVBGqQIAAAAmD9toQgAAABS6cieCAAAAO8ULZwIAAAAmpmZmQgAAACBTw6XCAAAAM4Pi5QIAAAAnrQPkggAAAD6GJyPCAAAANQYMI0IAAAA95DLiggAAAALX26ICAAAAIdhGIYIAAAArHfJgwgAAACCgYGBCAAAANFfQH8IAAAAGPQFfQgAAACPINJ6CAAAABjIpHgIAAAARM59dggAAABGF110CAAAAPWHQnIIAAAAwQUucAgAAAC1dh9uCAAAAG3BFmwIAAAAFs0TaggAAABpgRZoCAAAAKbGHmYIAAAAkYUsZAgAAABxpz9iCAAAAAYWWGAIAAAAjrt1XggAAAC6gphcCAAAALFWwFoIAAAACSPtWAgAAADG0x5XCAAAAFZVVVUIAAAAkJSQUwgAAACvftBRCAAAAFEBFVAIAAAAcwpeTggAAABziKtMCAAAAAZq/UoIAAAAPJ5TSQgAAAB7FK5HCAAAAIC8DEYIAAAAV4ZvRAgAAABeYtZCCAAAAEJBQUEIAAAA/BOwPwgAAADPyyI+CAAAAEhamTwIAAAAPLETOwgAAADCwpE5CAAAADmBEzgIAAAAPt+YNggAAACzzyE1CAAAALZFrjMIAAAAozQ+MggAAAAUkNEwCAAAANtLaC8IAAAABVwCLggAAADZtJ8sCAAAANFKQCsIAAAAnxLkKQgAAAApAYsoCAAAAIkLNScIAAAACSfiJQgAAAAlSZIkCAAAAIpnRSMIAAAAE3j7IQgAAADHcLQgCAAAAN1HcB8IAAAAtPMuHggAAADbavAcCAAAAAWktBsIAAAAEpZ7GggAAAAJOEUZCAAAABmBERgIAAAAlWjgFggAAAD45bEVCAAAAOHwhRQIAAAAFIFcEwgAAAB2jjUSCAAAABIREREIAAAAEAHvDwgAAAC/Vs8OCAAAAIkKsg0IAAAA/BSXDAgAAADDbn4LCAAAAKcQaAoIAAAAkfNTCQgAAACFEEIICAAAAKVgMgcIAAAAMN0kBggAAAB+fxkFCAAAAAVBEAQIAAAAUhsJAwgAAAARCAQCCAAAAAIBAQEIAAAA/////wAAAADQAwAAaAAAAGkAAAAKAAAACwAAAF4AAABqAAAACwAAAP////8AAAAA4AMAAGsAAABsAAAADAAAAAwAAABeAAAAagAAAA0AAAD/////HBcAAAUAAAAAAAAAAAAAAF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8AAAAQAAAAyEgAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAP//////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJxIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAAABkAAAA6AMAABAnAACghgEAQEIPAICWmAAA4fUFX3CJAP8JLw8AAAAAAgAAAAMAAAAFAAAABwAAAAsAAAANAAAAEQAAABMAAAAXAAAAHQAAAB8AAAAlAAAAKQAAACsAAAAvAAAANQAAADsAAAA9AAAAQwAAAEcAAABJAAAATwAAAFMAAABZAAAAYQAAAGUAAABnAAAAawAAAG0AAABxAAAAfwAAAIMAAACJAAAAiwAAAJUAAACXAAAAnQAAAKMAAACnAAAArQAAALMAAAC1AAAAvwAAAMEAAADFAAAAxwAAANMAAAABAAAACwAAAA0AAAARAAAAEwAAABcAAAAdAAAAHwAAACUAAAApAAAAKwAAAC8AAAA1AAAAOwAAAD0AAABDAAAARwAAAEkAAABPAAAAUwAAAFkAAABhAAAAZQAAAGcAAABrAAAAbQAAAHEAAAB5AAAAfwAAAIMAAACJAAAAiwAAAI8AAACVAAAAlwAAAJ0AAACjAAAApwAAAKkAAACtAAAAswAAALUAAAC7AAAAvwAAAMEAAADFAAAAxwAAANEAAAACAAAAAAAAAPADAABtAAAAbgAAAG8AAABwAAAAEgAAAAEAAAABAAAAAwAAAAAAAAAYBAAAbQAAAHEAAABvAAAAcAAAABIAAAACAAAAAgAAAAQAAAAAAAAAKAQAAHIAAABzAAAAYAAAAAAAAAA4BAAAcgAAAHQAAABgAAAATjVkcmFjbzExRW5jb2RlckJhc2VJTlNfMThFbmNvZGVyT3B0aW9uc0Jhc2VJTlNfMTdHZW9tZXRyeUF0dHJpYnV0ZTRUeXBlRUVFRUUATjVkcmFjbzI4QXR0cmlidXRlT2N0YWhlZHJvblRyYW5zZm9ybUUATjVkcmFjbzE4QXR0cmlidXRlVHJhbnNmb3JtRQBONWRyYWNvMzBBdHRyaWJ1dGVRdWFudGl6YXRpb25UcmFuc2Zvcm1FAE41ZHJhY28xN0F0dHJpYnV0ZXNFbmNvZGVyRQBONWRyYWNvMjNLZFRyZWVBdHRyaWJ1dGVzRW5jb2RlckUATjVkcmFjbzI2U2VxdWVudGlhbEF0dHJpYnV0ZUVuY29kZXJFAE41ZHJhY28zN1NlcXVlbnRpYWxBdHRyaWJ1dGVFbmNvZGVyc0NvbnRyb2xsZXJFAE41ZHJhY28yOFByZWRpY3Rpb25TY2hlbWVEZWx0YUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFRUUATjVkcmFjbzIzUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFRUUATjVkcmFjbzM3UHJlZGljdGlvblNjaGVtZVR5cGVkRW5jb2RlckludGVyZmFjZUlpaUVFAE41ZHJhY28zMlByZWRpY3Rpb25TY2hlbWVFbmNvZGVySW50ZXJmYWNlRQBONWRyYWNvMjVQcmVkaWN0aW9uU2NoZW1lSW50ZXJmYWNlRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckFyZWFJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280NE1lc2hQcmVkaWN0aW9uU2NoZW1lVGV4Q29vcmRzUG9ydGFibGVFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNTZNZXNoUHJlZGljdGlvblNjaGVtZUNvbnN0cmFpbmVkTXVsdGlQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQwTWVzaFByZWRpY3Rpb25TY2hlbWVQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JBcmVhSWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JCYXNlSWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzI3TWVzaFByZWRpY3Rpb25TY2hlbWVFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ0TWVzaFByZWRpY3Rpb25TY2hlbWVUZXhDb29yZHNQb3J0YWJsZUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNTZNZXNoUHJlZGljdGlvblNjaGVtZUNvbnN0cmFpbmVkTXVsdGlQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280ME1lc2hQcmVkaWN0aW9uU2NoZW1lUGFyYWxsZWxvZ3JhbUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQB1c2VfYnVpbHRfaW5fYXR0cmlidXRlX2NvbXByZXNzaW9uAE41ZHJhY28zM1NlcXVlbnRpYWxJbnRlZ2VyQXR0cmlidXRlRW5jb2RlckUATjVkcmFjbzI4UHJlZGljdGlvblNjaGVtZURlbHRhRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVFRQBONWRyYWNvMjNQcmVkaWN0aW9uU2NoZW1lRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVFRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckFyZWFJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxFbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280NE1lc2hQcmVkaWN0aW9uU2NoZW1lVGV4Q29vcmRzUG9ydGFibGVFbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNTZNZXNoUHJlZGljdGlvblNjaGVtZUNvbnN0cmFpbmVkTXVsdGlQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQwTWVzaFByZWRpY3Rpb25TY2hlbWVQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JBcmVhSWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JCYXNlSWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxFbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzI3TWVzaFByZWRpY3Rpb25TY2hlbWVFbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ0TWVzaFByZWRpY3Rpb25TY2hlbWVUZXhDb29yZHNQb3J0YWJsZUVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNTZNZXNoUHJlZGljdGlvblNjaGVtZUNvbnN0cmFpbmVkTXVsdGlQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280ME1lc2hQcmVkaWN0aW9uU2NoZW1lUGFyYWxsZWxvZ3JhbUVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMzJTZXF1ZW50aWFsTm9ybWFsQXR0cmlidXRlRW5jb2RlckUATjVkcmFjbzM4U2VxdWVudGlhbFF1YW50aXphdGlvbkF0dHJpYnV0ZUVuY29kZXJFAHByZWRpY3Rpb25fc2NoZW1lAE41ZHJhY28xMUVuY29kZXJCYXNlSU5TXzE4RW5jb2Rlck9wdGlvbnNCYXNlSWlFRUVFAE41ZHJhY283RW5jb2RlckUAIABONWRyYWNvMTNFeHBlcnRFbmNvZGVyRQBlbmNvZGluZ19tZXRob2QAcXVhbnRpemF0aW9uX2JpdHMASW52YWxpZCBlbmNvZGluZyBtZXRob2QuAGVuY29kaW5nX3NwZWVkAGRlY29kaW5nX3NwZWVkAHF1YW50aXphdGlvbl9vcmlnaW4AcXVhbnRpemF0aW9uX3JhbmdlAHN5bWJvbF9lbmNvZGluZ19tZXRob2QAc3ltYm9sX2VuY29kaW5nX2NvbXByZXNzaW9uX2xldmVsAHN0YW5kYXJkX2VkZ2VicmVha2VyAHByZWRpY3RpdmVfZWRnZWJyZWFrZXIAZWRnZWJyZWFrZXJfbWV0aG9kAE41ZHJhY28yMk1lc2hFZGdlYnJlYWtlckVuY29kZXJFAEFsbCB0cmlhbmdsZXMgYXJlIGRlZ2VuZXJhdGUuAEZhaWxlZCB0byBwcm9jZXNzIG1lc2ggaG9sZXMuAEZhaWxlZCB0byBpbml0aWFsaXplIGF0dHJpYnV0ZSBkYXRhLgBGYWlsZWQgdG8gZW5jb2RlIG1lc2ggY29tcG9uZW50LgBGYWlsZWQgdG8gZW5jb2RlIHNwbGl0IGRhdGEuAE41ZHJhY28xM1RyYXZlcnNlckJhc2VJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQBONWRyYWNvMTlEZXB0aEZpcnN0VHJhdmVyc2VySU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRU5TXzM2TWVzaEF0dHJpYnV0ZUluZGljZXNFbmNvZGluZ09ic2VydmVySVMxX0VFRUUATjVkcmFjbzIyTWVzaFRyYXZlcnNhbFNlcXVlbmNlcklOU18xOURlcHRoRmlyc3RUcmF2ZXJzZXJJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzJfRUVFRUVFAE41ZHJhY28xNVBvaW50c1NlcXVlbmNlckUATjVkcmFjbzEzVHJhdmVyc2VyQmFzZUlOU18xMUNvcm5lclRhYmxlRU5TXzM2TWVzaEF0dHJpYnV0ZUluZGljZXNFbmNvZGluZ09ic2VydmVySVMxX0VFRUUATjVkcmFjbzE5RGVwdGhGaXJzdFRyYXZlcnNlcklOU18xMUNvcm5lclRhYmxlRU5TXzM2TWVzaEF0dHJpYnV0ZUluZGljZXNFbmNvZGluZ09ic2VydmVySVMxX0VFRUUATjVkcmFjbzIyTWVzaFRyYXZlcnNhbFNlcXVlbmNlcklOU18xOURlcHRoRmlyc3RUcmF2ZXJzZXJJTlNfMTFDb3JuZXJUYWJsZUVOU18zNk1lc2hBdHRyaWJ1dGVJbmRpY2VzRW5jb2RpbmdPYnNlcnZlcklTMl9FRUVFRUUATjVkcmFjbzI4TWF4UHJlZGljdGlvbkRlZ3JlZVRyYXZlcnNlcklOU18xMUNvcm5lclRhYmxlRU5TXzM2TWVzaEF0dHJpYnV0ZUluZGljZXNFbmNvZGluZ09ic2VydmVySVMxX0VFRUUATjVkcmFjbzIyTWVzaFRyYXZlcnNhbFNlcXVlbmNlcklOU18yOE1heFByZWRpY3Rpb25EZWdyZWVUcmF2ZXJzZXJJTlNfMTFDb3JuZXJUYWJsZUVOU18zNk1lc2hBdHRyaWJ1dGVJbmRpY2VzRW5jb2RpbmdPYnNlcnZlcklTMl9FRUVFRUUAc3BsaXRfbWVzaF9vbl9zZWFtcwBONWRyYWNvMjZNZXNoRWRnZWJyZWFrZXJFbmNvZGVySW1wbElOU18zMU1lc2hFZGdlYnJlYWtlclRyYXZlcnNhbEVuY29kZXJFRUUATjVkcmFjbzM1TWVzaEVkZ2VicmVha2VyRW5jb2RlckltcGxJbnRlcmZhY2VFAE41ZHJhY28yNk1lc2hFZGdlYnJlYWtlckVuY29kZXJJbXBsSU5TXzM4TWVzaEVkZ2VicmVha2VyVHJhdmVyc2FsVmFsZW5jZUVuY29kZXJFRUUAc3RvcmVfbnVtYmVyX29mX2VuY29kZWRfZmFjZXMATjVkcmFjbzExTWVzaEVuY29kZXJFAGNvbXByZXNzX2Nvbm5lY3Rpdml0eQBONWRyYWNvMTVMaW5lYXJTZXF1ZW5jZXJFAE41ZHJhY28yMU1lc2hTZXF1ZW50aWFsRW5jb2RlckUATjVkcmFjbzE3UG9pbnRDbG91ZEVuY29kZXJFAEludmFsaWQgaW5wdXQgZ2VvbWV0cnkuAEZhaWxlZCB0byBpbml0aWFsaXplIGVuY29kZXIuAEZhaWxlZCB0byBlbmNvZGUgaW50ZXJuYWwgZGF0YS4ARmFpbGVkIHRvIGVuY29kZSBwb2ludCBhdHRyaWJ1dGVzLgBzdG9yZV9udW1iZXJfb2ZfZW5jb2RlZF9wb2ludHMARmFpbGVkIHRvIGVuY29kZSBtZXRhZGF0YS4ARFJBQ08ATjVkcmFjbzIzUG9pbnRDbG91ZEtkVHJlZUVuY29kZXJFAE41ZHJhY28yN1BvaW50Q2xvdWRTZXF1ZW50aWFsRW5jb2RlckUATjVkcmFjbzRNZXNoRQBhbGxvY2F0b3I8VD46OmFsbG9jYXRlKHNpemVfdCBuKSAnbicgZXhjZWVkcyBtYXhpbXVtIHN1cHBvcnRlZCBzaXplAE41ZHJhY28xMFBvaW50Q2xvdWRFABEACgAREREAAAAABQAAAAAAAAkAAAAACwAAAAAAAAAAEQAPChEREQMKBwABEwkLCwAACQYLAAALAAYRAAAAERERAAAAAAAAAAAAAAAAAAAAAAsAAAAAAAAAABEACgoREREACgAAAgAJCwAAAAkACwAACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAAAAAAMAAAAAAwAAAAACQwAAAAAAAwAAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgAAAAAAAAAAAAAADQAAAAQNAAAAAAkOAAAAAAAOAAAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAA8AAAAADwAAAAAJEAAAAAAAEAAAEAAAEgAAABISEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASAAAAEhISAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAAAAAAAAAAAAAACgAAAAAKAAAAAAkLAAAAAAALAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAAAAAAAAAAAAwAAAAADAAAAAAJDAAAAAAADAAADAAALSsgICAwWDB4AChudWxsKQAtMFgrMFggMFgtMHgrMHggMHgAaW5mAElORgBOQU4AMDEyMzQ1Njc4OUFCQ0RFRi4AVCEiGQ0BAgMRSxwMEAQLHRIeJ2hub3BxYiAFBg8TFBUaCBYHKCQXGAkKDhsfJSODgn0mKis8PT4/Q0dKTVhZWltcXV5fYGFjZGVmZ2lqa2xyc3R5ent8AElsbGVnYWwgYnl0ZSBzZXF1ZW5jZQBEb21haW4gZXJyb3IAUmVzdWx0IG5vdCByZXByZXNlbnRhYmxlAE5vdCBhIHR0eQBQZXJtaXNzaW9uIGRlbmllZABPcGVyYXRpb24gbm90IHBlcm1pdHRlZABObyBzdWNoIGZpbGUgb3IgZGlyZWN0b3J5AE5vIHN1Y2ggcHJvY2VzcwBGaWxlIGV4aXN0cwBWYWx1ZSB0b28gbGFyZ2UgZm9yIGRhdGEgdHlwZQBObyBzcGFjZSBsZWZ0IG9uIGRldmljZQBPdXQgb2YgbWVtb3J5AFJlc291cmNlIGJ1c3kASW50ZXJydXB0ZWQgc3lzdGVtIGNhbGwAUmVzb3VyY2UgdGVtcG9yYXJpbHkgdW5hdmFpbGFibGUASW52YWxpZCBzZWVrAENyb3NzLWRldmljZSBsaW5rAFJlYWQtb25seSBmaWxlIHN5c3RlbQBEaXJlY3Rvcnkgbm90IGVtcHR5AENvbm5lY3Rpb24gcmVzZXQgYnkgcGVlcgBPcGVyYXRpb24gdGltZWQgb3V0AENvbm5lY3Rpb24gcmVmdXNlZABIb3N0IGlzIGRvd24ASG9zdCBpcyB1bnJlYWNoYWJsZQBBZGRyZXNzIGluIHVzZQBCcm9rZW4gcGlwZQBJL08gZXJyb3IATm8gc3VjaCBkZXZpY2Ugb3IgYWRkcmVzcwBCbG9jayBkZXZpY2UgcmVxdWlyZWQATm8gc3VjaCBkZXZpY2UATm90IGEgZGlyZWN0b3J5AElzIGEgZGlyZWN0b3J5AFRleHQgZmlsZSBidXN5AEV4ZWMgZm9ybWF0IGVycm9yAEludmFsaWQgYXJndW1lbnQAQXJndW1lbnQgbGlzdCB0b28gbG9uZwBTeW1ib2xpYyBsaW5rIGxvb3AARmlsZW5hbWUgdG9vIGxvbmcAVG9vIG1hbnkgb3BlbiBmaWxlcyBpbiBzeXN0ZW0ATm8gZmlsZSBkZXNjcmlwdG9ycyBhdmFpbGFibGUAQmFkIGZpbGUgZGVzY3JpcHRvcgBObyBjaGlsZCBwcm9jZXNzAEJhZCBhZGRyZXNzAEZpbGUgdG9vIGxhcmdlAFRvbyBtYW55IGxpbmtzAE5vIGxvY2tzIGF2YWlsYWJsZQBSZXNvdXJjZSBkZWFkbG9jayB3b3VsZCBvY2N1cgBTdGF0ZSBub3QgcmVjb3ZlcmFibGUAUHJldmlvdXMgb3duZXIgZGllZABPcGVyYXRpb24gY2FuY2VsZWQARnVuY3Rpb24gbm90IGltcGxlbWVudGVkAE5vIG1lc3NhZ2Ugb2YgZGVzaXJlZCB0eXBlAElkZW50aWZpZXIgcmVtb3ZlZABEZXZpY2Ugbm90IGEgc3RyZWFtAE5vIGRhdGEgYXZhaWxhYmxlAERldmljZSB0aW1lb3V0AE91dCBvZiBzdHJlYW1zIHJlc291cmNlcwBMaW5rIGhhcyBiZWVuIHNldmVyZWQAUHJvdG9jb2wgZXJyb3IAQmFkIG1lc3NhZ2UARmlsZSBkZXNjcmlwdG9yIGluIGJhZCBzdGF0ZQBOb3QgYSBzb2NrZXQARGVzdGluYXRpb24gYWRkcmVzcyByZXF1aXJlZABNZXNzYWdlIHRvbyBsYXJnZQBQcm90b2NvbCB3cm9uZyB0eXBlIGZvciBzb2NrZXQAUHJvdG9jb2wgbm90IGF2YWlsYWJsZQBQcm90b2NvbCBub3Qgc3VwcG9ydGVkAFNvY2tldCB0eXBlIG5vdCBzdXBwb3J0ZWQATm90IHN1cHBvcnRlZABQcm90b2NvbCBmYW1pbHkgbm90IHN1cHBvcnRlZABBZGRyZXNzIGZhbWlseSBub3Qgc3VwcG9ydGVkIGJ5IHByb3RvY29sAEFkZHJlc3Mgbm90IGF2YWlsYWJsZQBOZXR3b3JrIGlzIGRvd24ATmV0d29yayB1bnJlYWNoYWJsZQBDb25uZWN0aW9uIHJlc2V0IGJ5IG5ldHdvcmsAQ29ubmVjdGlvbiBhYm9ydGVkAE5vIGJ1ZmZlciBzcGFjZSBhdmFpbGFibGUAU29ja2V0IGlzIGNvbm5lY3RlZABTb2NrZXQgbm90IGNvbm5lY3RlZABDYW5ub3Qgc2VuZCBhZnRlciBzb2NrZXQgc2h1dGRvd24AT3BlcmF0aW9uIGFscmVhZHkgaW4gcHJvZ3Jlc3MAT3BlcmF0aW9uIGluIHByb2dyZXNzAFN0YWxlIGZpbGUgaGFuZGxlAFJlbW90ZSBJL08gZXJyb3IAUXVvdGEgZXhjZWVkZWQATm8gbWVkaXVtIGZvdW5kAFdyb25nIG1lZGl1bSB0eXBlAE5vIGVycm9yIGluZm9ybWF0aW9uAABpbmZpbml0eQBuYW4AJWQAJWYAdGVybWluYXRpbmcgd2l0aCAlcyBleGNlcHRpb24gb2YgdHlwZSAlczogJXMAdGVybWluYXRpbmcgd2l0aCAlcyBleGNlcHRpb24gb2YgdHlwZSAlcwB0ZXJtaW5hdGluZyB3aXRoICVzIGZvcmVpZ24gZXhjZXB0aW9uAHRlcm1pbmF0aW5nAHVuY2F1Z2h0AFN0OWV4Y2VwdGlvbgBOMTBfX2N4eGFiaXYxMTZfX3NoaW1fdHlwZV9pbmZvRQBTdDl0eXBlX2luZm8ATjEwX19jeHhhYml2MTIwX19zaV9jbGFzc190eXBlX2luZm9FAE4xMF9fY3h4YWJpdjExN19fY2xhc3NfdHlwZV9pbmZvRQBwdGhyZWFkX29uY2UgZmFpbHVyZSBpbiBfX2N4YV9nZXRfZ2xvYmFsc19mYXN0KCkAY2Fubm90IGNyZWF0ZSBwdGhyZWFkIGtleSBmb3IgX19jeGFfZ2V0X2dsb2JhbHMoKQBjYW5ub3QgemVybyBvdXQgdGhyZWFkIHZhbHVlIGZvciBfX2N4YV9nZXRfZ2xvYmFscygpAHRlcm1pbmF0ZV9oYW5kbGVyIHVuZXhwZWN0ZWRseSByZXR1cm5lZABTdDExbG9naWNfZXJyb3IAU3QxMmxlbmd0aF9lcnJvcgBOMTBfX2N4eGFiaXYxMTlfX3BvaW50ZXJfdHlwZV9pbmZvRQBOMTBfX2N4eGFiaXYxMTdfX3BiYXNlX3R5cGVfaW5mb0U=' + var tempDoublePtr = STATICTOP + STATICTOP += 16 + function ___cxa_allocate_exception(size) { + return _malloc(size) + } + function __ZSt18uncaught_exceptionv() { + return !!__ZSt18uncaught_exceptionv.uncaught_exception + } + var EXCEPTIONS = { + last: 0, + caught: [], + infos: {}, + deAdjust: function (adjusted) { + if (!adjusted || EXCEPTIONS.infos[adjusted]) return adjusted + for (var ptr in EXCEPTIONS.infos) { + var info = EXCEPTIONS.infos[ptr] + if (info.adjusted === adjusted) { + return ptr + } + } + return adjusted + }, + addRef: function (ptr) { + if (!ptr) return + var info = EXCEPTIONS.infos[ptr] + info.refcount++ + }, + decRef: function (ptr) { + if (!ptr) return + var info = EXCEPTIONS.infos[ptr] + assert(info.refcount > 0) + info.refcount-- + if (info.refcount === 0 && !info.rethrown) { + if (info.destructor) { + Module['dynCall_vi'](info.destructor, ptr) + } + delete EXCEPTIONS.infos[ptr] + ___cxa_free_exception(ptr) + } + }, + clearRef: function (ptr) { + if (!ptr) return + var info = EXCEPTIONS.infos[ptr] + info.refcount = 0 + }, + } + function ___cxa_begin_catch(ptr) { + var info = EXCEPTIONS.infos[ptr] + if (info && !info.caught) { + info.caught = true + __ZSt18uncaught_exceptionv.uncaught_exception-- + } + if (info) info.rethrown = false + EXCEPTIONS.caught.push(ptr) + EXCEPTIONS.addRef(EXCEPTIONS.deAdjust(ptr)) + return ptr + } + function ___cxa_pure_virtual() { + ABORT = true + throw 'Pure virtual function called!' + } + function ___resumeException(ptr) { + if (!EXCEPTIONS.last) { + EXCEPTIONS.last = ptr + } + throw ( + ptr + + ' - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch.' + ) + } + function ___cxa_find_matching_catch() { + var thrown = EXCEPTIONS.last + if (!thrown) { + return (setTempRet0(0), 0) | 0 + } + var info = EXCEPTIONS.infos[thrown] + var throwntype = info.type + if (!throwntype) { + return (setTempRet0(0), thrown) | 0 + } + var typeArray = Array.prototype.slice.call(arguments) + var pointer = Module['___cxa_is_pointer_type'](throwntype) + if (!___cxa_find_matching_catch.buffer) + ___cxa_find_matching_catch.buffer = _malloc(4) + HEAP32[___cxa_find_matching_catch.buffer >> 2] = thrown + thrown = ___cxa_find_matching_catch.buffer + for (var i = 0; i < typeArray.length; i++) { + if ( + typeArray[i] && + Module['___cxa_can_catch'](typeArray[i], throwntype, thrown) + ) { + thrown = HEAP32[thrown >> 2] + info.adjusted = thrown + return (setTempRet0(typeArray[i]), thrown) | 0 + } + } + thrown = HEAP32[thrown >> 2] + return (setTempRet0(throwntype), thrown) | 0 + } + function ___cxa_throw(ptr, type, destructor) { + EXCEPTIONS.infos[ptr] = { + ptr: ptr, + adjusted: ptr, + type: type, + destructor: destructor, + refcount: 0, + caught: false, + rethrown: false, + } + EXCEPTIONS.last = ptr + if (!('uncaught_exception' in __ZSt18uncaught_exceptionv)) { + __ZSt18uncaught_exceptionv.uncaught_exception = 1 + } else { + __ZSt18uncaught_exceptionv.uncaught_exception++ + } + throw ( + ptr + + ' - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch.' + ) + } + var cttz_i8 = allocate( + [ + 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, + 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, + 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, + 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, + 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, + 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, + 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, + 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, + 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, + 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, + 1, 0, 2, 0, 1, 0, + ], + 'i8', + ALLOC_STATIC, + ) + function ___gxx_personality_v0() {} + var SYSCALLS = { + varargs: 0, + get: function (varargs) { + SYSCALLS.varargs += 4 + var ret = HEAP32[(SYSCALLS.varargs - 4) >> 2] + return ret + }, + getStr: function () { + var ret = Pointer_stringify(SYSCALLS.get()) + return ret + }, + get64: function () { + var low = SYSCALLS.get(), + high = SYSCALLS.get() + if (low >= 0) assert(high === 0) + else assert(high === -1) + return low + }, + getZero: function () { + assert(SYSCALLS.get() === 0) + }, + } + function ___syscall140(which, varargs) { + SYSCALLS.varargs = varargs + try { + var stream = SYSCALLS.getStreamFromFD(), + offset_high = SYSCALLS.get(), + offset_low = SYSCALLS.get(), + result = SYSCALLS.get(), + whence = SYSCALLS.get() + var offset = offset_low + FS.llseek(stream, offset, whence) + HEAP32[result >> 2] = stream.position + if (stream.getdents && offset === 0 && whence === 0) + stream.getdents = null + return 0 + } catch (e) { + if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e) + return -e.errno + } + } + function flush_NO_FILESYSTEM() { + var fflush = Module['_fflush'] + if (fflush) fflush(0) + var printChar = ___syscall146.printChar + if (!printChar) return + var buffers = ___syscall146.buffers + if (buffers[1].length) printChar(1, 10) + if (buffers[2].length) printChar(2, 10) + } + function ___syscall146(which, varargs) { + SYSCALLS.varargs = varargs + try { + var stream = SYSCALLS.get(), + iov = SYSCALLS.get(), + iovcnt = SYSCALLS.get() + var ret = 0 + if (!___syscall146.buffers) { + ___syscall146.buffers = [null, [], []] + ___syscall146.printChar = function (stream, curr) { + var buffer = ___syscall146.buffers[stream] + assert(buffer) + if (curr === 0 || curr === 10) { + ;(stream === 1 ? Module['print'] : Module['printErr'])( + UTF8ArrayToString(buffer, 0), + ) + buffer.length = 0 + } else { + buffer.push(curr) + } + } + } + for (var i = 0; i < iovcnt; i++) { + var ptr = HEAP32[(iov + i * 8) >> 2] + var len = HEAP32[(iov + (i * 8 + 4)) >> 2] + for (var j = 0; j < len; j++) { + ___syscall146.printChar(stream, HEAPU8[ptr + j]) + } + ret += len + } + return ret + } catch (e) { + if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e) + return -e.errno + } + } + function ___syscall6(which, varargs) { + SYSCALLS.varargs = varargs + try { + var stream = SYSCALLS.getStreamFromFD() + FS.close(stream) + return 0 + } catch (e) { + if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e) + return -e.errno + } + } + function _abort() { + Module['abort']() + } + var _llvm_ceil_f64 = Math_ceil + var _llvm_fabs_f64 = Math_abs + var _llvm_floor_f64 = Math_floor + function _llvm_trap() { + abort('trap!') + } + function _emscripten_memcpy_big(dest, src, num) { + HEAPU8.set(HEAPU8.subarray(src, src + num), dest) + return dest + } + var PTHREAD_SPECIFIC = {} + function _pthread_getspecific(key) { + return PTHREAD_SPECIFIC[key] || 0 + } + var PTHREAD_SPECIFIC_NEXT_KEY = 1 + var ERRNO_CODES = { + EPERM: 1, + ENOENT: 2, + ESRCH: 3, + EINTR: 4, + EIO: 5, + ENXIO: 6, + E2BIG: 7, + ENOEXEC: 8, + EBADF: 9, + ECHILD: 10, + EAGAIN: 11, + EWOULDBLOCK: 11, + ENOMEM: 12, + EACCES: 13, + EFAULT: 14, + ENOTBLK: 15, + EBUSY: 16, + EEXIST: 17, + EXDEV: 18, + ENODEV: 19, + ENOTDIR: 20, + EISDIR: 21, + EINVAL: 22, + ENFILE: 23, + EMFILE: 24, + ENOTTY: 25, + ETXTBSY: 26, + EFBIG: 27, + ENOSPC: 28, + ESPIPE: 29, + EROFS: 30, + EMLINK: 31, + EPIPE: 32, + EDOM: 33, + ERANGE: 34, + ENOMSG: 42, + EIDRM: 43, + ECHRNG: 44, + EL2NSYNC: 45, + EL3HLT: 46, + EL3RST: 47, + ELNRNG: 48, + EUNATCH: 49, + ENOCSI: 50, + EL2HLT: 51, + EDEADLK: 35, + ENOLCK: 37, + EBADE: 52, + EBADR: 53, + EXFULL: 54, + ENOANO: 55, + EBADRQC: 56, + EBADSLT: 57, + EDEADLOCK: 35, + EBFONT: 59, + ENOSTR: 60, + ENODATA: 61, + ETIME: 62, + ENOSR: 63, + ENONET: 64, + ENOPKG: 65, + EREMOTE: 66, + ENOLINK: 67, + EADV: 68, + ESRMNT: 69, + ECOMM: 70, + EPROTO: 71, + EMULTIHOP: 72, + EDOTDOT: 73, + EBADMSG: 74, + ENOTUNIQ: 76, + EBADFD: 77, + EREMCHG: 78, + ELIBACC: 79, + ELIBBAD: 80, + ELIBSCN: 81, + ELIBMAX: 82, + ELIBEXEC: 83, + ENOSYS: 38, + ENOTEMPTY: 39, + ENAMETOOLONG: 36, + ELOOP: 40, + EOPNOTSUPP: 95, + EPFNOSUPPORT: 96, + ECONNRESET: 104, + ENOBUFS: 105, + EAFNOSUPPORT: 97, + EPROTOTYPE: 91, + ENOTSOCK: 88, + ENOPROTOOPT: 92, + ESHUTDOWN: 108, + ECONNREFUSED: 111, + EADDRINUSE: 98, + ECONNABORTED: 103, + ENETUNREACH: 101, + ENETDOWN: 100, + ETIMEDOUT: 110, + EHOSTDOWN: 112, + EHOSTUNREACH: 113, + EINPROGRESS: 115, + EALREADY: 114, + EDESTADDRREQ: 89, + EMSGSIZE: 90, + EPROTONOSUPPORT: 93, + ESOCKTNOSUPPORT: 94, + EADDRNOTAVAIL: 99, + ENETRESET: 102, + EISCONN: 106, + ENOTCONN: 107, + ETOOMANYREFS: 109, + EUSERS: 87, + EDQUOT: 122, + ESTALE: 116, + ENOTSUP: 95, + ENOMEDIUM: 123, + EILSEQ: 84, + EOVERFLOW: 75, + ECANCELED: 125, + ENOTRECOVERABLE: 131, + EOWNERDEAD: 130, + ESTRPIPE: 86, + } + function _pthread_key_create(key, destructor) { + if (key == 0) { + return ERRNO_CODES.EINVAL + } + HEAP32[key >> 2] = PTHREAD_SPECIFIC_NEXT_KEY + PTHREAD_SPECIFIC[PTHREAD_SPECIFIC_NEXT_KEY] = 0 + PTHREAD_SPECIFIC_NEXT_KEY++ + return 0 + } + function _pthread_once(ptr, func) { + if (!_pthread_once.seen) _pthread_once.seen = {} + if (ptr in _pthread_once.seen) return + Module['dynCall_v'](func) + _pthread_once.seen[ptr] = 1 + } + function _pthread_setspecific(key, value) { + if (!(key in PTHREAD_SPECIFIC)) { + return ERRNO_CODES.EINVAL + } + PTHREAD_SPECIFIC[key] = value + return 0 + } + function ___setErrNo(value) { + if (Module['___errno_location']) + HEAP32[Module['___errno_location']() >> 2] = value + return value + } + DYNAMICTOP_PTR = staticAlloc(4) + STACK_BASE = STACKTOP = alignMemory(STATICTOP) + STACK_MAX = STACK_BASE + TOTAL_STACK + DYNAMIC_BASE = alignMemory(STACK_MAX) + HEAP32[DYNAMICTOP_PTR >> 2] = DYNAMIC_BASE + staticSealed = true + var ASSERTIONS = false + function intArrayFromString(stringy, dontAddNull, length) { + var len = length > 0 ? length : lengthBytesUTF8(stringy) + 1 + var u8array = new Array(len) + var numBytesWritten = stringToUTF8Array(stringy, u8array, 0, u8array.length) + if (dontAddNull) u8array.length = numBytesWritten + return u8array + } + function intArrayToString(array) { + var ret = [] + for (var i = 0; i < array.length; i++) { + var chr = array[i] + if (chr > 255) { + if (ASSERTIONS) { + assert( + false, + 'Character code ' + + chr + + ' (' + + String.fromCharCode(chr) + + ') at offset ' + + i + + ' not in 0x00-0xFF.', + ) + } + chr &= 255 + } + ret.push(String.fromCharCode(chr)) + } + return ret.join('') + } + var decodeBase64 = + typeof atob === 'function' + ? atob + : function (input) { + var keyStr = + 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=' + var output = '' + var chr1, chr2, chr3 + var enc1, enc2, enc3, enc4 + var i = 0 + input = input.replace(/[^A-Za-z0-9\+\/\=]/g, '') + do { + enc1 = keyStr.indexOf(input.charAt(i++)) + enc2 = keyStr.indexOf(input.charAt(i++)) + enc3 = keyStr.indexOf(input.charAt(i++)) + enc4 = keyStr.indexOf(input.charAt(i++)) + chr1 = (enc1 << 2) | (enc2 >> 4) + chr2 = ((enc2 & 15) << 4) | (enc3 >> 2) + chr3 = ((enc3 & 3) << 6) | enc4 + output = output + String.fromCharCode(chr1) + if (enc3 !== 64) { + output = output + String.fromCharCode(chr2) + } + if (enc4 !== 64) { + output = output + String.fromCharCode(chr3) + } + } while (i < input.length) + return output + } + function intArrayFromBase64(s) { + if (typeof ENVIRONMENT_IS_NODE === 'boolean' && ENVIRONMENT_IS_NODE) { + var buf + try { + buf = Buffer.from(s, 'base64') + } catch (_) { + buf = new Buffer(s, 'base64') + } + return new Uint8Array(buf.buffer, buf.byteOffset, buf.byteLength) + } + try { + var decoded = decodeBase64(s) + var bytes = new Uint8Array(decoded.length) + for (var i = 0; i < decoded.length; ++i) { + bytes[i] = decoded.charCodeAt(i) + } + return bytes + } catch (_) { + throw new Error('Converting base64 string to bytes failed.') + } + } + function tryParseAsDataURI(filename) { + if (!isDataURI(filename)) { + return + } + return intArrayFromBase64(filename.slice(dataURIPrefix.length)) + } + function invoke_ii(index, a1) { + try { + return Module['dynCall_ii'](index, a1) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_iii(index, a1, a2) { + try { + return Module['dynCall_iii'](index, a1, a2) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_iiii(index, a1, a2, a3) { + try { + return Module['dynCall_iiii'](index, a1, a2, a3) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_iiiiiii(index, a1, a2, a3, a4, a5, a6) { + try { + return Module['dynCall_iiiiiii'](index, a1, a2, a3, a4, a5, a6) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_v(index) { + try { + Module['dynCall_v'](index) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_vi(index, a1) { + try { + Module['dynCall_vi'](index, a1) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_vii(index, a1, a2) { + try { + Module['dynCall_vii'](index, a1, a2) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_viii(index, a1, a2, a3) { + try { + Module['dynCall_viii'](index, a1, a2, a3) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_viiii(index, a1, a2, a3, a4) { + try { + Module['dynCall_viiii'](index, a1, a2, a3, a4) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_viiiii(index, a1, a2, a3, a4, a5) { + try { + Module['dynCall_viiiii'](index, a1, a2, a3, a4, a5) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_viiiiii(index, a1, a2, a3, a4, a5, a6) { + try { + Module['dynCall_viiiiii'](index, a1, a2, a3, a4, a5, a6) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + Module.asmGlobalArg = { + Math: Math, + Int8Array: Int8Array, + Int16Array: Int16Array, + Int32Array: Int32Array, + Uint8Array: Uint8Array, + Uint16Array: Uint16Array, + Uint32Array: Uint32Array, + Float32Array: Float32Array, + Float64Array: Float64Array, + NaN: NaN, + Infinity: Infinity, + byteLength: byteLength, + } + Module.asmLibraryArg = { + abort: abort, + assert: assert, + enlargeMemory: enlargeMemory, + getTotalMemory: getTotalMemory, + abortOnCannotGrowMemory: abortOnCannotGrowMemory, + invoke_ii: invoke_ii, + invoke_iii: invoke_iii, + invoke_iiii: invoke_iiii, + invoke_iiiiiii: invoke_iiiiiii, + invoke_v: invoke_v, + invoke_vi: invoke_vi, + invoke_vii: invoke_vii, + invoke_viii: invoke_viii, + invoke_viiii: invoke_viiii, + invoke_viiiii: invoke_viiiii, + invoke_viiiiii: invoke_viiiiii, + __ZSt18uncaught_exceptionv: __ZSt18uncaught_exceptionv, + ___cxa_allocate_exception: ___cxa_allocate_exception, + ___cxa_begin_catch: ___cxa_begin_catch, + ___cxa_find_matching_catch: ___cxa_find_matching_catch, + ___cxa_pure_virtual: ___cxa_pure_virtual, + ___cxa_throw: ___cxa_throw, + ___gxx_personality_v0: ___gxx_personality_v0, + ___resumeException: ___resumeException, + ___setErrNo: ___setErrNo, + ___syscall140: ___syscall140, + ___syscall146: ___syscall146, + ___syscall6: ___syscall6, + _abort: _abort, + _emscripten_memcpy_big: _emscripten_memcpy_big, + _llvm_ceil_f64: _llvm_ceil_f64, + _llvm_fabs_f64: _llvm_fabs_f64, + _llvm_floor_f64: _llvm_floor_f64, + _llvm_trap: _llvm_trap, + _pthread_getspecific: _pthread_getspecific, + _pthread_key_create: _pthread_key_create, + _pthread_once: _pthread_once, + _pthread_setspecific: _pthread_setspecific, + flush_NO_FILESYSTEM: flush_NO_FILESYSTEM, + DYNAMICTOP_PTR: DYNAMICTOP_PTR, + tempDoublePtr: tempDoublePtr, + ABORT: ABORT, + STACKTOP: STACKTOP, + STACK_MAX: STACK_MAX, + cttz_i8: cttz_i8, + } // EMSCRIPTEN_START_ASM + var asm = /** @suppress {uselessCode} */ (function (global, env, buffer) { + 'almost asm' + var a = global.Int8Array + var b = new a(buffer) + var c = global.Int16Array + var d = new c(buffer) + var e = global.Int32Array + var f = new e(buffer) + var g = global.Uint8Array + var h = new g(buffer) + var i = global.Uint16Array + var j = new i(buffer) + var k = global.Uint32Array + var l = new k(buffer) + var m = global.Float32Array + var n = new m(buffer) + var o = global.Float64Array + var p = new o(buffer) + var q = global.byteLength + var r = env.DYNAMICTOP_PTR | 0 + var s = env.tempDoublePtr | 0 + var t = env.ABORT | 0 + var u = env.STACKTOP | 0 + var v = env.STACK_MAX | 0 + var w = env.cttz_i8 | 0 + var x = 0 + var y = 0 + var z = 0 + var A = 0 + var B = global.NaN, + C = global.Infinity + var D = 0, + E = 0, + F = 0, + G = 0, + H = 0.0 + var I = 0 + var J = global.Math.floor + var K = global.Math.abs + var L = global.Math.sqrt + var M = global.Math.pow + var N = global.Math.cos + var O = global.Math.sin + var P = global.Math.tan + var Q = global.Math.acos + var R = global.Math.asin + var S = global.Math.atan + var T = global.Math.atan2 + var U = global.Math.exp + var V = global.Math.log + var W = global.Math.ceil + var X = global.Math.imul + var Y = global.Math.min + var Z = global.Math.max + var _ = global.Math.clz32 + var $ = global.Math.fround + var aa = env.abort + var ba = env.assert + var ca = env.enlargeMemory + var da = env.getTotalMemory + var ea = env.abortOnCannotGrowMemory + var fa = env.invoke_ii + var ga = env.invoke_iii + var ha = env.invoke_iiii + var ia = env.invoke_iiiiiii + var ja = env.invoke_v + var ka = env.invoke_vi + var la = env.invoke_vii + var ma = env.invoke_viii + var na = env.invoke_viiii + var oa = env.invoke_viiiii + var pa = env.invoke_viiiiii + var qa = env.__ZSt18uncaught_exceptionv + var ra = env.___cxa_allocate_exception + var sa = env.___cxa_begin_catch + var ta = env.___cxa_find_matching_catch + var ua = env.___cxa_pure_virtual + var va = env.___cxa_throw + var wa = env.___gxx_personality_v0 + var xa = env.___resumeException + var ya = env.___setErrNo + var za = env.___syscall140 + var Aa = env.___syscall146 + var Ba = env.___syscall6 + var Ca = env._abort + var Da = env._emscripten_memcpy_big + var Ea = env._llvm_ceil_f64 + var Fa = env._llvm_fabs_f64 + var Ga = env._llvm_floor_f64 + var Ha = env._llvm_trap + var Ia = env._pthread_getspecific + var Ja = env._pthread_key_create + var Ka = env._pthread_once + var La = env._pthread_setspecific + var Ma = env.flush_NO_FILESYSTEM + var Na = $(0) + const Oa = $(0) + function Pa(newBuffer) { + if ( + q(newBuffer) & 16777215 || + q(newBuffer) <= 16777215 || + q(newBuffer) > 2147483648 + ) + return false + b = new a(newBuffer) + d = new c(newBuffer) + f = new e(newBuffer) + h = new g(newBuffer) + j = new i(newBuffer) + l = new k(newBuffer) + n = new m(newBuffer) + p = new o(newBuffer) + buffer = newBuffer + return true + } + // EMSCRIPTEN_START_FUNCS + function wc(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0 + if (!a) return + b = (a + -8) | 0 + c = f[4516] | 0 + d = f[(a + -4) >> 2] | 0 + a = d & -8 + e = (b + a) | 0 + do + if (!(d & 1)) { + g = f[b >> 2] | 0 + if (!(d & 3)) return + h = (b + (0 - g)) | 0 + i = (g + a) | 0 + if (h >>> 0 < c >>> 0) return + if ((f[4517] | 0) == (h | 0)) { + j = (e + 4) | 0 + k = f[j >> 2] | 0 + if (((k & 3) | 0) != 3) { + l = h + m = i + n = h + break + } + f[4514] = i + f[j >> 2] = k & -2 + f[(h + 4) >> 2] = i | 1 + f[(h + i) >> 2] = i + return + } + k = g >>> 3 + if (g >>> 0 < 256) { + g = f[(h + 8) >> 2] | 0 + j = f[(h + 12) >> 2] | 0 + if ((j | 0) == (g | 0)) { + f[4512] = f[4512] & ~(1 << k) + l = h + m = i + n = h + break + } else { + f[(g + 12) >> 2] = j + f[(j + 8) >> 2] = g + l = h + m = i + n = h + break + } + } + g = f[(h + 24) >> 2] | 0 + j = f[(h + 12) >> 2] | 0 + do + if ((j | 0) == (h | 0)) { + k = (h + 16) | 0 + o = (k + 4) | 0 + p = f[o >> 2] | 0 + if (!p) { + q = f[k >> 2] | 0 + if (!q) { + r = 0 + break + } else { + s = q + t = k + } + } else { + s = p + t = o + } + while (1) { + o = (s + 20) | 0 + p = f[o >> 2] | 0 + if (p | 0) { + s = p + t = o + continue + } + o = (s + 16) | 0 + p = f[o >> 2] | 0 + if (!p) break + else { + s = p + t = o + } + } + f[t >> 2] = 0 + r = s + } else { + o = f[(h + 8) >> 2] | 0 + f[(o + 12) >> 2] = j + f[(j + 8) >> 2] = o + r = j + } + while (0) + if (g) { + j = f[(h + 28) >> 2] | 0 + o = (18352 + (j << 2)) | 0 + if ((f[o >> 2] | 0) == (h | 0)) { + f[o >> 2] = r + if (!r) { + f[4513] = f[4513] & ~(1 << j) + l = h + m = i + n = h + break + } + } else { + f[ + (g + 16 + ((((f[(g + 16) >> 2] | 0) != (h | 0)) & 1) << 2)) >> 2 + ] = r + if (!r) { + l = h + m = i + n = h + break + } + } + f[(r + 24) >> 2] = g + j = (h + 16) | 0 + o = f[j >> 2] | 0 + if (o | 0) { + f[(r + 16) >> 2] = o + f[(o + 24) >> 2] = r + } + o = f[(j + 4) >> 2] | 0 + if (o) { + f[(r + 20) >> 2] = o + f[(o + 24) >> 2] = r + l = h + m = i + n = h + } else { + l = h + m = i + n = h + } + } else { + l = h + m = i + n = h + } + } else { + l = b + m = a + n = b + } + while (0) + if (n >>> 0 >= e >>> 0) return + b = (e + 4) | 0 + a = f[b >> 2] | 0 + if (!(a & 1)) return + if (!(a & 2)) { + if ((f[4518] | 0) == (e | 0)) { + r = ((f[4515] | 0) + m) | 0 + f[4515] = r + f[4518] = l + f[(l + 4) >> 2] = r | 1 + if ((l | 0) != (f[4517] | 0)) return + f[4517] = 0 + f[4514] = 0 + return + } + if ((f[4517] | 0) == (e | 0)) { + r = ((f[4514] | 0) + m) | 0 + f[4514] = r + f[4517] = n + f[(l + 4) >> 2] = r | 1 + f[(n + r) >> 2] = r + return + } + r = ((a & -8) + m) | 0 + s = a >>> 3 + do + if (a >>> 0 < 256) { + t = f[(e + 8) >> 2] | 0 + c = f[(e + 12) >> 2] | 0 + if ((c | 0) == (t | 0)) { + f[4512] = f[4512] & ~(1 << s) + break + } else { + f[(t + 12) >> 2] = c + f[(c + 8) >> 2] = t + break + } + } else { + t = f[(e + 24) >> 2] | 0 + c = f[(e + 12) >> 2] | 0 + do + if ((c | 0) == (e | 0)) { + d = (e + 16) | 0 + o = (d + 4) | 0 + j = f[o >> 2] | 0 + if (!j) { + p = f[d >> 2] | 0 + if (!p) { + u = 0 + break + } else { + v = p + w = d + } + } else { + v = j + w = o + } + while (1) { + o = (v + 20) | 0 + j = f[o >> 2] | 0 + if (j | 0) { + v = j + w = o + continue + } + o = (v + 16) | 0 + j = f[o >> 2] | 0 + if (!j) break + else { + v = j + w = o + } + } + f[w >> 2] = 0 + u = v + } else { + o = f[(e + 8) >> 2] | 0 + f[(o + 12) >> 2] = c + f[(c + 8) >> 2] = o + u = c + } + while (0) + if (t | 0) { + c = f[(e + 28) >> 2] | 0 + h = (18352 + (c << 2)) | 0 + if ((f[h >> 2] | 0) == (e | 0)) { + f[h >> 2] = u + if (!u) { + f[4513] = f[4513] & ~(1 << c) + break + } + } else { + f[ + (t + 16 + ((((f[(t + 16) >> 2] | 0) != (e | 0)) & 1) << 2)) >> + 2 + ] = u + if (!u) break + } + f[(u + 24) >> 2] = t + c = (e + 16) | 0 + h = f[c >> 2] | 0 + if (h | 0) { + f[(u + 16) >> 2] = h + f[(h + 24) >> 2] = u + } + h = f[(c + 4) >> 2] | 0 + if (h | 0) { + f[(u + 20) >> 2] = h + f[(h + 24) >> 2] = u + } + } + } + while (0) + f[(l + 4) >> 2] = r | 1 + f[(n + r) >> 2] = r + if ((l | 0) == (f[4517] | 0)) { + f[4514] = r + return + } else x = r + } else { + f[b >> 2] = a & -2 + f[(l + 4) >> 2] = m | 1 + f[(n + m) >> 2] = m + x = m + } + m = x >>> 3 + if (x >>> 0 < 256) { + n = (18088 + ((m << 1) << 2)) | 0 + a = f[4512] | 0 + b = 1 << m + if (!(a & b)) { + f[4512] = a | b + y = n + z = (n + 8) | 0 + } else { + b = (n + 8) | 0 + y = f[b >> 2] | 0 + z = b + } + f[z >> 2] = l + f[(y + 12) >> 2] = l + f[(l + 8) >> 2] = y + f[(l + 12) >> 2] = n + return + } + n = x >>> 8 + if (n) + if (x >>> 0 > 16777215) A = 31 + else { + y = (((n + 1048320) | 0) >>> 16) & 8 + z = n << y + n = (((z + 520192) | 0) >>> 16) & 4 + b = z << n + z = (((b + 245760) | 0) >>> 16) & 2 + a = (14 - (n | y | z) + ((b << z) >>> 15)) | 0 + A = ((x >>> ((a + 7) | 0)) & 1) | (a << 1) + } + else A = 0 + a = (18352 + (A << 2)) | 0 + f[(l + 28) >> 2] = A + f[(l + 20) >> 2] = 0 + f[(l + 16) >> 2] = 0 + z = f[4513] | 0 + b = 1 << A + do + if (z & b) { + y = x << ((A | 0) == 31 ? 0 : (25 - (A >>> 1)) | 0) + n = f[a >> 2] | 0 + while (1) { + if (((f[(n + 4) >> 2] & -8) | 0) == (x | 0)) { + B = 73 + break + } + C = (n + 16 + ((y >>> 31) << 2)) | 0 + m = f[C >> 2] | 0 + if (!m) { + B = 72 + break + } else { + y = y << 1 + n = m + } + } + if ((B | 0) == 72) { + f[C >> 2] = l + f[(l + 24) >> 2] = n + f[(l + 12) >> 2] = l + f[(l + 8) >> 2] = l + break + } else if ((B | 0) == 73) { + y = (n + 8) | 0 + t = f[y >> 2] | 0 + f[(t + 12) >> 2] = l + f[y >> 2] = l + f[(l + 8) >> 2] = t + f[(l + 12) >> 2] = n + f[(l + 24) >> 2] = 0 + break + } + } else { + f[4513] = z | b + f[a >> 2] = l + f[(l + 24) >> 2] = a + f[(l + 12) >> 2] = l + f[(l + 8) >> 2] = l + } + while (0) + l = ((f[4520] | 0) + -1) | 0 + f[4520] = l + if (!l) D = 18504 + else return + while (1) { + l = f[D >> 2] | 0 + if (!l) break + else D = (l + 8) | 0 + } + f[4520] = -1 + return + } + function xc(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = Oa, + F = Oa, + G = Oa, + H = 0, + I = 0, + J = 0, + K = 0 + d = b[(c + 11) >> 0] | 0 + e = (d << 24) >> 24 < 0 + g = e ? f[c >> 2] | 0 : c + i = e ? f[(c + 4) >> 2] | 0 : d & 255 + if (i >>> 0 > 3) { + d = g + e = i + j = i + while (1) { + k = + X( + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24), + 1540483477, + ) | 0 + e = (X((k >>> 24) ^ k, 1540483477) | 0) ^ (X(e, 1540483477) | 0) + j = (j + -4) | 0 + if (j >>> 0 <= 3) break + else d = (d + 4) | 0 + } + d = (i + -4) | 0 + j = d & -4 + l = (d - j) | 0 + m = (g + (j + 4)) | 0 + o = e + } else { + l = i + m = g + o = i + } + switch (l | 0) { + case 3: { + p = (h[(m + 2) >> 0] << 16) ^ o + q = 6 + break + } + case 2: { + p = o + q = 6 + break + } + case 1: { + r = o + q = 7 + break + } + default: + s = o + } + if ((q | 0) == 6) { + r = (h[(m + 1) >> 0] << 8) ^ p + q = 7 + } + if ((q | 0) == 7) s = X(r ^ h[m >> 0], 1540483477) | 0 + m = X((s >>> 13) ^ s, 1540483477) | 0 + s = (m >>> 15) ^ m + m = (a + 4) | 0 + r = f[m >> 2] | 0 + p = (r | 0) == 0 + a: do + if (!p) { + o = (r + -1) | 0 + l = ((o & r) | 0) == 0 + if (!l) + if (s >>> 0 < r >>> 0) t = s + else t = (s >>> 0) % (r >>> 0) | 0 + else t = s & o + e = f[((f[a >> 2] | 0) + (t << 2)) >> 2] | 0 + if ((e | 0) != 0 ? ((j = f[e >> 2] | 0), (j | 0) != 0) : 0) { + e = (i | 0) == 0 + if (l) { + if (e) { + l = j + while (1) { + d = f[(l + 4) >> 2] | 0 + if (!(((d | 0) == (s | 0)) | (((d & o) | 0) == (t | 0)))) { + u = t + break a + } + d = b[(l + 8 + 11) >> 0] | 0 + if ( + !( + ((d << 24) >> 24 < 0 ? f[(l + 12) >> 2] | 0 : d & 255) | 0 + ) + ) { + v = l + break + } + l = f[l >> 2] | 0 + if (!l) { + u = t + break a + } + } + w = (v + 20) | 0 + return w | 0 + } else x = j + b: while (1) { + l = f[(x + 4) >> 2] | 0 + if (!(((l | 0) == (s | 0)) | (((l & o) | 0) == (t | 0)))) { + u = t + break a + } + l = (x + 8) | 0 + d = b[(l + 11) >> 0] | 0 + k = (d << 24) >> 24 < 0 + y = d & 255 + do + if (((k ? f[(x + 12) >> 2] | 0 : y) | 0) == (i | 0)) { + d = f[l >> 2] | 0 + if (k) + if (!(Pk(d, g, i) | 0)) { + v = x + q = 63 + break b + } else break + if ((b[g >> 0] | 0) == ((d & 255) << 24) >> 24) { + d = l + z = y + A = g + do { + z = (z + -1) | 0 + d = (d + 1) | 0 + if (!z) { + v = x + q = 63 + break b + } + A = (A + 1) | 0 + } while ((b[d >> 0] | 0) == (b[A >> 0] | 0)) + } + } + while (0) + x = f[x >> 2] | 0 + if (!x) { + u = t + break a + } + } + if ((q | 0) == 63) { + w = (v + 20) | 0 + return w | 0 + } + } + if (e) { + o = j + while (1) { + y = f[(o + 4) >> 2] | 0 + if ((y | 0) != (s | 0)) { + if (y >>> 0 < r >>> 0) B = y + else B = (y >>> 0) % (r >>> 0) | 0 + if ((B | 0) != (t | 0)) { + u = t + break a + } + } + y = b[(o + 8 + 11) >> 0] | 0 + if ( + !(((y << 24) >> 24 < 0 ? f[(o + 12) >> 2] | 0 : y & 255) | 0) + ) { + v = o + break + } + o = f[o >> 2] | 0 + if (!o) { + u = t + break a + } + } + w = (v + 20) | 0 + return w | 0 + } else C = j + c: while (1) { + o = f[(C + 4) >> 2] | 0 + if ((o | 0) != (s | 0)) { + if (o >>> 0 < r >>> 0) D = o + else D = (o >>> 0) % (r >>> 0) | 0 + if ((D | 0) != (t | 0)) { + u = t + break a + } + } + o = (C + 8) | 0 + e = b[(o + 11) >> 0] | 0 + y = (e << 24) >> 24 < 0 + l = e & 255 + do + if (((y ? f[(C + 12) >> 2] | 0 : l) | 0) == (i | 0)) { + e = f[o >> 2] | 0 + if (y) + if (!(Pk(e, g, i) | 0)) { + v = C + q = 63 + break c + } else break + if ((b[g >> 0] | 0) == ((e & 255) << 24) >> 24) { + e = o + k = l + A = g + do { + k = (k + -1) | 0 + e = (e + 1) | 0 + if (!k) { + v = C + q = 63 + break c + } + A = (A + 1) | 0 + } while ((b[e >> 0] | 0) == (b[A >> 0] | 0)) + } + } + while (0) + C = f[C >> 2] | 0 + if (!C) { + u = t + break a + } + } + if ((q | 0) == 63) { + w = (v + 20) | 0 + return w | 0 + } + } else u = t + } else u = 0 + while (0) + t = dn(24) | 0 + dj((t + 8) | 0, c) + f[(t + 20) >> 2] = 0 + f[(t + 4) >> 2] = s + f[t >> 2] = 0 + c = (a + 12) | 0 + E = $((((f[c >> 2] | 0) + 1) | 0) >>> 0) + F = $(r >>> 0) + G = $(n[(a + 16) >> 2]) + do + if (p | ($(G * F) < E)) { + C = (r << 1) | (((r >>> 0 < 3) | ((((r + -1) & r) | 0) != 0)) & 1) + g = ~~$(W($(E / G))) >>> 0 + Ph(a, C >>> 0 < g >>> 0 ? g : C) + C = f[m >> 2] | 0 + g = (C + -1) | 0 + if (!(g & C)) { + H = C + I = g & s + break + } + if (s >>> 0 < C >>> 0) { + H = C + I = s + } else { + H = C + I = (s >>> 0) % (C >>> 0) | 0 + } + } else { + H = r + I = u + } + while (0) + u = ((f[a >> 2] | 0) + (I << 2)) | 0 + I = f[u >> 2] | 0 + if (!I) { + r = (a + 8) | 0 + f[t >> 2] = f[r >> 2] + f[r >> 2] = t + f[u >> 2] = r + r = f[t >> 2] | 0 + if (r | 0) { + u = f[(r + 4) >> 2] | 0 + r = (H + -1) | 0 + if (r & H) + if (u >>> 0 < H >>> 0) J = u + else J = (u >>> 0) % (H >>> 0) | 0 + else J = u & r + K = ((f[a >> 2] | 0) + (J << 2)) | 0 + q = 61 + } + } else { + f[t >> 2] = f[I >> 2] + K = I + q = 61 + } + if ((q | 0) == 61) f[K >> 2] = t + f[c >> 2] = (f[c >> 2] | 0) + 1 + v = t + w = (v + 20) | 0 + return w | 0 + } + function yc(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0.0, + q = 0.0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0.0, + G = 0.0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0.0, + P = 0, + Q = 0.0, + R = 0.0, + S = 0, + T = 0.0, + U = 0, + V = 0, + W = 0, + X = 0.0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0.0, + da = 0, + ea = 0.0 + g = (a + 4) | 0 + i = f[g >> 2] | 0 + j = (a + 100) | 0 + if (i >>> 0 < (f[j >> 2] | 0) >>> 0) { + f[g >> 2] = i + 1 + k = h[i >> 0] | 0 + l = 0 + } else { + k = Di(a) | 0 + l = 0 + } + a: while (1) { + switch (k | 0) { + case 46: { + m = 8 + break a + break + } + case 48: + break + default: { + n = 0 + o = 0 + p = 1.0 + q = 0.0 + r = 0 + s = k + t = l + u = 0 + v = 0 + w = 0 + x = 0 + break a + } + } + i = f[g >> 2] | 0 + if (i >>> 0 < (f[j >> 2] | 0) >>> 0) { + f[g >> 2] = i + 1 + k = h[i >> 0] | 0 + l = 1 + continue + } else { + k = Di(a) | 0 + l = 1 + continue + } + } + if ((m | 0) == 8) { + k = f[g >> 2] | 0 + if (k >>> 0 < (f[j >> 2] | 0) >>> 0) { + f[g >> 2] = k + 1 + y = h[k >> 0] | 0 + } else y = Di(a) | 0 + if ((y | 0) == 48) { + k = 0 + i = 0 + while (1) { + z = f[g >> 2] | 0 + if (z >>> 0 < (f[j >> 2] | 0) >>> 0) { + f[g >> 2] = z + 1 + A = h[z >> 0] | 0 + } else A = Di(a) | 0 + z = Tn(k | 0, i | 0, -1, -1) | 0 + B = I + if ((A | 0) == 48) { + k = z + i = B + } else { + n = 1 + o = 0 + p = 1.0 + q = 0.0 + r = 0 + s = A + t = 1 + u = 0 + v = 0 + w = z + x = B + break + } + } + } else { + n = 1 + o = 0 + p = 1.0 + q = 0.0 + r = 0 + s = y + t = l + u = 0 + v = 0 + w = 0 + x = 0 + } + } + while (1) { + l = (s + -48) | 0 + y = s | 32 + if (l >>> 0 >= 10) { + A = (s | 0) == 46 + if (!(A | (((y + -97) | 0) >>> 0 < 6))) { + C = s + break + } + if (A) + if (!n) { + D = 1 + E = o + F = p + G = q + H = r + J = t + K = v + L = u + M = v + N = u + } else { + C = 46 + break + } + else m = 20 + } else m = 20 + if ((m | 0) == 20) { + m = 0 + A = (s | 0) > 57 ? (y + -87) | 0 : l + do + if (!(((u | 0) < 0) | (((u | 0) == 0) & (v >>> 0 < 8)))) + if (((u | 0) < 0) | (((u | 0) == 0) & (v >>> 0 < 14))) { + O = p * 0.0625 + P = o + Q = O + R = q + O * +(A | 0) + S = r + break + } else { + l = ((o | 0) != 0) | ((A | 0) == 0) + P = l ? o : 1 + Q = p + R = l ? q : q + p * 0.5 + S = r + break + } + else { + P = o + Q = p + R = q + S = (A + (r << 4)) | 0 + } + while (0) + A = Tn(v | 0, u | 0, 1, 0) | 0 + D = n + E = P + F = Q + G = R + H = S + J = 1 + K = w + L = x + M = A + N = I + } + A = f[g >> 2] | 0 + if (A >>> 0 < (f[j >> 2] | 0) >>> 0) { + f[g >> 2] = A + 1 + n = D + o = E + p = F + q = G + r = H + s = h[A >> 0] | 0 + t = J + u = N + v = M + w = K + x = L + continue + } else { + n = D + o = E + p = F + q = G + r = H + s = Di(a) | 0 + t = J + u = N + v = M + w = K + x = L + continue + } + } + do + if (!t) { + L = (f[j >> 2] | 0) == 0 + if (!L) f[g >> 2] = (f[g >> 2] | 0) + -1 + if (e) { + if (!L) f[g >> 2] = (f[g >> 2] | 0) + -1 + if (!(((n | 0) == 0) | L)) f[g >> 2] = (f[g >> 2] | 0) + -1 + } else Rm(a, 0) + T = +(d | 0) * 0.0 + } else { + L = (n | 0) == 0 + K = L ? v : w + M = L ? u : x + if (((u | 0) < 0) | (((u | 0) == 0) & (v >>> 0 < 8))) { + L = r + N = v + J = u + while (1) { + s = L << 4 + H = N + N = Tn(N | 0, J | 0, 1, 0) | 0 + if (!(((J | 0) < 0) | (((J | 0) == 0) & (H >>> 0 < 7)))) { + U = s + break + } else { + L = s + J = I + } + } + } else U = r + if ((C | 32 | 0) == 112) { + J = De(a, e) | 0 + L = I + if (((J | 0) == 0) & ((L | 0) == -2147483648)) { + if (!e) { + Rm(a, 0) + T = 0.0 + break + } + if (!(f[j >> 2] | 0)) { + V = 0 + W = 0 + } else { + f[g >> 2] = (f[g >> 2] | 0) + -1 + V = 0 + W = 0 + } + } else { + V = J + W = L + } + } else if (!(f[j >> 2] | 0)) { + V = 0 + W = 0 + } else { + f[g >> 2] = (f[g >> 2] | 0) + -1 + V = 0 + W = 0 + } + L = Rn(K | 0, M | 0, 2) | 0 + J = Tn(L | 0, I | 0, -32, -1) | 0 + L = Tn(J | 0, I | 0, V | 0, W | 0) | 0 + J = I + if (!U) { + T = +(d | 0) * 0.0 + break + } + N = (0 - c) | 0 + s = (((N | 0) < 0) << 31) >> 31 + if ( + ((J | 0) > (s | 0)) | + (((J | 0) == (s | 0)) & (L >>> 0 > N >>> 0)) + ) { + N = ir() | 0 + f[N >> 2] = 34 + T = + +(d | 0) * + 1797693134862315708145274.0e284 * + 1797693134862315708145274.0e284 + break + } + N = (c + -106) | 0 + s = (((N | 0) < 0) << 31) >> 31 + if ( + ((J | 0) < (s | 0)) | + (((J | 0) == (s | 0)) & (L >>> 0 < N >>> 0)) + ) { + N = ir() | 0 + f[N >> 2] = 34 + T = +(d | 0) * 2.2250738585072014e-308 * 2.2250738585072014e-308 + break + } + if ((U | 0) > -1) { + G = q + N = U + s = L + H = J + while (1) { + E = !(G >= 0.5) + o = (N << 1) | ((E ^ 1) & 1) + F = G + (E ? G : G + -1.0) + E = Tn(s | 0, H | 0, -1, -1) | 0 + D = I + if ((o | 0) > -1) { + G = F + N = o + s = E + H = D + } else { + X = F + Y = o + Z = E + _ = D + break + } + } + } else { + X = q + Y = U + Z = L + _ = J + } + H = (((b | 0) < 0) << 31) >> 31 + s = Vn(32, 0, c | 0, ((((c | 0) < 0) << 31) >> 31) | 0) | 0 + N = Tn(s | 0, I | 0, Z | 0, _ | 0) | 0 + s = I + if ( + ((s | 0) < (H | 0)) | + (((s | 0) == (H | 0)) & (N >>> 0 < b >>> 0)) + ) + if ((N | 0) > 0) { + $ = N + m = 59 + } else { + aa = 0 + ba = 84 + m = 61 + } + else { + $ = b + m = 59 + } + if ((m | 0) == 59) + if (($ | 0) < 53) { + aa = $ + ba = (84 - $) | 0 + m = 61 + } else { + ca = 0.0 + da = $ + ea = +(d | 0) + } + if ((m | 0) == 61) { + G = +(d | 0) + ca = +Gq(+Wj(1.0, ba), G) + da = aa + ea = G + } + N = (((Y & 1) | 0) == 0) & ((X != 0.0) & ((da | 0) < 32)) + G = (N ? 0.0 : X) * ea + (ca + ea * +(((Y + (N & 1)) | 0) >>> 0)) - ca + if (!(G != 0.0)) { + N = ir() | 0 + f[N >> 2] = 34 + } + T = +Hq(G, Z) + } + while (0) + return +T + } + function zc(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0 + g = u + u = (u + 16) | 0 + h = (g + 4) | 0 + i = g + if (!(oh(a, d) | 0)) { + j = 0 + u = g + return j | 0 + } + d = (a + 84) | 0 + k = f[d >> 2] | 0 + l = (a + 88) | 0 + m = f[l >> 2] | 0 + if ((m | 0) != (k | 0)) f[l >> 2] = m + (~(((m + -4 - k) | 0) >>> 2) << 2) + f[d >> 2] = 0 + f[l >> 2] = 0 + f[(a + 92) >> 2] = 0 + if (k | 0) br(k) + k = (a + 72) | 0 + l = f[k >> 2] | 0 + d = (a + 76) | 0 + if ((f[d >> 2] | 0) != (l | 0)) f[d >> 2] = l + f[k >> 2] = 0 + f[d >> 2] = 0 + f[(a + 80) >> 2] = 0 + if (l | 0) br(l) + l = (a + 64) | 0 + d = f[l >> 2] | 0 + if ((f[(d + 4) >> 2] | 0) != (f[d >> 2] | 0)) { + k = (a + 12) | 0 + m = (e + 84) | 0 + n = (e + 68) | 0 + o = (c + 96) | 0 + p = (a + 24) | 0 + q = 0 + r = d + do { + f[i >> 2] = ((q >>> 0) / 3) | 0 + f[h >> 2] = f[i >> 2] + d = Rj(r, h) | 0 + r = f[l >> 2] | 0 + do + if (!d) { + s = f[((f[(r + 12) >> 2] | 0) + (q << 2)) >> 2] | 0 + if ((s | 0) == -1) { + t = ((f[a >> 2] | 0) + ((q >>> 5) << 2)) | 0 + f[t >> 2] = f[t >> 2] | (1 << (q & 31)) + t = (q + 1) | 0 + v = ((t >>> 0) % 3 | 0 | 0) == 0 ? (q + -2) | 0 : t + if ((v | 0) == -1) w = -1 + else w = f[((f[r >> 2] | 0) + (v << 2)) >> 2] | 0 + v = ((f[k >> 2] | 0) + ((w >>> 5) << 2)) | 0 + f[v >> 2] = f[v >> 2] | (1 << (w & 31)) + v = ((((q >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + q) | 0 + if ((v | 0) == -1) x = -1 + else x = f[((f[r >> 2] | 0) + (v << 2)) >> 2] | 0 + v = ((f[k >> 2] | 0) + ((x >>> 5) << 2)) | 0 + f[v >> 2] = f[v >> 2] | (1 << (x & 31)) + break + } + if (s >>> 0 >= q >>> 0) { + v = (q + 1) | 0 + t = ((v >>> 0) % 3 | 0 | 0) == 0 ? (q + -2) | 0 : v + y = (s + (((s >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + z = (t | 0) == -1 + if (!(b[m >> 0] | 0)) { + if (z) A = -1 + else + A = + f[ + ((f[o >> 2] | 0) + + (((((t | 0) / 3) | 0) * 12) | 0) + + (((t | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + B = (y | 0) == -1 + if (B) C = -1 + else + C = + f[ + ((f[o >> 2] | 0) + + (((((y | 0) / 3) | 0) * 12) | 0) + + (((y | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + D = f[n >> 2] | 0 + if ( + (f[(D + (A << 2)) >> 2] | 0) == + (f[(D + (C << 2)) >> 2] | 0) + ) { + E = (t + 1) | 0 + if (z) F = -1 + else F = ((E >>> 0) % 3 | 0 | 0) == 0 ? (t + -2) | 0 : E + do + if (!B) + if (!((y >>> 0) % 3 | 0)) { + G = (y + 2) | 0 + break + } else { + G = (y + -1) | 0 + break + } + else G = -1 + while (0) + if ((F | 0) == -1) H = -1 + else + H = + f[ + ((f[o >> 2] | 0) + + (((((F | 0) / 3) | 0) * 12) | 0) + + (((F | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if ((G | 0) == -1) I = -1 + else + I = + f[ + ((f[o >> 2] | 0) + + (((((G | 0) / 3) | 0) * 12) | 0) + + (((G | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if ( + (f[(D + (H << 2)) >> 2] | 0) == + (f[(D + (I << 2)) >> 2] | 0) + ) + break + } + } else { + if (z) J = -1 + else + J = + f[ + ((f[o >> 2] | 0) + + (((((t | 0) / 3) | 0) * 12) | 0) + + (((t | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + B = (y | 0) == -1 + if (B) K = -1 + else + K = + f[ + ((f[o >> 2] | 0) + + (((((y | 0) / 3) | 0) * 12) | 0) + + (((y | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if ((J | 0) == (K | 0)) { + E = (t + 1) | 0 + if (z) L = -1 + else L = ((E >>> 0) % 3 | 0 | 0) == 0 ? (t + -2) | 0 : E + do + if (!B) + if (!((y >>> 0) % 3 | 0)) { + M = (y + 2) | 0 + break + } else { + M = (y + -1) | 0 + break + } + else M = -1 + while (0) + if ((L | 0) == -1) N = -1 + else + N = + f[ + ((f[o >> 2] | 0) + + (((((L | 0) / 3) | 0) * 12) | 0) + + (((L | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if ((M | 0) == -1) O = -1 + else + O = + f[ + ((f[o >> 2] | 0) + + (((((M | 0) / 3) | 0) * 12) | 0) + + (((M | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if ((N | 0) == (O | 0)) break + } + } + b[p >> 0] = 0 + y = f[a >> 2] | 0 + B = (y + ((q >>> 5) << 2)) | 0 + f[B >> 2] = f[B >> 2] | (1 << (q & 31)) + B = (y + ((s >>> 5) << 2)) | 0 + f[B >> 2] = f[B >> 2] | (1 << (s & 31)) + B = ((v >>> 0) % 3 | 0 | 0) == 0 ? (q + -2) | 0 : v + if ((B | 0) == -1) P = -1 + else P = f[((f[r >> 2] | 0) + (B << 2)) >> 2] | 0 + B = ((f[k >> 2] | 0) + ((P >>> 5) << 2)) | 0 + f[B >> 2] = f[B >> 2] | (1 << (P & 31)) + B = ((((q >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + q) | 0 + if ((B | 0) == -1) Q = -1 + else Q = f[((f[r >> 2] | 0) + (B << 2)) >> 2] | 0 + B = ((f[k >> 2] | 0) + ((Q >>> 5) << 2)) | 0 + f[B >> 2] = f[B >> 2] | (1 << (Q & 31)) + B = (s + 1) | 0 + y = ((B >>> 0) % 3 | 0 | 0) == 0 ? (s + -2) | 0 : B + if ((y | 0) == -1) R = -1 + else R = f[((f[r >> 2] | 0) + (y << 2)) >> 2] | 0 + y = ((f[k >> 2] | 0) + ((R >>> 5) << 2)) | 0 + f[y >> 2] = f[y >> 2] | (1 << (R & 31)) + y = ((((s >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + s) | 0 + if ((y | 0) == -1) S = -1 + else S = f[((f[r >> 2] | 0) + (y << 2)) >> 2] | 0 + y = ((f[k >> 2] | 0) + ((S >>> 5) << 2)) | 0 + f[y >> 2] = f[y >> 2] | (1 << (S & 31)) + } + } + while (0) + q = (q + 1) | 0 + } while ( + q >>> 0 < + (((f[(r + 4) >> 2] | 0) - (f[r >> 2] | 0)) >> 2) >>> 0 + ) + } + if (((c | 0) != 0) & ((e | 0) != 0)) { + Kc(a, c, e) + j = 1 + u = g + return j | 0 + } else { + gd(a, 0, 0) + j = 1 + u = g + return j | 0 + } + return 0 + } + function Ac(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0 + d = u + u = (u + 32) | 0 + e = (d + 12) | 0 + g = (d + 8) | 0 + h = (d + 4) | 0 + i = d + j = (a + 8) | 0 + a: do + if ( + f[j >> 2] | 0 + ? ((k = f[a >> 2] | 0), + (l = (a + 4) | 0), + (f[a >> 2] = l), + (f[((f[l >> 2] | 0) + 8) >> 2] = 0), + (f[l >> 2] = 0), + (f[j >> 2] = 0), + (m = f[(k + 4) >> 2] | 0), + (n = (m | 0) == 0 ? k : m), + n | 0) + : 0 + ) { + m = (a + 4) | 0 + k = n + n = f[b >> 2] | 0 + while (1) { + if ((n | 0) == (f[c >> 2] | 0)) break + o = (k + 16) | 0 + f[o >> 2] = f[(n + 16) >> 2] + if ((k | 0) != (n | 0)) { + f[h >> 2] = f[(n + 20) >> 2] + f[i >> 2] = n + 24 + f[g >> 2] = f[h >> 2] + f[e >> 2] = f[i >> 2] + Hc((k + 20) | 0, g, e) + } + p = (k + 8) | 0 + q = f[p >> 2] | 0 + do + if (q) { + r = f[q >> 2] | 0 + if ((r | 0) == (k | 0)) { + f[q >> 2] = 0 + s = f[(q + 4) >> 2] | 0 + if (!s) { + t = q + break + } else v = s + while (1) { + s = f[v >> 2] | 0 + if (s | 0) { + v = s + continue + } + s = f[(v + 4) >> 2] | 0 + if (!s) break + else v = s + } + t = v + break + } else { + f[(q + 4) >> 2] = 0 + if (!r) { + t = q + break + } else w = r + while (1) { + s = f[w >> 2] | 0 + if (s | 0) { + w = s + continue + } + s = f[(w + 4) >> 2] | 0 + if (!s) break + else w = s + } + t = w + break + } + } else t = 0 + while (0) + q = f[l >> 2] | 0 + do + if (q) { + r = f[o >> 2] | 0 + s = q + while (1) { + if ((r | 0) < (f[(s + 16) >> 2] | 0)) { + x = f[s >> 2] | 0 + if (!x) { + y = 22 + break + } else z = x + } else { + A = (s + 4) | 0 + x = f[A >> 2] | 0 + if (!x) { + y = 25 + break + } else z = x + } + s = z + } + if ((y | 0) == 22) { + y = 0 + B = s + C = s + break + } else if ((y | 0) == 25) { + y = 0 + B = s + C = A + break + } + } else { + B = l + C = l + } + while (0) + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[p >> 2] = B + f[C >> 2] = k + q = f[f[a >> 2] >> 2] | 0 + if (!q) D = k + else { + f[a >> 2] = q + D = f[C >> 2] | 0 + } + Ae(f[m >> 2] | 0, D) + f[j >> 2] = (f[j >> 2] | 0) + 1 + q = f[(n + 4) >> 2] | 0 + if (!q) { + o = (n + 8) | 0 + r = f[o >> 2] | 0 + if ((f[r >> 2] | 0) == (n | 0)) E = r + else { + r = o + do { + o = f[r >> 2] | 0 + r = (o + 8) | 0 + x = f[r >> 2] | 0 + } while ((f[x >> 2] | 0) != (o | 0)) + E = x + } + } else { + r = q + while (1) { + p = f[r >> 2] | 0 + if (!p) break + else r = p + } + E = r + } + f[b >> 2] = E + if (!t) break a + else { + k = t + n = E + } + } + n = f[(k + 8) >> 2] | 0 + if (!n) F = k + else { + m = n + while (1) { + n = f[(m + 8) >> 2] | 0 + if (!n) break + else m = n + } + F = m + } + Dj(a, F) + } + while (0) + F = f[b >> 2] | 0 + E = f[c >> 2] | 0 + if ((F | 0) == (E | 0)) { + u = d + return + } + c = (a + 4) | 0 + t = (a + 4) | 0 + D = F + while (1) { + tg(e, a, (D + 16) | 0) + F = f[c >> 2] | 0 + do + if (F) { + C = f[e >> 2] | 0 + B = f[(C + 16) >> 2] | 0 + A = F + while (1) { + if ((B | 0) < (f[(A + 16) >> 2] | 0)) { + z = f[A >> 2] | 0 + if (!z) { + y = 43 + break + } else G = z + } else { + H = (A + 4) | 0 + z = f[H >> 2] | 0 + if (!z) { + y = 46 + break + } else G = z + } + A = G + } + if ((y | 0) == 43) { + y = 0 + I = A + J = A + K = C + break + } else if ((y | 0) == 46) { + y = 0 + I = A + J = H + K = C + break + } + } else { + I = c + J = c + K = f[e >> 2] | 0 + } + while (0) + f[K >> 2] = 0 + f[(K + 4) >> 2] = 0 + f[(K + 8) >> 2] = I + f[J >> 2] = K + F = f[f[a >> 2] >> 2] | 0 + if (!F) L = K + else { + f[a >> 2] = F + L = f[J >> 2] | 0 + } + Ae(f[t >> 2] | 0, L) + f[j >> 2] = (f[j >> 2] | 0) + 1 + F = f[(D + 4) >> 2] | 0 + if (!F) { + m = (D + 8) | 0 + B = f[m >> 2] | 0 + if ((f[B >> 2] | 0) == (D | 0)) M = B + else { + B = m + do { + m = f[B >> 2] | 0 + B = (m + 8) | 0 + r = f[B >> 2] | 0 + } while ((f[r >> 2] | 0) != (m | 0)) + M = r + } + } else { + B = F + while (1) { + r = f[B >> 2] | 0 + if (!r) break + else B = r + } + M = B + } + f[b >> 2] = M + if ((M | 0) == (E | 0)) break + else D = M + } + u = d + return + } + function Bc(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0 + g = (a + 8) | 0 + Ah(g, b, d, e) + d = e >>> 0 > 1073741823 ? -1 : e << 2 + h = _q(d) | 0 + hj(h | 0, 0, d | 0) | 0 + d = f[(a + 48) >> 2] | 0 + i = f[(a + 56) >> 2] | 0 + j = f[i >> 2] | 0 + k = ((f[(i + 4) >> 2] | 0) - j) | 0 + l = k >> 2 + a: do + if ((k | 0) > 4) { + m = f[(a + 52) >> 2] | 0 + n = (a + 16) | 0 + o = (a + 32) | 0 + p = (a + 12) | 0 + q = (a + 28) | 0 + r = (a + 20) | 0 + s = (a + 24) | 0 + t = (d + 12) | 0 + u = (e | 0) > 0 + v = j + w = l + while (1) { + x = w + w = (w + -1) | 0 + if (l >>> 0 <= w >>> 0) break + y = f[(v + (w << 2)) >> 2] | 0 + z = X(w, e) | 0 + if ( + (y | 0) != -1 + ? ((A = f[((f[t >> 2] | 0) + (y << 2)) >> 2] | 0), + (A | 0) != -1) + : 0 + ) { + y = f[d >> 2] | 0 + B = f[m >> 2] | 0 + C = f[(B + (f[(y + (A << 2)) >> 2] << 2)) >> 2] | 0 + D = (A + 1) | 0 + E = ((D >>> 0) % 3 | 0 | 0) == 0 ? (A + -2) | 0 : D + if ((E | 0) == -1) F = -1 + else F = f[(y + (E << 2)) >> 2] | 0 + E = f[(B + (F << 2)) >> 2] | 0 + D = ((((A >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + A) | 0 + if ((D | 0) == -1) G = -1 + else G = f[(y + (D << 2)) >> 2] | 0 + D = f[(B + (G << 2)) >> 2] | 0 + if ( + ((C | 0) < (w | 0)) & + ((E | 0) < (w | 0)) & + ((D | 0) < (w | 0)) + ) { + B = X(C, e) | 0 + C = X(E, e) | 0 + E = X(D, e) | 0 + if (u) { + D = 0 + do { + f[(h + (D << 2)) >> 2] = + (f[(b + ((D + E) << 2)) >> 2] | 0) + + (f[(b + ((D + C) << 2)) >> 2] | 0) - + (f[(b + ((D + B) << 2)) >> 2] | 0) + D = (D + 1) | 0 + } while ((D | 0) != (e | 0)) + } + D = (b + (z << 2)) | 0 + B = (c + (z << 2)) | 0 + C = f[g >> 2] | 0 + if ((C | 0) > 0) { + E = 0 + y = h + A = C + while (1) { + if ((A | 0) > 0) { + C = 0 + do { + H = f[(y + (C << 2)) >> 2] | 0 + I = f[n >> 2] | 0 + if ((H | 0) > (I | 0)) { + J = f[o >> 2] | 0 + f[(J + (C << 2)) >> 2] = I + K = J + } else { + J = f[p >> 2] | 0 + I = f[o >> 2] | 0 + f[(I + (C << 2)) >> 2] = (H | 0) < (J | 0) ? J : H + K = I + } + C = (C + 1) | 0 + } while ((C | 0) < (f[g >> 2] | 0)) + L = K + } else L = f[o >> 2] | 0 + C = + ((f[(D + (E << 2)) >> 2] | 0) - + (f[(L + (E << 2)) >> 2] | 0)) | + 0 + I = (B + (E << 2)) | 0 + f[I >> 2] = C + if ((C | 0) >= (f[q >> 2] | 0)) { + if ((C | 0) > (f[s >> 2] | 0)) { + M = (C - (f[r >> 2] | 0)) | 0 + N = 42 + } + } else { + M = ((f[r >> 2] | 0) + C) | 0 + N = 42 + } + if ((N | 0) == 42) { + N = 0 + f[I >> 2] = M + } + E = (E + 1) | 0 + A = f[g >> 2] | 0 + if ((E | 0) >= (A | 0)) break + else y = L + } + } + } else N = 16 + } else N = 16 + if ( + (N | 0) == 16 + ? ((N = 0), + (y = (b + (z << 2)) | 0), + (A = (c + (z << 2)) | 0), + (E = f[g >> 2] | 0), + (E | 0) > 0) + : 0 + ) { + B = 0 + D = (b + ((X((x + -2) | 0, e) | 0) << 2)) | 0 + I = E + while (1) { + if ((I | 0) > 0) { + E = 0 + do { + C = f[(D + (E << 2)) >> 2] | 0 + H = f[n >> 2] | 0 + if ((C | 0) > (H | 0)) { + J = f[o >> 2] | 0 + f[(J + (E << 2)) >> 2] = H + O = J + } else { + J = f[p >> 2] | 0 + H = f[o >> 2] | 0 + f[(H + (E << 2)) >> 2] = (C | 0) < (J | 0) ? J : C + O = H + } + E = (E + 1) | 0 + } while ((E | 0) < (f[g >> 2] | 0)) + P = O + } else P = f[o >> 2] | 0 + E = + ((f[(y + (B << 2)) >> 2] | 0) - + (f[(P + (B << 2)) >> 2] | 0)) | + 0 + H = (A + (B << 2)) | 0 + f[H >> 2] = E + if ((E | 0) >= (f[q >> 2] | 0)) { + if ((E | 0) > (f[s >> 2] | 0)) { + Q = (E - (f[r >> 2] | 0)) | 0 + N = 29 + } + } else { + Q = ((f[r >> 2] | 0) + E) | 0 + N = 29 + } + if ((N | 0) == 29) { + N = 0 + f[H >> 2] = Q + } + B = (B + 1) | 0 + I = f[g >> 2] | 0 + if ((B | 0) >= (I | 0)) break + else D = P + } + } + if ((x | 0) <= 2) break a + } + mq(i) + } + while (0) + if ((e | 0) > 0) hj(h | 0, 0, (e << 2) | 0) | 0 + e = f[g >> 2] | 0 + if ((e | 0) <= 0) { + $q(h) + return 1 + } + i = (a + 16) | 0 + P = (a + 32) | 0 + Q = (a + 12) | 0 + O = (a + 28) | 0 + L = (a + 20) | 0 + M = (a + 24) | 0 + a = 0 + K = h + G = e + while (1) { + if ((G | 0) > 0) { + e = 0 + do { + F = f[(K + (e << 2)) >> 2] | 0 + d = f[i >> 2] | 0 + if ((F | 0) > (d | 0)) { + l = f[P >> 2] | 0 + f[(l + (e << 2)) >> 2] = d + R = l + } else { + l = f[Q >> 2] | 0 + d = f[P >> 2] | 0 + f[(d + (e << 2)) >> 2] = (F | 0) < (l | 0) ? l : F + R = d + } + e = (e + 1) | 0 + } while ((e | 0) < (f[g >> 2] | 0)) + S = R + } else S = f[P >> 2] | 0 + e = ((f[(b + (a << 2)) >> 2] | 0) - (f[(S + (a << 2)) >> 2] | 0)) | 0 + d = (c + (a << 2)) | 0 + f[d >> 2] = e + if ((e | 0) >= (f[O >> 2] | 0)) { + if ((e | 0) > (f[M >> 2] | 0)) { + T = (e - (f[L >> 2] | 0)) | 0 + N = 56 + } + } else { + T = ((f[L >> 2] | 0) + e) | 0 + N = 56 + } + if ((N | 0) == 56) { + N = 0 + f[d >> 2] = T + } + a = (a + 1) | 0 + G = f[g >> 2] | 0 + if ((a | 0) >= (G | 0)) break + else K = S + } + $q(h) + return 1 + } + function Cc(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0 + g = (a + 8) | 0 + Ah(g, b, d, e) + d = e >>> 0 > 1073741823 ? -1 : e << 2 + h = _q(d) | 0 + hj(h | 0, 0, d | 0) | 0 + d = f[(a + 48) >> 2] | 0 + i = f[(a + 56) >> 2] | 0 + j = f[i >> 2] | 0 + k = ((f[(i + 4) >> 2] | 0) - j) | 0 + l = k >> 2 + a: do + if ((k | 0) > 4) { + m = f[(a + 52) >> 2] | 0 + n = (a + 16) | 0 + o = (a + 32) | 0 + p = (a + 12) | 0 + q = (a + 28) | 0 + r = (a + 20) | 0 + s = (a + 24) | 0 + t = (d + 64) | 0 + u = (d + 28) | 0 + v = (e | 0) > 0 + w = j + x = l + while (1) { + y = x + x = (x + -1) | 0 + if (l >>> 0 <= x >>> 0) break + z = f[(w + (x << 2)) >> 2] | 0 + A = X(x, e) | 0 + if ( + ( + ( + (z | 0) != -1 + ? ((f[((f[d >> 2] | 0) + ((z >>> 5) << 2)) >> 2] & + (1 << (z & 31))) | + 0) == + 0 + : 0 + ) + ? ((B = + f[ + ((f[((f[t >> 2] | 0) + 12) >> 2] | 0) + (z << 2)) >> 2 + ] | 0), + (B | 0) != -1) + : 0 + ) + ? ((z = f[u >> 2] | 0), + (C = f[m >> 2] | 0), + (D = f[(C + (f[(z + (B << 2)) >> 2] << 2)) >> 2] | 0), + (E = (B + 1) | 0), + (F = + f[ + (C + + (f[ + (z + + ((((E >>> 0) % 3 | 0 | 0) == 0 + ? (B + -2) | 0 + : E) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + (E = + f[ + (C + + (f[ + (z + + (((((B >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + B) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + ((D | 0) < (x | 0)) & + ((F | 0) < (x | 0)) & + ((E | 0) < (x | 0))) + : 0 + ) { + B = X(D, e) | 0 + D = X(F, e) | 0 + F = X(E, e) | 0 + if (v) { + E = 0 + do { + f[(h + (E << 2)) >> 2] = + (f[(b + ((E + F) << 2)) >> 2] | 0) + + (f[(b + ((E + D) << 2)) >> 2] | 0) - + (f[(b + ((E + B) << 2)) >> 2] | 0) + E = (E + 1) | 0 + } while ((E | 0) != (e | 0)) + } + E = (b + (A << 2)) | 0 + B = (c + (A << 2)) | 0 + D = f[g >> 2] | 0 + if ((D | 0) > 0) { + F = 0 + z = h + C = D + while (1) { + if ((C | 0) > 0) { + D = 0 + do { + G = f[(z + (D << 2)) >> 2] | 0 + H = f[n >> 2] | 0 + if ((G | 0) > (H | 0)) { + I = f[o >> 2] | 0 + f[(I + (D << 2)) >> 2] = H + J = I + } else { + I = f[p >> 2] | 0 + H = f[o >> 2] | 0 + f[(H + (D << 2)) >> 2] = (G | 0) < (I | 0) ? I : G + J = H + } + D = (D + 1) | 0 + } while ((D | 0) < (f[g >> 2] | 0)) + K = J + } else K = f[o >> 2] | 0 + D = + ((f[(E + (F << 2)) >> 2] | 0) - + (f[(K + (F << 2)) >> 2] | 0)) | + 0 + H = (B + (F << 2)) | 0 + f[H >> 2] = D + if ((D | 0) >= (f[q >> 2] | 0)) { + if ((D | 0) > (f[s >> 2] | 0)) { + L = (D - (f[r >> 2] | 0)) | 0 + M = 39 + } + } else { + L = ((f[r >> 2] | 0) + D) | 0 + M = 39 + } + if ((M | 0) == 39) { + M = 0 + f[H >> 2] = L + } + F = (F + 1) | 0 + C = f[g >> 2] | 0 + if ((F | 0) >= (C | 0)) break + else z = K + } + } + } else M = 13 + if ( + (M | 0) == 13 + ? ((M = 0), + (z = (b + (A << 2)) | 0), + (C = (c + (A << 2)) | 0), + (F = f[g >> 2] | 0), + (F | 0) > 0) + : 0 + ) { + B = 0 + E = (b + ((X((y + -2) | 0, e) | 0) << 2)) | 0 + H = F + while (1) { + if ((H | 0) > 0) { + F = 0 + do { + D = f[(E + (F << 2)) >> 2] | 0 + G = f[n >> 2] | 0 + if ((D | 0) > (G | 0)) { + I = f[o >> 2] | 0 + f[(I + (F << 2)) >> 2] = G + N = I + } else { + I = f[p >> 2] | 0 + G = f[o >> 2] | 0 + f[(G + (F << 2)) >> 2] = (D | 0) < (I | 0) ? I : D + N = G + } + F = (F + 1) | 0 + } while ((F | 0) < (f[g >> 2] | 0)) + O = N + } else O = f[o >> 2] | 0 + F = + ((f[(z + (B << 2)) >> 2] | 0) - + (f[(O + (B << 2)) >> 2] | 0)) | + 0 + G = (C + (B << 2)) | 0 + f[G >> 2] = F + if ((F | 0) >= (f[q >> 2] | 0)) { + if ((F | 0) > (f[s >> 2] | 0)) { + P = (F - (f[r >> 2] | 0)) | 0 + M = 26 + } + } else { + P = ((f[r >> 2] | 0) + F) | 0 + M = 26 + } + if ((M | 0) == 26) { + M = 0 + f[G >> 2] = P + } + B = (B + 1) | 0 + H = f[g >> 2] | 0 + if ((B | 0) >= (H | 0)) break + else E = O + } + } + if ((y | 0) <= 2) break a + } + mq(i) + } + while (0) + if ((e | 0) > 0) hj(h | 0, 0, (e << 2) | 0) | 0 + e = f[g >> 2] | 0 + if ((e | 0) <= 0) { + $q(h) + return 1 + } + i = (a + 16) | 0 + O = (a + 32) | 0 + P = (a + 12) | 0 + N = (a + 28) | 0 + K = (a + 20) | 0 + L = (a + 24) | 0 + a = 0 + J = h + d = e + while (1) { + if ((d | 0) > 0) { + e = 0 + do { + l = f[(J + (e << 2)) >> 2] | 0 + j = f[i >> 2] | 0 + if ((l | 0) > (j | 0)) { + k = f[O >> 2] | 0 + f[(k + (e << 2)) >> 2] = j + Q = k + } else { + k = f[P >> 2] | 0 + j = f[O >> 2] | 0 + f[(j + (e << 2)) >> 2] = (l | 0) < (k | 0) ? k : l + Q = j + } + e = (e + 1) | 0 + } while ((e | 0) < (f[g >> 2] | 0)) + R = Q + } else R = f[O >> 2] | 0 + e = ((f[(b + (a << 2)) >> 2] | 0) - (f[(R + (a << 2)) >> 2] | 0)) | 0 + j = (c + (a << 2)) | 0 + f[j >> 2] = e + if ((e | 0) >= (f[N >> 2] | 0)) { + if ((e | 0) > (f[L >> 2] | 0)) { + S = (e - (f[K >> 2] | 0)) | 0 + M = 53 + } + } else { + S = ((f[K >> 2] | 0) + e) | 0 + M = 53 + } + if ((M | 0) == 53) { + M = 0 + f[j >> 2] = S + } + a = (a + 1) | 0 + d = f[g >> 2] | 0 + if ((a | 0) >= (d | 0)) break + else J = R + } + $q(h) + return 1 + } + function Dc(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0 + h = u + u = (u + 48) | 0 + i = (h + 28) | 0 + j = (h + 24) | 0 + k = h + l = (h + 12) | 0 + m = (h + 40) | 0 + if ((c | 0) < 0) { + n = 0 + u = h + return n | 0 + } + if (!c) { + n = 1 + u = h + return n | 0 + } + o = (d | 0) > 1 + p = o ? d : 1 + f[k >> 2] = 0 + d = (k + 4) | 0 + f[d >> 2] = 0 + f[(k + 8) >> 2] = 0 + $j(k, c) + q = (k + 8) | 0 + if (o) { + o = 0 + r = 0 + while (1) { + s = 1 + t = f[(a + (r << 2)) >> 2] | 0 + do { + v = f[(a + ((s + r) << 2)) >> 2] | 0 + t = t >>> 0 < v >>> 0 ? v : t + s = (s + 1) | 0 + } while ((s | 0) != (p | 0)) + s = (_(t | 0) | 0) ^ 31 + v = t >>> 0 > o >>> 0 ? t : o + w = (t | 0) == 0 ? 1 : (s + 1) | 0 + f[i >> 2] = w + s = f[d >> 2] | 0 + if (s >>> 0 < (f[q >> 2] | 0) >>> 0) { + f[s >> 2] = w + f[d >> 2] = s + 4 + } else Ci(k, i) + r = (r + p) | 0 + if ((r | 0) >= (c | 0)) { + x = v + break + } else o = v + } + } else { + o = 0 + r = 0 + while (1) { + v = f[(a + (o << 2)) >> 2] | 0 + s = (_(v | 0) | 0) ^ 31 + w = v >>> 0 > r >>> 0 ? v : r + y = (v | 0) == 0 ? 1 : (s + 1) | 0 + f[i >> 2] = y + s = f[d >> 2] | 0 + if (s >>> 0 < (f[q >> 2] | 0) >>> 0) { + f[s >> 2] = y + f[d >> 2] = s + 4 + } else Ci(k, i) + o = (o + p) | 0 + if ((o | 0) >= (c | 0)) { + x = w + break + } else r = w + } + } + f[l >> 2] = 0 + r = (l + 4) | 0 + f[r >> 2] = 0 + f[(l + 8) >> 2] = 0 + o = f[k >> 2] | 0 + q = ((f[d >> 2] | 0) - o) | 0 + w = q >> 2 + if (w) { + if (w >>> 0 > 1073741823) mq(l) + s = dn(q) | 0 + f[r >> 2] = s + f[l >> 2] = s + f[(l + 8) >> 2] = s + (w << 2) + w = s + if ((q | 0) > 0) { + y = (s + ((q >>> 2) << 2)) | 0 + Rg(s | 0, o | 0, q | 0) | 0 + f[r >> 2] = y + q = (y - w) >> 2 + if ((y | 0) == (s | 0)) { + z = q + A = s + B = 0 + C = 0 + } else { + y = 0 + o = 0 + v = 0 + while (1) { + D = Tn(o | 0, v | 0, f[(s + (y << 2)) >> 2] | 0, 0) | 0 + E = I + y = (y + 1) | 0 + if (y >>> 0 >= q >>> 0) { + z = q + A = s + B = D + C = E + break + } else { + o = D + v = E + } + } + } + } else { + F = w + G = 18 + } + } else { + F = 0 + G = 18 + } + if ((G | 0) == 18) { + z = 0 + A = F + B = 0 + C = 0 + } + F = rg(A, z, 32, i) | 0 + z = I + A = f[i >> 2] << 3 + w = Rn(A | 0, ((((A | 0) < 0) << 31) >> 31) | 0, 1) | 0 + A = I + v = on(B | 0, C | 0, p | 0, 0) | 0 + C = Tn(F | 0, z | 0, v | 0, I | 0) | 0 + v = Tn(C | 0, I | 0, w | 0, A | 0) | 0 + A = I + w = f[l >> 2] | 0 + if (w | 0) { + l = f[r >> 2] | 0 + if ((l | 0) != (w | 0)) + f[r >> 2] = l + (~(((l + -4 - w) | 0) >>> 2) << 2) + br(w) + } + w = rg(a, c, x, i) | 0 + l = f[i >> 2] | 0 + r = (((((x - l) | 0) / 64) | 0) + l) << 3 + C = l << 3 + z = Tn(w | 0, I | 0, C | 0, ((((C | 0) < 0) << 31) >> 31) | 0) | 0 + C = Tn(z | 0, I | 0, r | 0, ((((r | 0) < 0) << 31) >> 31) | 0) | 0 + r = I + z = (_((x >>> 0 > 1 ? x : 1) | 0) | 0) ^ 30 + if (e) { + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + w = dn(32) | 0 + f[i >> 2] = w + f[(i + 8) >> 2] = -2147483616 + f[(i + 4) >> 2] = 22 + F = w + B = 13044 + o = (F + 22) | 0 + do { + b[F >> 0] = b[B >> 0] | 0 + F = (F + 1) | 0 + B = (B + 1) | 0 + } while ((F | 0) < (o | 0)) + b[(w + 22) >> 0] = 0 + w = (sh(e, i) | 0) == 0 + if ((b[(i + 11) >> 0] | 0) < 0) br(f[i >> 2] | 0) + if (!w) { + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + w = dn(32) | 0 + f[i >> 2] = w + f[(i + 8) >> 2] = -2147483616 + f[(i + 4) >> 2] = 22 + F = w + B = 13044 + o = (F + 22) | 0 + do { + b[F >> 0] = b[B >> 0] | 0 + F = (F + 1) | 0 + B = (B + 1) | 0 + } while ((F | 0) < (o | 0)) + b[(w + 22) >> 0] = 0 + w = Ck(e, i) | 0 + if ((b[(i + 11) >> 0] | 0) < 0) br(f[i >> 2] | 0) + H = w + } else G = 32 + } else G = 32 + if ((G | 0) == 32) + H = + (z >>> 0 < 18) & + (((A | 0) > (r | 0)) | + (((A | 0) == (r | 0)) & (v >>> 0 >= C >>> 0))) & + 1 + b[m >> 0] = H + C = (g + 16) | 0 + v = f[(C + 4) >> 2] | 0 + if (!(((v | 0) > 0) | (((v | 0) == 0) & ((f[C >> 2] | 0) >>> 0 > 0)))) { + f[j >> 2] = f[(g + 4) >> 2] + f[i >> 2] = f[j >> 2] + ye(g, i, m, (m + 1) | 0) | 0 + } + switch (H | 0) { + case 0: { + J = md(a, c, p, k, g) | 0 + break + } + case 1: { + J = Nc(a, c, x, l, e, g) | 0 + break + } + default: + J = 0 + } + g = f[k >> 2] | 0 + if (g | 0) { + k = f[d >> 2] | 0 + if ((k | 0) != (g | 0)) + f[d >> 2] = k + (~(((k + -4 - g) | 0) >>> 2) << 2) + br(g) + } + n = J + u = h + return n | 0 + } + function Ec(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0 + if ((b | 0) < 0) return + c = (a + 12) | 0 + d = f[c >> 2] | 0 + e = f[(a + 8) >> 2] | 0 + g = e + h = d + if (((d - e) >> 2) >>> 0 <= b >>> 0) return + e = (g + (b << 2)) | 0 + d = f[((f[e >> 2] | 0) + 56) >> 2] | 0 + i = f[((f[(g + (b << 2)) >> 2] | 0) + 60) >> 2] | 0 + g = (e + 4) | 0 + if ((g | 0) != (h | 0)) { + j = g + g = e + do { + k = f[j >> 2] | 0 + f[j >> 2] = 0 + l = f[g >> 2] | 0 + f[g >> 2] = k + if (l | 0) { + k = (l + 88) | 0 + m = f[k >> 2] | 0 + f[k >> 2] = 0 + if (m | 0) { + k = f[(m + 8) >> 2] | 0 + if (k | 0) { + n = (m + 12) | 0 + if ((f[n >> 2] | 0) != (k | 0)) f[n >> 2] = k + br(k) + } + br(m) + } + m = f[(l + 68) >> 2] | 0 + if (m | 0) { + k = (l + 72) | 0 + n = f[k >> 2] | 0 + if ((n | 0) != (m | 0)) + f[k >> 2] = n + (~(((n + -4 - m) | 0) >>> 2) << 2) + br(m) + } + m = (l + 64) | 0 + n = f[m >> 2] | 0 + f[m >> 2] = 0 + if (n | 0) { + m = f[n >> 2] | 0 + if (m | 0) { + k = (n + 4) | 0 + if ((f[k >> 2] | 0) != (m | 0)) f[k >> 2] = m + br(m) + } + br(n) + } + br(l) + } + j = (j + 4) | 0 + g = (g + 4) | 0 + } while ((j | 0) != (h | 0)) + j = f[c >> 2] | 0 + if ((j | 0) != (g | 0)) { + o = g + p = j + q = 24 + } + } else { + o = e + p = h + q = 24 + } + if ((q | 0) == 24) { + q = p + do { + p = (q + -4) | 0 + f[c >> 2] = p + h = f[p >> 2] | 0 + f[p >> 2] = 0 + if (h | 0) { + p = (h + 88) | 0 + e = f[p >> 2] | 0 + f[p >> 2] = 0 + if (e | 0) { + p = f[(e + 8) >> 2] | 0 + if (p | 0) { + j = (e + 12) | 0 + if ((f[j >> 2] | 0) != (p | 0)) f[j >> 2] = p + br(p) + } + br(e) + } + e = f[(h + 68) >> 2] | 0 + if (e | 0) { + p = (h + 72) | 0 + j = f[p >> 2] | 0 + if ((j | 0) != (e | 0)) + f[p >> 2] = j + (~(((j + -4 - e) | 0) >>> 2) << 2) + br(e) + } + e = (h + 64) | 0 + j = f[e >> 2] | 0 + f[e >> 2] = 0 + if (j | 0) { + e = f[j >> 2] | 0 + if (e | 0) { + p = (j + 4) | 0 + if ((f[p >> 2] | 0) != (e | 0)) f[p >> 2] = e + br(e) + } + br(j) + } + br(h) + } + q = f[c >> 2] | 0 + } while ((q | 0) != (o | 0)) + } + o = f[(a + 4) >> 2] | 0 + a: do + if (o | 0) { + q = (o + 44) | 0 + c = f[q >> 2] | 0 + h = f[(o + 40) >> 2] | 0 + while (1) { + if ((h | 0) == (c | 0)) break a + r = (h + 4) | 0 + if ((f[((f[h >> 2] | 0) + 40) >> 2] | 0) == (i | 0)) break + else h = r + } + if ((r | 0) != (c | 0)) { + j = r + e = h + do { + p = f[j >> 2] | 0 + f[j >> 2] = 0 + g = f[e >> 2] | 0 + f[e >> 2] = p + if (g | 0) { + Qi(g) + br(g) + } + j = (j + 4) | 0 + e = (e + 4) | 0 + } while ((j | 0) != (c | 0)) + j = f[q >> 2] | 0 + if ((j | 0) == (e | 0)) break + else { + s = e + t = j + } + } else { + s = h + t = c + } + j = t + do { + g = (j + -4) | 0 + f[q >> 2] = g + p = f[g >> 2] | 0 + f[g >> 2] = 0 + if (p | 0) { + Qi(p) + br(p) + } + j = f[q >> 2] | 0 + } while ((j | 0) != (s | 0)) + } + while (0) + b: do + if ((d | 0) < 5) { + s = f[(a + 20 + ((d * 12) | 0)) >> 2] | 0 + t = (a + 20 + ((d * 12) | 0) + 4) | 0 + r = f[t >> 2] | 0 + i = r + c: do + if ((s | 0) == (r | 0)) u = s + else { + o = s + while (1) { + if ((f[o >> 2] | 0) == (b | 0)) { + u = o + break c + } + o = (o + 4) | 0 + if ((o | 0) == (r | 0)) break b + } + } + while (0) + if ((u | 0) != (r | 0)) { + s = (u + 4) | 0 + o = (i - s) | 0 + j = o >> 2 + if (!j) v = r + else { + Xl(u | 0, s | 0, o | 0) | 0 + v = f[t >> 2] | 0 + } + o = (u + (j << 2)) | 0 + if ((v | 0) != (o | 0)) + f[t >> 2] = v + (~(((v + -4 - o) | 0) >>> 2) << 2) + } + } + while (0) + v = f[(a + 24) >> 2] | 0 + u = f[(a + 20) >> 2] | 0 + d = u + if ((v | 0) != (u | 0)) { + o = (v - u) >> 2 + u = 0 + do { + v = (d + (u << 2)) | 0 + j = f[v >> 2] | 0 + if ((j | 0) > (b | 0)) f[v >> 2] = j + -1 + u = (u + 1) | 0 + } while (u >>> 0 < o >>> 0) + } + o = f[(a + 36) >> 2] | 0 + u = f[(a + 32) >> 2] | 0 + d = u + if ((o | 0) != (u | 0)) { + j = (o - u) >> 2 + u = 0 + do { + o = (d + (u << 2)) | 0 + v = f[o >> 2] | 0 + if ((v | 0) > (b | 0)) f[o >> 2] = v + -1 + u = (u + 1) | 0 + } while (u >>> 0 < j >>> 0) + } + j = f[(a + 48) >> 2] | 0 + u = f[(a + 44) >> 2] | 0 + d = u + if ((j | 0) != (u | 0)) { + v = (j - u) >> 2 + u = 0 + do { + j = (d + (u << 2)) | 0 + o = f[j >> 2] | 0 + if ((o | 0) > (b | 0)) f[j >> 2] = o + -1 + u = (u + 1) | 0 + } while (u >>> 0 < v >>> 0) + } + v = f[(a + 60) >> 2] | 0 + u = f[(a + 56) >> 2] | 0 + d = u + if ((v | 0) != (u | 0)) { + o = (v - u) >> 2 + u = 0 + do { + v = (d + (u << 2)) | 0 + j = f[v >> 2] | 0 + if ((j | 0) > (b | 0)) f[v >> 2] = j + -1 + u = (u + 1) | 0 + } while (u >>> 0 < o >>> 0) + } + o = f[(a + 72) >> 2] | 0 + u = f[(a + 68) >> 2] | 0 + a = u + if ((o | 0) == (u | 0)) return + d = (o - u) >> 2 + u = 0 + do { + o = (a + (u << 2)) | 0 + j = f[o >> 2] | 0 + if ((j | 0) > (b | 0)) f[o >> 2] = j + -1 + u = (u + 1) | 0 + } while (u >>> 0 < d >>> 0) + return + } + function Fc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0 + d = u + u = (u + 32) | 0 + e = (d + 16) | 0 + g = d + h = (c + 4) | 0 + i = f[((f[h >> 2] | 0) + 48) >> 2] | 0 + j = (c + 12) | 0 + c = f[j >> 2] | 0 + k = dn(32) | 0 + f[e >> 2] = k + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 17 + l = k + m = 12932 + n = (l + 17) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(k + 17) >> 0] = 0 + k = (i + 16) | 0 + o = f[k >> 2] | 0 + if (o) { + p = k + q = o + a: while (1) { + o = q + while (1) { + if ((f[(o + 16) >> 2] | 0) >= (c | 0)) break + r = f[(o + 4) >> 2] | 0 + if (!r) { + s = p + break a + } else o = r + } + q = f[o >> 2] | 0 + if (!q) { + s = o + break + } else p = o + } + if ( + ((s | 0) != (k | 0) ? (c | 0) >= (f[(s + 16) >> 2] | 0) : 0) + ? ((c = (s + 20) | 0), (sh(c, e) | 0) != 0) + : 0 + ) + t = yk(c, e, -1) | 0 + else v = 10 + } else v = 10 + if ((v | 0) == 10) t = yk(i, e, -1) | 0 + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + i = ((1 << t) + -1) | 0 + f[e >> 2] = -1 + f[(e + 4) >> 2] = -1 + f[(e + 8) >> 2] = -1 + f[(e + 12) >> 2] = -1 + if ( + (i & 1) | 0 + ? ((t = (_(i | 0) | 0) ^ 31), ((t + -1) | 0) >>> 0 <= 28) + : 0 + ) { + f[e >> 2] = t + 1 + i = 2 << t + f[(e + 4) >> 2] = i + -1 + t = (i + -2) | 0 + f[(e + 8) >> 2] = t + f[(e + 12) >> 2] = ((t | 0) / 2) | 0 + } + t = Ki(f[j >> 2] | 0, f[h >> 2] | 0) | 0 + i = f[((f[h >> 2] | 0) + 48) >> 2] | 0 + c = f[j >> 2] | 0 + s = dn(32) | 0 + f[g >> 2] = s + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 17 + l = s + m = 12804 + n = (l + 17) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(s + 17) >> 0] = 0 + s = (i + 16) | 0 + m = f[s >> 2] | 0 + if (m) { + l = s + n = m + b: while (1) { + m = n + while (1) { + if ((f[(m + 16) >> 2] | 0) >= (c | 0)) break + k = f[(m + 4) >> 2] | 0 + if (!k) { + w = l + break b + } else m = k + } + n = f[m >> 2] | 0 + if (!n) { + w = m + break + } else l = m + } + if ( + ((w | 0) != (s | 0) ? (c | 0) >= (f[(w + 16) >> 2] | 0) : 0) + ? ((c = (w + 20) | 0), (sh(c, g) | 0) != 0) + : 0 + ) + x = yk(c, g, t) | 0 + else v = 25 + } else v = 25 + if ((v | 0) == 25) x = yk(i, g, t) | 0 + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + switch (x | 0) { + case 6: { + x = f[j >> 2] | 0 + t = f[h >> 2] | 0 + i = f[((f[((f[(t + 4) >> 2] | 0) + 8) >> 2] | 0) + (x << 2)) >> 2] | 0 + do + if ((Qa[f[((f[t >> 2] | 0) + 8) >> 2] & 127](t) | 0) == 1) { + rf(g, t, 6, x, e, 514) + c = f[g >> 2] | 0 + if (!c) { + f[g >> 2] = 0 + y = g + v = 34 + break + } else { + z = g + A = c + break + } + } else { + y = g + v = 34 + } + while (0) + if ((v | 0) == 34) { + x = dn(24) | 0 + f[(x + 4) >> 2] = i + i = (x + 8) | 0 + f[i >> 2] = f[e >> 2] + f[(i + 4) >> 2] = f[(e + 4) >> 2] + f[(i + 8) >> 2] = f[(e + 8) >> 2] + f[(i + 12) >> 2] = f[(e + 12) >> 2] + f[x >> 2] = 2320 + i = x + f[g >> 2] = i + z = y + A = i + } + f[a >> 2] = A + f[z >> 2] = 0 + u = d + return + } + case 0: { + z = f[j >> 2] | 0 + j = f[h >> 2] | 0 + h = f[((f[((f[(j + 4) >> 2] | 0) + 8) >> 2] | 0) + (z << 2)) >> 2] | 0 + do + if ((Qa[f[((f[j >> 2] | 0) + 8) >> 2] & 127](j) | 0) == 1) { + rf(g, j, 0, z, e, 514) + A = f[g >> 2] | 0 + if (!A) { + f[g >> 2] = 0 + B = g + v = 41 + break + } else { + C = g + D = A + break + } + } else { + B = g + v = 41 + } + while (0) + if ((v | 0) == 41) { + v = dn(24) | 0 + f[(v + 4) >> 2] = h + h = (v + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[v >> 2] = 2320 + e = v + f[g >> 2] = e + C = B + D = e + } + f[a >> 2] = D + f[C >> 2] = 0 + u = d + return + } + default: { + f[a >> 2] = 0 + u = d + return + } + } + } + function Gc(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0 + b = u + u = (u + 32) | 0 + c = (b + 20) | 0 + d = (b + 8) | 0 + e = b + g = (a + 4) | 0 + h = f[g >> 2] | 0 + i = f[a >> 2] | 0 + j = (h - i) | 0 + k = j >> 2 + f[c >> 2] = 0 + l = (c + 4) | 0 + f[l >> 2] = 0 + m = (c + 8) | 0 + f[m >> 2] = 0 + n = i + if (k | 0) { + if ((j | 0) < 0) mq(c) + j = ((((k + -1) | 0) >>> 5) + 1) | 0 + o = dn(j << 2) | 0 + f[c >> 2] = o + f[m >> 2] = j + f[l >> 2] = k + l = k >>> 5 + hj(o | 0, 0, (l << 2) | 0) | 0 + j = k & 31 + k = (o + (l << 2)) | 0 + if (j | 0) f[k >> 2] = f[k >> 2] & ~(-1 >>> ((32 - j) | 0)) + } + f[d >> 2] = 0 + j = (d + 4) | 0 + f[j >> 2] = 0 + f[(d + 8) >> 2] = 0 + k = (a + 12) | 0 + l = (e + 4) | 0 + o = (d + 8) | 0 + m = n + n = h + h = i + while (1) { + if ((n | 0) == (h | 0)) break + else { + p = 0 + q = 0 + r = h + s = m + } + while (1) { + i = f[c >> 2] | 0 + do + if (!(f[(i + ((q >>> 5) << 2)) >> 2] & (1 << (q & 31)))) { + t = f[d >> 2] | 0 + v = f[j >> 2] | 0 + if ((v | 0) == (t | 0)) w = t + else { + x = (v + (~(((v + -8 - t) | 0) >>> 3) << 3)) | 0 + f[j >> 2] = x + w = x + } + x = q + while (1) { + v = (x + 1) | 0 + y = ((v >>> 0) % 3 | 0 | 0) == 0 ? (x + -2) | 0 : v + if ((y | 0) == -1) { + z = x + A = r + B = i + C = s + D = t + E = w + break + } + v = f[((f[k >> 2] | 0) + (y << 2)) >> 2] | 0 + y = (v + 1) | 0 + if ((v | 0) == -1) { + z = x + A = r + B = i + C = s + D = t + E = w + break + } + F = ((y >>> 0) % 3 | 0 | 0) == 0 ? (v + -2) | 0 : y + if (!(((F | 0) != (q | 0)) & ((F | 0) != -1))) { + z = x + A = r + B = i + C = s + D = t + E = w + break + } + if (!(f[(i + ((F >>> 5) << 2)) >> 2] & (1 << (F & 31)))) x = F + else { + z = x + A = r + B = i + C = s + D = t + E = w + break + } + } + a: while (1) { + t = (B + ((z >>> 5) << 2)) | 0 + f[t >> 2] = f[t >> 2] | (1 << (z & 31)) + t = (z + 1) | 0 + F = ((t >>> 0) % 3 | 0 | 0) == 0 ? (z + -2) | 0 : t + t = f[(C + (F << 2)) >> 2] | 0 + G = ((((z >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + z) | 0 + if ((D | 0) != (E | 0)) + if ((G | 0) == -1) { + y = D + do { + if ( + (f[y >> 2] | 0) == (t | 0) + ? ((v = f[(y + 4) >> 2] | 0), (v | 0) != -1) + : 0 + ) { + H = v + I = -1 + J = -1 + K = 25 + break a + } + y = (y + 8) | 0 + } while ((y | 0) != (E | 0)) + } else { + y = D + do { + if ( + (f[y >> 2] | 0) == (t | 0) + ? ((L = f[(y + 4) >> 2] | 0), + (M = f[((f[k >> 2] | 0) + (G << 2)) >> 2] | 0), + (M | 0) != (L | 0)) + : 0 + ) { + K = 24 + break a + } + y = (y + 8) | 0 + } while ((y | 0) != (E | 0)) + } + f[e >> 2] = 0 + f[e >> 2] = f[(C + (G << 2)) >> 2] + f[l >> 2] = F + if ((E | 0) == (f[o >> 2] | 0)) ei(d, e) + else { + y = e + t = f[(y + 4) >> 2] | 0 + v = E + f[v >> 2] = f[y >> 2] + f[(v + 4) >> 2] = t + f[j >> 2] = (f[j >> 2] | 0) + 8 + } + if ((G | 0) == -1) { + K = 38 + break + } + t = f[((f[k >> 2] | 0) + (G << 2)) >> 2] | 0 + if ((t | 0) == -1) { + K = 38 + break + } + v = (t + (((t >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + if (!(((v | 0) != (x | 0)) & ((v | 0) != -1))) { + K = 40 + break + } + t = f[a >> 2] | 0 + z = v + A = t + B = f[c >> 2] | 0 + C = t + D = f[d >> 2] | 0 + E = f[j >> 2] | 0 + } + if ((K | 0) == 24) { + K = 0 + if ((L | 0) == -1) { + N = -1 + O = -1 + P = M + Q = G + } else { + H = L + I = M + J = G + K = 25 + } + } else if ((K | 0) == 38) { + K = 0 + K = 40 + } + if ((K | 0) == 25) { + K = 0 + N = H + O = f[((f[k >> 2] | 0) + (H << 2)) >> 2] | 0 + P = I + Q = J + } else if ((K | 0) == 40) { + K = 0 + R = p + S = f[a >> 2] | 0 + break + } + if ((P | 0) != -1) f[((f[k >> 2] | 0) + (P << 2)) >> 2] = -1 + x = f[k >> 2] | 0 + if ((O | 0) != -1) f[(x + (O << 2)) >> 2] = -1 + f[(x + (Q << 2)) >> 2] = -1 + f[(x + (N << 2)) >> 2] = -1 + R = 1 + S = A + } else { + R = p + S = r + } + while (0) + q = (q + 1) | 0 + T = f[g >> 2] | 0 + s = S + if (q >>> 0 >= ((T - S) >> 2) >>> 0) break + else { + p = R + r = S + } + } + if (R) { + m = s + n = T + h = S + } else break + } + S = f[d >> 2] | 0 + if (S | 0) { + d = f[j >> 2] | 0 + if ((d | 0) != (S | 0)) + f[j >> 2] = d + (~(((d + -8 - S) | 0) >>> 3) << 3) + br(S) + } + S = f[c >> 2] | 0 + if (!S) { + u = b + return 1 + } + br(S) + u = b + return 1 + } + function Hc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0 + e = (a + 8) | 0 + a: do + if ( + f[e >> 2] | 0 + ? ((g = f[a >> 2] | 0), + (h = (a + 4) | 0), + (f[a >> 2] = h), + (f[((f[h >> 2] | 0) + 8) >> 2] = 0), + (f[h >> 2] = 0), + (f[e >> 2] = 0), + (i = f[(g + 4) >> 2] | 0), + (j = (i | 0) == 0 ? g : i), + j | 0) + : 0 + ) { + i = (a + 4) | 0 + g = j + j = f[c >> 2] | 0 + while (1) { + if ((j | 0) == (f[d >> 2] | 0)) break + k = (g + 16) | 0 + Ql(k, (j + 16) | 0) | 0 + Ql((g + 28) | 0, (j + 28) | 0) | 0 + l = (g + 8) | 0 + m = f[l >> 2] | 0 + do + if (m) { + n = f[m >> 2] | 0 + if ((n | 0) == (g | 0)) { + f[m >> 2] = 0 + o = f[(m + 4) >> 2] | 0 + if (!o) { + p = m + break + } else q = o + while (1) { + o = f[q >> 2] | 0 + if (o | 0) { + q = o + continue + } + o = f[(q + 4) >> 2] | 0 + if (!o) break + else q = o + } + p = q + break + } else { + f[(m + 4) >> 2] = 0 + if (!n) { + p = m + break + } else r = n + while (1) { + o = f[r >> 2] | 0 + if (o | 0) { + r = o + continue + } + o = f[(r + 4) >> 2] | 0 + if (!o) break + else r = o + } + p = r + break + } + } else p = 0 + while (0) + m = f[h >> 2] | 0 + do + if (m) { + n = b[(k + 11) >> 0] | 0 + o = (n << 24) >> 24 < 0 + s = o ? f[(g + 20) >> 2] | 0 : n & 255 + n = o ? f[k >> 2] | 0 : k + o = m + while (1) { + t = (o + 16) | 0 + u = b[(t + 11) >> 0] | 0 + v = (u << 24) >> 24 < 0 + w = v ? f[(o + 20) >> 2] | 0 : u & 255 + u = w >>> 0 < s >>> 0 ? w : s + if ( + (u | 0) != 0 + ? ((x = Pk(n, v ? f[t >> 2] | 0 : t, u) | 0), + (x | 0) != 0) + : 0 + ) + if ((x | 0) < 0) y = 22 + else y = 24 + else if (s >>> 0 < w >>> 0) y = 22 + else y = 24 + if ((y | 0) == 22) { + y = 0 + w = f[o >> 2] | 0 + if (!w) { + y = 23 + break + } else z = w + } else if ((y | 0) == 24) { + y = 0 + A = (o + 4) | 0 + w = f[A >> 2] | 0 + if (!w) { + y = 26 + break + } else z = w + } + o = z + } + if ((y | 0) == 23) { + y = 0 + B = o + C = o + break + } else if ((y | 0) == 26) { + y = 0 + B = A + C = o + break + } + } else { + B = h + C = h + } + while (0) + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[l >> 2] = C + f[B >> 2] = g + m = f[f[a >> 2] >> 2] | 0 + if (!m) D = g + else { + f[a >> 2] = m + D = f[B >> 2] | 0 + } + Ae(f[i >> 2] | 0, D) + f[e >> 2] = (f[e >> 2] | 0) + 1 + m = f[(j + 4) >> 2] | 0 + if (!m) { + k = (j + 8) | 0 + s = f[k >> 2] | 0 + if ((f[s >> 2] | 0) == (j | 0)) E = s + else { + s = k + do { + k = f[s >> 2] | 0 + s = (k + 8) | 0 + n = f[s >> 2] | 0 + } while ((f[n >> 2] | 0) != (k | 0)) + E = n + } + } else { + s = m + while (1) { + l = f[s >> 2] | 0 + if (!l) break + else s = l + } + E = s + } + f[c >> 2] = E + if (!p) break a + else { + g = p + j = E + } + } + j = f[(g + 8) >> 2] | 0 + if (!j) F = g + else { + i = j + while (1) { + j = f[(i + 8) >> 2] | 0 + if (!j) break + else i = j + } + F = i + } + sj(a, F) + } + while (0) + F = f[c >> 2] | 0 + E = f[d >> 2] | 0 + if ((F | 0) == (E | 0)) return + else G = F + while (1) { + Qe(a, (G + 16) | 0) | 0 + F = f[(G + 4) >> 2] | 0 + if (!F) { + d = (G + 8) | 0 + p = f[d >> 2] | 0 + if ((f[p >> 2] | 0) == (G | 0)) H = p + else { + p = d + do { + d = f[p >> 2] | 0 + p = (d + 8) | 0 + e = f[p >> 2] | 0 + } while ((f[e >> 2] | 0) != (d | 0)) + H = e + } + } else { + p = F + while (1) { + i = f[p >> 2] | 0 + if (!i) break + else p = i + } + H = p + } + f[c >> 2] = H + if ((H | 0) == (E | 0)) break + else G = H + } + return + } + function Ic(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0 + g = u + u = (u + 16) | 0 + h = g + i = (c + 4) | 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + j = dn(16) | 0 + f[h >> 2] = j + f[(h + 8) >> 2] = -2147483632 + f[(h + 4) >> 2] = 15 + k = j + l = 12916 + m = (k + 15) | 0 + do { + b[k >> 0] = b[l >> 0] | 0 + k = (k + 1) | 0 + l = (l + 1) | 0 + } while ((k | 0) < (m | 0)) + b[(j + 15) >> 0] = 0 + j = yk(i, h, -1) | 0 + if ((b[(h + 11) >> 0] | 0) < 0) br(f[h >> 2] | 0) + switch (j | 0) { + case 0: { + n = dn(56) | 0 + k = n + m = (k + 56) | 0 + do { + f[k >> 2] = 0 + k = (k + 4) | 0 + } while ((k | 0) < (m | 0)) + zn(n) + o = 3728 + p = n + break + } + case -1: { + if ((Yh(i) | 0) == 10) { + n = dn(56) | 0 + k = n + m = (k + 56) | 0 + do { + f[k >> 2] = 0 + k = (k + 4) | 0 + } while ((k | 0) < (m | 0)) + zn(n) + o = 3728 + p = n + } else q = 6 + break + } + default: + q = 6 + } + a: do + if ((q | 0) == 6) { + n = (d + 8) | 0 + r = (d + 12) | 0 + s = f[r >> 2] | 0 + t = f[n >> 2] | 0 + b: do + if (((s - t) | 0) > 0) { + v = (h + 8) | 0 + w = (h + 4) | 0 + x = (c + 20) | 0 + y = (h + 11) | 0 + z = 0 + A = t + B = s + c: while (1) { + C = f[((f[(A + (z << 2)) >> 2] | 0) + 28) >> 2] | 0 + switch (C | 0) { + case 9: { + q = 12 + break + } + case 6: + case 5: + case 4: + case 2: { + D = A + E = B + break + } + default: { + if ((C | 2 | 0) != 3) break c + if ((C | 0) == 9) q = 12 + else { + D = A + E = B + } + } + } + if ((q | 0) == 12) { + q = 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + C = dn(32) | 0 + f[h >> 2] = C + f[v >> 2] = -2147483616 + f[w >> 2] = 17 + k = C + l = 12932 + m = (k + 17) | 0 + do { + b[k >> 0] = b[l >> 0] | 0 + k = (k + 1) | 0 + l = (l + 1) | 0 + } while ((k | 0) < (m | 0)) + b[(C + 17) >> 0] = 0 + F = f[x >> 2] | 0 + if (F) { + G = x + H = F + d: while (1) { + F = H + while (1) { + if ((f[(F + 16) >> 2] | 0) >= 0) break + I = f[(F + 4) >> 2] | 0 + if (!I) { + J = G + break d + } else F = I + } + H = f[F >> 2] | 0 + if (!H) { + J = F + break + } else G = F + } + if ( + ((J | 0) != (x | 0) ? (f[(J + 16) >> 2] | 0) <= 0 : 0) + ? ((G = (J + 20) | 0), (sh(G, h) | 0) != 0) + : 0 + ) + K = yk(G, h, -1) | 0 + else q = 21 + } else q = 21 + if ((q | 0) == 21) { + q = 0 + K = yk(i, h, -1) | 0 + } + if ((b[y >> 0] | 0) < 0) br(f[h >> 2] | 0) + if ((K | 0) < 1) break + D = f[n >> 2] | 0 + E = f[r >> 2] | 0 + } + z = (z + 1) | 0 + if ((z | 0) >= (((E - D) >> 2) | 0)) break b + else { + A = D + B = E + } + } + if ((j | 0) != 1) { + B = dn(56) | 0 + k = B + m = (k + 56) | 0 + do { + f[k >> 2] = 0 + k = (k + 4) | 0 + } while ((k | 0) < (m | 0)) + zn(B) + o = 3728 + p = B + break a + } + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + A = dn(32) | 0 + f[h >> 2] = A + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 24 + k = A + l = 12950 + m = (k + 24) | 0 + do { + b[k >> 0] = b[l >> 0] | 0 + k = (k + 1) | 0 + l = (l + 1) | 0 + } while ((k | 0) < (m | 0)) + b[(A + 24) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, h) + if ((b[(h + 11) >> 0] | 0) < 0) br(f[h >> 2] | 0) + u = g + return + } + while (0) + r = dn(56) | 0 + k = r + m = (k + 56) | 0 + do { + f[k >> 2] = 0 + k = (k + 4) | 0 + } while ((k | 0) < (m | 0)) + zn(r) + o = 3668 + p = r + } + while (0) + f[p >> 2] = o + tp(p, d) + Ad(a, p, i, e) + if (!(f[a >> 2] | 0)) { + e = (a + 4) | 0 + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + f[(c + 40) >> 2] = f[(p + 52) >> 2] + f[(c + 44) >> 2] = 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + } + Va[f[((f[p >> 2] | 0) + 4) >> 2] & 127](p) + u = g + return + } + function Jc(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0 + b = u + u = (u + 32) | 0 + c = (b + 4) | 0 + d = b + e = (a + 16) | 0 + g = f[e >> 2] | 0 + if (g >>> 0 > 112) { + f[e >> 2] = g + -113 + g = (a + 4) | 0 + e = f[g >> 2] | 0 + h = f[e >> 2] | 0 + i = (e + 4) | 0 + f[g >> 2] = i + e = (a + 8) | 0 + j = f[e >> 2] | 0 + k = (a + 12) | 0 + l = f[k >> 2] | 0 + m = l + do + if ((j | 0) == (l | 0)) { + n = f[a >> 2] | 0 + o = n + if (i >>> 0 > n >>> 0) { + p = i + q = (((((p - o) >> 2) + 1) | 0) / -2) | 0 + r = (i + (q << 2)) | 0 + s = (j - p) | 0 + p = s >> 2 + if (!p) t = i + else { + Xl(r | 0, i | 0, s | 0) | 0 + t = f[g >> 2] | 0 + } + s = (r + (p << 2)) | 0 + f[e >> 2] = s + f[g >> 2] = t + (q << 2) + v = s + break + } + s = (m - o) >> 1 + o = (s | 0) == 0 ? 1 : s + if (o >>> 0 > 1073741823) { + s = ra(8) | 0 + Wo(s, 14941) + f[s >> 2] = 6944 + va(s | 0, 1080, 114) + } + s = dn(o << 2) | 0 + q = s + p = (s + ((o >>> 2) << 2)) | 0 + r = p + w = (s + (o << 2)) | 0 + if ((i | 0) == (j | 0)) { + x = r + y = n + } else { + n = p + p = r + o = i + do { + f[n >> 2] = f[o >> 2] + n = (p + 4) | 0 + p = n + o = (o + 4) | 0 + } while ((o | 0) != (j | 0)) + x = p + y = f[a >> 2] | 0 + } + f[a >> 2] = q + f[g >> 2] = r + f[e >> 2] = x + f[k >> 2] = w + if (!y) v = x + else { + br(y) + v = f[e >> 2] | 0 + } + } else v = j + while (0) + f[v >> 2] = h + f[e >> 2] = (f[e >> 2] | 0) + 4 + u = b + return + } + e = (a + 8) | 0 + h = f[e >> 2] | 0 + v = (a + 4) | 0 + j = (h - (f[v >> 2] | 0)) | 0 + y = (a + 12) | 0 + x = f[y >> 2] | 0 + k = (x - (f[a >> 2] | 0)) | 0 + if (j >>> 0 >= k >>> 0) { + g = k >> 1 + k = (g | 0) == 0 ? 1 : g + f[(c + 12) >> 2] = 0 + f[(c + 16) >> 2] = a + 12 + if (k >>> 0 > 1073741823) { + g = ra(8) | 0 + Wo(g, 14941) + f[g >> 2] = 6944 + va(g | 0, 1080, 114) + } + g = dn(k << 2) | 0 + f[c >> 2] = g + i = (g + ((j >> 2) << 2)) | 0 + j = (c + 8) | 0 + f[j >> 2] = i + m = (c + 4) | 0 + f[m >> 2] = i + i = (c + 12) | 0 + f[i >> 2] = g + (k << 2) + k = dn(4068) | 0 + f[d >> 2] = k + kg(c, d) + d = f[e >> 2] | 0 + while (1) { + z = f[v >> 2] | 0 + if ((d | 0) == (z | 0)) break + k = (d + -4) | 0 + dg(c, k) + d = k + } + k = z + z = f[a >> 2] | 0 + f[a >> 2] = f[c >> 2] + f[c >> 2] = z + f[v >> 2] = f[m >> 2] + f[m >> 2] = k + m = f[e >> 2] | 0 + f[e >> 2] = f[j >> 2] + f[j >> 2] = m + g = f[y >> 2] | 0 + f[y >> 2] = f[i >> 2] + f[i >> 2] = g + g = m + if ((d | 0) != (g | 0)) + f[j >> 2] = g + (~(((g + -4 - k) | 0) >>> 2) << 2) + if (z | 0) br(z) + u = b + return + } + if ((x | 0) != (h | 0)) { + h = dn(4068) | 0 + f[c >> 2] = h + kg(a, c) + u = b + return + } + h = dn(4068) | 0 + f[c >> 2] = h + dg(a, c) + c = f[v >> 2] | 0 + h = f[c >> 2] | 0 + x = (c + 4) | 0 + f[v >> 2] = x + c = f[e >> 2] | 0 + z = f[y >> 2] | 0 + k = z + do + if ((c | 0) == (z | 0)) { + g = f[a >> 2] | 0 + j = g + if (x >>> 0 > g >>> 0) { + d = x + m = (((((d - j) >> 2) + 1) | 0) / -2) | 0 + i = (x + (m << 2)) | 0 + t = (c - d) | 0 + d = t >> 2 + if (!d) A = x + else { + Xl(i | 0, x | 0, t | 0) | 0 + A = f[v >> 2] | 0 + } + t = (i + (d << 2)) | 0 + f[e >> 2] = t + f[v >> 2] = A + (m << 2) + B = t + break + } + t = (k - j) >> 1 + j = (t | 0) == 0 ? 1 : t + if (j >>> 0 > 1073741823) { + t = ra(8) | 0 + Wo(t, 14941) + f[t >> 2] = 6944 + va(t | 0, 1080, 114) + } + t = dn(j << 2) | 0 + m = t + d = (t + ((j >>> 2) << 2)) | 0 + i = d + l = (t + (j << 2)) | 0 + if ((x | 0) == (c | 0)) { + C = i + D = g + } else { + g = d + d = i + j = x + do { + f[g >> 2] = f[j >> 2] + g = (d + 4) | 0 + d = g + j = (j + 4) | 0 + } while ((j | 0) != (c | 0)) + C = d + D = f[a >> 2] | 0 + } + f[a >> 2] = m + f[v >> 2] = i + f[e >> 2] = C + f[y >> 2] = l + if (!D) B = C + else { + br(D) + B = f[e >> 2] | 0 + } + } else B = c + while (0) + f[B >> 2] = h + f[e >> 2] = (f[e >> 2] | 0) + 4 + u = b + return + } + function Kc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0 + e = u + u = (u + 16) | 0 + g = (e + 8) | 0 + h = (e + 4) | 0 + i = e + j = (a + 64) | 0 + k = f[j >> 2] | 0 + if ((f[(k + 28) >> 2] | 0) == (f[(k + 24) >> 2] | 0)) { + u = e + return + } + l = (c + 96) | 0 + c = (a + 52) | 0 + m = (d + 84) | 0 + n = (d + 68) | 0 + d = (a + 56) | 0 + o = (a + 60) | 0 + p = (a + 12) | 0 + q = (a + 28) | 0 + r = (a + 40) | 0 + s = (a + 44) | 0 + t = (a + 48) | 0 + v = 0 + w = 0 + x = k + while (1) { + k = f[((f[(x + 24) >> 2] | 0) + (w << 2)) >> 2] | 0 + if ((k | 0) == -1) { + y = v + z = x + } else { + A = (v + 1) | 0 + B = + f[ + ((f[l >> 2] | 0) + + (((((k | 0) / 3) | 0) * 12) | 0) + + (((k | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if (!(b[m >> 0] | 0)) C = f[((f[n >> 2] | 0) + (B << 2)) >> 2] | 0 + else C = B + f[g >> 2] = C + B = f[d >> 2] | 0 + if (B >>> 0 < (f[o >> 2] | 0) >>> 0) { + f[B >> 2] = C + f[d >> 2] = B + 4 + } else Ci(c, g) + f[g >> 2] = k + f[h >> 2] = 0 + a: do + if ( + !(f[((f[p >> 2] | 0) + ((w >>> 5) << 2)) >> 2] & (1 << (w & 31))) + ) + D = k + else { + B = (k + 1) | 0 + E = ((B >>> 0) % 3 | 0 | 0) == 0 ? (k + -2) | 0 : B + if ( + ( + (E | 0) != -1 + ? ((f[((f[a >> 2] | 0) + ((E >>> 5) << 2)) >> 2] & + (1 << (E & 31))) | + 0) == + 0 + : 0 + ) + ? ((B = + f[ + ((f[((f[j >> 2] | 0) + 12) >> 2] | 0) + (E << 2)) >> 2 + ] | 0), + (E = (B + 1) | 0), + (B | 0) != -1) + : 0 + ) { + F = ((E >>> 0) % 3 | 0 | 0) == 0 ? (B + -2) | 0 : E + f[h >> 2] = F + if ((F | 0) == -1) { + D = k + break + } else G = F + while (1) { + f[g >> 2] = G + F = (G + 1) | 0 + E = ((F >>> 0) % 3 | 0 | 0) == 0 ? (G + -2) | 0 : F + if ((E | 0) == -1) break + if ( + (f[((f[a >> 2] | 0) + ((E >>> 5) << 2)) >> 2] & + (1 << (E & 31))) | + 0 + ) + break + F = + f[((f[((f[j >> 2] | 0) + 12) >> 2] | 0) + (E << 2)) >> 2] | + 0 + E = (F + 1) | 0 + if ((F | 0) == -1) break + B = ((E >>> 0) % 3 | 0 | 0) == 0 ? (F + -2) | 0 : E + f[h >> 2] = B + if ((B | 0) == -1) { + D = G + break a + } else G = B + } + f[h >> 2] = -1 + D = G + break + } + f[h >> 2] = -1 + D = k + } + while (0) + f[((f[q >> 2] | 0) + (D << 2)) >> 2] = v + k = f[s >> 2] | 0 + if ((k | 0) == (f[t >> 2] | 0)) Ci(r, g) + else { + f[k >> 2] = f[g >> 2] + f[s >> 2] = k + 4 + } + k = f[j >> 2] | 0 + B = f[g >> 2] | 0 + b: do + if ( + ( + (B | 0) != -1 + ? ((E = ((((B >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + B) | 0), + (E | 0) != -1) + : 0 + ) + ? ((F = f[((f[(k + 12) >> 2] | 0) + (E << 2)) >> 2] | 0), + (F | 0) != -1) + : 0 + ) { + E = (F + (((F >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + f[h >> 2] = E + if (((E | 0) != -1) & ((E | 0) != (B | 0))) { + F = A + H = v + I = E + while (1) { + E = (I + 1) | 0 + J = ((E >>> 0) % 3 | 0 | 0) == 0 ? (I + -2) | 0 : E + do + if ( + f[((f[a >> 2] | 0) + ((J >>> 5) << 2)) >> 2] & + (1 << (J & 31)) + ) { + E = (F + 1) | 0 + K = + f[ + ((f[l >> 2] | 0) + + (((((I | 0) / 3) | 0) * 12) | 0) + + (((I | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if (!(b[m >> 0] | 0)) + L = f[((f[n >> 2] | 0) + (K << 2)) >> 2] | 0 + else L = K + f[i >> 2] = L + K = f[d >> 2] | 0 + if (K >>> 0 < (f[o >> 2] | 0) >>> 0) { + f[K >> 2] = L + f[d >> 2] = K + 4 + } else Ci(c, i) + K = f[s >> 2] | 0 + if ((K | 0) == (f[t >> 2] | 0)) { + Ci(r, h) + M = E + N = F + break + } else { + f[K >> 2] = f[h >> 2] + f[s >> 2] = K + 4 + M = E + N = F + break + } + } else { + M = F + N = H + } + while (0) + f[((f[q >> 2] | 0) + (f[h >> 2] << 2)) >> 2] = N + O = f[j >> 2] | 0 + J = f[h >> 2] | 0 + if ((J | 0) == -1) break + E = ((((J >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + J) | 0 + if ((E | 0) == -1) break + J = f[((f[(O + 12) >> 2] | 0) + (E << 2)) >> 2] | 0 + if ((J | 0) == -1) break + I = (J + (((J >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + f[h >> 2] = I + if (!((I | 0) != -1 ? (I | 0) != (f[g >> 2] | 0) : 0)) { + P = M + Q = O + break b + } else { + F = M + H = N + } + } + f[h >> 2] = -1 + P = M + Q = O + } else { + P = A + Q = k + } + } else R = 28 + while (0) + if ((R | 0) == 28) { + R = 0 + f[h >> 2] = -1 + P = A + Q = k + } + y = P + z = Q + } + w = (w + 1) | 0 + if ( + w >>> 0 >= + (((f[(z + 28) >> 2] | 0) - (f[(z + 24) >> 2] | 0)) >> 2) >>> 0 + ) + break + else { + v = y + x = z + } + } + u = e + return + } + function Lc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0.0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + D = 0, + E = 0, + F = 0 + switch (c | 0) { + case 0: { + e = -149 + g = 24 + i = 4 + break + } + case 1: { + e = -1074 + g = 53 + i = 4 + break + } + case 2: { + e = -1074 + g = 53 + i = 4 + break + } + default: + j = 0.0 + } + a: do + if ((i | 0) == 4) { + c = (a + 4) | 0 + k = (a + 100) | 0 + do { + l = f[c >> 2] | 0 + if (l >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = l + 1 + m = h[l >> 0] | 0 + } else m = Di(a) | 0 + } while ((tq(m) | 0) != 0) + b: do + switch (m | 0) { + case 43: + case 45: { + l = (1 - ((((m | 0) == 45) & 1) << 1)) | 0 + n = f[c >> 2] | 0 + if (n >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = n + 1 + o = h[n >> 0] | 0 + p = l + break b + } else { + o = Di(a) | 0 + p = l + break b + } + break + } + default: { + o = m + p = 1 + } + } + while (0) + l = 0 + n = o + while (1) { + if ((n | 32 | 0) != (b[(17452 + l) >> 0] | 0)) { + q = l + r = n + break + } + do + if (l >>> 0 < 7) { + s = f[c >> 2] | 0 + if (s >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = s + 1 + t = h[s >> 0] | 0 + break + } else { + t = Di(a) | 0 + break + } + } else t = n + while (0) + s = (l + 1) | 0 + if (s >>> 0 < 8) { + l = s + n = t + } else { + q = s + r = t + break + } + } + c: do + switch (q | 0) { + case 8: + break + case 3: { + i = 23 + break + } + default: { + n = (d | 0) != 0 + if (n & (q >>> 0 > 3)) + if ((q | 0) == 8) break c + else { + i = 23 + break c + } + d: do + if (!q) { + l = 0 + s = r + while (1) { + if ((s | 32 | 0) != (b[(17461 + l) >> 0] | 0)) { + u = l + v = s + break d + } + do + if (l >>> 0 < 2) { + w = f[c >> 2] | 0 + if (w >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = w + 1 + x = h[w >> 0] | 0 + break + } else { + x = Di(a) | 0 + break + } + } else x = s + while (0) + w = (l + 1) | 0 + if (w >>> 0 < 3) { + l = w + s = x + } else { + u = w + v = x + break + } + } + } else { + u = q + v = r + } + while (0) + switch (u | 0) { + case 3: { + s = f[c >> 2] | 0 + if (s >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = s + 1 + y = h[s >> 0] | 0 + } else y = Di(a) | 0 + if ((y | 0) == 40) z = 1 + else { + if (!(f[k >> 2] | 0)) { + j = B + break a + } + f[c >> 2] = (f[c >> 2] | 0) + -1 + j = B + break a + } + while (1) { + s = f[c >> 2] | 0 + if (s >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = s + 1 + A = h[s >> 0] | 0 + } else A = Di(a) | 0 + if ( + !( + (((A + -48) | 0) >>> 0 < 10) | + (((A + -65) | 0) >>> 0 < 26) + ) + ? !(((A | 0) == 95) | (((A + -97) | 0) >>> 0 < 26)) + : 0 + ) + break + z = (z + 1) | 0 + } + if ((A | 0) == 41) { + j = B + break a + } + s = (f[k >> 2] | 0) == 0 + if (!s) f[c >> 2] = (f[c >> 2] | 0) + -1 + if (!n) { + l = ir() | 0 + f[l >> 2] = 22 + Rm(a, 0) + j = 0.0 + break a + } + if (!z) { + j = B + break a + } else D = z + while (1) { + D = (D + -1) | 0 + if (!s) f[c >> 2] = (f[c >> 2] | 0) + -1 + if (!D) { + j = B + break a + } + } + break + } + case 0: { + if ((v | 0) == 48) { + s = f[c >> 2] | 0 + if (s >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = s + 1 + E = h[s >> 0] | 0 + } else E = Di(a) | 0 + if ((E | 32 | 0) == 120) { + j = +yc(a, g, e, p, d) + break a + } + if (!(f[k >> 2] | 0)) F = 48 + else { + f[c >> 2] = (f[c >> 2] | 0) + -1 + F = 48 + } + } else F = v + j = +ob(a, F, g, e, p, d) + break a + break + } + default: { + if (f[k >> 2] | 0) f[c >> 2] = (f[c >> 2] | 0) + -1 + s = ir() | 0 + f[s >> 2] = 22 + Rm(a, 0) + j = 0.0 + break a + } + } + } + } + while (0) + if ((i | 0) == 23) { + s = (f[k >> 2] | 0) == 0 + if (!s) f[c >> 2] = (f[c >> 2] | 0) + -1 + if (((d | 0) != 0) & (q >>> 0 > 3)) { + n = q + do { + if (!s) f[c >> 2] = (f[c >> 2] | 0) + -1 + n = (n + -1) | 0 + } while (n >>> 0 > 3) + } + } + j = +$($(p | 0) * $(C)) + } + while (0) + return +j + } + function Mc(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0 + b = u + u = (u + 16) | 0 + c = (b + 4) | 0 + d = b + e = f[(a + 64) >> 2] | 0 + if (!e) { + u = b + return + } + g = Qa[f[((f[e >> 2] | 0) + 32) >> 2] & 127](e) | 0 + if (!g) { + u = b + return + } + e = (g + 24) | 0 + h = (g + 28) | 0 + i = + ((((f[h >> 2] | 0) - (f[e >> 2] | 0)) >> 2) - (f[(g + 44) >> 2] | 0)) | + 0 + j = (a + 56) | 0 + k = f[j >> 2] | 0 + if ((((f[(k + 12) >> 2] | 0) - (f[(k + 8) >> 2] | 0)) | 0) > 4) { + f[c >> 2] = 0 + l = (c + 4) | 0 + f[l >> 2] = 0 + f[(c + 8) >> 2] = 0 + m = (c + 8) | 0 + n = 0 + o = k + while (1) { + if ( + !( + f[((f[((f[(o + 8) >> 2] | 0) + (n << 2)) >> 2] | 0) + 56) >> 2] | + 0 + ) + ) + p = o + else { + k = Ra[f[((f[a >> 2] | 0) + 56) >> 2] & 127](a, n) | 0 + f[d >> 2] = k + q = k + do + if (k | 0) { + r = f[l >> 2] | 0 + if ((r | 0) == (f[m >> 2] | 0)) { + Ci(c, d) + break + } else { + f[r >> 2] = q + f[l >> 2] = (f[l >> 2] | 0) + 4 + break + } + } + while (0) + p = f[j >> 2] | 0 + } + n = (n + 1) | 0 + if ( + (n | 0) >= + ((((f[(p + 12) >> 2] | 0) - (f[(p + 8) >> 2] | 0)) >> 2) | 0) + ) + break + else o = p + } + o = f[h >> 2] | 0 + h = f[e >> 2] | 0 + e = h + if ((o | 0) == (h | 0)) { + s = i + t = f[c >> 2] | 0 + } else { + n = (o - h) >> 2 + h = (g + 12) | 0 + g = f[l >> 2] | 0 + o = f[c >> 2] | 0 + c = (g | 0) == (o | 0) + j = o + d = (g - o) >> 2 + o = (p + 96) | 0 + p = i + g = 0 + while (1) { + m = f[(e + (g << 2)) >> 2] | 0 + if ((m | 0) == -1) v = p + else { + q = f[o >> 2] | 0 + k = + f[ + (q + + (((((m | 0) / 3) | 0) * 12) | 0) + + (((m | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + r = ((((m >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + m) | 0 + a: do + if ( + ( + (r | 0) != -1 + ? ((w = f[((f[h >> 2] | 0) + (r << 2)) >> 2] | 0), + (w | 0) != -1) + : 0 + ) + ? ((x = (w + (((w >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0), + (x | 0) != -1) + : 0 + ) { + if (c) { + w = 0 + y = x + z = k + while (1) { + A = z + z = + f[ + (q + + (((((y | 0) / 3) | 0) * 12) | 0) + + (((y | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + B = (w + (((z | 0) != (A | 0)) & 1)) | 0 + if ((y | 0) == (m | 0)) { + C = B + break a + } + A = ((((y >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + y) | 0 + if ((A | 0) == -1) { + C = B + break a + } + D = f[((f[h >> 2] | 0) + (A << 2)) >> 2] | 0 + if ((D | 0) == -1) { + C = B + break a + } + y = (D + (((D >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + if ((y | 0) == -1) { + C = B + break a + } else w = B + } + } else { + E = 0 + F = x + G = m + H = k + } + while (1) { + w = + f[ + (q + + (((((F | 0) / 3) | 0) * 12) | 0) + + (((F | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + b: do + if ((w | 0) == (H | 0)) { + y = 0 + while (1) { + z = f[((f[(j + (y << 2)) >> 2] | 0) + 28) >> 2] | 0 + y = (y + 1) | 0 + if ( + (f[(z + (F << 2)) >> 2] | 0) != + (f[(z + (G << 2)) >> 2] | 0) + ) { + I = H + J = 28 + break b + } + if (y >>> 0 >= d >>> 0) { + K = H + L = E + break + } + } + } else { + I = w + J = 28 + } + while (0) + if ((J | 0) == 28) { + J = 0 + K = I + L = (E + 1) | 0 + } + if ((F | 0) == (m | 0)) { + C = L + break a + } + w = ((((F >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + F) | 0 + if ((w | 0) == -1) { + C = L + break a + } + y = f[((f[h >> 2] | 0) + (w << 2)) >> 2] | 0 + if ((y | 0) == -1) { + C = L + break a + } + w = (y + (((y >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + if ((w | 0) == -1) { + C = L + break + } else { + y = F + E = L + F = w + H = K + G = y + } + } + } else C = 0 + while (0) + m = f[(e + (g << 2)) >> 2] | 0 + q = (m + 1) | 0 + if ( + ( + (m | 0) != -1 + ? ((k = ((q >>> 0) % 3 | 0 | 0) == 0 ? (m + -2) | 0 : q), + (k | 0) != -1) + : 0 + ) + ? ((q = f[((f[h >> 2] | 0) + (k << 2)) >> 2] | 0), + (k = (q + 1) | 0), + (q | 0) != -1) + : 0 + ) + M = + ((((k >>> 0) % 3 | 0 | 0) == 0 ? (q + -2) | 0 : k) | 0) == -1 + else M = 1 + v = (C + p + (((((C | 0) != 0) & (M ^ 1)) << 31) >> 31)) | 0 + } + g = (g + 1) | 0 + if (g >>> 0 >= n >>> 0) { + s = v + t = j + break + } else p = v + } + } + if (t | 0) { + v = f[l >> 2] | 0 + if ((v | 0) != (t | 0)) + f[l >> 2] = v + (~(((v + -4 - t) | 0) >>> 2) << 2) + br(t) + } + N = s + } else N = i + f[(a + 52) >> 2] = N + u = b + return + } + function Nc(a, c, d, e, g, h) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + var i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + i = u + u = (u + 32) | 0 + j = (i + 4) | 0 + k = i + l = (i + 16) | 0 + m = (_(e | 0) | 0) ^ 31 + if ((e | 0) > 0) + if (m >>> 0 > 17) { + n = 0 + u = i + return n | 0 + } else o = (m + 1) | 0 + else o = 1 + do + if (g) { + m = dn(48) | 0 + f[j >> 2] = m + f[(j + 8) >> 2] = -2147483600 + f[(j + 4) >> 2] = 33 + e = m + p = 13067 + q = (e + 33) | 0 + do { + b[e >> 0] = b[p >> 0] | 0 + e = (e + 1) | 0 + p = (p + 1) | 0 + } while ((e | 0) < (q | 0)) + b[(m + 33) >> 0] = 0 + r = (sh(g, j) | 0) == 0 + if ((b[(j + 11) >> 0] | 0) < 0) br(f[j >> 2] | 0) + if (!r) { + r = dn(48) | 0 + f[j >> 2] = r + f[(j + 8) >> 2] = -2147483600 + f[(j + 4) >> 2] = 33 + e = r + p = 13067 + q = (e + 33) | 0 + do { + b[e >> 0] = b[p >> 0] | 0 + e = (e + 1) | 0 + p = (p + 1) | 0 + } while ((e | 0) < (q | 0)) + b[(r + 33) >> 0] = 0 + p = Ck(g, j) | 0 + if ((b[(j + 11) >> 0] | 0) < 0) br(f[j >> 2] | 0) + if ((p | 0) < 4) { + s = (o + -2) | 0 + break + } + if ((p | 0) < 6) { + s = (o + -1) | 0 + break + } + if ((p | 0) > 9) { + s = (o + 2) | 0 + break + } else { + s = (o + (((p | 0) > 7) & 1)) | 0 + break + } + } else s = o + } else s = o + while (0) + o = (s | 0) > 1 ? s : 1 + s = (o | 0) < 18 ? o : 18 + b[l >> 0] = s + o = (h + 16) | 0 + g = f[(o + 4) >> 2] | 0 + if (!(((g | 0) > 0) | (((g | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0)))) { + f[k >> 2] = f[(h + 4) >> 2] + f[j >> 2] = f[k >> 2] + ye(h, j, l, (l + 1) | 0) | 0 + } + do + switch (s & 31) { + case 1: + case 0: { + n = je(a, c, d, h) | 0 + u = i + return n | 0 + } + case 2: { + n = ie(a, c, d, h) | 0 + u = i + return n | 0 + } + case 3: { + n = he(a, c, d, h) | 0 + u = i + return n | 0 + } + case 4: { + n = ge(a, c, d, h) | 0 + u = i + return n | 0 + } + case 5: { + n = fe(a, c, d, h) | 0 + u = i + return n | 0 + } + case 6: { + n = ee(a, c, d, h) | 0 + u = i + return n | 0 + } + case 7: { + n = de(a, c, d, h) | 0 + u = i + return n | 0 + } + case 8: { + n = ce(a, c, d, h) | 0 + u = i + return n | 0 + } + case 9: { + n = be(a, c, d, h) | 0 + u = i + return n | 0 + } + case 10: { + n = ae(a, c, d, h) | 0 + u = i + return n | 0 + } + case 11: { + n = $d(a, c, d, h) | 0 + u = i + return n | 0 + } + case 12: { + n = _d(a, c, d, h) | 0 + u = i + return n | 0 + } + case 13: { + n = Zd(a, c, d, h) | 0 + u = i + return n | 0 + } + case 14: { + n = Yd(a, c, d, h) | 0 + u = i + return n | 0 + } + case 15: { + n = Xd(a, c, d, h) | 0 + u = i + return n | 0 + } + case 16: { + n = Wd(a, c, d, h) | 0 + u = i + return n | 0 + } + case 17: { + n = Vd(a, c, d, h) | 0 + u = i + return n | 0 + } + case 18: { + n = Ud(a, c, d, h) | 0 + u = i + return n | 0 + } + default: { + n = 0 + u = i + return n | 0 + } + } + while (0) + return 0 + } + function Oc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 1048576.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 1048576) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + wb(z, A, g) + a: do + if ((x | 0) < 1048576) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 1048576 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 1048576 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -1048576) | 0 + m = x + while (1) { + v = 1048576.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 1048576) { + C = p + D = 1048576 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 1048576) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 9.5367431640625e-7) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function Pc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 1048576.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 1048576) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + xb(z, A, g) + a: do + if ((x | 0) < 1048576) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 1048576 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 1048576 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -1048576) | 0 + m = x + while (1) { + v = 1048576.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 1048576) { + C = p + D = 1048576 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 1048576) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 9.5367431640625e-7) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function Qc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 1048576.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 1048576) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + yb(z, A, g) + a: do + if ((x | 0) < 1048576) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 1048576 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 1048576 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -1048576) | 0 + m = x + while (1) { + v = 1048576.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 1048576) { + C = p + D = 1048576 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 1048576) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 9.5367431640625e-7) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function Rc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 1048576.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 1048576) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + zb(z, A, g) + a: do + if ((x | 0) < 1048576) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 1048576 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 1048576 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -1048576) | 0 + m = x + while (1) { + v = 1048576.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 1048576) { + C = p + D = 1048576 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 1048576) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 9.5367431640625e-7) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function Sc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 1048576.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 1048576) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Ab(z, A, g) + a: do + if ((x | 0) < 1048576) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 1048576 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 1048576 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -1048576) | 0 + m = x + while (1) { + v = 1048576.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 1048576) { + C = p + D = 1048576 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 1048576) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 9.5367431640625e-7) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function Tc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 524288.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 524288) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Eb(z, A, g) + a: do + if ((x | 0) < 524288) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 524288 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 524288 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -524288) | 0 + m = x + while (1) { + v = 524288.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 524288) { + C = p + D = 524288 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 524288) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 1.9073486328125e-6) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function Uc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 262144.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 262144) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Bb(z, A, g) + a: do + if ((x | 0) < 262144) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 262144 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 262144 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -262144) | 0 + m = x + while (1) { + v = 262144.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 262144) { + C = p + D = 262144 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 262144) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 3.814697265625e-6) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function Vc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 65536.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 65536) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Cb(z, A, g) + a: do + if ((x | 0) < 65536) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 65536 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 65536 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -65536) | 0 + m = x + while (1) { + v = 65536.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 65536) { + C = p + D = 65536 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 65536) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 0.0000152587890625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function Wc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 32768.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 32768) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Db(z, A, g) + a: do + if ((x | 0) < 32768) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 32768 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 32768 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -32768) | 0 + m = x + while (1) { + v = 32768.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 32768) { + C = p + D = 32768 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 32768) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 0.000030517578125) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function Xc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 8192.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 8192) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Fb(z, A, g) + a: do + if ((x | 0) < 8192) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 8192 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 8192 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -8192) | 0 + m = x + while (1) { + v = 8192.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 8192) { + C = p + D = 8192 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 8192) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 0.0001220703125) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function Yc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Gb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function Zc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Hb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function _c(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Ib(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function $c(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Jb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function ad(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Kb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function bd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Lb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function cd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Mb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function dd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Tn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else dh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) mq(h) + else { + i = l << 2 + t = dn(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + hj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Nb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + br(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Fg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = xe(a, d) | 0 + u = e + return w | 0 + } + function ed(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0 + g = u + u = (u + 32) | 0 + d = (g + 16) | 0 + h = (g + 8) | 0 + i = g + j = e >>> 0 > 1073741823 ? -1 : e << 2 + k = _q(j) | 0 + hj(k | 0, 0, j | 0) | 0 + j = f[(a + 28) >> 2] | 0 + l = (a + 36) | 0 + m = f[l >> 2] | 0 + n = f[(m + 4) >> 2] | 0 + o = f[m >> 2] | 0 + p = (n - o) | 0 + a: do + if ((p | 0) > 4) { + q = p >> 2 + r = f[(a + 32) >> 2] | 0 + s = (a + 8) | 0 + t = (h + 4) | 0 + v = (i + 4) | 0 + w = (d + 4) | 0 + x = (j + 12) | 0 + y = (e | 0) > 0 + z = (k + 4) | 0 + A = (h + 4) | 0 + B = (i + 4) | 0 + C = (d + 4) | 0 + D = (q + -1) | 0 + if (((n - o) >> 2) >>> 0 > D >>> 0) { + E = q + F = D + G = o + } else { + H = m + mq(H) + } + while (1) { + D = f[(G + (F << 2)) >> 2] | 0 + q = X(F, e) | 0 + if ( + (D | 0) != -1 + ? ((I = f[((f[x >> 2] | 0) + (D << 2)) >> 2] | 0), + (I | 0) != -1) + : 0 + ) { + D = f[j >> 2] | 0 + J = f[r >> 2] | 0 + K = f[(J + (f[(D + (I << 2)) >> 2] << 2)) >> 2] | 0 + L = (I + 1) | 0 + M = ((L >>> 0) % 3 | 0 | 0) == 0 ? (I + -2) | 0 : L + if ((M | 0) == -1) N = -1 + else N = f[(D + (M << 2)) >> 2] | 0 + M = f[(J + (N << 2)) >> 2] | 0 + L = ((((I >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + I) | 0 + if ((L | 0) == -1) O = -1 + else O = f[(D + (L << 2)) >> 2] | 0 + L = f[(J + (O << 2)) >> 2] | 0 + if ( + ((K | 0) < (F | 0)) & + ((M | 0) < (F | 0)) & + ((L | 0) < (F | 0)) + ) { + J = X(K, e) | 0 + K = X(M, e) | 0 + M = X(L, e) | 0 + if (y) { + L = 0 + do { + f[(k + (L << 2)) >> 2] = + (f[(b + ((L + M) << 2)) >> 2] | 0) + + (f[(b + ((L + K) << 2)) >> 2] | 0) - + (f[(b + ((L + J) << 2)) >> 2] | 0) + L = (L + 1) | 0 + } while ((L | 0) != (e | 0)) + } + L = (b + (q << 2)) | 0 + J = (c + (q << 2)) | 0 + K = f[(L + 4) >> 2] | 0 + M = f[k >> 2] | 0 + D = f[z >> 2] | 0 + f[h >> 2] = f[L >> 2] + f[A >> 2] = K + f[i >> 2] = M + f[B >> 2] = D + Dd(d, s, h, i) + f[J >> 2] = f[d >> 2] + f[(J + 4) >> 2] = f[C >> 2] + } else P = 15 + } else P = 15 + if ((P | 0) == 15) { + P = 0 + J = (b + (q << 2)) | 0 + D = (b + ((X((E + -2) | 0, e) | 0) << 2)) | 0 + M = (c + (q << 2)) | 0 + K = f[(J + 4) >> 2] | 0 + L = f[D >> 2] | 0 + I = f[(D + 4) >> 2] | 0 + f[h >> 2] = f[J >> 2] + f[t >> 2] = K + f[i >> 2] = L + f[v >> 2] = I + Dd(d, s, h, i) + f[M >> 2] = f[d >> 2] + f[(M + 4) >> 2] = f[w >> 2] + } + if ((E | 0) <= 2) break a + M = f[l >> 2] | 0 + G = f[M >> 2] | 0 + I = (F + -1) | 0 + if ((((f[(M + 4) >> 2] | 0) - G) >> 2) >>> 0 <= I >>> 0) { + H = M + break + } else { + M = F + F = I + E = M + } + } + mq(H) + } + while (0) + if ((e | 0) <= 0) { + Q = (a + 8) | 0 + R = (b + 4) | 0 + S = f[b >> 2] | 0 + T = f[R >> 2] | 0 + U = (k + 4) | 0 + V = f[k >> 2] | 0 + W = f[U >> 2] | 0 + f[h >> 2] = S + Y = (h + 4) | 0 + f[Y >> 2] = T + f[i >> 2] = V + Z = (i + 4) | 0 + f[Z >> 2] = W + Dd(d, Q, h, i) + _ = f[d >> 2] | 0 + f[c >> 2] = _ + $ = (d + 4) | 0 + aa = f[$ >> 2] | 0 + ba = (c + 4) | 0 + f[ba >> 2] = aa + $q(k) + u = g + return 1 + } + hj(k | 0, 0, (e << 2) | 0) | 0 + Q = (a + 8) | 0 + R = (b + 4) | 0 + S = f[b >> 2] | 0 + T = f[R >> 2] | 0 + U = (k + 4) | 0 + V = f[k >> 2] | 0 + W = f[U >> 2] | 0 + f[h >> 2] = S + Y = (h + 4) | 0 + f[Y >> 2] = T + f[i >> 2] = V + Z = (i + 4) | 0 + f[Z >> 2] = W + Dd(d, Q, h, i) + _ = f[d >> 2] | 0 + f[c >> 2] = _ + $ = (d + 4) | 0 + aa = f[$ >> 2] | 0 + ba = (c + 4) | 0 + f[ba >> 2] = aa + $q(k) + u = g + return 1 + } + function fd(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0 + d = u + u = (u + 32) | 0 + e = d + g = (d + 20) | 0 + h = (d + 24) | 0 + i = (d + 8) | 0 + j = f[a >> 2] | 0 + k = (j + 8) | 0 + l = j + j = f[l >> 2] | 0 + m = f[(l + 4) >> 2] | 0 + l = Tn(j | 0, m | 0, f[k >> 2] | 0, f[(k + 4) >> 2] | 0) | 0 + k = I + n = Tn(l | 0, k | 0, (((l | 0) == 0) & ((k | 0) == 0) & 1) | 0, 0) | 0 + k = + ~~( + ((+(j >>> 0) + 4294967296.0 * +(m >>> 0)) / + (+(n >>> 0) + 4294967296.0 * +(I >>> 0))) * + 256.0 + + 0.5 + ) >>> 0 + n = k >>> 0 < 255 ? k : 255 + k = (n + (((n | 0) == 0) & 1)) & 255 + b[h >> 0] = k + n = (a + 12) | 0 + m = (a + 16) | 0 + j = ((((f[m >> 2] | 0) - (f[n >> 2] | 0)) << 1) + 64) | 0 + f[i >> 2] = 0 + l = (i + 4) | 0 + f[l >> 2] = 0 + f[(i + 8) >> 2] = 0 + if (!j) o = 0 + else { + if ((j | 0) < 0) mq(i) + p = dn(j) | 0 + f[l >> 2] = p + f[i >> 2] = p + f[(i + 8) >> 2] = p + j + q = j + j = p + do { + b[j >> 0] = 0 + j = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = j + q = (q + -1) | 0 + } while ((q | 0) != 0) + o = f[i >> 2] | 0 + } + q = (a + 28) | 0 + j = ((f[q >> 2] | 0) + -1) | 0 + a: do + if ((j | 0) > -1) { + p = (a + 24) | 0 + r = j + s = 0 + t = 4096 + v = k + while (1) { + w = ((f[p >> 2] & (1 << r)) | 0) != 0 + x = (w ? (0 - (v & 255)) & 255 : v) & 255 + if (t >>> 0 < (x << 12) >>> 0) { + y = s + z = t + } else { + b[(o + s) >> 0] = t + y = (s + 1) | 0 + z = t >>> 8 + } + on(f[(3780 + (x << 3)) >> 2] | 0, 0, z | 0, 0) | 0 + A = + (z + + (w ? 0 : (0 - v) & 255) + + (X( + ((z + I) | 0) >>> (f[(3780 + (x << 3) + 4) >> 2] | 0), + (256 - x) | 0, + ) | + 0)) | + 0 + x = (r + -1) | 0 + if ((x | 0) <= -1) { + B = y + C = A + break a + } + r = x + s = y + t = A + v = b[h >> 0] | 0 + } + } else { + B = 0 + C = 4096 + } + while (0) + y = f[m >> 2] | 0 + if ((f[n >> 2] | 0) == (y | 0)) { + D = B + E = C + } else { + z = B + B = C + C = y + while (1) { + C = (C + -4) | 0 + y = f[C >> 2] | 0 + k = 31 + j = z + v = B + while (1) { + t = b[h >> 0] | 0 + s = (((1 << k) & y) | 0) != 0 + r = (s ? (0 - (t & 255)) & 255 : t) & 255 + if (v >>> 0 < (r << 12) >>> 0) { + F = j + G = v + } else { + b[(o + j) >> 0] = v + F = (j + 1) | 0 + G = v >>> 8 + } + on(f[(3780 + (r << 3)) >> 2] | 0, 0, G | 0, 0) | 0 + v = + (G + + (s ? 0 : (0 - t) & 255) + + (X( + ((G + I) | 0) >>> (f[(3780 + (r << 3) + 4) >> 2] | 0), + (256 - r) | 0, + ) | + 0)) | + 0 + if ((k | 0) <= 0) break + else { + k = (k + -1) | 0 + j = F + } + } + if ((f[n >> 2] | 0) == (C | 0)) { + D = F + E = v + break + } else { + z = F + B = v + } + } + } + B = (E + -4096) | 0 + do + if (B >>> 0 >= 64) { + if (B >>> 0 < 16384) { + F = (o + D) | 0 + z = (E + 12288) | 0 + b[F >> 0] = z + H = 2 + J = z >>> 8 + K = (F + 1) | 0 + L = 25 + break + } + if (B >>> 0 < 4194304) { + F = (o + D) | 0 + z = (E + 8384512) | 0 + b[F >> 0] = z + b[(F + 1) >> 0] = z >>> 8 + H = 3 + J = z >>> 16 + K = (F + 2) | 0 + L = 25 + } else M = D + } else { + H = 1 + J = B + K = (o + D) | 0 + L = 25 + } + while (0) + if ((L | 0) == 25) { + b[K >> 0] = J + M = (H + D) | 0 + } + D = (c + 16) | 0 + H = D + J = f[(H + 4) >> 2] | 0 + if (!(((J | 0) > 0) | (((J | 0) == 0) & ((f[H >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, (h + 1) | 0) | 0 + } + Nh(M, c) | 0 + h = f[i >> 2] | 0 + H = D + D = f[(H + 4) >> 2] | 0 + if (!(((D | 0) > 0) | (((D | 0) == 0) & ((f[H >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, (h + M) | 0) | 0 + } + M = e + f[M >> 2] = 0 + f[(M + 4) >> 2] = 0 + cf(a, 2, e) + e = f[(a + 12) >> 2] | 0 + M = f[m >> 2] | 0 + if ((M | 0) != (e | 0)) f[m >> 2] = M + (~(((M + -4 - e) | 0) >>> 2) << 2) + f[(a + 24) >> 2] = 0 + f[q >> 2] = 0 + q = f[i >> 2] | 0 + if (!q) { + u = d + return + } + if ((f[l >> 2] | 0) != (q | 0)) f[l >> 2] = q + br(q) + u = d + return + } + function gd(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0 + c = u + u = (u + 16) | 0 + b = (c + 8) | 0 + d = (c + 4) | 0 + e = c + g = (a + 64) | 0 + h = f[g >> 2] | 0 + if ((f[(h + 28) >> 2] | 0) == (f[(h + 24) >> 2] | 0)) { + u = c + return + } + i = (a + 52) | 0 + j = (a + 56) | 0 + k = (a + 60) | 0 + l = (a + 12) | 0 + m = (a + 28) | 0 + n = (a + 40) | 0 + o = (a + 44) | 0 + p = (a + 48) | 0 + q = 0 + r = 0 + s = h + while (1) { + h = f[((f[(s + 24) >> 2] | 0) + (r << 2)) >> 2] | 0 + if ((h | 0) == -1) { + t = q + v = s + } else { + w = (q + 1) | 0 + f[b >> 2] = q + x = f[j >> 2] | 0 + if ((x | 0) == (f[k >> 2] | 0)) Ci(i, b) + else { + f[x >> 2] = q + f[j >> 2] = x + 4 + } + f[d >> 2] = h + f[e >> 2] = 0 + a: do + if ( + !(f[((f[l >> 2] | 0) + ((r >>> 5) << 2)) >> 2] & (1 << (r & 31))) + ) + y = h + else { + x = (h + 1) | 0 + z = ((x >>> 0) % 3 | 0 | 0) == 0 ? (h + -2) | 0 : x + if ( + ( + (z | 0) != -1 + ? ((f[((f[a >> 2] | 0) + ((z >>> 5) << 2)) >> 2] & + (1 << (z & 31))) | + 0) == + 0 + : 0 + ) + ? ((x = + f[ + ((f[((f[g >> 2] | 0) + 12) >> 2] | 0) + (z << 2)) >> 2 + ] | 0), + (z = (x + 1) | 0), + (x | 0) != -1) + : 0 + ) { + A = ((z >>> 0) % 3 | 0 | 0) == 0 ? (x + -2) | 0 : z + f[e >> 2] = A + if ((A | 0) == -1) { + y = h + break + } else B = A + while (1) { + f[d >> 2] = B + A = (B + 1) | 0 + z = ((A >>> 0) % 3 | 0 | 0) == 0 ? (B + -2) | 0 : A + if ((z | 0) == -1) break + if ( + (f[((f[a >> 2] | 0) + ((z >>> 5) << 2)) >> 2] & + (1 << (z & 31))) | + 0 + ) + break + A = + f[((f[((f[g >> 2] | 0) + 12) >> 2] | 0) + (z << 2)) >> 2] | + 0 + z = (A + 1) | 0 + if ((A | 0) == -1) break + x = ((z >>> 0) % 3 | 0 | 0) == 0 ? (A + -2) | 0 : z + f[e >> 2] = x + if ((x | 0) == -1) { + y = B + break a + } else B = x + } + f[e >> 2] = -1 + y = B + break + } + f[e >> 2] = -1 + y = h + } + while (0) + f[((f[m >> 2] | 0) + (y << 2)) >> 2] = f[b >> 2] + h = f[o >> 2] | 0 + if ((h | 0) == (f[p >> 2] | 0)) Ci(n, d) + else { + f[h >> 2] = f[d >> 2] + f[o >> 2] = h + 4 + } + h = f[g >> 2] | 0 + x = f[d >> 2] | 0 + b: do + if ( + ( + (x | 0) != -1 + ? ((z = ((((x >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + x) | 0), + (z | 0) != -1) + : 0 + ) + ? ((A = f[((f[(h + 12) >> 2] | 0) + (z << 2)) >> 2] | 0), + (A | 0) != -1) + : 0 + ) { + z = (A + (((A >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + f[e >> 2] = z + if (((z | 0) != -1) & ((z | 0) != (x | 0))) { + A = w + C = z + while (1) { + z = (C + 1) | 0 + D = ((z >>> 0) % 3 | 0 | 0) == 0 ? (C + -2) | 0 : z + do + if ( + f[((f[a >> 2] | 0) + ((D >>> 5) << 2)) >> 2] & + (1 << (D & 31)) + ) { + z = (A + 1) | 0 + f[b >> 2] = A + E = f[j >> 2] | 0 + if ((E | 0) == (f[k >> 2] | 0)) Ci(i, b) + else { + f[E >> 2] = A + f[j >> 2] = E + 4 + } + E = f[o >> 2] | 0 + if ((E | 0) == (f[p >> 2] | 0)) { + Ci(n, e) + F = z + break + } else { + f[E >> 2] = f[e >> 2] + f[o >> 2] = E + 4 + F = z + break + } + } else F = A + while (0) + f[((f[m >> 2] | 0) + (f[e >> 2] << 2)) >> 2] = f[b >> 2] + G = f[g >> 2] | 0 + D = f[e >> 2] | 0 + if ((D | 0) == -1) break + z = ((((D >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + D) | 0 + if ((z | 0) == -1) break + D = f[((f[(G + 12) >> 2] | 0) + (z << 2)) >> 2] | 0 + if ((D | 0) == -1) break + C = (D + (((D >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + f[e >> 2] = C + if (!((C | 0) != -1 ? (C | 0) != (f[d >> 2] | 0) : 0)) { + H = F + I = G + break b + } else A = F + } + f[e >> 2] = -1 + H = F + I = G + } else { + H = w + I = h + } + } else J = 26 + while (0) + if ((J | 0) == 26) { + J = 0 + f[e >> 2] = -1 + H = w + I = h + } + t = H + v = I + } + r = (r + 1) | 0 + if ( + r >>> 0 >= + (((f[(v + 28) >> 2] | 0) - (f[(v + 24) >> 2] | 0)) >> 2) >>> 0 + ) + break + else { + q = t + s = v + } + } + u = c + return + } + function hd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + h = (a + 124) | 0 + f[h >> 2] = (f[h >> 2] | 0) + 1 + h = (a + 88) | 0 + i = (a + 120) | 0 + j = f[i >> 2] | 0 + k = (j + 1) | 0 + do + if ((j | 0) != -1) { + l = ((k >>> 0) % 3 | 0 | 0) == 0 ? (j + -2) | 0 : k + if (!((j >>> 0) % 3 | 0)) { + m = (j + 2) | 0 + n = l + break + } else { + m = (j + -1) | 0 + n = l + break + } + } else { + m = -1 + n = -1 + } + while (0) + k = (a + 104) | 0 + l = (a + 92) | 0 + o = f[l >> 2] | 0 + p = (o + (n << 2)) | 0 + q = f[k >> 2] | 0 + r = (q + (f[p >> 2] << 2)) | 0 + s = f[r >> 2] | 0 + switch (b | 0) { + case 1: + case 0: { + f[r >> 2] = s + -1 + r = (q + (f[(o + (m << 2)) >> 2] << 2)) | 0 + f[r >> 2] = (f[r >> 2] | 0) + -1 + if ((b | 0) == 1) { + if ( + (m | 0) != -1 + ? ((r = + f[((f[((f[h >> 2] | 0) + 12) >> 2] | 0) + (m << 2)) >> 2] | + 0), + (r | 0) != -1) + : 0 + ) { + t = (a + 64) | 0 + v = 1 + w = r + while (1) { + r = f[t >> 2] | 0 + x = f[((f[r >> 2] | 0) + 36) >> 2] | 0 + f[e >> 2] = ((w >>> 0) / 3) | 0 + f[d >> 2] = f[e >> 2] + if (Ra[x & 127](r, d) | 0) { + y = v + break + } + r = (w + 1) | 0 + x = ((r >>> 0) % 3 | 0 | 0) == 0 ? (w + -2) | 0 : r + if ((x | 0) == -1) { + z = 12 + break + } + w = + f[((f[((f[h >> 2] | 0) + 12) >> 2] | 0) + (x << 2)) >> 2] | 0 + x = (v + 1) | 0 + if ((w | 0) == -1) { + y = x + break + } else v = x + } + if ((z | 0) == 12) y = (v + 1) | 0 + A = y + B = f[k >> 2] | 0 + C = f[l >> 2] | 0 + } else { + A = 1 + B = q + C = o + } + f[(B + (f[(C + (f[i >> 2] << 2)) >> 2] << 2)) >> 2] = A + A = (a + 108) | 0 + i = f[A >> 2] | 0 + C = (i - B) >> 2 + B = i + if ( + (n | 0) != -1 + ? ((i = + f[((f[((f[h >> 2] | 0) + 12) >> 2] | 0) + (n << 2)) >> 2] | + 0), + (i | 0) != -1) + : 0 + ) { + n = (a + 64) | 0 + y = 1 + v = i + while (1) { + i = f[n >> 2] | 0 + w = f[((f[i >> 2] | 0) + 36) >> 2] | 0 + f[g >> 2] = ((v >>> 0) / 3) | 0 + f[d >> 2] = f[g >> 2] + if (Ra[w & 127](i, d) | 0) { + D = y + break + } + i = (v + 1) | 0 + f[ + ((f[l >> 2] | 0) + + ((((i >>> 0) % 3 | 0 | 0) == 0 ? (v + -2) | 0 : i) << 2)) >> + 2 + ] = C + i = ((((v >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + v) | 0 + if ((i | 0) == -1) { + z = 20 + break + } + v = + f[((f[((f[h >> 2] | 0) + 12) >> 2] | 0) + (i << 2)) >> 2] | 0 + i = (y + 1) | 0 + if ((v | 0) == -1) { + D = i + break + } else y = i + } + if ((z | 0) == 20) D = (y + 1) | 0 + E = D + F = f[A >> 2] | 0 + } else { + E = 1 + F = B + } + f[d >> 2] = E + if (F >>> 0 < (f[(a + 112) >> 2] | 0) >>> 0) { + f[F >> 2] = E + f[A >> 2] = F + 4 + } else Ci(k, d) + } + break + } + case 5: { + k = (q + (f[(o + (j << 2)) >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -1 + k = (q + (f[p >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -1 + k = (q + (f[(o + (m << 2)) >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -2 + break + } + case 3: { + k = (q + (f[(o + (j << 2)) >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -1 + k = (q + (f[p >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -2 + k = (q + (f[(o + (m << 2)) >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -1 + break + } + case 7: { + k = (q + (f[(o + (j << 2)) >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -2 + k = (q + (f[p >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -2 + k = (q + (f[(o + (m << 2)) >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -2 + break + } + default: { + } + } + k = (a + 116) | 0 + m = f[k >> 2] | 0 + if ((m | 0) == -1) { + f[k >> 2] = b + u = c + return + } + o = f[(a + 128) >> 2] | 0 + if ((s | 0) < (o | 0)) G = o + else { + q = f[(a + 132) >> 2] | 0 + G = (s | 0) > (q | 0) ? q : s + } + s = (G - o) | 0 + o = f[(a + 136) >> 2] | 0 + a = f[(3384 + (m << 2)) >> 2] | 0 + f[d >> 2] = a + m = (o + ((s * 12) | 0) + 4) | 0 + G = f[m >> 2] | 0 + if (G >>> 0 < (f[(o + ((s * 12) | 0) + 8) >> 2] | 0) >>> 0) { + f[G >> 2] = a + f[m >> 2] = G + 4 + } else Ci((o + ((s * 12) | 0)) | 0, d) + f[k >> 2] = b + u = c + return + } + function id(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + g = u + u = (u + 32) | 0 + d = (g + 16) | 0 + h = (g + 8) | 0 + i = g + j = e >>> 0 > 1073741823 ? -1 : e << 2 + k = _q(j) | 0 + hj(k | 0, 0, j | 0) | 0 + j = f[(a + 28) >> 2] | 0 + l = (a + 36) | 0 + m = f[l >> 2] | 0 + n = f[(m + 4) >> 2] | 0 + o = f[m >> 2] | 0 + p = (n - o) | 0 + a: do + if ((p | 0) > 4) { + q = p >> 2 + r = f[(a + 32) >> 2] | 0 + s = (a + 8) | 0 + t = (h + 4) | 0 + v = (i + 4) | 0 + w = (d + 4) | 0 + x = (j + 64) | 0 + y = (j + 28) | 0 + z = (e | 0) > 0 + A = (k + 4) | 0 + B = (h + 4) | 0 + C = (i + 4) | 0 + D = (d + 4) | 0 + E = (q + -1) | 0 + if (((n - o) >> 2) >>> 0 > E >>> 0) { + F = q + G = E + H = o + } else { + I = m + mq(I) + } + while (1) { + E = f[(H + (G << 2)) >> 2] | 0 + q = X(G, e) | 0 + if ( + ( + ( + (E | 0) != -1 + ? ((f[((f[j >> 2] | 0) + ((E >>> 5) << 2)) >> 2] & + (1 << (E & 31))) | + 0) == + 0 + : 0 + ) + ? ((J = + f[ + ((f[((f[x >> 2] | 0) + 12) >> 2] | 0) + (E << 2)) >> 2 + ] | 0), + (J | 0) != -1) + : 0 + ) + ? ((E = f[y >> 2] | 0), + (K = f[r >> 2] | 0), + (L = f[(K + (f[(E + (J << 2)) >> 2] << 2)) >> 2] | 0), + (M = (J + 1) | 0), + (N = + f[ + (K + + (f[ + (E + + ((((M >>> 0) % 3 | 0 | 0) == 0 + ? (J + -2) | 0 + : M) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + (M = + f[ + (K + + (f[ + (E + + (((((J >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + J) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + ((L | 0) < (G | 0)) & + ((N | 0) < (G | 0)) & + ((M | 0) < (G | 0))) + : 0 + ) { + J = X(L, e) | 0 + L = X(N, e) | 0 + N = X(M, e) | 0 + if (z) { + M = 0 + do { + f[(k + (M << 2)) >> 2] = + (f[(b + ((M + N) << 2)) >> 2] | 0) + + (f[(b + ((M + L) << 2)) >> 2] | 0) - + (f[(b + ((M + J) << 2)) >> 2] | 0) + M = (M + 1) | 0 + } while ((M | 0) != (e | 0)) + } + M = (b + (q << 2)) | 0 + J = (c + (q << 2)) | 0 + L = f[(M + 4) >> 2] | 0 + N = f[k >> 2] | 0 + E = f[A >> 2] | 0 + f[h >> 2] = f[M >> 2] + f[B >> 2] = L + f[i >> 2] = N + f[C >> 2] = E + Dd(d, s, h, i) + f[J >> 2] = f[d >> 2] + f[(J + 4) >> 2] = f[D >> 2] + } else { + J = (b + (q << 2)) | 0 + E = (b + ((X((F + -2) | 0, e) | 0) << 2)) | 0 + N = (c + (q << 2)) | 0 + L = f[(J + 4) >> 2] | 0 + M = f[E >> 2] | 0 + K = f[(E + 4) >> 2] | 0 + f[h >> 2] = f[J >> 2] + f[t >> 2] = L + f[i >> 2] = M + f[v >> 2] = K + Dd(d, s, h, i) + f[N >> 2] = f[d >> 2] + f[(N + 4) >> 2] = f[w >> 2] + } + if ((F | 0) <= 2) break a + N = f[l >> 2] | 0 + H = f[N >> 2] | 0 + K = (G + -1) | 0 + if ((((f[(N + 4) >> 2] | 0) - H) >> 2) >>> 0 <= K >>> 0) { + I = N + break + } else { + N = G + G = K + F = N + } + } + mq(I) + } + while (0) + if ((e | 0) <= 0) { + O = (a + 8) | 0 + P = (b + 4) | 0 + Q = f[b >> 2] | 0 + R = f[P >> 2] | 0 + S = (k + 4) | 0 + T = f[k >> 2] | 0 + U = f[S >> 2] | 0 + f[h >> 2] = Q + V = (h + 4) | 0 + f[V >> 2] = R + f[i >> 2] = T + W = (i + 4) | 0 + f[W >> 2] = U + Dd(d, O, h, i) + Y = f[d >> 2] | 0 + f[c >> 2] = Y + Z = (d + 4) | 0 + _ = f[Z >> 2] | 0 + $ = (c + 4) | 0 + f[$ >> 2] = _ + $q(k) + u = g + return 1 + } + hj(k | 0, 0, (e << 2) | 0) | 0 + O = (a + 8) | 0 + P = (b + 4) | 0 + Q = f[b >> 2] | 0 + R = f[P >> 2] | 0 + S = (k + 4) | 0 + T = f[k >> 2] | 0 + U = f[S >> 2] | 0 + f[h >> 2] = Q + V = (h + 4) | 0 + f[V >> 2] = R + f[i >> 2] = T + W = (i + 4) | 0 + f[W >> 2] = U + Dd(d, O, h, i) + Y = f[d >> 2] | 0 + f[c >> 2] = Y + Z = (d + 4) | 0 + _ = f[Z >> 2] | 0 + $ = (c + 4) | 0 + f[$ >> 2] = _ + $q(k) + u = g + return 1 + } + function jd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0 + c = (a + 4) | 0 + if (!b) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) br(e) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + e = ra(8) | 0 + Wo(e, 14941) + f[e >> 2] = 6944 + va(e | 0, 1080, 114) + } + e = dn(b << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) br(g) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + g = f[c >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (b + -1) | 0 + i = ((h & b) | 0) == 0 + if (!i) + if (e >>> 0 < b >>> 0) j = e + else j = (e >>> 0) % (b >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = c + c = f[g >> 2] | 0 + if (!c) return + else { + k = j + l = g + m = c + n = g + } + a: while (1) { + g = l + c = m + j = n + b: while (1) { + c: do + if (i) { + e = c + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) { + p = e + break c + } + q = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[q >> 2] | 0)) { + r = e + s = o + t = q + break b + } + q = (e + 8) | 0 + u = (q + 2) | 0 + v = (e + 12) | 0 + w = (q + 6) | 0 + x = f[e >> 2] | 0 + d: do + if (!x) y = e + else { + z = d[q >> 1] | 0 + A = e + B = x + while (1) { + C = (B + 8) | 0 + if ((z << 16) >> 16 != (d[C >> 1] | 0)) { + y = A + break d + } + if ((d[u >> 1] | 0) != (d[(C + 2) >> 1] | 0)) { + y = A + break d + } + if ((d[v >> 1] | 0) != (d[(B + 12) >> 1] | 0)) { + y = A + break d + } + if ((d[w >> 1] | 0) != (d[(C + 6) >> 1] | 0)) { + y = A + break d + } + C = f[B >> 2] | 0 + if (!C) { + y = B + break + } else { + D = B + B = C + A = D + } + } + } + while (0) + f[j >> 2] = f[y >> 2] + f[y >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + E = 43 + break a + } + } + } else { + e = c + while (1) { + w = f[(e + 4) >> 2] | 0 + if (w >>> 0 < b >>> 0) F = w + else F = (w >>> 0) % (b >>> 0) | 0 + if ((F | 0) == (k | 0)) { + p = e + break c + } + w = ((f[a >> 2] | 0) + (F << 2)) | 0 + if (!(f[w >> 2] | 0)) { + r = e + s = F + t = w + break b + } + w = (e + 8) | 0 + v = (w + 2) | 0 + u = (e + 12) | 0 + x = (w + 6) | 0 + q = f[e >> 2] | 0 + e: do + if (!q) G = e + else { + A = d[w >> 1] | 0 + B = e + z = q + while (1) { + D = (z + 8) | 0 + if ((A << 16) >> 16 != (d[D >> 1] | 0)) { + G = B + break e + } + if ((d[v >> 1] | 0) != (d[(D + 2) >> 1] | 0)) { + G = B + break e + } + if ((d[u >> 1] | 0) != (d[(z + 12) >> 1] | 0)) { + G = B + break e + } + if ((d[x >> 1] | 0) != (d[(D + 6) >> 1] | 0)) { + G = B + break e + } + D = f[z >> 2] | 0 + if (!D) { + G = z + break + } else { + C = z + z = D + B = C + } + } + } + while (0) + f[j >> 2] = f[G >> 2] + f[G >> 2] = f[f[((f[a >> 2] | 0) + (F << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (F << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + E = 43 + break a + } + } + } + while (0) + c = f[p >> 2] | 0 + if (!c) { + E = 43 + break a + } else { + g = p + j = p + } + } + f[t >> 2] = j + m = f[r >> 2] | 0 + if (!m) { + E = 43 + break + } else { + k = s + l = r + n = r + } + } + if ((E | 0) == 43) return + } + function kd(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0 + d = (a + 4) | 0 + if (!c) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) br(e) + f[d >> 2] = 0 + return + } + if (c >>> 0 > 1073741823) { + e = ra(8) | 0 + Wo(e, 14941) + f[e >> 2] = 6944 + va(e | 0, 1080, 114) + } + e = dn(c << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) br(g) + f[d >> 2] = c + d = 0 + do { + f[((f[a >> 2] | 0) + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + } while ((d | 0) != (c | 0)) + d = (a + 8) | 0 + g = f[d >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (c + -1) | 0 + i = ((h & c) | 0) == 0 + if (!i) + if (e >>> 0 < c >>> 0) j = e + else j = (e >>> 0) % (c >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = d + d = f[g >> 2] | 0 + if (!d) return + else { + k = j + l = g + m = d + n = g + } + a: while (1) { + g = l + d = m + j = n + b: while (1) { + c: do + if (i) { + e = d + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) { + p = e + break c + } + q = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[q >> 2] | 0)) { + r = e + s = o + t = q + break b + } + q = (e + 8) | 0 + u = (q + 1) | 0 + v = (q + 2) | 0 + w = (q + 3) | 0 + x = f[e >> 2] | 0 + d: do + if (!x) y = e + else { + z = b[q >> 0] | 0 + A = e + B = x + while (1) { + C = (B + 8) | 0 + if ((z << 24) >> 24 != (b[C >> 0] | 0)) { + y = A + break d + } + if ((b[u >> 0] | 0) != (b[(C + 1) >> 0] | 0)) { + y = A + break d + } + if ((b[v >> 0] | 0) != (b[(C + 2) >> 0] | 0)) { + y = A + break d + } + if ((b[w >> 0] | 0) != (b[(C + 3) >> 0] | 0)) { + y = A + break d + } + C = f[B >> 2] | 0 + if (!C) { + y = B + break + } else { + D = B + B = C + A = D + } + } + } + while (0) + f[j >> 2] = f[y >> 2] + f[y >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + E = 43 + break a + } + } + } else { + e = d + while (1) { + w = f[(e + 4) >> 2] | 0 + if (w >>> 0 < c >>> 0) F = w + else F = (w >>> 0) % (c >>> 0) | 0 + if ((F | 0) == (k | 0)) { + p = e + break c + } + w = ((f[a >> 2] | 0) + (F << 2)) | 0 + if (!(f[w >> 2] | 0)) { + r = e + s = F + t = w + break b + } + w = (e + 8) | 0 + v = (w + 1) | 0 + u = (w + 2) | 0 + x = (w + 3) | 0 + q = f[e >> 2] | 0 + e: do + if (!q) G = e + else { + A = b[w >> 0] | 0 + B = e + z = q + while (1) { + D = (z + 8) | 0 + if ((A << 24) >> 24 != (b[D >> 0] | 0)) { + G = B + break e + } + if ((b[v >> 0] | 0) != (b[(D + 1) >> 0] | 0)) { + G = B + break e + } + if ((b[u >> 0] | 0) != (b[(D + 2) >> 0] | 0)) { + G = B + break e + } + if ((b[x >> 0] | 0) != (b[(D + 3) >> 0] | 0)) { + G = B + break e + } + D = f[z >> 2] | 0 + if (!D) { + G = z + break + } else { + C = z + z = D + B = C + } + } + } + while (0) + f[j >> 2] = f[G >> 2] + f[G >> 2] = f[f[((f[a >> 2] | 0) + (F << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (F << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + E = 43 + break a + } + } + } + while (0) + d = f[p >> 2] | 0 + if (!d) { + E = 43 + break a + } else { + g = p + j = p + } + } + f[t >> 2] = j + m = f[r >> 2] | 0 + if (!m) { + E = 43 + break + } else { + k = s + l = r + n = r + } + } + if ((E | 0) == 43) return + } + function ld(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + c = (a + 4) | 0 + if (!b) { + d = f[a >> 2] | 0 + f[a >> 2] = 0 + if (d | 0) br(d) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + d = ra(8) | 0 + Wo(d, 14941) + f[d >> 2] = 6944 + va(d | 0, 1080, 114) + } + d = dn(b << 2) | 0 + e = f[a >> 2] | 0 + f[a >> 2] = d + if (e | 0) br(e) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + e = f[c >> 2] | 0 + if (!e) return + d = f[(e + 4) >> 2] | 0 + g = (b + -1) | 0 + h = ((g & b) | 0) == 0 + if (!h) + if (d >>> 0 < b >>> 0) i = d + else i = (d >>> 0) % (b >>> 0) | 0 + else i = d & g + f[((f[a >> 2] | 0) + (i << 2)) >> 2] = c + c = f[e >> 2] | 0 + if (!c) return + else { + j = i + k = e + l = c + m = e + } + a: while (1) { + e = k + c = l + i = m + b: while (1) { + c: do + if (h) { + d = c + while (1) { + n = f[(d + 4) >> 2] & g + if ((n | 0) == (j | 0)) { + o = d + break c + } + p = ((f[a >> 2] | 0) + (n << 2)) | 0 + if (!(f[p >> 2] | 0)) { + q = d + r = n + s = p + break b + } + p = (d + 12) | 0 + t = (d + 16) | 0 + u = (d + 20) | 0 + v = f[d >> 2] | 0 + d: do + if (!v) w = d + else { + x = f[(d + 8) >> 2] | 0 + y = d + z = v + while (1) { + if ((x | 0) != (f[(z + 8) >> 2] | 0)) { + w = y + break d + } + if ((f[p >> 2] | 0) != (f[(z + 12) >> 2] | 0)) { + w = y + break d + } + if ((f[t >> 2] | 0) != (f[(z + 16) >> 2] | 0)) { + w = y + break d + } + if ((f[u >> 2] | 0) != (f[(z + 20) >> 2] | 0)) { + w = y + break d + } + A = f[z >> 2] | 0 + if (!A) { + w = z + break + } else { + B = z + z = A + y = B + } + } + } + while (0) + f[i >> 2] = f[w >> 2] + f[w >> 2] = f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] = d + d = f[e >> 2] | 0 + if (!d) { + C = 43 + break a + } + } + } else { + d = c + while (1) { + u = f[(d + 4) >> 2] | 0 + if (u >>> 0 < b >>> 0) D = u + else D = (u >>> 0) % (b >>> 0) | 0 + if ((D | 0) == (j | 0)) { + o = d + break c + } + u = ((f[a >> 2] | 0) + (D << 2)) | 0 + if (!(f[u >> 2] | 0)) { + q = d + r = D + s = u + break b + } + u = (d + 12) | 0 + t = (d + 16) | 0 + p = (d + 20) | 0 + v = f[d >> 2] | 0 + e: do + if (!v) E = d + else { + y = f[(d + 8) >> 2] | 0 + z = d + x = v + while (1) { + if ((y | 0) != (f[(x + 8) >> 2] | 0)) { + E = z + break e + } + if ((f[u >> 2] | 0) != (f[(x + 12) >> 2] | 0)) { + E = z + break e + } + if ((f[t >> 2] | 0) != (f[(x + 16) >> 2] | 0)) { + E = z + break e + } + if ((f[p >> 2] | 0) != (f[(x + 20) >> 2] | 0)) { + E = z + break e + } + B = f[x >> 2] | 0 + if (!B) { + E = x + break + } else { + A = x + x = B + z = A + } + } + } + while (0) + f[i >> 2] = f[E >> 2] + f[E >> 2] = f[f[((f[a >> 2] | 0) + (D << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (D << 2)) >> 2] >> 2] = d + d = f[e >> 2] | 0 + if (!d) { + C = 43 + break a + } + } + } + while (0) + c = f[o >> 2] | 0 + if (!c) { + C = 43 + break a + } else { + e = o + i = o + } + } + f[s >> 2] = i + l = f[q >> 2] | 0 + if (!l) { + C = 43 + break + } else { + j = r + k = q + m = q + } + } + if ((C | 0) == 43) return + } + function md(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0 + i = u + u = (u + 352) | 0 + j = (i + 340) | 0 + k = (i + 336) | 0 + l = (i + 80) | 0 + m = (i + 48) | 0 + n = i + hj(l | 0, 0, 256) | 0 + o = f[(e + 4) >> 2] | 0 + p = f[e >> 2] | 0 + q = p + if ((o | 0) != (p | 0)) { + r = (o - p) >> 2 + p = 0 + do { + o = (l + (f[(q + (p << 2)) >> 2] << 3)) | 0 + s = o + t = Tn(f[s >> 2] | 0, f[(s + 4) >> 2] | 0, 1, 0) | 0 + s = o + f[s >> 2] = t + f[(s + 4) >> 2] = I + p = (p + 1) | 0 + } while (p >>> 0 < r >>> 0) + } + Cn(m) + r = Rn(c | 0, ((((c | 0) < 0) << 31) >> 31) | 0, 5) | 0 + p = I + q = (n + 40) | 0 + s = q + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = n + t = (s + 36) | 0 + do { + f[s >> 2] = 0 + s = (s + 4) | 0 + } while ((s | 0) < (t | 0)) + $c(n, l, 32, g) | 0 + l = (n + 16) | 0 + s = Rn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1) | 0 + l = (g + 4) | 0 + t = ((f[l >> 2] | 0) - (f[g >> 2] | 0)) | 0 + o = q + f[o >> 2] = t + f[(o + 4) >> 2] = 0 + o = Tn(s | 0, I | 0, 39, 0) | 0 + s = Wn(o | 0, I | 0, 3) | 0 + o = Tn(s | 0, I | 0, 8, 0) | 0 + s = Tn(o | 0, I | 0, t | 0, 0) | 0 + vl(g, s, I) + s = (n + 24) | 0 + f[s >> 2] = (f[g >> 2] | 0) + (f[q >> 2] | 0) + q = (n + 28) | 0 + f[q >> 2] = 0 + t = (n + 32) | 0 + f[t >> 2] = 16384 + li(m, r, p, 0) | 0 + p = (c - d) | 0 + if ((p | 0) > -1) { + c = (d | 0) > 0 + r = (m + 16) | 0 + o = (m + 12) | 0 + v = p + do { + w = f[e >> 2] | 0 + x = f[(w + ((((v | 0) / (d | 0)) | 0) << 2)) >> 2] | 0 + y = f[n >> 2] | 0 + z = f[(y + (x << 3)) >> 2] | 0 + A = f[t >> 2] | 0 + B = z << 10 + if (A >>> 0 < B >>> 0) { + C = A + D = w + } else { + w = A + do { + A = f[s >> 2] | 0 + E = f[q >> 2] | 0 + f[q >> 2] = E + 1 + b[(A + E) >> 0] = w + w = (f[t >> 2] | 0) >>> 8 + f[t >> 2] = w + } while (w >>> 0 >= B >>> 0) + C = w + D = f[e >> 2] | 0 + } + f[t >> 2] = + ((((C >>> 0) / (z >>> 0)) | 0) << 12) + + ((C >>> 0) % (z >>> 0) | 0) + + (f[(y + (x << 3) + 4) >> 2] | 0) + B = (p - v) | 0 + E = f[(D + ((((B | 0) / (d | 0)) | 0) << 2)) >> 2] | 0 + if (c & ((E | 0) > 0)) { + A = 0 + do { + F = f[(a + ((A + B) << 2)) >> 2] | 0 + G = r + H = f[(G + 4) >> 2] | 0 + if ( + ((H | 0) > 0) | + (((H | 0) == 0) & ((f[G >> 2] | 0) >>> 0 > 0)) + ) { + G = f[o >> 2] | 0 + H = (G + 4) | 0 + J = 0 + K = f[H >> 2] | 0 + do { + L = K >>> 3 + M = K & 7 + N = ((f[G >> 2] | 0) + L) | 0 + b[N >> 0] = ((1 << M) ^ 255) & (h[N >> 0] | 0) + N = ((f[G >> 2] | 0) + L) | 0 + b[N >> 0] = (((F >>> J) & 1) << M) | (h[N >> 0] | 0) + K = ((f[H >> 2] | 0) + 1) | 0 + f[H >> 2] = K + J = (J + 1) | 0 + } while ((J | 0) != (E | 0)) + } + A = (A + 1) | 0 + } while ((A | 0) != (d | 0)) + } + v = (v - d) | 0 + } while ((v | 0) > -1) + } + Lf(n, g) + Qf(m) + v = f[m >> 2] | 0 + d = (m + 4) | 0 + o = (g + 16) | 0 + r = f[(o + 4) >> 2] | 0 + if (!(((r | 0) > 0) | (((r | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0)))) { + o = ((f[d >> 2] | 0) - v) | 0 + f[k >> 2] = f[l >> 2] + f[j >> 2] = f[k >> 2] + ye(g, j, v, (v + o) | 0) | 0 + } + o = f[n >> 2] | 0 + if (o | 0) { + v = (n + 4) | 0 + n = f[v >> 2] | 0 + if ((n | 0) != (o | 0)) + f[v >> 2] = n + (~(((n + -8 - o) | 0) >>> 3) << 3) + br(o) + } + o = (m + 12) | 0 + n = f[o >> 2] | 0 + f[o >> 2] = 0 + if (n | 0) br(n) + n = f[m >> 2] | 0 + if (!n) { + u = i + return 1 + } + if ((f[d >> 2] | 0) != (n | 0)) f[d >> 2] = n + br(n) + u = i + return 1 + } + function nd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0 + c = (a + 4) | 0 + if (!b) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) br(e) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + e = ra(8) | 0 + Wo(e, 14941) + f[e >> 2] = 6944 + va(e | 0, 1080, 114) + } + e = dn(b << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) br(g) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + g = f[c >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (b + -1) | 0 + i = ((h & b) | 0) == 0 + if (!i) + if (e >>> 0 < b >>> 0) j = e + else j = (e >>> 0) % (b >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = c + c = f[g >> 2] | 0 + if (!c) return + else { + k = j + l = g + m = c + n = g + } + a: while (1) { + g = l + c = m + j = n + b: while (1) { + c: do + if (i) { + e = c + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) { + p = e + break c + } + q = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[q >> 2] | 0)) { + r = e + s = o + t = q + break b + } + q = (e + 8) | 0 + u = (e + 12) | 0 + v = f[e >> 2] | 0 + d: do + if (!v) w = e + else { + x = d[q >> 1] | 0 + y = (q + 2) | 0 + z = e + A = v + while (1) { + B = (A + 8) | 0 + if ((x << 16) >> 16 != (d[B >> 1] | 0)) { + w = z + break d + } + if ((d[y >> 1] | 0) != (d[(B + 2) >> 1] | 0)) { + w = z + break d + } + if ((d[u >> 1] | 0) != (d[(A + 12) >> 1] | 0)) { + w = z + break d + } + B = f[A >> 2] | 0 + if (!B) { + w = A + break + } else { + C = A + A = B + z = C + } + } + } + while (0) + f[j >> 2] = f[w >> 2] + f[w >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + D = 41 + break a + } + } + } else { + e = c + while (1) { + u = f[(e + 4) >> 2] | 0 + if (u >>> 0 < b >>> 0) E = u + else E = (u >>> 0) % (b >>> 0) | 0 + if ((E | 0) == (k | 0)) { + p = e + break c + } + u = ((f[a >> 2] | 0) + (E << 2)) | 0 + if (!(f[u >> 2] | 0)) { + r = e + s = E + t = u + break b + } + u = (e + 8) | 0 + v = (e + 12) | 0 + q = f[e >> 2] | 0 + e: do + if (!q) F = e + else { + z = d[u >> 1] | 0 + A = (u + 2) | 0 + y = e + x = q + while (1) { + C = (x + 8) | 0 + if ((z << 16) >> 16 != (d[C >> 1] | 0)) { + F = y + break e + } + if ((d[A >> 1] | 0) != (d[(C + 2) >> 1] | 0)) { + F = y + break e + } + if ((d[v >> 1] | 0) != (d[(x + 12) >> 1] | 0)) { + F = y + break e + } + C = f[x >> 2] | 0 + if (!C) { + F = x + break + } else { + B = x + x = C + y = B + } + } + } + while (0) + f[j >> 2] = f[F >> 2] + f[F >> 2] = f[f[((f[a >> 2] | 0) + (E << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (E << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + D = 41 + break a + } + } + } + while (0) + c = f[p >> 2] | 0 + if (!c) { + D = 41 + break a + } else { + g = p + j = p + } + } + f[t >> 2] = j + m = f[r >> 2] | 0 + if (!m) { + D = 41 + break + } else { + k = s + l = r + n = r + } + } + if ((D | 0) == 41) return + } + function od(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0 + d = (a + 4) | 0 + if (!c) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) br(e) + f[d >> 2] = 0 + return + } + if (c >>> 0 > 1073741823) { + e = ra(8) | 0 + Wo(e, 14941) + f[e >> 2] = 6944 + va(e | 0, 1080, 114) + } + e = dn(c << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) br(g) + f[d >> 2] = c + d = 0 + do { + f[((f[a >> 2] | 0) + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + } while ((d | 0) != (c | 0)) + d = (a + 8) | 0 + g = f[d >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (c + -1) | 0 + i = ((h & c) | 0) == 0 + if (!i) + if (e >>> 0 < c >>> 0) j = e + else j = (e >>> 0) % (c >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = d + d = f[g >> 2] | 0 + if (!d) return + else { + k = j + l = g + m = d + n = g + } + a: while (1) { + g = l + d = m + j = n + b: while (1) { + c: do + if (i) { + e = d + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) { + p = e + break c + } + q = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[q >> 2] | 0)) { + r = e + s = o + t = q + break b + } + q = (e + 8) | 0 + u = (q + 1) | 0 + v = (q + 2) | 0 + w = f[e >> 2] | 0 + d: do + if (!w) x = e + else { + y = b[q >> 0] | 0 + z = e + A = w + while (1) { + B = (A + 8) | 0 + if ((y << 24) >> 24 != (b[B >> 0] | 0)) { + x = z + break d + } + if ((b[u >> 0] | 0) != (b[(B + 1) >> 0] | 0)) { + x = z + break d + } + if ((b[v >> 0] | 0) != (b[(B + 2) >> 0] | 0)) { + x = z + break d + } + B = f[A >> 2] | 0 + if (!B) { + x = A + break + } else { + C = A + A = B + z = C + } + } + } + while (0) + f[j >> 2] = f[x >> 2] + f[x >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + D = 41 + break a + } + } + } else { + e = d + while (1) { + v = f[(e + 4) >> 2] | 0 + if (v >>> 0 < c >>> 0) E = v + else E = (v >>> 0) % (c >>> 0) | 0 + if ((E | 0) == (k | 0)) { + p = e + break c + } + v = ((f[a >> 2] | 0) + (E << 2)) | 0 + if (!(f[v >> 2] | 0)) { + r = e + s = E + t = v + break b + } + v = (e + 8) | 0 + u = (v + 1) | 0 + w = (v + 2) | 0 + q = f[e >> 2] | 0 + e: do + if (!q) F = e + else { + z = b[v >> 0] | 0 + A = e + y = q + while (1) { + C = (y + 8) | 0 + if ((z << 24) >> 24 != (b[C >> 0] | 0)) { + F = A + break e + } + if ((b[u >> 0] | 0) != (b[(C + 1) >> 0] | 0)) { + F = A + break e + } + if ((b[w >> 0] | 0) != (b[(C + 2) >> 0] | 0)) { + F = A + break e + } + C = f[y >> 2] | 0 + if (!C) { + F = y + break + } else { + B = y + y = C + A = B + } + } + } + while (0) + f[j >> 2] = f[F >> 2] + f[F >> 2] = f[f[((f[a >> 2] | 0) + (E << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (E << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + D = 41 + break a + } + } + } + while (0) + d = f[p >> 2] | 0 + if (!d) { + D = 41 + break a + } else { + g = p + j = p + } + } + f[t >> 2] = j + m = f[r >> 2] | 0 + if (!m) { + D = 41 + break + } else { + k = s + l = r + n = r + } + } + if ((D | 0) == 41) return + } + function pd(a, b) { + a = +a + b = +b + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + q = 0, + r = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0.0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0.0 + p[s >> 3] = a + c = f[s >> 2] | 0 + d = f[(s + 4) >> 2] | 0 + p[s >> 3] = b + e = f[s >> 2] | 0 + g = f[(s + 4) >> 2] | 0 + h = Wn(c | 0, d | 0, 52) | 0 + i = h & 2047 + h = Wn(e | 0, g | 0, 52) | 0 + j = h & 2047 + h = d & -2147483648 + k = Rn(e | 0, g | 0, 1) | 0 + l = I + a: do + if ( + !(((k | 0) == 0) & ((l | 0) == 0)) + ? ((m = xo(b) | 0), + (n = I & 2147483647), + !( + ((i | 0) == 2047) | + ((n >>> 0 > 2146435072) | + (((n | 0) == 2146435072) & (m >>> 0 > 0))) + )) + : 0 + ) { + m = Rn(c | 0, d | 0, 1) | 0 + n = I + if ( + !( + (n >>> 0 > l >>> 0) | + (((n | 0) == (l | 0)) & (m >>> 0 > k >>> 0)) + ) + ) + return +(((m | 0) == (k | 0)) & ((n | 0) == (l | 0)) ? a * 0.0 : a) + if (!i) { + n = Rn(c | 0, d | 0, 12) | 0 + m = I + if (((m | 0) > -1) | (((m | 0) == -1) & (n >>> 0 > 4294967295))) { + o = 0 + q = n + n = m + while (1) { + m = (o + -1) | 0 + q = Rn(q | 0, n | 0, 1) | 0 + n = I + if ( + !(((n | 0) > -1) | (((n | 0) == -1) & (q >>> 0 > 4294967295))) + ) { + r = m + break + } else o = m + } + } else r = 0 + o = Rn(c | 0, d | 0, (1 - r) | 0) | 0 + t = r + u = o + v = I + } else { + t = i + u = c + v = (d & 1048575) | 1048576 + } + if (!j) { + o = Rn(e | 0, g | 0, 12) | 0 + q = I + if (((q | 0) > -1) | (((q | 0) == -1) & (o >>> 0 > 4294967295))) { + n = 0 + m = o + o = q + while (1) { + q = (n + -1) | 0 + m = Rn(m | 0, o | 0, 1) | 0 + o = I + if ( + !(((o | 0) > -1) | (((o | 0) == -1) & (m >>> 0 > 4294967295))) + ) { + w = q + break + } else n = q + } + } else w = 0 + n = Rn(e | 0, g | 0, (1 - w) | 0) | 0 + x = w + y = n + z = I + } else { + x = j + y = e + z = (g & 1048575) | 1048576 + } + n = Vn(u | 0, v | 0, y | 0, z | 0) | 0 + m = I + o = ((m | 0) > -1) | (((m | 0) == -1) & (n >>> 0 > 4294967295)) + b: do + if ((t | 0) > (x | 0)) { + q = t + A = m + B = o + C = u + D = v + E = n + while (1) { + if (B) + if (((E | 0) == 0) & ((A | 0) == 0)) break + else { + F = E + G = A + } + else { + F = C + G = D + } + H = Rn(F | 0, G | 0, 1) | 0 + J = I + K = (q + -1) | 0 + L = Vn(H | 0, J | 0, y | 0, z | 0) | 0 + M = I + N = ((M | 0) > -1) | (((M | 0) == -1) & (L >>> 0 > 4294967295)) + if ((K | 0) > (x | 0)) { + q = K + A = M + B = N + C = H + D = J + E = L + } else { + O = K + P = N + Q = L + R = M + S = H + T = J + break b + } + } + U = a * 0.0 + break a + } else { + O = t + P = o + Q = n + R = m + S = u + T = v + } + while (0) + if (P) + if (((Q | 0) == 0) & ((R | 0) == 0)) { + U = a * 0.0 + break + } else { + V = R + W = Q + } + else { + V = T + W = S + } + if ((V >>> 0 < 1048576) | (((V | 0) == 1048576) & (W >>> 0 < 0))) { + m = O + n = W + o = V + while (1) { + E = Rn(n | 0, o | 0, 1) | 0 + D = I + C = (m + -1) | 0 + if ( + (D >>> 0 < 1048576) | + (((D | 0) == 1048576) & (E >>> 0 < 0)) + ) { + m = C + n = E + o = D + } else { + X = C + Y = E + Z = D + break + } + } + } else { + X = O + Y = W + Z = V + } + if ((X | 0) > 0) { + o = Tn(Y | 0, Z | 0, 0, -1048576) | 0 + n = I + m = Rn(X | 0, 0, 52) | 0 + _ = n | I + $ = o | m + } else { + m = Wn(Y | 0, Z | 0, (1 - X) | 0) | 0 + _ = I + $ = m + } + f[s >> 2] = $ + f[(s + 4) >> 2] = _ | h + U = +p[s >> 3] + } else aa = 3 + while (0) + if ((aa | 0) == 3) { + ba = a * b + U = ba / ba + } + return +U + } + function qd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0 + c = (a + 4) | 0 + if (!b) { + d = f[a >> 2] | 0 + f[a >> 2] = 0 + if (d | 0) br(d) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + d = ra(8) | 0 + Wo(d, 14941) + f[d >> 2] = 6944 + va(d | 0, 1080, 114) + } + d = dn(b << 2) | 0 + e = f[a >> 2] | 0 + f[a >> 2] = d + if (e | 0) br(e) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + e = f[c >> 2] | 0 + if (!e) return + d = f[(e + 4) >> 2] | 0 + g = (b + -1) | 0 + h = ((g & b) | 0) == 0 + if (!h) + if (d >>> 0 < b >>> 0) i = d + else i = (d >>> 0) % (b >>> 0) | 0 + else i = d & g + f[((f[a >> 2] | 0) + (i << 2)) >> 2] = c + c = f[e >> 2] | 0 + if (!c) return + else { + j = i + k = e + l = c + m = e + } + a: while (1) { + e = k + c = l + i = m + b: while (1) { + c: do + if (h) { + d = c + while (1) { + n = f[(d + 4) >> 2] & g + if ((n | 0) == (j | 0)) { + o = d + break c + } + p = ((f[a >> 2] | 0) + (n << 2)) | 0 + if (!(f[p >> 2] | 0)) { + q = d + r = n + s = p + break b + } + p = (d + 12) | 0 + t = (d + 16) | 0 + u = f[d >> 2] | 0 + d: do + if (!u) v = d + else { + w = f[(d + 8) >> 2] | 0 + x = d + y = u + while (1) { + if ((w | 0) != (f[(y + 8) >> 2] | 0)) { + v = x + break d + } + if ((f[p >> 2] | 0) != (f[(y + 12) >> 2] | 0)) { + v = x + break d + } + if ((f[t >> 2] | 0) != (f[(y + 16) >> 2] | 0)) { + v = x + break d + } + z = f[y >> 2] | 0 + if (!z) { + v = y + break + } else { + A = y + y = z + x = A + } + } + } + while (0) + f[i >> 2] = f[v >> 2] + f[v >> 2] = f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] = d + d = f[e >> 2] | 0 + if (!d) { + B = 41 + break a + } + } + } else { + d = c + while (1) { + t = f[(d + 4) >> 2] | 0 + if (t >>> 0 < b >>> 0) C = t + else C = (t >>> 0) % (b >>> 0) | 0 + if ((C | 0) == (j | 0)) { + o = d + break c + } + t = ((f[a >> 2] | 0) + (C << 2)) | 0 + if (!(f[t >> 2] | 0)) { + q = d + r = C + s = t + break b + } + t = (d + 12) | 0 + p = (d + 16) | 0 + u = f[d >> 2] | 0 + e: do + if (!u) D = d + else { + x = f[(d + 8) >> 2] | 0 + y = d + w = u + while (1) { + if ((x | 0) != (f[(w + 8) >> 2] | 0)) { + D = y + break e + } + if ((f[t >> 2] | 0) != (f[(w + 12) >> 2] | 0)) { + D = y + break e + } + if ((f[p >> 2] | 0) != (f[(w + 16) >> 2] | 0)) { + D = y + break e + } + A = f[w >> 2] | 0 + if (!A) { + D = w + break + } else { + z = w + w = A + y = z + } + } + } + while (0) + f[i >> 2] = f[D >> 2] + f[D >> 2] = f[f[((f[a >> 2] | 0) + (C << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (C << 2)) >> 2] >> 2] = d + d = f[e >> 2] | 0 + if (!d) { + B = 41 + break a + } + } + } + while (0) + c = f[o >> 2] | 0 + if (!c) { + B = 41 + break a + } else { + e = o + i = o + } + } + f[s >> 2] = i + l = f[q >> 2] | 0 + if (!l) { + B = 41 + break + } else { + j = r + k = q + m = q + } + } + if ((B | 0) == 41) return + } + function rd(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + d = (a + 4) | 0 + if (!c) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) br(e) + f[d >> 2] = 0 + return + } + if (c >>> 0 > 1073741823) { + e = ra(8) | 0 + Wo(e, 14941) + f[e >> 2] = 6944 + va(e | 0, 1080, 114) + } + e = dn(c << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) br(g) + f[d >> 2] = c + d = 0 + do { + f[((f[a >> 2] | 0) + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + } while ((d | 0) != (c | 0)) + d = (a + 8) | 0 + g = f[d >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (c + -1) | 0 + i = ((h & c) | 0) == 0 + if (!i) + if (e >>> 0 < c >>> 0) j = e + else j = (e >>> 0) % (c >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = d + d = f[g >> 2] | 0 + if (!d) return + else { + k = j + l = g + m = d + n = g + } + a: while (1) { + g = l + d = m + j = n + b: while (1) { + o = d + while (1) { + e = f[(o + 4) >> 2] | 0 + if (!i) + if (e >>> 0 < c >>> 0) p = e + else p = (e >>> 0) % (c >>> 0) | 0 + else p = e & h + if ((p | 0) == (k | 0)) break + q = ((f[a >> 2] | 0) + (p << 2)) | 0 + if (!(f[q >> 2] | 0)) break b + e = f[o >> 2] | 0 + c: do + if (!e) r = o + else { + s = (o + 8) | 0 + t = b[(s + 11) >> 0] | 0 + u = (t << 24) >> 24 < 0 + v = t & 255 + t = u ? f[(o + 12) >> 2] | 0 : v + w = (t | 0) == 0 + if (u) { + u = o + x = e + while (1) { + y = (x + 8) | 0 + z = b[(y + 11) >> 0] | 0 + A = (z << 24) >> 24 < 0 + if ((t | 0) != ((A ? f[(x + 12) >> 2] | 0 : z & 255) | 0)) { + r = u + break c + } + if ( + !w ? Pk(f[s >> 2] | 0, A ? f[y >> 2] | 0 : y, t) | 0 : 0 + ) { + r = u + break c + } + y = f[x >> 2] | 0 + if (!y) { + r = x + break c + } else { + A = x + x = y + u = A + } + } + } + if (w) { + u = o + x = e + while (1) { + A = b[(x + 8 + 11) >> 0] | 0 + if ( + ((A << 24) >> 24 < 0 ? f[(x + 12) >> 2] | 0 : A & 255) | 0 + ) { + r = u + break c + } + A = f[x >> 2] | 0 + if (!A) { + r = x + break c + } else { + y = x + x = A + u = y + } + } + } + u = o + x = e + while (1) { + w = (x + 8) | 0 + y = b[(w + 11) >> 0] | 0 + A = (y << 24) >> 24 < 0 + if ((t | 0) != ((A ? f[(x + 12) >> 2] | 0 : y & 255) | 0)) { + r = u + break c + } + y = A ? f[w >> 2] | 0 : w + if ((b[y >> 0] | 0) == ((f[s >> 2] & 255) << 24) >> 24) { + B = s + C = v + D = y + } else { + r = u + break c + } + while (1) { + C = (C + -1) | 0 + B = (B + 1) | 0 + if (!C) break + D = (D + 1) | 0 + if ((b[B >> 0] | 0) != (b[D >> 0] | 0)) { + r = u + break c + } + } + y = f[x >> 2] | 0 + if (!y) { + r = x + break + } else { + w = x + x = y + u = w + } + } + } + while (0) + f[j >> 2] = f[r >> 2] + f[r >> 2] = f[f[((f[a >> 2] | 0) + (p << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (p << 2)) >> 2] >> 2] = o + e = f[g >> 2] | 0 + if (!e) { + E = 43 + break a + } else o = e + } + d = f[o >> 2] | 0 + if (!d) { + E = 43 + break a + } else { + g = o + j = o + } + } + f[q >> 2] = j + m = f[o >> 2] | 0 + if (!m) { + E = 43 + break + } else { + k = p + l = o + n = o + } + } + if ((E | 0) == 43) return + } + function sd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = u + u = (u + 48) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + h = (a + 44) | 0 + Nh(f[h >> 2] | 0, b) | 0 + if (f[h >> 2] | 0) { + rn(d) + lk(d) + i = f[h >> 2] | 0 + if ((i | 0) > 0) { + h = (a + 40) | 0 + j = i + do { + i = j + j = (j + -1) | 0 + Vi( + d, + ((f[((f[h >> 2] | 0) + ((j >>> 5) << 2)) >> 2] & + (1 << (j & 31))) | + 0) != + 0, + ) + } while ((i | 0) > 1) + } + fd(d, b) + tj(d) + } + j = (a + 56) | 0 + Nh(f[j >> 2] | 0, b) | 0 + if (f[j >> 2] | 0) { + rn(d) + lk(d) + h = f[j >> 2] | 0 + if ((h | 0) > 1) { + j = (a + 52) | 0 + i = h + do { + h = i + i = (i + -2) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) != + 0, + ) + k = (h + -1) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((k >>> 5) << 2)) >> 2] & + (1 << (k & 31))) | + 0) != + 0, + ) + } while ((h | 0) > 3) + } + fd(d, b) + tj(d) + } + j = (a + 68) | 0 + Nh(f[j >> 2] | 0, b) | 0 + if (f[j >> 2] | 0) { + rn(d) + lk(d) + i = f[j >> 2] | 0 + if ((i | 0) > 2) { + j = (a + 64) | 0 + h = i + do { + i = h + h = (h + -3) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((h >>> 5) << 2)) >> 2] & + (1 << (h & 31))) | + 0) != + 0, + ) + k = (i + -2) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((k >>> 5) << 2)) >> 2] & + (1 << (k & 31))) | + 0) != + 0, + ) + k = (i + -1) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((k >>> 5) << 2)) >> 2] & + (1 << (k & 31))) | + 0) != + 0, + ) + } while ((i | 0) > 5) + } + fd(d, b) + tj(d) + } + j = (a + 80) | 0 + Nh(f[j >> 2] | 0, b) | 0 + if (f[j >> 2] | 0) { + rn(d) + lk(d) + h = f[j >> 2] | 0 + if ((h | 0) > 3) { + j = (a + 76) | 0 + i = h + do { + h = i + i = (i + -4) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) != + 0, + ) + k = (h + -3) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((k >>> 5) << 2)) >> 2] & + (1 << (k & 31))) | + 0) != + 0, + ) + k = (h + -2) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((k >>> 5) << 2)) >> 2] & + (1 << (k & 31))) | + 0) != + 0, + ) + k = (h + -1) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((k >>> 5) << 2)) >> 2] & + (1 << (k & 31))) | + 0) != + 0, + ) + } while ((h | 0) > 7) + } + fd(d, b) + tj(d) + } + f[g >> 2] = f[(a + 12) >> 2] + j = (b + 16) | 0 + i = j + h = f[i >> 2] | 0 + k = f[(i + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & (h >>> 0 > 0))) { + l = k + m = h + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + h = j + l = f[(h + 4) >> 2] | 0 + m = f[h >> 2] | 0 + } + f[g >> 2] = f[(a + 20) >> 2] + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + u = c + return 1 + } + function td(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = u + u = (u + 48) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + h = (a + 64) | 0 + Nh(f[h >> 2] | 0, b) | 0 + if (f[h >> 2] | 0) { + rn(d) + lk(d) + i = f[h >> 2] | 0 + if ((i | 0) > 0) { + h = (a + 60) | 0 + j = i + do { + i = j + j = (j + -1) | 0 + Vi( + d, + ((f[((f[h >> 2] | 0) + ((j >>> 5) << 2)) >> 2] & + (1 << (j & 31))) | + 0) != + 0, + ) + } while ((i | 0) > 1) + } + fd(d, b) + tj(d) + } + j = (a + 76) | 0 + Nh(f[j >> 2] | 0, b) | 0 + if (f[j >> 2] | 0) { + rn(d) + lk(d) + h = f[j >> 2] | 0 + if ((h | 0) > 1) { + j = (a + 72) | 0 + i = h + do { + h = i + i = (i + -2) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) != + 0, + ) + k = (h + -1) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((k >>> 5) << 2)) >> 2] & + (1 << (k & 31))) | + 0) != + 0, + ) + } while ((h | 0) > 3) + } + fd(d, b) + tj(d) + } + j = (a + 88) | 0 + Nh(f[j >> 2] | 0, b) | 0 + if (f[j >> 2] | 0) { + rn(d) + lk(d) + i = f[j >> 2] | 0 + if ((i | 0) > 2) { + j = (a + 84) | 0 + h = i + do { + i = h + h = (h + -3) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((h >>> 5) << 2)) >> 2] & + (1 << (h & 31))) | + 0) != + 0, + ) + k = (i + -2) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((k >>> 5) << 2)) >> 2] & + (1 << (k & 31))) | + 0) != + 0, + ) + k = (i + -1) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((k >>> 5) << 2)) >> 2] & + (1 << (k & 31))) | + 0) != + 0, + ) + } while ((i | 0) > 5) + } + fd(d, b) + tj(d) + } + j = (a + 100) | 0 + Nh(f[j >> 2] | 0, b) | 0 + if (f[j >> 2] | 0) { + rn(d) + lk(d) + h = f[j >> 2] | 0 + if ((h | 0) > 3) { + j = (a + 96) | 0 + i = h + do { + h = i + i = (i + -4) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) != + 0, + ) + k = (h + -3) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((k >>> 5) << 2)) >> 2] & + (1 << (k & 31))) | + 0) != + 0, + ) + k = (h + -2) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((k >>> 5) << 2)) >> 2] & + (1 << (k & 31))) | + 0) != + 0, + ) + k = (h + -1) | 0 + Vi( + d, + ((f[((f[j >> 2] | 0) + ((k >>> 5) << 2)) >> 2] & + (1 << (k & 31))) | + 0) != + 0, + ) + } while ((h | 0) > 7) + } + fd(d, b) + tj(d) + } + f[g >> 2] = f[(a + 12) >> 2] + j = (b + 16) | 0 + i = j + h = f[i >> 2] | 0 + k = f[(i + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & (h >>> 0 > 0))) { + l = k + m = h + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + h = j + l = f[(h + 4) >> 2] | 0 + m = f[h >> 2] | 0 + } + f[g >> 2] = f[(a + 16) >> 2] + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + u = c + return 1 + } + function ud(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + c = (a + 4) | 0 + if (!b) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) br(e) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + e = ra(8) | 0 + Wo(e, 14941) + f[e >> 2] = 6944 + va(e | 0, 1080, 114) + } + e = dn(b << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) br(g) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + g = f[c >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (b + -1) | 0 + i = ((h & b) | 0) == 0 + if (!i) + if (e >>> 0 < b >>> 0) j = e + else j = (e >>> 0) % (b >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = c + c = f[g >> 2] | 0 + if (!c) return + else { + k = j + l = g + m = c + n = g + } + a: while (1) { + g = l + c = m + j = n + b: while (1) { + c: do + if (i) { + e = c + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) { + p = e + break c + } + q = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[q >> 2] | 0)) { + r = e + s = o + t = q + break b + } + q = (e + 8) | 0 + u = f[e >> 2] | 0 + d: do + if (!u) v = e + else { + w = d[q >> 1] | 0 + x = (q + 2) | 0 + y = e + z = u + while (1) { + A = (z + 8) | 0 + if ((w << 16) >> 16 != (d[A >> 1] | 0)) { + v = y + break d + } + if ((d[x >> 1] | 0) != (d[(A + 2) >> 1] | 0)) { + v = y + break d + } + A = f[z >> 2] | 0 + if (!A) { + v = z + break + } else { + B = z + z = A + y = B + } + } + } + while (0) + f[j >> 2] = f[v >> 2] + f[v >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + C = 39 + break a + } + } + } else { + e = c + while (1) { + u = f[(e + 4) >> 2] | 0 + if (u >>> 0 < b >>> 0) D = u + else D = (u >>> 0) % (b >>> 0) | 0 + if ((D | 0) == (k | 0)) { + p = e + break c + } + u = ((f[a >> 2] | 0) + (D << 2)) | 0 + if (!(f[u >> 2] | 0)) { + r = e + s = D + t = u + break b + } + u = (e + 8) | 0 + q = f[e >> 2] | 0 + e: do + if (!q) E = e + else { + y = d[u >> 1] | 0 + z = (u + 2) | 0 + x = e + w = q + while (1) { + B = (w + 8) | 0 + if ((y << 16) >> 16 != (d[B >> 1] | 0)) { + E = x + break e + } + if ((d[z >> 1] | 0) != (d[(B + 2) >> 1] | 0)) { + E = x + break e + } + B = f[w >> 2] | 0 + if (!B) { + E = w + break + } else { + A = w + w = B + x = A + } + } + } + while (0) + f[j >> 2] = f[E >> 2] + f[E >> 2] = f[f[((f[a >> 2] | 0) + (D << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (D << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + C = 39 + break a + } + } + } + while (0) + c = f[p >> 2] | 0 + if (!c) { + C = 39 + break a + } else { + g = p + j = p + } + } + f[t >> 2] = j + m = f[r >> 2] | 0 + if (!m) { + C = 39 + break + } else { + k = s + l = r + n = r + } + } + if ((C | 0) == 39) return + } + function vd(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + d = (a + 4) | 0 + if (!c) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) br(e) + f[d >> 2] = 0 + return + } + if (c >>> 0 > 1073741823) { + e = ra(8) | 0 + Wo(e, 14941) + f[e >> 2] = 6944 + va(e | 0, 1080, 114) + } + e = dn(c << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) br(g) + f[d >> 2] = c + d = 0 + do { + f[((f[a >> 2] | 0) + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + } while ((d | 0) != (c | 0)) + d = (a + 8) | 0 + g = f[d >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (c + -1) | 0 + i = ((h & c) | 0) == 0 + if (!i) + if (e >>> 0 < c >>> 0) j = e + else j = (e >>> 0) % (c >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = d + d = f[g >> 2] | 0 + if (!d) return + else { + k = j + l = g + m = d + n = g + } + a: while (1) { + g = l + d = m + j = n + b: while (1) { + c: do + if (i) { + e = d + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) { + p = e + break c + } + q = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[q >> 2] | 0)) { + r = e + s = o + t = q + break b + } + q = (e + 8) | 0 + u = f[e >> 2] | 0 + d: do + if (!u) v = e + else { + w = b[q >> 0] | 0 + x = (q + 1) | 0 + y = e + z = u + while (1) { + A = (z + 8) | 0 + if ((w << 24) >> 24 != (b[A >> 0] | 0)) { + v = y + break d + } + if ((b[x >> 0] | 0) != (b[(A + 1) >> 0] | 0)) { + v = y + break d + } + A = f[z >> 2] | 0 + if (!A) { + v = z + break + } else { + B = z + z = A + y = B + } + } + } + while (0) + f[j >> 2] = f[v >> 2] + f[v >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + C = 39 + break a + } + } + } else { + e = d + while (1) { + u = f[(e + 4) >> 2] | 0 + if (u >>> 0 < c >>> 0) D = u + else D = (u >>> 0) % (c >>> 0) | 0 + if ((D | 0) == (k | 0)) { + p = e + break c + } + u = ((f[a >> 2] | 0) + (D << 2)) | 0 + if (!(f[u >> 2] | 0)) { + r = e + s = D + t = u + break b + } + u = (e + 8) | 0 + q = f[e >> 2] | 0 + e: do + if (!q) E = e + else { + y = b[u >> 0] | 0 + z = (u + 1) | 0 + x = e + w = q + while (1) { + B = (w + 8) | 0 + if ((y << 24) >> 24 != (b[B >> 0] | 0)) { + E = x + break e + } + if ((b[z >> 0] | 0) != (b[(B + 1) >> 0] | 0)) { + E = x + break e + } + B = f[w >> 2] | 0 + if (!B) { + E = w + break + } else { + A = w + w = B + x = A + } + } + } + while (0) + f[j >> 2] = f[E >> 2] + f[E >> 2] = f[f[((f[a >> 2] | 0) + (D << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (D << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + C = 39 + break a + } + } + } + while (0) + d = f[p >> 2] | 0 + if (!d) { + C = 39 + break a + } else { + g = p + j = p + } + } + f[t >> 2] = j + m = f[r >> 2] | 0 + if (!m) { + C = 39 + break + } else { + k = s + l = r + n = r + } + } + if ((C | 0) == 39) return + } + function wd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + c = u + u = (u + 48) | 0 + d = (c + 32) | 0 + e = (c + 28) | 0 + g = (c + 16) | 0 + h = c + i = (a + 16) | 0 + j = f[i >> 2] | 0 + if (j | 0) { + k = f[b >> 2] | 0 + l = i + m = j + a: while (1) { + j = m + while (1) { + if ((f[(j + 16) >> 2] | 0) >= (k | 0)) break + n = f[(j + 4) >> 2] | 0 + if (!n) { + o = l + break a + } else j = n + } + m = f[j >> 2] | 0 + if (!m) { + o = j + break + } else l = j + } + if ((o | 0) != (i | 0) ? (k | 0) >= (f[(o + 16) >> 2] | 0) : 0) { + p = o + q = (p + 20) | 0 + u = c + return q | 0 + } + } + wp(g) + f[h >> 2] = f[b >> 2] + b = (h + 4) | 0 + f[(h + 8) >> 2] = 0 + o = (h + 12) | 0 + f[o >> 2] = 0 + k = (h + 8) | 0 + f[b >> 2] = k + l = f[g >> 2] | 0 + m = (g + 4) | 0 + if ((l | 0) != (m | 0)) { + n = k + r = l + while (1) { + l = (r + 16) | 0 + f[e >> 2] = n + f[d >> 2] = f[e >> 2] + Wg(b, d, l, l) | 0 + l = f[(r + 4) >> 2] | 0 + if (!l) { + s = (r + 8) | 0 + t = f[s >> 2] | 0 + if ((f[t >> 2] | 0) == (r | 0)) v = t + else { + t = s + do { + s = f[t >> 2] | 0 + t = (s + 8) | 0 + w = f[t >> 2] | 0 + } while ((f[w >> 2] | 0) != (s | 0)) + v = w + } + } else { + t = l + while (1) { + j = f[t >> 2] | 0 + if (!j) break + else t = j + } + v = t + } + if ((v | 0) == (m | 0)) break + else r = v + } + } + v = (a + 12) | 0 + r = f[i >> 2] | 0 + do + if (r) { + d = f[h >> 2] | 0 + e = (a + 16) | 0 + n = r + while (1) { + l = f[(n + 16) >> 2] | 0 + if ((d | 0) < (l | 0)) { + j = f[n >> 2] | 0 + if (!j) { + x = 23 + break + } else { + y = n + z = j + } + } else { + if ((l | 0) >= (d | 0)) { + x = 27 + break + } + A = (n + 4) | 0 + l = f[A >> 2] | 0 + if (!l) { + x = 26 + break + } else { + y = A + z = l + } + } + e = y + n = z + } + if ((x | 0) == 23) { + B = n + C = n + break + } else if ((x | 0) == 26) { + B = n + C = A + break + } else if ((x | 0) == 27) { + B = n + C = e + break + } + } else { + B = i + C = i + } + while (0) + i = f[C >> 2] | 0 + if (!i) { + x = dn(32) | 0 + f[(x + 16) >> 2] = f[h >> 2] + A = (x + 20) | 0 + f[A >> 2] = f[b >> 2] + z = (x + 24) | 0 + y = f[(h + 8) >> 2] | 0 + f[z >> 2] = y + r = f[o >> 2] | 0 + f[(x + 28) >> 2] = r + if (!r) f[A >> 2] = z + else { + f[(y + 8) >> 2] = z + f[b >> 2] = k + f[k >> 2] = 0 + f[o >> 2] = 0 + } + f[x >> 2] = 0 + f[(x + 4) >> 2] = 0 + f[(x + 8) >> 2] = B + f[C >> 2] = x + B = f[f[v >> 2] >> 2] | 0 + if (!B) D = x + else { + f[v >> 2] = B + D = f[C >> 2] | 0 + } + Ae(f[(a + 16) >> 2] | 0, D) + D = (a + 20) | 0 + f[D >> 2] = (f[D >> 2] | 0) + 1 + E = x + } else E = i + sj((h + 4) | 0, f[k >> 2] | 0) + sj(g, f[m >> 2] | 0) + p = E + q = (p + 20) | 0 + u = c + return q | 0 + } + function xd(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0 + d = b[(c + 11) >> 0] | 0 + e = (d << 24) >> 24 < 0 + g = e ? f[c >> 2] | 0 : c + i = e ? f[(c + 4) >> 2] | 0 : d & 255 + if (i >>> 0 > 3) { + d = g + c = i + e = i + while (1) { + j = + X( + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24), + 1540483477, + ) | 0 + c = (X((j >>> 24) ^ j, 1540483477) | 0) ^ (X(c, 1540483477) | 0) + e = (e + -4) | 0 + if (e >>> 0 <= 3) break + else d = (d + 4) | 0 + } + d = (i + -4) | 0 + e = d & -4 + k = (d - e) | 0 + l = (g + (e + 4)) | 0 + m = c + } else { + k = i + l = g + m = i + } + switch (k | 0) { + case 3: { + n = (h[(l + 2) >> 0] << 16) ^ m + o = 6 + break + } + case 2: { + n = m + o = 6 + break + } + case 1: { + p = m + o = 7 + break + } + default: + q = m + } + if ((o | 0) == 6) { + p = (h[(l + 1) >> 0] << 8) ^ n + o = 7 + } + if ((o | 0) == 7) q = X(p ^ h[l >> 0], 1540483477) | 0 + l = X((q >>> 13) ^ q, 1540483477) | 0 + q = (l >>> 15) ^ l + l = f[(a + 4) >> 2] | 0 + if (!l) { + r = 0 + return r | 0 + } + p = (l + -1) | 0 + n = ((p & l) | 0) == 0 + if (!n) + if (q >>> 0 < l >>> 0) s = q + else s = (q >>> 0) % (l >>> 0) | 0 + else s = q & p + m = f[((f[a >> 2] | 0) + (s << 2)) >> 2] | 0 + if (!m) { + r = 0 + return r | 0 + } + a = f[m >> 2] | 0 + if (!a) { + r = 0 + return r | 0 + } + m = (i | 0) == 0 + if (n) { + n = a + a: while (1) { + k = f[(n + 4) >> 2] | 0 + c = (k | 0) == (q | 0) + if (!(c | (((k & p) | 0) == (s | 0)))) { + r = 0 + o = 40 + break + } + do + if ( + c + ? ((k = (n + 8) | 0), + (e = b[(k + 11) >> 0] | 0), + (d = (e << 24) >> 24 < 0), + (j = e & 255), + ((d ? f[(n + 12) >> 2] | 0 : j) | 0) == (i | 0)) + : 0 + ) { + e = f[k >> 2] | 0 + t = d ? e : k + if (d) { + if (m) { + r = n + o = 40 + break a + } + if (!(Pk(t, g, i) | 0)) { + r = n + o = 40 + break a + } else break + } + if (m) { + r = n + o = 40 + break a + } + if ((b[g >> 0] | 0) == ((e & 255) << 24) >> 24) { + e = k + k = j + j = g + do { + k = (k + -1) | 0 + e = (e + 1) | 0 + if (!k) { + r = n + o = 40 + break a + } + j = (j + 1) | 0 + } while ((b[e >> 0] | 0) == (b[j >> 0] | 0)) + } + } + while (0) + n = f[n >> 2] | 0 + if (!n) { + r = 0 + o = 40 + break + } + } + if ((o | 0) == 40) return r | 0 + } else u = a + b: while (1) { + a = f[(u + 4) >> 2] | 0 + do + if ((a | 0) == (q | 0)) { + n = (u + 8) | 0 + p = b[(n + 11) >> 0] | 0 + c = (p << 24) >> 24 < 0 + j = p & 255 + if (((c ? f[(u + 12) >> 2] | 0 : j) | 0) == (i | 0)) { + p = f[n >> 2] | 0 + e = c ? p : n + if (c) { + if (m) { + r = u + o = 40 + break b + } + if (!(Pk(e, g, i) | 0)) { + r = u + o = 40 + break b + } else break + } + if (m) { + r = u + o = 40 + break b + } + if ((b[g >> 0] | 0) == ((p & 255) << 24) >> 24) { + p = n + n = j + j = g + do { + n = (n + -1) | 0 + p = (p + 1) | 0 + if (!n) { + r = u + o = 40 + break b + } + j = (j + 1) | 0 + } while ((b[p >> 0] | 0) == (b[j >> 0] | 0)) + } + } + } else { + if (a >>> 0 < l >>> 0) v = a + else v = (a >>> 0) % (l >>> 0) | 0 + if ((v | 0) != (s | 0)) { + r = 0 + o = 40 + break b + } + } + while (0) + u = f[u >> 2] | 0 + if (!u) { + r = 0 + o = 40 + break + } + } + if ((o | 0) == 40) return r | 0 + return 0 + } + function yd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0 + c = (a + 4) | 0 + if (!b) { + d = f[a >> 2] | 0 + f[a >> 2] = 0 + if (d | 0) br(d) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + d = ra(8) | 0 + Wo(d, 14941) + f[d >> 2] = 6944 + va(d | 0, 1080, 114) + } + d = dn(b << 2) | 0 + e = f[a >> 2] | 0 + f[a >> 2] = d + if (e | 0) br(e) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + e = f[c >> 2] | 0 + if (!e) return + d = f[(e + 4) >> 2] | 0 + g = (b + -1) | 0 + h = ((g & b) | 0) == 0 + if (!h) + if (d >>> 0 < b >>> 0) i = d + else i = (d >>> 0) % (b >>> 0) | 0 + else i = d & g + f[((f[a >> 2] | 0) + (i << 2)) >> 2] = c + c = f[e >> 2] | 0 + if (!c) return + else { + j = i + k = e + l = c + m = e + } + a: while (1) { + e = k + c = l + i = m + b: while (1) { + c: do + if (h) { + d = c + while (1) { + n = f[(d + 4) >> 2] & g + if ((n | 0) == (j | 0)) { + o = d + break c + } + p = ((f[a >> 2] | 0) + (n << 2)) | 0 + if (!(f[p >> 2] | 0)) { + q = d + r = n + s = p + break b + } + p = (d + 12) | 0 + t = f[d >> 2] | 0 + d: do + if (!t) u = d + else { + v = f[(d + 8) >> 2] | 0 + w = d + x = t + while (1) { + if ((v | 0) != (f[(x + 8) >> 2] | 0)) { + u = w + break d + } + if ((f[p >> 2] | 0) != (f[(x + 12) >> 2] | 0)) { + u = w + break d + } + y = f[x >> 2] | 0 + if (!y) { + u = x + break + } else { + z = x + x = y + w = z + } + } + } + while (0) + f[i >> 2] = f[u >> 2] + f[u >> 2] = f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] = d + d = f[e >> 2] | 0 + if (!d) { + A = 39 + break a + } + } + } else { + d = c + while (1) { + p = f[(d + 4) >> 2] | 0 + if (p >>> 0 < b >>> 0) B = p + else B = (p >>> 0) % (b >>> 0) | 0 + if ((B | 0) == (j | 0)) { + o = d + break c + } + p = ((f[a >> 2] | 0) + (B << 2)) | 0 + if (!(f[p >> 2] | 0)) { + q = d + r = B + s = p + break b + } + p = (d + 12) | 0 + t = f[d >> 2] | 0 + e: do + if (!t) C = d + else { + w = f[(d + 8) >> 2] | 0 + x = d + v = t + while (1) { + if ((w | 0) != (f[(v + 8) >> 2] | 0)) { + C = x + break e + } + if ((f[p >> 2] | 0) != (f[(v + 12) >> 2] | 0)) { + C = x + break e + } + z = f[v >> 2] | 0 + if (!z) { + C = v + break + } else { + y = v + v = z + x = y + } + } + } + while (0) + f[i >> 2] = f[C >> 2] + f[C >> 2] = f[f[((f[a >> 2] | 0) + (B << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (B << 2)) >> 2] >> 2] = d + d = f[e >> 2] | 0 + if (!d) { + A = 39 + break a + } + } + } + while (0) + c = f[o >> 2] | 0 + if (!c) { + A = 39 + break a + } else { + e = o + i = o + } + } + f[s >> 2] = i + l = f[q >> 2] | 0 + if (!l) { + A = 39 + break + } else { + j = r + k = q + m = q + } + } + if ((A | 0) == 39) return + } + function zd(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0 + h = (a + 4) | 0 + i = f[c >> 2] | 0 + c = i + do + if ((i | 0) != (h | 0)) { + j = (i + 16) | 0 + k = b[(j + 11) >> 0] | 0 + l = (k << 24) >> 24 < 0 + m = l ? f[(i + 20) >> 2] | 0 : k & 255 + k = b[(g + 11) >> 0] | 0 + n = (k << 24) >> 24 < 0 + o = n ? f[(g + 4) >> 2] | 0 : k & 255 + k = m >>> 0 < o >>> 0 + p = k ? m : o + if ( + (p | 0) != 0 + ? ((q = Pk(n ? f[g >> 2] | 0 : g, l ? f[j >> 2] | 0 : j, p) | 0), + (q | 0) != 0) + : 0 + ) { + if ((q | 0) < 0) break + } else r = 4 + if ((r | 0) == 4 ? o >>> 0 < m >>> 0 : 0) break + q = o >>> 0 < m >>> 0 ? o : m + if ( + (q | 0) != 0 + ? ((m = Pk(l ? f[j >> 2] | 0 : j, n ? f[g >> 2] | 0 : g, q) | 0), + (m | 0) != 0) + : 0 + ) { + if ((m | 0) >= 0) r = 37 + } else r = 21 + if ((r | 0) == 21 ? !k : 0) r = 37 + if ((r | 0) == 37) { + f[d >> 2] = c + f[e >> 2] = c + s = e + return s | 0 + } + k = f[(i + 4) >> 2] | 0 + m = (k | 0) == 0 + if (m) { + q = (i + 8) | 0 + j = f[q >> 2] | 0 + if ((f[j >> 2] | 0) == (i | 0)) t = j + else { + j = q + do { + q = f[j >> 2] | 0 + j = (q + 8) | 0 + l = f[j >> 2] | 0 + } while ((f[l >> 2] | 0) != (q | 0)) + t = l + } + } else { + j = k + while (1) { + l = f[j >> 2] | 0 + if (!l) break + else j = l + } + t = j + } + do + if ((t | 0) != (h | 0)) { + k = (t + 16) | 0 + l = b[(k + 11) >> 0] | 0 + q = (l << 24) >> 24 < 0 + p = q ? f[(t + 20) >> 2] | 0 : l & 255 + l = p >>> 0 < o >>> 0 ? p : o + if ( + (l | 0) != 0 + ? ((u = + Pk(n ? f[g >> 2] | 0 : g, q ? f[k >> 2] | 0 : k, l) | 0), + (u | 0) != 0) + : 0 + ) { + if ((u | 0) < 0) break + } else r = 31 + if ((r | 0) == 31 ? o >>> 0 < p >>> 0 : 0) break + s = hg(a, d, g) | 0 + return s | 0 + } + while (0) + if (m) { + f[d >> 2] = c + s = (i + 4) | 0 + return s | 0 + } else { + f[d >> 2] = t + s = t + return s | 0 + } + } + while (0) + t = f[i >> 2] | 0 + do + if ((f[a >> 2] | 0) == (i | 0)) v = c + else { + if (!t) { + h = i + while (1) { + e = f[(h + 8) >> 2] | 0 + if ((f[e >> 2] | 0) == (h | 0)) h = e + else { + w = e + break + } + } + } else { + h = t + while (1) { + m = f[(h + 4) >> 2] | 0 + if (!m) { + w = h + break + } else h = m + } + } + h = w + m = (w + 16) | 0 + e = b[(g + 11) >> 0] | 0 + o = (e << 24) >> 24 < 0 + n = o ? f[(g + 4) >> 2] | 0 : e & 255 + e = b[(m + 11) >> 0] | 0 + j = (e << 24) >> 24 < 0 + p = j ? f[(w + 20) >> 2] | 0 : e & 255 + e = n >>> 0 < p >>> 0 ? n : p + if ( + (e | 0) != 0 + ? ((u = Pk(j ? f[m >> 2] | 0 : m, o ? f[g >> 2] | 0 : g, e) | 0), + (u | 0) != 0) + : 0 + ) { + if ((u | 0) < 0) { + v = h + break + } + } else r = 13 + if ((r | 0) == 13 ? p >>> 0 < n >>> 0 : 0) { + v = h + break + } + s = hg(a, d, g) | 0 + return s | 0 + } + while (0) + if (!t) { + f[d >> 2] = i + s = i + return s | 0 + } else { + f[d >> 2] = v + s = (v + 4) | 0 + return s | 0 + } + return 0 + } + function Ad(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + g = u + u = (u + 16) | 0 + h = g + f[(c + 48) >> 2] = d + f[(c + 44) >> 2] = e + e = f[(c + 8) >> 2] | 0 + i = (c + 12) | 0 + j = f[i >> 2] | 0 + if ((j | 0) != (e | 0)) { + k = j + do { + j = (k + -4) | 0 + f[i >> 2] = j + l = f[j >> 2] | 0 + f[j >> 2] = 0 + if (l | 0) Va[f[((f[l >> 2] | 0) + 4) >> 2] & 127](l) + k = f[i >> 2] | 0 + } while ((k | 0) != (e | 0)) + } + e = f[(c + 20) >> 2] | 0 + k = (c + 24) | 0 + i = f[k >> 2] | 0 + if ((i | 0) != (e | 0)) f[k >> 2] = i + (~(((i + -4 - e) | 0) >>> 2) << 2) + e = f[(c + 32) >> 2] | 0 + i = (c + 36) | 0 + k = f[i >> 2] | 0 + if ((k | 0) != (e | 0)) f[i >> 2] = k + (~(((k + -4 - e) | 0) >>> 2) << 2) + if (!(f[(c + 4) >> 2] | 0)) { + e = dn(32) | 0 + f[h >> 2] = e + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 23 + m = e + n = 14670 + o = (m + 23) | 0 + do { + b[m >> 0] = b[n >> 0] | 0 + m = (m + 1) | 0 + n = (n + 1) | 0 + } while ((m | 0) < (o | 0)) + b[(e + 23) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, h) + if ((b[(h + 11) >> 0] | 0) < 0) br(f[h >> 2] | 0) + u = g + return + } + Jd(a, c) + if (f[a >> 2] | 0) { + u = g + return + } + e = (a + 4) | 0 + k = (e + 11) | 0 + if ((b[k >> 0] | 0) < 0) br(f[e >> 2] | 0) + Ji(a, c) + if (f[a >> 2] | 0) { + u = g + return + } + if ((b[k >> 0] | 0) < 0) br(f[e >> 2] | 0) + if (!(Qa[f[((f[c >> 2] | 0) + 16) >> 2] & 127](c) | 0)) { + i = dn(32) | 0 + f[h >> 2] = i + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 29 + m = i + n = 14694 + o = (m + 29) | 0 + do { + b[m >> 0] = b[n >> 0] | 0 + m = (m + 1) | 0 + n = (n + 1) | 0 + } while ((m | 0) < (o | 0)) + b[(i + 29) >> 0] = 0 + f[a >> 2] = -1 + dj(e, h) + if ((b[(h + 11) >> 0] | 0) < 0) br(f[h >> 2] | 0) + u = g + return + } + if (!(Qa[f[((f[c >> 2] | 0) + 20) >> 2] & 127](c) | 0)) { + i = dn(32) | 0 + f[h >> 2] = i + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 31 + m = i + n = 14724 + o = (m + 31) | 0 + do { + b[m >> 0] = b[n >> 0] | 0 + m = (m + 1) | 0 + n = (n + 1) | 0 + } while ((m | 0) < (o | 0)) + b[(i + 31) >> 0] = 0 + f[a >> 2] = -1 + dj(e, h) + if ((b[(h + 11) >> 0] | 0) < 0) br(f[h >> 2] | 0) + u = g + return + } + Wa[f[((f[c >> 2] | 0) + 24) >> 2] & 15](a, c) + if (f[a >> 2] | 0) { + u = g + return + } + if ((b[k >> 0] | 0) < 0) br(f[e >> 2] | 0) + if (!(Qa[f[((f[c >> 2] | 0) + 28) >> 2] & 127](c) | 0)) { + k = dn(48) | 0 + f[h >> 2] = k + f[(h + 8) >> 2] = -2147483600 + f[(h + 4) >> 2] = 34 + m = k + n = 14756 + o = (m + 34) | 0 + do { + b[m >> 0] = b[n >> 0] | 0 + m = (m + 1) | 0 + n = (n + 1) | 0 + } while ((m | 0) < (o | 0)) + b[(k + 34) >> 0] = 0 + f[a >> 2] = -1 + dj(e, h) + if ((b[(h + 11) >> 0] | 0) < 0) br(f[h >> 2] | 0) + u = g + return + } + e = dn(32) | 0 + f[h >> 2] = e + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 30 + m = e + n = 14791 + o = (m + 30) | 0 + do { + b[m >> 0] = b[n >> 0] | 0 + m = (m + 1) | 0 + n = (n + 1) | 0 + } while ((m | 0) < (o | 0)) + b[(e + 30) >> 0] = 0 + e = Oj(d, h, 0) | 0 + if ((b[(h + 11) >> 0] | 0) < 0) br(f[h >> 2] | 0) + if (e) Va[f[((f[c >> 2] | 0) + 48) >> 2] & 127](c) + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = g + return + } + function Bd(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0 + g = a + h = b + i = h + j = c + k = d + l = k + if (!i) { + m = (e | 0) != 0 + if (!l) { + if (m) { + f[e >> 2] = (g >>> 0) % (j >>> 0) + f[(e + 4) >> 2] = 0 + } + n = 0 + o = ((g >>> 0) / (j >>> 0)) >>> 0 + return ((I = n), o) | 0 + } else { + if (!m) { + n = 0 + o = 0 + return ((I = n), o) | 0 + } + f[e >> 2] = a | 0 + f[(e + 4) >> 2] = b & 0 + n = 0 + o = 0 + return ((I = n), o) | 0 + } + } + m = (l | 0) == 0 + do + if (j) { + if (!m) { + p = ((_(l | 0) | 0) - (_(i | 0) | 0)) | 0 + if (p >>> 0 <= 31) { + q = (p + 1) | 0 + r = (31 - p) | 0 + s = (p - 31) >> 31 + t = q + u = ((g >>> (q >>> 0)) & s) | (i << r) + v = (i >>> (q >>> 0)) & s + w = 0 + x = g << r + break + } + if (!e) { + n = 0 + o = 0 + return ((I = n), o) | 0 + } + f[e >> 2] = a | 0 + f[(e + 4) >> 2] = h | (b & 0) + n = 0 + o = 0 + return ((I = n), o) | 0 + } + r = (j - 1) | 0 + if ((r & j) | 0) { + s = ((_(j | 0) | 0) + 33 - (_(i | 0) | 0)) | 0 + q = (64 - s) | 0 + p = (32 - s) | 0 + y = p >> 31 + z = (s - 32) | 0 + A = z >> 31 + t = s + u = + (((p - 1) >> 31) & (i >>> (z >>> 0))) | + (((i << p) | (g >>> (s >>> 0))) & A) + v = A & (i >>> (s >>> 0)) + w = (g << q) & y + x = + (((i << q) | (g >>> (z >>> 0))) & y) | + ((g << p) & ((s - 33) >> 31)) + break + } + if (e | 0) { + f[e >> 2] = r & g + f[(e + 4) >> 2] = 0 + } + if ((j | 0) == 1) { + n = h | (b & 0) + o = a | 0 | 0 + return ((I = n), o) | 0 + } else { + r = im(j | 0) | 0 + n = (i >>> (r >>> 0)) | 0 + o = (i << (32 - r)) | (g >>> (r >>> 0)) | 0 + return ((I = n), o) | 0 + } + } else { + if (m) { + if (e | 0) { + f[e >> 2] = (i >>> 0) % (j >>> 0) + f[(e + 4) >> 2] = 0 + } + n = 0 + o = ((i >>> 0) / (j >>> 0)) >>> 0 + return ((I = n), o) | 0 + } + if (!g) { + if (e | 0) { + f[e >> 2] = 0 + f[(e + 4) >> 2] = (i >>> 0) % (l >>> 0) + } + n = 0 + o = ((i >>> 0) / (l >>> 0)) >>> 0 + return ((I = n), o) | 0 + } + r = (l - 1) | 0 + if (!(r & l)) { + if (e | 0) { + f[e >> 2] = a | 0 + f[(e + 4) >> 2] = (r & i) | (b & 0) + } + n = 0 + o = i >>> ((im(l | 0) | 0) >>> 0) + return ((I = n), o) | 0 + } + r = ((_(l | 0) | 0) - (_(i | 0) | 0)) | 0 + if (r >>> 0 <= 30) { + s = (r + 1) | 0 + p = (31 - r) | 0 + t = s + u = (i << p) | (g >>> (s >>> 0)) + v = i >>> (s >>> 0) + w = 0 + x = g << p + break + } + if (!e) { + n = 0 + o = 0 + return ((I = n), o) | 0 + } + f[e >> 2] = a | 0 + f[(e + 4) >> 2] = h | (b & 0) + n = 0 + o = 0 + return ((I = n), o) | 0 + } + while (0) + if (!t) { + B = x + C = w + D = v + E = u + F = 0 + G = 0 + } else { + b = c | 0 | 0 + c = k | (d & 0) + d = Tn(b | 0, c | 0, -1, -1) | 0 + k = I + h = x + x = w + w = v + v = u + u = t + t = 0 + do { + a = h + h = (x >>> 31) | (h << 1) + x = t | (x << 1) + g = (v << 1) | (a >>> 31) | 0 + a = (v >>> 31) | (w << 1) | 0 + Vn(d | 0, k | 0, g | 0, a | 0) | 0 + i = I + l = (i >> 31) | (((i | 0) < 0 ? -1 : 0) << 1) + t = l & 1 + v = + Vn( + g | 0, + a | 0, + (l & b) | 0, + (((((i | 0) < 0 ? -1 : 0) >> 31) | + (((i | 0) < 0 ? -1 : 0) << 1)) & + c) | + 0, + ) | 0 + w = I + u = (u - 1) | 0 + } while ((u | 0) != 0) + B = h + C = x + D = w + E = v + F = 0 + G = t + } + t = C + C = 0 + if (e | 0) { + f[e >> 2] = E + f[(e + 4) >> 2] = D + } + n = ((t | 0) >>> 31) | ((B | C) << 1) | (((C << 1) | (t >>> 31)) & 0) | F + o = (((t << 1) | (0 >>> 31)) & -2) | G + return ((I = n), o) | 0 + } + function Cd(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + c = u + u = (u + 32) | 0 + d = (c + 4) | 0 + e = c + g = (c + 16) | 0 + h = (a + 48) | 0 + i = f[h >> 2] | 0 + j = dn(32) | 0 + f[d >> 2] = j + f[(d + 8) >> 2] = -2147483616 + f[(d + 4) >> 2] = 20 + k = j + l = 13101 + m = (k + 20) | 0 + do { + b[k >> 0] = b[l >> 0] | 0 + k = (k + 1) | 0 + l = (l + 1) | 0 + } while ((k | 0) < (m | 0)) + b[(j + 20) >> 0] = 0 + j = vk((i + 24) | 0, d) | 0 + if ((b[(d + 11) >> 0] | 0) < 0) br(f[d >> 2] | 0) + i = f[h >> 2] | 0 + n = dn(32) | 0 + f[d >> 2] = n + f[(d + 8) >> 2] = -2147483616 + f[(d + 4) >> 2] = 22 + k = n + l = 13122 + m = (k + 22) | 0 + do { + b[k >> 0] = b[l >> 0] | 0 + k = (k + 1) | 0 + l = (l + 1) | 0 + } while ((k | 0) < (m | 0)) + b[(n + 22) >> 0] = 0 + n = vk((i + 24) | 0, d) | 0 + if ((b[(d + 11) >> 0] | 0) < 0) br(f[d >> 2] | 0) + i = (a + 64) | 0 + o = f[i >> 2] | 0 + f[i >> 2] = 0 + if (o | 0) Va[f[((f[o >> 2] | 0) + 4) >> 2] & 127](o) + o = f[(a + 56) >> 2] | 0 + p = + (((((f[(o + 100) >> 2] | 0) - (f[(o + 96) >> 2] | 0)) | 0) / 12) | + 0) >>> + 0 < + 1e3 + o = f[h >> 2] | 0 + q = dn(32) | 0 + f[d >> 2] = q + f[(d + 8) >> 2] = -2147483616 + f[(d + 4) >> 2] = 18 + k = q + l = 13145 + m = (k + 18) | 0 + do { + b[k >> 0] = b[l >> 0] | 0 + k = (k + 1) | 0 + l = (l + 1) | 0 + } while ((k | 0) < (m | 0)) + b[(q + 18) >> 0] = 0 + q = yk(o, d, -1) | 0 + if ((b[(d + 11) >> 0] | 0) < 0) br(f[d >> 2] | 0) + switch (q | 0) { + case -1: { + if (j ? p | (((Yh(f[h >> 2] | 0) | 0) > 4) | (n ^ 1)) : 0) r = 13 + else r = 17 + break + } + case 0: { + if (j) r = 13 + else r = 21 + break + } + case 2: { + r = 17 + break + } + default: + r = 21 + } + if ((r | 0) == 13) { + j = f[(a + 44) >> 2] | 0 + b[g >> 0] = 0 + n = (j + 16) | 0 + h = f[(n + 4) >> 2] | 0 + if (!(((h | 0) > 0) | (((h | 0) == 0) & ((f[n >> 2] | 0) >>> 0 > 0)))) { + f[e >> 2] = f[(j + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(j, d, g, (g + 1) | 0) | 0 + } + j = dn(296) | 0 + Ni(j) + n = f[i >> 2] | 0 + f[i >> 2] = j + if (!n) s = j + else { + Va[f[((f[n >> 2] | 0) + 4) >> 2] & 127](n) + r = 21 + } + } else if ((r | 0) == 17) { + n = f[(a + 44) >> 2] | 0 + b[g >> 0] = 2 + j = (n + 16) | 0 + h = f[(j + 4) >> 2] | 0 + if (!(((h | 0) > 0) | (((h | 0) == 0) & ((f[j >> 2] | 0) >>> 0 > 0)))) { + f[e >> 2] = f[(n + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(n, d, g, (g + 1) | 0) | 0 + } + g = dn(360) | 0 + ji(g) + d = f[i >> 2] | 0 + f[i >> 2] = g + if (!d) s = g + else { + Va[f[((f[d >> 2] | 0) + 4) >> 2] & 127](d) + r = 21 + } + } + if ((r | 0) == 21) { + r = f[i >> 2] | 0 + if (!r) { + t = 0 + u = c + return t | 0 + } else s = r + } + t = Ra[f[((f[s >> 2] | 0) + 8) >> 2] & 127](s, a) | 0 + u = c + return t | 0 + } + function Dd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0 + e = (b + 12) | 0 + g = f[e >> 2] | 0 + h = (c + 4) | 0 + i = ((f[h >> 2] | 0) - g) | 0 + j = c + f[j >> 2] = (f[c >> 2] | 0) - g + f[(j + 4) >> 2] = i + i = ((f[d >> 2] | 0) - g) | 0 + j = (d + 4) | 0 + k = ((f[j >> 2] | 0) - g) | 0 + g = d + f[g >> 2] = i + f[(g + 4) >> 2] = k + g = f[e >> 2] | 0 + if ( + ((((k | 0) > -1 ? k : (0 - k) | 0) + ((i | 0) > -1 ? i : (0 - i) | 0)) | + 0) > + (g | 0) + ) { + l = f[c >> 2] | 0 + m = f[h >> 2] | 0 + if ((l | 0) > -1) + if ((m | 0) <= -1) + if ((l | 0) < 1) { + n = -1 + o = -1 + } else p = 6 + else { + n = 1 + o = 1 + } + else if ((m | 0) < 1) { + n = -1 + o = -1 + } else p = 6 + if ((p | 0) == 6) { + n = (l | 0) > 0 ? 1 : -1 + o = (m | 0) > 0 ? 1 : -1 + } + q = X(g, n) | 0 + r = X(g, o) | 0 + g = ((l << 1) - q) | 0 + f[c >> 2] = g + l = ((m << 1) - r) | 0 + f[h >> 2] = l + if ((X(n, o) | 0) > -1) { + o = (0 - l) | 0 + f[c >> 2] = o + s = (0 - g) | 0 + t = o + } else { + f[c >> 2] = l + s = g + t = l + } + f[c >> 2] = (((t + q) | 0) / 2) | 0 + f[h >> 2] = (((s + r) | 0) / 2) | 0 + r = f[d >> 2] | 0 + s = f[j >> 2] | 0 + if ((r | 0) > -1) + if ((s | 0) <= -1) + if ((r | 0) < 1) { + u = -1 + v = -1 + } else p = 14 + else { + u = 1 + v = 1 + } + else if ((s | 0) < 1) { + u = -1 + v = -1 + } else p = 14 + if ((p | 0) == 14) { + u = (r | 0) > 0 ? 1 : -1 + v = (s | 0) > 0 ? 1 : -1 + } + q = f[e >> 2] | 0 + e = X(q, u) | 0 + t = X(q, v) | 0 + q = ((r << 1) - e) | 0 + f[d >> 2] = q + r = ((s << 1) - t) | 0 + f[j >> 2] = r + if ((X(u, v) | 0) > -1) { + v = (0 - r) | 0 + f[d >> 2] = v + w = (0 - q) | 0 + x = v + } else { + f[d >> 2] = r + w = q + x = r + } + r = (((x + e) | 0) / 2) | 0 + f[d >> 2] = r + e = (((w + t) | 0) / 2) | 0 + f[j >> 2] = e + y = r + z = e + } else { + y = i + z = k + } + if (!y) + if (!z) { + A = y + B = z + } else p = 22 + else if (((y | 0) < 0) & ((z | 0) < 1)) { + A = y + B = z + } else p = 22 + if ((p | 0) == 22) { + if (!y) C = (z | 0) == 0 ? 0 : (z | 0) > 0 ? 3 : 1 + else C = (y | 0) > 0 ? ((z >> 31) + 2) | 0 : (z | 0) < 1 ? 0 : 3 + z = f[c >> 2] | 0 + y = f[h >> 2] | 0 + switch (C | 0) { + case 1: { + C = c + f[C >> 2] = y + f[(C + 4) >> 2] = 0 - z + D = f[j >> 2] | 0 + E = (0 - (f[d >> 2] | 0)) | 0 + break + } + case 2: { + C = c + f[C >> 2] = 0 - z + f[(C + 4) >> 2] = 0 - y + D = (0 - (f[d >> 2] | 0)) | 0 + E = (0 - (f[j >> 2] | 0)) | 0 + break + } + case 3: { + C = c + f[C >> 2] = 0 - y + f[(C + 4) >> 2] = z + D = (0 - (f[j >> 2] | 0)) | 0 + E = f[d >> 2] | 0 + break + } + default: { + C = c + f[C >> 2] = z + f[(C + 4) >> 2] = y + D = f[d >> 2] | 0 + E = f[j >> 2] | 0 + } + } + j = d + f[j >> 2] = D + f[(j + 4) >> 2] = E + A = D + B = E + } + E = ((f[c >> 2] | 0) - A) | 0 + f[a >> 2] = E + A = ((f[h >> 2] | 0) - B) | 0 + B = (a + 4) | 0 + f[B >> 2] = A + if ((E | 0) < 0) F = ((f[(b + 4) >> 2] | 0) + E) | 0 + else F = E + f[a >> 2] = F + if ((A | 0) >= 0) { + G = A + f[B >> 2] = G + return + } + G = ((f[(b + 4) >> 2] | 0) + A) | 0 + f[B >> 2] = G + return + } + function Ed(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + c = (a + 4) | 0 + if (!b) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) br(e) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + e = ra(8) | 0 + Wo(e, 14941) + f[e >> 2] = 6944 + va(e | 0, 1080, 114) + } + e = dn(b << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) br(g) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + g = f[c >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (b + -1) | 0 + i = ((h & b) | 0) == 0 + if (!i) + if (e >>> 0 < b >>> 0) j = e + else j = (e >>> 0) % (b >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = c + c = f[g >> 2] | 0 + if (!c) return + else { + k = j + l = g + m = c + n = g + } + a: while (1) { + b: do + if (i) { + g = l + c = m + j = n + while (1) { + e = c + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) break + p = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[p >> 2] | 0)) { + q = e + r = j + s = o + t = p + break b + } + p = (e + 8) | 0 + u = e + while (1) { + v = f[u >> 2] | 0 + if (!v) break + if ((d[p >> 1] | 0) == (d[(v + 8) >> 1] | 0)) u = v + else break + } + f[j >> 2] = v + f[u >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + p = f[g >> 2] | 0 + if (!p) { + w = 37 + break a + } else e = p + } + c = f[e >> 2] | 0 + if (!c) { + w = 37 + break a + } else { + g = e + j = e + } + } + } else { + j = l + g = m + c = n + while (1) { + p = g + while (1) { + x = f[(p + 4) >> 2] | 0 + if (x >>> 0 < b >>> 0) y = x + else y = (x >>> 0) % (b >>> 0) | 0 + if ((y | 0) == (k | 0)) break + x = ((f[a >> 2] | 0) + (y << 2)) | 0 + if (!(f[x >> 2] | 0)) { + q = p + r = c + s = y + t = x + break b + } + x = (p + 8) | 0 + z = p + while (1) { + A = f[z >> 2] | 0 + if (!A) break + if ((d[x >> 1] | 0) == (d[(A + 8) >> 1] | 0)) z = A + else break + } + f[c >> 2] = A + f[z >> 2] = f[f[((f[a >> 2] | 0) + (y << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (y << 2)) >> 2] >> 2] = p + x = f[j >> 2] | 0 + if (!x) { + w = 37 + break a + } else p = x + } + g = f[p >> 2] | 0 + if (!g) { + w = 37 + break a + } else { + j = p + c = p + } + } + } + while (0) + f[t >> 2] = r + m = f[q >> 2] | 0 + if (!m) { + w = 37 + break + } else { + k = s + l = q + n = q + } + } + if ((w | 0) == 37) return + } + function Fd(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + d = (a + 4) | 0 + if (!c) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) br(e) + f[d >> 2] = 0 + return + } + if (c >>> 0 > 1073741823) { + e = ra(8) | 0 + Wo(e, 14941) + f[e >> 2] = 6944 + va(e | 0, 1080, 114) + } + e = dn(c << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) br(g) + f[d >> 2] = c + d = 0 + do { + f[((f[a >> 2] | 0) + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + } while ((d | 0) != (c | 0)) + d = (a + 8) | 0 + g = f[d >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (c + -1) | 0 + i = ((h & c) | 0) == 0 + if (!i) + if (e >>> 0 < c >>> 0) j = e + else j = (e >>> 0) % (c >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = d + d = f[g >> 2] | 0 + if (!d) return + else { + k = j + l = g + m = d + n = g + } + a: while (1) { + b: do + if (i) { + g = l + d = m + j = n + while (1) { + e = d + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) break + p = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[p >> 2] | 0)) { + q = e + r = j + s = o + t = p + break b + } + p = (e + 8) | 0 + u = e + while (1) { + v = f[u >> 2] | 0 + if (!v) break + if ((b[p >> 0] | 0) == (b[(v + 8) >> 0] | 0)) u = v + else break + } + f[j >> 2] = v + f[u >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + p = f[g >> 2] | 0 + if (!p) { + w = 37 + break a + } else e = p + } + d = f[e >> 2] | 0 + if (!d) { + w = 37 + break a + } else { + g = e + j = e + } + } + } else { + j = l + g = m + d = n + while (1) { + p = g + while (1) { + x = f[(p + 4) >> 2] | 0 + if (x >>> 0 < c >>> 0) y = x + else y = (x >>> 0) % (c >>> 0) | 0 + if ((y | 0) == (k | 0)) break + x = ((f[a >> 2] | 0) + (y << 2)) | 0 + if (!(f[x >> 2] | 0)) { + q = p + r = d + s = y + t = x + break b + } + x = (p + 8) | 0 + z = p + while (1) { + A = f[z >> 2] | 0 + if (!A) break + if ((b[x >> 0] | 0) == (b[(A + 8) >> 0] | 0)) z = A + else break + } + f[d >> 2] = A + f[z >> 2] = f[f[((f[a >> 2] | 0) + (y << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (y << 2)) >> 2] >> 2] = p + x = f[j >> 2] | 0 + if (!x) { + w = 37 + break a + } else p = x + } + g = f[p >> 2] | 0 + if (!g) { + w = 37 + break a + } else { + j = p + d = p + } + } + } + while (0) + f[t >> 2] = r + m = f[q >> 2] | 0 + if (!m) { + w = 37 + break + } else { + k = s + l = q + n = q + } + } + if ((w | 0) == 37) return + } + function Gd(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0 + g = f[c >> 2] | 0 + c = f[b >> 2] | 0 + h = (g - c) | 0 + i = (a + 8) | 0 + j = f[i >> 2] | 0 + if (h >>> 0 < 64) { + if (j >>> 0 <= 1) { + k = 0 + return k | 0 + } + l = f[e >> 2] | 0 + m = 0 + n = 1 + while (1) { + o = + (f[(l + (m << 2)) >> 2] | 0) >>> 0 > + (f[(l + (n << 2)) >> 2] | 0) >>> 0 + ? n + : m + n = (n + 1) | 0 + if (n >>> 0 >= j >>> 0) { + k = o + break + } else m = o + } + return k | 0 + } + if (j) { + j = f[(a + 1128) >> 2] | 0 + m = f[e >> 2] | 0 + e = f[(a + 1140) >> 2] | 0 + n = f[d >> 2] | 0 + d = (b + 4) | 0 + l = (b + 8) | 0 + if ((g | 0) == (c | 0)) { + b = 0 + do { + o = (j + (b << 2)) | 0 + f[o >> 2] = 0 + p = ((f[a >> 2] | 0) - (f[(m + (b << 2)) >> 2] | 0)) | 0 + f[(e + (b << 2)) >> 2] = p + if (p | 0) { + p = f[o >> 2] | 0 + q = (h - p) | 0 + f[o >> 2] = q >>> 0 < p >>> 0 ? p : q + } + b = (b + 1) | 0 + q = f[i >> 2] | 0 + } while (b >>> 0 < q >>> 0) + r = q + } else { + b = 0 + do { + q = (j + (b << 2)) | 0 + f[q >> 2] = 0 + p = ((f[a >> 2] | 0) - (f[(m + (b << 2)) >> 2] | 0)) | 0 + f[(e + (b << 2)) >> 2] = p + if (p | 0) { + o = ((f[(n + (b << 2)) >> 2] | 0) + (1 << (p + -1))) | 0 + p = f[l >> 2] | 0 + s = f[((f[d >> 2] | 0) + 24) >> 2] | 0 + t = c + u = f[q >> 2] | 0 + do { + v = (s + ((X(t, p) | 0) << 2) + (b << 2)) | 0 + u = (u + (((f[v >> 2] | 0) >>> 0 < o >>> 0) & 1)) | 0 + f[q >> 2] = u + t = (t + 1) | 0 + } while ((t | 0) != (g | 0)) + t = (h - u) | 0 + f[q >> 2] = t >>> 0 < u >>> 0 ? u : t + } + b = (b + 1) | 0 + t = f[i >> 2] | 0 + } while (b >>> 0 < t >>> 0) + r = t + } + if (r) { + b = f[(a + 1140) >> 2] | 0 + i = (a + 1128) | 0 + h = 0 + g = 0 + c = 0 + while (1) { + if (!(f[(b + (g << 2)) >> 2] | 0)) { + w = h + x = c + } else { + d = f[((f[i >> 2] | 0) + (g << 2)) >> 2] | 0 + l = h >>> 0 < d >>> 0 + w = l ? d : h + x = l ? g : c + } + g = (g + 1) | 0 + if (g >>> 0 >= r >>> 0) { + y = x + break + } else { + h = w + c = x + } + } + } else y = 0 + } else y = 0 + x = (a + 1088) | 0 + c = (a + 1104) | 0 + w = f[c >> 2] | 0 + h = (32 - w) | 0 + if ((h | 0) < 4) { + r = y & 15 + g = (4 - h) | 0 + f[c >> 2] = g + h = (a + 1100) | 0 + i = f[h >> 2] | (r >>> g) + f[h >> 2] = i + g = (a + 1092) | 0 + b = f[g >> 2] | 0 + if ((b | 0) == (f[(a + 1096) >> 2] | 0)) Ci(x, h) + else { + f[b >> 2] = i + f[g >> 2] = b + 4 + } + f[h >> 2] = r << (32 - (f[c >> 2] | 0)) + k = y + return k | 0 + } + r = (a + 1100) | 0 + h = f[r >> 2] | ((y << 28) >>> w) + f[r >> 2] = h + b = (w + 4) | 0 + f[c >> 2] = b + if ((b | 0) != 32) { + k = y + return k | 0 + } + b = (a + 1092) | 0 + w = f[b >> 2] | 0 + if ((w | 0) == (f[(a + 1096) >> 2] | 0)) Ci(x, r) + else { + f[w >> 2] = h + f[b >> 2] = w + 4 + } + f[r >> 2] = 0 + f[c >> 2] = 0 + k = y + return k | 0 + } + function Hd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + c = (a + 4) | 0 + if (!b) { + d = f[a >> 2] | 0 + f[a >> 2] = 0 + if (d | 0) br(d) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + d = ra(8) | 0 + Wo(d, 14941) + f[d >> 2] = 6944 + va(d | 0, 1080, 114) + } + d = dn(b << 2) | 0 + e = f[a >> 2] | 0 + f[a >> 2] = d + if (e | 0) br(e) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + e = f[c >> 2] | 0 + if (!e) return + d = f[(e + 4) >> 2] | 0 + g = (b + -1) | 0 + h = ((g & b) | 0) == 0 + if (!h) + if (d >>> 0 < b >>> 0) i = d + else i = (d >>> 0) % (b >>> 0) | 0 + else i = d & g + f[((f[a >> 2] | 0) + (i << 2)) >> 2] = c + c = f[e >> 2] | 0 + if (!c) return + else { + j = i + k = e + l = c + m = e + } + a: while (1) { + b: do + if (h) { + e = k + c = l + i = m + while (1) { + d = c + while (1) { + n = f[(d + 4) >> 2] & g + if ((n | 0) == (j | 0)) break + o = ((f[a >> 2] | 0) + (n << 2)) | 0 + if (!(f[o >> 2] | 0)) { + p = d + q = i + r = n + s = o + break b + } + o = (d + 8) | 0 + t = d + while (1) { + u = f[t >> 2] | 0 + if (!u) break + if ((f[o >> 2] | 0) == (f[(u + 8) >> 2] | 0)) t = u + else break + } + f[i >> 2] = u + f[t >> 2] = f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] = d + o = f[e >> 2] | 0 + if (!o) { + v = 37 + break a + } else d = o + } + c = f[d >> 2] | 0 + if (!c) { + v = 37 + break a + } else { + e = d + i = d + } + } + } else { + i = k + e = l + c = m + while (1) { + o = e + while (1) { + w = f[(o + 4) >> 2] | 0 + if (w >>> 0 < b >>> 0) x = w + else x = (w >>> 0) % (b >>> 0) | 0 + if ((x | 0) == (j | 0)) break + w = ((f[a >> 2] | 0) + (x << 2)) | 0 + if (!(f[w >> 2] | 0)) { + p = o + q = c + r = x + s = w + break b + } + w = (o + 8) | 0 + y = o + while (1) { + z = f[y >> 2] | 0 + if (!z) break + if ((f[w >> 2] | 0) == (f[(z + 8) >> 2] | 0)) y = z + else break + } + f[c >> 2] = z + f[y >> 2] = f[f[((f[a >> 2] | 0) + (x << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (x << 2)) >> 2] >> 2] = o + w = f[i >> 2] | 0 + if (!w) { + v = 37 + break a + } else o = w + } + e = f[o >> 2] | 0 + if (!e) { + v = 37 + break a + } else { + i = o + c = o + } + } + } + while (0) + f[s >> 2] = q + l = f[p >> 2] | 0 + if (!l) { + v = 37 + break + } else { + j = r + k = p + m = p + } + } + if ((v | 0) == 37) return + } + function Id(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + d = (a + 4) | 0 + if (!c) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) br(e) + f[d >> 2] = 0 + return + } + if (c >>> 0 > 1073741823) { + e = ra(8) | 0 + Wo(e, 14941) + f[e >> 2] = 6944 + va(e | 0, 1080, 114) + } + e = dn(c << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) br(g) + f[d >> 2] = c + d = 0 + do { + f[((f[a >> 2] | 0) + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + } while ((d | 0) != (c | 0)) + d = (a + 8) | 0 + g = f[d >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (c + -1) | 0 + i = ((h & c) | 0) == 0 + if (!i) + if (e >>> 0 < c >>> 0) j = e + else j = (e >>> 0) % (c >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = d + d = f[g >> 2] | 0 + if (!d) return + e = (a + 24) | 0 + k = j + j = g + l = d + d = g + a: while (1) { + g = j + m = l + n = d + b: while (1) { + o = m + while (1) { + p = f[(o + 4) >> 2] | 0 + if (!i) + if (p >>> 0 < c >>> 0) q = p + else q = (p >>> 0) % (c >>> 0) | 0 + else q = p & h + if ((q | 0) == (k | 0)) break + r = ((f[a >> 2] | 0) + (q << 2)) | 0 + if (!(f[r >> 2] | 0)) break b + p = f[o >> 2] | 0 + c: do + if (!p) s = o + else { + t = f[(o + 8) >> 2] | 0 + u = f[e >> 2] | 0 + v = f[(u + 8) >> 2] | 0 + w = ((f[(u + 12) >> 2] | 0) - v) | 0 + u = v + v = w >>> 2 + if ((w | 0) > 0) { + x = o + y = p + } else { + w = p + while (1) { + z = f[w >> 2] | 0 + if (!z) { + s = w + break c + } else w = z + } + } + while (1) { + w = f[(y + 8) >> 2] | 0 + z = 0 + do { + A = f[(u + (z << 2)) >> 2] | 0 + if (!(b[(A + 84) >> 0] | 0)) { + B = f[(A + 68) >> 2] | 0 + C = f[(B + (w << 2)) >> 2] | 0 + D = f[(B + (t << 2)) >> 2] | 0 + } else { + C = w + D = t + } + z = (z + 1) | 0 + if ((D | 0) != (C | 0)) { + s = x + break c + } + } while ((z | 0) < (v | 0)) + z = f[y >> 2] | 0 + if (!z) { + s = y + break + } else { + w = y + y = z + x = w + } + } + } + while (0) + f[n >> 2] = f[s >> 2] + f[s >> 2] = f[f[((f[a >> 2] | 0) + (q << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (q << 2)) >> 2] >> 2] = o + p = f[g >> 2] | 0 + if (!p) { + E = 38 + break a + } else o = p + } + m = f[o >> 2] | 0 + if (!m) { + E = 38 + break a + } else { + g = o + n = o + } + } + f[r >> 2] = n + l = f[o >> 2] | 0 + if (!l) { + E = 38 + break + } else { + k = q + j = o + d = o + } + } + if ((E | 0) == 38) return + } + function Jd(a, c) { + a = a | 0 + c = c | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0 + e = u + u = (u + 16) | 0 + g = (e + 4) | 0 + h = e + i = (e + 12) | 0 + j = (e + 11) | 0 + k = (e + 10) | 0 + l = (e + 8) | 0 + m = (c + 44) | 0 + n = f[m >> 2] | 0 + o = (n + 16) | 0 + p = f[(o + 4) >> 2] | 0 + if (!(((p | 0) > 0) | (((p | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(n + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(n, g, 14849, 14854) | 0 + } + n = Qa[f[((f[c >> 2] | 0) + 8) >> 2] & 127](c) | 0 + b[i >> 0] = n + b[j >> 0] = 2 + b[k >> 0] = ((n & 255) | 0) == 0 ? 3 : 2 + n = f[m >> 2] | 0 + o = (n + 16) | 0 + p = f[(o + 4) >> 2] | 0 + if (!(((p | 0) > 0) | (((p | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(n + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(n, g, j, (j + 1) | 0) | 0 + j = f[m >> 2] | 0 + o = (j + 16) | 0 + p = f[(o + 4) >> 2] | 0 + if (!(((p | 0) > 0) | (((p | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(j + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(j, g, k, (k + 1) | 0) | 0 + k = f[m >> 2] | 0 + o = (k + 16) | 0 + p = f[(o + 4) >> 2] | 0 + if (((p | 0) > 0) | (((p | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0))) { + q = h + r = k + } else { + f[h >> 2] = f[(k + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(k, g, i, (i + 1) | 0) | 0 + q = h + r = f[m >> 2] | 0 + } + } else { + s = h + t = j + v = 6 + } + } else { + s = h + t = n + v = 6 + } + if ((v | 0) == 6) { + q = h + r = t + } + t = Qa[f[((f[c >> 2] | 0) + 12) >> 2] & 127](c) | 0 + b[l >> 0] = t + t = (r + 16) | 0 + q = f[(t + 4) >> 2] | 0 + if (!(((q | 0) > 0) | (((q | 0) == 0) & ((f[t >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(r + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(r, g, l, (l + 1) | 0) | 0 + } + d[l >> 1] = (f[((f[(c + 4) >> 2] | 0) + 4) >> 2] | 0) == 0 ? 0 : -32768 + c = f[m >> 2] | 0 + m = (c + 16) | 0 + r = f[(m + 4) >> 2] | 0 + if (((r | 0) > 0) | (((r | 0) == 0) & ((f[m >> 2] | 0) >>> 0 > 0))) { + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + f[h >> 2] = f[(c + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(c, g, l, (l + 2) | 0) | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + function Kd(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = Oa, + x = 0, + y = Oa, + z = Oa, + A = Oa, + B = Oa + e = u + u = (u + 16) | 0 + g = e + h = (a + 4) | 0 + if ((f[h >> 2] | 0) != -1) { + i = 0 + u = e + return i | 0 + } + f[h >> 2] = d + d = b[(c + 24) >> 0] | 0 + h = (d << 24) >> 24 + j = (a + 20) | 0 + n[j >> 2] = $(0.0) + f[g >> 2] = 0 + k = (g + 4) | 0 + f[k >> 2] = 0 + f[(g + 8) >> 2] = 0 + do + if ((d << 24) >> 24) + if ((d << 24) >> 24 < 0) mq(g) + else { + l = h << 2 + m = dn(l) | 0 + f[g >> 2] = m + o = (m + (h << 2)) | 0 + f[(g + 8) >> 2] = o + hj(m | 0, 0, l | 0) | 0 + l = (m + (h << 2)) | 0 + f[k >> 2] = l + p = m + q = l + r = o + break + } + else { + p = 0 + q = 0 + r = 0 + } + while (0) + k = (a + 8) | 0 + g = f[k >> 2] | 0 + o = (a + 12) | 0 + if (!g) s = (a + 16) | 0 + else { + l = f[o >> 2] | 0 + if ((l | 0) != (g | 0)) + f[o >> 2] = l + (~(((l + -4 - g) | 0) >>> 2) << 2) + br(g) + g = (a + 16) | 0 + f[g >> 2] = 0 + f[o >> 2] = 0 + f[k >> 2] = 0 + s = g + } + f[k >> 2] = p + f[o >> 2] = q + f[s >> 2] = r + r = h >>> 0 > 1073741823 ? -1 : h << 2 + s = _q(r) | 0 + q = _q(r) | 0 + r = (c + 48) | 0 + o = f[r >> 2] | 0 + g = (c + 40) | 0 + a = f[g >> 2] | 0 + l = f[c >> 2] | 0 + Rg(q | 0, ((f[l >> 2] | 0) + o) | 0, a | 0) | 0 + Rg(p | 0, ((f[l >> 2] | 0) + o) | 0, a | 0) | 0 + a = r + r = f[a >> 2] | 0 + o = f[(a + 4) >> 2] | 0 + a = g + g = f[a >> 2] | 0 + l = f[(a + 4) >> 2] | 0 + a = f[c >> 2] | 0 + Rg(s | 0, ((f[a >> 2] | 0) + r) | 0, g | 0) | 0 + p = f[(c + 80) >> 2] | 0 + a: do + if (p >>> 0 > 1) { + if ((d << 24) >> 24 <= 0) { + c = 1 + while (1) { + m = on(g | 0, l | 0, c | 0, 0) | 0 + t = Tn(m | 0, I | 0, r | 0, o | 0) | 0 + Rg(q | 0, ((f[a >> 2] | 0) + t) | 0, g | 0) | 0 + c = (c + 1) | 0 + if (c >>> 0 >= p >>> 0) break a + } + } + c = f[k >> 2] | 0 + t = 1 + do { + m = on(g | 0, l | 0, t | 0, 0) | 0 + v = Tn(m | 0, I | 0, r | 0, o | 0) | 0 + Rg(q | 0, ((f[a >> 2] | 0) + v) | 0, g | 0) | 0 + v = 0 + do { + m = (c + (v << 2)) | 0 + w = $(n[m >> 2]) + x = (q + (v << 2)) | 0 + y = $(n[x >> 2]) + if (w > y) { + n[m >> 2] = y + z = $(n[x >> 2]) + } else z = y + x = (s + (v << 2)) | 0 + if ($(n[x >> 2]) < z) n[x >> 2] = z + v = (v + 1) | 0 + } while ((v | 0) != (h | 0)) + t = (t + 1) | 0 + } while (t >>> 0 < p >>> 0) + } + while (0) + if ((d << 24) >> 24 > 0) { + d = f[k >> 2] | 0 + k = 0 + z = $(n[j >> 2]) + while (1) { + y = $(n[(s + (k << 2)) >> 2]) + w = $(y - $(n[(d + (k << 2)) >> 2])) + if (w > z) { + n[j >> 2] = w + A = w + } else A = z + k = (k + 1) | 0 + if ((k | 0) == (h | 0)) { + B = A + break + } else z = A + } + } else B = $(n[j >> 2]) + if (B == $(0.0)) n[j >> 2] = $(1.0) + $q(q) + $q(s) + i = 1 + u = e + return i | 0 + } + function Ld(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0 + g = (a + 8) | 0 + Ah(g, b, d, e) + h = (d - e) | 0 + if ((h | 0) > 0) { + d = (0 - e) | 0 + i = (a + 16) | 0 + j = (a + 32) | 0 + k = (a + 12) | 0 + l = (a + 28) | 0 + m = (a + 20) | 0 + n = (a + 24) | 0 + o = h + h = f[g >> 2] | 0 + while (1) { + p = (b + (o << 2)) | 0 + q = (c + (o << 2)) | 0 + if ((h | 0) > 0) { + r = 0 + s = (p + (d << 2)) | 0 + t = h + while (1) { + if ((t | 0) > 0) { + u = 0 + do { + v = f[(s + (u << 2)) >> 2] | 0 + w = f[i >> 2] | 0 + if ((v | 0) > (w | 0)) { + x = f[j >> 2] | 0 + f[(x + (u << 2)) >> 2] = w + y = x + } else { + x = f[k >> 2] | 0 + w = f[j >> 2] | 0 + f[(w + (u << 2)) >> 2] = (v | 0) < (x | 0) ? x : v + y = w + } + u = (u + 1) | 0 + } while ((u | 0) < (f[g >> 2] | 0)) + z = y + } else z = f[j >> 2] | 0 + u = + ((f[(p + (r << 2)) >> 2] | 0) - (f[(z + (r << 2)) >> 2] | 0)) | + 0 + w = (q + (r << 2)) | 0 + f[w >> 2] = u + if ((u | 0) >= (f[l >> 2] | 0)) { + if ((u | 0) > (f[n >> 2] | 0)) { + A = (u - (f[m >> 2] | 0)) | 0 + B = 31 + } + } else { + A = ((f[m >> 2] | 0) + u) | 0 + B = 31 + } + if ((B | 0) == 31) { + B = 0 + f[w >> 2] = A + } + r = (r + 1) | 0 + w = f[g >> 2] | 0 + if ((r | 0) >= (w | 0)) { + C = w + break + } else { + s = z + t = w + } + } + } else C = h + o = (o - e) | 0 + if ((o | 0) <= 0) { + D = C + break + } else h = C + } + } else D = f[g >> 2] | 0 + C = e >>> 0 > 1073741823 ? -1 : e << 2 + e = _q(C) | 0 + hj(e | 0, 0, C | 0) | 0 + if ((D | 0) <= 0) { + $q(e) + return 1 + } + C = (a + 16) | 0 + h = (a + 32) | 0 + o = (a + 12) | 0 + z = (a + 28) | 0 + A = (a + 20) | 0 + m = (a + 24) | 0 + a = 0 + n = e + l = D + while (1) { + if ((l | 0) > 0) { + D = 0 + do { + j = f[(n + (D << 2)) >> 2] | 0 + y = f[C >> 2] | 0 + if ((j | 0) > (y | 0)) { + k = f[h >> 2] | 0 + f[(k + (D << 2)) >> 2] = y + E = k + } else { + k = f[o >> 2] | 0 + y = f[h >> 2] | 0 + f[(y + (D << 2)) >> 2] = (j | 0) < (k | 0) ? k : j + E = y + } + D = (D + 1) | 0 + } while ((D | 0) < (f[g >> 2] | 0)) + F = E + } else F = f[h >> 2] | 0 + D = ((f[(b + (a << 2)) >> 2] | 0) - (f[(F + (a << 2)) >> 2] | 0)) | 0 + y = (c + (a << 2)) | 0 + f[y >> 2] = D + if ((D | 0) >= (f[z >> 2] | 0)) { + if ((D | 0) > (f[m >> 2] | 0)) { + G = (D - (f[A >> 2] | 0)) | 0 + B = 16 + } + } else { + G = ((f[A >> 2] | 0) + D) | 0 + B = 16 + } + if ((B | 0) == 16) { + B = 0 + f[y >> 2] = G + } + a = (a + 1) | 0 + l = f[g >> 2] | 0 + if ((a | 0) >= (l | 0)) break + else n = F + } + $q(e) + return 1 + } + function Md(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0 + e = f[a >> 2] | 0 + g = e + h = ((f[b >> 2] | 0) - g) | 0 + b = (e + ((h >> 2) << 2)) | 0 + i = f[c >> 2] | 0 + c = f[d >> 2] | 0 + d = (c - i) | 0 + j = d >> 2 + k = i + l = c + if ((d | 0) <= 0) { + m = b + return m | 0 + } + d = (a + 8) | 0 + n = f[d >> 2] | 0 + o = (a + 4) | 0 + p = f[o >> 2] | 0 + q = p + if ((j | 0) <= (((n - q) >> 2) | 0)) { + r = b + s = (q - r) | 0 + t = s >> 2 + if ((j | 0) > (t | 0)) { + u = (k + (t << 2)) | 0 + t = u + if ((u | 0) == (l | 0)) v = p + else { + w = (l + -4 - t) | 0 + x = u + u = p + while (1) { + f[u >> 2] = f[x >> 2] + x = (x + 4) | 0 + if ((x | 0) == (l | 0)) break + else u = (u + 4) | 0 + } + u = (p + (((w >>> 2) + 1) << 2)) | 0 + f[o >> 2] = u + v = u + } + if ((s | 0) > 0) { + y = t + z = v + } else { + m = b + return m | 0 + } + } else { + y = c + z = p + } + c = (z - (b + (j << 2))) >> 2 + v = (b + (c << 2)) | 0 + if (v >>> 0 < p >>> 0) { + t = ((p + ((0 - c) << 2) + ~r) | 0) >>> 2 + r = v + s = z + while (1) { + f[s >> 2] = f[r >> 2] + r = (r + 4) | 0 + if (r >>> 0 >= p >>> 0) break + else s = (s + 4) | 0 + } + f[o >> 2] = z + ((t + 1) << 2) + } + if (c | 0) { + c = v + v = z + do { + c = (c + -4) | 0 + v = (v + -4) | 0 + f[v >> 2] = f[c >> 2] + } while ((c | 0) != (b | 0)) + } + c = y + if ((k | 0) == (c | 0)) { + m = b + return m | 0 + } else { + A = b + B = k + } + while (1) { + f[A >> 2] = f[B >> 2] + B = (B + 4) | 0 + if ((B | 0) == (c | 0)) { + m = b + break + } else A = (A + 4) | 0 + } + return m | 0 + } + A = (((q - g) >> 2) + j) | 0 + if (A >>> 0 > 1073741823) mq(a) + j = (n - g) | 0 + g = j >> 1 + n = (j >> 2) >>> 0 < 536870911 ? (g >>> 0 < A >>> 0 ? A : g) : 1073741823 + g = b + A = h >> 2 + do + if (n) + if (n >>> 0 > 1073741823) { + j = ra(8) | 0 + Wo(j, 14941) + f[j >> 2] = 6944 + va(j | 0, 1080, 114) + } else { + j = dn(n << 2) | 0 + C = j + D = j + break + } + else { + C = 0 + D = 0 + } + while (0) + j = (D + (A << 2)) | 0 + A = (D + (n << 2)) | 0 + if ((l | 0) == (k | 0)) E = j + else { + n = ((((l + -4 - i) | 0) >>> 2) + 1) | 0 + i = k + k = j + while (1) { + f[k >> 2] = f[i >> 2] + i = (i + 4) | 0 + if ((i | 0) == (l | 0)) break + else k = (k + 4) | 0 + } + E = (j + (n << 2)) | 0 + } + if ((h | 0) > 0) Rg(C | 0, e | 0, h | 0) | 0 + h = (q - g) | 0 + if ((h | 0) > 0) { + Rg(E | 0, b | 0, h | 0) | 0 + F = (E + ((h >>> 2) << 2)) | 0 + } else F = E + f[a >> 2] = D + f[o >> 2] = F + f[d >> 2] = A + if (!e) { + m = j + return m | 0 + } + br(e) + m = j + return m | 0 + } + function Nd(a, b, c, d, e, g, h) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + var i = 0 + switch (c | 0) { + case 1: { + c = dn(60) | 0 + f[c >> 2] = 1528 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[(h + 16) >> 2] = f[(e + 16) >> 2] + f[(h + 20) >> 2] = f[(e + 20) >> 2] + _j((c + 32) | 0, (e + 24) | 0) + h = (c + 44) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 1948 + i = c + f[a >> 2] = i + return + } + case 4: { + c = dn(168) | 0 + Ei(c, d, e, g) + i = c + f[a >> 2] = i + return + } + case 5: { + c = dn(104) | 0 + f[c >> 2] = 1528 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[(h + 16) >> 2] = f[(e + 16) >> 2] + f[(h + 20) >> 2] = f[(e + 20) >> 2] + _j((c + 32) | 0, (e + 24) | 0) + h = (c + 44) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2004 + f[(c + 60) >> 2] = 0 + f[(c + 64) >> 2] = 0 + f[(c + 76) >> 2] = 0 + f[(c + 80) >> 2] = 0 + f[(c + 84) >> 2] = 0 + h = (c + 88) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + i = c + f[a >> 2] = i + return + } + case 6: { + c = dn(140) | 0 + f[c >> 2] = 1528 + f[(c + 4) >> 2] = d + d = (c + 8) | 0 + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + f[(d + 8) >> 2] = f[(e + 8) >> 2] + f[(d + 12) >> 2] = f[(e + 12) >> 2] + f[(d + 16) >> 2] = f[(e + 16) >> 2] + f[(d + 20) >> 2] = f[(e + 20) >> 2] + _j((c + 32) | 0, (e + 24) | 0) + e = (c + 44) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2060 + f[(c + 64) >> 2] = 0 + f[(c + 68) >> 2] = 0 + e = (c + 72) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[(c + 60) >> 2] = 2116 + f[(c + 88) >> 2] = 1 + g = (c + 92) | 0 + f[g >> 2] = -1 + f[(g + 4) >> 2] = -1 + f[(g + 8) >> 2] = -1 + f[(g + 12) >> 2] = -1 + rn((c + 108) | 0) + i = c + f[a >> 2] = i + return + } + default: { + i = 0 + f[a >> 2] = i + return + } + } + } + function Od(a, b, c, d, e, g, h) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + var i = 0 + switch (c | 0) { + case 1: { + c = dn(60) | 0 + f[c >> 2] = 1528 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[(h + 16) >> 2] = f[(e + 16) >> 2] + f[(h + 20) >> 2] = f[(e + 20) >> 2] + _j((c + 32) | 0, (e + 24) | 0) + h = (c + 44) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 1640 + i = c + f[a >> 2] = i + return + } + case 4: { + c = dn(168) | 0 + Hi(c, d, e, g) + i = c + f[a >> 2] = i + return + } + case 5: { + c = dn(104) | 0 + f[c >> 2] = 1528 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[(h + 16) >> 2] = f[(e + 16) >> 2] + f[(h + 20) >> 2] = f[(e + 20) >> 2] + _j((c + 32) | 0, (e + 24) | 0) + h = (c + 44) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 1696 + f[(c + 60) >> 2] = 0 + f[(c + 64) >> 2] = 0 + f[(c + 76) >> 2] = 0 + f[(c + 80) >> 2] = 0 + f[(c + 84) >> 2] = 0 + h = (c + 88) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + i = c + f[a >> 2] = i + return + } + case 6: { + c = dn(140) | 0 + f[c >> 2] = 1528 + f[(c + 4) >> 2] = d + d = (c + 8) | 0 + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + f[(d + 8) >> 2] = f[(e + 8) >> 2] + f[(d + 12) >> 2] = f[(e + 12) >> 2] + f[(d + 16) >> 2] = f[(e + 16) >> 2] + f[(d + 20) >> 2] = f[(e + 20) >> 2] + _j((c + 32) | 0, (e + 24) | 0) + e = (c + 44) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 1752 + f[(c + 64) >> 2] = 0 + f[(c + 68) >> 2] = 0 + e = (c + 72) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[(c + 60) >> 2] = 1808 + f[(c + 88) >> 2] = 1 + g = (c + 92) | 0 + f[g >> 2] = -1 + f[(g + 4) >> 2] = -1 + f[(g + 8) >> 2] = -1 + f[(g + 12) >> 2] = -1 + rn((c + 108) | 0) + i = c + f[a >> 2] = i + return + } + default: { + i = 0 + f[a >> 2] = i + return + } + } + } + function Pd(a, b, c, d, e, g, h) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + var i = 0, + j = 0 + switch (c | 0) { + case 1: { + c = dn(40) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2628 + i = c + f[a >> 2] = i + return + } + case 4: { + c = dn(152) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2684 + h = (c + 96) | 0 + b = (c + 40) | 0 + j = (b + 52) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (j | 0)) + Sm(h) + f[(c + 136) >> 2] = 0 + f[(c + 140) >> 2] = 0 + f[(c + 144) >> 2] = 0 + i = c + f[a >> 2] = i + return + } + case 5: { + c = dn(84) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2740 + f[(c + 40) >> 2] = 0 + f[(c + 44) >> 2] = 0 + f[(c + 56) >> 2] = 0 + f[(c + 60) >> 2] = 0 + f[(c + 64) >> 2] = 0 + h = (c + 68) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + i = c + f[a >> 2] = i + return + } + case 6: { + c = dn(120) | 0 + f[(c + 4) >> 2] = d + d = (c + 8) | 0 + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + f[(d + 8) >> 2] = f[(e + 8) >> 2] + f[(d + 12) >> 2] = f[(e + 12) >> 2] + e = (c + 24) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2796 + f[(c + 44) >> 2] = 0 + f[(c + 48) >> 2] = 0 + e = (c + 52) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[(c + 40) >> 2] = 2852 + f[(c + 68) >> 2] = 1 + g = (c + 72) | 0 + f[g >> 2] = -1 + f[(g + 4) >> 2] = -1 + f[(g + 8) >> 2] = -1 + f[(g + 12) >> 2] = -1 + rn((c + 88) | 0) + i = c + f[a >> 2] = i + return + } + default: { + i = 0 + f[a >> 2] = i + return + } + } + } + function Qd(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0 + switch (((b - a) >> 2) | 0) { + case 2: { + d = (b + -4) | 0 + e = f[d >> 2] | 0 + g = f[a >> 2] | 0 + h = f[c >> 2] | 0 + i = f[h >> 2] | 0 + j = ((f[(h + 4) >> 2] | 0) - i) >> 3 + if (j >>> 0 <= e >>> 0) mq(h) + k = i + if (j >>> 0 <= g >>> 0) mq(h) + if ( + (f[(k + (e << 3)) >> 2] | 0) >>> 0 >= + (f[(k + (g << 3)) >> 2] | 0) >>> 0 + ) { + l = 1 + return l | 0 + } + f[a >> 2] = e + f[d >> 2] = g + l = 1 + return l | 0 + } + case 3: { + Cg(a, (a + 4) | 0, (b + -4) | 0, c) | 0 + l = 1 + return l | 0 + } + case 4: { + Qg(a, (a + 4) | 0, (a + 8) | 0, (b + -4) | 0, c) | 0 + l = 1 + return l | 0 + } + case 5: { + Tf(a, (a + 4) | 0, (a + 8) | 0, (a + 12) | 0, (b + -4) | 0, c) | 0 + l = 1 + return l | 0 + } + case 1: + case 0: { + l = 1 + return l | 0 + } + default: { + g = (a + 8) | 0 + Cg(a, (a + 4) | 0, g, c) | 0 + d = (a + 12) | 0 + a: do + if ((d | 0) != (b | 0)) { + e = f[c >> 2] | 0 + k = f[e >> 2] | 0 + h = ((f[(e + 4) >> 2] | 0) - k) >> 3 + j = k + k = d + i = 0 + m = g + b: while (1) { + n = f[k >> 2] | 0 + o = f[m >> 2] | 0 + if (h >>> 0 <= n >>> 0) { + p = 14 + break + } + if (h >>> 0 <= o >>> 0) { + p = 16 + break + } + q = (j + (n << 3)) | 0 + if ( + (f[q >> 2] | 0) >>> 0 < + (f[(j + (o << 3)) >> 2] | 0) >>> 0 + ) { + r = m + s = k + t = o + while (1) { + f[s >> 2] = t + if ((r | 0) == (a | 0)) { + u = a + break + } + o = (r + -4) | 0 + t = f[o >> 2] | 0 + if (h >>> 0 <= t >>> 0) { + p = 20 + break b + } + if ( + (f[q >> 2] | 0) >>> 0 >= + (f[(j + (t << 3)) >> 2] | 0) >>> 0 + ) { + u = r + break + } else { + v = r + r = o + s = v + } + } + f[u >> 2] = n + s = (i + 1) | 0 + if ((s | 0) == 8) { + w = 0 + x = ((k + 4) | 0) == (b | 0) + break a + } else y = s + } else y = i + s = (k + 4) | 0 + if ((s | 0) == (b | 0)) { + w = 1 + x = 0 + break a + } else { + r = k + k = s + i = y + m = r + } + } + if ((p | 0) == 14) mq(e) + else if ((p | 0) == 16) mq(e) + else if ((p | 0) == 20) mq(e) + } else { + w = 1 + x = 0 + } + while (0) + l = x | w + return l | 0 + } + } + return 0 + } + function Rd(a, b, c, d, e, g, h) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + var i = 0, + j = 0 + switch (c | 0) { + case 1: { + c = dn(40) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2376 + i = c + f[a >> 2] = i + return + } + case 4: { + c = dn(152) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2432 + h = (c + 96) | 0 + b = (c + 40) | 0 + j = (b + 52) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (j | 0)) + Sm(h) + f[(c + 136) >> 2] = 0 + f[(c + 140) >> 2] = 0 + f[(c + 144) >> 2] = 0 + i = c + f[a >> 2] = i + return + } + case 5: { + c = dn(84) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2488 + f[(c + 40) >> 2] = 0 + f[(c + 44) >> 2] = 0 + f[(c + 56) >> 2] = 0 + f[(c + 60) >> 2] = 0 + f[(c + 64) >> 2] = 0 + h = (c + 68) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + i = c + f[a >> 2] = i + return + } + case 6: { + c = dn(120) | 0 + f[(c + 4) >> 2] = d + d = (c + 8) | 0 + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + f[(d + 8) >> 2] = f[(e + 8) >> 2] + f[(d + 12) >> 2] = f[(e + 12) >> 2] + e = (c + 24) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2544 + f[(c + 44) >> 2] = 0 + f[(c + 48) >> 2] = 0 + e = (c + 52) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[(c + 40) >> 2] = 2600 + f[(c + 68) >> 2] = 1 + g = (c + 72) | 0 + f[g >> 2] = -1 + f[(g + 4) >> 2] = -1 + f[(g + 8) >> 2] = -1 + f[(g + 12) >> 2] = -1 + rn((c + 88) | 0) + i = c + f[a >> 2] = i + return + } + default: { + i = 0 + f[a >> 2] = i + return + } + } + } + function Sd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = Oa, + t = Oa, + u = Oa, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + c = f[b >> 2] | 0 + b = (a + 4) | 0 + d = f[b >> 2] | 0 + e = (d | 0) == 0 + a: do + if (!e) { + g = (d + -1) | 0 + h = ((g & d) | 0) == 0 + if (!h) + if (c >>> 0 < d >>> 0) i = c + else i = (c >>> 0) % (d >>> 0) | 0 + else i = g & c + j = f[((f[a >> 2] | 0) + (i << 2)) >> 2] | 0 + if (!j) k = i + else { + if (h) { + h = j + while (1) { + l = f[h >> 2] | 0 + if (!l) { + k = i + break a + } + m = f[(l + 4) >> 2] | 0 + if (!(((m | 0) == (c | 0)) | (((m & g) | 0) == (i | 0)))) { + k = i + break a + } + if ((f[(l + 8) >> 2] | 0) == (c | 0)) { + o = l + break + } else h = l + } + p = (o + 12) | 0 + return p | 0 + } else q = j + while (1) { + h = f[q >> 2] | 0 + if (!h) { + k = i + break a + } + g = f[(h + 4) >> 2] | 0 + if ((g | 0) != (c | 0)) { + if (g >>> 0 < d >>> 0) r = g + else r = (g >>> 0) % (d >>> 0) | 0 + if ((r | 0) != (i | 0)) { + k = i + break a + } + } + if ((f[(h + 8) >> 2] | 0) == (c | 0)) { + o = h + break + } else q = h + } + p = (o + 12) | 0 + return p | 0 + } + } else k = 0 + while (0) + q = dn(16) | 0 + f[(q + 8) >> 2] = c + f[(q + 12) >> 2] = 0 + f[(q + 4) >> 2] = c + f[q >> 2] = 0 + i = (a + 12) | 0 + s = $((((f[i >> 2] | 0) + 1) | 0) >>> 0) + t = $(d >>> 0) + u = $(n[(a + 16) >> 2]) + do + if (e | ($(u * t) < s)) { + r = (d << 1) | (((d >>> 0 < 3) | ((((d + -1) & d) | 0) != 0)) & 1) + j = ~~$(W($(s / u))) >>> 0 + ti(a, r >>> 0 < j >>> 0 ? j : r) + r = f[b >> 2] | 0 + j = (r + -1) | 0 + if (!(j & r)) { + v = r + w = j & c + break + } + if (c >>> 0 < r >>> 0) { + v = r + w = c + } else { + v = r + w = (c >>> 0) % (r >>> 0) | 0 + } + } else { + v = d + w = k + } + while (0) + k = ((f[a >> 2] | 0) + (w << 2)) | 0 + w = f[k >> 2] | 0 + if (!w) { + d = (a + 8) | 0 + f[q >> 2] = f[d >> 2] + f[d >> 2] = q + f[k >> 2] = d + d = f[q >> 2] | 0 + if (d | 0) { + k = f[(d + 4) >> 2] | 0 + d = (v + -1) | 0 + if (d & v) + if (k >>> 0 < v >>> 0) x = k + else x = (k >>> 0) % (v >>> 0) | 0 + else x = k & d + y = ((f[a >> 2] | 0) + (x << 2)) | 0 + z = 30 + } + } else { + f[q >> 2] = f[w >> 2] + y = w + z = 30 + } + if ((z | 0) == 30) f[y >> 2] = q + f[i >> 2] = (f[i >> 2] | 0) + 1 + o = q + p = (o + 12) | 0 + return p | 0 + } + function Td(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0 + c = u + u = (u + 16) | 0 + d = (c + 4) | 0 + e = c + f[(a + 64) >> 2] = b + g = (a + 128) | 0 + f[g >> 2] = 2 + h = (a + 132) | 0 + f[h >> 2] = 7 + i = Qa[f[((f[b >> 2] | 0) + 32) >> 2] & 127](b) | 0 + b = (a + 88) | 0 + f[b >> 2] = i + j = (a + 104) | 0 + k = ((f[(i + 28) >> 2] | 0) - (f[(i + 24) >> 2] | 0)) >> 2 + i = (a + 108) | 0 + l = f[i >> 2] | 0 + m = f[j >> 2] | 0 + n = (l - m) >> 2 + o = m + p = l + if (k >>> 0 <= n >>> 0) + if ( + k >>> 0 < n >>> 0 ? ((q = (o + (k << 2)) | 0), (q | 0) != (p | 0)) : 0 + ) { + o = (p + (~(((p + -4 - q) | 0) >>> 2) << 2)) | 0 + f[i >> 2] = o + r = o + s = m + } else { + r = l + s = m + } + else { + oi(j, (k - n) | 0) + r = f[i >> 2] | 0 + s = f[j >> 2] | 0 + } + if ((r | 0) != (s | 0)) { + s = 0 + do { + r = f[b >> 2] | 0 + f[e >> 2] = s + f[d >> 2] = f[e >> 2] + n = Og(r, d) | 0 + r = f[j >> 2] | 0 + f[(r + (s << 2)) >> 2] = n + s = (s + 1) | 0 + } while (s >>> 0 < (((f[i >> 2] | 0) - r) >> 2) >>> 0) + } + i = (a + 92) | 0 + s = f[b >> 2] | 0 + j = f[s >> 2] | 0 + d = ((f[(s + 4) >> 2] | 0) - j) >> 2 + e = (a + 96) | 0 + r = f[e >> 2] | 0 + n = f[i >> 2] | 0 + k = (r - n) >> 2 + m = n + n = r + if (d >>> 0 <= k >>> 0) + if ( + d >>> 0 < k >>> 0 ? ((r = (m + (d << 2)) | 0), (r | 0) != (n | 0)) : 0 + ) { + f[e >> 2] = n + (~(((n + -4 - r) | 0) >>> 2) << 2) + t = s + v = j + } else { + t = s + v = j + } + else { + oi(i, (d - k) | 0) + k = f[b >> 2] | 0 + t = k + v = f[k >> 2] | 0 + } + k = f[(t + 4) >> 2] | 0 + if ((k | 0) != (v | 0)) { + v = f[i >> 2] | 0 + i = f[t >> 2] | 0 + t = (k - i) >> 2 + k = 0 + do { + f[(v + (k << 2)) >> 2] = f[(i + (k << 2)) >> 2] + k = (k + 1) | 0 + } while (k >>> 0 < t >>> 0) + } + t = ((f[h >> 2] | 0) - (f[g >> 2] | 0) + 1) | 0 + g = (a + 136) | 0 + h = (a + 140) | 0 + a = f[h >> 2] | 0 + k = f[g >> 2] | 0 + i = (((a - k) | 0) / 12) | 0 + v = a + if (t >>> 0 > i >>> 0) { + vf(g, (t - i) | 0) + u = c + return 1 + } + if (t >>> 0 >= i >>> 0) { + u = c + return 1 + } + i = (k + ((t * 12) | 0)) | 0 + if ((i | 0) == (v | 0)) { + u = c + return 1 + } else w = v + while (1) { + v = (w + -12) | 0 + f[h >> 2] = v + t = f[v >> 2] | 0 + if (!t) x = v + else { + v = (w + -8) | 0 + k = f[v >> 2] | 0 + if ((k | 0) != (t | 0)) + f[v >> 2] = k + (~(((k + -4 - t) | 0) >>> 2) << 2) + br(t) + x = f[h >> 2] | 0 + } + if ((x | 0) == (i | 0)) break + else w = x + } + u = c + return 1 + } + function Ud(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + Oc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 4194304 + if (d) { + d = c + c = 4194304 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 20) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + xf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function Vd(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + Pc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 4194304 + if (d) { + d = c + c = 4194304 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 20) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + xf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function Wd(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + Qc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 4194304 + if (d) { + d = c + c = 4194304 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 20) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + xf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function Xd(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + Rc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 4194304 + if (d) { + d = c + c = 4194304 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 20) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + xf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function Yd(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + Sc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 4194304 + if (d) { + d = c + c = 4194304 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 20) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + xf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function Zd(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + Tc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 2097152 + if (d) { + d = c + c = 2097152 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 19) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + yf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function _d(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + Uc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 1048576 + if (d) { + d = c + c = 1048576 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 18) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + zf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function $d(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + Vc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 262144 + if (d) { + d = c + c = 262144 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 16) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Cf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function ae(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + Wc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 131072 + if (d) { + d = c + c = 131072 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 15) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Df(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function be(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + Xc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 32768 + if (d) { + d = c + c = 32768 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 13) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Ef(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function ce(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + Yc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Lf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function de(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + Zc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Lf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function ee(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + _c(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Lf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function fe(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + $c(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Lf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function ge(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + ad(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Lf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function he(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + bd(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Lf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function ie(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + cd(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Lf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function je(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) mq(h) + else { + l = dn(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + hj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + l = i + p = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (p | 0)) + dd(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Rn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Tn(o | 0, I | 0, 39, 0) | 0 + o = Wn(l | 0, I | 0, 3) | 0 + l = Tn(o | 0, I | 0, 8, 0) | 0 + o = Tn(l | 0, I | 0, n | 0, 0) | 0 + vl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Lf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + br(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + br(e) + u = g + return 1 + } + function ke(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0 + e = f[b >> 2] | 0 + g = (b + 4) | 0 + h = f[g >> 2] | 0 + i = ((((f[c >> 2] | 0) - e) << 3) + (f[(c + 4) >> 2] | 0) - h) | 0 + c = e + if ((i | 0) <= 0) { + j = (d + 4) | 0 + k = f[d >> 2] | 0 + f[a >> 2] = k + l = (a + 4) | 0 + m = f[j >> 2] | 0 + f[l >> 2] = m + return + } + if (!h) { + e = (d + 4) | 0 + n = i + o = e + p = c + q = f[e >> 2] | 0 + } else { + e = (32 - h) | 0 + r = (i | 0) < (e | 0) ? i : e + s = (-1 >>> ((e - r) | 0)) & (-1 << h) & f[c >> 2] + c = (d + 4) | 0 + h = f[c >> 2] | 0 + e = (32 - h) | 0 + t = e >>> 0 < r >>> 0 ? e : r + u = f[d >> 2] | 0 + v = f[u >> 2] & ~((-1 >>> ((e - t) | 0)) & (-1 << h)) + f[u >> 2] = v + h = f[c >> 2] | 0 + e = f[g >> 2] | 0 + f[u >> 2] = (h >>> 0 > e >>> 0 ? s << (h - e) : s >>> ((e - h) | 0)) | v + v = ((f[c >> 2] | 0) + t) | 0 + h = (u + ((v >>> 5) << 2)) | 0 + f[d >> 2] = h + u = v & 31 + f[c >> 2] = u + v = (r - t) | 0 + if ((v | 0) > 0) { + e = f[h >> 2] & ~(-1 >>> ((32 - v) | 0)) + f[h >> 2] = e + f[h >> 2] = e | (s >>> (((f[g >> 2] | 0) + t) | 0)) + f[c >> 2] = v + w = v + } else w = u + u = ((f[b >> 2] | 0) + 4) | 0 + f[b >> 2] = u + n = (i - r) | 0 + o = c + p = u + q = w + } + w = (32 - q) | 0 + u = -1 << q + if ((n | 0) > 31) { + q = ~u + c = ~n + r = (n + ((c | 0) > -64 ? c : -64) + 32) & -32 + c = n + i = p + while (1) { + v = f[i >> 2] | 0 + t = f[d >> 2] | 0 + g = f[t >> 2] & q + f[t >> 2] = g + f[t >> 2] = g | (v << f[o >> 2]) + g = (t + 4) | 0 + f[d >> 2] = g + f[g >> 2] = (f[g >> 2] & u) | (v >>> w) + i = ((f[b >> 2] | 0) + 4) | 0 + f[b >> 2] = i + if ((c | 0) <= 63) break + else c = (c + -32) | 0 + } + x = (n + -32 - r) | 0 + y = i + } else { + x = n + y = p + } + if ((x | 0) <= 0) { + j = o + k = f[d >> 2] | 0 + f[a >> 2] = k + l = (a + 4) | 0 + m = f[j >> 2] | 0 + f[l >> 2] = m + return + } + p = f[y >> 2] & (-1 >>> ((32 - x) | 0)) + y = (w | 0) < (x | 0) ? w : x + n = f[d >> 2] | 0 + i = f[n >> 2] & ~((-1 << f[o >> 2]) & (-1 >>> ((w - y) | 0))) + f[n >> 2] = i + f[n >> 2] = i | (p << f[o >> 2]) + i = ((f[o >> 2] | 0) + y) | 0 + w = (n + ((i >>> 5) << 2)) | 0 + f[d >> 2] = w + f[o >> 2] = i & 31 + i = (x - y) | 0 + if ((i | 0) <= 0) { + j = o + k = f[d >> 2] | 0 + f[a >> 2] = k + l = (a + 4) | 0 + m = f[j >> 2] | 0 + f[l >> 2] = m + return + } + f[w >> 2] = (f[w >> 2] & ~(-1 >>> ((32 - i) | 0))) | (p >>> y) + f[o >> 2] = i + j = o + k = f[d >> 2] | 0 + f[a >> 2] = k + l = (a + 4) | 0 + m = f[j >> 2] | 0 + f[l >> 2] = m + return + } + function le(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 9) | 0 + i = (d + 8) | 0 + j = f[((f[(a + 184) >> 2] | 0) + (c << 2)) >> 2] & 255 + b[h >> 0] = j + c = (a + 4) | 0 + k = f[((f[c >> 2] | 0) + 44) >> 2] | 0 + l = (k + 16) | 0 + m = f[(l + 4) >> 2] | 0 + if (((m | 0) > 0) | (((m | 0) == 0) & ((f[l >> 2] | 0) >>> 0 > 0))) n = j + else { + f[g >> 2] = f[(k + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(k, e, h, (h + 1) | 0) | 0 + n = b[h >> 0] | 0 + } + a: do + if ((n << 24) >> 24 > -1) { + k = (a + 172) | 0 + j = f[((f[k >> 2] | 0) + ((((n << 24) >> 24) * 136) | 0)) >> 2] | 0 + l = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 56) | 0 + m = b[h >> 0] | 0 + o = f[k >> 2] | 0 + k = f[(o + ((m * 136) | 0) + 132) >> 2] | 0 + switch ( + f[((f[((f[l >> 2] | 0) + 84) >> 2] | 0) + (j << 2)) >> 2] | 0 + ) { + case 0: { + p = k + q = 7 + break a + break + } + case 1: { + if (b[(o + ((m * 136) | 0) + 28) >> 0] | 0) { + p = k + q = 7 + break a + } + break + } + default: { + } + } + m = f[((f[c >> 2] | 0) + 44) >> 2] | 0 + b[i >> 0] = 1 + o = (m + 16) | 0 + j = f[(o + 4) >> 2] | 0 + if ( + !(((j | 0) > 0) | (((j | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0))) + ) { + f[g >> 2] = f[(m + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(m, e, i, (i + 1) | 0) | 0 + } + r = k + } else { + p = f[(a + 68) >> 2] | 0 + q = 7 + } + while (0) + if ((q | 0) == 7) { + q = f[((f[c >> 2] | 0) + 44) >> 2] | 0 + b[i >> 0] = 0 + a = (q + 16) | 0 + h = f[(a + 4) >> 2] | 0 + if (!(((h | 0) > 0) | (((h | 0) == 0) & ((f[a >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(q + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(q, e, i, (i + 1) | 0) | 0 + } + r = p + } + p = f[((f[c >> 2] | 0) + 44) >> 2] | 0 + b[i >> 0] = r + r = (p + 16) | 0 + c = f[(r + 4) >> 2] | 0 + if (((c | 0) > 0) | (((c | 0) == 0) & ((f[r >> 2] | 0) >>> 0 > 0))) { + u = d + return 1 + } + f[g >> 2] = f[(p + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(p, e, i, (i + 1) | 0) | 0 + u = d + return 1 + } + function me(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0 + h = u + u = (u + 16) | 0 + i = (h + 4) | 0 + j = h + k = (a + 60) | 0 + f[(a + 64) >> 2] = g + g = (a + 8) | 0 + Ah(g, b, d, e) + d = (a + 56) | 0 + l = f[d >> 2] | 0 + m = f[(l + 4) >> 2] | 0 + n = f[l >> 2] | 0 + o = (m - n) | 0 + if ((o | 0) <= 0) { + u = h + return 1 + } + p = ((o >>> 2) + -1) | 0 + o = (a + 68) | 0 + q = (a + 16) | 0 + r = (a + 32) | 0 + s = (a + 12) | 0 + t = (a + 28) | 0 + v = (a + 20) | 0 + w = (a + 24) | 0 + if (((m - n) >> 2) >>> 0 > p >>> 0) { + x = p + y = n + } else { + z = l + mq(z) + } + while (1) { + f[j >> 2] = f[(y + (x << 2)) >> 2] + f[i >> 2] = f[j >> 2] + tb(k, i, b, x) | 0 + l = X(x, e) | 0 + n = (b + (l << 2)) | 0 + p = (c + (l << 2)) | 0 + l = f[g >> 2] | 0 + if ((l | 0) > 0) { + m = 0 + a = o + A = l + while (1) { + if ((A | 0) > 0) { + l = 0 + do { + B = f[(a + (l << 2)) >> 2] | 0 + C = f[q >> 2] | 0 + if ((B | 0) > (C | 0)) { + D = f[r >> 2] | 0 + f[(D + (l << 2)) >> 2] = C + E = D + } else { + D = f[s >> 2] | 0 + C = f[r >> 2] | 0 + f[(C + (l << 2)) >> 2] = (B | 0) < (D | 0) ? D : B + E = C + } + l = (l + 1) | 0 + } while ((l | 0) < (f[g >> 2] | 0)) + F = E + } else F = f[r >> 2] | 0 + l = + ((f[(n + (m << 2)) >> 2] | 0) - (f[(F + (m << 2)) >> 2] | 0)) | 0 + C = (p + (m << 2)) | 0 + f[C >> 2] = l + if ((l | 0) >= (f[t >> 2] | 0)) { + if ((l | 0) > (f[w >> 2] | 0)) { + G = (l - (f[v >> 2] | 0)) | 0 + H = 18 + } + } else { + G = ((f[v >> 2] | 0) + l) | 0 + H = 18 + } + if ((H | 0) == 18) { + H = 0 + f[C >> 2] = G + } + m = (m + 1) | 0 + A = f[g >> 2] | 0 + if ((m | 0) >= (A | 0)) break + else a = F + } + } + x = (x + -1) | 0 + if ((x | 0) <= -1) { + H = 3 + break + } + a = f[d >> 2] | 0 + y = f[a >> 2] | 0 + if ((((f[(a + 4) >> 2] | 0) - y) >> 2) >>> 0 <= x >>> 0) { + z = a + H = 4 + break + } + } + if ((H | 0) == 3) { + u = h + return 1 + } else if ((H | 0) == 4) mq(z) + return 0 + } + function ne(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0 + h = u + u = (u + 16) | 0 + i = (h + 4) | 0 + j = h + k = (a + 60) | 0 + f[(a + 64) >> 2] = g + g = (a + 8) | 0 + Ah(g, b, d, e) + d = (a + 56) | 0 + l = f[d >> 2] | 0 + m = f[(l + 4) >> 2] | 0 + n = f[l >> 2] | 0 + o = (m - n) | 0 + if ((o | 0) <= 0) { + u = h + return 1 + } + p = ((o >>> 2) + -1) | 0 + o = (a + 68) | 0 + q = (a + 16) | 0 + r = (a + 32) | 0 + s = (a + 12) | 0 + t = (a + 28) | 0 + v = (a + 20) | 0 + w = (a + 24) | 0 + if (((m - n) >> 2) >>> 0 > p >>> 0) { + x = p + y = n + } else { + z = l + mq(z) + } + while (1) { + f[j >> 2] = f[(y + (x << 2)) >> 2] + f[i >> 2] = f[j >> 2] + sb(k, i, b, x) | 0 + l = X(x, e) | 0 + n = (b + (l << 2)) | 0 + p = (c + (l << 2)) | 0 + l = f[g >> 2] | 0 + if ((l | 0) > 0) { + m = 0 + a = o + A = l + while (1) { + if ((A | 0) > 0) { + l = 0 + do { + B = f[(a + (l << 2)) >> 2] | 0 + C = f[q >> 2] | 0 + if ((B | 0) > (C | 0)) { + D = f[r >> 2] | 0 + f[(D + (l << 2)) >> 2] = C + E = D + } else { + D = f[s >> 2] | 0 + C = f[r >> 2] | 0 + f[(C + (l << 2)) >> 2] = (B | 0) < (D | 0) ? D : B + E = C + } + l = (l + 1) | 0 + } while ((l | 0) < (f[g >> 2] | 0)) + F = E + } else F = f[r >> 2] | 0 + l = + ((f[(n + (m << 2)) >> 2] | 0) - (f[(F + (m << 2)) >> 2] | 0)) | 0 + C = (p + (m << 2)) | 0 + f[C >> 2] = l + if ((l | 0) >= (f[t >> 2] | 0)) { + if ((l | 0) > (f[w >> 2] | 0)) { + G = (l - (f[v >> 2] | 0)) | 0 + H = 18 + } + } else { + G = ((f[v >> 2] | 0) + l) | 0 + H = 18 + } + if ((H | 0) == 18) { + H = 0 + f[C >> 2] = G + } + m = (m + 1) | 0 + A = f[g >> 2] | 0 + if ((m | 0) >= (A | 0)) break + else a = F + } + } + x = (x + -1) | 0 + if ((x | 0) <= -1) { + H = 3 + break + } + a = f[d >> 2] | 0 + y = f[a >> 2] | 0 + if ((((f[(a + 4) >> 2] | 0) - y) >> 2) >>> 0 <= x >>> 0) { + z = a + H = 4 + break + } + } + if ((H | 0) == 3) { + u = h + return 1 + } else if ((H | 0) == 4) mq(z) + return 0 + } + function oe(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0 + b = u + u = (u + 16) | 0 + c = (b + 4) | 0 + d = b + e = (a + 12) | 0 + g = f[e >> 2] | 0 + h = ((f[(g + 4) >> 2] | 0) - (f[g >> 2] | 0)) >> 2 + if (!h) { + u = b + return 1 + } + i = (a + 152) | 0 + j = (a + 140) | 0 + k = (a + 144) | 0 + l = (a + 148) | 0 + a = 0 + m = g + while (1) { + f[d >> 2] = ((a >>> 0) / 3) | 0 + f[c >> 2] = f[d >> 2] + if ( + !(Rj(m, c) | 0) + ? ((g = f[e >> 2] | 0), + (f[((f[(g + 12) >> 2] | 0) + (a << 2)) >> 2] | 0) == -1) + : 0 + ) { + n = (a + 1) | 0 + o = ((n >>> 0) % 3 | 0 | 0) == 0 ? (a + -2) | 0 : n + if ((o | 0) == -1) p = -1 + else p = f[((f[g >> 2] | 0) + (o << 2)) >> 2] | 0 + o = f[i >> 2] | 0 + if ((f[(o + (p << 2)) >> 2] | 0) == -1) { + g = f[k >> 2] | 0 + n = f[l >> 2] | 0 + if ((g | 0) == ((n << 5) | 0)) { + if (((g + 1) | 0) < 0) { + q = 11 + break + } + r = n << 6 + n = (g + 32) & -32 + hi( + j, + g >>> 0 < 1073741823 ? (r >>> 0 < n >>> 0 ? n : r) : 2147483647, + ) + s = f[k >> 2] | 0 + t = f[i >> 2] | 0 + } else { + s = g + t = o + } + f[k >> 2] = s + 1 + o = ((f[j >> 2] | 0) + ((s >>> 5) << 2)) | 0 + f[o >> 2] = f[o >> 2] & ~(1 << (s & 31)) + o = (t + (p << 2)) | 0 + if ((f[o >> 2] | 0) == -1) { + r = a + n = o + while (1) { + f[n >> 2] = g + o = (r + 1) | 0 + a: do + if ( + (r | 0) != -1 + ? ((v = ((o >>> 0) % 3 | 0 | 0) == 0 ? (r + -2) | 0 : o), + (v | 0) != -1) + : 0 + ) { + w = f[e >> 2] | 0 + x = f[(w + 12) >> 2] | 0 + y = v + while (1) { + v = f[(x + (y << 2)) >> 2] | 0 + if ((v | 0) == -1) break + z = (v + 1) | 0 + A = ((z >>> 0) % 3 | 0 | 0) == 0 ? (v + -2) | 0 : z + if ((A | 0) == -1) { + B = -1 + C = -1 + break a + } else y = A + } + x = (y + 1) | 0 + A = ((x >>> 0) % 3 | 0 | 0) == 0 ? (y + -2) | 0 : x + if ((A | 0) == -1) { + B = y + C = -1 + } else { + B = y + C = f[((f[w >> 2] | 0) + (A << 2)) >> 2] | 0 + } + } else { + B = -1 + C = -1 + } + while (0) + n = (t + (C << 2)) | 0 + if ((f[n >> 2] | 0) != -1) break + else r = B + } + } + } + } + r = (a + 1) | 0 + if (r >>> 0 >= h >>> 0) { + q = 3 + break + } + a = r + m = f[e >> 2] | 0 + } + if ((q | 0) == 3) { + u = b + return 1 + } else if ((q | 0) == 11) mq(j) + return 0 + } + function pe(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + d = u + u = (u + 32) | 0 + e = (d + 8) | 0 + g = d + h = (a + 4) | 0 + i = f[h >> 2] | 0 + if (i >>> 0 >= b >>> 0) { + f[h >> 2] = b + u = d + return + } + j = (a + 8) | 0 + k = f[j >> 2] | 0 + l = k << 5 + m = (b - i) | 0 + if ((l >>> 0 < m >>> 0) | (i >>> 0 > ((l - m) | 0) >>> 0)) { + f[e >> 2] = 0 + n = (e + 4) | 0 + f[n >> 2] = 0 + o = (e + 8) | 0 + f[o >> 2] = 0 + if ((b | 0) < 0) mq(a) + p = k << 6 + k = (b + 31) & -32 + hi(e, l >>> 0 < 1073741823 ? (p >>> 0 < k >>> 0 ? k : p) : 2147483647) + p = f[h >> 2] | 0 + f[n >> 2] = p + m + k = f[a >> 2] | 0 + l = k + q = f[e >> 2] | 0 + r = (((l + ((p >>> 5) << 2) - k) << 3) + (p & 31)) | 0 + if ((r | 0) > 0) { + p = r >>> 5 + Xl(q | 0, k | 0, (p << 2) | 0) | 0 + k = r & 31 + r = (q + (p << 2)) | 0 + s = r + if (!k) { + t = 0 + v = s + } else { + w = -1 >>> ((32 - k) | 0) + f[r >> 2] = (f[r >> 2] & ~w) | (f[(l + (p << 2)) >> 2] & w) + t = k + v = s + } + } else { + t = 0 + v = q + } + f[g >> 2] = v + f[(g + 4) >> 2] = t + t = g + g = f[t >> 2] | 0 + v = f[(t + 4) >> 2] | 0 + t = f[a >> 2] | 0 + f[a >> 2] = f[e >> 2] + f[e >> 2] = t + e = f[h >> 2] | 0 + f[h >> 2] = f[n >> 2] + f[n >> 2] = e + e = f[j >> 2] | 0 + f[j >> 2] = f[o >> 2] + f[o >> 2] = e + if (t | 0) br(t) + x = g + y = v + } else { + v = ((f[a >> 2] | 0) + ((i >>> 5) << 2)) | 0 + f[h >> 2] = b + x = v + y = i & 31 + } + if (!m) { + u = d + return + } + i = (y | 0) == 0 + v = x + if (c) { + if (i) { + z = m + A = x + B = v + } else { + c = (32 - y) | 0 + b = c >>> 0 > m >>> 0 ? m : c + f[v >> 2] = f[v >> 2] | ((-1 >>> ((c - b) | 0)) & (-1 << y)) + c = (v + 4) | 0 + z = (m - b) | 0 + A = c + B = c + } + c = z >>> 5 + hj(A | 0, -1, (c << 2) | 0) | 0 + A = z & 31 + z = (B + (c << 2)) | 0 + if (!A) { + u = d + return + } + f[z >> 2] = f[z >> 2] | (-1 >>> ((32 - A) | 0)) + u = d + return + } else { + if (i) { + C = m + D = x + E = v + } else { + x = (32 - y) | 0 + i = x >>> 0 > m >>> 0 ? m : x + f[v >> 2] = f[v >> 2] & ~((-1 >>> ((x - i) | 0)) & (-1 << y)) + y = (v + 4) | 0 + C = (m - i) | 0 + D = y + E = y + } + y = C >>> 5 + hj(D | 0, 0, (y << 2) | 0) | 0 + D = C & 31 + C = (E + (y << 2)) | 0 + if (!D) { + u = d + return + } + f[C >> 2] = f[C >> 2] & ~(-1 >>> ((32 - D) | 0)) + u = d + return + } + } + function qe(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0 + a = u + u = (u + 48) | 0 + g = (a + 36) | 0 + h = (a + 24) | 0 + i = (a + 12) | 0 + j = a + if (!c) { + k = 0 + u = a + return k | 0 + } + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + l = vj(d) | 0 + if (l >>> 0 > 4294967279) mq(g) + if (l >>> 0 < 11) { + b[(g + 11) >> 0] = l + if (!l) m = g + else { + n = g + o = 7 + } + } else { + p = (l + 16) & -16 + q = dn(p) | 0 + f[g >> 2] = q + f[(g + 8) >> 2] = p | -2147483648 + f[(g + 4) >> 2] = l + n = q + o = 7 + } + if ((o | 0) == 7) { + Rg(n | 0, d | 0, l | 0) | 0 + m = n + } + b[(m + l) >> 0] = 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + l = vj(e) | 0 + if (l >>> 0 > 4294967279) mq(h) + if (l >>> 0 < 11) { + b[(h + 11) >> 0] = l + if (!l) r = h + else { + s = h + o = 13 + } + } else { + m = (l + 16) & -16 + n = dn(m) | 0 + f[h >> 2] = n + f[(h + 8) >> 2] = m | -2147483648 + f[(h + 4) >> 2] = l + s = n + o = 13 + } + if ((o | 0) == 13) { + Rg(s | 0, e | 0, l | 0) | 0 + r = s + } + b[(r + l) >> 0] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + l = vj(d) | 0 + if (l >>> 0 > 4294967279) mq(i) + if (l >>> 0 < 11) { + b[(i + 11) >> 0] = l + if (!l) t = i + else { + v = i + o = 19 + } + } else { + r = (l + 16) & -16 + s = dn(r) | 0 + f[i >> 2] = s + f[(i + 8) >> 2] = r | -2147483648 + f[(i + 4) >> 2] = l + v = s + o = 19 + } + if ((o | 0) == 19) { + Rg(v | 0, d | 0, l | 0) | 0 + t = v + } + b[(t + l) >> 0] = 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + l = vj(e) | 0 + if (l >>> 0 > 4294967279) mq(j) + if (l >>> 0 < 11) { + b[(j + 11) >> 0] = l + if (!l) w = j + else { + x = j + o = 25 + } + } else { + t = (l + 16) & -16 + v = dn(t) | 0 + f[j >> 2] = v + f[(j + 8) >> 2] = t | -2147483648 + f[(j + 4) >> 2] = l + x = v + o = 25 + } + if ((o | 0) == 25) { + Rg(x | 0, e | 0, l | 0) | 0 + w = x + } + b[(w + l) >> 0] = 0 + en(c, i, j) + if ((b[(j + 11) >> 0] | 0) < 0) br(f[j >> 2] | 0) + if ((b[(i + 11) >> 0] | 0) < 0) br(f[i >> 2] | 0) + if ((b[(h + 11) >> 0] | 0) < 0) br(f[h >> 2] | 0) + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + k = 1 + u = a + return k | 0 + } + function re(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + f[a >> 2] = f[c >> 2] + d = (c + 4) | 0 + f[(a + 4) >> 2] = f[d >> 2] + e = (c + 8) | 0 + f[(a + 8) >> 2] = f[e >> 2] + g = (c + 12) | 0 + f[(a + 12) >> 2] = f[g >> 2] + f[d >> 2] = 0 + f[e >> 2] = 0 + f[g >> 2] = 0 + g = (c + 16) | 0 + f[(a + 16) >> 2] = f[g >> 2] + e = (c + 20) | 0 + f[(a + 20) >> 2] = f[e >> 2] + d = (c + 24) | 0 + f[(a + 24) >> 2] = f[d >> 2] + f[g >> 2] = 0 + f[e >> 2] = 0 + f[d >> 2] = 0 + b[(a + 28) >> 0] = b[(c + 28) >> 0] | 0 + d = (a + 32) | 0 + e = (c + 32) | 0 + f[d >> 2] = 0 + g = (a + 36) | 0 + f[g >> 2] = 0 + f[(a + 40) >> 2] = 0 + f[d >> 2] = f[e >> 2] + d = (c + 36) | 0 + f[g >> 2] = f[d >> 2] + g = (c + 40) | 0 + f[(a + 40) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[d >> 2] = 0 + f[e >> 2] = 0 + e = (a + 44) | 0 + d = (c + 44) | 0 + f[e >> 2] = 0 + g = (a + 48) | 0 + f[g >> 2] = 0 + f[(a + 52) >> 2] = 0 + f[e >> 2] = f[d >> 2] + e = (c + 48) | 0 + f[g >> 2] = f[e >> 2] + g = (c + 52) | 0 + f[(a + 52) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[e >> 2] = 0 + f[d >> 2] = 0 + d = (a + 56) | 0 + e = (c + 56) | 0 + f[d >> 2] = 0 + g = (a + 60) | 0 + f[g >> 2] = 0 + f[(a + 64) >> 2] = 0 + f[d >> 2] = f[e >> 2] + d = (c + 60) | 0 + f[g >> 2] = f[d >> 2] + g = (c + 64) | 0 + f[(a + 64) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[d >> 2] = 0 + f[e >> 2] = 0 + f[(a + 68) >> 2] = f[(c + 68) >> 2] + f[(a + 72) >> 2] = f[(c + 72) >> 2] + e = (a + 76) | 0 + d = (c + 76) | 0 + f[e >> 2] = 0 + g = (a + 80) | 0 + f[g >> 2] = 0 + f[(a + 84) >> 2] = 0 + f[e >> 2] = f[d >> 2] + e = (c + 80) | 0 + f[g >> 2] = f[e >> 2] + g = (c + 84) | 0 + f[(a + 84) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[e >> 2] = 0 + f[d >> 2] = 0 + d = (a + 88) | 0 + e = (c + 88) | 0 + f[d >> 2] = 0 + g = (a + 92) | 0 + f[g >> 2] = 0 + f[(a + 96) >> 2] = 0 + f[d >> 2] = f[e >> 2] + d = (c + 92) | 0 + f[g >> 2] = f[d >> 2] + g = (c + 96) | 0 + f[(a + 96) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[d >> 2] = 0 + f[e >> 2] = 0 + b[(a + 100) >> 0] = b[(c + 100) >> 0] | 0 + e = (a + 104) | 0 + d = (c + 104) | 0 + f[e >> 2] = 0 + g = (a + 108) | 0 + f[g >> 2] = 0 + f[(a + 112) >> 2] = 0 + f[e >> 2] = f[d >> 2] + e = (c + 108) | 0 + f[g >> 2] = f[e >> 2] + g = (c + 112) | 0 + f[(a + 112) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[e >> 2] = 0 + f[d >> 2] = 0 + d = (a + 116) | 0 + e = (c + 116) | 0 + f[d >> 2] = 0 + g = (a + 120) | 0 + f[g >> 2] = 0 + f[(a + 124) >> 2] = 0 + f[d >> 2] = f[e >> 2] + d = (c + 120) | 0 + f[g >> 2] = f[d >> 2] + g = (c + 124) | 0 + f[(a + 124) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[d >> 2] = 0 + f[e >> 2] = 0 + f[(a + 128) >> 2] = f[(c + 128) >> 2] + f[(a + 132) >> 2] = f[(c + 132) >> 2] + return + } + function se(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0 + h = u + u = (u + 48) | 0 + i = (h + 36) | 0 + j = (h + 24) | 0 + k = (h + 8) | 0 + l = (h + 4) | 0 + m = h + n = (e + 4) | 0 + Bh(i, c, ((f[n >> 2] | 0) - (f[e >> 2] | 0)) >> 2, 2, g, d, 1) + g = f[i >> 2] | 0 + o = ((f[f[g >> 2] >> 2] | 0) + (f[(g + 48) >> 2] | 0)) | 0 + f[k >> 2] = -1 + f[(k + 4) >> 2] = -1 + f[(k + 8) >> 2] = -1 + f[(k + 12) >> 2] = -1 + p = f[(c + 4) >> 2] | 0 + if (((p + -2) | 0) >>> 0 <= 28) { + f[k >> 2] = p + c = 1 << p + f[(k + 4) >> 2] = c + -1 + p = (c + -2) | 0 + f[(k + 8) >> 2] = p + f[(k + 12) >> 2] = ((p | 0) / 2) | 0 + p = f[e >> 2] | 0 + if ((f[n >> 2] | 0) == (p | 0)) q = g + else { + c = (d + 84) | 0 + r = (d + 68) | 0 + s = (d + 48) | 0 + t = (d + 40) | 0 + v = 0 + w = 0 + x = p + while (1) { + p = f[(x + (v << 2)) >> 2] | 0 + if (!(b[c >> 0] | 0)) y = f[((f[r >> 2] | 0) + (p << 2)) >> 2] | 0 + else y = p + p = s + z = f[p >> 2] | 0 + A = f[(p + 4) >> 2] | 0 + p = t + B = f[p >> 2] | 0 + C = on(B | 0, f[(p + 4) >> 2] | 0, y | 0, 0) | 0 + p = Tn(C | 0, I | 0, z | 0, A | 0) | 0 + Rg(j | 0, ((f[f[d >> 2] >> 2] | 0) + p) | 0, B | 0) | 0 + df(k, j, l, m) + f[(o + (w << 2)) >> 2] = f[l >> 2] + f[(o + ((w | 1) << 2)) >> 2] = f[m >> 2] + v = (v + 1) | 0 + x = f[e >> 2] | 0 + if (v >>> 0 >= (((f[n >> 2] | 0) - x) >> 2) >>> 0) break + else w = (w + 2) | 0 + } + q = f[i >> 2] | 0 + } + f[a >> 2] = q + f[i >> 2] = 0 + u = h + return + } + f[a >> 2] = 0 + f[i >> 2] = 0 + if (!g) { + u = h + return + } + i = (g + 88) | 0 + a = f[i >> 2] | 0 + f[i >> 2] = 0 + if (a | 0) { + i = f[(a + 8) >> 2] | 0 + if (i | 0) { + q = (a + 12) | 0 + if ((f[q >> 2] | 0) != (i | 0)) f[q >> 2] = i + br(i) + } + br(a) + } + a = f[(g + 68) >> 2] | 0 + if (a | 0) { + i = (g + 72) | 0 + q = f[i >> 2] | 0 + if ((q | 0) != (a | 0)) + f[i >> 2] = q + (~(((q + -4 - a) | 0) >>> 2) << 2) + br(a) + } + a = (g + 64) | 0 + q = f[a >> 2] | 0 + f[a >> 2] = 0 + if (q | 0) { + a = f[q >> 2] | 0 + if (a | 0) { + i = (q + 4) | 0 + if ((f[i >> 2] | 0) != (a | 0)) f[i >> 2] = a + br(a) + } + br(q) + } + br(g) + u = h + return + } + function te(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = (a + 8) | 0 + e = f[d >> 2] | 0 + g = (a + 4) | 0 + h = f[g >> 2] | 0 + if (((((e - h) | 0) / 136) | 0) >>> 0 >= c >>> 0) { + i = c + j = h + do { + f[j >> 2] = -1 + Ek((j + 4) | 0) + b[(j + 100) >> 0] = 1 + k = (j + 104) | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + f[(k + 16) >> 2] = 0 + f[(k + 20) >> 2] = 0 + f[(k + 24) >> 2] = 0 + j = ((f[g >> 2] | 0) + 136) | 0 + f[g >> 2] = j + i = (i + -1) | 0 + } while ((i | 0) != 0) + return + } + i = f[a >> 2] | 0 + j = (((h - i) | 0) / 136) | 0 + h = (j + c) | 0 + if (h >>> 0 > 31580641) mq(a) + k = (((e - i) | 0) / 136) | 0 + i = k << 1 + e = k >>> 0 < 15790320 ? (i >>> 0 < h >>> 0 ? h : i) : 31580641 + do + if (e) + if (e >>> 0 > 31580641) { + i = ra(8) | 0 + Wo(i, 14941) + f[i >> 2] = 6944 + va(i | 0, 1080, 114) + } else { + l = dn((e * 136) | 0) | 0 + break + } + else l = 0 + while (0) + i = (l + ((j * 136) | 0)) | 0 + j = i + h = (l + ((e * 136) | 0)) | 0 + e = c + c = j + l = i + do { + f[l >> 2] = -1 + Ek((l + 4) | 0) + b[(l + 100) >> 0] = 1 + k = (l + 104) | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + f[(k + 16) >> 2] = 0 + f[(k + 20) >> 2] = 0 + f[(k + 24) >> 2] = 0 + l = (c + 136) | 0 + c = l + e = (e + -1) | 0 + } while ((e | 0) != 0) + e = f[a >> 2] | 0 + l = f[g >> 2] | 0 + if ((l | 0) == (e | 0)) { + m = j + n = e + o = e + } else { + k = l + l = j + j = i + do { + k = (k + -136) | 0 + re((j + -136) | 0, k) + j = (l + -136) | 0 + l = j + } while ((k | 0) != (e | 0)) + m = l + n = f[a >> 2] | 0 + o = f[g >> 2] | 0 + } + f[a >> 2] = m + f[g >> 2] = c + f[d >> 2] = h + h = n + if ((o | 0) != (h | 0)) { + d = o + do { + o = f[(d + -20) >> 2] | 0 + if (o | 0) { + c = (d + -16) | 0 + g = f[c >> 2] | 0 + if ((g | 0) != (o | 0)) + f[c >> 2] = g + (~(((g + -4 - o) | 0) >>> 2) << 2) + br(o) + } + o = f[(d + -32) >> 2] | 0 + if (o | 0) { + g = (d + -28) | 0 + c = f[g >> 2] | 0 + if ((c | 0) != (o | 0)) + f[g >> 2] = c + (~(((c + -4 - o) | 0) >>> 2) << 2) + br(o) + } + yi((d + -132) | 0) + d = (d + -136) | 0 + } while ((d | 0) != (h | 0)) + } + if (!n) return + br(n) + return + } + function ue(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = f[b >> 2] | 0 + b = (a + 12) | 0 + d = (c | 0) == -1 + e = (c + 1) | 0 + do + if (!d) { + g = ((e >>> 0) % 3 | 0 | 0) == 0 ? (c + -2) | 0 : e + if (!((c >>> 0) % 3 | 0)) { + h = g + i = (c + 2) | 0 + break + } else { + h = g + i = (c + -1) | 0 + break + } + } else { + h = -1 + i = -1 + } + while (0) + e = d ? -1 : ((c >>> 0) / 3) | 0 + g = (a + 28) | 0 + j = ((f[g >> 2] | 0) + ((e >>> 5) << 2)) | 0 + f[j >> 2] = (1 << (e & 31)) | f[j >> 2] + j = (a + 172) | 0 + e = (a + 176) | 0 + k = (a + 280) | 0 + if ( + ( + ( + !d + ? ((d = + f[((f[((f[b >> 2] | 0) + 12) >> 2] | 0) + (c << 2)) >> 2] | + 0), + (d | 0) != -1) + : 0 + ) + ? ((a = ((d >>> 0) / 3) | 0), + ((f[((f[g >> 2] | 0) + ((a >>> 5) << 2)) >> 2] & + (1 << (a & 31))) | + 0) == + 0) + : 0 + ) + ? ((a = f[j >> 2] | 0), (f[e >> 2] | 0) != (a | 0)) + : 0 + ) { + d = c >>> 5 + l = 1 << (c & 31) + c = 0 + m = a + do { + a = ((f[k >> 2] | 0) + (c << 5)) | 0 + if ( + !(l & f[((f[(m + ((c * 136) | 0) + 4) >> 2] | 0) + (d << 2)) >> 2]) + ) + Vi(a, 0) + else Vi(a, 1) + c = (c + 1) | 0 + m = f[j >> 2] | 0 + } while (c >>> 0 < (((((f[e >> 2] | 0) - m) | 0) / 136) | 0) >>> 0) + } + if ( + ( + ( + (h | 0) != -1 + ? ((m = + f[((f[((f[b >> 2] | 0) + 12) >> 2] | 0) + (h << 2)) >> 2] | + 0), + (m | 0) != -1) + : 0 + ) + ? ((c = ((m >>> 0) / 3) | 0), + ((f[((f[g >> 2] | 0) + ((c >>> 5) << 2)) >> 2] & + (1 << (c & 31))) | + 0) == + 0) + : 0 + ) + ? ((c = f[j >> 2] | 0), (f[e >> 2] | 0) != (c | 0)) + : 0 + ) { + m = h >>> 5 + d = 1 << (h & 31) + h = 0 + l = c + do { + c = ((f[k >> 2] | 0) + (h << 5)) | 0 + if ( + !(d & f[((f[(l + ((h * 136) | 0) + 4) >> 2] | 0) + (m << 2)) >> 2]) + ) + Vi(c, 0) + else Vi(c, 1) + h = (h + 1) | 0 + l = f[j >> 2] | 0 + } while (h >>> 0 < (((((f[e >> 2] | 0) - l) | 0) / 136) | 0) >>> 0) + } + if ((i | 0) == -1) return 1 + l = f[((f[((f[b >> 2] | 0) + 12) >> 2] | 0) + (i << 2)) >> 2] | 0 + if ((l | 0) == -1) return 1 + b = ((l >>> 0) / 3) | 0 + if ((f[((f[g >> 2] | 0) + ((b >>> 5) << 2)) >> 2] & (1 << (b & 31))) | 0) + return 1 + b = f[j >> 2] | 0 + if ((f[e >> 2] | 0) == (b | 0)) return 1 + g = i >>> 5 + l = 1 << (i & 31) + i = 0 + h = b + do { + b = ((f[k >> 2] | 0) + (i << 5)) | 0 + if (!(l & f[((f[(h + ((i * 136) | 0) + 4) >> 2] | 0) + (g << 2)) >> 2])) + Vi(b, 0) + else Vi(b, 1) + i = (i + 1) | 0 + h = f[j >> 2] | 0 + } while (i >>> 0 < (((((f[e >> 2] | 0) - h) | 0) / 136) | 0) >>> 0) + return 1 + } + function ve(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 8) | 0 + i = (a + 4) | 0 + j = (a + 8) | 0 + Nh(((f[j >> 2] | 0) - (f[i >> 2] | 0)) >> 2, c) | 0 + k = f[i >> 2] | 0 + if ((f[j >> 2] | 0) == (k | 0)) { + u = d + return 1 + } + l = (a + 32) | 0 + a = (c + 16) | 0 + m = (c + 4) | 0 + n = (h + 1) | 0 + o = (h + 1) | 0 + p = (h + 1) | 0 + q = (h + 1) | 0 + r = 0 + s = k + do { + k = + f[ + ((f[((f[l >> 2] | 0) + 8) >> 2] | 0) + + (f[(s + (r << 2)) >> 2] << 2)) >> + 2 + ] | 0 + b[h >> 0] = f[(k + 56) >> 2] + t = a + v = f[t >> 2] | 0 + w = f[(t + 4) >> 2] | 0 + if (((w | 0) > 0) | (((w | 0) == 0) & (v >>> 0 > 0))) { + x = w + y = v + } else { + f[g >> 2] = f[m >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, q) | 0 + v = a + x = f[(v + 4) >> 2] | 0 + y = f[v >> 2] | 0 + } + b[h >> 0] = f[(k + 28) >> 2] + if (((x | 0) > 0) | (((x | 0) == 0) & (y >>> 0 > 0))) { + z = x + A = y + } else { + f[g >> 2] = f[m >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, p) | 0 + v = a + z = f[(v + 4) >> 2] | 0 + A = f[v >> 2] | 0 + } + b[h >> 0] = b[(k + 24) >> 0] | 0 + if (((z | 0) > 0) | (((z | 0) == 0) & (A >>> 0 > 0))) { + B = z + C = A + } else { + f[g >> 2] = f[m >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, o) | 0 + v = a + B = f[(v + 4) >> 2] | 0 + C = f[v >> 2] | 0 + } + b[h >> 0] = b[(k + 32) >> 0] | 0 + if (!(((B | 0) > 0) | (((B | 0) == 0) & (C >>> 0 > 0)))) { + f[g >> 2] = f[m >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, n) | 0 + } + Nh(f[(k + 60) >> 2] | 0, c) | 0 + r = (r + 1) | 0 + s = f[i >> 2] | 0 + } while (r >>> 0 < (((f[j >> 2] | 0) - s) >> 2) >>> 0) + u = d + return 1 + } + function we(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0 + d = u + u = (u + 32) | 0 + e = (d + 16) | 0 + g = (d + 12) | 0 + h = (d + 8) | 0 + i = (d + 4) | 0 + j = d + wp(a) + f[(a + 16) >> 2] = 0 + f[(a + 20) >> 2] = 0 + f[(a + 12) >> 2] = a + 16 + k = (a + 24) | 0 + wp(k) + l = (b + 4) | 0 + if ((a | 0) != (l | 0)) { + f[h >> 2] = f[l >> 2] + f[i >> 2] = b + 8 + f[g >> 2] = f[h >> 2] + f[e >> 2] = f[i >> 2] + Hc(a, g, e) + } + l = (b + 28) | 0 + if ((k | 0) != (l | 0)) { + f[h >> 2] = f[l >> 2] + f[i >> 2] = b + 32 + f[g >> 2] = f[h >> 2] + f[e >> 2] = f[i >> 2] + Hc(k, g, e) + } + f[j >> 2] = 0 + k = (c + 8) | 0 + l = (c + 12) | 0 + c = f[l >> 2] | 0 + m = f[k >> 2] | 0 + if (((c - m) | 0) <= 0) { + u = d + return + } + n = (b + 20) | 0 + b = m + m = c + c = 0 + while (1) { + o = f[((f[(b + (c << 2)) >> 2] | 0) + 56) >> 2] | 0 + p = f[n >> 2] | 0 + if (p) { + q = n + r = p + a: while (1) { + p = r + while (1) { + if ((f[(p + 16) >> 2] | 0) >= (o | 0)) break + s = f[(p + 4) >> 2] | 0 + if (!s) { + t = q + break a + } else p = s + } + r = f[p >> 2] | 0 + if (!r) { + t = p + break + } else q = p + } + if ((t | 0) != (n | 0) ? (o | 0) >= (f[(t + 16) >> 2] | 0) : 0) { + q = (t + 20) | 0 + r = wd(a, j) | 0 + if ((r | 0) != (q | 0)) { + f[h >> 2] = f[q >> 2] + f[i >> 2] = t + 24 + f[g >> 2] = f[h >> 2] + f[e >> 2] = f[i >> 2] + Hc(r, g, e) + } + v = f[j >> 2] | 0 + w = f[k >> 2] | 0 + x = f[l >> 2] | 0 + } else { + v = c + w = b + x = m + } + } else { + v = c + w = b + x = m + } + c = (v + 1) | 0 + f[j >> 2] = c + if ((c | 0) >= (((x - w) >> 2) | 0)) break + else { + b = w + m = x + } + } + u = d + return + } + function xe(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 8) | 0 + i = (a + 12) | 0 + Nh(f[i >> 2] | 0, c) | 0 + if (!(f[i >> 2] | 0)) { + j = 1 + u = d + return j | 0 + } + k = (c + 16) | 0 + l = (c + 4) | 0 + m = (h + 1) | 0 + n = (h + 1) | 0 + o = (h + 1) | 0 + p = 0 + while (1) { + q = f[a >> 2] | 0 + r = f[(q + (p << 3)) >> 2] | 0 + if (r >>> 0 > 63) + if (r >>> 0 > 16383) + if (r >>> 0 > 4194303) { + j = 0 + s = 20 + break + } else { + t = 2 + s = 13 + } + else { + t = 1 + s = 13 + } + else if (!r) { + v = (p + 1) | 0 + w = 0 + while (1) { + if (f[(q + ((v + w) << 3)) >> 2] | 0) { + x = w + break + } + y = (w + 1) | 0 + if (y >>> 0 < 63) w = y + else { + x = y + break + } + } + b[h >> 0] = (x << 2) | 3 + w = k + v = f[(w + 4) >> 2] | 0 + if ( + !(((v | 0) > 0) | (((v | 0) == 0) & ((f[w >> 2] | 0) >>> 0 > 0))) + ) { + f[g >> 2] = f[l >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, o) | 0 + } + z = (x + p) | 0 + } else { + t = 0 + s = 13 + } + if ((s | 0) == 13) { + s = 0 + b[h >> 0] = t | (r << 2) + w = k + v = f[(w + 4) >> 2] | 0 + if ( + !(((v | 0) > 0) | (((v | 0) == 0) & ((f[w >> 2] | 0) >>> 0 > 0))) + ) { + f[g >> 2] = f[l >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, n) | 0 + } + if (!t) z = p + else { + w = 0 + do { + w = (w + 1) | 0 + b[h >> 0] = r >>> (((w << 3) + -2) | 0) + v = k + q = f[(v + 4) >> 2] | 0 + if ( + !( + ((q | 0) > 0) | + (((q | 0) == 0) & ((f[v >> 2] | 0) >>> 0 > 0)) + ) + ) { + f[g >> 2] = f[l >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, m) | 0 + } + } while ((w | 0) < (t | 0)) + z = p + } + } + p = (z + 1) | 0 + if (p >>> 0 >= (f[i >> 2] | 0) >>> 0) { + j = 1 + s = 20 + break + } + } + if ((s | 0) == 20) { + u = d + return j | 0 + } + return 0 + } + function ye(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + g = f[a >> 2] | 0 + h = g + i = ((f[c >> 2] | 0) - h) | 0 + c = (g + i) | 0 + j = (e - d) | 0 + if ((j | 0) <= 0) { + k = c + return k | 0 + } + l = (a + 8) | 0 + m = f[l >> 2] | 0 + n = (a + 4) | 0 + o = f[n >> 2] | 0 + p = o + if ((j | 0) <= ((m - p) | 0)) { + q = (p - c) | 0 + if ((j | 0) > (q | 0)) { + r = (d + q) | 0 + if ((r | 0) == (e | 0)) s = o + else { + t = r + u = o + while (1) { + b[u >> 0] = b[t >> 0] | 0 + t = (t + 1) | 0 + v = ((f[n >> 2] | 0) + 1) | 0 + f[n >> 2] = v + if ((t | 0) == (e | 0)) { + s = v + break + } else u = v + } + } + if ((q | 0) > 0) { + w = r + x = s + } else { + k = c + return k | 0 + } + } else { + w = e + x = o + } + s = (x - (c + j)) | 0 + r = (c + s) | 0 + if (r >>> 0 < o >>> 0) { + q = r + r = x + do { + b[r >> 0] = b[q >> 0] | 0 + q = (q + 1) | 0 + r = ((f[n >> 2] | 0) + 1) | 0 + f[n >> 2] = r + } while ((q | 0) != (o | 0)) + } + if (s | 0) Xl((x + (0 - s)) | 0, c | 0, s | 0) | 0 + if ((w | 0) == (d | 0)) { + k = c + return k | 0 + } else { + y = d + z = c + } + while (1) { + b[z >> 0] = b[y >> 0] | 0 + y = (y + 1) | 0 + if ((y | 0) == (w | 0)) { + k = c + break + } else z = (z + 1) | 0 + } + return k | 0 + } + z = (p - h + j) | 0 + if ((z | 0) < 0) mq(a) + j = (m - h) | 0 + h = j << 1 + m = j >>> 0 < 1073741823 ? (h >>> 0 < z >>> 0 ? z : h) : 2147483647 + h = c + if (!m) A = 0 + else A = dn(m) | 0 + z = (A + i) | 0 + i = z + j = (A + m) | 0 + if ((d | 0) == (e | 0)) { + B = i + C = g + } else { + g = d + d = i + i = z + do { + b[i >> 0] = b[g >> 0] | 0 + i = (d + 1) | 0 + d = i + g = (g + 1) | 0 + } while ((g | 0) != (e | 0)) + B = d + C = f[a >> 2] | 0 + } + d = (h - C) | 0 + e = (z + (0 - d)) | 0 + if ((d | 0) > 0) Rg(e | 0, C | 0, d | 0) | 0 + d = ((f[n >> 2] | 0) - h) | 0 + if ((d | 0) > 0) { + h = B + Rg(h | 0, c | 0, d | 0) | 0 + D = (h + d) | 0 + E = f[a >> 2] | 0 + } else { + D = B + E = C + } + f[a >> 2] = e + f[n >> 2] = D + f[l >> 2] = j + if (!E) { + k = z + return k | 0 + } + br(E) + k = z + return k | 0 + } + function ze(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + e = u + u = (u + 16) | 0 + g = e + h = f[((f[(c + 4) >> 2] | 0) + (d << 2)) >> 2] | 0 + d = f[(c + 28) >> 2] | 0 + c = f[((f[((f[(d + 4) >> 2] | 0) + 8) >> 2] | 0) + (h << 2)) >> 2] | 0 + switch (f[(c + 28) >> 2] | 0) { + case 5: + case 6: + case 3: + case 4: + case 1: + case 2: { + i = dn(40) | 0 + Ao(i) + j = i + k = j + f[a >> 2] = k + u = e + return + } + case 9: { + l = 3 + break + } + default: { + } + } + if ((l | 0) == 3) { + i = f[(d + 48) >> 2] | 0 + d = dn(32) | 0 + f[g >> 2] = d + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 17 + m = d + n = 12932 + o = (m + 17) | 0 + do { + b[m >> 0] = b[n >> 0] | 0 + m = (m + 1) | 0 + n = (n + 1) | 0 + } while ((m | 0) < (o | 0)) + b[(d + 17) >> 0] = 0 + d = (i + 16) | 0 + n = f[d >> 2] | 0 + if (n) { + p = d + q = n + a: while (1) { + n = q + while (1) { + if ((f[(n + 16) >> 2] | 0) >= (h | 0)) break + r = f[(n + 4) >> 2] | 0 + if (!r) { + s = p + break a + } else n = r + } + q = f[n >> 2] | 0 + if (!q) { + s = n + break + } else p = n + } + if ( + ((s | 0) != (d | 0) ? (h | 0) >= (f[(s + 16) >> 2] | 0) : 0) + ? ((h = (s + 20) | 0), (sh(h, g) | 0) != 0) + : 0 + ) + t = yk(h, g, -1) | 0 + else l = 12 + } else l = 12 + if ((l | 0) == 12) t = yk(i, g, -1) | 0 + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + if ((t | 0) > 0) + if ((f[(c + 56) >> 2] | 0) == 1) { + c = dn(48) | 0 + m = c + o = (m + 48) | 0 + do { + f[m >> 2] = 0 + m = (m + 4) | 0 + } while ((m | 0) < (o | 0)) + Ao(c) + f[c >> 2] = 2256 + f[(c + 40) >> 2] = 1152 + f[(c + 44) >> 2] = -1 + j = c + k = j + f[a >> 2] = k + u = e + return + } else { + c = dn(64) | 0 + mm(c) + j = c + k = j + f[a >> 2] = k + u = e + return + } + } + c = dn(36) | 0 + wm(c) + j = c + k = j + f[a >> 2] = k + u = e + return + } + function Ae(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + d = (c | 0) == (a | 0) + b[(c + 12) >> 0] = d & 1 + if (d) return + else e = c + while (1) { + g = (e + 8) | 0 + h = f[g >> 2] | 0 + c = (h + 12) | 0 + if (b[c >> 0] | 0) { + i = 23 + break + } + j = (h + 8) | 0 + k = f[j >> 2] | 0 + d = f[k >> 2] | 0 + if ((d | 0) == (h | 0)) { + l = f[(k + 4) >> 2] | 0 + if (!l) { + i = 7 + break + } + m = (l + 12) | 0 + if (!(b[m >> 0] | 0)) n = m + else { + i = 7 + break + } + } else { + if (!d) { + i = 16 + break + } + m = (d + 12) | 0 + if (!(b[m >> 0] | 0)) n = m + else { + i = 16 + break + } + } + b[c >> 0] = 1 + c = (k | 0) == (a | 0) + b[(k + 12) >> 0] = c & 1 + b[n >> 0] = 1 + if (c) { + i = 23 + break + } else e = k + } + if ((i | 0) == 7) { + if ((f[h >> 2] | 0) == (e | 0)) { + o = h + p = k + } else { + n = (h + 4) | 0 + a = f[n >> 2] | 0 + c = f[a >> 2] | 0 + f[n >> 2] = c + if (!c) q = k + else { + f[(c + 8) >> 2] = h + q = f[j >> 2] | 0 + } + f[(a + 8) >> 2] = q + q = f[j >> 2] | 0 + f[((f[q >> 2] | 0) == (h | 0) ? q : (q + 4) | 0) >> 2] = a + f[a >> 2] = h + f[j >> 2] = a + o = a + p = f[(a + 8) >> 2] | 0 + } + b[(o + 12) >> 0] = 1 + b[(p + 12) >> 0] = 0 + o = f[p >> 2] | 0 + a = (o + 4) | 0 + q = f[a >> 2] | 0 + f[p >> 2] = q + if (q | 0) f[(q + 8) >> 2] = p + q = (p + 8) | 0 + f[(o + 8) >> 2] = f[q >> 2] + c = f[q >> 2] | 0 + f[((f[c >> 2] | 0) == (p | 0) ? c : (c + 4) | 0) >> 2] = o + f[a >> 2] = p + f[q >> 2] = o + return + } else if ((i | 0) == 16) { + if ((f[h >> 2] | 0) == (e | 0)) { + o = (e + 4) | 0 + q = f[o >> 2] | 0 + f[h >> 2] = q + if (!q) r = k + else { + f[(q + 8) >> 2] = h + r = f[j >> 2] | 0 + } + f[g >> 2] = r + r = f[j >> 2] | 0 + f[((f[r >> 2] | 0) == (h | 0) ? r : (r + 4) | 0) >> 2] = e + f[o >> 2] = h + f[j >> 2] = e + s = e + t = f[(e + 8) >> 2] | 0 + } else { + s = h + t = k + } + b[(s + 12) >> 0] = 1 + b[(t + 12) >> 0] = 0 + s = (t + 4) | 0 + k = f[s >> 2] | 0 + h = f[k >> 2] | 0 + f[s >> 2] = h + if (h | 0) f[(h + 8) >> 2] = t + h = (t + 8) | 0 + f[(k + 8) >> 2] = f[h >> 2] + s = f[h >> 2] | 0 + f[((f[s >> 2] | 0) == (t | 0) ? s : (s + 4) | 0) >> 2] = k + f[k >> 2] = t + f[h >> 2] = k + return + } else if ((i | 0) == 23) return + } + function Be(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = Oa, + C = Oa + h = u + u = (u + 16) | 0 + i = h + j = (e + 4) | 0 + k = b[(d + 24) >> 0] | 0 + l = (k << 24) >> 24 + Bh(a, c, ((f[j >> 2] | 0) - (f[e >> 2] | 0)) >> 2, l, g, d, 1) + g = f[a >> 2] | 0 + a = ((f[f[g >> 2] >> 2] | 0) + (f[(g + 48) >> 2] | 0)) | 0 + g = f[(c + 4) >> 2] | 0 + sq(i) + yo(i, $(n[(c + 20) >> 2]), ((1 << g) + -1) | 0) + g = _q(l >>> 0 > 1073741823 ? -1 : l << 2) | 0 + m = f[j >> 2] | 0 + j = f[e >> 2] | 0 + e = j + if ((m | 0) == (j | 0)) { + $q(g) + u = h + return + } + o = (d + 68) | 0 + p = (d + 48) | 0 + q = (d + 40) | 0 + r = (c + 8) | 0 + c = (b[(d + 84) >> 0] | 0) == 0 + s = (m - j) >> 2 + if ((k << 24) >> 24 > 0) { + t = 0 + v = 0 + } else { + k = 0 + do { + j = f[(e + (k << 2)) >> 2] | 0 + if (c) w = f[((f[o >> 2] | 0) + (j << 2)) >> 2] | 0 + else w = j + j = p + m = f[j >> 2] | 0 + x = f[(j + 4) >> 2] | 0 + j = q + y = f[j >> 2] | 0 + z = on(y | 0, f[(j + 4) >> 2] | 0, w | 0, 0) | 0 + j = Tn(z | 0, I | 0, m | 0, x | 0) | 0 + Rg(g | 0, ((f[f[d >> 2] >> 2] | 0) + j) | 0, y | 0) | 0 + k = (k + 1) | 0 + } while (k >>> 0 < s >>> 0) + $q(g) + u = h + return + } + while (1) { + k = f[(e + (t << 2)) >> 2] | 0 + if (c) A = f[((f[o >> 2] | 0) + (k << 2)) >> 2] | 0 + else A = k + k = p + w = f[k >> 2] | 0 + y = f[(k + 4) >> 2] | 0 + k = q + j = f[k >> 2] | 0 + x = on(j | 0, f[(k + 4) >> 2] | 0, A | 0, 0) | 0 + k = Tn(x | 0, I | 0, w | 0, y | 0) | 0 + Rg(g | 0, ((f[f[d >> 2] >> 2] | 0) + k) | 0, j | 0) | 0 + j = f[r >> 2] | 0 + B = $(n[i >> 2]) + k = 0 + y = v + while (1) { + C = $(n[(g + (k << 2)) >> 2]) + w = ~~$(J($($(B * $(C - $(n[(j + (k << 2)) >> 2]))) + $(0.5)))) + f[(a + (y << 2)) >> 2] = w + k = (k + 1) | 0 + if ((k | 0) == (l | 0)) break + else y = (y + 1) | 0 + } + t = (t + 1) | 0 + if (t >>> 0 >= s >>> 0) break + else v = (v + l) | 0 + } + $q(g) + u = h + return + } + function Ce(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0 + d = f[b >> 2] | 0 + b = (a + 12) | 0 + e = (d | 0) == -1 + do + if (e) { + g = 1 + h = -1 + i = -1 + } else { + j = (d + (((d >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + if ((j | 0) != -1) { + k = f[((f[b >> 2] | 0) + 12) >> 2] | 0 + l = j + while (1) { + j = f[(k + (l << 2)) >> 2] | 0 + if ((j | 0) == -1) { + m = 0 + n = l + break + } + o = (j + 1) | 0 + l = ((o >>> 0) % 3 | 0 | 0) == 0 ? (j + -2) | 0 : o + if ((l | 0) == -1) { + m = 1 + n = -1 + break + } + } + if (e) { + g = m + h = -1 + i = n + break + } else { + p = m + q = n + } + } else { + p = 1 + q = -1 + } + g = p + h = f[((f[f[b >> 2] >> 2] | 0) + (d << 2)) >> 2] | 0 + i = q + } + while (0) + if (c) { + c = ((f[(a + 84) >> 2] | 0) + ((h >>> 5) << 2)) | 0 + f[c >> 2] = f[c >> 2] | (1 << (h & 31)) + r = 1 + } else r = 0 + c = f[((f[(a + 152) >> 2] | 0) + (h << 2)) >> 2] | 0 + q = ((f[(a + 140) >> 2] | 0) + ((c >>> 5) << 2)) | 0 + f[q >> 2] = f[q >> 2] | (1 << (c & 31)) + if (!g) { + g = ((((i >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + i) | 0 + if ((g | 0) == -1) { + s = -1 + t = i + } else { + s = f[((f[f[b >> 2] >> 2] | 0) + (g << 2)) >> 2] | 0 + t = i + } + } else { + s = -1 + t = -1 + } + if ((s | 0) == (h | 0)) { + u = r + return u | 0 + } + i = f[(a + 84) >> 2] | 0 + a = r + r = s + s = t + while (1) { + t = (i + ((r >>> 5) << 2)) | 0 + f[t >> 2] = f[t >> 2] | (1 << (r & 31)) + t = (a + 1) | 0 + g = (s + 1) | 0 + a: do + if ( + (s | 0) != -1 + ? ((c = ((g >>> 0) % 3 | 0 | 0) == 0 ? (s + -2) | 0 : g), + (c | 0) != -1) + : 0 + ) { + q = f[b >> 2] | 0 + d = f[(q + 12) >> 2] | 0 + p = c + while (1) { + c = f[(d + (p << 2)) >> 2] | 0 + if ((c | 0) == -1) break + n = (c + 1) | 0 + m = ((n >>> 0) % 3 | 0 | 0) == 0 ? (c + -2) | 0 : n + if ((m | 0) == -1) { + v = -1 + w = -1 + break a + } else p = m + } + d = ((((p >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + p) | 0 + if ((d | 0) == -1) { + v = -1 + w = p + } else { + v = f[((f[q >> 2] | 0) + (d << 2)) >> 2] | 0 + w = p + } + } else { + v = -1 + w = -1 + } + while (0) + if ((v | 0) == (h | 0)) { + u = t + break + } else { + a = t + r = v + s = w + } + } + return u | 0 + } + function De(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + e = (a + 100) | 0 + if (d >>> 0 < (f[e >> 2] | 0) >>> 0) { + f[c >> 2] = d + 1 + g = h[d >> 0] | 0 + } else g = Di(a) | 0 + switch (g | 0) { + case 43: + case 45: { + d = ((g | 0) == 45) & 1 + i = f[c >> 2] | 0 + if (i >>> 0 < (f[e >> 2] | 0) >>> 0) { + f[c >> 2] = i + 1 + j = h[i >> 0] | 0 + } else j = Di(a) | 0 + if ( + ((b | 0) != 0) & (((j + -48) | 0) >>> 0 > 9) + ? (f[e >> 2] | 0) != 0 + : 0 + ) { + f[c >> 2] = (f[c >> 2] | 0) + -1 + k = d + l = j + } else { + k = d + l = j + } + break + } + default: { + k = 0 + l = g + } + } + if (((l + -48) | 0) >>> 0 > 9) + if (!(f[e >> 2] | 0)) { + m = -2147483648 + n = 0 + } else { + f[c >> 2] = (f[c >> 2] | 0) + -1 + m = -2147483648 + n = 0 + } + else { + g = 0 + j = l + while (1) { + g = (j + -48 + ((g * 10) | 0)) | 0 + l = f[c >> 2] | 0 + if (l >>> 0 < (f[e >> 2] | 0) >>> 0) { + f[c >> 2] = l + 1 + o = h[l >> 0] | 0 + } else o = Di(a) | 0 + if (!((((o + -48) | 0) >>> 0 < 10) & ((g | 0) < 214748364))) break + else j = o + } + j = (((g | 0) < 0) << 31) >> 31 + if (((o + -48) | 0) >>> 0 < 10) { + l = o + d = g + b = j + while (1) { + i = on(d | 0, b | 0, 10, 0) | 0 + p = I + q = Tn(l | 0, ((((l | 0) < 0) << 31) >> 31) | 0, -48, -1) | 0 + r = Tn(q | 0, I | 0, i | 0, p | 0) | 0 + p = I + i = f[c >> 2] | 0 + if (i >>> 0 < (f[e >> 2] | 0) >>> 0) { + f[c >> 2] = i + 1 + s = h[i >> 0] | 0 + } else s = Di(a) | 0 + if ( + (((s + -48) | 0) >>> 0 < 10) & + (((p | 0) < 21474836) | + (((p | 0) == 21474836) & (r >>> 0 < 2061584302))) + ) { + l = s + d = r + b = p + } else { + t = s + u = r + v = p + break + } + } + } else { + t = o + u = g + v = j + } + if (((t + -48) | 0) >>> 0 < 10) + do { + t = f[c >> 2] | 0 + if (t >>> 0 < (f[e >> 2] | 0) >>> 0) { + f[c >> 2] = t + 1 + w = h[t >> 0] | 0 + } else w = Di(a) | 0 + } while (((w + -48) | 0) >>> 0 < 10) + if (f[e >> 2] | 0) f[c >> 2] = (f[c >> 2] | 0) + -1 + c = (k | 0) != 0 + k = Vn(0, 0, u | 0, v | 0) | 0 + m = c ? I : v + n = c ? k : u + } + I = m + return n | 0 + } + function Ee(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + b = (a + 1176) | 0 + c = f[b >> 2] | 0 + if (c | 0) { + d = (a + 1180) | 0 + e = f[d >> 2] | 0 + if ((e | 0) == (c | 0)) g = c + else { + h = e + while (1) { + e = (h + -12) | 0 + f[d >> 2] = e + i = f[e >> 2] | 0 + if (!i) j = e + else { + e = (h + -8) | 0 + k = f[e >> 2] | 0 + if ((k | 0) != (i | 0)) + f[e >> 2] = k + (~(((k + -4 - i) | 0) >>> 2) << 2) + br(i) + j = f[d >> 2] | 0 + } + if ((j | 0) == (c | 0)) break + else h = j + } + g = f[b >> 2] | 0 + } + br(g) + } + g = (a + 1164) | 0 + b = f[g >> 2] | 0 + if (b | 0) { + j = (a + 1168) | 0 + h = f[j >> 2] | 0 + if ((h | 0) == (b | 0)) l = b + else { + c = h + while (1) { + h = (c + -12) | 0 + f[j >> 2] = h + d = f[h >> 2] | 0 + if (!d) m = h + else { + h = (c + -8) | 0 + i = f[h >> 2] | 0 + if ((i | 0) != (d | 0)) + f[h >> 2] = i + (~(((i + -4 - d) | 0) >>> 2) << 2) + br(d) + m = f[j >> 2] | 0 + } + if ((m | 0) == (b | 0)) break + else c = m + } + l = f[g >> 2] | 0 + } + br(l) + } + l = f[(a + 1152) >> 2] | 0 + if (l | 0) { + g = (a + 1156) | 0 + m = f[g >> 2] | 0 + if ((m | 0) != (l | 0)) + f[g >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + br(l) + } + l = f[(a + 1140) >> 2] | 0 + if (l | 0) { + m = (a + 1144) | 0 + g = f[m >> 2] | 0 + if ((g | 0) != (l | 0)) + f[m >> 2] = g + (~(((g + -4 - l) | 0) >>> 2) << 2) + br(l) + } + l = f[(a + 1128) >> 2] | 0 + if (!l) { + n = (a + 1108) | 0 + dl(n) + o = (a + 1088) | 0 + dl(o) + p = (a + 1068) | 0 + dl(p) + q = (a + 1036) | 0 + tj(q) + r = (a + 12) | 0 + xh(r) + return + } + g = (a + 1132) | 0 + m = f[g >> 2] | 0 + if ((m | 0) != (l | 0)) f[g >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + br(l) + n = (a + 1108) | 0 + dl(n) + o = (a + 1088) | 0 + dl(o) + p = (a + 1068) | 0 + dl(p) + q = (a + 1036) | 0 + tj(q) + r = (a + 12) | 0 + xh(r) + return + } + function Fe(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + d = u + u = (u + 16) | 0 + e = d + g = (a + 4) | 0 + h = f[g >> 2] | 0 + i = f[((f[a >> 2] | 0) + 52) >> 2] | 0 + if (!h) { + if (!(Sa[i & 31](a, c, 0) | 0)) { + j = 0 + u = d + return j | 0 + } + } else if ( + !(Sa[i & 31](a, c, f[((f[(h + 4) >> 2] | 0) + 80) >> 2] | 0) | 0) + ) { + j = 0 + u = d + return j | 0 + } + if (!(b[(a + 28) >> 0] | 0)) { + j = 1 + u = d + return j | 0 + } + h = f[(a + 8) >> 2] | 0 + i = f[(a + 32) >> 2] | 0 + a = f[(h + 80) >> 2] | 0 + f[e >> 2] = 0 + k = (e + 4) | 0 + f[k >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (a) + if (a >>> 0 > 1073741823) mq(e) + else { + l = a << 2 + m = dn(l) | 0 + f[e >> 2] = m + n = (m + (a << 2)) | 0 + f[(e + 8) >> 2] = n + hj(m | 0, 0, l | 0) | 0 + f[k >> 2] = n + o = m + p = n + q = m + break + } + else { + o = 0 + p = 0 + q = 0 + } + while (0) + e = f[(c + 4) >> 2] | 0 + a = f[c >> 2] | 0 + c = a + a: do + if ((e | 0) != (a | 0)) { + m = (e - a) >> 2 + if (b[(h + 84) >> 0] | 0) { + n = 0 + while (1) { + f[(o + (f[(c + (n << 2)) >> 2] << 2)) >> 2] = n + n = (n + 1) | 0 + if (n >>> 0 >= m >>> 0) break a + } + } + n = f[(h + 68) >> 2] | 0 + l = 0 + do { + f[(o + (f[(n + (f[(c + (l << 2)) >> 2] << 2)) >> 2] << 2)) >> 2] = l + l = (l + 1) | 0 + } while (l >>> 0 < m >>> 0) + } + while (0) + c = f[((f[((f[g >> 2] | 0) + 4) >> 2] | 0) + 80) >> 2] | 0 + b: do + if (c | 0) { + g = f[(i + 68) >> 2] | 0 + if (b[(h + 84) >> 0] | 0) { + a = 0 + while (1) { + f[(g + (a << 2)) >> 2] = f[(o + (a << 2)) >> 2] + a = (a + 1) | 0 + if (a >>> 0 >= c >>> 0) break b + } + } + a = f[(h + 68) >> 2] | 0 + e = 0 + do { + f[(g + (e << 2)) >> 2] = f[(o + (f[(a + (e << 2)) >> 2] << 2)) >> 2] + e = (e + 1) | 0 + } while (e >>> 0 < c >>> 0) + } + while (0) + if (o | 0) { + if ((p | 0) != (o | 0)) + f[k >> 2] = p + (~(((p + -4 - o) | 0) >>> 2) << 2) + br(q) + } + j = 1 + u = d + return j | 0 + } + function Ge(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + c = u + u = (u + 16) | 0 + d = c + f[a >> 2] = 0 + f[(a + 8) >> 2] = b + yh((a + 12) | 0) + rn((a + 1036) | 0) + to((a + 1068) | 0) + to((a + 1088) | 0) + to((a + 1108) | 0) + e = (a + 1128) | 0 + f[e >> 2] = 0 + g = (a + 1132) | 0 + f[g >> 2] = 0 + f[(a + 1136) >> 2] = 0 + h = (b | 0) == 0 + do + if (!h) + if (b >>> 0 > 1073741823) mq(e) + else { + i = b << 2 + j = dn(i) | 0 + f[e >> 2] = j + k = (j + (b << 2)) | 0 + f[(a + 1136) >> 2] = k + hj(j | 0, 0, i | 0) | 0 + f[g >> 2] = k + break + } + while (0) + g = (a + 1140) | 0 + f[g >> 2] = 0 + e = (a + 1144) | 0 + f[e >> 2] = 0 + f[(a + 1148) >> 2] = 0 + if (!h) { + k = b << 2 + i = dn(k) | 0 + f[g >> 2] = i + g = (i + (b << 2)) | 0 + f[(a + 1148) >> 2] = g + hj(i | 0, 0, k | 0) | 0 + f[e >> 2] = g + } + g = (a + 1152) | 0 + f[g >> 2] = 0 + e = (a + 1156) | 0 + f[e >> 2] = 0 + f[(a + 1160) >> 2] = 0 + if (!h) { + k = b << 2 + i = dn(k) | 0 + f[g >> 2] = i + g = (i + (b << 2)) | 0 + f[(a + 1160) >> 2] = g + hj(i | 0, 0, k | 0) | 0 + f[e >> 2] = g + } + g = (b << 5) | 1 + f[d >> 2] = 0 + e = (d + 4) | 0 + f[e >> 2] = 0 + f[(d + 8) >> 2] = 0 + if (!h) { + k = b << 2 + i = dn(k) | 0 + f[d >> 2] = i + j = (i + (b << 2)) | 0 + f[(d + 8) >> 2] = j + hj(i | 0, 0, k | 0) | 0 + f[e >> 2] = j + } + fk((a + 1164) | 0, g, d) + j = f[d >> 2] | 0 + if (j | 0) { + k = f[e >> 2] | 0 + if ((k | 0) != (j | 0)) + f[e >> 2] = k + (~(((k + -4 - j) | 0) >>> 2) << 2) + br(j) + } + f[d >> 2] = 0 + j = (d + 4) | 0 + f[j >> 2] = 0 + f[(d + 8) >> 2] = 0 + if (!h) { + h = b << 2 + k = dn(h) | 0 + f[d >> 2] = k + e = (k + (b << 2)) | 0 + f[(d + 8) >> 2] = e + hj(k | 0, 0, h | 0) | 0 + f[j >> 2] = e + } + fk((a + 1176) | 0, g, d) + g = f[d >> 2] | 0 + if (!g) { + u = c + return + } + d = f[j >> 2] | 0 + if ((d | 0) != (g | 0)) f[j >> 2] = d + (~(((d + -4 - g) | 0) >>> 2) << 2) + br(g) + u = c + return + } + function He(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0.0, + D = 0.0, + E = 0.0 + g = u + u = (u + 16) | 0 + h = g + i = (b + 16) | 0 + f[a >> 2] = f[i >> 2] + f[(a + 4) >> 2] = f[(i + 4) >> 2] + f[(a + 8) >> 2] = f[(i + 8) >> 2] + f[(a + 12) >> 2] = f[(i + 12) >> 2] + f[(a + 16) >> 2] = f[(i + 16) >> 2] + f[(a + 20) >> 2] = f[(i + 20) >> 2] + j = (a + 8) | 0 + f[j >> 2] = (f[j >> 2] | 0) + d + j = (d | 0) > 0 + if (j) { + k = (b + 4) | 0 + l = (a + 16) | 0 + m = (a + 12) | 0 + n = f[b >> 2] | 0 + o = n + q = 0 + r = o + s = n + n = o + while (1) { + o = f[(c + (q << 2)) >> 2] | 0 + t = f[k >> 2] | 0 + if (((t - s) >> 2) >>> 0 > o >>> 0) { + v = r + w = n + } else { + x = (o + 1) | 0 + f[h >> 2] = 0 + y = (t - s) >> 2 + z = s + A = t + if (x >>> 0 <= y >>> 0) + if ( + x >>> 0 < y >>> 0 + ? ((t = (z + (x << 2)) | 0), (t | 0) != (A | 0)) + : 0 + ) { + f[k >> 2] = A + (~(((A + -4 - t) | 0) >>> 2) << 2) + B = r + } else B = r + else { + kh(b, (x - y) | 0, h) + B = f[b >> 2] | 0 + } + v = B + w = B + } + y = (w + (o << 2)) | 0 + x = f[y >> 2] | 0 + s = w + if ((x | 0) <= 1) + if ( + (x | 0) == 0 + ? ((f[l >> 2] = (f[l >> 2] | 0) + 1), + o >>> 0 > (f[m >> 2] | 0) >>> 0) + : 0 + ) { + f[m >> 2] = o + C = 0.0 + } else C = 0.0 + else { + D = +(x | 0) + C = +Fg(D) * D + } + x = ((f[y >> 2] | 0) + 1) | 0 + f[y >> 2] = x + D = +(x | 0) + E = +Fg(D) * D - C + p[a >> 3] = +p[a >> 3] + E + q = (q + 1) | 0 + if ((q | 0) == (d | 0)) break + else { + r = v + n = w + } + } + } + if (e) { + f[i >> 2] = f[a >> 2] + f[(i + 4) >> 2] = f[(a + 4) >> 2] + f[(i + 8) >> 2] = f[(a + 8) >> 2] + f[(i + 12) >> 2] = f[(a + 12) >> 2] + f[(i + 16) >> 2] = f[(a + 16) >> 2] + u = g + return + } + if (!j) { + u = g + return + } + j = f[b >> 2] | 0 + b = 0 + do { + a = (j + (f[(c + (b << 2)) >> 2] << 2)) | 0 + f[a >> 2] = (f[a >> 2] | 0) + -1 + b = (b + 1) | 0 + } while ((b | 0) != (d | 0)) + u = g + return + } + function Ie(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0.0 + a: do + if (b >>> 0 <= 20) + do + switch (b | 0) { + case 9: { + d = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + e = f[d >> 2] | 0 + f[c >> 2] = d + 4 + f[a >> 2] = e + break a + break + } + case 10: { + e = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + d = f[e >> 2] | 0 + f[c >> 2] = e + 4 + e = a + f[e >> 2] = d + f[(e + 4) >> 2] = (((d | 0) < 0) << 31) >> 31 + break a + break + } + case 11: { + d = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + e = f[d >> 2] | 0 + f[c >> 2] = d + 4 + d = a + f[d >> 2] = e + f[(d + 4) >> 2] = 0 + break a + break + } + case 12: { + d = ((f[c >> 2] | 0) + (8 - 1)) & ~(8 - 1) + e = d + g = f[e >> 2] | 0 + h = f[(e + 4) >> 2] | 0 + f[c >> 2] = d + 8 + d = a + f[d >> 2] = g + f[(d + 4) >> 2] = h + break a + break + } + case 13: { + h = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + d = f[h >> 2] | 0 + f[c >> 2] = h + 4 + h = ((d & 65535) << 16) >> 16 + d = a + f[d >> 2] = h + f[(d + 4) >> 2] = (((h | 0) < 0) << 31) >> 31 + break a + break + } + case 14: { + h = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + d = f[h >> 2] | 0 + f[c >> 2] = h + 4 + h = a + f[h >> 2] = d & 65535 + f[(h + 4) >> 2] = 0 + break a + break + } + case 15: { + h = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + d = f[h >> 2] | 0 + f[c >> 2] = h + 4 + h = ((d & 255) << 24) >> 24 + d = a + f[d >> 2] = h + f[(d + 4) >> 2] = (((h | 0) < 0) << 31) >> 31 + break a + break + } + case 16: { + h = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + d = f[h >> 2] | 0 + f[c >> 2] = h + 4 + h = a + f[h >> 2] = d & 255 + f[(h + 4) >> 2] = 0 + break a + break + } + case 17: { + h = ((f[c >> 2] | 0) + (8 - 1)) & ~(8 - 1) + i = +p[h >> 3] + f[c >> 2] = h + 8 + p[a >> 3] = i + break a + break + } + case 18: { + h = ((f[c >> 2] | 0) + (8 - 1)) & ~(8 - 1) + i = +p[h >> 3] + f[c >> 2] = h + 8 + p[a >> 3] = i + break a + break + } + default: + break a + } + while (0) + while (0) + return + } + function Je(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + c = u + u = (u + 16) | 0 + d = (c + 4) | 0 + e = c + g = (c + 8) | 0 + if (!(Qa[f[((f[a >> 2] | 0) + 32) >> 2] & 127](a) | 0)) { + h = 0 + u = c + return h | 0 + } + i = (a + 44) | 0 + j = f[i >> 2] | 0 + k = (a + 8) | 0 + l = (a + 12) | 0 + m = f[l >> 2] | 0 + n = f[k >> 2] | 0 + b[g >> 0] = ((m - n) | 0) >>> 2 + o = (j + 16) | 0 + p = f[(o + 4) >> 2] | 0 + if (((p | 0) > 0) | (((p | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0))) { + q = k + r = n + s = m + } else { + f[e >> 2] = f[(j + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(j, d, g, (g + 1) | 0) | 0 + q = k + r = f[k >> 2] | 0 + s = f[l >> 2] | 0 + } + a: do + if ((r | 0) != (s | 0)) { + l = (a + 4) | 0 + k = r + while (1) { + g = f[k >> 2] | 0 + k = (k + 4) | 0 + if ( + !(Sa[f[((f[g >> 2] | 0) + 8) >> 2] & 31](g, a, f[l >> 2] | 0) | 0) + ) { + h = 0 + break + } + if ((k | 0) == (s | 0)) break a + } + u = c + return h | 0 + } + while (0) + if (!(vc(a) | 0)) { + h = 0 + u = c + return h | 0 + } + s = (a + 32) | 0 + r = f[s >> 2] | 0 + k = (a + 36) | 0 + l = f[k >> 2] | 0 + b: do + if ((r | 0) != (l | 0)) { + g = r + do { + if ( + !(Ra[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a, f[g >> 2] | 0) | 0) + ) { + h = 0 + t = 18 + break + } + g = (g + 4) | 0 + } while ((g | 0) != (l | 0)) + if ((t | 0) == 18) { + u = c + return h | 0 + } + g = f[s >> 2] | 0 + d = f[k >> 2] | 0 + if ((g | 0) != (d | 0)) { + j = g + while (1) { + g = f[((f[q >> 2] | 0) + (f[j >> 2] << 2)) >> 2] | 0 + j = (j + 4) | 0 + if ( + !( + Ra[f[((f[g >> 2] | 0) + 12) >> 2] & 127](g, f[i >> 2] | 0) | 0 + ) + ) { + h = 0 + break + } + if ((j | 0) == (d | 0)) break b + } + u = c + return h | 0 + } + } + while (0) + h = Qa[f[((f[a >> 2] | 0) + 44) >> 2] & 127](a) | 0 + u = c + return h | 0 + } + function Ke(a, b) { + a = a | 0 + b = b | 0 + fd(a, b) + fd((a + 32) | 0, b) + fd((a + 64) | 0, b) + fd((a + 96) | 0, b) + fd((a + 128) | 0, b) + fd((a + 160) | 0, b) + fd((a + 192) | 0, b) + fd((a + 224) | 0, b) + fd((a + 256) | 0, b) + fd((a + 288) | 0, b) + fd((a + 320) | 0, b) + fd((a + 352) | 0, b) + fd((a + 384) | 0, b) + fd((a + 416) | 0, b) + fd((a + 448) | 0, b) + fd((a + 480) | 0, b) + fd((a + 512) | 0, b) + fd((a + 544) | 0, b) + fd((a + 576) | 0, b) + fd((a + 608) | 0, b) + fd((a + 640) | 0, b) + fd((a + 672) | 0, b) + fd((a + 704) | 0, b) + fd((a + 736) | 0, b) + fd((a + 768) | 0, b) + fd((a + 800) | 0, b) + fd((a + 832) | 0, b) + fd((a + 864) | 0, b) + fd((a + 896) | 0, b) + fd((a + 928) | 0, b) + fd((a + 960) | 0, b) + fd((a + 992) | 0, b) + fd((a + 1024) | 0, b) + return + } + function Le(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + e = u + u = (u + 64) | 0 + g = (e + 60) | 0 + h = e + i = dn(80) | 0 + j = f[(c + 8) >> 2] | 0 + f[(i + 4) >> 2] = 0 + f[i >> 2] = 3232 + k = (i + 8) | 0 + l = (i + 12) | 0 + m = (l + 44) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (m | 0)) + f[k >> 2] = 3256 + n = (i + 56) | 0 + f[n >> 2] = 0 + f[(i + 60) >> 2] = 0 + f[(i + 64) >> 2] = 0 + f[(i + 68) >> 2] = j + f[(i + 72) >> 2] = d + o = (i + 76) | 0 + f[o >> 2] = 0 + p = i + q = f[(c + 12) >> 2] | 0 + r = (h + 4) | 0 + l = (r + 4) | 0 + m = (l + 40) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (m | 0)) + f[h >> 2] = 3256 + l = (h + 48) | 0 + f[l >> 2] = 0 + m = (h + 52) | 0 + f[m >> 2] = 0 + f[(h + 56) >> 2] = 0 + s = q + f[r >> 2] = s + t = (((((f[(s + 4) >> 2] | 0) - (f[q >> 2] | 0)) >> 2) >>> 0) / 3) | 0 + b[g >> 0] = 0 + Xg((h + 24) | 0, t, g) + t = f[r >> 2] | 0 + r = ((f[(t + 28) >> 2] | 0) - (f[(t + 24) >> 2] | 0)) >> 2 + b[g >> 0] = 0 + Xg((h + 36) | 0, r, g) + f[(h + 8) >> 2] = q + f[(h + 12) >> 2] = d + f[(h + 16) >> 2] = j + f[(h + 20) >> 2] = i + f[o >> 2] = c + 72 + ef(k, h) | 0 + Yf(n, f[l >> 2] | 0, f[m >> 2] | 0) + f[a >> 2] = p + f[h >> 2] = 3256 + p = f[l >> 2] | 0 + if (p | 0) { + l = f[m >> 2] | 0 + if ((l | 0) != (p | 0)) + f[m >> 2] = l + (~(((l + -4 - p) | 0) >>> 2) << 2) + br(p) + } + f[h >> 2] = 3276 + p = f[(h + 36) >> 2] | 0 + if (p | 0) br(p) + p = f[(h + 24) >> 2] | 0 + if (!p) { + u = e + return + } + br(p) + u = e + return + } + function Me(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + c = u + u = (u + 32) | 0 + d = c + e = (a + 4) | 0 + g = f[a >> 2] | 0 + h = ((f[e >> 2] | 0) - g) >> 2 + i = (h + 1) | 0 + if (i >>> 0 > 1073741823) mq(a) + j = (a + 8) | 0 + k = ((f[j >> 2] | 0) - g) | 0 + g = k >> 1 + l = (k >> 2) >>> 0 < 536870911 ? (g >>> 0 < i >>> 0 ? i : g) : 1073741823 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = a + 8 + do + if (l) + if (l >>> 0 > 1073741823) { + g = ra(8) | 0 + Wo(g, 14941) + f[g >> 2] = 6944 + va(g | 0, 1080, 114) + } else { + m = dn(l << 2) | 0 + break + } + else m = 0 + while (0) + f[d >> 2] = m + g = (m + (h << 2)) | 0 + h = (d + 8) | 0 + i = (d + 4) | 0 + f[i >> 2] = g + k = (m + (l << 2)) | 0 + l = (d + 12) | 0 + f[l >> 2] = k + m = f[b >> 2] | 0 + f[b >> 2] = 0 + f[g >> 2] = m + m = (g + 4) | 0 + f[h >> 2] = m + b = f[a >> 2] | 0 + n = f[e >> 2] | 0 + if ((n | 0) == (b | 0)) { + o = g + p = l + q = h + r = b + s = m + t = n + v = k + w = o + f[a >> 2] = w + f[i >> 2] = r + f[e >> 2] = s + f[q >> 2] = t + x = f[j >> 2] | 0 + f[j >> 2] = v + f[p >> 2] = x + f[d >> 2] = r + Wh(d) + u = c + return + } else { + y = n + z = g + } + do { + y = (y + -4) | 0 + g = f[y >> 2] | 0 + f[y >> 2] = 0 + f[(z + -4) >> 2] = g + z = ((f[i >> 2] | 0) + -4) | 0 + f[i >> 2] = z + } while ((y | 0) != (b | 0)) + o = z + p = l + q = h + r = f[a >> 2] | 0 + s = f[h >> 2] | 0 + t = f[e >> 2] | 0 + v = f[l >> 2] | 0 + w = o + f[a >> 2] = w + f[i >> 2] = r + f[e >> 2] = s + f[q >> 2] = t + x = f[j >> 2] | 0 + f[j >> 2] = v + f[p >> 2] = x + f[d >> 2] = r + Wh(d) + u = c + return + } + function Ne(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + d = u + u = (u + 32) | 0 + e = (d + 12) | 0 + g = d + h = hl(c, 0) | 0 + if (!h) { + f[a >> 2] = 0 + u = d + return + } + i = f[(c + 100) >> 2] | 0 + j = f[(c + 96) >> 2] | 0 + c = (i - j) | 0 + k = ((c | 0) / 12) | 0 + f[e >> 2] = 0 + l = (e + 4) | 0 + f[l >> 2] = 0 + f[(e + 8) >> 2] = 0 + m = j + do + if (c) + if (k >>> 0 > 357913941) mq(e) + else { + n = dn(c) | 0 + f[e >> 2] = n + f[(e + 8) >> 2] = n + ((k * 12) | 0) + hj(n | 0, 0, c | 0) | 0 + f[l >> 2] = n + c + o = n + break + } + else o = 0 + while (0) + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + a: do + if ((i | 0) != (j | 0)) { + c = (g + 4) | 0 + n = (g + 8) | 0 + if (b[(h + 84) >> 0] | 0) { + p = 0 + while (1) { + q = (m + ((p * 12) | 0)) | 0 + f[g >> 2] = f[q >> 2] + f[(g + 4) >> 2] = f[(q + 4) >> 2] + f[(g + 8) >> 2] = f[(q + 8) >> 2] + f[(o + ((p * 12) | 0)) >> 2] = f[g >> 2] + f[(o + ((p * 12) | 0) + 4) >> 2] = f[c >> 2] + f[(o + ((p * 12) | 0) + 8) >> 2] = f[n >> 2] + p = (p + 1) | 0 + if (p >>> 0 >= k >>> 0) break a + } + } + p = f[(h + 68) >> 2] | 0 + q = 0 + do { + r = f[(p + (f[(m + ((q * 12) | 0)) >> 2] << 2)) >> 2] | 0 + f[g >> 2] = r + s = f[(p + (f[(m + ((q * 12) | 0) + 4) >> 2] << 2)) >> 2] | 0 + f[c >> 2] = s + t = f[(p + (f[(m + ((q * 12) | 0) + 8) >> 2] << 2)) >> 2] | 0 + f[n >> 2] = t + f[(o + ((q * 12) | 0)) >> 2] = r + f[(o + ((q * 12) | 0) + 4) >> 2] = s + f[(o + ((q * 12) | 0) + 8) >> 2] = t + q = (q + 1) | 0 + } while (q >>> 0 < k >>> 0) + } + while (0) + Cj(a, e) + a = f[e >> 2] | 0 + if (a | 0) { + e = f[l >> 2] | 0 + if ((e | 0) != (a | 0)) + f[l >> 2] = e + ((~(((((e + -12 - a) | 0) >>> 0) / 12) | 0) * 12) | 0) + br(a) + } + u = d + return + } + function Oe(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + c = u + u = (u + 16) | 0 + d = c + f[a >> 2] = 0 + f[(a + 8) >> 2] = b + rn((a + 12) | 0) + to((a + 44) | 0) + to((a + 64) | 0) + to((a + 84) | 0) + e = (a + 104) | 0 + f[e >> 2] = 0 + g = (a + 108) | 0 + f[g >> 2] = 0 + f[(a + 112) >> 2] = 0 + h = (b | 0) == 0 + do + if (!h) + if (b >>> 0 > 1073741823) mq(e) + else { + i = b << 2 + j = dn(i) | 0 + f[e >> 2] = j + k = (j + (b << 2)) | 0 + f[(a + 112) >> 2] = k + hj(j | 0, 0, i | 0) | 0 + f[g >> 2] = k + break + } + while (0) + g = (a + 116) | 0 + f[g >> 2] = 0 + e = (a + 120) | 0 + f[e >> 2] = 0 + f[(a + 124) >> 2] = 0 + if (!h) { + k = b << 2 + i = dn(k) | 0 + f[g >> 2] = i + g = (i + (b << 2)) | 0 + f[(a + 124) >> 2] = g + hj(i | 0, 0, k | 0) | 0 + f[e >> 2] = g + } + g = (a + 128) | 0 + f[g >> 2] = 0 + e = (a + 132) | 0 + f[e >> 2] = 0 + f[(a + 136) >> 2] = 0 + if (!h) { + k = b << 2 + i = dn(k) | 0 + f[g >> 2] = i + g = (i + (b << 2)) | 0 + f[(a + 136) >> 2] = g + hj(i | 0, 0, k | 0) | 0 + f[e >> 2] = g + } + g = (b << 5) | 1 + f[d >> 2] = 0 + e = (d + 4) | 0 + f[e >> 2] = 0 + f[(d + 8) >> 2] = 0 + if (!h) { + k = b << 2 + i = dn(k) | 0 + f[d >> 2] = i + j = (i + (b << 2)) | 0 + f[(d + 8) >> 2] = j + hj(i | 0, 0, k | 0) | 0 + f[e >> 2] = j + } + fk((a + 140) | 0, g, d) + j = f[d >> 2] | 0 + if (j | 0) { + k = f[e >> 2] | 0 + if ((k | 0) != (j | 0)) + f[e >> 2] = k + (~(((k + -4 - j) | 0) >>> 2) << 2) + br(j) + } + f[d >> 2] = 0 + j = (d + 4) | 0 + f[j >> 2] = 0 + f[(d + 8) >> 2] = 0 + if (!h) { + h = b << 2 + k = dn(h) | 0 + f[d >> 2] = k + e = (k + (b << 2)) | 0 + f[(d + 8) >> 2] = e + hj(k | 0, 0, h | 0) | 0 + f[j >> 2] = e + } + fk((a + 152) | 0, g, d) + g = f[d >> 2] | 0 + if (!g) { + u = c + return + } + d = f[j >> 2] | 0 + if ((d | 0) != (g | 0)) f[j >> 2] = d + (~(((d + -4 - g) | 0) >>> 2) << 2) + br(g) + u = c + return + } + function Pe(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + c = u + u = (u + 16) | 0 + d = c + f[a >> 2] = 0 + f[(a + 8) >> 2] = b + to((a + 12) | 0) + to((a + 32) | 0) + to((a + 52) | 0) + to((a + 72) | 0) + e = (a + 92) | 0 + f[e >> 2] = 0 + g = (a + 96) | 0 + f[g >> 2] = 0 + f[(a + 100) >> 2] = 0 + h = (b | 0) == 0 + do + if (!h) + if (b >>> 0 > 1073741823) mq(e) + else { + i = b << 2 + j = dn(i) | 0 + f[e >> 2] = j + k = (j + (b << 2)) | 0 + f[(a + 100) >> 2] = k + hj(j | 0, 0, i | 0) | 0 + f[g >> 2] = k + break + } + while (0) + g = (a + 104) | 0 + f[g >> 2] = 0 + e = (a + 108) | 0 + f[e >> 2] = 0 + f[(a + 112) >> 2] = 0 + if (!h) { + k = b << 2 + i = dn(k) | 0 + f[g >> 2] = i + g = (i + (b << 2)) | 0 + f[(a + 112) >> 2] = g + hj(i | 0, 0, k | 0) | 0 + f[e >> 2] = g + } + g = (a + 116) | 0 + f[g >> 2] = 0 + e = (a + 120) | 0 + f[e >> 2] = 0 + f[(a + 124) >> 2] = 0 + if (!h) { + k = b << 2 + i = dn(k) | 0 + f[g >> 2] = i + g = (i + (b << 2)) | 0 + f[(a + 124) >> 2] = g + hj(i | 0, 0, k | 0) | 0 + f[e >> 2] = g + } + g = (b << 5) | 1 + f[d >> 2] = 0 + e = (d + 4) | 0 + f[e >> 2] = 0 + f[(d + 8) >> 2] = 0 + if (!h) { + k = b << 2 + i = dn(k) | 0 + f[d >> 2] = i + j = (i + (b << 2)) | 0 + f[(d + 8) >> 2] = j + hj(i | 0, 0, k | 0) | 0 + f[e >> 2] = j + } + fk((a + 128) | 0, g, d) + j = f[d >> 2] | 0 + if (j | 0) { + k = f[e >> 2] | 0 + if ((k | 0) != (j | 0)) + f[e >> 2] = k + (~(((k + -4 - j) | 0) >>> 2) << 2) + br(j) + } + f[d >> 2] = 0 + j = (d + 4) | 0 + f[j >> 2] = 0 + f[(d + 8) >> 2] = 0 + if (!h) { + h = b << 2 + k = dn(h) | 0 + f[d >> 2] = k + e = (k + (b << 2)) | 0 + f[(d + 8) >> 2] = e + hj(k | 0, 0, h | 0) | 0 + f[j >> 2] = e + } + fk((a + 140) | 0, g, d) + g = f[d >> 2] | 0 + if (!g) { + u = c + return + } + d = f[j >> 2] | 0 + if ((d | 0) != (g | 0)) f[j >> 2] = d + (~(((d + -4 - g) | 0) >>> 2) << 2) + br(g) + u = c + return + } + function Qe(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + d = dn(40) | 0 + e = (d + 16) | 0 + dj(e, c) + dj((d + 28) | 0, (c + 12) | 0) + c = (a + 4) | 0 + g = f[c >> 2] | 0 + do + if (g) { + h = b[(d + 27) >> 0] | 0 + i = (h << 24) >> 24 < 0 + j = i ? f[(d + 20) >> 2] | 0 : h & 255 + h = i ? f[e >> 2] | 0 : e + i = g + while (1) { + k = (i + 16) | 0 + l = b[(k + 11) >> 0] | 0 + m = (l << 24) >> 24 < 0 + n = m ? f[(i + 20) >> 2] | 0 : l & 255 + l = n >>> 0 < j >>> 0 ? n : j + if ( + (l | 0) != 0 + ? ((o = Pk(h, m ? f[k >> 2] | 0 : k, l) | 0), (o | 0) != 0) + : 0 + ) + if ((o | 0) < 0) p = 7 + else p = 9 + else if (j >>> 0 < n >>> 0) p = 7 + else p = 9 + if ((p | 0) == 7) { + p = 0 + n = f[i >> 2] | 0 + if (!n) { + p = 8 + break + } else q = n + } else if ((p | 0) == 9) { + p = 0 + r = (i + 4) | 0 + n = f[r >> 2] | 0 + if (!n) { + p = 11 + break + } else q = n + } + i = q + } + if ((p | 0) == 8) { + s = i + t = i + break + } else if ((p | 0) == 11) { + s = i + t = r + break + } + } else { + s = c + t = c + } + while (0) + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = s + f[t >> 2] = d + s = f[f[a >> 2] >> 2] | 0 + if (!s) { + u = d + v = (a + 4) | 0 + w = f[v >> 2] | 0 + Ae(w, u) + x = (a + 8) | 0 + y = f[x >> 2] | 0 + z = (y + 1) | 0 + f[x >> 2] = z + return d | 0 + } + f[a >> 2] = s + u = f[t >> 2] | 0 + v = (a + 4) | 0 + w = f[v >> 2] | 0 + Ae(w, u) + x = (a + 8) | 0 + y = f[x >> 2] | 0 + z = (y + 1) | 0 + f[x >> 2] = z + return d | 0 + } + function Re(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = Oa, + B = Oa + g = u + u = (u + 16) | 0 + h = g + i = b[(d + 24) >> 0] | 0 + j = (i << 24) >> 24 + Bh(a, c, e, j, 0, d, 1) + k = f[a >> 2] | 0 + a = ((f[f[k >> 2] >> 2] | 0) + (f[(k + 48) >> 2] | 0)) | 0 + k = f[(c + 4) >> 2] | 0 + sq(h) + yo(h, $(n[(c + 20) >> 2]), ((1 << k) + -1) | 0) + k = _q(j >>> 0 > 1073741823 ? -1 : j << 2) | 0 + if (!e) { + $q(k) + u = g + return + } + l = (d + 68) | 0 + m = (d + 48) | 0 + o = (d + 40) | 0 + p = (c + 8) | 0 + c = (b[(d + 84) >> 0] | 0) == 0 + if ((i << 24) >> 24 > 0) { + q = 0 + r = 0 + } else { + i = 0 + do { + if (c) s = f[((f[l >> 2] | 0) + (i << 2)) >> 2] | 0 + else s = i + t = m + v = f[t >> 2] | 0 + w = f[(t + 4) >> 2] | 0 + t = o + x = f[t >> 2] | 0 + y = on(x | 0, f[(t + 4) >> 2] | 0, s | 0, 0) | 0 + t = Tn(y | 0, I | 0, v | 0, w | 0) | 0 + Rg(k | 0, ((f[f[d >> 2] >> 2] | 0) + t) | 0, x | 0) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (e | 0)) + $q(k) + u = g + return + } + while (1) { + if (c) z = f[((f[l >> 2] | 0) + (r << 2)) >> 2] | 0 + else z = r + i = m + s = f[i >> 2] | 0 + x = f[(i + 4) >> 2] | 0 + i = o + t = f[i >> 2] | 0 + w = on(t | 0, f[(i + 4) >> 2] | 0, z | 0, 0) | 0 + i = Tn(w | 0, I | 0, s | 0, x | 0) | 0 + Rg(k | 0, ((f[f[d >> 2] >> 2] | 0) + i) | 0, t | 0) | 0 + t = f[p >> 2] | 0 + A = $(n[h >> 2]) + i = 0 + x = q + while (1) { + B = $(n[(k + (i << 2)) >> 2]) + s = ~~$(J($($(A * $(B - $(n[(t + (i << 2)) >> 2]))) + $(0.5)))) + f[(a + (x << 2)) >> 2] = s + i = (i + 1) | 0 + if ((i | 0) == (j | 0)) break + else x = (x + 1) | 0 + } + r = (r + 1) | 0 + if ((r | 0) == (e | 0)) break + else q = (q + j) | 0 + } + $q(k) + u = g + return + } + function Se(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3340 + ii((a + 200) | 0) + b = f[(a + 184) >> 2] | 0 + if (b | 0) { + c = (a + 188) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + _i((a + 172) | 0) + b = f[(a + 152) >> 2] | 0 + if (b | 0) { + d = (a + 156) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 140) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 128) >> 2] | 0 + if (b | 0) { + c = b + do { + b = c + c = f[c >> 2] | 0 + br(b) + } while ((c | 0) != 0) + } + c = (a + 120) | 0 + b = f[c >> 2] | 0 + f[c >> 2] = 0 + if (b | 0) br(b) + b = f[(a + 108) >> 2] | 0 + if (b | 0) { + c = (a + 112) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + ((~(((((d + -12 - b) | 0) >>> 0) / 12) | 0) * 12) | 0) + br(b) + } + b = f[(a + 96) >> 2] | 0 + if (b | 0) { + d = (a + 100) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 84) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 72) >> 2] | 0 + if (b | 0) { + c = (a + 76) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 52) >> 2] | 0 + if (b | 0) { + d = (a + 56) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 40) >> 2] | 0 + if (b | 0) { + c = (a + 44) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 28) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 16) >> 2] | 0 + if (b | 0) { + d = (a + 20) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = (a + 12) | 0 + a = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!a) return + ui(a) + br(a) + return + } + function Te(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + b = (a + 140) | 0 + c = f[b >> 2] | 0 + if (c | 0) { + d = (a + 144) | 0 + e = f[d >> 2] | 0 + if ((e | 0) == (c | 0)) g = c + else { + h = e + while (1) { + e = (h + -12) | 0 + f[d >> 2] = e + i = f[e >> 2] | 0 + if (!i) j = e + else { + e = (h + -8) | 0 + k = f[e >> 2] | 0 + if ((k | 0) != (i | 0)) + f[e >> 2] = k + (~(((k + -4 - i) | 0) >>> 2) << 2) + br(i) + j = f[d >> 2] | 0 + } + if ((j | 0) == (c | 0)) break + else h = j + } + g = f[b >> 2] | 0 + } + br(g) + } + g = (a + 128) | 0 + b = f[g >> 2] | 0 + if (b | 0) { + j = (a + 132) | 0 + h = f[j >> 2] | 0 + if ((h | 0) == (b | 0)) l = b + else { + c = h + while (1) { + h = (c + -12) | 0 + f[j >> 2] = h + d = f[h >> 2] | 0 + if (!d) m = h + else { + h = (c + -8) | 0 + i = f[h >> 2] | 0 + if ((i | 0) != (d | 0)) + f[h >> 2] = i + (~(((i + -4 - d) | 0) >>> 2) << 2) + br(d) + m = f[j >> 2] | 0 + } + if ((m | 0) == (b | 0)) break + else c = m + } + l = f[g >> 2] | 0 + } + br(l) + } + l = f[(a + 116) >> 2] | 0 + if (l | 0) { + g = (a + 120) | 0 + m = f[g >> 2] | 0 + if ((m | 0) != (l | 0)) + f[g >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + br(l) + } + l = f[(a + 104) >> 2] | 0 + if (l | 0) { + m = (a + 108) | 0 + g = f[m >> 2] | 0 + if ((g | 0) != (l | 0)) + f[m >> 2] = g + (~(((g + -4 - l) | 0) >>> 2) << 2) + br(l) + } + l = f[(a + 92) >> 2] | 0 + if (!l) { + n = (a + 72) | 0 + dl(n) + o = (a + 52) | 0 + dl(o) + p = (a + 32) | 0 + dl(p) + q = (a + 12) | 0 + dl(q) + return + } + g = (a + 96) | 0 + m = f[g >> 2] | 0 + if ((m | 0) != (l | 0)) f[g >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + br(l) + n = (a + 72) | 0 + dl(n) + o = (a + 52) | 0 + dl(o) + p = (a + 32) | 0 + dl(p) + q = (a + 12) | 0 + dl(q) + return + } + function Ue(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + b = (a + 152) | 0 + c = f[b >> 2] | 0 + if (c | 0) { + d = (a + 156) | 0 + e = f[d >> 2] | 0 + if ((e | 0) == (c | 0)) g = c + else { + h = e + while (1) { + e = (h + -12) | 0 + f[d >> 2] = e + i = f[e >> 2] | 0 + if (!i) j = e + else { + e = (h + -8) | 0 + k = f[e >> 2] | 0 + if ((k | 0) != (i | 0)) + f[e >> 2] = k + (~(((k + -4 - i) | 0) >>> 2) << 2) + br(i) + j = f[d >> 2] | 0 + } + if ((j | 0) == (c | 0)) break + else h = j + } + g = f[b >> 2] | 0 + } + br(g) + } + g = (a + 140) | 0 + b = f[g >> 2] | 0 + if (b | 0) { + j = (a + 144) | 0 + h = f[j >> 2] | 0 + if ((h | 0) == (b | 0)) l = b + else { + c = h + while (1) { + h = (c + -12) | 0 + f[j >> 2] = h + d = f[h >> 2] | 0 + if (!d) m = h + else { + h = (c + -8) | 0 + i = f[h >> 2] | 0 + if ((i | 0) != (d | 0)) + f[h >> 2] = i + (~(((i + -4 - d) | 0) >>> 2) << 2) + br(d) + m = f[j >> 2] | 0 + } + if ((m | 0) == (b | 0)) break + else c = m + } + l = f[g >> 2] | 0 + } + br(l) + } + l = f[(a + 128) >> 2] | 0 + if (l | 0) { + g = (a + 132) | 0 + m = f[g >> 2] | 0 + if ((m | 0) != (l | 0)) + f[g >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + br(l) + } + l = f[(a + 116) >> 2] | 0 + if (l | 0) { + m = (a + 120) | 0 + g = f[m >> 2] | 0 + if ((g | 0) != (l | 0)) + f[m >> 2] = g + (~(((g + -4 - l) | 0) >>> 2) << 2) + br(l) + } + l = f[(a + 104) >> 2] | 0 + if (!l) { + n = (a + 84) | 0 + dl(n) + o = (a + 64) | 0 + dl(o) + p = (a + 44) | 0 + dl(p) + q = (a + 12) | 0 + tj(q) + return + } + g = (a + 108) | 0 + m = f[g >> 2] | 0 + if ((m | 0) != (l | 0)) f[g >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + br(l) + n = (a + 84) | 0 + dl(n) + o = (a + 64) | 0 + dl(o) + p = (a + 44) | 0 + dl(p) + q = (a + 12) | 0 + tj(q) + return + } + function Ve(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3080 + jj((a + 200) | 0) + b = f[(a + 184) >> 2] | 0 + if (b | 0) { + c = (a + 188) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + _i((a + 172) | 0) + b = f[(a + 152) >> 2] | 0 + if (b | 0) { + d = (a + 156) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 140) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 128) >> 2] | 0 + if (b | 0) { + c = b + do { + b = c + c = f[c >> 2] | 0 + br(b) + } while ((c | 0) != 0) + } + c = (a + 120) | 0 + b = f[c >> 2] | 0 + f[c >> 2] = 0 + if (b | 0) br(b) + b = f[(a + 108) >> 2] | 0 + if (b | 0) { + c = (a + 112) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + ((~(((((d + -12 - b) | 0) >>> 0) / 12) | 0) * 12) | 0) + br(b) + } + b = f[(a + 96) >> 2] | 0 + if (b | 0) { + d = (a + 100) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 84) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 72) >> 2] | 0 + if (b | 0) { + c = (a + 76) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 52) >> 2] | 0 + if (b | 0) { + d = (a + 56) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 40) >> 2] | 0 + if (b | 0) { + c = (a + 44) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 28) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 16) >> 2] | 0 + if (b | 0) { + d = (a + 20) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = (a + 12) | 0 + a = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!a) return + ui(a) + br(a) + return + } + function We(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = u + u = (u + 48) | 0 + d = (c + 44) | 0 + e = (c + 40) | 0 + g = (c + 36) | 0 + h = (c + 32) | 0 + i = c + f[h >> 2] = f[(a + 60) >> 2] + j = (b + 16) | 0 + k = j + l = f[(k + 4) >> 2] | 0 + if (!(((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0)))) { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, h, (h + 4) | 0) | 0 + } + rn(i) + lk(i) + if ((f[h >> 2] | 0) > 0) { + k = (a + 56) | 0 + l = 1 + m = 0 + do { + n = l + l = + ((f[((f[k >> 2] | 0) + ((m >>> 5) << 2)) >> 2] & (1 << (m & 31))) | + 0) != + 0 + Vi(i, n ^ l ^ 1) + m = (m + 1) | 0 + } while ((m | 0) < (f[h >> 2] | 0)) + } + fd(i, b) + f[g >> 2] = f[(a + 12) >> 2] + h = j + m = f[h >> 2] | 0 + l = f[(h + 4) >> 2] | 0 + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + o = l + p = m + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + m = j + o = f[(m + 4) >> 2] | 0 + p = f[m >> 2] | 0 + } + f[g >> 2] = f[(a + 20) >> 2] + if (((o | 0) > 0) | (((o | 0) == 0) & (p >>> 0 > 0))) { + tj(i) + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + tj(i) + u = c + return 1 + } + function Xe(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + d = f[c >> 2] | 0 + c = f[d >> 2] | 0 + e = f[(a + 4) >> 2] | 0 + g = f[(d + 4) >> 2] | 0 + h = (e + -1) | 0 + i = ((h & e) | 0) == 0 + if (!i) + if (g >>> 0 < e >>> 0) j = g + else j = (g >>> 0) % (e >>> 0) | 0 + else j = h & g + g = ((f[a >> 2] | 0) + (j << 2)) | 0 + k = f[g >> 2] | 0 + while (1) { + l = f[k >> 2] | 0 + if ((l | 0) == (d | 0)) break + else k = l + } + if ((k | 0) != ((a + 8) | 0)) { + l = f[(k + 4) >> 2] | 0 + if (!i) + if (l >>> 0 < e >>> 0) m = l + else m = (l >>> 0) % (e >>> 0) | 0 + else m = l & h + if ((m | 0) == (j | 0)) { + n = c + o = 21 + } else o = 13 + } else o = 13 + do + if ((o | 0) == 13) { + if (c | 0) { + m = f[(c + 4) >> 2] | 0 + if (!i) + if (m >>> 0 < e >>> 0) p = m + else p = (m >>> 0) % (e >>> 0) | 0 + else p = m & h + if ((p | 0) == (j | 0)) { + q = c + r = c + o = 22 + break + } + } + f[g >> 2] = 0 + n = f[d >> 2] | 0 + o = 21 + } + while (0) + if ((o | 0) == 21) { + g = n + if (!n) s = g + else { + q = n + r = g + o = 22 + } + } + if ((o | 0) == 22) { + o = f[(q + 4) >> 2] | 0 + if (!i) + if (o >>> 0 < e >>> 0) t = o + else t = (o >>> 0) % (e >>> 0) | 0 + else t = o & h + if ((t | 0) == (j | 0)) s = r + else { + f[((f[a >> 2] | 0) + (t << 2)) >> 2] = k + s = f[d >> 2] | 0 + } + } + f[k >> 2] = s + f[d >> 2] = 0 + s = (a + 12) | 0 + f[s >> 2] = (f[s >> 2] | 0) + -1 + if (!d) return c | 0 + s = (d + 8) | 0 + a = f[(d + 20) >> 2] | 0 + if (a | 0) { + k = (d + 24) | 0 + if ((f[k >> 2] | 0) != (a | 0)) f[k >> 2] = a + br(a) + } + if ((b[(s + 11) >> 0] | 0) < 0) br(f[s >> 2] | 0) + br(d) + return c | 0 + } + function Ye(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0 + b = u + u = (u + 16) | 0 + c = (b + 4) | 0 + d = b + f[c >> 2] = 0 + e = (c + 4) | 0 + f[e >> 2] = 0 + f[(c + 8) >> 2] = 0 + g = (a + 56) | 0 + h = f[g >> 2] | 0 + i = ((f[(h + 100) >> 2] | 0) - (f[(h + 96) >> 2] | 0)) | 0 + j = ((i | 0) / 12) | 0 + if (!i) { + k = 0 + l = 0 + } else { + i = (c + 8) | 0 + m = 0 + n = 0 + o = h + h = 0 + p = 0 + while (1) { + q = f[(o + 96) >> 2] | 0 + r = f[(q + ((n * 12) | 0)) >> 2] | 0 + s = (r - m) | 0 + t = (((s | 0) > -1 ? s : (0 - s) | 0) << 1) | (s >>> 31) + f[d >> 2] = t + if ((h | 0) == (p | 0)) { + Ci(c, d) + v = f[e >> 2] | 0 + w = f[i >> 2] | 0 + } else { + f[h >> 2] = t + t = (h + 4) | 0 + f[e >> 2] = t + v = t + w = p + } + t = f[(q + ((n * 12) | 0) + 4) >> 2] | 0 + s = (t - r) | 0 + r = (((s | 0) > -1 ? s : (0 - s) | 0) << 1) | (s >>> 31) + f[d >> 2] = r + if ((v | 0) == (w | 0)) { + Ci(c, d) + x = f[e >> 2] | 0 + y = f[i >> 2] | 0 + } else { + f[v >> 2] = r + r = (v + 4) | 0 + f[e >> 2] = r + x = r + y = w + } + r = f[(q + ((n * 12) | 0) + 8) >> 2] | 0 + q = (r - t) | 0 + t = (((q | 0) > -1 ? q : (0 - q) | 0) << 1) | (q >>> 31) + f[d >> 2] = t + if ((x | 0) == (y | 0)) Ci(c, d) + else { + f[x >> 2] = t + f[e >> 2] = x + 4 + } + t = (n + 1) | 0 + if (t >>> 0 >= j >>> 0) break + m = r + n = t + o = f[g >> 2] | 0 + h = f[e >> 2] | 0 + p = f[i >> 2] | 0 + } + k = f[c >> 2] | 0 + l = f[e >> 2] | 0 + } + Dc(k, (l - k) >> 2, 1, 0, f[(a + 44) >> 2] | 0) | 0 + a = f[c >> 2] | 0 + if (!a) { + u = b + return 1 + } + c = f[e >> 2] | 0 + if ((c | 0) != (a | 0)) f[e >> 2] = c + (~(((c + -4 - a) | 0) >>> 2) << 2) + br(a) + u = b + return 1 + } + function Ze(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = f[(a + 12) >> 2] | 0 + e = (a + 108) | 0 + g = f[e >> 2] | 0 + h = f[(g + 80) >> 2] | 0 + b[(c + 84) >> 0] = 0 + i = (c + 68) | 0 + j = (c + 72) | 0 + k = f[j >> 2] | 0 + l = f[i >> 2] | 0 + m = (k - l) >> 2 + n = l + l = k + if (h >>> 0 <= m >>> 0) + if ( + h >>> 0 < m >>> 0 ? ((k = (n + (h << 2)) | 0), (k | 0) != (l | 0)) : 0 + ) { + f[j >> 2] = l + (~(((l + -4 - k) | 0) >>> 2) << 2) + o = g + p = h + } else { + o = g + p = h + } + else { + kh(i, (h - m) | 0, 3220) + m = f[e >> 2] | 0 + o = m + p = f[(m + 80) >> 2] | 0 + } + m = ((f[(o + 100) >> 2] | 0) - (f[(o + 96) >> 2] | 0)) | 0 + e = ((m | 0) / 12) | 0 + if (!m) { + q = 1 + return q | 0 + } + m = (a + 112) | 0 + a = (c + 68) | 0 + c = f[(o + 96) >> 2] | 0 + o = 0 + while (1) { + h = (o * 3) | 0 + if ((h | 0) == -1) { + q = 0 + r = 12 + break + } + i = f[d >> 2] | 0 + g = f[(i + (h << 2)) >> 2] | 0 + if ((g | 0) == -1) { + q = 0 + r = 12 + break + } + k = f[((f[m >> 2] | 0) + 12) >> 2] | 0 + l = f[(k + (g << 2)) >> 2] | 0 + if (l >>> 0 >= p >>> 0) { + q = 0 + r = 12 + break + } + g = f[a >> 2] | 0 + f[(g + (f[(c + ((o * 12) | 0)) >> 2] << 2)) >> 2] = l + l = (h + 1) | 0 + if ((l | 0) == -1) { + q = 0 + r = 12 + break + } + j = f[(i + (l << 2)) >> 2] | 0 + if ((j | 0) == -1) { + q = 0 + r = 12 + break + } + l = f[(k + (j << 2)) >> 2] | 0 + if (l >>> 0 >= p >>> 0) { + q = 0 + r = 12 + break + } + f[(g + (f[(c + ((o * 12) | 0) + 4) >> 2] << 2)) >> 2] = l + l = (h + 2) | 0 + if ((l | 0) == -1) { + q = 0 + r = 12 + break + } + h = f[(i + (l << 2)) >> 2] | 0 + if ((h | 0) == -1) { + q = 0 + r = 12 + break + } + l = f[(k + (h << 2)) >> 2] | 0 + if (l >>> 0 >= p >>> 0) { + q = 0 + r = 12 + break + } + f[(g + (f[(c + ((o * 12) | 0) + 8) >> 2] << 2)) >> 2] = l + o = (o + 1) | 0 + if (o >>> 0 >= e >>> 0) { + q = 1 + r = 12 + break + } + } + if ((r | 0) == 12) return q | 0 + return 0 + } + function _e(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = u + u = (u + 48) | 0 + d = (c + 44) | 0 + e = (c + 40) | 0 + g = (c + 36) | 0 + h = (c + 32) | 0 + i = c + f[h >> 2] = f[(a + 80) >> 2] + j = (b + 16) | 0 + k = j + l = f[(k + 4) >> 2] | 0 + if (!(((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0)))) { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, h, (h + 4) | 0) | 0 + } + rn(i) + lk(i) + if ((f[h >> 2] | 0) > 0) { + k = (a + 76) | 0 + l = 1 + m = 0 + do { + n = l + l = + ((f[((f[k >> 2] | 0) + ((m >>> 5) << 2)) >> 2] & (1 << (m & 31))) | + 0) != + 0 + Vi(i, n ^ l ^ 1) + m = (m + 1) | 0 + } while ((m | 0) < (f[h >> 2] | 0)) + } + fd(i, b) + f[g >> 2] = f[(a + 12) >> 2] + h = j + m = f[h >> 2] | 0 + l = f[(h + 4) >> 2] | 0 + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + o = l + p = m + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + m = j + o = f[(m + 4) >> 2] | 0 + p = f[m >> 2] | 0 + } + f[g >> 2] = f[(a + 16) >> 2] + if (((o | 0) > 0) | (((o | 0) == 0) & (p >>> 0 > 0))) { + tj(i) + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + tj(i) + u = c + return 1 + } + function $e(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + b = u + u = (u + 16) | 0 + c = (b + 4) | 0 + d = b + e = (a + 8) | 0 + g = (a + 12) | 0 + h = f[g >> 2] | 0 + $j( + f[(a + 4) >> 2] | 0, + ((f[(h + 28) >> 2] | 0) - (f[(h + 24) >> 2] | 0)) >> 2, + ) + h = (a + 96) | 0 + i = f[g >> 2] | 0 + j = ((f[(i + 28) >> 2] | 0) - (f[(i + 24) >> 2] | 0)) >> 2 + f[c >> 2] = 0 + i = (a + 100) | 0 + k = f[i >> 2] | 0 + l = f[h >> 2] | 0 + m = (k - l) >> 2 + n = l + l = k + if (j >>> 0 <= m >>> 0) { + if ( + j >>> 0 < m >>> 0 ? ((k = (n + (j << 2)) | 0), (k | 0) != (l | 0)) : 0 + ) + f[i >> 2] = l + (~(((l + -4 - k) | 0) >>> 2) << 2) + } else kh(h, (j - m) | 0, c) + m = (a + 116) | 0 + a = f[m >> 2] | 0 + if (!a) { + j = f[g >> 2] | 0 + g = ((f[(j + 4) >> 2] | 0) - (f[j >> 2] | 0)) >> 2 + j = ((g >>> 0) / 3) | 0 + if (g >>> 0 <= 2) { + o = 1 + u = b + return o | 0 + } + g = 0 + while (1) { + f[d >> 2] = g * 3 + f[c >> 2] = f[d >> 2] + g = (g + 1) | 0 + if (!(vb(e, c) | 0)) { + o = 0 + p = 15 + break + } + if ((g | 0) >= (j | 0)) { + o = 1 + p = 15 + break + } + } + if ((p | 0) == 15) { + u = b + return o | 0 + } + } else { + j = f[a >> 2] | 0 + if ((f[(a + 4) >> 2] | 0) == (j | 0)) { + o = 1 + u = b + return o | 0 + } + a = 0 + g = j + while (1) { + f[d >> 2] = f[(g + (a << 2)) >> 2] + f[c >> 2] = f[d >> 2] + a = (a + 1) | 0 + if (!(vb(e, c) | 0)) { + o = 0 + p = 15 + break + } + j = f[m >> 2] | 0 + g = f[j >> 2] | 0 + if (a >>> 0 >= (((f[(j + 4) >> 2] | 0) - g) >> 2) >>> 0) { + o = 1 + p = 15 + break + } + } + if ((p | 0) == 15) { + u = b + return o | 0 + } + } + return 0 + } + function af(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = f[(a + 12) >> 2] | 0 + e = (a + 68) | 0 + g = f[e >> 2] | 0 + h = f[(g + 80) >> 2] | 0 + b[(c + 84) >> 0] = 0 + i = (c + 68) | 0 + j = (c + 72) | 0 + k = f[j >> 2] | 0 + l = f[i >> 2] | 0 + m = (k - l) >> 2 + n = l + l = k + if (h >>> 0 <= m >>> 0) + if ( + h >>> 0 < m >>> 0 ? ((k = (n + (h << 2)) | 0), (k | 0) != (l | 0)) : 0 + ) { + f[j >> 2] = l + (~(((l + -4 - k) | 0) >>> 2) << 2) + o = g + p = h + } else { + o = g + p = h + } + else { + kh(i, (h - m) | 0, 3220) + m = f[e >> 2] | 0 + o = m + p = f[(m + 80) >> 2] | 0 + } + m = ((f[(o + 100) >> 2] | 0) - (f[(o + 96) >> 2] | 0)) | 0 + e = ((m | 0) / 12) | 0 + if (!m) { + q = 1 + return q | 0 + } + m = (a + 72) | 0 + a = (c + 68) | 0 + c = f[(o + 96) >> 2] | 0 + o = 0 + while (1) { + h = (o * 3) | 0 + if ((h | 0) == -1) { + q = 0 + r = 12 + break + } + i = f[d >> 2] | 0 + g = f[(i + (h << 2)) >> 2] | 0 + if ((g | 0) == -1) { + q = 0 + r = 12 + break + } + k = f[((f[m >> 2] | 0) + 12) >> 2] | 0 + l = f[(k + (g << 2)) >> 2] | 0 + if (l >>> 0 >= p >>> 0) { + q = 0 + r = 12 + break + } + g = f[a >> 2] | 0 + f[(g + (f[(c + ((o * 12) | 0)) >> 2] << 2)) >> 2] = l + l = (h + 1) | 0 + if ((l | 0) == -1) { + q = 0 + r = 12 + break + } + j = f[(i + (l << 2)) >> 2] | 0 + if ((j | 0) == -1) { + q = 0 + r = 12 + break + } + l = f[(k + (j << 2)) >> 2] | 0 + if (l >>> 0 >= p >>> 0) { + q = 0 + r = 12 + break + } + f[(g + (f[(c + ((o * 12) | 0) + 4) >> 2] << 2)) >> 2] = l + l = (h + 2) | 0 + if ((l | 0) == -1) { + q = 0 + r = 12 + break + } + h = f[(i + (l << 2)) >> 2] | 0 + if ((h | 0) == -1) { + q = 0 + r = 12 + break + } + l = f[(k + (h << 2)) >> 2] | 0 + if (l >>> 0 >= p >>> 0) { + q = 0 + r = 12 + break + } + f[(g + (f[(c + ((o * 12) | 0) + 8) >> 2] << 2)) >> 2] = l + o = (o + 1) | 0 + if (o >>> 0 >= e >>> 0) { + q = 1 + r = 12 + break + } + } + if ((r | 0) == 12) return q | 0 + return 0 + } + function bf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + c = u + u = (u + 16) | 0 + d = (c + 12) | 0 + e = (c + 8) | 0 + g = (c + 4) | 0 + h = c + if (!b) { + i = dn(76) | 0 + j = dn(12) | 0 + k = f[((f[(a + 4) >> 2] | 0) + 80) >> 2] | 0 + f[(j + 4) >> 2] = 0 + f[j >> 2] = 3584 + f[(j + 8) >> 2] = k + f[h >> 2] = j + ml(i, h, 0) + j = i + f[g >> 2] = j + i = (a + 12) | 0 + k = f[i >> 2] | 0 + if (k >>> 0 < (f[(a + 16) >> 2] | 0) >>> 0) { + f[g >> 2] = 0 + f[k >> 2] = j + f[i >> 2] = k + 4 + l = g + } else { + yg((a + 8) | 0, g) + l = g + } + g = f[l >> 2] | 0 + f[l >> 2] = 0 + if (g | 0) Va[f[((f[g >> 2] | 0) + 4) >> 2] & 127](g) + g = f[h >> 2] | 0 + f[h >> 2] = 0 + if (!g) { + u = c + return 1 + } + Va[f[((f[g >> 2] | 0) + 4) >> 2] & 127](g) + u = c + return 1 + } + g = f[f[(a + 8) >> 2] >> 2] | 0 + f[d >> 2] = b + a = (g + 4) | 0 + h = (g + 8) | 0 + l = f[h >> 2] | 0 + if ((l | 0) == (f[(g + 12) >> 2] | 0)) Ci(a, d) + else { + f[l >> 2] = b + f[h >> 2] = l + 4 + } + l = f[d >> 2] | 0 + b = (g + 16) | 0 + k = (g + 20) | 0 + g = f[k >> 2] | 0 + i = f[b >> 2] | 0 + j = (g - i) >> 2 + m = i + if ((l | 0) < (j | 0)) { + n = m + o = l + } else { + i = (l + 1) | 0 + f[e >> 2] = -1 + p = g + if (i >>> 0 <= j >>> 0) + if ( + i >>> 0 < j >>> 0 + ? ((g = (m + (i << 2)) | 0), (g | 0) != (p | 0)) + : 0 + ) { + f[k >> 2] = p + (~(((p + -4 - g) | 0) >>> 2) << 2) + q = l + r = m + } else { + q = l + r = m + } + else { + kh(b, (i - j) | 0, e) + q = f[d >> 2] | 0 + r = f[b >> 2] | 0 + } + n = r + o = q + } + f[(n + (o << 2)) >> 2] = (((f[h >> 2] | 0) - (f[a >> 2] | 0)) >> 2) + -1 + u = c + return 1 + } + function cf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0 + d = (a + 8) | 0 + e = f[d >> 2] | 0 + g = f[a >> 2] | 0 + h = g + do + if (((e - g) >> 3) >>> 0 >= b >>> 0) { + i = (a + 4) | 0 + j = f[i >> 2] | 0 + k = (j - g) >> 3 + l = k >>> 0 < b >>> 0 + m = l ? k : b + n = j + if (m | 0) { + j = m + m = h + while (1) { + o = c + p = f[(o + 4) >> 2] | 0 + q = m + f[q >> 2] = f[o >> 2] + f[(q + 4) >> 2] = p + j = (j + -1) | 0 + if (!j) break + else m = (m + 8) | 0 + } + } + if (!l) { + m = (h + (b << 3)) | 0 + if ((m | 0) == (n | 0)) return + else { + r = i + s = (n + (~(((n + -8 - m) | 0) >>> 3) << 3)) | 0 + break + } + } else { + m = (b - k) | 0 + j = m + p = n + while (1) { + q = c + o = f[(q + 4) >> 2] | 0 + t = p + f[t >> 2] = f[q >> 2] + f[(t + 4) >> 2] = o + j = (j + -1) | 0 + if (!j) break + else p = (p + 8) | 0 + } + r = i + s = (n + (m << 3)) | 0 + break + } + } else { + p = g + if (!g) u = e + else { + j = (a + 4) | 0 + k = f[j >> 2] | 0 + if ((k | 0) != (h | 0)) + f[j >> 2] = k + (~(((k + -8 - g) | 0) >>> 3) << 3) + br(p) + f[d >> 2] = 0 + f[j >> 2] = 0 + f[a >> 2] = 0 + u = 0 + } + if (b >>> 0 > 536870911) mq(a) + j = u >> 2 + p = + (u >> 3) >>> 0 < 268435455 ? (j >>> 0 < b >>> 0 ? b : j) : 536870911 + if (p >>> 0 > 536870911) mq(a) + j = dn(p << 3) | 0 + k = (a + 4) | 0 + f[k >> 2] = j + f[a >> 2] = j + f[d >> 2] = j + (p << 3) + p = b + l = j + while (1) { + o = c + t = f[(o + 4) >> 2] | 0 + q = l + f[q >> 2] = f[o >> 2] + f[(q + 4) >> 2] = t + p = (p + -1) | 0 + if (!p) break + else l = (l + 8) | 0 + } + r = k + s = (j + (b << 3)) | 0 + } + while (0) + f[r >> 2] = s + return + } + function df(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0.0, + g = 0.0, + h = 0.0, + i = 0.0, + j = 0.0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0 + e = +$(n[b >> 2]) + g = +K(+e) + h = +$(n[(b + 4) >> 2]) + i = g + +K(+h) + g = +$(n[(b + 8) >> 2]) + j = i + +K(+g) + b = j > 1.0e-6 + i = 1.0 / j + k = f[(a + 12) >> 2] | 0 + j = +(k | 0) + l = ~~+J(+((b ? i * e : 1.0) * j + 0.5)) + m = ~~+J(+((b ? i * h : 0.0) * j + 0.5)) + o = (l | 0) > -1 + p = (k - (o ? l : (0 - l) | 0) - ((m | 0) > -1 ? m : (0 - m) | 0)) | 0 + l = (p | 0) < 0 + q = ((l ? ((m | 0) > 0 ? p : (0 - p) | 0) : 0) + m) | 0 + m = l ? 0 : p + p = (b ? i * g : 0.0) < 0.0 ? (0 - m) | 0 : m + do + if (!o) { + if ((q | 0) < 0) r = (p | 0) > -1 ? p : (0 - p) | 0 + else + r = ((f[(a + 8) >> 2] | 0) - ((p | 0) > -1 ? p : (0 - p) | 0)) | 0 + if ((p | 0) < 0) { + s = (q | 0) > -1 ? q : (0 - q) | 0 + t = r + break + } else { + s = ((f[(a + 8) >> 2] | 0) - ((q | 0) > -1 ? q : (0 - q) | 0)) | 0 + t = r + break + } + } else { + s = (k + p) | 0 + t = (k + q) | 0 + } + while (0) + q = (t | 0) == 0 + p = (s | 0) == 0 + r = f[(a + 8) >> 2] | 0 + if (!(s | t)) { + u = r + v = r + f[c >> 2] = u + f[d >> 2] = v + return + } + a = (r | 0) == (s | 0) + if (q & a) { + u = s + v = s + f[c >> 2] = u + f[d >> 2] = v + return + } + o = (r | 0) == (t | 0) + if (p & o) { + u = t + v = t + f[c >> 2] = u + f[d >> 2] = v + return + } + if (q & ((k | 0) < (s | 0))) { + u = 0 + v = ((k << 1) - s) | 0 + f[c >> 2] = u + f[d >> 2] = v + return + } + if (o & ((k | 0) > (s | 0))) { + u = t + v = ((k << 1) - s) | 0 + f[c >> 2] = u + f[d >> 2] = v + return + } + if (a & ((k | 0) > (t | 0))) { + u = ((k << 1) - t) | 0 + v = s + f[c >> 2] = u + f[d >> 2] = v + return + } + if (!p) { + u = t + v = s + f[c >> 2] = u + f[d >> 2] = v + return + } + u = (k | 0) < (t | 0) ? ((k << 1) - t) | 0 : t + v = 0 + f[c >> 2] = u + f[d >> 2] = v + return + } + function ef(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + c = (a + 4) | 0 + d = (b + 4) | 0 + f[c >> 2] = f[d >> 2] + f[(c + 4) >> 2] = f[(d + 4) >> 2] + f[(c + 8) >> 2] = f[(d + 8) >> 2] + f[(c + 12) >> 2] = f[(d + 12) >> 2] + f[(c + 16) >> 2] = f[(d + 16) >> 2] + d = (a + 24) | 0 + c = (b + 24) | 0 + if ((a | 0) == (b | 0)) return a | 0 + e = (b + 28) | 0 + g = f[e >> 2] | 0 + if (!g) h = 0 + else { + i = (a + 32) | 0 + do + if (g >>> 0 > (f[i >> 2] << 5) >>> 0) { + j = f[d >> 2] | 0 + if (!j) k = g + else { + br(j) + f[d >> 2] = 0 + f[i >> 2] = 0 + f[(a + 28) >> 2] = 0 + k = f[e >> 2] | 0 + } + if ((k | 0) < 0) mq(d) + else { + j = ((((k + -1) | 0) >>> 5) + 1) | 0 + l = dn(j << 2) | 0 + f[d >> 2] = l + f[(a + 28) >> 2] = 0 + f[i >> 2] = j + m = f[e >> 2] | 0 + n = l + break + } + } else { + m = g + n = f[d >> 2] | 0 + } + while (0) + Xl(n | 0, f[c >> 2] | 0, (((((m + -1) | 0) >>> 5) << 2) + 4) | 0) | 0 + h = f[e >> 2] | 0 + } + f[(a + 28) >> 2] = h + h = (a + 36) | 0 + e = (b + 36) | 0 + m = (b + 40) | 0 + b = f[m >> 2] | 0 + if (!b) o = 0 + else { + c = (a + 44) | 0 + do + if (b >>> 0 > (f[c >> 2] << 5) >>> 0) { + n = f[h >> 2] | 0 + if (!n) p = b + else { + br(n) + f[h >> 2] = 0 + f[c >> 2] = 0 + f[(a + 40) >> 2] = 0 + p = f[m >> 2] | 0 + } + if ((p | 0) < 0) mq(h) + else { + n = ((((p + -1) | 0) >>> 5) + 1) | 0 + d = dn(n << 2) | 0 + f[h >> 2] = d + f[(a + 40) >> 2] = 0 + f[c >> 2] = n + q = f[m >> 2] | 0 + r = d + break + } + } else { + q = b + r = f[h >> 2] | 0 + } + while (0) + Xl(r | 0, f[e >> 2] | 0, (((((q + -1) | 0) >>> 5) << 2) + 4) | 0) | 0 + o = f[m >> 2] | 0 + } + f[(a + 40) >> 2] = o + return a | 0 + } + function ff(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = u + u = (u + 32) | 0 + h = (g + 12) | 0 + i = g + f[a >> 2] = f[d >> 2] + d = (a + 4) | 0 + f[d >> 2] = (f[c >> 2] | 0) - (f[b >> 2] | 0) + j = (e + 16) | 0 + k = j + l = f[(k + 4) >> 2] | 0 + if ( + !(((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0))) + ? ((k = (e + 4) | 0), + (f[i >> 2] = f[k >> 2]), + (f[h >> 2] = f[i >> 2]), + ye(e, h, a, (a + 4) | 0) | 0, + (l = j), + (j = f[(l + 4) >> 2] | 0), + !(((j | 0) > 0) | (((j | 0) == 0) & ((f[l >> 2] | 0) >>> 0 > 0)))) + : 0 + ) { + f[i >> 2] = f[k >> 2] + f[h >> 2] = f[i >> 2] + ye(e, h, d, (d + 4) | 0) | 0 + m = i + } else m = i + if (!(f[d >> 2] | 0)) { + u = g + return 1 + } + d = (a + 12) | 0 + og(d) + m = (a + 1068) | 0 + Cm(m) + k = (a + 1088) | 0 + Cm(k) + l = (a + 1108) | 0 + Cm(l) + f[i >> 2] = f[b >> 2] + f[(i + 4) >> 2] = f[(b + 4) >> 2] + f[(i + 8) >> 2] = f[(b + 8) >> 2] + f[h >> 2] = f[c >> 2] + f[(h + 4) >> 2] = f[(c + 4) >> 2] + f[(h + 8) >> 2] = f[(c + 8) >> 2] + jb(a, i, h) + Ke(d, e) + mg(m, e) + mg(k, e) + mg(l, e) + u = g + return 1 + } + function gf(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = u + u = (u + 32) | 0 + h = (g + 12) | 0 + i = g + f[a >> 2] = f[d >> 2] + d = (a + 4) | 0 + f[d >> 2] = (f[c >> 2] | 0) - (f[b >> 2] | 0) + j = (e + 16) | 0 + k = j + l = f[(k + 4) >> 2] | 0 + if ( + !(((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0))) + ? ((k = (e + 4) | 0), + (f[i >> 2] = f[k >> 2]), + (f[h >> 2] = f[i >> 2]), + ye(e, h, a, (a + 4) | 0) | 0, + (l = j), + (j = f[(l + 4) >> 2] | 0), + !(((j | 0) > 0) | (((j | 0) == 0) & ((f[l >> 2] | 0) >>> 0 > 0)))) + : 0 + ) { + f[i >> 2] = f[k >> 2] + f[h >> 2] = f[i >> 2] + ye(e, h, d, (d + 4) | 0) | 0 + m = i + } else m = i + if (!(f[d >> 2] | 0)) { + u = g + return 1 + } + d = (a + 12) | 0 + og(d) + m = (a + 1068) | 0 + Cm(m) + k = (a + 1088) | 0 + Cm(k) + l = (a + 1108) | 0 + Cm(l) + f[i >> 2] = f[b >> 2] + f[(i + 4) >> 2] = f[(b + 4) >> 2] + f[(i + 8) >> 2] = f[(b + 8) >> 2] + f[h >> 2] = f[c >> 2] + f[(h + 4) >> 2] = f[(c + 4) >> 2] + f[(h + 8) >> 2] = f[(c + 8) >> 2] + mb(a, i, h) + Ke(d, e) + mg(m, e) + mg(k, e) + mg(l, e) + u = g + return 1 + } + function hf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + c = u + u = (u + 32) | 0 + d = c + e = (a + 8) | 0 + g = f[e >> 2] | 0 + h = (a + 4) | 0 + i = f[h >> 2] | 0 + j = i + if (((g - i) >> 2) >>> 0 >= b >>> 0) { + hj(i | 0, 0, (b << 2) | 0) | 0 + f[h >> 2] = i + (b << 2) + u = c + return + } + k = f[a >> 2] | 0 + l = (i - k) >> 2 + m = (l + b) | 0 + n = k + if (m >>> 0 > 1073741823) mq(a) + o = (g - k) | 0 + p = o >> 1 + q = (o >> 2) >>> 0 < 536870911 ? (p >>> 0 < m >>> 0 ? m : p) : 1073741823 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = a + 8 + do + if (q) + if (q >>> 0 > 1073741823) { + p = ra(8) | 0 + Wo(p, 14941) + f[p >> 2] = 6944 + va(p | 0, 1080, 114) + } else { + r = dn(q << 2) | 0 + break + } + else r = 0 + while (0) + f[d >> 2] = r + p = (r + (l << 2)) | 0 + l = (d + 8) | 0 + m = (d + 4) | 0 + f[m >> 2] = p + o = (r + (q << 2)) | 0 + q = (d + 12) | 0 + f[q >> 2] = o + r = (p + (b << 2)) | 0 + hj(p | 0, 0, (b << 2) | 0) | 0 + f[l >> 2] = r + if ((j | 0) == (n | 0)) { + s = p + t = q + v = l + w = k + x = r + y = i + z = o + A = g + } else { + g = j + j = p + do { + g = (g + -4) | 0 + p = f[g >> 2] | 0 + f[g >> 2] = 0 + f[(j + -4) >> 2] = p + j = ((f[m >> 2] | 0) + -4) | 0 + f[m >> 2] = j + } while ((g | 0) != (n | 0)) + s = j + t = q + v = l + w = f[a >> 2] | 0 + x = f[l >> 2] | 0 + y = f[h >> 2] | 0 + z = f[q >> 2] | 0 + A = f[e >> 2] | 0 + } + f[a >> 2] = s + f[m >> 2] = w + f[h >> 2] = x + f[v >> 2] = y + f[e >> 2] = z + f[t >> 2] = A + f[d >> 2] = w + Wh(d) + u = c + return + } + function jf(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + d = u + u = (u + 16) | 0 + h = d + i = f[(a + 124) >> 2] | 0 + if (!i) { + u = d + return + } + j = (i + -1) | 0 + k = ((j & i) | 0) == 0 + if (!k) + if (i >>> 0 > g >>> 0) l = g + else l = (g >>> 0) % (i >>> 0) | 0 + else l = j & g + m = f[((f[(a + 120) >> 2] | 0) + (l << 2)) >> 2] | 0 + if (!m) { + u = d + return + } + n = f[m >> 2] | 0 + if (!n) { + u = d + return + } + a: do + if (k) { + m = n + while (1) { + o = f[(m + 4) >> 2] | 0 + p = (o | 0) == (g | 0) + if (!(p | (((o & j) | 0) == (l | 0)))) { + q = 24 + break + } + if (p ? (f[(m + 8) >> 2] | 0) == (g | 0) : 0) { + r = m + break a + } + m = f[m >> 2] | 0 + if (!m) { + q = 24 + break + } + } + if ((q | 0) == 24) { + u = d + return + } + } else { + m = n + while (1) { + p = f[(m + 4) >> 2] | 0 + if ((p | 0) == (g | 0)) { + if ((f[(m + 8) >> 2] | 0) == (g | 0)) { + r = m + break a + } + } else { + if (p >>> 0 < i >>> 0) s = p + else s = (p >>> 0) % (i >>> 0) | 0 + if ((s | 0) != (l | 0)) { + q = 24 + break + } + } + m = f[m >> 2] | 0 + if (!m) { + q = 24 + break + } + } + if ((q | 0) == 24) { + u = d + return + } + } + while (0) + q = f[(r + 12) >> 2] | 0 + if ((q | 0) == -1) { + u = d + return + } + f[h >> 2] = q + f[(h + 4) >> 2] = c + b[(h + 8) >> 0] = e & 1 + e = (a + 112) | 0 + c = f[e >> 2] | 0 + if ((c | 0) == (f[(a + 116) >> 2] | 0)) ki((a + 108) | 0, h) + else { + f[c >> 2] = f[h >> 2] + f[(c + 4) >> 2] = f[(h + 4) >> 2] + f[(c + 8) >> 2] = f[(h + 8) >> 2] + f[e >> 2] = (f[e >> 2] | 0) + 12 + } + u = d + return + } + function kf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + c = d[b >> 1] | 0 + e = d[(b + 2) >> 1] | 0 + g = d[(b + 4) >> 1] | 0 + h = d[(b + 6) >> 1] | 0 + b = + (((((((c ^ 318) & 65535) + 239) ^ (e & 65535)) + 239) ^ (g & 65535)) + + 239) ^ + (h & 65535) + i = f[(a + 4) >> 2] | 0 + if (!i) { + j = 0 + return j | 0 + } + k = (i + -1) | 0 + l = ((k & i) | 0) == 0 + if (!l) + if (b >>> 0 < i >>> 0) m = b + else m = (b >>> 0) % (i >>> 0) | 0 + else m = b & k + n = f[((f[a >> 2] | 0) + (m << 2)) >> 2] | 0 + if (!n) { + j = 0 + return j | 0 + } + a = f[n >> 2] | 0 + if (!a) { + j = 0 + return j | 0 + } + if (l) { + l = a + while (1) { + n = f[(l + 4) >> 2] | 0 + o = (n | 0) == (b | 0) + if (!(o | (((n & k) | 0) == (m | 0)))) { + j = 0 + p = 25 + break + } + if ( + ( + ( + ( + o + ? ((o = (l + 8) | 0), (d[o >> 1] | 0) == (c << 16) >> 16) + : 0 + ) + ? (d[(o + 2) >> 1] | 0) == (e << 16) >> 16 + : 0 + ) + ? (d[(l + 12) >> 1] | 0) == (g << 16) >> 16 + : 0 + ) + ? (d[(o + 6) >> 1] | 0) == (h << 16) >> 16 + : 0 + ) { + j = l + p = 25 + break + } + l = f[l >> 2] | 0 + if (!l) { + j = 0 + p = 25 + break + } + } + if ((p | 0) == 25) return j | 0 + } else q = a + while (1) { + a = f[(q + 4) >> 2] | 0 + if ((a | 0) == (b | 0)) { + l = (q + 8) | 0 + if ( + ( + ( + (d[l >> 1] | 0) == (c << 16) >> 16 + ? (d[(l + 2) >> 1] | 0) == (e << 16) >> 16 + : 0 + ) + ? (d[(q + 12) >> 1] | 0) == (g << 16) >> 16 + : 0 + ) + ? (d[(l + 6) >> 1] | 0) == (h << 16) >> 16 + : 0 + ) { + j = q + p = 25 + break + } + } else { + if (a >>> 0 < i >>> 0) r = a + else r = (a >>> 0) % (i >>> 0) | 0 + if ((r | 0) != (m | 0)) { + j = 0 + p = 25 + break + } + } + q = f[q >> 2] | 0 + if (!q) { + j = 0 + p = 25 + break + } + } + if ((p | 0) == 25) return j | 0 + return 0 + } + function lf(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = u + u = (u + 32) | 0 + h = (g + 12) | 0 + i = g + f[a >> 2] = f[d >> 2] + d = (a + 4) | 0 + f[d >> 2] = (f[c >> 2] | 0) - (f[b >> 2] | 0) + j = (e + 16) | 0 + k = j + l = f[(k + 4) >> 2] | 0 + if ( + !(((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0))) + ? ((k = (e + 4) | 0), + (f[i >> 2] = f[k >> 2]), + (f[h >> 2] = f[i >> 2]), + ye(e, h, a, (a + 4) | 0) | 0, + (l = j), + (j = f[(l + 4) >> 2] | 0), + !(((j | 0) > 0) | (((j | 0) == 0) & ((f[l >> 2] | 0) >>> 0 > 0)))) + : 0 + ) { + f[i >> 2] = f[k >> 2] + f[h >> 2] = f[i >> 2] + ye(e, h, d, (d + 4) | 0) | 0 + m = i + } else m = i + if (!(f[d >> 2] | 0)) { + u = g + return 1 + } + d = (a + 12) | 0 + Cm(d) + m = (a + 32) | 0 + Cm(m) + k = (a + 52) | 0 + Cm(k) + l = (a + 72) | 0 + Cm(l) + f[i >> 2] = f[b >> 2] + f[(i + 4) >> 2] = f[(b + 4) >> 2] + f[(i + 8) >> 2] = f[(b + 8) >> 2] + f[h >> 2] = f[c >> 2] + f[(h + 4) >> 2] = f[(c + 4) >> 2] + f[(h + 8) >> 2] = f[(c + 8) >> 2] + hb(a, i, h) + mg(d, e) + mg(m, e) + mg(k, e) + mg(l, e) + u = g + return 1 + } + function mf(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = u + u = (u + 32) | 0 + h = (g + 12) | 0 + i = g + f[a >> 2] = f[d >> 2] + d = (a + 4) | 0 + f[d >> 2] = (f[c >> 2] | 0) - (f[b >> 2] | 0) + j = (e + 16) | 0 + k = j + l = f[(k + 4) >> 2] | 0 + if ( + !(((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0))) + ? ((k = (e + 4) | 0), + (f[i >> 2] = f[k >> 2]), + (f[h >> 2] = f[i >> 2]), + ye(e, h, a, (a + 4) | 0) | 0, + (l = j), + (j = f[(l + 4) >> 2] | 0), + !(((j | 0) > 0) | (((j | 0) == 0) & ((f[l >> 2] | 0) >>> 0 > 0)))) + : 0 + ) { + f[i >> 2] = f[k >> 2] + f[h >> 2] = f[i >> 2] + ye(e, h, d, (d + 4) | 0) | 0 + m = i + } else m = i + if (!(f[d >> 2] | 0)) { + u = g + return 1 + } + d = (a + 12) | 0 + lk(d) + m = (a + 44) | 0 + Cm(m) + k = (a + 64) | 0 + Cm(k) + l = (a + 84) | 0 + Cm(l) + f[i >> 2] = f[b >> 2] + f[(i + 4) >> 2] = f[(b + 4) >> 2] + f[(i + 8) >> 2] = f[(b + 8) >> 2] + f[h >> 2] = f[c >> 2] + f[(h + 4) >> 2] = f[(c + 4) >> 2] + f[(h + 8) >> 2] = f[(c + 8) >> 2] + nb(a, i, h) + fd(d, e) + mg(m, e) + mg(k, e) + mg(l, e) + u = g + return 1 + } + function nf(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0 + a = u + u = (u + 16) | 0 + e = (a + 4) | 0 + g = a + h = (a + 8) | 0 + i = (d + 11) | 0 + j = b[i >> 0] | 0 + k = (j << 24) >> 24 < 0 + if (k) { + l = f[(d + 4) >> 2] | 0 + if (l >>> 0 > 255) { + m = 0 + u = a + return m | 0 + } else n = l + } else n = j & 255 + if (!n) { + b[h >> 0] = 0 + n = (c + 16) | 0 + l = f[(n + 4) >> 2] | 0 + if (!(((l | 0) > 0) | (((l | 0) == 0) & ((f[n >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, (h + 1) | 0) | 0 + } + m = 1 + u = a + return m | 0 + } + n = (d + 4) | 0 + l = f[n >> 2] | 0 + b[h >> 0] = k ? l : j & 255 + k = (c + 16) | 0 + o = k + p = f[o >> 2] | 0 + q = f[(o + 4) >> 2] | 0 + if (((q | 0) > 0) | (((q | 0) == 0) & (p >>> 0 > 0))) { + r = j + s = q + t = p + v = l + } else { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, (h + 1) | 0) | 0 + h = k + r = b[i >> 0] | 0 + s = f[(h + 4) >> 2] | 0 + t = f[h >> 2] | 0 + v = f[n >> 2] | 0 + } + n = (r << 24) >> 24 < 0 + h = n ? f[d >> 2] | 0 : d + if (!(((s | 0) > 0) | (((s | 0) == 0) & (t >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, (h + (n ? v : r & 255)) | 0) | 0 + } + m = 1 + u = a + return m | 0 + } + function of(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = (a + 4) | 0 + d = f[a >> 2] | 0 + e = ((((f[c >> 2] | 0) - d) | 0) / 24) | 0 + g = (e + 1) | 0 + if (g >>> 0 > 178956970) mq(a) + h = (a + 8) | 0 + i = ((((f[h >> 2] | 0) - d) | 0) / 24) | 0 + d = i << 1 + j = i >>> 0 < 89478485 ? (d >>> 0 < g >>> 0 ? g : d) : 178956970 + do + if (j) + if (j >>> 0 > 178956970) { + d = ra(8) | 0 + Wo(d, 14941) + f[d >> 2] = 6944 + va(d | 0, 1080, 114) + } else { + k = dn((j * 24) | 0) | 0 + break + } + else k = 0 + while (0) + d = (k + ((e * 24) | 0)) | 0 + g = d + i = (k + ((j * 24) | 0)) | 0 + f[d >> 2] = 1180 + f[(k + ((e * 24) | 0) + 4) >> 2] = f[(b + 4) >> 2] + _j((k + ((e * 24) | 0) + 8) | 0, (b + 8) | 0) + f[(k + ((e * 24) | 0) + 20) >> 2] = f[(b + 20) >> 2] + b = (d + 24) | 0 + e = f[a >> 2] | 0 + k = f[c >> 2] | 0 + if ((k | 0) == (e | 0)) { + l = g + m = e + n = e + } else { + j = k + k = g + g = d + do { + f[(g + -24) >> 2] = 1180 + f[(g + -20) >> 2] = f[(j + -20) >> 2] + d = (g + -16) | 0 + o = (j + -16) | 0 + f[d >> 2] = 0 + p = (g + -12) | 0 + f[p >> 2] = 0 + f[(g + -8) >> 2] = 0 + f[d >> 2] = f[o >> 2] + d = (j + -12) | 0 + f[p >> 2] = f[d >> 2] + p = (j + -8) | 0 + f[(g + -8) >> 2] = f[p >> 2] + f[p >> 2] = 0 + f[d >> 2] = 0 + f[o >> 2] = 0 + f[(g + -4) >> 2] = f[(j + -4) >> 2] + j = (j + -24) | 0 + g = (k + -24) | 0 + k = g + } while ((j | 0) != (e | 0)) + l = k + m = f[a >> 2] | 0 + n = f[c >> 2] | 0 + } + f[a >> 2] = l + f[c >> 2] = b + f[h >> 2] = i + i = m + if ((n | 0) != (i | 0)) { + h = n + do { + h = (h + -24) | 0 + Va[f[f[h >> 2] >> 2] & 127](h) + } while ((h | 0) != (i | 0)) + } + if (!m) return + br(m) + return + } + function pf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = b[c >> 0] | 0 + e = b[(c + 1) >> 0] | 0 + g = b[(c + 2) >> 0] | 0 + h = b[(c + 3) >> 0] | 0 + c = + (((((((d & 255) ^ 318) + 239) ^ (e & 255)) + 239) ^ (g & 255)) + 239) ^ + (h & 255) + i = f[(a + 4) >> 2] | 0 + if (!i) { + j = 0 + return j | 0 + } + k = (i + -1) | 0 + l = ((k & i) | 0) == 0 + if (!l) + if (c >>> 0 < i >>> 0) m = c + else m = (c >>> 0) % (i >>> 0) | 0 + else m = c & k + n = f[((f[a >> 2] | 0) + (m << 2)) >> 2] | 0 + if (!n) { + j = 0 + return j | 0 + } + a = f[n >> 2] | 0 + if (!a) { + j = 0 + return j | 0 + } + if (l) { + l = a + while (1) { + n = f[(l + 4) >> 2] | 0 + o = (n | 0) == (c | 0) + if (!(o | (((n & k) | 0) == (m | 0)))) { + j = 0 + p = 25 + break + } + if ( + ( + ( + ( + o + ? ((o = (l + 8) | 0), (b[o >> 0] | 0) == (d << 24) >> 24) + : 0 + ) + ? (b[(o + 1) >> 0] | 0) == (e << 24) >> 24 + : 0 + ) + ? (b[(o + 2) >> 0] | 0) == (g << 24) >> 24 + : 0 + ) + ? (b[(o + 3) >> 0] | 0) == (h << 24) >> 24 + : 0 + ) { + j = l + p = 25 + break + } + l = f[l >> 2] | 0 + if (!l) { + j = 0 + p = 25 + break + } + } + if ((p | 0) == 25) return j | 0 + } else q = a + while (1) { + a = f[(q + 4) >> 2] | 0 + if ((a | 0) == (c | 0)) { + l = (q + 8) | 0 + if ( + ( + ( + (b[l >> 0] | 0) == (d << 24) >> 24 + ? (b[(l + 1) >> 0] | 0) == (e << 24) >> 24 + : 0 + ) + ? (b[(l + 2) >> 0] | 0) == (g << 24) >> 24 + : 0 + ) + ? (b[(l + 3) >> 0] | 0) == (h << 24) >> 24 + : 0 + ) { + j = q + p = 25 + break + } + } else { + if (a >>> 0 < i >>> 0) r = a + else r = (a >>> 0) % (i >>> 0) | 0 + if ((r | 0) != (m | 0)) { + j = 0 + p = 25 + break + } + } + q = f[q >> 2] | 0 + if (!q) { + j = 0 + p = 25 + break + } + } + if ((p | 0) == 25) return j | 0 + return 0 + } + function qf(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + d = u + u = (u + 32) | 0 + h = (d + 24) | 0 + i = (d + 16) | 0 + j = d + k = (d + 8) | 0 + l = (a + 40) | 0 + f[(a + 44) >> 2] = g + g = (a + 36) | 0 + m = f[g >> 2] | 0 + n = f[(m + 4) >> 2] | 0 + o = f[m >> 2] | 0 + p = (n - o) | 0 + if ((p | 0) <= 0) { + u = d + return 1 + } + q = ((p >>> 2) + -1) | 0 + p = (a + 8) | 0 + r = (a + 48) | 0 + s = (a + 52) | 0 + a = (i + 4) | 0 + t = (j + 4) | 0 + v = (h + 4) | 0 + if (((n - o) >> 2) >>> 0 > q >>> 0) { + w = q + x = o + } else { + y = m + mq(y) + } + while (1) { + f[k >> 2] = f[(x + (w << 2)) >> 2] + f[h >> 2] = f[k >> 2] + tb(l, h, b, w) | 0 + m = X(w, e) | 0 + o = (b + (m << 2)) | 0 + q = (c + (m << 2)) | 0 + m = f[(o + 4) >> 2] | 0 + n = f[r >> 2] | 0 + z = f[s >> 2] | 0 + f[i >> 2] = f[o >> 2] + f[a >> 2] = m + f[j >> 2] = n + f[t >> 2] = z + Dd(h, p, i, j) + f[q >> 2] = f[h >> 2] + f[(q + 4) >> 2] = f[v >> 2] + w = (w + -1) | 0 + if ((w | 0) <= -1) { + A = 3 + break + } + q = f[g >> 2] | 0 + x = f[q >> 2] | 0 + if ((((f[(q + 4) >> 2] | 0) - x) >> 2) >>> 0 <= w >>> 0) { + y = q + A = 4 + break + } + } + if ((A | 0) == 3) { + u = d + return 1 + } else if ((A | 0) == 4) mq(y) + return 0 + } + function rf(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + h = u + u = (u + 32) | 0 + i = h + j = (h + 16) | 0 + k = f[((f[((f[(b + 4) >> 2] | 0) + 8) >> 2] | 0) + (d << 2)) >> 2] | 0 + do + if ( + (((c + -1) | 0) >>> 0 < 6) & + ((Qa[f[((f[b >> 2] | 0) + 8) >> 2] & 127](b) | 0) == 1) + ) { + l = Qa[f[((f[b >> 2] | 0) + 52) >> 2] & 127](b) | 0 + m = Ra[f[((f[b >> 2] | 0) + 60) >> 2] & 127](b, d) | 0 + if (((l | 0) == 0) | ((m | 0) == 0)) { + f[a >> 2] = 0 + u = h + return + } + n = Ra[f[((f[b >> 2] | 0) + 56) >> 2] & 127](b, d) | 0 + if (!n) { + f[i >> 2] = f[(b + 56) >> 2] + f[(i + 4) >> 2] = l + f[(i + 12) >> 2] = m + f[(i + 8) >> 2] = m + 12 + Rd(a, j, c, k, e, i, g) + if (!(f[a >> 2] | 0)) { + f[a >> 2] = 0 + break + } + u = h + return + } else { + f[i >> 2] = f[(b + 56) >> 2] + f[(i + 4) >> 2] = n + f[(i + 12) >> 2] = m + f[(i + 8) >> 2] = m + 12 + Pd(a, j, c, k, e, i, g) + if (!(f[a >> 2] | 0)) { + f[a >> 2] = 0 + break + } + u = h + return + } + } + while (0) + f[a >> 2] = 0 + u = h + return + } + function sf(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + d = u + u = (u + 32) | 0 + h = (d + 24) | 0 + i = (d + 16) | 0 + j = d + k = (d + 8) | 0 + l = (a + 40) | 0 + f[(a + 44) >> 2] = g + g = (a + 36) | 0 + m = f[g >> 2] | 0 + n = f[(m + 4) >> 2] | 0 + o = f[m >> 2] | 0 + p = (n - o) | 0 + if ((p | 0) <= 0) { + u = d + return 1 + } + q = ((p >>> 2) + -1) | 0 + p = (a + 8) | 0 + r = (a + 48) | 0 + s = (a + 52) | 0 + a = (i + 4) | 0 + t = (j + 4) | 0 + v = (h + 4) | 0 + if (((n - o) >> 2) >>> 0 > q >>> 0) { + w = q + x = o + } else { + y = m + mq(y) + } + while (1) { + f[k >> 2] = f[(x + (w << 2)) >> 2] + f[h >> 2] = f[k >> 2] + sb(l, h, b, w) | 0 + m = X(w, e) | 0 + o = (b + (m << 2)) | 0 + q = (c + (m << 2)) | 0 + m = f[(o + 4) >> 2] | 0 + n = f[r >> 2] | 0 + z = f[s >> 2] | 0 + f[i >> 2] = f[o >> 2] + f[a >> 2] = m + f[j >> 2] = n + f[t >> 2] = z + Dd(h, p, i, j) + f[q >> 2] = f[h >> 2] + f[(q + 4) >> 2] = f[v >> 2] + w = (w + -1) | 0 + if ((w | 0) <= -1) { + A = 3 + break + } + q = f[g >> 2] | 0 + x = f[q >> 2] | 0 + if ((((f[(q + 4) >> 2] | 0) - x) >> 2) >>> 0 <= w >>> 0) { + y = q + A = 4 + break + } + } + if ((A | 0) == 3) { + u = d + return 1 + } else if ((A | 0) == 4) mq(y) + return 0 + } + function tf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + d = f[b >> 2] | 0 + b = f[c >> 2] | 0 + e = (b - d) >> 2 + g = (a + 8) | 0 + h = f[g >> 2] | 0 + i = f[a >> 2] | 0 + j = i + k = b + if (e >>> 0 <= ((h - i) >> 2) >>> 0) { + l = (a + 4) | 0 + m = ((f[l >> 2] | 0) - i) >> 2 + n = e >>> 0 > m >>> 0 + o = n ? (d + (m << 2)) | 0 : b + b = (o - d) | 0 + m = b >> 2 + if (m | 0) Xl(i | 0, d | 0, b | 0) | 0 + b = (j + (m << 2)) | 0 + if (!n) { + n = f[l >> 2] | 0 + if ((n | 0) == (b | 0)) return + f[l >> 2] = n + (~(((n + -4 - b) | 0) >>> 2) << 2) + return + } + b = f[c >> 2] | 0 + c = o + if ((b | 0) == (c | 0)) return + n = f[l >> 2] | 0 + m = (b + -4 - o) | 0 + o = c + c = n + while (1) { + f[c >> 2] = f[o >> 2] + o = (o + 4) | 0 + if ((o | 0) == (b | 0)) break + else c = (c + 4) | 0 + } + f[l >> 2] = n + (((m >>> 2) + 1) << 2) + return + } + m = i + if (!i) p = h + else { + h = (a + 4) | 0 + n = f[h >> 2] | 0 + if ((n | 0) != (j | 0)) + f[h >> 2] = n + (~(((n + -4 - i) | 0) >>> 2) << 2) + br(m) + f[g >> 2] = 0 + f[h >> 2] = 0 + f[a >> 2] = 0 + p = 0 + } + if (e >>> 0 > 1073741823) mq(a) + h = p >> 1 + m = (p >> 2) >>> 0 < 536870911 ? (h >>> 0 < e >>> 0 ? e : h) : 1073741823 + if (m >>> 0 > 1073741823) mq(a) + h = dn(m << 2) | 0 + e = (a + 4) | 0 + f[e >> 2] = h + f[a >> 2] = h + f[g >> 2] = h + (m << 2) + m = d + if ((k | 0) == (m | 0)) return + g = (k + -4 - d) | 0 + d = m + m = h + while (1) { + f[m >> 2] = f[d >> 2] + d = (d + 4) | 0 + if ((d | 0) == (k | 0)) break + else m = (m + 4) | 0 + } + f[e >> 2] = h + (((g >>> 2) + 1) << 2) + return + } + function uf(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + e = u + u = (u + 112) | 0 + g = (e + 100) | 0 + h = e + i = dn(120) | 0 + j = f[(c + 8) >> 2] | 0 + f[(i + 4) >> 2] = 0 + f[i >> 2] = 3296 + k = (i + 8) | 0 + l = (i + 12) | 0 + m = (l + 44) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (m | 0)) + f[k >> 2] = 3320 + l = (i + 56) | 0 + m = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (m | 0)) + f[(i + 96) >> 2] = 0 + f[(i + 100) >> 2] = 0 + f[(i + 104) >> 2] = 0 + f[(i + 108) >> 2] = j + f[(i + 112) >> 2] = d + k = (i + 116) | 0 + f[k >> 2] = 0 + n = i + o = f[(c + 12) >> 2] | 0 + p = (h + 4) | 0 + l = (p + 4) | 0 + m = (l + 40) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (m | 0)) + f[h >> 2] = 3320 + l = (h + 48) | 0 + m = (l + 36) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (m | 0)) + f[(h + 88) >> 2] = 0 + f[(h + 92) >> 2] = 0 + f[(h + 96) >> 2] = 0 + l = o + f[p >> 2] = l + m = (((((f[(l + 4) >> 2] | 0) - (f[o >> 2] | 0)) >> 2) >>> 0) / 3) | 0 + b[g >> 0] = 0 + Xg((h + 24) | 0, m, g) + m = f[p >> 2] | 0 + p = ((f[(m + 28) >> 2] | 0) - (f[(m + 24) >> 2] | 0)) >> 2 + b[g >> 0] = 0 + Xg((h + 36) | 0, p, g) + f[(h + 8) >> 2] = o + f[(h + 12) >> 2] = d + f[(h + 16) >> 2] = j + f[(h + 20) >> 2] = i + f[k >> 2] = c + 72 + fh(i, h) + f[a >> 2] = n + Gi(h) + u = e + return + } + function vf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = (a + 4) | 0 + g = f[e >> 2] | 0 + h = g + if (((((d - g) | 0) / 12) | 0) >>> 0 >= b >>> 0) { + hj(g | 0, 0, (b * 12) | 0) | 0 + f[e >> 2] = h + ((b * 12) | 0) + return + } + i = f[a >> 2] | 0 + j = (((g - i) | 0) / 12) | 0 + g = (j + b) | 0 + k = i + if (g >>> 0 > 357913941) mq(a) + l = (((d - i) | 0) / 12) | 0 + d = l << 1 + m = l >>> 0 < 178956970 ? (d >>> 0 < g >>> 0 ? g : d) : 357913941 + do + if (m) + if (m >>> 0 > 357913941) { + d = ra(8) | 0 + Wo(d, 14941) + f[d >> 2] = 6944 + va(d | 0, 1080, 114) + } else { + n = dn((m * 12) | 0) | 0 + break + } + else n = 0 + while (0) + d = (n + ((j * 12) | 0)) | 0 + j = d + g = (n + ((m * 12) | 0)) | 0 + hj(d | 0, 0, (b * 12) | 0) | 0 + m = (d + ((b * 12) | 0)) | 0 + if ((h | 0) == (k | 0)) { + o = j + p = i + q = h + } else { + i = h + h = j + j = d + do { + d = (j + -12) | 0 + b = i + i = (i + -12) | 0 + f[d >> 2] = 0 + n = (j + -8) | 0 + f[n >> 2] = 0 + f[(j + -4) >> 2] = 0 + f[d >> 2] = f[i >> 2] + d = (b + -8) | 0 + f[n >> 2] = f[d >> 2] + n = (b + -4) | 0 + f[(j + -4) >> 2] = f[n >> 2] + f[n >> 2] = 0 + f[d >> 2] = 0 + f[i >> 2] = 0 + j = (h + -12) | 0 + h = j + } while ((i | 0) != (k | 0)) + o = h + p = f[a >> 2] | 0 + q = f[e >> 2] | 0 + } + f[a >> 2] = o + f[e >> 2] = m + f[c >> 2] = g + g = p + if ((q | 0) != (g | 0)) { + c = q + do { + q = c + c = (c + -12) | 0 + m = f[c >> 2] | 0 + if (m | 0) { + e = (q + -8) | 0 + q = f[e >> 2] | 0 + if ((q | 0) != (m | 0)) + f[e >> 2] = q + (~(((q + -4 - m) | 0) >>> 2) << 2) + br(m) + } + } while ((c | 0) != (g | 0)) + } + if (!p) return + br(p) + return + } + function wf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = f[(a + 12) >> 2] | 0 + e = (a + 68) | 0 + g = f[e >> 2] | 0 + h = f[(g + 80) >> 2] | 0 + b[(c + 84) >> 0] = 0 + i = (c + 68) | 0 + j = (c + 72) | 0 + k = f[j >> 2] | 0 + l = f[i >> 2] | 0 + m = (k - l) >> 2 + n = l + l = k + if (h >>> 0 <= m >>> 0) + if ( + h >>> 0 < m >>> 0 ? ((k = (n + (h << 2)) | 0), (k | 0) != (l | 0)) : 0 + ) { + f[j >> 2] = l + (~(((l + -4 - k) | 0) >>> 2) << 2) + o = g + p = h + } else { + o = g + p = h + } + else { + kh(i, (h - m) | 0, 3220) + m = f[e >> 2] | 0 + o = m + p = f[(m + 80) >> 2] | 0 + } + m = ((f[(o + 100) >> 2] | 0) - (f[(o + 96) >> 2] | 0)) | 0 + e = ((m | 0) / 12) | 0 + if (!m) { + q = 1 + return q | 0 + } + m = (a + 72) | 0 + a = (c + 68) | 0 + c = f[(o + 96) >> 2] | 0 + o = f[(d + 28) >> 2] | 0 + d = 0 + while (1) { + h = (d * 3) | 0 + i = f[(o + (h << 2)) >> 2] | 0 + if ((i | 0) == -1) { + q = 0 + r = 11 + break + } + g = f[((f[m >> 2] | 0) + 12) >> 2] | 0 + k = f[(g + (i << 2)) >> 2] | 0 + if (k >>> 0 >= p >>> 0) { + q = 0 + r = 11 + break + } + i = f[a >> 2] | 0 + f[(i + (f[(c + ((d * 12) | 0)) >> 2] << 2)) >> 2] = k + k = f[(o + ((h + 1) << 2)) >> 2] | 0 + if ((k | 0) == -1) { + q = 0 + r = 11 + break + } + l = f[(g + (k << 2)) >> 2] | 0 + if (l >>> 0 >= p >>> 0) { + q = 0 + r = 11 + break + } + f[(i + (f[(c + ((d * 12) | 0) + 4) >> 2] << 2)) >> 2] = l + l = f[(o + ((h + 2) << 2)) >> 2] | 0 + if ((l | 0) == -1) { + q = 0 + r = 11 + break + } + h = f[(g + (l << 2)) >> 2] | 0 + if (h >>> 0 >= p >>> 0) { + q = 0 + r = 11 + break + } + f[(i + (f[(c + ((d * 12) | 0) + 8) >> 2] << 2)) >> 2] = h + d = (d + 1) | 0 + if (d >>> 0 >= e >>> 0) { + q = 1 + r = 11 + break + } + } + if ((r | 0) == 11) return q | 0 + return 0 + } + function xf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -4194304) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -4177920) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + o = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + n = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + 4194304) | 0 + b[n >> 0] = m + b[(n + 1) >> 0] = m >>> 8 + b[(n + 2) >> 0] = m >>> 16 + o = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1077936128) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + b[(m + 2) >> 0] = n >>> 16 + b[(m + 3) >> 0] = n >>> 24 + o = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + o = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + o = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((o | 0) < 0) << 31) >> 31 + Cn(e) + eh(o, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + Xl((h + a) | 0, h | 0, o | 0) | 0 + Rg(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Tn(a | 0, 0, o | 0, k | 0) | 0 + k = Tn(h | 0, I | 0, g | 0, j | 0) | 0 + vl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) br(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + br(c) + u = d + return + } + function yf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -2097152) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -2080768) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + o = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + n = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + 6291456) | 0 + b[n >> 0] = m + b[(n + 1) >> 0] = m >>> 8 + b[(n + 2) >> 0] = m >>> 16 + o = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1075838976) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + b[(m + 2) >> 0] = n >>> 16 + b[(m + 3) >> 0] = n >>> 24 + o = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + o = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + o = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((o | 0) < 0) << 31) >> 31 + Cn(e) + eh(o, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + Xl((h + a) | 0, h | 0, o | 0) | 0 + Rg(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Tn(a | 0, 0, o | 0, k | 0) | 0 + k = Tn(h | 0, I | 0, g | 0, j | 0) | 0 + vl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) br(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + br(c) + u = d + return + } + function zf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -1048576) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1032192) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + o = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + n = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + 7340032) | 0 + b[n >> 0] = m + b[(n + 1) >> 0] = m >>> 8 + b[(n + 2) >> 0] = m >>> 16 + o = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1074790400) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + b[(m + 2) >> 0] = n >>> 16 + b[(m + 3) >> 0] = n >>> 24 + o = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + o = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + o = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((o | 0) < 0) << 31) >> 31 + Cn(e) + eh(o, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + Xl((h + a) | 0, h | 0, o | 0) | 0 + Rg(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Tn(a | 0, 0, o | 0, k | 0) | 0 + k = Tn(h | 0, I | 0, g | 0, j | 0) | 0 + vl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) br(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + br(c) + u = d + return + } + function Af(a, c, d, e, g, h, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + a = u + u = (u + 96) | 0 + j = a + if (!c) { + k = -1 + u = a + return k | 0 + } + Lm(j) + yj(j, d, 0, g & 255, i, 0, g << 1, 0, 0, 0) + i = uh(c, j, 1, e) | 0 + d = f[((f[(c + 8) >> 2] | 0) + (i << 2)) >> 2] | 0 + if (e | 0) { + l = (d + 84) | 0 + m = (d + 68) | 0 + n = (d + 40) | 0 + o = (d + 64) | 0 + d = 0 + do { + if (!(b[l >> 0] | 0)) p = f[((f[m >> 2] | 0) + (d << 2)) >> 2] | 0 + else p = d + q = (h + ((X(d, g) | 0) << 1)) | 0 + r = n + s = f[r >> 2] | 0 + t = on(s | 0, f[(r + 4) >> 2] | 0, p | 0, 0) | 0 + Rg(((f[f[o >> 2] >> 2] | 0) + t) | 0, q | 0, s | 0) | 0 + d = (d + 1) | 0 + } while ((d | 0) != (e | 0)) + } + d = (c + 80) | 0 + c = f[d >> 2] | 0 + if (c) + if ((c | 0) == (e | 0)) v = 10 + else w = -1 + else { + f[d >> 2] = e + v = 10 + } + if ((v | 0) == 10) w = i + i = (j + 88) | 0 + v = f[i >> 2] | 0 + f[i >> 2] = 0 + if (v | 0) { + i = f[(v + 8) >> 2] | 0 + if (i | 0) { + e = (v + 12) | 0 + if ((f[e >> 2] | 0) != (i | 0)) f[e >> 2] = i + br(i) + } + br(v) + } + v = f[(j + 68) >> 2] | 0 + if (v | 0) { + i = (j + 72) | 0 + e = f[i >> 2] | 0 + if ((e | 0) != (v | 0)) + f[i >> 2] = e + (~(((e + -4 - v) | 0) >>> 2) << 2) + br(v) + } + v = (j + 64) | 0 + j = f[v >> 2] | 0 + f[v >> 2] = 0 + if (j | 0) { + v = f[j >> 2] | 0 + if (v | 0) { + e = (j + 4) | 0 + if ((f[e >> 2] | 0) != (v | 0)) f[e >> 2] = v + br(v) + } + br(j) + } + k = w + u = a + return k | 0 + } + function Bf(a, c, d, e, g, h, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + a = u + u = (u + 96) | 0 + j = a + if (!c) { + k = -1 + u = a + return k | 0 + } + Lm(j) + yj(j, d, 0, g & 255, i, 0, g << 2, 0, 0, 0) + i = uh(c, j, 1, e) | 0 + d = f[((f[(c + 8) >> 2] | 0) + (i << 2)) >> 2] | 0 + if (e | 0) { + l = (d + 84) | 0 + m = (d + 68) | 0 + n = (d + 40) | 0 + o = (d + 64) | 0 + d = 0 + do { + if (!(b[l >> 0] | 0)) p = f[((f[m >> 2] | 0) + (d << 2)) >> 2] | 0 + else p = d + q = (h + ((X(d, g) | 0) << 2)) | 0 + r = n + s = f[r >> 2] | 0 + t = on(s | 0, f[(r + 4) >> 2] | 0, p | 0, 0) | 0 + Rg(((f[f[o >> 2] >> 2] | 0) + t) | 0, q | 0, s | 0) | 0 + d = (d + 1) | 0 + } while ((d | 0) != (e | 0)) + } + d = (c + 80) | 0 + c = f[d >> 2] | 0 + if (c) + if ((c | 0) == (e | 0)) v = 10 + else w = -1 + else { + f[d >> 2] = e + v = 10 + } + if ((v | 0) == 10) w = i + i = (j + 88) | 0 + v = f[i >> 2] | 0 + f[i >> 2] = 0 + if (v | 0) { + i = f[(v + 8) >> 2] | 0 + if (i | 0) { + e = (v + 12) | 0 + if ((f[e >> 2] | 0) != (i | 0)) f[e >> 2] = i + br(i) + } + br(v) + } + v = f[(j + 68) >> 2] | 0 + if (v | 0) { + i = (j + 72) | 0 + e = f[i >> 2] | 0 + if ((e | 0) != (v | 0)) + f[i >> 2] = e + (~(((e + -4 - v) | 0) >>> 2) << 2) + br(v) + } + v = (j + 64) | 0 + j = f[v >> 2] | 0 + f[v >> 2] = 0 + if (j | 0) { + v = f[j >> 2] | 0 + if (v | 0) { + e = (j + 4) | 0 + if ((f[e >> 2] | 0) != (v | 0)) f[e >> 2] = v + br(v) + } + br(j) + } + k = w + u = a + return k | 0 + } + function Cf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -262144) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -245760) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + o = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + n = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + 8126464) | 0 + b[n >> 0] = m + b[(n + 1) >> 0] = m >>> 8 + b[(n + 2) >> 0] = m >>> 16 + o = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1074003968) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + b[(m + 2) >> 0] = n >>> 16 + b[(m + 3) >> 0] = n >>> 24 + o = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + o = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + o = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((o | 0) < 0) << 31) >> 31 + Cn(e) + eh(o, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + Xl((h + a) | 0, h | 0, o | 0) | 0 + Rg(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Tn(a | 0, 0, o | 0, k | 0) | 0 + k = Tn(h | 0, I | 0, g | 0, j | 0) | 0 + vl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) br(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + br(c) + u = d + return + } + function Df(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -131072) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -114688) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + o = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + n = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + 8257536) | 0 + b[n >> 0] = m + b[(n + 1) >> 0] = m >>> 8 + b[(n + 2) >> 0] = m >>> 16 + o = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1073872896) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + b[(m + 2) >> 0] = n >>> 16 + b[(m + 3) >> 0] = n >>> 24 + o = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + o = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + o = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((o | 0) < 0) << 31) >> 31 + Cn(e) + eh(o, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + Xl((h + a) | 0, h | 0, o | 0) | 0 + Rg(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Tn(a | 0, 0, o | 0, k | 0) | 0 + k = Tn(h | 0, I | 0, g | 0, j | 0) | 0 + vl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) br(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + br(c) + u = d + return + } + function Ef(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -32768) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -16384) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + o = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + n = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + 8355840) | 0 + b[n >> 0] = m + b[(n + 1) >> 0] = m >>> 8 + b[(n + 2) >> 0] = m >>> 16 + o = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1073774592) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + b[(m + 2) >> 0] = n >>> 16 + b[(m + 3) >> 0] = n >>> 24 + o = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + o = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + o = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((o | 0) < 0) << 31) >> 31 + Cn(e) + eh(o, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + Xl((h + a) | 0, h | 0, o | 0) | 0 + Rg(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Tn(a | 0, 0, o | 0, k | 0) | 0 + k = Tn(h | 0, I | 0, g | 0, j | 0) | 0 + vl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) br(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + br(c) + u = d + return + } + function Ff(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + c = f[b >> 2] | 0 + d = f[(b + 4) >> 2] | 0 + e = f[(b + 8) >> 2] | 0 + g = f[(b + 12) >> 2] | 0 + b = ((((((c ^ 318) + 239) ^ d) + 239) ^ e) + 239) ^ g + h = f[(a + 4) >> 2] | 0 + if (!h) { + i = 0 + return i | 0 + } + j = (h + -1) | 0 + k = ((j & h) | 0) == 0 + if (!k) + if (b >>> 0 < h >>> 0) l = b + else l = (b >>> 0) % (h >>> 0) | 0 + else l = b & j + m = f[((f[a >> 2] | 0) + (l << 2)) >> 2] | 0 + if (!m) { + i = 0 + return i | 0 + } + a = f[m >> 2] | 0 + if (!a) { + i = 0 + return i | 0 + } + if (k) { + k = a + while (1) { + m = f[(k + 4) >> 2] | 0 + n = (m | 0) == (b | 0) + if (!(n | (((m & j) | 0) == (l | 0)))) { + i = 0 + o = 25 + break + } + if ( + ( + ( + (n ? (f[(k + 8) >> 2] | 0) == (c | 0) : 0) + ? (f[(k + 12) >> 2] | 0) == (d | 0) + : 0 + ) + ? (f[(k + 16) >> 2] | 0) == (e | 0) + : 0 + ) + ? (f[(k + 20) >> 2] | 0) == (g | 0) + : 0 + ) { + i = k + o = 25 + break + } + k = f[k >> 2] | 0 + if (!k) { + i = 0 + o = 25 + break + } + } + if ((o | 0) == 25) return i | 0 + } else p = a + while (1) { + a = f[(p + 4) >> 2] | 0 + if ((a | 0) == (b | 0)) { + if ( + ( + ( + (f[(p + 8) >> 2] | 0) == (c | 0) + ? (f[(p + 12) >> 2] | 0) == (d | 0) + : 0 + ) + ? (f[(p + 16) >> 2] | 0) == (e | 0) + : 0 + ) + ? (f[(p + 20) >> 2] | 0) == (g | 0) + : 0 + ) { + i = p + o = 25 + break + } + } else { + if (a >>> 0 < h >>> 0) q = a + else q = (a >>> 0) % (h >>> 0) | 0 + if ((q | 0) != (l | 0)) { + i = 0 + o = 25 + break + } + } + p = f[p >> 2] | 0 + if (!p) { + i = 0 + o = 25 + break + } + } + if ((o | 0) == 25) return i | 0 + return 0 + } + function Gf(a, c, d, e, g, h, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + a = u + u = (u + 96) | 0 + j = a + if (!c) { + k = -1 + u = a + return k | 0 + } + Lm(j) + yj(j, d, 0, g & 255, i, 0, g, 0, 0, 0) + i = uh(c, j, 1, e) | 0 + d = f[((f[(c + 8) >> 2] | 0) + (i << 2)) >> 2] | 0 + if (e | 0) { + l = (d + 84) | 0 + m = (d + 68) | 0 + n = (d + 40) | 0 + o = (d + 64) | 0 + d = 0 + do { + if (!(b[l >> 0] | 0)) p = f[((f[m >> 2] | 0) + (d << 2)) >> 2] | 0 + else p = d + q = (h + (X(d, g) | 0)) | 0 + r = n + s = f[r >> 2] | 0 + t = on(s | 0, f[(r + 4) >> 2] | 0, p | 0, 0) | 0 + Rg(((f[f[o >> 2] >> 2] | 0) + t) | 0, q | 0, s | 0) | 0 + d = (d + 1) | 0 + } while ((d | 0) != (e | 0)) + } + d = (c + 80) | 0 + c = f[d >> 2] | 0 + if (c) + if ((c | 0) == (e | 0)) v = 10 + else w = -1 + else { + f[d >> 2] = e + v = 10 + } + if ((v | 0) == 10) w = i + i = (j + 88) | 0 + v = f[i >> 2] | 0 + f[i >> 2] = 0 + if (v | 0) { + i = f[(v + 8) >> 2] | 0 + if (i | 0) { + e = (v + 12) | 0 + if ((f[e >> 2] | 0) != (i | 0)) f[e >> 2] = i + br(i) + } + br(v) + } + v = f[(j + 68) >> 2] | 0 + if (v | 0) { + i = (j + 72) | 0 + e = f[i >> 2] | 0 + if ((e | 0) != (v | 0)) + f[i >> 2] = e + (~(((e + -4 - v) | 0) >>> 2) << 2) + br(v) + } + v = (j + 64) | 0 + j = f[v >> 2] | 0 + f[v >> 2] = 0 + if (j | 0) { + v = f[j >> 2] | 0 + if (v | 0) { + e = (j + 4) | 0 + if ((f[e >> 2] | 0) != (v | 0)) f[e >> 2] = v + br(v) + } + br(j) + } + k = w + u = a + return k | 0 + } + function Hf(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + h = u + u = (u + 32) | 0 + i = h + j = (h + 16) | 0 + k = f[((f[((f[(b + 4) >> 2] | 0) + 8) >> 2] | 0) + (d << 2)) >> 2] | 0 + do + if ( + (((c + -1) | 0) >>> 0 < 6) & + ((Qa[f[((f[b >> 2] | 0) + 8) >> 2] & 127](b) | 0) == 1) + ) { + l = Qa[f[((f[b >> 2] | 0) + 52) >> 2] & 127](b) | 0 + m = Ra[f[((f[b >> 2] | 0) + 60) >> 2] & 127](b, d) | 0 + if (((l | 0) == 0) | ((m | 0) == 0)) { + f[a >> 2] = 0 + u = h + return + } + n = Ra[f[((f[b >> 2] | 0) + 56) >> 2] & 127](b, d) | 0 + if (!n) { + f[i >> 2] = f[(b + 56) >> 2] + f[(i + 4) >> 2] = l + f[(i + 12) >> 2] = m + f[(i + 8) >> 2] = m + 12 + Od(a, j, c, k, e, i, g) + if (!(f[a >> 2] | 0)) { + f[a >> 2] = 0 + break + } + u = h + return + } else { + f[i >> 2] = f[(b + 56) >> 2] + f[(i + 4) >> 2] = n + f[(i + 12) >> 2] = m + f[(i + 8) >> 2] = m + 12 + Nd(a, j, c, k, e, i, g) + if (!(f[a >> 2] | 0)) { + f[a >> 2] = 0 + break + } + u = h + return + } + } + while (0) + f[a >> 2] = 0 + u = h + return + } + function If(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0 + e = f[d >> 2] | 0 + g = f[(d + 4) >> 2] | 0 + if ((e | 0) == (g | 0)) { + h = 0 + i = (a + 12) | 0 + j = (a + 8) | 0 + } else { + d = f[c >> 2] | 0 + c = (a + 8) | 0 + k = (a + 12) | 0 + a = 0 + l = e + while (1) { + e = f[l >> 2] | 0 + m = f[(d + (e << 2)) >> 2] | 0 + if (m >>> 0 < a >>> 0) n = a + else { + o = f[c >> 2] | 0 + p = ((f[k >> 2] | 0) - o) | 0 + q = o + if ((p | 0) > 0) { + o = p >>> 2 + p = 0 + do { + r = f[(q + (p << 2)) >> 2] | 0 + s = f[(r + 68) >> 2] | 0 + if (!(b[(r + 84) >> 0] | 0)) t = f[(s + (e << 2)) >> 2] | 0 + else t = e + f[(s + (m << 2)) >> 2] = t + p = (p + 1) | 0 + } while ((p | 0) < (o | 0)) + } + n = (m + 1) | 0 + } + l = (l + 4) | 0 + if ((l | 0) == (g | 0)) { + h = n + i = k + j = c + break + } else a = n + } + } + n = f[i >> 2] | 0 + a = f[j >> 2] | 0 + if (((n - a) | 0) > 0) { + u = 0 + v = a + w = n + } else return + while (1) { + n = f[(v + (u << 2)) >> 2] | 0 + b[(n + 84) >> 0] = 0 + a = (n + 68) | 0 + c = (n + 72) | 0 + n = f[c >> 2] | 0 + k = f[a >> 2] | 0 + g = (n - k) >> 2 + l = k + k = n + if (h >>> 0 <= g >>> 0) + if ( + h >>> 0 < g >>> 0 + ? ((n = (l + (h << 2)) | 0), (n | 0) != (k | 0)) + : 0 + ) { + f[c >> 2] = k + (~(((k + -4 - n) | 0) >>> 2) << 2) + x = v + y = w + } else { + x = v + y = w + } + else { + kh(a, (h - g) | 0, 5908) + x = f[j >> 2] | 0 + y = f[i >> 2] | 0 + } + u = (u + 1) | 0 + if ((u | 0) >= (((y - x) >> 2) | 0)) break + else { + v = x + w = y + } + } + return + } + function Jf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = b + e = (c - d) >> 2 + g = (a + 8) | 0 + h = f[g >> 2] | 0 + i = f[a >> 2] | 0 + j = i + if (e >>> 0 <= ((h - i) >> 2) >>> 0) { + k = (a + 4) | 0 + l = ((f[k >> 2] | 0) - i) >> 2 + m = e >>> 0 > l >>> 0 + n = (b + (l << 2)) | 0 + l = m ? n : c + o = l + p = (o - d) | 0 + q = p >> 2 + if (q | 0) Xl(i | 0, b | 0, p | 0) | 0 + p = (j + (q << 2)) | 0 + if (!m) { + m = f[k >> 2] | 0 + if ((m | 0) == (p | 0)) return + f[k >> 2] = m + (~(((m + -4 - p) | 0) >>> 2) << 2) + return + } + if ((l | 0) == (c | 0)) return + l = f[k >> 2] | 0 + p = ((((c + -4 - o) | 0) >>> 2) + 1) | 0 + o = n + n = l + while (1) { + f[n >> 2] = f[o >> 2] + o = (o + 4) | 0 + if ((o | 0) == (c | 0)) break + else n = (n + 4) | 0 + } + f[k >> 2] = l + (p << 2) + return + } + p = i + if (!i) r = h + else { + h = (a + 4) | 0 + l = f[h >> 2] | 0 + if ((l | 0) != (j | 0)) + f[h >> 2] = l + (~(((l + -4 - i) | 0) >>> 2) << 2) + br(p) + f[g >> 2] = 0 + f[h >> 2] = 0 + f[a >> 2] = 0 + r = 0 + } + if (e >>> 0 > 1073741823) mq(a) + h = r >> 1 + p = (r >> 2) >>> 0 < 536870911 ? (h >>> 0 < e >>> 0 ? e : h) : 1073741823 + if (p >>> 0 > 1073741823) mq(a) + h = dn(p << 2) | 0 + e = (a + 4) | 0 + f[e >> 2] = h + f[a >> 2] = h + f[g >> 2] = h + (p << 2) + if ((b | 0) == (c | 0)) return + p = ((((c + -4 - d) | 0) >>> 2) + 1) | 0 + d = b + b = h + while (1) { + f[b >> 2] = f[d >> 2] + d = (d + 4) | 0 + if ((d | 0) == (c | 0)) break + else b = (b + 4) | 0 + } + f[e >> 2] = h + (p << 2) + return + } + function Kf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + c = u + u = (u + 16) | 0 + d = c + e = (a + 76) | 0 + g = f[e >> 2] | 0 + h = (a + 80) | 0 + i = f[h >> 2] | 0 + if ((i | 0) != (g | 0)) f[h >> 2] = i + (~(((i + -4 - g) | 0) >>> 2) << 2) + f[e >> 2] = 0 + f[h >> 2] = 0 + f[(a + 84) >> 2] = 0 + if (g | 0) br(g) + g = (a + 64) | 0 + h = f[g >> 2] | 0 + e = (a + 68) | 0 + if ((f[e >> 2] | 0) != (h | 0)) f[e >> 2] = h + f[g >> 2] = 0 + f[e >> 2] = 0 + f[(a + 72) >> 2] = 0 + if (h | 0) br(h) + h = (b + 4) | 0 + e = f[h >> 2] | 0 + g = f[b >> 2] | 0 + i = (((((e - g) | 0) / 12) | 0) * 3) | 0 + j = (a + 4) | 0 + k = f[j >> 2] | 0 + l = f[a >> 2] | 0 + m = (k - l) >> 2 + n = l + l = k + k = g + if (i >>> 0 <= m >>> 0) + if ( + i >>> 0 < m >>> 0 ? ((o = (n + (i << 2)) | 0), (o | 0) != (l | 0)) : 0 + ) { + f[j >> 2] = l + (~(((l + -4 - o) | 0) >>> 2) << 2) + p = e + q = g + r = k + } else { + p = e + q = g + r = k + } + else { + oi(a, (i - m) | 0) + m = f[b >> 2] | 0 + p = f[h >> 2] | 0 + q = m + r = m + } + if ((p | 0) != (q | 0)) { + q = f[a >> 2] | 0 + m = (((p - r) | 0) / 12) | 0 + p = 0 + do { + h = (p * 3) | 0 + f[(q + (h << 2)) >> 2] = f[(r + ((p * 12) | 0)) >> 2] + f[(q + ((h + 1) << 2)) >> 2] = f[(r + ((p * 12) | 0) + 4) >> 2] + f[(q + ((h + 2) << 2)) >> 2] = f[(r + ((p * 12) | 0) + 8) >> 2] + p = (p + 1) | 0 + } while (p >>> 0 < m >>> 0) + } + f[d >> 2] = -1 + if (!(oc(a, d) | 0)) { + s = 0 + u = c + return s | 0 + } + Gc(a) | 0 + fb(a, f[d >> 2] | 0) | 0 + s = 1 + u = c + return s | 0 + } + function Lf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -16384) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + b[m >> 0] = j + b[(m + 1) >> 0] = j >>> 8 + n = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + o = (j + 8372224) | 0 + b[m >> 0] = o + b[(m + 1) >> 0] = o >>> 8 + b[(m + 2) >> 0] = o >>> 16 + n = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + o = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + -1073758208) | 0 + b[o >> 0] = m + b[(o + 1) >> 0] = m >>> 8 + b[(o + 2) >> 0] = m >>> 16 + b[(o + 3) >> 0] = m >>> 24 + n = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + n = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + n = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((n | 0) < 0) << 31) >> 31 + Cn(e) + eh(n, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + Xl((h + a) | 0, h | 0, n | 0) | 0 + Rg(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Tn(a | 0, 0, n | 0, k | 0) | 0 + k = Tn(h | 0, I | 0, g | 0, j | 0) | 0 + vl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) br(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + br(c) + u = d + return + } + function Mf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = b + e = (c - d) >> 2 + g = (a + 8) | 0 + h = f[g >> 2] | 0 + i = f[a >> 2] | 0 + j = i + if (e >>> 0 <= ((h - i) >> 2) >>> 0) { + k = (a + 4) | 0 + l = ((f[k >> 2] | 0) - i) >> 2 + m = e >>> 0 > l >>> 0 + n = (b + (l << 2)) | 0 + l = m ? n : c + o = l + p = (o - d) | 0 + q = p >> 2 + if (q | 0) Xl(i | 0, b | 0, p | 0) | 0 + p = (j + (q << 2)) | 0 + if (!m) { + m = f[k >> 2] | 0 + if ((m | 0) == (p | 0)) return + f[k >> 2] = m + (~(((m + -4 - p) | 0) >>> 2) << 2) + return + } + if ((l | 0) == (c | 0)) return + l = f[k >> 2] | 0 + p = (c + -4 - o) | 0 + o = n + n = l + while (1) { + f[n >> 2] = f[o >> 2] + o = (o + 4) | 0 + if ((o | 0) == (c | 0)) break + else n = (n + 4) | 0 + } + f[k >> 2] = l + (((p >>> 2) + 1) << 2) + return + } + p = i + if (!i) r = h + else { + h = (a + 4) | 0 + l = f[h >> 2] | 0 + if ((l | 0) != (j | 0)) + f[h >> 2] = l + (~(((l + -4 - i) | 0) >>> 2) << 2) + br(p) + f[g >> 2] = 0 + f[h >> 2] = 0 + f[a >> 2] = 0 + r = 0 + } + if (e >>> 0 > 1073741823) mq(a) + h = r >> 1 + p = (r >> 2) >>> 0 < 536870911 ? (h >>> 0 < e >>> 0 ? e : h) : 1073741823 + if (p >>> 0 > 1073741823) mq(a) + h = dn(p << 2) | 0 + e = (a + 4) | 0 + f[e >> 2] = h + f[a >> 2] = h + f[g >> 2] = h + (p << 2) + if ((b | 0) == (c | 0)) return + p = (c + -4 - d) | 0 + d = b + b = h + while (1) { + f[b >> 2] = f[d >> 2] + d = (d + 4) | 0 + if ((d | 0) == (c | 0)) break + else b = (b + 4) | 0 + } + f[e >> 2] = h + (((p >>> 2) + 1) << 2) + return + } + function Nf(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + g = u + u = (u + 80) | 0 + h = g + i = (g + 64) | 0 + Al(h) + j = f[((f[(a + 8) >> 2] | 0) + 56) >> 2] | 0 + k = X(Ll(5) | 0, d) | 0 + yj(h, j, 0, d & 255, 5, 0, k, (((k | 0) < 0) << 31) >> 31, 0, 0) + k = dn(96) | 0 + nl(k, h) + pj(k, c) | 0 + f[i >> 2] = k + Wi(a, i) + k = f[i >> 2] | 0 + f[i >> 2] = 0 + if (k | 0) { + i = (k + 88) | 0 + c = f[i >> 2] | 0 + f[i >> 2] = 0 + if (c | 0) { + i = f[(c + 8) >> 2] | 0 + if (i | 0) { + h = (c + 12) | 0 + if ((f[h >> 2] | 0) != (i | 0)) f[h >> 2] = i + br(i) + } + br(c) + } + c = f[(k + 68) >> 2] | 0 + if (c | 0) { + i = (k + 72) | 0 + h = f[i >> 2] | 0 + if ((h | 0) != (c | 0)) + f[i >> 2] = h + (~(((h + -4 - c) | 0) >>> 2) << 2) + br(c) + } + c = (k + 64) | 0 + h = f[c >> 2] | 0 + f[c >> 2] = 0 + if (h | 0) { + c = f[h >> 2] | 0 + if (c | 0) { + i = (h + 4) | 0 + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + br(c) + } + br(h) + } + br(k) + } + if (!e) { + u = g + return + } + k = f[(a + 32) >> 2] | 0 + b[(k + 84) >> 0] = 0 + a = (k + 68) | 0 + h = (k + 72) | 0 + k = f[h >> 2] | 0 + c = f[a >> 2] | 0 + i = (k - c) >> 2 + d = k + if (i >>> 0 < e >>> 0) { + kh(a, (e - i) | 0, 1516) + u = g + return + } + if (i >>> 0 <= e >>> 0) { + u = g + return + } + i = (c + (e << 2)) | 0 + if ((i | 0) == (d | 0)) { + u = g + return + } + f[h >> 2] = d + (~(((d + -4 - i) | 0) >>> 2) << 2) + u = g + return + } + function Of(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + c = u + u = (u + 16) | 0 + d = (c + 4) | 0 + e = c + g = (a + 4) | 0 + h = f[g >> 2] | 0 + i = (a + 8) | 0 + j = f[i >> 2] | 0 + if ((j | 0) == (h | 0)) k = h + else { + l = (j + (~(((j + -4 - h) | 0) >>> 2) << 2)) | 0 + f[i >> 2] = l + k = l + } + l = (a + 16) | 0 + h = f[l >> 2] | 0 + j = (a + 20) | 0 + m = f[j >> 2] | 0 + n = h + if ((m | 0) != (h | 0)) f[j >> 2] = m + (~(((m + -4 - n) | 0) >>> 2) << 2) + m = f[b >> 2] | 0 + h = f[(b + 4) >> 2] | 0 + if ((m | 0) == (h | 0)) { + u = c + return + } + b = (a + 12) | 0 + a = m + m = k + k = n + while (1) { + n = f[a >> 2] | 0 + f[d >> 2] = n + if ((m | 0) == (f[b >> 2] | 0)) { + Ci(g, d) + o = f[l >> 2] | 0 + } else { + f[m >> 2] = n + f[i >> 2] = m + 4 + o = k + } + n = f[d >> 2] | 0 + p = f[j >> 2] | 0 + q = (p - o) >> 2 + r = o + if ((n | 0) < (q | 0)) { + s = r + t = n + v = o + } else { + w = (n + 1) | 0 + f[e >> 2] = -1 + x = p + if (w >>> 0 <= q >>> 0) + if ( + w >>> 0 < q >>> 0 + ? ((p = (r + (w << 2)) | 0), (p | 0) != (x | 0)) + : 0 + ) { + f[j >> 2] = x + (~(((x + -4 - p) | 0) >>> 2) << 2) + y = n + z = r + A = o + } else { + y = n + z = r + A = o + } + else { + kh(l, (w - q) | 0, e) + q = f[l >> 2] | 0 + y = f[d >> 2] | 0 + z = q + A = q + } + s = z + t = y + v = A + } + m = f[i >> 2] | 0 + f[(s + (t << 2)) >> 2] = ((m - (f[g >> 2] | 0)) >> 2) + -1 + a = (a + 4) | 0 + if ((a | 0) == (h | 0)) break + else k = v + } + u = c + return + } + function Pf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + c = d[b >> 1] | 0 + e = d[(b + 2) >> 1] | 0 + g = d[(b + 4) >> 1] | 0 + b = (((((c ^ 318) & 65535) + 239) ^ (e & 65535)) + 239) ^ (g & 65535) + h = f[(a + 4) >> 2] | 0 + if (!h) { + i = 0 + return i | 0 + } + j = (h + -1) | 0 + k = ((j & h) | 0) == 0 + if (!k) + if (b >>> 0 < h >>> 0) l = b + else l = (b >>> 0) % (h >>> 0) | 0 + else l = b & j + m = f[((f[a >> 2] | 0) + (l << 2)) >> 2] | 0 + if (!m) { + i = 0 + return i | 0 + } + a = f[m >> 2] | 0 + if (!a) { + i = 0 + return i | 0 + } + if (k) { + k = a + while (1) { + m = f[(k + 4) >> 2] | 0 + n = (m | 0) == (b | 0) + if (!(n | (((m & j) | 0) == (l | 0)))) { + i = 0 + o = 23 + break + } + if ( + ( + (n ? ((n = (k + 8) | 0), (d[n >> 1] | 0) == (c << 16) >> 16) : 0) + ? (d[(n + 2) >> 1] | 0) == (e << 16) >> 16 + : 0 + ) + ? (d[(k + 12) >> 1] | 0) == (g << 16) >> 16 + : 0 + ) { + i = k + o = 23 + break + } + k = f[k >> 2] | 0 + if (!k) { + i = 0 + o = 23 + break + } + } + if ((o | 0) == 23) return i | 0 + } else p = a + while (1) { + a = f[(p + 4) >> 2] | 0 + if ((a | 0) == (b | 0)) { + k = (p + 8) | 0 + if ( + ( + (d[k >> 1] | 0) == (c << 16) >> 16 + ? (d[(k + 2) >> 1] | 0) == (e << 16) >> 16 + : 0 + ) + ? (d[(p + 12) >> 1] | 0) == (g << 16) >> 16 + : 0 + ) { + i = p + o = 23 + break + } + } else { + if (a >>> 0 < h >>> 0) q = a + else q = (a >>> 0) % (h >>> 0) | 0 + if ((q | 0) != (l | 0)) { + i = 0 + o = 23 + break + } + } + p = f[p >> 2] | 0 + if (!p) { + i = 0 + o = 23 + break + } + } + if ((o | 0) == 23) return i | 0 + return 0 + } + function Qf(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + c = u + u = (u + 32) | 0 + d = c + e = (a + 16) | 0 + g = e + h = f[g >> 2] | 0 + i = f[(g + 4) >> 2] | 0 + if (!(((i | 0) > 0) | (((i | 0) == 0) & (h >>> 0 > 0)))) { + u = c + return + } + g = Tn(f[((f[(a + 12) >> 2] | 0) + 4) >> 2] | 0, 0, 7, 0) | 0 + j = Wn(g | 0, I | 0, 3) | 0 + g = I + if (!(b[(a + 24) >> 0] | 0)) { + k = (a + 4) | 0 + l = k + m = k + n = h + o = i + } else { + k = f[a >> 2] | 0 + p = (a + 4) | 0 + q = (k + ((f[p >> 2] | 0) - k)) | 0 + k = Tn(h | 0, i | 0, 8, 0) | 0 + i = (q + (0 - k)) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + b[(d + 24) >> 0] = 0 + eh(j, g, d) | 0 + k = (d + 4) | 0 + q = ((f[k >> 2] | 0) - (f[d >> 2] | 0)) | 0 + Xl((i + q) | 0, (i + 8) | 0, j | 0) | 0 + Rg(i | 0, f[d >> 2] | 0, q | 0) | 0 + i = e + h = Tn(f[i >> 2] | 0, f[(i + 4) >> 2] | 0, (8 - q) | 0, 0) | 0 + q = e + f[q >> 2] = h + f[(q + 4) >> 2] = I + q = (d + 12) | 0 + h = f[q >> 2] | 0 + f[q >> 2] = 0 + if (h | 0) br(h) + h = f[d >> 2] | 0 + if (h | 0) { + if ((f[k >> 2] | 0) != (h | 0)) f[k >> 2] = h + br(h) + } + h = e + l = p + m = p + n = f[h >> 2] | 0 + o = f[(h + 4) >> 2] | 0 + } + h = f[l >> 2] | 0 + l = f[a >> 2] | 0 + p = (h - l) | 0 + k = Vn(j | 0, g | 0, n | 0, o | 0) | 0 + o = Tn(k | 0, I | 0, p | 0, 0) | 0 + k = l + l = h + if (p >>> 0 >= o >>> 0) { + if (p >>> 0 > o >>> 0 ? ((h = (k + o) | 0), (h | 0) != (l | 0)) : 0) + f[m >> 2] = h + } else ri(a, (o - p) | 0) + p = e + f[p >> 2] = 0 + f[(p + 4) >> 2] = 0 + u = c + return + } + function Rf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + f[c >> 2] = 1 + d = (a + 4) | 0 + e = (c + 8) | 0 + g = (c + 12) | 0 + c = f[e >> 2] | 0 + i = ((f[g >> 2] | 0) - c) | 0 + if (i >>> 0 < 4294967292) { + Bk(e, (i + 4) | 0, 0) + j = f[e >> 2] | 0 + } else j = c + c = (j + i) | 0 + i = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + b[c >> 0] = i + b[(c + 1) >> 0] = i >> 8 + b[(c + 2) >> 0] = i >> 16 + b[(c + 3) >> 0] = i >> 24 + i = (a + 8) | 0 + c = (a + 12) | 0 + d = f[i >> 2] | 0 + if ((f[c >> 2] | 0) != (d | 0)) { + j = 0 + k = d + do { + d = (k + (j << 2)) | 0 + l = f[e >> 2] | 0 + m = ((f[g >> 2] | 0) - l) | 0 + if (m >>> 0 < 4294967292) { + Bk(e, (m + 4) | 0, 0) + n = f[e >> 2] | 0 + } else n = l + l = (n + m) | 0 + m = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + b[l >> 0] = m + b[(l + 1) >> 0] = m >> 8 + b[(l + 2) >> 0] = m >> 16 + b[(l + 3) >> 0] = m >> 24 + j = (j + 1) | 0 + k = f[i >> 2] | 0 + } while (j >>> 0 < (((f[c >> 2] | 0) - k) >> 2) >>> 0) + } + k = (a + 20) | 0 + a = f[e >> 2] | 0 + c = ((f[g >> 2] | 0) - a) | 0 + if (c >>> 0 < 4294967292) { + Bk(e, (c + 4) | 0, 0) + o = f[e >> 2] | 0 + p = (o + c) | 0 + q = + h[k >> 0] | + (h[(k + 1) >> 0] << 8) | + (h[(k + 2) >> 0] << 16) | + (h[(k + 3) >> 0] << 24) + b[p >> 0] = q + b[(p + 1) >> 0] = q >> 8 + b[(p + 2) >> 0] = q >> 16 + b[(p + 3) >> 0] = q >> 24 + return + } else { + o = a + p = (o + c) | 0 + q = + h[k >> 0] | + (h[(k + 1) >> 0] << 8) | + (h[(k + 2) >> 0] << 16) | + (h[(k + 3) >> 0] << 24) + b[p >> 0] = q + b[(p + 1) >> 0] = q >> 8 + b[(p + 2) >> 0] = q >> 16 + b[(p + 3) >> 0] = q >> 24 + return + } + } + function Sf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = (a + 8) | 0 + e = f[d >> 2] | 0 + g = f[a >> 2] | 0 + h = g + do + if (((e - g) >> 2) >>> 0 >= b >>> 0) { + i = (a + 4) | 0 + j = f[i >> 2] | 0 + k = (j - g) >> 2 + l = k >>> 0 < b >>> 0 + m = l ? k : b + n = j + if (m | 0) { + j = m + m = h + while (1) { + f[m >> 2] = f[c >> 2] + j = (j + -1) | 0 + if (!j) break + else m = (m + 4) | 0 + } + } + if (!l) { + m = (h + (b << 2)) | 0 + if ((m | 0) == (n | 0)) return + else { + o = i + p = (n + (~(((n + -4 - m) | 0) >>> 2) << 2)) | 0 + break + } + } else { + m = (b - k) | 0 + j = m + q = n + while (1) { + f[q >> 2] = f[c >> 2] + j = (j + -1) | 0 + if (!j) break + else q = (q + 4) | 0 + } + o = i + p = (n + (m << 2)) | 0 + break + } + } else { + q = g + if (!g) r = e + else { + j = (a + 4) | 0 + k = f[j >> 2] | 0 + if ((k | 0) != (h | 0)) + f[j >> 2] = k + (~(((k + -4 - g) | 0) >>> 2) << 2) + br(q) + f[d >> 2] = 0 + f[j >> 2] = 0 + f[a >> 2] = 0 + r = 0 + } + if (b >>> 0 > 1073741823) mq(a) + j = r >> 1 + q = + (r >> 2) >>> 0 < 536870911 + ? j >>> 0 < b >>> 0 + ? b + : j + : 1073741823 + if (q >>> 0 > 1073741823) mq(a) + j = dn(q << 2) | 0 + k = (a + 4) | 0 + f[k >> 2] = j + f[a >> 2] = j + f[d >> 2] = j + (q << 2) + q = b + l = j + while (1) { + f[l >> 2] = f[c >> 2] + q = (q + -1) | 0 + if (!q) break + else l = (l + 4) | 0 + } + o = k + p = (j + (b << 2)) | 0 + } + while (0) + f[o >> 2] = p + return + } + function Tf(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + h = Qg(a, b, c, d, g) | 0 + i = f[e >> 2] | 0 + j = f[d >> 2] | 0 + k = f[g >> 2] | 0 + g = f[k >> 2] | 0 + l = ((f[(k + 4) >> 2] | 0) - g) >> 3 + if (l >>> 0 <= i >>> 0) mq(k) + m = g + if (l >>> 0 <= j >>> 0) mq(k) + if ( + (f[(m + (i << 3)) >> 2] | 0) >>> 0 >= + (f[(m + (j << 3)) >> 2] | 0) >>> 0 + ) { + n = h + return n | 0 + } + f[d >> 2] = i + f[e >> 2] = j + j = f[d >> 2] | 0 + e = f[c >> 2] | 0 + if (l >>> 0 <= j >>> 0) mq(k) + if (l >>> 0 <= e >>> 0) mq(k) + if ( + (f[(m + (j << 3)) >> 2] | 0) >>> 0 >= + (f[(m + (e << 3)) >> 2] | 0) >>> 0 + ) { + n = (h + 1) | 0 + return n | 0 + } + f[c >> 2] = j + f[d >> 2] = e + e = f[c >> 2] | 0 + d = f[b >> 2] | 0 + if (l >>> 0 <= e >>> 0) mq(k) + if (l >>> 0 <= d >>> 0) mq(k) + if ( + (f[(m + (e << 3)) >> 2] | 0) >>> 0 >= + (f[(m + (d << 3)) >> 2] | 0) >>> 0 + ) { + n = (h + 2) | 0 + return n | 0 + } + f[b >> 2] = e + f[c >> 2] = d + d = f[b >> 2] | 0 + c = f[a >> 2] | 0 + if (l >>> 0 <= d >>> 0) mq(k) + if (l >>> 0 <= c >>> 0) mq(k) + if ( + (f[(m + (d << 3)) >> 2] | 0) >>> 0 >= + (f[(m + (c << 3)) >> 2] | 0) >>> 0 + ) { + n = (h + 3) | 0 + return n | 0 + } + f[a >> 2] = d + f[b >> 2] = c + n = (h + 4) | 0 + return n | 0 + } + function Uf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + d = b[c >> 0] | 0 + e = b[(c + 1) >> 0] | 0 + g = b[(c + 2) >> 0] | 0 + c = (((((d & 255) ^ 318) + 239) ^ (e & 255)) + 239) ^ (g & 255) + h = f[(a + 4) >> 2] | 0 + if (!h) { + i = 0 + return i | 0 + } + j = (h + -1) | 0 + k = ((j & h) | 0) == 0 + if (!k) + if (c >>> 0 < h >>> 0) l = c + else l = (c >>> 0) % (h >>> 0) | 0 + else l = c & j + m = f[((f[a >> 2] | 0) + (l << 2)) >> 2] | 0 + if (!m) { + i = 0 + return i | 0 + } + a = f[m >> 2] | 0 + if (!a) { + i = 0 + return i | 0 + } + if (k) { + k = a + while (1) { + m = f[(k + 4) >> 2] | 0 + n = (m | 0) == (c | 0) + if (!(n | (((m & j) | 0) == (l | 0)))) { + i = 0 + o = 23 + break + } + if ( + ( + (n ? ((n = (k + 8) | 0), (b[n >> 0] | 0) == (d << 24) >> 24) : 0) + ? (b[(n + 1) >> 0] | 0) == (e << 24) >> 24 + : 0 + ) + ? (b[(n + 2) >> 0] | 0) == (g << 24) >> 24 + : 0 + ) { + i = k + o = 23 + break + } + k = f[k >> 2] | 0 + if (!k) { + i = 0 + o = 23 + break + } + } + if ((o | 0) == 23) return i | 0 + } else p = a + while (1) { + a = f[(p + 4) >> 2] | 0 + if ((a | 0) == (c | 0)) { + k = (p + 8) | 0 + if ( + ( + (b[k >> 0] | 0) == (d << 24) >> 24 + ? (b[(k + 1) >> 0] | 0) == (e << 24) >> 24 + : 0 + ) + ? (b[(k + 2) >> 0] | 0) == (g << 24) >> 24 + : 0 + ) { + i = p + o = 23 + break + } + } else { + if (a >>> 0 < h >>> 0) q = a + else q = (a >>> 0) % (h >>> 0) | 0 + if ((q | 0) != (l | 0)) { + i = 0 + o = 23 + break + } + } + p = f[p >> 2] | 0 + if (!p) { + i = 0 + o = 23 + break + } + } + if ((o | 0) == 23) return i | 0 + return 0 + } + function Vf(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + b = u + u = (u + 16) | 0 + c = b + d = (a + 36) | 0 + e = (a + 4) | 0 + g = (a + 8) | 0 + h = ((f[g >> 2] | 0) - (f[e >> 2] | 0)) >> 2 + i = (a + 40) | 0 + j = f[i >> 2] | 0 + k = f[d >> 2] | 0 + l = (j - k) >> 2 + m = k + k = j + if (h >>> 0 <= l >>> 0) { + if ( + h >>> 0 < l >>> 0 ? ((j = (m + (h << 2)) | 0), (j | 0) != (k | 0)) : 0 + ) { + m = k + do { + k = (m + -4) | 0 + f[i >> 2] = k + n = f[k >> 2] | 0 + f[k >> 2] = 0 + if (n | 0) Va[f[((f[n >> 2] | 0) + 4) >> 2] & 127](n) + m = f[i >> 2] | 0 + } while ((m | 0) != (j | 0)) + } + } else ng(d, (h - l) | 0) + if ((f[g >> 2] | 0) == (f[e >> 2] | 0)) { + o = 1 + u = b + return o | 0 + } + l = (a + 52) | 0 + h = (a + 48) | 0 + j = 0 + while (1) { + Xa[f[((f[a >> 2] | 0) + 56) >> 2] & 15](c, a, j) + m = ((f[d >> 2] | 0) + (j << 2)) | 0 + i = f[c >> 2] | 0 + f[c >> 2] = 0 + n = f[m >> 2] | 0 + f[m >> 2] = i + if (n | 0) Va[f[((f[n >> 2] | 0) + 4) >> 2] & 127](n) + n = f[c >> 2] | 0 + f[c >> 2] = 0 + if (n | 0) Va[f[((f[n >> 2] | 0) + 4) >> 2] & 127](n) + n = f[((f[d >> 2] | 0) + (j << 2)) >> 2] | 0 + if (!n) { + o = 0 + p = 19 + break + } + if ( + j >>> 0 < (f[l >> 2] | 0) >>> 0 + ? (f[((f[h >> 2] | 0) + ((j >>> 5) << 2)) >> 2] & (1 << (j & 31))) | + 0 + : 0 + ) + Pp(n) + j = (j + 1) | 0 + if (j >>> 0 >= (((f[g >> 2] | 0) - (f[e >> 2] | 0)) >> 2) >>> 0) { + o = 1 + p = 19 + break + } + } + if ((p | 0) == 19) { + u = b + return o | 0 + } + return 0 + } + function Wf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + Nh(f[(c + 12) >> 2] | 0, b) | 0 + h = f[(c + 8) >> 2] | 0 + a: do + if (h | 0) { + i = (b + 16) | 0 + j = (b + 4) | 0 + k = h + while (1) { + l = k + if (!(nf(0, b, (l + 8) | 0) | 0)) { + m = 0 + break + } + n = (l + 20) | 0 + o = ((f[(l + 24) >> 2] | 0) - (f[n >> 2] | 0)) | 0 + Nh(o, b) | 0 + l = f[n >> 2] | 0 + n = i + p = f[(n + 4) >> 2] | 0 + if ( + !(((p | 0) > 0) | (((p | 0) == 0) & ((f[n >> 2] | 0) >>> 0 > 0))) + ) { + f[g >> 2] = f[j >> 2] + f[e >> 2] = f[g >> 2] + ye(b, e, l, (l + o) | 0) | 0 + } + k = f[k >> 2] | 0 + if (!k) break a + } + u = d + return m | 0 + } + while (0) + Nh(f[(c + 32) >> 2] | 0, b) | 0 + e = f[(c + 28) >> 2] | 0 + if (!e) { + m = 1 + u = d + return m | 0 + } else q = e + while (1) { + e = q + if (!(nf(0, b, (e + 8) | 0) | 0)) { + m = 0 + r = 10 + break + } + Wf(a, b, f[(e + 20) >> 2] | 0) | 0 + q = f[q >> 2] | 0 + if (!q) { + m = 1 + r = 10 + break + } + } + if ((r | 0) == 10) { + u = d + return m | 0 + } + return 0 + } + function Xf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + h = (a + 8) | 0 + i = (a + 12) | 0 + j = f[h >> 2] | 0 + if ((f[i >> 2] | 0) == (j | 0)) { + k = dn(76) | 0 + pn(k, b) + l = k + f[g >> 2] = l + k = f[i >> 2] | 0 + if (k >>> 0 < (f[(a + 16) >> 2] | 0) >>> 0) { + f[g >> 2] = 0 + f[k >> 2] = l + f[i >> 2] = k + 4 + m = g + } else { + yg(h, g) + m = g + } + g = f[m >> 2] | 0 + f[m >> 2] = 0 + if (!g) { + u = c + return 1 + } + Va[f[((f[g >> 2] | 0) + 4) >> 2] & 127](g) + u = c + return 1 + } + g = f[j >> 2] | 0 + f[d >> 2] = b + j = (g + 4) | 0 + m = (g + 8) | 0 + h = f[m >> 2] | 0 + if ((h | 0) == (f[(g + 12) >> 2] | 0)) Ci(j, d) + else { + f[h >> 2] = b + f[m >> 2] = h + 4 + } + h = f[d >> 2] | 0 + b = (g + 16) | 0 + k = (g + 20) | 0 + g = f[k >> 2] | 0 + i = f[b >> 2] | 0 + l = (g - i) >> 2 + a = i + if ((h | 0) < (l | 0)) { + n = a + o = h + } else { + i = (h + 1) | 0 + f[e >> 2] = -1 + p = g + if (i >>> 0 <= l >>> 0) + if ( + i >>> 0 < l >>> 0 + ? ((g = (a + (i << 2)) | 0), (g | 0) != (p | 0)) + : 0 + ) { + f[k >> 2] = p + (~(((p + -4 - g) | 0) >>> 2) << 2) + q = h + r = a + } else { + q = h + r = a + } + else { + kh(b, (i - l) | 0, e) + q = f[d >> 2] | 0 + r = f[b >> 2] | 0 + } + n = r + o = q + } + f[(n + (o << 2)) >> 2] = (((f[m >> 2] | 0) - (f[j >> 2] | 0)) >> 2) + -1 + u = c + return 1 + } + function Yf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + d = c + e = b + g = (d - e) | 0 + h = g >> 2 + i = (a + 8) | 0 + j = f[i >> 2] | 0 + k = f[a >> 2] | 0 + l = k + if (h >>> 0 > ((j - k) >> 2) >>> 0) { + m = k + if (!k) n = j + else { + j = (a + 4) | 0 + o = f[j >> 2] | 0 + if ((o | 0) != (l | 0)) + f[j >> 2] = o + (~(((o + -4 - k) | 0) >>> 2) << 2) + br(m) + f[i >> 2] = 0 + f[j >> 2] = 0 + f[a >> 2] = 0 + n = 0 + } + if (h >>> 0 > 1073741823) mq(a) + j = n >> 1 + m = + (n >> 2) >>> 0 < 536870911 ? (j >>> 0 < h >>> 0 ? h : j) : 1073741823 + if (m >>> 0 > 1073741823) mq(a) + j = dn(m << 2) | 0 + n = (a + 4) | 0 + f[n >> 2] = j + f[a >> 2] = j + f[i >> 2] = j + (m << 2) + if ((g | 0) <= 0) return + Rg(j | 0, b | 0, g | 0) | 0 + f[n >> 2] = j + ((g >>> 2) << 2) + return + } + g = (a + 4) | 0 + a = f[g >> 2] | 0 + j = (a - k) >> 2 + k = h >>> 0 > j >>> 0 + h = k ? (b + (j << 2)) | 0 : c + c = a + j = a + if ((h | 0) == (b | 0)) p = l + else { + a = (h + -4 - e) | 0 + e = b + b = l + while (1) { + f[b >> 2] = f[e >> 2] + e = (e + 4) | 0 + if ((e | 0) == (h | 0)) break + else b = (b + 4) | 0 + } + p = (l + (((a >>> 2) + 1) << 2)) | 0 + } + if (k) { + k = (d - h) | 0 + if ((k | 0) <= 0) return + Rg(j | 0, h | 0, k | 0) | 0 + f[g >> 2] = (f[g >> 2] | 0) + ((k >>> 2) << 2) + return + } else { + if ((p | 0) == (c | 0)) return + f[g >> 2] = c + (~(((c + -4 - p) | 0) >>> 2) << 2) + return + } + } + function Zf(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0 + g = u + u = (u + 96) | 0 + h = (g + 40) | 0 + i = g + Gm(h, d) + we(i, c, d) + th(h, i) + sj((i + 24) | 0, f[(i + 28) >> 2] | 0) + Dj((i + 12) | 0, f[(i + 16) >> 2] | 0) + sj(i, f[(i + 4) >> 2] | 0) + Si(a, h, e) + if (!(f[a >> 2] | 0)) { + e = (a + 4) | 0 + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + f[(c + 40) >> 2] = f[(h + 40) >> 2] + f[(c + 44) >> 2] = f[(h + 44) >> 2] + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + } + f[h >> 2] = 2968 + sj((h + 28) | 0, f[(h + 32) >> 2] | 0) + Dj((h + 16) | 0, f[(h + 20) >> 2] | 0) + sj((h + 4) | 0, f[(h + 8) >> 2] | 0) + u = g + return + } + function _f(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = f[b >> 2] | 0 + d = f[(b + 4) >> 2] | 0 + e = f[(b + 8) >> 2] | 0 + b = ((((c ^ 318) + 239) ^ d) + 239) ^ e + g = f[(a + 4) >> 2] | 0 + if (!g) { + h = 0 + return h | 0 + } + i = (g + -1) | 0 + j = ((i & g) | 0) == 0 + if (!j) + if (b >>> 0 < g >>> 0) k = b + else k = (b >>> 0) % (g >>> 0) | 0 + else k = b & i + l = f[((f[a >> 2] | 0) + (k << 2)) >> 2] | 0 + if (!l) { + h = 0 + return h | 0 + } + a = f[l >> 2] | 0 + if (!a) { + h = 0 + return h | 0 + } + if (j) { + j = a + while (1) { + l = f[(j + 4) >> 2] | 0 + m = (l | 0) == (b | 0) + if (!(m | (((l & i) | 0) == (k | 0)))) { + h = 0 + n = 23 + break + } + if ( + ( + (m ? (f[(j + 8) >> 2] | 0) == (c | 0) : 0) + ? (f[(j + 12) >> 2] | 0) == (d | 0) + : 0 + ) + ? (f[(j + 16) >> 2] | 0) == (e | 0) + : 0 + ) { + h = j + n = 23 + break + } + j = f[j >> 2] | 0 + if (!j) { + h = 0 + n = 23 + break + } + } + if ((n | 0) == 23) return h | 0 + } else o = a + while (1) { + a = f[(o + 4) >> 2] | 0 + if ((a | 0) == (b | 0)) { + if ( + ( + (f[(o + 8) >> 2] | 0) == (c | 0) + ? (f[(o + 12) >> 2] | 0) == (d | 0) + : 0 + ) + ? (f[(o + 16) >> 2] | 0) == (e | 0) + : 0 + ) { + h = o + n = 23 + break + } + } else { + if (a >>> 0 < g >>> 0) p = a + else p = (a >>> 0) % (g >>> 0) | 0 + if ((p | 0) != (k | 0)) { + h = 0 + n = 23 + break + } + } + o = f[o >> 2] | 0 + if (!o) { + h = 0 + n = 23 + break + } + } + if ((n | 0) == 23) return h | 0 + return 0 + } + function $f(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + e = u + u = (u + 16) | 0 + g = e + if (!(ih(a, c, d) | 0)) { + h = 0 + u = e + return h | 0 + } + if ((b[((f[(a + 8) >> 2] | 0) + 24) >> 0] | 0) != 3) { + h = 0 + u = e + return h | 0 + } + i = f[(c + 48) >> 2] | 0 + c = dn(32) | 0 + f[g >> 2] = c + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 17 + j = c + k = 12932 + l = (j + 17) | 0 + do { + b[j >> 0] = b[k >> 0] | 0 + j = (j + 1) | 0 + k = (k + 1) | 0 + } while ((j | 0) < (l | 0)) + b[(c + 17) >> 0] = 0 + c = (i + 16) | 0 + k = f[c >> 2] | 0 + if (k) { + j = c + l = k + a: while (1) { + k = l + while (1) { + if ((f[(k + 16) >> 2] | 0) >= (d | 0)) break + m = f[(k + 4) >> 2] | 0 + if (!m) { + n = j + break a + } else k = m + } + l = f[k >> 2] | 0 + if (!l) { + n = k + break + } else j = k + } + if ( + ((n | 0) != (c | 0) ? (f[(n + 16) >> 2] | 0) <= (d | 0) : 0) + ? ((d = (n + 20) | 0), (sh(d, g) | 0) != 0) + : 0 + ) + o = yk(d, g, -1) | 0 + else p = 12 + } else p = 12 + if ((p | 0) == 12) o = yk(i, g, -1) | 0 + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + if ((o | 0) < 1) { + h = 0 + u = e + return h | 0 + } + tp((a + 40) | 0, o) + h = 1 + u = e + return h | 0 + } + function ag(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + e = c + g = (d - e) | 0 + h = (a + 8) | 0 + i = f[h >> 2] | 0 + j = f[a >> 2] | 0 + k = j + if (g >>> 0 > ((i - j) | 0) >>> 0) { + if (!j) l = i + else { + i = (a + 4) | 0 + if ((f[i >> 2] | 0) != (k | 0)) f[i >> 2] = k + br(k) + f[h >> 2] = 0 + f[i >> 2] = 0 + f[a >> 2] = 0 + l = 0 + } + if ((g | 0) < 0) mq(a) + i = l << 1 + m = l >>> 0 < 1073741823 ? (i >>> 0 < g >>> 0 ? g : i) : 2147483647 + if ((m | 0) < 0) mq(a) + i = dn(m) | 0 + l = (a + 4) | 0 + f[l >> 2] = i + f[a >> 2] = i + f[h >> 2] = i + m + if ((c | 0) == (d | 0)) return + else { + n = c + o = i + } + do { + b[o >> 0] = b[n >> 0] | 0 + n = (n + 1) | 0 + o = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = o + } while ((n | 0) != (d | 0)) + return + } + n = (a + 4) | 0 + a = ((f[n >> 2] | 0) - j) | 0 + j = g >>> 0 > a >>> 0 + g = (c + a) | 0 + a = j ? g : d + if ((a | 0) == (c | 0)) p = k + else { + o = c + c = k + while (1) { + b[c >> 0] = b[o >> 0] | 0 + o = (o + 1) | 0 + if ((o | 0) == (a | 0)) break + else c = (c + 1) | 0 + } + p = (k + (a - e)) | 0 + } + if (!j) { + if ((f[n >> 2] | 0) == (p | 0)) return + f[n >> 2] = p + return + } + if ((a | 0) == (d | 0)) return + a = g + g = f[n >> 2] | 0 + do { + b[g >> 0] = b[a >> 0] | 0 + a = (a + 1) | 0 + g = ((f[n >> 2] | 0) + 1) | 0 + f[n >> 2] = g + } while ((a | 0) != (d | 0)) + return + } + function bg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + d = ((c >>> 1) & 1431655765) | ((c << 1) & -1431655766) + c = ((d >>> 2) & 858993459) | ((d << 2) & -858993460) + d = ((c >>> 4) & 252645135) | ((c << 4) & -252645136) + c = ((d >>> 8) & 16711935) | ((d << 8) & -16711936) + d = (32 - b) | 0 + e = ((c >>> 16) | (c << 16)) >>> d + c = (e - ((e >>> 1) & 1431655765)) | 0 + g = (((c >>> 2) & 858993459) + (c & 858993459)) | 0 + c = (X(((g >>> 4) + g) & 252645135, 16843009) | 0) >>> 24 + g = (b - c) | 0 + h = f[a >> 2] | 0 + i = h + j = + Tn( + f[i >> 2] | 0, + f[(i + 4) >> 2] | 0, + g | 0, + ((((g | 0) < 0) << 31) >> 31) | 0, + ) | 0 + g = h + f[g >> 2] = j + f[(g + 4) >> 2] = I + g = (h + 8) | 0 + h = g + j = Tn(f[h >> 2] | 0, f[(h + 4) >> 2] | 0, c | 0, 0) | 0 + c = g + f[c >> 2] = j + f[(c + 4) >> 2] = I + c = (a + 28) | 0 + j = f[c >> 2] | 0 + g = (32 - j) | 0 + h = (a + 24) | 0 + do + if ((g | 0) >= (b | 0)) { + i = (-1 >>> d) << j + k = (f[h >> 2] & ~i) | (i & (e << j)) + f[h >> 2] = k + i = (j + b) | 0 + f[c >> 2] = i + if ((i | 0) != 32) return + i = (a + 16) | 0 + l = f[i >> 2] | 0 + if ((l | 0) == (f[(a + 20) >> 2] | 0)) { + Ci((a + 12) | 0, h) + m = 0 + n = 0 + break + } else { + f[l >> 2] = k + f[i >> 2] = l + 4 + m = 0 + n = 0 + break + } + } else { + l = (-1 >>> j) << j + i = (f[h >> 2] & ~l) | (l & (e << j)) + f[h >> 2] = i + l = (a + 16) | 0 + k = f[l >> 2] | 0 + if ((k | 0) == (f[(a + 20) >> 2] | 0)) Ci((a + 12) | 0, h) + else { + f[k >> 2] = i + f[l >> 2] = k + 4 + } + k = (b - g) | 0 + m = k + n = (-1 >>> ((32 - k) | 0)) & (e >>> g) + } + while (0) + f[h >> 2] = n + f[c >> 2] = m + return + } + function cg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0 + e = c & 255 + g = (d | 0) != 0 + a: do + if (g & (((a & 3) | 0) != 0)) { + h = c & 255 + i = a + j = d + while (1) { + if ((b[i >> 0] | 0) == (h << 24) >> 24) { + k = i + l = j + m = 6 + break a + } + n = (i + 1) | 0 + o = (j + -1) | 0 + p = (o | 0) != 0 + if (p & (((n & 3) | 0) != 0)) { + i = n + j = o + } else { + q = n + r = o + s = p + m = 5 + break + } + } + } else { + q = a + r = d + s = g + m = 5 + } + while (0) + if ((m | 0) == 5) + if (s) { + k = q + l = r + m = 6 + } else { + t = q + u = 0 + } + b: do + if ((m | 0) == 6) { + q = c & 255 + if ((b[k >> 0] | 0) == (q << 24) >> 24) { + t = k + u = l + } else { + r = X(e, 16843009) | 0 + c: do + if (l >>> 0 > 3) { + s = k + g = l + while (1) { + d = f[s >> 2] ^ r + if ((((d & -2139062144) ^ -2139062144) & (d + -16843009)) | 0) + break + d = (s + 4) | 0 + a = (g + -4) | 0 + if (a >>> 0 > 3) { + s = d + g = a + } else { + v = d + w = a + m = 11 + break c + } + } + x = s + y = g + } else { + v = k + w = l + m = 11 + } + while (0) + if ((m | 0) == 11) + if (!w) { + t = v + u = 0 + break + } else { + x = v + y = w + } + while (1) { + if ((b[x >> 0] | 0) == (q << 24) >> 24) { + t = x + u = y + break b + } + r = (x + 1) | 0 + y = (y + -1) | 0 + if (!y) { + t = r + u = 0 + break + } else x = r + } + } + } + while (0) + return (u | 0 ? t : 0) | 0 + } + function dg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + e = f[a >> 2] | 0 + g = e + do + if ((d | 0) == (e | 0)) { + h = (a + 8) | 0 + i = f[h >> 2] | 0 + j = (a + 12) | 0 + k = f[j >> 2] | 0 + l = k + if (i >>> 0 < k >>> 0) { + k = i + m = (((((l - k) >> 2) + 1) | 0) / 2) | 0 + n = (i + (m << 2)) | 0 + o = (k - d) | 0 + k = o >> 2 + p = (n + ((0 - k) << 2)) | 0 + if (!k) { + q = n + r = i + } else { + Xl(p | 0, d | 0, o | 0) | 0 + q = p + r = f[h >> 2] | 0 + } + f[c >> 2] = q + f[h >> 2] = r + (m << 2) + s = q + break + } + m = (l - g) >> 1 + l = (m | 0) == 0 ? 1 : m + if (l >>> 0 > 1073741823) { + m = ra(8) | 0 + Wo(m, 14941) + f[m >> 2] = 6944 + va(m | 0, 1080, 114) + } + m = dn(l << 2) | 0 + p = m + o = (m + ((((l + 3) | 0) >>> 2) << 2)) | 0 + n = o + k = (m + (l << 2)) | 0 + if ((d | 0) == (i | 0)) { + t = n + u = d + } else { + l = o + m = n + v = d + do { + f[l >> 2] = f[v >> 2] + l = (m + 4) | 0 + m = l + v = (v + 4) | 0 + } while ((v | 0) != (i | 0)) + t = m + u = f[a >> 2] | 0 + } + f[a >> 2] = p + f[c >> 2] = n + f[h >> 2] = t + f[j >> 2] = k + if (!u) s = o + else { + br(u) + s = f[c >> 2] | 0 + } + } else s = d + while (0) + f[(s + -4) >> 2] = f[b >> 2] + f[c >> 2] = (f[c >> 2] | 0) + -4 + return + } + function eg(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 8) | 0 + i = (a + 4) | 0 + if ((f[i >> 2] | 0) == -1) { + j = 0 + u = d + return j | 0 + } + k = f[(a + 8) >> 2] | 0 + l = (c + 16) | 0 + m = l + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + if (!(((o | 0) > 0) | (((o | 0) == 0) & (n >>> 0 > 0)))) { + m = ((f[(a + 12) >> 2] | 0) - k) | 0 + p = (c + 4) | 0 + f[g >> 2] = f[p >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, k, (k + m) | 0) | 0 + m = l + k = f[m >> 2] | 0 + q = f[(m + 4) >> 2] | 0 + m = (a + 20) | 0 + if (((q | 0) > 0) | (((q | 0) == 0) & (k >>> 0 > 0))) { + r = q + s = k + t = g + } else { + f[g >> 2] = f[p >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, m, (m + 4) | 0) | 0 + m = l + r = f[(m + 4) >> 2] | 0 + s = f[m >> 2] | 0 + t = g + } + } else { + r = o + s = n + t = g + } + b[h >> 0] = f[i >> 2] + if (!(((r | 0) > 0) | (((r | 0) == 0) & (s >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, (h + 1) | 0) | 0 + } + j = 1 + u = d + return j | 0 + } + function fg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + e = u + u = (u + 16) | 0 + g = (e + 4) | 0 + h = e + i = (a + 8) | 0 + a = f[i >> 2] | 0 + j = f[(a + 40) >> 2] | 0 + k = _q((j | 0) > -1 ? j : -1) | 0 + l = (c + 4) | 0 + m = f[l >> 2] | 0 + n = f[c >> 2] | 0 + if ((m | 0) == (n | 0)) { + $q(k) + u = e + return 1 + } + o = (d + 16) | 0 + p = (d + 4) | 0 + q = (k + j) | 0 + j = 0 + r = n + n = a + s = a + a = m + while (1) { + m = f[(r + (j << 2)) >> 2] | 0 + if (!(b[(n + 84) >> 0] | 0)) + t = f[((f[(n + 68) >> 2] | 0) + (m << 2)) >> 2] | 0 + else t = m + m = (s + 48) | 0 + v = f[m >> 2] | 0 + w = f[(m + 4) >> 2] | 0 + m = (s + 40) | 0 + x = f[m >> 2] | 0 + y = on(x | 0, f[(m + 4) >> 2] | 0, t | 0, 0) | 0 + m = Tn(y | 0, I | 0, v | 0, w | 0) | 0 + Rg(k | 0, ((f[f[s >> 2] >> 2] | 0) + m) | 0, x | 0) | 0 + x = o + m = f[(x + 4) >> 2] | 0 + if (((m | 0) > 0) | (((m | 0) == 0) & ((f[x >> 2] | 0) >>> 0 > 0))) { + z = r + A = a + } else { + f[h >> 2] = f[p >> 2] + f[g >> 2] = f[h >> 2] + ye(d, g, k, q) | 0 + z = f[c >> 2] | 0 + A = f[l >> 2] | 0 + } + x = (j + 1) | 0 + if (x >>> 0 >= ((A - z) >> 2) >>> 0) break + m = f[i >> 2] | 0 + j = x + r = z + n = m + s = m + a = A + } + $q(k) + u = e + return 1 + } + function gg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + d = ((f[b >> 2] | 0) * 3) | 0 + if ((d | 0) == -1) { + e = 0 + g = -1 + f[c >> 2] = g + return e | 0 + } + b = f[(a + 12) >> 2] | 0 + h = f[(b + 12) >> 2] | 0 + if ((f[(h + (d << 2)) >> 2] | 0) == -1) { + e = 0 + g = d + f[c >> 2] = g + return e | 0 + } + i = f[b >> 2] | 0 + b = f[(a + 152) >> 2] | 0 + if ((f[(b + (f[(i + (d << 2)) >> 2] << 2)) >> 2] | 0) == -1) { + a = (d + 1) | 0 + j = ((a >>> 0) % 3 | 0 | 0) == 0 ? (d + -2) | 0 : a + if ((j | 0) == -1) { + e = 0 + g = -1 + f[c >> 2] = g + return e | 0 + } + if ((f[(h + (j << 2)) >> 2] | 0) == -1) { + e = 0 + g = j + f[c >> 2] = g + return e | 0 + } + if ((f[(b + (f[(i + (j << 2)) >> 2] << 2)) >> 2] | 0) == -1) { + a = (j + 1) | 0 + k = ((a >>> 0) % 3 | 0 | 0) == 0 ? (j + -2) | 0 : a + if ((k | 0) == -1) { + e = 0 + g = -1 + f[c >> 2] = g + return e | 0 + } + if ((f[(h + (k << 2)) >> 2] | 0) == -1) { + e = 0 + g = k + f[c >> 2] = g + return e | 0 + } + if ((f[(b + (f[(i + (k << 2)) >> 2] << 2)) >> 2] | 0) == -1) { + i = (k + 1) | 0 + e = 1 + g = ((i >>> 0) % 3 | 0 | 0) == 0 ? (k + -2) | 0 : i + f[c >> 2] = g + return e | 0 + } else l = k + } else l = j + } else l = d + while (1) { + d = ((((l >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + l) | 0 + if ((d | 0) == -1) break + j = f[(h + (d << 2)) >> 2] | 0 + if ((j | 0) == -1) break + d = (j + (((j >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + if ((d | 0) == -1) break + else l = d + } + e = 0 + g = ((((l >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + l) | 0 + f[c >> 2] = g + return e | 0 + } + function hg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + e = (a + 4) | 0 + g = f[e >> 2] | 0 + if (!g) { + f[c >> 2] = e + h = e + return h | 0 + } + e = b[(d + 11) >> 0] | 0 + i = (e << 24) >> 24 < 0 + j = i ? f[(d + 4) >> 2] | 0 : e & 255 + e = i ? f[d >> 2] | 0 : d + d = (a + 4) | 0 + a = g + while (1) { + g = (a + 16) | 0 + i = b[(g + 11) >> 0] | 0 + k = (i << 24) >> 24 < 0 + l = k ? f[(a + 20) >> 2] | 0 : i & 255 + i = l >>> 0 < j >>> 0 + m = i ? l : j + if ( + (m | 0) != 0 + ? ((n = Pk(e, k ? f[g >> 2] | 0 : g, m) | 0), (n | 0) != 0) + : 0 + ) + if ((n | 0) < 0) o = 8 + else o = 10 + else if (j >>> 0 < l >>> 0) o = 8 + else o = 10 + if ((o | 0) == 8) { + o = 0 + n = f[a >> 2] | 0 + if (!n) { + o = 9 + break + } else { + p = a + q = n + } + } else if ((o | 0) == 10) { + o = 0 + n = j >>> 0 < l >>> 0 ? j : l + if ( + (n | 0) != 0 + ? ((l = Pk(k ? f[g >> 2] | 0 : g, e, n) | 0), (l | 0) != 0) + : 0 + ) { + if ((l | 0) >= 0) { + o = 16 + break + } + } else o = 12 + if ((o | 0) == 12 ? ((o = 0), !i) : 0) { + o = 16 + break + } + r = (a + 4) | 0 + i = f[r >> 2] | 0 + if (!i) { + o = 15 + break + } else { + p = r + q = i + } + } + d = p + a = q + } + if ((o | 0) == 9) { + f[c >> 2] = a + h = a + return h | 0 + } else if ((o | 0) == 15) { + f[c >> 2] = a + h = r + return h | 0 + } else if ((o | 0) == 16) { + f[c >> 2] = a + h = d + return h | 0 + } + return 0 + } + function ig(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0 + d = u + u = (u + 32) | 0 + e = (d + 24) | 0 + g = (d + 16) | 0 + h = (d + 8) | 0 + i = d + j = (a + 4) | 0 + k = f[j >> 2] | 0 + l = f[b >> 2] | 0 + m = f[(b + 4) >> 2] | 0 + b = f[c >> 2] | 0 + n = f[(c + 4) >> 2] | 0 + c = (b - l) << 3 + f[j >> 2] = k - m + n + c + j = ((f[a >> 2] | 0) + ((k >>> 5) << 2)) | 0 + a = k & 31 + k = j + if ((m | 0) != (a | 0)) { + f[e >> 2] = l + f[(e + 4) >> 2] = m + f[g >> 2] = b + f[(g + 4) >> 2] = n + f[h >> 2] = k + f[(h + 4) >> 2] = a + ke(i, e, g, h) + u = d + return + } + h = (n - m + c) | 0 + c = l + if ((h | 0) > 0) { + if (!m) { + o = h + p = j + q = 0 + r = l + s = c + } else { + l = (32 - m) | 0 + n = (h | 0) < (l | 0) ? h : l + g = (-1 >>> ((l - n) | 0)) & (-1 << m) + f[j >> 2] = (f[j >> 2] & ~g) | (f[c >> 2] & g) + g = (n + m) | 0 + l = (c + 4) | 0 + o = (h - n) | 0 + p = (j + ((g >>> 5) << 2)) | 0 + q = g & 31 + r = l + s = l + } + l = ((o | 0) / 32) | 0 + Xl(p | 0, r | 0, (l << 2) | 0) | 0 + r = (o - (l << 5)) | 0 + o = (p + (l << 2)) | 0 + p = o + if ((r | 0) > 0) { + g = -1 >>> ((32 - r) | 0) + f[o >> 2] = (f[o >> 2] & ~g) | (f[(s + (l << 2)) >> 2] & g) + t = r + v = p + } else { + t = q + v = p + } + } else { + t = m + v = k + } + f[i >> 2] = v + f[(i + 4) >> 2] = t + u = d + return + } + function jg(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + g = u + u = (u + 16) | 0 + h = g + i = (c + 4) | 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + j = dn(16) | 0 + f[h >> 2] = j + f[(h + 8) >> 2] = -2147483632 + f[(h + 4) >> 2] = 15 + k = j + l = 12916 + m = (k + 15) | 0 + do { + b[k >> 0] = b[l >> 0] | 0 + k = (k + 1) | 0 + l = (l + 1) | 0 + } while ((k | 0) < (m | 0)) + b[(j + 15) >> 0] = 0 + j = yk(i, h, -1) | 0 + if ((b[(h + 11) >> 0] | 0) < 0) br(f[h >> 2] | 0) + switch (j | 0) { + case -1: { + if ((Yh(i) | 0) == 10) n = 6 + else n = 5 + break + } + case 1: { + n = 5 + break + } + default: + n = 6 + } + if ((n | 0) == 5) { + j = dn(68) | 0 + Xo(j) + o = j + } else if ((n | 0) == 6) { + n = dn(64) | 0 + Gp(n) + o = n + } + vo(o, d) + Ad(a, o, i, e) + if (f[a >> 2] | 0) { + p = f[o >> 2] | 0 + q = (p + 4) | 0 + r = f[q >> 2] | 0 + Va[r & 127](o) + u = g + return + } + e = (a + 4) | 0 + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + f[(c + 40) >> 2] = f[(o + 52) >> 2] + f[(c + 44) >> 2] = f[(o + 60) >> 2] + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + p = f[o >> 2] | 0 + q = (p + 4) | 0 + r = f[q >> 2] | 0 + Va[r & 127](o) + u = g + return + } + function kg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = (a + 12) | 0 + g = f[e >> 2] | 0 + h = g + do + if ((d | 0) == (g | 0)) { + i = (a + 4) | 0 + j = f[i >> 2] | 0 + k = f[a >> 2] | 0 + l = k + if (j >>> 0 > k >>> 0) { + m = j + n = (((((m - l) >> 2) + 1) | 0) / -2) | 0 + o = (j + (n << 2)) | 0 + p = (d - m) | 0 + m = p >> 2 + if (!m) q = j + else { + Xl(o | 0, j | 0, p | 0) | 0 + q = f[i >> 2] | 0 + } + p = (o + (m << 2)) | 0 + f[c >> 2] = p + f[i >> 2] = q + (n << 2) + r = p + break + } + p = (h - l) >> 1 + l = (p | 0) == 0 ? 1 : p + if (l >>> 0 > 1073741823) { + p = ra(8) | 0 + Wo(p, 14941) + f[p >> 2] = 6944 + va(p | 0, 1080, 114) + } + p = dn(l << 2) | 0 + n = p + m = (p + ((l >>> 2) << 2)) | 0 + o = m + s = (p + (l << 2)) | 0 + if ((j | 0) == (d | 0)) { + t = o + u = k + } else { + k = m + m = o + l = j + do { + f[k >> 2] = f[l >> 2] + k = (m + 4) | 0 + m = k + l = (l + 4) | 0 + } while ((l | 0) != (d | 0)) + t = m + u = f[a >> 2] | 0 + } + f[a >> 2] = n + f[i >> 2] = o + f[c >> 2] = t + f[e >> 2] = s + if (!u) r = t + else { + br(u) + r = f[c >> 2] | 0 + } + } else r = d + while (0) + f[r >> 2] = f[b >> 2] + f[c >> 2] = (f[c >> 2] | 0) + 4 + return + } + function lg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + b = u + u = (u + 16) | 0 + c = (b + 4) | 0 + d = b + e = (a + 8) | 0 + g = (a + 12) | 0 + h = f[g >> 2] | 0 + $j( + f[(a + 4) >> 2] | 0, + ((f[(h + 56) >> 2] | 0) - (f[(h + 52) >> 2] | 0)) >> 2, + ) + h = (a + 76) | 0 + a = f[h >> 2] | 0 + if (!a) { + i = f[((f[g >> 2] | 0) + 64) >> 2] | 0 + g = ((f[(i + 4) >> 2] | 0) - (f[i >> 2] | 0)) >> 2 + i = ((g >>> 0) / 3) | 0 + if (g >>> 0 <= 2) { + j = 1 + u = b + return j | 0 + } + g = 0 + while (1) { + f[d >> 2] = g * 3 + f[c >> 2] = f[d >> 2] + g = (g + 1) | 0 + if (!(Tb(e, c) | 0)) { + j = 0 + k = 10 + break + } + if ((g | 0) >= (i | 0)) { + j = 1 + k = 10 + break + } + } + if ((k | 0) == 10) { + u = b + return j | 0 + } + } else { + i = f[a >> 2] | 0 + if ((f[(a + 4) >> 2] | 0) == (i | 0)) { + j = 1 + u = b + return j | 0 + } + a = 0 + g = i + while (1) { + f[d >> 2] = f[(g + (a << 2)) >> 2] + f[c >> 2] = f[d >> 2] + a = (a + 1) | 0 + if (!(Tb(e, c) | 0)) { + j = 0 + k = 10 + break + } + i = f[h >> 2] | 0 + g = f[i >> 2] | 0 + if (a >>> 0 >= (((f[(i + 4) >> 2] | 0) - g) >> 2) >>> 0) { + j = 1 + k = 10 + break + } + } + if ((k | 0) == 10) { + u = b + return j | 0 + } + } + return 0 + } + function mg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + h = (a + 12) | 0 + i = (a + 4) | 0 + j = f[i >> 2] | 0 + if ((j | 0) == (f[(a + 8) >> 2] | 0)) { + Ci(a, h) + k = f[i >> 2] | 0 + } else { + f[j >> 2] = f[h >> 2] + l = (j + 4) | 0 + f[i >> 2] = l + k = l + } + l = f[a >> 2] | 0 + f[g >> 2] = k - l + k = (b + 16) | 0 + j = k + m = f[(j + 4) >> 2] | 0 + if (!(((m | 0) > 0) | (((m | 0) == 0) & ((f[j >> 2] | 0) >>> 0 > 0)))) { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + j = f[a >> 2] | 0 + m = f[g >> 2] | 0 + g = k + k = f[(g + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & ((f[g >> 2] | 0) >>> 0 > 0))) { + n = j + o = e + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, j, (j + m) | 0) | 0 + n = f[a >> 2] | 0 + o = e + } + } else { + n = l + o = e + } + e = f[i >> 2] | 0 + if ((e | 0) == (n | 0)) { + f[h >> 2] = 0 + p = (a + 16) | 0 + f[p >> 2] = 0 + u = c + return + } + f[i >> 2] = e + (~(((e + -4 - n) | 0) >>> 2) << 2) + f[h >> 2] = 0 + p = (a + 16) | 0 + f[p >> 2] = 0 + u = c + return + } + function ng(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = (a + 4) | 0 + g = f[e >> 2] | 0 + h = g + if (((d - g) >> 2) >>> 0 >= b >>> 0) { + hj(g | 0, 0, (b << 2) | 0) | 0 + f[e >> 2] = g + (b << 2) + return + } + i = f[a >> 2] | 0 + j = (g - i) >> 2 + g = (j + b) | 0 + k = i + if (g >>> 0 > 1073741823) mq(a) + l = (d - i) | 0 + d = l >> 1 + m = (l >> 2) >>> 0 < 536870911 ? (d >>> 0 < g >>> 0 ? g : d) : 1073741823 + do + if (m) + if (m >>> 0 > 1073741823) { + d = ra(8) | 0 + Wo(d, 14941) + f[d >> 2] = 6944 + va(d | 0, 1080, 114) + } else { + n = dn(m << 2) | 0 + break + } + else n = 0 + while (0) + d = (n + (j << 2)) | 0 + hj(d | 0, 0, (b << 2) | 0) | 0 + b = d + j = (n + (m << 2)) | 0 + m = (n + (g << 2)) | 0 + if ((h | 0) == (k | 0)) { + o = b + p = i + q = h + } else { + i = h + h = b + b = d + do { + i = (i + -4) | 0 + d = f[i >> 2] | 0 + f[i >> 2] = 0 + f[(b + -4) >> 2] = d + b = (h + -4) | 0 + h = b + } while ((i | 0) != (k | 0)) + o = h + p = f[a >> 2] | 0 + q = f[e >> 2] | 0 + } + f[a >> 2] = o + f[e >> 2] = m + f[c >> 2] = j + j = p + if ((q | 0) != (j | 0)) { + c = q + do { + c = (c + -4) | 0 + q = f[c >> 2] | 0 + f[c >> 2] = 0 + if (q | 0) Va[f[((f[q >> 2] | 0) + 4) >> 2] & 127](q) + } while ((c | 0) != (j | 0)) + } + if (!p) return + br(p) + return + } + function og(a) { + a = a | 0 + lk(a) + lk((a + 32) | 0) + lk((a + 64) | 0) + lk((a + 96) | 0) + lk((a + 128) | 0) + lk((a + 160) | 0) + lk((a + 192) | 0) + lk((a + 224) | 0) + lk((a + 256) | 0) + lk((a + 288) | 0) + lk((a + 320) | 0) + lk((a + 352) | 0) + lk((a + 384) | 0) + lk((a + 416) | 0) + lk((a + 448) | 0) + lk((a + 480) | 0) + lk((a + 512) | 0) + lk((a + 544) | 0) + lk((a + 576) | 0) + lk((a + 608) | 0) + lk((a + 640) | 0) + lk((a + 672) | 0) + lk((a + 704) | 0) + lk((a + 736) | 0) + lk((a + 768) | 0) + lk((a + 800) | 0) + lk((a + 832) | 0) + lk((a + 864) | 0) + lk((a + 896) | 0) + lk((a + 928) | 0) + lk((a + 960) | 0) + lk((a + 992) | 0) + lk((a + 1024) | 0) + return + } + function pg(a, c, d, e, g, h) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = $(h) + var i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + i = u + u = (u + 16) | 0 + j = i + k = (i + 4) | 0 + f[j >> 2] = c + c = (a + 4) | 0 + a = dn(32) | 0 + f[k >> 2] = a + f[(k + 8) >> 2] = -2147483616 + f[(k + 4) >> 2] = 17 + l = a + m = 12932 + n = (l + 17) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(a + 17) >> 0] = 0 + Nj(wd(c, j) | 0, k, d) + if ((b[(k + 11) >> 0] | 0) < 0) br(f[k >> 2] | 0) + d = dn(32) | 0 + f[k >> 2] = d + f[(k + 8) >> 2] = -2147483616 + f[(k + 4) >> 2] = 19 + l = d + m = 13005 + n = (l + 19) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(d + 19) >> 0] = 0 + ci(wd(c, j) | 0, k, g, e) + if ((b[(k + 11) >> 0] | 0) < 0) br(f[k >> 2] | 0) + e = dn(32) | 0 + f[k >> 2] = e + f[(k + 8) >> 2] = -2147483616 + f[(k + 4) >> 2] = 18 + l = e + m = 13025 + n = (l + 18) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(e + 18) >> 0] = 0 + Lj(wd(c, j) | 0, k, h) + if ((b[(k + 11) >> 0] | 0) >= 0) { + u = i + return + } + br(f[k >> 2] | 0) + u = i + return + } + function qg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + d = c + e = b + g = (d - e) | 0 + h = g >> 2 + i = (a + 8) | 0 + j = f[i >> 2] | 0 + k = f[a >> 2] | 0 + l = k + if (h >>> 0 <= ((j - k) >> 2) >>> 0) { + m = (a + 4) | 0 + n = ((f[m >> 2] | 0) - k) >> 2 + o = h >>> 0 > n >>> 0 + p = o ? (b + (n << 2)) | 0 : c + c = p + n = (c - e) | 0 + e = n >> 2 + if (e | 0) Xl(k | 0, b | 0, n | 0) | 0 + n = (l + (e << 2)) | 0 + if (o) { + o = (d - c) | 0 + if ((o | 0) <= 0) return + Rg(f[m >> 2] | 0, p | 0, o | 0) | 0 + f[m >> 2] = (f[m >> 2] | 0) + ((o >>> 2) << 2) + return + } else { + o = f[m >> 2] | 0 + if ((o | 0) == (n | 0)) return + f[m >> 2] = o + (~(((o + -4 - n) | 0) >>> 2) << 2) + return + } + } + n = k + if (!k) q = j + else { + j = (a + 4) | 0 + o = f[j >> 2] | 0 + if ((o | 0) != (l | 0)) + f[j >> 2] = o + (~(((o + -4 - k) | 0) >>> 2) << 2) + br(n) + f[i >> 2] = 0 + f[j >> 2] = 0 + f[a >> 2] = 0 + q = 0 + } + if (h >>> 0 > 1073741823) mq(a) + j = q >> 1 + n = (q >> 2) >>> 0 < 536870911 ? (j >>> 0 < h >>> 0 ? h : j) : 1073741823 + if (n >>> 0 > 1073741823) mq(a) + j = dn(n << 2) | 0 + h = (a + 4) | 0 + f[h >> 2] = j + f[a >> 2] = j + f[i >> 2] = j + (n << 2) + if ((g | 0) <= 0) return + Rg(j | 0, b | 0, g | 0) | 0 + f[h >> 2] = j + ((g >>> 2) << 2) + return + } + function rg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0.0, + p = 0, + q = 0.0, + r = 0.0, + s = 0.0, + t = 0, + v = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (c + 1) | 0 + f[g >> 2] = 0 + i = (g + 4) | 0 + f[i >> 2] = 0 + f[(g + 8) >> 2] = 0 + do + if (h) + if (h >>> 0 > 1073741823) mq(g) + else { + j = dn(h << 2) | 0 + f[g >> 2] = j + k = (j + (h << 2)) | 0 + f[(g + 8) >> 2] = k + hj(j | 0, 0, ((c << 2) + 4) | 0) | 0 + f[i >> 2] = k + l = j + m = k + n = j + break + } + else { + l = 0 + m = 0 + n = 0 + } + while (0) + if ((b | 0) > 0) { + g = 0 + do { + j = (l + (f[(a + (g << 2)) >> 2] << 2)) | 0 + f[j >> 2] = (f[j >> 2] | 0) + 1 + g = (g + 1) | 0 + } while ((g | 0) != (b | 0)) + } + o = +(b | 0) + if ((c | 0) < 0) { + p = 0 + q = 0.0 + } else { + c = 0 + r = 0.0 + b = 0 + while (1) { + g = f[(l + (b << 2)) >> 2] | 0 + s = +(g | 0) + if ((g | 0) > 0) { + t = (c + 1) | 0 + v = r + +Fg(s / o) * s + } else { + t = c + v = r + } + b = (b + 1) | 0 + if ((b | 0) == (h | 0)) { + p = t + q = v + break + } else { + c = t + r = v + } + } + } + if (d | 0) f[d >> 2] = p + v = -q + p = ~~v >>> 0 + d = + +K(v) >= 1.0 + ? v > 0.0 + ? ~~+Y(+J(v / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((v - +(~~v >>> 0)) / 4294967296.0) >>> 0 + : 0 + if (!l) { + I = d + u = e + return p | 0 + } + if ((m | 0) != (l | 0)) f[i >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + br(n) + I = d + u = e + return p | 0 + } + function sg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + b = u + u = (u + 16) | 0 + c = (b + 4) | 0 + d = b + e = (a + 8) | 0 + g = (a + 12) | 0 + h = f[g >> 2] | 0 + $j( + f[(a + 4) >> 2] | 0, + ((f[(h + 28) >> 2] | 0) - (f[(h + 24) >> 2] | 0)) >> 2, + ) + h = (a + 76) | 0 + a = f[h >> 2] | 0 + if (!a) { + i = f[g >> 2] | 0 + g = ((f[(i + 4) >> 2] | 0) - (f[i >> 2] | 0)) >> 2 + i = ((g >>> 0) / 3) | 0 + if (g >>> 0 <= 2) { + j = 1 + u = b + return j | 0 + } + g = 0 + while (1) { + f[d >> 2] = g * 3 + f[c >> 2] = f[d >> 2] + g = (g + 1) | 0 + if (!(Wb(e, c) | 0)) { + j = 0 + k = 10 + break + } + if ((g | 0) >= (i | 0)) { + j = 1 + k = 10 + break + } + } + if ((k | 0) == 10) { + u = b + return j | 0 + } + } else { + i = f[a >> 2] | 0 + if ((f[(a + 4) >> 2] | 0) == (i | 0)) { + j = 1 + u = b + return j | 0 + } + a = 0 + g = i + while (1) { + f[d >> 2] = f[(g + (a << 2)) >> 2] + f[c >> 2] = f[d >> 2] + a = (a + 1) | 0 + if (!(Wb(e, c) | 0)) { + j = 0 + k = 10 + break + } + i = f[h >> 2] | 0 + g = f[i >> 2] | 0 + if (a >>> 0 >= (((f[(i + 4) >> 2] | 0) - g) >> 2) >>> 0) { + j = 1 + k = 10 + break + } + } + if ((k | 0) == 10) { + u = b + return j | 0 + } + } + return 0 + } + function tg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + e = u + u = (u + 16) | 0 + g = (e + 4) | 0 + h = e + i = dn(32) | 0 + f[a >> 2] = i + f[(a + 4) >> 2] = c + 4 + c = (a + 8) | 0 + b[c >> 0] = 0 + f[(i + 16) >> 2] = f[d >> 2] + a = (i + 20) | 0 + f[(i + 24) >> 2] = 0 + f[(i + 28) >> 2] = 0 + j = (i + 24) | 0 + f[a >> 2] = j + i = f[(d + 4) >> 2] | 0 + k = (d + 8) | 0 + if ((i | 0) == (k | 0)) { + b[c >> 0] = 1 + u = e + return + } + d = j + j = i + while (1) { + i = (j + 16) | 0 + f[h >> 2] = d + f[g >> 2] = f[h >> 2] + Wg(a, g, i, i) | 0 + i = f[(j + 4) >> 2] | 0 + if (!i) { + l = (j + 8) | 0 + m = f[l >> 2] | 0 + if ((f[m >> 2] | 0) == (j | 0)) n = m + else { + m = l + do { + l = f[m >> 2] | 0 + m = (l + 8) | 0 + o = f[m >> 2] | 0 + } while ((f[o >> 2] | 0) != (l | 0)) + n = o + } + } else { + m = i + while (1) { + o = f[m >> 2] | 0 + if (!o) break + else m = o + } + n = m + } + if ((n | 0) == (k | 0)) break + else j = n + } + b[c >> 0] = 1 + u = e + return + } + function ug(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = u + u = (u + 16) | 0 + e = d + f[e >> 2] = b + g = (a + 8) | 0 + if (((((f[(a + 12) >> 2] | 0) - (f[g >> 2] | 0)) >> 2) | 0) <= (b | 0)) + jh(g, (b + 1) | 0) + h = f[((f[c >> 2] | 0) + 56) >> 2] | 0 + do + if ((h | 0) < 5) { + i = (a + 20 + ((h * 12) | 0) + 4) | 0 + j = f[i >> 2] | 0 + if ((j | 0) == (f[(a + 20 + ((h * 12) | 0) + 8) >> 2] | 0)) { + Ci((a + 20 + ((h * 12) | 0)) | 0, e) + break + } else { + f[j >> 2] = b + f[i >> 2] = j + 4 + break + } + } + while (0) + b = f[c >> 2] | 0 + h = f[e >> 2] | 0 + f[(b + 60) >> 2] = h + e = ((f[g >> 2] | 0) + (h << 2)) | 0 + f[c >> 2] = 0 + c = f[e >> 2] | 0 + f[e >> 2] = b + if (!c) { + u = d + return + } + b = (c + 88) | 0 + e = f[b >> 2] | 0 + f[b >> 2] = 0 + if (e | 0) { + b = f[(e + 8) >> 2] | 0 + if (b | 0) { + h = (e + 12) | 0 + if ((f[h >> 2] | 0) != (b | 0)) f[h >> 2] = b + br(b) + } + br(e) + } + e = f[(c + 68) >> 2] | 0 + if (e | 0) { + b = (c + 72) | 0 + h = f[b >> 2] | 0 + if ((h | 0) != (e | 0)) + f[b >> 2] = h + (~(((h + -4 - e) | 0) >>> 2) << 2) + br(e) + } + e = (c + 64) | 0 + h = f[e >> 2] | 0 + f[e >> 2] = 0 + if (h | 0) { + e = f[h >> 2] | 0 + if (e | 0) { + b = (h + 4) | 0 + if ((f[b >> 2] | 0) != (e | 0)) f[b >> 2] = e + br(e) + } + br(h) + } + br(c) + u = d + return + } + function vg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + d = u + u = (u + 48) | 0 + e = (d + 16) | 0 + g = d + h = (d + 32) | 0 + i = (a + 28) | 0 + j = f[i >> 2] | 0 + f[h >> 2] = j + k = (a + 20) | 0 + l = ((f[k >> 2] | 0) - j) | 0 + f[(h + 4) >> 2] = l + f[(h + 8) >> 2] = b + f[(h + 12) >> 2] = c + b = (l + c) | 0 + l = (a + 60) | 0 + f[g >> 2] = f[l >> 2] + f[(g + 4) >> 2] = h + f[(g + 8) >> 2] = 2 + j = ro(Aa(146, g | 0) | 0) | 0 + a: do + if ((b | 0) != (j | 0)) { + g = 2 + m = b + n = h + o = j + while (1) { + if ((o | 0) < 0) break + m = (m - o) | 0 + p = f[(n + 4) >> 2] | 0 + q = o >>> 0 > p >>> 0 + r = q ? (n + 8) | 0 : n + s = (g + ((q << 31) >> 31)) | 0 + t = (o - (q ? p : 0)) | 0 + f[r >> 2] = (f[r >> 2] | 0) + t + p = (r + 4) | 0 + f[p >> 2] = (f[p >> 2] | 0) - t + f[e >> 2] = f[l >> 2] + f[(e + 4) >> 2] = r + f[(e + 8) >> 2] = s + o = ro(Aa(146, e | 0) | 0) | 0 + if ((m | 0) == (o | 0)) { + v = 3 + break a + } else { + g = s + n = r + } + } + f[(a + 16) >> 2] = 0 + f[i >> 2] = 0 + f[k >> 2] = 0 + f[a >> 2] = f[a >> 2] | 32 + if ((g | 0) == 2) w = 0 + else w = (c - (f[(n + 4) >> 2] | 0)) | 0 + } else v = 3 + while (0) + if ((v | 0) == 3) { + v = f[(a + 44) >> 2] | 0 + f[(a + 16) >> 2] = v + (f[(a + 48) >> 2] | 0) + a = v + f[i >> 2] = a + f[k >> 2] = a + w = c + } + u = d + return w | 0 + } + function wg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + f[a >> 2] = 5880 + b = f[(a + 68) >> 2] | 0 + if (b | 0) { + c = (a + 72) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 56) >> 2] | 0 + if (b | 0) { + d = (a + 60) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 44) >> 2] | 0 + if (b | 0) { + c = (a + 48) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 32) >> 2] | 0 + if (b | 0) { + d = (a + 36) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 20) >> 2] | 0 + if (b | 0) { + c = (a + 24) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + Sh((a + 8) | 0) + b = (a + 4) | 0 + a = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!a) return + b = (a + 40) | 0 + d = f[b >> 2] | 0 + if (d | 0) { + c = (a + 44) | 0 + e = f[c >> 2] | 0 + if ((e | 0) == (d | 0)) g = d + else { + h = e + do { + e = (h + -4) | 0 + f[c >> 2] = e + i = f[e >> 2] | 0 + f[e >> 2] = 0 + if (i | 0) { + Qi(i) + br(i) + } + h = f[c >> 2] | 0 + } while ((h | 0) != (d | 0)) + g = f[b >> 2] | 0 + } + br(g) + } + Qi(a) + br(a) + return + } + function xg(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + c = (a + 12) | 0 + d = f[a >> 2] | 0 + e = (a + 8) | 0 + g = f[e >> 2] | 0 + h = (g | 0) == -1 + if (!(b[c >> 0] | 0)) { + do + if ( + ( + ( + !h + ? ((i = ((((g >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + g) | 0), + (i | 0) != -1) + : 0 + ) + ? ((f[((f[d >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) == + 0 + : 0 + ) + ? ((j = + f[ + ((f[((f[(d + 64) >> 2] | 0) + 12) >> 2] | 0) + (i << 2)) >> + 2 + ] | 0), + (j | 0) != -1) + : 0 + ) + if (!((j >>> 0) % 3 | 0)) { + k = (j + 2) | 0 + break + } else { + k = (j + -1) | 0 + break + } + else k = -1 + while (0) + f[e >> 2] = k + return + } + k = (g + 1) | 0 + if ( + ( + ( + !h + ? ((h = ((k >>> 0) % 3 | 0 | 0) == 0 ? (g + -2) | 0 : k), + (h | 0) != -1) + : 0 + ) + ? ((f[((f[d >> 2] | 0) + ((h >>> 5) << 2)) >> 2] & + (1 << (h & 31))) | + 0) == + 0 + : 0 + ) + ? ((k = + f[((f[((f[(d + 64) >> 2] | 0) + 12) >> 2] | 0) + (h << 2)) >> 2] | + 0), + (h = (k + 1) | 0), + (k | 0) != -1) + : 0 + ) { + g = ((h >>> 0) % 3 | 0 | 0) == 0 ? (k + -2) | 0 : h + f[e >> 2] = g + if ((g | 0) != -1) { + if ((g | 0) != (f[(a + 4) >> 2] | 0)) return + f[e >> 2] = -1 + return + } + } else f[e >> 2] = -1 + g = f[(a + 4) >> 2] | 0 + do + if ( + ( + ( + (g | 0) != -1 + ? ((a = ((((g >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + g) | 0), + (a | 0) != -1) + : 0 + ) + ? ((f[((f[d >> 2] | 0) + ((a >>> 5) << 2)) >> 2] & + (1 << (a & 31))) | + 0) == + 0 + : 0 + ) + ? ((h = + f[ + ((f[((f[(d + 64) >> 2] | 0) + 12) >> 2] | 0) + (a << 2)) >> 2 + ] | 0), + (h | 0) != -1) + : 0 + ) + if (!((h >>> 0) % 3 | 0)) { + l = (h + 2) | 0 + break + } else { + l = (h + -1) | 0 + break + } + else l = -1 + while (0) + f[e >> 2] = l + b[c >> 0] = 0 + return + } + function yg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = (a + 4) | 0 + d = f[a >> 2] | 0 + e = ((f[c >> 2] | 0) - d) >> 2 + g = (e + 1) | 0 + if (g >>> 0 > 1073741823) mq(a) + h = (a + 8) | 0 + i = ((f[h >> 2] | 0) - d) | 0 + d = i >> 1 + j = (i >> 2) >>> 0 < 536870911 ? (d >>> 0 < g >>> 0 ? g : d) : 1073741823 + do + if (j) + if (j >>> 0 > 1073741823) { + d = ra(8) | 0 + Wo(d, 14941) + f[d >> 2] = 6944 + va(d | 0, 1080, 114) + } else { + k = dn(j << 2) | 0 + break + } + else k = 0 + while (0) + d = (k + (e << 2)) | 0 + e = d + g = (k + (j << 2)) | 0 + j = f[b >> 2] | 0 + f[b >> 2] = 0 + f[d >> 2] = j + j = (d + 4) | 0 + b = f[a >> 2] | 0 + k = f[c >> 2] | 0 + if ((k | 0) == (b | 0)) { + l = e + m = b + n = b + } else { + i = k + k = e + e = d + do { + i = (i + -4) | 0 + d = f[i >> 2] | 0 + f[i >> 2] = 0 + f[(e + -4) >> 2] = d + e = (k + -4) | 0 + k = e + } while ((i | 0) != (b | 0)) + l = k + m = f[a >> 2] | 0 + n = f[c >> 2] | 0 + } + f[a >> 2] = l + f[c >> 2] = j + f[h >> 2] = g + g = m + if ((n | 0) != (g | 0)) { + h = n + do { + h = (h + -4) | 0 + n = f[h >> 2] | 0 + f[h >> 2] = 0 + if (n | 0) Va[f[((f[n >> 2] | 0) + 4) >> 2] & 127](n) + } while ((h | 0) != (g | 0)) + } + if (!m) return + br(m) + return + } + function zg(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = (a + 4) | 0 + a = f[d >> 2] | 0 + do + if (a | 0) { + e = b[(c + 11) >> 0] | 0 + g = (e << 24) >> 24 < 0 + h = g ? f[(c + 4) >> 2] | 0 : e & 255 + e = g ? f[c >> 2] | 0 : c + g = d + i = a + a: while (1) { + j = i + while (1) { + k = (j + 16) | 0 + l = b[(k + 11) >> 0] | 0 + m = (l << 24) >> 24 < 0 + n = m ? f[(j + 20) >> 2] | 0 : l & 255 + l = h >>> 0 < n >>> 0 ? h : n + if ( + (l | 0) != 0 + ? ((o = Pk(m ? f[k >> 2] | 0 : k, e, l) | 0), (o | 0) != 0) + : 0 + ) { + if ((o | 0) >= 0) break + } else p = 6 + if ((p | 0) == 6 ? ((p = 0), n >>> 0 >= h >>> 0) : 0) break + n = f[(j + 4) >> 2] | 0 + if (!n) { + q = g + break a + } else j = n + } + i = f[j >> 2] | 0 + if (!i) { + q = j + break + } else g = j + } + if ((q | 0) != (d | 0)) { + g = (q + 16) | 0 + i = b[(g + 11) >> 0] | 0 + n = (i << 24) >> 24 < 0 + o = n ? f[(q + 20) >> 2] | 0 : i & 255 + i = o >>> 0 < h >>> 0 ? o : h + if ( + i | 0 ? ((l = Pk(e, n ? f[g >> 2] | 0 : g, i) | 0), l | 0) : 0 + ) { + if ((l | 0) < 0) break + else r = q + return r | 0 + } + if (h >>> 0 >= o >>> 0) { + r = q + return r | 0 + } + } + } + while (0) + r = d + return r | 0 + } + function Ag(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + d = (a + 8) | 0 + e = f[d >> 2] | 0 + g = (a + 4) | 0 + h = f[g >> 2] | 0 + if (((((e - h) | 0) / 12) | 0) >>> 0 >= b >>> 0) { + i = b + j = h + do { + f[j >> 2] = f[c >> 2] + f[(j + 4) >> 2] = f[(c + 4) >> 2] + f[(j + 8) >> 2] = f[(c + 8) >> 2] + j = ((f[g >> 2] | 0) + 12) | 0 + f[g >> 2] = j + i = (i + -1) | 0 + } while ((i | 0) != 0) + return + } + i = f[a >> 2] | 0 + j = (((h - i) | 0) / 12) | 0 + h = (j + b) | 0 + if (h >>> 0 > 357913941) mq(a) + k = (((e - i) | 0) / 12) | 0 + i = k << 1 + e = k >>> 0 < 178956970 ? (i >>> 0 < h >>> 0 ? h : i) : 357913941 + do + if (e) + if (e >>> 0 > 357913941) { + i = ra(8) | 0 + Wo(i, 14941) + f[i >> 2] = 6944 + va(i | 0, 1080, 114) + } else { + l = dn((e * 12) | 0) | 0 + break + } + else l = 0 + while (0) + i = (l + ((j * 12) | 0)) | 0 + j = (l + ((e * 12) | 0)) | 0 + e = b + b = i + l = i + do { + f[b >> 2] = f[c >> 2] + f[(b + 4) >> 2] = f[(c + 4) >> 2] + f[(b + 8) >> 2] = f[(c + 8) >> 2] + b = (l + 12) | 0 + l = b + e = (e + -1) | 0 + } while ((e | 0) != 0) + e = f[a >> 2] | 0 + b = ((f[g >> 2] | 0) - e) | 0 + c = (i + (((((b | 0) / -12) | 0) * 12) | 0)) | 0 + if ((b | 0) > 0) Rg(c | 0, e | 0, b | 0) | 0 + f[a >> 2] = c + f[g >> 2] = l + f[d >> 2] = j + if (!e) return + br(e) + return + } + function Bg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = (a + 4) | 0 + d = f[a >> 2] | 0 + e = ((f[c >> 2] | 0) - d) >> 2 + g = (e + 1) | 0 + if (g >>> 0 > 1073741823) mq(a) + h = (a + 8) | 0 + i = ((f[h >> 2] | 0) - d) | 0 + d = i >> 1 + j = (i >> 2) >>> 0 < 536870911 ? (d >>> 0 < g >>> 0 ? g : d) : 1073741823 + do + if (j) + if (j >>> 0 > 1073741823) { + d = ra(8) | 0 + Wo(d, 14941) + f[d >> 2] = 6944 + va(d | 0, 1080, 114) + } else { + k = dn(j << 2) | 0 + break + } + else k = 0 + while (0) + d = (k + (e << 2)) | 0 + e = d + g = (k + (j << 2)) | 0 + j = f[b >> 2] | 0 + f[b >> 2] = 0 + f[d >> 2] = j + j = (d + 4) | 0 + b = f[a >> 2] | 0 + k = f[c >> 2] | 0 + if ((k | 0) == (b | 0)) { + l = e + m = b + n = b + } else { + i = k + k = e + e = d + do { + i = (i + -4) | 0 + d = f[i >> 2] | 0 + f[i >> 2] = 0 + f[(e + -4) >> 2] = d + e = (k + -4) | 0 + k = e + } while ((i | 0) != (b | 0)) + l = k + m = f[a >> 2] | 0 + n = f[c >> 2] | 0 + } + f[a >> 2] = l + f[c >> 2] = j + f[h >> 2] = g + g = m + if ((n | 0) != (g | 0)) { + h = n + do { + h = (h + -4) | 0 + n = f[h >> 2] | 0 + f[h >> 2] = 0 + if (n | 0) { + Qi(n) + br(n) + } + } while ((h | 0) != (g | 0)) + } + if (!m) return + br(m) + return + } + function Cg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + e = f[b >> 2] | 0 + g = f[a >> 2] | 0 + h = f[d >> 2] | 0 + d = f[h >> 2] | 0 + i = ((f[(h + 4) >> 2] | 0) - d) >> 3 + if (i >>> 0 <= e >>> 0) mq(h) + j = d + if (i >>> 0 <= g >>> 0) mq(h) + d = f[(j + (e << 3)) >> 2] | 0 + k = f[c >> 2] | 0 + if (i >>> 0 <= k >>> 0) mq(h) + l = (j + (g << 3)) | 0 + m = (f[(j + (k << 3)) >> 2] | 0) >>> 0 < d >>> 0 + if (d >>> 0 < (f[l >> 2] | 0) >>> 0) { + if (m) { + f[a >> 2] = k + f[c >> 2] = g + n = 1 + return n | 0 + } + f[a >> 2] = e + f[b >> 2] = g + d = f[c >> 2] | 0 + if (i >>> 0 <= d >>> 0) mq(h) + if ((f[(j + (d << 3)) >> 2] | 0) >>> 0 >= (f[l >> 2] | 0) >>> 0) { + n = 1 + return n | 0 + } + f[b >> 2] = d + f[c >> 2] = g + n = 2 + return n | 0 + } + if (!m) { + n = 0 + return n | 0 + } + f[b >> 2] = k + f[c >> 2] = e + e = f[b >> 2] | 0 + c = f[a >> 2] | 0 + if (i >>> 0 <= e >>> 0) mq(h) + if (i >>> 0 <= c >>> 0) mq(h) + if ( + (f[(j + (e << 3)) >> 2] | 0) >>> 0 >= + (f[(j + (c << 3)) >> 2] | 0) >>> 0 + ) { + n = 1 + return n | 0 + } + f[a >> 2] = e + f[b >> 2] = c + n = 2 + return n | 0 + } + function Dg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0 + e = u + u = (u + 96) | 0 + g = (e + 40) | 0 + h = e + Am(g, c) + we(h, b, c) + th(g, h) + sj((h + 24) | 0, f[(h + 28) >> 2] | 0) + Dj((h + 12) | 0, f[(h + 16) >> 2] | 0) + sj(h, f[(h + 4) >> 2] | 0) + Si(a, g, d) + f[g >> 2] = 2968 + sj((g + 28) | 0, f[(g + 32) >> 2] | 0) + Dj((g + 16) | 0, f[(g + 20) >> 2] | 0) + sj((g + 4) | 0, f[(g + 8) >> 2] | 0) + u = e + return + } + function Eg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + a = u + u = (u + 16) | 0 + e = a + if (!b) { + g = 0 + u = a + return g | 0 + } + h = (b + 96) | 0 + i = (b + 100) | 0 + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + b = f[i >> 2] | 0 + j = f[h >> 2] | 0 + k = (((b - j) | 0) / 12) | 0 + l = j + j = b + if (k >>> 0 >= c >>> 0) { + if ( + k >>> 0 > c >>> 0 + ? ((b = (l + ((c * 12) | 0)) | 0), (b | 0) != (j | 0)) + : 0 + ) + f[i >> 2] = j + ((~(((((j + -12 - b) | 0) >>> 0) / 12) | 0) * 12) | 0) + if (!c) { + g = 1 + u = a + return g | 0 + } + } else Ag(h, (c - k) | 0, e) + k = 0 + b = f[h >> 2] | 0 + while (1) { + j = (k * 3) | 0 + l = f[(d + (j << 2)) >> 2] | 0 + m = f[(d + ((j + 1) << 2)) >> 2] | 0 + n = f[(d + ((j + 2) << 2)) >> 2] | 0 + j = ((((f[i >> 2] | 0) - b) | 0) / 12) | 0 + o = k + k = (k + 1) | 0 + if (o >>> 0 < j >>> 0) { + p = b + q = b + } else { + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + Ag(h, (k - j) | 0, e) + j = f[h >> 2] | 0 + p = j + q = j + } + f[(p + ((o * 12) | 0)) >> 2] = l + f[(p + ((o * 12) | 0) + 4) >> 2] = m + f[(p + ((o * 12) | 0) + 8) >> 2] = n + if ((k | 0) == (c | 0)) { + g = 1 + break + } else b = q + } + u = a + return g | 0 + } + function Fg(a) { + a = +a + var b = 0, + c = 0, + d = 0, + e = 0.0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0.0, + n = 0.0, + o = 0.0, + q = 0.0, + r = 0.0, + t = 0.0 + p[s >> 3] = a + b = f[s >> 2] | 0 + c = f[(s + 4) >> 2] | 0 + d = (c | 0) < 0 + do + if (d | (c >>> 0 < 1048576)) { + if (((b | 0) == 0) & (((c & 2147483647) | 0) == 0)) { + e = -1.0 / (a * a) + break + } + if (d) { + e = (a - a) / 0.0 + break + } else { + p[s >> 3] = a * 18014398509481984.0 + g = f[(s + 4) >> 2] | 0 + h = -1077 + i = g + j = f[s >> 2] | 0 + k = g + l = 9 + break + } + } else if (c >>> 0 <= 2146435071) + if (((b | 0) == 0) & (0 == 0) & ((c | 0) == 1072693248)) e = 0.0 + else { + h = -1023 + i = c + j = b + k = c + l = 9 + } + else e = a + while (0) + if ((l | 0) == 9) { + l = (i + 614242) | 0 + f[s >> 2] = j + f[(s + 4) >> 2] = (l & 1048575) + 1072079006 + a = +p[s >> 3] + -1.0 + m = a * a * 0.5 + n = a / (a + 2.0) + o = n * n + q = o * o + p[s >> 3] = a - m + j = f[(s + 4) >> 2] | 0 + f[s >> 2] = 0 + f[(s + 4) >> 2] = j + r = +p[s >> 3] + t = + a - + r - + m + + n * + (m + + (q * + (q * (q * 0.15313837699209373 + 0.22222198432149784) + + 0.3999999999940942) + + o * + (q * + (q * (q * 0.14798198605116586 + 0.1818357216161805) + + 0.2857142874366239) + + 0.6666666666666735))) + q = r * 1.4426950407214463 + o = +((h + (l >>> 20)) | 0) + m = q + o + e = + m + + (q + + (o - m) + + (t * 1.4426950407214463 + (t + r) * 1.6751713164886512e-10)) + } + return +e + } + function Gg(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = u + u = (u + 16) | 0 + e = d + g = dn(32) | 0 + f[e >> 2] = g + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 17 + h = g + i = 12804 + j = (h + 17) | 0 + do { + b[h >> 0] = b[i >> 0] | 0 + h = (h + 1) | 0 + i = (i + 1) | 0 + } while ((h | 0) < (j | 0)) + b[(g + 17) >> 0] = 0 + g = (c + 16) | 0 + i = f[g >> 2] | 0 + if (i) { + h = g + j = i + a: while (1) { + i = j + while (1) { + if ((f[(i + 16) >> 2] | 0) >= (a | 0)) break + k = f[(i + 4) >> 2] | 0 + if (!k) { + l = h + break a + } else i = k + } + j = f[i >> 2] | 0 + if (!j) { + l = i + break + } else h = i + } + if ( + ((l | 0) != (g | 0) ? (f[(l + 16) >> 2] | 0) <= (a | 0) : 0) + ? ((a = (l + 20) | 0), (sh(a, e) | 0) != 0) + : 0 + ) + m = a + else n = 10 + } else n = 10 + if ((n | 0) == 10) m = c + c = yk(m, e, -1) | 0 + if ((b[(e + 11) >> 0] | 0) >= 0) { + o = (c | 0) == -1 + p = c >>> 0 > 6 + q = p ? -2 : c + r = o ? -1 : q + u = d + return r | 0 + } + br(f[e >> 2] | 0) + o = (c | 0) == -1 + p = c >>> 0 > 6 + q = p ? -2 : c + r = o ? -1 : q + u = d + return r | 0 + } + function Hg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + d = u + u = (u + 16) | 0 + e = d + g = f[c >> 2] | 0 + f[c >> 2] = 0 + f[e >> 2] = g + ug(a, b, e) + g = f[e >> 2] | 0 + f[e >> 2] = 0 + if (g | 0) { + e = (g + 88) | 0 + c = f[e >> 2] | 0 + f[e >> 2] = 0 + if (c | 0) { + e = f[(c + 8) >> 2] | 0 + if (e | 0) { + h = (c + 12) | 0 + if ((f[h >> 2] | 0) != (e | 0)) f[h >> 2] = e + br(e) + } + br(c) + } + c = f[(g + 68) >> 2] | 0 + if (c | 0) { + e = (g + 72) | 0 + h = f[e >> 2] | 0 + if ((h | 0) != (c | 0)) + f[e >> 2] = h + (~(((h + -4 - c) | 0) >>> 2) << 2) + br(c) + } + c = (g + 64) | 0 + h = f[c >> 2] | 0 + f[c >> 2] = 0 + if (h | 0) { + c = f[h >> 2] | 0 + if (c | 0) { + e = (h + 4) | 0 + if ((f[e >> 2] | 0) != (c | 0)) f[e >> 2] = c + br(c) + } + br(h) + } + br(g) + } + g = (a + 84) | 0 + h = (a + 88) | 0 + a = f[h >> 2] | 0 + c = f[g >> 2] | 0 + e = (a - c) >> 2 + if ((e | 0) > (b | 0)) { + u = d + return + } + i = (b + 1) | 0 + b = a + if (i >>> 0 > e >>> 0) { + nh(g, (i - e) | 0) + u = d + return + } + if (i >>> 0 >= e >>> 0) { + u = d + return + } + e = (c + (i << 2)) | 0 + if ((e | 0) == (b | 0)) { + u = d + return + } + f[h >> 2] = b + (~(((b + -4 - e) | 0) >>> 2) << 2) + u = d + return + } + function Ig(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 16) | 0 + e = d + g = (a + 4) | 0 + f[g >> 2] = c + f[(a + 8) >> 2] = f[(c + 56) >> 2] + h = f[(a + 184) >> 2] | 0 + i = (a + 188) | 0 + j = f[i >> 2] | 0 + if ((j | 0) != (h | 0)) f[i >> 2] = j + (~(((j + -4 - h) | 0) >>> 2) << 2) + h = f[(c + 48) >> 2] | 0 + c = dn(32) | 0 + f[e >> 2] = c + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 19 + j = c + i = 14285 + k = (j + 19) | 0 + do { + b[j >> 0] = b[i >> 0] | 0 + j = (j + 1) | 0 + i = (i + 1) | 0 + } while ((j | 0) < (k | 0)) + b[(c + 19) >> 0] = 0 + c = (sh(h, e) | 0) == 0 + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + h = f[((f[g >> 2] | 0) + 48) >> 2] | 0 + if (c) { + c = ((Yh(h) | 0) > 5) & 1 + b[(a + 352) >> 0] = c + u = d + return 1 + } + c = dn(32) | 0 + f[e >> 2] = c + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 19 + j = c + i = 14285 + k = (j + 19) | 0 + do { + b[j >> 0] = b[i >> 0] | 0 + j = (j + 1) | 0 + i = (i + 1) | 0 + } while ((j | 0) < (k | 0)) + b[(c + 19) >> 0] = 0 + c = (Oj(h, e, 0) | 0) & 1 + b[(a + 352) >> 0] = c + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + u = d + return 1 + } + function Jg(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = (a + 108) | 0 + d = ((f[(a + 112) >> 2] | 0) - (f[c >> 2] | 0)) | 0 + e = ((d | 0) / 12) | 0 + g = (a + 4) | 0 + Nh(e, f[((f[g >> 2] | 0) + 44) >> 2] | 0) | 0 + if (!d) return 1 + d = 0 + a = 0 + while (1) { + i = f[c >> 2] | 0 + j = (i + ((d * 12) | 0) + 4) | 0 + Nh(((f[j >> 2] | 0) - a) | 0, f[((f[g >> 2] | 0) + 44) >> 2] | 0) | 0 + Nh( + ((f[j >> 2] | 0) - (f[(i + ((d * 12) | 0)) >> 2] | 0)) | 0, + f[((f[g >> 2] | 0) + 44) >> 2] | 0, + ) | 0 + d = (d + 1) | 0 + if (d >>> 0 >= e >>> 0) break + else a = f[j >> 2] | 0 + } + li(f[((f[g >> 2] | 0) + 44) >> 2] | 0, e, 0, 0) | 0 + a = 0 + do { + d = f[((f[g >> 2] | 0) + 44) >> 2] | 0 + j = (d + 16) | 0 + i = f[(j + 4) >> 2] | 0 + if (((i | 0) > 0) | (((i | 0) == 0) & ((f[j >> 2] | 0) >>> 0 > 0))) { + j = f[(d + 12) >> 2] | 0 + d = (j + 4) | 0 + i = f[d >> 2] | 0 + k = b[((f[c >> 2] | 0) + ((a * 12) | 0) + 8) >> 0] & 1 + l = i >>> 3 + m = i & 7 + i = ((f[j >> 2] | 0) + l) | 0 + b[i >> 0] = ((1 << m) ^ 255) & (h[i >> 0] | 0) + i = ((f[j >> 2] | 0) + l) | 0 + b[i >> 0] = (k << m) | (h[i >> 0] | 0) + f[d >> 2] = (f[d >> 2] | 0) + 1 + } + a = (a + 1) | 0 + } while (a >>> 0 < e >>> 0) + Qf(f[((f[g >> 2] | 0) + 44) >> 2] | 0) + return 1 + } + function Kg(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 16) | 0 + e = d + g = (a + 4) | 0 + f[g >> 2] = c + f[(a + 8) >> 2] = f[(c + 56) >> 2] + h = f[(a + 184) >> 2] | 0 + i = (a + 188) | 0 + j = f[i >> 2] | 0 + if ((j | 0) != (h | 0)) f[i >> 2] = j + (~(((j + -4 - h) | 0) >>> 2) << 2) + h = f[(c + 48) >> 2] | 0 + c = dn(32) | 0 + f[e >> 2] = c + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 19 + j = c + i = 14285 + k = (j + 19) | 0 + do { + b[j >> 0] = b[i >> 0] | 0 + j = (j + 1) | 0 + i = (i + 1) | 0 + } while ((j | 0) < (k | 0)) + b[(c + 19) >> 0] = 0 + c = (sh(h, e) | 0) == 0 + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + h = f[((f[g >> 2] | 0) + 48) >> 2] | 0 + if (c) { + c = ((Yh(h) | 0) > 5) & 1 + b[(a + 288) >> 0] = c + u = d + return 1 + } + c = dn(32) | 0 + f[e >> 2] = c + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 19 + j = c + i = 14285 + k = (j + 19) | 0 + do { + b[j >> 0] = b[i >> 0] | 0 + j = (j + 1) | 0 + i = (i + 1) | 0 + } while ((j | 0) < (k | 0)) + b[(c + 19) >> 0] = 0 + c = (Oj(h, e, 0) | 0) & 1 + b[(a + 288) >> 0] = c + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + u = d + return 1 + } + function Lg(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + g = u + u = (u + 32) | 0 + h = (g + 16) | 0 + i = (g + 8) | 0 + j = g + k = (d - e) | 0 + d = (a + 8) | 0 + if ((k | 0) > 0) { + a = (0 - e) | 0 + l = (i + 4) | 0 + m = (j + 4) | 0 + n = (h + 4) | 0 + o = k + do { + k = (b + (o << 2)) | 0 + p = (k + (a << 2)) | 0 + q = (c + (o << 2)) | 0 + r = f[(k + 4) >> 2] | 0 + s = f[p >> 2] | 0 + t = f[(p + 4) >> 2] | 0 + f[i >> 2] = f[k >> 2] + f[l >> 2] = r + f[j >> 2] = s + f[m >> 2] = t + Dd(h, d, i, j) + f[q >> 2] = f[h >> 2] + f[(q + 4) >> 2] = f[n >> 2] + o = (o - e) | 0 + } while ((o | 0) > 0) + } + o = e >>> 0 > 1073741823 ? -1 : e << 2 + e = _q(o) | 0 + hj(e | 0, 0, o | 0) | 0 + o = f[(b + 4) >> 2] | 0 + n = f[e >> 2] | 0 + m = f[(e + 4) >> 2] | 0 + f[i >> 2] = f[b >> 2] + f[(i + 4) >> 2] = o + f[j >> 2] = n + f[(j + 4) >> 2] = m + Dd(h, d, i, j) + f[c >> 2] = f[h >> 2] + f[(c + 4) >> 2] = f[(h + 4) >> 2] + $q(e) + u = g + return 1 + } + function Mg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = u + u = (u + 32) | 0 + d = (c + 12) | 0 + e = c + g = f[(b + 100) >> 2] | 0 + h = f[(b + 96) >> 2] | 0 + b = (g - h) | 0 + i = ((b | 0) / 12) | 0 + f[d >> 2] = 0 + j = (d + 4) | 0 + f[j >> 2] = 0 + f[(d + 8) >> 2] = 0 + k = h + do + if (b) + if (i >>> 0 > 357913941) mq(d) + else { + l = dn(b) | 0 + f[d >> 2] = l + f[(d + 8) >> 2] = l + ((i * 12) | 0) + hj(l | 0, 0, b | 0) | 0 + f[j >> 2] = l + b + m = l + break + } + else m = 0 + while (0) + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + if ((g | 0) != (h | 0)) { + h = (e + 4) | 0 + g = (e + 8) | 0 + b = 0 + do { + l = (k + ((b * 12) | 0)) | 0 + f[e >> 2] = f[l >> 2] + f[(e + 4) >> 2] = f[(l + 4) >> 2] + f[(e + 8) >> 2] = f[(l + 8) >> 2] + f[(m + ((b * 12) | 0)) >> 2] = f[e >> 2] + f[(m + ((b * 12) | 0) + 4) >> 2] = f[h >> 2] + f[(m + ((b * 12) | 0) + 8) >> 2] = f[g >> 2] + b = (b + 1) | 0 + } while (b >>> 0 < i >>> 0) + } + Cj(a, d) + a = f[d >> 2] | 0 + if (!a) { + u = c + return + } + d = f[j >> 2] | 0 + if ((d | 0) != (a | 0)) + f[j >> 2] = d + ((~(((((d + -12 - a) | 0) >>> 0) / 12) | 0) * 12) | 0) + br(a) + u = c + return + } + function Ng(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + if (c >>> 0 > 4294967279) mq(a) + d = (a + 11) | 0 + e = b[d >> 0] | 0 + g = (e << 24) >> 24 < 0 + if (g) { + h = f[(a + 4) >> 2] | 0 + i = ((f[(a + 8) >> 2] & 2147483647) + -1) | 0 + } else { + h = e & 255 + i = 10 + } + j = h >>> 0 > c >>> 0 ? h : c + c = j >>> 0 < 11 + k = c ? 10 : (((j + 16) & -16) + -1) | 0 + do + if ((k | 0) != (i | 0)) { + do + if (c) { + j = f[a >> 2] | 0 + if (g) { + l = 0 + m = j + n = a + o = 13 + } else { + Lo(a, j, ((e & 255) + 1) | 0) | 0 + br(j) + o = 16 + } + } else { + j = (k + 1) | 0 + p = dn(j) | 0 + if (g) { + l = 1 + m = f[a >> 2] | 0 + n = p + o = 13 + break + } else { + Lo(p, a, ((e & 255) + 1) | 0) | 0 + q = p + r = j + s = (a + 4) | 0 + o = 15 + break + } + } + while (0) + if ((o | 0) == 13) { + j = (a + 4) | 0 + Lo(n, m, ((f[j >> 2] | 0) + 1) | 0) | 0 + br(m) + if (l) { + q = n + r = (k + 1) | 0 + s = j + o = 15 + } else o = 16 + } + if ((o | 0) == 15) { + f[(a + 8) >> 2] = r | -2147483648 + f[s >> 2] = h + f[a >> 2] = q + break + } else if ((o | 0) == 16) { + b[d >> 0] = h + break + } + } + while (0) + return + } + function Og(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + c = f[b >> 2] | 0 + if ((c | 0) == -1) { + d = -1 + return d | 0 + } + b = f[((f[(a + 24) >> 2] | 0) + (c << 2)) >> 2] | 0 + if ((b | 0) == -1) { + d = 0 + return d | 0 + } + c = (a + 12) | 0 + a = 0 + e = 0 + g = b + a: while (1) { + b: do + if (e) { + h = (a + 1) | 0 + i = ((((g >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + g) | 0 + if ((i | 0) == -1) { + d = h + j = 15 + break a + } + k = f[((f[c >> 2] | 0) + (i << 2)) >> 2] | 0 + if ((k | 0) == -1) { + d = h + j = 15 + break a + } + if (!((k >>> 0) % 3 | 0)) { + l = (k + 2) | 0 + m = h + break + } else { + l = (k + -1) | 0 + m = h + break + } + } else { + h = a + k = g + while (1) { + i = (h + 1) | 0 + n = (k + 1) | 0 + o = ((n >>> 0) % 3 | 0 | 0) == 0 ? (k + -2) | 0 : n + if ((o | 0) == -1) { + l = b + m = i + break b + } + n = f[((f[c >> 2] | 0) + (o << 2)) >> 2] | 0 + o = (n + 1) | 0 + if ((n | 0) == -1) { + l = b + m = i + break b + } + k = ((o >>> 0) % 3 | 0 | 0) == 0 ? (n + -2) | 0 : o + if ((k | 0) == -1) { + l = b + m = i + break b + } + if ((k | 0) == (b | 0)) { + d = i + j = 15 + break a + } else h = i + } + } + while (0) + if ((l | 0) == -1) { + d = m + j = 15 + break + } else { + a = m + e = 1 + g = l + } + } + if ((j | 0) == 15) return d | 0 + return 0 + } + function Pg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + d = (a + 8) | 0 + Cg(a, (a + 4) | 0, d, c) | 0 + e = (a + 12) | 0 + if ((e | 0) == (b | 0)) return + g = f[c >> 2] | 0 + c = f[g >> 2] | 0 + h = ((f[(g + 4) >> 2] | 0) - c) >> 3 + i = c + c = e + e = d + a: while (1) { + d = f[c >> 2] | 0 + j = f[e >> 2] | 0 + if (h >>> 0 <= d >>> 0) { + k = 5 + break + } + if (h >>> 0 <= j >>> 0) { + k = 7 + break + } + l = (i + (d << 3)) | 0 + if ((f[l >> 2] | 0) >>> 0 < (f[(i + (j << 3)) >> 2] | 0) >>> 0) { + m = e + n = c + o = j + while (1) { + f[n >> 2] = o + if ((m | 0) == (a | 0)) { + p = a + break + } + j = (m + -4) | 0 + o = f[j >> 2] | 0 + if (h >>> 0 <= o >>> 0) { + k = 11 + break a + } + if ((f[l >> 2] | 0) >>> 0 >= (f[(i + (o << 3)) >> 2] | 0) >>> 0) { + p = m + break + } else { + q = m + m = j + n = q + } + } + f[p >> 2] = d + } + n = (c + 4) | 0 + if ((n | 0) == (b | 0)) { + k = 3 + break + } else { + m = c + c = n + e = m + } + } + if ((k | 0) == 3) return + else if ((k | 0) == 5) mq(g) + else if ((k | 0) == 7) mq(g) + else if ((k | 0) == 11) mq(g) + } + function Qg(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = Cg(a, b, c, e) | 0 + h = f[d >> 2] | 0 + i = f[c >> 2] | 0 + j = f[e >> 2] | 0 + e = f[j >> 2] | 0 + k = ((f[(j + 4) >> 2] | 0) - e) >> 3 + if (k >>> 0 <= h >>> 0) mq(j) + l = e + if (k >>> 0 <= i >>> 0) mq(j) + if ( + (f[(l + (h << 3)) >> 2] | 0) >>> 0 >= + (f[(l + (i << 3)) >> 2] | 0) >>> 0 + ) { + m = g + return m | 0 + } + f[c >> 2] = h + f[d >> 2] = i + i = f[c >> 2] | 0 + d = f[b >> 2] | 0 + if (k >>> 0 <= i >>> 0) mq(j) + if (k >>> 0 <= d >>> 0) mq(j) + if ( + (f[(l + (i << 3)) >> 2] | 0) >>> 0 >= + (f[(l + (d << 3)) >> 2] | 0) >>> 0 + ) { + m = (g + 1) | 0 + return m | 0 + } + f[b >> 2] = i + f[c >> 2] = d + d = f[b >> 2] | 0 + c = f[a >> 2] | 0 + if (k >>> 0 <= d >>> 0) mq(j) + if (k >>> 0 <= c >>> 0) mq(j) + if ( + (f[(l + (d << 3)) >> 2] | 0) >>> 0 >= + (f[(l + (c << 3)) >> 2] | 0) >>> 0 + ) { + m = (g + 2) | 0 + return m | 0 + } + f[a >> 2] = d + f[b >> 2] = c + m = (g + 3) | 0 + return m | 0 + } + function Rg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0 + if ((d | 0) >= 8192) return Da(a | 0, c | 0, d | 0) | 0 + e = a | 0 + g = (a + d) | 0 + if ((a & 3) == (c & 3)) { + while (a & 3) { + if (!d) return e | 0 + b[a >> 0] = b[c >> 0] | 0 + a = (a + 1) | 0 + c = (c + 1) | 0 + d = (d - 1) | 0 + } + h = (g & -4) | 0 + d = (h - 64) | 0 + while ((a | 0) <= (d | 0)) { + f[a >> 2] = f[c >> 2] + f[(a + 4) >> 2] = f[(c + 4) >> 2] + f[(a + 8) >> 2] = f[(c + 8) >> 2] + f[(a + 12) >> 2] = f[(c + 12) >> 2] + f[(a + 16) >> 2] = f[(c + 16) >> 2] + f[(a + 20) >> 2] = f[(c + 20) >> 2] + f[(a + 24) >> 2] = f[(c + 24) >> 2] + f[(a + 28) >> 2] = f[(c + 28) >> 2] + f[(a + 32) >> 2] = f[(c + 32) >> 2] + f[(a + 36) >> 2] = f[(c + 36) >> 2] + f[(a + 40) >> 2] = f[(c + 40) >> 2] + f[(a + 44) >> 2] = f[(c + 44) >> 2] + f[(a + 48) >> 2] = f[(c + 48) >> 2] + f[(a + 52) >> 2] = f[(c + 52) >> 2] + f[(a + 56) >> 2] = f[(c + 56) >> 2] + f[(a + 60) >> 2] = f[(c + 60) >> 2] + a = (a + 64) | 0 + c = (c + 64) | 0 + } + while ((a | 0) < (h | 0)) { + f[a >> 2] = f[c >> 2] + a = (a + 4) | 0 + c = (c + 4) | 0 + } + } else { + h = (g - 4) | 0 + while ((a | 0) < (h | 0)) { + b[a >> 0] = b[c >> 0] | 0 + b[(a + 1) >> 0] = b[(c + 1) >> 0] | 0 + b[(a + 2) >> 0] = b[(c + 2) >> 0] | 0 + b[(a + 3) >> 0] = b[(c + 3) >> 0] | 0 + a = (a + 4) | 0 + c = (c + 4) | 0 + } + } + while ((a | 0) < (g | 0)) { + b[a >> 0] = b[c >> 0] | 0 + a = (a + 1) | 0 + c = (c + 1) | 0 + } + return e | 0 + } + function Sg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0 + c = u + u = (u + 16) | 0 + d = (c + 4) | 0 + e = c + f[a >> 2] = 1216 + g = (a + 4) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + f[(g + 16) >> 2] = 0 + f[(g + 20) >> 2] = 0 + f[(g + 24) >> 2] = 0 + f[(g + 28) >> 2] = 0 + f[d >> 2] = b + b = (a + 4) | 0 + g = (a + 8) | 0 + Ci(b, d) + h = f[d >> 2] | 0 + i = (a + 20) | 0 + j = f[i >> 2] | 0 + k = (a + 16) | 0 + a = f[k >> 2] | 0 + l = (j - a) >> 2 + m = a + if ((h | 0) < (l | 0)) { + n = m + o = h + p = f[g >> 2] | 0 + q = f[b >> 2] | 0 + r = (p - q) | 0 + s = r >> 2 + t = (s + -1) | 0 + v = (n + (o << 2)) | 0 + f[v >> 2] = t + u = c + return + } + a = (h + 1) | 0 + f[e >> 2] = -1 + w = j + if (a >>> 0 <= l >>> 0) + if ( + a >>> 0 < l >>> 0 ? ((j = (m + (a << 2)) | 0), (j | 0) != (w | 0)) : 0 + ) { + f[i >> 2] = w + (~(((w + -4 - j) | 0) >>> 2) << 2) + x = h + y = m + } else { + x = h + y = m + } + else { + kh(k, (a - l) | 0, e) + x = f[d >> 2] | 0 + y = f[k >> 2] | 0 + } + n = y + o = x + p = f[g >> 2] | 0 + q = f[b >> 2] | 0 + r = (p - q) | 0 + s = r >> 2 + t = (s + -1) | 0 + v = (n + (o << 2)) | 0 + f[v >> 2] = t + u = c + return + } + function Tg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + b = (a + 4) | 0 + c = f[b >> 2] | 0 + d = ((f[(c + 12) >> 2] | 0) - (f[(c + 8) >> 2] | 0)) | 0 + c = d >> 2 + a: do + if ((d | 0) > 0) { + e = 0 + while (1) { + if (!(Ra[f[((f[a >> 2] | 0) + 36) >> 2] & 127](a, e) | 0)) { + g = 0 + break + } + e = (e + 1) | 0 + h = f[b >> 2] | 0 + i = ((f[(h + 12) >> 2] | 0) - (f[(h + 8) >> 2] | 0)) >> 2 + if ((e | 0) >= (i | 0)) { + j = i + break a + } + } + return g | 0 + } else j = c + while (0) + c = (a + 20) | 0 + b = (a + 24) | 0 + d = f[b >> 2] | 0 + e = f[c >> 2] | 0 + i = (d - e) >> 2 + h = e + e = d + if (j >>> 0 <= i >>> 0) { + if ( + j >>> 0 < i >>> 0 ? ((d = (h + (j << 2)) | 0), (d | 0) != (e | 0)) : 0 + ) + f[b >> 2] = e + (~(((e + -4 - d) | 0) >>> 2) << 2) + } else oi(c, (j - i) | 0) + i = f[(a + 12) >> 2] | 0 + j = f[(a + 8) >> 2] | 0 + a = j + if ((i | 0) == (j | 0)) { + g = 1 + return g | 0 + } + d = (i - j) >> 2 + j = 0 + do { + i = f[(a + (j << 2)) >> 2] | 0 + e = f[(i + 8) >> 2] | 0 + b = f[(i + 4) >> 2] | 0 + i = b + if ( + (e | 0) != (b | 0) + ? ((h = f[c >> 2] | 0), + (k = (e - b) >> 2), + (f[(h + (f[i >> 2] << 2)) >> 2] = j), + k >>> 0 > 1) + : 0 + ) { + b = 1 + do { + f[(h + (f[(i + (b << 2)) >> 2] << 2)) >> 2] = j + b = (b + 1) | 0 + } while (b >>> 0 < k >>> 0) + } + j = (j + 1) | 0 + } while (j >>> 0 < d >>> 0) + g = 1 + return g | 0 + } + function Ug(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + d = f[(c + 88) >> 2] | 0 + if (!d) { + e = 0 + return e | 0 + } + if ((f[d >> 2] | 0) != 1) { + e = 0 + return e | 0 + } + g = (d + 8) | 0 + d = f[g >> 2] | 0 + f[(a + 4) >> 2] = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + i = (a + 8) | 0 + j = (c + 24) | 0 + c = b[j >> 0] | 0 + k = (c << 24) >> 24 + l = (a + 12) | 0 + m = f[l >> 2] | 0 + n = f[i >> 2] | 0 + o = (m - n) >> 2 + p = n + n = m + if (o >>> 0 >= k >>> 0) + if ( + o >>> 0 > k >>> 0 ? ((m = (p + (k << 2)) | 0), (m | 0) != (n | 0)) : 0 + ) { + f[l >> 2] = n + (~(((n + -4 - m) | 0) >>> 2) << 2) + q = c + r = d + } else { + q = c + r = d + } + else { + oi(i, (k - o) | 0) + q = b[j >> 0] | 0 + r = f[g >> 2] | 0 + } + g = (r + 4) | 0 + j = + h[g >> 0] | + (h[(g + 1) >> 0] << 8) | + (h[(g + 2) >> 0] << 16) | + (h[(g + 3) >> 0] << 24) + if ((q << 24) >> 24 > 0) { + g = f[i >> 2] | 0 + i = (q << 24) >> 24 + q = j + o = 4 + k = 0 + while (1) { + f[(g + (k << 2)) >> 2] = q + o = (o + 4) | 0 + k = (k + 1) | 0 + d = (r + o) | 0 + c = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + if ((k | 0) >= (i | 0)) { + s = c + break + } else q = c + } + } else s = j + f[(a + 20) >> 2] = s + e = 1 + return e | 0 + } + function Vg(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + do + if (!(qp(a, f[(c + 8) >> 2] | 0, g) | 0)) { + if (!(qp(a, f[c >> 2] | 0, g) | 0)) { + h = f[(a + 8) >> 2] | 0 + Za[f[((f[h >> 2] | 0) + 24) >> 2] & 3](h, c, d, e, g) + break + } + if ( + (f[(c + 16) >> 2] | 0) != (d | 0) + ? ((h = (c + 20) | 0), (f[h >> 2] | 0) != (d | 0)) + : 0 + ) { + f[(c + 32) >> 2] = e + i = (c + 44) | 0 + if ((f[i >> 2] | 0) == 4) break + j = (c + 52) | 0 + b[j >> 0] = 0 + k = (c + 53) | 0 + b[k >> 0] = 0 + l = f[(a + 8) >> 2] | 0 + _a[f[((f[l >> 2] | 0) + 20) >> 2] & 3](l, c, d, d, 1, g) + if (b[k >> 0] | 0) + if (!(b[j >> 0] | 0)) { + m = 3 + n = 11 + } else o = 3 + else { + m = 4 + n = 11 + } + if ((n | 0) == 11) { + f[h >> 2] = d + h = (c + 40) | 0 + f[h >> 2] = (f[h >> 2] | 0) + 1 + if ( + (f[(c + 36) >> 2] | 0) == 1 ? (f[(c + 24) >> 2] | 0) == 2 : 0 + ) { + b[(c + 54) >> 0] = 1 + o = m + } else o = m + } + f[i >> 2] = o + break + } + if ((e | 0) == 1) f[(c + 32) >> 2] = 1 + } else Om(0, c, d, e) + while (0) + return + } + function Wg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + e = u + u = (u + 16) | 0 + g = (e + 12) | 0 + h = (e + 8) | 0 + i = e + f[i >> 2] = f[b >> 2] + f[g >> 2] = f[i >> 2] + i = zd(a, g, h, (e + 4) | 0, c) | 0 + c = f[i >> 2] | 0 + if (c | 0) { + j = c + u = e + return j | 0 + } + c = dn(40) | 0 + dj((c + 16) | 0, d) + dj((c + 28) | 0, (d + 12) | 0) + d = f[h >> 2] | 0 + f[c >> 2] = 0 + f[(c + 4) >> 2] = 0 + f[(c + 8) >> 2] = d + f[i >> 2] = c + d = f[f[a >> 2] >> 2] | 0 + if (!d) k = c + else { + f[a >> 2] = d + k = f[i >> 2] | 0 + } + Ae(f[(a + 4) >> 2] | 0, k) + k = (a + 8) | 0 + f[k >> 2] = (f[k >> 2] | 0) + 1 + j = c + u = e + return j | 0 + } + function Xg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + e = u + u = (u + 16) | 0 + g = e + h = (a + 4) | 0 + f[h >> 2] = 0 + if (!c) { + u = e + return + } + i = (a + 8) | 0 + j = f[i >> 2] | 0 + k = j << 5 + if (k >>> 0 < c >>> 0) { + f[g >> 2] = 0 + l = (g + 4) | 0 + f[l >> 2] = 0 + m = (g + 8) | 0 + f[m >> 2] = 0 + if ((c | 0) < 0) mq(a) + n = j << 6 + j = (c + 31) & -32 + hi(g, k >>> 0 < 1073741823 ? (n >>> 0 < j >>> 0 ? j : n) : 2147483647) + n = f[a >> 2] | 0 + f[a >> 2] = f[g >> 2] + f[g >> 2] = n + g = f[h >> 2] | 0 + f[h >> 2] = c + f[l >> 2] = g + g = f[i >> 2] | 0 + f[i >> 2] = f[m >> 2] + f[m >> 2] = g + if (n | 0) br(n) + o = a + } else { + f[h >> 2] = c + o = a + } + a = f[o >> 2] | 0 + o = a + h = a + a = c >>> 5 + n = a << 2 + if (!(b[d >> 0] | 0)) { + hj(h | 0, 0, n | 0) | 0 + d = c & 31 + g = (o + (a << 2)) | 0 + if (!d) { + u = e + return + } + f[g >> 2] = f[g >> 2] & ~(-1 >>> ((32 - d) | 0)) + u = e + return + } else { + hj(h | 0, -1, n | 0) | 0 + n = c & 31 + c = (o + (a << 2)) | 0 + if (!n) { + u = e + return + } + f[c >> 2] = f[c >> 2] | (-1 >>> ((32 - n) | 0)) + u = e + return + } + } + function Yg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + f[g >> 2] = f[(a + 12) >> 2] + h = (b + 16) | 0 + i = h + j = f[i >> 2] | 0 + k = f[(i + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & (j >>> 0 > 0))) { + l = k + m = j + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + j = h + l = f[(j + 4) >> 2] | 0 + m = f[j >> 2] | 0 + } + f[g >> 2] = f[(a + 20) >> 2] + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + n = (a + 88) | 0 + fd(n, b) + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + n = (a + 88) | 0 + fd(n, b) + u = c + return 1 + } + function Zg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + f[g >> 2] = f[(a + 12) >> 2] + h = (b + 16) | 0 + i = h + j = f[i >> 2] | 0 + k = f[(i + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & (j >>> 0 > 0))) { + l = k + m = j + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + j = h + l = f[(j + 4) >> 2] | 0 + m = f[j >> 2] | 0 + } + f[g >> 2] = f[(a + 16) >> 2] + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + n = (a + 108) | 0 + fd(n, b) + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + n = (a + 108) | 0 + fd(n, b) + u = c + return 1 + } + function _g(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + c = (a + 32) | 0 + d = f[(a + 64) >> 2] | 0 + e = ((Qa[f[((f[d >> 2] | 0) + 40) >> 2] & 127](d) | 0) + 56) | 0 + d = f[e >> 2] | 0 + li( + c, + ((((((f[(d + 100) >> 2] | 0) - (f[(d + 96) >> 2] | 0)) | 0) / 12) | 0) * + 3) | + 0, + 0, + 1, + ) | 0 + d = (a + 68) | 0 + e = f[d >> 2] | 0 + g = ((f[(a + 72) >> 2] | 0) - e) | 0 + if ((g | 0) <= 0) { + Qf(c) + return + } + i = (a + 48) | 0 + j = (a + 44) | 0 + a = ((g >>> 2) + -1) | 0 + g = e + while (1) { + e = f[(g + (a << 2)) >> 2] | 0 + k = f[(3124 + (e << 2)) >> 2] | 0 + l = i + m = f[(l + 4) >> 2] | 0 + if ( + ((m | 0) > 0) | (((m | 0) == 0) & ((f[l >> 2] | 0) >>> 0 > 0)) + ? ((l = f[j >> 2] | 0), ((171 >>> e) & 1) | 0) + : 0 + ) { + m = (l + 4) | 0 + n = 0 + o = f[m >> 2] | 0 + do { + p = o >>> 3 + q = o & 7 + r = ((f[l >> 2] | 0) + p) | 0 + b[r >> 0] = ((1 << q) ^ 255) & (h[r >> 0] | 0) + r = ((f[l >> 2] | 0) + p) | 0 + b[r >> 0] = (((e >>> n) & 1) << q) | (h[r >> 0] | 0) + o = ((f[m >> 2] | 0) + 1) | 0 + f[m >> 2] = o + n = (n + 1) | 0 + } while ((n | 0) != (k | 0)) + } + k = (a + -1) | 0 + if ((k | 0) <= -1) break + a = k + g = f[d >> 2] | 0 + } + Qf(c) + return + } + function $g(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = u + u = (u + 48) | 0 + h = g + i = (g + 32) | 0 + if (!c) { + j = 0 + u = g + return j | 0 + } + Cn(h) + do + if ((Tl(c, 0) | 0) != -1) { + if (d) { + if (!(Qa[f[((f[c >> 2] | 0) + 16) >> 2] & 127](c) | 0)) { + k = 0 + break + } + Va[f[((f[c >> 2] | 0) + 20) >> 2] & 127](c) + } + Dg(i, a, c, h) + l = (f[i >> 2] | 0) == 0 + m = (i + 4) | 0 + if ((b[(m + 11) >> 0] | 0) < 0) br(f[m >> 2] | 0) + if (l) { + l = f[h >> 2] | 0 + m = (h + 4) | 0 + ag(e, l, (l + ((f[m >> 2] | 0) - l)) | 0) + k = ((f[m >> 2] | 0) - (f[h >> 2] | 0)) | 0 + } else k = 0 + } else k = 0 + while (0) + e = (h + 12) | 0 + i = f[e >> 2] | 0 + f[e >> 2] = 0 + if (i | 0) br(i) + i = f[h >> 2] | 0 + if (i | 0) { + e = (h + 4) | 0 + if ((f[e >> 2] | 0) != (i | 0)) f[e >> 2] = i + br(i) + } + j = k + u = g + return j | 0 + } + function ah(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + c = u + u = (u + 16) | 0 + d = c + e = f[((f[a >> 2] | 0) + 8) >> 2] | 0 + g = (a + 8) | 0 + h = (a + 12) | 0 + i = ((f[h >> 2] | 0) - (f[g >> 2] | 0)) >> 2 + j = f[b >> 2] | 0 + f[b >> 2] = 0 + f[d >> 2] = j + Xa[e & 15](a, i, d) + i = f[d >> 2] | 0 + f[d >> 2] = 0 + if (!i) { + k = f[h >> 2] | 0 + l = f[g >> 2] | 0 + m = (k - l) | 0 + n = m >> 2 + o = (n + -1) | 0 + u = c + return o | 0 + } + d = (i + 88) | 0 + a = f[d >> 2] | 0 + f[d >> 2] = 0 + if (a | 0) { + d = f[(a + 8) >> 2] | 0 + if (d | 0) { + e = (a + 12) | 0 + if ((f[e >> 2] | 0) != (d | 0)) f[e >> 2] = d + br(d) + } + br(a) + } + a = f[(i + 68) >> 2] | 0 + if (a | 0) { + d = (i + 72) | 0 + e = f[d >> 2] | 0 + if ((e | 0) != (a | 0)) + f[d >> 2] = e + (~(((e + -4 - a) | 0) >>> 2) << 2) + br(a) + } + a = (i + 64) | 0 + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) { + a = f[e >> 2] | 0 + if (a | 0) { + d = (e + 4) | 0 + if ((f[d >> 2] | 0) != (a | 0)) f[d >> 2] = a + br(a) + } + br(e) + } + br(i) + k = f[h >> 2] | 0 + l = f[g >> 2] | 0 + m = (k - l) | 0 + n = m >> 2 + o = (n + -1) | 0 + u = c + return o | 0 + } + function bh(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + if (b[(a + 352) >> 0] | 0) return 1 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = ((f[(d + 12) >> 2] | 0) - (f[(d + 8) >> 2] | 0)) | 0 + d = e >> 2 + g = (a + 172) | 0 + si(g, (d + -1) | 0) + if (!(((d | 0) != 1) & ((e | 0) > 0))) return 1 + e = (a + 12) | 0 + a = 0 + h = 0 + while (1) { + i = f[((f[((f[c >> 2] | 0) + 8) >> 2] | 0) + (a << 2)) >> 2] | 0 + if (!(f[(i + 56) >> 2] | 0)) j = h + else { + k = f[g >> 2] | 0 + f[(k + ((h * 136) | 0)) >> 2] = a + l = f[(k + ((h * 136) | 0) + 104) >> 2] | 0 + m = (k + ((h * 136) | 0) + 108) | 0 + n = f[m >> 2] | 0 + if ((n | 0) != (l | 0)) + f[m >> 2] = n + (~(((n + -4 - l) | 0) >>> 2) << 2) + l = f[e >> 2] | 0 + $j( + (k + ((h * 136) | 0) + 104) | 0, + ((f[(l + 4) >> 2] | 0) - (f[l >> 2] | 0)) >> 2, + ) + l = f[g >> 2] | 0 + f[(l + ((h * 136) | 0) + 128) >> 2] = 0 + zc((l + ((h * 136) | 0) + 4) | 0, f[c >> 2] | 0, f[e >> 2] | 0, i) | 0 + j = (h + 1) | 0 + } + a = (a + 1) | 0 + if ((a | 0) >= (d | 0)) break + else h = j + } + return 1 + } + function ch(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + if (b[(a + 288) >> 0] | 0) return 1 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = ((f[(d + 12) >> 2] | 0) - (f[(d + 8) >> 2] | 0)) | 0 + d = e >> 2 + g = (a + 172) | 0 + si(g, (d + -1) | 0) + if (!(((d | 0) != 1) & ((e | 0) > 0))) return 1 + e = (a + 12) | 0 + a = 0 + h = 0 + while (1) { + i = f[((f[((f[c >> 2] | 0) + 8) >> 2] | 0) + (a << 2)) >> 2] | 0 + if (!(f[(i + 56) >> 2] | 0)) j = h + else { + k = f[g >> 2] | 0 + f[(k + ((h * 136) | 0)) >> 2] = a + l = f[(k + ((h * 136) | 0) + 104) >> 2] | 0 + m = (k + ((h * 136) | 0) + 108) | 0 + n = f[m >> 2] | 0 + if ((n | 0) != (l | 0)) + f[m >> 2] = n + (~(((n + -4 - l) | 0) >>> 2) << 2) + l = f[e >> 2] | 0 + $j( + (k + ((h * 136) | 0) + 104) | 0, + ((f[(l + 4) >> 2] | 0) - (f[l >> 2] | 0)) >> 2, + ) + l = f[g >> 2] | 0 + f[(l + ((h * 136) | 0) + 128) >> 2] = 0 + zc((l + ((h * 136) | 0) + 4) | 0, f[c >> 2] | 0, f[e >> 2] | 0, i) | 0 + j = (h + 1) | 0 + } + a = (a + 1) | 0 + if ((a | 0) >= (d | 0)) break + else h = j + } + return 1 + } + function dh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = (a + 4) | 0 + g = f[e >> 2] | 0 + if (((d - g) >> 3) >>> 0 >= b >>> 0) { + h = b + i = g + do { + j = i + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + i = ((f[e >> 2] | 0) + 8) | 0 + f[e >> 2] = i + h = (h + -1) | 0 + } while ((h | 0) != 0) + return + } + h = f[a >> 2] | 0 + i = (g - h) >> 3 + g = (i + b) | 0 + if (g >>> 0 > 536870911) mq(a) + j = (d - h) | 0 + h = j >> 2 + d = (j >> 3) >>> 0 < 268435455 ? (h >>> 0 < g >>> 0 ? g : h) : 536870911 + do + if (d) + if (d >>> 0 > 536870911) { + h = ra(8) | 0 + Wo(h, 14941) + f[h >> 2] = 6944 + va(h | 0, 1080, 114) + } else { + k = dn(d << 3) | 0 + break + } + else k = 0 + while (0) + h = (k + (i << 3)) | 0 + i = (k + (d << 3)) | 0 + d = b + b = h + k = h + do { + g = b + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + b = (k + 8) | 0 + k = b + d = (d + -1) | 0 + } while ((d | 0) != 0) + d = f[a >> 2] | 0 + b = ((f[e >> 2] | 0) - d) | 0 + g = (h + ((0 - (b >> 3)) << 3)) | 0 + if ((b | 0) > 0) Rg(g | 0, d | 0, b | 0) | 0 + f[a >> 2] = g + f[e >> 2] = k + f[c >> 2] = i + if (!d) return + br(d) + return + } + function eh(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + e = u + u = (u + 16) | 0 + g = (e + 4) | 0 + h = e + i = (e + 8) | 0 + j = a & 255 + b[i >> 0] = j & 127 + do + if ((c >>> 0 > 0) | (((c | 0) == 0) & (a >>> 0 > 127))) { + b[i >> 0] = j | -128 + k = (d + 16) | 0 + l = f[(k + 4) >> 2] | 0 + if (((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0))) { + m = 0 + break + } else { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(d, g, i, (i + 1) | 0) | 0 + k = Wn(a | 0, c | 0, 7) | 0 + m = eh(k, I, d) | 0 + break + } + } else { + k = (d + 16) | 0 + l = f[(k + 4) >> 2] | 0 + if (((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0))) { + m = 0 + break + } + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(d, g, i, (i + 1) | 0) | 0 + n = 1 + u = e + return n | 0 + } + while (0) + n = m + u = e + return n | 0 + } + function fh(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = (a + 8) | 0 + ef(c, b) | 0 + if ((c | 0) == (b | 0)) { + f[(a + 92) >> 2] = f[(b + 84) >> 2] + return + } else { + Yf((a + 56) | 0, f[(b + 48) >> 2] | 0, f[(b + 52) >> 2] | 0) + Yf((a + 68) | 0, f[(b + 60) >> 2] | 0, f[(b + 64) >> 2] | 0) + Yf((a + 80) | 0, f[(b + 72) >> 2] | 0, f[(b + 76) >> 2] | 0) + f[(a + 92) >> 2] = f[(b + 84) >> 2] + qg((a + 96) | 0, f[(b + 88) >> 2] | 0, f[(b + 92) >> 2] | 0) + return + } + } + function gh(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0 + g = f[((f[((f[(d + 4) >> 2] | 0) + 8) >> 2] | 0) + (c << 2)) >> 2] | 0 + if ((b | 0) == -1) h = Ki(c, d) | 0 + else h = b + if ((h | 0) == -2) i = 0 + else { + do + if ((Qa[f[((f[d >> 2] | 0) + 8) >> 2] & 127](d) | 0) == 1) { + Hf(a, d, h, c, e, 514) + if (!(f[a >> 2] | 0)) { + f[a >> 2] = 0 + break + } else return + } + while (0) + c = dn(44) | 0 + f[c >> 2] = 1528 + f[(c + 4) >> 2] = g + g = (c + 8) | 0 + f[g >> 2] = f[e >> 2] + f[(g + 4) >> 2] = f[(e + 4) >> 2] + f[(g + 8) >> 2] = f[(e + 8) >> 2] + f[(g + 12) >> 2] = f[(e + 12) >> 2] + f[(g + 16) >> 2] = f[(e + 16) >> 2] + f[(g + 20) >> 2] = f[(e + 20) >> 2] + _j((c + 32) | 0, (e + 24) | 0) + f[c >> 2] = 1584 + i = c + } + f[a >> 2] = i + return + } + function hh(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + e = u + u = (u + 224) | 0 + g = (e + 120) | 0 + h = (e + 80) | 0 + i = e + j = (e + 136) | 0 + k = h + l = (k + 40) | 0 + do { + f[k >> 2] = 0 + k = (k + 4) | 0 + } while ((k | 0) < (l | 0)) + f[g >> 2] = f[d >> 2] + if ((qb(0, c, g, i, h) | 0) < 0) m = -1 + else { + if ((f[(a + 76) >> 2] | 0) > -1) n = gr(a) | 0 + else n = 0 + d = f[a >> 2] | 0 + k = d & 32 + if ((b[(a + 74) >> 0] | 0) < 1) f[a >> 2] = d & -33 + d = (a + 48) | 0 + if (!(f[d >> 2] | 0)) { + l = (a + 44) | 0 + o = f[l >> 2] | 0 + f[l >> 2] = j + p = (a + 28) | 0 + f[p >> 2] = j + q = (a + 20) | 0 + f[q >> 2] = j + f[d >> 2] = 80 + r = (a + 16) | 0 + f[r >> 2] = j + 80 + j = qb(a, c, g, i, h) | 0 + if (!o) s = j + else { + Sa[f[(a + 36) >> 2] & 31](a, 0, 0) | 0 + t = (f[q >> 2] | 0) == 0 ? -1 : j + f[l >> 2] = o + f[d >> 2] = 0 + f[r >> 2] = 0 + f[p >> 2] = 0 + f[q >> 2] = 0 + s = t + } + } else s = qb(a, c, g, i, h) | 0 + h = f[a >> 2] | 0 + f[a >> 2] = h | k + if (n | 0) fr(a) + m = ((h & 32) | 0) == 0 ? s : -1 + } + u = e + return m | 0 + } + function ih(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + d = u + u = (u + 16) | 0 + e = d + if (!(fn(a, b, c) | 0)) { + g = 0 + u = d + return g | 0 + } + if ( + ((Qa[f[((f[a >> 2] | 0) + 32) >> 2] & 127](a) | 0) << 24) >> 24 == 1 + ? (((f[((f[(a + 8) >> 2] | 0) + 28) >> 2] | 0) + -1) | 0) >>> 0 >= 6 + : 0 + ) { + g = 0 + u = d + return g | 0 + } + h = Gg(c, f[(b + 48) >> 2] | 0) | 0 + Xa[f[((f[a >> 2] | 0) + 48) >> 2] & 15](e, a, h) + h = (a + 36) | 0 + b = f[e >> 2] | 0 + f[e >> 2] = 0 + c = f[h >> 2] | 0 + f[h >> 2] = b + if (!c) { + f[e >> 2] = 0 + i = b + } else { + Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + c = f[e >> 2] | 0 + f[e >> 2] = 0 + if (c | 0) Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + i = f[h >> 2] | 0 + } + if (!i) { + g = 1 + u = d + return g | 0 + } + if (Ra[f[((f[a >> 2] | 0) + 36) >> 2] & 127](a, i) | 0) { + g = 1 + u = d + return g | 0 + } + i = f[h >> 2] | 0 + f[h >> 2] = 0 + if (!i) { + g = 1 + u = d + return g | 0 + } + Va[f[((f[i >> 2] | 0) + 4) >> 2] & 127](i) + g = 1 + u = d + return g | 0 + } + function jh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + e = f[a >> 2] | 0 + g = (d - e) >> 2 + h = d + if (g >>> 0 < b >>> 0) { + hf(a, (b - g) | 0) + return + } + if (g >>> 0 <= b >>> 0) return + g = (e + (b << 2)) | 0 + if ((g | 0) == (h | 0)) return + else i = h + do { + h = (i + -4) | 0 + f[c >> 2] = h + b = f[h >> 2] | 0 + f[h >> 2] = 0 + if (b | 0) { + h = (b + 88) | 0 + e = f[h >> 2] | 0 + f[h >> 2] = 0 + if (e | 0) { + h = f[(e + 8) >> 2] | 0 + if (h | 0) { + a = (e + 12) | 0 + if ((f[a >> 2] | 0) != (h | 0)) f[a >> 2] = h + br(h) + } + br(e) + } + e = f[(b + 68) >> 2] | 0 + if (e | 0) { + h = (b + 72) | 0 + a = f[h >> 2] | 0 + if ((a | 0) != (e | 0)) + f[h >> 2] = a + (~(((a + -4 - e) | 0) >>> 2) << 2) + br(e) + } + e = (b + 64) | 0 + a = f[e >> 2] | 0 + f[e >> 2] = 0 + if (a | 0) { + e = f[a >> 2] | 0 + if (e | 0) { + h = (a + 4) | 0 + if ((f[h >> 2] | 0) != (e | 0)) f[h >> 2] = e + br(e) + } + br(a) + } + br(b) + } + i = f[c >> 2] | 0 + } while ((i | 0) != (g | 0)) + return + } + function kh(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = (a + 8) | 0 + e = f[d >> 2] | 0 + g = (a + 4) | 0 + h = f[g >> 2] | 0 + i = h + if (((e - h) >> 2) >>> 0 >= b >>> 0) { + j = b + k = i + while (1) { + f[k >> 2] = f[c >> 2] + j = (j + -1) | 0 + if (!j) break + else k = (k + 4) | 0 + } + f[g >> 2] = i + (b << 2) + return + } + i = f[a >> 2] | 0 + k = (h - i) | 0 + h = k >> 2 + j = (h + b) | 0 + if (j >>> 0 > 1073741823) mq(a) + l = (e - i) | 0 + e = l >> 1 + m = (l >> 2) >>> 0 < 536870911 ? (e >>> 0 < j >>> 0 ? j : e) : 1073741823 + do + if (m) + if (m >>> 0 > 1073741823) { + e = ra(8) | 0 + Wo(e, 14941) + f[e >> 2] = 6944 + va(e | 0, 1080, 114) + } else { + e = dn(m << 2) | 0 + n = e + o = e + break + } + else { + n = 0 + o = 0 + } + while (0) + e = (n + (h << 2)) | 0 + h = (n + (m << 2)) | 0 + m = b + j = e + while (1) { + f[j >> 2] = f[c >> 2] + m = (m + -1) | 0 + if (!m) break + else j = (j + 4) | 0 + } + if ((k | 0) > 0) Rg(o | 0, i | 0, k | 0) | 0 + f[a >> 2] = n + f[g >> 2] = e + (b << 2) + f[d >> 2] = h + if (!i) return + br(i) + return + } + function lh(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + e = ((f[a >> 2] | 0) + 1794895138) | 0 + g = rp(f[(a + 8) >> 2] | 0, e) | 0 + h = rp(f[(a + 12) >> 2] | 0, e) | 0 + i = rp(f[(a + 16) >> 2] | 0, e) | 0 + a: do + if ( + ( + g >>> 0 < (c >>> 2) >>> 0 + ? ((j = (c - (g << 2)) | 0), + (h >>> 0 < j >>> 0) & (i >>> 0 < j >>> 0)) + : 0 + ) + ? (((i | h) & 3) | 0) == 0 + : 0 + ) { + j = h >>> 2 + k = i >>> 2 + l = 0 + m = g + while (1) { + n = m >>> 1 + o = (l + n) | 0 + p = o << 1 + q = (p + j) | 0 + r = rp(f[(a + (q << 2)) >> 2] | 0, e) | 0 + s = rp(f[(a + ((q + 1) << 2)) >> 2] | 0, e) | 0 + if (!((s >>> 0 < c >>> 0) & (r >>> 0 < ((c - s) | 0) >>> 0))) { + t = 0 + break a + } + if (b[(a + (s + r)) >> 0] | 0) { + t = 0 + break a + } + r = bl(d, (a + s) | 0) | 0 + if (!r) break + s = (r | 0) < 0 + if ((m | 0) == 1) { + t = 0 + break a + } else { + l = s ? l : o + m = s ? n : (m - n) | 0 + } + } + m = (p + k) | 0 + l = rp(f[(a + (m << 2)) >> 2] | 0, e) | 0 + j = rp(f[(a + ((m + 1) << 2)) >> 2] | 0, e) | 0 + if ((j >>> 0 < c >>> 0) & (l >>> 0 < ((c - j) | 0) >>> 0)) + t = (b[(a + (j + l)) >> 0] | 0) == 0 ? (a + j) | 0 : 0 + else t = 0 + } else t = 0 + while (0) + return t | 0 + } + function mh(a, c, e, g) { + a = a | 0 + c = c | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + h = u + u = (u + 64) | 0 + i = h + j = f[a >> 2] | 0 + k = (a + (f[(j + -8) >> 2] | 0)) | 0 + l = f[(j + -4) >> 2] | 0 + f[i >> 2] = e + f[(i + 4) >> 2] = a + f[(i + 8) >> 2] = c + f[(i + 12) >> 2] = g + g = (i + 16) | 0 + c = (i + 20) | 0 + a = (i + 24) | 0 + j = (i + 28) | 0 + m = (i + 32) | 0 + n = (i + 40) | 0 + o = g + p = (o + 36) | 0 + do { + f[o >> 2] = 0 + o = (o + 4) | 0 + } while ((o | 0) < (p | 0)) + d[(g + 36) >> 1] = 0 + b[(g + 38) >> 0] = 0 + a: do + if (qp(l, e, 0) | 0) { + f[(i + 48) >> 2] = 1 + _a[f[((f[l >> 2] | 0) + 20) >> 2] & 3](l, i, k, k, 1, 0) + q = (f[a >> 2] | 0) == 1 ? k : 0 + } else { + Za[f[((f[l >> 2] | 0) + 24) >> 2] & 3](l, i, k, 1, 0) + switch (f[(i + 36) >> 2] | 0) { + case 0: { + q = + ((f[n >> 2] | 0) == 1) & + ((f[j >> 2] | 0) == 1) & + ((f[m >> 2] | 0) == 1) + ? f[c >> 2] | 0 + : 0 + break a + break + } + case 1: + break + default: { + q = 0 + break a + } + } + if ( + (f[a >> 2] | 0) != 1 + ? !( + ((f[n >> 2] | 0) == 0) & + ((f[j >> 2] | 0) == 1) & + ((f[m >> 2] | 0) == 1) + ) + : 0 + ) { + q = 0 + break + } + q = f[g >> 2] | 0 + } + while (0) + u = h + return q | 0 + } + function nh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = (a + 4) | 0 + g = f[e >> 2] | 0 + h = g + if (((d - g) >> 2) >>> 0 >= b >>> 0) { + i = b + j = h + while (1) { + f[j >> 2] = 1 + i = (i + -1) | 0 + if (!i) break + else j = (j + 4) | 0 + } + f[e >> 2] = h + (b << 2) + return + } + h = f[a >> 2] | 0 + j = (g - h) | 0 + g = j >> 2 + i = (g + b) | 0 + if (i >>> 0 > 1073741823) mq(a) + k = (d - h) | 0 + d = k >> 1 + l = (k >> 2) >>> 0 < 536870911 ? (d >>> 0 < i >>> 0 ? i : d) : 1073741823 + do + if (l) + if (l >>> 0 > 1073741823) { + d = ra(8) | 0 + Wo(d, 14941) + f[d >> 2] = 6944 + va(d | 0, 1080, 114) + } else { + d = dn(l << 2) | 0 + m = d + n = d + break + } + else { + m = 0 + n = 0 + } + while (0) + d = (m + (g << 2)) | 0 + g = (m + (l << 2)) | 0 + l = b + i = d + while (1) { + f[i >> 2] = 1 + l = (l + -1) | 0 + if (!l) break + else i = (i + 4) | 0 + } + if ((j | 0) > 0) Rg(n | 0, h | 0, j | 0) | 0 + f[a >> 2] = m + f[e >> 2] = d + (b << 2) + f[c >> 2] = g + if (!h) return + br(h) + return + } + function oh(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 16) | 0 + e = d + if (!c) { + g = 0 + u = d + return g | 0 + } + h = (a + 84) | 0 + i = f[h >> 2] | 0 + j = (a + 88) | 0 + k = f[j >> 2] | 0 + if ((k | 0) != (i | 0)) f[j >> 2] = k + (~(((k + -4 - i) | 0) >>> 2) << 2) + f[h >> 2] = 0 + f[j >> 2] = 0 + f[(a + 92) >> 2] = 0 + if (i | 0) br(i) + i = (a + 72) | 0 + j = f[i >> 2] | 0 + h = (a + 76) | 0 + if ((f[h >> 2] | 0) != (j | 0)) f[h >> 2] = j + f[i >> 2] = 0 + f[h >> 2] = 0 + f[(a + 80) >> 2] = 0 + if (j | 0) br(j) + j = (c + 4) | 0 + h = ((f[j >> 2] | 0) - (f[c >> 2] | 0)) >> 2 + b[e >> 0] = 0 + Xg(a, h, e) + h = (c + 24) | 0 + i = (c + 28) | 0 + k = ((f[i >> 2] | 0) - (f[h >> 2] | 0)) >> 2 + b[e >> 0] = 0 + Xg((a + 12) | 0, k, e) + Sf((a + 28) | 0, ((f[j >> 2] | 0) - (f[c >> 2] | 0)) >> 2, 5868) + $j((a + 52) | 0, ((f[i >> 2] | 0) - (f[h >> 2] | 0)) >> 2) + $j((a + 40) | 0, ((f[i >> 2] | 0) - (f[h >> 2] | 0)) >> 2) + f[(a + 64) >> 2] = c + b[(a + 24) >> 0] = 1 + g = 1 + u = d + return g | 0 + } + function ph(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + c = (a + 12) | 0 + d = f[a >> 2] | 0 + e = (a + 8) | 0 + g = f[e >> 2] | 0 + h = (g | 0) == -1 + if (!(b[c >> 0] | 0)) { + do + if ( + ( + !h + ? ((i = ((((g >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + g) | 0), + (i | 0) != -1) + : 0 + ) + ? ((j = f[((f[(d + 12) >> 2] | 0) + (i << 2)) >> 2] | 0), + (j | 0) != -1) + : 0 + ) + if (!((j >>> 0) % 3 | 0)) { + k = (j + 2) | 0 + break + } else { + k = (j + -1) | 0 + break + } + else k = -1 + while (0) + f[e >> 2] = k + return + } + k = (g + 1) | 0 + if ( + ( + !h + ? ((h = ((k >>> 0) % 3 | 0 | 0) == 0 ? (g + -2) | 0 : k), + (h | 0) != -1) + : 0 + ) + ? ((k = f[((f[(d + 12) >> 2] | 0) + (h << 2)) >> 2] | 0), + (h = (k + 1) | 0), + (k | 0) != -1) + : 0 + ) { + g = ((h >>> 0) % 3 | 0 | 0) == 0 ? (k + -2) | 0 : h + f[e >> 2] = g + if ((g | 0) != -1) { + if ((g | 0) != (f[(a + 4) >> 2] | 0)) return + f[e >> 2] = -1 + return + } + } else f[e >> 2] = -1 + g = f[(a + 4) >> 2] | 0 + do + if ( + ( + (g | 0) != -1 + ? ((a = ((((g >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + g) | 0), + (a | 0) != -1) + : 0 + ) + ? ((h = f[((f[(d + 12) >> 2] | 0) + (a << 2)) >> 2] | 0), + (h | 0) != -1) + : 0 + ) + if (!((h >>> 0) % 3 | 0)) { + l = (h + 2) | 0 + break + } else { + l = (h + -1) | 0 + break + } + else l = -1 + while (0) + f[e >> 2] = l + b[c >> 0] = 0 + return + } + function qh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + Id(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 20) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + Id(a, e) + return + } + function rh(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + e = u + u = (u + 48) | 0 + g = e + h = (e + 32) | 0 + i = (a + 4) | 0 + j = f[i >> 2] | 0 + if (!j) { + k = 0 + u = e + return k | 0 + } + do + if (c) + if (Qa[f[((f[j >> 2] | 0) + 16) >> 2] & 127](j) | 0) { + l = f[i >> 2] | 0 + Va[f[((f[l >> 2] | 0) + 20) >> 2] & 127](l) + break + } else { + k = 0 + u = e + return k | 0 + } + while (0) + Cn(g) + Si(h, f[a >> 2] | 0, g) + a = (f[h >> 2] | 0) == 0 + i = (h + 4) | 0 + if ((b[(i + 11) >> 0] | 0) < 0) br(f[i >> 2] | 0) + if (a) { + a = f[g >> 2] | 0 + i = (g + 4) | 0 + ag(d, a, (a + ((f[i >> 2] | 0) - a)) | 0) + m = ((f[i >> 2] | 0) - (f[g >> 2] | 0)) | 0 + } else m = 0 + i = (g + 12) | 0 + a = f[i >> 2] | 0 + f[i >> 2] = 0 + if (a | 0) br(a) + a = f[g >> 2] | 0 + if (a | 0) { + i = (g + 4) | 0 + if ((f[i >> 2] | 0) != (a | 0)) f[i >> 2] = a + br(a) + } + k = m + u = e + return k | 0 + } + function sh(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + d = f[(a + 4) >> 2] | 0 + if (!d) { + e = 0 + return e | 0 + } + a = b[(c + 11) >> 0] | 0 + g = (a << 24) >> 24 < 0 + h = g ? f[(c + 4) >> 2] | 0 : a & 255 + a = g ? f[c >> 2] | 0 : c + c = d + while (1) { + d = (c + 16) | 0 + g = b[(d + 11) >> 0] | 0 + i = (g << 24) >> 24 < 0 + j = i ? f[(c + 20) >> 2] | 0 : g & 255 + g = j >>> 0 < h >>> 0 + k = g ? j : h + if ( + (k | 0) != 0 + ? ((l = Pk(a, i ? f[d >> 2] | 0 : d, k) | 0), (l | 0) != 0) + : 0 + ) + if ((l | 0) < 0) m = 7 + else m = 8 + else if (h >>> 0 < j >>> 0) m = 7 + else m = 8 + if ((m | 0) == 7) { + m = 0 + n = c + } else if ((m | 0) == 8) { + m = 0 + l = h >>> 0 < j >>> 0 ? h : j + if ( + (l | 0) != 0 + ? ((j = Pk(i ? f[d >> 2] | 0 : d, a, l) | 0), (j | 0) != 0) + : 0 + ) { + if ((j | 0) >= 0) { + e = 1 + m = 14 + break + } + } else m = 10 + if ((m | 0) == 10 ? ((m = 0), !g) : 0) { + e = 1 + m = 14 + break + } + n = (c + 4) | 0 + } + c = f[n >> 2] | 0 + if (!c) { + e = 0 + m = 14 + break + } + } + if ((m | 0) == 14) return e | 0 + return 0 + } + function th(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = u + u = (u + 16) | 0 + d = (c + 12) | 0 + e = (c + 8) | 0 + g = (c + 4) | 0 + h = c + i = (a + 4) | 0 + j = (i | 0) == (b | 0) + if (!j) { + f[g >> 2] = f[b >> 2] + f[h >> 2] = b + 4 + f[e >> 2] = f[g >> 2] + f[d >> 2] = f[h >> 2] + Hc(i, e, d) + } + if (!j) { + f[g >> 2] = f[(b + 12) >> 2] + f[h >> 2] = b + 16 + f[e >> 2] = f[g >> 2] + f[d >> 2] = f[h >> 2] + Ac((a + 16) | 0, e, d) + } + if (j) { + u = c + return + } + f[g >> 2] = f[(b + 24) >> 2] + f[h >> 2] = b + 28 + f[e >> 2] = f[g >> 2] + f[d >> 2] = f[h >> 2] + Hc((a + 28) | 0, e, d) + u = c + return + } + function uh(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0 + e = u + u = (u + 16) | 0 + g = (e + 4) | 0 + h = e + di(g, a, b, c, d) + d = f[g >> 2] | 0 + if (!d) { + i = -1 + f[g >> 2] = 0 + u = e + return i | 0 + } + f[g >> 2] = 0 + f[h >> 2] = d + d = ah(a, h) | 0 + a = f[h >> 2] | 0 + f[h >> 2] = 0 + if (!a) { + i = d + f[g >> 2] = 0 + u = e + return i | 0 + } + h = (a + 88) | 0 + c = f[h >> 2] | 0 + f[h >> 2] = 0 + if (c | 0) { + h = f[(c + 8) >> 2] | 0 + if (h | 0) { + b = (c + 12) | 0 + if ((f[b >> 2] | 0) != (h | 0)) f[b >> 2] = h + br(h) + } + br(c) + } + c = f[(a + 68) >> 2] | 0 + if (c | 0) { + h = (a + 72) | 0 + b = f[h >> 2] | 0 + if ((b | 0) != (c | 0)) + f[h >> 2] = b + (~(((b + -4 - c) | 0) >>> 2) << 2) + br(c) + } + c = (a + 64) | 0 + b = f[c >> 2] | 0 + f[c >> 2] = 0 + if (b | 0) { + c = f[b >> 2] | 0 + if (c | 0) { + h = (b + 4) | 0 + if ((f[h >> 2] | 0) != (c | 0)) f[h >> 2] = c + br(c) + } + br(b) + } + br(a) + i = d + f[g >> 2] = 0 + u = e + return i | 0 + } + function vh(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + e = u + u = (u + 16) | 0 + g = (e + 4) | 0 + h = e + i = f[(a + 8) >> 2] | 0 + j = (i + 24) | 0 + k = b[j >> 0] | 0 + l = (c + 4) | 0 + Nf(a, ((f[l >> 2] | 0) - (f[c >> 2] | 0)) >> 2, k, d) + d = f[(a + 32) >> 2] | 0 + a = ((f[f[d >> 2] >> 2] | 0) + (f[(d + 48) >> 2] | 0)) | 0 + d = f[c >> 2] | 0 + c = f[l >> 2] | 0 + if ((d | 0) == (c | 0)) { + m = 1 + u = e + return m | 0 + } + l = (i + 84) | 0 + n = (i + 68) | 0 + o = 0 + p = d + while (1) { + d = f[p >> 2] | 0 + if (!(b[l >> 0] | 0)) q = f[((f[n >> 2] | 0) + (d << 2)) >> 2] | 0 + else q = d + f[h >> 2] = q + d = b[j >> 0] | 0 + f[g >> 2] = f[h >> 2] + if (!(Pb(i, g, d, (a + (o << 2)) | 0) | 0)) { + m = 0 + r = 7 + break + } + p = (p + 4) | 0 + if ((p | 0) == (c | 0)) { + m = 1 + r = 7 + break + } else o = (o + k) | 0 + } + if ((r | 0) == 7) { + u = e + return m | 0 + } + return 0 + } + function wh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + f[a >> 2] = 1392 + b = (a + 72) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + c = f[(a + 60) >> 2] | 0 + if (c | 0) { + b = (a + 64) | 0 + d = f[b >> 2] | 0 + if ((d | 0) != (c | 0)) + f[b >> 2] = d + (~(((d + -4 - c) | 0) >>> 2) << 2) + br(c) + } + c = f[(a + 48) >> 2] | 0 + if (c | 0) br(c) + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if (d | 0) { + b = (a + 40) | 0 + e = f[b >> 2] | 0 + if ((e | 0) == (d | 0)) g = d + else { + h = e + do { + e = (h + -4) | 0 + f[b >> 2] = e + i = f[e >> 2] | 0 + f[e >> 2] = 0 + if (i | 0) Va[f[((f[i >> 2] | 0) + 4) >> 2] & 127](i) + h = f[b >> 2] | 0 + } while ((h | 0) != (d | 0)) + g = f[c >> 2] | 0 + } + br(g) + } + f[a >> 2] = 1216 + g = f[(a + 16) >> 2] | 0 + if (g | 0) { + c = (a + 20) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (g | 0)) + f[c >> 2] = d + (~(((d + -4 - g) | 0) >>> 2) << 2) + br(g) + } + g = f[(a + 4) >> 2] | 0 + if (!g) return + d = (a + 8) | 0 + a = f[d >> 2] | 0 + if ((a | 0) != (g | 0)) f[d >> 2] = a + (~(((a + -4 - g) | 0) >>> 2) << 2) + br(g) + return + } + function xh(a) { + a = a | 0 + tj((a + 992) | 0) + tj((a + 960) | 0) + tj((a + 928) | 0) + tj((a + 896) | 0) + tj((a + 864) | 0) + tj((a + 832) | 0) + tj((a + 800) | 0) + tj((a + 768) | 0) + tj((a + 736) | 0) + tj((a + 704) | 0) + tj((a + 672) | 0) + tj((a + 640) | 0) + tj((a + 608) | 0) + tj((a + 576) | 0) + tj((a + 544) | 0) + tj((a + 512) | 0) + tj((a + 480) | 0) + tj((a + 448) | 0) + tj((a + 416) | 0) + tj((a + 384) | 0) + tj((a + 352) | 0) + tj((a + 320) | 0) + tj((a + 288) | 0) + tj((a + 256) | 0) + tj((a + 224) | 0) + tj((a + 192) | 0) + tj((a + 160) | 0) + tj((a + 128) | 0) + tj((a + 96) | 0) + tj((a + 64) | 0) + tj((a + 32) | 0) + tj(a) + return + } + function yh(a) { + a = a | 0 + rn(a) + rn((a + 32) | 0) + rn((a + 64) | 0) + rn((a + 96) | 0) + rn((a + 128) | 0) + rn((a + 160) | 0) + rn((a + 192) | 0) + rn((a + 224) | 0) + rn((a + 256) | 0) + rn((a + 288) | 0) + rn((a + 320) | 0) + rn((a + 352) | 0) + rn((a + 384) | 0) + rn((a + 416) | 0) + rn((a + 448) | 0) + rn((a + 480) | 0) + rn((a + 512) | 0) + rn((a + 544) | 0) + rn((a + 576) | 0) + rn((a + 608) | 0) + rn((a + 640) | 0) + rn((a + 672) | 0) + rn((a + 704) | 0) + rn((a + 736) | 0) + rn((a + 768) | 0) + rn((a + 800) | 0) + rn((a + 832) | 0) + rn((a + 864) | 0) + rn((a + 896) | 0) + rn((a + 928) | 0) + rn((a + 960) | 0) + rn((a + 992) | 0) + return + } + function zh(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + a = u + u = (u + 16) | 0 + e = a + if (((c | 0) < 0) | (((b | 0) == 0) | ((d | 0) == 0))) { + g = 0 + u = a + return g | 0 + } + h = f[(b + 8) >> 2] | 0 + if (((((f[(b + 12) >> 2] | 0) - h) >> 2) | 0) <= (c | 0)) { + g = 0 + u = a + return g | 0 + } + i = (b + 4) | 0 + if (!(f[i >> 2] | 0)) { + j = dn(52) | 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + f[(j + 12) >> 2] = 0 + n[(j + 16) >> 2] = $(1.0) + k = (j + 20) | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + n[(j + 36) >> 2] = $(1.0) + f[(j + 40) >> 2] = 0 + f[(j + 44) >> 2] = 0 + f[(j + 48) >> 2] = 0 + f[(b + 4) >> 2] = j + } + j = f[((f[(h + (c << 2)) >> 2] | 0) + 60) >> 2] | 0 + c = dn(44) | 0 + Ub(c, d) + f[(c + 40) >> 2] = j + j = f[i >> 2] | 0 + f[e >> 2] = c + gk(j, e) | 0 + j = f[e >> 2] | 0 + f[e >> 2] = 0 + if (!j) { + g = 1 + u = a + return g | 0 + } + Qi(j) + br(j) + g = 1 + u = a + return g | 0 + } + function Ah(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + f[a >> 2] = d + e = (a + 24) | 0 + g = (a + 28) | 0 + h = f[g >> 2] | 0 + i = f[e >> 2] | 0 + j = (h - i) >> 2 + k = i + i = h + if (j >>> 0 >= d >>> 0) { + if ( + j >>> 0 > d >>> 0 ? ((h = (k + (d << 2)) | 0), (h | 0) != (i | 0)) : 0 + ) + f[g >> 2] = i + (~(((i + -4 - h) | 0) >>> 2) << 2) + } else oi(e, (d - j) | 0) + if (!c) return + j = f[b >> 2] | 0 + if ((c | 0) > 1) { + d = j + e = j + h = 1 + while (1) { + i = f[(b + (h << 2)) >> 2] | 0 + g = (i | 0) < (e | 0) + k = g ? i : e + l = g ? d : (i | 0) > (d | 0) ? i : d + h = (h + 1) | 0 + if ((h | 0) == (c | 0)) { + m = l + n = k + break + } else { + d = l + e = k + } + } + } else { + m = j + n = j + } + f[(a + 4) >> 2] = n + f[(a + 8) >> 2] = m + j = + Vn( + m | 0, + ((((m | 0) < 0) << 31) >> 31) | 0, + n | 0, + ((((n | 0) < 0) << 31) >> 31) | 0, + ) | 0 + n = I + if (!((n >>> 0 < 0) | (((n | 0) == 0) & (j >>> 0 < 2147483647)))) return + n = (j + 1) | 0 + f[(a + 12) >> 2] = n + j = ((n | 0) / 2) | 0 + m = (a + 16) | 0 + f[m >> 2] = j + f[(a + 20) >> 2] = 0 - j + if ((n & 1) | 0) return + f[m >> 2] = j + -1 + return + } + function Bh(a, c, d, e, g, h, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + var j = 0, + k = 0 + c = u + u = (u + 64) | 0 + j = c + k = i ? 6 : 5 + Al(j) + i = f[(h + 56) >> 2] | 0 + h = X(Ll(k) | 0, e) | 0 + yj(j, i, 0, e & 255, k, 0, h, (((h | 0) < 0) << 31) >> 31, 0, 0) + h = dn(96) | 0 + nl(h, j) + f[a >> 2] = h + pj(h, d) | 0 + d = (h + 84) | 0 + if (!g) { + b[d >> 0] = 1 + a = f[(h + 68) >> 2] | 0 + j = (h + 72) | 0 + k = f[j >> 2] | 0 + if ((k | 0) == (a | 0)) { + u = c + return + } + f[j >> 2] = k + (~(((k + -4 - a) | 0) >>> 2) << 2) + u = c + return + } + b[d >> 0] = 0 + d = (h + 68) | 0 + a = (h + 72) | 0 + h = f[a >> 2] | 0 + k = f[d >> 2] | 0 + j = (h - k) >> 2 + e = h + if (j >>> 0 < g >>> 0) { + kh(d, (g - j) | 0, 1200) + u = c + return + } + if (j >>> 0 <= g >>> 0) { + u = c + return + } + j = (k + (g << 2)) | 0 + if ((j | 0) == (e | 0)) { + u = c + return + } + f[a >> 2] = e + (~(((e + -4 - j) | 0) >>> 2) << 2) + u = c + return + } + function Ch(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + jd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + jd(a, e) + return + } + function Dh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + nd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + nd(a, e) + return + } + function Eh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + ud(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + ud(a, e) + return + } + function Fh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + Ed(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + Ed(a, e) + return + } + function Gh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + ld(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + ld(a, e) + return + } + function Hh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + qd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + qd(a, e) + return + } + function Ih(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + yd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + yd(a, e) + return + } + function Jh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + kd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + kd(a, e) + return + } + function Kh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + od(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + od(a, e) + return + } + function Lh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + vd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + vd(a, e) + return + } + function Mh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + Fd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + Fd(a, e) + return + } + function Nh(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 8) | 0 + b[h >> 0] = a & 127 + do + if (a >>> 0 > 127) { + b[h >> 0] = a | 128 + i = (c + 16) | 0 + j = f[(i + 4) >> 2] | 0 + if (((j | 0) > 0) | (((j | 0) == 0) & ((f[i >> 2] | 0) >>> 0 > 0))) { + k = 0 + break + } else { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, (h + 1) | 0) | 0 + k = Nh(a >>> 7, c) | 0 + break + } + } else { + i = (c + 16) | 0 + j = f[(i + 4) >> 2] | 0 + if (((j | 0) > 0) | (((j | 0) == 0) & ((f[i >> 2] | 0) >>> 0 > 0))) { + k = 0 + break + } + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, (h + 1) | 0) | 0 + l = 1 + u = d + return l | 0 + } + while (0) + l = k + u = d + return l | 0 + } + function Oh(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = u + u = (u + 16) | 0 + e = d + Be(e, (a + 40) | 0, f[(a + 8) >> 2] | 0, b, c) + Wi(a, e) + a = f[e >> 2] | 0 + f[e >> 2] = 0 + if (!a) { + u = d + return 1 + } + e = (a + 88) | 0 + c = f[e >> 2] | 0 + f[e >> 2] = 0 + if (c | 0) { + e = f[(c + 8) >> 2] | 0 + if (e | 0) { + b = (c + 12) | 0 + if ((f[b >> 2] | 0) != (e | 0)) f[b >> 2] = e + br(e) + } + br(c) + } + c = f[(a + 68) >> 2] | 0 + if (c | 0) { + e = (a + 72) | 0 + b = f[e >> 2] | 0 + if ((b | 0) != (c | 0)) + f[e >> 2] = b + (~(((b + -4 - c) | 0) >>> 2) << 2) + br(c) + } + c = (a + 64) | 0 + b = f[c >> 2] | 0 + f[c >> 2] = 0 + if (b | 0) { + c = f[b >> 2] | 0 + if (c | 0) { + e = (b + 4) | 0 + if ((f[e >> 2] | 0) != (c | 0)) f[e >> 2] = c + br(c) + } + br(b) + } + br(a) + u = d + return 1 + } + function Ph(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + rd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + rd(a, e) + return + } + function Qh(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + e = u + u = (u + 48) | 0 + g = e + h = (e + 32) | 0 + if (!c) { + i = 0 + u = e + return i | 0 + } + Cn(g) + if ( + (Tl(c, 0) | 0) != -1 + ? Qa[f[((f[c >> 2] | 0) + 16) >> 2] & 127](c) | 0 + : 0 + ) { + Va[f[((f[c >> 2] | 0) + 20) >> 2] & 127](c) + Zf(h, a, c, g) + c = (f[h >> 2] | 0) == 0 + a = (h + 4) | 0 + if ((b[(a + 11) >> 0] | 0) < 0) br(f[a >> 2] | 0) + if (c) { + c = f[g >> 2] | 0 + a = (g + 4) | 0 + ag(d, c, (c + ((f[a >> 2] | 0) - c)) | 0) + j = ((f[a >> 2] | 0) - (f[g >> 2] | 0)) | 0 + } else j = 0 + } else j = 0 + a = (g + 12) | 0 + c = f[a >> 2] | 0 + f[a >> 2] = 0 + if (c | 0) br(c) + c = f[g >> 2] | 0 + if (c | 0) { + a = (g + 4) | 0 + if ((f[a >> 2] | 0) != (c | 0)) f[a >> 2] = c + br(c) + } + i = j + u = e + return i | 0 + } + function Rh(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = u + u = (u + 16) | 0 + e = d + se(e, (a + 40) | 0, f[(a + 8) >> 2] | 0, b, c) + Wi(a, e) + a = f[e >> 2] | 0 + f[e >> 2] = 0 + if (!a) { + u = d + return 1 + } + e = (a + 88) | 0 + c = f[e >> 2] | 0 + f[e >> 2] = 0 + if (c | 0) { + e = f[(c + 8) >> 2] | 0 + if (e | 0) { + b = (c + 12) | 0 + if ((f[b >> 2] | 0) != (e | 0)) f[b >> 2] = e + br(e) + } + br(c) + } + c = f[(a + 68) >> 2] | 0 + if (c | 0) { + e = (a + 72) | 0 + b = f[e >> 2] | 0 + if ((b | 0) != (c | 0)) + f[e >> 2] = b + (~(((b + -4 - c) | 0) >>> 2) << 2) + br(c) + } + c = (a + 64) | 0 + b = f[c >> 2] | 0 + f[c >> 2] = 0 + if (b | 0) { + c = f[b >> 2] | 0 + if (c | 0) { + e = (b + 4) | 0 + if ((f[e >> 2] | 0) != (c | 0)) f[e >> 2] = c + br(c) + } + br(b) + } + br(a) + u = d + return 1 + } + function Sh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + b = f[a >> 2] | 0 + if (!b) return + c = (a + 4) | 0 + d = f[c >> 2] | 0 + if ((d | 0) == (b | 0)) e = b + else { + g = d + do { + d = (g + -4) | 0 + f[c >> 2] = d + h = f[d >> 2] | 0 + f[d >> 2] = 0 + if (h | 0) { + d = (h + 88) | 0 + i = f[d >> 2] | 0 + f[d >> 2] = 0 + if (i | 0) { + d = f[(i + 8) >> 2] | 0 + if (d | 0) { + j = (i + 12) | 0 + if ((f[j >> 2] | 0) != (d | 0)) f[j >> 2] = d + br(d) + } + br(i) + } + i = f[(h + 68) >> 2] | 0 + if (i | 0) { + d = (h + 72) | 0 + j = f[d >> 2] | 0 + if ((j | 0) != (i | 0)) + f[d >> 2] = j + (~(((j + -4 - i) | 0) >>> 2) << 2) + br(i) + } + i = (h + 64) | 0 + j = f[i >> 2] | 0 + f[i >> 2] = 0 + if (j | 0) { + i = f[j >> 2] | 0 + if (i | 0) { + d = (j + 4) | 0 + if ((f[d >> 2] | 0) != (i | 0)) f[d >> 2] = i + br(i) + } + br(j) + } + br(h) + } + g = f[c >> 2] | 0 + } while ((g | 0) != (b | 0)) + e = f[a >> 2] | 0 + } + br(e) + return + } + function Th(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + e = (d | 0) < 0 + do + if (!b) { + if (e) { + g = 0 + return g | 0 + } + h = (a + 4) | 0 + i = f[h >> 2] | 0 + j = f[a >> 2] | 0 + k = (i - j) | 0 + if (k >>> 0 < c >>> 0) { + ri(a, (c - k) | 0) + break + } + if (k >>> 0 > c >>> 0 ? ((k = (j + c) | 0), (k | 0) != (i | 0)) : 0) + f[h >> 2] = k + } else { + if (e) { + g = 0 + return g | 0 + } + k = (a + 4) | 0 + h = f[k >> 2] | 0 + i = f[a >> 2] | 0 + j = (h - i) | 0 + do + if ((0 < (d | 0)) | ((0 == (d | 0)) & (j >>> 0 < c >>> 0))) { + if (j >>> 0 < c >>> 0) { + ri(a, (c - j) | 0) + break + } + if ( + j >>> 0 > c >>> 0 ? ((l = (i + c) | 0), (l | 0) != (h | 0)) : 0 + ) { + f[k >> 2] = l + m = 15 + } else m = 15 + } else m = 15 + while (0) + if ((m | 0) == 15 ? (c | 0) == 0 : 0) break + Xl(f[a >> 2] | 0, b | 0, c | 0) | 0 + } + while (0) + c = (a + 24) | 0 + a = c + b = Tn(f[a >> 2] | 0, f[(a + 4) >> 2] | 0, 1, 0) | 0 + a = c + f[a >> 2] = b + f[(a + 4) >> 2] = I + g = 1 + return g | 0 + } + function Uh(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 8) | 0 + if (!(ve(a, c) | 0)) { + i = 0 + u = d + return i | 0 + } + j = (a + 36) | 0 + k = (a + 40) | 0 + a = f[j >> 2] | 0 + if ((f[k >> 2] | 0) == (a | 0)) { + i = 1 + u = d + return i | 0 + } + l = (c + 16) | 0 + m = (c + 4) | 0 + n = (h + 1) | 0 + o = 0 + p = a + do { + a = f[(p + (o << 2)) >> 2] | 0 + q = Qa[f[((f[a >> 2] | 0) + 32) >> 2] & 127](a) | 0 + b[h >> 0] = q + q = l + a = f[(q + 4) >> 2] | 0 + if (!(((a | 0) > 0) | (((a | 0) == 0) & ((f[q >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[m >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, n) | 0 + } + o = (o + 1) | 0 + p = f[j >> 2] | 0 + } while (o >>> 0 < (((f[k >> 2] | 0) - p) >> 2) >>> 0) + i = 1 + u = d + return i | 0 + } + function Vh(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = u + u = (u + 16) | 0 + d = c + wp(a) + f[(a + 16) >> 2] = 0 + f[(a + 20) >> 2] = 0 + f[(a + 12) >> 2] = a + 16 + e = (a + 24) | 0 + wp(e) + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + a = dn(32) | 0 + f[d >> 2] = a + f[(d + 8) >> 2] = -2147483616 + f[(d + 4) >> 2] = 20 + g = a + h = 13101 + i = (g + 20) | 0 + do { + b[g >> 0] = b[h >> 0] | 0 + g = (g + 1) | 0 + h = (h + 1) | 0 + } while ((g | 0) < (i | 0)) + b[(a + 20) >> 0] = 0 + Mj(e, d, 1) + if ((b[(d + 11) >> 0] | 0) < 0) br(f[d >> 2] | 0) + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + a = dn(32) | 0 + f[d >> 2] = a + f[(d + 8) >> 2] = -2147483616 + f[(d + 4) >> 2] = 22 + g = a + h = 13122 + i = (g + 22) | 0 + do { + b[g >> 0] = b[h >> 0] | 0 + g = (g + 1) | 0 + h = (h + 1) | 0 + } while ((g | 0) < (i | 0)) + b[(a + 22) >> 0] = 0 + Mj(e, d, 1) + if ((b[(d + 11) >> 0] | 0) >= 0) { + u = c + return + } + br(f[d >> 2] | 0) + u = c + return + } + function Wh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + b = f[(a + 4) >> 2] | 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) { + e = d + do { + d = (e + -4) | 0 + f[c >> 2] = d + g = f[d >> 2] | 0 + f[d >> 2] = 0 + if (g | 0) { + d = (g + 88) | 0 + h = f[d >> 2] | 0 + f[d >> 2] = 0 + if (h | 0) { + d = f[(h + 8) >> 2] | 0 + if (d | 0) { + i = (h + 12) | 0 + if ((f[i >> 2] | 0) != (d | 0)) f[i >> 2] = d + br(d) + } + br(h) + } + h = f[(g + 68) >> 2] | 0 + if (h | 0) { + d = (g + 72) | 0 + i = f[d >> 2] | 0 + if ((i | 0) != (h | 0)) + f[d >> 2] = i + (~(((i + -4 - h) | 0) >>> 2) << 2) + br(h) + } + h = (g + 64) | 0 + i = f[h >> 2] | 0 + f[h >> 2] = 0 + if (i | 0) { + h = f[i >> 2] | 0 + if (h | 0) { + d = (i + 4) | 0 + if ((f[d >> 2] | 0) != (h | 0)) f[d >> 2] = h + br(h) + } + br(i) + } + br(g) + } + e = f[c >> 2] | 0 + } while ((e | 0) != (b | 0)) + } + b = f[a >> 2] | 0 + if (!b) return + br(b) + return + } + function Xh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + f[g >> 2] = f[(a + 12) >> 2] + h = (b + 16) | 0 + i = h + j = f[i >> 2] | 0 + k = f[(i + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & (j >>> 0 > 0))) { + l = k + m = j + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + j = h + l = f[(j + 4) >> 2] | 0 + m = f[j >> 2] | 0 + } + f[g >> 2] = f[(a + 20) >> 2] + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + u = c + return 1 + } + function Yh(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = u + u = (u + 16) | 0 + d = c + e = dn(16) | 0 + f[d >> 2] = e + f[(d + 8) >> 2] = -2147483632 + f[(d + 4) >> 2] = 14 + g = e + h = 12975 + i = (g + 14) | 0 + do { + b[g >> 0] = b[h >> 0] | 0 + g = (g + 1) | 0 + h = (h + 1) | 0 + } while ((g | 0) < (i | 0)) + b[(e + 14) >> 0] = 0 + e = yk(a, d, -1) | 0 + if ((b[(d + 11) >> 0] | 0) < 0) br(f[d >> 2] | 0) + j = dn(16) | 0 + f[d >> 2] = j + f[(d + 8) >> 2] = -2147483632 + f[(d + 4) >> 2] = 14 + g = j + h = 12990 + i = (g + 14) | 0 + do { + b[g >> 0] = b[h >> 0] | 0 + g = (g + 1) | 0 + h = (h + 1) | 0 + } while ((g | 0) < (i | 0)) + b[(j + 14) >> 0] = 0 + j = yk(a, d, -1) | 0 + if ((b[(d + 11) >> 0] | 0) >= 0) { + k = (e | 0) < (j | 0) + l = k ? j : e + m = (l | 0) == -1 + n = m ? 5 : l + u = c + return n | 0 + } + br(f[d >> 2] | 0) + k = (e | 0) < (j | 0) + l = k ? j : e + m = (l | 0) == -1 + n = m ? 5 : l + u = c + return n | 0 + } + function Zh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + f[g >> 2] = f[(a + 12) >> 2] + h = (b + 16) | 0 + i = h + j = f[i >> 2] | 0 + k = f[(i + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & (j >>> 0 > 0))) { + l = k + m = j + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + j = h + l = f[(j + 4) >> 2] | 0 + m = f[j >> 2] | 0 + } + f[g >> 2] = f[(a + 16) >> 2] + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(b, d, g, (g + 4) | 0) | 0 + u = c + return 1 + } + function _h(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + g = dn(32) | 0 + f[a >> 2] = g + f[(a + 4) >> 2] = c + 8 + c = (a + 8) | 0 + b[c >> 0] = 0 + h = (g + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + h = (g + 20) | 0 + i = (e + 12) | 0 + f[h >> 2] = 0 + f[(g + 24) >> 2] = 0 + f[(g + 28) >> 2] = 0 + g = (e + 16) | 0 + e = f[g >> 2] | 0 + j = f[i >> 2] | 0 + k = (e - j) | 0 + if (!k) { + l = j + m = e + n = 0 + } else { + ri(h, k) + l = f[i >> 2] | 0 + m = f[g >> 2] | 0 + n = f[h >> 2] | 0 + } + Rg(n | 0, l | 0, (m - l) | 0) | 0 + b[c >> 0] = 1 + c = f[a >> 2] | 0 + f[(c + 4) >> 2] = d + f[c >> 2] = 0 + return + } + function $h(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + b = (a + 32) | 0 + fd(a, b) + c = (a + 80) | 0 + d = f[c >> 2] | 0 + if ( + (d | 0 ? ((e = (a + 84) | 0), (f[e >> 2] | 0) > 0) : 0) + ? (fd(d, b), (f[e >> 2] | 0) > 1) + : 0 + ) { + d = 1 + do { + fd(((f[c >> 2] | 0) + (d << 5)) | 0, b) + d = (d + 1) | 0 + } while ((d | 0) < (f[e >> 2] | 0)) + } + e = (a + 136) | 0 + d = (a + 140) | 0 + a = f[e >> 2] | 0 + if ((f[d >> 2] | 0) == (a | 0)) return + c = 0 + g = a + while (1) { + a = g + Nh( + ((f[(a + ((c * 12) | 0) + 4) >> 2] | 0) - + (f[(a + ((c * 12) | 0)) >> 2] | 0)) >> + 2, + b, + ) | 0 + a = f[e >> 2] | 0 + h = f[(a + ((c * 12) | 0)) >> 2] | 0 + i = ((f[(a + ((c * 12) | 0) + 4) >> 2] | 0) - h) >> 2 + if (!i) j = a + else { + Dc(h, i, 1, 0, b) | 0 + j = f[e >> 2] | 0 + } + c = (c + 1) | 0 + if (c >>> 0 >= (((((f[d >> 2] | 0) - j) | 0) / 12) | 0) >>> 0) break + else g = j + } + return + } + function ai(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + e = (d + 16) | 0 + g = f[e >> 2] | 0 + if (!g) + if (!(pl(d) | 0)) { + h = f[e >> 2] | 0 + i = 5 + } else j = 0 + else { + h = g + i = 5 + } + a: do + if ((i | 0) == 5) { + g = (d + 20) | 0 + e = f[g >> 2] | 0 + k = e + if (((h - e) | 0) >>> 0 < c >>> 0) { + j = Sa[f[(d + 36) >> 2] & 31](d, a, c) | 0 + break + } + b: do + if ((b[(d + 75) >> 0] | 0) > -1) { + e = c + while (1) { + if (!e) { + l = 0 + m = a + n = c + o = k + break b + } + p = (e + -1) | 0 + if ((b[(a + p) >> 0] | 0) == 10) break + else e = p + } + p = Sa[f[(d + 36) >> 2] & 31](d, a, e) | 0 + if (p >>> 0 < e >>> 0) { + j = p + break a + } + l = e + m = (a + e) | 0 + n = (c - e) | 0 + o = f[g >> 2] | 0 + } else { + l = 0 + m = a + n = c + o = k + } + while (0) + Rg(o | 0, m | 0, n | 0) | 0 + f[g >> 2] = (f[g >> 2] | 0) + n + j = (l + n) | 0 + } + while (0) + return j | 0 + } + function bi(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = (a + 12) | 0 + d = f[c >> 2] | 0 + f[c >> 2] = 0 + if (d | 0) { + c = f[(d + 28) >> 2] | 0 + if (c | 0) { + e = c + do { + c = e + e = f[e >> 2] | 0 + bi((c + 8) | 0) + br(c) + } while ((e | 0) != 0) + } + e = (d + 20) | 0 + c = f[e >> 2] | 0 + f[e >> 2] = 0 + if (c | 0) br(c) + c = f[(d + 8) >> 2] | 0 + if (c | 0) { + e = c + do { + c = e + e = f[e >> 2] | 0 + g = (c + 8) | 0 + h = f[(c + 20) >> 2] | 0 + if (h | 0) { + i = (c + 24) | 0 + if ((f[i >> 2] | 0) != (h | 0)) f[i >> 2] = h + br(h) + } + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + br(c) + } while ((e | 0) != 0) + } + e = f[d >> 2] | 0 + f[d >> 2] = 0 + if (e | 0) br(e) + br(d) + } + if ((b[(a + 11) >> 0] | 0) >= 0) return + br(f[a >> 2] | 0) + return + } + function ci(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0 + g = u + u = (u + 32) | 0 + h = (g + 12) | 0 + i = g + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + if ((e | 0) > 0) { + j = (i + 11) | 0 + k = (i + 4) | 0 + l = 0 + do { + if ((l | 0) > 0) vn(h, 12890) | 0 + cl(i, $(n[(d + (l << 2)) >> 2])) + m = b[j >> 0] | 0 + o = (m << 24) >> 24 < 0 + $i(h, o ? f[i >> 2] | 0 : i, o ? f[k >> 2] | 0 : m & 255) | 0 + if ((b[j >> 0] | 0) < 0) br(f[i >> 2] | 0) + l = (l + 1) | 0 + } while ((l | 0) < (e | 0)) + } + Ql(mi(a, c) | 0, h) | 0 + if ((b[(h + 11) >> 0] | 0) >= 0) { + u = g + return + } + br(f[h >> 2] | 0) + u = g + return + } + function di(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + if ((f[(d + 56) >> 2] | 0) == -1) { + h = 0 + f[a >> 2] = h + return + } + i = dn(96) | 0 + nl(i, d) + d = i + do + if (!e) { + j = f[(c + 80) >> 2] | 0 + b[(i + 84) >> 0] = 0 + k = (i + 68) | 0 + l = (i + 72) | 0 + m = f[l >> 2] | 0 + n = f[k >> 2] | 0 + o = (m - n) >> 2 + p = m + if (j >>> 0 > o >>> 0) { + kh(k, (j - o) | 0, 5908) + break + } + if ( + j >>> 0 < o >>> 0 + ? ((o = (n + (j << 2)) | 0), (o | 0) != (p | 0)) + : 0 + ) + f[l >> 2] = p + (~(((p + -4 - o) | 0) >>> 2) << 2) + } else { + b[(i + 84) >> 0] = 1 + o = f[(i + 68) >> 2] | 0 + p = (i + 72) | 0 + l = f[p >> 2] | 0 + if ((l | 0) != (o | 0)) + f[p >> 2] = l + (~(((l + -4 - o) | 0) >>> 2) << 2) + f[(i + 80) >> 2] = f[(c + 80) >> 2] + } + while (0) + if (!g) { + h = d + f[a >> 2] = h + return + } + pj(i, g) | 0 + h = d + f[a >> 2] = h + return + } + function ei(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = (a + 4) | 0 + d = f[a >> 2] | 0 + e = ((f[c >> 2] | 0) - d) | 0 + g = e >> 3 + h = (g + 1) | 0 + if (h >>> 0 > 536870911) mq(a) + i = (a + 8) | 0 + j = ((f[i >> 2] | 0) - d) | 0 + k = j >> 2 + l = (j >> 3) >>> 0 < 268435455 ? (k >>> 0 < h >>> 0 ? h : k) : 536870911 + do + if (l) + if (l >>> 0 > 536870911) { + k = ra(8) | 0 + Wo(k, 14941) + f[k >> 2] = 6944 + va(k | 0, 1080, 114) + } else { + k = dn(l << 3) | 0 + m = k + n = k + break + } + else { + m = 0 + n = 0 + } + while (0) + k = (m + (g << 3)) | 0 + g = b + b = f[(g + 4) >> 2] | 0 + h = k + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = b + if ((e | 0) > 0) Rg(n | 0, d | 0, e | 0) | 0 + f[a >> 2] = m + f[c >> 2] = k + 8 + f[i >> 2] = m + (l << 3) + if (!d) return + br(d) + return + } + function fi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = u + u = (u + 16) | 0 + d = c + if ((Qa[f[((f[b >> 2] | 0) + 20) >> 2] & 127](b) | 0) <= 0) { + e = 1 + u = c + return e | 0 + } + g = (a + 4) | 0 + h = (a + 20) | 0 + i = (a + 24) | 0 + j = (a + 16) | 0 + a = 0 + while (1) { + k = f[((f[g >> 2] | 0) + 4) >> 2] | 0 + l = Tl(k, Ra[f[((f[b >> 2] | 0) + 24) >> 2] & 127](b, a) | 0) | 0 + f[d >> 2] = l + if ((l | 0) == -1) break + k = f[h >> 2] | 0 + if ((k | 0) == (f[i >> 2] | 0)) Ci(j, d) + else { + f[k >> 2] = l + f[h >> 2] = k + 4 + } + al(f[g >> 2] | 0, f[d >> 2] | 0) | 0 + a = (a + 1) | 0 + if ((a | 0) >= (Qa[f[((f[b >> 2] | 0) + 20) >> 2] & 127](b) | 0)) { + e = 1 + m = 9 + break + } + } + if ((m | 0) == 9) { + u = c + return e | 0 + } + e = 0 + u = c + return e | 0 + } + function gi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + f[a >> 2] = 1276 + Sh((a + 60) | 0) + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + c = (a + 52) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = (a + 36) | 0 + d = f[b >> 2] | 0 + if (d | 0) { + c = (a + 40) | 0 + e = f[c >> 2] | 0 + if ((e | 0) == (d | 0)) g = d + else { + h = e + do { + e = (h + -24) | 0 + f[c >> 2] = e + Va[f[f[e >> 2] >> 2] & 127](e) + h = f[c >> 2] | 0 + } while ((h | 0) != (d | 0)) + g = f[b >> 2] | 0 + } + br(g) + } + f[a >> 2] = 1216 + g = f[(a + 16) >> 2] | 0 + if (g | 0) { + b = (a + 20) | 0 + d = f[b >> 2] | 0 + if ((d | 0) != (g | 0)) + f[b >> 2] = d + (~(((d + -4 - g) | 0) >>> 2) << 2) + br(g) + } + g = f[(a + 4) >> 2] | 0 + if (!g) return + d = (a + 8) | 0 + a = f[d >> 2] | 0 + if ((a | 0) != (g | 0)) f[d >> 2] = a + (~(((a + -4 - g) | 0) >>> 2) << 2) + br(g) + return + } + function hi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + c = u + u = (u + 32) | 0 + d = (c + 16) | 0 + e = (c + 8) | 0 + g = c + h = (a + 8) | 0 + if ((f[h >> 2] << 5) >>> 0 >= b >>> 0) { + u = c + return + } + f[d >> 2] = 0 + i = (d + 4) | 0 + f[i >> 2] = 0 + j = (d + 8) | 0 + f[j >> 2] = 0 + if ((b | 0) < 0) mq(d) + k = ((((b + -1) | 0) >>> 5) + 1) | 0 + b = dn(k << 2) | 0 + f[d >> 2] = b + f[i >> 2] = 0 + f[j >> 2] = k + k = f[a >> 2] | 0 + f[e >> 2] = k + f[(e + 4) >> 2] = 0 + b = (a + 4) | 0 + l = f[b >> 2] | 0 + f[g >> 2] = k + ((l >>> 5) << 2) + f[(g + 4) >> 2] = l & 31 + ig(d, e, g) + g = f[a >> 2] | 0 + f[a >> 2] = f[d >> 2] + f[d >> 2] = g + d = f[b >> 2] | 0 + f[b >> 2] = f[i >> 2] + f[i >> 2] = d + d = f[h >> 2] | 0 + f[h >> 2] = f[j >> 2] + f[j >> 2] = d + if (g | 0) br(g) + u = c + return + } + function ii(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + b = (a + 136) | 0 + c = f[b >> 2] | 0 + if (c | 0) { + d = (a + 140) | 0 + e = f[d >> 2] | 0 + if ((e | 0) == (c | 0)) g = c + else { + h = e + while (1) { + e = (h + -12) | 0 + f[d >> 2] = e + i = f[e >> 2] | 0 + if (!i) j = e + else { + e = (h + -8) | 0 + k = f[e >> 2] | 0 + if ((k | 0) != (i | 0)) + f[e >> 2] = k + (~(((k + -4 - i) | 0) >>> 2) << 2) + br(i) + j = f[d >> 2] | 0 + } + if ((j | 0) == (c | 0)) break + else h = j + } + g = f[b >> 2] | 0 + } + br(g) + } + g = f[(a + 104) >> 2] | 0 + if (g | 0) { + b = (a + 108) | 0 + j = f[b >> 2] | 0 + if ((j | 0) != (g | 0)) + f[b >> 2] = j + (~(((j + -4 - g) | 0) >>> 2) << 2) + br(g) + } + g = f[(a + 92) >> 2] | 0 + if (!g) { + jj(a) + return + } + j = (a + 96) | 0 + b = f[j >> 2] | 0 + if ((b | 0) != (g | 0)) f[j >> 2] = b + (~(((b + -4 - g) | 0) >>> 2) << 2) + br(g) + jj(a) + return + } + function ji(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0 + f[a >> 2] = 3340 + c = (a + 72) | 0 + d = (a + 136) | 0 + e = (a + 4) | 0 + g = (e + 64) | 0 + do { + f[e >> 2] = 0 + e = (e + 4) | 0 + } while ((e | 0) < (g | 0)) + e = c + g = (e + 64) | 0 + do { + f[e >> 2] = 0 + e = (e + 4) | 0 + } while ((e | 0) < (g | 0)) + n[d >> 2] = $(1.0) + d = (a + 140) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + f[(a + 164) >> 2] = -1 + d = (a + 168) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + f[(d + 24) >> 2] = 0 + rn((a + 200) | 0) + Cn((a + 232) | 0) + d = (a + 316) | 0 + e = (a + 264) | 0 + g = (e + 52) | 0 + do { + f[e >> 2] = 0 + e = (e + 4) | 0 + } while ((e | 0) < (g | 0)) + f[d >> 2] = -1 + f[(a + 320) >> 2] = -1 + f[(a + 324) >> 2] = 0 + f[(a + 328) >> 2] = 2 + f[(a + 332) >> 2] = 7 + f[(a + 336) >> 2] = 0 + f[(a + 340) >> 2] = 0 + f[(a + 344) >> 2] = 0 + b[(a + 352) >> 0] = 0 + return + } + function ki(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = (a + 4) | 0 + d = f[a >> 2] | 0 + e = ((f[c >> 2] | 0) - d) | 0 + g = ((e | 0) / 12) | 0 + h = (g + 1) | 0 + if (h >>> 0 > 357913941) mq(a) + i = (a + 8) | 0 + j = ((((f[i >> 2] | 0) - d) | 0) / 12) | 0 + k = j << 1 + l = j >>> 0 < 178956970 ? (k >>> 0 < h >>> 0 ? h : k) : 357913941 + do + if (l) + if (l >>> 0 > 357913941) { + k = ra(8) | 0 + Wo(k, 14941) + f[k >> 2] = 6944 + va(k | 0, 1080, 114) + } else { + m = dn((l * 12) | 0) | 0 + break + } + else m = 0 + while (0) + k = (m + ((g * 12) | 0)) | 0 + f[k >> 2] = f[b >> 2] + f[(k + 4) >> 2] = f[(b + 4) >> 2] + f[(k + 8) >> 2] = f[(b + 8) >> 2] + b = (k + (((((e | 0) / -12) | 0) * 12) | 0)) | 0 + if ((e | 0) > 0) Rg(b | 0, d | 0, e | 0) | 0 + f[a >> 2] = b + f[c >> 2] = k + 12 + f[i >> 2] = m + ((l * 12) | 0) + if (!d) return + br(d) + return + } + function li(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + g = (a + 16) | 0 + h = g + i = f[(h + 4) >> 2] | 0 + if ( + ((d | 0) < 0) | + (((d | 0) == 0) & (c >>> 0 < 1)) | + (((i | 0) > 0) | (((i | 0) == 0) & ((f[h >> 2] | 0) >>> 0 > 0))) + ) { + j = 0 + return j | 0 + } + b[(a + 24) >> 0] = e & 1 + h = Tn(c | 0, d | 0, 7, 0) | 0 + d = zk(h | 0, I | 0, 8, 0) | 0 + h = I + c = g + f[c >> 2] = d + f[(c + 4) >> 2] = h + c = (a + 4) | 0 + g = f[c >> 2] | 0 + i = f[a >> 2] | 0 + k = (g - i) | 0 + l = Tn(k | 0, 0, 8, 0) | 0 + m = e ? l : k + l = Tn(m | 0, (e ? I : 0) | 0, d | 0, h | 0) | 0 + h = i + i = g + if (k >>> 0 >= l >>> 0) + if (k >>> 0 > l >>> 0 ? ((g = (h + l) | 0), (g | 0) != (i | 0)) : 0) { + f[c >> 2] = g + n = h + } else n = h + else { + ri(a, (l - k) | 0) + n = f[a >> 2] | 0 + } + k = dn(8) | 0 + f[k >> 2] = n + m + f[(k + 4) >> 2] = 0 + m = (a + 12) | 0 + a = f[m >> 2] | 0 + f[m >> 2] = k + if (!a) { + j = 1 + return j | 0 + } + br(a) + j = 1 + return j | 0 + } + function mi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = u + u = (u + 16) | 0 + d = c + e = hg(a, d, b) | 0 + g = f[e >> 2] | 0 + if (g | 0) { + h = g + i = (h + 28) | 0 + u = c + return i | 0 + } + g = dn(40) | 0 + dj((g + 16) | 0, b) + b = (g + 28) | 0 + f[b >> 2] = 0 + f[(b + 4) >> 2] = 0 + f[(b + 8) >> 2] = 0 + b = f[d >> 2] | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = b + f[e >> 2] = g + b = f[f[a >> 2] >> 2] | 0 + if (!b) j = g + else { + f[a >> 2] = b + j = f[e >> 2] | 0 + } + Ae(f[(a + 4) >> 2] | 0, j) + j = (a + 8) | 0 + f[j >> 2] = (f[j >> 2] | 0) + 1 + h = g + i = (h + 28) | 0 + u = c + return i | 0 + } + function ni(a, c, d, e, g, h, i, j) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + j = j | 0 + var k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + k = u + u = (u + 16) | 0 + l = k + if (((-18 - c) | 0) >>> 0 < d >>> 0) mq(a) + if ((b[(a + 11) >> 0] | 0) < 0) m = f[a >> 2] | 0 + else m = a + if (c >>> 0 < 2147483623) { + n = (d + c) | 0 + d = c << 1 + o = n >>> 0 < d >>> 0 ? d : n + p = o >>> 0 < 11 ? 11 : (o + 16) & -16 + } else p = -17 + o = dn(p) | 0 + if (g | 0) Lo(o, m, g) | 0 + if (i | 0) Lo((o + g) | 0, j, i) | 0 + j = (e - h) | 0 + e = (j - g) | 0 + if (e | 0) Lo((o + g + i) | 0, (m + g + h) | 0, e) | 0 + if ((c | 0) != 10) br(m) + f[a >> 2] = o + f[(a + 8) >> 2] = p | -2147483648 + p = (j + i) | 0 + f[(a + 4) >> 2] = p + b[l >> 0] = 0 + Hp((o + p) | 0, l) + u = k + return + } + function oi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = (a + 4) | 0 + g = f[e >> 2] | 0 + if (((d - g) >> 2) >>> 0 >= b >>> 0) { + hj(g | 0, 0, (b << 2) | 0) | 0 + f[e >> 2] = g + (b << 2) + return + } + h = f[a >> 2] | 0 + i = (g - h) | 0 + g = i >> 2 + j = (g + b) | 0 + if (j >>> 0 > 1073741823) mq(a) + k = (d - h) | 0 + d = k >> 1 + l = (k >> 2) >>> 0 < 536870911 ? (d >>> 0 < j >>> 0 ? j : d) : 1073741823 + do + if (l) + if (l >>> 0 > 1073741823) { + d = ra(8) | 0 + Wo(d, 14941) + f[d >> 2] = 6944 + va(d | 0, 1080, 114) + } else { + d = dn(l << 2) | 0 + m = d + n = d + break + } + else { + m = 0 + n = 0 + } + while (0) + d = (m + (g << 2)) | 0 + hj(d | 0, 0, (b << 2) | 0) | 0 + if ((i | 0) > 0) Rg(n | 0, h | 0, i | 0) | 0 + f[a >> 2] = m + f[e >> 2] = d + (b << 2) + f[c >> 2] = m + (l << 2) + if (!h) return + br(h) + return + } + function pi(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + g = dn(32) | 0 + f[a >> 2] = g + f[(a + 4) >> 2] = c + 8 + c = (a + 8) | 0 + b[c >> 0] = 0 + dj((g + 8) | 0, e) + h = (g + 20) | 0 + i = (e + 12) | 0 + f[h >> 2] = 0 + f[(g + 24) >> 2] = 0 + f[(g + 28) >> 2] = 0 + g = (e + 16) | 0 + e = f[g >> 2] | 0 + j = f[i >> 2] | 0 + k = (e - j) | 0 + if (!k) { + l = j + m = e + n = 0 + } else { + ri(h, k) + l = f[i >> 2] | 0 + m = f[g >> 2] | 0 + n = f[h >> 2] | 0 + } + Rg(n | 0, l | 0, (m - l) | 0) | 0 + b[c >> 0] = 1 + c = f[a >> 2] | 0 + f[(c + 4) >> 2] = d + f[c >> 2] = 0 + return + } + function qi(a, c, d) { + a = a | 0 + c = c | 0 + d = $(d) + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0.0, + l = 0, + m = 0, + n = 0, + o = 0 + e = u + u = (u + 16) | 0 + g = e + h = (c + 11) | 0 + i = b[h >> 0] | 0 + if ((i << 24) >> 24 < 0) j = f[(c + 4) >> 2] | 0 + else j = i & 255 + k = +d + l = j + j = i + while (1) { + if ((j << 24) >> 24 < 0) m = f[c >> 2] | 0 + else m = c + p[g >> 3] = k + n = wn(m, (l + 1) | 0, 17468, g) | 0 + if ((n | 0) > -1) + if (n >>> 0 > l >>> 0) o = n + else break + else o = (l << 1) | 1 + wj(c, o, 0) + l = o + j = b[h >> 0] | 0 + } + wj(c, n, 0) + f[a >> 2] = f[c >> 2] + f[(a + 4) >> 2] = f[(c + 4) >> 2] + f[(a + 8) >> 2] = f[(c + 8) >> 2] + a = 0 + while (1) { + if ((a | 0) == 3) break + f[(c + (a << 2)) >> 2] = 0 + a = (a + 1) | 0 + } + u = e + return + } + function ri(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + d = (a + 8) | 0 + e = f[d >> 2] | 0 + g = (a + 4) | 0 + h = f[g >> 2] | 0 + if (((e - h) | 0) >>> 0 >= c >>> 0) { + i = c + j = h + do { + b[j >> 0] = 0 + j = ((f[g >> 2] | 0) + 1) | 0 + f[g >> 2] = j + i = (i + -1) | 0 + } while ((i | 0) != 0) + return + } + i = f[a >> 2] | 0 + j = (h - i) | 0 + h = (j + c) | 0 + if ((h | 0) < 0) mq(a) + k = (e - i) | 0 + i = k << 1 + e = k >>> 0 < 1073741823 ? (i >>> 0 < h >>> 0 ? h : i) : 2147483647 + if (!e) l = 0 + else l = dn(e) | 0 + i = (l + j) | 0 + j = (l + e) | 0 + e = c + c = i + l = i + do { + b[l >> 0] = 0 + l = (c + 1) | 0 + c = l + e = (e + -1) | 0 + } while ((e | 0) != 0) + e = f[a >> 2] | 0 + l = ((f[g >> 2] | 0) - e) | 0 + h = (i + (0 - l)) | 0 + if ((l | 0) > 0) Rg(h | 0, e | 0, l | 0) | 0 + f[a >> 2] = h + f[g >> 2] = c + f[d >> 2] = j + if (!e) return + br(e) + return + } + function si(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + e = f[a >> 2] | 0 + g = (((d - e) | 0) / 136) | 0 + h = d + if (g >>> 0 < b >>> 0) { + te(a, (b - g) | 0) + return + } + if (g >>> 0 <= b >>> 0) return + g = (e + ((b * 136) | 0)) | 0 + if ((g | 0) == (h | 0)) return + else i = h + do { + f[c >> 2] = i + -136 + h = f[(i + -20) >> 2] | 0 + if (h | 0) { + b = (i + -16) | 0 + e = f[b >> 2] | 0 + if ((e | 0) != (h | 0)) + f[b >> 2] = e + (~(((e + -4 - h) | 0) >>> 2) << 2) + br(h) + } + h = f[(i + -32) >> 2] | 0 + if (h | 0) { + e = (i + -28) | 0 + b = f[e >> 2] | 0 + if ((b | 0) != (h | 0)) + f[e >> 2] = b + (~(((b + -4 - h) | 0) >>> 2) << 2) + br(h) + } + yi((i + -132) | 0) + i = f[c >> 2] | 0 + } while ((i | 0) != (g | 0)) + return + } + function ti(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + Hd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + Hd(a, e) + return + } + function ui(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = f[(a + 76) >> 2] | 0 + if (b | 0) { + c = (a + 80) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 64) >> 2] | 0 + if (b | 0) { + d = (a + 68) | 0 + if ((f[d >> 2] | 0) != (b | 0)) f[d >> 2] = b + br(b) + } + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + d = (a + 52) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 24) >> 2] | 0 + if (b | 0) { + c = (a + 28) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 12) >> 2] | 0 + if (b | 0) { + d = (a + 16) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[a >> 2] | 0 + if (!b) return + c = (a + 4) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + br(b) + return + } + function vi(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + e = u + u = (u + 16) | 0 + g = e + h = (c + 11) | 0 + i = b[h >> 0] | 0 + if ((i << 24) >> 24 < 0) j = f[(c + 4) >> 2] | 0 + else j = i & 255 + k = j + j = i + while (1) { + if ((j << 24) >> 24 < 0) l = f[c >> 2] | 0 + else l = c + f[g >> 2] = d + m = wn(l, (k + 1) | 0, 17465, g) | 0 + if ((m | 0) > -1) + if (m >>> 0 > k >>> 0) n = m + else break + else n = (k << 1) | 1 + wj(c, n, 0) + k = n + j = b[h >> 0] | 0 + } + wj(c, m, 0) + f[a >> 2] = f[c >> 2] + f[(a + 4) >> 2] = f[(c + 4) >> 2] + f[(a + 8) >> 2] = f[(c + 8) >> 2] + a = 0 + while (1) { + if ((a | 0) == 3) break + f[(c + (a << 2)) >> 2] = 0 + a = (a + 1) | 0 + } + u = e + return + } + function wi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + b = (a + 8) | 0 + c = f[b >> 2] | 0 + if ((c | 0) < 0) { + d = 0 + return d | 0 + } + e = (a + 4) | 0 + a = f[e >> 2] | 0 + g = (a + 4) | 0 + h = f[g >> 2] | 0 + i = f[a >> 2] | 0 + j = (h - i) >> 2 + k = i + i = h + if (c >>> 0 <= j >>> 0) + if ( + c >>> 0 < j >>> 0 ? ((h = (k + (c << 2)) | 0), (h | 0) != (i | 0)) : 0 + ) { + f[g >> 2] = i + (~(((i + -4 - h) | 0) >>> 2) << 2) + l = c + } else l = c + else { + oi(a, (c - j) | 0) + l = f[b >> 2] | 0 + } + if ((l | 0) <= 0) { + d = 1 + return d | 0 + } + b = f[e >> 2] | 0 + e = f[b >> 2] | 0 + j = ((f[(b + 4) >> 2] | 0) - e) >> 2 + c = e + e = 0 + while (1) { + if (j >>> 0 <= e >>> 0) { + m = 10 + break + } + f[(c + (e << 2)) >> 2] = e + e = (e + 1) | 0 + if ((e | 0) >= (l | 0)) { + d = 1 + m = 12 + break + } + } + if ((m | 0) == 10) mq(b) + else if ((m | 0) == 12) return d | 0 + return 0 + } + function xi(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = u + u = (u + 16) | 0 + e = d + g = dn(32) | 0 + f[e >> 2] = g + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 30 + h = g + i = 14791 + j = (h + 30) | 0 + do { + b[h >> 0] = b[i >> 0] | 0 + h = (h + 1) | 0 + i = (i + 1) | 0 + } while ((h | 0) < (j | 0)) + b[(g + 30) >> 0] = 0 + g = (a + 4) | 0 + Mj(g, e, c) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + a = dn(32) | 0 + f[e >> 2] = a + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 29 + h = a + i = 14510 + j = (h + 29) | 0 + do { + b[h >> 0] = b[i >> 0] | 0 + h = (h + 1) | 0 + i = (i + 1) | 0 + } while ((h | 0) < (j | 0)) + b[(a + 29) >> 0] = 0 + Mj(g, e, c) + if ((b[(e + 11) >> 0] | 0) >= 0) { + u = d + return + } + br(f[e >> 2] | 0) + u = d + return + } + function yi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = f[(a + 84) >> 2] | 0 + if (b | 0) { + c = (a + 88) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 72) >> 2] | 0 + if (b | 0) { + d = (a + 76) | 0 + if ((f[d >> 2] | 0) != (b | 0)) f[d >> 2] = b + br(b) + } + b = f[(a + 52) >> 2] | 0 + if (b | 0) { + d = (a + 56) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 40) >> 2] | 0 + if (b | 0) { + c = (a + 44) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 28) >> 2] | 0 + if (b | 0) { + d = (a + 32) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 12) >> 2] | 0 + if (b | 0) br(b) + b = f[a >> 2] | 0 + if (!b) return + br(b) + return + } + function zi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + f[a >> 2] = 1336 + b = (a + 32) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) { + b = (c + 88) | 0 + d = f[b >> 2] | 0 + f[b >> 2] = 0 + if (d | 0) { + b = f[(d + 8) >> 2] | 0 + if (b | 0) { + e = (d + 12) | 0 + if ((f[e >> 2] | 0) != (b | 0)) f[e >> 2] = b + br(b) + } + br(d) + } + d = f[(c + 68) >> 2] | 0 + if (d | 0) { + b = (c + 72) | 0 + e = f[b >> 2] | 0 + if ((e | 0) != (d | 0)) + f[b >> 2] = e + (~(((e + -4 - d) | 0) >>> 2) << 2) + br(d) + } + d = (c + 64) | 0 + e = f[d >> 2] | 0 + f[d >> 2] = 0 + if (e | 0) { + d = f[e >> 2] | 0 + if (d | 0) { + b = (e + 4) | 0 + if ((f[b >> 2] | 0) != (d | 0)) f[b >> 2] = d + br(d) + } + br(e) + } + br(c) + } + c = f[(a + 16) >> 2] | 0 + if (!c) return + e = (a + 20) | 0 + a = f[e >> 2] | 0 + if ((a | 0) != (c | 0)) f[e >> 2] = a + (~(((a + -4 - c) | 0) >>> 2) << 2) + br(c) + return + } + function Ai() { + var a = 0, + b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + a = u + u = (u + 48) | 0 + b = (a + 32) | 0 + c = (a + 24) | 0 + d = (a + 16) | 0 + e = a + g = (a + 36) | 0 + a = mn() | 0 + if (a | 0 ? ((h = f[a >> 2] | 0), h | 0) : 0) { + a = (h + 48) | 0 + i = f[a >> 2] | 0 + j = f[(a + 4) >> 2] | 0 + if (!((((i & -256) | 0) == 1126902528) & ((j | 0) == 1129074247))) { + f[c >> 2] = 17607 + Dn(17557, c) + } + if (((i | 0) == 1126902529) & ((j | 0) == 1129074247)) + k = f[(h + 44) >> 2] | 0 + else k = (h + 80) | 0 + f[g >> 2] = k + k = f[h >> 2] | 0 + h = f[(k + 4) >> 2] | 0 + if (Sa[f[((f[250] | 0) + 16) >> 2] & 31](1e3, k, g) | 0) { + k = f[g >> 2] | 0 + g = Qa[f[((f[k >> 2] | 0) + 8) >> 2] & 127](k) | 0 + f[e >> 2] = 17607 + f[(e + 4) >> 2] = h + f[(e + 8) >> 2] = g + Dn(17471, e) + } else { + f[d >> 2] = 17607 + f[(d + 4) >> 2] = h + Dn(17516, d) + } + } + Dn(17595, b) + } + function Bi(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0 + do + if (a) { + if (c >>> 0 < 128) { + b[a >> 0] = c + e = 1 + break + } + d = ((Yq() | 0) + 188) | 0 + if (!(f[f[d >> 2] >> 2] | 0)) + if (((c & -128) | 0) == 57216) { + b[a >> 0] = c + e = 1 + break + } else { + d = ir() | 0 + f[d >> 2] = 84 + e = -1 + break + } + if (c >>> 0 < 2048) { + b[a >> 0] = (c >>> 6) | 192 + b[(a + 1) >> 0] = (c & 63) | 128 + e = 2 + break + } + if ((c >>> 0 < 55296) | (((c & -8192) | 0) == 57344)) { + b[a >> 0] = (c >>> 12) | 224 + b[(a + 1) >> 0] = ((c >>> 6) & 63) | 128 + b[(a + 2) >> 0] = (c & 63) | 128 + e = 3 + break + } + if (((c + -65536) | 0) >>> 0 < 1048576) { + b[a >> 0] = (c >>> 18) | 240 + b[(a + 1) >> 0] = ((c >>> 12) & 63) | 128 + b[(a + 2) >> 0] = ((c >>> 6) & 63) | 128 + b[(a + 3) >> 0] = (c & 63) | 128 + e = 4 + break + } else { + d = ir() | 0 + f[d >> 2] = 84 + e = -1 + break + } + } else e = 1 + while (0) + return e | 0 + } + function Ci(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = (a + 4) | 0 + d = f[a >> 2] | 0 + e = ((f[c >> 2] | 0) - d) | 0 + g = e >> 2 + h = (g + 1) | 0 + if (h >>> 0 > 1073741823) mq(a) + i = (a + 8) | 0 + j = ((f[i >> 2] | 0) - d) | 0 + k = j >> 1 + l = (j >> 2) >>> 0 < 536870911 ? (k >>> 0 < h >>> 0 ? h : k) : 1073741823 + do + if (l) + if (l >>> 0 > 1073741823) { + k = ra(8) | 0 + Wo(k, 14941) + f[k >> 2] = 6944 + va(k | 0, 1080, 114) + } else { + k = dn(l << 2) | 0 + m = k + n = k + break + } + else { + m = 0 + n = 0 + } + while (0) + k = (m + (g << 2)) | 0 + f[k >> 2] = f[b >> 2] + if ((e | 0) > 0) Rg(n | 0, d | 0, e | 0) | 0 + f[a >> 2] = m + f[c >> 2] = k + 4 + f[i >> 2] = m + (l << 2) + if (!d) return + br(d) + return + } + function Di(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + c = (a + 104) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != 0 ? (f[(a + 108) >> 2] | 0) >= (d | 0) : 0) e = 4 + else { + d = Qm(a) | 0 + if ((d | 0) >= 0) { + g = f[c >> 2] | 0 + c = (a + 8) | 0 + if (g) { + i = f[c >> 2] | 0 + j = f[(a + 4) >> 2] | 0 + k = (g - (f[(a + 108) >> 2] | 0)) | 0 + g = i + if (((i - j) | 0) < (k | 0)) { + l = g + m = g + } else { + l = (j + (k + -1)) | 0 + m = g + } + } else { + g = f[c >> 2] | 0 + l = g + m = g + } + f[(a + 100) >> 2] = l + l = (a + 4) | 0 + if (!m) n = f[l >> 2] | 0 + else { + g = f[l >> 2] | 0 + l = (a + 108) | 0 + f[l >> 2] = m + 1 - g + (f[l >> 2] | 0) + n = g + } + g = (n + -1) | 0 + if ((d | 0) == (h[g >> 0] | 0 | 0)) o = d + else { + b[g >> 0] = d + o = d + } + } else e = 4 + } + if ((e | 0) == 4) { + f[(a + 100) >> 2] = 0 + o = -1 + } + return o | 0 + } + function Ei(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + f[a >> 2] = 1528 + f[(a + 4) >> 2] = b + b = (a + 8) | 0 + f[b >> 2] = f[c >> 2] + f[(b + 4) >> 2] = f[(c + 4) >> 2] + f[(b + 8) >> 2] = f[(c + 8) >> 2] + f[(b + 12) >> 2] = f[(c + 12) >> 2] + f[(b + 16) >> 2] = f[(c + 16) >> 2] + f[(b + 20) >> 2] = f[(c + 20) >> 2] + _j((a + 32) | 0, (c + 24) | 0) + f[a >> 2] = 2144 + c = (a + 44) | 0 + f[c >> 2] = f[d >> 2] + f[(c + 4) >> 2] = f[(d + 4) >> 2] + f[(c + 8) >> 2] = f[(d + 8) >> 2] + f[(c + 12) >> 2] = f[(d + 12) >> 2] + f[a >> 2] = 2200 + d = (a + 112) | 0 + c = (a + 60) | 0 + b = (c + 52) | 0 + do { + f[c >> 2] = 0 + c = (c + 4) | 0 + } while ((c | 0) < (b | 0)) + Sm(d) + f[(a + 152) >> 2] = 0 + f[(a + 156) >> 2] = 0 + f[(a + 160) >> 2] = 0 + return + } + function Fi(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + e = u + u = (u + 16) | 0 + g = e + h = dn(16) | 0 + f[g >> 2] = h + f[(g + 8) >> 2] = -2147483632 + f[(g + 4) >> 2] = 14 + i = h + j = 12975 + k = (i + 14) | 0 + do { + b[i >> 0] = b[j >> 0] | 0 + i = (i + 1) | 0 + j = (j + 1) | 0 + } while ((i | 0) < (k | 0)) + b[(h + 14) >> 0] = 0 + Nj(a, g, c) + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + c = dn(16) | 0 + f[g >> 2] = c + f[(g + 8) >> 2] = -2147483632 + f[(g + 4) >> 2] = 14 + i = c + j = 12990 + k = (i + 14) | 0 + do { + b[i >> 0] = b[j >> 0] | 0 + i = (i + 1) | 0 + j = (j + 1) | 0 + } while ((i | 0) < (k | 0)) + b[(c + 14) >> 0] = 0 + Nj(a, g, d) + if ((b[(g + 11) >> 0] | 0) >= 0) { + u = e + return + } + br(f[g >> 2] | 0) + u = e + return + } + function Gi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3320 + b = f[(a + 88) >> 2] | 0 + if (b | 0) { + c = (a + 92) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 72) >> 2] | 0 + if (b | 0) { + d = (a + 76) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 60) >> 2] | 0 + if (b | 0) { + c = (a + 64) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + d = (a + 52) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + f[a >> 2] = 3276 + b = f[(a + 36) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 24) >> 2] | 0 + if (!b) return + br(b) + return + } + function Hi(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + f[a >> 2] = 1528 + f[(a + 4) >> 2] = b + b = (a + 8) | 0 + f[b >> 2] = f[c >> 2] + f[(b + 4) >> 2] = f[(c + 4) >> 2] + f[(b + 8) >> 2] = f[(c + 8) >> 2] + f[(b + 12) >> 2] = f[(c + 12) >> 2] + f[(b + 16) >> 2] = f[(c + 16) >> 2] + f[(b + 20) >> 2] = f[(c + 20) >> 2] + _j((a + 32) | 0, (c + 24) | 0) + f[a >> 2] = 1836 + c = (a + 44) | 0 + f[c >> 2] = f[d >> 2] + f[(c + 4) >> 2] = f[(d + 4) >> 2] + f[(c + 8) >> 2] = f[(d + 8) >> 2] + f[(c + 12) >> 2] = f[(d + 12) >> 2] + f[a >> 2] = 1892 + d = (a + 112) | 0 + c = (a + 60) | 0 + b = (c + 52) | 0 + do { + f[c >> 2] = 0 + c = (c + 4) | 0 + } while ((c | 0) < (b | 0)) + Sm(d) + f[(a + 152) >> 2] = 0 + f[(a + 156) >> 2] = 0 + f[(a + 160) >> 2] = 0 + return + } + function Ii(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2200 + b = f[(a + 152) >> 2] | 0 + if (b | 0) { + c = (a + 156) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 112) >> 2] | 0 + if (b | 0) { + d = (a + 116) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 96) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 84) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 72) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 60) >> 2] | 0 + if (b | 0) br(b) + f[a >> 2] = 1528 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + br(b) + return + } + function Ji(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + d = u + u = (u + 16) | 0 + e = d + g = f[((f[(c + 4) >> 2] | 0) + 4) >> 2] | 0 + if (!g) { + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = d + return + } + if (!(rj((d + 12) | 0, f[(c + 44) >> 2] | 0, g) | 0)) { + g = dn(32) | 0 + f[e >> 2] = g + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 26 + c = g + h = 14822 + i = (c + 26) | 0 + do { + b[c >> 0] = b[h >> 0] | 0 + c = (c + 1) | 0 + h = (h + 1) | 0 + } while ((c | 0) < (i | 0)) + b[(g + 26) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + } else { + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + } + u = d + return + } + function Ki(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0 + c = (b + 48) | 0 + if ((Yh(f[c >> 2] | 0) | 0) > 9) { + d = 0 + return d | 0 + } + if ((Qa[f[((f[b >> 2] | 0) + 8) >> 2] & 127](b) | 0) != 1) { + d = 0 + return d | 0 + } + e = (b + 4) | 0 + b = + ((f[((f[((f[e >> 2] | 0) + 8) >> 2] | 0) + (a << 2)) >> 2] | 0) + 56) | + 0 + a = f[b >> 2] | 0 + do + if ((a | 0) == 3) + if ((Yh(f[c >> 2] | 0) | 0) < 4) { + d = 5 + return d | 0 + } else { + g = f[b >> 2] | 0 + break + } + else g = a + while (0) + a = Yh(f[c >> 2] | 0) | 0 + if ((g | 0) == 1) { + d = (a | 0) < 4 ? 6 : 0 + return d | 0 + } + if ((a | 0) > 7) { + d = 0 + return d | 0 + } + if ((Yh(f[c >> 2] | 0) | 0) > 1) { + d = 1 + return d | 0 + } else + return ((f[((f[e >> 2] | 0) + 80) >> 2] | 0) >>> 0 < 40 ? 1 : 4) | 0 + return 0 + } + function Li(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 1892 + b = f[(a + 152) >> 2] | 0 + if (b | 0) { + c = (a + 156) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 112) >> 2] | 0 + if (b | 0) { + d = (a + 116) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 96) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 84) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 72) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 60) >> 2] | 0 + if (b | 0) br(b) + f[a >> 2] = 1528 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + br(b) + return + } + function Mi(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + g = u + u = (u + 128) | 0 + h = (g + 124) | 0 + i = g + j = i + k = 6284 + l = (j + 124) | 0 + do { + f[j >> 2] = f[k >> 2] + j = (j + 4) | 0 + k = (k + 4) | 0 + } while ((j | 0) < (l | 0)) + if (((c + -1) | 0) >>> 0 > 2147483646) + if (!c) { + m = h + n = 1 + o = 4 + } else { + h = ir() | 0 + f[h >> 2] = 75 + p = -1 + } + else { + m = a + n = c + o = 4 + } + if ((o | 0) == 4) { + o = (-2 - m) | 0 + c = n >>> 0 > o >>> 0 ? o : n + f[(i + 48) >> 2] = c + n = (i + 20) | 0 + f[n >> 2] = m + f[(i + 44) >> 2] = m + o = (m + c) | 0 + m = (i + 16) | 0 + f[m >> 2] = o + f[(i + 28) >> 2] = o + o = hh(i, d, e) | 0 + if (!c) p = o + else { + c = f[n >> 2] | 0 + b[(c + ((((c | 0) == (f[m >> 2] | 0)) << 31) >> 31)) >> 0] = 0 + p = o + } + } + u = g + return p | 0 + } + function Ni(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0 + f[a >> 2] = 3080 + c = (a + 72) | 0 + d = (a + 136) | 0 + e = (a + 4) | 0 + g = (e + 64) | 0 + do { + f[e >> 2] = 0 + e = (e + 4) | 0 + } while ((e | 0) < (g | 0)) + e = c + g = (e + 64) | 0 + do { + f[e >> 2] = 0 + e = (e + 4) | 0 + } while ((e | 0) < (g | 0)) + n[d >> 2] = $(1.0) + d = (a + 140) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + f[(a + 164) >> 2] = -1 + d = (a + 168) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + f[(d + 24) >> 2] = 0 + rn((a + 200) | 0) + Cn((a + 232) | 0) + d = (a + 264) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + b[(d + 24) >> 0] = 0 + return + } + function Oi(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = +e + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + a = u + u = (u + 16) | 0 + g = a + if (!c) { + h = 0 + u = a + return h | 0 + } + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + i = vj(d) | 0 + if (i >>> 0 > 4294967279) mq(g) + if (i >>> 0 < 11) { + b[(g + 11) >> 0] = i + if (!i) j = g + else { + k = g + l = 7 + } + } else { + m = (i + 16) & -16 + n = dn(m) | 0 + f[g >> 2] = n + f[(g + 8) >> 2] = m | -2147483648 + f[(g + 4) >> 2] = i + k = n + l = 7 + } + if ((l | 0) == 7) { + Rg(k | 0, d | 0, i | 0) | 0 + j = k + } + b[(j + i) >> 0] = 0 + Ol(c, g, e) + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + h = 1 + u = a + return h | 0 + } + function Pi(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + a = u + u = (u + 16) | 0 + g = a + if (!c) { + h = 0 + u = a + return h | 0 + } + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + i = vj(d) | 0 + if (i >>> 0 > 4294967279) mq(g) + if (i >>> 0 < 11) { + b[(g + 11) >> 0] = i + if (!i) j = g + else { + k = g + l = 7 + } + } else { + m = (i + 16) & -16 + n = dn(m) | 0 + f[g >> 2] = n + f[(g + 8) >> 2] = m | -2147483648 + f[(g + 4) >> 2] = i + k = n + l = 7 + } + if ((l | 0) == 7) { + Rg(k | 0, d | 0, i | 0) | 0 + j = k + } + b[(j + i) >> 0] = 0 + Pl(c, g, e) + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + h = 1 + u = a + return h | 0 + } + function Qi(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + c = f[(a + 28) >> 2] | 0 + if (c | 0) { + d = c + do { + c = d + d = f[d >> 2] | 0 + e = (c + 8) | 0 + g = (c + 20) | 0 + h = f[g >> 2] | 0 + f[g >> 2] = 0 + if (h | 0) { + Qi(h) + br(h) + } + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + br(c) + } while ((d | 0) != 0) + } + d = (a + 20) | 0 + c = f[d >> 2] | 0 + f[d >> 2] = 0 + if (c | 0) br(c) + c = f[(a + 8) >> 2] | 0 + if (c | 0) { + d = c + do { + c = d + d = f[d >> 2] | 0 + e = (c + 8) | 0 + h = f[(c + 20) >> 2] | 0 + if (h | 0) { + g = (c + 24) | 0 + if ((f[g >> 2] | 0) != (h | 0)) f[g >> 2] = h + br(h) + } + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + br(c) + } while ((d | 0) != 0) + } + d = f[a >> 2] | 0 + f[a >> 2] = 0 + if (!d) return + br(d) + return + } + function Ri(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 16) | 0 + e = d + Wa[f[((f[c >> 2] | 0) + 64) >> 2] & 15](a, c) + if (f[a >> 2] | 0) { + u = d + return + } + g = (a + 4) | 0 + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + g = f[(c + 48) >> 2] | 0 + h = dn(32) | 0 + f[e >> 2] = h + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 29 + i = h + j = 14510 + k = (i + 29) | 0 + do { + b[i >> 0] = b[j >> 0] | 0 + i = (i + 1) | 0 + j = (j + 1) | 0 + } while ((i | 0) < (k | 0)) + b[(h + 29) >> 0] = 0 + h = Oj(g, e, 0) | 0 + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + if (h) Va[f[((f[c >> 2] | 0) + 68) >> 2] & 127](c) + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = d + return + } + function Si(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + e = u + u = (u + 16) | 0 + g = e + h = f[(c + 48) >> 2] | 0 + if (!h) { + i = dn(32) | 0 + f[g >> 2] = i + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 23 + j = i + k = 14670 + l = (j + 23) | 0 + do { + b[j >> 0] = b[k >> 0] | 0 + j = (j + 1) | 0 + k = (k + 1) | 0 + } while ((j | 0) < (l | 0)) + b[(i + 23) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, g) + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + u = e + return + } + g = f[(c + 52) >> 2] | 0 + if (!g) { + Ic(a, c, h, d) + u = e + return + } else { + jg(a, c, g, d) + u = e + return + } + } + function Ti(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + lk(a) + b = (a + 84) | 0 + c = f[b >> 2] | 0 + if ((c | 0) <= 0) return + d = c << 5 + e = + _q((c >>> 0 > 134217727) | (d >>> 0 > 4294967291) ? -1 : (d + 4) | 0) | + 0 + f[e >> 2] = c + d = (e + 4) | 0 + e = (d + (c << 5)) | 0 + c = d + do { + rn(c) + c = (c + 32) | 0 + } while ((c | 0) != (e | 0)) + e = (a + 80) | 0 + a = f[e >> 2] | 0 + f[e >> 2] = d + if (a | 0) { + d = (a + -4) | 0 + c = f[d >> 2] | 0 + if (c | 0) { + g = (a + (c << 5)) | 0 + do { + g = (g + -32) | 0 + tj(g) + } while ((g | 0) != (a | 0)) + } + $q(d) + } + if ((f[b >> 2] | 0) > 0) h = 0 + else return + do { + lk(((f[e >> 2] | 0) + (h << 5)) | 0) + h = (h + 1) | 0 + } while ((h | 0) < (f[b >> 2] | 0)) + return + } + function Ui(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + if (!b) { + d = 0 + return d | 0 + } + if (f[(b + 4) >> 2] | 0) { + d = 0 + return d | 0 + } + a = dn(52) | 0 + Ub(a, c) + f[(a + 40) >> 2] = 0 + f[(a + 44) >> 2] = 0 + f[(a + 48) >> 2] = 0 + c = (b + 4) | 0 + b = f[c >> 2] | 0 + f[c >> 2] = a + if (!b) { + d = 1 + return d | 0 + } + a = (b + 40) | 0 + c = f[a >> 2] | 0 + if (c | 0) { + e = (b + 44) | 0 + g = f[e >> 2] | 0 + if ((g | 0) == (c | 0)) h = c + else { + i = g + do { + g = (i + -4) | 0 + f[e >> 2] = g + j = f[g >> 2] | 0 + f[g >> 2] = 0 + if (j | 0) { + Qi(j) + br(j) + } + i = f[e >> 2] | 0 + } while ((i | 0) != (c | 0)) + h = f[a >> 2] | 0 + } + br(h) + } + Qi(b) + br(b) + d = 1 + return d | 0 + } + function Vi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + c = f[a >> 2] | 0 + if (b) { + b = (c + 8) | 0 + d = b + e = Tn(f[d >> 2] | 0, f[(d + 4) >> 2] | 0, 1, 0) | 0 + d = b + f[d >> 2] = e + f[(d + 4) >> 2] = I + d = (a + 28) | 0 + e = f[d >> 2] | 0 + b = (a + 24) | 0 + f[b >> 2] = f[b >> 2] | (1 << e) + g = d + h = e + } else { + e = c + d = Tn(f[e >> 2] | 0, f[(e + 4) >> 2] | 0, 1, 0) | 0 + e = c + f[e >> 2] = d + f[(e + 4) >> 2] = I + e = (a + 28) | 0 + g = e + h = f[e >> 2] | 0 + } + e = (h + 1) | 0 + f[g >> 2] = e + if ((e | 0) != 32) return + e = (a + 24) | 0 + h = (a + 16) | 0 + d = f[h >> 2] | 0 + if ((d | 0) == (f[(a + 20) >> 2] | 0)) Ci((a + 12) | 0, e) + else { + f[d >> 2] = f[e >> 2] + f[h >> 2] = d + 4 + } + f[g >> 2] = 0 + f[e >> 2] = 0 + return + } + function Wi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + c = (a + 32) | 0 + a = f[b >> 2] | 0 + f[b >> 2] = 0 + b = f[c >> 2] | 0 + f[c >> 2] = a + if (!b) return + a = (b + 88) | 0 + c = f[a >> 2] | 0 + f[a >> 2] = 0 + if (c | 0) { + a = f[(c + 8) >> 2] | 0 + if (a | 0) { + d = (c + 12) | 0 + if ((f[d >> 2] | 0) != (a | 0)) f[d >> 2] = a + br(a) + } + br(c) + } + c = f[(b + 68) >> 2] | 0 + if (c | 0) { + a = (b + 72) | 0 + d = f[a >> 2] | 0 + if ((d | 0) != (c | 0)) + f[a >> 2] = d + (~(((d + -4 - c) | 0) >>> 2) << 2) + br(c) + } + c = (b + 64) | 0 + d = f[c >> 2] | 0 + f[c >> 2] = 0 + if (d | 0) { + c = f[d >> 2] | 0 + if (c | 0) { + a = (d + 4) | 0 + if ((f[a >> 2] | 0) != (c | 0)) f[a >> 2] = c + br(c) + } + br(d) + } + br(b) + return + } + function Xi(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + e = u + u = (u + 16) | 0 + g = e + if (c | 0) { + h = (a + 11) | 0 + i = b[h >> 0] | 0 + if ((i << 24) >> 24 < 0) { + j = f[(a + 4) >> 2] | 0 + k = ((f[(a + 8) >> 2] & 2147483647) + -1) | 0 + } else { + j = i & 255 + k = 10 + } + if (((k - j) | 0) >>> 0 < c >>> 0) { + lj(a, k, (c - k + j) | 0, j, j, 0, 0) + l = b[h >> 0] | 0 + } else l = i + if ((l << 24) >> 24 < 0) m = f[a >> 2] | 0 + else m = a + On((m + j) | 0, c, d) | 0 + d = (j + c) | 0 + if ((b[h >> 0] | 0) < 0) f[(a + 4) >> 2] = d + else b[h >> 0] = d + b[g >> 0] = 0 + Hp((m + d) | 0, g) + } + u = e + return a | 0 + } + function Yi(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 48) | 0 + e = (d + 4) | 0 + g = d + h = f[(b + 12) >> 2] | 0 + i = f[(b + 4) >> 2] | 0 + b = e + j = (b + 36) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (j | 0)) + gh(g, c, h, i, e) + i = f[(e + 24) >> 2] | 0 + if (!i) { + k = f[g >> 2] | 0 + f[a >> 2] = k + u = d + return + } + h = (e + 28) | 0 + e = f[h >> 2] | 0 + if ((e | 0) != (i | 0)) f[h >> 2] = e + (~(((e + -4 - i) | 0) >>> 2) << 2) + br(i) + k = f[g >> 2] | 0 + f[a >> 2] = k + u = d + return + } + function Zi(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + e = u + u = (u + 16) | 0 + g = e + h = (a + 11) | 0 + i = b[h >> 0] | 0 + j = (i << 24) >> 24 < 0 + if (j) k = ((f[(a + 8) >> 2] & 2147483647) + -1) | 0 + else k = 10 + do + if (k >>> 0 >= d >>> 0) { + if (j) l = f[a >> 2] | 0 + else l = a + Jo(l, c, d) | 0 + b[g >> 0] = 0 + Hp((l + d) | 0, g) + if ((b[h >> 0] | 0) < 0) { + f[(a + 4) >> 2] = d + break + } else { + b[h >> 0] = d + break + } + } else { + if (j) m = f[(a + 4) >> 2] | 0 + else m = i & 255 + ni(a, k, (d - k) | 0, m, 0, m, d, c) + } + while (0) + u = e + return a | 0 + } + function _i(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + b = f[a >> 2] | 0 + if (!b) return + c = (a + 4) | 0 + d = f[c >> 2] | 0 + if ((d | 0) == (b | 0)) e = b + else { + g = d + do { + f[c >> 2] = g + -136 + d = f[(g + -20) >> 2] | 0 + if (d | 0) { + h = (g + -16) | 0 + i = f[h >> 2] | 0 + if ((i | 0) != (d | 0)) + f[h >> 2] = i + (~(((i + -4 - d) | 0) >>> 2) << 2) + br(d) + } + d = f[(g + -32) >> 2] | 0 + if (d | 0) { + i = (g + -28) | 0 + h = f[i >> 2] | 0 + if ((h | 0) != (d | 0)) + f[i >> 2] = h + (~(((h + -4 - d) | 0) >>> 2) << 2) + br(d) + } + yi((g + -132) | 0) + g = f[c >> 2] | 0 + } while ((g | 0) != (b | 0)) + e = f[a >> 2] | 0 + } + br(e) + return + } + function $i(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + e = u + u = (u + 16) | 0 + g = e + h = (a + 11) | 0 + i = b[h >> 0] | 0 + j = (i << 24) >> 24 < 0 + if (j) { + k = f[(a + 4) >> 2] | 0 + l = ((f[(a + 8) >> 2] & 2147483647) + -1) | 0 + } else { + k = i & 255 + l = 10 + } + if (((l - k) | 0) >>> 0 >= d >>> 0) { + if (d | 0) { + if (j) m = f[a >> 2] | 0 + else m = a + Lo((m + k) | 0, c, d) | 0 + j = (k + d) | 0 + if ((b[h >> 0] | 0) < 0) f[(a + 4) >> 2] = j + else b[h >> 0] = j + b[g >> 0] = 0 + Hp((m + j) | 0, g) + } + } else ni(a, l, (d - l + k) | 0, k, k, 0, d, c) + u = e + return a | 0 + } + function aj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + f[a >> 2] = 3608 + b = f[(a + 32) >> 2] | 0 + if (b | 0) { + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 20) >> 2] | 0 + if (b | 0) { + d = (a + 24) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = (a + 8) | 0 + c = f[b >> 2] | 0 + if (!c) return + d = (a + 12) | 0 + a = f[d >> 2] | 0 + if ((a | 0) == (c | 0)) e = c + else { + g = a + do { + a = (g + -4) | 0 + f[d >> 2] = a + h = f[a >> 2] | 0 + f[a >> 2] = 0 + if (h | 0) Va[f[((f[h >> 2] | 0) + 4) >> 2] & 127](h) + g = f[d >> 2] | 0 + } while ((g | 0) != (c | 0)) + e = f[b >> 2] | 0 + } + br(e) + return + } + function bj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = (a + 4) | 0 + if ((Qa[f[((f[b >> 2] | 0) + 20) >> 2] & 127](b) | 0) <= 0) { + d = 1 + return d | 0 + } + a = 0 + while (1) { + e = f[((f[c >> 2] | 0) + 4) >> 2] | 0 + g = Tl(e, Ra[f[((f[b >> 2] | 0) + 24) >> 2] & 127](b, a) | 0) | 0 + if ((g | 0) == -1) { + d = 0 + h = 6 + break + } + e = f[((f[b >> 2] | 0) + 28) >> 2] | 0 + i = $k(f[c >> 2] | 0, g) | 0 + a = (a + 1) | 0 + if (!(Ra[e & 127](b, i) | 0)) { + d = 0 + h = 6 + break + } + if ((a | 0) >= (Qa[f[((f[b >> 2] | 0) + 20) >> 2] & 127](b) | 0)) { + d = 1 + h = 6 + break + } + } + if ((h | 0) == 6) return d | 0 + return 0 + } + function cj(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + if (!(lo(a, b, c) | 0)) { + d = 0 + return d | 0 + } + if (!(Qa[f[((f[a >> 2] | 0) + 52) >> 2] & 127](a) | 0)) { + d = 0 + return d | 0 + } + c = (a + 4) | 0 + e = (a + 8) | 0 + g = f[c >> 2] | 0 + if ((f[e >> 2] | 0) == (g | 0)) { + d = 1 + return d | 0 + } + h = (a + 36) | 0 + a = 0 + i = g + while (1) { + g = f[((f[h >> 2] | 0) + (a << 2)) >> 2] | 0 + if ( + !( + Sa[f[((f[g >> 2] | 0) + 8) >> 2] & 31]( + g, + b, + f[(i + (a << 2)) >> 2] | 0, + ) | 0 + ) + ) { + d = 0 + j = 7 + break + } + a = (a + 1) | 0 + i = f[c >> 2] | 0 + if (a >>> 0 >= (((f[e >> 2] | 0) - i) >> 2) >>> 0) { + d = 1 + j = 7 + break + } + } + if ((j | 0) == 7) return d | 0 + return 0 + } + function dj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 16) | 0 + e = d + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + if ((b[(c + 11) >> 0] | 0) < 0) { + g = f[c >> 2] | 0 + h = f[(c + 4) >> 2] | 0 + if (h >>> 0 > 4294967279) mq(a) + if (h >>> 0 < 11) { + b[(a + 11) >> 0] = h + i = a + } else { + j = (h + 16) & -16 + k = dn(j) | 0 + f[a >> 2] = k + f[(a + 8) >> 2] = j | -2147483648 + f[(a + 4) >> 2] = h + i = k + } + Lo(i, g, h) | 0 + b[e >> 0] = 0 + Hp((i + h) | 0, e) + } else { + f[a >> 2] = f[c >> 2] + f[(a + 4) >> 2] = f[(c + 4) >> 2] + f[(a + 8) >> 2] = f[(c + 8) >> 2] + } + u = d + return + } + function ej(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + f[g >> 2] = f[((f[(b + 4) >> 2] | 0) + 80) >> 2] + h = f[(b + 44) >> 2] | 0 + b = (h + 16) | 0 + i = f[(b + 4) >> 2] | 0 + if (((i | 0) > 0) | (((i | 0) == 0) & ((f[b >> 2] | 0) >>> 0 > 0))) { + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = c + return + } + f[e >> 2] = f[(h + 4) >> 2] + f[d >> 2] = f[e >> 2] + ye(h, d, g, (g + 4) | 0) | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = c + return + } + function fj(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0 + b[(c + 53) >> 0] = 1 + do + if ((f[(c + 4) >> 2] | 0) == (e | 0)) { + b[(c + 52) >> 0] = 1 + a = (c + 16) | 0 + h = f[a >> 2] | 0 + if (!h) { + f[a >> 2] = d + f[(c + 24) >> 2] = g + f[(c + 36) >> 2] = 1 + if (!((g | 0) == 1 ? (f[(c + 48) >> 2] | 0) == 1 : 0)) break + b[(c + 54) >> 0] = 1 + break + } + if ((h | 0) != (d | 0)) { + h = (c + 36) | 0 + f[h >> 2] = (f[h >> 2] | 0) + 1 + b[(c + 54) >> 0] = 1 + break + } + h = (c + 24) | 0 + a = f[h >> 2] | 0 + if ((a | 0) == 2) { + f[h >> 2] = g + i = g + } else i = a + if ((i | 0) == 1 ? (f[(c + 48) >> 2] | 0) == 1 : 0) + b[(c + 54) >> 0] = 1 + } + while (0) + return + } + function gj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = (a + 36) | 0 + d = (a + 40) | 0 + e = f[c >> 2] | 0 + if ((f[d >> 2] | 0) != (e | 0)) { + g = 0 + h = e + do { + eg((h + ((g * 24) | 0)) | 0, b) | 0 + g = (g + 1) | 0 + h = f[c >> 2] | 0 + } while (g >>> 0 < (((((f[d >> 2] | 0) - h) | 0) / 24) | 0) >>> 0) + } + h = (a + 48) | 0 + d = (a + 52) | 0 + a = f[h >> 2] | 0 + if ((f[d >> 2] | 0) == (a | 0)) return 1 + else { + i = 0 + j = a + } + do { + a = f[(j + (i << 2)) >> 2] | 0 + Nh((a << 1) ^ (a >> 31), b) | 0 + i = (i + 1) | 0 + j = f[h >> 2] | 0 + } while (i >>> 0 < (((f[d >> 2] | 0) - j) >> 2) >>> 0) + return 1 + } + function hj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0 + e = (a + d) | 0 + c = c & 255 + if ((d | 0) >= 67) { + while (a & 3) { + b[a >> 0] = c + a = (a + 1) | 0 + } + g = (e & -4) | 0 + h = (g - 64) | 0 + i = c | (c << 8) | (c << 16) | (c << 24) + while ((a | 0) <= (h | 0)) { + f[a >> 2] = i + f[(a + 4) >> 2] = i + f[(a + 8) >> 2] = i + f[(a + 12) >> 2] = i + f[(a + 16) >> 2] = i + f[(a + 20) >> 2] = i + f[(a + 24) >> 2] = i + f[(a + 28) >> 2] = i + f[(a + 32) >> 2] = i + f[(a + 36) >> 2] = i + f[(a + 40) >> 2] = i + f[(a + 44) >> 2] = i + f[(a + 48) >> 2] = i + f[(a + 52) >> 2] = i + f[(a + 56) >> 2] = i + f[(a + 60) >> 2] = i + a = (a + 64) | 0 + } + while ((a | 0) < (g | 0)) { + f[a >> 2] = i + a = (a + 4) | 0 + } + } + while ((a | 0) < (e | 0)) { + b[a >> 0] = c + a = (a + 1) | 0 + } + return (e - d) | 0 + } + function ij(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0 + do + if (!(qp(a, f[(c + 8) >> 2] | 0, g) | 0)) { + if (qp(a, f[c >> 2] | 0, g) | 0) { + if ( + (f[(c + 16) >> 2] | 0) != (d | 0) + ? ((h = (c + 20) | 0), (f[h >> 2] | 0) != (d | 0)) + : 0 + ) { + f[(c + 32) >> 2] = e + f[h >> 2] = d + h = (c + 40) | 0 + f[h >> 2] = (f[h >> 2] | 0) + 1 + if ((f[(c + 36) >> 2] | 0) == 1 ? (f[(c + 24) >> 2] | 0) == 2 : 0) + b[(c + 54) >> 0] = 1 + f[(c + 44) >> 2] = 4 + break + } + if ((e | 0) == 1) f[(c + 32) >> 2] = 1 + } + } else Om(0, c, d, e) + while (0) + return + } + function jj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + b = (a + 80) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) { + b = (c + -4) | 0 + d = f[b >> 2] | 0 + if (d | 0) { + e = (c + (d << 5)) | 0 + do { + e = (e + -32) | 0 + tj(e) + } while ((e | 0) != (c | 0)) + } + $q(b) + } + b = f[(a + 68) >> 2] | 0 + if (b | 0) { + c = (a + 72) | 0 + e = f[c >> 2] | 0 + if ((e | 0) != (b | 0)) + f[c >> 2] = e + (~(((e + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = (a + 44) | 0 + e = f[b >> 2] | 0 + f[b >> 2] = 0 + if (e | 0) br(e) + e = f[(a + 32) >> 2] | 0 + if (!e) { + tj(a) + return + } + b = (a + 36) | 0 + if ((f[b >> 2] | 0) != (e | 0)) f[b >> 2] = e + br(e) + tj(a) + return + } + function kj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2684 + b = f[(a + 136) >> 2] | 0 + if (b | 0) { + c = (a + 140) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 96) >> 2] | 0 + if (b | 0) { + d = (a + 100) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 76) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 64) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 52) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 40) >> 2] | 0 + if (!b) return + br(b) + return + } + function lj(a, c, d, e, g, h, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0 + if (((-17 - c) | 0) >>> 0 < d >>> 0) mq(a) + if ((b[(a + 11) >> 0] | 0) < 0) j = f[a >> 2] | 0 + else j = a + if (c >>> 0 < 2147483623) { + k = (d + c) | 0 + d = c << 1 + l = k >>> 0 < d >>> 0 ? d : k + m = l >>> 0 < 11 ? 11 : (l + 16) & -16 + } else m = -17 + l = dn(m) | 0 + if (g | 0) Lo(l, j, g) | 0 + k = (e - h - g) | 0 + if (k | 0) Lo((l + g + i) | 0, (j + g + h) | 0, k) | 0 + if ((c | 0) != 10) br(j) + f[a >> 2] = l + f[(a + 8) >> 2] = m | -2147483648 + return + } + function mj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2432 + b = f[(a + 136) >> 2] | 0 + if (b | 0) { + c = (a + 140) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 96) >> 2] | 0 + if (b | 0) { + d = (a + 100) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 76) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 64) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 52) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 40) >> 2] | 0 + if (!b) return + br(b) + return + } + function nj(a, b) { + a = a | 0 + b = b | 0 + if (!b) return + else { + nj(a, f[b >> 2] | 0) + nj(a, f[(b + 4) >> 2] | 0) + sj((b + 20) | 0, f[(b + 24) >> 2] | 0) + br(b) + return + } + } + function oj(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + If(a, b, c) + c = f[(a + 100) >> 2] | 0 + d = f[(a + 96) >> 2] | 0 + a = d + if ((c | 0) == (d | 0)) return + e = f[b >> 2] | 0 + b = (((c - d) | 0) / 12) | 0 + d = 0 + do { + c = (a + ((d * 12) | 0)) | 0 + f[c >> 2] = f[(e + (f[c >> 2] << 2)) >> 2] + c = (a + ((d * 12) | 0) + 4) | 0 + f[c >> 2] = f[(e + (f[c >> 2] << 2)) >> 2] + c = (a + ((d * 12) | 0) + 8) | 0 + f[c >> 2] = f[(e + (f[c >> 2] << 2)) >> 2] + d = (d + 1) | 0 + } while (d >>> 0 < b >>> 0) + return + } + function pj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = (a + 64) | 0 + if ( + (f[d >> 2] | 0) == 0 + ? ((e = dn(32) | 0), + tn(e), + (g = f[d >> 2] | 0), + (f[d >> 2] = e), + g | 0) + : 0 + ) { + e = f[g >> 2] | 0 + if (e | 0) { + h = (g + 4) | 0 + if ((f[h >> 2] | 0) != (e | 0)) f[h >> 2] = e + br(e) + } + br(g) + } + g = Ll(f[(a + 28) >> 2] | 0) | 0 + e = X(g, b[(a + 24) >> 0] | 0) | 0 + g = (((e | 0) < 0) << 31) >> 31 + h = f[d >> 2] | 0 + i = on(e | 0, g | 0, c | 0, 0) | 0 + if (!(Th(h, 0, i, I) | 0)) { + j = 0 + return j | 0 + } + Ak(a, f[d >> 2] | 0, e, g, 0, 0) + f[(a + 80) >> 2] = c + j = 1 + return j | 0 + } + function qj(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = u + u = (u + 64) | 0 + e = d + if (!(qp(a, b, 0) | 0)) + if ((b | 0) != 0 ? ((g = mh(b, 1024, 1008, 0) | 0), (g | 0) != 0) : 0) { + b = (e + 4) | 0 + h = (b + 52) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (h | 0)) + f[e >> 2] = g + f[(e + 8) >> 2] = a + f[(e + 12) >> 2] = -1 + f[(e + 48) >> 2] = 1 + Ya[f[((f[g >> 2] | 0) + 28) >> 2] & 7](g, e, f[c >> 2] | 0, 1) + if ((f[(e + 24) >> 2] | 0) == 1) { + f[c >> 2] = f[(e + 16) >> 2] + i = 1 + } else i = 0 + j = i + } else j = 0 + else j = 1 + u = d + return j | 0 + } + function rj(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0 + if (!c) { + d = 0 + return d | 0 + } + e = (c + 40) | 0 + g = (c + 44) | 0 + Nh(((f[g >> 2] | 0) - (f[e >> 2] | 0)) >> 2, b) | 0 + h = f[e >> 2] | 0 + e = f[g >> 2] | 0 + if ((h | 0) != (e | 0)) { + g = h + do { + h = f[g >> 2] | 0 + if (h | 0) { + Nh(f[(h + 40) >> 2] | 0, b) | 0 + Wf(a, b, h) | 0 + } + g = (g + 4) | 0 + } while ((g | 0) != (e | 0)) + } + Wf(a, b, c) | 0 + d = 1 + return d | 0 + } + function sj(a, c) { + a = a | 0 + c = c | 0 + var d = 0 + if (!c) return + sj(a, f[c >> 2] | 0) + sj(a, f[(c + 4) >> 2] | 0) + a = (c + 16) | 0 + d = (c + 28) | 0 + if ((b[(d + 11) >> 0] | 0) < 0) br(f[d >> 2] | 0) + if ((b[(a + 11) >> 0] | 0) < 0) br(f[a >> 2] | 0) + br(c) + return + } + function tj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + b = u + u = (u + 16) | 0 + c = b + d = c + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + cf(a, 2, c) + c = f[(a + 12) >> 2] | 0 + d = (a + 16) | 0 + e = f[d >> 2] | 0 + if ((e | 0) == (c | 0)) g = c + else { + h = (e + (~(((e + -4 - c) | 0) >>> 2) << 2)) | 0 + f[d >> 2] = h + g = h + } + f[(a + 24) >> 2] = 0 + f[(a + 28) >> 2] = 0 + if (c | 0) { + if ((g | 0) != (c | 0)) + f[d >> 2] = g + (~(((g + -4 - c) | 0) >>> 2) << 2) + br(c) + } + c = f[a >> 2] | 0 + if (!c) { + u = b + return + } + g = (a + 4) | 0 + a = f[g >> 2] | 0 + if ((a | 0) != (c | 0)) f[g >> 2] = a + (~(((a + -8 - c) | 0) >>> 3) << 3) + br(c) + u = b + return + } + function $a(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0 + b = u + u = (u + 16) | 0 + c = b + do + if (a >>> 0 < 245) { + d = a >>> 0 < 11 ? 16 : (a + 11) & -8 + e = d >>> 3 + g = f[4512] | 0 + h = g >>> e + if ((h & 3) | 0) { + i = (((h & 1) ^ 1) + e) | 0 + j = (18088 + ((i << 1) << 2)) | 0 + k = (j + 8) | 0 + l = f[k >> 2] | 0 + m = (l + 8) | 0 + n = f[m >> 2] | 0 + if ((n | 0) == (j | 0)) f[4512] = g & ~(1 << i) + else { + f[(n + 12) >> 2] = j + f[k >> 2] = n + } + n = i << 3 + f[(l + 4) >> 2] = n | 3 + i = (l + n + 4) | 0 + f[i >> 2] = f[i >> 2] | 1 + o = m + u = b + return o | 0 + } + m = f[4514] | 0 + if (d >>> 0 > m >>> 0) { + if (h | 0) { + i = 2 << e + n = (h << e) & (i | (0 - i)) + i = ((n & (0 - n)) + -1) | 0 + n = (i >>> 12) & 16 + e = i >>> n + i = (e >>> 5) & 8 + h = e >>> i + e = (h >>> 2) & 4 + l = h >>> e + h = (l >>> 1) & 2 + k = l >>> h + l = (k >>> 1) & 1 + j = ((i | n | e | h | l) + (k >>> l)) | 0 + l = (18088 + ((j << 1) << 2)) | 0 + k = (l + 8) | 0 + h = f[k >> 2] | 0 + e = (h + 8) | 0 + n = f[e >> 2] | 0 + if ((n | 0) == (l | 0)) { + i = g & ~(1 << j) + f[4512] = i + p = i + } else { + f[(n + 12) >> 2] = l + f[k >> 2] = n + p = g + } + n = j << 3 + j = (n - d) | 0 + f[(h + 4) >> 2] = d | 3 + k = (h + d) | 0 + f[(k + 4) >> 2] = j | 1 + f[(h + n) >> 2] = j + if (m | 0) { + n = f[4517] | 0 + h = m >>> 3 + l = (18088 + ((h << 1) << 2)) | 0 + i = 1 << h + if (!(p & i)) { + f[4512] = p | i + q = l + r = (l + 8) | 0 + } else { + i = (l + 8) | 0 + q = f[i >> 2] | 0 + r = i + } + f[r >> 2] = n + f[(q + 12) >> 2] = n + f[(n + 8) >> 2] = q + f[(n + 12) >> 2] = l + } + f[4514] = j + f[4517] = k + o = e + u = b + return o | 0 + } + e = f[4513] | 0 + if (e) { + k = ((e & (0 - e)) + -1) | 0 + j = (k >>> 12) & 16 + l = k >>> j + k = (l >>> 5) & 8 + n = l >>> k + l = (n >>> 2) & 4 + i = n >>> l + n = (i >>> 1) & 2 + h = i >>> n + i = (h >>> 1) & 1 + s = f[(18352 + (((k | j | l | n | i) + (h >>> i)) << 2)) >> 2] | 0 + i = ((f[(s + 4) >> 2] & -8) - d) | 0 + h = + f[(s + 16 + ((((f[(s + 16) >> 2] | 0) == 0) & 1) << 2)) >> 2] | + 0 + if (!h) { + t = s + v = i + } else { + n = s + s = i + i = h + while (1) { + h = ((f[(i + 4) >> 2] & -8) - d) | 0 + l = h >>> 0 < s >>> 0 + j = l ? h : s + h = l ? i : n + i = + f[ + (i + 16 + ((((f[(i + 16) >> 2] | 0) == 0) & 1) << 2)) >> 2 + ] | 0 + if (!i) { + t = h + v = j + break + } else { + n = h + s = j + } + } + } + s = (t + d) | 0 + if (s >>> 0 > t >>> 0) { + n = f[(t + 24) >> 2] | 0 + i = f[(t + 12) >> 2] | 0 + do + if ((i | 0) == (t | 0)) { + j = (t + 20) | 0 + h = f[j >> 2] | 0 + if (!h) { + l = (t + 16) | 0 + k = f[l >> 2] | 0 + if (!k) { + w = 0 + break + } else { + x = k + y = l + } + } else { + x = h + y = j + } + while (1) { + j = (x + 20) | 0 + h = f[j >> 2] | 0 + if (h | 0) { + x = h + y = j + continue + } + j = (x + 16) | 0 + h = f[j >> 2] | 0 + if (!h) break + else { + x = h + y = j + } + } + f[y >> 2] = 0 + w = x + } else { + j = f[(t + 8) >> 2] | 0 + f[(j + 12) >> 2] = i + f[(i + 8) >> 2] = j + w = i + } + while (0) + do + if (n | 0) { + i = f[(t + 28) >> 2] | 0 + j = (18352 + (i << 2)) | 0 + if ((t | 0) == (f[j >> 2] | 0)) { + f[j >> 2] = w + if (!w) { + f[4513] = e & ~(1 << i) + break + } + } else { + f[ + (n + + 16 + + ((((f[(n + 16) >> 2] | 0) != (t | 0)) & 1) << 2)) >> + 2 + ] = w + if (!w) break + } + f[(w + 24) >> 2] = n + i = f[(t + 16) >> 2] | 0 + if (i | 0) { + f[(w + 16) >> 2] = i + f[(i + 24) >> 2] = w + } + i = f[(t + 20) >> 2] | 0 + if (i | 0) { + f[(w + 20) >> 2] = i + f[(i + 24) >> 2] = w + } + } + while (0) + if (v >>> 0 < 16) { + n = (v + d) | 0 + f[(t + 4) >> 2] = n | 3 + e = (t + n + 4) | 0 + f[e >> 2] = f[e >> 2] | 1 + } else { + f[(t + 4) >> 2] = d | 3 + f[(s + 4) >> 2] = v | 1 + f[(s + v) >> 2] = v + if (m | 0) { + e = f[4517] | 0 + n = m >>> 3 + i = (18088 + ((n << 1) << 2)) | 0 + j = 1 << n + if (!(g & j)) { + f[4512] = g | j + z = i + A = (i + 8) | 0 + } else { + j = (i + 8) | 0 + z = f[j >> 2] | 0 + A = j + } + f[A >> 2] = e + f[(z + 12) >> 2] = e + f[(e + 8) >> 2] = z + f[(e + 12) >> 2] = i + } + f[4514] = v + f[4517] = s + } + o = (t + 8) | 0 + u = b + return o | 0 + } else B = d + } else B = d + } else B = d + } else if (a >>> 0 <= 4294967231) { + i = (a + 11) | 0 + e = i & -8 + j = f[4513] | 0 + if (j) { + n = (0 - e) | 0 + h = i >>> 8 + if (h) + if (e >>> 0 > 16777215) C = 31 + else { + i = (((h + 1048320) | 0) >>> 16) & 8 + l = h << i + h = (((l + 520192) | 0) >>> 16) & 4 + k = l << h + l = (((k + 245760) | 0) >>> 16) & 2 + D = (14 - (h | i | l) + ((k << l) >>> 15)) | 0 + C = ((e >>> ((D + 7) | 0)) & 1) | (D << 1) + } + else C = 0 + D = f[(18352 + (C << 2)) >> 2] | 0 + a: do + if (!D) { + E = 0 + F = 0 + G = n + H = 57 + } else { + l = 0 + k = n + i = D + h = e << ((C | 0) == 31 ? 0 : (25 - (C >>> 1)) | 0) + I = 0 + while (1) { + J = ((f[(i + 4) >> 2] & -8) - e) | 0 + if (J >>> 0 < k >>> 0) + if (!J) { + K = 0 + L = i + M = i + H = 61 + break a + } else { + N = i + O = J + } + else { + N = l + O = k + } + J = f[(i + 20) >> 2] | 0 + i = f[(i + 16 + ((h >>> 31) << 2)) >> 2] | 0 + P = ((J | 0) == 0) | ((J | 0) == (i | 0)) ? I : J + J = (i | 0) == 0 + if (J) { + E = P + F = N + G = O + H = 57 + break + } else { + l = N + k = O + h = h << ((J ^ 1) & 1) + I = P + } + } + } + while (0) + if ((H | 0) == 57) { + if (((E | 0) == 0) & ((F | 0) == 0)) { + D = 2 << C + n = j & (D | (0 - D)) + if (!n) { + B = e + break + } + D = ((n & (0 - n)) + -1) | 0 + n = (D >>> 12) & 16 + d = D >>> n + D = (d >>> 5) & 8 + s = d >>> D + d = (s >>> 2) & 4 + g = s >>> d + s = (g >>> 1) & 2 + m = g >>> s + g = (m >>> 1) & 1 + Q = 0 + R = + f[(18352 + (((D | n | d | s | g) + (m >>> g)) << 2)) >> 2] | 0 + } else { + Q = F + R = E + } + if (!R) { + S = Q + T = G + } else { + K = G + L = R + M = Q + H = 61 + } + } + if ((H | 0) == 61) + while (1) { + H = 0 + g = ((f[(L + 4) >> 2] & -8) - e) | 0 + m = g >>> 0 < K >>> 0 + s = m ? g : K + g = m ? L : M + L = + f[ + (L + 16 + ((((f[(L + 16) >> 2] | 0) == 0) & 1) << 2)) >> 2 + ] | 0 + if (!L) { + S = g + T = s + break + } else { + K = s + M = g + H = 61 + } + } + if ((S | 0) != 0 ? T >>> 0 < (((f[4514] | 0) - e) | 0) >>> 0 : 0) { + g = (S + e) | 0 + if (g >>> 0 <= S >>> 0) { + o = 0 + u = b + return o | 0 + } + s = f[(S + 24) >> 2] | 0 + m = f[(S + 12) >> 2] | 0 + do + if ((m | 0) == (S | 0)) { + d = (S + 20) | 0 + n = f[d >> 2] | 0 + if (!n) { + D = (S + 16) | 0 + I = f[D >> 2] | 0 + if (!I) { + U = 0 + break + } else { + V = I + W = D + } + } else { + V = n + W = d + } + while (1) { + d = (V + 20) | 0 + n = f[d >> 2] | 0 + if (n | 0) { + V = n + W = d + continue + } + d = (V + 16) | 0 + n = f[d >> 2] | 0 + if (!n) break + else { + V = n + W = d + } + } + f[W >> 2] = 0 + U = V + } else { + d = f[(S + 8) >> 2] | 0 + f[(d + 12) >> 2] = m + f[(m + 8) >> 2] = d + U = m + } + while (0) + do + if (s) { + m = f[(S + 28) >> 2] | 0 + d = (18352 + (m << 2)) | 0 + if ((S | 0) == (f[d >> 2] | 0)) { + f[d >> 2] = U + if (!U) { + d = j & ~(1 << m) + f[4513] = d + X = d + break + } + } else { + f[ + (s + + 16 + + ((((f[(s + 16) >> 2] | 0) != (S | 0)) & 1) << 2)) >> + 2 + ] = U + if (!U) { + X = j + break + } + } + f[(U + 24) >> 2] = s + d = f[(S + 16) >> 2] | 0 + if (d | 0) { + f[(U + 16) >> 2] = d + f[(d + 24) >> 2] = U + } + d = f[(S + 20) >> 2] | 0 + if (d) { + f[(U + 20) >> 2] = d + f[(d + 24) >> 2] = U + X = j + } else X = j + } else X = j + while (0) + do + if (T >>> 0 >= 16) { + f[(S + 4) >> 2] = e | 3 + f[(g + 4) >> 2] = T | 1 + f[(g + T) >> 2] = T + j = T >>> 3 + if (T >>> 0 < 256) { + s = (18088 + ((j << 1) << 2)) | 0 + d = f[4512] | 0 + m = 1 << j + if (!(d & m)) { + f[4512] = d | m + Y = s + Z = (s + 8) | 0 + } else { + m = (s + 8) | 0 + Y = f[m >> 2] | 0 + Z = m + } + f[Z >> 2] = g + f[(Y + 12) >> 2] = g + f[(g + 8) >> 2] = Y + f[(g + 12) >> 2] = s + break + } + s = T >>> 8 + if (s) + if (T >>> 0 > 16777215) _ = 31 + else { + m = (((s + 1048320) | 0) >>> 16) & 8 + d = s << m + s = (((d + 520192) | 0) >>> 16) & 4 + j = d << s + d = (((j + 245760) | 0) >>> 16) & 2 + n = (14 - (s | m | d) + ((j << d) >>> 15)) | 0 + _ = ((T >>> ((n + 7) | 0)) & 1) | (n << 1) + } + else _ = 0 + n = (18352 + (_ << 2)) | 0 + f[(g + 28) >> 2] = _ + d = (g + 16) | 0 + f[(d + 4) >> 2] = 0 + f[d >> 2] = 0 + d = 1 << _ + if (!(X & d)) { + f[4513] = X | d + f[n >> 2] = g + f[(g + 24) >> 2] = n + f[(g + 12) >> 2] = g + f[(g + 8) >> 2] = g + break + } + d = T << ((_ | 0) == 31 ? 0 : (25 - (_ >>> 1)) | 0) + j = f[n >> 2] | 0 + while (1) { + if (((f[(j + 4) >> 2] & -8) | 0) == (T | 0)) { + H = 97 + break + } + $ = (j + 16 + ((d >>> 31) << 2)) | 0 + n = f[$ >> 2] | 0 + if (!n) { + H = 96 + break + } else { + d = d << 1 + j = n + } + } + if ((H | 0) == 96) { + f[$ >> 2] = g + f[(g + 24) >> 2] = j + f[(g + 12) >> 2] = g + f[(g + 8) >> 2] = g + break + } else if ((H | 0) == 97) { + d = (j + 8) | 0 + n = f[d >> 2] | 0 + f[(n + 12) >> 2] = g + f[d >> 2] = g + f[(g + 8) >> 2] = n + f[(g + 12) >> 2] = j + f[(g + 24) >> 2] = 0 + break + } + } else { + n = (T + e) | 0 + f[(S + 4) >> 2] = n | 3 + d = (S + n + 4) | 0 + f[d >> 2] = f[d >> 2] | 1 + } + while (0) + o = (S + 8) | 0 + u = b + return o | 0 + } else B = e + } else B = e + } else B = -1 + while (0) + S = f[4514] | 0 + if (S >>> 0 >= B >>> 0) { + T = (S - B) | 0 + $ = f[4517] | 0 + if (T >>> 0 > 15) { + _ = ($ + B) | 0 + f[4517] = _ + f[4514] = T + f[(_ + 4) >> 2] = T | 1 + f[($ + S) >> 2] = T + f[($ + 4) >> 2] = B | 3 + } else { + f[4514] = 0 + f[4517] = 0 + f[($ + 4) >> 2] = S | 3 + T = ($ + S + 4) | 0 + f[T >> 2] = f[T >> 2] | 1 + } + o = ($ + 8) | 0 + u = b + return o | 0 + } + $ = f[4515] | 0 + if ($ >>> 0 > B >>> 0) { + T = ($ - B) | 0 + f[4515] = T + S = f[4518] | 0 + _ = (S + B) | 0 + f[4518] = _ + f[(_ + 4) >> 2] = T | 1 + f[(S + 4) >> 2] = B | 3 + o = (S + 8) | 0 + u = b + return o | 0 + } + if (!(f[4630] | 0)) { + f[4632] = 4096 + f[4631] = 4096 + f[4633] = -1 + f[4634] = -1 + f[4635] = 0 + f[4623] = 0 + f[4630] = (c & -16) ^ 1431655768 + aa = 4096 + } else aa = f[4632] | 0 + c = (B + 48) | 0 + S = (B + 47) | 0 + T = (aa + S) | 0 + _ = (0 - aa) | 0 + aa = T & _ + if (aa >>> 0 <= B >>> 0) { + o = 0 + u = b + return o | 0 + } + X = f[4622] | 0 + if ( + X | 0 + ? ((Y = f[4620] | 0), + (Z = (Y + aa) | 0), + (Z >>> 0 <= Y >>> 0) | (Z >>> 0 > X >>> 0)) + : 0 + ) { + o = 0 + u = b + return o | 0 + } + b: do + if (!(f[4623] & 4)) { + X = f[4518] | 0 + c: do + if (X) { + Z = 18496 + while (1) { + Y = f[Z >> 2] | 0 + if ( + Y >>> 0 <= X >>> 0 + ? ((ba = (Z + 4) | 0), + ((Y + (f[ba >> 2] | 0)) | 0) >>> 0 > X >>> 0) + : 0 + ) + break + Y = f[(Z + 8) >> 2] | 0 + if (!Y) { + H = 118 + break c + } else Z = Y + } + j = (T - $) & _ + if (j >>> 0 < 2147483647) { + Y = Fl(j | 0) | 0 + if ((Y | 0) == (((f[Z >> 2] | 0) + (f[ba >> 2] | 0)) | 0)) + if ((Y | 0) == (-1 | 0)) ca = j + else { + da = j + ea = Y + H = 135 + break b + } + else { + fa = Y + ga = j + H = 126 + } + } else ca = 0 + } else H = 118 + while (0) + do + if ((H | 0) == 118) { + X = Fl(0) | 0 + if ( + (X | 0) != (-1 | 0) + ? ((e = X), + (j = f[4631] | 0), + (Y = (j + -1) | 0), + (U = + ((((Y & e) | 0) == 0 + ? 0 + : (((Y + e) & (0 - j)) - e) | 0) + + aa) | + 0), + (e = f[4620] | 0), + (j = (U + e) | 0), + (U >>> 0 > B >>> 0) & (U >>> 0 < 2147483647)) + : 0 + ) { + Y = f[4622] | 0 + if (Y | 0 ? (j >>> 0 <= e >>> 0) | (j >>> 0 > Y >>> 0) : 0) { + ca = 0 + break + } + Y = Fl(U | 0) | 0 + if ((Y | 0) == (X | 0)) { + da = U + ea = X + H = 135 + break b + } else { + fa = Y + ga = U + H = 126 + } + } else ca = 0 + } + while (0) + do + if ((H | 0) == 126) { + U = (0 - ga) | 0 + if ( + !( + (c >>> 0 > ga >>> 0) & + ((ga >>> 0 < 2147483647) & ((fa | 0) != (-1 | 0))) + ) + ) + if ((fa | 0) == (-1 | 0)) { + ca = 0 + break + } else { + da = ga + ea = fa + H = 135 + break b + } + Y = f[4632] | 0 + X = (S - ga + Y) & (0 - Y) + if (X >>> 0 >= 2147483647) { + da = ga + ea = fa + H = 135 + break b + } + if ((Fl(X | 0) | 0) == (-1 | 0)) { + Fl(U | 0) | 0 + ca = 0 + break + } else { + da = (X + ga) | 0 + ea = fa + H = 135 + break b + } + } + while (0) + f[4623] = f[4623] | 4 + ha = ca + H = 133 + } else { + ha = 0 + H = 133 + } + while (0) + if ( + ((H | 0) == 133 ? aa >>> 0 < 2147483647 : 0) + ? ((ca = Fl(aa | 0) | 0), + (aa = Fl(0) | 0), + (fa = (aa - ca) | 0), + (ga = fa >>> 0 > ((B + 40) | 0) >>> 0), + !( + ((ca | 0) == (-1 | 0)) | + (ga ^ 1) | + (((ca >>> 0 < aa >>> 0) & + (((ca | 0) != (-1 | 0)) & ((aa | 0) != (-1 | 0)))) ^ + 1) + )) + : 0 + ) { + da = ga ? fa : ha + ea = ca + H = 135 + } + if ((H | 0) == 135) { + ca = ((f[4620] | 0) + da) | 0 + f[4620] = ca + if (ca >>> 0 > (f[4621] | 0) >>> 0) f[4621] = ca + ca = f[4518] | 0 + do + if (ca) { + ha = 18496 + while (1) { + ia = f[ha >> 2] | 0 + ja = (ha + 4) | 0 + ka = f[ja >> 2] | 0 + if ((ea | 0) == ((ia + ka) | 0)) { + H = 143 + break + } + fa = f[(ha + 8) >> 2] | 0 + if (!fa) break + else ha = fa + } + if ( + ((H | 0) == 143 ? ((f[(ha + 12) >> 2] & 8) | 0) == 0 : 0) + ? (ea >>> 0 > ca >>> 0) & (ia >>> 0 <= ca >>> 0) + : 0 + ) { + f[ja >> 2] = ka + da + fa = ((f[4515] | 0) + da) | 0 + ga = (ca + 8) | 0 + aa = ((ga & 7) | 0) == 0 ? 0 : (0 - ga) & 7 + ga = (ca + aa) | 0 + S = (fa - aa) | 0 + f[4518] = ga + f[4515] = S + f[(ga + 4) >> 2] = S | 1 + f[(ca + fa + 4) >> 2] = 40 + f[4519] = f[4634] + break + } + if (ea >>> 0 < (f[4516] | 0) >>> 0) f[4516] = ea + fa = (ea + da) | 0 + S = 18496 + while (1) { + if ((f[S >> 2] | 0) == (fa | 0)) { + H = 151 + break + } + ga = f[(S + 8) >> 2] | 0 + if (!ga) { + la = 18496 + break + } else S = ga + } + if ((H | 0) == 151) + if (!(f[(S + 12) >> 2] & 8)) { + f[S >> 2] = ea + ha = (S + 4) | 0 + f[ha >> 2] = (f[ha >> 2] | 0) + da + ha = (ea + 8) | 0 + ga = (ea + (((ha & 7) | 0) == 0 ? 0 : (0 - ha) & 7)) | 0 + ha = (fa + 8) | 0 + aa = (fa + (((ha & 7) | 0) == 0 ? 0 : (0 - ha) & 7)) | 0 + ha = (ga + B) | 0 + c = (aa - ga - B) | 0 + f[(ga + 4) >> 2] = B | 3 + do + if ((ca | 0) != (aa | 0)) { + if ((f[4517] | 0) == (aa | 0)) { + ba = ((f[4514] | 0) + c) | 0 + f[4514] = ba + f[4517] = ha + f[(ha + 4) >> 2] = ba | 1 + f[(ha + ba) >> 2] = ba + break + } + ba = f[(aa + 4) >> 2] | 0 + if (((ba & 3) | 0) == 1) { + _ = ba & -8 + $ = ba >>> 3 + d: do + if (ba >>> 0 < 256) { + T = f[(aa + 8) >> 2] | 0 + X = f[(aa + 12) >> 2] | 0 + if ((X | 0) == (T | 0)) { + f[4512] = f[4512] & ~(1 << $) + break + } else { + f[(T + 12) >> 2] = X + f[(X + 8) >> 2] = T + break + } + } else { + T = f[(aa + 24) >> 2] | 0 + X = f[(aa + 12) >> 2] | 0 + do + if ((X | 0) == (aa | 0)) { + U = (aa + 16) | 0 + Y = (U + 4) | 0 + j = f[Y >> 2] | 0 + if (!j) { + e = f[U >> 2] | 0 + if (!e) { + ma = 0 + break + } else { + na = e + oa = U + } + } else { + na = j + oa = Y + } + while (1) { + Y = (na + 20) | 0 + j = f[Y >> 2] | 0 + if (j | 0) { + na = j + oa = Y + continue + } + Y = (na + 16) | 0 + j = f[Y >> 2] | 0 + if (!j) break + else { + na = j + oa = Y + } + } + f[oa >> 2] = 0 + ma = na + } else { + Y = f[(aa + 8) >> 2] | 0 + f[(Y + 12) >> 2] = X + f[(X + 8) >> 2] = Y + ma = X + } + while (0) + if (!T) break + X = f[(aa + 28) >> 2] | 0 + Y = (18352 + (X << 2)) | 0 + do + if ((f[Y >> 2] | 0) != (aa | 0)) { + f[ + (T + + 16 + + ((((f[(T + 16) >> 2] | 0) != (aa | 0)) & 1) << + 2)) >> + 2 + ] = ma + if (!ma) break d + } else { + f[Y >> 2] = ma + if (ma | 0) break + f[4513] = f[4513] & ~(1 << X) + break d + } + while (0) + f[(ma + 24) >> 2] = T + X = (aa + 16) | 0 + Y = f[X >> 2] | 0 + if (Y | 0) { + f[(ma + 16) >> 2] = Y + f[(Y + 24) >> 2] = ma + } + Y = f[(X + 4) >> 2] | 0 + if (!Y) break + f[(ma + 20) >> 2] = Y + f[(Y + 24) >> 2] = ma + } + while (0) + pa = (aa + _) | 0 + qa = (_ + c) | 0 + } else { + pa = aa + qa = c + } + $ = (pa + 4) | 0 + f[$ >> 2] = f[$ >> 2] & -2 + f[(ha + 4) >> 2] = qa | 1 + f[(ha + qa) >> 2] = qa + $ = qa >>> 3 + if (qa >>> 0 < 256) { + ba = (18088 + (($ << 1) << 2)) | 0 + Z = f[4512] | 0 + Y = 1 << $ + if (!(Z & Y)) { + f[4512] = Z | Y + ra = ba + sa = (ba + 8) | 0 + } else { + Y = (ba + 8) | 0 + ra = f[Y >> 2] | 0 + sa = Y + } + f[sa >> 2] = ha + f[(ra + 12) >> 2] = ha + f[(ha + 8) >> 2] = ra + f[(ha + 12) >> 2] = ba + break + } + ba = qa >>> 8 + do + if (!ba) ta = 0 + else { + if (qa >>> 0 > 16777215) { + ta = 31 + break + } + Y = (((ba + 1048320) | 0) >>> 16) & 8 + Z = ba << Y + $ = (((Z + 520192) | 0) >>> 16) & 4 + X = Z << $ + Z = (((X + 245760) | 0) >>> 16) & 2 + j = (14 - ($ | Y | Z) + ((X << Z) >>> 15)) | 0 + ta = ((qa >>> ((j + 7) | 0)) & 1) | (j << 1) + } + while (0) + ba = (18352 + (ta << 2)) | 0 + f[(ha + 28) >> 2] = ta + _ = (ha + 16) | 0 + f[(_ + 4) >> 2] = 0 + f[_ >> 2] = 0 + _ = f[4513] | 0 + j = 1 << ta + if (!(_ & j)) { + f[4513] = _ | j + f[ba >> 2] = ha + f[(ha + 24) >> 2] = ba + f[(ha + 12) >> 2] = ha + f[(ha + 8) >> 2] = ha + break + } + j = qa << ((ta | 0) == 31 ? 0 : (25 - (ta >>> 1)) | 0) + _ = f[ba >> 2] | 0 + while (1) { + if (((f[(_ + 4) >> 2] & -8) | 0) == (qa | 0)) { + H = 192 + break + } + ua = (_ + 16 + ((j >>> 31) << 2)) | 0 + ba = f[ua >> 2] | 0 + if (!ba) { + H = 191 + break + } else { + j = j << 1 + _ = ba + } + } + if ((H | 0) == 191) { + f[ua >> 2] = ha + f[(ha + 24) >> 2] = _ + f[(ha + 12) >> 2] = ha + f[(ha + 8) >> 2] = ha + break + } else if ((H | 0) == 192) { + j = (_ + 8) | 0 + ba = f[j >> 2] | 0 + f[(ba + 12) >> 2] = ha + f[j >> 2] = ha + f[(ha + 8) >> 2] = ba + f[(ha + 12) >> 2] = _ + f[(ha + 24) >> 2] = 0 + break + } + } else { + ba = ((f[4515] | 0) + c) | 0 + f[4515] = ba + f[4518] = ha + f[(ha + 4) >> 2] = ba | 1 + } + while (0) + o = (ga + 8) | 0 + u = b + return o | 0 + } else la = 18496 + while (1) { + ha = f[la >> 2] | 0 + if ( + ha >>> 0 <= ca >>> 0 + ? ((va = (ha + (f[(la + 4) >> 2] | 0)) | 0), + va >>> 0 > ca >>> 0) + : 0 + ) + break + la = f[(la + 8) >> 2] | 0 + } + ga = (va + -47) | 0 + ha = (ga + 8) | 0 + c = (ga + (((ha & 7) | 0) == 0 ? 0 : (0 - ha) & 7)) | 0 + ha = (ca + 16) | 0 + ga = c >>> 0 < ha >>> 0 ? ca : c + c = (ga + 8) | 0 + aa = (da + -40) | 0 + fa = (ea + 8) | 0 + S = ((fa & 7) | 0) == 0 ? 0 : (0 - fa) & 7 + fa = (ea + S) | 0 + ba = (aa - S) | 0 + f[4518] = fa + f[4515] = ba + f[(fa + 4) >> 2] = ba | 1 + f[(ea + aa + 4) >> 2] = 40 + f[4519] = f[4634] + aa = (ga + 4) | 0 + f[aa >> 2] = 27 + f[c >> 2] = f[4624] + f[(c + 4) >> 2] = f[4625] + f[(c + 8) >> 2] = f[4626] + f[(c + 12) >> 2] = f[4627] + f[4624] = ea + f[4625] = da + f[4627] = 0 + f[4626] = c + c = (ga + 24) | 0 + do { + ba = c + c = (c + 4) | 0 + f[c >> 2] = 7 + } while (((ba + 8) | 0) >>> 0 < va >>> 0) + if ((ga | 0) != (ca | 0)) { + c = (ga - ca) | 0 + f[aa >> 2] = f[aa >> 2] & -2 + f[(ca + 4) >> 2] = c | 1 + f[ga >> 2] = c + ba = c >>> 3 + if (c >>> 0 < 256) { + fa = (18088 + ((ba << 1) << 2)) | 0 + S = f[4512] | 0 + j = 1 << ba + if (!(S & j)) { + f[4512] = S | j + wa = fa + xa = (fa + 8) | 0 + } else { + j = (fa + 8) | 0 + wa = f[j >> 2] | 0 + xa = j + } + f[xa >> 2] = ca + f[(wa + 12) >> 2] = ca + f[(ca + 8) >> 2] = wa + f[(ca + 12) >> 2] = fa + break + } + fa = c >>> 8 + if (fa) + if (c >>> 0 > 16777215) ya = 31 + else { + j = (((fa + 1048320) | 0) >>> 16) & 8 + S = fa << j + fa = (((S + 520192) | 0) >>> 16) & 4 + ba = S << fa + S = (((ba + 245760) | 0) >>> 16) & 2 + Z = (14 - (fa | j | S) + ((ba << S) >>> 15)) | 0 + ya = ((c >>> ((Z + 7) | 0)) & 1) | (Z << 1) + } + else ya = 0 + Z = (18352 + (ya << 2)) | 0 + f[(ca + 28) >> 2] = ya + f[(ca + 20) >> 2] = 0 + f[ha >> 2] = 0 + S = f[4513] | 0 + ba = 1 << ya + if (!(S & ba)) { + f[4513] = S | ba + f[Z >> 2] = ca + f[(ca + 24) >> 2] = Z + f[(ca + 12) >> 2] = ca + f[(ca + 8) >> 2] = ca + break + } + ba = c << ((ya | 0) == 31 ? 0 : (25 - (ya >>> 1)) | 0) + S = f[Z >> 2] | 0 + while (1) { + if (((f[(S + 4) >> 2] & -8) | 0) == (c | 0)) { + H = 213 + break + } + za = (S + 16 + ((ba >>> 31) << 2)) | 0 + Z = f[za >> 2] | 0 + if (!Z) { + H = 212 + break + } else { + ba = ba << 1 + S = Z + } + } + if ((H | 0) == 212) { + f[za >> 2] = ca + f[(ca + 24) >> 2] = S + f[(ca + 12) >> 2] = ca + f[(ca + 8) >> 2] = ca + break + } else if ((H | 0) == 213) { + ba = (S + 8) | 0 + c = f[ba >> 2] | 0 + f[(c + 12) >> 2] = ca + f[ba >> 2] = ca + f[(ca + 8) >> 2] = c + f[(ca + 12) >> 2] = S + f[(ca + 24) >> 2] = 0 + break + } + } + } else { + c = f[4516] | 0 + if (((c | 0) == 0) | (ea >>> 0 < c >>> 0)) f[4516] = ea + f[4624] = ea + f[4625] = da + f[4627] = 0 + f[4521] = f[4630] + f[4520] = -1 + f[4525] = 18088 + f[4524] = 18088 + f[4527] = 18096 + f[4526] = 18096 + f[4529] = 18104 + f[4528] = 18104 + f[4531] = 18112 + f[4530] = 18112 + f[4533] = 18120 + f[4532] = 18120 + f[4535] = 18128 + f[4534] = 18128 + f[4537] = 18136 + f[4536] = 18136 + f[4539] = 18144 + f[4538] = 18144 + f[4541] = 18152 + f[4540] = 18152 + f[4543] = 18160 + f[4542] = 18160 + f[4545] = 18168 + f[4544] = 18168 + f[4547] = 18176 + f[4546] = 18176 + f[4549] = 18184 + f[4548] = 18184 + f[4551] = 18192 + f[4550] = 18192 + f[4553] = 18200 + f[4552] = 18200 + f[4555] = 18208 + f[4554] = 18208 + f[4557] = 18216 + f[4556] = 18216 + f[4559] = 18224 + f[4558] = 18224 + f[4561] = 18232 + f[4560] = 18232 + f[4563] = 18240 + f[4562] = 18240 + f[4565] = 18248 + f[4564] = 18248 + f[4567] = 18256 + f[4566] = 18256 + f[4569] = 18264 + f[4568] = 18264 + f[4571] = 18272 + f[4570] = 18272 + f[4573] = 18280 + f[4572] = 18280 + f[4575] = 18288 + f[4574] = 18288 + f[4577] = 18296 + f[4576] = 18296 + f[4579] = 18304 + f[4578] = 18304 + f[4581] = 18312 + f[4580] = 18312 + f[4583] = 18320 + f[4582] = 18320 + f[4585] = 18328 + f[4584] = 18328 + f[4587] = 18336 + f[4586] = 18336 + c = (da + -40) | 0 + ba = (ea + 8) | 0 + ha = ((ba & 7) | 0) == 0 ? 0 : (0 - ba) & 7 + ba = (ea + ha) | 0 + ga = (c - ha) | 0 + f[4518] = ba + f[4515] = ga + f[(ba + 4) >> 2] = ga | 1 + f[(ea + c + 4) >> 2] = 40 + f[4519] = f[4634] + } + while (0) + ea = f[4515] | 0 + if (ea >>> 0 > B >>> 0) { + da = (ea - B) | 0 + f[4515] = da + ea = f[4518] | 0 + ca = (ea + B) | 0 + f[4518] = ca + f[(ca + 4) >> 2] = da | 1 + f[(ea + 4) >> 2] = B | 3 + o = (ea + 8) | 0 + u = b + return o | 0 + } + } + ea = ir() | 0 + f[ea >> 2] = 12 + o = 0 + u = b + return o | 0 + } + function ab(a, c, d, e, g, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0, + Sa = 0, + Ta = 0, + Ua = 0, + Va = 0.0, + Wa = 0, + Xa = 0, + Ya = 0, + Za = 0, + _a = 0, + $a = 0, + ab = 0, + bb = 0, + cb = 0, + db = 0, + eb = 0, + fb = 0, + gb = 0, + hb = 0, + ib = 0, + jb = 0, + kb = 0, + lb = 0, + mb = 0, + nb = 0, + ob = 0, + pb = 0, + qb = 0, + rb = 0, + sb = 0, + tb = 0, + ub = 0, + vb = 0, + wb = 0, + xb = 0, + yb = 0, + zb = 0, + Ab = 0, + Bb = 0, + Cb = 0, + Db = 0, + Eb = 0, + Fb = 0, + Gb = 0, + Hb = 0, + Ib = 0, + Jb = 0, + Kb = 0 + i = u + u = (u + 240) | 0 + j = (i + 104) | 0 + k = (i + 224) | 0 + l = (i + 176) | 0 + m = (i + 160) | 0 + n = (i + 228) | 0 + o = (i + 72) | 0 + p = (i + 40) | 0 + q = (i + 132) | 0 + r = i + s = (i + 172) | 0 + t = (i + 156) | 0 + v = (i + 152) | 0 + w = (i + 148) | 0 + x = (i + 144) | 0 + y = (i + 128) | 0 + z = (a + 8) | 0 + Ah(z, c, e, g) + e = f[(a + 48) >> 2] | 0 + A = f[(a + 52) >> 2] | 0 + B = l + C = (B + 48) | 0 + do { + f[B >> 2] = 0 + B = (B + 4) | 0 + } while ((B | 0) < (C | 0)) + if (!g) { + D = 0 + E = 0 + } else { + oi(l, g) + D = f[(l + 12) >> 2] | 0 + E = f[(l + 16) >> 2] | 0 + } + B = (l + 16) | 0 + C = (E - D) >> 2 + F = D + D = E + if (C >>> 0 >= g >>> 0) { + if ( + C >>> 0 > g >>> 0 ? ((E = (F + (g << 2)) | 0), (E | 0) != (D | 0)) : 0 + ) + f[B >> 2] = D + (~(((D + -4 - E) | 0) >>> 2) << 2) + } else oi((l + 12) | 0, (g - C) | 0) + C = (l + 24) | 0 + E = (l + 28) | 0 + D = f[E >> 2] | 0 + B = f[C >> 2] | 0 + F = (D - B) >> 2 + G = B + B = D + if (F >>> 0 >= g >>> 0) { + if ( + F >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[E >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else oi(C, (g - F) | 0) + F = (l + 36) | 0 + C = (l + 40) | 0 + D = f[C >> 2] | 0 + B = f[F >> 2] | 0 + E = (D - B) >> 2 + G = B + B = D + if (E >>> 0 >= g >>> 0) { + if ( + E >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[C >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else oi(F, (g - E) | 0) + f[m >> 2] = 0 + E = (m + 4) | 0 + f[E >> 2] = 0 + f[(m + 8) >> 2] = 0 + F = (g | 0) == 0 + do + if (!F) + if (g >>> 0 > 1073741823) mq(m) + else { + D = g << 2 + B = dn(D) | 0 + f[m >> 2] = B + C = (B + (g << 2)) | 0 + f[(m + 8) >> 2] = C + hj(B | 0, 0, D | 0) | 0 + f[E >> 2] = C + break + } + while (0) + C = (a + 152) | 0 + D = (a + 156) | 0 + B = f[D >> 2] | 0 + G = f[C >> 2] | 0 + H = (B - G) >> 2 + L = G + G = B + if (H >>> 0 >= g >>> 0) { + if ( + H >>> 0 > g >>> 0 ? ((B = (L + (g << 2)) | 0), (B | 0) != (G | 0)) : 0 + ) + f[D >> 2] = G + (~(((G + -4 - B) | 0) >>> 2) << 2) + } else oi(C, (g - H) | 0) + f[o >> 2] = 0 + f[(o + 4) >> 2] = 0 + f[(o + 8) >> 2] = 0 + f[(o + 12) >> 2] = 0 + f[(o + 16) >> 2] = 0 + f[(o + 20) >> 2] = 0 + f[(o + 24) >> 2] = 0 + f[(o + 28) >> 2] = 0 + f[p >> 2] = 0 + f[(p + 4) >> 2] = 0 + f[(p + 8) >> 2] = 0 + f[(p + 12) >> 2] = 0 + f[(p + 16) >> 2] = 0 + f[(p + 20) >> 2] = 0 + f[(p + 24) >> 2] = 0 + f[(p + 28) >> 2] = 0 + f[q >> 2] = 0 + H = (q + 4) | 0 + f[H >> 2] = 0 + f[(q + 8) >> 2] = 0 + if (F) { + M = 0 + N = 0 + O = 0 + P = 0 + } else { + F = g << 2 + B = dn(F) | 0 + f[q >> 2] = B + G = (B + (g << 2)) | 0 + f[(q + 8) >> 2] = G + hj(B | 0, 0, F | 0) | 0 + f[H >> 2] = G + M = B + N = G + O = G + P = B + } + B = (a + 56) | 0 + G = f[B >> 2] | 0 + F = f[(G + 4) >> 2] | 0 + D = f[G >> 2] | 0 + L = (F - D) | 0 + a: do + if ((L | 0) > 4) { + Q = L >>> 2 + R = (e + 64) | 0 + S = (e + 28) | 0 + T = (g | 0) > 0 + U = (r + 4) | 0 + V = (r + 8) | 0 + Z = (r + 12) | 0 + _ = (a + 152) | 0 + $ = (a + 112) | 0 + aa = (r + 16) | 0 + ba = (r + 28) | 0 + ca = (a + 16) | 0 + da = (a + 32) | 0 + ea = (a + 12) | 0 + fa = (a + 28) | 0 + ga = (a + 20) | 0 + ha = (a + 24) | 0 + ia = (r + 28) | 0 + ja = (r + 16) | 0 + ka = (r + 20) | 0 + la = (r + 32) | 0 + ma = (n + 1) | 0 + na = g << 2 + oa = (g | 0) == 1 + pa = (Q + -1) | 0 + if (((F - D) >> 2) >>> 0 > pa >>> 0) { + qa = Q + ra = pa + sa = D + ta = M + ua = P + va = O + wa = M + xa = N + ya = M + za = N + } else { + Aa = G + mq(Aa) + } + b: while (1) { + pa = f[(sa + (ra << 2)) >> 2] | 0 + Q = ((((pa >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + pa) | 0 + Ba = Q >>> 5 + Ca = 1 << (Q & 31) + Da = ((pa | 0) == -1) | ((Q | 0) == -1) + Ea = 1 + Fa = 0 + Ga = pa + c: while (1) { + Ha = Ea ^ 1 + Ia = Fa + Ja = Ga + while (1) { + if ((Ja | 0) == -1) { + Ka = Ia + break c + } + La = f[(l + ((Ia * 12) | 0)) >> 2] | 0 + if ( + ( + ((f[((f[e >> 2] | 0) + ((Ja >>> 5) << 2)) >> 2] & + (1 << (Ja & 31))) | + 0) == + 0 + ? ((Ma = + f[ + ((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + + (Ja << 2)) >> + 2 + ] | 0), + (Ma | 0) != -1) + : 0 + ) + ? ((Na = f[S >> 2] | 0), + (Oa = f[A >> 2] | 0), + (Pa = f[(Oa + (f[(Na + (Ma << 2)) >> 2] << 2)) >> 2] | 0), + (Qa = (Ma + 1) | 0), + (Ra = + f[ + (Oa + + (f[ + (Na + + ((((Qa >>> 0) % 3 | 0 | 0) == 0 + ? (Ma + -2) | 0 + : Qa) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + (Qa = + f[ + (Oa + + (f[ + (Na + + (((((Ma >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + + Ma) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + ((Pa | 0) < (ra | 0)) & + ((Ra | 0) < (ra | 0)) & + ((Qa | 0) < (ra | 0))) + : 0 + ) { + Ma = X(Pa, g) | 0 + Pa = X(Ra, g) | 0 + Ra = X(Qa, g) | 0 + if (T) { + Qa = 0 + do { + f[(La + (Qa << 2)) >> 2] = + (f[(c + ((Qa + Ra) << 2)) >> 2] | 0) + + (f[(c + ((Qa + Pa) << 2)) >> 2] | 0) - + (f[(c + ((Qa + Ma) << 2)) >> 2] | 0) + Qa = (Qa + 1) | 0 + } while ((Qa | 0) != (g | 0)) + } + Qa = (Ia + 1) | 0 + if ((Qa | 0) == 4) { + Ka = 4 + break c + } else Sa = Qa + } else Sa = Ia + do + if (Ea) { + Qa = (Ja + 1) | 0 + Ma = ((Qa >>> 0) % 3 | 0 | 0) == 0 ? (Ja + -2) | 0 : Qa + if ( + ( + (Ma | 0) != -1 + ? ((f[((f[e >> 2] | 0) + ((Ma >>> 5) << 2)) >> 2] & + (1 << (Ma & 31))) | + 0) == + 0 + : 0 + ) + ? ((Qa = + f[ + ((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + + (Ma << 2)) >> + 2 + ] | 0), + (Ma = (Qa + 1) | 0), + (Qa | 0) != -1) + : 0 + ) + Ta = ((Ma >>> 0) % 3 | 0 | 0) == 0 ? (Qa + -2) | 0 : Ma + else Ta = -1 + } else { + Ma = ((((Ja >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Ja) | 0 + if ( + ( + (Ma | 0) != -1 + ? ((f[((f[e >> 2] | 0) + ((Ma >>> 5) << 2)) >> 2] & + (1 << (Ma & 31))) | + 0) == + 0 + : 0 + ) + ? ((Qa = + f[ + ((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + + (Ma << 2)) >> + 2 + ] | 0), + (Qa | 0) != -1) + : 0 + ) + if (!((Qa >>> 0) % 3 | 0)) { + Ta = (Qa + 2) | 0 + break + } else { + Ta = (Qa + -1) | 0 + break + } + else Ta = -1 + } + while (0) + if ((Ta | 0) == (pa | 0)) { + Ka = Sa + break c + } + if (((Ta | 0) != -1) | Ha) { + Ia = Sa + Ja = Ta + } else break + } + if (Da) { + Ea = 0 + Fa = Sa + Ga = -1 + continue + } + if ((f[((f[e >> 2] | 0) + (Ba << 2)) >> 2] & Ca) | 0) { + Ea = 0 + Fa = Sa + Ga = -1 + continue + } + Ja = f[((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + (Q << 2)) >> 2] | 0 + if ((Ja | 0) == -1) { + Ea = 0 + Fa = Sa + Ga = -1 + continue + } + if (!((Ja >>> 0) % 3 | 0)) { + Ea = 0 + Fa = Sa + Ga = (Ja + 2) | 0 + continue + } else { + Ea = 0 + Fa = Sa + Ga = (Ja + -1) | 0 + continue + } + } + Ga = X(ra, g) | 0 + f[r >> 2] = 0 + f[U >> 2] = 0 + b[V >> 0] = 0 + f[Z >> 2] = 0 + f[(Z + 4) >> 2] = 0 + f[(Z + 8) >> 2] = 0 + f[(Z + 12) >> 2] = 0 + f[(Z + 16) >> 2] = 0 + f[(Z + 20) >> 2] = 0 + f[(Z + 24) >> 2] = 0 + Fa = (c + ((X((qa + -2) | 0, g) | 0) << 2)) | 0 + Ea = (c + (Ga << 2)) | 0 + Q = f[_ >> 2] | 0 + if (T) { + Ca = 0 + Ba = 0 + while (1) { + Da = + ((f[(Fa + (Ca << 2)) >> 2] | 0) - + (f[(Ea + (Ca << 2)) >> 2] | 0)) | + 0 + pa = (((Da | 0) > -1 ? Da : (0 - Da) | 0) + Ba) | 0 + f[(ta + (Ca << 2)) >> 2] = Da + f[(Q + (Ca << 2)) >> 2] = (Da << 1) ^ (Da >> 31) + Ca = (Ca + 1) | 0 + if ((Ca | 0) == (g | 0)) { + Ua = pa + break + } else Ba = pa + } + } else Ua = 0 + ho(j, $, Q, g) + Ba = Tk(j) | 0 + Ca = I + pa = om(j) | 0 + Da = Tn(pa | 0, I | 0, Ba | 0, Ca | 0) | 0 + Ca = I + Ba = (Ka | 0) > 0 + if (Ba) { + pa = (Ka + -1) | 0 + Ja = (p + (pa << 3)) | 0 + Ia = Ja + Ha = + Tn( + f[Ia >> 2] | 0, + f[(Ia + 4) >> 2] | 0, + Ka | 0, + ((((Ka | 0) < 0) << 31) >> 31) | 0, + ) | 0 + Ia = I + Qa = Ja + f[Qa >> 2] = Ha + f[(Qa + 4) >> 2] = Ia + Va = +W( + +( + +jm(Ha, f[(o + (pa << 3)) >> 2] | 0) * + (+(Ha >>> 0) + 4294967296.0 * +(Ia | 0)) + ), + ) + Ia = + Tn( + Da | 0, + Ca | 0, + (~~Va >>> 0) | 0, + (+K(Va) >= 1.0 + ? Va > 0.0 + ? ~~+Y(+J(Va / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Va - +(~~Va >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + Wa = Ia + } else Wa = Da + Da = r + f[Da >> 2] = Wa + f[(Da + 4) >> 2] = Ua + b[V >> 0] = 0 + f[Z >> 2] = 0 + Mf(aa, Fa, (Fa + (g << 2)) | 0) + f[s >> 2] = ua + f[t >> 2] = va + f[k >> 2] = f[s >> 2] + f[j >> 2] = f[t >> 2] + tf(ba, k, j) + if ((Ka | 0) < 1) { + Xa = za + Ya = ya + Za = xa + _a = wa + $a = va + ab = ua + bb = ua + } else { + Da = (n + Ka) | 0 + Ia = f[q >> 2] | 0 + Ca = (Ka + -1) | 0 + Ha = (o + (Ca << 3)) | 0 + pa = (p + (Ca << 3)) | 0 + Ca = Ia + Qa = f[H >> 2] | 0 + Ja = (Da + -1) | 0 + Ma = (Ja | 0) == (n | 0) + Pa = (Da + -2) | 0 + Ra = ma >>> 0 < Pa >>> 0 + La = ~Ka + Na = (Ka + 2 + ((La | 0) > -2 ? La : -2)) | 0 + La = Qa + Oa = Ja >>> 0 > n >>> 0 + cb = 0 + db = 1 + while (1) { + cb = (cb + 1) | 0 + hj(n | 0, 1, Na | 0) | 0 + hj(n | 0, 0, cb | 0) | 0 + d: while (1) { + if (T) { + hj(f[m >> 2] | 0, 0, na | 0) | 0 + eb = f[m >> 2] | 0 + fb = 0 + gb = 0 + while (1) { + if (!(b[(n + fb) >> 0] | 0)) { + hb = f[(l + ((fb * 12) | 0)) >> 2] | 0 + ib = 0 + do { + jb = (eb + (ib << 2)) | 0 + f[jb >> 2] = + (f[jb >> 2] | 0) + (f[(hb + (ib << 2)) >> 2] | 0) + ib = (ib + 1) | 0 + } while ((ib | 0) != (g | 0)) + kb = ((1 << fb) | (gb & 255)) & 255 + } else kb = gb + fb = (fb + 1) | 0 + if ((fb | 0) == (Ka | 0)) { + lb = kb + break + } else gb = kb + } + } else { + gb = 0 + fb = 0 + while (1) { + if (!(b[(n + gb) >> 0] | 0)) + mb = ((1 << gb) | (fb & 255)) & 255 + else mb = fb + gb = (gb + 1) | 0 + if ((gb | 0) == (Ka | 0)) { + lb = mb + break + } else fb = mb + } + } + fb = f[m >> 2] | 0 + do + if (T) { + f[fb >> 2] = ((f[fb >> 2] | 0) / (db | 0)) | 0 + if (!oa) { + gb = 1 + do { + eb = (fb + (gb << 2)) | 0 + f[eb >> 2] = ((f[eb >> 2] | 0) / (db | 0)) | 0 + gb = (gb + 1) | 0 + } while ((gb | 0) != (g | 0)) + gb = f[_ >> 2] | 0 + if (T) nb = gb + else { + ob = 0 + pb = gb + break + } + } else nb = f[_ >> 2] | 0 + gb = 0 + eb = 0 + while (1) { + ib = + ((f[(fb + (gb << 2)) >> 2] | 0) - + (f[(Ea + (gb << 2)) >> 2] | 0)) | + 0 + hb = (((ib | 0) > -1 ? ib : (0 - ib) | 0) + eb) | 0 + f[(Ia + (gb << 2)) >> 2] = ib + f[(nb + (gb << 2)) >> 2] = (ib << 1) ^ (ib >> 31) + gb = (gb + 1) | 0 + if ((gb | 0) == (g | 0)) { + ob = hb + pb = nb + break + } else eb = hb + } + } else { + ob = 0 + pb = f[_ >> 2] | 0 + } + while (0) + ho(j, $, pb, g) + fb = Tk(j) | 0 + eb = I + gb = om(j) | 0 + hb = Tn(gb | 0, I | 0, fb | 0, eb | 0) | 0 + eb = I + if (Ba) { + fb = Ha + gb = Tn(f[fb >> 2] | 0, f[(fb + 4) >> 2] | 0, db | 0, 0) | 0 + fb = pa + ib = f[fb >> 2] | 0 + jb = f[(fb + 4) >> 2] | 0 + Va = +W( + +(+jm(ib, gb) * (+(ib >>> 0) + 4294967296.0 * +(jb | 0))), + ) + jb = + Tn( + hb | 0, + eb | 0, + (~~Va >>> 0) | 0, + (+K(Va) >= 1.0 + ? Va > 0.0 + ? ~~+Y(+J(Va / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Va - +(~~Va >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + qb = jb + } else qb = hb + hb = f[r >> 2] | 0 + if ( + !((qb | 0) >= (hb | 0) + ? !((qb | 0) <= (hb | 0) ? (ob | 0) < (f[U >> 2] | 0) : 0) + : 0) + ) { + hb = r + f[hb >> 2] = qb + f[(hb + 4) >> 2] = ob + b[V >> 0] = lb + f[Z >> 2] = db + f[v >> 2] = f[m >> 2] + f[w >> 2] = f[E >> 2] + f[k >> 2] = f[v >> 2] + f[j >> 2] = f[w >> 2] + tf(aa, k, j) + f[x >> 2] = Ca + f[y >> 2] = Qa + f[k >> 2] = f[x >> 2] + f[j >> 2] = f[y >> 2] + tf(ba, k, j) + } + if (Ma) break + rb = b[Ja >> 0] | 0 + hb = -1 + jb = rb + while (1) { + eb = (hb + -1) | 0 + sb = (Da + eb) | 0 + ib = jb + jb = b[sb >> 0] | 0 + if ((jb & 255) < (ib & 255)) break + if ((sb | 0) == (n | 0)) { + tb = 86 + break d + } else hb = eb + } + eb = (Da + hb) | 0 + if ((jb & 255) < (rb & 255)) { + ub = Ja + vb = rb + } else { + ib = Da + gb = Ja + while (1) { + fb = (gb + -1) | 0 + if ((jb & 255) < (h[(ib + -2) >> 0] | 0)) { + ub = fb + vb = 1 + break + } else { + wb = gb + gb = fb + ib = wb + } + } + } + b[sb >> 0] = vb + b[ub >> 0] = jb + if ((hb | 0) < -1) { + xb = eb + yb = Ja + } else continue + while (1) { + ib = b[xb >> 0] | 0 + b[xb >> 0] = b[yb >> 0] | 0 + b[yb >> 0] = ib + ib = (xb + 1) | 0 + gb = (yb + -1) | 0 + if (ib >>> 0 < gb >>> 0) { + xb = ib + yb = gb + } else continue d + } + } + if ( + ((tb | 0) == 86 ? ((tb = 0), Oa) : 0) + ? ((eb = b[n >> 0] | 0), + (b[n >> 0] = rb), + (b[Ja >> 0] = eb), + Ra) + : 0 + ) { + eb = Pa + hb = ma + do { + jb = b[hb >> 0] | 0 + b[hb >> 0] = b[eb >> 0] | 0 + b[eb >> 0] = jb + hb = (hb + 1) | 0 + eb = (eb + -1) | 0 + } while (hb >>> 0 < eb >>> 0) + } + if ((db | 0) >= (Ka | 0)) { + Xa = La + Ya = Ia + Za = La + _a = Ia + $a = Qa + ab = Ca + bb = Ia + break + } else db = (db + 1) | 0 + } + } + if (Ba) { + db = f[Z >> 2] | 0 + Ia = (o + ((Ka + -1) << 3)) | 0 + Ca = Ia + Qa = + Tn( + f[Ca >> 2] | 0, + f[(Ca + 4) >> 2] | 0, + db | 0, + ((((db | 0) < 0) << 31) >> 31) | 0, + ) | 0 + db = Ia + f[db >> 2] = Qa + f[(db + 4) >> 2] = I + } + if (T) { + db = f[ba >> 2] | 0 + Qa = f[C >> 2] | 0 + Ia = 0 + do { + Ca = f[(db + (Ia << 2)) >> 2] | 0 + f[(Qa + (Ia << 2)) >> 2] = (Ca << 1) ^ (Ca >> 31) + Ia = (Ia + 1) | 0 + } while ((Ia | 0) != (g | 0)) + zb = Qa + } else zb = f[C >> 2] | 0 + go(j, $, zb, g) + if (Ba) { + Qa = (Ka + -1) | 0 + Ab = (a + 60 + ((Qa * 12) | 0)) | 0 + Ia = (a + 60 + ((Qa * 12) | 0) + 4) | 0 + db = (a + 60 + ((Qa * 12) | 0) + 8) | 0 + Qa = 0 + do { + Ca = f[Ia >> 2] | 0 + La = f[db >> 2] | 0 + Pa = (Ca | 0) == ((La << 5) | 0) + if (!((1 << Qa) & h[V >> 0])) { + if (Pa) { + if (((Ca + 1) | 0) < 0) { + tb = 114 + break b + } + Ra = La << 6 + Ja = (Ca + 32) & -32 + hi( + Ab, + Ca >>> 0 < 1073741823 + ? Ra >>> 0 < Ja >>> 0 + ? Ja + : Ra + : 2147483647, + ) + Bb = f[Ia >> 2] | 0 + } else Bb = Ca + f[Ia >> 2] = Bb + 1 + Ra = ((f[Ab >> 2] | 0) + ((Bb >>> 5) << 2)) | 0 + f[Ra >> 2] = f[Ra >> 2] | (1 << (Bb & 31)) + } else { + if (Pa) { + if (((Ca + 1) | 0) < 0) { + tb = 119 + break b + } + Pa = La << 6 + La = (Ca + 32) & -32 + hi( + Ab, + Ca >>> 0 < 1073741823 + ? Pa >>> 0 < La >>> 0 + ? La + : Pa + : 2147483647, + ) + Cb = f[Ia >> 2] | 0 + } else Cb = Ca + f[Ia >> 2] = Cb + 1 + Ca = ((f[Ab >> 2] | 0) + ((Cb >>> 5) << 2)) | 0 + f[Ca >> 2] = f[Ca >> 2] & ~(1 << (Cb & 31)) + } + Qa = (Qa + 1) | 0 + } while ((Qa | 0) < (Ka | 0)) + } + Qa = (d + (Ga << 2)) | 0 + Ia = f[z >> 2] | 0 + if ((Ia | 0) > 0) { + db = 0 + Ba = f[aa >> 2] | 0 + Ca = Ia + while (1) { + if ((Ca | 0) > 0) { + Ia = 0 + do { + Pa = f[(Ba + (Ia << 2)) >> 2] | 0 + La = f[ca >> 2] | 0 + if ((Pa | 0) > (La | 0)) { + Ra = f[da >> 2] | 0 + f[(Ra + (Ia << 2)) >> 2] = La + Db = Ra + } else { + Ra = f[ea >> 2] | 0 + La = f[da >> 2] | 0 + f[(La + (Ia << 2)) >> 2] = (Pa | 0) < (Ra | 0) ? Ra : Pa + Db = La + } + Ia = (Ia + 1) | 0 + } while ((Ia | 0) < (f[z >> 2] | 0)) + Eb = Db + } else Eb = f[da >> 2] | 0 + Ia = + ((f[(Ea + (db << 2)) >> 2] | 0) - + (f[(Eb + (db << 2)) >> 2] | 0)) | + 0 + La = (Qa + (db << 2)) | 0 + f[La >> 2] = Ia + do + if ((Ia | 0) < (f[fa >> 2] | 0)) { + Fb = ((f[ga >> 2] | 0) + Ia) | 0 + tb = 109 + } else { + if ((Ia | 0) <= (f[ha >> 2] | 0)) break + Fb = (Ia - (f[ga >> 2] | 0)) | 0 + tb = 109 + } + while (0) + if ((tb | 0) == 109) { + tb = 0 + f[La >> 2] = Fb + } + db = (db + 1) | 0 + Ca = f[z >> 2] | 0 + if ((db | 0) >= (Ca | 0)) break + else Ba = Eb + } + } + Ba = f[ia >> 2] | 0 + if (Ba | 0) { + Ca = f[la >> 2] | 0 + if ((Ca | 0) != (Ba | 0)) + f[la >> 2] = Ca + (~(((Ca + -4 - Ba) | 0) >>> 2) << 2) + br(Ba) + } + Ba = f[ja >> 2] | 0 + if (Ba | 0) { + Ca = f[ka >> 2] | 0 + if ((Ca | 0) != (Ba | 0)) + f[ka >> 2] = Ca + (~(((Ca + -4 - Ba) | 0) >>> 2) << 2) + br(Ba) + } + if ((qa | 0) <= 2) { + Gb = _a + Hb = Za + break a + } + Ba = f[B >> 2] | 0 + sa = f[Ba >> 2] | 0 + Ca = (ra + -1) | 0 + if ((((f[(Ba + 4) >> 2] | 0) - sa) >> 2) >>> 0 <= Ca >>> 0) { + Aa = Ba + tb = 18 + break + } else { + Ba = ra + ra = Ca + ta = bb + ua = ab + va = $a + wa = _a + xa = Za + ya = Ya + za = Xa + qa = Ba + } + } + if ((tb | 0) == 18) mq(Aa) + else if ((tb | 0) == 114) mq(Ab) + else if ((tb | 0) == 119) mq(Ab) + } else { + Gb = M + Hb = N + } + while (0) + N = f[l >> 2] | 0 + if ((g | 0) > 0 ? ((f[N >> 2] = 0), (g | 0) != 1) : 0) { + M = 1 + do { + f[(N + (M << 2)) >> 2] = 0 + M = (M + 1) | 0 + } while ((M | 0) != (g | 0)) + } + g = f[z >> 2] | 0 + if ((g | 0) > 0) { + M = (a + 16) | 0 + Ab = (a + 32) | 0 + Aa = (a + 12) | 0 + qa = (a + 28) | 0 + Xa = (a + 20) | 0 + za = (a + 24) | 0 + a = 0 + Ya = N + N = g + while (1) { + if ((N | 0) > 0) { + g = 0 + do { + ya = f[(Ya + (g << 2)) >> 2] | 0 + Za = f[M >> 2] | 0 + if ((ya | 0) > (Za | 0)) { + xa = f[Ab >> 2] | 0 + f[(xa + (g << 2)) >> 2] = Za + Ib = xa + } else { + xa = f[Aa >> 2] | 0 + Za = f[Ab >> 2] | 0 + f[(Za + (g << 2)) >> 2] = (ya | 0) < (xa | 0) ? xa : ya + Ib = Za + } + g = (g + 1) | 0 + } while ((g | 0) < (f[z >> 2] | 0)) + Jb = Ib + } else Jb = f[Ab >> 2] | 0 + g = ((f[(c + (a << 2)) >> 2] | 0) - (f[(Jb + (a << 2)) >> 2] | 0)) | 0 + Za = (d + (a << 2)) | 0 + f[Za >> 2] = g + if ((g | 0) >= (f[qa >> 2] | 0)) { + if ((g | 0) > (f[za >> 2] | 0)) { + Kb = (g - (f[Xa >> 2] | 0)) | 0 + tb = 145 + } + } else { + Kb = ((f[Xa >> 2] | 0) + g) | 0 + tb = 145 + } + if ((tb | 0) == 145) { + tb = 0 + f[Za >> 2] = Kb + } + a = (a + 1) | 0 + N = f[z >> 2] | 0 + if ((a | 0) >= (N | 0)) break + else Ya = Jb + } + } + if (Gb | 0) { + if ((Hb | 0) != (Gb | 0)) + f[H >> 2] = Hb + (~(((Hb + -4 - Gb) | 0) >>> 2) << 2) + br(Gb) + } + Gb = f[m >> 2] | 0 + if (Gb | 0) { + m = f[E >> 2] | 0 + if ((m | 0) != (Gb | 0)) + f[E >> 2] = m + (~(((m + -4 - Gb) | 0) >>> 2) << 2) + br(Gb) + } + Gb = f[(l + 36) >> 2] | 0 + if (Gb | 0) { + m = (l + 40) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Gb | 0)) + f[m >> 2] = E + (~(((E + -4 - Gb) | 0) >>> 2) << 2) + br(Gb) + } + Gb = f[(l + 24) >> 2] | 0 + if (Gb | 0) { + E = (l + 28) | 0 + m = f[E >> 2] | 0 + if ((m | 0) != (Gb | 0)) + f[E >> 2] = m + (~(((m + -4 - Gb) | 0) >>> 2) << 2) + br(Gb) + } + Gb = f[(l + 12) >> 2] | 0 + if (Gb | 0) { + m = (l + 16) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Gb | 0)) + f[m >> 2] = E + (~(((E + -4 - Gb) | 0) >>> 2) << 2) + br(Gb) + } + Gb = f[l >> 2] | 0 + if (!Gb) { + u = i + return 1 + } + E = (l + 4) | 0 + l = f[E >> 2] | 0 + if ((l | 0) != (Gb | 0)) + f[E >> 2] = l + (~(((l + -4 - Gb) | 0) >>> 2) << 2) + br(Gb) + u = i + return 1 + } + function bb(a, c, d, e, g, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0, + Sa = 0, + Ta = 0, + Ua = 0, + Va = 0.0, + Wa = 0, + Xa = 0, + Ya = 0, + Za = 0, + _a = 0, + $a = 0, + ab = 0, + bb = 0, + cb = 0, + db = 0, + eb = 0, + fb = 0, + gb = 0, + hb = 0, + ib = 0, + jb = 0, + kb = 0, + lb = 0, + mb = 0, + nb = 0, + ob = 0, + pb = 0, + qb = 0, + rb = 0, + sb = 0, + tb = 0, + ub = 0, + vb = 0, + wb = 0, + xb = 0, + yb = 0, + zb = 0, + Ab = 0, + Bb = 0, + Cb = 0, + Db = 0, + Eb = 0, + Fb = 0, + Gb = 0, + Hb = 0, + Ib = 0, + Jb = 0, + Kb = 0, + Lb = 0, + Mb = 0 + i = u + u = (u + 240) | 0 + j = (i + 104) | 0 + k = (i + 224) | 0 + l = (i + 176) | 0 + m = (i + 160) | 0 + n = (i + 228) | 0 + o = (i + 72) | 0 + p = (i + 40) | 0 + q = (i + 132) | 0 + r = i + s = (i + 172) | 0 + t = (i + 156) | 0 + v = (i + 152) | 0 + w = (i + 148) | 0 + x = (i + 144) | 0 + y = (i + 128) | 0 + z = (a + 8) | 0 + Ah(z, c, e, g) + e = f[(a + 48) >> 2] | 0 + A = f[(a + 52) >> 2] | 0 + B = l + C = (B + 48) | 0 + do { + f[B >> 2] = 0 + B = (B + 4) | 0 + } while ((B | 0) < (C | 0)) + if (!g) { + D = 0 + E = 0 + } else { + oi(l, g) + D = f[(l + 12) >> 2] | 0 + E = f[(l + 16) >> 2] | 0 + } + B = (l + 16) | 0 + C = (E - D) >> 2 + F = D + D = E + if (C >>> 0 >= g >>> 0) { + if ( + C >>> 0 > g >>> 0 ? ((E = (F + (g << 2)) | 0), (E | 0) != (D | 0)) : 0 + ) + f[B >> 2] = D + (~(((D + -4 - E) | 0) >>> 2) << 2) + } else oi((l + 12) | 0, (g - C) | 0) + C = (l + 24) | 0 + E = (l + 28) | 0 + D = f[E >> 2] | 0 + B = f[C >> 2] | 0 + F = (D - B) >> 2 + G = B + B = D + if (F >>> 0 >= g >>> 0) { + if ( + F >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[E >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else oi(C, (g - F) | 0) + F = (l + 36) | 0 + C = (l + 40) | 0 + D = f[C >> 2] | 0 + B = f[F >> 2] | 0 + E = (D - B) >> 2 + G = B + B = D + if (E >>> 0 >= g >>> 0) { + if ( + E >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[C >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else oi(F, (g - E) | 0) + f[m >> 2] = 0 + E = (m + 4) | 0 + f[E >> 2] = 0 + f[(m + 8) >> 2] = 0 + F = (g | 0) == 0 + do + if (!F) + if (g >>> 0 > 1073741823) mq(m) + else { + D = g << 2 + B = dn(D) | 0 + f[m >> 2] = B + C = (B + (g << 2)) | 0 + f[(m + 8) >> 2] = C + hj(B | 0, 0, D | 0) | 0 + f[E >> 2] = C + break + } + while (0) + C = (a + 152) | 0 + D = (a + 156) | 0 + B = f[D >> 2] | 0 + G = f[C >> 2] | 0 + H = (B - G) >> 2 + L = G + G = B + if (H >>> 0 >= g >>> 0) { + if ( + H >>> 0 > g >>> 0 ? ((B = (L + (g << 2)) | 0), (B | 0) != (G | 0)) : 0 + ) + f[D >> 2] = G + (~(((G + -4 - B) | 0) >>> 2) << 2) + } else oi(C, (g - H) | 0) + f[o >> 2] = 0 + f[(o + 4) >> 2] = 0 + f[(o + 8) >> 2] = 0 + f[(o + 12) >> 2] = 0 + f[(o + 16) >> 2] = 0 + f[(o + 20) >> 2] = 0 + f[(o + 24) >> 2] = 0 + f[(o + 28) >> 2] = 0 + f[p >> 2] = 0 + f[(p + 4) >> 2] = 0 + f[(p + 8) >> 2] = 0 + f[(p + 12) >> 2] = 0 + f[(p + 16) >> 2] = 0 + f[(p + 20) >> 2] = 0 + f[(p + 24) >> 2] = 0 + f[(p + 28) >> 2] = 0 + f[q >> 2] = 0 + H = (q + 4) | 0 + f[H >> 2] = 0 + f[(q + 8) >> 2] = 0 + if (F) { + M = 0 + N = 0 + O = 0 + P = 0 + } else { + F = g << 2 + B = dn(F) | 0 + f[q >> 2] = B + G = (B + (g << 2)) | 0 + f[(q + 8) >> 2] = G + hj(B | 0, 0, F | 0) | 0 + f[H >> 2] = G + M = B + N = G + O = G + P = B + } + B = (a + 56) | 0 + G = f[B >> 2] | 0 + F = f[(G + 4) >> 2] | 0 + D = f[G >> 2] | 0 + L = (F - D) | 0 + a: do + if ((L | 0) > 4) { + Q = L >>> 2 + R = (e + 12) | 0 + S = (g | 0) > 0 + T = (r + 4) | 0 + U = (r + 8) | 0 + V = (r + 12) | 0 + Z = (a + 152) | 0 + _ = (a + 112) | 0 + $ = (r + 16) | 0 + aa = (r + 28) | 0 + ba = (a + 16) | 0 + ca = (a + 32) | 0 + da = (a + 12) | 0 + ea = (a + 28) | 0 + fa = (a + 20) | 0 + ga = (a + 24) | 0 + ha = (r + 28) | 0 + ia = (r + 16) | 0 + ja = (r + 20) | 0 + ka = (r + 32) | 0 + la = (n + 1) | 0 + ma = g << 2 + na = (g | 0) == 1 + oa = (Q + -1) | 0 + if (((F - D) >> 2) >>> 0 > oa >>> 0) { + pa = Q + qa = oa + ra = D + sa = M + ta = P + ua = O + va = M + wa = N + xa = M + ya = N + } else { + za = G + mq(za) + } + b: while (1) { + oa = f[(ra + (qa << 2)) >> 2] | 0 + Q = ((((oa >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + oa) | 0 + Aa = ((oa | 0) == -1) | ((Q | 0) == -1) + Ba = 1 + Ca = 0 + Da = oa + c: while (1) { + Ea = Ba ^ 1 + Fa = Ca + Ga = Da + while (1) { + if ((Ga | 0) == -1) { + Ha = Fa + break c + } + Ia = f[(l + ((Fa * 12) | 0)) >> 2] | 0 + Ja = f[R >> 2] | 0 + Ka = f[(Ja + (Ga << 2)) >> 2] | 0 + if ((Ka | 0) != -1) { + La = f[e >> 2] | 0 + Ma = f[A >> 2] | 0 + Na = f[(Ma + (f[(La + (Ka << 2)) >> 2] << 2)) >> 2] | 0 + Oa = (Ka + 1) | 0 + Pa = ((Oa >>> 0) % 3 | 0 | 0) == 0 ? (Ka + -2) | 0 : Oa + if ((Pa | 0) == -1) Qa = -1 + else Qa = f[(La + (Pa << 2)) >> 2] | 0 + Pa = f[(Ma + (Qa << 2)) >> 2] | 0 + Oa = ((((Ka >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Ka) | 0 + if ((Oa | 0) == -1) Ra = -1 + else Ra = f[(La + (Oa << 2)) >> 2] | 0 + Oa = f[(Ma + (Ra << 2)) >> 2] | 0 + if ( + ((Na | 0) < (qa | 0)) & + ((Pa | 0) < (qa | 0)) & + ((Oa | 0) < (qa | 0)) + ) { + Ma = X(Na, g) | 0 + Na = X(Pa, g) | 0 + Pa = X(Oa, g) | 0 + if (S) { + Oa = 0 + do { + f[(Ia + (Oa << 2)) >> 2] = + (f[(c + ((Oa + Pa) << 2)) >> 2] | 0) + + (f[(c + ((Oa + Na) << 2)) >> 2] | 0) - + (f[(c + ((Oa + Ma) << 2)) >> 2] | 0) + Oa = (Oa + 1) | 0 + } while ((Oa | 0) != (g | 0)) + } + Oa = (Fa + 1) | 0 + if ((Oa | 0) == 4) { + Ha = 4 + break c + } else Sa = Oa + } else Sa = Fa + } else Sa = Fa + do + if (Ba) { + Oa = (Ga + 1) | 0 + Ma = ((Oa >>> 0) % 3 | 0 | 0) == 0 ? (Ga + -2) | 0 : Oa + if ( + (Ma | 0) != -1 + ? ((Oa = f[(Ja + (Ma << 2)) >> 2] | 0), + (Ma = (Oa + 1) | 0), + (Oa | 0) != -1) + : 0 + ) + Ta = ((Ma >>> 0) % 3 | 0 | 0) == 0 ? (Oa + -2) | 0 : Ma + else Ta = -1 + } else { + Ma = ((((Ga >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Ga) | 0 + if ( + (Ma | 0) != -1 + ? ((Oa = f[(Ja + (Ma << 2)) >> 2] | 0), (Oa | 0) != -1) + : 0 + ) + if (!((Oa >>> 0) % 3 | 0)) { + Ta = (Oa + 2) | 0 + break + } else { + Ta = (Oa + -1) | 0 + break + } + else Ta = -1 + } + while (0) + if ((Ta | 0) == (oa | 0)) { + Ha = Sa + break c + } + if (((Ta | 0) != -1) | Ea) { + Fa = Sa + Ga = Ta + } else break + } + if (Aa) { + Ba = 0 + Ca = Sa + Da = -1 + continue + } + Ga = f[(Ja + (Q << 2)) >> 2] | 0 + if ((Ga | 0) == -1) { + Ba = 0 + Ca = Sa + Da = -1 + continue + } + if (!((Ga >>> 0) % 3 | 0)) { + Ba = 0 + Ca = Sa + Da = (Ga + 2) | 0 + continue + } else { + Ba = 0 + Ca = Sa + Da = (Ga + -1) | 0 + continue + } + } + Da = X(qa, g) | 0 + f[r >> 2] = 0 + f[T >> 2] = 0 + b[U >> 0] = 0 + f[V >> 2] = 0 + f[(V + 4) >> 2] = 0 + f[(V + 8) >> 2] = 0 + f[(V + 12) >> 2] = 0 + f[(V + 16) >> 2] = 0 + f[(V + 20) >> 2] = 0 + f[(V + 24) >> 2] = 0 + Ca = (c + ((X((pa + -2) | 0, g) | 0) << 2)) | 0 + Ba = (c + (Da << 2)) | 0 + Q = f[Z >> 2] | 0 + if (S) { + Aa = 0 + oa = 0 + while (1) { + Ga = + ((f[(Ca + (Aa << 2)) >> 2] | 0) - + (f[(Ba + (Aa << 2)) >> 2] | 0)) | + 0 + Fa = (((Ga | 0) > -1 ? Ga : (0 - Ga) | 0) + oa) | 0 + f[(sa + (Aa << 2)) >> 2] = Ga + f[(Q + (Aa << 2)) >> 2] = (Ga << 1) ^ (Ga >> 31) + Aa = (Aa + 1) | 0 + if ((Aa | 0) == (g | 0)) { + Ua = Fa + break + } else oa = Fa + } + } else Ua = 0 + ho(j, _, Q, g) + oa = Tk(j) | 0 + Aa = I + Fa = om(j) | 0 + Ga = Tn(Fa | 0, I | 0, oa | 0, Aa | 0) | 0 + Aa = I + oa = (Ha | 0) > 0 + if (oa) { + Fa = (Ha + -1) | 0 + Ea = (p + (Fa << 3)) | 0 + Oa = Ea + Ma = + Tn( + f[Oa >> 2] | 0, + f[(Oa + 4) >> 2] | 0, + Ha | 0, + ((((Ha | 0) < 0) << 31) >> 31) | 0, + ) | 0 + Oa = I + Na = Ea + f[Na >> 2] = Ma + f[(Na + 4) >> 2] = Oa + Va = +W( + +( + +jm(Ma, f[(o + (Fa << 3)) >> 2] | 0) * + (+(Ma >>> 0) + 4294967296.0 * +(Oa | 0)) + ), + ) + Oa = + Tn( + Ga | 0, + Aa | 0, + (~~Va >>> 0) | 0, + (+K(Va) >= 1.0 + ? Va > 0.0 + ? ~~+Y(+J(Va / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Va - +(~~Va >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + Wa = Oa + } else Wa = Ga + Ga = r + f[Ga >> 2] = Wa + f[(Ga + 4) >> 2] = Ua + b[U >> 0] = 0 + f[V >> 2] = 0 + Mf($, Ca, (Ca + (g << 2)) | 0) + f[s >> 2] = ta + f[t >> 2] = ua + f[k >> 2] = f[s >> 2] + f[j >> 2] = f[t >> 2] + tf(aa, k, j) + if ((Ha | 0) < 1) { + Xa = ya + Ya = xa + Za = wa + _a = va + $a = ua + ab = ta + bb = ta + } else { + Ga = (n + Ha) | 0 + Oa = f[q >> 2] | 0 + Aa = (Ha + -1) | 0 + Ma = (o + (Aa << 3)) | 0 + Fa = (p + (Aa << 3)) | 0 + Aa = Oa + Na = f[H >> 2] | 0 + Ea = (Ga + -1) | 0 + Pa = (Ea | 0) == (n | 0) + Ia = (Ga + -2) | 0 + La = la >>> 0 < Ia >>> 0 + Ka = ~Ha + cb = (Ha + 2 + ((Ka | 0) > -2 ? Ka : -2)) | 0 + Ka = Na + db = Ea >>> 0 > n >>> 0 + eb = 0 + fb = 1 + while (1) { + eb = (eb + 1) | 0 + hj(n | 0, 1, cb | 0) | 0 + hj(n | 0, 0, eb | 0) | 0 + d: while (1) { + if (S) { + hj(f[m >> 2] | 0, 0, ma | 0) | 0 + gb = f[m >> 2] | 0 + hb = 0 + ib = 0 + while (1) { + if (!(b[(n + hb) >> 0] | 0)) { + jb = f[(l + ((hb * 12) | 0)) >> 2] | 0 + kb = 0 + do { + lb = (gb + (kb << 2)) | 0 + f[lb >> 2] = + (f[lb >> 2] | 0) + (f[(jb + (kb << 2)) >> 2] | 0) + kb = (kb + 1) | 0 + } while ((kb | 0) != (g | 0)) + mb = ((1 << hb) | (ib & 255)) & 255 + } else mb = ib + hb = (hb + 1) | 0 + if ((hb | 0) == (Ha | 0)) { + nb = mb + break + } else ib = mb + } + } else { + ib = 0 + hb = 0 + while (1) { + if (!(b[(n + ib) >> 0] | 0)) + ob = ((1 << ib) | (hb & 255)) & 255 + else ob = hb + ib = (ib + 1) | 0 + if ((ib | 0) == (Ha | 0)) { + nb = ob + break + } else hb = ob + } + } + hb = f[m >> 2] | 0 + do + if (S) { + f[hb >> 2] = ((f[hb >> 2] | 0) / (fb | 0)) | 0 + if (!na) { + ib = 1 + do { + gb = (hb + (ib << 2)) | 0 + f[gb >> 2] = ((f[gb >> 2] | 0) / (fb | 0)) | 0 + ib = (ib + 1) | 0 + } while ((ib | 0) != (g | 0)) + ib = f[Z >> 2] | 0 + if (S) pb = ib + else { + qb = 0 + rb = ib + break + } + } else pb = f[Z >> 2] | 0 + ib = 0 + gb = 0 + while (1) { + kb = + ((f[(hb + (ib << 2)) >> 2] | 0) - + (f[(Ba + (ib << 2)) >> 2] | 0)) | + 0 + jb = (((kb | 0) > -1 ? kb : (0 - kb) | 0) + gb) | 0 + f[(Oa + (ib << 2)) >> 2] = kb + f[(pb + (ib << 2)) >> 2] = (kb << 1) ^ (kb >> 31) + ib = (ib + 1) | 0 + if ((ib | 0) == (g | 0)) { + qb = jb + rb = pb + break + } else gb = jb + } + } else { + qb = 0 + rb = f[Z >> 2] | 0 + } + while (0) + ho(j, _, rb, g) + hb = Tk(j) | 0 + gb = I + ib = om(j) | 0 + jb = Tn(ib | 0, I | 0, hb | 0, gb | 0) | 0 + gb = I + if (oa) { + hb = Ma + ib = Tn(f[hb >> 2] | 0, f[(hb + 4) >> 2] | 0, fb | 0, 0) | 0 + hb = Fa + kb = f[hb >> 2] | 0 + lb = f[(hb + 4) >> 2] | 0 + Va = +W( + +(+jm(kb, ib) * (+(kb >>> 0) + 4294967296.0 * +(lb | 0))), + ) + lb = + Tn( + jb | 0, + gb | 0, + (~~Va >>> 0) | 0, + (+K(Va) >= 1.0 + ? Va > 0.0 + ? ~~+Y(+J(Va / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Va - +(~~Va >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + sb = lb + } else sb = jb + jb = f[r >> 2] | 0 + if ( + !((sb | 0) >= (jb | 0) + ? !((sb | 0) <= (jb | 0) ? (qb | 0) < (f[T >> 2] | 0) : 0) + : 0) + ) { + jb = r + f[jb >> 2] = sb + f[(jb + 4) >> 2] = qb + b[U >> 0] = nb + f[V >> 2] = fb + f[v >> 2] = f[m >> 2] + f[w >> 2] = f[E >> 2] + f[k >> 2] = f[v >> 2] + f[j >> 2] = f[w >> 2] + tf($, k, j) + f[x >> 2] = Aa + f[y >> 2] = Na + f[k >> 2] = f[x >> 2] + f[j >> 2] = f[y >> 2] + tf(aa, k, j) + } + if (Pa) break + tb = b[Ea >> 0] | 0 + jb = -1 + lb = tb + while (1) { + gb = (jb + -1) | 0 + ub = (Ga + gb) | 0 + kb = lb + lb = b[ub >> 0] | 0 + if ((lb & 255) < (kb & 255)) break + if ((ub | 0) == (n | 0)) { + vb = 86 + break d + } else jb = gb + } + gb = (Ga + jb) | 0 + if ((lb & 255) < (tb & 255)) { + wb = Ea + xb = tb + } else { + kb = Ga + ib = Ea + while (1) { + hb = (ib + -1) | 0 + if ((lb & 255) < (h[(kb + -2) >> 0] | 0)) { + wb = hb + xb = 1 + break + } else { + yb = ib + ib = hb + kb = yb + } + } + } + b[ub >> 0] = xb + b[wb >> 0] = lb + if ((jb | 0) < -1) { + zb = gb + Ab = Ea + } else continue + while (1) { + kb = b[zb >> 0] | 0 + b[zb >> 0] = b[Ab >> 0] | 0 + b[Ab >> 0] = kb + kb = (zb + 1) | 0 + ib = (Ab + -1) | 0 + if (kb >>> 0 < ib >>> 0) { + zb = kb + Ab = ib + } else continue d + } + } + if ( + ((vb | 0) == 86 ? ((vb = 0), db) : 0) + ? ((gb = b[n >> 0] | 0), + (b[n >> 0] = tb), + (b[Ea >> 0] = gb), + La) + : 0 + ) { + gb = Ia + jb = la + do { + lb = b[jb >> 0] | 0 + b[jb >> 0] = b[gb >> 0] | 0 + b[gb >> 0] = lb + jb = (jb + 1) | 0 + gb = (gb + -1) | 0 + } while (jb >>> 0 < gb >>> 0) + } + if ((fb | 0) >= (Ha | 0)) { + Xa = Ka + Ya = Oa + Za = Ka + _a = Oa + $a = Na + ab = Aa + bb = Oa + break + } else fb = (fb + 1) | 0 + } + } + if (oa) { + fb = f[V >> 2] | 0 + Oa = (o + ((Ha + -1) << 3)) | 0 + Aa = Oa + Na = + Tn( + f[Aa >> 2] | 0, + f[(Aa + 4) >> 2] | 0, + fb | 0, + ((((fb | 0) < 0) << 31) >> 31) | 0, + ) | 0 + fb = Oa + f[fb >> 2] = Na + f[(fb + 4) >> 2] = I + } + if (S) { + fb = f[aa >> 2] | 0 + Na = f[C >> 2] | 0 + Oa = 0 + do { + Aa = f[(fb + (Oa << 2)) >> 2] | 0 + f[(Na + (Oa << 2)) >> 2] = (Aa << 1) ^ (Aa >> 31) + Oa = (Oa + 1) | 0 + } while ((Oa | 0) != (g | 0)) + Bb = Na + } else Bb = f[C >> 2] | 0 + go(j, _, Bb, g) + if (oa) { + Na = (Ha + -1) | 0 + Cb = (a + 60 + ((Na * 12) | 0)) | 0 + Oa = (a + 60 + ((Na * 12) | 0) + 4) | 0 + fb = (a + 60 + ((Na * 12) | 0) + 8) | 0 + Na = 0 + do { + Aa = f[Oa >> 2] | 0 + Ka = f[fb >> 2] | 0 + Ia = (Aa | 0) == ((Ka << 5) | 0) + if (!((1 << Na) & h[U >> 0])) { + if (Ia) { + if (((Aa + 1) | 0) < 0) { + vb = 114 + break b + } + La = Ka << 6 + Ea = (Aa + 32) & -32 + hi( + Cb, + Aa >>> 0 < 1073741823 + ? La >>> 0 < Ea >>> 0 + ? Ea + : La + : 2147483647, + ) + Db = f[Oa >> 2] | 0 + } else Db = Aa + f[Oa >> 2] = Db + 1 + La = ((f[Cb >> 2] | 0) + ((Db >>> 5) << 2)) | 0 + f[La >> 2] = f[La >> 2] | (1 << (Db & 31)) + } else { + if (Ia) { + if (((Aa + 1) | 0) < 0) { + vb = 119 + break b + } + Ia = Ka << 6 + Ka = (Aa + 32) & -32 + hi( + Cb, + Aa >>> 0 < 1073741823 + ? Ia >>> 0 < Ka >>> 0 + ? Ka + : Ia + : 2147483647, + ) + Eb = f[Oa >> 2] | 0 + } else Eb = Aa + f[Oa >> 2] = Eb + 1 + Aa = ((f[Cb >> 2] | 0) + ((Eb >>> 5) << 2)) | 0 + f[Aa >> 2] = f[Aa >> 2] & ~(1 << (Eb & 31)) + } + Na = (Na + 1) | 0 + } while ((Na | 0) < (Ha | 0)) + } + Na = (d + (Da << 2)) | 0 + Oa = f[z >> 2] | 0 + if ((Oa | 0) > 0) { + fb = 0 + oa = f[$ >> 2] | 0 + Aa = Oa + while (1) { + if ((Aa | 0) > 0) { + Oa = 0 + do { + Ia = f[(oa + (Oa << 2)) >> 2] | 0 + Ka = f[ba >> 2] | 0 + if ((Ia | 0) > (Ka | 0)) { + La = f[ca >> 2] | 0 + f[(La + (Oa << 2)) >> 2] = Ka + Fb = La + } else { + La = f[da >> 2] | 0 + Ka = f[ca >> 2] | 0 + f[(Ka + (Oa << 2)) >> 2] = (Ia | 0) < (La | 0) ? La : Ia + Fb = Ka + } + Oa = (Oa + 1) | 0 + } while ((Oa | 0) < (f[z >> 2] | 0)) + Gb = Fb + } else Gb = f[ca >> 2] | 0 + Oa = + ((f[(Ba + (fb << 2)) >> 2] | 0) - + (f[(Gb + (fb << 2)) >> 2] | 0)) | + 0 + Ka = (Na + (fb << 2)) | 0 + f[Ka >> 2] = Oa + do + if ((Oa | 0) < (f[ea >> 2] | 0)) { + Hb = ((f[fa >> 2] | 0) + Oa) | 0 + vb = 109 + } else { + if ((Oa | 0) <= (f[ga >> 2] | 0)) break + Hb = (Oa - (f[fa >> 2] | 0)) | 0 + vb = 109 + } + while (0) + if ((vb | 0) == 109) { + vb = 0 + f[Ka >> 2] = Hb + } + fb = (fb + 1) | 0 + Aa = f[z >> 2] | 0 + if ((fb | 0) >= (Aa | 0)) break + else oa = Gb + } + } + oa = f[ha >> 2] | 0 + if (oa | 0) { + Aa = f[ka >> 2] | 0 + if ((Aa | 0) != (oa | 0)) + f[ka >> 2] = Aa + (~(((Aa + -4 - oa) | 0) >>> 2) << 2) + br(oa) + } + oa = f[ia >> 2] | 0 + if (oa | 0) { + Aa = f[ja >> 2] | 0 + if ((Aa | 0) != (oa | 0)) + f[ja >> 2] = Aa + (~(((Aa + -4 - oa) | 0) >>> 2) << 2) + br(oa) + } + if ((pa | 0) <= 2) { + Ib = _a + Jb = Za + break a + } + oa = f[B >> 2] | 0 + ra = f[oa >> 2] | 0 + Aa = (qa + -1) | 0 + if ((((f[(oa + 4) >> 2] | 0) - ra) >> 2) >>> 0 <= Aa >>> 0) { + za = oa + vb = 18 + break + } else { + oa = qa + qa = Aa + sa = bb + ta = ab + ua = $a + va = _a + wa = Za + xa = Ya + ya = Xa + pa = oa + } + } + if ((vb | 0) == 18) mq(za) + else if ((vb | 0) == 114) mq(Cb) + else if ((vb | 0) == 119) mq(Cb) + } else { + Ib = M + Jb = N + } + while (0) + N = f[l >> 2] | 0 + if ((g | 0) > 0 ? ((f[N >> 2] = 0), (g | 0) != 1) : 0) { + M = 1 + do { + f[(N + (M << 2)) >> 2] = 0 + M = (M + 1) | 0 + } while ((M | 0) != (g | 0)) + } + g = f[z >> 2] | 0 + if ((g | 0) > 0) { + M = (a + 16) | 0 + Cb = (a + 32) | 0 + za = (a + 12) | 0 + pa = (a + 28) | 0 + Xa = (a + 20) | 0 + ya = (a + 24) | 0 + a = 0 + Ya = N + N = g + while (1) { + if ((N | 0) > 0) { + g = 0 + do { + xa = f[(Ya + (g << 2)) >> 2] | 0 + Za = f[M >> 2] | 0 + if ((xa | 0) > (Za | 0)) { + wa = f[Cb >> 2] | 0 + f[(wa + (g << 2)) >> 2] = Za + Kb = wa + } else { + wa = f[za >> 2] | 0 + Za = f[Cb >> 2] | 0 + f[(Za + (g << 2)) >> 2] = (xa | 0) < (wa | 0) ? wa : xa + Kb = Za + } + g = (g + 1) | 0 + } while ((g | 0) < (f[z >> 2] | 0)) + Lb = Kb + } else Lb = f[Cb >> 2] | 0 + g = ((f[(c + (a << 2)) >> 2] | 0) - (f[(Lb + (a << 2)) >> 2] | 0)) | 0 + Za = (d + (a << 2)) | 0 + f[Za >> 2] = g + if ((g | 0) >= (f[pa >> 2] | 0)) { + if ((g | 0) > (f[ya >> 2] | 0)) { + Mb = (g - (f[Xa >> 2] | 0)) | 0 + vb = 145 + } + } else { + Mb = ((f[Xa >> 2] | 0) + g) | 0 + vb = 145 + } + if ((vb | 0) == 145) { + vb = 0 + f[Za >> 2] = Mb + } + a = (a + 1) | 0 + N = f[z >> 2] | 0 + if ((a | 0) >= (N | 0)) break + else Ya = Lb + } + } + if (Ib | 0) { + if ((Jb | 0) != (Ib | 0)) + f[H >> 2] = Jb + (~(((Jb + -4 - Ib) | 0) >>> 2) << 2) + br(Ib) + } + Ib = f[m >> 2] | 0 + if (Ib | 0) { + m = f[E >> 2] | 0 + if ((m | 0) != (Ib | 0)) + f[E >> 2] = m + (~(((m + -4 - Ib) | 0) >>> 2) << 2) + br(Ib) + } + Ib = f[(l + 36) >> 2] | 0 + if (Ib | 0) { + m = (l + 40) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Ib | 0)) + f[m >> 2] = E + (~(((E + -4 - Ib) | 0) >>> 2) << 2) + br(Ib) + } + Ib = f[(l + 24) >> 2] | 0 + if (Ib | 0) { + E = (l + 28) | 0 + m = f[E >> 2] | 0 + if ((m | 0) != (Ib | 0)) + f[E >> 2] = m + (~(((m + -4 - Ib) | 0) >>> 2) << 2) + br(Ib) + } + Ib = f[(l + 12) >> 2] | 0 + if (Ib | 0) { + m = (l + 16) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Ib | 0)) + f[m >> 2] = E + (~(((E + -4 - Ib) | 0) >>> 2) << 2) + br(Ib) + } + Ib = f[l >> 2] | 0 + if (!Ib) { + u = i + return 1 + } + E = (l + 4) | 0 + l = f[E >> 2] | 0 + if ((l | 0) != (Ib | 0)) + f[E >> 2] = l + (~(((l + -4 - Ib) | 0) >>> 2) << 2) + br(Ib) + u = i + return 1 + } + function cb(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + b = u + u = (u + 16) | 0 + c = b + d = (b + 8) | 0 + e = (b + 4) | 0 + f[d >> 2] = a + do + if (a >>> 0 >= 212) { + g = ((a >>> 0) / 210) | 0 + h = (g * 210) | 0 + f[e >> 2] = a - h + i = 0 + j = g + g = ((zl(6640, 6832, e, c) | 0) - 6640) >> 2 + k = h + a: while (1) { + l = ((f[(6640 + (g << 2)) >> 2] | 0) + k) | 0 + h = 5 + while (1) { + if (h >>> 0 >= 47) { + m = 211 + n = i + o = 8 + break + } + p = f[(6448 + (h << 2)) >> 2] | 0 + q = ((l >>> 0) / (p >>> 0)) | 0 + if (q >>> 0 < p >>> 0) { + o = 106 + break a + } + if ((l | 0) == (X(q, p) | 0)) { + r = i + break + } else h = (h + 1) | 0 + } + b: do + if ((o | 0) == 8) { + c: while (1) { + o = 0 + h = ((l >>> 0) / (m >>> 0)) | 0 + do + if (h >>> 0 >= m >>> 0) + if ((l | 0) != (X(h, m) | 0)) { + p = (m + 10) | 0 + q = ((l >>> 0) / (p >>> 0)) | 0 + if (q >>> 0 >= p >>> 0) + if ((l | 0) != (X(q, p) | 0)) { + q = (m + 12) | 0 + s = ((l >>> 0) / (q >>> 0)) | 0 + if (s >>> 0 >= q >>> 0) + if ((l | 0) != (X(s, q) | 0)) { + s = (m + 16) | 0 + t = ((l >>> 0) / (s >>> 0)) | 0 + if (t >>> 0 >= s >>> 0) + if ((l | 0) != (X(t, s) | 0)) { + t = (m + 18) | 0 + v = ((l >>> 0) / (t >>> 0)) | 0 + if (v >>> 0 >= t >>> 0) + if ((l | 0) != (X(v, t) | 0)) { + v = (m + 22) | 0 + w = ((l >>> 0) / (v >>> 0)) | 0 + if (w >>> 0 >= v >>> 0) + if ((l | 0) != (X(w, v) | 0)) { + w = (m + 28) | 0 + x = ((l >>> 0) / (w >>> 0)) | 0 + if (x >>> 0 >= w >>> 0) + if ((l | 0) == (X(x, w) | 0)) { + y = w + z = 9 + A = n + } else { + x = (m + 30) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 36) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 40) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 42) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 46) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 52) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 58) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 60) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 66) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 70) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 72) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 78) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 82) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 88) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 96) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 100) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 102) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 106) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 108) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 112) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 120) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 126) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 130) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 136) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 138) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 142) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 148) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 150) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 156) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 162) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 166) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 168) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 172) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 178) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 180) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 186) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 190) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 192) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 196) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 198) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 208) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + C = B >>> 0 < x >>> 0 + D = (l | 0) == (X(B, x) | 0) + y = C | D ? x : (m + 210) | 0 + z = C ? 1 : D ? 9 : 0 + A = C ? l : n + } + else { + y = w + z = 1 + A = l + } + } else { + y = v + z = 9 + A = n + } + else { + y = v + z = 1 + A = l + } + } else { + y = t + z = 9 + A = n + } + else { + y = t + z = 1 + A = l + } + } else { + y = s + z = 9 + A = n + } + else { + y = s + z = 1 + A = l + } + } else { + y = q + z = 9 + A = n + } + else { + y = q + z = 1 + A = l + } + } else { + y = p + z = 9 + A = n + } + else { + y = p + z = 1 + A = l + } + } else { + y = m + z = 9 + A = n + } + else { + y = m + z = 1 + A = l + } + while (0) + switch (z & 15) { + case 9: { + r = A + break b + break + } + case 0: { + m = y + n = A + o = 8 + break + } + default: + break c + } + } + if (!z) r = A + else { + o = 107 + break a + } + } + while (0) + h = (g + 1) | 0 + p = (h | 0) == 48 + q = (j + (p & 1)) | 0 + i = r + j = q + g = p ? 0 : h + k = (q * 210) | 0 + } + if ((o | 0) == 106) { + f[d >> 2] = l + E = l + break + } else if ((o | 0) == 107) { + f[d >> 2] = l + E = A + break + } + } else { + k = zl(6448, 6640, d, c) | 0 + E = f[k >> 2] | 0 + } + while (0) + u = b + return E | 0 + } + function db(a, c, d, e, g, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0, + Sa = 0, + Ta = 0.0, + Ua = 0, + Va = 0, + Wa = 0, + Xa = 0, + Ya = 0, + Za = 0, + _a = 0, + $a = 0, + ab = 0, + bb = 0, + cb = 0, + db = 0, + eb = 0, + fb = 0, + gb = 0, + hb = 0, + ib = 0, + jb = 0, + kb = 0, + lb = 0, + mb = 0, + nb = 0, + ob = 0, + pb = 0, + qb = 0, + rb = 0, + sb = 0, + tb = 0, + ub = 0, + vb = 0, + wb = 0, + xb = 0, + yb = 0, + zb = 0, + Ab = 0, + Bb = 0, + Cb = 0 + i = u + u = (u + 256) | 0 + e = (i + 104) | 0 + j = (i + 240) | 0 + k = (i + 224) | 0 + l = (i + 160) | 0 + m = (i + 140) | 0 + n = (i + 248) | 0 + o = (i + 72) | 0 + p = (i + 40) | 0 + q = (i + 128) | 0 + r = i + s = (i + 232) | 0 + t = (i + 220) | 0 + v = (i + 216) | 0 + w = (i + 212) | 0 + x = (i + 208) | 0 + y = (i + 152) | 0 + z = f[(a + 28) >> 2] | 0 + A = f[(a + 32) >> 2] | 0 + B = l + C = (B + 48) | 0 + do { + f[B >> 2] = 0 + B = (B + 4) | 0 + } while ((B | 0) < (C | 0)) + if (!g) { + D = 0 + E = 0 + } else { + oi(l, g) + D = f[(l + 12) >> 2] | 0 + E = f[(l + 16) >> 2] | 0 + } + B = (l + 16) | 0 + C = (E - D) >> 2 + F = D + D = E + if (C >>> 0 >= g >>> 0) { + if ( + C >>> 0 > g >>> 0 ? ((E = (F + (g << 2)) | 0), (E | 0) != (D | 0)) : 0 + ) + f[B >> 2] = D + (~(((D + -4 - E) | 0) >>> 2) << 2) + } else oi((l + 12) | 0, (g - C) | 0) + C = (l + 24) | 0 + E = (l + 28) | 0 + D = f[E >> 2] | 0 + B = f[C >> 2] | 0 + F = (D - B) >> 2 + G = B + B = D + if (F >>> 0 >= g >>> 0) { + if ( + F >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[E >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else oi(C, (g - F) | 0) + F = (l + 36) | 0 + C = (l + 40) | 0 + D = f[C >> 2] | 0 + B = f[F >> 2] | 0 + E = (D - B) >> 2 + G = B + B = D + if (E >>> 0 >= g >>> 0) { + if ( + E >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[C >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else oi(F, (g - E) | 0) + f[m >> 2] = 0 + E = (m + 4) | 0 + f[E >> 2] = 0 + f[(m + 8) >> 2] = 0 + F = (g | 0) == 0 + do + if (!F) + if (g >>> 0 > 1073741823) mq(m) + else { + D = g << 2 + B = dn(D) | 0 + f[m >> 2] = B + C = (B + (g << 2)) | 0 + f[(m + 8) >> 2] = C + hj(B | 0, 0, D | 0) | 0 + f[E >> 2] = C + break + } + while (0) + C = (a + 136) | 0 + D = (a + 140) | 0 + B = f[D >> 2] | 0 + G = f[C >> 2] | 0 + H = (B - G) >> 2 + L = G + G = B + if (H >>> 0 >= g >>> 0) { + if ( + H >>> 0 > g >>> 0 ? ((B = (L + (g << 2)) | 0), (B | 0) != (G | 0)) : 0 + ) + f[D >> 2] = G + (~(((G + -4 - B) | 0) >>> 2) << 2) + } else oi(C, (g - H) | 0) + f[o >> 2] = 0 + f[(o + 4) >> 2] = 0 + f[(o + 8) >> 2] = 0 + f[(o + 12) >> 2] = 0 + f[(o + 16) >> 2] = 0 + f[(o + 20) >> 2] = 0 + f[(o + 24) >> 2] = 0 + f[(o + 28) >> 2] = 0 + f[p >> 2] = 0 + f[(p + 4) >> 2] = 0 + f[(p + 8) >> 2] = 0 + f[(p + 12) >> 2] = 0 + f[(p + 16) >> 2] = 0 + f[(p + 20) >> 2] = 0 + f[(p + 24) >> 2] = 0 + f[(p + 28) >> 2] = 0 + f[q >> 2] = 0 + H = (q + 4) | 0 + f[H >> 2] = 0 + f[(q + 8) >> 2] = 0 + if (F) { + M = 0 + N = 0 + O = 0 + P = 0 + } else { + F = g << 2 + B = dn(F) | 0 + f[q >> 2] = B + G = (B + (g << 2)) | 0 + f[(q + 8) >> 2] = G + hj(B | 0, 0, F | 0) | 0 + f[H >> 2] = G + M = B + N = G + O = G + P = B + } + B = (a + 36) | 0 + G = f[B >> 2] | 0 + F = f[(G + 4) >> 2] | 0 + D = f[G >> 2] | 0 + L = (F - D) | 0 + a: do + if ((L | 0) > 4) { + Q = L >>> 2 + R = (z + 64) | 0 + S = (z + 28) | 0 + T = (g | 0) > 0 + U = (r + 4) | 0 + V = (r + 8) | 0 + Z = (r + 12) | 0 + _ = (a + 136) | 0 + $ = (a + 96) | 0 + aa = (r + 16) | 0 + ba = (r + 28) | 0 + ca = (a + 8) | 0 + da = (j + 4) | 0 + ea = (k + 4) | 0 + fa = (e + 4) | 0 + ga = (r + 28) | 0 + ha = (r + 16) | 0 + ia = (r + 20) | 0 + ja = (r + 32) | 0 + ka = (n + 1) | 0 + la = g << 2 + ma = (g | 0) == 1 + na = (Q + -1) | 0 + if (((F - D) >> 2) >>> 0 > na >>> 0) { + oa = Q + pa = na + qa = D + ra = M + sa = P + ta = O + ua = M + va = N + wa = M + xa = N + } else { + ya = G + mq(ya) + } + b: while (1) { + na = f[(qa + (pa << 2)) >> 2] | 0 + Q = ((((na >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + na) | 0 + za = Q >>> 5 + Aa = 1 << (Q & 31) + Ba = ((na | 0) == -1) | ((Q | 0) == -1) + Ca = 1 + Da = 0 + Ea = na + c: while (1) { + Fa = Ca ^ 1 + Ga = Da + Ha = Ea + while (1) { + if ((Ha | 0) == -1) { + Ia = Ga + break c + } + Ja = f[(l + ((Ga * 12) | 0)) >> 2] | 0 + if ( + ( + ((f[((f[z >> 2] | 0) + ((Ha >>> 5) << 2)) >> 2] & + (1 << (Ha & 31))) | + 0) == + 0 + ? ((Ka = + f[ + ((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + + (Ha << 2)) >> + 2 + ] | 0), + (Ka | 0) != -1) + : 0 + ) + ? ((La = f[S >> 2] | 0), + (Ma = f[A >> 2] | 0), + (Na = f[(Ma + (f[(La + (Ka << 2)) >> 2] << 2)) >> 2] | 0), + (Oa = (Ka + 1) | 0), + (Pa = + f[ + (Ma + + (f[ + (La + + ((((Oa >>> 0) % 3 | 0 | 0) == 0 + ? (Ka + -2) | 0 + : Oa) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + (Oa = + f[ + (Ma + + (f[ + (La + + (((((Ka >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + + Ka) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + ((Na | 0) < (pa | 0)) & + ((Pa | 0) < (pa | 0)) & + ((Oa | 0) < (pa | 0))) + : 0 + ) { + Ka = X(Na, g) | 0 + Na = X(Pa, g) | 0 + Pa = X(Oa, g) | 0 + if (T) { + Oa = 0 + do { + f[(Ja + (Oa << 2)) >> 2] = + (f[(c + ((Oa + Pa) << 2)) >> 2] | 0) + + (f[(c + ((Oa + Na) << 2)) >> 2] | 0) - + (f[(c + ((Oa + Ka) << 2)) >> 2] | 0) + Oa = (Oa + 1) | 0 + } while ((Oa | 0) != (g | 0)) + } + Oa = (Ga + 1) | 0 + if ((Oa | 0) == 4) { + Ia = 4 + break c + } else Qa = Oa + } else Qa = Ga + do + if (Ca) { + Oa = (Ha + 1) | 0 + Ka = ((Oa >>> 0) % 3 | 0 | 0) == 0 ? (Ha + -2) | 0 : Oa + if ( + ( + (Ka | 0) != -1 + ? ((f[((f[z >> 2] | 0) + ((Ka >>> 5) << 2)) >> 2] & + (1 << (Ka & 31))) | + 0) == + 0 + : 0 + ) + ? ((Oa = + f[ + ((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + + (Ka << 2)) >> + 2 + ] | 0), + (Ka = (Oa + 1) | 0), + (Oa | 0) != -1) + : 0 + ) + Ra = ((Ka >>> 0) % 3 | 0 | 0) == 0 ? (Oa + -2) | 0 : Ka + else Ra = -1 + } else { + Ka = ((((Ha >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Ha) | 0 + if ( + ( + (Ka | 0) != -1 + ? ((f[((f[z >> 2] | 0) + ((Ka >>> 5) << 2)) >> 2] & + (1 << (Ka & 31))) | + 0) == + 0 + : 0 + ) + ? ((Oa = + f[ + ((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + + (Ka << 2)) >> + 2 + ] | 0), + (Oa | 0) != -1) + : 0 + ) + if (!((Oa >>> 0) % 3 | 0)) { + Ra = (Oa + 2) | 0 + break + } else { + Ra = (Oa + -1) | 0 + break + } + else Ra = -1 + } + while (0) + if ((Ra | 0) == (na | 0)) { + Ia = Qa + break c + } + if (((Ra | 0) != -1) | Fa) { + Ga = Qa + Ha = Ra + } else break + } + if (Ba) { + Ca = 0 + Da = Qa + Ea = -1 + continue + } + if ((f[((f[z >> 2] | 0) + (za << 2)) >> 2] & Aa) | 0) { + Ca = 0 + Da = Qa + Ea = -1 + continue + } + Ha = f[((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + (Q << 2)) >> 2] | 0 + if ((Ha | 0) == -1) { + Ca = 0 + Da = Qa + Ea = -1 + continue + } + if (!((Ha >>> 0) % 3 | 0)) { + Ca = 0 + Da = Qa + Ea = (Ha + 2) | 0 + continue + } else { + Ca = 0 + Da = Qa + Ea = (Ha + -1) | 0 + continue + } + } + Ea = X(pa, g) | 0 + f[r >> 2] = 0 + f[U >> 2] = 0 + b[V >> 0] = 0 + f[Z >> 2] = 0 + f[(Z + 4) >> 2] = 0 + f[(Z + 8) >> 2] = 0 + f[(Z + 12) >> 2] = 0 + f[(Z + 16) >> 2] = 0 + f[(Z + 20) >> 2] = 0 + f[(Z + 24) >> 2] = 0 + Da = (c + ((X((oa + -2) | 0, g) | 0) << 2)) | 0 + Ca = (c + (Ea << 2)) | 0 + Q = f[_ >> 2] | 0 + if (T) { + Aa = 0 + za = 0 + while (1) { + Ba = + ((f[(Da + (Aa << 2)) >> 2] | 0) - + (f[(Ca + (Aa << 2)) >> 2] | 0)) | + 0 + na = (((Ba | 0) > -1 ? Ba : (0 - Ba) | 0) + za) | 0 + f[(ra + (Aa << 2)) >> 2] = Ba + f[(Q + (Aa << 2)) >> 2] = (Ba << 1) ^ (Ba >> 31) + Aa = (Aa + 1) | 0 + if ((Aa | 0) == (g | 0)) { + Sa = na + break + } else za = na + } + } else Sa = 0 + ho(e, $, Q, g) + za = Tk(e) | 0 + Aa = I + na = om(e) | 0 + Ba = Tn(na | 0, I | 0, za | 0, Aa | 0) | 0 + Aa = I + za = (Ia | 0) > 0 + if (za) { + na = (Ia + -1) | 0 + Ha = (p + (na << 3)) | 0 + Ga = Ha + Fa = + Tn( + f[Ga >> 2] | 0, + f[(Ga + 4) >> 2] | 0, + Ia | 0, + ((((Ia | 0) < 0) << 31) >> 31) | 0, + ) | 0 + Ga = I + Oa = Ha + f[Oa >> 2] = Fa + f[(Oa + 4) >> 2] = Ga + Ta = +W( + +( + +jm(Fa, f[(o + (na << 3)) >> 2] | 0) * + (+(Fa >>> 0) + 4294967296.0 * +(Ga | 0)) + ), + ) + Ga = + Tn( + Ba | 0, + Aa | 0, + (~~Ta >>> 0) | 0, + (+K(Ta) >= 1.0 + ? Ta > 0.0 + ? ~~+Y(+J(Ta / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Ta - +(~~Ta >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + Ua = Ga + } else Ua = Ba + Ba = r + f[Ba >> 2] = Ua + f[(Ba + 4) >> 2] = Sa + b[V >> 0] = 0 + f[Z >> 2] = 0 + Mf(aa, Da, (Da + (g << 2)) | 0) + f[s >> 2] = sa + f[t >> 2] = ta + f[j >> 2] = f[s >> 2] + f[e >> 2] = f[t >> 2] + tf(ba, j, e) + if ((Ia | 0) < 1) { + Va = xa + Wa = wa + Xa = va + Ya = ua + Za = ta + _a = sa + $a = sa + } else { + Ba = (n + Ia) | 0 + Ga = f[q >> 2] | 0 + Aa = (Ia + -1) | 0 + Fa = (o + (Aa << 3)) | 0 + na = (p + (Aa << 3)) | 0 + Aa = Ga + Oa = f[H >> 2] | 0 + Ha = (Ba + -1) | 0 + Ka = (Ha | 0) == (n | 0) + Na = (Ba + -2) | 0 + Pa = ka >>> 0 < Na >>> 0 + Ja = ~Ia + La = (Ia + 2 + ((Ja | 0) > -2 ? Ja : -2)) | 0 + Ja = Oa + Ma = Ha >>> 0 > n >>> 0 + ab = 0 + bb = 1 + while (1) { + ab = (ab + 1) | 0 + hj(n | 0, 1, La | 0) | 0 + hj(n | 0, 0, ab | 0) | 0 + d: while (1) { + if (T) { + hj(f[m >> 2] | 0, 0, la | 0) | 0 + cb = f[m >> 2] | 0 + db = 0 + eb = 0 + while (1) { + if (!(b[(n + db) >> 0] | 0)) { + fb = f[(l + ((db * 12) | 0)) >> 2] | 0 + gb = 0 + do { + hb = (cb + (gb << 2)) | 0 + f[hb >> 2] = + (f[hb >> 2] | 0) + (f[(fb + (gb << 2)) >> 2] | 0) + gb = (gb + 1) | 0 + } while ((gb | 0) != (g | 0)) + ib = ((1 << db) | (eb & 255)) & 255 + } else ib = eb + db = (db + 1) | 0 + if ((db | 0) == (Ia | 0)) { + jb = ib + break + } else eb = ib + } + } else { + eb = 0 + db = 0 + while (1) { + if (!(b[(n + eb) >> 0] | 0)) + kb = ((1 << eb) | (db & 255)) & 255 + else kb = db + eb = (eb + 1) | 0 + if ((eb | 0) == (Ia | 0)) { + jb = kb + break + } else db = kb + } + } + db = f[m >> 2] | 0 + do + if (T) { + f[db >> 2] = ((f[db >> 2] | 0) / (bb | 0)) | 0 + if (!ma) { + eb = 1 + do { + cb = (db + (eb << 2)) | 0 + f[cb >> 2] = ((f[cb >> 2] | 0) / (bb | 0)) | 0 + eb = (eb + 1) | 0 + } while ((eb | 0) != (g | 0)) + eb = f[_ >> 2] | 0 + if (T) lb = eb + else { + mb = 0 + nb = eb + break + } + } else lb = f[_ >> 2] | 0 + eb = 0 + cb = 0 + while (1) { + gb = + ((f[(db + (eb << 2)) >> 2] | 0) - + (f[(Ca + (eb << 2)) >> 2] | 0)) | + 0 + fb = (((gb | 0) > -1 ? gb : (0 - gb) | 0) + cb) | 0 + f[(Ga + (eb << 2)) >> 2] = gb + f[(lb + (eb << 2)) >> 2] = (gb << 1) ^ (gb >> 31) + eb = (eb + 1) | 0 + if ((eb | 0) == (g | 0)) { + mb = fb + nb = lb + break + } else cb = fb + } + } else { + mb = 0 + nb = f[_ >> 2] | 0 + } + while (0) + ho(e, $, nb, g) + db = Tk(e) | 0 + cb = I + eb = om(e) | 0 + fb = Tn(eb | 0, I | 0, db | 0, cb | 0) | 0 + cb = I + if (za) { + db = Fa + eb = Tn(f[db >> 2] | 0, f[(db + 4) >> 2] | 0, bb | 0, 0) | 0 + db = na + gb = f[db >> 2] | 0 + hb = f[(db + 4) >> 2] | 0 + Ta = +W( + +(+jm(gb, eb) * (+(gb >>> 0) + 4294967296.0 * +(hb | 0))), + ) + hb = + Tn( + fb | 0, + cb | 0, + (~~Ta >>> 0) | 0, + (+K(Ta) >= 1.0 + ? Ta > 0.0 + ? ~~+Y(+J(Ta / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Ta - +(~~Ta >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + ob = hb + } else ob = fb + fb = f[r >> 2] | 0 + if ( + !((ob | 0) >= (fb | 0) + ? !((ob | 0) <= (fb | 0) ? (mb | 0) < (f[U >> 2] | 0) : 0) + : 0) + ) { + fb = r + f[fb >> 2] = ob + f[(fb + 4) >> 2] = mb + b[V >> 0] = jb + f[Z >> 2] = bb + f[v >> 2] = f[m >> 2] + f[w >> 2] = f[E >> 2] + f[j >> 2] = f[v >> 2] + f[e >> 2] = f[w >> 2] + tf(aa, j, e) + f[x >> 2] = Aa + f[y >> 2] = Oa + f[j >> 2] = f[x >> 2] + f[e >> 2] = f[y >> 2] + tf(ba, j, e) + } + if (Ka) break + pb = b[Ha >> 0] | 0 + fb = -1 + hb = pb + while (1) { + cb = (fb + -1) | 0 + qb = (Ba + cb) | 0 + gb = hb + hb = b[qb >> 0] | 0 + if ((hb & 255) < (gb & 255)) break + if ((qb | 0) == (n | 0)) { + rb = 86 + break d + } else fb = cb + } + cb = (Ba + fb) | 0 + if ((hb & 255) < (pb & 255)) { + sb = Ha + tb = pb + } else { + gb = Ba + eb = Ha + while (1) { + db = (eb + -1) | 0 + if ((hb & 255) < (h[(gb + -2) >> 0] | 0)) { + sb = db + tb = 1 + break + } else { + ub = eb + eb = db + gb = ub + } + } + } + b[qb >> 0] = tb + b[sb >> 0] = hb + if ((fb | 0) < -1) { + vb = cb + wb = Ha + } else continue + while (1) { + gb = b[vb >> 0] | 0 + b[vb >> 0] = b[wb >> 0] | 0 + b[wb >> 0] = gb + gb = (vb + 1) | 0 + eb = (wb + -1) | 0 + if (gb >>> 0 < eb >>> 0) { + vb = gb + wb = eb + } else continue d + } + } + if ( + ((rb | 0) == 86 ? ((rb = 0), Ma) : 0) + ? ((cb = b[n >> 0] | 0), + (b[n >> 0] = pb), + (b[Ha >> 0] = cb), + Pa) + : 0 + ) { + cb = Na + fb = ka + do { + hb = b[fb >> 0] | 0 + b[fb >> 0] = b[cb >> 0] | 0 + b[cb >> 0] = hb + fb = (fb + 1) | 0 + cb = (cb + -1) | 0 + } while (fb >>> 0 < cb >>> 0) + } + if ((bb | 0) >= (Ia | 0)) { + Va = Ja + Wa = Ga + Xa = Ja + Ya = Ga + Za = Oa + _a = Aa + $a = Ga + break + } else bb = (bb + 1) | 0 + } + } + if (za) { + bb = f[Z >> 2] | 0 + Ga = (o + ((Ia + -1) << 3)) | 0 + Aa = Ga + Oa = + Tn( + f[Aa >> 2] | 0, + f[(Aa + 4) >> 2] | 0, + bb | 0, + ((((bb | 0) < 0) << 31) >> 31) | 0, + ) | 0 + bb = Ga + f[bb >> 2] = Oa + f[(bb + 4) >> 2] = I + } + if (T) { + bb = f[ba >> 2] | 0 + Oa = f[C >> 2] | 0 + Ga = 0 + do { + Aa = f[(bb + (Ga << 2)) >> 2] | 0 + f[(Oa + (Ga << 2)) >> 2] = (Aa << 1) ^ (Aa >> 31) + Ga = (Ga + 1) | 0 + } while ((Ga | 0) != (g | 0)) + xb = Oa + } else xb = f[C >> 2] | 0 + go(e, $, xb, g) + if (za) { + Oa = (Ia + -1) | 0 + yb = (a + 40 + ((Oa * 12) | 0)) | 0 + Ga = (a + 40 + ((Oa * 12) | 0) + 4) | 0 + bb = (a + 40 + ((Oa * 12) | 0) + 8) | 0 + Oa = 0 + do { + Aa = f[Ga >> 2] | 0 + Ja = f[bb >> 2] | 0 + Na = (Aa | 0) == ((Ja << 5) | 0) + if (!((1 << Oa) & h[V >> 0])) { + if (Na) { + if (((Aa + 1) | 0) < 0) { + rb = 101 + break b + } + Pa = Ja << 6 + Ha = (Aa + 32) & -32 + hi( + yb, + Aa >>> 0 < 1073741823 + ? Pa >>> 0 < Ha >>> 0 + ? Ha + : Pa + : 2147483647, + ) + zb = f[Ga >> 2] | 0 + } else zb = Aa + f[Ga >> 2] = zb + 1 + Pa = ((f[yb >> 2] | 0) + ((zb >>> 5) << 2)) | 0 + f[Pa >> 2] = f[Pa >> 2] | (1 << (zb & 31)) + } else { + if (Na) { + if (((Aa + 1) | 0) < 0) { + rb = 106 + break b + } + Na = Ja << 6 + Ja = (Aa + 32) & -32 + hi( + yb, + Aa >>> 0 < 1073741823 + ? Na >>> 0 < Ja >>> 0 + ? Ja + : Na + : 2147483647, + ) + Ab = f[Ga >> 2] | 0 + } else Ab = Aa + f[Ga >> 2] = Ab + 1 + Aa = ((f[yb >> 2] | 0) + ((Ab >>> 5) << 2)) | 0 + f[Aa >> 2] = f[Aa >> 2] & ~(1 << (Ab & 31)) + } + Oa = (Oa + 1) | 0 + } while ((Oa | 0) < (Ia | 0)) + } + Oa = f[aa >> 2] | 0 + Ga = (d + (Ea << 2)) | 0 + bb = f[(Ca + 4) >> 2] | 0 + za = f[Oa >> 2] | 0 + Aa = f[(Oa + 4) >> 2] | 0 + f[j >> 2] = f[Ca >> 2] + f[da >> 2] = bb + f[k >> 2] = za + f[ea >> 2] = Aa + Dd(e, ca, j, k) + f[Ga >> 2] = f[e >> 2] + f[(Ga + 4) >> 2] = f[fa >> 2] + Ga = f[ga >> 2] | 0 + if (Ga | 0) { + Aa = f[ja >> 2] | 0 + if ((Aa | 0) != (Ga | 0)) + f[ja >> 2] = Aa + (~(((Aa + -4 - Ga) | 0) >>> 2) << 2) + br(Ga) + } + Ga = f[ha >> 2] | 0 + if (Ga | 0) { + Aa = f[ia >> 2] | 0 + if ((Aa | 0) != (Ga | 0)) + f[ia >> 2] = Aa + (~(((Aa + -4 - Ga) | 0) >>> 2) << 2) + br(Ga) + } + if ((oa | 0) <= 2) { + Bb = Ya + Cb = Xa + break a + } + Ga = f[B >> 2] | 0 + qa = f[Ga >> 2] | 0 + Aa = (pa + -1) | 0 + if ((((f[(Ga + 4) >> 2] | 0) - qa) >> 2) >>> 0 <= Aa >>> 0) { + ya = Ga + rb = 18 + break + } else { + Ga = pa + pa = Aa + ra = $a + sa = _a + ta = Za + ua = Ya + va = Xa + wa = Wa + xa = Va + oa = Ga + } + } + if ((rb | 0) == 18) mq(ya) + else if ((rb | 0) == 101) mq(yb) + else if ((rb | 0) == 106) mq(yb) + } else { + Bb = M + Cb = N + } + while (0) + if ((g | 0) > 0) hj(f[l >> 2] | 0, 0, (g << 2) | 0) | 0 + g = f[l >> 2] | 0 + N = f[(c + 4) >> 2] | 0 + M = f[g >> 2] | 0 + yb = f[(g + 4) >> 2] | 0 + f[j >> 2] = f[c >> 2] + f[(j + 4) >> 2] = N + f[k >> 2] = M + f[(k + 4) >> 2] = yb + Dd(e, (a + 8) | 0, j, k) + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + if (Bb | 0) { + if ((Cb | 0) != (Bb | 0)) + f[H >> 2] = Cb + (~(((Cb + -4 - Bb) | 0) >>> 2) << 2) + br(Bb) + } + Bb = f[m >> 2] | 0 + if (Bb | 0) { + m = f[E >> 2] | 0 + if ((m | 0) != (Bb | 0)) + f[E >> 2] = m + (~(((m + -4 - Bb) | 0) >>> 2) << 2) + br(Bb) + } + Bb = f[(l + 36) >> 2] | 0 + if (Bb | 0) { + m = (l + 40) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Bb | 0)) + f[m >> 2] = E + (~(((E + -4 - Bb) | 0) >>> 2) << 2) + br(Bb) + } + Bb = f[(l + 24) >> 2] | 0 + if (Bb | 0) { + E = (l + 28) | 0 + m = f[E >> 2] | 0 + if ((m | 0) != (Bb | 0)) + f[E >> 2] = m + (~(((m + -4 - Bb) | 0) >>> 2) << 2) + br(Bb) + } + Bb = f[(l + 12) >> 2] | 0 + if (Bb | 0) { + m = (l + 16) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Bb | 0)) + f[m >> 2] = E + (~(((E + -4 - Bb) | 0) >>> 2) << 2) + br(Bb) + } + Bb = f[l >> 2] | 0 + if (!Bb) { + u = i + return 1 + } + E = (l + 4) | 0 + l = f[E >> 2] | 0 + if ((l | 0) != (Bb | 0)) + f[E >> 2] = l + (~(((l + -4 - Bb) | 0) >>> 2) << 2) + br(Bb) + u = i + return 1 + } + function eb(a, c, d, e, g, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0, + Sa = 0, + Ta = 0.0, + Ua = 0, + Va = 0, + Wa = 0, + Xa = 0, + Ya = 0, + Za = 0, + _a = 0, + $a = 0, + ab = 0, + bb = 0, + cb = 0, + db = 0, + eb = 0, + fb = 0, + gb = 0, + hb = 0, + ib = 0, + jb = 0, + kb = 0, + lb = 0, + mb = 0, + nb = 0, + ob = 0, + pb = 0, + qb = 0, + rb = 0, + sb = 0, + tb = 0, + ub = 0, + vb = 0, + wb = 0, + xb = 0, + yb = 0, + zb = 0, + Ab = 0, + Bb = 0, + Cb = 0, + Db = 0, + Eb = 0 + i = u + u = (u + 256) | 0 + e = (i + 104) | 0 + j = (i + 240) | 0 + k = (i + 224) | 0 + l = (i + 160) | 0 + m = (i + 140) | 0 + n = (i + 248) | 0 + o = (i + 72) | 0 + p = (i + 40) | 0 + q = (i + 128) | 0 + r = i + s = (i + 232) | 0 + t = (i + 220) | 0 + v = (i + 216) | 0 + w = (i + 212) | 0 + x = (i + 208) | 0 + y = (i + 152) | 0 + z = f[(a + 28) >> 2] | 0 + A = f[(a + 32) >> 2] | 0 + B = l + C = (B + 48) | 0 + do { + f[B >> 2] = 0 + B = (B + 4) | 0 + } while ((B | 0) < (C | 0)) + if (!g) { + D = 0 + E = 0 + } else { + oi(l, g) + D = f[(l + 12) >> 2] | 0 + E = f[(l + 16) >> 2] | 0 + } + B = (l + 16) | 0 + C = (E - D) >> 2 + F = D + D = E + if (C >>> 0 >= g >>> 0) { + if ( + C >>> 0 > g >>> 0 ? ((E = (F + (g << 2)) | 0), (E | 0) != (D | 0)) : 0 + ) + f[B >> 2] = D + (~(((D + -4 - E) | 0) >>> 2) << 2) + } else oi((l + 12) | 0, (g - C) | 0) + C = (l + 24) | 0 + E = (l + 28) | 0 + D = f[E >> 2] | 0 + B = f[C >> 2] | 0 + F = (D - B) >> 2 + G = B + B = D + if (F >>> 0 >= g >>> 0) { + if ( + F >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[E >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else oi(C, (g - F) | 0) + F = (l + 36) | 0 + C = (l + 40) | 0 + D = f[C >> 2] | 0 + B = f[F >> 2] | 0 + E = (D - B) >> 2 + G = B + B = D + if (E >>> 0 >= g >>> 0) { + if ( + E >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[C >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else oi(F, (g - E) | 0) + f[m >> 2] = 0 + E = (m + 4) | 0 + f[E >> 2] = 0 + f[(m + 8) >> 2] = 0 + F = (g | 0) == 0 + do + if (!F) + if (g >>> 0 > 1073741823) mq(m) + else { + D = g << 2 + B = dn(D) | 0 + f[m >> 2] = B + C = (B + (g << 2)) | 0 + f[(m + 8) >> 2] = C + hj(B | 0, 0, D | 0) | 0 + f[E >> 2] = C + break + } + while (0) + C = (a + 136) | 0 + D = (a + 140) | 0 + B = f[D >> 2] | 0 + G = f[C >> 2] | 0 + H = (B - G) >> 2 + L = G + G = B + if (H >>> 0 >= g >>> 0) { + if ( + H >>> 0 > g >>> 0 ? ((B = (L + (g << 2)) | 0), (B | 0) != (G | 0)) : 0 + ) + f[D >> 2] = G + (~(((G + -4 - B) | 0) >>> 2) << 2) + } else oi(C, (g - H) | 0) + f[o >> 2] = 0 + f[(o + 4) >> 2] = 0 + f[(o + 8) >> 2] = 0 + f[(o + 12) >> 2] = 0 + f[(o + 16) >> 2] = 0 + f[(o + 20) >> 2] = 0 + f[(o + 24) >> 2] = 0 + f[(o + 28) >> 2] = 0 + f[p >> 2] = 0 + f[(p + 4) >> 2] = 0 + f[(p + 8) >> 2] = 0 + f[(p + 12) >> 2] = 0 + f[(p + 16) >> 2] = 0 + f[(p + 20) >> 2] = 0 + f[(p + 24) >> 2] = 0 + f[(p + 28) >> 2] = 0 + f[q >> 2] = 0 + H = (q + 4) | 0 + f[H >> 2] = 0 + f[(q + 8) >> 2] = 0 + if (F) { + M = 0 + N = 0 + O = 0 + P = 0 + } else { + F = g << 2 + B = dn(F) | 0 + f[q >> 2] = B + G = (B + (g << 2)) | 0 + f[(q + 8) >> 2] = G + hj(B | 0, 0, F | 0) | 0 + f[H >> 2] = G + M = B + N = G + O = G + P = B + } + B = (a + 36) | 0 + G = f[B >> 2] | 0 + F = f[(G + 4) >> 2] | 0 + D = f[G >> 2] | 0 + L = (F - D) | 0 + a: do + if ((L | 0) > 4) { + Q = L >>> 2 + R = (z + 12) | 0 + S = (g | 0) > 0 + T = (r + 4) | 0 + U = (r + 8) | 0 + V = (r + 12) | 0 + Z = (a + 136) | 0 + _ = (a + 96) | 0 + $ = (r + 16) | 0 + aa = (r + 28) | 0 + ba = (a + 8) | 0 + ca = (j + 4) | 0 + da = (k + 4) | 0 + ea = (e + 4) | 0 + fa = (r + 28) | 0 + ga = (r + 16) | 0 + ha = (r + 20) | 0 + ia = (r + 32) | 0 + ja = (n + 1) | 0 + ka = g << 2 + la = (g | 0) == 1 + ma = (Q + -1) | 0 + if (((F - D) >> 2) >>> 0 > ma >>> 0) { + na = Q + oa = ma + pa = M + qa = P + ra = O + sa = M + ta = N + ua = M + va = N + wa = D + } else { + xa = G + mq(xa) + } + b: while (1) { + ma = f[(wa + (oa << 2)) >> 2] | 0 + Q = ((((ma >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + ma) | 0 + ya = ((ma | 0) == -1) | ((Q | 0) == -1) + za = 1 + Aa = 0 + Ba = ma + c: while (1) { + Ca = za ^ 1 + Da = Aa + Ea = Ba + while (1) { + if ((Ea | 0) == -1) { + Fa = Da + break c + } + Ga = f[(l + ((Da * 12) | 0)) >> 2] | 0 + Ha = f[R >> 2] | 0 + Ia = f[(Ha + (Ea << 2)) >> 2] | 0 + if ((Ia | 0) != -1) { + Ja = f[z >> 2] | 0 + Ka = f[A >> 2] | 0 + La = f[(Ka + (f[(Ja + (Ia << 2)) >> 2] << 2)) >> 2] | 0 + Ma = (Ia + 1) | 0 + Na = ((Ma >>> 0) % 3 | 0 | 0) == 0 ? (Ia + -2) | 0 : Ma + if ((Na | 0) == -1) Oa = -1 + else Oa = f[(Ja + (Na << 2)) >> 2] | 0 + Na = f[(Ka + (Oa << 2)) >> 2] | 0 + Ma = ((((Ia >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Ia) | 0 + if ((Ma | 0) == -1) Pa = -1 + else Pa = f[(Ja + (Ma << 2)) >> 2] | 0 + Ma = f[(Ka + (Pa << 2)) >> 2] | 0 + if ( + ((La | 0) < (oa | 0)) & + ((Na | 0) < (oa | 0)) & + ((Ma | 0) < (oa | 0)) + ) { + Ka = X(La, g) | 0 + La = X(Na, g) | 0 + Na = X(Ma, g) | 0 + if (S) { + Ma = 0 + do { + f[(Ga + (Ma << 2)) >> 2] = + (f[(c + ((Ma + Na) << 2)) >> 2] | 0) + + (f[(c + ((Ma + La) << 2)) >> 2] | 0) - + (f[(c + ((Ma + Ka) << 2)) >> 2] | 0) + Ma = (Ma + 1) | 0 + } while ((Ma | 0) != (g | 0)) + } + Ma = (Da + 1) | 0 + if ((Ma | 0) == 4) { + Fa = 4 + break c + } else Qa = Ma + } else Qa = Da + } else Qa = Da + do + if (za) { + Ma = (Ea + 1) | 0 + Ka = ((Ma >>> 0) % 3 | 0 | 0) == 0 ? (Ea + -2) | 0 : Ma + if ( + (Ka | 0) != -1 + ? ((Ma = f[(Ha + (Ka << 2)) >> 2] | 0), + (Ka = (Ma + 1) | 0), + (Ma | 0) != -1) + : 0 + ) + Ra = ((Ka >>> 0) % 3 | 0 | 0) == 0 ? (Ma + -2) | 0 : Ka + else Ra = -1 + } else { + Ka = ((((Ea >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Ea) | 0 + if ( + (Ka | 0) != -1 + ? ((Ma = f[(Ha + (Ka << 2)) >> 2] | 0), (Ma | 0) != -1) + : 0 + ) + if (!((Ma >>> 0) % 3 | 0)) { + Ra = (Ma + 2) | 0 + break + } else { + Ra = (Ma + -1) | 0 + break + } + else Ra = -1 + } + while (0) + if ((Ra | 0) == (ma | 0)) { + Fa = Qa + break c + } + if (((Ra | 0) != -1) | Ca) { + Da = Qa + Ea = Ra + } else break + } + if (ya) { + za = 0 + Aa = Qa + Ba = -1 + continue + } + Ea = f[(Ha + (Q << 2)) >> 2] | 0 + if ((Ea | 0) == -1) { + za = 0 + Aa = Qa + Ba = -1 + continue + } + if (!((Ea >>> 0) % 3 | 0)) { + za = 0 + Aa = Qa + Ba = (Ea + 2) | 0 + continue + } else { + za = 0 + Aa = Qa + Ba = (Ea + -1) | 0 + continue + } + } + Ba = X(oa, g) | 0 + f[r >> 2] = 0 + f[T >> 2] = 0 + b[U >> 0] = 0 + f[V >> 2] = 0 + f[(V + 4) >> 2] = 0 + f[(V + 8) >> 2] = 0 + f[(V + 12) >> 2] = 0 + f[(V + 16) >> 2] = 0 + f[(V + 20) >> 2] = 0 + f[(V + 24) >> 2] = 0 + Aa = (c + ((X((na + -2) | 0, g) | 0) << 2)) | 0 + za = (c + (Ba << 2)) | 0 + Q = f[Z >> 2] | 0 + if (S) { + ya = 0 + ma = 0 + while (1) { + Ea = + ((f[(Aa + (ya << 2)) >> 2] | 0) - + (f[(za + (ya << 2)) >> 2] | 0)) | + 0 + Da = (((Ea | 0) > -1 ? Ea : (0 - Ea) | 0) + ma) | 0 + f[(pa + (ya << 2)) >> 2] = Ea + f[(Q + (ya << 2)) >> 2] = (Ea << 1) ^ (Ea >> 31) + ya = (ya + 1) | 0 + if ((ya | 0) == (g | 0)) { + Sa = Da + break + } else ma = Da + } + } else Sa = 0 + ho(e, _, Q, g) + ma = Tk(e) | 0 + ya = I + Da = om(e) | 0 + Ea = Tn(Da | 0, I | 0, ma | 0, ya | 0) | 0 + ya = I + ma = (Fa | 0) > 0 + if (ma) { + Da = (Fa + -1) | 0 + Ca = (p + (Da << 3)) | 0 + Ma = Ca + Ka = + Tn( + f[Ma >> 2] | 0, + f[(Ma + 4) >> 2] | 0, + Fa | 0, + ((((Fa | 0) < 0) << 31) >> 31) | 0, + ) | 0 + Ma = I + La = Ca + f[La >> 2] = Ka + f[(La + 4) >> 2] = Ma + Ta = +W( + +( + +jm(Ka, f[(o + (Da << 3)) >> 2] | 0) * + (+(Ka >>> 0) + 4294967296.0 * +(Ma | 0)) + ), + ) + Ma = + Tn( + Ea | 0, + ya | 0, + (~~Ta >>> 0) | 0, + (+K(Ta) >= 1.0 + ? Ta > 0.0 + ? ~~+Y(+J(Ta / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Ta - +(~~Ta >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + Ua = Ma + } else Ua = Ea + Ea = r + f[Ea >> 2] = Ua + f[(Ea + 4) >> 2] = Sa + b[U >> 0] = 0 + f[V >> 2] = 0 + Mf($, Aa, (Aa + (g << 2)) | 0) + f[s >> 2] = qa + f[t >> 2] = ra + f[j >> 2] = f[s >> 2] + f[e >> 2] = f[t >> 2] + tf(aa, j, e) + if ((Fa | 0) < 1) { + Va = va + Wa = ua + Xa = ta + Ya = sa + Za = ra + _a = qa + $a = qa + } else { + Ea = (n + Fa) | 0 + Ma = f[q >> 2] | 0 + ya = (Fa + -1) | 0 + Ka = (o + (ya << 3)) | 0 + Da = (p + (ya << 3)) | 0 + ya = Ma + La = f[H >> 2] | 0 + Ca = (Ea + -1) | 0 + Na = (Ca | 0) == (n | 0) + Ga = (Ea + -2) | 0 + Ja = ja >>> 0 < Ga >>> 0 + Ia = ~Fa + ab = (Fa + 2 + ((Ia | 0) > -2 ? Ia : -2)) | 0 + Ia = La + bb = Ca >>> 0 > n >>> 0 + cb = 0 + db = 1 + while (1) { + cb = (cb + 1) | 0 + hj(n | 0, 1, ab | 0) | 0 + hj(n | 0, 0, cb | 0) | 0 + d: while (1) { + if (S) { + hj(f[m >> 2] | 0, 0, ka | 0) | 0 + eb = f[m >> 2] | 0 + fb = 0 + gb = 0 + while (1) { + if (!(b[(n + fb) >> 0] | 0)) { + hb = f[(l + ((fb * 12) | 0)) >> 2] | 0 + ib = 0 + do { + jb = (eb + (ib << 2)) | 0 + f[jb >> 2] = + (f[jb >> 2] | 0) + (f[(hb + (ib << 2)) >> 2] | 0) + ib = (ib + 1) | 0 + } while ((ib | 0) != (g | 0)) + kb = ((1 << fb) | (gb & 255)) & 255 + } else kb = gb + fb = (fb + 1) | 0 + if ((fb | 0) == (Fa | 0)) { + lb = kb + break + } else gb = kb + } + } else { + gb = 0 + fb = 0 + while (1) { + if (!(b[(n + gb) >> 0] | 0)) + mb = ((1 << gb) | (fb & 255)) & 255 + else mb = fb + gb = (gb + 1) | 0 + if ((gb | 0) == (Fa | 0)) { + lb = mb + break + } else fb = mb + } + } + fb = f[m >> 2] | 0 + do + if (S) { + f[fb >> 2] = ((f[fb >> 2] | 0) / (db | 0)) | 0 + if (!la) { + gb = 1 + do { + eb = (fb + (gb << 2)) | 0 + f[eb >> 2] = ((f[eb >> 2] | 0) / (db | 0)) | 0 + gb = (gb + 1) | 0 + } while ((gb | 0) != (g | 0)) + gb = f[Z >> 2] | 0 + if (S) nb = gb + else { + ob = 0 + pb = gb + break + } + } else nb = f[Z >> 2] | 0 + gb = 0 + eb = 0 + while (1) { + ib = + ((f[(fb + (gb << 2)) >> 2] | 0) - + (f[(za + (gb << 2)) >> 2] | 0)) | + 0 + hb = (((ib | 0) > -1 ? ib : (0 - ib) | 0) + eb) | 0 + f[(Ma + (gb << 2)) >> 2] = ib + f[(nb + (gb << 2)) >> 2] = (ib << 1) ^ (ib >> 31) + gb = (gb + 1) | 0 + if ((gb | 0) == (g | 0)) { + ob = hb + pb = nb + break + } else eb = hb + } + } else { + ob = 0 + pb = f[Z >> 2] | 0 + } + while (0) + ho(e, _, pb, g) + fb = Tk(e) | 0 + eb = I + gb = om(e) | 0 + hb = Tn(gb | 0, I | 0, fb | 0, eb | 0) | 0 + eb = I + if (ma) { + fb = Ka + gb = Tn(f[fb >> 2] | 0, f[(fb + 4) >> 2] | 0, db | 0, 0) | 0 + fb = Da + ib = f[fb >> 2] | 0 + jb = f[(fb + 4) >> 2] | 0 + Ta = +W( + +(+jm(ib, gb) * (+(ib >>> 0) + 4294967296.0 * +(jb | 0))), + ) + jb = + Tn( + hb | 0, + eb | 0, + (~~Ta >>> 0) | 0, + (+K(Ta) >= 1.0 + ? Ta > 0.0 + ? ~~+Y(+J(Ta / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Ta - +(~~Ta >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + qb = jb + } else qb = hb + hb = f[r >> 2] | 0 + if ( + !((qb | 0) >= (hb | 0) + ? !((qb | 0) <= (hb | 0) ? (ob | 0) < (f[T >> 2] | 0) : 0) + : 0) + ) { + hb = r + f[hb >> 2] = qb + f[(hb + 4) >> 2] = ob + b[U >> 0] = lb + f[V >> 2] = db + f[v >> 2] = f[m >> 2] + f[w >> 2] = f[E >> 2] + f[j >> 2] = f[v >> 2] + f[e >> 2] = f[w >> 2] + tf($, j, e) + f[x >> 2] = ya + f[y >> 2] = La + f[j >> 2] = f[x >> 2] + f[e >> 2] = f[y >> 2] + tf(aa, j, e) + } + if (Na) break + rb = b[Ca >> 0] | 0 + hb = -1 + jb = rb + while (1) { + eb = (hb + -1) | 0 + sb = (Ea + eb) | 0 + ib = jb + jb = b[sb >> 0] | 0 + if ((jb & 255) < (ib & 255)) break + if ((sb | 0) == (n | 0)) { + tb = 86 + break d + } else hb = eb + } + eb = (Ea + hb) | 0 + if ((jb & 255) < (rb & 255)) { + ub = Ca + vb = rb + } else { + ib = Ea + gb = Ca + while (1) { + fb = (gb + -1) | 0 + if ((jb & 255) < (h[(ib + -2) >> 0] | 0)) { + ub = fb + vb = 1 + break + } else { + wb = gb + gb = fb + ib = wb + } + } + } + b[sb >> 0] = vb + b[ub >> 0] = jb + if ((hb | 0) < -1) { + xb = eb + yb = Ca + } else continue + while (1) { + ib = b[xb >> 0] | 0 + b[xb >> 0] = b[yb >> 0] | 0 + b[yb >> 0] = ib + ib = (xb + 1) | 0 + gb = (yb + -1) | 0 + if (ib >>> 0 < gb >>> 0) { + xb = ib + yb = gb + } else continue d + } + } + if ( + ((tb | 0) == 86 ? ((tb = 0), bb) : 0) + ? ((eb = b[n >> 0] | 0), + (b[n >> 0] = rb), + (b[Ca >> 0] = eb), + Ja) + : 0 + ) { + eb = Ga + hb = ja + do { + jb = b[hb >> 0] | 0 + b[hb >> 0] = b[eb >> 0] | 0 + b[eb >> 0] = jb + hb = (hb + 1) | 0 + eb = (eb + -1) | 0 + } while (hb >>> 0 < eb >>> 0) + } + if ((db | 0) >= (Fa | 0)) { + Va = Ia + Wa = Ma + Xa = Ia + Ya = Ma + Za = La + _a = ya + $a = Ma + break + } else db = (db + 1) | 0 + } + } + if (ma) { + db = f[V >> 2] | 0 + Ma = (o + ((Fa + -1) << 3)) | 0 + ya = Ma + La = + Tn( + f[ya >> 2] | 0, + f[(ya + 4) >> 2] | 0, + db | 0, + ((((db | 0) < 0) << 31) >> 31) | 0, + ) | 0 + db = Ma + f[db >> 2] = La + f[(db + 4) >> 2] = I + } + if (S) { + db = f[aa >> 2] | 0 + La = f[C >> 2] | 0 + Ma = 0 + do { + ya = f[(db + (Ma << 2)) >> 2] | 0 + f[(La + (Ma << 2)) >> 2] = (ya << 1) ^ (ya >> 31) + Ma = (Ma + 1) | 0 + } while ((Ma | 0) != (g | 0)) + zb = La + } else zb = f[C >> 2] | 0 + go(e, _, zb, g) + if (ma) { + La = (Fa + -1) | 0 + Ab = (a + 40 + ((La * 12) | 0)) | 0 + Ma = (a + 40 + ((La * 12) | 0) + 4) | 0 + db = (a + 40 + ((La * 12) | 0) + 8) | 0 + La = 0 + do { + ya = f[Ma >> 2] | 0 + Ia = f[db >> 2] | 0 + Ga = (ya | 0) == ((Ia << 5) | 0) + if (!((1 << La) & h[U >> 0])) { + if (Ga) { + if (((ya + 1) | 0) < 0) { + tb = 101 + break b + } + Ja = Ia << 6 + Ca = (ya + 32) & -32 + hi( + Ab, + ya >>> 0 < 1073741823 + ? Ja >>> 0 < Ca >>> 0 + ? Ca + : Ja + : 2147483647, + ) + Bb = f[Ma >> 2] | 0 + } else Bb = ya + f[Ma >> 2] = Bb + 1 + Ja = ((f[Ab >> 2] | 0) + ((Bb >>> 5) << 2)) | 0 + f[Ja >> 2] = f[Ja >> 2] | (1 << (Bb & 31)) + } else { + if (Ga) { + if (((ya + 1) | 0) < 0) { + tb = 106 + break b + } + Ga = Ia << 6 + Ia = (ya + 32) & -32 + hi( + Ab, + ya >>> 0 < 1073741823 + ? Ga >>> 0 < Ia >>> 0 + ? Ia + : Ga + : 2147483647, + ) + Cb = f[Ma >> 2] | 0 + } else Cb = ya + f[Ma >> 2] = Cb + 1 + ya = ((f[Ab >> 2] | 0) + ((Cb >>> 5) << 2)) | 0 + f[ya >> 2] = f[ya >> 2] & ~(1 << (Cb & 31)) + } + La = (La + 1) | 0 + } while ((La | 0) < (Fa | 0)) + } + La = f[$ >> 2] | 0 + Ma = (d + (Ba << 2)) | 0 + db = f[(za + 4) >> 2] | 0 + ma = f[La >> 2] | 0 + ya = f[(La + 4) >> 2] | 0 + f[j >> 2] = f[za >> 2] + f[ca >> 2] = db + f[k >> 2] = ma + f[da >> 2] = ya + Dd(e, ba, j, k) + f[Ma >> 2] = f[e >> 2] + f[(Ma + 4) >> 2] = f[ea >> 2] + Ma = f[fa >> 2] | 0 + if (Ma | 0) { + ya = f[ia >> 2] | 0 + if ((ya | 0) != (Ma | 0)) + f[ia >> 2] = ya + (~(((ya + -4 - Ma) | 0) >>> 2) << 2) + br(Ma) + } + Ma = f[ga >> 2] | 0 + if (Ma | 0) { + ya = f[ha >> 2] | 0 + if ((ya | 0) != (Ma | 0)) + f[ha >> 2] = ya + (~(((ya + -4 - Ma) | 0) >>> 2) << 2) + br(Ma) + } + if ((na | 0) <= 2) { + Db = Ya + Eb = Xa + break a + } + Ma = f[B >> 2] | 0 + wa = f[Ma >> 2] | 0 + ya = (oa + -1) | 0 + if ((((f[(Ma + 4) >> 2] | 0) - wa) >> 2) >>> 0 <= ya >>> 0) { + xa = Ma + tb = 18 + break + } else { + Ma = oa + oa = ya + pa = $a + qa = _a + ra = Za + sa = Ya + ta = Xa + ua = Wa + va = Va + na = Ma + } + } + if ((tb | 0) == 18) mq(xa) + else if ((tb | 0) == 101) mq(Ab) + else if ((tb | 0) == 106) mq(Ab) + } else { + Db = M + Eb = N + } + while (0) + if ((g | 0) > 0) hj(f[l >> 2] | 0, 0, (g << 2) | 0) | 0 + g = f[l >> 2] | 0 + N = f[(c + 4) >> 2] | 0 + M = f[g >> 2] | 0 + Ab = f[(g + 4) >> 2] | 0 + f[j >> 2] = f[c >> 2] + f[(j + 4) >> 2] = N + f[k >> 2] = M + f[(k + 4) >> 2] = Ab + Dd(e, (a + 8) | 0, j, k) + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + if (Db | 0) { + if ((Eb | 0) != (Db | 0)) + f[H >> 2] = Eb + (~(((Eb + -4 - Db) | 0) >>> 2) << 2) + br(Db) + } + Db = f[m >> 2] | 0 + if (Db | 0) { + m = f[E >> 2] | 0 + if ((m | 0) != (Db | 0)) + f[E >> 2] = m + (~(((m + -4 - Db) | 0) >>> 2) << 2) + br(Db) + } + Db = f[(l + 36) >> 2] | 0 + if (Db | 0) { + m = (l + 40) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Db | 0)) + f[m >> 2] = E + (~(((E + -4 - Db) | 0) >>> 2) << 2) + br(Db) + } + Db = f[(l + 24) >> 2] | 0 + if (Db | 0) { + E = (l + 28) | 0 + m = f[E >> 2] | 0 + if ((m | 0) != (Db | 0)) + f[E >> 2] = m + (~(((m + -4 - Db) | 0) >>> 2) << 2) + br(Db) + } + Db = f[(l + 12) >> 2] | 0 + if (Db | 0) { + m = (l + 16) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Db | 0)) + f[m >> 2] = E + (~(((E + -4 - Db) | 0) >>> 2) << 2) + br(Db) + } + Db = f[l >> 2] | 0 + if (!Db) { + u = i + return 1 + } + E = (l + 4) | 0 + l = f[E >> 2] | 0 + if ((l | 0) != (Db | 0)) + f[E >> 2] = l + (~(((l + -4 - Db) | 0) >>> 2) << 2) + br(Db) + u = i + return 1 + } + function fb(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0, + Sa = 0, + Ta = 0, + Ua = 0, + Va = 0, + Wa = 0, + Xa = 0, + Ya = 0, + Za = 0, + _a = 0, + $a = 0, + ab = 0, + bb = 0, + cb = 0, + db = 0, + eb = 0, + fb = 0, + gb = 0, + hb = 0, + ib = 0, + jb = 0, + kb = 0, + lb = 0, + mb = 0, + nb = 0, + ob = 0, + pb = 0, + qb = 0, + rb = 0, + sb = 0, + tb = 0, + ub = 0, + vb = 0, + wb = 0, + xb = 0, + yb = 0, + zb = 0, + Ab = 0, + Bb = 0, + Cb = 0, + Db = 0, + Eb = 0, + Fb = 0, + Gb = 0, + Hb = 0, + Ib = 0, + Jb = 0, + Kb = 0, + Lb = 0, + Mb = 0, + Nb = 0, + Ob = 0, + Pb = 0, + Qb = 0, + Rb = 0, + Sb = 0, + Tb = 0, + Ub = 0, + Vb = 0, + Wb = 0, + Xb = 0, + Yb = 0, + Zb = 0, + _b = 0 + c = u + u = (u + 32) | 0 + d = (c + 16) | 0 + e = (c + 4) | 0 + g = c + f[(a + 36) >> 2] = b + h = (a + 24) | 0 + i = (a + 28) | 0 + j = f[i >> 2] | 0 + k = f[h >> 2] | 0 + l = (j - k) >> 2 + m = k + k = j + if (l >>> 0 >= b >>> 0) { + if ( + l >>> 0 > b >>> 0 ? ((j = (m + (b << 2)) | 0), (j | 0) != (k | 0)) : 0 + ) + f[i >> 2] = k + (~(((k + -4 - j) | 0) >>> 2) << 2) + } else kh(h, (b - l) | 0, 5828) + f[d >> 2] = 0 + l = (d + 4) | 0 + f[l >> 2] = 0 + j = (d + 8) | 0 + f[j >> 2] = 0 + if (b) { + if ((b | 0) < 0) mq(d) + k = ((((b + -1) | 0) >>> 5) + 1) | 0 + m = dn(k << 2) | 0 + f[d >> 2] = m + f[j >> 2] = k + f[l >> 2] = b + k = b >>> 5 + hj(m | 0, 0, (k << 2) | 0) | 0 + n = b & 31 + o = (m + (k << 2)) | 0 + k = m + if (!n) { + p = b + q = k + r = m + } else { + f[o >> 2] = f[o >> 2] & ~(-1 >>> ((32 - n) | 0)) + p = b + q = k + r = m + } + } else { + p = 0 + q = 0 + r = 0 + } + m = (a + 4) | 0 + k = f[a >> 2] | 0 + n = ((f[m >> 2] | 0) - k) | 0 + o = n >> 2 + f[e >> 2] = 0 + s = (e + 4) | 0 + f[s >> 2] = 0 + t = (e + 8) | 0 + f[t >> 2] = 0 + do + if (o) { + if ((n | 0) < 0) mq(e) + v = ((((o + -1) | 0) >>> 5) + 1) | 0 + w = dn(v << 2) | 0 + f[e >> 2] = w + f[t >> 2] = v + f[s >> 2] = o + v = o >>> 5 + hj(w | 0, 0, (v << 2) | 0) | 0 + x = o & 31 + y = (w + (v << 2)) | 0 + if (x | 0) f[y >> 2] = f[y >> 2] & ~(-1 >>> ((32 - x) | 0)) + if (o >>> 0 > 2) { + x = (a + 12) | 0 + y = (a + 32) | 0 + v = (a + 52) | 0 + w = (a + 56) | 0 + z = (a + 48) | 0 + A = b + B = k + C = 0 + D = q + E = r + a: while (1) { + F = B + G = (C * 3) | 0 + if ((G | 0) != -1) { + H = f[(F + (G << 2)) >> 2] | 0 + I = (G + 1) | 0 + J = ((I >>> 0) % 3 | 0 | 0) == 0 ? (G + -2) | 0 : I + if ((J | 0) == -1) K = -1 + else K = f[(F + (J << 2)) >> 2] | 0 + J = ((((G >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + G) | 0 + if ((J | 0) == -1) L = -1 + else L = f[(F + (J << 2)) >> 2] | 0 + if ( + (H | 0) != (K | 0) + ? !(((H | 0) == (L | 0)) | ((K | 0) == (L | 0))) + : 0 + ) { + H = 0 + J = A + F = E + I = D + while (1) { + M = (H + G) | 0 + if ( + !( + f[((f[e >> 2] | 0) + ((M >>> 5) << 2)) >> 2] & + (1 << (M & 31)) + ) + ) { + N = f[((f[a >> 2] | 0) + (M << 2)) >> 2] | 0 + f[g >> 2] = N + if (!(f[(F + ((N >>> 5) << 2)) >> 2] & (1 << (N & 31)))) { + O = 0 + P = J + Q = N + } else { + N = f[i >> 2] | 0 + if ((N | 0) == (f[y >> 2] | 0)) Ci(h, 5828) + else { + f[N >> 2] = -1 + f[i >> 2] = N + 4 + } + N = f[v >> 2] | 0 + if ((N | 0) == (f[w >> 2] | 0)) Ci(z, g) + else { + f[N >> 2] = f[g >> 2] + f[v >> 2] = N + 4 + } + N = f[l >> 2] | 0 + R = f[j >> 2] | 0 + if ((N | 0) == ((R << 5) | 0)) { + if (((N + 1) | 0) < 0) { + S = 50 + break a + } + T = R << 6 + R = (N + 32) & -32 + hi( + d, + N >>> 0 < 1073741823 + ? T >>> 0 < R >>> 0 + ? R + : T + : 2147483647, + ) + U = f[l >> 2] | 0 + } else U = N + f[l >> 2] = U + 1 + N = ((f[d >> 2] | 0) + ((U >>> 5) << 2)) | 0 + f[N >> 2] = f[N >> 2] & ~(1 << (U & 31)) + f[g >> 2] = J + O = 1 + P = (J + 1) | 0 + Q = J + } + N = f[d >> 2] | 0 + T = (N + ((Q >>> 5) << 2)) | 0 + f[T >> 2] = f[T >> 2] | (1 << (Q & 31)) + T = N + b: do + if (O) { + R = M + while (1) { + if ((R | 0) == -1) { + S = 64 + break b + } + V = ((f[e >> 2] | 0) + ((R >>> 5) << 2)) | 0 + f[V >> 2] = f[V >> 2] | (1 << (R & 31)) + V = f[g >> 2] | 0 + f[((f[h >> 2] | 0) + (V << 2)) >> 2] = R + f[((f[a >> 2] | 0) + (R << 2)) >> 2] = V + V = (R + 1) | 0 + W = ((V >>> 0) % 3 | 0 | 0) == 0 ? (R + -2) | 0 : V + do + if ((W | 0) == -1) X = -1 + else { + V = f[((f[x >> 2] | 0) + (W << 2)) >> 2] | 0 + Y = (V + 1) | 0 + if ((V | 0) == -1) { + X = -1 + break + } + X = + ((Y >>> 0) % 3 | 0 | 0) == 0 + ? (V + -2) | 0 + : Y + } + while (0) + if ((X | 0) == (M | 0)) break + else R = X + } + } else { + R = M + while (1) { + if ((R | 0) == -1) { + S = 64 + break b + } + W = ((f[e >> 2] | 0) + ((R >>> 5) << 2)) | 0 + f[W >> 2] = f[W >> 2] | (1 << (R & 31)) + f[((f[h >> 2] | 0) + (f[g >> 2] << 2)) >> 2] = R + W = (R + 1) | 0 + Y = ((W >>> 0) % 3 | 0 | 0) == 0 ? (R + -2) | 0 : W + do + if ((Y | 0) == -1) Z = -1 + else { + W = f[((f[x >> 2] | 0) + (Y << 2)) >> 2] | 0 + V = (W + 1) | 0 + if ((W | 0) == -1) { + Z = -1 + break + } + Z = + ((V >>> 0) % 3 | 0 | 0) == 0 + ? (W + -2) | 0 + : V + } + while (0) + if ((Z | 0) == (M | 0)) break + else R = Z + } + } + while (0) + c: do + if ((S | 0) == 64) { + S = 0 + if ((M | 0) == -1) break + R = ((((M >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + M) | 0 + if ((R | 0) == -1) break + Y = f[((f[x >> 2] | 0) + (R << 2)) >> 2] | 0 + if ((Y | 0) == -1) break + R = (Y + (((Y >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + if ((R | 0) == -1) break + if (!O) { + Y = R + while (1) { + V = ((f[e >> 2] | 0) + ((Y >>> 5) << 2)) | 0 + f[V >> 2] = f[V >> 2] | (1 << (Y & 31)) + V = + ((((Y >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Y) | + 0 + if ((V | 0) == -1) break c + W = f[((f[x >> 2] | 0) + (V << 2)) >> 2] | 0 + if ((W | 0) == -1) break c + Y = + (W + (((W >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | + 0 + if ((Y | 0) == -1) break c + } + } + Y = f[a >> 2] | 0 + W = R + do { + V = ((f[e >> 2] | 0) + ((W >>> 5) << 2)) | 0 + f[V >> 2] = f[V >> 2] | (1 << (W & 31)) + f[(Y + (W << 2)) >> 2] = f[g >> 2] + V = + ((((W >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + W) | 0 + if ((V | 0) == -1) break c + _ = f[((f[x >> 2] | 0) + (V << 2)) >> 2] | 0 + if ((_ | 0) == -1) break c + W = + (_ + (((_ >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + } while ((W | 0) != -1) + } + while (0) + $ = P + aa = T + ba = N + } else { + $ = J + aa = I + ba = F + } + if ((H | 0) < 2) { + H = (H + 1) | 0 + J = $ + F = ba + I = aa + } else { + ca = $ + da = aa + ea = ba + break + } + } + } else { + ca = A + da = D + ea = E + } + } else { + ca = A + da = D + ea = E + } + C = (C + 1) | 0 + B = f[a >> 2] | 0 + if ( + C >>> 0 >= + ((((((f[m >> 2] | 0) - B) >> 2) >>> 0) / 3) | 0) >>> 0 + ) { + S = 18 + break + } else { + A = ca + D = da + E = ea + } + } + if ((S | 0) == 18) { + fa = da + ga = f[l >> 2] | 0 + break + } else if ((S | 0) == 50) mq(d) + } else { + fa = q + ga = p + } + } else { + fa = q + ga = p + } + while (0) + p = (a + 44) | 0 + f[p >> 2] = 0 + a = fa + fa = ga >>> 5 + q = (a + (fa << 2)) | 0 + S = ga & 31 + ga = (fa | 0) != 0 + d: do + if (fa | S | 0) + if (!S) { + l = a + da = 0 + ea = ga + while (1) { + e: do + if (ea) { + if (!(f[l >> 2] & 1)) { + ca = (da + 1) | 0 + f[p >> 2] = ca + ha = ca + } else ha = da + if (!(f[l >> 2] & 2)) { + ca = (ha + 1) | 0 + f[p >> 2] = ca + ia = ca + } else ia = ha + if (!(f[l >> 2] & 4)) { + ca = (ia + 1) | 0 + f[p >> 2] = ca + ja = ca + } else ja = ia + if (!(f[l >> 2] & 8)) { + ca = (ja + 1) | 0 + f[p >> 2] = ca + ka = ca + } else ka = ja + if (!(f[l >> 2] & 16)) { + ca = (ka + 1) | 0 + f[p >> 2] = ca + la = ca + } else la = ka + if (!(f[l >> 2] & 32)) { + ca = (la + 1) | 0 + f[p >> 2] = ca + ma = ca + } else ma = la + if (!(f[l >> 2] & 64)) { + ca = (ma + 1) | 0 + f[p >> 2] = ca + na = ca + } else na = ma + if (!(f[l >> 2] & 128)) { + ca = (na + 1) | 0 + f[p >> 2] = ca + oa = ca + } else oa = na + if (!(f[l >> 2] & 256)) { + ca = (oa + 1) | 0 + f[p >> 2] = ca + pa = ca + } else pa = oa + if (!(f[l >> 2] & 512)) { + ca = (pa + 1) | 0 + f[p >> 2] = ca + qa = ca + } else qa = pa + if (!(f[l >> 2] & 1024)) { + ca = (qa + 1) | 0 + f[p >> 2] = ca + ra = ca + } else ra = qa + if (!(f[l >> 2] & 2048)) { + ca = (ra + 1) | 0 + f[p >> 2] = ca + sa = ca + } else sa = ra + if (!(f[l >> 2] & 4096)) { + ca = (sa + 1) | 0 + f[p >> 2] = ca + ta = ca + } else ta = sa + if (!(f[l >> 2] & 8192)) { + ca = (ta + 1) | 0 + f[p >> 2] = ca + ua = ca + } else ua = ta + if (!(f[l >> 2] & 16384)) { + ca = (ua + 1) | 0 + f[p >> 2] = ca + va = ca + } else va = ua + if (!(f[l >> 2] & 32768)) { + ca = (va + 1) | 0 + f[p >> 2] = ca + wa = ca + } else wa = va + if (!(f[l >> 2] & 65536)) { + ca = (wa + 1) | 0 + f[p >> 2] = ca + xa = ca + } else xa = wa + if (!(f[l >> 2] & 131072)) { + ca = (xa + 1) | 0 + f[p >> 2] = ca + ya = ca + } else ya = xa + if (!(f[l >> 2] & 262144)) { + ca = (ya + 1) | 0 + f[p >> 2] = ca + za = ca + } else za = ya + if (!(f[l >> 2] & 524288)) { + ca = (za + 1) | 0 + f[p >> 2] = ca + Aa = ca + } else Aa = za + if (!(f[l >> 2] & 1048576)) { + ca = (Aa + 1) | 0 + f[p >> 2] = ca + Ba = ca + } else Ba = Aa + if (!(f[l >> 2] & 2097152)) { + ca = (Ba + 1) | 0 + f[p >> 2] = ca + Ca = ca + } else Ca = Ba + if (!(f[l >> 2] & 4194304)) { + ca = (Ca + 1) | 0 + f[p >> 2] = ca + Da = ca + } else Da = Ca + if (!(f[l >> 2] & 8388608)) { + ca = (Da + 1) | 0 + f[p >> 2] = ca + Ea = ca + } else Ea = Da + if (!(f[l >> 2] & 16777216)) { + ca = (Ea + 1) | 0 + f[p >> 2] = ca + Fa = ca + } else Fa = Ea + if (!(f[l >> 2] & 33554432)) { + ca = (Fa + 1) | 0 + f[p >> 2] = ca + Ga = ca + } else Ga = Fa + if (!(f[l >> 2] & 67108864)) { + ca = (Ga + 1) | 0 + f[p >> 2] = ca + Ha = ca + } else Ha = Ga + if (!(f[l >> 2] & 134217728)) { + ca = (Ha + 1) | 0 + f[p >> 2] = ca + Ia = ca + } else Ia = Ha + if (!(f[l >> 2] & 268435456)) { + ca = (Ia + 1) | 0 + f[p >> 2] = ca + Ja = ca + } else Ja = Ia + if (!(f[l >> 2] & 536870912)) { + ca = (Ja + 1) | 0 + f[p >> 2] = ca + Ka = ca + } else Ka = Ja + if (!(f[l >> 2] & 1073741824)) { + ca = (Ka + 1) | 0 + f[p >> 2] = ca + La = ca + } else La = Ka + if ((f[l >> 2] | 0) <= -1) { + Ma = La + break + } + ca = (La + 1) | 0 + f[p >> 2] = ca + Ma = ca + } else { + ca = 0 + m = da + while (1) { + if (!(f[l >> 2] & (1 << ca))) { + ba = (m + 1) | 0 + f[p >> 2] = ba + Na = ba + } else Na = m + if ((ca | 0) == 31) { + Ma = Na + break e + } + ca = (ca + 1) | 0 + if (!ca) break d + else m = Na + } + } + while (0) + l = (l + 4) | 0 + if ((q | 0) == (l | 0)) break + else { + da = Ma + ea = 1 + } + } + } else { + if (ga) { + ea = 0 + da = a + l = 0 + while (1) { + if (!(f[da >> 2] & 1)) { + m = (l + 1) | 0 + f[p >> 2] = m + Oa = m + Pa = m + } else { + Oa = l + Pa = ea + } + if (!(f[da >> 2] & 2)) { + m = (Oa + 1) | 0 + f[p >> 2] = m + Qa = m + Ra = m + } else { + Qa = Oa + Ra = Pa + } + if (!(f[da >> 2] & 4)) { + m = (Qa + 1) | 0 + f[p >> 2] = m + Sa = m + Ta = m + } else { + Sa = Qa + Ta = Ra + } + if (!(f[da >> 2] & 8)) { + m = (Sa + 1) | 0 + f[p >> 2] = m + Ua = m + Va = m + } else { + Ua = Sa + Va = Ta + } + if (!(f[da >> 2] & 16)) { + m = (Ua + 1) | 0 + f[p >> 2] = m + Wa = m + Xa = m + } else { + Wa = Ua + Xa = Va + } + if (!(f[da >> 2] & 32)) { + m = (Wa + 1) | 0 + f[p >> 2] = m + Ya = m + Za = m + } else { + Ya = Wa + Za = Xa + } + if (!(f[da >> 2] & 64)) { + m = (Ya + 1) | 0 + f[p >> 2] = m + _a = m + $a = m + } else { + _a = Ya + $a = Za + } + if (!(f[da >> 2] & 128)) { + m = (_a + 1) | 0 + f[p >> 2] = m + ab = m + bb = m + } else { + ab = _a + bb = $a + } + if (!(f[da >> 2] & 256)) { + m = (ab + 1) | 0 + f[p >> 2] = m + cb = m + db = m + } else { + cb = ab + db = bb + } + if (!(f[da >> 2] & 512)) { + m = (cb + 1) | 0 + f[p >> 2] = m + eb = m + fb = m + } else { + eb = cb + fb = db + } + if (!(f[da >> 2] & 1024)) { + m = (eb + 1) | 0 + f[p >> 2] = m + gb = m + hb = m + } else { + gb = eb + hb = fb + } + if (!(f[da >> 2] & 2048)) { + m = (gb + 1) | 0 + f[p >> 2] = m + ib = m + jb = m + } else { + ib = gb + jb = hb + } + if (!(f[da >> 2] & 4096)) { + m = (ib + 1) | 0 + f[p >> 2] = m + kb = m + lb = m + } else { + kb = ib + lb = jb + } + if (!(f[da >> 2] & 8192)) { + m = (kb + 1) | 0 + f[p >> 2] = m + mb = m + nb = m + } else { + mb = kb + nb = lb + } + if (!(f[da >> 2] & 16384)) { + m = (mb + 1) | 0 + f[p >> 2] = m + ob = m + pb = m + } else { + ob = mb + pb = nb + } + if (!(f[da >> 2] & 32768)) { + m = (ob + 1) | 0 + f[p >> 2] = m + qb = m + rb = m + } else { + qb = ob + rb = pb + } + if (!(f[da >> 2] & 65536)) { + m = (qb + 1) | 0 + f[p >> 2] = m + sb = m + tb = m + } else { + sb = qb + tb = rb + } + if (!(f[da >> 2] & 131072)) { + m = (sb + 1) | 0 + f[p >> 2] = m + ub = m + vb = m + } else { + ub = sb + vb = tb + } + if (!(f[da >> 2] & 262144)) { + m = (ub + 1) | 0 + f[p >> 2] = m + wb = m + xb = m + } else { + wb = ub + xb = vb + } + if (!(f[da >> 2] & 524288)) { + m = (wb + 1) | 0 + f[p >> 2] = m + yb = m + zb = m + } else { + yb = wb + zb = xb + } + if (!(f[da >> 2] & 1048576)) { + m = (yb + 1) | 0 + f[p >> 2] = m + Ab = m + Bb = m + } else { + Ab = yb + Bb = zb + } + if (!(f[da >> 2] & 2097152)) { + m = (Ab + 1) | 0 + f[p >> 2] = m + Cb = m + Db = m + } else { + Cb = Ab + Db = Bb + } + if (!(f[da >> 2] & 4194304)) { + m = (Cb + 1) | 0 + f[p >> 2] = m + Eb = m + Fb = m + } else { + Eb = Cb + Fb = Db + } + if (!(f[da >> 2] & 8388608)) { + m = (Eb + 1) | 0 + f[p >> 2] = m + Gb = m + Hb = m + } else { + Gb = Eb + Hb = Fb + } + if (!(f[da >> 2] & 16777216)) { + m = (Gb + 1) | 0 + f[p >> 2] = m + Ib = m + Jb = m + } else { + Ib = Gb + Jb = Hb + } + if (!(f[da >> 2] & 33554432)) { + m = (Ib + 1) | 0 + f[p >> 2] = m + Kb = m + Lb = m + } else { + Kb = Ib + Lb = Jb + } + if (!(f[da >> 2] & 67108864)) { + m = (Kb + 1) | 0 + f[p >> 2] = m + Mb = m + Nb = m + } else { + Mb = Kb + Nb = Lb + } + if (!(f[da >> 2] & 134217728)) { + m = (Mb + 1) | 0 + f[p >> 2] = m + Ob = m + Pb = m + } else { + Ob = Mb + Pb = Nb + } + if (!(f[da >> 2] & 268435456)) { + m = (Ob + 1) | 0 + f[p >> 2] = m + Qb = m + Rb = m + } else { + Qb = Ob + Rb = Pb + } + if (!(f[da >> 2] & 536870912)) { + m = (Qb + 1) | 0 + f[p >> 2] = m + Sb = m + Tb = m + } else { + Sb = Qb + Tb = Rb + } + if (!(f[da >> 2] & 1073741824)) { + m = (Sb + 1) | 0 + f[p >> 2] = m + Ub = m + Vb = m + } else { + Ub = Sb + Vb = Tb + } + if ((f[da >> 2] | 0) > -1) { + m = (Ub + 1) | 0 + f[p >> 2] = m + Wb = m + Xb = m + } else { + Wb = Ub + Xb = Vb + } + m = (da + 4) | 0 + if ((q | 0) == (m | 0)) { + Yb = m + Zb = Xb + break + } else { + ea = Xb + da = m + l = Wb + } + } + } else { + Yb = a + Zb = 0 + } + l = 0 + da = Zb + while (1) { + if (!(f[Yb >> 2] & (1 << l))) { + ea = (da + 1) | 0 + f[p >> 2] = ea + _b = ea + } else _b = da + l = (l + 1) | 0 + if ((l | 0) == (S | 0)) break + else da = _b + } + } + while (0) + _b = f[e >> 2] | 0 + if (_b | 0) br(_b) + _b = f[d >> 2] | 0 + if (!_b) { + u = c + return 1 + } + br(_b) + u = c + return 1 + } + function gb(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = Oa, + La = 0, + Ma = 0, + Na = 0, + Pa = 0, + Qa = Oa, + Ra = 0, + Sa = 0, + Ta = 0, + Ua = 0, + Va = 0 + c = u + u = (u + 80) | 0 + d = (c + 60) | 0 + e = (c + 48) | 0 + g = (c + 24) | 0 + h = (c + 12) | 0 + i = c + j = (a + 28) | 0 + k = f[j >> 2] | 0 + l = f[(k + 4) >> 2] | 0 + m = f[(l + 80) >> 2] | 0 + o = (a + 4) | 0 + p = (a + 8) | 0 + q = f[p >> 2] | 0 + r = f[o >> 2] | 0 + s = (q | 0) == (r | 0) + t = r + if (s) { + f[(a + 72) >> 2] = 0 + v = 1 + u = c + return v | 0 + } + w = f[(l + 8) >> 2] | 0 + x = (q - r) >> 2 + r = 0 + q = 0 + do { + r = + (r + + (b[((f[(w + (f[(t + (q << 2)) >> 2] << 2)) >> 2] | 0) + 24) >> 0] | + 0)) | + 0 + q = (q + 1) | 0 + } while (q >>> 0 < x >>> 0) + f[(a + 72) >> 2] = r + if (s) { + v = 1 + u = c + return v | 0 + } + s = (g + 4) | 0 + r = (g + 8) | 0 + x = (d + 8) | 0 + q = (d + 4) | 0 + w = (d + 11) | 0 + y = (g + 12) | 0 + z = (d + 8) | 0 + A = (d + 4) | 0 + B = (d + 11) | 0 + C = (h + 4) | 0 + D = (h + 8) | 0 + E = (i + 8) | 0 + F = (i + 4) | 0 + G = (d + 11) | 0 + H = (d + 4) | 0 + I = (i + 11) | 0 + J = (d + 8) | 0 + K = (d + 4) | 0 + L = (d + 11) | 0 + M = (d + 11) | 0 + N = (d + 4) | 0 + O = (h + 8) | 0 + P = (a + 40) | 0 + Q = (a + 44) | 0 + R = (a + 36) | 0 + S = (a + 64) | 0 + T = (a + 68) | 0 + U = (a + 60) | 0 + V = (g + 8) | 0 + W = (g + 20) | 0 + X = (e + 8) | 0 + Y = (e + 4) | 0 + Z = (e + 11) | 0 + _ = (g + 4) | 0 + aa = (g + 8) | 0 + ba = (h + 4) | 0 + ca = (h + 8) | 0 + da = (h + 8) | 0 + ea = (a + 52) | 0 + fa = (a + 56) | 0 + ga = (a + 48) | 0 + a = (g + 8) | 0 + ha = 0 + ia = t + t = l + l = k + a: while (1) { + k = f[(ia + (ha << 2)) >> 2] | 0 + ja = f[((f[(t + 8) >> 2] | 0) + (k << 2)) >> 2] | 0 + switch (f[(ja + 28) >> 2] | 0) { + case 9: { + f[g >> 2] = 1180 + f[s >> 2] = -1 + f[r >> 2] = 0 + f[(r + 4) >> 2] = 0 + f[(r + 8) >> 2] = 0 + f[(r + 12) >> 2] = 0 + ka = f[(l + 48) >> 2] | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + la = dn(32) | 0 + f[d >> 2] = la + f[x >> 2] = -2147483616 + f[q >> 2] = 17 + ma = la + na = 12932 + oa = (ma + 17) | 0 + do { + b[ma >> 0] = b[na >> 0] | 0 + ma = (ma + 1) | 0 + na = (na + 1) | 0 + } while ((ma | 0) < (oa | 0)) + b[(la + 17) >> 0] = 0 + pa = (ka + 16) | 0 + qa = f[pa >> 2] | 0 + if (qa) { + ra = pa + sa = qa + b: while (1) { + qa = sa + while (1) { + if ((f[(qa + 16) >> 2] | 0) >= (k | 0)) break + ta = f[(qa + 4) >> 2] | 0 + if (!ta) { + ua = ra + break b + } else qa = ta + } + sa = f[qa >> 2] | 0 + if (!sa) { + ua = qa + break + } else ra = qa + } + if ( + ((ua | 0) != (pa | 0) ? (k | 0) >= (f[(ua + 16) >> 2] | 0) : 0) + ? ((ra = (ua + 20) | 0), (sh(ra, d) | 0) != 0) + : 0 + ) + va = yk(ra, d, -1) | 0 + else wa = 17 + } else wa = 17 + if ((wa | 0) == 17) { + wa = 0 + va = yk(ka, d, -1) | 0 + } + if ((b[w >> 0] | 0) < 0) br(f[d >> 2] | 0) + if ((va | 0) < 1) xa = 1 + else { + ra = f[((f[j >> 2] | 0) + 48) >> 2] | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + sa = dn(32) | 0 + f[d >> 2] = sa + f[z >> 2] = -2147483616 + f[A >> 2] = 19 + ma = sa + na = 13005 + oa = (ma + 19) | 0 + do { + b[ma >> 0] = b[na >> 0] | 0 + ma = (ma + 1) | 0 + na = (na + 1) | 0 + } while ((ma | 0) < (oa | 0)) + b[(sa + 19) >> 0] = 0 + ka = (ra + 16) | 0 + pa = f[ka >> 2] | 0 + if (pa) { + la = ka + ta = pa + c: while (1) { + pa = ta + while (1) { + if ((f[(pa + 16) >> 2] | 0) >= (k | 0)) break + ya = f[(pa + 4) >> 2] | 0 + if (!ya) { + za = la + break c + } else pa = ya + } + ta = f[pa >> 2] | 0 + if (!ta) { + za = pa + break + } else la = pa + } + if ( + (za | 0) != (ka | 0) ? (k | 0) >= (f[(za + 16) >> 2] | 0) : 0 + ) + Aa = (za + 20) | 0 + else wa = 29 + } else wa = 29 + if ((wa | 0) == 29) { + wa = 0 + Aa = ra + } + if (!(sh(Aa, d) | 0)) Ba = 0 + else { + la = f[((f[j >> 2] | 0) + 48) >> 2] | 0 + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + ta = dn(32) | 0 + f[e >> 2] = ta + f[X >> 2] = -2147483616 + f[Y >> 2] = 18 + ma = ta + na = 13025 + oa = (ma + 18) | 0 + do { + b[ma >> 0] = b[na >> 0] | 0 + ma = (ma + 1) | 0 + na = (na + 1) | 0 + } while ((ma | 0) < (oa | 0)) + b[(ta + 18) >> 0] = 0 + ra = (la + 16) | 0 + ka = f[ra >> 2] | 0 + if (ka) { + sa = ra + qa = ka + d: while (1) { + ka = qa + while (1) { + if ((f[(ka + 16) >> 2] | 0) >= (k | 0)) break + ya = f[(ka + 4) >> 2] | 0 + if (!ya) { + Ca = sa + break d + } else ka = ya + } + qa = f[ka >> 2] | 0 + if (!qa) { + Ca = ka + break + } else sa = ka + } + if ( + (Ca | 0) != (ra | 0) + ? (k | 0) >= (f[(Ca + 16) >> 2] | 0) + : 0 + ) + Da = (Ca + 20) | 0 + else wa = 39 + } else wa = 39 + if ((wa | 0) == 39) { + wa = 0 + Da = la + } + sa = (sh(Da, e) | 0) != 0 + if ((b[Z >> 0] | 0) < 0) br(f[e >> 2] | 0) + Ba = sa + } + if ((b[B >> 0] | 0) < 0) br(f[d >> 2] | 0) + if (Ba) { + sa = (ja + 24) | 0 + qa = b[sa >> 0] | 0 + ta = (qa << 24) >> 24 + f[h >> 2] = 0 + f[C >> 2] = 0 + f[D >> 2] = 0 + if (!((qa << 24) >> 24)) Ea = 0 + else { + if ((qa << 24) >> 24 < 0) { + wa = 48 + break a + } + qa = ta << 2 + pa = dn(qa) | 0 + f[h >> 2] = pa + ya = (pa + (ta << 2)) | 0 + f[O >> 2] = ya + hj(pa | 0, 0, qa | 0) | 0 + f[C >> 2] = ya + Ea = pa + } + pa = f[((f[j >> 2] | 0) + 48) >> 2] | 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + ya = dn(32) | 0 + f[i >> 2] = ya + f[E >> 2] = -2147483616 + f[F >> 2] = 19 + ma = ya + na = 13005 + oa = (ma + 19) | 0 + do { + b[ma >> 0] = b[na >> 0] | 0 + ma = (ma + 1) | 0 + na = (na + 1) | 0 + } while ((ma | 0) < (oa | 0)) + b[(ya + 19) >> 0] = 0 + la = b[sa >> 0] | 0 + ra = (la << 24) >> 24 + qa = (pa + 16) | 0 + ta = f[qa >> 2] | 0 + if (ta) { + Fa = qa + Ga = ta + e: while (1) { + ta = Ga + while (1) { + if ((f[(ta + 16) >> 2] | 0) >= (k | 0)) break + Ha = f[(ta + 4) >> 2] | 0 + if (!Ha) { + Ia = Fa + break e + } else ta = Ha + } + Ga = f[ta >> 2] | 0 + if (!Ga) { + Ia = ta + break + } else Fa = ta + } + if ( + ( + (Ia | 0) != (qa | 0) + ? (k | 0) >= (f[(Ia + 16) >> 2] | 0) + : 0 + ) + ? ((Fa = (Ia + 20) | 0), (sh(Fa, i) | 0) != 0) + : 0 + ) { + Ga = zg(Fa, i) | 0 + if ((Ga | 0) != ((Ia + 24) | 0)) { + dj(d, (Ga + 28) | 0) + Ga = b[M >> 0] | 0 + Fa = (Ga << 24) >> 24 < 0 + if (!((Fa ? f[N >> 2] | 0 : Ga & 255) | 0)) Ja = Ga + else { + if ((la << 24) >> 24 > 0) { + ya = Fa ? f[d >> 2] | 0 : d + Fa = 0 + do { + Ka = $(pq(ya, e)) + ka = ya + ya = f[e >> 2] | 0 + if ((ka | 0) == (ya | 0)) break + n[(Ea + (Fa << 2)) >> 2] = Ka + Fa = (Fa + 1) | 0 + } while ((Fa | 0) < (ra | 0)) + La = b[M >> 0] | 0 + } else La = Ga + Ja = La + } + if ((Ja << 24) >> 24 < 0) br(f[d >> 2] | 0) + } + } else wa = 69 + } else wa = 69 + if ( + (wa | 0) == 69 + ? ((wa = 0), + (Fa = zg(pa, i) | 0), + (Fa | 0) != ((pa + 4) | 0)) + : 0 + ) { + dj(d, (Fa + 28) | 0) + Fa = b[G >> 0] | 0 + ya = (Fa << 24) >> 24 < 0 + if (!((ya ? f[H >> 2] | 0 : Fa & 255) | 0)) Ma = Fa + else { + if ((la << 24) >> 24 > 0) { + qa = ya ? f[d >> 2] | 0 : d + ya = 0 + do { + Ka = $(pq(qa, e)) + ka = qa + qa = f[e >> 2] | 0 + if ((ka | 0) == (qa | 0)) break + n[(Ea + (ya << 2)) >> 2] = Ka + ya = (ya + 1) | 0 + } while ((ya | 0) < (ra | 0)) + Na = b[G >> 0] | 0 + } else Na = Fa + Ma = Na + } + if ((Ma << 24) >> 24 < 0) br(f[d >> 2] | 0) + } + if ((b[I >> 0] | 0) < 0) br(f[i >> 2] | 0) + ra = f[((f[j >> 2] | 0) + 48) >> 2] | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + ya = dn(32) | 0 + f[d >> 2] = ya + f[J >> 2] = -2147483616 + f[K >> 2] = 18 + ma = ya + na = 13025 + oa = (ma + 18) | 0 + do { + b[ma >> 0] = b[na >> 0] | 0 + ma = (ma + 1) | 0 + na = (na + 1) | 0 + } while ((ma | 0) < (oa | 0)) + b[(ya + 18) >> 0] = 0 + na = (ra + 16) | 0 + ma = f[na >> 2] | 0 + do + if (ma) { + oa = na + Fa = ma + f: while (1) { + qa = Fa + while (1) { + if ((f[(qa + 16) >> 2] | 0) >= (k | 0)) break + la = f[(qa + 4) >> 2] | 0 + if (!la) { + Pa = oa + break f + } else qa = la + } + Fa = f[qa >> 2] | 0 + if (!Fa) { + Pa = qa + break + } else oa = qa + } + if ( + (Pa | 0) != (na | 0) + ? (k | 0) >= (f[(Pa + 16) >> 2] | 0) + : 0 + ) { + oa = (Pa + 20) | 0 + if (!(sh(oa, d) | 0)) { + wa = 91 + break + } + Qa = $(kk(oa, d, $(1.0))) + } else wa = 91 + } else wa = 91 + while (0) + if ((wa | 0) == 91) { + wa = 0 + Qa = $(kk(ra, d, $(1.0))) + } + if ((b[L >> 0] | 0) < 0) br(f[d >> 2] | 0) + wl(g, va, f[h >> 2] | 0, b[sa >> 0] | 0, Qa) + k = f[h >> 2] | 0 + if (k | 0) { + na = f[C >> 2] | 0 + if ((na | 0) != (k | 0)) + f[C >> 2] = na + (~(((na + -4 - k) | 0) >>> 2) << 2) + br(k) + } + } else Kd(g, ja, va) | 0 + k = f[P >> 2] | 0 + if ((k | 0) == (f[Q >> 2] | 0)) of(R, g) + else { + f[k >> 2] = 1180 + f[(k + 4) >> 2] = f[s >> 2] + Ra = (k + 8) | 0 + f[Ra >> 2] = 0 + na = (k + 12) | 0 + f[na >> 2] = 0 + f[(k + 16) >> 2] = 0 + ma = ((f[y >> 2] | 0) - (f[V >> 2] | 0)) | 0 + ya = ma >> 2 + if (ya | 0) { + if (ya >>> 0 > 1073741823) { + wa = 103 + break a + } + oa = dn(ma) | 0 + f[na >> 2] = oa + f[Ra >> 2] = oa + f[(k + 16) >> 2] = oa + (ya << 2) + ya = f[V >> 2] | 0 + ma = ((f[y >> 2] | 0) - ya) | 0 + if ((ma | 0) > 0) { + Rg(oa | 0, ya | 0, ma | 0) | 0 + f[na >> 2] = oa + ((ma >>> 2) << 2) + } + } + f[(k + 20) >> 2] = f[W >> 2] + f[P >> 2] = (f[P >> 2] | 0) + 24 + } + Re(d, g, ja, m) + k = f[S >> 2] | 0 + if (k >>> 0 < (f[T >> 2] | 0) >>> 0) { + ma = f[d >> 2] | 0 + f[d >> 2] = 0 + f[k >> 2] = ma + f[S >> 2] = k + 4 + } else Me(U, d) + k = f[d >> 2] | 0 + f[d >> 2] = 0 + if (k | 0) { + ma = (k + 88) | 0 + oa = f[ma >> 2] | 0 + f[ma >> 2] = 0 + if (oa | 0) { + ma = f[(oa + 8) >> 2] | 0 + if (ma | 0) { + na = (oa + 12) | 0 + if ((f[na >> 2] | 0) != (ma | 0)) f[na >> 2] = ma + br(ma) + } + br(oa) + } + oa = f[(k + 68) >> 2] | 0 + if (oa | 0) { + ma = (k + 72) | 0 + na = f[ma >> 2] | 0 + if ((na | 0) != (oa | 0)) + f[ma >> 2] = na + (~(((na + -4 - oa) | 0) >>> 2) << 2) + br(oa) + } + oa = (k + 64) | 0 + na = f[oa >> 2] | 0 + f[oa >> 2] = 0 + if (na | 0) { + oa = f[na >> 2] | 0 + if (oa | 0) { + ma = (na + 4) | 0 + if ((f[ma >> 2] | 0) != (oa | 0)) f[ma >> 2] = oa + br(oa) + } + br(na) + } + br(k) + } + xa = 0 + } + f[g >> 2] = 1180 + k = f[r >> 2] | 0 + if (k | 0) { + na = f[y >> 2] | 0 + if ((na | 0) != (k | 0)) + f[y >> 2] = na + (~(((na + -4 - k) | 0) >>> 2) << 2) + br(k) + } + if (xa | 0) { + v = 0 + wa = 169 + break a + } + break + } + case 1: + case 3: + case 5: { + k = (ja + 24) | 0 + na = b[k >> 0] | 0 + oa = (na << 24) >> 24 + f[g >> 2] = 0 + f[_ >> 2] = 0 + f[aa >> 2] = 0 + if (!((na << 24) >> 24)) Sa = 0 + else { + if ((na << 24) >> 24 < 0) { + wa = 137 + break a + } + na = dn(oa << 2) | 0 + f[_ >> 2] = na + f[g >> 2] = na + ma = (na + (oa << 2)) | 0 + f[a >> 2] = ma + ya = oa + oa = na + while (1) { + f[oa >> 2] = 2147483647 + ya = (ya + -1) | 0 + if (!ya) break + else oa = (oa + 4) | 0 + } + f[_ >> 2] = ma + Sa = b[k >> 0] | 0 + } + oa = (Sa << 24) >> 24 + f[h >> 2] = 0 + f[ba >> 2] = 0 + f[ca >> 2] = 0 + if (!((Sa << 24) >> 24)) Ta = 0 + else { + if ((Sa << 24) >> 24 < 0) { + wa = 144 + break a + } + ya = oa << 2 + sa = dn(ya) | 0 + f[h >> 2] = sa + ra = (sa + (oa << 2)) | 0 + f[da >> 2] = ra + hj(sa | 0, 0, ya | 0) | 0 + f[ba >> 2] = ra + Ta = sa + } + sa = (ja + 80) | 0 + ra = b[k >> 0] | 0 + g: do + if (!(f[sa >> 2] | 0)) Ua = ra + else { + ya = 0 + oa = ra + na = Ta + while (1) { + f[e >> 2] = ya + f[d >> 2] = f[e >> 2] + Pb(ja, d, oa, na) | 0 + Fa = b[k >> 0] | 0 + if ((Fa << 24) >> 24 > 0) { + ta = f[g >> 2] | 0 + la = f[h >> 2] | 0 + pa = (Fa << 24) >> 24 + Ga = 0 + do { + ka = (ta + (Ga << 2)) | 0 + Ha = f[(la + (Ga << 2)) >> 2] | 0 + if ((f[ka >> 2] | 0) > (Ha | 0)) f[ka >> 2] = Ha + Ga = (Ga + 1) | 0 + } while ((Ga | 0) < (pa | 0)) + } + pa = (ya + 1) | 0 + if (pa >>> 0 >= (f[sa >> 2] | 0) >>> 0) { + Ua = Fa + break g + } + ya = pa + oa = Fa + na = f[h >> 2] | 0 + } + } + while (0) + if ((Ua << 24) >> 24 > 0) { + sa = 0 + ja = Ua + while (1) { + ra = ((f[g >> 2] | 0) + (sa << 2)) | 0 + ma = f[ea >> 2] | 0 + if ((ma | 0) == (f[fa >> 2] | 0)) { + Ci(ga, ra) + Va = b[k >> 0] | 0 + } else { + f[ma >> 2] = f[ra >> 2] + f[ea >> 2] = ma + 4 + Va = ja + } + sa = (sa + 1) | 0 + if ((sa | 0) >= (((Va << 24) >> 24) | 0)) break + else ja = Va + } + } + ja = f[h >> 2] | 0 + if (ja | 0) { + sa = f[ba >> 2] | 0 + if ((sa | 0) != (ja | 0)) + f[ba >> 2] = sa + (~(((sa + -4 - ja) | 0) >>> 2) << 2) + br(ja) + } + ja = f[g >> 2] | 0 + if (ja | 0) { + sa = f[_ >> 2] | 0 + if ((sa | 0) != (ja | 0)) + f[_ >> 2] = sa + (~(((sa + -4 - ja) | 0) >>> 2) << 2) + br(ja) + } + break + } + default: { + } + } + ja = (ha + 1) | 0 + sa = f[o >> 2] | 0 + if (ja >>> 0 >= (((f[p >> 2] | 0) - sa) >> 2) >>> 0) { + v = 1 + wa = 169 + break + } + k = f[j >> 2] | 0 + ha = ja + ia = sa + t = f[(k + 4) >> 2] | 0 + l = k + } + if ((wa | 0) == 48) mq(h) + else if ((wa | 0) == 103) mq(Ra) + else if ((wa | 0) == 137) mq(g) + else if ((wa | 0) == 144) mq(h) + else if ((wa | 0) == 169) { + u = c + return v | 0 + } + return 0 + } + function hb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 8) | 0 + h = f[g >> 2] | 0 + f[e >> 2] = 0 + i = (e + 4) | 0 + f[i >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (h) + if (h >>> 0 > 1073741823) mq(e) + else { + j = h << 2 + k = dn(j) | 0 + f[e >> 2] = k + l = (k + (h << 2)) | 0 + f[(e + 8) >> 2] = l + hj(k | 0, 0, j | 0) | 0 + f[i >> 2] = l + m = l + n = k + break + } + else { + m = 0 + n = 0 + } + while (0) + k = (a + 128) | 0 + l = f[k >> 2] | 0 + j = f[l >> 2] | 0 + o = (l + 4) | 0 + if (!j) { + p = (l + 8) | 0 + q = n + r = m + s = h + } else { + h = f[o >> 2] | 0 + if ((h | 0) != (j | 0)) + f[o >> 2] = h + (~(((h + -4 - j) | 0) >>> 2) << 2) + br(j) + j = (l + 8) | 0 + f[j >> 2] = 0 + f[o >> 2] = 0 + f[l >> 2] = 0 + p = j + q = f[e >> 2] | 0 + r = f[i >> 2] | 0 + s = f[g >> 2] | 0 + } + f[l >> 2] = q + f[o >> 2] = r + f[p >> 2] = f[(e + 8) >> 2] + f[e >> 2] = 0 + p = (e + 4) | 0 + f[p >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (s) + if (s >>> 0 > 1073741823) mq(e) + else { + r = s << 2 + o = dn(r) | 0 + f[e >> 2] = o + q = (o + (s << 2)) | 0 + f[(e + 8) >> 2] = q + hj(o | 0, 0, r | 0) | 0 + f[p >> 2] = q + t = q + v = o + break + } + else { + t = 0 + v = 0 + } + while (0) + s = (a + 140) | 0 + o = f[s >> 2] | 0 + q = f[o >> 2] | 0 + r = (o + 4) | 0 + if (!q) { + w = (o + 8) | 0 + x = v + y = t + } else { + t = f[r >> 2] | 0 + if ((t | 0) != (q | 0)) + f[r >> 2] = t + (~(((t + -4 - q) | 0) >>> 2) << 2) + br(q) + q = (o + 8) | 0 + f[q >> 2] = 0 + f[r >> 2] = 0 + f[o >> 2] = 0 + w = q + x = f[e >> 2] | 0 + y = f[p >> 2] | 0 + } + f[o >> 2] = x + f[r >> 2] = y + f[w >> 2] = f[(e + 8) >> 2] + w = f[b >> 2] | 0 + y = (b + 4) | 0 + r = f[y >> 2] | 0 + x = f[(y + 4) >> 2] | 0 + y = f[c >> 2] | 0 + o = (c + 4) | 0 + p = f[o >> 2] | 0 + q = f[(o + 4) >> 2] | 0 + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + f[(e + 12) >> 2] = 0 + f[(e + 16) >> 2] = 0 + f[(e + 20) >> 2] = 0 + o = (e + 8) | 0 + t = (e + 4) | 0 + v = (e + 16) | 0 + l = (e + 20) | 0 + i = r + Jc(e) + j = f[t >> 2] | 0 + h = ((f[l >> 2] | 0) + (f[v >> 2] | 0)) | 0 + if ((f[o >> 2] | 0) == (j | 0)) z = 0 + else + z = + ((f[(j + ((((h >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((h >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[z >> 2] = w + h = (z + 4) | 0 + f[h >> 2] = r + f[(h + 4) >> 2] = x + f[(z + 12) >> 2] = y + h = (z + 16) | 0 + f[h >> 2] = p + f[(h + 4) >> 2] = q + f[(z + 24) >> 2] = 0 + f[(z + 28) >> 2] = y - w + f[(z + 32) >> 2] = 0 + z = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = z + if (z | 0) { + w = (a + 116) | 0 + y = (a + 48) | 0 + h = (a + 44) | 0 + j = (a + 36) | 0 + m = (a + 40) | 0 + n = (a + 32) | 0 + A = (b + 8) | 0 + B = (c + 8) | 0 + C = (a + 28) | 0 + D = (a + 24) | 0 + E = (a + 16) | 0 + F = (a + 20) | 0 + G = (a + 12) | 0 + H = (a + 88) | 0 + I = (a + 84) | 0 + J = (a + 76) | 0 + K = (a + 80) | 0 + L = (a + 72) | 0 + M = (i + 4) | 0 + N = (i + 24) | 0 + O = (i + 24) | 0 + P = (p + 24) | 0 + Q = z + while (1) { + z = f[v >> 2] | 0 + R = (Q + -1) | 0 + S = (R + z) | 0 + T = f[t >> 2] | 0 + U = f[(T + ((((S >>> 0) / 113) | 0) << 2)) >> 2] | 0 + V = (S >>> 0) % 113 | 0 + S = f[(U + ((V * 36) | 0)) >> 2] | 0 + W = f[(U + ((V * 36) | 0) + 12) >> 2] | 0 + Y = f[(U + ((V * 36) | 0) + 24) >> 2] | 0 + Z = f[(U + ((V * 36) | 0) + 32) >> 2] | 0 + f[l >> 2] = R + R = f[o >> 2] | 0 + V = (R - T) >> 2 + if ( + ((1 - Q - z + ((V | 0) == 0 ? 0 : (((V * 113) | 0) + -1) | 0)) | + 0) >>> + 0 > + 225 + ) { + br(f[(R + -4) >> 2] | 0) + f[o >> 2] = (f[o >> 2] | 0) + -4 + } + f[b >> 2] = S + f[c >> 2] = W + R = f[k >> 2] | 0 + V = (((f[g >> 2] | 0) + -1) | 0) == (Y | 0) ? 0 : (Y + 1) | 0 + Y = ((f[s >> 2] | 0) + ((Z * 12) | 0)) | 0 + z = (W - S) | 0 + T = ((f[a >> 2] | 0) - (f[((f[Y >> 2] | 0) + (V << 2)) >> 2] | 0)) | 0 + a: do + if (T) { + if (z >>> 0 < 3) { + U = f[w >> 2] | 0 + f[U >> 2] = V + $ = f[g >> 2] | 0 + if ($ >>> 0 > 1) { + aa = 1 + ba = $ + ca = V + while (1) { + ca = (ca | 0) == ((ba + -1) | 0) ? 0 : (ca + 1) | 0 + f[(U + (aa << 2)) >> 2] = ca + aa = (aa + 1) | 0 + da = f[g >> 2] | 0 + if (aa >>> 0 >= da >>> 0) { + ea = da + break + } else ba = da + } + } else ea = $ + if (!z) { + fa = 99 + break + } else { + ga = 0 + ha = ea + } + while (1) { + ba = + ((f[N >> 2] | 0) + + ((X(f[M >> 2] | 0, (S + ga) | 0) | 0) << 2)) | + 0 + if (!ha) ia = 0 + else { + aa = 0 + do { + ca = f[((f[w >> 2] | 0) + (aa << 2)) >> 2] | 0 + U = + ((f[a >> 2] | 0) - + (f[((f[Y >> 2] | 0) + (ca << 2)) >> 2] | 0)) | + 0 + do + if (U | 0) { + da = f[y >> 2] | 0 + ja = (32 - da) | 0 + ka = (32 - U) | 0 + la = f[(ba + (ca << 2)) >> 2] << ka + if ((U | 0) > (ja | 0)) { + ma = la >>> ka + ka = (U - ja) | 0 + f[y >> 2] = ka + ja = f[h >> 2] | (ma >>> ka) + f[h >> 2] = ja + ka = f[j >> 2] | 0 + if ((ka | 0) == (f[m >> 2] | 0)) Ci(n, h) + else { + f[ka >> 2] = ja + f[j >> 2] = ka + 4 + } + f[h >> 2] = ma << (32 - (f[y >> 2] | 0)) + break + } + ma = f[h >> 2] | (la >>> da) + f[h >> 2] = ma + la = (da + U) | 0 + f[y >> 2] = la + if ((la | 0) != 32) break + la = f[j >> 2] | 0 + if ((la | 0) == (f[m >> 2] | 0)) Ci(n, h) + else { + f[la >> 2] = ma + f[j >> 2] = la + 4 + } + f[h >> 2] = 0 + f[y >> 2] = 0 + } + while (0) + aa = (aa + 1) | 0 + U = f[g >> 2] | 0 + } while (aa >>> 0 < U >>> 0) + ia = U + } + ga = (ga + 1) | 0 + if (ga >>> 0 >= z >>> 0) { + fa = 99 + break a + } else ha = ia + } + } + $ = (Z + 1) | 0 + qg( + (R + (($ * 12) | 0)) | 0, + f[(R + ((Z * 12) | 0)) >> 2] | 0, + f[(R + ((Z * 12) | 0) + 4) >> 2] | 0, + ) + aa = + ((f[((f[k >> 2] | 0) + (($ * 12) | 0)) >> 2] | 0) + (V << 2)) | + 0 + ba = ((f[aa >> 2] | 0) + (1 << (T + -1))) | 0 + f[aa >> 2] = ba + aa = f[A >> 2] | 0 + U = f[B >> 2] | 0 + b: do + if ((W | 0) == (S | 0)) na = S + else { + ca = f[O >> 2] | 0 + if (!aa) { + if ((f[(ca + (V << 2)) >> 2] | 0) >>> 0 < ba >>> 0) { + na = W + break + } else { + oa = W + pa = S + } + while (1) { + la = oa + do { + la = (la + -1) | 0 + if ((pa | 0) == (la | 0)) { + na = pa + break b + } + ma = + ((f[P >> 2] | 0) + ((X(la, U) | 0) << 2) + (V << 2)) | + 0 + } while ((f[ma >> 2] | 0) >>> 0 >= ba >>> 0) + pa = (pa + 1) | 0 + if ((pa | 0) == (la | 0)) { + na = la + break b + } else oa = la + } + } else { + qa = W + ra = S + } + while (1) { + ma = ra + while (1) { + sa = (ca + ((X(ma, aa) | 0) << 2)) | 0 + if ((f[(sa + (V << 2)) >> 2] | 0) >>> 0 >= ba >>> 0) { + ta = qa + break + } + da = (ma + 1) | 0 + if ((da | 0) == (qa | 0)) { + na = qa + break b + } else ma = da + } + while (1) { + ta = (ta + -1) | 0 + if ((ma | 0) == (ta | 0)) { + na = ma + break b + } + ua = ((f[P >> 2] | 0) + ((X(ta, U) | 0) << 2)) | 0 + if ((f[(ua + (V << 2)) >> 2] | 0) >>> 0 < ba >>> 0) { + va = 0 + break + } + } + do { + la = (sa + (va << 2)) | 0 + da = (ua + (va << 2)) | 0 + ka = f[la >> 2] | 0 + f[la >> 2] = f[da >> 2] + f[da >> 2] = ka + va = (va + 1) | 0 + } while ((va | 0) != (aa | 0)) + ra = (ma + 1) | 0 + if ((ra | 0) == (ta | 0)) { + na = ta + break + } else qa = ta + } + } + while (0) + ba = (_(z | 0) | 0) ^ 31 + U = (na - S) | 0 + ca = (W - na) | 0 + ka = U >>> 0 < ca >>> 0 + if ((U | 0) != (ca | 0)) { + da = f[H >> 2] | 0 + if (ka) f[I >> 2] = f[I >> 2] | (1 << (31 - da)) + la = (da + 1) | 0 + f[H >> 2] = la + if ((la | 0) == 32) { + la = f[J >> 2] | 0 + if ((la | 0) == (f[K >> 2] | 0)) Ci(L, I) + else { + f[la >> 2] = f[I >> 2] + f[J >> 2] = la + 4 + } + f[H >> 2] = 0 + f[I >> 2] = 0 + } + } + la = z >>> 1 + do + if (ka) { + da = f[C >> 2] | 0 + ja = (32 - da) | 0 + wa = (32 - ba) | 0 + xa = (la - U) << wa + if ((ba | 0) > (ja | 0)) { + ya = xa >>> wa + wa = (ba - ja) | 0 + f[C >> 2] = wa + ja = f[D >> 2] | (ya >>> wa) + f[D >> 2] = ja + wa = f[E >> 2] | 0 + if ((wa | 0) == (f[F >> 2] | 0)) Ci(G, D) + else { + f[wa >> 2] = ja + f[E >> 2] = wa + 4 + } + f[D >> 2] = ya << (32 - (f[C >> 2] | 0)) + break + } + ya = f[D >> 2] | (xa >>> da) + f[D >> 2] = ya + xa = (da + ba) | 0 + f[C >> 2] = xa + if ((xa | 0) == 32) { + xa = f[E >> 2] | 0 + if ((xa | 0) == (f[F >> 2] | 0)) Ci(G, D) + else { + f[xa >> 2] = ya + f[E >> 2] = xa + 4 + } + f[D >> 2] = 0 + f[C >> 2] = 0 + } + } else { + xa = f[C >> 2] | 0 + ya = (32 - xa) | 0 + da = (32 - ba) | 0 + wa = (la - ca) << da + if ((ba | 0) > (ya | 0)) { + ja = wa >>> da + da = (ba - ya) | 0 + f[C >> 2] = da + ya = f[D >> 2] | (ja >>> da) + f[D >> 2] = ya + da = f[E >> 2] | 0 + if ((da | 0) == (f[F >> 2] | 0)) Ci(G, D) + else { + f[da >> 2] = ya + f[E >> 2] = da + 4 + } + f[D >> 2] = ja << (32 - (f[C >> 2] | 0)) + break + } + ja = f[D >> 2] | (wa >>> xa) + f[D >> 2] = ja + wa = (xa + ba) | 0 + f[C >> 2] = wa + if ((wa | 0) == 32) { + wa = f[E >> 2] | 0 + if ((wa | 0) == (f[F >> 2] | 0)) Ci(G, D) + else { + f[wa >> 2] = ja + f[E >> 2] = wa + 4 + } + f[D >> 2] = 0 + f[C >> 2] = 0 + } + } + while (0) + ba = f[s >> 2] | 0 + la = f[(ba + ((Z * 12) | 0)) >> 2] | 0 + ka = (la + (V << 2)) | 0 + f[ka >> 2] = (f[ka >> 2] | 0) + 1 + qg( + (ba + (($ * 12) | 0)) | 0, + la, + f[(ba + ((Z * 12) | 0) + 4) >> 2] | 0, + ) + if ((na | 0) != (S | 0)) { + ba = f[o >> 2] | 0 + la = f[t >> 2] | 0 + ka = (ba - la) >> 2 + wa = f[v >> 2] | 0 + ja = f[l >> 2] | 0 + if ( + (((ka | 0) == 0 ? 0 : (((ka * 113) | 0) + -1) | 0) | 0) == + ((ja + wa) | 0) + ) { + Jc(e) + za = f[v >> 2] | 0 + Aa = f[l >> 2] | 0 + Ba = f[o >> 2] | 0 + Ca = f[t >> 2] | 0 + } else { + za = wa + Aa = ja + Ba = ba + Ca = la + } + la = (Aa + za) | 0 + if ((Ba | 0) == (Ca | 0)) Da = 0 + else + Da = + ((f[(Ca + ((((la >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((la >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[Da >> 2] = S + la = (Da + 4) | 0 + f[la >> 2] = r + f[(la + 4) >> 2] = x + f[(Da + 12) >> 2] = na + f[(Da + 16) >> 2] = i + f[(Da + 20) >> 2] = aa + f[(Da + 24) >> 2] = V + f[(Da + 28) >> 2] = U + f[(Da + 32) >> 2] = Z + f[l >> 2] = (f[l >> 2] | 0) + 1 + } + if ((W | 0) != (na | 0)) { + la = f[o >> 2] | 0 + ba = f[t >> 2] | 0 + ja = (la - ba) >> 2 + wa = f[v >> 2] | 0 + ka = f[l >> 2] | 0 + if ( + (((ja | 0) == 0 ? 0 : (((ja * 113) | 0) + -1) | 0) | 0) == + ((ka + wa) | 0) + ) { + Jc(e) + Ea = f[v >> 2] | 0 + Fa = f[l >> 2] | 0 + Ga = f[o >> 2] | 0 + Ha = f[t >> 2] | 0 + } else { + Ea = wa + Fa = ka + Ga = la + Ha = ba + } + ba = (Fa + Ea) | 0 + if ((Ga | 0) == (Ha | 0)) Ia = 0 + else + Ia = + ((f[(Ha + ((((ba >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((ba >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[Ia >> 2] = na + f[(Ia + 4) >> 2] = i + f[(Ia + 8) >> 2] = aa + f[(Ia + 12) >> 2] = W + ba = (Ia + 16) | 0 + f[ba >> 2] = p + f[(ba + 4) >> 2] = q + f[(Ia + 24) >> 2] = V + f[(Ia + 28) >> 2] = ca + f[(Ia + 32) >> 2] = $ + ba = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = ba + Ja = ba + } else fa = 99 + } else fa = 99 + while (0) + if ((fa | 0) == 99) { + fa = 0 + Ja = f[l >> 2] | 0 + } + if (!Ja) break + else Q = Ja + } + } + Ja = f[t >> 2] | 0 + Q = f[v >> 2] | 0 + Ia = (Ja + ((((Q >>> 0) / 113) | 0) << 2)) | 0 + q = f[o >> 2] | 0 + p = q + i = Ja + if ((q | 0) == (Ja | 0)) { + Ka = 0 + La = 0 + } else { + na = ((f[Ia >> 2] | 0) + ((((Q >>> 0) % 113 | 0) * 36) | 0)) | 0 + Ka = na + La = na + } + na = Ia + Ia = La + c: while (1) { + La = Ia + do { + Q = La + if ((Ka | 0) == (Q | 0)) break c + La = (Q + 36) | 0 + } while (((La - (f[na >> 2] | 0)) | 0) != 4068) + La = (na + 4) | 0 + na = La + Ia = f[La >> 2] | 0 + } + f[l >> 2] = 0 + l = (p - i) >> 2 + if (l >>> 0 > 2) { + i = Ja + do { + br(f[i >> 2] | 0) + i = ((f[t >> 2] | 0) + 4) | 0 + f[t >> 2] = i + Ma = f[o >> 2] | 0 + Na = (Ma - i) >> 2 + } while (Na >>> 0 > 2) + Oa = Na + Pa = i + Qa = Ma + } else { + Oa = l + Pa = Ja + Qa = q + } + switch (Oa | 0) { + case 1: { + Ra = 56 + fa = 113 + break + } + case 2: { + Ra = 113 + fa = 113 + break + } + default: { + } + } + if ((fa | 0) == 113) f[v >> 2] = Ra + if ((Pa | 0) != (Qa | 0)) { + Ra = Pa + do { + br(f[Ra >> 2] | 0) + Ra = (Ra + 4) | 0 + } while ((Ra | 0) != (Qa | 0)) + Qa = f[t >> 2] | 0 + t = f[o >> 2] | 0 + if ((t | 0) != (Qa | 0)) + f[o >> 2] = t + (~(((t + -4 - Qa) | 0) >>> 2) << 2) + } + Qa = f[e >> 2] | 0 + if (!Qa) { + u = d + return + } + br(Qa) + u = d + return + } + function ib(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0 + d = u + u = (u + 80) | 0 + e = (d + 56) | 0 + g = (d + 52) | 0 + h = (d + 48) | 0 + i = (d + 68) | 0 + j = d + k = (d + 44) | 0 + l = (d + 40) | 0 + m = (d + 36) | 0 + n = (d + 32) | 0 + o = (d + 28) | 0 + p = (d + 24) | 0 + q = (d + 20) | 0 + r = (d + 16) | 0 + s = (d + 12) | 0 + if (!(b[(c + 288) >> 0] | 0)) { + Ne(e, f[(c + 8) >> 2] | 0) + t = (c + 12) | 0 + v = f[e >> 2] | 0 + f[e >> 2] = 0 + w = f[t >> 2] | 0 + f[t >> 2] = v + if (w) { + ui(w) + br(w) + w = f[e >> 2] | 0 + f[e >> 2] = 0 + if (w | 0) { + ui(w) + br(w) + } + } else f[e >> 2] = 0 + } else { + Mg(e, f[(c + 8) >> 2] | 0) + w = (c + 12) | 0 + v = f[e >> 2] | 0 + f[e >> 2] = 0 + t = f[w >> 2] | 0 + f[w >> 2] = v + if (t) { + ui(t) + br(t) + t = f[e >> 2] | 0 + f[e >> 2] = 0 + if (t | 0) { + ui(t) + br(t) + } + } else f[e >> 2] = 0 + } + t = (c + 12) | 0 + v = f[t >> 2] | 0 + if ( + v | 0 + ? ((((((f[(v + 4) >> 2] | 0) - (f[v >> 2] | 0)) >> 2) >>> 0) / 3) | + 0 | + 0) != + (f[(v + 40) >> 2] | 0) + : 0 + ) { + w = (c + 200) | 0 + f[(c + 264) >> 2] = c + x = (c + 4) | 0 + Nh( + ((((f[(v + 28) >> 2] | 0) - (f[(v + 24) >> 2] | 0)) >> 2) - + (f[(v + 44) >> 2] | 0)) | + 0, + f[((f[x >> 2] | 0) + 44) >> 2] | 0, + ) | 0 + v = f[t >> 2] | 0 + Nh( + (((((((f[(v + 4) >> 2] | 0) - (f[v >> 2] | 0)) >> 2) >>> 0) / 3) | + 0) - + (f[(v + 40) >> 2] | 0)) | + 0, + f[((f[x >> 2] | 0) + 44) >> 2] | 0, + ) | 0 + v = (c + 28) | 0 + y = (c + 8) | 0 + z = f[y >> 2] | 0 + A = ((((f[(z + 100) >> 2] | 0) - (f[(z + 96) >> 2] | 0)) | 0) / 12) | 0 + b[e >> 0] = 0 + Xg(v, A, e) + A = f[t >> 2] | 0 + z = ((f[(A + 28) >> 2] | 0) - (f[(A + 24) >> 2] | 0)) >> 2 + f[e >> 2] = -1 + Sf((c + 52) | 0, z, e) + z = (c + 40) | 0 + A = f[z >> 2] | 0 + B = (c + 44) | 0 + C = f[B >> 2] | 0 + if ((C | 0) != (A | 0)) + f[B >> 2] = C + (~(((C + -4 - A) | 0) >>> 2) << 2) + A = f[t >> 2] | 0 + C = ((f[(A + 4) >> 2] | 0) - (f[A >> 2] | 0)) >> 2 + $j(z, (C - ((C >>> 0) % 3 | 0)) | 0) + C = (c + 84) | 0 + z = f[t >> 2] | 0 + A = ((f[(z + 28) >> 2] | 0) - (f[(z + 24) >> 2] | 0)) >> 2 + b[e >> 0] = 0 + Xg(C, A, e) + A = (c + 96) | 0 + z = f[A >> 2] | 0 + B = (c + 100) | 0 + D = f[B >> 2] | 0 + if ((D | 0) != (z | 0)) + f[B >> 2] = D + (~(((D + -4 - z) | 0) >>> 2) << 2) + f[(c + 164) >> 2] = -1 + z = (c + 168) | 0 + f[z >> 2] = 0 + D = f[(c + 108) >> 2] | 0 + E = (c + 112) | 0 + F = f[E >> 2] | 0 + if ((F | 0) != (D | 0)) + f[E >> 2] = F + ((~(((((F + -12 - D) | 0) >>> 0) / 12) | 0) * 12) | 0) + D = (c + 132) | 0 + if (f[D >> 2] | 0) { + F = (c + 128) | 0 + E = f[F >> 2] | 0 + if (E | 0) { + G = E + do { + E = G + G = f[G >> 2] | 0 + br(E) + } while ((G | 0) != 0) + } + f[F >> 2] = 0 + F = f[(c + 124) >> 2] | 0 + if (F | 0) { + G = (c + 120) | 0 + E = 0 + do { + f[((f[G >> 2] | 0) + (E << 2)) >> 2] = 0 + E = (E + 1) | 0 + } while ((E | 0) != (F | 0)) + } + f[D >> 2] = 0 + } + f[(c + 144) >> 2] = 0 + D = f[t >> 2] | 0 + F = ((f[(D + 28) >> 2] | 0) - (f[(D + 24) >> 2] | 0)) >> 2 + f[e >> 2] = -1 + Sf((c + 152) | 0, F, e) + F = (c + 72) | 0 + D = f[F >> 2] | 0 + E = (c + 76) | 0 + G = f[E >> 2] | 0 + if ((G | 0) != (D | 0)) + f[E >> 2] = G + (~(((G + -4 - D) | 0) >>> 2) << 2) + D = f[t >> 2] | 0 + $j( + F, + (((((f[(D + 4) >> 2] | 0) - (f[D >> 2] | 0)) >> 2) >>> 0) / 3) | 0, + ) + f[(c + 64) >> 2] = 0 + if (!(oe(c) | 0)) { + D = dn(32) | 0 + f[e >> 2] = D + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 29 + H = D + I = 13227 + J = (H + 29) | 0 + do { + b[H >> 0] = b[I >> 0] | 0 + H = (H + 1) | 0 + I = (I + 1) | 0 + } while ((H | 0) < (J | 0)) + b[(D + 29) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + u = d + return + } + if (!(ch(c) | 0)) { + D = dn(48) | 0 + f[e >> 2] = D + f[(e + 8) >> 2] = -2147483600 + f[(e + 4) >> 2] = 36 + H = D + I = 13257 + J = (H + 36) | 0 + do { + b[H >> 0] = b[I >> 0] | 0 + H = (H + 1) | 0 + I = (I + 1) | 0 + } while ((H | 0) < (J | 0)) + b[(D + 36) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + u = d + return + } + D = (c + 172) | 0 + G = (c + 176) | 0 + K = (((((f[G >> 2] | 0) - (f[D >> 2] | 0)) | 0) / 136) | 0) & 255 + b[i >> 0] = K + L = f[((f[x >> 2] | 0) + 44) >> 2] | 0 + M = (L + 16) | 0 + N = f[(M + 4) >> 2] | 0 + if (((N | 0) > 0) | (((N | 0) == 0) & ((f[M >> 2] | 0) >>> 0 > 0))) + O = K + else { + f[g >> 2] = f[(L + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(L, e, i, (i + 1) | 0) | 0 + O = b[i >> 0] | 0 + } + i = (c + 284) | 0 + f[i >> 2] = O & 255 + O = f[t >> 2] | 0 + L = ((f[(O + 4) >> 2] | 0) - (f[O >> 2] | 0)) | 0 + O = L >> 2 + Ti(w) + f[j >> 2] = 0 + K = (j + 4) | 0 + f[K >> 2] = 0 + f[(j + 8) >> 2] = 0 + a: do + if ((L | 0) > 0) { + M = (c + 104) | 0 + N = (j + 8) | 0 + P = 0 + b: while (1) { + Q = ((P >>> 0) / 3) | 0 + R = Q >>> 5 + S = 1 << (Q & 31) + if ( + ((f[((f[v >> 2] | 0) + (R << 2)) >> 2] & S) | 0) == 0 + ? ((T = f[t >> 2] | 0), + (f[k >> 2] = Q), + (f[e >> 2] = f[k >> 2]), + !(Rj(T, e) | 0)) + : 0 + ) { + f[g >> 2] = 0 + f[l >> 2] = Q + f[e >> 2] = f[l >> 2] + Q = gg(c, e, g) | 0 + Vi(w, Q) + T = f[g >> 2] | 0 + U = (T | 0) == -1 + do + if (Q) { + do + if (U) { + V = -1 + W = -1 + X = -1 + } else { + Y = f[f[t >> 2] >> 2] | 0 + Z = f[(Y + (T << 2)) >> 2] | 0 + _ = (T + 1) | 0 + $ = ((_ >>> 0) % 3 | 0 | 0) == 0 ? (T + -2) | 0 : _ + if (($ | 0) == -1) aa = -1 + else aa = f[(Y + ($ << 2)) >> 2] | 0 + $ = ((((T >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + T) | 0 + if (($ | 0) == -1) { + V = -1 + W = aa + X = Z + break + } + V = f[(Y + ($ << 2)) >> 2] | 0 + W = aa + X = Z + } + while (0) + Z = f[C >> 2] | 0 + $ = (Z + ((X >>> 5) << 2)) | 0 + f[$ >> 2] = f[$ >> 2] | (1 << (X & 31)) + $ = (Z + ((W >>> 5) << 2)) | 0 + f[$ >> 2] = f[$ >> 2] | (1 << (W & 31)) + $ = (Z + ((V >>> 5) << 2)) | 0 + f[$ >> 2] = f[$ >> 2] | (1 << (V & 31)) + f[e >> 2] = 1 + $ = f[B >> 2] | 0 + if ($ >>> 0 < (f[M >> 2] | 0) >>> 0) { + f[$ >> 2] = 1 + f[B >> 2] = $ + 4 + } else Ci(A, e) + $ = ((f[v >> 2] | 0) + (R << 2)) | 0 + f[$ >> 2] = f[$ >> 2] | S + $ = (T + 1) | 0 + if (U) ba = -1 + else ba = (($ >>> 0) % 3 | 0 | 0) == 0 ? (T + -2) | 0 : $ + f[e >> 2] = ba + Z = f[K >> 2] | 0 + if (Z >>> 0 < (f[N >> 2] | 0) >>> 0) { + f[Z >> 2] = ba + f[K >> 2] = Z + 4 + } else Ci(j, e) + if (U) break + Z = (($ >>> 0) % 3 | 0 | 0) == 0 ? (T + -2) | 0 : $ + if ((Z | 0) == -1) break + $ = + f[ + ((f[((f[t >> 2] | 0) + 12) >> 2] | 0) + (Z << 2)) >> 2 + ] | 0 + Z = ($ | 0) == -1 + Y = Z ? -1 : (($ >>> 0) / 3) | 0 + if (Z) break + if ( + (f[((f[v >> 2] | 0) + ((Y >>> 5) << 2)) >> 2] & + (1 << (Y & 31))) | + 0 + ) + break + f[m >> 2] = $ + f[e >> 2] = f[m >> 2] + if (!(hc(c, e) | 0)) { + ca = 65 + break b + } + } else { + $ = (T + 1) | 0 + if (U) da = -1 + else da = (($ >>> 0) % 3 | 0 | 0) == 0 ? (T + -2) | 0 : $ + f[n >> 2] = da + f[e >> 2] = f[n >> 2] + Ce(c, e, 1) | 0 + f[o >> 2] = f[g >> 2] + f[e >> 2] = f[o >> 2] + if (!(hc(c, e) | 0)) { + ca = 71 + break b + } + } + while (0) + } + P = (P + 1) | 0 + if ((P | 0) >= (O | 0)) { + ca = 77 + break a + } + } + if ((ca | 0) == 65) { + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + P = dn(48) | 0 + f[e >> 2] = P + f[(e + 8) >> 2] = -2147483600 + f[(e + 4) >> 2] = 32 + H = P + I = 13294 + J = (H + 32) | 0 + do { + b[H >> 0] = b[I >> 0] | 0 + H = (H + 1) | 0 + I = (I + 1) | 0 + } while ((H | 0) < (J | 0)) + b[(P + 32) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + } else if ((ca | 0) == 71) { + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + N = dn(48) | 0 + f[e >> 2] = N + f[(e + 8) >> 2] = -2147483600 + f[(e + 4) >> 2] = 32 + H = N + I = 13294 + J = (H + 32) | 0 + do { + b[H >> 0] = b[I >> 0] | 0 + H = (H + 1) | 0 + I = (I + 1) | 0 + } while ((H | 0) < (J | 0)) + b[(N + 32) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + } + } else ca = 77 + while (0) + do + if ((ca | 0) == 77) { + O = f[F >> 2] | 0 + o = f[E >> 2] | 0 + n = o + if ( + (O | 0) != (o | 0) ? ((da = (o + -4) | 0), O >>> 0 < da >>> 0) : 0 + ) { + o = O + O = da + do { + da = f[o >> 2] | 0 + f[o >> 2] = f[O >> 2] + f[O >> 2] = da + o = (o + 4) | 0 + O = (O + -4) | 0 + } while (o >>> 0 < O >>> 0) + } + f[p >> 2] = n + f[q >> 2] = f[j >> 2] + f[r >> 2] = f[K >> 2] + f[h >> 2] = f[p >> 2] + f[g >> 2] = f[q >> 2] + f[e >> 2] = f[r >> 2] + Md(F, h, g, e) | 0 + if ( + (f[G >> 2] | 0) != (f[D >> 2] | 0) + ? ((O = f[y >> 2] | 0), + (o = + ((((f[(O + 100) >> 2] | 0) - (f[(O + 96) >> 2] | 0)) | 0) / + 12) | + 0), + (b[e >> 0] = 0), + Xg(v, o, e), + (o = f[F >> 2] | 0), + (O = f[E >> 2] | 0), + (o | 0) != (O | 0)) + : 0 + ) { + N = o + do { + f[s >> 2] = f[N >> 2] + f[e >> 2] = f[s >> 2] + ue(c, e) | 0 + N = (N + 4) | 0 + } while ((N | 0) != (O | 0)) + } + _g(w) + O = (c + 232) | 0 + fd(w, O) + N = (c + 280) | 0 + n = f[N >> 2] | 0 + if ( + (n | 0 ? (f[i >> 2] | 0) > 0 : 0) + ? (fd(n, O), (f[i >> 2] | 0) > 1) + : 0 + ) { + n = 1 + do { + fd(((f[N >> 2] | 0) + (n << 5)) | 0, O) + n = (n + 1) | 0 + } while ((n | 0) < (f[i >> 2] | 0)) + } + Nh( + ((f[(c + 272) >> 2] | 0) - (f[(c + 268) >> 2] | 0)) >> 2, + f[((f[x >> 2] | 0) + 44) >> 2] | 0, + ) | 0 + Nh(f[z >> 2] | 0, f[((f[x >> 2] | 0) + 44) >> 2] | 0) | 0 + if (Jg(c) | 0) { + n = f[((f[x >> 2] | 0) + 44) >> 2] | 0 + N = f[O >> 2] | 0 + o = (n + 16) | 0 + da = f[(o + 4) >> 2] | 0 + if ( + !( + ((da | 0) > 0) | + (((da | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0)) + ) + ) { + o = ((f[(c + 236) >> 2] | 0) - N) | 0 + f[g >> 2] = f[(n + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(n, e, N, (N + o) | 0) | 0 + } + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + break + } else { + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + o = dn(32) | 0 + f[e >> 2] = o + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 28 + H = o + I = 13327 + J = (H + 28) | 0 + do { + b[H >> 0] = b[I >> 0] | 0 + H = (H + 1) | 0 + I = (I + 1) | 0 + } while ((H | 0) < (J | 0)) + b[(o + 28) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + break + } + } + while (0) + g = f[j >> 2] | 0 + if (g | 0) { + j = f[K >> 2] | 0 + if ((j | 0) != (g | 0)) + f[K >> 2] = j + (~(((j + -4 - g) | 0) >>> 2) << 2) + br(g) + } + u = d + return + } + g = dn(32) | 0 + f[e >> 2] = g + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 29 + H = g + I = 13197 + J = (H + 29) | 0 + do { + b[H >> 0] = b[I >> 0] | 0 + H = (H + 1) | 0 + I = (I + 1) | 0 + } while ((H | 0) < (J | 0)) + b[(g + 29) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + u = d + return + } + function jb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0 + d = u + u = (u + 48) | 0 + e = (d + 36) | 0 + g = (d + 24) | 0 + h = d + i = (a + 8) | 0 + j = f[i >> 2] | 0 + f[e >> 2] = 0 + k = (e + 4) | 0 + f[k >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 1073741823) mq(e) + else { + l = j << 2 + m = dn(l) | 0 + f[e >> 2] = m + n = (m + (j << 2)) | 0 + f[(e + 8) >> 2] = n + hj(m | 0, 0, l | 0) | 0 + f[k >> 2] = n + o = n + p = m + break + } + else { + o = 0 + p = 0 + } + while (0) + m = (a + 1164) | 0 + n = f[m >> 2] | 0 + l = f[n >> 2] | 0 + q = (n + 4) | 0 + if (!l) { + r = (n + 8) | 0 + s = p + t = o + v = j + } else { + j = f[q >> 2] | 0 + if ((j | 0) != (l | 0)) + f[q >> 2] = j + (~(((j + -4 - l) | 0) >>> 2) << 2) + br(l) + l = (n + 8) | 0 + f[l >> 2] = 0 + f[q >> 2] = 0 + f[n >> 2] = 0 + r = l + s = f[e >> 2] | 0 + t = f[k >> 2] | 0 + v = f[i >> 2] | 0 + } + f[n >> 2] = s + f[q >> 2] = t + f[r >> 2] = f[(e + 8) >> 2] + f[e >> 2] = 0 + r = (e + 4) | 0 + f[r >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (v) + if (v >>> 0 > 1073741823) mq(e) + else { + t = v << 2 + q = dn(t) | 0 + f[e >> 2] = q + s = (q + (v << 2)) | 0 + f[(e + 8) >> 2] = s + hj(q | 0, 0, t | 0) | 0 + f[r >> 2] = s + w = s + x = q + break + } + else { + w = 0 + x = 0 + } + while (0) + v = (a + 1176) | 0 + q = f[v >> 2] | 0 + s = f[q >> 2] | 0 + t = (q + 4) | 0 + if (!s) { + y = (q + 8) | 0 + z = x + A = w + } else { + w = f[t >> 2] | 0 + if ((w | 0) != (s | 0)) + f[t >> 2] = w + (~(((w + -4 - s) | 0) >>> 2) << 2) + br(s) + s = (q + 8) | 0 + f[s >> 2] = 0 + f[t >> 2] = 0 + f[q >> 2] = 0 + y = s + z = f[e >> 2] | 0 + A = f[r >> 2] | 0 + } + f[q >> 2] = z + f[t >> 2] = A + f[y >> 2] = f[(e + 8) >> 2] + y = f[b >> 2] | 0 + A = (b + 4) | 0 + t = f[A >> 2] | 0 + z = f[(A + 4) >> 2] | 0 + A = f[c >> 2] | 0 + q = (c + 4) | 0 + r = f[q >> 2] | 0 + s = f[(q + 4) >> 2] | 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + f[(h + 12) >> 2] = 0 + f[(h + 16) >> 2] = 0 + f[(h + 20) >> 2] = 0 + q = (h + 8) | 0 + w = (h + 4) | 0 + x = (h + 16) | 0 + n = (h + 20) | 0 + k = t + Jc(h) + l = f[w >> 2] | 0 + j = ((f[n >> 2] | 0) + (f[x >> 2] | 0)) | 0 + if ((f[q >> 2] | 0) == (l | 0)) B = 0 + else + B = + ((f[(l + ((((j >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((j >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[B >> 2] = y + j = (B + 4) | 0 + f[j >> 2] = t + f[(j + 4) >> 2] = z + f[(B + 12) >> 2] = A + j = (B + 16) | 0 + f[j >> 2] = r + f[(j + 4) >> 2] = s + f[(B + 24) >> 2] = 0 + f[(B + 28) >> 2] = A - y + f[(B + 32) >> 2] = 0 + B = ((f[n >> 2] | 0) + 1) | 0 + f[n >> 2] = B + if (B | 0) { + y = (a + 1152) | 0 + A = (a + 1084) | 0 + j = (a + 1080) | 0 + l = (a + 1072) | 0 + o = (a + 1076) | 0 + p = (a + 1068) | 0 + C = (b + 8) | 0 + D = (c + 8) | 0 + E = (a + 1124) | 0 + F = (a + 1120) | 0 + G = (a + 1112) | 0 + H = (a + 1116) | 0 + I = (a + 1108) | 0 + J = (k + 4) | 0 + K = (k + 24) | 0 + L = (k + 24) | 0 + M = (r + 24) | 0 + N = B + while (1) { + B = f[x >> 2] | 0 + O = (N + -1) | 0 + P = (O + B) | 0 + Q = f[w >> 2] | 0 + R = f[(Q + ((((P >>> 0) / 113) | 0) << 2)) >> 2] | 0 + S = (P >>> 0) % 113 | 0 + P = f[(R + ((S * 36) | 0)) >> 2] | 0 + T = f[(R + ((S * 36) | 0) + 12) >> 2] | 0 + U = f[(R + ((S * 36) | 0) + 24) >> 2] | 0 + V = f[(R + ((S * 36) | 0) + 32) >> 2] | 0 + f[n >> 2] = O + O = f[q >> 2] | 0 + S = (O - Q) >> 2 + if ( + ((1 - N - B + ((S | 0) == 0 ? 0 : (((S * 113) | 0) + -1) | 0)) | + 0) >>> + 0 > + 225 + ) { + br(f[(O + -4) >> 2] | 0) + f[q >> 2] = (f[q >> 2] | 0) + -4 + } + f[b >> 2] = P + f[c >> 2] = T + O = f[m >> 2] | 0 + S = (O + ((V * 12) | 0)) | 0 + B = ((f[v >> 2] | 0) + ((V * 12) | 0)) | 0 + f[g >> 2] = f[b >> 2] + f[(g + 4) >> 2] = f[(b + 4) >> 2] + f[(g + 8) >> 2] = f[(b + 8) >> 2] + f[e >> 2] = f[c >> 2] + f[(e + 4) >> 2] = f[(c + 4) >> 2] + f[(e + 8) >> 2] = f[(c + 8) >> 2] + Q = Gd(a, g, e, S, B, U) | 0 + U = (T - P) | 0 + R = ((f[a >> 2] | 0) - (f[((f[B >> 2] | 0) + (Q << 2)) >> 2] | 0)) | 0 + a: do + if (R) { + if (U >>> 0 < 3) { + W = f[y >> 2] | 0 + f[W >> 2] = Q + Y = f[i >> 2] | 0 + if (Y >>> 0 > 1) { + Z = 1 + $ = Y + aa = Q + while (1) { + aa = (aa | 0) == (($ + -1) | 0) ? 0 : (aa + 1) | 0 + f[(W + (Z << 2)) >> 2] = aa + Z = (Z + 1) | 0 + ba = f[i >> 2] | 0 + if (Z >>> 0 >= ba >>> 0) { + ca = ba + break + } else $ = ba + } + } else ca = Y + if (!U) { + da = 87 + break + } else { + ea = 0 + fa = ca + } + while (1) { + $ = + ((f[K >> 2] | 0) + + ((X(f[J >> 2] | 0, (P + ea) | 0) | 0) << 2)) | + 0 + if (!fa) ga = 0 + else { + Z = 0 + do { + aa = f[((f[y >> 2] | 0) + (Z << 2)) >> 2] | 0 + W = + ((f[a >> 2] | 0) - + (f[((f[B >> 2] | 0) + (aa << 2)) >> 2] | 0)) | + 0 + do + if (W | 0) { + ba = f[A >> 2] | 0 + ha = (32 - ba) | 0 + ia = (32 - W) | 0 + ja = f[($ + (aa << 2)) >> 2] << ia + if ((W | 0) > (ha | 0)) { + ka = ja >>> ia + ia = (W - ha) | 0 + f[A >> 2] = ia + ha = f[j >> 2] | (ka >>> ia) + f[j >> 2] = ha + ia = f[l >> 2] | 0 + if ((ia | 0) == (f[o >> 2] | 0)) Ci(p, j) + else { + f[ia >> 2] = ha + f[l >> 2] = ia + 4 + } + f[j >> 2] = ka << (32 - (f[A >> 2] | 0)) + break + } + ka = f[j >> 2] | (ja >>> ba) + f[j >> 2] = ka + ja = (ba + W) | 0 + f[A >> 2] = ja + if ((ja | 0) != 32) break + ja = f[l >> 2] | 0 + if ((ja | 0) == (f[o >> 2] | 0)) Ci(p, j) + else { + f[ja >> 2] = ka + f[l >> 2] = ja + 4 + } + f[j >> 2] = 0 + f[A >> 2] = 0 + } + while (0) + Z = (Z + 1) | 0 + W = f[i >> 2] | 0 + } while (Z >>> 0 < W >>> 0) + ga = W + } + ea = (ea + 1) | 0 + if (ea >>> 0 >= U >>> 0) { + da = 87 + break a + } else fa = ga + } + } + Y = (V + 1) | 0 + Z = f[m >> 2] | 0 + $ = (Z + ((Y * 12) | 0)) | 0 + if (($ | 0) == (S | 0)) la = Z + else { + qg($, f[S >> 2] | 0, f[(O + ((V * 12) | 0) + 4) >> 2] | 0) + la = f[m >> 2] | 0 + } + $ = ((f[(la + ((Y * 12) | 0)) >> 2] | 0) + (Q << 2)) | 0 + Z = ((f[$ >> 2] | 0) + (1 << (R + -1))) | 0 + f[$ >> 2] = Z + $ = f[C >> 2] | 0 + W = f[D >> 2] | 0 + b: do + if ((T | 0) == (P | 0)) ma = P + else { + aa = f[L >> 2] | 0 + if (!$) { + if ((f[(aa + (Q << 2)) >> 2] | 0) >>> 0 < Z >>> 0) { + ma = T + break + } else { + na = T + oa = P + } + while (1) { + ja = na + do { + ja = (ja + -1) | 0 + if ((oa | 0) == (ja | 0)) { + ma = oa + break b + } + ka = + ((f[M >> 2] | 0) + ((X(ja, W) | 0) << 2) + (Q << 2)) | + 0 + } while ((f[ka >> 2] | 0) >>> 0 >= Z >>> 0) + oa = (oa + 1) | 0 + if ((oa | 0) == (ja | 0)) { + ma = ja + break b + } else na = ja + } + } else { + pa = T + qa = P + } + while (1) { + ka = qa + while (1) { + ra = (aa + ((X(ka, $) | 0) << 2)) | 0 + if ((f[(ra + (Q << 2)) >> 2] | 0) >>> 0 >= Z >>> 0) { + sa = pa + break + } + ba = (ka + 1) | 0 + if ((ba | 0) == (pa | 0)) { + ma = pa + break b + } else ka = ba + } + while (1) { + sa = (sa + -1) | 0 + if ((ka | 0) == (sa | 0)) { + ma = ka + break b + } + ta = ((f[M >> 2] | 0) + ((X(sa, W) | 0) << 2)) | 0 + if ((f[(ta + (Q << 2)) >> 2] | 0) >>> 0 < Z >>> 0) { + ua = 0 + break + } + } + do { + ja = (ra + (ua << 2)) | 0 + ba = (ta + (ua << 2)) | 0 + ia = f[ja >> 2] | 0 + f[ja >> 2] = f[ba >> 2] + f[ba >> 2] = ia + ua = (ua + 1) | 0 + } while ((ua | 0) != ($ | 0)) + qa = (ka + 1) | 0 + if ((qa | 0) == (sa | 0)) { + ma = sa + break + } else pa = sa + } + } + while (0) + Z = (_(U | 0) | 0) ^ 31 + W = (ma - P) | 0 + aa = (T - ma) | 0 + ia = W >>> 0 < aa >>> 0 + if ((W | 0) != (aa | 0)) { + ba = f[E >> 2] | 0 + if (ia) f[F >> 2] = f[F >> 2] | (1 << (31 - ba)) + ja = (ba + 1) | 0 + f[E >> 2] = ja + if ((ja | 0) == 32) { + ja = f[G >> 2] | 0 + if ((ja | 0) == (f[H >> 2] | 0)) Ci(I, F) + else { + f[ja >> 2] = f[F >> 2] + f[G >> 2] = ja + 4 + } + f[E >> 2] = 0 + f[F >> 2] = 0 + } + } + ja = U >>> 1 + if (ia) { + ia = (ja - W) | 0 + if (Z | 0) { + ba = 0 + ha = 1 << (Z + -1) + while (1) { + Vi((a + 12 + (ba << 5)) | 0, ((ha & ia) | 0) != 0) + ba = (ba + 1) | 0 + if ((ba | 0) == (Z | 0)) break + else ha = ha >>> 1 + } + } + } else { + ha = (ja - aa) | 0 + if (Z | 0) { + ba = 0 + ia = 1 << (Z + -1) + while (1) { + Vi((a + 12 + (ba << 5)) | 0, ((ia & ha) | 0) != 0) + ba = (ba + 1) | 0 + if ((ba | 0) == (Z | 0)) break + else ia = ia >>> 1 + } + } + } + ia = f[v >> 2] | 0 + Z = f[(ia + ((V * 12) | 0)) >> 2] | 0 + ba = (Z + (Q << 2)) | 0 + f[ba >> 2] = (f[ba >> 2] | 0) + 1 + qg( + (ia + ((Y * 12) | 0)) | 0, + Z, + f[(ia + ((V * 12) | 0) + 4) >> 2] | 0, + ) + if ((ma | 0) != (P | 0)) { + ia = f[q >> 2] | 0 + Z = f[w >> 2] | 0 + ba = (ia - Z) >> 2 + ha = f[x >> 2] | 0 + ja = f[n >> 2] | 0 + if ( + (((ba | 0) == 0 ? 0 : (((ba * 113) | 0) + -1) | 0) | 0) == + ((ja + ha) | 0) + ) { + Jc(h) + va = f[x >> 2] | 0 + wa = f[n >> 2] | 0 + xa = f[q >> 2] | 0 + ya = f[w >> 2] | 0 + } else { + va = ha + wa = ja + xa = ia + ya = Z + } + Z = (wa + va) | 0 + if ((xa | 0) == (ya | 0)) za = 0 + else + za = + ((f[(ya + ((((Z >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((Z >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[za >> 2] = P + Z = (za + 4) | 0 + f[Z >> 2] = t + f[(Z + 4) >> 2] = z + f[(za + 12) >> 2] = ma + f[(za + 16) >> 2] = k + f[(za + 20) >> 2] = $ + f[(za + 24) >> 2] = Q + f[(za + 28) >> 2] = W + f[(za + 32) >> 2] = V + f[n >> 2] = (f[n >> 2] | 0) + 1 + } + if ((T | 0) != (ma | 0)) { + Z = f[q >> 2] | 0 + ia = f[w >> 2] | 0 + ja = (Z - ia) >> 2 + ha = f[x >> 2] | 0 + ba = f[n >> 2] | 0 + if ( + (((ja | 0) == 0 ? 0 : (((ja * 113) | 0) + -1) | 0) | 0) == + ((ba + ha) | 0) + ) { + Jc(h) + Aa = f[x >> 2] | 0 + Ba = f[n >> 2] | 0 + Ca = f[q >> 2] | 0 + Da = f[w >> 2] | 0 + } else { + Aa = ha + Ba = ba + Ca = Z + Da = ia + } + ia = (Ba + Aa) | 0 + if ((Ca | 0) == (Da | 0)) Ea = 0 + else + Ea = + ((f[(Da + ((((ia >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((ia >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[Ea >> 2] = ma + f[(Ea + 4) >> 2] = k + f[(Ea + 8) >> 2] = $ + f[(Ea + 12) >> 2] = T + ia = (Ea + 16) | 0 + f[ia >> 2] = r + f[(ia + 4) >> 2] = s + f[(Ea + 24) >> 2] = Q + f[(Ea + 28) >> 2] = aa + f[(Ea + 32) >> 2] = Y + ia = ((f[n >> 2] | 0) + 1) | 0 + f[n >> 2] = ia + Fa = ia + } else da = 87 + } else da = 87 + while (0) + if ((da | 0) == 87) { + da = 0 + Fa = f[n >> 2] | 0 + } + if (!Fa) break + else N = Fa + } + } + Fa = f[w >> 2] | 0 + N = f[x >> 2] | 0 + Ea = (Fa + ((((N >>> 0) / 113) | 0) << 2)) | 0 + s = f[q >> 2] | 0 + r = s + k = Fa + if ((s | 0) == (Fa | 0)) { + Ga = 0 + Ha = 0 + } else { + ma = ((f[Ea >> 2] | 0) + ((((N >>> 0) % 113 | 0) * 36) | 0)) | 0 + Ga = ma + Ha = ma + } + ma = Ea + Ea = Ha + c: while (1) { + Ha = Ea + do { + N = Ha + if ((Ga | 0) == (N | 0)) break c + Ha = (N + 36) | 0 + } while (((Ha - (f[ma >> 2] | 0)) | 0) != 4068) + Ha = (ma + 4) | 0 + ma = Ha + Ea = f[Ha >> 2] | 0 + } + f[n >> 2] = 0 + n = (r - k) >> 2 + if (n >>> 0 > 2) { + k = Fa + do { + br(f[k >> 2] | 0) + k = ((f[w >> 2] | 0) + 4) | 0 + f[w >> 2] = k + Ia = f[q >> 2] | 0 + Ja = (Ia - k) >> 2 + } while (Ja >>> 0 > 2) + Ka = Ja + La = k + Ma = Ia + } else { + Ka = n + La = Fa + Ma = s + } + switch (Ka | 0) { + case 1: { + Na = 56 + da = 101 + break + } + case 2: { + Na = 113 + da = 101 + break + } + default: { + } + } + if ((da | 0) == 101) f[x >> 2] = Na + if ((La | 0) != (Ma | 0)) { + Na = La + do { + br(f[Na >> 2] | 0) + Na = (Na + 4) | 0 + } while ((Na | 0) != (Ma | 0)) + Ma = f[w >> 2] | 0 + w = f[q >> 2] | 0 + if ((w | 0) != (Ma | 0)) + f[q >> 2] = w + (~(((w + -4 - Ma) | 0) >>> 2) << 2) + } + Ma = f[h >> 2] | 0 + if (!Ma) { + u = d + return + } + br(Ma) + u = d + return + } + function kb(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0 + d = u + u = (u + 1424) | 0 + e = (d + 1408) | 0 + g = (d + 1396) | 0 + h = (d + 1420) | 0 + i = (d + 1200) | 0 + j = (d + 12) | 0 + k = d + l = (d + 1384) | 0 + m = (d + 1372) | 0 + n = (d + 1360) | 0 + o = (d + 1348) | 0 + p = (d + 1336) | 0 + q = (d + 1324) | 0 + r = (d + 1312) | 0 + s = (d + 1300) | 0 + t = (d + 1288) | 0 + v = (d + 1276) | 0 + w = (d + 1264) | 0 + x = (d + 1252) | 0 + y = (d + 1240) | 0 + z = (d + 1228) | 0 + A = (a + 28) | 0 + B = (10 - (Yh(f[((f[A >> 2] | 0) + 48) >> 2] | 0) | 0)) | 0 + C = (B | 0) < 6 ? B : 6 + b[h >> 0] = C + if (((C & 255) | 0) == 6 ? (f[(a + 72) >> 2] | 0) > 15 : 0) b[h >> 0] = 5 + C = (c + 16) | 0 + B = f[(C + 4) >> 2] | 0 + if (!(((B | 0) > 0) | (((B | 0) == 0) & ((f[C >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, (h + 1) | 0) | 0 + } + C = f[A >> 2] | 0 + B = f[((f[(C + 4) >> 2] | 0) + 80) >> 2] | 0 + D = (a + 72) | 0 + E = f[D >> 2] | 0 + f[i >> 2] = B + F = (i + 4) | 0 + f[F >> 2] = E + f[(i + 8) >> 2] = E << 2 + G = (i + 12) | 0 + H = X(E, B) | 0 + f[G >> 2] = 0 + J = (i + 16) | 0 + f[J >> 2] = 0 + f[(i + 20) >> 2] = 0 + do + if (H) + if (H >>> 0 > 1073741823) mq(G) + else { + K = H << 2 + L = dn(K) | 0 + f[G >> 2] = L + M = (L + (H << 2)) | 0 + f[(i + 20) >> 2] = M + hj(L | 0, 0, K | 0) | 0 + f[J >> 2] = M + N = L + break + } + else N = 0 + while (0) + H = (i + 24) | 0 + f[H >> 2] = N + G = (a + 4) | 0 + L = (a + 8) | 0 + M = f[G >> 2] | 0 + a: do + if ((f[L >> 2] | 0) != (M | 0)) { + K = (j + 4) | 0 + O = (j + 8) | 0 + P = (j + 8) | 0 + Q = (B | 0) == 0 + R = (j + 4) | 0 + S = (j + 8) | 0 + T = (k + 4) | 0 + U = (k + 8) | 0 + V = (k + 8) | 0 + W = (a + 48) | 0 + Y = (j + 8) | 0 + Z = (a + 60) | 0 + $ = 0 + aa = 0 + ba = 0 + ca = 0 + da = M + ea = C + b: while (1) { + fa = + f[ + ((f[((f[(ea + 4) >> 2] | 0) + 8) >> 2] | 0) + + (f[(da + (ca << 2)) >> 2] << 2)) >> + 2 + ] | 0 + switch (f[(fa + 28) >> 2] | 0) { + case 1: + case 3: + case 5: + case 2: + case 4: + case 6: { + ga = fa + ha = aa + break + } + case 9: { + ga = f[((f[Z >> 2] | 0) + (aa << 2)) >> 2] | 0 + ha = (aa + 1) | 0 + break + } + default: { + ia = 0 + break a + } + } + if (!ga) { + ia = 0 + break a + } + c: do + switch (f[(ga + 28) >> 2] | 0) { + case 6: { + if (Q) { + ja = ba + ka = (ga + 24) | 0 + break c + } + fa = (ga + 84) | 0 + la = (ga + 68) | 0 + ma = (ga + 48) | 0 + na = (ga + 40) | 0 + oa = (ga + 24) | 0 + pa = 0 + do { + if (!(b[fa >> 0] | 0)) + qa = f[((f[la >> 2] | 0) + (pa << 2)) >> 2] | 0 + else qa = pa + ra = ma + sa = f[ra >> 2] | 0 + ta = f[(ra + 4) >> 2] | 0 + ra = na + ua = on(f[ra >> 2] | 0, f[(ra + 4) >> 2] | 0, qa | 0, 0) | 0 + ra = Tn(ua | 0, I | 0, sa | 0, ta | 0) | 0 + Rg( + ((f[H >> 2] | 0) + + ((X(f[F >> 2] | 0, pa) | 0) << 2) + + ($ << 2)) | + 0, + ((f[f[ga >> 2] >> 2] | 0) + ra) | 0, + (b[oa >> 0] << 2) | 0, + ) | 0 + pa = (pa + 1) | 0 + } while ((pa | 0) != (B | 0)) + ja = ba + ka = oa + break + } + case 1: + case 3: + case 5: { + oa = (ga + 24) | 0 + pa = b[oa >> 0] | 0 + na = (pa << 24) >> 24 + f[j >> 2] = 0 + f[R >> 2] = 0 + f[S >> 2] = 0 + if (!((pa << 24) >> 24)) va = 0 + else { + if ((pa << 24) >> 24 < 0) { + wa = 24 + break b + } + pa = na << 2 + ma = dn(pa) | 0 + f[j >> 2] = ma + la = (ma + (na << 2)) | 0 + f[Y >> 2] = la + hj(ma | 0, 0, pa | 0) | 0 + f[R >> 2] = la + va = b[oa >> 0] | 0 + } + la = (va << 24) >> 24 + f[k >> 2] = 0 + f[T >> 2] = 0 + f[U >> 2] = 0 + if (!((va << 24) >> 24)) { + xa = 0 + ya = 0 + } else { + if ((va << 24) >> 24 < 0) { + wa = 30 + break b + } + pa = la << 2 + ma = dn(pa) | 0 + f[k >> 2] = ma + na = (ma + (la << 2)) | 0 + f[V >> 2] = na + hj(ma | 0, 0, pa | 0) | 0 + f[T >> 2] = na + xa = ma + ya = ma + } + if (Q) { + za = ya + Aa = xa + } else { + ma = (ga + 84) | 0 + na = (ga + 68) | 0 + pa = 0 + do { + if (!(b[ma >> 0] | 0)) + Ba = f[((f[na >> 2] | 0) + (pa << 2)) >> 2] | 0 + else Ba = pa + la = f[j >> 2] | 0 + f[g >> 2] = Ba + fa = b[oa >> 0] | 0 + f[e >> 2] = f[g >> 2] + Pb(ga, e, fa, la) | 0 + la = b[oa >> 0] | 0 + fa = (la << 24) >> 24 + if ((la << 24) >> 24 > 0) { + la = f[j >> 2] | 0 + ra = f[W >> 2] | 0 + ta = f[k >> 2] | 0 + sa = 0 + do { + f[(ta + (sa << 2)) >> 2] = + (f[(la + (sa << 2)) >> 2] | 0) - + (f[(ra + ((sa + ba) << 2)) >> 2] | 0) + sa = (sa + 1) | 0 + } while ((sa | 0) < (fa | 0)) + Ca = ta + } else Ca = f[k >> 2] | 0 + Rg( + ((f[H >> 2] | 0) + + ((X(f[F >> 2] | 0, pa) | 0) << 2) + + ($ << 2)) | + 0, + Ca | 0, + (fa << 2) | 0, + ) | 0 + pa = (pa + 1) | 0 + } while (pa >>> 0 < B >>> 0) + pa = f[k >> 2] | 0 + za = pa + Aa = pa + } + pa = (ba + (b[oa >> 0] | 0)) | 0 + if (za | 0) { + na = f[T >> 2] | 0 + if ((na | 0) != (za | 0)) + f[T >> 2] = na + (~(((na + -4 - za) | 0) >>> 2) << 2) + br(Aa) + } + na = f[j >> 2] | 0 + if (na | 0) { + ma = f[R >> 2] | 0 + if ((ma | 0) != (na | 0)) + f[R >> 2] = ma + (~(((ma + -4 - na) | 0) >>> 2) << 2) + br(na) + } + ja = pa + ka = oa + break + } + default: { + pa = (ga + 24) | 0 + na = b[pa >> 0] | 0 + ma = (na << 24) >> 24 + f[j >> 2] = 0 + f[K >> 2] = 0 + f[O >> 2] = 0 + if (!((na << 24) >> 24)) { + Da = 0 + Ea = 0 + } else { + if ((na << 24) >> 24 < 0) { + wa = 53 + break b + } + na = ma << 2 + ta = dn(na) | 0 + f[j >> 2] = ta + sa = (ta + (ma << 2)) | 0 + f[P >> 2] = sa + hj(ta | 0, 0, na | 0) | 0 + f[K >> 2] = sa + Da = ta + Ea = ta + } + if (Q) { + Fa = Ea + Ga = Da + } else { + ta = (ga + 84) | 0 + sa = (ga + 68) | 0 + na = 0 + do { + if (!(b[ta >> 0] | 0)) + Ha = f[((f[sa >> 2] | 0) + (na << 2)) >> 2] | 0 + else Ha = na + ma = f[j >> 2] | 0 + f[g >> 2] = Ha + ra = b[pa >> 0] | 0 + f[e >> 2] = f[g >> 2] + Ob(ga, e, ra, ma) | 0 + Rg( + ((f[H >> 2] | 0) + + ((X(f[F >> 2] | 0, na) | 0) << 2) + + ($ << 2)) | + 0, + f[j >> 2] | 0, + (b[pa >> 0] << 2) | 0, + ) | 0 + na = (na + 1) | 0 + } while (na >>> 0 < B >>> 0) + na = f[j >> 2] | 0 + Fa = na + Ga = na + } + if (Fa | 0) { + na = f[K >> 2] | 0 + if ((na | 0) != (Fa | 0)) + f[K >> 2] = na + (~(((na + -4 - Fa) | 0) >>> 2) << 2) + br(Ga) + } + ja = ba + ka = pa + } + } + while (0) + na = (ca + 1) | 0 + sa = f[G >> 2] | 0 + if (na >>> 0 >= (((f[L >> 2] | 0) - sa) >> 2) >>> 0) { + wa = 66 + break + } + $ = ($ + (b[ka >> 0] | 0)) | 0 + aa = ha + ba = ja + ca = na + da = sa + ea = f[A >> 2] | 0 + } + if ((wa | 0) == 24) mq(j) + else if ((wa | 0) == 30) mq(k) + else if ((wa | 0) == 53) mq(j) + else if ((wa | 0) == 66) { + Ia = f[D >> 2] | 0 + Ja = f[H >> 2] | 0 + wa = 67 + break + } + } else { + Ia = E + Ja = N + wa = 67 + } + while (0) + d: do + if ((wa | 0) == 67) { + N = X(Ia, B) | 0 + if ((N | 0) > 0) { + E = 0 + H = 0 + while (1) { + D = f[(Ja + (E << 2)) >> 2] | 0 + if (!D) Ka = H + else { + A = (_(D | 0) | 0) ^ 31 + Ka = (A | 0) < (H | 0) ? H : (A + 1) | 0 + } + E = (E + 1) | 0 + if ((E | 0) >= (N | 0)) { + La = Ka + break + } else H = Ka + } + } else La = 0 + switch (b[h >> 0] | 0) { + case 6: { + Ge(j, Ia) + f[l >> 2] = 0 + f[(l + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(l + 8) >> 2] = H + f[m >> 2] = f[i >> 2] + f[(m + 4) >> 2] = i + f[(m + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[l >> 2] + f[(g + 4) >> 2] = f[(l + 4) >> 2] + f[(g + 8) >> 2] = f[(l + 8) >> 2] + f[e >> 2] = f[m >> 2] + f[(e + 4) >> 2] = f[(m + 4) >> 2] + f[(e + 8) >> 2] = f[(m + 8) >> 2] + H = ff(j, g, e, k, c) | 0 + Ee(j) + if (!H) { + ia = 0 + break d + } + break + } + case 5: { + Ge(j, Ia) + f[n >> 2] = 0 + f[(n + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(n + 8) >> 2] = H + f[o >> 2] = f[i >> 2] + f[(o + 4) >> 2] = i + f[(o + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[n >> 2] + f[(g + 4) >> 2] = f[(n + 4) >> 2] + f[(g + 8) >> 2] = f[(n + 8) >> 2] + f[e >> 2] = f[o >> 2] + f[(e + 4) >> 2] = f[(o + 4) >> 2] + f[(e + 8) >> 2] = f[(o + 8) >> 2] + H = gf(j, g, e, k, c) | 0 + Ee(j) + if (!H) { + ia = 0 + break d + } + break + } + case 4: { + Ge(j, Ia) + f[p >> 2] = 0 + f[(p + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(p + 8) >> 2] = H + f[q >> 2] = f[i >> 2] + f[(q + 4) >> 2] = i + f[(q + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[p >> 2] + f[(g + 4) >> 2] = f[(p + 4) >> 2] + f[(g + 8) >> 2] = f[(p + 8) >> 2] + f[e >> 2] = f[q >> 2] + f[(e + 4) >> 2] = f[(q + 4) >> 2] + f[(e + 8) >> 2] = f[(q + 8) >> 2] + H = gf(j, g, e, k, c) | 0 + Ee(j) + if (!H) { + ia = 0 + break d + } + break + } + case 3: { + Oe(j, Ia) + f[r >> 2] = 0 + f[(r + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(r + 8) >> 2] = H + f[s >> 2] = f[i >> 2] + f[(s + 4) >> 2] = i + f[(s + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[r >> 2] + f[(g + 4) >> 2] = f[(r + 4) >> 2] + f[(g + 8) >> 2] = f[(r + 8) >> 2] + f[e >> 2] = f[s >> 2] + f[(e + 4) >> 2] = f[(s + 4) >> 2] + f[(e + 8) >> 2] = f[(s + 8) >> 2] + H = mf(j, g, e, k, c) | 0 + Ue(j) + if (!H) { + ia = 0 + break d + } + break + } + case 2: { + Oe(j, Ia) + f[t >> 2] = 0 + f[(t + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(t + 8) >> 2] = H + f[v >> 2] = f[i >> 2] + f[(v + 4) >> 2] = i + f[(v + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[t >> 2] + f[(g + 4) >> 2] = f[(t + 4) >> 2] + f[(g + 8) >> 2] = f[(t + 8) >> 2] + f[e >> 2] = f[v >> 2] + f[(e + 4) >> 2] = f[(v + 4) >> 2] + f[(e + 8) >> 2] = f[(v + 8) >> 2] + H = mf(j, g, e, k, c) | 0 + Ue(j) + if (!H) { + ia = 0 + break d + } + break + } + case 1: { + Pe(j, Ia) + f[w >> 2] = 0 + f[(w + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(w + 8) >> 2] = H + f[x >> 2] = f[i >> 2] + f[(x + 4) >> 2] = i + f[(x + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[w >> 2] + f[(g + 4) >> 2] = f[(w + 4) >> 2] + f[(g + 8) >> 2] = f[(w + 8) >> 2] + f[e >> 2] = f[x >> 2] + f[(e + 4) >> 2] = f[(x + 4) >> 2] + f[(e + 8) >> 2] = f[(x + 8) >> 2] + H = lf(j, g, e, k, c) | 0 + Te(j) + if (!H) { + ia = 0 + break d + } + break + } + case 0: { + Pe(j, Ia) + f[y >> 2] = 0 + f[(y + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(y + 8) >> 2] = H + f[z >> 2] = f[i >> 2] + f[(z + 4) >> 2] = i + f[(z + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[y >> 2] + f[(g + 4) >> 2] = f[(y + 4) >> 2] + f[(g + 8) >> 2] = f[(y + 8) >> 2] + f[e >> 2] = f[z >> 2] + f[(e + 4) >> 2] = f[(z + 4) >> 2] + f[(e + 8) >> 2] = f[(z + 8) >> 2] + H = lf(j, g, e, k, c) | 0 + Te(j) + if (!H) { + ia = 0 + break d + } + break + } + default: { + ia = 0 + break d + } + } + ia = 1 + } + while (0) + j = f[(i + 12) >> 2] | 0 + if (!j) { + u = d + return ia | 0 + } + i = f[J >> 2] | 0 + if ((i | 0) != (j | 0)) f[J >> 2] = i + (~(((i + -4 - j) | 0) >>> 2) << 2) + br(j) + u = d + return ia | 0 + } + function lb(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0 + d = u + u = (u + 80) | 0 + e = (d + 56) | 0 + g = (d + 52) | 0 + h = (d + 48) | 0 + i = (d + 68) | 0 + j = d + k = (d + 44) | 0 + l = (d + 40) | 0 + m = (d + 36) | 0 + n = (d + 32) | 0 + o = (d + 28) | 0 + p = (d + 24) | 0 + q = (d + 20) | 0 + r = (d + 16) | 0 + s = (d + 12) | 0 + if (!(b[(c + 352) >> 0] | 0)) { + Ne(e, f[(c + 8) >> 2] | 0) + t = (c + 12) | 0 + v = f[e >> 2] | 0 + f[e >> 2] = 0 + w = f[t >> 2] | 0 + f[t >> 2] = v + if (w) { + ui(w) + br(w) + w = f[e >> 2] | 0 + f[e >> 2] = 0 + if (w | 0) { + ui(w) + br(w) + } + } else f[e >> 2] = 0 + } else { + Mg(e, f[(c + 8) >> 2] | 0) + w = (c + 12) | 0 + v = f[e >> 2] | 0 + f[e >> 2] = 0 + t = f[w >> 2] | 0 + f[w >> 2] = v + if (t) { + ui(t) + br(t) + t = f[e >> 2] | 0 + f[e >> 2] = 0 + if (t | 0) { + ui(t) + br(t) + } + } else f[e >> 2] = 0 + } + t = (c + 12) | 0 + v = f[t >> 2] | 0 + if ( + v | 0 + ? ((((((f[(v + 4) >> 2] | 0) - (f[v >> 2] | 0)) >> 2) >>> 0) / 3) | + 0 | + 0) != + (f[(v + 40) >> 2] | 0) + : 0 + ) { + v = (c + 200) | 0 + Td(v, c) | 0 + w = f[t >> 2] | 0 + x = (c + 4) | 0 + Nh( + ((((f[(w + 28) >> 2] | 0) - (f[(w + 24) >> 2] | 0)) >> 2) - + (f[(w + 44) >> 2] | 0)) | + 0, + f[((f[x >> 2] | 0) + 44) >> 2] | 0, + ) | 0 + w = f[t >> 2] | 0 + Nh( + (((((((f[(w + 4) >> 2] | 0) - (f[w >> 2] | 0)) >> 2) >>> 0) / 3) | + 0) - + (f[(w + 40) >> 2] | 0)) | + 0, + f[((f[x >> 2] | 0) + 44) >> 2] | 0, + ) | 0 + w = (c + 28) | 0 + y = (c + 8) | 0 + z = f[y >> 2] | 0 + A = ((((f[(z + 100) >> 2] | 0) - (f[(z + 96) >> 2] | 0)) | 0) / 12) | 0 + b[e >> 0] = 0 + Xg(w, A, e) + A = f[t >> 2] | 0 + z = ((f[(A + 28) >> 2] | 0) - (f[(A + 24) >> 2] | 0)) >> 2 + f[e >> 2] = -1 + Sf((c + 52) | 0, z, e) + z = (c + 40) | 0 + A = f[z >> 2] | 0 + B = (c + 44) | 0 + C = f[B >> 2] | 0 + if ((C | 0) != (A | 0)) + f[B >> 2] = C + (~(((C + -4 - A) | 0) >>> 2) << 2) + A = f[t >> 2] | 0 + C = ((f[(A + 4) >> 2] | 0) - (f[A >> 2] | 0)) >> 2 + $j(z, (C - ((C >>> 0) % 3 | 0)) | 0) + C = (c + 84) | 0 + z = f[t >> 2] | 0 + A = ((f[(z + 28) >> 2] | 0) - (f[(z + 24) >> 2] | 0)) >> 2 + b[e >> 0] = 0 + Xg(C, A, e) + A = (c + 96) | 0 + z = f[A >> 2] | 0 + B = (c + 100) | 0 + D = f[B >> 2] | 0 + if ((D | 0) != (z | 0)) + f[B >> 2] = D + (~(((D + -4 - z) | 0) >>> 2) << 2) + f[(c + 164) >> 2] = -1 + z = (c + 168) | 0 + f[z >> 2] = 0 + D = f[(c + 108) >> 2] | 0 + E = (c + 112) | 0 + F = f[E >> 2] | 0 + if ((F | 0) != (D | 0)) + f[E >> 2] = F + ((~(((((F + -12 - D) | 0) >>> 0) / 12) | 0) * 12) | 0) + D = (c + 132) | 0 + if (f[D >> 2] | 0) { + F = (c + 128) | 0 + E = f[F >> 2] | 0 + if (E | 0) { + G = E + do { + E = G + G = f[G >> 2] | 0 + br(E) + } while ((G | 0) != 0) + } + f[F >> 2] = 0 + F = f[(c + 124) >> 2] | 0 + if (F | 0) { + G = (c + 120) | 0 + E = 0 + do { + f[((f[G >> 2] | 0) + (E << 2)) >> 2] = 0 + E = (E + 1) | 0 + } while ((E | 0) != (F | 0)) + } + f[D >> 2] = 0 + } + f[(c + 144) >> 2] = 0 + D = f[t >> 2] | 0 + F = ((f[(D + 28) >> 2] | 0) - (f[(D + 24) >> 2] | 0)) >> 2 + f[e >> 2] = -1 + Sf((c + 152) | 0, F, e) + F = (c + 72) | 0 + D = f[F >> 2] | 0 + E = (c + 76) | 0 + G = f[E >> 2] | 0 + if ((G | 0) != (D | 0)) + f[E >> 2] = G + (~(((G + -4 - D) | 0) >>> 2) << 2) + D = f[t >> 2] | 0 + $j( + F, + (((((f[(D + 4) >> 2] | 0) - (f[D >> 2] | 0)) >> 2) >>> 0) / 3) | 0, + ) + f[(c + 64) >> 2] = 0 + if (!(oe(c) | 0)) { + D = dn(32) | 0 + f[e >> 2] = D + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 29 + H = D + I = 13227 + J = (H + 29) | 0 + do { + b[H >> 0] = b[I >> 0] | 0 + H = (H + 1) | 0 + I = (I + 1) | 0 + } while ((H | 0) < (J | 0)) + b[(D + 29) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + u = d + return + } + if (!(bh(c) | 0)) { + D = dn(48) | 0 + f[e >> 2] = D + f[(e + 8) >> 2] = -2147483600 + f[(e + 4) >> 2] = 36 + H = D + I = 13257 + J = (H + 36) | 0 + do { + b[H >> 0] = b[I >> 0] | 0 + H = (H + 1) | 0 + I = (I + 1) | 0 + } while ((H | 0) < (J | 0)) + b[(D + 36) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + u = d + return + } + D = (c + 172) | 0 + G = (c + 176) | 0 + K = (((((f[G >> 2] | 0) - (f[D >> 2] | 0)) | 0) / 136) | 0) & 255 + b[i >> 0] = K + L = f[((f[x >> 2] | 0) + 44) >> 2] | 0 + M = (L + 16) | 0 + N = f[(M + 4) >> 2] | 0 + if (((N | 0) > 0) | (((N | 0) == 0) & ((f[M >> 2] | 0) >>> 0 > 0))) + O = K + else { + f[g >> 2] = f[(L + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(L, e, i, (i + 1) | 0) | 0 + O = b[i >> 0] | 0 + } + f[(c + 284) >> 2] = O & 255 + O = f[t >> 2] | 0 + i = ((f[(O + 4) >> 2] | 0) - (f[O >> 2] | 0)) | 0 + O = i >> 2 + Ti(v) + f[j >> 2] = 0 + L = (j + 4) | 0 + f[L >> 2] = 0 + f[(j + 8) >> 2] = 0 + a: do + if ((i | 0) > 0) { + K = (c + 104) | 0 + M = (j + 8) | 0 + N = 0 + b: while (1) { + P = ((N >>> 0) / 3) | 0 + Q = P >>> 5 + R = 1 << (P & 31) + if ( + ((f[((f[w >> 2] | 0) + (Q << 2)) >> 2] & R) | 0) == 0 + ? ((S = f[t >> 2] | 0), + (f[k >> 2] = P), + (f[e >> 2] = f[k >> 2]), + !(Rj(S, e) | 0)) + : 0 + ) { + f[g >> 2] = 0 + f[l >> 2] = P + f[e >> 2] = f[l >> 2] + P = gg(c, e, g) | 0 + Vi(v, P) + S = f[g >> 2] | 0 + T = (S | 0) == -1 + do + if (P) { + do + if (T) { + U = -1 + V = -1 + W = -1 + } else { + X = f[f[t >> 2] >> 2] | 0 + Y = f[(X + (S << 2)) >> 2] | 0 + Z = (S + 1) | 0 + _ = ((Z >>> 0) % 3 | 0 | 0) == 0 ? (S + -2) | 0 : Z + if ((_ | 0) == -1) $ = -1 + else $ = f[(X + (_ << 2)) >> 2] | 0 + _ = ((((S >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + S) | 0 + if ((_ | 0) == -1) { + U = -1 + V = $ + W = Y + break + } + U = f[(X + (_ << 2)) >> 2] | 0 + V = $ + W = Y + } + while (0) + Y = f[C >> 2] | 0 + _ = (Y + ((W >>> 5) << 2)) | 0 + f[_ >> 2] = f[_ >> 2] | (1 << (W & 31)) + _ = (Y + ((V >>> 5) << 2)) | 0 + f[_ >> 2] = f[_ >> 2] | (1 << (V & 31)) + _ = (Y + ((U >>> 5) << 2)) | 0 + f[_ >> 2] = f[_ >> 2] | (1 << (U & 31)) + f[e >> 2] = 1 + _ = f[B >> 2] | 0 + if (_ >>> 0 < (f[K >> 2] | 0) >>> 0) { + f[_ >> 2] = 1 + f[B >> 2] = _ + 4 + } else Ci(A, e) + _ = ((f[w >> 2] | 0) + (Q << 2)) | 0 + f[_ >> 2] = f[_ >> 2] | R + _ = (S + 1) | 0 + if (T) aa = -1 + else aa = ((_ >>> 0) % 3 | 0 | 0) == 0 ? (S + -2) | 0 : _ + f[e >> 2] = aa + Y = f[L >> 2] | 0 + if (Y >>> 0 < (f[M >> 2] | 0) >>> 0) { + f[Y >> 2] = aa + f[L >> 2] = Y + 4 + } else Ci(j, e) + if (T) break + Y = ((_ >>> 0) % 3 | 0 | 0) == 0 ? (S + -2) | 0 : _ + if ((Y | 0) == -1) break + _ = + f[ + ((f[((f[t >> 2] | 0) + 12) >> 2] | 0) + (Y << 2)) >> 2 + ] | 0 + Y = (_ | 0) == -1 + X = Y ? -1 : ((_ >>> 0) / 3) | 0 + if (Y) break + if ( + (f[((f[w >> 2] | 0) + ((X >>> 5) << 2)) >> 2] & + (1 << (X & 31))) | + 0 + ) + break + f[m >> 2] = _ + f[e >> 2] = f[m >> 2] + if (!(Zb(c, e) | 0)) { + ba = 65 + break b + } + } else { + _ = (S + 1) | 0 + if (T) ca = -1 + else ca = ((_ >>> 0) % 3 | 0 | 0) == 0 ? (S + -2) | 0 : _ + f[n >> 2] = ca + f[e >> 2] = f[n >> 2] + Ce(c, e, 1) | 0 + f[o >> 2] = f[g >> 2] + f[e >> 2] = f[o >> 2] + if (!(Zb(c, e) | 0)) { + ba = 71 + break b + } + } + while (0) + } + N = (N + 1) | 0 + if ((N | 0) >= (O | 0)) { + ba = 77 + break a + } + } + if ((ba | 0) == 65) { + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + N = dn(48) | 0 + f[e >> 2] = N + f[(e + 8) >> 2] = -2147483600 + f[(e + 4) >> 2] = 32 + H = N + I = 13294 + J = (H + 32) | 0 + do { + b[H >> 0] = b[I >> 0] | 0 + H = (H + 1) | 0 + I = (I + 1) | 0 + } while ((H | 0) < (J | 0)) + b[(N + 32) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + } else if ((ba | 0) == 71) { + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + M = dn(48) | 0 + f[e >> 2] = M + f[(e + 8) >> 2] = -2147483600 + f[(e + 4) >> 2] = 32 + H = M + I = 13294 + J = (H + 32) | 0 + do { + b[H >> 0] = b[I >> 0] | 0 + H = (H + 1) | 0 + I = (I + 1) | 0 + } while ((H | 0) < (J | 0)) + b[(M + 32) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + } + } else ba = 77 + while (0) + do + if ((ba | 0) == 77) { + O = f[F >> 2] | 0 + o = f[E >> 2] | 0 + n = o + if ( + (O | 0) != (o | 0) ? ((ca = (o + -4) | 0), O >>> 0 < ca >>> 0) : 0 + ) { + o = O + O = ca + do { + ca = f[o >> 2] | 0 + f[o >> 2] = f[O >> 2] + f[O >> 2] = ca + o = (o + 4) | 0 + O = (O + -4) | 0 + } while (o >>> 0 < O >>> 0) + } + f[p >> 2] = n + f[q >> 2] = f[j >> 2] + f[r >> 2] = f[L >> 2] + f[h >> 2] = f[p >> 2] + f[g >> 2] = f[q >> 2] + f[e >> 2] = f[r >> 2] + Md(F, h, g, e) | 0 + if ( + (f[G >> 2] | 0) != (f[D >> 2] | 0) + ? ((O = f[y >> 2] | 0), + (o = + ((((f[(O + 100) >> 2] | 0) - (f[(O + 96) >> 2] | 0)) | 0) / + 12) | + 0), + (b[e >> 0] = 0), + Xg(w, o, e), + (o = f[F >> 2] | 0), + (O = f[E >> 2] | 0), + (o | 0) != (O | 0)) + : 0 + ) { + M = o + do { + f[s >> 2] = f[M >> 2] + f[e >> 2] = f[s >> 2] + ue(c, e) | 0 + M = (M + 4) | 0 + } while ((M | 0) != (O | 0)) + } + $h(v) + Nh(f[(c + 324) >> 2] | 0, f[((f[x >> 2] | 0) + 44) >> 2] | 0) | 0 + Nh(f[z >> 2] | 0, f[((f[x >> 2] | 0) + 44) >> 2] | 0) | 0 + if (Jg(c) | 0) { + O = f[((f[x >> 2] | 0) + 44) >> 2] | 0 + M = f[(c + 232) >> 2] | 0 + n = (O + 16) | 0 + o = f[(n + 4) >> 2] | 0 + if ( + !( + ((o | 0) > 0) | + (((o | 0) == 0) & ((f[n >> 2] | 0) >>> 0 > 0)) + ) + ) { + n = ((f[(c + 236) >> 2] | 0) - M) | 0 + f[g >> 2] = f[(O + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(O, e, M, (M + n) | 0) | 0 + } + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + break + } else { + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + n = dn(32) | 0 + f[e >> 2] = n + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 28 + H = n + I = 13327 + J = (H + 28) | 0 + do { + b[H >> 0] = b[I >> 0] | 0 + H = (H + 1) | 0 + I = (I + 1) | 0 + } while ((H | 0) < (J | 0)) + b[(n + 28) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + break + } + } + while (0) + g = f[j >> 2] | 0 + if (g | 0) { + j = f[L >> 2] | 0 + if ((j | 0) != (g | 0)) + f[L >> 2] = j + (~(((j + -4 - g) | 0) >>> 2) << 2) + br(g) + } + u = d + return + } + g = dn(32) | 0 + f[e >> 2] = g + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 29 + H = g + I = 13197 + J = (H + 29) | 0 + do { + b[H >> 0] = b[I >> 0] | 0 + H = (H + 1) | 0 + I = (I + 1) | 0 + } while ((H | 0) < (J | 0)) + b[(g + 29) >> 0] = 0 + f[a >> 2] = -1 + dj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + u = d + return + } + function mb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 8) | 0 + h = f[g >> 2] | 0 + f[e >> 2] = 0 + i = (e + 4) | 0 + f[i >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (h) + if (h >>> 0 > 1073741823) mq(e) + else { + j = h << 2 + k = dn(j) | 0 + f[e >> 2] = k + l = (k + (h << 2)) | 0 + f[(e + 8) >> 2] = l + hj(k | 0, 0, j | 0) | 0 + f[i >> 2] = l + m = l + n = k + break + } + else { + m = 0 + n = 0 + } + while (0) + k = (a + 1164) | 0 + l = f[k >> 2] | 0 + j = f[l >> 2] | 0 + o = (l + 4) | 0 + if (!j) { + p = (l + 8) | 0 + q = n + r = m + s = h + } else { + h = f[o >> 2] | 0 + if ((h | 0) != (j | 0)) + f[o >> 2] = h + (~(((h + -4 - j) | 0) >>> 2) << 2) + br(j) + j = (l + 8) | 0 + f[j >> 2] = 0 + f[o >> 2] = 0 + f[l >> 2] = 0 + p = j + q = f[e >> 2] | 0 + r = f[i >> 2] | 0 + s = f[g >> 2] | 0 + } + f[l >> 2] = q + f[o >> 2] = r + f[p >> 2] = f[(e + 8) >> 2] + f[e >> 2] = 0 + p = (e + 4) | 0 + f[p >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (s) + if (s >>> 0 > 1073741823) mq(e) + else { + r = s << 2 + o = dn(r) | 0 + f[e >> 2] = o + q = (o + (s << 2)) | 0 + f[(e + 8) >> 2] = q + hj(o | 0, 0, r | 0) | 0 + f[p >> 2] = q + t = q + v = o + break + } + else { + t = 0 + v = 0 + } + while (0) + s = (a + 1176) | 0 + o = f[s >> 2] | 0 + q = f[o >> 2] | 0 + r = (o + 4) | 0 + if (!q) { + w = (o + 8) | 0 + x = v + y = t + } else { + t = f[r >> 2] | 0 + if ((t | 0) != (q | 0)) + f[r >> 2] = t + (~(((t + -4 - q) | 0) >>> 2) << 2) + br(q) + q = (o + 8) | 0 + f[q >> 2] = 0 + f[r >> 2] = 0 + f[o >> 2] = 0 + w = q + x = f[e >> 2] | 0 + y = f[p >> 2] | 0 + } + f[o >> 2] = x + f[r >> 2] = y + f[w >> 2] = f[(e + 8) >> 2] + w = f[b >> 2] | 0 + y = (b + 4) | 0 + r = f[y >> 2] | 0 + x = f[(y + 4) >> 2] | 0 + y = f[c >> 2] | 0 + o = (c + 4) | 0 + p = f[o >> 2] | 0 + q = f[(o + 4) >> 2] | 0 + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + f[(e + 12) >> 2] = 0 + f[(e + 16) >> 2] = 0 + f[(e + 20) >> 2] = 0 + o = (e + 8) | 0 + t = (e + 4) | 0 + v = (e + 16) | 0 + l = (e + 20) | 0 + i = r + Jc(e) + j = f[t >> 2] | 0 + h = ((f[l >> 2] | 0) + (f[v >> 2] | 0)) | 0 + if ((f[o >> 2] | 0) == (j | 0)) z = 0 + else + z = + ((f[(j + ((((h >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((h >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[z >> 2] = w + h = (z + 4) | 0 + f[h >> 2] = r + f[(h + 4) >> 2] = x + f[(z + 12) >> 2] = y + h = (z + 16) | 0 + f[h >> 2] = p + f[(h + 4) >> 2] = q + f[(z + 24) >> 2] = 0 + f[(z + 28) >> 2] = y - w + f[(z + 32) >> 2] = 0 + z = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = z + if (z | 0) { + w = (a + 1152) | 0 + y = (a + 1084) | 0 + h = (a + 1080) | 0 + j = (a + 1072) | 0 + m = (a + 1076) | 0 + n = (a + 1068) | 0 + A = (b + 8) | 0 + B = (c + 8) | 0 + C = (a + 1124) | 0 + D = (a + 1120) | 0 + E = (a + 1112) | 0 + F = (a + 1116) | 0 + G = (a + 1108) | 0 + H = (i + 4) | 0 + I = (i + 24) | 0 + J = (i + 24) | 0 + K = (p + 24) | 0 + L = z + while (1) { + z = f[v >> 2] | 0 + M = (L + -1) | 0 + N = (M + z) | 0 + O = f[t >> 2] | 0 + P = f[(O + ((((N >>> 0) / 113) | 0) << 2)) >> 2] | 0 + Q = (N >>> 0) % 113 | 0 + N = f[(P + ((Q * 36) | 0)) >> 2] | 0 + R = f[(P + ((Q * 36) | 0) + 12) >> 2] | 0 + S = f[(P + ((Q * 36) | 0) + 24) >> 2] | 0 + T = f[(P + ((Q * 36) | 0) + 32) >> 2] | 0 + f[l >> 2] = M + M = f[o >> 2] | 0 + Q = (M - O) >> 2 + if ( + ((1 - L - z + ((Q | 0) == 0 ? 0 : (((Q * 113) | 0) + -1) | 0)) | + 0) >>> + 0 > + 225 + ) { + br(f[(M + -4) >> 2] | 0) + f[o >> 2] = (f[o >> 2] | 0) + -4 + } + f[b >> 2] = N + f[c >> 2] = R + M = f[k >> 2] | 0 + Q = (((f[g >> 2] | 0) + -1) | 0) == (S | 0) ? 0 : (S + 1) | 0 + S = ((f[s >> 2] | 0) + ((T * 12) | 0)) | 0 + z = (R - N) | 0 + O = ((f[a >> 2] | 0) - (f[((f[S >> 2] | 0) + (Q << 2)) >> 2] | 0)) | 0 + a: do + if (O) { + if (z >>> 0 < 3) { + P = f[w >> 2] | 0 + f[P >> 2] = Q + U = f[g >> 2] | 0 + if (U >>> 0 > 1) { + V = 1 + W = U + Y = Q + while (1) { + Y = (Y | 0) == ((W + -1) | 0) ? 0 : (Y + 1) | 0 + f[(P + (V << 2)) >> 2] = Y + V = (V + 1) | 0 + Z = f[g >> 2] | 0 + if (V >>> 0 >= Z >>> 0) { + $ = Z + break + } else W = Z + } + } else $ = U + if (!z) { + aa = 85 + break + } else { + ba = 0 + ca = $ + } + while (1) { + W = + ((f[I >> 2] | 0) + + ((X(f[H >> 2] | 0, (N + ba) | 0) | 0) << 2)) | + 0 + if (!ca) da = 0 + else { + V = 0 + do { + Y = f[((f[w >> 2] | 0) + (V << 2)) >> 2] | 0 + P = + ((f[a >> 2] | 0) - + (f[((f[S >> 2] | 0) + (Y << 2)) >> 2] | 0)) | + 0 + do + if (P | 0) { + Z = f[y >> 2] | 0 + ea = (32 - Z) | 0 + fa = (32 - P) | 0 + ga = f[(W + (Y << 2)) >> 2] << fa + if ((P | 0) > (ea | 0)) { + ha = ga >>> fa + fa = (P - ea) | 0 + f[y >> 2] = fa + ea = f[h >> 2] | (ha >>> fa) + f[h >> 2] = ea + fa = f[j >> 2] | 0 + if ((fa | 0) == (f[m >> 2] | 0)) Ci(n, h) + else { + f[fa >> 2] = ea + f[j >> 2] = fa + 4 + } + f[h >> 2] = ha << (32 - (f[y >> 2] | 0)) + break + } + ha = f[h >> 2] | (ga >>> Z) + f[h >> 2] = ha + ga = (Z + P) | 0 + f[y >> 2] = ga + if ((ga | 0) != 32) break + ga = f[j >> 2] | 0 + if ((ga | 0) == (f[m >> 2] | 0)) Ci(n, h) + else { + f[ga >> 2] = ha + f[j >> 2] = ga + 4 + } + f[h >> 2] = 0 + f[y >> 2] = 0 + } + while (0) + V = (V + 1) | 0 + P = f[g >> 2] | 0 + } while (V >>> 0 < P >>> 0) + da = P + } + ba = (ba + 1) | 0 + if (ba >>> 0 >= z >>> 0) { + aa = 85 + break a + } else ca = da + } + } + U = (T + 1) | 0 + qg( + (M + ((U * 12) | 0)) | 0, + f[(M + ((T * 12) | 0)) >> 2] | 0, + f[(M + ((T * 12) | 0) + 4) >> 2] | 0, + ) + V = + ((f[((f[k >> 2] | 0) + ((U * 12) | 0)) >> 2] | 0) + (Q << 2)) | + 0 + W = ((f[V >> 2] | 0) + (1 << (O + -1))) | 0 + f[V >> 2] = W + V = f[A >> 2] | 0 + P = f[B >> 2] | 0 + b: do + if ((R | 0) == (N | 0)) ia = N + else { + Y = f[J >> 2] | 0 + if (!V) { + if ((f[(Y + (Q << 2)) >> 2] | 0) >>> 0 < W >>> 0) { + ia = R + break + } else { + ja = R + ka = N + } + while (1) { + ga = ja + do { + ga = (ga + -1) | 0 + if ((ka | 0) == (ga | 0)) { + ia = ka + break b + } + ha = + ((f[K >> 2] | 0) + ((X(ga, P) | 0) << 2) + (Q << 2)) | + 0 + } while ((f[ha >> 2] | 0) >>> 0 >= W >>> 0) + ka = (ka + 1) | 0 + if ((ka | 0) == (ga | 0)) { + ia = ga + break b + } else ja = ga + } + } else { + la = R + ma = N + } + while (1) { + ha = ma + while (1) { + na = (Y + ((X(ha, V) | 0) << 2)) | 0 + if ((f[(na + (Q << 2)) >> 2] | 0) >>> 0 >= W >>> 0) { + oa = la + break + } + Z = (ha + 1) | 0 + if ((Z | 0) == (la | 0)) { + ia = la + break b + } else ha = Z + } + while (1) { + oa = (oa + -1) | 0 + if ((ha | 0) == (oa | 0)) { + ia = ha + break b + } + pa = ((f[K >> 2] | 0) + ((X(oa, P) | 0) << 2)) | 0 + if ((f[(pa + (Q << 2)) >> 2] | 0) >>> 0 < W >>> 0) { + qa = 0 + break + } + } + do { + ga = (na + (qa << 2)) | 0 + Z = (pa + (qa << 2)) | 0 + fa = f[ga >> 2] | 0 + f[ga >> 2] = f[Z >> 2] + f[Z >> 2] = fa + qa = (qa + 1) | 0 + } while ((qa | 0) != (V | 0)) + ma = (ha + 1) | 0 + if ((ma | 0) == (oa | 0)) { + ia = oa + break + } else la = oa + } + } + while (0) + W = (_(z | 0) | 0) ^ 31 + P = (ia - N) | 0 + Y = (R - ia) | 0 + fa = P >>> 0 < Y >>> 0 + if ((P | 0) != (Y | 0)) { + Z = f[C >> 2] | 0 + if (fa) f[D >> 2] = f[D >> 2] | (1 << (31 - Z)) + ga = (Z + 1) | 0 + f[C >> 2] = ga + if ((ga | 0) == 32) { + ga = f[E >> 2] | 0 + if ((ga | 0) == (f[F >> 2] | 0)) Ci(G, D) + else { + f[ga >> 2] = f[D >> 2] + f[E >> 2] = ga + 4 + } + f[C >> 2] = 0 + f[D >> 2] = 0 + } + } + ga = z >>> 1 + if (fa) { + fa = (ga - P) | 0 + if (W | 0) { + Z = 0 + ea = 1 << (W + -1) + while (1) { + Vi((a + 12 + (Z << 5)) | 0, ((ea & fa) | 0) != 0) + Z = (Z + 1) | 0 + if ((Z | 0) == (W | 0)) break + else ea = ea >>> 1 + } + } + } else { + ea = (ga - Y) | 0 + if (W | 0) { + Z = 0 + fa = 1 << (W + -1) + while (1) { + Vi((a + 12 + (Z << 5)) | 0, ((fa & ea) | 0) != 0) + Z = (Z + 1) | 0 + if ((Z | 0) == (W | 0)) break + else fa = fa >>> 1 + } + } + } + fa = f[s >> 2] | 0 + W = f[(fa + ((T * 12) | 0)) >> 2] | 0 + Z = (W + (Q << 2)) | 0 + f[Z >> 2] = (f[Z >> 2] | 0) + 1 + qg( + (fa + ((U * 12) | 0)) | 0, + W, + f[(fa + ((T * 12) | 0) + 4) >> 2] | 0, + ) + if ((ia | 0) != (N | 0)) { + fa = f[o >> 2] | 0 + W = f[t >> 2] | 0 + Z = (fa - W) >> 2 + ea = f[v >> 2] | 0 + ga = f[l >> 2] | 0 + if ( + (((Z | 0) == 0 ? 0 : (((Z * 113) | 0) + -1) | 0) | 0) == + ((ga + ea) | 0) + ) { + Jc(e) + ra = f[v >> 2] | 0 + sa = f[l >> 2] | 0 + ta = f[o >> 2] | 0 + ua = f[t >> 2] | 0 + } else { + ra = ea + sa = ga + ta = fa + ua = W + } + W = (sa + ra) | 0 + if ((ta | 0) == (ua | 0)) va = 0 + else + va = + ((f[(ua + ((((W >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((W >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[va >> 2] = N + W = (va + 4) | 0 + f[W >> 2] = r + f[(W + 4) >> 2] = x + f[(va + 12) >> 2] = ia + f[(va + 16) >> 2] = i + f[(va + 20) >> 2] = V + f[(va + 24) >> 2] = Q + f[(va + 28) >> 2] = P + f[(va + 32) >> 2] = T + f[l >> 2] = (f[l >> 2] | 0) + 1 + } + if ((R | 0) != (ia | 0)) { + W = f[o >> 2] | 0 + fa = f[t >> 2] | 0 + ga = (W - fa) >> 2 + ea = f[v >> 2] | 0 + Z = f[l >> 2] | 0 + if ( + (((ga | 0) == 0 ? 0 : (((ga * 113) | 0) + -1) | 0) | 0) == + ((Z + ea) | 0) + ) { + Jc(e) + wa = f[v >> 2] | 0 + xa = f[l >> 2] | 0 + ya = f[o >> 2] | 0 + za = f[t >> 2] | 0 + } else { + wa = ea + xa = Z + ya = W + za = fa + } + fa = (xa + wa) | 0 + if ((ya | 0) == (za | 0)) Aa = 0 + else + Aa = + ((f[(za + ((((fa >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((fa >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[Aa >> 2] = ia + f[(Aa + 4) >> 2] = i + f[(Aa + 8) >> 2] = V + f[(Aa + 12) >> 2] = R + fa = (Aa + 16) | 0 + f[fa >> 2] = p + f[(fa + 4) >> 2] = q + f[(Aa + 24) >> 2] = Q + f[(Aa + 28) >> 2] = Y + f[(Aa + 32) >> 2] = U + fa = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = fa + Ba = fa + } else aa = 85 + } else aa = 85 + while (0) + if ((aa | 0) == 85) { + aa = 0 + Ba = f[l >> 2] | 0 + } + if (!Ba) break + else L = Ba + } + } + Ba = f[t >> 2] | 0 + L = f[v >> 2] | 0 + Aa = (Ba + ((((L >>> 0) / 113) | 0) << 2)) | 0 + q = f[o >> 2] | 0 + p = q + i = Ba + if ((q | 0) == (Ba | 0)) { + Ca = 0 + Da = 0 + } else { + ia = ((f[Aa >> 2] | 0) + ((((L >>> 0) % 113 | 0) * 36) | 0)) | 0 + Ca = ia + Da = ia + } + ia = Aa + Aa = Da + c: while (1) { + Da = Aa + do { + L = Da + if ((Ca | 0) == (L | 0)) break c + Da = (L + 36) | 0 + } while (((Da - (f[ia >> 2] | 0)) | 0) != 4068) + Da = (ia + 4) | 0 + ia = Da + Aa = f[Da >> 2] | 0 + } + f[l >> 2] = 0 + l = (p - i) >> 2 + if (l >>> 0 > 2) { + i = Ba + do { + br(f[i >> 2] | 0) + i = ((f[t >> 2] | 0) + 4) | 0 + f[t >> 2] = i + Ea = f[o >> 2] | 0 + Fa = (Ea - i) >> 2 + } while (Fa >>> 0 > 2) + Ga = Fa + Ha = i + Ia = Ea + } else { + Ga = l + Ha = Ba + Ia = q + } + switch (Ga | 0) { + case 1: { + Ja = 56 + aa = 99 + break + } + case 2: { + Ja = 113 + aa = 99 + break + } + default: { + } + } + if ((aa | 0) == 99) f[v >> 2] = Ja + if ((Ha | 0) != (Ia | 0)) { + Ja = Ha + do { + br(f[Ja >> 2] | 0) + Ja = (Ja + 4) | 0 + } while ((Ja | 0) != (Ia | 0)) + Ia = f[t >> 2] | 0 + t = f[o >> 2] | 0 + if ((t | 0) != (Ia | 0)) + f[o >> 2] = t + (~(((t + -4 - Ia) | 0) >>> 2) << 2) + } + Ia = f[e >> 2] | 0 + if (!Ia) { + u = d + return + } + br(Ia) + u = d + return + } + function nb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 8) | 0 + h = f[g >> 2] | 0 + f[e >> 2] = 0 + i = (e + 4) | 0 + f[i >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (h) + if (h >>> 0 > 1073741823) mq(e) + else { + j = h << 2 + k = dn(j) | 0 + f[e >> 2] = k + l = (k + (h << 2)) | 0 + f[(e + 8) >> 2] = l + hj(k | 0, 0, j | 0) | 0 + f[i >> 2] = l + m = l + n = k + break + } + else { + m = 0 + n = 0 + } + while (0) + k = (a + 140) | 0 + l = f[k >> 2] | 0 + j = f[l >> 2] | 0 + o = (l + 4) | 0 + if (!j) { + p = (l + 8) | 0 + q = n + r = m + s = h + } else { + h = f[o >> 2] | 0 + if ((h | 0) != (j | 0)) + f[o >> 2] = h + (~(((h + -4 - j) | 0) >>> 2) << 2) + br(j) + j = (l + 8) | 0 + f[j >> 2] = 0 + f[o >> 2] = 0 + f[l >> 2] = 0 + p = j + q = f[e >> 2] | 0 + r = f[i >> 2] | 0 + s = f[g >> 2] | 0 + } + f[l >> 2] = q + f[o >> 2] = r + f[p >> 2] = f[(e + 8) >> 2] + f[e >> 2] = 0 + p = (e + 4) | 0 + f[p >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (s) + if (s >>> 0 > 1073741823) mq(e) + else { + r = s << 2 + o = dn(r) | 0 + f[e >> 2] = o + q = (o + (s << 2)) | 0 + f[(e + 8) >> 2] = q + hj(o | 0, 0, r | 0) | 0 + f[p >> 2] = q + t = q + v = o + break + } + else { + t = 0 + v = 0 + } + while (0) + s = (a + 152) | 0 + o = f[s >> 2] | 0 + q = f[o >> 2] | 0 + r = (o + 4) | 0 + if (!q) { + w = (o + 8) | 0 + x = v + y = t + } else { + t = f[r >> 2] | 0 + if ((t | 0) != (q | 0)) + f[r >> 2] = t + (~(((t + -4 - q) | 0) >>> 2) << 2) + br(q) + q = (o + 8) | 0 + f[q >> 2] = 0 + f[r >> 2] = 0 + f[o >> 2] = 0 + w = q + x = f[e >> 2] | 0 + y = f[p >> 2] | 0 + } + f[o >> 2] = x + f[r >> 2] = y + f[w >> 2] = f[(e + 8) >> 2] + w = f[b >> 2] | 0 + y = (b + 4) | 0 + r = f[y >> 2] | 0 + x = f[(y + 4) >> 2] | 0 + y = f[c >> 2] | 0 + o = (c + 4) | 0 + p = f[o >> 2] | 0 + q = f[(o + 4) >> 2] | 0 + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + f[(e + 12) >> 2] = 0 + f[(e + 16) >> 2] = 0 + f[(e + 20) >> 2] = 0 + o = (e + 8) | 0 + t = (e + 4) | 0 + v = (e + 16) | 0 + l = (e + 20) | 0 + i = r + Jc(e) + j = f[t >> 2] | 0 + h = ((f[l >> 2] | 0) + (f[v >> 2] | 0)) | 0 + if ((f[o >> 2] | 0) == (j | 0)) z = 0 + else + z = + ((f[(j + ((((h >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((h >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[z >> 2] = w + h = (z + 4) | 0 + f[h >> 2] = r + f[(h + 4) >> 2] = x + f[(z + 12) >> 2] = y + h = (z + 16) | 0 + f[h >> 2] = p + f[(h + 4) >> 2] = q + f[(z + 24) >> 2] = 0 + f[(z + 28) >> 2] = y - w + f[(z + 32) >> 2] = 0 + z = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = z + if (z | 0) { + w = (a + 128) | 0 + y = (a + 60) | 0 + h = (a + 56) | 0 + j = (a + 48) | 0 + m = (a + 52) | 0 + n = (a + 44) | 0 + A = (b + 8) | 0 + B = (c + 8) | 0 + C = (a + 12) | 0 + D = (a + 100) | 0 + E = (a + 96) | 0 + F = (a + 88) | 0 + G = (a + 92) | 0 + H = (a + 84) | 0 + I = (i + 4) | 0 + J = (i + 24) | 0 + K = (i + 24) | 0 + L = (p + 24) | 0 + M = z + while (1) { + z = f[v >> 2] | 0 + N = (M + -1) | 0 + O = (N + z) | 0 + P = f[t >> 2] | 0 + Q = f[(P + ((((O >>> 0) / 113) | 0) << 2)) >> 2] | 0 + R = (O >>> 0) % 113 | 0 + O = f[(Q + ((R * 36) | 0)) >> 2] | 0 + S = f[(Q + ((R * 36) | 0) + 12) >> 2] | 0 + T = f[(Q + ((R * 36) | 0) + 24) >> 2] | 0 + U = f[(Q + ((R * 36) | 0) + 32) >> 2] | 0 + f[l >> 2] = N + N = f[o >> 2] | 0 + R = (N - P) >> 2 + if ( + ((1 - M - z + ((R | 0) == 0 ? 0 : (((R * 113) | 0) + -1) | 0)) | + 0) >>> + 0 > + 225 + ) { + br(f[(N + -4) >> 2] | 0) + f[o >> 2] = (f[o >> 2] | 0) + -4 + } + f[b >> 2] = O + f[c >> 2] = S + N = f[k >> 2] | 0 + R = (((f[g >> 2] | 0) + -1) | 0) == (T | 0) ? 0 : (T + 1) | 0 + T = ((f[s >> 2] | 0) + ((U * 12) | 0)) | 0 + z = (S - O) | 0 + P = ((f[a >> 2] | 0) - (f[((f[T >> 2] | 0) + (R << 2)) >> 2] | 0)) | 0 + a: do + if (P) { + if (z >>> 0 < 3) { + Q = f[w >> 2] | 0 + f[Q >> 2] = R + V = f[g >> 2] | 0 + if (V >>> 0 > 1) { + W = 1 + Y = V + Z = R + while (1) { + Z = (Z | 0) == ((Y + -1) | 0) ? 0 : (Z + 1) | 0 + f[(Q + (W << 2)) >> 2] = Z + W = (W + 1) | 0 + $ = f[g >> 2] | 0 + if (W >>> 0 >= $ >>> 0) { + aa = $ + break + } else Y = $ + } + } else aa = V + if (!z) { + ba = 81 + break + } else { + ca = 0 + da = aa + } + while (1) { + Y = + ((f[J >> 2] | 0) + + ((X(f[I >> 2] | 0, (O + ca) | 0) | 0) << 2)) | + 0 + if (!da) ea = 0 + else { + W = 0 + do { + Z = f[((f[w >> 2] | 0) + (W << 2)) >> 2] | 0 + Q = + ((f[a >> 2] | 0) - + (f[((f[T >> 2] | 0) + (Z << 2)) >> 2] | 0)) | + 0 + do + if (Q | 0) { + $ = f[y >> 2] | 0 + fa = (32 - $) | 0 + ga = (32 - Q) | 0 + ha = f[(Y + (Z << 2)) >> 2] << ga + if ((Q | 0) > (fa | 0)) { + ia = ha >>> ga + ga = (Q - fa) | 0 + f[y >> 2] = ga + fa = f[h >> 2] | (ia >>> ga) + f[h >> 2] = fa + ga = f[j >> 2] | 0 + if ((ga | 0) == (f[m >> 2] | 0)) Ci(n, h) + else { + f[ga >> 2] = fa + f[j >> 2] = ga + 4 + } + f[h >> 2] = ia << (32 - (f[y >> 2] | 0)) + break + } + ia = f[h >> 2] | (ha >>> $) + f[h >> 2] = ia + ha = ($ + Q) | 0 + f[y >> 2] = ha + if ((ha | 0) != 32) break + ha = f[j >> 2] | 0 + if ((ha | 0) == (f[m >> 2] | 0)) Ci(n, h) + else { + f[ha >> 2] = ia + f[j >> 2] = ha + 4 + } + f[h >> 2] = 0 + f[y >> 2] = 0 + } + while (0) + W = (W + 1) | 0 + Q = f[g >> 2] | 0 + } while (W >>> 0 < Q >>> 0) + ea = Q + } + ca = (ca + 1) | 0 + if (ca >>> 0 >= z >>> 0) { + ba = 81 + break a + } else da = ea + } + } + V = (U + 1) | 0 + qg( + (N + ((V * 12) | 0)) | 0, + f[(N + ((U * 12) | 0)) >> 2] | 0, + f[(N + ((U * 12) | 0) + 4) >> 2] | 0, + ) + W = + ((f[((f[k >> 2] | 0) + ((V * 12) | 0)) >> 2] | 0) + (R << 2)) | + 0 + Y = ((f[W >> 2] | 0) + (1 << (P + -1))) | 0 + f[W >> 2] = Y + W = f[A >> 2] | 0 + Q = f[B >> 2] | 0 + b: do + if ((S | 0) == (O | 0)) ja = O + else { + Z = f[K >> 2] | 0 + if (!W) { + if ((f[(Z + (R << 2)) >> 2] | 0) >>> 0 < Y >>> 0) { + ja = S + break + } else { + ka = S + la = O + } + while (1) { + ha = ka + do { + ha = (ha + -1) | 0 + if ((la | 0) == (ha | 0)) { + ja = la + break b + } + ia = + ((f[L >> 2] | 0) + ((X(ha, Q) | 0) << 2) + (R << 2)) | + 0 + } while ((f[ia >> 2] | 0) >>> 0 >= Y >>> 0) + la = (la + 1) | 0 + if ((la | 0) == (ha | 0)) { + ja = ha + break b + } else ka = ha + } + } else { + ma = S + na = O + } + while (1) { + ia = na + while (1) { + oa = (Z + ((X(ia, W) | 0) << 2)) | 0 + if ((f[(oa + (R << 2)) >> 2] | 0) >>> 0 >= Y >>> 0) { + pa = ma + break + } + $ = (ia + 1) | 0 + if (($ | 0) == (ma | 0)) { + ja = ma + break b + } else ia = $ + } + while (1) { + pa = (pa + -1) | 0 + if ((ia | 0) == (pa | 0)) { + ja = ia + break b + } + qa = ((f[L >> 2] | 0) + ((X(pa, Q) | 0) << 2)) | 0 + if ((f[(qa + (R << 2)) >> 2] | 0) >>> 0 < Y >>> 0) { + ra = 0 + break + } + } + do { + ha = (oa + (ra << 2)) | 0 + $ = (qa + (ra << 2)) | 0 + ga = f[ha >> 2] | 0 + f[ha >> 2] = f[$ >> 2] + f[$ >> 2] = ga + ra = (ra + 1) | 0 + } while ((ra | 0) != (W | 0)) + na = (ia + 1) | 0 + if ((na | 0) == (pa | 0)) { + ja = pa + break + } else ma = pa + } + } + while (0) + Y = (_(z | 0) | 0) ^ 31 + Q = (ja - O) | 0 + Z = (S - ja) | 0 + ga = Q >>> 0 < Z >>> 0 + if ((Q | 0) != (Z | 0)) { + $ = f[D >> 2] | 0 + if (ga) f[E >> 2] = f[E >> 2] | (1 << (31 - $)) + ha = ($ + 1) | 0 + f[D >> 2] = ha + if ((ha | 0) == 32) { + ha = f[F >> 2] | 0 + if ((ha | 0) == (f[G >> 2] | 0)) Ci(H, E) + else { + f[ha >> 2] = f[E >> 2] + f[F >> 2] = ha + 4 + } + f[D >> 2] = 0 + f[E >> 2] = 0 + } + } + ha = z >>> 1 + if (ga) bg(C, Y, (ha - Q) | 0) + else bg(C, Y, (ha - Z) | 0) + ha = f[s >> 2] | 0 + Y = f[(ha + ((U * 12) | 0)) >> 2] | 0 + ga = (Y + (R << 2)) | 0 + f[ga >> 2] = (f[ga >> 2] | 0) + 1 + qg( + (ha + ((V * 12) | 0)) | 0, + Y, + f[(ha + ((U * 12) | 0) + 4) >> 2] | 0, + ) + if ((ja | 0) != (O | 0)) { + ha = f[o >> 2] | 0 + Y = f[t >> 2] | 0 + ga = (ha - Y) >> 2 + $ = f[v >> 2] | 0 + fa = f[l >> 2] | 0 + if ( + (((ga | 0) == 0 ? 0 : (((ga * 113) | 0) + -1) | 0) | 0) == + ((fa + $) | 0) + ) { + Jc(e) + sa = f[v >> 2] | 0 + ta = f[l >> 2] | 0 + ua = f[o >> 2] | 0 + va = f[t >> 2] | 0 + } else { + sa = $ + ta = fa + ua = ha + va = Y + } + Y = (ta + sa) | 0 + if ((ua | 0) == (va | 0)) wa = 0 + else + wa = + ((f[(va + ((((Y >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((Y >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[wa >> 2] = O + Y = (wa + 4) | 0 + f[Y >> 2] = r + f[(Y + 4) >> 2] = x + f[(wa + 12) >> 2] = ja + f[(wa + 16) >> 2] = i + f[(wa + 20) >> 2] = W + f[(wa + 24) >> 2] = R + f[(wa + 28) >> 2] = Q + f[(wa + 32) >> 2] = U + f[l >> 2] = (f[l >> 2] | 0) + 1 + } + if ((S | 0) != (ja | 0)) { + Q = f[o >> 2] | 0 + Y = f[t >> 2] | 0 + ha = (Q - Y) >> 2 + fa = f[v >> 2] | 0 + $ = f[l >> 2] | 0 + if ( + (((ha | 0) == 0 ? 0 : (((ha * 113) | 0) + -1) | 0) | 0) == + (($ + fa) | 0) + ) { + Jc(e) + xa = f[v >> 2] | 0 + ya = f[l >> 2] | 0 + za = f[o >> 2] | 0 + Aa = f[t >> 2] | 0 + } else { + xa = fa + ya = $ + za = Q + Aa = Y + } + Y = (ya + xa) | 0 + if ((za | 0) == (Aa | 0)) Ba = 0 + else + Ba = + ((f[(Aa + ((((Y >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((Y >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[Ba >> 2] = ja + f[(Ba + 4) >> 2] = i + f[(Ba + 8) >> 2] = W + f[(Ba + 12) >> 2] = S + Y = (Ba + 16) | 0 + f[Y >> 2] = p + f[(Y + 4) >> 2] = q + f[(Ba + 24) >> 2] = R + f[(Ba + 28) >> 2] = Z + f[(Ba + 32) >> 2] = V + Z = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = Z + Ca = Z + } else ba = 81 + } else ba = 81 + while (0) + if ((ba | 0) == 81) { + ba = 0 + Ca = f[l >> 2] | 0 + } + if (!Ca) break + else M = Ca + } + } + Ca = f[t >> 2] | 0 + M = f[v >> 2] | 0 + Ba = (Ca + ((((M >>> 0) / 113) | 0) << 2)) | 0 + q = f[o >> 2] | 0 + p = q + i = Ca + if ((q | 0) == (Ca | 0)) { + Da = 0 + Ea = 0 + } else { + ja = ((f[Ba >> 2] | 0) + ((((M >>> 0) % 113 | 0) * 36) | 0)) | 0 + Da = ja + Ea = ja + } + ja = Ba + Ba = Ea + c: while (1) { + Ea = Ba + do { + M = Ea + if ((Da | 0) == (M | 0)) break c + Ea = (M + 36) | 0 + } while (((Ea - (f[ja >> 2] | 0)) | 0) != 4068) + Ea = (ja + 4) | 0 + ja = Ea + Ba = f[Ea >> 2] | 0 + } + f[l >> 2] = 0 + l = (p - i) >> 2 + if (l >>> 0 > 2) { + i = Ca + do { + br(f[i >> 2] | 0) + i = ((f[t >> 2] | 0) + 4) | 0 + f[t >> 2] = i + Fa = f[o >> 2] | 0 + Ga = (Fa - i) >> 2 + } while (Ga >>> 0 > 2) + Ha = Ga + Ia = i + Ja = Fa + } else { + Ha = l + Ia = Ca + Ja = q + } + switch (Ha | 0) { + case 1: { + Ka = 56 + ba = 95 + break + } + case 2: { + Ka = 113 + ba = 95 + break + } + default: { + } + } + if ((ba | 0) == 95) f[v >> 2] = Ka + if ((Ia | 0) != (Ja | 0)) { + Ka = Ia + do { + br(f[Ka >> 2] | 0) + Ka = (Ka + 4) | 0 + } while ((Ka | 0) != (Ja | 0)) + Ja = f[t >> 2] | 0 + t = f[o >> 2] | 0 + if ((t | 0) != (Ja | 0)) + f[o >> 2] = t + (~(((t + -4 - Ja) | 0) >>> 2) << 2) + } + Ja = f[e >> 2] | 0 + if (!Ja) { + u = d + return + } + br(Ja) + u = d + return + } + function ob(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0.0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0, + Sa = 0, + Ta = 0, + Ua = 0, + Va = 0, + Wa = 0, + Xa = 0, + Ya = 0, + Za = 0, + _a = 0, + $a = 0, + ab = 0, + bb = 0.0, + cb = 0, + db = 0, + eb = 0, + fb = 0, + gb = 0, + hb = 0, + ib = 0, + jb = 0.0, + kb = 0.0, + lb = 0.0, + mb = 0.0, + nb = 0.0, + ob = 0.0, + pb = 0.0, + qb = 0.0, + rb = 0.0, + sb = 0.0, + tb = 0 + i = u + u = (u + 512) | 0 + j = i + k = (d + c) | 0 + l = (0 - k) | 0 + m = (a + 4) | 0 + n = (a + 100) | 0 + o = b + b = 0 + a: while (1) { + switch (o | 0) { + case 46: { + p = 6 + break a + break + } + case 48: + break + default: { + q = 0 + r = o + s = b + t = 0 + v = 0 + break a + } + } + w = f[m >> 2] | 0 + if (w >>> 0 < (f[n >> 2] | 0) >>> 0) { + f[m >> 2] = w + 1 + o = h[w >> 0] | 0 + b = 1 + continue + } else { + o = Di(a) | 0 + b = 1 + continue + } + } + if ((p | 0) == 6) { + o = f[m >> 2] | 0 + if (o >>> 0 < (f[n >> 2] | 0) >>> 0) { + f[m >> 2] = o + 1 + x = h[o >> 0] | 0 + } else x = Di(a) | 0 + if ((x | 0) == 48) { + o = 0 + w = 0 + while (1) { + y = Tn(o | 0, w | 0, -1, -1) | 0 + z = I + A = f[m >> 2] | 0 + if (A >>> 0 < (f[n >> 2] | 0) >>> 0) { + f[m >> 2] = A + 1 + B = h[A >> 0] | 0 + } else B = Di(a) | 0 + if ((B | 0) == 48) { + o = y + w = z + } else { + q = 1 + r = B + s = 1 + t = y + v = z + break + } + } + } else { + q = 1 + r = x + s = b + t = 0 + v = 0 + } + } + f[j >> 2] = 0 + b = (r + -48) | 0 + x = (r | 0) == 46 + b: do + if (x | (b >>> 0 < 10)) { + B = (j + 496) | 0 + w = 0 + o = 0 + z = 0 + y = q + A = s + C = r + D = x + E = b + F = t + G = v + H = 0 + J = 0 + c: while (1) { + do + if (D) + if (!y) { + L = w + M = o + N = 1 + O = z + P = A + Q = H + R = J + S = H + T = J + } else break c + else { + U = Tn(H | 0, J | 0, 1, 0) | 0 + V = I + W = (C | 0) != 48 + if ((o | 0) >= 125) { + if (!W) { + L = w + M = o + N = y + O = z + P = A + Q = F + R = G + S = U + T = V + break + } + f[B >> 2] = f[B >> 2] | 1 + L = w + M = o + N = y + O = z + P = A + Q = F + R = G + S = U + T = V + break + } + Y = (j + (o << 2)) | 0 + if (!w) Z = E + else Z = (C + -48 + (((f[Y >> 2] | 0) * 10) | 0)) | 0 + f[Y >> 2] = Z + Y = (w + 1) | 0 + _ = (Y | 0) == 9 + L = _ ? 0 : Y + M = (o + (_ & 1)) | 0 + N = y + O = W ? U : z + P = 1 + Q = F + R = G + S = U + T = V + } + while (0) + V = f[m >> 2] | 0 + if (V >>> 0 < (f[n >> 2] | 0) >>> 0) { + f[m >> 2] = V + 1 + $ = h[V >> 0] | 0 + } else $ = Di(a) | 0 + E = ($ + -48) | 0 + D = ($ | 0) == 46 + if (!(D | (E >>> 0 < 10))) { + aa = L + ba = M + ca = O + da = N + ea = $ + fa = P + ga = S + ha = Q + ia = T + ja = R + p = 29 + break b + } else { + w = L + o = M + z = O + y = N + A = P + C = $ + F = Q + G = R + H = S + J = T + } + } + ka = w + la = o + ma = z + na = H + oa = J + pa = F + qa = G + ra = (A | 0) != 0 + p = 37 + } else { + aa = 0 + ba = 0 + ca = 0 + da = q + ea = r + fa = s + ga = 0 + ha = t + ia = 0 + ja = v + p = 29 + } + while (0) + do + if ((p | 0) == 29) { + v = (da | 0) == 0 + t = v ? ga : ha + s = v ? ia : ja + v = (fa | 0) != 0 + if (!(v & ((ea | 32 | 0) == 101))) + if ((ea | 0) > -1) { + ka = aa + la = ba + ma = ca + na = ga + oa = ia + pa = t + qa = s + ra = v + p = 37 + break + } else { + sa = aa + ta = ba + ua = ca + va = ga + wa = ia + xa = v + ya = t + za = s + p = 39 + break + } + v = De(a, g) | 0 + r = I + if (((v | 0) == 0) & ((r | 0) == -2147483648)) { + if (!g) { + Rm(a, 0) + Aa = 0.0 + break + } + if (!(f[n >> 2] | 0)) { + Ba = 0 + Ca = 0 + } else { + f[m >> 2] = (f[m >> 2] | 0) + -1 + Ba = 0 + Ca = 0 + } + } else { + Ba = v + Ca = r + } + r = Tn(Ba | 0, Ca | 0, t | 0, s | 0) | 0 + Da = aa + Ea = ba + Fa = ca + Ga = r + Ha = ga + Ia = I + Ja = ia + p = 41 + } + while (0) + if ((p | 0) == 37) + if (f[n >> 2] | 0) { + f[m >> 2] = (f[m >> 2] | 0) + -1 + if (ra) { + Da = ka + Ea = la + Fa = ma + Ga = pa + Ha = na + Ia = qa + Ja = oa + p = 41 + } else p = 40 + } else { + sa = ka + ta = la + ua = ma + va = na + wa = oa + xa = ra + ya = pa + za = qa + p = 39 + } + if ((p | 0) == 39) + if (xa) { + Da = sa + Ea = ta + Fa = ua + Ga = ya + Ha = va + Ia = za + Ja = wa + p = 41 + } else p = 40 + do + if ((p | 0) == 40) { + wa = ir() | 0 + f[wa >> 2] = 22 + Rm(a, 0) + Aa = 0.0 + } else if ((p | 0) == 41) { + wa = f[j >> 2] | 0 + if (!wa) { + Aa = +(e | 0) * 0.0 + break + } + if ( + (((Ja | 0) < 0) | (((Ja | 0) == 0) & (Ha >>> 0 < 10))) & + (((Ga | 0) == (Ha | 0)) & ((Ia | 0) == (Ja | 0))) + ? ((c | 0) > 30) | (((wa >>> c) | 0) == 0) + : 0 + ) { + Aa = +(e | 0) * +(wa >>> 0) + break + } + wa = ((d | 0) / -2) | 0 + za = (((wa | 0) < 0) << 31) >> 31 + if ( + ((Ia | 0) > (za | 0)) | + (((Ia | 0) == (za | 0)) & (Ga >>> 0 > wa >>> 0)) + ) { + wa = ir() | 0 + f[wa >> 2] = 34 + Aa = + +(e | 0) * + 1797693134862315708145274.0e284 * + 1797693134862315708145274.0e284 + break + } + wa = (d + -106) | 0 + za = (((wa | 0) < 0) << 31) >> 31 + if ( + ((Ia | 0) < (za | 0)) | + (((Ia | 0) == (za | 0)) & (Ga >>> 0 < wa >>> 0)) + ) { + wa = ir() | 0 + f[wa >> 2] = 34 + Aa = +(e | 0) * 2.2250738585072014e-308 * 2.2250738585072014e-308 + break + } + if (!Da) Ka = Ea + else { + if ((Da | 0) < 9) { + wa = (j + (Ea << 2)) | 0 + za = Da + va = f[wa >> 2] | 0 + while (1) { + va = (va * 10) | 0 + if ((za | 0) >= 8) break + else za = (za + 1) | 0 + } + f[wa >> 2] = va + } + Ka = (Ea + 1) | 0 + } + if ((Fa | 0) < 9 ? ((Fa | 0) <= (Ga | 0)) & ((Ga | 0) < 18) : 0) { + if ((Ga | 0) == 9) { + Aa = +(e | 0) * +((f[j >> 2] | 0) >>> 0) + break + } + if ((Ga | 0) < 9) { + Aa = + (+(e | 0) * +((f[j >> 2] | 0) >>> 0)) / + +(f[(6408 + ((8 - Ga) << 2)) >> 2] | 0) + break + } + za = (c + 27 + (X(Ga, -3) | 0)) | 0 + A = f[j >> 2] | 0 + if (((za | 0) > 30) | (((A >>> za) | 0) == 0)) { + Aa = + +(e | 0) * + +(A >>> 0) * + +(f[(6408 + ((Ga + -10) << 2)) >> 2] | 0) + break + } + } + A = (Ga | 0) % 9 | 0 + if (!A) { + La = 0 + Ma = Ka + Na = 0 + Oa = Ga + } else { + za = (Ga | 0) > -1 ? A : (A + 9) | 0 + A = f[(6408 + ((8 - za) << 2)) >> 2] | 0 + if (Ka) { + G = (1e9 / (A | 0)) | 0 + F = 0 + J = 0 + H = Ga + z = 0 + do { + o = (j + (z << 2)) | 0 + w = f[o >> 2] | 0 + ya = ((((w >>> 0) / (A >>> 0)) | 0) + F) | 0 + f[o >> 2] = ya + F = X(G, (w >>> 0) % (A >>> 0) | 0) | 0 + w = ((z | 0) == (J | 0)) & ((ya | 0) == 0) + H = w ? (H + -9) | 0 : H + J = w ? (J + 1) & 127 : J + z = (z + 1) | 0 + } while ((z | 0) != (Ka | 0)) + if (!F) { + Pa = J + Qa = Ka + Ra = H + } else { + f[(j + (Ka << 2)) >> 2] = F + Pa = J + Qa = (Ka + 1) | 0 + Ra = H + } + } else { + Pa = 0 + Qa = 0 + Ra = Ga + } + La = 0 + Ma = Qa + Na = Pa + Oa = (9 - za + Ra) | 0 + } + d: while (1) { + z = (Oa | 0) < 18 + A = (Oa | 0) == 18 + G = (j + (Na << 2)) | 0 + va = La + wa = Ma + while (1) { + if (!z) { + if (!A) { + Sa = va + Ta = Na + Ua = Oa + Va = wa + break d + } + if ((f[G >> 2] | 0) >>> 0 >= 9007199) { + Sa = va + Ta = Na + Ua = 18 + Va = wa + break d + } + } + w = 0 + Wa = wa + ya = (wa + 127) | 0 + while (1) { + o = ya & 127 + ua = (j + (o << 2)) | 0 + ta = Rn(f[ua >> 2] | 0, 0, 29) | 0 + sa = Tn(ta | 0, I | 0, w | 0, 0) | 0 + ta = I + if ((ta >>> 0 > 0) | (((ta | 0) == 0) & (sa >>> 0 > 1e9))) { + xa = up(sa | 0, ta | 0, 1e9, 0) | 0 + qa = an(sa | 0, ta | 0, 1e9, 0) | 0 + Xa = xa + Ya = qa + } else { + Xa = 0 + Ya = sa + } + f[ua >> 2] = Ya + ua = (o | 0) == (Na | 0) + Wa = + ((Ya | 0) == 0) & + ((((o | 0) != (((Wa + 127) & 127) | 0)) | ua) ^ 1) + ? o + : Wa + if (ua) break + else { + w = Xa + ya = (o + -1) | 0 + } + } + va = (va + -29) | 0 + if (Xa | 0) break + else wa = Wa + } + wa = (Na + 127) & 127 + G = (Wa + 127) & 127 + A = (j + (((Wa + 126) & 127) << 2)) | 0 + if ((wa | 0) == (Wa | 0)) { + f[A >> 2] = f[A >> 2] | f[(j + (G << 2)) >> 2] + Za = G + } else Za = Wa + f[(j + (wa << 2)) >> 2] = Xa + La = va + Ma = Za + Na = wa + Oa = (Oa + 9) | 0 + } + e: while (1) { + za = (Va + 1) & 127 + H = (j + (((Va + 127) & 127) << 2)) | 0 + J = Sa + F = Ta + wa = Ua + while (1) { + G = (wa | 0) == 18 + A = (wa | 0) > 27 ? 9 : 1 + _a = J + $a = F + while (1) { + z = 0 + while (1) { + ya = (z + $a) & 127 + if ((ya | 0) == (Va | 0)) { + ab = 2 + p = 88 + break + } + w = f[(j + (ya << 2)) >> 2] | 0 + ya = f[(6440 + (z << 2)) >> 2] | 0 + if (w >>> 0 < ya >>> 0) { + ab = 2 + p = 88 + break + } + if (w >>> 0 > ya >>> 0) break + ya = (z + 1) | 0 + if ((z | 0) < 1) z = ya + else { + ab = ya + p = 88 + break + } + } + if ((p | 0) == 88 ? ((p = 0), G & ((ab | 0) == 2)) : 0) { + bb = 0.0 + cb = 0 + db = Va + break e + } + eb = (A + _a) | 0 + if (($a | 0) == (Va | 0)) { + _a = eb + $a = Va + } else break + } + G = ((1 << A) + -1) | 0 + z = 1e9 >>> A + fb = 0 + gb = $a + hb = wa + ya = $a + do { + w = (j + (ya << 2)) | 0 + o = f[w >> 2] | 0 + ua = ((o >>> A) + fb) | 0 + f[w >> 2] = ua + fb = X(o & G, z) | 0 + o = ((ya | 0) == (gb | 0)) & ((ua | 0) == 0) + hb = o ? (hb + -9) | 0 : hb + gb = o ? (gb + 1) & 127 : gb + ya = (ya + 1) & 127 + } while ((ya | 0) != (Va | 0)) + if (!fb) { + J = eb + F = gb + wa = hb + continue + } + if ((za | 0) != (gb | 0)) break + f[H >> 2] = f[H >> 2] | 1 + J = eb + F = gb + wa = hb + } + f[(j + (Va << 2)) >> 2] = fb + Sa = eb + Ta = gb + Ua = hb + Va = za + } + while (1) { + wa = (cb + $a) & 127 + F = (db + 1) & 127 + if ((wa | 0) == (db | 0)) { + f[(j + ((F + -1) << 2)) >> 2] = 0 + ib = F + } else ib = db + bb = bb * 1.0e9 + +((f[(j + (wa << 2)) >> 2] | 0) >>> 0) + cb = (cb + 1) | 0 + if ((cb | 0) == 2) break + else db = ib + } + jb = +(e | 0) + kb = bb * jb + wa = (_a + 53) | 0 + F = (wa - d) | 0 + J = (F | 0) < (c | 0) + H = J ? ((F | 0) > 0 ? F : 0) : c + if ((H | 0) < 53) { + lb = +Gq(+Wj(1.0, (105 - H) | 0), kb) + mb = +Sq(kb, +Wj(1.0, (53 - H) | 0)) + nb = lb + ob = mb + pb = lb + (kb - mb) + } else { + nb = 0.0 + ob = 0.0 + pb = kb + } + va = ($a + 2) & 127 + if ((va | 0) != (ib | 0)) { + ya = f[(j + (va << 2)) >> 2] | 0 + do + if (ya >>> 0 >= 5e8) { + if ((ya | 0) != 5e8) { + qb = jb * 0.75 + ob + break + } + if (((($a + 3) & 127) | 0) == (ib | 0)) { + qb = jb * 0.5 + ob + break + } else { + qb = jb * 0.75 + ob + break + } + } else { + if ((ya | 0) == 0 ? ((($a + 3) & 127) | 0) == (ib | 0) : 0) { + qb = ob + break + } + qb = jb * 0.25 + ob + } + while (0) + if (((53 - H) | 0) > 1 ? !(+Sq(qb, 1.0) != 0.0) : 0) rb = qb + 1.0 + else rb = qb + } else rb = ob + jb = pb + rb - nb + do + if (((wa & 2147483647) | 0) > ((-2 - k) | 0)) { + ya = !(+K(+jb) >= 9007199254740992.0) + va = (_a + ((ya ^ 1) & 1)) | 0 + kb = ya ? jb : jb * 0.5 + if ( + ((va + 50) | 0) <= (l | 0) + ? !((rb != 0.0) & (J & (((H | 0) != (F | 0)) | ya))) + : 0 + ) { + sb = kb + tb = va + break + } + ya = ir() | 0 + f[ya >> 2] = 34 + sb = kb + tb = va + } else { + sb = jb + tb = _a + } + while (0) + Aa = +Hq(sb, tb) + } + while (0) + u = i + return +Aa + } + function pb(a, c, d, e, g, i) { + a = a | 0 + c = +c + d = d | 0 + e = e | 0 + g = g | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0.0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0.0, + C = 0, + D = 0.0, + E = 0, + F = 0, + G = 0, + H = 0.0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0.0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0.0, + ga = 0.0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0 + j = u + u = (u + 560) | 0 + k = (j + 8) | 0 + l = j + m = (j + 524) | 0 + n = m + o = (j + 512) | 0 + f[l >> 2] = 0 + p = (o + 12) | 0 + xo(c) | 0 + if ((I | 0) < 0) { + q = -c + r = 1 + s = 15511 + } else { + q = c + r = (((g & 2049) | 0) != 0) & 1 + s = ((g & 2048) | 0) == 0 ? (((g & 1) | 0) == 0 ? 15512 : 15517) : 15514 + } + xo(q) | 0 + do + if ((0 == 0) & (((I & 2146435072) | 0) == 2146435072)) { + t = ((i & 32) | 0) != 0 + v = (r + 3) | 0 + Hk(a, 32, d, v, g & -65537) + ep(a, s, r) + ep( + a, + (q != q) | (0.0 != 0.0) ? (t ? 17461 : 15538) : t ? 15530 : 15534, + 3, + ) + Hk(a, 32, d, v, g ^ 8192) + w = v + } else { + c = +Iq(q, l) * 2.0 + v = c != 0.0 + if (v) f[l >> 2] = (f[l >> 2] | 0) + -1 + t = i | 32 + if ((t | 0) == 97) { + x = i & 32 + y = (x | 0) == 0 ? s : (s + 9) | 0 + z = r | 2 + A = (12 - e) | 0 + do + if (!((e >>> 0 > 11) | ((A | 0) == 0))) { + B = 8.0 + C = A + do { + C = (C + -1) | 0 + B = B * 16.0 + } while ((C | 0) != 0) + if ((b[y >> 0] | 0) == 45) { + D = -(B + (-c - B)) + break + } else { + D = c + B - B + break + } + } else D = c + while (0) + A = f[l >> 2] | 0 + C = (A | 0) < 0 ? (0 - A) | 0 : A + E = Jj(C, (((C | 0) < 0) << 31) >> 31, p) | 0 + if ((E | 0) == (p | 0)) { + C = (o + 11) | 0 + b[C >> 0] = 48 + F = C + } else F = E + b[(F + -1) >> 0] = ((A >> 31) & 2) + 43 + A = (F + -2) | 0 + b[A >> 0] = i + 15 + E = (e | 0) < 1 + C = ((g & 8) | 0) == 0 + G = m + H = D + while (1) { + J = ~~H + K = (G + 1) | 0 + b[G >> 0] = x | h[(15542 + J) >> 0] + H = (H - +(J | 0)) * 16.0 + if (((K - n) | 0) == 1 ? !(C & (E & (H == 0.0))) : 0) { + b[K >> 0] = 46 + L = (G + 2) | 0 + } else L = K + if (!(H != 0.0)) break + else G = L + } + G = L + if ((e | 0) != 0 ? ((-2 - n + G) | 0) < (e | 0) : 0) { + M = (G - n) | 0 + N = (e + 2) | 0 + } else { + E = (G - n) | 0 + M = E + N = E + } + E = (p - A) | 0 + G = (E + z + N) | 0 + Hk(a, 32, d, G, g) + ep(a, y, z) + Hk(a, 48, d, G, g ^ 65536) + ep(a, m, M) + Hk(a, 48, (N - M) | 0, 0, 0) + ep(a, A, E) + Hk(a, 32, d, G, g ^ 8192) + w = G + break + } + G = (e | 0) < 0 ? 6 : e + if (v) { + E = ((f[l >> 2] | 0) + -28) | 0 + f[l >> 2] = E + O = c * 268435456.0 + P = E + } else { + O = c + P = f[l >> 2] | 0 + } + E = (P | 0) < 0 ? k : (k + 288) | 0 + C = E + H = O + do { + x = ~~H >>> 0 + f[C >> 2] = x + C = (C + 4) | 0 + H = (H - +(x >>> 0)) * 1.0e9 + } while (H != 0.0) + if ((P | 0) > 0) { + v = E + A = C + z = P + while (1) { + y = (z | 0) < 29 ? z : 29 + x = (A + -4) | 0 + if (x >>> 0 >= v >>> 0) { + K = x + x = 0 + do { + J = Rn(f[K >> 2] | 0, 0, y | 0) | 0 + Q = Tn(J | 0, I | 0, x | 0, 0) | 0 + J = I + R = an(Q | 0, J | 0, 1e9, 0) | 0 + f[K >> 2] = R + x = up(Q | 0, J | 0, 1e9, 0) | 0 + K = (K + -4) | 0 + } while (K >>> 0 >= v >>> 0) + if (x) { + K = (v + -4) | 0 + f[K >> 2] = x + S = K + } else S = v + } else S = v + K = A + while (1) { + if (K >>> 0 <= S >>> 0) break + J = (K + -4) | 0 + if (!(f[J >> 2] | 0)) K = J + else break + } + x = ((f[l >> 2] | 0) - y) | 0 + f[l >> 2] = x + if ((x | 0) > 0) { + v = S + A = K + z = x + } else { + T = S + U = K + V = x + break + } + } + } else { + T = E + U = C + V = P + } + if ((V | 0) < 0) { + z = (((((G + 25) | 0) / 9) | 0) + 1) | 0 + A = (t | 0) == 102 + v = T + x = U + J = V + while (1) { + Q = (0 - J) | 0 + R = (Q | 0) < 9 ? Q : 9 + if (v >>> 0 < x >>> 0) { + Q = ((1 << R) + -1) | 0 + W = 1e9 >>> R + Y = 0 + Z = v + do { + _ = f[Z >> 2] | 0 + f[Z >> 2] = (_ >>> R) + Y + Y = X(_ & Q, W) | 0 + Z = (Z + 4) | 0 + } while (Z >>> 0 < x >>> 0) + Z = (f[v >> 2] | 0) == 0 ? (v + 4) | 0 : v + if (!Y) { + $ = Z + aa = x + } else { + f[x >> 2] = Y + $ = Z + aa = (x + 4) | 0 + } + } else { + $ = (f[v >> 2] | 0) == 0 ? (v + 4) | 0 : v + aa = x + } + Z = A ? E : $ + W = (((aa - Z) >> 2) | 0) > (z | 0) ? (Z + (z << 2)) | 0 : aa + J = ((f[l >> 2] | 0) + R) | 0 + f[l >> 2] = J + if ((J | 0) >= 0) { + ba = $ + ca = W + break + } else { + v = $ + x = W + } + } + } else { + ba = T + ca = U + } + x = E + if (ba >>> 0 < ca >>> 0) { + v = (((x - ba) >> 2) * 9) | 0 + J = f[ba >> 2] | 0 + if (J >>> 0 < 10) da = v + else { + z = v + v = 10 + while (1) { + v = (v * 10) | 0 + A = (z + 1) | 0 + if (J >>> 0 < v >>> 0) { + da = A + break + } else z = A + } + } + } else da = 0 + z = (t | 0) == 103 + v = (G | 0) != 0 + J = (G - ((t | 0) != 102 ? da : 0) + (((v & z) << 31) >> 31)) | 0 + if ((J | 0) < ((((((ca - x) >> 2) * 9) | 0) + -9) | 0)) { + A = (J + 9216) | 0 + J = (E + 4 + (((((A | 0) / 9) | 0) + -1024) << 2)) | 0 + C = (A | 0) % 9 | 0 + if ((C | 0) < 8) { + A = C + C = 10 + while (1) { + W = (C * 10) | 0 + if ((A | 0) < 7) { + A = (A + 1) | 0 + C = W + } else { + ea = W + break + } + } + } else ea = 10 + C = f[J >> 2] | 0 + A = (C >>> 0) % (ea >>> 0) | 0 + t = ((J + 4) | 0) == (ca | 0) + if (!(t & ((A | 0) == 0))) { + B = + (((((C >>> 0) / (ea >>> 0)) | 0) & 1) | 0) == 0 + ? 9007199254740992.0 + : 9007199254740994.0 + W = ((ea | 0) / 2) | 0 + H = A >>> 0 < W >>> 0 ? 0.5 : t & ((A | 0) == (W | 0)) ? 1.0 : 1.5 + if (!r) { + fa = H + ga = B + } else { + W = (b[s >> 0] | 0) == 45 + fa = W ? -H : H + ga = W ? -B : B + } + W = (C - A) | 0 + f[J >> 2] = W + if (ga + fa != ga) { + A = (W + ea) | 0 + f[J >> 2] = A + if (A >>> 0 > 999999999) { + A = ba + W = J + while (1) { + C = (W + -4) | 0 + f[W >> 2] = 0 + if (C >>> 0 < A >>> 0) { + t = (A + -4) | 0 + f[t >> 2] = 0 + ha = t + } else ha = A + t = ((f[C >> 2] | 0) + 1) | 0 + f[C >> 2] = t + if (t >>> 0 > 999999999) { + A = ha + W = C + } else { + ia = ha + ja = C + break + } + } + } else { + ia = ba + ja = J + } + W = (((x - ia) >> 2) * 9) | 0 + A = f[ia >> 2] | 0 + if (A >>> 0 < 10) { + ka = ja + la = W + ma = ia + } else { + C = W + W = 10 + while (1) { + W = (W * 10) | 0 + t = (C + 1) | 0 + if (A >>> 0 < W >>> 0) { + ka = ja + la = t + ma = ia + break + } else C = t + } + } + } else { + ka = J + la = da + ma = ba + } + } else { + ka = J + la = da + ma = ba + } + C = (ka + 4) | 0 + na = la + oa = ca >>> 0 > C >>> 0 ? C : ca + pa = ma + } else { + na = da + oa = ca + pa = ba + } + C = oa + while (1) { + if (C >>> 0 <= pa >>> 0) { + qa = 0 + break + } + W = (C + -4) | 0 + if (!(f[W >> 2] | 0)) C = W + else { + qa = 1 + break + } + } + J = (0 - na) | 0 + do + if (z) { + W = (G + ((v ^ 1) & 1)) | 0 + if (((W | 0) > (na | 0)) & ((na | 0) > -5)) { + ra = (i + -1) | 0 + sa = (W + -1 - na) | 0 + } else { + ra = (i + -2) | 0 + sa = (W + -1) | 0 + } + W = g & 8 + if (!W) { + if (qa ? ((A = f[(C + -4) >> 2] | 0), (A | 0) != 0) : 0) + if (!((A >>> 0) % 10 | 0)) { + t = 0 + Z = 10 + while (1) { + Z = (Z * 10) | 0 + Q = (t + 1) | 0 + if ((A >>> 0) % (Z >>> 0) | 0 | 0) { + ta = Q + break + } else t = Q + } + } else ta = 0 + else ta = 9 + t = (((((C - x) >> 2) * 9) | 0) + -9) | 0 + if ((ra | 32 | 0) == 102) { + Z = (t - ta) | 0 + A = (Z | 0) > 0 ? Z : 0 + ua = ra + va = (sa | 0) < (A | 0) ? sa : A + wa = 0 + break + } else { + A = (t + na - ta) | 0 + t = (A | 0) > 0 ? A : 0 + ua = ra + va = (sa | 0) < (t | 0) ? sa : t + wa = 0 + break + } + } else { + ua = ra + va = sa + wa = W + } + } else { + ua = i + va = G + wa = g & 8 + } + while (0) + G = va | wa + x = ((G | 0) != 0) & 1 + v = (ua | 32 | 0) == 102 + if (v) { + xa = 0 + ya = (na | 0) > 0 ? na : 0 + } else { + z = (na | 0) < 0 ? J : na + t = Jj(z, (((z | 0) < 0) << 31) >> 31, p) | 0 + z = p + if (((z - t) | 0) < 2) { + A = t + while (1) { + Z = (A + -1) | 0 + b[Z >> 0] = 48 + if (((z - Z) | 0) < 2) A = Z + else { + za = Z + break + } + } + } else za = t + b[(za + -1) >> 0] = ((na >> 31) & 2) + 43 + A = (za + -2) | 0 + b[A >> 0] = ua + xa = A + ya = (z - A) | 0 + } + A = (r + 1 + va + x + ya) | 0 + Hk(a, 32, d, A, g) + ep(a, s, r) + Hk(a, 48, d, A, g ^ 65536) + if (v) { + J = pa >>> 0 > E >>> 0 ? E : pa + Z = (m + 9) | 0 + R = Z + Y = (m + 8) | 0 + Q = J + do { + K = Jj(f[Q >> 2] | 0, 0, Z) | 0 + if ((Q | 0) == (J | 0)) + if ((K | 0) == (Z | 0)) { + b[Y >> 0] = 48 + Aa = Y + } else Aa = K + else if (K >>> 0 > m >>> 0) { + hj(m | 0, 48, (K - n) | 0) | 0 + y = K + while (1) { + _ = (y + -1) | 0 + if (_ >>> 0 > m >>> 0) y = _ + else { + Aa = _ + break + } + } + } else Aa = K + ep(a, Aa, (R - Aa) | 0) + Q = (Q + 4) | 0 + } while (Q >>> 0 <= E >>> 0) + if (G | 0) ep(a, 15558, 1) + if ((Q >>> 0 < C >>> 0) & ((va | 0) > 0)) { + E = va + R = Q + while (1) { + Y = Jj(f[R >> 2] | 0, 0, Z) | 0 + if (Y >>> 0 > m >>> 0) { + hj(m | 0, 48, (Y - n) | 0) | 0 + J = Y + while (1) { + v = (J + -1) | 0 + if (v >>> 0 > m >>> 0) J = v + else { + Ba = v + break + } + } + } else Ba = Y + ep(a, Ba, (E | 0) < 9 ? E : 9) + R = (R + 4) | 0 + J = (E + -9) | 0 + if (!((R >>> 0 < C >>> 0) & ((E | 0) > 9))) { + Ca = J + break + } else E = J + } + } else Ca = va + Hk(a, 48, (Ca + 9) | 0, 9, 0) + } else { + E = qa ? C : (pa + 4) | 0 + if ((va | 0) > -1) { + R = (m + 9) | 0 + Z = (wa | 0) == 0 + Q = R + G = (0 - n) | 0 + J = (m + 8) | 0 + K = va + v = pa + while (1) { + x = Jj(f[v >> 2] | 0, 0, R) | 0 + if ((x | 0) == (R | 0)) { + b[J >> 0] = 48 + Da = J + } else Da = x + do + if ((v | 0) == (pa | 0)) { + x = (Da + 1) | 0 + ep(a, Da, 1) + if (Z & ((K | 0) < 1)) { + Ea = x + break + } + ep(a, 15558, 1) + Ea = x + } else { + if (Da >>> 0 <= m >>> 0) { + Ea = Da + break + } + hj(m | 0, 48, (Da + G) | 0) | 0 + x = Da + while (1) { + z = (x + -1) | 0 + if (z >>> 0 > m >>> 0) x = z + else { + Ea = z + break + } + } + } + while (0) + Y = (Q - Ea) | 0 + ep(a, Ea, (K | 0) > (Y | 0) ? Y : K) + x = (K - Y) | 0 + v = (v + 4) | 0 + if (!((v >>> 0 < E >>> 0) & ((x | 0) > -1))) { + Fa = x + break + } else K = x + } + } else Fa = va + Hk(a, 48, (Fa + 18) | 0, 18, 0) + ep(a, xa, (p - xa) | 0) + } + Hk(a, 32, d, A, g ^ 8192) + w = A + } + while (0) + u = j + return ((w | 0) < (d | 0) ? d : w) | 0 + } + function qb(a, c, e, g, h) { + a = a | 0 + c = c | 0 + e = e | 0 + g = g | 0 + h = h | 0 + var i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0 + i = u + u = (u + 64) | 0 + j = (i + 16) | 0 + k = i + l = (i + 24) | 0 + m = (i + 8) | 0 + n = (i + 20) | 0 + f[j >> 2] = c + c = (a | 0) != 0 + o = (l + 40) | 0 + q = o + r = (l + 39) | 0 + l = (m + 4) | 0 + s = 0 + t = 0 + v = 0 + a: while (1) { + do + if ((t | 0) > -1) + if ((s | 0) > ((2147483647 - t) | 0)) { + w = ir() | 0 + f[w >> 2] = 75 + x = -1 + break + } else { + x = (s + t) | 0 + break + } + else x = t + while (0) + w = f[j >> 2] | 0 + y = b[w >> 0] | 0 + if (!((y << 24) >> 24)) { + z = 88 + break + } else { + A = y + B = w + } + b: while (1) { + switch ((A << 24) >> 24) { + case 37: { + C = B + D = B + z = 9 + break b + break + } + case 0: { + E = B + break b + break + } + default: { + } + } + y = (B + 1) | 0 + f[j >> 2] = y + A = b[y >> 0] | 0 + B = y + } + c: do + if ((z | 0) == 9) + while (1) { + z = 0 + if ((b[(D + 1) >> 0] | 0) != 37) { + E = C + break c + } + y = (C + 1) | 0 + D = (D + 2) | 0 + f[j >> 2] = D + if ((b[D >> 0] | 0) != 37) { + E = y + break + } else { + C = y + z = 9 + } + } + while (0) + y = (E - w) | 0 + if (c) ep(a, w, y) + if (y | 0) { + s = y + t = x + continue + } + y = (Pq(b[((f[j >> 2] | 0) + 1) >> 0] | 0) | 0) == 0 + F = f[j >> 2] | 0 + if (!y ? (b[(F + 2) >> 0] | 0) == 36 : 0) { + G = ((b[(F + 1) >> 0] | 0) + -48) | 0 + H = 1 + J = 3 + } else { + G = -1 + H = v + J = 1 + } + y = (F + J) | 0 + f[j >> 2] = y + F = b[y >> 0] | 0 + K = (((F << 24) >> 24) + -32) | 0 + if ((K >>> 0 > 31) | ((((1 << K) & 75913) | 0) == 0)) { + L = 0 + M = F + N = y + } else { + K = 0 + O = F + F = y + while (1) { + y = (1 << (((O << 24) >> 24) + -32)) | K + P = (F + 1) | 0 + f[j >> 2] = P + Q = b[P >> 0] | 0 + R = (((Q << 24) >> 24) + -32) | 0 + if ((R >>> 0 > 31) | ((((1 << R) & 75913) | 0) == 0)) { + L = y + M = Q + N = P + break + } else { + K = y + O = Q + F = P + } + } + } + if ((M << 24) >> 24 == 42) { + if ( + (Pq(b[(N + 1) >> 0] | 0) | 0) != 0 + ? ((F = f[j >> 2] | 0), (b[(F + 2) >> 0] | 0) == 36) + : 0 + ) { + O = (F + 1) | 0 + f[(h + (((b[O >> 0] | 0) + -48) << 2)) >> 2] = 10 + S = f[(g + (((b[O >> 0] | 0) + -48) << 3)) >> 2] | 0 + T = 1 + U = (F + 3) | 0 + } else { + if (H | 0) { + V = -1 + break + } + if (c) { + F = ((f[e >> 2] | 0) + (4 - 1)) & ~(4 - 1) + O = f[F >> 2] | 0 + f[e >> 2] = F + 4 + W = O + } else W = 0 + S = W + T = 0 + U = ((f[j >> 2] | 0) + 1) | 0 + } + f[j >> 2] = U + O = (S | 0) < 0 + X = O ? (0 - S) | 0 : S + Y = O ? L | 8192 : L + Z = T + _ = U + } else { + O = Cl(j) | 0 + if ((O | 0) < 0) { + V = -1 + break + } + X = O + Y = L + Z = H + _ = f[j >> 2] | 0 + } + do + if ((b[_ >> 0] | 0) == 46) { + if ((b[(_ + 1) >> 0] | 0) != 42) { + f[j >> 2] = _ + 1 + O = Cl(j) | 0 + $ = O + aa = f[j >> 2] | 0 + break + } + if ( + Pq(b[(_ + 2) >> 0] | 0) | 0 + ? ((O = f[j >> 2] | 0), (b[(O + 3) >> 0] | 0) == 36) + : 0 + ) { + F = (O + 2) | 0 + f[(h + (((b[F >> 0] | 0) + -48) << 2)) >> 2] = 10 + K = f[(g + (((b[F >> 0] | 0) + -48) << 3)) >> 2] | 0 + F = (O + 4) | 0 + f[j >> 2] = F + $ = K + aa = F + break + } + if (Z | 0) { + V = -1 + break a + } + if (c) { + F = ((f[e >> 2] | 0) + (4 - 1)) & ~(4 - 1) + K = f[F >> 2] | 0 + f[e >> 2] = F + 4 + ba = K + } else ba = 0 + K = ((f[j >> 2] | 0) + 2) | 0 + f[j >> 2] = K + $ = ba + aa = K + } else { + $ = -1 + aa = _ + } + while (0) + K = 0 + F = aa + while (1) { + if ((((b[F >> 0] | 0) + -65) | 0) >>> 0 > 57) { + V = -1 + break a + } + O = F + F = (F + 1) | 0 + f[j >> 2] = F + ca = b[((b[O >> 0] | 0) + -65 + (15030 + ((K * 58) | 0))) >> 0] | 0 + da = ca & 255 + if (((da + -1) | 0) >>> 0 >= 8) break + else K = da + } + if (!((ca << 24) >> 24)) { + V = -1 + break + } + O = (G | 0) > -1 + do + if ((ca << 24) >> 24 == 19) + if (O) { + V = -1 + break a + } else z = 50 + else { + if (O) { + f[(h + (G << 2)) >> 2] = da + P = (g + (G << 3)) | 0 + Q = f[(P + 4) >> 2] | 0 + y = k + f[y >> 2] = f[P >> 2] + f[(y + 4) >> 2] = Q + z = 50 + break + } + if (!c) { + V = 0 + break a + } + Ie(k, da, e) + ea = f[j >> 2] | 0 + } + while (0) + if ((z | 0) == 50) { + z = 0 + if (c) ea = F + else { + s = 0 + t = x + v = Z + continue + } + } + O = b[(ea + -1) >> 0] | 0 + Q = ((K | 0) != 0) & (((O & 15) | 0) == 3) ? O & -33 : O + O = Y & -65537 + y = ((Y & 8192) | 0) == 0 ? Y : O + d: do + switch (Q | 0) { + case 110: { + switch (((K & 255) << 24) >> 24) { + case 0: { + f[f[k >> 2] >> 2] = x + s = 0 + t = x + v = Z + continue a + break + } + case 1: { + f[f[k >> 2] >> 2] = x + s = 0 + t = x + v = Z + continue a + break + } + case 2: { + P = f[k >> 2] | 0 + f[P >> 2] = x + f[(P + 4) >> 2] = (((x | 0) < 0) << 31) >> 31 + s = 0 + t = x + v = Z + continue a + break + } + case 3: { + d[f[k >> 2] >> 1] = x + s = 0 + t = x + v = Z + continue a + break + } + case 4: { + b[f[k >> 2] >> 0] = x + s = 0 + t = x + v = Z + continue a + break + } + case 6: { + f[f[k >> 2] >> 2] = x + s = 0 + t = x + v = Z + continue a + break + } + case 7: { + P = f[k >> 2] | 0 + f[P >> 2] = x + f[(P + 4) >> 2] = (((x | 0) < 0) << 31) >> 31 + s = 0 + t = x + v = Z + continue a + break + } + default: { + s = 0 + t = x + v = Z + continue a + } + } + break + } + case 112: { + fa = 120 + ga = $ >>> 0 > 8 ? $ : 8 + ha = y | 8 + z = 62 + break + } + case 88: + case 120: { + fa = Q + ga = $ + ha = y + z = 62 + break + } + case 111: { + P = k + R = f[P >> 2] | 0 + ia = f[(P + 4) >> 2] | 0 + P = Gl(R, ia, o) | 0 + ja = (q - P) | 0 + ka = P + la = 0 + ma = 15494 + na = + (((y & 8) | 0) == 0) | (($ | 0) > (ja | 0)) ? $ : (ja + 1) | 0 + oa = y + pa = R + qa = ia + z = 68 + break + } + case 105: + case 100: { + ia = k + R = f[ia >> 2] | 0 + ja = f[(ia + 4) >> 2] | 0 + if ((ja | 0) < 0) { + ia = Vn(0, 0, R | 0, ja | 0) | 0 + P = I + ra = k + f[ra >> 2] = ia + f[(ra + 4) >> 2] = P + sa = 1 + ta = 15494 + ua = ia + va = P + z = 67 + break d + } else { + sa = (((y & 2049) | 0) != 0) & 1 + ta = + ((y & 2048) | 0) == 0 + ? ((y & 1) | 0) == 0 + ? 15494 + : 15496 + : 15495 + ua = R + va = ja + z = 67 + break d + } + break + } + case 117: { + ja = k + sa = 0 + ta = 15494 + ua = f[ja >> 2] | 0 + va = f[(ja + 4) >> 2] | 0 + z = 67 + break + } + case 99: { + b[r >> 0] = f[k >> 2] + wa = r + xa = 0 + ya = 15494 + za = o + Aa = 1 + Ba = O + break + } + case 109: { + ja = ir() | 0 + Ca = kp(f[ja >> 2] | 0) | 0 + z = 72 + break + } + case 115: { + ja = f[k >> 2] | 0 + Ca = ja | 0 ? ja : 15504 + z = 72 + break + } + case 67: { + f[m >> 2] = f[k >> 2] + f[l >> 2] = 0 + f[k >> 2] = m + Da = -1 + Ea = m + z = 76 + break + } + case 83: { + ja = f[k >> 2] | 0 + if (!$) { + Hk(a, 32, X, 0, y) + Fa = 0 + z = 85 + } else { + Da = $ + Ea = ja + z = 76 + } + break + } + case 65: + case 71: + case 70: + case 69: + case 97: + case 103: + case 102: + case 101: { + s = pb(a, +p[k >> 3], X, $, y, Q) | 0 + t = x + v = Z + continue a + break + } + default: { + wa = w + xa = 0 + ya = 15494 + za = o + Aa = $ + Ba = y + } + } + while (0) + e: do + if ((z | 0) == 62) { + z = 0 + w = k + Q = f[w >> 2] | 0 + K = f[(w + 4) >> 2] | 0 + w = ol(Q, K, o, fa & 32) | 0 + F = (((ha & 8) | 0) == 0) | (((Q | 0) == 0) & ((K | 0) == 0)) + ka = w + la = F ? 0 : 2 + ma = F ? 15494 : (15494 + (fa >> 4)) | 0 + na = ga + oa = ha + pa = Q + qa = K + z = 68 + } else if ((z | 0) == 67) { + z = 0 + ka = Jj(ua, va, o) | 0 + la = sa + ma = ta + na = $ + oa = y + pa = ua + qa = va + z = 68 + } else if ((z | 0) == 72) { + z = 0 + K = cg(Ca, 0, $) | 0 + Q = (K | 0) == 0 + wa = Ca + xa = 0 + ya = 15494 + za = Q ? (Ca + $) | 0 : K + Aa = Q ? $ : (K - Ca) | 0 + Ba = O + } else if ((z | 0) == 76) { + z = 0 + K = Ea + Q = 0 + F = 0 + while (1) { + w = f[K >> 2] | 0 + if (!w) { + Ga = Q + Ha = F + break + } + ja = Yo(n, w) | 0 + if (((ja | 0) < 0) | (ja >>> 0 > ((Da - Q) | 0) >>> 0)) { + Ga = Q + Ha = ja + break + } + w = (ja + Q) | 0 + if (Da >>> 0 > w >>> 0) { + K = (K + 4) | 0 + Q = w + F = ja + } else { + Ga = w + Ha = ja + break + } + } + if ((Ha | 0) < 0) { + V = -1 + break a + } + Hk(a, 32, X, Ga, y) + if (!Ga) { + Fa = 0 + z = 85 + } else { + F = Ea + Q = 0 + while (1) { + K = f[F >> 2] | 0 + if (!K) { + Fa = Ga + z = 85 + break e + } + ja = Yo(n, K) | 0 + Q = (ja + Q) | 0 + if ((Q | 0) > (Ga | 0)) { + Fa = Ga + z = 85 + break e + } + ep(a, n, ja) + if (Q >>> 0 >= Ga >>> 0) { + Fa = Ga + z = 85 + break + } else F = (F + 4) | 0 + } + } + } + while (0) + if ((z | 0) == 68) { + z = 0 + O = ((pa | 0) != 0) | ((qa | 0) != 0) + F = ((na | 0) != 0) | O + Q = (q - ka + ((O ^ 1) & 1)) | 0 + wa = F ? ka : o + xa = la + ya = ma + za = o + Aa = F ? ((na | 0) > (Q | 0) ? na : Q) : na + Ba = (na | 0) > -1 ? oa & -65537 : oa + } else if ((z | 0) == 85) { + z = 0 + Hk(a, 32, X, Fa, y ^ 8192) + s = (X | 0) > (Fa | 0) ? X : Fa + t = x + v = Z + continue + } + Q = (za - wa) | 0 + F = (Aa | 0) < (Q | 0) ? Q : Aa + O = (F + xa) | 0 + ja = (X | 0) < (O | 0) ? O : X + Hk(a, 32, ja, O, Ba) + ep(a, ya, xa) + Hk(a, 48, ja, O, Ba ^ 65536) + Hk(a, 48, F, Q, 0) + ep(a, wa, Q) + Hk(a, 32, ja, O, Ba ^ 8192) + s = ja + t = x + v = Z + } + f: do + if ((z | 0) == 88) + if (!a) + if (v) { + Z = 1 + while (1) { + t = f[(h + (Z << 2)) >> 2] | 0 + if (!t) { + Ia = Z + break + } + Ie((g + (Z << 3)) | 0, t, e) + t = (Z + 1) | 0 + if ((Z | 0) < 9) Z = t + else { + Ia = t + break + } + } + if ((Ia | 0) < 10) { + Z = Ia + while (1) { + if (f[(h + (Z << 2)) >> 2] | 0) { + V = -1 + break f + } + if ((Z | 0) < 9) Z = (Z + 1) | 0 + else { + V = 1 + break + } + } + } else V = 1 + } else V = 0 + else V = x + while (0) + u = i + return V | 0 + } + function rb(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = Oa, + ma = Oa, + na = Oa, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0 + c = u + u = (u + 64) | 0 + d = (c + 28) | 0 + e = (c + 16) | 0 + g = (c + 4) | 0 + h = c + i = a + j = (a + 80) | 0 + k = f[j >> 2] | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = i + l = (d + 20) | 0 + n[l >> 2] = $(1.0) + f[(d + 24) >> 2] = i + qh(d, k) + k = f[j >> 2] | 0 + f[e >> 2] = 0 + i = (e + 4) | 0 + f[i >> 2] = 0 + f[(e + 8) >> 2] = 0 + m = (k | 0) == 0 + do + if (!m) + if (k >>> 0 > 1073741823) mq(e) + else { + o = k << 2 + p = dn(o) | 0 + f[e >> 2] = p + q = (p + (k << 2)) | 0 + f[(e + 8) >> 2] = q + hj(p | 0, 0, o | 0) | 0 + f[i >> 2] = q + break + } + while (0) + f[g >> 2] = 0 + k = (g + 4) | 0 + f[k >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[h >> 2] = 0 + if (!m) { + m = (d + 16) | 0 + q = (d + 4) | 0 + o = (d + 12) | 0 + p = (d + 8) | 0 + r = (g + 8) | 0 + s = (d + 24) | 0 + t = 0 + v = 0 + while (1) { + w = f[m >> 2] | 0 + x = f[(w + 8) >> 2] | 0 + y = ((f[(w + 12) >> 2] | 0) - x) | 0 + w = (y | 0) > 0 + z = x + if (w) { + x = y >>> 2 + A = 0 + B = 0 + while (1) { + C = f[(z + (A << 2)) >> 2] | 0 + if (!(b[(C + 84) >> 0] | 0)) + D = f[((f[(C + 68) >> 2] | 0) + (v << 2)) >> 2] | 0 + else D = v + C = (D + 239) ^ B + A = (A + 1) | 0 + if ((A | 0) >= (x | 0)) { + E = C + break + } else B = C + } + } else E = 0 + B = f[q >> 2] | 0 + x = (B | 0) == 0 + a: do + if (!x) { + A = (B + -1) | 0 + C = ((A & B) | 0) == 0 + if (!C) + if (E >>> 0 < B >>> 0) F = E + else F = (E >>> 0) % (B >>> 0) | 0 + else F = A & E + G = f[((f[d >> 2] | 0) + (F << 2)) >> 2] | 0 + if ((G | 0) != 0 ? ((H = f[G >> 2] | 0), (H | 0) != 0) : 0) { + G = f[s >> 2] | 0 + I = (G + 8) | 0 + J = (G + 12) | 0 + b: do + if (C) { + G = H + while (1) { + K = f[(G + 4) >> 2] | 0 + L = (K | 0) == (E | 0) + if (!(L | (((K & A) | 0) == (F | 0)))) { + M = 44 + break a + } + c: do + if (L) { + K = f[(G + 8) >> 2] | 0 + N = f[I >> 2] | 0 + O = ((f[J >> 2] | 0) - N) | 0 + P = N + if ((O | 0) <= 0) { + Q = G + break b + } + N = O >>> 2 + O = 0 + while (1) { + R = f[(P + (O << 2)) >> 2] | 0 + if (!(b[(R + 84) >> 0] | 0)) { + S = f[(R + 68) >> 2] | 0 + T = f[(S + (v << 2)) >> 2] | 0 + U = f[(S + (K << 2)) >> 2] | 0 + } else { + T = v + U = K + } + O = (O + 1) | 0 + if ((U | 0) != (T | 0)) break c + if ((O | 0) >= (N | 0)) { + V = G + M = 42 + break b + } + } + } + while (0) + G = f[G >> 2] | 0 + if (!G) { + M = 44 + break a + } + } + } else { + G = H + while (1) { + L = f[(G + 4) >> 2] | 0 + d: do + if ((L | 0) != (E | 0)) { + if (L >>> 0 < B >>> 0) X = L + else X = (L >>> 0) % (B >>> 0) | 0 + if ((X | 0) != (F | 0)) { + M = 44 + break a + } + } else { + N = f[(G + 8) >> 2] | 0 + O = f[I >> 2] | 0 + K = ((f[J >> 2] | 0) - O) | 0 + P = O + if ((K | 0) <= 0) { + Q = G + break b + } + O = K >>> 2 + K = 0 + while (1) { + S = f[(P + (K << 2)) >> 2] | 0 + if (!(b[(S + 84) >> 0] | 0)) { + R = f[(S + 68) >> 2] | 0 + Y = f[(R + (v << 2)) >> 2] | 0 + Z = f[(R + (N << 2)) >> 2] | 0 + } else { + Y = v + Z = N + } + K = (K + 1) | 0 + if ((Z | 0) != (Y | 0)) break d + if ((K | 0) >= (O | 0)) { + V = G + M = 42 + break b + } + } + } + while (0) + G = f[G >> 2] | 0 + if (!G) { + M = 44 + break a + } + } + } + while (0) + if ((M | 0) == 42) { + M = 0 + if (!V) { + M = 44 + break + } else Q = V + } + f[((f[e >> 2] | 0) + (v << 2)) >> 2] = f[(Q + 12) >> 2] + _ = t + } else M = 44 + } else M = 44 + while (0) + do + if ((M | 0) == 44) { + M = 0 + if (w) { + J = y >>> 2 + I = 0 + H = 0 + while (1) { + A = f[(z + (I << 2)) >> 2] | 0 + if (!(b[(A + 84) >> 0] | 0)) + aa = f[((f[(A + 68) >> 2] | 0) + (v << 2)) >> 2] | 0 + else aa = v + A = (aa + 239) ^ H + I = (I + 1) | 0 + if ((I | 0) >= (J | 0)) { + ba = A + break + } else H = A + } + } else ba = 0 + e: do + if (!x) { + H = (B + -1) | 0 + J = ((H & B) | 0) == 0 + if (!J) + if (ba >>> 0 < B >>> 0) ca = ba + else ca = (ba >>> 0) % (B >>> 0) | 0 + else ca = H & ba + I = f[((f[d >> 2] | 0) + (ca << 2)) >> 2] | 0 + if ((I | 0) != 0 ? ((A = f[I >> 2] | 0), (A | 0) != 0) : 0) { + I = f[s >> 2] | 0 + C = (I + 8) | 0 + G = (I + 12) | 0 + if (J) { + J = A + while (1) { + I = f[(J + 4) >> 2] | 0 + if ( + !(((I | 0) == (ba | 0)) | (((I & H) | 0) == (ca | 0))) + ) { + da = ca + M = 76 + break e + } + I = f[(J + 8) >> 2] | 0 + L = f[C >> 2] | 0 + O = ((f[G >> 2] | 0) - L) | 0 + K = L + if ((O | 0) <= 0) { + ea = v + break e + } + L = O >>> 2 + O = 0 + while (1) { + N = f[(K + (O << 2)) >> 2] | 0 + if (!(b[(N + 84) >> 0] | 0)) { + P = f[(N + 68) >> 2] | 0 + fa = f[(P + (v << 2)) >> 2] | 0 + ga = f[(P + (I << 2)) >> 2] | 0 + } else { + fa = v + ga = I + } + O = (O + 1) | 0 + if ((ga | 0) != (fa | 0)) break + if ((O | 0) >= (L | 0)) { + ea = v + break e + } + } + J = f[J >> 2] | 0 + if (!J) { + da = ca + M = 76 + break e + } + } + } else ha = A + while (1) { + J = f[(ha + 4) >> 2] | 0 + if ((J | 0) != (ba | 0)) { + if (J >>> 0 < B >>> 0) ia = J + else ia = (J >>> 0) % (B >>> 0) | 0 + if ((ia | 0) != (ca | 0)) { + da = ca + M = 76 + break e + } + } + J = f[(ha + 8) >> 2] | 0 + H = f[C >> 2] | 0 + L = ((f[G >> 2] | 0) - H) | 0 + O = H + if ((L | 0) <= 0) { + ea = v + break e + } + H = L >>> 2 + L = 0 + while (1) { + I = f[(O + (L << 2)) >> 2] | 0 + if (!(b[(I + 84) >> 0] | 0)) { + K = f[(I + 68) >> 2] | 0 + ja = f[(K + (v << 2)) >> 2] | 0 + ka = f[(K + (J << 2)) >> 2] | 0 + } else { + ja = v + ka = J + } + L = (L + 1) | 0 + if ((ka | 0) != (ja | 0)) break + if ((L | 0) >= (H | 0)) { + ea = v + break e + } + } + ha = f[ha >> 2] | 0 + if (!ha) { + da = ca + M = 76 + break + } + } + } else { + da = ca + M = 76 + } + } else { + da = 0 + M = 76 + } + while (0) + if ((M | 0) == 76) { + M = 0 + G = dn(16) | 0 + f[(G + 8) >> 2] = v + f[(G + 12) >> 2] = t + f[(G + 4) >> 2] = ba + f[G >> 2] = 0 + la = $((((f[o >> 2] | 0) + 1) | 0) >>> 0) + ma = $(B >>> 0) + na = $(n[l >> 2]) + do + if (x | ($(na * ma) < la)) { + C = + (B << 1) | + (((B >>> 0 < 3) | ((((B + -1) & B) | 0) != 0)) & 1) + A = ~~$(W($(la / na))) >>> 0 + qh(d, C >>> 0 < A >>> 0 ? A : C) + C = f[q >> 2] | 0 + A = (C + -1) | 0 + if (!(A & C)) { + oa = C + pa = A & ba + break + } + if (ba >>> 0 < C >>> 0) { + oa = C + pa = ba + } else { + oa = C + pa = (ba >>> 0) % (C >>> 0) | 0 + } + } else { + oa = B + pa = da + } + while (0) + C = ((f[d >> 2] | 0) + (pa << 2)) | 0 + A = f[C >> 2] | 0 + if (!A) { + f[G >> 2] = f[p >> 2] + f[p >> 2] = G + f[C >> 2] = p + C = f[G >> 2] | 0 + if (C | 0) { + H = f[(C + 4) >> 2] | 0 + C = (oa + -1) | 0 + if (C & oa) + if (H >>> 0 < oa >>> 0) qa = H + else qa = (H >>> 0) % (oa >>> 0) | 0 + else qa = H & C + ra = ((f[d >> 2] | 0) + (qa << 2)) | 0 + M = 89 + } + } else { + f[G >> 2] = f[A >> 2] + ra = A + M = 89 + } + if ((M | 0) == 89) { + M = 0 + f[ra >> 2] = G + } + f[o >> 2] = (f[o >> 2] | 0) + 1 + ea = f[h >> 2] | 0 + } + A = (t + 1) | 0 + f[((f[e >> 2] | 0) + (ea << 2)) >> 2] = t + C = f[k >> 2] | 0 + if ((C | 0) == (f[r >> 2] | 0)) { + Ci(g, h) + _ = A + break + } else { + f[C >> 2] = f[h >> 2] + f[k >> 2] = C + 4 + _ = A + break + } + } + while (0) + v = ((f[h >> 2] | 0) + 1) | 0 + f[h >> 2] = v + sa = f[j >> 2] | 0 + if (v >>> 0 >= sa >>> 0) break + else t = _ + } + if ((_ | 0) != (sa | 0)) { + Xa[f[((f[a >> 2] | 0) + 24) >> 2] & 15](a, e, g) + f[j >> 2] = _ + } + } + _ = f[g >> 2] | 0 + if (_ | 0) { + g = f[k >> 2] | 0 + if ((g | 0) != (_ | 0)) + f[k >> 2] = g + (~(((g + -4 - _) | 0) >>> 2) << 2) + br(_) + } + _ = f[e >> 2] | 0 + if (_ | 0) { + e = f[i >> 2] | 0 + if ((e | 0) != (_ | 0)) + f[i >> 2] = e + (~(((e + -4 - _) | 0) >>> 2) << 2) + br(_) + } + _ = f[(d + 8) >> 2] | 0 + if (_ | 0) { + e = _ + do { + _ = e + e = f[e >> 2] | 0 + br(_) + } while ((e | 0) != 0) + } + e = f[d >> 2] | 0 + f[d >> 2] = 0 + if (!e) { + u = c + return + } + br(e) + u = c + return + } + function sb(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0 + g = u + u = (u + 80) | 0 + h = (g + 76) | 0 + i = (g + 72) | 0 + j = (g + 48) | 0 + k = (g + 24) | 0 + l = g + m = (a + 32) | 0 + n = f[c >> 2] | 0 + c = (n + 1) | 0 + if ((n | 0) != -1) { + o = ((c >>> 0) % 3 | 0 | 0) == 0 ? (n + -2) | 0 : c + c = ((((n >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + n) | 0 + if ((o | 0) == -1) p = -1 + else p = f[((f[f[m >> 2] >> 2] | 0) + (o << 2)) >> 2] | 0 + if ((c | 0) == -1) { + q = p + r = -1 + } else { + q = p + r = f[((f[f[m >> 2] >> 2] | 0) + (c << 2)) >> 2] | 0 + } + } else { + q = -1 + r = -1 + } + c = f[(a + 36) >> 2] | 0 + m = f[c >> 2] | 0 + p = ((f[(c + 4) >> 2] | 0) - m) >> 2 + if (p >>> 0 <= q >>> 0) mq(c) + o = m + m = f[(o + (q << 2)) >> 2] | 0 + if (p >>> 0 <= r >>> 0) mq(c) + c = f[(o + (r << 2)) >> 2] | 0 + r = (m | 0) < (e | 0) + do + if (r & ((c | 0) < (e | 0))) { + o = m << 1 + p = f[(d + (o << 2)) >> 2] | 0 + q = (((p | 0) < 0) << 31) >> 31 + n = f[(d + ((o | 1) << 2)) >> 2] | 0 + o = (((n | 0) < 0) << 31) >> 31 + s = c << 1 + t = f[(d + (s << 2)) >> 2] | 0 + v = f[(d + ((s | 1) << 2)) >> 2] | 0 + if (!(((t | 0) != (p | 0)) | ((v | 0) != (n | 0)))) { + f[(a + 8) >> 2] = p + f[(a + 12) >> 2] = n + u = g + return 1 + } + s = (a + 4) | 0 + w = f[((f[s >> 2] | 0) + (e << 2)) >> 2] | 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + f[(j + 12) >> 2] = 0 + f[(j + 16) >> 2] = 0 + f[(j + 20) >> 2] = 0 + x = f[a >> 2] | 0 + if (!(b[(x + 84) >> 0] | 0)) + y = f[((f[(x + 68) >> 2] | 0) + (w << 2)) >> 2] | 0 + else y = w + f[i >> 2] = y + w = b[(x + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + ub(x, h, w, j) | 0 + w = f[((f[s >> 2] | 0) + (m << 2)) >> 2] | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + f[(k + 16) >> 2] = 0 + f[(k + 20) >> 2] = 0 + x = f[a >> 2] | 0 + if (!(b[(x + 84) >> 0] | 0)) + z = f[((f[(x + 68) >> 2] | 0) + (w << 2)) >> 2] | 0 + else z = w + f[i >> 2] = z + w = b[(x + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + ub(x, h, w, k) | 0 + w = f[((f[s >> 2] | 0) + (c << 2)) >> 2] | 0 + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[(l + 8) >> 2] = 0 + f[(l + 12) >> 2] = 0 + f[(l + 16) >> 2] = 0 + f[(l + 20) >> 2] = 0 + s = f[a >> 2] | 0 + if (!(b[(s + 84) >> 0] | 0)) + A = f[((f[(s + 68) >> 2] | 0) + (w << 2)) >> 2] | 0 + else A = w + f[i >> 2] = A + w = b[(s + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + ub(s, h, w, l) | 0 + w = l + s = k + x = f[s >> 2] | 0 + B = f[(s + 4) >> 2] | 0 + s = Vn(f[w >> 2] | 0, f[(w + 4) >> 2] | 0, x | 0, B | 0) | 0 + w = I + C = (l + 8) | 0 + D = (k + 8) | 0 + E = f[D >> 2] | 0 + F = f[(D + 4) >> 2] | 0 + D = Vn(f[C >> 2] | 0, f[(C + 4) >> 2] | 0, E | 0, F | 0) | 0 + C = I + G = (l + 16) | 0 + H = (k + 16) | 0 + J = f[H >> 2] | 0 + K = f[(H + 4) >> 2] | 0 + H = Vn(f[G >> 2] | 0, f[(G + 4) >> 2] | 0, J | 0, K | 0) | 0 + G = I + L = on(s | 0, w | 0, s | 0, w | 0) | 0 + M = I + N = on(D | 0, C | 0, D | 0, C | 0) | 0 + O = Tn(N | 0, I | 0, L | 0, M | 0) | 0 + M = I + L = on(H | 0, G | 0, H | 0, G | 0) | 0 + N = Tn(O | 0, M | 0, L | 0, I | 0) | 0 + L = I + if (((N | 0) == 0) & ((L | 0) == 0)) break + M = j + O = Vn(f[M >> 2] | 0, f[(M + 4) >> 2] | 0, x | 0, B | 0) | 0 + B = I + x = (j + 8) | 0 + M = Vn(f[x >> 2] | 0, f[(x + 4) >> 2] | 0, E | 0, F | 0) | 0 + F = I + E = (j + 16) | 0 + x = Vn(f[E >> 2] | 0, f[(E + 4) >> 2] | 0, J | 0, K | 0) | 0 + K = I + J = on(O | 0, B | 0, s | 0, w | 0) | 0 + E = I + P = on(M | 0, F | 0, D | 0, C | 0) | 0 + Q = Tn(P | 0, I | 0, J | 0, E | 0) | 0 + E = I + J = on(x | 0, K | 0, H | 0, G | 0) | 0 + P = Tn(Q | 0, E | 0, J | 0, I | 0) | 0 + J = I + E = Vn(t | 0, ((((t | 0) < 0) << 31) >> 31) | 0, p | 0, q | 0) | 0 + t = I + Q = Vn(v | 0, ((((v | 0) < 0) << 31) >> 31) | 0, n | 0, o | 0) | 0 + v = I + R = on(N | 0, L | 0, p | 0, q | 0) | 0 + q = I + p = on(N | 0, L | 0, n | 0, o | 0) | 0 + o = I + n = on(P | 0, J | 0, E | 0, t | 0) | 0 + S = I + T = on(P | 0, J | 0, Q | 0, v | 0) | 0 + U = I + V = Tn(n | 0, S | 0, R | 0, q | 0) | 0 + q = I + R = Tn(T | 0, U | 0, p | 0, o | 0) | 0 + o = I + p = on(P | 0, J | 0, s | 0, w | 0) | 0 + w = I + s = on(P | 0, J | 0, D | 0, C | 0) | 0 + C = I + D = on(P | 0, J | 0, H | 0, G | 0) | 0 + G = I + H = zk(p | 0, w | 0, N | 0, L | 0) | 0 + w = I + p = zk(s | 0, C | 0, N | 0, L | 0) | 0 + C = I + s = zk(D | 0, G | 0, N | 0, L | 0) | 0 + G = I + D = Vn(O | 0, B | 0, H | 0, w | 0) | 0 + w = I + H = Vn(M | 0, F | 0, p | 0, C | 0) | 0 + C = I + p = Vn(x | 0, K | 0, s | 0, G | 0) | 0 + G = I + s = on(D | 0, w | 0, D | 0, w | 0) | 0 + w = I + D = on(H | 0, C | 0, H | 0, C | 0) | 0 + C = Tn(D | 0, I | 0, s | 0, w | 0) | 0 + w = I + s = on(p | 0, G | 0, p | 0, G | 0) | 0 + G = Tn(C | 0, w | 0, s | 0, I | 0) | 0 + s = I + w = Vn(0, 0, E | 0, t | 0) | 0 + t = I + E = on(G | 0, s | 0, N | 0, L | 0) | 0 + s = I + switch (E | 0) { + case 0: { + if (!s) { + W = 0 + X = 0 + } else { + Y = 1 + Z = 0 + _ = E + $ = s + aa = 23 + } + break + } + case 1: { + if (!s) { + ba = 1 + ca = 0 + aa = 24 + } else { + Y = 1 + Z = 0 + _ = E + $ = s + aa = 23 + } + break + } + default: { + Y = 1 + Z = 0 + _ = E + $ = s + aa = 23 + } + } + if ((aa | 0) == 23) + while (1) { + aa = 0 + G = Rn(Y | 0, Z | 0, 1) | 0 + C = I + p = _ + _ = Wn(_ | 0, $ | 0, 2) | 0 + if (!(($ >>> 0 > 0) | ((($ | 0) == 0) & (p >>> 0 > 7)))) { + ba = G + ca = C + aa = 24 + break + } else { + Y = G + Z = C + $ = I + aa = 23 + } + } + if ((aa | 0) == 24) + while (1) { + aa = 0 + C = up(E | 0, s | 0, ba | 0, ca | 0) | 0 + G = Tn(C | 0, I | 0, ba | 0, ca | 0) | 0 + C = Wn(G | 0, I | 0, 1) | 0 + G = I + p = on(C | 0, G | 0, C | 0, G | 0) | 0 + D = I + if ( + (D >>> 0 > s >>> 0) | + (((D | 0) == (s | 0)) & (p >>> 0 > E >>> 0)) + ) { + ba = C + ca = G + aa = 24 + } else { + W = C + X = G + break + } + } + E = on(W | 0, X | 0, Q | 0, v | 0) | 0 + s = I + G = on(W | 0, X | 0, w | 0, t | 0) | 0 + C = I + p = Tn(E | 0, s | 0, V | 0, q | 0) | 0 + D = I + H = Tn(G | 0, C | 0, R | 0, o | 0) | 0 + K = I + x = zk(p | 0, D | 0, N | 0, L | 0) | 0 + D = I + p = zk(H | 0, K | 0, N | 0, L | 0) | 0 + K = I + H = Vn(V | 0, q | 0, E | 0, s | 0) | 0 + s = I + E = Vn(R | 0, o | 0, G | 0, C | 0) | 0 + C = I + G = zk(H | 0, s | 0, N | 0, L | 0) | 0 + s = I + H = zk(E | 0, C | 0, N | 0, L | 0) | 0 + C = I + E = e << 1 + F = f[(d + (E << 2)) >> 2] | 0 + M = (((F | 0) < 0) << 31) >> 31 + B = f[(d + ((E | 1) << 2)) >> 2] | 0 + E = (((B | 0) < 0) << 31) >> 31 + O = Vn(F | 0, M | 0, x | 0, D | 0) | 0 + J = I + P = Vn(B | 0, E | 0, p | 0, K | 0) | 0 + U = I + T = on(O | 0, J | 0, O | 0, J | 0) | 0 + J = I + O = on(P | 0, U | 0, P | 0, U | 0) | 0 + U = Tn(O | 0, I | 0, T | 0, J | 0) | 0 + J = I + T = Vn(F | 0, M | 0, G | 0, s | 0) | 0 + M = I + F = Vn(B | 0, E | 0, H | 0, C | 0) | 0 + E = I + B = on(T | 0, M | 0, T | 0, M | 0) | 0 + M = I + T = on(F | 0, E | 0, F | 0, E | 0) | 0 + E = Tn(T | 0, I | 0, B | 0, M | 0) | 0 + M = I + B = (a + 16) | 0 + T = (a + 20) | 0 + F = f[T >> 2] | 0 + O = f[(a + 24) >> 2] | 0 + P = (F | 0) == ((O << 5) | 0) + if ( + (J >>> 0 < M >>> 0) | + (((J | 0) == (M | 0)) & (U >>> 0 < E >>> 0)) + ) { + do + if (P) + if (((F + 1) | 0) < 0) mq(B) + else { + E = O << 6 + U = (F + 32) & -32 + hi( + B, + F >>> 0 < 1073741823 + ? E >>> 0 < U >>> 0 + ? U + : E + : 2147483647, + ) + da = f[T >> 2] | 0 + break + } + else da = F + while (0) + f[T >> 2] = da + 1 + L = ((f[B >> 2] | 0) + ((da >>> 5) << 2)) | 0 + f[L >> 2] = f[L >> 2] | (1 << (da & 31)) + ea = x + fa = p + ga = K + ha = D + } else { + do + if (P) + if (((F + 1) | 0) < 0) mq(B) + else { + L = O << 6 + N = (F + 32) & -32 + hi( + B, + F >>> 0 < 1073741823 + ? L >>> 0 < N >>> 0 + ? N + : L + : 2147483647, + ) + ia = f[T >> 2] | 0 + break + } + else ia = F + while (0) + f[T >> 2] = ia + 1 + F = ((f[B >> 2] | 0) + ((ia >>> 5) << 2)) | 0 + f[F >> 2] = f[F >> 2] & ~(1 << (ia & 31)) + ea = G + fa = H + ga = C + ha = s + } + f[(a + 8) >> 2] = ea + f[(a + 12) >> 2] = fa + u = g + return 1 + } + while (0) + do + if (r) ja = m << 1 + else { + if ((e | 0) > 0) { + ja = ((e << 1) + -2) | 0 + break + } + fa = (a + 8) | 0 + f[fa >> 2] = 0 + f[(fa + 4) >> 2] = 0 + u = g + return 1 + } + while (0) + f[(a + 8) >> 2] = f[(d + (ja << 2)) >> 2] + f[(a + 12) >> 2] = f[(d + ((ja + 1) << 2)) >> 2] + u = g + return 1 + } + function tb(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0 + g = u + u = (u + 80) | 0 + h = (g + 76) | 0 + i = (g + 72) | 0 + j = (g + 48) | 0 + k = (g + 24) | 0 + l = g + m = (a + 32) | 0 + n = f[c >> 2] | 0 + c = (n + 1) | 0 + do + if ((n | 0) != -1) { + o = ((c >>> 0) % 3 | 0 | 0) == 0 ? (n + -2) | 0 : c + if (!((n >>> 0) % 3 | 0)) { + p = (n + 2) | 0 + q = o + break + } else { + p = (n + -1) | 0 + q = o + break + } + } else { + p = -1 + q = -1 + } + while (0) + n = f[((f[m >> 2] | 0) + 28) >> 2] | 0 + m = f[(n + (q << 2)) >> 2] | 0 + q = f[(n + (p << 2)) >> 2] | 0 + p = f[(a + 36) >> 2] | 0 + n = f[p >> 2] | 0 + c = ((f[(p + 4) >> 2] | 0) - n) >> 2 + if (c >>> 0 <= m >>> 0) mq(p) + o = n + n = f[(o + (m << 2)) >> 2] | 0 + if (c >>> 0 <= q >>> 0) mq(p) + p = f[(o + (q << 2)) >> 2] | 0 + q = (n | 0) < (e | 0) + do + if (q & ((p | 0) < (e | 0))) { + o = n << 1 + c = f[(d + (o << 2)) >> 2] | 0 + m = (((c | 0) < 0) << 31) >> 31 + r = f[(d + ((o | 1) << 2)) >> 2] | 0 + o = (((r | 0) < 0) << 31) >> 31 + s = p << 1 + t = f[(d + (s << 2)) >> 2] | 0 + v = f[(d + ((s | 1) << 2)) >> 2] | 0 + if (!(((t | 0) != (c | 0)) | ((v | 0) != (r | 0)))) { + f[(a + 8) >> 2] = c + f[(a + 12) >> 2] = r + u = g + return 1 + } + s = (a + 4) | 0 + w = f[((f[s >> 2] | 0) + (e << 2)) >> 2] | 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + f[(j + 12) >> 2] = 0 + f[(j + 16) >> 2] = 0 + f[(j + 20) >> 2] = 0 + x = f[a >> 2] | 0 + if (!(b[(x + 84) >> 0] | 0)) + y = f[((f[(x + 68) >> 2] | 0) + (w << 2)) >> 2] | 0 + else y = w + f[i >> 2] = y + w = b[(x + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + ub(x, h, w, j) | 0 + w = f[((f[s >> 2] | 0) + (n << 2)) >> 2] | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + f[(k + 16) >> 2] = 0 + f[(k + 20) >> 2] = 0 + x = f[a >> 2] | 0 + if (!(b[(x + 84) >> 0] | 0)) + z = f[((f[(x + 68) >> 2] | 0) + (w << 2)) >> 2] | 0 + else z = w + f[i >> 2] = z + w = b[(x + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + ub(x, h, w, k) | 0 + w = f[((f[s >> 2] | 0) + (p << 2)) >> 2] | 0 + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[(l + 8) >> 2] = 0 + f[(l + 12) >> 2] = 0 + f[(l + 16) >> 2] = 0 + f[(l + 20) >> 2] = 0 + s = f[a >> 2] | 0 + if (!(b[(s + 84) >> 0] | 0)) + A = f[((f[(s + 68) >> 2] | 0) + (w << 2)) >> 2] | 0 + else A = w + f[i >> 2] = A + w = b[(s + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + ub(s, h, w, l) | 0 + w = l + s = k + x = f[s >> 2] | 0 + B = f[(s + 4) >> 2] | 0 + s = Vn(f[w >> 2] | 0, f[(w + 4) >> 2] | 0, x | 0, B | 0) | 0 + w = I + C = (l + 8) | 0 + D = (k + 8) | 0 + E = f[D >> 2] | 0 + F = f[(D + 4) >> 2] | 0 + D = Vn(f[C >> 2] | 0, f[(C + 4) >> 2] | 0, E | 0, F | 0) | 0 + C = I + G = (l + 16) | 0 + H = (k + 16) | 0 + J = f[H >> 2] | 0 + K = f[(H + 4) >> 2] | 0 + H = Vn(f[G >> 2] | 0, f[(G + 4) >> 2] | 0, J | 0, K | 0) | 0 + G = I + L = on(s | 0, w | 0, s | 0, w | 0) | 0 + M = I + N = on(D | 0, C | 0, D | 0, C | 0) | 0 + O = Tn(N | 0, I | 0, L | 0, M | 0) | 0 + M = I + L = on(H | 0, G | 0, H | 0, G | 0) | 0 + N = Tn(O | 0, M | 0, L | 0, I | 0) | 0 + L = I + if (((N | 0) == 0) & ((L | 0) == 0)) break + M = j + O = Vn(f[M >> 2] | 0, f[(M + 4) >> 2] | 0, x | 0, B | 0) | 0 + B = I + x = (j + 8) | 0 + M = Vn(f[x >> 2] | 0, f[(x + 4) >> 2] | 0, E | 0, F | 0) | 0 + F = I + E = (j + 16) | 0 + x = Vn(f[E >> 2] | 0, f[(E + 4) >> 2] | 0, J | 0, K | 0) | 0 + K = I + J = on(O | 0, B | 0, s | 0, w | 0) | 0 + E = I + P = on(M | 0, F | 0, D | 0, C | 0) | 0 + Q = Tn(P | 0, I | 0, J | 0, E | 0) | 0 + E = I + J = on(x | 0, K | 0, H | 0, G | 0) | 0 + P = Tn(Q | 0, E | 0, J | 0, I | 0) | 0 + J = I + E = Vn(t | 0, ((((t | 0) < 0) << 31) >> 31) | 0, c | 0, m | 0) | 0 + t = I + Q = Vn(v | 0, ((((v | 0) < 0) << 31) >> 31) | 0, r | 0, o | 0) | 0 + v = I + R = on(N | 0, L | 0, c | 0, m | 0) | 0 + m = I + c = on(N | 0, L | 0, r | 0, o | 0) | 0 + o = I + r = on(P | 0, J | 0, E | 0, t | 0) | 0 + S = I + T = on(P | 0, J | 0, Q | 0, v | 0) | 0 + U = I + V = Tn(r | 0, S | 0, R | 0, m | 0) | 0 + m = I + R = Tn(T | 0, U | 0, c | 0, o | 0) | 0 + o = I + c = on(P | 0, J | 0, s | 0, w | 0) | 0 + w = I + s = on(P | 0, J | 0, D | 0, C | 0) | 0 + C = I + D = on(P | 0, J | 0, H | 0, G | 0) | 0 + G = I + H = zk(c | 0, w | 0, N | 0, L | 0) | 0 + w = I + c = zk(s | 0, C | 0, N | 0, L | 0) | 0 + C = I + s = zk(D | 0, G | 0, N | 0, L | 0) | 0 + G = I + D = Vn(O | 0, B | 0, H | 0, w | 0) | 0 + w = I + H = Vn(M | 0, F | 0, c | 0, C | 0) | 0 + C = I + c = Vn(x | 0, K | 0, s | 0, G | 0) | 0 + G = I + s = on(D | 0, w | 0, D | 0, w | 0) | 0 + w = I + D = on(H | 0, C | 0, H | 0, C | 0) | 0 + C = Tn(D | 0, I | 0, s | 0, w | 0) | 0 + w = I + s = on(c | 0, G | 0, c | 0, G | 0) | 0 + G = Tn(C | 0, w | 0, s | 0, I | 0) | 0 + s = I + w = Vn(0, 0, E | 0, t | 0) | 0 + t = I + E = on(G | 0, s | 0, N | 0, L | 0) | 0 + s = I + switch (E | 0) { + case 0: { + if (!s) { + W = 0 + X = 0 + } else { + Y = 1 + Z = 0 + _ = E + $ = s + aa = 22 + } + break + } + case 1: { + if (!s) { + ba = 1 + ca = 0 + aa = 23 + } else { + Y = 1 + Z = 0 + _ = E + $ = s + aa = 22 + } + break + } + default: { + Y = 1 + Z = 0 + _ = E + $ = s + aa = 22 + } + } + if ((aa | 0) == 22) + while (1) { + aa = 0 + G = Rn(Y | 0, Z | 0, 1) | 0 + C = I + c = _ + _ = Wn(_ | 0, $ | 0, 2) | 0 + if (!(($ >>> 0 > 0) | ((($ | 0) == 0) & (c >>> 0 > 7)))) { + ba = G + ca = C + aa = 23 + break + } else { + Y = G + Z = C + $ = I + aa = 22 + } + } + if ((aa | 0) == 23) + while (1) { + aa = 0 + C = up(E | 0, s | 0, ba | 0, ca | 0) | 0 + G = Tn(C | 0, I | 0, ba | 0, ca | 0) | 0 + C = Wn(G | 0, I | 0, 1) | 0 + G = I + c = on(C | 0, G | 0, C | 0, G | 0) | 0 + D = I + if ( + (D >>> 0 > s >>> 0) | + (((D | 0) == (s | 0)) & (c >>> 0 > E >>> 0)) + ) { + ba = C + ca = G + aa = 23 + } else { + W = C + X = G + break + } + } + E = on(W | 0, X | 0, Q | 0, v | 0) | 0 + s = I + G = on(W | 0, X | 0, w | 0, t | 0) | 0 + C = I + c = Tn(E | 0, s | 0, V | 0, m | 0) | 0 + D = I + H = Tn(G | 0, C | 0, R | 0, o | 0) | 0 + K = I + x = zk(c | 0, D | 0, N | 0, L | 0) | 0 + D = I + c = zk(H | 0, K | 0, N | 0, L | 0) | 0 + K = I + H = Vn(V | 0, m | 0, E | 0, s | 0) | 0 + s = I + E = Vn(R | 0, o | 0, G | 0, C | 0) | 0 + C = I + G = zk(H | 0, s | 0, N | 0, L | 0) | 0 + s = I + H = zk(E | 0, C | 0, N | 0, L | 0) | 0 + C = I + E = e << 1 + F = f[(d + (E << 2)) >> 2] | 0 + M = (((F | 0) < 0) << 31) >> 31 + B = f[(d + ((E | 1) << 2)) >> 2] | 0 + E = (((B | 0) < 0) << 31) >> 31 + O = Vn(F | 0, M | 0, x | 0, D | 0) | 0 + J = I + P = Vn(B | 0, E | 0, c | 0, K | 0) | 0 + U = I + T = on(O | 0, J | 0, O | 0, J | 0) | 0 + J = I + O = on(P | 0, U | 0, P | 0, U | 0) | 0 + U = Tn(O | 0, I | 0, T | 0, J | 0) | 0 + J = I + T = Vn(F | 0, M | 0, G | 0, s | 0) | 0 + M = I + F = Vn(B | 0, E | 0, H | 0, C | 0) | 0 + E = I + B = on(T | 0, M | 0, T | 0, M | 0) | 0 + M = I + T = on(F | 0, E | 0, F | 0, E | 0) | 0 + E = Tn(T | 0, I | 0, B | 0, M | 0) | 0 + M = I + B = (a + 16) | 0 + T = (a + 20) | 0 + F = f[T >> 2] | 0 + O = f[(a + 24) >> 2] | 0 + P = (F | 0) == ((O << 5) | 0) + if ( + (J >>> 0 < M >>> 0) | + (((J | 0) == (M | 0)) & (U >>> 0 < E >>> 0)) + ) { + do + if (P) + if (((F + 1) | 0) < 0) mq(B) + else { + E = O << 6 + U = (F + 32) & -32 + hi( + B, + F >>> 0 < 1073741823 + ? E >>> 0 < U >>> 0 + ? U + : E + : 2147483647, + ) + da = f[T >> 2] | 0 + break + } + else da = F + while (0) + f[T >> 2] = da + 1 + L = ((f[B >> 2] | 0) + ((da >>> 5) << 2)) | 0 + f[L >> 2] = f[L >> 2] | (1 << (da & 31)) + ea = x + fa = c + ga = K + ha = D + } else { + do + if (P) + if (((F + 1) | 0) < 0) mq(B) + else { + L = O << 6 + N = (F + 32) & -32 + hi( + B, + F >>> 0 < 1073741823 + ? L >>> 0 < N >>> 0 + ? N + : L + : 2147483647, + ) + ia = f[T >> 2] | 0 + break + } + else ia = F + while (0) + f[T >> 2] = ia + 1 + F = ((f[B >> 2] | 0) + ((ia >>> 5) << 2)) | 0 + f[F >> 2] = f[F >> 2] & ~(1 << (ia & 31)) + ea = G + fa = H + ga = C + ha = s + } + f[(a + 8) >> 2] = ea + f[(a + 12) >> 2] = fa + u = g + return 1 + } + while (0) + do + if (q) ja = n << 1 + else { + if ((e | 0) > 0) { + ja = ((e << 1) + -2) | 0 + break + } + fa = (a + 8) | 0 + f[fa >> 2] = 0 + f[(fa + 4) >> 2] = 0 + u = g + return 1 + } + while (0) + f[(a + 8) >> 2] = f[(d + (ja << 2)) >> 2] + f[(a + 12) >> 2] = f[(d + ((ja + 1) << 2)) >> 2] + u = g + return 1 + } + function ub(a, c, e, g) { + a = a | 0 + c = c | 0 + e = e | 0 + g = g | 0 + var i = 0, + k = 0, + l = 0, + m = 0, + o = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = Oa, + D = 0, + E = 0.0, + F = 0, + G = 0 + if (!g) { + i = 0 + return i | 0 + } + do + switch (f[(a + 28) >> 2] | 0) { + case 1: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + q = on(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + r = Tn(q | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (m + r) | 0 + r = 0 + while (1) { + m = b[o >> 0] | 0 + q = (g + (r << 3)) | 0 + f[q >> 2] = m + f[(q + 4) >> 2] = (((m | 0) < 0) << 31) >> 31 + r = (r + 1) | 0 + m = b[k >> 0] | 0 + if ( + (r | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + s = m + break + } else o = (o + 1) | 0 + } + } else s = l + o = (s << 24) >> 24 + if ((s << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (o << 3)) | 0, 0, ((((e << 24) >> 24) - o) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 2: { + o = (a + 24) | 0 + r = b[o >> 0] | 0 + if ((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + q = on(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + t = Tn(q | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (k + t) | 0 + t = 0 + while (1) { + k = (g + (t << 3)) | 0 + f[k >> 2] = h[m >> 0] + f[(k + 4) >> 2] = 0 + t = (t + 1) | 0 + k = b[o >> 0] | 0 + if ( + (t | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24) | + 0) + ) { + u = k + break + } else m = (m + 1) | 0 + } + } else u = r + m = (u << 24) >> 24 + if ((u << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (m << 3)) | 0, 0, ((((e << 24) >> 24) - m) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 3: { + m = (a + 24) | 0 + t = b[m >> 0] | 0 + if ((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + l = (a + 40) | 0 + k = on(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + l = (a + 48) | 0 + q = Tn(k | 0, I | 0, f[l >> 2] | 0, f[(l + 4) >> 2] | 0) | 0 + l = (o + q) | 0 + q = 0 + while (1) { + o = d[l >> 1] | 0 + k = (g + (q << 3)) | 0 + f[k >> 2] = o + f[(k + 4) >> 2] = (((o | 0) < 0) << 31) >> 31 + q = (q + 1) | 0 + o = b[m >> 0] | 0 + if ( + (q | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + v = o + break + } else l = (l + 2) | 0 + } + } else v = t + l = (v << 24) >> 24 + if ((v << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (l << 3)) | 0, 0, ((((e << 24) >> 24) - l) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 4: { + l = (a + 24) | 0 + q = b[l >> 0] | 0 + if ((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + r = (a + 40) | 0 + o = on(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + r = (a + 48) | 0 + k = Tn(o | 0, I | 0, f[r >> 2] | 0, f[(r + 4) >> 2] | 0) | 0 + r = (m + k) | 0 + k = 0 + while (1) { + m = (g + (k << 3)) | 0 + f[m >> 2] = j[r >> 1] + f[(m + 4) >> 2] = 0 + k = (k + 1) | 0 + m = b[l >> 0] | 0 + if ( + (k | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + w = m + break + } else r = (r + 2) | 0 + } + } else w = q + r = (w << 24) >> 24 + if ((w << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (r << 3)) | 0, 0, ((((e << 24) >> 24) - r) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 5: { + r = (a + 24) | 0 + k = b[r >> 0] | 0 + if ((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24 > 0) { + l = f[f[a >> 2] >> 2] | 0 + t = (a + 40) | 0 + m = on(f[t >> 2] | 0, f[(t + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + t = (a + 48) | 0 + o = Tn(m | 0, I | 0, f[t >> 2] | 0, f[(t + 4) >> 2] | 0) | 0 + t = (l + o) | 0 + o = 0 + while (1) { + l = f[t >> 2] | 0 + m = (g + (o << 3)) | 0 + f[m >> 2] = l + f[(m + 4) >> 2] = (((l | 0) < 0) << 31) >> 31 + o = (o + 1) | 0 + l = b[r >> 0] | 0 + if ( + (o | 0) >= + (((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24) | + 0) + ) { + x = l + break + } else t = (t + 4) | 0 + } + } else x = k + t = (x << 24) >> 24 + if ((x << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (t << 3)) | 0, 0, ((((e << 24) >> 24) - t) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 6: { + t = (a + 24) | 0 + o = b[t >> 0] | 0 + if ((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24 > 0) { + r = f[f[a >> 2] >> 2] | 0 + q = (a + 40) | 0 + l = on(f[q >> 2] | 0, f[(q + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + q = (a + 48) | 0 + m = Tn(l | 0, I | 0, f[q >> 2] | 0, f[(q + 4) >> 2] | 0) | 0 + q = (r + m) | 0 + m = 0 + while (1) { + r = (g + (m << 3)) | 0 + f[r >> 2] = f[q >> 2] + f[(r + 4) >> 2] = 0 + m = (m + 1) | 0 + r = b[t >> 0] | 0 + if ( + (m | 0) >= + (((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24) | + 0) + ) { + y = r + break + } else q = (q + 4) | 0 + } + } else y = o + q = (y << 24) >> 24 + if ((y << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (q << 3)) | 0, 0, ((((e << 24) >> 24) - q) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 7: { + q = (a + 24) | 0 + m = b[q >> 0] | 0 + if ((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24 > 0) { + t = f[f[a >> 2] >> 2] | 0 + k = (a + 40) | 0 + r = on(f[k >> 2] | 0, f[(k + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + k = (a + 48) | 0 + l = Tn(r | 0, I | 0, f[k >> 2] | 0, f[(k + 4) >> 2] | 0) | 0 + k = (t + l) | 0 + l = 0 + while (1) { + t = k + r = f[(t + 4) >> 2] | 0 + z = (g + (l << 3)) | 0 + f[z >> 2] = f[t >> 2] + f[(z + 4) >> 2] = r + l = (l + 1) | 0 + r = b[q >> 0] | 0 + if ( + (l | 0) >= + (((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24) | + 0) + ) { + A = r + break + } else k = (k + 8) | 0 + } + } else A = m + k = (A << 24) >> 24 + if ((A << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (k << 3)) | 0, 0, ((((e << 24) >> 24) - k) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 8: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + q = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + r = on(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + z = Tn(r | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (q + z) | 0 + z = 0 + while (1) { + q = o + r = f[(q + 4) >> 2] | 0 + t = (g + (z << 3)) | 0 + f[t >> 2] = f[q >> 2] + f[(t + 4) >> 2] = r + z = (z + 1) | 0 + r = b[k >> 0] | 0 + if ( + (z | 0) >= + (((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24) | + 0) + ) { + B = r + break + } else o = (o + 8) | 0 + } + } else B = l + o = (B << 24) >> 24 + if ((B << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (o << 3)) | 0, 0, ((((e << 24) >> 24) - o) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 9: { + o = (a + 24) | 0 + z = b[o >> 0] | 0 + if ((((z << 24) >> 24 > (e << 24) >> 24 ? e : z) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + r = on(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + t = Tn(r | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (k + t) | 0 + t = 0 + while (1) { + C = $(n[m >> 2]) + k = + +K(+C) >= 1.0 + ? +C > 0.0 + ? ~~+Y(+J(+C / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((+C - +(~~+C >>> 0)) / 4294967296.0) >>> 0 + : 0 + r = (g + (t << 3)) | 0 + f[r >> 2] = ~~+C >>> 0 + f[(r + 4) >> 2] = k + t = (t + 1) | 0 + k = b[o >> 0] | 0 + if ( + (t | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24) | + 0) + ) { + D = k + break + } else m = (m + 4) | 0 + } + } else D = z + m = (D << 24) >> 24 + if ((D << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (m << 3)) | 0, 0, ((((e << 24) >> 24) - m) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 10: { + m = (a + 24) | 0 + t = b[m >> 0] | 0 + if ((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + l = (a + 40) | 0 + k = on(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + l = (a + 48) | 0 + r = Tn(k | 0, I | 0, f[l >> 2] | 0, f[(l + 4) >> 2] | 0) | 0 + l = (o + r) | 0 + r = 0 + while (1) { + E = +p[l >> 3] + o = + +K(E) >= 1.0 + ? E > 0.0 + ? ~~+Y(+J(E / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((E - +(~~E >>> 0)) / 4294967296.0) >>> 0 + : 0 + k = (g + (r << 3)) | 0 + f[k >> 2] = ~~E >>> 0 + f[(k + 4) >> 2] = o + r = (r + 1) | 0 + o = b[m >> 0] | 0 + if ( + (r | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + F = o + break + } else l = (l + 8) | 0 + } + } else F = t + l = (F << 24) >> 24 + if ((F << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (l << 3)) | 0, 0, ((((e << 24) >> 24) - l) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 11: { + l = (a + 24) | 0 + r = b[l >> 0] | 0 + if ((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + z = (a + 40) | 0 + o = on(f[z >> 2] | 0, f[(z + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + z = (a + 48) | 0 + k = Tn(o | 0, I | 0, f[z >> 2] | 0, f[(z + 4) >> 2] | 0) | 0 + z = (m + k) | 0 + k = 0 + while (1) { + m = (g + (k << 3)) | 0 + f[m >> 2] = h[z >> 0] + f[(m + 4) >> 2] = 0 + k = (k + 1) | 0 + m = b[l >> 0] | 0 + if ( + (k | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + G = m + break + } else z = (z + 1) | 0 + } + } else G = r + z = (G << 24) >> 24 + if ((G << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (z << 3)) | 0, 0, ((((e << 24) >> 24) - z) << 3) | 0) | 0 + i = 1 + return i | 0 + } + default: { + i = 0 + return i | 0 + } + } + while (0) + return 0 + } + function vb(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = c + if ((f[(a + 92) >> 2] | 0) == (f[(a + 88) >> 2] | 0)) { + u = c + return 1 + } + g = (a + 52) | 0 + h = f[g >> 2] | 0 + if ((h | 0) == (f[(a + 56) >> 2] | 0)) { + Ci((a + 48) | 0, b) + i = b + } else { + f[h >> 2] = f[b >> 2] + f[g >> 2] = h + 4 + i = b + } + b = (a + 84) | 0 + f[b >> 2] = 0 + h = (a + 4) | 0 + g = f[h >> 2] | 0 + j = f[i >> 2] | 0 + k = (j + 1) | 0 + if ((j | 0) != -1) { + l = ((k >>> 0) % 3 | 0 | 0) == 0 ? (j + -2) | 0 : k + if ((l | 0) == -1) m = -1 + else m = f[((f[g >> 2] | 0) + (l << 2)) >> 2] | 0 + l = ((((j >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + j) | 0 + if ((l | 0) == -1) { + n = m + o = -1 + } else { + n = m + o = f[((f[g >> 2] | 0) + (l << 2)) >> 2] | 0 + } + } else { + n = -1 + o = -1 + } + l = (a + 36) | 0 + g = f[l >> 2] | 0 + m = (g + ((n >>> 5) << 2)) | 0 + j = 1 << (n & 31) + k = f[m >> 2] | 0 + if (!(k & j)) { + f[m >> 2] = k | j + j = f[i >> 2] | 0 + k = (j + 1) | 0 + if ((j | 0) == -1) p = -1 + else p = ((k >>> 0) % 3 | 0 | 0) == 0 ? (j + -2) | 0 : k + f[e >> 2] = p + k = + f[ + ((f[((f[(a + 16) >> 2] | 0) + 96) >> 2] | 0) + + (((((p >>> 0) / 3) | 0) * 12) | 0) + + (((p >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + p = f[(a + 20) >> 2] | 0 + f[d >> 2] = k + j = f[(p + 4) >> 2] | 0 + p = (j + 4) | 0 + m = f[p >> 2] | 0 + if ((m | 0) == (f[(j + 8) >> 2] | 0)) Ci(j, d) + else { + f[m >> 2] = k + f[p >> 2] = m + 4 + } + m = (a + 12) | 0 + p = f[m >> 2] | 0 + k = (p + 4) | 0 + j = f[k >> 2] | 0 + if ((j | 0) == (f[(p + 8) >> 2] | 0)) { + Ci(p, e) + q = f[m >> 2] | 0 + } else { + f[j >> 2] = f[e >> 2] + f[k >> 2] = j + 4 + q = p + } + p = (q + 24) | 0 + f[((f[(q + 12) >> 2] | 0) + (n << 2)) >> 2] = f[p >> 2] + f[p >> 2] = (f[p >> 2] | 0) + 1 + r = f[l >> 2] | 0 + } else r = g + g = (r + ((o >>> 5) << 2)) | 0 + r = 1 << (o & 31) + p = f[g >> 2] | 0 + if (!(p & r)) { + f[g >> 2] = p | r + r = f[i >> 2] | 0 + do + if ((r | 0) != -1) + if (!((r >>> 0) % 3 | 0)) { + s = (r + 2) | 0 + break + } else { + s = (r + -1) | 0 + break + } + else s = -1 + while (0) + f[e >> 2] = s + r = + f[ + ((f[((f[(a + 16) >> 2] | 0) + 96) >> 2] | 0) + + (((((s >>> 0) / 3) | 0) * 12) | 0) + + (((s >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + s = f[(a + 20) >> 2] | 0 + f[d >> 2] = r + p = f[(s + 4) >> 2] | 0 + s = (p + 4) | 0 + g = f[s >> 2] | 0 + if ((g | 0) == (f[(p + 8) >> 2] | 0)) Ci(p, d) + else { + f[g >> 2] = r + f[s >> 2] = g + 4 + } + g = (a + 12) | 0 + s = f[g >> 2] | 0 + r = (s + 4) | 0 + p = f[r >> 2] | 0 + if ((p | 0) == (f[(s + 8) >> 2] | 0)) { + Ci(s, e) + t = f[g >> 2] | 0 + } else { + f[p >> 2] = f[e >> 2] + f[r >> 2] = p + 4 + t = s + } + s = (t + 24) | 0 + f[((f[(t + 12) >> 2] | 0) + (o << 2)) >> 2] = f[s >> 2] + f[s >> 2] = (f[s >> 2] | 0) + 1 + } + s = f[i >> 2] | 0 + if ((s | 0) == -1) v = -1 + else v = f[((f[f[h >> 2] >> 2] | 0) + (s << 2)) >> 2] | 0 + s = ((f[l >> 2] | 0) + ((v >>> 5) << 2)) | 0 + o = 1 << (v & 31) + t = f[s >> 2] | 0 + if (!(o & t)) { + f[s >> 2] = t | o + o = f[i >> 2] | 0 + f[e >> 2] = o + t = + f[ + ((f[((f[(a + 16) >> 2] | 0) + 96) >> 2] | 0) + + (((((o >>> 0) / 3) | 0) * 12) | 0) + + (((o >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + o = f[(a + 20) >> 2] | 0 + f[d >> 2] = t + s = f[(o + 4) >> 2] | 0 + o = (s + 4) | 0 + p = f[o >> 2] | 0 + if ((p | 0) == (f[(s + 8) >> 2] | 0)) Ci(s, d) + else { + f[p >> 2] = t + f[o >> 2] = p + 4 + } + p = (a + 12) | 0 + o = f[p >> 2] | 0 + t = (o + 4) | 0 + s = f[t >> 2] | 0 + if ((s | 0) == (f[(o + 8) >> 2] | 0)) { + Ci(o, e) + w = f[p >> 2] | 0 + } else { + f[s >> 2] = f[e >> 2] + f[t >> 2] = s + 4 + w = o + } + o = (w + 24) | 0 + f[((f[(w + 12) >> 2] | 0) + (v << 2)) >> 2] = f[o >> 2] + f[o >> 2] = (f[o >> 2] | 0) + 1 + } + o = f[b >> 2] | 0 + a: do + if ((o | 0) < 3) { + v = (a + 24) | 0 + w = (a + 16) | 0 + s = (a + 20) | 0 + t = (a + 12) | 0 + p = (a + 88) | 0 + r = o + while (1) { + g = r + while (1) { + x = (a + 48 + ((g * 12) | 0) + 4) | 0 + y = f[x >> 2] | 0 + if ((f[(a + 48 + ((g * 12) | 0)) >> 2] | 0) != (y | 0)) break + if ((g | 0) < 2) g = (g + 1) | 0 + else break a + } + n = (y + -4) | 0 + q = f[n >> 2] | 0 + f[x >> 2] = n + f[b >> 2] = g + f[i >> 2] = q + if ((q | 0) == -1) break + n = ((q >>> 0) / 3) | 0 + j = f[v >> 2] | 0 + do + if (!(f[(j + ((n >>> 5) << 2)) >> 2] & (1 << (n & 31)))) { + k = q + m = j + b: while (1) { + z = ((k >>> 0) / 3) | 0 + A = (m + ((z >>> 5) << 2)) | 0 + f[A >> 2] = (1 << (z & 31)) | f[A >> 2] + A = f[i >> 2] | 0 + if ((A | 0) == -1) B = -1 + else B = f[((f[f[h >> 2] >> 2] | 0) + (A << 2)) >> 2] | 0 + z = ((f[l >> 2] | 0) + ((B >>> 5) << 2)) | 0 + C = 1 << (B & 31) + D = f[z >> 2] | 0 + if (!(C & D)) { + f[z >> 2] = D | C + C = f[i >> 2] | 0 + f[e >> 2] = C + D = + f[ + ((f[((f[w >> 2] | 0) + 96) >> 2] | 0) + + (((((C >>> 0) / 3) | 0) * 12) | 0) + + (((C >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + C = f[s >> 2] | 0 + f[d >> 2] = D + z = f[(C + 4) >> 2] | 0 + C = (z + 4) | 0 + E = f[C >> 2] | 0 + if ((E | 0) == (f[(z + 8) >> 2] | 0)) Ci(z, d) + else { + f[E >> 2] = D + f[C >> 2] = E + 4 + } + E = f[t >> 2] | 0 + C = (E + 4) | 0 + D = f[C >> 2] | 0 + if ((D | 0) == (f[(E + 8) >> 2] | 0)) { + Ci(E, e) + F = f[t >> 2] | 0 + } else { + f[D >> 2] = f[e >> 2] + f[C >> 2] = D + 4 + F = E + } + E = (F + 24) | 0 + f[((f[(F + 12) >> 2] | 0) + (B << 2)) >> 2] = f[E >> 2] + f[E >> 2] = (f[E >> 2] | 0) + 1 + G = f[i >> 2] | 0 + } else G = A + A = f[h >> 2] | 0 + if ((G | 0) == -1) { + H = 93 + break + } + E = (G + 1) | 0 + D = ((E >>> 0) % 3 | 0 | 0) == 0 ? (G + -2) | 0 : E + if ((D | 0) == -1) I = -1 + else I = f[((f[(A + 12) >> 2] | 0) + (D << 2)) >> 2] | 0 + D = ((((G >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + G) | 0 + if ((D | 0) == -1) J = -1 + else J = f[((f[(A + 12) >> 2] | 0) + (D << 2)) >> 2] | 0 + D = (I | 0) == -1 + E = D ? -1 : ((I >>> 0) / 3) | 0 + C = (J | 0) == -1 + z = C ? -1 : ((J >>> 0) / 3) | 0 + if (D) K = 1 + else + K = + ((f[((f[v >> 2] | 0) + ((E >>> 5) << 2)) >> 2] & + (1 << (E & 31))) | + 0) != + 0 + do + if (C) + if (K) { + H = 93 + break b + } else H = 82 + else { + if ( + (f[((f[v >> 2] | 0) + ((z >>> 5) << 2)) >> 2] & + (1 << (z & 31))) | + 0 + ) + if (K) { + H = 93 + break b + } else { + H = 82 + break + } + E = f[((f[A >> 2] | 0) + (J << 2)) >> 2] | 0 + if ( + !( + (1 << (E & 31)) & + f[((f[l >> 2] | 0) + ((E >>> 5) << 2)) >> 2] + ) + ) { + L = ((f[p >> 2] | 0) + (E << 2)) | 0 + E = f[L >> 2] | 0 + f[L >> 2] = E + 1 + M = (E | 0) > 0 ? 1 : 2 + } else M = 0 + if (K ? (M | 0) <= (f[b >> 2] | 0) : 0) { + N = J + break + } + f[d >> 2] = J + E = (a + 48 + ((M * 12) | 0) + 4) | 0 + L = f[E >> 2] | 0 + if ( + (L | 0) == + (f[(a + 48 + ((M * 12) | 0) + 8) >> 2] | 0) + ) + Ci((a + 48 + ((M * 12) | 0)) | 0, d) + else { + f[L >> 2] = J + f[E >> 2] = L + 4 + } + if ((f[b >> 2] | 0) > (M | 0)) f[b >> 2] = M + if (K) { + H = 93 + break b + } else H = 82 + } + while (0) + if ((H | 0) == 82) { + H = 0 + if (D) O = -1 + else O = f[((f[f[h >> 2] >> 2] | 0) + (I << 2)) >> 2] | 0 + if ( + !( + (1 << (O & 31)) & + f[((f[l >> 2] | 0) + ((O >>> 5) << 2)) >> 2] + ) + ) { + A = ((f[p >> 2] | 0) + (O << 2)) | 0 + z = f[A >> 2] | 0 + f[A >> 2] = z + 1 + P = (z | 0) > 0 ? 1 : 2 + } else P = 0 + if ((P | 0) > (f[b >> 2] | 0)) break + else N = I + } + f[i >> 2] = N + k = N + m = f[v >> 2] | 0 + } + if ((H | 0) == 93) { + H = 0 + Q = f[b >> 2] | 0 + break + } + f[d >> 2] = I + m = (a + 48 + ((P * 12) | 0) + 4) | 0 + k = f[m >> 2] | 0 + if ((k | 0) == (f[(a + 48 + ((P * 12) | 0) + 8) >> 2] | 0)) + Ci((a + 48 + ((P * 12) | 0)) | 0, d) + else { + f[k >> 2] = I + f[m >> 2] = k + 4 + } + k = f[b >> 2] | 0 + if ((k | 0) > (P | 0)) { + f[b >> 2] = P + R = P + } else R = k + Q = R + } else Q = g + while (0) + if ((Q | 0) < 3) r = Q + else break a + } + u = c + return 1 + } + while (0) + f[i >> 2] = -1 + u = c + return 1 + } + function wb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + wb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + wb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function xb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + xb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + xb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function yb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + yb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + yb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function zb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + zb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + zb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Ab(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Ab(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Ab((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Bb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Bb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Bb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Cb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Cb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Cb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Db(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Db(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Db((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Eb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Eb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Eb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Fb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Fb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Fb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Gb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Gb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Gb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Hb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Hb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Hb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Ib(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Ib(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Ib((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Jb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Jb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Jb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Kb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Kb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Kb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Lb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Lb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Lb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Mb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Mb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Mb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Nb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = Tf(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Cg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = Qd(h, Y, c) | 0 + j = (Y + 4) | 0 + if (Qd(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Nb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Nb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) mq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) mq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Cg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + Qg(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + Tf(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + Pg(h, a, c) + return + } + case 20: { + mq(p) + break + } + case 22: { + mq(p) + break + } + case 26: { + mq(p) + break + } + case 32: { + mq(p) + break + } + case 38: { + mq(A) + break + } + case 40: { + mq(A) + break + } + case 46: { + mq(A) + break + } + case 47: { + mq(A) + break + } + case 51: { + mq(p) + break + } + case 57: { + mq(R) + break + } + case 59: { + mq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) mq(S) + else mq(S) + break + } + case 66: { + mq(S) + break + } + case 72: { + mq(Z) + break + } + case 74: { + mq(Z) + break + } + case 84: + return + } + } + function Ob(a, c, e, g) { + a = a | 0 + c = c | 0 + e = e | 0 + g = g | 0 + var i = 0, + k = 0, + l = 0, + m = 0, + o = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0 + if (!g) { + i = 0 + return i | 0 + } + do + switch (f[(a + 28) >> 2] | 0) { + case 1: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + q = on(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + r = Tn(q | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (m + r) | 0 + r = 0 + while (1) { + f[(g + (r << 2)) >> 2] = b[o >> 0] + r = (r + 1) | 0 + m = b[k >> 0] | 0 + if ( + (r | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + s = m + break + } else o = (o + 1) | 0 + } + } else s = l + o = (s << 24) >> 24 + if ((s << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (o << 2)) | 0, 0, ((((e << 24) >> 24) - o) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 2: { + o = (a + 24) | 0 + r = b[o >> 0] | 0 + if ((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + q = on(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + t = Tn(q | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (k + t) | 0 + t = 0 + while (1) { + f[(g + (t << 2)) >> 2] = h[m >> 0] + t = (t + 1) | 0 + k = b[o >> 0] | 0 + if ( + (t | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24) | + 0) + ) { + u = k + break + } else m = (m + 1) | 0 + } + } else u = r + m = (u << 24) >> 24 + if ((u << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (m << 2)) | 0, 0, ((((e << 24) >> 24) - m) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 3: { + m = (a + 24) | 0 + t = b[m >> 0] | 0 + if ((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + l = (a + 40) | 0 + k = on(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + l = (a + 48) | 0 + q = Tn(k | 0, I | 0, f[l >> 2] | 0, f[(l + 4) >> 2] | 0) | 0 + l = (o + q) | 0 + q = 0 + while (1) { + f[(g + (q << 2)) >> 2] = d[l >> 1] + q = (q + 1) | 0 + o = b[m >> 0] | 0 + if ( + (q | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + v = o + break + } else l = (l + 2) | 0 + } + } else v = t + l = (v << 24) >> 24 + if ((v << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (l << 2)) | 0, 0, ((((e << 24) >> 24) - l) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 4: { + l = (a + 24) | 0 + q = b[l >> 0] | 0 + if ((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + r = (a + 40) | 0 + o = on(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + r = (a + 48) | 0 + k = Tn(o | 0, I | 0, f[r >> 2] | 0, f[(r + 4) >> 2] | 0) | 0 + r = (m + k) | 0 + k = 0 + while (1) { + f[(g + (k << 2)) >> 2] = j[r >> 1] + k = (k + 1) | 0 + m = b[l >> 0] | 0 + if ( + (k | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + w = m + break + } else r = (r + 2) | 0 + } + } else w = q + r = (w << 24) >> 24 + if ((w << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (r << 2)) | 0, 0, ((((e << 24) >> 24) - r) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 5: { + r = (a + 24) | 0 + k = b[r >> 0] | 0 + if ((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24 > 0) { + l = f[f[a >> 2] >> 2] | 0 + t = (a + 40) | 0 + m = on(f[t >> 2] | 0, f[(t + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + t = (a + 48) | 0 + o = Tn(m | 0, I | 0, f[t >> 2] | 0, f[(t + 4) >> 2] | 0) | 0 + t = (l + o) | 0 + o = 0 + while (1) { + f[(g + (o << 2)) >> 2] = f[t >> 2] + o = (o + 1) | 0 + l = b[r >> 0] | 0 + if ( + (o | 0) >= + (((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24) | + 0) + ) { + x = l + break + } else t = (t + 4) | 0 + } + } else x = k + t = (x << 24) >> 24 + if ((x << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (t << 2)) | 0, 0, ((((e << 24) >> 24) - t) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 6: { + t = (a + 24) | 0 + o = b[t >> 0] | 0 + if ((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24 > 0) { + r = f[f[a >> 2] >> 2] | 0 + q = (a + 40) | 0 + l = on(f[q >> 2] | 0, f[(q + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + q = (a + 48) | 0 + m = Tn(l | 0, I | 0, f[q >> 2] | 0, f[(q + 4) >> 2] | 0) | 0 + q = (r + m) | 0 + m = 0 + while (1) { + f[(g + (m << 2)) >> 2] = f[q >> 2] + m = (m + 1) | 0 + r = b[t >> 0] | 0 + if ( + (m | 0) >= + (((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24) | + 0) + ) { + y = r + break + } else q = (q + 4) | 0 + } + } else y = o + q = (y << 24) >> 24 + if ((y << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (q << 2)) | 0, 0, ((((e << 24) >> 24) - q) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 7: { + q = (a + 24) | 0 + m = b[q >> 0] | 0 + if ((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24 > 0) { + t = f[f[a >> 2] >> 2] | 0 + k = (a + 40) | 0 + r = on(f[k >> 2] | 0, f[(k + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + k = (a + 48) | 0 + l = Tn(r | 0, I | 0, f[k >> 2] | 0, f[(k + 4) >> 2] | 0) | 0 + k = (t + l) | 0 + l = 0 + while (1) { + f[(g + (l << 2)) >> 2] = f[k >> 2] + l = (l + 1) | 0 + t = b[q >> 0] | 0 + if ( + (l | 0) >= + (((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24) | + 0) + ) { + z = t + break + } else k = (k + 8) | 0 + } + } else z = m + k = (z << 24) >> 24 + if ((z << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (k << 2)) | 0, 0, ((((e << 24) >> 24) - k) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 8: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + q = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + t = on(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + r = Tn(t | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (q + r) | 0 + r = 0 + while (1) { + f[(g + (r << 2)) >> 2] = f[o >> 2] + r = (r + 1) | 0 + q = b[k >> 0] | 0 + if ( + (r | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24) | + 0) + ) { + A = q + break + } else o = (o + 8) | 0 + } + } else A = l + o = (A << 24) >> 24 + if ((A << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (o << 2)) | 0, 0, ((((e << 24) >> 24) - o) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 9: { + o = (a + 24) | 0 + r = b[o >> 0] | 0 + if ((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + q = on(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + t = Tn(q | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (k + t) | 0 + t = 0 + while (1) { + k = ~~$(n[m >> 2]) >>> 0 + f[(g + (t << 2)) >> 2] = k + t = (t + 1) | 0 + k = b[o >> 0] | 0 + if ( + (t | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24) | + 0) + ) { + B = k + break + } else m = (m + 4) | 0 + } + } else B = r + m = (B << 24) >> 24 + if ((B << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (m << 2)) | 0, 0, ((((e << 24) >> 24) - m) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 10: { + m = (a + 24) | 0 + t = b[m >> 0] | 0 + if ((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + l = (a + 40) | 0 + k = on(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + l = (a + 48) | 0 + q = Tn(k | 0, I | 0, f[l >> 2] | 0, f[(l + 4) >> 2] | 0) | 0 + l = (o + q) | 0 + q = 0 + while (1) { + f[(g + (q << 2)) >> 2] = ~~+p[l >> 3] >>> 0 + q = (q + 1) | 0 + o = b[m >> 0] | 0 + if ( + (q | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + C = o + break + } else l = (l + 8) | 0 + } + } else C = t + l = (C << 24) >> 24 + if ((C << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (l << 2)) | 0, 0, ((((e << 24) >> 24) - l) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 11: { + l = (a + 24) | 0 + q = b[l >> 0] | 0 + if ((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + r = (a + 40) | 0 + o = on(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + r = (a + 48) | 0 + k = Tn(o | 0, I | 0, f[r >> 2] | 0, f[(r + 4) >> 2] | 0) | 0 + r = (m + k) | 0 + k = 0 + while (1) { + f[(g + (k << 2)) >> 2] = h[r >> 0] + k = (k + 1) | 0 + m = b[l >> 0] | 0 + if ( + (k | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + D = m + break + } else r = (r + 1) | 0 + } + } else D = q + r = (D << 24) >> 24 + if ((D << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (r << 2)) | 0, 0, ((((e << 24) >> 24) - r) << 2) | 0) | 0 + i = 1 + return i | 0 + } + default: { + i = 0 + return i | 0 + } + } + while (0) + return 0 + } + function Pb(a, c, e, g) { + a = a | 0 + c = c | 0 + e = e | 0 + g = g | 0 + var i = 0, + k = 0, + l = 0, + m = 0, + o = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0 + if (!g) { + i = 0 + return i | 0 + } + do + switch (f[(a + 28) >> 2] | 0) { + case 1: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + q = on(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + r = Tn(q | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (m + r) | 0 + r = 0 + while (1) { + f[(g + (r << 2)) >> 2] = b[o >> 0] + r = (r + 1) | 0 + m = b[k >> 0] | 0 + if ( + (r | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + s = m + break + } else o = (o + 1) | 0 + } + } else s = l + o = (s << 24) >> 24 + if ((s << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (o << 2)) | 0, 0, ((((e << 24) >> 24) - o) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 2: { + o = (a + 24) | 0 + r = b[o >> 0] | 0 + if ((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + q = on(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + t = Tn(q | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (k + t) | 0 + t = 0 + while (1) { + f[(g + (t << 2)) >> 2] = h[m >> 0] + t = (t + 1) | 0 + k = b[o >> 0] | 0 + if ( + (t | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24) | + 0) + ) { + u = k + break + } else m = (m + 1) | 0 + } + } else u = r + m = (u << 24) >> 24 + if ((u << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (m << 2)) | 0, 0, ((((e << 24) >> 24) - m) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 3: { + m = (a + 24) | 0 + t = b[m >> 0] | 0 + if ((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + l = (a + 40) | 0 + k = on(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + l = (a + 48) | 0 + q = Tn(k | 0, I | 0, f[l >> 2] | 0, f[(l + 4) >> 2] | 0) | 0 + l = (o + q) | 0 + q = 0 + while (1) { + f[(g + (q << 2)) >> 2] = d[l >> 1] + q = (q + 1) | 0 + o = b[m >> 0] | 0 + if ( + (q | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + v = o + break + } else l = (l + 2) | 0 + } + } else v = t + l = (v << 24) >> 24 + if ((v << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (l << 2)) | 0, 0, ((((e << 24) >> 24) - l) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 4: { + l = (a + 24) | 0 + q = b[l >> 0] | 0 + if ((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + r = (a + 40) | 0 + o = on(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + r = (a + 48) | 0 + k = Tn(o | 0, I | 0, f[r >> 2] | 0, f[(r + 4) >> 2] | 0) | 0 + r = (m + k) | 0 + k = 0 + while (1) { + f[(g + (k << 2)) >> 2] = j[r >> 1] + k = (k + 1) | 0 + m = b[l >> 0] | 0 + if ( + (k | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + w = m + break + } else r = (r + 2) | 0 + } + } else w = q + r = (w << 24) >> 24 + if ((w << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (r << 2)) | 0, 0, ((((e << 24) >> 24) - r) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 5: { + r = (a + 24) | 0 + k = b[r >> 0] | 0 + if ((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24 > 0) { + l = f[f[a >> 2] >> 2] | 0 + t = (a + 40) | 0 + m = on(f[t >> 2] | 0, f[(t + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + t = (a + 48) | 0 + o = Tn(m | 0, I | 0, f[t >> 2] | 0, f[(t + 4) >> 2] | 0) | 0 + t = (l + o) | 0 + o = 0 + while (1) { + f[(g + (o << 2)) >> 2] = f[t >> 2] + o = (o + 1) | 0 + l = b[r >> 0] | 0 + if ( + (o | 0) >= + (((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24) | + 0) + ) { + x = l + break + } else t = (t + 4) | 0 + } + } else x = k + t = (x << 24) >> 24 + if ((x << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (t << 2)) | 0, 0, ((((e << 24) >> 24) - t) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 6: { + t = (a + 24) | 0 + o = b[t >> 0] | 0 + if ((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24 > 0) { + r = f[f[a >> 2] >> 2] | 0 + q = (a + 40) | 0 + l = on(f[q >> 2] | 0, f[(q + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + q = (a + 48) | 0 + m = Tn(l | 0, I | 0, f[q >> 2] | 0, f[(q + 4) >> 2] | 0) | 0 + q = (r + m) | 0 + m = 0 + while (1) { + f[(g + (m << 2)) >> 2] = f[q >> 2] + m = (m + 1) | 0 + r = b[t >> 0] | 0 + if ( + (m | 0) >= + (((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24) | + 0) + ) { + y = r + break + } else q = (q + 4) | 0 + } + } else y = o + q = (y << 24) >> 24 + if ((y << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (q << 2)) | 0, 0, ((((e << 24) >> 24) - q) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 7: { + q = (a + 24) | 0 + m = b[q >> 0] | 0 + if ((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24 > 0) { + t = f[f[a >> 2] >> 2] | 0 + k = (a + 40) | 0 + r = on(f[k >> 2] | 0, f[(k + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + k = (a + 48) | 0 + l = Tn(r | 0, I | 0, f[k >> 2] | 0, f[(k + 4) >> 2] | 0) | 0 + k = (t + l) | 0 + l = 0 + while (1) { + f[(g + (l << 2)) >> 2] = f[k >> 2] + l = (l + 1) | 0 + t = b[q >> 0] | 0 + if ( + (l | 0) >= + (((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24) | + 0) + ) { + z = t + break + } else k = (k + 8) | 0 + } + } else z = m + k = (z << 24) >> 24 + if ((z << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (k << 2)) | 0, 0, ((((e << 24) >> 24) - k) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 8: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + q = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + t = on(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + r = Tn(t | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (q + r) | 0 + r = 0 + while (1) { + f[(g + (r << 2)) >> 2] = f[o >> 2] + r = (r + 1) | 0 + q = b[k >> 0] | 0 + if ( + (r | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24) | + 0) + ) { + A = q + break + } else o = (o + 8) | 0 + } + } else A = l + o = (A << 24) >> 24 + if ((A << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (o << 2)) | 0, 0, ((((e << 24) >> 24) - o) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 9: { + o = (a + 24) | 0 + r = b[o >> 0] | 0 + if ((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + q = on(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + t = Tn(q | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (k + t) | 0 + t = 0 + while (1) { + k = ~~$(n[m >> 2]) + f[(g + (t << 2)) >> 2] = k + t = (t + 1) | 0 + k = b[o >> 0] | 0 + if ( + (t | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24) | + 0) + ) { + B = k + break + } else m = (m + 4) | 0 + } + } else B = r + m = (B << 24) >> 24 + if ((B << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (m << 2)) | 0, 0, ((((e << 24) >> 24) - m) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 10: { + m = (a + 24) | 0 + t = b[m >> 0] | 0 + if ((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + l = (a + 40) | 0 + k = on(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + l = (a + 48) | 0 + q = Tn(k | 0, I | 0, f[l >> 2] | 0, f[(l + 4) >> 2] | 0) | 0 + l = (o + q) | 0 + q = 0 + while (1) { + f[(g + (q << 2)) >> 2] = ~~+p[l >> 3] + q = (q + 1) | 0 + o = b[m >> 0] | 0 + if ( + (q | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + C = o + break + } else l = (l + 8) | 0 + } + } else C = t + l = (C << 24) >> 24 + if ((C << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (l << 2)) | 0, 0, ((((e << 24) >> 24) - l) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 11: { + l = (a + 24) | 0 + q = b[l >> 0] | 0 + if ((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + r = (a + 40) | 0 + o = on(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + r = (a + 48) | 0 + k = Tn(o | 0, I | 0, f[r >> 2] | 0, f[(r + 4) >> 2] | 0) | 0 + r = (m + k) | 0 + k = 0 + while (1) { + f[(g + (k << 2)) >> 2] = h[r >> 0] + k = (k + 1) | 0 + m = b[l >> 0] | 0 + if ( + (k | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + D = m + break + } else r = (r + 1) | 0 + } + } else D = q + r = (D << 24) >> 24 + if ((D << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + hj((g + (r << 2)) | 0, 0, ((((e << 24) >> 24) - r) << 2) | 0) | 0 + i = 1 + return i | 0 + } + default: { + i = 0 + return i | 0 + } + } + while (0) + return 0 + } + function Qb(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = Oa, + J = 0, + K = 0, + L = 0, + M = 0, + N = Oa + e = u + u = (u + 48) | 0 + g = (e + 36) | 0 + h = (e + 24) | 0 + i = (e + 12) | 0 + j = e + if (!(ih(a, c, d) | 0)) { + k = 0 + u = e + return k | 0 + } + l = f[((f[((f[(c + 4) >> 2] | 0) + 8) >> 2] | 0) + (d << 2)) >> 2] | 0 + if ((f[(l + 28) >> 2] | 0) != 9) { + k = 0 + u = e + return k | 0 + } + m = (c + 48) | 0 + c = f[m >> 2] | 0 + o = dn(32) | 0 + f[g >> 2] = o + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 17 + p = o + q = 12932 + r = (p + 17) | 0 + do { + b[p >> 0] = b[q >> 0] | 0 + p = (p + 1) | 0 + q = (q + 1) | 0 + } while ((p | 0) < (r | 0)) + b[(o + 17) >> 0] = 0 + o = (c + 16) | 0 + s = f[o >> 2] | 0 + if (s) { + t = o + v = s + a: while (1) { + s = v + while (1) { + if ((f[(s + 16) >> 2] | 0) >= (d | 0)) break + w = f[(s + 4) >> 2] | 0 + if (!w) { + x = t + break a + } else s = w + } + v = f[s >> 2] | 0 + if (!v) { + x = s + break + } else t = s + } + if ( + ((x | 0) != (o | 0) ? (f[(x + 16) >> 2] | 0) <= (d | 0) : 0) + ? ((o = (x + 20) | 0), (sh(o, g) | 0) != 0) + : 0 + ) + y = yk(o, g, -1) | 0 + else z = 12 + } else z = 12 + if ((z | 0) == 12) y = yk(c, g, -1) | 0 + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + if ((y | 0) < 1) { + k = 0 + u = e + return k | 0 + } + c = f[m >> 2] | 0 + o = dn(32) | 0 + f[g >> 2] = o + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 19 + p = o + q = 13005 + r = (p + 19) | 0 + do { + b[p >> 0] = b[q >> 0] | 0 + p = (p + 1) | 0 + q = (q + 1) | 0 + } while ((p | 0) < (r | 0)) + b[(o + 19) >> 0] = 0 + o = (c + 16) | 0 + x = f[o >> 2] | 0 + if (x) { + t = o + v = x + b: while (1) { + x = v + while (1) { + if ((f[(x + 16) >> 2] | 0) >= (d | 0)) break + w = f[(x + 4) >> 2] | 0 + if (!w) { + A = t + break b + } else x = w + } + v = f[x >> 2] | 0 + if (!v) { + A = x + break + } else t = x + } + if ((A | 0) != (o | 0) ? (f[(A + 16) >> 2] | 0) <= (d | 0) : 0) + B = (A + 20) | 0 + else z = 24 + } else z = 24 + if ((z | 0) == 24) B = c + if (!(sh(B, g) | 0)) C = 0 + else { + B = f[m >> 2] | 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + c = dn(32) | 0 + f[h >> 2] = c + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 18 + p = c + q = 13025 + r = (p + 18) | 0 + do { + b[p >> 0] = b[q >> 0] | 0 + p = (p + 1) | 0 + q = (q + 1) | 0 + } while ((p | 0) < (r | 0)) + b[(c + 18) >> 0] = 0 + c = (B + 16) | 0 + A = f[c >> 2] | 0 + if (A) { + o = c + t = A + c: while (1) { + A = t + while (1) { + if ((f[(A + 16) >> 2] | 0) >= (d | 0)) break + v = f[(A + 4) >> 2] | 0 + if (!v) { + D = o + break c + } else A = v + } + t = f[A >> 2] | 0 + if (!t) { + D = A + break + } else o = A + } + if ((D | 0) != (c | 0) ? (f[(D + 16) >> 2] | 0) <= (d | 0) : 0) + E = (D + 20) | 0 + else z = 34 + } else z = 34 + if ((z | 0) == 34) E = B + B = (sh(E, h) | 0) != 0 + if ((b[(h + 11) >> 0] | 0) < 0) br(f[h >> 2] | 0) + C = B + } + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + if (!C) { + Kd((a + 40) | 0, l, y) | 0 + k = 1 + u = e + return k | 0 + } + C = (l + 24) | 0 + l = b[C >> 0] | 0 + B = (l << 24) >> 24 + f[i >> 2] = 0 + E = (i + 4) | 0 + f[E >> 2] = 0 + f[(i + 8) >> 2] = 0 + do + if ((l << 24) >> 24) + if ((l << 24) >> 24 < 0) mq(i) + else { + D = B << 2 + c = dn(D) | 0 + f[i >> 2] = c + o = (c + (B << 2)) | 0 + f[(i + 8) >> 2] = o + hj(c | 0, 0, D | 0) | 0 + f[E >> 2] = o + F = c + break + } + else F = 0 + while (0) + B = f[m >> 2] | 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + l = dn(32) | 0 + f[j >> 2] = l + f[(j + 8) >> 2] = -2147483616 + f[(j + 4) >> 2] = 19 + p = l + q = 13005 + r = (p + 19) | 0 + do { + b[p >> 0] = b[q >> 0] | 0 + p = (p + 1) | 0 + q = (q + 1) | 0 + } while ((p | 0) < (r | 0)) + b[(l + 19) >> 0] = 0 + l = b[C >> 0] | 0 + c = (l << 24) >> 24 + o = (B + 16) | 0 + D = f[o >> 2] | 0 + if (D) { + t = o + x = D + d: while (1) { + D = x + while (1) { + if ((f[(D + 16) >> 2] | 0) >= (d | 0)) break + v = f[(D + 4) >> 2] | 0 + if (!v) { + G = t + break d + } else D = v + } + x = f[D >> 2] | 0 + if (!x) { + G = D + break + } else t = D + } + if ( + ((G | 0) != (o | 0) ? (f[(G + 16) >> 2] | 0) <= (d | 0) : 0) + ? ((o = (G + 20) | 0), (sh(o, j) | 0) != 0) + : 0 + ) { + t = zg(o, j) | 0 + if ((t | 0) != ((G + 24) | 0)) { + dj(g, (t + 28) | 0) + t = (g + 11) | 0 + G = b[t >> 0] | 0 + o = (G << 24) >> 24 < 0 + if (!((o ? f[(g + 4) >> 2] | 0 : G & 255) | 0)) H = G + else { + if ((l << 24) >> 24 > 0) { + x = o ? f[g >> 2] | 0 : g + o = 0 + do { + I = $(pq(x, h)) + A = x + x = f[h >> 2] | 0 + if ((A | 0) == (x | 0)) break + n[(F + (o << 2)) >> 2] = I + o = (o + 1) | 0 + } while ((o | 0) < (c | 0)) + J = b[t >> 0] | 0 + } else J = G + H = J + } + if ((H << 24) >> 24 < 0) br(f[g >> 2] | 0) + } + } else z = 64 + } else z = 64 + if ((z | 0) == 64 ? ((H = zg(B, j) | 0), (H | 0) != ((B + 4) | 0)) : 0) { + dj(g, (H + 28) | 0) + H = (g + 11) | 0 + B = b[H >> 0] | 0 + J = (B << 24) >> 24 < 0 + if (!((J ? f[(g + 4) >> 2] | 0 : B & 255) | 0)) K = B + else { + if ((l << 24) >> 24 > 0) { + l = J ? f[g >> 2] | 0 : g + J = 0 + do { + I = $(pq(l, h)) + G = l + l = f[h >> 2] | 0 + if ((G | 0) == (l | 0)) break + n[(F + (J << 2)) >> 2] = I + J = (J + 1) | 0 + } while ((J | 0) < (c | 0)) + L = b[H >> 0] | 0 + } else L = B + K = L + } + if ((K << 24) >> 24 < 0) br(f[g >> 2] | 0) + } + if ((b[(j + 11) >> 0] | 0) < 0) br(f[j >> 2] | 0) + j = f[m >> 2] | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + m = dn(32) | 0 + f[g >> 2] = m + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 18 + p = m + q = 13025 + r = (p + 18) | 0 + do { + b[p >> 0] = b[q >> 0] | 0 + p = (p + 1) | 0 + q = (q + 1) | 0 + } while ((p | 0) < (r | 0)) + b[(m + 18) >> 0] = 0 + m = (j + 16) | 0 + q = f[m >> 2] | 0 + if (q) { + p = m + r = q + e: while (1) { + q = r + while (1) { + if ((f[(q + 16) >> 2] | 0) >= (d | 0)) break + K = f[(q + 4) >> 2] | 0 + if (!K) { + M = p + break e + } else q = K + } + r = f[q >> 2] | 0 + if (!r) { + M = q + break + } else p = q + } + if ( + ((M | 0) != (m | 0) ? (f[(M + 16) >> 2] | 0) <= (d | 0) : 0) + ? ((d = (M + 20) | 0), (sh(d, g) | 0) != 0) + : 0 + ) + N = $(kk(d, g, $(1.0))) + else z = 86 + } else z = 86 + if ((z | 0) == 86) N = $(kk(j, g, $(1.0))) + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + wl((a + 40) | 0, y, f[i >> 2] | 0, b[C >> 0] | 0, N) + C = f[i >> 2] | 0 + if (C | 0) { + i = f[E >> 2] | 0 + if ((i | 0) != (C | 0)) + f[E >> 2] = i + (~(((i + -4 - C) | 0) >>> 2) << 2) + br(C) + } + k = 1 + u = e + return k | 0 + } + function Rb(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0 + e = u + u = (u + 64) | 0 + d = (e + 48) | 0 + h = (e + 36) | 0 + i = (e + 24) | 0 + j = (e + 16) | 0 + k = (e + 8) | 0 + l = e + m = (e + 32) | 0 + n = (a + 60) | 0 + f[(a + 68) >> 2] = g + g = (a + 108) | 0 + lk(g) + o = (a + 56) | 0 + p = f[o >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - (f[p >> 2] | 0)) | 0 + r = q >> 2 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + s = i + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = j + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = k + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = l + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + if ((q | 0) <= 0) { + u = e + return 1 + } + q = (h + 4) | 0 + s = (h + 8) | 0 + t = (a + 104) | 0 + v = (i + 4) | 0 + w = (a + 100) | 0 + x = (j + 4) | 0 + y = (a + 8) | 0 + z = (a + 16) | 0 + A = (a + 32) | 0 + B = (a + 12) | 0 + C = (a + 28) | 0 + D = (a + 20) | 0 + E = (a + 24) | 0 + F = (a + 96) | 0 + a = (k + 4) | 0 + G = (l + 4) | 0 + H = f[p >> 2] | 0 + if ((f[(p + 4) >> 2] | 0) == (H | 0)) { + J = p + mq(J) + } else { + K = 0 + L = H + } + while (1) { + f[m >> 2] = f[(L + (K << 2)) >> 2] + f[d >> 2] = f[m >> 2] + fc(n, d, h) + H = f[h >> 2] | 0 + p = (H | 0) > -1 ? H : (0 - H) | 0 + M = f[q >> 2] | 0 + N = (M | 0) > -1 ? M : (0 - M) | 0 + O = + Tn( + N | 0, + ((((N | 0) < 0) << 31) >> 31) | 0, + p | 0, + ((((p | 0) < 0) << 31) >> 31) | 0, + ) | 0 + p = f[s >> 2] | 0 + N = (p | 0) > -1 + P = N ? p : (0 - p) | 0 + p = Tn(O | 0, I | 0, P | 0, ((((P | 0) < 0) << 31) >> 31) | 0) | 0 + P = I + if (((p | 0) == 0) & ((P | 0) == 0)) { + O = f[t >> 2] | 0 + Q = O + R = h + S = M + T = O + } else { + O = f[t >> 2] | 0 + U = (((O | 0) < 0) << 31) >> 31 + V = on(O | 0, U | 0, H | 0, ((((H | 0) < 0) << 31) >> 31) | 0) | 0 + H = zk(V | 0, I | 0, p | 0, P | 0) | 0 + f[h >> 2] = H + V = on(O | 0, U | 0, M | 0, ((((M | 0) < 0) << 31) >> 31) | 0) | 0 + M = zk(V | 0, I | 0, p | 0, P | 0) | 0 + f[q >> 2] = M + P = + (O - + ((H | 0) > -1 ? H : (0 - H) | 0) - + ((M | 0) > -1 ? M : (0 - M) | 0)) | + 0 + Q = N ? P : (0 - P) | 0 + R = s + S = M + T = O + } + f[R >> 2] = Q + O = f[h >> 2] | 0 + do + if ((O | 0) <= -1) { + if ((S | 0) < 0) { + M = f[s >> 2] | 0 + W = (M | 0) > -1 ? M : (0 - M) | 0 + X = M + } else { + M = f[s >> 2] | 0 + W = ((f[w >> 2] | 0) - ((M | 0) > -1 ? M : (0 - M) | 0)) | 0 + X = M + } + if ((X | 0) < 0) { + Y = (S | 0) > -1 ? S : (0 - S) | 0 + Z = W + _ = X + break + } else { + Y = ((f[w >> 2] | 0) - ((S | 0) > -1 ? S : (0 - S) | 0)) | 0 + Z = W + _ = X + break + } + } else { + M = f[s >> 2] | 0 + Y = (M + T) | 0 + Z = (T + S) | 0 + _ = M + } + while (0) + M = (Z | 0) == 0 + P = (Y | 0) == 0 + N = f[w >> 2] | 0 + do + if (Y | Z) { + H = (N | 0) == (Y | 0) + if (!(M & H)) { + p = (N | 0) == (Z | 0) + if (!(P & p)) { + if (M & ((T | 0) < (Y | 0))) { + $ = 0 + aa = ((T << 1) - Y) | 0 + break + } + if (p & ((T | 0) > (Y | 0))) { + $ = Z + aa = ((T << 1) - Y) | 0 + break + } + if (H & ((T | 0) > (Z | 0))) { + $ = ((T << 1) - Z) | 0 + aa = Y + break + } + if (P) { + $ = (T | 0) < (Z | 0) ? ((T << 1) - Z) | 0 : Z + aa = 0 + } else { + $ = Z + aa = Y + } + } else { + $ = Z + aa = Z + } + } else { + $ = Y + aa = Y + } + } else { + $ = N + aa = N + } + while (0) + f[i >> 2] = $ + f[v >> 2] = aa + P = (0 - S) | 0 + M = (0 - _) | 0 + f[h >> 2] = 0 - O + f[q >> 2] = P + f[s >> 2] = M + if ((O | 0) < 1) { + ba = (T - _) | 0 + ca = (T - S) | 0 + } else { + H = (_ | 0) < 1 ? M : _ + M = (S | 0) < 1 ? P : S + ba = (_ | 0) > 0 ? M : (N - M) | 0 + ca = (S | 0) > 0 ? H : (N - H) | 0 + } + H = (ca | 0) == 0 + M = (ba | 0) == 0 + do + if ( + ((ba | ca | 0) != 0 ? ((P = (N | 0) == (ba | 0)), !(H & P)) : 0) + ? ((p = (N | 0) == (ca | 0)), !(M & p)) + : 0 + ) { + if (H & ((T | 0) < (ba | 0))) { + da = 0 + ea = ((T << 1) - ba) | 0 + break + } + if (p & ((T | 0) > (ba | 0))) { + da = N + ea = ((T << 1) - ba) | 0 + break + } + if (P & ((T | 0) > (ca | 0))) { + da = ((T << 1) - ca) | 0 + ea = N + break + } + if (M) { + da = (T | 0) < (ca | 0) ? ((T << 1) - ca) | 0 : ca + ea = 0 + } else { + da = ca + ea = ba + } + } else { + da = N + ea = N + } + while (0) + f[j >> 2] = da + f[x >> 2] = ea + N = K << 1 + M = (b + (N << 2)) | 0 + H = f[y >> 2] | 0 + if ((H | 0) > 0) { + O = 0 + P = i + p = H + while (1) { + if ((p | 0) > 0) { + H = 0 + do { + V = f[(P + (H << 2)) >> 2] | 0 + U = f[z >> 2] | 0 + if ((V | 0) > (U | 0)) { + fa = f[A >> 2] | 0 + f[(fa + (H << 2)) >> 2] = U + ga = fa + } else { + fa = f[B >> 2] | 0 + U = f[A >> 2] | 0 + f[(U + (H << 2)) >> 2] = (V | 0) < (fa | 0) ? fa : V + ga = U + } + H = (H + 1) | 0 + U = f[y >> 2] | 0 + } while ((H | 0) < (U | 0)) + ha = ga + ia = U + } else { + ha = f[A >> 2] | 0 + ia = p + } + H = + ((f[(M + (O << 2)) >> 2] | 0) - (f[(ha + (O << 2)) >> 2] | 0)) | 0 + U = (k + (O << 2)) | 0 + f[U >> 2] = H + ja = f[C >> 2] | 0 + if ((H | 0) >= (ja | 0)) { + if ((H | 0) > (f[E >> 2] | 0)) { + ka = (H - (f[D >> 2] | 0)) | 0 + la = 52 + } + } else { + ka = ((f[D >> 2] | 0) + H) | 0 + la = 52 + } + if ((la | 0) == 52) { + la = 0 + f[U >> 2] = ka + } + O = (O + 1) | 0 + if ((O | 0) >= (ia | 0)) break + else { + P = ha + p = ia + } + } + if ((ia | 0) > 0) { + p = 0 + P = j + O = ia + U = ja + while (1) { + if ((O | 0) > 0) { + H = 0 + do { + V = f[(P + (H << 2)) >> 2] | 0 + fa = f[z >> 2] | 0 + if ((V | 0) > (fa | 0)) f[(ha + (H << 2)) >> 2] = fa + else { + fa = f[B >> 2] | 0 + f[(ha + (H << 2)) >> 2] = (V | 0) < (fa | 0) ? fa : V + } + H = (H + 1) | 0 + ma = f[y >> 2] | 0 + } while ((H | 0) < (ma | 0)) + na = f[C >> 2] | 0 + oa = ma + } else { + na = U + oa = O + } + H = + ((f[(M + (p << 2)) >> 2] | 0) - (f[(ha + (p << 2)) >> 2] | 0)) | + 0 + V = (l + (p << 2)) | 0 + f[V >> 2] = H + if ((H | 0) >= (na | 0)) { + if ((H | 0) > (f[E >> 2] | 0)) { + pa = (H - (f[D >> 2] | 0)) | 0 + la = 65 + } + } else { + pa = ((f[D >> 2] | 0) + H) | 0 + la = 65 + } + if ((la | 0) == 65) { + la = 0 + f[V >> 2] = pa + } + p = (p + 1) | 0 + if ((p | 0) >= (oa | 0)) break + else { + P = ha + O = oa + U = na + } + } + } + } + U = f[k >> 2] | 0 + O = f[t >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) qa = ((f[F >> 2] | 0) + U) | 0 + else qa = U + else qa = (U - (f[F >> 2] | 0)) | 0 + f[k >> 2] = qa + U = f[a >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) ra = ((f[F >> 2] | 0) + U) | 0 + else ra = U + else ra = (U - (f[F >> 2] | 0)) | 0 + f[a >> 2] = ra + U = f[l >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) sa = ((f[F >> 2] | 0) + U) | 0 + else sa = U + else sa = (U - (f[F >> 2] | 0)) | 0 + f[l >> 2] = sa + U = f[G >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) ta = ((f[F >> 2] | 0) + U) | 0 + else ta = U + else ta = (U - (f[F >> 2] | 0)) | 0 + f[G >> 2] = ta + if ( + ((((ra | 0) > -1 ? ra : (0 - ra) | 0) + + ((qa | 0) > -1 ? qa : (0 - qa) | 0)) | + 0) < + ((((sa | 0) > -1 ? sa : (0 - sa) | 0) + + ((ta | 0) > -1 ? ta : (0 - ta) | 0)) | + 0) + ) { + Vi(g, 0) + ua = k + } else { + Vi(g, 1) + ua = l + } + U = f[ua >> 2] | 0 + if ((U | 0) < 0) va = ((f[F >> 2] | 0) + U) | 0 + else va = U + U = (c + (N << 2)) | 0 + f[U >> 2] = va + O = f[(ua + 4) >> 2] | 0 + if ((O | 0) < 0) wa = ((f[F >> 2] | 0) + O) | 0 + else wa = O + f[(U + 4) >> 2] = wa + K = (K + 1) | 0 + if ((K | 0) >= (r | 0)) { + la = 3 + break + } + U = f[o >> 2] | 0 + L = f[U >> 2] | 0 + if ((((f[(U + 4) >> 2] | 0) - L) >> 2) >>> 0 <= K >>> 0) { + J = U + la = 4 + break + } + } + if ((la | 0) == 3) { + u = e + return 1 + } else if ((la | 0) == 4) mq(J) + return 0 + } + function Sb(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0 + e = u + u = (u + 64) | 0 + d = (e + 48) | 0 + h = (e + 36) | 0 + i = (e + 24) | 0 + j = (e + 16) | 0 + k = (e + 8) | 0 + l = e + m = (e + 32) | 0 + n = (a + 60) | 0 + f[(a + 68) >> 2] = g + g = (a + 108) | 0 + lk(g) + o = (a + 56) | 0 + p = f[o >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - (f[p >> 2] | 0)) | 0 + r = q >> 2 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + s = i + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = j + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = k + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = l + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + if ((q | 0) <= 0) { + u = e + return 1 + } + q = (h + 4) | 0 + s = (h + 8) | 0 + t = (a + 104) | 0 + v = (i + 4) | 0 + w = (a + 100) | 0 + x = (j + 4) | 0 + y = (a + 8) | 0 + z = (a + 16) | 0 + A = (a + 32) | 0 + B = (a + 12) | 0 + C = (a + 28) | 0 + D = (a + 20) | 0 + E = (a + 24) | 0 + F = (a + 96) | 0 + a = (k + 4) | 0 + G = (l + 4) | 0 + H = f[p >> 2] | 0 + if ((f[(p + 4) >> 2] | 0) == (H | 0)) { + J = p + mq(J) + } else { + K = 0 + L = H + } + while (1) { + f[m >> 2] = f[(L + (K << 2)) >> 2] + f[d >> 2] = f[m >> 2] + $b(n, d, h) + H = f[h >> 2] | 0 + p = (H | 0) > -1 ? H : (0 - H) | 0 + M = f[q >> 2] | 0 + N = (M | 0) > -1 ? M : (0 - M) | 0 + O = + Tn( + N | 0, + ((((N | 0) < 0) << 31) >> 31) | 0, + p | 0, + ((((p | 0) < 0) << 31) >> 31) | 0, + ) | 0 + p = f[s >> 2] | 0 + N = (p | 0) > -1 + P = N ? p : (0 - p) | 0 + p = Tn(O | 0, I | 0, P | 0, ((((P | 0) < 0) << 31) >> 31) | 0) | 0 + P = I + if (((p | 0) == 0) & ((P | 0) == 0)) { + O = f[t >> 2] | 0 + Q = O + R = h + S = M + T = O + } else { + O = f[t >> 2] | 0 + U = (((O | 0) < 0) << 31) >> 31 + V = on(O | 0, U | 0, H | 0, ((((H | 0) < 0) << 31) >> 31) | 0) | 0 + H = zk(V | 0, I | 0, p | 0, P | 0) | 0 + f[h >> 2] = H + V = on(O | 0, U | 0, M | 0, ((((M | 0) < 0) << 31) >> 31) | 0) | 0 + M = zk(V | 0, I | 0, p | 0, P | 0) | 0 + f[q >> 2] = M + P = + (O - + ((H | 0) > -1 ? H : (0 - H) | 0) - + ((M | 0) > -1 ? M : (0 - M) | 0)) | + 0 + Q = N ? P : (0 - P) | 0 + R = s + S = M + T = O + } + f[R >> 2] = Q + O = f[h >> 2] | 0 + do + if ((O | 0) <= -1) { + if ((S | 0) < 0) { + M = f[s >> 2] | 0 + W = (M | 0) > -1 ? M : (0 - M) | 0 + X = M + } else { + M = f[s >> 2] | 0 + W = ((f[w >> 2] | 0) - ((M | 0) > -1 ? M : (0 - M) | 0)) | 0 + X = M + } + if ((X | 0) < 0) { + Y = (S | 0) > -1 ? S : (0 - S) | 0 + Z = W + _ = X + break + } else { + Y = ((f[w >> 2] | 0) - ((S | 0) > -1 ? S : (0 - S) | 0)) | 0 + Z = W + _ = X + break + } + } else { + M = f[s >> 2] | 0 + Y = (M + T) | 0 + Z = (T + S) | 0 + _ = M + } + while (0) + M = (Z | 0) == 0 + P = (Y | 0) == 0 + N = f[w >> 2] | 0 + do + if (Y | Z) { + H = (N | 0) == (Y | 0) + if (!(M & H)) { + p = (N | 0) == (Z | 0) + if (!(P & p)) { + if (M & ((T | 0) < (Y | 0))) { + $ = 0 + aa = ((T << 1) - Y) | 0 + break + } + if (p & ((T | 0) > (Y | 0))) { + $ = Z + aa = ((T << 1) - Y) | 0 + break + } + if (H & ((T | 0) > (Z | 0))) { + $ = ((T << 1) - Z) | 0 + aa = Y + break + } + if (P) { + $ = (T | 0) < (Z | 0) ? ((T << 1) - Z) | 0 : Z + aa = 0 + } else { + $ = Z + aa = Y + } + } else { + $ = Z + aa = Z + } + } else { + $ = Y + aa = Y + } + } else { + $ = N + aa = N + } + while (0) + f[i >> 2] = $ + f[v >> 2] = aa + P = (0 - S) | 0 + M = (0 - _) | 0 + f[h >> 2] = 0 - O + f[q >> 2] = P + f[s >> 2] = M + if ((O | 0) < 1) { + ba = (T - _) | 0 + ca = (T - S) | 0 + } else { + H = (_ | 0) < 1 ? M : _ + M = (S | 0) < 1 ? P : S + ba = (_ | 0) > 0 ? M : (N - M) | 0 + ca = (S | 0) > 0 ? H : (N - H) | 0 + } + H = (ca | 0) == 0 + M = (ba | 0) == 0 + do + if ( + ((ba | ca | 0) != 0 ? ((P = (N | 0) == (ba | 0)), !(H & P)) : 0) + ? ((p = (N | 0) == (ca | 0)), !(M & p)) + : 0 + ) { + if (H & ((T | 0) < (ba | 0))) { + da = 0 + ea = ((T << 1) - ba) | 0 + break + } + if (p & ((T | 0) > (ba | 0))) { + da = N + ea = ((T << 1) - ba) | 0 + break + } + if (P & ((T | 0) > (ca | 0))) { + da = ((T << 1) - ca) | 0 + ea = N + break + } + if (M) { + da = (T | 0) < (ca | 0) ? ((T << 1) - ca) | 0 : ca + ea = 0 + } else { + da = ca + ea = ba + } + } else { + da = N + ea = N + } + while (0) + f[j >> 2] = da + f[x >> 2] = ea + N = K << 1 + M = (b + (N << 2)) | 0 + H = f[y >> 2] | 0 + if ((H | 0) > 0) { + O = 0 + P = i + p = H + while (1) { + if ((p | 0) > 0) { + H = 0 + do { + V = f[(P + (H << 2)) >> 2] | 0 + U = f[z >> 2] | 0 + if ((V | 0) > (U | 0)) { + fa = f[A >> 2] | 0 + f[(fa + (H << 2)) >> 2] = U + ga = fa + } else { + fa = f[B >> 2] | 0 + U = f[A >> 2] | 0 + f[(U + (H << 2)) >> 2] = (V | 0) < (fa | 0) ? fa : V + ga = U + } + H = (H + 1) | 0 + U = f[y >> 2] | 0 + } while ((H | 0) < (U | 0)) + ha = ga + ia = U + } else { + ha = f[A >> 2] | 0 + ia = p + } + H = + ((f[(M + (O << 2)) >> 2] | 0) - (f[(ha + (O << 2)) >> 2] | 0)) | 0 + U = (k + (O << 2)) | 0 + f[U >> 2] = H + ja = f[C >> 2] | 0 + if ((H | 0) >= (ja | 0)) { + if ((H | 0) > (f[E >> 2] | 0)) { + ka = (H - (f[D >> 2] | 0)) | 0 + la = 52 + } + } else { + ka = ((f[D >> 2] | 0) + H) | 0 + la = 52 + } + if ((la | 0) == 52) { + la = 0 + f[U >> 2] = ka + } + O = (O + 1) | 0 + if ((O | 0) >= (ia | 0)) break + else { + P = ha + p = ia + } + } + if ((ia | 0) > 0) { + p = 0 + P = j + O = ia + U = ja + while (1) { + if ((O | 0) > 0) { + H = 0 + do { + V = f[(P + (H << 2)) >> 2] | 0 + fa = f[z >> 2] | 0 + if ((V | 0) > (fa | 0)) f[(ha + (H << 2)) >> 2] = fa + else { + fa = f[B >> 2] | 0 + f[(ha + (H << 2)) >> 2] = (V | 0) < (fa | 0) ? fa : V + } + H = (H + 1) | 0 + ma = f[y >> 2] | 0 + } while ((H | 0) < (ma | 0)) + na = f[C >> 2] | 0 + oa = ma + } else { + na = U + oa = O + } + H = + ((f[(M + (p << 2)) >> 2] | 0) - (f[(ha + (p << 2)) >> 2] | 0)) | + 0 + V = (l + (p << 2)) | 0 + f[V >> 2] = H + if ((H | 0) >= (na | 0)) { + if ((H | 0) > (f[E >> 2] | 0)) { + pa = (H - (f[D >> 2] | 0)) | 0 + la = 65 + } + } else { + pa = ((f[D >> 2] | 0) + H) | 0 + la = 65 + } + if ((la | 0) == 65) { + la = 0 + f[V >> 2] = pa + } + p = (p + 1) | 0 + if ((p | 0) >= (oa | 0)) break + else { + P = ha + O = oa + U = na + } + } + } + } + U = f[k >> 2] | 0 + O = f[t >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) qa = ((f[F >> 2] | 0) + U) | 0 + else qa = U + else qa = (U - (f[F >> 2] | 0)) | 0 + f[k >> 2] = qa + U = f[a >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) ra = ((f[F >> 2] | 0) + U) | 0 + else ra = U + else ra = (U - (f[F >> 2] | 0)) | 0 + f[a >> 2] = ra + U = f[l >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) sa = ((f[F >> 2] | 0) + U) | 0 + else sa = U + else sa = (U - (f[F >> 2] | 0)) | 0 + f[l >> 2] = sa + U = f[G >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) ta = ((f[F >> 2] | 0) + U) | 0 + else ta = U + else ta = (U - (f[F >> 2] | 0)) | 0 + f[G >> 2] = ta + if ( + ((((ra | 0) > -1 ? ra : (0 - ra) | 0) + + ((qa | 0) > -1 ? qa : (0 - qa) | 0)) | + 0) < + ((((sa | 0) > -1 ? sa : (0 - sa) | 0) + + ((ta | 0) > -1 ? ta : (0 - ta) | 0)) | + 0) + ) { + Vi(g, 0) + ua = k + } else { + Vi(g, 1) + ua = l + } + U = f[ua >> 2] | 0 + if ((U | 0) < 0) va = ((f[F >> 2] | 0) + U) | 0 + else va = U + U = (c + (N << 2)) | 0 + f[U >> 2] = va + O = f[(ua + 4) >> 2] | 0 + if ((O | 0) < 0) wa = ((f[F >> 2] | 0) + O) | 0 + else wa = O + f[(U + 4) >> 2] = wa + K = (K + 1) | 0 + if ((K | 0) >= (r | 0)) { + la = 3 + break + } + U = f[o >> 2] | 0 + L = f[U >> 2] | 0 + if ((((f[(U + 4) >> 2] | 0) - L) >> 2) >>> 0 <= K >>> 0) { + J = U + la = 4 + break + } + } + if ((la | 0) == 3) { + u = e + return 1 + } else if ((la | 0) == 4) mq(J) + return 0 + } + function Tb(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = c + g = f[b >> 2] | 0 + if ((g | 0) == -1) { + h = 1 + u = c + return h | 0 + } + i = ((g >>> 0) / 3) | 0 + j = (a + 24) | 0 + if ( + (f[((f[j >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & (1 << (i & 31))) | + 0 + ) { + h = 1 + u = c + return h | 0 + } + i = (a + 48) | 0 + k = f[i >> 2] | 0 + l = (a + 52) | 0 + m = f[l >> 2] | 0 + if ((m | 0) == (k | 0)) n = k + else { + o = (m + (~(((m + -4 - k) | 0) >>> 2) << 2)) | 0 + f[l >> 2] = o + n = o + } + o = (a + 56) | 0 + if ((n | 0) == (f[o >> 2] | 0)) Ci(i, b) + else { + f[n >> 2] = g + f[l >> 2] = n + 4 + } + n = (a + 4) | 0 + g = f[n >> 2] | 0 + k = f[b >> 2] | 0 + m = (k + 1) | 0 + do + if ((k | 0) != -1) { + p = f[(g + 28) >> 2] | 0 + q = + f[ + (p + ((((m >>> 0) % 3 | 0 | 0) == 0 ? (k + -2) | 0 : m) << 2)) >> + 2 + ] | 0 + if (!((k >>> 0) % 3 | 0)) { + r = q + s = (k + 2) | 0 + t = p + break + } else { + r = q + s = (k + -1) | 0 + t = p + break + } + } else { + p = f[(g + 28) >> 2] | 0 + r = f[(p + -4) >> 2] | 0 + s = -1 + t = p + } + while (0) + g = f[(t + (s << 2)) >> 2] | 0 + if (((r | 0) == -1) | ((g | 0) == -1)) { + h = 0 + u = c + return h | 0 + } + s = (a + 36) | 0 + t = f[s >> 2] | 0 + k = (t + ((r >>> 5) << 2)) | 0 + m = 1 << (r & 31) + p = f[k >> 2] | 0 + if (!(p & m)) { + f[k >> 2] = p | m + m = f[b >> 2] | 0 + p = (m + 1) | 0 + if ((m | 0) == -1) v = -1 + else v = ((p >>> 0) % 3 | 0 | 0) == 0 ? (m + -2) | 0 : p + f[e >> 2] = v + p = + f[ + ((f[((f[(a + 16) >> 2] | 0) + 96) >> 2] | 0) + + (((((v >>> 0) / 3) | 0) * 12) | 0) + + (((v >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + v = f[(a + 20) >> 2] | 0 + f[d >> 2] = p + m = f[(v + 4) >> 2] | 0 + v = (m + 4) | 0 + k = f[v >> 2] | 0 + if ((k | 0) == (f[(m + 8) >> 2] | 0)) Ci(m, d) + else { + f[k >> 2] = p + f[v >> 2] = k + 4 + } + k = (a + 12) | 0 + v = f[k >> 2] | 0 + p = (v + 4) | 0 + m = f[p >> 2] | 0 + if ((m | 0) == (f[(v + 8) >> 2] | 0)) { + Ci(v, e) + w = f[k >> 2] | 0 + } else { + f[m >> 2] = f[e >> 2] + f[p >> 2] = m + 4 + w = v + } + v = (w + 24) | 0 + f[((f[(w + 12) >> 2] | 0) + (r << 2)) >> 2] = f[v >> 2] + f[v >> 2] = (f[v >> 2] | 0) + 1 + x = f[s >> 2] | 0 + } else x = t + t = (x + ((g >>> 5) << 2)) | 0 + x = 1 << (g & 31) + v = f[t >> 2] | 0 + if (!(v & x)) { + f[t >> 2] = v | x + x = f[b >> 2] | 0 + do + if ((x | 0) != -1) + if (!((x >>> 0) % 3 | 0)) { + y = (x + 2) | 0 + break + } else { + y = (x + -1) | 0 + break + } + else y = -1 + while (0) + f[e >> 2] = y + x = + f[ + ((f[((f[(a + 16) >> 2] | 0) + 96) >> 2] | 0) + + (((((y >>> 0) / 3) | 0) * 12) | 0) + + (((y >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + y = f[(a + 20) >> 2] | 0 + f[d >> 2] = x + v = f[(y + 4) >> 2] | 0 + y = (v + 4) | 0 + t = f[y >> 2] | 0 + if ((t | 0) == (f[(v + 8) >> 2] | 0)) Ci(v, d) + else { + f[t >> 2] = x + f[y >> 2] = t + 4 + } + t = (a + 12) | 0 + y = f[t >> 2] | 0 + x = (y + 4) | 0 + v = f[x >> 2] | 0 + if ((v | 0) == (f[(y + 8) >> 2] | 0)) { + Ci(y, e) + z = f[t >> 2] | 0 + } else { + f[v >> 2] = f[e >> 2] + f[x >> 2] = v + 4 + z = y + } + y = (z + 24) | 0 + f[((f[(z + 12) >> 2] | 0) + (g << 2)) >> 2] = f[y >> 2] + f[y >> 2] = (f[y >> 2] | 0) + 1 + } + y = f[i >> 2] | 0 + g = f[l >> 2] | 0 + if ((y | 0) == (g | 0)) { + h = 1 + u = c + return h | 0 + } + z = (a + 16) | 0 + v = (a + 20) | 0 + x = (a + 12) | 0 + a = g + g = y + a: while (1) { + y = f[(a + -4) >> 2] | 0 + f[b >> 2] = y + t = ((y >>> 0) / 3) | 0 + if ( + (y | 0) != -1 + ? ((y = ((f[j >> 2] | 0) + ((t >>> 5) << 2)) | 0), + (r = 1 << (t & 31)), + (t = f[y >> 2] | 0), + ((t & r) | 0) == 0) + : 0 + ) { + f[y >> 2] = t | r + r = f[n >> 2] | 0 + t = f[b >> 2] | 0 + y = f[((f[(r + 28) >> 2] | 0) + (t << 2)) >> 2] | 0 + if ((y | 0) == -1) { + h = 0 + A = 79 + break + } else { + B = y + C = r + D = t + } + b: while (1) { + t = ((f[s >> 2] | 0) + ((B >>> 5) << 2)) | 0 + r = 1 << (B & 31) + y = f[t >> 2] | 0 + do + if (!(y & r)) { + w = f[((f[(C + 40) >> 2] | 0) + (B << 2)) >> 2] | 0 + if ((w | 0) == -1) E = 1 + else { + m = f[((f[f[(C + 64) >> 2] >> 2] | 0) + (w << 2)) >> 2] | 0 + E = + (((1 << (m & 31)) & + f[((f[(C + 12) >> 2] | 0) + ((m >>> 5) << 2)) >> 2]) | + 0) != + 0 + } + f[t >> 2] = y | r + m = f[b >> 2] | 0 + f[e >> 2] = m + w = + f[ + ((f[((f[z >> 2] | 0) + 96) >> 2] | 0) + + (((((m >>> 0) / 3) | 0) * 12) | 0) + + (((m >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + m = f[v >> 2] | 0 + f[d >> 2] = w + p = f[(m + 4) >> 2] | 0 + m = (p + 4) | 0 + k = f[m >> 2] | 0 + if ((k | 0) == (f[(p + 8) >> 2] | 0)) Ci(p, d) + else { + f[k >> 2] = w + f[m >> 2] = k + 4 + } + k = f[x >> 2] | 0 + m = (k + 4) | 0 + w = f[m >> 2] | 0 + if ((w | 0) == (f[(k + 8) >> 2] | 0)) { + Ci(k, e) + F = f[x >> 2] | 0 + } else { + f[w >> 2] = f[e >> 2] + f[m >> 2] = w + 4 + F = k + } + k = (F + 24) | 0 + f[((f[(F + 12) >> 2] | 0) + (B << 2)) >> 2] = f[k >> 2] + f[k >> 2] = (f[k >> 2] | 0) + 1 + k = f[n >> 2] | 0 + w = f[b >> 2] | 0 + if (E) { + G = w + H = k + A = 59 + break + } + m = (w + 1) | 0 + do + if ((w | 0) == -1) I = -1 + else { + p = ((m >>> 0) % 3 | 0 | 0) == 0 ? (w + -2) | 0 : m + if ((p | 0) == -1) { + I = -1 + break + } + if ( + (f[((f[k >> 2] | 0) + ((p >>> 5) << 2)) >> 2] & + (1 << (p & 31))) | + 0 + ) { + I = -1 + break + } + I = + f[ + ((f[((f[(k + 64) >> 2] | 0) + 12) >> 2] | 0) + + (p << 2)) >> + 2 + ] | 0 + } + while (0) + f[b >> 2] = I + J = ((I >>> 0) / 3) | 0 + K = k + } else { + G = D + H = C + A = 59 + } + while (0) + if ((A | 0) == 59) { + A = 0 + r = (G + 1) | 0 + if ((G | 0) == -1) { + A = 60 + break + } + y = ((r >>> 0) % 3 | 0 | 0) == 0 ? (G + -2) | 0 : r + do + if ((y | 0) == -1) L = -1 + else { + if ( + (f[((f[H >> 2] | 0) + ((y >>> 5) << 2)) >> 2] & + (1 << (y & 31))) | + 0 + ) { + L = -1 + break + } + L = + f[ + ((f[((f[(H + 64) >> 2] | 0) + 12) >> 2] | 0) + + (y << 2)) >> + 2 + ] | 0 + } + while (0) + f[d >> 2] = L + y = ((((G >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + G) | 0 + do + if ((y | 0) == -1) M = -1 + else { + if ( + (f[((f[H >> 2] | 0) + ((y >>> 5) << 2)) >> 2] & + (1 << (y & 31))) | + 0 + ) { + M = -1 + break + } + M = + f[ + ((f[((f[(H + 64) >> 2] | 0) + 12) >> 2] | 0) + + (y << 2)) >> + 2 + ] | 0 + } + while (0) + y = (L | 0) == -1 + r = ((L >>> 0) / 3) | 0 + t = y ? -1 : r + m = (M | 0) == -1 + w = ((M >>> 0) / 3) | 0 + p = m ? -1 : w + do + if (!y) { + q = f[j >> 2] | 0 + if ((f[(q + ((t >>> 5) << 2)) >> 2] & (1 << (t & 31))) | 0) { + A = 69 + break + } + if (m) { + N = L + O = r + break + } + if (!(f[(q + ((p >>> 5) << 2)) >> 2] & (1 << (p & 31)))) { + A = 74 + break b + } else { + N = L + O = r + } + } else A = 69 + while (0) + if ((A | 0) == 69) { + A = 0 + if (m) { + A = 71 + break + } + if ( + !( + f[((f[j >> 2] | 0) + ((p >>> 5) << 2)) >> 2] & + (1 << (p & 31)) + ) + ) { + N = M + O = w + } else { + A = 71 + break + } + } + f[b >> 2] = N + J = O + K = H + } + r = ((f[j >> 2] | 0) + ((J >>> 5) << 2)) | 0 + f[r >> 2] = f[r >> 2] | (1 << (J & 31)) + D = f[b >> 2] | 0 + B = f[((f[(K + 28) >> 2] | 0) + (D << 2)) >> 2] | 0 + if ((B | 0) == -1) { + h = 0 + A = 79 + break a + } else C = K + } + do + if ((A | 0) == 60) { + A = 0 + f[d >> 2] = -1 + A = 71 + } else if ((A | 0) == 74) { + A = 0 + r = f[l >> 2] | 0 + f[(r + -4) >> 2] = M + if ((r | 0) == (f[o >> 2] | 0)) { + Ci(i, d) + P = f[l >> 2] | 0 + break + } else { + f[r >> 2] = f[d >> 2] + t = (r + 4) | 0 + f[l >> 2] = t + P = t + break + } + } + while (0) + if ((A | 0) == 71) { + A = 0 + t = ((f[l >> 2] | 0) + -4) | 0 + f[l >> 2] = t + P = t + } + Q = f[i >> 2] | 0 + R = P + } else { + t = (a + -4) | 0 + f[l >> 2] = t + Q = g + R = t + } + if ((Q | 0) == (R | 0)) { + h = 1 + A = 79 + break + } else { + a = R + g = Q + } + } + if ((A | 0) == 79) { + u = c + return h | 0 + } + return 0 + } + function Ub(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = Oa, + V = Oa, + Y = Oa, + Z = 0, + _ = 0, + aa = 0, + ba = 0 + d = u + u = (u + 16) | 0 + e = d + g = (a + 16) | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + n[g >> 2] = $(1.0) + i = (a + 20) | 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + n[(a + 36) >> 2] = $(1.0) + j = f[(c + 8) >> 2] | 0 + a: do + if (j | 0) { + k = (a + 4) | 0 + l = (a + 12) | 0 + m = (a + 8) | 0 + o = j + p = j + while (1) { + q = (o + 8) | 0 + r = b[(q + 11) >> 0] | 0 + s = (r << 24) >> 24 < 0 + t = s ? f[q >> 2] | 0 : q + v = s ? f[(o + 12) >> 2] | 0 : r & 255 + if (v >>> 0 > 3) { + r = t + s = v + w = v + while (1) { + x = + X( + h[r >> 0] | + (h[(r + 1) >> 0] << 8) | + (h[(r + 2) >> 0] << 16) | + (h[(r + 3) >> 0] << 24), + 1540483477, + ) | 0 + s = (X((x >>> 24) ^ x, 1540483477) | 0) ^ (X(s, 1540483477) | 0) + w = (w + -4) | 0 + if (w >>> 0 <= 3) break + else r = (r + 4) | 0 + } + r = (v + -4) | 0 + w = r & -4 + y = (r - w) | 0 + z = (t + (w + 4)) | 0 + A = s + } else { + y = v + z = t + A = v + } + switch (y | 0) { + case 3: { + B = (h[(z + 2) >> 0] << 16) ^ A + C = 8 + break + } + case 2: { + B = A + C = 8 + break + } + case 1: { + D = A + C = 9 + break + } + default: + E = A + } + if ((C | 0) == 8) { + C = 0 + D = (h[(z + 1) >> 0] << 8) ^ B + C = 9 + } + if ((C | 0) == 9) { + C = 0 + E = X(D ^ h[z >> 0], 1540483477) | 0 + } + w = X((E >>> 13) ^ E, 1540483477) | 0 + r = (w >>> 15) ^ w + w = f[k >> 2] | 0 + x = (w | 0) == 0 + b: do + if (!x) { + F = (w + -1) | 0 + G = ((F & w) | 0) == 0 + if (!G) + if (r >>> 0 < w >>> 0) H = r + else H = (r >>> 0) % (w >>> 0) | 0 + else H = r & F + I = f[((f[a >> 2] | 0) + (H << 2)) >> 2] | 0 + if ((I | 0) != 0 ? ((J = f[I >> 2] | 0), (J | 0) != 0) : 0) { + I = (v | 0) == 0 + if (G) { + if (I) { + G = J + while (1) { + K = f[(G + 4) >> 2] | 0 + if ( + !(((K | 0) == (r | 0)) | (((K & F) | 0) == (H | 0))) + ) { + L = H + C = 50 + break b + } + K = b[(G + 8 + 11) >> 0] | 0 + if ( + !( + ((K << 24) >> 24 < 0 + ? f[(G + 12) >> 2] | 0 + : K & 255) | 0 + ) + ) + break b + G = f[G >> 2] | 0 + if (!G) { + L = H + C = 50 + break b + } + } + } else M = J + while (1) { + G = f[(M + 4) >> 2] | 0 + if ( + !(((G | 0) == (r | 0)) | (((G & F) | 0) == (H | 0))) + ) { + L = H + C = 50 + break b + } + G = (M + 8) | 0 + K = b[(G + 11) >> 0] | 0 + N = (K << 24) >> 24 < 0 + O = K & 255 + do + if (((N ? f[(M + 12) >> 2] | 0 : O) | 0) == (v | 0)) { + K = f[G >> 2] | 0 + if (N) + if (!(Pk(K, t, v) | 0)) break b + else break + if ((b[t >> 0] | 0) == ((K & 255) << 24) >> 24) { + K = G + P = O + Q = t + do { + P = (P + -1) | 0 + K = (K + 1) | 0 + if (!P) break b + Q = (Q + 1) | 0 + } while ((b[K >> 0] | 0) == (b[Q >> 0] | 0)) + } + } + while (0) + M = f[M >> 2] | 0 + if (!M) { + L = H + C = 50 + break b + } + } + } + if (I) { + F = J + while (1) { + O = f[(F + 4) >> 2] | 0 + if ((O | 0) != (r | 0)) { + if (O >>> 0 < w >>> 0) R = O + else R = (O >>> 0) % (w >>> 0) | 0 + if ((R | 0) != (H | 0)) { + L = H + C = 50 + break b + } + } + O = b[(F + 8 + 11) >> 0] | 0 + if ( + !( + ((O << 24) >> 24 < 0 + ? f[(F + 12) >> 2] | 0 + : O & 255) | 0 + ) + ) + break b + F = f[F >> 2] | 0 + if (!F) { + L = H + C = 50 + break b + } + } + } else S = J + while (1) { + F = f[(S + 4) >> 2] | 0 + if ((F | 0) != (r | 0)) { + if (F >>> 0 < w >>> 0) T = F + else T = (F >>> 0) % (w >>> 0) | 0 + if ((T | 0) != (H | 0)) { + L = H + C = 50 + break b + } + } + F = (S + 8) | 0 + I = b[(F + 11) >> 0] | 0 + O = (I << 24) >> 24 < 0 + G = I & 255 + do + if (((O ? f[(S + 12) >> 2] | 0 : G) | 0) == (v | 0)) { + I = f[F >> 2] | 0 + if (O) + if (!(Pk(I, t, v) | 0)) break b + else break + if ((b[t >> 0] | 0) == ((I & 255) << 24) >> 24) { + I = F + N = G + Q = t + do { + N = (N + -1) | 0 + I = (I + 1) | 0 + if (!N) break b + Q = (Q + 1) | 0 + } while ((b[I >> 0] | 0) == (b[Q >> 0] | 0)) + } + } + while (0) + S = f[S >> 2] | 0 + if (!S) { + L = H + C = 50 + break + } + } + } else { + L = H + C = 50 + } + } else { + L = 0 + C = 50 + } + while (0) + if ((C | 0) == 50) { + C = 0 + pi(e, a, r, q) + U = $((((f[l >> 2] | 0) + 1) | 0) >>> 0) + V = $(w >>> 0) + Y = $(n[g >> 2]) + do + if (x | ($(Y * V) < U)) { + t = + (w << 1) | + (((w >>> 0 < 3) | ((((w + -1) & w) | 0) != 0)) & 1) + v = ~~$(W($(U / Y))) >>> 0 + Ph(a, t >>> 0 < v >>> 0 ? v : t) + t = f[k >> 2] | 0 + v = (t + -1) | 0 + if (!(v & t)) { + Z = t + _ = v & r + break + } + if (r >>> 0 < t >>> 0) { + Z = t + _ = r + } else { + Z = t + _ = (r >>> 0) % (t >>> 0) | 0 + } + } else { + Z = w + _ = L + } + while (0) + w = f[((f[a >> 2] | 0) + (_ << 2)) >> 2] | 0 + if (!w) { + f[f[e >> 2] >> 2] = f[m >> 2] + f[m >> 2] = f[e >> 2] + f[((f[a >> 2] | 0) + (_ << 2)) >> 2] = m + r = f[e >> 2] | 0 + x = f[r >> 2] | 0 + if (x | 0) { + q = f[(x + 4) >> 2] | 0 + x = (Z + -1) | 0 + if (x & Z) + if (q >>> 0 < Z >>> 0) aa = q + else aa = (q >>> 0) % (Z >>> 0) | 0 + else aa = q & x + f[((f[a >> 2] | 0) + (aa << 2)) >> 2] = r + } + } else { + f[f[e >> 2] >> 2] = f[w >> 2] + f[w >> 2] = f[e >> 2] + } + f[l >> 2] = (f[l >> 2] | 0) + 1 + } + w = f[p >> 2] | 0 + if (!w) break a + else { + o = w + p = w + } + } + } + while (0) + e = f[(c + 28) >> 2] | 0 + if (!e) { + u = d + return + } else ba = e + do { + e = ba + c = dn(40) | 0 + Ub(c, f[(e + 20) >> 2] | 0) + aa = xc(i, (e + 8) | 0) | 0 + e = f[aa >> 2] | 0 + f[aa >> 2] = c + if (e | 0) { + c = f[(e + 28) >> 2] | 0 + if (c | 0) { + aa = c + do { + c = aa + aa = f[aa >> 2] | 0 + bi((c + 8) | 0) + br(c) + } while ((aa | 0) != 0) + } + aa = (e + 20) | 0 + c = f[aa >> 2] | 0 + f[aa >> 2] = 0 + if (c | 0) br(c) + c = f[(e + 8) >> 2] | 0 + if (c | 0) { + aa = c + do { + c = aa + aa = f[aa >> 2] | 0 + a = (c + 8) | 0 + Z = f[(c + 20) >> 2] | 0 + if (Z | 0) { + _ = (c + 24) | 0 + if ((f[_ >> 2] | 0) != (Z | 0)) f[_ >> 2] = Z + br(Z) + } + if ((b[(a + 11) >> 0] | 0) < 0) br(f[a >> 2] | 0) + br(c) + } while ((aa | 0) != 0) + } + aa = f[e >> 2] | 0 + f[e >> 2] = 0 + if (aa | 0) br(aa) + br(e) + } + ba = f[ba >> 2] | 0 + } while ((ba | 0) != 0) + u = d + return + } + function Vb(a, c, e) { + a = a | 0 + c = c | 0 + e = e | 0 + var g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = Oa, + fa = Oa, + ga = Oa, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0 + g = u + u = (u + 48) | 0 + i = (g + 16) | 0 + j = (g + 12) | 0 + k = g + l = (i + 16) | 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + n[l >> 2] = $(1.0) + m = (a + 80) | 0 + o = f[m >> 2] | 0 + f[k >> 2] = 0 + p = (k + 4) | 0 + f[p >> 2] = 0 + f[(k + 8) >> 2] = 0 + if (o) { + if (o >>> 0 > 1073741823) mq(k) + q = o << 2 + r = dn(q) | 0 + f[k >> 2] = r + s = (r + (o << 2)) | 0 + f[(k + 8) >> 2] = s + hj(r | 0, 0, q | 0) | 0 + f[p >> 2] = s + s = (c + 48) | 0 + q = (c + 40) | 0 + o = (i + 4) | 0 + t = (i + 12) | 0 + v = (i + 8) | 0 + w = (a + 40) | 0 + x = (a + 64) | 0 + y = f[e >> 2] | 0 + e = r + z = 0 + A = 0 + B = r + C = r + D = 0 + E = r + while (1) { + r = s + F = f[r >> 2] | 0 + G = f[(r + 4) >> 2] | 0 + r = q + H = on(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, (y + z) | 0, 0) | 0 + r = Tn(H | 0, I | 0, F | 0, G | 0) | 0 + G = ((f[f[c >> 2] >> 2] | 0) + r) | 0 + r = + h[G >> 0] | + (h[(G + 1) >> 0] << 8) | + (h[(G + 2) >> 0] << 16) | + (h[(G + 3) >> 0] << 24) + f[j >> 2] = r + G = r & 65535 + F = r >>> 16 + H = F & 65535 + J = (((r & 65535) ^ 318) + 239) ^ F + F = (D | 0) == 0 + a: do + if (!F) { + K = (D + -1) | 0 + L = ((K & D) | 0) == 0 + if (!L) + if (J >>> 0 < D >>> 0) M = J + else M = (J >>> 0) % (D >>> 0) | 0 + else M = J & K + N = f[((f[i >> 2] | 0) + (M << 2)) >> 2] | 0 + do + if (N | 0 ? ((O = f[N >> 2] | 0), O | 0) : 0) { + b: do + if (L) { + P = O + while (1) { + Q = f[(P + 4) >> 2] | 0 + R = (Q | 0) == (J | 0) + if (!(R | (((Q & K) | 0) == (M | 0)))) { + S = 27 + break b + } + if ( + ( + R + ? ((R = (P + 8) | 0), + (d[R >> 1] | 0) == (G << 16) >> 16) + : 0 + ) + ? (d[(R + 2) >> 1] | 0) == (H << 16) >> 16 + : 0 + ) { + T = P + S = 26 + break b + } + P = f[P >> 2] | 0 + if (!P) { + S = 27 + break + } + } + } else { + P = O + while (1) { + R = f[(P + 4) >> 2] | 0 + if ((R | 0) == (J | 0)) { + Q = (P + 8) | 0 + if ( + (d[Q >> 1] | 0) == (G << 16) >> 16 + ? (d[(Q + 2) >> 1] | 0) == (H << 16) >> 16 + : 0 + ) { + T = P + S = 26 + break b + } + } else { + if (R >>> 0 < D >>> 0) U = R + else U = (R >>> 0) % (D >>> 0) | 0 + if ((U | 0) != (M | 0)) { + S = 27 + break b + } + } + P = f[P >> 2] | 0 + if (!P) { + S = 27 + break + } + } + } + while (0) + if ((S | 0) == 26) { + S = 0 + f[(E + (z << 2)) >> 2] = f[(T + 12) >> 2] + V = e + X = A + Y = C + Z = B + _ = E + break a + } else if ((S | 0) == 27) { + S = 0 + if (F) { + aa = 0 + S = 46 + break a + } else break + } + } + while (0) + K = (D + -1) | 0 + L = ((K & D) | 0) == 0 + if (!L) + if (J >>> 0 < D >>> 0) ba = J + else ba = (J >>> 0) % (D >>> 0) | 0 + else ba = K & J + N = f[((f[i >> 2] | 0) + (ba << 2)) >> 2] | 0 + if ((N | 0) != 0 ? ((O = f[N >> 2] | 0), (O | 0) != 0) : 0) { + if (L) { + L = O + while (1) { + N = f[(L + 4) >> 2] | 0 + if (!(((N | 0) == (J | 0)) | (((N & K) | 0) == (ba | 0)))) { + aa = ba + S = 46 + break a + } + N = (L + 8) | 0 + if ( + (d[N >> 1] | 0) == (G << 16) >> 16 + ? (d[(N + 2) >> 1] | 0) == (H << 16) >> 16 + : 0 + ) { + S = 61 + break a + } + L = f[L >> 2] | 0 + if (!L) { + aa = ba + S = 46 + break a + } + } + } else ca = O + while (1) { + L = f[(ca + 4) >> 2] | 0 + if ((L | 0) != (J | 0)) { + if (L >>> 0 < D >>> 0) da = L + else da = (L >>> 0) % (D >>> 0) | 0 + if ((da | 0) != (ba | 0)) { + aa = ba + S = 46 + break a + } + } + L = (ca + 8) | 0 + if ( + (d[L >> 1] | 0) == (G << 16) >> 16 + ? (d[(L + 2) >> 1] | 0) == (H << 16) >> 16 + : 0 + ) { + S = 61 + break a + } + ca = f[ca >> 2] | 0 + if (!ca) { + aa = ba + S = 46 + break + } + } + } else { + aa = ba + S = 46 + } + } else { + aa = 0 + S = 46 + } + while (0) + if ((S | 0) == 46) { + S = 0 + H = dn(16) | 0 + G = (H + 8) | 0 + d[G >> 1] = r + d[(G + 2) >> 1] = r >>> 16 + f[(H + 12) >> 2] = A + f[(H + 4) >> 2] = J + f[H >> 2] = 0 + ea = $((((f[t >> 2] | 0) + 1) | 0) >>> 0) + fa = $(D >>> 0) + ga = $(n[l >> 2]) + do + if (F | ($(ga * fa) < ea)) { + G = + (D << 1) | (((D >>> 0 < 3) | ((((D + -1) & D) | 0) != 0)) & 1) + O = ~~$(W($(ea / ga))) >>> 0 + Eh(i, G >>> 0 < O >>> 0 ? O : G) + G = f[o >> 2] | 0 + O = (G + -1) | 0 + if (!(O & G)) { + ha = G + ia = O & J + break + } + if (J >>> 0 < G >>> 0) { + ha = G + ia = J + } else { + ha = G + ia = (J >>> 0) % (G >>> 0) | 0 + } + } else { + ha = D + ia = aa + } + while (0) + J = ((f[i >> 2] | 0) + (ia << 2)) | 0 + F = f[J >> 2] | 0 + if (!F) { + f[H >> 2] = f[v >> 2] + f[v >> 2] = H + f[J >> 2] = v + J = f[H >> 2] | 0 + if (J | 0) { + r = f[(J + 4) >> 2] | 0 + J = (ha + -1) | 0 + if (J & ha) + if (r >>> 0 < ha >>> 0) ja = r + else ja = (r >>> 0) % (ha >>> 0) | 0 + else ja = r & J + ka = ((f[i >> 2] | 0) + (ja << 2)) | 0 + S = 59 + } + } else { + f[H >> 2] = f[F >> 2] + ka = F + S = 59 + } + if ((S | 0) == 59) { + S = 0 + f[ka >> 2] = H + } + f[t >> 2] = (f[t >> 2] | 0) + 1 + S = 61 + } + if ((S | 0) == 61) { + S = 0 + F = w + J = f[F >> 2] | 0 + r = on(J | 0, f[(F + 4) >> 2] | 0, A | 0, 0) | 0 + Rg(((f[f[x >> 2] >> 2] | 0) + r) | 0, j | 0, J | 0) | 0 + J = f[k >> 2] | 0 + f[(J + (z << 2)) >> 2] = A + V = J + X = (A + 1) | 0 + Y = J + Z = J + _ = J + } + J = (z + 1) | 0 + la = f[m >> 2] | 0 + if (J >>> 0 >= la >>> 0) break + e = V + z = J + A = X + B = Z + C = Y + D = f[o >> 2] | 0 + E = _ + } + if ((X | 0) == (la | 0)) ma = Z + else { + Z = (a + 84) | 0 + if (!(b[Z >> 0] | 0)) { + _ = f[(a + 72) >> 2] | 0 + E = f[(a + 68) >> 2] | 0 + o = E + if ((_ | 0) == (E | 0)) na = V + else { + D = (_ - E) >> 2 + E = 0 + do { + _ = (o + (E << 2)) | 0 + f[_ >> 2] = f[(Y + (f[_ >> 2] << 2)) >> 2] + E = (E + 1) | 0 + } while (E >>> 0 < D >>> 0) + na = V + } + } else { + b[Z >> 0] = 0 + Z = (a + 68) | 0 + V = (a + 72) | 0 + D = f[V >> 2] | 0 + E = f[Z >> 2] | 0 + Y = (D - E) >> 2 + o = E + E = D + if (la >>> 0 <= Y >>> 0) + if ( + la >>> 0 < Y >>> 0 + ? ((D = (o + (la << 2)) | 0), (D | 0) != (E | 0)) + : 0 + ) { + f[V >> 2] = E + (~(((E + -4 - D) | 0) >>> 2) << 2) + oa = la + } else oa = la + else { + kh(Z, (la - Y) | 0, 1204) + oa = f[m >> 2] | 0 + } + Y = f[k >> 2] | 0 + if (!oa) na = Y + else { + k = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(k + (a << 2)) >> 2] = f[(Y + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < oa >>> 0) + na = Y + } + } + f[m >> 2] = X + ma = na + } + if (!ma) pa = X + else { + na = f[p >> 2] | 0 + if ((na | 0) != (ma | 0)) + f[p >> 2] = na + (~(((na + -4 - ma) | 0) >>> 2) << 2) + br(ma) + pa = X + } + } else pa = 0 + X = f[(i + 8) >> 2] | 0 + if (X | 0) { + ma = X + do { + X = ma + ma = f[ma >> 2] | 0 + br(X) + } while ((ma | 0) != 0) + } + ma = f[i >> 2] | 0 + f[i >> 2] = 0 + if (!ma) { + u = g + return pa | 0 + } + br(ma) + u = g + return pa | 0 + } + function Wb(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = c + g = f[b >> 2] | 0 + if ((g | 0) == -1) { + h = 1 + u = c + return h | 0 + } + i = ((g >>> 0) / 3) | 0 + j = (a + 24) | 0 + if ( + (f[((f[j >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & (1 << (i & 31))) | + 0 + ) { + h = 1 + u = c + return h | 0 + } + i = (a + 48) | 0 + k = f[i >> 2] | 0 + l = (a + 52) | 0 + m = f[l >> 2] | 0 + if ((m | 0) == (k | 0)) n = k + else { + o = (m + (~(((m + -4 - k) | 0) >>> 2) << 2)) | 0 + f[l >> 2] = o + n = o + } + o = (a + 56) | 0 + if ((n | 0) == (f[o >> 2] | 0)) Ci(i, b) + else { + f[n >> 2] = g + f[l >> 2] = n + 4 + } + n = (a + 4) | 0 + g = f[n >> 2] | 0 + k = f[b >> 2] | 0 + m = (k + 1) | 0 + if ((k | 0) == -1) { + h = 0 + u = c + return h | 0 + } + p = ((m >>> 0) % 3 | 0 | 0) == 0 ? (k + -2) | 0 : m + if ((p | 0) == -1) q = -1 + else q = f[((f[g >> 2] | 0) + (p << 2)) >> 2] | 0 + p = ((((k >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + k) | 0 + if ((p | 0) == -1) { + h = 0 + u = c + return h | 0 + } + k = f[((f[g >> 2] | 0) + (p << 2)) >> 2] | 0 + if (((q | 0) == -1) | ((k | 0) == -1)) { + h = 0 + u = c + return h | 0 + } + p = (a + 36) | 0 + g = f[p >> 2] | 0 + m = (g + ((q >>> 5) << 2)) | 0 + r = 1 << (q & 31) + s = f[m >> 2] | 0 + if (!(s & r)) { + f[m >> 2] = s | r + r = f[b >> 2] | 0 + s = (r + 1) | 0 + if ((r | 0) == -1) t = -1 + else t = ((s >>> 0) % 3 | 0 | 0) == 0 ? (r + -2) | 0 : s + f[e >> 2] = t + s = + f[ + ((f[((f[(a + 16) >> 2] | 0) + 96) >> 2] | 0) + + (((((t >>> 0) / 3) | 0) * 12) | 0) + + (((t >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + t = f[(a + 20) >> 2] | 0 + f[d >> 2] = s + r = f[(t + 4) >> 2] | 0 + t = (r + 4) | 0 + m = f[t >> 2] | 0 + if ((m | 0) == (f[(r + 8) >> 2] | 0)) Ci(r, d) + else { + f[m >> 2] = s + f[t >> 2] = m + 4 + } + m = (a + 12) | 0 + t = f[m >> 2] | 0 + s = (t + 4) | 0 + r = f[s >> 2] | 0 + if ((r | 0) == (f[(t + 8) >> 2] | 0)) { + Ci(t, e) + v = f[m >> 2] | 0 + } else { + f[r >> 2] = f[e >> 2] + f[s >> 2] = r + 4 + v = t + } + t = (v + 24) | 0 + f[((f[(v + 12) >> 2] | 0) + (q << 2)) >> 2] = f[t >> 2] + f[t >> 2] = (f[t >> 2] | 0) + 1 + w = f[p >> 2] | 0 + } else w = g + g = (w + ((k >>> 5) << 2)) | 0 + w = 1 << (k & 31) + t = f[g >> 2] | 0 + if (!(t & w)) { + f[g >> 2] = t | w + w = f[b >> 2] | 0 + do + if ((w | 0) != -1) + if (!((w >>> 0) % 3 | 0)) { + x = (w + 2) | 0 + break + } else { + x = (w + -1) | 0 + break + } + else x = -1 + while (0) + f[e >> 2] = x + w = + f[ + ((f[((f[(a + 16) >> 2] | 0) + 96) >> 2] | 0) + + (((((x >>> 0) / 3) | 0) * 12) | 0) + + (((x >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + x = f[(a + 20) >> 2] | 0 + f[d >> 2] = w + t = f[(x + 4) >> 2] | 0 + x = (t + 4) | 0 + g = f[x >> 2] | 0 + if ((g | 0) == (f[(t + 8) >> 2] | 0)) Ci(t, d) + else { + f[g >> 2] = w + f[x >> 2] = g + 4 + } + g = (a + 12) | 0 + x = f[g >> 2] | 0 + w = (x + 4) | 0 + t = f[w >> 2] | 0 + if ((t | 0) == (f[(x + 8) >> 2] | 0)) { + Ci(x, e) + y = f[g >> 2] | 0 + } else { + f[t >> 2] = f[e >> 2] + f[w >> 2] = t + 4 + y = x + } + x = (y + 24) | 0 + f[((f[(y + 12) >> 2] | 0) + (k << 2)) >> 2] = f[x >> 2] + f[x >> 2] = (f[x >> 2] | 0) + 1 + } + x = f[i >> 2] | 0 + k = f[l >> 2] | 0 + if ((x | 0) == (k | 0)) { + h = 1 + u = c + return h | 0 + } + y = (a + 16) | 0 + t = (a + 20) | 0 + w = (a + 12) | 0 + a = k + k = x + a: while (1) { + x = f[(a + -4) >> 2] | 0 + f[b >> 2] = x + g = ((x >>> 0) / 3) | 0 + if ( + (x | 0) != -1 + ? ((x = ((f[j >> 2] | 0) + ((g >>> 5) << 2)) | 0), + (q = 1 << (g & 31)), + (g = f[x >> 2] | 0), + ((g & q) | 0) == 0) + : 0 + ) { + f[x >> 2] = g | q + q = f[b >> 2] | 0 + if ((q | 0) == -1) { + h = 0 + z = 80 + break + } + g = f[n >> 2] | 0 + x = q + b: while (1) { + q = f[((f[g >> 2] | 0) + (x << 2)) >> 2] | 0 + if ((q | 0) == -1) { + h = 0 + z = 80 + break a + } + v = ((f[p >> 2] | 0) + ((q >>> 5) << 2)) | 0 + r = 1 << (q & 31) + s = f[v >> 2] | 0 + do + if (!(s & r)) { + m = f[((f[(g + 24) >> 2] | 0) + (q << 2)) >> 2] | 0 + A = (m + 1) | 0 + do + if ((m | 0) == -1) B = 1 + else { + C = ((A >>> 0) % 3 | 0 | 0) == 0 ? (m + -2) | 0 : A + if ((C | 0) == -1) { + B = 1 + break + } + D = f[((f[(g + 12) >> 2] | 0) + (C << 2)) >> 2] | 0 + C = (D + 1) | 0 + if ((D | 0) == -1) { + B = 1 + break + } + B = + ((((C >>> 0) % 3 | 0 | 0) == 0 ? (D + -2) | 0 : C) | 0) == + -1 + } + while (0) + f[v >> 2] = s | r + A = f[b >> 2] | 0 + f[e >> 2] = A + m = + f[ + ((f[((f[y >> 2] | 0) + 96) >> 2] | 0) + + (((((A >>> 0) / 3) | 0) * 12) | 0) + + (((A >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + A = f[t >> 2] | 0 + f[d >> 2] = m + C = f[(A + 4) >> 2] | 0 + A = (C + 4) | 0 + D = f[A >> 2] | 0 + if ((D | 0) == (f[(C + 8) >> 2] | 0)) Ci(C, d) + else { + f[D >> 2] = m + f[A >> 2] = D + 4 + } + D = f[w >> 2] | 0 + A = (D + 4) | 0 + m = f[A >> 2] | 0 + if ((m | 0) == (f[(D + 8) >> 2] | 0)) { + Ci(D, e) + E = f[w >> 2] | 0 + } else { + f[m >> 2] = f[e >> 2] + f[A >> 2] = m + 4 + E = D + } + D = (E + 24) | 0 + f[((f[(E + 12) >> 2] | 0) + (q << 2)) >> 2] = f[D >> 2] + f[D >> 2] = (f[D >> 2] | 0) + 1 + D = f[n >> 2] | 0 + m = f[b >> 2] | 0 + if (B) + if ((m | 0) == -1) { + z = 63 + break b + } else { + F = m + G = D + z = 64 + break + } + do + if ((m | 0) == -1) H = -1 + else { + A = (m + 1) | 0 + C = ((A >>> 0) % 3 | 0 | 0) == 0 ? (m + -2) | 0 : A + if ((C | 0) == -1) { + H = -1 + break + } + H = f[((f[(D + 12) >> 2] | 0) + (C << 2)) >> 2] | 0 + } + while (0) + f[b >> 2] = H + I = ((H >>> 0) / 3) | 0 + J = D + } else { + F = x + G = g + z = 64 + } + while (0) + if ((z | 0) == 64) { + z = 0 + q = (F + 1) | 0 + r = ((q >>> 0) % 3 | 0 | 0) == 0 ? (F + -2) | 0 : q + if ((r | 0) == -1) K = -1 + else K = f[((f[(G + 12) >> 2] | 0) + (r << 2)) >> 2] | 0 + f[d >> 2] = K + r = ((((F >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + F) | 0 + if ((r | 0) == -1) L = -1 + else L = f[((f[(G + 12) >> 2] | 0) + (r << 2)) >> 2] | 0 + r = (K | 0) == -1 + q = ((K >>> 0) / 3) | 0 + s = r ? -1 : q + v = (L | 0) == -1 + m = ((L >>> 0) / 3) | 0 + C = v ? -1 : m + do + if (!r) { + A = f[j >> 2] | 0 + if ((f[(A + ((s >>> 5) << 2)) >> 2] & (1 << (s & 31))) | 0) { + z = 70 + break + } + if (v) { + M = K + N = q + break + } + if (!(f[(A + ((C >>> 5) << 2)) >> 2] & (1 << (C & 31)))) { + z = 75 + break b + } else { + M = K + N = q + } + } else z = 70 + while (0) + if ((z | 0) == 70) { + z = 0 + if (v) { + z = 72 + break + } + if ( + !( + f[((f[j >> 2] | 0) + ((C >>> 5) << 2)) >> 2] & + (1 << (C & 31)) + ) + ) { + M = L + N = m + } else { + z = 72 + break + } + } + f[b >> 2] = M + I = N + J = G + } + q = ((f[j >> 2] | 0) + ((I >>> 5) << 2)) | 0 + f[q >> 2] = f[q >> 2] | (1 << (I & 31)) + x = f[b >> 2] | 0 + if ((x | 0) == -1) { + h = 0 + z = 80 + break a + } else g = J + } + do + if ((z | 0) == 63) { + z = 0 + f[d >> 2] = -1 + z = 72 + } else if ((z | 0) == 75) { + z = 0 + g = f[l >> 2] | 0 + f[(g + -4) >> 2] = L + if ((g | 0) == (f[o >> 2] | 0)) { + Ci(i, d) + O = f[l >> 2] | 0 + break + } else { + f[g >> 2] = f[d >> 2] + x = (g + 4) | 0 + f[l >> 2] = x + O = x + break + } + } + while (0) + if ((z | 0) == 72) { + z = 0 + x = ((f[l >> 2] | 0) + -4) | 0 + f[l >> 2] = x + O = x + } + P = f[i >> 2] | 0 + Q = O + } else { + x = (a + -4) | 0 + f[l >> 2] = x + P = k + Q = x + } + if ((P | 0) == (Q | 0)) { + h = 1 + z = 80 + break + } else { + a = Q + k = P + } + } + if ((z | 0) == 80) { + u = c + return h | 0 + } + return 0 + } + function Xb(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = Oa, + da = Oa, + ea = Oa, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0 + e = u + u = (u + 48) | 0 + g = (e + 20) | 0 + i = e + j = (e + 8) | 0 + k = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[k >> 2] = $(1.0) + l = (a + 80) | 0 + m = f[l >> 2] | 0 + f[j >> 2] = 0 + o = (j + 4) | 0 + f[o >> 2] = 0 + f[(j + 8) >> 2] = 0 + if (m) { + if (m >>> 0 > 1073741823) mq(j) + p = m << 2 + q = dn(p) | 0 + f[j >> 2] = q + r = (q + (m << 2)) | 0 + f[(j + 8) >> 2] = r + hj(q | 0, 0, p | 0) | 0 + f[o >> 2] = r + r = (c + 48) | 0 + p = (c + 40) | 0 + m = (g + 4) | 0 + s = (g + 12) | 0 + t = (g + 8) | 0 + v = (a + 40) | 0 + w = (a + 64) | 0 + x = f[d >> 2] | 0 + d = q + y = 0 + z = 0 + A = q + B = q + C = q + q = 0 + while (1) { + D = r + E = f[D >> 2] | 0 + F = f[(D + 4) >> 2] | 0 + D = p + G = on(f[D >> 2] | 0, f[(D + 4) >> 2] | 0, (x + y) | 0, 0) | 0 + D = Tn(G | 0, I | 0, E | 0, F | 0) | 0 + F = ((f[f[c >> 2] >> 2] | 0) + D) | 0 + D = F + E = + h[D >> 0] | + (h[(D + 1) >> 0] << 8) | + (h[(D + 2) >> 0] << 16) | + (h[(D + 3) >> 0] << 24) + D = (F + 4) | 0 + F = + h[D >> 0] | + (h[(D + 1) >> 0] << 8) | + (h[(D + 2) >> 0] << 16) | + (h[(D + 3) >> 0] << 24) + D = i + f[D >> 2] = E + f[(D + 4) >> 2] = F + D = ((E ^ 318) + 239) ^ F + G = (q | 0) == 0 + a: do + if (!G) { + H = (q + -1) | 0 + J = ((H & q) | 0) == 0 + if (!J) + if (D >>> 0 < q >>> 0) K = D + else K = (D >>> 0) % (q >>> 0) | 0 + else K = D & H + L = f[((f[g >> 2] | 0) + (K << 2)) >> 2] | 0 + do + if (L | 0 ? ((M = f[L >> 2] | 0), M | 0) : 0) { + b: do + if (J) { + N = M + while (1) { + O = f[(N + 4) >> 2] | 0 + P = (O | 0) == (D | 0) + if (!(P | (((O & H) | 0) == (K | 0)))) { + Q = 27 + break b + } + if ( + (P ? (f[(N + 8) >> 2] | 0) == (E | 0) : 0) + ? (f[(N + 12) >> 2] | 0) == (F | 0) + : 0 + ) { + R = N + Q = 26 + break b + } + N = f[N >> 2] | 0 + if (!N) { + Q = 27 + break + } + } + } else { + N = M + while (1) { + P = f[(N + 4) >> 2] | 0 + if ((P | 0) == (D | 0)) { + if ( + (f[(N + 8) >> 2] | 0) == (E | 0) + ? (f[(N + 12) >> 2] | 0) == (F | 0) + : 0 + ) { + R = N + Q = 26 + break b + } + } else { + if (P >>> 0 < q >>> 0) S = P + else S = (P >>> 0) % (q >>> 0) | 0 + if ((S | 0) != (K | 0)) { + Q = 27 + break b + } + } + N = f[N >> 2] | 0 + if (!N) { + Q = 27 + break + } + } + } + while (0) + if ((Q | 0) == 26) { + Q = 0 + f[(A + (y << 2)) >> 2] = f[(R + 16) >> 2] + T = d + U = z + V = C + X = B + Y = A + break a + } else if ((Q | 0) == 27) { + Q = 0 + if (G) { + Z = 0 + Q = 46 + break a + } else break + } + } + while (0) + H = (q + -1) | 0 + J = ((H & q) | 0) == 0 + if (!J) + if (D >>> 0 < q >>> 0) _ = D + else _ = (D >>> 0) % (q >>> 0) | 0 + else _ = H & D + L = f[((f[g >> 2] | 0) + (_ << 2)) >> 2] | 0 + if ((L | 0) != 0 ? ((M = f[L >> 2] | 0), (M | 0) != 0) : 0) { + if (J) { + J = M + while (1) { + L = f[(J + 4) >> 2] | 0 + if (!(((L | 0) == (D | 0)) | (((L & H) | 0) == (_ | 0)))) { + Z = _ + Q = 46 + break a + } + if ( + (f[(J + 8) >> 2] | 0) == (E | 0) + ? (f[(J + 12) >> 2] | 0) == (F | 0) + : 0 + ) { + Q = 61 + break a + } + J = f[J >> 2] | 0 + if (!J) { + Z = _ + Q = 46 + break a + } + } + } else aa = M + while (1) { + J = f[(aa + 4) >> 2] | 0 + if ((J | 0) != (D | 0)) { + if (J >>> 0 < q >>> 0) ba = J + else ba = (J >>> 0) % (q >>> 0) | 0 + if ((ba | 0) != (_ | 0)) { + Z = _ + Q = 46 + break a + } + } + if ( + (f[(aa + 8) >> 2] | 0) == (E | 0) + ? (f[(aa + 12) >> 2] | 0) == (F | 0) + : 0 + ) { + Q = 61 + break a + } + aa = f[aa >> 2] | 0 + if (!aa) { + Z = _ + Q = 46 + break + } + } + } else { + Z = _ + Q = 46 + } + } else { + Z = 0 + Q = 46 + } + while (0) + if ((Q | 0) == 46) { + Q = 0 + M = dn(20) | 0 + J = (M + 8) | 0 + f[J >> 2] = E + f[(J + 4) >> 2] = F + f[(M + 16) >> 2] = z + f[(M + 4) >> 2] = D + f[M >> 2] = 0 + ca = $((((f[s >> 2] | 0) + 1) | 0) >>> 0) + da = $(q >>> 0) + ea = $(n[k >> 2]) + do + if (G | ($(ea * da) < ca)) { + J = + (q << 1) | (((q >>> 0 < 3) | ((((q + -1) & q) | 0) != 0)) & 1) + H = ~~$(W($(ca / ea))) >>> 0 + Ih(g, J >>> 0 < H >>> 0 ? H : J) + J = f[m >> 2] | 0 + H = (J + -1) | 0 + if (!(H & J)) { + fa = J + ga = H & D + break + } + if (D >>> 0 < J >>> 0) { + fa = J + ga = D + } else { + fa = J + ga = (D >>> 0) % (J >>> 0) | 0 + } + } else { + fa = q + ga = Z + } + while (0) + D = ((f[g >> 2] | 0) + (ga << 2)) | 0 + G = f[D >> 2] | 0 + if (!G) { + f[M >> 2] = f[t >> 2] + f[t >> 2] = M + f[D >> 2] = t + D = f[M >> 2] | 0 + if (D | 0) { + F = f[(D + 4) >> 2] | 0 + D = (fa + -1) | 0 + if (D & fa) + if (F >>> 0 < fa >>> 0) ha = F + else ha = (F >>> 0) % (fa >>> 0) | 0 + else ha = F & D + ia = ((f[g >> 2] | 0) + (ha << 2)) | 0 + Q = 59 + } + } else { + f[M >> 2] = f[G >> 2] + ia = G + Q = 59 + } + if ((Q | 0) == 59) { + Q = 0 + f[ia >> 2] = M + } + f[s >> 2] = (f[s >> 2] | 0) + 1 + Q = 61 + } + if ((Q | 0) == 61) { + Q = 0 + G = v + D = f[G >> 2] | 0 + F = on(D | 0, f[(G + 4) >> 2] | 0, z | 0, 0) | 0 + Rg(((f[f[w >> 2] >> 2] | 0) + F) | 0, i | 0, D | 0) | 0 + D = f[j >> 2] | 0 + f[(D + (y << 2)) >> 2] = z + T = D + U = (z + 1) | 0 + V = D + X = D + Y = D + } + D = (y + 1) | 0 + ja = f[l >> 2] | 0 + if (D >>> 0 >= ja >>> 0) break + d = T + y = D + z = U + A = Y + B = X + C = V + q = f[m >> 2] | 0 + } + if ((U | 0) == (ja | 0)) ka = X + else { + X = (a + 84) | 0 + if (!(b[X >> 0] | 0)) { + m = f[(a + 72) >> 2] | 0 + q = f[(a + 68) >> 2] | 0 + C = q + if ((m | 0) == (q | 0)) la = T + else { + B = (m - q) >> 2 + q = 0 + do { + m = (C + (q << 2)) | 0 + f[m >> 2] = f[(V + (f[m >> 2] << 2)) >> 2] + q = (q + 1) | 0 + } while (q >>> 0 < B >>> 0) + la = T + } + } else { + b[X >> 0] = 0 + X = (a + 68) | 0 + T = (a + 72) | 0 + B = f[T >> 2] | 0 + q = f[X >> 2] | 0 + V = (B - q) >> 2 + C = q + q = B + if (ja >>> 0 <= V >>> 0) + if ( + ja >>> 0 < V >>> 0 + ? ((B = (C + (ja << 2)) | 0), (B | 0) != (q | 0)) + : 0 + ) { + f[T >> 2] = q + (~(((q + -4 - B) | 0) >>> 2) << 2) + ma = ja + } else ma = ja + else { + kh(X, (ja - V) | 0, 1204) + ma = f[l >> 2] | 0 + } + V = f[j >> 2] | 0 + if (!ma) la = V + else { + j = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(j + (a << 2)) >> 2] = f[(V + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ma >>> 0) + la = V + } + } + f[l >> 2] = U + ka = la + } + if (!ka) na = U + else { + la = f[o >> 2] | 0 + if ((la | 0) != (ka | 0)) + f[o >> 2] = la + (~(((la + -4 - ka) | 0) >>> 2) << 2) + br(ka) + na = U + } + } else na = 0 + U = f[(g + 8) >> 2] | 0 + if (U | 0) { + ka = U + do { + U = ka + ka = f[ka >> 2] | 0 + br(U) + } while ((ka | 0) != 0) + } + ka = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!ka) { + u = e + return na | 0 + } + br(ka) + u = e + return na | 0 + } + function Yb(a, c, e) { + a = a | 0 + c = c | 0 + e = e | 0 + var g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = Oa, + fa = Oa, + ga = Oa, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0 + g = u + u = (u + 48) | 0 + i = (g + 12) | 0 + j = (g + 32) | 0 + k = g + l = (i + 16) | 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + n[l >> 2] = $(1.0) + m = (a + 80) | 0 + o = f[m >> 2] | 0 + f[k >> 2] = 0 + p = (k + 4) | 0 + f[p >> 2] = 0 + f[(k + 8) >> 2] = 0 + if (o) { + if (o >>> 0 > 1073741823) mq(k) + q = o << 2 + r = dn(q) | 0 + f[k >> 2] = r + s = (r + (o << 2)) | 0 + f[(k + 8) >> 2] = s + hj(r | 0, 0, q | 0) | 0 + f[p >> 2] = s + s = (c + 48) | 0 + q = (c + 40) | 0 + o = (i + 4) | 0 + t = (i + 12) | 0 + v = (i + 8) | 0 + w = (a + 40) | 0 + x = (a + 64) | 0 + y = f[e >> 2] | 0 + e = r + z = 0 + A = 0 + B = r + C = r + D = 0 + E = r + while (1) { + r = s + F = f[r >> 2] | 0 + G = f[(r + 4) >> 2] | 0 + r = q + H = on(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, (y + z) | 0, 0) | 0 + r = Tn(H | 0, I | 0, F | 0, G | 0) | 0 + G = ((f[f[c >> 2] >> 2] | 0) + r) | 0 + r = h[G >> 0] | (h[(G + 1) >> 0] << 8) + d[j >> 1] = r + G = r & 255 + F = (r & 65535) >>> 8 + H = F & 255 + J = ((((((r & 255) ^ 318) + 239) << 16) >> 16) ^ F) & 65535 + F = (D | 0) == 0 + a: do + if (!F) { + K = (D + -1) | 0 + L = ((K & D) | 0) == 0 + if (!L) + if (D >>> 0 > J >>> 0) M = J + else M = (J >>> 0) % (D >>> 0) | 0 + else M = K & J + N = f[((f[i >> 2] | 0) + (M << 2)) >> 2] | 0 + do + if (N | 0 ? ((O = f[N >> 2] | 0), O | 0) : 0) { + b: do + if (L) { + P = O + while (1) { + Q = f[(P + 4) >> 2] | 0 + R = (Q | 0) == (J | 0) + if (!(R | (((Q & K) | 0) == (M | 0)))) { + S = 27 + break b + } + if ( + ( + R + ? ((R = (P + 8) | 0), + (b[R >> 0] | 0) == (G << 24) >> 24) + : 0 + ) + ? (b[(R + 1) >> 0] | 0) == (H << 24) >> 24 + : 0 + ) { + T = P + S = 26 + break b + } + P = f[P >> 2] | 0 + if (!P) { + S = 27 + break + } + } + } else { + P = O + while (1) { + R = f[(P + 4) >> 2] | 0 + if ((R | 0) == (J | 0)) { + Q = (P + 8) | 0 + if ( + (b[Q >> 0] | 0) == (G << 24) >> 24 + ? (b[(Q + 1) >> 0] | 0) == (H << 24) >> 24 + : 0 + ) { + T = P + S = 26 + break b + } + } else { + if (R >>> 0 < D >>> 0) U = R + else U = (R >>> 0) % (D >>> 0) | 0 + if ((U | 0) != (M | 0)) { + S = 27 + break b + } + } + P = f[P >> 2] | 0 + if (!P) { + S = 27 + break + } + } + } + while (0) + if ((S | 0) == 26) { + S = 0 + f[(E + (z << 2)) >> 2] = f[(T + 12) >> 2] + V = e + X = A + Y = C + Z = B + _ = E + break a + } else if ((S | 0) == 27) { + S = 0 + if (F) { + aa = 0 + S = 46 + break a + } else break + } + } + while (0) + K = (D + -1) | 0 + L = ((K & D) | 0) == 0 + if (!L) + if (D >>> 0 > J >>> 0) ba = J + else ba = (J >>> 0) % (D >>> 0) | 0 + else ba = K & J + N = f[((f[i >> 2] | 0) + (ba << 2)) >> 2] | 0 + if ((N | 0) != 0 ? ((O = f[N >> 2] | 0), (O | 0) != 0) : 0) { + if (L) { + L = O + while (1) { + N = f[(L + 4) >> 2] | 0 + if (!(((N | 0) == (J | 0)) | (((N & K) | 0) == (ba | 0)))) { + aa = ba + S = 46 + break a + } + N = (L + 8) | 0 + if ( + (b[N >> 0] | 0) == (G << 24) >> 24 + ? (b[(N + 1) >> 0] | 0) == (H << 24) >> 24 + : 0 + ) { + S = 61 + break a + } + L = f[L >> 2] | 0 + if (!L) { + aa = ba + S = 46 + break a + } + } + } else ca = O + while (1) { + L = f[(ca + 4) >> 2] | 0 + if ((L | 0) != (J | 0)) { + if (L >>> 0 < D >>> 0) da = L + else da = (L >>> 0) % (D >>> 0) | 0 + if ((da | 0) != (ba | 0)) { + aa = ba + S = 46 + break a + } + } + L = (ca + 8) | 0 + if ( + (b[L >> 0] | 0) == (G << 24) >> 24 + ? (b[(L + 1) >> 0] | 0) == (H << 24) >> 24 + : 0 + ) { + S = 61 + break a + } + ca = f[ca >> 2] | 0 + if (!ca) { + aa = ba + S = 46 + break + } + } + } else { + aa = ba + S = 46 + } + } else { + aa = 0 + S = 46 + } + while (0) + if ((S | 0) == 46) { + S = 0 + H = dn(16) | 0 + G = (H + 8) | 0 + b[G >> 0] = r + b[(G + 1) >> 0] = r >> 8 + f[(H + 12) >> 2] = A + f[(H + 4) >> 2] = J + f[H >> 2] = 0 + ea = $((((f[t >> 2] | 0) + 1) | 0) >>> 0) + fa = $(D >>> 0) + ga = $(n[l >> 2]) + do + if (F | ($(ga * fa) < ea)) { + G = + (D << 1) | (((D >>> 0 < 3) | ((((D + -1) & D) | 0) != 0)) & 1) + O = ~~$(W($(ea / ga))) >>> 0 + Lh(i, G >>> 0 < O >>> 0 ? O : G) + G = f[o >> 2] | 0 + O = (G + -1) | 0 + if (!(O & G)) { + ha = G + ia = O & J + break + } + if (G >>> 0 > J >>> 0) { + ha = G + ia = J + } else { + ha = G + ia = (J >>> 0) % (G >>> 0) | 0 + } + } else { + ha = D + ia = aa + } + while (0) + J = ((f[i >> 2] | 0) + (ia << 2)) | 0 + F = f[J >> 2] | 0 + if (!F) { + f[H >> 2] = f[v >> 2] + f[v >> 2] = H + f[J >> 2] = v + J = f[H >> 2] | 0 + if (J | 0) { + r = f[(J + 4) >> 2] | 0 + J = (ha + -1) | 0 + if (J & ha) + if (r >>> 0 < ha >>> 0) ja = r + else ja = (r >>> 0) % (ha >>> 0) | 0 + else ja = r & J + ka = ((f[i >> 2] | 0) + (ja << 2)) | 0 + S = 59 + } + } else { + f[H >> 2] = f[F >> 2] + ka = F + S = 59 + } + if ((S | 0) == 59) { + S = 0 + f[ka >> 2] = H + } + f[t >> 2] = (f[t >> 2] | 0) + 1 + S = 61 + } + if ((S | 0) == 61) { + S = 0 + F = w + J = f[F >> 2] | 0 + r = on(J | 0, f[(F + 4) >> 2] | 0, A | 0, 0) | 0 + Rg(((f[f[x >> 2] >> 2] | 0) + r) | 0, j | 0, J | 0) | 0 + J = f[k >> 2] | 0 + f[(J + (z << 2)) >> 2] = A + V = J + X = (A + 1) | 0 + Y = J + Z = J + _ = J + } + J = (z + 1) | 0 + la = f[m >> 2] | 0 + if (J >>> 0 >= la >>> 0) break + e = V + z = J + A = X + B = Z + C = Y + D = f[o >> 2] | 0 + E = _ + } + if ((X | 0) == (la | 0)) ma = Z + else { + Z = (a + 84) | 0 + if (!(b[Z >> 0] | 0)) { + _ = f[(a + 72) >> 2] | 0 + E = f[(a + 68) >> 2] | 0 + o = E + if ((_ | 0) == (E | 0)) na = V + else { + D = (_ - E) >> 2 + E = 0 + do { + _ = (o + (E << 2)) | 0 + f[_ >> 2] = f[(Y + (f[_ >> 2] << 2)) >> 2] + E = (E + 1) | 0 + } while (E >>> 0 < D >>> 0) + na = V + } + } else { + b[Z >> 0] = 0 + Z = (a + 68) | 0 + V = (a + 72) | 0 + D = f[V >> 2] | 0 + E = f[Z >> 2] | 0 + Y = (D - E) >> 2 + o = E + E = D + if (la >>> 0 <= Y >>> 0) + if ( + la >>> 0 < Y >>> 0 + ? ((D = (o + (la << 2)) | 0), (D | 0) != (E | 0)) + : 0 + ) { + f[V >> 2] = E + (~(((E + -4 - D) | 0) >>> 2) << 2) + oa = la + } else oa = la + else { + kh(Z, (la - Y) | 0, 1204) + oa = f[m >> 2] | 0 + } + Y = f[k >> 2] | 0 + if (!oa) na = Y + else { + k = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(k + (a << 2)) >> 2] = f[(Y + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < oa >>> 0) + na = Y + } + } + f[m >> 2] = X + ma = na + } + if (!ma) pa = X + else { + na = f[p >> 2] | 0 + if ((na | 0) != (ma | 0)) + f[p >> 2] = na + (~(((na + -4 - ma) | 0) >>> 2) << 2) + br(ma) + pa = X + } + } else pa = 0 + X = f[(i + 8) >> 2] | 0 + if (X | 0) { + ma = X + do { + X = ma + ma = f[ma >> 2] | 0 + br(X) + } while ((ma | 0) != 0) + } + ma = f[i >> 2] | 0 + f[i >> 2] = 0 + if (!ma) { + u = g + return pa | 0 + } + br(ma) + u = g + return pa | 0 + } + function Zb(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = c + g = (c + 4) | 0 + h = (a + 16) | 0 + i = f[h >> 2] | 0 + j = (a + 20) | 0 + k = f[j >> 2] | 0 + if ((k | 0) == (i | 0)) l = i + else { + m = (k + (~(((k + -4 - i) | 0) >>> 2) << 2)) | 0 + f[j >> 2] = m + l = m + } + m = (a + 24) | 0 + if ((l | 0) == (f[m >> 2] | 0)) { + Ci(h, b) + n = f[h >> 2] | 0 + o = f[j >> 2] | 0 + } else { + f[l >> 2] = f[b >> 2] + k = (l + 4) | 0 + f[j >> 2] = k + n = i + o = k + } + k = f[(a + 8) >> 2] | 0 + i = ((f[(k + 100) >> 2] | 0) - (f[(k + 96) >> 2] | 0)) | 0 + k = ((i | 0) / 12) | 0 + if ((n | 0) == (o | 0)) { + u = c + return 1 + } + n = (a + 28) | 0 + l = (i | 0) > 0 + i = (a + 164) | 0 + p = (a + 12) | 0 + q = (a + 76) | 0 + r = (a + 80) | 0 + s = (a + 72) | 0 + t = (a + 200) | 0 + v = (a + 320) | 0 + w = (a + 152) | 0 + x = (a + 84) | 0 + y = (a + 324) | 0 + z = (a + 292) | 0 + A = (a + 304) | 0 + B = (a + 316) | 0 + C = (a + 328) | 0 + D = (a + 336) | 0 + E = (a + 332) | 0 + F = (a + 168) | 0 + G = (a + 140) | 0 + H = (a + 120) | 0 + I = o + do { + o = f[(I + -4) >> 2] | 0 + f[b >> 2] = o + a: do + if ( + (o | 0) != -1 + ? ((J = ((o >>> 0) / 3) | 0), + (K = f[n >> 2] | 0), + ((f[(K + ((J >>> 5) << 2)) >> 2] & (1 << (J & 31))) | 0) == 0) + : 0 + ) { + if (l) { + J = 0 + L = K + b: while (1) { + K = (J + 1) | 0 + f[i >> 2] = (f[i >> 2] | 0) + 1 + M = f[b >> 2] | 0 + N = (M | 0) == -1 ? -1 : ((M >>> 0) / 3) | 0 + M = (L + ((N >>> 5) << 2)) | 0 + f[M >> 2] = (1 << (N & 31)) | f[M >> 2] + M = f[q >> 2] | 0 + if ((M | 0) == (f[r >> 2] | 0)) Ci(s, b) + else { + f[M >> 2] = f[b >> 2] + f[q >> 2] = M + 4 + } + f[v >> 2] = f[b >> 2] + M = f[b >> 2] | 0 + if ((M | 0) == -1) O = -1 + else O = f[((f[f[p >> 2] >> 2] | 0) + (M << 2)) >> 2] | 0 + P = (f[((f[w >> 2] | 0) + (O << 2)) >> 2] | 0) != -1 + Q = ((f[x >> 2] | 0) + ((O >>> 5) << 2)) | 0 + R = 1 << (O & 31) + S = f[Q >> 2] | 0 + do + if (!(S & R)) { + f[Q >> 2] = S | R + if (P) { + T = f[b >> 2] | 0 + U = 38 + break + } + f[y >> 2] = (f[y >> 2] | 0) + 1 + V = f[v >> 2] | 0 + W = (V + 1) | 0 + do + if ((V | 0) != -1) { + X = ((W >>> 0) % 3 | 0 | 0) == 0 ? (V + -2) | 0 : W + if (!((V >>> 0) % 3 | 0)) { + Y = (V + 2) | 0 + Z = X + break + } else { + Y = (V + -1) | 0 + Z = X + break + } + } else { + Y = -1 + Z = -1 + } + while (0) + V = f[z >> 2] | 0 + W = f[A >> 2] | 0 + X = (W + (f[(V + (Z << 2)) >> 2] << 2)) | 0 + _ = f[X >> 2] | 0 + f[X >> 2] = _ + -1 + X = (W + (f[(V + (Y << 2)) >> 2] << 2)) | 0 + f[X >> 2] = (f[X >> 2] | 0) + -1 + X = f[B >> 2] | 0 + if ((X | 0) != -1) { + V = f[C >> 2] | 0 + if ((_ | 0) < (V | 0)) $ = V + else { + W = f[E >> 2] | 0 + $ = (_ | 0) > (W | 0) ? W : _ + } + _ = ($ - V) | 0 + V = f[D >> 2] | 0 + W = f[(3384 + (X << 2)) >> 2] | 0 + f[d >> 2] = W + X = (V + ((_ * 12) | 0) + 4) | 0 + aa = f[X >> 2] | 0 + if ( + aa >>> 0 < + (f[(V + ((_ * 12) | 0) + 8) >> 2] | 0) >>> 0 + ) { + f[aa >> 2] = W + f[X >> 2] = aa + 4 + } else Ci((V + ((_ * 12) | 0)) | 0, d) + } + f[B >> 2] = 0 + _ = f[b >> 2] | 0 + V = (_ + 1) | 0 + if ( + (_ | 0) != -1 + ? ((aa = + ((V >>> 0) % 3 | 0 | 0) == 0 ? (_ + -2) | 0 : V), + (aa | 0) != -1) + : 0 + ) + ba = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (aa << 2)) >> + 2 + ] | 0 + else ba = -1 + f[b >> 2] = ba + } else { + T = M + U = 38 + } + while (0) + if ((U | 0) == 38) { + U = 0 + M = (T + 1) | 0 + if ((T | 0) == -1) { + U = 43 + break + } + R = ((M >>> 0) % 3 | 0 | 0) == 0 ? (T + -2) | 0 : M + if ((R | 0) == -1) ca = -1 + else + ca = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (R << 2)) >> 2 + ] | 0 + f[e >> 2] = ca + R = ((((T >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + T) | 0 + if ((R | 0) == -1) da = -1 + else + da = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (R << 2)) >> 2 + ] | 0 + R = (ca | 0) == -1 + S = R ? -1 : ((ca >>> 0) / 3) | 0 + ea = (da | 0) == -1 + fa = ea ? -1 : ((da >>> 0) / 3) | 0 + Q = ((M >>> 0) % 3 | 0 | 0) == 0 ? (T + -2) | 0 : M + if ( + ( + (Q | 0) != -1 + ? ((M = f[((f[p >> 2] | 0) + 12) >> 2] | 0), + (aa = f[(M + (Q << 2)) >> 2] | 0), + (aa | 0) != -1) + : 0 + ) + ? ((Q = ((aa >>> 0) / 3) | 0), + (aa = f[n >> 2] | 0), + ((f[(aa + ((Q >>> 5) << 2)) >> 2] & (1 << (Q & 31))) | + 0) == + 0) + : 0 + ) { + Q = ((((T >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + T) | 0 + do + if ((Q | 0) != -1) { + V = f[(M + (Q << 2)) >> 2] | 0 + if ((V | 0) == -1) break + _ = ((V >>> 0) / 3) | 0 + if ( + !(f[(aa + ((_ >>> 5) << 2)) >> 2] & (1 << (_ & 31))) + ) { + U = 62 + break b + } + } + while (0) + if (!ea) jf(a, f[i >> 2] | 0, N, 0, fa) + hd(t, 3) + ga = f[e >> 2] | 0 + } else { + if (!R) { + jf(a, f[i >> 2] | 0, N, 1, S) + aa = f[b >> 2] | 0 + if ((aa | 0) == -1) { + U = 52 + break + } else ha = aa + } else ha = T + aa = ((((ha >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + ha) | 0 + if ((aa | 0) == -1) { + U = 52 + break + } + Q = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (aa << 2)) >> 2 + ] | 0 + if ((Q | 0) == -1) { + U = 52 + break + } + aa = ((Q >>> 0) / 3) | 0 + if ( + (f[((f[n >> 2] | 0) + ((aa >>> 5) << 2)) >> 2] & + (1 << (aa & 31))) | + 0 + ) { + U = 52 + break + } + hd(t, 5) + ga = da + } + f[b >> 2] = ga + } + if ((K | 0) >= (k | 0)) break a + J = K + L = f[n >> 2] | 0 + } + do + if ((U | 0) == 43) { + U = 0 + f[e >> 2] = -1 + U = 54 + } else if ((U | 0) == 52) { + U = 0 + if (ea) U = 54 + else { + jf(a, f[i >> 2] | 0, N, 0, fa) + U = 54 + } + } else if ((U | 0) == 62) { + U = 0 + hd(t, 1) + f[F >> 2] = (f[F >> 2] | 0) + 1 + if ( + P + ? ((L = f[((f[w >> 2] | 0) + (O << 2)) >> 2] | 0), + (((1 << (L & 31)) & + f[((f[G >> 2] | 0) + ((L >>> 5) << 2)) >> 2]) | + 0) == + 0) + : 0 + ) { + f[g >> 2] = f[b >> 2] + f[d >> 2] = f[g >> 2] + Ce(a, d, 0) | 0 + } + L = f[i >> 2] | 0 + f[d >> 2] = N + J = Sd(H, d) | 0 + f[J >> 2] = L + L = f[j >> 2] | 0 + f[(L + -4) >> 2] = da + if ((L | 0) == (f[m >> 2] | 0)) { + Ci(h, e) + break + } else { + f[L >> 2] = f[e >> 2] + f[j >> 2] = L + 4 + break + } + } + while (0) + if ((U | 0) == 54) { + U = 0 + hd(t, 7) + f[j >> 2] = (f[j >> 2] | 0) + -4 + } + } + } else U = 11 + while (0) + if ((U | 0) == 11) { + U = 0 + f[j >> 2] = I + -4 + } + I = f[j >> 2] | 0 + } while ((f[h >> 2] | 0) != (I | 0)) + u = c + return 1 + } + function _b(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = Oa, + K = Oa, + L = Oa, + M = 0, + N = 0, + O = 0, + P = 0 + e = u + u = (u + 64) | 0 + g = (e + 40) | 0 + i = (e + 16) | 0 + j = e + k = xd(a, c) | 0 + if (k | 0) { + f[i >> 2] = k + f[g >> 2] = f[i >> 2] + Xe(a, g) | 0 + } + f[j >> 2] = 0 + k = (j + 4) | 0 + f[k >> 2] = 0 + f[(j + 8) >> 2] = 0 + ri(j, 8) + l = d + d = l + m = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + d = (l + 4) | 0 + l = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + d = f[j >> 2] | 0 + o = d + b[o >> 0] = m + b[(o + 1) >> 0] = m >> 8 + b[(o + 2) >> 0] = m >> 16 + b[(o + 3) >> 0] = m >> 24 + m = (d + 4) | 0 + b[m >> 0] = l + b[(m + 1) >> 0] = l >> 8 + b[(m + 2) >> 0] = l >> 16 + b[(m + 3) >> 0] = l >> 24 + dj(i, c) + c = (i + 12) | 0 + f[c >> 2] = 0 + l = (i + 16) | 0 + f[l >> 2] = 0 + f[(i + 20) >> 2] = 0 + m = f[k >> 2] | 0 + d = f[j >> 2] | 0 + o = (m - d) | 0 + if (!o) { + p = d + q = m + r = 0 + } else { + ri(c, o) + p = f[j >> 2] | 0 + q = f[k >> 2] | 0 + r = f[c >> 2] | 0 + } + Rg(r | 0, p | 0, (q - p) | 0) | 0 + p = (i + 11) | 0 + q = b[p >> 0] | 0 + r = (q << 24) >> 24 < 0 + c = r ? f[i >> 2] | 0 : i + o = r ? f[(i + 4) >> 2] | 0 : q & 255 + if (o >>> 0 > 3) { + q = c + r = o + m = o + while (1) { + d = + X( + h[q >> 0] | + (h[(q + 1) >> 0] << 8) | + (h[(q + 2) >> 0] << 16) | + (h[(q + 3) >> 0] << 24), + 1540483477, + ) | 0 + r = (X((d >>> 24) ^ d, 1540483477) | 0) ^ (X(r, 1540483477) | 0) + m = (m + -4) | 0 + if (m >>> 0 <= 3) break + else q = (q + 4) | 0 + } + q = (o + -4) | 0 + m = q & -4 + s = (q - m) | 0 + t = (c + (m + 4)) | 0 + v = r + } else { + s = o + t = c + v = o + } + switch (s | 0) { + case 3: { + w = (h[(t + 2) >> 0] << 16) ^ v + x = 10 + break + } + case 2: { + w = v + x = 10 + break + } + case 1: { + y = v + x = 11 + break + } + default: + z = v + } + if ((x | 0) == 10) { + y = (h[(t + 1) >> 0] << 8) ^ w + x = 11 + } + if ((x | 0) == 11) z = X(y ^ h[t >> 0], 1540483477) | 0 + t = X((z >>> 13) ^ z, 1540483477) | 0 + z = (t >>> 15) ^ t + t = (a + 4) | 0 + y = f[t >> 2] | 0 + w = (y | 0) == 0 + a: do + if (!w) { + v = (y + -1) | 0 + s = ((v & y) | 0) == 0 + if (!s) + if (z >>> 0 < y >>> 0) A = z + else A = (z >>> 0) % (y >>> 0) | 0 + else A = z & v + r = f[((f[a >> 2] | 0) + (A << 2)) >> 2] | 0 + if ((r | 0) != 0 ? ((m = f[r >> 2] | 0), (m | 0) != 0) : 0) { + r = (o | 0) == 0 + if (s) { + if (r) { + s = m + while (1) { + q = f[(s + 4) >> 2] | 0 + if (!(((q | 0) == (z | 0)) | (((q & v) | 0) == (A | 0)))) { + B = A + x = 52 + break a + } + q = b[(s + 8 + 11) >> 0] | 0 + if ( + !( + ((q << 24) >> 24 < 0 ? f[(s + 12) >> 2] | 0 : q & 255) | 0 + ) + ) + break a + s = f[s >> 2] | 0 + if (!s) { + B = A + x = 52 + break a + } + } + } else C = m + while (1) { + s = f[(C + 4) >> 2] | 0 + if (!(((s | 0) == (z | 0)) | (((s & v) | 0) == (A | 0)))) { + B = A + x = 52 + break a + } + s = (C + 8) | 0 + q = b[(s + 11) >> 0] | 0 + d = (q << 24) >> 24 < 0 + D = q & 255 + do + if (((d ? f[(C + 12) >> 2] | 0 : D) | 0) == (o | 0)) { + q = f[s >> 2] | 0 + if (d) + if (!(Pk(q, c, o) | 0)) break a + else break + if ((b[c >> 0] | 0) == ((q & 255) << 24) >> 24) { + q = s + E = D + F = c + do { + E = (E + -1) | 0 + q = (q + 1) | 0 + if (!E) break a + F = (F + 1) | 0 + } while ((b[q >> 0] | 0) == (b[F >> 0] | 0)) + } + } + while (0) + C = f[C >> 2] | 0 + if (!C) { + B = A + x = 52 + break a + } + } + } + if (r) { + v = m + while (1) { + D = f[(v + 4) >> 2] | 0 + if ((D | 0) != (z | 0)) { + if (D >>> 0 < y >>> 0) G = D + else G = (D >>> 0) % (y >>> 0) | 0 + if ((G | 0) != (A | 0)) { + B = A + x = 52 + break a + } + } + D = b[(v + 8 + 11) >> 0] | 0 + if ( + !(((D << 24) >> 24 < 0 ? f[(v + 12) >> 2] | 0 : D & 255) | 0) + ) + break a + v = f[v >> 2] | 0 + if (!v) { + B = A + x = 52 + break a + } + } + } else H = m + while (1) { + v = f[(H + 4) >> 2] | 0 + if ((v | 0) != (z | 0)) { + if (v >>> 0 < y >>> 0) I = v + else I = (v >>> 0) % (y >>> 0) | 0 + if ((I | 0) != (A | 0)) { + B = A + x = 52 + break a + } + } + v = (H + 8) | 0 + r = b[(v + 11) >> 0] | 0 + D = (r << 24) >> 24 < 0 + s = r & 255 + do + if (((D ? f[(H + 12) >> 2] | 0 : s) | 0) == (o | 0)) { + r = f[v >> 2] | 0 + if (D) + if (!(Pk(r, c, o) | 0)) break a + else break + if ((b[c >> 0] | 0) == ((r & 255) << 24) >> 24) { + r = v + d = s + F = c + do { + d = (d + -1) | 0 + r = (r + 1) | 0 + if (!d) break a + F = (F + 1) | 0 + } while ((b[r >> 0] | 0) == (b[F >> 0] | 0)) + } + } + while (0) + H = f[H >> 2] | 0 + if (!H) { + B = A + x = 52 + break + } + } + } else { + B = A + x = 52 + } + } else { + B = 0 + x = 52 + } + while (0) + if ((x | 0) == 52) { + _h(g, a, z, i) + x = (a + 12) | 0 + J = $((((f[x >> 2] | 0) + 1) | 0) >>> 0) + K = $(y >>> 0) + L = $(n[(a + 16) >> 2]) + do + if (w | ($(L * K) < J)) { + A = (y << 1) | (((y >>> 0 < 3) | ((((y + -1) & y) | 0) != 0)) & 1) + H = ~~$(W($(J / L))) >>> 0 + Ph(a, A >>> 0 < H >>> 0 ? H : A) + A = f[t >> 2] | 0 + H = (A + -1) | 0 + if (!(H & A)) { + M = A + N = H & z + break + } + if (z >>> 0 < A >>> 0) { + M = A + N = z + } else { + M = A + N = (z >>> 0) % (A >>> 0) | 0 + } + } else { + M = y + N = B + } + while (0) + B = f[((f[a >> 2] | 0) + (N << 2)) >> 2] | 0 + if (!B) { + y = (a + 8) | 0 + f[f[g >> 2] >> 2] = f[y >> 2] + f[y >> 2] = f[g >> 2] + f[((f[a >> 2] | 0) + (N << 2)) >> 2] = y + y = f[g >> 2] | 0 + N = f[y >> 2] | 0 + if (!N) O = g + else { + z = f[(N + 4) >> 2] | 0 + N = (M + -1) | 0 + if (N & M) + if (z >>> 0 < M >>> 0) P = z + else P = (z >>> 0) % (M >>> 0) | 0 + else P = z & N + f[((f[a >> 2] | 0) + (P << 2)) >> 2] = y + O = g + } + } else { + f[f[g >> 2] >> 2] = f[B >> 2] + f[B >> 2] = f[g >> 2] + O = g + } + f[x >> 2] = (f[x >> 2] | 0) + 1 + f[O >> 2] = 0 + } + O = f[(i + 12) >> 2] | 0 + if (O | 0) { + if ((f[l >> 2] | 0) != (O | 0)) f[l >> 2] = O + br(O) + } + if ((b[p >> 0] | 0) < 0) br(f[i >> 2] | 0) + i = f[j >> 2] | 0 + if (!i) { + u = e + return + } + if ((f[k >> 2] | 0) != (i | 0)) f[k >> 2] = i + br(i) + u = e + return + } + function $b(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0 + e = u + u = (u + 96) | 0 + g = (e + 92) | 0 + h = (e + 88) | 0 + i = (e + 72) | 0 + j = (e + 48) | 0 + k = (e + 24) | 0 + l = e + m = (a + 16) | 0 + n = f[m >> 2] | 0 + o = f[c >> 2] | 0 + f[i >> 2] = n + f[(i + 4) >> 2] = o + c = (i + 8) | 0 + f[c >> 2] = o + b[(i + 12) >> 0] = 1 + p = (o | 0) == -1 + if (p) q = -1 + else q = f[((f[n >> 2] | 0) + (o << 2)) >> 2] | 0 + n = (a + 20) | 0 + r = f[n >> 2] | 0 + s = f[r >> 2] | 0 + if ((((f[(r + 4) >> 2] | 0) - s) >> 2) >>> 0 <= q >>> 0) mq(r) + r = (a + 8) | 0 + t = f[((f[r >> 2] | 0) + (f[(s + (q << 2)) >> 2] << 2)) >> 2] | 0 + q = (a + 4) | 0 + s = f[q >> 2] | 0 + if (!(b[(s + 84) >> 0] | 0)) + v = f[((f[(s + 68) >> 2] | 0) + (t << 2)) >> 2] | 0 + else v = t + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + f[(j + 12) >> 2] = 0 + f[(j + 16) >> 2] = 0 + f[(j + 20) >> 2] = 0 + f[h >> 2] = v + v = b[(s + 24) >> 0] | 0 + f[g >> 2] = f[h >> 2] + ub(s, g, v, j) | 0 + v = (a + 28) | 0 + a = (f[v >> 2] | 0) == 0 + a: do + if (!p) { + s = (k + 8) | 0 + t = (j + 8) | 0 + w = (k + 16) | 0 + x = (j + 16) | 0 + y = (l + 8) | 0 + z = (l + 16) | 0 + A = o + B = o + C = 0 + D = 0 + E = 0 + F = 0 + G = 0 + H = 0 + J = a + K = o + while (1) { + do + if (J) { + L = (K + 1) | 0 + if ((K | 0) == -1) { + M = A + N = -1 + O = -1 + P = -1 + break + } + Q = ((L >>> 0) % 3 | 0 | 0) == 0 ? (K + -2) | 0 : L + if ((A | 0) != -1) + if (!((A >>> 0) % 3 | 0)) { + R = A + S = (A + 2) | 0 + T = Q + U = A + V = 19 + break + } else { + R = A + S = (A + -1) | 0 + T = Q + U = A + V = 19 + break + } + else { + R = -1 + S = -1 + T = Q + U = -1 + V = 19 + } + } else { + Q = (B + 1) | 0 + L = ((Q >>> 0) % 3 | 0 | 0) == 0 ? (B + -2) | 0 : Q + if (!((B >>> 0) % 3 | 0)) { + R = A + S = (B + 2) | 0 + T = L + U = K + V = 19 + break + } else { + R = A + S = (B + -1) | 0 + T = L + U = K + V = 19 + break + } + } + while (0) + if ((V | 0) == 19) { + V = 0 + if ((T | 0) == -1) { + M = R + N = -1 + O = S + P = U + } else { + M = R + N = f[((f[f[m >> 2] >> 2] | 0) + (T << 2)) >> 2] | 0 + O = S + P = U + } + } + W = f[n >> 2] | 0 + L = f[W >> 2] | 0 + if ((((f[(W + 4) >> 2] | 0) - L) >> 2) >>> 0 <= N >>> 0) { + V = 22 + break + } + Q = f[((f[r >> 2] | 0) + (f[(L + (N << 2)) >> 2] << 2)) >> 2] | 0 + L = f[q >> 2] | 0 + if (!(b[(L + 84) >> 0] | 0)) + X = f[((f[(L + 68) >> 2] | 0) + (Q << 2)) >> 2] | 0 + else X = Q + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + f[(k + 16) >> 2] = 0 + f[(k + 20) >> 2] = 0 + f[h >> 2] = X + Q = b[(L + 24) >> 0] | 0 + f[g >> 2] = f[h >> 2] + ub(L, g, Q, k) | 0 + if ((O | 0) == -1) Y = -1 + else Y = f[((f[f[m >> 2] >> 2] | 0) + (O << 2)) >> 2] | 0 + Z = f[n >> 2] | 0 + Q = f[Z >> 2] | 0 + if ((((f[(Z + 4) >> 2] | 0) - Q) >> 2) >>> 0 <= Y >>> 0) { + V = 28 + break + } + L = f[((f[r >> 2] | 0) + (f[(Q + (Y << 2)) >> 2] << 2)) >> 2] | 0 + Q = f[q >> 2] | 0 + if (!(b[(Q + 84) >> 0] | 0)) + _ = f[((f[(Q + 68) >> 2] | 0) + (L << 2)) >> 2] | 0 + else _ = L + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[(l + 8) >> 2] = 0 + f[(l + 12) >> 2] = 0 + f[(l + 16) >> 2] = 0 + f[(l + 20) >> 2] = 0 + f[h >> 2] = _ + L = b[(Q + 24) >> 0] | 0 + f[g >> 2] = f[h >> 2] + ub(Q, g, L, l) | 0 + L = k + Q = j + $ = f[Q >> 2] | 0 + aa = f[(Q + 4) >> 2] | 0 + Q = Vn(f[L >> 2] | 0, f[(L + 4) >> 2] | 0, $ | 0, aa | 0) | 0 + L = I + ba = s + ca = t + da = f[ca >> 2] | 0 + ea = f[(ca + 4) >> 2] | 0 + ca = Vn(f[ba >> 2] | 0, f[(ba + 4) >> 2] | 0, da | 0, ea | 0) | 0 + ba = I + fa = w + ga = x + ha = f[ga >> 2] | 0 + ia = f[(ga + 4) >> 2] | 0 + ga = Vn(f[fa >> 2] | 0, f[(fa + 4) >> 2] | 0, ha | 0, ia | 0) | 0 + fa = I + ja = l + ka = Vn(f[ja >> 2] | 0, f[(ja + 4) >> 2] | 0, $ | 0, aa | 0) | 0 + aa = I + $ = y + ja = Vn(f[$ >> 2] | 0, f[($ + 4) >> 2] | 0, da | 0, ea | 0) | 0 + ea = I + da = z + $ = Vn(f[da >> 2] | 0, f[(da + 4) >> 2] | 0, ha | 0, ia | 0) | 0 + ia = I + ha = on($ | 0, ia | 0, ca | 0, ba | 0) | 0 + da = I + la = on(ja | 0, ea | 0, ga | 0, fa | 0) | 0 + ma = I + na = on(ka | 0, aa | 0, ga | 0, fa | 0) | 0 + fa = I + ga = on($ | 0, ia | 0, Q | 0, L | 0) | 0 + ia = I + $ = on(ja | 0, ea | 0, Q | 0, L | 0) | 0 + L = I + Q = on(ka | 0, aa | 0, ca | 0, ba | 0) | 0 + ba = I + ca = Vn(C | 0, D | 0, la | 0, ma | 0) | 0 + ma = Tn(ca | 0, I | 0, ha | 0, da | 0) | 0 + da = I + ha = Tn(na | 0, fa | 0, E | 0, F | 0) | 0 + fa = Vn(ha | 0, I | 0, ga | 0, ia | 0) | 0 + ia = I + ga = Vn(G | 0, H | 0, Q | 0, ba | 0) | 0 + ba = Tn(ga | 0, I | 0, $ | 0, L | 0) | 0 + L = I + ph(i) + B = f[c >> 2] | 0 + $ = (f[v >> 2] | 0) == 0 + if ((B | 0) == -1) { + oa = $ + pa = da + qa = ma + ra = ia + sa = fa + ta = L + ua = ba + break a + } else { + A = M + C = ma + D = da + E = fa + F = ia + G = ba + H = L + J = $ + K = P + } + } + if ((V | 0) == 22) mq(W) + else if ((V | 0) == 28) mq(Z) + } else { + oa = a + pa = 0 + qa = 0 + ra = 0 + sa = 0 + ta = 0 + ua = 0 + } + while (0) + a = ((pa | 0) > -1) | (((pa | 0) == -1) & (qa >>> 0 > 4294967295)) + Z = Vn(0, 0, qa | 0, pa | 0) | 0 + V = a ? pa : I + W = ((ra | 0) > -1) | (((ra | 0) == -1) & (sa >>> 0 > 4294967295)) + P = Vn(0, 0, sa | 0, ra | 0) | 0 + M = W ? ra : I + v = ((ta | 0) > -1) | (((ta | 0) == -1) & (ua >>> 0 > 4294967295)) + c = Vn(0, 0, ua | 0, ta | 0) | 0 + i = Tn((W ? sa : P) | 0, M | 0, (v ? ua : c) | 0, (v ? ta : I) | 0) | 0 + v = Tn(i | 0, I | 0, (a ? qa : Z) | 0, V | 0) | 0 + V = I + if (oa) { + if ((v | 0) <= 536870912) { + va = qa + wa = sa + xa = ua + f[d >> 2] = va + ya = (d + 4) | 0 + f[ya >> 2] = wa + za = (d + 8) | 0 + f[za >> 2] = xa + u = e + return + } + oa = Wn(v | 0, V | 0, 29) | 0 + Z = oa & 7 + oa = zk(qa | 0, pa | 0, Z | 0, 0) | 0 + a = zk(sa | 0, ra | 0, Z | 0, 0) | 0 + i = zk(ua | 0, ta | 0, Z | 0, 0) | 0 + va = oa + wa = a + xa = i + f[d >> 2] = va + ya = (d + 4) | 0 + f[ya >> 2] = wa + za = (d + 8) | 0 + f[za >> 2] = xa + u = e + return + } else { + if (!(((V | 0) > 0) | (((V | 0) == 0) & (v >>> 0 > 536870912)))) { + va = qa + wa = sa + xa = ua + f[d >> 2] = va + ya = (d + 4) | 0 + f[ya >> 2] = wa + za = (d + 8) | 0 + f[za >> 2] = xa + u = e + return + } + i = Wn(v | 0, V | 0, 29) | 0 + V = I + v = zk(qa | 0, pa | 0, i | 0, V | 0) | 0 + pa = zk(sa | 0, ra | 0, i | 0, V | 0) | 0 + ra = zk(ua | 0, ta | 0, i | 0, V | 0) | 0 + va = v + wa = pa + xa = ra + f[d >> 2] = va + ya = (d + 4) | 0 + f[ya >> 2] = wa + za = (d + 8) | 0 + f[za >> 2] = xa + u = e + return + } + } + function ac(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = Oa, + M = Oa, + N = Oa, + O = 0, + P = 0, + Q = 0, + R = 0 + e = u + u = (u + 64) | 0 + g = (e + 40) | 0 + i = (e + 16) | 0 + j = e + k = xd(a, c) | 0 + if (k | 0) { + f[i >> 2] = k + f[g >> 2] = f[i >> 2] + Xe(a, g) | 0 + } + f[j >> 2] = 0 + k = (j + 4) | 0 + f[k >> 2] = 0 + f[(j + 8) >> 2] = 0 + l = (d + 11) | 0 + m = b[l >> 0] | 0 + o = (d + 4) | 0 + p = f[o >> 2] | 0 + q = (m << 24) >> 24 < 0 ? p : m & 255 + if (!q) { + r = m + s = p + t = 0 + } else { + ri(j, q) + r = b[l >> 0] | 0 + s = f[o >> 2] | 0 + t = f[j >> 2] | 0 + } + o = (r << 24) >> 24 < 0 + Rg(t | 0, (o ? f[d >> 2] | 0 : d) | 0, (o ? s : r & 255) | 0) | 0 + dj(i, c) + c = (i + 12) | 0 + f[c >> 2] = 0 + r = (i + 16) | 0 + f[r >> 2] = 0 + f[(i + 20) >> 2] = 0 + s = f[k >> 2] | 0 + o = f[j >> 2] | 0 + d = (s - o) | 0 + if (!d) { + v = o + w = s + x = 0 + } else { + ri(c, d) + v = f[j >> 2] | 0 + w = f[k >> 2] | 0 + x = f[c >> 2] | 0 + } + Rg(x | 0, v | 0, (w - v) | 0) | 0 + v = (i + 11) | 0 + w = b[v >> 0] | 0 + x = (w << 24) >> 24 < 0 + c = x ? f[i >> 2] | 0 : i + d = x ? f[(i + 4) >> 2] | 0 : w & 255 + if (d >>> 0 > 3) { + w = c + x = d + s = d + while (1) { + o = + X( + h[w >> 0] | + (h[(w + 1) >> 0] << 8) | + (h[(w + 2) >> 0] << 16) | + (h[(w + 3) >> 0] << 24), + 1540483477, + ) | 0 + x = (X((o >>> 24) ^ o, 1540483477) | 0) ^ (X(x, 1540483477) | 0) + s = (s + -4) | 0 + if (s >>> 0 <= 3) break + else w = (w + 4) | 0 + } + w = (d + -4) | 0 + s = w & -4 + y = (w - s) | 0 + z = (c + (s + 4)) | 0 + A = x + } else { + y = d + z = c + A = d + } + switch (y | 0) { + case 3: { + B = (h[(z + 2) >> 0] << 16) ^ A + C = 12 + break + } + case 2: { + B = A + C = 12 + break + } + case 1: { + D = A + C = 13 + break + } + default: + E = A + } + if ((C | 0) == 12) { + D = (h[(z + 1) >> 0] << 8) ^ B + C = 13 + } + if ((C | 0) == 13) E = X(D ^ h[z >> 0], 1540483477) | 0 + z = X((E >>> 13) ^ E, 1540483477) | 0 + E = (z >>> 15) ^ z + z = (a + 4) | 0 + D = f[z >> 2] | 0 + B = (D | 0) == 0 + a: do + if (!B) { + A = (D + -1) | 0 + y = ((A & D) | 0) == 0 + if (!y) + if (E >>> 0 < D >>> 0) F = E + else F = (E >>> 0) % (D >>> 0) | 0 + else F = E & A + x = f[((f[a >> 2] | 0) + (F << 2)) >> 2] | 0 + if ((x | 0) != 0 ? ((s = f[x >> 2] | 0), (s | 0) != 0) : 0) { + x = (d | 0) == 0 + if (y) { + if (x) { + y = s + while (1) { + w = f[(y + 4) >> 2] | 0 + if (!(((w | 0) == (E | 0)) | (((w & A) | 0) == (F | 0)))) { + G = F + C = 54 + break a + } + w = b[(y + 8 + 11) >> 0] | 0 + if ( + !( + ((w << 24) >> 24 < 0 ? f[(y + 12) >> 2] | 0 : w & 255) | 0 + ) + ) + break a + y = f[y >> 2] | 0 + if (!y) { + G = F + C = 54 + break a + } + } + } else H = s + while (1) { + y = f[(H + 4) >> 2] | 0 + if (!(((y | 0) == (E | 0)) | (((y & A) | 0) == (F | 0)))) { + G = F + C = 54 + break a + } + y = (H + 8) | 0 + w = b[(y + 11) >> 0] | 0 + o = (w << 24) >> 24 < 0 + t = w & 255 + do + if (((o ? f[(H + 12) >> 2] | 0 : t) | 0) == (d | 0)) { + w = f[y >> 2] | 0 + if (o) + if (!(Pk(w, c, d) | 0)) break a + else break + if ((b[c >> 0] | 0) == ((w & 255) << 24) >> 24) { + w = y + l = t + q = c + do { + l = (l + -1) | 0 + w = (w + 1) | 0 + if (!l) break a + q = (q + 1) | 0 + } while ((b[w >> 0] | 0) == (b[q >> 0] | 0)) + } + } + while (0) + H = f[H >> 2] | 0 + if (!H) { + G = F + C = 54 + break a + } + } + } + if (x) { + A = s + while (1) { + t = f[(A + 4) >> 2] | 0 + if ((t | 0) != (E | 0)) { + if (t >>> 0 < D >>> 0) I = t + else I = (t >>> 0) % (D >>> 0) | 0 + if ((I | 0) != (F | 0)) { + G = F + C = 54 + break a + } + } + t = b[(A + 8 + 11) >> 0] | 0 + if ( + !(((t << 24) >> 24 < 0 ? f[(A + 12) >> 2] | 0 : t & 255) | 0) + ) + break a + A = f[A >> 2] | 0 + if (!A) { + G = F + C = 54 + break a + } + } + } else J = s + while (1) { + A = f[(J + 4) >> 2] | 0 + if ((A | 0) != (E | 0)) { + if (A >>> 0 < D >>> 0) K = A + else K = (A >>> 0) % (D >>> 0) | 0 + if ((K | 0) != (F | 0)) { + G = F + C = 54 + break a + } + } + A = (J + 8) | 0 + x = b[(A + 11) >> 0] | 0 + t = (x << 24) >> 24 < 0 + y = x & 255 + do + if (((t ? f[(J + 12) >> 2] | 0 : y) | 0) == (d | 0)) { + x = f[A >> 2] | 0 + if (t) + if (!(Pk(x, c, d) | 0)) break a + else break + if ((b[c >> 0] | 0) == ((x & 255) << 24) >> 24) { + x = A + o = y + q = c + do { + o = (o + -1) | 0 + x = (x + 1) | 0 + if (!o) break a + q = (q + 1) | 0 + } while ((b[x >> 0] | 0) == (b[q >> 0] | 0)) + } + } + while (0) + J = f[J >> 2] | 0 + if (!J) { + G = F + C = 54 + break + } + } + } else { + G = F + C = 54 + } + } else { + G = 0 + C = 54 + } + while (0) + if ((C | 0) == 54) { + _h(g, a, E, i) + C = (a + 12) | 0 + L = $((((f[C >> 2] | 0) + 1) | 0) >>> 0) + M = $(D >>> 0) + N = $(n[(a + 16) >> 2]) + do + if (B | ($(N * M) < L)) { + F = (D << 1) | (((D >>> 0 < 3) | ((((D + -1) & D) | 0) != 0)) & 1) + J = ~~$(W($(L / N))) >>> 0 + Ph(a, F >>> 0 < J >>> 0 ? J : F) + F = f[z >> 2] | 0 + J = (F + -1) | 0 + if (!(J & F)) { + O = F + P = J & E + break + } + if (E >>> 0 < F >>> 0) { + O = F + P = E + } else { + O = F + P = (E >>> 0) % (F >>> 0) | 0 + } + } else { + O = D + P = G + } + while (0) + G = f[((f[a >> 2] | 0) + (P << 2)) >> 2] | 0 + if (!G) { + D = (a + 8) | 0 + f[f[g >> 2] >> 2] = f[D >> 2] + f[D >> 2] = f[g >> 2] + f[((f[a >> 2] | 0) + (P << 2)) >> 2] = D + D = f[g >> 2] | 0 + P = f[D >> 2] | 0 + if (!P) Q = g + else { + E = f[(P + 4) >> 2] | 0 + P = (O + -1) | 0 + if (P & O) + if (E >>> 0 < O >>> 0) R = E + else R = (E >>> 0) % (O >>> 0) | 0 + else R = E & P + f[((f[a >> 2] | 0) + (R << 2)) >> 2] = D + Q = g + } + } else { + f[f[g >> 2] >> 2] = f[G >> 2] + f[G >> 2] = f[g >> 2] + Q = g + } + f[C >> 2] = (f[C >> 2] | 0) + 1 + f[Q >> 2] = 0 + } + Q = f[(i + 12) >> 2] | 0 + if (Q | 0) { + if ((f[r >> 2] | 0) != (Q | 0)) f[r >> 2] = Q + br(Q) + } + if ((b[v >> 0] | 0) < 0) br(f[i >> 2] | 0) + i = f[j >> 2] | 0 + if (!i) { + u = e + return + } + if ((f[k >> 2] | 0) != (i | 0)) f[k >> 2] = i + br(i) + u = e + return + } + function bc(a, c, e) { + a = a | 0 + c = c | 0 + e = e | 0 + var g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = Oa, + fa = Oa, + ga = Oa, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0 + g = u + u = (u + 48) | 0 + i = (g + 12) | 0 + j = (g + 32) | 0 + k = g + l = (i + 16) | 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + n[l >> 2] = $(1.0) + m = (a + 80) | 0 + o = f[m >> 2] | 0 + f[k >> 2] = 0 + p = (k + 4) | 0 + f[p >> 2] = 0 + f[(k + 8) >> 2] = 0 + if (o) { + if (o >>> 0 > 1073741823) mq(k) + q = o << 2 + r = dn(q) | 0 + f[k >> 2] = r + s = (r + (o << 2)) | 0 + f[(k + 8) >> 2] = s + hj(r | 0, 0, q | 0) | 0 + f[p >> 2] = s + s = (c + 48) | 0 + q = (c + 40) | 0 + o = (i + 4) | 0 + t = (i + 12) | 0 + v = (i + 8) | 0 + w = (a + 40) | 0 + x = (a + 64) | 0 + y = f[e >> 2] | 0 + e = 0 + z = r + A = 0 + B = 0 + C = r + D = r + E = r + while (1) { + r = s + F = f[r >> 2] | 0 + G = f[(r + 4) >> 2] | 0 + r = q + H = on(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, (y + A) | 0, 0) | 0 + r = Tn(H | 0, I | 0, F | 0, G | 0) | 0 + G = ((f[f[c >> 2] >> 2] | 0) + r) | 0 + r = h[G >> 0] | (h[(G + 1) >> 0] << 8) + d[j >> 1] = r + G = (r ^ 318) & 65535 + a: do + if (e) { + F = (e + -1) | 0 + H = ((F & e) | 0) == 0 + if (!H) + if (e >>> 0 > G >>> 0) J = G + else J = (G >>> 0) % (e >>> 0) | 0 + else J = F & G + K = f[i >> 2] | 0 + L = f[(K + (J << 2)) >> 2] | 0 + b: do + if (L | 0 ? ((M = f[L >> 2] | 0), M | 0) : 0) { + c: do + if (H) { + N = M + while (1) { + O = f[(N + 4) >> 2] | 0 + P = (O | 0) == (G | 0) + if (!(P | (((O & F) | 0) == (J | 0)))) break b + if (P ? (d[(N + 8) >> 1] | 0) == (r << 16) >> 16 : 0) { + Q = N + break c + } + N = f[N >> 2] | 0 + if (!N) break b + } + } else { + N = M + while (1) { + P = f[(N + 4) >> 2] | 0 + if ((P | 0) == (G | 0)) { + if ((d[(N + 8) >> 1] | 0) == (r << 16) >> 16) { + Q = N + break c + } + } else { + if (P >>> 0 < e >>> 0) R = P + else R = (P >>> 0) % (e >>> 0) | 0 + if ((R | 0) != (J | 0)) break b + } + N = f[N >> 2] | 0 + if (!N) break b + } + } + while (0) + f[(E + (A << 2)) >> 2] = f[(Q + 12) >> 2] + S = z + T = B + U = D + V = C + X = E + break a + } + while (0) + if (!H) + if (e >>> 0 > G >>> 0) Y = G + else Y = (G >>> 0) % (e >>> 0) | 0 + else Y = F & G + L = f[(K + (Y << 2)) >> 2] | 0 + if (!L) { + Z = Y + _ = e + aa = 0 + ba = 40 + } else { + if (H) { + M = L + while (1) { + M = f[M >> 2] | 0 + if (!M) { + Z = Y + _ = e + aa = 0 + ba = 40 + break a + } + N = f[(M + 4) >> 2] | 0 + if (!(((N | 0) == (G | 0)) | (((N & F) | 0) == (Y | 0)))) { + Z = Y + _ = e + aa = 0 + ba = 40 + break a + } + if ((d[(M + 8) >> 1] | 0) == (r << 16) >> 16) { + ba = 55 + break a + } + } + } else ca = L + while (1) { + ca = f[ca >> 2] | 0 + if (!ca) { + Z = Y + _ = e + aa = 0 + ba = 40 + break a + } + M = f[(ca + 4) >> 2] | 0 + if ((M | 0) != (G | 0)) { + if (M >>> 0 < e >>> 0) da = M + else da = (M >>> 0) % (e >>> 0) | 0 + if ((da | 0) != (Y | 0)) { + Z = Y + _ = e + aa = 0 + ba = 40 + break a + } + } + if ((d[(ca + 8) >> 1] | 0) == (r << 16) >> 16) { + ba = 55 + break + } + } + } + } else { + Z = 0 + _ = 0 + aa = 1 + ba = 40 + } + while (0) + if ((ba | 0) == 40) { + ba = 0 + L = dn(16) | 0 + d[(L + 8) >> 1] = r + f[(L + 12) >> 2] = B + f[(L + 4) >> 2] = G + f[L >> 2] = 0 + ea = $((((f[t >> 2] | 0) + 1) | 0) >>> 0) + fa = $(_ >>> 0) + ga = $(n[l >> 2]) + do + if (aa | ($(ga * fa) < ea)) { + M = + (_ << 1) | (((_ >>> 0 < 3) | ((((_ + -1) & _) | 0) != 0)) & 1) + F = ~~$(W($(ea / ga))) >>> 0 + Fh(i, M >>> 0 < F >>> 0 ? F : M) + M = f[o >> 2] | 0 + F = (M + -1) | 0 + if (!(F & M)) { + ha = M + ia = F & G + break + } + if (M >>> 0 > G >>> 0) { + ha = M + ia = G + } else { + ha = M + ia = (G >>> 0) % (M >>> 0) | 0 + } + } else { + ha = _ + ia = Z + } + while (0) + G = ((f[i >> 2] | 0) + (ia << 2)) | 0 + r = f[G >> 2] | 0 + if (!r) { + f[L >> 2] = f[v >> 2] + f[v >> 2] = L + f[G >> 2] = v + G = f[L >> 2] | 0 + if (G | 0) { + M = f[(G + 4) >> 2] | 0 + G = (ha + -1) | 0 + if (G & ha) + if (M >>> 0 < ha >>> 0) ja = M + else ja = (M >>> 0) % (ha >>> 0) | 0 + else ja = M & G + ka = ((f[i >> 2] | 0) + (ja << 2)) | 0 + ba = 53 + } + } else { + f[L >> 2] = f[r >> 2] + ka = r + ba = 53 + } + if ((ba | 0) == 53) { + ba = 0 + f[ka >> 2] = L + } + f[t >> 2] = (f[t >> 2] | 0) + 1 + ba = 55 + } + if ((ba | 0) == 55) { + ba = 0 + r = w + G = f[r >> 2] | 0 + M = on(G | 0, f[(r + 4) >> 2] | 0, B | 0, 0) | 0 + Rg(((f[f[x >> 2] >> 2] | 0) + M) | 0, j | 0, G | 0) | 0 + G = f[k >> 2] | 0 + f[(G + (A << 2)) >> 2] = B + S = G + T = (B + 1) | 0 + U = G + V = G + X = G + } + G = (A + 1) | 0 + la = f[m >> 2] | 0 + if (G >>> 0 >= la >>> 0) break + e = f[o >> 2] | 0 + z = S + A = G + B = T + C = V + D = U + E = X + } + if ((T | 0) == (la | 0)) ma = V + else { + V = (a + 84) | 0 + if (!(b[V >> 0] | 0)) { + X = f[(a + 72) >> 2] | 0 + E = f[(a + 68) >> 2] | 0 + D = E + if ((X | 0) == (E | 0)) na = S + else { + C = (X - E) >> 2 + E = 0 + do { + X = (D + (E << 2)) | 0 + f[X >> 2] = f[(U + (f[X >> 2] << 2)) >> 2] + E = (E + 1) | 0 + } while (E >>> 0 < C >>> 0) + na = S + } + } else { + b[V >> 0] = 0 + V = (a + 68) | 0 + S = (a + 72) | 0 + C = f[S >> 2] | 0 + E = f[V >> 2] | 0 + U = (C - E) >> 2 + D = E + E = C + if (la >>> 0 <= U >>> 0) + if ( + la >>> 0 < U >>> 0 + ? ((C = (D + (la << 2)) | 0), (C | 0) != (E | 0)) + : 0 + ) { + f[S >> 2] = E + (~(((E + -4 - C) | 0) >>> 2) << 2) + oa = la + } else oa = la + else { + kh(V, (la - U) | 0, 1204) + oa = f[m >> 2] | 0 + } + U = f[k >> 2] | 0 + if (!oa) na = U + else { + k = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(k + (a << 2)) >> 2] = f[(U + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < oa >>> 0) + na = U + } + } + f[m >> 2] = T + ma = na + } + if (!ma) pa = T + else { + na = f[p >> 2] | 0 + if ((na | 0) != (ma | 0)) + f[p >> 2] = na + (~(((na + -4 - ma) | 0) >>> 2) << 2) + br(ma) + pa = T + } + } else pa = 0 + T = f[(i + 8) >> 2] | 0 + if (T | 0) { + ma = T + do { + T = ma + ma = f[ma >> 2] | 0 + br(T) + } while ((ma | 0) != 0) + } + ma = f[i >> 2] | 0 + f[i >> 2] = 0 + if (!ma) { + u = g + return pa | 0 + } + br(ma) + u = g + return pa | 0 + } + function cc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = Oa, + K = Oa, + L = Oa, + M = 0, + N = 0, + O = 0, + P = 0 + e = u + u = (u + 64) | 0 + g = (e + 40) | 0 + i = (e + 16) | 0 + j = e + k = xd(a, c) | 0 + if (k | 0) { + f[i >> 2] = k + f[g >> 2] = f[i >> 2] + Xe(a, g) | 0 + } + f[j >> 2] = 0 + k = (j + 4) | 0 + f[k >> 2] = 0 + f[(j + 8) >> 2] = 0 + ri(j, 4) + l = f[j >> 2] | 0 + m = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + b[l >> 0] = m + b[(l + 1) >> 0] = m >> 8 + b[(l + 2) >> 0] = m >> 16 + b[(l + 3) >> 0] = m >> 24 + dj(i, c) + c = (i + 12) | 0 + f[c >> 2] = 0 + m = (i + 16) | 0 + f[m >> 2] = 0 + f[(i + 20) >> 2] = 0 + l = f[k >> 2] | 0 + d = f[j >> 2] | 0 + o = (l - d) | 0 + if (!o) { + p = d + q = l + r = 0 + } else { + ri(c, o) + p = f[j >> 2] | 0 + q = f[k >> 2] | 0 + r = f[c >> 2] | 0 + } + Rg(r | 0, p | 0, (q - p) | 0) | 0 + p = (i + 11) | 0 + q = b[p >> 0] | 0 + r = (q << 24) >> 24 < 0 + c = r ? f[i >> 2] | 0 : i + o = r ? f[(i + 4) >> 2] | 0 : q & 255 + if (o >>> 0 > 3) { + q = c + r = o + l = o + while (1) { + d = + X( + h[q >> 0] | + (h[(q + 1) >> 0] << 8) | + (h[(q + 2) >> 0] << 16) | + (h[(q + 3) >> 0] << 24), + 1540483477, + ) | 0 + r = (X((d >>> 24) ^ d, 1540483477) | 0) ^ (X(r, 1540483477) | 0) + l = (l + -4) | 0 + if (l >>> 0 <= 3) break + else q = (q + 4) | 0 + } + q = (o + -4) | 0 + l = q & -4 + s = (q - l) | 0 + t = (c + (l + 4)) | 0 + v = r + } else { + s = o + t = c + v = o + } + switch (s | 0) { + case 3: { + w = (h[(t + 2) >> 0] << 16) ^ v + x = 10 + break + } + case 2: { + w = v + x = 10 + break + } + case 1: { + y = v + x = 11 + break + } + default: + z = v + } + if ((x | 0) == 10) { + y = (h[(t + 1) >> 0] << 8) ^ w + x = 11 + } + if ((x | 0) == 11) z = X(y ^ h[t >> 0], 1540483477) | 0 + t = X((z >>> 13) ^ z, 1540483477) | 0 + z = (t >>> 15) ^ t + t = (a + 4) | 0 + y = f[t >> 2] | 0 + w = (y | 0) == 0 + a: do + if (!w) { + v = (y + -1) | 0 + s = ((v & y) | 0) == 0 + if (!s) + if (z >>> 0 < y >>> 0) A = z + else A = (z >>> 0) % (y >>> 0) | 0 + else A = z & v + r = f[((f[a >> 2] | 0) + (A << 2)) >> 2] | 0 + if ((r | 0) != 0 ? ((l = f[r >> 2] | 0), (l | 0) != 0) : 0) { + r = (o | 0) == 0 + if (s) { + if (r) { + s = l + while (1) { + q = f[(s + 4) >> 2] | 0 + if (!(((q | 0) == (z | 0)) | (((q & v) | 0) == (A | 0)))) { + B = A + x = 52 + break a + } + q = b[(s + 8 + 11) >> 0] | 0 + if ( + !( + ((q << 24) >> 24 < 0 ? f[(s + 12) >> 2] | 0 : q & 255) | 0 + ) + ) + break a + s = f[s >> 2] | 0 + if (!s) { + B = A + x = 52 + break a + } + } + } else C = l + while (1) { + s = f[(C + 4) >> 2] | 0 + if (!(((s | 0) == (z | 0)) | (((s & v) | 0) == (A | 0)))) { + B = A + x = 52 + break a + } + s = (C + 8) | 0 + q = b[(s + 11) >> 0] | 0 + d = (q << 24) >> 24 < 0 + D = q & 255 + do + if (((d ? f[(C + 12) >> 2] | 0 : D) | 0) == (o | 0)) { + q = f[s >> 2] | 0 + if (d) + if (!(Pk(q, c, o) | 0)) break a + else break + if ((b[c >> 0] | 0) == ((q & 255) << 24) >> 24) { + q = s + E = D + F = c + do { + E = (E + -1) | 0 + q = (q + 1) | 0 + if (!E) break a + F = (F + 1) | 0 + } while ((b[q >> 0] | 0) == (b[F >> 0] | 0)) + } + } + while (0) + C = f[C >> 2] | 0 + if (!C) { + B = A + x = 52 + break a + } + } + } + if (r) { + v = l + while (1) { + D = f[(v + 4) >> 2] | 0 + if ((D | 0) != (z | 0)) { + if (D >>> 0 < y >>> 0) G = D + else G = (D >>> 0) % (y >>> 0) | 0 + if ((G | 0) != (A | 0)) { + B = A + x = 52 + break a + } + } + D = b[(v + 8 + 11) >> 0] | 0 + if ( + !(((D << 24) >> 24 < 0 ? f[(v + 12) >> 2] | 0 : D & 255) | 0) + ) + break a + v = f[v >> 2] | 0 + if (!v) { + B = A + x = 52 + break a + } + } + } else H = l + while (1) { + v = f[(H + 4) >> 2] | 0 + if ((v | 0) != (z | 0)) { + if (v >>> 0 < y >>> 0) I = v + else I = (v >>> 0) % (y >>> 0) | 0 + if ((I | 0) != (A | 0)) { + B = A + x = 52 + break a + } + } + v = (H + 8) | 0 + r = b[(v + 11) >> 0] | 0 + D = (r << 24) >> 24 < 0 + s = r & 255 + do + if (((D ? f[(H + 12) >> 2] | 0 : s) | 0) == (o | 0)) { + r = f[v >> 2] | 0 + if (D) + if (!(Pk(r, c, o) | 0)) break a + else break + if ((b[c >> 0] | 0) == ((r & 255) << 24) >> 24) { + r = v + d = s + F = c + do { + d = (d + -1) | 0 + r = (r + 1) | 0 + if (!d) break a + F = (F + 1) | 0 + } while ((b[r >> 0] | 0) == (b[F >> 0] | 0)) + } + } + while (0) + H = f[H >> 2] | 0 + if (!H) { + B = A + x = 52 + break + } + } + } else { + B = A + x = 52 + } + } else { + B = 0 + x = 52 + } + while (0) + if ((x | 0) == 52) { + _h(g, a, z, i) + x = (a + 12) | 0 + J = $((((f[x >> 2] | 0) + 1) | 0) >>> 0) + K = $(y >>> 0) + L = $(n[(a + 16) >> 2]) + do + if (w | ($(L * K) < J)) { + A = (y << 1) | (((y >>> 0 < 3) | ((((y + -1) & y) | 0) != 0)) & 1) + H = ~~$(W($(J / L))) >>> 0 + Ph(a, A >>> 0 < H >>> 0 ? H : A) + A = f[t >> 2] | 0 + H = (A + -1) | 0 + if (!(H & A)) { + M = A + N = H & z + break + } + if (z >>> 0 < A >>> 0) { + M = A + N = z + } else { + M = A + N = (z >>> 0) % (A >>> 0) | 0 + } + } else { + M = y + N = B + } + while (0) + B = f[((f[a >> 2] | 0) + (N << 2)) >> 2] | 0 + if (!B) { + y = (a + 8) | 0 + f[f[g >> 2] >> 2] = f[y >> 2] + f[y >> 2] = f[g >> 2] + f[((f[a >> 2] | 0) + (N << 2)) >> 2] = y + y = f[g >> 2] | 0 + N = f[y >> 2] | 0 + if (!N) O = g + else { + z = f[(N + 4) >> 2] | 0 + N = (M + -1) | 0 + if (N & M) + if (z >>> 0 < M >>> 0) P = z + else P = (z >>> 0) % (M >>> 0) | 0 + else P = z & N + f[((f[a >> 2] | 0) + (P << 2)) >> 2] = y + O = g + } + } else { + f[f[g >> 2] >> 2] = f[B >> 2] + f[B >> 2] = f[g >> 2] + O = g + } + f[x >> 2] = (f[x >> 2] | 0) + 1 + f[O >> 2] = 0 + } + O = f[(i + 12) >> 2] | 0 + if (O | 0) { + if ((f[m >> 2] | 0) != (O | 0)) f[m >> 2] = O + br(O) + } + if ((b[p >> 0] | 0) < 0) br(f[i >> 2] | 0) + i = f[j >> 2] | 0 + if (!i) { + u = e + return + } + if ((f[k >> 2] | 0) != (i | 0)) f[k >> 2] = i + br(i) + u = e + return + } + function dc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = Oa, + da = Oa, + ea = Oa, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0 + e = u + u = (u + 48) | 0 + g = (e + 12) | 0 + h = (e + 32) | 0 + i = e + j = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[j >> 2] = $(1.0) + k = (a + 80) | 0 + l = f[k >> 2] | 0 + f[i >> 2] = 0 + m = (i + 4) | 0 + f[m >> 2] = 0 + f[(i + 8) >> 2] = 0 + if (l) { + if (l >>> 0 > 1073741823) mq(i) + o = l << 2 + p = dn(o) | 0 + f[i >> 2] = p + q = (p + (l << 2)) | 0 + f[(i + 8) >> 2] = q + hj(p | 0, 0, o | 0) | 0 + f[m >> 2] = q + q = (c + 48) | 0 + o = (c + 40) | 0 + l = (g + 4) | 0 + r = (g + 12) | 0 + s = (g + 8) | 0 + t = (a + 40) | 0 + v = (a + 64) | 0 + w = f[d >> 2] | 0 + d = 0 + x = p + y = 0 + z = 0 + A = p + B = p + C = p + while (1) { + p = q + D = f[p >> 2] | 0 + E = f[(p + 4) >> 2] | 0 + p = o + F = on(f[p >> 2] | 0, f[(p + 4) >> 2] | 0, (w + y) | 0, 0) | 0 + p = Tn(F | 0, I | 0, D | 0, E | 0) | 0 + E = b[((f[f[c >> 2] >> 2] | 0) + p) >> 0] | 0 + b[h >> 0] = E + p = (E & 255) ^ 318 + a: do + if (d) { + D = (d + -1) | 0 + F = ((D & d) | 0) == 0 + if (!F) + if (p >>> 0 < d >>> 0) G = p + else G = (p >>> 0) % (d >>> 0) | 0 + else G = D & p + H = f[g >> 2] | 0 + J = f[(H + (G << 2)) >> 2] | 0 + b: do + if (J | 0 ? ((K = f[J >> 2] | 0), K | 0) : 0) { + c: do + if (F) { + L = K + while (1) { + M = f[(L + 4) >> 2] | 0 + N = (M | 0) == (p | 0) + if (!(N | (((M & D) | 0) == (G | 0)))) break b + if (N ? (b[(L + 8) >> 0] | 0) == (E << 24) >> 24 : 0) { + O = L + break c + } + L = f[L >> 2] | 0 + if (!L) break b + } + } else { + L = K + while (1) { + N = f[(L + 4) >> 2] | 0 + if ((N | 0) == (p | 0)) { + if ((b[(L + 8) >> 0] | 0) == (E << 24) >> 24) { + O = L + break c + } + } else { + if (N >>> 0 < d >>> 0) P = N + else P = (N >>> 0) % (d >>> 0) | 0 + if ((P | 0) != (G | 0)) break b + } + L = f[L >> 2] | 0 + if (!L) break b + } + } + while (0) + f[(C + (y << 2)) >> 2] = f[(O + 12) >> 2] + Q = x + R = z + S = B + T = A + U = C + break a + } + while (0) + if (!F) + if (p >>> 0 < d >>> 0) V = p + else V = (p >>> 0) % (d >>> 0) | 0 + else V = D & p + J = f[(H + (V << 2)) >> 2] | 0 + if (!J) { + X = V + Y = d + Z = 0 + _ = 40 + } else { + if (F) { + K = J + while (1) { + K = f[K >> 2] | 0 + if (!K) { + X = V + Y = d + Z = 0 + _ = 40 + break a + } + L = f[(K + 4) >> 2] | 0 + if (!(((L | 0) == (p | 0)) | (((L & D) | 0) == (V | 0)))) { + X = V + Y = d + Z = 0 + _ = 40 + break a + } + if ((b[(K + 8) >> 0] | 0) == (E << 24) >> 24) { + _ = 55 + break a + } + } + } else aa = J + while (1) { + aa = f[aa >> 2] | 0 + if (!aa) { + X = V + Y = d + Z = 0 + _ = 40 + break a + } + K = f[(aa + 4) >> 2] | 0 + if ((K | 0) != (p | 0)) { + if (K >>> 0 < d >>> 0) ba = K + else ba = (K >>> 0) % (d >>> 0) | 0 + if ((ba | 0) != (V | 0)) { + X = V + Y = d + Z = 0 + _ = 40 + break a + } + } + if ((b[(aa + 8) >> 0] | 0) == (E << 24) >> 24) { + _ = 55 + break + } + } + } + } else { + X = 0 + Y = 0 + Z = 1 + _ = 40 + } + while (0) + if ((_ | 0) == 40) { + _ = 0 + J = dn(16) | 0 + b[(J + 8) >> 0] = E + f[(J + 12) >> 2] = z + f[(J + 4) >> 2] = p + f[J >> 2] = 0 + ca = $((((f[r >> 2] | 0) + 1) | 0) >>> 0) + da = $(Y >>> 0) + ea = $(n[j >> 2]) + do + if (Z | ($(ea * da) < ca)) { + K = + (Y << 1) | (((Y >>> 0 < 3) | ((((Y + -1) & Y) | 0) != 0)) & 1) + D = ~~$(W($(ca / ea))) >>> 0 + Mh(g, K >>> 0 < D >>> 0 ? D : K) + K = f[l >> 2] | 0 + D = (K + -1) | 0 + if (!(D & K)) { + fa = K + ga = D & p + break + } + if (p >>> 0 < K >>> 0) { + fa = K + ga = p + } else { + fa = K + ga = (p >>> 0) % (K >>> 0) | 0 + } + } else { + fa = Y + ga = X + } + while (0) + p = ((f[g >> 2] | 0) + (ga << 2)) | 0 + E = f[p >> 2] | 0 + if (!E) { + f[J >> 2] = f[s >> 2] + f[s >> 2] = J + f[p >> 2] = s + p = f[J >> 2] | 0 + if (p | 0) { + K = f[(p + 4) >> 2] | 0 + p = (fa + -1) | 0 + if (p & fa) + if (K >>> 0 < fa >>> 0) ha = K + else ha = (K >>> 0) % (fa >>> 0) | 0 + else ha = K & p + ia = ((f[g >> 2] | 0) + (ha << 2)) | 0 + _ = 53 + } + } else { + f[J >> 2] = f[E >> 2] + ia = E + _ = 53 + } + if ((_ | 0) == 53) { + _ = 0 + f[ia >> 2] = J + } + f[r >> 2] = (f[r >> 2] | 0) + 1 + _ = 55 + } + if ((_ | 0) == 55) { + _ = 0 + E = t + p = f[E >> 2] | 0 + K = on(p | 0, f[(E + 4) >> 2] | 0, z | 0, 0) | 0 + Rg(((f[f[v >> 2] >> 2] | 0) + K) | 0, h | 0, p | 0) | 0 + p = f[i >> 2] | 0 + f[(p + (y << 2)) >> 2] = z + Q = p + R = (z + 1) | 0 + S = p + T = p + U = p + } + p = (y + 1) | 0 + ja = f[k >> 2] | 0 + if (p >>> 0 >= ja >>> 0) break + d = f[l >> 2] | 0 + x = Q + y = p + z = R + A = T + B = S + C = U + } + if ((R | 0) == (ja | 0)) ka = T + else { + T = (a + 84) | 0 + if (!(b[T >> 0] | 0)) { + U = f[(a + 72) >> 2] | 0 + C = f[(a + 68) >> 2] | 0 + B = C + if ((U | 0) == (C | 0)) la = Q + else { + A = (U - C) >> 2 + C = 0 + do { + U = (B + (C << 2)) | 0 + f[U >> 2] = f[(S + (f[U >> 2] << 2)) >> 2] + C = (C + 1) | 0 + } while (C >>> 0 < A >>> 0) + la = Q + } + } else { + b[T >> 0] = 0 + T = (a + 68) | 0 + Q = (a + 72) | 0 + A = f[Q >> 2] | 0 + C = f[T >> 2] | 0 + S = (A - C) >> 2 + B = C + C = A + if (ja >>> 0 <= S >>> 0) + if ( + ja >>> 0 < S >>> 0 + ? ((A = (B + (ja << 2)) | 0), (A | 0) != (C | 0)) + : 0 + ) { + f[Q >> 2] = C + (~(((C + -4 - A) | 0) >>> 2) << 2) + ma = ja + } else ma = ja + else { + kh(T, (ja - S) | 0, 1204) + ma = f[k >> 2] | 0 + } + S = f[i >> 2] | 0 + if (!ma) la = S + else { + i = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(i + (a << 2)) >> 2] = f[(S + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ma >>> 0) + la = S + } + } + f[k >> 2] = R + ka = la + } + if (!ka) na = R + else { + la = f[m >> 2] | 0 + if ((la | 0) != (ka | 0)) + f[m >> 2] = la + (~(((la + -4 - ka) | 0) >>> 2) << 2) + br(ka) + na = R + } + } else na = 0 + R = f[(g + 8) >> 2] | 0 + if (R | 0) { + ka = R + do { + R = ka + ka = f[ka >> 2] | 0 + br(R) + } while ((ka | 0) != 0) + } + ka = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!ka) { + u = e + return na | 0 + } + br(ka) + u = e + return na | 0 + } + function ec(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = Oa, + ea = Oa, + fa = Oa, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0 + e = u + u = (u + 48) | 0 + g = (e + 16) | 0 + i = (e + 12) | 0 + j = e + k = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[k >> 2] = $(1.0) + l = (a + 80) | 0 + m = f[l >> 2] | 0 + f[j >> 2] = 0 + o = (j + 4) | 0 + f[o >> 2] = 0 + f[(j + 8) >> 2] = 0 + if (m) { + if (m >>> 0 > 1073741823) mq(j) + p = m << 2 + q = dn(p) | 0 + f[j >> 2] = q + r = (q + (m << 2)) | 0 + f[(j + 8) >> 2] = r + hj(q | 0, 0, p | 0) | 0 + f[o >> 2] = r + r = (c + 48) | 0 + p = (c + 40) | 0 + m = (g + 4) | 0 + s = (g + 12) | 0 + t = (g + 8) | 0 + v = (a + 40) | 0 + w = (a + 64) | 0 + x = f[d >> 2] | 0 + d = 0 + y = q + z = 0 + A = 0 + B = q + C = q + D = q + while (1) { + q = r + E = f[q >> 2] | 0 + F = f[(q + 4) >> 2] | 0 + q = p + G = on(f[q >> 2] | 0, f[(q + 4) >> 2] | 0, (x + z) | 0, 0) | 0 + q = Tn(G | 0, I | 0, E | 0, F | 0) | 0 + F = ((f[f[c >> 2] >> 2] | 0) + q) | 0 + q = + h[F >> 0] | + (h[(F + 1) >> 0] << 8) | + (h[(F + 2) >> 0] << 16) | + (h[(F + 3) >> 0] << 24) + f[i >> 2] = q + F = q ^ 318 + a: do + if (d) { + E = (d + -1) | 0 + G = ((E & d) | 0) == 0 + if (!G) + if (F >>> 0 < d >>> 0) H = F + else H = (F >>> 0) % (d >>> 0) | 0 + else H = E & F + J = f[g >> 2] | 0 + K = f[(J + (H << 2)) >> 2] | 0 + b: do + if (K | 0 ? ((L = f[K >> 2] | 0), L | 0) : 0) { + c: do + if (G) { + M = L + while (1) { + N = f[(M + 4) >> 2] | 0 + O = (N | 0) == (F | 0) + if (!(O | (((N & E) | 0) == (H | 0)))) break b + if (O ? (f[(M + 8) >> 2] | 0) == (q | 0) : 0) { + P = M + break c + } + M = f[M >> 2] | 0 + if (!M) break b + } + } else { + M = L + while (1) { + O = f[(M + 4) >> 2] | 0 + if ((O | 0) == (F | 0)) { + if ((f[(M + 8) >> 2] | 0) == (q | 0)) { + P = M + break c + } + } else { + if (O >>> 0 < d >>> 0) Q = O + else Q = (O >>> 0) % (d >>> 0) | 0 + if ((Q | 0) != (H | 0)) break b + } + M = f[M >> 2] | 0 + if (!M) break b + } + } + while (0) + f[(D + (z << 2)) >> 2] = f[(P + 12) >> 2] + R = y + S = A + T = C + U = B + V = D + break a + } + while (0) + if (!G) + if (F >>> 0 < d >>> 0) X = F + else X = (F >>> 0) % (d >>> 0) | 0 + else X = E & F + K = f[(J + (X << 2)) >> 2] | 0 + if (!K) { + Y = X + Z = d + _ = 0 + aa = 40 + } else { + if (G) { + L = K + while (1) { + L = f[L >> 2] | 0 + if (!L) { + Y = X + Z = d + _ = 0 + aa = 40 + break a + } + M = f[(L + 4) >> 2] | 0 + if (!(((M | 0) == (F | 0)) | (((M & E) | 0) == (X | 0)))) { + Y = X + Z = d + _ = 0 + aa = 40 + break a + } + if ((f[(L + 8) >> 2] | 0) == (q | 0)) { + aa = 55 + break a + } + } + } else ba = K + while (1) { + ba = f[ba >> 2] | 0 + if (!ba) { + Y = X + Z = d + _ = 0 + aa = 40 + break a + } + L = f[(ba + 4) >> 2] | 0 + if ((L | 0) != (F | 0)) { + if (L >>> 0 < d >>> 0) ca = L + else ca = (L >>> 0) % (d >>> 0) | 0 + if ((ca | 0) != (X | 0)) { + Y = X + Z = d + _ = 0 + aa = 40 + break a + } + } + if ((f[(ba + 8) >> 2] | 0) == (q | 0)) { + aa = 55 + break + } + } + } + } else { + Y = 0 + Z = 0 + _ = 1 + aa = 40 + } + while (0) + if ((aa | 0) == 40) { + aa = 0 + K = dn(16) | 0 + f[(K + 8) >> 2] = q + f[(K + 12) >> 2] = A + f[(K + 4) >> 2] = F + f[K >> 2] = 0 + da = $((((f[s >> 2] | 0) + 1) | 0) >>> 0) + ea = $(Z >>> 0) + fa = $(n[k >> 2]) + do + if (_ | ($(fa * ea) < da)) { + L = + (Z << 1) | (((Z >>> 0 < 3) | ((((Z + -1) & Z) | 0) != 0)) & 1) + E = ~~$(W($(da / fa))) >>> 0 + ti(g, L >>> 0 < E >>> 0 ? E : L) + L = f[m >> 2] | 0 + E = (L + -1) | 0 + if (!(E & L)) { + ga = L + ha = E & F + break + } + if (F >>> 0 < L >>> 0) { + ga = L + ha = F + } else { + ga = L + ha = (F >>> 0) % (L >>> 0) | 0 + } + } else { + ga = Z + ha = Y + } + while (0) + F = ((f[g >> 2] | 0) + (ha << 2)) | 0 + q = f[F >> 2] | 0 + if (!q) { + f[K >> 2] = f[t >> 2] + f[t >> 2] = K + f[F >> 2] = t + F = f[K >> 2] | 0 + if (F | 0) { + L = f[(F + 4) >> 2] | 0 + F = (ga + -1) | 0 + if (F & ga) + if (L >>> 0 < ga >>> 0) ia = L + else ia = (L >>> 0) % (ga >>> 0) | 0 + else ia = L & F + ja = ((f[g >> 2] | 0) + (ia << 2)) | 0 + aa = 53 + } + } else { + f[K >> 2] = f[q >> 2] + ja = q + aa = 53 + } + if ((aa | 0) == 53) { + aa = 0 + f[ja >> 2] = K + } + f[s >> 2] = (f[s >> 2] | 0) + 1 + aa = 55 + } + if ((aa | 0) == 55) { + aa = 0 + q = v + F = f[q >> 2] | 0 + L = on(F | 0, f[(q + 4) >> 2] | 0, A | 0, 0) | 0 + Rg(((f[f[w >> 2] >> 2] | 0) + L) | 0, i | 0, F | 0) | 0 + F = f[j >> 2] | 0 + f[(F + (z << 2)) >> 2] = A + R = F + S = (A + 1) | 0 + T = F + U = F + V = F + } + F = (z + 1) | 0 + ka = f[l >> 2] | 0 + if (F >>> 0 >= ka >>> 0) break + d = f[m >> 2] | 0 + y = R + z = F + A = S + B = U + C = T + D = V + } + if ((S | 0) == (ka | 0)) la = U + else { + U = (a + 84) | 0 + if (!(b[U >> 0] | 0)) { + V = f[(a + 72) >> 2] | 0 + D = f[(a + 68) >> 2] | 0 + C = D + if ((V | 0) == (D | 0)) ma = R + else { + B = (V - D) >> 2 + D = 0 + do { + V = (C + (D << 2)) | 0 + f[V >> 2] = f[(T + (f[V >> 2] << 2)) >> 2] + D = (D + 1) | 0 + } while (D >>> 0 < B >>> 0) + ma = R + } + } else { + b[U >> 0] = 0 + U = (a + 68) | 0 + R = (a + 72) | 0 + B = f[R >> 2] | 0 + D = f[U >> 2] | 0 + T = (B - D) >> 2 + C = D + D = B + if (ka >>> 0 <= T >>> 0) + if ( + ka >>> 0 < T >>> 0 + ? ((B = (C + (ka << 2)) | 0), (B | 0) != (D | 0)) + : 0 + ) { + f[R >> 2] = D + (~(((D + -4 - B) | 0) >>> 2) << 2) + na = ka + } else na = ka + else { + kh(U, (ka - T) | 0, 1204) + na = f[l >> 2] | 0 + } + T = f[j >> 2] | 0 + if (!na) ma = T + else { + j = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(j + (a << 2)) >> 2] = f[(T + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < na >>> 0) + ma = T + } + } + f[l >> 2] = S + la = ma + } + if (!la) oa = S + else { + ma = f[o >> 2] | 0 + if ((ma | 0) != (la | 0)) + f[o >> 2] = ma + (~(((ma + -4 - la) | 0) >>> 2) << 2) + br(la) + oa = S + } + } else oa = 0 + S = f[(g + 8) >> 2] | 0 + if (S | 0) { + la = S + do { + S = la + la = f[la >> 2] | 0 + br(S) + } while ((la | 0) != 0) + } + la = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!la) { + u = e + return oa | 0 + } + br(la) + u = e + return oa | 0 + } + function fc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0 + e = u + u = (u + 96) | 0 + g = (e + 92) | 0 + h = (e + 88) | 0 + i = (e + 72) | 0 + j = (e + 48) | 0 + k = (e + 24) | 0 + l = e + m = (a + 16) | 0 + n = f[m >> 2] | 0 + o = f[c >> 2] | 0 + f[i >> 2] = n + f[(i + 4) >> 2] = o + c = (i + 8) | 0 + f[c >> 2] = o + b[(i + 12) >> 0] = 1 + p = f[((f[(n + 28) >> 2] | 0) + (o << 2)) >> 2] | 0 + n = (a + 20) | 0 + q = f[n >> 2] | 0 + r = f[q >> 2] | 0 + if ((((f[(q + 4) >> 2] | 0) - r) >> 2) >>> 0 <= p >>> 0) mq(q) + q = (a + 8) | 0 + s = f[((f[q >> 2] | 0) + (f[(r + (p << 2)) >> 2] << 2)) >> 2] | 0 + p = (a + 4) | 0 + r = f[p >> 2] | 0 + if (!(b[(r + 84) >> 0] | 0)) + t = f[((f[(r + 68) >> 2] | 0) + (s << 2)) >> 2] | 0 + else t = s + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + f[(j + 12) >> 2] = 0 + f[(j + 16) >> 2] = 0 + f[(j + 20) >> 2] = 0 + f[h >> 2] = t + t = b[(r + 24) >> 0] | 0 + f[g >> 2] = f[h >> 2] + ub(r, g, t, j) | 0 + t = (a + 28) | 0 + a = (f[t >> 2] | 0) == 0 + a: do + if ((o | 0) != -1) { + r = (k + 8) | 0 + s = (j + 8) | 0 + v = (k + 16) | 0 + w = (j + 16) | 0 + x = (l + 8) | 0 + y = (l + 16) | 0 + z = o + A = o + B = 0 + C = 0 + D = 0 + E = 0 + F = 0 + G = 0 + H = a + J = o + while (1) { + do + if (H) { + K = (J + 1) | 0 + if ((J | 0) != -1) { + L = ((K >>> 0) % 3 | 0 | 0) == 0 ? (J + -2) | 0 : K + if ((z | 0) != -1) + if (!((z >>> 0) % 3 | 0)) { + M = z + N = (z + 2) | 0 + O = L + P = z + break + } else { + M = z + N = (z + -1) | 0 + O = L + P = z + break + } + else { + M = -1 + N = -1 + O = L + P = -1 + } + } else { + M = z + N = -1 + O = -1 + P = -1 + } + } else { + L = (A + 1) | 0 + K = ((L >>> 0) % 3 | 0 | 0) == 0 ? (A + -2) | 0 : L + if (!((A >>> 0) % 3 | 0)) { + M = z + N = (A + 2) | 0 + O = K + P = J + break + } else { + M = z + N = (A + -1) | 0 + O = K + P = J + break + } + } + while (0) + K = f[((f[((f[m >> 2] | 0) + 28) >> 2] | 0) + (O << 2)) >> 2] | 0 + Q = f[n >> 2] | 0 + L = f[Q >> 2] | 0 + if ((((f[(Q + 4) >> 2] | 0) - L) >> 2) >>> 0 <= K >>> 0) { + R = 17 + break + } + S = f[((f[q >> 2] | 0) + (f[(L + (K << 2)) >> 2] << 2)) >> 2] | 0 + K = f[p >> 2] | 0 + if (!(b[(K + 84) >> 0] | 0)) + T = f[((f[(K + 68) >> 2] | 0) + (S << 2)) >> 2] | 0 + else T = S + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + f[(k + 16) >> 2] = 0 + f[(k + 20) >> 2] = 0 + f[h >> 2] = T + S = b[(K + 24) >> 0] | 0 + f[g >> 2] = f[h >> 2] + ub(K, g, S, k) | 0 + S = f[((f[((f[m >> 2] | 0) + 28) >> 2] | 0) + (N << 2)) >> 2] | 0 + U = f[n >> 2] | 0 + K = f[U >> 2] | 0 + if ((((f[(U + 4) >> 2] | 0) - K) >> 2) >>> 0 <= S >>> 0) { + R = 21 + break + } + L = f[((f[q >> 2] | 0) + (f[(K + (S << 2)) >> 2] << 2)) >> 2] | 0 + S = f[p >> 2] | 0 + if (!(b[(S + 84) >> 0] | 0)) + V = f[((f[(S + 68) >> 2] | 0) + (L << 2)) >> 2] | 0 + else V = L + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[(l + 8) >> 2] = 0 + f[(l + 12) >> 2] = 0 + f[(l + 16) >> 2] = 0 + f[(l + 20) >> 2] = 0 + f[h >> 2] = V + L = b[(S + 24) >> 0] | 0 + f[g >> 2] = f[h >> 2] + ub(S, g, L, l) | 0 + L = k + S = j + K = f[S >> 2] | 0 + W = f[(S + 4) >> 2] | 0 + S = Vn(f[L >> 2] | 0, f[(L + 4) >> 2] | 0, K | 0, W | 0) | 0 + L = I + X = r + Y = s + Z = f[Y >> 2] | 0 + _ = f[(Y + 4) >> 2] | 0 + Y = Vn(f[X >> 2] | 0, f[(X + 4) >> 2] | 0, Z | 0, _ | 0) | 0 + X = I + $ = v + aa = w + ba = f[aa >> 2] | 0 + ca = f[(aa + 4) >> 2] | 0 + aa = Vn(f[$ >> 2] | 0, f[($ + 4) >> 2] | 0, ba | 0, ca | 0) | 0 + $ = I + da = l + ea = Vn(f[da >> 2] | 0, f[(da + 4) >> 2] | 0, K | 0, W | 0) | 0 + W = I + K = x + da = Vn(f[K >> 2] | 0, f[(K + 4) >> 2] | 0, Z | 0, _ | 0) | 0 + _ = I + Z = y + K = Vn(f[Z >> 2] | 0, f[(Z + 4) >> 2] | 0, ba | 0, ca | 0) | 0 + ca = I + ba = on(K | 0, ca | 0, Y | 0, X | 0) | 0 + Z = I + fa = on(da | 0, _ | 0, aa | 0, $ | 0) | 0 + ga = I + ha = on(ea | 0, W | 0, aa | 0, $ | 0) | 0 + $ = I + aa = on(K | 0, ca | 0, S | 0, L | 0) | 0 + ca = I + K = on(da | 0, _ | 0, S | 0, L | 0) | 0 + L = I + S = on(ea | 0, W | 0, Y | 0, X | 0) | 0 + X = I + Y = Vn(B | 0, C | 0, fa | 0, ga | 0) | 0 + ga = Tn(Y | 0, I | 0, ba | 0, Z | 0) | 0 + Z = I + ba = Tn(ha | 0, $ | 0, D | 0, E | 0) | 0 + $ = Vn(ba | 0, I | 0, aa | 0, ca | 0) | 0 + ca = I + aa = Vn(F | 0, G | 0, S | 0, X | 0) | 0 + X = Tn(aa | 0, I | 0, K | 0, L | 0) | 0 + L = I + xg(i) + A = f[c >> 2] | 0 + K = (f[t >> 2] | 0) == 0 + if ((A | 0) == -1) { + ia = K + ja = Z + ka = ga + la = ca + ma = $ + na = L + oa = X + break a + } else { + z = M + B = ga + C = Z + D = $ + E = ca + F = X + G = L + H = K + J = P + } + } + if ((R | 0) == 17) mq(Q) + else if ((R | 0) == 21) mq(U) + } else { + ia = a + ja = 0 + ka = 0 + la = 0 + ma = 0 + na = 0 + oa = 0 + } + while (0) + a = ((ja | 0) > -1) | (((ja | 0) == -1) & (ka >>> 0 > 4294967295)) + U = Vn(0, 0, ka | 0, ja | 0) | 0 + R = a ? ja : I + Q = ((la | 0) > -1) | (((la | 0) == -1) & (ma >>> 0 > 4294967295)) + P = Vn(0, 0, ma | 0, la | 0) | 0 + M = Q ? la : I + t = ((na | 0) > -1) | (((na | 0) == -1) & (oa >>> 0 > 4294967295)) + c = Vn(0, 0, oa | 0, na | 0) | 0 + i = Tn((Q ? ma : P) | 0, M | 0, (t ? oa : c) | 0, (t ? na : I) | 0) | 0 + t = Tn(i | 0, I | 0, (a ? ka : U) | 0, R | 0) | 0 + R = I + if (ia) { + if ((t | 0) <= 536870912) { + pa = ka + qa = ma + ra = oa + f[d >> 2] = pa + sa = (d + 4) | 0 + f[sa >> 2] = qa + ta = (d + 8) | 0 + f[ta >> 2] = ra + u = e + return + } + ia = Wn(t | 0, R | 0, 29) | 0 + U = ia & 7 + ia = zk(ka | 0, ja | 0, U | 0, 0) | 0 + a = zk(ma | 0, la | 0, U | 0, 0) | 0 + i = zk(oa | 0, na | 0, U | 0, 0) | 0 + pa = ia + qa = a + ra = i + f[d >> 2] = pa + sa = (d + 4) | 0 + f[sa >> 2] = qa + ta = (d + 8) | 0 + f[ta >> 2] = ra + u = e + return + } else { + if (!(((R | 0) > 0) | (((R | 0) == 0) & (t >>> 0 > 536870912)))) { + pa = ka + qa = ma + ra = oa + f[d >> 2] = pa + sa = (d + 4) | 0 + f[sa >> 2] = qa + ta = (d + 8) | 0 + f[ta >> 2] = ra + u = e + return + } + i = Wn(t | 0, R | 0, 29) | 0 + R = I + t = zk(ka | 0, ja | 0, i | 0, R | 0) | 0 + ja = zk(ma | 0, la | 0, i | 0, R | 0) | 0 + la = zk(oa | 0, na | 0, i | 0, R | 0) | 0 + pa = t + qa = ja + ra = la + f[d >> 2] = pa + sa = (d + 4) | 0 + f[sa >> 2] = qa + ta = (d + 8) | 0 + f[ta >> 2] = ra + u = e + return + } + } + function gc(a, c, e) { + a = a | 0 + c = c | 0 + e = e | 0 + var g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = Oa, + V = Oa, + X = Oa, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0 + g = u + u = (u + 48) | 0 + i = (g + 28) | 0 + j = (g + 8) | 0 + k = g + l = (g + 16) | 0 + m = (i + 16) | 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + n[m >> 2] = $(1.0) + o = (a + 80) | 0 + p = f[o >> 2] | 0 + f[l >> 2] = 0 + q = (l + 4) | 0 + f[q >> 2] = 0 + f[(l + 8) >> 2] = 0 + if (p) { + if (p >>> 0 > 1073741823) mq(l) + r = p << 2 + s = dn(r) | 0 + f[l >> 2] = s + t = (s + (p << 2)) | 0 + f[(l + 8) >> 2] = t + hj(s | 0, 0, r | 0) | 0 + f[q >> 2] = t + t = f[e >> 2] | 0 + e = (c + 48) | 0 + r = (c + 40) | 0 + s = (i + 4) | 0 + p = (i + 12) | 0 + v = (i + 8) | 0 + w = (a + 40) | 0 + x = (a + 64) | 0 + y = 0 + z = 0 + while (1) { + A = e + B = f[A >> 2] | 0 + C = f[(A + 4) >> 2] | 0 + A = r + D = on(f[A >> 2] | 0, f[(A + 4) >> 2] | 0, (t + y) | 0, 0) | 0 + A = Tn(D | 0, I | 0, B | 0, C | 0) | 0 + C = ((f[f[c >> 2] >> 2] | 0) + A) | 0 + A = C + B = + h[A >> 0] | + (h[(A + 1) >> 0] << 8) | + (h[(A + 2) >> 0] << 16) | + (h[(A + 3) >> 0] << 24) + A = (C + 4) | 0 + C = + h[A >> 0] | + (h[(A + 1) >> 0] << 8) | + (h[(A + 2) >> 0] << 16) | + (h[(A + 3) >> 0] << 24) + A = j + f[A >> 2] = B + f[(A + 4) >> 2] = C + A = k + f[A >> 2] = B + f[(A + 4) >> 2] = C + C = kf(i, k) | 0 + if (!C) { + A = k + B = f[A >> 2] | 0 + D = f[(A + 4) >> 2] | 0 + A = B & 65535 + E = Wn(B | 0, D | 0, 16) | 0 + F = E & 65535 + G = D & 65535 + H = Wn(B | 0, D | 0, 48) | 0 + J = H & 65535 + K = + (((((((A ^ 318) & 65535) + 239) ^ (E & 65535)) + 239) ^ + (D & 65535)) + + 239) ^ + (H & 65535) + H = f[s >> 2] | 0 + E = (H | 0) == 0 + a: do + if (!E) { + L = (H + -1) | 0 + M = ((L & H) | 0) == 0 + if (!M) + if (K >>> 0 < H >>> 0) N = K + else N = (K >>> 0) % (H >>> 0) | 0 + else N = K & L + O = f[((f[i >> 2] | 0) + (N << 2)) >> 2] | 0 + if ((O | 0) != 0 ? ((P = f[O >> 2] | 0), (P | 0) != 0) : 0) { + if (M) { + M = P + while (1) { + O = f[(M + 4) >> 2] | 0 + if ( + !(((O | 0) == (K | 0)) | (((O & L) | 0) == (N | 0))) + ) { + Q = N + R = 31 + break a + } + O = (M + 8) | 0 + if ( + ( + ( + (d[O >> 1] | 0) == (A << 16) >> 16 + ? (d[(O + 2) >> 1] | 0) == (F << 16) >> 16 + : 0 + ) + ? (d[(M + 12) >> 1] | 0) == (G << 16) >> 16 + : 0 + ) + ? (d[(O + 6) >> 1] | 0) == (J << 16) >> 16 + : 0 + ) + break a + M = f[M >> 2] | 0 + if (!M) { + Q = N + R = 31 + break a + } + } + } else S = P + while (1) { + M = f[(S + 4) >> 2] | 0 + if ((M | 0) != (K | 0)) { + if (M >>> 0 < H >>> 0) T = M + else T = (M >>> 0) % (H >>> 0) | 0 + if ((T | 0) != (N | 0)) { + Q = N + R = 31 + break a + } + } + M = (S + 8) | 0 + if ( + ( + ( + (d[M >> 1] | 0) == (A << 16) >> 16 + ? (d[(M + 2) >> 1] | 0) == (F << 16) >> 16 + : 0 + ) + ? (d[(S + 12) >> 1] | 0) == (G << 16) >> 16 + : 0 + ) + ? (d[(M + 6) >> 1] | 0) == (J << 16) >> 16 + : 0 + ) + break a + S = f[S >> 2] | 0 + if (!S) { + Q = N + R = 31 + break + } + } + } else { + Q = N + R = 31 + } + } else { + Q = 0 + R = 31 + } + while (0) + if ((R | 0) == 31) { + R = 0 + J = dn(20) | 0 + G = (J + 8) | 0 + F = G + d[F >> 1] = B + d[(F + 2) >> 1] = B >>> 16 + F = (G + 4) | 0 + d[F >> 1] = D + d[(F + 2) >> 1] = D >>> 16 + f[(J + 16) >> 2] = z + f[(J + 4) >> 2] = K + f[J >> 2] = 0 + U = $((((f[p >> 2] | 0) + 1) | 0) >>> 0) + V = $(H >>> 0) + X = $(n[m >> 2]) + do + if (E | ($(X * V) < U)) { + F = + (H << 1) | + (((H >>> 0 < 3) | ((((H + -1) & H) | 0) != 0)) & 1) + G = ~~$(W($(U / X))) >>> 0 + Ch(i, F >>> 0 < G >>> 0 ? G : F) + F = f[s >> 2] | 0 + G = (F + -1) | 0 + if (!(G & F)) { + Y = F + Z = G & K + break + } + if (K >>> 0 < F >>> 0) { + Y = F + Z = K + } else { + Y = F + Z = (K >>> 0) % (F >>> 0) | 0 + } + } else { + Y = H + Z = Q + } + while (0) + H = ((f[i >> 2] | 0) + (Z << 2)) | 0 + K = f[H >> 2] | 0 + if (!K) { + f[J >> 2] = f[v >> 2] + f[v >> 2] = J + f[H >> 2] = v + H = f[J >> 2] | 0 + if (H | 0) { + E = f[(H + 4) >> 2] | 0 + H = (Y + -1) | 0 + if (H & Y) + if (E >>> 0 < Y >>> 0) _ = E + else _ = (E >>> 0) % (Y >>> 0) | 0 + else _ = E & H + aa = ((f[i >> 2] | 0) + (_ << 2)) | 0 + R = 44 + } + } else { + f[J >> 2] = f[K >> 2] + aa = K + R = 44 + } + if ((R | 0) == 44) { + R = 0 + f[aa >> 2] = J + } + f[p >> 2] = (f[p >> 2] | 0) + 1 + } + K = w + H = f[K >> 2] | 0 + E = on(H | 0, f[(K + 4) >> 2] | 0, z | 0, 0) | 0 + Rg(((f[f[x >> 2] >> 2] | 0) + E) | 0, j | 0, H | 0) | 0 + H = f[l >> 2] | 0 + f[(H + (y << 2)) >> 2] = z + ba = (z + 1) | 0 + ca = H + } else { + H = f[l >> 2] | 0 + f[(H + (y << 2)) >> 2] = f[(C + 16) >> 2] + ba = z + ca = H + } + y = (y + 1) | 0 + da = f[o >> 2] | 0 + if (y >>> 0 >= da >>> 0) break + else z = ba + } + if ((ba | 0) == (da | 0)) ea = ca + else { + z = (a + 84) | 0 + if (!(b[z >> 0] | 0)) { + y = f[(a + 72) >> 2] | 0 + j = f[(a + 68) >> 2] | 0 + x = j + if ((y | 0) == (j | 0)) fa = ca + else { + w = (y - j) >> 2 + j = 0 + do { + y = (x + (j << 2)) | 0 + f[y >> 2] = f[(ca + (f[y >> 2] << 2)) >> 2] + j = (j + 1) | 0 + } while (j >>> 0 < w >>> 0) + fa = ca + } + } else { + b[z >> 0] = 0 + z = (a + 68) | 0 + ca = (a + 72) | 0 + w = f[ca >> 2] | 0 + j = f[z >> 2] | 0 + x = (w - j) >> 2 + y = j + j = w + if (da >>> 0 <= x >>> 0) + if ( + da >>> 0 < x >>> 0 + ? ((w = (y + (da << 2)) | 0), (w | 0) != (j | 0)) + : 0 + ) { + f[ca >> 2] = j + (~(((j + -4 - w) | 0) >>> 2) << 2) + ga = da + } else ga = da + else { + kh(z, (da - x) | 0, 1204) + ga = f[o >> 2] | 0 + } + x = f[l >> 2] | 0 + if (!ga) fa = x + else { + l = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(l + (a << 2)) >> 2] = f[(x + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ga >>> 0) + fa = x + } + } + f[o >> 2] = ba + ea = fa + } + if (!ea) ha = ba + else { + fa = f[q >> 2] | 0 + if ((fa | 0) != (ea | 0)) + f[q >> 2] = fa + (~(((fa + -4 - ea) | 0) >>> 2) << 2) + br(ea) + ha = ba + } + } else ha = 0 + ba = f[(i + 8) >> 2] | 0 + if (ba | 0) { + ea = ba + do { + ba = ea + ea = f[ea >> 2] | 0 + br(ba) + } while ((ea | 0) != 0) + } + ea = f[i >> 2] | 0 + f[i >> 2] = 0 + if (!ea) { + u = g + return ha | 0 + } + br(ea) + u = g + return ha | 0 + } + function hc(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = c + g = (c + 4) | 0 + h = (a + 16) | 0 + i = f[h >> 2] | 0 + j = (a + 20) | 0 + k = f[j >> 2] | 0 + if ((k | 0) == (i | 0)) l = i + else { + m = (k + (~(((k + -4 - i) | 0) >>> 2) << 2)) | 0 + f[j >> 2] = m + l = m + } + m = (a + 24) | 0 + if ((l | 0) == (f[m >> 2] | 0)) { + Ci(h, b) + n = f[h >> 2] | 0 + o = f[j >> 2] | 0 + } else { + f[l >> 2] = f[b >> 2] + k = (l + 4) | 0 + f[j >> 2] = k + n = i + o = k + } + k = f[(a + 8) >> 2] | 0 + i = ((f[(k + 100) >> 2] | 0) - (f[(k + 96) >> 2] | 0)) | 0 + k = ((i | 0) / 12) | 0 + if ((n | 0) == (o | 0)) { + u = c + return 1 + } + n = (a + 28) | 0 + l = (i | 0) > 0 + i = (a + 164) | 0 + p = (a + 12) | 0 + q = (a + 76) | 0 + r = (a + 80) | 0 + s = (a + 72) | 0 + t = (a + 152) | 0 + v = (a + 84) | 0 + w = (a + 272) | 0 + x = (a + 276) | 0 + y = (a + 268) | 0 + z = (a + 168) | 0 + A = (a + 140) | 0 + B = (a + 120) | 0 + C = o + do { + o = f[(C + -4) >> 2] | 0 + f[b >> 2] = o + a: do + if ( + (o | 0) != -1 + ? ((D = ((o >>> 0) / 3) | 0), + (E = f[n >> 2] | 0), + ((f[(E + ((D >>> 5) << 2)) >> 2] & (1 << (D & 31))) | 0) == 0) + : 0 + ) { + if (l) { + D = 0 + F = E + b: while (1) { + E = (D + 1) | 0 + f[i >> 2] = (f[i >> 2] | 0) + 1 + G = f[b >> 2] | 0 + H = (G | 0) == -1 ? -1 : ((G >>> 0) / 3) | 0 + G = (F + ((H >>> 5) << 2)) | 0 + f[G >> 2] = (1 << (H & 31)) | f[G >> 2] + G = f[q >> 2] | 0 + if ((G | 0) == (f[r >> 2] | 0)) Ci(s, b) + else { + f[G >> 2] = f[b >> 2] + f[q >> 2] = G + 4 + } + G = f[b >> 2] | 0 + if ((G | 0) == -1) I = -1 + else I = f[((f[f[p >> 2] >> 2] | 0) + (G << 2)) >> 2] | 0 + J = (f[((f[t >> 2] | 0) + (I << 2)) >> 2] | 0) != -1 + K = ((f[v >> 2] | 0) + ((I >>> 5) << 2)) | 0 + L = 1 << (I & 31) + M = f[K >> 2] | 0 + do + if (!(M & L)) { + f[K >> 2] = M | L + if (J) { + N = f[b >> 2] | 0 + O = 30 + break + } + f[d >> 2] = 0 + P = f[w >> 2] | 0 + if ((P | 0) == (f[x >> 2] | 0)) Ci(y, d) + else { + f[P >> 2] = 0 + f[w >> 2] = P + 4 + } + P = f[b >> 2] | 0 + Q = (P + 1) | 0 + if ( + (P | 0) != -1 + ? ((R = + ((Q >>> 0) % 3 | 0 | 0) == 0 ? (P + -2) | 0 : Q), + (R | 0) != -1) + : 0 + ) + S = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (R << 2)) >> 2 + ] | 0 + else S = -1 + f[b >> 2] = S + } else { + N = G + O = 30 + } + while (0) + if ((O | 0) == 30) { + O = 0 + G = (N + 1) | 0 + if ((N | 0) == -1) { + O = 35 + break + } + L = ((G >>> 0) % 3 | 0 | 0) == 0 ? (N + -2) | 0 : G + if ((L | 0) == -1) T = -1 + else + T = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (L << 2)) >> 2 + ] | 0 + f[e >> 2] = T + L = ((((N >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + N) | 0 + if ((L | 0) == -1) U = -1 + else + U = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (L << 2)) >> 2 + ] | 0 + L = (T | 0) == -1 + M = L ? -1 : ((T >>> 0) / 3) | 0 + V = (U | 0) == -1 + W = V ? -1 : ((U >>> 0) / 3) | 0 + K = ((G >>> 0) % 3 | 0 | 0) == 0 ? (N + -2) | 0 : G + if ( + ( + (K | 0) != -1 + ? ((G = f[((f[p >> 2] | 0) + 12) >> 2] | 0), + (R = f[(G + (K << 2)) >> 2] | 0), + (R | 0) != -1) + : 0 + ) + ? ((K = ((R >>> 0) / 3) | 0), + (R = f[n >> 2] | 0), + ((f[(R + ((K >>> 5) << 2)) >> 2] & (1 << (K & 31))) | + 0) == + 0) + : 0 + ) { + K = ((((N >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + N) | 0 + do + if ((K | 0) != -1) { + Q = f[(G + (K << 2)) >> 2] | 0 + if ((Q | 0) == -1) break + P = ((Q >>> 0) / 3) | 0 + if ( + !(f[(R + ((P >>> 5) << 2)) >> 2] & (1 << (P & 31))) + ) { + O = 63 + break b + } + } + while (0) + if (!V) jf(a, f[i >> 2] | 0, H, 0, W) + f[d >> 2] = 3 + R = f[w >> 2] | 0 + if ((R | 0) == (f[x >> 2] | 0)) Ci(y, d) + else { + f[R >> 2] = 3 + f[w >> 2] = R + 4 + } + X = f[e >> 2] | 0 + } else { + if (!L) { + jf(a, f[i >> 2] | 0, H, 1, M) + R = f[b >> 2] | 0 + if ((R | 0) == -1) { + O = 44 + break + } else Y = R + } else Y = N + R = ((((Y >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Y) | 0 + if ((R | 0) == -1) { + O = 44 + break + } + K = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (R << 2)) >> 2 + ] | 0 + if ((K | 0) == -1) { + O = 44 + break + } + R = ((K >>> 0) / 3) | 0 + if ( + (f[((f[n >> 2] | 0) + ((R >>> 5) << 2)) >> 2] & + (1 << (R & 31))) | + 0 + ) { + O = 44 + break + } + f[d >> 2] = 5 + R = f[w >> 2] | 0 + if ((R | 0) == (f[x >> 2] | 0)) Ci(y, d) + else { + f[R >> 2] = 5 + f[w >> 2] = R + 4 + } + X = U + } + f[b >> 2] = X + } + if ((E | 0) >= (k | 0)) break a + D = E + F = f[n >> 2] | 0 + } + do + if ((O | 0) == 35) { + O = 0 + f[e >> 2] = -1 + O = 46 + } else if ((O | 0) == 44) { + O = 0 + if (V) O = 46 + else { + jf(a, f[i >> 2] | 0, H, 0, W) + O = 46 + } + } else if ((O | 0) == 63) { + O = 0 + f[d >> 2] = 1 + F = f[w >> 2] | 0 + if ((F | 0) == (f[x >> 2] | 0)) Ci(y, d) + else { + f[F >> 2] = 1 + f[w >> 2] = F + 4 + } + f[z >> 2] = (f[z >> 2] | 0) + 1 + if ( + J + ? ((F = f[((f[t >> 2] | 0) + (I << 2)) >> 2] | 0), + (((1 << (F & 31)) & + f[((f[A >> 2] | 0) + ((F >>> 5) << 2)) >> 2]) | + 0) == + 0) + : 0 + ) { + f[g >> 2] = f[b >> 2] + f[d >> 2] = f[g >> 2] + Ce(a, d, 0) | 0 + } + F = f[i >> 2] | 0 + f[d >> 2] = H + D = Sd(B, d) | 0 + f[D >> 2] = F + F = f[j >> 2] | 0 + f[(F + -4) >> 2] = U + if ((F | 0) == (f[m >> 2] | 0)) { + Ci(h, e) + break + } else { + f[F >> 2] = f[e >> 2] + f[j >> 2] = F + 4 + break + } + } + while (0) + if ((O | 0) == 46) { + O = 0 + f[d >> 2] = 7 + F = f[w >> 2] | 0 + if ((F | 0) == (f[x >> 2] | 0)) Ci(y, d) + else { + f[F >> 2] = 7 + f[w >> 2] = F + 4 + } + f[j >> 2] = (f[j >> 2] | 0) + -4 + } + } + } else O = 11 + while (0) + if ((O | 0) == 11) { + O = 0 + f[j >> 2] = C + -4 + } + C = f[j >> 2] | 0 + } while ((f[h >> 2] | 0) != (C | 0)) + u = c + return 1 + } + function ic(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = Oa, + V = Oa, + X = Oa, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0 + e = u + u = (u + 48) | 0 + g = (e + 20) | 0 + i = (e + 16) | 0 + j = (e + 12) | 0 + k = e + l = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[l >> 2] = $(1.0) + m = (a + 80) | 0 + o = f[m >> 2] | 0 + f[k >> 2] = 0 + p = (k + 4) | 0 + f[p >> 2] = 0 + f[(k + 8) >> 2] = 0 + if (o) { + if (o >>> 0 > 1073741823) mq(k) + q = o << 2 + r = dn(q) | 0 + f[k >> 2] = r + s = (r + (o << 2)) | 0 + f[(k + 8) >> 2] = s + hj(r | 0, 0, q | 0) | 0 + f[p >> 2] = s + s = f[d >> 2] | 0 + d = (c + 48) | 0 + q = (c + 40) | 0 + r = (g + 4) | 0 + o = (g + 12) | 0 + t = (g + 8) | 0 + v = (a + 40) | 0 + w = (a + 64) | 0 + x = 0 + y = 0 + while (1) { + z = d + A = f[z >> 2] | 0 + B = f[(z + 4) >> 2] | 0 + z = q + C = on(f[z >> 2] | 0, f[(z + 4) >> 2] | 0, (s + x) | 0, 0) | 0 + z = Tn(C | 0, I | 0, A | 0, B | 0) | 0 + B = ((f[f[c >> 2] >> 2] | 0) + z) | 0 + z = + h[B >> 0] | + (h[(B + 1) >> 0] << 8) | + (h[(B + 2) >> 0] << 16) | + (h[(B + 3) >> 0] << 24) + f[i >> 2] = z + f[j >> 2] = z + z = pf(g, j) | 0 + if (!z) { + B = f[j >> 2] | 0 + A = B & 255 + C = B >>> 8 + D = C & 255 + E = B >>> 16 + F = E & 255 + G = B >>> 24 + H = G & 255 + J = C & 255 + C = E & 255 + E = (((((((B & 255) ^ 318) + 239) ^ J) + 239) ^ C) + 239) ^ G + G = f[r >> 2] | 0 + K = (G | 0) == 0 + a: do + if (!K) { + L = (G + -1) | 0 + M = ((L & G) | 0) == 0 + if (!M) + if (E >>> 0 < G >>> 0) N = E + else N = (E >>> 0) % (G >>> 0) | 0 + else N = E & L + O = f[((f[g >> 2] | 0) + (N << 2)) >> 2] | 0 + if ((O | 0) != 0 ? ((P = f[O >> 2] | 0), (P | 0) != 0) : 0) { + if (M) { + M = P + while (1) { + O = f[(M + 4) >> 2] | 0 + if ( + !(((O | 0) == (E | 0)) | (((O & L) | 0) == (N | 0))) + ) { + Q = N + R = 31 + break a + } + O = (M + 8) | 0 + if ( + ( + ( + (b[O >> 0] | 0) == (A << 24) >> 24 + ? (b[(O + 1) >> 0] | 0) == (D << 24) >> 24 + : 0 + ) + ? (b[(O + 2) >> 0] | 0) == (F << 24) >> 24 + : 0 + ) + ? (b[(O + 3) >> 0] | 0) == (H << 24) >> 24 + : 0 + ) + break a + M = f[M >> 2] | 0 + if (!M) { + Q = N + R = 31 + break a + } + } + } else S = P + while (1) { + M = f[(S + 4) >> 2] | 0 + if ((M | 0) != (E | 0)) { + if (M >>> 0 < G >>> 0) T = M + else T = (M >>> 0) % (G >>> 0) | 0 + if ((T | 0) != (N | 0)) { + Q = N + R = 31 + break a + } + } + M = (S + 8) | 0 + if ( + ( + ( + (b[M >> 0] | 0) == (A << 24) >> 24 + ? (b[(M + 1) >> 0] | 0) == (D << 24) >> 24 + : 0 + ) + ? (b[(M + 2) >> 0] | 0) == (F << 24) >> 24 + : 0 + ) + ? (b[(M + 3) >> 0] | 0) == (H << 24) >> 24 + : 0 + ) + break a + S = f[S >> 2] | 0 + if (!S) { + Q = N + R = 31 + break + } + } + } else { + Q = N + R = 31 + } + } else { + Q = 0 + R = 31 + } + while (0) + if ((R | 0) == 31) { + R = 0 + H = dn(16) | 0 + F = (H + 8) | 0 + D = (B & -16776961) | (C << 16) | (J << 8) + b[F >> 0] = D + b[(F + 1) >> 0] = D >> 8 + b[(F + 2) >> 0] = D >> 16 + b[(F + 3) >> 0] = D >> 24 + f[(H + 12) >> 2] = y + f[(H + 4) >> 2] = E + f[H >> 2] = 0 + U = $((((f[o >> 2] | 0) + 1) | 0) >>> 0) + V = $(G >>> 0) + X = $(n[l >> 2]) + do + if (K | ($(X * V) < U)) { + D = + (G << 1) | + (((G >>> 0 < 3) | ((((G + -1) & G) | 0) != 0)) & 1) + F = ~~$(W($(U / X))) >>> 0 + Jh(g, D >>> 0 < F >>> 0 ? F : D) + D = f[r >> 2] | 0 + F = (D + -1) | 0 + if (!(F & D)) { + Y = D + Z = F & E + break + } + if (E >>> 0 < D >>> 0) { + Y = D + Z = E + } else { + Y = D + Z = (E >>> 0) % (D >>> 0) | 0 + } + } else { + Y = G + Z = Q + } + while (0) + G = ((f[g >> 2] | 0) + (Z << 2)) | 0 + E = f[G >> 2] | 0 + if (!E) { + f[H >> 2] = f[t >> 2] + f[t >> 2] = H + f[G >> 2] = t + G = f[H >> 2] | 0 + if (G | 0) { + K = f[(G + 4) >> 2] | 0 + G = (Y + -1) | 0 + if (G & Y) + if (K >>> 0 < Y >>> 0) _ = K + else _ = (K >>> 0) % (Y >>> 0) | 0 + else _ = K & G + aa = ((f[g >> 2] | 0) + (_ << 2)) | 0 + R = 44 + } + } else { + f[H >> 2] = f[E >> 2] + aa = E + R = 44 + } + if ((R | 0) == 44) { + R = 0 + f[aa >> 2] = H + } + f[o >> 2] = (f[o >> 2] | 0) + 1 + } + E = v + G = f[E >> 2] | 0 + K = on(G | 0, f[(E + 4) >> 2] | 0, y | 0, 0) | 0 + Rg(((f[f[w >> 2] >> 2] | 0) + K) | 0, i | 0, G | 0) | 0 + G = f[k >> 2] | 0 + f[(G + (x << 2)) >> 2] = y + ba = (y + 1) | 0 + ca = G + } else { + G = f[k >> 2] | 0 + f[(G + (x << 2)) >> 2] = f[(z + 12) >> 2] + ba = y + ca = G + } + x = (x + 1) | 0 + da = f[m >> 2] | 0 + if (x >>> 0 >= da >>> 0) break + else y = ba + } + if ((ba | 0) == (da | 0)) ea = ca + else { + y = (a + 84) | 0 + if (!(b[y >> 0] | 0)) { + x = f[(a + 72) >> 2] | 0 + i = f[(a + 68) >> 2] | 0 + w = i + if ((x | 0) == (i | 0)) fa = ca + else { + v = (x - i) >> 2 + i = 0 + do { + x = (w + (i << 2)) | 0 + f[x >> 2] = f[(ca + (f[x >> 2] << 2)) >> 2] + i = (i + 1) | 0 + } while (i >>> 0 < v >>> 0) + fa = ca + } + } else { + b[y >> 0] = 0 + y = (a + 68) | 0 + ca = (a + 72) | 0 + v = f[ca >> 2] | 0 + i = f[y >> 2] | 0 + w = (v - i) >> 2 + x = i + i = v + if (da >>> 0 <= w >>> 0) + if ( + da >>> 0 < w >>> 0 + ? ((v = (x + (da << 2)) | 0), (v | 0) != (i | 0)) + : 0 + ) { + f[ca >> 2] = i + (~(((i + -4 - v) | 0) >>> 2) << 2) + ga = da + } else ga = da + else { + kh(y, (da - w) | 0, 1204) + ga = f[m >> 2] | 0 + } + w = f[k >> 2] | 0 + if (!ga) fa = w + else { + k = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(k + (a << 2)) >> 2] = f[(w + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ga >>> 0) + fa = w + } + } + f[m >> 2] = ba + ea = fa + } + if (!ea) ha = ba + else { + fa = f[p >> 2] | 0 + if ((fa | 0) != (ea | 0)) + f[p >> 2] = fa + (~(((fa + -4 - ea) | 0) >>> 2) << 2) + br(ea) + ha = ba + } + } else ha = 0 + ba = f[(g + 8) >> 2] | 0 + if (ba | 0) { + ea = ba + do { + ba = ea + ea = f[ea >> 2] | 0 + br(ba) + } while ((ea | 0) != 0) + } + ea = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!ea) { + u = e + return ha | 0 + } + br(ea) + u = e + return ha | 0 + } + function jc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = Oa, + V = Oa, + X = Oa, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0 + e = u + u = (u + 80) | 0 + g = (e + 48) | 0 + h = (e + 32) | 0 + i = (e + 16) | 0 + j = e + k = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[k >> 2] = $(1.0) + l = (a + 80) | 0 + m = f[l >> 2] | 0 + f[j >> 2] = 0 + o = (j + 4) | 0 + f[o >> 2] = 0 + f[(j + 8) >> 2] = 0 + if (m) { + if (m >>> 0 > 1073741823) mq(j) + p = m << 2 + q = dn(p) | 0 + f[j >> 2] = q + r = (q + (m << 2)) | 0 + f[(j + 8) >> 2] = r + hj(q | 0, 0, p | 0) | 0 + f[o >> 2] = r + r = f[d >> 2] | 0 + d = (c + 48) | 0 + p = (c + 40) | 0 + q = (i + 4) | 0 + m = (i + 8) | 0 + s = (i + 12) | 0 + t = (g + 4) | 0 + v = (g + 12) | 0 + w = (g + 8) | 0 + x = (a + 40) | 0 + y = (a + 64) | 0 + z = 0 + A = 0 + while (1) { + B = d + C = f[B >> 2] | 0 + D = f[(B + 4) >> 2] | 0 + B = p + E = on(f[B >> 2] | 0, f[(B + 4) >> 2] | 0, (r + A) | 0, 0) | 0 + B = Tn(E | 0, I | 0, C | 0, D | 0) | 0 + D = ((f[f[c >> 2] >> 2] | 0) + B) | 0 + B = h + C = D + E = (B + 16) | 0 + do { + b[B >> 0] = b[C >> 0] | 0 + B = (B + 1) | 0 + C = (C + 1) | 0 + } while ((B | 0) < (E | 0)) + Xl(i | 0, D | 0, 16) | 0 + C = Ff(g, i) | 0 + if (!C) { + B = f[i >> 2] | 0 + E = f[q >> 2] | 0 + F = f[m >> 2] | 0 + G = f[s >> 2] | 0 + H = ((((((B ^ 318) + 239) ^ E) + 239) ^ F) + 239) ^ G + J = f[t >> 2] | 0 + K = (J | 0) == 0 + a: do + if (!K) { + L = (J + -1) | 0 + M = ((L & J) | 0) == 0 + if (!M) + if (H >>> 0 < J >>> 0) N = H + else N = (H >>> 0) % (J >>> 0) | 0 + else N = H & L + O = f[((f[g >> 2] | 0) + (N << 2)) >> 2] | 0 + if ((O | 0) != 0 ? ((P = f[O >> 2] | 0), (P | 0) != 0) : 0) { + if (M) { + M = P + while (1) { + O = f[(M + 4) >> 2] | 0 + if ( + !(((O | 0) == (H | 0)) | (((O & L) | 0) == (N | 0))) + ) { + Q = N + R = 31 + break a + } + if ( + ( + ( + (f[(M + 8) >> 2] | 0) == (B | 0) + ? (f[(M + 12) >> 2] | 0) == (E | 0) + : 0 + ) + ? (f[(M + 16) >> 2] | 0) == (F | 0) + : 0 + ) + ? (f[(M + 20) >> 2] | 0) == (G | 0) + : 0 + ) + break a + M = f[M >> 2] | 0 + if (!M) { + Q = N + R = 31 + break a + } + } + } else S = P + while (1) { + M = f[(S + 4) >> 2] | 0 + if ((M | 0) != (H | 0)) { + if (M >>> 0 < J >>> 0) T = M + else T = (M >>> 0) % (J >>> 0) | 0 + if ((T | 0) != (N | 0)) { + Q = N + R = 31 + break a + } + } + if ( + ( + ( + (f[(S + 8) >> 2] | 0) == (B | 0) + ? (f[(S + 12) >> 2] | 0) == (E | 0) + : 0 + ) + ? (f[(S + 16) >> 2] | 0) == (F | 0) + : 0 + ) + ? (f[(S + 20) >> 2] | 0) == (G | 0) + : 0 + ) + break a + S = f[S >> 2] | 0 + if (!S) { + Q = N + R = 31 + break + } + } + } else { + Q = N + R = 31 + } + } else { + Q = 0 + R = 31 + } + while (0) + if ((R | 0) == 31) { + R = 0 + D = dn(28) | 0 + f[(D + 8) >> 2] = B + f[(D + 12) >> 2] = E + f[(D + 16) >> 2] = F + f[(D + 20) >> 2] = G + f[(D + 24) >> 2] = z + f[(D + 4) >> 2] = H + f[D >> 2] = 0 + U = $((((f[v >> 2] | 0) + 1) | 0) >>> 0) + V = $(J >>> 0) + X = $(n[k >> 2]) + do + if (K | ($(X * V) < U)) { + P = + (J << 1) | + (((J >>> 0 < 3) | ((((J + -1) & J) | 0) != 0)) & 1) + M = ~~$(W($(U / X))) >>> 0 + Gh(g, P >>> 0 < M >>> 0 ? M : P) + P = f[t >> 2] | 0 + M = (P + -1) | 0 + if (!(M & P)) { + Y = P + Z = M & H + break + } + if (H >>> 0 < P >>> 0) { + Y = P + Z = H + } else { + Y = P + Z = (H >>> 0) % (P >>> 0) | 0 + } + } else { + Y = J + Z = Q + } + while (0) + J = ((f[g >> 2] | 0) + (Z << 2)) | 0 + H = f[J >> 2] | 0 + if (!H) { + f[D >> 2] = f[w >> 2] + f[w >> 2] = D + f[J >> 2] = w + J = f[D >> 2] | 0 + if (J | 0) { + K = f[(J + 4) >> 2] | 0 + J = (Y + -1) | 0 + if (J & Y) + if (K >>> 0 < Y >>> 0) _ = K + else _ = (K >>> 0) % (Y >>> 0) | 0 + else _ = K & J + aa = ((f[g >> 2] | 0) + (_ << 2)) | 0 + R = 44 + } + } else { + f[D >> 2] = f[H >> 2] + aa = H + R = 44 + } + if ((R | 0) == 44) { + R = 0 + f[aa >> 2] = D + } + f[v >> 2] = (f[v >> 2] | 0) + 1 + } + H = x + J = f[H >> 2] | 0 + K = on(J | 0, f[(H + 4) >> 2] | 0, z | 0, 0) | 0 + Rg(((f[f[y >> 2] >> 2] | 0) + K) | 0, h | 0, J | 0) | 0 + J = f[j >> 2] | 0 + f[(J + (A << 2)) >> 2] = z + ba = (z + 1) | 0 + ca = J + } else { + J = f[j >> 2] | 0 + f[(J + (A << 2)) >> 2] = f[(C + 24) >> 2] + ba = z + ca = J + } + A = (A + 1) | 0 + da = f[l >> 2] | 0 + if (A >>> 0 >= da >>> 0) break + else z = ba + } + if ((ba | 0) == (da | 0)) ea = ca + else { + z = (a + 84) | 0 + if (!(b[z >> 0] | 0)) { + A = f[(a + 72) >> 2] | 0 + h = f[(a + 68) >> 2] | 0 + y = h + if ((A | 0) == (h | 0)) fa = ca + else { + x = (A - h) >> 2 + h = 0 + do { + A = (y + (h << 2)) | 0 + f[A >> 2] = f[(ca + (f[A >> 2] << 2)) >> 2] + h = (h + 1) | 0 + } while (h >>> 0 < x >>> 0) + fa = ca + } + } else { + b[z >> 0] = 0 + z = (a + 68) | 0 + ca = (a + 72) | 0 + x = f[ca >> 2] | 0 + h = f[z >> 2] | 0 + y = (x - h) >> 2 + A = h + h = x + if (da >>> 0 <= y >>> 0) + if ( + da >>> 0 < y >>> 0 + ? ((x = (A + (da << 2)) | 0), (x | 0) != (h | 0)) + : 0 + ) { + f[ca >> 2] = h + (~(((h + -4 - x) | 0) >>> 2) << 2) + ga = da + } else ga = da + else { + kh(z, (da - y) | 0, 1204) + ga = f[l >> 2] | 0 + } + y = f[j >> 2] | 0 + if (!ga) fa = y + else { + j = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(j + (a << 2)) >> 2] = f[(y + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ga >>> 0) + fa = y + } + } + f[l >> 2] = ba + ea = fa + } + if (!ea) ha = ba + else { + fa = f[o >> 2] | 0 + if ((fa | 0) != (ea | 0)) + f[o >> 2] = fa + (~(((fa + -4 - ea) | 0) >>> 2) << 2) + br(ea) + ha = ba + } + } else ha = 0 + ba = f[(g + 8) >> 2] | 0 + if (ba | 0) { + ea = ba + do { + ba = ea + ea = f[ea >> 2] | 0 + br(ba) + } while ((ea | 0) != 0) + } + ea = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!ea) { + u = e + return ha | 0 + } + br(ea) + u = e + return ha | 0 + } + function kc(a, c, e) { + a = a | 0 + c = c | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = Oa, + T = Oa, + U = Oa, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0 + g = u + u = (u + 48) | 0 + h = (g + 12) | 0 + i = (g + 38) | 0 + j = (g + 32) | 0 + k = g + l = (h + 16) | 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + f[(h + 12) >> 2] = 0 + n[l >> 2] = $(1.0) + m = (a + 80) | 0 + o = f[m >> 2] | 0 + f[k >> 2] = 0 + p = (k + 4) | 0 + f[p >> 2] = 0 + f[(k + 8) >> 2] = 0 + if (o) { + if (o >>> 0 > 1073741823) mq(k) + q = o << 2 + r = dn(q) | 0 + f[k >> 2] = r + s = (r + (o << 2)) | 0 + f[(k + 8) >> 2] = s + hj(r | 0, 0, q | 0) | 0 + f[p >> 2] = s + s = f[e >> 2] | 0 + e = (c + 48) | 0 + q = (c + 40) | 0 + r = (j + 2) | 0 + o = (j + 4) | 0 + t = (h + 4) | 0 + v = (h + 12) | 0 + w = (h + 8) | 0 + x = (a + 40) | 0 + y = (a + 64) | 0 + z = 0 + A = 0 + while (1) { + B = e + C = f[B >> 2] | 0 + D = f[(B + 4) >> 2] | 0 + B = q + E = on(f[B >> 2] | 0, f[(B + 4) >> 2] | 0, (s + A) | 0, 0) | 0 + B = Tn(E | 0, I | 0, C | 0, D | 0) | 0 + D = ((f[f[c >> 2] >> 2] | 0) + B) | 0 + b[i >> 0] = b[D >> 0] | 0 + b[(i + 1) >> 0] = b[(D + 1) >> 0] | 0 + b[(i + 2) >> 0] = b[(D + 2) >> 0] | 0 + b[(i + 3) >> 0] = b[(D + 3) >> 0] | 0 + b[(i + 4) >> 0] = b[(D + 4) >> 0] | 0 + b[(i + 5) >> 0] = b[(D + 5) >> 0] | 0 + Xl(j | 0, D | 0, 6) | 0 + D = Pf(h, j) | 0 + if (!D) { + B = d[j >> 1] | 0 + C = d[r >> 1] | 0 + E = d[o >> 1] | 0 + F = + (((((B ^ 318) & 65535) + 239) ^ (C & 65535)) + 239) ^ (E & 65535) + G = f[t >> 2] | 0 + H = (G | 0) == 0 + a: do + if (!H) { + J = (G + -1) | 0 + K = ((J & G) | 0) == 0 + if (!K) + if (F >>> 0 < G >>> 0) L = F + else L = (F >>> 0) % (G >>> 0) | 0 + else L = F & J + M = f[((f[h >> 2] | 0) + (L << 2)) >> 2] | 0 + if ((M | 0) != 0 ? ((N = f[M >> 2] | 0), (N | 0) != 0) : 0) { + if (K) { + K = N + while (1) { + M = f[(K + 4) >> 2] | 0 + if ( + !(((M | 0) == (F | 0)) | (((M & J) | 0) == (L | 0))) + ) { + O = L + P = 29 + break a + } + M = (K + 8) | 0 + if ( + ( + (d[M >> 1] | 0) == (B << 16) >> 16 + ? (d[(M + 2) >> 1] | 0) == (C << 16) >> 16 + : 0 + ) + ? (d[(K + 12) >> 1] | 0) == (E << 16) >> 16 + : 0 + ) + break a + K = f[K >> 2] | 0 + if (!K) { + O = L + P = 29 + break a + } + } + } else Q = N + while (1) { + K = f[(Q + 4) >> 2] | 0 + if ((K | 0) != (F | 0)) { + if (K >>> 0 < G >>> 0) R = K + else R = (K >>> 0) % (G >>> 0) | 0 + if ((R | 0) != (L | 0)) { + O = L + P = 29 + break a + } + } + K = (Q + 8) | 0 + if ( + ( + (d[K >> 1] | 0) == (B << 16) >> 16 + ? (d[(K + 2) >> 1] | 0) == (C << 16) >> 16 + : 0 + ) + ? (d[(Q + 12) >> 1] | 0) == (E << 16) >> 16 + : 0 + ) + break a + Q = f[Q >> 2] | 0 + if (!Q) { + O = L + P = 29 + break + } + } + } else { + O = L + P = 29 + } + } else { + O = 0 + P = 29 + } + while (0) + if ((P | 0) == 29) { + P = 0 + N = dn(20) | 0 + d[(N + 8) >> 1] = B + d[(N + 10) >> 1] = C + d[(N + 12) >> 1] = E + f[(N + 16) >> 2] = z + f[(N + 4) >> 2] = F + f[N >> 2] = 0 + S = $((((f[v >> 2] | 0) + 1) | 0) >>> 0) + T = $(G >>> 0) + U = $(n[l >> 2]) + do + if (H | ($(U * T) < S)) { + K = + (G << 1) | + (((G >>> 0 < 3) | ((((G + -1) & G) | 0) != 0)) & 1) + J = ~~$(W($(S / U))) >>> 0 + Dh(h, K >>> 0 < J >>> 0 ? J : K) + K = f[t >> 2] | 0 + J = (K + -1) | 0 + if (!(J & K)) { + V = K + X = J & F + break + } + if (F >>> 0 < K >>> 0) { + V = K + X = F + } else { + V = K + X = (F >>> 0) % (K >>> 0) | 0 + } + } else { + V = G + X = O + } + while (0) + G = ((f[h >> 2] | 0) + (X << 2)) | 0 + F = f[G >> 2] | 0 + if (!F) { + f[N >> 2] = f[w >> 2] + f[w >> 2] = N + f[G >> 2] = w + G = f[N >> 2] | 0 + if (G | 0) { + H = f[(G + 4) >> 2] | 0 + G = (V + -1) | 0 + if (G & V) + if (H >>> 0 < V >>> 0) Y = H + else Y = (H >>> 0) % (V >>> 0) | 0 + else Y = H & G + Z = ((f[h >> 2] | 0) + (Y << 2)) | 0 + P = 42 + } + } else { + f[N >> 2] = f[F >> 2] + Z = F + P = 42 + } + if ((P | 0) == 42) { + P = 0 + f[Z >> 2] = N + } + f[v >> 2] = (f[v >> 2] | 0) + 1 + } + F = x + G = f[F >> 2] | 0 + H = on(G | 0, f[(F + 4) >> 2] | 0, z | 0, 0) | 0 + Rg(((f[f[y >> 2] >> 2] | 0) + H) | 0, i | 0, G | 0) | 0 + G = f[k >> 2] | 0 + f[(G + (A << 2)) >> 2] = z + _ = (z + 1) | 0 + aa = G + } else { + G = f[k >> 2] | 0 + f[(G + (A << 2)) >> 2] = f[(D + 16) >> 2] + _ = z + aa = G + } + A = (A + 1) | 0 + ba = f[m >> 2] | 0 + if (A >>> 0 >= ba >>> 0) break + else z = _ + } + if ((_ | 0) == (ba | 0)) ca = aa + else { + z = (a + 84) | 0 + if (!(b[z >> 0] | 0)) { + A = f[(a + 72) >> 2] | 0 + i = f[(a + 68) >> 2] | 0 + y = i + if ((A | 0) == (i | 0)) da = aa + else { + x = (A - i) >> 2 + i = 0 + do { + A = (y + (i << 2)) | 0 + f[A >> 2] = f[(aa + (f[A >> 2] << 2)) >> 2] + i = (i + 1) | 0 + } while (i >>> 0 < x >>> 0) + da = aa + } + } else { + b[z >> 0] = 0 + z = (a + 68) | 0 + aa = (a + 72) | 0 + x = f[aa >> 2] | 0 + i = f[z >> 2] | 0 + y = (x - i) >> 2 + A = i + i = x + if (ba >>> 0 <= y >>> 0) + if ( + ba >>> 0 < y >>> 0 + ? ((x = (A + (ba << 2)) | 0), (x | 0) != (i | 0)) + : 0 + ) { + f[aa >> 2] = i + (~(((i + -4 - x) | 0) >>> 2) << 2) + ea = ba + } else ea = ba + else { + kh(z, (ba - y) | 0, 1204) + ea = f[m >> 2] | 0 + } + y = f[k >> 2] | 0 + if (!ea) da = y + else { + k = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(k + (a << 2)) >> 2] = f[(y + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ea >>> 0) + da = y + } + } + f[m >> 2] = _ + ca = da + } + if (!ca) fa = _ + else { + da = f[p >> 2] | 0 + if ((da | 0) != (ca | 0)) + f[p >> 2] = da + (~(((da + -4 - ca) | 0) >>> 2) << 2) + br(ca) + fa = _ + } + } else fa = 0 + _ = f[(h + 8) >> 2] | 0 + if (_ | 0) { + ca = _ + do { + _ = ca + ca = f[ca >> 2] | 0 + br(_) + } while ((ca | 0) != 0) + } + ca = f[h >> 2] | 0 + f[h >> 2] = 0 + if (!ca) { + u = g + return fa | 0 + } + br(ca) + u = g + return fa | 0 + } + function lc(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0 + d = u + u = (u + 80) | 0 + e = (d + 72) | 0 + g = (d + 64) | 0 + h = d + i = (d + 68) | 0 + j = (d + 60) | 0 + k = (a + 352) | 0 + if ( + b[k >> 0] | 0 + ? ((l = Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0), + (((f[(l + 12) >> 2] | 0) - (f[(l + 8) >> 2] | 0)) | 0) > 0) + : 0 + ) { + l = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 8) | 0 + m = f[f[l >> 2] >> 2] | 0 + f[e >> 2] = c + l = (m + 4) | 0 + n = (m + 8) | 0 + o = f[n >> 2] | 0 + if ((o | 0) == (f[(m + 12) >> 2] | 0)) Ci(l, e) + else { + f[o >> 2] = c + f[n >> 2] = o + 4 + } + o = f[e >> 2] | 0 + p = (m + 16) | 0 + q = (m + 20) | 0 + m = f[q >> 2] | 0 + r = f[p >> 2] | 0 + s = (m - r) >> 2 + t = r + if ((o | 0) < (s | 0)) { + v = t + w = o + } else { + r = (o + 1) | 0 + f[g >> 2] = -1 + x = m + if (r >>> 0 <= s >>> 0) + if ( + r >>> 0 < s >>> 0 + ? ((m = (t + (r << 2)) | 0), (m | 0) != (x | 0)) + : 0 + ) { + f[q >> 2] = x + (~(((x + -4 - m) | 0) >>> 2) << 2) + y = o + z = t + } else { + y = o + z = t + } + else { + kh(p, (r - s) | 0, g) + y = f[e >> 2] | 0 + z = f[p >> 2] | 0 + } + v = z + w = y + } + f[(v + (w << 2)) >> 2] = (((f[n >> 2] | 0) - (f[l >> 2] | 0)) >> 2) + -1 + A = 1 + u = d + return A | 0 + } + l = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 56) | 0 + n = f[((f[((f[l >> 2] | 0) + 84) >> 2] | 0) + (c << 2)) >> 2] | 0 + l = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 4) | 0 + w = f[((f[((f[l >> 2] | 0) + 8) >> 2] | 0) + (c << 2)) >> 2] | 0 + f[g >> 2] = -1 + l = (a + 172) | 0 + v = f[(a + 176) >> 2] | 0 + y = f[l >> 2] | 0 + z = y + a: do + if ((v | 0) == (y | 0)) B = -1 + else { + p = (((v - y) | 0) / 136) | 0 + s = 0 + while (1) { + if ((f[(z + ((s * 136) | 0)) >> 2] | 0) == (c | 0)) break + r = (s + 1) | 0 + if (r >>> 0 < p >>> 0) s = r + else { + B = -1 + break a + } + } + f[g >> 2] = s + B = s + } + while (0) + b: do + if (!(b[k >> 0] | 0)) { + y = (f[(w + 56) >> 2] | 0) == 0 + do + if (!(((n | 0) == 0) | y)) { + if ((n | 0) == 1 ? b[(z + ((B * 136) | 0) + 28) >> 0] | 0 : 0) + break + v = (z + ((B * 136) | 0) + 104) | 0 + p = (z + ((B * 136) | 0) + 4) | 0 + r = + ((f[(z + ((B * 136) | 0) + 60) >> 2] | 0) - + (f[(z + ((B * 136) | 0) + 56) >> 2] | 0)) >> + 2 + f[e >> 2] = -1 + Sf((z + ((B * 136) | 0) + 116) | 0, r, e) + r = dn(80) | 0 + t = f[(a + 8) >> 2] | 0 + f[(r + 4) >> 2] = 0 + f[r >> 2] = 3164 + o = (r + 8) | 0 + m = (r + 12) | 0 + x = (m + 44) | 0 + do { + f[m >> 2] = 0 + m = (m + 4) | 0 + } while ((m | 0) < (x | 0)) + f[o >> 2] = 3188 + q = (r + 56) | 0 + f[q >> 2] = 0 + f[(r + 60) >> 2] = 0 + f[(r + 64) >> 2] = 0 + f[(r + 68) >> 2] = t + f[(r + 72) >> 2] = v + C = (r + 76) | 0 + f[C >> 2] = 0 + D = (h + 4) | 0 + m = (D + 4) | 0 + x = (m + 40) | 0 + do { + f[m >> 2] = 0 + m = (m + 4) | 0 + } while ((m | 0) < (x | 0)) + f[h >> 2] = 3188 + m = (h + 48) | 0 + f[m >> 2] = 0 + x = (h + 52) | 0 + f[x >> 2] = 0 + f[(h + 56) >> 2] = 0 + f[D >> 2] = p + E = f[(z + ((B * 136) | 0) + 68) >> 2] | 0 + F = + (((((f[(E + 4) >> 2] | 0) - (f[E >> 2] | 0)) >> 2) >>> 0) / 3) | + 0 + b[e >> 0] = 0 + Xg((h + 24) | 0, F, e) + F = f[D >> 2] | 0 + E = ((f[(F + 56) >> 2] | 0) - (f[(F + 52) >> 2] | 0)) >> 2 + b[e >> 0] = 0 + Xg((h + 36) | 0, E, e) + f[(h + 8) >> 2] = p + f[(h + 12) >> 2] = v + f[(h + 16) >> 2] = t + f[(h + 20) >> 2] = r + f[C >> 2] = a + 72 + ef(o, h) | 0 + Yf(q, f[m >> 2] | 0, f[x >> 2] | 0) + E = r + f[h >> 2] = 3188 + F = f[m >> 2] | 0 + if (F | 0) { + m = f[x >> 2] | 0 + if ((m | 0) != (F | 0)) + f[x >> 2] = m + (~(((m + -4 - F) | 0) >>> 2) << 2) + br(F) + } + f[h >> 2] = 3208 + F = f[(h + 36) >> 2] | 0 + if (F | 0) br(F) + F = f[(h + 24) >> 2] | 0 + if (F | 0) br(F) + G = 0 + H = E + I = 42 + break b + } + while (0) + if (!y) { + s = f[(a + 12) >> 2] | 0 + E = ((f[(s + 28) >> 2] | 0) - (f[(s + 24) >> 2] | 0)) >> 2 + f[e >> 2] = -1 + Sf((z + ((B * 136) | 0) + 116) | 0, E, e) + b[((f[l >> 2] | 0) + (((f[g >> 2] | 0) * 136) | 0) + 100) >> 0] = 0 + J = (z + ((B * 136) | 0) + 104) | 0 + I = 26 + } else I = 24 + } else I = 24 + while (0) + if ((I | 0) == 24) { + J = (a + 40) | 0 + I = 26 + } + if ((I | 0) == 26) { + B = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 48) | 0 + do + if ((Yh(f[B >> 2] | 0) | 0) == 0 ? (f[(w + 56) >> 2] | 0) == 0 : 0) { + if ( + b[k >> 0] | 0 + ? ((z = f[(a + 8) >> 2] | 0), + (((f[(z + 12) >> 2] | 0) - (f[(z + 8) >> 2] | 0)) | 0) >= 5) + : 0 + ) { + I = 31 + break + } + uf(e, a, J) + K = 1 + L = f[e >> 2] | 0 + } else I = 31 + while (0) + if ((I | 0) == 31) { + Le(e, a, J) + K = 0 + L = f[e >> 2] | 0 + } + if (!L) M = 0 + else { + G = K + H = L + I = 42 + } + } + if ((I | 0) == 42) { + I = f[g >> 2] | 0 + if ((I | 0) == -1) N = (a + 68) | 0 + else N = ((f[l >> 2] | 0) + ((I * 136) | 0) + 132) | 0 + f[N >> 2] = G + G = dn(76) | 0 + f[i >> 2] = H + ml(G, i, c) + c = G + G = f[i >> 2] | 0 + f[i >> 2] = 0 + if (G | 0) Va[f[((f[G >> 2] | 0) + 4) >> 2] & 127](G) + G = (a + 188) | 0 + i = f[G >> 2] | 0 + if ((i | 0) == (f[(a + 192) >> 2] | 0)) Ci((a + 184) | 0, g) + else { + f[i >> 2] = f[g >> 2] + f[G >> 2] = i + 4 + } + i = Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0 + f[j >> 2] = c + a = (i + 12) | 0 + G = f[a >> 2] | 0 + if (G >>> 0 < (f[(i + 16) >> 2] | 0) >>> 0) { + f[j >> 2] = 0 + f[G >> 2] = c + f[a >> 2] = G + 4 + O = j + } else { + yg((i + 8) | 0, j) + O = j + } + j = f[O >> 2] | 0 + f[O >> 2] = 0 + if (!j) M = 1 + else { + Va[f[((f[j >> 2] | 0) + 4) >> 2] & 127](j) + M = 1 + } + } + A = M + u = d + return A | 0 + } + function mc(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0 + d = u + u = (u + 80) | 0 + e = (d + 72) | 0 + g = (d + 64) | 0 + h = d + i = (d + 68) | 0 + j = (d + 60) | 0 + k = (a + 288) | 0 + if ( + b[k >> 0] | 0 + ? ((l = Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0), + (((f[(l + 12) >> 2] | 0) - (f[(l + 8) >> 2] | 0)) | 0) > 0) + : 0 + ) { + l = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 8) | 0 + m = f[f[l >> 2] >> 2] | 0 + f[e >> 2] = c + l = (m + 4) | 0 + n = (m + 8) | 0 + o = f[n >> 2] | 0 + if ((o | 0) == (f[(m + 12) >> 2] | 0)) Ci(l, e) + else { + f[o >> 2] = c + f[n >> 2] = o + 4 + } + o = f[e >> 2] | 0 + p = (m + 16) | 0 + q = (m + 20) | 0 + m = f[q >> 2] | 0 + r = f[p >> 2] | 0 + s = (m - r) >> 2 + t = r + if ((o | 0) < (s | 0)) { + v = t + w = o + } else { + r = (o + 1) | 0 + f[g >> 2] = -1 + x = m + if (r >>> 0 <= s >>> 0) + if ( + r >>> 0 < s >>> 0 + ? ((m = (t + (r << 2)) | 0), (m | 0) != (x | 0)) + : 0 + ) { + f[q >> 2] = x + (~(((x + -4 - m) | 0) >>> 2) << 2) + y = o + z = t + } else { + y = o + z = t + } + else { + kh(p, (r - s) | 0, g) + y = f[e >> 2] | 0 + z = f[p >> 2] | 0 + } + v = z + w = y + } + f[(v + (w << 2)) >> 2] = (((f[n >> 2] | 0) - (f[l >> 2] | 0)) >> 2) + -1 + A = 1 + u = d + return A | 0 + } + l = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 56) | 0 + n = f[((f[((f[l >> 2] | 0) + 84) >> 2] | 0) + (c << 2)) >> 2] | 0 + l = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 4) | 0 + w = f[((f[((f[l >> 2] | 0) + 8) >> 2] | 0) + (c << 2)) >> 2] | 0 + f[g >> 2] = -1 + l = (a + 172) | 0 + v = f[(a + 176) >> 2] | 0 + y = f[l >> 2] | 0 + z = y + a: do + if ((v | 0) == (y | 0)) B = -1 + else { + p = (((v - y) | 0) / 136) | 0 + s = 0 + while (1) { + if ((f[(z + ((s * 136) | 0)) >> 2] | 0) == (c | 0)) break + r = (s + 1) | 0 + if (r >>> 0 < p >>> 0) s = r + else { + B = -1 + break a + } + } + f[g >> 2] = s + B = s + } + while (0) + b: do + if (!(b[k >> 0] | 0)) { + y = (f[(w + 56) >> 2] | 0) == 0 + do + if (!(((n | 0) == 0) | y)) { + if ((n | 0) == 1 ? b[(z + ((B * 136) | 0) + 28) >> 0] | 0 : 0) + break + v = (z + ((B * 136) | 0) + 104) | 0 + p = (z + ((B * 136) | 0) + 4) | 0 + r = + ((f[(z + ((B * 136) | 0) + 60) >> 2] | 0) - + (f[(z + ((B * 136) | 0) + 56) >> 2] | 0)) >> + 2 + f[e >> 2] = -1 + Sf((z + ((B * 136) | 0) + 116) | 0, r, e) + r = dn(80) | 0 + t = f[(a + 8) >> 2] | 0 + f[(r + 4) >> 2] = 0 + f[r >> 2] = 3164 + o = (r + 8) | 0 + m = (r + 12) | 0 + x = (m + 44) | 0 + do { + f[m >> 2] = 0 + m = (m + 4) | 0 + } while ((m | 0) < (x | 0)) + f[o >> 2] = 3188 + q = (r + 56) | 0 + f[q >> 2] = 0 + f[(r + 60) >> 2] = 0 + f[(r + 64) >> 2] = 0 + f[(r + 68) >> 2] = t + f[(r + 72) >> 2] = v + C = (r + 76) | 0 + f[C >> 2] = 0 + D = (h + 4) | 0 + m = (D + 4) | 0 + x = (m + 40) | 0 + do { + f[m >> 2] = 0 + m = (m + 4) | 0 + } while ((m | 0) < (x | 0)) + f[h >> 2] = 3188 + m = (h + 48) | 0 + f[m >> 2] = 0 + x = (h + 52) | 0 + f[x >> 2] = 0 + f[(h + 56) >> 2] = 0 + f[D >> 2] = p + E = f[(z + ((B * 136) | 0) + 68) >> 2] | 0 + F = + (((((f[(E + 4) >> 2] | 0) - (f[E >> 2] | 0)) >> 2) >>> 0) / 3) | + 0 + b[e >> 0] = 0 + Xg((h + 24) | 0, F, e) + F = f[D >> 2] | 0 + E = ((f[(F + 56) >> 2] | 0) - (f[(F + 52) >> 2] | 0)) >> 2 + b[e >> 0] = 0 + Xg((h + 36) | 0, E, e) + f[(h + 8) >> 2] = p + f[(h + 12) >> 2] = v + f[(h + 16) >> 2] = t + f[(h + 20) >> 2] = r + f[C >> 2] = a + 72 + ef(o, h) | 0 + Yf(q, f[m >> 2] | 0, f[x >> 2] | 0) + E = r + f[h >> 2] = 3188 + F = f[m >> 2] | 0 + if (F | 0) { + m = f[x >> 2] | 0 + if ((m | 0) != (F | 0)) + f[x >> 2] = m + (~(((m + -4 - F) | 0) >>> 2) << 2) + br(F) + } + f[h >> 2] = 3208 + F = f[(h + 36) >> 2] | 0 + if (F | 0) br(F) + F = f[(h + 24) >> 2] | 0 + if (F | 0) br(F) + G = 0 + H = E + I = 42 + break b + } + while (0) + if (!y) { + s = f[(a + 12) >> 2] | 0 + E = ((f[(s + 28) >> 2] | 0) - (f[(s + 24) >> 2] | 0)) >> 2 + f[e >> 2] = -1 + Sf((z + ((B * 136) | 0) + 116) | 0, E, e) + b[((f[l >> 2] | 0) + (((f[g >> 2] | 0) * 136) | 0) + 100) >> 0] = 0 + J = (z + ((B * 136) | 0) + 104) | 0 + I = 26 + } else I = 24 + } else I = 24 + while (0) + if ((I | 0) == 24) { + J = (a + 40) | 0 + I = 26 + } + if ((I | 0) == 26) { + B = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 48) | 0 + do + if ((Yh(f[B >> 2] | 0) | 0) == 0 ? (f[(w + 56) >> 2] | 0) == 0 : 0) { + if ( + b[k >> 0] | 0 + ? ((z = f[(a + 8) >> 2] | 0), + (((f[(z + 12) >> 2] | 0) - (f[(z + 8) >> 2] | 0)) | 0) >= 5) + : 0 + ) { + I = 31 + break + } + uf(e, a, J) + K = 1 + L = f[e >> 2] | 0 + } else I = 31 + while (0) + if ((I | 0) == 31) { + Le(e, a, J) + K = 0 + L = f[e >> 2] | 0 + } + if (!L) M = 0 + else { + G = K + H = L + I = 42 + } + } + if ((I | 0) == 42) { + I = f[g >> 2] | 0 + if ((I | 0) == -1) N = (a + 68) | 0 + else N = ((f[l >> 2] | 0) + ((I * 136) | 0) + 132) | 0 + f[N >> 2] = G + G = dn(76) | 0 + f[i >> 2] = H + ml(G, i, c) + c = G + G = f[i >> 2] | 0 + f[i >> 2] = 0 + if (G | 0) Va[f[((f[G >> 2] | 0) + 4) >> 2] & 127](G) + G = (a + 188) | 0 + i = f[G >> 2] | 0 + if ((i | 0) == (f[(a + 192) >> 2] | 0)) Ci((a + 184) | 0, g) + else { + f[i >> 2] = f[g >> 2] + f[G >> 2] = i + 4 + } + i = Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0 + f[j >> 2] = c + a = (i + 12) | 0 + G = f[a >> 2] | 0 + if (G >>> 0 < (f[(i + 16) >> 2] | 0) >>> 0) { + f[j >> 2] = 0 + f[G >> 2] = c + f[a >> 2] = G + 4 + O = j + } else { + yg((i + 8) | 0, j) + O = j + } + j = f[O >> 2] | 0 + f[O >> 2] = 0 + if (!j) M = 1 + else { + Va[f[((f[j >> 2] | 0) + 4) >> 2] & 127](j) + M = 1 + } + } + A = M + u = d + return A | 0 + } + function nc(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0 + e = u + u = (u + 64) | 0 + d = (e + 48) | 0 + h = (e + 40) | 0 + i = (e + 32) | 0 + j = (e + 16) | 0 + k = (e + 8) | 0 + l = e + m = (e + 28) | 0 + n = (a + 8) | 0 + o = f[n >> 2] | 0 + if (((o + -2) | 0) >>> 0 <= 28) { + f[(a + 72) >> 2] = o + p = 1 << o + f[(a + 76) >> 2] = p + -1 + o = (p + -2) | 0 + f[(a + 80) >> 2] = o + f[(a + 84) >> 2] = ((o | 0) / 2) | 0 + } + o = (a + 40) | 0 + f[(a + 48) >> 2] = g + g = (a + 88) | 0 + lk(g) + p = (a + 36) | 0 + q = f[p >> 2] | 0 + r = ((f[(q + 4) >> 2] | 0) - (f[q >> 2] | 0)) | 0 + s = r >> 2 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + t = k + f[t >> 2] = 0 + f[(t + 4) >> 2] = 0 + t = l + f[t >> 2] = 0 + f[(t + 4) >> 2] = 0 + if ((r | 0) <= 0) { + u = e + return 1 + } + r = (j + 4) | 0 + t = (j + 8) | 0 + v = (a + 84) | 0 + w = (a + 80) | 0 + x = (h + 4) | 0 + y = (i + 4) | 0 + z = (d + 4) | 0 + A = (k + 4) | 0 + B = (h + 4) | 0 + C = (i + 4) | 0 + D = (d + 4) | 0 + E = (l + 4) | 0 + F = (a + 76) | 0 + a = (k + 4) | 0 + G = (l + 4) | 0 + H = f[q >> 2] | 0 + if ((f[(q + 4) >> 2] | 0) == (H | 0)) { + J = q + mq(J) + } else { + K = 0 + L = H + } + while (1) { + f[m >> 2] = f[(L + (K << 2)) >> 2] + f[d >> 2] = f[m >> 2] + fc(o, d, j) + H = f[j >> 2] | 0 + q = (H | 0) > -1 ? H : (0 - H) | 0 + M = f[r >> 2] | 0 + N = (M | 0) > -1 ? M : (0 - M) | 0 + O = + Tn( + N | 0, + ((((N | 0) < 0) << 31) >> 31) | 0, + q | 0, + ((((q | 0) < 0) << 31) >> 31) | 0, + ) | 0 + q = f[t >> 2] | 0 + N = (q | 0) > -1 + P = N ? q : (0 - q) | 0 + q = Tn(O | 0, I | 0, P | 0, ((((P | 0) < 0) << 31) >> 31) | 0) | 0 + P = I + if (((q | 0) == 0) & ((P | 0) == 0)) { + O = f[v >> 2] | 0 + Q = O + R = j + S = M + T = O + } else { + O = f[v >> 2] | 0 + U = (((O | 0) < 0) << 31) >> 31 + V = on(O | 0, U | 0, H | 0, ((((H | 0) < 0) << 31) >> 31) | 0) | 0 + H = zk(V | 0, I | 0, q | 0, P | 0) | 0 + f[j >> 2] = H + V = on(O | 0, U | 0, M | 0, ((((M | 0) < 0) << 31) >> 31) | 0) | 0 + M = zk(V | 0, I | 0, q | 0, P | 0) | 0 + f[r >> 2] = M + P = + (O - + ((H | 0) > -1 ? H : (0 - H) | 0) - + ((M | 0) > -1 ? M : (0 - M) | 0)) | + 0 + Q = N ? P : (0 - P) | 0 + R = t + S = M + T = O + } + f[R >> 2] = Q + O = f[j >> 2] | 0 + do + if ((O | 0) <= -1) { + if ((S | 0) < 0) { + M = f[t >> 2] | 0 + W = (M | 0) > -1 ? M : (0 - M) | 0 + X = M + } else { + M = f[t >> 2] | 0 + W = ((f[w >> 2] | 0) - ((M | 0) > -1 ? M : (0 - M) | 0)) | 0 + X = M + } + if ((X | 0) < 0) { + Y = (S | 0) > -1 ? S : (0 - S) | 0 + Z = W + _ = X + break + } else { + Y = ((f[w >> 2] | 0) - ((S | 0) > -1 ? S : (0 - S) | 0)) | 0 + Z = W + _ = X + break + } + } else { + M = f[t >> 2] | 0 + Y = (M + T) | 0 + Z = (T + S) | 0 + _ = M + } + while (0) + M = (Z | 0) == 0 + P = (Y | 0) == 0 + N = f[w >> 2] | 0 + do + if (Y | Z) { + H = (N | 0) == (Y | 0) + if (!(M & H)) { + q = (N | 0) == (Z | 0) + if (!(P & q)) { + if (M & ((T | 0) < (Y | 0))) { + $ = 0 + aa = ((T << 1) - Y) | 0 + break + } + if (q & ((T | 0) > (Y | 0))) { + $ = Z + aa = ((T << 1) - Y) | 0 + break + } + if (H & ((T | 0) > (Z | 0))) { + $ = ((T << 1) - Z) | 0 + aa = Y + break + } + if (P) { + $ = (T | 0) < (Z | 0) ? ((T << 1) - Z) | 0 : Z + aa = 0 + } else { + $ = Z + aa = Y + } + } else { + $ = Z + aa = Z + } + } else { + $ = Y + aa = Y + } + } else { + $ = N + aa = N + } + while (0) + P = (0 - S) | 0 + M = (0 - _) | 0 + f[j >> 2] = 0 - O + f[r >> 2] = P + f[t >> 2] = M + if ((O | 0) < 1) { + ba = (T - _) | 0 + ca = (T - S) | 0 + } else { + H = (_ | 0) < 1 ? M : _ + M = (S | 0) < 1 ? P : S + ba = (_ | 0) > 0 ? M : (N - M) | 0 + ca = (S | 0) > 0 ? H : (N - H) | 0 + } + H = (ca | 0) == 0 + M = (ba | 0) == 0 + do + if ( + ((ba | ca | 0) != 0 ? ((P = (N | 0) == (ba | 0)), !(H & P)) : 0) + ? ((q = (N | 0) == (ca | 0)), !(M & q)) + : 0 + ) { + if (H & ((T | 0) < (ba | 0))) { + da = 0 + ea = ((T << 1) - ba) | 0 + break + } + if (q & ((T | 0) > (ba | 0))) { + da = N + ea = ((T << 1) - ba) | 0 + break + } + if (P & ((T | 0) > (ca | 0))) { + da = ((T << 1) - ca) | 0 + ea = N + break + } + if (M) { + da = (T | 0) < (ca | 0) ? ((T << 1) - ca) | 0 : ca + ea = 0 + } else { + da = ca + ea = ba + } + } else { + da = N + ea = N + } + while (0) + N = K << 1 + M = (b + (N << 2)) | 0 + H = (M + 4) | 0 + O = f[H >> 2] | 0 + f[h >> 2] = f[M >> 2] + f[x >> 2] = O + f[i >> 2] = $ + f[y >> 2] = aa + Dd(d, n, h, i) + O = f[d >> 2] | 0 + f[k >> 2] = O + P = f[z >> 2] | 0 + f[A >> 2] = P + q = f[H >> 2] | 0 + f[h >> 2] = f[M >> 2] + f[B >> 2] = q + f[i >> 2] = da + f[C >> 2] = ea + Dd(d, n, h, i) + q = f[d >> 2] | 0 + f[l >> 2] = q + M = f[D >> 2] | 0 + f[E >> 2] = M + H = f[v >> 2] | 0 + if ((H | 0) >= (O | 0)) + if ((O | 0) < ((0 - H) | 0)) fa = ((f[F >> 2] | 0) + O) | 0 + else fa = O + else fa = (O - (f[F >> 2] | 0)) | 0 + f[k >> 2] = fa + if ((H | 0) >= (P | 0)) + if ((P | 0) < ((0 - H) | 0)) ga = ((f[F >> 2] | 0) + P) | 0 + else ga = P + else ga = (P - (f[F >> 2] | 0)) | 0 + f[a >> 2] = ga + if ((H | 0) >= (q | 0)) + if ((q | 0) < ((0 - H) | 0)) ha = ((f[F >> 2] | 0) + q) | 0 + else ha = q + else ha = (q - (f[F >> 2] | 0)) | 0 + f[l >> 2] = ha + if ((H | 0) >= (M | 0)) + if ((M | 0) < ((0 - H) | 0)) ia = ((f[F >> 2] | 0) + M) | 0 + else ia = M + else ia = (M - (f[F >> 2] | 0)) | 0 + f[G >> 2] = ia + if ( + ((((ga | 0) > -1 ? ga : (0 - ga) | 0) + + ((fa | 0) > -1 ? fa : (0 - fa) | 0)) | + 0) < + ((((ha | 0) > -1 ? ha : (0 - ha) | 0) + + ((ia | 0) > -1 ? ia : (0 - ia) | 0)) | + 0) + ) { + Vi(g, 0) + ja = k + } else { + Vi(g, 1) + ja = l + } + M = f[ja >> 2] | 0 + if ((M | 0) < 0) ka = ((f[F >> 2] | 0) + M) | 0 + else ka = M + M = (c + (N << 2)) | 0 + f[M >> 2] = ka + N = f[(ja + 4) >> 2] | 0 + if ((N | 0) < 0) la = ((f[F >> 2] | 0) + N) | 0 + else la = N + f[(M + 4) >> 2] = la + K = (K + 1) | 0 + if ((K | 0) >= (s | 0)) { + ma = 5 + break + } + M = f[p >> 2] | 0 + L = f[M >> 2] | 0 + if ((((f[(M + 4) >> 2] | 0) - L) >> 2) >>> 0 <= K >>> 0) { + J = M + ma = 6 + break + } + } + if ((ma | 0) == 5) { + u = e + return 1 + } else if ((ma | 0) == 6) mq(J) + return 0 + } + function oc(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0 + c = u + u = (u + 48) | 0 + d = (c + 24) | 0 + e = (c + 12) | 0 + g = c + if (!b) { + h = 0 + u = c + return h | 0 + } + i = (a + 12) | 0 + j = (a + 4) | 0 + k = f[j >> 2] | 0 + l = f[a >> 2] | 0 + m = (k - l) >> 2 + n = (a + 16) | 0 + o = f[n >> 2] | 0 + p = f[i >> 2] | 0 + q = (o - p) >> 2 + r = p + p = o + if (m >>> 0 <= q >>> 0) + if ( + m >>> 0 < q >>> 0 ? ((o = (r + (m << 2)) | 0), (o | 0) != (p | 0)) : 0 + ) { + f[n >> 2] = p + (~(((p + -4 - o) | 0) >>> 2) << 2) + s = l + t = k + } else { + s = l + t = k + } + else { + kh(i, (m - q) | 0, 5828) + s = f[a >> 2] | 0 + t = f[j >> 2] | 0 + } + f[d >> 2] = 0 + q = (d + 4) | 0 + f[q >> 2] = 0 + f[(d + 8) >> 2] = 0 + $j(d, (t - s) >> 2) + s = f[j >> 2] | 0 + t = f[a >> 2] | 0 + if ((s | 0) == (t | 0)) { + v = s + w = s + } else { + m = f[d >> 2] | 0 + k = m + l = k + o = 0 + p = s + s = k + k = t + t = m + while (1) { + m = f[(k + (o << 2)) >> 2] | 0 + n = f[q >> 2] | 0 + if (m >>> 0 < ((n - t) >> 2) >>> 0) { + x = l + y = s + z = k + A = p + } else { + r = (m + 1) | 0 + f[e >> 2] = 0 + B = (n - t) >> 2 + C = t + D = n + if (r >>> 0 <= B >>> 0) + if ( + r >>> 0 < B >>> 0 + ? ((n = (C + (r << 2)) | 0), (n | 0) != (D | 0)) + : 0 + ) { + f[q >> 2] = D + (~(((D + -4 - n) | 0) >>> 2) << 2) + E = l + F = p + G = k + } else { + E = l + F = p + G = k + } + else { + kh(d, (r - B) | 0, e) + E = f[d >> 2] | 0 + F = f[j >> 2] | 0 + G = f[a >> 2] | 0 + } + x = E + y = E + z = G + A = F + } + B = (y + (m << 2)) | 0 + f[B >> 2] = (f[B >> 2] | 0) + 1 + o = (o + 1) | 0 + if (o >>> 0 >= ((A - z) >> 2) >>> 0) { + v = z + w = A + break + } else { + l = x + p = A + s = y + k = z + t = y + } + } + } + y = (w - v) | 0 + v = y >> 2 + f[e >> 2] = 0 + w = (e + 4) | 0 + f[w >> 2] = 0 + f[(e + 8) >> 2] = 0 + if (!v) { + H = 0 + I = 0 + } else { + if (v >>> 0 > 536870911) mq(e) + t = dn(y << 1) | 0 + f[w >> 2] = t + f[e >> 2] = t + y = (t + (v << 3)) | 0 + f[(e + 8) >> 2] = y + z = v + v = t + k = t + while (1) { + s = v + f[s >> 2] = -1 + f[(s + 4) >> 2] = -1 + s = (k + 8) | 0 + A = (z + -1) | 0 + if (!A) break + else { + z = A + v = s + k = s + } + } + f[w >> 2] = y + H = t + I = t + } + t = f[q >> 2] | 0 + y = f[d >> 2] | 0 + k = (t - y) | 0 + v = k >> 2 + f[g >> 2] = 0 + z = (g + 4) | 0 + f[z >> 2] = 0 + f[(g + 8) >> 2] = 0 + s = y + do + if (v) + if (v >>> 0 > 1073741823) mq(g) + else { + A = dn(k) | 0 + f[g >> 2] = A + p = (A + (v << 2)) | 0 + f[(g + 8) >> 2] = p + hj(A | 0, 0, k | 0) | 0 + f[z >> 2] = p + J = A + K = p + L = A + break + } + else { + J = 0 + K = 0 + L = 0 + } + while (0) + if ((t | 0) != (y | 0)) { + y = 0 + t = 0 + while (1) { + f[(J + (t << 2)) >> 2] = y + k = (t + 1) | 0 + if (k >>> 0 < v >>> 0) { + y = ((f[(s + (t << 2)) >> 2] | 0) + y) | 0 + t = k + } else break + } + } + t = f[j >> 2] | 0 + j = f[a >> 2] | 0 + y = j + if ((t | 0) != (j | 0)) { + k = (a + 40) | 0 + a = (t - j) >> 2 + j = H + t = H + g = H + A = H + p = H + x = H + l = 0 + o = J + while (1) { + F = f[(y + (l << 2)) >> 2] | 0 + G = (l + 1) | 0 + E = ((G >>> 0) % 3 | 0 | 0) == 0 ? (l + -2) | 0 : G + if ((E | 0) == -1) M = -1 + else M = f[(y + (E << 2)) >> 2] | 0 + E = ((l >>> 0) % 3 | 0 | 0) == 0 + G = ((E ? 2 : -1) + l) | 0 + if ((G | 0) == -1) N = -1 + else N = f[(y + (G << 2)) >> 2] | 0 + if ( + E + ? ((M | 0) == (N | 0)) | + (((F | 0) == (M | 0)) | ((F | 0) == (N | 0))) + : 0 + ) { + f[k >> 2] = (f[k >> 2] | 0) + 1 + O = j + P = t + Q = g + R = A + S = p + T = x + U = (l + 2) | 0 + V = o + } else W = 51 + a: do + if ((W | 0) == 51) { + W = 0 + E = f[(s + (N << 2)) >> 2] | 0 + b: do + if ((E | 0) > 0) { + G = 0 + B = f[(o + (N << 2)) >> 2] | 0 + while (1) { + m = f[(p + (B << 3)) >> 2] | 0 + if ((m | 0) == -1) { + X = j + Y = t + Z = A + _ = p + break b + } + if ((m | 0) == (M | 0)) { + m = f[(p + (B << 3) + 4) >> 2] | 0 + if ((m | 0) == -1) $ = -1 + else $ = f[(y + (m << 2)) >> 2] | 0 + if ((F | 0) != ($ | 0)) break + } + m = (G + 1) | 0 + if ((m | 0) < (E | 0)) { + G = m + B = (B + 1) | 0 + } else { + X = j + Y = t + Z = A + _ = p + break b + } + } + m = f[(A + (B << 3) + 4) >> 2] | 0 + r = G + n = B + D = t + while (1) { + r = (r + 1) | 0 + if ((r | 0) >= (E | 0)) break + C = (n + 1) | 0 + f[(D + (n << 3)) >> 2] = f[(D + (C << 3)) >> 2] + f[(D + (n << 3) + 4) >> 2] = f[(D + (C << 3) + 4) >> 2] + if ((f[(j + (n << 3)) >> 2] | 0) == -1) break + else { + n = C + D = j + } + } + f[(g + (n << 3)) >> 2] = -1 + if ((m | 0) == -1) { + X = g + Y = g + Z = g + _ = g + } else { + D = f[i >> 2] | 0 + f[(D + (l << 2)) >> 2] = m + f[(D + (m << 2)) >> 2] = l + O = g + P = g + Q = g + R = g + S = g + T = x + U = l + V = o + break a + } + } else { + X = j + Y = t + Z = A + _ = p + } + while (0) + E = f[(s + (M << 2)) >> 2] | 0 + if ((E | 0) > 0) { + D = 0 + r = f[(J + (M << 2)) >> 2] | 0 + while (1) { + aa = (x + (r << 3)) | 0 + if ((f[aa >> 2] | 0) == -1) break + D = (D + 1) | 0 + if ((D | 0) >= (E | 0)) { + O = x + P = x + Q = x + R = x + S = x + T = x + U = l + V = J + break a + } else r = (r + 1) | 0 + } + f[aa >> 2] = N + f[(H + (r << 3) + 4) >> 2] = l + O = H + P = H + Q = H + R = H + S = H + T = H + U = l + V = J + } else { + O = X + P = Y + Q = g + R = Z + S = _ + T = x + U = l + V = o + } + } + while (0) + l = (U + 1) | 0 + if (l >>> 0 >= a >>> 0) break + else { + j = O + t = P + g = Q + A = R + p = S + x = T + o = V + } + } + } + f[b >> 2] = v + if (!J) { + ba = H + ca = I + } else { + if ((K | 0) != (J | 0)) + f[z >> 2] = K + (~(((K + -4 - J) | 0) >>> 2) << 2) + br(L) + L = f[e >> 2] | 0 + ba = L + ca = L + } + if (ba | 0) { + L = f[w >> 2] | 0 + if ((L | 0) != (ba | 0)) + f[w >> 2] = L + (~(((L + -8 - ba) | 0) >>> 3) << 3) + br(ca) + } + ca = f[d >> 2] | 0 + if (ca | 0) { + d = f[q >> 2] | 0 + if ((d | 0) != (ca | 0)) + f[q >> 2] = d + (~(((d + -4 - ca) | 0) >>> 2) << 2) + br(ca) + } + h = 1 + u = c + return h | 0 + } + function pc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = Oa, + S = Oa, + T = Oa, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0 + e = u + u = (u + 48) | 0 + g = (e + 12) | 0 + h = (e + 35) | 0 + i = (e + 32) | 0 + j = e + k = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[k >> 2] = $(1.0) + l = (a + 80) | 0 + m = f[l >> 2] | 0 + f[j >> 2] = 0 + o = (j + 4) | 0 + f[o >> 2] = 0 + f[(j + 8) >> 2] = 0 + if (m) { + if (m >>> 0 > 1073741823) mq(j) + p = m << 2 + q = dn(p) | 0 + f[j >> 2] = q + r = (q + (m << 2)) | 0 + f[(j + 8) >> 2] = r + hj(q | 0, 0, p | 0) | 0 + f[o >> 2] = r + r = f[d >> 2] | 0 + d = (c + 48) | 0 + p = (c + 40) | 0 + q = (i + 1) | 0 + m = (i + 2) | 0 + s = (g + 4) | 0 + t = (g + 12) | 0 + v = (g + 8) | 0 + w = (a + 40) | 0 + x = (a + 64) | 0 + y = 0 + z = 0 + while (1) { + A = d + B = f[A >> 2] | 0 + C = f[(A + 4) >> 2] | 0 + A = p + D = on(f[A >> 2] | 0, f[(A + 4) >> 2] | 0, (r + y) | 0, 0) | 0 + A = Tn(D | 0, I | 0, B | 0, C | 0) | 0 + C = ((f[f[c >> 2] >> 2] | 0) + A) | 0 + b[h >> 0] = b[C >> 0] | 0 + b[(h + 1) >> 0] = b[(C + 1) >> 0] | 0 + b[(h + 2) >> 0] = b[(C + 2) >> 0] | 0 + Xl(i | 0, C | 0, 3) | 0 + C = Uf(g, i) | 0 + if (!C) { + A = b[i >> 0] | 0 + B = b[q >> 0] | 0 + D = b[m >> 0] | 0 + E = (((((A & 255) ^ 318) + 239) ^ (B & 255)) + 239) ^ (D & 255) + F = f[s >> 2] | 0 + G = (F | 0) == 0 + a: do + if (!G) { + H = (F + -1) | 0 + J = ((H & F) | 0) == 0 + if (!J) + if (E >>> 0 < F >>> 0) K = E + else K = (E >>> 0) % (F >>> 0) | 0 + else K = E & H + L = f[((f[g >> 2] | 0) + (K << 2)) >> 2] | 0 + if ((L | 0) != 0 ? ((M = f[L >> 2] | 0), (M | 0) != 0) : 0) { + if (J) { + J = M + while (1) { + L = f[(J + 4) >> 2] | 0 + if ( + !(((L | 0) == (E | 0)) | (((L & H) | 0) == (K | 0))) + ) { + N = K + O = 29 + break a + } + L = (J + 8) | 0 + if ( + ( + (b[L >> 0] | 0) == (A << 24) >> 24 + ? (b[(L + 1) >> 0] | 0) == (B << 24) >> 24 + : 0 + ) + ? (b[(L + 2) >> 0] | 0) == (D << 24) >> 24 + : 0 + ) + break a + J = f[J >> 2] | 0 + if (!J) { + N = K + O = 29 + break a + } + } + } else P = M + while (1) { + J = f[(P + 4) >> 2] | 0 + if ((J | 0) != (E | 0)) { + if (J >>> 0 < F >>> 0) Q = J + else Q = (J >>> 0) % (F >>> 0) | 0 + if ((Q | 0) != (K | 0)) { + N = K + O = 29 + break a + } + } + J = (P + 8) | 0 + if ( + ( + (b[J >> 0] | 0) == (A << 24) >> 24 + ? (b[(J + 1) >> 0] | 0) == (B << 24) >> 24 + : 0 + ) + ? (b[(J + 2) >> 0] | 0) == (D << 24) >> 24 + : 0 + ) + break a + P = f[P >> 2] | 0 + if (!P) { + N = K + O = 29 + break + } + } + } else { + N = K + O = 29 + } + } else { + N = 0 + O = 29 + } + while (0) + if ((O | 0) == 29) { + O = 0 + M = dn(16) | 0 + b[(M + 8) >> 0] = A + b[(M + 9) >> 0] = B + b[(M + 10) >> 0] = D + f[(M + 12) >> 2] = z + f[(M + 4) >> 2] = E + f[M >> 2] = 0 + R = $((((f[t >> 2] | 0) + 1) | 0) >>> 0) + S = $(F >>> 0) + T = $(n[k >> 2]) + do + if (G | ($(T * S) < R)) { + J = + (F << 1) | + (((F >>> 0 < 3) | ((((F + -1) & F) | 0) != 0)) & 1) + H = ~~$(W($(R / T))) >>> 0 + Kh(g, J >>> 0 < H >>> 0 ? H : J) + J = f[s >> 2] | 0 + H = (J + -1) | 0 + if (!(H & J)) { + U = J + V = H & E + break + } + if (E >>> 0 < J >>> 0) { + U = J + V = E + } else { + U = J + V = (E >>> 0) % (J >>> 0) | 0 + } + } else { + U = F + V = N + } + while (0) + F = ((f[g >> 2] | 0) + (V << 2)) | 0 + E = f[F >> 2] | 0 + if (!E) { + f[M >> 2] = f[v >> 2] + f[v >> 2] = M + f[F >> 2] = v + F = f[M >> 2] | 0 + if (F | 0) { + G = f[(F + 4) >> 2] | 0 + F = (U + -1) | 0 + if (F & U) + if (G >>> 0 < U >>> 0) X = G + else X = (G >>> 0) % (U >>> 0) | 0 + else X = G & F + Y = ((f[g >> 2] | 0) + (X << 2)) | 0 + O = 42 + } + } else { + f[M >> 2] = f[E >> 2] + Y = E + O = 42 + } + if ((O | 0) == 42) { + O = 0 + f[Y >> 2] = M + } + f[t >> 2] = (f[t >> 2] | 0) + 1 + } + E = w + F = f[E >> 2] | 0 + G = on(F | 0, f[(E + 4) >> 2] | 0, z | 0, 0) | 0 + Rg(((f[f[x >> 2] >> 2] | 0) + G) | 0, h | 0, F | 0) | 0 + F = f[j >> 2] | 0 + f[(F + (y << 2)) >> 2] = z + Z = (z + 1) | 0 + _ = F + } else { + F = f[j >> 2] | 0 + f[(F + (y << 2)) >> 2] = f[(C + 12) >> 2] + Z = z + _ = F + } + y = (y + 1) | 0 + aa = f[l >> 2] | 0 + if (y >>> 0 >= aa >>> 0) break + else z = Z + } + if ((Z | 0) == (aa | 0)) ba = _ + else { + z = (a + 84) | 0 + if (!(b[z >> 0] | 0)) { + y = f[(a + 72) >> 2] | 0 + h = f[(a + 68) >> 2] | 0 + x = h + if ((y | 0) == (h | 0)) ca = _ + else { + w = (y - h) >> 2 + h = 0 + do { + y = (x + (h << 2)) | 0 + f[y >> 2] = f[(_ + (f[y >> 2] << 2)) >> 2] + h = (h + 1) | 0 + } while (h >>> 0 < w >>> 0) + ca = _ + } + } else { + b[z >> 0] = 0 + z = (a + 68) | 0 + _ = (a + 72) | 0 + w = f[_ >> 2] | 0 + h = f[z >> 2] | 0 + x = (w - h) >> 2 + y = h + h = w + if (aa >>> 0 <= x >>> 0) + if ( + aa >>> 0 < x >>> 0 + ? ((w = (y + (aa << 2)) | 0), (w | 0) != (h | 0)) + : 0 + ) { + f[_ >> 2] = h + (~(((h + -4 - w) | 0) >>> 2) << 2) + da = aa + } else da = aa + else { + kh(z, (aa - x) | 0, 1204) + da = f[l >> 2] | 0 + } + x = f[j >> 2] | 0 + if (!da) ca = x + else { + j = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(j + (a << 2)) >> 2] = f[(x + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < da >>> 0) + ca = x + } + } + f[l >> 2] = Z + ba = ca + } + if (!ba) ea = Z + else { + ca = f[o >> 2] | 0 + if ((ca | 0) != (ba | 0)) + f[o >> 2] = ca + (~(((ca + -4 - ba) | 0) >>> 2) << 2) + br(ba) + ea = Z + } + } else ea = 0 + Z = f[(g + 8) >> 2] | 0 + if (Z | 0) { + ba = Z + do { + Z = ba + ba = f[ba >> 2] | 0 + br(Z) + } while ((ba | 0) != 0) + } + ba = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!ba) { + u = e + return ea | 0 + } + br(ba) + u = e + return ea | 0 + } + function qc(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0 + e = u + u = (u + 64) | 0 + d = (e + 48) | 0 + h = (e + 40) | 0 + i = (e + 32) | 0 + j = (e + 16) | 0 + k = (e + 8) | 0 + l = e + m = (e + 28) | 0 + n = (a + 8) | 0 + o = f[n >> 2] | 0 + if (((o + -2) | 0) >>> 0 <= 28) { + f[(a + 72) >> 2] = o + p = 1 << o + f[(a + 76) >> 2] = p + -1 + o = (p + -2) | 0 + f[(a + 80) >> 2] = o + f[(a + 84) >> 2] = ((o | 0) / 2) | 0 + } + o = (a + 40) | 0 + f[(a + 48) >> 2] = g + g = (a + 88) | 0 + lk(g) + p = (a + 36) | 0 + q = f[p >> 2] | 0 + r = ((f[(q + 4) >> 2] | 0) - (f[q >> 2] | 0)) | 0 + s = r >> 2 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + t = k + f[t >> 2] = 0 + f[(t + 4) >> 2] = 0 + t = l + f[t >> 2] = 0 + f[(t + 4) >> 2] = 0 + if ((r | 0) <= 0) { + u = e + return 1 + } + r = (j + 4) | 0 + t = (j + 8) | 0 + v = (a + 84) | 0 + w = (a + 80) | 0 + x = (h + 4) | 0 + y = (i + 4) | 0 + z = (d + 4) | 0 + A = (k + 4) | 0 + B = (h + 4) | 0 + C = (i + 4) | 0 + D = (d + 4) | 0 + E = (l + 4) | 0 + F = (a + 76) | 0 + a = (k + 4) | 0 + G = (l + 4) | 0 + H = f[q >> 2] | 0 + if ((f[(q + 4) >> 2] | 0) == (H | 0)) { + J = q + mq(J) + } else { + K = 0 + L = H + } + while (1) { + f[m >> 2] = f[(L + (K << 2)) >> 2] + f[d >> 2] = f[m >> 2] + $b(o, d, j) + H = f[j >> 2] | 0 + q = (H | 0) > -1 ? H : (0 - H) | 0 + M = f[r >> 2] | 0 + N = (M | 0) > -1 ? M : (0 - M) | 0 + O = + Tn( + N | 0, + ((((N | 0) < 0) << 31) >> 31) | 0, + q | 0, + ((((q | 0) < 0) << 31) >> 31) | 0, + ) | 0 + q = f[t >> 2] | 0 + N = (q | 0) > -1 + P = N ? q : (0 - q) | 0 + q = Tn(O | 0, I | 0, P | 0, ((((P | 0) < 0) << 31) >> 31) | 0) | 0 + P = I + if (((q | 0) == 0) & ((P | 0) == 0)) { + O = f[v >> 2] | 0 + Q = O + R = j + S = M + T = O + } else { + O = f[v >> 2] | 0 + U = (((O | 0) < 0) << 31) >> 31 + V = on(O | 0, U | 0, H | 0, ((((H | 0) < 0) << 31) >> 31) | 0) | 0 + H = zk(V | 0, I | 0, q | 0, P | 0) | 0 + f[j >> 2] = H + V = on(O | 0, U | 0, M | 0, ((((M | 0) < 0) << 31) >> 31) | 0) | 0 + M = zk(V | 0, I | 0, q | 0, P | 0) | 0 + f[r >> 2] = M + P = + (O - + ((H | 0) > -1 ? H : (0 - H) | 0) - + ((M | 0) > -1 ? M : (0 - M) | 0)) | + 0 + Q = N ? P : (0 - P) | 0 + R = t + S = M + T = O + } + f[R >> 2] = Q + O = f[j >> 2] | 0 + do + if ((O | 0) <= -1) { + if ((S | 0) < 0) { + M = f[t >> 2] | 0 + W = (M | 0) > -1 ? M : (0 - M) | 0 + X = M + } else { + M = f[t >> 2] | 0 + W = ((f[w >> 2] | 0) - ((M | 0) > -1 ? M : (0 - M) | 0)) | 0 + X = M + } + if ((X | 0) < 0) { + Y = (S | 0) > -1 ? S : (0 - S) | 0 + Z = W + _ = X + break + } else { + Y = ((f[w >> 2] | 0) - ((S | 0) > -1 ? S : (0 - S) | 0)) | 0 + Z = W + _ = X + break + } + } else { + M = f[t >> 2] | 0 + Y = (M + T) | 0 + Z = (T + S) | 0 + _ = M + } + while (0) + M = (Z | 0) == 0 + P = (Y | 0) == 0 + N = f[w >> 2] | 0 + do + if (Y | Z) { + H = (N | 0) == (Y | 0) + if (!(M & H)) { + q = (N | 0) == (Z | 0) + if (!(P & q)) { + if (M & ((T | 0) < (Y | 0))) { + $ = 0 + aa = ((T << 1) - Y) | 0 + break + } + if (q & ((T | 0) > (Y | 0))) { + $ = Z + aa = ((T << 1) - Y) | 0 + break + } + if (H & ((T | 0) > (Z | 0))) { + $ = ((T << 1) - Z) | 0 + aa = Y + break + } + if (P) { + $ = (T | 0) < (Z | 0) ? ((T << 1) - Z) | 0 : Z + aa = 0 + } else { + $ = Z + aa = Y + } + } else { + $ = Z + aa = Z + } + } else { + $ = Y + aa = Y + } + } else { + $ = N + aa = N + } + while (0) + P = (0 - S) | 0 + M = (0 - _) | 0 + f[j >> 2] = 0 - O + f[r >> 2] = P + f[t >> 2] = M + if ((O | 0) < 1) { + ba = (T - _) | 0 + ca = (T - S) | 0 + } else { + H = (_ | 0) < 1 ? M : _ + M = (S | 0) < 1 ? P : S + ba = (_ | 0) > 0 ? M : (N - M) | 0 + ca = (S | 0) > 0 ? H : (N - H) | 0 + } + H = (ca | 0) == 0 + M = (ba | 0) == 0 + do + if ( + ((ba | ca | 0) != 0 ? ((P = (N | 0) == (ba | 0)), !(H & P)) : 0) + ? ((q = (N | 0) == (ca | 0)), !(M & q)) + : 0 + ) { + if (H & ((T | 0) < (ba | 0))) { + da = 0 + ea = ((T << 1) - ba) | 0 + break + } + if (q & ((T | 0) > (ba | 0))) { + da = N + ea = ((T << 1) - ba) | 0 + break + } + if (P & ((T | 0) > (ca | 0))) { + da = ((T << 1) - ca) | 0 + ea = N + break + } + if (M) { + da = (T | 0) < (ca | 0) ? ((T << 1) - ca) | 0 : ca + ea = 0 + } else { + da = ca + ea = ba + } + } else { + da = N + ea = N + } + while (0) + N = K << 1 + M = (b + (N << 2)) | 0 + H = (M + 4) | 0 + O = f[H >> 2] | 0 + f[h >> 2] = f[M >> 2] + f[x >> 2] = O + f[i >> 2] = $ + f[y >> 2] = aa + Dd(d, n, h, i) + O = f[d >> 2] | 0 + f[k >> 2] = O + P = f[z >> 2] | 0 + f[A >> 2] = P + q = f[H >> 2] | 0 + f[h >> 2] = f[M >> 2] + f[B >> 2] = q + f[i >> 2] = da + f[C >> 2] = ea + Dd(d, n, h, i) + q = f[d >> 2] | 0 + f[l >> 2] = q + M = f[D >> 2] | 0 + f[E >> 2] = M + H = f[v >> 2] | 0 + if ((H | 0) >= (O | 0)) + if ((O | 0) < ((0 - H) | 0)) fa = ((f[F >> 2] | 0) + O) | 0 + else fa = O + else fa = (O - (f[F >> 2] | 0)) | 0 + f[k >> 2] = fa + if ((H | 0) >= (P | 0)) + if ((P | 0) < ((0 - H) | 0)) ga = ((f[F >> 2] | 0) + P) | 0 + else ga = P + else ga = (P - (f[F >> 2] | 0)) | 0 + f[a >> 2] = ga + if ((H | 0) >= (q | 0)) + if ((q | 0) < ((0 - H) | 0)) ha = ((f[F >> 2] | 0) + q) | 0 + else ha = q + else ha = (q - (f[F >> 2] | 0)) | 0 + f[l >> 2] = ha + if ((H | 0) >= (M | 0)) + if ((M | 0) < ((0 - H) | 0)) ia = ((f[F >> 2] | 0) + M) | 0 + else ia = M + else ia = (M - (f[F >> 2] | 0)) | 0 + f[G >> 2] = ia + if ( + ((((ga | 0) > -1 ? ga : (0 - ga) | 0) + + ((fa | 0) > -1 ? fa : (0 - fa) | 0)) | + 0) < + ((((ha | 0) > -1 ? ha : (0 - ha) | 0) + + ((ia | 0) > -1 ? ia : (0 - ia) | 0)) | + 0) + ) { + Vi(g, 0) + ja = k + } else { + Vi(g, 1) + ja = l + } + M = f[ja >> 2] | 0 + if ((M | 0) < 0) ka = ((f[F >> 2] | 0) + M) | 0 + else ka = M + M = (c + (N << 2)) | 0 + f[M >> 2] = ka + N = f[(ja + 4) >> 2] | 0 + if ((N | 0) < 0) la = ((f[F >> 2] | 0) + N) | 0 + else la = N + f[(M + 4) >> 2] = la + K = (K + 1) | 0 + if ((K | 0) >= (s | 0)) { + ma = 5 + break + } + M = f[p >> 2] | 0 + L = f[M >> 2] | 0 + if ((((f[(M + 4) >> 2] | 0) - L) >> 2) >>> 0 <= K >>> 0) { + J = M + ma = 6 + break + } + } + if ((ma | 0) == 5) { + u = e + return 1 + } else if ((ma | 0) == 6) mq(J) + return 0 + } + function rc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = Oa, + T = Oa, + U = Oa, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0 + e = u + u = (u + 64) | 0 + g = (e + 36) | 0 + h = (e + 24) | 0 + i = (e + 12) | 0 + j = e + k = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[k >> 2] = $(1.0) + l = (a + 80) | 0 + m = f[l >> 2] | 0 + f[j >> 2] = 0 + o = (j + 4) | 0 + f[o >> 2] = 0 + f[(j + 8) >> 2] = 0 + if (m) { + if (m >>> 0 > 1073741823) mq(j) + p = m << 2 + q = dn(p) | 0 + f[j >> 2] = q + r = (q + (m << 2)) | 0 + f[(j + 8) >> 2] = r + hj(q | 0, 0, p | 0) | 0 + f[o >> 2] = r + r = f[d >> 2] | 0 + d = (c + 48) | 0 + p = (c + 40) | 0 + q = (i + 4) | 0 + m = (i + 8) | 0 + s = (g + 4) | 0 + t = (g + 12) | 0 + v = (g + 8) | 0 + w = (a + 40) | 0 + x = (a + 64) | 0 + y = 0 + z = 0 + while (1) { + A = d + B = f[A >> 2] | 0 + C = f[(A + 4) >> 2] | 0 + A = p + D = on(f[A >> 2] | 0, f[(A + 4) >> 2] | 0, (r + z) | 0, 0) | 0 + A = Tn(D | 0, I | 0, B | 0, C | 0) | 0 + C = ((f[f[c >> 2] >> 2] | 0) + A) | 0 + A = h + B = C + D = (A + 12) | 0 + do { + b[A >> 0] = b[B >> 0] | 0 + A = (A + 1) | 0 + B = (B + 1) | 0 + } while ((A | 0) < (D | 0)) + Xl(i | 0, C | 0, 12) | 0 + B = _f(g, i) | 0 + if (!B) { + A = f[i >> 2] | 0 + D = f[q >> 2] | 0 + E = f[m >> 2] | 0 + F = ((((A ^ 318) + 239) ^ D) + 239) ^ E + G = f[s >> 2] | 0 + H = (G | 0) == 0 + a: do + if (!H) { + J = (G + -1) | 0 + K = ((J & G) | 0) == 0 + if (!K) + if (F >>> 0 < G >>> 0) L = F + else L = (F >>> 0) % (G >>> 0) | 0 + else L = F & J + M = f[((f[g >> 2] | 0) + (L << 2)) >> 2] | 0 + if ((M | 0) != 0 ? ((N = f[M >> 2] | 0), (N | 0) != 0) : 0) { + if (K) { + K = N + while (1) { + M = f[(K + 4) >> 2] | 0 + if ( + !(((M | 0) == (F | 0)) | (((M & J) | 0) == (L | 0))) + ) { + O = L + P = 29 + break a + } + if ( + ( + (f[(K + 8) >> 2] | 0) == (A | 0) + ? (f[(K + 12) >> 2] | 0) == (D | 0) + : 0 + ) + ? (f[(K + 16) >> 2] | 0) == (E | 0) + : 0 + ) + break a + K = f[K >> 2] | 0 + if (!K) { + O = L + P = 29 + break a + } + } + } else Q = N + while (1) { + K = f[(Q + 4) >> 2] | 0 + if ((K | 0) != (F | 0)) { + if (K >>> 0 < G >>> 0) R = K + else R = (K >>> 0) % (G >>> 0) | 0 + if ((R | 0) != (L | 0)) { + O = L + P = 29 + break a + } + } + if ( + ( + (f[(Q + 8) >> 2] | 0) == (A | 0) + ? (f[(Q + 12) >> 2] | 0) == (D | 0) + : 0 + ) + ? (f[(Q + 16) >> 2] | 0) == (E | 0) + : 0 + ) + break a + Q = f[Q >> 2] | 0 + if (!Q) { + O = L + P = 29 + break + } + } + } else { + O = L + P = 29 + } + } else { + O = 0 + P = 29 + } + while (0) + if ((P | 0) == 29) { + P = 0 + C = dn(24) | 0 + f[(C + 8) >> 2] = A + f[(C + 12) >> 2] = D + f[(C + 16) >> 2] = E + f[(C + 20) >> 2] = y + f[(C + 4) >> 2] = F + f[C >> 2] = 0 + S = $((((f[t >> 2] | 0) + 1) | 0) >>> 0) + T = $(G >>> 0) + U = $(n[k >> 2]) + do + if (H | ($(U * T) < S)) { + N = + (G << 1) | + (((G >>> 0 < 3) | ((((G + -1) & G) | 0) != 0)) & 1) + K = ~~$(W($(S / U))) >>> 0 + Hh(g, N >>> 0 < K >>> 0 ? K : N) + N = f[s >> 2] | 0 + K = (N + -1) | 0 + if (!(K & N)) { + V = N + X = K & F + break + } + if (F >>> 0 < N >>> 0) { + V = N + X = F + } else { + V = N + X = (F >>> 0) % (N >>> 0) | 0 + } + } else { + V = G + X = O + } + while (0) + G = ((f[g >> 2] | 0) + (X << 2)) | 0 + F = f[G >> 2] | 0 + if (!F) { + f[C >> 2] = f[v >> 2] + f[v >> 2] = C + f[G >> 2] = v + G = f[C >> 2] | 0 + if (G | 0) { + H = f[(G + 4) >> 2] | 0 + G = (V + -1) | 0 + if (G & V) + if (H >>> 0 < V >>> 0) Y = H + else Y = (H >>> 0) % (V >>> 0) | 0 + else Y = H & G + Z = ((f[g >> 2] | 0) + (Y << 2)) | 0 + P = 42 + } + } else { + f[C >> 2] = f[F >> 2] + Z = F + P = 42 + } + if ((P | 0) == 42) { + P = 0 + f[Z >> 2] = C + } + f[t >> 2] = (f[t >> 2] | 0) + 1 + } + F = w + G = f[F >> 2] | 0 + H = on(G | 0, f[(F + 4) >> 2] | 0, y | 0, 0) | 0 + Rg(((f[f[x >> 2] >> 2] | 0) + H) | 0, h | 0, G | 0) | 0 + G = f[j >> 2] | 0 + f[(G + (z << 2)) >> 2] = y + _ = (y + 1) | 0 + aa = G + } else { + G = f[j >> 2] | 0 + f[(G + (z << 2)) >> 2] = f[(B + 20) >> 2] + _ = y + aa = G + } + z = (z + 1) | 0 + ba = f[l >> 2] | 0 + if (z >>> 0 >= ba >>> 0) break + else y = _ + } + if ((_ | 0) == (ba | 0)) ca = aa + else { + y = (a + 84) | 0 + if (!(b[y >> 0] | 0)) { + z = f[(a + 72) >> 2] | 0 + h = f[(a + 68) >> 2] | 0 + x = h + if ((z | 0) == (h | 0)) da = aa + else { + w = (z - h) >> 2 + h = 0 + do { + z = (x + (h << 2)) | 0 + f[z >> 2] = f[(aa + (f[z >> 2] << 2)) >> 2] + h = (h + 1) | 0 + } while (h >>> 0 < w >>> 0) + da = aa + } + } else { + b[y >> 0] = 0 + y = (a + 68) | 0 + aa = (a + 72) | 0 + w = f[aa >> 2] | 0 + h = f[y >> 2] | 0 + x = (w - h) >> 2 + z = h + h = w + if (ba >>> 0 <= x >>> 0) + if ( + ba >>> 0 < x >>> 0 + ? ((w = (z + (ba << 2)) | 0), (w | 0) != (h | 0)) + : 0 + ) { + f[aa >> 2] = h + (~(((h + -4 - w) | 0) >>> 2) << 2) + ea = ba + } else ea = ba + else { + kh(y, (ba - x) | 0, 1204) + ea = f[l >> 2] | 0 + } + x = f[j >> 2] | 0 + if (!ea) da = x + else { + j = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(j + (a << 2)) >> 2] = f[(x + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ea >>> 0) + da = x + } + } + f[l >> 2] = _ + ca = da + } + if (!ca) fa = _ + else { + da = f[o >> 2] | 0 + if ((da | 0) != (ca | 0)) + f[o >> 2] = da + (~(((da + -4 - ca) | 0) >>> 2) << 2) + br(ca) + fa = _ + } + } else fa = 0 + _ = f[(g + 8) >> 2] | 0 + if (_ | 0) { + ca = _ + do { + _ = ca + ca = f[ca >> 2] | 0 + br(_) + } while ((ca | 0) != 0) + } + ca = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!ca) { + u = e + return fa | 0 + } + br(ca) + u = e + return fa | 0 + } + function sc(a, c) { + a = a | 0 + c = c | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0 + e = u + u = (u + 32) | 0 + g = (e + 4) | 0 + h = e + i = (e + 16) | 0 + j = (c + 56) | 0 + k = f[j >> 2] | 0 + l = ((f[(k + 100) >> 2] | 0) - (f[(k + 96) >> 2] | 0)) | 0 + k = ((l | 0) / 12) | 0 + m = (c + 44) | 0 + Nh(k, f[m >> 2] | 0) | 0 + Nh(f[((f[j >> 2] | 0) + 80) >> 2] | 0, f[m >> 2] | 0) | 0 + n = f[(c + 48) >> 2] | 0 + o = dn(32) | 0 + f[g >> 2] = o + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 21 + p = o + q = 14562 + r = (p + 21) | 0 + do { + b[p >> 0] = b[q >> 0] | 0 + p = (p + 1) | 0 + q = (q + 1) | 0 + } while ((p | 0) < (r | 0)) + b[(o + 21) >> 0] = 0 + o = Oj(n, g, 0) | 0 + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + n = f[m >> 2] | 0 + if (o) { + b[i >> 0] = 0 + o = (n + 16) | 0 + q = f[(o + 4) >> 2] | 0 + if (!(((q | 0) > 0) | (((q | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(n + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(n, g, i, (i + 1) | 0) | 0 + } + Ye(c) | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + b[i >> 0] = 1 + c = (n + 16) | 0 + o = f[(c + 4) >> 2] | 0 + if (!(((o | 0) > 0) | (((o | 0) == 0) & ((f[c >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(n + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(n, g, i, (i + 1) | 0) | 0 + } + n = f[j >> 2] | 0 + c = f[(n + 80) >> 2] | 0 + if (c >>> 0 < 256) { + if (!l) { + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + o = (i + 1) | 0 + q = (i + 1) | 0 + p = (i + 1) | 0 + r = 0 + s = n + while (1) { + t = f[(s + 96) >> 2] | 0 + v = f[m >> 2] | 0 + b[i >> 0] = f[(t + ((r * 12) | 0)) >> 2] + w = (v + 16) | 0 + x = f[w >> 2] | 0 + y = f[(w + 4) >> 2] | 0 + if (((y | 0) > 0) | (((y | 0) == 0) & (x >>> 0 > 0))) { + z = x + A = v + B = y + } else { + f[h >> 2] = f[(v + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(v, g, i, p) | 0 + v = f[m >> 2] | 0 + y = (v + 16) | 0 + z = f[y >> 2] | 0 + A = v + B = f[(y + 4) >> 2] | 0 + } + b[i >> 0] = f[(t + ((r * 12) | 0) + 4) >> 2] + if (((B | 0) > 0) | (((B | 0) == 0) & (z >>> 0 > 0))) { + C = B + D = z + E = A + } else { + f[h >> 2] = f[(A + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(A, g, i, q) | 0 + y = f[m >> 2] | 0 + v = (y + 16) | 0 + C = f[(v + 4) >> 2] | 0 + D = f[v >> 2] | 0 + E = y + } + b[i >> 0] = f[(t + ((r * 12) | 0) + 8) >> 2] + if (!(((C | 0) > 0) | (((C | 0) == 0) & (D >>> 0 > 0)))) { + f[h >> 2] = f[(E + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(E, g, i, o) | 0 + } + t = (r + 1) | 0 + if (t >>> 0 >= k >>> 0) break + r = t + s = f[j >> 2] | 0 + } + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + if (c >>> 0 < 65536) { + if (!l) { + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + s = (i + 2) | 0 + r = (i + 2) | 0 + o = (i + 2) | 0 + E = 0 + D = n + while (1) { + C = f[(D + 96) >> 2] | 0 + q = f[m >> 2] | 0 + d[i >> 1] = f[(C + ((E * 12) | 0)) >> 2] + A = (q + 16) | 0 + z = f[A >> 2] | 0 + B = f[(A + 4) >> 2] | 0 + if (((B | 0) > 0) | (((B | 0) == 0) & (z >>> 0 > 0))) { + F = B + G = z + H = q + } else { + f[h >> 2] = f[(q + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(q, g, i, o) | 0 + q = f[m >> 2] | 0 + z = (q + 16) | 0 + F = f[(z + 4) >> 2] | 0 + G = f[z >> 2] | 0 + H = q + } + d[i >> 1] = f[(C + ((E * 12) | 0) + 4) >> 2] + if (((F | 0) > 0) | (((F | 0) == 0) & (G >>> 0 > 0))) { + I = F + J = G + K = H + } else { + f[h >> 2] = f[(H + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(H, g, i, r) | 0 + q = f[m >> 2] | 0 + z = (q + 16) | 0 + I = f[(z + 4) >> 2] | 0 + J = f[z >> 2] | 0 + K = q + } + d[i >> 1] = f[(C + ((E * 12) | 0) + 8) >> 2] + if (!(((I | 0) > 0) | (((I | 0) == 0) & (J >>> 0 > 0)))) { + f[h >> 2] = f[(K + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(K, g, i, s) | 0 + } + C = (E + 1) | 0 + if (C >>> 0 >= k >>> 0) break + E = C + D = f[j >> 2] | 0 + } + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + D = (l | 0) != 0 + if (c >>> 0 < 2097152) { + if (D) { + L = 0 + M = n + } else { + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + while (1) { + c = f[(M + 96) >> 2] | 0 + Nh(f[(c + ((L * 12) | 0)) >> 2] | 0, f[m >> 2] | 0) | 0 + Nh(f[(c + ((L * 12) | 0) + 4) >> 2] | 0, f[m >> 2] | 0) | 0 + Nh(f[(c + ((L * 12) | 0) + 8) >> 2] | 0, f[m >> 2] | 0) | 0 + c = (L + 1) | 0 + if (c >>> 0 >= k >>> 0) break + L = c + M = f[j >> 2] | 0 + } + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + if (!D) { + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + D = 0 + M = n + while (1) { + n = ((f[(M + 96) >> 2] | 0) + ((D * 12) | 0)) | 0 + L = f[m >> 2] | 0 + c = (L + 16) | 0 + l = f[(c + 4) >> 2] | 0 + if (!(((l | 0) > 0) | (((l | 0) == 0) & ((f[c >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(L + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(L, g, n, (n + 12) | 0) | 0 + } + n = (D + 1) | 0 + if (n >>> 0 >= k >>> 0) break + D = n + M = f[j >> 2] | 0 + } + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + function tc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0 + e = u + u = (u + 32) | 0 + g = (e + 16) | 0 + h = (e + 12) | 0 + i = (e + 8) | 0 + j = (e + 4) | 0 + k = e + switch (f[(c + 28) >> 2] | 0) { + case 9: { + l = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = l + f[g >> 2] = f[h >> 2] + m = ec(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = l + f[g >> 2] = f[i >> 2] + m = Xb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = l + f[g >> 2] = f[j >> 2] + m = rc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = l + f[g >> 2] = f[k >> 2] + m = jc(a, c, g) | 0 + break + } + default: + m = 0 + } + n = m + break + } + case 1: { + m = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = m + f[g >> 2] = f[h >> 2] + o = dc(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = m + f[g >> 2] = f[i >> 2] + o = Yb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = m + f[g >> 2] = f[j >> 2] + o = pc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = m + f[g >> 2] = f[k >> 2] + o = ic(a, c, g) | 0 + break + } + default: + o = 0 + } + n = o + break + } + case 11: + case 2: { + o = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = o + f[g >> 2] = f[h >> 2] + p = dc(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = o + f[g >> 2] = f[i >> 2] + p = Yb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = o + f[g >> 2] = f[j >> 2] + p = pc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = o + f[g >> 2] = f[k >> 2] + p = ic(a, c, g) | 0 + break + } + default: + p = 0 + } + n = p + break + } + case 4: { + p = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = p + f[g >> 2] = f[h >> 2] + q = bc(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = p + f[g >> 2] = f[i >> 2] + q = Vb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = p + f[g >> 2] = f[j >> 2] + q = kc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = p + f[g >> 2] = f[k >> 2] + q = gc(a, c, g) | 0 + break + } + default: + q = 0 + } + n = q + break + } + case 3: { + q = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = q + f[g >> 2] = f[h >> 2] + r = bc(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = q + f[g >> 2] = f[i >> 2] + r = Vb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = q + f[g >> 2] = f[j >> 2] + r = kc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = q + f[g >> 2] = f[k >> 2] + r = gc(a, c, g) | 0 + break + } + default: + r = 0 + } + n = r + break + } + case 6: { + r = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = r + f[g >> 2] = f[h >> 2] + s = ec(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = r + f[g >> 2] = f[i >> 2] + s = Xb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = r + f[g >> 2] = f[j >> 2] + s = rc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = r + f[g >> 2] = f[k >> 2] + s = jc(a, c, g) | 0 + break + } + default: + s = 0 + } + n = s + break + } + case 5: { + s = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = s + f[g >> 2] = f[h >> 2] + t = ec(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = s + f[g >> 2] = f[i >> 2] + t = Xb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = s + f[g >> 2] = f[j >> 2] + t = rc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = s + f[g >> 2] = f[k >> 2] + t = jc(a, c, g) | 0 + break + } + default: + t = 0 + } + n = t + break + } + default: { + v = -1 + u = e + return v | 0 + } + } + v = (n | 0) == 0 ? -1 : n + u = e + return v | 0 + } + function uc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + e = u + u = (u + 32) | 0 + g = (e + 16) | 0 + h = (e + 12) | 0 + i = (e + 29) | 0 + j = e + k = (e + 28) | 0 + if (!(f[((f[(a + 8) >> 2] | 0) + 80) >> 2] | 0)) { + l = 1 + u = e + return l | 0 + } + b[i >> 0] = -2 + m = (a + 36) | 0 + n = f[m >> 2] | 0 + if (n) + if (Ra[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a, n) | 0) { + n = f[m >> 2] | 0 + o = (Qa[f[((f[n >> 2] | 0) + 8) >> 2] & 127](n) | 0) & 255 + b[i >> 0] = o + p = 5 + } else q = 0 + else p = 5 + if ((p | 0) == 5) { + o = (d + 16) | 0 + n = o + r = f[(n + 4) >> 2] | 0 + if (!(((r | 0) > 0) | (((r | 0) == 0) & ((f[n >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(d, g, i, (i + 1) | 0) | 0 + } + i = f[m >> 2] | 0 + if ( + i | 0 + ? ((n = (Qa[f[((f[i >> 2] | 0) + 36) >> 2] & 127](i) | 0) & 255), + (b[j >> 0] = n), + (n = o), + (i = f[(n + 4) >> 2] | 0), + !(((i | 0) > 0) | (((i | 0) == 0) & ((f[n >> 2] | 0) >>> 0 > 0)))) + : 0 + ) { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(d, g, j, (j + 1) | 0) | 0 + } + n = f[(a + 32) >> 2] | 0 + i = b[(n + 24) >> 0] | 0 + r = X(f[(n + 80) >> 2] | 0, i) | 0 + s = ((f[f[n >> 2] >> 2] | 0) + (f[(n + 48) >> 2] | 0)) | 0 + f[j >> 2] = 0 + n = (j + 4) | 0 + f[n >> 2] = 0 + f[(j + 8) >> 2] = 0 + t = (r | 0) == 0 + do + if (!t) + if (r >>> 0 > 1073741823) mq(j) + else { + v = r << 2 + w = dn(v) | 0 + f[j >> 2] = w + x = (w + (r << 2)) | 0 + f[(j + 8) >> 2] = x + hj(w | 0, 0, v | 0) | 0 + f[n >> 2] = x + y = w + break + } + else y = 0 + while (0) + w = f[m >> 2] | 0 + do + if (w) { + Ta[f[((f[w >> 2] | 0) + 44) >> 2] & 31]( + w, + s, + y, + r, + i, + f[c >> 2] | 0, + ) | 0 + x = f[m >> 2] | 0 + if (!x) { + z = s + A = f[j >> 2] | 0 + p = 20 + break + } + if (!(Qa[f[((f[x >> 2] | 0) + 32) >> 2] & 127](x) | 0)) { + x = f[j >> 2] | 0 + z = f[m >> 2] | 0 ? x : s + A = x + p = 20 + } + } else { + z = s + A = y + p = 20 + } + while (0) + if ((p | 0) == 20) km(z, r, A) + A = (a + 4) | 0 + a = f[A >> 2] | 0 + do + if (a) { + z = f[(a + 48) >> 2] | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + y = dn(48) | 0 + f[g >> 2] = y + f[(g + 8) >> 2] = -2147483600 + f[(g + 4) >> 2] = 34 + s = y + w = 9835 + x = (s + 34) | 0 + do { + b[s >> 0] = b[w >> 0] | 0 + s = (s + 1) | 0 + w = (w + 1) | 0 + } while ((s | 0) < (x | 0)) + b[(y + 34) >> 0] = 0 + w = Oj(z, g, 1) | 0 + if ((b[(g + 11) >> 0] | 0) < 0) br(f[g >> 2] | 0) + if (!w) { + if (!t) { + w = f[j >> 2] | 0 + s = 0 + x = 0 + do { + x = f[(w + (s << 2)) >> 2] | x + s = (s + 1) | 0 + } while ((s | 0) != (r | 0)) + if (x) B = ((((_(x | 0) | 0) >>> 3) ^ 3) + 1) | 0 + else B = 1 + } else B = 1 + b[k >> 0] = 0 + s = o + w = f[s >> 2] | 0 + z = f[(s + 4) >> 2] | 0 + if (((z | 0) > 0) | (((z | 0) == 0) & (w >>> 0 > 0))) { + C = z + D = w + } else { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(d, g, k, (k + 1) | 0) | 0 + w = o + C = f[(w + 4) >> 2] | 0 + D = f[w >> 2] | 0 + } + b[k >> 0] = B + if (!(((C | 0) > 0) | (((C | 0) == 0) & (D >>> 0 > 0)))) { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(d, g, k, (k + 1) | 0) | 0 + } + if ((B | 0) == (Ll(5) | 0)) { + w = f[j >> 2] | 0 + z = o + s = f[(z + 4) >> 2] | 0 + if ( + !( + ((s | 0) > 0) | + (((s | 0) == 0) & ((f[z >> 2] | 0) >>> 0 > 0)) + ) + ) { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(d, g, w, (w + (r << 2)) | 0) | 0 + } + p = 48 + break + } + if (t) p = 48 + else { + w = (d + 4) | 0 + z = 0 + do { + s = ((f[j >> 2] | 0) + (z << 2)) | 0 + y = o + v = f[(y + 4) >> 2] | 0 + if ( + !( + ((v | 0) > 0) | + (((v | 0) == 0) & ((f[y >> 2] | 0) >>> 0 > 0)) + ) + ) { + f[h >> 2] = f[w >> 2] + f[g >> 2] = f[h >> 2] + ye(d, g, s, (s + B) | 0) | 0 + } + z = (z + 1) | 0 + } while (z >>> 0 < r >>> 0) + p = 48 + } + } else p = 27 + } else p = 27 + while (0) + if ((p | 0) == 27) { + b[k >> 0] = 1 + r = o + o = f[(r + 4) >> 2] | 0 + if ( + !(((o | 0) > 0) | (((o | 0) == 0) & ((f[r >> 2] | 0) >>> 0 > 0))) + ) { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + ye(d, g, k, (k + 1) | 0) | 0 + } + wp(g) + k = f[A >> 2] | 0 + if (k | 0) Pj(g, (10 - (Yh(f[(k + 48) >> 2] | 0) | 0)) | 0) | 0 + k = + Dc( + f[j >> 2] | 0, + X(((f[(c + 4) >> 2] | 0) - (f[c >> 2] | 0)) >> 2, i) | 0, + i, + g, + d, + ) | 0 + sj(g, f[(g + 4) >> 2] | 0) + if (k) p = 48 + else E = 0 + } + if ((p | 0) == 48) { + p = f[m >> 2] | 0 + if (!p) E = 1 + else { + Ra[f[((f[p >> 2] | 0) + 40) >> 2] & 127](p, d) | 0 + E = 1 + } + } + d = f[j >> 2] | 0 + if (d | 0) { + j = f[n >> 2] | 0 + if ((j | 0) != (d | 0)) + f[n >> 2] = j + (~(((j + -4 - d) | 0) >>> 2) << 2) + br(d) + } + q = E + } + l = q + u = e + return l | 0 + } + function vc(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0 + b = u + u = (u + 48) | 0 + c = (b + 24) | 0 + d = (b + 12) | 0 + e = b + g = (a + 32) | 0 + h = (a + 8) | 0 + i = (a + 12) | 0 + j = f[i >> 2] | 0 + k = f[h >> 2] | 0 + l = (j - k) >> 2 + m = (a + 36) | 0 + n = f[m >> 2] | 0 + o = f[g >> 2] | 0 + p = (n - o) >> 2 + q = o + o = n + n = k + if (l >>> 0 <= p >>> 0) + if ( + l >>> 0 < p >>> 0 ? ((r = (q + (l << 2)) | 0), (r | 0) != (o | 0)) : 0 + ) { + f[m >> 2] = o + (~(((o + -4 - r) | 0) >>> 2) << 2) + s = n + t = k + v = j + } else { + s = n + t = k + v = j + } + else { + oi(g, (l - p) | 0) + p = f[h >> 2] | 0 + s = p + t = p + v = f[i >> 2] | 0 + } + p = (v - t) | 0 + l = p >> 2 + f[c >> 2] = 0 + j = (c + 4) | 0 + f[j >> 2] = 0 + k = (c + 8) | 0 + f[k >> 2] = 0 + if (l | 0) { + if ((p | 0) < 0) mq(c) + p = ((((l + -1) | 0) >>> 5) + 1) | 0 + n = dn(p << 2) | 0 + f[c >> 2] = n + f[k >> 2] = p + f[j >> 2] = l + j = l >>> 5 + hj(n | 0, 0, (j << 2) | 0) | 0 + p = l & 31 + l = (n + (j << 2)) | 0 + if (p | 0) f[l >> 2] = f[l >> 2] & ~(-1 >>> ((32 - p) | 0)) + } + p = (a + 20) | 0 + l = 0 + j = s + s = t + t = v + while (1) { + if (l >>> 0 < ((t - s) >> 2) >>> 0) { + w = 0 + x = 0 + y = l + z = s + A = j + } else { + B = 25 + break + } + while (1) { + v = x >>> 5 + n = 1 << (x & 31) + do + if (!(f[((f[c >> 2] | 0) + (v << 2)) >> 2] & n)) { + k = f[(A + (x << 2)) >> 2] | 0 + if ((f[(k + 8) >> 2] | 0) != (f[(k + 4) >> 2] | 0)) { + r = 0 + o = 1 + m = A + q = k + while (1) { + k = f[((f[(q + 4) >> 2] | 0) + (r << 2)) >> 2] | 0 + C = 0 + D = m + while (1) { + E = f[(D + (x << 2)) >> 2] | 0 + if ( + (C | 0) >= + (Ra[f[((f[E >> 2] | 0) + 24) >> 2] & 127](E, k) | 0) + ) { + F = o + break + } + E = f[((f[h >> 2] | 0) + (x << 2)) >> 2] | 0 + G = Sa[f[((f[E >> 2] | 0) + 28) >> 2] & 31](E, k, C) | 0 + if ( + (G | 0) != (x | 0) + ? ((E = f[((f[p >> 2] | 0) + (G << 2)) >> 2] | 0), + (((1 << (E & 31)) & + f[((f[c >> 2] | 0) + ((E >>> 5) << 2)) >> 2]) | + 0) == + 0) + : 0 + ) { + F = 0 + break + } + C = (C + 1) | 0 + D = f[h >> 2] | 0 + } + r = (r + 1) | 0 + m = f[h >> 2] | 0 + q = f[(m + (x << 2)) >> 2] | 0 + if ( + r >>> 0 >= + (((f[(q + 8) >> 2] | 0) - (f[(q + 4) >> 2] | 0)) >> 2) >>> 0 + ) + break + else o = F + } + o = m + if (F) H = o + else { + I = w + J = y + K = o + break + } + } else H = z + f[((f[g >> 2] | 0) + (y << 2)) >> 2] = x + o = ((f[c >> 2] | 0) + (v << 2)) | 0 + f[o >> 2] = f[o >> 2] | n + I = 1 + J = (y + 1) | 0 + K = H + } else { + I = w + J = y + K = z + } + while (0) + x = (x + 1) | 0 + L = f[i >> 2] | 0 + M = (L - K) >> 2 + A = K + if (x >>> 0 >= M >>> 0) break + else { + w = I + y = J + z = K + } + } + if ((J >>> 0 < M >>> 0) & (I ^ 1)) { + N = 0 + break + } else { + l = J + j = A + s = K + t = L + } + } + if ((B | 0) == 25) { + f[d >> 2] = 0 + B = (d + 4) | 0 + f[B >> 2] = 0 + f[(d + 8) >> 2] = 0 + L = f[(a + 4) >> 2] | 0 + a = ((f[(L + 12) >> 2] | 0) - (f[(L + 8) >> 2] | 0)) | 0 + L = a >> 2 + f[e >> 2] = 0 + K = (e + 4) | 0 + f[K >> 2] = 0 + A = (e + 8) | 0 + f[A >> 2] = 0 + if (L | 0) { + if ((a | 0) < 0) mq(e) + a = ((((L + -1) | 0) >>> 5) + 1) | 0 + J = dn(a << 2) | 0 + f[e >> 2] = J + f[A >> 2] = a + f[K >> 2] = L + K = L >>> 5 + hj(J | 0, 0, (K << 2) | 0) | 0 + a = L & 31 + L = (J + (K << 2)) | 0 + if (a | 0) f[L >> 2] = f[L >> 2] & ~(-1 >>> ((32 - a) | 0)) + } + a: do + if ((t | 0) == (s | 0)) O = 1 + else { + a = 0 + L = j + K = s + J = t + while (1) { + A = f[((f[g >> 2] | 0) + (a << 2)) >> 2] | 0 + l = f[(L + (A << 2)) >> 2] | 0 + I = ((f[(l + 8) >> 2] | 0) - (f[(l + 4) >> 2] | 0)) | 0 + l = I >> 2 + if ((I | 0) < 8) { + P = K + Q = J + } else { + I = f[B >> 2] | 0 + M = f[d >> 2] | 0 + z = (I - M) >> 2 + y = M + M = I + if (l >>> 0 <= z >>> 0) + if ( + l >>> 0 < z >>> 0 + ? ((I = (y + (l << 2)) | 0), (I | 0) != (M | 0)) + : 0 + ) { + f[B >> 2] = M + (~(((M + -4 - I) | 0) >>> 2) << 2) + R = 0 + } else R = 0 + else { + oi(d, (l - z) | 0) + R = 0 + } + while (1) { + if ((R | 0) < (l | 0)) { + S = 0 + T = 0 + U = R + } else break + while (1) { + z = f[((f[h >> 2] | 0) + (A << 2)) >> 2] | 0 + I = f[((f[(z + 4) >> 2] | 0) + (S << 2)) >> 2] | 0 + M = S >>> 5 + y = 1 << (S & 31) + if (!(f[((f[e >> 2] | 0) + (M << 2)) >> 2] & y)) { + w = 0 + x = 1 + H = z + while (1) { + if ( + (w | 0) >= + (Ra[f[((f[H >> 2] | 0) + 24) >> 2] & 127](H, I) | 0) + ) { + V = x + break + } + z = f[((f[h >> 2] | 0) + (A << 2)) >> 2] | 0 + F = Sa[f[((f[z >> 2] | 0) + 28) >> 2] & 31](z, I, w) | 0 + z = + ((f[((f[e >> 2] | 0) + ((F >>> 5) << 2)) >> 2] & + (1 << (F & 31))) | + 0) != + 0 + F = x & z + if (!z) { + V = F + break + } + w = (w + 1) | 0 + x = F + H = f[((f[h >> 2] | 0) + (A << 2)) >> 2] | 0 + } + if (V) { + f[((f[d >> 2] | 0) + (U << 2)) >> 2] = S + H = ((f[e >> 2] | 0) + (M << 2)) | 0 + f[H >> 2] = f[H >> 2] | y + W = 1 + X = (U + 1) | 0 + } else { + W = T + X = U + } + } else { + W = T + X = U + } + S = (S + 1) | 0 + if ((S | 0) >= (l | 0)) break + else { + T = W + U = X + } + } + if (W | ((X | 0) >= (l | 0))) R = X + else { + O = 0 + break a + } + } + Of(f[((f[h >> 2] | 0) + (A << 2)) >> 2] | 0, d) + P = f[h >> 2] | 0 + Q = f[i >> 2] | 0 + } + a = (a + 1) | 0 + if (a >>> 0 >= ((Q - P) >> 2) >>> 0) { + O = 1 + break + } else { + L = P + K = P + J = Q + } + } + } + while (0) + Q = f[e >> 2] | 0 + if (Q | 0) br(Q) + Q = f[d >> 2] | 0 + if (Q | 0) { + d = f[B >> 2] | 0 + if ((d | 0) != (Q | 0)) + f[B >> 2] = d + (~(((d + -4 - Q) | 0) >>> 2) << 2) + br(Q) + } + N = O + } + O = f[c >> 2] | 0 + if (!O) { + u = b + return N | 0 + } + br(O) + u = b + return N | 0 + } + function uj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0 + e = u + u = (u + 16) | 0 + g = e + h = (a + 4) | 0 + f[h >> 2] = c + i = f[(c + 64) >> 2] | 0 + c = (((((f[(i + 4) >> 2] | 0) - (f[i >> 2] | 0)) >> 2) >>> 0) / 3) | 0 + b[g >> 0] = 0 + Xg((a + 24) | 0, c, g) + c = f[h >> 2] | 0 + h = ((f[(c + 56) >> 2] | 0) - (f[(c + 52) >> 2] | 0)) >> 2 + b[g >> 0] = 0 + Xg((a + 36) | 0, h, g) + g = (a + 8) | 0 + f[g >> 2] = f[d >> 2] + f[(g + 4) >> 2] = f[(d + 4) >> 2] + f[(g + 8) >> 2] = f[(d + 8) >> 2] + f[(g + 12) >> 2] = f[(d + 12) >> 2] + u = e + return + } + function vj(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + c = a + a: do + if (!(c & 3)) { + d = a + e = 4 + } else { + g = a + h = c + while (1) { + if (!(b[g >> 0] | 0)) { + i = h + break a + } + j = (g + 1) | 0 + h = j + if (!(h & 3)) { + d = j + e = 4 + break + } else g = j + } + } + while (0) + if ((e | 0) == 4) { + e = d + while (1) { + k = f[e >> 2] | 0 + if (!(((k & -2139062144) ^ -2139062144) & (k + -16843009))) + e = (e + 4) | 0 + else break + } + if (!(((k & 255) << 24) >> 24)) l = e + else { + k = e + while (1) { + e = (k + 1) | 0 + if (!(b[e >> 0] | 0)) { + l = e + break + } else k = e + } + } + i = l + } + return (i - c) | 0 + } + function wj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + e = u + u = (u + 16) | 0 + g = e + h = (a + 11) | 0 + i = b[h >> 0] | 0 + j = (i << 24) >> 24 < 0 + if (j) k = f[(a + 4) >> 2] | 0 + else k = i & 255 + do + if (k >>> 0 >= c >>> 0) + if (j) { + i = ((f[a >> 2] | 0) + c) | 0 + b[g >> 0] = 0 + Hp(i, g) + f[(a + 4) >> 2] = c + break + } else { + b[g >> 0] = 0 + Hp((a + c) | 0, g) + b[h >> 0] = c + break + } + else Xi(a, (c - k) | 0, d) | 0 + while (0) + u = e + return + } + function xj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + if (!a) return + b = (a + 88) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) { + b = f[(c + 8) >> 2] | 0 + if (b | 0) { + d = (c + 12) | 0 + if ((f[d >> 2] | 0) != (b | 0)) f[d >> 2] = b + br(b) + } + br(c) + } + c = f[(a + 68) >> 2] | 0 + if (c | 0) { + b = (a + 72) | 0 + d = f[b >> 2] | 0 + if ((d | 0) != (c | 0)) + f[b >> 2] = d + (~(((d + -4 - c) | 0) >>> 2) << 2) + br(c) + } + c = (a + 64) | 0 + d = f[c >> 2] | 0 + f[c >> 2] = 0 + if (d | 0) { + c = f[d >> 2] | 0 + if (c | 0) { + b = (d + 4) | 0 + if ((f[b >> 2] | 0) != (c | 0)) f[b >> 2] = c + br(c) + } + br(d) + } + br(a) + return + } + function yj(a, c, d, e, g, h, i, j, k, l) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + j = j | 0 + k = k | 0 + l = l | 0 + var m = 0, + n = 0, + o = 0 + f[a >> 2] = d + if (d | 0) { + m = (d + 16) | 0 + n = f[(m + 4) >> 2] | 0 + o = (a + 8) | 0 + f[o >> 2] = f[m >> 2] + f[(o + 4) >> 2] = n + n = (d + 24) | 0 + d = f[(n + 4) >> 2] | 0 + o = (a + 16) | 0 + f[o >> 2] = f[n >> 2] + f[(o + 4) >> 2] = d + } + b[(a + 24) >> 0] = e + f[(a + 28) >> 2] = g + b[(a + 32) >> 0] = h & 1 + h = (a + 40) | 0 + f[h >> 2] = i + f[(h + 4) >> 2] = j + j = (a + 48) | 0 + f[j >> 2] = k + f[(j + 4) >> 2] = l + f[(a + 56) >> 2] = c + return + } + function zj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + if ((f[(c + 76) >> 2] | 0) >= 0 ? (gr(c) | 0) != 0 : 0) { + d = a & 255 + e = a & 255 + if ( + (e | 0) != (b[(c + 75) >> 0] | 0) + ? ((g = (c + 20) | 0), + (h = f[g >> 2] | 0), + h >>> 0 < (f[(c + 16) >> 2] | 0) >>> 0) + : 0 + ) { + f[g >> 2] = h + 1 + b[h >> 0] = d + i = e + } else i = Bj(c, a) | 0 + fr(c) + j = i + } else k = 3 + do + if ((k | 0) == 3) { + i = a & 255 + e = a & 255 + if ( + (e | 0) != (b[(c + 75) >> 0] | 0) + ? ((d = (c + 20) | 0), + (h = f[d >> 2] | 0), + h >>> 0 < (f[(c + 16) >> 2] | 0) >>> 0) + : 0 + ) { + f[d >> 2] = h + 1 + b[h >> 0] = i + j = e + break + } + j = Bj(c, a) | 0 + } + while (0) + return j | 0 + } + function Aj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 8) | 0 + i = f[(a + 4) >> 2] | 0 + if ((i | 0) == -1) { + j = 0 + u = d + return j | 0 + } + b[h >> 0] = i + i = (c + 16) | 0 + a = f[(i + 4) >> 2] | 0 + if (!(((a | 0) > 0) | (((a | 0) == 0) & ((f[i >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + ye(c, e, h, (h + 1) | 0) | 0 + } + j = 1 + u = d + return j | 0 + } + function Bj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + d = u + u = (u + 16) | 0 + e = d + g = c & 255 + b[e >> 0] = g + i = (a + 16) | 0 + j = f[i >> 2] | 0 + if (!j) + if (!(pl(a) | 0)) { + k = f[i >> 2] | 0 + l = 4 + } else m = -1 + else { + k = j + l = 4 + } + do + if ((l | 0) == 4) { + j = (a + 20) | 0 + i = f[j >> 2] | 0 + if ( + i >>> 0 < k >>> 0 + ? ((n = c & 255), (n | 0) != (b[(a + 75) >> 0] | 0)) + : 0 + ) { + f[j >> 2] = i + 1 + b[i >> 0] = g + m = n + break + } + if ((Sa[f[(a + 36) >> 2] & 31](a, e, 1) | 0) == 1) m = h[e >> 0] | 0 + else m = -1 + } + while (0) + u = d + return m | 0 + } + function Cj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0 + c = dn(88) | 0 + d = (c + 60) | 0 + e = c + g = (e + 60) | 0 + do { + f[e >> 2] = 0 + e = (e + 4) | 0 + } while ((e | 0) < (g | 0)) + f[d >> 2] = c + d = (c + 64) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + d = Kf(c, b) | 0 + f[a >> 2] = d ? c : 0 + a = d ? 0 : c + if (d) return + ui(a) + br(a) + return + } + function Dj(a, b) { + a = a | 0 + b = b | 0 + if (!b) return + else { + Dj(a, f[b >> 2] | 0) + Dj(a, f[(b + 4) >> 2] | 0) + sj((b + 20) | 0, f[(b + 24) >> 2] | 0) + br(b) + return + } + } + function Ej(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0 + e = u + u = (u + 16) | 0 + g = e + h = (a + 4) | 0 + f[h >> 2] = c + i = (((((f[(c + 4) >> 2] | 0) - (f[c >> 2] | 0)) >> 2) >>> 0) / 3) | 0 + b[g >> 0] = 0 + Xg((a + 24) | 0, i, g) + i = f[h >> 2] | 0 + h = ((f[(i + 28) >> 2] | 0) - (f[(i + 24) >> 2] | 0)) >> 2 + b[g >> 0] = 0 + Xg((a + 36) | 0, h, g) + g = (a + 8) | 0 + f[g >> 2] = f[d >> 2] + f[(g + 4) >> 2] = f[(d + 4) >> 2] + f[(g + 8) >> 2] = f[(d + 8) >> 2] + f[(g + 12) >> 2] = f[(d + 12) >> 2] + u = e + return + } + function Fj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + f[g >> 2] = c + c = (a + 4) | 0 + a = dn(32) | 0 + f[h >> 2] = a + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 17 + i = a + j = 12932 + k = (i + 17) | 0 + do { + b[i >> 0] = b[j >> 0] | 0 + i = (i + 1) | 0 + j = (j + 1) | 0 + } while ((i | 0) < (k | 0)) + b[(a + 17) >> 0] = 0 + Nj(wd(c, g) | 0, h, d) + if ((b[(h + 11) >> 0] | 0) >= 0) { + u = e + return + } + br(f[h >> 2] | 0) + u = e + return + } + function Gj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + c = f[(a + 16) >> 2] | 0 + if (((((f[(a + 20) >> 2] | 0) - c) >> 2) | 0) <= (b | 0)) { + d = 0 + return d | 0 + } + e = f[(c + (b << 2)) >> 2] | 0 + if ((e | 0) < 0) { + d = 0 + return d | 0 + } + b = (a + 48) | 0 + if ((f[(a + 52) >> 2] | 0) >>> 0 <= e >>> 0) pe(b, (e + 1) | 0, 0) + c = ((f[b >> 2] | 0) + ((e >>> 5) << 2)) | 0 + f[c >> 2] = f[c >> 2] | (1 << (e & 31)) + c = f[(a + 36) >> 2] | 0 + if ((((f[(a + 40) >> 2] | 0) - c) >> 2) >>> 0 <= e >>> 0) { + d = 1 + return d | 0 + } + Pp(f[(c + (e << 2)) >> 2] | 0) + d = 1 + return d | 0 + } + function Hj(a) { + a = a | 0 + if (!a) return + f[a >> 2] = 1136 + sj((a + 28) | 0, f[(a + 32) >> 2] | 0) + nj((a + 16) | 0, f[(a + 20) >> 2] | 0) + sj((a + 4) | 0, f[(a + 8) >> 2] | 0) + br(a) + return + } + function Ij(a) { + a = a | 0 + f[a >> 2] = 1136 + sj((a + 28) | 0, f[(a + 32) >> 2] | 0) + nj((a + 16) | 0, f[(a + 20) >> 2] | 0) + sj((a + 4) | 0, f[(a + 8) >> 2] | 0) + return + } + function Jj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + if ((c >>> 0 > 0) | (((c | 0) == 0) & (a >>> 0 > 4294967295))) { + e = d + f = a + g = c + while (1) { + c = an(f | 0, g | 0, 10, 0) | 0 + e = (e + -1) | 0 + b[e >> 0] = (c & 255) | 48 + c = f + f = up(f | 0, g | 0, 10, 0) | 0 + if (!((g >>> 0 > 9) | (((g | 0) == 9) & (c >>> 0 > 4294967295)))) + break + else g = I + } + h = f + i = e + } else { + h = a + i = d + } + if (!h) j = i + else { + d = h + h = i + while (1) { + i = (h + -1) | 0 + b[i >> 0] = (d >>> 0) % 10 | 0 | 48 + if (d >>> 0 < 10) { + j = i + break + } else { + d = ((d >>> 0) / 10) | 0 + h = i + } + } + } + return j | 0 + } + function Kj(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = a + while (1) { + d = (c + 1) | 0 + if (!(tq(b[c >> 0] | 0) | 0)) break + else c = d + } + a = b[c >> 0] | 0 + switch (((a << 24) >> 24) | 0) { + case 45: { + e = 1 + f = 5 + break + } + case 43: { + e = 0 + f = 5 + break + } + default: { + g = 0 + h = c + i = a + } + } + if ((f | 0) == 5) { + g = e + h = d + i = b[d >> 0] | 0 + } + if (!(Pq((i << 24) >> 24) | 0)) j = 0 + else { + i = 0 + d = h + while (1) { + h = (((i * 10) | 0) + 48 - (b[d >> 0] | 0)) | 0 + d = (d + 1) | 0 + if (!(Pq(b[d >> 0] | 0) | 0)) { + j = h + break + } else i = h + } + } + return (g | 0 ? j : (0 - j) | 0) | 0 + } + function Lj(a, c, d) { + a = a | 0 + c = c | 0 + d = $(d) + var e = 0, + g = 0, + h = 0 + e = u + u = (u + 16) | 0 + g = e + cl(g, d) + h = mi(a, c) | 0 + c = (h + 11) | 0 + if ((b[c >> 0] | 0) < 0) { + b[f[h >> 2] >> 0] = 0 + f[(h + 4) >> 2] = 0 + } else { + b[h >> 0] = 0 + b[c >> 0] = 0 + } + Ng(h, 0) + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + u = e + return + } + function Mj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0 + e = u + u = (u + 16) | 0 + g = e + fl(g, d & 1) + d = mi(a, c) | 0 + c = (d + 11) | 0 + if ((b[c >> 0] | 0) < 0) { + b[f[d >> 2] >> 0] = 0 + f[(d + 4) >> 2] = 0 + } else { + b[d >> 0] = 0 + b[c >> 0] = 0 + } + Ng(d, 0) + f[d >> 2] = f[g >> 2] + f[(d + 4) >> 2] = f[(g + 4) >> 2] + f[(d + 8) >> 2] = f[(g + 8) >> 2] + u = e + return + } + function Nj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0 + e = u + u = (u + 16) | 0 + g = e + fl(g, d) + d = mi(a, c) | 0 + c = (d + 11) | 0 + if ((b[c >> 0] | 0) < 0) { + b[f[d >> 2] >> 0] = 0 + f[(d + 4) >> 2] = 0 + } else { + b[d >> 0] = 0 + b[c >> 0] = 0 + } + Ng(d, 0) + f[d >> 2] = f[g >> 2] + f[(d + 4) >> 2] = f[(g + 4) >> 2] + f[(d + 8) >> 2] = f[(g + 8) >> 2] + u = e + return + } + function Oj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + e = zg(a, c) | 0 + if ((e | 0) == ((a + 4) | 0)) { + g = -1 + h = (g | 0) == -1 + i = (g | 0) != 0 + j = h ? d : i + return j | 0 + } + a = (e + 28) | 0 + if ((b[(a + 11) >> 0] | 0) < 0) k = f[a >> 2] | 0 + else k = a + g = Kj(k) | 0 + h = (g | 0) == -1 + i = (g | 0) != 0 + j = h ? d : i + return j | 0 + } + function Pj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 16) | 0 + e = d + if (c >>> 0 > 10) { + g = 0 + u = d + return g | 0 + } + h = dn(48) | 0 + f[e >> 2] = h + f[(e + 8) >> 2] = -2147483600 + f[(e + 4) >> 2] = 33 + i = h + j = 13067 + k = (i + 33) | 0 + do { + b[i >> 0] = b[j >> 0] | 0 + i = (i + 1) | 0 + j = (j + 1) | 0 + } while ((i | 0) < (k | 0)) + b[(h + 33) >> 0] = 0 + Nj(a, e, c) + if ((b[(e + 11) >> 0] | 0) < 0) br(f[e >> 2] | 0) + g = 1 + u = d + return g | 0 + } + function Qj(a) { + a = a | 0 + f[a >> 2] = 1136 + sj((a + 28) | 0, f[(a + 32) >> 2] | 0) + nj((a + 16) | 0, f[(a + 20) >> 2] | 0) + sj((a + 4) | 0, f[(a + 8) >> 2] | 0) + br(a) + return + } + function Rj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + c = f[b >> 2] | 0 + if ((c | 0) == -1) return 1 + b = (c * 3) | 0 + if ((b | 0) == -1) return 1 + c = f[a >> 2] | 0 + a = f[(c + (b << 2)) >> 2] | 0 + d = (b + 1) | 0 + e = ((d >>> 0) % 3 | 0 | 0) == 0 ? (b + -2) | 0 : d + if ((e | 0) == -1) g = -1 + else g = f[(c + (e << 2)) >> 2] | 0 + e = ((((b >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + b) | 0 + if ((e | 0) == -1) h = -1 + else h = f[(c + (e << 2)) >> 2] | 0 + if ((a | 0) == (g | 0)) return 1 + else return ((a | 0) == (h | 0)) | ((g | 0) == (h | 0)) | 0 + return 0 + } + function Sj(a) { + a = a | 0 + f[a >> 2] = 2968 + sj((a + 28) | 0, f[(a + 32) >> 2] | 0) + Dj((a + 16) | 0, f[(a + 20) >> 2] | 0) + sj((a + 4) | 0, f[(a + 8) >> 2] | 0) + return + } + function Tj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0 + d = 0 + while (1) { + if ((h[(15560 + d) >> 0] | 0) == (a | 0)) { + e = 2 + break + } + g = (d + 1) | 0 + if ((g | 0) == 87) { + i = 15648 + j = 87 + e = 5 + break + } else d = g + } + if ((e | 0) == 2) + if (!d) k = 15648 + else { + i = 15648 + j = d + e = 5 + } + if ((e | 0) == 5) + while (1) { + e = 0 + d = i + do { + a = d + d = (d + 1) | 0 + } while ((b[a >> 0] | 0) != 0) + j = (j + -1) | 0 + if (!j) { + k = d + break + } else { + i = d + e = 5 + } + } + return yq(k, f[(c + 20) >> 2] | 0) | 0 + } + function Uj(a, b) { + a = +a + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0.0, + h = 0.0, + i = 0, + j = 0.0 + p[s >> 3] = a + c = f[s >> 2] | 0 + d = f[(s + 4) >> 2] | 0 + e = Wn(c | 0, d | 0, 52) | 0 + switch (e & 2047) { + case 0: { + if (a != 0.0) { + g = +Uj(a * 18446744073709551616.0, b) + h = g + i = ((f[b >> 2] | 0) + -64) | 0 + } else { + h = a + i = 0 + } + f[b >> 2] = i + j = h + break + } + case 2047: { + j = a + break + } + default: { + f[b >> 2] = (e & 2047) + -1022 + f[s >> 2] = c + f[(s + 4) >> 2] = (d & -2146435073) | 1071644672 + j = +p[s >> 3] + } + } + return +j + } + function Vj(a) { + a = a | 0 + f[a >> 2] = 2968 + sj((a + 28) | 0, f[(a + 32) >> 2] | 0) + Dj((a + 16) | 0, f[(a + 20) >> 2] | 0) + sj((a + 4) | 0, f[(a + 8) >> 2] | 0) + br(a) + return + } + function Wj(a, b) { + a = +a + b = b | 0 + var c = 0.0, + d = 0, + e = 0, + g = 0.0, + h = 0 + if ((b | 0) <= 1023) + if ((b | 0) < -1022) { + c = a * 2.2250738585072014e-308 + d = (b | 0) < -2044 + e = (b + 2044) | 0 + g = d ? c * 2.2250738585072014e-308 : c + h = d ? ((e | 0) > -1022 ? e : -1022) : (b + 1022) | 0 + } else { + g = a + h = b + } + else { + c = a * 8988465674311579538646525.0e283 + e = (b | 0) > 2046 + d = (b + -2046) | 0 + g = e ? c * 8988465674311579538646525.0e283 : c + h = e ? ((d | 0) < 1023 ? d : 1023) : (b + -1023) | 0 + } + b = Rn((h + 1023) | 0, 0, 52) | 0 + h = I + f[s >> 2] = b + f[(s + 4) >> 2] = h + return +(g * +p[s >> 3]) + } + function Xj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + if (!(f[(a + 80) >> 2] | 0)) { + b = 0 + return b | 0 + } + c = (a + 8) | 0 + d = (a + 12) | 0 + a = f[c >> 2] | 0 + if ((((f[d >> 2] | 0) - a) | 0) > 0) { + e = 0 + g = a + } else { + b = 1 + return b | 0 + } + while (1) { + a = f[(g + (e << 2)) >> 2] | 0 + e = (e + 1) | 0 + if (!(yl(a, a) | 0)) { + b = 0 + h = 5 + break + } + g = f[c >> 2] | 0 + if ((e | 0) >= ((((f[d >> 2] | 0) - g) >> 2) | 0)) { + b = 1 + h = 5 + break + } + } + if ((h | 0) == 5) return b | 0 + return 0 + } + function Yj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = (a + 36) | 0 + d = (a + 40) | 0 + e = f[c >> 2] | 0 + if ((f[d >> 2] | 0) == (e | 0)) { + g = 1 + return g | 0 + } + h = (a + 60) | 0 + a = 0 + i = e + while (1) { + e = f[(i + (a << 2)) >> 2] | 0 + a = (a + 1) | 0 + if (!(Sa[f[((f[e >> 2] | 0) + 20) >> 2] & 31](e, h, b) | 0)) { + g = 0 + j = 5 + break + } + i = f[c >> 2] | 0 + if (a >>> 0 >= (((f[d >> 2] | 0) - i) >> 2) >>> 0) { + g = 1 + j = 5 + break + } + } + if ((j | 0) == 5) return g | 0 + return 0 + } + function Zj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = (a + 36) | 0 + d = (a + 40) | 0 + a = f[c >> 2] | 0 + if ((f[d >> 2] | 0) == (a | 0)) { + e = 1 + return e | 0 + } else { + g = 0 + h = a + } + while (1) { + a = f[(h + (g << 2)) >> 2] | 0 + g = (g + 1) | 0 + if (!(Ra[f[((f[a >> 2] | 0) + 24) >> 2] & 127](a, b) | 0)) { + e = 0 + i = 4 + break + } + h = f[c >> 2] | 0 + if (g >>> 0 >= (((f[d >> 2] | 0) - h) >> 2) >>> 0) { + e = 1 + i = 4 + break + } + } + if ((i | 0) == 4) return e | 0 + return 0 + } + function _j(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + f[a >> 2] = 0 + c = (a + 4) | 0 + f[c >> 2] = 0 + f[(a + 8) >> 2] = 0 + d = (b + 4) | 0 + e = ((f[d >> 2] | 0) - (f[b >> 2] | 0)) | 0 + g = e >> 2 + if (!g) return + if (g >>> 0 > 1073741823) mq(a) + h = dn(e) | 0 + f[c >> 2] = h + f[a >> 2] = h + f[(a + 8) >> 2] = h + (g << 2) + g = f[b >> 2] | 0 + b = ((f[d >> 2] | 0) - g) | 0 + if ((b | 0) <= 0) return + Rg(h | 0, g | 0, b | 0) | 0 + f[c >> 2] = h + ((b >>> 2) << 2) + return + } + function $j(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + c = (a + 8) | 0 + d = f[a >> 2] | 0 + if ((((f[c >> 2] | 0) - d) >> 2) >>> 0 >= b >>> 0) return + e = (a + 4) | 0 + if (b >>> 0 > 1073741823) { + g = ra(8) | 0 + Wo(g, 14941) + f[g >> 2] = 6944 + va(g | 0, 1080, 114) + } + g = ((f[e >> 2] | 0) - d) | 0 + h = dn(b << 2) | 0 + if ((g | 0) > 0) Rg(h | 0, d | 0, g | 0) | 0 + f[a >> 2] = h + f[e >> 2] = h + ((g >> 2) << 2) + f[c >> 2] = h + (b << 2) + if (!d) return + br(d) + return + } + function ak(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + b = (a + 36) | 0 + c = (a + 40) | 0 + d = f[b >> 2] | 0 + if ((f[c >> 2] | 0) == (d | 0)) { + e = 1 + return e | 0 + } + g = (a + 60) | 0 + a = 0 + h = d + while (1) { + d = f[(h + (a << 2)) >> 2] | 0 + a = (a + 1) | 0 + if (!(Ra[f[((f[d >> 2] | 0) + 16) >> 2] & 127](d, g) | 0)) { + e = 0 + i = 5 + break + } + h = f[b >> 2] | 0 + if (a >>> 0 >= (((f[c >> 2] | 0) - h) >> 2) >>> 0) { + e = 1 + i = 5 + break + } + } + if ((i | 0) == 5) return e | 0 + return 0 + } + function bk(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = u + u = (u + 16) | 0 + e = d + g = dn(16) | 0 + f[e >> 2] = g + f[(e + 8) >> 2] = -2147483632 + f[(e + 4) >> 2] = 15 + h = g + i = 12916 + j = (h + 15) | 0 + do { + b[h >> 0] = b[i >> 0] | 0 + h = (h + 1) | 0 + i = (i + 1) | 0 + } while ((h | 0) < (j | 0)) + b[(g + 15) >> 0] = 0 + Nj((a + 4) | 0, e, c) + if ((b[(e + 11) >> 0] | 0) >= 0) { + u = d + return + } + br(f[e >> 2] | 0) + u = d + return + } + function ck(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = b + if (b | 0 ? ((c = mh(b, 992, 976, 0) | 0), c | 0) : 0) { + d = dn(56) | 0 + Gm(d, c) + c = f[a >> 2] | 0 + f[a >> 2] = d + if (!c) return + Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + return + } + c = dn(56) | 0 + Am(c, b) + b = f[a >> 2] | 0 + f[a >> 2] = c + if (!b) return + Va[f[((f[b >> 2] | 0) + 4) >> 2] & 127](b) + return + } + function dk(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0 + d = f[(a + 176) >> 2] | 0 + e = f[(a + 172) >> 2] | 0 + a = e + if ((d | 0) == (e | 0)) return 0 + g = (((d - e) | 0) / 136) | 0 + e = 0 + while (1) { + if ((f[(a + ((e * 136) | 0)) >> 2] | 0) == (c | 0)) { + h = 4 + break + } + d = (e + 1) | 0 + if (d >>> 0 < g >>> 0) e = d + else { + h = 6 + break + } + } + if ((h | 0) == 4) + return ( + ((b[(a + ((e * 136) | 0) + 100) >> 0] | 0) == 0 + ? 0 + : (a + ((e * 136) | 0) + 4) | 0) | 0 + ) + else if ((h | 0) == 6) return 0 + return 0 + } + function ek(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + c = f[(a + 72) >> 2] | 0 + if (!c) { + d = 0 + return d | 0 + } + f[(c + 4) >> 2] = a + 60 + if (!(Qa[f[((f[c >> 2] | 0) + 12) >> 2] & 127](c) | 0)) { + d = 0 + return d | 0 + } + if (!(Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0)) { + d = 0 + return d | 0 + } + if (!(Ra[f[((f[a >> 2] | 0) + 44) >> 2] & 127](a, b) | 0)) { + d = 0 + return d | 0 + } + d = Ra[f[((f[a >> 2] | 0) + 48) >> 2] & 127](a, b) | 0 + return d | 0 + } + function fk(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + f[a >> 2] = 0 + d = (a + 4) | 0 + f[d >> 2] = 0 + f[(a + 8) >> 2] = 0 + if (!b) return + if (b >>> 0 > 357913941) mq(a) + e = dn((b * 12) | 0) | 0 + f[d >> 2] = e + f[a >> 2] = e + f[(a + 8) >> 2] = e + ((b * 12) | 0) + a = b + b = e + do { + _j(b, c) + b = ((f[d >> 2] | 0) + 12) | 0 + f[d >> 2] = b + a = (a + -1) | 0 + } while ((a | 0) != 0) + return + } + function gk(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0 + c = f[b >> 2] | 0 + if (!c) { + d = 0 + return d | 0 + } + e = (a + 44) | 0 + g = f[e >> 2] | 0 + if (g >>> 0 < (f[(a + 48) >> 2] | 0) >>> 0) { + f[b >> 2] = 0 + f[g >> 2] = c + f[e >> 2] = (f[e >> 2] | 0) + 4 + d = 1 + return d | 0 + } else { + Bg((a + 40) | 0, b) + d = 1 + return d | 0 + } + return 0 + } + function hk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2880 + f[(a + 40) >> 2] = 1180 + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + c = (a + 52) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + f[a >> 2] = 1460 + b = (a + 36) | 0 + d = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!d) { + zi(a) + br(a) + return + } + Va[f[((f[d >> 2] | 0) + 4) >> 2] & 127](d) + zi(a) + br(a) + return + } + function ik(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0 + f[c >> 2] = 2 + d = (a + 4) | 0 + a = (c + 8) | 0 + e = f[a >> 2] | 0 + g = ((f[(c + 12) >> 2] | 0) - e) | 0 + if (g >>> 0 < 4294967292) { + Bk(a, (g + 4) | 0, 0) + i = f[a >> 2] | 0 + } else i = e + e = (i + g) | 0 + g = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + b[e >> 0] = g + b[(e + 1) >> 0] = g >> 8 + b[(e + 2) >> 0] = g >> 16 + b[(e + 3) >> 0] = g >> 24 + return + } + function jk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + f[a >> 2] = 3164 + b = (a + 8) | 0 + f[b >> 2] = 3188 + c = f[(a + 56) >> 2] | 0 + if (c | 0) { + d = (a + 60) | 0 + e = f[d >> 2] | 0 + if ((e | 0) != (c | 0)) + f[d >> 2] = e + (~(((e + -4 - c) | 0) >>> 2) << 2) + br(c) + } + f[b >> 2] = 3208 + b = f[(a + 44) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 32) >> 2] | 0 + if (!b) { + br(a) + return + } + br(b) + br(a) + return + } + function kk(a, c, d) { + a = a | 0 + c = c | 0 + d = $(d) + var e = 0, + g = Oa, + h = 0 + e = zg(a, c) | 0 + if ((e | 0) == ((a + 4) | 0)) { + g = d + return $(g) + } + a = (e + 28) | 0 + if ((b[(a + 11) >> 0] | 0) < 0) h = f[a >> 2] | 0 + else h = a + g = $(+Xq(h)) + return $(g) + } + function lk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + b = u + u = (u + 16) | 0 + c = b + d = c + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + cf(a, 2, c) + c = f[(a + 12) >> 2] | 0 + d = (a + 16) | 0 + e = f[d >> 2] | 0 + if ((e | 0) == (c | 0)) { + g = (a + 24) | 0 + f[g >> 2] = 0 + h = (a + 28) | 0 + f[h >> 2] = 0 + u = b + return + } + f[d >> 2] = e + (~(((e + -4 - c) | 0) >>> 2) << 2) + g = (a + 24) | 0 + f[g >> 2] = 0 + h = (a + 28) | 0 + f[h >> 2] = 0 + u = b + return + } + function mk(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = f[(a + 176) >> 2] | 0 + d = f[(a + 172) >> 2] | 0 + e = d + a: do + if ((c | 0) != (d | 0)) { + g = (((c - d) | 0) / 136) | 0 + h = 0 + while (1) { + if ((f[(e + ((h * 136) | 0)) >> 2] | 0) == (b | 0)) break + i = (h + 1) | 0 + if (i >>> 0 < g >>> 0) h = i + else break a + } + j = (e + ((h * 136) | 0) + 104) | 0 + return j | 0 + } + while (0) + j = (a + 40) | 0 + return j | 0 + } + function nk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + f[a >> 2] = 3232 + b = (a + 8) | 0 + f[b >> 2] = 3256 + c = f[(a + 56) >> 2] | 0 + if (c | 0) { + d = (a + 60) | 0 + e = f[d >> 2] | 0 + if ((e | 0) != (c | 0)) + f[d >> 2] = e + (~(((e + -4 - c) | 0) >>> 2) << 2) + br(c) + } + f[b >> 2] = 3276 + b = f[(a + 44) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 32) >> 2] | 0 + if (!b) { + br(a) + return + } + br(b) + br(a) + return + } + function ok(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2880 + f[(a + 40) >> 2] = 1180 + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + c = (a + 52) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + f[a >> 2] = 1460 + b = (a + 36) | 0 + d = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!d) { + zi(a) + return + } + Va[f[((f[d >> 2] | 0) + 4) >> 2] & 127](d) + zi(a) + return + } + function pk(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + Ec(a, b) + if ((b | 0) <= -1) return + c = (a + 88) | 0 + d = f[c >> 2] | 0 + e = f[(a + 84) >> 2] | 0 + if ((((d - e) >> 2) | 0) <= (b | 0)) return + a = (e + (b << 2)) | 0 + b = (a + 4) | 0 + e = (d - b) | 0 + g = e >> 2 + if (!g) h = d + else { + Xl(a | 0, b | 0, e | 0) | 0 + h = f[c >> 2] | 0 + } + e = (a + (g << 2)) | 0 + if ((h | 0) == (e | 0)) return + f[c >> 2] = h + (~(((h + -4 - e) | 0) >>> 2) << 2) + return + } + function qk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + b = f[(a + 32) >> 2] | 0 + c = f[(a + 36) >> 2] | 0 + if ((b | 0) == (c | 0)) { + d = 1 + return d | 0 + } + e = (a + 8) | 0 + g = (a + 44) | 0 + a = b + while (1) { + b = f[((f[e >> 2] | 0) + (f[a >> 2] << 2)) >> 2] | 0 + a = (a + 4) | 0 + if (!(Ra[f[((f[b >> 2] | 0) + 20) >> 2] & 127](b, f[g >> 2] | 0) | 0)) { + d = 0 + h = 5 + break + } + if ((a | 0) == (c | 0)) { + d = 1 + h = 5 + break + } + } + if ((h | 0) == 5) return d | 0 + return 0 + } + function rk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + f[a >> 2] = 3164 + b = (a + 8) | 0 + f[b >> 2] = 3188 + c = f[(a + 56) >> 2] | 0 + if (c | 0) { + d = (a + 60) | 0 + e = f[d >> 2] | 0 + if ((e | 0) != (c | 0)) + f[d >> 2] = e + (~(((e + -4 - c) | 0) >>> 2) << 2) + br(c) + } + f[b >> 2] = 3208 + b = f[(a + 44) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 32) >> 2] | 0 + if (!b) return + br(b) + return + } + function sk(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0.0 + d = u + u = (u + 128) | 0 + e = d + g = e + h = (g + 124) | 0 + do { + f[g >> 2] = 0 + g = (g + 4) | 0 + } while ((g | 0) < (h | 0)) + g = (e + 4) | 0 + f[g >> 2] = a + h = (e + 8) | 0 + f[h >> 2] = -1 + f[(e + 44) >> 2] = a + f[(e + 76) >> 2] = -1 + Rm(e, 0) + i = +Lc(e, c, 1) + c = ((f[g >> 2] | 0) - (f[h >> 2] | 0) + (f[(e + 108) >> 2] | 0)) | 0 + if (b | 0) f[b >> 2] = c | 0 ? (a + c) | 0 : a + u = d + return +i + } + function tk(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0 + a = (c + 16) | 0 + g = f[a >> 2] | 0 + do + if (g) { + if ((g | 0) != (d | 0)) { + h = (c + 36) | 0 + f[h >> 2] = (f[h >> 2] | 0) + 1 + f[(c + 24) >> 2] = 2 + b[(c + 54) >> 0] = 1 + break + } + h = (c + 24) | 0 + if ((f[h >> 2] | 0) == 2) f[h >> 2] = e + } else { + f[a >> 2] = d + f[(c + 24) >> 2] = e + f[(c + 36) >> 2] = 1 + } + while (0) + return + } + function uk(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0 + c = (a + 74) | 0 + d = b[c >> 0] | 0 + b[c >> 0] = (d + 255) | d + d = (a + 20) | 0 + c = (a + 28) | 0 + if ((f[d >> 2] | 0) >>> 0 > (f[c >> 2] | 0) >>> 0) + Sa[f[(a + 36) >> 2] & 31](a, 0, 0) | 0 + f[(a + 16) >> 2] = 0 + f[c >> 2] = 0 + f[d >> 2] = 0 + d = f[a >> 2] | 0 + if (!(d & 4)) { + c = ((f[(a + 44) >> 2] | 0) + (f[(a + 48) >> 2] | 0)) | 0 + f[(a + 8) >> 2] = c + f[(a + 4) >> 2] = c + e = (d << 27) >> 31 + } else { + f[a >> 2] = d | 32 + e = -1 + } + return e | 0 + } + function vk(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + d = zg(a, c) | 0 + if ((d | 0) == ((a + 4) | 0)) { + e = 0 + return e | 0 + } + a = (d + 28) | 0 + if ((b[(a + 11) >> 0] | 0) < 0) g = f[a >> 2] | 0 + else g = a + e = (((Kj(g) | 0) + 1) | 0) >>> 0 > 1 + return e | 0 + } + function wk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 5840 + b = f[(a + 96) >> 2] | 0 + if (b | 0) { + c = (a + 100) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + ((~(((((d + -12 - b) | 0) >>> 0) / 12) | 0) * 12) | 0) + br(b) + } + b = f[(a + 84) >> 2] | 0 + if (!b) { + wg(a) + br(a) + return + } + d = (a + 88) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + wg(a) + br(a) + return + } + function xk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + f[a >> 2] = 3232 + b = (a + 8) | 0 + f[b >> 2] = 3256 + c = f[(a + 56) >> 2] | 0 + if (c | 0) { + d = (a + 60) | 0 + e = f[d >> 2] | 0 + if ((e | 0) != (c | 0)) + f[d >> 2] = e + (~(((e + -4 - c) | 0) >>> 2) << 2) + br(c) + } + f[b >> 2] = 3276 + b = f[(a + 44) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 32) >> 2] | 0 + if (!b) return + br(b) + return + } + function yk(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0 + e = zg(a, c) | 0 + if ((e | 0) == ((a + 4) | 0)) { + g = d + return g | 0 + } + d = (e + 28) | 0 + if ((b[(d + 11) >> 0] | 0) < 0) h = f[d >> 2] | 0 + else h = d + g = Kj(h) | 0 + return g | 0 + } + function zk(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + e = (b >> 31) | (((b | 0) < 0 ? -1 : 0) << 1) + f = (((b | 0) < 0 ? -1 : 0) >> 31) | (((b | 0) < 0 ? -1 : 0) << 1) + g = (d >> 31) | (((d | 0) < 0 ? -1 : 0) << 1) + h = (((d | 0) < 0 ? -1 : 0) >> 31) | (((d | 0) < 0 ? -1 : 0) << 1) + i = Vn((e ^ a) | 0, (f ^ b) | 0, e | 0, f | 0) | 0 + b = I + a = g ^ e + e = h ^ f + return ( + Vn( + ((Bd(i, b, Vn((g ^ c) | 0, (h ^ d) | 0, g | 0, h | 0) | 0, I, 0) | + 0) ^ + a) | + 0, + (I ^ e) | 0, + a | 0, + e | 0, + ) | 0 + ) + } + function Ak(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0 + f[a >> 2] = b + h = (b + 16) | 0 + i = f[(h + 4) >> 2] | 0 + j = (a + 8) | 0 + f[j >> 2] = f[h >> 2] + f[(j + 4) >> 2] = i + i = (b + 24) | 0 + b = f[(i + 4) >> 2] | 0 + j = (a + 16) | 0 + f[j >> 2] = f[i >> 2] + f[(j + 4) >> 2] = b + b = (a + 40) | 0 + f[b >> 2] = c + f[(b + 4) >> 2] = d + d = (a + 48) | 0 + f[d >> 2] = e + f[(d + 4) >> 2] = g + return + } + function Bk(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + e = f[a >> 2] | 0 + g = (d - e) | 0 + h = e + e = d + if (g >>> 0 >= b >>> 0) { + if (g >>> 0 > b >>> 0 ? ((d = (h + b) | 0), (d | 0) != (e | 0)) : 0) + f[c >> 2] = d + } else ri(a, (b - g) | 0) + g = (a + 24) | 0 + a = g + b = Tn(f[a >> 2] | 0, f[(a + 4) >> 2] | 0, 1, 0) | 0 + a = g + f[a >> 2] = b + f[(a + 4) >> 2] = I + return + } + function Ck(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + d = zg(a, c) | 0 + if ((d | 0) == ((a + 4) | 0)) { + e = -1 + return e | 0 + } + a = (d + 28) | 0 + if ((b[(a + 11) >> 0] | 0) < 0) g = f[a >> 2] | 0 + else g = a + e = Kj(g) | 0 + return e | 0 + } + function Dk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 5840 + b = f[(a + 96) >> 2] | 0 + if (b | 0) { + c = (a + 100) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + ((~(((((d + -12 - b) | 0) >>> 0) / 12) | 0) * 12) | 0) + br(b) + } + b = f[(a + 84) >> 2] | 0 + if (!b) { + wg(a) + return + } + d = (a + 88) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + br(b) + wg(a) + return + } + function Ek(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + f[(a + 16) >> 2] = 0 + f[(a + 20) >> 2] = 0 + b[(a + 24) >> 0] = 1 + c = (a + 68) | 0 + d = (a + 28) | 0 + e = (d + 40) | 0 + do { + f[d >> 2] = 0 + d = (d + 4) | 0 + } while ((d | 0) < (e | 0)) + f[c >> 2] = a + c = (a + 72) | 0 + f[c >> 2] = 0 + f[(c + 4) >> 2] = 0 + f[(c + 8) >> 2] = 0 + f[(c + 12) >> 2] = 0 + f[(c + 16) >> 2] = 0 + f[(c + 20) >> 2] = 0 + return + } + function Fk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3188 + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + c = (a + 52) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + f[a >> 2] = 3208 + b = f[(a + 36) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 24) >> 2] | 0 + if (!b) { + br(a) + return + } + br(b) + br(a) + return + } + function Gk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2004 + b = f[(a + 76) >> 2] | 0 + if (b | 0) br(b) + f[a >> 2] = 1528 + b = f[(a + 32) >> 2] | 0 + if (!b) { + br(a) + return + } + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + br(a) + return + } + function Hk(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var f = 0, + g = 0, + h = 0 + f = u + u = (u + 256) | 0 + g = f + if (((c | 0) > (d | 0)) & (((e & 73728) | 0) == 0)) { + e = (c - d) | 0 + hj(g | 0, ((b << 24) >> 24) | 0, (e >>> 0 < 256 ? e : 256) | 0) | 0 + if (e >>> 0 > 255) { + b = (c - d) | 0 + d = e + do { + ep(a, g, 256) + d = (d + -256) | 0 + } while (d >>> 0 > 255) + h = b & 255 + } else h = e + ep(a, g, h) + } + u = f + return + } + function Ik(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3256 + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + c = (a + 52) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + f[a >> 2] = 3276 + b = f[(a + 36) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 24) >> 2] | 0 + if (!b) { + br(a) + return + } + br(b) + br(a) + return + } + function Jk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 1696 + b = f[(a + 76) >> 2] | 0 + if (b | 0) br(b) + f[a >> 2] = 1528 + b = f[(a + 32) >> 2] | 0 + if (!b) { + br(a) + return + } + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + br(a) + return + } + function Kk(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0 + if (qp(a, f[(b + 8) >> 2] | 0, g) | 0) fj(0, b, c, d, e) + else { + h = f[(a + 8) >> 2] | 0 + _a[f[((f[h >> 2] | 0) + 20) >> 2] & 3](h, b, c, d, e, g) + } + return + } + function Lk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3188 + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + c = (a + 52) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + f[a >> 2] = 3208 + b = f[(a + 36) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 24) >> 2] | 0 + if (!b) return + br(b) + return + } + function Mk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2060 + tj((a + 108) | 0) + f[a >> 2] = 1528 + b = f[(a + 32) >> 2] | 0 + if (!b) { + br(a) + return + } + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + br(a) + return + } + function Nk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3256 + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + c = (a + 52) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + f[a >> 2] = 3276 + b = f[(a + 36) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 24) >> 2] | 0 + if (!b) return + br(b) + return + } + function Ok(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 1752 + tj((a + 108) | 0) + f[a >> 2] = 1528 + b = f[(a + 32) >> 2] | 0 + if (!b) { + br(a) + return + } + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + br(a) + return + } + function Pk(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + a: do + if (!d) e = 0 + else { + f = a + g = d + h = c + while (1) { + i = b[f >> 0] | 0 + j = b[h >> 0] | 0 + if ((i << 24) >> 24 != (j << 24) >> 24) break + g = (g + -1) | 0 + if (!g) { + e = 0 + break a + } else { + f = (f + 1) | 0 + h = (h + 1) | 0 + } + } + e = ((i & 255) - (j & 255)) | 0 + } + while (0) + return e | 0 + } + function Qk(a) { + a = a | 0 + if (!(f[(a + 44) >> 2] | 0)) return 0 + if (!(f[(a + 48) >> 2] | 0)) return 0 + if (!(f[(a + 24) >> 2] | 0)) return 0 + if (!(f[(a + 28) >> 2] | 0)) return 0 + if (!(f[(a + 32) >> 2] | 0)) return 0 + else return ((f[(a + 36) >> 2] | 0) != 0) | 0 + return 0 + } + function Rk(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 2004 + b = f[(a + 76) >> 2] | 0 + if (b | 0) br(b) + f[a >> 2] = 1528 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + br(b) + return + } + function Sk(a) { + a = a | 0 + var c = 0, + d = 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + c = 0 + while (1) { + if ((c | 0) == 3) break + f[(a + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } + if ((b[(a + 11) >> 0] | 0) < 0) + d = ((f[(a + 8) >> 2] & 2147483647) + -1) | 0 + else d = 10 + wj(a, d, 0) + return + } + function Tk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0.0, + g = 0.0 + b = f[(a + 8) >> 2] | 0 + if ((b | 0) < 2) { + c = 0 + d = 0 + I = c + return d | 0 + } + e = +(b | 0) + g = +Fg(e) * e + e = +W(+(g - +p[a >> 3])) + c = + +K(e) >= 1.0 + ? e > 0.0 + ? ~~+Y(+J(e / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((e - +(~~e >>> 0)) / 4294967296.0) >>> 0 + : 0 + d = ~~e >>> 0 + I = c + return d | 0 + } + function Uk(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1696 + b = f[(a + 76) >> 2] | 0 + if (b | 0) br(b) + f[a >> 2] = 1528 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + br(b) + return + } + function Vk(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + c = f[(a + 16) >> 2] | 0 + if (((((f[(a + 20) >> 2] | 0) - c) >> 2) | 0) <= (b | 0)) { + d = 0 + return d | 0 + } + e = f[(c + (b << 2)) >> 2] | 0 + if ((e | 0) < 0) { + d = 0 + return d | 0 + } + b = f[((f[(a + 36) >> 2] | 0) + (e << 2)) >> 2] | 0 + e = f[(b + 32) >> 2] | 0 + if (e | 0) { + d = e + return d | 0 + } + d = f[(b + 8) >> 2] | 0 + return d | 0 + } + function Wk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 1216 + b = f[(a + 16) >> 2] | 0 + if (b | 0) { + c = (a + 20) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + } + b = f[(a + 4) >> 2] | 0 + if (!b) return + d = (a + 8) | 0 + a = f[d >> 2] | 0 + if ((a | 0) != (b | 0)) f[d >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + br(b) + return + } + function Xk(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 2060 + tj((a + 108) | 0) + f[a >> 2] = 1528 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + br(b) + return + } + function Yk(a) { + a = a | 0 + if (!(f[(a + 64) >> 2] | 0)) return 0 + if (!(f[(a + 68) >> 2] | 0)) return 0 + if (!(f[(a + 44) >> 2] | 0)) return 0 + if (!(f[(a + 48) >> 2] | 0)) return 0 + if (!(f[(a + 52) >> 2] | 0)) return 0 + else return ((f[(a + 56) >> 2] | 0) != 0) | 0 + return 0 + } + function Zk(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0 + if (qp(a, f[(b + 8) >> 2] | 0, 0) | 0) tk(0, b, c, d) + else { + e = f[(a + 8) >> 2] | 0 + Ya[f[((f[e >> 2] | 0) + 28) >> 2] & 7](e, b, c, d) + } + return + } + function _k(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1752 + tj((a + 108) | 0) + f[a >> 2] = 1528 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + br(b) + return + } + function $k(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + if ((b | 0) < 0) { + c = 0 + return c | 0 + } + d = f[(a + 4) >> 2] | 0 + if ( + ((((f[(d + 12) >> 2] | 0) - (f[(d + 8) >> 2] | 0)) >> 2) | 0) <= + (b | 0) + ) { + c = 0 + return c | 0 + } + d = + f[ + ((f[(a + 8) >> 2] | 0) + + (f[((f[(a + 20) >> 2] | 0) + (b << 2)) >> 2] << 2)) >> + 2 + ] | 0 + c = Ra[f[((f[d >> 2] | 0) + 36) >> 2] & 127](d, b) | 0 + return c | 0 + } + function al(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + if ((b | 0) < 0) { + c = 0 + return c | 0 + } + d = f[(a + 4) >> 2] | 0 + if ( + ((((f[(d + 12) >> 2] | 0) - (f[(d + 8) >> 2] | 0)) >> 2) | 0) <= + (b | 0) + ) { + c = 0 + return c | 0 + } + d = + f[ + ((f[(a + 8) >> 2] | 0) + + (f[((f[(a + 20) >> 2] | 0) + (b << 2)) >> 2] << 2)) >> + 2 + ] | 0 + c = Ra[f[((f[d >> 2] | 0) + 32) >> 2] & 127](d, b) | 0 + return c | 0 + } + function bl(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0 + d = b[a >> 0] | 0 + e = b[c >> 0] | 0 + if ((d << 24) >> 24 == 0 ? 1 : (d << 24) >> 24 != (e << 24) >> 24) { + f = e + g = d + } else { + d = c + c = a + do { + c = (c + 1) | 0 + d = (d + 1) | 0 + a = b[c >> 0] | 0 + e = b[d >> 0] | 0 + } while ( + !((a << 24) >> 24 == 0 ? 1 : (a << 24) >> 24 != (e << 24) >> 24) + ) + f = e + g = a + } + return ((g & 255) - (f & 255)) | 0 + } + function cl(a, b) { + a = a | 0 + b = $(b) + var c = 0, + d = 0 + c = u + u = (u + 16) | 0 + d = c + Sk(d) + qi(a, d, b) + Go(d) + u = c + return + } + function dl(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0 + b = f[a >> 2] | 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + if ((d | 0) == (b | 0)) e = b + else { + g = (d + (~(((d + -4 - b) | 0) >>> 2) << 2)) | 0 + f[c >> 2] = g + e = g + } + f[(a + 12) >> 2] = 0 + f[(a + 16) >> 2] = 0 + if (!b) return + if ((e | 0) != (b | 0)) f[c >> 2] = e + (~(((e + -4 - b) | 0) >>> 2) << 2) + br(b) + return + } + function el(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + d = f[(a + 16) >> 2] | 0 + if (((((f[(a + 20) >> 2] | 0) - d) >> 2) | 0) <= (b | 0)) { + e = -1 + return e | 0 + } + g = f[(d + (b << 2)) >> 2] | 0 + if ((g | 0) < 0) { + e = -1 + return e | 0 + } + e = + f[ + ((f[((f[((f[(a + 36) >> 2] | 0) + (g << 2)) >> 2] | 0) + 16) >> 2] | + 0) + + (c << 2)) >> + 2 + ] | 0 + return e | 0 + } + function fl(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + c = u + u = (u + 16) | 0 + d = c + Sk(d) + vi(a, d, b) + Go(d) + u = c + return + } + function gl(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0 + d = u + u = (u + 32) | 0 + e = d + g = (d + 20) | 0 + f[e >> 2] = f[(a + 60) >> 2] + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = b + f[(e + 12) >> 2] = g + f[(e + 16) >> 2] = c + if ((ro(za(140, e | 0) | 0) | 0) < 0) { + f[g >> 2] = -1 + h = -1 + } else h = f[g >> 2] | 0 + u = d + return h | 0 + } + function hl(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + if (((b | 0) == -1) | ((b | 0) > 4)) { + c = 0 + return c | 0 + } + d = f[(a + 20 + ((b * 12) | 0)) >> 2] | 0 + if ((((f[(a + 20 + ((b * 12) | 0) + 4) >> 2] | 0) - d) | 0) <= 0) { + c = 0 + return c | 0 + } + b = f[d >> 2] | 0 + if ((b | 0) == -1) { + c = 0 + return c | 0 + } + c = f[((f[(a + 8) >> 2] | 0) + (b << 2)) >> 2] | 0 + return c | 0 + } + function il(a) { + a = a | 0 + if (!(f[(a + 40) >> 2] | 0)) return 0 + if (!(f[(a + 24) >> 2] | 0)) return 0 + if (!(f[(a + 28) >> 2] | 0)) return 0 + if (!(f[(a + 32) >> 2] | 0)) return 0 + else return ((f[(a + 36) >> 2] | 0) != 0) | 0 + return 0 + } + function jl(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + c = f[(a + 16) >> 2] | 0 + if (((((f[(a + 20) >> 2] | 0) - c) >> 2) | 0) <= (b | 0)) { + d = 0 + return d | 0 + } + e = f[(c + (b << 2)) >> 2] | 0 + if ((e | 0) < 0) { + d = 0 + return d | 0 + } + b = f[((f[(a + 36) >> 2] | 0) + (e << 2)) >> 2] | 0 + d = ((f[(b + 20) >> 2] | 0) - (f[(b + 16) >> 2] | 0)) >> 2 + return d | 0 + } + function kl(a) { + a = a | 0 + var b = 0 + if (!(f[(a + 24) >> 2] | 0)) { + b = 0 + return b | 0 + } + if (!(f[(a + 28) >> 2] | 0)) { + b = 0 + return b | 0 + } + if (!(f[(a + 32) >> 2] | 0)) { + b = 0 + return b | 0 + } + b = (f[(a + 36) >> 2] | 0) != 0 + return b | 0 + } + function ll(a) { + a = a | 0 + if (!(f[(a + 60) >> 2] | 0)) return 0 + if (!(f[(a + 44) >> 2] | 0)) return 0 + if (!(f[(a + 48) >> 2] | 0)) return 0 + if (!(f[(a + 52) >> 2] | 0)) return 0 + else return ((f[(a + 56) >> 2] | 0) != 0) | 0 + return 0 + } + function ml(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0 + Sg(a, c) + f[a >> 2] = 1392 + c = (a + 72) | 0 + d = (a + 36) | 0 + a = (d + 36) | 0 + do { + f[d >> 2] = 0 + d = (d + 4) | 0 + } while ((d | 0) < (a | 0)) + d = f[b >> 2] | 0 + f[b >> 2] = 0 + f[c >> 2] = d + return + } + function nl(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0 + d = a + e = c + c = (d + 64) | 0 + do { + f[d >> 2] = f[e >> 2] + d = (d + 4) | 0 + e = (e + 4) | 0 + } while ((d | 0) < (c | 0)) + e = (a + 64) | 0 + f[(a + 88) >> 2] = 0 + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + f[(e + 12) >> 2] = 0 + f[(e + 16) >> 2] = 0 + b[(e + 20) >> 0] = 0 + return + } + function ol(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var f = 0, + g = 0 + if (((a | 0) == 0) & ((c | 0) == 0)) f = d + else { + g = d + d = c + c = a + while (1) { + a = (g + -1) | 0 + b[a >> 0] = h[(15542 + (c & 15)) >> 0] | 0 | e + c = Wn(c | 0, d | 0, 4) | 0 + d = I + if (((c | 0) == 0) & ((d | 0) == 0)) { + f = a + break + } else g = a + } + } + return f | 0 + } + function pl(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0 + c = (a + 74) | 0 + d = b[c >> 0] | 0 + b[c >> 0] = (d + 255) | d + d = f[a >> 2] | 0 + if (!(d & 8)) { + f[(a + 8) >> 2] = 0 + f[(a + 4) >> 2] = 0 + c = f[(a + 44) >> 2] | 0 + f[(a + 28) >> 2] = c + f[(a + 20) >> 2] = c + f[(a + 16) >> 2] = c + (f[(a + 48) >> 2] | 0) + e = 0 + } else { + f[a >> 2] = d | 32 + e = -1 + } + return e | 0 + } + function ql(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + c = f[(b + 88) >> 2] | 0 + if (!c) { + d = 0 + return d | 0 + } + if ((f[c >> 2] | 0) != 2) { + d = 0 + return d | 0 + } + b = f[(c + 8) >> 2] | 0 + f[(a + 4) >> 2] = + h[b >> 0] | + (h[(b + 1) >> 0] << 8) | + (h[(b + 2) >> 0] << 16) | + (h[(b + 3) >> 0] << 24) + d = 1 + return d | 0 + } + function rl(a) { + a = a | 0 + var b = 0 + if (!(f[(a + 44) >> 2] | 0)) { + b = 0 + return b | 0 + } + if (!(f[(a + 48) >> 2] | 0)) { + b = 0 + return b | 0 + } + if (!(f[(a + 52) >> 2] | 0)) { + b = 0 + return b | 0 + } + b = (f[(a + 56) >> 2] | 0) != 0 + return b | 0 + } + function sl(a) { + a = a | 0 + kj(a) + br(a) + return + } + function tl(a, c) { + a = a | 0 + c = c | 0 + var d = 0 + if (f[(c + 56) >> 2] | 0) { + d = 0 + return d | 0 + } + if ((b[(c + 24) >> 0] | 0) != 3) { + d = 0 + return d | 0 + } + f[(a + 40) >> 2] = c + d = 1 + return d | 0 + } + function ul(a, c) { + a = a | 0 + c = c | 0 + var d = 0 + if (f[(c + 56) >> 2] | 0) { + d = 0 + return d | 0 + } + if ((b[(c + 24) >> 0] | 0) != 3) { + d = 0 + return d | 0 + } + f[(a + 44) >> 2] = c + d = 1 + return d | 0 + } + function vl(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + e = f[a >> 2] | 0 + g = (d - e) | 0 + if (g >>> 0 < b >>> 0) { + ri(a, (b - g) | 0) + return + } + if (g >>> 0 <= b >>> 0) return + g = (e + b) | 0 + if ((g | 0) == (d | 0)) return + f[c >> 2] = g + return + } + function wl(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = $(e) + f[(a + 4) >> 2] = b + Jf((a + 8) | 0, c, (c + (d << 2)) | 0) + n[(a + 20) >> 2] = e + return + } + function xl(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (!(Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0)) { + c = 0 + return c | 0 + } + if (!(Ra[f[((f[a >> 2] | 0) + 44) >> 2] & 127](a, b) | 0)) { + c = 0 + return c | 0 + } + c = Ra[f[((f[a >> 2] | 0) + 48) >> 2] & 127](a, b) | 0 + return c | 0 + } + function yl(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + c = u + u = (u + 16) | 0 + d = (c + 4) | 0 + e = c + f[e >> 2] = 0 + f[d >> 2] = f[e >> 2] + e = tc(a, b, d) | 0 + u = c + return e | 0 + } + function zl(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0 + d = f[c >> 2] | 0 + c = a + e = (b - a) >> 2 + while (1) { + if (!e) break + a = ((e | 0) / 2) | 0 + b = (c + (a << 2)) | 0 + g = (f[b >> 2] | 0) >>> 0 < d >>> 0 + c = g ? (b + 4) | 0 : c + e = g ? (e + -1 - a) | 0 : a + } + return c | 0 + } + function Al(a) { + a = a | 0 + var c = 0 + f[a >> 2] = 0 + c = (a + 8) | 0 + f[c >> 2] = 0 + f[(c + 4) >> 2] = 0 + f[(c + 8) >> 2] = 0 + f[(c + 12) >> 2] = 0 + b[(a + 24) >> 0] = 1 + f[(a + 28) >> 2] = 9 + c = (a + 40) | 0 + f[c >> 2] = 0 + f[(c + 4) >> 2] = 0 + f[(c + 8) >> 2] = 0 + f[(c + 12) >> 2] = 0 + f[(a + 56) >> 2] = -1 + f[(a + 60) >> 2] = 0 + return + } + function Bl(a) { + a = a | 0 + mj(a) + br(a) + return + } + function Cl(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + if (!(Pq(b[f[a >> 2] >> 0] | 0) | 0)) c = 0 + else { + d = 0 + while (1) { + e = f[a >> 2] | 0 + g = (((d * 10) | 0) + -48 + (b[e >> 0] | 0)) | 0 + h = (e + 1) | 0 + f[a >> 2] = h + if (!(Pq(b[h >> 0] | 0) | 0)) { + c = g + break + } else d = g + } + } + return c | 0 + } + function Dl(a, c) { + a = a | 0 + c = c | 0 + var d = 0 + if (f[(c + 56) >> 2] | 0) { + d = 0 + return d | 0 + } + if ((b[(c + 24) >> 0] | 0) != 3) { + d = 0 + return d | 0 + } + f[(a + 60) >> 2] = c + d = 1 + return d | 0 + } + function El(a, c) { + a = a | 0 + c = c | 0 + var d = 0 + if (f[(c + 56) >> 2] | 0) { + d = 0 + return d | 0 + } + if ((b[(c + 24) >> 0] | 0) != 3) { + d = 0 + return d | 0 + } + f[(a + 64) >> 2] = c + d = 1 + return d | 0 + } + function Fl(a) { + a = a | 0 + var b = 0, + c = 0 + b = f[r >> 2] | 0 + c = (b + a) | 0 + if ((((a | 0) > 0) & ((c | 0) < (b | 0))) | ((c | 0) < 0)) { + ea() | 0 + ya(12) + return -1 + } + f[r >> 2] = c + if ((c | 0) > (da() | 0) ? (ca() | 0) == 0 : 0) { + f[r >> 2] = b + ya(12) + return -1 + } + return b | 0 + } + function Gl(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0 + if (((a | 0) == 0) & ((c | 0) == 0)) e = d + else { + f = d + d = c + c = a + while (1) { + a = (f + -1) | 0 + b[a >> 0] = (c & 7) | 48 + c = Wn(c | 0, d | 0, 3) | 0 + d = I + if (((c | 0) == 0) & ((d | 0) == 0)) { + e = a + break + } else f = a + } + } + return e | 0 + } + function Hl(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 1528 + b = f[(a + 32) >> 2] | 0 + if (!b) { + br(a) + return + } + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + br(a) + return + } + function Il(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + if (qp(a, f[(b + 8) >> 2] | 0, g) | 0) fj(0, b, c, d, e) + return + } + function Jl(a) { + a = a | 0 + var b = 0, + c = 0 + b = f[(a + 64) >> 2] | 0 + if (!b) return + c = Qa[f[((f[b >> 2] | 0) + 32) >> 2] & 127](b) | 0 + if (!c) return + f[(a + 60) >> 2] = + ((((((f[(c + 4) >> 2] | 0) - (f[c >> 2] | 0)) >> 2) >>> 0) / 3) | 0) - + (f[(c + 40) >> 2] | 0) + return + } + function Kl(a) { + a = a | 0 + Ii(a) + br(a) + return + } + function Ll(a) { + a = a | 0 + var b = 0 + switch (a | 0) { + case 11: + case 2: + case 1: { + b = 1 + break + } + case 4: + case 3: { + b = 2 + break + } + case 6: + case 5: { + b = 4 + break + } + case 8: + case 7: { + b = 8 + break + } + case 9: { + b = 4 + break + } + case 10: { + b = 8 + break + } + default: + b = -1 + } + return b | 0 + } + function Ml() { + var a = 0, + b = 0 + a = dn(40) | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + n[(a + 16) >> 2] = $(1.0) + b = (a + 20) | 0 + f[b >> 2] = 0 + f[(b + 4) >> 2] = 0 + f[(b + 8) >> 2] = 0 + f[(b + 12) >> 2] = 0 + n[(a + 36) >> 2] = $(1.0) + return a | 0 + } + function Nl(a, b) { + a = +a + b = +b + var c = 0, + d = 0, + e = 0 + p[s >> 3] = a + c = f[s >> 2] | 0 + d = f[(s + 4) >> 2] | 0 + p[s >> 3] = b + e = (f[(s + 4) >> 2] & -2147483648) | (d & 2147483647) + f[s >> 2] = c + f[(s + 4) >> 2] = e + return +(+p[s >> 3]) + } + function Ol(a, b, c) { + a = a | 0 + b = b | 0 + c = +c + var d = 0, + e = 0 + d = u + u = (u + 16) | 0 + e = d + p[e >> 3] = c + _b(a, b, e) + u = d + return + } + function Pl(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = u + u = (u + 16) | 0 + e = d + f[e >> 2] = c + cc(a, b, e) + u = d + return + } + function Ql(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0 + if ((a | 0) != (c | 0)) { + d = b[(c + 11) >> 0] | 0 + e = (d << 24) >> 24 < 0 + Zi(a, e ? f[c >> 2] | 0 : c, e ? f[(c + 4) >> 2] | 0 : d & 255) | 0 + } + return a | 0 + } + function Rl(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0 + c = a & 65535 + d = b & 65535 + e = X(d, c) | 0 + f = a >>> 16 + a = ((e >>> 16) + (X(d, f) | 0)) | 0 + d = b >>> 16 + b = X(d, c) | 0 + return ( + ((I = + ((a >>> 16) + (X(d, f) | 0) + ((((a & 65535) + b) | 0) >>> 16)) | 0), + ((a + b) << 16) | (e & 65535) | 0) | 0 + ) + } + function Sl(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + c = vj(b) | 0 + d = dn((c + 13) | 0) | 0 + f[d >> 2] = c + f[(d + 4) >> 2] = c + f[(d + 8) >> 2] = 0 + e = Sp(d) | 0 + Rg(e | 0, b | 0, (c + 1) | 0) | 0 + f[a >> 2] = e + return + } + function Tl(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + if (((b | 0) == -1) | ((b | 0) > 4)) { + c = -1 + return c | 0 + } + d = f[(a + 20 + ((b * 12) | 0)) >> 2] | 0 + if ((((f[(a + 20 + ((b * 12) | 0) + 4) >> 2] | 0) - d) | 0) <= 0) { + c = -1 + return c | 0 + } + c = f[d >> 2] | 0 + return c | 0 + } + function Ul(a) { + a = a | 0 + Li(a) + br(a) + return + } + function Vl(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1528 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + br(b) + return + } + function Wl(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + if (qp(a, f[(b + 8) >> 2] | 0, 0) | 0) tk(0, b, c, d) + return + } + function Xl(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0 + if (((c | 0) < (a | 0)) & ((a | 0) < ((c + d) | 0))) { + e = a + c = (c + d) | 0 + a = (a + d) | 0 + while ((d | 0) > 0) { + a = (a - 1) | 0 + c = (c - 1) | 0 + d = (d - 1) | 0 + b[a >> 0] = b[c >> 0] | 0 + } + a = e + } else Rg(a, c, d) | 0 + return a | 0 + } + function Yl(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 1180 + b = f[(a + 8) >> 2] | 0 + if (!b) { + br(a) + return + } + c = (a + 12) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + br(b) + br(a) + return + } + function Zl(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 2740 + b = f[(a + 56) >> 2] | 0 + if (!b) { + br(a) + return + } + br(b) + br(a) + return + } + function _l(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + d = u + u = (u + 16) | 0 + e = d + f[e >> 2] = f[c >> 2] + g = Sa[f[((f[a >> 2] | 0) + 16) >> 2] & 31](a, b, e) | 0 + if (g) f[c >> 2] = f[e >> 2] + u = d + return (g & 1) | 0 + } + function $l(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (b >>> 0 >= 2) { + c = 0 + return c | 0 + } + f[(a + 28) >> 2] = b + c = 1 + return c | 0 + } + function am(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 3e3 + b = (a + 64) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!c) { + aj(a) + return + } + Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + aj(a) + return + } + function bm() { + var a = 0, + b = 0 + a = mn() | 0 + if ( + (a | 0 ? ((b = f[a >> 2] | 0), b | 0) : 0) + ? ((a = (b + 48) | 0), + ((f[a >> 2] & -256) | 0) == 1126902528 + ? (f[(a + 4) >> 2] | 0) == 1129074247 + : 0) + : 0 + ) + Qo(f[(b + 12) >> 2] | 0) + Qo(bq() | 0) + } + function cm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Bf(a, b, c, d, e, f, 6) | 0 + } + function dm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Af(a, b, c, d, e, f, 4) | 0 + } + function em(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Gf(a, b, c, d, e, f, 2) | 0 + } + function fm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Af(a, b, c, d, e, f, 3) | 0 + } + function gm(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 2488 + b = f[(a + 56) >> 2] | 0 + if (!b) { + br(a) + return + } + br(b) + br(a) + return + } + function hm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Gf(a, b, c, d, e, f, 1) | 0 + } + function im(a) { + a = a | 0 + var c = 0 + c = b[(w + (a & 255)) >> 0] | 0 + if ((c | 0) < 8) return c | 0 + c = b[(w + ((a >> 8) & 255)) >> 0] | 0 + if ((c | 0) < 8) return (c + 8) | 0 + c = b[(w + ((a >> 16) & 255)) >> 0] | 0 + if ((c | 0) < 8) return (c + 16) | 0 + return ((b[(w + (a >>> 24)) >> 0] | 0) + 24) | 0 + } + function jm(a, b) { + a = a | 0 + b = b | 0 + var c = 0.0, + d = 0.0, + e = 0.0, + f = 0.0 + if (!a) { + c = 0.0 + return +c + } + if (((b | 0) == 0) | ((a | 0) == (b | 0))) { + c = 0.0 + return +c + } + d = +(b >>> 0) / +(a >>> 0) + e = 1.0 - d + f = d * +Fg(d) + c = -(f + e * +Fg(e)) + return +c + } + function km(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + if ((b | 0) > 0) d = 0 + else return + do { + e = f[(a + (d << 2)) >> 2] | 0 + f[(c + (d << 2)) >> 2] = (e << 1) ^ (e >> 31) + d = (d + 1) | 0 + } while ((d | 0) != (b | 0)) + return + } + function lm(a) { + a = a | 0 + var b = 0, + c = 0 + if ( + Eq(a) | 0 + ? ((b = Zp(f[a >> 2] | 0) | 0), + (a = (b + 8) | 0), + (c = f[a >> 2] | 0), + (f[a >> 2] = c + -1), + ((c + -1) | 0) < 0) + : 0 + ) + br(b) + return + } + function mm(a) { + a = a | 0 + var b = 0 + Ao(a) + f[a >> 2] = 2880 + f[(a + 40) >> 2] = 1180 + f[(a + 44) >> 2] = -1 + b = (a + 48) | 0 + f[b >> 2] = 0 + f[(b + 4) >> 2] = 0 + f[(b + 8) >> 2] = 0 + f[(b + 12) >> 2] = 0 + return + } + function nm(a, c) { + a = a | 0 + c = c | 0 + var d = 0 + b[(c + 84) >> 0] = 1 + a = f[(c + 68) >> 2] | 0 + d = (c + 72) | 0 + c = f[d >> 2] | 0 + if ((c | 0) == (a | 0)) return 1 + f[d >> 2] = c + (~(((c + -4 - a) | 0) >>> 2) << 2) + return 1 + } + function om(a) { + a = a | 0 + var b = 0, + c = 0 + b = f[(a + 16) >> 2] | 0 + c = ((((((f[(a + 12) >> 2] | 0) + 1 - b) | 0) / 64) | 0) + b) << 3 + a = b << 3 + b = + Tn( + c | 0, + ((((c | 0) < 0) << 31) >> 31) | 0, + a | 0, + ((((a | 0) < 0) << 31) >> 31) | 0, + ) | 0 + return b | 0 + } + function pm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Bf(a, b, c, d, e, f, 5) | 0 + } + function qm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Bf(a, b, c, d, e, f, 9) | 0 + } + function rm(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3208 + b = f[(a + 36) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 24) >> 2] | 0 + if (!b) { + br(a) + return + } + br(b) + br(a) + return + } + function sm(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 2740 + b = f[(a + 56) >> 2] | 0 + if (!b) return + br(b) + return + } + function tm(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1460 + b = (a + 36) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + zi(a) + br(a) + return + } + function um(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1180 + b = f[(a + 8) >> 2] | 0 + if (!b) return + c = (a + 12) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + br(b) + return + } + function vm(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3276 + b = f[(a + 36) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 24) >> 2] | 0 + if (!b) { + br(a) + return + } + br(b) + br(a) + return + } + function wm(a) { + a = a | 0 + var c = 0 + f[a >> 2] = 1336 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = -1 + c = (a + 16) | 0 + f[(a + 32) >> 2] = 0 + f[c >> 2] = 0 + f[(c + 4) >> 2] = 0 + f[(c + 8) >> 2] = 0 + b[(c + 12) >> 0] = 0 + return + } + function xm(a) { + a = a | 0 + f[a >> 2] = 3296 + Gi((a + 8) | 0) + br(a) + return + } + function ym(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 2488 + b = f[(a + 56) >> 2] | 0 + if (!b) return + br(b) + return + } + function zm(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1460 + b = (a + 36) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + zi(a) + return + } + function Am(a, b) { + a = a | 0 + b = b | 0 + f[a >> 2] = 2968 + Vh((a + 4) | 0) + f[(a + 40) >> 2] = 0 + f[(a + 44) >> 2] = 0 + f[a >> 2] = 2984 + f[(a + 48) >> 2] = b + f[(a + 52) >> 2] = 0 + return + } + function Bm(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 3e3 + b = (a + 64) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + aj(a) + br(a) + return + } + function Cm(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = f[a >> 2] | 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + f[(a + 12) >> 2] = 0 + f[(a + 16) >> 2] = 0 + return + } + function Dm(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + d = (a + 20) | 0 + e = f[d >> 2] | 0 + g = ((f[(a + 16) >> 2] | 0) - e) | 0 + a = g >>> 0 > c >>> 0 ? c : g + Rg(e | 0, b | 0, a | 0) | 0 + f[d >> 2] = (f[d >> 2] | 0) + a + return c | 0 + } + function Em(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3208 + b = f[(a + 36) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 24) >> 2] | 0 + if (!b) return + br(b) + return + } + function Fm(a) { + a = a | 0 + f[a >> 2] = 3296 + Gi((a + 8) | 0) + return + } + function Gm(a, b) { + a = a | 0 + b = b | 0 + f[a >> 2] = 2968 + Vh((a + 4) | 0) + f[(a + 40) >> 2] = 0 + f[(a + 44) >> 2] = 0 + f[a >> 2] = 2984 + f[(a + 48) >> 2] = b + f[(a + 52) >> 2] = b + return + } + function Hm(a) { + a = a | 0 + var b = 0, + c = 0 + b = f[a >> 2] | 0 + if (!b) return + c = (a + 4) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -8 - b) | 0) >>> 3) << 3) + br(b) + return + } + function Im(a) { + a = a | 0 + var b = 0, + c = 0 + b = f[a >> 2] | 0 + if (!b) return + c = (a + 4) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + br(b) + return + } + function Jm(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = f[b >> 2] | 0 + return ( + ((((1 << (c & 31)) & + f[((f[(a + 28) >> 2] | 0) + ((c >>> 5) << 2)) >> 2]) | + 0) != + 0) | + 0 + ) + } + function Km(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return Sa[f[((f[a >> 2] | 0) + 44) >> 2] & 31](a, b, c) | 0 + } + function Lm(a) { + a = a | 0 + var c = 0 + Al(a) + c = (a + 64) | 0 + f[(a + 88) >> 2] = 0 + f[c >> 2] = 0 + f[(c + 4) >> 2] = 0 + f[(c + 8) >> 2] = 0 + f[(c + 12) >> 2] = 0 + f[(c + 16) >> 2] = 0 + b[(c + 20) >> 0] = 0 + return + } + function Mm(a) { + a = a | 0 + f[a >> 2] = 2796 + tj((a + 88) | 0) + br(a) + return + } + function Nm(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3276 + b = f[(a + 36) >> 2] | 0 + if (b | 0) br(b) + b = f[(a + 24) >> 2] | 0 + if (!b) return + br(b) + return + } + function Om(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + if ( + (f[(b + 4) >> 2] | 0) == (c | 0) + ? ((c = (b + 28) | 0), (f[c >> 2] | 0) != 1) + : 0 + ) + f[c >> 2] = d + return + } + function Pm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = $(f) + pg(a, b, c, d, e, f) + return + } + function Qm(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = u + u = (u + 16) | 0 + c = b + if ((uk(a) | 0) == 0 ? (Sa[f[(a + 32) >> 2] & 31](a, c, 1) | 0) == 1 : 0) + d = h[c >> 0] | 0 + else d = -1 + u = b + return d | 0 + } + function Rm(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + f[(a + 104) >> 2] = b + c = f[(a + 8) >> 2] | 0 + d = f[(a + 4) >> 2] | 0 + e = (c - d) | 0 + f[(a + 108) >> 2] = e + f[(a + 100) >> 2] = ((b | 0) != 0) & ((e | 0) > (b | 0)) ? (d + b) | 0 : c + return + } + function Sm(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + b = (a + 16) | 0 + f[b >> 2] = 0 + f[(b + 4) >> 2] = 0 + f[(b + 8) >> 2] = 0 + f[(b + 12) >> 2] = 0 + f[(b + 16) >> 2] = 0 + return + } + function Tm(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = $(g) + pg(f[a >> 2] | 0, b, c, d, e, g) + return + } + function Um(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = $(f) + Pm(a, b, c, d, e, f) + return + } + function Vm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return cm(a, b, c, d, e, f) | 0 + } + function Wm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return dm(a, b, c, d, e, f) | 0 + } + function Xm(a) { + a = a | 0 + var b = 0, + c = 0 + if (!a) return + b = f[a >> 2] | 0 + if (b | 0) { + c = (a + 4) | 0 + if ((f[c >> 2] | 0) != (b | 0)) f[c >> 2] = b + br(b) + } + br(a) + return + } + function Ym(a) { + a = a | 0 + f[a >> 2] = 2544 + tj((a + 88) | 0) + br(a) + return + } + function Zm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return em(a, b, c, d, e, f) | 0 + } + function _m(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return fm(a, b, c, d, e, f) | 0 + } + function $m(a) { + a = a | 0 + f[a >> 2] = 2796 + tj((a + 88) | 0) + return + } + function an(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0 + e = u + u = (u + 16) | 0 + g = e | 0 + Bd(a, b, c, d, g) | 0 + u = e + return ((I = f[(g + 4) >> 2] | 0), f[g >> 2] | 0) | 0 + } + function bn(a) { + a = a | 0 + var b = 0 + $n(a) + f[a >> 2] = 5840 + b = (a + 84) | 0 + f[b >> 2] = 0 + f[(b + 4) >> 2] = 0 + f[(b + 8) >> 2] = 0 + f[(b + 12) >> 2] = 0 + f[(b + 16) >> 2] = 0 + f[(b + 20) >> 2] = 0 + return + } + function cn(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return hm(a, b, c, d, e, f) | 0 + } + function dn(a) { + a = a | 0 + var b = 0, + c = 0 + b = (a | 0) == 0 ? 1 : a + while (1) { + a = $a(b) | 0 + if (a | 0) { + c = a + break + } + a = $p() | 0 + if (!a) { + c = 0 + break + } + Ua[a & 3]() + } + return c | 0 + } + function en(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + ac(a, b, c) + return + } + function fn(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + f[(a + 4) >> 2] = b + f[(a + 8) >> 2] = + f[((f[((f[(b + 4) >> 2] | 0) + 8) >> 2] | 0) + (c << 2)) >> 2] + f[(a + 12) >> 2] = c + return 1 + } + function gn(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return pm(a, b, c, d, e, f) | 0 + } + function hn(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return qm(a, b, c, d, e, f) | 0 + } + function jn(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = $(f) + Tm(a, b, c, d, e, f) + return + } + function kn(a) { + a = a | 0 + f[a >> 2] = 2544 + tj((a + 88) | 0) + return + } + function ln(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = u + u = (u + 16) | 0 + c = b + d = dr(f[(a + 60) >> 2] | 0) | 0 + f[c >> 2] = d + d = ro(Ba(6, c | 0) | 0) | 0 + u = b + return d | 0 + } + function mn() { + var a = 0, + b = 0 + a = u + u = (u + 16) | 0 + if (!(Ka(18612, 3) | 0)) { + b = Ia(f[4654] | 0) | 0 + u = a + return b | 0 + } else Dn(17746, a) + return 0 + } + function nn(a) { + a = a | 0 + var b = 0 + if (!a) return + b = f[a >> 2] | 0 + f[a >> 2] = 0 + if (b | 0) Va[f[((f[b >> 2] | 0) + 4) >> 2] & 127](b) + br(a) + return + } + function on(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0 + e = a + a = c + c = Rl(e, a) | 0 + f = I + return ( + ((I = ((X(b, a) | 0) + (X(d, e) | 0) + f) | (f & 0)), c | 0 | 0) | 0 + ) + } + function pn(a, b) { + a = a | 0 + b = b | 0 + Sg(a, b) + f[a >> 2] = 1276 + b = (a + 36) | 0 + a = (b + 40) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (a | 0)) + return + } + function qn(a) { + a = a | 0 + Gi(a) + br(a) + return + } + function rn(a) { + a = a | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + f[(a + 16) >> 2] = 0 + f[(a + 20) >> 2] = 0 + f[(a + 24) >> 2] = 0 + f[(a + 28) >> 2] = 0 + return + } + function sn(a) { + a = a | 0 + var b = 0 + b = u + u = (u + 16) | 0 + wc(a) + if (!(La(f[4654] | 0, 0) | 0)) { + u = b + return + } else Dn(17845, b) + } + function tn(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + b = (a + 16) | 0 + f[b >> 2] = 0 + f[(b + 4) >> 2] = 0 + f[(b + 8) >> 2] = 0 + f[(b + 12) >> 2] = 0 + return + } + function un(a, b) { + a = a | 0 + b = b | 0 + return eg((a + 40) | 0, b) | 0 + } + function vn(a, b) { + a = a | 0 + b = b | 0 + return $i(a, b, Aq(b) | 0) | 0 + } + function wn(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0 + e = u + u = (u + 16) | 0 + g = e + f[g >> 2] = d + d = Mi(a, b, c, g) | 0 + u = e + return d | 0 + } + function xn(a, b) { + a = a | 0 + b = b | 0 + return Aj((a + 40) | 0, b) | 0 + } + function yn(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return zh(a, b, c, d) | 0 + } + function zn(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3608 + f[(a + 52) >> 2] = 0 + b = (a + 4) | 0 + a = (b + 44) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (a | 0)) + return + } + function An(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return $g(a, b, c, d) | 0 + } + function Bn(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = f[(a + 64) >> 2] | 0 + return Ra[f[((f[c >> 2] | 0) + 24) >> 2] & 127](c, b) | 0 + } + function Cn(a) { + a = a | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + f[(a + 16) >> 2] = 0 + f[(a + 20) >> 2] = 0 + b[(a + 24) >> 0] = 0 + return + } + function Dn(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + c = u + u = (u + 16) | 0 + d = c + f[d >> 2] = b + b = f[1478] | 0 + hh(b, a, d) | 0 + zj(10, b) | 0 + Ca() + } + function En(a, b, c, d, e, f, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + g = g | 0 + return Ta[a & 31](b | 0, c | 0, d | 0, e | 0, f | 0, g | 0) | 0 + } + function Fn(a) { + a = a | 0 + var b = 0 + b = f[(a + 56) >> 2] | 0 + f[(a + 60) >> 2] = + ((((f[(b + 100) >> 2] | 0) - (f[(b + 96) >> 2] | 0)) | 0) / 12) | 0 + return + } + function Gn(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = f[(a + 64) >> 2] | 0 + return Ra[f[((f[c >> 2] | 0) + 16) >> 2] & 127](c, b) | 0 + } + function Hn(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = f[(a + 64) >> 2] | 0 + return Ra[f[((f[c >> 2] | 0) + 20) >> 2] & 127](c, b) | 0 + } + function In(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = f[(a + 64) >> 2] | 0 + return Ra[f[((f[c >> 2] | 0) + 12) >> 2] & 127](c, b) | 0 + } + function Jn() { + var a = 0 + a = u + u = (u + 16) | 0 + if (!(Ja(18616, 117) | 0)) { + u = a + return + } else Dn(17795, a) + } + function Kn(a) { + a = a | 0 + f[a >> 2] = 1136 + Vh((a + 4) | 0) + f[(a + 40) >> 2] = 0 + f[(a + 44) >> 2] = 0 + f[a >> 2] = 2944 + return + } + function Ln(a) { + a = a | 0 + Se(a) + br(a) + return + } + function Mn(a, b, c, d, e, f, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + g = g | 0 + _a[a & 3](b | 0, c | 0, d | 0, e | 0, f | 0, g | 0) + } + function Nn(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = f[(b + 64) >> 2] | 0 + Wa[f[((f[c >> 2] | 0) + 28) >> 2] & 15](a, c) + return + } + function On(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + if (b | 0) hj(a | 0, ((zq(c) | 0) & 255) | 0, b | 0) | 0 + return a | 0 + } + function Pn(a) { + a = a | 0 + return 4 + } + function Qn(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return Ui(0, b, c) | 0 + } + function Rn(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + if ((c | 0) < 32) { + I = (b << c) | ((a & (((1 << c) - 1) << (32 - c))) >>> (32 - c)) + return a << c + } + I = a << (c - 32) + return 0 + } + function Sn() {} + function Tn(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0 + e = (a + c) >>> 0 + return ((I = (b + d + ((e >>> 0 < a >>> 0) | 0)) >>> 0), e | 0) | 0 + } + function Un(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (!b) c = 0 + else c = lh(f[b >> 2] | 0, f[(b + 4) >> 2] | 0, a) | 0 + return (c | 0 ? c : a) | 0 + } + function Vn(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0 + e = (b - d) >>> 0 + e = (b - d - ((c >>> 0 > a >>> 0) | 0)) >>> 0 + return ((I = e), ((a - c) >>> 0) | 0) | 0 + } + function Wn(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + if ((c | 0) < 32) { + I = b >>> c + return (a >>> c) | ((b & ((1 << c) - 1)) << (32 - c)) + } + I = 0 + return (b >>> (c - 32)) | 0 + } + function Xn(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return qe(a, b, c, d) | 0 + } + function Yn(a) { + a = a | 0 + Ve(a) + br(a) + return + } + function Zn(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = +d + return Oi(a, b, c, d) | 0 + } + function _n(a) { + a = a | 0 + return 5 + } + function $n(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 5880 + b = (a + 4) | 0 + a = (b + 80) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (a | 0)) + return + } + function ao(a) { + a = a | 0 + return 6 + } + function bo(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return Pi(a, b, c, d) | 0 + } + function co(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + Fj(a, b, c) + return + } + function eo(a, b) { + a = a | 0 + b = b | 0 + xi(f[a >> 2] | 0, b) + return + } + function fo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + co(a, b, c) + return + } + function go(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + He(a, b, c, d, 1) + return + } + function ho(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + He(a, b, c, d, 0) + return + } + function io(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return Eg(a, b, c, d) | 0 + } + function jo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return Qh(a, b, c) | 0 + } + function ko(a) { + a = a | 0 + var b = 0 + b = f[(a + 64) >> 2] | 0 + return Qa[f[((f[b >> 2] | 0) + 32) >> 2] & 127](b) | 0 + } + function lo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + f[(a + 28) >> 2] = b + f[(a + 32) >> 2] = c + return 1 + } + function mo(a, b) { + a = a | 0 + b = b | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + return + } + function no(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + Fj(f[a >> 2] | 0, b, c) + return + } + function oo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return Ui(a, b, c) | 0 + } + function po(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return Qn(a, b, c) | 0 + } + function qo(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + Za[a & 3](b | 0, c | 0, d | 0, e | 0, f | 0) + } + function ro(a) { + a = a | 0 + var b = 0, + c = 0 + if (a >>> 0 > 4294963200) { + b = ir() | 0 + f[b >> 2] = 0 - a + c = -1 + } else c = a + return c | 0 + } + function so(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return rh(a, b, c) | 0 + } + function to(a) { + a = a | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + f[(a + 16) >> 2] = 0 + return + } + function uo(a, b) { + a = a | 0 + b = b | 0 + f[(a + 8) >> 2] = b + f[(a + 12) >> 2] = -1 + return 1 + } + function vo(a, b) { + a = a | 0 + b = b | 0 + f[(a + 56) >> 2] = b + tp(a, b) + return + } + function wo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + no(a, b, c) + return + } + function xo(a) { + a = +a + var b = 0 + p[s >> 3] = a + b = f[s >> 2] | 0 + I = f[(s + 4) >> 2] | 0 + return b | 0 + } + function yo(a, b, c) { + a = a | 0 + b = $(b) + c = c | 0 + var d = Oa + d = $($(c | 0) / b) + n[a >> 2] = d + return + } + function zo(a, b) { + a = a | 0 + b = b | 0 + xi(a, b) + return + } + function Ao(a) { + a = a | 0 + wm(a) + f[a >> 2] = 1460 + f[(a + 36) >> 2] = 0 + return + } + function Bo(a) { + a = a | 0 + zn(a) + f[a >> 2] = 3424 + f[(a + 56) >> 2] = 0 + f[(a + 60) >> 2] = 0 + return + } + function Co(a) { + a = a | 0 + var b = 0 + if (!a) b = 0 + else b = ((mh(a, 1024, 1112, 0) | 0) != 0) & 1 + return b | 0 + } + function Do(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + Eo(f[a >> 2] | 0, b, c) + return + } + function Eo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + Fi((a + 4) | 0, b, c) + return + } + function Fo(a) { + a = a | 0 + var b = 0 + b = dn(8) | 0 + ck(b, a) + return b | 0 + } + function Go(a) { + a = a | 0 + if ((b[(a + 11) >> 0] | 0) < 0) br(f[a >> 2] | 0) + return + } + function Ho(a) { + a = a | 0 + if (!a) return + Va[f[((f[a >> 2] | 0) + 4) >> 2] & 127](a) + return + } + function Io(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + Ya[a & 7](b | 0, c | 0, d | 0, e | 0) + } + function Jo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + if (c | 0) Xl(a | 0, b | 0, c | 0) | 0 + return a | 0 + } + function Ko(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + Do(a, b, c) + return + } + function Lo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + if (c | 0) Rg(a | 0, b | 0, c | 0) | 0 + return a | 0 + } + function Mo(a) { + a = a | 0 + f[(a + 52) >> 2] = f[((f[(a + 4) >> 2] | 0) + 80) >> 2] + return + } + function No(a, b) { + a = a | 0 + b = b | 0 + eo(a, b) + return + } + function Oo(a) { + a = a | 0 + f[(a + 52) >> 2] = f[((f[(a + 56) >> 2] | 0) + 80) >> 2] + return + } + function Po(a, b) { + a = a | 0 + b = b | 0 + return -1 + } + function Qo(a) { + a = a | 0 + var b = 0 + b = u + u = (u + 16) | 0 + Ua[a & 3]() + Dn(17898, b) + } + function Ro(a) { + a = a | 0 + wh(a) + br(a) + return + } + function So(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + $o(a, b, c) + return + } + function To(a, b) { + a = a | 0 + b = b | 0 + bk(f[a >> 2] | 0, b) + return + } + function Uo(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return Sa[a & 31](b | 0, c | 0, d | 0) | 0 + } + function Vo(a, b) { + a = a | 0 + b = b | 0 + return (((Jp(a, b) | 0) << 24) >> 24) | 0 + } + function Wo(a, b) { + a = a | 0 + b = b | 0 + f[a >> 2] = 6924 + Sl((a + 4) | 0, b) + return + } + function Xo(a) { + a = a | 0 + Bo(a) + f[a >> 2] = 3e3 + f[(a + 64) >> 2] = 0 + return + } + function Yo(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (!a) c = 0 + else c = Bi(a, b, 0) | 0 + return c | 0 + } + function Zo(a, b) { + a = a | 0 + b = b | 0 + zo(a, b) + return + } + function _o(a) { + a = a | 0 + return f[(a + 12) >> 2] | 0 + } + function $o(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + Eo(a, b, c) + return + } + function ap() { + var a = 0 + a = dn(64) | 0 + Al(a) + return a | 0 + } + function bp(a, b) { + a = a | 0 + b = b | 0 + To(a, b) + return + } + function cp(a) { + a = a | 0 + if (!a) return + Qi(a) + br(a) + return + } + function dp(a) { + a = a | 0 + return f[(a + 4) >> 2] | 0 + } + function ep(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + if (!(f[a >> 2] & 32)) ai(b, c, a) | 0 + return + } + function fp(a) { + a = a | 0 + return Mp(a) | 0 + } + function gp(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + Xa[a & 15](b | 0, c | 0, d | 0) + } + function hp() { + var a = 0 + a = dn(96) | 0 + Lm(a) + return a | 0 + } + function ip(a) { + a = a | 0 + return Np(a) | 0 + } + function jp(a) { + a = a | 0 + var b = 0 + b = u + u = (u + a) | 0 + u = (u + 15) & -16 + return b | 0 + } + function kp(a) { + a = a | 0 + var b = 0 + b = ((Yq() | 0) + 188) | 0 + return Tj(a, f[b >> 2] | 0) | 0 + } + function lp(a) { + a = a | 0 + return ( + ((((f[(a + 100) >> 2] | 0) - (f[(a + 96) >> 2] | 0)) | 0) / 12) | 0 | 0 + ) + } + function mp(a, b) { + a = a | 0 + b = b | 0 + vp(a, b) + return + } + function np(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + aa(3) + return 0 + } + function op() { + var a = 0 + a = dn(12) | 0 + Bp(a) + return a | 0 + } + function pp(a) { + a = a | 0 + zi(a) + br(a) + return + } + function qp(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return ((a | 0) == (b | 0)) | 0 + } + function rp(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = Fp(a | 0) | 0 + return ((b | 0) == 0 ? a : c) | 0 + } + function sp(a) { + a = a | 0 + return (((f[(a + 12) >> 2] | 0) - (f[(a + 8) >> 2] | 0)) >> 2) | 0 + } + function tp(a, b) { + a = a | 0 + b = b | 0 + f[(a + 4) >> 2] = b + return + } + function up(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return Bd(a, b, c, d, 0) | 0 + } + function vp(a, b) { + a = a | 0 + b = b | 0 + bk(a, b) + return + } + function wp(a) { + a = a | 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[a >> 2] = a + 4 + return + } + function xp(a) { + a = a | 0 + return nq(a) | 0 + } + function yp() { + var a = 0 + a = dn(84) | 0 + $n(a) + return a | 0 + } + function zp(a) { + a = a | 0 + gi(a) + br(a) + return + } + function Ap(a) { + a = a | 0 + return oq(a) | 0 + } + function Bp(a) { + a = a | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + return + } + function Cp(a) { + a = a | 0 + f[a >> 2] = 6924 + lm((a + 4) | 0) + return + } + function Dp(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return Ra[a & 127](b | 0, c | 0) | 0 + } + function Ep(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + aa(10) + } + function Fp(a) { + a = a | 0 + return ( + ((a & 255) << 24) | + (((a >> 8) & 255) << 16) | + (((a >> 16) & 255) << 8) | + (a >>> 24) | + 0 + ) + } + function Gp(a) { + a = a | 0 + Bo(a) + f[a >> 2] = 3504 + return + } + function Hp(a, c) { + a = a | 0 + c = c | 0 + b[a >> 0] = b[c >> 0] | 0 + return + } + function Ip(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return -1 + } + function Jp(a, c) { + a = a | 0 + c = c | 0 + return b[((f[a >> 2] | 0) + c) >> 0] | 0 + } + function Kp(a) { + a = a | 0 + return ((f[(a + 4) >> 2] | 0) - (f[a >> 2] | 0)) | 0 + } + function Lp(a) { + a = a | 0 + aj(a) + br(a) + return + } + function Mp(a) { + a = a | 0 + return f[((f[a >> 2] | 0) + 40) >> 2] | 0 + } + function Np(a) { + a = a | 0 + return f[((f[a >> 2] | 0) + 44) >> 2] | 0 + } + function Op(a) { + a = a | 0 + if (!a) return + br(a) + return + } + function Pp(a) { + a = a | 0 + b[(a + 28) >> 0] = 1 + return + } + function Qp(a, b) { + a = a | 0 + b = b | 0 + if (!x) { + x = a + y = b + } + } + function Rp(a, b) { + a = a | 0 + b = b | 0 + return 1 + } + function Sp(a) { + a = a | 0 + return (a + 12) | 0 + } + function Tp(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + Wa[a & 15](b | 0, c | 0) + } + function Up(a, b) { + a = a | 0 + b = b | 0 + f[(a + 80) >> 2] = b + return + } + function Vp() { + var a = 0 + a = dn(48) | 0 + Fq(a) + return a | 0 + } + function Wp(a) { + a = a | 0 + return vq((a + 4) | 0) | 0 + } + function Xp() { + var a = 0 + a = dn(108) | 0 + bn(a) + return a | 0 + } + function Yp(a) { + a = a | 0 + return ((b[(a + 32) >> 0] | 0) != 0) | 0 + } + function Zp(a) { + a = a | 0 + return (a + -12) | 0 + } + function _p(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + aa(9) + } + function $p() { + var a = 0 + a = f[4655] | 0 + f[4655] = a + 0 + return a | 0 + } + function aq(a) { + a = a | 0 + return f[(a + 56) >> 2] | 0 + } + function bq() { + var a = 0 + a = f[1708] | 0 + f[1708] = a + 0 + return a | 0 + } + function cq(a) { + a = a | 0 + wg(a) + br(a) + return + } + function dq(a) { + a = a | 0 + fr(a) + br(a) + return + } + function eq(a) { + a = a | 0 + return b[(a + 24) >> 0] | 0 + } + function fq(a, b) { + a = a | 0 + b = b | 0 + return 0 + } + function gq(a) { + a = a | 0 + return f[(a + 48) >> 2] | 0 + } + function hq(a, b) { + a = a | 0 + b = b | 0 + return Qa[a & 127](b | 0) | 0 + } + function iq(a) { + a = a | 0 + return f[(a + 60) >> 2] | 0 + } + function jq(a) { + a = a | 0 + return f[(a + 28) >> 2] | 0 + } + function kq(a) { + a = a | 0 + sa(a | 0) | 0 + bm() + } + function lq(a) { + a = a | 0 + Cp(a) + br(a) + return + } + function mq(a) { + a = a | 0 + Ca() + } + function nq(a) { + a = a | 0 + return f[(a + 40) >> 2] | 0 + } + function oq(a) { + a = a | 0 + return f[(a + 44) >> 2] | 0 + } + function pq(a, b) { + a = a | 0 + b = b | 0 + return $(+sk(a, b, 0)) + } + function qq(a) { + a = a | 0 + return 3 + } + function rq(a, b) { + a = a | 0 + b = b | 0 + u = a + v = b + } + function sq(a) { + a = a | 0 + n[a >> 2] = $(1.0) + return + } + function tq(a) { + a = a | 0 + return ((((a | 0) == 32) | (((a + -9) | 0) >>> 0 < 5)) & 1) | 0 + } + function uq(a) { + a = a | 0 + return f[(a + 80) >> 2] | 0 + } + function vq(a) { + a = a | 0 + return f[a >> 2] | 0 + } + function wq(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + aa(8) + } + function xq(a, b) { + a = a | 0 + b = b | 0 + Va[a & 127](b | 0) + } + function yq(a, b) { + a = a | 0 + b = b | 0 + return Un(a, b) | 0 + } + function zq(a) { + a = a | 0 + return (a & 255) | 0 + } + function Aq(a) { + a = a | 0 + return vj(a) | 0 + } + function Bq(a, b) { + a = a | 0 + b = b | 0 + return +(+sk(a, b, 1)) + } + function Cq(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + aa(2) + return 0 + } + function Dq(a) { + a = a | 0 + return 2 + } + function Eq(a) { + a = a | 0 + return 1 + } + function Fq(a) { + a = a | 0 + Kn(a) + return + } + function Gq(a, b) { + a = +a + b = +b + return +(+Nl(a, b)) + } + function Hq(a, b) { + a = +a + b = b | 0 + return +(+Wj(a, b)) + } + function Iq(a, b) { + a = +a + b = b | 0 + return +(+Uj(a, b)) + } + function Jq() { + return 3 + } + function Kq(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + aa(7) + } + function Lq() { + return 0 + } + function Mq() { + return -1 + } + function Nq() { + return dn(1) | 0 + } + function Oq() { + return 4 + } + function Pq(a) { + a = a | 0 + return (((a + -48) | 0) >>> 0 < 10) | 0 + } + function Qq() { + return 1 + } + function Rq() { + return 2 + } + function Sq(a, b) { + a = +a + b = +b + return +(+pd(a, b)) + } + function Tq(a, b) { + a = a | 0 + b = b | 0 + aa(1) + return 0 + } + function Uq(a) { + a = a | 0 + Ha() + } + function Vq(a) { + a = a | 0 + Ua[a & 3]() + } + function Wq() { + ua() + } + function Xq(a) { + a = a | 0 + return +(+Bq(a, 0)) + } + function Yq() { + return lr() | 0 + } + function Zq(a, b) { + a = a | 0 + b = b | 0 + aa(6) + } + function _q(a) { + a = a | 0 + return dn(a) | 0 + } + function $q(a) { + a = a | 0 + br(a) + return + } + function ar(a) { + a = a | 0 + u = a + } + function br(a) { + a = a | 0 + wc(a) + return + } + function cr(a) { + a = a | 0 + I = a + } + function dr(a) { + a = a | 0 + return a | 0 + } + function er(a) { + a = a | 0 + aa(0) + return 0 + } + function fr(a) { + a = a | 0 + return + } + function gr(a) { + a = a | 0 + return 0 + } + function hr() { + return I | 0 + } + function ir() { + return 18544 + } + function jr() { + return u | 0 + } + function kr(a) { + a = a | 0 + aa(5) + } + function lr() { + return 6040 + } + function mr() { + aa(4) + } -// EMSCRIPTEN_END_FUNCS -var Qa=[er,Dq,Eq,Eq,Dq,gb,gr,gr,gr,ak,Vf,Eq,dp,gr,gr,Eq,gr,Eq,Eq,rl,_n,ll,Eq,ao,Yk,Eq,jq,Pn,rl,Eq,rl,_n,ll,Eq,ao,Yk,Eq,jq,Pn,rl,Eq,qq,gr,dp,Eq,gr,Eq,qq,Eq,kl,Pn,kl,_n,il,Eq,ao,Qk,Eq,jq,Eq,kl,Pn,kl,_n,il,Eq,ao,Qk,Eq,jq,Eq,Dq,Eq,Eq,Cd,Eq,Je,Tg,qk,ko,_o,dp,lg,sg,$e,_o,dp,Eq,gr,gr,wi,gr,Eq,gr,Xj,ln,Wp,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er,er];var Ra=[Tq,ql,Ug,ve,xl,fq,fq,fq,Rp,kb,gj,uo,Rp,Rp,fi,bj,Uh,ek,jl,Gj,Vk,Yj,Zj,Fe,Po,fq,Zh,fq,Dl,_e,fq,El,Zg,$l,td,fq,Dl,_e,fq,El,Zg,$l,td,xn,Po,fq,Xh,sd,fq,tl,We,fq,ul,Yg,$l,sd,fq,tl,We,fq,ul,Yg,$l,un,Hn,Bn,In,Gn,Kg,dk,mk,mc,le,Jm,wf,af,Ze,Ig,dk,mk,lc,le,Jm,Rp,fq,fq,bf,nm,Xf,bf,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq,Tq];var Sa=[Cq,lo,Ip,fn,Km,fg,cj,el,ih,uc,vh,$f,Rh,Qb,Oh,vg,gl,Dm,qj,Cq,Cq,Cq,Cq,Cq,Cq,Cq,Cq,Cq,Cq,Cq,Cq,Cq];var Ta=[np,Ld,Bc,ne,Sb,bb,Cc,me,Rb,ab,Lg,ed,eb,sf,qc,id,db,qf,nc,np,np,np,np,np,np,np,np,np,np,np,np,np];var Ua=[mr,Wq,Ai,Jn];var Va=[kr,Ij,Qj,fr,$q,um,Yl,Wk,Uq,gi,zp,zi,pp,wh,Ro,zm,tm,Vl,Uq,Hl,Hl,Uk,Jk,_k,Ok,fr,$q,Uq,Li,Ul,Hl,Rk,Gk,Xk,Mk,fr,$q,Uq,Ii,Kl,zm,tm,fr,$q,$q,mj,Bl,ym,gm,kn,Ym,fr,$q,$q,kj,sl,sm,Zl,$m,Mm,fr,$q,ok,hk,Qj,Sj,Vj,Vj,am,Bm,Mc,Jl,Ve,Yn,rk,jk,Lk,Fk,Em,rm,xk,nk,Nk,Ik,Nm,vm,Fm,xm,Gi,qn,Se,Ln,aj,Uq,Lp,Oo,Fn,fr,$q,Uq,Lp,Mo,Lp,Mo,Dk,wk,rb,wg,cq,fr,dq,fr,fr,dq,Cp,lq,lq,sn,kr,kr,kr,kr,kr,kr,kr,kr,kr,kr];var Wa=[Zq,ik,Rf,Ri,Nn,ib,lb,sc,mo,ej,ej,pk,Ec,Zq,Zq,Zq];var Xa=[Kq,ze,Yi,$b,fc,Fc,$b,fc,uj,Ej,Hg,oj,ug,If,Kq,Kq];var Ya=[wq,Dg,Zf,Wl,Zk,wq,wq,wq];var Za=[_p,ij,Vg,_p];var _a=[Ep,Il,Kk,Ep];return{___cxa_can_catch:_l,___cxa_is_pointer_type:Co,___divdi3:zk,___muldi3:on,___udivdi3:up,___uremdi3:an,_bitshift64Lshr:Wn,_bitshift64Shl:Rn,_emscripten_bind_DracoInt8Array_DracoInt8Array_0:op,_emscripten_bind_DracoInt8Array_GetValue_1:Vo,_emscripten_bind_DracoInt8Array___destroy___0:Xm,_emscripten_bind_DracoInt8Array_size_0:Kp,_emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2:jo,_emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3:An,_emscripten_bind_Encoder_Encoder_0:Vp,_emscripten_bind_Encoder_GetNumberOfEncodedFaces_0:Ap,_emscripten_bind_Encoder_GetNumberOfEncodedPoints_0:xp,_emscripten_bind_Encoder_SetAttributeExplicitQuantization_5:Um,_emscripten_bind_Encoder_SetAttributeQuantization_2:fo,_emscripten_bind_Encoder_SetEncodingMethod_1:mp,_emscripten_bind_Encoder_SetSpeedOptions_2:So,_emscripten_bind_Encoder_SetTrackEncodedProperties_1:Zo,_emscripten_bind_Encoder___destroy___0:Hj,_emscripten_bind_ExpertEncoder_EncodeToDracoBuffer_2:so,_emscripten_bind_ExpertEncoder_ExpertEncoder_1:Fo,_emscripten_bind_ExpertEncoder_GetNumberOfEncodedFaces_0:ip,_emscripten_bind_ExpertEncoder_GetNumberOfEncodedPoints_0:fp,_emscripten_bind_ExpertEncoder_SetAttributeExplicitQuantization_5:jn,_emscripten_bind_ExpertEncoder_SetAttributeQuantization_2:wo,_emscripten_bind_ExpertEncoder_SetEncodingMethod_1:bp,_emscripten_bind_ExpertEncoder_SetSpeedOptions_2:Ko,_emscripten_bind_ExpertEncoder_SetTrackEncodedProperties_1:No,_emscripten_bind_ExpertEncoder___destroy___0:nn,_emscripten_bind_GeometryAttribute_GeometryAttribute_0:ap,_emscripten_bind_GeometryAttribute___destroy___0:Op,_emscripten_bind_MeshBuilder_AddFacesToMesh_3:io,_emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5:hn,_emscripten_bind_MeshBuilder_AddFloatAttribute_5:hn,_emscripten_bind_MeshBuilder_AddInt16Attribute_5:_m,_emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5:gn,_emscripten_bind_MeshBuilder_AddInt32Attribute_5:gn,_emscripten_bind_MeshBuilder_AddInt8Attribute_5:cn,_emscripten_bind_MeshBuilder_AddMetadataToMesh_2:po,_emscripten_bind_MeshBuilder_AddMetadata_2:oo,_emscripten_bind_MeshBuilder_AddUInt16Attribute_5:Wm,_emscripten_bind_MeshBuilder_AddUInt32Attribute_5:Vm,_emscripten_bind_MeshBuilder_AddUInt8Attribute_5:Zm,_emscripten_bind_MeshBuilder_MeshBuilder_0:Nq,_emscripten_bind_MeshBuilder_SetMetadataForAttribute_3:yn,_emscripten_bind_MeshBuilder___destroy___0:Op,_emscripten_bind_Mesh_Mesh_0:Xp,_emscripten_bind_Mesh___destroy___0:Ho,_emscripten_bind_Mesh_num_attributes_0:sp,_emscripten_bind_Mesh_num_faces_0:lp,_emscripten_bind_Mesh_num_points_0:uq,_emscripten_bind_Mesh_set_num_points_1:Up,_emscripten_bind_MetadataBuilder_AddDoubleEntry_3:Zn,_emscripten_bind_MetadataBuilder_AddIntEntry_3:bo,_emscripten_bind_MetadataBuilder_AddStringEntry_3:Xn,_emscripten_bind_MetadataBuilder_MetadataBuilder_0:Nq,_emscripten_bind_MetadataBuilder___destroy___0:Op,_emscripten_bind_Metadata_Metadata_0:Ml,_emscripten_bind_Metadata___destroy___0:cp,_emscripten_bind_PointAttribute_PointAttribute_0:hp,_emscripten_bind_PointAttribute___destroy___0:xj,_emscripten_bind_PointAttribute_attribute_type_0:aq,_emscripten_bind_PointAttribute_byte_offset_0:gq,_emscripten_bind_PointAttribute_byte_stride_0:nq,_emscripten_bind_PointAttribute_data_type_0:jq,_emscripten_bind_PointAttribute_normalized_0:Yp,_emscripten_bind_PointAttribute_num_components_0:eq,_emscripten_bind_PointAttribute_size_0:uq,_emscripten_bind_PointAttribute_unique_id_0:iq,_emscripten_bind_PointCloudBuilder_AddFloatAttribute_5:hn,_emscripten_bind_PointCloudBuilder_AddInt16Attribute_5:_m,_emscripten_bind_PointCloudBuilder_AddInt32Attribute_5:gn,_emscripten_bind_PointCloudBuilder_AddInt8Attribute_5:cn,_emscripten_bind_PointCloudBuilder_AddMetadata_2:oo,_emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5:Wm,_emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5:Vm,_emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5:Zm,_emscripten_bind_PointCloudBuilder_PointCloudBuilder_0:Nq,_emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3:yn,_emscripten_bind_PointCloudBuilder___destroy___0:Op,_emscripten_bind_PointCloud_PointCloud_0:yp,_emscripten_bind_PointCloud___destroy___0:Ho,_emscripten_bind_PointCloud_num_attributes_0:sp,_emscripten_bind_PointCloud_num_points_0:uq,_emscripten_bind_VoidPtr___destroy___0:Op,_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE:Mq,_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD:Lq,_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH:Qq,_emscripten_enum_draco_GeometryAttribute_Type_COLOR:Rq,_emscripten_enum_draco_GeometryAttribute_Type_GENERIC:Oq,_emscripten_enum_draco_GeometryAttribute_Type_INVALID:Mq,_emscripten_enum_draco_GeometryAttribute_Type_NORMAL:Qq,_emscripten_enum_draco_GeometryAttribute_Type_POSITION:Lq,_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD:Jq,_emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING:Qq,_emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING:Lq,_emscripten_replace_memory:Pa,_free:wc,_i64Add:Tn,_i64Subtract:Vn,_llvm_bswap_i32:Fp,_malloc:$a,_memcpy:Rg,_memmove:Xl,_memset:hj,_sbrk:Fl,dynCall_ii:hq,dynCall_iii:Dp,dynCall_iiii:Uo,dynCall_iiiiiii:En,dynCall_v:Vq,dynCall_vi:xq,dynCall_vii:Tp,dynCall_viii:gp,dynCall_viiii:Io,dynCall_viiiii:qo,dynCall_viiiiii:Mn,establishStackSpace:rq,getTempRet0:hr,runPostSets:Sn,setTempRet0:cr,setThrew:Qp,stackAlloc:jp,stackRestore:ar,stackSave:jr}}) + // EMSCRIPTEN_END_FUNCS + var Qa = [ + er, + Dq, + Eq, + Eq, + Dq, + gb, + gr, + gr, + gr, + ak, + Vf, + Eq, + dp, + gr, + gr, + Eq, + gr, + Eq, + Eq, + rl, + _n, + ll, + Eq, + ao, + Yk, + Eq, + jq, + Pn, + rl, + Eq, + rl, + _n, + ll, + Eq, + ao, + Yk, + Eq, + jq, + Pn, + rl, + Eq, + qq, + gr, + dp, + Eq, + gr, + Eq, + qq, + Eq, + kl, + Pn, + kl, + _n, + il, + Eq, + ao, + Qk, + Eq, + jq, + Eq, + kl, + Pn, + kl, + _n, + il, + Eq, + ao, + Qk, + Eq, + jq, + Eq, + Dq, + Eq, + Eq, + Cd, + Eq, + Je, + Tg, + qk, + ko, + _o, + dp, + lg, + sg, + $e, + _o, + dp, + Eq, + gr, + gr, + wi, + gr, + Eq, + gr, + Xj, + ln, + Wp, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + er, + ] + var Ra = [ + Tq, + ql, + Ug, + ve, + xl, + fq, + fq, + fq, + Rp, + kb, + gj, + uo, + Rp, + Rp, + fi, + bj, + Uh, + ek, + jl, + Gj, + Vk, + Yj, + Zj, + Fe, + Po, + fq, + Zh, + fq, + Dl, + _e, + fq, + El, + Zg, + $l, + td, + fq, + Dl, + _e, + fq, + El, + Zg, + $l, + td, + xn, + Po, + fq, + Xh, + sd, + fq, + tl, + We, + fq, + ul, + Yg, + $l, + sd, + fq, + tl, + We, + fq, + ul, + Yg, + $l, + un, + Hn, + Bn, + In, + Gn, + Kg, + dk, + mk, + mc, + le, + Jm, + wf, + af, + Ze, + Ig, + dk, + mk, + lc, + le, + Jm, + Rp, + fq, + fq, + bf, + nm, + Xf, + bf, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + Tq, + ] + var Sa = [ + Cq, + lo, + Ip, + fn, + Km, + fg, + cj, + el, + ih, + uc, + vh, + $f, + Rh, + Qb, + Oh, + vg, + gl, + Dm, + qj, + Cq, + Cq, + Cq, + Cq, + Cq, + Cq, + Cq, + Cq, + Cq, + Cq, + Cq, + Cq, + Cq, + ] + var Ta = [ + np, + Ld, + Bc, + ne, + Sb, + bb, + Cc, + me, + Rb, + ab, + Lg, + ed, + eb, + sf, + qc, + id, + db, + qf, + nc, + np, + np, + np, + np, + np, + np, + np, + np, + np, + np, + np, + np, + np, + ] + var Ua = [mr, Wq, Ai, Jn] + var Va = [ + kr, + Ij, + Qj, + fr, + $q, + um, + Yl, + Wk, + Uq, + gi, + zp, + zi, + pp, + wh, + Ro, + zm, + tm, + Vl, + Uq, + Hl, + Hl, + Uk, + Jk, + _k, + Ok, + fr, + $q, + Uq, + Li, + Ul, + Hl, + Rk, + Gk, + Xk, + Mk, + fr, + $q, + Uq, + Ii, + Kl, + zm, + tm, + fr, + $q, + $q, + mj, + Bl, + ym, + gm, + kn, + Ym, + fr, + $q, + $q, + kj, + sl, + sm, + Zl, + $m, + Mm, + fr, + $q, + ok, + hk, + Qj, + Sj, + Vj, + Vj, + am, + Bm, + Mc, + Jl, + Ve, + Yn, + rk, + jk, + Lk, + Fk, + Em, + rm, + xk, + nk, + Nk, + Ik, + Nm, + vm, + Fm, + xm, + Gi, + qn, + Se, + Ln, + aj, + Uq, + Lp, + Oo, + Fn, + fr, + $q, + Uq, + Lp, + Mo, + Lp, + Mo, + Dk, + wk, + rb, + wg, + cq, + fr, + dq, + fr, + fr, + dq, + Cp, + lq, + lq, + sn, + kr, + kr, + kr, + kr, + kr, + kr, + kr, + kr, + kr, + kr, + ] + var Wa = [Zq, ik, Rf, Ri, Nn, ib, lb, sc, mo, ej, ej, pk, Ec, Zq, Zq, Zq] + var Xa = [Kq, ze, Yi, $b, fc, Fc, $b, fc, uj, Ej, Hg, oj, ug, If, Kq, Kq] + var Ya = [wq, Dg, Zf, Wl, Zk, wq, wq, wq] + var Za = [_p, ij, Vg, _p] + var _a = [Ep, Il, Kk, Ep] + return { + ___cxa_can_catch: _l, + ___cxa_is_pointer_type: Co, + ___divdi3: zk, + ___muldi3: on, + ___udivdi3: up, + ___uremdi3: an, + _bitshift64Lshr: Wn, + _bitshift64Shl: Rn, + _emscripten_bind_DracoInt8Array_DracoInt8Array_0: op, + _emscripten_bind_DracoInt8Array_GetValue_1: Vo, + _emscripten_bind_DracoInt8Array___destroy___0: Xm, + _emscripten_bind_DracoInt8Array_size_0: Kp, + _emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2: jo, + _emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3: An, + _emscripten_bind_Encoder_Encoder_0: Vp, + _emscripten_bind_Encoder_GetNumberOfEncodedFaces_0: Ap, + _emscripten_bind_Encoder_GetNumberOfEncodedPoints_0: xp, + _emscripten_bind_Encoder_SetAttributeExplicitQuantization_5: Um, + _emscripten_bind_Encoder_SetAttributeQuantization_2: fo, + _emscripten_bind_Encoder_SetEncodingMethod_1: mp, + _emscripten_bind_Encoder_SetSpeedOptions_2: So, + _emscripten_bind_Encoder_SetTrackEncodedProperties_1: Zo, + _emscripten_bind_Encoder___destroy___0: Hj, + _emscripten_bind_ExpertEncoder_EncodeToDracoBuffer_2: so, + _emscripten_bind_ExpertEncoder_ExpertEncoder_1: Fo, + _emscripten_bind_ExpertEncoder_GetNumberOfEncodedFaces_0: ip, + _emscripten_bind_ExpertEncoder_GetNumberOfEncodedPoints_0: fp, + _emscripten_bind_ExpertEncoder_SetAttributeExplicitQuantization_5: jn, + _emscripten_bind_ExpertEncoder_SetAttributeQuantization_2: wo, + _emscripten_bind_ExpertEncoder_SetEncodingMethod_1: bp, + _emscripten_bind_ExpertEncoder_SetSpeedOptions_2: Ko, + _emscripten_bind_ExpertEncoder_SetTrackEncodedProperties_1: No, + _emscripten_bind_ExpertEncoder___destroy___0: nn, + _emscripten_bind_GeometryAttribute_GeometryAttribute_0: ap, + _emscripten_bind_GeometryAttribute___destroy___0: Op, + _emscripten_bind_MeshBuilder_AddFacesToMesh_3: io, + _emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5: hn, + _emscripten_bind_MeshBuilder_AddFloatAttribute_5: hn, + _emscripten_bind_MeshBuilder_AddInt16Attribute_5: _m, + _emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5: gn, + _emscripten_bind_MeshBuilder_AddInt32Attribute_5: gn, + _emscripten_bind_MeshBuilder_AddInt8Attribute_5: cn, + _emscripten_bind_MeshBuilder_AddMetadataToMesh_2: po, + _emscripten_bind_MeshBuilder_AddMetadata_2: oo, + _emscripten_bind_MeshBuilder_AddUInt16Attribute_5: Wm, + _emscripten_bind_MeshBuilder_AddUInt32Attribute_5: Vm, + _emscripten_bind_MeshBuilder_AddUInt8Attribute_5: Zm, + _emscripten_bind_MeshBuilder_MeshBuilder_0: Nq, + _emscripten_bind_MeshBuilder_SetMetadataForAttribute_3: yn, + _emscripten_bind_MeshBuilder___destroy___0: Op, + _emscripten_bind_Mesh_Mesh_0: Xp, + _emscripten_bind_Mesh___destroy___0: Ho, + _emscripten_bind_Mesh_num_attributes_0: sp, + _emscripten_bind_Mesh_num_faces_0: lp, + _emscripten_bind_Mesh_num_points_0: uq, + _emscripten_bind_Mesh_set_num_points_1: Up, + _emscripten_bind_MetadataBuilder_AddDoubleEntry_3: Zn, + _emscripten_bind_MetadataBuilder_AddIntEntry_3: bo, + _emscripten_bind_MetadataBuilder_AddStringEntry_3: Xn, + _emscripten_bind_MetadataBuilder_MetadataBuilder_0: Nq, + _emscripten_bind_MetadataBuilder___destroy___0: Op, + _emscripten_bind_Metadata_Metadata_0: Ml, + _emscripten_bind_Metadata___destroy___0: cp, + _emscripten_bind_PointAttribute_PointAttribute_0: hp, + _emscripten_bind_PointAttribute___destroy___0: xj, + _emscripten_bind_PointAttribute_attribute_type_0: aq, + _emscripten_bind_PointAttribute_byte_offset_0: gq, + _emscripten_bind_PointAttribute_byte_stride_0: nq, + _emscripten_bind_PointAttribute_data_type_0: jq, + _emscripten_bind_PointAttribute_normalized_0: Yp, + _emscripten_bind_PointAttribute_num_components_0: eq, + _emscripten_bind_PointAttribute_size_0: uq, + _emscripten_bind_PointAttribute_unique_id_0: iq, + _emscripten_bind_PointCloudBuilder_AddFloatAttribute_5: hn, + _emscripten_bind_PointCloudBuilder_AddInt16Attribute_5: _m, + _emscripten_bind_PointCloudBuilder_AddInt32Attribute_5: gn, + _emscripten_bind_PointCloudBuilder_AddInt8Attribute_5: cn, + _emscripten_bind_PointCloudBuilder_AddMetadata_2: oo, + _emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5: Wm, + _emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5: Vm, + _emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5: Zm, + _emscripten_bind_PointCloudBuilder_PointCloudBuilder_0: Nq, + _emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3: yn, + _emscripten_bind_PointCloudBuilder___destroy___0: Op, + _emscripten_bind_PointCloud_PointCloud_0: yp, + _emscripten_bind_PointCloud___destroy___0: Ho, + _emscripten_bind_PointCloud_num_attributes_0: sp, + _emscripten_bind_PointCloud_num_points_0: uq, + _emscripten_bind_VoidPtr___destroy___0: Op, + _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE: Mq, + _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD: Lq, + _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH: Qq, + _emscripten_enum_draco_GeometryAttribute_Type_COLOR: Rq, + _emscripten_enum_draco_GeometryAttribute_Type_GENERIC: Oq, + _emscripten_enum_draco_GeometryAttribute_Type_INVALID: Mq, + _emscripten_enum_draco_GeometryAttribute_Type_NORMAL: Qq, + _emscripten_enum_draco_GeometryAttribute_Type_POSITION: Lq, + _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD: Jq, + _emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING: Qq, + _emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING: Lq, + _emscripten_replace_memory: Pa, + _free: wc, + _i64Add: Tn, + _i64Subtract: Vn, + _llvm_bswap_i32: Fp, + _malloc: $a, + _memcpy: Rg, + _memmove: Xl, + _memset: hj, + _sbrk: Fl, + dynCall_ii: hq, + dynCall_iii: Dp, + dynCall_iiii: Uo, + dynCall_iiiiiii: En, + dynCall_v: Vq, + dynCall_vi: xq, + dynCall_vii: Tp, + dynCall_viii: gp, + dynCall_viiii: Io, + dynCall_viiiii: qo, + dynCall_viiiiii: Mn, + establishStackSpace: rq, + getTempRet0: hr, + runPostSets: Sn, + setTempRet0: cr, + setThrew: Qp, + stackAlloc: jp, + stackRestore: ar, + stackSave: jr, + } + })( + // EMSCRIPTEN_END_ASM + Module.asmGlobalArg, + Module.asmLibraryArg, + buffer, + ) + var ___cxa_can_catch = (Module['___cxa_can_catch'] = asm['___cxa_can_catch']) + var ___cxa_is_pointer_type = (Module['___cxa_is_pointer_type'] = + asm['___cxa_is_pointer_type']) + var ___divdi3 = (Module['___divdi3'] = asm['___divdi3']) + var ___muldi3 = (Module['___muldi3'] = asm['___muldi3']) + var ___udivdi3 = (Module['___udivdi3'] = asm['___udivdi3']) + var ___uremdi3 = (Module['___uremdi3'] = asm['___uremdi3']) + var _bitshift64Lshr = (Module['_bitshift64Lshr'] = asm['_bitshift64Lshr']) + var _bitshift64Shl = (Module['_bitshift64Shl'] = asm['_bitshift64Shl']) + var _emscripten_bind_DracoInt8Array_DracoInt8Array_0 = (Module[ + '_emscripten_bind_DracoInt8Array_DracoInt8Array_0' + ] = asm['_emscripten_bind_DracoInt8Array_DracoInt8Array_0']) + var _emscripten_bind_DracoInt8Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoInt8Array_GetValue_1' + ] = asm['_emscripten_bind_DracoInt8Array_GetValue_1']) + var _emscripten_bind_DracoInt8Array___destroy___0 = (Module[ + '_emscripten_bind_DracoInt8Array___destroy___0' + ] = asm['_emscripten_bind_DracoInt8Array___destroy___0']) + var _emscripten_bind_DracoInt8Array_size_0 = (Module[ + '_emscripten_bind_DracoInt8Array_size_0' + ] = asm['_emscripten_bind_DracoInt8Array_size_0']) + var _emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2 = (Module[ + '_emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2' + ] = asm['_emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2']) + var _emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3 = (Module[ + '_emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3' + ] = asm['_emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3']) + var _emscripten_bind_Encoder_Encoder_0 = (Module[ + '_emscripten_bind_Encoder_Encoder_0' + ] = asm['_emscripten_bind_Encoder_Encoder_0']) + var _emscripten_bind_Encoder_GetNumberOfEncodedFaces_0 = (Module[ + '_emscripten_bind_Encoder_GetNumberOfEncodedFaces_0' + ] = asm['_emscripten_bind_Encoder_GetNumberOfEncodedFaces_0']) + var _emscripten_bind_Encoder_GetNumberOfEncodedPoints_0 = (Module[ + '_emscripten_bind_Encoder_GetNumberOfEncodedPoints_0' + ] = asm['_emscripten_bind_Encoder_GetNumberOfEncodedPoints_0']) + var _emscripten_bind_Encoder_SetAttributeExplicitQuantization_5 = (Module[ + '_emscripten_bind_Encoder_SetAttributeExplicitQuantization_5' + ] = asm['_emscripten_bind_Encoder_SetAttributeExplicitQuantization_5']) + var _emscripten_bind_Encoder_SetAttributeQuantization_2 = (Module[ + '_emscripten_bind_Encoder_SetAttributeQuantization_2' + ] = asm['_emscripten_bind_Encoder_SetAttributeQuantization_2']) + var _emscripten_bind_Encoder_SetEncodingMethod_1 = (Module[ + '_emscripten_bind_Encoder_SetEncodingMethod_1' + ] = asm['_emscripten_bind_Encoder_SetEncodingMethod_1']) + var _emscripten_bind_Encoder_SetSpeedOptions_2 = (Module[ + '_emscripten_bind_Encoder_SetSpeedOptions_2' + ] = asm['_emscripten_bind_Encoder_SetSpeedOptions_2']) + var _emscripten_bind_Encoder_SetTrackEncodedProperties_1 = (Module[ + '_emscripten_bind_Encoder_SetTrackEncodedProperties_1' + ] = asm['_emscripten_bind_Encoder_SetTrackEncodedProperties_1']) + var _emscripten_bind_Encoder___destroy___0 = (Module[ + '_emscripten_bind_Encoder___destroy___0' + ] = asm['_emscripten_bind_Encoder___destroy___0']) + var _emscripten_bind_ExpertEncoder_EncodeToDracoBuffer_2 = (Module[ + '_emscripten_bind_ExpertEncoder_EncodeToDracoBuffer_2' + ] = asm['_emscripten_bind_ExpertEncoder_EncodeToDracoBuffer_2']) + var _emscripten_bind_ExpertEncoder_ExpertEncoder_1 = (Module[ + '_emscripten_bind_ExpertEncoder_ExpertEncoder_1' + ] = asm['_emscripten_bind_ExpertEncoder_ExpertEncoder_1']) + var _emscripten_bind_ExpertEncoder_GetNumberOfEncodedFaces_0 = (Module[ + '_emscripten_bind_ExpertEncoder_GetNumberOfEncodedFaces_0' + ] = asm['_emscripten_bind_ExpertEncoder_GetNumberOfEncodedFaces_0']) + var _emscripten_bind_ExpertEncoder_GetNumberOfEncodedPoints_0 = (Module[ + '_emscripten_bind_ExpertEncoder_GetNumberOfEncodedPoints_0' + ] = asm['_emscripten_bind_ExpertEncoder_GetNumberOfEncodedPoints_0']) + var _emscripten_bind_ExpertEncoder_SetAttributeExplicitQuantization_5 = + (Module[ + '_emscripten_bind_ExpertEncoder_SetAttributeExplicitQuantization_5' + ] = + asm['_emscripten_bind_ExpertEncoder_SetAttributeExplicitQuantization_5']) + var _emscripten_bind_ExpertEncoder_SetAttributeQuantization_2 = (Module[ + '_emscripten_bind_ExpertEncoder_SetAttributeQuantization_2' + ] = asm['_emscripten_bind_ExpertEncoder_SetAttributeQuantization_2']) + var _emscripten_bind_ExpertEncoder_SetEncodingMethod_1 = (Module[ + '_emscripten_bind_ExpertEncoder_SetEncodingMethod_1' + ] = asm['_emscripten_bind_ExpertEncoder_SetEncodingMethod_1']) + var _emscripten_bind_ExpertEncoder_SetSpeedOptions_2 = (Module[ + '_emscripten_bind_ExpertEncoder_SetSpeedOptions_2' + ] = asm['_emscripten_bind_ExpertEncoder_SetSpeedOptions_2']) + var _emscripten_bind_ExpertEncoder_SetTrackEncodedProperties_1 = (Module[ + '_emscripten_bind_ExpertEncoder_SetTrackEncodedProperties_1' + ] = asm['_emscripten_bind_ExpertEncoder_SetTrackEncodedProperties_1']) + var _emscripten_bind_ExpertEncoder___destroy___0 = (Module[ + '_emscripten_bind_ExpertEncoder___destroy___0' + ] = asm['_emscripten_bind_ExpertEncoder___destroy___0']) + var _emscripten_bind_GeometryAttribute_GeometryAttribute_0 = (Module[ + '_emscripten_bind_GeometryAttribute_GeometryAttribute_0' + ] = asm['_emscripten_bind_GeometryAttribute_GeometryAttribute_0']) + var _emscripten_bind_GeometryAttribute___destroy___0 = (Module[ + '_emscripten_bind_GeometryAttribute___destroy___0' + ] = asm['_emscripten_bind_GeometryAttribute___destroy___0']) + var _emscripten_bind_MeshBuilder_AddFacesToMesh_3 = (Module[ + '_emscripten_bind_MeshBuilder_AddFacesToMesh_3' + ] = asm['_emscripten_bind_MeshBuilder_AddFacesToMesh_3']) + var _emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5' + ] = asm['_emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5']) + var _emscripten_bind_MeshBuilder_AddFloatAttribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddFloatAttribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddFloatAttribute_5']) + var _emscripten_bind_MeshBuilder_AddInt16Attribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddInt16Attribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddInt16Attribute_5']) + var _emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5' + ] = asm['_emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5']) + var _emscripten_bind_MeshBuilder_AddInt32Attribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddInt32Attribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddInt32Attribute_5']) + var _emscripten_bind_MeshBuilder_AddInt8Attribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddInt8Attribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddInt8Attribute_5']) + var _emscripten_bind_MeshBuilder_AddMetadataToMesh_2 = (Module[ + '_emscripten_bind_MeshBuilder_AddMetadataToMesh_2' + ] = asm['_emscripten_bind_MeshBuilder_AddMetadataToMesh_2']) + var _emscripten_bind_MeshBuilder_AddMetadata_2 = (Module[ + '_emscripten_bind_MeshBuilder_AddMetadata_2' + ] = asm['_emscripten_bind_MeshBuilder_AddMetadata_2']) + var _emscripten_bind_MeshBuilder_AddUInt16Attribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddUInt16Attribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddUInt16Attribute_5']) + var _emscripten_bind_MeshBuilder_AddUInt32Attribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddUInt32Attribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddUInt32Attribute_5']) + var _emscripten_bind_MeshBuilder_AddUInt8Attribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddUInt8Attribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddUInt8Attribute_5']) + var _emscripten_bind_MeshBuilder_MeshBuilder_0 = (Module[ + '_emscripten_bind_MeshBuilder_MeshBuilder_0' + ] = asm['_emscripten_bind_MeshBuilder_MeshBuilder_0']) + var _emscripten_bind_MeshBuilder_SetMetadataForAttribute_3 = (Module[ + '_emscripten_bind_MeshBuilder_SetMetadataForAttribute_3' + ] = asm['_emscripten_bind_MeshBuilder_SetMetadataForAttribute_3']) + var _emscripten_bind_MeshBuilder___destroy___0 = (Module[ + '_emscripten_bind_MeshBuilder___destroy___0' + ] = asm['_emscripten_bind_MeshBuilder___destroy___0']) + var _emscripten_bind_Mesh_Mesh_0 = (Module['_emscripten_bind_Mesh_Mesh_0'] = + asm['_emscripten_bind_Mesh_Mesh_0']) + var _emscripten_bind_Mesh___destroy___0 = (Module[ + '_emscripten_bind_Mesh___destroy___0' + ] = asm['_emscripten_bind_Mesh___destroy___0']) + var _emscripten_bind_Mesh_num_attributes_0 = (Module[ + '_emscripten_bind_Mesh_num_attributes_0' + ] = asm['_emscripten_bind_Mesh_num_attributes_0']) + var _emscripten_bind_Mesh_num_faces_0 = (Module[ + '_emscripten_bind_Mesh_num_faces_0' + ] = asm['_emscripten_bind_Mesh_num_faces_0']) + var _emscripten_bind_Mesh_num_points_0 = (Module[ + '_emscripten_bind_Mesh_num_points_0' + ] = asm['_emscripten_bind_Mesh_num_points_0']) + var _emscripten_bind_Mesh_set_num_points_1 = (Module[ + '_emscripten_bind_Mesh_set_num_points_1' + ] = asm['_emscripten_bind_Mesh_set_num_points_1']) + var _emscripten_bind_MetadataBuilder_AddDoubleEntry_3 = (Module[ + '_emscripten_bind_MetadataBuilder_AddDoubleEntry_3' + ] = asm['_emscripten_bind_MetadataBuilder_AddDoubleEntry_3']) + var _emscripten_bind_MetadataBuilder_AddIntEntry_3 = (Module[ + '_emscripten_bind_MetadataBuilder_AddIntEntry_3' + ] = asm['_emscripten_bind_MetadataBuilder_AddIntEntry_3']) + var _emscripten_bind_MetadataBuilder_AddStringEntry_3 = (Module[ + '_emscripten_bind_MetadataBuilder_AddStringEntry_3' + ] = asm['_emscripten_bind_MetadataBuilder_AddStringEntry_3']) + var _emscripten_bind_MetadataBuilder_MetadataBuilder_0 = (Module[ + '_emscripten_bind_MetadataBuilder_MetadataBuilder_0' + ] = asm['_emscripten_bind_MetadataBuilder_MetadataBuilder_0']) + var _emscripten_bind_MetadataBuilder___destroy___0 = (Module[ + '_emscripten_bind_MetadataBuilder___destroy___0' + ] = asm['_emscripten_bind_MetadataBuilder___destroy___0']) + var _emscripten_bind_Metadata_Metadata_0 = (Module[ + '_emscripten_bind_Metadata_Metadata_0' + ] = asm['_emscripten_bind_Metadata_Metadata_0']) + var _emscripten_bind_Metadata___destroy___0 = (Module[ + '_emscripten_bind_Metadata___destroy___0' + ] = asm['_emscripten_bind_Metadata___destroy___0']) + var _emscripten_bind_PointAttribute_PointAttribute_0 = (Module[ + '_emscripten_bind_PointAttribute_PointAttribute_0' + ] = asm['_emscripten_bind_PointAttribute_PointAttribute_0']) + var _emscripten_bind_PointAttribute___destroy___0 = (Module[ + '_emscripten_bind_PointAttribute___destroy___0' + ] = asm['_emscripten_bind_PointAttribute___destroy___0']) + var _emscripten_bind_PointAttribute_attribute_type_0 = (Module[ + '_emscripten_bind_PointAttribute_attribute_type_0' + ] = asm['_emscripten_bind_PointAttribute_attribute_type_0']) + var _emscripten_bind_PointAttribute_byte_offset_0 = (Module[ + '_emscripten_bind_PointAttribute_byte_offset_0' + ] = asm['_emscripten_bind_PointAttribute_byte_offset_0']) + var _emscripten_bind_PointAttribute_byte_stride_0 = (Module[ + '_emscripten_bind_PointAttribute_byte_stride_0' + ] = asm['_emscripten_bind_PointAttribute_byte_stride_0']) + var _emscripten_bind_PointAttribute_data_type_0 = (Module[ + '_emscripten_bind_PointAttribute_data_type_0' + ] = asm['_emscripten_bind_PointAttribute_data_type_0']) + var _emscripten_bind_PointAttribute_normalized_0 = (Module[ + '_emscripten_bind_PointAttribute_normalized_0' + ] = asm['_emscripten_bind_PointAttribute_normalized_0']) + var _emscripten_bind_PointAttribute_num_components_0 = (Module[ + '_emscripten_bind_PointAttribute_num_components_0' + ] = asm['_emscripten_bind_PointAttribute_num_components_0']) + var _emscripten_bind_PointAttribute_size_0 = (Module[ + '_emscripten_bind_PointAttribute_size_0' + ] = asm['_emscripten_bind_PointAttribute_size_0']) + var _emscripten_bind_PointAttribute_unique_id_0 = (Module[ + '_emscripten_bind_PointAttribute_unique_id_0' + ] = asm['_emscripten_bind_PointAttribute_unique_id_0']) + var _emscripten_bind_PointCloudBuilder_AddFloatAttribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddFloatAttribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddFloatAttribute_5']) + var _emscripten_bind_PointCloudBuilder_AddInt16Attribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddInt16Attribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddInt16Attribute_5']) + var _emscripten_bind_PointCloudBuilder_AddInt32Attribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddInt32Attribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddInt32Attribute_5']) + var _emscripten_bind_PointCloudBuilder_AddInt8Attribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddInt8Attribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddInt8Attribute_5']) + var _emscripten_bind_PointCloudBuilder_AddMetadata_2 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddMetadata_2' + ] = asm['_emscripten_bind_PointCloudBuilder_AddMetadata_2']) + var _emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5']) + var _emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5']) + var _emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5']) + var _emscripten_bind_PointCloudBuilder_PointCloudBuilder_0 = (Module[ + '_emscripten_bind_PointCloudBuilder_PointCloudBuilder_0' + ] = asm['_emscripten_bind_PointCloudBuilder_PointCloudBuilder_0']) + var _emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3 = (Module[ + '_emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3' + ] = asm['_emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3']) + var _emscripten_bind_PointCloudBuilder___destroy___0 = (Module[ + '_emscripten_bind_PointCloudBuilder___destroy___0' + ] = asm['_emscripten_bind_PointCloudBuilder___destroy___0']) + var _emscripten_bind_PointCloud_PointCloud_0 = (Module[ + '_emscripten_bind_PointCloud_PointCloud_0' + ] = asm['_emscripten_bind_PointCloud_PointCloud_0']) + var _emscripten_bind_PointCloud___destroy___0 = (Module[ + '_emscripten_bind_PointCloud___destroy___0' + ] = asm['_emscripten_bind_PointCloud___destroy___0']) + var _emscripten_bind_PointCloud_num_attributes_0 = (Module[ + '_emscripten_bind_PointCloud_num_attributes_0' + ] = asm['_emscripten_bind_PointCloud_num_attributes_0']) + var _emscripten_bind_PointCloud_num_points_0 = (Module[ + '_emscripten_bind_PointCloud_num_points_0' + ] = asm['_emscripten_bind_PointCloud_num_points_0']) + var _emscripten_bind_VoidPtr___destroy___0 = (Module[ + '_emscripten_bind_VoidPtr___destroy___0' + ] = asm['_emscripten_bind_VoidPtr___destroy___0']) + var _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE = + (Module[ + '_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE' + ] = asm['_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE']) + var _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD = (Module[ + '_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD' + ] = asm['_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD']) + var _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH = (Module[ + '_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH' + ] = asm['_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH']) + var _emscripten_enum_draco_GeometryAttribute_Type_COLOR = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_COLOR' + ] = asm['_emscripten_enum_draco_GeometryAttribute_Type_COLOR']) + var _emscripten_enum_draco_GeometryAttribute_Type_GENERIC = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_GENERIC' + ] = asm['_emscripten_enum_draco_GeometryAttribute_Type_GENERIC']) + var _emscripten_enum_draco_GeometryAttribute_Type_INVALID = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_INVALID' + ] = asm['_emscripten_enum_draco_GeometryAttribute_Type_INVALID']) + var _emscripten_enum_draco_GeometryAttribute_Type_NORMAL = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_NORMAL' + ] = asm['_emscripten_enum_draco_GeometryAttribute_Type_NORMAL']) + var _emscripten_enum_draco_GeometryAttribute_Type_POSITION = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_POSITION' + ] = asm['_emscripten_enum_draco_GeometryAttribute_Type_POSITION']) + var _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD' + ] = asm['_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD']) + var _emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING = + (Module[ + '_emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING' + ] = + asm['_emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING']) + var _emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING = + (Module[ + '_emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING' + ] = + asm['_emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING']) + var _emscripten_replace_memory = (Module['_emscripten_replace_memory'] = + asm['_emscripten_replace_memory']) + var _free = (Module['_free'] = asm['_free']) + var _i64Add = (Module['_i64Add'] = asm['_i64Add']) + var _i64Subtract = (Module['_i64Subtract'] = asm['_i64Subtract']) + var _llvm_bswap_i32 = (Module['_llvm_bswap_i32'] = asm['_llvm_bswap_i32']) + var _malloc = (Module['_malloc'] = asm['_malloc']) + var _memcpy = (Module['_memcpy'] = asm['_memcpy']) + var _memmove = (Module['_memmove'] = asm['_memmove']) + var _memset = (Module['_memset'] = asm['_memset']) + var _sbrk = (Module['_sbrk'] = asm['_sbrk']) + var establishStackSpace = (Module['establishStackSpace'] = + asm['establishStackSpace']) + var getTempRet0 = (Module['getTempRet0'] = asm['getTempRet0']) + var runPostSets = (Module['runPostSets'] = asm['runPostSets']) + var setTempRet0 = (Module['setTempRet0'] = asm['setTempRet0']) + var setThrew = (Module['setThrew'] = asm['setThrew']) + var stackAlloc = (Module['stackAlloc'] = asm['stackAlloc']) + var stackRestore = (Module['stackRestore'] = asm['stackRestore']) + var stackSave = (Module['stackSave'] = asm['stackSave']) + var dynCall_ii = (Module['dynCall_ii'] = asm['dynCall_ii']) + var dynCall_iii = (Module['dynCall_iii'] = asm['dynCall_iii']) + var dynCall_iiii = (Module['dynCall_iiii'] = asm['dynCall_iiii']) + var dynCall_iiiiiii = (Module['dynCall_iiiiiii'] = asm['dynCall_iiiiiii']) + var dynCall_v = (Module['dynCall_v'] = asm['dynCall_v']) + var dynCall_vi = (Module['dynCall_vi'] = asm['dynCall_vi']) + var dynCall_vii = (Module['dynCall_vii'] = asm['dynCall_vii']) + var dynCall_viii = (Module['dynCall_viii'] = asm['dynCall_viii']) + var dynCall_viiii = (Module['dynCall_viiii'] = asm['dynCall_viiii']) + var dynCall_viiiii = (Module['dynCall_viiiii'] = asm['dynCall_viiiii']) + var dynCall_viiiiii = (Module['dynCall_viiiiii'] = asm['dynCall_viiiiii']) + Module['asm'] = asm + if (memoryInitializer) { + if (!isDataURI(memoryInitializer)) { + if (typeof Module['locateFile'] === 'function') { + memoryInitializer = Module['locateFile'](memoryInitializer) + } else if (Module['memoryInitializerPrefixURL']) { + memoryInitializer = + Module['memoryInitializerPrefixURL'] + memoryInitializer + } + } + if (ENVIRONMENT_IS_NODE || ENVIRONMENT_IS_SHELL) { + var data = Module['readBinary'](memoryInitializer) + HEAPU8.set(data, GLOBAL_BASE) + } else { + addRunDependency('memory initializer') + var applyMemoryInitializer = function (data) { + if (data.byteLength) data = new Uint8Array(data) + HEAPU8.set(data, GLOBAL_BASE) + if (Module['memoryInitializerRequest']) + delete Module['memoryInitializerRequest'].response + removeRunDependency('memory initializer') + } + function doBrowserLoad() { + Module['readAsync']( + memoryInitializer, + applyMemoryInitializer, + function () { + throw 'could not load memory initializer ' + memoryInitializer + }, + ) + } + var memoryInitializerBytes = tryParseAsDataURI(memoryInitializer) + if (memoryInitializerBytes) { + applyMemoryInitializer(memoryInitializerBytes.buffer) + } else if (Module['memoryInitializerRequest']) { + function useRequest() { + var request = Module['memoryInitializerRequest'] + var response = request.response + if (request.status !== 200 && request.status !== 0) { + var data = tryParseAsDataURI(Module['memoryInitializerRequestURL']) + if (data) { + response = data.buffer + } else { + console.warn( + 'a problem seems to have happened with Module.memoryInitializerRequest, status: ' + + request.status + + ', retrying ' + + memoryInitializer, + ) + doBrowserLoad() + return + } + } + applyMemoryInitializer(response) + } + if (Module['memoryInitializerRequest'].response) { + setTimeout(useRequest, 0) + } else { + Module['memoryInitializerRequest'].addEventListener( + 'load', + useRequest, + ) + } + } else { + doBrowserLoad() + } + } + } + Module['then'] = function (func) { + if (Module['calledRun']) { + func(Module) + } else { + var old = Module['onRuntimeInitialized'] + Module['onRuntimeInitialized'] = function () { + if (old) old() + func(Module) + } + } + return Module + } + function ExitStatus(status) { + this.name = 'ExitStatus' + this.message = 'Program terminated with exit(' + status + ')' + this.status = status + } + ExitStatus.prototype = new Error() + ExitStatus.prototype.constructor = ExitStatus + var initialStackTop + dependenciesFulfilled = function runCaller() { + if (!Module['calledRun']) run() + if (!Module['calledRun']) dependenciesFulfilled = runCaller + } + function run(args) { + args = args || Module['arguments'] + if (runDependencies > 0) { + return + } + preRun() + if (runDependencies > 0) return + if (Module['calledRun']) return + function doRun() { + if (Module['calledRun']) return + Module['calledRun'] = true + if (ABORT) return + ensureInitRuntime() + preMain() + if (Module['onRuntimeInitialized']) Module['onRuntimeInitialized']() + postRun() + } + if (Module['setStatus']) { + Module['setStatus']('Running...') + setTimeout(function () { + setTimeout(function () { + Module['setStatus']('') + }, 1) + doRun() + }, 1) + } else { + doRun() + } + } + Module['run'] = run + function exit(status, implicit) { + if (implicit && Module['noExitRuntime'] && status === 0) { + return + } + if (Module['noExitRuntime']) { + } else { + ABORT = true + EXITSTATUS = status + STACKTOP = initialStackTop + exitRuntime() + if (Module['onExit']) Module['onExit'](status) + } + if (ENVIRONMENT_IS_NODE) { + process['exit'](status) + } + Module['quit'](status, new ExitStatus(status)) + } + Module['exit'] = exit + function abort(what) { + if (Module['onAbort']) { + Module['onAbort'](what) + } + if (what !== undefined) { + Module.print(what) + Module.printErr(what) + what = JSON.stringify(what) + } else { + what = '' + } + ABORT = true + EXITSTATUS = 1 + throw 'abort(' + what + '). Build with -s ASSERTIONS=1 for more info.' + } + Module['abort'] = abort + if (Module['preInit']) { + if (typeof Module['preInit'] == 'function') + Module['preInit'] = [Module['preInit']] + while (Module['preInit'].length > 0) { + Module['preInit'].pop()() + } + } + Module['noExitRuntime'] = true + run() + function WrapperObject() {} + WrapperObject.prototype = Object.create(WrapperObject.prototype) + WrapperObject.prototype.constructor = WrapperObject + WrapperObject.prototype.__class__ = WrapperObject + WrapperObject.__cache__ = {} + Module['WrapperObject'] = WrapperObject + function getCache(__class__) { + return (__class__ || WrapperObject).__cache__ + } + Module['getCache'] = getCache + function wrapPointer(ptr, __class__) { + var cache = getCache(__class__) + var ret = cache[ptr] + if (ret) return ret + ret = Object.create((__class__ || WrapperObject).prototype) + ret.ptr = ptr + return (cache[ptr] = ret) + } + Module['wrapPointer'] = wrapPointer + function castObject(obj, __class__) { + return wrapPointer(obj.ptr, __class__) + } + Module['castObject'] = castObject + Module['NULL'] = wrapPointer(0) + function destroy(obj) { + if (!obj['__destroy__']) + throw 'Error: Cannot destroy object. (Did you create it yourself?)' + obj['__destroy__']() + delete getCache(obj.__class__)[obj.ptr] + } + Module['destroy'] = destroy + function compare(obj1, obj2) { + return obj1.ptr === obj2.ptr + } + Module['compare'] = compare + function getPointer(obj) { + return obj.ptr + } + Module['getPointer'] = getPointer + function getClass(obj) { + return obj.__class__ + } + Module['getClass'] = getClass + var ensureCache = { + buffer: 0, + size: 0, + pos: 0, + temps: [], + needed: 0, + prepare: function () { + if (ensureCache.needed) { + for (var i = 0; i < ensureCache.temps.length; i++) { + Module['_free'](ensureCache.temps[i]) + } + ensureCache.temps.length = 0 + Module['_free'](ensureCache.buffer) + ensureCache.buffer = 0 + ensureCache.size += ensureCache.needed + ensureCache.needed = 0 + } + if (!ensureCache.buffer) { + ensureCache.size += 128 + ensureCache.buffer = Module['_malloc'](ensureCache.size) + assert(ensureCache.buffer) + } + ensureCache.pos = 0 + }, + alloc: function (array, view) { + assert(ensureCache.buffer) + var bytes = view.BYTES_PER_ELEMENT + var len = array.length * bytes + len = (len + 7) & -8 + var ret + if (ensureCache.pos + len >= ensureCache.size) { + assert(len > 0) + ensureCache.needed += len + ret = Module['_malloc'](len) + ensureCache.temps.push(ret) + } else { + ret = ensureCache.buffer + ensureCache.pos + ensureCache.pos += len + } + return ret + }, + copy: function (array, view, offset) { + var offsetShifted = offset + var bytes = view.BYTES_PER_ELEMENT + switch (bytes) { + case 2: + offsetShifted >>= 1 + break + case 4: + offsetShifted >>= 2 + break + case 8: + offsetShifted >>= 3 + break + } + for (var i = 0; i < array.length; i++) { + view[offsetShifted + i] = array[i] + } + }, + } + function ensureString(value) { + if (typeof value === 'string') { + var intArray = intArrayFromString(value) + var offset = ensureCache.alloc(intArray, HEAP8) + ensureCache.copy(intArray, HEAP8, offset) + return offset + } + return value + } + function ensureInt8(value) { + if (typeof value === 'object') { + var offset = ensureCache.alloc(value, HEAP8) + ensureCache.copy(value, HEAP8, offset) + return offset + } + return value + } + function ensureInt16(value) { + if (typeof value === 'object') { + var offset = ensureCache.alloc(value, HEAP16) + ensureCache.copy(value, HEAP16, offset) + return offset + } + return value + } + function ensureInt32(value) { + if (typeof value === 'object') { + var offset = ensureCache.alloc(value, HEAP32) + ensureCache.copy(value, HEAP32, offset) + return offset + } + return value + } + function ensureFloat32(value) { + if (typeof value === 'object') { + var offset = ensureCache.alloc(value, HEAPF32) + ensureCache.copy(value, HEAPF32, offset) + return offset + } + return value + } + function PointCloud() { + this.ptr = _emscripten_bind_PointCloud_PointCloud_0() + getCache(PointCloud)[this.ptr] = this + } + PointCloud.prototype = Object.create(WrapperObject.prototype) + PointCloud.prototype.constructor = PointCloud + PointCloud.prototype.__class__ = PointCloud + PointCloud.__cache__ = {} + Module['PointCloud'] = PointCloud + PointCloud.prototype['num_attributes'] = PointCloud.prototype.num_attributes = + function () { + var self = this.ptr + return _emscripten_bind_PointCloud_num_attributes_0(self) + } + PointCloud.prototype['num_points'] = PointCloud.prototype.num_points = + function () { + var self = this.ptr + return _emscripten_bind_PointCloud_num_points_0(self) + } + PointCloud.prototype['__destroy__'] = PointCloud.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_PointCloud___destroy___0(self) + } + function ExpertEncoder(arg0) { + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + this.ptr = _emscripten_bind_ExpertEncoder_ExpertEncoder_1(arg0) + getCache(ExpertEncoder)[this.ptr] = this + } + ExpertEncoder.prototype = Object.create(WrapperObject.prototype) + ExpertEncoder.prototype.constructor = ExpertEncoder + ExpertEncoder.prototype.__class__ = ExpertEncoder + ExpertEncoder.__cache__ = {} + Module['ExpertEncoder'] = ExpertEncoder + ExpertEncoder.prototype['SetEncodingMethod'] = + ExpertEncoder.prototype.SetEncodingMethod = function (arg0) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + _emscripten_bind_ExpertEncoder_SetEncodingMethod_1(self, arg0) + } + ExpertEncoder.prototype['SetAttributeQuantization'] = + ExpertEncoder.prototype.SetAttributeQuantization = function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + _emscripten_bind_ExpertEncoder_SetAttributeQuantization_2( + self, + arg0, + arg1, + ) + } + ExpertEncoder.prototype['SetAttributeExplicitQuantization'] = + ExpertEncoder.prototype.SetAttributeExplicitQuantization = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (typeof arg3 == 'object') { + arg3 = ensureFloat32(arg3) + } + if (arg4 && typeof arg4 === 'object') arg4 = arg4.ptr + _emscripten_bind_ExpertEncoder_SetAttributeExplicitQuantization_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + ExpertEncoder.prototype['SetSpeedOptions'] = + ExpertEncoder.prototype.SetSpeedOptions = function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + _emscripten_bind_ExpertEncoder_SetSpeedOptions_2(self, arg0, arg1) + } + ExpertEncoder.prototype['SetTrackEncodedProperties'] = + ExpertEncoder.prototype.SetTrackEncodedProperties = function (arg0) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + _emscripten_bind_ExpertEncoder_SetTrackEncodedProperties_1(self, arg0) + } + ExpertEncoder.prototype['EncodeToDracoBuffer'] = + ExpertEncoder.prototype.EncodeToDracoBuffer = function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + return _emscripten_bind_ExpertEncoder_EncodeToDracoBuffer_2( + self, + arg0, + arg1, + ) + } + ExpertEncoder.prototype['GetNumberOfEncodedPoints'] = + ExpertEncoder.prototype.GetNumberOfEncodedPoints = function () { + var self = this.ptr + return _emscripten_bind_ExpertEncoder_GetNumberOfEncodedPoints_0(self) + } + ExpertEncoder.prototype['GetNumberOfEncodedFaces'] = + ExpertEncoder.prototype.GetNumberOfEncodedFaces = function () { + var self = this.ptr + return _emscripten_bind_ExpertEncoder_GetNumberOfEncodedFaces_0(self) + } + ExpertEncoder.prototype['__destroy__'] = ExpertEncoder.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_ExpertEncoder___destroy___0(self) + } + function PointAttribute() { + this.ptr = _emscripten_bind_PointAttribute_PointAttribute_0() + getCache(PointAttribute)[this.ptr] = this + } + PointAttribute.prototype = Object.create(WrapperObject.prototype) + PointAttribute.prototype.constructor = PointAttribute + PointAttribute.prototype.__class__ = PointAttribute + PointAttribute.__cache__ = {} + Module['PointAttribute'] = PointAttribute + PointAttribute.prototype['size'] = PointAttribute.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_size_0(self) + } + PointAttribute.prototype['attribute_type'] = + PointAttribute.prototype.attribute_type = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_attribute_type_0(self) + } + PointAttribute.prototype['data_type'] = PointAttribute.prototype.data_type = + function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_data_type_0(self) + } + PointAttribute.prototype['num_components'] = + PointAttribute.prototype.num_components = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_num_components_0(self) + } + PointAttribute.prototype['normalized'] = PointAttribute.prototype.normalized = + function () { + var self = this.ptr + return !!_emscripten_bind_PointAttribute_normalized_0(self) + } + PointAttribute.prototype['byte_stride'] = + PointAttribute.prototype.byte_stride = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_byte_stride_0(self) + } + PointAttribute.prototype['byte_offset'] = + PointAttribute.prototype.byte_offset = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_byte_offset_0(self) + } + PointAttribute.prototype['unique_id'] = PointAttribute.prototype.unique_id = + function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_unique_id_0(self) + } + PointAttribute.prototype['__destroy__'] = + PointAttribute.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_PointAttribute___destroy___0(self) + } + function Encoder() { + this.ptr = _emscripten_bind_Encoder_Encoder_0() + getCache(Encoder)[this.ptr] = this + } + Encoder.prototype = Object.create(WrapperObject.prototype) + Encoder.prototype.constructor = Encoder + Encoder.prototype.__class__ = Encoder + Encoder.__cache__ = {} + Module['Encoder'] = Encoder + Encoder.prototype['SetEncodingMethod'] = Encoder.prototype.SetEncodingMethod = + function (arg0) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + _emscripten_bind_Encoder_SetEncodingMethod_1(self, arg0) + } + Encoder.prototype['SetAttributeQuantization'] = + Encoder.prototype.SetAttributeQuantization = function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + _emscripten_bind_Encoder_SetAttributeQuantization_2(self, arg0, arg1) + } + Encoder.prototype['SetAttributeExplicitQuantization'] = + Encoder.prototype.SetAttributeExplicitQuantization = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (typeof arg3 == 'object') { + arg3 = ensureFloat32(arg3) + } + if (arg4 && typeof arg4 === 'object') arg4 = arg4.ptr + _emscripten_bind_Encoder_SetAttributeExplicitQuantization_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + Encoder.prototype['SetSpeedOptions'] = Encoder.prototype.SetSpeedOptions = + function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + _emscripten_bind_Encoder_SetSpeedOptions_2(self, arg0, arg1) + } + Encoder.prototype['SetTrackEncodedProperties'] = + Encoder.prototype.SetTrackEncodedProperties = function (arg0) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + _emscripten_bind_Encoder_SetTrackEncodedProperties_1(self, arg0) + } + Encoder.prototype['EncodeMeshToDracoBuffer'] = + Encoder.prototype.EncodeMeshToDracoBuffer = function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + return _emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2( + self, + arg0, + arg1, + ) + } + Encoder.prototype['EncodePointCloudToDracoBuffer'] = + Encoder.prototype.EncodePointCloudToDracoBuffer = function ( + arg0, + arg1, + arg2, + ) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + return _emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3( + self, + arg0, + arg1, + arg2, + ) + } + Encoder.prototype['GetNumberOfEncodedPoints'] = + Encoder.prototype.GetNumberOfEncodedPoints = function () { + var self = this.ptr + return _emscripten_bind_Encoder_GetNumberOfEncodedPoints_0(self) + } + Encoder.prototype['GetNumberOfEncodedFaces'] = + Encoder.prototype.GetNumberOfEncodedFaces = function () { + var self = this.ptr + return _emscripten_bind_Encoder_GetNumberOfEncodedFaces_0(self) + } + Encoder.prototype['__destroy__'] = Encoder.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_Encoder___destroy___0(self) + } + function MeshBuilder() { + this.ptr = _emscripten_bind_MeshBuilder_MeshBuilder_0() + getCache(MeshBuilder)[this.ptr] = this + } + MeshBuilder.prototype = Object.create(WrapperObject.prototype) + MeshBuilder.prototype.constructor = MeshBuilder + MeshBuilder.prototype.__class__ = MeshBuilder + MeshBuilder.__cache__ = {} + Module['MeshBuilder'] = MeshBuilder + MeshBuilder.prototype['AddFacesToMesh'] = + MeshBuilder.prototype.AddFacesToMesh = function (arg0, arg1, arg2) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (typeof arg2 == 'object') { + arg2 = ensureInt32(arg2) + } + return !!_emscripten_bind_MeshBuilder_AddFacesToMesh_3( + self, + arg0, + arg1, + arg2, + ) + } + MeshBuilder.prototype['AddFloatAttributeToMesh'] = + MeshBuilder.prototype.AddFloatAttributeToMesh = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureFloat32(arg4) + } + return _emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddInt32AttributeToMesh'] = + MeshBuilder.prototype.AddInt32AttributeToMesh = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt32(arg4) + } + return _emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddMetadataToMesh'] = + MeshBuilder.prototype.AddMetadataToMesh = function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + return !!_emscripten_bind_MeshBuilder_AddMetadataToMesh_2( + self, + arg0, + arg1, + ) + } + MeshBuilder.prototype['AddFloatAttribute'] = + MeshBuilder.prototype.AddFloatAttribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureFloat32(arg4) + } + return _emscripten_bind_MeshBuilder_AddFloatAttribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddInt8Attribute'] = + MeshBuilder.prototype.AddInt8Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt8(arg4) + } + return _emscripten_bind_MeshBuilder_AddInt8Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddUInt8Attribute'] = + MeshBuilder.prototype.AddUInt8Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt8(arg4) + } + return _emscripten_bind_MeshBuilder_AddUInt8Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddInt16Attribute'] = + MeshBuilder.prototype.AddInt16Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt16(arg4) + } + return _emscripten_bind_MeshBuilder_AddInt16Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddUInt16Attribute'] = + MeshBuilder.prototype.AddUInt16Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt16(arg4) + } + return _emscripten_bind_MeshBuilder_AddUInt16Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddInt32Attribute'] = + MeshBuilder.prototype.AddInt32Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt32(arg4) + } + return _emscripten_bind_MeshBuilder_AddInt32Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddUInt32Attribute'] = + MeshBuilder.prototype.AddUInt32Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt32(arg4) + } + return _emscripten_bind_MeshBuilder_AddUInt32Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddMetadata'] = MeshBuilder.prototype.AddMetadata = + function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + return !!_emscripten_bind_MeshBuilder_AddMetadata_2(self, arg0, arg1) + } + MeshBuilder.prototype['SetMetadataForAttribute'] = + MeshBuilder.prototype.SetMetadataForAttribute = function ( + arg0, + arg1, + arg2, + ) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + return !!_emscripten_bind_MeshBuilder_SetMetadataForAttribute_3( + self, + arg0, + arg1, + arg2, + ) + } + MeshBuilder.prototype['__destroy__'] = MeshBuilder.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_MeshBuilder___destroy___0(self) + } + function DracoInt8Array() { + this.ptr = _emscripten_bind_DracoInt8Array_DracoInt8Array_0() + getCache(DracoInt8Array)[this.ptr] = this + } + DracoInt8Array.prototype = Object.create(WrapperObject.prototype) + DracoInt8Array.prototype.constructor = DracoInt8Array + DracoInt8Array.prototype.__class__ = DracoInt8Array + DracoInt8Array.__cache__ = {} + Module['DracoInt8Array'] = DracoInt8Array + DracoInt8Array.prototype['GetValue'] = DracoInt8Array.prototype.GetValue = + function (arg0) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + return _emscripten_bind_DracoInt8Array_GetValue_1(self, arg0) + } + DracoInt8Array.prototype['size'] = DracoInt8Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoInt8Array_size_0(self) + } + DracoInt8Array.prototype['__destroy__'] = + DracoInt8Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoInt8Array___destroy___0(self) + } + function MetadataBuilder() { + this.ptr = _emscripten_bind_MetadataBuilder_MetadataBuilder_0() + getCache(MetadataBuilder)[this.ptr] = this + } + MetadataBuilder.prototype = Object.create(WrapperObject.prototype) + MetadataBuilder.prototype.constructor = MetadataBuilder + MetadataBuilder.prototype.__class__ = MetadataBuilder + MetadataBuilder.__cache__ = {} + Module['MetadataBuilder'] = MetadataBuilder + MetadataBuilder.prototype['AddStringEntry'] = + MetadataBuilder.prototype.AddStringEntry = function (arg0, arg1, arg2) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + else arg1 = ensureString(arg1) + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + else arg2 = ensureString(arg2) + return !!_emscripten_bind_MetadataBuilder_AddStringEntry_3( + self, + arg0, + arg1, + arg2, + ) + } + MetadataBuilder.prototype['AddIntEntry'] = + MetadataBuilder.prototype.AddIntEntry = function (arg0, arg1, arg2) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + else arg1 = ensureString(arg1) + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + return !!_emscripten_bind_MetadataBuilder_AddIntEntry_3( + self, + arg0, + arg1, + arg2, + ) + } + MetadataBuilder.prototype['AddDoubleEntry'] = + MetadataBuilder.prototype.AddDoubleEntry = function (arg0, arg1, arg2) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + else arg1 = ensureString(arg1) + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + return !!_emscripten_bind_MetadataBuilder_AddDoubleEntry_3( + self, + arg0, + arg1, + arg2, + ) + } + MetadataBuilder.prototype['__destroy__'] = + MetadataBuilder.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_MetadataBuilder___destroy___0(self) + } + function GeometryAttribute() { + this.ptr = _emscripten_bind_GeometryAttribute_GeometryAttribute_0() + getCache(GeometryAttribute)[this.ptr] = this + } + GeometryAttribute.prototype = Object.create(WrapperObject.prototype) + GeometryAttribute.prototype.constructor = GeometryAttribute + GeometryAttribute.prototype.__class__ = GeometryAttribute + GeometryAttribute.__cache__ = {} + Module['GeometryAttribute'] = GeometryAttribute + GeometryAttribute.prototype['__destroy__'] = + GeometryAttribute.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_GeometryAttribute___destroy___0(self) + } + function Mesh() { + this.ptr = _emscripten_bind_Mesh_Mesh_0() + getCache(Mesh)[this.ptr] = this + } + Mesh.prototype = Object.create(WrapperObject.prototype) + Mesh.prototype.constructor = Mesh + Mesh.prototype.__class__ = Mesh + Mesh.__cache__ = {} + Module['Mesh'] = Mesh + Mesh.prototype['num_faces'] = Mesh.prototype.num_faces = function () { + var self = this.ptr + return _emscripten_bind_Mesh_num_faces_0(self) + } + Mesh.prototype['num_attributes'] = Mesh.prototype.num_attributes = + function () { + var self = this.ptr + return _emscripten_bind_Mesh_num_attributes_0(self) + } + Mesh.prototype['num_points'] = Mesh.prototype.num_points = function () { + var self = this.ptr + return _emscripten_bind_Mesh_num_points_0(self) + } + Mesh.prototype['set_num_points'] = Mesh.prototype.set_num_points = function ( + arg0, + ) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + _emscripten_bind_Mesh_set_num_points_1(self, arg0) + } + Mesh.prototype['__destroy__'] = Mesh.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_Mesh___destroy___0(self) + } + function PointCloudBuilder() { + this.ptr = _emscripten_bind_PointCloudBuilder_PointCloudBuilder_0() + getCache(PointCloudBuilder)[this.ptr] = this + } + PointCloudBuilder.prototype = Object.create(WrapperObject.prototype) + PointCloudBuilder.prototype.constructor = PointCloudBuilder + PointCloudBuilder.prototype.__class__ = PointCloudBuilder + PointCloudBuilder.__cache__ = {} + Module['PointCloudBuilder'] = PointCloudBuilder + PointCloudBuilder.prototype['AddFloatAttribute'] = + PointCloudBuilder.prototype.AddFloatAttribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureFloat32(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddFloatAttribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddInt8Attribute'] = + PointCloudBuilder.prototype.AddInt8Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt8(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddInt8Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddUInt8Attribute'] = + PointCloudBuilder.prototype.AddUInt8Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt8(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddInt16Attribute'] = + PointCloudBuilder.prototype.AddInt16Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt16(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddInt16Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddUInt16Attribute'] = + PointCloudBuilder.prototype.AddUInt16Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt16(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddInt32Attribute'] = + PointCloudBuilder.prototype.AddInt32Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt32(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddInt32Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddUInt32Attribute'] = + PointCloudBuilder.prototype.AddUInt32Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt32(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddMetadata'] = + PointCloudBuilder.prototype.AddMetadata = function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + return !!_emscripten_bind_PointCloudBuilder_AddMetadata_2( + self, + arg0, + arg1, + ) + } + PointCloudBuilder.prototype['SetMetadataForAttribute'] = + PointCloudBuilder.prototype.SetMetadataForAttribute = function ( + arg0, + arg1, + arg2, + ) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + return !!_emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3( + self, + arg0, + arg1, + arg2, + ) + } + PointCloudBuilder.prototype['__destroy__'] = + PointCloudBuilder.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_PointCloudBuilder___destroy___0(self) + } + function VoidPtr() { + throw 'cannot construct a VoidPtr, no constructor in IDL' + } + VoidPtr.prototype = Object.create(WrapperObject.prototype) + VoidPtr.prototype.constructor = VoidPtr + VoidPtr.prototype.__class__ = VoidPtr + VoidPtr.__cache__ = {} + Module['VoidPtr'] = VoidPtr + VoidPtr.prototype['__destroy__'] = VoidPtr.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_VoidPtr___destroy___0(self) + } + function Metadata() { + this.ptr = _emscripten_bind_Metadata_Metadata_0() + getCache(Metadata)[this.ptr] = this + } + Metadata.prototype = Object.create(WrapperObject.prototype) + Metadata.prototype.constructor = Metadata + Metadata.prototype.__class__ = Metadata + Metadata.__cache__ = {} + Module['Metadata'] = Metadata + Metadata.prototype['__destroy__'] = Metadata.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_Metadata___destroy___0(self) + } + ;(function () { + function setupEnums() { + Module['MESH_SEQUENTIAL_ENCODING'] = + _emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING() + Module['MESH_EDGEBREAKER_ENCODING'] = + _emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING() + Module['INVALID_GEOMETRY_TYPE'] = + _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE() + Module['POINT_CLOUD'] = + _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD() + Module['TRIANGULAR_MESH'] = + _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH() + Module['INVALID'] = + _emscripten_enum_draco_GeometryAttribute_Type_INVALID() + Module['POSITION'] = + _emscripten_enum_draco_GeometryAttribute_Type_POSITION() + Module['NORMAL'] = _emscripten_enum_draco_GeometryAttribute_Type_NORMAL() + Module['COLOR'] = _emscripten_enum_draco_GeometryAttribute_Type_COLOR() + Module['TEX_COORD'] = + _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD() + Module['GENERIC'] = + _emscripten_enum_draco_GeometryAttribute_Type_GENERIC() + } + if (Module['calledRun']) setupEnums() + else addOnPreMain(setupEnums) + })() + if (typeof Module['onModuleParsed'] === 'function') { + Module['onModuleParsed']() + } - -// EMSCRIPTEN_END_ASM -(Module.asmGlobalArg,Module.asmLibraryArg,buffer);var ___cxa_can_catch=Module["___cxa_can_catch"]=asm["___cxa_can_catch"];var ___cxa_is_pointer_type=Module["___cxa_is_pointer_type"]=asm["___cxa_is_pointer_type"];var ___divdi3=Module["___divdi3"]=asm["___divdi3"];var ___muldi3=Module["___muldi3"]=asm["___muldi3"];var ___udivdi3=Module["___udivdi3"]=asm["___udivdi3"];var ___uremdi3=Module["___uremdi3"]=asm["___uremdi3"];var _bitshift64Lshr=Module["_bitshift64Lshr"]=asm["_bitshift64Lshr"];var _bitshift64Shl=Module["_bitshift64Shl"]=asm["_bitshift64Shl"];var _emscripten_bind_DracoInt8Array_DracoInt8Array_0=Module["_emscripten_bind_DracoInt8Array_DracoInt8Array_0"]=asm["_emscripten_bind_DracoInt8Array_DracoInt8Array_0"];var _emscripten_bind_DracoInt8Array_GetValue_1=Module["_emscripten_bind_DracoInt8Array_GetValue_1"]=asm["_emscripten_bind_DracoInt8Array_GetValue_1"];var _emscripten_bind_DracoInt8Array___destroy___0=Module["_emscripten_bind_DracoInt8Array___destroy___0"]=asm["_emscripten_bind_DracoInt8Array___destroy___0"];var _emscripten_bind_DracoInt8Array_size_0=Module["_emscripten_bind_DracoInt8Array_size_0"]=asm["_emscripten_bind_DracoInt8Array_size_0"];var _emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2=Module["_emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2"]=asm["_emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2"];var _emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3=Module["_emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3"]=asm["_emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3"];var _emscripten_bind_Encoder_Encoder_0=Module["_emscripten_bind_Encoder_Encoder_0"]=asm["_emscripten_bind_Encoder_Encoder_0"];var _emscripten_bind_Encoder_GetNumberOfEncodedFaces_0=Module["_emscripten_bind_Encoder_GetNumberOfEncodedFaces_0"]=asm["_emscripten_bind_Encoder_GetNumberOfEncodedFaces_0"];var _emscripten_bind_Encoder_GetNumberOfEncodedPoints_0=Module["_emscripten_bind_Encoder_GetNumberOfEncodedPoints_0"]=asm["_emscripten_bind_Encoder_GetNumberOfEncodedPoints_0"];var _emscripten_bind_Encoder_SetAttributeExplicitQuantization_5=Module["_emscripten_bind_Encoder_SetAttributeExplicitQuantization_5"]=asm["_emscripten_bind_Encoder_SetAttributeExplicitQuantization_5"];var _emscripten_bind_Encoder_SetAttributeQuantization_2=Module["_emscripten_bind_Encoder_SetAttributeQuantization_2"]=asm["_emscripten_bind_Encoder_SetAttributeQuantization_2"];var _emscripten_bind_Encoder_SetEncodingMethod_1=Module["_emscripten_bind_Encoder_SetEncodingMethod_1"]=asm["_emscripten_bind_Encoder_SetEncodingMethod_1"];var _emscripten_bind_Encoder_SetSpeedOptions_2=Module["_emscripten_bind_Encoder_SetSpeedOptions_2"]=asm["_emscripten_bind_Encoder_SetSpeedOptions_2"];var _emscripten_bind_Encoder_SetTrackEncodedProperties_1=Module["_emscripten_bind_Encoder_SetTrackEncodedProperties_1"]=asm["_emscripten_bind_Encoder_SetTrackEncodedProperties_1"];var _emscripten_bind_Encoder___destroy___0=Module["_emscripten_bind_Encoder___destroy___0"]=asm["_emscripten_bind_Encoder___destroy___0"];var _emscripten_bind_ExpertEncoder_EncodeToDracoBuffer_2=Module["_emscripten_bind_ExpertEncoder_EncodeToDracoBuffer_2"]=asm["_emscripten_bind_ExpertEncoder_EncodeToDracoBuffer_2"];var _emscripten_bind_ExpertEncoder_ExpertEncoder_1=Module["_emscripten_bind_ExpertEncoder_ExpertEncoder_1"]=asm["_emscripten_bind_ExpertEncoder_ExpertEncoder_1"];var _emscripten_bind_ExpertEncoder_GetNumberOfEncodedFaces_0=Module["_emscripten_bind_ExpertEncoder_GetNumberOfEncodedFaces_0"]=asm["_emscripten_bind_ExpertEncoder_GetNumberOfEncodedFaces_0"];var _emscripten_bind_ExpertEncoder_GetNumberOfEncodedPoints_0=Module["_emscripten_bind_ExpertEncoder_GetNumberOfEncodedPoints_0"]=asm["_emscripten_bind_ExpertEncoder_GetNumberOfEncodedPoints_0"];var _emscripten_bind_ExpertEncoder_SetAttributeExplicitQuantization_5=Module["_emscripten_bind_ExpertEncoder_SetAttributeExplicitQuantization_5"]=asm["_emscripten_bind_ExpertEncoder_SetAttributeExplicitQuantization_5"];var _emscripten_bind_ExpertEncoder_SetAttributeQuantization_2=Module["_emscripten_bind_ExpertEncoder_SetAttributeQuantization_2"]=asm["_emscripten_bind_ExpertEncoder_SetAttributeQuantization_2"];var _emscripten_bind_ExpertEncoder_SetEncodingMethod_1=Module["_emscripten_bind_ExpertEncoder_SetEncodingMethod_1"]=asm["_emscripten_bind_ExpertEncoder_SetEncodingMethod_1"];var _emscripten_bind_ExpertEncoder_SetSpeedOptions_2=Module["_emscripten_bind_ExpertEncoder_SetSpeedOptions_2"]=asm["_emscripten_bind_ExpertEncoder_SetSpeedOptions_2"];var _emscripten_bind_ExpertEncoder_SetTrackEncodedProperties_1=Module["_emscripten_bind_ExpertEncoder_SetTrackEncodedProperties_1"]=asm["_emscripten_bind_ExpertEncoder_SetTrackEncodedProperties_1"];var _emscripten_bind_ExpertEncoder___destroy___0=Module["_emscripten_bind_ExpertEncoder___destroy___0"]=asm["_emscripten_bind_ExpertEncoder___destroy___0"];var _emscripten_bind_GeometryAttribute_GeometryAttribute_0=Module["_emscripten_bind_GeometryAttribute_GeometryAttribute_0"]=asm["_emscripten_bind_GeometryAttribute_GeometryAttribute_0"];var _emscripten_bind_GeometryAttribute___destroy___0=Module["_emscripten_bind_GeometryAttribute___destroy___0"]=asm["_emscripten_bind_GeometryAttribute___destroy___0"];var _emscripten_bind_MeshBuilder_AddFacesToMesh_3=Module["_emscripten_bind_MeshBuilder_AddFacesToMesh_3"]=asm["_emscripten_bind_MeshBuilder_AddFacesToMesh_3"];var _emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5=Module["_emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5"]=asm["_emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5"];var _emscripten_bind_MeshBuilder_AddFloatAttribute_5=Module["_emscripten_bind_MeshBuilder_AddFloatAttribute_5"]=asm["_emscripten_bind_MeshBuilder_AddFloatAttribute_5"];var _emscripten_bind_MeshBuilder_AddInt16Attribute_5=Module["_emscripten_bind_MeshBuilder_AddInt16Attribute_5"]=asm["_emscripten_bind_MeshBuilder_AddInt16Attribute_5"];var _emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5=Module["_emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5"]=asm["_emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5"];var _emscripten_bind_MeshBuilder_AddInt32Attribute_5=Module["_emscripten_bind_MeshBuilder_AddInt32Attribute_5"]=asm["_emscripten_bind_MeshBuilder_AddInt32Attribute_5"];var _emscripten_bind_MeshBuilder_AddInt8Attribute_5=Module["_emscripten_bind_MeshBuilder_AddInt8Attribute_5"]=asm["_emscripten_bind_MeshBuilder_AddInt8Attribute_5"];var _emscripten_bind_MeshBuilder_AddMetadataToMesh_2=Module["_emscripten_bind_MeshBuilder_AddMetadataToMesh_2"]=asm["_emscripten_bind_MeshBuilder_AddMetadataToMesh_2"];var _emscripten_bind_MeshBuilder_AddMetadata_2=Module["_emscripten_bind_MeshBuilder_AddMetadata_2"]=asm["_emscripten_bind_MeshBuilder_AddMetadata_2"];var _emscripten_bind_MeshBuilder_AddUInt16Attribute_5=Module["_emscripten_bind_MeshBuilder_AddUInt16Attribute_5"]=asm["_emscripten_bind_MeshBuilder_AddUInt16Attribute_5"];var _emscripten_bind_MeshBuilder_AddUInt32Attribute_5=Module["_emscripten_bind_MeshBuilder_AddUInt32Attribute_5"]=asm["_emscripten_bind_MeshBuilder_AddUInt32Attribute_5"];var _emscripten_bind_MeshBuilder_AddUInt8Attribute_5=Module["_emscripten_bind_MeshBuilder_AddUInt8Attribute_5"]=asm["_emscripten_bind_MeshBuilder_AddUInt8Attribute_5"];var _emscripten_bind_MeshBuilder_MeshBuilder_0=Module["_emscripten_bind_MeshBuilder_MeshBuilder_0"]=asm["_emscripten_bind_MeshBuilder_MeshBuilder_0"];var _emscripten_bind_MeshBuilder_SetMetadataForAttribute_3=Module["_emscripten_bind_MeshBuilder_SetMetadataForAttribute_3"]=asm["_emscripten_bind_MeshBuilder_SetMetadataForAttribute_3"];var _emscripten_bind_MeshBuilder___destroy___0=Module["_emscripten_bind_MeshBuilder___destroy___0"]=asm["_emscripten_bind_MeshBuilder___destroy___0"];var _emscripten_bind_Mesh_Mesh_0=Module["_emscripten_bind_Mesh_Mesh_0"]=asm["_emscripten_bind_Mesh_Mesh_0"];var _emscripten_bind_Mesh___destroy___0=Module["_emscripten_bind_Mesh___destroy___0"]=asm["_emscripten_bind_Mesh___destroy___0"];var _emscripten_bind_Mesh_num_attributes_0=Module["_emscripten_bind_Mesh_num_attributes_0"]=asm["_emscripten_bind_Mesh_num_attributes_0"];var _emscripten_bind_Mesh_num_faces_0=Module["_emscripten_bind_Mesh_num_faces_0"]=asm["_emscripten_bind_Mesh_num_faces_0"];var _emscripten_bind_Mesh_num_points_0=Module["_emscripten_bind_Mesh_num_points_0"]=asm["_emscripten_bind_Mesh_num_points_0"];var _emscripten_bind_Mesh_set_num_points_1=Module["_emscripten_bind_Mesh_set_num_points_1"]=asm["_emscripten_bind_Mesh_set_num_points_1"];var _emscripten_bind_MetadataBuilder_AddDoubleEntry_3=Module["_emscripten_bind_MetadataBuilder_AddDoubleEntry_3"]=asm["_emscripten_bind_MetadataBuilder_AddDoubleEntry_3"];var _emscripten_bind_MetadataBuilder_AddIntEntry_3=Module["_emscripten_bind_MetadataBuilder_AddIntEntry_3"]=asm["_emscripten_bind_MetadataBuilder_AddIntEntry_3"];var _emscripten_bind_MetadataBuilder_AddStringEntry_3=Module["_emscripten_bind_MetadataBuilder_AddStringEntry_3"]=asm["_emscripten_bind_MetadataBuilder_AddStringEntry_3"];var _emscripten_bind_MetadataBuilder_MetadataBuilder_0=Module["_emscripten_bind_MetadataBuilder_MetadataBuilder_0"]=asm["_emscripten_bind_MetadataBuilder_MetadataBuilder_0"];var _emscripten_bind_MetadataBuilder___destroy___0=Module["_emscripten_bind_MetadataBuilder___destroy___0"]=asm["_emscripten_bind_MetadataBuilder___destroy___0"];var _emscripten_bind_Metadata_Metadata_0=Module["_emscripten_bind_Metadata_Metadata_0"]=asm["_emscripten_bind_Metadata_Metadata_0"];var _emscripten_bind_Metadata___destroy___0=Module["_emscripten_bind_Metadata___destroy___0"]=asm["_emscripten_bind_Metadata___destroy___0"];var _emscripten_bind_PointAttribute_PointAttribute_0=Module["_emscripten_bind_PointAttribute_PointAttribute_0"]=asm["_emscripten_bind_PointAttribute_PointAttribute_0"];var _emscripten_bind_PointAttribute___destroy___0=Module["_emscripten_bind_PointAttribute___destroy___0"]=asm["_emscripten_bind_PointAttribute___destroy___0"];var _emscripten_bind_PointAttribute_attribute_type_0=Module["_emscripten_bind_PointAttribute_attribute_type_0"]=asm["_emscripten_bind_PointAttribute_attribute_type_0"];var _emscripten_bind_PointAttribute_byte_offset_0=Module["_emscripten_bind_PointAttribute_byte_offset_0"]=asm["_emscripten_bind_PointAttribute_byte_offset_0"];var _emscripten_bind_PointAttribute_byte_stride_0=Module["_emscripten_bind_PointAttribute_byte_stride_0"]=asm["_emscripten_bind_PointAttribute_byte_stride_0"];var _emscripten_bind_PointAttribute_data_type_0=Module["_emscripten_bind_PointAttribute_data_type_0"]=asm["_emscripten_bind_PointAttribute_data_type_0"];var _emscripten_bind_PointAttribute_normalized_0=Module["_emscripten_bind_PointAttribute_normalized_0"]=asm["_emscripten_bind_PointAttribute_normalized_0"];var _emscripten_bind_PointAttribute_num_components_0=Module["_emscripten_bind_PointAttribute_num_components_0"]=asm["_emscripten_bind_PointAttribute_num_components_0"];var _emscripten_bind_PointAttribute_size_0=Module["_emscripten_bind_PointAttribute_size_0"]=asm["_emscripten_bind_PointAttribute_size_0"];var _emscripten_bind_PointAttribute_unique_id_0=Module["_emscripten_bind_PointAttribute_unique_id_0"]=asm["_emscripten_bind_PointAttribute_unique_id_0"];var _emscripten_bind_PointCloudBuilder_AddFloatAttribute_5=Module["_emscripten_bind_PointCloudBuilder_AddFloatAttribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddFloatAttribute_5"];var _emscripten_bind_PointCloudBuilder_AddInt16Attribute_5=Module["_emscripten_bind_PointCloudBuilder_AddInt16Attribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddInt16Attribute_5"];var _emscripten_bind_PointCloudBuilder_AddInt32Attribute_5=Module["_emscripten_bind_PointCloudBuilder_AddInt32Attribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddInt32Attribute_5"];var _emscripten_bind_PointCloudBuilder_AddInt8Attribute_5=Module["_emscripten_bind_PointCloudBuilder_AddInt8Attribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddInt8Attribute_5"];var _emscripten_bind_PointCloudBuilder_AddMetadata_2=Module["_emscripten_bind_PointCloudBuilder_AddMetadata_2"]=asm["_emscripten_bind_PointCloudBuilder_AddMetadata_2"];var _emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5=Module["_emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5"];var _emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5=Module["_emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5"];var _emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5=Module["_emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5"];var _emscripten_bind_PointCloudBuilder_PointCloudBuilder_0=Module["_emscripten_bind_PointCloudBuilder_PointCloudBuilder_0"]=asm["_emscripten_bind_PointCloudBuilder_PointCloudBuilder_0"];var _emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3=Module["_emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3"]=asm["_emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3"];var _emscripten_bind_PointCloudBuilder___destroy___0=Module["_emscripten_bind_PointCloudBuilder___destroy___0"]=asm["_emscripten_bind_PointCloudBuilder___destroy___0"];var _emscripten_bind_PointCloud_PointCloud_0=Module["_emscripten_bind_PointCloud_PointCloud_0"]=asm["_emscripten_bind_PointCloud_PointCloud_0"];var _emscripten_bind_PointCloud___destroy___0=Module["_emscripten_bind_PointCloud___destroy___0"]=asm["_emscripten_bind_PointCloud___destroy___0"];var _emscripten_bind_PointCloud_num_attributes_0=Module["_emscripten_bind_PointCloud_num_attributes_0"]=asm["_emscripten_bind_PointCloud_num_attributes_0"];var _emscripten_bind_PointCloud_num_points_0=Module["_emscripten_bind_PointCloud_num_points_0"]=asm["_emscripten_bind_PointCloud_num_points_0"];var _emscripten_bind_VoidPtr___destroy___0=Module["_emscripten_bind_VoidPtr___destroy___0"]=asm["_emscripten_bind_VoidPtr___destroy___0"];var _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE=Module["_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE"]=asm["_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE"];var _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD=Module["_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD"]=asm["_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD"];var _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH=Module["_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH"]=asm["_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH"];var _emscripten_enum_draco_GeometryAttribute_Type_COLOR=Module["_emscripten_enum_draco_GeometryAttribute_Type_COLOR"]=asm["_emscripten_enum_draco_GeometryAttribute_Type_COLOR"];var _emscripten_enum_draco_GeometryAttribute_Type_GENERIC=Module["_emscripten_enum_draco_GeometryAttribute_Type_GENERIC"]=asm["_emscripten_enum_draco_GeometryAttribute_Type_GENERIC"];var _emscripten_enum_draco_GeometryAttribute_Type_INVALID=Module["_emscripten_enum_draco_GeometryAttribute_Type_INVALID"]=asm["_emscripten_enum_draco_GeometryAttribute_Type_INVALID"];var _emscripten_enum_draco_GeometryAttribute_Type_NORMAL=Module["_emscripten_enum_draco_GeometryAttribute_Type_NORMAL"]=asm["_emscripten_enum_draco_GeometryAttribute_Type_NORMAL"];var _emscripten_enum_draco_GeometryAttribute_Type_POSITION=Module["_emscripten_enum_draco_GeometryAttribute_Type_POSITION"]=asm["_emscripten_enum_draco_GeometryAttribute_Type_POSITION"];var _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD=Module["_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD"]=asm["_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD"];var _emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING=Module["_emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING"]=asm["_emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING"];var _emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING=Module["_emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING"]=asm["_emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING"];var _emscripten_replace_memory=Module["_emscripten_replace_memory"]=asm["_emscripten_replace_memory"];var _free=Module["_free"]=asm["_free"];var _i64Add=Module["_i64Add"]=asm["_i64Add"];var _i64Subtract=Module["_i64Subtract"]=asm["_i64Subtract"];var _llvm_bswap_i32=Module["_llvm_bswap_i32"]=asm["_llvm_bswap_i32"];var _malloc=Module["_malloc"]=asm["_malloc"];var _memcpy=Module["_memcpy"]=asm["_memcpy"];var _memmove=Module["_memmove"]=asm["_memmove"];var _memset=Module["_memset"]=asm["_memset"];var _sbrk=Module["_sbrk"]=asm["_sbrk"];var establishStackSpace=Module["establishStackSpace"]=asm["establishStackSpace"];var getTempRet0=Module["getTempRet0"]=asm["getTempRet0"];var runPostSets=Module["runPostSets"]=asm["runPostSets"];var setTempRet0=Module["setTempRet0"]=asm["setTempRet0"];var setThrew=Module["setThrew"]=asm["setThrew"];var stackAlloc=Module["stackAlloc"]=asm["stackAlloc"];var stackRestore=Module["stackRestore"]=asm["stackRestore"];var stackSave=Module["stackSave"]=asm["stackSave"];var dynCall_ii=Module["dynCall_ii"]=asm["dynCall_ii"];var dynCall_iii=Module["dynCall_iii"]=asm["dynCall_iii"];var dynCall_iiii=Module["dynCall_iiii"]=asm["dynCall_iiii"];var dynCall_iiiiiii=Module["dynCall_iiiiiii"]=asm["dynCall_iiiiiii"];var dynCall_v=Module["dynCall_v"]=asm["dynCall_v"];var dynCall_vi=Module["dynCall_vi"]=asm["dynCall_vi"];var dynCall_vii=Module["dynCall_vii"]=asm["dynCall_vii"];var dynCall_viii=Module["dynCall_viii"]=asm["dynCall_viii"];var dynCall_viiii=Module["dynCall_viiii"]=asm["dynCall_viiii"];var dynCall_viiiii=Module["dynCall_viiiii"]=asm["dynCall_viiiii"];var dynCall_viiiiii=Module["dynCall_viiiiii"]=asm["dynCall_viiiiii"];Module["asm"]=asm;if(memoryInitializer){if(!isDataURI(memoryInitializer)){if(typeof Module["locateFile"]==="function"){memoryInitializer=Module["locateFile"](memoryInitializer)}else if(Module["memoryInitializerPrefixURL"]){memoryInitializer=Module["memoryInitializerPrefixURL"]+memoryInitializer}}if(ENVIRONMENT_IS_NODE||ENVIRONMENT_IS_SHELL){var data=Module["readBinary"](memoryInitializer);HEAPU8.set(data,GLOBAL_BASE)}else{addRunDependency("memory initializer");var applyMemoryInitializer=(function(data){if(data.byteLength)data=new Uint8Array(data);HEAPU8.set(data,GLOBAL_BASE);if(Module["memoryInitializerRequest"])delete Module["memoryInitializerRequest"].response;removeRunDependency("memory initializer")});function doBrowserLoad(){Module["readAsync"](memoryInitializer,applyMemoryInitializer,(function(){throw"could not load memory initializer "+memoryInitializer}))}var memoryInitializerBytes=tryParseAsDataURI(memoryInitializer);if(memoryInitializerBytes){applyMemoryInitializer(memoryInitializerBytes.buffer)}else if(Module["memoryInitializerRequest"]){function useRequest(){var request=Module["memoryInitializerRequest"];var response=request.response;if(request.status!==200&&request.status!==0){var data=tryParseAsDataURI(Module["memoryInitializerRequestURL"]);if(data){response=data.buffer}else{console.warn("a problem seems to have happened with Module.memoryInitializerRequest, status: "+request.status+", retrying "+memoryInitializer);doBrowserLoad();return}}applyMemoryInitializer(response)}if(Module["memoryInitializerRequest"].response){setTimeout(useRequest,0)}else{Module["memoryInitializerRequest"].addEventListener("load",useRequest)}}else{doBrowserLoad()}}}Module["then"]=(function(func){if(Module["calledRun"]){func(Module)}else{var old=Module["onRuntimeInitialized"];Module["onRuntimeInitialized"]=(function(){if(old)old();func(Module)})}return Module});function ExitStatus(status){this.name="ExitStatus";this.message="Program terminated with exit("+status+")";this.status=status}ExitStatus.prototype=new Error;ExitStatus.prototype.constructor=ExitStatus;var initialStackTop;dependenciesFulfilled=function runCaller(){if(!Module["calledRun"])run();if(!Module["calledRun"])dependenciesFulfilled=runCaller};function run(args){args=args||Module["arguments"];if(runDependencies>0){return}preRun();if(runDependencies>0)return;if(Module["calledRun"])return;function doRun(){if(Module["calledRun"])return;Module["calledRun"]=true;if(ABORT)return;ensureInitRuntime();preMain();if(Module["onRuntimeInitialized"])Module["onRuntimeInitialized"]();postRun()}if(Module["setStatus"]){Module["setStatus"]("Running...");setTimeout((function(){setTimeout((function(){Module["setStatus"]("")}),1);doRun()}),1)}else{doRun()}}Module["run"]=run;function exit(status,implicit){if(implicit&&Module["noExitRuntime"]&&status===0){return}if(Module["noExitRuntime"]){}else{ABORT=true;EXITSTATUS=status;STACKTOP=initialStackTop;exitRuntime();if(Module["onExit"])Module["onExit"](status)}if(ENVIRONMENT_IS_NODE){process["exit"](status)}Module["quit"](status,new ExitStatus(status))}Module["exit"]=exit;function abort(what){if(Module["onAbort"]){Module["onAbort"](what)}if(what!==undefined){Module.print(what);Module.printErr(what);what=JSON.stringify(what)}else{what=""}ABORT=true;EXITSTATUS=1;throw"abort("+what+"). Build with -s ASSERTIONS=1 for more info."}Module["abort"]=abort;if(Module["preInit"]){if(typeof Module["preInit"]=="function")Module["preInit"]=[Module["preInit"]];while(Module["preInit"].length>0){Module["preInit"].pop()()}}Module["noExitRuntime"]=true;run();function WrapperObject(){}WrapperObject.prototype=Object.create(WrapperObject.prototype);WrapperObject.prototype.constructor=WrapperObject;WrapperObject.prototype.__class__=WrapperObject;WrapperObject.__cache__={};Module["WrapperObject"]=WrapperObject;function getCache(__class__){return(__class__||WrapperObject).__cache__}Module["getCache"]=getCache;function wrapPointer(ptr,__class__){var cache=getCache(__class__);var ret=cache[ptr];if(ret)return ret;ret=Object.create((__class__||WrapperObject).prototype);ret.ptr=ptr;return cache[ptr]=ret}Module["wrapPointer"]=wrapPointer;function castObject(obj,__class__){return wrapPointer(obj.ptr,__class__)}Module["castObject"]=castObject;Module["NULL"]=wrapPointer(0);function destroy(obj){if(!obj["__destroy__"])throw"Error: Cannot destroy object. (Did you create it yourself?)";obj["__destroy__"]();delete getCache(obj.__class__)[obj.ptr]}Module["destroy"]=destroy;function compare(obj1,obj2){return obj1.ptr===obj2.ptr}Module["compare"]=compare;function getPointer(obj){return obj.ptr}Module["getPointer"]=getPointer;function getClass(obj){return obj.__class__}Module["getClass"]=getClass;var ensureCache={buffer:0,size:0,pos:0,temps:[],needed:0,prepare:(function(){if(ensureCache.needed){for(var i=0;i=ensureCache.size){assert(len>0);ensureCache.needed+=len;ret=Module["_malloc"](len);ensureCache.temps.push(ret)}else{ret=ensureCache.buffer+ensureCache.pos;ensureCache.pos+=len}return ret}),copy:(function(array,view,offset){var offsetShifted=offset;var bytes=view.BYTES_PER_ELEMENT;switch(bytes){case 2:offsetShifted>>=1;break;case 4:offsetShifted>>=2;break;case 8:offsetShifted>>=3;break}for(var i=0;i>>0,$jscomp.propertyToPolyfillSymbol[h]=$jscomp.IS_SYMBOL_NATIVE? -$jscomp.global.Symbol(h):$jscomp.POLYFILL_PREFIX+l+"$"+h),$jscomp.defineProperty(p,$jscomp.propertyToPolyfillSymbol[h],{configurable:!0,writable:!0,value:n})))}; -$jscomp.polyfill("Promise",function(k){function n(){this.batch_=null}function l(f){return f instanceof h?f:new h(function(q,v){q(f)})}if(k&&(!($jscomp.FORCE_POLYFILL_PROMISE||$jscomp.FORCE_POLYFILL_PROMISE_WHEN_NO_UNHANDLED_REJECTION&&"undefined"===typeof $jscomp.global.PromiseRejectionEvent)||!$jscomp.global.Promise||-1===$jscomp.global.Promise.toString().indexOf("[native code]")))return k;n.prototype.asyncExecute=function(f){if(null==this.batch_){this.batch_=[];var q=this;this.asyncExecuteFunction(function(){q.executeBatch_()})}this.batch_.push(f)}; -var p=$jscomp.global.setTimeout;n.prototype.asyncExecuteFunction=function(f){p(f,0)};n.prototype.executeBatch_=function(){for(;this.batch_&&this.batch_.length;){var f=this.batch_;this.batch_=[];for(var q=0;q=A}},"es6","es3"); -$jscomp.polyfill("Array.prototype.copyWithin",function(k){function n(l){l=Number(l);return Infinity===l||-Infinity===l?l:l|0}return k?k:function(l,p,h){var A=this.length;l=n(l);p=n(p);h=void 0===h?A:n(h);l=0>l?Math.max(A+l,0):Math.min(l,A);p=0>p?Math.max(A+p,0):Math.min(p,A);h=0>h?Math.max(A+h,0):Math.min(h,A);if(lp;)--h in this?this[--l]=this[h]:delete this[--l];return this}},"es6","es3"); -$jscomp.typedArrayCopyWithin=function(k){return k?k:Array.prototype.copyWithin};$jscomp.polyfill("Int8Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Uint8Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Uint8ClampedArray.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Int16Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5"); -$jscomp.polyfill("Uint16Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Int32Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Uint32Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Float32Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Float64Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5"); -var DracoDecoderModule=function(){var k="undefined"!==typeof document&&document.currentScript?document.currentScript.src:void 0;"undefined"!==typeof __filename&&(k=k||__filename);return function(n){function l(e){return a.locateFile?a.locateFile(e,U):U+e}function p(e,b,c){var d=b+c;for(c=b;e[c]&&!(c>=d);)++c;if(16g?d+=String.fromCharCode(g):(g-=65536,d+=String.fromCharCode(55296|g>>10,56320|g&1023))}}else d+=String.fromCharCode(g)}return d}function h(e,b){return e?p(ea,e,b):""}function A(){var e=ja.buffer;a.HEAP8=Y=new Int8Array(e);a.HEAP16=new Int16Array(e);a.HEAP32=ca=new Int32Array(e);a.HEAPU8=ea=new Uint8Array(e);a.HEAPU16=new Uint16Array(e);a.HEAPU32=V=new Uint32Array(e);a.HEAPF32=new Float32Array(e);a.HEAPF64=new Float64Array(e)}function f(e){if(a.onAbort)a.onAbort(e); -e="Aborted("+e+")";da(e);wa=!0;e=new WebAssembly.RuntimeError(e+". Build with -sASSERTIONS for more info.");ka(e);throw e;}function q(e){try{if(e==P&&fa)return new Uint8Array(fa);if(ma)return ma(e);throw"both async and sync fetching of the wasm failed";}catch(b){f(b)}}function v(){if(!fa&&(xa||ha)){if("function"==typeof fetch&&!P.startsWith("file://"))return fetch(P,{credentials:"same-origin"}).then(function(e){if(!e.ok)throw"failed to load wasm binary file at '"+P+"'";return e.arrayBuffer()}).catch(function(){return q(P)}); -if(na)return new Promise(function(e,b){na(P,function(c){e(new Uint8Array(c))},b)})}return Promise.resolve().then(function(){return q(P)})}function z(e){for(;0>2]=b};this.get_type=function(){return V[this.ptr+4>>2]};this.set_destructor=function(b){V[this.ptr+8>>2]=b};this.get_destructor=function(){return V[this.ptr+8>>2]};this.set_refcount=function(b){ca[this.ptr>>2]=b};this.set_caught=function(b){Y[this.ptr+ -12>>0]=b?1:0};this.get_caught=function(){return 0!=Y[this.ptr+12>>0]};this.set_rethrown=function(b){Y[this.ptr+13>>0]=b?1:0};this.get_rethrown=function(){return 0!=Y[this.ptr+13>>0]};this.init=function(b,c){this.set_adjusted_ptr(0);this.set_type(b);this.set_destructor(c);this.set_refcount(0);this.set_caught(!1);this.set_rethrown(!1)};this.add_ref=function(){ca[this.ptr>>2]+=1};this.release_ref=function(){var b=ca[this.ptr>>2];ca[this.ptr>>2]=b-1;return 1===b};this.set_adjusted_ptr=function(b){V[this.ptr+ -16>>2]=b};this.get_adjusted_ptr=function(){return V[this.ptr+16>>2]};this.get_exception_ptr=function(){if(ya(this.get_type()))return V[this.excPtr>>2];var b=this.get_adjusted_ptr();return 0!==b?b:this.excPtr}}function ba(){function e(){if(!la&&(la=!0,a.calledRun=!0,!wa)){za=!0;z(oa);Aa(a);if(a.onRuntimeInitialized)a.onRuntimeInitialized();if(a.postRun)for("function"==typeof a.postRun&&(a.postRun=[a.postRun]);a.postRun.length;)Ba.unshift(a.postRun.shift());z(Ba)}}if(!(0=d?b++:2047>=d?b+=2:55296<=d&&57343>= -d?(b+=4,++c):b+=3}b=Array(b+1);c=0;d=b.length;if(0=u){var X=e.charCodeAt(++g);u=65536+((u&1023)<<10)|X&1023}if(127>=u){if(c>=d)break;b[c++]=u}else{if(2047>=u){if(c+1>=d)break;b[c++]=192|u>>6}else{if(65535>=u){if(c+2>=d)break;b[c++]=224|u>>12}else{if(c+3>=d)break;b[c++]=240|u>>18;b[c++]=128|u>>12&63}b[c++]=128|u>>6&63}b[c++]=128|u&63}}b[c]=0}e=r.alloc(b,Y);r.copy(b,Y,e);return e}return e}function pa(e){if("object"===typeof e){var b= -r.alloc(e,Y);r.copy(e,Y,b);return b}return e}function Z(){throw"cannot construct a VoidPtr, no constructor in IDL";}function S(){this.ptr=Da();x(S)[this.ptr]=this}function Q(){this.ptr=Ea();x(Q)[this.ptr]=this}function W(){this.ptr=Fa();x(W)[this.ptr]=this}function w(){this.ptr=Ga();x(w)[this.ptr]=this}function C(){this.ptr=Ha();x(C)[this.ptr]=this}function F(){this.ptr=Ia();x(F)[this.ptr]=this}function G(){this.ptr=Ja();x(G)[this.ptr]=this}function E(){this.ptr=Ka();x(E)[this.ptr]=this}function T(){this.ptr= -La();x(T)[this.ptr]=this}function B(){throw"cannot construct a Status, no constructor in IDL";}function H(){this.ptr=Ma();x(H)[this.ptr]=this}function I(){this.ptr=Na();x(I)[this.ptr]=this}function J(){this.ptr=Oa();x(J)[this.ptr]=this}function K(){this.ptr=Pa();x(K)[this.ptr]=this}function L(){this.ptr=Qa();x(L)[this.ptr]=this}function M(){this.ptr=Ra();x(M)[this.ptr]=this}function N(){this.ptr=Sa();x(N)[this.ptr]=this}function y(){this.ptr=Ta();x(y)[this.ptr]=this}function m(){this.ptr=Ua();x(m)[this.ptr]= -this}n=void 0===n?{}:n;var a="undefined"!=typeof n?n:{},Aa,ka;a.ready=new Promise(function(e,b){Aa=e;ka=b});var Va=!1,Wa=!1;a.onRuntimeInitialized=function(){Va=!0;if(Wa&&"function"===typeof a.onModuleLoaded)a.onModuleLoaded(a)};a.onModuleParsed=function(){Wa=!0;if(Va&&"function"===typeof a.onModuleLoaded)a.onModuleLoaded(a)};a.isVersionSupported=function(e){if("string"!==typeof e)return!1;e=e.split(".");return 2>e.length||3=e[1]?!0:0!=e[0]||10>>=0;if(2147483648=c;c*=2){var d=b*(1+.2/c);d=Math.min(d,e+100663296);var g=Math;d=Math.max(e,d);g=g.min.call(g,2147483648,d+(65536-d%65536)%65536);a:{d=ja.buffer;try{ja.grow(g-d.byteLength+65535>>>16);A();var u=1;break a}catch(X){}u=void 0}if(u)return!0}return!1},f:function(e){return 52},d:function(e,b,c,d,g){return 70},c:function(e,b,c,d){for(var g=0,u=0;u>2],ab=V[b+4>>2];b+=8;for(var sa=0;sa>2]=g;return 0}};(function(){function e(g,u){a.asm=g.exports;ja=a.asm.h;A();oa.unshift(a.asm.i);aa--;a.monitorRunDependencies&&a.monitorRunDependencies(aa);0==aa&&(null!==ra&&(clearInterval(ra),ra=null),ia&&(g=ia,ia=null,g()))}function b(g){e(g.instance)}function c(g){return v().then(function(u){return WebAssembly.instantiate(u,d)}).then(function(u){return u}).then(g,function(u){da("failed to asynchronously prepare wasm: "+u);f(u)})}var d={a:xd};aa++;a.monitorRunDependencies&&a.monitorRunDependencies(aa); -if(a.instantiateWasm)try{return a.instantiateWasm(d,e)}catch(g){da("Module.instantiateWasm callback failed with error: "+g),ka(g)}(function(){return fa||"function"!=typeof WebAssembly.instantiateStreaming||P.startsWith("data:application/octet-stream;base64,")||P.startsWith("file://")||Ya||"function"!=typeof fetch?c(b):fetch(P,{credentials:"same-origin"}).then(function(g){return WebAssembly.instantiateStreaming(g,d).then(b,function(u){da("wasm streaming compile failed: "+u);da("falling back to ArrayBuffer instantiation"); -return c(b)})})})().catch(ka);return{}})();var bb=a._emscripten_bind_VoidPtr___destroy___0=function(){return(bb=a._emscripten_bind_VoidPtr___destroy___0=a.asm.k).apply(null,arguments)},Da=a._emscripten_bind_DecoderBuffer_DecoderBuffer_0=function(){return(Da=a._emscripten_bind_DecoderBuffer_DecoderBuffer_0=a.asm.l).apply(null,arguments)},cb=a._emscripten_bind_DecoderBuffer_Init_2=function(){return(cb=a._emscripten_bind_DecoderBuffer_Init_2=a.asm.m).apply(null,arguments)},db=a._emscripten_bind_DecoderBuffer___destroy___0= -function(){return(db=a._emscripten_bind_DecoderBuffer___destroy___0=a.asm.n).apply(null,arguments)},Ea=a._emscripten_bind_AttributeTransformData_AttributeTransformData_0=function(){return(Ea=a._emscripten_bind_AttributeTransformData_AttributeTransformData_0=a.asm.o).apply(null,arguments)},eb=a._emscripten_bind_AttributeTransformData_transform_type_0=function(){return(eb=a._emscripten_bind_AttributeTransformData_transform_type_0=a.asm.p).apply(null,arguments)},fb=a._emscripten_bind_AttributeTransformData___destroy___0= -function(){return(fb=a._emscripten_bind_AttributeTransformData___destroy___0=a.asm.q).apply(null,arguments)},Fa=a._emscripten_bind_GeometryAttribute_GeometryAttribute_0=function(){return(Fa=a._emscripten_bind_GeometryAttribute_GeometryAttribute_0=a.asm.r).apply(null,arguments)},gb=a._emscripten_bind_GeometryAttribute___destroy___0=function(){return(gb=a._emscripten_bind_GeometryAttribute___destroy___0=a.asm.s).apply(null,arguments)},Ga=a._emscripten_bind_PointAttribute_PointAttribute_0=function(){return(Ga= -a._emscripten_bind_PointAttribute_PointAttribute_0=a.asm.t).apply(null,arguments)},hb=a._emscripten_bind_PointAttribute_size_0=function(){return(hb=a._emscripten_bind_PointAttribute_size_0=a.asm.u).apply(null,arguments)},ib=a._emscripten_bind_PointAttribute_GetAttributeTransformData_0=function(){return(ib=a._emscripten_bind_PointAttribute_GetAttributeTransformData_0=a.asm.v).apply(null,arguments)},jb=a._emscripten_bind_PointAttribute_attribute_type_0=function(){return(jb=a._emscripten_bind_PointAttribute_attribute_type_0= -a.asm.w).apply(null,arguments)},kb=a._emscripten_bind_PointAttribute_data_type_0=function(){return(kb=a._emscripten_bind_PointAttribute_data_type_0=a.asm.x).apply(null,arguments)},lb=a._emscripten_bind_PointAttribute_num_components_0=function(){return(lb=a._emscripten_bind_PointAttribute_num_components_0=a.asm.y).apply(null,arguments)},mb=a._emscripten_bind_PointAttribute_normalized_0=function(){return(mb=a._emscripten_bind_PointAttribute_normalized_0=a.asm.z).apply(null,arguments)},nb=a._emscripten_bind_PointAttribute_byte_stride_0= -function(){return(nb=a._emscripten_bind_PointAttribute_byte_stride_0=a.asm.A).apply(null,arguments)},ob=a._emscripten_bind_PointAttribute_byte_offset_0=function(){return(ob=a._emscripten_bind_PointAttribute_byte_offset_0=a.asm.B).apply(null,arguments)},pb=a._emscripten_bind_PointAttribute_unique_id_0=function(){return(pb=a._emscripten_bind_PointAttribute_unique_id_0=a.asm.C).apply(null,arguments)},qb=a._emscripten_bind_PointAttribute___destroy___0=function(){return(qb=a._emscripten_bind_PointAttribute___destroy___0= -a.asm.D).apply(null,arguments)},Ha=a._emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0=function(){return(Ha=a._emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0=a.asm.E).apply(null,arguments)},rb=a._emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1=function(){return(rb=a._emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1=a.asm.F).apply(null,arguments)},sb=a._emscripten_bind_AttributeQuantizationTransform_quantization_bits_0= -function(){return(sb=a._emscripten_bind_AttributeQuantizationTransform_quantization_bits_0=a.asm.G).apply(null,arguments)},tb=a._emscripten_bind_AttributeQuantizationTransform_min_value_1=function(){return(tb=a._emscripten_bind_AttributeQuantizationTransform_min_value_1=a.asm.H).apply(null,arguments)},ub=a._emscripten_bind_AttributeQuantizationTransform_range_0=function(){return(ub=a._emscripten_bind_AttributeQuantizationTransform_range_0=a.asm.I).apply(null,arguments)},vb=a._emscripten_bind_AttributeQuantizationTransform___destroy___0= -function(){return(vb=a._emscripten_bind_AttributeQuantizationTransform___destroy___0=a.asm.J).apply(null,arguments)},Ia=a._emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0=function(){return(Ia=a._emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0=a.asm.K).apply(null,arguments)},wb=a._emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1=function(){return(wb=a._emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1=a.asm.L).apply(null, -arguments)},xb=a._emscripten_bind_AttributeOctahedronTransform_quantization_bits_0=function(){return(xb=a._emscripten_bind_AttributeOctahedronTransform_quantization_bits_0=a.asm.M).apply(null,arguments)},yb=a._emscripten_bind_AttributeOctahedronTransform___destroy___0=function(){return(yb=a._emscripten_bind_AttributeOctahedronTransform___destroy___0=a.asm.N).apply(null,arguments)},Ja=a._emscripten_bind_PointCloud_PointCloud_0=function(){return(Ja=a._emscripten_bind_PointCloud_PointCloud_0=a.asm.O).apply(null, -arguments)},zb=a._emscripten_bind_PointCloud_num_attributes_0=function(){return(zb=a._emscripten_bind_PointCloud_num_attributes_0=a.asm.P).apply(null,arguments)},Ab=a._emscripten_bind_PointCloud_num_points_0=function(){return(Ab=a._emscripten_bind_PointCloud_num_points_0=a.asm.Q).apply(null,arguments)},Bb=a._emscripten_bind_PointCloud___destroy___0=function(){return(Bb=a._emscripten_bind_PointCloud___destroy___0=a.asm.R).apply(null,arguments)},Ka=a._emscripten_bind_Mesh_Mesh_0=function(){return(Ka= -a._emscripten_bind_Mesh_Mesh_0=a.asm.S).apply(null,arguments)},Cb=a._emscripten_bind_Mesh_num_faces_0=function(){return(Cb=a._emscripten_bind_Mesh_num_faces_0=a.asm.T).apply(null,arguments)},Db=a._emscripten_bind_Mesh_num_attributes_0=function(){return(Db=a._emscripten_bind_Mesh_num_attributes_0=a.asm.U).apply(null,arguments)},Eb=a._emscripten_bind_Mesh_num_points_0=function(){return(Eb=a._emscripten_bind_Mesh_num_points_0=a.asm.V).apply(null,arguments)},Fb=a._emscripten_bind_Mesh___destroy___0=function(){return(Fb= -a._emscripten_bind_Mesh___destroy___0=a.asm.W).apply(null,arguments)},La=a._emscripten_bind_Metadata_Metadata_0=function(){return(La=a._emscripten_bind_Metadata_Metadata_0=a.asm.X).apply(null,arguments)},Gb=a._emscripten_bind_Metadata___destroy___0=function(){return(Gb=a._emscripten_bind_Metadata___destroy___0=a.asm.Y).apply(null,arguments)},Hb=a._emscripten_bind_Status_code_0=function(){return(Hb=a._emscripten_bind_Status_code_0=a.asm.Z).apply(null,arguments)},Ib=a._emscripten_bind_Status_ok_0=function(){return(Ib= -a._emscripten_bind_Status_ok_0=a.asm._).apply(null,arguments)},Jb=a._emscripten_bind_Status_error_msg_0=function(){return(Jb=a._emscripten_bind_Status_error_msg_0=a.asm.$).apply(null,arguments)},Kb=a._emscripten_bind_Status___destroy___0=function(){return(Kb=a._emscripten_bind_Status___destroy___0=a.asm.aa).apply(null,arguments)},Ma=a._emscripten_bind_DracoFloat32Array_DracoFloat32Array_0=function(){return(Ma=a._emscripten_bind_DracoFloat32Array_DracoFloat32Array_0=a.asm.ba).apply(null,arguments)}, -Lb=a._emscripten_bind_DracoFloat32Array_GetValue_1=function(){return(Lb=a._emscripten_bind_DracoFloat32Array_GetValue_1=a.asm.ca).apply(null,arguments)},Mb=a._emscripten_bind_DracoFloat32Array_size_0=function(){return(Mb=a._emscripten_bind_DracoFloat32Array_size_0=a.asm.da).apply(null,arguments)},Nb=a._emscripten_bind_DracoFloat32Array___destroy___0=function(){return(Nb=a._emscripten_bind_DracoFloat32Array___destroy___0=a.asm.ea).apply(null,arguments)},Na=a._emscripten_bind_DracoInt8Array_DracoInt8Array_0= -function(){return(Na=a._emscripten_bind_DracoInt8Array_DracoInt8Array_0=a.asm.fa).apply(null,arguments)},Ob=a._emscripten_bind_DracoInt8Array_GetValue_1=function(){return(Ob=a._emscripten_bind_DracoInt8Array_GetValue_1=a.asm.ga).apply(null,arguments)},Pb=a._emscripten_bind_DracoInt8Array_size_0=function(){return(Pb=a._emscripten_bind_DracoInt8Array_size_0=a.asm.ha).apply(null,arguments)},Qb=a._emscripten_bind_DracoInt8Array___destroy___0=function(){return(Qb=a._emscripten_bind_DracoInt8Array___destroy___0= -a.asm.ia).apply(null,arguments)},Oa=a._emscripten_bind_DracoUInt8Array_DracoUInt8Array_0=function(){return(Oa=a._emscripten_bind_DracoUInt8Array_DracoUInt8Array_0=a.asm.ja).apply(null,arguments)},Rb=a._emscripten_bind_DracoUInt8Array_GetValue_1=function(){return(Rb=a._emscripten_bind_DracoUInt8Array_GetValue_1=a.asm.ka).apply(null,arguments)},Sb=a._emscripten_bind_DracoUInt8Array_size_0=function(){return(Sb=a._emscripten_bind_DracoUInt8Array_size_0=a.asm.la).apply(null,arguments)},Tb=a._emscripten_bind_DracoUInt8Array___destroy___0= -function(){return(Tb=a._emscripten_bind_DracoUInt8Array___destroy___0=a.asm.ma).apply(null,arguments)},Pa=a._emscripten_bind_DracoInt16Array_DracoInt16Array_0=function(){return(Pa=a._emscripten_bind_DracoInt16Array_DracoInt16Array_0=a.asm.na).apply(null,arguments)},Ub=a._emscripten_bind_DracoInt16Array_GetValue_1=function(){return(Ub=a._emscripten_bind_DracoInt16Array_GetValue_1=a.asm.oa).apply(null,arguments)},Vb=a._emscripten_bind_DracoInt16Array_size_0=function(){return(Vb=a._emscripten_bind_DracoInt16Array_size_0= -a.asm.pa).apply(null,arguments)},Wb=a._emscripten_bind_DracoInt16Array___destroy___0=function(){return(Wb=a._emscripten_bind_DracoInt16Array___destroy___0=a.asm.qa).apply(null,arguments)},Qa=a._emscripten_bind_DracoUInt16Array_DracoUInt16Array_0=function(){return(Qa=a._emscripten_bind_DracoUInt16Array_DracoUInt16Array_0=a.asm.ra).apply(null,arguments)},Xb=a._emscripten_bind_DracoUInt16Array_GetValue_1=function(){return(Xb=a._emscripten_bind_DracoUInt16Array_GetValue_1=a.asm.sa).apply(null,arguments)}, -Yb=a._emscripten_bind_DracoUInt16Array_size_0=function(){return(Yb=a._emscripten_bind_DracoUInt16Array_size_0=a.asm.ta).apply(null,arguments)},Zb=a._emscripten_bind_DracoUInt16Array___destroy___0=function(){return(Zb=a._emscripten_bind_DracoUInt16Array___destroy___0=a.asm.ua).apply(null,arguments)},Ra=a._emscripten_bind_DracoInt32Array_DracoInt32Array_0=function(){return(Ra=a._emscripten_bind_DracoInt32Array_DracoInt32Array_0=a.asm.va).apply(null,arguments)},$b=a._emscripten_bind_DracoInt32Array_GetValue_1= -function(){return($b=a._emscripten_bind_DracoInt32Array_GetValue_1=a.asm.wa).apply(null,arguments)},ac=a._emscripten_bind_DracoInt32Array_size_0=function(){return(ac=a._emscripten_bind_DracoInt32Array_size_0=a.asm.xa).apply(null,arguments)},bc=a._emscripten_bind_DracoInt32Array___destroy___0=function(){return(bc=a._emscripten_bind_DracoInt32Array___destroy___0=a.asm.ya).apply(null,arguments)},Sa=a._emscripten_bind_DracoUInt32Array_DracoUInt32Array_0=function(){return(Sa=a._emscripten_bind_DracoUInt32Array_DracoUInt32Array_0= -a.asm.za).apply(null,arguments)},cc=a._emscripten_bind_DracoUInt32Array_GetValue_1=function(){return(cc=a._emscripten_bind_DracoUInt32Array_GetValue_1=a.asm.Aa).apply(null,arguments)},dc=a._emscripten_bind_DracoUInt32Array_size_0=function(){return(dc=a._emscripten_bind_DracoUInt32Array_size_0=a.asm.Ba).apply(null,arguments)},ec=a._emscripten_bind_DracoUInt32Array___destroy___0=function(){return(ec=a._emscripten_bind_DracoUInt32Array___destroy___0=a.asm.Ca).apply(null,arguments)},Ta=a._emscripten_bind_MetadataQuerier_MetadataQuerier_0= -function(){return(Ta=a._emscripten_bind_MetadataQuerier_MetadataQuerier_0=a.asm.Da).apply(null,arguments)},fc=a._emscripten_bind_MetadataQuerier_HasEntry_2=function(){return(fc=a._emscripten_bind_MetadataQuerier_HasEntry_2=a.asm.Ea).apply(null,arguments)},gc=a._emscripten_bind_MetadataQuerier_GetIntEntry_2=function(){return(gc=a._emscripten_bind_MetadataQuerier_GetIntEntry_2=a.asm.Fa).apply(null,arguments)},hc=a._emscripten_bind_MetadataQuerier_GetIntEntryArray_3=function(){return(hc=a._emscripten_bind_MetadataQuerier_GetIntEntryArray_3= -a.asm.Ga).apply(null,arguments)},ic=a._emscripten_bind_MetadataQuerier_GetDoubleEntry_2=function(){return(ic=a._emscripten_bind_MetadataQuerier_GetDoubleEntry_2=a.asm.Ha).apply(null,arguments)},jc=a._emscripten_bind_MetadataQuerier_GetStringEntry_2=function(){return(jc=a._emscripten_bind_MetadataQuerier_GetStringEntry_2=a.asm.Ia).apply(null,arguments)},kc=a._emscripten_bind_MetadataQuerier_NumEntries_1=function(){return(kc=a._emscripten_bind_MetadataQuerier_NumEntries_1=a.asm.Ja).apply(null,arguments)}, -lc=a._emscripten_bind_MetadataQuerier_GetEntryName_2=function(){return(lc=a._emscripten_bind_MetadataQuerier_GetEntryName_2=a.asm.Ka).apply(null,arguments)},mc=a._emscripten_bind_MetadataQuerier___destroy___0=function(){return(mc=a._emscripten_bind_MetadataQuerier___destroy___0=a.asm.La).apply(null,arguments)},Ua=a._emscripten_bind_Decoder_Decoder_0=function(){return(Ua=a._emscripten_bind_Decoder_Decoder_0=a.asm.Ma).apply(null,arguments)},nc=a._emscripten_bind_Decoder_DecodeArrayToPointCloud_3=function(){return(nc= -a._emscripten_bind_Decoder_DecodeArrayToPointCloud_3=a.asm.Na).apply(null,arguments)},oc=a._emscripten_bind_Decoder_DecodeArrayToMesh_3=function(){return(oc=a._emscripten_bind_Decoder_DecodeArrayToMesh_3=a.asm.Oa).apply(null,arguments)},pc=a._emscripten_bind_Decoder_GetAttributeId_2=function(){return(pc=a._emscripten_bind_Decoder_GetAttributeId_2=a.asm.Pa).apply(null,arguments)},qc=a._emscripten_bind_Decoder_GetAttributeIdByName_2=function(){return(qc=a._emscripten_bind_Decoder_GetAttributeIdByName_2= -a.asm.Qa).apply(null,arguments)},rc=a._emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3=function(){return(rc=a._emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3=a.asm.Ra).apply(null,arguments)},sc=a._emscripten_bind_Decoder_GetAttribute_2=function(){return(sc=a._emscripten_bind_Decoder_GetAttribute_2=a.asm.Sa).apply(null,arguments)},tc=a._emscripten_bind_Decoder_GetAttributeByUniqueId_2=function(){return(tc=a._emscripten_bind_Decoder_GetAttributeByUniqueId_2=a.asm.Ta).apply(null,arguments)}, -uc=a._emscripten_bind_Decoder_GetMetadata_1=function(){return(uc=a._emscripten_bind_Decoder_GetMetadata_1=a.asm.Ua).apply(null,arguments)},vc=a._emscripten_bind_Decoder_GetAttributeMetadata_2=function(){return(vc=a._emscripten_bind_Decoder_GetAttributeMetadata_2=a.asm.Va).apply(null,arguments)},wc=a._emscripten_bind_Decoder_GetFaceFromMesh_3=function(){return(wc=a._emscripten_bind_Decoder_GetFaceFromMesh_3=a.asm.Wa).apply(null,arguments)},xc=a._emscripten_bind_Decoder_GetTriangleStripsFromMesh_2= -function(){return(xc=a._emscripten_bind_Decoder_GetTriangleStripsFromMesh_2=a.asm.Xa).apply(null,arguments)},yc=a._emscripten_bind_Decoder_GetTrianglesUInt16Array_3=function(){return(yc=a._emscripten_bind_Decoder_GetTrianglesUInt16Array_3=a.asm.Ya).apply(null,arguments)},zc=a._emscripten_bind_Decoder_GetTrianglesUInt32Array_3=function(){return(zc=a._emscripten_bind_Decoder_GetTrianglesUInt32Array_3=a.asm.Za).apply(null,arguments)},Ac=a._emscripten_bind_Decoder_GetAttributeFloat_3=function(){return(Ac= -a._emscripten_bind_Decoder_GetAttributeFloat_3=a.asm._a).apply(null,arguments)},Bc=a._emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3=function(){return(Bc=a._emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3=a.asm.$a).apply(null,arguments)},Cc=a._emscripten_bind_Decoder_GetAttributeIntForAllPoints_3=function(){return(Cc=a._emscripten_bind_Decoder_GetAttributeIntForAllPoints_3=a.asm.ab).apply(null,arguments)},Dc=a._emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3=function(){return(Dc= -a._emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3=a.asm.bb).apply(null,arguments)},Ec=a._emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3=function(){return(Ec=a._emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3=a.asm.cb).apply(null,arguments)},Fc=a._emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3=function(){return(Fc=a._emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3=a.asm.db).apply(null,arguments)},Gc=a._emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3= -function(){return(Gc=a._emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3=a.asm.eb).apply(null,arguments)},Hc=a._emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3=function(){return(Hc=a._emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3=a.asm.fb).apply(null,arguments)},Ic=a._emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3=function(){return(Ic=a._emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3=a.asm.gb).apply(null,arguments)},Jc=a._emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5= -function(){return(Jc=a._emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5=a.asm.hb).apply(null,arguments)},Kc=a._emscripten_bind_Decoder_SkipAttributeTransform_1=function(){return(Kc=a._emscripten_bind_Decoder_SkipAttributeTransform_1=a.asm.ib).apply(null,arguments)},Lc=a._emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1=function(){return(Lc=a._emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1=a.asm.jb).apply(null,arguments)},Mc=a._emscripten_bind_Decoder_DecodeBufferToPointCloud_2= -function(){return(Mc=a._emscripten_bind_Decoder_DecodeBufferToPointCloud_2=a.asm.kb).apply(null,arguments)},Nc=a._emscripten_bind_Decoder_DecodeBufferToMesh_2=function(){return(Nc=a._emscripten_bind_Decoder_DecodeBufferToMesh_2=a.asm.lb).apply(null,arguments)},Oc=a._emscripten_bind_Decoder___destroy___0=function(){return(Oc=a._emscripten_bind_Decoder___destroy___0=a.asm.mb).apply(null,arguments)},Pc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM=function(){return(Pc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM= -a.asm.nb).apply(null,arguments)},Qc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM=function(){return(Qc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM=a.asm.ob).apply(null,arguments)},Rc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM=function(){return(Rc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM=a.asm.pb).apply(null,arguments)},Sc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM= -function(){return(Sc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM=a.asm.qb).apply(null,arguments)},Tc=a._emscripten_enum_draco_GeometryAttribute_Type_INVALID=function(){return(Tc=a._emscripten_enum_draco_GeometryAttribute_Type_INVALID=a.asm.rb).apply(null,arguments)},Uc=a._emscripten_enum_draco_GeometryAttribute_Type_POSITION=function(){return(Uc=a._emscripten_enum_draco_GeometryAttribute_Type_POSITION=a.asm.sb).apply(null,arguments)},Vc=a._emscripten_enum_draco_GeometryAttribute_Type_NORMAL= -function(){return(Vc=a._emscripten_enum_draco_GeometryAttribute_Type_NORMAL=a.asm.tb).apply(null,arguments)},Wc=a._emscripten_enum_draco_GeometryAttribute_Type_COLOR=function(){return(Wc=a._emscripten_enum_draco_GeometryAttribute_Type_COLOR=a.asm.ub).apply(null,arguments)},Xc=a._emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD=function(){return(Xc=a._emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD=a.asm.vb).apply(null,arguments)},Yc=a._emscripten_enum_draco_GeometryAttribute_Type_GENERIC= -function(){return(Yc=a._emscripten_enum_draco_GeometryAttribute_Type_GENERIC=a.asm.wb).apply(null,arguments)},Zc=a._emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE=function(){return(Zc=a._emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE=a.asm.xb).apply(null,arguments)},$c=a._emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD=function(){return($c=a._emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD=a.asm.yb).apply(null,arguments)},ad=a._emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH= -function(){return(ad=a._emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH=a.asm.zb).apply(null,arguments)},bd=a._emscripten_enum_draco_DataType_DT_INVALID=function(){return(bd=a._emscripten_enum_draco_DataType_DT_INVALID=a.asm.Ab).apply(null,arguments)},cd=a._emscripten_enum_draco_DataType_DT_INT8=function(){return(cd=a._emscripten_enum_draco_DataType_DT_INT8=a.asm.Bb).apply(null,arguments)},dd=a._emscripten_enum_draco_DataType_DT_UINT8=function(){return(dd=a._emscripten_enum_draco_DataType_DT_UINT8= -a.asm.Cb).apply(null,arguments)},ed=a._emscripten_enum_draco_DataType_DT_INT16=function(){return(ed=a._emscripten_enum_draco_DataType_DT_INT16=a.asm.Db).apply(null,arguments)},fd=a._emscripten_enum_draco_DataType_DT_UINT16=function(){return(fd=a._emscripten_enum_draco_DataType_DT_UINT16=a.asm.Eb).apply(null,arguments)},gd=a._emscripten_enum_draco_DataType_DT_INT32=function(){return(gd=a._emscripten_enum_draco_DataType_DT_INT32=a.asm.Fb).apply(null,arguments)},hd=a._emscripten_enum_draco_DataType_DT_UINT32= -function(){return(hd=a._emscripten_enum_draco_DataType_DT_UINT32=a.asm.Gb).apply(null,arguments)},id=a._emscripten_enum_draco_DataType_DT_INT64=function(){return(id=a._emscripten_enum_draco_DataType_DT_INT64=a.asm.Hb).apply(null,arguments)},jd=a._emscripten_enum_draco_DataType_DT_UINT64=function(){return(jd=a._emscripten_enum_draco_DataType_DT_UINT64=a.asm.Ib).apply(null,arguments)},kd=a._emscripten_enum_draco_DataType_DT_FLOAT32=function(){return(kd=a._emscripten_enum_draco_DataType_DT_FLOAT32=a.asm.Jb).apply(null, -arguments)},ld=a._emscripten_enum_draco_DataType_DT_FLOAT64=function(){return(ld=a._emscripten_enum_draco_DataType_DT_FLOAT64=a.asm.Kb).apply(null,arguments)},md=a._emscripten_enum_draco_DataType_DT_BOOL=function(){return(md=a._emscripten_enum_draco_DataType_DT_BOOL=a.asm.Lb).apply(null,arguments)},nd=a._emscripten_enum_draco_DataType_DT_TYPES_COUNT=function(){return(nd=a._emscripten_enum_draco_DataType_DT_TYPES_COUNT=a.asm.Mb).apply(null,arguments)},od=a._emscripten_enum_draco_StatusCode_OK=function(){return(od= -a._emscripten_enum_draco_StatusCode_OK=a.asm.Nb).apply(null,arguments)},pd=a._emscripten_enum_draco_StatusCode_DRACO_ERROR=function(){return(pd=a._emscripten_enum_draco_StatusCode_DRACO_ERROR=a.asm.Ob).apply(null,arguments)},qd=a._emscripten_enum_draco_StatusCode_IO_ERROR=function(){return(qd=a._emscripten_enum_draco_StatusCode_IO_ERROR=a.asm.Pb).apply(null,arguments)},rd=a._emscripten_enum_draco_StatusCode_INVALID_PARAMETER=function(){return(rd=a._emscripten_enum_draco_StatusCode_INVALID_PARAMETER= -a.asm.Qb).apply(null,arguments)},sd=a._emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION=function(){return(sd=a._emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION=a.asm.Rb).apply(null,arguments)},td=a._emscripten_enum_draco_StatusCode_UNKNOWN_VERSION=function(){return(td=a._emscripten_enum_draco_StatusCode_UNKNOWN_VERSION=a.asm.Sb).apply(null,arguments)};a._malloc=function(){return(a._malloc=a.asm.Tb).apply(null,arguments)};a._free=function(){return(a._free=a.asm.Ub).apply(null,arguments)}; -var ya=function(){return(ya=a.asm.Vb).apply(null,arguments)};a.___start_em_js=15856;a.___stop_em_js=15954;var la;ia=function b(){la||ba();la||(ia=b)};if(a.preInit)for("function"==typeof a.preInit&&(a.preInit=[a.preInit]);0=r.size?(0>>=0;switch(c.BYTES_PER_ELEMENT){case 2:d>>>=1;break;case 4:d>>>=2;break;case 8:d>>>=3}for(var g=0;gb.byteLength)return a.INVALID_GEOMETRY_TYPE;switch(b[7]){case 0:return a.POINT_CLOUD;case 1:return a.TRIANGULAR_MESH;default:return a.INVALID_GEOMETRY_TYPE}};return n.ready}}(); -"object"===typeof exports&&"object"===typeof module?module.exports=DracoDecoderModule:"function"===typeof define&&define.amd?define([],function(){return DracoDecoderModule}):"object"===typeof exports&&(exports.DracoDecoderModule=DracoDecoderModule); +var $jscomp = $jscomp || {} +$jscomp.scope = {} +$jscomp.arrayIteratorImpl = function (k) { + var n = 0 + return function () { + return n < k.length ? { done: !1, value: k[n++] } : { done: !0 } + } +} +$jscomp.arrayIterator = function (k) { + return { next: $jscomp.arrayIteratorImpl(k) } +} +$jscomp.makeIterator = function (k) { + var n = 'undefined' != typeof Symbol && Symbol.iterator && k[Symbol.iterator] + return n ? n.call(k) : $jscomp.arrayIterator(k) +} +$jscomp.ASSUME_ES5 = !1 +$jscomp.ASSUME_NO_NATIVE_MAP = !1 +$jscomp.ASSUME_NO_NATIVE_SET = !1 +$jscomp.SIMPLE_FROUND_POLYFILL = !1 +$jscomp.ISOLATE_POLYFILLS = !1 +$jscomp.FORCE_POLYFILL_PROMISE = !1 +$jscomp.FORCE_POLYFILL_PROMISE_WHEN_NO_UNHANDLED_REJECTION = !1 +$jscomp.getGlobal = function (k) { + k = [ + 'object' == typeof globalThis && globalThis, + k, + 'object' == typeof window && window, + 'object' == typeof self && self, + 'object' == typeof global && global, + ] + for (var n = 0; n < k.length; ++n) { + var l = k[n] + if (l && l.Math == Math) return l + } + throw Error('Cannot find global object') +} +$jscomp.global = $jscomp.getGlobal(this) +$jscomp.defineProperty = + $jscomp.ASSUME_ES5 || 'function' == typeof Object.defineProperties + ? Object.defineProperty + : function (k, n, l) { + if (k == Array.prototype || k == Object.prototype) return k + k[n] = l.value + return k + } +$jscomp.IS_SYMBOL_NATIVE = + 'function' === typeof Symbol && 'symbol' === typeof Symbol('x') +$jscomp.TRUST_ES6_POLYFILLS = + !$jscomp.ISOLATE_POLYFILLS || $jscomp.IS_SYMBOL_NATIVE +$jscomp.polyfills = {} +$jscomp.propertyToPolyfillSymbol = {} +$jscomp.POLYFILL_PREFIX = '$jscp$' +var $jscomp$lookupPolyfilledValue = function (k, n) { + var l = $jscomp.propertyToPolyfillSymbol[n] + if (null == l) return k[n] + l = k[l] + return void 0 !== l ? l : k[n] +} +$jscomp.polyfill = function (k, n, l, p) { + n && + ($jscomp.ISOLATE_POLYFILLS + ? $jscomp.polyfillIsolated(k, n, l, p) + : $jscomp.polyfillUnisolated(k, n, l, p)) +} +$jscomp.polyfillUnisolated = function (k, n, l, p) { + l = $jscomp.global + k = k.split('.') + for (p = 0; p < k.length - 1; p++) { + var h = k[p] + if (!(h in l)) return + l = l[h] + } + k = k[k.length - 1] + p = l[k] + n = n(p) + n != p && + null != n && + $jscomp.defineProperty(l, k, { configurable: !0, writable: !0, value: n }) +} +$jscomp.polyfillIsolated = function (k, n, l, p) { + var h = k.split('.') + k = 1 === h.length + p = h[0] + p = !k && p in $jscomp.polyfills ? $jscomp.polyfills : $jscomp.global + for (var A = 0; A < h.length - 1; A++) { + var f = h[A] + if (!(f in p)) return + p = p[f] + } + h = h[h.length - 1] + l = $jscomp.IS_SYMBOL_NATIVE && 'es6' === l ? p[h] : null + n = n(l) + null != n && + (k + ? $jscomp.defineProperty($jscomp.polyfills, h, { + configurable: !0, + writable: !0, + value: n, + }) + : n !== l && + (void 0 === $jscomp.propertyToPolyfillSymbol[h] && + ((l = (1e9 * Math.random()) >>> 0), + ($jscomp.propertyToPolyfillSymbol[h] = $jscomp.IS_SYMBOL_NATIVE + ? $jscomp.global.Symbol(h) + : $jscomp.POLYFILL_PREFIX + l + '$' + h)), + $jscomp.defineProperty(p, $jscomp.propertyToPolyfillSymbol[h], { + configurable: !0, + writable: !0, + value: n, + }))) +} +$jscomp.polyfill( + 'Promise', + function (k) { + function n() { + this.batch_ = null + } + function l(f) { + return f instanceof h + ? f + : new h(function (q, v) { + q(f) + }) + } + if ( + k && + (!( + $jscomp.FORCE_POLYFILL_PROMISE || + ($jscomp.FORCE_POLYFILL_PROMISE_WHEN_NO_UNHANDLED_REJECTION && + 'undefined' === typeof $jscomp.global.PromiseRejectionEvent) + ) || + !$jscomp.global.Promise || + -1 === $jscomp.global.Promise.toString().indexOf('[native code]')) + ) + return k + n.prototype.asyncExecute = function (f) { + if (null == this.batch_) { + this.batch_ = [] + var q = this + this.asyncExecuteFunction(function () { + q.executeBatch_() + }) + } + this.batch_.push(f) + } + var p = $jscomp.global.setTimeout + n.prototype.asyncExecuteFunction = function (f) { + p(f, 0) + } + n.prototype.executeBatch_ = function () { + for (; this.batch_ && this.batch_.length; ) { + var f = this.batch_ + this.batch_ = [] + for (var q = 0; q < f.length; ++q) { + var v = f[q] + f[q] = null + try { + v() + } catch (z) { + this.asyncThrow_(z) + } + } + } + this.batch_ = null + } + n.prototype.asyncThrow_ = function (f) { + this.asyncExecuteFunction(function () { + throw f + }) + } + var h = function (f) { + this.state_ = 0 + this.result_ = void 0 + this.onSettledCallbacks_ = [] + this.isRejectionHandled_ = !1 + var q = this.createResolveAndReject_() + try { + f(q.resolve, q.reject) + } catch (v) { + q.reject(v) + } + } + h.prototype.createResolveAndReject_ = function () { + function f(z) { + return function (O) { + v || ((v = !0), z.call(q, O)) + } + } + var q = this, + v = !1 + return { resolve: f(this.resolveTo_), reject: f(this.reject_) } + } + h.prototype.resolveTo_ = function (f) { + if (f === this) + this.reject_(new TypeError('A Promise cannot resolve to itself')) + else if (f instanceof h) this.settleSameAsPromise_(f) + else { + a: switch (typeof f) { + case 'object': + var q = null != f + break a + case 'function': + q = !0 + break a + default: + q = !1 + } + q ? this.resolveToNonPromiseObj_(f) : this.fulfill_(f) + } + } + h.prototype.resolveToNonPromiseObj_ = function (f) { + var q = void 0 + try { + q = f.then + } catch (v) { + this.reject_(v) + return + } + 'function' == typeof q + ? this.settleSameAsThenable_(q, f) + : this.fulfill_(f) + } + h.prototype.reject_ = function (f) { + this.settle_(2, f) + } + h.prototype.fulfill_ = function (f) { + this.settle_(1, f) + } + h.prototype.settle_ = function (f, q) { + if (0 != this.state_) + throw Error( + 'Cannot settle(' + + f + + ', ' + + q + + '): Promise already settled in state' + + this.state_, + ) + this.state_ = f + this.result_ = q + 2 === this.state_ && this.scheduleUnhandledRejectionCheck_() + this.executeOnSettledCallbacks_() + } + h.prototype.scheduleUnhandledRejectionCheck_ = function () { + var f = this + p(function () { + if (f.notifyUnhandledRejection_()) { + var q = $jscomp.global.console + 'undefined' !== typeof q && q.error(f.result_) + } + }, 1) + } + h.prototype.notifyUnhandledRejection_ = function () { + if (this.isRejectionHandled_) return !1 + var f = $jscomp.global.CustomEvent, + q = $jscomp.global.Event, + v = $jscomp.global.dispatchEvent + if ('undefined' === typeof v) return !0 + 'function' === typeof f + ? (f = new f('unhandledrejection', { cancelable: !0 })) + : 'function' === typeof q + ? (f = new q('unhandledrejection', { cancelable: !0 })) + : ((f = $jscomp.global.document.createEvent('CustomEvent')), + f.initCustomEvent('unhandledrejection', !1, !0, f)) + f.promise = this + f.reason = this.result_ + return v(f) + } + h.prototype.executeOnSettledCallbacks_ = function () { + if (null != this.onSettledCallbacks_) { + for (var f = 0; f < this.onSettledCallbacks_.length; ++f) + A.asyncExecute(this.onSettledCallbacks_[f]) + this.onSettledCallbacks_ = null + } + } + var A = new n() + h.prototype.settleSameAsPromise_ = function (f) { + var q = this.createResolveAndReject_() + f.callWhenSettled_(q.resolve, q.reject) + } + h.prototype.settleSameAsThenable_ = function (f, q) { + var v = this.createResolveAndReject_() + try { + f.call(q, v.resolve, v.reject) + } catch (z) { + v.reject(z) + } + } + h.prototype.then = function (f, q) { + function v(t, x) { + return 'function' == typeof t + ? function (D) { + try { + z(t(D)) + } catch (R) { + O(R) + } + } + : x + } + var z, + O, + ba = new h(function (t, x) { + z = t + O = x + }) + this.callWhenSettled_(v(f, z), v(q, O)) + return ba + } + h.prototype.catch = function (f) { + return this.then(void 0, f) + } + h.prototype.callWhenSettled_ = function (f, q) { + function v() { + switch (z.state_) { + case 1: + f(z.result_) + break + case 2: + q(z.result_) + break + default: + throw Error('Unexpected state: ' + z.state_) + } + } + var z = this + null == this.onSettledCallbacks_ + ? A.asyncExecute(v) + : this.onSettledCallbacks_.push(v) + this.isRejectionHandled_ = !0 + } + h.resolve = l + h.reject = function (f) { + return new h(function (q, v) { + v(f) + }) + } + h.race = function (f) { + return new h(function (q, v) { + for ( + var z = $jscomp.makeIterator(f), O = z.next(); + !O.done; + O = z.next() + ) + l(O.value).callWhenSettled_(q, v) + }) + } + h.all = function (f) { + var q = $jscomp.makeIterator(f), + v = q.next() + return v.done + ? l([]) + : new h(function (z, O) { + function ba(D) { + return function (R) { + t[D] = R + x-- + 0 == x && z(t) + } + } + var t = [], + x = 0 + do + t.push(void 0), + x++, + l(v.value).callWhenSettled_(ba(t.length - 1), O), + (v = q.next()) + while (!v.done) + }) + } + return h + }, + 'es6', + 'es3', +) +$jscomp.owns = function (k, n) { + return Object.prototype.hasOwnProperty.call(k, n) +} +$jscomp.assign = + $jscomp.TRUST_ES6_POLYFILLS && 'function' == typeof Object.assign + ? Object.assign + : function (k, n) { + for (var l = 1; l < arguments.length; l++) { + var p = arguments[l] + if (p) for (var h in p) $jscomp.owns(p, h) && (k[h] = p[h]) + } + return k + } +$jscomp.polyfill( + 'Object.assign', + function (k) { + return k || $jscomp.assign + }, + 'es6', + 'es3', +) +$jscomp.checkStringArgs = function (k, n, l) { + if (null == k) + throw new TypeError( + "The 'this' value for String.prototype." + + l + + ' must not be null or undefined', + ) + if (n instanceof RegExp) + throw new TypeError( + 'First argument to String.prototype.' + + l + + ' must not be a regular expression', + ) + return k + '' +} +$jscomp.polyfill( + 'String.prototype.startsWith', + function (k) { + return k + ? k + : function (n, l) { + var p = $jscomp.checkStringArgs(this, n, 'startsWith') + n += '' + var h = p.length, + A = n.length + l = Math.max(0, Math.min(l | 0, p.length)) + for (var f = 0; f < A && l < h; ) if (p[l++] != n[f++]) return !1 + return f >= A + } + }, + 'es6', + 'es3', +) +$jscomp.polyfill( + 'Array.prototype.copyWithin', + function (k) { + function n(l) { + l = Number(l) + return Infinity === l || -Infinity === l ? l : l | 0 + } + return k + ? k + : function (l, p, h) { + var A = this.length + l = n(l) + p = n(p) + h = void 0 === h ? A : n(h) + l = 0 > l ? Math.max(A + l, 0) : Math.min(l, A) + p = 0 > p ? Math.max(A + p, 0) : Math.min(p, A) + h = 0 > h ? Math.max(A + h, 0) : Math.min(h, A) + if (l < p) + for (; p < h; ) + p in this ? (this[l++] = this[p++]) : (delete this[l++], p++) + else + for (h = Math.min(h, A + p - l), l += h - p; h > p; ) + --h in this ? (this[--l] = this[h]) : delete this[--l] + return this + } + }, + 'es6', + 'es3', +) +$jscomp.typedArrayCopyWithin = function (k) { + return k ? k : Array.prototype.copyWithin +} +$jscomp.polyfill( + 'Int8Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Uint8Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Uint8ClampedArray.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Int16Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Uint16Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Int32Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Uint32Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Float32Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Float64Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +var DracoDecoderModule = (function () { + var k = + 'undefined' !== typeof document && document.currentScript + ? document.currentScript.src + : void 0 + 'undefined' !== typeof __filename && (k = k || __filename) + return function (n) { + function l(e) { + return a.locateFile ? a.locateFile(e, U) : U + e + } + function p(e, b, c) { + var d = b + c + for (c = b; e[c] && !(c >= d); ) ++c + if (16 < c - b && e.buffer && va) return va.decode(e.subarray(b, c)) + for (d = ''; b < c; ) { + var g = e[b++] + if (g & 128) { + var u = e[b++] & 63 + if (192 == (g & 224)) d += String.fromCharCode(((g & 31) << 6) | u) + else { + var X = e[b++] & 63 + g = + 224 == (g & 240) + ? ((g & 15) << 12) | (u << 6) | X + : ((g & 7) << 18) | (u << 12) | (X << 6) | (e[b++] & 63) + 65536 > g + ? (d += String.fromCharCode(g)) + : ((g -= 65536), + (d += String.fromCharCode( + 55296 | (g >> 10), + 56320 | (g & 1023), + ))) + } + } else d += String.fromCharCode(g) + } + return d + } + function h(e, b) { + return e ? p(ea, e, b) : '' + } + function A() { + var e = ja.buffer + a.HEAP8 = Y = new Int8Array(e) + a.HEAP16 = new Int16Array(e) + a.HEAP32 = ca = new Int32Array(e) + a.HEAPU8 = ea = new Uint8Array(e) + a.HEAPU16 = new Uint16Array(e) + a.HEAPU32 = V = new Uint32Array(e) + a.HEAPF32 = new Float32Array(e) + a.HEAPF64 = new Float64Array(e) + } + function f(e) { + if (a.onAbort) a.onAbort(e) + e = 'Aborted(' + e + ')' + da(e) + wa = !0 + e = new WebAssembly.RuntimeError( + e + '. Build with -sASSERTIONS for more info.', + ) + ka(e) + throw e + } + function q(e) { + try { + if (e == P && fa) return new Uint8Array(fa) + if (ma) return ma(e) + throw 'both async and sync fetching of the wasm failed' + } catch (b) { + f(b) + } + } + function v() { + if (!fa && (xa || ha)) { + if ('function' == typeof fetch && !P.startsWith('file://')) + return fetch(P, { credentials: 'same-origin' }) + .then(function (e) { + if (!e.ok) throw "failed to load wasm binary file at '" + P + "'" + return e.arrayBuffer() + }) + .catch(function () { + return q(P) + }) + if (na) + return new Promise(function (e, b) { + na( + P, + function (c) { + e(new Uint8Array(c)) + }, + b, + ) + }) + } + return Promise.resolve().then(function () { + return q(P) + }) + } + function z(e) { + for (; 0 < e.length; ) e.shift()(a) + } + function O(e) { + this.excPtr = e + this.ptr = e - 24 + this.set_type = function (b) { + V[(this.ptr + 4) >> 2] = b + } + this.get_type = function () { + return V[(this.ptr + 4) >> 2] + } + this.set_destructor = function (b) { + V[(this.ptr + 8) >> 2] = b + } + this.get_destructor = function () { + return V[(this.ptr + 8) >> 2] + } + this.set_refcount = function (b) { + ca[this.ptr >> 2] = b + } + this.set_caught = function (b) { + Y[(this.ptr + 12) >> 0] = b ? 1 : 0 + } + this.get_caught = function () { + return 0 != Y[(this.ptr + 12) >> 0] + } + this.set_rethrown = function (b) { + Y[(this.ptr + 13) >> 0] = b ? 1 : 0 + } + this.get_rethrown = function () { + return 0 != Y[(this.ptr + 13) >> 0] + } + this.init = function (b, c) { + this.set_adjusted_ptr(0) + this.set_type(b) + this.set_destructor(c) + this.set_refcount(0) + this.set_caught(!1) + this.set_rethrown(!1) + } + this.add_ref = function () { + ca[this.ptr >> 2] += 1 + } + this.release_ref = function () { + var b = ca[this.ptr >> 2] + ca[this.ptr >> 2] = b - 1 + return 1 === b + } + this.set_adjusted_ptr = function (b) { + V[(this.ptr + 16) >> 2] = b + } + this.get_adjusted_ptr = function () { + return V[(this.ptr + 16) >> 2] + } + this.get_exception_ptr = function () { + if (ya(this.get_type())) return V[this.excPtr >> 2] + var b = this.get_adjusted_ptr() + return 0 !== b ? b : this.excPtr + } + } + function ba() { + function e() { + if (!la && ((la = !0), (a.calledRun = !0), !wa)) { + za = !0 + z(oa) + Aa(a) + if (a.onRuntimeInitialized) a.onRuntimeInitialized() + if (a.postRun) + for ( + 'function' == typeof a.postRun && (a.postRun = [a.postRun]); + a.postRun.length; + + ) + Ba.unshift(a.postRun.shift()) + z(Ba) + } + } + if (!(0 < aa)) { + if (a.preRun) + for ( + 'function' == typeof a.preRun && (a.preRun = [a.preRun]); + a.preRun.length; + + ) + Ca.unshift(a.preRun.shift()) + z(Ca) + 0 < aa || + (a.setStatus + ? (a.setStatus('Running...'), + setTimeout(function () { + setTimeout(function () { + a.setStatus('') + }, 1) + e() + }, 1)) + : e()) + } + } + function t() {} + function x(e) { + return (e || t).__cache__ + } + function D(e, b) { + var c = x(b), + d = c[e] + if (d) return d + d = Object.create((b || t).prototype) + d.ptr = e + return (c[e] = d) + } + function R(e) { + if ('string' === typeof e) { + for (var b = 0, c = 0; c < e.length; ++c) { + var d = e.charCodeAt(c) + 127 >= d + ? b++ + : 2047 >= d + ? (b += 2) + : 55296 <= d && 57343 >= d + ? ((b += 4), ++c) + : (b += 3) + } + b = Array(b + 1) + c = 0 + d = b.length + if (0 < d) { + d = c + d - 1 + for (var g = 0; g < e.length; ++g) { + var u = e.charCodeAt(g) + if (55296 <= u && 57343 >= u) { + var X = e.charCodeAt(++g) + u = (65536 + ((u & 1023) << 10)) | (X & 1023) + } + if (127 >= u) { + if (c >= d) break + b[c++] = u + } else { + if (2047 >= u) { + if (c + 1 >= d) break + b[c++] = 192 | (u >> 6) + } else { + if (65535 >= u) { + if (c + 2 >= d) break + b[c++] = 224 | (u >> 12) + } else { + if (c + 3 >= d) break + b[c++] = 240 | (u >> 18) + b[c++] = 128 | ((u >> 12) & 63) + } + b[c++] = 128 | ((u >> 6) & 63) + } + b[c++] = 128 | (u & 63) + } + } + b[c] = 0 + } + e = r.alloc(b, Y) + r.copy(b, Y, e) + return e + } + return e + } + function pa(e) { + if ('object' === typeof e) { + var b = r.alloc(e, Y) + r.copy(e, Y, b) + return b + } + return e + } + function Z() { + throw 'cannot construct a VoidPtr, no constructor in IDL' + } + function S() { + this.ptr = Da() + x(S)[this.ptr] = this + } + function Q() { + this.ptr = Ea() + x(Q)[this.ptr] = this + } + function W() { + this.ptr = Fa() + x(W)[this.ptr] = this + } + function w() { + this.ptr = Ga() + x(w)[this.ptr] = this + } + function C() { + this.ptr = Ha() + x(C)[this.ptr] = this + } + function F() { + this.ptr = Ia() + x(F)[this.ptr] = this + } + function G() { + this.ptr = Ja() + x(G)[this.ptr] = this + } + function E() { + this.ptr = Ka() + x(E)[this.ptr] = this + } + function T() { + this.ptr = La() + x(T)[this.ptr] = this + } + function B() { + throw 'cannot construct a Status, no constructor in IDL' + } + function H() { + this.ptr = Ma() + x(H)[this.ptr] = this + } + function I() { + this.ptr = Na() + x(I)[this.ptr] = this + } + function J() { + this.ptr = Oa() + x(J)[this.ptr] = this + } + function K() { + this.ptr = Pa() + x(K)[this.ptr] = this + } + function L() { + this.ptr = Qa() + x(L)[this.ptr] = this + } + function M() { + this.ptr = Ra() + x(M)[this.ptr] = this + } + function N() { + this.ptr = Sa() + x(N)[this.ptr] = this + } + function y() { + this.ptr = Ta() + x(y)[this.ptr] = this + } + function m() { + this.ptr = Ua() + x(m)[this.ptr] = this + } + n = void 0 === n ? {} : n + var a = 'undefined' != typeof n ? n : {}, + Aa, + ka + a.ready = new Promise(function (e, b) { + Aa = e + ka = b + }) + var Va = !1, + Wa = !1 + a.onRuntimeInitialized = function () { + Va = !0 + if (Wa && 'function' === typeof a.onModuleLoaded) a.onModuleLoaded(a) + } + a.onModuleParsed = function () { + Wa = !0 + if (Va && 'function' === typeof a.onModuleLoaded) a.onModuleLoaded(a) + } + a.isVersionSupported = function (e) { + if ('string' !== typeof e) return !1 + e = e.split('.') + return 2 > e.length || 3 < e.length + ? !1 + : 1 == e[0] && 0 <= e[1] && 5 >= e[1] + ? !0 + : 0 != e[0] || 10 < e[1] + ? !1 + : !0 + } + var Xa = Object.assign({}, a), + xa = 'object' == typeof window, + ha = 'function' == typeof importScripts, + Ya = + 'object' == typeof process && + 'object' == typeof process.versions && + 'string' == typeof process.versions.node, + U = '' + if (Ya) { + var Za = require('fs'), + qa = require('path') + U = ha ? qa.dirname(U) + '/' : __dirname + '/' + var $a = function (e, b) { + e = e.startsWith('file://') ? new URL(e) : qa.normalize(e) + return Za.readFileSync(e, b ? void 0 : 'utf8') + } + var ma = function (e) { + e = $a(e, !0) + e.buffer || (e = new Uint8Array(e)) + return e + } + var na = function (e, b, c) { + e = e.startsWith('file://') ? new URL(e) : qa.normalize(e) + Za.readFile(e, function (d, g) { + d ? c(d) : b(g.buffer) + }) + } + 1 < process.argv.length && process.argv[1].replace(/\\/g, '/') + process.argv.slice(2) + a.inspect = function () { + return '[Emscripten Module object]' + } + } else if (xa || ha) + ha + ? (U = self.location.href) + : 'undefined' != typeof document && + document.currentScript && + (U = document.currentScript.src), + k && (U = k), + (U = + 0 !== U.indexOf('blob:') + ? U.substr(0, U.replace(/[?#].*/, '').lastIndexOf('/') + 1) + : ''), + ($a = function (e) { + var b = new XMLHttpRequest() + b.open('GET', e, !1) + b.send(null) + return b.responseText + }), + ha && + (ma = function (e) { + var b = new XMLHttpRequest() + b.open('GET', e, !1) + b.responseType = 'arraybuffer' + b.send(null) + return new Uint8Array(b.response) + }), + (na = function (e, b, c) { + var d = new XMLHttpRequest() + d.open('GET', e, !0) + d.responseType = 'arraybuffer' + d.onload = function () { + 200 == d.status || (0 == d.status && d.response) + ? b(d.response) + : c() + } + d.onerror = c + d.send(null) + }) + var ud = a.print || console.log.bind(console), + da = a.printErr || console.warn.bind(console) + Object.assign(a, Xa) + Xa = null + var fa + a.wasmBinary && (fa = a.wasmBinary) + 'object' != typeof WebAssembly && f('no native wasm support detected') + var ja, + wa = !1, + va = 'undefined' != typeof TextDecoder ? new TextDecoder('utf8') : void 0, + Y, + ea, + ca, + V, + Ca = [], + oa = [], + Ba = [], + za = !1, + aa = 0, + ra = null, + ia = null + var P = 'draco_decoder.wasm' + P.startsWith('data:application/octet-stream;base64,') || (P = l(P)) + var vd = 0, + wd = [null, [], []], + xd = { + b: function (e, b, c) { + new O(e).init(b, c) + vd++ + throw e + }, + a: function () { + f('') + }, + g: function (e, b, c) { + ea.copyWithin(e, b, b + c) + }, + e: function (e) { + var b = ea.length + e >>>= 0 + if (2147483648 < e) return !1 + for (var c = 1; 4 >= c; c *= 2) { + var d = b * (1 + 0.2 / c) + d = Math.min(d, e + 100663296) + var g = Math + d = Math.max(e, d) + g = g.min.call(g, 2147483648, d + ((65536 - (d % 65536)) % 65536)) + a: { + d = ja.buffer + try { + ja.grow((g - d.byteLength + 65535) >>> 16) + A() + var u = 1 + break a + } catch (X) {} + u = void 0 + } + if (u) return !0 + } + return !1 + }, + f: function (e) { + return 52 + }, + d: function (e, b, c, d, g) { + return 70 + }, + c: function (e, b, c, d) { + for (var g = 0, u = 0; u < c; u++) { + var X = V[b >> 2], + ab = V[(b + 4) >> 2] + b += 8 + for (var sa = 0; sa < ab; sa++) { + var ta = ea[X + sa], + ua = wd[e] + 0 === ta || 10 === ta + ? ((1 === e ? ud : da)(p(ua, 0)), (ua.length = 0)) + : ua.push(ta) + } + g += ab + } + V[d >> 2] = g + return 0 + }, + } + ;(function () { + function e(g, u) { + a.asm = g.exports + ja = a.asm.h + A() + oa.unshift(a.asm.i) + aa-- + a.monitorRunDependencies && a.monitorRunDependencies(aa) + 0 == aa && + (null !== ra && (clearInterval(ra), (ra = null)), + ia && ((g = ia), (ia = null), g())) + } + function b(g) { + e(g.instance) + } + function c(g) { + return v() + .then(function (u) { + return WebAssembly.instantiate(u, d) + }) + .then(function (u) { + return u + }) + .then(g, function (u) { + da('failed to asynchronously prepare wasm: ' + u) + f(u) + }) + } + var d = { a: xd } + aa++ + a.monitorRunDependencies && a.monitorRunDependencies(aa) + if (a.instantiateWasm) + try { + return a.instantiateWasm(d, e) + } catch (g) { + da('Module.instantiateWasm callback failed with error: ' + g), ka(g) + } + ;(function () { + return fa || + 'function' != typeof WebAssembly.instantiateStreaming || + P.startsWith('data:application/octet-stream;base64,') || + P.startsWith('file://') || + Ya || + 'function' != typeof fetch + ? c(b) + : fetch(P, { credentials: 'same-origin' }).then(function (g) { + return WebAssembly.instantiateStreaming(g, d).then( + b, + function (u) { + da('wasm streaming compile failed: ' + u) + da('falling back to ArrayBuffer instantiation') + return c(b) + }, + ) + }) + })().catch(ka) + return {} + })() + var bb = (a._emscripten_bind_VoidPtr___destroy___0 = function () { + return (bb = a._emscripten_bind_VoidPtr___destroy___0 = a.asm.k).apply( + null, + arguments, + ) + }), + Da = (a._emscripten_bind_DecoderBuffer_DecoderBuffer_0 = function () { + return (Da = a._emscripten_bind_DecoderBuffer_DecoderBuffer_0 = + a.asm.l).apply(null, arguments) + }), + cb = (a._emscripten_bind_DecoderBuffer_Init_2 = function () { + return (cb = a._emscripten_bind_DecoderBuffer_Init_2 = a.asm.m).apply( + null, + arguments, + ) + }), + db = (a._emscripten_bind_DecoderBuffer___destroy___0 = function () { + return (db = a._emscripten_bind_DecoderBuffer___destroy___0 = + a.asm.n).apply(null, arguments) + }), + Ea = (a._emscripten_bind_AttributeTransformData_AttributeTransformData_0 = + function () { + return (Ea = + a._emscripten_bind_AttributeTransformData_AttributeTransformData_0 = + a.asm.o).apply(null, arguments) + }), + eb = (a._emscripten_bind_AttributeTransformData_transform_type_0 = + function () { + return (eb = + a._emscripten_bind_AttributeTransformData_transform_type_0 = + a.asm.p).apply(null, arguments) + }), + fb = (a._emscripten_bind_AttributeTransformData___destroy___0 = + function () { + return (fb = a._emscripten_bind_AttributeTransformData___destroy___0 = + a.asm.q).apply(null, arguments) + }), + Fa = (a._emscripten_bind_GeometryAttribute_GeometryAttribute_0 = + function () { + return (Fa = + a._emscripten_bind_GeometryAttribute_GeometryAttribute_0 = + a.asm.r).apply(null, arguments) + }), + gb = (a._emscripten_bind_GeometryAttribute___destroy___0 = function () { + return (gb = a._emscripten_bind_GeometryAttribute___destroy___0 = + a.asm.s).apply(null, arguments) + }), + Ga = (a._emscripten_bind_PointAttribute_PointAttribute_0 = function () { + return (Ga = a._emscripten_bind_PointAttribute_PointAttribute_0 = + a.asm.t).apply(null, arguments) + }), + hb = (a._emscripten_bind_PointAttribute_size_0 = function () { + return (hb = a._emscripten_bind_PointAttribute_size_0 = a.asm.u).apply( + null, + arguments, + ) + }), + ib = (a._emscripten_bind_PointAttribute_GetAttributeTransformData_0 = + function () { + return (ib = + a._emscripten_bind_PointAttribute_GetAttributeTransformData_0 = + a.asm.v).apply(null, arguments) + }), + jb = (a._emscripten_bind_PointAttribute_attribute_type_0 = function () { + return (jb = a._emscripten_bind_PointAttribute_attribute_type_0 = + a.asm.w).apply(null, arguments) + }), + kb = (a._emscripten_bind_PointAttribute_data_type_0 = function () { + return (kb = a._emscripten_bind_PointAttribute_data_type_0 = + a.asm.x).apply(null, arguments) + }), + lb = (a._emscripten_bind_PointAttribute_num_components_0 = function () { + return (lb = a._emscripten_bind_PointAttribute_num_components_0 = + a.asm.y).apply(null, arguments) + }), + mb = (a._emscripten_bind_PointAttribute_normalized_0 = function () { + return (mb = a._emscripten_bind_PointAttribute_normalized_0 = + a.asm.z).apply(null, arguments) + }), + nb = (a._emscripten_bind_PointAttribute_byte_stride_0 = function () { + return (nb = a._emscripten_bind_PointAttribute_byte_stride_0 = + a.asm.A).apply(null, arguments) + }), + ob = (a._emscripten_bind_PointAttribute_byte_offset_0 = function () { + return (ob = a._emscripten_bind_PointAttribute_byte_offset_0 = + a.asm.B).apply(null, arguments) + }), + pb = (a._emscripten_bind_PointAttribute_unique_id_0 = function () { + return (pb = a._emscripten_bind_PointAttribute_unique_id_0 = + a.asm.C).apply(null, arguments) + }), + qb = (a._emscripten_bind_PointAttribute___destroy___0 = function () { + return (qb = a._emscripten_bind_PointAttribute___destroy___0 = + a.asm.D).apply(null, arguments) + }), + Ha = + (a._emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0 = + function () { + return (Ha = + a._emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0 = + a.asm.E).apply(null, arguments) + }), + rb = + (a._emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1 = + function () { + return (rb = + a._emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1 = + a.asm.F).apply(null, arguments) + }), + sb = + (a._emscripten_bind_AttributeQuantizationTransform_quantization_bits_0 = + function () { + return (sb = + a._emscripten_bind_AttributeQuantizationTransform_quantization_bits_0 = + a.asm.G).apply(null, arguments) + }), + tb = (a._emscripten_bind_AttributeQuantizationTransform_min_value_1 = + function () { + return (tb = + a._emscripten_bind_AttributeQuantizationTransform_min_value_1 = + a.asm.H).apply(null, arguments) + }), + ub = (a._emscripten_bind_AttributeQuantizationTransform_range_0 = + function () { + return (ub = + a._emscripten_bind_AttributeQuantizationTransform_range_0 = + a.asm.I).apply(null, arguments) + }), + vb = (a._emscripten_bind_AttributeQuantizationTransform___destroy___0 = + function () { + return (vb = + a._emscripten_bind_AttributeQuantizationTransform___destroy___0 = + a.asm.J).apply(null, arguments) + }), + Ia = + (a._emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0 = + function () { + return (Ia = + a._emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0 = + a.asm.K).apply(null, arguments) + }), + wb = + (a._emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1 = + function () { + return (wb = + a._emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1 = + a.asm.L).apply(null, arguments) + }), + xb = + (a._emscripten_bind_AttributeOctahedronTransform_quantization_bits_0 = + function () { + return (xb = + a._emscripten_bind_AttributeOctahedronTransform_quantization_bits_0 = + a.asm.M).apply(null, arguments) + }), + yb = (a._emscripten_bind_AttributeOctahedronTransform___destroy___0 = + function () { + return (yb = + a._emscripten_bind_AttributeOctahedronTransform___destroy___0 = + a.asm.N).apply(null, arguments) + }), + Ja = (a._emscripten_bind_PointCloud_PointCloud_0 = function () { + return (Ja = a._emscripten_bind_PointCloud_PointCloud_0 = + a.asm.O).apply(null, arguments) + }), + zb = (a._emscripten_bind_PointCloud_num_attributes_0 = function () { + return (zb = a._emscripten_bind_PointCloud_num_attributes_0 = + a.asm.P).apply(null, arguments) + }), + Ab = (a._emscripten_bind_PointCloud_num_points_0 = function () { + return (Ab = a._emscripten_bind_PointCloud_num_points_0 = + a.asm.Q).apply(null, arguments) + }), + Bb = (a._emscripten_bind_PointCloud___destroy___0 = function () { + return (Bb = a._emscripten_bind_PointCloud___destroy___0 = + a.asm.R).apply(null, arguments) + }), + Ka = (a._emscripten_bind_Mesh_Mesh_0 = function () { + return (Ka = a._emscripten_bind_Mesh_Mesh_0 = a.asm.S).apply( + null, + arguments, + ) + }), + Cb = (a._emscripten_bind_Mesh_num_faces_0 = function () { + return (Cb = a._emscripten_bind_Mesh_num_faces_0 = a.asm.T).apply( + null, + arguments, + ) + }), + Db = (a._emscripten_bind_Mesh_num_attributes_0 = function () { + return (Db = a._emscripten_bind_Mesh_num_attributes_0 = a.asm.U).apply( + null, + arguments, + ) + }), + Eb = (a._emscripten_bind_Mesh_num_points_0 = function () { + return (Eb = a._emscripten_bind_Mesh_num_points_0 = a.asm.V).apply( + null, + arguments, + ) + }), + Fb = (a._emscripten_bind_Mesh___destroy___0 = function () { + return (Fb = a._emscripten_bind_Mesh___destroy___0 = a.asm.W).apply( + null, + arguments, + ) + }), + La = (a._emscripten_bind_Metadata_Metadata_0 = function () { + return (La = a._emscripten_bind_Metadata_Metadata_0 = a.asm.X).apply( + null, + arguments, + ) + }), + Gb = (a._emscripten_bind_Metadata___destroy___0 = function () { + return (Gb = a._emscripten_bind_Metadata___destroy___0 = a.asm.Y).apply( + null, + arguments, + ) + }), + Hb = (a._emscripten_bind_Status_code_0 = function () { + return (Hb = a._emscripten_bind_Status_code_0 = a.asm.Z).apply( + null, + arguments, + ) + }), + Ib = (a._emscripten_bind_Status_ok_0 = function () { + return (Ib = a._emscripten_bind_Status_ok_0 = a.asm._).apply( + null, + arguments, + ) + }), + Jb = (a._emscripten_bind_Status_error_msg_0 = function () { + return (Jb = a._emscripten_bind_Status_error_msg_0 = a.asm.$).apply( + null, + arguments, + ) + }), + Kb = (a._emscripten_bind_Status___destroy___0 = function () { + return (Kb = a._emscripten_bind_Status___destroy___0 = a.asm.aa).apply( + null, + arguments, + ) + }), + Ma = (a._emscripten_bind_DracoFloat32Array_DracoFloat32Array_0 = + function () { + return (Ma = + a._emscripten_bind_DracoFloat32Array_DracoFloat32Array_0 = + a.asm.ba).apply(null, arguments) + }), + Lb = (a._emscripten_bind_DracoFloat32Array_GetValue_1 = function () { + return (Lb = a._emscripten_bind_DracoFloat32Array_GetValue_1 = + a.asm.ca).apply(null, arguments) + }), + Mb = (a._emscripten_bind_DracoFloat32Array_size_0 = function () { + return (Mb = a._emscripten_bind_DracoFloat32Array_size_0 = + a.asm.da).apply(null, arguments) + }), + Nb = (a._emscripten_bind_DracoFloat32Array___destroy___0 = function () { + return (Nb = a._emscripten_bind_DracoFloat32Array___destroy___0 = + a.asm.ea).apply(null, arguments) + }), + Na = (a._emscripten_bind_DracoInt8Array_DracoInt8Array_0 = function () { + return (Na = a._emscripten_bind_DracoInt8Array_DracoInt8Array_0 = + a.asm.fa).apply(null, arguments) + }), + Ob = (a._emscripten_bind_DracoInt8Array_GetValue_1 = function () { + return (Ob = a._emscripten_bind_DracoInt8Array_GetValue_1 = + a.asm.ga).apply(null, arguments) + }), + Pb = (a._emscripten_bind_DracoInt8Array_size_0 = function () { + return (Pb = a._emscripten_bind_DracoInt8Array_size_0 = a.asm.ha).apply( + null, + arguments, + ) + }), + Qb = (a._emscripten_bind_DracoInt8Array___destroy___0 = function () { + return (Qb = a._emscripten_bind_DracoInt8Array___destroy___0 = + a.asm.ia).apply(null, arguments) + }), + Oa = (a._emscripten_bind_DracoUInt8Array_DracoUInt8Array_0 = function () { + return (Oa = a._emscripten_bind_DracoUInt8Array_DracoUInt8Array_0 = + a.asm.ja).apply(null, arguments) + }), + Rb = (a._emscripten_bind_DracoUInt8Array_GetValue_1 = function () { + return (Rb = a._emscripten_bind_DracoUInt8Array_GetValue_1 = + a.asm.ka).apply(null, arguments) + }), + Sb = (a._emscripten_bind_DracoUInt8Array_size_0 = function () { + return (Sb = a._emscripten_bind_DracoUInt8Array_size_0 = + a.asm.la).apply(null, arguments) + }), + Tb = (a._emscripten_bind_DracoUInt8Array___destroy___0 = function () { + return (Tb = a._emscripten_bind_DracoUInt8Array___destroy___0 = + a.asm.ma).apply(null, arguments) + }), + Pa = (a._emscripten_bind_DracoInt16Array_DracoInt16Array_0 = function () { + return (Pa = a._emscripten_bind_DracoInt16Array_DracoInt16Array_0 = + a.asm.na).apply(null, arguments) + }), + Ub = (a._emscripten_bind_DracoInt16Array_GetValue_1 = function () { + return (Ub = a._emscripten_bind_DracoInt16Array_GetValue_1 = + a.asm.oa).apply(null, arguments) + }), + Vb = (a._emscripten_bind_DracoInt16Array_size_0 = function () { + return (Vb = a._emscripten_bind_DracoInt16Array_size_0 = + a.asm.pa).apply(null, arguments) + }), + Wb = (a._emscripten_bind_DracoInt16Array___destroy___0 = function () { + return (Wb = a._emscripten_bind_DracoInt16Array___destroy___0 = + a.asm.qa).apply(null, arguments) + }), + Qa = (a._emscripten_bind_DracoUInt16Array_DracoUInt16Array_0 = + function () { + return (Qa = a._emscripten_bind_DracoUInt16Array_DracoUInt16Array_0 = + a.asm.ra).apply(null, arguments) + }), + Xb = (a._emscripten_bind_DracoUInt16Array_GetValue_1 = function () { + return (Xb = a._emscripten_bind_DracoUInt16Array_GetValue_1 = + a.asm.sa).apply(null, arguments) + }), + Yb = (a._emscripten_bind_DracoUInt16Array_size_0 = function () { + return (Yb = a._emscripten_bind_DracoUInt16Array_size_0 = + a.asm.ta).apply(null, arguments) + }), + Zb = (a._emscripten_bind_DracoUInt16Array___destroy___0 = function () { + return (Zb = a._emscripten_bind_DracoUInt16Array___destroy___0 = + a.asm.ua).apply(null, arguments) + }), + Ra = (a._emscripten_bind_DracoInt32Array_DracoInt32Array_0 = function () { + return (Ra = a._emscripten_bind_DracoInt32Array_DracoInt32Array_0 = + a.asm.va).apply(null, arguments) + }), + $b = (a._emscripten_bind_DracoInt32Array_GetValue_1 = function () { + return ($b = a._emscripten_bind_DracoInt32Array_GetValue_1 = + a.asm.wa).apply(null, arguments) + }), + ac = (a._emscripten_bind_DracoInt32Array_size_0 = function () { + return (ac = a._emscripten_bind_DracoInt32Array_size_0 = + a.asm.xa).apply(null, arguments) + }), + bc = (a._emscripten_bind_DracoInt32Array___destroy___0 = function () { + return (bc = a._emscripten_bind_DracoInt32Array___destroy___0 = + a.asm.ya).apply(null, arguments) + }), + Sa = (a._emscripten_bind_DracoUInt32Array_DracoUInt32Array_0 = + function () { + return (Sa = a._emscripten_bind_DracoUInt32Array_DracoUInt32Array_0 = + a.asm.za).apply(null, arguments) + }), + cc = (a._emscripten_bind_DracoUInt32Array_GetValue_1 = function () { + return (cc = a._emscripten_bind_DracoUInt32Array_GetValue_1 = + a.asm.Aa).apply(null, arguments) + }), + dc = (a._emscripten_bind_DracoUInt32Array_size_0 = function () { + return (dc = a._emscripten_bind_DracoUInt32Array_size_0 = + a.asm.Ba).apply(null, arguments) + }), + ec = (a._emscripten_bind_DracoUInt32Array___destroy___0 = function () { + return (ec = a._emscripten_bind_DracoUInt32Array___destroy___0 = + a.asm.Ca).apply(null, arguments) + }), + Ta = (a._emscripten_bind_MetadataQuerier_MetadataQuerier_0 = function () { + return (Ta = a._emscripten_bind_MetadataQuerier_MetadataQuerier_0 = + a.asm.Da).apply(null, arguments) + }), + fc = (a._emscripten_bind_MetadataQuerier_HasEntry_2 = function () { + return (fc = a._emscripten_bind_MetadataQuerier_HasEntry_2 = + a.asm.Ea).apply(null, arguments) + }), + gc = (a._emscripten_bind_MetadataQuerier_GetIntEntry_2 = function () { + return (gc = a._emscripten_bind_MetadataQuerier_GetIntEntry_2 = + a.asm.Fa).apply(null, arguments) + }), + hc = (a._emscripten_bind_MetadataQuerier_GetIntEntryArray_3 = + function () { + return (hc = a._emscripten_bind_MetadataQuerier_GetIntEntryArray_3 = + a.asm.Ga).apply(null, arguments) + }), + ic = (a._emscripten_bind_MetadataQuerier_GetDoubleEntry_2 = function () { + return (ic = a._emscripten_bind_MetadataQuerier_GetDoubleEntry_2 = + a.asm.Ha).apply(null, arguments) + }), + jc = (a._emscripten_bind_MetadataQuerier_GetStringEntry_2 = function () { + return (jc = a._emscripten_bind_MetadataQuerier_GetStringEntry_2 = + a.asm.Ia).apply(null, arguments) + }), + kc = (a._emscripten_bind_MetadataQuerier_NumEntries_1 = function () { + return (kc = a._emscripten_bind_MetadataQuerier_NumEntries_1 = + a.asm.Ja).apply(null, arguments) + }), + lc = (a._emscripten_bind_MetadataQuerier_GetEntryName_2 = function () { + return (lc = a._emscripten_bind_MetadataQuerier_GetEntryName_2 = + a.asm.Ka).apply(null, arguments) + }), + mc = (a._emscripten_bind_MetadataQuerier___destroy___0 = function () { + return (mc = a._emscripten_bind_MetadataQuerier___destroy___0 = + a.asm.La).apply(null, arguments) + }), + Ua = (a._emscripten_bind_Decoder_Decoder_0 = function () { + return (Ua = a._emscripten_bind_Decoder_Decoder_0 = a.asm.Ma).apply( + null, + arguments, + ) + }), + nc = (a._emscripten_bind_Decoder_DecodeArrayToPointCloud_3 = function () { + return (nc = a._emscripten_bind_Decoder_DecodeArrayToPointCloud_3 = + a.asm.Na).apply(null, arguments) + }), + oc = (a._emscripten_bind_Decoder_DecodeArrayToMesh_3 = function () { + return (oc = a._emscripten_bind_Decoder_DecodeArrayToMesh_3 = + a.asm.Oa).apply(null, arguments) + }), + pc = (a._emscripten_bind_Decoder_GetAttributeId_2 = function () { + return (pc = a._emscripten_bind_Decoder_GetAttributeId_2 = + a.asm.Pa).apply(null, arguments) + }), + qc = (a._emscripten_bind_Decoder_GetAttributeIdByName_2 = function () { + return (qc = a._emscripten_bind_Decoder_GetAttributeIdByName_2 = + a.asm.Qa).apply(null, arguments) + }), + rc = (a._emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3 = + function () { + return (rc = + a._emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3 = + a.asm.Ra).apply(null, arguments) + }), + sc = (a._emscripten_bind_Decoder_GetAttribute_2 = function () { + return (sc = a._emscripten_bind_Decoder_GetAttribute_2 = + a.asm.Sa).apply(null, arguments) + }), + tc = (a._emscripten_bind_Decoder_GetAttributeByUniqueId_2 = function () { + return (tc = a._emscripten_bind_Decoder_GetAttributeByUniqueId_2 = + a.asm.Ta).apply(null, arguments) + }), + uc = (a._emscripten_bind_Decoder_GetMetadata_1 = function () { + return (uc = a._emscripten_bind_Decoder_GetMetadata_1 = a.asm.Ua).apply( + null, + arguments, + ) + }), + vc = (a._emscripten_bind_Decoder_GetAttributeMetadata_2 = function () { + return (vc = a._emscripten_bind_Decoder_GetAttributeMetadata_2 = + a.asm.Va).apply(null, arguments) + }), + wc = (a._emscripten_bind_Decoder_GetFaceFromMesh_3 = function () { + return (wc = a._emscripten_bind_Decoder_GetFaceFromMesh_3 = + a.asm.Wa).apply(null, arguments) + }), + xc = (a._emscripten_bind_Decoder_GetTriangleStripsFromMesh_2 = + function () { + return (xc = a._emscripten_bind_Decoder_GetTriangleStripsFromMesh_2 = + a.asm.Xa).apply(null, arguments) + }), + yc = (a._emscripten_bind_Decoder_GetTrianglesUInt16Array_3 = function () { + return (yc = a._emscripten_bind_Decoder_GetTrianglesUInt16Array_3 = + a.asm.Ya).apply(null, arguments) + }), + zc = (a._emscripten_bind_Decoder_GetTrianglesUInt32Array_3 = function () { + return (zc = a._emscripten_bind_Decoder_GetTrianglesUInt32Array_3 = + a.asm.Za).apply(null, arguments) + }), + Ac = (a._emscripten_bind_Decoder_GetAttributeFloat_3 = function () { + return (Ac = a._emscripten_bind_Decoder_GetAttributeFloat_3 = + a.asm._a).apply(null, arguments) + }), + Bc = (a._emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3 = + function () { + return (Bc = + a._emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3 = + a.asm.$a).apply(null, arguments) + }), + Cc = (a._emscripten_bind_Decoder_GetAttributeIntForAllPoints_3 = + function () { + return (Cc = + a._emscripten_bind_Decoder_GetAttributeIntForAllPoints_3 = + a.asm.ab).apply(null, arguments) + }), + Dc = (a._emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3 = + function () { + return (Dc = + a._emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3 = + a.asm.bb).apply(null, arguments) + }), + Ec = (a._emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3 = + function () { + return (Ec = + a._emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3 = + a.asm.cb).apply(null, arguments) + }), + Fc = (a._emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3 = + function () { + return (Fc = + a._emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3 = + a.asm.db).apply(null, arguments) + }), + Gc = (a._emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3 = + function () { + return (Gc = + a._emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3 = + a.asm.eb).apply(null, arguments) + }), + Hc = (a._emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3 = + function () { + return (Hc = + a._emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3 = + a.asm.fb).apply(null, arguments) + }), + Ic = (a._emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3 = + function () { + return (Ic = + a._emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3 = + a.asm.gb).apply(null, arguments) + }), + Jc = (a._emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5 = + function () { + return (Jc = + a._emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5 = + a.asm.hb).apply(null, arguments) + }), + Kc = (a._emscripten_bind_Decoder_SkipAttributeTransform_1 = function () { + return (Kc = a._emscripten_bind_Decoder_SkipAttributeTransform_1 = + a.asm.ib).apply(null, arguments) + }), + Lc = (a._emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1 = + function () { + return (Lc = + a._emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1 = + a.asm.jb).apply(null, arguments) + }), + Mc = (a._emscripten_bind_Decoder_DecodeBufferToPointCloud_2 = + function () { + return (Mc = a._emscripten_bind_Decoder_DecodeBufferToPointCloud_2 = + a.asm.kb).apply(null, arguments) + }), + Nc = (a._emscripten_bind_Decoder_DecodeBufferToMesh_2 = function () { + return (Nc = a._emscripten_bind_Decoder_DecodeBufferToMesh_2 = + a.asm.lb).apply(null, arguments) + }), + Oc = (a._emscripten_bind_Decoder___destroy___0 = function () { + return (Oc = a._emscripten_bind_Decoder___destroy___0 = a.asm.mb).apply( + null, + arguments, + ) + }), + Pc = + (a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM = + function () { + return (Pc = + a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM = + a.asm.nb).apply(null, arguments) + }), + Qc = + (a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM = + function () { + return (Qc = + a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM = + a.asm.ob).apply(null, arguments) + }), + Rc = + (a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM = + function () { + return (Rc = + a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM = + a.asm.pb).apply(null, arguments) + }), + Sc = + (a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM = + function () { + return (Sc = + a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM = + a.asm.qb).apply(null, arguments) + }), + Tc = (a._emscripten_enum_draco_GeometryAttribute_Type_INVALID = + function () { + return (Tc = a._emscripten_enum_draco_GeometryAttribute_Type_INVALID = + a.asm.rb).apply(null, arguments) + }), + Uc = (a._emscripten_enum_draco_GeometryAttribute_Type_POSITION = + function () { + return (Uc = + a._emscripten_enum_draco_GeometryAttribute_Type_POSITION = + a.asm.sb).apply(null, arguments) + }), + Vc = (a._emscripten_enum_draco_GeometryAttribute_Type_NORMAL = + function () { + return (Vc = a._emscripten_enum_draco_GeometryAttribute_Type_NORMAL = + a.asm.tb).apply(null, arguments) + }), + Wc = (a._emscripten_enum_draco_GeometryAttribute_Type_COLOR = + function () { + return (Wc = a._emscripten_enum_draco_GeometryAttribute_Type_COLOR = + a.asm.ub).apply(null, arguments) + }), + Xc = (a._emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD = + function () { + return (Xc = + a._emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD = + a.asm.vb).apply(null, arguments) + }), + Yc = (a._emscripten_enum_draco_GeometryAttribute_Type_GENERIC = + function () { + return (Yc = a._emscripten_enum_draco_GeometryAttribute_Type_GENERIC = + a.asm.wb).apply(null, arguments) + }), + Zc = (a._emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE = + function () { + return (Zc = + a._emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE = + a.asm.xb).apply(null, arguments) + }), + $c = (a._emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD = + function () { + return ($c = + a._emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD = + a.asm.yb).apply(null, arguments) + }), + ad = (a._emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH = + function () { + return (ad = + a._emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH = + a.asm.zb).apply(null, arguments) + }), + bd = (a._emscripten_enum_draco_DataType_DT_INVALID = function () { + return (bd = a._emscripten_enum_draco_DataType_DT_INVALID = + a.asm.Ab).apply(null, arguments) + }), + cd = (a._emscripten_enum_draco_DataType_DT_INT8 = function () { + return (cd = a._emscripten_enum_draco_DataType_DT_INT8 = + a.asm.Bb).apply(null, arguments) + }), + dd = (a._emscripten_enum_draco_DataType_DT_UINT8 = function () { + return (dd = a._emscripten_enum_draco_DataType_DT_UINT8 = + a.asm.Cb).apply(null, arguments) + }), + ed = (a._emscripten_enum_draco_DataType_DT_INT16 = function () { + return (ed = a._emscripten_enum_draco_DataType_DT_INT16 = + a.asm.Db).apply(null, arguments) + }), + fd = (a._emscripten_enum_draco_DataType_DT_UINT16 = function () { + return (fd = a._emscripten_enum_draco_DataType_DT_UINT16 = + a.asm.Eb).apply(null, arguments) + }), + gd = (a._emscripten_enum_draco_DataType_DT_INT32 = function () { + return (gd = a._emscripten_enum_draco_DataType_DT_INT32 = + a.asm.Fb).apply(null, arguments) + }), + hd = (a._emscripten_enum_draco_DataType_DT_UINT32 = function () { + return (hd = a._emscripten_enum_draco_DataType_DT_UINT32 = + a.asm.Gb).apply(null, arguments) + }), + id = (a._emscripten_enum_draco_DataType_DT_INT64 = function () { + return (id = a._emscripten_enum_draco_DataType_DT_INT64 = + a.asm.Hb).apply(null, arguments) + }), + jd = (a._emscripten_enum_draco_DataType_DT_UINT64 = function () { + return (jd = a._emscripten_enum_draco_DataType_DT_UINT64 = + a.asm.Ib).apply(null, arguments) + }), + kd = (a._emscripten_enum_draco_DataType_DT_FLOAT32 = function () { + return (kd = a._emscripten_enum_draco_DataType_DT_FLOAT32 = + a.asm.Jb).apply(null, arguments) + }), + ld = (a._emscripten_enum_draco_DataType_DT_FLOAT64 = function () { + return (ld = a._emscripten_enum_draco_DataType_DT_FLOAT64 = + a.asm.Kb).apply(null, arguments) + }), + md = (a._emscripten_enum_draco_DataType_DT_BOOL = function () { + return (md = a._emscripten_enum_draco_DataType_DT_BOOL = + a.asm.Lb).apply(null, arguments) + }), + nd = (a._emscripten_enum_draco_DataType_DT_TYPES_COUNT = function () { + return (nd = a._emscripten_enum_draco_DataType_DT_TYPES_COUNT = + a.asm.Mb).apply(null, arguments) + }), + od = (a._emscripten_enum_draco_StatusCode_OK = function () { + return (od = a._emscripten_enum_draco_StatusCode_OK = a.asm.Nb).apply( + null, + arguments, + ) + }), + pd = (a._emscripten_enum_draco_StatusCode_DRACO_ERROR = function () { + return (pd = a._emscripten_enum_draco_StatusCode_DRACO_ERROR = + a.asm.Ob).apply(null, arguments) + }), + qd = (a._emscripten_enum_draco_StatusCode_IO_ERROR = function () { + return (qd = a._emscripten_enum_draco_StatusCode_IO_ERROR = + a.asm.Pb).apply(null, arguments) + }), + rd = (a._emscripten_enum_draco_StatusCode_INVALID_PARAMETER = + function () { + return (rd = a._emscripten_enum_draco_StatusCode_INVALID_PARAMETER = + a.asm.Qb).apply(null, arguments) + }), + sd = (a._emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION = + function () { + return (sd = a._emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION = + a.asm.Rb).apply(null, arguments) + }), + td = (a._emscripten_enum_draco_StatusCode_UNKNOWN_VERSION = function () { + return (td = a._emscripten_enum_draco_StatusCode_UNKNOWN_VERSION = + a.asm.Sb).apply(null, arguments) + }) + a._malloc = function () { + return (a._malloc = a.asm.Tb).apply(null, arguments) + } + a._free = function () { + return (a._free = a.asm.Ub).apply(null, arguments) + } + var ya = function () { + return (ya = a.asm.Vb).apply(null, arguments) + } + a.___start_em_js = 15856 + a.___stop_em_js = 15954 + var la + ia = function b() { + la || ba() + la || (ia = b) + } + if (a.preInit) + for ( + 'function' == typeof a.preInit && (a.preInit = [a.preInit]); + 0 < a.preInit.length; + + ) + a.preInit.pop()() + ba() + t.prototype = Object.create(t.prototype) + t.prototype.constructor = t + t.prototype.__class__ = t + t.__cache__ = {} + a.WrapperObject = t + a.getCache = x + a.wrapPointer = D + a.castObject = function (b, c) { + return D(b.ptr, c) + } + a.NULL = D(0) + a.destroy = function (b) { + if (!b.__destroy__) + throw 'Error: Cannot destroy object. (Did you create it yourself?)' + b.__destroy__() + delete x(b.__class__)[b.ptr] + } + a.compare = function (b, c) { + return b.ptr === c.ptr + } + a.getPointer = function (b) { + return b.ptr + } + a.getClass = function (b) { + return b.__class__ + } + var r = { + buffer: 0, + size: 0, + pos: 0, + temps: [], + needed: 0, + prepare: function () { + if (r.needed) { + for (var b = 0; b < r.temps.length; b++) a._free(r.temps[b]) + r.temps.length = 0 + a._free(r.buffer) + r.buffer = 0 + r.size += r.needed + r.needed = 0 + } + r.buffer || + ((r.size += 128), + (r.buffer = a._malloc(r.size)), + r.buffer || f(void 0)) + r.pos = 0 + }, + alloc: function (b, c) { + r.buffer || f(void 0) + b = b.length * c.BYTES_PER_ELEMENT + b = (b + 7) & -8 + r.pos + b >= r.size + ? (0 < b || f(void 0), + (r.needed += b), + (c = a._malloc(b)), + r.temps.push(c)) + : ((c = r.buffer + r.pos), (r.pos += b)) + return c + }, + copy: function (b, c, d) { + d >>>= 0 + switch (c.BYTES_PER_ELEMENT) { + case 2: + d >>>= 1 + break + case 4: + d >>>= 2 + break + case 8: + d >>>= 3 + } + for (var g = 0; g < b.length; g++) c[d + g] = b[g] + }, + } + Z.prototype = Object.create(t.prototype) + Z.prototype.constructor = Z + Z.prototype.__class__ = Z + Z.__cache__ = {} + a.VoidPtr = Z + Z.prototype.__destroy__ = Z.prototype.__destroy__ = function () { + bb(this.ptr) + } + S.prototype = Object.create(t.prototype) + S.prototype.constructor = S + S.prototype.__class__ = S + S.__cache__ = {} + a.DecoderBuffer = S + S.prototype.Init = S.prototype.Init = function (b, c) { + var d = this.ptr + r.prepare() + 'object' == typeof b && (b = pa(b)) + c && 'object' === typeof c && (c = c.ptr) + cb(d, b, c) + } + S.prototype.__destroy__ = S.prototype.__destroy__ = function () { + db(this.ptr) + } + Q.prototype = Object.create(t.prototype) + Q.prototype.constructor = Q + Q.prototype.__class__ = Q + Q.__cache__ = {} + a.AttributeTransformData = Q + Q.prototype.transform_type = Q.prototype.transform_type = function () { + return eb(this.ptr) + } + Q.prototype.__destroy__ = Q.prototype.__destroy__ = function () { + fb(this.ptr) + } + W.prototype = Object.create(t.prototype) + W.prototype.constructor = W + W.prototype.__class__ = W + W.__cache__ = {} + a.GeometryAttribute = W + W.prototype.__destroy__ = W.prototype.__destroy__ = function () { + gb(this.ptr) + } + w.prototype = Object.create(t.prototype) + w.prototype.constructor = w + w.prototype.__class__ = w + w.__cache__ = {} + a.PointAttribute = w + w.prototype.size = w.prototype.size = function () { + return hb(this.ptr) + } + w.prototype.GetAttributeTransformData = + w.prototype.GetAttributeTransformData = function () { + return D(ib(this.ptr), Q) + } + w.prototype.attribute_type = w.prototype.attribute_type = function () { + return jb(this.ptr) + } + w.prototype.data_type = w.prototype.data_type = function () { + return kb(this.ptr) + } + w.prototype.num_components = w.prototype.num_components = function () { + return lb(this.ptr) + } + w.prototype.normalized = w.prototype.normalized = function () { + return !!mb(this.ptr) + } + w.prototype.byte_stride = w.prototype.byte_stride = function () { + return nb(this.ptr) + } + w.prototype.byte_offset = w.prototype.byte_offset = function () { + return ob(this.ptr) + } + w.prototype.unique_id = w.prototype.unique_id = function () { + return pb(this.ptr) + } + w.prototype.__destroy__ = w.prototype.__destroy__ = function () { + qb(this.ptr) + } + C.prototype = Object.create(t.prototype) + C.prototype.constructor = C + C.prototype.__class__ = C + C.__cache__ = {} + a.AttributeQuantizationTransform = C + C.prototype.InitFromAttribute = C.prototype.InitFromAttribute = function ( + b, + ) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return !!rb(c, b) + } + C.prototype.quantization_bits = C.prototype.quantization_bits = + function () { + return sb(this.ptr) + } + C.prototype.min_value = C.prototype.min_value = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return tb(c, b) + } + C.prototype.range = C.prototype.range = function () { + return ub(this.ptr) + } + C.prototype.__destroy__ = C.prototype.__destroy__ = function () { + vb(this.ptr) + } + F.prototype = Object.create(t.prototype) + F.prototype.constructor = F + F.prototype.__class__ = F + F.__cache__ = {} + a.AttributeOctahedronTransform = F + F.prototype.InitFromAttribute = F.prototype.InitFromAttribute = function ( + b, + ) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return !!wb(c, b) + } + F.prototype.quantization_bits = F.prototype.quantization_bits = + function () { + return xb(this.ptr) + } + F.prototype.__destroy__ = F.prototype.__destroy__ = function () { + yb(this.ptr) + } + G.prototype = Object.create(t.prototype) + G.prototype.constructor = G + G.prototype.__class__ = G + G.__cache__ = {} + a.PointCloud = G + G.prototype.num_attributes = G.prototype.num_attributes = function () { + return zb(this.ptr) + } + G.prototype.num_points = G.prototype.num_points = function () { + return Ab(this.ptr) + } + G.prototype.__destroy__ = G.prototype.__destroy__ = function () { + Bb(this.ptr) + } + E.prototype = Object.create(t.prototype) + E.prototype.constructor = E + E.prototype.__class__ = E + E.__cache__ = {} + a.Mesh = E + E.prototype.num_faces = E.prototype.num_faces = function () { + return Cb(this.ptr) + } + E.prototype.num_attributes = E.prototype.num_attributes = function () { + return Db(this.ptr) + } + E.prototype.num_points = E.prototype.num_points = function () { + return Eb(this.ptr) + } + E.prototype.__destroy__ = E.prototype.__destroy__ = function () { + Fb(this.ptr) + } + T.prototype = Object.create(t.prototype) + T.prototype.constructor = T + T.prototype.__class__ = T + T.__cache__ = {} + a.Metadata = T + T.prototype.__destroy__ = T.prototype.__destroy__ = function () { + Gb(this.ptr) + } + B.prototype = Object.create(t.prototype) + B.prototype.constructor = B + B.prototype.__class__ = B + B.__cache__ = {} + a.Status = B + B.prototype.code = B.prototype.code = function () { + return Hb(this.ptr) + } + B.prototype.ok = B.prototype.ok = function () { + return !!Ib(this.ptr) + } + B.prototype.error_msg = B.prototype.error_msg = function () { + return h(Jb(this.ptr)) + } + B.prototype.__destroy__ = B.prototype.__destroy__ = function () { + Kb(this.ptr) + } + H.prototype = Object.create(t.prototype) + H.prototype.constructor = H + H.prototype.__class__ = H + H.__cache__ = {} + a.DracoFloat32Array = H + H.prototype.GetValue = H.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Lb(c, b) + } + H.prototype.size = H.prototype.size = function () { + return Mb(this.ptr) + } + H.prototype.__destroy__ = H.prototype.__destroy__ = function () { + Nb(this.ptr) + } + I.prototype = Object.create(t.prototype) + I.prototype.constructor = I + I.prototype.__class__ = I + I.__cache__ = {} + a.DracoInt8Array = I + I.prototype.GetValue = I.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Ob(c, b) + } + I.prototype.size = I.prototype.size = function () { + return Pb(this.ptr) + } + I.prototype.__destroy__ = I.prototype.__destroy__ = function () { + Qb(this.ptr) + } + J.prototype = Object.create(t.prototype) + J.prototype.constructor = J + J.prototype.__class__ = J + J.__cache__ = {} + a.DracoUInt8Array = J + J.prototype.GetValue = J.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Rb(c, b) + } + J.prototype.size = J.prototype.size = function () { + return Sb(this.ptr) + } + J.prototype.__destroy__ = J.prototype.__destroy__ = function () { + Tb(this.ptr) + } + K.prototype = Object.create(t.prototype) + K.prototype.constructor = K + K.prototype.__class__ = K + K.__cache__ = {} + a.DracoInt16Array = K + K.prototype.GetValue = K.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Ub(c, b) + } + K.prototype.size = K.prototype.size = function () { + return Vb(this.ptr) + } + K.prototype.__destroy__ = K.prototype.__destroy__ = function () { + Wb(this.ptr) + } + L.prototype = Object.create(t.prototype) + L.prototype.constructor = L + L.prototype.__class__ = L + L.__cache__ = {} + a.DracoUInt16Array = L + L.prototype.GetValue = L.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Xb(c, b) + } + L.prototype.size = L.prototype.size = function () { + return Yb(this.ptr) + } + L.prototype.__destroy__ = L.prototype.__destroy__ = function () { + Zb(this.ptr) + } + M.prototype = Object.create(t.prototype) + M.prototype.constructor = M + M.prototype.__class__ = M + M.__cache__ = {} + a.DracoInt32Array = M + M.prototype.GetValue = M.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return $b(c, b) + } + M.prototype.size = M.prototype.size = function () { + return ac(this.ptr) + } + M.prototype.__destroy__ = M.prototype.__destroy__ = function () { + bc(this.ptr) + } + N.prototype = Object.create(t.prototype) + N.prototype.constructor = N + N.prototype.__class__ = N + N.__cache__ = {} + a.DracoUInt32Array = N + N.prototype.GetValue = N.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return cc(c, b) + } + N.prototype.size = N.prototype.size = function () { + return dc(this.ptr) + } + N.prototype.__destroy__ = N.prototype.__destroy__ = function () { + ec(this.ptr) + } + y.prototype = Object.create(t.prototype) + y.prototype.constructor = y + y.prototype.__class__ = y + y.__cache__ = {} + a.MetadataQuerier = y + y.prototype.HasEntry = y.prototype.HasEntry = function (b, c) { + var d = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + return !!fc(d, b, c) + } + y.prototype.GetIntEntry = y.prototype.GetIntEntry = function (b, c) { + var d = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + return gc(d, b, c) + } + y.prototype.GetIntEntryArray = y.prototype.GetIntEntryArray = function ( + b, + c, + d, + ) { + var g = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + d && 'object' === typeof d && (d = d.ptr) + hc(g, b, c, d) + } + y.prototype.GetDoubleEntry = y.prototype.GetDoubleEntry = function (b, c) { + var d = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + return ic(d, b, c) + } + y.prototype.GetStringEntry = y.prototype.GetStringEntry = function (b, c) { + var d = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + return h(jc(d, b, c)) + } + y.prototype.NumEntries = y.prototype.NumEntries = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return kc(c, b) + } + y.prototype.GetEntryName = y.prototype.GetEntryName = function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return h(lc(d, b, c)) + } + y.prototype.__destroy__ = y.prototype.__destroy__ = function () { + mc(this.ptr) + } + m.prototype = Object.create(t.prototype) + m.prototype.constructor = m + m.prototype.__class__ = m + m.__cache__ = {} + a.Decoder = m + m.prototype.DecodeArrayToPointCloud = m.prototype.DecodeArrayToPointCloud = + function (b, c, d) { + var g = this.ptr + r.prepare() + 'object' == typeof b && (b = pa(b)) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return D(nc(g, b, c, d), B) + } + m.prototype.DecodeArrayToMesh = m.prototype.DecodeArrayToMesh = function ( + b, + c, + d, + ) { + var g = this.ptr + r.prepare() + 'object' == typeof b && (b = pa(b)) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return D(oc(g, b, c, d), B) + } + m.prototype.GetAttributeId = m.prototype.GetAttributeId = function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return pc(d, b, c) + } + m.prototype.GetAttributeIdByName = m.prototype.GetAttributeIdByName = + function (b, c) { + var d = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + return qc(d, b, c) + } + m.prototype.GetAttributeIdByMetadataEntry = + m.prototype.GetAttributeIdByMetadataEntry = function (b, c, d) { + var g = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + d = d && 'object' === typeof d ? d.ptr : R(d) + return rc(g, b, c, d) + } + m.prototype.GetAttribute = m.prototype.GetAttribute = function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return D(sc(d, b, c), w) + } + m.prototype.GetAttributeByUniqueId = m.prototype.GetAttributeByUniqueId = + function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return D(tc(d, b, c), w) + } + m.prototype.GetMetadata = m.prototype.GetMetadata = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return D(uc(c, b), T) + } + m.prototype.GetAttributeMetadata = m.prototype.GetAttributeMetadata = + function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return D(vc(d, b, c), T) + } + m.prototype.GetFaceFromMesh = m.prototype.GetFaceFromMesh = function ( + b, + c, + d, + ) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!wc(g, b, c, d) + } + m.prototype.GetTriangleStripsFromMesh = + m.prototype.GetTriangleStripsFromMesh = function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return xc(d, b, c) + } + m.prototype.GetTrianglesUInt16Array = m.prototype.GetTrianglesUInt16Array = + function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!yc(g, b, c, d) + } + m.prototype.GetTrianglesUInt32Array = m.prototype.GetTrianglesUInt32Array = + function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!zc(g, b, c, d) + } + m.prototype.GetAttributeFloat = m.prototype.GetAttributeFloat = function ( + b, + c, + d, + ) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Ac(g, b, c, d) + } + m.prototype.GetAttributeFloatForAllPoints = + m.prototype.GetAttributeFloatForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Bc(g, b, c, d) + } + m.prototype.GetAttributeIntForAllPoints = + m.prototype.GetAttributeIntForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Cc(g, b, c, d) + } + m.prototype.GetAttributeInt8ForAllPoints = + m.prototype.GetAttributeInt8ForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Dc(g, b, c, d) + } + m.prototype.GetAttributeUInt8ForAllPoints = + m.prototype.GetAttributeUInt8ForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Ec(g, b, c, d) + } + m.prototype.GetAttributeInt16ForAllPoints = + m.prototype.GetAttributeInt16ForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Fc(g, b, c, d) + } + m.prototype.GetAttributeUInt16ForAllPoints = + m.prototype.GetAttributeUInt16ForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Gc(g, b, c, d) + } + m.prototype.GetAttributeInt32ForAllPoints = + m.prototype.GetAttributeInt32ForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Hc(g, b, c, d) + } + m.prototype.GetAttributeUInt32ForAllPoints = + m.prototype.GetAttributeUInt32ForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Ic(g, b, c, d) + } + m.prototype.GetAttributeDataArrayForAllPoints = + m.prototype.GetAttributeDataArrayForAllPoints = function (b, c, d, g, u) { + var X = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + g && 'object' === typeof g && (g = g.ptr) + u && 'object' === typeof u && (u = u.ptr) + return !!Jc(X, b, c, d, g, u) + } + m.prototype.SkipAttributeTransform = m.prototype.SkipAttributeTransform = + function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + Kc(c, b) + } + m.prototype.GetEncodedGeometryType_Deprecated = + m.prototype.GetEncodedGeometryType_Deprecated = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Lc(c, b) + } + m.prototype.DecodeBufferToPointCloud = + m.prototype.DecodeBufferToPointCloud = function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return D(Mc(d, b, c), B) + } + m.prototype.DecodeBufferToMesh = m.prototype.DecodeBufferToMesh = function ( + b, + c, + ) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return D(Nc(d, b, c), B) + } + m.prototype.__destroy__ = m.prototype.__destroy__ = function () { + Oc(this.ptr) + } + ;(function () { + function b() { + a.ATTRIBUTE_INVALID_TRANSFORM = Pc() + a.ATTRIBUTE_NO_TRANSFORM = Qc() + a.ATTRIBUTE_QUANTIZATION_TRANSFORM = Rc() + a.ATTRIBUTE_OCTAHEDRON_TRANSFORM = Sc() + a.INVALID = Tc() + a.POSITION = Uc() + a.NORMAL = Vc() + a.COLOR = Wc() + a.TEX_COORD = Xc() + a.GENERIC = Yc() + a.INVALID_GEOMETRY_TYPE = Zc() + a.POINT_CLOUD = $c() + a.TRIANGULAR_MESH = ad() + a.DT_INVALID = bd() + a.DT_INT8 = cd() + a.DT_UINT8 = dd() + a.DT_INT16 = ed() + a.DT_UINT16 = fd() + a.DT_INT32 = gd() + a.DT_UINT32 = hd() + a.DT_INT64 = id() + a.DT_UINT64 = jd() + a.DT_FLOAT32 = kd() + a.DT_FLOAT64 = ld() + a.DT_BOOL = md() + a.DT_TYPES_COUNT = nd() + a.OK = od() + a.DRACO_ERROR = pd() + a.IO_ERROR = qd() + a.INVALID_PARAMETER = rd() + a.UNSUPPORTED_VERSION = sd() + a.UNKNOWN_VERSION = td() + } + za ? b() : oa.unshift(b) + })() + if ('function' === typeof a.onModuleParsed) a.onModuleParsed() + a.Decoder.prototype.GetEncodedGeometryType = function (b) { + if (b.__class__ && b.__class__ === a.DecoderBuffer) + return a.Decoder.prototype.GetEncodedGeometryType_Deprecated(b) + if (8 > b.byteLength) return a.INVALID_GEOMETRY_TYPE + switch (b[7]) { + case 0: + return a.POINT_CLOUD + case 1: + return a.TRIANGULAR_MESH + default: + return a.INVALID_GEOMETRY_TYPE + } + } + return n.ready + } +})() +'object' === typeof exports && 'object' === typeof module + ? (module.exports = DracoDecoderModule) + : 'function' === typeof define && define.amd + ? define([], function () { + return DracoDecoderModule + }) + : 'object' === typeof exports && + (exports.DracoDecoderModule = DracoDecoderModule) diff --git a/public/draco/gltf/draco_decoder.js b/public/draco/gltf/draco_decoder.js index 7c84b0be..7abc957c 100644 --- a/public/draco/gltf/draco_decoder.js +++ b/public/draco/gltf/draco_decoder.js @@ -1,33 +1,50475 @@ - var DracoDecoderModule = (() => { - var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined; - if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename; - return ( -function(DracoDecoderModule = {}) { - -var Module=typeof DracoDecoderModule!="undefined"?DracoDecoderModule:{};var readyPromiseResolve,readyPromiseReject;Module["ready"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var isRuntimeInitialized=false;var isModuleParsed=false;Module["onRuntimeInitialized"]=function(){isRuntimeInitialized=true;if(isModuleParsed){if(typeof Module["onModuleLoaded"]==="function"){Module["onModuleLoaded"](Module)}}};Module["onModuleParsed"]=function(){isModuleParsed=true;if(isRuntimeInitialized){if(typeof Module["onModuleLoaded"]==="function"){Module["onModuleLoaded"](Module)}}};function isVersionSupported(versionString){if(typeof versionString!=="string")return false;const version=versionString.split(".");if(version.length<2||version.length>3)return false;if(version[0]==1&&version[1]>=0&&version[1]<=5)return true;if(version[0]!=0||version[1]>10)return false;return true}Module["isVersionSupported"]=isVersionSupported;var moduleOverrides=Object.assign({},Module);var arguments_=[];var thisProgram="./this.program";var quit_=(status,toThrow)=>{throw toThrow};var ENVIRONMENT_IS_WEB=typeof window=="object";var ENVIRONMENT_IS_WORKER=typeof importScripts=="function";var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";var scriptDirectory="";function locateFile(path){if(Module["locateFile"]){return Module["locateFile"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;function logExceptionOnExit(e){if(e instanceof ExitStatus)return;let toLog=e;err("exiting due to exception: "+toLog)}if(ENVIRONMENT_IS_NODE){var fs=require("fs");var nodePath=require("path");if(ENVIRONMENT_IS_WORKER){scriptDirectory=nodePath.dirname(scriptDirectory)+"/"}else{scriptDirectory=__dirname+"/"}read_=(filename,binary)=>{var ret=tryParseAsDataURI(filename);if(ret){return binary?ret:ret.toString()}filename=isFileURI(filename)?new URL(filename):nodePath.normalize(filename);return fs.readFileSync(filename,binary?undefined:"utf8")};readBinary=filename=>{var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}return ret};readAsync=(filename,onload,onerror)=>{var ret=tryParseAsDataURI(filename);if(ret){onload(ret)}filename=isFileURI(filename)?new URL(filename):nodePath.normalize(filename);fs.readFile(filename,function(err,data){if(err)onerror(err);else onload(data.buffer)})};if(process["argv"].length>1){thisProgram=process["argv"][1].replace(/\\/g,"/")}arguments_=process["argv"].slice(2);quit_=(status,toThrow)=>{if(keepRuntimeAlive()){process["exitCode"]=status;throw toThrow}logExceptionOnExit(toThrow);process["exit"](status)};Module["inspect"]=function(){return"[Emscripten Module object]"}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!="undefined"&&document.currentScript){scriptDirectory=document.currentScript.src}if(_scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf("blob:")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.replace(/[?#].*/,"").lastIndexOf("/")+1)}else{scriptDirectory=""}{read_=url=>{try{var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.send(null);return xhr.responseText}catch(err){var data=tryParseAsDataURI(url);if(data){return intArrayToString(data)}throw err}};if(ENVIRONMENT_IS_WORKER){readBinary=url=>{try{var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.responseType="arraybuffer";xhr.send(null);return new Uint8Array(xhr.response)}catch(err){var data=tryParseAsDataURI(url);if(data){return data}throw err}}}readAsync=(url,onload,onerror)=>{var xhr=new XMLHttpRequest;xhr.open("GET",url,true);xhr.responseType="arraybuffer";xhr.onload=()=>{if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}var data=tryParseAsDataURI(url);if(data){onload(data.buffer);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=title=>document.title=title}else{}var out=Module["print"]||console.log.bind(console);var err=Module["printErr"]||console.warn.bind(console);Object.assign(Module,moduleOverrides);moduleOverrides=null;if(Module["arguments"])arguments_=Module["arguments"];if(Module["thisProgram"])thisProgram=Module["thisProgram"];if(Module["quit"])quit_=Module["quit"];var wasmBinary;if(Module["wasmBinary"])wasmBinary=Module["wasmBinary"];var noExitRuntime=Module["noExitRuntime"]||true;var WebAssembly={Memory:function(opts){this.buffer=new ArrayBuffer(opts["initial"]*65536)},Module:function(binary){},Instance:function(module,info){this.exports=( -// EMSCRIPTEN_START_ASM -function instantiate(ia){function c(d){d.set=function(a,b){this[a]=b};d.get=function(a){return this[a]};return d}var e;var f=new Uint8Array(123);for(var a=25;a>=0;--a){f[48+a]=52+a;f[65+a]=a;f[97+a]=26+a}f[43]=62;f[47]=63;function l(m,n,o){var g,h,a=0,i=n,j=o.length,k=n+(j*3>>2)-(o[j-2]=="=")-(o[j-1]=="=");for(;a>4;if(i>2;if(i>2];o=F[c+12>>2];g=F[c+16>>2];a:{if((e|0)>=(o|0)&g>>>0>=I[c+8>>2]|(e|0)>(o|0)){break a}o=G[g+F[c>>2]|0];g=g+1|0;e=g?e:e+1|0;F[c+16>>2]=g;F[c+20>>2]=e;b:{switch(o|0){case 0:e=a;f=b;g=d;a=0;d=0;j=Z+-64|0;Z=j;F[j+56>>2]=0;F[j+48>>2]=0;F[j+52>>2]=0;F[j+40>>2]=0;F[j+44>>2]=0;F[j+32>>2]=0;F[j+36>>2]=0;F[j+24>>2]=0;F[j+28>>2]=0;F[j+16>>2]=0;F[j+20>>2]=0;F[j+8>>2]=0;F[j+12>>2]=0;c:{if(!Nd(j+8|0,c)){break c}if(!Md(j+8|0,c)|(F[j+20>>2]?0:e)){break c}hc(c,0,0);if(e){s=f<<2;t=F[j+36>>2];u=F[j+48>>2];x=F[j+24>>2];l=F[j+56>>2];i=F[j+52>>2];while(1){d:{if(l>>>0>16383){break d}while(1){if((i|0)<=0){break d}i=i-1|0;F[j+52>>2]=i;l=G[i+u|0]|l<<8;F[j+56>>2]=l;if(l>>>0<16384){continue}break}}a=l&4095;r=F[(a<<2)+x>>2];b=(r<<3)+t|0;l=(L(F[b>>2],l>>>12|0)+a|0)-F[b+4>>2]|0;F[j+56>>2]=l;if((f|0)>0){a=0;if(!G[c+36|0]|r>>>0>32){break c}o=d+f|0;e:{if(!r){ma(g+(d<<2)|0,0,s);break e}y=r&-2;z=r&1;b=F[c+32>>2];h=F[c+28>>2];q=F[c+24>>2];while(1){k=0;a=b;m=0;n=0;if((r|0)!=1){while(1){p=q+(a>>>3|0)|0;f:{if(p>>>0>=h>>>0){p=0;break f}p=G[p|0];b=a+1|0;F[c+32>>2]=b;p=p>>>(a&7)&1;a=b}p=p<>>3|0)|0;if(v>>>0>>0){m=G[v|0];b=a+1|0;F[c+32>>2]=b;m=m>>>(a&7)&1;a=b}v=k|1;k=k+2|0;m=p|m<>>3|0)|0;if(p>>>0>>0){p=G[p|0];b=a+1|0;F[c+32>>2]=b;a=p>>>(a&7)&1}else{a=0}m=a<>2]=m;d=d+1|0;if((o|0)!=(d|0)){continue}break}}d=o}w=f+w|0;if(e>>>0>w>>>0){continue}break}}D[c+36|0]=0;f=F[c+20>>2];a=0;m=F[c+32>>2]+7|0;a=m>>>0<7?1:a;m=a<<29|m>>>3;b=m+F[c+16>>2]|0;a=(a>>>3|0)+f|0;F[c+16>>2]=b;F[c+20>>2]=b>>>0>>0?a+1|0:a;a=1}b=F[j+36>>2];if(b){F[j+40>>2]=b;ja(b)}b=F[j+24>>2];if(b){F[j+28>>2]=b;ja(b)}b=F[j+8>>2];if(b){F[j+12>>2]=b;ja(b)}Z=j- -64|0;return a;case 1:break b;default:break a}}b=0;e=F[c+20>>2];o=F[c+12>>2];g=F[c+16>>2];g:{if((e|0)>=(o|0)&g>>>0>=I[c+8>>2]|(e|0)>(o|0)){break g}o=G[g+F[c>>2]|0];g=g+1|0;e=g?e:e+1|0;F[c+16>>2]=g;F[c+20>>2]=e;h:{switch(o-1|0){case 8:o=a;r=d;e=Z+-64|0;Z=e;F[e+56>>2]=0;F[e+48>>2]=0;F[e+52>>2]=0;F[e+40>>2]=0;F[e+44>>2]=0;F[e+32>>2]=0;F[e+36>>2]=0;F[e+24>>2]=0;F[e+28>>2]=0;F[e+16>>2]=0;F[e+20>>2]=0;F[e+8>>2]=0;F[e+12>>2]=0;h=e+8|0;i:{j:{if(!H[c+38>>1]){break j}if(!Ta(1,h+12|0,c)){break j}b=F[c+8>>2];d=F[c+16>>2];f=b-d|0;i=F[h+12>>2];b=F[c+12>>2]-(F[c+20>>2]+(b>>>0>>0)|0)|0;if(f>>>0>>6>>>0&(b|0)<=0|(b|0)<0){break j}b=F[h>>2];a=F[h+4>>2]-b>>2;k:{if(a>>>0>>0){qa(h,i-a|0);i=F[h+12>>2];break k}if(a>>>0<=i>>>0){break k}F[h+4>>2]=b+(i<<2)}g=1;if(!i){break i}f=F[c+16>>2];d=F[c+20>>2];s=F[h>>2];j=F[c+8>>2];n=F[c+12>>2];b=0;while(1){g=0;if((d|0)>=(n|0)&f>>>0>=j>>>0|(d|0)>(n|0)){break i}g=F[c>>2];p=G[g+f|0];a=d;f=f+1|0;a=f?a:a+1|0;F[c+16>>2]=f;d=a;F[c+20>>2]=a;a=p>>>2|0;l=0;l:{m:{n:{o:{t=p&3;switch(t|0){case 0:break m;case 3:break o;default:break n}}a=a+b|0;g=0;if(a>>>0>=i>>>0){break i}ma(s+(b<<2)|0,0,(p&252)+4|0);b=a;break l}while(1){if((f|0)==(j|0)&(d|0)==(n|0)){break j}i=G[f+g|0];f=f+1|0;d=f?d:d+1|0;F[c+16>>2]=f;F[c+20>>2]=d;a=i<<(l<<3|6)|a;l=l+1|0;if((t|0)!=(l|0)){continue}break}}F[s+(b<<2)>>2]=a}b=b+1|0;i=F[h+12>>2];if(b>>>0>>0){continue}break}a=h+16|0;n=F[h>>2];d=F[h+16>>2];b=F[h+20>>2]-d|0;p:{if(b>>>0<=32767){qa(a,8192-(b>>>2|0)|0);break p}if((b|0)==32768){break p}F[h+20>>2]=d+32768}d=h+28|0;b=F[d>>2];f=F[h+32>>2]-b>>3;q:{if(f>>>0>>0){_a(d,i-f|0);b=F[d>>2];break q}if(f>>>0>i>>>0){F[h+32>>2]=(i<<3)+b}if(!i){break j}}j=F[a>>2];f=0;d=0;while(1){g=n+(f<<2)|0;l=F[g>>2];h=(f<<3)+b|0;a=d;F[h+4>>2]=a;F[h>>2]=l;g=F[g>>2];d=g+a|0;if(d>>>0>8192){break j}r:{if(a>>>0>=d>>>0){break r}l=0;h=g&7;if(h){while(1){F[j+(a<<2)>>2]=f;a=a+1|0;l=l+1|0;if((h|0)!=(l|0)){continue}break}}if(g-1>>>0<=6){break r}while(1){g=j+(a<<2)|0;F[g>>2]=f;F[g+28>>2]=f;F[g+24>>2]=f;F[g+20>>2]=f;F[g+16>>2]=f;F[g+12>>2]=f;F[g+8>>2]=f;F[g+4>>2]=f;a=a+8|0;if((d|0)!=(a|0)){continue}break}}f=f+1|0;if((i|0)!=(f|0)){continue}break}k=(d|0)==8192}g=k}s:{if(!g|(F[e+20>>2]?0:o)){break s}d=0;k=Z-16|0;Z=k;t:{if(!Sa(1,k+8|0,c)){break t}a=F[c+8>>2];f=F[c+16>>2];g=a-f|0;j=F[k+12>>2];i=F[c+20>>2];a=F[c+12>>2]-(i+(a>>>0>>0)|0)|0;b=F[k+8>>2];if((j|0)==(a|0)&g>>>0>>0|a>>>0>>0){break t}a=i+j|0;g=b+f|0;a=g>>>0>>0?a+1|0:a;F[c+16>>2]=g;F[c+20>>2]=a;if((b|0)<=0){break t}a=f+F[c>>2]|0;F[e+48>>2]=a;c=b-1|0;f=c+a|0;g=G[f|0];u:{if(g>>>0<=63){F[e+52>>2]=c;a=G[f|0]&63;break u}v:{switch((g>>>6|0)-1|0){case 0:if(b>>>0<2){break t}b=b-2|0;F[e+52>>2]=b;a=a+b|0;a=G[a+1|0]<<8&16128|G[a|0];break u;case 1:if(b>>>0<3){break t}b=b-3|0;F[e+52>>2]=b;a=a+b|0;a=G[a+1|0]<<8|G[a+2|0]<<16&4128768|G[a|0];break u;default:break v}}b=b-4|0;F[e+52>>2]=b;a=a+b|0;a=(G[a|0]|G[a+1|0]<<8|(G[a+2|0]<<16|G[a+3|0]<<24))&1073741823}F[e+56>>2]=a+32768;d=a>>>0<8355840}Z=k+16|0;if(!d){break s}if(!o){m=1;break s}b=F[e+52>>2];a=F[e+56>>2];c=F[e+36>>2];d=F[e+48>>2];f=F[e+24>>2];while(1){w:{if(a>>>0>32767){break w}while(1){if((b|0)<=0){break w}b=b-1|0;F[e+52>>2]=b;a=G[b+d|0]|a<<8;F[e+56>>2]=a;if(a>>>0<32768){continue}break}}m=a&8191;k=F[f+(m<<2)>>2];g=c+(k<<3)|0;a=(L(F[g>>2],a>>>13|0)+m|0)-F[g+4>>2]|0;F[e+56>>2]=a;F[r+(q<<2)>>2]=k;m=1;q=q+1|0;if((o|0)!=(q|0)){continue}break}}a=F[e+36>>2];if(a){F[e+40>>2]=a;ja(a)}a=F[e+24>>2];if(a){F[e+28>>2]=a;ja(a)}a=F[e+8>>2];if(a){F[e+12>>2]=a;ja(a)}Z=e- -64|0;b=m;break g;case 9:o=a;r=d;g=Z+-64|0;Z=g;F[g+56>>2]=0;F[g+48>>2]=0;F[g+52>>2]=0;F[g+40>>2]=0;F[g+44>>2]=0;F[g+32>>2]=0;F[g+36>>2]=0;F[g+24>>2]=0;F[g+28>>2]=0;F[g+16>>2]=0;F[g+20>>2]=0;F[g+8>>2]=0;F[g+12>>2]=0;h=g+8|0;x:{y:{if(!H[c+38>>1]){break y}if(!Ta(1,h+12|0,c)){break y}b=F[c+8>>2];d=F[c+16>>2];f=b-d|0;i=F[h+12>>2];b=F[c+12>>2]-(F[c+20>>2]+(b>>>0>>0)|0)|0;if(f>>>0>>6>>>0&(b|0)<=0|(b|0)<0){break y}b=F[h>>2];a=F[h+4>>2]-b>>2;z:{if(a>>>0>>0){qa(h,i-a|0);i=F[h+12>>2];break z}if(a>>>0<=i>>>0){break z}F[h+4>>2]=b+(i<<2)}e=1;if(!i){break x}f=F[c+16>>2];d=F[c+20>>2];s=F[h>>2];j=F[c+8>>2];n=F[c+12>>2];b=0;while(1){e=0;if((d|0)>=(n|0)&f>>>0>=j>>>0|(d|0)>(n|0)){break x}t=F[c>>2];p=G[t+f|0];e=d;f=f+1|0;e=f?e:e+1|0;F[c+16>>2]=f;d=e;F[c+20>>2]=e;a=p>>>2|0;l=0;A:{B:{C:{D:{e=p&3;switch(e|0){case 0:break B;case 3:break D;default:break C}}a=a+b|0;e=0;if(a>>>0>=i>>>0){break x}ma(s+(b<<2)|0,0,(p&252)+4|0);b=a;break A}while(1){if((f|0)==(j|0)&(d|0)==(n|0)){break y}i=G[f+t|0];f=f+1|0;d=f?d:d+1|0;F[c+16>>2]=f;F[c+20>>2]=d;a=i<<(l<<3|6)|a;l=l+1|0;if((e|0)!=(l|0)){continue}break}}F[s+(b<<2)>>2]=a}b=b+1|0;i=F[h+12>>2];if(b>>>0>>0){continue}break}a=h+16|0;n=F[h>>2];d=F[h+16>>2];b=F[h+20>>2]-d|0;E:{if(b>>>0<=131071){qa(a,32768-(b>>>2|0)|0);break E}if((b|0)==131072){break E}F[h+20>>2]=d+131072}d=h+28|0;b=F[d>>2];f=F[h+32>>2]-b>>3;F:{if(f>>>0>>0){_a(d,i-f|0);b=F[d>>2];break F}if(f>>>0>i>>>0){F[h+32>>2]=(i<<3)+b}if(!i){break y}}j=F[a>>2];f=0;d=0;while(1){e=n+(f<<2)|0;l=F[e>>2];h=(f<<3)+b|0;a=d;F[h+4>>2]=a;F[h>>2]=l;e=F[e>>2];d=e+a|0;if(d>>>0>32768){break y}G:{if(a>>>0>=d>>>0){break G}l=0;h=e&7;if(h){while(1){F[j+(a<<2)>>2]=f;a=a+1|0;l=l+1|0;if((h|0)!=(l|0)){continue}break}}if(e-1>>>0<=6){break G}while(1){e=j+(a<<2)|0;F[e>>2]=f;F[e+28>>2]=f;F[e+24>>2]=f;F[e+20>>2]=f;F[e+16>>2]=f;F[e+12>>2]=f;F[e+8>>2]=f;F[e+4>>2]=f;a=a+8|0;if((d|0)!=(a|0)){continue}break}}f=f+1|0;if((i|0)!=(f|0)){continue}break}k=(d|0)==32768}e=k}H:{if(!e|(F[g+20>>2]?0:o)){break H}d=0;f=Z-16|0;Z=f;I:{if(!Sa(1,f+8|0,c)){break I}e=F[c+8>>2];b=F[c+16>>2];k=e-b|0;j=F[f+12>>2];i=F[c+20>>2];e=F[c+12>>2]-(i+(b>>>0>e>>>0)|0)|0;a=F[f+8>>2];if((j|0)==(e|0)&k>>>0>>0|e>>>0>>0){break I}e=i+j|0;k=a+b|0;e=k>>>0>>0?e+1|0:e;F[c+16>>2]=k;F[c+20>>2]=e;if((a|0)<=0){break I}b=b+F[c>>2]|0;F[g+48>>2]=b;c=a-1|0;e=c+b|0;k=G[e|0];J:{if(k>>>0<=63){F[g+52>>2]=c;a=G[e|0]&63;break J}K:{switch((k>>>6|0)-1|0){case 0:if(a>>>0<2){break I}a=a-2|0;F[g+52>>2]=a;a=a+b|0;a=G[a+1|0]<<8&16128|G[a|0];break J;case 1:if(a>>>0<3){break I}a=a-3|0;F[g+52>>2]=a;a=a+b|0;a=G[a+1|0]<<8|G[a+2|0]<<16&4128768|G[a|0];break J;default:break K}}a=a-4|0;F[g+52>>2]=a;a=a+b|0;a=(G[a|0]|G[a+1|0]<<8|(G[a+2|0]<<16|G[a+3|0]<<24))&1073741823}F[g+56>>2]=a+131072;d=a>>>0<33423360}Z=f+16|0;if(!d){break H}if(!o){m=1;break H}b=F[g+52>>2];a=F[g+56>>2];c=F[g+36>>2];d=F[g+48>>2];f=F[g+24>>2];while(1){L:{if(a>>>0>131071){break L}while(1){if((b|0)<=0){break L}b=b-1|0;F[g+52>>2]=b;a=G[b+d|0]|a<<8;F[g+56>>2]=a;if(a>>>0<131072){continue}break}}m=a&32767;e=F[f+(m<<2)>>2];k=c+(e<<3)|0;a=(L(F[k>>2],a>>>15|0)+m|0)-F[k+4>>2]|0;F[g+56>>2]=a;F[r+(q<<2)>>2]=e;m=1;q=q+1|0;if((o|0)!=(q|0)){continue}break}}a=F[g+36>>2];if(a){F[g+40>>2]=a;ja(a)}a=F[g+24>>2];if(a){F[g+28>>2]=a;ja(a)}a=F[g+8>>2];if(a){F[g+12>>2]=a;ja(a)}Z=g- -64|0;b=m;break g;case 10:o=a;r=d;g=Z+-64|0;Z=g;F[g+56>>2]=0;F[g+48>>2]=0;F[g+52>>2]=0;F[g+40>>2]=0;F[g+44>>2]=0;F[g+32>>2]=0;F[g+36>>2]=0;F[g+24>>2]=0;F[g+28>>2]=0;F[g+16>>2]=0;F[g+20>>2]=0;F[g+8>>2]=0;F[g+12>>2]=0;h=g+8|0;M:{N:{if(!H[c+38>>1]){break N}if(!Ta(1,h+12|0,c)){break N}b=F[c+8>>2];d=F[c+16>>2];f=b-d|0;i=F[h+12>>2];b=F[c+12>>2]-(F[c+20>>2]+(b>>>0>>0)|0)|0;if(f>>>0>>6>>>0&(b|0)<=0|(b|0)<0){break N}b=F[h>>2];a=F[h+4>>2]-b>>2;O:{if(a>>>0>>0){qa(h,i-a|0);i=F[h+12>>2];break O}if(a>>>0<=i>>>0){break O}F[h+4>>2]=b+(i<<2)}e=1;if(!i){break M}f=F[c+16>>2];d=F[c+20>>2];s=F[h>>2];j=F[c+8>>2];n=F[c+12>>2];b=0;while(1){e=0;if((d|0)>=(n|0)&f>>>0>=j>>>0|(d|0)>(n|0)){break M}t=F[c>>2];p=G[t+f|0];a=d;f=f+1|0;a=f?a:a+1|0;F[c+16>>2]=f;d=a;F[c+20>>2]=a;a=p>>>2|0;l=0;P:{Q:{R:{S:{u=p&3;switch(u|0){case 0:break Q;case 3:break S;default:break R}}a=a+b|0;e=0;if(a>>>0>=i>>>0){break M}ma(s+(b<<2)|0,0,(p&252)+4|0);b=a;break P}while(1){if((f|0)==(j|0)&(d|0)==(n|0)){break N}i=G[f+t|0];e=d;f=f+1|0;e=f?e:e+1|0;F[c+16>>2]=f;d=e;F[c+20>>2]=e;a=i<<(l<<3|6)|a;l=l+1|0;if((u|0)!=(l|0)){continue}break}}F[s+(b<<2)>>2]=a}b=b+1|0;i=F[h+12>>2];if(b>>>0>>0){continue}break}a=h+16|0;n=F[h>>2];d=F[h+16>>2];b=F[h+20>>2]-d|0;T:{if(b>>>0<=262143){qa(a,65536-(b>>>2|0)|0);break T}if((b|0)==262144){break T}F[h+20>>2]=d+262144}d=h+28|0;b=F[d>>2];f=F[h+32>>2]-b>>3;U:{if(f>>>0>>0){_a(d,i-f|0);b=F[d>>2];break U}if(f>>>0>i>>>0){F[h+32>>2]=(i<<3)+b}if(!i){break N}}j=F[a>>2];f=0;d=0;while(1){e=n+(f<<2)|0;l=F[e>>2];h=(f<<3)+b|0;a=d;F[h+4>>2]=a;F[h>>2]=l;e=F[e>>2];d=e+a|0;if(d>>>0>65536){break N}V:{if(a>>>0>=d>>>0){break V}l=0;h=e&7;if(h){while(1){F[j+(a<<2)>>2]=f;a=a+1|0;l=l+1|0;if((h|0)!=(l|0)){continue}break}}if(e-1>>>0<=6){break V}while(1){e=j+(a<<2)|0;F[e>>2]=f;F[e+28>>2]=f;F[e+24>>2]=f;F[e+20>>2]=f;F[e+16>>2]=f;F[e+12>>2]=f;F[e+8>>2]=f;F[e+4>>2]=f;a=a+8|0;if((d|0)!=(a|0)){continue}break}}f=f+1|0;if((i|0)!=(f|0)){continue}break}k=(d|0)==65536}e=k}W:{if(!e|(F[g+20>>2]?0:o)){break W}d=0;e=Z-16|0;Z=e;X:{if(!Sa(1,e+8|0,c)){break X}a=F[c+8>>2];f=F[c+16>>2];k=a-f|0;j=F[e+12>>2];i=F[c+20>>2];a=F[c+12>>2]-(i+(a>>>0>>0)|0)|0;b=F[e+8>>2];if((j|0)==(a|0)&k>>>0>>0|a>>>0>>0){break X}a=i+j|0;k=b+f|0;a=k>>>0>>0?a+1|0:a;F[c+16>>2]=k;F[c+20>>2]=a;if((b|0)<=0){break X}a=f+F[c>>2]|0;F[g+48>>2]=a;c=b-1|0;f=c+a|0;k=G[f|0];Y:{if(k>>>0<=63){F[g+52>>2]=c;a=G[f|0]&63;break Y}Z:{switch((k>>>6|0)-1|0){case 0:if(b>>>0<2){break X}b=b-2|0;F[g+52>>2]=b;a=a+b|0;a=G[a+1|0]<<8&16128|G[a|0];break Y;case 1:if(b>>>0<3){break X}b=b-3|0;F[g+52>>2]=b;a=a+b|0;a=G[a+1|0]<<8|G[a+2|0]<<16&4128768|G[a|0];break Y;default:break Z}}b=b-4|0;F[g+52>>2]=b;a=a+b|0;a=(G[a|0]|G[a+1|0]<<8|(G[a+2|0]<<16|G[a+3|0]<<24))&1073741823}F[g+56>>2]=a+262144;d=a>>>0<66846720}Z=e+16|0;if(!d){break W}if(!o){m=1;break W}b=F[g+52>>2];a=F[g+56>>2];c=F[g+36>>2];d=F[g+48>>2];f=F[g+24>>2];while(1){_:{if(a>>>0>262143){break _}while(1){if((b|0)<=0){break _}b=b-1|0;F[g+52>>2]=b;a=G[b+d|0]|a<<8;F[g+56>>2]=a;if(a>>>0<262144){continue}break}}m=a&65535;e=F[f+(m<<2)>>2];k=c+(e<<3)|0;a=(L(F[k>>2],a>>>16|0)+m|0)-F[k+4>>2]|0;F[g+56>>2]=a;F[r+(q<<2)>>2]=e;m=1;q=q+1|0;if((o|0)!=(q|0)){continue}break}}a=F[g+36>>2];if(a){F[g+40>>2]=a;ja(a)}a=F[g+24>>2];if(a){F[g+28>>2]=a;ja(a)}a=F[g+8>>2];if(a){F[g+12>>2]=a;ja(a)}Z=g- -64|0;b=m;break g;case 11:o=a;r=d;g=Z+-64|0;Z=g;F[g+56>>2]=0;F[g+48>>2]=0;F[g+52>>2]=0;F[g+40>>2]=0;F[g+44>>2]=0;F[g+32>>2]=0;F[g+36>>2]=0;F[g+24>>2]=0;F[g+28>>2]=0;F[g+16>>2]=0;F[g+20>>2]=0;F[g+8>>2]=0;F[g+12>>2]=0;h=g+8|0;$:{aa:{if(!H[c+38>>1]){break aa}if(!Ta(1,h+12|0,c)){break aa}b=F[c+8>>2];d=F[c+16>>2];f=b-d|0;i=F[h+12>>2];b=F[c+12>>2]-(F[c+20>>2]+(b>>>0>>0)|0)|0;if(f>>>0>>6>>>0&(b|0)<=0|(b|0)<0){break aa}b=F[h>>2];a=F[h+4>>2]-b>>2;ba:{if(a>>>0>>0){qa(h,i-a|0);i=F[h+12>>2];break ba}if(a>>>0<=i>>>0){break ba}F[h+4>>2]=b+(i<<2)}e=1;if(!i){break $}f=F[c+16>>2];d=F[c+20>>2];s=F[h>>2];j=F[c+8>>2];n=F[c+12>>2];b=0;while(1){e=0;if((d|0)>=(n|0)&f>>>0>=j>>>0|(d|0)>(n|0)){break $}t=F[c>>2];p=G[t+f|0];e=d;f=f+1|0;e=f?e:e+1|0;F[c+16>>2]=f;d=e;F[c+20>>2]=e;a=p>>>2|0;l=0;ca:{da:{ea:{fa:{e=p&3;switch(e|0){case 0:break da;case 3:break fa;default:break ea}}a=a+b|0;e=0;if(a>>>0>=i>>>0){break $}ma(s+(b<<2)|0,0,(p&252)+4|0);b=a;break ca}while(1){if((f|0)==(j|0)&(d|0)==(n|0)){break aa}i=G[f+t|0];f=f+1|0;d=f?d:d+1|0;F[c+16>>2]=f;F[c+20>>2]=d;a=i<<(l<<3|6)|a;l=l+1|0;if((e|0)!=(l|0)){continue}break}}F[s+(b<<2)>>2]=a}b=b+1|0;i=F[h+12>>2];if(b>>>0>>0){continue}break}a=h+16|0;n=F[h>>2];d=F[h+16>>2];b=F[h+20>>2]-d|0;ga:{if(b>>>0<=1048575){qa(a,262144-(b>>>2|0)|0);break ga}if((b|0)==1048576){break ga}F[h+20>>2]=d- -1048576}d=h+28|0;b=F[d>>2];f=F[h+32>>2]-b>>3;ha:{if(f>>>0>>0){_a(d,i-f|0);b=F[d>>2];break ha}if(f>>>0>i>>>0){F[h+32>>2]=(i<<3)+b}if(!i){break aa}}j=F[a>>2];f=0;d=0;while(1){e=n+(f<<2)|0;l=F[e>>2];h=(f<<3)+b|0;a=d;F[h+4>>2]=a;F[h>>2]=l;e=F[e>>2];d=e+a|0;if(d>>>0>262144){break aa}ia:{if(a>>>0>=d>>>0){break ia}l=0;h=e&7;if(h){while(1){F[j+(a<<2)>>2]=f;a=a+1|0;l=l+1|0;if((h|0)!=(l|0)){continue}break}}if(e-1>>>0<=6){break ia}while(1){e=j+(a<<2)|0;F[e>>2]=f;F[e+28>>2]=f;F[e+24>>2]=f;F[e+20>>2]=f;F[e+16>>2]=f;F[e+12>>2]=f;F[e+8>>2]=f;F[e+4>>2]=f;a=a+8|0;if((d|0)!=(a|0)){continue}break}}f=f+1|0;if((i|0)!=(f|0)){continue}break}k=(d|0)==262144}e=k}ja:{if(!e|(F[g+20>>2]?0:o)){break ja}d=0;f=Z-16|0;Z=f;ka:{if(!Sa(1,f+8|0,c)){break ka}e=F[c+8>>2];b=F[c+16>>2];k=e-b|0;j=F[f+12>>2];i=F[c+20>>2];e=F[c+12>>2]-(i+(b>>>0>e>>>0)|0)|0;a=F[f+8>>2];if((j|0)==(e|0)&k>>>0>>0|e>>>0>>0){break ka}e=i+j|0;k=a+b|0;e=k>>>0>>0?e+1|0:e;F[c+16>>2]=k;F[c+20>>2]=e;if((a|0)<=0){break ka}b=b+F[c>>2]|0;F[g+48>>2]=b;c=a-1|0;e=c+b|0;k=G[e|0];la:{if(k>>>0<=63){F[g+52>>2]=c;a=G[e|0]&63;break la}ma:{switch((k>>>6|0)-1|0){case 0:if(a>>>0<2){break ka}a=a-2|0;F[g+52>>2]=a;a=a+b|0;a=G[a+1|0]<<8&16128|G[a|0];break la;case 1:if(a>>>0<3){break ka}a=a-3|0;F[g+52>>2]=a;a=a+b|0;a=G[a+1|0]<<8|G[a+2|0]<<16&4128768|G[a|0];break la;default:break ma}}a=a-4|0;F[g+52>>2]=a;a=a+b|0;a=(G[a|0]|G[a+1|0]<<8|(G[a+2|0]<<16|G[a+3|0]<<24))&1073741823}F[g+56>>2]=a- -1048576;d=a>>>0<267386880}Z=f+16|0;if(!d){break ja}if(!o){m=1;break ja}b=F[g+52>>2];a=F[g+56>>2];c=F[g+36>>2];d=F[g+48>>2];f=F[g+24>>2];while(1){na:{if(a>>>0>1048575){break na}while(1){if((b|0)<=0){break na}b=b-1|0;F[g+52>>2]=b;a=G[b+d|0]|a<<8;F[g+56>>2]=a;if(a>>>0<1048576){continue}break}}m=a&262143;e=F[f+(m<<2)>>2];k=c+(e<<3)|0;a=(L(F[k>>2],a>>>18|0)+m|0)-F[k+4>>2]|0;F[g+56>>2]=a;F[r+(q<<2)>>2]=e;m=1;q=q+1|0;if((o|0)!=(q|0)){continue}break}}a=F[g+36>>2];if(a){F[g+40>>2]=a;ja(a)}a=F[g+24>>2];if(a){F[g+28>>2]=a;ja(a)}a=F[g+8>>2];if(a){F[g+12>>2]=a;ja(a)}Z=g- -64|0;b=m;break g;case 12:o=a;r=d;e=Z+-64|0;Z=e;F[e+56>>2]=0;F[e+48>>2]=0;F[e+52>>2]=0;F[e+40>>2]=0;F[e+44>>2]=0;F[e+32>>2]=0;F[e+36>>2]=0;F[e+24>>2]=0;F[e+28>>2]=0;F[e+16>>2]=0;F[e+20>>2]=0;F[e+8>>2]=0;F[e+12>>2]=0;h=e+8|0;oa:{pa:{if(!H[c+38>>1]){break pa}if(!Ta(1,h+12|0,c)){break pa}b=F[c+8>>2];d=F[c+16>>2];f=b-d|0;i=F[h+12>>2];b=F[c+12>>2]-(F[c+20>>2]+(b>>>0>>0)|0)|0;if(f>>>0>>6>>>0&(b|0)<=0|(b|0)<0){break pa}b=F[h>>2];a=F[h+4>>2]-b>>2;qa:{if(a>>>0>>0){qa(h,i-a|0);i=F[h+12>>2];break qa}if(a>>>0<=i>>>0){break qa}F[h+4>>2]=b+(i<<2)}g=1;if(!i){break oa}f=F[c+16>>2];d=F[c+20>>2];s=F[h>>2];j=F[c+8>>2];n=F[c+12>>2];b=0;while(1){g=0;if((d|0)>=(n|0)&f>>>0>=j>>>0|(d|0)>(n|0)){break oa}g=F[c>>2];p=G[g+f|0];a=d;f=f+1|0;a=f?a:a+1|0;F[c+16>>2]=f;d=a;F[c+20>>2]=a;a=p>>>2|0;l=0;ra:{sa:{ta:{ua:{t=p&3;switch(t|0){case 0:break sa;case 3:break ua;default:break ta}}a=a+b|0;g=0;if(a>>>0>=i>>>0){break oa}ma(s+(b<<2)|0,0,(p&252)+4|0);b=a;break ra}while(1){if((f|0)==(j|0)&(d|0)==(n|0)){break pa}i=G[f+g|0];f=f+1|0;d=f?d:d+1|0;F[c+16>>2]=f;F[c+20>>2]=d;a=i<<(l<<3|6)|a;l=l+1|0;if((t|0)!=(l|0)){continue}break}}F[s+(b<<2)>>2]=a}b=b+1|0;i=F[h+12>>2];if(b>>>0>>0){continue}break}a=h+16|0;n=F[h>>2];d=F[h+16>>2];b=F[h+20>>2]-d|0;va:{if(b>>>0<=2097151){qa(a,524288-(b>>>2|0)|0);break va}if((b|0)==2097152){break va}F[h+20>>2]=d+2097152}d=h+28|0;b=F[d>>2];f=F[h+32>>2]-b>>3;wa:{if(f>>>0>>0){_a(d,i-f|0);b=F[d>>2];break wa}if(f>>>0>i>>>0){F[h+32>>2]=(i<<3)+b}if(!i){break pa}}j=F[a>>2];f=0;d=0;while(1){g=n+(f<<2)|0;l=F[g>>2];h=(f<<3)+b|0;a=d;F[h+4>>2]=a;F[h>>2]=l;g=F[g>>2];d=g+a|0;if(d>>>0>524288){break pa}xa:{if(a>>>0>=d>>>0){break xa}l=0;h=g&7;if(h){while(1){F[j+(a<<2)>>2]=f;a=a+1|0;l=l+1|0;if((h|0)!=(l|0)){continue}break}}if(g-1>>>0<=6){break xa}while(1){g=j+(a<<2)|0;F[g>>2]=f;F[g+28>>2]=f;F[g+24>>2]=f;F[g+20>>2]=f;F[g+16>>2]=f;F[g+12>>2]=f;F[g+8>>2]=f;F[g+4>>2]=f;a=a+8|0;if((d|0)!=(a|0)){continue}break}}f=f+1|0;if((i|0)!=(f|0)){continue}break}k=(d|0)==524288}g=k}ya:{if(!g|(F[e+20>>2]?0:o)){break ya}d=0;k=Z-16|0;Z=k;za:{if(!Sa(1,k+8|0,c)){break za}a=F[c+8>>2];f=F[c+16>>2];g=a-f|0;j=F[k+12>>2];i=F[c+20>>2];a=F[c+12>>2]-(i+(a>>>0>>0)|0)|0;b=F[k+8>>2];if((j|0)==(a|0)&g>>>0>>0|a>>>0>>0){break za}a=i+j|0;g=b+f|0;a=g>>>0>>0?a+1|0:a;F[c+16>>2]=g;F[c+20>>2]=a;if((b|0)<=0){break za}a=f+F[c>>2]|0;F[e+48>>2]=a;c=b-1|0;f=c+a|0;g=G[f|0];Aa:{if(g>>>0<=63){F[e+52>>2]=c;a=G[f|0]&63;break Aa}Ba:{switch((g>>>6|0)-1|0){case 0:if(b>>>0<2){break za}b=b-2|0;F[e+52>>2]=b;a=a+b|0;a=G[a+1|0]<<8&16128|G[a|0];break Aa;case 1:if(b>>>0<3){break za}b=b-3|0;F[e+52>>2]=b;a=a+b|0;a=G[a+1|0]<<8|G[a+2|0]<<16&4128768|G[a|0];break Aa;default:break Ba}}b=b-4|0;F[e+52>>2]=b;a=a+b|0;a=(G[a|0]|G[a+1|0]<<8|(G[a+2|0]<<16|G[a+3|0]<<24))&1073741823}F[e+56>>2]=a+2097152;d=a>>>0<534773760}Z=k+16|0;if(!d){break ya}if(!o){m=1;break ya}b=F[e+52>>2];a=F[e+56>>2];c=F[e+36>>2];d=F[e+48>>2];f=F[e+24>>2];while(1){Ca:{if(a>>>0>2097151){break Ca}while(1){if((b|0)<=0){break Ca}b=b-1|0;F[e+52>>2]=b;a=G[b+d|0]|a<<8;F[e+56>>2]=a;if(a>>>0<2097152){continue}break}}m=a&524287;k=F[f+(m<<2)>>2];g=c+(k<<3)|0;a=(L(F[g>>2],a>>>19|0)+m|0)-F[g+4>>2]|0;F[e+56>>2]=a;F[r+(q<<2)>>2]=k;m=1;q=q+1|0;if((o|0)!=(q|0)){continue}break}}a=F[e+36>>2];if(a){F[e+40>>2]=a;ja(a)}a=F[e+24>>2];if(a){F[e+28>>2]=a;ja(a)}a=F[e+8>>2];if(a){F[e+12>>2]=a;ja(a)}Z=e- -64|0;b=m;break g;case 17:b=Ld(a,c,d);break g;case 0:case 1:case 2:case 3:case 4:case 5:case 6:case 7:b=Z+-64|0;Z=b;F[b+56>>2]=0;F[b+48>>2]=0;F[b+52>>2]=0;F[b+40>>2]=0;F[b+44>>2]=0;F[b+32>>2]=0;F[b+36>>2]=0;F[b+24>>2]=0;F[b+28>>2]=0;F[b+16>>2]=0;F[b+20>>2]=0;F[b+8>>2]=0;F[b+12>>2]=0;Da:{if(!Nd(b+8|0,c)|(F[b+20>>2]?0:a)){break Da}if(!Md(b+8|0,c)){break Da}if(!a){f=1;break Da}m=F[b+52>>2];c=F[b+56>>2];e=F[b+36>>2];g=F[b+48>>2];o=F[b+24>>2];while(1){Ea:{if(c>>>0>16383){break Ea}while(1){if((m|0)<=0){break Ea}m=m-1|0;F[b+52>>2]=m;c=G[g+m|0]|c<<8;F[b+56>>2]=c;if(c>>>0<16384){continue}break}}f=c&4095;j=F[o+(f<<2)>>2];r=e+(j<<3)|0;c=(L(F[r>>2],c>>>12|0)+f|0)-F[r+4>>2]|0;F[b+56>>2]=c;F[(k<<2)+d>>2]=j;f=1;k=k+1|0;if((k|0)!=(a|0)){continue}break}}a=F[b+36>>2];if(a){F[b+40>>2]=a;ja(a)}a=F[b+24>>2];if(a){F[b+28>>2]=a;ja(a)}a=F[b+8>>2];if(a){F[b+12>>2]=a;ja(a)}Z=b- -64|0;b=f;break g;case 13:case 14:case 15:case 16:break h;default:break g}}b=Ld(a,c,d)}f=b}return f}function ih(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,J=0,K=0,M=0,N=0,O=0,P=0;u=Z+-64|0;Z=u;F[a+132>>2]=0;if(F[a+148>>2]){b=F[a+144>>2];if(b){while(1){f=F[b>>2];ja(b);b=f;if(b){continue}break}}b=0;F[a+144>>2]=0;f=F[a+140>>2];a:{if(!f){break a}if(f>>>0>=4){c=f&-4;while(1){e=b<<2;F[e+F[a+136>>2]>>2]=0;F[F[a+136>>2]+(e|4)>>2]=0;F[F[a+136>>2]+(e|8)>>2]=0;F[F[a+136>>2]+(e|12)>>2]=0;b=b+4|0;d=d+4|0;if((c|0)!=(d|0)){continue}break}}f=f&3;if(!f){break a}d=0;while(1){F[F[a+136>>2]+(b<<2)>>2]=0;b=b+1|0;d=d+1|0;if((f|0)!=(d|0)){continue}break}}F[a+148>>2]=0}b:{c:{if(!Da(1,u+60|0,F[F[a+4>>2]+32>>2])){break c}F[a+156>>2]=F[u+60>>2];if(!Da(1,u+56|0,F[F[a+4>>2]+32>>2])){break c}e=F[u+56>>2];if(e>>>0>1431655765|I[a+156>>2]>L(e,3)>>>0){break c}b=F[F[a+4>>2]+32>>2];c=F[b+8>>2];k=F[b+12>>2];d=F[b+20>>2];f=F[b+16>>2];if((k|0)<=(d|0)&f>>>0>=c>>>0|(d|0)>(k|0)){break c}k=G[f+F[b>>2]|0];f=f+1|0;d=f?d:d+1|0;F[b+16>>2]=f;F[b+20>>2]=d;if(!Da(1,u+52|0,b)){break c}q=F[u+52>>2];if(q>>>0>e>>>0|e>>>0>q+((q>>>0)/3|0)>>>0){break c}if(!Da(1,u+48|0,F[F[a+4>>2]+32>>2])){break c}d=F[u+48>>2];if(d>>>0>q>>>0){break c}F[a+28>>2]=F[a+24>>2];f=Zb(ka(88));b=F[a+8>>2];F[a+8>>2]=f;if(b){Za(b);if(!F[a+8>>2]){break c}}F[a+164>>2]=F[a+160>>2];Ib(a+160|0,e);F[a+176>>2]=F[a+172>>2];Ib(a+172|0,e);F[a- -64>>2]=0;F[a+92>>2]=-1;F[a+84>>2]=-1;F[a+88>>2]=-1;F[a+40>>2]=F[a+36>>2];F[a+52>>2]=F[a+48>>2];F[a+76>>2]=F[a+72>>2];A=a+216|0;Dd(A);Cd(A,k);if(!_c(F[a+8>>2],e,d+F[a+156>>2]|0)){break c}b=F[a+156>>2];D[u+8|0]=1;Ea(a+120|0,b+d|0,u+8|0);if((Bd(a,F[F[a+4>>2]+32>>2])|0)==-1){break c}c=a+232|0;b=c;F[b+144>>2]=a;f=F[($[F[F[a>>2]+32>>2]](a)|0)+32>>2];f=F[f>>2]+F[f+16>>2]|0;e=F[($[F[F[a>>2]+32>>2]](a)|0)+32>>2];e=F[e+8>>2]-F[e+16>>2]|0;O=b,P=H[F[($[F[F[a>>2]+32>>2]](a)|0)+32>>2]+38>>1],E[O+38>>1]=P;F[b>>2]=f;F[b+16>>2]=0;F[b+20>>2]=0;F[b+8>>2]=e;F[b+12>>2]=0;O=b,P=$[F[F[a>>2]+36>>2]](a)|0,F[O+148>>2]=P;F[a+372>>2]=k;F[a+384>>2]=d+F[a+156>>2];K=Ja(u+8|0);k=K;f=0;j=Z-16|0;Z=j;d:{if(!Aa(b+80|0,b)){break d}if(!yd(c)){break d}b=F[c+4>>2];F[k>>2]=F[c>>2];F[k+4>>2]=b;b=F[c+36>>2];F[k+32>>2]=F[c+32>>2];F[k+36>>2]=b;b=F[c+28>>2];F[k+24>>2]=F[c+24>>2];F[k+28>>2]=b;b=F[c+20>>2];F[k+16>>2]=F[c+16>>2];F[k+20>>2]=b;b=F[c+12>>2];F[k+8>>2]=F[c+8>>2];F[k+12>>2]=b;F[c+176>>2]=2;F[c+180>>2]=7;b=F[c+152>>2];if((b|0)<0){break d}F[j+12>>2]=0;f=2;h=F[c+156>>2];e=F[c+160>>2]-h>>2;e:{if(e>>>0>>0){Fa(c+156|0,b-e|0,j+12|0);f=F[c+176>>2];d=F[c+180>>2];break e}d=7;if(b>>>0>=e>>>0){break e}F[c+160>>2]=h+(b<<2)}e=c+184|0;d=(d-f|0)+1|0;b=F[c+188>>2];f=F[c+184>>2];s=(b-f|0)/12|0;f:{if(d>>>0>s>>>0){h=0;b=d-s|0;o=F[e+8>>2];f=F[e+4>>2];g:{if(b>>>0<=(o-f|0)/12>>>0){if(b){b=L(b,12)-12|0;b=(b-((b>>>0)%12|0)|0)+12|0;f=ma(f,0,b)+b|0}F[e+4>>2]=f;break g}h:{i:{j:{s=F[e>>2];g=(f-s|0)/12|0;d=g+b|0;if(d>>>0<357913942){o=(o-s|0)/12|0;i=o<<1;o=o>>>0>=178956970?357913941:d>>>0>>0?i:d;if(o){if(o>>>0>=357913942){break j}h=ka(L(o,12))}d=L(g,12)+h|0;b=L(b,12)-12|0;g=(b-((b>>>0)%12|0)|0)+12|0;b=ma(d,0,g);g=b+g|0;h=L(o,12)+h|0;if((f|0)==(s|0)){break i}while(1){d=d-12|0;f=f-12|0;F[d>>2]=F[f>>2];F[d+4>>2]=F[f+4>>2];F[d+8>>2]=F[f+8>>2];F[f+8>>2]=0;F[f>>2]=0;F[f+4>>2]=0;if((f|0)!=(s|0)){continue}break}F[e+8>>2]=h;b=F[e+4>>2];F[e+4>>2]=g;f=F[e>>2];F[e>>2]=d;if((b|0)==(f|0)){break h}while(1){d=b-12|0;h=F[d>>2];if(h){F[b-8>>2]=h;ja(h)}b=d;if((f|0)!=(b|0)){continue}break}break h}break b}oa();v()}F[e+8>>2]=h;F[e+4>>2]=g;F[e>>2]=b}if(f){ja(f)}}d=F[c+188>>2];break f}if(d>>>0>=s>>>0){d=b;break f}d=f+L(d,12)|0;if((d|0)!=(b|0)){while(1){f=b-12|0;h=F[f>>2];if(h){F[b-8>>2]=h;ja(h)}b=f;if((d|0)!=(b|0)){continue}break}}F[c+188>>2]=d}s=c+196|0;f=F[c+184>>2];b=(d-f|0)/12|0;o=F[c+196>>2];h=F[c+200>>2]-o>>2;k:{if(b>>>0>h>>>0){qa(s,b-h|0);f=F[c+184>>2];d=F[c+188>>2];break k}if(b>>>0>=h>>>0){break k}F[c+200>>2]=o+(b<<2)}if((d|0)==(f|0)){f=1;break d}b=0;while(1){l:{if(!Da(1,j+8|0,k)){break l}f=F[j+8>>2];d=F[c+148>>2];if(f>>>0>(F[d+4>>2]-F[d>>2]>>2>>>0)/3>>>0){break l}if(f){g=L(b,12);h=g+F[e>>2]|0;d=F[h>>2];o=F[h+4>>2]-d>>2;m:{if(o>>>0>>0){qa(h,f-o|0);d=F[g+F[e>>2]>>2];break m}if(f>>>0>=o>>>0){break m}F[h+4>>2]=(f<<2)+d}mc(f,1,k,d);F[F[s>>2]+(b<<2)>>2]=f}f=1;b=b+1|0;if(b>>>0<(F[c+188>>2]-F[c+184>>2]|0)/12>>>0){continue}break d}break}f=0}Z=j+16|0;n:{if(!f){break n}e=0;c=0;d=0;b=0;k=0;f=0;s=0;o=0;l=Z-96|0;Z=l;F[l+72>>2]=0;F[l+64>>2]=0;F[l+68>>2]=0;F[l+48>>2]=0;F[l+52>>2]=0;F[l+40>>2]=0;F[l+44>>2]=0;F[l+56>>2]=1065353216;F[l+32>>2]=0;F[l+24>>2]=0;F[l+28>>2]=0;j=a;C=F[a+124>>2];o:{p:{q:{r:{s:{if((q|0)<=0){break s}J=j+232|0;M=F[j+216>>2]!=F[j+220>>2];B=1;t:{while(1){h=s;s=h+1|0;u:{v:{w:{g=F[j+404>>2];if((g|0)==-1){F[j+400>>2]=7;break w}a=-1;i=F[j+428>>2]+(g<<2)|0;m=F[i>>2];g=m-1|0;F[i>>2]=g;if((m|0)<=0){break r}g=F[F[F[j+416>>2]+L(F[j+404>>2],12)>>2]+(g<<2)>>2];if(g>>>0>4){break r}i=F[(g<<2)+8896>>2];F[j+400>>2]=i;if(!g){if((b|0)==(c|0)){break r}i=-1;m=F[j+8>>2];B=F[m+24>>2];t=c-4|0;e=F[t>>2];g=-1;x:{if((e|0)==-1){break x}p=e+1|0;p=(p>>>0)%3|0?p:e-2|0;g=-1;if((p|0)==-1){break x}g=F[F[m>>2]+(p<<2)>>2]}n=F[B+(g<<2)>>2];if((n|0)!=-1){i=n+1|0;i=(i>>>0)%3|0?i:n-2|0}if((e|0)!=-1&F[F[m+12>>2]+(e<<2)>>2]!=-1|(e|0)==(i|0)){break r}n=F[m+12>>2];if((i|0)!=-1&F[n+(i<<2)>>2]!=-1){break r}p=L(h,3);h=p+1|0;F[n+(e<<2)>>2]=h;x=h<<2;F[x+n>>2]=e;r=p+2|0;F[n+(i<<2)>>2]=r;w=r<<2;F[w+n>>2]=i;n=-1;h=-1;y:{if((e|0)==-1){break y}z:{if((e>>>0)%3|0){e=e-1|0;break z}e=e+2|0;h=-1;if((e|0)==-1){break y}}h=F[F[m>>2]+(e<<2)>>2]}e=h;A:{if((i|0)==-1){break A}h=i+1|0;h=(h>>>0)%3|0?h:i-2|0;if((h|0)==-1){break A}n=F[F[m>>2]+(h<<2)>>2]}if((e|0)==(g|0)|(g|0)==(n|0)){break r}a=F[m>>2];F[a+(p<<2)>>2]=g;F[a+x>>2]=n;F[a+w>>2]=e;if((e|0)!=-1){F[B+(e<<2)>>2]=r}a=F[j+120>>2]+(g>>>3&536870908)|0;e=F[a>>2];O=a,P=oi(g)&e,F[O>>2]=P;F[t>>2]=p;e=b;kc(J,p);break u}B:{switch(i-1|0){case 2:case 4:if((b|0)==(c|0)){break r}r=c-4|0;e=F[r>>2];i=F[j+8>>2];m=F[i+12>>2];if((e|0)!=-1&F[m+(e<<2)>>2]!=-1){break r}c=L(h,3);n=(g|0)==3;g=c+(n?2:1)|0;t=g<<2;F[t+m>>2]=e;F[m+(e<<2)>>2]=g;Ma(i+24|0,8324);p=F[j+8>>2];m=F[p+24>>2];if(F[p+28>>2]-m>>2>(C|0)){break r}a=F[p>>2];w=a+t|0;p=F[i+28>>2];i=F[i+24>>2];t=(p-i>>2)-1|0;F[w>>2]=t;if((i|0)!=(p|0)){F[m+(t<<2)>>2]=g}g=n?c:c+2|0;w=a+(c+n<<2)|0;C:{if((e|0)==-1){F[a+(g<<2)>>2]=-1;i=-1;break C}D:{E:{F:{if((e>>>0)%3|0){i=e-1|0;break F}i=e+2|0;if((i|0)==-1){break E}}i=F[a+(i<<2)>>2];F[a+(g<<2)>>2]=i;if((i|0)==-1){break D}F[m+(i<<2)>>2]=g;break D}F[a+(g<<2)>>2]=-1}i=e+1|0;e=(i>>>0)%3|0?i:e-2|0;i=-1;if((e|0)==-1){break C}i=F[a+(e<<2)>>2]}F[w>>2]=i;F[r>>2]=c;e=b;break v;case 6:break w;case 0:break B;default:break r}}if((e|0)==(c|0)){break r}f=c-4|0;m=F[f>>2];F[l+68>>2]=f;n=F[l+44>>2];G:{if(!n){break G}g=F[l+40>>2];p=ni(n)>>>0>1;a=h&n+2147483647;H:{if(!p){break H}a=h;if(a>>>0>>0){break H}a=(h>>>0)%(n>>>0)|0}i=a;a=F[g+(i<<2)>>2];if(!a){break G}a=F[a>>2];if(!a){break G}I:{if(!p){g=n-1|0;while(1){n=F[a+4>>2];J:{if((n|0)!=(h|0)){if((i|0)==(g&n)){break J}break G}if((h|0)==F[a+8>>2]){break I}}a=F[a>>2];if(a){continue}break}break G}while(1){g=F[a+4>>2];K:{if((g|0)!=(h|0)){if(g>>>0>=n>>>0){g=(g>>>0)%(n>>>0)|0}if((g|0)==(i|0)){break K}break G}if((h|0)==F[a+8>>2]){break I}}a=F[a>>2];if(a){continue}break}break G}if((f|0)!=(k|0)){F[f>>2]=F[a+12>>2];F[l+68>>2]=c;f=c;break G}b=k-e|0;c=b>>2;d=c+1|0;if(d>>>0>=1073741824){break b}f=b>>>1|0;d=b>>>0>=2147483644?1073741823:d>>>0>>0?f:d;if(d){if(d>>>0>=1073741824){break p}f=ka(d<<2)}else{f=0}b=f+(c<<2)|0;F[b>>2]=F[a+12>>2];d=f+(d<<2)|0;f=b+4|0;if((e|0)!=(k|0)){while(1){b=b-4|0;k=k-4|0;F[b>>2]=F[k>>2];if((e|0)!=(k|0)){continue}break}}F[l+72>>2]=d;F[l+68>>2]=f;F[l+64>>2]=b;if(e){ja(e)}e=b;k=d}if((e|0)==(f|0)){break t}x=f-4|0;a=F[x>>2];if((a|0)==(m|0)){break t}i=(a|0)==-1;g=F[j+8>>2];if(!i&F[F[g+12>>2]+(a<<2)>>2]!=-1){break t}n=F[g+12>>2];if((m|0)!=-1&F[n+(m<<2)>>2]!=-1){break t}p=L(h,3);t=p+2|0;F[n+(a<<2)>>2]=t;c=t<<2;F[c+n>>2]=a;h=p+1|0;F[n+(m<<2)>>2]=h;w=h<<2;F[w+n>>2]=m;L:{M:{N:{if(!i){if((a>>>0)%3|0){h=a-1|0;break N}h=a+2|0;if((h|0)!=-1){break N}i=F[g>>2];h=-1;break M}h=-1;i=F[g>>2];F[i+(p<<2)>>2]=-1;r=-1;break L}i=F[g>>2];h=F[i+(h<<2)>>2]}F[(p<<2)+i>>2]=h;r=a+1|0;a=(r>>>0)%3|0?r:a-2|0;r=-1;if((a|0)==-1){break L}r=F[(a<<2)+i>>2]}F[i+w>>2]=r;O:{if((m|0)==-1){F[c+i>>2]=-1;r=-1;c=-1;break O}P:{Q:{R:{if((m>>>0)%3|0){a=m-1|0;break R}a=m+2|0;if((a|0)==-1){break Q}}a=F[(a<<2)+i>>2];F[c+i>>2]=a;if((a|0)==-1){break P}F[F[g+24>>2]+(a<<2)>>2]=t;break P}F[c+i>>2]=-1}r=-1;a=m+1|0;a=(a>>>0)%3|0?a:m-2|0;c=-1;if((a|0)==-1){break O}r=F[(a<<2)+i>>2];c=a}a=F[j+388>>2];t=h<<2;m=a+t|0;w=a;a=r<<2;F[m>>2]=F[m>>2]+F[w+a>>2];w=a;a=F[g+24>>2];m=w+a|0;if((h|0)!=-1){F[a+t>>2]=F[m>>2]}a=c;while(1){if((a|0)!=-1){F[(a<<2)+i>>2]=h;t=a+1|0;a=(t>>>0)%3|0?t:a-2|0;g=-1;S:{if((a|0)==-1){break S}a=F[n+(a<<2)>>2];g=-1;if((a|0)==-1){break S}g=a+1|0;g=(g>>>0)%3|0?g:a-2|0}a=g;if((c|0)!=(a|0)){continue}break t}break}F[m>>2]=-1;T:{U:{if(M){break U}if((y|0)!=(z|0)){F[z>>2]=r;z=z+4|0;F[l+28>>2]=z;break U}a=y-o|0;g=a>>2;c=g+1|0;if(c>>>0>=1073741824){break T}h=a>>>1|0;h=a>>>0>=2147483644?1073741823:c>>>0>>0?h:c;if(h){if(h>>>0>=1073741824){break p}c=ka(h<<2)}else{c=0}a=c+(g<<2)|0;F[a>>2]=r;z=a+4|0;if((o|0)!=(y|0)){while(1){a=a-4|0;y=y-4|0;F[a>>2]=F[y>>2];if((o|0)!=(y|0)){continue}break}}y=c+(h<<2)|0;F[l+32>>2]=y;F[l+28>>2]=z;F[l+24>>2]=a;if(o){ja(o)}o=a}F[x>>2]=p;c=f;kc(J,p);break u}break b}g=F[j+8>>2];Ma(g+24|0,8324);a=-1;k=F[j+8>>2];f=L(h,3);i=F[g+28>>2];m=F[g+24>>2];n=i-m|0;g=n>>2;p=g-1|0;F[F[k>>2]+(f<<2)>>2]=p;Ma(k+24|0,8324);r=f+1|0;F[F[k>>2]+(r<<2)>>2]=(F[k+28>>2]-F[k+24>>2]>>2)-1;k=F[j+8>>2];Ma(k+24|0,8324);t=f+2|0;F[F[k>>2]+(t<<2)>>2]=(F[k+28>>2]-F[k+24>>2]>>2)-1;x=F[j+8>>2];k=F[x+24>>2];if(F[x+28>>2]-k>>2>(C|0)){break r}V:{W:{if((i|0)!=(m|0)){F[k+(p<<2)>>2]=f;a=0;if((n|0)==-4){break W}}F[k+(g<<2)>>2]=r;a=g+1|0;if((a|0)==-1){break V}}F[k+(a<<2)>>2]=t}if((d|0)!=(c|0)){F[c>>2]=f;f=c+4|0;F[l+68>>2]=f;k=d;break v}a=d-b|0;k=a>>2;e=k+1|0;if(e>>>0>=1073741824){break b}c=a>>>1|0;a=a>>>0>=2147483644?1073741823:e>>>0>>0?c:e;if(a){if(a>>>0>=1073741824){break p}c=ka(a<<2)}else{c=0}e=c+(k<<2)|0;F[e>>2]=f;k=c+(a<<2)|0;f=e+4|0;if((b|0)!=(d|0)){while(1){e=e-4|0;d=d-4|0;F[e>>2]=F[d>>2];if((b|0)!=(d|0)){continue}break}}F[l+72>>2]=k;F[l+68>>2]=f;F[l+64>>2]=e;if(b){ja(b)}d=k;b=e}kc(J,F[f-4>>2]);a=F[j+40>>2];X:{if((a|0)==F[j+36>>2]){break X}c=a-12|0;g=F[c+4>>2];h=q+(h^-1)|0;if(g>>>0>h>>>0){break t}if((g|0)!=(h|0)){break X}i=G[a-4|0];g=F[c>>2];F[j+40>>2]=c;if((g|0)<0){break t}m=f-4|0;a=F[m>>2];F[l+20>>2]=q+(g^-1);c=l+20|0;F[l+88>>2]=c;Fb(l,l+40|0,c,l+88|0);g=F[l>>2];Y:{if(i&1){c=-1;if((a|0)==-1){break Y}c=a+1|0;c=(c>>>0)%3|0?c:a-2|0;break Y}c=-1;if((a|0)==-1){break Y}c=a-1|0;if((a>>>0)%3|0){break Y}c=a+2|0}F[g+12>>2]=c;a=F[j+40>>2];if((a|0)==F[j+36>>2]){break X}while(1){c=a-12|0;g=F[c+4>>2];if(g>>>0>h>>>0){break t}if((g|0)!=(h|0)){break X}i=G[a-4|0];g=F[c>>2];F[j+40>>2]=c;if((g|0)<0){break t}a=F[m>>2];F[l+20>>2]=q+(g^-1);c=l+20|0;F[l+88>>2]=c;Fb(l,l+40|0,c,l+88|0);g=F[l>>2];Z:{if(i&1){c=-1;if((a|0)==-1){break Z}c=a+1|0;c=(c>>>0)%3|0?c:a-2|0;break Z}c=-1;if((a|0)==-1){break Z}c=a-1|0;if((a>>>0)%3|0){break Z}c=a+2|0}F[g+12>>2]=c;a=F[j+40>>2];if((a|0)!=F[j+36>>2]){continue}break}}c=f}B=(q|0)>(s|0);if((q|0)!=(s|0)){continue}break}s=q;break s}a=-1;if(B){break r}}a=-1;c=F[j+8>>2];if(F[c+28>>2]-F[c+24>>2]>>2>(C|0)){break r}if((b|0)!=(f|0)){m=j+72|0;k=j+60|0;n=j+312|0;while(1){f=f-4|0;q=F[f>>2];F[l+68>>2]=f;_:{if(wa(n)){g=F[j+8>>2];o=F[g>>2];if(((F[g+4>>2]-o>>2>>>0)/3|0)<=(s|0)){a=-1;break r}b=-1;i=F[g+24>>2];a=-1;$:{if((q|0)==-1){break $}e=q+1|0;e=(e>>>0)%3|0?e:q-2|0;a=-1;if((e|0)==-1){break $}a=F[o+(e<<2)>>2]}e=a;a=F[i+(e<<2)>>2];aa:{if((a|0)==-1){h=1;c=-1;break aa}h=1;c=-1;d=a+1|0;a=(d>>>0)%3|0?d:a-2|0;if((a|0)==-1){break aa}h=0;b=a+1|0;b=(b>>>0)%3|0?b:a-2|0;if((b|0)!=-1){c=F[o+(b<<2)>>2]}b=a}a=-1;d=-1;i=F[i+(c<<2)>>2];if((i|0)!=-1){d=i+1|0;d=(d>>>0)%3|0?d:i-2|0}if((b|0)==(q|0)|(d|0)==(q|0)|((q|0)!=-1&F[F[g+12>>2]+(q<<2)>>2]!=-1|(b|0)==(d|0))){break r}if(!h&F[F[g+12>>2]+(b<<2)>>2]!=-1){break r}h=-1;g=F[g+12>>2];i=-1;ba:{if((d|0)==-1){break ba}if(F[g+(d<<2)>>2]!=-1){break r}a=d+1|0;a=(a>>>0)%3|0?a:d-2|0;i=-1;if((a|0)==-1){break ba}i=F[o+(a<<2)>>2]}a=L(s,3);F[l>>2]=a;F[g+(a<<2)>>2]=q;F[g+(q<<2)>>2]=a;a=F[l>>2]+1|0;F[g+(a<<2)>>2]=b;F[g+(b<<2)>>2]=a;a=F[l>>2]+2|0;F[g+(a<<2)>>2]=d;F[g+(d<<2)>>2]=a;a=F[l>>2];F[o+(a<<2)>>2]=c;b=a+1|0;d=o+(b<<2)|0;F[d>>2]=i;q=a+2|0;o=o+(q<<2)|0;F[o>>2]=e;a=F[j+120>>2];e=b?c:-1;c=a+(e>>>3&536870908)|0;g=F[c>>2];O=c,P=oi(e)&g,F[O>>2]=P;h=(b|0)!=-1?F[d>>2]:h;b=a+(h>>>3&536870908)|0;d=F[b>>2];O=b,P=oi(h)&d,F[O>>2]=P;d=-1;d=(q|0)!=-1?F[o>>2]:d;a=a+(d>>>3&536870908)|0;b=F[a>>2];O=a,P=oi(d)&b,F[O>>2]=P;D[l+88|0]=1;wd(k,l+88|0);Ma(m,l);s=s+1|0;b=F[l+64>>2];break _}d=F[j+64>>2];a=F[j+68>>2];if((d|0)==a<<5){if((d+1|0)<0){break b}if(d>>>0<=1073741822){a=a<<6;d=(d&-32)+32|0;a=a>>>0>d>>>0?a:d}else{a=2147483647}$a(k,a);d=F[j+64>>2]}F[j+64>>2]=d+1;a=F[j+60>>2]+(d>>>3&536870908)|0;e=F[a>>2];O=a,P=oi(d)&e,F[O>>2]=P;d=F[j+76>>2];if((d|0)!=F[j+80>>2]){F[d>>2]=q;F[j+76>>2]=d+4;break _}c=F[m>>2];a=d-c|0;o=a>>2;e=o+1|0;if(e>>>0>=1073741824){break b}h=a>>>1|0;h=a>>>0>=2147483644?1073741823:e>>>0>>0?h:e;if(h){if(h>>>0>=1073741824){break p}a=ka(h<<2)}else{a=0}e=a+(o<<2)|0;F[e>>2]=q;q=e+4|0;if((d|0)!=(c|0)){while(1){e=e-4|0;d=d-4|0;F[e>>2]=F[d>>2];if((d|0)!=(c|0)){continue}break}}F[j+80>>2]=a+(h<<2);F[j+76>>2]=q;F[j+72>>2]=e;if(!c){break _}ja(c)}if((b|0)!=(f|0)){continue}break}c=F[j+8>>2]}a=-1;if(((F[c+4>>2]-F[c>>2]>>2>>>0)/3|0)!=(s|0)){break r}a=F[c+28>>2]-F[c+24>>2]>>2;f=F[l+24>>2];h=F[l+28>>2];if((f|0)==(h|0)){break q}while(1){b=F[f>>2];k=F[c+24>>2];d=a-1|0;e=k+(d<<2)|0;if(F[e>>2]==-1){while(1){d=a-2|0;a=a-1|0;e=k+(d<<2)|0;if(F[e>>2]==-1){continue}break}}if(b>>>0<=d>>>0){F[l>>2]=c;e=F[e>>2];D[l+12|0]=1;F[l+8>>2]=e;F[l+4>>2]=e;if((e|0)!=-1){while(1){e=F[F[j+8>>2]>>2]+(e<<2)|0;if(F[e>>2]!=(d|0)){a=-1;break r}F[e>>2]=b;nc(l);e=F[l+8>>2];if((e|0)!=-1){continue}break}c=F[j+8>>2]}k=F[c+24>>2];e=k+(d<<2)|0;if((b|0)!=-1){F[k+(b<<2)>>2]=F[e>>2]}F[e>>2]=-1;e=1<>2];b=k+(b>>>3&536870908)|0;k=k+(d>>>3&536870908)|0;d=1<>2]&d){e=e|F[b>>2]}else{e=F[b>>2]&(e^-1)}F[b>>2]=e;F[k>>2]=F[k>>2]&(d^-1);a=a-1|0}f=f+4|0;if((h|0)!=(f|0)){continue}break}}f=F[l+24>>2]}if(f){ja(f)}b=F[l+48>>2];if(b){while(1){d=F[b>>2];ja(b);b=d;if(b){continue}break}}b=F[l+40>>2];F[l+40>>2]=0;if(b){ja(b)}b=F[l+64>>2];if(b){F[l+68>>2]=b;ja(b)}Z=l+96|0;break o}oa();v()}f=a;if((a|0)==-1){break n}a=K;b=F[a+16>>2];d=b+F[a>>2]|0;b=F[a+8>>2]-b|0;a=F[F[j+4>>2]+32>>2];E[a+38>>1]=H[a+38>>1];F[a>>2]=d;F[a+16>>2]=0;F[a+20>>2]=0;F[a+8>>2]=b;F[a+12>>2]=0;ca:{if(F[j+216>>2]==F[j+220>>2]){break ca}a=F[j+8>>2];if(F[a+4>>2]==F[a>>2]){break ca}b=0;while(1){if(Ad(j,b)){b=b+3|0;a=F[j+8>>2];if(b>>>0>2]-F[a>>2]>>2>>>0){continue}break ca}break}break n}if(G[j+308|0]){D[j+308|0]=0;d=F[j+292>>2];a=0;e=F[j+304>>2]+7|0;a=e>>>0<7?1:a;e=a<<29|e>>>3;b=e+F[j+288>>2]|0;a=(a>>>3|0)+d|0;F[j+288>>2]=b;F[j+292>>2]=b>>>0>>0?a+1|0:a}b=F[j+216>>2];if((b|0)!=F[j+220>>2]){a=0;while(1){e=L(a,144);Zc((e+b|0)+4|0,F[j+8>>2]);d=F[A>>2];c=d+e|0;b=F[c+132>>2];c=F[c+136>>2];if((b|0)!=(c|0)){while(1){Xc((e+F[A>>2]|0)+4|0,F[b>>2]);b=b+4|0;if((c|0)!=(b|0)){continue}break}d=F[A>>2]}if(!Yc((d+e|0)+4|0)){break n}a=a+1|0;b=F[j+216>>2];if(a>>>0<(F[j+220>>2]-b|0)/144>>>0){continue}break}}a=F[j+8>>2];Hb(j+184|0,F[a+28>>2]-F[a+24>>2]>>2);d=F[j+216>>2];if((d|0)!=F[j+220>>2]){b=0;while(1){a=L(b,144)+d|0;d=F[a+60>>2]-F[a+56>>2]>>2;c=a+104|0;a=F[j+8>>2];a=F[a+28>>2]-F[a+24>>2]>>2;Hb(c,(a|0)<(d|0)?d:a);b=b+1|0;d=F[j+216>>2];if(b>>>0<(F[j+220>>2]-d|0)/144>>>0){continue}break}}N=zd(j,f)}}Z=u- -64|0;return N|0}na();v()}function lh(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,J=0,K=0,M=0,N=0;t=Z+-64|0;Z=t;F[a+132>>2]=0;if(F[a+148>>2]){c=F[a+144>>2];if(c){while(1){b=F[c>>2];ja(c);c=b;if(b){continue}break}}c=0;F[a+144>>2]=0;b=F[a+140>>2];a:{if(!b){break a}if(b>>>0>=4){h=b&-4;while(1){e=c<<2;F[e+F[a+136>>2]>>2]=0;F[F[a+136>>2]+(e|4)>>2]=0;F[F[a+136>>2]+(e|8)>>2]=0;F[F[a+136>>2]+(e|12)>>2]=0;c=c+4|0;g=g+4|0;if((h|0)!=(g|0)){continue}break}}b=b&3;if(!b){break a}g=0;while(1){F[F[a+136>>2]+(c<<2)>>2]=0;c=c+1|0;g=g+1|0;if((b|0)!=(g|0)){continue}break}}F[a+148>>2]=0}b:{if(!Da(1,t+60|0,F[F[a+4>>2]+32>>2])){break b}F[a+156>>2]=F[t+60>>2];if(!Da(1,t+56|0,F[F[a+4>>2]+32>>2])){break b}e=F[t+56>>2];if(e>>>0>1431655765|I[a+156>>2]>L(e,3)>>>0){break b}c=F[F[a+4>>2]+32>>2];h=F[c+8>>2];m=F[c+12>>2];b=F[c+20>>2];g=F[c+16>>2];if((m|0)<=(b|0)&g>>>0>=h>>>0|(b|0)>(m|0)){break b}h=G[g+F[c>>2]|0];g=g+1|0;b=g?b:b+1|0;F[c+16>>2]=g;F[c+20>>2]=b;if(!Da(1,t+52|0,c)){break b}n=F[t+52>>2];if(n>>>0>e>>>0|e>>>0>n+((n>>>0)/3|0)>>>0){break b}if(!Da(1,t+48|0,F[F[a+4>>2]+32>>2])){break b}c=F[t+48>>2];if(c>>>0>n>>>0){break b}F[a+28>>2]=F[a+24>>2];g=Zb(ka(88));b=F[a+8>>2];F[a+8>>2]=g;if(b){Za(b);if(!F[a+8>>2]){break b}}F[a+164>>2]=F[a+160>>2];Ib(a+160|0,e);F[a+176>>2]=F[a+172>>2];Ib(a+172|0,e);F[a- -64>>2]=0;F[a+92>>2]=-1;F[a+84>>2]=-1;F[a+88>>2]=-1;F[a+40>>2]=F[a+36>>2];F[a+52>>2]=F[a+48>>2];F[a+76>>2]=F[a+72>>2];y=a+216|0;Dd(y);Cd(y,h);if(!_c(F[a+8>>2],e,c+F[a+156>>2]|0)){break b}b=F[a+156>>2];D[t+8|0]=1;Ea(a+120|0,b+c|0,t+8|0);if((Bd(a,F[F[a+4>>2]+32>>2])|0)==-1){break b}c=a+232|0;F[c+144>>2]=a;b=F[($[F[F[a>>2]+32>>2]](a)|0)+32>>2];b=F[b>>2]+F[b+16>>2]|0;g=F[($[F[F[a>>2]+32>>2]](a)|0)+32>>2];g=F[g+8>>2]-F[g+16>>2]|0;M=c,N=H[F[($[F[F[a>>2]+32>>2]](a)|0)+32>>2]+38>>1],E[M+38>>1]=N;F[c>>2]=b;F[c+16>>2]=0;F[c+20>>2]=0;F[c+8>>2]=g;F[c+12>>2]=0;F[a+372>>2]=h;C=Ja(t+8|0);h=C;m=0;d=Z-16|0;Z=d;b=F[c+4>>2];F[c+40>>2]=F[c>>2];F[c+44>>2]=b;b=F[c+36>>2];F[c+72>>2]=F[c+32>>2];F[c+76>>2]=b;g=F[c+28>>2];b=c- -64|0;F[b>>2]=F[c+24>>2];F[b+4>>2]=g;b=F[c+20>>2];F[c+56>>2]=F[c+16>>2];F[c+60>>2]=b;b=F[c+12>>2];F[c+48>>2]=F[c+8>>2];F[c+52>>2]=b;c:{d:{if(hc(c+40|0,1,d+8|0)){b=F[c+44>>2];F[c>>2]=F[c+40>>2];F[c+4>>2]=b;b=F[c+76>>2];F[c+32>>2]=F[c+72>>2];F[c+36>>2]=b;b=F[c+68>>2];F[c+24>>2]=F[c+64>>2];F[c+28>>2]=b;g=F[c+60>>2];f=g;b=F[c+56>>2];F[c+16>>2]=b;F[c+20>>2]=g;e=F[c+52>>2];g=F[c+48>>2];F[c+8>>2]=g;F[c+12>>2]=e;k=F[d+12>>2];i=e-((b>>>0>g>>>0)+f|0)|0;e=g-b|0;g=F[d+8>>2];if((k|0)==(i|0)&e>>>0>=g>>>0|i>>>0>k>>>0){break d}}break c}e=f+k|0;b=b+g|0;e=b>>>0>>0?e+1|0:e;F[c+16>>2]=b;F[c+20>>2]=e;if(!Aa(c+80|0,c)){break c}if(!yd(c)){break c}b=F[c+4>>2];F[h>>2]=F[c>>2];F[h+4>>2]=b;b=F[c+36>>2];F[h+32>>2]=F[c+32>>2];F[h+36>>2]=b;b=F[c+28>>2];F[h+24>>2]=F[c+24>>2];F[h+28>>2]=b;b=F[c+20>>2];F[h+16>>2]=F[c+16>>2];F[h+20>>2]=b;b=F[c+12>>2];F[h+8>>2]=F[c+8>>2];F[h+12>>2]=b;m=1}Z=d+16|0;e:{if(!m){break e}b=0;c=0;g=0;m=0;j=Z-96|0;Z=j;F[j+72>>2]=0;F[j+64>>2]=0;F[j+68>>2]=0;F[j+48>>2]=0;F[j+52>>2]=0;F[j+40>>2]=0;F[j+44>>2]=0;F[j+56>>2]=1065353216;F[j+32>>2]=0;F[j+24>>2]=0;F[j+28>>2]=0;h=a;B=F[a+124>>2];f:{g:{h:{i:{j:{k:{l:{m:{if((n|0)<=0){break m}J=F[h+216>>2]!=F[h+220>>2];z=1;while(1){e=m;m=e+1|0;n:{o:{p:{q:{r:{s:{t:{u:{v:{w:{x:{y:{z:{A:{B:{if(!G[h+308|0]){break B}k=F[h+296>>2];d=F[h+304>>2];a=k+(d>>>3|0)|0;l=F[h+300>>2];if(a>>>0>=l>>>0){break B}f=G[a|0];a=d+1|0;F[h+304>>2]=a;p=f>>>(d&7)&1;if(!p){break B}i=0;f=a>>>3|0;r=k+f|0;C:{if(r>>>0>=l>>>0){d=a;a=0;break C}r=G[r|0];d=d+2|0;F[h+304>>2]=d;f=d>>>3|0;a=r>>>(a&7)&1}f=f+k|0;if(f>>>0>>0){f=G[f|0];F[h+304>>2]=d+1;i=f>>>(d&7)<<1&2}f=-1;i=p|(a|i)<<1;switch(i-1|0){case 6:break y;case 0:break z;case 2:case 4:break A;default:break l}}if((c|0)==(g|0)){f=-1;break l}d=-1;i=F[h+8>>2];z=F[i+24>>2];r=c-4|0;b=F[r>>2];a=-1;D:{if((b|0)==-1){break D}k=b+1|0;k=(k>>>0)%3|0?k:b-2|0;a=-1;if((k|0)==-1){break D}a=F[F[i>>2]+(k<<2)>>2]}f=F[z+(a<<2)>>2];if((f|0)!=-1){d=f+1|0;d=(d>>>0)%3|0?d:f-2|0}if((b|0)==(d|0)){f=-1;break l}if((b|0)!=-1){f=-1;if(F[F[i+12>>2]+(b<<2)>>2]!=-1){break l}}k=F[i+12>>2];if((d|0)!=-1){f=-1;if(F[k+(d<<2)>>2]!=-1){break l}}l=L(e,3);e=l+1|0;F[k+(b<<2)>>2]=e;s=e<<2;F[s+k>>2]=b;p=l+2|0;F[k+(d<<2)>>2]=p;u=p<<2;F[u+k>>2]=d;k=-1;e=-1;E:{if((b|0)==-1){break E}F:{if((b>>>0)%3|0){b=b-1|0;break F}b=b+2|0;e=-1;if((b|0)==-1){break E}}e=F[F[i>>2]+(b<<2)>>2]}b=e;G:{if((d|0)==-1){break G}e=d+1|0;e=(e>>>0)%3|0?e:d-2|0;if((e|0)==-1){break G}k=F[F[i>>2]+(e<<2)>>2]}f=-1;if((a|0)==(b|0)|(a|0)==(k|0)){break l}e=F[i>>2];F[e+(l<<2)>>2]=a;F[e+s>>2]=k;F[e+u>>2]=b;if((b|0)!=-1){F[z+(b<<2)>>2]=p}b=F[h+120>>2]+(a>>>3&536870908)|0;e=F[b>>2];M=b,N=oi(a)&e,F[M>>2]=N;F[r>>2]=l;b=g;break n}if((c|0)==(g|0)){break l}r=c-4|0;b=F[r>>2];a=F[h+8>>2];d=F[a+12>>2];if((b|0)!=-1&F[d+(b<<2)>>2]!=-1){break l}l=(i|0)==5;i=L(e,3);p=(l?2:1)+i|0;s=p<<2;F[s+d>>2]=b;F[d+(b<<2)>>2]=p;Ma(a+24|0,8324);d=F[h+8>>2];k=F[d+24>>2];if(F[d+28>>2]-k>>2>(B|0)){break l}d=F[d>>2];u=d+s|0;f=F[a+28>>2];a=F[a+24>>2];s=(f-a>>2)-1|0;F[u>>2]=s;if((a|0)!=(f|0)){F[k+(s<<2)>>2]=p}f=l?i:i+2|0;l=d+(i+l<<2)|0;H:{if((b|0)==-1){F[d+(f<<2)>>2]=-1;a=-1;break H}I:{J:{K:{if((b>>>0)%3|0){a=b-1|0;break K}a=b+2|0;if((a|0)==-1){break J}}a=F[d+(a<<2)>>2];F[d+(f<<2)>>2]=a;if((a|0)==-1){break I}F[k+(a<<2)>>2]=f;break I}F[d+(f<<2)>>2]=-1}f=b+1|0;b=(f>>>0)%3|0?f:b-2|0;a=-1;if((b|0)==-1){break H}a=F[d+(b<<2)>>2]}F[l>>2]=a;F[r>>2]=i;b=g;break t}if((b|0)==(c|0)){break l}a=c-4|0;k=F[a>>2];F[j+68>>2]=a;l=F[j+44>>2];L:{if(!l){c=a;break L}f=F[j+40>>2];p=ni(l)>>>0>1;d=e&l+2147483647;M:{if(!p){break M}d=e;if(d>>>0>>0){break M}d=(e>>>0)%(l>>>0)|0}i=d;d=F[f+(i<<2)>>2];if(!d){c=a;break L}d=F[d>>2];if(!d){c=a;break L}N:{if(!p){f=l-1|0;while(1){l=F[d+4>>2];O:{if((l|0)!=(e|0)){if((i|0)==(f&l)){break O}c=a;break L}if((e|0)==F[d+8>>2]){break N}}d=F[d>>2];if(d){continue}break}c=a;break L}while(1){f=F[d+4>>2];P:{if((f|0)!=(e|0)){if(f>>>0>=l>>>0){f=(f>>>0)%(l>>>0)|0}if((f|0)==(i|0)){break P}c=a;break L}if((e|0)==F[d+8>>2]){break N}}d=F[d>>2];if(d){continue}break}c=a;break L}if((a|0)!=(q|0)){F[a>>2]=F[d+12>>2];F[j+68>>2]=c;break L}a=q-b|0;g=a>>2;c=g+1|0;if(c>>>0>=1073741824){break x}f=a>>>1|0;f=a>>>0>=2147483644?1073741823:c>>>0>>0?f:c;if(f){if(f>>>0>=1073741824){break j}a=ka(f<<2)}else{a=0}g=a+(g<<2)|0;F[g>>2]=F[d+12>>2];c=g+4|0;if((b|0)!=(q|0)){while(1){g=g-4|0;q=q-4|0;F[g>>2]=F[q>>2];if((b|0)!=(q|0)){continue}break}}q=a+(f<<2)|0;F[j+72>>2]=q;F[j+68>>2]=c;F[j+64>>2]=g;if(b){ja(b)}}if((c|0)==(g|0)){break p}s=c-4|0;b=F[s>>2];if((b|0)==(k|0)){break p}a=(b|0)==-1;f=F[h+8>>2];if(!a&F[F[f+12>>2]+(b<<2)>>2]!=-1){break p}l=F[f+12>>2];if((k|0)!=-1&F[l+(k<<2)>>2]!=-1){break p}p=L(e,3);r=p+2|0;F[l+(b<<2)>>2]=r;e=r<<2;F[e+l>>2]=b;d=p+1|0;F[l+(k<<2)>>2]=d;u=d<<2;F[u+l>>2]=k;if(a){break w}if((b>>>0)%3|0){d=b-1|0;break s}d=b+2|0;if((d|0)!=-1){break s}a=F[f>>2];d=-1;break r}i=F[h+8>>2];Ma(i+24|0,8324);d=F[h+8>>2];a=L(e,3);k=F[i+28>>2];l=F[i+24>>2];p=k-l|0;i=p>>2;r=i-1|0;F[F[d>>2]+(a<<2)>>2]=r;Ma(d+24|0,8324);s=a+1|0;F[F[d>>2]+(s<<2)>>2]=(F[d+28>>2]-F[d+24>>2]>>2)-1;d=F[h+8>>2];Ma(d+24|0,8324);u=a+2|0;F[F[d>>2]+(u<<2)>>2]=(F[d+28>>2]-F[d+24>>2]>>2)-1;A=F[h+8>>2];d=F[A+24>>2];if(F[A+28>>2]-d>>2>(B|0)){break l}Q:{R:{if((k|0)!=(l|0)){F[d+(r<<2)>>2]=a;f=0;if((p|0)==-4){break R}}F[d+(i<<2)>>2]=s;f=i+1|0;if((f|0)==-1){break Q}}F[d+(f<<2)>>2]=u}if((c|0)!=(q|0)){F[c>>2]=a;c=c+4|0;F[j+68>>2]=c;break t}g=c-b|0;i=g>>2;d=i+1|0;if(d>>>0>=1073741824){break v}f=g>>>1|0;d=g>>>0>=2147483644?1073741823:d>>>0>>0?f:d;if(d){if(d>>>0>=1073741824){break j}f=ka(d<<2)}else{f=0}g=f+(i<<2)|0;F[g>>2]=a;q=f+(d<<2)|0;a=g+4|0;if((b|0)!=(c|0)){while(1){g=g-4|0;c=c-4|0;F[g>>2]=F[c>>2];if((b|0)!=(c|0)){continue}break}}F[j+72>>2]=q;F[j+68>>2]=a;F[j+64>>2]=g;if(!b){break u}ja(b);break u}na();v()}d=-1;a=F[f>>2];F[a+(p<<2)>>2]=-1;i=-1;break q}na();v()}c=a;b=g}a=F[h+40>>2];if((a|0)==F[h+36>>2]){break n}d=a-12|0;i=F[d+4>>2];f=n+(e^-1)|0;if(i>>>0>f>>>0){break p}if((f|0)!=(i|0)){break n}i=G[a-4|0];e=F[d>>2];F[h+40>>2]=d;if((e|0)<0){break p}k=c-4|0;a=F[k>>2];F[j+20>>2]=n+(e^-1);e=j+20|0;F[j+88>>2]=e;Fb(j,j+40|0,e,j+88|0);d=F[j>>2];S:{if(i&1){e=-1;if((a|0)==-1){break S}e=a+1|0;e=(e>>>0)%3|0?e:a-2|0;break S}e=-1;if((a|0)==-1){break S}e=a-1|0;if((a>>>0)%3|0){break S}e=a+2|0}F[d+12>>2]=e;d=F[h+40>>2];if((d|0)==F[h+36>>2]){break n}while(1){a=d-12|0;e=F[a+4>>2];if(e>>>0>f>>>0){break p}if((f|0)!=(e|0)){break n}d=G[d-4|0];e=F[a>>2];F[h+40>>2]=a;if((e|0)<0){break p}a=F[k>>2];F[j+20>>2]=n+(e^-1);e=j+20|0;F[j+88>>2]=e;Fb(j,j+40|0,e,j+88|0);i=F[j>>2];T:{if(d&1){e=-1;if((a|0)==-1){break T}e=a+1|0;e=(e>>>0)%3|0?e:a-2|0;break T}e=-1;if((a|0)==-1){break T}e=a-1|0;if((a>>>0)%3|0){break T}e=a+2|0}F[i+12>>2]=e;d=F[h+40>>2];if((d|0)!=F[h+36>>2]){continue}break}break n}a=F[f>>2];d=F[a+(d<<2)>>2]}F[(p<<2)+a>>2]=d;A=b+1|0;b=(A>>>0)%3|0?A:b-2|0;i=-1;if((b|0)==-1){break q}i=F[(b<<2)+a>>2]}F[a+u>>2]=i;U:{if((k|0)==-1){F[a+e>>2]=-1;i=-1;e=-1;break U}V:{W:{X:{if((k>>>0)%3|0){b=k-1|0;break X}b=k+2|0;if((b|0)==-1){break W}}b=F[(b<<2)+a>>2];F[a+e>>2]=b;if((b|0)==-1){break V}F[F[f+24>>2]+(b<<2)>>2]=r;break V}F[a+e>>2]=-1}i=-1;b=k+1|0;b=(b>>>0)%3|0?b:k-2|0;e=-1;if((b|0)==-1){break U}i=F[(b<<2)+a>>2];e=b}b=F[f+24>>2];k=b+(i<<2)|0;if((d|0)!=-1){F[b+(d<<2)>>2]=F[k>>2]}b=e;while(1){if((b|0)==-1){break o}F[(b<<2)+a>>2]=d;r=b+1|0;b=(r>>>0)%3|0?r:b-2|0;f=-1;Y:{if((b|0)==-1){break Y}b=F[l+(b<<2)>>2];f=-1;if((b|0)==-1){break Y}f=b+1|0;f=(f>>>0)%3|0?f:b-2|0}b=f;if((e|0)!=(b|0)){continue}break}}f=-1;if(!z){break m}break l}F[k>>2]=-1;Z:{if(J){break Z}if((w|0)!=(x|0)){F[x>>2]=i;x=x+4|0;F[j+28>>2]=x;break Z}a=w-o|0;d=a>>2;b=d+1|0;if(b>>>0>=1073741824){break i}e=a>>>1|0;e=a>>>0>=2147483644?1073741823:b>>>0>>0?e:b;if(e){if(e>>>0>=1073741824){break j}a=ka(e<<2)}else{a=0}b=a+(d<<2)|0;F[b>>2]=i;x=b+4|0;if((o|0)!=(w|0)){while(1){b=b-4|0;w=w-4|0;F[b>>2]=F[w>>2];if((o|0)!=(w|0)){continue}break}}w=a+(e<<2)|0;F[j+32>>2]=w;F[j+28>>2]=x;F[j+24>>2]=b;if(o){ja(o)}o=b}F[s>>2]=p;b=g}z=(m|0)<(n|0);if((m|0)!=(n|0)){continue}break}m=n}f=-1;a=F[h+8>>2];if(F[a+28>>2]-F[a+24>>2]>>2>(B|0)){break l}if((c|0)!=(g|0)){l=h+72|0;e=h+60|0;w=h+312|0;while(1){c=c-4|0;i=F[c>>2];F[j+68>>2]=c;_:{if(wa(w)){q=F[h+8>>2];k=F[q>>2];if(((F[q+4>>2]-k>>2>>>0)/3|0)<=(m|0)){f=-1;break l}a=-1;f=-1;b=-1;x=F[q+24>>2];g=-1;$:{if((i|0)==-1){break $}n=i+1|0;n=(n>>>0)%3|0?n:i-2|0;g=-1;if((n|0)==-1){break $}g=F[k+(n<<2)>>2]}n=g;o=F[x+(n<<2)>>2];aa:{if((o|0)==-1){d=1;g=-1;break aa}d=1;p=o+1|0;o=(p>>>0)%3|0?p:o-2|0;g=-1;if((o|0)==-1){break aa}d=0;a=o;g=a+1|0;g=(g>>>0)%3|0?g:a-2|0;if((g|0)!=-1){g=F[k+(g<<2)>>2]}else{g=-1}}o=F[(g<<2)+x>>2];if((o|0)!=-1){b=o+1|0;b=(b>>>0)%3|0?b:o-2|0}if((a|0)==(i|0)|(b|0)==(i|0)|((i|0)!=-1&F[F[q+12>>2]+(i<<2)>>2]!=-1|(a|0)==(b|0))){break l}if(!d&F[F[q+12>>2]+(a<<2)>>2]!=-1){break l}d=-1;o=F[q+12>>2];q=-1;ba:{if((b|0)==-1){break ba}if(F[o+(b<<2)>>2]!=-1){break l}f=b+1|0;f=(f>>>0)%3|0?f:b-2|0;q=-1;if((f|0)==-1){break ba}q=F[k+(f<<2)>>2]}f=L(m,3);F[j>>2]=f;F[o+(f<<2)>>2]=i;F[o+(i<<2)>>2]=f;f=F[j>>2]+1|0;F[o+(f<<2)>>2]=a;F[o+(a<<2)>>2]=f;a=F[j>>2]+2|0;F[o+(a<<2)>>2]=b;F[o+(b<<2)>>2]=a;a=F[j>>2];F[k+(a<<2)>>2]=g;b=a+1|0;f=k+(b<<2)|0;F[f>>2]=q;o=a+2|0;i=k+(o<<2)|0;F[i>>2]=n;a=F[h+120>>2];g=b?g:-1;n=a+(g>>>3&536870908)|0;k=F[n>>2];M=n,N=oi(g)&k,F[M>>2]=N;d=(b|0)!=-1?F[f>>2]:d;b=a+(d>>>3&536870908)|0;g=F[b>>2];M=b,N=oi(d)&g,F[M>>2]=N;b=-1;b=(o|0)!=-1?F[i>>2]:b;a=a+(b>>>3&536870908)|0;g=F[a>>2];M=a,N=oi(b)&g,F[M>>2]=N;D[j+88|0]=1;wd(e,j+88|0);Ma(l,j);m=m+1|0;g=F[j+64>>2];break _}b=F[h+64>>2];a=F[h+68>>2];if((b|0)==a<<5){if((b+1|0)<0){break h}if(b>>>0<=1073741822){a=a<<6;b=(b&-32)+32|0;a=a>>>0>b>>>0?a:b}else{a=2147483647}$a(e,a);b=F[h+64>>2]}F[h+64>>2]=b+1;a=F[h+60>>2]+(b>>>3&536870908)|0;d=F[a>>2];M=a,N=oi(b)&d,F[M>>2]=N;b=F[h+76>>2];if((b|0)!=F[h+80>>2]){F[b>>2]=i;F[h+76>>2]=b+4;break _}f=F[l>>2];a=b-f|0;o=a>>2;d=o+1|0;if(d>>>0>=1073741824){break g}n=a>>>1|0;n=a>>>0>=2147483644?1073741823:d>>>0>>0?n:d;if(n){if(n>>>0>=1073741824){break j}a=ka(n<<2)}else{a=0}d=a+(o<<2)|0;F[d>>2]=i;o=d+4|0;if((b|0)!=(f|0)){while(1){d=d-4|0;b=b-4|0;F[d>>2]=F[b>>2];if((b|0)!=(f|0)){continue}break}}F[h+80>>2]=a+(n<<2);F[h+76>>2]=o;F[h+72>>2]=d;if(!f){break _}ja(f)}if((c|0)!=(g|0)){continue}break}a=F[h+8>>2]}f=-1;if(((F[a+4>>2]-F[a>>2]>>2>>>0)/3|0)!=(m|0)){break l}f=F[a+28>>2]-F[a+24>>2]>>2;c=F[j+24>>2];n=F[j+28>>2];if((c|0)==(n|0)){break k}while(1){g=F[c>>2];e=F[a+24>>2];b=f-1|0;d=e+(b<<2)|0;if(F[d>>2]==-1){while(1){b=f-2|0;f=f-1|0;d=e+(b<<2)|0;if(F[d>>2]==-1){continue}break}}if(b>>>0>=g>>>0){F[j>>2]=a;d=F[d>>2];D[j+12|0]=1;F[j+8>>2]=d;F[j+4>>2]=d;if((d|0)!=-1){while(1){a=F[F[h+8>>2]>>2]+(d<<2)|0;if(F[a>>2]!=(b|0)){f=-1;break l}F[a>>2]=g;nc(j);d=F[j+8>>2];if((d|0)!=-1){continue}break}a=F[h+8>>2]}m=F[a+24>>2];e=m+(b<<2)|0;if((g|0)!=-1){F[m+(g<<2)>>2]=F[e>>2]}F[e>>2]=-1;e=1<>2];g=m+(g>>>3&536870908)|0;d=1<>>3&536870908)|0;if(d&F[m>>2]){b=e|F[g>>2]}else{b=F[g>>2]&(e^-1)}F[g>>2]=b;F[m>>2]=F[m>>2]&(d^-1);f=f-1|0}c=c+4|0;if((n|0)!=(c|0)){continue}break}}c=F[j+24>>2]}if(c){ja(c)}a=F[j+48>>2];if(a){while(1){c=F[a>>2];ja(a);a=c;if(a){continue}break}}a=F[j+40>>2];F[j+40>>2]=0;if(a){ja(a)}a=F[j+64>>2];if(a){F[j+68>>2]=a;ja(a)}Z=j+96|0;a=f;break f}oa();v()}na();v()}na();v()}na();v()}b=a;if((a|0)==-1){break e}a=C;c=F[a+16>>2];g=c+F[a>>2]|0;c=F[a+8>>2]-c|0;a=F[F[h+4>>2]+32>>2];E[a+38>>1]=H[a+38>>1];F[a>>2]=g;F[a+16>>2]=0;F[a+20>>2]=0;F[a+8>>2]=c;F[a+12>>2]=0;ca:{if(F[h+216>>2]==F[h+220>>2]){break ca}a=F[h+8>>2];if(F[a+4>>2]==F[a>>2]){break ca}c=0;while(1){if(Ad(h,c)){c=c+3|0;a=F[h+8>>2];if(c>>>0>2]-F[a>>2]>>2>>>0){continue}break ca}break}break e}if(G[h+308|0]){D[h+308|0]=0;g=F[h+292>>2];a=0;e=F[h+304>>2]+7|0;a=e>>>0<7?1:a;c=a>>>3|0;m=a<<29|e>>>3;a=m+F[h+288>>2]|0;e=c+g|0;F[h+288>>2]=a;F[h+292>>2]=a>>>0>>0?e+1|0:e}c=F[h+216>>2];if((c|0)!=F[h+220>>2]){a=0;while(1){e=L(a,144);Zc((e+c|0)+4|0,F[h+8>>2]);g=F[y>>2];m=g+e|0;c=F[m+132>>2];m=F[m+136>>2];if((c|0)!=(m|0)){while(1){Xc((e+F[y>>2]|0)+4|0,F[c>>2]);c=c+4|0;if((m|0)!=(c|0)){continue}break}g=F[y>>2]}if(!Yc((g+e|0)+4|0)){break e}a=a+1|0;c=F[h+216>>2];if(a>>>0<(F[h+220>>2]-c|0)/144>>>0){continue}break}}a=F[h+8>>2];Hb(h+184|0,F[a+28>>2]-F[a+24>>2]>>2);g=F[h+216>>2];if((g|0)!=F[h+220>>2]){c=0;while(1){a=L(c,144)+g|0;g=F[a+60>>2]-F[a+56>>2]>>2;e=a+104|0;a=F[h+8>>2];a=F[a+28>>2]-F[a+24>>2]>>2;Hb(e,(a|0)<(g|0)?g:a);c=c+1|0;g=F[h+216>>2];if(c>>>0<(F[h+220>>2]-g|0)/144>>>0){continue}break}}K=zd(h,b)}}Z=t- -64|0;return K|0}function Cf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,E=0,H=0,I=0,J=0,K=0,M=0,N=0,O=0;B=c;c=0;m=Z-96|0;Z=m;l=m+16|0;ma(l,0,76);F[m+92>>2]=-1;F[m+8>>2]=0;F[m>>2]=0;F[m+4>>2]=0;r=Z-16|0;Z=r;F[l+68>>2]=0;F[l+72>>2]=0;F[l>>2]=b;s=Z-16|0;Z=s;u=b;a=F[b+20>>2];a:{if((F[b+24>>2]-a|0)<=0){break a}a=F[a>>2];if((a|0)==-1){break a}c=F[F[u+8>>2]+(a<<2)>>2]}b:{c:{d:{if(!c){a=0;break d}a=F[u+100>>2];e=F[u+96>>2];F[s+8>>2]=0;F[s>>2]=0;F[s+4>>2]=0;f=a-e|0;b=(f|0)/12|0;e:{if((a|0)==(e|0)){break e}if(b>>>0>=357913942){break c}d=ka(f);F[s>>2]=d;F[s+8>>2]=d+L(b,12);a=0;n=d;f=f-12|0;d=(f-((f>>>0)%12|0)|0)+12|0;f=ma(n,0,d);F[s+4>>2]=d+f;if(G[c+84|0]){c=b>>>0<=1?1:b;h=c&1;if(b>>>0>=2){g=c&-2;c=0;while(1){d=L(a,12);b=d+e|0;i=F[b+4>>2];j=F[b>>2];d=d+f|0;F[d+8>>2]=F[b+8>>2];F[d>>2]=j;F[d+4>>2]=i;d=L(a|1,12);b=d+e|0;i=F[b+4>>2];j=F[b>>2];d=d+f|0;F[d+8>>2]=F[b+8>>2];F[d>>2]=j;F[d+4>>2]=i;a=a+2|0;c=c+2|0;if((g|0)!=(c|0)){continue}break}}if(!h){break e}b=L(a,12);a=b+e|0;c=F[a+4>>2];e=F[a>>2];b=b+f|0;F[b+8>>2]=F[a+8>>2];F[b>>2]=e;F[b+4>>2]=c;break e}h=b>>>0<=1?1:b;a=F[c+68>>2];c=0;while(1){d=L(c,12);b=d+e|0;g=F[a+(F[b>>2]<<2)>>2];i=F[a+(F[b+4>>2]<<2)>>2];d=d+f|0;F[d+8>>2]=F[a+(F[b+8>>2]<<2)>>2];F[d+4>>2]=i;F[d>>2]=g;c=c+1|0;if((h|0)!=(c|0)){continue}break}}d=0;H=Z-16|0;Z=H;h=ka(88);Zb(h);C=Z-16|0;Z=C;F[h+80>>2]=0;F[h+84>>2]=0;a=F[h+76>>2];F[h+76>>2]=0;if(a){ja(a)}F[h+68>>2]=0;F[h+72>>2]=0;b=h- -64|0;a=F[b>>2];F[b>>2]=0;if(a){ja(a)}g=F[s+4>>2];b=F[s>>2];c=(g-b|0)/12|0;a=L(c,3);f=F[h>>2];e=F[h+4>>2]-f>>2;f:{if(a>>>0>e>>>0){nd(h,a-e|0);g=F[s+4>>2];b=F[s>>2];c=(g-b|0)/12|0;break f}if(a>>>0>=e>>>0){break f}F[h+4>>2]=f+(a<<2)}g:{if((b|0)==(g|0)){break g}e=c>>>0<=1?1:c;g=e&1;a=F[h>>2];if(c>>>0>=2){i=e&-2;c=0;while(1){e=L(d,12);j=e+a|0;f=b+e|0;F[j>>2]=F[f>>2];F[a+(e|4)>>2]=F[f+4>>2];F[j+8>>2]=F[f+8>>2];f=L(d|1,12);e=f+a|0;f=b+f|0;F[e>>2]=F[f>>2];F[e+4>>2]=F[f+4>>2];F[e+8>>2]=F[f+8>>2];d=d+2|0;c=c+2|0;if((i|0)!=(c|0)){continue}break}}if(!g){break g}c=L(d,12);a=c+a|0;b=b+c|0;F[a>>2]=F[b>>2];F[a+4>>2]=F[b+4>>2];F[a+8>>2]=F[b+8>>2]}F[C+12>>2]=-1;a=0;e=0;g=0;f=Z-32|0;Z=f;h:{i:{w=C+12|0;j:{if(!w){break j}c=F[h+4>>2];j=F[h>>2];d=c-j|0;i=d>>2;n=F[h+12>>2];b=F[h+16>>2]-n>>2;k:{if(i>>>0>b>>>0){ab(h+12|0,i-b|0,10228);c=F[h+4>>2];j=F[h>>2];d=c-j|0;i=d>>2;break k}if(b>>>0<=i>>>0){break k}F[h+16>>2]=n+(i<<2)}F[f+24>>2]=0;F[f+16>>2]=0;F[f+20>>2]=0;b=(c|0)==(j|0);if(!b){if((d|0)<0){break i}e=ka(d);F[f+20>>2]=e;F[f+16>>2]=e;F[f+24>>2]=(i<<2)+e}l:{m:{n:{o:{p:{if(d){while(1){i=F[(a<<2)+j>>2];b=F[f+20>>2]-e>>2;q:{if(i>>>0>>0){break q}F[f>>2]=0;d=i+1|0;if(d>>>0>b>>>0){Fa(f+16|0,d-b|0,f);j=F[h>>2];c=F[h+4>>2];e=F[f+16>>2];break q}if(b>>>0<=d>>>0){break q}F[f+20>>2]=(d<<2)+e}b=(i<<2)+e|0;F[b>>2]=F[b>>2]+1;a=a+1|0;d=c-j|0;i=d>>2;if(a>>>0>>0){continue}break}break p}d=0;if(!b){break o}break n}if((c|0)==(j|0)){d=0;break n}if(d>>>0>=2147483645){break m}}d=ka(d<<1);ma(d,255,i<<3)}F[f+8>>2]=0;F[f>>2]=0;F[f+4>>2]=0;b=F[f+20>>2];a=b-e|0;t=a>>2;r:{s:{if((b|0)==(e|0)){break s}if((a|0)<0){break r}q=ka(a);F[f>>2]=q;F[f+8>>2]=(t<<2)+q;b=ma(q,0,a);F[f+4>>2]=b+a;c=t>>>0<=1?1:t;n=c&3;a=0;if(c-1>>>0>=3){o=c&-4;while(1){c=g<<2;F[c+b>>2]=a;x=c|4;a=F[c+e>>2]+a|0;F[x+b>>2]=a;y=c|8;a=a+F[e+x>>2]|0;F[y+b>>2]=a;c=c|12;a=a+F[e+y>>2]|0;F[c+b>>2]=a;a=a+F[c+e>>2]|0;g=g+4|0;p=p+4|0;if((o|0)!=(p|0)){continue}break}}if(!n){break s}while(1){c=g<<2;F[c+b>>2]=a;g=g+1|0;a=F[c+e>>2]+a|0;k=k+1|0;if((n|0)!=(k|0)){continue}break}}if(!i){break l}x=F[h+40>>2];y=F[h+12>>2];n=0;while(1){I=n<<2;a=I+j|0;k=-1;c=n+1|0;b=(c>>>0)%3|0?c:n-2|0;if((b|0)!=-1){k=F[(b<<2)+j>>2]}b=F[a>>2];t:{u:{if(!((n>>>0)%3|0)){p=-1;a=n+2|0;if((a|0)!=-1){p=F[(a<<2)+j>>2]}if(!((b|0)==(k|0)|(b|0)==(p|0))&(k|0)!=(p|0)){break u}x=x+1|0;F[h+40>>2]=x;c=n+3|0;break t}p=F[a-4>>2]}a=p<<2;A=F[a+e>>2];v:{w:{if((A|0)<=0){break w}a=F[a+q>>2];g=0;while(1){o=(a<<3)+d|0;z=F[o>>2];if((z|0)==-1){break w}x:{if((k|0)!=(z|0)){break x}o=F[o+4>>2];if((o|0)!=-1){z=F[(o<<2)+j>>2]}else{z=-1}if((z|0)==(b|0)){break x}while(1){y:{b=a;g=g+1|0;if((A|0)<=(g|0)){break y}a=b+1|0;J=(a<<3)+d|0;z=F[J>>2];K=(b<<3)+d|0;F[K+4>>2]=F[J+4>>2];F[K>>2]=z;if((z|0)!=-1){continue}}break}F[(b<<3)+d>>2]=-1;if((o|0)==-1){break w}F[y+I>>2]=o;F[y+(o<<2)>>2]=n;break v}a=a+1|0;g=g+1|0;if((A|0)!=(g|0)){continue}break}}a=k<<2;k=F[a+e>>2];if((k|0)<=0){break v}a=F[a+q>>2];g=0;while(1){b=(a<<3)+d|0;if(F[b>>2]==-1){F[b>>2]=p;F[b+4>>2]=n;break v}a=a+1|0;g=g+1|0;if((k|0)!=(g|0)){continue}break}}}n=c;if(n>>>0>>0){continue}break}break l}break i}na();v()}F[w>>2]=t;if(q){ja(q)}if(d){ja(d)}a=F[f+16>>2];if(!a){break j}F[f+20>>2]=a;ja(a)}Z=f+32|0;x=(w|0)!=0;if(x){k=Z-32|0;Z=k;a=F[h>>2];g=F[h+4>>2];F[k+24>>2]=0;F[k+16>>2]=0;F[k+20>>2]=0;if((a|0)==(g|0)){c=g}else{a=g-a|0;if((a|0)<0){break i}a=a>>2;b=(a-1>>>5|0)+1|0;c=ka(b<<2);F[k+24>>2]=b;F[k+20>>2]=0;F[k+16>>2]=c;Yb(k+16|0,a);g=F[h>>2];c=F[h+4>>2]}F[k+8>>2]=0;F[k>>2]=0;while(1){z:{o=0;i=0;if((c|0)==(g|0)){break z}while(1){b=F[k+16>>2];A:{if(F[b+(i>>>3&536870908)>>2]>>>i&1){break A}c=F[k>>2];F[k+4>>2]=c;e=F[h+12>>2];a=i;while(1){B:{f=a+1|0;d=a;a=(f>>>0)%3|0?f:a-2|0;if((a|0)==-1){break B}a=F[e+(a<<2)>>2];if((a|0)==-1){break B}f=a+1|0;a=(f>>>0)%3|0?f:a-2|0;if((i|0)==(a|0)|(a|0)==-1){break B}if(!(F[b+(a>>>3&536870908)>>2]>>>a&1)){continue}}break}j=d;C:{D:{E:{while(1){a=F[k+16>>2]+(j>>>3&536870908)|0;F[a>>2]=F[a>>2]|1<>>0)%3|0?a:j-2|0;g=F[h>>2];y=(j>>>0)%3|0;b=(y?-1:2)+j|0;n=F[k>>2];A=(n|0)==(c|0);F:{if(A){break F}w=F[(f<<2)+g>>2];q=F[h+12>>2];a=n;if((b|0)!=-1){e=q+(b<<2)|0;while(1){G:{if((w|0)!=F[a>>2]){break G}p=F[a+4>>2];t=F[e>>2];if((p|0)==(t|0)){break G}e=b;c=-1;a=-1;if((p|0)==-1){break C}break D}a=a+8|0;if((c|0)!=(a|0)){continue}break}break F}while(1){if((w|0)==F[a>>2]){t=-1;e=-1;p=F[a+4>>2];if((p|0)!=-1){break D}}a=a+8|0;if((c|0)!=(a|0)){continue}break}}b=F[(b<<2)+g>>2];H:{if(F[k+8>>2]!=(c|0)){F[c>>2]=b;F[c+4>>2]=f;c=c+8|0;F[k+4>>2]=c;break H}a=c-n|0;p=a>>3;e=p+1|0;if(e>>>0>=536870912){break i}g=a>>>2|0;g=a>>>0>=2147483640?536870911:e>>>0>>0?g:e;if(g){if(g>>>0>=536870912){break E}e=ka(g<<3)}else{e=0}a=e+(p<<3)|0;F[a>>2]=b;F[a+4>>2]=f;b=a+8|0;if(!A){while(1){c=c-8|0;f=F[c+4>>2];a=a-8|0;F[a>>2]=F[c>>2];F[a+4>>2]=f;if((c|0)!=(n|0)){continue}break}c=F[k>>2]}F[k+8>>2]=e+(g<<3);F[k+4>>2]=b;F[k>>2]=a;if(c){ja(c)}c=b}I:{J:{if(y){a=j-1|0;break J}a=j+2|0;if((a|0)==-1){break I}}a=F[F[h+12>>2]+(a<<2)>>2];if((a|0)==-1){break I}j=a+((a>>>0)%3|0?-1:2)|0;if((d|0)==(j|0)){break I}if((j|0)!=-1){continue}}break}g=F[h>>2];break A}oa();v()}c=F[q+(p<<2)>>2];b=e;a=p}if((t|0)!=-1){F[q+(t<<2)>>2]=-1}if((c|0)!=-1){F[q+(c<<2)>>2]=-1}F[q+(b<<2)>>2]=-1;F[q+(a<<2)>>2]=-1;o=1}i=i+1|0;c=F[h+4>>2];if(i>>>0>2>>>0){continue}break}if(o){continue}}break}a=F[k>>2];if(a){ja(a)}a=F[k+16>>2];if(a){ja(a)}Z=k+32|0;n=0;g=Z-32|0;Z=g;e=F[C+12>>2];F[h+36>>2]=e;p=h+24|0;b=F[h+24>>2];a=F[h+28>>2]-b>>2;K:{L:{if(a>>>0>>0){ab(p,e-a|0,10228);F[g+24>>2]=0;F[g+16>>2]=0;F[g+20>>2]=0;break L}if(a>>>0>e>>>0){F[h+28>>2]=b+(e<<2)}F[g+24>>2]=0;F[g+16>>2]=0;F[g+20>>2]=0;if(!e){break K}}if((e|0)<0){break i}a=(e-1>>>5|0)+1|0;b=ka(a<<2);F[g+24>>2]=a;F[g+20>>2]=0;F[g+16>>2]=b;Yb(g+16|0,e)}a=F[h>>2];b=F[h+4>>2];F[g+8>>2]=0;F[g>>2]=0;F[g+4>>2]=0;M:{if((a|0)==(b|0)){a=b}else{a=b-a|0;if((a|0)<0){break i}a=a>>2;b=(a-1>>>5|0)+1|0;c=ka(b<<2);F[g+8>>2]=b;F[g+4>>2]=0;F[g>>2]=c;Yb(g,a);b=F[h>>2];a=F[h+4>>2]}if(a-b>>>0<12){break M}N:{while(1){q=L(n,3);d=(q<<2)+b|0;f=F[d>>2];c=-1;i=q+1|0;if((i|0)!=-1){c=F[(i<<2)+b>>2]}O:{if((c|0)==(f|0)){break O}i=f;f=F[d+8>>2];if((i|0)==(f|0)|(c|0)==(f|0)){break O}k=0;i=F[g>>2];while(1){f=k+q|0;if(!(F[(f>>>3&536870908)+i>>2]>>>f&1)){a=F[(f<<2)+b>>2];c=1<>2];b=a>>>5|0;i=F[d+(b<<2)>>2];t=c&i;if(t){c=F[h+28>>2];P:{if((c|0)!=F[h+32>>2]){F[c>>2]=-1;F[h+28>>2]=c+4;break P}i=F[p>>2];b=c-i|0;o=b>>2;d=o+1|0;if(d>>>0>=1073741824){break i}j=b>>>1|0;j=b>>>0>=2147483644?1073741823:d>>>0>>0?j:d;if(j){if(j>>>0>=1073741824){break N}b=ka(j<<2)}else{b=0}d=b+(o<<2)|0;F[d>>2]=-1;o=d+4|0;if((c|0)!=(i|0)){while(1){d=d-4|0;c=c-4|0;F[d>>2]=F[c>>2];if((c|0)!=(i|0)){continue}break}}F[h+32>>2]=b+(j<<2);F[h+28>>2]=o;F[h+24>>2]=d;if(!i){break P}ja(i)}c=F[h+52>>2];Q:{if((c|0)!=F[h+56>>2]){F[c>>2]=a;F[h+52>>2]=c+4;break Q}i=F[h+48>>2];b=c-i|0;o=b>>2;d=o+1|0;if(d>>>0>=1073741824){break i}j=b>>>1|0;j=b>>>0>=2147483644?1073741823:d>>>0>>0?j:d;if(j){if(j>>>0>=1073741824){break N}b=ka(j<<2)}else{b=0}d=b+(o<<2)|0;F[d>>2]=a;a=d+4|0;if((c|0)!=(i|0)){while(1){d=d-4|0;c=c-4|0;F[d>>2]=F[c>>2];if((c|0)!=(i|0)){continue}break}}F[h+56>>2]=b+(j<<2);F[h+52>>2]=a;F[h+48>>2]=d;if(!i){break Q}ja(i)}c=F[g+20>>2];a=F[g+24>>2];if((c|0)==a<<5){if((c+1|0)<0){break i}b=g+16|0;if(c>>>0<=1073741822){a=a<<6;c=(c&-32)+32|0;a=a>>>0>c>>>0?a:c}else{a=2147483647}$a(b,a);c=F[g+20>>2]}F[g+20>>2]=c+1;d=F[g+16>>2];a=d+(c>>>3&536870908)|0;b=F[a>>2];N=a,O=oi(c)&b,F[N>>2]=O;c=1<>>5|0;i=F[(b<<2)+d>>2];a=e;e=a+1|0}F[(b<<2)+d>>2]=c|i;o=F[h+24>>2]+(a<<2)|0;j=F[h+12>>2];b=F[h>>2];i=F[g>>2];c=f;R:{S:{T:{while(1){if((c|0)==-1){break T}d=(c>>>3&536870908)+i|0;F[d>>2]=F[d>>2]|1<>2]=c;if(t){F[(c<<2)+b>>2]=a}w=c+1|0;c=(w>>>0)%3|0?w:c-2|0;d=-1;U:{if((c|0)==-1){break U}c=F[j+(c<<2)>>2];d=-1;if((c|0)==-1){break U}d=c+1|0;d=(d>>>0)%3|0?d:c-2|0}c=d;if((f|0)!=(c|0)){continue}break}if((f|0)!=-1){break R}c=1;break S}if((f>>>0)%3|0){c=f-1|0;break S}c=f+2|0;if((c|0)==-1){break R}}c=F[j+(c<<2)>>2];if((c|0)==-1){break R}V:{if((c>>>0)%3|0){c=c-1|0;break V}c=c+2|0;if((c|0)==-1){break R}}f=F[h+12>>2];b=F[h>>2];while(1){d=(c>>>3&536870908)+i|0;F[d>>2]=F[d>>2]|1<>2]=a}W:{if((c>>>0)%3|0){c=c-1|0;break W}c=c+2|0;if((c|0)==-1){break R}}c=F[f+(c<<2)>>2];if((c|0)==-1){break R}c=c+((c>>>0)%3|0?-1:2)|0;if((c|0)!=-1){continue}break}}}k=k+1|0;if((k|0)!=3){continue}break}b=F[h>>2];a=F[h+4>>2]}n=n+1|0;if(n>>>0<(a-b>>2>>>0)/3>>>0){continue}break}break M}oa();v()}c=0;F[h+44>>2]=0;a=F[g+16>>2];b=F[g+20>>2];if(b){e=b&31;b=(b>>>3&536870908)+a|0;d=a;i=0;while(1){if(!(F[d>>2]>>>c&1)){i=i+1|0;F[h+44>>2]=i}f=(c|0)==31;c=f?0:c+1|0;d=(f<<2)+d|0;if((b|0)!=(d|0)|(c|0)!=(e|0)){continue}break}}b=F[g>>2];if(b){ja(b);a=F[g+16>>2]}if(a){ja(a)}Z=g+32|0}Z=C+16|0;if(!x){F[H+8>>2]=0;Za(h);h=0}Z=H+16|0;a=h;break h}na();v()}b=F[s>>2];if(!b){break d}F[s+4>>2]=b;ja(b)}Z=s+16|0;break b}na();v()}c=F[l+4>>2];b=a;F[l+4>>2]=a;if(c){Za(c);b=F[l+4>>2]}X:{if(!b){break X}a=F[u+100>>2];c=F[u+96>>2];D[r+12|0]=0;Ea(l+56|0,(a-c|0)/12|0,r+12|0);a=F[u+100>>2];c=F[u+96>>2];if((a|0)==(c|0)){break X}while(1){if(!(F[F[l+56>>2]+(E>>>3&536870908)>>2]>>>E&1)){a=L(E,3);Vb(l,0,a);c=F[l+8>>2];e=F[l+12>>2];Vb(l,1,a+1|0);f=F[l+20>>2];d=F[l+24>>2];Vb(l,2,a+2|0);n=(c|0)==(e|0)?-1:0;a=d-f>>2;c=e-c>>2;e=a>>>0>c>>>0;c=F[l+36>>2]-F[l+32>>2]>>2>>>0>(e?a:c)>>>0?2:e?1:n;Y:{if(F[l+68>>2]<=0){break Y}F[r+12>>2]=F[l+76>>2];F[r+8>>2]=m;Qa(r+8|0,r+12|0);a=F[((c<<2)+l|0)+44>>2];if((a|0)<0){a=-1}else{e=(a>>>0)/3|0;a=F[(F[F[l>>2]+96>>2]+L(e,12)|0)+(a-L(e,3)<<2)>>2]}F[r+12>>2]=a;F[r+8>>2]=m;Qa(r+8|0,r+12|0);e=F[l+72>>2];F[l+72>>2]=e+2;if(!(e&1)){break Y}F[r+12>>2]=a;F[r+8>>2]=m;Qa(r+8|0,r+12|0);F[l+72>>2]=F[l+72>>2]+1}d=0;e=Z-16|0;Z=e;F[l+68>>2]=F[l+68>>2]+1;a=L(c,12)+l|0;a=F[a+12>>2]-F[a+8>>2]|0;if((a|0)>0){a=a>>>2|0;h=a>>>0<=1?1:a;c=F[((c<<2)+l|0)+44>>2];while(1){a=c;f=(a>>>0)/3|0;c=(a|0)==-1;g=c?-1:f;i=F[l+56>>2]+(g>>>3&536870908)|0;F[i>>2]=F[i>>2]|1<>2]=F[l+72>>2]+1;Z:{_:{$:{aa:{ba:{if(!d){ca:{if((a|0)>=0){F[e+12>>2]=F[(F[F[l>>2]+96>>2]+L(f,12)|0)+((a>>>0)%3<<2)>>2];F[e+8>>2]=m;Qa(e+8|0,e+12|0);break ca}F[e+12>>2]=-1;F[e+8>>2]=m;Qa(e+8|0,e+12|0);if(c){break ba}}c=-1;f=a+1|0;f=(f>>>0)%3|0?f:a-2|0;if((f|0)>=0){g=(f>>>0)/3|0;f=F[(F[F[l>>2]+96>>2]+L(g,12)|0)+(f-L(g,3)<<2)>>2]}else{f=-1}F[e+12>>2]=f;F[e+8>>2]=m;Qa(e+8|0,e+12|0);f=((a>>>0)%3|0?-1:2)+a|0;if((f|0)<0){break aa}c=(f>>>0)/3|0;c=F[(F[F[l>>2]+96>>2]+L(c,12)|0)+(f-L(c,3)<<2)>>2];break aa}c=(a|0)<0?-1:F[(F[F[l>>2]+96>>2]+L(f,12)|0)+((a>>>0)%3<<2)>>2];F[l+76>>2]=c;F[e+12>>2]=c;F[e+8>>2]=m;Qa(e+8|0,e+12|0);if(d&1){c=-1;if((a|0)==-1){break Z}if((L(f,3)|0)!=(a|0)){a=a-1|0;break _}a=a+2|0;break $}c=-1;if((a|0)==-1){break Z}c=a+1|0;a=(c>>>0)%3|0?c:a-2|0;break $}c=-1;F[e+12>>2]=-1;F[e+8>>2]=m;Qa(e+8|0,e+12|0)}F[l+76>>2]=c;F[e+12>>2]=c;F[e+8>>2]=m;Qa(e+8|0,e+12|0)}c=-1;if((a|0)==-1){break Z}}c=F[F[F[l+4>>2]+12>>2]+(a<<2)>>2]}d=d+1|0;if((h|0)!=(d|0)){continue}break}}Z=e+16|0;c=F[u+96>>2];a=F[u+100>>2]}E=E+1|0;if(E>>>0<(a-c|0)/12>>>0){continue}break}}Z=r+16|0;da:{if(b){a=F[B>>2];if(a){F[B+4>>2]=a;ja(a)}F[B>>2]=F[m>>2];F[B+4>>2]=F[m+4>>2];F[B+8>>2]=F[m+8>>2];M=F[m+84>>2];break da}a=F[m>>2];if(!a){break da}F[m+4>>2]=a;ja(a)}a=F[m+72>>2];if(a){ja(a)}a=F[m+48>>2];if(a){F[m+52>>2]=a;ja(a)}a=F[m+36>>2];if(a){F[m+40>>2]=a;ja(a)}a=F[m+24>>2];if(a){F[m+28>>2]=a;ja(a)}a=F[m+20>>2];F[m+20>>2]=0;if(a){Za(a)}Z=m+96|0;return M|0}function sf(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;i=b;a=0;b=0;a:{b:{switch(d-1|0){case 0:j=F[i+80>>2];h=G[c+24|0];c:{if((L(j,h)|0)!=(e|0)){break c}d=F[c+28>>2]!=1;b=G[c+84|0];if(!(d|!b)){la(f,F[F[c>>2]>>2]+F[c+48>>2]|0,e);b=1;break c}if(h){a=ka(h);ma(a,0,h)}d:{if(!j){b=1;break d}if(!d){if(h){d=0;e=0;while(1){i=d+f|0;k=F[F[c>>2]>>2];m=F[c+48>>2];g=F[c+40>>2];b=ki(g,F[c+44>>2],G[c+84|0]?e:F[F[c+68>>2]+(e<<2)>>2],0);n=b;b=b+m|0;la(i,la(a,b+k|0,g),h);d=d+h|0;b=1;e=e+1|0;if((j|0)!=(e|0)){continue}break}break d}if(b){b=1;h=F[c>>2];e=F[c+48>>2];f=F[c+40>>2];i=F[c+44>>2];if((j|0)!=1){g=j&-2;c=0;d=0;while(1){k=F[h>>2];m=ki(f,i,c,0)+e|0;k=la(a,k+m|0,f);m=F[h>>2];n=ki(f,i,c|1,0)+e|0;la(k,m+n|0,f);c=c+2|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}g=c}if(!(j&1)){break d}c=F[h>>2];d=ki(g,0,f,i)+e|0;la(a,c+d|0,f);break d}b=1;h=F[c>>2];e=F[c+48>>2];g=F[c+68>>2];f=F[c+40>>2];i=F[c+44>>2];c=0;if((j|0)!=1){k=j&-2;d=0;while(1){m=F[h>>2];n=c<<2;l=ki(f,i,F[n+g>>2],0)+e|0;m=la(a,m+l|0,f);l=F[h>>2];n=ki(f,i,F[g+(n|4)>>2],0)+e|0;la(m,l+n|0,f);c=c+2|0;d=d+2|0;if((k|0)!=(d|0)){continue}break}}if(!(j&1)){break d}d=F[h>>2];c=ki(f,i,F[g+(c<<2)>>2],0)+e|0;la(a,c+d|0,f);break d}b=0;if(!h){d=0;while(1){if(!Cb(c,G[c+84|0]?d:F[F[c+68>>2]+(d<<2)>>2],D[c+24|0],a)){break d}d=d+1|0;b=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}break d}d=0;e=0;while(1){if(!Cb(c,G[c+84|0]?e:F[F[c+68>>2]+(e<<2)>>2],D[c+24|0],a)){break d}la(d+f|0,a,h);d=d+h|0;e=e+1|0;b=j>>>0<=e>>>0;if((e|0)!=(j|0)){continue}break}}if(!a){break c}ja(a)}break a;case 2:n=G[c+24|0];l=n<<1;j=F[i+80>>2];e:{if((L(l,j)|0)!=(e|0)){break e}i=F[c+28>>2]!=3;d=G[c+84|0];if(!(i|!d)){la(f,F[F[c>>2]>>2]+F[c+48>>2]|0,e);a=1;break e}f:{if(!n){e=0;break f}e=ka(l);ma(e,0,l)}g:{if(!j){a=1;break g}if(!i){o=F[c+68>>2];k=F[c>>2];b=F[c+48>>2];i=F[c+40>>2];m=F[c+44>>2];if(n){if(!d){c=0;d=0;while(1){a=1;g=F[k>>2];p=ki(i,m,F[o+(d<<2)>>2],0)+b|0;la((c<<1)+f|0,la(e,g+p|0,i),l);c=c+n|0;d=d+1|0;if((j|0)!=(d|0)){continue}break}break g}c=0;while(1){a=1;o=F[k>>2];p=ki(g,h,i,m)+b|0;la((c<<1)+f|0,la(e,o+p|0,i),l);c=c+n|0;d=h;g=g+1|0;d=g?d:d+1|0;h=d;if((j|0)!=(g|0)|d){continue}break}break g}if(!d){a=1;c=0;if((j|0)!=1){f=j&-2;d=0;while(1){h=F[k>>2];g=c<<2;n=ki(i,m,F[g+o>>2],0)+b|0;h=la(e,h+n|0,i);n=F[k>>2];g=ki(i,m,F[o+(g|4)>>2],0)+b|0;la(h,g+n|0,i);c=c+2|0;d=d+2|0;if((f|0)!=(d|0)){continue}break}}if(!(j&1)){break g}d=F[k>>2];b=ki(i,m,F[o+(c<<2)>>2],0)+b|0;la(e,b+d|0,i);break g}n=j&1;a=1;if((j|0)!=1){j=j&-2;f=0;c=0;while(1){d=F[k>>2];l=ki(g,h,i,m)+b|0;d=la(e,d+l|0,i);l=F[k>>2];o=ki(i,m,g|1,h)+b|0;la(d,l+o|0,i);g=g+2|0;h=g>>>0<2?h+1|0:h;f=f+2|0;d=f>>>0<2?c+1|0:c;c=d;if((f|0)!=(j|0)|c){continue}break}}if(!n){break g}c=F[k>>2];b=ki(g,h,i,m)+b|0;la(e,b+c|0,i);break g}if(!n){d=0;while(1){if(!Ab(c,G[c+84|0]?d:F[F[c+68>>2]+(d<<2)>>2],D[c+24|0],e)){break g}d=d+1|0;a=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}break g}d=0;while(1){if(!Ab(c,G[c+84|0]?d:F[F[c+68>>2]+(d<<2)>>2],D[c+24|0],e)){break g}la((b<<1)+f|0,e,l);b=b+n|0;d=d+1|0;a=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}}if(!e){break e}ja(e)}b=a;break a;case 4:l=G[c+24|0];o=l<<2;j=F[i+80>>2];h:{if((L(o,j)|0)!=(e|0)){break h}i=F[c+28>>2]!=5;d=G[c+84|0];if(!(i|!d)){la(f,F[F[c>>2]>>2]+F[c+48>>2]|0,e);b=1;break h}i:{if(!l){e=0;break i}e=ka(o);ma(e,0,o)}b=1;j:{if(!j){break j}if(!i){a=F[c+68>>2];m=F[c>>2];i=F[c+48>>2];k=F[c+40>>2];n=F[c+44>>2];if(l){if(!d){c=0;d=0;while(1){g=F[m>>2];p=ki(k,n,F[a+(d<<2)>>2],0)+i|0;la((c<<2)+f|0,la(e,g+p|0,k),o);c=c+l|0;d=d+1|0;if((j|0)!=(d|0)){continue}break}break j}c=0;while(1){d=F[m>>2];p=ki(g,h,k,n)+i|0;la((c<<2)+f|0,la(e,d+p|0,k),o);c=c+l|0;g=g+1|0;a=g?h:h+1|0;h=a;if((j|0)!=(g|0)|h){continue}break}break j}if(!d){c=0;if((j|0)!=1){f=j&-2;d=0;while(1){h=F[m>>2];g=c<<2;l=ki(k,n,F[g+a>>2],0)+i|0;h=la(e,h+l|0,k);l=F[m>>2];g=ki(k,n,F[a+(g|4)>>2],0)+i|0;la(h,g+l|0,k);c=c+2|0;d=d+2|0;if((f|0)!=(d|0)){continue}break}}if(!(j&1)){break j}d=F[m>>2];a=ki(k,n,F[a+(c<<2)>>2],0)+i|0;la(e,a+d|0,k);break j}l=j&1;if((j|0)!=1){j=j&-2;f=0;c=0;while(1){a=F[m>>2];d=ki(g,h,k,n)+i|0;a=la(e,a+d|0,k);d=F[m>>2];o=ki(k,n,g|1,h)+i|0;la(a,d+o|0,k);d=h;g=g+2|0;h=g>>>0<2?d+1|0:d;f=f+2|0;a=f>>>0<2?c+1|0:c;c=a;if((f|0)!=(j|0)|c){continue}break}}if(!l){break j}a=F[m>>2];c=ki(g,h,k,n)+i|0;la(e,a+c|0,k);break j}b=0;if(!l){d=0;while(1){if(!yb(c,G[c+84|0]?d:F[F[c+68>>2]+(d<<2)>>2],D[c+24|0],e)){break j}d=d+1|0;b=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}break j}d=0;while(1){if(!yb(c,G[c+84|0]?d:F[F[c+68>>2]+(d<<2)>>2],D[c+24|0],e)){break j}la((a<<2)+f|0,e,o);a=a+l|0;d=d+1|0;b=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}}if(!e){break h}ja(e)}break a;case 1:j=F[i+80>>2];h=G[c+24|0];k:{if((L(j,h)|0)!=(e|0)){break k}d=F[c+28>>2]!=2;b=G[c+84|0];if(!(d|!b)){la(f,F[F[c>>2]>>2]+F[c+48>>2]|0,e);b=1;break k}if(h){a=ka(h);ma(a,0,h)}l:{if(!j){b=1;break l}if(!d){if(h){d=0;e=0;while(1){i=d+f|0;k=F[F[c>>2]>>2];m=F[c+48>>2];g=F[c+40>>2];b=ki(g,F[c+44>>2],G[c+84|0]?e:F[F[c+68>>2]+(e<<2)>>2],0);n=b;b=b+m|0;la(i,la(a,b+k|0,g),h);d=d+h|0;b=1;e=e+1|0;if((j|0)!=(e|0)){continue}break}break l}if(b){b=1;h=F[c>>2];e=F[c+48>>2];f=F[c+40>>2];i=F[c+44>>2];if((j|0)!=1){g=j&-2;c=0;d=0;while(1){k=F[h>>2];m=ki(f,i,c,0)+e|0;k=la(a,k+m|0,f);m=F[h>>2];n=ki(f,i,c|1,0)+e|0;la(k,m+n|0,f);c=c+2|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}g=c}if(!(j&1)){break l}c=F[h>>2];d=ki(g,0,f,i)+e|0;la(a,c+d|0,f);break l}b=1;h=F[c>>2];e=F[c+48>>2];g=F[c+68>>2];f=F[c+40>>2];i=F[c+44>>2];c=0;if((j|0)!=1){k=j&-2;d=0;while(1){m=F[h>>2];n=c<<2;l=ki(f,i,F[n+g>>2],0)+e|0;m=la(a,m+l|0,f);l=F[h>>2];n=ki(f,i,F[g+(n|4)>>2],0)+e|0;la(m,l+n|0,f);c=c+2|0;d=d+2|0;if((k|0)!=(d|0)){continue}break}}if(!(j&1)){break l}d=F[h>>2];c=ki(f,i,F[g+(c<<2)>>2],0)+e|0;la(a,c+d|0,f);break l}b=0;if(!h){d=0;while(1){if(!Bb(c,G[c+84|0]?d:F[F[c+68>>2]+(d<<2)>>2],D[c+24|0],a)){break l}d=d+1|0;b=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}break l}d=0;e=0;while(1){if(!Bb(c,G[c+84|0]?e:F[F[c+68>>2]+(e<<2)>>2],D[c+24|0],a)){break l}la(d+f|0,a,h);d=d+h|0;e=e+1|0;b=j>>>0<=e>>>0;if((e|0)!=(j|0)){continue}break}}if(!a){break k}ja(a)}break a;case 3:n=G[c+24|0];l=n<<1;j=F[i+80>>2];m:{if((L(l,j)|0)!=(e|0)){break m}i=F[c+28>>2]!=4;d=G[c+84|0];if(!(i|!d)){la(f,F[F[c>>2]>>2]+F[c+48>>2]|0,e);a=1;break m}n:{if(!n){e=0;break n}e=ka(l);ma(e,0,l)}o:{if(!j){a=1;break o}if(!i){o=F[c+68>>2];k=F[c>>2];b=F[c+48>>2];i=F[c+40>>2];m=F[c+44>>2];if(n){if(!d){c=0;d=0;while(1){a=1;g=F[k>>2];p=ki(i,m,F[o+(d<<2)>>2],0)+b|0;la((c<<1)+f|0,la(e,g+p|0,i),l);c=c+n|0;d=d+1|0;if((j|0)!=(d|0)){continue}break}break o}c=0;while(1){a=1;o=F[k>>2];p=ki(g,h,i,m)+b|0;la((c<<1)+f|0,la(e,o+p|0,i),l);c=c+n|0;d=h;g=g+1|0;d=g?d:d+1|0;h=d;if((j|0)!=(g|0)|d){continue}break}break o}if(!d){a=1;c=0;if((j|0)!=1){f=j&-2;d=0;while(1){h=F[k>>2];g=c<<2;n=ki(i,m,F[g+o>>2],0)+b|0;h=la(e,h+n|0,i);n=F[k>>2];g=ki(i,m,F[o+(g|4)>>2],0)+b|0;la(h,g+n|0,i);c=c+2|0;d=d+2|0;if((f|0)!=(d|0)){continue}break}}if(!(j&1)){break o}d=F[k>>2];b=ki(i,m,F[o+(c<<2)>>2],0)+b|0;la(e,b+d|0,i);break o}n=j&1;a=1;if((j|0)!=1){j=j&-2;f=0;c=0;while(1){d=F[k>>2];l=ki(g,h,i,m)+b|0;d=la(e,d+l|0,i);l=F[k>>2];o=ki(i,m,g|1,h)+b|0;la(d,l+o|0,i);g=g+2|0;h=g>>>0<2?h+1|0:h;f=f+2|0;d=f>>>0<2?c+1|0:c;c=d;if((f|0)!=(j|0)|c){continue}break}}if(!n){break o}c=F[k>>2];b=ki(g,h,i,m)+b|0;la(e,b+c|0,i);break o}if(!n){d=0;while(1){if(!zb(c,G[c+84|0]?d:F[F[c+68>>2]+(d<<2)>>2],D[c+24|0],e)){break o}d=d+1|0;a=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}break o}d=0;while(1){if(!zb(c,G[c+84|0]?d:F[F[c+68>>2]+(d<<2)>>2],D[c+24|0],e)){break o}la((b<<1)+f|0,e,l);b=b+n|0;d=d+1|0;a=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}}if(!e){break m}ja(e)}b=a;break a;case 5:l=G[c+24|0];o=l<<2;j=F[i+80>>2];p:{if((L(o,j)|0)!=(e|0)){break p}i=F[c+28>>2]!=6;d=G[c+84|0];if(!(i|!d)){la(f,F[F[c>>2]>>2]+F[c+48>>2]|0,e);b=1;break p}q:{if(!l){e=0;break q}e=ka(o);ma(e,0,o)}b=1;r:{if(!j){break r}if(!i){a=F[c+68>>2];m=F[c>>2];i=F[c+48>>2];k=F[c+40>>2];n=F[c+44>>2];if(l){if(!d){c=0;d=0;while(1){g=F[m>>2];p=ki(k,n,F[a+(d<<2)>>2],0)+i|0;la((c<<2)+f|0,la(e,g+p|0,k),o);c=c+l|0;d=d+1|0;if((j|0)!=(d|0)){continue}break}break r}c=0;while(1){d=F[m>>2];p=ki(g,h,k,n)+i|0;la((c<<2)+f|0,la(e,d+p|0,k),o);c=c+l|0;g=g+1|0;a=g?h:h+1|0;h=a;if((j|0)!=(g|0)|h){continue}break}break r}if(!d){c=0;if((j|0)!=1){f=j&-2;d=0;while(1){h=F[m>>2];g=c<<2;l=ki(k,n,F[g+a>>2],0)+i|0;h=la(e,h+l|0,k);l=F[m>>2];g=ki(k,n,F[a+(g|4)>>2],0)+i|0;la(h,g+l|0,k);c=c+2|0;d=d+2|0;if((f|0)!=(d|0)){continue}break}}if(!(j&1)){break r}d=F[m>>2];a=ki(k,n,F[a+(c<<2)>>2],0)+i|0;la(e,a+d|0,k);break r}l=j&1;if((j|0)!=1){j=j&-2;f=0;c=0;while(1){a=F[m>>2];d=ki(g,h,k,n)+i|0;a=la(e,a+d|0,k);d=F[m>>2];o=ki(k,n,g|1,h)+i|0;la(a,d+o|0,k);d=h;g=g+2|0;h=g>>>0<2?d+1|0:d;f=f+2|0;a=f>>>0<2?c+1|0:c;c=a;if((f|0)!=(j|0)|c){continue}break}}if(!l){break r}a=F[m>>2];c=ki(g,h,k,n)+i|0;la(e,a+c|0,k);break r}b=0;if(!l){d=0;while(1){if(!xb(c,G[c+84|0]?d:F[F[c+68>>2]+(d<<2)>>2],D[c+24|0],e)){break r}d=d+1|0;b=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}break r}d=0;while(1){if(!xb(c,G[c+84|0]?d:F[F[c+68>>2]+(d<<2)>>2],D[c+24|0],e)){break r}la((a<<2)+f|0,e,o);a=a+l|0;d=d+1|0;b=j>>>0<=d>>>0;if((d|0)!=(j|0)){continue}break}}if(!e){break p}ja(e)}break a;case 8:p=G[c+24|0];q=p<<2;k=F[i+80>>2];s:{if((L(q,k)|0)!=(e|0)){break s}i=F[c+28>>2];t:{if(!p){break t}a=ka(q);d=a;m=q-4|0;l=(m>>>2|0)+1&7;if(l){e=0;while(1){F[d>>2]=-1073741824;d=d+4|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}if(m>>>0<28){break t}e=(p<<2)+a|0;while(1){F[d+24>>2]=-1073741824;F[d+28>>2]=-1073741824;F[d+16>>2]=-1073741824;F[d+20>>2]=-1073741824;F[d+8>>2]=-1073741824;F[d+12>>2]=-1073741824;F[d>>2]=-1073741824;F[d+4>>2]=-1073741824;d=d+32|0;if((e|0)!=(d|0)){continue}break}}u:{if(!k){b=1;break u}if((i|0)==9){r=F[c+68>>2];l=F[c>>2];i=F[c+48>>2];s=G[c+84|0];m=F[c+44>>2];c=F[c+40>>2];o=c;if(p){e=0;d=0;while(1){h=(e<<2)+f|0;g=F[l>>2];b=ki(c,m,s?d:F[r+(d<<2)>>2],0)+i|0;la(h,la(a,b+g|0,o),q);e=e+p|0;b=1;d=d+1|0;if((k|0)!=(d|0)){continue}break}break u}if(!s){b=1;d=0;if((k|0)!=1){f=k&-2;e=0;while(1){h=F[l>>2];g=d<<2;j=ki(c,m,F[g+r>>2],0)+i|0;h=la(a,h+j|0,o);j=F[l>>2];g=ki(c,m,F[r+(g|4)>>2],0)+i|0;la(h,j+g|0,o);d=d+2|0;e=e+2|0;if((f|0)!=(e|0)){continue}break}}if(!(k&1)){break u}e=F[l>>2];c=ki(c,m,F[r+(d<<2)>>2],0)+i|0;la(a,c+e|0,o);break u}f=k&1;b=1;if((k|0)!=1){k=k&-2;while(1){d=F[l>>2];e=ki(g,h,c,m)+i|0;d=la(a,d+e|0,o);e=F[l>>2];p=ki(c,m,g|1,h)+i|0;la(d,e+p|0,o);g=g+2|0;h=g>>>0<2?h+1|0:h;d=j;e=n+2|0;d=e>>>0<2?d+1|0:d;n=e;j=d;if((e|0)!=(k|0)|d){continue}break}}if(!f){break u}d=F[l>>2];c=ki(g,h,c,m)+i|0;la(a,c+d|0,o);break u}if(!p){d=0;while(1){if(!lb(c,G[c+84|0]?d:F[F[c+68>>2]+(d<<2)>>2],D[c+24|0],a)){break u}d=d+1|0;b=k>>>0<=d>>>0;if((d|0)!=(k|0)){continue}break}break u}e=0;d=0;while(1){if(!lb(c,G[c+84|0]?d:F[F[c+68>>2]+(d<<2)>>2],D[c+24|0],a)){break u}la((e<<2)+f|0,a,q);e=e+p|0;d=d+1|0;b=k>>>0<=d>>>0;if((d|0)!=(k|0)){continue}break}}if(!a){break s}ja(a)}a=b;break;default:break b}}b=a}return b|0}function Pd(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;h=Z-80|0;Z=h;e=F[c+36>>2];F[h+72>>2]=F[c+32>>2];F[h+76>>2]=e;f=F[c+28>>2];e=h- -64|0;F[e>>2]=F[c+24>>2];F[e+4>>2]=f;e=F[c+20>>2];F[h+56>>2]=F[c+16>>2];F[h+60>>2]=e;e=F[c+12>>2];F[h+48>>2]=F[c+8>>2];F[h+52>>2]=e;e=F[c+4>>2];F[h+40>>2]=F[c>>2];F[h+44>>2]=e;jc(a,h+40|0,h+24|0);a:{if(F[a>>2]){break a}if(D[a+15|0]<0){ja(F[a+4>>2])}if(G[h+31|0]!=1){b=ka(32);D[b+20|0]=0;c=G[1446]|G[1447]<<8|(G[1448]<<16|G[1449]<<24);D[b+16|0]=c;D[b+17|0]=c>>>8;D[b+18|0]=c>>>16;D[b+19|0]=c>>>24;c=G[1442]|G[1443]<<8|(G[1444]<<16|G[1445]<<24);d=G[1438]|G[1439]<<8|(G[1440]<<16|G[1441]<<24);D[b+8|0]=d;D[b+9|0]=d>>>8;D[b+10|0]=d>>>16;D[b+11|0]=d>>>24;D[b+12|0]=c;D[b+13|0]=c>>>8;D[b+14|0]=c>>>16;D[b+15|0]=c>>>24;c=G[1434]|G[1435]<<8|(G[1436]<<16|G[1437]<<24);d=G[1430]|G[1431]<<8|(G[1432]<<16|G[1433]<<24);D[b|0]=d;D[b+1|0]=d>>>8;D[b+2|0]=d>>>16;D[b+3|0]=d>>>24;D[b+4|0]=c;D[b+5|0]=c>>>8;D[b+6|0]=c>>>16;D[b+7|0]=c>>>24;F[a>>2]=-1;ra(a+4|0,b,20);ja(b);break a}j=Z-16|0;Z=j;b:{c:{switch(G[h+32|0]){case 0:e=Kd(ka(48));F[e>>2]=9864;F[h+8>>2]=0;F[h+12>>2]=0;F[h>>2]=0;F[h+4>>2]=0;F[h+16>>2]=e;break b;case 1:e=Kd(ka(52));F[e+48>>2]=0;F[e>>2]=8176;F[h+8>>2]=0;F[h+12>>2]=0;F[h>>2]=0;F[h+4>>2]=0;F[h+16>>2]=e;break b;default:break c}}f=ka(32);D[f+28|0]=0;e=G[1520]|G[1521]<<8|(G[1522]<<16|G[1523]<<24);D[f+24|0]=e;D[f+25|0]=e>>>8;D[f+26|0]=e>>>16;D[f+27|0]=e>>>24;e=G[1516]|G[1517]<<8|(G[1518]<<16|G[1519]<<24);g=G[1512]|G[1513]<<8|(G[1514]<<16|G[1515]<<24);D[f+16|0]=g;D[f+17|0]=g>>>8;D[f+18|0]=g>>>16;D[f+19|0]=g>>>24;D[f+20|0]=e;D[f+21|0]=e>>>8;D[f+22|0]=e>>>16;D[f+23|0]=e>>>24;e=G[1508]|G[1509]<<8|(G[1510]<<16|G[1511]<<24);g=G[1504]|G[1505]<<8|(G[1506]<<16|G[1507]<<24);D[f+8|0]=g;D[f+9|0]=g>>>8;D[f+10|0]=g>>>16;D[f+11|0]=g>>>24;D[f+12|0]=e;D[f+13|0]=e>>>8;D[f+14|0]=e>>>16;D[f+15|0]=e>>>24;e=G[1500]|G[1501]<<8|(G[1502]<<16|G[1503]<<24);g=G[1496]|G[1497]<<8|(G[1498]<<16|G[1499]<<24);D[f|0]=g;D[f+1|0]=g>>>8;D[f+2|0]=g>>>16;D[f+3|0]=g>>>24;D[f+4|0]=e;D[f+5|0]=e>>>8;D[f+6|0]=e>>>16;D[f+7|0]=e>>>24;F[j>>2]=-1;e=j|4;ra(e,f,28);k=D[j+15|0];F[h>>2]=F[j>>2];g=h+4|0;d:{if((k|0)>=0){k=F[e+4>>2];F[g>>2]=F[e>>2];F[g+4>>2]=k;F[g+8>>2]=F[e+8>>2];F[h+16>>2]=0;break d}ra(g,F[j+4>>2],F[j+8>>2]);e=D[j+15|0];F[h+16>>2]=0;if((e|0)>=0){break d}ja(F[j+4>>2])}ja(f)}Z=j+16|0;e=F[h>>2];e:{if(e){F[a>>2]=e;a=a+4|0;if(D[h+15|0]>=0){b=h|4;c=F[b+4>>2];F[a>>2]=F[b>>2];F[a+4>>2]=c;F[a+8>>2]=F[b+8>>2];break e}ra(a,F[h+4>>2],F[h+8>>2]);break e}e=F[h+16>>2];F[h+16>>2]=0;F[e+44>>2]=d;f=Z-32|0;Z=f;F[e+32>>2]=c;F[e+40>>2]=b;F[e+4>>2]=d;jc(a,c,f+16|0);f:{if(F[a>>2]){break f}if(D[a+15|0]<0){ja(F[a+4>>2])}b=G[f+23|0];if(($[F[F[e>>2]+8>>2]](e)|0)!=(b|0)){b=ka(64);D[b+50|0]=0;c=G[1304]|G[1305]<<8;D[b+48|0]=c;D[b+49|0]=c>>>8;c=G[1300]|G[1301]<<8|(G[1302]<<16|G[1303]<<24);d=G[1296]|G[1297]<<8|(G[1298]<<16|G[1299]<<24);D[b+40|0]=d;D[b+41|0]=d>>>8;D[b+42|0]=d>>>16;D[b+43|0]=d>>>24;D[b+44|0]=c;D[b+45|0]=c>>>8;D[b+46|0]=c>>>16;D[b+47|0]=c>>>24;c=G[1292]|G[1293]<<8|(G[1294]<<16|G[1295]<<24);d=G[1288]|G[1289]<<8|(G[1290]<<16|G[1291]<<24);D[b+32|0]=d;D[b+33|0]=d>>>8;D[b+34|0]=d>>>16;D[b+35|0]=d>>>24;D[b+36|0]=c;D[b+37|0]=c>>>8;D[b+38|0]=c>>>16;D[b+39|0]=c>>>24;c=G[1284]|G[1285]<<8|(G[1286]<<16|G[1287]<<24);d=G[1280]|G[1281]<<8|(G[1282]<<16|G[1283]<<24);D[b+24|0]=d;D[b+25|0]=d>>>8;D[b+26|0]=d>>>16;D[b+27|0]=d>>>24;D[b+28|0]=c;D[b+29|0]=c>>>8;D[b+30|0]=c>>>16;D[b+31|0]=c>>>24;c=G[1276]|G[1277]<<8|(G[1278]<<16|G[1279]<<24);d=G[1272]|G[1273]<<8|(G[1274]<<16|G[1275]<<24);D[b+16|0]=d;D[b+17|0]=d>>>8;D[b+18|0]=d>>>16;D[b+19|0]=d>>>24;D[b+20|0]=c;D[b+21|0]=c>>>8;D[b+22|0]=c>>>16;D[b+23|0]=c>>>24;c=G[1268]|G[1269]<<8|(G[1270]<<16|G[1271]<<24);d=G[1264]|G[1265]<<8|(G[1266]<<16|G[1267]<<24);D[b+8|0]=d;D[b+9|0]=d>>>8;D[b+10|0]=d>>>16;D[b+11|0]=d>>>24;D[b+12|0]=c;D[b+13|0]=c>>>8;D[b+14|0]=c>>>16;D[b+15|0]=c>>>24;c=G[1260]|G[1261]<<8|(G[1262]<<16|G[1263]<<24);d=G[1256]|G[1257]<<8|(G[1258]<<16|G[1259]<<24);D[b|0]=d;D[b+1|0]=d>>>8;D[b+2|0]=d>>>16;D[b+3|0]=d>>>24;D[b+4|0]=c;D[b+5|0]=c>>>8;D[b+6|0]=c>>>16;D[b+7|0]=c>>>24;F[a>>2]=-1;ra(a+4|0,b,50);ja(b);break f}c=G[f+21|0];D[e+36|0]=c;d=G[f+22|0];D[e+37|0]=d;if((c|0)!=2){b=ka(32);D[b+26|0]=0;c=G[1427]|G[1428]<<8;D[b+24|0]=c;D[b+25|0]=c>>>8;c=G[1423]|G[1424]<<8|(G[1425]<<16|G[1426]<<24);d=G[1419]|G[1420]<<8|(G[1421]<<16|G[1422]<<24);D[b+16|0]=d;D[b+17|0]=d>>>8;D[b+18|0]=d>>>16;D[b+19|0]=d>>>24;D[b+20|0]=c;D[b+21|0]=c>>>8;D[b+22|0]=c>>>16;D[b+23|0]=c>>>24;c=G[1415]|G[1416]<<8|(G[1417]<<16|G[1418]<<24);d=G[1411]|G[1412]<<8|(G[1413]<<16|G[1414]<<24);D[b+8|0]=d;D[b+9|0]=d>>>8;D[b+10|0]=d>>>16;D[b+11|0]=d>>>24;D[b+12|0]=c;D[b+13|0]=c>>>8;D[b+14|0]=c>>>16;D[b+15|0]=c>>>24;c=G[1407]|G[1408]<<8|(G[1409]<<16|G[1410]<<24);d=G[1403]|G[1404]<<8|(G[1405]<<16|G[1406]<<24);D[b|0]=d;D[b+1|0]=d>>>8;D[b+2|0]=d>>>16;D[b+3|0]=d>>>24;D[b+4|0]=c;D[b+5|0]=c>>>8;D[b+6|0]=c>>>16;D[b+7|0]=c>>>24;F[a>>2]=-5;ra(a+4|0,b,26);ja(b);break f}b=b?2:3;if((b|0)!=(d|0)){b=ka(32);D[b+26|0]=0;c=G[1400]|G[1401]<<8;D[b+24|0]=c;D[b+25|0]=c>>>8;c=G[1396]|G[1397]<<8|(G[1398]<<16|G[1399]<<24);d=G[1392]|G[1393]<<8|(G[1394]<<16|G[1395]<<24);D[b+16|0]=d;D[b+17|0]=d>>>8;D[b+18|0]=d>>>16;D[b+19|0]=d>>>24;D[b+20|0]=c;D[b+21|0]=c>>>8;D[b+22|0]=c>>>16;D[b+23|0]=c>>>24;c=G[1388]|G[1389]<<8|(G[1390]<<16|G[1391]<<24);d=G[1384]|G[1385]<<8|(G[1386]<<16|G[1387]<<24);D[b+8|0]=d;D[b+9|0]=d>>>8;D[b+10|0]=d>>>16;D[b+11|0]=d>>>24;D[b+12|0]=c;D[b+13|0]=c>>>8;D[b+14|0]=c>>>16;D[b+15|0]=c>>>24;c=G[1380]|G[1381]<<8|(G[1382]<<16|G[1383]<<24);d=G[1376]|G[1377]<<8|(G[1378]<<16|G[1379]<<24);D[b|0]=d;D[b+1|0]=d>>>8;D[b+2|0]=d>>>16;D[b+3|0]=d>>>24;D[b+4|0]=c;D[b+5|0]=c>>>8;D[b+6|0]=c>>>16;D[b+7|0]=c>>>24;F[a>>2]=-5;ra(a+4|0,b,26);ja(b);break f}E[F[e+32>>2]+38>>1]=b|512;g:{if(E[f+26>>1]>=0){break g}j=Z-16|0;Z=j;d=ka(36);b=d;F[b+4>>2]=0;F[b+8>>2]=0;F[b+24>>2]=0;F[b+28>>2]=0;b=b+16|0;F[b>>2]=0;F[b+4>>2]=0;F[d>>2]=d+4;F[d+32>>2]=0;F[d+12>>2]=b;F[j>>2]=0;c=F[e+32>>2];k=Z-16|0;Z=k;b=0;h:{if(!d){break h}F[j>>2]=c;F[k+12>>2]=0;b=0;if(!fb(1,k+12|0,c)){break h}n=F[k+12>>2];if(n){while(1){i:{if(fb(1,k+8|0,F[j>>2])){b=ka(28);F[b+4>>2]=0;F[b+8>>2]=0;c=b+16|0;F[c>>2]=0;F[c+4>>2]=0;F[b>>2]=b+4;F[b+12>>2]=c;F[b+24>>2]=F[k+8>>2];if(Vc(j,b)){break i}Ca(b+12|0,F[b+16>>2]);Ba(b,F[b+4>>2]);ja(b)}b=0;break h}g=Z-16|0;Z=g;F[g+8>>2]=b;j:{if(!b){break j}c=F[d+28>>2];k:{if(c>>>0>2]){F[g+8>>2]=0;F[c>>2]=b;F[d+28>>2]=c+4;break k}c=0;l:{m:{n:{i=F[d+24>>2];m=F[d+28>>2]-i>>2;b=m+1|0;if(b>>>0<1073741824){i=F[d+32>>2]-i|0;l=i>>>1|0;i=i>>>0>=2147483644?1073741823:b>>>0>>0?l:b;if(i){if(i>>>0>=1073741824){break n}c=ka(i<<2)}l=F[g+8>>2];F[g+8>>2]=0;b=(m<<2)+c|0;F[b>>2]=l;i=(i<<2)+c|0;m=b+4|0;c=F[d+28>>2];l=F[d+24>>2];if((c|0)==(l|0)){break m}while(1){c=c-4|0;p=F[c>>2];F[c>>2]=0;b=b-4|0;F[b>>2]=p;if((c|0)!=(l|0)){continue}break}F[d+32>>2]=i;i=F[d+28>>2];F[d+28>>2]=m;c=F[d+24>>2];F[d+24>>2]=b;if((c|0)==(i|0)){break l}while(1){i=i-4|0;b=F[i>>2];F[i>>2]=0;if(b){Ca(b+12|0,F[b+16>>2]);Ba(b,F[b+4>>2]);ja(b)}if((c|0)!=(i|0)){continue}break}break l}na();v()}oa();v()}F[d+32>>2]=i;F[d+28>>2]=m;F[d+24>>2]=b}if(c){ja(c)}}b=F[g+8>>2];F[g+8>>2]=0;if(!b){break j}Ca(b+12|0,F[b+16>>2]);Ba(b,F[b+4>>2]);ja(b)}Z=g+16|0;o=o+1|0;if((n|0)!=(o|0)){continue}break}}b=Vc(j,d)}Z=k+16|0;o:{if(b){c=F[e+4>>2];b=F[c+4>>2];F[c+4>>2]=d;if(b){ic(b)}F[a>>2]=0;F[a+4>>2]=0;F[a+8>>2]=0;F[a+12>>2]=0;break o}b=ka(32);D[b+26|0]=0;c=G[1549]|G[1550]<<8;D[b+24|0]=c;D[b+25|0]=c>>>8;c=G[1545]|G[1546]<<8|(G[1547]<<16|G[1548]<<24);g=G[1541]|G[1542]<<8|(G[1543]<<16|G[1544]<<24);D[b+16|0]=g;D[b+17|0]=g>>>8;D[b+18|0]=g>>>16;D[b+19|0]=g>>>24;D[b+20|0]=c;D[b+21|0]=c>>>8;D[b+22|0]=c>>>16;D[b+23|0]=c>>>24;c=G[1537]|G[1538]<<8|(G[1539]<<16|G[1540]<<24);g=G[1533]|G[1534]<<8|(G[1535]<<16|G[1536]<<24);D[b+8|0]=g;D[b+9|0]=g>>>8;D[b+10|0]=g>>>16;D[b+11|0]=g>>>24;D[b+12|0]=c;D[b+13|0]=c>>>8;D[b+14|0]=c>>>16;D[b+15|0]=c>>>24;c=G[1529]|G[1530]<<8|(G[1531]<<16|G[1532]<<24);g=G[1525]|G[1526]<<8|(G[1527]<<16|G[1528]<<24);D[b|0]=g;D[b+1|0]=g>>>8;D[b+2|0]=g>>>16;D[b+3|0]=g>>>24;D[b+4|0]=c;D[b+5|0]=c>>>8;D[b+6|0]=c>>>16;D[b+7|0]=c>>>24;F[a>>2]=-1;ra(a+4|0,b,26);ja(b);F[j+8>>2]=0;ic(d)}Z=j+16|0;if(F[a>>2]){break f}if(D[a+15|0]>=0){break g}ja(F[a+4>>2])}if(!($[F[F[e>>2]+12>>2]](e)|0)){b=ka(48);D[b+33|0]=0;D[b+32|0]=G[1374];c=G[1370]|G[1371]<<8|(G[1372]<<16|G[1373]<<24);d=G[1366]|G[1367]<<8|(G[1368]<<16|G[1369]<<24);D[b+24|0]=d;D[b+25|0]=d>>>8;D[b+26|0]=d>>>16;D[b+27|0]=d>>>24;D[b+28|0]=c;D[b+29|0]=c>>>8;D[b+30|0]=c>>>16;D[b+31|0]=c>>>24;c=G[1362]|G[1363]<<8|(G[1364]<<16|G[1365]<<24);d=G[1358]|G[1359]<<8|(G[1360]<<16|G[1361]<<24);D[b+16|0]=d;D[b+17|0]=d>>>8;D[b+18|0]=d>>>16;D[b+19|0]=d>>>24;D[b+20|0]=c;D[b+21|0]=c>>>8;D[b+22|0]=c>>>16;D[b+23|0]=c>>>24;c=G[1354]|G[1355]<<8|(G[1356]<<16|G[1357]<<24);d=G[1350]|G[1351]<<8|(G[1352]<<16|G[1353]<<24);D[b+8|0]=d;D[b+9|0]=d>>>8;D[b+10|0]=d>>>16;D[b+11|0]=d>>>24;D[b+12|0]=c;D[b+13|0]=c>>>8;D[b+14|0]=c>>>16;D[b+15|0]=c>>>24;c=G[1346]|G[1347]<<8|(G[1348]<<16|G[1349]<<24);d=G[1342]|G[1343]<<8|(G[1344]<<16|G[1345]<<24);D[b|0]=d;D[b+1|0]=d>>>8;D[b+2|0]=d>>>16;D[b+3|0]=d>>>24;D[b+4|0]=c;D[b+5|0]=c>>>8;D[b+6|0]=c>>>16;D[b+7|0]=c>>>24;F[a>>2]=-1;ra(a+4|0,b,33);ja(b);break f}if(!($[F[F[e>>2]+20>>2]](e)|0)){b=Eb(f,1552);F[a>>2]=-1;c=a+4|0;if(D[b+11|0]>=0){d=F[b+4>>2];F[c>>2]=F[b>>2];F[c+4>>2]=d;F[c+8>>2]=F[b+8>>2];break f}ra(c,F[b>>2],F[b+4>>2]);if(D[b+11|0]>=0){break f}ja(F[b>>2]);break f}if(!($[F[F[e>>2]+24>>2]](e)|0)){b=Eb(f,1307);F[a>>2]=-1;c=a+4|0;if(D[b+11|0]>=0){d=F[b+4>>2];F[c>>2]=F[b>>2];F[c+4>>2]=d;F[c+8>>2]=F[b+8>>2];break f}ra(c,F[b>>2],F[b+4>>2]);if(D[b+11|0]>=0){break f}ja(F[b>>2]);break f}F[a>>2]=0;F[a+4>>2]=0;F[a+8>>2]=0;F[a+12>>2]=0}Z=f+32|0;if(!F[a>>2]){if(D[a+15|0]<0){ja(F[a+4>>2])}F[a>>2]=0;F[a+4>>2]=0;F[a+8>>2]=0;F[a+12>>2]=0}$[F[F[e>>2]+4>>2]](e)}a=F[h+16>>2];F[h+16>>2]=0;if(a){$[F[F[a>>2]+4>>2]](a)}if(D[h+15|0]>=0){break a}ja(F[h+4>>2])}Z=h+80|0}function Ub(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;l=Z-16|0;Z=l;a:{b:{c:{d:{e:{f:{g:{h:{i:{if(a>>>0<=244){g=F[2941];h=a>>>0<11?16:a+11&-8;c=h>>>3|0;b=g>>>c|0;if(b&3){c=c+((b^-1)&1)|0;a=c<<3;b=a+11804|0;d=F[a+11812>>2];a=F[d+8>>2];j:{if((b|0)==(a|0)){m=11764,n=oi(c)&g,F[m>>2]=n;break j}F[a+12>>2]=b;F[b+8>>2]=a}a=d+8|0;b=c<<3;F[d+4>>2]=b|3;b=b+d|0;F[b+4>>2]=F[b+4>>2]|1;break a}k=F[2943];if(k>>>0>=h>>>0){break i}if(b){a=2<>2];a=F[e+8>>2];k:{if((b|0)==(a|0)){g=oi(d)&g;F[2941]=g;break k}F[a+12>>2]=b;F[b+8>>2]=a}F[e+4>>2]=h|3;c=e+h|0;a=d<<3;d=a-h|0;F[c+4>>2]=d|1;F[a+e>>2]=d;if(k){b=(k&-8)+11804|0;f=F[2946];a=1<<(k>>>3);l:{if(!(a&g)){F[2941]=a|g;a=b;break l}a=F[b+8>>2]}F[b+8>>2]=f;F[a+12>>2]=f;F[f+12>>2]=b;F[f+8>>2]=a}a=e+8|0;F[2946]=c;F[2943]=d;break a}j=F[2942];if(!j){break i}c=F[(ji(0-j&j)<<2)+12068>>2];f=(F[c+4>>2]&-8)-h|0;b=c;while(1){m:{a=F[b+16>>2];if(!a){a=F[b+20>>2];if(!a){break m}}b=(F[a+4>>2]&-8)-h|0;d=b>>>0>>0;f=d?b:f;c=d?a:c;b=a;continue}break}i=F[c+24>>2];d=F[c+12>>2];if((d|0)!=(c|0)){a=F[c+8>>2];F[a+12>>2]=d;F[d+8>>2]=a;break b}b=c+20|0;a=F[b>>2];if(!a){a=F[c+16>>2];if(!a){break h}b=c+16|0}while(1){e=b;d=a;b=a+20|0;a=F[b>>2];if(a){continue}b=d+16|0;a=F[d+16>>2];if(a){continue}break}F[e>>2]=0;break b}h=-1;if(a>>>0>4294967231){break i}a=a+11|0;h=a&-8;j=F[2942];if(!j){break i}f=0-h|0;g=0;n:{if(h>>>0<256){break n}g=31;if(h>>>0>16777215){break n}a=O(a>>>8|0);g=((h>>>38-a&1)-(a<<1)|0)+62|0}b=F[(g<<2)+12068>>2];o:{p:{q:{if(!b){a=0;break q}a=0;c=h<<((g|0)!=31?25-(g>>>1|0)|0:0);while(1){r:{e=(F[b+4>>2]&-8)-h|0;if(e>>>0>=f>>>0){break r}d=b;f=e;if(e){break r}f=0;a=b;break p}e=F[b+20>>2];b=F[((c>>>29&4)+b|0)+16>>2];a=e?(e|0)==(b|0)?a:e:a;c=c<<1;if(b){continue}break}}if(!(a|d)){d=0;a=2<>2]}if(!a){break o}}while(1){b=(F[a+4>>2]&-8)-h|0;c=b>>>0>>0;f=c?b:f;d=c?a:d;b=F[a+16>>2];if(b){a=b}else{a=F[a+20>>2]}if(a){continue}break}}if(!d|F[2943]-h>>>0<=f>>>0){break i}g=F[d+24>>2];c=F[d+12>>2];if((d|0)!=(c|0)){a=F[d+8>>2];F[a+12>>2]=c;F[c+8>>2]=a;break c}b=d+20|0;a=F[b>>2];if(!a){a=F[d+16>>2];if(!a){break g}b=d+16|0}while(1){e=b;c=a;b=a+20|0;a=F[b>>2];if(a){continue}b=c+16|0;a=F[c+16>>2];if(a){continue}break}F[e>>2]=0;break c}a=F[2943];if(a>>>0>=h>>>0){d=F[2946];b=a-h|0;s:{if(b>>>0>=16){c=d+h|0;F[c+4>>2]=b|1;F[a+d>>2]=b;F[d+4>>2]=h|3;break s}F[d+4>>2]=a|3;a=a+d|0;F[a+4>>2]=F[a+4>>2]|1;c=0;b=0}F[2943]=b;F[2946]=c;a=d+8|0;break a}i=F[2944];if(i>>>0>h>>>0){b=i-h|0;F[2944]=b;c=F[2947];a=c+h|0;F[2947]=a;F[a+4>>2]=b|1;F[c+4>>2]=h|3;a=c+8|0;break a}a=0;j=h+47|0;if(F[3059]){c=F[3061]}else{F[3062]=-1;F[3063]=-1;F[3060]=4096;F[3061]=4096;F[3059]=l+12&-16^1431655768;F[3064]=0;F[3052]=0;c=4096}e=j+c|0;f=0-c|0;b=e&f;if(b>>>0<=h>>>0){break a}d=F[3051];if(d){c=F[3049];g=c+b|0;if(d>>>0>>0|c>>>0>=g>>>0){break a}}t:{if(!(G[12208]&4)){u:{v:{w:{x:{d=F[2947];if(d){a=12212;while(1){c=F[a>>2];if(c>>>0<=d>>>0&d>>>0>2]>>>0){break x}a=F[a+8>>2];if(a){continue}break}}c=eb(0);if((c|0)==-1){break u}g=b;d=F[3060];a=d-1|0;if(a&c){g=(b-c|0)+(a+c&0-d)|0}if(g>>>0<=h>>>0){break u}d=F[3051];if(d){a=F[3049];f=a+g|0;if(d>>>0>>0|a>>>0>=f>>>0){break u}}a=eb(g);if((c|0)!=(a|0)){break w}break t}g=f&e-i;c=eb(g);if((c|0)==(F[a>>2]+F[a+4>>2]|0)){break v}a=c}if((a|0)==-1){break u}if(h+48>>>0<=g>>>0){c=a;break t}c=F[3061];c=c+(j-g|0)&0-c;if((eb(c)|0)==-1){break u}g=c+g|0;c=a;break t}if((c|0)!=-1){break t}}F[3052]=F[3052]|4}c=eb(b);a=eb(0);if((c|0)==-1|(a|0)==-1|a>>>0<=c>>>0){break d}g=a-c|0;if(g>>>0<=h+40>>>0){break d}}a=F[3049]+g|0;F[3049]=a;if(a>>>0>I[3050]){F[3050]=a}y:{e=F[2947];if(e){a=12212;while(1){d=F[a>>2];b=F[a+4>>2];if((d+b|0)==(c|0)){break y}a=F[a+8>>2];if(a){continue}break}break f}a=F[2945];if(!(a>>>0<=c>>>0?a:0)){F[2945]=c}a=0;F[3054]=g;F[3053]=c;F[2949]=-1;F[2950]=F[3059];F[3056]=0;while(1){d=a<<3;b=d+11804|0;F[d+11812>>2]=b;F[d+11816>>2]=b;a=a+1|0;if((a|0)!=32){continue}break}d=g-40|0;a=c+8&7?-8-c&7:0;b=d-a|0;F[2944]=b;a=a+c|0;F[2947]=a;F[a+4>>2]=b|1;F[(c+d|0)+4>>2]=40;F[2948]=F[3063];break e}if(G[a+12|0]&8|d>>>0>e>>>0|c>>>0<=e>>>0){break f}F[a+4>>2]=b+g;a=e+8&7?-8-e&7:0;c=a+e|0;F[2947]=c;b=F[2944]+g|0;a=b-a|0;F[2944]=a;F[c+4>>2]=a|1;F[(b+e|0)+4>>2]=40;F[2948]=F[3063];break e}d=0;break b}c=0;break c}if(I[2945]>c>>>0){F[2945]=c}b=c+g|0;a=12212;z:{A:{B:{C:{D:{E:{while(1){if((b|0)!=F[a>>2]){a=F[a+8>>2];if(a){continue}break E}break}if(!(G[a+12|0]&8)){break D}}a=12212;while(1){b=F[a>>2];if(b>>>0<=e>>>0){f=b+F[a+4>>2]|0;if(f>>>0>e>>>0){break C}}a=F[a+8>>2];continue}}F[a>>2]=c;F[a+4>>2]=F[a+4>>2]+g;j=(c+8&7?-8-c&7:0)+c|0;F[j+4>>2]=h|3;g=b+(b+8&7?-8-b&7:0)|0;i=h+j|0;a=g-i|0;if((e|0)==(g|0)){F[2947]=i;a=F[2944]+a|0;F[2944]=a;F[i+4>>2]=a|1;break A}if(F[2946]==(g|0)){F[2946]=i;a=F[2943]+a|0;F[2943]=a;F[i+4>>2]=a|1;F[a+i>>2]=a;break A}f=F[g+4>>2];if((f&3)==1){e=f&-8;F:{if(f>>>0<=255){d=F[g+8>>2];b=f>>>3|0;c=F[g+12>>2];if((c|0)==(d|0)){m=11764,n=F[2941]&oi(b),F[m>>2]=n;break F}F[d+12>>2]=c;F[c+8>>2]=d;break F}h=F[g+24>>2];c=F[g+12>>2];G:{if((g|0)!=(c|0)){b=F[g+8>>2];F[b+12>>2]=c;F[c+8>>2]=b;break G}H:{f=g+20|0;b=F[f>>2];if(b){break H}f=g+16|0;b=F[f>>2];if(b){break H}c=0;break G}while(1){d=f;c=b;f=c+20|0;b=F[f>>2];if(b){continue}f=c+16|0;b=F[c+16>>2];if(b){continue}break}F[d>>2]=0}if(!h){break F}d=F[g+28>>2];b=(d<<2)+12068|0;I:{if(F[b>>2]==(g|0)){F[b>>2]=c;if(c){break I}m=11768,n=F[2942]&oi(d),F[m>>2]=n;break F}F[h+(F[h+16>>2]==(g|0)?16:20)>>2]=c;if(!c){break F}}F[c+24>>2]=h;b=F[g+16>>2];if(b){F[c+16>>2]=b;F[b+24>>2]=c}b=F[g+20>>2];if(!b){break F}F[c+20>>2]=b;F[b+24>>2]=c}g=e+g|0;f=F[g+4>>2];a=a+e|0}F[g+4>>2]=f&-2;F[i+4>>2]=a|1;F[a+i>>2]=a;if(a>>>0<=255){b=(a&-8)+11804|0;c=F[2941];a=1<<(a>>>3);J:{if(!(c&a)){F[2941]=a|c;a=b;break J}a=F[b+8>>2]}F[b+8>>2]=i;F[a+12>>2]=i;F[i+12>>2]=b;F[i+8>>2]=a;break A}f=31;if(a>>>0<=16777215){b=O(a>>>8|0);f=((a>>>38-b&1)-(b<<1)|0)+62|0}F[i+28>>2]=f;F[i+16>>2]=0;F[i+20>>2]=0;b=(f<<2)+12068|0;d=F[2942];c=1<>2]=i;break K}f=a<<((f|0)!=31?25-(f>>>1|0)|0:0);c=F[b>>2];while(1){b=c;if((F[c+4>>2]&-8)==(a|0)){break B}c=f>>>29|0;f=f<<1;d=(c&4)+b|0;c=F[d+16>>2];if(c){continue}break}F[d+16>>2]=i}F[i+24>>2]=b;F[i+12>>2]=i;F[i+8>>2]=i;break A}d=g-40|0;a=c+8&7?-8-c&7:0;b=d-a|0;F[2944]=b;a=a+c|0;F[2947]=a;F[a+4>>2]=b|1;F[(c+d|0)+4>>2]=40;F[2948]=F[3063];a=(f+(f-39&7?39-f&7:0)|0)-47|0;d=a>>>0>>0?e:a;F[d+4>>2]=27;a=F[3056];F[d+16>>2]=F[3055];F[d+20>>2]=a;a=F[3054];F[d+8>>2]=F[3053];F[d+12>>2]=a;F[3055]=d+8;F[3054]=g;F[3053]=c;F[3056]=0;a=d+24|0;while(1){F[a+4>>2]=7;b=a+8|0;a=a+4|0;if(b>>>0>>0){continue}break}if((d|0)==(e|0)){break e}F[d+4>>2]=F[d+4>>2]&-2;f=d-e|0;F[e+4>>2]=f|1;F[d>>2]=f;if(f>>>0<=255){b=(f&-8)+11804|0;c=F[2941];a=1<<(f>>>3);L:{if(!(c&a)){F[2941]=a|c;a=b;break L}a=F[b+8>>2]}F[b+8>>2]=e;F[a+12>>2]=e;F[e+12>>2]=b;F[e+8>>2]=a;break e}a=31;if(f>>>0<=16777215){a=O(f>>>8|0);a=((f>>>38-a&1)-(a<<1)|0)+62|0}F[e+28>>2]=a;F[e+16>>2]=0;F[e+20>>2]=0;b=(a<<2)+12068|0;d=F[2942];c=1<>2]=e;break M}a=f<<((a|0)!=31?25-(a>>>1|0)|0:0);d=F[b>>2];while(1){b=d;if((f|0)==(F[b+4>>2]&-8)){break z}c=a>>>29|0;a=a<<1;c=(c&4)+b|0;d=F[c+16>>2];if(d){continue}break}F[c+16>>2]=e}F[e+24>>2]=b;F[e+12>>2]=e;F[e+8>>2]=e;break e}a=F[b+8>>2];F[a+12>>2]=i;F[b+8>>2]=i;F[i+24>>2]=0;F[i+12>>2]=b;F[i+8>>2]=a}a=j+8|0;break a}a=F[b+8>>2];F[a+12>>2]=e;F[b+8>>2]=e;F[e+24>>2]=0;F[e+12>>2]=b;F[e+8>>2]=a}a=F[2944];if(a>>>0<=h>>>0){break d}b=a-h|0;F[2944]=b;c=F[2947];a=c+h|0;F[2947]=a;F[a+4>>2]=b|1;F[c+4>>2]=h|3;a=c+8|0;break a}F[2940]=48;a=0;break a}N:{if(!g){break N}b=F[d+28>>2];a=(b<<2)+12068|0;O:{if(F[a>>2]==(d|0)){F[a>>2]=c;if(c){break O}j=oi(b)&j;F[2942]=j;break N}F[g+(F[g+16>>2]==(d|0)?16:20)>>2]=c;if(!c){break N}}F[c+24>>2]=g;a=F[d+16>>2];if(a){F[c+16>>2]=a;F[a+24>>2]=c}a=F[d+20>>2];if(!a){break N}F[c+20>>2]=a;F[a+24>>2]=c}P:{if(f>>>0<=15){a=f+h|0;F[d+4>>2]=a|3;a=a+d|0;F[a+4>>2]=F[a+4>>2]|1;break P}F[d+4>>2]=h|3;e=d+h|0;F[e+4>>2]=f|1;F[e+f>>2]=f;if(f>>>0<=255){b=(f&-8)+11804|0;c=F[2941];a=1<<(f>>>3);Q:{if(!(c&a)){F[2941]=a|c;a=b;break Q}a=F[b+8>>2]}F[b+8>>2]=e;F[a+12>>2]=e;F[e+12>>2]=b;F[e+8>>2]=a;break P}a=31;if(f>>>0<=16777215){a=O(f>>>8|0);a=((f>>>38-a&1)-(a<<1)|0)+62|0}F[e+28>>2]=a;F[e+16>>2]=0;F[e+20>>2]=0;b=(a<<2)+12068|0;R:{c=1<>2]=e;break S}a=f<<((a|0)!=31?25-(a>>>1|0)|0:0);h=F[b>>2];while(1){b=h;if((F[b+4>>2]&-8)==(f|0)){break R}c=a>>>29|0;a=a<<1;c=(c&4)+b|0;h=F[c+16>>2];if(h){continue}break}F[c+16>>2]=e}F[e+24>>2]=b;F[e+12>>2]=e;F[e+8>>2]=e;break P}a=F[b+8>>2];F[a+12>>2]=e;F[b+8>>2]=e;F[e+24>>2]=0;F[e+12>>2]=b;F[e+8>>2]=a}a=d+8|0;break a}T:{if(!i){break T}b=F[c+28>>2];a=(b<<2)+12068|0;U:{if(F[a>>2]==(c|0)){F[a>>2]=d;if(d){break U}m=11768,n=oi(b)&j,F[m>>2]=n;break T}F[i+(F[i+16>>2]==(c|0)?16:20)>>2]=d;if(!d){break T}}F[d+24>>2]=i;a=F[c+16>>2];if(a){F[d+16>>2]=a;F[a+24>>2]=d}a=F[c+20>>2];if(!a){break T}F[d+20>>2]=a;F[a+24>>2]=d}V:{if(f>>>0<=15){a=f+h|0;F[c+4>>2]=a|3;a=a+c|0;F[a+4>>2]=F[a+4>>2]|1;break V}F[c+4>>2]=h|3;d=c+h|0;F[d+4>>2]=f|1;F[d+f>>2]=f;if(k){b=(k&-8)+11804|0;e=F[2946];a=1<<(k>>>3);W:{if(!(a&g)){F[2941]=a|g;a=b;break W}a=F[b+8>>2]}F[b+8>>2]=e;F[a+12>>2]=e;F[e+12>>2]=b;F[e+8>>2]=a}F[2946]=d;F[2943]=f}a=c+8|0}Z=l+16|0;return a|0}function Vc(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0;m=Z-32|0;Z=m;o=ka(12);F[o+8>>2]=0;F[o+4>>2]=b;F[o>>2]=0;s=o+12|0;b=s;a:{b:{c:{while(1){b=b-12|0;w=F[b+8>>2];j=F[b+4>>2];t=F[b>>2];if(t){if((w|0)>1e3){break a}F[m+24>>2]=0;F[m+16>>2]=0;F[m+20>>2]=0;d=1;c=F[a>>2];e=F[c+8>>2];h=F[c+12>>2];g=F[c+20>>2];f=F[c+16>>2];d:{if((h|0)<=(g|0)&f>>>0>=e>>>0|(g|0)>(h|0)){break d}e=G[f+F[c>>2]|0];h=c;c=g;f=f+1|0;c=f?c:c+1|0;F[h+16>>2]=f;F[h+20>>2]=c;Sb(m+16|0,e);if(e){c=F[a>>2];n=Tb(m+16|0);p=F[c+8>>2];g=F[c+12>>2];h=F[c+20>>2];f=F[c+16>>2];k=f+e|0;h=k>>>0>>0?h+1|0:h;if((g|0)<=(h|0)&k>>>0>p>>>0|(g|0)<(h|0)){break d}la(n,f+F[c>>2]|0,e);d=F[c+20>>2];f=e;e=e+F[c+16>>2]|0;d=f>>>0>e>>>0?d+1|0:d;F[c+16>>2]=e;F[c+20>>2]=d}j=ka(24);c=j;F[c+4>>2]=0;F[c+8>>2]=0;c=c+16|0;F[c>>2]=0;F[c+4>>2]=0;F[j>>2]=j+4;F[j+12>>2]=c;e=Z-32|0;Z=e;h=t+12|0;c=m+16|0;u=Ya(h,c);i=t+16|0;e:{if((u|0)==(i|0)){F[e+16>>2]=c;f:{g:{d=F[h+4>>2];h:{if(!d){f=h+4|0;c=f;break h}f=G[c+11|0];g=f<<24>>24<0;n=g?F[c>>2]:c;g=g?F[c+4>>2]:f;while(1){c=d;d=G[c+27|0];f=d<<24>>24<0;d=f?F[c+20>>2]:d;p=d>>>0>>0;i:{j:{k:{l:{k=p?d:g;m:{if(k){f=f?F[c+16>>2]:c+16|0;q=sa(n,f,k);if(!q){if(d>>>0>g>>>0){break m}break l}if((q|0)>=0){break l}break m}if(d>>>0<=g>>>0){break k}}f=c;d=F[c>>2];if(d){continue}break h}d=sa(f,n,k);if(d){break j}}if(p){break i}break g}if((d|0)>=0){break g}}d=F[c+4>>2];if(d){continue}break}f=c+4|0}d=ka(32);n=d+16|0;g=F[e+16>>2];n:{if(D[g+11|0]>=0){p=F[g+4>>2];F[n>>2]=F[g>>2];F[n+4>>2]=p;F[n+8>>2]=F[g+8>>2];break n}ra(n,F[g>>2],F[g+4>>2])}F[d+8>>2]=c;F[d>>2]=0;F[d+4>>2]=0;F[d+28>>2]=0;F[f>>2]=d;c=d;g=F[F[h>>2]>>2];if(g){F[h>>2]=g;c=F[f>>2]}nb(F[h+4>>2],c);F[h+8>>2]=F[h+8>>2]+1;c=1;break f}d=c;c=0}D[e+28|0]=c;F[e+24>>2]=d;d=F[e+24>>2];c=F[d+28>>2];F[d+28>>2]=j;if(!c){break e}Ca(c+12|0,F[c+16>>2]);Ba(c,F[c+4>>2]);ja(c);break e}if(!j){break e}Ca(j+12|0,F[j+16>>2]);Ba(j,F[j+4>>2]);ja(j)}Z=e+32|0;d=(i|0)!=(u|0)}if(D[m+27|0]<0){ja(F[m+16>>2])}if(d){break a}}if(!j){break a}F[m+16>>2]=0;if(!fb(1,m+16|0,F[a>>2])){break a}q=0;x=F[m+16>>2];if(x){while(1){d=0;i=Z-32|0;Z=i;F[i+24>>2]=0;F[i+16>>2]=0;F[i+20>>2]=0;c=F[a>>2];f=F[c+8>>2];o:{p:{h=F[c+12>>2];g=F[c+20>>2];e=F[c+16>>2];q:{if((h|0)<=(g|0)&e>>>0>=f>>>0|(g|0)>(h|0)){break q}f=G[e+F[c>>2]|0];h=c;c=g;e=e+1|0;c=e?c:c+1|0;F[h+16>>2]=e;F[h+20>>2]=c;Sb(i+16|0,f);if(f){e=F[a>>2];n=Tb(i+16|0);p=F[e+8>>2];g=F[e+12>>2];c=F[e+20>>2];h=F[e+16>>2];k=h+f|0;c=k>>>0>>0?c+1|0:c;if(k>>>0>p>>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break q}la(n,h+F[e>>2]|0,f);c=F[e+20>>2];g=f;f=f+F[e+16>>2]|0;c=g>>>0>f>>>0?c+1|0:c;F[e+16>>2]=f;F[e+20>>2]=c}F[i+12>>2]=0;if(!fb(1,i+12|0,F[a>>2])){break q}f=F[i+12>>2];if(!f){break q}e=F[a>>2];c=F[e+8>>2];h=F[e+16>>2];g=c-h|0;c=F[e+12>>2]-(F[e+20>>2]+(c>>>0>>0)|0)|0;if((c|0)<=0&f>>>0>g>>>0|(c|0)<0){break q}F[i+8>>2]=0;F[i>>2]=0;F[i+4>>2]=0;if((f|0)<0){break p}d=ka(f);F[i>>2]=d;c=d+f|0;F[i+8>>2]=c;l=ma(d,0,f);F[i+4>>2]=c;h=F[e+12>>2];y=h;p=F[e+8>>2];c=F[e+20>>2];k=F[e+16>>2];g=f+k|0;c=g>>>0>>0?c+1|0:c;u=g;n=c;r:{if((c|0)<=(h|0)&g>>>0<=p>>>0|(c|0)<(h|0)){la(l,F[e>>2]+k|0,f);d=F[e+20>>2];c=f+F[e+16>>2]|0;d=c>>>0>>0?d+1|0:d;F[e+16>>2]=c;F[e+20>>2]=d;h=Z-48|0;Z=h;e=Ya(j,i+16|0);if((e|0)!=(j+4|0)){c=F[e+4>>2];s:{if(!c){c=e;while(1){d=F[c+8>>2];f=F[d>>2]!=(c|0);c=d;if(f){continue}break}break s}while(1){d=c;c=F[c>>2];if(c){continue}break}}if((e|0)==F[j>>2]){F[j>>2]=d}F[j+8>>2]=F[j+8>>2]-1;f=F[j+4>>2];t:{u:{g=e;d=e;e=F[d>>2];if(e){c=F[g+4>>2];if(!c){break u}while(1){d=c;c=F[c>>2];if(c){continue}break}}e=F[d+4>>2];if(e){break u}e=0;k=1;break t}F[e+8>>2]=F[d+8>>2];k=0}l=F[d+8>>2];c=F[l>>2];v:{if((d|0)==(c|0)){F[l>>2]=e;if((d|0)==(f|0)){c=0;f=e;break v}c=F[l+4>>2];break v}F[l+4>>2]=e}r=!G[d+12|0];if((d|0)!=(g|0)){l=F[g+8>>2];F[d+8>>2]=l;F[l+(((g|0)!=F[F[g+8>>2]>>2])<<2)>>2]=d;l=F[g>>2];F[d>>2]=l;F[l+8>>2]=d;l=F[g+4>>2];F[d+4>>2]=l;if(l){F[l+8>>2]=d}D[d+12|0]=G[g+12|0];f=(f|0)==(g|0)?d:f}w:{if(r|!f){break w}if(k){while(1){e=G[c+12|0];x:{d=F[c+8>>2];if(F[d>>2]!=(c|0)){if(!e){D[c+12|0]=1;D[d+12|0]=0;e=F[d+4>>2];k=F[e>>2];F[d+4>>2]=k;if(k){F[k+8>>2]=d}F[e+8>>2]=F[d+8>>2];k=F[d+8>>2];F[(((d|0)!=F[k>>2])<<2)+k>>2]=e;F[e>>2]=d;F[d+8>>2]=e;d=c;c=F[c>>2];f=(c|0)==(f|0)?d:f;c=F[c+4>>2]}y:{z:{d=F[c>>2];A:{if(!(G[d+12|0]?0:d)){e=F[c+4>>2];if(G[e+12|0]?0:e){break A}D[c+12|0]=0;c=F[c+8>>2];B:{if((f|0)==(c|0)){c=f;break B}if(G[c+12|0]){break x}}D[c+12|0]=1;break w}e=F[c+4>>2];if(!e){break z}}if(G[e+12|0]){break z}d=c;break y}D[d+12|0]=1;D[c+12|0]=0;e=F[d+4>>2];F[c>>2]=e;if(e){F[e+8>>2]=c}F[d+8>>2]=F[c+8>>2];e=F[c+8>>2];F[((F[e>>2]!=(c|0))<<2)+e>>2]=d;F[d+4>>2]=c;F[c+8>>2]=d;e=c}c=F[d+8>>2];D[d+12|0]=G[c+12|0];D[c+12|0]=1;D[e+12|0]=1;d=F[c+4>>2];e=F[d>>2];F[c+4>>2]=e;if(e){F[e+8>>2]=c}F[d+8>>2]=F[c+8>>2];e=F[c+8>>2];F[(((c|0)!=F[e>>2])<<2)+e>>2]=d;F[d>>2]=c;F[c+8>>2]=d;break w}if(!e){D[c+12|0]=1;D[d+12|0]=0;e=F[c+4>>2];F[d>>2]=e;if(e){F[e+8>>2]=d}F[c+8>>2]=F[d+8>>2];e=F[d+8>>2];F[(((d|0)!=F[e>>2])<<2)+e>>2]=c;F[c+4>>2]=d;F[d+8>>2]=c;f=(d|0)==(f|0)?c:f;c=F[d>>2]}e=F[c>>2];C:{if(!(!e|G[e+12|0])){d=c;break C}d=F[c+4>>2];if(!(G[d+12|0]?0:d)){D[c+12|0]=0;c=F[c+8>>2];if((c|0)!=(f|0)?G[c+12|0]:0){break x}D[c+12|0]=1;break w}if(e){if(!G[e+12|0]){d=c;break C}d=F[c+4>>2]}D[d+12|0]=1;D[c+12|0]=0;e=F[d>>2];F[c+4>>2]=e;if(e){F[e+8>>2]=c}F[d+8>>2]=F[c+8>>2];e=F[c+8>>2];F[((F[e>>2]!=(c|0))<<2)+e>>2]=d;F[d>>2]=c;F[c+8>>2]=d;e=c}c=F[d+8>>2];D[d+12|0]=G[c+12|0];D[c+12|0]=1;D[e+12|0]=1;d=F[c>>2];e=F[d+4>>2];F[c>>2]=e;if(e){F[e+8>>2]=c}F[d+8>>2]=F[c+8>>2];e=F[c+8>>2];F[(((c|0)!=F[e>>2])<<2)+e>>2]=d;F[d+4>>2]=c;F[c+8>>2]=d;break w}d=c;c=F[c+8>>2];c=F[(((d|0)==F[c>>2])<<2)+c>>2];continue}}D[e+12|0]=1}c=F[g+28>>2];if(c){F[g+32>>2]=c;ja(c)}if(D[g+27|0]<0){ja(F[g+16>>2])}ja(g)}F[h+8>>2]=0;F[h>>2]=0;F[h+4>>2]=0;c=F[i+4>>2];d=F[i>>2];f=c-d|0;e=0;D:{E:{if((c|0)!=(d|0)){if((f|0)<0){break E}e=ka(f);c=ma(e,0,f);g=c+f|0;F[h+8>>2]=g;F[h+4>>2]=g;F[h>>2]=c;c=d}la(e,c,f);F:{if(D[i+27|0]>=0){F[h+24>>2]=F[i+24>>2];c=F[i+20>>2];F[h+16>>2]=F[i+16>>2];F[h+20>>2]=c;break F}ra(h+16|0,F[i+16>>2],F[i+20>>2])}Tc(h+28|0,h);f=h+16|0;c=f;G:{H:{d=F[j+4>>2];I:{if(!d){e=j+4|0;c=e;break I}e=G[c+11|0];g=e<<24>>24<0;k=g?F[c>>2]:c;g=g?F[c+4>>2]:e;while(1){c=d;d=G[c+27|0];e=d<<24>>24<0;d=e?F[c+20>>2]:d;l=d>>>0>>0;J:{K:{L:{M:{r=l?d:g;N:{if(r){e=e?F[c+16>>2]:c+16|0;z=sa(k,e,r);if(!z){if(d>>>0>g>>>0){break N}break M}if((z|0)>=0){break M}break N}if(d>>>0<=g>>>0){break L}}e=c;d=F[c>>2];if(d){continue}break I}d=sa(e,k,r);if(d){break K}}if(l){break J}break H}if((d|0)>=0){break H}}d=F[c+4>>2];if(d){continue}break}e=c+4|0}d=ka(40);F[d+24>>2]=F[f+8>>2];g=F[f+4>>2];F[d+16>>2]=F[f>>2];F[d+20>>2]=g;F[f>>2]=0;F[f+4>>2]=0;F[f+8>>2]=0;Tc(d+28|0,f+12|0);F[d+8>>2]=c;F[d>>2]=0;F[d+4>>2]=0;F[e>>2]=d;c=d;f=F[F[j>>2]>>2];if(f){F[j>>2]=f;c=F[e>>2]}nb(F[j+4>>2],c);F[j+8>>2]=F[j+8>>2]+1;c=1;break G}d=c;c=0}D[h+44|0]=c;F[h+40>>2]=d;c=F[h+28>>2];if(c){F[h+32>>2]=c;ja(c)}if(D[h+27|0]<0){ja(F[h+16>>2])}c=F[h>>2];if(c){F[h+4>>2]=c;ja(c)}Z=h+48|0;break D}na();v()}d=F[i>>2];if(!d){break r}}F[i+4>>2]=d;ja(d)}d=(n|0)<=(y|0)&p>>>0>=u>>>0|(n|0)<(y|0)}if(D[i+27|0]<0){ja(F[i+16>>2])}Z=i+32|0;break o}na();v()}if(!d){break a}q=q+1|0;if((x|0)!=(q|0)){continue}break}}F[m+12>>2]=0;if(!fb(1,m+12|0,F[a>>2])){break a}c=F[a>>2];e=F[c+8>>2];f=F[c+16>>2];h=e-f|0;d=F[m+12>>2];c=F[c+12>>2]-(F[c+20>>2]+(e>>>0>>0)|0)|0;if(h>>>0>>0&(c|0)<=0|(c|0)<0){break a}if(d){q=0;h=((t|0)!=0)+w|0;while(1){O:{if(b>>>0>>0){F[b+8>>2]=h;F[b+4>>2]=0;F[b>>2]=j;b=b+12|0;d=F[m+12>>2];break O}c=b-o|0;g=(c|0)/12|0;b=g+1|0;if(b>>>0>=357913942){break c}e=(s-o|0)/12|0;f=e<<1;e=e>>>0>=178956970?357913941:b>>>0>>0?f:b;if(e){if(e>>>0>=357913942){break b}f=ka(L(e,12))}else{f=0}b=f+L(g,12)|0;F[b+8>>2]=h;F[b+4>>2]=0;F[b>>2]=j;c=pa(b+L((c|0)/-12|0,12)|0,o,c);s=f+L(e,12)|0;b=b+12|0;if(o){ja(o)}o=c}q=q+1|0;if(q>>>0>>0){continue}break}}if((b|0)!=(o|0)){continue}break}A=1;break a}na();v()}oa();v()}if(o){ja(o)}Z=m+32|0;return A}function me(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;h=Z-48|0;Z=h;a:{if((c|0)!=1){break a}i=F[a+4>>2];c=F[a+12>>2];F[h+40>>2]=0;F[h+32>>2]=0;F[h+36>>2]=0;F[h+24>>2]=0;F[h+28>>2]=0;F[h+16>>2]=0;F[h+20>>2]=0;F[h+8>>2]=0;F[h+12>>2]=0;d=h+8|0;b:{if((b|0)==-2){break b}k=F[F[F[i+4>>2]+8>>2]+(c<<2)>>2];if(($[F[F[i>>2]+8>>2]](i)|0)==1){j=Z-32|0;Z=j;l=F[F[F[i+4>>2]+8>>2]+(c<<2)>>2];c:{d:{e:{if(($[F[F[i>>2]+8>>2]](i)|0)!=1|b-1>>>0>5){break e}g=$[F[F[i>>2]+36>>2]](i)|0;f=$[F[F[i>>2]+44>>2]](i,c)|0;if(!g|!f){break e}c=$[F[F[i>>2]+40>>2]](i,c)|0;if(c){a=F[i+44>>2];F[j+12>>2]=c;F[j+8>>2]=a;F[j+20>>2]=f;F[j+16>>2]=f+12;f=j+8|0;a=0;f:{g:{switch(b-1|0){case 0:b=ka(60);F[b+4>>2]=l;F[b>>2]=2960;a=F[d+4>>2];F[b+8>>2]=F[d>>2];F[b+12>>2]=a;a=F[d+12>>2];F[b+16>>2]=F[d+8>>2];F[b+20>>2]=a;a=F[d+20>>2];F[b+24>>2]=F[d+16>>2];F[b+28>>2]=a;F[b+40>>2]=0;F[b+32>>2]=0;F[b+36>>2]=0;a=F[d+24>>2];g=F[d+28>>2];if((a|0)!=(g|0)){c=g-a|0;if((c|0)<0){break d}e=ka(c);F[b+32>>2]=e;F[b+40>>2]=(c&-4)+e;while(1){F[e>>2]=F[a>>2];e=e+4|0;a=a+4|0;if((g|0)!=(a|0)){continue}break}F[b+36>>2]=e}a=F[f+4>>2];F[b+44>>2]=F[f>>2];F[b+48>>2]=a;a=F[f+12>>2];F[b+52>>2]=F[f+8>>2];F[b+56>>2]=a;F[b>>2]=2252;a=b;break f;case 3:b=ka(112);F[b+4>>2]=l;F[b>>2]=2960;a=F[d+4>>2];F[b+8>>2]=F[d>>2];F[b+12>>2]=a;a=F[d+12>>2];F[b+16>>2]=F[d+8>>2];F[b+20>>2]=a;a=F[d+20>>2];F[b+24>>2]=F[d+16>>2];F[b+28>>2]=a;F[b+40>>2]=0;F[b+32>>2]=0;F[b+36>>2]=0;a=F[d+24>>2];g=F[d+28>>2];if((a|0)!=(g|0)){c=g-a|0;if((c|0)<0){break d}e=ka(c);F[b+32>>2]=e;F[b+40>>2]=(c&-4)+e;while(1){F[e>>2]=F[a>>2];e=e+4|0;a=a+4|0;if((g|0)!=(a|0)){continue}break}F[b+36>>2]=e}a=F[f+4>>2];F[b+44>>2]=F[f>>2];F[b+48>>2]=a;a=F[f+12>>2];F[b+52>>2]=F[f+8>>2];F[b+56>>2]=a;F[b+60>>2]=0;F[b+64>>2]=0;F[b>>2]=3016;F[b+68>>2]=0;F[b+72>>2]=0;F[b+76>>2]=0;F[b+80>>2]=0;F[b+84>>2]=0;F[b+88>>2]=0;F[b+92>>2]=0;F[b+96>>2]=0;F[b+100>>2]=0;F[b+104>>2]=0;F[b+108>>2]=0;a=b;break f;case 4:b=ka(104);F[b+4>>2]=l;F[b>>2]=2960;a=F[d+4>>2];F[b+8>>2]=F[d>>2];F[b+12>>2]=a;a=F[d+12>>2];F[b+16>>2]=F[d+8>>2];F[b+20>>2]=a;a=F[d+20>>2];F[b+24>>2]=F[d+16>>2];F[b+28>>2]=a;F[b+40>>2]=0;F[b+32>>2]=0;F[b+36>>2]=0;a=F[d+24>>2];g=F[d+28>>2];if((a|0)!=(g|0)){c=g-a|0;if((c|0)<0){break d}e=ka(c);F[b+32>>2]=e;F[b+40>>2]=(c&-4)+e;while(1){F[e>>2]=F[a>>2];e=e+4|0;a=a+4|0;if((g|0)!=(a|0)){continue}break}F[b+36>>2]=e}a=F[f+4>>2];F[b+44>>2]=F[f>>2];F[b+48>>2]=a;a=F[f+12>>2];F[b+52>>2]=F[f+8>>2];F[b+56>>2]=a;F[b+84>>2]=0;F[b+76>>2]=0;F[b+80>>2]=0;F[b+60>>2]=0;F[b+64>>2]=0;F[b>>2]=3264;a=F[f+4>>2];F[b+88>>2]=F[f>>2];F[b+92>>2]=a;a=F[f+12>>2];F[b+96>>2]=F[f+8>>2];F[b+100>>2]=a;a=b;break f;case 5:break g;default:break f}}a=ka(128);F[a+4>>2]=l;F[a>>2]=2960;b=F[d+4>>2];F[a+8>>2]=F[d>>2];F[a+12>>2]=b;b=F[d+12>>2];F[a+16>>2]=F[d+8>>2];F[a+20>>2]=b;b=F[d+20>>2];F[a+24>>2]=F[d+16>>2];F[a+28>>2]=b;F[a+40>>2]=0;F[a+32>>2]=0;F[a+36>>2]=0;h:{i:{c=F[d+28>>2];b=F[d+24>>2];if((c|0)!=(b|0)){c=c-b|0;if((c|0)<0){break i}b=ka(c);F[a+36>>2]=b;F[a+32>>2]=b;F[a+40>>2]=(c&-4)+b;e=F[d+24>>2];c=F[d+28>>2];if((e|0)!=(c|0)){while(1){F[b>>2]=F[e>>2];b=b+4|0;e=e+4|0;if((c|0)!=(e|0)){continue}break}}F[a+36>>2]=b}F[a>>2]=2904;b=F[f+4>>2];F[a+44>>2]=F[f>>2];F[a+48>>2]=b;b=F[f+12>>2];F[a+52>>2]=F[f+8>>2];F[a+56>>2]=b;b=a- -64|0;F[b>>2]=0;F[b+4>>2]=0;F[a+60>>2]=4128;F[a>>2]=3500;b=F[f+4>>2];F[a+72>>2]=F[f>>2];F[a+76>>2]=b;b=F[f+12>>2];F[a+80>>2]=F[f+8>>2];F[a+84>>2]=b;F[a+104>>2]=1065353216;F[a+108>>2]=-1;F[a+96>>2]=-1;F[a+100>>2]=-1;F[a+88>>2]=1;F[a+92>>2]=-1;F[a+60>>2]=3736;F[a+112>>2]=0;F[a+116>>2]=0;D[a+117|0]=0;D[a+118|0]=0;D[a+119|0]=0;D[a+120|0]=0;D[a+121|0]=0;D[a+122|0]=0;D[a+123|0]=0;D[a+124|0]=0;break h}na();v()}break f}e=a;break e}a=F[i+44>>2];F[j+12>>2]=g;F[j+8>>2]=a;F[j+20>>2]=f;F[j+16>>2]=f+12;f=j+8|0;a=0;j:{k:{switch(b-1|0){case 0:b=ka(60);F[b+4>>2]=l;F[b>>2]=2960;a=F[d+4>>2];F[b+8>>2]=F[d>>2];F[b+12>>2]=a;a=F[d+12>>2];F[b+16>>2]=F[d+8>>2];F[b+20>>2]=a;a=F[d+20>>2];F[b+24>>2]=F[d+16>>2];F[b+28>>2]=a;F[b+40>>2]=0;F[b+32>>2]=0;F[b+36>>2]=0;a=F[d+24>>2];g=F[d+28>>2];if((a|0)!=(g|0)){c=g-a|0;if((c|0)<0){break d}e=ka(c);F[b+32>>2]=e;F[b+40>>2]=(c&-4)+e;while(1){F[e>>2]=F[a>>2];e=e+4|0;a=a+4|0;if((g|0)!=(a|0)){continue}break}F[b+36>>2]=e}a=F[f+4>>2];F[b+44>>2]=F[f>>2];F[b+48>>2]=a;a=F[f+12>>2];F[b+52>>2]=F[f+8>>2];F[b+56>>2]=a;F[b>>2]=4156;a=b;break j;case 3:b=ka(112);F[b+4>>2]=l;F[b>>2]=2960;a=F[d+4>>2];F[b+8>>2]=F[d>>2];F[b+12>>2]=a;a=F[d+12>>2];F[b+16>>2]=F[d+8>>2];F[b+20>>2]=a;a=F[d+20>>2];F[b+24>>2]=F[d+16>>2];F[b+28>>2]=a;F[b+40>>2]=0;F[b+32>>2]=0;F[b+36>>2]=0;a=F[d+24>>2];g=F[d+28>>2];if((a|0)!=(g|0)){c=g-a|0;if((c|0)<0){break d}e=ka(c);F[b+32>>2]=e;F[b+40>>2]=(c&-4)+e;while(1){F[e>>2]=F[a>>2];e=e+4|0;a=a+4|0;if((g|0)!=(a|0)){continue}break}F[b+36>>2]=e}a=F[f+4>>2];F[b+44>>2]=F[f>>2];F[b+48>>2]=a;a=F[f+12>>2];F[b+52>>2]=F[f+8>>2];F[b+56>>2]=a;F[b+60>>2]=0;F[b+64>>2]=0;F[b>>2]=4580;F[b+68>>2]=0;F[b+72>>2]=0;F[b+76>>2]=0;F[b+80>>2]=0;F[b+84>>2]=0;F[b+88>>2]=0;F[b+92>>2]=0;F[b+96>>2]=0;F[b+100>>2]=0;F[b+104>>2]=0;F[b+108>>2]=0;a=b;break j;case 4:b=ka(104);F[b+4>>2]=l;F[b>>2]=2960;a=F[d+4>>2];F[b+8>>2]=F[d>>2];F[b+12>>2]=a;a=F[d+12>>2];F[b+16>>2]=F[d+8>>2];F[b+20>>2]=a;a=F[d+20>>2];F[b+24>>2]=F[d+16>>2];F[b+28>>2]=a;F[b+40>>2]=0;F[b+32>>2]=0;F[b+36>>2]=0;a=F[d+24>>2];g=F[d+28>>2];if((a|0)!=(g|0)){c=g-a|0;if((c|0)<0){break d}e=ka(c);F[b+32>>2]=e;F[b+40>>2]=(c&-4)+e;while(1){F[e>>2]=F[a>>2];e=e+4|0;a=a+4|0;if((g|0)!=(a|0)){continue}break}F[b+36>>2]=e}a=F[f+4>>2];F[b+44>>2]=F[f>>2];F[b+48>>2]=a;a=F[f+12>>2];F[b+52>>2]=F[f+8>>2];F[b+56>>2]=a;F[b+84>>2]=0;F[b+76>>2]=0;F[b+80>>2]=0;F[b+60>>2]=0;F[b+64>>2]=0;F[b>>2]=4816;a=F[f+4>>2];F[b+88>>2]=F[f>>2];F[b+92>>2]=a;a=F[f+12>>2];F[b+96>>2]=F[f+8>>2];F[b+100>>2]=a;a=b;break j;case 5:break k;default:break j}}a=ka(128);F[a+4>>2]=l;F[a>>2]=2960;b=F[d+4>>2];F[a+8>>2]=F[d>>2];F[a+12>>2]=b;b=F[d+12>>2];F[a+16>>2]=F[d+8>>2];F[a+20>>2]=b;b=F[d+20>>2];F[a+24>>2]=F[d+16>>2];F[a+28>>2]=b;F[a+40>>2]=0;F[a+32>>2]=0;F[a+36>>2]=0;l:{m:{c=F[d+28>>2];b=F[d+24>>2];if((c|0)!=(b|0)){c=c-b|0;if((c|0)<0){break m}b=ka(c);F[a+36>>2]=b;F[a+32>>2]=b;F[a+40>>2]=(c&-4)+b;e=F[d+24>>2];c=F[d+28>>2];if((e|0)!=(c|0)){while(1){F[b>>2]=F[e>>2];b=b+4|0;e=e+4|0;if((c|0)!=(e|0)){continue}break}}F[a+36>>2]=b}F[a>>2]=4524;b=F[f+4>>2];F[a+44>>2]=F[f>>2];F[a+48>>2]=b;b=F[f+12>>2];F[a+52>>2]=F[f+8>>2];F[a+56>>2]=b;b=a- -64|0;F[b>>2]=0;F[b+4>>2]=0;F[a+60>>2]=5624;F[a>>2]=5040;b=F[f+4>>2];F[a+72>>2]=F[f>>2];F[a+76>>2]=b;b=F[f+12>>2];F[a+80>>2]=F[f+8>>2];F[a+84>>2]=b;F[a+104>>2]=1065353216;F[a+108>>2]=-1;F[a+96>>2]=-1;F[a+100>>2]=-1;F[a+88>>2]=1;F[a+92>>2]=-1;F[a+60>>2]=5260;F[a+112>>2]=0;F[a+116>>2]=0;D[a+117|0]=0;D[a+118|0]=0;D[a+119|0]=0;D[a+120|0]=0;D[a+121|0]=0;D[a+122|0]=0;D[a+123|0]=0;D[a+124|0]=0;break l}na();v()}break j}e=a}Z=j+32|0;break c}na();v()}if(e){break b}}e=ka(44);F[e+4>>2]=k;F[e>>2]=2960;a=F[d+4>>2];F[e+8>>2]=F[d>>2];F[e+12>>2]=a;a=F[d+12>>2];F[e+16>>2]=F[d+8>>2];F[e+20>>2]=a;a=F[d+20>>2];F[e+24>>2]=F[d+16>>2];F[e+28>>2]=a;F[e+40>>2]=0;F[e+32>>2]=0;F[e+36>>2]=0;n:{c=F[d+24>>2];b=F[d+28>>2];if((c|0)!=(b|0)){a=b-c|0;if((a|0)<0){break n}k=ka(a);F[e+32>>2]=k;F[e+40>>2]=(a&-4)+k;while(1){F[k>>2]=F[c>>2];k=k+4|0;c=c+4|0;if((b|0)!=(c|0)){continue}break}F[e+36>>2]=k}F[e>>2]=5652;break b}na();v()}k=e;a=F[h+32>>2];if(!a){break a}F[h+36>>2]=a;ja(a)}Z=h+48|0;return k|0}function rf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0;m=Z-16|0;Z=m;F[m+12>>2]=b;b=ka(32);F[m>>2]=b;F[m+4>>2]=24;F[m+8>>2]=-2147483616;c=G[1196]|G[1197]<<8|(G[1198]<<16|G[1199]<<24);d=G[1192]|G[1193]<<8|(G[1194]<<16|G[1195]<<24);D[b+16|0]=d;D[b+17|0]=d>>>8;D[b+18|0]=d>>>16;D[b+19|0]=d>>>24;D[b+20|0]=c;D[b+21|0]=c>>>8;D[b+22|0]=c>>>16;D[b+23|0]=c>>>24;c=G[1188]|G[1189]<<8|(G[1190]<<16|G[1191]<<24);d=G[1184]|G[1185]<<8|(G[1186]<<16|G[1187]<<24);D[b+8|0]=d;D[b+9|0]=d>>>8;D[b+10|0]=d>>>16;D[b+11|0]=d>>>24;D[b+12|0]=c;D[b+13|0]=c>>>8;D[b+14|0]=c>>>16;D[b+15|0]=c>>>24;c=G[1180]|G[1181]<<8|(G[1182]<<16|G[1183]<<24);d=G[1176]|G[1177]<<8|(G[1178]<<16|G[1179]<<24);D[b|0]=d;D[b+1|0]=d>>>8;D[b+2|0]=d>>>16;D[b+3|0]=d>>>24;D[b+4|0]=c;D[b+5|0]=c>>>8;D[b+6|0]=c>>>16;D[b+7|0]=c>>>24;D[b+24|0]=0;l=Z-48|0;Z=l;f=F[m+12>>2];d=a;a=a+16|0;b=F[a>>2];a:{b:{if(!b){break b}c=a;while(1){e=(f|0)>F[b+16>>2];c=e?c:b;b=F[(e?b+4|0:b)>>2];if(b){continue}break}if((a|0)==(c|0)){break b}if((f|0)>=F[c+16>>2]){break a}}F[l+28>>2]=0;F[l+32>>2]=0;y=l+24|0;F[l+24>>2]=y|4;a=l+16|0;F[a>>2]=0;F[a+4>>2]=0;F[l+8>>2]=f;F[l+12>>2]=a;t=l+8|0;a=t;x=Z-16|0;Z=x;u=d+12|0;c=F[u+4>>2];c:{d:{if(!c){o=u+4|0;d=o;break d}a=F[a>>2];while(1){d=c;b=F[c+16>>2];if((b|0)>(a|0)){o=d;c=F[d>>2];if(c){continue}break d}if((a|0)<=(b|0)){g=d;a=0;break c}c=F[d+4>>2];if(c){continue}break}o=d+4|0}g=ka(32);b=F[t>>2];q=g+24|0;a=q;F[a>>2]=0;F[a+4>>2]=0;F[g+16>>2]=b;r=g+20|0;F[r>>2]=a;c=F[t+4>>2];z=t+8|0;if((c|0)!=(z|0)){while(1){p=Z-16|0;Z=p;a=p+8|0;k=c+16|0;e:{f:{g:{h:{i:{j:{k:{f=q;e=r+4|0;l:{if((f|0)==(e|0)){break l}b=G[f+27|0];h=b<<24>>24<0;i=G[k+11|0];n=i<<24>>24;j=(n|0)<0;i=j?F[k+4>>2]:i;b=h?F[f+20>>2]:b;s=i>>>0>b>>>0;w=s?b:i;if(w){j=j?F[k>>2]:k;h=h?F[f+16>>2]:f+16|0;A=sa(j,h,w);if(!A){if(b>>>0>i>>>0){break l}break k}if((A|0)>=0){break k}break l}if(b>>>0<=i>>>0){break j}}h=F[f>>2];m:{a=f;n:{if((a|0)==F[r>>2]){break n}o:{if(!h){b=f;while(1){a=F[b+8>>2];i=F[a>>2]==(b|0);b=a;if(i){continue}break}break o}b=h;while(1){a=b;b=F[b+4>>2];if(b){continue}break}}i=G[k+11|0];s=i<<24>>24;b=(s|0)<0;j=G[a+27|0];n=j<<24>>24<0;p:{i=b?F[k+4>>2]:i;j=n?F[a+20>>2]:j;w=i>>>0>>0?i:j;if(w){b=sa(n?F[a+16>>2]:a+16|0,b?F[k>>2]:k,w);if(b){break p}}if(i>>>0>j>>>0){break n}break m}if((b|0)>=0){break m}}if(!h){F[p+12>>2]=f;a=f;break e}F[p+12>>2]=a;a=a+4|0;break e}b=F[e>>2];if(!b){F[p+12>>2]=e;a=e;break e}h=(s|0)<0?F[k>>2]:k;f=e;while(1){a=b;b=G[b+27|0];e=b<<24>>24<0;b=e?F[a+20>>2]:b;k=b>>>0>>0;q:{r:{s:{t:{n=k?b:i;u:{if(n){e=e?F[a+16>>2]:a+16|0;j=sa(h,e,n);if(!j){if(b>>>0>i>>>0){break u}break t}if((j|0)>=0){break t}break u}if(b>>>0<=i>>>0){break s}}f=a;b=F[a>>2];if(b){continue}break g}b=sa(e,h,n);if(b){break r}}if(k){break q}break g}if((b|0)>=0){break g}}f=a+4|0;b=F[a+4>>2];if(b){continue}break}break g}b=sa(h,j,w);if(b){break i}}if(s){break h}break f}if((b|0)>=0){break f}}h=F[f+4>>2];v:{if(!h){b=f;while(1){a=F[b+8>>2];j=F[a>>2]!=(b|0);b=a;if(j){continue}break}break v}b=h;while(1){a=b;b=F[b>>2];if(b){continue}break}}w:{x:{if((a|0)==(e|0)){break x}j=G[a+27|0];b=j<<24>>24<0;y:{j=b?F[a+20>>2]:j;s=i>>>0>j>>>0?j:i;if(s){b=sa((n|0)<0?F[k>>2]:k,b?F[a+16>>2]:a+16|0,s);if(b){break y}}if(i>>>0>>0){break x}break w}if((b|0)>=0){break w}}if(!h){F[p+12>>2]=f;a=f+4|0;break e}F[p+12>>2]=a;break e}b=F[e>>2];if(!b){F[p+12>>2]=e;a=e;break e}h=(n|0)<0?F[k>>2]:k;f=e;while(1){a=b;b=G[b+27|0];e=b<<24>>24<0;b=e?F[a+20>>2]:b;k=b>>>0>>0;z:{A:{B:{C:{n=k?b:i;D:{if(n){e=e?F[a+16>>2]:a+16|0;j=sa(h,e,n);if(!j){if(b>>>0>i>>>0){break D}break C}if((j|0)>=0){break C}break D}if(b>>>0<=i>>>0){break B}}f=a;b=F[a>>2];if(b){continue}break g}b=sa(e,h,n);if(b){break A}}if(k){break z}break g}if((b|0)>=0){break g}}f=a+4|0;b=F[a+4>>2];if(b){continue}break}}F[p+12>>2]=a;a=f;break e}F[p+12>>2]=f;F[a>>2]=f}f=a;a=F[a>>2];if(a){b=0}else{a=ka(40);b=a+16|0;E:{if(D[c+27|0]>=0){e=F[c+20>>2];F[b>>2]=F[c+16>>2];F[b+4>>2]=e;F[b+8>>2]=F[c+24>>2];break E}ra(b,F[c+16>>2],F[c+20>>2])}b=a+28|0;F:{if(D[c+39|0]>=0){e=F[c+32>>2];F[b>>2]=F[c+28>>2];F[b+4>>2]=e;F[b+8>>2]=F[c+36>>2];break F}ra(b,F[c+28>>2],F[c+32>>2])}F[a+8>>2]=F[p+12>>2];F[a>>2]=0;F[a+4>>2]=0;F[f>>2]=a;b=a;e=F[F[r>>2]>>2];if(e){F[r>>2]=e;b=F[f>>2]}nb(F[r+4>>2],b);F[r+8>>2]=F[r+8>>2]+1;b=1}D[x+12|0]=b;F[x+8>>2]=a;Z=p+16|0;b=F[c+4>>2];G:{if(b){while(1){c=b;b=F[b>>2];if(b){continue}break G}}while(1){a=c;c=F[c+8>>2];if((a|0)!=F[c>>2]){continue}break}}if((c|0)!=(z|0)){continue}break}}F[g+8>>2]=d;F[g>>2]=0;F[g+4>>2]=0;F[o>>2]=g;c=g;a=F[F[u>>2]>>2];if(a){F[u>>2]=a;c=F[o>>2]}nb(F[u+4>>2],c);F[u+8>>2]=F[u+8>>2]+1;a=1}D[l+44|0]=a;F[l+40>>2]=g;Z=x+16|0;c=F[l+40>>2];ib(t|4,F[l+16>>2]);ib(y,F[l+28>>2])}f=Z-48|0;Z=f;d=f+8|0;g=Z-32|0;Z=g;o=g+32|0;b=o;a=g+21|0;H:{if((b|0)==(a|0)){break H}}e=b-a|0;I:{if((e|0)<=9){h=61;if((e|0)<(I[2684]<=1|0)){break I}}D[a|0]=49;b=a+1|0;h=0}F[g+12>>2]=h;F[g+8>>2]=b;h=Z-16|0;Z=h;e=Z-16|0;Z=e;J:{q=F[g+8>>2];g=q-a|0;if(g>>>0<=2147483631){K:{if(g>>>0<11){D[d+11|0]=g|G[d+11|0]&128;D[d+11|0]=G[d+11|0]&127;b=d;break K}t=e+8|0;if(g>>>0>=11){k=g+16&-16;b=k-1|0;b=(b|0)==11?k:b}else{b=10}sb(t,b+1|0);b=F[e+8>>2];F[d>>2]=b;F[d+8>>2]=F[d+8>>2]&-2147483648|F[e+12>>2]&2147483647;F[d+8>>2]=F[d+8>>2]|-2147483648;F[d+4>>2]=g}while(1){if((a|0)!=(q|0)){D[b|0]=G[a|0];b=b+1|0;a=a+1|0;continue}break}D[e+7|0]=0;D[b|0]=G[e+7|0];Z=e+16|0;break J}za();v()}Z=h+16|0;Z=o;F[f+32>>2]=m;L:{M:{a=c+20|0;d=F[a+4>>2];N:{if(!d){g=a+4|0;c=g;break N}b=G[m+11|0];c=b<<24>>24<0;e=c?F[m>>2]:m;b=c?F[m+4>>2]:b;while(1){c=d;d=G[c+27|0];g=d<<24>>24<0;d=g?F[c+20>>2]:d;o=d>>>0>>0;O:{P:{Q:{R:{h=o?d:b;S:{if(h){g=g?F[c+16>>2]:c+16|0;q=sa(e,g,h);if(!q){if(b>>>0>>0){break S}break R}if((q|0)>=0){break R}break S}if(b>>>0>=d>>>0){break Q}}g=c;d=F[c>>2];if(d){continue}break N}d=sa(g,e,h);if(d){break P}}if(o){break O}break M}if((d|0)>=0){break M}}d=F[c+4>>2];if(d){continue}break}g=c+4|0}d=ka(40);e=d+16|0;b=F[f+32>>2];T:{if(D[b+11|0]>=0){o=F[b+4>>2];F[e>>2]=F[b>>2];F[e+4>>2]=o;F[e+8>>2]=F[b+8>>2];break T}ra(e,F[b>>2],F[b+4>>2])}F[d+8>>2]=c;F[d>>2]=0;F[d+4>>2]=0;F[d+36>>2]=0;F[d+28>>2]=0;F[d+32>>2]=0;F[g>>2]=d;c=d;b=F[F[a>>2]>>2];if(b){F[a>>2]=b;c=F[g>>2]}nb(F[a+4>>2],c);F[a+8>>2]=F[a+8>>2]+1;a=1;break L}d=c;a=0}D[f+44|0]=a;F[f+40>>2]=d;a=F[f+40>>2];if(D[a+39|0]<0){ja(F[a+28>>2])}b=F[f+12>>2];F[a+28>>2]=F[f+8>>2];F[a+32>>2]=b;F[a+36>>2]=F[f+16>>2];Z=f+48|0;Z=l+48|0;if(D[m+11|0]<0){ja(F[m>>2])}Z=m+16|0}function zd(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0;h=Z-32|0;Z=h;g=F[F[a+4>>2]+44>>2];c=F[a+8>>2];d=F[c>>2];c=F[c+4>>2];F[h+24>>2]=0;F[h+16>>2]=0;F[h+20>>2]=0;d=(c-d>>2>>>0)/3|0;c=F[g+96>>2];f=(F[g+100>>2]-c|0)/12|0;a:{if(d>>>0>f>>>0){e=d-f|0;i=F[g+104>>2];c=F[g+100>>2];if(e>>>0<=(i-c|0)/12>>>0){b:{if(!e){break b}d=c;f=L(e,12)-12|0;i=((f>>>0)/12|0)+1&3;if(i){while(1){l=F[h+20>>2];F[d>>2]=F[h+16>>2];F[d+4>>2]=l;F[d+8>>2]=F[h+24>>2];d=d+12|0;j=j+1|0;if((i|0)!=(j|0)){continue}break}}c=L(e,12)+c|0;if(f>>>0<36){break b}while(1){f=F[h+20>>2];F[d>>2]=F[h+16>>2];F[d+4>>2]=f;F[d+8>>2]=F[h+24>>2];F[d+20>>2]=F[h+24>>2];f=F[h+20>>2];F[d+12>>2]=F[h+16>>2];F[d+16>>2]=f;F[d+32>>2]=F[h+24>>2];f=F[h+20>>2];F[d+24>>2]=F[h+16>>2];F[d+28>>2]=f;f=F[h+20>>2];F[d+36>>2]=F[h+16>>2];F[d+40>>2]=f;F[d+44>>2]=F[h+24>>2];d=d+48|0;if((d|0)!=(c|0)){continue}break}}F[g+100>>2]=c;break a}c:{f=F[g+96>>2];n=(c-f|0)/12|0;d=n+e|0;if(d>>>0<357913942){f=(i-f|0)/12|0;i=f<<1;i=f>>>0>=178956970?357913941:d>>>0>>0?i:d;if(i){if(i>>>0>=357913942){break c}l=ka(L(i,12))}f=L(n,12)+l|0;d=f;e=L(e,12);n=e-12|0;q=((n>>>0)/12|0)+1&3;if(q){while(1){r=F[h+20>>2];F[d>>2]=F[h+16>>2];F[d+4>>2]=r;F[d+8>>2]=F[h+24>>2];d=d+12|0;j=j+1|0;if((q|0)!=(j|0)){continue}break}}e=e+f|0;if(n>>>0>=36){while(1){j=F[h+20>>2];F[d>>2]=F[h+16>>2];F[d+4>>2]=j;F[d+8>>2]=F[h+24>>2];F[d+20>>2]=F[h+24>>2];j=F[h+20>>2];F[d+12>>2]=F[h+16>>2];F[d+16>>2]=j;F[d+32>>2]=F[h+24>>2];j=F[h+20>>2];F[d+24>>2]=F[h+16>>2];F[d+28>>2]=j;j=F[h+20>>2];F[d+36>>2]=F[h+16>>2];F[d+40>>2]=j;F[d+44>>2]=F[h+24>>2];d=d+48|0;if((e|0)!=(d|0)){continue}break}}j=F[g+96>>2];if((j|0)!=(c|0)){while(1){c=c-12|0;n=F[c+4>>2];f=f-12|0;d=f;F[d>>2]=F[c>>2];F[d+4>>2]=n;F[d+8>>2]=F[c+8>>2];if((c|0)!=(j|0)){continue}break}c=F[g+96>>2]}F[g+104>>2]=L(i,12)+l;F[g+100>>2]=e;F[g+96>>2]=f;if(c){ja(c)}break a}na();v()}oa();v()}if(d>>>0>=f>>>0){break a}F[g+100>>2]=c+L(d,12)}d:{if(F[a+216>>2]==F[a+220>>2]){j=F[a+4>>2];c=F[j+44>>2];d=F[c+100>>2];f=F[c+96>>2];if((d|0)!=(f|0)){c=(d-f|0)/12|0;o=c>>>0<=1?1:c;c=0;while(1){d=F[a+8>>2];i=f+L(c,12)|0;g=L(c,3);e:{f:{if((g|0)==-1){e=F[(F[d>>2]+(g<<2)|0)+4>>2];k=-1;g=1;break f}e=-1;k=F[F[d>>2]+(g<<2)>>2];l=g+1|0;if((l|0)==-1){g=0;break f}e=F[F[d>>2]+(l<<2)>>2];g=g+2|0;m=-1;if((g|0)==-1){break e}}m=F[F[d>>2]+(g<<2)>>2]}F[i+8>>2]=m;F[i+4>>2]=e;F[i>>2]=k;c=c+1|0;if((o|0)!=(c|0)){continue}break}}F[F[j+4>>2]+80>>2]=b;c=1;break d}d=0;F[h+24>>2]=0;F[h+16>>2]=0;F[h+20>>2]=0;l=F[a+8>>2];c=F[l>>2];g=F[l+4>>2];F[h+8>>2]=0;F[h>>2]=0;F[h+4>>2]=0;b=0;g:{h:{i:{j:{k:{l:{if((c|0)!=(g|0)){c=g-c|0;if((c|0)<0){break l}b=ka(c);F[h>>2]=b;F[h+8>>2]=(c&-4)+b;u=h,w=ma(b,0,c)+c|0,F[u+4>>2]=w}c=F[l+24>>2];if((F[l+28>>2]-c|0)<4){break h}f=0;while(1){g=F[(p<<2)+c>>2];m:{if((g|0)==-1){break m}n:{if(F[F[a+120>>2]+(p>>>3&536870908)>>2]>>>p&1){break n}n=F[a+216>>2];c=F[a+220>>2];if((n|0)==(c|0)){break n}e=g+2|0;i=(g>>>0)%3|0;q=i?g-1|0:e;c=(c-n|0)/144|0;r=c>>>0<=1?1:c;j=0;t=(i|0)!=0|(e|0)!=-1;while(1){s=g<<2;i=L(j,144)+n|0;c=F[s+F[F[i+68>>2]>>2]>>2];o:{if(!(F[F[i+16>>2]+(c>>>3&536870908)>>2]>>>c&1)){break o}c=-1;p:{if(!t){break p}e=F[F[l+12>>2]+(q<<2)>>2];c=-1;if((e|0)==-1){break p}c=e-1|0;if((e>>>0)%3|0){break p}c=e+2|0}if((g|0)==(c|0)){break o}e=s;s=F[i+32>>2];i=F[e+s>>2];while(1){e=0;if((c|0)==-1){break g}if((i|0)!=F[s+(c<<2)>>2]){g=c;break n}q:{r:{if((c>>>0)%3|0){e=c-1|0;break r}e=c+2|0;m=-1;if((e|0)==-1){break q}}c=F[F[l+12>>2]+(e<<2)>>2];m=-1;if((c|0)==-1){break q}m=c-1|0;if((c>>>0)%3|0){break q}m=c+2|0}c=m;if((g|0)!=(c|0)){continue}break}}j=j+1|0;if((r|0)!=(j|0)){continue}break}}i=k-f|0;e=i>>2;F[(g<<2)+b>>2]=e;s:{if(k>>>0>>0){F[k>>2]=g;k=k+4|0;F[h+20>>2]=k;break s}c=e+1|0;if(c>>>0>=1073741824){break k}d=o-f|0;k=d>>>1|0;c=d>>>0>=2147483644?1073741823:c>>>0>>0?k:c;if(c){if(c>>>0>=1073741824){break j}d=ka(c<<2)}else{d=0}e=d+(e<<2)|0;F[e>>2]=g;m=c<<2;c=pa(d,f,i);o=m+c|0;F[h+24>>2]=o;k=e+4|0;F[h+20>>2]=k;F[h+16>>2]=c;if(f){ja(f);l=F[a+8>>2]}f=c}if((g|0)==-1){break m}t:{if((g>>>0)%3|0){c=g-1|0;break t}c=g+2|0;if((c|0)==-1){break m}}c=F[F[l+12>>2]+(c<<2)>>2];if((c|0)==-1){break m}c=c+((c>>>0)%3|0?-1:2)|0;if((c|0)==-1){break m}e=g;if((c|0)==(g|0)){break m}while(1){i=c;u:{v:{c=F[a+220>>2];j=F[a+216>>2];if((c|0)==(j|0)){break v}c=(c-j|0)/144|0;n=c>>>0<=1?1:c;c=0;while(1){q=F[(j+L(c,144)|0)+32>>2];r=i<<2;if(F[q+r>>2]==F[q+(e<<2)>>2]){c=c+1|0;if((n|0)!=(c|0)){continue}break v}break}j=k-d|0;e=j>>2;F[b+r>>2]=e;if(k>>>0>>0){F[k>>2]=i;k=k+4|0;F[h+20>>2]=k;f=d;break u}c=e+1|0;if(c>>>0>=1073741824){break i}f=o-d|0;k=f>>>1|0;c=f>>>0>=2147483644?1073741823:c>>>0>>0?k:c;if(c){if(c>>>0>=1073741824){break j}f=ka(c<<2)}else{f=0}e=f+(e<<2)|0;F[e>>2]=i;m=c<<2;c=pa(f,d,j);o=m+c|0;F[h+24>>2]=o;k=e+4|0;F[h+20>>2]=k;F[h+16>>2]=c;if(!d){d=c;break u}ja(d);l=F[a+8>>2];d=c;break u}F[(i<<2)+b>>2]=F[(e<<2)+b>>2]}if((i|0)==-1){break m}w:{if((i>>>0)%3|0){c=i-1|0;break w}c=i+2|0;if((c|0)==-1){break m}}c=F[F[l+12>>2]+(c<<2)>>2];if((c|0)==-1){break m}c=c+((c>>>0)%3|0?-1:2)|0;if((c|0)==-1){break m}e=i;if((c|0)!=(g|0)){continue}break}}p=p+1|0;c=F[l+24>>2];if((p|0)>2]-c>>2){continue}break}break h}na();v()}na();v()}oa();v()}na();v()}i=F[a+4>>2];a=F[i+44>>2];c=F[a+100>>2];a=F[a+96>>2];x:{if((c|0)==(a|0)){break x}g=(c-a|0)/12|0;f=g>>>0<=1?1:g;l=f&1;c=0;if(g>>>0>=2){j=f&-2;g=0;while(1){e=L(c,12);f=e+b|0;o=F[f>>2];p=F[f+4>>2];e=a+e|0;F[e+8>>2]=F[f+8>>2];F[e>>2]=o;F[e+4>>2]=p;e=L(c|1,12);f=e+b|0;o=F[f>>2];p=F[f+4>>2];e=a+e|0;F[e+8>>2]=F[f+8>>2];F[e>>2]=o;F[e+4>>2]=p;c=c+2|0;g=g+2|0;if((j|0)!=(g|0)){continue}break}}if(!l){break x}g=L(c,12);c=g+b|0;f=F[c>>2];e=F[c+4>>2];a=a+g|0;F[a+8>>2]=F[c+8>>2];F[a>>2]=f;F[a+4>>2]=e}F[F[i+4>>2]+80>>2]=k-d>>2;e=1}c=e;if(b){ja(b)}if(!d){break d}F[h+20>>2]=d;ja(d)}Z=h+32|0;return c}function de(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,G=0,H=0,I=0,J=0,K=0,M=0,N=0,O=0,P=0;g=Z+-64|0;Z=g;F[a+8>>2]=e;y=a+32|0;f=F[y>>2];d=F[a+36>>2]-f>>2;a:{b:{if(d>>>0>>0){qa(y,e-d|0);F[g+56>>2]=0;F[g+60>>2]=0;F[g+48>>2]=0;F[g+52>>2]=0;F[g+40>>2]=0;F[g+44>>2]=0;F[g+32>>2]=0;F[g+36>>2]=0;F[g+24>>2]=0;F[g+28>>2]=0;F[g+16>>2]=0;F[g+20>>2]=0;F[g>>2]=0;break b}if(d>>>0>e>>>0){F[a+36>>2]=f+(e<<2)}F[g+56>>2]=0;F[g+60>>2]=0;F[g+48>>2]=0;F[g+52>>2]=0;F[g+40>>2]=0;F[g+44>>2]=0;F[g+32>>2]=0;F[g+36>>2]=0;F[g+24>>2]=0;F[g+28>>2]=0;F[g+16>>2]=0;F[g+20>>2]=0;F[g>>2]=0;d=0;if(!e){break a}}Fa(g+16|0,e,g);h=F[g+28>>2];d=F[g+32>>2]}F[g>>2]=0;d=d-h>>2;c:{if(d>>>0>=e>>>0){if(d>>>0<=e>>>0){break c}F[g+32>>2]=(e<<2)+h;break c}Fa(g+16|12,e-d|0,g)}F[g>>2]=0;f=F[g+40>>2];d=F[g+44>>2]-f>>2;d:{if(d>>>0>=e>>>0){if(d>>>0<=e>>>0){break d}F[g+44>>2]=f+(e<<2);break d}Fa(g+40|0,e-d|0,g)}F[g>>2]=0;f=F[g+52>>2];d=F[g+56>>2]-f>>2;e:{if(d>>>0>=e>>>0){if(d>>>0<=e>>>0){break e}F[g+56>>2]=f+(e<<2);break e}Fa(g+52|0,e-d|0,g)}f:{if(F[a+8>>2]<=0){break f}i=F[g+16>>2];j=F[a+32>>2];h=0;while(1){d=h<<2;f=F[d+i>>2];m=F[a+16>>2];g:{if((f|0)>(m|0)){F[d+j>>2]=m;break g}d=d+j|0;m=F[a+12>>2];if((m|0)>(f|0)){F[d>>2]=m;break g}F[d>>2]=f}h=h+1|0;d=F[a+8>>2];if((h|0)<(d|0)){continue}break}if((d|0)<=0){break f}d=0;while(1){i=d<<2;f=i+c|0;i=F[b+i>>2]+F[j+i>>2]|0;F[f>>2]=i;h:{if((i|0)>F[a+16>>2]){i=i-F[a+20>>2]|0}else{if((i|0)>=F[a+12>>2]){break h}i=i+F[a+20>>2]|0}F[f>>2]=i}d=d+1|0;if((d|0)>2]){continue}break}}H=F[a+52>>2];t=F[a+48>>2];z=ka(16);d=z;F[d>>2]=0;F[d+4>>2]=0;F[d+8>>2]=0;F[d+12>>2]=0;F[g+8>>2]=0;F[g>>2]=0;F[g+4>>2]=0;i:{if(e){if(e>>>0>=1073741824){break i}d=e<<2;r=ka(d);F[g>>2]=r;F[g+8>>2]=d+r;ma(r,0,d)}A=1;d=F[a+56>>2];B=F[d>>2];d=F[d+4>>2]-B|0;j:{if((d|0)<8){break j}w=d>>2;I=(w|0)<=2?2:w;J=w>>>0<=1?1:w;C=e&-2;D=e&1;K=e&-4;E=e&3;G=e-1|0;M=e<<2;N=e>>>0<4;A=0;m=1;while(1){k:{l:{m:{n:{if((m|0)!=(J|0)){o:{p:{f=F[(m<<2)+B>>2];if((f|0)==-1){break p}k=1;d=f+2|0;j=(f>>>0)%3|0;x=j?f-1|0:d;s=1<>2];O=n+(x>>>3&536870908)|0;i=0;P=(j|0)!=0|(d|0)!=-1;d=f;q:{while(1){r:{if(F[n+(d>>>3&536870908)>>2]>>>d&1){break r}j=F[F[F[t+64>>2]+12>>2]+(d<<2)>>2];if((j|0)==-1){break r}l=F[H>>2];h=F[t+28>>2];p=F[l+(F[h+(j<<2)>>2]<<2)>>2];if((p|0)>=(m|0)){break r}q=j+1|0;q=F[l+(F[h+(((q>>>0)%3|0?q:j-2|0)<<2)>>2]<<2)>>2];if((q|0)>=(m|0)){break r}h=F[l+(F[h+(j+((j>>>0)%3|0?-1:2)<<2)>>2]<<2)>>2];if((h|0)>=(m|0)){break r}s:{if(!e){break s}j=F[(g+16|0)+L(i,12)>>2];l=L(e,h);q=L(e,q);p=L(e,p);h=0;o=0;if(G){while(1){F[j+(h<<2)>>2]=(F[(h+l<<2)+c>>2]+F[(h+q<<2)+c>>2]|0)-F[(h+p<<2)+c>>2];u=h|1;F[j+(u<<2)>>2]=(F[(l+u<<2)+c>>2]+F[(q+u<<2)+c>>2]|0)-F[(p+u<<2)+c>>2];h=h+2|0;o=o+2|0;if((C|0)!=(o|0)){continue}break}}if(!D){break s}F[j+(h<<2)>>2]=(F[(h+l<<2)+c>>2]+F[(h+q<<2)+c>>2]|0)-F[(h+p<<2)+c>>2]}j=4;i=i+1|0;if((i|0)==4){break q}}t:{if(k&1){h=d-2|0;j=d+1|0;d=-1;j=(j>>>0)%3|0?j:h;if((j|0)==-1|F[n+(j>>>3&536870908)>>2]>>>j&1){break t}j=F[F[F[t+64>>2]+12>>2]+(j<<2)>>2];if((j|0)==-1){break t}d=j+1|0;d=(d>>>0)%3|0?d:j-2|0;break t}u:{if((d>>>0)%3|0){h=d-1|0;break u}h=d+2|0;d=-1;if((h|0)==-1){break t}}d=-1;if(F[n+(h>>>3&536870908)>>2]>>>h&1){break t}j=F[F[F[t+64>>2]+12>>2]+(h<<2)>>2];if((j|0)==-1){break t}if((j>>>0)%3|0){d=j-1|0;break t}d=j+2|0}v:{if((d|0)==(f|0)){break v}if((d|0)==-1&k){if(!P|s&F[O>>2]){break v}d=F[F[F[t+64>>2]+12>>2]+(x<<2)>>2];if((d|0)==-1){break v}k=0;d=(d>>>0)%3|0?d-1|0:d+2|0}if((d|0)!=-1){continue}}break}j=i;if((j|0)<=0){break p}}if(e){ma(r,0,M)}d=j-1|0;q=(d<<2)+z|0;d=L(d,12)+a|0;u=d;x=F[d- -64>>2];k=0;d=F[g>>2];f=0;while(1){i=F[q>>2];F[q>>2]=i+1;if(i>>>0>=x>>>0){break j}w:{if(F[F[u+60>>2]+(i>>>3&536870908)>>2]>>>i&1){break w}f=f+1|0;if(!e){break w}n=F[(g+16|0)+L(k,12)>>2];i=0;h=0;p=0;if(!N){while(1){l=h<<2;o=l+d|0;F[o>>2]=F[l+n>>2]+F[o>>2];o=l|4;s=o+d|0;F[s>>2]=F[n+o>>2]+F[s>>2];o=l|8;s=o+d|0;F[s>>2]=F[n+o>>2]+F[s>>2];l=l|12;o=l+d|0;F[o>>2]=F[l+n>>2]+F[o>>2];h=h+4|0;p=p+4|0;if((K|0)!=(p|0)){continue}break}}if(!E){break w}while(1){l=h<<2;p=l+d|0;F[p>>2]=F[l+n>>2]+F[p>>2];h=h+1|0;i=i+1|0;if((E|0)!=(i|0)){continue}break}}k=k+1|0;if((k|0)!=(j|0)){continue}break}i=L(e,m);if(!f){break o}if(!e){break l}h=0;d=0;if(G){break n}break m}i=L(e,m)}if(F[a+8>>2]<=0){break k}k=(L(m-1|0,e)<<2)+c|0;j=F[y>>2];h=0;while(1){d=h<<2;f=F[d+k>>2];n=F[a+16>>2];x:{if((f|0)>(n|0)){F[d+j>>2]=n;break x}d=d+j|0;n=F[a+12>>2];if((n|0)>(f|0)){F[d>>2]=n;break x}F[d>>2]=f}h=h+1|0;f=F[a+8>>2];if((h|0)<(f|0)){continue}break}d=0;if((f|0)<=0){break k}f=i<<2;h=f+c|0;k=b+f|0;while(1){i=d<<2;f=i+h|0;i=F[i+k>>2]+F[j+i>>2]|0;F[f>>2]=i;y:{if((i|0)>F[a+16>>2]){i=i-F[a+20>>2]|0}else{if((i|0)>=F[a+12>>2]){break y}i=i+F[a+20>>2]|0}F[f>>2]=i}d=d+1|0;if((d|0)>2]){continue}break}break k}ta();v()}while(1){j=h<<2;k=j+r|0;F[k>>2]=F[k>>2]/(f|0);j=(j|4)+r|0;F[j>>2]=F[j>>2]/(f|0);h=h+2|0;d=d+2|0;if((C|0)!=(d|0)){continue}break}}if(!D){break l}d=(h<<2)+r|0;F[d>>2]=F[d>>2]/(f|0)}if(F[a+8>>2]<=0){break k}j=F[y>>2];h=0;while(1){d=h<<2;f=F[d+r>>2];k=F[a+16>>2];z:{if((f|0)>(k|0)){F[d+j>>2]=k;break z}d=d+j|0;k=F[a+12>>2];if((k|0)>(f|0)){F[d>>2]=k;break z}F[d>>2]=f}h=h+1|0;f=F[a+8>>2];if((h|0)<(f|0)){continue}break}d=0;if((f|0)<=0){break k}f=i<<2;h=f+c|0;k=b+f|0;while(1){i=d<<2;f=i+h|0;i=F[i+k>>2]+F[j+i>>2]|0;F[f>>2]=i;A:{if((i|0)>F[a+16>>2]){i=i-F[a+20>>2]|0}else{if((i|0)>=F[a+12>>2]){break A}i=i+F[a+20>>2]|0}F[f>>2]=i}d=d+1|0;if((d|0)>2]){continue}break}}m=m+1|0;A=(w|0)<=(m|0);if((m|0)!=(I|0)){continue}break}}a=F[g>>2];if(a){ja(a)}ja(z);a=F[g+52>>2];if(a){F[g+56>>2]=a;ja(a)}a=F[g+40>>2];if(a){F[g+44>>2]=a;ja(a)}a=F[g+28>>2];if(a){F[g+32>>2]=a;ja(a)}a=F[g+16>>2];if(a){F[g+20>>2]=a;ja(a)}Z=g- -64|0;return A|0}na();v()}function $h(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,G=0,H=0,I=0,J=0,K=0,M=0,N=0;h=Z+-64|0;Z=h;F[a+8>>2]=e;x=a+32|0;f=F[x>>2];d=F[a+36>>2]-f>>2;a:{b:{if(d>>>0>>0){qa(x,e-d|0);F[h+56>>2]=0;F[h+60>>2]=0;F[h+48>>2]=0;F[h+52>>2]=0;F[h+40>>2]=0;F[h+44>>2]=0;F[h+32>>2]=0;F[h+36>>2]=0;F[h+24>>2]=0;F[h+28>>2]=0;F[h+16>>2]=0;F[h+20>>2]=0;F[h>>2]=0;break b}if(d>>>0>e>>>0){F[a+36>>2]=f+(e<<2)}F[h+56>>2]=0;F[h+60>>2]=0;F[h+48>>2]=0;F[h+52>>2]=0;F[h+40>>2]=0;F[h+44>>2]=0;F[h+32>>2]=0;F[h+36>>2]=0;F[h+24>>2]=0;F[h+28>>2]=0;F[h+16>>2]=0;F[h+20>>2]=0;F[h>>2]=0;d=0;if(!e){break a}}Fa(h+16|0,e,h);i=F[h+28>>2];d=F[h+32>>2]}F[h>>2]=0;d=d-i>>2;c:{if(d>>>0>=e>>>0){if(d>>>0<=e>>>0){break c}F[h+32>>2]=(e<<2)+i;break c}Fa(h+16|12,e-d|0,h)}F[h>>2]=0;f=F[h+40>>2];d=F[h+44>>2]-f>>2;d:{if(d>>>0>=e>>>0){if(d>>>0<=e>>>0){break d}F[h+44>>2]=f+(e<<2);break d}Fa(h+40|0,e-d|0,h)}F[h>>2]=0;f=F[h+52>>2];d=F[h+56>>2]-f>>2;e:{if(d>>>0>=e>>>0){if(d>>>0<=e>>>0){break e}F[h+56>>2]=f+(e<<2);break e}Fa(h+52|0,e-d|0,h)}f:{if(F[a+8>>2]<=0){break f}g=F[h+16>>2];j=F[a+32>>2];i=0;while(1){d=i<<2;f=F[d+g>>2];m=F[a+16>>2];g:{if((f|0)>(m|0)){F[d+j>>2]=m;break g}d=d+j|0;m=F[a+12>>2];if((m|0)>(f|0)){F[d>>2]=m;break g}F[d>>2]=f}i=i+1|0;d=F[a+8>>2];if((i|0)<(d|0)){continue}break}if((d|0)<=0){break f}d=0;while(1){g=d<<2;f=g+c|0;g=F[b+g>>2]+F[g+j>>2]|0;F[f>>2]=g;h:{if((g|0)>F[a+16>>2]){g=g-F[a+20>>2]|0}else{if((g|0)>=F[a+12>>2]){break h}g=g+F[a+20>>2]|0}F[f>>2]=g}d=d+1|0;if((d|0)>2]){continue}break}}H=F[a+52>>2];A=F[a+48>>2];y=ka(16);d=y;F[d>>2]=0;F[d+4>>2]=0;F[d+8>>2]=0;F[d+12>>2]=0;F[h+8>>2]=0;F[h>>2]=0;F[h+4>>2]=0;i:{if(e){if(e>>>0>=1073741824){break i}d=e<<2;t=ka(d);F[h>>2]=t;F[h+8>>2]=d+t;ma(t,0,d)}z=1;d=F[a+56>>2];B=F[d>>2];d=F[d+4>>2]-B|0;j:{if((d|0)<8){break j}w=d>>2;I=(w|0)<=2?2:w;J=w>>>0<=1?1:w;C=e&-2;D=e&1;K=e&-4;E=e&3;G=e-1|0;M=e<<2;N=e>>>0<4;z=0;m=1;while(1){k:{l:{m:{n:{if((m|0)!=(J|0)){o:{p:{f=F[(m<<2)+B>>2];if((f|0)==-1){break p}n=F[A+12>>2];d=f+2|0;g=(f>>>0)%3|0;q=n+((g?f-1|0:d)<<2)|0;j=0;u=(g|0)!=0|(d|0)!=-1;k=1;d=f;q:{while(1){g=F[n+(d<<2)>>2];r:{if((g|0)==-1){break r}l=-1;p=F[H>>2];r=F[A>>2];i=p+(F[r+(g<<2)>>2]<<2)|0;o=g+1|0;o=(o>>>0)%3|0?o:g-2|0;if((o|0)!=-1){l=F[r+(o<<2)>>2]}o=F[i>>2];s:{t:{if((g>>>0)%3|0){i=g-1|0;break t}i=g+2|0;s=-1;if((i|0)==-1){break s}}s=F[r+(i<<2)>>2]}if((m|0)<=(o|0)){break r}i=F[p+(l<<2)>>2];if((i|0)>=(m|0)){break r}l=F[p+(s<<2)>>2];if((l|0)>=(m|0)){break r}g=F[(h+16|0)+L(j,12)>>2];u:{if(!e){break u}l=L(e,l);r=L(e,i);p=L(e,o);i=0;s=0;if(G){while(1){F[g+(i<<2)>>2]=(F[(i+l<<2)+c>>2]+F[(i+r<<2)+c>>2]|0)-F[(i+p<<2)+c>>2];o=i|1;F[g+(o<<2)>>2]=(F[(l+o<<2)+c>>2]+F[(o+r<<2)+c>>2]|0)-F[(o+p<<2)+c>>2];i=i+2|0;s=s+2|0;if((C|0)!=(s|0)){continue}break}}if(!D){break u}F[g+(i<<2)>>2]=(F[(i+l<<2)+c>>2]+F[(i+r<<2)+c>>2]|0)-F[(i+p<<2)+c>>2]}g=4;j=j+1|0;if((j|0)==4){break q}}v:{if(k&1){i=d+1|0;d=(i>>>0)%3|0?i:d-2|0;g=-1;if((d|0)==-1){break v}d=F[n+(d<<2)>>2];g=-1;if((d|0)==-1){break v}g=d+1|0;g=(g>>>0)%3|0?g:d-2|0;break v}w:{if((d>>>0)%3|0){i=d-1|0;break w}i=d+2|0;g=-1;if((i|0)==-1){break v}}d=F[n+(i<<2)>>2];g=-1;if((d|0)==-1){break v}g=d-1|0;if((d>>>0)%3|0){break v}g=d+2|0}d=g;x:{if((f|0)==(d|0)){break x}if((d|0)==-1&k){if(!u){break x}d=F[q>>2];if((d|0)==-1){break x}k=0;d=(d>>>0)%3|0?d-1|0:d+2|0}if((d|0)!=-1){continue}}break}g=j;if((g|0)<=0){break p}}if(e){ma(t,0,M)}d=g-1|0;r=(d<<2)+y|0;d=L(d,12)+a|0;o=d;s=F[d- -64>>2];k=0;d=F[h>>2];f=0;while(1){j=F[r>>2];F[r>>2]=j+1;if(j>>>0>=s>>>0){break j}y:{if(F[F[o+60>>2]+(j>>>3&536870908)>>2]>>>j&1){break y}f=f+1|0;if(!e){break y}j=F[(h+16|0)+L(k,12)>>2];l=0;i=0;p=0;if(!N){while(1){n=i<<2;q=n+d|0;F[q>>2]=F[j+n>>2]+F[q>>2];q=n|4;u=q+d|0;F[u>>2]=F[j+q>>2]+F[u>>2];q=n|8;u=q+d|0;F[u>>2]=F[j+q>>2]+F[u>>2];n=n|12;q=n+d|0;F[q>>2]=F[j+n>>2]+F[q>>2];i=i+4|0;p=p+4|0;if((K|0)!=(p|0)){continue}break}}if(!E){break y}while(1){n=i<<2;p=n+d|0;F[p>>2]=F[j+n>>2]+F[p>>2];i=i+1|0;l=l+1|0;if((E|0)!=(l|0)){continue}break}}k=k+1|0;if((k|0)!=(g|0)){continue}break}g=L(e,m);if(!f){break o}if(!e){break l}i=0;d=0;if(G){break n}break m}g=L(e,m)}if(F[a+8>>2]<=0){break k}k=(L(m-1|0,e)<<2)+c|0;j=F[x>>2];i=0;while(1){d=i<<2;f=F[d+k>>2];l=F[a+16>>2];z:{if((f|0)>(l|0)){F[d+j>>2]=l;break z}d=d+j|0;l=F[a+12>>2];if((l|0)>(f|0)){F[d>>2]=l;break z}F[d>>2]=f}i=i+1|0;f=F[a+8>>2];if((i|0)<(f|0)){continue}break}d=0;if((f|0)<=0){break k}f=g<<2;i=f+c|0;k=b+f|0;while(1){g=d<<2;f=g+i|0;g=F[g+k>>2]+F[g+j>>2]|0;F[f>>2]=g;A:{if((g|0)>F[a+16>>2]){g=g-F[a+20>>2]|0}else{if((g|0)>=F[a+12>>2]){break A}g=g+F[a+20>>2]|0}F[f>>2]=g}d=d+1|0;if((d|0)>2]){continue}break}break k}ta();v()}while(1){j=i<<2;k=j+t|0;F[k>>2]=F[k>>2]/(f|0);j=(j|4)+t|0;F[j>>2]=F[j>>2]/(f|0);i=i+2|0;d=d+2|0;if((C|0)!=(d|0)){continue}break}}if(!D){break l}d=(i<<2)+t|0;F[d>>2]=F[d>>2]/(f|0)}if(F[a+8>>2]<=0){break k}j=F[x>>2];i=0;while(1){d=i<<2;f=F[d+t>>2];k=F[a+16>>2];B:{if((f|0)>(k|0)){F[d+j>>2]=k;break B}d=d+j|0;k=F[a+12>>2];if((k|0)>(f|0)){F[d>>2]=k;break B}F[d>>2]=f}i=i+1|0;f=F[a+8>>2];if((i|0)<(f|0)){continue}break}d=0;if((f|0)<=0){break k}f=g<<2;i=f+c|0;k=b+f|0;while(1){g=d<<2;f=g+i|0;g=F[g+k>>2]+F[g+j>>2]|0;F[f>>2]=g;C:{if((g|0)>F[a+16>>2]){g=g-F[a+20>>2]|0}else{if((g|0)>=F[a+12>>2]){break C}g=g+F[a+20>>2]|0}F[f>>2]=g}d=d+1|0;if((d|0)>2]){continue}break}}m=m+1|0;z=(w|0)<=(m|0);if((m|0)!=(I|0)){continue}break}}a=F[h>>2];if(a){ja(a)}ja(y);a=F[h+52>>2];if(a){F[h+56>>2]=a;ja(a)}a=F[h+40>>2];if(a){F[h+44>>2]=a;ja(a)}a=F[h+28>>2];if(a){F[h+32>>2]=a;ja(a)}a=F[h+16>>2];if(a){F[h+20>>2]=a;ja(a)}Z=h- -64|0;return z|0}na();v()}function Yh(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,E=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,$=0,aa=0;a:{b:{if((e|0)!=2){break b}F[a+8>>2]=2;F[a- -64>>2]=f;M=a+32|0;e=F[M>>2];d=F[a+36>>2]-e|0;c:{if(d>>>0<=7){qa(M,2-(d>>>2|0)|0);break c}if((d|0)==8){break c}F[a+36>>2]=e+8}i=1;d=F[a+56>>2];d=F[d+4>>2]-F[d>>2]|0;if((d|0)<=0){break b}o=a+60|0;d=d>>>2|0;X=d>>>0<=1?1:d;Y=a+68|0;d=0;while(1){f=F[a+56>>2];e=F[f>>2];if(F[f+4>>2]-e>>2>>>0<=d>>>0){break a}k=Z-80|0;Z=k;f=-1;d:{e:{e=F[e+(d<<2)>>2];if((e|0)==-1){break e}i=F[o+32>>2];g=e+1|0;g=(g>>>0)%3|0?g:e-2|0;if((g|0)!=-1){f=F[F[i>>2]+(g<<2)>>2]}p=-1;e=e+((e>>>0)%3|0?-1:2)|0;if((e|0)!=-1){p=F[F[i>>2]+(e<<2)>>2]}i=F[o+36>>2];e=F[i>>2];i=F[i+4>>2]-e>>2;if(i>>>0<=f>>>0|i>>>0<=p>>>0){break e}f:{g:{h:{i:{j:{k:{j=F[e+(p<<2)>>2];f=F[e+(f<<2)>>2];if((j|0)>=(d|0)|(f|0)>=(d|0)){break k}i=(j<<3)+c|0;w=F[i+4>>2];g=(f<<3)+c|0;e=F[g+4>>2];l=F[i>>2];i=F[g>>2];if(!((l|0)!=(i|0)|(e|0)!=(w|0))){F[o+8>>2]=i;F[o+12>>2]=e;break j}p=F[F[o+4>>2]+(d<<2)>>2];F[k+72>>2]=0;F[k+76>>2]=0;g=k- -64|0;F[g>>2]=0;F[g+4>>2]=0;F[k+56>>2]=0;F[k+60>>2]=0;g=F[o>>2];if(!G[g+84|0]){p=F[F[g+68>>2]+(p<<2)>>2]}Ga(g,p,D[g+24|0],k+56|0);p=F[F[o+4>>2]+(f<<2)>>2];F[k+48>>2]=0;F[k+52>>2]=0;F[k+40>>2]=0;F[k+44>>2]=0;F[k+32>>2]=0;F[k+36>>2]=0;g=F[o>>2];if(!G[g+84|0]){p=F[F[g+68>>2]+(p<<2)>>2]}Ga(g,p,D[g+24|0],k+32|0);p=F[F[o+4>>2]+(j<<2)>>2];F[k+24>>2]=0;F[k+28>>2]=0;F[k+16>>2]=0;F[k+20>>2]=0;F[k+8>>2]=0;F[k+12>>2]=0;g=F[o>>2];if(!G[g+84|0]){p=F[F[g+68>>2]+(p<<2)>>2]}Ga(g,p,D[g+24|0],k+8|0);g=F[k+16>>2];n=F[k+40>>2];x=g-n|0;N=F[k+44>>2];g=F[k+20>>2]-(N+(g>>>0>>0)|0)|0;H=g;j=ki(x,g,x,g);q=_;g=F[k+8>>2];z=F[k+32>>2];A=g-z|0;O=F[k+36>>2];g=F[k+12>>2]-(O+(g>>>0>>0)|0)|0;I=g;h=j;j=ki(A,g,A,g);g=h+j|0;h=_+q|0;h=g>>>0>>0?h+1|0:h;j=F[k+24>>2];B=F[k+48>>2];C=j-B|0;P=F[k+52>>2];j=F[k+28>>2]-(P+(j>>>0>>0)|0)|0;J=j;m=g;g=ki(C,j,C,j);r=m+g|0;h=_+h|0;s=g>>>0>r>>>0?h+1|0:h;if(!(s|r)){break k}p=0;E=mi(-1,2147483647,r,s);f=i>>31;R=f;h=f>>31;Q=i;g=h;q=i^g;i=q-g|0;f=(f^g)-((g>>>0>q>>>0)+g|0)|0;g=f;f=e>>31;S=f;K=e;e=f>>31;q=K^e;m=q-e|0;h=f>>31;e=(h^f)-((e>>>0>q>>>0)+h|0)|0;f=(g|0)==(e|0)&i>>>0>m>>>0|e>>>0>>0;i=f?i:m;j=_;e=f?g:e;if((j|0)==(e|0)&i>>>0>E>>>0|e>>>0>j>>>0){break f}i=F[k+64>>2];T=F[k+68>>2];e=ki(i-n|0,T-((i>>>0>>0)+N|0)|0,x,H);f=_;g=F[k+56>>2];U=F[k+60>>2];j=ki(g-z|0,U-((g>>>0>>0)+O|0)|0,A,I);e=j+e|0;h=_+f|0;h=e>>>0>>0?h+1|0:h;f=e;m=F[k+72>>2];V=F[k+76>>2];e=ki(m-B|0,V-((m>>>0>>0)+P|0)|0,C,J);j=f+e|0;f=_+h|0;q=e>>>0>j>>>0?f+1|0:f;e=l;E=e-Q|0;e=(e>>31)-((e>>>0>>0)+R|0)|0;W=e;l=e>>31;y=l^E;f=y-l|0;h=e>>31;e=(h^e)-((l>>>0>y>>>0)+h|0)|0;h=e;y=w-K|0;e=(w>>31)-((w>>>0>>0)+S|0)|0;w=e;l=f;t=e>>31;u=t^y;L=u-t|0;f=e>>31;e=(f^e)-((t>>>0>u>>>0)+f|0)|0;f=(h|0)==(e|0)&l>>>0>L>>>0|e>>>0>>0;f=mi(-1,2147483647,f?l:L,f?h:e)>>>0>>0;e=_;if(f&(e|0)<=(q|0)|(e|0)<(q|0)){break f}e=I>>31;f=e;l=e^A;e=l-e|0;f=(f^I)-((f>>>0>l>>>0)+f|0)|0;h=H>>31;t=h^x;u=t-h|0;l=(h^H)-((h>>>0>t>>>0)+h|0)|0;h=(f|0)==(l|0)&e>>>0>u>>>0|f>>>0>l>>>0;e=h?e:u;f=h?f:l;h=J>>31;L=e;t=h^C;u=t-h|0;l=(h^J)-((h>>>0>t>>>0)+h|0)|0;e=(f|0)==(l|0)&e>>>0>u>>>0|f>>>0>l>>>0;f=mi(-1,2147483647,e?L:u,e?f:l)>>>0>>0;e=_;if(f&(e|0)<=(q|0)|(e|0)<(q|0)){break f}l=1;e=0;f=n;n=li(ki(j,q,x,H),_,r,s);f=f+n|0;h=_+N|0;h=f>>>0>>0?h+1|0:h;n=i-f|0;f=T-((f>>>0>i>>>0)+h|0)|0;n=ki(n,f,n,f);x=_;f=g;h=li(ki(j,q,A,I),_,r,s);i=h+z|0;g=_+O|0;g=h>>>0>i>>>0?g+1|0:g;h=f-i|0;f=U-((f>>>0>>0)+g|0)|0;g=ki(h,f,h,f);i=g+n|0;f=_+x|0;f=g>>>0>i>>>0?f+1|0:f;n=i;g=li(ki(j,q,C,J),_,r,s);i=g+B|0;h=_+P|0;h=g>>>0>i>>>0?h+1|0:h;g=m-i|0;i=V-((i>>>0>m>>>0)+h|0)|0;m=ki(g,i,g,i);i=m+n|0;g=_+f|0;f=ki(i,i>>>0>>0?g+1|0:g,r,s);i=_;m=i;if(!i&f>>>0<=1){break i}h=f;while(1){g=e<<1|l>>>31;l=l<<1;e=g;n=!i&h>>>0>7|(i|0)!=0;h=(i&3)<<30|h>>>2;i=i>>>2|0;if(n){continue}break}break h}if((d|0)>(f|0)){e=f<<1}else{if((d|0)<=0){F[o+8>>2]=0;F[o+12>>2]=0;break j}e=(d<<1)-2|0}e=(e<<2)+c|0;F[o+8>>2]=F[e>>2];F[o+12>>2]=F[e+4>>2]}p=1;break f}e=m;l=f;if(f-1|0){break g}}while(1){i=mi(f,m,l,e);h=e+_|0;e=i+l|0;h=e>>>0>>0?h+1|0:h;l=(h&1)<<31|e>>>1;e=h>>>1|0;i=ki(l,e,l,e);g=_;if((m|0)==(g|0)&f>>>0>>0|g>>>0>m>>>0){continue}break}}f=F[o+20>>2];if(!f){break f}g=f-1|0;h=F[F[o+16>>2]+(g>>>3&536870908)>>2];F[o+20>>2]=g;p=1;f=ki(j,q,y,w);i=_;n=ki(r,s,K,S);m=n+f|0;f=_+i|0;f=m>>>0>>0?f+1|0:f;i=ki(l,e,E,W);g=h>>>g&1;h=g?0-i|0:i;m=h+m|0;n=f;f=_;i=n+(g?0-(f+((i|0)!=0)|0)|0:f)|0;$=o,aa=li(m,h>>>0>m>>>0?i+1|0:i,r,s),F[$+12>>2]=aa;f=ki(j,q,E,W);i=_;j=ki(r,s,Q,R);f=j+f|0;h=_+i|0;e=ki(l,e,y,w);i=0-e|0;l=_;h=(f>>>0>>0?h+1|0:h)+(g?l:0-(((e|0)!=0)+l|0)|0)|0;i=g?e:i;f=i+f|0;$=o,aa=li(f,f>>>0>>0?h+1|0:h,r,s),F[$+8>>2]=aa}Z=k+80|0;e=p;break d}ta();v()}i=e;if(!e){return 0}l:{if(F[a+8>>2]<=0){break l}l=F[M>>2];e=0;while(1){f=e<<2;g=F[f+Y>>2];j=F[a+16>>2];m:{if((g|0)>(j|0)){F[f+l>>2]=j;break m}f=f+l|0;j=F[a+12>>2];if((j|0)>(g|0)){F[f>>2]=j;break m}F[f>>2]=g}e=e+1|0;g=F[a+8>>2];if((e|0)<(g|0)){continue}break}f=0;if((g|0)<=0){break l}e=d<<3;j=e+c|0;q=b+e|0;while(1){g=f<<2;e=g+j|0;g=F[g+q>>2]+F[g+l>>2]|0;F[e>>2]=g;n:{if((g|0)>F[a+16>>2]){g=g-F[a+20>>2]|0}else{if((g|0)>=F[a+12>>2]){break n}g=g+F[a+20>>2]|0}F[e>>2]=g}f=f+1|0;if((f|0)>2]){continue}break}}d=d+1|0;if((X|0)!=(d|0)){continue}break}}return i|0}ta();v()}function hi(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,E=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,$=0,aa=0;a:{b:{if((e|0)!=2){break b}F[a+8>>2]=2;F[a- -64>>2]=f;M=a+32|0;e=F[M>>2];d=F[a+36>>2]-e|0;c:{if(d>>>0<=7){qa(M,2-(d>>>2|0)|0);break c}if((d|0)==8){break c}F[a+36>>2]=e+8}p=1;d=F[a+56>>2];d=F[d+4>>2]-F[d>>2]|0;if((d|0)<=0){break b}o=a+60|0;d=d>>>2|0;X=d>>>0<=1?1:d;Y=a+68|0;d=0;while(1){e=F[a+56>>2];h=F[e>>2];if(F[e+4>>2]-h>>2>>>0<=d>>>0){break a}k=Z-80|0;Z=k;f=-1;h=F[h+(d<<2)>>2];e=-1;d:{if((h|0)==-1){break d}e=h+1|0;f=(e>>>0)%3|0?e:h-2|0;e=h-1|0;if((h>>>0)%3|0){break d}e=h+2|0}g=F[o+36>>2];h=F[g>>2];e:{f:{g:{h:{i:{g=F[g+4>>2]-h>>2;i=f<<2;f=F[F[o+32>>2]+28>>2];j=F[i+f>>2];if(g>>>0<=j>>>0){break i}e=F[f+(e<<2)>>2];if(e>>>0>=g>>>0){break i}j:{k:{l=F[h+(e<<2)>>2];f=F[h+(j<<2)>>2];if((l|0)>=(d|0)|(f|0)>=(d|0)){break k}h=(l<<3)+c|0;w=F[h+4>>2];g=(f<<3)+c|0;e=F[g+4>>2];j=F[h>>2];h=F[g>>2];if(!((j|0)!=(h|0)|(e|0)!=(w|0))){F[o+8>>2]=h;F[o+12>>2]=e;break j}p=F[F[o+4>>2]+(d<<2)>>2];F[k+72>>2]=0;F[k+76>>2]=0;g=k- -64|0;F[g>>2]=0;F[g+4>>2]=0;F[k+56>>2]=0;F[k+60>>2]=0;g=F[o>>2];if(!G[g+84|0]){p=F[F[g+68>>2]+(p<<2)>>2]}Ga(g,p,D[g+24|0],k+56|0);p=F[F[o+4>>2]+(f<<2)>>2];F[k+48>>2]=0;F[k+52>>2]=0;F[k+40>>2]=0;F[k+44>>2]=0;F[k+32>>2]=0;F[k+36>>2]=0;g=F[o>>2];if(!G[g+84|0]){p=F[F[g+68>>2]+(p<<2)>>2]}Ga(g,p,D[g+24|0],k+32|0);p=F[F[o+4>>2]+(l<<2)>>2];F[k+24>>2]=0;F[k+28>>2]=0;F[k+16>>2]=0;F[k+20>>2]=0;F[k+8>>2]=0;F[k+12>>2]=0;g=F[o>>2];if(!G[g+84|0]){p=F[F[g+68>>2]+(p<<2)>>2]}Ga(g,p,D[g+24|0],k+8|0);g=F[k+16>>2];n=F[k+40>>2];x=g-n|0;N=F[k+44>>2];g=F[k+20>>2]-(N+(g>>>0>>0)|0)|0;H=g;l=ki(x,g,x,g);q=_;g=F[k+8>>2];z=F[k+32>>2];A=g-z|0;O=F[k+36>>2];g=F[k+12>>2]-(O+(g>>>0>>0)|0)|0;I=g;i=l;l=ki(A,g,A,g);g=i+l|0;i=_+q|0;i=g>>>0>>0?i+1|0:i;l=F[k+24>>2];B=F[k+48>>2];C=l-B|0;P=F[k+52>>2];l=F[k+28>>2]-(P+(l>>>0>>0)|0)|0;J=l;m=g;g=ki(C,l,C,l);r=m+g|0;i=_+i|0;s=g>>>0>r>>>0?i+1|0:i;if(!(s|r)){break k}p=0;E=mi(-1,2147483647,r,s);f=h>>31;R=f;i=f>>31;Q=h;g=i;q=h^g;h=q-g|0;f=(f^g)-((g>>>0>q>>>0)+g|0)|0;g=f;f=e>>31;S=f;K=e;e=f>>31;q=K^e;m=q-e|0;i=f>>31;e=(i^f)-((e>>>0>q>>>0)+i|0)|0;f=(g|0)==(e|0)&h>>>0>m>>>0|e>>>0>>0;h=f?h:m;l=_;e=f?g:e;if((l|0)==(e|0)&h>>>0>E>>>0|e>>>0>l>>>0){break e}h=F[k+64>>2];T=F[k+68>>2];e=ki(h-n|0,T-((h>>>0>>0)+N|0)|0,x,H);f=_;g=F[k+56>>2];U=F[k+60>>2];l=ki(g-z|0,U-((g>>>0>>0)+O|0)|0,A,I);e=l+e|0;i=_+f|0;i=e>>>0>>0?i+1|0:i;f=e;m=F[k+72>>2];V=F[k+76>>2];e=ki(m-B|0,V-((m>>>0>>0)+P|0)|0,C,J);l=f+e|0;f=_+i|0;q=e>>>0>l>>>0?f+1|0:f;e=j;E=e-Q|0;e=(e>>31)-((e>>>0>>0)+R|0)|0;W=e;j=e>>31;y=j^E;f=y-j|0;i=e>>31;e=(i^e)-((j>>>0>y>>>0)+i|0)|0;i=e;y=w-K|0;e=(w>>31)-((w>>>0>>0)+S|0)|0;w=e;j=f;t=e>>31;u=t^y;L=u-t|0;f=e>>31;e=(f^e)-((t>>>0>u>>>0)+f|0)|0;f=(i|0)==(e|0)&j>>>0>L>>>0|e>>>0>>0;f=mi(-1,2147483647,f?j:L,f?i:e)>>>0>>0;e=_;if(f&(e|0)<=(q|0)|(e|0)<(q|0)){break e}e=I>>31;f=e;j=e^A;e=j-e|0;f=(f^I)-((f>>>0>j>>>0)+f|0)|0;i=H>>31;t=i^x;u=t-i|0;j=(i^H)-((i>>>0>t>>>0)+i|0)|0;i=(f|0)==(j|0)&e>>>0>u>>>0|f>>>0>j>>>0;e=i?e:u;f=i?f:j;i=J>>31;L=e;t=i^C;u=t-i|0;j=(i^J)-((i>>>0>t>>>0)+i|0)|0;e=(f|0)==(j|0)&e>>>0>u>>>0|f>>>0>j>>>0;f=mi(-1,2147483647,e?L:u,e?f:j)>>>0>>0;e=_;if(f&(e|0)<=(q|0)|(e|0)<(q|0)){break e}j=1;e=0;f=n;n=li(ki(l,q,x,H),_,r,s);f=f+n|0;i=_+N|0;i=f>>>0>>0?i+1|0:i;n=h-f|0;f=T-((f>>>0>h>>>0)+i|0)|0;n=ki(n,f,n,f);x=_;f=g;i=li(ki(l,q,A,I),_,r,s);h=i+z|0;g=_+O|0;g=h>>>0>>0?g+1|0:g;i=f-h|0;f=U-((f>>>0>>0)+g|0)|0;g=ki(i,f,i,f);h=g+n|0;f=_+x|0;f=h>>>0>>0?f+1|0:f;n=h;g=li(ki(l,q,C,J),_,r,s);h=g+B|0;i=_+P|0;i=h>>>0>>0?i+1|0:i;g=m-h|0;h=V-((h>>>0>m>>>0)+i|0)|0;m=ki(g,h,g,h);h=m+n|0;g=_+f|0;f=ki(h,h>>>0>>0?g+1|0:g,r,s);h=_;m=h;if(!h&f>>>0<=1){break h}i=f;while(1){g=e<<1|j>>>31;j=j<<1;e=g;n=!h&i>>>0>7|(h|0)!=0;i=(h&3)<<30|i>>>2;h=h>>>2|0;if(n){continue}break}break g}if((d|0)>(f|0)){e=f<<1}else{if((d|0)<=0){F[o+8>>2]=0;F[o+12>>2]=0;break j}e=(d<<1)-2|0}e=(e<<2)+c|0;F[o+8>>2]=F[e>>2];F[o+12>>2]=F[e+4>>2]}p=1;break e}ta();v()}e=m;j=f;if(f-1|0){break f}}while(1){h=mi(f,m,j,e);i=e+_|0;e=h+j|0;i=e>>>0>>0?i+1|0:i;j=(i&1)<<31|e>>>1;e=i>>>1|0;h=ki(j,e,j,e);g=_;if((m|0)==(g|0)&f>>>0>>0|g>>>0>m>>>0){continue}break}}f=F[o+20>>2];if(!f){break e}g=f-1|0;i=F[F[o+16>>2]+(g>>>3&536870908)>>2];F[o+20>>2]=g;p=1;f=ki(l,q,y,w);h=_;n=ki(r,s,K,S);m=n+f|0;f=_+h|0;f=m>>>0>>0?f+1|0:f;h=ki(j,e,E,W);g=i>>>g&1;i=g?0-h|0:h;m=i+m|0;n=f;f=_;h=n+(g?0-(f+((h|0)!=0)|0)|0:f)|0;$=o,aa=li(m,i>>>0>m>>>0?h+1|0:h,r,s),F[$+12>>2]=aa;f=ki(l,q,E,W);h=_;l=ki(r,s,Q,R);f=l+f|0;i=_+h|0;e=ki(j,e,y,w);h=0-e|0;j=_;i=(f>>>0>>0?i+1|0:i)+(g?j:0-(((e|0)!=0)+j|0)|0)|0;h=g?e:h;f=h+f|0;$=o,aa=li(f,f>>>0>>0?i+1|0:i,r,s),F[$+8>>2]=aa}Z=k+80|0;if(!p){return 0}l:{if(F[a+8>>2]<=0){break l}g=F[M>>2];e=0;while(1){f=e<<2;h=F[f+Y>>2];j=F[a+16>>2];m:{if((h|0)>(j|0)){F[f+g>>2]=j;break m}f=f+g|0;j=F[a+12>>2];if((j|0)>(h|0)){F[f>>2]=j;break m}F[f>>2]=h}e=e+1|0;h=F[a+8>>2];if((e|0)<(h|0)){continue}break}f=0;if((h|0)<=0){break l}e=d<<3;j=e+c|0;l=b+e|0;while(1){h=f<<2;e=h+j|0;h=F[h+l>>2]+F[h+g>>2]|0;F[e>>2]=h;n:{if((h|0)>F[a+16>>2]){i=h-F[a+20>>2]|0}else{if((h|0)>=F[a+12>>2]){break n}i=h+F[a+20>>2]|0}F[e>>2]=i}f=f+1|0;if((f|0)>2]){continue}break}}d=d+1|0;if((X|0)!=(d|0)){continue}break}}return p|0}ta();v()}function Gd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;n=Z-96|0;Z=n;m=F[a+4>>2];d=F[m+32>>2];j=F[d+8>>2];i=F[d+12>>2];e=i;c=F[d+20>>2];f=F[d+16>>2];a:{if((e|0)<=(c|0)&f>>>0>=j>>>0|(c|0)>(e|0)){break a}o=F[d>>2];h=G[o+f|0];g=f+1|0;e=g?c:c+1|0;F[d+16>>2]=g;F[d+20>>2]=e;if((e|0)>=(i|0)&g>>>0>=j>>>0|(e|0)>(i|0)){break a}p=G[g+o|0];g=f+2|0;e=g>>>0<2?c+1|0:c;F[d+16>>2]=g;F[d+20>>2]=e;l=h<<24>>24;b:{if((l|0)>=0){k=F[a+216>>2];if(h>>>0>=(F[a+220>>2]-k|0)/144>>>0){break a}k=k+L(h,144)|0;if(F[k>>2]<0){break b}break a}if(F[a+212>>2]>=0){break a}k=a+212|0}F[k>>2]=b;c:{d:{e:{f:{g:{h:{k=H[m+36>>1];i:{if(((k<<8|k>>>8)&65535)>>>0>=258){if((e|0)>=(i|0)&g>>>0>=j>>>0|(e|0)>(i|0)){break a}e=G[g+o|0];f=f+3|0;c=f>>>0<3?c+1|0:c;F[d+16>>2]=f;F[d+20>>2]=c;if(e>>>0>1){break a}d=e>>>0<2?e:0;if(!p){break i}if(!d){break h}break a}if(p){break g}d=0}if((l|0)<0){e=a+184|0}else{c=F[a+216>>2]+L(h,144)|0;D[c+100|0]=0;e=c+104|0}if((d|0)!=1){break e}c=Z-112|0;Z=c;g=F[F[a+4>>2]+44>>2];d=ka(120);F[d>>2]=8924;F[d+4>>2]=0;F[d+116>>2]=0;F[d+112>>2]=e;F[d+108>>2]=g;F[d+12>>2]=0;F[d+16>>2]=0;F[d+20>>2]=0;F[d+24>>2]=0;F[d+28>>2]=0;F[d+32>>2]=0;F[d+36>>2]=0;F[d+40>>2]=0;F[d+44>>2]=0;F[d+48>>2]=0;F[d+52>>2]=0;F[d+56>>2]=0;F[d+60>>2]=0;F[d+8>>2]=9136;f=d- -64|0;F[f>>2]=0;F[f+4>>2]=0;F[d+72>>2]=0;F[d+76>>2]=0;F[d+80>>2]=0;F[d+84>>2]=0;F[d+88>>2]=0;F[d+104>>2]=0;F[d+96>>2]=0;F[d+100>>2]=0;f=F[a+8>>2];F[c+48>>2]=0;F[c+52>>2]=0;F[c+40>>2]=0;F[c+44>>2]=0;j=c+32|0;F[j>>2]=0;F[j+4>>2]=0;F[c+24>>2]=0;F[c+28>>2]=0;h=c- -64|0;F[h>>2]=0;F[h+4>>2]=0;F[c+72>>2]=0;F[c+76>>2]=0;F[c+80>>2]=0;F[c+84>>2]=0;F[c+88>>2]=0;F[c+104>>2]=0;F[c+16>>2]=0;F[c+20>>2]=0;F[c+56>>2]=0;F[c+60>>2]=0;F[c+8>>2]=9136;F[c+96>>2]=0;F[c+100>>2]=0;F[c+12>>2]=f;h=F[f>>2];i=F[f+4>>2];D[c+111|0]=0;k=j;j=c+111|0;Ea(k,(i-h>>2>>>0)/3|0,j);h=F[c+12>>2];i=F[h+28>>2];h=F[h+24>>2];D[c+111|0]=0;Ea(c+44|0,i-h>>2,j);F[c+28>>2]=d;F[c+24>>2]=g;F[c+20>>2]=e;F[c+16>>2]=f;f=d+8|0;e=c+8|0;lc(f,e);j:{if((e|0)==(f|0)){F[d+92>>2]=F[e+84>>2];break j}gb(d+56|0,F[e+48>>2],F[e+52>>2]);gb(d+68|0,F[e+60>>2],F[e- -64>>2]);gb(d+80|0,F[e+72>>2],F[e+76>>2]);F[d+92>>2]=F[e+84>>2];k:{h=F[e+92>>2];j=F[e+88>>2];i=h-j|0;e=i>>2;f=F[d+104>>2];g=F[d+96>>2];if(e>>>0<=f-g>>2>>>0){i=F[d+100>>2]-g|0;f=i+j|0;m=i>>2;i=e>>>0>m>>>0?f:h;l=i-j|0;if((i|0)!=(j|0)){pa(g,j,l)}if(e>>>0>m>>>0){e=F[d+100>>2];if((h|0)!=(i|0)){while(1){F[e>>2]=F[f>>2];e=e+4|0;f=f+4|0;if((h|0)!=(f|0)){continue}break}}F[d+100>>2]=e;break k}F[d+100>>2]=g+l;break k}if(g){F[d+100>>2]=g;ja(g);F[d+104>>2]=0;F[d+96>>2]=0;F[d+100>>2]=0;f=0}l:{if((i|0)<0){break l}g=f>>>1|0;e=f>>>0>=2147483644?1073741823:e>>>0>>0?g:e;if(e>>>0>=1073741824){break l}f=e<<2;e=ka(f);F[d+96>>2]=e;F[d+104>>2]=e+f;if((h|0)!=(j|0)){f=e;e=(i-4&-4)+4|0;e=la(f,j,e)+e|0}F[d+100>>2]=e;break k}na();v()}}F[c+8>>2]=9136;e=F[c+96>>2];if(e){F[c+100>>2]=e;ja(e)}e=F[c+80>>2];if(e){F[c+84>>2]=e;ja(e)}e=F[c+68>>2];if(e){F[c+72>>2]=e;ja(e)}e=F[c+56>>2];if(e){F[c+60>>2]=e;ja(e)}F[c+8>>2]=9372;e=F[c+44>>2];if(e){ja(e)}e=F[c+32>>2];if(e){ja(e)}Z=c+112|0;break d}if((l|0)>=0){break f}break a}if((l|0)<0){break a}}e=F[a+216>>2];c=F[m+44>>2];d=ka(80);F[d>>2]=9684;F[d+4>>2]=0;F[d+76>>2]=0;F[d+68>>2]=c;F[d+8>>2]=8624;F[d+12>>2]=0;F[d+16>>2]=0;F[d+20>>2]=0;F[d+24>>2]=0;F[d+28>>2]=0;F[d+32>>2]=0;F[d+36>>2]=0;F[d+40>>2]=0;F[d+44>>2]=0;F[d+48>>2]=0;F[d+52>>2]=0;e=e+L(h,144)|0;f=e+104|0;F[d+72>>2]=f;F[d- -64>>2]=0;F[d+56>>2]=0;F[d+60>>2]=0;F[n+24>>2]=c;c=n;F[c+68>>2]=0;F[c+72>>2]=0;F[c+60>>2]=0;F[c+64>>2]=0;F[c+52>>2]=0;F[c+56>>2]=0;F[c+44>>2]=0;F[c+48>>2]=0;F[c+84>>2]=0;F[c+88>>2]=0;F[c+76>>2]=0;F[c+80>>2]=0;F[c+28>>2]=d;g=F[c+28>>2];F[c+8>>2]=F[c+24>>2];F[c+12>>2]=g;F[c+20>>2]=f;f=e+4|0;F[c+16>>2]=f;F[c+36>>2]=0;F[c+40>>2]=0;F[c+32>>2]=8624;e=F[c+20>>2];F[c>>2]=F[c+16>>2];F[c+4>>2]=e;e=c+32|0;Fd(e,f,c);c=d+8|0;lc(c,e);if((c|0)!=(e|0)){gb(d+56|0,F[e+48>>2],F[e+52>>2])}Ed(e);break c}c=Z+-64|0;Z=c;g=F[F[a+4>>2]+44>>2];d=ka(80);F[d>>2]=9392;F[d+4>>2]=0;F[d+76>>2]=0;F[d+72>>2]=e;F[d+68>>2]=g;F[d+8>>2]=9556;F[d+12>>2]=0;F[d+16>>2]=0;F[d+20>>2]=0;F[d+24>>2]=0;F[d+28>>2]=0;F[d+32>>2]=0;F[d+36>>2]=0;F[d+40>>2]=0;F[d+44>>2]=0;F[d+48>>2]=0;F[d+52>>2]=0;F[d- -64>>2]=0;j=d+56|0;f=j;F[f>>2]=0;F[f+4>>2]=0;f=F[a+8>>2];F[c+40>>2]=0;F[c+44>>2]=0;F[c+32>>2]=0;F[c+36>>2]=0;h=c+24|0;F[h>>2]=0;F[h+4>>2]=0;F[c+16>>2]=0;F[c+20>>2]=0;F[c+56>>2]=0;F[c+8>>2]=0;F[c+12>>2]=0;F[c+48>>2]=0;F[c+52>>2]=0;F[c>>2]=9556;F[c+4>>2]=f;i=F[f>>2];l=F[f+4>>2];D[c+63|0]=0;k=h;h=c+63|0;Ea(k,(l-i>>2>>>0)/3|0,h);i=F[c+4>>2];l=F[i+28>>2];i=F[i+24>>2];D[c+63|0]=0;Ea(c+36|0,l-i>>2,h);F[c+20>>2]=d;F[c+16>>2]=g;F[c+12>>2]=e;F[c+8>>2]=f;lc(d+8|0,c);gb(j,F[c+48>>2],F[c+52>>2]);F[c>>2]=9556;e=F[c+48>>2];if(e){F[c+52>>2]=e;ja(e)}F[c>>2]=9372;e=F[c+36>>2];if(e){ja(e)}e=F[c+24>>2];if(e){ja(e)}Z=c- -64|0}if(!d){break a}}d=yc(ka(64),d);c=F[a+4>>2];a=d;d=b;m:{n:{if((d|0)>=0){g=c+8|0;b=F[c+12>>2];j=F[c+8>>2];e=b-j>>2;o:{if((e|0)>(d|0)){break o}f=d+1|0;if(d>>>0>=e>>>0){Pb(g,f-e|0);break o}if(e>>>0<=f>>>0){break o}f=j+(f<<2)|0;if((f|0)!=(b|0)){while(1){b=b-4|0;e=F[b>>2];F[b>>2]=0;if(e){$[F[F[e>>2]+4>>2]](e)}if((b|0)!=(f|0)){continue}break}}F[c+12>>2]=f}c=F[g>>2]+(d<<2)|0;b=F[c>>2];F[c>>2]=a;if(b){break n}break m}b=a;if(!a){break m}}$[F[F[b>>2]+4>>2]](b)}q=(d^-1)>>>31|0}Z=n+96|0;return q|0}function Ab(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=M(0),n=M(0),o=0;a:{b:{if(!d){break b}c:{switch(F[a+28>>2]-1|0){case 0:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}E[(g<<1)+d>>1]=D[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 1:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}E[(g<<1)+d>>1]=G[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 2:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}E[(g<<1)+d>>1]=H[b>>1];b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 3:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){return 0}e=E[b>>1];if((e|0)<0){break b}E[(g<<1)+d>>1]=e;b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 4:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}e=F[b>>2];if(e+32768>>>0>65535){break b}E[(g<<1)+d>>1]=e;b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 5:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}e=F[b>>2];if(e>>>0>32767){break b}E[(g<<1)+d>>1]=e;b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 6:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;k=F[e+4>>2];while(1){if(b>>>0>=k>>>0){break b}h=F[b+4>>2];e=F[b>>2];i=e+32768|0;h=i>>>0<32768?h+1|0:h;if(!h&i>>>0>65535|h){break b}E[(g<<1)+d>>1]=e;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 7:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}k=F[b+4>>2];e=F[b>>2];if(!k&e>>>0>32767|k){break b}E[(g<<1)+d>>1]=e;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 8:d:{e:{e=G[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break e}e=F[a>>2];j=F[e>>2];g=j;f=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=F[e+4>>2];e=f-j|0;if(!G[a+32|0]){j=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=J[g>>2];if(m>=M(32767)|m>1]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}j=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=J[g>>2];if(m>=M(32767)|mM(1)){break d}e=(b<<1)+d|0;l=R(+m*32767+.5);f:{if(N(l)<2147483648){i=~~l;break f}i=-2147483648}E[e>>1]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}j=1;if(c>>>0<=e>>>0){break d}ma((e<<1)+d|0,0,c-e<<1)}return j;case 9:g:{h:{e=G[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break h}e=F[a>>2];j=F[e>>2];g=j;f=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=F[e+4>>2];e=f-j|0;if(!G[a+32|0]){j=0;if((b|0)>=(e|0)){break g}b=0;while(1){l=K[g>>3];if(l>=32767|l<-32768|l!=l){break g}o=N(l);if(o==Infinity){break g}e=(b<<1)+d|0;if(o<2147483648){i=~~l}else{i=-2147483648}E[e>>1]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}j=0;if((b|0)>=(e|0)){break g}b=0;while(1){l=K[g>>3];if(l>=32767|l<-32768|(N(l)==Infinity|l!=l)){break g}if(l<0|l>1){break g}e=(b<<1)+d|0;l=R(l*32767+.5);i:{if(N(l)<2147483648){i=~~l;break i}i=-2147483648}E[e>>1]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}j=1;if(c>>>0<=e>>>0){break g}ma((e<<1)+d|0,0,c-e<<1)}return j;case 10:break c;default:break b}}e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}E[(g<<1)+d>>1]=G[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}ma((e<<1)+d|0,0,(c&255)-e<<1)}return j}ma((e<<1)+d|0,0,(c&255)-e<<1);return 1}function yb(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=M(0),n=M(0),o=0;a:{b:{if(!d){break b}c:{switch(F[a+28>>2]-1|0){case 0:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=D[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 1:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=G[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 2:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=E[b>>1];b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 3:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=H[b>>1];b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 4:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=F[b>>2];b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 5:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){return 0}e=F[b>>2];if((e|0)<0){break b}F[(g<<2)+d>>2]=e;b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 6:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;k=F[e+4>>2];while(1){if(b>>>0>=k>>>0){break b}h=F[b+4>>2];e=F[b>>2];if(e- -2147483648>>>0<2147483648?h+1|0:h){break b}F[(g<<2)+d>>2]=e;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 7:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}k=F[b+4>>2];e=F[b>>2];if(!k&e>>>0>2147483647|k){break b}F[(g<<2)+d>>2]=e;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}break a;case 8:d:{e:{e=G[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break e}e=F[a>>2];j=F[e>>2];g=j;f=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=F[e+4>>2];e=f-j|0;if(!G[a+32|0]){j=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=J[g>>2];if(m>=M(2147483648)|m>2]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}j=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=J[g>>2];if(m>=M(2147483648)|mM(1)){break d}e=(b<<2)+d|0;l=R(+m*2147483647+.5);f:{if(N(l)<2147483648){i=~~l;break f}i=-2147483648}F[e>>2]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}j=1;if(c>>>0<=e>>>0){break d}ma((e<<2)+d|0,0,c-e<<2)}return j;case 9:g:{h:{e=G[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break h}e=F[a>>2];j=F[e>>2];g=j;f=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=F[e+4>>2];e=f-j|0;if(!G[a+32|0]){j=0;if((b|0)>=(e|0)){break g}b=0;while(1){l=K[g>>3];if(l>=2147483647|l<-2147483648|l!=l){break g}o=N(l);if(o==Infinity){break g}e=(b<<2)+d|0;if(o<2147483648){i=~~l}else{i=-2147483648}F[e>>2]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}j=0;if((b|0)>=(e|0)){break g}b=0;while(1){l=K[g>>3];if(l>=2147483647|l<-2147483648|(N(l)==Infinity|l!=l)){break g}if(l<0|l>1){break g}e=(b<<2)+d|0;l=R(l*2147483647+.5);i:{if(N(l)<2147483648){i=~~l;break i}i=-2147483648}F[e>>2]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}j=1;if(c>>>0<=e>>>0){break g}ma((e<<2)+d|0,0,c-e<<2)}return j;case 10:break c;default:break b}}e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=G[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}j=1;if(e>>>0>=f>>>0){break b}ma((e<<2)+d|0,0,(c&255)-e<<2)}return j}ma((e<<2)+d|0,0,(c&255)-e<<2);return 1}function zb(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=M(0);a:{b:{if(!d){break b}c:{switch(F[a+28>>2]-1|0){case 0:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){return 0}e=D[b|0];if((e|0)<0){break b}E[(g<<1)+d>>1]=e&255;b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 1:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}E[(g<<1)+d>>1]=G[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 2:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){return 0}e=E[b>>1];if((e|0)<0){break b}E[(g<<1)+d>>1]=e;b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 3:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}E[(g<<1)+d>>1]=H[b>>1];b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 4:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}e=F[b>>2];if(e>>>0>65535){break b}E[(g<<1)+d>>1]=e;b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 5:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}e=F[b>>2];if(e>>>0>65535){break b}E[(g<<1)+d>>1]=e;b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 6:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}k=F[b+4>>2];e=F[b>>2];if(!k&e>>>0>65535|k){break b}E[(g<<1)+d>>1]=e;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 7:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}k=F[b+4>>2];e=F[b>>2];if(!k&e>>>0>65535|k){break b}E[(g<<1)+d>>1]=e;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}break a;case 8:d:{e:{e=G[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break e}e=F[a>>2];l=F[e>>2];g=l;f=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=F[e+4>>2];e=f-l|0;if(!G[a+32|0]){l=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=J[g>>2];if(m>=M(65535)|m=M(0)){i=~~m>>>0}else{i=0}E[e>>1]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}l=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=J[g>>2];if(m>=M(65535)|mM(1)){break d}e=(b<<1)+d|0;j=R(+m*65535+.5);f:{if(j<4294967296&j>=0){i=~~j>>>0;break f}i=0}E[e>>1]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}l=1;if(c>>>0<=e>>>0){break d}ma((e<<1)+d|0,0,c-e<<1)}return l;case 9:g:{h:{e=G[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break h}e=F[a>>2];l=F[e>>2];g=l;f=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=F[e+4>>2];e=f-l|0;if(!G[a+32|0]){l=0;if((b|0)>=(e|0)){break g}b=0;while(1){j=K[g>>3];if(j>=65535|j<0|(N(j)==Infinity|j!=j)){break g}e=(b<<1)+d|0;if(j<4294967296&j>=0){i=~~j>>>0}else{i=0}E[e>>1]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}l=0;if((b|0)>=(e|0)){break g}b=0;while(1){j=K[g>>3];if(j>=65535|j<0|(N(j)==Infinity|j!=j)){break g}if(j>1){break g}e=(b<<1)+d|0;j=R(j*65535+.5);i:{if(j<4294967296&j>=0){i=~~j>>>0;break i}i=0}E[e>>1]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}l=1;if(c>>>0<=e>>>0){break g}ma((e<<1)+d|0,0,c-e<<1)}return l;case 10:break c;default:break b}}e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];k=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+k|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}E[(g<<1)+d>>1]=G[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break b}ma((e<<1)+d|0,0,(c&255)-e<<1)}return l}ma((e<<1)+d|0,0,(c&255)-e<<1);return 1}function Ga(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=M(0),l=0,m=0,n=M(0),o=0;a:{if(!d){break a}b:{c:{switch(F[a+28>>2]-1|0){case 0:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;i=D[b|0];F[e>>2]=i;F[e+4>>2]=i>>31;b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 1:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;F[e>>2]=G[b|0];F[e+4>>2]=0;b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 2:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;i=E[b>>1];F[e>>2]=i;F[e+4>>2]=i>>31;b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 3:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;F[e>>2]=H[b>>1];F[e+4>>2]=0;b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 4:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;i=F[b>>2];F[e>>2]=i;F[e+4>>2]=i>>31;b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 5:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;F[e>>2]=F[b>>2];F[e+4>>2]=0;b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 6:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}i=F[b+4>>2];e=(g<<3)+d|0;F[e>>2]=F[b>>2];F[e+4>>2]=i;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 7:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=F[b>>2];i=F[b+4>>2];if((i|0)<0){break a}j=(g<<3)+d|0;F[j>>2]=e;F[j+4>>2]=i;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 8:d:{e=G[a+24|0];f=c&255;if(!(e>>>0>>0?e:f)){break d}if(G[a+32|0]){break a}e=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);j=b;b=b+e|0;e=F[a>>2];i=F[e+4>>2];e=F[e>>2];if((b|0)>=(i-e|0)){break a}g=b+e|0;h=c&255;b=0;while(1){k=J[g>>2];if(k>=M(0x8000000000000000)|k=M(1)?~~(k>M(0)?M(P(M(R(M(k*M(2.3283064365386963e-10)))),M(4294967296))):M(S(M(M(k-M(~~k>>>0>>>0))*M(2.3283064365386963e-10)))))>>>0:0;m=~~k>>>0;break e}j=-2147483648;m=0}F[e>>2]=m;F[e+4>>2]=j;b=b+1|0;e=G[a+24|0];if(b>>>0>=(e>>>0>>0?e:h)>>>0){break d}g=g+4|0;if(i>>>0>g>>>0){continue}break}break a}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 9:f:{e=G[a+24|0];f=c&255;if(!(e>>>0>>0?e:f)){break f}if(G[a+32|0]){break a}e=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);j=b;b=b+e|0;e=F[a>>2];i=F[e+4>>2];e=F[e>>2];if((b|0)>=(i-e|0)){break a}g=b+e|0;h=c&255;b=0;while(1){l=K[g>>3];if(l>=0x8000000000000000|l<-0x8000000000000000|l!=l){break a}o=N(l);if(o==Infinity){break a}e=(b<<3)+d|0;g:{if(o<0x8000000000000000){j=N(l)>=1?~~(l>0?P(R(l*2.3283064365386963e-10),4294967295):S((l-+(~~l>>>0>>>0))*2.3283064365386963e-10))>>>0:0;m=~~l>>>0;break g}j=-2147483648;m=0}F[e>>2]=m;F[e+4>>2]=j;b=b+1|0;e=G[a+24|0];if(b>>>0>=(e>>>0>>0?e:h)>>>0){break f}g=g+8|0;if(i>>>0>g>>>0){continue}break}break a}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0;break b;case 10:break c;default:break a}}e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);j=b;b=b+i|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break a}e=(g<<3)+d|0;F[e>>2]=G[b|0];F[e+4>>2]=0;b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}if(e>>>0>=f>>>0){break a}d=(e<<3)+d|0;a=(c&255)-e|0}ma(d,0,a<<3)}}function le(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;j=a;a:{b:{c:{d:{e:{f:{g:{h:{a=F[a+8>>2];switch(F[a+28>>2]-1|0){case 4:break c;case 5:break d;case 2:break e;case 3:break f;case 0:break g;case 1:break h;default:break a}}f=G[a+24|0];c=ka(f);a=F[j+16>>2];if(F[a+80>>2]){g=F[F[a>>2]>>2]+F[a+48>>2]|0}else{g=0}if(!b){break b}if(f){o=f&252;l=f&3;h=f>>>0<4;while(1){a=0;e=0;if(!h){while(1){k=g+(d<<2)|0;D[a+c|0]=F[k>>2];D[(a|1)+c|0]=F[k+4>>2];D[(a|2)+c|0]=F[k+8>>2];D[(a|3)+c|0]=F[k+12>>2];a=a+4|0;d=d+4|0;e=e+4|0;if((o|0)!=(e|0)){continue}break}}e=0;if(l){while(1){D[a+c|0]=F[g+(d<<2)>>2];a=a+1|0;d=d+1|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}la(F[F[F[j+8>>2]+64>>2]>>2]+m|0,c,f);m=f+m|0;n=n+1|0;if((n|0)!=(b|0)){continue}break}break b}a=0;if((b|0)!=1){g=b&-2;while(1){la(F[F[F[j+8>>2]+64>>2]>>2]+a|0,c,f);a=a+f|0;la(a+F[F[F[j+8>>2]+64>>2]>>2]|0,c,f);a=a+f|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}}if(!(b&1)){break b}la(F[F[F[j+8>>2]+64>>2]>>2]+a|0,c,f);break b}f=G[a+24|0];c=ka(f);a=F[j+16>>2];if(F[a+80>>2]){g=F[F[a>>2]>>2]+F[a+48>>2]|0}else{g=0}if(!b){break b}if(f){o=f&252;l=f&3;h=f>>>0<4;while(1){a=0;e=0;if(!h){while(1){k=g+(d<<2)|0;D[a+c|0]=F[k>>2];D[(a|1)+c|0]=F[k+4>>2];D[(a|2)+c|0]=F[k+8>>2];D[(a|3)+c|0]=F[k+12>>2];a=a+4|0;d=d+4|0;e=e+4|0;if((o|0)!=(e|0)){continue}break}}e=0;if(l){while(1){D[a+c|0]=F[g+(d<<2)>>2];a=a+1|0;d=d+1|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}la(F[F[F[j+8>>2]+64>>2]>>2]+m|0,c,f);m=f+m|0;n=n+1|0;if((n|0)!=(b|0)){continue}break}break b}a=0;if((b|0)!=1){g=b&-2;while(1){la(F[F[F[j+8>>2]+64>>2]>>2]+a|0,c,f);a=a+f|0;la(a+F[F[F[j+8>>2]+64>>2]>>2]|0,c,f);a=a+f|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}}if(!(b&1)){break b}la(F[F[F[j+8>>2]+64>>2]>>2]+a|0,c,f);break b}h=G[a+24|0];i=h<<1;c=ka(i);a=F[j+16>>2];if(F[a+80>>2]){g=F[F[a>>2]>>2]+F[a+48>>2]|0}else{g=0}if(!b){break b}if(h){o=h&252;l=h&3;h=h>>>0<4;while(1){a=0;e=0;if(!h){while(1){f=a<<1;k=g+(d<<2)|0;E[f+c>>1]=F[k>>2];E[(f|2)+c>>1]=F[k+4>>2];E[(f|4)+c>>1]=F[k+8>>2];E[(f|6)+c>>1]=F[k+12>>2];a=a+4|0;d=d+4|0;e=e+4|0;if((o|0)!=(e|0)){continue}break}}e=0;if(l){while(1){E[(a<<1)+c>>1]=F[g+(d<<2)>>2];a=a+1|0;d=d+1|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}la(F[F[F[j+8>>2]+64>>2]>>2]+n|0,c,i);n=i+n|0;m=m+1|0;if((m|0)!=(b|0)){continue}break}break b}a=0;if((b|0)!=1){g=b&-2;while(1){la(F[F[F[j+8>>2]+64>>2]>>2]+a|0,c,i);a=a+i|0;la(a+F[F[F[j+8>>2]+64>>2]>>2]|0,c,i);a=a+i|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}}if(!(b&1)){break b}la(F[F[F[j+8>>2]+64>>2]>>2]+a|0,c,i);break b}h=G[a+24|0];i=h<<1;c=ka(i);a=F[j+16>>2];if(F[a+80>>2]){g=F[F[a>>2]>>2]+F[a+48>>2]|0}else{g=0}if(!b){break b}if(h){o=h&252;l=h&3;h=h>>>0<4;while(1){a=0;e=0;if(!h){while(1){f=a<<1;k=g+(d<<2)|0;E[f+c>>1]=F[k>>2];E[(f|2)+c>>1]=F[k+4>>2];E[(f|4)+c>>1]=F[k+8>>2];E[(f|6)+c>>1]=F[k+12>>2];a=a+4|0;d=d+4|0;e=e+4|0;if((o|0)!=(e|0)){continue}break}}e=0;if(l){while(1){E[(a<<1)+c>>1]=F[g+(d<<2)>>2];a=a+1|0;d=d+1|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}la(F[F[F[j+8>>2]+64>>2]>>2]+n|0,c,i);n=i+n|0;m=m+1|0;if((m|0)!=(b|0)){continue}break}break b}a=0;if((b|0)!=1){g=b&-2;while(1){la(F[F[F[j+8>>2]+64>>2]>>2]+a|0,c,i);a=a+i|0;la(a+F[F[F[j+8>>2]+64>>2]>>2]|0,c,i);a=a+i|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}}if(!(b&1)){break b}la(F[F[F[j+8>>2]+64>>2]>>2]+a|0,c,i);break b}h=G[a+24|0];i=h<<2;c=ka(i);a=F[j+16>>2];if(F[a+80>>2]){g=F[F[a>>2]>>2]+F[a+48>>2]|0}else{g=0}if(!b){break b}if(h){o=h&252;l=h&3;h=h>>>0<4;while(1){a=0;e=0;if(!h){while(1){f=a<<2;k=g+(d<<2)|0;F[f+c>>2]=F[k>>2];F[(f|4)+c>>2]=F[k+4>>2];F[(f|8)+c>>2]=F[k+8>>2];F[(f|12)+c>>2]=F[k+12>>2];a=a+4|0;d=d+4|0;e=e+4|0;if((o|0)!=(e|0)){continue}break}}e=0;if(l){while(1){F[(a<<2)+c>>2]=F[g+(d<<2)>>2];a=a+1|0;d=d+1|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}la(F[F[F[j+8>>2]+64>>2]>>2]+n|0,c,i);n=i+n|0;m=m+1|0;if((m|0)!=(b|0)){continue}break}break b}a=0;if((b|0)!=1){g=b&-2;while(1){la(F[F[F[j+8>>2]+64>>2]>>2]+a|0,c,i);a=a+i|0;la(a+F[F[F[j+8>>2]+64>>2]>>2]|0,c,i);a=a+i|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}}if(!(b&1)){break b}la(F[F[F[j+8>>2]+64>>2]>>2]+a|0,c,i);break b}h=G[a+24|0];i=h<<2;c=ka(i);a=F[j+16>>2];if(F[a+80>>2]){g=F[F[a>>2]>>2]+F[a+48>>2]|0}else{g=0}if(!b){break b}if(h){o=h&252;l=h&3;h=h>>>0<4;while(1){a=0;e=0;if(!h){while(1){f=a<<2;k=g+(d<<2)|0;F[f+c>>2]=F[k>>2];F[(f|4)+c>>2]=F[k+4>>2];F[(f|8)+c>>2]=F[k+8>>2];F[(f|12)+c>>2]=F[k+12>>2];a=a+4|0;d=d+4|0;e=e+4|0;if((o|0)!=(e|0)){continue}break}}e=0;if(l){while(1){F[(a<<2)+c>>2]=F[g+(d<<2)>>2];a=a+1|0;d=d+1|0;e=e+1|0;if((l|0)!=(e|0)){continue}break}}la(F[F[F[j+8>>2]+64>>2]>>2]+n|0,c,i);n=i+n|0;m=m+1|0;if((m|0)!=(b|0)){continue}break}break b}a=0;if((b|0)!=1){g=b&-2;while(1){la(F[F[F[j+8>>2]+64>>2]>>2]+a|0,c,i);a=a+i|0;la(a+F[F[F[j+8>>2]+64>>2]>>2]|0,c,i);a=a+i|0;d=d+2|0;if((g|0)!=(d|0)){continue}break}}if(!(b&1)){break b}la(F[F[F[j+8>>2]+64>>2]>>2]+a|0,c,i)}ja(c);c=1}return c|0}function xb(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=M(0);a:{b:{if(!d){break b}c:{switch(F[a+28>>2]-1|0){case 0:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];l=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=D[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 1:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];l=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=G[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 2:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];l=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=E[b>>1];b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 3:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];l=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=H[b>>1];b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 4:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];l=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=F[b>>2];b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 5:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];l=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=F[b>>2];b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 6:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];l=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}e=F[b>>2];if(F[b+4>>2]){break b}F[(g<<2)+d>>2]=e;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 7:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];l=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}e=F[b>>2];if(F[b+4>>2]){break b}F[(g<<2)+d>>2]=e;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 8:d:{e:{e=G[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break e}e=F[a>>2];k=F[e>>2];g=k;f=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=F[e+4>>2];e=f-k|0;if(!G[a+32|0]){k=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=J[g>>2];if(m>=M(4294967296)|m=M(0)){i=~~m>>>0}else{i=0}F[e>>2]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}k=0;if((b|0)>=(e|0)){break d}b=0;while(1){m=J[g>>2];if(m>=M(4294967296)|mM(1)){break d}e=(b<<2)+d|0;j=R(+m*4294967295+.5);f:{if(j<4294967296&j>=0){i=~~j>>>0;break f}i=0}F[e>>2]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break e}g=g+4|0;if(f>>>0>g>>>0){continue}break}break d}k=1;if(c>>>0<=e>>>0){break d}ma((e<<2)+d|0,0,c-e<<2)}return k;case 9:g:{h:{e=G[a+24|0];c=c&255;if(!(c>>>0>e>>>0?e:c)){break h}e=F[a>>2];k=F[e>>2];g=k;f=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+f|0;g=b+g|0;f=F[e+4>>2];e=f-k|0;if(!G[a+32|0]){k=0;if((b|0)>=(e|0)){break g}b=0;while(1){j=K[g>>3];if(j>=4294967295|j<0|(N(j)==Infinity|j!=j)){break g}e=(b<<2)+d|0;if(j<4294967296&j>=0){i=~~j>>>0}else{i=0}F[e>>2]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}k=0;if((b|0)>=(e|0)){break g}b=0;while(1){j=K[g>>3];if(j>=4294967295|j<0|(N(j)==Infinity|j!=j)){break g}if(j>1){break g}e=(b<<2)+d|0;j=R(j*4294967295+.5);i:{if(j<4294967296&j>=0){i=~~j>>>0;break i}i=0}F[e>>2]=i;b=b+1|0;e=G[a+24|0];if(b>>>0>=(c>>>0>e>>>0?e:c)>>>0){break h}g=g+8|0;if(f>>>0>g>>>0){continue}break}break g}k=1;if(c>>>0<=e>>>0){break g}ma((e<<2)+d|0,0,c-e<<2)}return k;case 10:break c;default:break b}}e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];h=F[e>>2];l=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);i=b;b=b+l|0;b=b+h|0;h=F[e+4>>2];while(1){if(b>>>0>=h>>>0){break b}F[(g<<2)+d>>2]=G[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}ma((e<<2)+d|0,0,(c&255)-e<<2)}return k}ma((e<<2)+d|0,0,(c&255)-e<<2);return 1}function rd(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;a:{b:{c:{d:{e:{if(F[a+92>>2]==F[a+88>>2]){break e}c=F[a+52>>2];f:{if((c|0)!=F[a+56>>2]){F[c>>2]=b;F[a+52>>2]=c+4;break f}h=F[a+48>>2];g=c-h|0;d=g>>2;f=d+1|0;if(f>>>0>=1073741824){break a}e=g>>>1|0;g=g>>>0>=2147483644?1073741823:f>>>0>>0?e:f;if(g){if(g>>>0>=1073741824){break d}e=ka(g<<2)}else{e=0}f=e+(d<<2)|0;F[f>>2]=b;d=f+4|0;if((c|0)!=(h|0)){while(1){f=f-4|0;c=c-4|0;F[f>>2]=F[c>>2];if((c|0)!=(h|0)){continue}break}}F[a+56>>2]=e+(g<<2);F[a+52>>2]=d;F[a+48>>2]=f;if(!h){break f}ja(h)}F[a+84>>2]=0;c=-1;e=-1;g:{if((b|0)==-1){break g}d=F[a+4>>2];e=b+1|0;e=(e>>>0)%3|0?e:b-2|0;if((e|0)!=-1){c=F[F[d>>2]+(e<<2)>>2]}h:{if((b>>>0)%3|0){l=b-1|0;break h}l=b+2|0;e=-1;if((l|0)==-1){break g}}e=F[F[d>>2]+(l<<2)>>2]}i=e>>>3&536870908;d=F[a+36>>2];h=d+(c>>>3&536870908)|0;g=F[h>>2];f=1<>2]=f|g;f=a+8|0;if((b|0)!=-1){d=b+1|0;d=(d>>>0)%3|0?d:b-2|0}else{d=-1}Ka(f,c,d);d=F[a+36>>2]}f=d+i|0;d=F[f>>2];c=1<>2]=c|d;d=a+8|0;c=-1;i:{if((b|0)==-1){break i}c=b-1|0;if((b>>>0)%3|0){break i}c=b+2|0}Ka(d,e,c)}c=-1;c=(b|0)!=-1?F[F[F[a+4>>2]>>2]+(b<<2)>>2]:c;f=F[a+36>>2]+(c>>>3&536870908)|0;d=F[f>>2];e=1<>2]=d|e;Ka(a+8|0,c,b)}d=F[a+84>>2];if((d|0)>2){break e}while(1){e=L(d,12)+a|0;b=F[e+52>>2];if((b|0)==F[e+48>>2]){d=d+1|0;if((d|0)!=3){continue}break e}b=b-4|0;c=F[b>>2];F[e+52>>2]=b;F[a+84>>2]=d;if((c|0)==-1){break e}f=F[a+24>>2];b=(c>>>0)/3|0;j:{if(F[f+(b>>>3&268435452)>>2]>>>b&1){break j}k:{while(1){k=(c>>>0)/3|0;b=(k>>>3&268435452)+f|0;F[b>>2]=F[b>>2]|1<>2]>>2]+(c<<2)>>2]:d;f=F[a+36>>2]+(d>>>3&536870908)|0;e=F[f>>2];b=1<>2]=b|e;i=F[(F[F[a+16>>2]+96>>2]+L(k,12)|0)+((c>>>0)%3<<2)>>2];l=F[F[a+20>>2]+4>>2];f=F[l+4>>2];t:{if((f|0)!=F[l+8>>2]){F[f>>2]=i;F[l+4>>2]=f+4;break t}j=F[l>>2];h=f-j|0;g=h>>2;e=g+1|0;if(e>>>0>=1073741824){break s}b=h>>>1|0;h=h>>>0>=2147483644?1073741823:b>>>0>e>>>0?b:e;if(h){if(h>>>0>=1073741824){break d}e=ka(h<<2)}else{e=0}b=e+(g<<2)|0;F[b>>2]=i;g=b+4|0;if((f|0)!=(j|0)){while(1){b=b-4|0;f=f-4|0;F[b>>2]=F[f>>2];if((f|0)!=(j|0)){continue}break}}F[l+8>>2]=e+(h<<2);F[l+4>>2]=g;F[l>>2]=b;if(!j){break t}ja(j)}j=F[a+12>>2];f=F[j+4>>2];u:{if((f|0)!=F[j+8>>2]){F[f>>2]=c;F[j+4>>2]=f+4;break u}i=F[j>>2];h=f-i|0;g=h>>2;e=g+1|0;if(e>>>0>=1073741824){break r}b=h>>>1|0;h=h>>>0>=2147483644?1073741823:b>>>0>e>>>0?b:e;if(h){if(h>>>0>=1073741824){break d}e=ka(h<<2)}else{e=0}b=e+(g<<2)|0;F[b>>2]=c;g=b+4|0;if((f|0)!=(i|0)){while(1){b=b-4|0;f=f-4|0;F[b>>2]=F[f>>2];if((f|0)!=(i|0)){continue}break}}F[j+8>>2]=e+(h<<2);F[j+4>>2]=g;F[j>>2]=b;if(!i){break u}ja(i)}b=F[a+12>>2];F[F[b+12>>2]+(d<<2)>>2]=F[b+24>>2];F[b+24>>2]=F[b+24>>2]+1}if((c|0)==-1){break k}g=F[a+4>>2];f=-1;b=c+1|0;b=(b>>>0)%3|0?b:c-2|0;if((b|0)!=-1){f=F[F[g+12>>2]+(b<<2)>>2]}v:{w:{if((L(k,3)|0)!=(c|0)){d=c-1|0;break w}d=c+2|0;c=-1;if((d|0)==-1){break v}}c=F[F[g+12>>2]+(d<<2)>>2]}d=(c|0)==-1;e=(c>>>0)/3|0;if((f|0)!=-1){b=(f>>>0)/3|0;b=F[F[a+24>>2]+(b>>>3&268435452)>>2]&1<>2]+(b>>>3&536870908)>>2]>>>b&1){break x}k=0;b=F[F[g>>2]+(c<<2)>>2];if(!(F[F[a+36>>2]+(b>>>3&536870908)>>2]>>>b&1)){b=F[a+88>>2]+(b<<2)|0;e=F[b>>2];F[b>>2]=e+1;k=(e|0)<=0?2:1}if(F[a+84>>2]>=(k|0)&l){break m}j=L(k,12)+a|0;b=F[j+52>>2];y:{if((b|0)!=F[j+56>>2]){F[b>>2]=c;F[j+52>>2]=b+4;break y}i=F[j+48>>2];h=b-i|0;d=h>>2;g=d+1|0;if(g>>>0>=1073741824){break c}e=h>>>1|0;g=h>>>0>=2147483644?1073741823:e>>>0>g>>>0?e:g;if(g){if(g>>>0>=1073741824){break d}e=ka(g<<2)}else{e=0}d=e+(d<<2)|0;F[d>>2]=c;c=d+4|0;if((b|0)!=(i|0)){while(1){d=d-4|0;b=b-4|0;F[d>>2]=F[b>>2];if((b|0)!=(i|0)){continue}break}}F[j+48>>2]=d;F[j+52>>2]=c;F[j+56>>2]=e+(g<<2);if(!i){break y}ja(i)}if(F[a+84>>2]<=(k|0)){break x}F[a+84>>2]=k}if(l){break k}c=-1;if((f|0)==-1){break n}}c=F[F[F[a+4>>2]>>2]+(f<<2)>>2]}b=0;if(!(F[F[a+36>>2]+(c>>>3&536870908)>>2]>>>c&1)){b=F[a+88>>2]+(c<<2)|0;c=F[b>>2];F[b>>2]=c+1;b=(c|0)<=0?2:1}if(F[a+84>>2]<(b|0)){break l}c=f}f=F[a+24>>2];continue}break}k=L(b,12)+a|0;c=F[k+52>>2];z:{if((c|0)!=F[k+56>>2]){F[c>>2]=f;F[k+52>>2]=c+4;break z}i=F[k+48>>2];h=c-i|0;d=h>>2;g=d+1|0;if(g>>>0>=1073741824){break b}e=h>>>1|0;g=h>>>0>=2147483644?1073741823:e>>>0>g>>>0?e:g;if(g){if(g>>>0>=1073741824){break d}e=ka(g<<2)}else{e=0}d=e+(d<<2)|0;F[d>>2]=f;f=d+4|0;if((c|0)!=(i|0)){while(1){d=d-4|0;c=c-4|0;F[d>>2]=F[c>>2];if((c|0)!=(i|0)){continue}break}}F[k+48>>2]=d;F[k+52>>2]=f;F[k+56>>2]=e+(g<<2);if(!i){break z}ja(i)}d=F[a+84>>2];if((d|0)<=(b|0)){break j}F[a+84>>2]=b;d=b;break j}d=F[a+84>>2]}if((d|0)<3){continue}break}}return 1}oa();v()}na();v()}na();v()}na();v()}function Mc(a){var b=0,c=0,d=0,e=0,f=0,g=0;e=Z-16|0;Z=e;F[e+12>>2]=a;a:{if(a>>>0<=211){d=F[Lc(10352,10544,e+12|0)>>2];break a}if(a>>>0>=4294967292){V();v()}f=(a>>>0)/210|0;d=L(f,210);F[e+8>>2]=a-d;g=Lc(10544,10736,e+8|0)-10544>>2;while(1){d=F[(g<<2)+10544>>2]+d|0;a=5;while(1){b:{if((a|0)==47){a=211;while(1){b=(d>>>0)/(a>>>0)|0;if(b>>>0>>0){break a}if((L(a,b)|0)==(d|0)){break b}b=a+10|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+12|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+16|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+18|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+22|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+28|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+30|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+36|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+40|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+42|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+46|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+52|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+58|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+60|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+66|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+70|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+72|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+78|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+82|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+88|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+96|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+100|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+102|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+106|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+108|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+112|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+120|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+126|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+130|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+136|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+138|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+142|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+148|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+150|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+156|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+162|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+166|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+168|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+172|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+178|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+180|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+186|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+190|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+192|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+196|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+198|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}if((L(b,c)|0)==(d|0)){break b}b=a+208|0;c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}a=a+210|0;if((L(b,c)|0)!=(d|0)){continue}break}break b}b=F[(a<<2)+10352>>2];c=(d>>>0)/(b>>>0)|0;if(b>>>0>c>>>0){break a}a=a+1|0;if((L(b,c)|0)!=(d|0)){continue}}break}d=g+1|0;a=(d|0)==48;g=a?0:d;f=a+f|0;d=L(f,210);continue}}Z=e+16|0;return d}function lb(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=M(0),k=0,l=0;a:{if(!d){break a}b:{c:{switch(F[a+28>>2]-1|0){case 0:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];g=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=F[e+4>>2];i=G[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=M(D[b|0]);J[(h<<2)+d>>2]=i?M(j/M(127)):j;b=b+1|0;h=h+1|0;e=G[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 1:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];g=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=F[e+4>>2];i=G[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=M(G[b|0]);J[(h<<2)+d>>2]=i?M(j/M(255)):j;b=b+1|0;h=h+1|0;e=G[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 2:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];g=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=F[e+4>>2];i=G[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=M(E[b>>1]);J[(h<<2)+d>>2]=i?M(j/M(32767)):j;b=b+2|0;h=h+1|0;e=G[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 3:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];g=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=F[e+4>>2];i=G[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=M(H[b>>1]);J[(h<<2)+d>>2]=i?M(j/M(65535)):j;b=b+2|0;h=h+1|0;e=G[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 4:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];g=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=F[e+4>>2];i=G[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=M(F[b>>2]);J[(h<<2)+d>>2]=i?M(j*M(4.656612873077393e-10)):j;b=b+4|0;h=h+1|0;e=G[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 5:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];g=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=F[e+4>>2];i=G[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=M(I[b>>2]);J[(h<<2)+d>>2]=i?M(j*M(2.3283064365386963e-10)):j;b=b+4|0;h=h+1|0;e=G[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 6:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];g=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=F[e+4>>2];i=G[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=M(+I[b>>2]+ +F[b+4>>2]*4294967296);J[(h<<2)+d>>2]=i?M(j*M(10842021724855044e-35)):j;b=b+8|0;h=h+1|0;e=G[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 7:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];g=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=F[e+4>>2];i=G[a+32|0];while(1){if(b>>>0>=g>>>0){break a}j=M(+I[b>>2]+ +I[b+4>>2]*4294967296);J[(h<<2)+d>>2]=i?M(j*M(5.421010862427522e-20)):j;b=b+8|0;h=h+1|0;e=G[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 8:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];g=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=F[e+4>>2];while(1){if(b>>>0>=g>>>0){break a}J[(h<<2)+d>>2]=J[b>>2];b=b+4|0;h=h+1|0;e=G[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 9:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];g=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=F[e+4>>2];while(1){if(b>>>0>=g>>>0){break a}J[(h<<2)+d>>2]=K[b>>3];b=b+8|0;h=h+1|0;e=G[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0;break b;case 10:break c;default:break a}}e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[a>>2];g=F[e>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);k=b;b=b+i|0;b=b+g|0;g=F[e+4>>2];while(1){if(b>>>0>=g>>>0){break a}J[(h<<2)+d>>2]=G[b|0]?M(1):M(0);b=b+1|0;h=h+1|0;e=G[a+24|0];if(h>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}l=1;if(e>>>0>=f>>>0){break a}d=(e<<2)+d|0;a=(c&255)-e|0}ma(d,0,a<<2)}return l}function Cb(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=M(0),m=M(0);a:{b:{if(!d){break b}c:{switch(F[a+28>>2]-1|0){case 0:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}D[d+g|0]=G[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 1:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){return 0}e=D[b|0];if((e|0)<0){break b}D[d+g|0]=e;b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 2:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}e=H[b>>1];if((e+128&65535)>>>0>255){break b}D[d+g|0]=e;b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 3:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}e=H[b>>1];if(e>>>0>127){break b}D[d+g|0]=e;b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 4:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}e=F[b>>2];if(e+128>>>0>255){break b}D[d+g|0]=e;b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 5:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}e=F[b>>2];if(e>>>0>127){break b}D[d+g|0]=e;b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 6:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}i=F[b+4>>2];e=F[b>>2];h=e+128|0;i=h>>>0<128?i+1|0:i;if(!i&h>>>0>255|i){break b}D[d+g|0]=e;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 7:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}i=F[b+4>>2];e=F[b>>2];if(!i&e>>>0>127|i){break b}D[d+g|0]=e;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 8:e=G[a+24|0];c=c&255;d:{if(c>>>0>e>>>0?e:c){e=F[F[a>>2]>>2];f=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+f|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break d}l=J[b>>2];if(l>=M(127)|lM(1)){break d}j=R(+l*127+.5);if(!(N(j)<2147483648)){break f}h=~~j;break e}if(!(m>>0<(c>>>0>e>>>0?e:c)>>>0){continue}break}}k=1;if(c>>>0<=e>>>0){break d}ma(d+e|0,0,c-e|0)}return k;case 9:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}j=K[b>>3];if(j>=127|j<-128|(N(j)==Infinity|j!=j)){break b}e=d+g|0;if(G[a+32|0]){if(j<0|j>1){break b}j=R(j*127+.5)}g:{if(N(j)<2147483648){h=~~j;break g}h=-2147483648}D[e|0]=h;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 10:break c;default:break b}}e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}D[d+g|0]=G[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}ma(d+e|0,0,(c&255)-e|0)}return k}ma(d+e|0,0,(c&255)-e|0);return 1}function Bb(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=M(0);a:{b:{if(!d){break b}c:{switch(F[a+28>>2]-1|0){case 0:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){return 0}e=D[b|0];if((e|0)<0){break b}D[d+g|0]=e;b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 1:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}D[d+g|0]=G[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 2:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}e=H[b>>1];if(e>>>0>255){break b}D[d+g|0]=e;b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 3:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}e=H[b>>1];if(e>>>0>255){break b}D[d+g|0]=e;b=b+2|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 4:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}e=F[b>>2];if(e>>>0>255){break b}D[d+g|0]=e;b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 5:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}e=F[b>>2];if(e>>>0>255){break b}D[d+g|0]=e;b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 6:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}i=F[b+4>>2];e=F[b>>2];if(!i&e>>>0>255|i){break b}D[d+g|0]=e;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 7:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}i=F[b+4>>2];e=F[b>>2];if(!i&e>>>0>255|i){break b}D[d+g|0]=e;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 8:e=G[a+24|0];c=c&255;d:{if(c>>>0>e>>>0?e:c){e=F[F[a>>2]>>2];f=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+f|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break d}l=J[b>>2];if(l>=M(255)|lM(1)){break d}j=R(+l*255+.5);if(!(j<4294967296&j>=0)){break f}h=~~j>>>0;break e}if(!(l=M(0))){break f}h=~~l>>>0;break e}h=0}D[e|0]=h;b=b+4|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(c>>>0>e>>>0?e:c)>>>0){continue}break}}k=1;if(c>>>0<=e>>>0){break d}ma(d+e|0,0,c-e|0)}return k;case 9:e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}j=K[b>>3];if(j>=255|j<0|(N(j)==Infinity|j!=j)){break b}e=d+g|0;if(G[a+32|0]){if(j>1){break b}j=R(j*255+.5)}g:{if(j<4294967296&j>=0){h=~~j>>>0;break g}h=0}D[e|0]=h;b=b+8|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}break a;case 10:break c;default:break b}}e=G[a+24|0];f=c&255;if(e>>>0>>0?e:f){e=F[F[a>>2]>>2];i=F[a+48>>2];b=ki(F[a+40>>2],F[a+44>>2],b,0);h=b;b=b+i|0;b=b+e|0;while(1){if(I[F[a>>2]+4>>2]<=b>>>0){break b}D[d+g|0]=G[b|0];b=b+1|0;g=g+1|0;e=G[a+24|0];if(g>>>0<(e>>>0>>0?e:f)>>>0){continue}break}}k=1;if(e>>>0>=f>>>0){break b}ma(d+e|0,0,(c&255)-e|0)}return k}ma(d+e|0,0,(c&255)-e|0);return 1}function jc(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0;e=Z-48|0;Z=e;f=H[5053]|H[5054]<<16;d=H[5051]|H[5052]<<16;E[e+38>>1]=d;E[e+40>>1]=d>>>16;E[e+42>>1]=f;E[e+44>>1]=f>>>16;d=F[2525];F[e+32>>2]=F[2524];F[e+36>>2]=d;d=F[2523];F[e+24>>2]=F[2522];F[e+28>>2]=d;d=F[2521];F[e+16>>2]=F[2520];F[e+20>>2]=d;g=F[b+8>>2];i=F[b+12>>2];h=F[b+20>>2];d=F[b+16>>2];f=d+5|0;h=f>>>0<5?h+1|0:h;a:{b:{if(g>>>0>>0&(h|0)>=(i|0)|(h|0)>(i|0)){d=ya(e+16|0);if(d>>>0>=2147483632){break a}c:{d:{if(d>>>0>=11){b=(d|15)+1|0;c=ka(b);F[e+8>>2]=b|-2147483648;F[e>>2]=c;F[e+4>>2]=d;b=c+d|0;break d}D[e+11|0]=d;b=d+e|0;c=e;if(!d){break c}}la(c,e+16|0,d)}D[b|0]=0;F[a>>2]=-2;b=a+4|0;if(D[e+11|0]>=0){a=F[e+4>>2];F[b>>2]=F[e>>2];F[b+4>>2]=a;F[b+8>>2]=F[e+8>>2];break b}ra(b,F[e>>2],F[e+4>>2]);if(D[e+11|0]>=0){break b}ja(F[e>>2]);break b}f=d+F[b>>2]|0;d=G[f|0]|G[f+1|0]<<8|(G[f+2|0]<<16|G[f+3|0]<<24);D[c|0]=d;D[c+1|0]=d>>>8;D[c+2|0]=d>>>16;D[c+3|0]=d>>>24;D[c+4|0]=G[f+4|0];d=F[b+20>>2];f=F[b+16>>2]+5|0;d=f>>>0<5?d+1|0:d;F[b+16>>2]=f;F[b+20>>2]=d;if(sa(c,1250,5)){d=ka(32);D[d+17|0]=0;D[d+16|0]=G[1494];c=G[1490]|G[1491]<<8|(G[1492]<<16|G[1493]<<24);b=G[1486]|G[1487]<<8|(G[1488]<<16|G[1489]<<24);D[d+8|0]=b;D[d+9|0]=b>>>8;D[d+10|0]=b>>>16;D[d+11|0]=b>>>24;D[d+12|0]=c;D[d+13|0]=c>>>8;D[d+14|0]=c>>>16;D[d+15|0]=c>>>24;c=G[1482]|G[1483]<<8|(G[1484]<<16|G[1485]<<24);b=G[1478]|G[1479]<<8|(G[1480]<<16|G[1481]<<24);D[d|0]=b;D[d+1|0]=b>>>8;D[d+2|0]=b>>>16;D[d+3|0]=b>>>24;D[d+4|0]=c;D[d+5|0]=c>>>8;D[d+6|0]=c>>>16;D[d+7|0]=c>>>24;F[a>>2]=-1;ra(a+4|0,d,17);ja(d);break b}g=F[b+12>>2];if((g|0)<=(d|0)&I[b+8>>2]<=f>>>0|(d|0)>(g|0)){d=ya(e+16|0);if(d>>>0>=2147483632){break a}e:{f:{if(d>>>0>=11){b=(d|15)+1|0;c=ka(b);F[e+8>>2]=b|-2147483648;F[e>>2]=c;F[e+4>>2]=d;b=c+d|0;break f}D[e+11|0]=d;b=d+e|0;c=e;if(!d){break e}}la(c,e+16|0,d)}D[b|0]=0;F[a>>2]=-2;b=a+4|0;if(D[e+11|0]>=0){a=F[e+4>>2];F[b>>2]=F[e>>2];F[b+4>>2]=a;F[b+8>>2]=F[e+8>>2];break b}ra(b,F[e>>2],F[e+4>>2]);if(D[e+11|0]>=0){break b}ja(F[e>>2]);break b}D[c+5|0]=G[f+F[b>>2]|0];g=F[b+20>>2];d=F[b+16>>2]+1|0;g=d?g:g+1|0;F[b+16>>2]=d;F[b+20>>2]=g;f=F[b+12>>2];if((f|0)<=(g|0)&I[b+8>>2]<=d>>>0|(g|0)>(f|0)){d=ya(e+16|0);if(d>>>0>=2147483632){break a}g:{h:{if(d>>>0>=11){b=(d|15)+1|0;c=ka(b);F[e+8>>2]=b|-2147483648;F[e>>2]=c;F[e+4>>2]=d;b=c+d|0;break h}D[e+11|0]=d;b=d+e|0;c=e;if(!d){break g}}la(c,e+16|0,d)}D[b|0]=0;F[a>>2]=-2;b=a+4|0;if(D[e+11|0]>=0){a=F[e+4>>2];F[b>>2]=F[e>>2];F[b+4>>2]=a;F[b+8>>2]=F[e+8>>2];break b}ra(b,F[e>>2],F[e+4>>2]);if(D[e+11|0]>=0){break b}ja(F[e>>2]);break b}D[c+6|0]=G[d+F[b>>2]|0];h=F[b+20>>2];d=F[b+16>>2]+1|0;h=d?h:h+1|0;F[b+16>>2]=d;F[b+20>>2]=h;f=F[b+12>>2];if((f|0)<=(h|0)&I[b+8>>2]<=d>>>0|(f|0)<(h|0)){d=ya(e+16|0);if(d>>>0>=2147483632){break a}i:{j:{if(d>>>0>=11){b=(d|15)+1|0;c=ka(b);F[e+8>>2]=b|-2147483648;F[e>>2]=c;F[e+4>>2]=d;b=c+d|0;break j}D[e+11|0]=d;b=d+e|0;c=e;if(!d){break i}}la(c,e+16|0,d)}D[b|0]=0;F[a>>2]=-2;b=a+4|0;if(D[e+11|0]>=0){a=F[e+4>>2];F[b>>2]=F[e>>2];F[b+4>>2]=a;F[b+8>>2]=F[e+8>>2];break b}ra(b,F[e>>2],F[e+4>>2]);if(D[e+11|0]>=0){break b}ja(F[e>>2]);break b}D[c+7|0]=G[d+F[b>>2]|0];g=F[b+20>>2];d=F[b+16>>2]+1|0;g=d?g:g+1|0;F[b+16>>2]=d;F[b+20>>2]=g;f=F[b+12>>2];if((f|0)<=(g|0)&I[b+8>>2]<=d>>>0|(g|0)>(f|0)){c=Eb(e,e+16|0);F[a>>2]=-2;b=a+4|0;if(D[c+11|0]>=0){a=F[c+4>>2];F[b>>2]=F[c>>2];F[b+4>>2]=a;F[b+8>>2]=F[c+8>>2];break b}ra(b,F[c>>2],F[c+4>>2]);if(D[c+11|0]>=0){break b}ja(F[c>>2]);break b}D[c+8|0]=G[d+F[b>>2]|0];d=F[b+20>>2];g=F[b+16>>2];f=g+1|0;i=f?d:d+1|0;F[b+16>>2]=f;F[b+20>>2]=i;i=F[b+8>>2];h=F[b+12>>2];g=g+3|0;d=g>>>0<3?d+1|0:d;if(g>>>0>i>>>0&(d|0)>=(h|0)|(d|0)>(h|0)){c=Eb(e,e+16|0);F[a>>2]=-2;b=a+4|0;if(D[c+11|0]>=0){a=F[c+4>>2];F[b>>2]=F[c>>2];F[b+4>>2]=a;F[b+8>>2]=F[c+8>>2];break b}ra(b,F[c>>2],F[c+4>>2]);if(D[c+11|0]>=0){break b}ja(F[c>>2]);break b}d=c;c=F[b>>2]+f|0;E[d+10>>1]=G[c|0]|G[c+1|0]<<8;g=F[b+20>>2];c=F[b+16>>2]+2|0;g=c>>>0<2?g+1|0:g;F[b+16>>2]=c;F[b+20>>2]=g;F[a+8>>2]=0;F[a+12>>2]=0;F[a>>2]=0;F[a+4>>2]=0}Z=e+48|0;return}za();v()}function Mb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0;e=Z-96|0;Z=e;f=F[a+16>>2];D[e+92|0]=1;F[e+88>>2]=b;F[e+84>>2]=b;F[e+80>>2]=f;j=F[a+20>>2];d=F[j>>2];a:{b:{f=F[F[f+28>>2]+(b<<2)>>2];if(f>>>0>2]-d>>2>>>0){d=F[F[a+8>>2]+(F[d+(f<<2)>>2]<<2)>>2];f=F[a+4>>2];if(!G[f+84|0]){d=F[F[f+68>>2]+(d<<2)>>2]}F[e+72>>2]=0;F[e+76>>2]=0;j=e- -64|0;F[j>>2]=0;F[j+4>>2]=0;F[e+56>>2]=0;F[e+60>>2]=0;Ga(f,d,D[f+24|0],e+56|0);if((b|0)!=-1){f=b+1|0;j=(f>>>0)%3|0?f:b-2|0;m=((b>>>0)%3|0?-1:2)+b|0;while(1){d=j;f=m;c:{if(!F[a+28>>2]){break c}f=b+1|0;d=(f>>>0)%3|0?f:b-2|0;f=b-1|0;if((b>>>0)%3|0){break c}f=b+2|0}n=F[a+20>>2];b=F[n>>2];d=F[F[F[a+16>>2]+28>>2]+(d<<2)>>2];if(d>>>0>=F[n+4>>2]-b>>2>>>0){break b}d=F[F[a+8>>2]+(F[b+(d<<2)>>2]<<2)>>2];b=F[a+4>>2];if(!G[b+84|0]){d=F[F[b+68>>2]+(d<<2)>>2]}F[e+48>>2]=0;F[e+52>>2]=0;F[e+40>>2]=0;F[e+44>>2]=0;F[e+32>>2]=0;F[e+36>>2]=0;Ga(b,d,D[b+24|0],e+32|0);d=F[a+20>>2];b=F[d>>2];f=F[F[F[a+16>>2]+28>>2]+(f<<2)>>2];if(f>>>0>=F[d+4>>2]-b>>2>>>0){break a}d=F[F[a+8>>2]+(F[b+(f<<2)>>2]<<2)>>2];b=F[a+4>>2];if(!G[b+84|0]){d=F[F[b+68>>2]+(d<<2)>>2]}F[e+24>>2]=0;F[e+28>>2]=0;F[e+16>>2]=0;F[e+20>>2]=0;F[e+8>>2]=0;F[e+12>>2]=0;Ga(b,d,D[b+24|0],e+8|0);g=F[e+8>>2];b=F[e+56>>2];d=g-b|0;p=F[e+60>>2];t=F[e+12>>2]-(p+(b>>>0>g>>>0)|0)|0;h=F[e+40>>2];f=F[e+64>>2];n=h-f|0;u=F[e+68>>2];y=F[e+44>>2]-(u+(f>>>0>h>>>0)|0)|0;g=ki(d,t,n,y);w=o-g|0;x=i-(_+(g>>>0>o>>>0)|0)|0;i=w;h=F[e+16>>2];g=h-f|0;u=F[e+20>>2]-((f>>>0>h>>>0)+u|0)|0;k=F[e+32>>2];h=k-b|0;w=F[e+36>>2]-((b>>>0>k>>>0)+p|0)|0;b=ki(g,u,h,w);o=i+b|0;i=_+x|0;i=b>>>0>o>>>0?i+1|0:i;b=l;l=d;p=t;k=F[e+48>>2];f=F[e+72>>2];d=k-f|0;t=F[e+76>>2];x=F[e+52>>2]-(t+(f>>>0>k>>>0)|0)|0;l=ki(l,p,d,x);k=b+l|0;b=_+q|0;b=k>>>0>>0?b+1|0:b;l=F[e+24>>2];p=l-f|0;f=F[e+28>>2]-((f>>>0>l>>>0)+t|0)|0;q=ki(p,f,h,w);l=k-q|0;q=b-(_+(k>>>0>>0)|0)|0;b=ki(g,u,d,x);d=r-b|0;b=s-(_+(b>>>0>r>>>0)|0)|0;s=ki(p,f,n,y);r=s+d|0;b=_+b|0;s=r>>>0>>0?b+1|0:b;b=F[e+88>>2];f=F[e+80>>2];d:{if(G[e+92|0]){e:{f:{g:{h:{if((b|0)==-1){break h}d=b+1|0;b=(d>>>0)%3|0?d:b-2|0;if((b|0)==-1|F[F[f>>2]+(b>>>3&536870908)>>2]>>>b&1){break h}b=F[F[F[f+64>>2]+12>>2]+(b<<2)>>2];if((b|0)!=-1){break g}}F[e+88>>2]=-1;break f}d=b+1|0;b=(d>>>0)%3|0?d:b-2|0;F[e+88>>2]=b;if((b|0)!=-1){break e}}b=F[e+84>>2];d=-1;i:{if((b|0)==-1){break i}j:{if((b>>>0)%3|0){b=b-1|0;break j}b=b+2|0;d=-1;if((b|0)==-1){break i}}d=-1;if(F[F[f>>2]+(b>>>3&536870908)>>2]>>>b&1){break i}b=F[F[F[f+64>>2]+12>>2]+(b<<2)>>2];d=-1;if((b|0)==-1){break i}d=b-1|0;if((b>>>0)%3|0){break i}d=b+2|0}D[e+92|0]=0;F[e+88>>2]=d;break d}if((b|0)!=F[e+84>>2]){break d}F[e+88>>2]=-1;break d}d=-1;k:{if((b|0)==-1){break k}l:{if((b>>>0)%3|0){b=b-1|0;break l}b=b+2|0;d=-1;if((b|0)==-1){break k}}d=-1;if(F[F[f>>2]+(b>>>3&536870908)>>2]>>>b&1){break k}b=F[F[F[f+64>>2]+12>>2]+(b<<2)>>2];d=-1;if((b|0)==-1){break k}d=b-1|0;if((b>>>0)%3|0){break k}d=b+2|0}F[e+88>>2]=d}b=F[e+88>>2];if((b|0)!=-1){continue}break}}b=s>>31;f=b^r;d=f-b|0;b=(b^s)-((b>>>0>f>>>0)+b|0)|0;m=-1;f=2147483647;g=q>>31;h=g^l;j=h-g|0;n=(g^q)-((h>>>0>>0)+g|0)|0;h=n;k=j^-1;g=h^2147483647;n=i;m:{n:{if(!F[a+28>>2]){if((b|0)==(g|0)&d>>>0>k>>>0|b>>>0>g>>>0){break m}b=b+h|0;a=d+j|0;b=a>>>0>>0?b+1|0:b;f=a;g=i;a=g>>31;d=a;m=d^o;a=m-d|0;i=a;d=(d^g)-((d>>>0>m>>>0)+d|0)|0;a=a+f|0;d=d^2147483647;i=(d|0)==(b|0)&(i^-1)>>>0>>0|b>>>0>d>>>0;a=i?-1:a;if(!(i&0)&(a|0)<=536870912|(a|0)<536870912){break m}b=0;a=a>>>29|0;break n}o:{if((b|0)==(g|0)&d>>>0>k>>>0|b>>>0>g>>>0){break o}b=b+h|0;a=d+j|0;b=a>>>0>>0?b+1|0:b;k=i;d=i>>31;h=d^o;i=h-d|0;j=(d^k)-((d>>>0>h>>>0)+d|0)|0;g=j^2147483647;d=a;a=i;if((g|0)==(b|0)&d>>>0>(a^-1)>>>0|b>>>0>g>>>0){break o}b=b+j|0;m=a+d|0;b=m>>>0>>0?b+1|0:b;f=b;if(!b&m>>>0<536870913){break m}}b=f>>>29|0;a=(f&536870911)<<3|m>>>29}o=li(o,n,a,b);l=li(l,q,a,b);r=li(r,s,a,b)}F[c+8>>2]=o;F[c+4>>2]=l;F[c>>2]=r;Z=e+96|0;return}ta();v()}ta();v()}ta();v()}function te(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;g=Z-16|0;Z=g;f=1;m=$[F[F[a>>2]+24>>2]](a)|0;a:{if((m|0)<=0){break a}r=a+48|0;f=0;while(1){b:{c:{if(!F[($[F[F[a>>2]+28>>2]](a)|0)+40>>2]){break c}o=l<<2;d=F[o+F[a+36>>2]>>2];c=F[d+8>>2];e=bb(d);if(!e){break c}h=F[($[F[F[a>>2]+28>>2]](a)|0)+40>>2];F[g+12>>2]=F[c+56>>2];d=ka(32);F[g>>2]=d;F[g+4>>2]=24;F[g+8>>2]=-2147483616;c=G[1196]|G[1197]<<8|(G[1198]<<16|G[1199]<<24);b=G[1192]|G[1193]<<8|(G[1194]<<16|G[1195]<<24);D[d+16|0]=b;D[d+17|0]=b>>>8;D[d+18|0]=b>>>16;D[d+19|0]=b>>>24;D[d+20|0]=c;D[d+21|0]=c>>>8;D[d+22|0]=c>>>16;D[d+23|0]=c>>>24;c=G[1188]|G[1189]<<8|(G[1190]<<16|G[1191]<<24);b=G[1184]|G[1185]<<8|(G[1186]<<16|G[1187]<<24);D[d+8|0]=b;D[d+9|0]=b>>>8;D[d+10|0]=b>>>16;D[d+11|0]=b>>>24;D[d+12|0]=c;D[d+13|0]=c>>>8;D[d+14|0]=c>>>16;D[d+15|0]=c>>>24;c=G[1180]|G[1181]<<8|(G[1182]<<16|G[1183]<<24);b=G[1176]|G[1177]<<8|(G[1178]<<16|G[1179]<<24);D[d|0]=b;D[d+1|0]=b>>>8;D[d+2|0]=b>>>16;D[d+3|0]=b>>>24;D[d+4|0]=c;D[d+5|0]=c>>>8;D[d+6|0]=c>>>16;D[d+7|0]=c>>>24;D[d+24|0]=0;c=h+16|0;b=F[c>>2];d:{e:{if(!b){break e}i=F[g+12>>2];d=c;while(1){k=(i|0)>F[b+16>>2];d=k?d:b;b=F[(k?b+4|0:b)>>2];if(b){continue}break}if((c|0)==(d|0)|(i|0)>2]){break e}b=F[d+24>>2];if(!b){break e}i=d+20|0;d=G[g+11|0];c=d<<24>>24<0;k=c?F[g>>2]:g;d=c?F[g+4>>2]:d;while(1){c=G[b+27|0];j=c<<24>>24<0;c=j?F[b+20>>2]:c;p=c>>>0>>0;f:{g:{h:{i:{j:{k:{n=p?c:d;if(n){j=j?F[b+16>>2]:b+16|0;q=sa(k,j,n);if(q){break k}if(c>>>0<=d>>>0){break j}break f}if(c>>>0<=d>>>0){break i}break f}if((q|0)<0){break f}}c=sa(j,k,n);if(c){break h}}if(p){break g}d=gc(i,g);break d}if((c|0)<0){break g}d=gc(i,g);break d}b=b+4|0}b=F[b>>2];if(b){continue}break}}d=gc(h,g)}if(D[g+11|0]<0){ja(F[g>>2])}if(!d){break c}d=0;c=F[F[o+F[a+36>>2]>>2]+8>>2];if(!F[c+64>>2]){b=ka(32);F[b+16>>2]=0;F[b+20>>2]=0;F[b+8>>2]=0;F[b>>2]=0;F[b+4>>2]=0;F[b+24>>2]=0;F[b+28>>2]=0;f=F[c+64>>2];F[c+64>>2]=b;if(f){b=F[f>>2];if(b){F[f+4>>2]=b;ja(b)}ja(f);b=F[c+64>>2]}F[c>>2]=b;f=F[b+20>>2];F[c+8>>2]=F[b+16>>2];F[c+12>>2]=f;f=F[b+24>>2];b=F[b+28>>2];F[c+48>>2]=0;F[c+52>>2]=0;F[c+40>>2]=0;F[c+44>>2]=0;F[c+16>>2]=f;F[c+20>>2]=b}l:{D[c+24|0]=G[e+24|0];F[c+28>>2]=F[e+28>>2];D[c+32|0]=G[e+32|0];b=F[e+44>>2];F[c+40>>2]=F[e+40>>2];F[c+44>>2]=b;b=F[e+52>>2];F[c+48>>2]=F[e+48>>2];F[c+52>>2]=b;F[c+56>>2]=F[e+56>>2];b=F[e+12>>2];F[c+8>>2]=F[e+8>>2];F[c+12>>2]=b;b=F[e+20>>2];F[c+16>>2]=F[e+16>>2];F[c+20>>2]=b;F[c+60>>2]=F[e+60>>2];f=F[e>>2];m:{if(!f){F[c>>2]=0;b=1;break m}h=F[c>>2];b=0;if(!h){break m}b=F[f>>2];f=F[f+4>>2]-b|0;md(h,b,f,0);b=1}if(!b){break l}D[c+84|0]=G[e+84|0];F[c+80>>2]=F[e+80>>2];if((c|0)!=(e|0)){gb(c+68|0,F[e+68>>2],F[e+72>>2])}n:{h=F[e+88>>2];o:{if(h){f=ka(40);e=F[h>>2];F[f+16>>2]=0;F[f+8>>2]=0;F[f+12>>2]=0;F[f>>2]=e;e=F[h+12>>2];b=F[h+8>>2];if((e|0)!=(b|0)){b=e-b|0;if((b|0)<0){break n}e=ka(b);F[f+12>>2]=e;F[f+8>>2]=e;F[f+16>>2]=b+e;b=F[h+8>>2];i=F[h+12>>2];p:{if((b|0)==(i|0)){break p}k=i+(b^-1)|0;j=i-b&7;if(j){while(1){D[e|0]=G[b|0];e=e+1|0;b=b+1|0;d=d+1|0;if((j|0)!=(d|0)){continue}break}}if(k>>>0<7){break p}while(1){D[e|0]=G[b|0];D[e+1|0]=G[b+1|0];D[e+2|0]=G[b+2|0];D[e+3|0]=G[b+3|0];D[e+4|0]=G[b+4|0];D[e+5|0]=G[b+5|0];D[e+6|0]=G[b+6|0];D[e+7|0]=G[b+7|0];e=e+8|0;b=b+8|0;if((i|0)!=(b|0)){continue}break}}F[f+12>>2]=e}d=F[h+36>>2];F[f+32>>2]=F[h+32>>2];F[f+36>>2]=d;d=F[h+28>>2];F[f+24>>2]=F[h+24>>2];F[f+28>>2]=d;e=F[c+88>>2];F[c+88>>2]=f;if(e){break o}break l}e=F[c+88>>2];F[c+88>>2]=0;if(!e){break l}}d=F[e+8>>2];if(d){F[e+12>>2]=d;ja(d)}ja(e);break l}na();v()}break b}d=F[F[a+36>>2]+(l<<2)>>2];if(!($[F[F[d>>2]+24>>2]](d,r)|0)){break a}}l=l+1|0;f=(m|0)<=(l|0);if((l|0)!=(m|0)){continue}break}}Z=g+16|0;return f|0}function Jg(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;f=Z-32|0;Z=f;a:{if(!hb(1,f+28|0,F[a+32>>2])){break a}if(!hb(1,f+24|0,F[a+32>>2])){break a}l=F[f+28>>2];if(l>>>0>1431655765){break a}d=F[a+32>>2];c=d;i=F[c+8>>2];b=F[c+16>>2];h=F[c+12>>2];c=F[c+20>>2];g=li(i-b|0,h-(c+(b>>>0>i>>>0)|0)|0,3,0);if(!_&g>>>0>>0){break a}n=F[f+24>>2];g=ki(l,0,3,0);if(!_&g>>>0>>0|((c|0)>=(h|0)&b>>>0>=i>>>0|(c|0)>(h|0))){break a}i=G[b+F[d>>2]|0];b=b+1|0;c=b?c:c+1|0;F[d+16>>2]=b;F[d+20>>2]=c;b:{c:{if(!i){d=0;c=Z-32|0;Z=c;F[c+24>>2]=0;F[c+16>>2]=0;F[c+20>>2]=0;d:{e:{b=L(l,3);if(b){if(b>>>0>=1073741824){break e}i=L(l,12);d=ka(i);ma(d,0,i)}b=mc(b,1,F[a+32>>2],d);f:{g:{if(!(!l|!b)){i=0;while(1){h:{g=e;b=(i<<2)+d|0;h=F[b>>2];e=h>>>1|0;h=g+(h&1?0-e|0:e)|0;if((h|0)<0){break h}F[c>>2]=h;e=F[b+4>>2];g=e>>>1|0;h=h+(e&1?0-g|0:g)|0;if((h|0)<0){break h}F[c+4>>2]=h;b=F[b+8>>2];e=b>>>1|0;e=h+(b&1?0-e|0:e)|0;if((e|0)<0){break h}F[c+8>>2]=e;mb(F[a+44>>2]+96|0,c);i=i+3|0;b=1;j=j+1|0;if((j|0)!=(l|0)){continue}break g}break}b=0;break g}if(!d){break f}}ja(d)}Z=c+32|0;break d}na();v()}if(b){break c}break a}if(n>>>0<=255){if(!l){break c}while(1){i:{F[f+16>>2]=0;F[f+8>>2]=0;F[f+12>>2]=0;d=F[a+32>>2];b=d;i=F[b+16>>2];e=F[b+8>>2];c=F[b+20>>2];g=F[b+12>>2];b=g;if(e>>>0<=i>>>0&(c|0)>=(b|0)|(b|0)<(c|0)){break i}j=F[d>>2];m=G[j+i|0];b=c;h=i+1|0;b=h?b:b+1|0;F[d+16>>2]=h;F[d+20>>2]=b;F[f+8>>2]=m;m=e>>>0>>0&(c|0)>=(g|0)|(c|0)>(g|0);e=m?i:e;g=m?c:g;if((e|0)==(h|0)&(g|0)==(b|0)){break i}m=G[h+j|0];b=c;h=i+2|0;b=h>>>0<2?b+1|0:b;F[d+16>>2]=h;F[d+20>>2]=b;F[f+12>>2]=m;if((e|0)==(h|0)&(b|0)==(g|0)){break i}h=G[h+j|0];b=c;c=i+3|0;b=c>>>0<3?b+1|0:b;F[d+16>>2]=c;F[d+20>>2]=b;F[f+16>>2]=h;mb(F[a+44>>2]+96|0,f+8|0);k=k+1|0;if((l|0)!=(k|0)){continue}break c}break}k=0;break a}if(n>>>0<=65535){if(!l){break c}while(1){j:{F[f+16>>2]=0;F[f+8>>2]=0;F[f+12>>2]=0;j=F[a+32>>2];b=j;c=F[b+8>>2];d=F[b+12>>2];h=F[b+16>>2];b=F[b+20>>2];i=b;e=h+2|0;b=e>>>0<2?b+1|0:b;if(c>>>0>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break j}m=F[j>>2];g=m+h|0;g=G[g|0]|G[g+1|0]<<8;F[j+16>>2]=e;F[j+20>>2]=b;F[f+8>>2]=g;b=i;g=h+4|0;b=g>>>0<4?b+1|0:b;if(c>>>0>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break j}e=e+m|0;e=G[e|0]|G[e+1|0]<<8;F[j+16>>2]=g;F[j+20>>2]=b;F[f+12>>2]=e;e=c;b=i;c=h+6|0;b=c>>>0<6?b+1|0:b;if(c>>>0>e>>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break j}d=g+m|0;d=G[d|0]|G[d+1|0]<<8;F[j+16>>2]=c;F[j+20>>2]=b;F[f+16>>2]=d;mb(F[a+44>>2]+96|0,f+8|0);k=k+1|0;if((l|0)!=(k|0)){continue}break c}break}k=0;break a}k:{if(n>>>0>2097151){break k}b=H[a+36>>1];if(((b<<8|b>>>8)&65535)>>>0<514){break k}if(!l){break c}while(1){l:{F[f+16>>2]=0;F[f+8>>2]=0;F[f+12>>2]=0;if(!hb(1,f+4|0,F[a+32>>2])){break l}F[f+8>>2]=F[f+4>>2];if(!hb(1,f+4|0,F[a+32>>2])){break l}F[f+12>>2]=F[f+4>>2];if(!hb(1,f+4|0,F[a+32>>2])){break l}F[f+16>>2]=F[f+4>>2];mb(F[a+44>>2]+96|0,f+8|0);k=k+1|0;if((l|0)!=(k|0)){continue}break c}break}k=0;break a}if(!l){break c}while(1){F[f+16>>2]=0;F[f+8>>2]=0;F[f+12>>2]=0;j=F[a+32>>2];b=j;c=F[b+8>>2];d=F[b+12>>2];h=F[b+16>>2];b=F[b+20>>2];i=b;e=h+4|0;b=e>>>0<4?b+1|0:b;if(c>>>0>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break b}m=F[j>>2];g=m+h|0;g=G[g|0]|G[g+1|0]<<8|(G[g+2|0]<<16|G[g+3|0]<<24);F[j+16>>2]=e;F[j+20>>2]=b;F[f+8>>2]=g;b=i;g=h+8|0;b=g>>>0<8?b+1|0:b;if(c>>>0>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break b}e=e+m|0;e=G[e|0]|G[e+1|0]<<8|(G[e+2|0]<<16|G[e+3|0]<<24);F[j+16>>2]=g;F[j+20>>2]=b;F[f+12>>2]=e;e=c;b=i;c=h+12|0;b=c>>>0<12?b+1|0:b;if(c>>>0>e>>>0&(b|0)>=(d|0)|(b|0)>(d|0)){break b}d=g+m|0;d=G[d|0]|G[d+1|0]<<8|(G[d+2|0]<<16|G[d+3|0]<<24);F[j+16>>2]=c;F[j+20>>2]=b;F[f+16>>2]=d;mb(F[a+44>>2]+96|0,f+8|0);k=k+1|0;if((l|0)!=(k|0)){continue}break}}F[F[a+4>>2]+80>>2]=n;k=1;break a}k=0}Z=f+32|0;return k|0}function Ld(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;g=Z+-64|0;Z=g;F[g+56>>2]=0;F[g+48>>2]=0;F[g+52>>2]=0;F[g+40>>2]=0;F[g+44>>2]=0;F[g+32>>2]=0;F[g+36>>2]=0;F[g+24>>2]=0;F[g+28>>2]=0;F[g+16>>2]=0;F[g+20>>2]=0;F[g+8>>2]=0;F[g+12>>2]=0;h=g+8|0;a:{b:{if(!H[b+38>>1]){break b}if(!Ta(1,h+12|0,b)){break b}e=F[b+8>>2];f=F[b+16>>2];j=e-f|0;k=F[h+12>>2];e=F[b+12>>2]-(F[b+20>>2]+(e>>>0>>0)|0)|0;if(j>>>0>>6>>>0&(e|0)<=0|(e|0)<0){break b}e=F[h>>2];d=F[h+4>>2]-e>>2;c:{if(d>>>0>>0){qa(h,k-d|0);k=F[h+12>>2];break c}if(d>>>0<=k>>>0){break c}F[h+4>>2]=e+(k<<2)}i=1;if(!k){break a}e=F[b+16>>2];d=F[b+20>>2];r=F[h>>2];l=F[b+8>>2];o=F[b+12>>2];j=0;while(1){i=0;if((d|0)>=(o|0)&e>>>0>=l>>>0|(d|0)>(o|0)){break a}i=F[b>>2];p=G[i+e|0];e=e+1|0;d=e?d:d+1|0;F[b+16>>2]=e;F[b+20>>2]=d;f=p>>>2|0;m=0;d:{e:{f:{g:{s=p&3;switch(s|0){case 3:break g;case 0:break e;default:break f}}f=f+j|0;i=0;if(f>>>0>=k>>>0){break a}ma(r+(j<<2)|0,0,(p&252)+4|0);j=f;break d}while(1){if((e|0)==(l|0)&(d|0)==(o|0)){break b}k=G[e+i|0];e=e+1|0;d=e?d:d+1|0;F[b+16>>2]=e;F[b+20>>2]=d;f=k<<(m<<3|6)|f;m=m+1|0;if((s|0)!=(m|0)){continue}break}}F[r+(j<<2)>>2]=f}j=j+1|0;k=F[h+12>>2];if(j>>>0>>0){continue}break}d=h+16|0;o=F[h>>2];f=F[h+16>>2];e=F[h+20>>2]-f|0;h:{if(e>>>0<=4194303){qa(d,1048576-(e>>>2|0)|0);break h}if((e|0)==4194304){break h}F[h+20>>2]=f+4194304}e=h+28|0;j=F[e>>2];f=F[h+32>>2]-j>>3;i:{if(f>>>0>>0){_a(e,k-f|0);j=F[e>>2];break i}if(f>>>0>k>>>0){F[h+32>>2]=(k<<3)+j}if(!k){break b}}l=F[d>>2];d=0;i=0;while(1){e=o+(d<<2)|0;h=F[e>>2];m=(d<<3)+j|0;f=i;F[m+4>>2]=f;F[m>>2]=h;e=F[e>>2];i=e+f|0;if(i>>>0>1048576){break b}j:{if(f>>>0>=i>>>0){break j}m=0;h=e&7;if(h){while(1){F[l+(f<<2)>>2]=d;f=f+1|0;m=m+1|0;if((h|0)!=(m|0)){continue}break}}if(e-1>>>0<=6){break j}while(1){e=l+(f<<2)|0;F[e>>2]=d;F[e+28>>2]=d;F[e+24>>2]=d;F[e+20>>2]=d;F[e+16>>2]=d;F[e+12>>2]=d;F[e+8>>2]=d;F[e+4>>2]=d;f=f+8|0;if((i|0)!=(f|0)){continue}break}}d=d+1|0;if((k|0)!=(d|0)){continue}break}n=(i|0)==1048576}i=n}k:{if(!i|(F[g+20>>2]?0:a)){break k}i=0;j=Z-16|0;Z=j;l:{if(!Sa(1,j+8|0,b)){break l}d=F[b+8>>2];f=F[b+16>>2];l=d-f|0;n=F[j+12>>2];h=F[b+20>>2];d=F[b+12>>2]-(h+(d>>>0>>0)|0)|0;e=F[j+8>>2];if((n|0)==(d|0)&e>>>0>l>>>0|d>>>0>>0){break l}d=h+n|0;l=e+f|0;d=l>>>0>>0?d+1|0:d;F[b+16>>2]=l;F[b+20>>2]=d;if((e|0)<=0){break l}b=f+F[b>>2]|0;F[g+48>>2]=b;d=e-1|0;f=d+b|0;l=G[f|0];m:{if(l>>>0<=63){F[g+52>>2]=d;b=G[f|0]&63;break m}n:{switch((l>>>6|0)-1|0){case 0:if(e>>>0<2){break l}d=e-2|0;F[g+52>>2]=d;b=b+d|0;b=G[b+1|0]<<8&16128|G[b|0];break m;case 1:if(e>>>0<3){break l}d=e-3|0;F[g+52>>2]=d;b=b+d|0;b=G[b+1|0]<<8|G[b+2|0]<<16&4128768|G[b|0];break m;default:break n}}d=e-4|0;F[g+52>>2]=d;b=b+d|0;b=(G[b|0]|G[b+1|0]<<8|(G[b+2|0]<<16|G[b+3|0]<<24))&1073741823}F[g+56>>2]=b+4194304;i=b>>>0<1069547520}Z=j+16|0;if(!i){break k}if(!a){t=1;break k}b=F[g+52>>2];f=F[g+56>>2];d=F[g+36>>2];e=F[g+48>>2];j=F[g+24>>2];while(1){o:{if(f>>>0>4194303){break o}while(1){if((b|0)<=0){break o}b=b-1|0;F[g+52>>2]=b;f=G[b+e|0]|f<<8;F[g+56>>2]=f;if(f>>>0<4194304){continue}break}}i=f&1048575;l=F[j+(i<<2)>>2];n=d+(l<<3)|0;f=(L(F[n>>2],f>>>20|0)+i|0)-F[n+4>>2]|0;F[g+56>>2]=f;F[(q<<2)+c>>2]=l;t=1;q=q+1|0;if((q|0)!=(a|0)){continue}break}}a=F[g+36>>2];if(a){F[g+40>>2]=a;ja(a)}a=F[g+24>>2];if(a){F[g+28>>2]=a;ja(a)}a=F[g+8>>2];if(a){F[g+12>>2]=a;ja(a)}Z=g- -64|0;return t}function kh(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=M(0),f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=M(0),p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0;if(F[c>>2]==F[c+4>>2]){m=F[d+80>>2];u=Z-16|0;Z=u;g=F[a+4>>2];k=G[b+24|0];h=F[d+48>>2];n=F[F[d>>2]>>2];c=u+8|0;F[c>>2]=1065353216;d=c;J[c>>2]=M(-1<>2];c=ka(k<<2);a:{if(!m|!k){break a}p=h+n|0;o=J[d>>2];n=F[a+8>>2];v=F[b>>2];d=F[b+48>>2];g=F[b+40>>2];w=F[b+44>>2];if(!G[b+84|0]){f=F[b+68>>2];s=k&254;t=k&1;a=0;while(1){b=F[v>>2];l=ki(g,w,F[f+(i<<2)>>2],0)+d|0;h=la(c,b+l|0,g);b=0;q=0;if((k|0)!=1){while(1){l=p+(a<<2)|0;j=b<<2;e=M(R(M(M(o*M(J[j+h>>2]-J[n+j>>2]))+M(.5))));b:{if(M(N(e))>2]=r;j=j|4;e=M(R(M(M(o*M(J[j+h>>2]-J[n+j>>2]))+M(.5))));c:{if(M(N(e))>2]=j;b=b+2|0;a=a+2|0;q=q+2|0;if((s|0)!=(q|0)){continue}break}}if(t){l=p+(a<<2)|0;b=b<<2;e=M(R(M(M(o*M(J[b+h>>2]-J[b+n>>2]))+M(.5))));d:{if(M(N(e))>2]=b;a=a+1|0}i=i+1|0;if((m|0)!=(i|0)){continue}break}break a}s=k&254;t=k&1;a=0;while(1){b=F[v>>2];h=ki(g,w,i,l)+d|0;j=la(c,b+h|0,g);b=0;q=0;if((k|0)!=1){while(1){h=p+(a<<2)|0;f=b<<2;e=M(R(M(M(o*M(J[f+j>>2]-J[f+n>>2]))+M(.5))));e:{if(M(N(e))>2]=r;f=f|4;e=M(R(M(M(o*M(J[f+j>>2]-J[f+n>>2]))+M(.5))));f:{if(M(N(e))>2]=f;b=b+2|0;a=a+2|0;q=q+2|0;if((s|0)!=(q|0)){continue}break}}if(t){h=p+(a<<2)|0;b=b<<2;e=M(R(M(M(o*M(J[b+j>>2]-J[b+n>>2]))+M(.5))));g:{if(M(N(e))>2]=b;a=a+1|0}b=l;i=i+1|0;b=i?b:b+1|0;l=b;if((i|0)!=(m|0)|b){continue}break}}ja(c);Z=u+16|0;return 1}j=Z-16|0;Z=j;m=F[a+4>>2];i=G[b+24|0];g=F[d+48>>2];h=F[F[d>>2]>>2];d=j+8|0;F[d>>2]=1065353216;l=d;J[d>>2]=M(-1<>2];d=ka(i<<2);m=F[c+4>>2];q=F[c>>2];h:{if(!i|(m|0)==(q|0)){break h}n=h+g|0;c=m-q>>2;u=c>>>0<=1?1:c;o=J[l>>2];h=F[a+8>>2];v=F[b>>2];l=F[b+48>>2];m=F[b+40>>2];w=F[b+44>>2];if(G[b+84|0]){s=i&254;t=i&1;a=0;c=0;while(1){b=F[v>>2];g=ki(m,w,F[q+(c<<2)>>2],0)+l|0;p=la(d,b+g|0,m);b=0;k=0;if((i|0)!=1){while(1){g=n+(a<<2)|0;f=b<<2;e=M(R(M(M(o*M(J[f+p>>2]-J[h+f>>2]))+M(.5))));i:{if(M(N(e))>2]=r;f=f|4;e=M(R(M(M(o*M(J[f+p>>2]-J[h+f>>2]))+M(.5))));j:{if(M(N(e))>2]=f;b=b+2|0;a=a+2|0;k=k+2|0;if((s|0)!=(k|0)){continue}break}}if(t){g=n+(a<<2)|0;b=b<<2;e=M(R(M(M(o*M(J[b+p>>2]-J[b+h>>2]))+M(.5))));k:{if(M(N(e))>2]=b;a=a+1|0}c=c+1|0;if((u|0)!=(c|0)){continue}break}break h}s=F[b+68>>2];t=i&254;x=i&1;a=0;c=0;while(1){b=F[v>>2];g=ki(m,w,F[s+(F[q+(c<<2)>>2]<<2)>>2],0)+l|0;p=la(d,b+g|0,m);b=0;k=0;if((i|0)!=1){while(1){g=n+(a<<2)|0;f=b<<2;e=M(R(M(M(o*M(J[f+p>>2]-J[h+f>>2]))+M(.5))));l:{if(M(N(e))>2]=r;f=f|4;e=M(R(M(M(o*M(J[f+p>>2]-J[h+f>>2]))+M(.5))));m:{if(M(N(e))>2]=f;b=b+2|0;a=a+2|0;k=k+2|0;if((t|0)!=(k|0)){continue}break}}if(x){g=n+(a<<2)|0;b=b<<2;e=M(R(M(M(o*M(J[b+p>>2]-J[b+h>>2]))+M(.5))));n:{if(M(N(e))>2]=b;a=a+1|0}c=c+1|0;if((u|0)!=(c|0)){continue}break}}ja(d);Z=j+16|0;return 1} -function Cd(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;c=F[a+4>>2];e=F[a>>2];f=(c-e|0)/144|0;if(f>>>0>>0){e=a;b=b-f|0;h=F[a+8>>2];c=F[a+4>>2];a:{if(b>>>0<=(h-c|0)/144>>>0){b:{if(!b){break b}a=c;f=b&7;if(f){while(1){va(a);a=a+144|0;d=d+1|0;if((f|0)!=(d|0)){continue}break}}c=L(b,144)+c|0;if((b-1&268435455)>>>0<7){break b}while(1){va(a);va(a+144|0);va(a+288|0);va(a+432|0);va(a+576|0);va(a+720|0);va(a+864|0);va(a+1008|0);a=a+1152|0;if((c|0)!=(a|0)){continue}break}}F[e+4>>2]=c;break a}c:{d:{e:{a=c;c=F[e>>2];i=(a-c|0)/144|0;a=i+b|0;if(a>>>0<29826162){c=(h-c|0)/144|0;f=c<<1;f=c>>>0>=14913080?29826161:a>>>0>>0?f:a;if(f){if(f>>>0>=29826162){break e}g=ka(L(f,144))}c=L(i,144)+g|0;a=c;h=b&7;if(h){while(1){va(a);a=a+144|0;d=d+1|0;if((h|0)!=(d|0)){continue}break}}h=L(b,144)+c|0;if((b-1&268435455)>>>0>=7){while(1){va(a);va(a+144|0);va(a+288|0);va(a+432|0);va(a+576|0);va(a+720|0);va(a+864|0);va(a+1008|0);a=a+1152|0;if((h|0)!=(a|0)){continue}break}}b=L(f,144)+g|0;d=F[e+4>>2];f=F[e>>2];if((d|0)==(f|0)){break d}while(1){c=c-144|0;d=d-144|0;a=d;F[c>>2]=F[a>>2];F[c+4>>2]=F[a+4>>2];F[c+8>>2]=F[a+8>>2];F[c+12>>2]=F[a+12>>2];F[a+12>>2]=0;F[a+4>>2]=0;F[a+8>>2]=0;F[c+16>>2]=F[a+16>>2];F[c+20>>2]=F[a+20>>2];F[c+24>>2]=F[a+24>>2];F[a+24>>2]=0;F[a+16>>2]=0;F[a+20>>2]=0;g=G[a+28|0];F[c+40>>2]=0;F[c+32>>2]=0;F[c+36>>2]=0;D[c+28|0]=g;F[c+32>>2]=F[a+32>>2];F[c+36>>2]=F[a+36>>2];F[c+40>>2]=F[a+40>>2];F[a+40>>2]=0;F[a+32>>2]=0;F[a+36>>2]=0;F[c+52>>2]=0;F[c+44>>2]=0;F[c+48>>2]=0;F[c+44>>2]=F[a+44>>2];F[c+48>>2]=F[a+48>>2];F[c+52>>2]=F[a+52>>2];F[a+52>>2]=0;F[a+44>>2]=0;F[a+48>>2]=0;g=c- -64|0;F[g>>2]=0;F[c+56>>2]=0;F[c+60>>2]=0;F[c+56>>2]=F[a+56>>2];F[c+60>>2]=F[a+60>>2];i=g;g=a- -64|0;F[i>>2]=F[g>>2];F[g>>2]=0;F[a+56>>2]=0;F[a+60>>2]=0;F[c+68>>2]=F[a+68>>2];g=F[a+72>>2];F[c+84>>2]=0;F[c+76>>2]=0;F[c+80>>2]=0;F[c+72>>2]=g;F[c+76>>2]=F[a+76>>2];F[c+80>>2]=F[a+80>>2];F[c+84>>2]=F[a+84>>2];F[a+84>>2]=0;F[a+76>>2]=0;F[a+80>>2]=0;F[c+96>>2]=0;F[c+88>>2]=0;F[c+92>>2]=0;F[c+88>>2]=F[a+88>>2];F[c+92>>2]=F[a+92>>2];F[c+96>>2]=F[a+96>>2];F[a+96>>2]=0;F[a+88>>2]=0;F[a+92>>2]=0;g=G[a+100|0];F[c+112>>2]=0;F[c+104>>2]=0;F[c+108>>2]=0;D[c+100|0]=g;F[c+104>>2]=F[a+104>>2];F[c+108>>2]=F[a+108>>2];F[c+112>>2]=F[a+112>>2];F[a+112>>2]=0;F[a+104>>2]=0;F[a+108>>2]=0;F[c+124>>2]=0;F[c+116>>2]=0;F[c+120>>2]=0;F[c+116>>2]=F[a+116>>2];F[c+120>>2]=F[a+120>>2];F[c+124>>2]=F[a+124>>2];F[a+124>>2]=0;F[a+116>>2]=0;F[a+120>>2]=0;g=F[a+128>>2];F[c+140>>2]=0;F[c+132>>2]=0;F[c+136>>2]=0;F[c+128>>2]=g;F[c+132>>2]=F[a+132>>2];F[c+136>>2]=F[a+136>>2];F[c+140>>2]=F[a+140>>2];F[a+140>>2]=0;F[a+132>>2]=0;F[a+136>>2]=0;if((a|0)!=(f|0)){continue}break}F[e+8>>2]=b;a=F[e+4>>2];F[e+4>>2]=h;d=F[e>>2];F[e>>2]=c;if((a|0)==(d|0)){break c}while(1){b=a-144|0;c=F[b+132>>2];if(c){F[a-8>>2]=c;ja(c)}c=F[a-28>>2];if(c){F[a-24>>2]=c;ja(c)}c=F[a-40>>2];if(c){F[a-36>>2]=c;ja(c)}Gb(a-140|0);a=b;if((d|0)!=(a|0)){continue}break}break c}na();v()}oa();v()}F[e+8>>2]=b;F[e+4>>2]=h;F[e>>2]=c}if(d){ja(d)}}return}if(b>>>0>>0){e=e+L(b,144)|0;if((e|0)!=(c|0)){while(1){b=c-144|0;d=F[b+132>>2];if(d){F[c-8>>2]=d;ja(d)}d=F[c-28>>2];if(d){F[c-24>>2]=d;ja(d)}d=F[c-40>>2];if(d){F[c-36>>2]=d;ja(d)}Gb(c-140|0);c=b;if((e|0)!=(c|0)){continue}break}}F[a+4>>2]=e}}function Yc(a){var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;F[a+56>>2]=F[a+52>>2];F[a+44>>2]=F[a+40>>2];b=F[a+64>>2];c=F[b+24>>2];if((c|0)==F[b+28>>2]){return 1}a:{b:{c:{while(1){g=i;i=F[(k<<2)+c>>2];d:{if((i|0)==-1){i=g;break d}b=F[a+56>>2];e:{if((b|0)!=F[a+60>>2]){F[b>>2]=g;F[a+56>>2]=b+4;break e}d=F[a+52>>2];e=b-d|0;h=e>>2;c=h+1|0;if(c>>>0>=1073741824){break c}f=e>>>1|0;f=e>>>0>=2147483644?1073741823:c>>>0>>0?f:c;if(f){if(f>>>0>=1073741824){break b}e=ka(f<<2)}else{e=0}c=e+(h<<2)|0;F[c>>2]=g;h=c+4|0;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;F[c>>2]=F[b>>2];if((b|0)!=(d|0)){continue}break}}F[a+60>>2]=e+(f<<2);F[a+56>>2]=h;F[a+52>>2]=c;if(!d){break e}ja(d)}f:{g:{if(!(F[F[a+12>>2]+(k>>>3&536870908)>>2]>>>k&1)){break g}e=i+1|0;e=(e>>>0)%3|0?e:i-2|0;if((e|0)==-1|F[F[a>>2]+(e>>>3&536870908)>>2]>>>e&1){break g}e=F[F[F[a+64>>2]+12>>2]+(e<<2)>>2];if((e|0)==-1){break g}b=e+1|0;b=(b>>>0)%3|0?b:e-2|0;if((b|0)==-1){break g}c=F[a+64>>2];f=F[a>>2];while(1){e=b;b=-1;d=e+1|0;d=(d>>>0)%3|0?d:e-2|0;h:{if((d|0)==-1|F[f+(d>>>3&536870908)>>2]>>>d&1){break h}d=F[F[c+12>>2]+(d<<2)>>2];if((d|0)==-1){break h}b=d+1|0;b=(b>>>0)%3|0?b:d-2|0}if((b|0)!=(i|0)){if((b|0)==-1){break f}continue}break}return 0}e=i}F[F[a+28>>2]+(e<<2)>>2]=g;b=F[a+44>>2];i:{if((b|0)!=F[a+48>>2]){F[b>>2]=e;F[a+44>>2]=b+4;break i}d=F[a+40>>2];i=b-d|0;h=i>>2;c=h+1|0;if(c>>>0>=1073741824){break a}f=i>>>1|0;f=i>>>0>=2147483644?1073741823:c>>>0>>0?f:c;if(f){if(f>>>0>=1073741824){break b}i=ka(f<<2)}else{i=0}c=i+(h<<2)|0;F[c>>2]=e;h=c+4|0;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;F[c>>2]=F[b>>2];if((b|0)!=(d|0)){continue}break}}F[a+48>>2]=i+(f<<2);F[a+44>>2]=h;F[a+40>>2]=c;if(!d){break i}ja(d)}i=g+1|0;b=F[a+64>>2];if((e|0)==-1){break d}j:{if((e>>>0)%3|0){c=e-1|0;break j}c=e+2|0;if((c|0)==-1){break d}}d=F[F[b+12>>2]+(c<<2)>>2];if((d|0)==-1){break d}f=d+((d>>>0)%3|0?-1:2)|0;if((f|0)==-1|(e|0)==(f|0)){break d}while(1){b=f+1|0;b=(b>>>0)%3|0?b:f-2|0;if(F[F[a>>2]+(b>>>3&536870908)>>2]>>>b&1){b=F[a+56>>2];k:{if((b|0)!=F[a+60>>2]){F[b>>2]=i;F[a+56>>2]=b+4;break k}d=F[a+52>>2];g=b-d|0;j=g>>2;c=j+1|0;if(c>>>0>=1073741824){break c}h=g>>>1|0;h=g>>>0>=2147483644?1073741823:c>>>0>>0?h:c;if(h){if(h>>>0>=1073741824){break b}g=ka(h<<2)}else{g=0}c=g+(j<<2)|0;F[c>>2]=i;j=c+4|0;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;F[c>>2]=F[b>>2];if((b|0)!=(d|0)){continue}break}}F[a+60>>2]=g+(h<<2);F[a+56>>2]=j;F[a+52>>2]=c;if(!d){break k}ja(d)}d=i+1|0;b=F[a+44>>2];l:{if((b|0)!=F[a+48>>2]){F[b>>2]=f;F[a+44>>2]=b+4;break l}h=F[a+40>>2];g=b-h|0;l=g>>2;c=l+1|0;if(c>>>0>=1073741824){break a}j=g>>>1|0;j=g>>>0>=2147483644?1073741823:c>>>0>>0?j:c;if(j){if(j>>>0>=1073741824){break b}g=ka(j<<2)}else{g=0}c=g+(l<<2)|0;F[c>>2]=f;l=c+4|0;if((b|0)!=(h|0)){while(1){c=c-4|0;b=b-4|0;F[c>>2]=F[b>>2];if((b|0)!=(h|0)){continue}break}}F[a+48>>2]=g+(j<<2);F[a+44>>2]=l;F[a+40>>2]=c;if(!h){break l}ja(h)}g=i;i=d}F[F[a+28>>2]+(f<<2)>>2]=g;b=F[a+64>>2];m:{if((f>>>0)%3|0){c=f-1|0;break m}c=f+2|0;if((c|0)==-1){break d}}d=F[F[b+12>>2]+(c<<2)>>2];if((d|0)==-1){break d}f=d+((d>>>0)%3|0?-1:2)|0;if((f|0)==-1){break d}if((e|0)!=(f|0)){continue}break}}k=k+1|0;c=F[b+24>>2];if(k>>>0>2]-c>>2>>>0){continue}break}return 1}na();v()}oa();v()}na();v()}function Kb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0,x=0,y=0;f=Z-96|0;Z=f;e=F[a+16>>2];D[f+92|0]=1;F[f+88>>2]=b;F[f+84>>2]=b;F[f+80>>2]=e;a:{if((b|0)==-1){break a}j=F[a+20>>2];d=F[j>>2];e=F[F[e>>2]+(b<<2)>>2];if(e>>>0>=F[j+4>>2]-d>>2>>>0){break a}e=F[F[a+8>>2]+(F[d+(e<<2)>>2]<<2)>>2];d=F[a+4>>2];if(!G[d+84|0]){e=F[F[d+68>>2]+(e<<2)>>2]}F[f+72>>2]=0;F[f+76>>2]=0;j=f- -64|0;F[j>>2]=0;F[j+4>>2]=0;F[f+56>>2]=0;F[f+60>>2]=0;Ga(d,e,D[d+24|0],f+56|0);e=b+1|0;j=(e>>>0)%3|0?e:b-2|0;n=((b>>>0)%3|0?-1:2)+b|0;b:{c:{while(1){d=j;e=n;d:{if(!F[a+28>>2]){break d}e=b+1|0;d=(e>>>0)%3|0?e:b-2|0;e=b-1|0;if((b>>>0)%3|0){break d}e=b+2|0}if((d|0)==-1){break b}m=F[a+20>>2];b=F[m>>2];d=F[F[F[a+16>>2]>>2]+(d<<2)>>2];if(d>>>0>=F[m+4>>2]-b>>2>>>0){break b}d=F[F[a+8>>2]+(F[(d<<2)+b>>2]<<2)>>2];b=F[a+4>>2];if(!G[b+84|0]){d=F[F[b+68>>2]+(d<<2)>>2]}F[f+48>>2]=0;F[f+52>>2]=0;F[f+40>>2]=0;F[f+44>>2]=0;F[f+32>>2]=0;F[f+36>>2]=0;Ga(b,d,D[b+24|0],f+32|0);if((e|0)==-1){break c}d=F[a+20>>2];b=F[d>>2];e=F[F[F[a+16>>2]>>2]+(e<<2)>>2];if(e>>>0>=F[d+4>>2]-b>>2>>>0){break c}d=F[F[a+8>>2]+(F[b+(e<<2)>>2]<<2)>>2];b=F[a+4>>2];if(!G[b+84|0]){d=F[F[b+68>>2]+(d<<2)>>2]}F[f+24>>2]=0;F[f+28>>2]=0;F[f+16>>2]=0;F[f+20>>2]=0;F[f+8>>2]=0;F[f+12>>2]=0;Ga(b,d,D[b+24|0],f+8|0);g=F[f+8>>2];b=F[f+56>>2];d=g-b|0;p=F[f+60>>2];t=F[f+12>>2]-(p+(b>>>0>g>>>0)|0)|0;i=F[f+40>>2];e=F[f+64>>2];m=i-e|0;u=F[f+68>>2];y=F[f+44>>2]-(u+(e>>>0>i>>>0)|0)|0;g=ki(d,t,m,y);w=o-g|0;x=h-(_+(g>>>0>o>>>0)|0)|0;h=w;i=F[f+16>>2];g=i-e|0;u=F[f+20>>2]-((e>>>0>i>>>0)+u|0)|0;k=F[f+32>>2];i=k-b|0;w=F[f+36>>2]-((b>>>0>k>>>0)+p|0)|0;b=ki(g,u,i,w);o=h+b|0;h=_+x|0;h=b>>>0>o>>>0?h+1|0:h;b=l;l=d;p=t;k=F[f+48>>2];e=F[f+72>>2];d=k-e|0;t=F[f+76>>2];x=F[f+52>>2]-(t+(e>>>0>k>>>0)|0)|0;l=ki(l,p,d,x);k=b+l|0;b=_+q|0;b=k>>>0>>0?b+1|0:b;l=F[f+24>>2];p=l-e|0;e=F[f+28>>2]-((e>>>0>l>>>0)+t|0)|0;q=ki(p,e,i,w);l=k-q|0;q=b-(_+(k>>>0>>0)|0)|0;b=ki(g,u,d,x);d=r-b|0;b=s-(_+(b>>>0>r>>>0)|0)|0;s=ki(p,e,m,y);r=s+d|0;b=_+b|0;s=r>>>0>>0?b+1|0:b;nc(f+80|0);b=F[f+88>>2];if((b|0)!=-1){continue}break}b=s>>31;e=b^r;d=e-b|0;b=(b^s)-((b>>>0>e>>>0)+b|0)|0;n=-1;e=2147483647;m=q>>31;g=m;i=g^l;j=i-g|0;m=(g^q)-((i>>>0>>0)+g|0)|0;i=m;k=j^-1;g=i^2147483647;m=h;e:{f:{if(!F[a+28>>2]){if((b|0)==(g|0)&d>>>0>k>>>0|b>>>0>g>>>0){break e}b=b+i|0;a=d+j|0;b=a>>>0>>0?b+1|0:b;e=a;g=h;a=g>>31;d=a;n=d^o;a=n-d|0;h=a;d=(d^g)-((d>>>0>n>>>0)+d|0)|0;a=a+e|0;d=d^2147483647;h=(d|0)==(b|0)&(h^-1)>>>0>>0|b>>>0>d>>>0;a=h?-1:a;if(!(h&0)&(a|0)<=536870912|(a|0)<536870912){break e}b=0;a=a>>>29|0;break f}g:{if((b|0)==(g|0)&d>>>0>k>>>0|b>>>0>g>>>0){break g}b=b+i|0;a=d+j|0;b=a>>>0>>0?b+1|0:b;k=h;h=h>>31;g=h;i=g^o;h=i-g|0;j=(g^k)-((g>>>0>i>>>0)+g|0)|0;g=j^2147483647;d=a;a=h;if((g|0)==(b|0)&d>>>0>(a^-1)>>>0|b>>>0>g>>>0){break g}b=b+j|0;n=a+d|0;b=n>>>0>>0?b+1|0:b;e=b;if(!b&n>>>0<536870913){break e}}b=e>>>29|0;a=(e&536870911)<<3|n>>>29}o=li(o,m,a,b);l=li(l,q,a,b);r=li(r,s,a,b)}F[c+8>>2]=o;F[c+4>>2]=l;F[c>>2]=r;Z=f+96|0;return}ta();v()}ta();v()}ta();v()}function Nc(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;a:{if((b|0)<0){break a}c=F[a+12>>2];d=F[a+8>>2];if(c-d>>2>>>0<=b>>>0){break a}d=d+(b<<2)|0;e=F[d>>2];i=F[e+60>>2];f=F[e+56>>2];e=d+4|0;if((e|0)!=(c|0)){while(1){h=F[e>>2];F[e>>2]=0;g=F[d>>2];F[d>>2]=h;if(g){xa(g)}d=d+4|0;e=e+4|0;if((e|0)!=(c|0)){continue}break}c=F[a+12>>2]}if((c|0)!=(d|0)){while(1){c=c-4|0;e=F[c>>2];F[c>>2]=0;if(e){xa(e)}if((c|0)!=(d|0)){continue}break}}F[a+12>>2]=d;g=F[a+4>>2];b:{if(!g|(i|0)<0){break b}c=F[g+24>>2];d=F[g+28>>2];if((c|0)==(d|0)){break b}while(1){if((i|0)==F[F[c>>2]+24>>2]){d=c+4|0;i=F[g+28>>2];if((d|0)!=(i|0)){while(1){h=F[d>>2];F[d>>2]=0;e=F[c>>2];F[c>>2]=h;if(e){Ca(e+12|0,F[e+16>>2]);Ba(e,F[e+4>>2]);ja(e)}c=c+4|0;d=d+4|0;if((i|0)!=(d|0)){continue}break}d=F[g+28>>2]}if((c|0)!=(d|0)){while(1){d=d-4|0;e=F[d>>2];F[d>>2]=0;if(e){Ca(e+12|0,F[e+16>>2]);Ba(e,F[e+4>>2]);ja(e)}if((c|0)!=(d|0)){continue}break}}F[g+28>>2]=c;break b}c=c+4|0;if((d|0)!=(c|0)){continue}break}}c:{if((f|0)>4){break c}d:{e=L(f,12)+a|0;c=F[e+20>>2];d=F[e+24>>2];if((c|0)==(d|0)){break d}while(1){if(F[c>>2]==(b|0)){break d}c=c+4|0;if((d|0)!=(c|0)){continue}break}break c}if((c|0)==(d|0)){break c}f=c;c=c+4|0;pa(f,c,d-c|0);F[e+24>>2]=d-4}c=F[a+24>>2];d=F[a+20>>2];e:{if((c|0)==(d|0)){break e}e=c-d|0;c=e>>2;g=c>>>0<=1?1:c;i=g&1;c=0;if(e>>>0>=8){g=g&-2;e=0;while(1){f=c<<2;h=f+d|0;j=F[h>>2];if((j|0)>(b|0)){F[h>>2]=j-1}f=d+(f|4)|0;h=F[f>>2];if((h|0)>(b|0)){F[f>>2]=h-1}c=c+2|0;e=e+2|0;if((g|0)!=(e|0)){continue}break}}if(!i){break e}c=d+(c<<2)|0;d=F[c>>2];if((d|0)<=(b|0)){break e}F[c>>2]=d-1}c=F[a+36>>2];d=F[a+32>>2];f:{if((c|0)==(d|0)){break f}e=c-d|0;c=e>>2;g=c>>>0<=1?1:c;i=g&1;c=0;if(e>>>0>=8){g=g&-2;e=0;while(1){f=c<<2;h=f+d|0;j=F[h>>2];if((j|0)>(b|0)){F[h>>2]=j-1}f=d+(f|4)|0;h=F[f>>2];if((h|0)>(b|0)){F[f>>2]=h-1}c=c+2|0;e=e+2|0;if((g|0)!=(e|0)){continue}break}}if(!i){break f}c=d+(c<<2)|0;d=F[c>>2];if((d|0)<=(b|0)){break f}F[c>>2]=d-1}c=F[a+48>>2];d=F[a+44>>2];g:{if((c|0)==(d|0)){break g}e=c-d|0;c=e>>2;g=c>>>0<=1?1:c;i=g&1;c=0;if(e>>>0>=8){g=g&-2;e=0;while(1){f=c<<2;h=f+d|0;j=F[h>>2];if((j|0)>(b|0)){F[h>>2]=j-1}f=d+(f|4)|0;h=F[f>>2];if((h|0)>(b|0)){F[f>>2]=h-1}c=c+2|0;e=e+2|0;if((g|0)!=(e|0)){continue}break}}if(!i){break g}c=d+(c<<2)|0;d=F[c>>2];if((d|0)<=(b|0)){break g}F[c>>2]=d-1}c=F[a+60>>2];d=F[a+56>>2];h:{if((c|0)==(d|0)){break h}e=c-d|0;c=e>>2;g=c>>>0<=1?1:c;i=g&1;c=0;if(e>>>0>=8){g=g&-2;e=0;while(1){f=c<<2;h=f+d|0;j=F[h>>2];if((j|0)>(b|0)){F[h>>2]=j-1}f=d+(f|4)|0;h=F[f>>2];if((h|0)>(b|0)){F[f>>2]=h-1}c=c+2|0;e=e+2|0;if((g|0)!=(e|0)){continue}break}}if(!i){break h}c=d+(c<<2)|0;d=F[c>>2];if((d|0)<=(b|0)){break h}F[c>>2]=d-1}c=F[a+72>>2];a=F[a+68>>2];if((c|0)==(a|0)){break a}d=c-a|0;c=d>>2;e=c>>>0<=1?1:c;g=e&1;c=0;if(d>>>0>=8){d=e&-2;e=0;while(1){i=c<<2;f=i+a|0;h=F[f>>2];if((h|0)>(b|0)){F[f>>2]=h-1}i=a+(i|4)|0;f=F[i>>2];if((f|0)>(b|0)){F[i>>2]=f-1}c=c+2|0;e=e+2|0;if((d|0)!=(e|0)){continue}break}}if(!g){break a}f=b;a=a+(c<<2)|0;b=F[a>>2];if((f|0)>=(b|0)){break a}F[a>>2]=b-1}}function ja(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;a:{if(!a){break a}d=a-8|0;b=F[a-4>>2];a=b&-8;f=d+a|0;b:{if(b&1){break b}if(!(b&3)){break a}b=F[d>>2];d=d-b|0;if(d>>>0>>0<=255){e=F[d+8>>2];b=b>>>3|0;c=F[d+12>>2];if((c|0)==(e|0)){i=11764,j=F[2941]&oi(b),F[i>>2]=j;break b}F[e+12>>2]=c;F[c+8>>2]=e;break b}h=F[d+24>>2];b=F[d+12>>2];c:{if((d|0)!=(b|0)){c=F[d+8>>2];F[c+12>>2]=b;F[b+8>>2]=c;break c}d:{e=d+20|0;c=F[e>>2];if(c){break d}e=d+16|0;c=F[e>>2];if(c){break d}b=0;break c}while(1){g=e;b=c;e=b+20|0;c=F[e>>2];if(c){continue}e=b+16|0;c=F[b+16>>2];if(c){continue}break}F[g>>2]=0}if(!h){break b}e=F[d+28>>2];c=(e<<2)+12068|0;e:{if(F[c>>2]==(d|0)){F[c>>2]=b;if(b){break e}i=11768,j=F[2942]&oi(e),F[i>>2]=j;break b}F[h+(F[h+16>>2]==(d|0)?16:20)>>2]=b;if(!b){break b}}F[b+24>>2]=h;c=F[d+16>>2];if(c){F[b+16>>2]=c;F[c+24>>2]=b}c=F[d+20>>2];if(!c){break b}F[b+20>>2]=c;F[c+24>>2]=b;break b}b=F[f+4>>2];if((b&3)!=3){break b}F[2943]=a;F[f+4>>2]=b&-2;F[d+4>>2]=a|1;F[a+d>>2]=a;return}if(d>>>0>=f>>>0){break a}b=F[f+4>>2];if(!(b&1)){break a}f:{if(!(b&2)){if(F[2947]==(f|0)){F[2947]=d;a=F[2944]+a|0;F[2944]=a;F[d+4>>2]=a|1;if(F[2946]!=(d|0)){break a}F[2943]=0;F[2946]=0;return}if(F[2946]==(f|0)){F[2946]=d;a=F[2943]+a|0;F[2943]=a;F[d+4>>2]=a|1;F[a+d>>2]=a;return}a=(b&-8)+a|0;g:{if(b>>>0<=255){e=F[f+8>>2];b=b>>>3|0;c=F[f+12>>2];if((c|0)==(e|0)){i=11764,j=F[2941]&oi(b),F[i>>2]=j;break g}F[e+12>>2]=c;F[c+8>>2]=e;break g}h=F[f+24>>2];b=F[f+12>>2];h:{if((f|0)!=(b|0)){c=F[f+8>>2];F[c+12>>2]=b;F[b+8>>2]=c;break h}i:{e=f+20|0;c=F[e>>2];if(c){break i}e=f+16|0;c=F[e>>2];if(c){break i}b=0;break h}while(1){g=e;b=c;e=b+20|0;c=F[e>>2];if(c){continue}e=b+16|0;c=F[b+16>>2];if(c){continue}break}F[g>>2]=0}if(!h){break g}e=F[f+28>>2];c=(e<<2)+12068|0;j:{if(F[c>>2]==(f|0)){F[c>>2]=b;if(b){break j}i=11768,j=F[2942]&oi(e),F[i>>2]=j;break g}F[h+(F[h+16>>2]==(f|0)?16:20)>>2]=b;if(!b){break g}}F[b+24>>2]=h;c=F[f+16>>2];if(c){F[b+16>>2]=c;F[c+24>>2]=b}c=F[f+20>>2];if(!c){break g}F[b+20>>2]=c;F[c+24>>2]=b}F[d+4>>2]=a|1;F[a+d>>2]=a;if(F[2946]!=(d|0)){break f}F[2943]=a;return}F[f+4>>2]=b&-2;F[d+4>>2]=a|1;F[a+d>>2]=a}if(a>>>0<=255){b=(a&-8)+11804|0;c=F[2941];a=1<<(a>>>3);k:{if(!(c&a)){F[2941]=a|c;a=b;break k}a=F[b+8>>2]}F[b+8>>2]=d;F[a+12>>2]=d;F[d+12>>2]=b;F[d+8>>2]=a;return}e=31;if(a>>>0<=16777215){b=O(a>>>8|0);e=((a>>>38-b&1)-(b<<1)|0)+62|0}F[d+28>>2]=e;F[d+16>>2]=0;F[d+20>>2]=0;g=(e<<2)+12068|0;l:{m:{c=F[2942];b=1<>2]=d;F[d+24>>2]=g;break n}e=a<<((e|0)!=31?25-(e>>>1|0)|0:0);b=F[g>>2];while(1){c=b;if((F[b+4>>2]&-8)==(a|0)){break m}b=e>>>29|0;e=e<<1;g=c+(b&4)|0;b=F[g+16>>2];if(b){continue}break}F[g+16>>2]=d;F[d+24>>2]=c}F[d+12>>2]=d;F[d+8>>2]=d;break l}a=F[c+8>>2];F[a+12>>2]=d;F[c+8>>2]=d;F[d+24>>2]=0;F[d+12>>2]=c;F[d+8>>2]=a}a=F[2949]-1|0;F[2949]=a?a:-1}}function di(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0;F[a+8>>2]=e;n=a+32|0;h=F[n>>2];f=F[a+36>>2]-h>>2;a:{if(f>>>0>>0){qa(n,e-f|0);d=F[a+8>>2];break a}d=e;if(d>>>0>=f>>>0){break a}F[a+36>>2]=h+(e<<2);d=e}s=F[a+52>>2];p=F[a+48>>2];f=0;h=e>>>0>1073741823?-1:e<<2;m=ma(ka(h),0,h);b:{if((d|0)<=0){break b}g=F[a+32>>2];while(1){d=f<<2;h=F[d+m>>2];j=F[a+16>>2];c:{if((h|0)>(j|0)){F[d+g>>2]=j;break c}d=d+g|0;j=F[a+12>>2];if((j|0)>(h|0)){F[d>>2]=j;break c}F[d>>2]=h}d=F[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}if((d|0)<=0){break b}f=0;while(1){h=f<<2;d=h+c|0;h=F[b+h>>2]+F[g+h>>2]|0;F[d>>2]=h;d:{if((h|0)>F[a+16>>2]){i=h-F[a+20>>2]|0}else{if((h|0)>=F[a+12>>2]){break d}i=h+F[a+20>>2]|0}F[d>>2]=i}d=F[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}}f=F[a+56>>2];q=F[f>>2];f=F[f+4>>2]-q|0;if((f|0)>=5){o=f>>>2|0;t=o>>>0<=2?2:o;u=e&-2;w=e&1;h=1;while(1){e:{f:{if((h|0)!=(o|0)){r=L(e,h);f=F[(h<<2)+q>>2];if((f|0)==-1){break f}f=F[F[p+12>>2]+(f<<2)>>2];if((f|0)==-1){break f}j=F[s>>2];g=F[p>>2];k=F[j+(F[g+(f<<2)>>2]<<2)>>2];i=f+1|0;i=(i>>>0)%3|0?i:f-2|0;if((i|0)!=-1){i=F[g+(i<<2)>>2]}else{i=-1}g:{h:{if((f>>>0)%3|0){f=f-1|0;break h}f=f+2|0;l=-1;if((f|0)==-1){break g}}l=F[g+(f<<2)>>2]}if((h|0)<=(k|0)){break f}f=F[(i<<2)+j>>2];if((f|0)>=(h|0)){break f}g=F[j+(l<<2)>>2];if((g|0)>=(h|0)){break f}i:{if((e|0)<=0){break i}g=L(e,g);j=L(e,f);k=L(e,k);f=0;l=0;if((e|0)!=1){while(1){F[(f<<2)+m>>2]=(F[(f+g<<2)+c>>2]+F[(f+j<<2)+c>>2]|0)-F[(f+k<<2)+c>>2];i=f|1;F[(i<<2)+m>>2]=(F[(g+i<<2)+c>>2]+F[(j+i<<2)+c>>2]|0)-F[(i+k<<2)+c>>2];f=f+2|0;l=l+2|0;if((u|0)!=(l|0)){continue}break}}if(!w){break i}F[(f<<2)+m>>2]=(F[(f+g<<2)+c>>2]+F[(f+j<<2)+c>>2]|0)-F[(f+k<<2)+c>>2]}if((d|0)<=0){break e}j=F[n>>2];f=0;while(1){d=f<<2;g=F[d+m>>2];k=F[a+16>>2];j:{if((g|0)>(k|0)){F[d+j>>2]=k;break j}d=d+j|0;k=F[a+12>>2];if((k|0)>(g|0)){F[d>>2]=k;break j}F[d>>2]=g}d=F[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}f=0;if((d|0)<=0){break e}d=r<<2;k=d+c|0;i=b+d|0;while(1){g=f<<2;d=g+k|0;g=F[g+i>>2]+F[g+j>>2]|0;F[d>>2]=g;k:{if((g|0)>F[a+16>>2]){l=g-F[a+20>>2]|0}else{if((g|0)>=F[a+12>>2]){break k}l=g+F[a+20>>2]|0}F[d>>2]=l}d=F[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}break e}ta();v()}if((d|0)<=0){break e}k=(L(h-1|0,e)<<2)+c|0;j=F[n>>2];f=0;while(1){d=f<<2;g=F[d+k>>2];i=F[a+16>>2];l:{if((g|0)>(i|0)){F[d+j>>2]=i;break l}d=d+j|0;i=F[a+12>>2];if((i|0)>(g|0)){F[d>>2]=i;break l}F[d>>2]=g}d=F[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}f=0;if((d|0)<=0){break e}d=r<<2;k=d+c|0;i=b+d|0;while(1){g=f<<2;d=g+k|0;g=F[g+i>>2]+F[g+j>>2]|0;F[d>>2]=g;m:{if((g|0)>F[a+16>>2]){l=g-F[a+20>>2]|0}else{if((g|0)>=F[a+12>>2]){break m}l=g+F[a+20>>2]|0}F[d>>2]=l}d=F[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}}h=h+1|0;if((t|0)!=(h|0)){continue}break}}ja(m);return 1}function od(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;if((b|0)==-1){return 1}g=(b>>>0)/3|0;if(!(F[F[a+24>>2]+(g>>>3&268435452)>>2]>>>g&1)){e=F[a+48>>2];F[a+52>>2]=e;a:{if((e|0)!=F[a+56>>2]){F[e>>2]=b;F[a+52>>2]=e+4;break a}d=ka(4);F[d>>2]=b;c=d+4|0;F[a+56>>2]=c;F[a+52>>2]=c;F[a+48>>2]=d;if(!e){break a}ja(e)}c=b+1|0;i=(c>>>0)%3|0?c:b-2|0;c=F[F[a+4>>2]+28>>2];k=F[(i<<2)+c>>2];if((k|0)==-1){return 0}e=(b-L(g,3)|0?-1:2)+b|0;j=F[c+(e<<2)>>2];if((j|0)==-1){return 0}b=F[a+36>>2];g=b+(k>>>3&536870908)|0;d=F[g>>2];c=1<>2]=c|d;Ka(a+8|0,k,i);b=F[a+36>>2]}d=(j>>>3&536870908)+b|0;c=F[d>>2];b=1<>2]=b|c;Ka(a+8|0,j,e)}f=F[a+52>>2];if((f|0)==F[a+48>>2]){return 1}k=a+8|0;while(1){b:{c:{f=f-4|0;b=F[f>>2];if((b|0)==-1){break c}c=(b>>>0)/3|0;g=F[a+24>>2]+(c>>>3&268435452)|0;d=F[g>>2];c=1<>2]=c|d;h=F[a+4>>2];c=F[F[h+28>>2]+(b<<2)>>2];if((c|0)==-1){return 0}while(1){d=b;d:{e:{j=F[a+36>>2]+(c>>>3&536870908)|0;i=F[j>>2];e=1<>2]+(c<<2)>>2];g:{if((g|0)==-1){break g}b=g+1|0;b=(b>>>0)%3|0?b:g-2|0;if((b|0)==-1|F[F[h>>2]+(b>>>3&536870908)>>2]>>>b&1){break g}g=F[F[F[h+64>>2]+12>>2]+(b<<2)>>2];if((g|0)!=-1){break f}}F[j>>2]=e|i;Ka(k,c,d);h=F[a+4>>2];break e}F[j>>2]=e|i;Ka(k,c,d);h=F[a+4>>2];b=g+1|0;if((((b>>>0)%3|0?b:g-2|0)|0)==-1){break e}b=-1;h:{if((d|0)==-1){break h}c=d+1|0;c=(c>>>0)%3|0?c:d-2|0;if((c|0)==-1|F[F[h>>2]+(c>>>3&536870908)>>2]>>>c&1){break h}b=F[F[F[h+64>>2]+12>>2]+(c<<2)>>2]}c=(b>>>0)/3|0;d=1<>2];e=c>>>5|0;j=F[f+(e<<2)>>2];break d}i:{j:{if((d|0)==-1){break j}c=-1;b=d+1|0;b=(b>>>0)%3|0?b:d-2|0;if(!((b|0)==-1|F[F[h>>2]+(b>>>3&536870908)>>2]>>>b&1)){c=F[F[F[h+64>>2]+12>>2]+(b<<2)>>2]}k:{l:{if((d>>>0)%3|0){f=d-1|0;break l}f=d+2|0;b=-1;if((f|0)==-1){break k}}b=-1;if(F[F[h>>2]+(f>>>3&536870908)>>2]>>>f&1){break k}b=F[F[F[h+64>>2]+12>>2]+(f<<2)>>2]}g=(b|0)==-1;i=g?-1:(b>>>0)/3|0;if((c|0)!=-1){f=F[a+24>>2];d=(c>>>0)/3|0;e=d>>>5|0;j=F[f+(e<<2)>>2];d=1<>2];e=i>>>5|0;j=F[f+(e<<2)>>2];if(!(d&j)){break d}}f=F[a+52>>2]-4|0;F[a+52>>2]=f;break b}if(g){b=c;break d}if(F[(i>>>3&536870908)+f>>2]>>>i&1){b=c;break d}h=F[a+52>>2];F[h-4>>2]=b;if(F[a+56>>2]!=(h|0)){F[h>>2]=c;f=h+4|0;break c}m:{i=F[a+48>>2];e=h-i|0;g=e>>2;d=g+1|0;if(d>>>0<1073741824){b=e>>>1|0;e=e>>>0>=2147483644?1073741823:b>>>0>d>>>0?b:d;if(e){if(e>>>0>=1073741824){break m}d=ka(e<<2)}else{d=0}b=d+(g<<2)|0;F[b>>2]=c;f=b+4|0;if((h|0)!=(i|0)){while(1){b=b-4|0;h=h-4|0;F[b>>2]=F[h>>2];if((h|0)!=(i|0)){continue}break}}F[a+56>>2]=d+(e<<2);F[a+52>>2]=f;F[a+48>>2]=b;if(!i){break b}ja(i);f=F[a+52>>2];break b}na();v()}oa();v()}F[(e<<2)+f>>2]=d|j;c=F[F[h+28>>2]+(b<<2)>>2];if((c|0)!=-1){continue}break}return 0}F[a+52>>2]=f}if(F[a+48>>2]!=(f|0)){continue}break}}return 1}function he(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,w=0;F[a+8>>2]=e;m=a+32|0;h=F[m>>2];f=F[a+36>>2]-h>>2;a:{if(f>>>0>>0){qa(m,e-f|0);d=F[a+8>>2];break a}d=e;if(d>>>0>=f>>>0){break a}F[a+36>>2]=h+(e<<2);d=e}s=F[a+52>>2];n=F[a+48>>2];f=0;h=e>>>0>1073741823?-1:e<<2;l=ma(ka(h),0,h);b:{if((d|0)<=0){break b}g=F[a+32>>2];while(1){d=f<<2;h=F[d+l>>2];i=F[a+16>>2];c:{if((h|0)>(i|0)){F[d+g>>2]=i;break c}d=d+g|0;i=F[a+12>>2];if((i|0)>(h|0)){F[d>>2]=i;break c}F[d>>2]=h}d=F[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}if((d|0)<=0){break b}f=0;while(1){h=f<<2;d=h+c|0;h=F[b+h>>2]+F[g+h>>2]|0;F[d>>2]=h;d:{if((h|0)>F[a+16>>2]){h=h-F[a+20>>2]|0}else{if((h|0)>=F[a+12>>2]){break d}h=h+F[a+20>>2]|0}F[d>>2]=h}d=F[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}}f=F[a+56>>2];q=F[f>>2];f=F[f+4>>2]-q|0;if((f|0)>=5){o=f>>>2|0;t=o>>>0<=2?2:o;u=e&-2;w=e&1;h=1;while(1){e:{f:{if((h|0)!=(o|0)){r=L(e,h);f=F[(h<<2)+q>>2];if((f|0)==-1|F[F[n>>2]+(f>>>3&536870908)>>2]>>>f&1){break f}f=F[F[F[n+64>>2]+12>>2]+(f<<2)>>2];if((f|0)==-1){break f}i=F[s>>2];g=F[n+28>>2];k=F[i+(F[g+(f<<2)>>2]<<2)>>2];if((k|0)>=(h|0)){break f}j=f+1|0;j=F[i+(F[g+(((j>>>0)%3|0?j:f-2|0)<<2)>>2]<<2)>>2];if((j|0)>=(h|0)){break f}f=F[i+(F[g+(f+((f>>>0)%3|0?-1:2)<<2)>>2]<<2)>>2];if((f|0)>=(h|0)){break f}g:{if((e|0)<=0){break g}g=L(e,f);i=L(e,j);k=L(e,k);f=0;p=0;if((e|0)!=1){while(1){F[(f<<2)+l>>2]=(F[(f+g<<2)+c>>2]+F[(f+i<<2)+c>>2]|0)-F[(f+k<<2)+c>>2];j=f|1;F[(j<<2)+l>>2]=(F[(g+j<<2)+c>>2]+F[(i+j<<2)+c>>2]|0)-F[(k+j<<2)+c>>2];f=f+2|0;p=p+2|0;if((u|0)!=(p|0)){continue}break}}if(!w){break g}F[(f<<2)+l>>2]=(F[(f+g<<2)+c>>2]+F[(f+i<<2)+c>>2]|0)-F[(f+k<<2)+c>>2]}if((d|0)<=0){break e}i=F[m>>2];f=0;while(1){d=f<<2;g=F[d+l>>2];k=F[a+16>>2];h:{if((g|0)>(k|0)){F[d+i>>2]=k;break h}d=d+i|0;k=F[a+12>>2];if((k|0)>(g|0)){F[d>>2]=k;break h}F[d>>2]=g}d=F[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}f=0;if((d|0)<=0){break e}d=r<<2;k=d+c|0;j=b+d|0;while(1){g=f<<2;d=g+k|0;g=F[g+j>>2]+F[g+i>>2]|0;F[d>>2]=g;i:{if((g|0)>F[a+16>>2]){g=g-F[a+20>>2]|0}else{if((g|0)>=F[a+12>>2]){break i}g=g+F[a+20>>2]|0}F[d>>2]=g}d=F[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}break e}ta();v()}if((d|0)<=0){break e}k=(L(h-1|0,e)<<2)+c|0;i=F[m>>2];f=0;while(1){d=f<<2;g=F[d+k>>2];j=F[a+16>>2];j:{if((g|0)>(j|0)){F[d+i>>2]=j;break j}d=d+i|0;j=F[a+12>>2];if((j|0)>(g|0)){F[d>>2]=j;break j}F[d>>2]=g}d=F[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}f=0;if((d|0)<=0){break e}d=r<<2;k=d+c|0;j=b+d|0;while(1){g=f<<2;d=g+k|0;g=F[g+j>>2]+F[g+i>>2]|0;F[d>>2]=g;k:{if((g|0)>F[a+16>>2]){g=g-F[a+20>>2]|0}else{if((g|0)>=F[a+12>>2]){break k}g=g+F[a+20>>2]|0}F[d>>2]=g}d=F[a+8>>2];f=f+1|0;if((d|0)>(f|0)){continue}break}}h=h+1|0;if((t|0)!=(h|0)){continue}break}}ja(l);return 1}function Fb(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=M(0),k=0,l=0,m=M(0);i=F[c>>2];a:{b:{f=F[b+4>>2];if(!f){break b}g=ni(f);c:{if(g>>>0>=2){e=i;if(f>>>0<=e>>>0){e=(i>>>0)%(f>>>0)|0}c=F[F[b>>2]+(e<<2)>>2];if(!c){break b}if(g>>>0<=1){break c}while(1){c=F[c>>2];if(!c){break b}g=F[c+4>>2];if((g|0)!=(i|0)){if(f>>>0<=g>>>0){g=(g>>>0)%(f>>>0)|0}if((e|0)!=(g|0)){break b}}if(F[c+8>>2]!=(i|0)){continue}break}b=0;break a}e=f-1&i;c=F[F[b>>2]+(e<<2)>>2];if(!c){break b}}h=f-1|0;while(1){c=F[c>>2];if(!c){break b}g=F[c+4>>2];if((g|0)!=(i|0)&(g&h)!=(e|0)){break b}if(F[c+8>>2]!=(i|0)){continue}break}b=0;break a}c=ka(16);d=F[F[d>>2]>>2];F[c+12>>2]=0;F[c+8>>2]=d;F[c+4>>2]=i;F[c>>2]=0;m=M(F[b+12>>2]+1>>>0);j=J[b+16>>2];d:{if(m>M(j*M(f>>>0))?0:f){break d}e=2;d=(f-1&f)!=0|f>>>0<3|f<<1;j=M(S(M(m/j)));e:{if(j=M(0)){g=~~j>>>0;break e}g=0}d=d>>>0>g>>>0?d:g;f:{if((d|0)==1){break f}if(!(d&d-1)){e=d;break f}e=Mc(d);f=F[b+4>>2]}g:{if(e>>>0<=f>>>0){if(e>>>0>=f>>>0){break g}g=f>>>0<3;j=M(S(M(M(I[b+12>>2])/J[b+16>>2])));h:{if(j=M(0)){d=~~j>>>0;break h}d=0}i:{j:{if(g){break j}if(ni(f)>>>0>1){break j}d=d>>>0<2?d:1<<32-O(d-1|0);break i}d=Mc(d)}e=d>>>0>>0?e:d;if(f>>>0<=e>>>0){break g}}f=0;g=0;h=e;k:{l:{m:{n:{if(e){if(h>>>0>=1073741824){break n}d=ka(h<<2);e=F[b>>2];F[b>>2]=d;if(e){ja(e)}F[b+4>>2]=h;d=0;if(h>>>0>=4){e=h&-4;while(1){k=d<<2;F[k+F[b>>2]>>2]=0;F[F[b>>2]+(k|4)>>2]=0;F[F[b>>2]+(k|8)>>2]=0;F[F[b>>2]+(k|12)>>2]=0;d=d+4|0;g=g+4|0;if((e|0)!=(g|0)){continue}break}}e=h&3;if(e){while(1){F[F[b>>2]+(d<<2)>>2]=0;d=d+1|0;f=f+1|0;if((e|0)!=(f|0)){continue}break}}e=F[b+8>>2];if(!e){break k}d=b+8|0;f=F[e+4>>2];g=ni(h);if(g>>>0<2){break m}f=f>>>0>=h>>>0?(f>>>0)%(h>>>0)|0:f;F[F[b>>2]+(f<<2)>>2]=d;d=F[e>>2];if(!d){break k}if(g>>>0<=1){break l}while(1){g=F[d+4>>2];if(h>>>0<=g>>>0){g=(g>>>0)%(h>>>0)|0}o:{if((f|0)==(g|0)){e=d;break o}l=g<<2;k=l+F[b>>2]|0;if(!F[k>>2]){F[k>>2]=e;e=d;f=g;break o}F[e>>2]=F[d>>2];F[d>>2]=F[F[l+F[b>>2]>>2]>>2];F[F[l+F[b>>2]>>2]>>2]=d}d=F[e>>2];if(d){continue}break}break k}d=F[b>>2];F[b>>2]=0;if(d){ja(d)}F[b+4>>2]=0;break k}oa();v()}f=h-1&f;F[F[b>>2]+(f<<2)>>2]=d;d=F[e>>2];if(!d){break k}}k=h-1|0;while(1){g=k&F[d+4>>2];p:{if((g|0)==(f|0)){e=d;break p}l=g<<2;h=l+F[b>>2]|0;if(F[h>>2]){F[e>>2]=F[d>>2];F[d>>2]=F[F[l+F[b>>2]>>2]>>2];F[F[l+F[b>>2]>>2]>>2]=d;break p}F[h>>2]=e;e=d;f=g}d=F[e>>2];if(d){continue}break}}}f=F[b+4>>2];d=f-1|0;if(!(d&f)){e=d&i;break d}if(f>>>0>i>>>0){e=i;break d}e=(i>>>0)%(f>>>0)|0}e=F[b>>2]+(e<<2)|0;d=F[e>>2];q:{r:{if(!d){d=b+8|0;F[c>>2]=F[d>>2];F[b+8>>2]=c;F[e>>2]=d;d=F[c>>2];if(!d){break q}d=F[d+4>>2];e=f-1|0;s:{if(!(e&f)){d=d&e;break s}if(d>>>0>>0){break s}d=(d>>>0)%(f>>>0)|0}d=F[b>>2]+(d<<2)|0;break r}F[c>>2]=F[d>>2]}F[d>>2]=c}F[b+12>>2]=F[b+12>>2]+1;b=1}D[a+4|0]=b;F[a>>2]=c}function Vb(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;j=L(b,12)+a|0;F[j+12>>2]=F[j+8>>2];m=(c|0)==-1?-1:(c>>>0)/3|0;d=1;k=c;a:{b:{c:{while(1){d:{l=d;if(!d){if((k|0)==-1){break d}if((Wc(a,((k>>>0)%3|0?-1:2)+k|0)|0)==-1){break a}c=k+1|0;d=(c>>>0)%3|0?c:k-2|0;if((d|0)==-1){break a}c=d+1|0;c=(c>>>0)%3|0?c:d-2|0;if((c|0)==-1){break a}d=F[F[F[a+4>>2]+12>>2]+(c<<2)>>2];if((d|0)==-1){break a}c=d+1|0;c=(c>>>0)%3|0?c:d-2|0;if((c|0)==-1){break a}m=(c>>>0)/3|0}e:{d=F[a+56>>2]+(m>>>3&536870908)|0;h=F[d>>2];e=1<>2]=e|h;d=F[j+12>>2];f:{if((d|0)!=F[j+16>>2]){F[d>>2]=m;F[j+12>>2]=d+4;break f}n=F[j+8>>2];h=d-n|0;e=h>>2;i=e+1|0;if(i>>>0>=1073741824){break c}g=h>>>1|0;i=h>>>0>=2147483644?1073741823:i>>>0>>0?g:i;if(i){if(i>>>0>=1073741824){break b}g=ka(i<<2)}else{g=0}h=g+(e<<2)|0;F[h>>2]=m;e=h+4|0;if((d|0)!=(n|0)){while(1){h=h-4|0;d=d-4|0;F[h>>2]=F[d>>2];if((d|0)!=(n|0)){continue}break}}F[j+8>>2]=h;F[j+12>>2]=e;F[j+16>>2]=g+(i<<2);if(!n){break f}ja(n)}g=f+1|0;g:{h:{i:{if(!f){break i}if(g&1){if((c|0)==-1){c=-1;break g}d=c+1|0;c=(d>>>0)%3|0?d:c-2|0;break i}k=l?k:c;if((c|0)==-1){c=-1;break g}if((c>>>0)%3|0){d=c-1|0;break h}c=c+2|0}d=c;c=-1;if((d|0)==-1){break g}}c=F[F[F[a+4>>2]+12>>2]+(d<<2)>>2];h=-1;f=-1;e=d+1|0;e=(e>>>0)%3|0?e:d-2|0;if((e|0)>=0){f=(e>>>0)/3|0;f=F[(F[F[a>>2]+96>>2]+L(f,12)|0)+(e-L(f,3)<<2)>>2]}j:{if((c|0)==-1){break j}i=((c>>>0)%3|0?-1:2)+c|0;if((i|0)<0){break j}e=(i>>>0)/3|0;h=F[(F[F[a>>2]+96>>2]+L(e,12)|0)+(i-L(e,3)<<2)>>2]}if((f|0)!=(h|0)){c=-1;break g}k:{l:{f=((d>>>0)%3|0?-1:2)+d|0;if((f|0)>=0){d=(f>>>0)/3|0;if((c|0)!=-1){break l}c=-1;break g}d=-1;if((c|0)!=-1){break k}c=-1;break g}d=F[(F[F[a>>2]+96>>2]+L(d,12)|0)+(f-L(d,3)<<2)>>2]}f=c+1|0;e=(f>>>0)%3|0?f:c-2|0;if((e|0)>=0){f=(e>>>0)/3|0;f=F[(F[F[a>>2]+96>>2]+L(f,12)|0)+(e-L(f,3)<<2)>>2]}else{f=-1}if((f|0)!=(d|0)){c=-1;break g}f=g;m=(c>>>0)/3|0;d=F[a+56>>2]+(m>>>3&268435452)|0;h=F[d>>2];e=1<>2]-4|0;g=F[l>>2];d=F[a+56>>2]+(g>>>3&536870908)|0;c=F[d>>2];o=d,p=oi(g)&c,F[o>>2]=p;F[j+12>>2]=l;break a}d=0;if(l){continue}break a}break}k=-1;Wc(a,-1);break a}na();v()}oa();v()}F[((b<<2)+a|0)+44>>2]=k;b=F[j+12>>2];i=F[j+8>>2];m:{if((b|0)==(i|0)){break m}c=b-i|0;b=c>>2;b=b>>>0<=1?1:b;k=b&1;e=F[a+56>>2];d=0;if(c>>>0>=8){f=b&-2;c=0;while(1){l=d<<2;g=F[l+i>>2];b=e+(g>>>3&536870908)|0;a=F[b>>2];o=b,p=oi(g)&a,F[o>>2]=p;g=F[i+(l|4)>>2];b=e+(g>>>3&536870908)|0;a=F[b>>2];o=b,p=oi(g)&a,F[o>>2]=p;d=d+2|0;c=c+2|0;if((f|0)!=(c|0)){continue}break}}if(!k){break m}c=F[i+(d<<2)>>2];b=e+(c>>>3&536870908)|0;a=F[b>>2];o=b,p=oi(c)&a,F[o>>2]=p}}function pd(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;if((b|0)==-1){return 1}g=(b>>>0)/3|0;if(!(F[F[a+24>>2]+(g>>>3&268435452)>>2]>>>g&1)){f=F[a+48>>2];F[a+52>>2]=f;a:{if((f|0)!=F[a+56>>2]){F[f>>2]=b;F[a+52>>2]=f+4;break a}d=ka(4);F[d>>2]=b;c=d+4|0;F[a+56>>2]=c;F[a+52>>2]=c;F[a+48>>2]=d;if(!f){break a}ja(f)}e=-1;d=F[a+4>>2];c=b+1|0;i=(c>>>0)%3|0?c:b-2|0;if((i|0)!=-1){e=F[F[d>>2]+(i<<2)>>2]}b:{h=b-L(g,3)|0;if(h){c=b-1|0;break b}c=b+2|0;if((c|0)!=-1){break b}return 0}if((e|0)==-1){return 0}j=F[F[d>>2]+(c<<2)>>2];if((j|0)==-1){return 0}c=F[a+36>>2];f=c+(e>>>3&536870908)|0;g=F[f>>2];d=1<>2]=d|g;Ka(a+8|0,e,i);c=F[a+36>>2]}g=(j>>>3&536870908)+c|0;d=F[g>>2];c=1<>2]=c|d;Ka(a+8|0,j,(h?-1:2)+b|0)}c=F[a+52>>2];if((c|0)==F[a+48>>2]){return 1}j=a+8|0;while(1){c:{d:{c=c-4|0;b=F[c>>2];if((b|0)==-1){break d}d=(b>>>0)/3|0;f=F[a+24>>2]+(d>>>3&268435452)|0;g=F[f>>2];d=1<>2]=d|g;while(1){i=F[a+4>>2];e=F[F[i>>2]+(b<<2)>>2];if((e|0)==-1){return 0}e:{f:{h=F[a+36>>2]+(e>>>3&536870908)|0;f=F[h>>2];g=1<>2]+(e<<2)>>2];h:{if((d|0)==-1){break h}c=d+1|0;c=(c>>>0)%3|0?c:d-2|0;if((c|0)==-1){break h}d=F[F[i+12>>2]+(c<<2)>>2];if((d|0)!=-1){break g}}F[h>>2]=f|g;Ka(j,e,b);break f}F[h>>2]=f|g;Ka(j,e,b);c=d+1|0;if((((c>>>0)%3|0?c:d-2|0)|0)==-1){break f}c=b-2|0;d=b+1|0;b=-1;c=(d>>>0)%3|0?d:c;if((c|0)!=-1){b=F[F[F[a+4>>2]+12>>2]+(c<<2)>>2]}c=(b>>>0)/3|0;d=1<>2];f=c>>>5|0;i=F[e+(f<<2)>>2];break e}c=-1;g=F[a+4>>2];d=b+1|0;d=(d>>>0)%3|0?d:b-2|0;if((d|0)!=-1){c=F[F[g+12>>2]+(d<<2)>>2]}i:{j:{if((b>>>0)%3|0){e=b-1|0;break j}e=b+2|0;b=-1;if((e|0)==-1){break i}}b=F[F[g+12>>2]+(e<<2)>>2]}g=(b|0)==-1;h=g?-1:(b>>>0)/3|0;k:{if((c|0)!=-1){e=F[a+24>>2];d=(c>>>0)/3|0;f=d>>>5|0;i=F[e+(f<<2)>>2];d=1<>2];f=h>>>5|0;i=F[e+(f<<2)>>2];if(!(d&i)){break e}}c=F[a+52>>2]-4|0;F[a+52>>2]=c;break c}if(g){b=c;break e}if(F[(h>>>3&536870908)+e>>2]>>>h&1){b=c;break e}e=F[a+52>>2];F[e-4>>2]=b;if(F[a+56>>2]!=(e|0)){F[e>>2]=c;c=e+4|0;break d}l:{h=F[a+48>>2];f=e-h|0;g=f>>2;d=g+1|0;if(d>>>0<1073741824){b=f>>>1|0;f=f>>>0>=2147483644?1073741823:b>>>0>d>>>0?b:d;if(f){if(f>>>0>=1073741824){break l}d=ka(f<<2)}else{d=0}b=d+(g<<2)|0;F[b>>2]=c;c=b+4|0;if((e|0)!=(h|0)){while(1){b=b-4|0;e=e-4|0;F[b>>2]=F[e>>2];if((e|0)!=(h|0)){continue}break}}F[a+56>>2]=d+(f<<2);F[a+52>>2]=c;F[a+48>>2]=b;if(!h){break c}ja(h);c=F[a+52>>2];break c}na();v()}oa();v()}F[(f<<2)+e>>2]=d|i;if((b|0)!=-1){continue}break}return 0}F[a+52>>2]=c}if(F[a+48>>2]!=(c|0)){continue}break}}return 1}function ee(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;h=Z-32|0;Z=h;a:{b:{if(!Oa(1,h+28|0,b)){break b}d=F[h+28>>2];c=F[F[a+48>>2]+64>>2];if(d>>>0>F[c+4>>2]-F[c>>2]>>2>>>0){break b}c:{if(d){Na(a+60|0,d);c=h+8|0;F[c>>2]=0;F[c+4>>2]=0;D[c+5|0]=0;D[c+6|0]=0;D[c+7|0]=0;D[c+8|0]=0;D[c+9|0]=0;D[c+10|0]=0;D[c+11|0]=0;D[c+12|0]=0;if(!Aa(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|F[g>>2]}else{i=F[g>>2]&(f^-1)}F[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}if(!Oa(1,h+28|0,b)){break b}d=F[h+28>>2];c=F[F[a+48>>2]+64>>2];if(d>>>0>F[c+4>>2]-F[c>>2]>>2>>>0){break b}if(d){e=0;Na(a+72|0,d);c=h+8|0;F[c>>2]=0;F[c+4>>2]=0;D[c+5|0]=0;D[c+6|0]=0;D[c+7|0]=0;D[c+8|0]=0;D[c+9|0]=0;D[c+10|0]=0;D[c+11|0]=0;D[c+12|0]=0;if(!Aa(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|F[g>>2]}else{i=F[g>>2]&(f^-1)}F[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}if(!Oa(1,h+28|0,b)){break b}d=F[h+28>>2];c=F[F[a+48>>2]+64>>2];if(d>>>0>F[c+4>>2]-F[c>>2]>>2>>>0){break b}if(d){e=0;Na(a+84|0,d);c=h+8|0;F[c>>2]=0;F[c+4>>2]=0;D[c+5|0]=0;D[c+6|0]=0;D[c+7|0]=0;D[c+8|0]=0;D[c+9|0]=0;D[c+10|0]=0;D[c+11|0]=0;D[c+12|0]=0;if(!Aa(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|F[g>>2]}else{i=F[g>>2]&(f^-1)}F[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}if(!Oa(1,h+28|0,b)){break b}d=F[h+28>>2];c=F[F[a+48>>2]+64>>2];if(d>>>0>F[c+4>>2]-F[c>>2]>>2>>>0){break b}if(d){e=0;Na(a+96|0,d);c=h+8|0;F[c>>2]=0;F[c+4>>2]=0;D[c+5|0]=0;D[c+6|0]=0;D[c+7|0]=0;D[c+8|0]=0;D[c+9|0]=0;D[c+10|0]=0;D[c+11|0]=0;D[c+12|0]=0;if(!Aa(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|F[g>>2]}else{i=F[g>>2]&(f^-1)}F[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}e=0;c=F[b+8>>2];f=F[b+12>>2];d=c;c=F[b+20>>2];i=c;g=F[b+16>>2];j=g+4|0;c=j>>>0<4?c+1|0:c;if(d>>>0>>0&(c|0)>=(f|0)|(c|0)>(f|0)){break a}m=F[b>>2];k=m+g|0;l=G[k|0]|G[k+1|0]<<8|(G[k+2|0]<<16|G[k+3|0]<<24);F[b+16>>2]=j;F[b+20>>2]=c;k=d;d=f;c=i;f=g+8|0;c=f>>>0<8?c+1|0:c;if(f>>>0>k>>>0&(c|0)>=(d|0)|(c|0)>(d|0)){break a}d=j+m|0;d=G[d|0]|G[d+1|0]<<8|(G[d+2|0]<<16|G[d+3|0]<<24);F[b+16>>2]=f;F[b+20>>2]=c;if((d|0)<(l|0)){break a}F[a+16>>2]=d;F[a+12>>2]=l;c=(d>>31)-((l>>31)+(d>>>0>>0)|0)|0;b=d-l|0;if(!c&b>>>0>2147483646|c){break a}e=1;b=b+1|0;F[a+20>>2]=b;c=b>>>1|0;F[a+24>>2]=c;F[a+28>>2]=0-c;if(b&1){break a}F[a+24>>2]=c-1;break a}}e=0}Z=h+32|0;return e|0}function ai(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;h=Z-32|0;Z=h;a:{b:{if(!Oa(1,h+28|0,b)){break b}d=F[h+28>>2];c=F[a+48>>2];if(d>>>0>F[c+4>>2]-F[c>>2]>>2>>>0){break b}c:{if(d){Na(a+60|0,d);c=h+8|0;F[c>>2]=0;F[c+4>>2]=0;D[c+5|0]=0;D[c+6|0]=0;D[c+7|0]=0;D[c+8|0]=0;D[c+9|0]=0;D[c+10|0]=0;D[c+11|0]=0;D[c+12|0]=0;if(!Aa(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|F[g>>2]}else{i=F[g>>2]&(f^-1)}F[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}if(!Oa(1,h+28|0,b)){break b}d=F[h+28>>2];c=F[a+48>>2];if(d>>>0>F[c+4>>2]-F[c>>2]>>2>>>0){break b}if(d){e=0;Na(a+72|0,d);c=h+8|0;F[c>>2]=0;F[c+4>>2]=0;D[c+5|0]=0;D[c+6|0]=0;D[c+7|0]=0;D[c+8|0]=0;D[c+9|0]=0;D[c+10|0]=0;D[c+11|0]=0;D[c+12|0]=0;if(!Aa(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|F[g>>2]}else{i=F[g>>2]&(f^-1)}F[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}if(!Oa(1,h+28|0,b)){break b}d=F[h+28>>2];c=F[a+48>>2];if(d>>>0>F[c+4>>2]-F[c>>2]>>2>>>0){break b}if(d){e=0;Na(a+84|0,d);c=h+8|0;F[c>>2]=0;F[c+4>>2]=0;D[c+5|0]=0;D[c+6|0]=0;D[c+7|0]=0;D[c+8|0]=0;D[c+9|0]=0;D[c+10|0]=0;D[c+11|0]=0;D[c+12|0]=0;if(!Aa(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|F[g>>2]}else{i=F[g>>2]&(f^-1)}F[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}if(!Oa(1,h+28|0,b)){break b}d=F[h+28>>2];c=F[a+48>>2];if(d>>>0>F[c+4>>2]-F[c>>2]>>2>>>0){break b}if(d){e=0;Na(a+96|0,d);c=h+8|0;F[c>>2]=0;F[c+4>>2]=0;D[c+5|0]=0;D[c+6|0]=0;D[c+7|0]=0;D[c+8|0]=0;D[c+9|0]=0;D[c+10|0]=0;D[c+11|0]=0;D[c+12|0]=0;if(!Aa(c,b)){break c}while(1){f=1<>2]+(e>>>3&536870908)|0;if(j){i=f|F[g>>2]}else{i=F[g>>2]&(f^-1)}F[g>>2]=i;e=e+1|0;if((d|0)!=(e|0)){continue}break}}e=0;c=F[b+8>>2];f=F[b+12>>2];d=c;c=F[b+20>>2];i=c;g=F[b+16>>2];j=g+4|0;c=j>>>0<4?c+1|0:c;if(d>>>0>>0&(c|0)>=(f|0)|(c|0)>(f|0)){break a}m=F[b>>2];k=m+g|0;l=G[k|0]|G[k+1|0]<<8|(G[k+2|0]<<16|G[k+3|0]<<24);F[b+16>>2]=j;F[b+20>>2]=c;k=d;d=f;c=i;f=g+8|0;c=f>>>0<8?c+1|0:c;if(f>>>0>k>>>0&(c|0)>=(d|0)|(c|0)>(d|0)){break a}d=j+m|0;d=G[d|0]|G[d+1|0]<<8|(G[d+2|0]<<16|G[d+3|0]<<24);F[b+16>>2]=f;F[b+20>>2]=c;if((d|0)<(l|0)){break a}F[a+16>>2]=d;F[a+12>>2]=l;c=(d>>31)-((l>>31)+(d>>>0>>0)|0)|0;b=d-l|0;if(!c&b>>>0>2147483646|c){break a}e=1;b=b+1|0;F[a+20>>2]=b;c=b>>>1|0;F[a+24>>2]=c;F[a+28>>2]=0-c;if(b&1){break a}F[a+24>>2]=c-1;break a}}e=0}Z=h+32|0;return e|0}function uh(a){a=a|0;var b=0,c=0,d=0,e=0;c=F[a+32>>2];d=F[c+16>>2];e=F[c+12>>2];b=F[c+20>>2];if(I[c+8>>2]>d>>>0&(e|0)>=(b|0)|(b|0)<(e|0)){e=G[F[c>>2]+d|0];d=d+1|0;b=d?b:b+1|0;F[c+16>>2]=d;F[c+20>>2]=b;b=F[a+48>>2];F[a+48>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}a:{b:{c:{d:{switch(e|0){case 0:b=ka(384);F[b>>2]=8284;ma(b+4|0,0,80);F[b+96>>2]=0;F[b+100>>2]=0;F[b+92>>2]=-1;F[b+84>>2]=-1;F[b+88>>2]=-1;F[b+104>>2]=0;F[b+108>>2]=0;F[b+112>>2]=0;F[b+116>>2]=0;F[b+120>>2]=0;F[b+124>>2]=0;F[b+128>>2]=0;F[b+132>>2]=0;F[b+136>>2]=0;F[b+140>>2]=0;F[b+144>>2]=0;F[b+148>>2]=0;F[b+156>>2]=0;F[b+160>>2]=0;F[b+152>>2]=1065353216;F[b+164>>2]=0;F[b+168>>2]=0;F[b+172>>2]=0;F[b+176>>2]=0;F[b+180>>2]=0;F[b+184>>2]=0;F[b+188>>2]=0;F[b+192>>2]=0;F[b+196>>2]=0;F[b+200>>2]=0;F[b+204>>2]=0;F[b+208>>2]=0;F[b+212>>2]=-1;F[b+216>>2]=0;F[b+220>>2]=0;F[b+224>>2]=0;Ja(b+232|0);Ja(b+272|0);c=b+312|0;F[c>>2]=0;F[c+4>>2]=0;D[c+5|0]=0;D[c+6|0]=0;D[c+7|0]=0;D[c+8|0]=0;D[c+9|0]=0;D[c+10|0]=0;D[c+11|0]=0;D[c+12|0]=0;Ja(b+328|0);F[b+376>>2]=0;F[b+368>>2]=0;F[b+372>>2]=0;break c;case 2:break d;default:break b}}b=ka(440);F[b>>2]=8336;ma(b+4|0,0,80);F[b+96>>2]=0;F[b+100>>2]=0;F[b+92>>2]=-1;F[b+84>>2]=-1;F[b+88>>2]=-1;F[b+104>>2]=0;F[b+108>>2]=0;F[b+112>>2]=0;F[b+116>>2]=0;F[b+120>>2]=0;F[b+124>>2]=0;F[b+128>>2]=0;F[b+132>>2]=0;F[b+136>>2]=0;F[b+140>>2]=0;F[b+144>>2]=0;F[b+148>>2]=0;F[b+156>>2]=0;F[b+160>>2]=0;F[b+152>>2]=1065353216;F[b+164>>2]=0;F[b+168>>2]=0;F[b+172>>2]=0;F[b+176>>2]=0;F[b+180>>2]=0;F[b+184>>2]=0;F[b+188>>2]=0;F[b+192>>2]=0;F[b+196>>2]=0;F[b+200>>2]=0;F[b+204>>2]=0;F[b+208>>2]=0;F[b+212>>2]=-1;F[b+216>>2]=0;F[b+220>>2]=0;F[b+224>>2]=0;Ja(b+232|0);Ja(b+272|0);c=b+312|0;F[c>>2]=0;F[c+4>>2]=0;D[c+5|0]=0;D[c+6|0]=0;D[c+7|0]=0;D[c+8|0]=0;D[c+9|0]=0;D[c+10|0]=0;D[c+11|0]=0;D[c+12|0]=0;Ja(b+328|0);F[b+392>>2]=0;F[b+396>>2]=0;F[b+384>>2]=0;F[b+388>>2]=0;F[b+376>>2]=0;F[b+380>>2]=0;F[b+368>>2]=0;F[b+372>>2]=0;F[b+416>>2]=0;F[b+420>>2]=0;F[b+408>>2]=2;F[b+412>>2]=7;F[b+400>>2]=-1;F[b+404>>2]=-1;F[b+424>>2]=0;F[b+428>>2]=0;F[b+432>>2]=0;F[b+436>>2]=0}c=F[a+48>>2];F[a+48>>2]=b;if(!c){break a}$[F[F[c>>2]+4>>2]](c)}b=F[a+48>>2];if(b){break a}return 0}a=$[F[F[b>>2]+8>>2]](b,a)|0}else{a=0}return a|0}function ei(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;g=Z-32|0;Z=g;F[a+68>>2]=f;d=F[a+56>>2];e=F[d>>2];d=F[d+4>>2];F[g+24>>2]=0;F[g+16>>2]=0;F[g+20>>2]=0;a:{d=d-e|0;if((d|0)>0){m=a+60|0;d=d>>>2|0;n=d>>>0<=1?1:d;o=a+112|0;while(1){e=F[a+56>>2];d=F[e>>2];if(F[e+4>>2]-d>>2>>>0<=j>>>0){break a}Mb(m,F[d+(j<<2)>>2],g+16|0);i=F[g+20>>2];d=i>>31;h=F[g+16>>2];e=h>>31;f=(d^i)-d+((e^h)-e)|0;k=F[g+24>>2];d=k>>31;e=(d^k)-d|0;d=0;l=e;e=e+f|0;d=l>>>0>e>>>0?1:d;b:{if(!(d|e)){F[g+16>>2]=F[a+108>>2];break b}f=F[a+108>>2];l=f>>31;h=li(ki(f,l,h,h>>31),_,e,d);F[g+16>>2]=h;d=li(ki(f,l,i,i>>31),_,e,d);F[g+20>>2]=d;e=d;d=d>>31;e=(e^d)-d|0;d=h>>31;d=e+((d^h)-d|0)|0;if((k|0)>=0){F[g+24>>2]=f-d;break b}F[g+24>>2]=d-f}d=wa(o);f=F[g+16>>2];c:{if(d){F[g+24>>2]=0-F[g+24>>2];e=0-F[g+20>>2]|0;F[g+20>>2]=e;f=0-f|0;F[g+16>>2]=f;break c}e=F[g+20>>2]}d:{if((f|0)>=0){f=F[a+108>>2];d=f+F[g+24>>2]|0;f=e+f|0;break d}e:{if((e|0)<0){d=F[g+24>>2];f=d>>31;f=(d^f)-f|0;break e}d=F[g+24>>2];f=d>>31;f=F[a+100>>2]+(f-(d^f)|0)|0}if((d|0)<0){d=e>>31;d=(d^e)-d|0;break d}d=e>>31;d=F[a+100>>2]+(d-(d^e)|0)|0}e=F[a+100>>2];f:{if(!(d|f)){d=e;f=d;break f}if(!((d|0)!=(e|0)|f)){f=d;break f}if(!((e|0)!=(f|0)|d)){d=f;break f}g:{if(f){break g}i=F[a+108>>2];if((i|0)>=(d|0)){break g}d=(i<<1)-d|0;f=0;break f}h:{if((e|0)!=(f|0)){break h}i=F[a+108>>2];if((i|0)<=(d|0)){break h}d=(i<<1)-d|0;break f}i:{if((d|0)!=(e|0)){break i}e=F[a+108>>2];if((e|0)<=(f|0)){break i}f=(e<<1)-f|0;break f}if(d){break f}d=0;e=F[a+108>>2];if((e|0)>=(f|0)){break f}f=(e<<1)-f|0}F[g+12>>2]=d;F[g+8>>2]=f;j:{if(F[a+8>>2]<=0){break j}i=F[a+32>>2];f=0;while(1){d=f<<2;e=F[d+(g+8|0)>>2];h=F[a+16>>2];k:{if((e|0)>(h|0)){F[d+i>>2]=h;break k}d=d+i|0;h=F[a+12>>2];if((h|0)>(e|0)){F[d>>2]=h;break k}F[d>>2]=e}f=f+1|0;e=F[a+8>>2];if((f|0)<(e|0)){continue}break}d=0;if((e|0)<=0){break j}e=j<<3;h=e+c|0;k=b+e|0;while(1){f=d<<2;e=f+h|0;f=F[f+k>>2]+F[f+i>>2]|0;F[e>>2]=f;l:{if((f|0)>F[a+16>>2]){f=f-F[a+20>>2]|0}else{if((f|0)>=F[a+12>>2]){break l}f=f+F[a+20>>2]|0}F[e>>2]=f}d=d+1|0;if((d|0)>2]){continue}break}}j=j+1|0;if((n|0)!=(j|0)){continue}break}}Z=g+32|0;return 1}ta();v()}function Vh(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;g=Z-32|0;Z=g;F[a+68>>2]=f;d=F[a+56>>2];e=F[d>>2];d=F[d+4>>2];F[g+24>>2]=0;F[g+16>>2]=0;F[g+20>>2]=0;a:{d=d-e|0;if((d|0)>0){m=a+60|0;d=d>>>2|0;n=d>>>0<=1?1:d;o=a+112|0;while(1){e=F[a+56>>2];d=F[e>>2];if(F[e+4>>2]-d>>2>>>0<=j>>>0){break a}Kb(m,F[d+(j<<2)>>2],g+16|0);i=F[g+20>>2];d=i>>31;h=F[g+16>>2];e=h>>31;f=(d^i)-d+((e^h)-e)|0;k=F[g+24>>2];d=k>>31;e=(d^k)-d|0;d=0;l=e;e=e+f|0;d=l>>>0>e>>>0?1:d;b:{if(!(d|e)){F[g+16>>2]=F[a+108>>2];break b}f=F[a+108>>2];l=f>>31;h=li(ki(f,l,h,h>>31),_,e,d);F[g+16>>2]=h;d=li(ki(f,l,i,i>>31),_,e,d);F[g+20>>2]=d;e=d;d=d>>31;e=(e^d)-d|0;d=h>>31;d=e+((d^h)-d|0)|0;if((k|0)>=0){F[g+24>>2]=f-d;break b}F[g+24>>2]=d-f}d=wa(o);f=F[g+16>>2];c:{if(d){F[g+24>>2]=0-F[g+24>>2];e=0-F[g+20>>2]|0;F[g+20>>2]=e;f=0-f|0;F[g+16>>2]=f;break c}e=F[g+20>>2]}d:{if((f|0)>=0){f=F[a+108>>2];d=f+F[g+24>>2]|0;f=e+f|0;break d}e:{if((e|0)<0){d=F[g+24>>2];f=d>>31;f=(d^f)-f|0;break e}d=F[g+24>>2];f=d>>31;f=F[a+100>>2]+(f-(d^f)|0)|0}if((d|0)<0){d=e>>31;d=(d^e)-d|0;break d}d=e>>31;d=F[a+100>>2]+(d-(d^e)|0)|0}e=F[a+100>>2];f:{if(!(d|f)){d=e;f=d;break f}if(!((d|0)!=(e|0)|f)){f=d;break f}if(!((e|0)!=(f|0)|d)){d=f;break f}g:{if(f){break g}i=F[a+108>>2];if((i|0)>=(d|0)){break g}d=(i<<1)-d|0;f=0;break f}h:{if((e|0)!=(f|0)){break h}i=F[a+108>>2];if((i|0)<=(d|0)){break h}d=(i<<1)-d|0;break f}i:{if((d|0)!=(e|0)){break i}e=F[a+108>>2];if((e|0)<=(f|0)){break i}f=(e<<1)-f|0;break f}if(d){break f}d=0;e=F[a+108>>2];if((e|0)>=(f|0)){break f}f=(e<<1)-f|0}F[g+12>>2]=d;F[g+8>>2]=f;j:{if(F[a+8>>2]<=0){break j}i=F[a+32>>2];f=0;while(1){d=f<<2;e=F[d+(g+8|0)>>2];h=F[a+16>>2];k:{if((e|0)>(h|0)){F[d+i>>2]=h;break k}d=d+i|0;h=F[a+12>>2];if((h|0)>(e|0)){F[d>>2]=h;break k}F[d>>2]=e}f=f+1|0;e=F[a+8>>2];if((f|0)<(e|0)){continue}break}d=0;if((e|0)<=0){break j}e=j<<3;h=e+c|0;k=b+e|0;while(1){f=d<<2;e=f+h|0;f=F[f+k>>2]+F[f+i>>2]|0;F[e>>2]=f;l:{if((f|0)>F[a+16>>2]){f=f-F[a+20>>2]|0}else{if((f|0)>=F[a+12>>2]){break l}f=f+F[a+20>>2]|0}F[e>>2]=f}d=d+1|0;if((d|0)>2]){continue}break}}j=j+1|0;if((n|0)!=(j|0)){continue}break}}Z=g+32|0;return 1}ta();v()}function $a(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;h=Z-32|0;Z=h;a:{b:{if(F[a+8>>2]<<5>>>0>=b>>>0){break b}if((b|0)<0){break a}b=(b-1>>>5|0)+1|0;c=ka(b<<2);F[h+24>>2]=b;F[h+20>>2]=0;F[h+16>>2]=c;b=F[a>>2];F[h+12>>2]=0;F[h+8>>2]=b;c=F[a+4>>2];F[h+4>>2]=c&31;F[h>>2]=b+(c>>>3&536870908);e=Z-32|0;Z=e;i=F[h+4>>2];g=F[h+12>>2];j=F[h>>2];d=F[h+8>>2];b=(i-g|0)+(j-d<<3)|0;f=F[h+20>>2];c=b+f|0;F[h+20>>2]=c;if(!((c-1^f-1)>>>0<32?f:0)){F[F[h+16>>2]+((c>>>0>=33?c-1>>>5|0:0)<<2)>>2]=0}c=F[h+16>>2]+(f>>>3&536870908)|0;f=f&31;c:{if((f|0)==(g|0)){if((b|0)<=0){break c}if(g){i=32-g|0;f=(b|0)<(i|0)?b:i;i=-1<>>i-f;F[c>>2]=F[c>>2]&(i^-1)|i&F[d>>2];d=d+4|0;c=(g+f>>>3&536870908)+c|0;b=b-f|0}g=(b|0)/32|0;if(b+31>>>0>=63){pa(c,d,g<<2)}b=b-(g<<5)|0;if((b|0)<=0){break c}f=c;c=g<<2;g=f+c|0;b=-1>>>32-b|0;F[g>>2]=F[g>>2]&(b^-1)|b&F[c+d>>2];break c}F[e+28>>2]=g;F[e+24>>2]=d;F[e+20>>2]=i;F[e+16>>2]=j;F[e+12>>2]=f;F[e+8>>2]=c;b=F[e+28>>2];c=F[e+24>>2];g=(F[e+20>>2]-b|0)+(F[e+16>>2]-c<<3)|0;d:{if((g|0)<=0){b=F[e+12>>2];d=F[e+8>>2];break d}e:{if(!b){b=F[e+12>>2];break e}d=F[e+12>>2];j=32-d|0;k=32-b|0;f=(g|0)<(k|0)?g:k;i=f>>>0>j>>>0?j:f;l=F[e+8>>2];m=F[l>>2]&(-1<>>j-i^-1);j=F[c>>2]&(-1<>>k-f);F[l>>2]=m|(b>>>0>>0?j<>>b-d|0);c=d+i|0;b=c&31;F[e+12>>2]=b;d=l+(c>>>3&536870908)|0;F[e+8>>2]=d;c=f-i|0;if((c|0)>0){F[d>>2]=F[d>>2]&(-1>>>32-c^-1)|j>>>i+F[e+28>>2];F[e+12>>2]=c;b=c}g=g-f|0;c=F[e+24>>2]+4|0;F[e+24>>2]=c}i=-1<=32){j=i^-1;while(1){d=F[e+8>>2];c=F[c>>2];F[d>>2]=j&F[d>>2]|c<>2]=d+4;F[d+4>>2]=i&F[d+4>>2]|c>>>f;c=F[e+24>>2]+4|0;F[e+24>>2]=c;d=g>>>0>63;g=g-32|0;if(d){continue}break}}d=F[e+8>>2];if((g|0)<=0){break d}j=f;f=(g|0)>(f|0)?f:g;j=F[d>>2]&(i&-1>>>j-f^-1);i=F[c>>2]&-1>>>32-g;F[d>>2]=j|i<>2]=c;d=(b>>>3&536870908)+d|0;F[e+8>>2]=d;b=g-f|0;if((b|0)<=0){b=c;break d}F[d>>2]=F[d>>2]&(-1>>>32-b^-1)|i>>>f;F[e+12>>2]=b}F[e+4>>2]=b;F[e>>2]=d}Z=e+32|0;b=F[a>>2];F[a>>2]=F[h+16>>2];F[h+16>>2]=b;c=F[a+4>>2];F[a+4>>2]=F[h+20>>2];F[h+20>>2]=c;c=F[a+8>>2];F[a+8>>2]=F[h+24>>2];F[h+24>>2]=c;if(!b){break b}ja(b)}Z=h+32|0;return}na();v()}function xc(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;n=$[F[F[a>>2]+44>>2]](a)|0;a:{if((n|0)<=0){break a}i=F[b+4>>2]-F[b>>2]>>2;e=Z+-64|0;Z=e;f=kb(e);d=L(F[2541],n);cc(f,F[F[a+8>>2]+56>>2],n&255,5,0,d,d>>31);f=bc(ka(96),f);D[f+84|0]=1;F[f+72>>2]=F[f+68>>2];ac(f,i);F[f+60>>2]=F[F[a+8>>2]+60>>2];d=F[a+16>>2];F[a+16>>2]=f;if(d){xa(d)}Z=e- -64|0;h=F[a+16>>2];if(!F[h+80>>2]){break a}j=F[F[h>>2]>>2];if(!j){break a}m=F[c+12>>2];e=m;d=F[c+20>>2];g=F[c+8>>2];k=F[c+16>>2];if((e|0)<=(d|0)&g>>>0<=k>>>0|(d|0)>(e|0)){break a}l=L(i,n);i=j+F[h+48>>2]|0;h=F[c>>2];j=G[h+k|0];e=k+1|0;f=e?d:d+1|0;F[c+16>>2]=e;F[c+20>>2]=f;b:{c:{if(j){if(mc(l,n,c,i)){break c}break a}if((f|0)>=(m|0)&e>>>0>=g>>>0|(f|0)>(m|0)){break a}g=G[e+h|0];f=k+2|0;d=f>>>0<2?d+1|0:d;F[c+16>>2]=f;F[c+20>>2]=d;d=F[F[a+16>>2]+64>>2];d=F[d+4>>2]-F[d>>2]|0;if((g|0)==F[2541]){e=l<<2;if(e>>>0>d>>>0){break a}g=F[c+8>>2];k=F[c+12>>2];j=F[c+20>>2];d=F[c+16>>2];f=e+d|0;j=f>>>0>>0?j+1|0:j;if(f>>>0>g>>>0&(j|0)>=(k|0)|(j|0)>(k|0)){break a}la(i,d+F[c>>2]|0,e);f=F[c+20>>2];d=e+F[c+16>>2]|0;f=d>>>0>>0?f+1|0:f;F[c+16>>2]=d;F[c+20>>2]=f;break c}if(d>>>0>>0){break a}d=F[c+8>>2];f=F[c+16>>2];e=d-f|0;m=d>>>0>>0;d=F[c+20>>2];k=F[c+12>>2]-(m+d|0)|0;m=ki(g,0,l,0)>>>0>e>>>0;e=_;if(m&(e|0)>=(k|0)|(e|0)>(k|0)){break a}e=1;if(!l){break b}h=0;while(1){k=F[c+8>>2];j=F[c+12>>2];e=f+g|0;d=e>>>0>>0?d+1|0:d;if(e>>>0>k>>>0&(d|0)>=(j|0)|(d|0)>(j|0)){return 0}la(i+(h<<2)|0,F[c>>2]+f|0,g);d=F[c+20>>2];f=g+F[c+16>>2]|0;d=f>>>0>>0?d+1|0:d;F[c+16>>2]=f;F[c+20>>2]=d;h=h+1|0;if((l|0)!=(h|0)){continue}break}}e=1;if(!l){break b}d=F[a+20>>2];if(d){e=0;if($[F[F[d>>2]+32>>2]](d)|0){break b}}g=0;h=0;d:{if((l|0)<=0){break d}if((l|0)!=1){f=l&-2;while(1){e=g<<2;d=F[e+i>>2];F[e+i>>2]=0-(d&1)^d>>>1;d=e|4;e=F[d+i>>2];F[d+i>>2]=0-(e&1)^e>>>1;g=g+2|0;h=h+2|0;if((f|0)!=(h|0)){continue}break}}if(!(l&1)){break d}d=g<<2;f=F[d+i>>2];F[d+i>>2]=0-(f&1)^f>>>1}e=0}d=e;f=F[a+20>>2];e:{if(!f){break e}if(!($[F[F[f>>2]+40>>2]](f,c)|0)){break a}if(d){break e}a=F[a+20>>2];if(!($[F[F[a>>2]+44>>2]](a,i,i,l,n,F[b>>2])|0)){break a}}o=1}return o|0}function Lh(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;g=Z-48|0;Z=g;d=F[a+8>>2];if(d-2>>>0<=28){F[a+76>>2]=d;e=-1<>2]=d;F[a+80>>2]=e^-1;F[a+92>>2]=(d|0)/2;J[a+88>>2]=M(2)/M(d|0)}F[a+52>>2]=f;d=F[a+40>>2];e=F[d>>2];d=F[d+4>>2];F[g+16>>2]=0;F[g+8>>2]=0;F[g+12>>2]=0;a:{d=d-e|0;if((d|0)>0){m=a+8|0;n=a+44|0;d=d>>>2|0;o=d>>>0<=1?1:d;p=a+96|0;while(1){e=F[a+40>>2];d=F[e>>2];if(F[e+4>>2]-d>>2>>>0<=j>>>0){break a}Mb(n,F[d+(j<<2)>>2],g+8|0);h=F[g+12>>2];d=h>>31;i=F[g+8>>2];e=i>>31;f=(d^h)-d+((e^i)-e)|0;l=F[g+16>>2];d=l>>31;e=(d^l)-d|0;d=0;k=e;e=e+f|0;d=k>>>0>e>>>0?1:d;b:{if(!(d|e)){F[g+8>>2]=F[a+92>>2];break b}f=F[a+92>>2];k=f>>31;i=li(ki(f,k,i,i>>31),_,e,d);F[g+8>>2]=i;d=li(ki(f,k,h,h>>31),_,e,d);F[g+12>>2]=d;e=d>>31;e=(d^e)-e|0;d=i>>31;d=e+((d^i)-d|0)|0;if((l|0)>=0){F[g+16>>2]=f-d;break b}F[g+16>>2]=d-f}d=wa(p);f=F[g+8>>2];c:{if(d){F[g+16>>2]=0-F[g+16>>2];e=0-F[g+12>>2]|0;F[g+12>>2]=e;f=0-f|0;F[g+8>>2]=f;break c}e=F[g+12>>2]}d:{if((f|0)>=0){f=F[a+92>>2];d=f+F[g+16>>2]|0;f=e+f|0;break d}e:{if((e|0)<0){d=F[g+16>>2];f=d>>31;f=(d^f)-f|0;break e}d=F[g+16>>2];f=d>>31;f=F[a+84>>2]+(f-(d^f)|0)|0}if((d|0)<0){d=e>>31;d=(d^e)-d|0;break d}d=e>>31;d=F[a+84>>2]+(d-(d^e)|0)|0}e=F[a+84>>2];f:{if(!(d|f)){d=e;f=d;break f}if(!((d|0)!=(e|0)|f)){f=d;break f}if(!((e|0)!=(f|0)|d)){d=f;break f}g:{if(f){break g}h=F[a+92>>2];if((h|0)>=(d|0)){break g}d=(h<<1)-d|0;f=0;break f}h:{if((e|0)!=(f|0)){break h}h=F[a+92>>2];if((h|0)<=(d|0)){break h}d=(h<<1)-d|0;break f}i:{if((d|0)!=(e|0)){break i}e=F[a+92>>2];if((e|0)<=(f|0)){break i}f=(e<<1)-f|0;break f}if(d){break f}d=0;e=F[a+92>>2];if((e|0)>=(f|0)){break f}f=(e<<1)-f|0}e=j<<3;h=e+b|0;i=F[h>>2];h=F[h+4>>2];F[g+36>>2]=d;F[g+32>>2]=f;F[g+24>>2]=i;F[g+28>>2]=h;Jb(g+40|0,m,g+32|0,g+24|0);d=c+e|0;F[d>>2]=F[g+40>>2];F[d+4>>2]=F[g+44>>2];j=j+1|0;if((o|0)!=(j|0)){continue}break}}Z=g+48|0;return 1}ta();v()}function Hh(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;g=Z-48|0;Z=g;d=F[a+8>>2];if(d-2>>>0<=28){F[a+76>>2]=d;e=-1<>2]=d;F[a+80>>2]=e^-1;F[a+92>>2]=(d|0)/2;J[a+88>>2]=M(2)/M(d|0)}F[a+52>>2]=f;d=F[a+40>>2];e=F[d>>2];d=F[d+4>>2];F[g+16>>2]=0;F[g+8>>2]=0;F[g+12>>2]=0;a:{d=d-e|0;if((d|0)>0){m=a+8|0;n=a+44|0;d=d>>>2|0;o=d>>>0<=1?1:d;p=a+96|0;while(1){e=F[a+40>>2];d=F[e>>2];if(F[e+4>>2]-d>>2>>>0<=j>>>0){break a}Kb(n,F[d+(j<<2)>>2],g+8|0);h=F[g+12>>2];d=h>>31;i=F[g+8>>2];e=i>>31;f=(d^h)-d+((e^i)-e)|0;l=F[g+16>>2];d=l>>31;e=(d^l)-d|0;d=0;k=e;e=e+f|0;d=k>>>0>e>>>0?1:d;b:{if(!(d|e)){F[g+8>>2]=F[a+92>>2];break b}f=F[a+92>>2];k=f>>31;i=li(ki(f,k,i,i>>31),_,e,d);F[g+8>>2]=i;d=li(ki(f,k,h,h>>31),_,e,d);F[g+12>>2]=d;e=d>>31;e=(d^e)-e|0;d=i>>31;d=e+((d^i)-d|0)|0;if((l|0)>=0){F[g+16>>2]=f-d;break b}F[g+16>>2]=d-f}d=wa(p);f=F[g+8>>2];c:{if(d){F[g+16>>2]=0-F[g+16>>2];e=0-F[g+12>>2]|0;F[g+12>>2]=e;f=0-f|0;F[g+8>>2]=f;break c}e=F[g+12>>2]}d:{if((f|0)>=0){f=F[a+92>>2];d=f+F[g+16>>2]|0;f=e+f|0;break d}e:{if((e|0)<0){d=F[g+16>>2];f=d>>31;f=(d^f)-f|0;break e}d=F[g+16>>2];f=d>>31;f=F[a+84>>2]+(f-(d^f)|0)|0}if((d|0)<0){d=e>>31;d=(d^e)-d|0;break d}d=e>>31;d=F[a+84>>2]+(d-(d^e)|0)|0}e=F[a+84>>2];f:{if(!(d|f)){d=e;f=d;break f}if(!((d|0)!=(e|0)|f)){f=d;break f}if(!((e|0)!=(f|0)|d)){d=f;break f}g:{if(f){break g}h=F[a+92>>2];if((h|0)>=(d|0)){break g}d=(h<<1)-d|0;f=0;break f}h:{if((e|0)!=(f|0)){break h}h=F[a+92>>2];if((h|0)<=(d|0)){break h}d=(h<<1)-d|0;break f}i:{if((d|0)!=(e|0)){break i}e=F[a+92>>2];if((e|0)<=(f|0)){break i}f=(e<<1)-f|0;break f}if(d){break f}d=0;e=F[a+92>>2];if((e|0)>=(f|0)){break f}f=(e<<1)-f|0}e=j<<3;h=e+b|0;i=F[h>>2];h=F[h+4>>2];F[g+36>>2]=d;F[g+32>>2]=f;F[g+24>>2]=i;F[g+28>>2]=h;Jb(g+40|0,m,g+32|0,g+24|0);d=c+e|0;F[d>>2]=F[g+40>>2];F[d+4>>2]=F[g+44>>2];j=j+1|0;if((o|0)!=(j|0)){continue}break}}Z=g+48|0;return 1}ta();v()}function Nd(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;a:{if(!H[b+38>>1]){break a}if(!Ta(1,a+12|0,b)){break a}d=F[b+8>>2];e=F[b+16>>2];g=d-e|0;f=F[a+12>>2];d=F[b+12>>2]-(F[b+20>>2]+(d>>>0>>0)|0)|0;if(g>>>0>>6>>>0&(d|0)<=0|(d|0)<0){break a}d=F[a>>2];c=F[a+4>>2]-d>>2;b:{if(c>>>0>>0){qa(a,f-c|0);f=F[a+12>>2];break b}if(c>>>0<=f>>>0){break b}F[a+4>>2]=d+(f<<2)}if(!f){return 1}d=F[b+16>>2];c=F[b+20>>2];l=F[a>>2];j=F[b+8>>2];i=F[b+12>>2];g=0;while(1){if((c|0)>=(i|0)&d>>>0>=j>>>0|(c|0)>(i|0)){return 0}m=F[b>>2];k=G[m+d|0];d=d+1|0;c=d?c:c+1|0;F[b+16>>2]=d;F[b+20>>2]=c;e=k>>>2|0;h=0;c:{d:{e:{f:{n=k&3;switch(n|0){case 3:break f;case 0:break d;default:break e}}e=e+g|0;if(e>>>0>=f>>>0){return 0}ma(l+(g<<2)|0,0,(k&252)+4|0);g=e;break c}while(1){if((d|0)==(j|0)&(c|0)==(i|0)){break a}f=G[d+m|0];d=d+1|0;c=d?c:c+1|0;F[b+16>>2]=d;F[b+20>>2]=c;e=f<<(h<<3|6)|e;h=h+1|0;if((n|0)!=(h|0)){continue}break}}F[l+(g<<2)>>2]=e}f=F[a+12>>2];g=g+1|0;if(f>>>0>g>>>0){continue}break}b=a+16|0;j=F[a>>2];d=F[a+16>>2];c=F[a+20>>2]-d|0;g:{if(c>>>0<=16383){qa(b,4096-(c>>>2|0)|0);break g}if((c|0)==16384){break g}F[a+20>>2]=d+16384}c=a+28|0;g=F[c>>2];d=F[a+32>>2]-g>>3;h:{if(d>>>0>>0){_a(c,f-d|0);g=F[c>>2];break h}if(d>>>0>f>>>0){F[a+32>>2]=(f<<3)+g}if(!f){break a}}d=F[b>>2];b=0;a=0;while(1){c=j+(b<<2)|0;h=F[c>>2];e=a;i=(b<<3)+g|0;F[i+4>>2]=a;F[i>>2]=h;c=F[c>>2];a=c+a|0;if(a>>>0>4096){break a}i:{if(a>>>0<=e>>>0){break i}h=0;i=c&7;if(i){while(1){F[d+(e<<2)>>2]=b;e=e+1|0;h=h+1|0;if((i|0)!=(h|0)){continue}break}}if(c-1>>>0<=6){break i}while(1){c=d+(e<<2)|0;F[c>>2]=b;F[c+28>>2]=b;F[c+24>>2]=b;F[c+20>>2]=b;F[c+16>>2]=b;F[c+12>>2]=b;F[c+8>>2]=b;F[c+4>>2]=b;e=e+8|0;if((e|0)!=(a|0)){continue}break}}b=b+1|0;if((f|0)!=(b|0)){continue}break}o=(a|0)==4096}return o}function qf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0;f=Z-32|0;Z=f;e=f+8|0;c=Z-80|0;Z=c;a=F[b+36>>2];F[c+72>>2]=F[b+32>>2];F[c+76>>2]=a;d=F[b+28>>2];a=c- -64|0;F[a>>2]=F[b+24>>2];F[a+4>>2]=d;a=F[b+20>>2];F[c+56>>2]=F[b+16>>2];F[c+60>>2]=a;a=F[b+12>>2];F[c+48>>2]=F[b+8>>2];F[c+52>>2]=a;a=F[b+4>>2];F[c+40>>2]=F[b>>2];F[c+44>>2]=a;jc(c+8|0,c+40|0,c+24|0);a=F[c+8>>2];a:{if(a){F[e>>2]=a;a=e+4|0;if(D[c+23|0]>=0){b=c+8|4;e=F[b+4>>2];F[a>>2]=F[b>>2];F[a+4>>2]=e;F[a+8>>2]=F[b+8>>2];break a}ra(a,F[c+12>>2],F[c+16>>2]);if(D[c+23|0]>=0){break a}ja(F[c+12>>2]);break a}if(D[c+23|0]<0){ja(F[c+12>>2])}a=G[c+31|0];if(a>>>0>=2){b=ka(32);D[b+26|0]=0;a=G[1475]|G[1476]<<8;D[b+24|0]=a;D[b+25|0]=a>>>8;a=G[1471]|G[1472]<<8|(G[1473]<<16|G[1474]<<24);d=G[1467]|G[1468]<<8|(G[1469]<<16|G[1470]<<24);D[b+16|0]=d;D[b+17|0]=d>>>8;D[b+18|0]=d>>>16;D[b+19|0]=d>>>24;D[b+20|0]=a;D[b+21|0]=a>>>8;D[b+22|0]=a>>>16;D[b+23|0]=a>>>24;a=G[1463]|G[1464]<<8|(G[1465]<<16|G[1466]<<24);d=G[1459]|G[1460]<<8|(G[1461]<<16|G[1462]<<24);D[b+8|0]=d;D[b+9|0]=d>>>8;D[b+10|0]=d>>>16;D[b+11|0]=d>>>24;D[b+12|0]=a;D[b+13|0]=a>>>8;D[b+14|0]=a>>>16;D[b+15|0]=a>>>24;a=G[1455]|G[1456]<<8|(G[1457]<<16|G[1458]<<24);d=G[1451]|G[1452]<<8|(G[1453]<<16|G[1454]<<24);D[b|0]=d;D[b+1|0]=d>>>8;D[b+2|0]=d>>>16;D[b+3|0]=d>>>24;D[b+4|0]=a;D[b+5|0]=a>>>8;D[b+6|0]=a>>>16;D[b+7|0]=a>>>24;F[c+8>>2]=-1;a=c+8|4;ra(a,b,26);d=D[c+23|0];F[e>>2]=F[c+8>>2];e=e+4|0;if((d|0)>=0){d=F[a+4>>2];F[e>>2]=F[a>>2];F[e+4>>2]=d;F[e+8>>2]=F[a+8>>2];ja(b);break a}ra(e,F[c+12>>2],F[c+16>>2]);if(D[c+23|0]<0){ja(F[c+12>>2])}ja(b);break a}F[e>>2]=0;F[e+4>>2]=0;F[e+16>>2]=a;F[e+8>>2]=0;F[e+12>>2]=0}Z=c+80|0;a=F[f+24>>2];if(D[f+23|0]<0){ja(F[f+12>>2])}Z=f+32|0;return a|0}function Ph(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0;e=Z-32|0;Z=e;a:{if((c|0)!=3){break a}c=F[a+4>>2];f=F[a+12>>2];F[e+24>>2]=-1;F[e+16>>2]=-1;F[e+20>>2]=1065353216;F[e+8>>2]=-1;F[e+12>>2]=-1;if((b|0)==-2){break a}i=F[F[F[c+4>>2]+8>>2]+(f<<2)>>2];if(($[F[F[c>>2]+8>>2]](c)|0)==1){h=F[F[F[c+4>>2]+8>>2]+(f<<2)>>2];b:{if(($[F[F[c>>2]+8>>2]](c)|0)!=1|b-1>>>0>5){break b}g=$[F[F[c>>2]+36>>2]](c)|0;a=$[F[F[c>>2]+44>>2]](c,f)|0;if(!g|!a){break b}f=$[F[F[c>>2]+40>>2]](c,f)|0;c:{if(f){if((b|0)!=6){break b}b=F[c+44>>2];d=ka(112);F[d+4>>2]=h;c=F[e+12>>2];F[d+8>>2]=F[e+8>>2];F[d+12>>2]=c;c=F[e+20>>2];F[d+16>>2]=F[e+16>>2];F[d+20>>2]=c;F[d+24>>2]=F[e+24>>2];F[d+40>>2]=a;c=a+12|0;F[d+36>>2]=c;F[d+32>>2]=f;F[d+28>>2]=b;F[d+68>>2]=a;F[d- -64>>2]=c;F[d+60>>2]=f;F[d+56>>2]=b;F[d+48>>2]=0;F[d+52>>2]=0;F[d>>2]=5928;F[d+88>>2]=1065353216;F[d+92>>2]=-1;F[d+80>>2]=-1;F[d+84>>2]=-1;F[d+72>>2]=1;F[d+76>>2]=-1;F[d+44>>2]=6492;a=d+96|0;break c}if((b|0)!=6){break b}b=F[c+44>>2];d=ka(112);F[d+4>>2]=h;c=F[e+12>>2];F[d+8>>2]=F[e+8>>2];F[d+12>>2]=c;c=F[e+20>>2];F[d+16>>2]=F[e+16>>2];F[d+20>>2]=c;F[d+24>>2]=F[e+24>>2];F[d+40>>2]=a;c=a+12|0;F[d+36>>2]=c;F[d+32>>2]=g;F[d+28>>2]=b;F[d+68>>2]=a;F[d- -64>>2]=c;F[d+60>>2]=g;F[d+56>>2]=b;F[d+48>>2]=0;F[d+52>>2]=0;F[d>>2]=6932;F[d+88>>2]=1065353216;F[d+92>>2]=-1;F[d+80>>2]=-1;F[d+84>>2]=-1;F[d+72>>2]=1;F[d+76>>2]=-1;F[d+44>>2]=7352;a=d+96|0}F[a>>2]=0;F[a+4>>2]=0;D[a+5|0]=0;D[a+6|0]=0;D[a+7|0]=0;D[a+8|0]=0;D[a+9|0]=0;D[a+10|0]=0;D[a+11|0]=0;D[a+12|0]=0}if(d){break a}}d=ka(28);F[d+4>>2]=i;a=F[e+12>>2];F[d+8>>2]=F[e+8>>2];F[d+12>>2]=a;a=F[e+20>>2];F[d+16>>2]=F[e+16>>2];F[d+20>>2]=a;F[d+24>>2]=F[e+24>>2];F[d>>2]=7764}Z=e+32|0;return d|0}function $c(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;f=Z-80|0;Z=f;a:{if(!Wb(1,f+76|0,b)){break a}k=F[f+76>>2];if(!k){break a}c=F[b+8>>2];e=F[b+16>>2];c=ki(c-e|0,F[b+12>>2]-(F[b+20>>2]+(c>>>0>>0)|0)|0,5,0);e=_;if(c>>>0>>0&(e|0)<=0|(e|0)<0){break a}c=F[a+4>>2];d=F[a+8>>2]-c>>2;b:{if(d>>>0>>0){qa(a+4|0,k-d|0);break b}if(d>>>0<=k>>>0){break b}F[a+8>>2]=c+(k<<2)}p=a+16|0;l=F[a+32>>2];while(1){g=F[b+12>>2];c=g;d=F[b+20>>2];h=F[b+8>>2];e=F[b+16>>2];if((c|0)<=(d|0)&h>>>0<=e>>>0|(c|0)<(d|0)){d=0;break a}m=F[b>>2];q=G[m+e|0];c=d;i=e+1|0;c=i?c:c+1|0;F[b+16>>2]=i;F[b+20>>2]=c;if(h>>>0<=i>>>0&(c|0)>=(g|0)|(c|0)>(g|0)){d=0;break a}i=G[i+m|0];c=d;j=e+2|0;c=j>>>0<2?c+1|0:c;F[b+16>>2]=j;F[b+20>>2]=c;if(h>>>0<=j>>>0&(c|0)>=(g|0)|(c|0)>(g|0)){d=0;break a}j=G[j+m|0];c=d;n=e+3|0;c=n>>>0<3?c+1|0:c;F[b+16>>2]=n;F[b+20>>2]=c;if(h>>>0<=n>>>0&(c|0)>=(g|0)|(c|0)>(g|0)){d=0;break a}h=G[m+n|0];c=d;d=e+4|0;c=d>>>0<4?c+1|0:c;F[b+16>>2]=d;F[b+20>>2]=c;if(q>>>0>4){d=0;break a}if((i-12&255)>>>0<245){d=0;break a}if(!j){d=0;break a}c=kb(f+8|0);g=(h|0)!=0;d=i-1|0;if(d>>>0<=10){d=F[(d<<2)+10148>>2]}else{d=-1}d=L(d,j);cc(c,q,j,i,g,d,d>>31);if(Wb(1,f+4|0,b)){e=F[f+4>>2];F[f+68>>2]=e;d=bc(ka(96),c);$[F[F[l>>2]+8>>2]](l,F[l+12>>2]-F[l+8>>2]>>2,d);d=(F[l+12>>2]-F[l+8>>2]>>2)-1|0;h=d<<2;F[F[h+F[l+8>>2]>>2]+60>>2]=e;F[F[a+4>>2]+(o<<2)>>2]=d;c=F[a+16>>2];e=F[a+20>>2]-c>>2;c:{if((e|0)>(d|0)){break c}F[f>>2]=-1;d=d+1|0;if(d>>>0>e>>>0){Fa(p,d-e|0,f);c=F[p>>2];break c}if(d>>>0>=e>>>0){break c}F[a+20>>2]=(d<<2)+c}F[c+h>>2]=o;d=1;o=o+1|0;if((o|0)!=(k|0)){continue}break a}break}d=0}Z=f+80|0;return d|0}function Oc(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;k=Z-16|0;Z=k;F[k+8>>2]=c;h=F[a+12>>2];d=F[a+8>>2];g=h-d>>2;a:{if((g|0)>(b|0)){break a}e=b+1|0;if(e>>>0>g>>>0){l=e-g|0;f=F[a+16>>2];d=F[a+12>>2];if(l>>>0<=f-d>>2>>>0){if(l){e=d;d=l<<2;d=ma(e,0,d)+d|0}F[a+12>>2]=d;break a}b:{c:{d:{m=F[a+8>>2];g=d-m>>2;i=g+l|0;if(i>>>0<1073741824){e=f-m|0;f=e>>>1|0;e=e>>>0>=2147483644?1073741823:f>>>0>i>>>0?f:i;if(e){if(e>>>0>=1073741824){break d}j=ka(e<<2)}h=(g<<2)+j|0;f=l<<2;i=ma(h,0,f);g=f+i|0;e=(e<<2)+j|0;if((d|0)==(m|0)){break c}while(1){d=d-4|0;f=F[d>>2];F[d>>2]=0;h=h-4|0;F[h>>2]=f;if((d|0)!=(m|0)){continue}break}F[a+16>>2]=e;e=F[a+12>>2];F[a+12>>2]=g;d=F[a+8>>2];F[a+8>>2]=h;if((d|0)==(e|0)){break b}while(1){e=e-4|0;f=F[e>>2];F[e>>2]=0;if(f){xa(f)}if((d|0)!=(e|0)){continue}break}break b}na();v()}oa();v()}F[a+16>>2]=e;F[a+12>>2]=g;F[a+8>>2]=i}if(d){ja(d)}break a}if(e>>>0>=g>>>0){break a}d=d+(e<<2)|0;if((d|0)!=(h|0)){while(1){h=h-4|0;c=F[h>>2];F[h>>2]=0;if(c){xa(c)}if((d|0)!=(h|0)){continue}break}c=F[k+8>>2]}F[a+12>>2]=d}e:{f:{d=F[c+56>>2];g:{if((d|0)>4){break g}j=L(d,12)+a|0;d=F[j+24>>2];if((d|0)!=F[j+28>>2]){F[d>>2]=b;F[j+24>>2]=d+4;break g}i=F[j+20>>2];g=d-i|0;f=g>>2;e=f+1|0;if(e>>>0>=1073741824){break f}d=g>>>1|0;e=g>>>0>=2147483644?1073741823:d>>>0>e>>>0?d:e;if(e){if(e>>>0>=1073741824){break e}d=ka(e<<2)}else{d=0}f=d+(f<<2)|0;F[f>>2]=b;d=pa(d,i,g);F[j+20>>2]=d;F[j+24>>2]=f+4;F[j+28>>2]=d+(e<<2);if(!i){break g}ja(i)}F[c+60>>2]=b;a=F[a+8>>2];F[k+8>>2]=0;a=a+(b<<2)|0;b=F[a>>2];F[a>>2]=c;if(b){xa(b)}a=F[k+8>>2];F[k+8>>2]=0;if(a){xa(a)}Z=k+16|0;return}na();v()}oa();v()}function Pf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;i=c;d=a;a:{if(F[a+12>>2]==(b|0)){break a}a=b;b=F[d+4>>2];e=F[d>>2];if((b|0)!=(e|0)){while(1){c=b-12|0;if(D[b-1|0]<0){ja(F[c>>2])}b=c;if((e|0)!=(b|0)){continue}break}}F[d+12>>2]=a;F[d+4>>2]=e;c=F[a>>2];j=a+4|0;if((c|0)==(j|0)){break a}while(1){a=F[d+4>>2];b:{if((a|0)!=F[d+8>>2]){c:{if(D[c+27|0]>=0){b=F[c+20>>2];F[a>>2]=F[c+16>>2];F[a+4>>2]=b;F[a+8>>2]=F[c+24>>2];break c}ra(a,F[c+16>>2],F[c+20>>2])}F[d+4>>2]=a+12;break b}g=0;d:{e:{f:{a=F[d+4>>2];e=F[d>>2];f=(a-e|0)/12|0;b=f+1|0;if(b>>>0<357913942){h=(F[d+8>>2]-e|0)/12|0;k=h<<1;b=h>>>0>=178956970?357913941:b>>>0>>0?k:b;if(b){if(b>>>0>=357913942){break f}g=ka(L(b,12))}h=L(b,12);b=L(f,12)+g|0;g:{if(D[c+27|0]>=0){f=F[c+20>>2];F[b>>2]=F[c+16>>2];F[b+4>>2]=f;F[b+8>>2]=F[c+24>>2];break g}ra(b,F[c+16>>2],F[c+20>>2]);e=F[d>>2];a=F[d+4>>2]}g=g+h|0;f=b+12|0;if((a|0)==(e|0)){break e}while(1){a=a-12|0;h=F[a+4>>2];b=b-12|0;F[b>>2]=F[a>>2];F[b+4>>2]=h;F[b+8>>2]=F[a+8>>2];F[a>>2]=0;F[a+4>>2]=0;F[a+8>>2]=0;if((a|0)!=(e|0)){continue}break}F[d+8>>2]=g;a=F[d+4>>2];F[d+4>>2]=f;e=F[d>>2];F[d>>2]=b;if((a|0)==(e|0)){break d}while(1){b=a-12|0;if(D[a-1|0]<0){ja(F[b>>2])}a=b;if((e|0)!=(b|0)){continue}break}break d}na();v()}oa();v()}F[d+8>>2]=g;F[d+4>>2]=f;F[d>>2]=b}if(e){ja(e)}}b=F[c+4>>2];h:{if(b){while(1){a=b;b=F[b>>2];if(b){continue}break h}}while(1){a=F[c+8>>2];b=F[a>>2]!=(c|0);c=a;if(b){continue}break}}c=a;if((j|0)!=(a|0)){continue}break}}a=0;i:{if((i|0)<0){break i}b=F[d>>2];if((F[d+4>>2]-b|0)/12>>>0<=i>>>0){break i}a=b+L(i,12)|0;a=D[a+11|0]<0?F[a>>2]:a}return a|0}function Ad(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;i=Z-16|0;Z=i;F[i>>2]=b;f=-1;a:{if((b|0)==-1){F[i+4>>2]=-1;break a}f=b+1|0;F[i+4>>2]=(f>>>0)%3|0?f:b-2|0;if((b>>>0)%3|0){f=b-1|0;break a}f=b+2|0}F[i+8>>2]=f;n=(b>>>0)/3|0;b:{c:{d:{while(1){e:{f:{j=F[(l<<2)+i>>2];if((j|0)!=-1){f=F[F[F[a+8>>2]+12>>2]+(j<<2)>>2];if((f|0)!=-1){break f}}f=0;g=F[a+216>>2];if((g|0)==F[a+220>>2]){break e}while(1){g=L(f,144)+g|0;d=F[g+136>>2];c=F[g+140>>2];g:{if(d>>>0>>0){F[d>>2]=j;F[g+136>>2]=d+4;break g}e=d;d=F[g+132>>2];k=e-d|0;e=k>>2;h=e+1|0;if(h>>>0>=1073741824){break d}m=e<<2;c=c-d|0;e=c>>>1|0;h=c>>>0>=2147483644?1073741823:h>>>0>>0?e:h;if(h){if(h>>>0>=1073741824){break c}c=ka(h<<2)}else{c=0}e=m+c|0;F[e>>2]=j;c=pa(c,d,k);F[g+132>>2]=c;F[g+136>>2]=e+4;F[g+140>>2]=c+(h<<2);if(!d){break g}ja(d)}f=f+1|0;g=F[a+216>>2];if(f>>>0<(F[a+220>>2]-g|0)/144>>>0){continue}break}break e}if((b|0)==-1|(f>>>0)/3>>>0>>0){break e}f=0;if(F[a+220>>2]==F[a+216>>2]){break e}while(1){h:{if(!wa(F[a+368>>2]+(f<<4)|0)){break h}g=F[a+216>>2]+L(f,144)|0;d=F[g+136>>2];c=F[g+140>>2];if(d>>>0>>0){F[d>>2]=j;F[g+136>>2]=d+4;break h}e=d;d=F[g+132>>2];k=e-d|0;e=k>>2;h=e+1|0;if(h>>>0>=1073741824){break b}m=e<<2;c=c-d|0;e=c>>>1|0;h=c>>>0>=2147483644?1073741823:h>>>0>>0?e:h;if(h){if(h>>>0>=1073741824){break c}c=ka(h<<2)}else{c=0}e=m+c|0;F[e>>2]=j;c=pa(c,d,k);F[g+132>>2]=c;F[g+136>>2]=e+4;F[g+140>>2]=c+(h<<2);if(!d){break h}ja(d)}f=f+1|0;if(f>>>0<(F[a+220>>2]-F[a+216>>2]|0)/144>>>0){continue}break}}l=l+1|0;if((l|0)!=3){continue}break}Z=i+16|0;return 1}na();v()}oa();v()}na();v()}function Bd(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;h=Z-16|0;Z=h;m=-1;a:{b:{c:{if(!Da(1,h+12|0,b)){break c}j=F[h+12>>2];if(j){c=F[a+8>>2];if((F[c+4>>2]-F[c>>2]>>2>>>0)/3>>>0>>0){break c}while(1){if(!Da(1,h+8|0,b)){break c}c=F[h+8>>2];if(!Da(1,h+8|0,b)){break c}g=c+g|0;c=F[h+8>>2];if(g>>>0>>0){break c}e=g-c|0;c=F[a+40>>2];d:{if((c|0)!=F[a+44>>2]){F[c+4>>2]=g;F[c>>2]=e;F[a+40>>2]=c+12;j=F[h+12>>2];break d}d=c;c=F[a+36>>2];l=d-c|0;d=(l|0)/12|0;f=d+1|0;if(f>>>0>=357913942){break b}i=d<<1;f=d>>>0>=178956970?357913941:f>>>0>>0?i:f;if(f){if(f>>>0>=357913942){break a}i=ka(L(f,12))}else{i=0}d=i+L(d,12)|0;F[d+4>>2]=g;F[d>>2]=e;e=pa(d+L((l|0)/-12|0,12)|0,c,l);F[a+44>>2]=i+L(f,12);F[a+40>>2]=d+12;F[a+36>>2]=e;if(!c){break d}ja(c)}k=k+1|0;if(k>>>0>>0){continue}break}g=0;hc(b,0,0);if(j){while(1){c=G[b+36|0];d=H[F[a+4>>2]+36>>1];e:{f:{if(((d<<8|d>>>8)&65535)>>>0<=513){if(!c){break e}e=0;d=F[b+32>>2];k=d>>>3|0;f=F[b+24>>2];c=k+f|0;i=F[b+28>>2];g:{if(c>>>0>=i>>>0){c=d;break g}e=G[c|0];c=d+1|0;F[b+32>>2]=c;k=c>>>3|0;e=e>>>(d&7)&1}if(i>>>0>f+k>>>0){break f}break e}if(!c){break e}e=0;c=F[b+32>>2];d=F[b+24>>2]+(c>>>3|0)|0;if(d>>>0>=I[b+28>>2]){break e}e=G[d|0]>>>(c&7)&1}F[b+32>>2]=c+1}c=F[a+36>>2]+L(g,12)|0;D[c+8|0]=G[c+8|0]&254|e&1;g=g+1|0;if((j|0)!=(g|0)){continue}break}}D[b+36|0]=0;d=F[b+20>>2];a=0;e=F[b+32>>2]+7|0;a=e>>>0<7?1:a;e=a<<29|e>>>3;c=e+F[b+16>>2]|0;a=(a>>>3|0)+d|0;F[b+16>>2]=c;F[b+20>>2]=c>>>0>>0?a+1|0:a}m=F[b+16>>2]}Z=h+16|0;return m}na();v()}oa();v()}function xf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;m=Z-16|0;Z=m;l=F[b+80>>2];e=G[c+24|0];a=L(l,e);a:{b:{c:{d:{b=F[c+28>>2];if(!(!G[c+84|0]|(b|0)!=1&(b|0)!=2)){b=F[c+48>>2];c=F[F[c>>2]>>2];F[m+8>>2]=0;F[m>>2]=0;F[m+4>>2]=0;if(a){if((a|0)<0){break d}f=ka(a);h=la(f,b+c|0,a)+a|0}a=F[d>>2];if(a){F[d+4>>2]=a;ja(a)}F[d+8>>2]=h;F[d+4>>2]=h;F[d>>2]=f;b=1;break a}if(e){f=ka(e);ma(f,0,e)}e:{i=F[d+4>>2];b=F[d>>2];g=i-b|0;f:{if(g>>>0>>0){k=a-g|0;j=F[d+8>>2];if(k>>>0<=j-i>>>0){n=d,o=ma(i,0,k)+k|0,F[n+4>>2]=o;break f}if((a|0)<0){break e}i=j-b|0;j=i<<1;i=i>>>0>=1073741823?2147483647:a>>>0>>0?j:a;j=ka(i);ma(j+g|0,0,k);g=pa(j,b,g);F[d+8>>2]=g+i;F[d+4>>2]=a+g;F[d>>2]=g;if(!b){break f}ja(b);break f}if(a>>>0>=g>>>0){break f}F[d+4>>2]=a+b}if(!l){b=1;break c}if(!e){b=0;a=0;while(1){if(!Cb(c,G[c+84|0]?a:F[F[c+68>>2]+(a<<2)>>2],D[c+24|0],f)){break c}a=a+1|0;b=l>>>0<=a>>>0;if((a|0)!=(l|0)){continue}break}break c}i=e&252;g=e&3;b=0;j=e>>>0<4;e=0;while(1){if(!Cb(c,G[c+84|0]?e:F[F[c+68>>2]+(e<<2)>>2],D[c+24|0],f)){break c}b=0;a=0;k=0;if(!j){while(1){D[F[d>>2]+h|0]=G[a+f|0];D[(F[d>>2]+h|0)+1|0]=G[(a|1)+f|0];D[(F[d>>2]+h|0)+2|0]=G[(a|2)+f|0];D[(F[d>>2]+h|0)+3|0]=G[(a|3)+f|0];a=a+4|0;h=h+4|0;k=k+4|0;if((i|0)!=(k|0)){continue}break}}if(g){while(1){D[F[d>>2]+h|0]=G[a+f|0];a=a+1|0;h=h+1|0;b=b+1|0;if((g|0)!=(b|0)){continue}break}}e=e+1|0;b=l>>>0<=e>>>0;if((e|0)!=(l|0)){continue}break}break b}na();v()}na();v()}if(!f){break a}}ja(f)}Z=m+16|0;return b&1}function wf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;m=Z-16|0;Z=m;l=F[b+80>>2];e=G[c+24|0];a=L(l,e);a:{b:{c:{d:{b=F[c+28>>2];if(!(!G[c+84|0]|(b|0)!=1&(b|0)!=2)){b=F[c+48>>2];c=F[F[c>>2]>>2];F[m+8>>2]=0;F[m>>2]=0;F[m+4>>2]=0;if(a){if((a|0)<0){break d}f=ka(a);h=la(f,b+c|0,a)+a|0}a=F[d>>2];if(a){F[d+4>>2]=a;ja(a)}F[d+8>>2]=h;F[d+4>>2]=h;F[d>>2]=f;b=1;break a}if(e){f=ka(e);ma(f,0,e)}e:{i=F[d+4>>2];b=F[d>>2];g=i-b|0;f:{if(g>>>0>>0){k=a-g|0;j=F[d+8>>2];if(k>>>0<=j-i>>>0){n=d,o=ma(i,0,k)+k|0,F[n+4>>2]=o;break f}if((a|0)<0){break e}i=j-b|0;j=i<<1;i=i>>>0>=1073741823?2147483647:a>>>0>>0?j:a;j=ka(i);ma(j+g|0,0,k);g=pa(j,b,g);F[d+8>>2]=g+i;F[d+4>>2]=a+g;F[d>>2]=g;if(!b){break f}ja(b);break f}if(a>>>0>=g>>>0){break f}F[d+4>>2]=a+b}if(!l){b=1;break c}if(!e){b=0;a=0;while(1){if(!Bb(c,G[c+84|0]?a:F[F[c+68>>2]+(a<<2)>>2],D[c+24|0],f)){break c}a=a+1|0;b=l>>>0<=a>>>0;if((a|0)!=(l|0)){continue}break}break c}i=e&252;g=e&3;b=0;j=e>>>0<4;e=0;while(1){if(!Bb(c,G[c+84|0]?e:F[F[c+68>>2]+(e<<2)>>2],D[c+24|0],f)){break c}b=0;a=0;k=0;if(!j){while(1){D[F[d>>2]+h|0]=G[a+f|0];D[(F[d>>2]+h|0)+1|0]=G[(a|1)+f|0];D[(F[d>>2]+h|0)+2|0]=G[(a|2)+f|0];D[(F[d>>2]+h|0)+3|0]=G[(a|3)+f|0];a=a+4|0;h=h+4|0;k=k+4|0;if((i|0)!=(k|0)){continue}break}}if(g){while(1){D[F[d>>2]+h|0]=G[a+f|0];a=a+1|0;h=h+1|0;b=b+1|0;if((g|0)!=(b|0)){continue}break}}e=e+1|0;b=l>>>0<=e>>>0;if((e|0)!=(l|0)){continue}break}break b}na();v()}na();v()}if(!f){break a}}ja(f)}Z=m+16|0;return b&1}function Jb(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;k=F[b+16>>2];h=F[c+4>>2]-k|0;e=F[c>>2]-k|0;F[c>>2]=e;f=h;F[c+4>>2]=f;l=F[b+16>>2];f=f>>31;g=(h^f)-f|0;f=e>>31;m=l>>>0>=g+((f^e)-f|0)>>>0;a:{if(m){f=h;break a}b:{c:{if((e|0)>=0){g=1;j=1;if((h|0)>=0){break b}i=1;g=-1;j=-1;if(e){break c}break b}i=-1;g=-1;j=-1;if((h|0)<=0){break b}}g=(h|0)<=0?-1:1;j=i}n=L(j,l);f=(e<<1)-n|0;i=(L(g,j)|0)>=0;e=L(g,l);f=((i?0-f|0:f)+e|0)/2|0;F[c+4>>2]=f;e=(h<<1)-e|0;e=((i?0-e|0:e)+n|0)/2|0;F[c>>2]=e}d:{e:{f:{g:{h:{i:{j:{if(e){if((e|0)<0){break j}if((f|0)>=0){break i}break f}if(f){break h}j=1;g=0;f=0;i=0;break d}j=1;if((f|0)>0){break g}i=(f|0)>0?3:0;g=f;f=e;break d}g=0-f|0;f=0-e|0;i=2;break e}if((f|0)<=0){break f}}f=0-f|0;g=e;i=3;break e}g=0-e|0;i=1}F[c>>2]=f;F[c+4>>2]=g;j=0}e=F[d>>2]+f|0;h=F[b+16>>2];k:{if((e|0)>(h|0)){e=e-F[b+4>>2]|0;break k}if((0-h|0)<=(e|0)){break k}e=F[b+4>>2]+e|0}c=F[d+4>>2]+g|0;l:{if((h|0)<(c|0)){c=c-F[b+4>>2]|0;break l}if((0-h|0)<=(c|0)){break l}c=F[b+4>>2]+c|0}m:{if(j){b=c;break m}b=c;n:{o:{p:{d=4-i|0;switch((d>>>0<4?d:0-i|0)-1|0){case 2:break n;case 1:break o;case 0:break p;default:break m}}b=0-e|0;e=c;break m}b=0-c|0;e=0-e|0;break m}b=e;e=0-c|0}q:{if(m){c=b;break q}r:{s:{if((e|0)>=0){c=1;f=1;if((b|0)>=0){break r}d=1;c=-1;f=-1;if(e){break s}break r}d=-1;c=-1;f=-1;if((b|0)<=0){break r}}c=(b|0)<=0?-1:1;f=d}d=e<<1;e=L(f,h);d=d-e|0;f=(L(c,f)|0)>=0;g=f?0-d|0:d;d=L(c,h);c=(g+d|0)/2|0;b=(b<<1)-d|0;e=(e+(f?0-b|0:b)|0)/2|0}b=a;F[b>>2]=e+k;F[b+4>>2]=c+k}function Uh(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;F[a+8>>2]=e;m=a+32|0;h=F[m>>2];g=F[a+36>>2]-h>>2;a:{if(g>>>0>>0){qa(m,e-g|0);f=F[a+8>>2];break a}f=e;if(f>>>0>=g>>>0){break a}F[a+36>>2]=h+(e<<2);f=e}g=e>>>0>1073741823?-1:e<<2;n=ma(ka(g),0,g);b:{if((f|0)<=0){break b}h=F[a+32>>2];while(1){f=i<<2;g=F[f+n>>2];j=F[a+16>>2];c:{if((g|0)>(j|0)){F[f+h>>2]=j;break c}f=f+h|0;j=F[a+12>>2];if((j|0)>(g|0)){F[f>>2]=j;break c}F[f>>2]=g}f=F[a+8>>2];i=i+1|0;if((f|0)>(i|0)){continue}break}if((f|0)<=0){break b}i=0;while(1){g=i<<2;f=g+c|0;g=F[b+g>>2]+F[g+h>>2]|0;F[f>>2]=g;d:{if((g|0)>F[a+16>>2]){g=g-F[a+20>>2]|0}else{if((g|0)>=F[a+12>>2]){break d}g=g+F[a+20>>2]|0}F[f>>2]=g}f=F[a+8>>2];i=i+1|0;if((f|0)>(i|0)){continue}break}}if(!((d|0)<=(e|0)|(f|0)<=0)){p=0-e<<2;g=e;while(1){e:{if((f|0)<=0){break e}l=g<<2;o=l+c|0;q=o+p|0;j=F[m>>2];i=0;while(1){f=i<<2;h=F[f+q>>2];k=F[a+16>>2];f:{if((h|0)>(k|0)){F[f+j>>2]=k;break f}f=f+j|0;k=F[a+12>>2];if((k|0)>(h|0)){F[f>>2]=k;break f}F[f>>2]=h}f=F[a+8>>2];i=i+1|0;if((f|0)>(i|0)){continue}break}i=0;if((f|0)<=0){break e}l=b+l|0;while(1){h=i<<2;f=h+o|0;h=F[h+l>>2]+F[h+j>>2]|0;F[f>>2]=h;g:{if((h|0)>F[a+16>>2]){h=h-F[a+20>>2]|0}else{if((h|0)>=F[a+12>>2]){break g}h=h+F[a+20>>2]|0}F[f>>2]=h}f=F[a+8>>2];i=i+1|0;if((f|0)>(i|0)){continue}break}}g=e+g|0;if((g|0)<(d|0)){continue}break}}ja(n);return 1}function yf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;j=F[b+80>>2];b=G[c+24|0];g=L(j,b);a:{if(!b){break a}h=b<<2;f=ka(h);a=f;k=b&7;if(k){while(1){F[a>>2]=-1073741824;a=a+4|0;e=e+1|0;if((k|0)!=(e|0)){continue}break}}if((b-1&1073741823)>>>0<7){break a}e=f+h|0;while(1){F[a+24>>2]=-1073741824;F[a+28>>2]=-1073741824;F[a+16>>2]=-1073741824;F[a+20>>2]=-1073741824;F[a+8>>2]=-1073741824;F[a+12>>2]=-1073741824;F[a>>2]=-1073741824;F[a+4>>2]=-1073741824;a=a+32|0;if((e|0)!=(a|0)){continue}break}}e=F[d>>2];a=F[d+4>>2]-e>>2;b:{if(a>>>0>>0){qa(d,g-a|0);break b}if(a>>>0<=g>>>0){break b}F[d+4>>2]=e+(g<<2)}c:{d:{e:{if(!j){i=1;break e}if(!b){a=0;while(1){if(!lb(c,G[c+84|0]?a:F[F[c+68>>2]+(a<<2)>>2],D[c+24|0],f)){break e}a=a+1|0;i=j>>>0<=a>>>0;if((a|0)!=(j|0)){continue}break}break e}n=b&252;k=b&3;o=b>>>0<4;e=0;b=0;while(1){if(!lb(c,G[c+84|0]?b:F[F[c+68>>2]+(b<<2)>>2],D[c+24|0],f)){break e}m=F[d>>2];i=0;a=0;l=0;if(!o){while(1){g=(e<<2)+m|0;h=a<<2;J[g>>2]=J[h+f>>2];J[g+4>>2]=J[(h|4)+f>>2];J[g+8>>2]=J[(h|8)+f>>2];J[g+12>>2]=J[(h|12)+f>>2];a=a+4|0;e=e+4|0;l=l+4|0;if((n|0)!=(l|0)){continue}break}}if(k){while(1){J[(e<<2)+m>>2]=J[(a<<2)+f>>2];a=a+1|0;e=e+1|0;i=i+1|0;if((k|0)!=(i|0)){continue}break}}b=b+1|0;i=j>>>0<=b>>>0;if((b|0)!=(j|0)){continue}break}break d}if(!f){break c}}ja(f)}return i|0}function $d(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;k=Z-16|0;Z=k;c=F[b+20>>2];d=F[b+16>>2];e=d+4|0;c=e>>>0<4?c+1|0:c;g=F[b+12>>2];a:{if(I[b+8>>2]>>0&(g|0)<=(c|0)|(c|0)>(g|0)){break a}d=d+F[b>>2]|0;h=G[d|0]|G[d+1|0]<<8|(G[d+2|0]<<16|G[d+3|0]<<24);F[b+16>>2]=e;F[b+20>>2]=c;if((h|0)<0){break a}Na(a+76|0,h);c=k;F[c>>2]=0;F[c+4>>2]=0;D[c+5|0]=0;D[c+6|0]=0;D[c+7|0]=0;D[c+8|0]=0;D[c+9|0]=0;D[c+10|0]=0;D[c+11|0]=0;D[c+12|0]=0;b:{if(!Aa(c,b)){break b}if(h){g=1;while(1){d=1<>2]+(i>>>3&536870908)|0;e=e^g;if(e&1){d=F[f>>2]&(d^-1)}else{d=d|F[f>>2]}g=e^1;F[f>>2]=d;i=i+1|0;if((h|0)!=(i|0)){continue}break}}i=0;c=F[b+8>>2];e=F[b+12>>2];f=e;e=F[b+20>>2];g=e;l=F[b+16>>2];d=l+4|0;e=d>>>0<4?e+1|0:e;h=d;if(d>>>0>c>>>0&(e|0)>=(f|0)|(e|0)>(f|0)){break b}m=F[b>>2];d=m+l|0;j=G[d|0]|G[d+1|0]<<8|(G[d+2|0]<<16|G[d+3|0]<<24);F[b+16>>2]=h;F[b+20>>2]=e;d=c;c=g;e=l+8|0;c=e>>>0<8?c+1|0:c;if(d>>>0>>0&(c|0)>=(f|0)|(c|0)>(f|0)){break b}d=h+m|0;d=G[d|0]|G[d+1|0]<<8|(G[d+2|0]<<16|G[d+3|0]<<24);F[b+16>>2]=e;F[b+20>>2]=c;if((d|0)<(j|0)){break b}F[a+16>>2]=d;F[a+12>>2]=j;c=(d>>31)-((j>>31)+(d>>>0>>0)|0)|0;b=d-j|0;if(!c&b>>>0>2147483646|c){break b}i=1;c=b+1|0;F[a+20>>2]=c;b=c>>>1|0;F[a+24>>2]=b;F[a+28>>2]=0-b;if(c&1){break b}F[a+24>>2]=b-1}}Z=k+16|0;return i|0}function tf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;a=0;k=Z-16|0;Z=k;j=F[b+80>>2];e=G[c+24|0];b=L(j,e);a:{b:{c:{d:{f=F[c+28>>2];if(!(!G[c+84|0]|(f|0)!=5&(f|0)!=6)){e=F[c+48>>2];c=F[F[c>>2]>>2];F[k+8>>2]=0;F[k>>2]=0;F[k+4>>2]=0;if(b){if((b|0)<0){break d}b=b<<2;a=ka(b);g=la(a,c+e|0,b)+b|0}b=F[d>>2];if(b){F[d+4>>2]=b;ja(b)}F[d+8>>2]=g;F[d+4>>2]=g;F[d>>2]=a;h=1;break a}if(e){f=e<<2;a=ka(f);ma(a,0,f)}i=F[d>>2];f=F[d+4>>2]-i>>2;e:{if(f>>>0>>0){qa(d,b-f|0);break e}if(b>>>0>=f>>>0){break e}F[d+4>>2]=i+(b<<2)}if(!j){h=1;break c}if(!e){b=0;while(1){if(!xb(c,G[c+84|0]?b:F[F[c+68>>2]+(b<<2)>>2],D[c+24|0],a)){break c}b=b+1|0;h=j>>>0<=b>>>0;if((b|0)!=(j|0)){continue}break}break c}o=e&252;m=e&3;p=e>>>0<4;e=0;while(1){if(!xb(c,G[c+84|0]?e:F[F[c+68>>2]+(e<<2)>>2],D[c+24|0],a)){break c}n=F[d>>2];l=0;b=0;h=0;if(!p){while(1){f=(g<<2)+n|0;i=b<<2;F[f>>2]=F[i+a>>2];F[f+4>>2]=F[(i|4)+a>>2];F[f+8>>2]=F[(i|8)+a>>2];F[f+12>>2]=F[(i|12)+a>>2];b=b+4|0;g=g+4|0;h=h+4|0;if((o|0)!=(h|0)){continue}break}}if(m){while(1){F[(g<<2)+n>>2]=F[(b<<2)+a>>2];b=b+1|0;g=g+1|0;l=l+1|0;if((l|0)!=(m|0)){continue}break}}e=e+1|0;h=j>>>0<=e>>>0;if((e|0)!=(j|0)){continue}break}break b}na();v()}if(!a){break a}}ja(a)}Z=k+16|0;return h|0}function cd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;a=0;k=Z-16|0;Z=k;j=F[b+80>>2];e=G[c+24|0];b=L(j,e);a:{b:{c:{d:{f=F[c+28>>2];if(!(!G[c+84|0]|(f|0)!=5&(f|0)!=6)){e=F[c+48>>2];c=F[F[c>>2]>>2];F[k+8>>2]=0;F[k>>2]=0;F[k+4>>2]=0;if(b){if((b|0)<0){break d}b=b<<2;a=ka(b);g=la(a,c+e|0,b)+b|0}b=F[d>>2];if(b){F[d+4>>2]=b;ja(b)}F[d+8>>2]=g;F[d+4>>2]=g;F[d>>2]=a;h=1;break a}if(e){f=e<<2;a=ka(f);ma(a,0,f)}i=F[d>>2];f=F[d+4>>2]-i>>2;e:{if(f>>>0>>0){qa(d,b-f|0);break e}if(b>>>0>=f>>>0){break e}F[d+4>>2]=i+(b<<2)}if(!j){h=1;break c}if(!e){b=0;while(1){if(!yb(c,G[c+84|0]?b:F[F[c+68>>2]+(b<<2)>>2],D[c+24|0],a)){break c}b=b+1|0;h=j>>>0<=b>>>0;if((b|0)!=(j|0)){continue}break}break c}o=e&252;m=e&3;p=e>>>0<4;e=0;while(1){if(!yb(c,G[c+84|0]?e:F[F[c+68>>2]+(e<<2)>>2],D[c+24|0],a)){break c}n=F[d>>2];l=0;b=0;h=0;if(!p){while(1){f=(g<<2)+n|0;i=b<<2;F[f>>2]=F[i+a>>2];F[f+4>>2]=F[(i|4)+a>>2];F[f+8>>2]=F[(i|8)+a>>2];F[f+12>>2]=F[(i|12)+a>>2];b=b+4|0;g=g+4|0;h=h+4|0;if((o|0)!=(h|0)){continue}break}}if(m){while(1){F[(g<<2)+n>>2]=F[(b<<2)+a>>2];b=b+1|0;g=g+1|0;l=l+1|0;if((l|0)!=(m|0)){continue}break}}e=e+1|0;h=j>>>0<=e>>>0;if((e|0)!=(j|0)){continue}break}break b}na();v()}if(!a){break a}}ja(a)}Z=k+16|0;return h|0}function vf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;a=0;k=Z-16|0;Z=k;j=F[b+80>>2];e=G[c+24|0];b=L(j,e);a:{b:{c:{d:{f=F[c+28>>2];if(!(!G[c+84|0]|(f|0)!=3&(f|0)!=4)){e=F[c+48>>2];c=F[F[c>>2]>>2];F[k+8>>2]=0;F[k>>2]=0;F[k+4>>2]=0;if(b){if((b|0)<0){break d}b=b<<1;a=ka(b);g=la(a,c+e|0,b)+b|0}b=F[d>>2];if(b){F[d+4>>2]=b;ja(b)}F[d+8>>2]=g;F[d+4>>2]=g;F[d>>2]=a;h=1;break a}if(e){f=e<<1;a=ka(f);ma(a,0,f)}i=F[d>>2];f=F[d+4>>2]-i>>1;e:{if(f>>>0>>0){kd(d,b-f|0);break e}if(b>>>0>=f>>>0){break e}F[d+4>>2]=i+(b<<1)}if(!j){h=1;break c}if(!e){b=0;while(1){if(!Ab(c,G[c+84|0]?b:F[F[c+68>>2]+(b<<2)>>2],D[c+24|0],a)){break c}b=b+1|0;h=j>>>0<=b>>>0;if((b|0)!=(j|0)){continue}break}break c}o=e&252;m=e&3;p=e>>>0<4;e=0;while(1){if(!Ab(c,G[c+84|0]?e:F[F[c+68>>2]+(e<<2)>>2],D[c+24|0],a)){break c}n=F[d>>2];l=0;b=0;h=0;if(!p){while(1){f=(g<<1)+n|0;i=b<<1;E[f>>1]=H[i+a>>1];E[f+2>>1]=H[(i|2)+a>>1];E[f+4>>1]=H[(i|4)+a>>1];E[f+6>>1]=H[(i|6)+a>>1];b=b+4|0;g=g+4|0;h=h+4|0;if((o|0)!=(h|0)){continue}break}}if(m){while(1){E[(g<<1)+n>>1]=H[(b<<1)+a>>1];b=b+1|0;g=g+1|0;l=l+1|0;if((l|0)!=(m|0)){continue}break}}e=e+1|0;h=j>>>0<=e>>>0;if((e|0)!=(j|0)){continue}break}break b}na();v()}if(!a){break a}}ja(a)}Z=k+16|0;return h|0}function uf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;a=0;k=Z-16|0;Z=k;j=F[b+80>>2];e=G[c+24|0];b=L(j,e);a:{b:{c:{d:{f=F[c+28>>2];if(!(!G[c+84|0]|(f|0)!=3&(f|0)!=4)){e=F[c+48>>2];c=F[F[c>>2]>>2];F[k+8>>2]=0;F[k>>2]=0;F[k+4>>2]=0;if(b){if((b|0)<0){break d}b=b<<1;a=ka(b);g=la(a,c+e|0,b)+b|0}b=F[d>>2];if(b){F[d+4>>2]=b;ja(b)}F[d+8>>2]=g;F[d+4>>2]=g;F[d>>2]=a;h=1;break a}if(e){f=e<<1;a=ka(f);ma(a,0,f)}i=F[d>>2];f=F[d+4>>2]-i>>1;e:{if(f>>>0>>0){kd(d,b-f|0);break e}if(b>>>0>=f>>>0){break e}F[d+4>>2]=i+(b<<1)}if(!j){h=1;break c}if(!e){b=0;while(1){if(!zb(c,G[c+84|0]?b:F[F[c+68>>2]+(b<<2)>>2],D[c+24|0],a)){break c}b=b+1|0;h=j>>>0<=b>>>0;if((b|0)!=(j|0)){continue}break}break c}o=e&252;m=e&3;p=e>>>0<4;e=0;while(1){if(!zb(c,G[c+84|0]?e:F[F[c+68>>2]+(e<<2)>>2],D[c+24|0],a)){break c}n=F[d>>2];l=0;b=0;h=0;if(!p){while(1){f=(g<<1)+n|0;i=b<<1;E[f>>1]=H[i+a>>1];E[f+2>>1]=H[(i|2)+a>>1];E[f+4>>1]=H[(i|4)+a>>1];E[f+6>>1]=H[(i|6)+a>>1];b=b+4|0;g=g+4|0;h=h+4|0;if((o|0)!=(h|0)){continue}break}}if(m){while(1){E[(g<<1)+n>>1]=H[(b<<1)+a>>1];b=b+1|0;g=g+1|0;l=l+1|0;if((l|0)!=(m|0)){continue}break}}e=e+1|0;h=j>>>0<=e>>>0;if((e|0)!=(j|0)){continue}break}break b}na();v()}if(!a){break a}}ja(a)}Z=k+16|0;return h|0}function kc(a,b){var c=0,d=0,e=0,f=0,g=0;f=-1;d=-1;a:{if((b|0)==-1){break a}d=b+1|0;f=(d>>>0)%3|0?d:b-2|0;d=b-1|0;if((b>>>0)%3|0){break a}d=b+2|0}b:{c:{d:{switch(F[a+168>>2]){case 0:case 1:e=F[a+148>>2];c=1;b=F[a+156>>2];g=b+(((f|0)==-1?-1:F[F[e>>2]+(f<<2)>>2])<<2)|0;F[g>>2]=F[g>>2]+1;b=(((d|0)==-1?-1:F[F[e>>2]+(d<<2)>>2])<<2)+b|0;break c;case 5:e=F[a+148>>2];c=-1;c=((b|0)!=-1?F[F[e>>2]+(b<<2)>>2]:c)<<2;b=F[a+156>>2];c=c+b|0;F[c>>2]=F[c>>2]+1;c=(((f|0)==-1?-1:F[F[e>>2]+(f<<2)>>2])<<2)+b|0;F[c>>2]=F[c>>2]+1;c=2;b=(((d|0)==-1?-1:F[F[e>>2]+(d<<2)>>2])<<2)+b|0;break c;case 3:e=F[a+148>>2];c=-1;c=((b|0)!=-1?F[F[e>>2]+(b<<2)>>2]:c)<<2;b=F[a+156>>2];c=c+b|0;F[c>>2]=F[c>>2]+1;c=(((f|0)==-1?-1:F[F[e>>2]+(f<<2)>>2])<<2)+b|0;F[c>>2]=F[c>>2]+2;c=1;b=(((d|0)==-1?-1:F[F[e>>2]+(d<<2)>>2])<<2)+b|0;break c;case 7:break d;default:break b}}e=F[a+148>>2];c=-1;c=((b|0)!=-1?F[F[e>>2]+(b<<2)>>2]:c)<<2;b=F[a+156>>2];c=c+b|0;F[c>>2]=F[c>>2]+2;c=(((f|0)==-1?-1:F[F[e>>2]+(f<<2)>>2])<<2)+b|0;F[c>>2]=F[c>>2]+2;c=2;b=(((d|0)==-1?-1:F[F[e>>2]+(d<<2)>>2])<<2)+b|0}F[b>>2]=F[b>>2]+c}c=a;b=F[F[a+156>>2]+(((f|0)==-1?-1:F[F[F[a+148>>2]>>2]+(f<<2)>>2])<<2)>>2];d=F[a+180>>2];a=F[a+176>>2];F[c+172>>2]=(a|0)<=(b|0)?((b|0)<(d|0)?b:d)-a|0:0}function Dg(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;a:{b=F[a+32>>2];f=F[b+8>>2];h=F[b+12>>2];g=F[b+20>>2];c=F[b+16>>2];e=0;b:{if((h|0)<=(g|0)&c>>>0>=f>>>0|(g|0)>(h|0)){break b}f=G[F[b>>2]+c|0];e=b;b=g;c=c+1|0;b=c?b:b+1|0;F[e+16>>2]=c;F[e+20>>2]=b;c:{if(!f){break c}while(1){if($[F[F[a>>2]+16>>2]](a,d)|0){d=d+1|0;if((f|0)!=(d|0)){continue}break c}break}return 0}d=F[a+8>>2];b=F[a+12>>2];if((d|0)!=(b|0)){while(1){c=F[d>>2];if(!($[F[F[c>>2]+8>>2]](c,a,F[a+4>>2])|0)){break a}d=d+4|0;if((b|0)!=(d|0)){continue}break}}d:{if(!f){break d}d=0;while(1){b=F[F[a+8>>2]+(d<<2)>>2];if(!($[F[F[b>>2]+12>>2]](b,F[a+32>>2])|0)){break a}d=d+1|0;if((f|0)!=(d|0)){continue}break}if(!f){break d}i=a+20|0;b=0;while(1){d=0;j=b<<2;c=F[j+F[a+8>>2]>>2];k=$[F[F[c>>2]+24>>2]](c)|0;if((k|0)>0){while(1){c=F[F[a+8>>2]+j>>2];c=$[F[F[c>>2]+20>>2]](c,d)|0;e=F[a+20>>2];g=F[a+24>>2]-e>>2;e:{if(c>>>0>>0){break e}h=c+1|0;if(h>>>0>g>>>0){qa(i,h-g|0);e=F[i>>2];break e}if(g>>>0<=h>>>0){break e}F[a+24>>2]=(h<<2)+e}F[(c<<2)+e>>2]=b;d=d+1|0;if((k|0)!=(d|0)){continue}break}}b=b+1|0;if((f|0)!=(b|0)){continue}break}}e=0;if(!($[F[F[a>>2]+28>>2]](a)|0)){break b}e=$[F[F[a>>2]+32>>2]](a)|0}return e|0}return 0}function Ye(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0;Oc(a,b,c);c=F[a+84>>2];d=F[a+88>>2]-c>>2;a:{if((d|0)>(b|0)){break a}b=b+1|0;if(b>>>0>d>>>0){b:{d=b-d|0;e=F[a+92>>2];c=F[a+88>>2];if(d>>>0<=e-c>>2>>>0){c:{if(!d){break c}b=c;e=d&7;if(e){while(1){F[b>>2]=1;b=b+4|0;f=f+1|0;if((e|0)!=(f|0)){continue}break}}c=(d<<2)+c|0;if((d-1&1073741823)>>>0<7){break c}while(1){F[b+24>>2]=1;F[b+28>>2]=1;F[b+16>>2]=1;F[b+20>>2]=1;F[b+8>>2]=1;F[b+12>>2]=1;F[b>>2]=1;F[b+4>>2]=1;b=b+32|0;if((c|0)!=(b|0)){continue}break}}F[a+88>>2]=c;break b}d:{b=c;c=F[a+84>>2];i=b-c|0;g=i>>2;b=g+d|0;if(b>>>0<1073741824){e=e-c|0;h=e>>>1|0;e=e>>>0>=2147483644?1073741823:b>>>0>>0?h:b;if(e){if(e>>>0>=1073741824){break d}j=ka(e<<2)}g=(g<<2)+j|0;b=g;h=d&7;if(h){while(1){F[b>>2]=1;b=b+4|0;f=f+1|0;if((h|0)!=(f|0)){continue}break}}f=g+(d<<2)|0;if((d-1&1073741823)>>>0>=7){while(1){F[b+24>>2]=1;F[b+28>>2]=1;F[b+16>>2]=1;F[b+20>>2]=1;F[b+8>>2]=1;F[b+12>>2]=1;F[b>>2]=1;F[b+4>>2]=1;b=b+32|0;if((f|0)!=(b|0)){continue}break}}b=pa(j,c,i);F[a+88>>2]=f;F[a+84>>2]=b;F[a+92>>2]=b+(e<<2);if(c){ja(c)}break b}na();v()}oa();v()}return}if(b>>>0>=d>>>0){break a}F[a+88>>2]=c+(b<<2)}}function ab(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;d=F[a+8>>2];e=F[a+4>>2];if(d-e>>2>>>0>=b>>>0){a:{if(!b){break a}d=e;g=b&7;if(g){while(1){F[d>>2]=F[c>>2];d=d+4|0;f=f+1|0;if((g|0)!=(f|0)){continue}break}}e=(b<<2)+e|0;if((b-1&1073741823)>>>0<7){break a}while(1){F[d>>2]=F[c>>2];F[d+4>>2]=F[c>>2];F[d+8>>2]=F[c>>2];F[d+12>>2]=F[c>>2];F[d+16>>2]=F[c>>2];F[d+20>>2]=F[c>>2];F[d+24>>2]=F[c>>2];F[d+28>>2]=F[c>>2];d=d+32|0;if((e|0)!=(d|0)){continue}break}}F[a+4>>2]=e;return}b:{i=F[a>>2];f=e-i>>2;h=f+b|0;if(h>>>0<1073741824){j=d-i|0;d=j>>>1|0;h=j>>>0>=2147483644?1073741823:d>>>0>h>>>0?d:h;if(h){if(h>>>0>=1073741824){break b}k=ka(h<<2)}f=(f<<2)+k|0;d=f;j=b&7;if(j){while(1){F[d>>2]=F[c>>2];d=d+4|0;g=g+1|0;if((j|0)!=(g|0)){continue}break}}g=(b<<2)+f|0;if((b-1&1073741823)>>>0>=7){while(1){F[d>>2]=F[c>>2];F[d+4>>2]=F[c>>2];F[d+8>>2]=F[c>>2];F[d+12>>2]=F[c>>2];F[d+16>>2]=F[c>>2];F[d+20>>2]=F[c>>2];F[d+24>>2]=F[c>>2];F[d+28>>2]=F[c>>2];d=d+32|0;if((g|0)!=(d|0)){continue}break}}if((e|0)!=(i|0)){while(1){f=f-4|0;e=e-4|0;F[f>>2]=F[e>>2];if((e|0)!=(i|0)){continue}break}}F[a+8>>2]=(h<<2)+k;F[a+4>>2]=g;F[a>>2]=f;if(i){ja(i)}return}na();v()}oa();v()}function Xb(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;d=F[a+8>>2];e=F[a>>2];if(d-e>>2>>>0>=b>>>0){f=F[a+4>>2];h=f-e>>2;i=b>>>0>h>>>0?h:b;a:{if(!i){break a}d=e;g=i;j=g&7;if(j){while(1){F[d>>2]=F[c>>2];g=g-1|0;d=d+4|0;k=k+1|0;if((k|0)!=(j|0)){continue}break}}if(i>>>0<8){break a}while(1){F[d>>2]=F[c>>2];F[d+4>>2]=F[c>>2];F[d+8>>2]=F[c>>2];F[d+12>>2]=F[c>>2];F[d+16>>2]=F[c>>2];F[d+20>>2]=F[c>>2];F[d+24>>2]=F[c>>2];F[d+28>>2]=F[c>>2];d=d+32|0;g=g-8|0;if(g){continue}break}}if(b>>>0>h>>>0){b=(b-h<<2)+f|0;while(1){F[f>>2]=F[c>>2];f=f+4|0;if((b|0)!=(f|0)){continue}break}F[a+4>>2]=b;return}F[a+4>>2]=e+(b<<2);return}if(e){F[a+4>>2]=e;ja(e);F[a+8>>2]=0;F[a>>2]=0;F[a+4>>2]=0;d=0}b:{if(b>>>0>=1073741824){break b}e=d>>>1|0;d=d>>>0>=2147483644?1073741823:b>>>0>>0?e:b;if(d>>>0>=1073741824){break b}d=d<<2;e=ka(d);F[a>>2]=e;F[a+8>>2]=d+e;c=F[c>>2];d=e;g=b&7;if(g){while(1){F[d>>2]=c;d=d+4|0;f=f+1|0;if((g|0)!=(f|0)){continue}break}}e=e+(b<<2)|0;if((b-1&1073741823)>>>0>=7){while(1){F[d+28>>2]=c;F[d+24>>2]=c;F[d+20>>2]=c;F[d+16>>2]=c;F[d+12>>2]=c;F[d+8>>2]=c;F[d+4>>2]=c;F[d>>2]=c;d=d+32|0;if((e|0)!=(d|0)){continue}break}}F[a+4>>2]=e;return}na();v()}function Ka(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;f=(c>>>0)/3|0;j=F[(F[F[a+8>>2]+96>>2]+L(f,12)|0)+(c-L(f,3)<<2)>>2];a:{h=F[F[a+12>>2]+4>>2];e=F[h+4>>2];if((e|0)!=F[h+8>>2]){F[e>>2]=j;F[h+4>>2]=e+4;break a}b:{i=F[h>>2];f=e-i|0;g=f>>2;d=g+1|0;if(d>>>0<1073741824){k=g<<2;g=f>>>1|0;g=f>>>0>=2147483644?1073741823:d>>>0>>0?g:d;if(g){if(g>>>0>=1073741824){break b}f=ka(g<<2)}else{f=0}d=k+f|0;F[d>>2]=j;j=d+4|0;if((e|0)!=(i|0)){while(1){d=d-4|0;e=e-4|0;F[d>>2]=F[e>>2];if((e|0)!=(i|0)){continue}break}}F[h+8>>2]=f+(g<<2);F[h+4>>2]=j;F[h>>2]=d;if(i){ja(i)}break a}na();v()}oa();v()}c:{d:{h=F[a+4>>2];e=F[h+4>>2];e:{if((e|0)!=F[h+8>>2]){F[e>>2]=c;F[h+4>>2]=e+4;break e}i=F[h>>2];f=e-i|0;j=f>>2;d=j+1|0;if(d>>>0>=1073741824){break d}g=f>>>1|0;g=f>>>0>=2147483644?1073741823:d>>>0>>0?g:d;if(g){if(g>>>0>=1073741824){break c}f=ka(g<<2)}else{f=0}d=f+(j<<2)|0;F[d>>2]=c;c=d+4|0;if((e|0)!=(i|0)){while(1){d=d-4|0;e=e-4|0;F[d>>2]=F[e>>2];if((e|0)!=(i|0)){continue}break}}F[h+8>>2]=f+(g<<2);F[h+4>>2]=c;F[h>>2]=d;if(!i){break e}ja(i)}a=F[a+4>>2];F[F[a+12>>2]+(b<<2)>>2]=F[a+24>>2];F[a+24>>2]=F[a+24>>2]+1;return}na();v()}oa();v()}function pb(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0;h=d-c|0;if((h|0)<=0){return}a:{e=F[a+8>>2];i=F[a+4>>2];if((e-i|0)>=(h|0)){j=i-b|0;if((j|0)>=(h|0)){f=i;g=d;break a}f=i;g=c+j|0;if((g|0)!=(d|0)){e=g;while(1){D[f|0]=G[e|0];f=f+1|0;e=e+1|0;if((e|0)!=(d|0)){continue}break}}F[a+4>>2]=f;if((j|0)>0){break a}return}k=F[a>>2];g=(i-k|0)+h|0;if((g|0)>=0){j=b-k|0;f=e-k|0;e=f<<1;f=f>>>0>=1073741823?2147483647:e>>>0>g>>>0?e:g;if(f){e=ka(f)}else{e=0}g=j+e|0;if((c|0)!=(d|0)){g=la(g,c,h)+h|0}d=pa(e,k,j);c=i-b|0;b=pa(g,b,c);F[a+8>>2]=e+f;F[a+4>>2]=b+c;F[a>>2]=d;if(k){ja(k)}return}na();v()}e=f;d=e-h|0;if(i>>>0>d>>>0){while(1){D[e|0]=G[d|0];e=e+1|0;d=d+1|0;if(i>>>0>d>>>0){continue}break}}F[a+4>>2]=e;a=b+h|0;if((a|0)!=(f|0)){a=f-a|0;pa(f-a|0,b,a)}if((c|0)==(g|0)){return}f=(c^-1)+g|0;a=g-c&7;b:{if(!a){e=b;break b}d=0;e=b;while(1){D[e|0]=G[c|0];e=e+1|0;c=c+1|0;d=d+1|0;if((a|0)!=(d|0)){continue}break}}if(f>>>0<7){return}while(1){D[e|0]=G[c|0];D[e+1|0]=G[c+1|0];D[e+2|0]=G[c+2|0];D[e+3|0]=G[c+3|0];D[e+4|0]=G[c+4|0];D[e+5|0]=G[c+5|0];D[e+6|0]=G[c+6|0];D[e+7|0]=G[c+7|0];e=e+8|0;c=c+8|0;if((g|0)!=(c|0)){continue}break}}function la(a,b,c){var d=0,e=0,f=0;if(c>>>0>=512){Y(a|0,b|0,c|0);return a}e=a+c|0;a:{if(!((a^b)&3)){b:{if(!(a&3)){c=a;break b}if(!c){c=a;break b}c=a;while(1){D[c|0]=G[b|0];b=b+1|0;c=c+1|0;if(!(c&3)){break b}if(c>>>0>>0){continue}break}}d=e&-4;c:{if(d>>>0<64){break c}f=d+-64|0;if(f>>>0>>0){break c}while(1){F[c>>2]=F[b>>2];F[c+4>>2]=F[b+4>>2];F[c+8>>2]=F[b+8>>2];F[c+12>>2]=F[b+12>>2];F[c+16>>2]=F[b+16>>2];F[c+20>>2]=F[b+20>>2];F[c+24>>2]=F[b+24>>2];F[c+28>>2]=F[b+28>>2];F[c+32>>2]=F[b+32>>2];F[c+36>>2]=F[b+36>>2];F[c+40>>2]=F[b+40>>2];F[c+44>>2]=F[b+44>>2];F[c+48>>2]=F[b+48>>2];F[c+52>>2]=F[b+52>>2];F[c+56>>2]=F[b+56>>2];F[c+60>>2]=F[b+60>>2];b=b- -64|0;c=c- -64|0;if(f>>>0>=c>>>0){continue}break}}if(c>>>0>=d>>>0){break a}while(1){F[c>>2]=F[b>>2];b=b+4|0;c=c+4|0;if(d>>>0>c>>>0){continue}break}break a}if(e>>>0<4){c=a;break a}d=e-4|0;if(d>>>0>>0){c=a;break a}c=a;while(1){D[c|0]=G[b|0];D[c+1|0]=G[b+1|0];D[c+2|0]=G[b+2|0];D[c+3|0]=G[b+3|0];b=b+4|0;c=c+4|0;if(d>>>0>=c>>>0){continue}break}}if(c>>>0>>0){while(1){D[c|0]=G[b|0];b=b+1|0;c=c+1|0;if((e|0)!=(c|0)){continue}break}}return a}function sd(a){a=a|0;var b=0,c=0,d=0,e=0,f=0;F[a>>2]=8336;d=a+232|0;b=F[d+196>>2];if(b){F[d+200>>2]=b;ja(b)}c=F[d+184>>2];if(c){b=c;e=F[d+188>>2];if((b|0)!=(e|0)){while(1){b=e-12|0;f=F[b>>2];if(f){F[e-8>>2]=f;ja(f)}e=b;if((b|0)!=(c|0)){continue}break}b=F[d+184>>2]}F[d+188>>2]=c;ja(b)}b=F[d+156>>2];if(b){F[d+160>>2]=b;ja(b)}c=F[d+136>>2];F[d+136>>2]=0;if(c){e=c-4|0;b=F[e>>2];if(b){b=c+(b<<4)|0;while(1){b=b-16|0;if((c|0)!=(b|0)){continue}break}}ja(e)}td(a+216|0);b=F[a+196>>2];if(b){F[a+200>>2]=b;ja(b)}b=F[a+184>>2];if(b){F[a+188>>2]=b;ja(b)}b=F[a+172>>2];if(b){F[a+176>>2]=b;ja(b)}b=F[a+160>>2];if(b){F[a+164>>2]=b;ja(b)}b=F[a+144>>2];if(b){while(1){c=F[b>>2];ja(b);b=c;if(b){continue}break}}b=F[a+136>>2];F[a+136>>2]=0;if(b){ja(b)}b=F[a+120>>2];if(b){ja(b)}b=F[a+108>>2];if(b){ja(b)}b=F[a+96>>2];if(b){ja(b)}b=F[a+72>>2];if(b){F[a+76>>2]=b;ja(b)}b=F[a+60>>2];if(b){ja(b)}b=F[a+48>>2];if(b){F[a+52>>2]=b;ja(b)}b=F[a+36>>2];if(b){F[a+40>>2]=b;ja(b)}b=F[a+24>>2];if(b){F[a+28>>2]=b;ja(b)}b=F[a+12>>2];if(b){F[a+16>>2]=b;ja(b)}b=F[a+8>>2];F[a+8>>2]=0;if(b){Za(b)}return a|0}function Fa(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;d=F[a+8>>2];e=F[a+4>>2];if(d-e>>2>>>0>=b>>>0){a:{if(!b){break a}d=e;f=b&7;if(f){while(1){F[d>>2]=F[c>>2];d=d+4|0;h=h+1|0;if((f|0)!=(h|0)){continue}break}}e=(b<<2)+e|0;if((b-1&1073741823)>>>0<7){break a}while(1){F[d>>2]=F[c>>2];F[d+4>>2]=F[c>>2];F[d+8>>2]=F[c>>2];F[d+12>>2]=F[c>>2];F[d+16>>2]=F[c>>2];F[d+20>>2]=F[c>>2];F[d+24>>2]=F[c>>2];F[d+28>>2]=F[c>>2];d=d+32|0;if((e|0)!=(d|0)){continue}break}}F[a+4>>2]=e;return}b:{i=F[a>>2];j=e-i|0;f=j>>2;g=f+b|0;if(g>>>0<1073741824){d=d-i|0;e=d>>>1|0;g=d>>>0>=2147483644?1073741823:e>>>0>g>>>0?e:g;if(g){if(g>>>0>=1073741824){break b}k=ka(g<<2)}f=(f<<2)+k|0;d=f;e=b&7;if(e){while(1){F[d>>2]=F[c>>2];d=d+4|0;h=h+1|0;if((e|0)!=(h|0)){continue}break}}e=f+(b<<2)|0;if((b-1&1073741823)>>>0>=7){while(1){F[d>>2]=F[c>>2];F[d+4>>2]=F[c>>2];F[d+8>>2]=F[c>>2];F[d+12>>2]=F[c>>2];F[d+16>>2]=F[c>>2];F[d+20>>2]=F[c>>2];F[d+24>>2]=F[c>>2];F[d+28>>2]=F[c>>2];d=d+32|0;if((e|0)!=(d|0)){continue}break}}b=pa(k,i,j);F[a+4>>2]=e;F[a>>2]=b;F[a+8>>2]=b+(g<<2);if(i){ja(i)}return}na();v()}oa();v()}function Sb(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;if(G[a+11|0]>>>7|0){d=F[a+4>>2]}else{d=G[a+11|0]&127}if(d>>>0>>0){h=Z-16|0;Z=h;b=b-d|0;if(b){g=G[a+11|0]>>>7|0?(F[a+8>>2]&2147483647)-1|0:10;if(G[a+11|0]>>>7|0){d=F[a+4>>2]}else{d=G[a+11|0]&127}i=d+b|0;if(g-d>>>0>>0){a:{e=Z-16|0;Z=e;c=i-g|0;if(c>>>0<=2147483631-g>>>0){if(G[a+11|0]>>>7|0){f=F[a>>2]}else{f=a}if(g>>>0<1073741799){F[e+12>>2]=g<<1;F[e>>2]=c+g;c=Z-16|0;Z=c;Z=c+16|0;c=e+12|0;c=F[(I[e>>2]>2]?c:e)>>2];if(c>>>0>=11){j=c+16&-16;c=j-1|0;c=(c|0)==11?j:c}else{c=10}c=c+1|0}else{c=2147483631}sb(e,c);c=F[e>>2];if(d){db(c,f,d)}if((g|0)!=10){ja(f)}F[a>>2]=c;F[a+8>>2]=F[a+8>>2]&-2147483648|F[e+4>>2]&2147483647;F[a+8>>2]=F[a+8>>2]|-2147483648;Z=e+16|0;break a}za();v()}}f=d;if(G[a+11|0]>>>7|0){d=F[a>>2]}else{d=a}f=f+d|0;e=Z-16|0;Z=e;D[e+15|0]=0;while(1){if(b){D[f|0]=G[e+15|0];b=b-1|0;f=f+1|0;continue}break}Z=e+16|0;Ic(a,i);D[h+15|0]=0;D[d+i|0]=G[h+15|0]}Z=h+16|0;return}if(G[a+11|0]>>>7|0){d=F[a>>2]}else{d=a}f=Z-16|0;Z=f;Ic(a,b);D[f+15|0]=0;D[b+d|0]=G[f+15|0];Z=f+16|0}function Zc(a,b){var c=0,d=0,e=0,f=0,g=0,h=0;g=Z-16|0;Z=g;a:{b:{if(b){F[a+88>>2]=0;F[a+92>>2]=0;d=F[a+84>>2];F[a+84>>2]=0;if(d){ja(d)}F[a+76>>2]=0;F[a+80>>2]=0;d=F[a+72>>2];F[a+72>>2]=0;if(d){ja(d)}d=F[b>>2];c=F[b+4>>2];D[g+15|0]=0;Ea(a,c-d>>2,g+15|0);d=F[b+28>>2];c=F[b+24>>2];D[g+14|0]=0;Ea(a+12|0,d-c>>2,g+14|0);Xb(a+28|0,F[b+4>>2]-F[b>>2]>>2,10284);c=F[b+28>>2]-F[b+24>>2]|0;f=c>>2;e=F[a+52>>2];c:{if(f>>>0<=F[a+60>>2]-e>>2>>>0){break c}if((c|0)<0){break b}d=F[a+56>>2];c=ka(c);f=c+(f<<2)|0;h=c+(d-e&-4)|0;c=h;if((d|0)!=(e|0)){while(1){c=c-4|0;d=d-4|0;F[c>>2]=F[d>>2];if((d|0)!=(e|0)){continue}break}}F[a+60>>2]=f;F[a+56>>2]=h;F[a+52>>2]=c;if(!e){break c}ja(e)}c=F[b+28>>2]-F[b+24>>2]|0;f=c>>2;e=F[a+40>>2];d:{if(f>>>0<=F[a+48>>2]-e>>2>>>0){break d}if((c|0)<0){break a}d=F[a+44>>2];c=ka(c);f=c+(f<<2)|0;h=c+(d-e&-4)|0;c=h;if((d|0)!=(e|0)){while(1){c=c-4|0;d=d-4|0;F[c>>2]=F[d>>2];if((d|0)!=(e|0)){continue}break}}F[a+48>>2]=f;F[a+44>>2]=h;F[a+40>>2]=c;if(!e){break d}ja(e)}D[a+24|0]=1;F[a+64>>2]=b}Z=g+16|0;return}na();v()}na();v()}function nb(a,b){var c=0,d=0,e=0;c=(a|0)==(b|0);D[b+12|0]=c;a:{if(c){break a}while(1){d=F[b+8>>2];if(G[d+12|0]){break a}b:{c=F[d+8>>2];e=F[c>>2];if((e|0)==(d|0)){e=F[c+4>>2];if(!(!e|G[e+12|0])){break b}c:{if(F[d>>2]==(b|0)){b=d;break c}b=F[d+4>>2];a=F[b>>2];F[d+4>>2]=a;if(a){F[a+8>>2]=d;c=F[d+8>>2]}F[b+8>>2]=c;a=F[d+8>>2];F[((F[a>>2]!=(d|0))<<2)+a>>2]=b;F[b>>2]=d;F[d+8>>2]=b;c=F[b+8>>2];d=F[c>>2]}D[b+12|0]=1;D[c+12|0]=0;a=F[d+4>>2];F[c>>2]=a;if(a){F[a+8>>2]=c}F[d+8>>2]=F[c+8>>2];a=F[c+8>>2];F[((F[a>>2]!=(c|0))<<2)+a>>2]=d;F[d+4>>2]=c;F[c+8>>2]=d;return}if(!(G[e+12|0]|!e)){break b}d:{if(F[d>>2]!=(b|0)){b=d;break d}a=F[b+4>>2];F[d>>2]=a;if(a){F[a+8>>2]=d;c=F[d+8>>2]}F[b+8>>2]=c;a=F[d+8>>2];F[((F[a>>2]!=(d|0))<<2)+a>>2]=b;F[b+4>>2]=d;F[d+8>>2]=b;c=F[b+8>>2]}D[b+12|0]=1;D[c+12|0]=0;a=F[c+4>>2];b=F[a>>2];F[c+4>>2]=b;if(b){F[b+8>>2]=c}F[a+8>>2]=F[c+8>>2];b=F[c+8>>2];F[((F[b>>2]!=(c|0))<<2)+b>>2]=a;F[a>>2]=c;F[c+8>>2]=a;break a}D[d+12|0]=1;D[c+12|0]=(a|0)==(c|0);D[e+12|0]=1;b=c;if((c|0)!=(a|0)){continue}break}}}function mi(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;a:{b:{c:{d:{e:{f:{g:{h:{i:{j:{k:{if(b){if(!c){break k}if(!d){break j}e=O(d)-O(b)|0;if(e>>>0<=31){break i}break c}if((d|0)==1|d>>>0>1){break c}_=0;a=(a>>>0)/(c>>>0)|0;break a}if(!a){break h}if(!d|d-1&d){break g}a=b>>>ji(d)|0;_=0;break a}if(!(c-1&c)){break f}h=(O(c)+33|0)-O(b)|0;g=0-h|0;break d}h=e+1|0;g=63-e|0;break d}_=0;a=(b>>>0)/(d>>>0)|0;break a}e=O(d)-O(b)|0;if(e>>>0<31){break e}break c}if((c|0)==1){break b}d=ji(c);c=d&31;if((d&63)>>>0>=32){a=b>>>c|0}else{e=b>>>c|0;a=((1<>>c}_=e;break a}h=e+1|0;g=63-e|0}e=h&63;f=e&31;if(e>>>0>=32){e=0;i=b>>>f|0}else{e=b>>>f|0;i=((1<>>f}g=g&63;f=g&31;if(g>>>0>=32){b=a<>>32-f|b<>>31;e=i<<1|b>>>31;f=m-(j+(e>>>0>g>>>0)|0)>>31;k=c&f;i=e-k|0;e=j-((d&f)+(e>>>0>>0)|0)|0;b=b<<1|a>>>31;a=l|a<<1;l=f&1;h=h-1|0;if(h){continue}break}}_=b<<1|a>>>31;a=l|a<<1;break a}a=0;b=0}_=b}return a}function yh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;c=F[b+88>>2];if(!(!c|F[c>>2]!=1)){e=F[c+8>>2];F[a+4>>2]=G[e|0]|G[e+1|0]<<8|(G[e+2|0]<<16|G[e+3|0]<<24);f=a+8|0;d=G[b+24|0];h=F[a+8>>2];g=F[a+12>>2]-h>>2;a:{if(d>>>0>g>>>0){qa(f,d-g|0);d=G[b+24|0];e=F[c+8>>2];break a}if(d>>>0>=g>>>0){break a}F[a+12>>2]=h+(d<<2)}b:{if(!d){b=4;break b}h=d&3;f=F[f>>2];c:{if(d-1>>>0<3){b=4;d=0;break c}k=d&252;d=0;b=4;while(1){g=d<<2;c=b+e|0;F[g+f>>2]=G[c|0]|G[c+1|0]<<8|(G[c+2|0]<<16|G[c+3|0]<<24);F[f+(g|4)>>2]=G[c+4|0]|G[c+5|0]<<8|(G[c+6|0]<<16|G[c+7|0]<<24);F[f+(g|8)>>2]=G[c+8|0]|G[c+9|0]<<8|(G[c+10|0]<<16|G[c+11|0]<<24);F[f+(g|12)>>2]=G[c+12|0]|G[c+13|0]<<8|(G[c+14|0]<<16|G[c+15|0]<<24);d=d+4|0;b=b+16|0;i=i+4|0;if((k|0)!=(i|0)){continue}break}}if(!h){break b}while(1){c=b+e|0;F[f+(d<<2)>>2]=G[c|0]|G[c+1|0]<<8|(G[c+2|0]<<16|G[c+3|0]<<24);d=d+1|0;b=b+4|0;j=j+1|0;if((h|0)!=(j|0)){continue}break}}d=a;a=b+e|0;F[d+20>>2]=G[a|0]|G[a+1|0]<<8|(G[a+2|0]<<16|G[a+3|0]<<24);d=1}return d|0}function Yg(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0,h=0;g=Z-16|0;Z=g;e=F[a+4>>2];d=F[e>>2];a:{b=F[a+12>>2];c=F[b+28>>2]-F[b+24>>2]|0;f=c>>2;b:{if(f>>>0<=F[e+8>>2]-d>>2>>>0){break b}if((c|0)<0){break a}b=F[e+4>>2];c=ka(c);f=c+(f<<2)|0;h=c+(b-d&-4)|0;c=h;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;F[c>>2]=F[b>>2];if((b|0)!=(d|0)){continue}break}}F[e+8>>2]=f;F[e+4>>2]=h;F[e>>2]=c;if(!d){break b}ja(d)}b=F[a+12>>2];c=F[b+28>>2];b=F[b+24>>2];F[g+12>>2]=0;b=c-b>>2;d=a+96|0;e=F[d>>2];c=F[a+100>>2]-e>>2;c:{if(b>>>0>c>>>0){Fa(d,b-c|0,g+12|0);break c}if(b>>>0>=c>>>0){break c}F[a+100>>2]=e+(b<<2)}e=a+8|0;b=F[a+116>>2];d:{if(b){d=F[b>>2];if((d|0)==F[b+4>>2]){c=1;break d}b=0;while(1){c=rd(e,F[(b<<2)+d>>2]);if(!c){break d}f=F[a+116>>2];d=F[f>>2];b=b+1|0;if(b>>>0>2]-d>>2>>>0){continue}break}break d}c=1;a=F[a+12>>2];a=F[a+4>>2]-F[a>>2]|0;if(a>>>0<12){break d}a=(a>>2>>>0)/3|0;b=0;while(1){c=rd(e,L(b,3));if(!c){break d}b=b+1|0;if((a|0)!=(b|0)){continue}break}}Z=g+16|0;return c|0}na();v()}function md(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0;a:{b:{c:{if(!b){if((d|0)<0){break a}f=F[a+4>>2];b=F[a>>2];d=f-b|0;if(c>>>0>d>>>0){g=c-d|0;e=F[a+8>>2];if(g>>>0<=e-f>>>0){i=a,j=ma(f,0,g)+g|0,F[i+4>>2]=j;break c}if((c|0)<0){break b}f=e-b|0;e=f<<1;f=f>>>0>=1073741823?2147483647:c>>>0>>0?e:c;e=ka(f);ma(e+d|0,0,g);d=pa(e,b,d);F[a+8>>2]=d+f;F[a+4>>2]=c+d;F[a>>2]=d;if(!b){break c}ja(b);break c}if(c>>>0>=d>>>0){break c}F[a+4>>2]=b+c;break c}if((d|0)<0){break a}e=F[a+4>>2];f=F[a>>2];g=e-f|0;d:{if((d|0)<=0&c>>>0<=g>>>0|(d|0)<0){break d}if(c>>>0>g>>>0){d=c-g|0;h=F[a+8>>2];if(d>>>0<=h-e>>>0){i=a,j=ma(e,0,d)+d|0,F[i+4>>2]=j;break d}if((c|0)<0){break b}e=h-f|0;h=e<<1;e=e>>>0>=1073741823?2147483647:c>>>0>>0?h:c;h=ka(e);ma(h+g|0,0,d);d=pa(h,f,g);F[a+8>>2]=d+e;F[a+4>>2]=c+d;F[a>>2]=d;if(!f){break d}ja(f);break d}if(c>>>0>=g>>>0){break d}F[a+4>>2]=c+f}if(!c){break c}pa(F[a>>2],b,c)}b=F[a+28>>2];c=F[a+24>>2]+1|0;b=c?b:b+1|0;F[a+24>>2]=c;F[a+28>>2]=b;g=1;break a}na();v()}return g}function Lg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;k=F[a+12>>2];c=F[a+68>>2];d=F[c+80>>2];D[b+84|0]=0;n=b+68|0;i=F[b+68>>2];e=F[b+72>>2]-i>>2;a:{if(e>>>0>>0){ab(n,d-e|0,9124);c=F[a+68>>2];d=F[c+80>>2];break a}if(d>>>0>=e>>>0){break a}F[b+72>>2]=i+(d<<2)}b=F[c+100>>2];e=F[c+96>>2];i=(b-e|0)/12|0;m=1;b:{if((b|0)==(e|0)){break b}k=F[k+28>>2];f=F[k>>2];if((f|0)==-1){return 0}o=i>>>0<=1?1:i;c=e;b=0;m=0;while(1){g=F[c>>2];if(g>>>0>=d>>>0){break b}j=F[F[a+72>>2]+12>>2];h=F[j+(f<<2)>>2];if(h>>>0>=d>>>0){break b}f=F[n>>2];F[f+(g<<2)>>2]=h;g=k+(l<<2)|0;h=F[g+4>>2];if((h|0)==-1){break b}l=F[c+4>>2];if(l>>>0>=d>>>0){break b}h=F[(h<<2)+j>>2];if(h>>>0>=d>>>0){break b}F[f+(l<<2)>>2]=h;g=F[g+8>>2];if((g|0)==-1){break b}c=F[c+8>>2];if(c>>>0>=d>>>0){break b}j=F[(g<<2)+j>>2];if(j>>>0>=d>>>0){break b}F[f+(c<<2)>>2]=j;b=b+1|0;m=i>>>0<=b>>>0;if((b|0)==(o|0)){break b}c=e+L(b,12)|0;l=L(b,3);f=F[k+(l<<2)>>2];if((f|0)!=-1){continue}break}}return m|0}function ag(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;h=F[d+80>>2];e=Z-48|0;Z=e;a=F[a+4>>2];m=a-2|0;a:{if(m>>>0>28){break a}j=F[F[d>>2]>>2]+F[d+48>>2]|0;F[e+16>>2]=a;a=-1<>2]=a^-1;a=-2-a|0;F[e+24>>2]=a;F[e+32>>2]=(a|0)/2;J[e+28>>2]=M(2)/M(a|0);f=F[c>>2];if((f|0)!=F[c+4>>2]){a=0;d=0;while(1){g=F[(d<<2)+f>>2];h=e+36|0;k=F[F[b>>2]>>2];l=F[b+48>>2];f=F[b+40>>2];i=F[b+44>>2];if(!G[b+84|0]){g=F[F[b+68>>2]+(g<<2)>>2]}g=ki(f,i,g,0);i=g;g=g+l|0;la(h,g+k|0,f);Kc(e+16|0,h,e+12|0,e+8|0);f=a<<2;F[f+j>>2]=F[e+12>>2];F[(f|4)+j>>2]=F[e+8>>2];a=a+2|0;d=d+1|0;f=F[c>>2];if(d>>>0>2]-f>>2>>>0){continue}break}break a}if(!h){break a}d=0;a=0;while(1){k=e+36|0;l=F[F[b>>2]>>2];i=F[b+48>>2];c=F[b+40>>2];f=ki(c,F[b+44>>2],G[b+84|0]?a:F[F[b+68>>2]+(a<<2)>>2],0);g=f;f=f+i|0;la(k,f+l|0,c);Kc(e+16|0,k,e+12|0,e+8|0);c=d<<2;F[c+j>>2]=F[e+12>>2];F[(c|4)+j>>2]=F[e+8>>2];d=d+2|0;a=a+1|0;if((h|0)!=(a|0)){continue}break}}Z=e+48|0;return m>>>0<29|0}function Zg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;c=F[a+12>>2];d=F[a+108>>2];e=F[d+80>>2];D[b+84|0]=0;m=b+68|0;h=F[b+68>>2];f=F[b+72>>2]-h>>2;a:{if(f>>>0>>0){ab(m,e-f|0,9124);d=F[a+108>>2];e=F[d+80>>2];break a}if(e>>>0>=f>>>0){break a}F[b+72>>2]=h+(e<<2)}b=F[d+100>>2];f=F[d+96>>2];h=(b-f|0)/12|0;k=1;b:{if((b|0)==(f|0)){break b}n=h>>>0<=1?1:h;o=F[c>>2];c=0;d=f;b=0;k=0;while(1){c=(c<<2)+o|0;i=F[c>>2];if((i|0)==-1){break b}g=F[d>>2];if(g>>>0>=e>>>0){break b}l=F[F[a+112>>2]+12>>2];j=F[l+(i<<2)>>2];if(j>>>0>=e>>>0){break b}i=F[m>>2];F[i+(g<<2)>>2]=j;g=F[c+4>>2];if((g|0)==-1){break b}j=F[d+4>>2];if(j>>>0>=e>>>0){break b}g=F[(g<<2)+l>>2];if(g>>>0>=e>>>0){break b}F[i+(j<<2)>>2]=g;c=F[c+8>>2];if((c|0)==-1){break b}d=F[d+8>>2];if(d>>>0>=e>>>0){break b}c=F[(c<<2)+l>>2];if(c>>>0>=e>>>0){break b}F[i+(d<<2)>>2]=c;b=b+1|0;k=h>>>0<=b>>>0;if((b|0)==(n|0)){break b}c=L(b,3);d=f+L(b,12)|0;if((b|0)!=1431655765){continue}break}}return k|0}function xd(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=M(0),j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0;k=Z-16|0;Z=k;if(F[c+28>>2]==9){d=F[a+4>>2];h=G[c+24|0];e=h<<2;f=ka(e);l=k+8|0;F[l>>2]=1065353216;i=J[a+20>>2];d=-1<0){J[l>>2]=i/M(d|0)}o=(d|0)>0;a:{if(!o){break a}j=F[c+80>>2];if(!j){break a}if(h){p=F[F[b>>2]>>2]+F[b+48>>2]|0;t=h&254;u=h&1;b=0;while(1){m=F[a+8>>2];i=J[l>>2];d=0;n=0;if((h|0)!=1){while(1){g=d<<2;q=(b<<2)+p|0;J[g+f>>2]=M(i*M(F[q>>2]))+J[g+m>>2];g=g|4;J[g+f>>2]=M(i*M(F[q+4>>2]))+J[g+m>>2];d=d+2|0;b=b+2|0;n=n+2|0;if((t|0)!=(n|0)){continue}break}}if(u){d=d<<2;J[d+f>>2]=M(i*M(F[(b<<2)+p>>2]))+J[d+m>>2];b=b+1|0}la(F[F[c+64>>2]>>2]+r|0,f,e);r=e+r|0;s=s+1|0;if((s|0)!=(j|0)){continue}break}break a}b=0;if((j|0)!=1){a=j&-2;d=0;while(1){la(F[F[c+64>>2]>>2]+b|0,f,e);b=b+e|0;la(b+F[F[c+64>>2]>>2]|0,f,e);b=b+e|0;d=d+2|0;if((a|0)!=(d|0)){continue}break}}if(!(j&1)){break a}la(F[F[c+64>>2]>>2]+b|0,f,e)}ja(f)}Z=k+16|0;return o|0}function Rg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;c=F[a+12>>2];d=F[a+68>>2];e=F[d+80>>2];D[b+84|0]=0;m=b+68|0;h=F[b+68>>2];f=F[b+72>>2]-h>>2;a:{if(f>>>0>>0){ab(m,e-f|0,9124);d=F[a+68>>2];e=F[d+80>>2];break a}if(e>>>0>=f>>>0){break a}F[b+72>>2]=h+(e<<2)}b=F[d+100>>2];f=F[d+96>>2];h=(b-f|0)/12|0;k=1;b:{if((b|0)==(f|0)){break b}n=h>>>0<=1?1:h;o=F[c>>2];c=0;d=f;b=0;k=0;while(1){c=(c<<2)+o|0;i=F[c>>2];if((i|0)==-1){break b}g=F[d>>2];if(g>>>0>=e>>>0){break b}l=F[F[a+72>>2]+12>>2];j=F[l+(i<<2)>>2];if(j>>>0>=e>>>0){break b}i=F[m>>2];F[i+(g<<2)>>2]=j;g=F[c+4>>2];if((g|0)==-1){break b}j=F[d+4>>2];if(j>>>0>=e>>>0){break b}g=F[(g<<2)+l>>2];if(g>>>0>=e>>>0){break b}F[i+(j<<2)>>2]=g;c=F[c+8>>2];if((c|0)==-1){break b}d=F[d+8>>2];if(d>>>0>=e>>>0){break b}c=F[(c<<2)+l>>2];if(c>>>0>=e>>>0){break b}F[i+(d<<2)>>2]=c;b=b+1|0;k=h>>>0<=b>>>0;if((b|0)==(n|0)){break b}c=L(b,3);d=f+L(b,12)|0;if((b|0)!=1431655765){continue}break}}return k|0}function Na(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;d=Z-16|0;Z=d;a:{f=F[a+4>>2];b:{if(f>>>0>>0){e=b-f|0;c=F[a+8>>2];g=c<<5;c:{if(!(e>>>0>g>>>0|f>>>0>g-e>>>0)){F[a+4>>2]=b;h=f&31;b=F[a>>2]+(f>>>3&536870908)|0;break c}F[d+8>>2]=0;F[d>>2]=0;F[d+4>>2]=0;if((b|0)<0){break a}if(g>>>0<=1073741822){c=c<<6;b=b+31&-32;b=b>>>0>>0?c:b}else{b=2147483647}$a(d,b);f=F[a+4>>2];F[d+4>>2]=f+e;i=F[a>>2];b=F[d>>2];d:{if((f|0)<=0){break d}c=f>>>5|0;if(f>>>0>=32){pa(b,i,c<<2)}g=c<<2;b=g+b|0;h=f&31;if(h){c=-1>>>32-h|0;F[b>>2]=F[b>>2]&(c^-1)|F[i+g>>2]&c}i=F[a>>2]}F[a>>2]=F[d>>2];F[d>>2]=i;c=F[a+4>>2];F[a+4>>2]=F[d+4>>2];F[d+4>>2]=c;c=F[a+8>>2];F[a+8>>2]=F[d+8>>2];F[d+8>>2]=c;if(!i){break c}ja(i)}if(!e){break b}if(h){c=32-h|0;a=c>>>0>>0?c:e;F[b>>2]=F[b>>2]&(-1<>>c-a^-1);e=e-a|0;b=b+4|0}a=e>>>5|0;if(e>>>0>=32){ma(b,0,a<<2)}if((e&-32)==(e|0)){break b}a=(a<<2)+b|0;F[a>>2]=F[a>>2]&(-1>>>32-(e&31)^-1);break b}F[a+4>>2]=b}Z=d+16|0;return}na();v()}function Aa(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;i=Z-16|0;Z=i;f=F[b+20>>2];h=F[b+12>>2];c=F[b+16>>2];a:{if((f|0)>=(h|0)&c>>>0>=I[b+8>>2]|(f|0)>(h|0)){break a}D[a+12|0]=G[c+F[b>>2]|0];c=F[b+20>>2];f=F[b+16>>2]+1|0;c=f?c:c+1|0;F[b+16>>2]=f;F[b+20>>2]=c;if(!Qd(1,i+12|0,b)){break a}h=F[b+8>>2];f=F[b+16>>2];g=h-f|0;c=F[i+12>>2];d=f>>>0>h>>>0;h=F[b+20>>2];e=F[b+12>>2]-(d+h|0)|0;if(g>>>0>>0&(e|0)<=0|(e|0)<0|(c|0)<=0){break a}g=f+F[b>>2]|0;F[a>>2]=g;b:{c:{e=c-1|0;j=e+g|0;d=G[j|0];d:{if(d>>>0<=63){F[a+4>>2]=e;d=G[j|0]&63;break d}e:{switch((d>>>6|0)-1|0){case 1:break c;case 0:break e;default:break a}}if(c>>>0<2){break a}e=c-2|0;F[a+4>>2]=e;g=g+e|0;d=G[g+1|0]<<8&16128|G[g|0]}F[a+8>>2]=d+4096;break b}if(c>>>0<3){break a}e=c-3|0;F[a+4>>2]=e;d=a;a=g+e|0;a=G[a+1|0]<<8|G[a+2|0]<<16&4128768|G[a|0];F[d+8>>2]=a+4096;if(a>>>0>1044479){break a}}a=h;d=c;c=c+f|0;a=d>>>0>c>>>0?a+1|0:a;F[b+16>>2]=c;F[b+20>>2]=a;k=1}Z=i+16|0;return k}function qd(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0;e=F[a+12>>2];i=F[a+8>>2];d=e-i>>2;b=G[b+24|0];a:{if(d>>>0>>0){qa(a+8|0,b-d|0);i=F[a+8>>2];e=F[a+12>>2];break a}if(b>>>0>=d>>>0){break a}e=(b<<2)+i|0;F[a+12>>2]=e}b=0;f=F[c+8>>2];h=F[c+12>>2];j=F[c+20>>2];e=e-i|0;d=F[c+16>>2];g=e+d|0;j=e>>>0>g>>>0?j+1|0:j;b:{if(f>>>0>>0&(h|0)<=(j|0)|(h|0)<(j|0)){break b}la(i,d+F[c>>2]|0,e);d=F[c+20>>2];g=e;e=e+F[c+16>>2]|0;d=g>>>0>e>>>0?d+1|0:d;F[c+16>>2]=e;F[c+20>>2]=d;f=F[c+8>>2];h=F[c+12>>2];g=e+4|0;d=g>>>0<4?d+1|0:d;if(f>>>0>>0&(d|0)>=(h|0)|(d|0)>(h|0)){break b}d=e+F[c>>2]|0;F[a+20>>2]=G[d|0]|G[d+1|0]<<8|(G[d+2|0]<<16|G[d+3|0]<<24);d=F[c+20>>2];g=d;f=d;e=F[c+16>>2];d=e+4|0;f=d>>>0<4?f+1|0:f;F[c+16>>2]=d;F[c+20>>2]=f;h=F[c+12>>2];if((f|0)>=(h|0)&d>>>0>=I[c+8>>2]|(f|0)>(h|0)){break b}f=G[d+F[c>>2]|0];d=g;e=e+5|0;d=e>>>0<5?d+1|0:d;F[c+16>>2]=e;F[c+20>>2]=d;if(f-1>>>0>29){break b}F[a+4>>2]=f;b=1}return b|0}function Kc(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;j=+J[b>>2];k=+J[b+4>>2];l=+J[b+8>>2];g=N(j)+N(k)+N(l);a:{if(!(g>1e-6)){j=1;k=0;e=0;break a}g=1/g;k=g*k;j=g*j;e=g*l<0}h=F[a+16>>2];l=+(h|0);g=R(j*l+.5);b:{if(N(g)<2147483648){m=~~g;break b}m=-2147483648}f=m>>31;i=(f^m)-f|0;g=R(k*l+.5);c:{if(N(g)<2147483648){f=~~g;break c}f=-2147483648}b=f>>31;b=h-(i+((f^b)-b|0)|0)|0;i=(b|0)>0?b:0;e=e?0-i|0:i;f=f+(b>>31&((f|0)>0?b:0-b|0))|0;d:{if((m|0)>=0){b=e+h|0;a=F[a+8>>2];e=h+f|0;break d}b=f>>31;b=(b^f)-b|0;a=F[a+8>>2];b=(e|0)<0?b:a-b|0;e=(f|0)<0?i:a-i|0}e:{if(!(b|e)){b=a;break e}if(!((a|0)!=(b|0)|e)){b=a;break e}if(!((a|0)!=(e|0)|b)){b=a;break e}if(!((b|0)<=(h|0)|e)){b=(h<<1)-b|0;a=0;break e}if(!((a|0)!=(e|0)|(b|0)>=(h|0))){b=(h<<1)-b|0;break e}if(!((a|0)!=(b|0)|(e|0)>=(h|0))){b=a;a=(h<<1)-e|0;break e}if(b){a=e;break e}b=0;if((e|0)<=(h|0)){a=e;break e}a=(h<<1)-e|0}F[c>>2]=a;F[d>>2]=b}function ye(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;a:{if(!$c(a,b)){break a}h=a+36|0;g=$[F[F[a>>2]+24>>2]](a)|0;e=F[a+40>>2];d=F[a+36>>2];c=e-d>>2;b:{if(g>>>0>c>>>0){Pb(h,g-c|0);break b}if(c>>>0<=g>>>0){break b}d=d+(g<<2)|0;if((d|0)!=(e|0)){while(1){e=e-4|0;c=F[e>>2];F[e>>2]=0;if(c){$[F[F[c>>2]+4>>2]](c)}if((d|0)!=(e|0)){continue}break}}F[a+40>>2]=d}c=1;if((g|0)<=0){break a}e=0;while(1){c:{c=F[b+20>>2];f=F[b+12>>2];d=F[b+16>>2];if((c|0)>=(f|0)&d>>>0>=I[b+8>>2]|(c|0)>(f|0)){break c}f=G[F[b>>2]+d|0];d=d+1|0;c=d?c:c+1|0;F[b+16>>2]=d;F[b+20>>2]=c;d=$[F[F[a>>2]+48>>2]](a,f)|0;f=e<<2;i=f+F[a+36>>2]|0;c=F[i>>2];F[i>>2]=d;if(c){$[F[F[c>>2]+4>>2]](c)}c=F[F[h>>2]+f>>2];if(!c){break c}if(!(k=c,l=$[F[F[a>>2]+28>>2]](a)|0,m=$[F[F[a>>2]+20>>2]](a,e)|0,j=F[F[c>>2]+8>>2],$[j](k|0,l|0,m|0)|0)){break c}c=1;e=e+1|0;if((g|0)!=(e|0)){continue}break a}break}c=0}return c|0}function Xc(a,b){var c=0,d=0,e=0,f=0,g=0,h=0;g=F[a>>2];c=g+(b>>>3&536870908)|0;F[c>>2]=F[c>>2]|1<>2];e=(b|0)==-1;d=-1;a:{if(e){break a}c=b+1|0;c=(c>>>0)%3|0?c:b-2|0;d=-1;if((c|0)==-1){break a}d=F[F[f>>2]+(c<<2)>>2]}c=F[a+12>>2];h=(d>>>3&536870908)+c|0;F[h>>2]=F[h>>2]|1<>>0)%3|0){e=b-1|0;break e}e=b+2|0;d=-1;if((e|0)==-1){break d}}d=F[F[f>>2]+(e<<2)>>2]}e=(d>>>3&536870908)+c|0;F[e>>2]=F[e>>2]|1<>2]+(b<<2)>>2];if((b|0)==-1){break b}D[a+24|0]=0;a=(b>>>3&536870908)+g|0;F[a>>2]=F[a>>2]|1<>>0)%3|0?a:b-2|0;if((a|0)!=-1){d=F[F[f>>2]+(a<<2)>>2]}a=c+(d>>>3&536870908)|0;F[a>>2]=F[a>>2]|1<>>0)%3|0){b=b-1|0;break g}b=b+2|0;a=-1;if((b|0)==-1){break f}}a=F[F[f>>2]+(b<<2)>>2]}b=1<>>3&536870908)|0;c=F[a>>2];break c}a=c+536870908|0;b=F[c+536870908>>2];c=-2147483648}F[a>>2]=b|c}}function zc(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=M(0),f=M(0),g=M(0),h=M(0),i=M(0),j=0,k=M(0),l=M(0),m=M(0),n=M(0),o=0;a:{if(F[c+28>>2]!=9|G[c+24|0]!=3){break a}a=F[a+4>>2];if(a-2>>>0>28){break a}o=1;j=F[c+80>>2];if(!j){break a}k=M(M(2)/M((1<>2]>>2]+F[c+48>>2]|0;a=F[F[b>>2]>>2]+F[b+48>>2]|0;b=0;while(1){g=M(0);l=M(0);m=M(0);e=M(M(M(F[a>>2])*k)+M(-1));f=M(M(M(F[a+4>>2])*k)+M(-1));i=M(M(M(1)-M(N(e)))-M(N(f)));h=M(Q(M(-i),M(0)));n=M(-h);f=M(f+(f>>8;D[c+10|0]=d>>>16;D[c+11|0]=d>>>24;d=(w(l),y(2));D[c+4|0]=d;D[c+5|0]=d>>>8;D[c+6|0]=d>>>16;D[c+7|0]=d>>>24;d=(w(g),y(2));D[c|0]=d;D[c+1|0]=d>>>8;D[c+2|0]=d>>>16;D[c+3|0]=d>>>24;c=c+12|0;b=b+1|0;if((j|0)!=(b|0)){continue}break}}return o|0}function Md(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;g=Z-16|0;Z=g;a:{if(!Sa(1,g+8|0,b)){break a}d=F[b+8>>2];e=F[b+16>>2];f=d-e|0;h=F[g+12>>2];c=d>>>0>>0;d=F[b+20>>2];i=F[b+12>>2]-(c+d|0)|0;c=F[g+8>>2];if((h|0)==(i|0)&c>>>0>f>>>0|h>>>0>i>>>0){break a}d=d+h|0;f=c+e|0;d=f>>>0>>0?d+1|0:d;F[b+16>>2]=f;F[b+20>>2]=d;if((c|0)<=0){break a}b=F[b>>2]+e|0;F[a+40>>2]=b;e=c-1|0;d=b+e|0;f=G[d|0];b:{if(f>>>0<=63){F[a+44>>2]=e;b=G[d|0]&63;break b}c:{switch((f>>>6|0)-1|0){case 0:if(c>>>0<2){break a}c=c-2|0;F[a+44>>2]=c;b=b+c|0;b=G[b+1|0]<<8&16128|G[b|0];break b;case 1:if(c>>>0<3){break a}c=c-3|0;F[a+44>>2]=c;b=b+c|0;b=G[b+1|0]<<8|G[b+2|0]<<16&4128768|G[b|0];break b;default:break c}}c=c-4|0;F[a+44>>2]=c;b=b+c|0;b=(G[b|0]|G[b+1|0]<<8|(G[b+2|0]<<16|G[b+3|0]<<24))&1073741823}F[a+48>>2]=b+16384;j=b>>>0<4177920}Z=g+16|0;return j}function Tf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0;a:{a=Z-32|0;Z=a;e=ya(c);if(e>>>0<2147483632){b:{c:{if(e>>>0>=11){g=(e|15)+1|0;f=ka(g);F[a+24>>2]=g|-2147483648;F[a+16>>2]=f;F[a+20>>2]=e;g=e+f|0;break c}D[a+27|0]=e;f=a+16|0;g=e+f|0;if(!e){break b}}la(f,c,e)}D[g|0]=0;F[a+8>>2]=0;F[a>>2]=0;F[a+4>>2]=0;d:{c=Ya(b,a+16|0);if((c|0)==(b+4|0)){break d}b=F[c+28>>2];e=F[c+32>>2];if((b|0)==(e|0)){break d}b=e-b|0;if(b&3){break d}e=b>>>2|0;f=F[a+4>>2];b=F[a>>2];g=f-b>>2;e:{if(e>>>0>g>>>0){qa(a,e-g|0);b=F[a>>2];f=F[a+4>>2];break e}if(e>>>0>=g>>>0){break e}f=(e<<2)+b|0;F[a+4>>2]=f}if((b|0)!=(f|0)){e=b;b=F[c+28>>2];la(e,b,F[c+32>>2]-b|0);break d}ta();v()}b=F[d>>2];if(b){F[d+4>>2]=b;ja(b)}F[d>>2]=F[a>>2];F[d+4>>2]=F[a+4>>2];F[d+8>>2]=F[a+8>>2];if(D[a+27|0]<0){ja(F[a+16>>2])}Z=a+32|0;break a}za();v()}}function ud(a){a=a|0;var b=0,c=0,d=0,e=0;F[a>>2]=8284;d=F[a+368>>2];F[a+368>>2]=0;if(d){e=d-4|0;b=F[e>>2];if(b){c=(b<<4)+d|0;while(1){c=c-16|0;if((d|0)!=(c|0)){continue}break}}ja(e)}td(a+216|0);b=F[a+196>>2];if(b){F[a+200>>2]=b;ja(b)}b=F[a+184>>2];if(b){F[a+188>>2]=b;ja(b)}b=F[a+172>>2];if(b){F[a+176>>2]=b;ja(b)}b=F[a+160>>2];if(b){F[a+164>>2]=b;ja(b)}c=F[a+144>>2];if(c){while(1){b=F[c>>2];ja(c);c=b;if(b){continue}break}}b=F[a+136>>2];F[a+136>>2]=0;if(b){ja(b)}b=F[a+120>>2];if(b){ja(b)}b=F[a+108>>2];if(b){ja(b)}b=F[a+96>>2];if(b){ja(b)}b=F[a+72>>2];if(b){F[a+76>>2]=b;ja(b)}b=F[a+60>>2];if(b){ja(b)}b=F[a+48>>2];if(b){F[a+52>>2]=b;ja(b)}b=F[a+36>>2];if(b){F[a+40>>2]=b;ja(b)}b=F[a+24>>2];if(b){F[a+28>>2]=b;ja(b)}b=F[a+12>>2];if(b){F[a+16>>2]=b;ja(b)}b=F[a+8>>2];F[a+8>>2]=0;if(b){Za(b)}return a|0}function Vf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0;d=Z-16|0;Z=d;a:{e=ya(c);if(e>>>0<2147483632){b:{c:{if(e>>>0>=11){f=(e|15)+1|0;a=ka(f);F[d+8>>2]=f|-2147483648;F[d>>2]=a;F[d+4>>2]=e;f=a+e|0;break c}D[d+11|0]=e;f=d+e|0;a=d;if(!e){break b}}la(a,c,e)}D[f|0]=0;c=G[d+11|0];e=c<<24>>24;b=F[b+4>>2];a=0;d:{if(!b){break d}a=c;c=(e|0)<0;a=c?F[d+4>>2]:a;f=c?F[d>>2]:d;while(1){c=G[b+27|0];g=c<<24>>24<0;c=g?F[b+20>>2]:c;i=c>>>0>>0;e:{f:{g:{h:{i:{j:{h=i?c:a;if(h){g=g?F[b+16>>2]:b+16|0;j=sa(f,g,h);if(j){break j}if(a>>>0>=c>>>0){break i}break e}if(a>>>0>=c>>>0){break h}break e}if((j|0)<0){break e}}c=sa(g,f,h);if(c){break g}}if(i){break f}a=1;break d}if((c|0)<0){break f}a=1;break d}b=b+4|0}b=F[b>>2];if(b){continue}break}a=0}if((e|0)<0){ja(F[d>>2])}Z=d+16|0;break a}za();v()}return a|0}function lc(a,b){var c=0,d=0;c=F[b+8>>2];F[a+4>>2]=F[b+4>>2];F[a+8>>2]=c;F[a+20>>2]=F[b+20>>2];c=F[b+16>>2];F[a+12>>2]=F[b+12>>2];F[a+16>>2]=c;a:{b:{if((a|0)!=(b|0)){c=F[b+28>>2];if(c){d=F[a+24>>2];if(F[a+32>>2]<<5>>>0>>0){if(d){ja(d);F[a+32>>2]=0;F[a+24>>2]=0;F[a+28>>2]=0;c=F[b+28>>2]}if((c|0)<0){break b}c=(c-1>>>5|0)+1|0;d=ka(c<<2);F[a+32>>2]=c;F[a+28>>2]=0;F[a+24>>2]=d;c=F[b+28>>2]}pa(d,F[b+24>>2],(c-1>>>3&536870908)+4|0);c=F[b+28>>2]}else{c=0}F[a+28>>2]=c;c=F[b+40>>2];if(c){d=F[a+36>>2];if(F[a+44>>2]<<5>>>0>>0){if(d){ja(d);F[a+44>>2]=0;F[a+36>>2]=0;F[a+40>>2]=0;c=F[b+40>>2]}if((c|0)<0){break a}c=(c-1>>>5|0)+1|0;d=ka(c<<2);F[a+44>>2]=c;F[a+40>>2]=0;F[a+36>>2]=d;c=F[b+40>>2]}pa(d,F[b+36>>2],(c-1>>>3&536870908)+4|0);b=F[b+40>>2]}else{b=0}F[a+40>>2]=b}return}na();v()}na();v()}function nc(a){var b=0,c=0,d=0;b=F[a+8>>2];d=F[a>>2];a:{if(G[a+12|0]){b:{c:{d:{e:{if((b|0)==-1){break e}c=b+1|0;b=(c>>>0)%3|0?c:b-2|0;if((b|0)==-1){break e}b=F[F[d+12>>2]+(b<<2)>>2];if((b|0)!=-1){break d}}F[a+8>>2]=-1;break c}c=b+1|0;b=(c>>>0)%3|0?c:b-2|0;F[a+8>>2]=b;if((b|0)!=-1){break b}}c=F[a+4>>2];b=-1;f:{if((c|0)==-1){break f}g:{if((c>>>0)%3|0){c=c-1|0;break g}c=c+2|0;b=-1;if((c|0)==-1){break f}}c=F[F[d+12>>2]+(c<<2)>>2];b=-1;if((c|0)==-1){break f}b=c-1|0;if((c>>>0)%3|0){break f}b=c+2|0}D[a+12|0]=0;F[a+8>>2]=b;return}if((b|0)!=F[a+4>>2]){break a}F[a+8>>2]=-1;return}c=-1;h:{if((b|0)==-1){break h}i:{if((b>>>0)%3|0){b=b-1|0;break i}b=b+2|0;c=-1;if((b|0)==-1){break h}}b=F[F[d+12>>2]+(b<<2)>>2];c=-1;if((b|0)==-1){break h}c=b-1|0;if((b>>>0)%3|0){break h}c=b+2|0}F[a+8>>2]=c}}function Od(a){var b=0,c=0,d=0;b=ka(32);D[b+26|0]=0;c=G[1475]|G[1476]<<8;D[b+24|0]=c;D[b+25|0]=c>>>8;c=G[1471]|G[1472]<<8|(G[1473]<<16|G[1474]<<24);d=G[1467]|G[1468]<<8|(G[1469]<<16|G[1470]<<24);D[b+16|0]=d;D[b+17|0]=d>>>8;D[b+18|0]=d>>>16;D[b+19|0]=d>>>24;D[b+20|0]=c;D[b+21|0]=c>>>8;D[b+22|0]=c>>>16;D[b+23|0]=c>>>24;c=G[1463]|G[1464]<<8|(G[1465]<<16|G[1466]<<24);d=G[1459]|G[1460]<<8|(G[1461]<<16|G[1462]<<24);D[b+8|0]=d;D[b+9|0]=d>>>8;D[b+10|0]=d>>>16;D[b+11|0]=d>>>24;D[b+12|0]=c;D[b+13|0]=c>>>8;D[b+14|0]=c>>>16;D[b+15|0]=c>>>24;c=G[1455]|G[1456]<<8|(G[1457]<<16|G[1458]<<24);d=G[1451]|G[1452]<<8|(G[1453]<<16|G[1454]<<24);D[b|0]=d;D[b+1|0]=d>>>8;D[b+2|0]=d>>>16;D[b+3|0]=d>>>24;D[b+4|0]=c;D[b+5|0]=c>>>8;D[b+6|0]=c>>>16;D[b+7|0]=c>>>24;F[a>>2]=-1;ra(a+4|0,b,26);ja(b)}function Kg(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0;e=F[a+4>>2];d=F[e>>2];a:{b=F[a+12>>2];c=F[b+56>>2]-F[b+52>>2]|0;f=c>>2;b:{if(f>>>0<=F[e+8>>2]-d>>2>>>0){break b}if((c|0)<0){break a}b=F[e+4>>2];c=ka(c);f=c+(f<<2)|0;g=c+(b-d&-4)|0;c=g;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;F[c>>2]=F[b>>2];if((b|0)!=(d|0)){continue}break}}F[e+8>>2]=f;F[e+4>>2]=g;F[e>>2]=c;if(!d){break b}ja(d)}e=a+8|0;b=F[a+76>>2];c:{if(b){d=F[b>>2];if((d|0)==F[b+4>>2]){return 1}b=0;while(1){c=od(e,F[(b<<2)+d>>2]);if(!c){break c}f=F[a+76>>2];d=F[f>>2];b=b+1|0;if(b>>>0>2]-d>>2>>>0){continue}break}break c}c=1;a=F[F[a+12>>2]+64>>2];a=F[a+4>>2]-F[a>>2]|0;if(a>>>0<12){break c}a=(a>>2>>>0)/3|0;b=0;while(1){c=od(e,L(b,3));if(!c){break c}b=b+1|0;if((a|0)!=(b|0)){continue}break}}return c|0}na();v()}function Qg(a){a=a|0;var b=0,c=0,d=0,e=0,f=0,g=0;e=F[a+4>>2];d=F[e>>2];a:{b=F[a+12>>2];c=F[b+28>>2]-F[b+24>>2]|0;f=c>>2;b:{if(f>>>0<=F[e+8>>2]-d>>2>>>0){break b}if((c|0)<0){break a}b=F[e+4>>2];c=ka(c);f=c+(f<<2)|0;g=c+(b-d&-4)|0;c=g;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;F[c>>2]=F[b>>2];if((b|0)!=(d|0)){continue}break}}F[e+8>>2]=f;F[e+4>>2]=g;F[e>>2]=c;if(!d){break b}ja(d)}e=a+8|0;b=F[a+76>>2];c:{if(b){d=F[b>>2];if((d|0)==F[b+4>>2]){return 1}b=0;while(1){c=pd(e,F[(b<<2)+d>>2]);if(!c){break c}f=F[a+76>>2];d=F[f>>2];b=b+1|0;if(b>>>0>2]-d>>2>>>0){continue}break}break c}c=1;a=F[a+12>>2];a=F[a+4>>2]-F[a>>2]|0;if(a>>>0<12){break c}a=(a>>2>>>0)/3|0;b=0;while(1){c=pd(e,L(b,3));if(!c){break c}b=b+1|0;if((a|0)!=(b|0)){continue}break}}return c|0}na();v()}function pa(a,b,c){var d=0,e=0;a:{if((a|0)==(b|0)){break a}e=a+c|0;if(b-e>>>0<=0-(c<<1)>>>0){return la(a,b,c)}d=(a^b)&3;b:{c:{if(a>>>0>>0){if(d){d=a;break b}if(!(a&3)){d=a;break c}d=a;while(1){if(!c){break a}D[d|0]=G[b|0];b=b+1|0;c=c-1|0;d=d+1|0;if(d&3){continue}break}break c}d:{if(d){break d}if(e&3){while(1){if(!c){break a}c=c-1|0;d=c+a|0;D[d|0]=G[b+c|0];if(d&3){continue}break}}if(c>>>0<=3){break d}while(1){c=c-4|0;F[c+a>>2]=F[b+c>>2];if(c>>>0>3){continue}break}}if(!c){break a}while(1){c=c-1|0;D[c+a|0]=G[b+c|0];if(c){continue}break}break a}if(c>>>0<=3){break b}while(1){F[d>>2]=F[b>>2];b=b+4|0;d=d+4|0;c=c-4|0;if(c>>>0>3){continue}break}}if(!c){break a}while(1){D[d|0]=G[b|0];d=d+1|0;b=b+1|0;c=c-1|0;if(c){continue}break}}return a}function Pb(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;d=F[a+8>>2];c=F[a+4>>2];if(d-c>>2>>>0>=b>>>0){if(b){b=b<<2;c=ma(c,0,b)+b|0}F[a+4>>2]=c;return}a:{b:{c:{g=F[a>>2];f=c-g>>2;e=f+b|0;if(e>>>0<1073741824){d=d-g|0;h=d>>>1|0;e=d>>>0>=2147483644?1073741823:e>>>0>>0?h:e;if(e){if(e>>>0>=1073741824){break c}i=ka(e<<2)}d=(f<<2)+i|0;f=b<<2;b=ma(d,0,f);f=b+f|0;e=(e<<2)+i|0;if((c|0)==(g|0)){break b}while(1){c=c-4|0;b=F[c>>2];F[c>>2]=0;d=d-4|0;F[d>>2]=b;if((c|0)!=(g|0)){continue}break}F[a+8>>2]=e;b=F[a+4>>2];F[a+4>>2]=f;c=F[a>>2];F[a>>2]=d;if((b|0)==(c|0)){break a}while(1){b=b-4|0;a=F[b>>2];F[b>>2]=0;if(a){$[F[F[a>>2]+4>>2]](a)}if((b|0)!=(c|0)){continue}break}break a}na();v()}oa();v()}F[a+8>>2]=e;F[a+4>>2]=f;F[a>>2]=b}if(c){ja(c)}}function Yd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;e=F[b+8>>2];d=F[b+12>>2];g=d;d=F[b+20>>2];k=d;h=F[b+16>>2];c=h+4|0;d=c>>>0<4?d+1|0:d;i=c;a:{if(c>>>0>e>>>0&(d|0)>=(g|0)|(d|0)>(g|0)){break a}j=F[b>>2];c=j+h|0;f=G[c|0]|G[c+1|0]<<8|(G[c+2|0]<<16|G[c+3|0]<<24);F[b+16>>2]=i;F[b+20>>2]=d;c=e;e=k;d=h+8|0;e=d>>>0<8?e+1|0:e;if(c>>>0>>0&(e|0)>=(g|0)|(e|0)>(g|0)){break a}c=i+j|0;c=G[c|0]|G[c+1|0]<<8|(G[c+2|0]<<16|G[c+3|0]<<24);F[b+16>>2]=d;F[b+20>>2]=e;if((c|0)<(f|0)){break a}F[a+16>>2]=c;F[a+12>>2]=f;d=(c>>31)-((f>>31)+(c>>>0>>0)|0)|0;e=c-f|0;if(!d&e>>>0>2147483646|d){break a}d=e+1|0;F[a+20>>2]=d;e=d>>>1|0;F[a+24>>2]=e;F[a+28>>2]=0-e;if(!(d&1)){F[a+24>>2]=e-1}l=Aa(a+112|0,b)}return l|0}function Wc(a,b){var c=0,d=0,e=0,f=0;d=-1;e=-1;f=-1;a:{b:{if((b|0)==-1){break b}e=F[F[F[a+4>>2]+12>>2]+(b<<2)>>2];c=b+1|0;c=(c>>>0)%3|0?c:b-2|0;if((c|0)>=0){f=(c>>>0)/3|0;f=F[(F[F[a>>2]+96>>2]+L(f,12)|0)+(c-L(f,3)<<2)>>2]}c:{if((e|0)==-1){break c}c=((e>>>0)%3|0?-1:2)+e|0;if((c|0)<0){break c}d=(c>>>0)/3|0;d=F[(F[F[a>>2]+96>>2]+L(d,12)|0)+(c-L(d,3)<<2)>>2]}c=-1;if((d|0)!=(f|0)){break a}f=-1;d:{b=((b>>>0)%3|0?-1:2)+b|0;if((b|0)>=0){d=(b>>>0)/3|0;d=F[(F[F[a>>2]+96>>2]+L(d,12)|0)+(b-L(d,3)<<2)>>2];if((e|0)==-1){break b}break d}d=-1;if((e|0)!=-1){break d}break b}b=e+1|0;b=(b>>>0)%3|0?b:e-2|0;if((b|0)<0){break b}c=F[F[a>>2]+96>>2];a=(b>>>0)/3|0;f=F[(c+L(a,12)|0)+(b-L(a,3)<<2)>>2]}c=(d|0)!=(f|0)?-1:e}return c}function Fc(a,b){var c=0,d=0,e=0;c=Z+-64|0;Z=c;d=F[a>>2];e=F[d-4>>2];d=F[d-8>>2];F[c+32>>2]=0;F[c+36>>2]=0;F[c+40>>2]=0;F[c+44>>2]=0;F[c+48>>2]=0;F[c+52>>2]=0;D[c+55|0]=0;D[c+56|0]=0;D[c+57|0]=0;D[c+58|0]=0;D[c+59|0]=0;D[c+60|0]=0;D[c+61|0]=0;D[c+62|0]=0;F[c+24>>2]=0;F[c+28>>2]=0;F[c+20>>2]=0;F[c+16>>2]=11020;F[c+12>>2]=a;F[c+8>>2]=b;a=a+d|0;d=0;a:{if(La(e,b,0)){F[c+56>>2]=1;$[F[F[e>>2]+20>>2]](e,c+8|0,a,a,1,0);d=F[c+32>>2]==1?a:0;break a}$[F[F[e>>2]+24>>2]](e,c+8|0,a,1,0);b:{switch(F[c+44>>2]){case 0:d=F[c+48>>2]==1?F[c+36>>2]==1?F[c+40>>2]==1?F[c+28>>2]:0:0:0;break a;case 1:break b;default:break a}}if(F[c+32>>2]!=1){if(F[c+48>>2]|F[c+36>>2]!=1|F[c+40>>2]!=1){break a}}d=F[c+24>>2]}Z=c- -64|0;return d}function ma(a,b,c){var d=0,e=0,f=0,g=0;a:{if(!c){break a}D[a|0]=b;d=a+c|0;D[d-1|0]=b;if(c>>>0<3){break a}D[a+2|0]=b;D[a+1|0]=b;D[d-3|0]=b;D[d-2|0]=b;if(c>>>0<7){break a}D[a+3|0]=b;D[d-4|0]=b;if(c>>>0<9){break a}d=0-a&3;e=d+a|0;b=L(b&255,16843009);F[e>>2]=b;d=c-d&-4;c=d+e|0;F[c-4>>2]=b;if(d>>>0<9){break a}F[e+8>>2]=b;F[e+4>>2]=b;F[c-8>>2]=b;F[c-12>>2]=b;if(d>>>0<25){break a}F[e+24>>2]=b;F[e+20>>2]=b;F[e+16>>2]=b;F[e+12>>2]=b;F[c-16>>2]=b;F[c-20>>2]=b;F[c-24>>2]=b;F[c-28>>2]=b;g=e&4|24;c=d-g|0;if(c>>>0<32){break a}d=ki(b,0,1,1);f=_;b=e+g|0;while(1){F[b+24>>2]=d;F[b+28>>2]=f;F[b+16>>2]=d;F[b+20>>2]=f;F[b+8>>2]=d;F[b+12>>2]=f;F[b>>2]=d;F[b+4>>2]=f;b=b+32|0;c=c-32|0;if(c>>>0>31){continue}break}}return a}function ie(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;d=F[b+8>>2];e=F[b+12>>2];g=e;e=F[b+20>>2];k=e;h=F[b+16>>2];c=h+4|0;e=c>>>0<4?e+1|0:e;i=c;a:{if(c>>>0>d>>>0&(e|0)>=(g|0)|(e|0)>(g|0)){break a}j=F[b>>2];c=j+h|0;f=G[c|0]|G[c+1|0]<<8|(G[c+2|0]<<16|G[c+3|0]<<24);F[b+16>>2]=i;F[b+20>>2]=e;c=d;d=k;e=h+8|0;d=e>>>0<8?d+1|0:d;if(c>>>0>>0&(d|0)>=(g|0)|(d|0)>(g|0)){break a}c=i+j|0;c=G[c|0]|G[c+1|0]<<8|(G[c+2|0]<<16|G[c+3|0]<<24);F[b+16>>2]=e;F[b+20>>2]=d;if((c|0)<(f|0)){break a}F[a+16>>2]=c;F[a+12>>2]=f;d=(c>>31)-((f>>31)+(c>>>0>>0)|0)|0;b=c-f|0;if(!d&b>>>0>2147483646|d){break a}l=1;d=b+1|0;F[a+20>>2]=d;b=d>>>1|0;F[a+24>>2]=b;F[a+28>>2]=0-b;if(d&1){break a}F[a+24>>2]=b-1}return l|0}function Uc(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;d=Z-16|0;Z=d;f=F[a+24>>2];k=F[a+28>>2];a:{if((f|0)!=(k|0)){while(1){F[d+8>>2]=0;F[d>>2]=0;F[d+4>>2]=0;a=Sc(F[f>>2],b,d);g=G[d+11|0];h=g<<24>>24;i=3;b:{c:{d:{if(!a){break d}i=0;a=G[c+11|0];e=a<<24>>24;j=(h|0)<0?F[d+4>>2]:g;if((j|0)!=(((e|0)<0?F[c+4>>2]:a)|0)){break d}a=(e|0)<0?F[c>>2]:c;e=(h|0)<0;e:{if(!e){e=d;if(!h){break e}while(1){if(G[e|0]!=G[a|0]){break d}a=a+1|0;e=e+1|0;g=g-1|0;if(g){continue}break}break e}if(!j){break e}if(sa(e?F[d>>2]:d,a,j)){break c}}l=F[f>>2];i=1}if((h|0)>=0){break b}}ja(F[d>>2])}f:{switch(i|0){case 0:case 3:break f;default:break a}}f=f+4|0;if((k|0)!=(f|0)){continue}break}}l=0}Z=d+16|0;return l}function gb(a,b,c){var d=0,e=0,f=0,g=0,h=0,i=0;f=c-b|0;h=f>>2;d=F[a+8>>2];e=F[a>>2];if(h>>>0<=d-e>>2>>>0){d=F[a+4>>2];g=d-e|0;f=g+b|0;i=g>>2;g=i>>>0>>0?f:c;if((g|0)!=(b|0)){while(1){F[e>>2]=F[b>>2];e=e+4|0;b=b+4|0;if((g|0)!=(b|0)){continue}break}}if(h>>>0>i>>>0){if((c|0)!=(g|0)){while(1){F[d>>2]=F[f>>2];d=d+4|0;f=f+4|0;if((f|0)!=(c|0)){continue}break}}F[a+4>>2]=d;return}F[a+4>>2]=e;return}if(e){F[a+4>>2]=e;ja(e);F[a+8>>2]=0;F[a>>2]=0;F[a+4>>2]=0;d=0}a:{if((f|0)<0){break a}e=d>>>1|0;d=d>>>0>=2147483644?1073741823:e>>>0>h>>>0?e:h;if(d>>>0>=1073741824){break a}e=d<<2;d=ka(e);F[a>>2]=d;F[a+8>>2]=d+e;if((b|0)!=(c|0)){c=b;b=(f-4&-4)+4|0;d=la(d,c,b)+b|0}F[a+4>>2]=d;return}na();v()}function Ea(a,b,c){var d=0,e=0,f=0;e=Z-16|0;Z=e;F[a+4>>2]=0;a:{b:{if(!b){break b}f=F[a+8>>2];d=f<<5;c:{if(d>>>0>=b>>>0){F[a+4>>2]=b;break c}F[e+8>>2]=0;F[e>>2]=0;F[e+4>>2]=0;if((b|0)<0){break a}if(d>>>0<=1073741822){f=f<<6;d=b+31&-32;d=d>>>0>>0?f:d}else{d=2147483647}$a(e,d);f=F[a>>2];F[a>>2]=F[e>>2];F[e>>2]=f;d=F[a+4>>2];F[a+4>>2]=b;F[e+4>>2]=d;d=F[a+8>>2];F[a+8>>2]=F[e+8>>2];F[e+8>>2]=d;if(!f){break c}ja(f)}d=b>>>5|0;a=F[a>>2];if(G[c|0]){if(b>>>0>=32){ma(a,255,d<<2)}if((b&-32)==(b|0)){break b}a=a+(d<<2)|0;F[a>>2]=F[a>>2]|-1>>>32-(b&31);break b}if(b>>>0>=32){ma(a,0,d<<2)}if((b&-32)==(b|0)){break b}a=a+(d<<2)|0;F[a>>2]=F[a>>2]&(-1>>>32-(b&31)^-1)}Z=e+16|0;return}na();v()}function If(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0;e=Z-32|0;Z=e;a:{b:{f=ya(c);if(f>>>0<2147483632){c:{d:{if(f>>>0>=11){a=(f|15)+1|0;g=ka(a);F[e+24>>2]=a|-2147483648;F[e+16>>2]=g;F[e+20>>2]=f;a=f+g|0;break d}D[e+27|0]=f;g=e+16|0;a=f+g|0;if(!f){break c}}la(g,c,f)}D[a|0]=0;c=ya(d);if(c>>>0>=2147483632){break b}e:{f:{if(c>>>0>=11){f=(c|15)+1|0;a=ka(f);F[e+8>>2]=f|-2147483648;F[e>>2]=a;F[e+4>>2]=c;g=a+c|0;break f}D[e+11|0]=c;g=c+e|0;a=e;if(!c){break e}}la(a,d,c)}D[g|0]=0;c=F[b+4>>2];a=-1;g:{if(!c){break g}c=Uc(c,e+16|0,e);a=-1;if(!c){break g}a=Pc(b,F[c+24>>2])}if(D[e+11|0]<0){ja(F[e>>2])}if(D[e+27|0]<0){ja(F[e+16>>2])}Z=e+32|0;break a}za();v()}za();v()}return a|0}function se(a,b){a=a|0;b=b|0;a=0;a:{switch(b|0){case 0:a=ka(20);F[a+12>>2]=-1;F[a+16>>2]=0;F[a+4>>2]=0;F[a+8>>2]=0;F[a>>2]=1920;return a|0;case 1:a=ka(24);F[a+12>>2]=-1;F[a+16>>2]=0;F[a+4>>2]=0;F[a+8>>2]=0;F[a>>2]=1920;F[a+20>>2]=0;F[a>>2]=2136;return a|0;case 2:a=ka(48);F[a+12>>2]=-1;F[a+16>>2]=0;F[a+4>>2]=0;F[a+8>>2]=0;F[a>>2]=1920;F[a+20>>2]=0;F[a>>2]=2136;F[a+24>>2]=1624;F[a>>2]=7948;F[a+32>>2]=0;F[a+36>>2]=0;F[a+28>>2]=-1;F[a+40>>2]=0;F[a+44>>2]=0;return a|0;case 3:a=ka(32);F[a+12>>2]=-1;F[a+16>>2]=0;F[a+4>>2]=0;F[a+8>>2]=0;F[a>>2]=1920;F[a+20>>2]=0;F[a>>2]=2136;F[a+24>>2]=1032;F[a>>2]=5812;F[a+28>>2]=-1;break;default:break a}}return a|0}function Be(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;f=F[b>>2];b=F[b+4>>2];d=F[F[a+8>>2]+40>>2];j=d;m=ka((d|0)<0?-1:d);i=b-f|0;e=1;a:{if((i|0)<4){break a}b=0;g=F[c+16>>2];k=d;f=g+d|0;d=0+F[c+20>>2]|0;d=f>>>0>>0?d+1|0:d;h=F[c+12>>2];e=0;if(I[c+8>>2]>>0&(d|0)>=(h|0)|(d|0)>(h|0)){break a}e=i>>2;i=(e|0)<=1?1:e;while(1){b:{g=la(m,F[c>>2]+g|0,j);F[c+16>>2]=f;F[c+20>>2]=d;la(F[F[F[a+8>>2]+64>>2]>>2]+b|0,g,j);l=l+1|0;if((i|0)==(l|0)){break b}b=b+j|0;d=n+F[c+20>>2]|0;g=F[c+16>>2];f=k+g|0;d=f>>>0>>0?d+1|0:d;h=F[c+12>>2];if((d|0)<=(h|0)&I[c+8>>2]>=f>>>0|(d|0)<(h|0)){continue}}break}e=(e|0)<=(l|0)}ja(m);return e|0}function mh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0;F[b>>2]=1;f=b+8|0;c=F[b+8>>2];d=F[b+12>>2]-c|0;if(d>>>0<=4294967291){Db(f,d+4|0);c=F[f>>2]}c=c+d|0;d=F[a+4>>2];D[c|0]=d;D[c+1|0]=d>>>8;D[c+2|0]=d>>>16;D[c+3|0]=d>>>24;c=F[a+8>>2];if((c|0)!=F[a+12>>2]){d=0;while(1){g=(d<<2)+c|0;c=F[b+8>>2];e=F[b+12>>2]-c|0;if(e>>>0<=4294967291){Db(f,e+4|0);c=F[f>>2]}c=c+e|0;e=F[g>>2];D[c|0]=e;D[c+1|0]=e>>>8;D[c+2|0]=e>>>16;D[c+3|0]=e>>>24;d=d+1|0;c=F[a+8>>2];if(d>>>0>2]-c>>2>>>0){continue}break}}c=F[b+12>>2];b=F[b+8>>2];c=c-b|0;if(c>>>0<=4294967291){Db(f,c+4|0);b=F[f>>2]}b=b+c|0;a=F[a+20>>2];D[b|0]=a;D[b+1|0]=a>>>8;D[b+2|0]=a>>>16;D[b+3|0]=a>>>24}function mb(a,b){var c=0,d=0,e=0,f=0,g=0,h=0;c=F[a+4>>2];if((c|0)!=F[a+8>>2]){e=F[b+4>>2];F[c>>2]=F[b>>2];F[c+4>>2]=e;F[c+8>>2]=F[b+8>>2];F[a+4>>2]=c+12;return}a:{g=F[a>>2];d=(c-g|0)/12|0;e=d+1|0;if(e>>>0<357913942){f=d<<1;f=d>>>0>=178956970?357913941:e>>>0>>0?f:e;if(f){if(f>>>0>=357913942){break a}e=ka(L(f,12))}else{e=0}d=e+L(d,12)|0;h=F[b+4>>2];F[d>>2]=F[b>>2];F[d+4>>2]=h;F[d+8>>2]=F[b+8>>2];b=d+12|0;if((c|0)!=(g|0)){while(1){c=c-12|0;h=F[c+4>>2];d=d-12|0;F[d>>2]=F[c>>2];F[d+4>>2]=h;F[d+8>>2]=F[c+8>>2];if((c|0)!=(g|0)){continue}break}c=F[a>>2]}F[a+8>>2]=e+L(f,12);F[a+4>>2]=b;F[a>>2]=d;if(c){ja(c)}return}na();v()}oa();v()}function ne(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;h=F[c+12>>2];f=h;e=F[c+20>>2];i=F[c+8>>2];g=F[c+16>>2];a:{if((f|0)<=(e|0)&i>>>0<=g>>>0|(e|0)>(f|0)){break a}j=F[c>>2];k=D[j+g|0];d=e;f=g+1|0;d=f?d:d+1|0;F[c+16>>2]=f;F[c+20>>2]=d;b:{if((k|0)==-2){break b}if((d|0)>=(h|0)&f>>>0>=i>>>0|(d|0)>(h|0)){break a}d=D[f+j|0];g=g+2|0;e=g>>>0<2?e+1|0:e;F[c+16>>2]=g;F[c+20>>2]=e;if((d-4&255)>>>0<251){break a}e=$[F[F[a>>2]+40>>2]](a,k,d)|0;d=F[a+20>>2];F[a+20>>2]=e;if(!d){break b}$[F[F[d>>2]+4>>2]](d)}d=F[a+20>>2];if(d){if(!($[F[F[a>>2]+28>>2]](a,d)|0)){break a}}l=$[F[F[a>>2]+36>>2]](a,b,c)|0}return l|0}function Bf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0;a:{if(I[b+80>>2]>65535){break a}a=F[b+100>>2];b=F[b+96>>2];e=(a-b|0)/12|0;f=L(e,6);g=(f|0)==(c|0);if((a|0)==(b|0)|(c|0)!=(f|0)){break a}g=1;c=e>>>0<=1?1:e;i=c&1;a=0;if(e>>>0>=2){j=c&-2;c=0;while(1){f=L(a,6);h=f+d|0;e=b+L(a,12)|0;E[h>>1]=F[e>>2];E[(f|2)+d>>1]=F[e+4>>2];E[h+4>>1]=F[e+8>>2];f=a|1;e=L(f,6)+d|0;f=b+L(f,12)|0;E[e>>1]=F[f>>2];E[e+2>>1]=F[f+4>>2];E[e+4>>1]=F[f+8>>2];a=a+2|0;c=c+2|0;if((j|0)!=(c|0)){continue}break}}if(!i){break a}c=L(a,6)+d|0;a=b+L(a,12)|0;E[c>>1]=F[a>>2];E[c+2>>1]=F[a+4>>2];E[c+4>>1]=F[a+8>>2]}return g|0}function Gh(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;f=Z-32|0;Z=f;h=e>>>0>1073741823?-1:e<<2;h=ma(ka(h),0,h);g=F[b>>2];i=F[b+4>>2];k=F[h+4>>2];F[f+16>>2]=F[h>>2];F[f+20>>2]=k;F[f+8>>2]=g;F[f+12>>2]=i;i=a+8|0;Jb(f+24|0,i,f+16|0,f+8|0);F[c>>2]=F[f+24>>2];F[c+4>>2]=F[f+28>>2];if((d|0)>(e|0)){k=0-e<<2;a=e;while(1){g=a<<2;j=g+b|0;m=F[j>>2];j=F[j+4>>2];g=c+g|0;l=g+k|0;n=F[l+4>>2];F[f+16>>2]=F[l>>2];F[f+20>>2]=n;F[f+8>>2]=m;F[f+12>>2]=j;Jb(f+24|0,i,f+16|0,f+8|0);F[g>>2]=F[f+24>>2];F[g+4>>2]=F[f+28>>2];a=a+e|0;if((d|0)>(a|0)){continue}break}}ja(h);Z=f+32|0;return 1}function Sf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0;a=Z-32|0;Z=a;F[a+24>>2]=0;F[a+28>>2]=0;a:{d=ya(c);if(d>>>0<2147483632){b:{c:{if(d>>>0>=11){e=(d|15)+1|0;f=ka(e);F[a+16>>2]=e|-2147483648;F[a+8>>2]=f;F[a+12>>2]=d;e=d+f|0;break c}D[a+19|0]=d;f=a+8|0;e=f+d|0;if(!d){break b}}la(f,c,d)}D[e|0]=0;c=b+4|0;b=Ya(b,a+8|0);d:{if((c|0)==(b|0)){break d}c=F[b+32>>2];b=F[b+28>>2];if((c-b|0)!=8){break d}c=G[b+4|0]|G[b+5|0]<<8|(G[b+6|0]<<16|G[b+7|0]<<24);F[a+24>>2]=G[b|0]|G[b+1|0]<<8|(G[b+2|0]<<16|G[b+3|0]<<24);F[a+28>>2]=c}g=K[a+24>>3];if(D[a+19|0]<0){ja(F[a+8>>2])}Z=a+32|0;break a}za();v()}return+g}function Gc(a,b,c,d,e,f,g){var h=0,i=0,j=0;h=Z-16|0;Z=h;if((b^-1)+2147483631>>>0>=c>>>0){if(G[a+11|0]>>>7|0){i=F[a>>2]}else{i=a}if(b>>>0<1073741799){F[h+12>>2]=b<<1;F[h>>2]=b+c;c=Z-16|0;Z=c;Z=c+16|0;c=h+12|0;c=F[(I[h>>2]>2]?c:h)>>2];if(c>>>0>=11){j=c+16&-16;c=j-1|0;c=(c|0)==11?j:c}else{c=10}c=c+1|0}else{c=2147483631}sb(h,c);c=F[h>>2];if(f){db(c,g,f)}g=d-e|0;if((d|0)!=(e|0)){db(c+f|0,e+i|0,g)}if((b|0)!=10){ja(i)}F[a>>2]=c;F[a+8>>2]=F[a+8>>2]&-2147483648|F[h+4>>2]&2147483647;F[a+8>>2]=F[a+8>>2]|-2147483648;b=a;a=f+g|0;F[b+4>>2]=a;D[h+12|0]=0;D[a+c|0]=G[h+12|0];Z=h+16|0;return}za();v()}function _c(a,b,c){var d=0,e=0,f=0,g=0;a:{f=b>>>0<1431655766&(b|c)>=0;b:{if(!f){break b}b=L(b,3);Xb(a,b,10224);Xb(a+12|0,b,10228);d=F[a+24>>2];c:{if(F[a+32>>2]-d>>2>>>0>=c>>>0){break c}if(c>>>0>=1073741824){break a}b=F[a+28>>2];e=c<<2;c=ka(e);e=c+e|0;g=c+(b-d&-4)|0;c=g;if((b|0)!=(d|0)){while(1){c=c-4|0;b=b-4|0;F[c>>2]=F[b>>2];if((b|0)!=(d|0)){continue}break}}F[a+32>>2]=e;F[a+28>>2]=g;F[a+24>>2]=c;if(!d){break c}ja(d)}F[a+80>>2]=0;F[a+84>>2]=0;b=F[a+76>>2];F[a+76>>2]=0;if(b){ja(b)}F[a+68>>2]=0;F[a+72>>2]=0;b=a- -64|0;a=F[b>>2];F[b>>2]=0;if(!a){break b}ja(a)}return f}na();v()}function yd(a){var b=0,c=0,d=0,e=0,f=0;f=1;c=F[a+140>>2];a:{if((c|0)<=0){break a}b=c<<4;d=ka(c>>>0>268435455?-1:b|4);F[d>>2]=c;d=d+4|0;c=d+b|0;b=d;while(1){F[b>>2]=0;F[b+4>>2]=0;D[b+5|0]=0;D[b+6|0]=0;D[b+7|0]=0;D[b+8|0]=0;D[b+9|0]=0;D[b+10|0]=0;D[b+11|0]=0;D[b+12|0]=0;b=b+16|0;if((c|0)!=(b|0)){continue}break}e=F[a+136>>2];F[a+136>>2]=d;if(e){c=e-4|0;d=F[c>>2];if(d){b=(d<<4)+e|0;while(1){b=b-16|0;if((e|0)!=(b|0)){continue}break}}ja(c)}b=0;if(F[a+140>>2]<=0){break a}while(1){f=Aa(F[a+136>>2]+(b<<4)|0,a);if(!f){break a}b=b+1|0;if((b|0)>2]){continue}break}}return f} -function Sd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;d=F[b+8>>2];c=F[b+12>>2];g=c;c=F[b+20>>2];i=c;h=F[b+16>>2];f=h+4|0;c=f>>>0<4?c+1|0:c;a:{if(d>>>0>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break a}e=h+F[b>>2]|0;e=G[e|0]|G[e+1|0]<<8|(G[e+2|0]<<16|G[e+3|0]<<24);F[b+16>>2]=f;F[b+20>>2]=c;f=d;d=i;c=h+8|0;d=c>>>0<8?d+1|0:d;if(c>>>0>f>>>0&(d|0)>=(g|0)|(d|0)>(g|0)){break a}F[b+16>>2]=c;F[b+20>>2]=d;if(!(e&1)){break a}d=O(e)^31;if(d-1>>>0>28){break a}F[a+8>>2]=d+1;d=-2<>2]=c;F[a+12>>2]=d^-1;F[a+24>>2]=c>>1;J[a+20>>2]=M(2)/M(c|0);j=Aa(a+96|0,b)}return j|0}function bc(a,b){var c=0;c=F[b+4>>2];F[a>>2]=F[b>>2];F[a+4>>2]=c;c=F[b+60>>2];F[a+56>>2]=F[b+56>>2];F[a+60>>2]=c;c=F[b+52>>2];F[a+48>>2]=F[b+48>>2];F[a+52>>2]=c;c=F[b+44>>2];F[a+40>>2]=F[b+40>>2];F[a+44>>2]=c;c=F[b+36>>2];F[a+32>>2]=F[b+32>>2];F[a+36>>2]=c;c=F[b+28>>2];F[a+24>>2]=F[b+24>>2];F[a+28>>2]=c;c=F[b+20>>2];F[a+16>>2]=F[b+16>>2];F[a+20>>2]=c;c=F[b+12>>2];F[a+8>>2]=F[b+8>>2];F[a+12>>2]=c;F[a+88>>2]=0;F[a+64>>2]=0;F[a+68>>2]=0;F[a+72>>2]=0;F[a+76>>2]=0;D[a+77|0]=0;D[a+78|0]=0;D[a+79|0]=0;D[a+80|0]=0;D[a+81|0]=0;D[a+82|0]=0;D[a+83|0]=0;D[a+84|0]=0;return a}function ac(a,b){var c=0,d=0,e=0,f=0,g=0;a:{if(F[a+64>>2]){break a}c=ka(32);F[c+16>>2]=0;F[c+20>>2]=0;F[c+8>>2]=0;F[c>>2]=0;F[c+4>>2]=0;F[c+24>>2]=0;F[c+28>>2]=0;d=F[a+64>>2];F[a+64>>2]=c;if(!d){break a}c=F[d>>2];if(c){F[d+4>>2]=c;ja(c)}ja(d)}d=F[a+64>>2];c=F[a+28>>2]-1|0;if(c>>>0<=10){c=F[(c<<2)+10148>>2]}else{c=-1}c=L(c,G[a+24|0]);f=c>>31;g=md(d,0,ki(c,f,b,0),_);if(g){d=F[a+64>>2];F[a>>2]=d;e=F[d+20>>2];F[a+8>>2]=F[d+16>>2];F[a+12>>2]=e;e=F[d+24>>2];d=F[d+28>>2];F[a+48>>2]=0;F[a+52>>2]=0;F[a+40>>2]=c;F[a+44>>2]=f;F[a+16>>2]=e;F[a+20>>2]=d;F[a+80>>2]=b}return g}function Af(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0;a=F[b+100>>2];b=F[b+96>>2];h=a-b|0;a:{if((h|0)!=(c|0)|(a|0)==(b|0)){break a}g=(c|0)/12|0;e=g>>>0<=1?1:g;j=e&1;a=0;if(g>>>0>=2){k=e&-2;g=0;while(1){e=L(a,12);i=e+d|0;f=b+e|0;F[i>>2]=F[f>>2];F[(e|4)+d>>2]=F[f+4>>2];F[i+8>>2]=F[f+8>>2];f=L(a|1,12);e=f+d|0;f=b+f|0;F[e>>2]=F[f>>2];F[e+4>>2]=F[f+4>>2];F[e+8>>2]=F[f+8>>2];a=a+2|0;g=g+2|0;if((k|0)!=(g|0)){continue}break}}if(!j){break a}e=d;d=L(a,12);a=e+d|0;b=b+d|0;F[a>>2]=F[b>>2];F[a+4>>2]=F[b+4>>2];F[a+8>>2]=F[b+8>>2]}return(c|0)==(h|0)|0}function Kh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;c=F[b+8>>2];d=F[b+12>>2];g=d;d=F[b+20>>2];i=d;h=F[b+16>>2];f=h+4|0;d=f>>>0<4?d+1|0:d;a:{if(c>>>0>>0&(d|0)>=(g|0)|(d|0)>(g|0)){break a}e=h+F[b>>2]|0;e=G[e|0]|G[e+1|0]<<8|(G[e+2|0]<<16|G[e+3|0]<<24);F[b+16>>2]=f;F[b+20>>2]=d;f=c;c=i;d=h+8|0;c=d>>>0<8?c+1|0:c;if(d>>>0>f>>>0&(c|0)>=(g|0)|(c|0)>(g|0)){break a}F[b+16>>2]=d;F[b+20>>2]=c;if(!(e&1)){break a}b=O(e)^31;if(b-1>>>0>28){break a}j=1;F[a+8>>2]=b+1;b=-2<>2]=c;F[a+12>>2]=b^-1;F[a+24>>2]=c>>1;J[a+20>>2]=M(2)/M(c|0)}return j|0}function Ya(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;f=a+4|0;a=F[a+4>>2];a:{b:{if(!a){break b}d=G[b+11|0];c=d<<24>>24<0;g=c?F[b>>2]:b;d=c?F[b+4>>2]:d;b=f;while(1){e=G[a+27|0];c=e<<24>>24<0;e=c?F[a+20>>2]:e;h=e>>>0>d>>>0;i=h?d:e;c:{if(i){c=sa(c?F[a+16>>2]:a+16|0,g,i);if(c){break c}}c=d>>>0>e>>>0?-1:h}c=(c|0)<0;b=c?b:a;a=F[(c?a+4|0:a)>>2];if(a){continue}break}if((b|0)==(f|0)){break b}c=G[b+27|0];a=c<<24>>24<0;d:{c=a?F[b+20>>2]:c;e=c>>>0>>0?c:d;if(e){a=sa(g,a?F[b+16>>2]:b+16|0,e);if(a){break d}}if(c>>>0>d>>>0){break b}break a}if((a|0)>=0){break a}}b=f}return b}function Oe(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;if(La(a,F[b+8>>2],e)){if(!(F[b+28>>2]==1|F[b+4>>2]!=(c|0))){F[b+28>>2]=d}return}a:{if(La(a,F[b>>2],e)){if(!(F[b+16>>2]!=(c|0)&F[b+20>>2]!=(c|0))){if((d|0)!=1){break a}F[b+32>>2]=1;return}F[b+32>>2]=d;b:{if(F[b+44>>2]==4){break b}E[b+52>>1]=0;a=F[a+8>>2];$[F[F[a>>2]+20>>2]](a,b,c,c,1,e);if(G[b+53|0]){F[b+44>>2]=3;if(!G[b+52|0]){break b}break a}F[b+44>>2]=4}F[b+20>>2]=c;F[b+40>>2]=F[b+40>>2]+1;if(F[b+36>>2]!=1|F[b+24>>2]!=2){break a}D[b+54|0]=1;return}a=F[a+8>>2];$[F[F[a>>2]+24>>2]](a,b,c,d,e)}}function Ig(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0;f=ka(64);c=ka(12);F[c+8>>2]=F[F[a+4>>2]+80>>2];F[c>>2]=9968;F[c+4>>2]=0;f=yc(f,c);a:{b:{if((b|0)<0){c=f;break b}h=a+8|0;c=F[a+12>>2];e=F[a+8>>2];g=c-e>>2;c:{if((g|0)>(b|0)){break c}d=b+1|0;if(b>>>0>=g>>>0){Pb(h,d-g|0);break c}if(d>>>0>=g>>>0){break c}e=e+(d<<2)|0;if((e|0)!=(c|0)){while(1){c=c-4|0;d=F[c>>2];F[c>>2]=0;if(d){$[F[F[d>>2]+4>>2]](d)}if((c|0)!=(e|0)){continue}break}}F[a+12>>2]=e}a=F[h>>2]+(b<<2)|0;c=F[a>>2];F[a>>2]=f;if(!c){break a}}$[F[F[c>>2]+4>>2]](c)}return(b^-1)>>>31|0}function we(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0;c=F[a+60>>2];a:{if(!c){break a}F[c+4>>2]=a+48;if(!($[F[F[c>>2]+12>>2]](c)|0)){break a}b:{c=$[F[F[a>>2]+24>>2]](a)|0;if((c|0)<=0){break b}while(1){c:{f=F[($[F[F[a>>2]+28>>2]](a)|0)+4>>2];g=$[F[F[a>>2]+20>>2]](a,d)|0;e=F[a+60>>2];if(!($[F[F[e>>2]+8>>2]](e,F[F[f+8>>2]+(g<<2)>>2])|0)){break c}d=d+1|0;if((c|0)!=(d|0)){continue}break b}break}return 0}d=0;if(!($[F[F[a>>2]+36>>2]](a,b)|0)){break a}if(!($[F[F[a>>2]+40>>2]](a,b)|0)){break a}d=$[F[F[a>>2]+44>>2]](a)|0}return d|0}function Id(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0;c=F[a+216>>2];if((c|0)!=F[a+220>>2]){while(1){a:{c=F[L(e,144)+c>>2];if((c|0)<0){break a}d=F[a+4>>2];f=F[d+8>>2];if((c|0)>=F[d+12>>2]-f>>2){break a}d=0;c=F[(c<<2)+f>>2];if(($[F[F[c>>2]+24>>2]](c)|0)<=0){break a}while(1){if(($[F[F[c>>2]+20>>2]](c,d)|0)!=(b|0)){d=d+1|0;if(($[F[F[c>>2]+24>>2]](c)|0)>(d|0)){continue}break a}break}a=F[a+216>>2]+L(e,144)|0;return(G[a+100|0]?a+4|0:0)|0}e=e+1|0;c=F[a+216>>2];if(e>>>0<(F[a+220>>2]-c|0)/144>>>0){continue}break}}return 0}function nd(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;c=F[a+8>>2];d=F[a+4>>2];if(c-d>>2>>>0>=b>>>0){if(b){b=b<<2;d=ma(d,0,b)+b|0}F[a+4>>2]=d;return}a:{f=F[a>>2];g=d-f>>2;e=g+b|0;if(e>>>0<1073741824){c=c-f|0;h=c>>>1|0;e=c>>>0>=2147483644?1073741823:e>>>0>>0?h:e;if(e){if(e>>>0>=1073741824){break a}i=ka(e<<2)}c=(g<<2)+i|0;b=b<<2;b=ma(c,0,b)+b|0;if((d|0)!=(f|0)){while(1){c=c-4|0;d=d-4|0;F[c>>2]=F[d>>2];if((d|0)!=(f|0)){continue}break}}F[a+8>>2]=(e<<2)+i;F[a+4>>2]=b;F[a>>2]=c;if(f){ja(f)}return}na();v()}oa();v()}function bb(a){var b=0,c=0,d=0,e=0,f=0;d=F[a+8>>2];a:{if(G[d+84|0]){break a}b=F[a+16>>2];if(!b|!G[b+84|0]){break a}c=F[d+72>>2];e=F[d+68>>2];D[b+84|0]=0;c=c-e>>2;f=F[b+68>>2];e=F[b+72>>2]-f>>2;b:{if(c>>>0>e>>>0){ab(b+68|0,c-e|0,2004);d=F[a+8>>2];break b}if(c>>>0>=e>>>0){break b}F[b+72>>2]=f+(c<<2)}if(G[d+84|0]){break a}c=F[d+68>>2];if((c|0)==F[d+72>>2]){break a}e=F[F[a+16>>2]+68>>2];b=0;while(1){f=b<<2;F[f+e>>2]=F[c+f>>2];b=b+1|0;c=F[d+68>>2];if(b>>>0>2]-c>>2>>>0){continue}break}}return F[a+16>>2]}function Lf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0;e=Z+-64|0;Z=e;f=Ja(e+8|0);F[f+16>>2]=0;F[f+20>>2]=0;F[f>>2]=b;F[f+8>>2]=c;F[f+12>>2]=0;b=e+48|0;Pd(b,a,f,d);F[a+24>>2]=F[e+48>>2];f=a+24|0;a:{if((f|0)==(b|0)){break a}b=a+28|0;c=e+48|4;g=G[e+63|0];d=g<<24>>24;if(D[a+39|0]>=0){if((d|0)>=0){a=F[c+4>>2];F[b>>2]=F[c>>2];F[b+4>>2]=a;F[b+8>>2]=F[c+8>>2];break a}qb(b,F[e+52>>2],F[e+56>>2]);break a}a=(d|0)<0;rb(b,a?F[e+52>>2]:c,a?F[e+56>>2]:g)}if(D[e+63|0]<0){ja(F[e+52>>2])}Z=e- -64|0;return f|0}function Jf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0;a=Z-32|0;Z=a;a:{d=ya(c);if(d>>>0<2147483632){b:{c:{if(d>>>0>=11){e=(d|15)+1|0;f=ka(e);F[a+24>>2]=e|-2147483648;F[a+16>>2]=f;F[a+20>>2]=d;e=d+f|0;break c}D[a+27|0]=d;f=a+16|0;e=f+d|0;if(!d){break b}}la(f,c,d)}D[e|0]=0;D[a+4|0]=0;F[a>>2]=1701667182;D[a+11|0]=4;d=F[b+4>>2];c=-1;d:{if(!d){break d}d=Uc(d,a,a+16|0);c=-1;if(!d){break d}c=Pc(b,F[d+24>>2])}b=c;if(D[a+11|0]<0){ja(F[a>>2])}if(D[a+27|0]<0){ja(F[a+16>>2])}Z=a+32|0;break a}za();v()}return b|0}function Hd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0;c=F[a+216>>2];if((c|0)!=F[a+220>>2]){while(1){a:{c=F[L(e,144)+c>>2];if((c|0)<0){break a}d=F[a+4>>2];f=F[d+8>>2];if((c|0)>=F[d+12>>2]-f>>2){break a}d=0;c=F[(c<<2)+f>>2];if(($[F[F[c>>2]+24>>2]](c)|0)<=0){break a}while(1){if(($[F[F[c>>2]+20>>2]](c,d)|0)!=(b|0)){d=d+1|0;if(($[F[F[c>>2]+24>>2]](c)|0)>(d|0)){continue}break a}break}return(F[a+216>>2]+L(e,144)|0)+104|0}e=e+1|0;c=F[a+216>>2];if(e>>>0<(F[a+220>>2]-c|0)/144>>>0){continue}break}}return a+184|0}function Uf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0;d=Z-16|0;Z=d;F[d+12>>2]=0;a:{e=ya(c);if(e>>>0<2147483632){b:{c:{if(e>>>0>=11){f=(e|15)+1|0;a=ka(f);F[d+8>>2]=f|-2147483648;F[d>>2]=a;F[d+4>>2]=e;f=a+e|0;break c}D[d+11|0]=e;f=d+e|0;a=d;if(!e){break b}}la(a,c,e)}D[f|0]=0;a=Ya(b,d);d:{if((a|0)==(b+4|0)){break d}b=F[a+32>>2];a=F[a+28>>2];if((b-a|0)!=4){break d}F[d+12>>2]=G[a|0]|G[a+1|0]<<8|(G[a+2|0]<<16|G[a+3|0]<<24)}a=F[d+12>>2];if(D[d+11|0]<0){ja(F[d>>2])}Z=d+16|0;break a}za();v()}return a|0}function Mf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0;d=Z+-64|0;Z=d;e=Ja(d+8|0);F[e+16>>2]=0;F[e+20>>2]=0;F[e>>2]=b;F[e+8>>2]=c;F[e+12>>2]=0;b=d+48|0;Od(b);F[a+24>>2]=F[d+48>>2];f=a+24|0;a:{if((b|0)==(f|0)){break a}b=a+28|0;c=d+48|4;g=G[d+63|0];e=g<<24>>24;if(D[a+39|0]>=0){if((e|0)>=0){a=F[c+4>>2];F[b>>2]=F[c>>2];F[b+4>>2]=a;F[b+8>>2]=F[c+8>>2];break a}qb(b,F[d+52>>2],F[d+56>>2]);break a}a=(e|0)<0;rb(b,a?F[d+52>>2]:c,a?F[d+56>>2]:g)}if(D[d+63|0]<0){ja(F[d+52>>2])}Z=d- -64|0;return f|0}function Ce(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0,h=0;e=1;a:{if(($[F[F[b>>2]+20>>2]](b)|0)<=0){break a}while(1){e=0;d=Qc(F[F[a+4>>2]+4>>2],$[F[F[b>>2]+24>>2]](b,f)|0);if((d|0)==-1){break a}g=F[a+4>>2];c=0;b:{if((d|0)<0){break b}h=F[g+4>>2];if((d|0)>=F[h+12>>2]-F[h+8>>2]>>2){break b}c=F[F[g+8>>2]+(F[F[g+20>>2]+(d<<2)>>2]<<2)>>2];c=$[F[F[c>>2]+32>>2]](c,d)|0}if(!c){break a}if(!($[F[F[b>>2]+28>>2]](b,c)|0)){break a}e=1;f=f+1|0;if(($[F[F[b>>2]+20>>2]](b)|0)>(f|0)){continue}break}}return e|0}function Db(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;a:{c=F[a+4>>2];e=F[a>>2];d=c-e|0;b:{if(d>>>0>>0){g=b-d|0;f=F[a+8>>2];if(g>>>0<=f-c>>>0){h=a,i=ma(c,0,g)+g|0,F[h+4>>2]=i;break b}if((b|0)<0){break a}c=f-e|0;f=c<<1;c=c>>>0>=1073741823?2147483647:b>>>0>>0?f:b;f=ka(c);ma(f+d|0,0,g);d=pa(f,e,d);F[a+8>>2]=d+c;F[a+4>>2]=b+d;F[a>>2]=d;if(!e){break b}ja(e);break b}if(b>>>0>=d>>>0){break b}F[a+4>>2]=b+e}b=F[a+28>>2];c=b;d=b+1|0;b=F[a+24>>2]+1|0;e=b?c:d;F[a+24>>2]=b;F[a+28>>2]=e;return}na();v()}function Ma(a,b){var c=0,d=0,e=0,f=0,g=0,h=0;e=F[a+4>>2];if((e|0)!=F[a+8>>2]){F[e>>2]=F[b>>2];F[a+4>>2]=e+4;return}a:{g=F[a>>2];f=e-g|0;c=f>>2;d=c+1|0;if(d>>>0<1073741824){h=c<<2;c=f>>>1|0;c=f>>>0>=2147483644?1073741823:c>>>0>d>>>0?c:d;if(c){if(c>>>0>=1073741824){break a}f=ka(c<<2)}else{f=0}d=h+f|0;F[d>>2]=F[b>>2];b=d+4|0;if((e|0)!=(g|0)){while(1){d=d-4|0;e=e-4|0;F[d>>2]=F[e>>2];if((e|0)!=(g|0)){continue}break}}F[a+8>>2]=f+(c<<2);F[a+4>>2]=b;F[a>>2]=d;if(g){ja(g)}return}na();v()}oa();v()}function va(a){F[a>>2]=-1;F[a+4>>2]=0;F[a+8>>2]=0;F[a+32>>2]=0;F[a+36>>2]=0;D[a+28|0]=1;F[a+20>>2]=0;F[a+24>>2]=0;F[a+12>>2]=0;F[a+16>>2]=0;F[a+40>>2]=0;F[a+44>>2]=0;F[a+48>>2]=0;F[a+52>>2]=0;F[a+56>>2]=0;F[a+60>>2]=0;F[a+64>>2]=0;F[a+68>>2]=0;F[a+76>>2]=0;F[a+80>>2]=0;F[a+84>>2]=0;F[a+88>>2]=0;F[a+92>>2]=0;F[a+96>>2]=0;F[a+72>>2]=a+4;F[a+104>>2]=0;F[a+108>>2]=0;D[a+100|0]=1;F[a+112>>2]=0;F[a+116>>2]=0;F[a+120>>2]=0;F[a+124>>2]=0;F[a+128>>2]=0;F[a+132>>2]=0;F[a+136>>2]=0;F[a+140>>2]=0}function Hb(a,b){var c=0,d=0,e=0,f=0;d=F[a+12>>2];c=F[a+16>>2]-d>>2;a:{if(c>>>0>>0){qa(a+12|0,b-c|0);break a}if(b>>>0>=c>>>0){break a}F[a+16>>2]=d+(b<<2)}b:{c=F[a>>2];c:{if(F[a+8>>2]-c>>2>>>0>=b>>>0){break c}if(b>>>0>=1073741824){break b}d=F[a+4>>2];e=b<<2;b=ka(e);e=b+e|0;f=b+(d-c&-4)|0;b=f;if((c|0)!=(d|0)){while(1){b=b-4|0;d=d-4|0;F[b>>2]=F[d>>2];if((c|0)!=(d|0)){continue}break}}F[a+8>>2]=e;F[a+4>>2]=f;F[a>>2]=b;if(!c){break c}ja(c)}return}na();v()}function tb(a){a=a|0;var b=0,c=0,d=0;F[a>>2]=10300;b=F[a+68>>2];if(b){F[a+72>>2]=b;ja(b)}b=F[a+56>>2];if(b){F[a+60>>2]=b;ja(b)}b=F[a+44>>2];if(b){F[a+48>>2]=b;ja(b)}b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}b=F[a+20>>2];if(b){F[a+24>>2]=b;ja(b)}b=F[a+8>>2];if(b){d=b;c=F[a+12>>2];if((b|0)!=(c|0)){while(1){c=c-4|0;d=F[c>>2];F[c>>2]=0;if(d){xa(d)}if((b|0)!=(c|0)){continue}break}d=F[a+8>>2]}F[a+12>>2]=b;ja(d)}b=F[a+4>>2];F[a+4>>2]=0;if(b){ic(b)}return a|0}function qa(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;e=F[a+8>>2];c=F[a+4>>2];if(e-c>>2>>>0>=b>>>0){if(b){b=b<<2;c=ma(c,0,b)+b|0}F[a+4>>2]=c;return}a:{f=c;c=F[a>>2];g=f-c|0;h=g>>2;d=h+b|0;if(d>>>0<1073741824){e=e-c|0;f=e>>>1|0;d=e>>>0>=2147483644?1073741823:d>>>0>>0?f:d;if(d){if(d>>>0>=1073741824){break a}i=ka(d<<2)}b=b<<2;e=ma((h<<2)+i|0,0,b);f=d<<2;d=pa(i,c,g);F[a+8>>2]=f+d;F[a+4>>2]=b+e;F[a>>2]=d;if(c){ja(c)}return}na();v()}oa();v()}function gc(a,b){var c=0,d=0,e=0,f=0;c=a+4|0;a=Ya(a,b);a:{if((c|0)==(a|0)){break a}b=a+28|0;b=D[a+39|0]<0?F[b>>2]:b;while(1){a=b;b=a+1|0;c=D[a|0];if((c|0)==32|c-9>>>0<5){continue}break}b:{c:{d:{c=D[a|0];switch(c-43|0){case 0:break c;case 2:break d;default:break b}}e=1}c=D[b|0];a=b}if(c-48>>>0<10){while(1){d=(L(d,10)-D[a|0]|0)+48|0;b=D[a+1|0];a=a+1|0;if(b-48>>>0<10){continue}break}}a=e?d:0-d|0;if((a|0)==-1){break a}f=(a|0)!=0}return f}function Qa(a,b){var c=0,d=0,e=0,f=0,g=0,h=0;a=F[a>>2];c=F[a+4>>2];e=F[a+8>>2];if(c>>>0>>0){F[c>>2]=F[b>>2];F[a+4>>2]=c+4;return}a:{d=c;c=F[a>>2];g=d-c|0;d=g>>2;f=d+1|0;if(f>>>0<1073741824){h=d<<2;e=e-c|0;d=e>>>1|0;f=e>>>0>=2147483644?1073741823:f>>>0>>0?d:f;if(f){if(f>>>0>=1073741824){break a}e=ka(f<<2)}else{e=0}d=h+e|0;F[d>>2]=F[b>>2];b=pa(e,c,g);F[a+8>>2]=b+(f<<2);F[a+4>>2]=d+4;F[a>>2]=b;if(c){ja(c)}return}na();v()}oa();v()}function db(a,b,c){var d=0,e=0,f=0,g=0,h=0;f=Z-16|0;Z=f;d=Z-32|0;Z=d;e=Z-16|0;Z=e;F[e+12>>2]=b;F[e+8>>2]=b+c;F[d+24>>2]=F[e+12>>2];F[d+28>>2]=F[e+8>>2];Z=e+16|0;c=Z-16|0;Z=c;h=F[d+28>>2];e=F[d+24>>2];g=h-e|0;if((e|0)!=(h|0)){pa(a,e,g)}F[c+12>>2]=e+g;F[c+8>>2]=a+g;F[d+16>>2]=F[c+12>>2];F[d+20>>2]=F[c+8>>2];Z=c+16|0;F[d+12>>2]=(F[d+16>>2]-b|0)+b;F[d+8>>2]=(F[d+20>>2]-a|0)+a;F[f+8>>2]=F[d+12>>2];F[f+12>>2]=F[d+8>>2];Z=d+32|0;Z=f+16|0}function _a(a,b){var c=0,d=0,e=0,f=0,g=0,h=0,i=0;e=F[a+8>>2];c=F[a+4>>2];if(e-c>>3>>>0>=b>>>0){if(b){b=b<<3;c=ma(c,0,b)+b|0}F[a+4>>2]=c;return}a:{f=c;c=F[a>>2];g=f-c|0;h=g>>3;d=h+b|0;if(d>>>0<536870912){e=e-c|0;f=e>>>2|0;d=e>>>0>=2147483640?536870911:d>>>0>>0?f:d;if(d){if(d>>>0>=536870912){break a}i=ka(d<<3)}b=b<<3;e=ma((h<<3)+i|0,0,b);f=d<<3;d=pa(i,c,g);F[a+8>>2]=f+d;F[a+4>>2]=b+e;F[a>>2]=d;if(c){ja(c)}return}na();v()}oa();v()}function re(a){a=a|0;var b=0,c=0,d=0;F[a>>2]=2016;b=F[a+60>>2];F[a+60>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}b=F[a+48>>2];if(b){F[a+52>>2]=b;ja(b)}d=F[a+36>>2];if(d){c=F[a+40>>2];b=d;if((c|0)!=(b|0)){while(1){c=c-4|0;b=F[c>>2];F[c>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}if((c|0)!=(d|0)){continue}break}b=F[a+36>>2]}F[a+40>>2]=d;ja(b)}F[a>>2]=1776;b=F[a+16>>2];if(b){F[a+20>>2]=b;ja(b)}b=F[a+4>>2];if(b){F[a+8>>2]=b;ja(b)}return a|0}function qe(a){a=a|0;var b=0,c=0,d=0;F[a>>2]=2016;b=F[a+60>>2];F[a+60>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}b=F[a+48>>2];if(b){F[a+52>>2]=b;ja(b)}d=F[a+36>>2];if(d){c=F[a+40>>2];b=d;if((c|0)!=(b|0)){while(1){c=c-4|0;b=F[c>>2];F[c>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}if((c|0)!=(d|0)){continue}break}b=F[a+36>>2]}F[a+40>>2]=d;ja(b)}F[a>>2]=1776;b=F[a+16>>2];if(b){F[a+20>>2]=b;ja(b)}b=F[a+4>>2];if(b){F[a+8>>2]=b;ja(b)}ja(a)}function Eg(a){a=a|0;var b=0,c=0,d=0,e=0,f=0;a:{b=F[a+8>>2];b:{if((b|0)<0){break b}c=F[a+4>>2];e=F[c>>2];d=F[c+4>>2]-e>>2;c:{if(d>>>0>>0){nd(c,b-d|0);f=F[a+8>>2];break c}f=b;if(b>>>0>=d>>>0){break c}F[c+4>>2]=e+(b<<2);f=b}d=f;if((d|0)<=0){break b}a=F[a+4>>2];c=F[a>>2];e=F[a+4>>2]-c>>2;a=0;while(1){if((a|0)==(e|0)){break a}F[c+(a<<2)>>2]=a;a=a+1|0;if((d|0)!=(a|0)){continue}break}}return(b^-1)>>>31|0}ta();v()}function fh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0;d=Z-16|0;Z=d;e=F[a+4>>2];a:{if((e|0)==-1){break a}c=F[b+20>>2];if(!!F[b+16>>2]&(c|0)>=0|(c|0)>0){break a}pb(b,F[b+4>>2],F[a+8>>2],F[a+12>>2]);c=F[b+20>>2];if(!!F[b+16>>2]&(c|0)>=0|(c|0)>0){break a}pb(b,F[b+4>>2],a+20|0,a+24|0);c=F[b+20>>2];f=F[b+16>>2];D[d+15|0]=F[a+4>>2];if(!!f&(c|0)>=0|(c|0)>0){break a}pb(b,F[b+4>>2],d+15|0,d+16|0)}Z=d+16|0;return(e|0)!=-1|0}function kd(a,b){var c=0,d=0,e=0,f=0,g=0,h=0;e=F[a+8>>2];c=F[a+4>>2];if(e-c>>1>>>0>=b>>>0){if(b){b=b<<1;c=ma(c,0,b)+b|0}F[a+4>>2]=c;return}a:{f=c;c=F[a>>2];g=f-c|0;f=g>>1;d=f+b|0;if((d|0)>=0){e=e-c|0;d=e>>>0>=2147483646?2147483647:d>>>0>>0?e:d;if(d){if((d|0)<0){break a}h=ka(d<<1)}b=b<<1;e=ma((f<<1)+h|0,0,b);f=d<<1;d=pa(h,c,g);F[a+8>>2]=f+d;F[a+4>>2]=b+e;F[a>>2]=d;if(c){ja(c)}return}na();v()}oa();v()}function of(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0;d=Z-16|0;Z=d;Pd(d,a,b,c);F[a+24>>2]=F[d>>2];e=a+24|0;a:{if((e|0)==(d|0)){break a}b=a+28|0;c=d|4;f=G[d+15|0];g=f<<24>>24;if(D[a+39|0]>=0){if((g|0)>=0){a=F[c+4>>2];F[b>>2]=F[c>>2];F[b+4>>2]=a;F[b+8>>2]=F[c+8>>2];break a}qb(b,F[d+4>>2],F[d+8>>2]);break a}a=(g|0)<0;rb(b,a?F[d+4>>2]:c,a?F[d+8>>2]:f)}if(D[d+15|0]<0){ja(F[d+4>>2])}Z=d+16|0;return e|0}function ra(a,b,c){var d=0,e=0,f=0,g=0;e=Z-16|0;Z=e;a:{b:{if(c>>>0<11){d=a;D[a+11|0]=G[a+11|0]&128|c;D[a+11|0]=G[a+11|0]&127;break b}if(c>>>0>2147483631){break a}g=e+8|0;if(c>>>0>=11){f=c+16&-16;d=f-1|0;d=(d|0)==11?f:d}else{d=10}sb(g,d+1|0);d=F[e+8>>2];F[a>>2]=d;F[a+8>>2]=F[a+8>>2]&-2147483648|F[e+12>>2]&2147483647;F[a+8>>2]=F[a+8>>2]|-2147483648;F[a+4>>2]=c}db(d,b,c+1|0);Z=e+16|0;return}za();v()}function pf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0;b=Z-16|0;Z=b;Od(b);F[a+24>>2]=F[b>>2];e=a+24|0;a:{if((e|0)==(b|0)){break a}c=a+28|0;d=b|4;f=G[b+15|0];g=f<<24>>24;if(D[a+39|0]>=0){if((g|0)>=0){a=F[d+4>>2];F[c>>2]=F[d>>2];F[c+4>>2]=a;F[c+8>>2]=F[d+8>>2];break a}qb(c,F[b+4>>2],F[b+8>>2]);break a}a=(g|0)<0;rb(c,a?F[b+4>>2]:d,a?F[b+8>>2]:f)}if(D[b+15|0]<0){ja(F[b+4>>2])}Z=b+16|0;return e|0}function Rf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0;d=Z-16|0;Z=d;a:{e=ya(c);if(e>>>0<2147483632){b:{c:{if(e>>>0>=11){g=(e|15)+1|0;f=ka(g);F[d+8>>2]=g|-2147483648;F[d>>2]=f;F[d+4>>2]=e;g=e+f|0;break c}D[d+11|0]=e;g=d+e|0;f=d;if(!e){break b}}la(f,c,e)}D[g|0]=0;f=a+16|0;c=Sc(b,d,f);b=F[a+16>>2];a=D[a+27|0];if(D[d+11|0]<0){ja(F[d>>2])}Z=d+16|0;a=c?(a|0)<0?b:f:0;break a}za();v()}return a|0}function Yb(a,b){var c=0,d=0,e=0;c=F[a+4>>2];d=c+b|0;F[a+4>>2]=d;if(!((d-1^c-1)>>>0<32?c:0)){F[F[a>>2]+((d>>>0>=33?d-1>>>5|0:0)<<2)>>2]=0}a:{if(!b){break a}a=F[a>>2]+(c>>>3&536870908)|0;c=c&31;if(c){d=32-c|0;e=b>>>0>d>>>0?d:b;F[a>>2]=F[a>>2]&(-1<>>d-e^-1);b=b-e|0;a=a+4|0}c=b>>>5|0;if(b>>>0>=32){ma(a,0,c<<2)}if((b&-32)==(b|0)){break a}a=(c<<2)+a|0;F[a>>2]=F[a>>2]&(-1>>>32-(b&31)^-1)}}function ld(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>10){break a}d=F[c+20>>2];f=F[c+12>>2];e=F[c+16>>2];if((d|0)>=(f|0)&e>>>0>=I[c+8>>2]|(d|0)>(f|0)){break a}f=D[e+F[c>>2]|0];e=e+1|0;d=e?d:d+1|0;F[c+16>>2]=e;F[c+20>>2]=d;d=f;b:{if((d|0)<0){if(!ld(a+1|0,b,c)){break a}a=F[b>>2];d=d&127|a<<7;a=F[b+4>>2]<<7|a>>>25;break b}d=d&255;a=0}F[b>>2]=d;F[b+4>>2]=a;g=1}return g}function Sa(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>10){break a}d=F[c+20>>2];f=F[c+12>>2];e=F[c+16>>2];if((d|0)>=(f|0)&e>>>0>=I[c+8>>2]|(d|0)>(f|0)){break a}f=D[e+F[c>>2]|0];e=e+1|0;d=e?d:d+1|0;F[c+16>>2]=e;F[c+20>>2]=d;d=f;b:{if((d|0)<0){if(!Sa(a+1|0,b,c)){break a}a=F[b>>2];d=d&127|a<<7;a=F[b+4>>2]<<7|a>>>25;break b}d=d&255;a=0}F[b>>2]=d;F[b+4>>2]=a;g=1}return g}function Ne(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;if(La(a,F[b+8>>2],e)){if(!(F[b+28>>2]==1|F[b+4>>2]!=(c|0))){F[b+28>>2]=d}return}a:{if(!La(a,F[b>>2],e)){break a}if(!(F[b+16>>2]!=(c|0)&F[b+20>>2]!=(c|0))){if((d|0)!=1){break a}F[b+32>>2]=1;return}F[b+20>>2]=c;F[b+32>>2]=d;F[b+40>>2]=F[b+40>>2]+1;if(!(F[b+36>>2]!=1|F[b+24>>2]!=2)){D[b+54|0]=1}F[b+44>>2]=4}}function jg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0;e=Z+-64|0;Z=e;d=$[F[F[a>>2]+44>>2]](a,b)|0;a=$[F[F[a>>2]+40>>2]](a,b)|0;f=kb(e);g=F[b+56>>2];h=d&255;i=a;a=a-1|0;if(a>>>0<=10){a=F[(a<<2)+10148>>2]}else{a=-1}d=L(a,d);cc(f,g,h,i,0,d,d>>31);a=bc(ka(96),f);ac(a,c);D[a+84|0]=1;F[a+72>>2]=F[a+68>>2];F[a+60>>2]=F[b+60>>2];Z=e- -64|0;return a|0}function rh(a){a=a|0;var b=0,c=0,d=0;F[a>>2]=8176;b=F[a+48>>2];F[a+48>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}F[a>>2]=10032;b=F[a+20>>2];if(b){F[a+24>>2]=b;ja(b)}d=F[a+8>>2];if(d){c=F[a+12>>2];b=d;if((c|0)!=(b|0)){while(1){c=c-4|0;b=F[c>>2];F[c>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}if((c|0)!=(d|0)){continue}break}b=F[a+8>>2]}F[a+12>>2]=d;ja(b)}return a|0}function Dc(a,b,c,d){D[a+53|0]=1;a:{if(F[a+4>>2]!=(c|0)){break a}D[a+52|0]=1;c=F[a+16>>2];b:{if(!c){F[a+36>>2]=1;F[a+24>>2]=d;F[a+16>>2]=b;if((d|0)!=1){break a}if(F[a+48>>2]==1){break b}break a}if((b|0)==(c|0)){c=F[a+24>>2];if((c|0)==2){F[a+24>>2]=d;c=d}if(F[a+48>>2]!=1){break a}if((c|0)==1){break b}break a}F[a+36>>2]=F[a+36>>2]+1}D[a+54|0]=1}}function qh(a){a=a|0;var b=0,c=0,d=0;F[a>>2]=8176;b=F[a+48>>2];F[a+48>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}F[a>>2]=10032;b=F[a+20>>2];if(b){F[a+24>>2]=b;ja(b)}d=F[a+8>>2];if(d){c=F[a+12>>2];b=d;if((c|0)!=(b|0)){while(1){c=c-4|0;b=F[c>>2];F[c>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}if((c|0)!=(d|0)){continue}break}b=F[a+8>>2]}F[a+12>>2]=d;ja(b)}ja(a)}function Se(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;e=Z+-64|0;Z=e;d=1;a:{if(La(a,b,0)){break a}d=0;if(!b){break a}b=Fc(b,11068);d=0;if(!b){break a}d=e+8|0;ma(d|4,0,52);F[e+56>>2]=1;F[e+20>>2]=-1;F[e+16>>2]=a;F[e+8>>2]=b;$[F[F[b>>2]+28>>2]](b,d,F[c>>2],1);a=F[e+32>>2];if((a|0)==1){F[c>>2]=F[e+24>>2]}d=(a|0)==1}Z=e- -64|0;return d|0}function Fd(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=Z-16|0;Z=d;F[a+4>>2]=b;b=F[b+64>>2];e=F[b>>2];b=F[b+4>>2];D[d+15|0]=0;Ea(a+24|0,(b-e>>2>>>0)/3|0,d+15|0);b=F[a+4>>2];e=F[b+56>>2];b=F[b+52>>2];D[d+14|0]=0;Ea(a+36|0,e-b>>2,d+14|0);b=F[c+12>>2];F[a+16>>2]=F[c+8>>2];F[a+20>>2]=b;b=F[c+4>>2];F[a+8>>2]=F[c>>2];F[a+12>>2]=b;Z=d+16|0}function zf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0;a=Z-16|0;Z=a;f=D[b+24|0];e=F[2555];F[a+8>>2]=F[2554];F[a+12>>2]=e;e=F[2553];F[a>>2]=F[2552];F[a+4>>2]=e;e=lb(b,c,f,a);if(e){b=0;if(f){c=(f&255)<<2;b=ka(c);g=la(b,a,c)+c|0}c=F[d>>2];if(c){F[d+4>>2]=c;ja(c)}F[d+8>>2]=g;F[d+4>>2]=g;F[d>>2]=b}Z=a+16|0;return e|0}function wd(a,b){var c=0,d=0;a:{c=F[a+4>>2];d=F[a+8>>2];if((c|0)==d<<5){if((c+1|0)<0){break a}if(c>>>0<=1073741822){d=d<<6;c=(c&-32)+32|0;c=c>>>0>>0?d:c}else{c=2147483647}$a(a,c);c=F[a+4>>2]}F[a+4>>2]=c+1;d=1<>2]+(c>>>3&536870908)|0;if(G[b|0]){F[a>>2]=d|F[a>>2];return}F[a>>2]=F[a>>2]&(d^-1);return}na();v()}function Zb(a){var b=0;F[a>>2]=0;F[a+4>>2]=0;F[a+56>>2]=0;F[a+48>>2]=0;F[a+52>>2]=0;F[a+40>>2]=0;F[a+44>>2]=0;F[a+32>>2]=0;F[a+36>>2]=0;F[a+24>>2]=0;F[a+28>>2]=0;F[a+16>>2]=0;F[a+20>>2]=0;F[a+8>>2]=0;F[a+12>>2]=0;b=a- -64|0;F[b>>2]=0;F[b+4>>2]=0;F[a+72>>2]=0;F[a+76>>2]=0;F[a+80>>2]=0;F[a+84>>2]=0;F[a+60>>2]=a;return a}function ve(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0;f=$[F[F[a>>2]+24>>2]](a)|0;c=1;a:{if((f|0)<=0){break a}d=F[F[a+36>>2]>>2];g=a+48|0;c=0;if(!($[F[F[d>>2]+16>>2]](d,g,b)|0)){break a}while(1){e=e+1|0;if((f|0)!=(e|0)){d=F[F[a+36>>2]+(e<<2)>>2];if($[F[F[d>>2]+16>>2]](d,g,b)|0){continue}}break}c=(e|0)>=(f|0)}return c|0}function ue(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0,g=0;f=$[F[F[a>>2]+24>>2]](a)|0;c=1;a:{if((f|0)<=0){break a}d=F[F[a+36>>2]>>2];g=a+48|0;c=0;if(!($[F[F[d>>2]+20>>2]](d,g,b)|0)){break a}while(1){e=e+1|0;if((f|0)!=(e|0)){d=F[F[a+36>>2]+(e<<2)>>2];if($[F[F[d>>2]+20>>2]](d,g,b)|0){continue}}break}c=(e|0)>=(f|0)}return c|0}function bh(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=Z-16|0;Z=d;F[a+4>>2]=b;e=F[b>>2];b=F[b+4>>2];D[d+15|0]=0;Ea(a+24|0,(b-e>>2>>>0)/3|0,d+15|0);b=F[a+4>>2];e=F[b+28>>2];b=F[b+24>>2];D[d+14|0]=0;Ea(a+36|0,e-b>>2,d+14|0);b=F[c+12>>2];F[a+16>>2]=F[c+8>>2];F[a+20>>2]=b;b=F[c+4>>2];F[a+8>>2]=F[c>>2];F[a+12>>2]=b;Z=d+16|0}function hb(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=F[c+20>>2];e=F[c+12>>2];f=F[c+16>>2];if((d|0)>=(e|0)&f>>>0>=I[c+8>>2]|(d|0)>(e|0)){break a}e=G[F[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;F[c+16>>2]=f;F[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!hb(a+1|0,b,c)){break a}e=d&127|F[b>>2]<<7}F[b>>2]=e;g=1}return g}function fb(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=F[c+20>>2];e=F[c+12>>2];f=F[c+16>>2];if((d|0)>=(e|0)&f>>>0>=I[c+8>>2]|(d|0)>(e|0)){break a}e=G[F[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;F[c+16>>2]=f;F[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!fb(a+1|0,b,c)){break a}e=d&127|F[b>>2]<<7}F[b>>2]=e;g=1}return g}function Wb(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=F[c+20>>2];e=F[c+12>>2];f=F[c+16>>2];if((d|0)>=(e|0)&f>>>0>=I[c+8>>2]|(d|0)>(e|0)){break a}e=G[F[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;F[c+16>>2]=f;F[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!Wb(a+1|0,b,c)){break a}e=d&127|F[b>>2]<<7}F[b>>2]=e;g=1}return g}function Ta(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=F[c+20>>2];e=F[c+12>>2];f=F[c+16>>2];if((d|0)>=(e|0)&f>>>0>=I[c+8>>2]|(d|0)>(e|0)){break a}e=G[F[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;F[c+16>>2]=f;F[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!Ta(a+1|0,b,c)){break a}e=d&127|F[b>>2]<<7}F[b>>2]=e;g=1}return g}function Qd(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=F[c+20>>2];e=F[c+12>>2];f=F[c+16>>2];if((d|0)>=(e|0)&f>>>0>=I[c+8>>2]|(d|0)>(e|0)){break a}e=G[F[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;F[c+16>>2]=f;F[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!Qd(a+1|0,b,c)){break a}e=d&127|F[b>>2]<<7}F[b>>2]=e;g=1}return g}function Oa(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=F[c+20>>2];e=F[c+12>>2];f=F[c+16>>2];if((d|0)>=(e|0)&f>>>0>=I[c+8>>2]|(d|0)>(e|0)){break a}e=G[F[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;F[c+16>>2]=f;F[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!Oa(a+1|0,b,c)){break a}e=d&127|F[b>>2]<<7}F[b>>2]=e;g=1}return g}function Da(a,b,c){var d=0,e=0,f=0,g=0;a:{if(a>>>0>5){break a}d=F[c+20>>2];e=F[c+12>>2];f=F[c+16>>2];if((d|0)>=(e|0)&f>>>0>=I[c+8>>2]|(d|0)>(e|0)){break a}e=G[F[c>>2]+f|0];f=f+1|0;d=f?d:d+1|0;F[c+16>>2]=f;F[c+20>>2]=d;d=e<<24>>24;if((d|0)<0){if(!Da(a+1|0,b,c)){break a}e=d&127|F[b>>2]<<7}F[b>>2]=e;g=1}return g}function sa(a,b,c){var d=0,e=0;a:{b:{if(c>>>0>=4){if((a|b)&3){break b}while(1){if(F[a>>2]!=F[b>>2]){break b}b=b+4|0;a=a+4|0;c=c-4|0;if(c>>>0>3){continue}break}}if(!c){break a}}while(1){d=G[a|0];e=G[b|0];if((d|0)==(e|0)){b=b+1|0;a=a+1|0;c=c-1|0;if(c){continue}break a}break}return d-e|0}return 0}function td(a){var b=0,c=0,d=0,e=0;d=F[a>>2];if(d){e=d;c=F[a+4>>2];if((d|0)!=(c|0)){while(1){e=c-144|0;b=F[e+132>>2];if(b){F[c-8>>2]=b;ja(b)}b=F[c-28>>2];if(b){F[c-24>>2]=b;ja(b)}b=F[c-40>>2];if(b){F[c-36>>2]=b;ja(b)}Gb(c-140|0);c=e;if((d|0)!=(c|0)){continue}break}e=F[a>>2]}F[a+4>>2]=d;ja(e)}}function Ef(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=F[b+4>>2];a:{if(!d){break a}b=F[F[F[b+8>>2]+(c<<2)>>2]+60>>2];if((b|0)<0){break a}a=F[d+24>>2];c=F[d+28>>2];if((a|0)==(c|0)){break a}b:{while(1){e=F[a>>2];if((b|0)==F[e+24>>2]){break b}a=a+4|0;if((c|0)!=(a|0)){continue}break}e=0}}return e|0}function ic(a){var b=0,c=0,d=0;if(a){d=F[a+24>>2];if(d){b=d;c=F[a+28>>2];if((b|0)!=(c|0)){while(1){c=c-4|0;b=F[c>>2];F[c>>2]=0;if(b){Ca(b+12|0,F[b+16>>2]);Ba(b,F[b+4>>2]);ja(b)}if((c|0)!=(d|0)){continue}break}b=F[a+24>>2]}F[a+28>>2]=d;ja(b)}Ca(a+12|0,F[a+16>>2]);Ba(a,F[a+4>>2]);ja(a)}}function $g(a){a=a|0;var b=0;F[a+8>>2]=9136;F[a>>2]=8924;b=F[a+96>>2];if(b){F[a+100>>2]=b;ja(b)}b=F[a+80>>2];if(b){F[a+84>>2]=b;ja(b)}b=F[a+68>>2];if(b){F[a+72>>2]=b;ja(b)}b=F[a+56>>2];if(b){F[a+60>>2]=b;ja(b)}F[a+8>>2]=9372;b=F[a+44>>2];if(b){ja(b)}b=F[a+32>>2];if(b){ja(b)}return a|0}function _g(a){a=a|0;var b=0;F[a+8>>2]=9136;F[a>>2]=8924;b=F[a+96>>2];if(b){F[a+100>>2]=b;ja(b)}b=F[a+80>>2];if(b){F[a+84>>2]=b;ja(b)}b=F[a+68>>2];if(b){F[a+72>>2]=b;ja(b)}b=F[a+56>>2];if(b){F[a+60>>2]=b;ja(b)}F[a+8>>2]=9372;b=F[a+44>>2];if(b){ja(b)}b=F[a+32>>2];if(b){ja(b)}ja(a)}function wh(a){a=a|0;var b=0,c=0,d=0;F[a>>2]=10032;b=F[a+20>>2];if(b){F[a+24>>2]=b;ja(b)}d=F[a+8>>2];if(d){c=F[a+12>>2];b=d;if((c|0)!=(b|0)){while(1){c=c-4|0;b=F[c>>2];F[c>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}if((c|0)!=(d|0)){continue}break}b=F[a+8>>2]}F[a+12>>2]=d;ja(b)}return a|0}function uc(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,f=0,g=0,h=0,i=0;h=F[c+8>>2];e=F[c+16>>2];g=F[c+12>>2];f=g;d=F[c+20>>2];if(h>>>0>e>>>0&(f|0)>=(d|0)|(d|0)<(f|0)){b=G[F[c>>2]+e|0];i=e+1|0;f=i?d:d+1|0;F[c+16>>2]=i;F[c+20>>2]=f;F[a+4>>2]=b}return e>>>0>>0&(d|0)<=(g|0)|(d|0)<(g|0)}function La(a,b,c){var d=0;if(!c){return F[a+4>>2]==F[b+4>>2]}if((a|0)==(b|0)){return 1}d=F[a+4>>2];a=G[d|0];c=F[b+4>>2];b=G[c|0];a:{if(!a|(b|0)!=(a|0)){break a}while(1){b=G[c+1|0];a=G[d+1|0];if(!a){break a}c=c+1|0;d=d+1|0;if((a|0)==(b|0)){continue}break}}return(a|0)==(b|0)}function Gg(a){a=a|0;var b=0,c=0,d=0;F[a>>2]=10032;b=F[a+20>>2];if(b){F[a+24>>2]=b;ja(b)}d=F[a+8>>2];if(d){c=F[a+12>>2];b=d;if((c|0)!=(b|0)){while(1){c=c-4|0;b=F[c>>2];F[c>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}if((c|0)!=(d|0)){continue}break}b=F[a+8>>2]}F[a+12>>2]=d;ja(b)}ja(a)}function Gf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=F[b+12>>2];b=F[b+8>>2];a=0;a:{if((d|0)==(b|0)){break a}a=d-b>>2;d=a>>>0<=1?1:a;a=0;b:{while(1){e=F[b+(a<<2)>>2];if(F[e+60>>2]==(c|0)){break b}a=a+1|0;if((d|0)!=(a|0)){continue}break}a=0;break a}a=(a|0)!=-1?e:0}return a|0}function ah(a){a=a|0;var b=0;F[a>>2]=9136;b=F[a+88>>2];if(b){F[a+92>>2]=b;ja(b)}b=F[a+72>>2];if(b){F[a+76>>2]=b;ja(b)}b=F[a+60>>2];if(b){F[a- -64>>2]=b;ja(b)}b=F[a+48>>2];if(b){F[a+52>>2]=b;ja(b)}F[a>>2]=9372;b=F[a+36>>2];if(b){ja(b)}b=F[a+24>>2];if(b){ja(b)}return a|0}function Tc(a,b){var c=0,d=0,e=0;F[a+8>>2]=0;F[a>>2]=0;F[a+4>>2]=0;a:{c=F[b+4>>2];d=F[b>>2];b:{if((c|0)==(d|0)){a=c;break b}c=c-d|0;if((c|0)<0){break a}d=c;e=ka(c);c=ma(e,0,c);d=d+c|0;F[a+8>>2]=d;F[a+4>>2]=d;F[a>>2]=c;c=F[b>>2];a=F[b+4>>2]}la(e,c,a-c|0);return}na();v()}function Dd(a){var b=0,c=0,d=0,e=0;c=F[a+4>>2];d=F[a>>2];if((c|0)!=(d|0)){while(1){e=c-144|0;b=F[e+132>>2];if(b){F[c-8>>2]=b;ja(b)}b=F[c-28>>2];if(b){F[c-24>>2]=b;ja(b)}b=F[c-40>>2];if(b){F[c-36>>2]=b;ja(b)}Gb(c-140|0);c=e;if((d|0)!=(c|0)){continue}break}}F[a+4>>2]=d}function Xg(a){a=a|0;var b=0;F[a>>2]=9136;b=F[a+88>>2];if(b){F[a+92>>2]=b;ja(b)}b=F[a+72>>2];if(b){F[a+76>>2]=b;ja(b)}b=F[a+60>>2];if(b){F[a- -64>>2]=b;ja(b)}b=F[a+48>>2];if(b){F[a+52>>2]=b;ja(b)}F[a>>2]=9372;b=F[a+36>>2];if(b){ja(b)}b=F[a+24>>2];if(b){ja(b)}ja(a)}function Za(a){var b=0;if(a){b=F[a+76>>2];if(b){F[a+80>>2]=b;ja(b)}b=F[a- -64>>2];if(b){F[a+68>>2]=b;ja(b)}b=F[a+48>>2];if(b){F[a+52>>2]=b;ja(b)}b=F[a+24>>2];if(b){F[a+28>>2]=b;ja(b)}b=F[a+12>>2];if(b){F[a+16>>2]=b;ja(b)}b=F[a>>2];if(b){F[a+4>>2]=b;ja(b)}ja(a)}}function Gb(a){var b=0;b=F[a+84>>2];if(b){F[a+88>>2]=b;ja(b)}b=F[a+72>>2];if(b){F[a+76>>2]=b;ja(b)}b=F[a+52>>2];if(b){F[a+56>>2]=b;ja(b)}b=F[a+40>>2];if(b){F[a+44>>2]=b;ja(b)}b=F[a+28>>2];if(b){F[a+32>>2]=b;ja(b)}b=F[a+12>>2];if(b){ja(b)}a=F[a>>2];if(a){ja(a)}}function Lc(a,b,c){var d=0,e=0,f=0,g=0;f=Z-16|0;Z=f;d=Z-16|0;Z=d;b=b-a>>2;while(1){if(b){F[d+12>>2]=a;e=b>>>1|0;F[d+12>>2]=F[d+12>>2]+(e<<2);g=(e^-1)+b|0;b=e;e=I[F[d+12>>2]>>2]>2];b=e?g:b;a=e?F[d+12>>2]+4|0:a;continue}break}Z=d+16|0;Z=f+16|0;return a}function id(a,b){var c=0,d=0;d=ka(40);F[d>>2]=-1;c=d+8|0;F[c+16>>2]=0;F[c+20>>2]=0;F[c+8>>2]=0;F[c>>2]=0;F[c+4>>2]=0;F[c+24>>2]=0;F[c+28>>2]=0;$[F[F[a>>2]+16>>2]](a,d);a=F[b+88>>2];F[b+88>>2]=d;if(a){b=F[a+8>>2];if(b){F[a+12>>2]=b;ja(b)}ja(a)}return 1}function ya(a){var b=0,c=0,d=0;b=a;a:{if(b&3){while(1){if(!G[b|0]){break a}b=b+1|0;if(b&3){continue}break}}while(1){c=b;b=b+4|0;d=F[c>>2];if(!((d^-1)&d-16843009&-2139062144)){continue}break}while(1){b=c;c=b+1|0;if(G[b|0]){continue}break}}return b-a|0}function wa(a){var b=0,c=0,d=0,e=0,f=0;d=G[a+12|0];c=F[a+8>>2];a:{if(c>>>0>4095){break a}b=F[a+4>>2];if((b|0)<=0){break a}b=b-1|0;F[a+4>>2]=b;c=G[b+F[a>>2]|0]|c<<8}d=0-d&255;b=L(d,c>>>8|0);e=c&255;f=e>>>0>>0;F[a+8>>2]=f?b+e|0:c-(b+d|0)|0;return f}function yc(a,b){F[a+4>>2]=0;F[a+8>>2]=0;F[a>>2]=1776;F[a+12>>2]=0;F[a+16>>2]=0;F[a+20>>2]=0;F[a+24>>2]=0;F[a+28>>2]=0;F[a+32>>2]=0;F[a+36>>2]=0;F[a+40>>2]=0;F[a>>2]=2016;F[a+60>>2]=b;F[a+44>>2]=0;F[a+48>>2]=0;F[a+52>>2]=0;F[a+56>>2]=0;return a}function Eb(a,b){var c=0,d=0,e=0;c=ya(b);if(c>>>0<2147483632){a:{b:{if(c>>>0>=11){d=(c|15)+1|0;e=ka(d);F[a+8>>2]=d|-2147483648;F[a>>2]=e;F[a+4>>2]=c;d=c+e|0;break b}D[a+11|0]=c;d=a+c|0;e=a;if(!c){break a}}pa(e,b,c)}D[d|0]=0;return a}za();v()}function Of(a){a=a|0;var b=0,c=0,d=0;if(a){if(D[a+27|0]<0){ja(F[a+16>>2])}b=F[a>>2];if(b){c=b;d=F[a+4>>2];if((b|0)!=(d|0)){while(1){c=d-12|0;if(D[d-1|0]<0){ja(F[c>>2])}d=c;if((d|0)!=(b|0)){continue}break}c=F[a>>2]}F[a+4>>2]=b;ja(c)}ja(a)}}function xa(a){a=a|0;var b=0,c=0;if(a){b=F[a+88>>2];F[a+88>>2]=0;if(b){c=F[b+8>>2];if(c){F[b+12>>2]=c;ja(c)}ja(b)}b=F[a+68>>2];if(b){F[a+72>>2]=b;ja(b)}b=F[a+64>>2];F[a+64>>2]=0;if(b){c=F[b>>2];if(c){F[b+4>>2]=c;ja(c)}ja(b)}ja(a)}}function Ib(a,b){var c=0,d=0,e=0;a:{c=F[a>>2];b:{if(F[a+8>>2]-c>>2>>>0>=b>>>0){break b}if(b>>>0>=1073741824){break a}d=F[a+4>>2]-c|0;e=b<<2;b=pa(ka(e),c,d);F[a+8>>2]=b+e;F[a+4>>2]=b+d;F[a>>2]=b;if(!c){break b}ja(c)}return}na();v()}function Df(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;b=F[b+96>>2];a=ka(12);b=b+L(c,12)|0;c=F[b+4>>2];F[a>>2]=F[b>>2];F[a+4>>2]=c;F[a+8>>2]=F[b+8>>2];b=F[d>>2];if(b){F[d+4>>2]=b;ja(b)}F[d>>2]=a;a=a+12|0;F[d+8>>2]=a;F[d+4>>2]=a;return 1}function Ah(a){a=a|0;var b=0;F[a+24>>2]=1624;F[a>>2]=7948;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}F[a>>2]=2136;b=F[a+20>>2];F[a+20>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}F[a>>2]=1920;b=F[a+16>>2];F[a+16>>2]=0;if(b){xa(b)}return a|0}function li(a,b,c,d){var e=0,f=0,g=0,h=0;f=b^d;g=f>>31;e=b>>31;a=a^e;h=a-e|0;e=(b^e)-((a>>>0>>0)+e|0)|0;a=d>>31;b=c^a;f=f>>31;a=mi(h,e,b-a|0,(a^d)-((a>>>0>b>>>0)+a|0)|0)^f;b=a-f|0;_=(g^_)-((a>>>0>>0)+g|0)|0;return b}function zh(a){a=a|0;var b=0;F[a+24>>2]=1624;F[a>>2]=7948;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}F[a>>2]=2136;b=F[a+20>>2];F[a+20>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}F[a>>2]=1920;b=F[a+16>>2];F[a+16>>2]=0;if(b){xa(b)}ja(a)}function rb(a,b,c){var d=0,e=0,f=0;e=Z-16|0;Z=e;d=F[a+8>>2]&2147483647;a:{if(d>>>0>c>>>0){d=F[a>>2];F[a+4>>2]=c;db(d,b,c);D[e+15|0]=0;D[c+d|0]=G[e+15|0];break a}f=a;a=F[a+4>>2];Gc(f,d-1|0,(c-d|0)+1|0,a,a,c,b)}Z=e+16|0}function xe(a,b){a=a|0;b=b|0;var c=0,d=0;c=Z-16|0;Z=c;a=F[a+4>>2];a:{if((a|0)==-1){break a}D[c+15|0]=a;d=F[b+20>>2];if(!!F[b+16>>2]&(d|0)>=0|(d|0)>0){break a}pb(b,F[b+4>>2],c+15|0,c+16|0)}Z=c+16|0;return(a|0)!=-1|0}function ki(a,b,c,d){var e=0,f=0,g=0,h=0,i=0,j=0;e=c>>>16|0;f=a>>>16|0;j=L(e,f);g=c&65535;h=a&65535;i=L(g,h);f=(i>>>16|0)+L(f,g)|0;e=(f&65535)+L(e,h)|0;_=(L(b,c)+j|0)+L(a,d)+(f>>>16)+(e>>>16)|0;return i&65535|e<<16}function qb(a,b,c){var d=0,e=0;d=Z-16|0;Z=d;a:{if(c>>>0<=10){D[a+11|0]=G[a+11|0]&128|c;D[a+11|0]=G[a+11|0]&127;db(a,b,c);D[d+15|0]=0;D[a+c|0]=G[d+15|0];break a}e=a;a=G[a+11|0]&127;Gc(e,10,c-10|0,a,a,c,b)}Z=d+16|0}function Ec(a,b,c){var d=0;d=F[a+16>>2];if(!d){F[a+36>>2]=1;F[a+24>>2]=c;F[a+16>>2]=b;return}a:{if((b|0)==(d|0)){if(F[a+24>>2]!=2){break a}F[a+24>>2]=c;return}D[a+54|0]=1;F[a+24>>2]=2;F[a+36>>2]=F[a+36>>2]+1}}function vg(){var a=0;a=kb(ka(96));F[a+64>>2]=0;F[a+68>>2]=0;F[a+88>>2]=0;F[a+72>>2]=0;F[a+76>>2]=0;D[a+77|0]=0;D[a+78|0]=0;D[a+79|0]=0;D[a+80|0]=0;D[a+81|0]=0;D[a+82|0]=0;D[a+83|0]=0;D[a+84|0]=0;return a|0}function jh(a,b){a=a|0;b=b|0;var c=0,d=0;F[b>>2]=2;c=F[b+8>>2];d=F[b+12>>2]-c|0;if(d>>>0<=4294967291){Db(b+8|0,d+4|0);c=F[b+8>>2]}b=c+d|0;a=F[a+4>>2];D[b|0]=a;D[b+1|0]=a>>>8;D[b+2|0]=a>>>16;D[b+3|0]=a>>>24}function ge(a){a=a|0;var b=0;F[a>>2]=3016;b=F[a+96>>2];if(b){ja(b)}b=F[a+84>>2];if(b){ja(b)}b=F[a+72>>2];if(b){ja(b)}b=F[a+60>>2];if(b){ja(b)}F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}return a|0}function ci(a){a=a|0;var b=0;F[a>>2]=4580;b=F[a+96>>2];if(b){ja(b)}b=F[a+84>>2];if(b){ja(b)}b=F[a+72>>2];if(b){ja(b)}b=F[a+60>>2];if(b){ja(b)}F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}return a|0}function Cg(a){a=a|0;var b=0,c=0,d=0;b=F[a+8>>2];d=F[a+12>>2];if((b|0)==(d|0)){return 1}while(1){c=F[b>>2];c=$[F[F[c>>2]+16>>2]](c,F[a+32>>2])|0;if(c){b=b+4|0;if((d|0)!=(b|0)){continue}}break}return c|0}function Pc(a,b){var c=0,d=0;c=F[a+8>>2];a=F[a+12>>2];if((c|0)!=(a|0)){a=a-c>>2;d=a>>>0<=1?1:a;a=0;while(1){if(F[F[(a<<2)+c>>2]+60>>2]==(b|0)){return a}a=a+1|0;if((d|0)!=(a|0)){continue}break}}return-1}function fe(a){a=a|0;var b=0;F[a>>2]=3016;b=F[a+96>>2];if(b){ja(b)}b=F[a+84>>2];if(b){ja(b)}b=F[a+72>>2];if(b){ja(b)}b=F[a+60>>2];if(b){ja(b)}F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}ja(a)}function bi(a){a=a|0;var b=0;F[a>>2]=4580;b=F[a+96>>2];if(b){ja(b)}b=F[a+84>>2];if(b){ja(b)}b=F[a+72>>2];if(b){ja(b)}b=F[a+60>>2];if(b){ja(b)}F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}ja(a)}function Sc(a,b,c){var d=0,e=0;d=a+4|0;a=Ya(a,b);a:{if((d|0)==(a|0)){break a}b=F[a+32>>2];d=F[a+28>>2];if((b|0)==(d|0)){break a}Sb(c,b-d|0);c=Tb(c);b=F[a+28>>2];la(c,b,F[a+32>>2]-b|0);e=1}return e}function Kd(a){F[a+40>>2]=0;F[a+4>>2]=0;F[a+8>>2]=0;F[a>>2]=10032;F[a+12>>2]=0;F[a+16>>2]=0;F[a+20>>2]=0;F[a+24>>2]=0;F[a+28>>2]=0;F[a+32>>2]=0;E[a+36>>1]=0;F[a+44>>2]=0;F[a>>2]=8080;return a}function kb(a){F[a+8>>2]=0;F[a+12>>2]=0;F[a>>2]=0;F[a+40>>2]=0;F[a+44>>2]=0;F[a+28>>2]=9;D[a+24|0]=1;F[a+56>>2]=-1;F[a+60>>2]=0;F[a+16>>2]=0;F[a+20>>2]=0;F[a+48>>2]=0;F[a+52>>2]=0;return a}function pe(a,b){a=a|0;b=b|0;var c=0,d=0;d=F[a+16>>2];c=0;a:{if(F[a+20>>2]-d>>2<=(b|0)){break a}b=F[(b<<2)+d>>2];c=0;if((b|0)<0){break a}c=bb(F[F[a+36>>2]+(b<<2)>>2])}return c|0}function Nf(){var a=0,b=0;a=ka(40);F[a+4>>2]=0;F[a+8>>2]=0;F[a+24>>2]=0;F[a+28>>2]=0;b=a+16|0;F[b>>2]=0;F[b+4>>2]=0;F[a>>2]=a+4;F[a+12>>2]=b;F[a+32>>2]=0;F[a+36>>2]=0;return a|0}function Xe(a,b){a=a|0;b=b|0;var c=0,d=0;Nc(a,b);a:{if((b|0)<0){break a}d=F[a+88>>2];c=F[a+84>>2];if(d-c>>2<=(b|0)){break a}c=(b<<2)+c|0;b=c+4|0;pa(c,b,d-b|0);F[a+88>>2]=d-4}}function eb(a){var b=0,c=0;b=F[2909];c=a+7&-8;a=b+c|0;a:{if(a>>>0<=b>>>0?c:0){break a}if(a>>>0>aa()<<16>>>0){if(!(X(a|0)|0)){break a}}F[2909]=a;return b}F[2940]=48;return-1}function Th(a,b,c){a=a|0;b=b|0;c=c|0;var d=0;F[a+4>>2]=b;b=F[F[F[b+4>>2]+8>>2]+(c<<2)>>2];F[a+12>>2]=c;F[a+8>>2]=b;a=F[a+8>>2];if(G[a+24|0]==3){d=F[a+28>>2]==9}return d|0}function Tg(a){a=a|0;var b=0;F[a+8>>2]=9556;F[a>>2]=9392;b=F[a+56>>2];if(b){F[a+60>>2]=b;ja(b)}F[a+8>>2]=9372;b=F[a+44>>2];if(b){ja(b)}b=F[a+32>>2];if(b){ja(b)}return a|0}function Ng(a){a=a|0;var b=0;F[a+8>>2]=8624;F[a>>2]=9684;b=F[a+56>>2];if(b){F[a+60>>2]=b;ja(b)}F[a+8>>2]=8876;b=F[a+44>>2];if(b){ja(b)}b=F[a+32>>2];if(b){ja(b)}return a|0}function Ee(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=F[a+8>>2];a:{if(!G[d+24|0]){break a}if(!ac(d,F[b+4>>2]-F[b>>2]>>2)){break a}e=$[F[F[a>>2]+32>>2]](a,b,c)|0}return e|0}function Fh(a,b,c){a=a|0;b=b|0;c=c|0;var d=0;F[a+4>>2]=b;d=F[F[F[b+4>>2]+8>>2]+(c<<2)>>2];F[a+12>>2]=c;F[a+8>>2]=d;return F[F[F[F[b+4>>2]+8>>2]+(c<<2)>>2]+28>>2]==9|0}function Ca(a,b){if(b){Ca(a,F[b>>2]);Ca(a,F[b+4>>2]);a=F[b+28>>2];F[b+28>>2]=0;if(a){Ca(a+12|0,F[a+16>>2]);Ba(a,F[a+4>>2]);ja(a)}if(D[b+27|0]<0){ja(F[b+16>>2])}ja(b)}}function Sg(a){a=a|0;var b=0;F[a+8>>2]=9556;F[a>>2]=9392;b=F[a+56>>2];if(b){F[a+60>>2]=b;ja(b)}F[a+8>>2]=9372;b=F[a+44>>2];if(b){ja(b)}b=F[a+32>>2];if(b){ja(b)}ja(a)}function Mg(a){a=a|0;var b=0;F[a+8>>2]=8624;F[a>>2]=9684;b=F[a+56>>2];if(b){F[a+60>>2]=b;ja(b)}F[a+8>>2]=8876;b=F[a+44>>2];if(b){ja(b)}b=F[a+32>>2];if(b){ja(b)}ja(a)}function Hc(a,b){var c=0,d=0,e=0,f=0;F[a>>2]=11356;F[a>>2]=11468;c=ya(b);d=ka(c+13|0);F[d+8>>2]=0;F[d+4>>2]=c;F[d>>2]=c;e=a,f=la(d+12|0,b,c+1|0),F[e+4>>2]=f;return a}function hc(a,b,c){a:{if(b){b=0;if(!ld(1,c,a)){break a}}D[a+36|0]=1;F[a+32>>2]=0;b=F[a+16>>2];c=b+F[a>>2]|0;F[a+24>>2]=c;F[a+28>>2]=c+(F[a+8>>2]-b|0);b=1}return b}function Ue(a,b){a=a|0;b=b|0;var c=0;a:{if(!($[F[F[a>>2]+36>>2]](a,b)|0)){break a}if(!($[F[F[a>>2]+40>>2]](a,b)|0)){break a}c=$[F[F[a>>2]+44>>2]](a)|0}return c|0}function _d(a){a=a|0;var b=0;a:{if(!F[a- -64>>2]|!F[a+68>>2]|(!F[a+44>>2]|!F[a+48>>2])){break a}if(!F[a+52>>2]|!F[a+56>>2]){break a}b=F[a+92>>2]!=-1}return b|0}function ii(a,b){a=a|0;b=b|0;var c=0;b=F[b+88>>2];if(!(!b|F[b>>2]!=2)){c=a;a=F[b+8>>2];F[c+4>>2]=G[a|0]|G[a+1|0]<<8|(G[a+2|0]<<16|G[a+3|0]<<24);c=1}return c|0}function wc(a){a=a|0;var b=0;F[a>>2]=2136;b=F[a+20>>2];F[a+20>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}F[a>>2]=1920;b=F[a+16>>2];F[a+16>>2]=0;if(b){xa(b)}return a|0}function Ud(a){a=a|0;var b=0;a:{if(!F[a+48>>2]|!F[a+52>>2]|(!F[a+28>>2]|!F[a+32>>2])){break a}if(!F[a+36>>2]|!F[a+40>>2]){break a}b=F[a+76>>2]!=-1}return b|0}function Ug(a){a=a|0;var b=0;F[a>>2]=9556;b=F[a+48>>2];if(b){F[a+52>>2]=b;ja(b)}F[a>>2]=9372;b=F[a+36>>2];if(b){ja(b)}b=F[a+24>>2];if(b){ja(b)}return a|0}function Ed(a){a=a|0;var b=0;F[a>>2]=8624;b=F[a+48>>2];if(b){F[a+52>>2]=b;ja(b)}F[a>>2]=8876;b=F[a+36>>2];if(b){ja(b)}b=F[a+24>>2];if(b){ja(b)}return a|0}function vc(a){a=a|0;var b=0;F[a>>2]=2136;b=F[a+20>>2];F[a+20>>2]=0;if(b){$[F[F[b>>2]+4>>2]](b)}F[a>>2]=1920;b=F[a+16>>2];F[a+16>>2]=0;if(b){xa(b)}ja(a)}function yg(){var a=0,b=0;b=ka(40);F[b>>2]=-1;a=b+8|0;F[a+16>>2]=0;F[a+20>>2]=0;F[a+8>>2]=0;F[a>>2]=0;F[a+4>>2]=0;F[a+24>>2]=0;F[a+28>>2]=0;return b|0}function eh(a){a=a|0;var b=0;F[a>>2]=8624;b=F[a+48>>2];if(b){F[a+52>>2]=b;ja(b)}F[a>>2]=8876;b=F[a+36>>2];if(b){ja(b)}b=F[a+24>>2];if(b){ja(b)}ja(a)}function Og(a){a=a|0;var b=0;F[a>>2]=9556;b=F[a+48>>2];if(b){F[a+52>>2]=b;ja(b)}F[a>>2]=9372;b=F[a+36>>2];if(b){ja(b)}b=F[a+24>>2];if(b){ja(b)}ja(a)}function Ja(a){F[a+8>>2]=0;F[a+12>>2]=0;F[a>>2]=0;F[a+16>>2]=0;F[a+20>>2]=0;F[a+32>>2]=0;F[a+24>>2]=0;F[a+28>>2]=0;E[a+38>>1]=0;D[a+36|0]=0;return a}function Me(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;if(La(a,F[b+8>>2],f)){Dc(b,c,d,e);return}a=F[a+8>>2];$[F[F[a>>2]+20>>2]](a,b,c,d,e,f)}function Eh(a,b,c){a=a|0;b=b|0;c=c|0;a:{if(G[F[a+4>>2]+36|0]>=2){b=0;if(!($[F[F[a>>2]+52>>2]](a)|0)){break a}}b=id(a+24|0,F[a+16>>2])}return b|0}function hg(){var a=0;a=Rc(ka(108));F[a+84>>2]=0;F[a+88>>2]=0;F[a>>2]=10240;F[a+92>>2]=0;F[a+96>>2]=0;F[a+100>>2]=0;F[a+104>>2]=0;return a|0}function Qc(a,b){var c=0;c=-1;a:{if((b|0)==-1|(b|0)>4){break a}b=L(b,12)+a|0;a=F[b+20>>2];if((F[b+24>>2]-a|0)<=0){break a}c=F[a>>2]}return c}function cc(a,b,c,d,e,f,g){F[a>>2]=0;F[a+56>>2]=b;F[a+48>>2]=0;F[a+52>>2]=0;F[a+40>>2]=f;F[a+44>>2]=g;D[a+32|0]=e;F[a+28>>2]=d;D[a+24|0]=c}function Sh(a,b,c){a=a|0;b=b|0;c=c|0;a:{if(G[F[a+4>>2]+36|0]>=2){b=0;if(!uc(a+24|0,bb(a),c)){break a}}b=id(a+24|0,F[a+16>>2])}return b|0}function _e(a){a=a|0;var b=0;F[a>>2]=10240;b=F[a+96>>2];if(b){F[a+100>>2]=b;ja(b)}b=F[a+84>>2];if(b){F[a+88>>2]=b;ja(b)}return tb(a)|0}function Tb(a){var b=0;if(G[a+11|0]>>>7|0){b=F[a+4>>2]}else{b=G[a+11|0]&127}if(!b){sc(1222);v()}if(G[a+11|0]>>>7|0){a=F[a>>2]}return a}function Ze(a){a=a|0;var b=0;F[a>>2]=10240;b=F[a+96>>2];if(b){F[a+100>>2]=b;ja(b)}b=F[a+84>>2];if(b){F[a+88>>2]=b;ja(b)}ja(tb(a))}function ce(a){a=a|0;var b=0;F[a>>2]=3264;b=F[a+76>>2];if(b){ja(b)}F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}return a|0}function _h(a){a=a|0;var b=0;F[a>>2]=4816;b=F[a+76>>2];if(b){ja(b)}F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}return a|0}function Ba(a,b){if(b){Ba(a,F[b>>2]);Ba(a,F[b+4>>2]);a=F[b+28>>2];if(a){F[b+32>>2]=a;ja(a)}if(D[b+27|0]<0){ja(F[b+16>>2])}ja(b)}}function Wf(){var a=0;a=ka(28);F[a>>2]=0;F[a+4>>2]=0;F[a+24>>2]=0;F[a+16>>2]=0;F[a+20>>2]=0;F[a+8>>2]=0;F[a+12>>2]=0;return a|0}function We(a){a=a|0;var b=0;F[a>>2]=1776;b=F[a+16>>2];if(b){F[a+20>>2]=b;ja(b)}b=F[a+4>>2];if(b){F[a+8>>2]=b;ja(b)}return a|0}function fg(){var a=0,b=0;a=ka(24);F[a+4>>2]=0;F[a+8>>2]=0;b=a+16|0;F[b>>2]=0;F[b+4>>2]=0;F[a>>2]=a+4;F[a+12>>2]=b;return a|0}function Pe(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;if(La(a,F[b+8>>2],0)){Ec(b,c,d);return}a=F[a+8>>2];$[F[F[a>>2]+28>>2]](a,b,c,d)}function be(a){a=a|0;var b=0;F[a>>2]=3264;b=F[a+76>>2];if(b){ja(b)}F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}ja(a)}function Zh(a){a=a|0;var b=0;F[a>>2]=4816;b=F[a+76>>2];if(b){ja(b)}F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}ja(a)}function ka(a){var b=0;a=a?a:1;a:{while(1){b=Ub(a);if(b){break a}b=F[3065];if(b){$[b|0]();continue}break}V();v()}return b}function ib(a,b){if(b){ib(a,F[b>>2]);ib(a,F[b+4>>2]);if(D[b+39|0]<0){ja(F[b+28>>2])}if(D[b+27|0]<0){ja(F[b+16>>2])}ja(b)}}function Cc(a){a=a|0;var b=0,c=0;F[a>>2]=11468;b=F[a+4>>2]-12|0;c=F[b+8>>2]-1|0;F[b+8>>2]=c;if((c|0)<0){ja(b)}return a|0}function ng(){var a=0;a=ka(24);F[a+8>>2]=0;F[a+12>>2]=0;F[a+4>>2]=-1;F[a>>2]=1624;F[a+16>>2]=0;F[a+20>>2]=0;return a|0}function Ac(a,b,c){a=a|0;b=b|0;c=c|0;F[a+4>>2]=b;b=F[F[F[b+4>>2]+8>>2]+(c<<2)>>2];F[a+12>>2]=c;F[a+8>>2]=b;return 1}function pc(a){a=a|0;var b=0;if(!(!F[a+60>>2]|!F[a+44>>2]|(!F[a+48>>2]|!F[a+52>>2]))){b=F[a+56>>2]!=0}return b|0}function Ic(a,b){if(G[a+11|0]>>>7|0){F[a+4>>2]=b;return}D[a+11|0]=G[a+11|0]&128|b;D[a+11|0]=G[a+11|0]&127}function gi(a){a=a|0;var b=0;F[a>>2]=3500;F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}return a|0}function Xh(a){a=a|0;var b=0;F[a>>2]=5040;F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}return a|0}function nf(a){a=a|0;if(a){if(D[a+39|0]<0){ja(F[a+28>>2])}$b(a+12|0,F[a+16>>2]);ib(a,F[a+4>>2]);ja(a)}}function dh(a){a=a|0;var b=0;F[a>>2]=8876;b=F[a+36>>2];if(b){ja(b)}b=F[a+24>>2];if(b){ja(b)}return a|0}function Wg(a){a=a|0;var b=0;F[a>>2]=9372;b=F[a+36>>2];if(b){ja(b)}b=F[a+24>>2];if(b){ja(b)}return a|0}function ob(a){a=a|0;var b=0;if(!(!F[a+52>>2]|(!F[a+44>>2]|!F[a+48>>2]))){b=F[a+56>>2]!=0}return b|0}function oc(a,b){a=a|0;b=b|0;var c=0;if(!(F[b+56>>2]|!b|G[b+24|0]!=3)){F[a+60>>2]=b;c=1}return c|0}function fi(a){a=a|0;var b=0;F[a>>2]=3500;F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}ja(a)}function Wh(a){a=a|0;var b=0;F[a>>2]=5040;F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}ja(a)}function zg(a,b,c){a=a|0;b=b|0;c=c|0;F[a+16>>2]=0;F[a+20>>2]=0;F[a>>2]=b;F[a+8>>2]=c;F[a+12>>2]=0}function ch(a){a=a|0;var b=0;F[a>>2]=8876;b=F[a+36>>2];if(b){ja(b)}b=F[a+24>>2];if(b){ja(b)}ja(a)}function Zd(a,b){a=a|0;b=b|0;var c=0;if(!(F[b+56>>2]|G[b+24|0]!=3)){F[a- -64>>2]=b;c=1}return c|0}function Vg(a){a=a|0;var b=0;F[a>>2]=9372;b=F[a+36>>2];if(b){ja(b)}b=F[a+24>>2];if(b){ja(b)}ja(a)}function Td(a,b){a=a|0;b=b|0;var c=0;if(!(F[b+56>>2]|G[b+24|0]!=3)){F[a+48>>2]=b;c=1}return c|0}function Le(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;if(La(a,F[b+8>>2],f)){Dc(b,c,d,e)}}function oa(){var a=0;a=Rb(4);F[a>>2]=11356;F[a>>2]=11316;F[a>>2]=11336;W(a|0,11448,14);v()}function je(a){a=a|0;var b=0;F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}return a|0}function Ae(a){a=a|0;var b=0;F[a>>2]=1920;b=F[a+16>>2];F[a+16>>2]=0;if(b){xa(b)}return a|0}function Pg(a){a=a|0;var b=0;F[a>>2]=1624;b=F[a+8>>2];if(b){F[a+12>>2]=b;ja(b)}return a|0}function Ch(a){a=a|0;var b=0;b=bb(a);return qd(a+24|0,b?b:F[a+8>>2],F[F[a+4>>2]+32>>2])|0}function ze(a){a=a|0;var b=0;F[a>>2]=1920;b=F[a+16>>2];F[a+16>>2]=0;if(b){xa(b)}ja(a)}function Ob(a){a=a|0;var b=0;F[a>>2]=2960;b=F[a+32>>2];if(b){F[a+36>>2]=b;ja(b)}ja(a)}function Hg(a){a=a|0;var b=0;F[a>>2]=1624;b=F[a+8>>2];if(b){F[a+12>>2]=b;ja(b)}ja(a)}function oe(a,b){a=a|0;b=b|0;return $[F[F[a>>2]+48>>2]](a,F[b+4>>2]-F[b>>2]>>2)|0}function $b(a,b){if(b){$b(a,F[b>>2]);$b(a,F[b+4>>2]);ib(b+20|0,F[b+24>>2]);ja(b)}}function xg(a){a=a|0;var b=0;if(a){b=F[a+8>>2];if(b){F[a+12>>2]=b;ja(b)}ja(a)}}function xh(a){a=a|0;if(!F[a+44>>2]){return 0}return $[F[F[a>>2]+48>>2]](a)|0}function ni(a){var b=0;while(1){if(a){a=a-1&a;b=b+1|0;continue}break}return b}function Qe(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;if(La(a,F[b+8>>2],0)){Ec(b,c,d)}}function vh(a,b){a=a|0;b=b|0;a=F[a+48>>2];return $[F[F[a>>2]+20>>2]](a,b)|0}function oi(a){var b=0;b=a&31;a=0-a&31;return(-1>>>b&-2)<>>a} -function oh(a,b){a=a|0;b=b|0;a=F[a+48>>2];return $[F[F[a>>2]+12>>2]](a,b)|0}function nh(a,b){a=a|0;b=b|0;a=F[a+48>>2];return $[F[F[a>>2]+16>>2]](a,b)|0}function Xa(){var a=0;a=ka(12);F[a>>2]=0;F[a+4>>2]=0;F[a+8>>2]=0;return a|0}function Wa(a){a=a|0;var b=0;if(a){b=F[a>>2];if(b){F[a+4>>2]=b;ja(b)}ja(a)}}function mf(a,b,c){a=a|0;b=b|0;c=c|0;F[a+32>>2]=c;F[a+28>>2]=b;return 1}function eg(a){a=a|0;if(a){Ca(a+12|0,F[a+16>>2]);Ba(a,F[a+4>>2]);ja(a)}}function Lb(a,b){a=a|0;b=b|0;if(b>>>0<=1){F[a+28>>2]=b}return b>>>0<2|0}function Fg(a,b){a=a|0;b=b|0;D[b+84|0]=1;F[b+72>>2]=F[b+68>>2];return 1}function kg(){var a=0;a=ka(8);F[a+4>>2]=-1;F[a>>2]=1032;return a|0}function Hf(a,b,c){a=a|0;b=b|0;c=c|0;return F[F[b+8>>2]+(c<<2)>>2]}function th(a){a=a|0;a=F[a+48>>2];return $[F[F[a>>2]+24>>2]](a)|0}function sh(a){a=a|0;a=F[a+48>>2];return $[F[F[a>>2]+28>>2]](a)|0}function ph(a){a=a|0;a=F[a+48>>2];return $[F[F[a>>2]+36>>2]](a)|0}function Rh(a,b){a=a|0;b=b|0;return zc(a+24|0,bb(a),F[a+8>>2])|0}function Bh(a,b){a=a|0;b=b|0;return xd(a+24|0,bb(a),F[a+8>>2])|0}function bg(a){a=a|0;if(a){if(D[a+15|0]<0){ja(F[a+4>>2])}ja(a)}}function Ke(a){a=a|0;if(!a){return 0}return(Fc(a,11164)|0)!=0|0}function Fe(a,b){a=a|0;b=b|0;F[a+12>>2]=-1;F[a+8>>2]=b;return 1}function hd(a,b){a=a|0;b=b|0;return $[F[F[a>>2]+12>>2]](a,b)|0}function Dh(a,b){a=a|0;b=b|0;return $[F[F[a>>2]+56>>2]](a,b)|0}function sc(a){a=Hc(Rb(8),a);F[a>>2]=11568;W(a|0,11600,1);v()}function mg(a,b){a=a|0;b=b|0;return M(J[F[a+8>>2]+(b<<2)>>2])}function Rd(a){a=Hc(Rb(8),a);F[a>>2]=11516;W(a|0,11548,1);v()}function $f(a,b){a=a|0;b=b|0;return M(J[F[a>>2]+(b<<2)>>2])}function gg(a){a=a|0;return(F[a+100>>2]-F[a+96>>2]|0)/12|0}function cg(a){a=a|0;return(D[a+15|0]<0?F[a+4>>2]:a+4|0)|0}function Re(a,b){a=a|0;b=b|0;return F[F[a+4>>2]+(b<<2)>>2]}function dd(a,b){a=a|0;b=b|0;return F[F[a>>2]+(b<<2)>>2]}function Yf(a,b){a=a|0;b=b|0;return E[F[a>>2]+(b<<1)>>1]}function Xf(a,b){a=a|0;b=b|0;return H[F[a>>2]+(b<<1)>>1]}function Vd(a,b,c){a=a|0;b=b|0;c=c|0;return xc(a,b,c)|0}function sb(a,b){var c=0;c=ka(b);F[a+4>>2]=b;F[a>>2]=c}function Kf(a,b,c){a=a|0;b=b|0;c=c|0;return Qc(b,c)|0}function Rc(a){F[a>>2]=10300;ma(a+4|0,0,80);return a}function ji(a){if(a){return 31-O(a-1^a)|0}return 32}function gd(a){a=a|0;return F[a+12>>2]-F[a+8>>2]>>2}function _f(a,b){a=a|0;b=b|0;return D[F[a>>2]+b|0]}function Zf(a,b){a=a|0;b=b|0;return G[F[a>>2]+b|0]}function Ie(a){a=a|0;return F[a+8>>2]-F[a+4>>2]>>2}function wb(a){a=a|0;if(a){$[F[F[a>>2]+4>>2]](a)}}function Jd(a,b){a=a|0;b=b|0;F[a+4>>2]=b;return 1}function ed(a){a=a|0;return F[a+4>>2]-F[a>>2]>>1}function dc(a){a=a|0;return F[a+4>>2]-F[a>>2]>>2}function fd(a){a=a|0;return F[a+4>>2]-F[a>>2]|0}function ke(a){a=a|0;return G[F[a+8>>2]+24|0]}function Qf(a,b){a=a|0;b=b|0;return F[b+8>>2]}function Ff(a,b){a=a|0;b=b|0;return F[b+4>>2]}function De(a,b,c){a=a|0;b=b|0;c=c|0;return 1}function Bg(a,b){a=a|0;b=b|0;return G[b+24|0]}function Oh(a){a=a|0;F[a>>2]=5928;return a|0}function Jh(a){a=a|0;F[a>>2]=6932;return a|0}function lg(a){a=a|0;return M(J[a+20>>2])}function Nh(a){a=a|0;F[a>>2]=5928;ja(a)}function Ih(a){a=a|0;F[a>>2]=6932;ja(a)}function ug(a){a=a|0;return F[a+88>>2]}function tg(a){a=a|0;return F[a+56>>2]}function qg(a){a=a|0;return F[a+40>>2]}function pg(a){a=a|0;return F[a+48>>2]}function og(a){a=a|0;return F[a+60>>2]}function ec(a){a=a|0;return F[a+80>>2]}function cb(a){a=a|0;return F[a+28>>2]}function vd(a){a=a|0;return F[a+8>>2]}function tc(a,b){a=a|0;b=b|0;return-1}function sg(a){a=a|0;return D[a+24|0]}function rg(a){a=a|0;return G[a+32|0]}function dg(a){a=a|0;return!F[a>>2]|0}function Wd(a,b){a=a|0;b=b|0;return 6}function Va(a){a=a|0;return F[a+4>>2]}function Rb(a){return Ub(a+80|0)+80|0}function Qh(a,b){a=a|0;b=b|0;return 2}function Ia(a,b){a=a|0;b=b|0;return 0}function Bc(a,b){a=a|0;b=b|0;return 1}function jd(a){a=a|0;return F[a>>2]}function wg(){return kb(ka(64))|0}function ig(){return Rc(ka(84))|0}function fc(a){a=a|0;if(a){ja(a)}}function Ag(){return Ja(ka(40))|0}function Qb(a){a=a|0;Cc(a);ja(a)}function Je(a){a=a|0;return 1161}function He(a){a=a|0;return 1235}function Ge(a){a=a|0;return 1201}function Pa(a){a=a|0;return a|0}function hh(a){a=a|0;ja(ud(a))}function gh(a){a=a|0;ja(sd(a))}function Ve(a){a=a|0;ja(tb(a))}function ua(a){a=a|0;return 1}function rc(a){a=a|0;return 4}function qc(a){a=a|0;return 5}function Xd(a){a=a|0;return 2}function Ua(a){a=a|0;return 0}function Nb(a){a=a|0;return 6}function Mh(a){a=a|0;return 3}function za(){Rd(1222);v()}function ta(){sc(1154);v()}function na(){Rd(1154);v()}function Ha(a){a=a|0;ja(a)}function Ra(a){a=a|0;v()}function ff(){return 10}function ef(){return 11}function df(){return 12}function vb(){return-1}function ub(){return 1}function lf(){return 5}function kf(){return 6}function jf(){return 7}function jb(){return 0}function hf(){return 8}function gf(){return 9}function cf(){return-2}function bf(){return-3}function bd(){return 3}function af(){return-4}function ad(){return 4}function _b(){return 2}function $e(){return-5}function Te(){V();v()}function Jc(a){a=a|0}function ae(){} -// EMSCRIPTEN_END_FUNCS -e=G;p(q);var $=c([null,Cc,Pa,Ha,Xd,ii,jh,ag,zc,xe,uc,jg,Wd,Qh,Pa,Pg,Hg,ua,yh,mh,kh,xd,fh,qd,Wd,Bg,We,Ra,mf,$c,Ue,Re,Ie,cb,Ia,Te,Bc,ua,Ae,ze,Ac,Fe,Ee,De,Bc,Ce,Be,re,qe,ye,we,pe,ve,ue,te,se,wc,vc,Ac,oe,ne,xc,me,ke,le,je,Ob,ua,Va,ob,Ua,tc,Ia,Ua,ua,ie,he,Ra,Ra,ge,fe,rc,ob,ee,de,ce,be,qc,pc,ua,Ia,oc,$d,hi,gi,fi,Nb,_d,ua,Ia,Zd,Yd,ei,Pa,Ha,Lb,cb,Mb,Ra,Ob,ua,ob,di,Ra,ci,bi,rc,ob,ai,$h,_h,Zh,qc,pc,ua,Ia,oc,$d,Yh,Xh,Wh,Nb,_d,ua,Ia,Zd,Yd,Vh,Pa,Ha,Lb,cb,Kb,Ra,Ob,Ua,ua,Uh,wc,vc,Th,Sh,Vd,Ph,Xd,Rh,Oh,Nh,Nb,Va,Ud,ua,Ia,Td,ua,Mh,Sd,Lh,Pa,Ha,Lb,cb,Mb,Jh,Ih,Nb,Ud,ua,Ia,Td,Sd,Hh,Pa,Ha,Lb,cb,Kb,Pa,Ha,Ua,ua,Ua,tc,Ia,Kh,Gh,Ah,zh,Fh,Eh,Vd,Dh,Ch,Bh,wh,Ra,ua,ua,xh,Dg,Cg,ua,Ua,Ia,Ia,rh,qh,uh,vh,sh,ph,oh,nh,th,ud,hh,Jd,Id,Hd,Gd,lh,ua,Va,vd,sd,gh,Jd,Id,Hd,Gd,ih,ua,Va,vd,Ed,eh,Fd,dh,ch,$g,_g,Zg,Yg,ah,Xg,bh,Wg,Vg,Tg,Sg,Rg,Qg,Ug,Og,Ng,Mg,Lg,Kg,Gg,Ig,Jg,Pa,Ha,Fg,Eg,Ra,Ua,ua,_e,Ze,Ye,Xe,tb,Ve,Oc,Nc,Pa,Ha,Jc,Jc,Se,Le,Ne,Qe,Ha,Me,Oe,Pe,Ha,He,Ha,Ge,Ha,Je,Qb,Va,Qb,Qb]);function aa(){return C.byteLength/65536|0}function fa(ga){ga=ga|0;var ba=aa()|0;var ca=ba+ga|0;if(ba=endIdx))++endPtr;if(endPtr-idx>16&&heapOrArray.buffer&&UTF8Decoder){return UTF8Decoder.decode(heapOrArray.subarray(idx,endPtr))}var str="";while(idx>10,56320|ch&1023)}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(HEAPU8,ptr,maxBytesToRead):""}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function lengthBytesUTF8(str){var len=0;for(var i=0;i=55296&&c<=57343){len+=4;++i}else{len+=3}}return len}var HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateMemoryViews(){var b=wasmMemory.buffer;Module["HEAP8"]=HEAP8=new Int8Array(b);Module["HEAP16"]=HEAP16=new Int16Array(b);Module["HEAP32"]=HEAP32=new Int32Array(b);Module["HEAPU8"]=HEAPU8=new Uint8Array(b);Module["HEAPU16"]=HEAPU16=new Uint16Array(b);Module["HEAPU32"]=HEAPU32=new Uint32Array(b);Module["HEAPF32"]=HEAPF32=new Float32Array(b);Module["HEAPF64"]=HEAPF64=new Float64Array(b)}var INITIAL_MEMORY=Module["INITIAL_MEMORY"]||16777216;assert(INITIAL_MEMORY>=65536,"INITIAL_MEMORY should be larger than STACK_SIZE, was "+INITIAL_MEMORY+"! (STACK_SIZE="+65536+")");if(Module["wasmMemory"]){wasmMemory=Module["wasmMemory"]}else{wasmMemory=new WebAssembly.Memory({"initial":INITIAL_MEMORY/65536,"maximum":2147483648/65536})}updateMemoryViews();INITIAL_MEMORY=wasmMemory.buffer.byteLength;var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;function keepRuntimeAlive(){return noExitRuntime}function preRun(){if(Module["preRun"]){if(typeof Module["preRun"]=="function")Module["preRun"]=[Module["preRun"]];while(Module["preRun"].length){addOnPreRun(Module["preRun"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function postRun(){if(Module["postRun"]){if(typeof Module["postRun"]=="function")Module["postRun"]=[Module["postRun"]];while(Module["postRun"].length){addOnPostRun(Module["postRun"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnInit(cb){__ATINIT__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){runDependencies++;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}function abort(what){if(Module["onAbort"]){Module["onAbort"](what)}what="Aborted("+what+")";err(what);ABORT=true;EXITSTATUS=1;what+=". Build with -sASSERTIONS for more info.";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}var dataURIPrefix="data:application/octet-stream;base64,";function isDataURI(filename){return filename.startsWith(dataURIPrefix)}function isFileURI(filename){return filename.startsWith("file://")}var wasmBinaryFile;wasmBinaryFile="draco_decoder_gltf.wasm";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}var binary=tryParseAsDataURI(file);if(binary){return binary}if(readBinary){return readBinary(file)}throw"both async and sync fetching of the wasm failed"}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch=="function"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){if(!response["ok"]){throw"failed to load wasm binary file at '"+wasmBinaryFile+"'"}return response["arrayBuffer"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={"a":wasmImports};function receiveInstance(instance,module){var exports=instance.exports;Module["asm"]=exports;wasmTable=Module["asm"]["g"];addOnInit(Module["asm"]["f"]);removeRunDependency("wasm-instantiate")}addRunDependency("wasm-instantiate");function receiveInstantiationResult(result){receiveInstance(result["instance"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(function(instance){return instance}).then(receiver,function(reason){err("failed to asynchronously prepare wasm: "+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming=="function"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&!ENVIRONMENT_IS_NODE&&typeof fetch=="function"){return fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiationResult,function(reason){err("wasm streaming compile failed: "+reason);err("falling back to ArrayBuffer instantiation");return instantiateArrayBuffer(receiveInstantiationResult)})})}else{return instantiateArrayBuffer(receiveInstantiationResult)}}if(Module["instantiateWasm"]){try{var exports=Module["instantiateWasm"](info,receiveInstance);return exports}catch(e){err("Module.instantiateWasm callback failed with error: "+e);readyPromiseReject(e)}}instantiateAsync().catch(readyPromiseReject);return{}}function ExitStatus(status){this.name="ExitStatus";this.message="Program terminated with exit("+status+")";this.status=status}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){callbacks.shift()(Module)}}function intArrayToString(array){var ret=[];for(var i=0;i255){chr&=255}ret.push(String.fromCharCode(chr))}return ret.join("")}function ExceptionInfo(excPtr){this.excPtr=excPtr;this.ptr=excPtr-24;this.set_type=function(type){HEAPU32[this.ptr+4>>2]=type};this.get_type=function(){return HEAPU32[this.ptr+4>>2]};this.set_destructor=function(destructor){HEAPU32[this.ptr+8>>2]=destructor};this.get_destructor=function(){return HEAPU32[this.ptr+8>>2]};this.set_refcount=function(refcount){HEAP32[this.ptr>>2]=refcount};this.set_caught=function(caught){caught=caught?1:0;HEAP8[this.ptr+12>>0]=caught};this.get_caught=function(){return HEAP8[this.ptr+12>>0]!=0};this.set_rethrown=function(rethrown){rethrown=rethrown?1:0;HEAP8[this.ptr+13>>0]=rethrown};this.get_rethrown=function(){return HEAP8[this.ptr+13>>0]!=0};this.init=function(type,destructor){this.set_adjusted_ptr(0);this.set_type(type);this.set_destructor(destructor);this.set_refcount(0);this.set_caught(false);this.set_rethrown(false)};this.add_ref=function(){var value=HEAP32[this.ptr>>2];HEAP32[this.ptr>>2]=value+1};this.release_ref=function(){var prev=HEAP32[this.ptr>>2];HEAP32[this.ptr>>2]=prev-1;return prev===1};this.set_adjusted_ptr=function(adjustedPtr){HEAPU32[this.ptr+16>>2]=adjustedPtr};this.get_adjusted_ptr=function(){return HEAPU32[this.ptr+16>>2]};this.get_exception_ptr=function(){var isPointer=___cxa_is_pointer_type(this.get_type());if(isPointer){return HEAPU32[this.excPtr>>2]}var adjusted=this.get_adjusted_ptr();if(adjusted!==0)return adjusted;return this.excPtr}}var exceptionLast=0;var uncaughtExceptionCount=0;function ___cxa_throw(ptr,type,destructor){var info=new ExceptionInfo(ptr);info.init(type,destructor);exceptionLast=ptr;uncaughtExceptionCount++;throw ptr}function _abort(){abort("")}function _emscripten_memcpy_big(dest,src,num){HEAPU8.copyWithin(dest,src,src+num)}function getHeapMax(){return 2147483648}function emscripten_realloc_buffer(size){var b=wasmMemory.buffer;try{wasmMemory.grow(size-b.byteLength+65535>>>16);updateMemoryViews();return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=HEAPU8.length;requestedSize=requestedSize>>>0;var maxHeapSize=getHeapMax();if(requestedSize>maxHeapSize){return false}let alignUp=(x,multiple)=>x+(multiple-x%multiple)%multiple;for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}function intArrayFromString(stringy,dontAddNull,length){var len=length>0?length:lengthBytesUTF8(stringy)+1;var u8array=new Array(len);var numBytesWritten=stringToUTF8Array(stringy,u8array,0,u8array.length);if(dontAddNull)u8array.length=numBytesWritten;return u8array}var decodeBase64=typeof atob=="function"?atob:function(input){var keyStr="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";var output="";var chr1,chr2,chr3;var enc1,enc2,enc3,enc4;var i=0;input=input.replace(/[^A-Za-z0-9\+\/\=]/g,"");do{enc1=keyStr.indexOf(input.charAt(i++));enc2=keyStr.indexOf(input.charAt(i++));enc3=keyStr.indexOf(input.charAt(i++));enc4=keyStr.indexOf(input.charAt(i++));chr1=enc1<<2|enc2>>4;chr2=(enc2&15)<<4|enc3>>2;chr3=(enc3&3)<<6|enc4;output=output+String.fromCharCode(chr1);if(enc3!==64){output=output+String.fromCharCode(chr2)}if(enc4!==64){output=output+String.fromCharCode(chr3)}}while(i0){return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module["calledRun"]=true;if(ABORT)return;initRuntime();readyPromiseResolve(Module);if(Module["onRuntimeInitialized"])Module["onRuntimeInitialized"]();postRun()}if(Module["setStatus"]){Module["setStatus"]("Running...");setTimeout(function(){setTimeout(function(){Module["setStatus"]("")},1);doRun()},1)}else{doRun()}}if(Module["preInit"]){if(typeof Module["preInit"]=="function")Module["preInit"]=[Module["preInit"]];while(Module["preInit"].length>0){Module["preInit"].pop()()}}run();function WrapperObject(){}WrapperObject.prototype=Object.create(WrapperObject.prototype);WrapperObject.prototype.constructor=WrapperObject;WrapperObject.prototype.__class__=WrapperObject;WrapperObject.__cache__={};Module["WrapperObject"]=WrapperObject;function getCache(__class__){return(__class__||WrapperObject).__cache__}Module["getCache"]=getCache;function wrapPointer(ptr,__class__){var cache=getCache(__class__);var ret=cache[ptr];if(ret)return ret;ret=Object.create((__class__||WrapperObject).prototype);ret.ptr=ptr;return cache[ptr]=ret}Module["wrapPointer"]=wrapPointer;function castObject(obj,__class__){return wrapPointer(obj.ptr,__class__)}Module["castObject"]=castObject;Module["NULL"]=wrapPointer(0);function destroy(obj){if(!obj["__destroy__"])throw"Error: Cannot destroy object. (Did you create it yourself?)";obj["__destroy__"]();delete getCache(obj.__class__)[obj.ptr]}Module["destroy"]=destroy;function compare(obj1,obj2){return obj1.ptr===obj2.ptr}Module["compare"]=compare;function getPointer(obj){return obj.ptr}Module["getPointer"]=getPointer;function getClass(obj){return obj.__class__}Module["getClass"]=getClass;var ensureCache={buffer:0,size:0,pos:0,temps:[],needed:0,prepare:function(){if(ensureCache.needed){for(var i=0;i=ensureCache.size){assert(len>0);ensureCache.needed+=len;ret=Module["_malloc"](len);ensureCache.temps.push(ret)}else{ret=ensureCache.buffer+ensureCache.pos;ensureCache.pos+=len}return ret},copy:function(array,view,offset){offset>>>=0;var bytes=view.BYTES_PER_ELEMENT;switch(bytes){case 2:offset>>>=1;break;case 4:offset>>>=2;break;case 8:offset>>>=3;break}for(var i=0;i 3) return false + if (version[0] == 1 && version[1] >= 0 && version[1] <= 5) return true + if (version[0] != 0 || version[1] > 10) return false + return true + } + Module['isVersionSupported'] = isVersionSupported + var moduleOverrides = Object.assign({}, Module) + var arguments_ = [] + var thisProgram = './this.program' + var quit_ = (status, toThrow) => { + throw toThrow + } + var ENVIRONMENT_IS_WEB = typeof window == 'object' + var ENVIRONMENT_IS_WORKER = typeof importScripts == 'function' + var ENVIRONMENT_IS_NODE = + typeof process == 'object' && + typeof process.versions == 'object' && + typeof process.versions.node == 'string' + var scriptDirectory = '' + function locateFile(path) { + if (Module['locateFile']) { + return Module['locateFile'](path, scriptDirectory) + } + return scriptDirectory + path + } + var read_, readAsync, readBinary, setWindowTitle + function logExceptionOnExit(e) { + if (e instanceof ExitStatus) return + let toLog = e + err('exiting due to exception: ' + toLog) + } + if (ENVIRONMENT_IS_NODE) { + var fs = require('fs') + var nodePath = require('path') + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = nodePath.dirname(scriptDirectory) + '/' + } else { + scriptDirectory = __dirname + '/' + } + read_ = (filename, binary) => { + var ret = tryParseAsDataURI(filename) + if (ret) { + return binary ? ret : ret.toString() + } + filename = isFileURI(filename) + ? new URL(filename) + : nodePath.normalize(filename) + return fs.readFileSync(filename, binary ? undefined : 'utf8') + } + readBinary = (filename) => { + var ret = read_(filename, true) + if (!ret.buffer) { + ret = new Uint8Array(ret) + } + return ret + } + readAsync = (filename, onload, onerror) => { + var ret = tryParseAsDataURI(filename) + if (ret) { + onload(ret) + } + filename = isFileURI(filename) + ? new URL(filename) + : nodePath.normalize(filename) + fs.readFile(filename, function (err, data) { + if (err) onerror(err) + else onload(data.buffer) + }) + } + if (process['argv'].length > 1) { + thisProgram = process['argv'][1].replace(/\\/g, '/') + } + arguments_ = process['argv'].slice(2) + quit_ = (status, toThrow) => { + if (keepRuntimeAlive()) { + process['exitCode'] = status + throw toThrow + } + logExceptionOnExit(toThrow) + process['exit'](status) + } + Module['inspect'] = function () { + return '[Emscripten Module object]' + } + } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { + if (ENVIRONMENT_IS_WORKER) { + scriptDirectory = self.location.href + } else if (typeof document != 'undefined' && document.currentScript) { + scriptDirectory = document.currentScript.src + } + if (_scriptDir) { + scriptDirectory = _scriptDir + } + if (scriptDirectory.indexOf('blob:') !== 0) { + scriptDirectory = scriptDirectory.substr( + 0, + scriptDirectory.replace(/[?#].*/, '').lastIndexOf('/') + 1, + ) + } else { + scriptDirectory = '' + } + { + read_ = (url) => { + try { + var xhr = new XMLHttpRequest() + xhr.open('GET', url, false) + xhr.send(null) + return xhr.responseText + } catch (err) { + var data = tryParseAsDataURI(url) + if (data) { + return intArrayToString(data) + } + throw err + } + } + if (ENVIRONMENT_IS_WORKER) { + readBinary = (url) => { + try { + var xhr = new XMLHttpRequest() + xhr.open('GET', url, false) + xhr.responseType = 'arraybuffer' + xhr.send(null) + return new Uint8Array(xhr.response) + } catch (err) { + var data = tryParseAsDataURI(url) + if (data) { + return data + } + throw err + } + } + } + readAsync = (url, onload, onerror) => { + var xhr = new XMLHttpRequest() + xhr.open('GET', url, true) + xhr.responseType = 'arraybuffer' + xhr.onload = () => { + if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { + onload(xhr.response) + return + } + var data = tryParseAsDataURI(url) + if (data) { + onload(data.buffer) + return + } + onerror() + } + xhr.onerror = onerror + xhr.send(null) + } + } + setWindowTitle = (title) => (document.title = title) + } else { + } + var out = Module['print'] || console.log.bind(console) + var err = Module['printErr'] || console.warn.bind(console) + Object.assign(Module, moduleOverrides) + moduleOverrides = null + if (Module['arguments']) arguments_ = Module['arguments'] + if (Module['thisProgram']) thisProgram = Module['thisProgram'] + if (Module['quit']) quit_ = Module['quit'] + var wasmBinary + if (Module['wasmBinary']) wasmBinary = Module['wasmBinary'] + var noExitRuntime = Module['noExitRuntime'] || true + var WebAssembly = { + Memory: function (opts) { + this.buffer = new ArrayBuffer(opts['initial'] * 65536) + }, + Module: function (binary) {}, + Instance: function (module, info) { + this.exports = // EMSCRIPTEN_START_ASM + (function instantiate(ia) { + function c(d) { + d.set = function (a, b) { + this[a] = b + } + d.get = function (a) { + return this[a] + } + return d + } + var e + var f = new Uint8Array(123) + for (var a = 25; a >= 0; --a) { + f[48 + a] = 52 + a + f[65 + a] = a + f[97 + a] = 26 + a + } + f[43] = 62 + f[47] = 63 + function l(m, n, o) { + var g, + h, + a = 0, + i = n, + j = o.length, + k = n + ((j * 3) >> 2) - (o[j - 2] == '=') - (o[j - 1] == '=') + for (; a < j; a += 4) { + g = f[o.charCodeAt(a + 1)] + h = f[o.charCodeAt(a + 2)] + m[i++] = (f[o.charCodeAt(a)] << 2) | (g >> 4) + if (i < k) m[i++] = (g << 4) | (h >> 2) + if (i < k) m[i++] = (h << 6) | f[o.charCodeAt(a + 3)] + } + } + function p(q) { + l( + e, + 1028, + 'YAQAAAIAAAADAAAABAAAAAUAAAAGAAAABwAAAAgAAAAJAAAACgAAAAsAAAAMAAAADQAAAE41ZHJhY28yOEF0dHJpYnV0ZU9jdGFoZWRyb25UcmFuc2Zvcm1FAADYKwAAOAQAAOAGAABfX25leHRfcHJpbWUgb3ZlcmZsb3cAdmVjdG9yAHN0ZDo6ZXhjZXB0aW9uAHNraXBfYXR0cmlidXRlX3RyYW5zZm9ybQBiYWRfYXJyYXlfbmV3X2xlbmd0aABiYXNpY19zdHJpbmcAc3RkOjpiYWRfYWxsb2MARFJBQ08AVXNpbmcgaW5jb21wYXRpYmxlIGRlY29kZXIgZm9yIHRoZSBpbnB1dCBnZW9tZXRyeS4ARmFpbGVkIHRvIGRlY29kZSBwb2ludCBhdHRyaWJ1dGVzLgBGYWlsZWQgdG8gaW5pdGlhbGl6ZSB0aGUgZGVjb2Rlci4AVW5zdXBwb3J0ZWQgbWlub3IgdmVyc2lvbi4AVW5zdXBwb3J0ZWQgbWFqb3IgdmVyc2lvbi4ASW5wdXQgaXMgbm90IGEgbWVzaC4AVW5zdXBwb3J0ZWQgZ2VvbWV0cnkgdHlwZS4ATm90IGEgRHJhY28gZmlsZS4AVW5zdXBwb3J0ZWQgZW5jb2RpbmcgbWV0aG9kLgBGYWlsZWQgdG8gZGVjb2RlIG1ldGFkYXRhLgBGYWlsZWQgdG8gZGVjb2RlIGdlb21ldHJ5IGRhdGEuAFB1cmUgdmlydHVhbCBmdW5jdGlvbiBjYWxsZWQhAAAAAAAAALQGAAAPAAAAEAAAABEAAAASAAAAEwAAABQAAAAVAAAAFgAAABcAAAALAAAAGAAAABkAAABONWRyYWNvMzBBdHRyaWJ1dGVRdWFudGl6YXRpb25UcmFuc2Zvcm1FAAAAANgrAACIBgAA4AYAAE41ZHJhY28xOEF0dHJpYnV0ZVRyYW5zZm9ybUUAAAAAsCsAAMAGAAAAAAAAbAcAABoAAAAbAAAAHAAAAB0AAAAeAAAAHwAAACAAAAAhAAAAIgAAACMAAAAkAAAAJQAAAE41ZHJhY28xN0F0dHJpYnV0ZXNEZWNvZGVyRQBONWRyYWNvMjZBdHRyaWJ1dGVzRGVjb2RlckludGVyZmFjZUUAAAAAsCsAADwHAADYKwAAIAcAAGQHAAAAAAAAzAcAACYAAAAnAAAAKAAAACkAAAAqAAAAKwAAACwAAAAtAAAALgAAAE41ZHJhY28yNlNlcXVlbnRpYWxBdHRyaWJ1dGVEZWNvZGVyRQAAAACwKwAApAcAAP////8AAAAARAgAAC8AAAAwAAAAHAAAADEAAAAyAAAAHwAAACAAAAAhAAAAMwAAADQAAAA1AAAANgAAADcAAABONWRyYWNvMzdTZXF1ZW50aWFsQXR0cmlidXRlRGVjb2RlcnNDb250cm9sbGVyRQDYKwAAFAgAAGwHAAAAAAAAuAgAADgAAAA5AAAAOgAAACkAAAAqAAAAKwAAADsAAAAtAAAAPAAAAD0AAAA+AAAAPwAAAEAAAABONWRyYWNvMzNTZXF1ZW50aWFsSW50ZWdlckF0dHJpYnV0ZURlY29kZXJFANgrAACMCAAAzAcAAAAAAABECwAAQQAAAEIAAABDAAAARAAAAEUAAABGAAAARwAAAEgAAABJAAAASgAAAEsAAABMAAAATjVkcmFjbzQwTWVzaFByZWRpY3Rpb25TY2hlbWVQYXJhbGxlbG9ncmFtRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28yN01lc2hQcmVkaWN0aW9uU2NoZW1lRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28yM1ByZWRpY3Rpb25TY2hlbWVEZWNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRUVFAE41ZHJhY28zN1ByZWRpY3Rpb25TY2hlbWVUeXBlZERlY29kZXJJbnRlcmZhY2VJaWlFRQBONWRyYWNvMzJQcmVkaWN0aW9uU2NoZW1lRGVjb2RlckludGVyZmFjZUUATjVkcmFjbzI1UHJlZGljdGlvblNjaGVtZUludGVyZmFjZUUAsCsAAOgKAADYKwAAvQoAAAwLAADYKwAAiQoAABQLAADYKwAANQoAACALAADYKwAAnwkAACwLAADYKwAA/AgAADgLAAAAAAAAOAsAAEEAAABNAAAAIwAAAEQAAAAjAAAARgAAAEcAAABIAAAASQAAAEoAAABLAAAAIwAAAAAAAAAsCwAAQQAAAE4AAAAjAAAARAAAACMAAABGAAAARwAAAEgAAABJAAAASgAAAEsAAAAjAAAAAAAAAKwMAABPAAAAUAAAAFEAAABEAAAAUgAAAEYAAABHAAAASAAAAEkAAABKAAAAUwAAAFQAAABONWRyYWNvNTZNZXNoUHJlZGljdGlvblNjaGVtZUNvbnN0cmFpbmVkTXVsdGlQYXJhbGxlbG9ncmFtRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAADYKwAA+AsAADgLAAAAAAAAmA0AAFUAAABWAAAAVwAAAEQAAABYAAAAWQAAAFoAAABbAAAASQAAAEoAAABcAAAAXQAAAE41ZHJhY280NE1lc2hQcmVkaWN0aW9uU2NoZW1lVGV4Q29vcmRzUG9ydGFibGVEZWNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUAANgrAADwDAAAOAsAAAAAAACEDgAAXgAAAF8AAABgAAAARAAAAGEAAABiAAAAYwAAAGQAAABJAAAASgAAAGUAAABmAAAATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxEZWNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUAAAAA2CsAANwNAAA4CwAAAAAAAAwQAABnAAAAaAAAAGkAAABqAAAAawAAAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQXJlYUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAAAAsCsAAFcPAADYKwAArA4AAAQQAAAAAAAABBAAAGcAAABsAAAAIwAAAGoAAAAjAAAAAAAAAJgRAABBAAAAbQAAAG4AAABEAAAAbwAAAEYAAABHAAAASAAAAEkAAABKAAAASwAAAHAAAABONWRyYWNvNDBNZXNoUHJlZGljdGlvblNjaGVtZVBhcmFsbGVsb2dyYW1EZWNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAADYKwAAAhEAACwLAADYKwAAbBAAAIwRAAAAAAAAjBEAAEEAAABxAAAAIwAAAEQAAAAjAAAARgAAAEcAAABIAAAASQAAAEoAAABLAAAAIwAAAAAAAAC8EgAAcgAAAHMAAAB0AAAARAAAAHUAAABGAAAARwAAAEgAAABJAAAASgAAAHYAAAB3AAAATjVkcmFjbzU2TWVzaFByZWRpY3Rpb25TY2hlbWVDb25zdHJhaW5lZE11bHRpUGFyYWxsZWxvZ3JhbURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAAAA2CsAABQSAACMEQAAAAAAAJwTAAB4AAAAeQAAAHoAAABEAAAAewAAAHwAAAB9AAAAfgAAAEkAAABKAAAAfwAAAIAAAABONWRyYWNvNDRNZXNoUHJlZGljdGlvblNjaGVtZVRleENvb3Jkc1BvcnRhYmxlRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUAAADYKwAAABMAAIwRAAAAAAAAeBQAAIEAAACCAAAAgwAAAEQAAACEAAAAhQAAAIYAAACHAAAASQAAAEoAAACIAAAAiQAAAE41ZHJhY280Mk1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsRGVjb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUA2CsAAOATAACMEQAAAAAAAOQVAACKAAAAiwAAAIwAAACNAAAAjgAAAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQXJlYUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcERlY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JCYXNlSWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRGVjb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQCwKwAAPhUAANgrAACgFAAA3BUAAAAAAADcFQAAigAAAI8AAAAjAAAAjQAAACMAAAAAAAAAoBYAAEEAAACQAAAAkQAAAEQAAACSAAAARgAAAEcAAABIAAAASQAAAEoAAABLAAAAkwAAAE41ZHJhY28yOFByZWRpY3Rpb25TY2hlbWVEZWx0YURlY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBEZWNvZGluZ1RyYW5zZm9ybUlpaUVFRUUAAAAA2CsAAEQWAAAsCwAAAAAAABQXAACUAAAAlQAAAJYAAAApAAAAKgAAAJcAAAA7AAAALQAAADwAAACYAAAAmQAAAJoAAACbAAAATjVkcmFjbzMyU2VxdWVudGlhbE5vcm1hbEF0dHJpYnV0ZURlY29kZXJFAADYKwAA6BYAALgIAAAAAAAASBkAAJwAAACdAAAAngAAAJ8AAACgAAAAoQAAAKIAAACjAAAApAAAAKUAAACmAAAApwAAAE41ZHJhY280Mk1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsRGVjb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWREZWNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28yN01lc2hQcmVkaWN0aW9uU2NoZW1lRGVjb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWREZWNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28yM1ByZWRpY3Rpb25TY2hlbWVEZWNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZERlY29kaW5nVHJhbnNmb3JtSWlFRUVFAADYKwAAwxgAACALAADYKwAAFRgAADAZAADYKwAAWBcAADwZAAAAAAAAABsAAKgAAACpAAAAqgAAAKsAAACsAAAATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JBcmVhSWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZERlY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JCYXNlSWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZERlY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUAAACwKwAAMxoAANgrAABwGQAA+BoAAAAAAACkHAAArQAAAK4AAACvAAAAnwAAALAAAACxAAAAsgAAALMAAACkAAAApQAAALQAAAC1AAAATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxEZWNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZERlY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZURlY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRGVjb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAAAAANgrAAD0GwAAMBkAANgrAABEGwAAmBwAAAAAAABAHgAAtgAAALcAAAC4AAAAuQAAALoAAABONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckFyZWFJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRGVjb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWREZWNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUAsCsAAIIdAADYKwAAzBwAADgeAAAAAAAA+B4AALsAAAC8AAAAvQAAAJ8AAAC+AAAAvwAAAMAAAADBAAAApAAAAKUAAADCAAAAwwAAAE41ZHJhY28yOFByZWRpY3Rpb25TY2hlbWVEZWx0YURlY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRGVjb2RpbmdUcmFuc2Zvcm1JaUVFRUUAAAAA2CsAAIQeAAAwGQAAAAAAAHwfAADEAAAAxQAAAMYAAAApAAAAKgAAAMcAAAA7AAAALQAAADwAAADIAAAAPgAAAD8AAADJAAAAygAAAMsAAABONWRyYWNvMzhTZXF1ZW50aWFsUXVhbnRpemF0aW9uQXR0cmlidXRlRGVjb2RlckUAAAAA2CsAAEgfAAC4CAAAAAAAANwfAADMAAAAzQAAAM4AAADPAAAAIwAAANAAAADRAAAA0gAAANMAAADUAAAA1QAAANYAAAAjAAAATjVkcmFjbzExTWVzaERlY29kZXJFAAAA2CsAAMQfAACcJwAAAAAAAEggAADXAAAA2AAAAM4AAADZAAAA2gAAANAAAADRAAAA0gAAANsAAADcAAAA3QAAAN4AAADfAAAATjVkcmFjbzIyTWVzaEVkZ2VicmVha2VyRGVjb2RlckUAAAAA2CsAACQgAADcHwAAAAAAADwhAADgAAAA4QAAAOIAAADjAAAA5AAAAOUAAADmAAAA5wAAAOgAAADpAAAA/////wAAAACcIQAA6gAAAOsAAADsAAAA7QAAAO4AAADvAAAA8AAAAPEAAADyAAAA8wAAAE41ZHJhY28yNk1lc2hFZGdlYnJlYWtlckRlY29kZXJJbXBsSU5TXzMxTWVzaEVkZ2VicmVha2VyVHJhdmVyc2FsRGVjb2RlckVFRQBONWRyYWNvMzVNZXNoRWRnZWJyZWFrZXJEZWNvZGVySW1wbEludGVyZmFjZUUAAACwKwAABCEAANgrAAC4IAAANCEAAE41ZHJhY28yNk1lc2hFZGdlYnJlYWtlckRlY29kZXJJbXBsSU5TXzM4TWVzaEVkZ2VicmVha2VyVHJhdmVyc2FsVmFsZW5jZURlY29kZXJFRUUAANgrAABIIQAANCEAAAAAAACYIgAA9AAAAPUAAAD2AAAATjVkcmFjbzE5RGVwdGhGaXJzdFRyYXZlcnNlcklOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVOU18zNk1lc2hBdHRyaWJ1dGVJbmRpY2VzRW5jb2RpbmdPYnNlcnZlcklTMV9FRUVFAE41ZHJhY28xM1RyYXZlcnNlckJhc2VJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQCwKwAAKSIAANgrAAC8IQAAkCIAAAAAAACQIgAA9wAAAPgAAAD2', + ) + l( + e, + 8900, + 'AQAAAAMAAAAFAAAABwAAAAAAAACYIwAA+QAAAPoAAAD7AAAA/AAAAE41ZHJhY28yMk1lc2hUcmF2ZXJzYWxTZXF1ZW5jZXJJTlNfMjhNYXhQcmVkaWN0aW9uRGVncmVlVHJhdmVyc2VySU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzJfRUVFRUVFAE41ZHJhY28xNVBvaW50c1NlcXVlbmNlckUAAAAAsCsAAHMjAADYKwAA7CIAAJAjAAD/////AAAAAIgkAAD9AAAA/gAAAP8AAABONWRyYWNvMjhNYXhQcmVkaWN0aW9uRGVncmVlVHJhdmVyc2VySU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQBONWRyYWNvMTNUcmF2ZXJzZXJCYXNlSU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQAAsCsAACUkAADYKwAAvCMAAIAkAAAAAAAAgCQAAAABAAABAQAA/wAAAAAAAABAJQAAAgEAAAMBAAAEAQAABQEAAE41ZHJhY28yMk1lc2hUcmF2ZXJzYWxTZXF1ZW5jZXJJTlNfMTlEZXB0aEZpcnN0VHJhdmVyc2VySU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzJfRUVFRUVFAAAA2CsAAMAkAACQIwAAAAAAAMAlAAAGAQAABwEAAP8AAABONWRyYWNvMTlEZXB0aEZpcnN0VHJhdmVyc2VySU5TXzExQ29ybmVyVGFibGVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzFfRUVFRQDYKwAAYCUAAIAkAAAAAAAAcCYAAAgBAAAJAQAACgEAAAsBAABONWRyYWNvMjJNZXNoVHJhdmVyc2FsU2VxdWVuY2VySU5TXzE5RGVwdGhGaXJzdFRyYXZlcnNlcklOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVOU18zNk1lc2hBdHRyaWJ1dGVJbmRpY2VzRW5jb2RpbmdPYnNlcnZlcklTMl9FRUVFRUUAANgrAADkJQAAkCM=', + ) + l( + e, + 9860, + '3CYAAMwAAAAMAQAAzgAAAM8AAAANAQAA0AAAANEAAADSAAAA0wAAANQAAADVAAAA1gAAAA4BAABONWRyYWNvMjFNZXNoU2VxdWVudGlhbERlY29kZXJFANgrAAC8JgAA3B8AAAAAAAAcJwAADwEAABABAAARAQAAEgEAAE41ZHJhY28xNUxpbmVhclNlcXVlbmNlckUAAADYKwAAACcAAJAjAAAAAAAAnCcAAMwAAAATAQAAFAEAAM8AAAAjAAAAFQEAANEAAADSAAAA0w==', + ) + l( + e, + 10080, + 'RmFpbGVkIHRvIHBhcnNlIERyYWNvIGhlYWRlci4ATjVkcmFjbzE3UG9pbnRDbG91ZERlY29kZXJFAAAAsCsAAH4nAAABAAAAAQAAAAIAAAACAAAABAAAAAQAAAAIAAAACAAAAAQAAAAIAAAAAQ==', + ) + l( + e, + 10211, + 'wAAAAMAAAADAAAAAwP//////////AAAAACAoAAAWAQAAFwEAABgBAAAZAQAATjVkcmFjbzRNZXNoRQAAANgrAAAQKAAAZCgAAP////8AAAAAAAAAAGQoAAAaAQAAGwEAABwBAAAdAQAATjVkcmFjbzEwUG9pbnRDbG91ZEUAAAAAsCsAAEwo', + ) + l( + e, + 10356, + 'AgAAAAMAAAAFAAAABwAAAAsAAAANAAAAEQAAABMAAAAXAAAAHQAAAB8AAAAlAAAAKQAAACsAAAAvAAAANQAAADsAAAA9AAAAQwAAAEcAAABJAAAATwAAAFMAAABZAAAAYQAAAGUAAABnAAAAawAAAG0AAABxAAAAfwAAAIMAAACJAAAAiwAAAJUAAACXAAAAnQAAAKMAAACnAAAArQAAALMAAAC1AAAAvwAAAMEAAADFAAAAxwAAANMAAAABAAAACwAAAA0AAAARAAAAEwAAABcAAAAdAAAAHwAAACUAAAApAAAAKwAAAC8AAAA1AAAAOwAAAD0AAABDAAAARwAAAEkAAABPAAAAUwAAAFkAAABhAAAAZQAAAGcAAABrAAAAbQAAAHEAAAB5AAAAfwAAAIMAAACJAAAAiwAAAI8AAACVAAAAlwAAAJ0AAACjAAAApwAAAKkAAACtAAAAswAAALUAAAC7AAAAvwAAAMEAAADFAAAAxwAAANEAAAAAAAAACgAAAGQAAADoAwAAECcAAKCGAQBAQg8AgJaYAADh9QUAypo7AAAAAAAAAAAwMDAxMDIwMzA0MDUwNjA3MDgwOTEwMTExMjEzMTQxNTE2MTcxODE5MjAyMTIyMjMyNDI1MjYyNzI4MjkzMDMxMzIzMzM0MzUzNjM3MzgzOTQwNDE0MjQzNDQ0NTQ2NDc0ODQ5NTA1MTUyNTM1NDU1NTY1NzU4NTk2MDYxNjI2MzY0NjU2NjY3Njg2OTcwNzE3MjczNzQ3NTc2Nzc3ODc5ODA4MTgyODM4NDg1ODY4Nzg4ODk5MDkxOTI5Mzk0OTU5Njk3OTg5OU4xMF9fY3h4YWJpdjExNl9fc2hpbV90eXBlX2luZm9FAAAAANgrAADoKgAAbC0AAE4xMF9fY3h4YWJpdjExN19fY2xhc3NfdHlwZV9pbmZvRQAAANgrAAAYKwAADCsAAE4xMF9fY3h4YWJpdjExN19fcGJhc2VfdHlwZV9pbmZvRQAAANgrAABIKwAADCsAAE4xMF9fY3h4YWJpdjExOV9fcG9pbnRlcl90eXBlX2luZm9FANgrAAB4KwAAbCsAAAAAAAA8KwAAHgEAAB8BAAAgAQAAIQEAACIBAAAjAQAAJAEAACUBAAAAAAAAICwAAB4BAAAmAQAAIAEAACEBAAAiAQAAJwEAACgBAAApAQAATjEwX19jeHhhYml2MTIwX19zaV9jbGFzc190eXBlX2luZm9FAAAAANgrAAD4KwAAPCsAAAAAAACQLAAADgAAACoBAAArAQAAAAAAALgsAAAOAAAALAEAAC0BAAAAAAAAeCwAAA4AAAAuAQAALwEAAFN0OWV4Y2VwdGlvbgAAAACwKwAAaCwAAFN0OWJhZF9hbGxvYwAAAADYKwAAgCwAAHgsAABTdDIwYmFkX2FycmF5X25ld19sZW5ndGgAAAAA2CsAAJwsAACQLAAAAAAAAOgsAAABAAAAMAEAADEBAABTdDExbG9naWNfZXJyb3IA2CsAANgsAAB4LAAAAAAAABwtAAABAAAAMgEAADEBAABTdDEybGVuZ3RoX2Vycm9yAAAAANgrAAAILQAA6CwAAAAAAABQLQAAAQAAADMBAAAxAQAAU3QxMm91dF9vZl9yYW5nZQAAAADYKwAAPC0AAOgsAABTdDl0eXBlX2luZm8AAAAAsCsAAFwt', + ) + l(e, 11636, '8C8B') + } + var r = new ArrayBuffer(16) + var s = new Int32Array(r) + var t = new Float32Array(r) + var u = new Float64Array(r) + function v() { + throw new Error('abort') + } + function w(x) { + t[2] = x + } + function y(z) { + return s[z] + } + function ha(q) { + var A = q.a + var B = A.a + var C = B.buffer + B.grow = fa + var D = new Int8Array(C) + var E = new Int16Array(C) + var F = new Int32Array(C) + var G = new Uint8Array(C) + var H = new Uint16Array(C) + var I = new Uint32Array(C) + var J = new Float32Array(C) + var K = new Float64Array(C) + var L = Math.imul + var M = Math.fround + var N = Math.abs + var O = Math.clz32 + var P = Math.min + var Q = Math.max + var R = Math.floor + var S = Math.ceil + var T = Math.trunc + var U = Math.sqrt + var V = A.b + var W = A.c + var X = A.d + var Y = A.e + var Z = 77808 + var _ = 0 + // EMSCRIPTEN_START_FUNCS + function mc(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + if (!a) { + return 1 + } + e = F[(c + 20) >> 2] + o = F[(c + 12) >> 2] + g = F[(c + 16) >> 2] + a: { + if ( + (((e | 0) >= (o | 0)) & (g >>> 0 >= I[(c + 8) >> 2])) | + ((e | 0) > (o | 0)) + ) { + break a + } + o = G[(g + F[c >> 2]) | 0] + g = (g + 1) | 0 + e = g ? e : (e + 1) | 0 + F[(c + 16) >> 2] = g + F[(c + 20) >> 2] = e + b: { + switch (o | 0) { + case 0: + e = a + f = b + g = d + a = 0 + d = 0 + j = (Z + -64) | 0 + Z = j + F[(j + 56) >> 2] = 0 + F[(j + 48) >> 2] = 0 + F[(j + 52) >> 2] = 0 + F[(j + 40) >> 2] = 0 + F[(j + 44) >> 2] = 0 + F[(j + 32) >> 2] = 0 + F[(j + 36) >> 2] = 0 + F[(j + 24) >> 2] = 0 + F[(j + 28) >> 2] = 0 + F[(j + 16) >> 2] = 0 + F[(j + 20) >> 2] = 0 + F[(j + 8) >> 2] = 0 + F[(j + 12) >> 2] = 0 + c: { + if (!Nd((j + 8) | 0, c)) { + break c + } + if ( + !Md((j + 8) | 0, c) | (F[(j + 20) >> 2] ? 0 : e) + ) { + break c + } + hc(c, 0, 0) + if (e) { + s = f << 2 + t = F[(j + 36) >> 2] + u = F[(j + 48) >> 2] + x = F[(j + 24) >> 2] + l = F[(j + 56) >> 2] + i = F[(j + 52) >> 2] + while (1) { + d: { + if (l >>> 0 > 16383) { + break d + } + while (1) { + if ((i | 0) <= 0) { + break d + } + i = (i - 1) | 0 + F[(j + 52) >> 2] = i + l = G[(i + u) | 0] | (l << 8) + F[(j + 56) >> 2] = l + if (l >>> 0 < 16384) { + continue + } + break + } + } + a = l & 4095 + r = F[((a << 2) + x) >> 2] + b = ((r << 3) + t) | 0 + l = + (((L(F[b >> 2], (l >>> 12) | 0) + a) | 0) - + F[(b + 4) >> 2]) | + 0 + F[(j + 56) >> 2] = l + if ((f | 0) > 0) { + a = 0 + if (!G[(c + 36) | 0] | (r >>> 0 > 32)) { + break c + } + o = (d + f) | 0 + e: { + if (!r) { + ma((g + (d << 2)) | 0, 0, s) + break e + } + y = r & -2 + z = r & 1 + b = F[(c + 32) >> 2] + h = F[(c + 28) >> 2] + q = F[(c + 24) >> 2] + while (1) { + k = 0 + a = b + m = 0 + n = 0 + if ((r | 0) != 1) { + while (1) { + p = (q + ((a >>> 3) | 0)) | 0 + f: { + if (p >>> 0 >= h >>> 0) { + p = 0 + break f + } + p = G[p | 0] + b = (a + 1) | 0 + F[(c + 32) >> 2] = b + p = (p >>> (a & 7)) & 1 + a = b + } + p = (p << k) | m + m = 0 + v = (q + ((a >>> 3) | 0)) | 0 + if (v >>> 0 < h >>> 0) { + m = G[v | 0] + b = (a + 1) | 0 + F[(c + 32) >> 2] = b + m = (m >>> (a & 7)) & 1 + a = b + } + v = k | 1 + k = (k + 2) | 0 + m = p | (m << v) + n = (n + 2) | 0 + if ((y | 0) != (n | 0)) { + continue + } + break + } + } + n = (g + (d << 2)) | 0 + if (z) { + p = (q + ((a >>> 3) | 0)) | 0 + if (p >>> 0 < h >>> 0) { + p = G[p | 0] + b = (a + 1) | 0 + F[(c + 32) >> 2] = b + a = (p >>> (a & 7)) & 1 + } else { + a = 0 + } + m = (a << k) | m + } + F[n >> 2] = m + d = (d + 1) | 0 + if ((o | 0) != (d | 0)) { + continue + } + break + } + } + d = o + } + w = (f + w) | 0 + if (e >>> 0 > w >>> 0) { + continue + } + break + } + } + D[(c + 36) | 0] = 0 + f = F[(c + 20) >> 2] + a = 0 + m = (F[(c + 32) >> 2] + 7) | 0 + a = m >>> 0 < 7 ? 1 : a + m = (a << 29) | (m >>> 3) + b = (m + F[(c + 16) >> 2]) | 0 + a = (((a >>> 3) | 0) + f) | 0 + F[(c + 16) >> 2] = b + F[(c + 20) >> 2] = b >>> 0 < m >>> 0 ? (a + 1) | 0 : a + a = 1 + } + b = F[(j + 36) >> 2] + if (b) { + F[(j + 40) >> 2] = b + ja(b) + } + b = F[(j + 24) >> 2] + if (b) { + F[(j + 28) >> 2] = b + ja(b) + } + b = F[(j + 8) >> 2] + if (b) { + F[(j + 12) >> 2] = b + ja(b) + } + Z = (j - -64) | 0 + return a + case 1: + break b + default: + break a + } + } + b = 0 + e = F[(c + 20) >> 2] + o = F[(c + 12) >> 2] + g = F[(c + 16) >> 2] + g: { + if ( + (((e | 0) >= (o | 0)) & (g >>> 0 >= I[(c + 8) >> 2])) | + ((e | 0) > (o | 0)) + ) { + break g + } + o = G[(g + F[c >> 2]) | 0] + g = (g + 1) | 0 + e = g ? e : (e + 1) | 0 + F[(c + 16) >> 2] = g + F[(c + 20) >> 2] = e + h: { + switch ((o - 1) | 0) { + case 8: + o = a + r = d + e = (Z + -64) | 0 + Z = e + F[(e + 56) >> 2] = 0 + F[(e + 48) >> 2] = 0 + F[(e + 52) >> 2] = 0 + F[(e + 40) >> 2] = 0 + F[(e + 44) >> 2] = 0 + F[(e + 32) >> 2] = 0 + F[(e + 36) >> 2] = 0 + F[(e + 24) >> 2] = 0 + F[(e + 28) >> 2] = 0 + F[(e + 16) >> 2] = 0 + F[(e + 20) >> 2] = 0 + F[(e + 8) >> 2] = 0 + F[(e + 12) >> 2] = 0 + h = (e + 8) | 0 + i: { + j: { + if (!H[(c + 38) >> 1]) { + break j + } + if (!Ta(1, (h + 12) | 0, c)) { + break j + } + b = F[(c + 8) >> 2] + d = F[(c + 16) >> 2] + f = (b - d) | 0 + i = F[(h + 12) >> 2] + b = + (F[(c + 12) >> 2] - + ((F[(c + 20) >> 2] + (b >>> 0 < d >>> 0)) | + 0)) | + 0 + if ( + ((f >>> 0 < (i >>> 6) >>> 0) & ((b | 0) <= 0)) | + ((b | 0) < 0) + ) { + break j + } + b = F[h >> 2] + a = (F[(h + 4) >> 2] - b) >> 2 + k: { + if (a >>> 0 < i >>> 0) { + qa(h, (i - a) | 0) + i = F[(h + 12) >> 2] + break k + } + if (a >>> 0 <= i >>> 0) { + break k + } + F[(h + 4) >> 2] = b + (i << 2) + } + g = 1 + if (!i) { + break i + } + f = F[(c + 16) >> 2] + d = F[(c + 20) >> 2] + s = F[h >> 2] + j = F[(c + 8) >> 2] + n = F[(c + 12) >> 2] + b = 0 + while (1) { + g = 0 + if ( + (((d | 0) >= (n | 0)) & + (f >>> 0 >= j >>> 0)) | + ((d | 0) > (n | 0)) + ) { + break i + } + g = F[c >> 2] + p = G[(g + f) | 0] + a = d + f = (f + 1) | 0 + a = f ? a : (a + 1) | 0 + F[(c + 16) >> 2] = f + d = a + F[(c + 20) >> 2] = a + a = (p >>> 2) | 0 + l = 0 + l: { + m: { + n: { + o: { + t = p & 3 + switch (t | 0) { + case 0: + break m + case 3: + break o + default: + break n + } + } + a = (a + b) | 0 + g = 0 + if (a >>> 0 >= i >>> 0) { + break i + } + ma( + (s + (b << 2)) | 0, + 0, + ((p & 252) + 4) | 0, + ) + b = a + break l + } + while (1) { + if ( + ((f | 0) == (j | 0)) & + ((d | 0) == (n | 0)) + ) { + break j + } + i = G[(f + g) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + a = (i << ((l << 3) | 6)) | a + l = (l + 1) | 0 + if ((t | 0) != (l | 0)) { + continue + } + break + } + } + F[(s + (b << 2)) >> 2] = a + } + b = (b + 1) | 0 + i = F[(h + 12) >> 2] + if (b >>> 0 < i >>> 0) { + continue + } + break + } + a = (h + 16) | 0 + n = F[h >> 2] + d = F[(h + 16) >> 2] + b = (F[(h + 20) >> 2] - d) | 0 + p: { + if (b >>> 0 <= 32767) { + qa(a, (8192 - ((b >>> 2) | 0)) | 0) + break p + } + if ((b | 0) == 32768) { + break p + } + F[(h + 20) >> 2] = d + 32768 + } + d = (h + 28) | 0 + b = F[d >> 2] + f = (F[(h + 32) >> 2] - b) >> 3 + q: { + if (f >>> 0 < i >>> 0) { + _a(d, (i - f) | 0) + b = F[d >> 2] + break q + } + if (f >>> 0 > i >>> 0) { + F[(h + 32) >> 2] = (i << 3) + b + } + if (!i) { + break j + } + } + j = F[a >> 2] + f = 0 + d = 0 + while (1) { + g = (n + (f << 2)) | 0 + l = F[g >> 2] + h = ((f << 3) + b) | 0 + a = d + F[(h + 4) >> 2] = a + F[h >> 2] = l + g = F[g >> 2] + d = (g + a) | 0 + if (d >>> 0 > 8192) { + break j + } + r: { + if (a >>> 0 >= d >>> 0) { + break r + } + l = 0 + h = g & 7 + if (h) { + while (1) { + F[(j + (a << 2)) >> 2] = f + a = (a + 1) | 0 + l = (l + 1) | 0 + if ((h | 0) != (l | 0)) { + continue + } + break + } + } + if ((g - 1) >>> 0 <= 6) { + break r + } + while (1) { + g = (j + (a << 2)) | 0 + F[g >> 2] = f + F[(g + 28) >> 2] = f + F[(g + 24) >> 2] = f + F[(g + 20) >> 2] = f + F[(g + 16) >> 2] = f + F[(g + 12) >> 2] = f + F[(g + 8) >> 2] = f + F[(g + 4) >> 2] = f + a = (a + 8) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + f = (f + 1) | 0 + if ((i | 0) != (f | 0)) { + continue + } + break + } + k = (d | 0) == 8192 + } + g = k + } + s: { + if (!g | (F[(e + 20) >> 2] ? 0 : o)) { + break s + } + d = 0 + k = (Z - 16) | 0 + Z = k + t: { + if (!Sa(1, (k + 8) | 0, c)) { + break t + } + a = F[(c + 8) >> 2] + f = F[(c + 16) >> 2] + g = (a - f) | 0 + j = F[(k + 12) >> 2] + i = F[(c + 20) >> 2] + a = + (F[(c + 12) >> 2] - + ((i + (a >>> 0 < f >>> 0)) | 0)) | + 0 + b = F[(k + 8) >> 2] + if ( + (((j | 0) == (a | 0)) & (g >>> 0 < b >>> 0)) | + (a >>> 0 < j >>> 0) + ) { + break t + } + a = (i + j) | 0 + g = (b + f) | 0 + a = g >>> 0 < f >>> 0 ? (a + 1) | 0 : a + F[(c + 16) >> 2] = g + F[(c + 20) >> 2] = a + if ((b | 0) <= 0) { + break t + } + a = (f + F[c >> 2]) | 0 + F[(e + 48) >> 2] = a + c = (b - 1) | 0 + f = (c + a) | 0 + g = G[f | 0] + u: { + if (g >>> 0 <= 63) { + F[(e + 52) >> 2] = c + a = G[f | 0] & 63 + break u + } + v: { + switch ((((g >>> 6) | 0) - 1) | 0) { + case 0: + if (b >>> 0 < 2) { + break t + } + b = (b - 2) | 0 + F[(e + 52) >> 2] = b + a = (a + b) | 0 + a = + ((G[(a + 1) | 0] << 8) & 16128) | + G[a | 0] + break u + case 1: + if (b >>> 0 < 3) { + break t + } + b = (b - 3) | 0 + F[(e + 52) >> 2] = b + a = (a + b) | 0 + a = + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) & 4128768) | + G[a | 0] + break u + default: + break v + } + } + b = (b - 4) | 0 + F[(e + 52) >> 2] = b + a = (a + b) | 0 + a = + (G[a | 0] | + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) | + (G[(a + 3) | 0] << 24))) & + 1073741823 + } + F[(e + 56) >> 2] = a + 32768 + d = a >>> 0 < 8355840 + } + Z = (k + 16) | 0 + if (!d) { + break s + } + if (!o) { + m = 1 + break s + } + b = F[(e + 52) >> 2] + a = F[(e + 56) >> 2] + c = F[(e + 36) >> 2] + d = F[(e + 48) >> 2] + f = F[(e + 24) >> 2] + while (1) { + w: { + if (a >>> 0 > 32767) { + break w + } + while (1) { + if ((b | 0) <= 0) { + break w + } + b = (b - 1) | 0 + F[(e + 52) >> 2] = b + a = G[(b + d) | 0] | (a << 8) + F[(e + 56) >> 2] = a + if (a >>> 0 < 32768) { + continue + } + break + } + } + m = a & 8191 + k = F[(f + (m << 2)) >> 2] + g = (c + (k << 3)) | 0 + a = + (((L(F[g >> 2], (a >>> 13) | 0) + m) | 0) - + F[(g + 4) >> 2]) | + 0 + F[(e + 56) >> 2] = a + F[(r + (q << 2)) >> 2] = k + m = 1 + q = (q + 1) | 0 + if ((o | 0) != (q | 0)) { + continue + } + break + } + } + a = F[(e + 36) >> 2] + if (a) { + F[(e + 40) >> 2] = a + ja(a) + } + a = F[(e + 24) >> 2] + if (a) { + F[(e + 28) >> 2] = a + ja(a) + } + a = F[(e + 8) >> 2] + if (a) { + F[(e + 12) >> 2] = a + ja(a) + } + Z = (e - -64) | 0 + b = m + break g + case 9: + o = a + r = d + g = (Z + -64) | 0 + Z = g + F[(g + 56) >> 2] = 0 + F[(g + 48) >> 2] = 0 + F[(g + 52) >> 2] = 0 + F[(g + 40) >> 2] = 0 + F[(g + 44) >> 2] = 0 + F[(g + 32) >> 2] = 0 + F[(g + 36) >> 2] = 0 + F[(g + 24) >> 2] = 0 + F[(g + 28) >> 2] = 0 + F[(g + 16) >> 2] = 0 + F[(g + 20) >> 2] = 0 + F[(g + 8) >> 2] = 0 + F[(g + 12) >> 2] = 0 + h = (g + 8) | 0 + x: { + y: { + if (!H[(c + 38) >> 1]) { + break y + } + if (!Ta(1, (h + 12) | 0, c)) { + break y + } + b = F[(c + 8) >> 2] + d = F[(c + 16) >> 2] + f = (b - d) | 0 + i = F[(h + 12) >> 2] + b = + (F[(c + 12) >> 2] - + ((F[(c + 20) >> 2] + (b >>> 0 < d >>> 0)) | + 0)) | + 0 + if ( + ((f >>> 0 < (i >>> 6) >>> 0) & ((b | 0) <= 0)) | + ((b | 0) < 0) + ) { + break y + } + b = F[h >> 2] + a = (F[(h + 4) >> 2] - b) >> 2 + z: { + if (a >>> 0 < i >>> 0) { + qa(h, (i - a) | 0) + i = F[(h + 12) >> 2] + break z + } + if (a >>> 0 <= i >>> 0) { + break z + } + F[(h + 4) >> 2] = b + (i << 2) + } + e = 1 + if (!i) { + break x + } + f = F[(c + 16) >> 2] + d = F[(c + 20) >> 2] + s = F[h >> 2] + j = F[(c + 8) >> 2] + n = F[(c + 12) >> 2] + b = 0 + while (1) { + e = 0 + if ( + (((d | 0) >= (n | 0)) & + (f >>> 0 >= j >>> 0)) | + ((d | 0) > (n | 0)) + ) { + break x + } + t = F[c >> 2] + p = G[(t + f) | 0] + e = d + f = (f + 1) | 0 + e = f ? e : (e + 1) | 0 + F[(c + 16) >> 2] = f + d = e + F[(c + 20) >> 2] = e + a = (p >>> 2) | 0 + l = 0 + A: { + B: { + C: { + D: { + e = p & 3 + switch (e | 0) { + case 0: + break B + case 3: + break D + default: + break C + } + } + a = (a + b) | 0 + e = 0 + if (a >>> 0 >= i >>> 0) { + break x + } + ma( + (s + (b << 2)) | 0, + 0, + ((p & 252) + 4) | 0, + ) + b = a + break A + } + while (1) { + if ( + ((f | 0) == (j | 0)) & + ((d | 0) == (n | 0)) + ) { + break y + } + i = G[(f + t) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + a = (i << ((l << 3) | 6)) | a + l = (l + 1) | 0 + if ((e | 0) != (l | 0)) { + continue + } + break + } + } + F[(s + (b << 2)) >> 2] = a + } + b = (b + 1) | 0 + i = F[(h + 12) >> 2] + if (b >>> 0 < i >>> 0) { + continue + } + break + } + a = (h + 16) | 0 + n = F[h >> 2] + d = F[(h + 16) >> 2] + b = (F[(h + 20) >> 2] - d) | 0 + E: { + if (b >>> 0 <= 131071) { + qa(a, (32768 - ((b >>> 2) | 0)) | 0) + break E + } + if ((b | 0) == 131072) { + break E + } + F[(h + 20) >> 2] = d + 131072 + } + d = (h + 28) | 0 + b = F[d >> 2] + f = (F[(h + 32) >> 2] - b) >> 3 + F: { + if (f >>> 0 < i >>> 0) { + _a(d, (i - f) | 0) + b = F[d >> 2] + break F + } + if (f >>> 0 > i >>> 0) { + F[(h + 32) >> 2] = (i << 3) + b + } + if (!i) { + break y + } + } + j = F[a >> 2] + f = 0 + d = 0 + while (1) { + e = (n + (f << 2)) | 0 + l = F[e >> 2] + h = ((f << 3) + b) | 0 + a = d + F[(h + 4) >> 2] = a + F[h >> 2] = l + e = F[e >> 2] + d = (e + a) | 0 + if (d >>> 0 > 32768) { + break y + } + G: { + if (a >>> 0 >= d >>> 0) { + break G + } + l = 0 + h = e & 7 + if (h) { + while (1) { + F[(j + (a << 2)) >> 2] = f + a = (a + 1) | 0 + l = (l + 1) | 0 + if ((h | 0) != (l | 0)) { + continue + } + break + } + } + if ((e - 1) >>> 0 <= 6) { + break G + } + while (1) { + e = (j + (a << 2)) | 0 + F[e >> 2] = f + F[(e + 28) >> 2] = f + F[(e + 24) >> 2] = f + F[(e + 20) >> 2] = f + F[(e + 16) >> 2] = f + F[(e + 12) >> 2] = f + F[(e + 8) >> 2] = f + F[(e + 4) >> 2] = f + a = (a + 8) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + f = (f + 1) | 0 + if ((i | 0) != (f | 0)) { + continue + } + break + } + k = (d | 0) == 32768 + } + e = k + } + H: { + if (!e | (F[(g + 20) >> 2] ? 0 : o)) { + break H + } + d = 0 + f = (Z - 16) | 0 + Z = f + I: { + if (!Sa(1, (f + 8) | 0, c)) { + break I + } + e = F[(c + 8) >> 2] + b = F[(c + 16) >> 2] + k = (e - b) | 0 + j = F[(f + 12) >> 2] + i = F[(c + 20) >> 2] + e = + (F[(c + 12) >> 2] - + ((i + (b >>> 0 > e >>> 0)) | 0)) | + 0 + a = F[(f + 8) >> 2] + if ( + (((j | 0) == (e | 0)) & (k >>> 0 < a >>> 0)) | + (e >>> 0 < j >>> 0) + ) { + break I + } + e = (i + j) | 0 + k = (a + b) | 0 + e = k >>> 0 < b >>> 0 ? (e + 1) | 0 : e + F[(c + 16) >> 2] = k + F[(c + 20) >> 2] = e + if ((a | 0) <= 0) { + break I + } + b = (b + F[c >> 2]) | 0 + F[(g + 48) >> 2] = b + c = (a - 1) | 0 + e = (c + b) | 0 + k = G[e | 0] + J: { + if (k >>> 0 <= 63) { + F[(g + 52) >> 2] = c + a = G[e | 0] & 63 + break J + } + K: { + switch ((((k >>> 6) | 0) - 1) | 0) { + case 0: + if (a >>> 0 < 2) { + break I + } + a = (a - 2) | 0 + F[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + ((G[(a + 1) | 0] << 8) & 16128) | + G[a | 0] + break J + case 1: + if (a >>> 0 < 3) { + break I + } + a = (a - 3) | 0 + F[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) & 4128768) | + G[a | 0] + break J + default: + break K + } + } + a = (a - 4) | 0 + F[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + (G[a | 0] | + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) | + (G[(a + 3) | 0] << 24))) & + 1073741823 + } + F[(g + 56) >> 2] = a + 131072 + d = a >>> 0 < 33423360 + } + Z = (f + 16) | 0 + if (!d) { + break H + } + if (!o) { + m = 1 + break H + } + b = F[(g + 52) >> 2] + a = F[(g + 56) >> 2] + c = F[(g + 36) >> 2] + d = F[(g + 48) >> 2] + f = F[(g + 24) >> 2] + while (1) { + L: { + if (a >>> 0 > 131071) { + break L + } + while (1) { + if ((b | 0) <= 0) { + break L + } + b = (b - 1) | 0 + F[(g + 52) >> 2] = b + a = G[(b + d) | 0] | (a << 8) + F[(g + 56) >> 2] = a + if (a >>> 0 < 131072) { + continue + } + break + } + } + m = a & 32767 + e = F[(f + (m << 2)) >> 2] + k = (c + (e << 3)) | 0 + a = + (((L(F[k >> 2], (a >>> 15) | 0) + m) | 0) - + F[(k + 4) >> 2]) | + 0 + F[(g + 56) >> 2] = a + F[(r + (q << 2)) >> 2] = e + m = 1 + q = (q + 1) | 0 + if ((o | 0) != (q | 0)) { + continue + } + break + } + } + a = F[(g + 36) >> 2] + if (a) { + F[(g + 40) >> 2] = a + ja(a) + } + a = F[(g + 24) >> 2] + if (a) { + F[(g + 28) >> 2] = a + ja(a) + } + a = F[(g + 8) >> 2] + if (a) { + F[(g + 12) >> 2] = a + ja(a) + } + Z = (g - -64) | 0 + b = m + break g + case 10: + o = a + r = d + g = (Z + -64) | 0 + Z = g + F[(g + 56) >> 2] = 0 + F[(g + 48) >> 2] = 0 + F[(g + 52) >> 2] = 0 + F[(g + 40) >> 2] = 0 + F[(g + 44) >> 2] = 0 + F[(g + 32) >> 2] = 0 + F[(g + 36) >> 2] = 0 + F[(g + 24) >> 2] = 0 + F[(g + 28) >> 2] = 0 + F[(g + 16) >> 2] = 0 + F[(g + 20) >> 2] = 0 + F[(g + 8) >> 2] = 0 + F[(g + 12) >> 2] = 0 + h = (g + 8) | 0 + M: { + N: { + if (!H[(c + 38) >> 1]) { + break N + } + if (!Ta(1, (h + 12) | 0, c)) { + break N + } + b = F[(c + 8) >> 2] + d = F[(c + 16) >> 2] + f = (b - d) | 0 + i = F[(h + 12) >> 2] + b = + (F[(c + 12) >> 2] - + ((F[(c + 20) >> 2] + (b >>> 0 < d >>> 0)) | + 0)) | + 0 + if ( + ((f >>> 0 < (i >>> 6) >>> 0) & ((b | 0) <= 0)) | + ((b | 0) < 0) + ) { + break N + } + b = F[h >> 2] + a = (F[(h + 4) >> 2] - b) >> 2 + O: { + if (a >>> 0 < i >>> 0) { + qa(h, (i - a) | 0) + i = F[(h + 12) >> 2] + break O + } + if (a >>> 0 <= i >>> 0) { + break O + } + F[(h + 4) >> 2] = b + (i << 2) + } + e = 1 + if (!i) { + break M + } + f = F[(c + 16) >> 2] + d = F[(c + 20) >> 2] + s = F[h >> 2] + j = F[(c + 8) >> 2] + n = F[(c + 12) >> 2] + b = 0 + while (1) { + e = 0 + if ( + (((d | 0) >= (n | 0)) & + (f >>> 0 >= j >>> 0)) | + ((d | 0) > (n | 0)) + ) { + break M + } + t = F[c >> 2] + p = G[(t + f) | 0] + a = d + f = (f + 1) | 0 + a = f ? a : (a + 1) | 0 + F[(c + 16) >> 2] = f + d = a + F[(c + 20) >> 2] = a + a = (p >>> 2) | 0 + l = 0 + P: { + Q: { + R: { + S: { + u = p & 3 + switch (u | 0) { + case 0: + break Q + case 3: + break S + default: + break R + } + } + a = (a + b) | 0 + e = 0 + if (a >>> 0 >= i >>> 0) { + break M + } + ma( + (s + (b << 2)) | 0, + 0, + ((p & 252) + 4) | 0, + ) + b = a + break P + } + while (1) { + if ( + ((f | 0) == (j | 0)) & + ((d | 0) == (n | 0)) + ) { + break N + } + i = G[(f + t) | 0] + e = d + f = (f + 1) | 0 + e = f ? e : (e + 1) | 0 + F[(c + 16) >> 2] = f + d = e + F[(c + 20) >> 2] = e + a = (i << ((l << 3) | 6)) | a + l = (l + 1) | 0 + if ((u | 0) != (l | 0)) { + continue + } + break + } + } + F[(s + (b << 2)) >> 2] = a + } + b = (b + 1) | 0 + i = F[(h + 12) >> 2] + if (b >>> 0 < i >>> 0) { + continue + } + break + } + a = (h + 16) | 0 + n = F[h >> 2] + d = F[(h + 16) >> 2] + b = (F[(h + 20) >> 2] - d) | 0 + T: { + if (b >>> 0 <= 262143) { + qa(a, (65536 - ((b >>> 2) | 0)) | 0) + break T + } + if ((b | 0) == 262144) { + break T + } + F[(h + 20) >> 2] = d + 262144 + } + d = (h + 28) | 0 + b = F[d >> 2] + f = (F[(h + 32) >> 2] - b) >> 3 + U: { + if (f >>> 0 < i >>> 0) { + _a(d, (i - f) | 0) + b = F[d >> 2] + break U + } + if (f >>> 0 > i >>> 0) { + F[(h + 32) >> 2] = (i << 3) + b + } + if (!i) { + break N + } + } + j = F[a >> 2] + f = 0 + d = 0 + while (1) { + e = (n + (f << 2)) | 0 + l = F[e >> 2] + h = ((f << 3) + b) | 0 + a = d + F[(h + 4) >> 2] = a + F[h >> 2] = l + e = F[e >> 2] + d = (e + a) | 0 + if (d >>> 0 > 65536) { + break N + } + V: { + if (a >>> 0 >= d >>> 0) { + break V + } + l = 0 + h = e & 7 + if (h) { + while (1) { + F[(j + (a << 2)) >> 2] = f + a = (a + 1) | 0 + l = (l + 1) | 0 + if ((h | 0) != (l | 0)) { + continue + } + break + } + } + if ((e - 1) >>> 0 <= 6) { + break V + } + while (1) { + e = (j + (a << 2)) | 0 + F[e >> 2] = f + F[(e + 28) >> 2] = f + F[(e + 24) >> 2] = f + F[(e + 20) >> 2] = f + F[(e + 16) >> 2] = f + F[(e + 12) >> 2] = f + F[(e + 8) >> 2] = f + F[(e + 4) >> 2] = f + a = (a + 8) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + f = (f + 1) | 0 + if ((i | 0) != (f | 0)) { + continue + } + break + } + k = (d | 0) == 65536 + } + e = k + } + W: { + if (!e | (F[(g + 20) >> 2] ? 0 : o)) { + break W + } + d = 0 + e = (Z - 16) | 0 + Z = e + X: { + if (!Sa(1, (e + 8) | 0, c)) { + break X + } + a = F[(c + 8) >> 2] + f = F[(c + 16) >> 2] + k = (a - f) | 0 + j = F[(e + 12) >> 2] + i = F[(c + 20) >> 2] + a = + (F[(c + 12) >> 2] - + ((i + (a >>> 0 < f >>> 0)) | 0)) | + 0 + b = F[(e + 8) >> 2] + if ( + (((j | 0) == (a | 0)) & (k >>> 0 < b >>> 0)) | + (a >>> 0 < j >>> 0) + ) { + break X + } + a = (i + j) | 0 + k = (b + f) | 0 + a = k >>> 0 < f >>> 0 ? (a + 1) | 0 : a + F[(c + 16) >> 2] = k + F[(c + 20) >> 2] = a + if ((b | 0) <= 0) { + break X + } + a = (f + F[c >> 2]) | 0 + F[(g + 48) >> 2] = a + c = (b - 1) | 0 + f = (c + a) | 0 + k = G[f | 0] + Y: { + if (k >>> 0 <= 63) { + F[(g + 52) >> 2] = c + a = G[f | 0] & 63 + break Y + } + Z: { + switch ((((k >>> 6) | 0) - 1) | 0) { + case 0: + if (b >>> 0 < 2) { + break X + } + b = (b - 2) | 0 + F[(g + 52) >> 2] = b + a = (a + b) | 0 + a = + ((G[(a + 1) | 0] << 8) & 16128) | + G[a | 0] + break Y + case 1: + if (b >>> 0 < 3) { + break X + } + b = (b - 3) | 0 + F[(g + 52) >> 2] = b + a = (a + b) | 0 + a = + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) & 4128768) | + G[a | 0] + break Y + default: + break Z + } + } + b = (b - 4) | 0 + F[(g + 52) >> 2] = b + a = (a + b) | 0 + a = + (G[a | 0] | + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) | + (G[(a + 3) | 0] << 24))) & + 1073741823 + } + F[(g + 56) >> 2] = a + 262144 + d = a >>> 0 < 66846720 + } + Z = (e + 16) | 0 + if (!d) { + break W + } + if (!o) { + m = 1 + break W + } + b = F[(g + 52) >> 2] + a = F[(g + 56) >> 2] + c = F[(g + 36) >> 2] + d = F[(g + 48) >> 2] + f = F[(g + 24) >> 2] + while (1) { + _: { + if (a >>> 0 > 262143) { + break _ + } + while (1) { + if ((b | 0) <= 0) { + break _ + } + b = (b - 1) | 0 + F[(g + 52) >> 2] = b + a = G[(b + d) | 0] | (a << 8) + F[(g + 56) >> 2] = a + if (a >>> 0 < 262144) { + continue + } + break + } + } + m = a & 65535 + e = F[(f + (m << 2)) >> 2] + k = (c + (e << 3)) | 0 + a = + (((L(F[k >> 2], (a >>> 16) | 0) + m) | 0) - + F[(k + 4) >> 2]) | + 0 + F[(g + 56) >> 2] = a + F[(r + (q << 2)) >> 2] = e + m = 1 + q = (q + 1) | 0 + if ((o | 0) != (q | 0)) { + continue + } + break + } + } + a = F[(g + 36) >> 2] + if (a) { + F[(g + 40) >> 2] = a + ja(a) + } + a = F[(g + 24) >> 2] + if (a) { + F[(g + 28) >> 2] = a + ja(a) + } + a = F[(g + 8) >> 2] + if (a) { + F[(g + 12) >> 2] = a + ja(a) + } + Z = (g - -64) | 0 + b = m + break g + case 11: + o = a + r = d + g = (Z + -64) | 0 + Z = g + F[(g + 56) >> 2] = 0 + F[(g + 48) >> 2] = 0 + F[(g + 52) >> 2] = 0 + F[(g + 40) >> 2] = 0 + F[(g + 44) >> 2] = 0 + F[(g + 32) >> 2] = 0 + F[(g + 36) >> 2] = 0 + F[(g + 24) >> 2] = 0 + F[(g + 28) >> 2] = 0 + F[(g + 16) >> 2] = 0 + F[(g + 20) >> 2] = 0 + F[(g + 8) >> 2] = 0 + F[(g + 12) >> 2] = 0 + h = (g + 8) | 0 + $: { + aa: { + if (!H[(c + 38) >> 1]) { + break aa + } + if (!Ta(1, (h + 12) | 0, c)) { + break aa + } + b = F[(c + 8) >> 2] + d = F[(c + 16) >> 2] + f = (b - d) | 0 + i = F[(h + 12) >> 2] + b = + (F[(c + 12) >> 2] - + ((F[(c + 20) >> 2] + (b >>> 0 < d >>> 0)) | + 0)) | + 0 + if ( + ((f >>> 0 < (i >>> 6) >>> 0) & ((b | 0) <= 0)) | + ((b | 0) < 0) + ) { + break aa + } + b = F[h >> 2] + a = (F[(h + 4) >> 2] - b) >> 2 + ba: { + if (a >>> 0 < i >>> 0) { + qa(h, (i - a) | 0) + i = F[(h + 12) >> 2] + break ba + } + if (a >>> 0 <= i >>> 0) { + break ba + } + F[(h + 4) >> 2] = b + (i << 2) + } + e = 1 + if (!i) { + break $ + } + f = F[(c + 16) >> 2] + d = F[(c + 20) >> 2] + s = F[h >> 2] + j = F[(c + 8) >> 2] + n = F[(c + 12) >> 2] + b = 0 + while (1) { + e = 0 + if ( + (((d | 0) >= (n | 0)) & + (f >>> 0 >= j >>> 0)) | + ((d | 0) > (n | 0)) + ) { + break $ + } + t = F[c >> 2] + p = G[(t + f) | 0] + e = d + f = (f + 1) | 0 + e = f ? e : (e + 1) | 0 + F[(c + 16) >> 2] = f + d = e + F[(c + 20) >> 2] = e + a = (p >>> 2) | 0 + l = 0 + ca: { + da: { + ea: { + fa: { + e = p & 3 + switch (e | 0) { + case 0: + break da + case 3: + break fa + default: + break ea + } + } + a = (a + b) | 0 + e = 0 + if (a >>> 0 >= i >>> 0) { + break $ + } + ma( + (s + (b << 2)) | 0, + 0, + ((p & 252) + 4) | 0, + ) + b = a + break ca + } + while (1) { + if ( + ((f | 0) == (j | 0)) & + ((d | 0) == (n | 0)) + ) { + break aa + } + i = G[(f + t) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + a = (i << ((l << 3) | 6)) | a + l = (l + 1) | 0 + if ((e | 0) != (l | 0)) { + continue + } + break + } + } + F[(s + (b << 2)) >> 2] = a + } + b = (b + 1) | 0 + i = F[(h + 12) >> 2] + if (b >>> 0 < i >>> 0) { + continue + } + break + } + a = (h + 16) | 0 + n = F[h >> 2] + d = F[(h + 16) >> 2] + b = (F[(h + 20) >> 2] - d) | 0 + ga: { + if (b >>> 0 <= 1048575) { + qa(a, (262144 - ((b >>> 2) | 0)) | 0) + break ga + } + if ((b | 0) == 1048576) { + break ga + } + F[(h + 20) >> 2] = d - -1048576 + } + d = (h + 28) | 0 + b = F[d >> 2] + f = (F[(h + 32) >> 2] - b) >> 3 + ha: { + if (f >>> 0 < i >>> 0) { + _a(d, (i - f) | 0) + b = F[d >> 2] + break ha + } + if (f >>> 0 > i >>> 0) { + F[(h + 32) >> 2] = (i << 3) + b + } + if (!i) { + break aa + } + } + j = F[a >> 2] + f = 0 + d = 0 + while (1) { + e = (n + (f << 2)) | 0 + l = F[e >> 2] + h = ((f << 3) + b) | 0 + a = d + F[(h + 4) >> 2] = a + F[h >> 2] = l + e = F[e >> 2] + d = (e + a) | 0 + if (d >>> 0 > 262144) { + break aa + } + ia: { + if (a >>> 0 >= d >>> 0) { + break ia + } + l = 0 + h = e & 7 + if (h) { + while (1) { + F[(j + (a << 2)) >> 2] = f + a = (a + 1) | 0 + l = (l + 1) | 0 + if ((h | 0) != (l | 0)) { + continue + } + break + } + } + if ((e - 1) >>> 0 <= 6) { + break ia + } + while (1) { + e = (j + (a << 2)) | 0 + F[e >> 2] = f + F[(e + 28) >> 2] = f + F[(e + 24) >> 2] = f + F[(e + 20) >> 2] = f + F[(e + 16) >> 2] = f + F[(e + 12) >> 2] = f + F[(e + 8) >> 2] = f + F[(e + 4) >> 2] = f + a = (a + 8) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + f = (f + 1) | 0 + if ((i | 0) != (f | 0)) { + continue + } + break + } + k = (d | 0) == 262144 + } + e = k + } + ja: { + if (!e | (F[(g + 20) >> 2] ? 0 : o)) { + break ja + } + d = 0 + f = (Z - 16) | 0 + Z = f + ka: { + if (!Sa(1, (f + 8) | 0, c)) { + break ka + } + e = F[(c + 8) >> 2] + b = F[(c + 16) >> 2] + k = (e - b) | 0 + j = F[(f + 12) >> 2] + i = F[(c + 20) >> 2] + e = + (F[(c + 12) >> 2] - + ((i + (b >>> 0 > e >>> 0)) | 0)) | + 0 + a = F[(f + 8) >> 2] + if ( + (((j | 0) == (e | 0)) & (k >>> 0 < a >>> 0)) | + (e >>> 0 < j >>> 0) + ) { + break ka + } + e = (i + j) | 0 + k = (a + b) | 0 + e = k >>> 0 < b >>> 0 ? (e + 1) | 0 : e + F[(c + 16) >> 2] = k + F[(c + 20) >> 2] = e + if ((a | 0) <= 0) { + break ka + } + b = (b + F[c >> 2]) | 0 + F[(g + 48) >> 2] = b + c = (a - 1) | 0 + e = (c + b) | 0 + k = G[e | 0] + la: { + if (k >>> 0 <= 63) { + F[(g + 52) >> 2] = c + a = G[e | 0] & 63 + break la + } + ma: { + switch ((((k >>> 6) | 0) - 1) | 0) { + case 0: + if (a >>> 0 < 2) { + break ka + } + a = (a - 2) | 0 + F[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + ((G[(a + 1) | 0] << 8) & 16128) | + G[a | 0] + break la + case 1: + if (a >>> 0 < 3) { + break ka + } + a = (a - 3) | 0 + F[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) & 4128768) | + G[a | 0] + break la + default: + break ma + } + } + a = (a - 4) | 0 + F[(g + 52) >> 2] = a + a = (a + b) | 0 + a = + (G[a | 0] | + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) | + (G[(a + 3) | 0] << 24))) & + 1073741823 + } + F[(g + 56) >> 2] = a - -1048576 + d = a >>> 0 < 267386880 + } + Z = (f + 16) | 0 + if (!d) { + break ja + } + if (!o) { + m = 1 + break ja + } + b = F[(g + 52) >> 2] + a = F[(g + 56) >> 2] + c = F[(g + 36) >> 2] + d = F[(g + 48) >> 2] + f = F[(g + 24) >> 2] + while (1) { + na: { + if (a >>> 0 > 1048575) { + break na + } + while (1) { + if ((b | 0) <= 0) { + break na + } + b = (b - 1) | 0 + F[(g + 52) >> 2] = b + a = G[(b + d) | 0] | (a << 8) + F[(g + 56) >> 2] = a + if (a >>> 0 < 1048576) { + continue + } + break + } + } + m = a & 262143 + e = F[(f + (m << 2)) >> 2] + k = (c + (e << 3)) | 0 + a = + (((L(F[k >> 2], (a >>> 18) | 0) + m) | 0) - + F[(k + 4) >> 2]) | + 0 + F[(g + 56) >> 2] = a + F[(r + (q << 2)) >> 2] = e + m = 1 + q = (q + 1) | 0 + if ((o | 0) != (q | 0)) { + continue + } + break + } + } + a = F[(g + 36) >> 2] + if (a) { + F[(g + 40) >> 2] = a + ja(a) + } + a = F[(g + 24) >> 2] + if (a) { + F[(g + 28) >> 2] = a + ja(a) + } + a = F[(g + 8) >> 2] + if (a) { + F[(g + 12) >> 2] = a + ja(a) + } + Z = (g - -64) | 0 + b = m + break g + case 12: + o = a + r = d + e = (Z + -64) | 0 + Z = e + F[(e + 56) >> 2] = 0 + F[(e + 48) >> 2] = 0 + F[(e + 52) >> 2] = 0 + F[(e + 40) >> 2] = 0 + F[(e + 44) >> 2] = 0 + F[(e + 32) >> 2] = 0 + F[(e + 36) >> 2] = 0 + F[(e + 24) >> 2] = 0 + F[(e + 28) >> 2] = 0 + F[(e + 16) >> 2] = 0 + F[(e + 20) >> 2] = 0 + F[(e + 8) >> 2] = 0 + F[(e + 12) >> 2] = 0 + h = (e + 8) | 0 + oa: { + pa: { + if (!H[(c + 38) >> 1]) { + break pa + } + if (!Ta(1, (h + 12) | 0, c)) { + break pa + } + b = F[(c + 8) >> 2] + d = F[(c + 16) >> 2] + f = (b - d) | 0 + i = F[(h + 12) >> 2] + b = + (F[(c + 12) >> 2] - + ((F[(c + 20) >> 2] + (b >>> 0 < d >>> 0)) | + 0)) | + 0 + if ( + ((f >>> 0 < (i >>> 6) >>> 0) & ((b | 0) <= 0)) | + ((b | 0) < 0) + ) { + break pa + } + b = F[h >> 2] + a = (F[(h + 4) >> 2] - b) >> 2 + qa: { + if (a >>> 0 < i >>> 0) { + qa(h, (i - a) | 0) + i = F[(h + 12) >> 2] + break qa + } + if (a >>> 0 <= i >>> 0) { + break qa + } + F[(h + 4) >> 2] = b + (i << 2) + } + g = 1 + if (!i) { + break oa + } + f = F[(c + 16) >> 2] + d = F[(c + 20) >> 2] + s = F[h >> 2] + j = F[(c + 8) >> 2] + n = F[(c + 12) >> 2] + b = 0 + while (1) { + g = 0 + if ( + (((d | 0) >= (n | 0)) & + (f >>> 0 >= j >>> 0)) | + ((d | 0) > (n | 0)) + ) { + break oa + } + g = F[c >> 2] + p = G[(g + f) | 0] + a = d + f = (f + 1) | 0 + a = f ? a : (a + 1) | 0 + F[(c + 16) >> 2] = f + d = a + F[(c + 20) >> 2] = a + a = (p >>> 2) | 0 + l = 0 + ra: { + sa: { + ta: { + ua: { + t = p & 3 + switch (t | 0) { + case 0: + break sa + case 3: + break ua + default: + break ta + } + } + a = (a + b) | 0 + g = 0 + if (a >>> 0 >= i >>> 0) { + break oa + } + ma( + (s + (b << 2)) | 0, + 0, + ((p & 252) + 4) | 0, + ) + b = a + break ra + } + while (1) { + if ( + ((f | 0) == (j | 0)) & + ((d | 0) == (n | 0)) + ) { + break pa + } + i = G[(f + g) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + a = (i << ((l << 3) | 6)) | a + l = (l + 1) | 0 + if ((t | 0) != (l | 0)) { + continue + } + break + } + } + F[(s + (b << 2)) >> 2] = a + } + b = (b + 1) | 0 + i = F[(h + 12) >> 2] + if (b >>> 0 < i >>> 0) { + continue + } + break + } + a = (h + 16) | 0 + n = F[h >> 2] + d = F[(h + 16) >> 2] + b = (F[(h + 20) >> 2] - d) | 0 + va: { + if (b >>> 0 <= 2097151) { + qa(a, (524288 - ((b >>> 2) | 0)) | 0) + break va + } + if ((b | 0) == 2097152) { + break va + } + F[(h + 20) >> 2] = d + 2097152 + } + d = (h + 28) | 0 + b = F[d >> 2] + f = (F[(h + 32) >> 2] - b) >> 3 + wa: { + if (f >>> 0 < i >>> 0) { + _a(d, (i - f) | 0) + b = F[d >> 2] + break wa + } + if (f >>> 0 > i >>> 0) { + F[(h + 32) >> 2] = (i << 3) + b + } + if (!i) { + break pa + } + } + j = F[a >> 2] + f = 0 + d = 0 + while (1) { + g = (n + (f << 2)) | 0 + l = F[g >> 2] + h = ((f << 3) + b) | 0 + a = d + F[(h + 4) >> 2] = a + F[h >> 2] = l + g = F[g >> 2] + d = (g + a) | 0 + if (d >>> 0 > 524288) { + break pa + } + xa: { + if (a >>> 0 >= d >>> 0) { + break xa + } + l = 0 + h = g & 7 + if (h) { + while (1) { + F[(j + (a << 2)) >> 2] = f + a = (a + 1) | 0 + l = (l + 1) | 0 + if ((h | 0) != (l | 0)) { + continue + } + break + } + } + if ((g - 1) >>> 0 <= 6) { + break xa + } + while (1) { + g = (j + (a << 2)) | 0 + F[g >> 2] = f + F[(g + 28) >> 2] = f + F[(g + 24) >> 2] = f + F[(g + 20) >> 2] = f + F[(g + 16) >> 2] = f + F[(g + 12) >> 2] = f + F[(g + 8) >> 2] = f + F[(g + 4) >> 2] = f + a = (a + 8) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + f = (f + 1) | 0 + if ((i | 0) != (f | 0)) { + continue + } + break + } + k = (d | 0) == 524288 + } + g = k + } + ya: { + if (!g | (F[(e + 20) >> 2] ? 0 : o)) { + break ya + } + d = 0 + k = (Z - 16) | 0 + Z = k + za: { + if (!Sa(1, (k + 8) | 0, c)) { + break za + } + a = F[(c + 8) >> 2] + f = F[(c + 16) >> 2] + g = (a - f) | 0 + j = F[(k + 12) >> 2] + i = F[(c + 20) >> 2] + a = + (F[(c + 12) >> 2] - + ((i + (a >>> 0 < f >>> 0)) | 0)) | + 0 + b = F[(k + 8) >> 2] + if ( + (((j | 0) == (a | 0)) & (g >>> 0 < b >>> 0)) | + (a >>> 0 < j >>> 0) + ) { + break za + } + a = (i + j) | 0 + g = (b + f) | 0 + a = g >>> 0 < f >>> 0 ? (a + 1) | 0 : a + F[(c + 16) >> 2] = g + F[(c + 20) >> 2] = a + if ((b | 0) <= 0) { + break za + } + a = (f + F[c >> 2]) | 0 + F[(e + 48) >> 2] = a + c = (b - 1) | 0 + f = (c + a) | 0 + g = G[f | 0] + Aa: { + if (g >>> 0 <= 63) { + F[(e + 52) >> 2] = c + a = G[f | 0] & 63 + break Aa + } + Ba: { + switch ((((g >>> 6) | 0) - 1) | 0) { + case 0: + if (b >>> 0 < 2) { + break za + } + b = (b - 2) | 0 + F[(e + 52) >> 2] = b + a = (a + b) | 0 + a = + ((G[(a + 1) | 0] << 8) & 16128) | + G[a | 0] + break Aa + case 1: + if (b >>> 0 < 3) { + break za + } + b = (b - 3) | 0 + F[(e + 52) >> 2] = b + a = (a + b) | 0 + a = + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) & 4128768) | + G[a | 0] + break Aa + default: + break Ba + } + } + b = (b - 4) | 0 + F[(e + 52) >> 2] = b + a = (a + b) | 0 + a = + (G[a | 0] | + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) | + (G[(a + 3) | 0] << 24))) & + 1073741823 + } + F[(e + 56) >> 2] = a + 2097152 + d = a >>> 0 < 534773760 + } + Z = (k + 16) | 0 + if (!d) { + break ya + } + if (!o) { + m = 1 + break ya + } + b = F[(e + 52) >> 2] + a = F[(e + 56) >> 2] + c = F[(e + 36) >> 2] + d = F[(e + 48) >> 2] + f = F[(e + 24) >> 2] + while (1) { + Ca: { + if (a >>> 0 > 2097151) { + break Ca + } + while (1) { + if ((b | 0) <= 0) { + break Ca + } + b = (b - 1) | 0 + F[(e + 52) >> 2] = b + a = G[(b + d) | 0] | (a << 8) + F[(e + 56) >> 2] = a + if (a >>> 0 < 2097152) { + continue + } + break + } + } + m = a & 524287 + k = F[(f + (m << 2)) >> 2] + g = (c + (k << 3)) | 0 + a = + (((L(F[g >> 2], (a >>> 19) | 0) + m) | 0) - + F[(g + 4) >> 2]) | + 0 + F[(e + 56) >> 2] = a + F[(r + (q << 2)) >> 2] = k + m = 1 + q = (q + 1) | 0 + if ((o | 0) != (q | 0)) { + continue + } + break + } + } + a = F[(e + 36) >> 2] + if (a) { + F[(e + 40) >> 2] = a + ja(a) + } + a = F[(e + 24) >> 2] + if (a) { + F[(e + 28) >> 2] = a + ja(a) + } + a = F[(e + 8) >> 2] + if (a) { + F[(e + 12) >> 2] = a + ja(a) + } + Z = (e - -64) | 0 + b = m + break g + case 17: + b = Ld(a, c, d) + break g + case 0: + case 1: + case 2: + case 3: + case 4: + case 5: + case 6: + case 7: + b = (Z + -64) | 0 + Z = b + F[(b + 56) >> 2] = 0 + F[(b + 48) >> 2] = 0 + F[(b + 52) >> 2] = 0 + F[(b + 40) >> 2] = 0 + F[(b + 44) >> 2] = 0 + F[(b + 32) >> 2] = 0 + F[(b + 36) >> 2] = 0 + F[(b + 24) >> 2] = 0 + F[(b + 28) >> 2] = 0 + F[(b + 16) >> 2] = 0 + F[(b + 20) >> 2] = 0 + F[(b + 8) >> 2] = 0 + F[(b + 12) >> 2] = 0 + Da: { + if ( + !Nd((b + 8) | 0, c) | (F[(b + 20) >> 2] ? 0 : a) + ) { + break Da + } + if (!Md((b + 8) | 0, c)) { + break Da + } + if (!a) { + f = 1 + break Da + } + m = F[(b + 52) >> 2] + c = F[(b + 56) >> 2] + e = F[(b + 36) >> 2] + g = F[(b + 48) >> 2] + o = F[(b + 24) >> 2] + while (1) { + Ea: { + if (c >>> 0 > 16383) { + break Ea + } + while (1) { + if ((m | 0) <= 0) { + break Ea + } + m = (m - 1) | 0 + F[(b + 52) >> 2] = m + c = G[(g + m) | 0] | (c << 8) + F[(b + 56) >> 2] = c + if (c >>> 0 < 16384) { + continue + } + break + } + } + f = c & 4095 + j = F[(o + (f << 2)) >> 2] + r = (e + (j << 3)) | 0 + c = + (((L(F[r >> 2], (c >>> 12) | 0) + f) | 0) - + F[(r + 4) >> 2]) | + 0 + F[(b + 56) >> 2] = c + F[((k << 2) + d) >> 2] = j + f = 1 + k = (k + 1) | 0 + if ((k | 0) != (a | 0)) { + continue + } + break + } + } + a = F[(b + 36) >> 2] + if (a) { + F[(b + 40) >> 2] = a + ja(a) + } + a = F[(b + 24) >> 2] + if (a) { + F[(b + 28) >> 2] = a + ja(a) + } + a = F[(b + 8) >> 2] + if (a) { + F[(b + 12) >> 2] = a + ja(a) + } + Z = (b - -64) | 0 + b = f + break g + case 13: + case 14: + case 15: + case 16: + break h + default: + break g + } + } + b = Ld(a, c, d) + } + f = b + } + return f + } + function ih(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + J = 0, + K = 0, + M = 0, + N = 0, + O = 0, + P = 0 + u = (Z + -64) | 0 + Z = u + F[(a + 132) >> 2] = 0 + if (F[(a + 148) >> 2]) { + b = F[(a + 144) >> 2] + if (b) { + while (1) { + f = F[b >> 2] + ja(b) + b = f + if (b) { + continue + } + break + } + } + b = 0 + F[(a + 144) >> 2] = 0 + f = F[(a + 140) >> 2] + a: { + if (!f) { + break a + } + if (f >>> 0 >= 4) { + c = f & -4 + while (1) { + e = b << 2 + F[(e + F[(a + 136) >> 2]) >> 2] = 0 + F[(F[(a + 136) >> 2] + (e | 4)) >> 2] = 0 + F[(F[(a + 136) >> 2] + (e | 8)) >> 2] = 0 + F[(F[(a + 136) >> 2] + (e | 12)) >> 2] = 0 + b = (b + 4) | 0 + d = (d + 4) | 0 + if ((c | 0) != (d | 0)) { + continue + } + break + } + } + f = f & 3 + if (!f) { + break a + } + d = 0 + while (1) { + F[(F[(a + 136) >> 2] + (b << 2)) >> 2] = 0 + b = (b + 1) | 0 + d = (d + 1) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + F[(a + 148) >> 2] = 0 + } + b: { + c: { + if (!Da(1, (u + 60) | 0, F[(F[(a + 4) >> 2] + 32) >> 2])) { + break c + } + F[(a + 156) >> 2] = F[(u + 60) >> 2] + if (!Da(1, (u + 56) | 0, F[(F[(a + 4) >> 2] + 32) >> 2])) { + break c + } + e = F[(u + 56) >> 2] + if ( + (e >>> 0 > 1431655765) | + (I[(a + 156) >> 2] > L(e, 3) >>> 0) + ) { + break c + } + b = F[(F[(a + 4) >> 2] + 32) >> 2] + c = F[(b + 8) >> 2] + k = F[(b + 12) >> 2] + d = F[(b + 20) >> 2] + f = F[(b + 16) >> 2] + if ( + (((k | 0) <= (d | 0)) & (f >>> 0 >= c >>> 0)) | + ((d | 0) > (k | 0)) + ) { + break c + } + k = G[(f + F[b >> 2]) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(b + 16) >> 2] = f + F[(b + 20) >> 2] = d + if (!Da(1, (u + 52) | 0, b)) { + break c + } + q = F[(u + 52) >> 2] + if ( + (q >>> 0 > e >>> 0) | + (e >>> 0 > (q + (((q >>> 0) / 3) | 0)) >>> 0) + ) { + break c + } + if (!Da(1, (u + 48) | 0, F[(F[(a + 4) >> 2] + 32) >> 2])) { + break c + } + d = F[(u + 48) >> 2] + if (d >>> 0 > q >>> 0) { + break c + } + F[(a + 28) >> 2] = F[(a + 24) >> 2] + f = Zb(ka(88)) + b = F[(a + 8) >> 2] + F[(a + 8) >> 2] = f + if (b) { + Za(b) + if (!F[(a + 8) >> 2]) { + break c + } + } + F[(a + 164) >> 2] = F[(a + 160) >> 2] + Ib((a + 160) | 0, e) + F[(a + 176) >> 2] = F[(a + 172) >> 2] + Ib((a + 172) | 0, e) + F[(a - -64) >> 2] = 0 + F[(a + 92) >> 2] = -1 + F[(a + 84) >> 2] = -1 + F[(a + 88) >> 2] = -1 + F[(a + 40) >> 2] = F[(a + 36) >> 2] + F[(a + 52) >> 2] = F[(a + 48) >> 2] + F[(a + 76) >> 2] = F[(a + 72) >> 2] + A = (a + 216) | 0 + Dd(A) + Cd(A, k) + if (!_c(F[(a + 8) >> 2], e, (d + F[(a + 156) >> 2]) | 0)) { + break c + } + b = F[(a + 156) >> 2] + D[(u + 8) | 0] = 1 + Ea((a + 120) | 0, (b + d) | 0, (u + 8) | 0) + if ((Bd(a, F[(F[(a + 4) >> 2] + 32) >> 2]) | 0) == -1) { + break c + } + c = (a + 232) | 0 + b = c + F[(b + 144) >> 2] = a + f = F[(($[F[(F[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2] + f = (F[f >> 2] + F[(f + 16) >> 2]) | 0 + e = F[(($[F[(F[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2] + e = (F[(e + 8) >> 2] - F[(e + 16) >> 2]) | 0 + ;(O = b), + (P = + H[ + (F[(($[F[(F[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2] + + 38) >> + 1 + ]), + (E[(O + 38) >> 1] = P) + F[b >> 2] = f + F[(b + 16) >> 2] = 0 + F[(b + 20) >> 2] = 0 + F[(b + 8) >> 2] = e + F[(b + 12) >> 2] = 0 + ;(O = b), + (P = $[F[(F[a >> 2] + 36) >> 2]](a) | 0), + (F[(O + 148) >> 2] = P) + F[(a + 372) >> 2] = k + F[(a + 384) >> 2] = d + F[(a + 156) >> 2] + K = Ja((u + 8) | 0) + k = K + f = 0 + j = (Z - 16) | 0 + Z = j + d: { + if (!Aa((b + 80) | 0, b)) { + break d + } + if (!yd(c)) { + break d + } + b = F[(c + 4) >> 2] + F[k >> 2] = F[c >> 2] + F[(k + 4) >> 2] = b + b = F[(c + 36) >> 2] + F[(k + 32) >> 2] = F[(c + 32) >> 2] + F[(k + 36) >> 2] = b + b = F[(c + 28) >> 2] + F[(k + 24) >> 2] = F[(c + 24) >> 2] + F[(k + 28) >> 2] = b + b = F[(c + 20) >> 2] + F[(k + 16) >> 2] = F[(c + 16) >> 2] + F[(k + 20) >> 2] = b + b = F[(c + 12) >> 2] + F[(k + 8) >> 2] = F[(c + 8) >> 2] + F[(k + 12) >> 2] = b + F[(c + 176) >> 2] = 2 + F[(c + 180) >> 2] = 7 + b = F[(c + 152) >> 2] + if ((b | 0) < 0) { + break d + } + F[(j + 12) >> 2] = 0 + f = 2 + h = F[(c + 156) >> 2] + e = (F[(c + 160) >> 2] - h) >> 2 + e: { + if (e >>> 0 < b >>> 0) { + Fa((c + 156) | 0, (b - e) | 0, (j + 12) | 0) + f = F[(c + 176) >> 2] + d = F[(c + 180) >> 2] + break e + } + d = 7 + if (b >>> 0 >= e >>> 0) { + break e + } + F[(c + 160) >> 2] = h + (b << 2) + } + e = (c + 184) | 0 + d = (((d - f) | 0) + 1) | 0 + b = F[(c + 188) >> 2] + f = F[(c + 184) >> 2] + s = (((b - f) | 0) / 12) | 0 + f: { + if (d >>> 0 > s >>> 0) { + h = 0 + b = (d - s) | 0 + o = F[(e + 8) >> 2] + f = F[(e + 4) >> 2] + g: { + if (b >>> 0 <= (((o - f) | 0) / 12) >>> 0) { + if (b) { + b = (L(b, 12) - 12) | 0 + b = (((b - ((b >>> 0) % 12 | 0)) | 0) + 12) | 0 + f = (ma(f, 0, b) + b) | 0 + } + F[(e + 4) >> 2] = f + break g + } + h: { + i: { + j: { + s = F[e >> 2] + g = (((f - s) | 0) / 12) | 0 + d = (g + b) | 0 + if (d >>> 0 < 357913942) { + o = (((o - s) | 0) / 12) | 0 + i = o << 1 + o = + o >>> 0 >= 178956970 + ? 357913941 + : d >>> 0 < i >>> 0 + ? i + : d + if (o) { + if (o >>> 0 >= 357913942) { + break j + } + h = ka(L(o, 12)) + } + d = (L(g, 12) + h) | 0 + b = (L(b, 12) - 12) | 0 + g = + (((b - ((b >>> 0) % 12 | 0)) | 0) + 12) | + 0 + b = ma(d, 0, g) + g = (b + g) | 0 + h = (L(o, 12) + h) | 0 + if ((f | 0) == (s | 0)) { + break i + } + while (1) { + d = (d - 12) | 0 + f = (f - 12) | 0 + F[d >> 2] = F[f >> 2] + F[(d + 4) >> 2] = F[(f + 4) >> 2] + F[(d + 8) >> 2] = F[(f + 8) >> 2] + F[(f + 8) >> 2] = 0 + F[f >> 2] = 0 + F[(f + 4) >> 2] = 0 + if ((f | 0) != (s | 0)) { + continue + } + break + } + F[(e + 8) >> 2] = h + b = F[(e + 4) >> 2] + F[(e + 4) >> 2] = g + f = F[e >> 2] + F[e >> 2] = d + if ((b | 0) == (f | 0)) { + break h + } + while (1) { + d = (b - 12) | 0 + h = F[d >> 2] + if (h) { + F[(b - 8) >> 2] = h + ja(h) + } + b = d + if ((f | 0) != (b | 0)) { + continue + } + break + } + break h + } + break b + } + oa() + v() + } + F[(e + 8) >> 2] = h + F[(e + 4) >> 2] = g + F[e >> 2] = b + } + if (f) { + ja(f) + } + } + d = F[(c + 188) >> 2] + break f + } + if (d >>> 0 >= s >>> 0) { + d = b + break f + } + d = (f + L(d, 12)) | 0 + if ((d | 0) != (b | 0)) { + while (1) { + f = (b - 12) | 0 + h = F[f >> 2] + if (h) { + F[(b - 8) >> 2] = h + ja(h) + } + b = f + if ((d | 0) != (b | 0)) { + continue + } + break + } + } + F[(c + 188) >> 2] = d + } + s = (c + 196) | 0 + f = F[(c + 184) >> 2] + b = (((d - f) | 0) / 12) | 0 + o = F[(c + 196) >> 2] + h = (F[(c + 200) >> 2] - o) >> 2 + k: { + if (b >>> 0 > h >>> 0) { + qa(s, (b - h) | 0) + f = F[(c + 184) >> 2] + d = F[(c + 188) >> 2] + break k + } + if (b >>> 0 >= h >>> 0) { + break k + } + F[(c + 200) >> 2] = o + (b << 2) + } + if ((d | 0) == (f | 0)) { + f = 1 + break d + } + b = 0 + while (1) { + l: { + if (!Da(1, (j + 8) | 0, k)) { + break l + } + f = F[(j + 8) >> 2] + d = F[(c + 148) >> 2] + if ( + f >>> 0 > + ((((F[(d + 4) >> 2] - F[d >> 2]) >> 2) >>> 0) / + 3) >>> + 0 + ) { + break l + } + if (f) { + g = L(b, 12) + h = (g + F[e >> 2]) | 0 + d = F[h >> 2] + o = (F[(h + 4) >> 2] - d) >> 2 + m: { + if (o >>> 0 < f >>> 0) { + qa(h, (f - o) | 0) + d = F[(g + F[e >> 2]) >> 2] + break m + } + if (f >>> 0 >= o >>> 0) { + break m + } + F[(h + 4) >> 2] = (f << 2) + d + } + mc(f, 1, k, d) + F[(F[s >> 2] + (b << 2)) >> 2] = f + } + f = 1 + b = (b + 1) | 0 + if ( + b >>> 0 < + (((F[(c + 188) >> 2] - F[(c + 184) >> 2]) | 0) / + 12) >>> + 0 + ) { + continue + } + break d + } + break + } + f = 0 + } + Z = (j + 16) | 0 + n: { + if (!f) { + break n + } + e = 0 + c = 0 + d = 0 + b = 0 + k = 0 + f = 0 + s = 0 + o = 0 + l = (Z - 96) | 0 + Z = l + F[(l + 72) >> 2] = 0 + F[(l + 64) >> 2] = 0 + F[(l + 68) >> 2] = 0 + F[(l + 48) >> 2] = 0 + F[(l + 52) >> 2] = 0 + F[(l + 40) >> 2] = 0 + F[(l + 44) >> 2] = 0 + F[(l + 56) >> 2] = 1065353216 + F[(l + 32) >> 2] = 0 + F[(l + 24) >> 2] = 0 + F[(l + 28) >> 2] = 0 + j = a + C = F[(a + 124) >> 2] + o: { + p: { + q: { + r: { + s: { + if ((q | 0) <= 0) { + break s + } + J = (j + 232) | 0 + M = F[(j + 216) >> 2] != F[(j + 220) >> 2] + B = 1 + t: { + while (1) { + h = s + s = (h + 1) | 0 + u: { + v: { + w: { + g = F[(j + 404) >> 2] + if ((g | 0) == -1) { + F[(j + 400) >> 2] = 7 + break w + } + a = -1 + i = (F[(j + 428) >> 2] + (g << 2)) | 0 + m = F[i >> 2] + g = (m - 1) | 0 + F[i >> 2] = g + if ((m | 0) <= 0) { + break r + } + g = + F[ + (F[ + (F[(j + 416) >> 2] + + L(F[(j + 404) >> 2], 12)) >> + 2 + ] + + (g << 2)) >> + 2 + ] + if (g >>> 0 > 4) { + break r + } + i = F[((g << 2) + 8896) >> 2] + F[(j + 400) >> 2] = i + if (!g) { + if ((b | 0) == (c | 0)) { + break r + } + i = -1 + m = F[(j + 8) >> 2] + B = F[(m + 24) >> 2] + t = (c - 4) | 0 + e = F[t >> 2] + g = -1 + x: { + if ((e | 0) == -1) { + break x + } + p = (e + 1) | 0 + p = + (p >>> 0) % 3 | 0 + ? p + : (e - 2) | 0 + g = -1 + if ((p | 0) == -1) { + break x + } + g = F[(F[m >> 2] + (p << 2)) >> 2] + } + n = F[(B + (g << 2)) >> 2] + if ((n | 0) != -1) { + i = (n + 1) | 0 + i = + (i >>> 0) % 3 | 0 + ? i + : (n - 2) | 0 + } + if ( + (((e | 0) != -1) & + (F[ + (F[(m + 12) >> 2] + + (e << 2)) >> + 2 + ] != + -1)) | + ((e | 0) == (i | 0)) + ) { + break r + } + n = F[(m + 12) >> 2] + if ( + ((i | 0) != -1) & + (F[(n + (i << 2)) >> 2] != -1) + ) { + break r + } + p = L(h, 3) + h = (p + 1) | 0 + F[(n + (e << 2)) >> 2] = h + x = h << 2 + F[(x + n) >> 2] = e + r = (p + 2) | 0 + F[(n + (i << 2)) >> 2] = r + w = r << 2 + F[(w + n) >> 2] = i + n = -1 + h = -1 + y: { + if ((e | 0) == -1) { + break y + } + z: { + if ((e >>> 0) % 3 | 0) { + e = (e - 1) | 0 + break z + } + e = (e + 2) | 0 + h = -1 + if ((e | 0) == -1) { + break y + } + } + h = F[(F[m >> 2] + (e << 2)) >> 2] + } + e = h + A: { + if ((i | 0) == -1) { + break A + } + h = (i + 1) | 0 + h = + (h >>> 0) % 3 | 0 + ? h + : (i - 2) | 0 + if ((h | 0) == -1) { + break A + } + n = F[(F[m >> 2] + (h << 2)) >> 2] + } + if ( + ((e | 0) == (g | 0)) | + ((g | 0) == (n | 0)) + ) { + break r + } + a = F[m >> 2] + F[(a + (p << 2)) >> 2] = g + F[(a + x) >> 2] = n + F[(a + w) >> 2] = e + if ((e | 0) != -1) { + F[(B + (e << 2)) >> 2] = r + } + a = + (F[(j + 120) >> 2] + + ((g >>> 3) & 536870908)) | + 0 + e = F[a >> 2] + ;(O = a), + (P = oi(g) & e), + (F[O >> 2] = P) + F[t >> 2] = p + e = b + kc(J, p) + break u + } + B: { + switch ((i - 1) | 0) { + case 2: + case 4: + if ((b | 0) == (c | 0)) { + break r + } + r = (c - 4) | 0 + e = F[r >> 2] + i = F[(j + 8) >> 2] + m = F[(i + 12) >> 2] + if ( + ((e | 0) != -1) & + (F[(m + (e << 2)) >> 2] != -1) + ) { + break r + } + c = L(h, 3) + n = (g | 0) == 3 + g = (c + (n ? 2 : 1)) | 0 + t = g << 2 + F[(t + m) >> 2] = e + F[(m + (e << 2)) >> 2] = g + Ma((i + 24) | 0, 8324) + p = F[(j + 8) >> 2] + m = F[(p + 24) >> 2] + if ( + (F[(p + 28) >> 2] - m) >> 2 > + (C | 0) + ) { + break r + } + a = F[p >> 2] + w = (a + t) | 0 + p = F[(i + 28) >> 2] + i = F[(i + 24) >> 2] + t = (((p - i) >> 2) - 1) | 0 + F[w >> 2] = t + if ((i | 0) != (p | 0)) { + F[(m + (t << 2)) >> 2] = g + } + g = n ? c : (c + 2) | 0 + w = (a + ((c + n) << 2)) | 0 + C: { + if ((e | 0) == -1) { + F[(a + (g << 2)) >> 2] = -1 + i = -1 + break C + } + D: { + E: { + F: { + if ((e >>> 0) % 3 | 0) { + i = (e - 1) | 0 + break F + } + i = (e + 2) | 0 + if ((i | 0) == -1) { + break E + } + } + i = F[(a + (i << 2)) >> 2] + F[(a + (g << 2)) >> 2] = i + if ((i | 0) == -1) { + break D + } + F[(m + (i << 2)) >> 2] = g + break D + } + F[(a + (g << 2)) >> 2] = -1 + } + i = (e + 1) | 0 + e = + (i >>> 0) % 3 | 0 + ? i + : (e - 2) | 0 + i = -1 + if ((e | 0) == -1) { + break C + } + i = F[(a + (e << 2)) >> 2] + } + F[w >> 2] = i + F[r >> 2] = c + e = b + break v + case 6: + break w + case 0: + break B + default: + break r + } + } + if ((e | 0) == (c | 0)) { + break r + } + f = (c - 4) | 0 + m = F[f >> 2] + F[(l + 68) >> 2] = f + n = F[(l + 44) >> 2] + G: { + if (!n) { + break G + } + g = F[(l + 40) >> 2] + p = ni(n) >>> 0 > 1 + a = h & (n + 2147483647) + H: { + if (!p) { + break H + } + a = h + if (a >>> 0 < n >>> 0) { + break H + } + a = (h >>> 0) % (n >>> 0) | 0 + } + i = a + a = F[(g + (i << 2)) >> 2] + if (!a) { + break G + } + a = F[a >> 2] + if (!a) { + break G + } + I: { + if (!p) { + g = (n - 1) | 0 + while (1) { + n = F[(a + 4) >> 2] + J: { + if ((n | 0) != (h | 0)) { + if ((i | 0) == (g & n)) { + break J + } + break G + } + if ( + (h | 0) == + F[(a + 8) >> 2] + ) { + break I + } + } + a = F[a >> 2] + if (a) { + continue + } + break + } + break G + } + while (1) { + g = F[(a + 4) >> 2] + K: { + if ((g | 0) != (h | 0)) { + if (g >>> 0 >= n >>> 0) { + g = + (g >>> 0) % (n >>> 0) | + 0 + } + if ((g | 0) == (i | 0)) { + break K + } + break G + } + if ( + (h | 0) == + F[(a + 8) >> 2] + ) { + break I + } + } + a = F[a >> 2] + if (a) { + continue + } + break + } + break G + } + if ((f | 0) != (k | 0)) { + F[f >> 2] = F[(a + 12) >> 2] + F[(l + 68) >> 2] = c + f = c + break G + } + b = (k - e) | 0 + c = b >> 2 + d = (c + 1) | 0 + if (d >>> 0 >= 1073741824) { + break b + } + f = (b >>> 1) | 0 + d = + b >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < f >>> 0 + ? f + : d + if (d) { + if (d >>> 0 >= 1073741824) { + break p + } + f = ka(d << 2) + } else { + f = 0 + } + b = (f + (c << 2)) | 0 + F[b >> 2] = F[(a + 12) >> 2] + d = (f + (d << 2)) | 0 + f = (b + 4) | 0 + if ((e | 0) != (k | 0)) { + while (1) { + b = (b - 4) | 0 + k = (k - 4) | 0 + F[b >> 2] = F[k >> 2] + if ((e | 0) != (k | 0)) { + continue + } + break + } + } + F[(l + 72) >> 2] = d + F[(l + 68) >> 2] = f + F[(l + 64) >> 2] = b + if (e) { + ja(e) + } + e = b + k = d + } + if ((e | 0) == (f | 0)) { + break t + } + x = (f - 4) | 0 + a = F[x >> 2] + if ((a | 0) == (m | 0)) { + break t + } + i = (a | 0) == -1 + g = F[(j + 8) >> 2] + if ( + !i & + (F[ + (F[(g + 12) >> 2] + (a << 2)) >> 2 + ] != + -1) + ) { + break t + } + n = F[(g + 12) >> 2] + if ( + ((m | 0) != -1) & + (F[(n + (m << 2)) >> 2] != -1) + ) { + break t + } + p = L(h, 3) + t = (p + 2) | 0 + F[(n + (a << 2)) >> 2] = t + c = t << 2 + F[(c + n) >> 2] = a + h = (p + 1) | 0 + F[(n + (m << 2)) >> 2] = h + w = h << 2 + F[(w + n) >> 2] = m + L: { + M: { + N: { + if (!i) { + if ((a >>> 0) % 3 | 0) { + h = (a - 1) | 0 + break N + } + h = (a + 2) | 0 + if ((h | 0) != -1) { + break N + } + i = F[g >> 2] + h = -1 + break M + } + h = -1 + i = F[g >> 2] + F[(i + (p << 2)) >> 2] = -1 + r = -1 + break L + } + i = F[g >> 2] + h = F[(i + (h << 2)) >> 2] + } + F[((p << 2) + i) >> 2] = h + r = (a + 1) | 0 + a = + (r >>> 0) % 3 | 0 + ? r + : (a - 2) | 0 + r = -1 + if ((a | 0) == -1) { + break L + } + r = F[((a << 2) + i) >> 2] + } + F[(i + w) >> 2] = r + O: { + if ((m | 0) == -1) { + F[(c + i) >> 2] = -1 + r = -1 + c = -1 + break O + } + P: { + Q: { + R: { + if ((m >>> 0) % 3 | 0) { + a = (m - 1) | 0 + break R + } + a = (m + 2) | 0 + if ((a | 0) == -1) { + break Q + } + } + a = F[((a << 2) + i) >> 2] + F[(c + i) >> 2] = a + if ((a | 0) == -1) { + break P + } + F[ + (F[(g + 24) >> 2] + + (a << 2)) >> + 2 + ] = t + break P + } + F[(c + i) >> 2] = -1 + } + r = -1 + a = (m + 1) | 0 + a = + (a >>> 0) % 3 | 0 + ? a + : (m - 2) | 0 + c = -1 + if ((a | 0) == -1) { + break O + } + r = F[((a << 2) + i) >> 2] + c = a + } + a = F[(j + 388) >> 2] + t = h << 2 + m = (a + t) | 0 + w = a + a = r << 2 + F[m >> 2] = + F[m >> 2] + F[(w + a) >> 2] + w = a + a = F[(g + 24) >> 2] + m = (w + a) | 0 + if ((h | 0) != -1) { + F[(a + t) >> 2] = F[m >> 2] + } + a = c + while (1) { + if ((a | 0) != -1) { + F[((a << 2) + i) >> 2] = h + t = (a + 1) | 0 + a = + (t >>> 0) % 3 | 0 + ? t + : (a - 2) | 0 + g = -1 + S: { + if ((a | 0) == -1) { + break S + } + a = F[(n + (a << 2)) >> 2] + g = -1 + if ((a | 0) == -1) { + break S + } + g = (a + 1) | 0 + g = + (g >>> 0) % 3 | 0 + ? g + : (a - 2) | 0 + } + a = g + if ((c | 0) != (a | 0)) { + continue + } + break t + } + break + } + F[m >> 2] = -1 + T: { + U: { + if (M) { + break U + } + if ((y | 0) != (z | 0)) { + F[z >> 2] = r + z = (z + 4) | 0 + F[(l + 28) >> 2] = z + break U + } + a = (y - o) | 0 + g = a >> 2 + c = (g + 1) | 0 + if (c >>> 0 >= 1073741824) { + break T + } + h = (a >>> 1) | 0 + h = + a >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < h >>> 0 + ? h + : c + if (h) { + if (h >>> 0 >= 1073741824) { + break p + } + c = ka(h << 2) + } else { + c = 0 + } + a = (c + (g << 2)) | 0 + F[a >> 2] = r + z = (a + 4) | 0 + if ((o | 0) != (y | 0)) { + while (1) { + a = (a - 4) | 0 + y = (y - 4) | 0 + F[a >> 2] = F[y >> 2] + if ((o | 0) != (y | 0)) { + continue + } + break + } + } + y = (c + (h << 2)) | 0 + F[(l + 32) >> 2] = y + F[(l + 28) >> 2] = z + F[(l + 24) >> 2] = a + if (o) { + ja(o) + } + o = a + } + F[x >> 2] = p + c = f + kc(J, p) + break u + } + break b + } + g = F[(j + 8) >> 2] + Ma((g + 24) | 0, 8324) + a = -1 + k = F[(j + 8) >> 2] + f = L(h, 3) + i = F[(g + 28) >> 2] + m = F[(g + 24) >> 2] + n = (i - m) | 0 + g = n >> 2 + p = (g - 1) | 0 + F[(F[k >> 2] + (f << 2)) >> 2] = p + Ma((k + 24) | 0, 8324) + r = (f + 1) | 0 + F[(F[k >> 2] + (r << 2)) >> 2] = + ((F[(k + 28) >> 2] - + F[(k + 24) >> 2]) >> + 2) - + 1 + k = F[(j + 8) >> 2] + Ma((k + 24) | 0, 8324) + t = (f + 2) | 0 + F[(F[k >> 2] + (t << 2)) >> 2] = + ((F[(k + 28) >> 2] - + F[(k + 24) >> 2]) >> + 2) - + 1 + x = F[(j + 8) >> 2] + k = F[(x + 24) >> 2] + if ( + (F[(x + 28) >> 2] - k) >> 2 > + (C | 0) + ) { + break r + } + V: { + W: { + if ((i | 0) != (m | 0)) { + F[(k + (p << 2)) >> 2] = f + a = 0 + if ((n | 0) == -4) { + break W + } + } + F[(k + (g << 2)) >> 2] = r + a = (g + 1) | 0 + if ((a | 0) == -1) { + break V + } + } + F[(k + (a << 2)) >> 2] = t + } + if ((d | 0) != (c | 0)) { + F[c >> 2] = f + f = (c + 4) | 0 + F[(l + 68) >> 2] = f + k = d + break v + } + a = (d - b) | 0 + k = a >> 2 + e = (k + 1) | 0 + if (e >>> 0 >= 1073741824) { + break b + } + c = (a >>> 1) | 0 + a = + a >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 < c >>> 0 + ? c + : e + if (a) { + if (a >>> 0 >= 1073741824) { + break p + } + c = ka(a << 2) + } else { + c = 0 + } + e = (c + (k << 2)) | 0 + F[e >> 2] = f + k = (c + (a << 2)) | 0 + f = (e + 4) | 0 + if ((b | 0) != (d | 0)) { + while (1) { + e = (e - 4) | 0 + d = (d - 4) | 0 + F[e >> 2] = F[d >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + F[(l + 72) >> 2] = k + F[(l + 68) >> 2] = f + F[(l + 64) >> 2] = e + if (b) { + ja(b) + } + d = k + b = e + } + kc(J, F[(f - 4) >> 2]) + a = F[(j + 40) >> 2] + X: { + if ((a | 0) == F[(j + 36) >> 2]) { + break X + } + c = (a - 12) | 0 + g = F[(c + 4) >> 2] + h = (q + (h ^ -1)) | 0 + if (g >>> 0 > h >>> 0) { + break t + } + if ((g | 0) != (h | 0)) { + break X + } + i = G[(a - 4) | 0] + g = F[c >> 2] + F[(j + 40) >> 2] = c + if ((g | 0) < 0) { + break t + } + m = (f - 4) | 0 + a = F[m >> 2] + F[(l + 20) >> 2] = q + (g ^ -1) + c = (l + 20) | 0 + F[(l + 88) >> 2] = c + Fb(l, (l + 40) | 0, c, (l + 88) | 0) + g = F[l >> 2] + Y: { + if (i & 1) { + c = -1 + if ((a | 0) == -1) { + break Y + } + c = (a + 1) | 0 + c = + (c >>> 0) % 3 | 0 + ? c + : (a - 2) | 0 + break Y + } + c = -1 + if ((a | 0) == -1) { + break Y + } + c = (a - 1) | 0 + if ((a >>> 0) % 3 | 0) { + break Y + } + c = (a + 2) | 0 + } + F[(g + 12) >> 2] = c + a = F[(j + 40) >> 2] + if ((a | 0) == F[(j + 36) >> 2]) { + break X + } + while (1) { + c = (a - 12) | 0 + g = F[(c + 4) >> 2] + if (g >>> 0 > h >>> 0) { + break t + } + if ((g | 0) != (h | 0)) { + break X + } + i = G[(a - 4) | 0] + g = F[c >> 2] + F[(j + 40) >> 2] = c + if ((g | 0) < 0) { + break t + } + a = F[m >> 2] + F[(l + 20) >> 2] = q + (g ^ -1) + c = (l + 20) | 0 + F[(l + 88) >> 2] = c + Fb(l, (l + 40) | 0, c, (l + 88) | 0) + g = F[l >> 2] + Z: { + if (i & 1) { + c = -1 + if ((a | 0) == -1) { + break Z + } + c = (a + 1) | 0 + c = + (c >>> 0) % 3 | 0 + ? c + : (a - 2) | 0 + break Z + } + c = -1 + if ((a | 0) == -1) { + break Z + } + c = (a - 1) | 0 + if ((a >>> 0) % 3 | 0) { + break Z + } + c = (a + 2) | 0 + } + F[(g + 12) >> 2] = c + a = F[(j + 40) >> 2] + if ((a | 0) != F[(j + 36) >> 2]) { + continue + } + break + } + } + c = f + } + B = (q | 0) > (s | 0) + if ((q | 0) != (s | 0)) { + continue + } + break + } + s = q + break s + } + a = -1 + if (B) { + break r + } + } + a = -1 + c = F[(j + 8) >> 2] + if ( + (F[(c + 28) >> 2] - F[(c + 24) >> 2]) >> 2 > + (C | 0) + ) { + break r + } + if ((b | 0) != (f | 0)) { + m = (j + 72) | 0 + k = (j + 60) | 0 + n = (j + 312) | 0 + while (1) { + f = (f - 4) | 0 + q = F[f >> 2] + F[(l + 68) >> 2] = f + _: { + if (wa(n)) { + g = F[(j + 8) >> 2] + o = F[g >> 2] + if ( + (((((F[(g + 4) >> 2] - o) >> 2) >>> 0) / + 3) | + 0) <= + (s | 0) + ) { + a = -1 + break r + } + b = -1 + i = F[(g + 24) >> 2] + a = -1 + $: { + if ((q | 0) == -1) { + break $ + } + e = (q + 1) | 0 + e = (e >>> 0) % 3 | 0 ? e : (q - 2) | 0 + a = -1 + if ((e | 0) == -1) { + break $ + } + a = F[(o + (e << 2)) >> 2] + } + e = a + a = F[(i + (e << 2)) >> 2] + aa: { + if ((a | 0) == -1) { + h = 1 + c = -1 + break aa + } + h = 1 + c = -1 + d = (a + 1) | 0 + a = (d >>> 0) % 3 | 0 ? d : (a - 2) | 0 + if ((a | 0) == -1) { + break aa + } + h = 0 + b = (a + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (a - 2) | 0 + if ((b | 0) != -1) { + c = F[(o + (b << 2)) >> 2] + } + b = a + } + a = -1 + d = -1 + i = F[(i + (c << 2)) >> 2] + if ((i | 0) != -1) { + d = (i + 1) | 0 + d = (d >>> 0) % 3 | 0 ? d : (i - 2) | 0 + } + if ( + ((b | 0) == (q | 0)) | + ((d | 0) == (q | 0)) | + ((((q | 0) != -1) & + (F[ + (F[(g + 12) >> 2] + (q << 2)) >> 2 + ] != + -1)) | + ((b | 0) == (d | 0))) + ) { + break r + } + if ( + !h & + (F[ + (F[(g + 12) >> 2] + (b << 2)) >> 2 + ] != + -1) + ) { + break r + } + h = -1 + g = F[(g + 12) >> 2] + i = -1 + ba: { + if ((d | 0) == -1) { + break ba + } + if (F[(g + (d << 2)) >> 2] != -1) { + break r + } + a = (d + 1) | 0 + a = (a >>> 0) % 3 | 0 ? a : (d - 2) | 0 + i = -1 + if ((a | 0) == -1) { + break ba + } + i = F[(o + (a << 2)) >> 2] + } + a = L(s, 3) + F[l >> 2] = a + F[(g + (a << 2)) >> 2] = q + F[(g + (q << 2)) >> 2] = a + a = (F[l >> 2] + 1) | 0 + F[(g + (a << 2)) >> 2] = b + F[(g + (b << 2)) >> 2] = a + a = (F[l >> 2] + 2) | 0 + F[(g + (a << 2)) >> 2] = d + F[(g + (d << 2)) >> 2] = a + a = F[l >> 2] + F[(o + (a << 2)) >> 2] = c + b = (a + 1) | 0 + d = (o + (b << 2)) | 0 + F[d >> 2] = i + q = (a + 2) | 0 + o = (o + (q << 2)) | 0 + F[o >> 2] = e + a = F[(j + 120) >> 2] + e = b ? c : -1 + c = (a + ((e >>> 3) & 536870908)) | 0 + g = F[c >> 2] + ;(O = c), (P = oi(e) & g), (F[O >> 2] = P) + h = (b | 0) != -1 ? F[d >> 2] : h + b = (a + ((h >>> 3) & 536870908)) | 0 + d = F[b >> 2] + ;(O = b), (P = oi(h) & d), (F[O >> 2] = P) + d = -1 + d = (q | 0) != -1 ? F[o >> 2] : d + a = (a + ((d >>> 3) & 536870908)) | 0 + b = F[a >> 2] + ;(O = a), (P = oi(d) & b), (F[O >> 2] = P) + D[(l + 88) | 0] = 1 + wd(k, (l + 88) | 0) + Ma(m, l) + s = (s + 1) | 0 + b = F[(l + 64) >> 2] + break _ + } + d = F[(j + 64) >> 2] + a = F[(j + 68) >> 2] + if ((d | 0) == a << 5) { + if (((d + 1) | 0) < 0) { + break b + } + if (d >>> 0 <= 1073741822) { + a = a << 6 + d = ((d & -32) + 32) | 0 + a = a >>> 0 > d >>> 0 ? a : d + } else { + a = 2147483647 + } + $a(k, a) + d = F[(j + 64) >> 2] + } + F[(j + 64) >> 2] = d + 1 + a = + (F[(j + 60) >> 2] + + ((d >>> 3) & 536870908)) | + 0 + e = F[a >> 2] + ;(O = a), (P = oi(d) & e), (F[O >> 2] = P) + d = F[(j + 76) >> 2] + if ((d | 0) != F[(j + 80) >> 2]) { + F[d >> 2] = q + F[(j + 76) >> 2] = d + 4 + break _ + } + c = F[m >> 2] + a = (d - c) | 0 + o = a >> 2 + e = (o + 1) | 0 + if (e >>> 0 >= 1073741824) { + break b + } + h = (a >>> 1) | 0 + h = + a >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 < h >>> 0 + ? h + : e + if (h) { + if (h >>> 0 >= 1073741824) { + break p + } + a = ka(h << 2) + } else { + a = 0 + } + e = (a + (o << 2)) | 0 + F[e >> 2] = q + q = (e + 4) | 0 + if ((d | 0) != (c | 0)) { + while (1) { + e = (e - 4) | 0 + d = (d - 4) | 0 + F[e >> 2] = F[d >> 2] + if ((d | 0) != (c | 0)) { + continue + } + break + } + } + F[(j + 80) >> 2] = a + (h << 2) + F[(j + 76) >> 2] = q + F[(j + 72) >> 2] = e + if (!c) { + break _ + } + ja(c) + } + if ((b | 0) != (f | 0)) { + continue + } + break + } + c = F[(j + 8) >> 2] + } + a = -1 + if ( + (((((F[(c + 4) >> 2] - F[c >> 2]) >> 2) >>> 0) / + 3) | + 0) != + (s | 0) + ) { + break r + } + a = (F[(c + 28) >> 2] - F[(c + 24) >> 2]) >> 2 + f = F[(l + 24) >> 2] + h = F[(l + 28) >> 2] + if ((f | 0) == (h | 0)) { + break q + } + while (1) { + b = F[f >> 2] + k = F[(c + 24) >> 2] + d = (a - 1) | 0 + e = (k + (d << 2)) | 0 + if (F[e >> 2] == -1) { + while (1) { + d = (a - 2) | 0 + a = (a - 1) | 0 + e = (k + (d << 2)) | 0 + if (F[e >> 2] == -1) { + continue + } + break + } + } + if (b >>> 0 <= d >>> 0) { + F[l >> 2] = c + e = F[e >> 2] + D[(l + 12) | 0] = 1 + F[(l + 8) >> 2] = e + F[(l + 4) >> 2] = e + if ((e | 0) != -1) { + while (1) { + e = + (F[F[(j + 8) >> 2] >> 2] + (e << 2)) | 0 + if (F[e >> 2] != (d | 0)) { + a = -1 + break r + } + F[e >> 2] = b + nc(l) + e = F[(l + 8) >> 2] + if ((e | 0) != -1) { + continue + } + break + } + c = F[(j + 8) >> 2] + } + k = F[(c + 24) >> 2] + e = (k + (d << 2)) | 0 + if ((b | 0) != -1) { + F[(k + (b << 2)) >> 2] = F[e >> 2] + } + F[e >> 2] = -1 + e = 1 << b + k = F[(j + 120) >> 2] + b = (k + ((b >>> 3) & 536870908)) | 0 + k = (k + ((d >>> 3) & 536870908)) | 0 + d = 1 << d + if (F[k >> 2] & d) { + e = e | F[b >> 2] + } else { + e = F[b >> 2] & (e ^ -1) + } + F[b >> 2] = e + F[k >> 2] = F[k >> 2] & (d ^ -1) + a = (a - 1) | 0 + } + f = (f + 4) | 0 + if ((h | 0) != (f | 0)) { + continue + } + break + } + } + f = F[(l + 24) >> 2] + } + if (f) { + ja(f) + } + b = F[(l + 48) >> 2] + if (b) { + while (1) { + d = F[b >> 2] + ja(b) + b = d + if (b) { + continue + } + break + } + } + b = F[(l + 40) >> 2] + F[(l + 40) >> 2] = 0 + if (b) { + ja(b) + } + b = F[(l + 64) >> 2] + if (b) { + F[(l + 68) >> 2] = b + ja(b) + } + Z = (l + 96) | 0 + break o + } + oa() + v() + } + f = a + if ((a | 0) == -1) { + break n + } + a = K + b = F[(a + 16) >> 2] + d = (b + F[a >> 2]) | 0 + b = (F[(a + 8) >> 2] - b) | 0 + a = F[(F[(j + 4) >> 2] + 32) >> 2] + E[(a + 38) >> 1] = H[(a + 38) >> 1] + F[a >> 2] = d + F[(a + 16) >> 2] = 0 + F[(a + 20) >> 2] = 0 + F[(a + 8) >> 2] = b + F[(a + 12) >> 2] = 0 + ca: { + if (F[(j + 216) >> 2] == F[(j + 220) >> 2]) { + break ca + } + a = F[(j + 8) >> 2] + if (F[(a + 4) >> 2] == F[a >> 2]) { + break ca + } + b = 0 + while (1) { + if (Ad(j, b)) { + b = (b + 3) | 0 + a = F[(j + 8) >> 2] + if ( + b >>> 0 < + ((F[(a + 4) >> 2] - F[a >> 2]) >> 2) >>> 0 + ) { + continue + } + break ca + } + break + } + break n + } + if (G[(j + 308) | 0]) { + D[(j + 308) | 0] = 0 + d = F[(j + 292) >> 2] + a = 0 + e = (F[(j + 304) >> 2] + 7) | 0 + a = e >>> 0 < 7 ? 1 : a + e = (a << 29) | (e >>> 3) + b = (e + F[(j + 288) >> 2]) | 0 + a = (((a >>> 3) | 0) + d) | 0 + F[(j + 288) >> 2] = b + F[(j + 292) >> 2] = b >>> 0 < e >>> 0 ? (a + 1) | 0 : a + } + b = F[(j + 216) >> 2] + if ((b | 0) != F[(j + 220) >> 2]) { + a = 0 + while (1) { + e = L(a, 144) + Zc((((e + b) | 0) + 4) | 0, F[(j + 8) >> 2]) + d = F[A >> 2] + c = (d + e) | 0 + b = F[(c + 132) >> 2] + c = F[(c + 136) >> 2] + if ((b | 0) != (c | 0)) { + while (1) { + Xc((((e + F[A >> 2]) | 0) + 4) | 0, F[b >> 2]) + b = (b + 4) | 0 + if ((c | 0) != (b | 0)) { + continue + } + break + } + d = F[A >> 2] + } + if (!Yc((((d + e) | 0) + 4) | 0)) { + break n + } + a = (a + 1) | 0 + b = F[(j + 216) >> 2] + if ( + a >>> 0 < + (((F[(j + 220) >> 2] - b) | 0) / 144) >>> 0 + ) { + continue + } + break + } + } + a = F[(j + 8) >> 2] + Hb( + (j + 184) | 0, + (F[(a + 28) >> 2] - F[(a + 24) >> 2]) >> 2, + ) + d = F[(j + 216) >> 2] + if ((d | 0) != F[(j + 220) >> 2]) { + b = 0 + while (1) { + a = (L(b, 144) + d) | 0 + d = (F[(a + 60) >> 2] - F[(a + 56) >> 2]) >> 2 + c = (a + 104) | 0 + a = F[(j + 8) >> 2] + a = (F[(a + 28) >> 2] - F[(a + 24) >> 2]) >> 2 + Hb(c, (a | 0) < (d | 0) ? d : a) + b = (b + 1) | 0 + d = F[(j + 216) >> 2] + if ( + b >>> 0 < + (((F[(j + 220) >> 2] - d) | 0) / 144) >>> 0 + ) { + continue + } + break + } + } + N = zd(j, f) + } + } + Z = (u - -64) | 0 + return N | 0 + } + na() + v() + } + function lh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + J = 0, + K = 0, + M = 0, + N = 0 + t = (Z + -64) | 0 + Z = t + F[(a + 132) >> 2] = 0 + if (F[(a + 148) >> 2]) { + c = F[(a + 144) >> 2] + if (c) { + while (1) { + b = F[c >> 2] + ja(c) + c = b + if (b) { + continue + } + break + } + } + c = 0 + F[(a + 144) >> 2] = 0 + b = F[(a + 140) >> 2] + a: { + if (!b) { + break a + } + if (b >>> 0 >= 4) { + h = b & -4 + while (1) { + e = c << 2 + F[(e + F[(a + 136) >> 2]) >> 2] = 0 + F[(F[(a + 136) >> 2] + (e | 4)) >> 2] = 0 + F[(F[(a + 136) >> 2] + (e | 8)) >> 2] = 0 + F[(F[(a + 136) >> 2] + (e | 12)) >> 2] = 0 + c = (c + 4) | 0 + g = (g + 4) | 0 + if ((h | 0) != (g | 0)) { + continue + } + break + } + } + b = b & 3 + if (!b) { + break a + } + g = 0 + while (1) { + F[(F[(a + 136) >> 2] + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + g = (g + 1) | 0 + if ((b | 0) != (g | 0)) { + continue + } + break + } + } + F[(a + 148) >> 2] = 0 + } + b: { + if (!Da(1, (t + 60) | 0, F[(F[(a + 4) >> 2] + 32) >> 2])) { + break b + } + F[(a + 156) >> 2] = F[(t + 60) >> 2] + if (!Da(1, (t + 56) | 0, F[(F[(a + 4) >> 2] + 32) >> 2])) { + break b + } + e = F[(t + 56) >> 2] + if ( + (e >>> 0 > 1431655765) | + (I[(a + 156) >> 2] > L(e, 3) >>> 0) + ) { + break b + } + c = F[(F[(a + 4) >> 2] + 32) >> 2] + h = F[(c + 8) >> 2] + m = F[(c + 12) >> 2] + b = F[(c + 20) >> 2] + g = F[(c + 16) >> 2] + if ( + (((m | 0) <= (b | 0)) & (g >>> 0 >= h >>> 0)) | + ((b | 0) > (m | 0)) + ) { + break b + } + h = G[(g + F[c >> 2]) | 0] + g = (g + 1) | 0 + b = g ? b : (b + 1) | 0 + F[(c + 16) >> 2] = g + F[(c + 20) >> 2] = b + if (!Da(1, (t + 52) | 0, c)) { + break b + } + n = F[(t + 52) >> 2] + if ( + (n >>> 0 > e >>> 0) | + (e >>> 0 > (n + (((n >>> 0) / 3) | 0)) >>> 0) + ) { + break b + } + if (!Da(1, (t + 48) | 0, F[(F[(a + 4) >> 2] + 32) >> 2])) { + break b + } + c = F[(t + 48) >> 2] + if (c >>> 0 > n >>> 0) { + break b + } + F[(a + 28) >> 2] = F[(a + 24) >> 2] + g = Zb(ka(88)) + b = F[(a + 8) >> 2] + F[(a + 8) >> 2] = g + if (b) { + Za(b) + if (!F[(a + 8) >> 2]) { + break b + } + } + F[(a + 164) >> 2] = F[(a + 160) >> 2] + Ib((a + 160) | 0, e) + F[(a + 176) >> 2] = F[(a + 172) >> 2] + Ib((a + 172) | 0, e) + F[(a - -64) >> 2] = 0 + F[(a + 92) >> 2] = -1 + F[(a + 84) >> 2] = -1 + F[(a + 88) >> 2] = -1 + F[(a + 40) >> 2] = F[(a + 36) >> 2] + F[(a + 52) >> 2] = F[(a + 48) >> 2] + F[(a + 76) >> 2] = F[(a + 72) >> 2] + y = (a + 216) | 0 + Dd(y) + Cd(y, h) + if (!_c(F[(a + 8) >> 2], e, (c + F[(a + 156) >> 2]) | 0)) { + break b + } + b = F[(a + 156) >> 2] + D[(t + 8) | 0] = 1 + Ea((a + 120) | 0, (b + c) | 0, (t + 8) | 0) + if ((Bd(a, F[(F[(a + 4) >> 2] + 32) >> 2]) | 0) == -1) { + break b + } + c = (a + 232) | 0 + F[(c + 144) >> 2] = a + b = F[(($[F[(F[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2] + b = (F[b >> 2] + F[(b + 16) >> 2]) | 0 + g = F[(($[F[(F[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2] + g = (F[(g + 8) >> 2] - F[(g + 16) >> 2]) | 0 + ;(M = c), + (N = + H[ + (F[(($[F[(F[a >> 2] + 32) >> 2]](a) | 0) + 32) >> 2] + + 38) >> + 1 + ]), + (E[(M + 38) >> 1] = N) + F[c >> 2] = b + F[(c + 16) >> 2] = 0 + F[(c + 20) >> 2] = 0 + F[(c + 8) >> 2] = g + F[(c + 12) >> 2] = 0 + F[(a + 372) >> 2] = h + C = Ja((t + 8) | 0) + h = C + m = 0 + d = (Z - 16) | 0 + Z = d + b = F[(c + 4) >> 2] + F[(c + 40) >> 2] = F[c >> 2] + F[(c + 44) >> 2] = b + b = F[(c + 36) >> 2] + F[(c + 72) >> 2] = F[(c + 32) >> 2] + F[(c + 76) >> 2] = b + g = F[(c + 28) >> 2] + b = (c - -64) | 0 + F[b >> 2] = F[(c + 24) >> 2] + F[(b + 4) >> 2] = g + b = F[(c + 20) >> 2] + F[(c + 56) >> 2] = F[(c + 16) >> 2] + F[(c + 60) >> 2] = b + b = F[(c + 12) >> 2] + F[(c + 48) >> 2] = F[(c + 8) >> 2] + F[(c + 52) >> 2] = b + c: { + d: { + if (hc((c + 40) | 0, 1, (d + 8) | 0)) { + b = F[(c + 44) >> 2] + F[c >> 2] = F[(c + 40) >> 2] + F[(c + 4) >> 2] = b + b = F[(c + 76) >> 2] + F[(c + 32) >> 2] = F[(c + 72) >> 2] + F[(c + 36) >> 2] = b + b = F[(c + 68) >> 2] + F[(c + 24) >> 2] = F[(c + 64) >> 2] + F[(c + 28) >> 2] = b + g = F[(c + 60) >> 2] + f = g + b = F[(c + 56) >> 2] + F[(c + 16) >> 2] = b + F[(c + 20) >> 2] = g + e = F[(c + 52) >> 2] + g = F[(c + 48) >> 2] + F[(c + 8) >> 2] = g + F[(c + 12) >> 2] = e + k = F[(d + 12) >> 2] + i = (e - (((b >>> 0 > g >>> 0) + f) | 0)) | 0 + e = (g - b) | 0 + g = F[(d + 8) >> 2] + if ( + (((k | 0) == (i | 0)) & (e >>> 0 >= g >>> 0)) | + (i >>> 0 > k >>> 0) + ) { + break d + } + } + break c + } + e = (f + k) | 0 + b = (b + g) | 0 + e = b >>> 0 < g >>> 0 ? (e + 1) | 0 : e + F[(c + 16) >> 2] = b + F[(c + 20) >> 2] = e + if (!Aa((c + 80) | 0, c)) { + break c + } + if (!yd(c)) { + break c + } + b = F[(c + 4) >> 2] + F[h >> 2] = F[c >> 2] + F[(h + 4) >> 2] = b + b = F[(c + 36) >> 2] + F[(h + 32) >> 2] = F[(c + 32) >> 2] + F[(h + 36) >> 2] = b + b = F[(c + 28) >> 2] + F[(h + 24) >> 2] = F[(c + 24) >> 2] + F[(h + 28) >> 2] = b + b = F[(c + 20) >> 2] + F[(h + 16) >> 2] = F[(c + 16) >> 2] + F[(h + 20) >> 2] = b + b = F[(c + 12) >> 2] + F[(h + 8) >> 2] = F[(c + 8) >> 2] + F[(h + 12) >> 2] = b + m = 1 + } + Z = (d + 16) | 0 + e: { + if (!m) { + break e + } + b = 0 + c = 0 + g = 0 + m = 0 + j = (Z - 96) | 0 + Z = j + F[(j + 72) >> 2] = 0 + F[(j + 64) >> 2] = 0 + F[(j + 68) >> 2] = 0 + F[(j + 48) >> 2] = 0 + F[(j + 52) >> 2] = 0 + F[(j + 40) >> 2] = 0 + F[(j + 44) >> 2] = 0 + F[(j + 56) >> 2] = 1065353216 + F[(j + 32) >> 2] = 0 + F[(j + 24) >> 2] = 0 + F[(j + 28) >> 2] = 0 + h = a + B = F[(a + 124) >> 2] + f: { + g: { + h: { + i: { + j: { + k: { + l: { + m: { + if ((n | 0) <= 0) { + break m + } + J = F[(h + 216) >> 2] != F[(h + 220) >> 2] + z = 1 + while (1) { + e = m + m = (e + 1) | 0 + n: { + o: { + p: { + q: { + r: { + s: { + t: { + u: { + v: { + w: { + x: { + y: { + z: { + A: { + B: { + if ( + !G[ + (h + + 308) | + 0 + ] + ) { + break B + } + k = + F[ + (h + + 296) >> + 2 + ] + d = + F[ + (h + + 304) >> + 2 + ] + a = + (k + + ((d >>> + 3) | + 0)) | + 0 + l = + F[ + (h + + 300) >> + 2 + ] + if ( + a >>> 0 >= + l >>> 0 + ) { + break B + } + f = G[a | 0] + a = + (d + 1) | + 0 + F[ + (h + + 304) >> + 2 + ] = a + p = + (f >>> + (d & + 7)) & + 1 + if (!p) { + break B + } + i = 0 + f = + (a >>> + 3) | + 0 + r = + (k + f) | + 0 + C: { + if ( + r >>> + 0 >= + l >>> 0 + ) { + d = a + a = 0 + break C + } + r = + G[r | 0] + d = + (d + + 2) | + 0 + F[ + (h + + 304) >> + 2 + ] = d + f = + (d >>> + 3) | + 0 + a = + (r >>> + (a & + 7)) & + 1 + } + f = + (f + k) | + 0 + if ( + f >>> 0 < + l >>> 0 + ) { + f = + G[f | 0] + F[ + (h + + 304) >> + 2 + ] = d + 1 + i = + ((f >>> + (d & + 7)) << + 1) & + 2 + } + f = -1 + i = + p | + ((a | + i) << + 1) + switch ( + (i - 1) | + 0 + ) { + case 6: + break y + case 0: + break z + case 2: + case 4: + break A + default: + break l + } + } + if ( + (c | 0) == + (g | 0) + ) { + f = -1 + break l + } + d = -1 + i = + F[ + (h + 8) >> + 2 + ] + z = + F[ + (i + + 24) >> + 2 + ] + r = + (c - 4) | 0 + b = F[r >> 2] + a = -1 + D: { + if ( + (b | 0) == + -1 + ) { + break D + } + k = + (b + 1) | + 0 + k = + (k >>> + 0) % + 3 | + 0 + ? k + : (b - + 2) | + 0 + a = -1 + if ( + (k | 0) == + -1 + ) { + break D + } + a = + F[ + (F[ + i >> 2 + ] + + (k << + 2)) >> + 2 + ] + } + f = + F[ + (z + + (a << + 2)) >> + 2 + ] + if ( + (f | 0) != + -1 + ) { + d = + (f + 1) | + 0 + d = + (d >>> + 0) % + 3 | + 0 + ? d + : (f - + 2) | + 0 + } + if ( + (b | 0) == + (d | 0) + ) { + f = -1 + break l + } + if ( + (b | 0) != + -1 + ) { + f = -1 + if ( + F[ + (F[ + (i + + 12) >> + 2 + ] + + (b << + 2)) >> + 2 + ] != -1 + ) { + break l + } + } + k = + F[ + (i + + 12) >> + 2 + ] + if ( + (d | 0) != + -1 + ) { + f = -1 + if ( + F[ + (k + + (d << + 2)) >> + 2 + ] != -1 + ) { + break l + } + } + l = L(e, 3) + e = + (l + 1) | 0 + F[ + (k + + (b << + 2)) >> + 2 + ] = e + s = e << 2 + F[ + (s + k) >> 2 + ] = b + p = + (l + 2) | 0 + F[ + (k + + (d << + 2)) >> + 2 + ] = p + u = p << 2 + F[ + (u + k) >> 2 + ] = d + k = -1 + e = -1 + E: { + if ( + (b | 0) == + -1 + ) { + break E + } + F: { + if ( + (b >>> + 0) % + 3 | + 0 + ) { + b = + (b - + 1) | + 0 + break F + } + b = + (b + + 2) | + 0 + e = -1 + if ( + (b | + 0) == + -1 + ) { + break E + } + } + e = + F[ + (F[ + i >> 2 + ] + + (b << + 2)) >> + 2 + ] + } + b = e + G: { + if ( + (d | 0) == + -1 + ) { + break G + } + e = + (d + 1) | + 0 + e = + (e >>> + 0) % + 3 | + 0 + ? e + : (d - + 2) | + 0 + if ( + (e | 0) == + -1 + ) { + break G + } + k = + F[ + (F[ + i >> 2 + ] + + (e << + 2)) >> + 2 + ] + } + f = -1 + if ( + ((a | 0) == + (b | 0)) | + ((a | 0) == + (k | 0)) + ) { + break l + } + e = F[i >> 2] + F[ + (e + + (l << + 2)) >> + 2 + ] = a + F[ + (e + s) >> 2 + ] = k + F[ + (e + u) >> 2 + ] = b + if ( + (b | 0) != + -1 + ) { + F[ + (z + + (b << + 2)) >> + 2 + ] = p + } + b = + (F[ + (h + + 120) >> + 2 + ] + + ((a >>> + 3) & + 536870908)) | + 0 + e = F[b >> 2] + ;(M = b), + (N = + oi(a) & + e), + (F[M >> 2] = + N) + F[r >> 2] = l + b = g + break n + } + if ( + (c | 0) == + (g | 0) + ) { + break l + } + r = (c - 4) | 0 + b = F[r >> 2] + a = + F[ + (h + 8) >> 2 + ] + d = + F[ + (a + 12) >> + 2 + ] + if ( + ((b | 0) != + -1) & + (F[ + (d + + (b << + 2)) >> + 2 + ] != + -1) + ) { + break l + } + l = (i | 0) == 5 + i = L(e, 3) + p = + ((l ? 2 : 1) + + i) | + 0 + s = p << 2 + F[ + (s + d) >> 2 + ] = b + F[ + (d + + (b << 2)) >> + 2 + ] = p + Ma( + (a + 24) | 0, + 8324, + ) + d = + F[ + (h + 8) >> 2 + ] + k = + F[ + (d + 24) >> + 2 + ] + if ( + (F[ + (d + 28) >> + 2 + ] - + k) >> + 2 > + (B | 0) + ) { + break l + } + d = F[d >> 2] + u = (d + s) | 0 + f = + F[ + (a + 28) >> + 2 + ] + a = + F[ + (a + 24) >> + 2 + ] + s = + (((f - a) >> + 2) - + 1) | + 0 + F[u >> 2] = s + if ( + (a | 0) != + (f | 0) + ) { + F[ + (k + + (s << + 2)) >> + 2 + ] = p + } + f = l + ? i + : (i + 2) | 0 + l = + (d + + ((i + l) << + 2)) | + 0 + H: { + if ( + (b | 0) == + -1 + ) { + F[ + (d + + (f << + 2)) >> + 2 + ] = -1 + a = -1 + break H + } + I: { + J: { + K: { + if ( + (b >>> + 0) % + 3 | + 0 + ) { + a = + (b - + 1) | + 0 + break K + } + a = + (b + + 2) | + 0 + if ( + (a | + 0) == + -1 + ) { + break J + } + } + a = + F[ + (d + + (a << + 2)) >> + 2 + ] + F[ + (d + + (f << + 2)) >> + 2 + ] = a + if ( + (a | + 0) == + -1 + ) { + break I + } + F[ + (k + + (a << + 2)) >> + 2 + ] = f + break I + } + F[ + (d + + (f << + 2)) >> + 2 + ] = -1 + } + f = + (b + 1) | 0 + b = + (f >>> 0) % + 3 | + 0 + ? f + : (b - + 2) | + 0 + a = -1 + if ( + (b | 0) == + -1 + ) { + break H + } + a = + F[ + (d + + (b << + 2)) >> + 2 + ] + } + F[l >> 2] = a + F[r >> 2] = i + b = g + break t + } + if ( + (b | 0) == + (c | 0) + ) { + break l + } + a = (c - 4) | 0 + k = F[a >> 2] + F[(j + 68) >> 2] = + a + l = + F[(j + 44) >> 2] + L: { + if (!l) { + c = a + break L + } + f = + F[ + (j + 40) >> + 2 + ] + p = + ni(l) >>> 0 > + 1 + d = + e & + (l + + 2147483647) + M: { + if (!p) { + break M + } + d = e + if ( + d >>> 0 < + l >>> 0 + ) { + break M + } + d = + (e >>> 0) % + (l >>> + 0) | + 0 + } + i = d + d = + F[ + (f + + (i << + 2)) >> + 2 + ] + if (!d) { + c = a + break L + } + d = F[d >> 2] + if (!d) { + c = a + break L + } + N: { + if (!p) { + f = + (l - 1) | + 0 + while (1) { + l = + F[ + (d + + 4) >> + 2 + ] + O: { + if ( + (l | + 0) != + (e | + 0) + ) { + if ( + (i | + 0) == + (f & + l) + ) { + break O + } + c = a + break L + } + if ( + (e | + 0) == + F[ + (d + + 8) >> + 2 + ] + ) { + break N + } + } + d = + F[ + d >> 2 + ] + if (d) { + continue + } + break + } + c = a + break L + } + while (1) { + f = + F[ + (d + + 4) >> + 2 + ] + P: { + if ( + (f | + 0) != + (e | 0) + ) { + if ( + f >>> + 0 >= + l >>> + 0 + ) { + f = + (f >>> + 0) % + (l >>> + 0) | + 0 + } + if ( + (f | + 0) == + (i | + 0) + ) { + break P + } + c = a + break L + } + if ( + (e | + 0) == + F[ + (d + + 8) >> + 2 + ] + ) { + break N + } + } + d = + F[d >> 2] + if (d) { + continue + } + break + } + c = a + break L + } + if ( + (a | 0) != + (q | 0) + ) { + F[a >> 2] = + F[ + (d + + 12) >> + 2 + ] + F[ + (j + 68) >> + 2 + ] = c + break L + } + a = (q - b) | 0 + g = a >> 2 + c = (g + 1) | 0 + if ( + c >>> 0 >= + 1073741824 + ) { + break x + } + f = + (a >>> 1) | 0 + f = + a >>> 0 >= + 2147483644 + ? 1073741823 + : c >>> 0 < + f >>> 0 + ? f + : c + if (f) { + if ( + f >>> 0 >= + 1073741824 + ) { + break j + } + a = ka(f << 2) + } else { + a = 0 + } + g = + (a + + (g << 2)) | + 0 + F[g >> 2] = + F[ + (d + 12) >> + 2 + ] + c = (g + 4) | 0 + if ( + (b | 0) != + (q | 0) + ) { + while (1) { + g = + (g - 4) | + 0 + q = + (q - 4) | + 0 + F[g >> 2] = + F[q >> 2] + if ( + (b | 0) != + (q | 0) + ) { + continue + } + break + } + } + q = + (a + + (f << 2)) | + 0 + F[ + (j + 72) >> 2 + ] = q + F[ + (j + 68) >> 2 + ] = c + F[ + (j + 64) >> 2 + ] = g + if (b) { + ja(b) + } + } + if ( + (c | 0) == + (g | 0) + ) { + break p + } + s = (c - 4) | 0 + b = F[s >> 2] + if ( + (b | 0) == + (k | 0) + ) { + break p + } + a = (b | 0) == -1 + f = + F[(h + 8) >> 2] + if ( + !a & + (F[ + (F[ + (f + 12) >> + 2 + ] + + (b << 2)) >> + 2 + ] != + -1) + ) { + break p + } + l = + F[(f + 12) >> 2] + if ( + ((k | 0) != + -1) & + (F[ + (l + + (k << 2)) >> + 2 + ] != + -1) + ) { + break p + } + p = L(e, 3) + r = (p + 2) | 0 + F[ + (l + + (b << 2)) >> + 2 + ] = r + e = r << 2 + F[(e + l) >> 2] = + b + d = (p + 1) | 0 + F[ + (l + + (k << 2)) >> + 2 + ] = d + u = d << 2 + F[(u + l) >> 2] = + k + if (a) { + break w + } + if ( + (b >>> 0) % 3 | + 0 + ) { + d = (b - 1) | 0 + break s + } + d = (b + 2) | 0 + if ( + (d | 0) != + -1 + ) { + break s + } + a = F[f >> 2] + d = -1 + break r + } + i = F[(h + 8) >> 2] + Ma( + (i + 24) | 0, + 8324, + ) + d = F[(h + 8) >> 2] + a = L(e, 3) + k = F[(i + 28) >> 2] + l = F[(i + 24) >> 2] + p = (k - l) | 0 + i = p >> 2 + r = (i - 1) | 0 + F[ + (F[d >> 2] + + (a << 2)) >> + 2 + ] = r + Ma( + (d + 24) | 0, + 8324, + ) + s = (a + 1) | 0 + F[ + (F[d >> 2] + + (s << 2)) >> + 2 + ] = + ((F[ + (d + 28) >> 2 + ] - + F[ + (d + 24) >> 2 + ]) >> + 2) - + 1 + d = F[(h + 8) >> 2] + Ma( + (d + 24) | 0, + 8324, + ) + u = (a + 2) | 0 + F[ + (F[d >> 2] + + (u << 2)) >> + 2 + ] = + ((F[ + (d + 28) >> 2 + ] - + F[ + (d + 24) >> 2 + ]) >> + 2) - + 1 + A = F[(h + 8) >> 2] + d = F[(A + 24) >> 2] + if ( + (F[ + (A + 28) >> 2 + ] - + d) >> + 2 > + (B | 0) + ) { + break l + } + Q: { + R: { + if ( + (k | 0) != + (l | 0) + ) { + F[ + (d + + (r << + 2)) >> + 2 + ] = a + f = 0 + if ( + (p | 0) == + -4 + ) { + break R + } + } + F[ + (d + + (i << 2)) >> + 2 + ] = s + f = (i + 1) | 0 + if ( + (f | 0) == + -1 + ) { + break Q + } + } + F[ + (d + + (f << 2)) >> + 2 + ] = u + } + if ( + (c | 0) != + (q | 0) + ) { + F[c >> 2] = a + c = (c + 4) | 0 + F[(j + 68) >> 2] = + c + break t + } + g = (c - b) | 0 + i = g >> 2 + d = (i + 1) | 0 + if ( + d >>> 0 >= + 1073741824 + ) { + break v + } + f = (g >>> 1) | 0 + d = + g >>> 0 >= + 2147483644 + ? 1073741823 + : d >>> 0 < + f >>> 0 + ? f + : d + if (d) { + if ( + d >>> 0 >= + 1073741824 + ) { + break j + } + f = ka(d << 2) + } else { + f = 0 + } + g = + (f + (i << 2)) | 0 + F[g >> 2] = a + q = + (f + (d << 2)) | 0 + a = (g + 4) | 0 + if ( + (b | 0) != + (c | 0) + ) { + while (1) { + g = (g - 4) | 0 + c = (c - 4) | 0 + F[g >> 2] = + F[c >> 2] + if ( + (b | 0) != + (c | 0) + ) { + continue + } + break + } + } + F[(j + 72) >> 2] = q + F[(j + 68) >> 2] = a + F[(j + 64) >> 2] = g + if (!b) { + break u + } + ja(b) + break u + } + na() + v() + } + d = -1 + a = F[f >> 2] + F[(a + (p << 2)) >> 2] = + -1 + i = -1 + break q + } + na() + v() + } + c = a + b = g + } + a = F[(h + 40) >> 2] + if ( + (a | 0) == + F[(h + 36) >> 2] + ) { + break n + } + d = (a - 12) | 0 + i = F[(d + 4) >> 2] + f = (n + (e ^ -1)) | 0 + if (i >>> 0 > f >>> 0) { + break p + } + if ((f | 0) != (i | 0)) { + break n + } + i = G[(a - 4) | 0] + e = F[d >> 2] + F[(h + 40) >> 2] = d + if ((e | 0) < 0) { + break p + } + k = (c - 4) | 0 + a = F[k >> 2] + F[(j + 20) >> 2] = + n + (e ^ -1) + e = (j + 20) | 0 + F[(j + 88) >> 2] = e + Fb( + j, + (j + 40) | 0, + e, + (j + 88) | 0, + ) + d = F[j >> 2] + S: { + if (i & 1) { + e = -1 + if ((a | 0) == -1) { + break S + } + e = (a + 1) | 0 + e = + (e >>> 0) % 3 | 0 + ? e + : (a - 2) | 0 + break S + } + e = -1 + if ((a | 0) == -1) { + break S + } + e = (a - 1) | 0 + if ((a >>> 0) % 3 | 0) { + break S + } + e = (a + 2) | 0 + } + F[(d + 12) >> 2] = e + d = F[(h + 40) >> 2] + if ( + (d | 0) == + F[(h + 36) >> 2] + ) { + break n + } + while (1) { + a = (d - 12) | 0 + e = F[(a + 4) >> 2] + if (e >>> 0 > f >>> 0) { + break p + } + if ((f | 0) != (e | 0)) { + break n + } + d = G[(d - 4) | 0] + e = F[a >> 2] + F[(h + 40) >> 2] = a + if ((e | 0) < 0) { + break p + } + a = F[k >> 2] + F[(j + 20) >> 2] = + n + (e ^ -1) + e = (j + 20) | 0 + F[(j + 88) >> 2] = e + Fb( + j, + (j + 40) | 0, + e, + (j + 88) | 0, + ) + i = F[j >> 2] + T: { + if (d & 1) { + e = -1 + if ((a | 0) == -1) { + break T + } + e = (a + 1) | 0 + e = + (e >>> 0) % 3 | 0 + ? e + : (a - 2) | 0 + break T + } + e = -1 + if ((a | 0) == -1) { + break T + } + e = (a - 1) | 0 + if ((a >>> 0) % 3 | 0) { + break T + } + e = (a + 2) | 0 + } + F[(i + 12) >> 2] = e + d = F[(h + 40) >> 2] + if ( + (d | 0) != + F[(h + 36) >> 2] + ) { + continue + } + break + } + break n + } + a = F[f >> 2] + d = F[(a + (d << 2)) >> 2] + } + F[((p << 2) + a) >> 2] = d + A = (b + 1) | 0 + b = + (A >>> 0) % 3 | 0 + ? A + : (b - 2) | 0 + i = -1 + if ((b | 0) == -1) { + break q + } + i = F[((b << 2) + a) >> 2] + } + F[(a + u) >> 2] = i + U: { + if ((k | 0) == -1) { + F[(a + e) >> 2] = -1 + i = -1 + e = -1 + break U + } + V: { + W: { + X: { + if ((k >>> 0) % 3 | 0) { + b = (k - 1) | 0 + break X + } + b = (k + 2) | 0 + if ((b | 0) == -1) { + break W + } + } + b = F[((b << 2) + a) >> 2] + F[(a + e) >> 2] = b + if ((b | 0) == -1) { + break V + } + F[ + (F[(f + 24) >> 2] + + (b << 2)) >> + 2 + ] = r + break V + } + F[(a + e) >> 2] = -1 + } + i = -1 + b = (k + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (k - 2) | 0 + e = -1 + if ((b | 0) == -1) { + break U + } + i = F[((b << 2) + a) >> 2] + e = b + } + b = F[(f + 24) >> 2] + k = (b + (i << 2)) | 0 + if ((d | 0) != -1) { + F[(b + (d << 2)) >> 2] = F[k >> 2] + } + b = e + while (1) { + if ((b | 0) == -1) { + break o + } + F[((b << 2) + a) >> 2] = d + r = (b + 1) | 0 + b = + (r >>> 0) % 3 | 0 + ? r + : (b - 2) | 0 + f = -1 + Y: { + if ((b | 0) == -1) { + break Y + } + b = F[(l + (b << 2)) >> 2] + f = -1 + if ((b | 0) == -1) { + break Y + } + f = (b + 1) | 0 + f = + (f >>> 0) % 3 | 0 + ? f + : (b - 2) | 0 + } + b = f + if ((e | 0) != (b | 0)) { + continue + } + break + } + } + f = -1 + if (!z) { + break m + } + break l + } + F[k >> 2] = -1 + Z: { + if (J) { + break Z + } + if ((w | 0) != (x | 0)) { + F[x >> 2] = i + x = (x + 4) | 0 + F[(j + 28) >> 2] = x + break Z + } + a = (w - o) | 0 + d = a >> 2 + b = (d + 1) | 0 + if (b >>> 0 >= 1073741824) { + break i + } + e = (a >>> 1) | 0 + e = + a >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 < e >>> 0 + ? e + : b + if (e) { + if (e >>> 0 >= 1073741824) { + break j + } + a = ka(e << 2) + } else { + a = 0 + } + b = (a + (d << 2)) | 0 + F[b >> 2] = i + x = (b + 4) | 0 + if ((o | 0) != (w | 0)) { + while (1) { + b = (b - 4) | 0 + w = (w - 4) | 0 + F[b >> 2] = F[w >> 2] + if ((o | 0) != (w | 0)) { + continue + } + break + } + } + w = (a + (e << 2)) | 0 + F[(j + 32) >> 2] = w + F[(j + 28) >> 2] = x + F[(j + 24) >> 2] = b + if (o) { + ja(o) + } + o = b + } + F[s >> 2] = p + b = g + } + z = (m | 0) < (n | 0) + if ((m | 0) != (n | 0)) { + continue + } + break + } + m = n + } + f = -1 + a = F[(h + 8) >> 2] + if ( + (F[(a + 28) >> 2] - F[(a + 24) >> 2]) >> 2 > + (B | 0) + ) { + break l + } + if ((c | 0) != (g | 0)) { + l = (h + 72) | 0 + e = (h + 60) | 0 + w = (h + 312) | 0 + while (1) { + c = (c - 4) | 0 + i = F[c >> 2] + F[(j + 68) >> 2] = c + _: { + if (wa(w)) { + q = F[(h + 8) >> 2] + k = F[q >> 2] + if ( + (((((F[(q + 4) >> 2] - k) >> 2) >>> + 0) / + 3) | + 0) <= + (m | 0) + ) { + f = -1 + break l + } + a = -1 + f = -1 + b = -1 + x = F[(q + 24) >> 2] + g = -1 + $: { + if ((i | 0) == -1) { + break $ + } + n = (i + 1) | 0 + n = + (n >>> 0) % 3 | 0 + ? n + : (i - 2) | 0 + g = -1 + if ((n | 0) == -1) { + break $ + } + g = F[(k + (n << 2)) >> 2] + } + n = g + o = F[(x + (n << 2)) >> 2] + aa: { + if ((o | 0) == -1) { + d = 1 + g = -1 + break aa + } + d = 1 + p = (o + 1) | 0 + o = + (p >>> 0) % 3 | 0 + ? p + : (o - 2) | 0 + g = -1 + if ((o | 0) == -1) { + break aa + } + d = 0 + a = o + g = (a + 1) | 0 + g = + (g >>> 0) % 3 | 0 + ? g + : (a - 2) | 0 + if ((g | 0) != -1) { + g = F[(k + (g << 2)) >> 2] + } else { + g = -1 + } + } + o = F[((g << 2) + x) >> 2] + if ((o | 0) != -1) { + b = (o + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (o - 2) | 0 + } + if ( + ((a | 0) == (i | 0)) | + ((b | 0) == (i | 0)) | + ((((i | 0) != -1) & + (F[ + (F[(q + 12) >> 2] + (i << 2)) >> + 2 + ] != + -1)) | + ((a | 0) == (b | 0))) + ) { + break l + } + if ( + !d & + (F[ + (F[(q + 12) >> 2] + (a << 2)) >> 2 + ] != + -1) + ) { + break l + } + d = -1 + o = F[(q + 12) >> 2] + q = -1 + ba: { + if ((b | 0) == -1) { + break ba + } + if (F[(o + (b << 2)) >> 2] != -1) { + break l + } + f = (b + 1) | 0 + f = + (f >>> 0) % 3 | 0 + ? f + : (b - 2) | 0 + q = -1 + if ((f | 0) == -1) { + break ba + } + q = F[(k + (f << 2)) >> 2] + } + f = L(m, 3) + F[j >> 2] = f + F[(o + (f << 2)) >> 2] = i + F[(o + (i << 2)) >> 2] = f + f = (F[j >> 2] + 1) | 0 + F[(o + (f << 2)) >> 2] = a + F[(o + (a << 2)) >> 2] = f + a = (F[j >> 2] + 2) | 0 + F[(o + (a << 2)) >> 2] = b + F[(o + (b << 2)) >> 2] = a + a = F[j >> 2] + F[(k + (a << 2)) >> 2] = g + b = (a + 1) | 0 + f = (k + (b << 2)) | 0 + F[f >> 2] = q + o = (a + 2) | 0 + i = (k + (o << 2)) | 0 + F[i >> 2] = n + a = F[(h + 120) >> 2] + g = b ? g : -1 + n = (a + ((g >>> 3) & 536870908)) | 0 + k = F[n >> 2] + ;(M = n), + (N = oi(g) & k), + (F[M >> 2] = N) + d = (b | 0) != -1 ? F[f >> 2] : d + b = (a + ((d >>> 3) & 536870908)) | 0 + g = F[b >> 2] + ;(M = b), + (N = oi(d) & g), + (F[M >> 2] = N) + b = -1 + b = (o | 0) != -1 ? F[i >> 2] : b + a = (a + ((b >>> 3) & 536870908)) | 0 + g = F[a >> 2] + ;(M = a), + (N = oi(b) & g), + (F[M >> 2] = N) + D[(j + 88) | 0] = 1 + wd(e, (j + 88) | 0) + Ma(l, j) + m = (m + 1) | 0 + g = F[(j + 64) >> 2] + break _ + } + b = F[(h + 64) >> 2] + a = F[(h + 68) >> 2] + if ((b | 0) == a << 5) { + if (((b + 1) | 0) < 0) { + break h + } + if (b >>> 0 <= 1073741822) { + a = a << 6 + b = ((b & -32) + 32) | 0 + a = a >>> 0 > b >>> 0 ? a : b + } else { + a = 2147483647 + } + $a(e, a) + b = F[(h + 64) >> 2] + } + F[(h + 64) >> 2] = b + 1 + a = + (F[(h + 60) >> 2] + + ((b >>> 3) & 536870908)) | + 0 + d = F[a >> 2] + ;(M = a), + (N = oi(b) & d), + (F[M >> 2] = N) + b = F[(h + 76) >> 2] + if ((b | 0) != F[(h + 80) >> 2]) { + F[b >> 2] = i + F[(h + 76) >> 2] = b + 4 + break _ + } + f = F[l >> 2] + a = (b - f) | 0 + o = a >> 2 + d = (o + 1) | 0 + if (d >>> 0 >= 1073741824) { + break g + } + n = (a >>> 1) | 0 + n = + a >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < n >>> 0 + ? n + : d + if (n) { + if (n >>> 0 >= 1073741824) { + break j + } + a = ka(n << 2) + } else { + a = 0 + } + d = (a + (o << 2)) | 0 + F[d >> 2] = i + o = (d + 4) | 0 + if ((b | 0) != (f | 0)) { + while (1) { + d = (d - 4) | 0 + b = (b - 4) | 0 + F[d >> 2] = F[b >> 2] + if ((b | 0) != (f | 0)) { + continue + } + break + } + } + F[(h + 80) >> 2] = a + (n << 2) + F[(h + 76) >> 2] = o + F[(h + 72) >> 2] = d + if (!f) { + break _ + } + ja(f) + } + if ((c | 0) != (g | 0)) { + continue + } + break + } + a = F[(h + 8) >> 2] + } + f = -1 + if ( + (((((F[(a + 4) >> 2] - F[a >> 2]) >> 2) >>> + 0) / + 3) | + 0) != + (m | 0) + ) { + break l + } + f = (F[(a + 28) >> 2] - F[(a + 24) >> 2]) >> 2 + c = F[(j + 24) >> 2] + n = F[(j + 28) >> 2] + if ((c | 0) == (n | 0)) { + break k + } + while (1) { + g = F[c >> 2] + e = F[(a + 24) >> 2] + b = (f - 1) | 0 + d = (e + (b << 2)) | 0 + if (F[d >> 2] == -1) { + while (1) { + b = (f - 2) | 0 + f = (f - 1) | 0 + d = (e + (b << 2)) | 0 + if (F[d >> 2] == -1) { + continue + } + break + } + } + if (b >>> 0 >= g >>> 0) { + F[j >> 2] = a + d = F[d >> 2] + D[(j + 12) | 0] = 1 + F[(j + 8) >> 2] = d + F[(j + 4) >> 2] = d + if ((d | 0) != -1) { + while (1) { + a = + (F[F[(h + 8) >> 2] >> 2] + + (d << 2)) | + 0 + if (F[a >> 2] != (b | 0)) { + f = -1 + break l + } + F[a >> 2] = g + nc(j) + d = F[(j + 8) >> 2] + if ((d | 0) != -1) { + continue + } + break + } + a = F[(h + 8) >> 2] + } + m = F[(a + 24) >> 2] + e = (m + (b << 2)) | 0 + if ((g | 0) != -1) { + F[(m + (g << 2)) >> 2] = F[e >> 2] + } + F[e >> 2] = -1 + e = 1 << g + m = F[(h + 120) >> 2] + g = (m + ((g >>> 3) & 536870908)) | 0 + d = 1 << b + m = (m + ((b >>> 3) & 536870908)) | 0 + if (d & F[m >> 2]) { + b = e | F[g >> 2] + } else { + b = F[g >> 2] & (e ^ -1) + } + F[g >> 2] = b + F[m >> 2] = F[m >> 2] & (d ^ -1) + f = (f - 1) | 0 + } + c = (c + 4) | 0 + if ((n | 0) != (c | 0)) { + continue + } + break + } + } + c = F[(j + 24) >> 2] + } + if (c) { + ja(c) + } + a = F[(j + 48) >> 2] + if (a) { + while (1) { + c = F[a >> 2] + ja(a) + a = c + if (a) { + continue + } + break + } + } + a = F[(j + 40) >> 2] + F[(j + 40) >> 2] = 0 + if (a) { + ja(a) + } + a = F[(j + 64) >> 2] + if (a) { + F[(j + 68) >> 2] = a + ja(a) + } + Z = (j + 96) | 0 + a = f + break f + } + oa() + v() + } + na() + v() + } + na() + v() + } + na() + v() + } + b = a + if ((a | 0) == -1) { + break e + } + a = C + c = F[(a + 16) >> 2] + g = (c + F[a >> 2]) | 0 + c = (F[(a + 8) >> 2] - c) | 0 + a = F[(F[(h + 4) >> 2] + 32) >> 2] + E[(a + 38) >> 1] = H[(a + 38) >> 1] + F[a >> 2] = g + F[(a + 16) >> 2] = 0 + F[(a + 20) >> 2] = 0 + F[(a + 8) >> 2] = c + F[(a + 12) >> 2] = 0 + ca: { + if (F[(h + 216) >> 2] == F[(h + 220) >> 2]) { + break ca + } + a = F[(h + 8) >> 2] + if (F[(a + 4) >> 2] == F[a >> 2]) { + break ca + } + c = 0 + while (1) { + if (Ad(h, c)) { + c = (c + 3) | 0 + a = F[(h + 8) >> 2] + if ( + c >>> 0 < + ((F[(a + 4) >> 2] - F[a >> 2]) >> 2) >>> 0 + ) { + continue + } + break ca + } + break + } + break e + } + if (G[(h + 308) | 0]) { + D[(h + 308) | 0] = 0 + g = F[(h + 292) >> 2] + a = 0 + e = (F[(h + 304) >> 2] + 7) | 0 + a = e >>> 0 < 7 ? 1 : a + c = (a >>> 3) | 0 + m = (a << 29) | (e >>> 3) + a = (m + F[(h + 288) >> 2]) | 0 + e = (c + g) | 0 + F[(h + 288) >> 2] = a + F[(h + 292) >> 2] = a >>> 0 < m >>> 0 ? (e + 1) | 0 : e + } + c = F[(h + 216) >> 2] + if ((c | 0) != F[(h + 220) >> 2]) { + a = 0 + while (1) { + e = L(a, 144) + Zc((((e + c) | 0) + 4) | 0, F[(h + 8) >> 2]) + g = F[y >> 2] + m = (g + e) | 0 + c = F[(m + 132) >> 2] + m = F[(m + 136) >> 2] + if ((c | 0) != (m | 0)) { + while (1) { + Xc((((e + F[y >> 2]) | 0) + 4) | 0, F[c >> 2]) + c = (c + 4) | 0 + if ((m | 0) != (c | 0)) { + continue + } + break + } + g = F[y >> 2] + } + if (!Yc((((g + e) | 0) + 4) | 0)) { + break e + } + a = (a + 1) | 0 + c = F[(h + 216) >> 2] + if ( + a >>> 0 < + (((F[(h + 220) >> 2] - c) | 0) / 144) >>> 0 + ) { + continue + } + break + } + } + a = F[(h + 8) >> 2] + Hb( + (h + 184) | 0, + (F[(a + 28) >> 2] - F[(a + 24) >> 2]) >> 2, + ) + g = F[(h + 216) >> 2] + if ((g | 0) != F[(h + 220) >> 2]) { + c = 0 + while (1) { + a = (L(c, 144) + g) | 0 + g = (F[(a + 60) >> 2] - F[(a + 56) >> 2]) >> 2 + e = (a + 104) | 0 + a = F[(h + 8) >> 2] + a = (F[(a + 28) >> 2] - F[(a + 24) >> 2]) >> 2 + Hb(e, (a | 0) < (g | 0) ? g : a) + c = (c + 1) | 0 + g = F[(h + 216) >> 2] + if ( + c >>> 0 < + (((F[(h + 220) >> 2] - g) | 0) / 144) >>> 0 + ) { + continue + } + break + } + } + K = zd(h, b) + } + } + Z = (t - -64) | 0 + return K | 0 + } + function Cf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + E = 0, + H = 0, + I = 0, + J = 0, + K = 0, + M = 0, + N = 0, + O = 0 + B = c + c = 0 + m = (Z - 96) | 0 + Z = m + l = (m + 16) | 0 + ma(l, 0, 76) + F[(m + 92) >> 2] = -1 + F[(m + 8) >> 2] = 0 + F[m >> 2] = 0 + F[(m + 4) >> 2] = 0 + r = (Z - 16) | 0 + Z = r + F[(l + 68) >> 2] = 0 + F[(l + 72) >> 2] = 0 + F[l >> 2] = b + s = (Z - 16) | 0 + Z = s + u = b + a = F[(b + 20) >> 2] + a: { + if (((F[(b + 24) >> 2] - a) | 0) <= 0) { + break a + } + a = F[a >> 2] + if ((a | 0) == -1) { + break a + } + c = F[(F[(u + 8) >> 2] + (a << 2)) >> 2] + } + b: { + c: { + d: { + if (!c) { + a = 0 + break d + } + a = F[(u + 100) >> 2] + e = F[(u + 96) >> 2] + F[(s + 8) >> 2] = 0 + F[s >> 2] = 0 + F[(s + 4) >> 2] = 0 + f = (a - e) | 0 + b = ((f | 0) / 12) | 0 + e: { + if ((a | 0) == (e | 0)) { + break e + } + if (b >>> 0 >= 357913942) { + break c + } + d = ka(f) + F[s >> 2] = d + F[(s + 8) >> 2] = d + L(b, 12) + a = 0 + n = d + f = (f - 12) | 0 + d = (((f - ((f >>> 0) % 12 | 0)) | 0) + 12) | 0 + f = ma(n, 0, d) + F[(s + 4) >> 2] = d + f + if (G[(c + 84) | 0]) { + c = b >>> 0 <= 1 ? 1 : b + h = c & 1 + if (b >>> 0 >= 2) { + g = c & -2 + c = 0 + while (1) { + d = L(a, 12) + b = (d + e) | 0 + i = F[(b + 4) >> 2] + j = F[b >> 2] + d = (d + f) | 0 + F[(d + 8) >> 2] = F[(b + 8) >> 2] + F[d >> 2] = j + F[(d + 4) >> 2] = i + d = L(a | 1, 12) + b = (d + e) | 0 + i = F[(b + 4) >> 2] + j = F[b >> 2] + d = (d + f) | 0 + F[(d + 8) >> 2] = F[(b + 8) >> 2] + F[d >> 2] = j + F[(d + 4) >> 2] = i + a = (a + 2) | 0 + c = (c + 2) | 0 + if ((g | 0) != (c | 0)) { + continue + } + break + } + } + if (!h) { + break e + } + b = L(a, 12) + a = (b + e) | 0 + c = F[(a + 4) >> 2] + e = F[a >> 2] + b = (b + f) | 0 + F[(b + 8) >> 2] = F[(a + 8) >> 2] + F[b >> 2] = e + F[(b + 4) >> 2] = c + break e + } + h = b >>> 0 <= 1 ? 1 : b + a = F[(c + 68) >> 2] + c = 0 + while (1) { + d = L(c, 12) + b = (d + e) | 0 + g = F[(a + (F[b >> 2] << 2)) >> 2] + i = F[(a + (F[(b + 4) >> 2] << 2)) >> 2] + d = (d + f) | 0 + F[(d + 8) >> 2] = F[(a + (F[(b + 8) >> 2] << 2)) >> 2] + F[(d + 4) >> 2] = i + F[d >> 2] = g + c = (c + 1) | 0 + if ((h | 0) != (c | 0)) { + continue + } + break + } + } + d = 0 + H = (Z - 16) | 0 + Z = H + h = ka(88) + Zb(h) + C = (Z - 16) | 0 + Z = C + F[(h + 80) >> 2] = 0 + F[(h + 84) >> 2] = 0 + a = F[(h + 76) >> 2] + F[(h + 76) >> 2] = 0 + if (a) { + ja(a) + } + F[(h + 68) >> 2] = 0 + F[(h + 72) >> 2] = 0 + b = (h - -64) | 0 + a = F[b >> 2] + F[b >> 2] = 0 + if (a) { + ja(a) + } + g = F[(s + 4) >> 2] + b = F[s >> 2] + c = (((g - b) | 0) / 12) | 0 + a = L(c, 3) + f = F[h >> 2] + e = (F[(h + 4) >> 2] - f) >> 2 + f: { + if (a >>> 0 > e >>> 0) { + nd(h, (a - e) | 0) + g = F[(s + 4) >> 2] + b = F[s >> 2] + c = (((g - b) | 0) / 12) | 0 + break f + } + if (a >>> 0 >= e >>> 0) { + break f + } + F[(h + 4) >> 2] = f + (a << 2) + } + g: { + if ((b | 0) == (g | 0)) { + break g + } + e = c >>> 0 <= 1 ? 1 : c + g = e & 1 + a = F[h >> 2] + if (c >>> 0 >= 2) { + i = e & -2 + c = 0 + while (1) { + e = L(d, 12) + j = (e + a) | 0 + f = (b + e) | 0 + F[j >> 2] = F[f >> 2] + F[(a + (e | 4)) >> 2] = F[(f + 4) >> 2] + F[(j + 8) >> 2] = F[(f + 8) >> 2] + f = L(d | 1, 12) + e = (f + a) | 0 + f = (b + f) | 0 + F[e >> 2] = F[f >> 2] + F[(e + 4) >> 2] = F[(f + 4) >> 2] + F[(e + 8) >> 2] = F[(f + 8) >> 2] + d = (d + 2) | 0 + c = (c + 2) | 0 + if ((i | 0) != (c | 0)) { + continue + } + break + } + } + if (!g) { + break g + } + c = L(d, 12) + a = (c + a) | 0 + b = (b + c) | 0 + F[a >> 2] = F[b >> 2] + F[(a + 4) >> 2] = F[(b + 4) >> 2] + F[(a + 8) >> 2] = F[(b + 8) >> 2] + } + F[(C + 12) >> 2] = -1 + a = 0 + e = 0 + g = 0 + f = (Z - 32) | 0 + Z = f + h: { + i: { + w = (C + 12) | 0 + j: { + if (!w) { + break j + } + c = F[(h + 4) >> 2] + j = F[h >> 2] + d = (c - j) | 0 + i = d >> 2 + n = F[(h + 12) >> 2] + b = (F[(h + 16) >> 2] - n) >> 2 + k: { + if (i >>> 0 > b >>> 0) { + ab((h + 12) | 0, (i - b) | 0, 10228) + c = F[(h + 4) >> 2] + j = F[h >> 2] + d = (c - j) | 0 + i = d >> 2 + break k + } + if (b >>> 0 <= i >>> 0) { + break k + } + F[(h + 16) >> 2] = n + (i << 2) + } + F[(f + 24) >> 2] = 0 + F[(f + 16) >> 2] = 0 + F[(f + 20) >> 2] = 0 + b = (c | 0) == (j | 0) + if (!b) { + if ((d | 0) < 0) { + break i + } + e = ka(d) + F[(f + 20) >> 2] = e + F[(f + 16) >> 2] = e + F[(f + 24) >> 2] = (i << 2) + e + } + l: { + m: { + n: { + o: { + p: { + if (d) { + while (1) { + i = F[((a << 2) + j) >> 2] + b = (F[(f + 20) >> 2] - e) >> 2 + q: { + if (i >>> 0 < b >>> 0) { + break q + } + F[f >> 2] = 0 + d = (i + 1) | 0 + if (d >>> 0 > b >>> 0) { + Fa((f + 16) | 0, (d - b) | 0, f) + j = F[h >> 2] + c = F[(h + 4) >> 2] + e = F[(f + 16) >> 2] + break q + } + if (b >>> 0 <= d >>> 0) { + break q + } + F[(f + 20) >> 2] = (d << 2) + e + } + b = ((i << 2) + e) | 0 + F[b >> 2] = F[b >> 2] + 1 + a = (a + 1) | 0 + d = (c - j) | 0 + i = d >> 2 + if (a >>> 0 < i >>> 0) { + continue + } + break + } + break p + } + d = 0 + if (!b) { + break o + } + break n + } + if ((c | 0) == (j | 0)) { + d = 0 + break n + } + if (d >>> 0 >= 2147483645) { + break m + } + } + d = ka(d << 1) + ma(d, 255, i << 3) + } + F[(f + 8) >> 2] = 0 + F[f >> 2] = 0 + F[(f + 4) >> 2] = 0 + b = F[(f + 20) >> 2] + a = (b - e) | 0 + t = a >> 2 + r: { + s: { + if ((b | 0) == (e | 0)) { + break s + } + if ((a | 0) < 0) { + break r + } + q = ka(a) + F[f >> 2] = q + F[(f + 8) >> 2] = (t << 2) + q + b = ma(q, 0, a) + F[(f + 4) >> 2] = b + a + c = t >>> 0 <= 1 ? 1 : t + n = c & 3 + a = 0 + if ((c - 1) >>> 0 >= 3) { + o = c & -4 + while (1) { + c = g << 2 + F[(c + b) >> 2] = a + x = c | 4 + a = (F[(c + e) >> 2] + a) | 0 + F[(x + b) >> 2] = a + y = c | 8 + a = (a + F[(e + x) >> 2]) | 0 + F[(y + b) >> 2] = a + c = c | 12 + a = (a + F[(e + y) >> 2]) | 0 + F[(c + b) >> 2] = a + a = (a + F[(c + e) >> 2]) | 0 + g = (g + 4) | 0 + p = (p + 4) | 0 + if ((o | 0) != (p | 0)) { + continue + } + break + } + } + if (!n) { + break s + } + while (1) { + c = g << 2 + F[(c + b) >> 2] = a + g = (g + 1) | 0 + a = (F[(c + e) >> 2] + a) | 0 + k = (k + 1) | 0 + if ((n | 0) != (k | 0)) { + continue + } + break + } + } + if (!i) { + break l + } + x = F[(h + 40) >> 2] + y = F[(h + 12) >> 2] + n = 0 + while (1) { + I = n << 2 + a = (I + j) | 0 + k = -1 + c = (n + 1) | 0 + b = (c >>> 0) % 3 | 0 ? c : (n - 2) | 0 + if ((b | 0) != -1) { + k = F[((b << 2) + j) >> 2] + } + b = F[a >> 2] + t: { + u: { + if (!((n >>> 0) % 3 | 0)) { + p = -1 + a = (n + 2) | 0 + if ((a | 0) != -1) { + p = F[((a << 2) + j) >> 2] + } + if ( + !( + ((b | 0) == (k | 0)) | + ((b | 0) == (p | 0)) + ) & + ((k | 0) != (p | 0)) + ) { + break u + } + x = (x + 1) | 0 + F[(h + 40) >> 2] = x + c = (n + 3) | 0 + break t + } + p = F[(a - 4) >> 2] + } + a = p << 2 + A = F[(a + e) >> 2] + v: { + w: { + if ((A | 0) <= 0) { + break w + } + a = F[(a + q) >> 2] + g = 0 + while (1) { + o = ((a << 3) + d) | 0 + z = F[o >> 2] + if ((z | 0) == -1) { + break w + } + x: { + if ((k | 0) != (z | 0)) { + break x + } + o = F[(o + 4) >> 2] + if ((o | 0) != -1) { + z = F[((o << 2) + j) >> 2] + } else { + z = -1 + } + if ((z | 0) == (b | 0)) { + break x + } + while (1) { + y: { + b = a + g = (g + 1) | 0 + if ((A | 0) <= (g | 0)) { + break y + } + a = (b + 1) | 0 + J = ((a << 3) + d) | 0 + z = F[J >> 2] + K = ((b << 3) + d) | 0 + F[(K + 4) >> 2] = + F[(J + 4) >> 2] + F[K >> 2] = z + if ((z | 0) != -1) { + continue + } + } + break + } + F[((b << 3) + d) >> 2] = -1 + if ((o | 0) == -1) { + break w + } + F[(y + I) >> 2] = o + F[(y + (o << 2)) >> 2] = n + break v + } + a = (a + 1) | 0 + g = (g + 1) | 0 + if ((A | 0) != (g | 0)) { + continue + } + break + } + } + a = k << 2 + k = F[(a + e) >> 2] + if ((k | 0) <= 0) { + break v + } + a = F[(a + q) >> 2] + g = 0 + while (1) { + b = ((a << 3) + d) | 0 + if (F[b >> 2] == -1) { + F[b >> 2] = p + F[(b + 4) >> 2] = n + break v + } + a = (a + 1) | 0 + g = (g + 1) | 0 + if ((k | 0) != (g | 0)) { + continue + } + break + } + } + } + n = c + if (n >>> 0 < i >>> 0) { + continue + } + break + } + break l + } + break i + } + na() + v() + } + F[w >> 2] = t + if (q) { + ja(q) + } + if (d) { + ja(d) + } + a = F[(f + 16) >> 2] + if (!a) { + break j + } + F[(f + 20) >> 2] = a + ja(a) + } + Z = (f + 32) | 0 + x = (w | 0) != 0 + if (x) { + k = (Z - 32) | 0 + Z = k + a = F[h >> 2] + g = F[(h + 4) >> 2] + F[(k + 24) >> 2] = 0 + F[(k + 16) >> 2] = 0 + F[(k + 20) >> 2] = 0 + if ((a | 0) == (g | 0)) { + c = g + } else { + a = (g - a) | 0 + if ((a | 0) < 0) { + break i + } + a = a >> 2 + b = ((((a - 1) >>> 5) | 0) + 1) | 0 + c = ka(b << 2) + F[(k + 24) >> 2] = b + F[(k + 20) >> 2] = 0 + F[(k + 16) >> 2] = c + Yb((k + 16) | 0, a) + g = F[h >> 2] + c = F[(h + 4) >> 2] + } + F[(k + 8) >> 2] = 0 + F[k >> 2] = 0 + while (1) { + z: { + o = 0 + i = 0 + if ((c | 0) == (g | 0)) { + break z + } + while (1) { + b = F[(k + 16) >> 2] + A: { + if ( + (F[(b + ((i >>> 3) & 536870908)) >> 2] >>> + i) & + 1 + ) { + break A + } + c = F[k >> 2] + F[(k + 4) >> 2] = c + e = F[(h + 12) >> 2] + a = i + while (1) { + B: { + f = (a + 1) | 0 + d = a + a = (f >>> 0) % 3 | 0 ? f : (a - 2) | 0 + if ((a | 0) == -1) { + break B + } + a = F[(e + (a << 2)) >> 2] + if ((a | 0) == -1) { + break B + } + f = (a + 1) | 0 + a = (f >>> 0) % 3 | 0 ? f : (a - 2) | 0 + if ( + ((i | 0) == (a | 0)) | + ((a | 0) == -1) + ) { + break B + } + if ( + !( + (F[ + (b + ((a >>> 3) & 536870908)) >> 2 + ] >>> + a) & + 1 + ) + ) { + continue + } + } + break + } + j = d + C: { + D: { + E: { + while (1) { + a = + (F[(k + 16) >> 2] + + ((j >>> 3) & 536870908)) | + 0 + F[a >> 2] = F[a >> 2] | (1 << j) + a = (j + 1) | 0 + f = + (a >>> 0) % 3 | 0 + ? a + : (j - 2) | 0 + g = F[h >> 2] + y = (j >>> 0) % 3 | 0 + b = ((y ? -1 : 2) + j) | 0 + n = F[k >> 2] + A = (n | 0) == (c | 0) + F: { + if (A) { + break F + } + w = F[((f << 2) + g) >> 2] + q = F[(h + 12) >> 2] + a = n + if ((b | 0) != -1) { + e = (q + (b << 2)) | 0 + while (1) { + G: { + if ((w | 0) != F[a >> 2]) { + break G + } + p = F[(a + 4) >> 2] + t = F[e >> 2] + if ((p | 0) == (t | 0)) { + break G + } + e = b + c = -1 + a = -1 + if ((p | 0) == -1) { + break C + } + break D + } + a = (a + 8) | 0 + if ((c | 0) != (a | 0)) { + continue + } + break + } + break F + } + while (1) { + if ((w | 0) == F[a >> 2]) { + t = -1 + e = -1 + p = F[(a + 4) >> 2] + if ((p | 0) != -1) { + break D + } + } + a = (a + 8) | 0 + if ((c | 0) != (a | 0)) { + continue + } + break + } + } + b = F[((b << 2) + g) >> 2] + H: { + if (F[(k + 8) >> 2] != (c | 0)) { + F[c >> 2] = b + F[(c + 4) >> 2] = f + c = (c + 8) | 0 + F[(k + 4) >> 2] = c + break H + } + a = (c - n) | 0 + p = a >> 3 + e = (p + 1) | 0 + if (e >>> 0 >= 536870912) { + break i + } + g = (a >>> 2) | 0 + g = + a >>> 0 >= 2147483640 + ? 536870911 + : e >>> 0 < g >>> 0 + ? g + : e + if (g) { + if (g >>> 0 >= 536870912) { + break E + } + e = ka(g << 3) + } else { + e = 0 + } + a = (e + (p << 3)) | 0 + F[a >> 2] = b + F[(a + 4) >> 2] = f + b = (a + 8) | 0 + if (!A) { + while (1) { + c = (c - 8) | 0 + f = F[(c + 4) >> 2] + a = (a - 8) | 0 + F[a >> 2] = F[c >> 2] + F[(a + 4) >> 2] = f + if ((c | 0) != (n | 0)) { + continue + } + break + } + c = F[k >> 2] + } + F[(k + 8) >> 2] = e + (g << 3) + F[(k + 4) >> 2] = b + F[k >> 2] = a + if (c) { + ja(c) + } + c = b + } + I: { + J: { + if (y) { + a = (j - 1) | 0 + break J + } + a = (j + 2) | 0 + if ((a | 0) == -1) { + break I + } + } + a = + F[ + (F[(h + 12) >> 2] + + (a << 2)) >> + 2 + ] + if ((a | 0) == -1) { + break I + } + j = + (a + + ((a >>> 0) % 3 | 0 + ? -1 + : 2)) | + 0 + if ((d | 0) == (j | 0)) { + break I + } + if ((j | 0) != -1) { + continue + } + } + break + } + g = F[h >> 2] + break A + } + oa() + v() + } + c = F[(q + (p << 2)) >> 2] + b = e + a = p + } + if ((t | 0) != -1) { + F[(q + (t << 2)) >> 2] = -1 + } + if ((c | 0) != -1) { + F[(q + (c << 2)) >> 2] = -1 + } + F[(q + (b << 2)) >> 2] = -1 + F[(q + (a << 2)) >> 2] = -1 + o = 1 + } + i = (i + 1) | 0 + c = F[(h + 4) >> 2] + if (i >>> 0 < ((c - g) >> 2) >>> 0) { + continue + } + break + } + if (o) { + continue + } + } + break + } + a = F[k >> 2] + if (a) { + ja(a) + } + a = F[(k + 16) >> 2] + if (a) { + ja(a) + } + Z = (k + 32) | 0 + n = 0 + g = (Z - 32) | 0 + Z = g + e = F[(C + 12) >> 2] + F[(h + 36) >> 2] = e + p = (h + 24) | 0 + b = F[(h + 24) >> 2] + a = (F[(h + 28) >> 2] - b) >> 2 + K: { + L: { + if (a >>> 0 < e >>> 0) { + ab(p, (e - a) | 0, 10228) + F[(g + 24) >> 2] = 0 + F[(g + 16) >> 2] = 0 + F[(g + 20) >> 2] = 0 + break L + } + if (a >>> 0 > e >>> 0) { + F[(h + 28) >> 2] = b + (e << 2) + } + F[(g + 24) >> 2] = 0 + F[(g + 16) >> 2] = 0 + F[(g + 20) >> 2] = 0 + if (!e) { + break K + } + } + if ((e | 0) < 0) { + break i + } + a = ((((e - 1) >>> 5) | 0) + 1) | 0 + b = ka(a << 2) + F[(g + 24) >> 2] = a + F[(g + 20) >> 2] = 0 + F[(g + 16) >> 2] = b + Yb((g + 16) | 0, e) + } + a = F[h >> 2] + b = F[(h + 4) >> 2] + F[(g + 8) >> 2] = 0 + F[g >> 2] = 0 + F[(g + 4) >> 2] = 0 + M: { + if ((a | 0) == (b | 0)) { + a = b + } else { + a = (b - a) | 0 + if ((a | 0) < 0) { + break i + } + a = a >> 2 + b = ((((a - 1) >>> 5) | 0) + 1) | 0 + c = ka(b << 2) + F[(g + 8) >> 2] = b + F[(g + 4) >> 2] = 0 + F[g >> 2] = c + Yb(g, a) + b = F[h >> 2] + a = F[(h + 4) >> 2] + } + if ((a - b) >>> 0 < 12) { + break M + } + N: { + while (1) { + q = L(n, 3) + d = ((q << 2) + b) | 0 + f = F[d >> 2] + c = -1 + i = (q + 1) | 0 + if ((i | 0) != -1) { + c = F[((i << 2) + b) >> 2] + } + O: { + if ((c | 0) == (f | 0)) { + break O + } + i = f + f = F[(d + 8) >> 2] + if ( + ((i | 0) == (f | 0)) | + ((c | 0) == (f | 0)) + ) { + break O + } + k = 0 + i = F[g >> 2] + while (1) { + f = (k + q) | 0 + if ( + !( + (F[ + (((f >>> 3) & 536870908) + i) >> 2 + ] >>> + f) & + 1 + ) + ) { + a = F[((f << 2) + b) >> 2] + c = 1 << a + d = F[(g + 16) >> 2] + b = (a >>> 5) | 0 + i = F[(d + (b << 2)) >> 2] + t = c & i + if (t) { + c = F[(h + 28) >> 2] + P: { + if ((c | 0) != F[(h + 32) >> 2]) { + F[c >> 2] = -1 + F[(h + 28) >> 2] = c + 4 + break P + } + i = F[p >> 2] + b = (c - i) | 0 + o = b >> 2 + d = (o + 1) | 0 + if (d >>> 0 >= 1073741824) { + break i + } + j = (b >>> 1) | 0 + j = + b >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < j >>> 0 + ? j + : d + if (j) { + if (j >>> 0 >= 1073741824) { + break N + } + b = ka(j << 2) + } else { + b = 0 + } + d = (b + (o << 2)) | 0 + F[d >> 2] = -1 + o = (d + 4) | 0 + if ((c | 0) != (i | 0)) { + while (1) { + d = (d - 4) | 0 + c = (c - 4) | 0 + F[d >> 2] = F[c >> 2] + if ((c | 0) != (i | 0)) { + continue + } + break + } + } + F[(h + 32) >> 2] = b + (j << 2) + F[(h + 28) >> 2] = o + F[(h + 24) >> 2] = d + if (!i) { + break P + } + ja(i) + } + c = F[(h + 52) >> 2] + Q: { + if ((c | 0) != F[(h + 56) >> 2]) { + F[c >> 2] = a + F[(h + 52) >> 2] = c + 4 + break Q + } + i = F[(h + 48) >> 2] + b = (c - i) | 0 + o = b >> 2 + d = (o + 1) | 0 + if (d >>> 0 >= 1073741824) { + break i + } + j = (b >>> 1) | 0 + j = + b >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < j >>> 0 + ? j + : d + if (j) { + if (j >>> 0 >= 1073741824) { + break N + } + b = ka(j << 2) + } else { + b = 0 + } + d = (b + (o << 2)) | 0 + F[d >> 2] = a + a = (d + 4) | 0 + if ((c | 0) != (i | 0)) { + while (1) { + d = (d - 4) | 0 + c = (c - 4) | 0 + F[d >> 2] = F[c >> 2] + if ((c | 0) != (i | 0)) { + continue + } + break + } + } + F[(h + 56) >> 2] = b + (j << 2) + F[(h + 52) >> 2] = a + F[(h + 48) >> 2] = d + if (!i) { + break Q + } + ja(i) + } + c = F[(g + 20) >> 2] + a = F[(g + 24) >> 2] + if ((c | 0) == a << 5) { + if (((c + 1) | 0) < 0) { + break i + } + b = (g + 16) | 0 + if (c >>> 0 <= 1073741822) { + a = a << 6 + c = ((c & -32) + 32) | 0 + a = a >>> 0 > c >>> 0 ? a : c + } else { + a = 2147483647 + } + $a(b, a) + c = F[(g + 20) >> 2] + } + F[(g + 20) >> 2] = c + 1 + d = F[(g + 16) >> 2] + a = (d + ((c >>> 3) & 536870908)) | 0 + b = F[a >> 2] + ;(N = a), + (O = oi(c) & b), + (F[N >> 2] = O) + c = 1 << e + b = (e >>> 5) | 0 + i = F[((b << 2) + d) >> 2] + a = e + e = (a + 1) | 0 + } + F[((b << 2) + d) >> 2] = c | i + o = (F[(h + 24) >> 2] + (a << 2)) | 0 + j = F[(h + 12) >> 2] + b = F[h >> 2] + i = F[g >> 2] + c = f + R: { + S: { + T: { + while (1) { + if ((c | 0) == -1) { + break T + } + d = + (((c >>> 3) & 536870908) + + i) | + 0 + F[d >> 2] = F[d >> 2] | (1 << c) + F[o >> 2] = c + if (t) { + F[((c << 2) + b) >> 2] = a + } + w = (c + 1) | 0 + c = + (w >>> 0) % 3 | 0 + ? w + : (c - 2) | 0 + d = -1 + U: { + if ((c | 0) == -1) { + break U + } + c = F[(j + (c << 2)) >> 2] + d = -1 + if ((c | 0) == -1) { + break U + } + d = (c + 1) | 0 + d = + (d >>> 0) % 3 | 0 + ? d + : (c - 2) | 0 + } + c = d + if ((f | 0) != (c | 0)) { + continue + } + break + } + if ((f | 0) != -1) { + break R + } + c = 1 + break S + } + if ((f >>> 0) % 3 | 0) { + c = (f - 1) | 0 + break S + } + c = (f + 2) | 0 + if ((c | 0) == -1) { + break R + } + } + c = F[(j + (c << 2)) >> 2] + if ((c | 0) == -1) { + break R + } + V: { + if ((c >>> 0) % 3 | 0) { + c = (c - 1) | 0 + break V + } + c = (c + 2) | 0 + if ((c | 0) == -1) { + break R + } + } + f = F[(h + 12) >> 2] + b = F[h >> 2] + while (1) { + d = + (((c >>> 3) & 536870908) + i) | 0 + F[d >> 2] = F[d >> 2] | (1 << c) + if (t) { + F[((c << 2) + b) >> 2] = a + } + W: { + if ((c >>> 0) % 3 | 0) { + c = (c - 1) | 0 + break W + } + c = (c + 2) | 0 + if ((c | 0) == -1) { + break R + } + } + c = F[(f + (c << 2)) >> 2] + if ((c | 0) == -1) { + break R + } + c = + (c + + ((c >>> 0) % 3 | 0 ? -1 : 2)) | + 0 + if ((c | 0) != -1) { + continue + } + break + } + } + } + k = (k + 1) | 0 + if ((k | 0) != 3) { + continue + } + break + } + b = F[h >> 2] + a = F[(h + 4) >> 2] + } + n = (n + 1) | 0 + if ( + n >>> 0 < + ((((a - b) >> 2) >>> 0) / 3) >>> 0 + ) { + continue + } + break + } + break M + } + oa() + v() + } + c = 0 + F[(h + 44) >> 2] = 0 + a = F[(g + 16) >> 2] + b = F[(g + 20) >> 2] + if (b) { + e = b & 31 + b = (((b >>> 3) & 536870908) + a) | 0 + d = a + i = 0 + while (1) { + if (!((F[d >> 2] >>> c) & 1)) { + i = (i + 1) | 0 + F[(h + 44) >> 2] = i + } + f = (c | 0) == 31 + c = f ? 0 : (c + 1) | 0 + d = ((f << 2) + d) | 0 + if ( + ((b | 0) != (d | 0)) | + ((c | 0) != (e | 0)) + ) { + continue + } + break + } + } + b = F[g >> 2] + if (b) { + ja(b) + a = F[(g + 16) >> 2] + } + if (a) { + ja(a) + } + Z = (g + 32) | 0 + } + Z = (C + 16) | 0 + if (!x) { + F[(H + 8) >> 2] = 0 + Za(h) + h = 0 + } + Z = (H + 16) | 0 + a = h + break h + } + na() + v() + } + b = F[s >> 2] + if (!b) { + break d + } + F[(s + 4) >> 2] = b + ja(b) + } + Z = (s + 16) | 0 + break b + } + na() + v() + } + c = F[(l + 4) >> 2] + b = a + F[(l + 4) >> 2] = a + if (c) { + Za(c) + b = F[(l + 4) >> 2] + } + X: { + if (!b) { + break X + } + a = F[(u + 100) >> 2] + c = F[(u + 96) >> 2] + D[(r + 12) | 0] = 0 + Ea((l + 56) | 0, (((a - c) | 0) / 12) | 0, (r + 12) | 0) + a = F[(u + 100) >> 2] + c = F[(u + 96) >> 2] + if ((a | 0) == (c | 0)) { + break X + } + while (1) { + if ( + !( + (F[ + (F[(l + 56) >> 2] + ((E >>> 3) & 536870908)) >> 2 + ] >>> + E) & + 1 + ) + ) { + a = L(E, 3) + Vb(l, 0, a) + c = F[(l + 8) >> 2] + e = F[(l + 12) >> 2] + Vb(l, 1, (a + 1) | 0) + f = F[(l + 20) >> 2] + d = F[(l + 24) >> 2] + Vb(l, 2, (a + 2) | 0) + n = (c | 0) == (e | 0) ? -1 : 0 + a = (d - f) >> 2 + c = (e - c) >> 2 + e = a >>> 0 > c >>> 0 + c = + ((F[(l + 36) >> 2] - F[(l + 32) >> 2]) >> 2) >>> 0 > + (e ? a : c) >>> 0 + ? 2 + : e + ? 1 + : n + Y: { + if (F[(l + 68) >> 2] <= 0) { + break Y + } + F[(r + 12) >> 2] = F[(l + 76) >> 2] + F[(r + 8) >> 2] = m + Qa((r + 8) | 0, (r + 12) | 0) + a = F[((((c << 2) + l) | 0) + 44) >> 2] + if ((a | 0) < 0) { + a = -1 + } else { + e = ((a >>> 0) / 3) | 0 + a = + F[ + (((F[(F[l >> 2] + 96) >> 2] + L(e, 12)) | 0) + + ((a - L(e, 3)) << 2)) >> + 2 + ] + } + F[(r + 12) >> 2] = a + F[(r + 8) >> 2] = m + Qa((r + 8) | 0, (r + 12) | 0) + e = F[(l + 72) >> 2] + F[(l + 72) >> 2] = e + 2 + if (!(e & 1)) { + break Y + } + F[(r + 12) >> 2] = a + F[(r + 8) >> 2] = m + Qa((r + 8) | 0, (r + 12) | 0) + F[(l + 72) >> 2] = F[(l + 72) >> 2] + 1 + } + d = 0 + e = (Z - 16) | 0 + Z = e + F[(l + 68) >> 2] = F[(l + 68) >> 2] + 1 + a = (L(c, 12) + l) | 0 + a = (F[(a + 12) >> 2] - F[(a + 8) >> 2]) | 0 + if ((a | 0) > 0) { + a = (a >>> 2) | 0 + h = a >>> 0 <= 1 ? 1 : a + c = F[((((c << 2) + l) | 0) + 44) >> 2] + while (1) { + a = c + f = ((a >>> 0) / 3) | 0 + c = (a | 0) == -1 + g = c ? -1 : f + i = (F[(l + 56) >> 2] + ((g >>> 3) & 536870908)) | 0 + F[i >> 2] = F[i >> 2] | (1 << g) + F[(l + 72) >> 2] = F[(l + 72) >> 2] + 1 + Z: { + _: { + $: { + aa: { + ba: { + if (!d) { + ca: { + if ((a | 0) >= 0) { + F[(e + 12) >> 2] = + F[ + (((F[(F[l >> 2] + 96) >> 2] + + L(f, 12)) | + 0) + + ((a >>> 0) % 3 << 2)) >> + 2 + ] + F[(e + 8) >> 2] = m + Qa((e + 8) | 0, (e + 12) | 0) + break ca + } + F[(e + 12) >> 2] = -1 + F[(e + 8) >> 2] = m + Qa((e + 8) | 0, (e + 12) | 0) + if (c) { + break ba + } + } + c = -1 + f = (a + 1) | 0 + f = (f >>> 0) % 3 | 0 ? f : (a - 2) | 0 + if ((f | 0) >= 0) { + g = ((f >>> 0) / 3) | 0 + f = + F[ + (((F[(F[l >> 2] + 96) >> 2] + + L(g, 12)) | + 0) + + ((f - L(g, 3)) << 2)) >> + 2 + ] + } else { + f = -1 + } + F[(e + 12) >> 2] = f + F[(e + 8) >> 2] = m + Qa((e + 8) | 0, (e + 12) | 0) + f = (((a >>> 0) % 3 | 0 ? -1 : 2) + a) | 0 + if ((f | 0) < 0) { + break aa + } + c = ((f >>> 0) / 3) | 0 + c = + F[ + (((F[(F[l >> 2] + 96) >> 2] + + L(c, 12)) | + 0) + + ((f - L(c, 3)) << 2)) >> + 2 + ] + break aa + } + c = + (a | 0) < 0 + ? -1 + : F[ + (((F[(F[l >> 2] + 96) >> 2] + + L(f, 12)) | + 0) + + ((a >>> 0) % 3 << 2)) >> + 2 + ] + F[(l + 76) >> 2] = c + F[(e + 12) >> 2] = c + F[(e + 8) >> 2] = m + Qa((e + 8) | 0, (e + 12) | 0) + if (d & 1) { + c = -1 + if ((a | 0) == -1) { + break Z + } + if ((L(f, 3) | 0) != (a | 0)) { + a = (a - 1) | 0 + break _ + } + a = (a + 2) | 0 + break $ + } + c = -1 + if ((a | 0) == -1) { + break Z + } + c = (a + 1) | 0 + a = (c >>> 0) % 3 | 0 ? c : (a - 2) | 0 + break $ + } + c = -1 + F[(e + 12) >> 2] = -1 + F[(e + 8) >> 2] = m + Qa((e + 8) | 0, (e + 12) | 0) + } + F[(l + 76) >> 2] = c + F[(e + 12) >> 2] = c + F[(e + 8) >> 2] = m + Qa((e + 8) | 0, (e + 12) | 0) + } + c = -1 + if ((a | 0) == -1) { + break Z + } + } + c = + F[ + (F[(F[(l + 4) >> 2] + 12) >> 2] + (a << 2)) >> 2 + ] + } + d = (d + 1) | 0 + if ((h | 0) != (d | 0)) { + continue + } + break + } + } + Z = (e + 16) | 0 + c = F[(u + 96) >> 2] + a = F[(u + 100) >> 2] + } + E = (E + 1) | 0 + if (E >>> 0 < (((a - c) | 0) / 12) >>> 0) { + continue + } + break + } + } + Z = (r + 16) | 0 + da: { + if (b) { + a = F[B >> 2] + if (a) { + F[(B + 4) >> 2] = a + ja(a) + } + F[B >> 2] = F[m >> 2] + F[(B + 4) >> 2] = F[(m + 4) >> 2] + F[(B + 8) >> 2] = F[(m + 8) >> 2] + M = F[(m + 84) >> 2] + break da + } + a = F[m >> 2] + if (!a) { + break da + } + F[(m + 4) >> 2] = a + ja(a) + } + a = F[(m + 72) >> 2] + if (a) { + ja(a) + } + a = F[(m + 48) >> 2] + if (a) { + F[(m + 52) >> 2] = a + ja(a) + } + a = F[(m + 36) >> 2] + if (a) { + F[(m + 40) >> 2] = a + ja(a) + } + a = F[(m + 24) >> 2] + if (a) { + F[(m + 28) >> 2] = a + ja(a) + } + a = F[(m + 20) >> 2] + F[(m + 20) >> 2] = 0 + if (a) { + Za(a) + } + Z = (m + 96) | 0 + return M | 0 + } + function sf(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + i = b + a = 0 + b = 0 + a: { + b: { + switch ((d - 1) | 0) { + case 0: + j = F[(i + 80) >> 2] + h = G[(c + 24) | 0] + c: { + if ((L(j, h) | 0) != (e | 0)) { + break c + } + d = F[(c + 28) >> 2] != 1 + b = G[(c + 84) | 0] + if (!(d | !b)) { + la(f, (F[F[c >> 2] >> 2] + F[(c + 48) >> 2]) | 0, e) + b = 1 + break c + } + if (h) { + a = ka(h) + ma(a, 0, h) + } + d: { + if (!j) { + b = 1 + break d + } + if (!d) { + if (h) { + d = 0 + e = 0 + while (1) { + i = (d + f) | 0 + k = F[F[c >> 2] >> 2] + m = F[(c + 48) >> 2] + g = F[(c + 40) >> 2] + b = ki( + g, + F[(c + 44) >> 2], + G[(c + 84) | 0] + ? e + : F[(F[(c + 68) >> 2] + (e << 2)) >> 2], + 0, + ) + n = b + b = (b + m) | 0 + la(i, la(a, (b + k) | 0, g), h) + d = (d + h) | 0 + b = 1 + e = (e + 1) | 0 + if ((j | 0) != (e | 0)) { + continue + } + break + } + break d + } + if (b) { + b = 1 + h = F[c >> 2] + e = F[(c + 48) >> 2] + f = F[(c + 40) >> 2] + i = F[(c + 44) >> 2] + if ((j | 0) != 1) { + g = j & -2 + c = 0 + d = 0 + while (1) { + k = F[h >> 2] + m = (ki(f, i, c, 0) + e) | 0 + k = la(a, (k + m) | 0, f) + m = F[h >> 2] + n = (ki(f, i, c | 1, 0) + e) | 0 + la(k, (m + n) | 0, f) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + g = c + } + if (!(j & 1)) { + break d + } + c = F[h >> 2] + d = (ki(g, 0, f, i) + e) | 0 + la(a, (c + d) | 0, f) + break d + } + b = 1 + h = F[c >> 2] + e = F[(c + 48) >> 2] + g = F[(c + 68) >> 2] + f = F[(c + 40) >> 2] + i = F[(c + 44) >> 2] + c = 0 + if ((j | 0) != 1) { + k = j & -2 + d = 0 + while (1) { + m = F[h >> 2] + n = c << 2 + l = (ki(f, i, F[(n + g) >> 2], 0) + e) | 0 + m = la(a, (m + l) | 0, f) + l = F[h >> 2] + n = + (ki(f, i, F[(g + (n | 4)) >> 2], 0) + e) | 0 + la(m, (l + n) | 0, f) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((k | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break d + } + d = F[h >> 2] + c = (ki(f, i, F[(g + (c << 2)) >> 2], 0) + e) | 0 + la(a, (c + d) | 0, f) + break d + } + b = 0 + if (!h) { + d = 0 + while (1) { + if ( + !Cb( + c, + G[(c + 84) | 0] + ? d + : F[(F[(c + 68) >> 2] + (d << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break d + } + d = (d + 1) | 0 + b = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + break d + } + d = 0 + e = 0 + while (1) { + if ( + !Cb( + c, + G[(c + 84) | 0] + ? e + : F[(F[(c + 68) >> 2] + (e << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break d + } + la((d + f) | 0, a, h) + d = (d + h) | 0 + e = (e + 1) | 0 + b = j >>> 0 <= e >>> 0 + if ((e | 0) != (j | 0)) { + continue + } + break + } + } + if (!a) { + break c + } + ja(a) + } + break a + case 2: + n = G[(c + 24) | 0] + l = n << 1 + j = F[(i + 80) >> 2] + e: { + if ((L(l, j) | 0) != (e | 0)) { + break e + } + i = F[(c + 28) >> 2] != 3 + d = G[(c + 84) | 0] + if (!(i | !d)) { + la(f, (F[F[c >> 2] >> 2] + F[(c + 48) >> 2]) | 0, e) + a = 1 + break e + } + f: { + if (!n) { + e = 0 + break f + } + e = ka(l) + ma(e, 0, l) + } + g: { + if (!j) { + a = 1 + break g + } + if (!i) { + o = F[(c + 68) >> 2] + k = F[c >> 2] + b = F[(c + 48) >> 2] + i = F[(c + 40) >> 2] + m = F[(c + 44) >> 2] + if (n) { + if (!d) { + c = 0 + d = 0 + while (1) { + a = 1 + g = F[k >> 2] + p = + (ki(i, m, F[(o + (d << 2)) >> 2], 0) + + b) | + 0 + la( + ((c << 1) + f) | 0, + la(e, (g + p) | 0, i), + l, + ) + c = (c + n) | 0 + d = (d + 1) | 0 + if ((j | 0) != (d | 0)) { + continue + } + break + } + break g + } + c = 0 + while (1) { + a = 1 + o = F[k >> 2] + p = (ki(g, h, i, m) + b) | 0 + la( + ((c << 1) + f) | 0, + la(e, (o + p) | 0, i), + l, + ) + c = (c + n) | 0 + d = h + g = (g + 1) | 0 + d = g ? d : (d + 1) | 0 + h = d + if (((j | 0) != (g | 0)) | d) { + continue + } + break + } + break g + } + if (!d) { + a = 1 + c = 0 + if ((j | 0) != 1) { + f = j & -2 + d = 0 + while (1) { + h = F[k >> 2] + g = c << 2 + n = (ki(i, m, F[(g + o) >> 2], 0) + b) | 0 + h = la(e, (h + n) | 0, i) + n = F[k >> 2] + g = + (ki(i, m, F[(o + (g | 4)) >> 2], 0) + b) | + 0 + la(h, (g + n) | 0, i) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break g + } + d = F[k >> 2] + b = + (ki(i, m, F[(o + (c << 2)) >> 2], 0) + b) | 0 + la(e, (b + d) | 0, i) + break g + } + n = j & 1 + a = 1 + if ((j | 0) != 1) { + j = j & -2 + f = 0 + c = 0 + while (1) { + d = F[k >> 2] + l = (ki(g, h, i, m) + b) | 0 + d = la(e, (d + l) | 0, i) + l = F[k >> 2] + o = (ki(i, m, g | 1, h) + b) | 0 + la(d, (l + o) | 0, i) + g = (g + 2) | 0 + h = g >>> 0 < 2 ? (h + 1) | 0 : h + f = (f + 2) | 0 + d = f >>> 0 < 2 ? (c + 1) | 0 : c + c = d + if (((f | 0) != (j | 0)) | c) { + continue + } + break + } + } + if (!n) { + break g + } + c = F[k >> 2] + b = (ki(g, h, i, m) + b) | 0 + la(e, (b + c) | 0, i) + break g + } + if (!n) { + d = 0 + while (1) { + if ( + !Ab( + c, + G[(c + 84) | 0] + ? d + : F[(F[(c + 68) >> 2] + (d << 2)) >> 2], + D[(c + 24) | 0], + e, + ) + ) { + break g + } + d = (d + 1) | 0 + a = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + break g + } + d = 0 + while (1) { + if ( + !Ab( + c, + G[(c + 84) | 0] + ? d + : F[(F[(c + 68) >> 2] + (d << 2)) >> 2], + D[(c + 24) | 0], + e, + ) + ) { + break g + } + la(((b << 1) + f) | 0, e, l) + b = (b + n) | 0 + d = (d + 1) | 0 + a = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + } + if (!e) { + break e + } + ja(e) + } + b = a + break a + case 4: + l = G[(c + 24) | 0] + o = l << 2 + j = F[(i + 80) >> 2] + h: { + if ((L(o, j) | 0) != (e | 0)) { + break h + } + i = F[(c + 28) >> 2] != 5 + d = G[(c + 84) | 0] + if (!(i | !d)) { + la(f, (F[F[c >> 2] >> 2] + F[(c + 48) >> 2]) | 0, e) + b = 1 + break h + } + i: { + if (!l) { + e = 0 + break i + } + e = ka(o) + ma(e, 0, o) + } + b = 1 + j: { + if (!j) { + break j + } + if (!i) { + a = F[(c + 68) >> 2] + m = F[c >> 2] + i = F[(c + 48) >> 2] + k = F[(c + 40) >> 2] + n = F[(c + 44) >> 2] + if (l) { + if (!d) { + c = 0 + d = 0 + while (1) { + g = F[m >> 2] + p = + (ki(k, n, F[(a + (d << 2)) >> 2], 0) + + i) | + 0 + la( + ((c << 2) + f) | 0, + la(e, (g + p) | 0, k), + o, + ) + c = (c + l) | 0 + d = (d + 1) | 0 + if ((j | 0) != (d | 0)) { + continue + } + break + } + break j + } + c = 0 + while (1) { + d = F[m >> 2] + p = (ki(g, h, k, n) + i) | 0 + la( + ((c << 2) + f) | 0, + la(e, (d + p) | 0, k), + o, + ) + c = (c + l) | 0 + g = (g + 1) | 0 + a = g ? h : (h + 1) | 0 + h = a + if (((j | 0) != (g | 0)) | h) { + continue + } + break + } + break j + } + if (!d) { + c = 0 + if ((j | 0) != 1) { + f = j & -2 + d = 0 + while (1) { + h = F[m >> 2] + g = c << 2 + l = (ki(k, n, F[(g + a) >> 2], 0) + i) | 0 + h = la(e, (h + l) | 0, k) + l = F[m >> 2] + g = + (ki(k, n, F[(a + (g | 4)) >> 2], 0) + i) | + 0 + la(h, (g + l) | 0, k) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break j + } + d = F[m >> 2] + a = + (ki(k, n, F[(a + (c << 2)) >> 2], 0) + i) | 0 + la(e, (a + d) | 0, k) + break j + } + l = j & 1 + if ((j | 0) != 1) { + j = j & -2 + f = 0 + c = 0 + while (1) { + a = F[m >> 2] + d = (ki(g, h, k, n) + i) | 0 + a = la(e, (a + d) | 0, k) + d = F[m >> 2] + o = (ki(k, n, g | 1, h) + i) | 0 + la(a, (d + o) | 0, k) + d = h + g = (g + 2) | 0 + h = g >>> 0 < 2 ? (d + 1) | 0 : d + f = (f + 2) | 0 + a = f >>> 0 < 2 ? (c + 1) | 0 : c + c = a + if (((f | 0) != (j | 0)) | c) { + continue + } + break + } + } + if (!l) { + break j + } + a = F[m >> 2] + c = (ki(g, h, k, n) + i) | 0 + la(e, (a + c) | 0, k) + break j + } + b = 0 + if (!l) { + d = 0 + while (1) { + if ( + !yb( + c, + G[(c + 84) | 0] + ? d + : F[(F[(c + 68) >> 2] + (d << 2)) >> 2], + D[(c + 24) | 0], + e, + ) + ) { + break j + } + d = (d + 1) | 0 + b = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + break j + } + d = 0 + while (1) { + if ( + !yb( + c, + G[(c + 84) | 0] + ? d + : F[(F[(c + 68) >> 2] + (d << 2)) >> 2], + D[(c + 24) | 0], + e, + ) + ) { + break j + } + la(((a << 2) + f) | 0, e, o) + a = (a + l) | 0 + d = (d + 1) | 0 + b = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + } + if (!e) { + break h + } + ja(e) + } + break a + case 1: + j = F[(i + 80) >> 2] + h = G[(c + 24) | 0] + k: { + if ((L(j, h) | 0) != (e | 0)) { + break k + } + d = F[(c + 28) >> 2] != 2 + b = G[(c + 84) | 0] + if (!(d | !b)) { + la(f, (F[F[c >> 2] >> 2] + F[(c + 48) >> 2]) | 0, e) + b = 1 + break k + } + if (h) { + a = ka(h) + ma(a, 0, h) + } + l: { + if (!j) { + b = 1 + break l + } + if (!d) { + if (h) { + d = 0 + e = 0 + while (1) { + i = (d + f) | 0 + k = F[F[c >> 2] >> 2] + m = F[(c + 48) >> 2] + g = F[(c + 40) >> 2] + b = ki( + g, + F[(c + 44) >> 2], + G[(c + 84) | 0] + ? e + : F[(F[(c + 68) >> 2] + (e << 2)) >> 2], + 0, + ) + n = b + b = (b + m) | 0 + la(i, la(a, (b + k) | 0, g), h) + d = (d + h) | 0 + b = 1 + e = (e + 1) | 0 + if ((j | 0) != (e | 0)) { + continue + } + break + } + break l + } + if (b) { + b = 1 + h = F[c >> 2] + e = F[(c + 48) >> 2] + f = F[(c + 40) >> 2] + i = F[(c + 44) >> 2] + if ((j | 0) != 1) { + g = j & -2 + c = 0 + d = 0 + while (1) { + k = F[h >> 2] + m = (ki(f, i, c, 0) + e) | 0 + k = la(a, (k + m) | 0, f) + m = F[h >> 2] + n = (ki(f, i, c | 1, 0) + e) | 0 + la(k, (m + n) | 0, f) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + g = c + } + if (!(j & 1)) { + break l + } + c = F[h >> 2] + d = (ki(g, 0, f, i) + e) | 0 + la(a, (c + d) | 0, f) + break l + } + b = 1 + h = F[c >> 2] + e = F[(c + 48) >> 2] + g = F[(c + 68) >> 2] + f = F[(c + 40) >> 2] + i = F[(c + 44) >> 2] + c = 0 + if ((j | 0) != 1) { + k = j & -2 + d = 0 + while (1) { + m = F[h >> 2] + n = c << 2 + l = (ki(f, i, F[(n + g) >> 2], 0) + e) | 0 + m = la(a, (m + l) | 0, f) + l = F[h >> 2] + n = + (ki(f, i, F[(g + (n | 4)) >> 2], 0) + e) | 0 + la(m, (l + n) | 0, f) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((k | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break l + } + d = F[h >> 2] + c = (ki(f, i, F[(g + (c << 2)) >> 2], 0) + e) | 0 + la(a, (c + d) | 0, f) + break l + } + b = 0 + if (!h) { + d = 0 + while (1) { + if ( + !Bb( + c, + G[(c + 84) | 0] + ? d + : F[(F[(c + 68) >> 2] + (d << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break l + } + d = (d + 1) | 0 + b = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + break l + } + d = 0 + e = 0 + while (1) { + if ( + !Bb( + c, + G[(c + 84) | 0] + ? e + : F[(F[(c + 68) >> 2] + (e << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break l + } + la((d + f) | 0, a, h) + d = (d + h) | 0 + e = (e + 1) | 0 + b = j >>> 0 <= e >>> 0 + if ((e | 0) != (j | 0)) { + continue + } + break + } + } + if (!a) { + break k + } + ja(a) + } + break a + case 3: + n = G[(c + 24) | 0] + l = n << 1 + j = F[(i + 80) >> 2] + m: { + if ((L(l, j) | 0) != (e | 0)) { + break m + } + i = F[(c + 28) >> 2] != 4 + d = G[(c + 84) | 0] + if (!(i | !d)) { + la(f, (F[F[c >> 2] >> 2] + F[(c + 48) >> 2]) | 0, e) + a = 1 + break m + } + n: { + if (!n) { + e = 0 + break n + } + e = ka(l) + ma(e, 0, l) + } + o: { + if (!j) { + a = 1 + break o + } + if (!i) { + o = F[(c + 68) >> 2] + k = F[c >> 2] + b = F[(c + 48) >> 2] + i = F[(c + 40) >> 2] + m = F[(c + 44) >> 2] + if (n) { + if (!d) { + c = 0 + d = 0 + while (1) { + a = 1 + g = F[k >> 2] + p = + (ki(i, m, F[(o + (d << 2)) >> 2], 0) + + b) | + 0 + la( + ((c << 1) + f) | 0, + la(e, (g + p) | 0, i), + l, + ) + c = (c + n) | 0 + d = (d + 1) | 0 + if ((j | 0) != (d | 0)) { + continue + } + break + } + break o + } + c = 0 + while (1) { + a = 1 + o = F[k >> 2] + p = (ki(g, h, i, m) + b) | 0 + la( + ((c << 1) + f) | 0, + la(e, (o + p) | 0, i), + l, + ) + c = (c + n) | 0 + d = h + g = (g + 1) | 0 + d = g ? d : (d + 1) | 0 + h = d + if (((j | 0) != (g | 0)) | d) { + continue + } + break + } + break o + } + if (!d) { + a = 1 + c = 0 + if ((j | 0) != 1) { + f = j & -2 + d = 0 + while (1) { + h = F[k >> 2] + g = c << 2 + n = (ki(i, m, F[(g + o) >> 2], 0) + b) | 0 + h = la(e, (h + n) | 0, i) + n = F[k >> 2] + g = + (ki(i, m, F[(o + (g | 4)) >> 2], 0) + b) | + 0 + la(h, (g + n) | 0, i) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break o + } + d = F[k >> 2] + b = + (ki(i, m, F[(o + (c << 2)) >> 2], 0) + b) | 0 + la(e, (b + d) | 0, i) + break o + } + n = j & 1 + a = 1 + if ((j | 0) != 1) { + j = j & -2 + f = 0 + c = 0 + while (1) { + d = F[k >> 2] + l = (ki(g, h, i, m) + b) | 0 + d = la(e, (d + l) | 0, i) + l = F[k >> 2] + o = (ki(i, m, g | 1, h) + b) | 0 + la(d, (l + o) | 0, i) + g = (g + 2) | 0 + h = g >>> 0 < 2 ? (h + 1) | 0 : h + f = (f + 2) | 0 + d = f >>> 0 < 2 ? (c + 1) | 0 : c + c = d + if (((f | 0) != (j | 0)) | c) { + continue + } + break + } + } + if (!n) { + break o + } + c = F[k >> 2] + b = (ki(g, h, i, m) + b) | 0 + la(e, (b + c) | 0, i) + break o + } + if (!n) { + d = 0 + while (1) { + if ( + !zb( + c, + G[(c + 84) | 0] + ? d + : F[(F[(c + 68) >> 2] + (d << 2)) >> 2], + D[(c + 24) | 0], + e, + ) + ) { + break o + } + d = (d + 1) | 0 + a = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + break o + } + d = 0 + while (1) { + if ( + !zb( + c, + G[(c + 84) | 0] + ? d + : F[(F[(c + 68) >> 2] + (d << 2)) >> 2], + D[(c + 24) | 0], + e, + ) + ) { + break o + } + la(((b << 1) + f) | 0, e, l) + b = (b + n) | 0 + d = (d + 1) | 0 + a = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + } + if (!e) { + break m + } + ja(e) + } + b = a + break a + case 5: + l = G[(c + 24) | 0] + o = l << 2 + j = F[(i + 80) >> 2] + p: { + if ((L(o, j) | 0) != (e | 0)) { + break p + } + i = F[(c + 28) >> 2] != 6 + d = G[(c + 84) | 0] + if (!(i | !d)) { + la(f, (F[F[c >> 2] >> 2] + F[(c + 48) >> 2]) | 0, e) + b = 1 + break p + } + q: { + if (!l) { + e = 0 + break q + } + e = ka(o) + ma(e, 0, o) + } + b = 1 + r: { + if (!j) { + break r + } + if (!i) { + a = F[(c + 68) >> 2] + m = F[c >> 2] + i = F[(c + 48) >> 2] + k = F[(c + 40) >> 2] + n = F[(c + 44) >> 2] + if (l) { + if (!d) { + c = 0 + d = 0 + while (1) { + g = F[m >> 2] + p = + (ki(k, n, F[(a + (d << 2)) >> 2], 0) + + i) | + 0 + la( + ((c << 2) + f) | 0, + la(e, (g + p) | 0, k), + o, + ) + c = (c + l) | 0 + d = (d + 1) | 0 + if ((j | 0) != (d | 0)) { + continue + } + break + } + break r + } + c = 0 + while (1) { + d = F[m >> 2] + p = (ki(g, h, k, n) + i) | 0 + la( + ((c << 2) + f) | 0, + la(e, (d + p) | 0, k), + o, + ) + c = (c + l) | 0 + g = (g + 1) | 0 + a = g ? h : (h + 1) | 0 + h = a + if (((j | 0) != (g | 0)) | h) { + continue + } + break + } + break r + } + if (!d) { + c = 0 + if ((j | 0) != 1) { + f = j & -2 + d = 0 + while (1) { + h = F[m >> 2] + g = c << 2 + l = (ki(k, n, F[(g + a) >> 2], 0) + i) | 0 + h = la(e, (h + l) | 0, k) + l = F[m >> 2] + g = + (ki(k, n, F[(a + (g | 4)) >> 2], 0) + i) | + 0 + la(h, (g + l) | 0, k) + c = (c + 2) | 0 + d = (d + 2) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break r + } + d = F[m >> 2] + a = + (ki(k, n, F[(a + (c << 2)) >> 2], 0) + i) | 0 + la(e, (a + d) | 0, k) + break r + } + l = j & 1 + if ((j | 0) != 1) { + j = j & -2 + f = 0 + c = 0 + while (1) { + a = F[m >> 2] + d = (ki(g, h, k, n) + i) | 0 + a = la(e, (a + d) | 0, k) + d = F[m >> 2] + o = (ki(k, n, g | 1, h) + i) | 0 + la(a, (d + o) | 0, k) + d = h + g = (g + 2) | 0 + h = g >>> 0 < 2 ? (d + 1) | 0 : d + f = (f + 2) | 0 + a = f >>> 0 < 2 ? (c + 1) | 0 : c + c = a + if (((f | 0) != (j | 0)) | c) { + continue + } + break + } + } + if (!l) { + break r + } + a = F[m >> 2] + c = (ki(g, h, k, n) + i) | 0 + la(e, (a + c) | 0, k) + break r + } + b = 0 + if (!l) { + d = 0 + while (1) { + if ( + !xb( + c, + G[(c + 84) | 0] + ? d + : F[(F[(c + 68) >> 2] + (d << 2)) >> 2], + D[(c + 24) | 0], + e, + ) + ) { + break r + } + d = (d + 1) | 0 + b = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + break r + } + d = 0 + while (1) { + if ( + !xb( + c, + G[(c + 84) | 0] + ? d + : F[(F[(c + 68) >> 2] + (d << 2)) >> 2], + D[(c + 24) | 0], + e, + ) + ) { + break r + } + la(((a << 2) + f) | 0, e, o) + a = (a + l) | 0 + d = (d + 1) | 0 + b = j >>> 0 <= d >>> 0 + if ((d | 0) != (j | 0)) { + continue + } + break + } + } + if (!e) { + break p + } + ja(e) + } + break a + case 8: + p = G[(c + 24) | 0] + q = p << 2 + k = F[(i + 80) >> 2] + s: { + if ((L(q, k) | 0) != (e | 0)) { + break s + } + i = F[(c + 28) >> 2] + t: { + if (!p) { + break t + } + a = ka(q) + d = a + m = (q - 4) | 0 + l = (((m >>> 2) | 0) + 1) & 7 + if (l) { + e = 0 + while (1) { + F[d >> 2] = -1073741824 + d = (d + 4) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + if (m >>> 0 < 28) { + break t + } + e = ((p << 2) + a) | 0 + while (1) { + F[(d + 24) >> 2] = -1073741824 + F[(d + 28) >> 2] = -1073741824 + F[(d + 16) >> 2] = -1073741824 + F[(d + 20) >> 2] = -1073741824 + F[(d + 8) >> 2] = -1073741824 + F[(d + 12) >> 2] = -1073741824 + F[d >> 2] = -1073741824 + F[(d + 4) >> 2] = -1073741824 + d = (d + 32) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + u: { + if (!k) { + b = 1 + break u + } + if ((i | 0) == 9) { + r = F[(c + 68) >> 2] + l = F[c >> 2] + i = F[(c + 48) >> 2] + s = G[(c + 84) | 0] + m = F[(c + 44) >> 2] + c = F[(c + 40) >> 2] + o = c + if (p) { + e = 0 + d = 0 + while (1) { + h = ((e << 2) + f) | 0 + g = F[l >> 2] + b = + (ki( + c, + m, + s ? d : F[(r + (d << 2)) >> 2], + 0, + ) + + i) | + 0 + la(h, la(a, (b + g) | 0, o), q) + e = (e + p) | 0 + b = 1 + d = (d + 1) | 0 + if ((k | 0) != (d | 0)) { + continue + } + break + } + break u + } + if (!s) { + b = 1 + d = 0 + if ((k | 0) != 1) { + f = k & -2 + e = 0 + while (1) { + h = F[l >> 2] + g = d << 2 + j = (ki(c, m, F[(g + r) >> 2], 0) + i) | 0 + h = la(a, (h + j) | 0, o) + j = F[l >> 2] + g = + (ki(c, m, F[(r + (g | 4)) >> 2], 0) + i) | + 0 + la(h, (j + g) | 0, o) + d = (d + 2) | 0 + e = (e + 2) | 0 + if ((f | 0) != (e | 0)) { + continue + } + break + } + } + if (!(k & 1)) { + break u + } + e = F[l >> 2] + c = + (ki(c, m, F[(r + (d << 2)) >> 2], 0) + i) | 0 + la(a, (c + e) | 0, o) + break u + } + f = k & 1 + b = 1 + if ((k | 0) != 1) { + k = k & -2 + while (1) { + d = F[l >> 2] + e = (ki(g, h, c, m) + i) | 0 + d = la(a, (d + e) | 0, o) + e = F[l >> 2] + p = (ki(c, m, g | 1, h) + i) | 0 + la(d, (e + p) | 0, o) + g = (g + 2) | 0 + h = g >>> 0 < 2 ? (h + 1) | 0 : h + d = j + e = (n + 2) | 0 + d = e >>> 0 < 2 ? (d + 1) | 0 : d + n = e + j = d + if (((e | 0) != (k | 0)) | d) { + continue + } + break + } + } + if (!f) { + break u + } + d = F[l >> 2] + c = (ki(g, h, c, m) + i) | 0 + la(a, (c + d) | 0, o) + break u + } + if (!p) { + d = 0 + while (1) { + if ( + !lb( + c, + G[(c + 84) | 0] + ? d + : F[(F[(c + 68) >> 2] + (d << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break u + } + d = (d + 1) | 0 + b = k >>> 0 <= d >>> 0 + if ((d | 0) != (k | 0)) { + continue + } + break + } + break u + } + e = 0 + d = 0 + while (1) { + if ( + !lb( + c, + G[(c + 84) | 0] + ? d + : F[(F[(c + 68) >> 2] + (d << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break u + } + la(((e << 2) + f) | 0, a, q) + e = (e + p) | 0 + d = (d + 1) | 0 + b = k >>> 0 <= d >>> 0 + if ((d | 0) != (k | 0)) { + continue + } + break + } + } + if (!a) { + break s + } + ja(a) + } + a = b + break + default: + break b + } + } + b = a + } + return b | 0 + } + function Pd(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + h = (Z - 80) | 0 + Z = h + e = F[(c + 36) >> 2] + F[(h + 72) >> 2] = F[(c + 32) >> 2] + F[(h + 76) >> 2] = e + f = F[(c + 28) >> 2] + e = (h - -64) | 0 + F[e >> 2] = F[(c + 24) >> 2] + F[(e + 4) >> 2] = f + e = F[(c + 20) >> 2] + F[(h + 56) >> 2] = F[(c + 16) >> 2] + F[(h + 60) >> 2] = e + e = F[(c + 12) >> 2] + F[(h + 48) >> 2] = F[(c + 8) >> 2] + F[(h + 52) >> 2] = e + e = F[(c + 4) >> 2] + F[(h + 40) >> 2] = F[c >> 2] + F[(h + 44) >> 2] = e + jc(a, (h + 40) | 0, (h + 24) | 0) + a: { + if (F[a >> 2]) { + break a + } + if (D[(a + 15) | 0] < 0) { + ja(F[(a + 4) >> 2]) + } + if (G[(h + 31) | 0] != 1) { + b = ka(32) + D[(b + 20) | 0] = 0 + c = + G[1446] | + (G[1447] << 8) | + ((G[1448] << 16) | (G[1449] << 24)) + D[(b + 16) | 0] = c + D[(b + 17) | 0] = c >>> 8 + D[(b + 18) | 0] = c >>> 16 + D[(b + 19) | 0] = c >>> 24 + c = + G[1442] | + (G[1443] << 8) | + ((G[1444] << 16) | (G[1445] << 24)) + d = + G[1438] | + (G[1439] << 8) | + ((G[1440] << 16) | (G[1441] << 24)) + D[(b + 8) | 0] = d + D[(b + 9) | 0] = d >>> 8 + D[(b + 10) | 0] = d >>> 16 + D[(b + 11) | 0] = d >>> 24 + D[(b + 12) | 0] = c + D[(b + 13) | 0] = c >>> 8 + D[(b + 14) | 0] = c >>> 16 + D[(b + 15) | 0] = c >>> 24 + c = + G[1434] | + (G[1435] << 8) | + ((G[1436] << 16) | (G[1437] << 24)) + d = + G[1430] | + (G[1431] << 8) | + ((G[1432] << 16) | (G[1433] << 24)) + D[b | 0] = d + D[(b + 1) | 0] = d >>> 8 + D[(b + 2) | 0] = d >>> 16 + D[(b + 3) | 0] = d >>> 24 + D[(b + 4) | 0] = c + D[(b + 5) | 0] = c >>> 8 + D[(b + 6) | 0] = c >>> 16 + D[(b + 7) | 0] = c >>> 24 + F[a >> 2] = -1 + ra((a + 4) | 0, b, 20) + ja(b) + break a + } + j = (Z - 16) | 0 + Z = j + b: { + c: { + switch (G[(h + 32) | 0]) { + case 0: + e = Kd(ka(48)) + F[e >> 2] = 9864 + F[(h + 8) >> 2] = 0 + F[(h + 12) >> 2] = 0 + F[h >> 2] = 0 + F[(h + 4) >> 2] = 0 + F[(h + 16) >> 2] = e + break b + case 1: + e = Kd(ka(52)) + F[(e + 48) >> 2] = 0 + F[e >> 2] = 8176 + F[(h + 8) >> 2] = 0 + F[(h + 12) >> 2] = 0 + F[h >> 2] = 0 + F[(h + 4) >> 2] = 0 + F[(h + 16) >> 2] = e + break b + default: + break c + } + } + f = ka(32) + D[(f + 28) | 0] = 0 + e = + G[1520] | + (G[1521] << 8) | + ((G[1522] << 16) | (G[1523] << 24)) + D[(f + 24) | 0] = e + D[(f + 25) | 0] = e >>> 8 + D[(f + 26) | 0] = e >>> 16 + D[(f + 27) | 0] = e >>> 24 + e = + G[1516] | + (G[1517] << 8) | + ((G[1518] << 16) | (G[1519] << 24)) + g = + G[1512] | + (G[1513] << 8) | + ((G[1514] << 16) | (G[1515] << 24)) + D[(f + 16) | 0] = g + D[(f + 17) | 0] = g >>> 8 + D[(f + 18) | 0] = g >>> 16 + D[(f + 19) | 0] = g >>> 24 + D[(f + 20) | 0] = e + D[(f + 21) | 0] = e >>> 8 + D[(f + 22) | 0] = e >>> 16 + D[(f + 23) | 0] = e >>> 24 + e = + G[1508] | + (G[1509] << 8) | + ((G[1510] << 16) | (G[1511] << 24)) + g = + G[1504] | + (G[1505] << 8) | + ((G[1506] << 16) | (G[1507] << 24)) + D[(f + 8) | 0] = g + D[(f + 9) | 0] = g >>> 8 + D[(f + 10) | 0] = g >>> 16 + D[(f + 11) | 0] = g >>> 24 + D[(f + 12) | 0] = e + D[(f + 13) | 0] = e >>> 8 + D[(f + 14) | 0] = e >>> 16 + D[(f + 15) | 0] = e >>> 24 + e = + G[1500] | + (G[1501] << 8) | + ((G[1502] << 16) | (G[1503] << 24)) + g = + G[1496] | + (G[1497] << 8) | + ((G[1498] << 16) | (G[1499] << 24)) + D[f | 0] = g + D[(f + 1) | 0] = g >>> 8 + D[(f + 2) | 0] = g >>> 16 + D[(f + 3) | 0] = g >>> 24 + D[(f + 4) | 0] = e + D[(f + 5) | 0] = e >>> 8 + D[(f + 6) | 0] = e >>> 16 + D[(f + 7) | 0] = e >>> 24 + F[j >> 2] = -1 + e = j | 4 + ra(e, f, 28) + k = D[(j + 15) | 0] + F[h >> 2] = F[j >> 2] + g = (h + 4) | 0 + d: { + if ((k | 0) >= 0) { + k = F[(e + 4) >> 2] + F[g >> 2] = F[e >> 2] + F[(g + 4) >> 2] = k + F[(g + 8) >> 2] = F[(e + 8) >> 2] + F[(h + 16) >> 2] = 0 + break d + } + ra(g, F[(j + 4) >> 2], F[(j + 8) >> 2]) + e = D[(j + 15) | 0] + F[(h + 16) >> 2] = 0 + if ((e | 0) >= 0) { + break d + } + ja(F[(j + 4) >> 2]) + } + ja(f) + } + Z = (j + 16) | 0 + e = F[h >> 2] + e: { + if (e) { + F[a >> 2] = e + a = (a + 4) | 0 + if (D[(h + 15) | 0] >= 0) { + b = h | 4 + c = F[(b + 4) >> 2] + F[a >> 2] = F[b >> 2] + F[(a + 4) >> 2] = c + F[(a + 8) >> 2] = F[(b + 8) >> 2] + break e + } + ra(a, F[(h + 4) >> 2], F[(h + 8) >> 2]) + break e + } + e = F[(h + 16) >> 2] + F[(h + 16) >> 2] = 0 + F[(e + 44) >> 2] = d + f = (Z - 32) | 0 + Z = f + F[(e + 32) >> 2] = c + F[(e + 40) >> 2] = b + F[(e + 4) >> 2] = d + jc(a, c, (f + 16) | 0) + f: { + if (F[a >> 2]) { + break f + } + if (D[(a + 15) | 0] < 0) { + ja(F[(a + 4) >> 2]) + } + b = G[(f + 23) | 0] + if (($[F[(F[e >> 2] + 8) >> 2]](e) | 0) != (b | 0)) { + b = ka(64) + D[(b + 50) | 0] = 0 + c = G[1304] | (G[1305] << 8) + D[(b + 48) | 0] = c + D[(b + 49) | 0] = c >>> 8 + c = + G[1300] | + (G[1301] << 8) | + ((G[1302] << 16) | (G[1303] << 24)) + d = + G[1296] | + (G[1297] << 8) | + ((G[1298] << 16) | (G[1299] << 24)) + D[(b + 40) | 0] = d + D[(b + 41) | 0] = d >>> 8 + D[(b + 42) | 0] = d >>> 16 + D[(b + 43) | 0] = d >>> 24 + D[(b + 44) | 0] = c + D[(b + 45) | 0] = c >>> 8 + D[(b + 46) | 0] = c >>> 16 + D[(b + 47) | 0] = c >>> 24 + c = + G[1292] | + (G[1293] << 8) | + ((G[1294] << 16) | (G[1295] << 24)) + d = + G[1288] | + (G[1289] << 8) | + ((G[1290] << 16) | (G[1291] << 24)) + D[(b + 32) | 0] = d + D[(b + 33) | 0] = d >>> 8 + D[(b + 34) | 0] = d >>> 16 + D[(b + 35) | 0] = d >>> 24 + D[(b + 36) | 0] = c + D[(b + 37) | 0] = c >>> 8 + D[(b + 38) | 0] = c >>> 16 + D[(b + 39) | 0] = c >>> 24 + c = + G[1284] | + (G[1285] << 8) | + ((G[1286] << 16) | (G[1287] << 24)) + d = + G[1280] | + (G[1281] << 8) | + ((G[1282] << 16) | (G[1283] << 24)) + D[(b + 24) | 0] = d + D[(b + 25) | 0] = d >>> 8 + D[(b + 26) | 0] = d >>> 16 + D[(b + 27) | 0] = d >>> 24 + D[(b + 28) | 0] = c + D[(b + 29) | 0] = c >>> 8 + D[(b + 30) | 0] = c >>> 16 + D[(b + 31) | 0] = c >>> 24 + c = + G[1276] | + (G[1277] << 8) | + ((G[1278] << 16) | (G[1279] << 24)) + d = + G[1272] | + (G[1273] << 8) | + ((G[1274] << 16) | (G[1275] << 24)) + D[(b + 16) | 0] = d + D[(b + 17) | 0] = d >>> 8 + D[(b + 18) | 0] = d >>> 16 + D[(b + 19) | 0] = d >>> 24 + D[(b + 20) | 0] = c + D[(b + 21) | 0] = c >>> 8 + D[(b + 22) | 0] = c >>> 16 + D[(b + 23) | 0] = c >>> 24 + c = + G[1268] | + (G[1269] << 8) | + ((G[1270] << 16) | (G[1271] << 24)) + d = + G[1264] | + (G[1265] << 8) | + ((G[1266] << 16) | (G[1267] << 24)) + D[(b + 8) | 0] = d + D[(b + 9) | 0] = d >>> 8 + D[(b + 10) | 0] = d >>> 16 + D[(b + 11) | 0] = d >>> 24 + D[(b + 12) | 0] = c + D[(b + 13) | 0] = c >>> 8 + D[(b + 14) | 0] = c >>> 16 + D[(b + 15) | 0] = c >>> 24 + c = + G[1260] | + (G[1261] << 8) | + ((G[1262] << 16) | (G[1263] << 24)) + d = + G[1256] | + (G[1257] << 8) | + ((G[1258] << 16) | (G[1259] << 24)) + D[b | 0] = d + D[(b + 1) | 0] = d >>> 8 + D[(b + 2) | 0] = d >>> 16 + D[(b + 3) | 0] = d >>> 24 + D[(b + 4) | 0] = c + D[(b + 5) | 0] = c >>> 8 + D[(b + 6) | 0] = c >>> 16 + D[(b + 7) | 0] = c >>> 24 + F[a >> 2] = -1 + ra((a + 4) | 0, b, 50) + ja(b) + break f + } + c = G[(f + 21) | 0] + D[(e + 36) | 0] = c + d = G[(f + 22) | 0] + D[(e + 37) | 0] = d + if ((c | 0) != 2) { + b = ka(32) + D[(b + 26) | 0] = 0 + c = G[1427] | (G[1428] << 8) + D[(b + 24) | 0] = c + D[(b + 25) | 0] = c >>> 8 + c = + G[1423] | + (G[1424] << 8) | + ((G[1425] << 16) | (G[1426] << 24)) + d = + G[1419] | + (G[1420] << 8) | + ((G[1421] << 16) | (G[1422] << 24)) + D[(b + 16) | 0] = d + D[(b + 17) | 0] = d >>> 8 + D[(b + 18) | 0] = d >>> 16 + D[(b + 19) | 0] = d >>> 24 + D[(b + 20) | 0] = c + D[(b + 21) | 0] = c >>> 8 + D[(b + 22) | 0] = c >>> 16 + D[(b + 23) | 0] = c >>> 24 + c = + G[1415] | + (G[1416] << 8) | + ((G[1417] << 16) | (G[1418] << 24)) + d = + G[1411] | + (G[1412] << 8) | + ((G[1413] << 16) | (G[1414] << 24)) + D[(b + 8) | 0] = d + D[(b + 9) | 0] = d >>> 8 + D[(b + 10) | 0] = d >>> 16 + D[(b + 11) | 0] = d >>> 24 + D[(b + 12) | 0] = c + D[(b + 13) | 0] = c >>> 8 + D[(b + 14) | 0] = c >>> 16 + D[(b + 15) | 0] = c >>> 24 + c = + G[1407] | + (G[1408] << 8) | + ((G[1409] << 16) | (G[1410] << 24)) + d = + G[1403] | + (G[1404] << 8) | + ((G[1405] << 16) | (G[1406] << 24)) + D[b | 0] = d + D[(b + 1) | 0] = d >>> 8 + D[(b + 2) | 0] = d >>> 16 + D[(b + 3) | 0] = d >>> 24 + D[(b + 4) | 0] = c + D[(b + 5) | 0] = c >>> 8 + D[(b + 6) | 0] = c >>> 16 + D[(b + 7) | 0] = c >>> 24 + F[a >> 2] = -5 + ra((a + 4) | 0, b, 26) + ja(b) + break f + } + b = b ? 2 : 3 + if ((b | 0) != (d | 0)) { + b = ka(32) + D[(b + 26) | 0] = 0 + c = G[1400] | (G[1401] << 8) + D[(b + 24) | 0] = c + D[(b + 25) | 0] = c >>> 8 + c = + G[1396] | + (G[1397] << 8) | + ((G[1398] << 16) | (G[1399] << 24)) + d = + G[1392] | + (G[1393] << 8) | + ((G[1394] << 16) | (G[1395] << 24)) + D[(b + 16) | 0] = d + D[(b + 17) | 0] = d >>> 8 + D[(b + 18) | 0] = d >>> 16 + D[(b + 19) | 0] = d >>> 24 + D[(b + 20) | 0] = c + D[(b + 21) | 0] = c >>> 8 + D[(b + 22) | 0] = c >>> 16 + D[(b + 23) | 0] = c >>> 24 + c = + G[1388] | + (G[1389] << 8) | + ((G[1390] << 16) | (G[1391] << 24)) + d = + G[1384] | + (G[1385] << 8) | + ((G[1386] << 16) | (G[1387] << 24)) + D[(b + 8) | 0] = d + D[(b + 9) | 0] = d >>> 8 + D[(b + 10) | 0] = d >>> 16 + D[(b + 11) | 0] = d >>> 24 + D[(b + 12) | 0] = c + D[(b + 13) | 0] = c >>> 8 + D[(b + 14) | 0] = c >>> 16 + D[(b + 15) | 0] = c >>> 24 + c = + G[1380] | + (G[1381] << 8) | + ((G[1382] << 16) | (G[1383] << 24)) + d = + G[1376] | + (G[1377] << 8) | + ((G[1378] << 16) | (G[1379] << 24)) + D[b | 0] = d + D[(b + 1) | 0] = d >>> 8 + D[(b + 2) | 0] = d >>> 16 + D[(b + 3) | 0] = d >>> 24 + D[(b + 4) | 0] = c + D[(b + 5) | 0] = c >>> 8 + D[(b + 6) | 0] = c >>> 16 + D[(b + 7) | 0] = c >>> 24 + F[a >> 2] = -5 + ra((a + 4) | 0, b, 26) + ja(b) + break f + } + E[(F[(e + 32) >> 2] + 38) >> 1] = b | 512 + g: { + if (E[(f + 26) >> 1] >= 0) { + break g + } + j = (Z - 16) | 0 + Z = j + d = ka(36) + b = d + F[(b + 4) >> 2] = 0 + F[(b + 8) >> 2] = 0 + F[(b + 24) >> 2] = 0 + F[(b + 28) >> 2] = 0 + b = (b + 16) | 0 + F[b >> 2] = 0 + F[(b + 4) >> 2] = 0 + F[d >> 2] = d + 4 + F[(d + 32) >> 2] = 0 + F[(d + 12) >> 2] = b + F[j >> 2] = 0 + c = F[(e + 32) >> 2] + k = (Z - 16) | 0 + Z = k + b = 0 + h: { + if (!d) { + break h + } + F[j >> 2] = c + F[(k + 12) >> 2] = 0 + b = 0 + if (!fb(1, (k + 12) | 0, c)) { + break h + } + n = F[(k + 12) >> 2] + if (n) { + while (1) { + i: { + if (fb(1, (k + 8) | 0, F[j >> 2])) { + b = ka(28) + F[(b + 4) >> 2] = 0 + F[(b + 8) >> 2] = 0 + c = (b + 16) | 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + F[b >> 2] = b + 4 + F[(b + 12) >> 2] = c + F[(b + 24) >> 2] = F[(k + 8) >> 2] + if (Vc(j, b)) { + break i + } + Ca((b + 12) | 0, F[(b + 16) >> 2]) + Ba(b, F[(b + 4) >> 2]) + ja(b) + } + b = 0 + break h + } + g = (Z - 16) | 0 + Z = g + F[(g + 8) >> 2] = b + j: { + if (!b) { + break j + } + c = F[(d + 28) >> 2] + k: { + if (c >>> 0 < I[(d + 32) >> 2]) { + F[(g + 8) >> 2] = 0 + F[c >> 2] = b + F[(d + 28) >> 2] = c + 4 + break k + } + c = 0 + l: { + m: { + n: { + i = F[(d + 24) >> 2] + m = (F[(d + 28) >> 2] - i) >> 2 + b = (m + 1) | 0 + if (b >>> 0 < 1073741824) { + i = (F[(d + 32) >> 2] - i) | 0 + l = (i >>> 1) | 0 + i = + i >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 < l >>> 0 + ? l + : b + if (i) { + if (i >>> 0 >= 1073741824) { + break n + } + c = ka(i << 2) + } + l = F[(g + 8) >> 2] + F[(g + 8) >> 2] = 0 + b = ((m << 2) + c) | 0 + F[b >> 2] = l + i = ((i << 2) + c) | 0 + m = (b + 4) | 0 + c = F[(d + 28) >> 2] + l = F[(d + 24) >> 2] + if ((c | 0) == (l | 0)) { + break m + } + while (1) { + c = (c - 4) | 0 + p = F[c >> 2] + F[c >> 2] = 0 + b = (b - 4) | 0 + F[b >> 2] = p + if ((c | 0) != (l | 0)) { + continue + } + break + } + F[(d + 32) >> 2] = i + i = F[(d + 28) >> 2] + F[(d + 28) >> 2] = m + c = F[(d + 24) >> 2] + F[(d + 24) >> 2] = b + if ((c | 0) == (i | 0)) { + break l + } + while (1) { + i = (i - 4) | 0 + b = F[i >> 2] + F[i >> 2] = 0 + if (b) { + Ca((b + 12) | 0, F[(b + 16) >> 2]) + Ba(b, F[(b + 4) >> 2]) + ja(b) + } + if ((c | 0) != (i | 0)) { + continue + } + break + } + break l + } + na() + v() + } + oa() + v() + } + F[(d + 32) >> 2] = i + F[(d + 28) >> 2] = m + F[(d + 24) >> 2] = b + } + if (c) { + ja(c) + } + } + b = F[(g + 8) >> 2] + F[(g + 8) >> 2] = 0 + if (!b) { + break j + } + Ca((b + 12) | 0, F[(b + 16) >> 2]) + Ba(b, F[(b + 4) >> 2]) + ja(b) + } + Z = (g + 16) | 0 + o = (o + 1) | 0 + if ((n | 0) != (o | 0)) { + continue + } + break + } + } + b = Vc(j, d) + } + Z = (k + 16) | 0 + o: { + if (b) { + c = F[(e + 4) >> 2] + b = F[(c + 4) >> 2] + F[(c + 4) >> 2] = d + if (b) { + ic(b) + } + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[(a + 12) >> 2] = 0 + break o + } + b = ka(32) + D[(b + 26) | 0] = 0 + c = G[1549] | (G[1550] << 8) + D[(b + 24) | 0] = c + D[(b + 25) | 0] = c >>> 8 + c = + G[1545] | + (G[1546] << 8) | + ((G[1547] << 16) | (G[1548] << 24)) + g = + G[1541] | + (G[1542] << 8) | + ((G[1543] << 16) | (G[1544] << 24)) + D[(b + 16) | 0] = g + D[(b + 17) | 0] = g >>> 8 + D[(b + 18) | 0] = g >>> 16 + D[(b + 19) | 0] = g >>> 24 + D[(b + 20) | 0] = c + D[(b + 21) | 0] = c >>> 8 + D[(b + 22) | 0] = c >>> 16 + D[(b + 23) | 0] = c >>> 24 + c = + G[1537] | + (G[1538] << 8) | + ((G[1539] << 16) | (G[1540] << 24)) + g = + G[1533] | + (G[1534] << 8) | + ((G[1535] << 16) | (G[1536] << 24)) + D[(b + 8) | 0] = g + D[(b + 9) | 0] = g >>> 8 + D[(b + 10) | 0] = g >>> 16 + D[(b + 11) | 0] = g >>> 24 + D[(b + 12) | 0] = c + D[(b + 13) | 0] = c >>> 8 + D[(b + 14) | 0] = c >>> 16 + D[(b + 15) | 0] = c >>> 24 + c = + G[1529] | + (G[1530] << 8) | + ((G[1531] << 16) | (G[1532] << 24)) + g = + G[1525] | + (G[1526] << 8) | + ((G[1527] << 16) | (G[1528] << 24)) + D[b | 0] = g + D[(b + 1) | 0] = g >>> 8 + D[(b + 2) | 0] = g >>> 16 + D[(b + 3) | 0] = g >>> 24 + D[(b + 4) | 0] = c + D[(b + 5) | 0] = c >>> 8 + D[(b + 6) | 0] = c >>> 16 + D[(b + 7) | 0] = c >>> 24 + F[a >> 2] = -1 + ra((a + 4) | 0, b, 26) + ja(b) + F[(j + 8) >> 2] = 0 + ic(d) + } + Z = (j + 16) | 0 + if (F[a >> 2]) { + break f + } + if (D[(a + 15) | 0] >= 0) { + break g + } + ja(F[(a + 4) >> 2]) + } + if (!($[F[(F[e >> 2] + 12) >> 2]](e) | 0)) { + b = ka(48) + D[(b + 33) | 0] = 0 + D[(b + 32) | 0] = G[1374] + c = + G[1370] | + (G[1371] << 8) | + ((G[1372] << 16) | (G[1373] << 24)) + d = + G[1366] | + (G[1367] << 8) | + ((G[1368] << 16) | (G[1369] << 24)) + D[(b + 24) | 0] = d + D[(b + 25) | 0] = d >>> 8 + D[(b + 26) | 0] = d >>> 16 + D[(b + 27) | 0] = d >>> 24 + D[(b + 28) | 0] = c + D[(b + 29) | 0] = c >>> 8 + D[(b + 30) | 0] = c >>> 16 + D[(b + 31) | 0] = c >>> 24 + c = + G[1362] | + (G[1363] << 8) | + ((G[1364] << 16) | (G[1365] << 24)) + d = + G[1358] | + (G[1359] << 8) | + ((G[1360] << 16) | (G[1361] << 24)) + D[(b + 16) | 0] = d + D[(b + 17) | 0] = d >>> 8 + D[(b + 18) | 0] = d >>> 16 + D[(b + 19) | 0] = d >>> 24 + D[(b + 20) | 0] = c + D[(b + 21) | 0] = c >>> 8 + D[(b + 22) | 0] = c >>> 16 + D[(b + 23) | 0] = c >>> 24 + c = + G[1354] | + (G[1355] << 8) | + ((G[1356] << 16) | (G[1357] << 24)) + d = + G[1350] | + (G[1351] << 8) | + ((G[1352] << 16) | (G[1353] << 24)) + D[(b + 8) | 0] = d + D[(b + 9) | 0] = d >>> 8 + D[(b + 10) | 0] = d >>> 16 + D[(b + 11) | 0] = d >>> 24 + D[(b + 12) | 0] = c + D[(b + 13) | 0] = c >>> 8 + D[(b + 14) | 0] = c >>> 16 + D[(b + 15) | 0] = c >>> 24 + c = + G[1346] | + (G[1347] << 8) | + ((G[1348] << 16) | (G[1349] << 24)) + d = + G[1342] | + (G[1343] << 8) | + ((G[1344] << 16) | (G[1345] << 24)) + D[b | 0] = d + D[(b + 1) | 0] = d >>> 8 + D[(b + 2) | 0] = d >>> 16 + D[(b + 3) | 0] = d >>> 24 + D[(b + 4) | 0] = c + D[(b + 5) | 0] = c >>> 8 + D[(b + 6) | 0] = c >>> 16 + D[(b + 7) | 0] = c >>> 24 + F[a >> 2] = -1 + ra((a + 4) | 0, b, 33) + ja(b) + break f + } + if (!($[F[(F[e >> 2] + 20) >> 2]](e) | 0)) { + b = Eb(f, 1552) + F[a >> 2] = -1 + c = (a + 4) | 0 + if (D[(b + 11) | 0] >= 0) { + d = F[(b + 4) >> 2] + F[c >> 2] = F[b >> 2] + F[(c + 4) >> 2] = d + F[(c + 8) >> 2] = F[(b + 8) >> 2] + break f + } + ra(c, F[b >> 2], F[(b + 4) >> 2]) + if (D[(b + 11) | 0] >= 0) { + break f + } + ja(F[b >> 2]) + break f + } + if (!($[F[(F[e >> 2] + 24) >> 2]](e) | 0)) { + b = Eb(f, 1307) + F[a >> 2] = -1 + c = (a + 4) | 0 + if (D[(b + 11) | 0] >= 0) { + d = F[(b + 4) >> 2] + F[c >> 2] = F[b >> 2] + F[(c + 4) >> 2] = d + F[(c + 8) >> 2] = F[(b + 8) >> 2] + break f + } + ra(c, F[b >> 2], F[(b + 4) >> 2]) + if (D[(b + 11) | 0] >= 0) { + break f + } + ja(F[b >> 2]) + break f + } + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[(a + 12) >> 2] = 0 + } + Z = (f + 32) | 0 + if (!F[a >> 2]) { + if (D[(a + 15) | 0] < 0) { + ja(F[(a + 4) >> 2]) + } + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[(a + 12) >> 2] = 0 + } + $[F[(F[e >> 2] + 4) >> 2]](e) + } + a = F[(h + 16) >> 2] + F[(h + 16) >> 2] = 0 + if (a) { + $[F[(F[a >> 2] + 4) >> 2]](a) + } + if (D[(h + 15) | 0] >= 0) { + break a + } + ja(F[(h + 4) >> 2]) + } + Z = (h + 80) | 0 + } + function Ub(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + l = (Z - 16) | 0 + Z = l + a: { + b: { + c: { + d: { + e: { + f: { + g: { + h: { + i: { + if (a >>> 0 <= 244) { + g = F[2941] + h = a >>> 0 < 11 ? 16 : (a + 11) & -8 + c = (h >>> 3) | 0 + b = (g >>> c) | 0 + if (b & 3) { + c = (c + ((b ^ -1) & 1)) | 0 + a = c << 3 + b = (a + 11804) | 0 + d = F[(a + 11812) >> 2] + a = F[(d + 8) >> 2] + j: { + if ((b | 0) == (a | 0)) { + ;(m = 11764), + (n = oi(c) & g), + (F[m >> 2] = n) + break j + } + F[(a + 12) >> 2] = b + F[(b + 8) >> 2] = a + } + a = (d + 8) | 0 + b = c << 3 + F[(d + 4) >> 2] = b | 3 + b = (b + d) | 0 + F[(b + 4) >> 2] = F[(b + 4) >> 2] | 1 + break a + } + k = F[2943] + if (k >>> 0 >= h >>> 0) { + break i + } + if (b) { + a = 2 << c + a = ((0 - a) | a) & (b << c) + d = ji((0 - a) & a) + a = d << 3 + b = (a + 11804) | 0 + e = F[(a + 11812) >> 2] + a = F[(e + 8) >> 2] + k: { + if ((b | 0) == (a | 0)) { + g = oi(d) & g + F[2941] = g + break k + } + F[(a + 12) >> 2] = b + F[(b + 8) >> 2] = a + } + F[(e + 4) >> 2] = h | 3 + c = (e + h) | 0 + a = d << 3 + d = (a - h) | 0 + F[(c + 4) >> 2] = d | 1 + F[(a + e) >> 2] = d + if (k) { + b = ((k & -8) + 11804) | 0 + f = F[2946] + a = 1 << (k >>> 3) + l: { + if (!(a & g)) { + F[2941] = a | g + a = b + break l + } + a = F[(b + 8) >> 2] + } + F[(b + 8) >> 2] = f + F[(a + 12) >> 2] = f + F[(f + 12) >> 2] = b + F[(f + 8) >> 2] = a + } + a = (e + 8) | 0 + F[2946] = c + F[2943] = d + break a + } + j = F[2942] + if (!j) { + break i + } + c = F[((ji((0 - j) & j) << 2) + 12068) >> 2] + f = ((F[(c + 4) >> 2] & -8) - h) | 0 + b = c + while (1) { + m: { + a = F[(b + 16) >> 2] + if (!a) { + a = F[(b + 20) >> 2] + if (!a) { + break m + } + } + b = ((F[(a + 4) >> 2] & -8) - h) | 0 + d = b >>> 0 < f >>> 0 + f = d ? b : f + c = d ? a : c + b = a + continue + } + break + } + i = F[(c + 24) >> 2] + d = F[(c + 12) >> 2] + if ((d | 0) != (c | 0)) { + a = F[(c + 8) >> 2] + F[(a + 12) >> 2] = d + F[(d + 8) >> 2] = a + break b + } + b = (c + 20) | 0 + a = F[b >> 2] + if (!a) { + a = F[(c + 16) >> 2] + if (!a) { + break h + } + b = (c + 16) | 0 + } + while (1) { + e = b + d = a + b = (a + 20) | 0 + a = F[b >> 2] + if (a) { + continue + } + b = (d + 16) | 0 + a = F[(d + 16) >> 2] + if (a) { + continue + } + break + } + F[e >> 2] = 0 + break b + } + h = -1 + if (a >>> 0 > 4294967231) { + break i + } + a = (a + 11) | 0 + h = a & -8 + j = F[2942] + if (!j) { + break i + } + f = (0 - h) | 0 + g = 0 + n: { + if (h >>> 0 < 256) { + break n + } + g = 31 + if (h >>> 0 > 16777215) { + break n + } + a = O((a >>> 8) | 0) + g = + (((((h >>> (38 - a)) & 1) - (a << 1)) | + 0) + + 62) | + 0 + } + b = F[((g << 2) + 12068) >> 2] + o: { + p: { + q: { + if (!b) { + a = 0 + break q + } + a = 0 + c = + h << + ((g | 0) != 31 + ? (25 - ((g >>> 1) | 0)) | 0 + : 0) + while (1) { + r: { + e = ((F[(b + 4) >> 2] & -8) - h) | 0 + if (e >>> 0 >= f >>> 0) { + break r + } + d = b + f = e + if (e) { + break r + } + f = 0 + a = b + break p + } + e = F[(b + 20) >> 2] + b = + F[ + (((((c >>> 29) & 4) + b) | 0) + + 16) >> + 2 + ] + a = e + ? (e | 0) == (b | 0) + ? a + : e + : a + c = c << 1 + if (b) { + continue + } + break + } + } + if (!(a | d)) { + d = 0 + a = 2 << g + a = ((0 - a) | a) & j + if (!a) { + break i + } + a = + F[ + ((ji(a & (0 - a)) << 2) + 12068) >> + 2 + ] + } + if (!a) { + break o + } + } + while (1) { + b = ((F[(a + 4) >> 2] & -8) - h) | 0 + c = b >>> 0 < f >>> 0 + f = c ? b : f + d = c ? a : d + b = F[(a + 16) >> 2] + if (b) { + a = b + } else { + a = F[(a + 20) >> 2] + } + if (a) { + continue + } + break + } + } + if (!d | ((F[2943] - h) >>> 0 <= f >>> 0)) { + break i + } + g = F[(d + 24) >> 2] + c = F[(d + 12) >> 2] + if ((d | 0) != (c | 0)) { + a = F[(d + 8) >> 2] + F[(a + 12) >> 2] = c + F[(c + 8) >> 2] = a + break c + } + b = (d + 20) | 0 + a = F[b >> 2] + if (!a) { + a = F[(d + 16) >> 2] + if (!a) { + break g + } + b = (d + 16) | 0 + } + while (1) { + e = b + c = a + b = (a + 20) | 0 + a = F[b >> 2] + if (a) { + continue + } + b = (c + 16) | 0 + a = F[(c + 16) >> 2] + if (a) { + continue + } + break + } + F[e >> 2] = 0 + break c + } + a = F[2943] + if (a >>> 0 >= h >>> 0) { + d = F[2946] + b = (a - h) | 0 + s: { + if (b >>> 0 >= 16) { + c = (d + h) | 0 + F[(c + 4) >> 2] = b | 1 + F[(a + d) >> 2] = b + F[(d + 4) >> 2] = h | 3 + break s + } + F[(d + 4) >> 2] = a | 3 + a = (a + d) | 0 + F[(a + 4) >> 2] = F[(a + 4) >> 2] | 1 + c = 0 + b = 0 + } + F[2943] = b + F[2946] = c + a = (d + 8) | 0 + break a + } + i = F[2944] + if (i >>> 0 > h >>> 0) { + b = (i - h) | 0 + F[2944] = b + c = F[2947] + a = (c + h) | 0 + F[2947] = a + F[(a + 4) >> 2] = b | 1 + F[(c + 4) >> 2] = h | 3 + a = (c + 8) | 0 + break a + } + a = 0 + j = (h + 47) | 0 + if (F[3059]) { + c = F[3061] + } else { + F[3062] = -1 + F[3063] = -1 + F[3060] = 4096 + F[3061] = 4096 + F[3059] = ((l + 12) & -16) ^ 1431655768 + F[3064] = 0 + F[3052] = 0 + c = 4096 + } + e = (j + c) | 0 + f = (0 - c) | 0 + b = e & f + if (b >>> 0 <= h >>> 0) { + break a + } + d = F[3051] + if (d) { + c = F[3049] + g = (c + b) | 0 + if ( + (d >>> 0 < g >>> 0) | + (c >>> 0 >= g >>> 0) + ) { + break a + } + } + t: { + if (!(G[12208] & 4)) { + u: { + v: { + w: { + x: { + d = F[2947] + if (d) { + a = 12212 + while (1) { + c = F[a >> 2] + if ( + (c >>> 0 <= d >>> 0) & + (d >>> 0 < + (c + F[(a + 4) >> 2]) >>> 0) + ) { + break x + } + a = F[(a + 8) >> 2] + if (a) { + continue + } + break + } + } + c = eb(0) + if ((c | 0) == -1) { + break u + } + g = b + d = F[3060] + a = (d - 1) | 0 + if (a & c) { + g = + (((b - c) | 0) + + ((a + c) & (0 - d))) | + 0 + } + if (g >>> 0 <= h >>> 0) { + break u + } + d = F[3051] + if (d) { + a = F[3049] + f = (a + g) | 0 + if ( + (d >>> 0 < f >>> 0) | + (a >>> 0 >= f >>> 0) + ) { + break u + } + } + a = eb(g) + if ((c | 0) != (a | 0)) { + break w + } + break t + } + g = f & (e - i) + c = eb(g) + if ( + (c | 0) == + ((F[a >> 2] + F[(a + 4) >> 2]) | 0) + ) { + break v + } + a = c + } + if ((a | 0) == -1) { + break u + } + if ((h + 48) >>> 0 <= g >>> 0) { + c = a + break t + } + c = F[3061] + c = (c + ((j - g) | 0)) & (0 - c) + if ((eb(c) | 0) == -1) { + break u + } + g = (c + g) | 0 + c = a + break t + } + if ((c | 0) != -1) { + break t + } + } + F[3052] = F[3052] | 4 + } + c = eb(b) + a = eb(0) + if ( + ((c | 0) == -1) | + ((a | 0) == -1) | + (a >>> 0 <= c >>> 0) + ) { + break d + } + g = (a - c) | 0 + if (g >>> 0 <= (h + 40) >>> 0) { + break d + } + } + a = (F[3049] + g) | 0 + F[3049] = a + if (a >>> 0 > I[3050]) { + F[3050] = a + } + y: { + e = F[2947] + if (e) { + a = 12212 + while (1) { + d = F[a >> 2] + b = F[(a + 4) >> 2] + if (((d + b) | 0) == (c | 0)) { + break y + } + a = F[(a + 8) >> 2] + if (a) { + continue + } + break + } + break f + } + a = F[2945] + if (!(a >>> 0 <= c >>> 0 ? a : 0)) { + F[2945] = c + } + a = 0 + F[3054] = g + F[3053] = c + F[2949] = -1 + F[2950] = F[3059] + F[3056] = 0 + while (1) { + d = a << 3 + b = (d + 11804) | 0 + F[(d + 11812) >> 2] = b + F[(d + 11816) >> 2] = b + a = (a + 1) | 0 + if ((a | 0) != 32) { + continue + } + break + } + d = (g - 40) | 0 + a = (c + 8) & 7 ? (-8 - c) & 7 : 0 + b = (d - a) | 0 + F[2944] = b + a = (a + c) | 0 + F[2947] = a + F[(a + 4) >> 2] = b | 1 + F[(((c + d) | 0) + 4) >> 2] = 40 + F[2948] = F[3063] + break e + } + if ( + (G[(a + 12) | 0] & 8) | + (d >>> 0 > e >>> 0) | + (c >>> 0 <= e >>> 0) + ) { + break f + } + F[(a + 4) >> 2] = b + g + a = (e + 8) & 7 ? (-8 - e) & 7 : 0 + c = (a + e) | 0 + F[2947] = c + b = (F[2944] + g) | 0 + a = (b - a) | 0 + F[2944] = a + F[(c + 4) >> 2] = a | 1 + F[(((b + e) | 0) + 4) >> 2] = 40 + F[2948] = F[3063] + break e + } + d = 0 + break b + } + c = 0 + break c + } + if (I[2945] > c >>> 0) { + F[2945] = c + } + b = (c + g) | 0 + a = 12212 + z: { + A: { + B: { + C: { + D: { + E: { + while (1) { + if ((b | 0) != F[a >> 2]) { + a = F[(a + 8) >> 2] + if (a) { + continue + } + break E + } + break + } + if (!(G[(a + 12) | 0] & 8)) { + break D + } + } + a = 12212 + while (1) { + b = F[a >> 2] + if (b >>> 0 <= e >>> 0) { + f = (b + F[(a + 4) >> 2]) | 0 + if (f >>> 0 > e >>> 0) { + break C + } + } + a = F[(a + 8) >> 2] + continue + } + } + F[a >> 2] = c + F[(a + 4) >> 2] = F[(a + 4) >> 2] + g + j = (((c + 8) & 7 ? (-8 - c) & 7 : 0) + c) | 0 + F[(j + 4) >> 2] = h | 3 + g = (b + ((b + 8) & 7 ? (-8 - b) & 7 : 0)) | 0 + i = (h + j) | 0 + a = (g - i) | 0 + if ((e | 0) == (g | 0)) { + F[2947] = i + a = (F[2944] + a) | 0 + F[2944] = a + F[(i + 4) >> 2] = a | 1 + break A + } + if (F[2946] == (g | 0)) { + F[2946] = i + a = (F[2943] + a) | 0 + F[2943] = a + F[(i + 4) >> 2] = a | 1 + F[(a + i) >> 2] = a + break A + } + f = F[(g + 4) >> 2] + if ((f & 3) == 1) { + e = f & -8 + F: { + if (f >>> 0 <= 255) { + d = F[(g + 8) >> 2] + b = (f >>> 3) | 0 + c = F[(g + 12) >> 2] + if ((c | 0) == (d | 0)) { + ;(m = 11764), + (n = F[2941] & oi(b)), + (F[m >> 2] = n) + break F + } + F[(d + 12) >> 2] = c + F[(c + 8) >> 2] = d + break F + } + h = F[(g + 24) >> 2] + c = F[(g + 12) >> 2] + G: { + if ((g | 0) != (c | 0)) { + b = F[(g + 8) >> 2] + F[(b + 12) >> 2] = c + F[(c + 8) >> 2] = b + break G + } + H: { + f = (g + 20) | 0 + b = F[f >> 2] + if (b) { + break H + } + f = (g + 16) | 0 + b = F[f >> 2] + if (b) { + break H + } + c = 0 + break G + } + while (1) { + d = f + c = b + f = (c + 20) | 0 + b = F[f >> 2] + if (b) { + continue + } + f = (c + 16) | 0 + b = F[(c + 16) >> 2] + if (b) { + continue + } + break + } + F[d >> 2] = 0 + } + if (!h) { + break F + } + d = F[(g + 28) >> 2] + b = ((d << 2) + 12068) | 0 + I: { + if (F[b >> 2] == (g | 0)) { + F[b >> 2] = c + if (c) { + break I + } + ;(m = 11768), + (n = F[2942] & oi(d)), + (F[m >> 2] = n) + break F + } + F[ + (h + + (F[(h + 16) >> 2] == (g | 0) + ? 16 + : 20)) >> + 2 + ] = c + if (!c) { + break F + } + } + F[(c + 24) >> 2] = h + b = F[(g + 16) >> 2] + if (b) { + F[(c + 16) >> 2] = b + F[(b + 24) >> 2] = c + } + b = F[(g + 20) >> 2] + if (!b) { + break F + } + F[(c + 20) >> 2] = b + F[(b + 24) >> 2] = c + } + g = (e + g) | 0 + f = F[(g + 4) >> 2] + a = (a + e) | 0 + } + F[(g + 4) >> 2] = f & -2 + F[(i + 4) >> 2] = a | 1 + F[(a + i) >> 2] = a + if (a >>> 0 <= 255) { + b = ((a & -8) + 11804) | 0 + c = F[2941] + a = 1 << (a >>> 3) + J: { + if (!(c & a)) { + F[2941] = a | c + a = b + break J + } + a = F[(b + 8) >> 2] + } + F[(b + 8) >> 2] = i + F[(a + 12) >> 2] = i + F[(i + 12) >> 2] = b + F[(i + 8) >> 2] = a + break A + } + f = 31 + if (a >>> 0 <= 16777215) { + b = O((a >>> 8) | 0) + f = + (((((a >>> (38 - b)) & 1) - (b << 1)) | + 0) + + 62) | + 0 + } + F[(i + 28) >> 2] = f + F[(i + 16) >> 2] = 0 + F[(i + 20) >> 2] = 0 + b = ((f << 2) + 12068) | 0 + d = F[2942] + c = 1 << f + K: { + if (!(d & c)) { + F[2942] = c | d + F[b >> 2] = i + break K + } + f = + a << + ((f | 0) != 31 + ? (25 - ((f >>> 1) | 0)) | 0 + : 0) + c = F[b >> 2] + while (1) { + b = c + if ((F[(c + 4) >> 2] & -8) == (a | 0)) { + break B + } + c = (f >>> 29) | 0 + f = f << 1 + d = ((c & 4) + b) | 0 + c = F[(d + 16) >> 2] + if (c) { + continue + } + break + } + F[(d + 16) >> 2] = i + } + F[(i + 24) >> 2] = b + F[(i + 12) >> 2] = i + F[(i + 8) >> 2] = i + break A + } + d = (g - 40) | 0 + a = (c + 8) & 7 ? (-8 - c) & 7 : 0 + b = (d - a) | 0 + F[2944] = b + a = (a + c) | 0 + F[2947] = a + F[(a + 4) >> 2] = b | 1 + F[(((c + d) | 0) + 4) >> 2] = 40 + F[2948] = F[3063] + a = + (((f + ((f - 39) & 7 ? (39 - f) & 7 : 0)) | + 0) - + 47) | + 0 + d = a >>> 0 < (e + 16) >>> 0 ? e : a + F[(d + 4) >> 2] = 27 + a = F[3056] + F[(d + 16) >> 2] = F[3055] + F[(d + 20) >> 2] = a + a = F[3054] + F[(d + 8) >> 2] = F[3053] + F[(d + 12) >> 2] = a + F[3055] = d + 8 + F[3054] = g + F[3053] = c + F[3056] = 0 + a = (d + 24) | 0 + while (1) { + F[(a + 4) >> 2] = 7 + b = (a + 8) | 0 + a = (a + 4) | 0 + if (b >>> 0 < f >>> 0) { + continue + } + break + } + if ((d | 0) == (e | 0)) { + break e + } + F[(d + 4) >> 2] = F[(d + 4) >> 2] & -2 + f = (d - e) | 0 + F[(e + 4) >> 2] = f | 1 + F[d >> 2] = f + if (f >>> 0 <= 255) { + b = ((f & -8) + 11804) | 0 + c = F[2941] + a = 1 << (f >>> 3) + L: { + if (!(c & a)) { + F[2941] = a | c + a = b + break L + } + a = F[(b + 8) >> 2] + } + F[(b + 8) >> 2] = e + F[(a + 12) >> 2] = e + F[(e + 12) >> 2] = b + F[(e + 8) >> 2] = a + break e + } + a = 31 + if (f >>> 0 <= 16777215) { + a = O((f >>> 8) | 0) + a = + (((((f >>> (38 - a)) & 1) - (a << 1)) | 0) + + 62) | + 0 + } + F[(e + 28) >> 2] = a + F[(e + 16) >> 2] = 0 + F[(e + 20) >> 2] = 0 + b = ((a << 2) + 12068) | 0 + d = F[2942] + c = 1 << a + M: { + if (!(d & c)) { + F[2942] = c | d + F[b >> 2] = e + break M + } + a = + f << + ((a | 0) != 31 + ? (25 - ((a >>> 1) | 0)) | 0 + : 0) + d = F[b >> 2] + while (1) { + b = d + if ((f | 0) == (F[(b + 4) >> 2] & -8)) { + break z + } + c = (a >>> 29) | 0 + a = a << 1 + c = ((c & 4) + b) | 0 + d = F[(c + 16) >> 2] + if (d) { + continue + } + break + } + F[(c + 16) >> 2] = e + } + F[(e + 24) >> 2] = b + F[(e + 12) >> 2] = e + F[(e + 8) >> 2] = e + break e + } + a = F[(b + 8) >> 2] + F[(a + 12) >> 2] = i + F[(b + 8) >> 2] = i + F[(i + 24) >> 2] = 0 + F[(i + 12) >> 2] = b + F[(i + 8) >> 2] = a + } + a = (j + 8) | 0 + break a + } + a = F[(b + 8) >> 2] + F[(a + 12) >> 2] = e + F[(b + 8) >> 2] = e + F[(e + 24) >> 2] = 0 + F[(e + 12) >> 2] = b + F[(e + 8) >> 2] = a + } + a = F[2944] + if (a >>> 0 <= h >>> 0) { + break d + } + b = (a - h) | 0 + F[2944] = b + c = F[2947] + a = (c + h) | 0 + F[2947] = a + F[(a + 4) >> 2] = b | 1 + F[(c + 4) >> 2] = h | 3 + a = (c + 8) | 0 + break a + } + F[2940] = 48 + a = 0 + break a + } + N: { + if (!g) { + break N + } + b = F[(d + 28) >> 2] + a = ((b << 2) + 12068) | 0 + O: { + if (F[a >> 2] == (d | 0)) { + F[a >> 2] = c + if (c) { + break O + } + j = oi(b) & j + F[2942] = j + break N + } + F[(g + (F[(g + 16) >> 2] == (d | 0) ? 16 : 20)) >> 2] = + c + if (!c) { + break N + } + } + F[(c + 24) >> 2] = g + a = F[(d + 16) >> 2] + if (a) { + F[(c + 16) >> 2] = a + F[(a + 24) >> 2] = c + } + a = F[(d + 20) >> 2] + if (!a) { + break N + } + F[(c + 20) >> 2] = a + F[(a + 24) >> 2] = c + } + P: { + if (f >>> 0 <= 15) { + a = (f + h) | 0 + F[(d + 4) >> 2] = a | 3 + a = (a + d) | 0 + F[(a + 4) >> 2] = F[(a + 4) >> 2] | 1 + break P + } + F[(d + 4) >> 2] = h | 3 + e = (d + h) | 0 + F[(e + 4) >> 2] = f | 1 + F[(e + f) >> 2] = f + if (f >>> 0 <= 255) { + b = ((f & -8) + 11804) | 0 + c = F[2941] + a = 1 << (f >>> 3) + Q: { + if (!(c & a)) { + F[2941] = a | c + a = b + break Q + } + a = F[(b + 8) >> 2] + } + F[(b + 8) >> 2] = e + F[(a + 12) >> 2] = e + F[(e + 12) >> 2] = b + F[(e + 8) >> 2] = a + break P + } + a = 31 + if (f >>> 0 <= 16777215) { + a = O((f >>> 8) | 0) + a = (((((f >>> (38 - a)) & 1) - (a << 1)) | 0) + 62) | 0 + } + F[(e + 28) >> 2] = a + F[(e + 16) >> 2] = 0 + F[(e + 20) >> 2] = 0 + b = ((a << 2) + 12068) | 0 + R: { + c = 1 << a + S: { + if (!(c & j)) { + F[2942] = c | j + F[b >> 2] = e + break S + } + a = + f << + ((a | 0) != 31 ? (25 - ((a >>> 1) | 0)) | 0 : 0) + h = F[b >> 2] + while (1) { + b = h + if ((F[(b + 4) >> 2] & -8) == (f | 0)) { + break R + } + c = (a >>> 29) | 0 + a = a << 1 + c = ((c & 4) + b) | 0 + h = F[(c + 16) >> 2] + if (h) { + continue + } + break + } + F[(c + 16) >> 2] = e + } + F[(e + 24) >> 2] = b + F[(e + 12) >> 2] = e + F[(e + 8) >> 2] = e + break P + } + a = F[(b + 8) >> 2] + F[(a + 12) >> 2] = e + F[(b + 8) >> 2] = e + F[(e + 24) >> 2] = 0 + F[(e + 12) >> 2] = b + F[(e + 8) >> 2] = a + } + a = (d + 8) | 0 + break a + } + T: { + if (!i) { + break T + } + b = F[(c + 28) >> 2] + a = ((b << 2) + 12068) | 0 + U: { + if (F[a >> 2] == (c | 0)) { + F[a >> 2] = d + if (d) { + break U + } + ;(m = 11768), (n = oi(b) & j), (F[m >> 2] = n) + break T + } + F[(i + (F[(i + 16) >> 2] == (c | 0) ? 16 : 20)) >> 2] = d + if (!d) { + break T + } + } + F[(d + 24) >> 2] = i + a = F[(c + 16) >> 2] + if (a) { + F[(d + 16) >> 2] = a + F[(a + 24) >> 2] = d + } + a = F[(c + 20) >> 2] + if (!a) { + break T + } + F[(d + 20) >> 2] = a + F[(a + 24) >> 2] = d + } + V: { + if (f >>> 0 <= 15) { + a = (f + h) | 0 + F[(c + 4) >> 2] = a | 3 + a = (a + c) | 0 + F[(a + 4) >> 2] = F[(a + 4) >> 2] | 1 + break V + } + F[(c + 4) >> 2] = h | 3 + d = (c + h) | 0 + F[(d + 4) >> 2] = f | 1 + F[(d + f) >> 2] = f + if (k) { + b = ((k & -8) + 11804) | 0 + e = F[2946] + a = 1 << (k >>> 3) + W: { + if (!(a & g)) { + F[2941] = a | g + a = b + break W + } + a = F[(b + 8) >> 2] + } + F[(b + 8) >> 2] = e + F[(a + 12) >> 2] = e + F[(e + 12) >> 2] = b + F[(e + 8) >> 2] = a + } + F[2946] = d + F[2943] = f + } + a = (c + 8) | 0 + } + Z = (l + 16) | 0 + return a | 0 + } + function Vc(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + m = (Z - 32) | 0 + Z = m + o = ka(12) + F[(o + 8) >> 2] = 0 + F[(o + 4) >> 2] = b + F[o >> 2] = 0 + s = (o + 12) | 0 + b = s + a: { + b: { + c: { + while (1) { + b = (b - 12) | 0 + w = F[(b + 8) >> 2] + j = F[(b + 4) >> 2] + t = F[b >> 2] + if (t) { + if ((w | 0) > 1e3) { + break a + } + F[(m + 24) >> 2] = 0 + F[(m + 16) >> 2] = 0 + F[(m + 20) >> 2] = 0 + d = 1 + c = F[a >> 2] + e = F[(c + 8) >> 2] + h = F[(c + 12) >> 2] + g = F[(c + 20) >> 2] + f = F[(c + 16) >> 2] + d: { + if ( + (((h | 0) <= (g | 0)) & (f >>> 0 >= e >>> 0)) | + ((g | 0) > (h | 0)) + ) { + break d + } + e = G[(f + F[c >> 2]) | 0] + h = c + c = g + f = (f + 1) | 0 + c = f ? c : (c + 1) | 0 + F[(h + 16) >> 2] = f + F[(h + 20) >> 2] = c + Sb((m + 16) | 0, e) + if (e) { + c = F[a >> 2] + n = Tb((m + 16) | 0) + p = F[(c + 8) >> 2] + g = F[(c + 12) >> 2] + h = F[(c + 20) >> 2] + f = F[(c + 16) >> 2] + k = (f + e) | 0 + h = k >>> 0 < e >>> 0 ? (h + 1) | 0 : h + if ( + (((g | 0) <= (h | 0)) & (k >>> 0 > p >>> 0)) | + ((g | 0) < (h | 0)) + ) { + break d + } + la(n, (f + F[c >> 2]) | 0, e) + d = F[(c + 20) >> 2] + f = e + e = (e + F[(c + 16) >> 2]) | 0 + d = f >>> 0 > e >>> 0 ? (d + 1) | 0 : d + F[(c + 16) >> 2] = e + F[(c + 20) >> 2] = d + } + j = ka(24) + c = j + F[(c + 4) >> 2] = 0 + F[(c + 8) >> 2] = 0 + c = (c + 16) | 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + F[j >> 2] = j + 4 + F[(j + 12) >> 2] = c + e = (Z - 32) | 0 + Z = e + h = (t + 12) | 0 + c = (m + 16) | 0 + u = Ya(h, c) + i = (t + 16) | 0 + e: { + if ((u | 0) == (i | 0)) { + F[(e + 16) >> 2] = c + f: { + g: { + d = F[(h + 4) >> 2] + h: { + if (!d) { + f = (h + 4) | 0 + c = f + break h + } + f = G[(c + 11) | 0] + g = (f << 24) >> 24 < 0 + n = g ? F[c >> 2] : c + g = g ? F[(c + 4) >> 2] : f + while (1) { + c = d + d = G[(c + 27) | 0] + f = (d << 24) >> 24 < 0 + d = f ? F[(c + 20) >> 2] : d + p = d >>> 0 < g >>> 0 + i: { + j: { + k: { + l: { + k = p ? d : g + m: { + if (k) { + f = f + ? F[(c + 16) >> 2] + : (c + 16) | 0 + q = sa(n, f, k) + if (!q) { + if (d >>> 0 > g >>> 0) { + break m + } + break l + } + if ((q | 0) >= 0) { + break l + } + break m + } + if (d >>> 0 <= g >>> 0) { + break k + } + } + f = c + d = F[c >> 2] + if (d) { + continue + } + break h + } + d = sa(f, n, k) + if (d) { + break j + } + } + if (p) { + break i + } + break g + } + if ((d | 0) >= 0) { + break g + } + } + d = F[(c + 4) >> 2] + if (d) { + continue + } + break + } + f = (c + 4) | 0 + } + d = ka(32) + n = (d + 16) | 0 + g = F[(e + 16) >> 2] + n: { + if (D[(g + 11) | 0] >= 0) { + p = F[(g + 4) >> 2] + F[n >> 2] = F[g >> 2] + F[(n + 4) >> 2] = p + F[(n + 8) >> 2] = F[(g + 8) >> 2] + break n + } + ra(n, F[g >> 2], F[(g + 4) >> 2]) + } + F[(d + 8) >> 2] = c + F[d >> 2] = 0 + F[(d + 4) >> 2] = 0 + F[(d + 28) >> 2] = 0 + F[f >> 2] = d + c = d + g = F[F[h >> 2] >> 2] + if (g) { + F[h >> 2] = g + c = F[f >> 2] + } + nb(F[(h + 4) >> 2], c) + F[(h + 8) >> 2] = F[(h + 8) >> 2] + 1 + c = 1 + break f + } + d = c + c = 0 + } + D[(e + 28) | 0] = c + F[(e + 24) >> 2] = d + d = F[(e + 24) >> 2] + c = F[(d + 28) >> 2] + F[(d + 28) >> 2] = j + if (!c) { + break e + } + Ca((c + 12) | 0, F[(c + 16) >> 2]) + Ba(c, F[(c + 4) >> 2]) + ja(c) + break e + } + if (!j) { + break e + } + Ca((j + 12) | 0, F[(j + 16) >> 2]) + Ba(j, F[(j + 4) >> 2]) + ja(j) + } + Z = (e + 32) | 0 + d = (i | 0) != (u | 0) + } + if (D[(m + 27) | 0] < 0) { + ja(F[(m + 16) >> 2]) + } + if (d) { + break a + } + } + if (!j) { + break a + } + F[(m + 16) >> 2] = 0 + if (!fb(1, (m + 16) | 0, F[a >> 2])) { + break a + } + q = 0 + x = F[(m + 16) >> 2] + if (x) { + while (1) { + d = 0 + i = (Z - 32) | 0 + Z = i + F[(i + 24) >> 2] = 0 + F[(i + 16) >> 2] = 0 + F[(i + 20) >> 2] = 0 + c = F[a >> 2] + f = F[(c + 8) >> 2] + o: { + p: { + h = F[(c + 12) >> 2] + g = F[(c + 20) >> 2] + e = F[(c + 16) >> 2] + q: { + if ( + (((h | 0) <= (g | 0)) & + (e >>> 0 >= f >>> 0)) | + ((g | 0) > (h | 0)) + ) { + break q + } + f = G[(e + F[c >> 2]) | 0] + h = c + c = g + e = (e + 1) | 0 + c = e ? c : (c + 1) | 0 + F[(h + 16) >> 2] = e + F[(h + 20) >> 2] = c + Sb((i + 16) | 0, f) + if (f) { + e = F[a >> 2] + n = Tb((i + 16) | 0) + p = F[(e + 8) >> 2] + g = F[(e + 12) >> 2] + c = F[(e + 20) >> 2] + h = F[(e + 16) >> 2] + k = (h + f) | 0 + c = k >>> 0 < f >>> 0 ? (c + 1) | 0 : c + if ( + ((k >>> 0 > p >>> 0) & + ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break q + } + la(n, (h + F[e >> 2]) | 0, f) + c = F[(e + 20) >> 2] + g = f + f = (f + F[(e + 16) >> 2]) | 0 + c = g >>> 0 > f >>> 0 ? (c + 1) | 0 : c + F[(e + 16) >> 2] = f + F[(e + 20) >> 2] = c + } + F[(i + 12) >> 2] = 0 + if (!fb(1, (i + 12) | 0, F[a >> 2])) { + break q + } + f = F[(i + 12) >> 2] + if (!f) { + break q + } + e = F[a >> 2] + c = F[(e + 8) >> 2] + h = F[(e + 16) >> 2] + g = (c - h) | 0 + c = + (F[(e + 12) >> 2] - + ((F[(e + 20) >> 2] + + (c >>> 0 < h >>> 0)) | + 0)) | + 0 + if ( + (((c | 0) <= 0) & (f >>> 0 > g >>> 0)) | + ((c | 0) < 0) + ) { + break q + } + F[(i + 8) >> 2] = 0 + F[i >> 2] = 0 + F[(i + 4) >> 2] = 0 + if ((f | 0) < 0) { + break p + } + d = ka(f) + F[i >> 2] = d + c = (d + f) | 0 + F[(i + 8) >> 2] = c + l = ma(d, 0, f) + F[(i + 4) >> 2] = c + h = F[(e + 12) >> 2] + y = h + p = F[(e + 8) >> 2] + c = F[(e + 20) >> 2] + k = F[(e + 16) >> 2] + g = (f + k) | 0 + c = g >>> 0 < f >>> 0 ? (c + 1) | 0 : c + u = g + n = c + r: { + if ( + (((c | 0) <= (h | 0)) & + (g >>> 0 <= p >>> 0)) | + ((c | 0) < (h | 0)) + ) { + la(l, (F[e >> 2] + k) | 0, f) + d = F[(e + 20) >> 2] + c = (f + F[(e + 16) >> 2]) | 0 + d = c >>> 0 < f >>> 0 ? (d + 1) | 0 : d + F[(e + 16) >> 2] = c + F[(e + 20) >> 2] = d + h = (Z - 48) | 0 + Z = h + e = Ya(j, (i + 16) | 0) + if ((e | 0) != ((j + 4) | 0)) { + c = F[(e + 4) >> 2] + s: { + if (!c) { + c = e + while (1) { + d = F[(c + 8) >> 2] + f = F[d >> 2] != (c | 0) + c = d + if (f) { + continue + } + break + } + break s + } + while (1) { + d = c + c = F[c >> 2] + if (c) { + continue + } + break + } + } + if ((e | 0) == F[j >> 2]) { + F[j >> 2] = d + } + F[(j + 8) >> 2] = F[(j + 8) >> 2] - 1 + f = F[(j + 4) >> 2] + t: { + u: { + g = e + d = e + e = F[d >> 2] + if (e) { + c = F[(g + 4) >> 2] + if (!c) { + break u + } + while (1) { + d = c + c = F[c >> 2] + if (c) { + continue + } + break + } + } + e = F[(d + 4) >> 2] + if (e) { + break u + } + e = 0 + k = 1 + break t + } + F[(e + 8) >> 2] = F[(d + 8) >> 2] + k = 0 + } + l = F[(d + 8) >> 2] + c = F[l >> 2] + v: { + if ((d | 0) == (c | 0)) { + F[l >> 2] = e + if ((d | 0) == (f | 0)) { + c = 0 + f = e + break v + } + c = F[(l + 4) >> 2] + break v + } + F[(l + 4) >> 2] = e + } + r = !G[(d + 12) | 0] + if ((d | 0) != (g | 0)) { + l = F[(g + 8) >> 2] + F[(d + 8) >> 2] = l + F[ + (l + + (((g | 0) != + F[F[(g + 8) >> 2] >> 2]) << + 2)) >> + 2 + ] = d + l = F[g >> 2] + F[d >> 2] = l + F[(l + 8) >> 2] = d + l = F[(g + 4) >> 2] + F[(d + 4) >> 2] = l + if (l) { + F[(l + 8) >> 2] = d + } + D[(d + 12) | 0] = G[(g + 12) | 0] + f = (f | 0) == (g | 0) ? d : f + } + w: { + if (r | !f) { + break w + } + if (k) { + while (1) { + e = G[(c + 12) | 0] + x: { + d = F[(c + 8) >> 2] + if (F[d >> 2] != (c | 0)) { + if (!e) { + D[(c + 12) | 0] = 1 + D[(d + 12) | 0] = 0 + e = F[(d + 4) >> 2] + k = F[e >> 2] + F[(d + 4) >> 2] = k + if (k) { + F[(k + 8) >> 2] = d + } + F[(e + 8) >> 2] = + F[(d + 8) >> 2] + k = F[(d + 8) >> 2] + F[ + ((((d | 0) != + F[k >> 2]) << + 2) + + k) >> + 2 + ] = e + F[e >> 2] = d + F[(d + 8) >> 2] = e + d = c + c = F[c >> 2] + f = + (c | 0) == (f | 0) ? d : f + c = F[(c + 4) >> 2] + } + y: { + z: { + d = F[c >> 2] + A: { + if ( + !(G[(d + 12) | 0] + ? 0 + : d) + ) { + e = F[(c + 4) >> 2] + if ( + G[(e + 12) | 0] + ? 0 + : e + ) { + break A + } + D[(c + 12) | 0] = 0 + c = F[(c + 8) >> 2] + B: { + if ( + (f | 0) == + (c | 0) + ) { + c = f + break B + } + if ( + G[(c + 12) | 0] + ) { + break x + } + } + D[(c + 12) | 0] = 1 + break w + } + e = F[(c + 4) >> 2] + if (!e) { + break z + } + } + if (G[(e + 12) | 0]) { + break z + } + d = c + break y + } + D[(d + 12) | 0] = 1 + D[(c + 12) | 0] = 0 + e = F[(d + 4) >> 2] + F[c >> 2] = e + if (e) { + F[(e + 8) >> 2] = c + } + F[(d + 8) >> 2] = + F[(c + 8) >> 2] + e = F[(c + 8) >> 2] + F[ + (((F[e >> 2] != + (c | 0)) << + 2) + + e) >> + 2 + ] = d + F[(d + 4) >> 2] = c + F[(c + 8) >> 2] = d + e = c + } + c = F[(d + 8) >> 2] + D[(d + 12) | 0] = + G[(c + 12) | 0] + D[(c + 12) | 0] = 1 + D[(e + 12) | 0] = 1 + d = F[(c + 4) >> 2] + e = F[d >> 2] + F[(c + 4) >> 2] = e + if (e) { + F[(e + 8) >> 2] = c + } + F[(d + 8) >> 2] = + F[(c + 8) >> 2] + e = F[(c + 8) >> 2] + F[ + ((((c | 0) != F[e >> 2]) << + 2) + + e) >> + 2 + ] = d + F[d >> 2] = c + F[(c + 8) >> 2] = d + break w + } + if (!e) { + D[(c + 12) | 0] = 1 + D[(d + 12) | 0] = 0 + e = F[(c + 4) >> 2] + F[d >> 2] = e + if (e) { + F[(e + 8) >> 2] = d + } + F[(c + 8) >> 2] = + F[(d + 8) >> 2] + e = F[(d + 8) >> 2] + F[ + ((((d | 0) != F[e >> 2]) << + 2) + + e) >> + 2 + ] = c + F[(c + 4) >> 2] = d + F[(d + 8) >> 2] = c + f = (d | 0) == (f | 0) ? c : f + c = F[d >> 2] + } + e = F[c >> 2] + C: { + if (!(!e | G[(e + 12) | 0])) { + d = c + break C + } + d = F[(c + 4) >> 2] + if ( + !(G[(d + 12) | 0] ? 0 : d) + ) { + D[(c + 12) | 0] = 0 + c = F[(c + 8) >> 2] + if ( + (c | 0) != (f | 0) + ? G[(c + 12) | 0] + : 0 + ) { + break x + } + D[(c + 12) | 0] = 1 + break w + } + if (e) { + if (!G[(e + 12) | 0]) { + d = c + break C + } + d = F[(c + 4) >> 2] + } + D[(d + 12) | 0] = 1 + D[(c + 12) | 0] = 0 + e = F[d >> 2] + F[(c + 4) >> 2] = e + if (e) { + F[(e + 8) >> 2] = c + } + F[(d + 8) >> 2] = + F[(c + 8) >> 2] + e = F[(c + 8) >> 2] + F[ + (((F[e >> 2] != (c | 0)) << + 2) + + e) >> + 2 + ] = d + F[d >> 2] = c + F[(c + 8) >> 2] = d + e = c + } + c = F[(d + 8) >> 2] + D[(d + 12) | 0] = + G[(c + 12) | 0] + D[(c + 12) | 0] = 1 + D[(e + 12) | 0] = 1 + d = F[c >> 2] + e = F[(d + 4) >> 2] + F[c >> 2] = e + if (e) { + F[(e + 8) >> 2] = c + } + F[(d + 8) >> 2] = + F[(c + 8) >> 2] + e = F[(c + 8) >> 2] + F[ + ((((c | 0) != F[e >> 2]) << + 2) + + e) >> + 2 + ] = d + F[(d + 4) >> 2] = c + F[(c + 8) >> 2] = d + break w + } + d = c + c = F[(c + 8) >> 2] + c = + F[ + ((((d | 0) == F[c >> 2]) << + 2) + + c) >> + 2 + ] + continue + } + } + D[(e + 12) | 0] = 1 + } + c = F[(g + 28) >> 2] + if (c) { + F[(g + 32) >> 2] = c + ja(c) + } + if (D[(g + 27) | 0] < 0) { + ja(F[(g + 16) >> 2]) + } + ja(g) + } + F[(h + 8) >> 2] = 0 + F[h >> 2] = 0 + F[(h + 4) >> 2] = 0 + c = F[(i + 4) >> 2] + d = F[i >> 2] + f = (c - d) | 0 + e = 0 + D: { + E: { + if ((c | 0) != (d | 0)) { + if ((f | 0) < 0) { + break E + } + e = ka(f) + c = ma(e, 0, f) + g = (c + f) | 0 + F[(h + 8) >> 2] = g + F[(h + 4) >> 2] = g + F[h >> 2] = c + c = d + } + la(e, c, f) + F: { + if (D[(i + 27) | 0] >= 0) { + F[(h + 24) >> 2] = + F[(i + 24) >> 2] + c = F[(i + 20) >> 2] + F[(h + 16) >> 2] = + F[(i + 16) >> 2] + F[(h + 20) >> 2] = c + break F + } + ra( + (h + 16) | 0, + F[(i + 16) >> 2], + F[(i + 20) >> 2], + ) + } + Tc((h + 28) | 0, h) + f = (h + 16) | 0 + c = f + G: { + H: { + d = F[(j + 4) >> 2] + I: { + if (!d) { + e = (j + 4) | 0 + c = e + break I + } + e = G[(c + 11) | 0] + g = (e << 24) >> 24 < 0 + k = g ? F[c >> 2] : c + g = g ? F[(c + 4) >> 2] : e + while (1) { + c = d + d = G[(c + 27) | 0] + e = (d << 24) >> 24 < 0 + d = e ? F[(c + 20) >> 2] : d + l = d >>> 0 < g >>> 0 + J: { + K: { + L: { + M: { + r = l ? d : g + N: { + if (r) { + e = e + ? F[ + (c + 16) >> + 2 + ] + : (c + 16) | 0 + z = sa(k, e, r) + if (!z) { + if ( + d >>> 0 > + g >>> 0 + ) { + break N + } + break M + } + if ( + (z | 0) >= + 0 + ) { + break M + } + break N + } + if ( + d >>> 0 <= + g >>> 0 + ) { + break L + } + } + e = c + d = F[c >> 2] + if (d) { + continue + } + break I + } + d = sa(e, k, r) + if (d) { + break K + } + } + if (l) { + break J + } + break H + } + if ((d | 0) >= 0) { + break H + } + } + d = F[(c + 4) >> 2] + if (d) { + continue + } + break + } + e = (c + 4) | 0 + } + d = ka(40) + F[(d + 24) >> 2] = F[(f + 8) >> 2] + g = F[(f + 4) >> 2] + F[(d + 16) >> 2] = F[f >> 2] + F[(d + 20) >> 2] = g + F[f >> 2] = 0 + F[(f + 4) >> 2] = 0 + F[(f + 8) >> 2] = 0 + Tc((d + 28) | 0, (f + 12) | 0) + F[(d + 8) >> 2] = c + F[d >> 2] = 0 + F[(d + 4) >> 2] = 0 + F[e >> 2] = d + c = d + f = F[F[j >> 2] >> 2] + if (f) { + F[j >> 2] = f + c = F[e >> 2] + } + nb(F[(j + 4) >> 2], c) + F[(j + 8) >> 2] = + F[(j + 8) >> 2] + 1 + c = 1 + break G + } + d = c + c = 0 + } + D[(h + 44) | 0] = c + F[(h + 40) >> 2] = d + c = F[(h + 28) >> 2] + if (c) { + F[(h + 32) >> 2] = c + ja(c) + } + if (D[(h + 27) | 0] < 0) { + ja(F[(h + 16) >> 2]) + } + c = F[h >> 2] + if (c) { + F[(h + 4) >> 2] = c + ja(c) + } + Z = (h + 48) | 0 + break D + } + na() + v() + } + d = F[i >> 2] + if (!d) { + break r + } + } + F[(i + 4) >> 2] = d + ja(d) + } + d = + (((n | 0) <= (y | 0)) & + (p >>> 0 >= u >>> 0)) | + ((n | 0) < (y | 0)) + } + if (D[(i + 27) | 0] < 0) { + ja(F[(i + 16) >> 2]) + } + Z = (i + 32) | 0 + break o + } + na() + v() + } + if (!d) { + break a + } + q = (q + 1) | 0 + if ((x | 0) != (q | 0)) { + continue + } + break + } + } + F[(m + 12) >> 2] = 0 + if (!fb(1, (m + 12) | 0, F[a >> 2])) { + break a + } + c = F[a >> 2] + e = F[(c + 8) >> 2] + f = F[(c + 16) >> 2] + h = (e - f) | 0 + d = F[(m + 12) >> 2] + c = + (F[(c + 12) >> 2] - + ((F[(c + 20) >> 2] + (e >>> 0 < f >>> 0)) | 0)) | + 0 + if ( + ((h >>> 0 < d >>> 0) & ((c | 0) <= 0)) | + ((c | 0) < 0) + ) { + break a + } + if (d) { + q = 0 + h = (((t | 0) != 0) + w) | 0 + while (1) { + O: { + if (b >>> 0 < s >>> 0) { + F[(b + 8) >> 2] = h + F[(b + 4) >> 2] = 0 + F[b >> 2] = j + b = (b + 12) | 0 + d = F[(m + 12) >> 2] + break O + } + c = (b - o) | 0 + g = ((c | 0) / 12) | 0 + b = (g + 1) | 0 + if (b >>> 0 >= 357913942) { + break c + } + e = (((s - o) | 0) / 12) | 0 + f = e << 1 + e = + e >>> 0 >= 178956970 + ? 357913941 + : b >>> 0 < f >>> 0 + ? f + : b + if (e) { + if (e >>> 0 >= 357913942) { + break b + } + f = ka(L(e, 12)) + } else { + f = 0 + } + b = (f + L(g, 12)) | 0 + F[(b + 8) >> 2] = h + F[(b + 4) >> 2] = 0 + F[b >> 2] = j + c = pa((b + L(((c | 0) / -12) | 0, 12)) | 0, o, c) + s = (f + L(e, 12)) | 0 + b = (b + 12) | 0 + if (o) { + ja(o) + } + o = c + } + q = (q + 1) | 0 + if (q >>> 0 < d >>> 0) { + continue + } + break + } + } + if ((b | 0) != (o | 0)) { + continue + } + break + } + A = 1 + break a + } + na() + v() + } + oa() + v() + } + if (o) { + ja(o) + } + Z = (m + 32) | 0 + return A + } + function me(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + h = (Z - 48) | 0 + Z = h + a: { + if ((c | 0) != 1) { + break a + } + i = F[(a + 4) >> 2] + c = F[(a + 12) >> 2] + F[(h + 40) >> 2] = 0 + F[(h + 32) >> 2] = 0 + F[(h + 36) >> 2] = 0 + F[(h + 24) >> 2] = 0 + F[(h + 28) >> 2] = 0 + F[(h + 16) >> 2] = 0 + F[(h + 20) >> 2] = 0 + F[(h + 8) >> 2] = 0 + F[(h + 12) >> 2] = 0 + d = (h + 8) | 0 + b: { + if ((b | 0) == -2) { + break b + } + k = F[(F[(F[(i + 4) >> 2] + 8) >> 2] + (c << 2)) >> 2] + if (($[F[(F[i >> 2] + 8) >> 2]](i) | 0) == 1) { + j = (Z - 32) | 0 + Z = j + l = F[(F[(F[(i + 4) >> 2] + 8) >> 2] + (c << 2)) >> 2] + c: { + d: { + e: { + if ( + (($[F[(F[i >> 2] + 8) >> 2]](i) | 0) != 1) | + ((b - 1) >>> 0 > 5) + ) { + break e + } + g = $[F[(F[i >> 2] + 36) >> 2]](i) | 0 + f = $[F[(F[i >> 2] + 44) >> 2]](i, c) | 0 + if (!g | !f) { + break e + } + c = $[F[(F[i >> 2] + 40) >> 2]](i, c) | 0 + if (c) { + a = F[(i + 44) >> 2] + F[(j + 12) >> 2] = c + F[(j + 8) >> 2] = a + F[(j + 20) >> 2] = f + F[(j + 16) >> 2] = f + 12 + f = (j + 8) | 0 + a = 0 + f: { + g: { + switch ((b - 1) | 0) { + case 0: + b = ka(60) + F[(b + 4) >> 2] = l + F[b >> 2] = 2960 + a = F[(d + 4) >> 2] + F[(b + 8) >> 2] = F[d >> 2] + F[(b + 12) >> 2] = a + a = F[(d + 12) >> 2] + F[(b + 16) >> 2] = F[(d + 8) >> 2] + F[(b + 20) >> 2] = a + a = F[(d + 20) >> 2] + F[(b + 24) >> 2] = F[(d + 16) >> 2] + F[(b + 28) >> 2] = a + F[(b + 40) >> 2] = 0 + F[(b + 32) >> 2] = 0 + F[(b + 36) >> 2] = 0 + a = F[(d + 24) >> 2] + g = F[(d + 28) >> 2] + if ((a | 0) != (g | 0)) { + c = (g - a) | 0 + if ((c | 0) < 0) { + break d + } + e = ka(c) + F[(b + 32) >> 2] = e + F[(b + 40) >> 2] = (c & -4) + e + while (1) { + F[e >> 2] = F[a >> 2] + e = (e + 4) | 0 + a = (a + 4) | 0 + if ((g | 0) != (a | 0)) { + continue + } + break + } + F[(b + 36) >> 2] = e + } + a = F[(f + 4) >> 2] + F[(b + 44) >> 2] = F[f >> 2] + F[(b + 48) >> 2] = a + a = F[(f + 12) >> 2] + F[(b + 52) >> 2] = F[(f + 8) >> 2] + F[(b + 56) >> 2] = a + F[b >> 2] = 2252 + a = b + break f + case 3: + b = ka(112) + F[(b + 4) >> 2] = l + F[b >> 2] = 2960 + a = F[(d + 4) >> 2] + F[(b + 8) >> 2] = F[d >> 2] + F[(b + 12) >> 2] = a + a = F[(d + 12) >> 2] + F[(b + 16) >> 2] = F[(d + 8) >> 2] + F[(b + 20) >> 2] = a + a = F[(d + 20) >> 2] + F[(b + 24) >> 2] = F[(d + 16) >> 2] + F[(b + 28) >> 2] = a + F[(b + 40) >> 2] = 0 + F[(b + 32) >> 2] = 0 + F[(b + 36) >> 2] = 0 + a = F[(d + 24) >> 2] + g = F[(d + 28) >> 2] + if ((a | 0) != (g | 0)) { + c = (g - a) | 0 + if ((c | 0) < 0) { + break d + } + e = ka(c) + F[(b + 32) >> 2] = e + F[(b + 40) >> 2] = (c & -4) + e + while (1) { + F[e >> 2] = F[a >> 2] + e = (e + 4) | 0 + a = (a + 4) | 0 + if ((g | 0) != (a | 0)) { + continue + } + break + } + F[(b + 36) >> 2] = e + } + a = F[(f + 4) >> 2] + F[(b + 44) >> 2] = F[f >> 2] + F[(b + 48) >> 2] = a + a = F[(f + 12) >> 2] + F[(b + 52) >> 2] = F[(f + 8) >> 2] + F[(b + 56) >> 2] = a + F[(b + 60) >> 2] = 0 + F[(b + 64) >> 2] = 0 + F[b >> 2] = 3016 + F[(b + 68) >> 2] = 0 + F[(b + 72) >> 2] = 0 + F[(b + 76) >> 2] = 0 + F[(b + 80) >> 2] = 0 + F[(b + 84) >> 2] = 0 + F[(b + 88) >> 2] = 0 + F[(b + 92) >> 2] = 0 + F[(b + 96) >> 2] = 0 + F[(b + 100) >> 2] = 0 + F[(b + 104) >> 2] = 0 + F[(b + 108) >> 2] = 0 + a = b + break f + case 4: + b = ka(104) + F[(b + 4) >> 2] = l + F[b >> 2] = 2960 + a = F[(d + 4) >> 2] + F[(b + 8) >> 2] = F[d >> 2] + F[(b + 12) >> 2] = a + a = F[(d + 12) >> 2] + F[(b + 16) >> 2] = F[(d + 8) >> 2] + F[(b + 20) >> 2] = a + a = F[(d + 20) >> 2] + F[(b + 24) >> 2] = F[(d + 16) >> 2] + F[(b + 28) >> 2] = a + F[(b + 40) >> 2] = 0 + F[(b + 32) >> 2] = 0 + F[(b + 36) >> 2] = 0 + a = F[(d + 24) >> 2] + g = F[(d + 28) >> 2] + if ((a | 0) != (g | 0)) { + c = (g - a) | 0 + if ((c | 0) < 0) { + break d + } + e = ka(c) + F[(b + 32) >> 2] = e + F[(b + 40) >> 2] = (c & -4) + e + while (1) { + F[e >> 2] = F[a >> 2] + e = (e + 4) | 0 + a = (a + 4) | 0 + if ((g | 0) != (a | 0)) { + continue + } + break + } + F[(b + 36) >> 2] = e + } + a = F[(f + 4) >> 2] + F[(b + 44) >> 2] = F[f >> 2] + F[(b + 48) >> 2] = a + a = F[(f + 12) >> 2] + F[(b + 52) >> 2] = F[(f + 8) >> 2] + F[(b + 56) >> 2] = a + F[(b + 84) >> 2] = 0 + F[(b + 76) >> 2] = 0 + F[(b + 80) >> 2] = 0 + F[(b + 60) >> 2] = 0 + F[(b + 64) >> 2] = 0 + F[b >> 2] = 3264 + a = F[(f + 4) >> 2] + F[(b + 88) >> 2] = F[f >> 2] + F[(b + 92) >> 2] = a + a = F[(f + 12) >> 2] + F[(b + 96) >> 2] = F[(f + 8) >> 2] + F[(b + 100) >> 2] = a + a = b + break f + case 5: + break g + default: + break f + } + } + a = ka(128) + F[(a + 4) >> 2] = l + F[a >> 2] = 2960 + b = F[(d + 4) >> 2] + F[(a + 8) >> 2] = F[d >> 2] + F[(a + 12) >> 2] = b + b = F[(d + 12) >> 2] + F[(a + 16) >> 2] = F[(d + 8) >> 2] + F[(a + 20) >> 2] = b + b = F[(d + 20) >> 2] + F[(a + 24) >> 2] = F[(d + 16) >> 2] + F[(a + 28) >> 2] = b + F[(a + 40) >> 2] = 0 + F[(a + 32) >> 2] = 0 + F[(a + 36) >> 2] = 0 + h: { + i: { + c = F[(d + 28) >> 2] + b = F[(d + 24) >> 2] + if ((c | 0) != (b | 0)) { + c = (c - b) | 0 + if ((c | 0) < 0) { + break i + } + b = ka(c) + F[(a + 36) >> 2] = b + F[(a + 32) >> 2] = b + F[(a + 40) >> 2] = (c & -4) + b + e = F[(d + 24) >> 2] + c = F[(d + 28) >> 2] + if ((e | 0) != (c | 0)) { + while (1) { + F[b >> 2] = F[e >> 2] + b = (b + 4) | 0 + e = (e + 4) | 0 + if ((c | 0) != (e | 0)) { + continue + } + break + } + } + F[(a + 36) >> 2] = b + } + F[a >> 2] = 2904 + b = F[(f + 4) >> 2] + F[(a + 44) >> 2] = F[f >> 2] + F[(a + 48) >> 2] = b + b = F[(f + 12) >> 2] + F[(a + 52) >> 2] = F[(f + 8) >> 2] + F[(a + 56) >> 2] = b + b = (a - -64) | 0 + F[b >> 2] = 0 + F[(b + 4) >> 2] = 0 + F[(a + 60) >> 2] = 4128 + F[a >> 2] = 3500 + b = F[(f + 4) >> 2] + F[(a + 72) >> 2] = F[f >> 2] + F[(a + 76) >> 2] = b + b = F[(f + 12) >> 2] + F[(a + 80) >> 2] = F[(f + 8) >> 2] + F[(a + 84) >> 2] = b + F[(a + 104) >> 2] = 1065353216 + F[(a + 108) >> 2] = -1 + F[(a + 96) >> 2] = -1 + F[(a + 100) >> 2] = -1 + F[(a + 88) >> 2] = 1 + F[(a + 92) >> 2] = -1 + F[(a + 60) >> 2] = 3736 + F[(a + 112) >> 2] = 0 + F[(a + 116) >> 2] = 0 + D[(a + 117) | 0] = 0 + D[(a + 118) | 0] = 0 + D[(a + 119) | 0] = 0 + D[(a + 120) | 0] = 0 + D[(a + 121) | 0] = 0 + D[(a + 122) | 0] = 0 + D[(a + 123) | 0] = 0 + D[(a + 124) | 0] = 0 + break h + } + na() + v() + } + break f + } + e = a + break e + } + a = F[(i + 44) >> 2] + F[(j + 12) >> 2] = g + F[(j + 8) >> 2] = a + F[(j + 20) >> 2] = f + F[(j + 16) >> 2] = f + 12 + f = (j + 8) | 0 + a = 0 + j: { + k: { + switch ((b - 1) | 0) { + case 0: + b = ka(60) + F[(b + 4) >> 2] = l + F[b >> 2] = 2960 + a = F[(d + 4) >> 2] + F[(b + 8) >> 2] = F[d >> 2] + F[(b + 12) >> 2] = a + a = F[(d + 12) >> 2] + F[(b + 16) >> 2] = F[(d + 8) >> 2] + F[(b + 20) >> 2] = a + a = F[(d + 20) >> 2] + F[(b + 24) >> 2] = F[(d + 16) >> 2] + F[(b + 28) >> 2] = a + F[(b + 40) >> 2] = 0 + F[(b + 32) >> 2] = 0 + F[(b + 36) >> 2] = 0 + a = F[(d + 24) >> 2] + g = F[(d + 28) >> 2] + if ((a | 0) != (g | 0)) { + c = (g - a) | 0 + if ((c | 0) < 0) { + break d + } + e = ka(c) + F[(b + 32) >> 2] = e + F[(b + 40) >> 2] = (c & -4) + e + while (1) { + F[e >> 2] = F[a >> 2] + e = (e + 4) | 0 + a = (a + 4) | 0 + if ((g | 0) != (a | 0)) { + continue + } + break + } + F[(b + 36) >> 2] = e + } + a = F[(f + 4) >> 2] + F[(b + 44) >> 2] = F[f >> 2] + F[(b + 48) >> 2] = a + a = F[(f + 12) >> 2] + F[(b + 52) >> 2] = F[(f + 8) >> 2] + F[(b + 56) >> 2] = a + F[b >> 2] = 4156 + a = b + break j + case 3: + b = ka(112) + F[(b + 4) >> 2] = l + F[b >> 2] = 2960 + a = F[(d + 4) >> 2] + F[(b + 8) >> 2] = F[d >> 2] + F[(b + 12) >> 2] = a + a = F[(d + 12) >> 2] + F[(b + 16) >> 2] = F[(d + 8) >> 2] + F[(b + 20) >> 2] = a + a = F[(d + 20) >> 2] + F[(b + 24) >> 2] = F[(d + 16) >> 2] + F[(b + 28) >> 2] = a + F[(b + 40) >> 2] = 0 + F[(b + 32) >> 2] = 0 + F[(b + 36) >> 2] = 0 + a = F[(d + 24) >> 2] + g = F[(d + 28) >> 2] + if ((a | 0) != (g | 0)) { + c = (g - a) | 0 + if ((c | 0) < 0) { + break d + } + e = ka(c) + F[(b + 32) >> 2] = e + F[(b + 40) >> 2] = (c & -4) + e + while (1) { + F[e >> 2] = F[a >> 2] + e = (e + 4) | 0 + a = (a + 4) | 0 + if ((g | 0) != (a | 0)) { + continue + } + break + } + F[(b + 36) >> 2] = e + } + a = F[(f + 4) >> 2] + F[(b + 44) >> 2] = F[f >> 2] + F[(b + 48) >> 2] = a + a = F[(f + 12) >> 2] + F[(b + 52) >> 2] = F[(f + 8) >> 2] + F[(b + 56) >> 2] = a + F[(b + 60) >> 2] = 0 + F[(b + 64) >> 2] = 0 + F[b >> 2] = 4580 + F[(b + 68) >> 2] = 0 + F[(b + 72) >> 2] = 0 + F[(b + 76) >> 2] = 0 + F[(b + 80) >> 2] = 0 + F[(b + 84) >> 2] = 0 + F[(b + 88) >> 2] = 0 + F[(b + 92) >> 2] = 0 + F[(b + 96) >> 2] = 0 + F[(b + 100) >> 2] = 0 + F[(b + 104) >> 2] = 0 + F[(b + 108) >> 2] = 0 + a = b + break j + case 4: + b = ka(104) + F[(b + 4) >> 2] = l + F[b >> 2] = 2960 + a = F[(d + 4) >> 2] + F[(b + 8) >> 2] = F[d >> 2] + F[(b + 12) >> 2] = a + a = F[(d + 12) >> 2] + F[(b + 16) >> 2] = F[(d + 8) >> 2] + F[(b + 20) >> 2] = a + a = F[(d + 20) >> 2] + F[(b + 24) >> 2] = F[(d + 16) >> 2] + F[(b + 28) >> 2] = a + F[(b + 40) >> 2] = 0 + F[(b + 32) >> 2] = 0 + F[(b + 36) >> 2] = 0 + a = F[(d + 24) >> 2] + g = F[(d + 28) >> 2] + if ((a | 0) != (g | 0)) { + c = (g - a) | 0 + if ((c | 0) < 0) { + break d + } + e = ka(c) + F[(b + 32) >> 2] = e + F[(b + 40) >> 2] = (c & -4) + e + while (1) { + F[e >> 2] = F[a >> 2] + e = (e + 4) | 0 + a = (a + 4) | 0 + if ((g | 0) != (a | 0)) { + continue + } + break + } + F[(b + 36) >> 2] = e + } + a = F[(f + 4) >> 2] + F[(b + 44) >> 2] = F[f >> 2] + F[(b + 48) >> 2] = a + a = F[(f + 12) >> 2] + F[(b + 52) >> 2] = F[(f + 8) >> 2] + F[(b + 56) >> 2] = a + F[(b + 84) >> 2] = 0 + F[(b + 76) >> 2] = 0 + F[(b + 80) >> 2] = 0 + F[(b + 60) >> 2] = 0 + F[(b + 64) >> 2] = 0 + F[b >> 2] = 4816 + a = F[(f + 4) >> 2] + F[(b + 88) >> 2] = F[f >> 2] + F[(b + 92) >> 2] = a + a = F[(f + 12) >> 2] + F[(b + 96) >> 2] = F[(f + 8) >> 2] + F[(b + 100) >> 2] = a + a = b + break j + case 5: + break k + default: + break j + } + } + a = ka(128) + F[(a + 4) >> 2] = l + F[a >> 2] = 2960 + b = F[(d + 4) >> 2] + F[(a + 8) >> 2] = F[d >> 2] + F[(a + 12) >> 2] = b + b = F[(d + 12) >> 2] + F[(a + 16) >> 2] = F[(d + 8) >> 2] + F[(a + 20) >> 2] = b + b = F[(d + 20) >> 2] + F[(a + 24) >> 2] = F[(d + 16) >> 2] + F[(a + 28) >> 2] = b + F[(a + 40) >> 2] = 0 + F[(a + 32) >> 2] = 0 + F[(a + 36) >> 2] = 0 + l: { + m: { + c = F[(d + 28) >> 2] + b = F[(d + 24) >> 2] + if ((c | 0) != (b | 0)) { + c = (c - b) | 0 + if ((c | 0) < 0) { + break m + } + b = ka(c) + F[(a + 36) >> 2] = b + F[(a + 32) >> 2] = b + F[(a + 40) >> 2] = (c & -4) + b + e = F[(d + 24) >> 2] + c = F[(d + 28) >> 2] + if ((e | 0) != (c | 0)) { + while (1) { + F[b >> 2] = F[e >> 2] + b = (b + 4) | 0 + e = (e + 4) | 0 + if ((c | 0) != (e | 0)) { + continue + } + break + } + } + F[(a + 36) >> 2] = b + } + F[a >> 2] = 4524 + b = F[(f + 4) >> 2] + F[(a + 44) >> 2] = F[f >> 2] + F[(a + 48) >> 2] = b + b = F[(f + 12) >> 2] + F[(a + 52) >> 2] = F[(f + 8) >> 2] + F[(a + 56) >> 2] = b + b = (a - -64) | 0 + F[b >> 2] = 0 + F[(b + 4) >> 2] = 0 + F[(a + 60) >> 2] = 5624 + F[a >> 2] = 5040 + b = F[(f + 4) >> 2] + F[(a + 72) >> 2] = F[f >> 2] + F[(a + 76) >> 2] = b + b = F[(f + 12) >> 2] + F[(a + 80) >> 2] = F[(f + 8) >> 2] + F[(a + 84) >> 2] = b + F[(a + 104) >> 2] = 1065353216 + F[(a + 108) >> 2] = -1 + F[(a + 96) >> 2] = -1 + F[(a + 100) >> 2] = -1 + F[(a + 88) >> 2] = 1 + F[(a + 92) >> 2] = -1 + F[(a + 60) >> 2] = 5260 + F[(a + 112) >> 2] = 0 + F[(a + 116) >> 2] = 0 + D[(a + 117) | 0] = 0 + D[(a + 118) | 0] = 0 + D[(a + 119) | 0] = 0 + D[(a + 120) | 0] = 0 + D[(a + 121) | 0] = 0 + D[(a + 122) | 0] = 0 + D[(a + 123) | 0] = 0 + D[(a + 124) | 0] = 0 + break l + } + na() + v() + } + break j + } + e = a + } + Z = (j + 32) | 0 + break c + } + na() + v() + } + if (e) { + break b + } + } + e = ka(44) + F[(e + 4) >> 2] = k + F[e >> 2] = 2960 + a = F[(d + 4) >> 2] + F[(e + 8) >> 2] = F[d >> 2] + F[(e + 12) >> 2] = a + a = F[(d + 12) >> 2] + F[(e + 16) >> 2] = F[(d + 8) >> 2] + F[(e + 20) >> 2] = a + a = F[(d + 20) >> 2] + F[(e + 24) >> 2] = F[(d + 16) >> 2] + F[(e + 28) >> 2] = a + F[(e + 40) >> 2] = 0 + F[(e + 32) >> 2] = 0 + F[(e + 36) >> 2] = 0 + n: { + c = F[(d + 24) >> 2] + b = F[(d + 28) >> 2] + if ((c | 0) != (b | 0)) { + a = (b - c) | 0 + if ((a | 0) < 0) { + break n + } + k = ka(a) + F[(e + 32) >> 2] = k + F[(e + 40) >> 2] = (a & -4) + k + while (1) { + F[k >> 2] = F[c >> 2] + k = (k + 4) | 0 + c = (c + 4) | 0 + if ((b | 0) != (c | 0)) { + continue + } + break + } + F[(e + 36) >> 2] = k + } + F[e >> 2] = 5652 + break b + } + na() + v() + } + k = e + a = F[(h + 32) >> 2] + if (!a) { + break a + } + F[(h + 36) >> 2] = a + ja(a) + } + Z = (h + 48) | 0 + return k | 0 + } + function rf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + m = (Z - 16) | 0 + Z = m + F[(m + 12) >> 2] = b + b = ka(32) + F[m >> 2] = b + F[(m + 4) >> 2] = 24 + F[(m + 8) >> 2] = -2147483616 + c = + G[1196] | (G[1197] << 8) | ((G[1198] << 16) | (G[1199] << 24)) + d = + G[1192] | (G[1193] << 8) | ((G[1194] << 16) | (G[1195] << 24)) + D[(b + 16) | 0] = d + D[(b + 17) | 0] = d >>> 8 + D[(b + 18) | 0] = d >>> 16 + D[(b + 19) | 0] = d >>> 24 + D[(b + 20) | 0] = c + D[(b + 21) | 0] = c >>> 8 + D[(b + 22) | 0] = c >>> 16 + D[(b + 23) | 0] = c >>> 24 + c = + G[1188] | (G[1189] << 8) | ((G[1190] << 16) | (G[1191] << 24)) + d = + G[1184] | (G[1185] << 8) | ((G[1186] << 16) | (G[1187] << 24)) + D[(b + 8) | 0] = d + D[(b + 9) | 0] = d >>> 8 + D[(b + 10) | 0] = d >>> 16 + D[(b + 11) | 0] = d >>> 24 + D[(b + 12) | 0] = c + D[(b + 13) | 0] = c >>> 8 + D[(b + 14) | 0] = c >>> 16 + D[(b + 15) | 0] = c >>> 24 + c = + G[1180] | (G[1181] << 8) | ((G[1182] << 16) | (G[1183] << 24)) + d = + G[1176] | (G[1177] << 8) | ((G[1178] << 16) | (G[1179] << 24)) + D[b | 0] = d + D[(b + 1) | 0] = d >>> 8 + D[(b + 2) | 0] = d >>> 16 + D[(b + 3) | 0] = d >>> 24 + D[(b + 4) | 0] = c + D[(b + 5) | 0] = c >>> 8 + D[(b + 6) | 0] = c >>> 16 + D[(b + 7) | 0] = c >>> 24 + D[(b + 24) | 0] = 0 + l = (Z - 48) | 0 + Z = l + f = F[(m + 12) >> 2] + d = a + a = (a + 16) | 0 + b = F[a >> 2] + a: { + b: { + if (!b) { + break b + } + c = a + while (1) { + e = (f | 0) > F[(b + 16) >> 2] + c = e ? c : b + b = F[(e ? (b + 4) | 0 : b) >> 2] + if (b) { + continue + } + break + } + if ((a | 0) == (c | 0)) { + break b + } + if ((f | 0) >= F[(c + 16) >> 2]) { + break a + } + } + F[(l + 28) >> 2] = 0 + F[(l + 32) >> 2] = 0 + y = (l + 24) | 0 + F[(l + 24) >> 2] = y | 4 + a = (l + 16) | 0 + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(l + 8) >> 2] = f + F[(l + 12) >> 2] = a + t = (l + 8) | 0 + a = t + x = (Z - 16) | 0 + Z = x + u = (d + 12) | 0 + c = F[(u + 4) >> 2] + c: { + d: { + if (!c) { + o = (u + 4) | 0 + d = o + break d + } + a = F[a >> 2] + while (1) { + d = c + b = F[(c + 16) >> 2] + if ((b | 0) > (a | 0)) { + o = d + c = F[d >> 2] + if (c) { + continue + } + break d + } + if ((a | 0) <= (b | 0)) { + g = d + a = 0 + break c + } + c = F[(d + 4) >> 2] + if (c) { + continue + } + break + } + o = (d + 4) | 0 + } + g = ka(32) + b = F[t >> 2] + q = (g + 24) | 0 + a = q + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(g + 16) >> 2] = b + r = (g + 20) | 0 + F[r >> 2] = a + c = F[(t + 4) >> 2] + z = (t + 8) | 0 + if ((c | 0) != (z | 0)) { + while (1) { + p = (Z - 16) | 0 + Z = p + a = (p + 8) | 0 + k = (c + 16) | 0 + e: { + f: { + g: { + h: { + i: { + j: { + k: { + f = q + e = (r + 4) | 0 + l: { + if ((f | 0) == (e | 0)) { + break l + } + b = G[(f + 27) | 0] + h = (b << 24) >> 24 < 0 + i = G[(k + 11) | 0] + n = (i << 24) >> 24 + j = (n | 0) < 0 + i = j ? F[(k + 4) >> 2] : i + b = h ? F[(f + 20) >> 2] : b + s = i >>> 0 > b >>> 0 + w = s ? b : i + if (w) { + j = j ? F[k >> 2] : k + h = h + ? F[(f + 16) >> 2] + : (f + 16) | 0 + A = sa(j, h, w) + if (!A) { + if (b >>> 0 > i >>> 0) { + break l + } + break k + } + if ((A | 0) >= 0) { + break k + } + break l + } + if (b >>> 0 <= i >>> 0) { + break j + } + } + h = F[f >> 2] + m: { + a = f + n: { + if ((a | 0) == F[r >> 2]) { + break n + } + o: { + if (!h) { + b = f + while (1) { + a = F[(b + 8) >> 2] + i = F[a >> 2] == (b | 0) + b = a + if (i) { + continue + } + break + } + break o + } + b = h + while (1) { + a = b + b = F[(b + 4) >> 2] + if (b) { + continue + } + break + } + } + i = G[(k + 11) | 0] + s = (i << 24) >> 24 + b = (s | 0) < 0 + j = G[(a + 27) | 0] + n = (j << 24) >> 24 < 0 + p: { + i = b ? F[(k + 4) >> 2] : i + j = n ? F[(a + 20) >> 2] : j + w = i >>> 0 < j >>> 0 ? i : j + if (w) { + b = sa( + n + ? F[(a + 16) >> 2] + : (a + 16) | 0, + b ? F[k >> 2] : k, + w, + ) + if (b) { + break p + } + } + if (i >>> 0 > j >>> 0) { + break n + } + break m + } + if ((b | 0) >= 0) { + break m + } + } + if (!h) { + F[(p + 12) >> 2] = f + a = f + break e + } + F[(p + 12) >> 2] = a + a = (a + 4) | 0 + break e + } + b = F[e >> 2] + if (!b) { + F[(p + 12) >> 2] = e + a = e + break e + } + h = (s | 0) < 0 ? F[k >> 2] : k + f = e + while (1) { + a = b + b = G[(b + 27) | 0] + e = (b << 24) >> 24 < 0 + b = e ? F[(a + 20) >> 2] : b + k = b >>> 0 < i >>> 0 + q: { + r: { + s: { + t: { + n = k ? b : i + u: { + if (n) { + e = e + ? F[(a + 16) >> 2] + : (a + 16) | 0 + j = sa(h, e, n) + if (!j) { + if (b >>> 0 > i >>> 0) { + break u + } + break t + } + if ((j | 0) >= 0) { + break t + } + break u + } + if (b >>> 0 <= i >>> 0) { + break s + } + } + f = a + b = F[a >> 2] + if (b) { + continue + } + break g + } + b = sa(e, h, n) + if (b) { + break r + } + } + if (k) { + break q + } + break g + } + if ((b | 0) >= 0) { + break g + } + } + f = (a + 4) | 0 + b = F[(a + 4) >> 2] + if (b) { + continue + } + break + } + break g + } + b = sa(h, j, w) + if (b) { + break i + } + } + if (s) { + break h + } + break f + } + if ((b | 0) >= 0) { + break f + } + } + h = F[(f + 4) >> 2] + v: { + if (!h) { + b = f + while (1) { + a = F[(b + 8) >> 2] + j = F[a >> 2] != (b | 0) + b = a + if (j) { + continue + } + break + } + break v + } + b = h + while (1) { + a = b + b = F[b >> 2] + if (b) { + continue + } + break + } + } + w: { + x: { + if ((a | 0) == (e | 0)) { + break x + } + j = G[(a + 27) | 0] + b = (j << 24) >> 24 < 0 + y: { + j = b ? F[(a + 20) >> 2] : j + s = i >>> 0 > j >>> 0 ? j : i + if (s) { + b = sa( + (n | 0) < 0 ? F[k >> 2] : k, + b ? F[(a + 16) >> 2] : (a + 16) | 0, + s, + ) + if (b) { + break y + } + } + if (i >>> 0 < j >>> 0) { + break x + } + break w + } + if ((b | 0) >= 0) { + break w + } + } + if (!h) { + F[(p + 12) >> 2] = f + a = (f + 4) | 0 + break e + } + F[(p + 12) >> 2] = a + break e + } + b = F[e >> 2] + if (!b) { + F[(p + 12) >> 2] = e + a = e + break e + } + h = (n | 0) < 0 ? F[k >> 2] : k + f = e + while (1) { + a = b + b = G[(b + 27) | 0] + e = (b << 24) >> 24 < 0 + b = e ? F[(a + 20) >> 2] : b + k = b >>> 0 < i >>> 0 + z: { + A: { + B: { + C: { + n = k ? b : i + D: { + if (n) { + e = e + ? F[(a + 16) >> 2] + : (a + 16) | 0 + j = sa(h, e, n) + if (!j) { + if (b >>> 0 > i >>> 0) { + break D + } + break C + } + if ((j | 0) >= 0) { + break C + } + break D + } + if (b >>> 0 <= i >>> 0) { + break B + } + } + f = a + b = F[a >> 2] + if (b) { + continue + } + break g + } + b = sa(e, h, n) + if (b) { + break A + } + } + if (k) { + break z + } + break g + } + if ((b | 0) >= 0) { + break g + } + } + f = (a + 4) | 0 + b = F[(a + 4) >> 2] + if (b) { + continue + } + break + } + } + F[(p + 12) >> 2] = a + a = f + break e + } + F[(p + 12) >> 2] = f + F[a >> 2] = f + } + f = a + a = F[a >> 2] + if (a) { + b = 0 + } else { + a = ka(40) + b = (a + 16) | 0 + E: { + if (D[(c + 27) | 0] >= 0) { + e = F[(c + 20) >> 2] + F[b >> 2] = F[(c + 16) >> 2] + F[(b + 4) >> 2] = e + F[(b + 8) >> 2] = F[(c + 24) >> 2] + break E + } + ra(b, F[(c + 16) >> 2], F[(c + 20) >> 2]) + } + b = (a + 28) | 0 + F: { + if (D[(c + 39) | 0] >= 0) { + e = F[(c + 32) >> 2] + F[b >> 2] = F[(c + 28) >> 2] + F[(b + 4) >> 2] = e + F[(b + 8) >> 2] = F[(c + 36) >> 2] + break F + } + ra(b, F[(c + 28) >> 2], F[(c + 32) >> 2]) + } + F[(a + 8) >> 2] = F[(p + 12) >> 2] + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[f >> 2] = a + b = a + e = F[F[r >> 2] >> 2] + if (e) { + F[r >> 2] = e + b = F[f >> 2] + } + nb(F[(r + 4) >> 2], b) + F[(r + 8) >> 2] = F[(r + 8) >> 2] + 1 + b = 1 + } + D[(x + 12) | 0] = b + F[(x + 8) >> 2] = a + Z = (p + 16) | 0 + b = F[(c + 4) >> 2] + G: { + if (b) { + while (1) { + c = b + b = F[b >> 2] + if (b) { + continue + } + break G + } + } + while (1) { + a = c + c = F[(c + 8) >> 2] + if ((a | 0) != F[c >> 2]) { + continue + } + break + } + } + if ((c | 0) != (z | 0)) { + continue + } + break + } + } + F[(g + 8) >> 2] = d + F[g >> 2] = 0 + F[(g + 4) >> 2] = 0 + F[o >> 2] = g + c = g + a = F[F[u >> 2] >> 2] + if (a) { + F[u >> 2] = a + c = F[o >> 2] + } + nb(F[(u + 4) >> 2], c) + F[(u + 8) >> 2] = F[(u + 8) >> 2] + 1 + a = 1 + } + D[(l + 44) | 0] = a + F[(l + 40) >> 2] = g + Z = (x + 16) | 0 + c = F[(l + 40) >> 2] + ib(t | 4, F[(l + 16) >> 2]) + ib(y, F[(l + 28) >> 2]) + } + f = (Z - 48) | 0 + Z = f + d = (f + 8) | 0 + g = (Z - 32) | 0 + Z = g + o = (g + 32) | 0 + b = o + a = (g + 21) | 0 + H: { + if ((b | 0) == (a | 0)) { + break H + } + } + e = (b - a) | 0 + I: { + if ((e | 0) <= 9) { + h = 61 + if ((e | 0) < ((I[2684] <= 1) | 0)) { + break I + } + } + D[a | 0] = 49 + b = (a + 1) | 0 + h = 0 + } + F[(g + 12) >> 2] = h + F[(g + 8) >> 2] = b + h = (Z - 16) | 0 + Z = h + e = (Z - 16) | 0 + Z = e + J: { + q = F[(g + 8) >> 2] + g = (q - a) | 0 + if (g >>> 0 <= 2147483631) { + K: { + if (g >>> 0 < 11) { + D[(d + 11) | 0] = g | (G[(d + 11) | 0] & 128) + D[(d + 11) | 0] = G[(d + 11) | 0] & 127 + b = d + break K + } + t = (e + 8) | 0 + if (g >>> 0 >= 11) { + k = (g + 16) & -16 + b = (k - 1) | 0 + b = (b | 0) == 11 ? k : b + } else { + b = 10 + } + sb(t, (b + 1) | 0) + b = F[(e + 8) >> 2] + F[d >> 2] = b + F[(d + 8) >> 2] = + (F[(d + 8) >> 2] & -2147483648) | + (F[(e + 12) >> 2] & 2147483647) + F[(d + 8) >> 2] = F[(d + 8) >> 2] | -2147483648 + F[(d + 4) >> 2] = g + } + while (1) { + if ((a | 0) != (q | 0)) { + D[b | 0] = G[a | 0] + b = (b + 1) | 0 + a = (a + 1) | 0 + continue + } + break + } + D[(e + 7) | 0] = 0 + D[b | 0] = G[(e + 7) | 0] + Z = (e + 16) | 0 + break J + } + za() + v() + } + Z = (h + 16) | 0 + Z = o + F[(f + 32) >> 2] = m + L: { + M: { + a = (c + 20) | 0 + d = F[(a + 4) >> 2] + N: { + if (!d) { + g = (a + 4) | 0 + c = g + break N + } + b = G[(m + 11) | 0] + c = (b << 24) >> 24 < 0 + e = c ? F[m >> 2] : m + b = c ? F[(m + 4) >> 2] : b + while (1) { + c = d + d = G[(c + 27) | 0] + g = (d << 24) >> 24 < 0 + d = g ? F[(c + 20) >> 2] : d + o = d >>> 0 < b >>> 0 + O: { + P: { + Q: { + R: { + h = o ? d : b + S: { + if (h) { + g = g ? F[(c + 16) >> 2] : (c + 16) | 0 + q = sa(e, g, h) + if (!q) { + if (b >>> 0 < d >>> 0) { + break S + } + break R + } + if ((q | 0) >= 0) { + break R + } + break S + } + if (b >>> 0 >= d >>> 0) { + break Q + } + } + g = c + d = F[c >> 2] + if (d) { + continue + } + break N + } + d = sa(g, e, h) + if (d) { + break P + } + } + if (o) { + break O + } + break M + } + if ((d | 0) >= 0) { + break M + } + } + d = F[(c + 4) >> 2] + if (d) { + continue + } + break + } + g = (c + 4) | 0 + } + d = ka(40) + e = (d + 16) | 0 + b = F[(f + 32) >> 2] + T: { + if (D[(b + 11) | 0] >= 0) { + o = F[(b + 4) >> 2] + F[e >> 2] = F[b >> 2] + F[(e + 4) >> 2] = o + F[(e + 8) >> 2] = F[(b + 8) >> 2] + break T + } + ra(e, F[b >> 2], F[(b + 4) >> 2]) + } + F[(d + 8) >> 2] = c + F[d >> 2] = 0 + F[(d + 4) >> 2] = 0 + F[(d + 36) >> 2] = 0 + F[(d + 28) >> 2] = 0 + F[(d + 32) >> 2] = 0 + F[g >> 2] = d + c = d + b = F[F[a >> 2] >> 2] + if (b) { + F[a >> 2] = b + c = F[g >> 2] + } + nb(F[(a + 4) >> 2], c) + F[(a + 8) >> 2] = F[(a + 8) >> 2] + 1 + a = 1 + break L + } + d = c + a = 0 + } + D[(f + 44) | 0] = a + F[(f + 40) >> 2] = d + a = F[(f + 40) >> 2] + if (D[(a + 39) | 0] < 0) { + ja(F[(a + 28) >> 2]) + } + b = F[(f + 12) >> 2] + F[(a + 28) >> 2] = F[(f + 8) >> 2] + F[(a + 32) >> 2] = b + F[(a + 36) >> 2] = F[(f + 16) >> 2] + Z = (f + 48) | 0 + Z = (l + 48) | 0 + if (D[(m + 11) | 0] < 0) { + ja(F[m >> 2]) + } + Z = (m + 16) | 0 + } + function zd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0 + h = (Z - 32) | 0 + Z = h + g = F[(F[(a + 4) >> 2] + 44) >> 2] + c = F[(a + 8) >> 2] + d = F[c >> 2] + c = F[(c + 4) >> 2] + F[(h + 24) >> 2] = 0 + F[(h + 16) >> 2] = 0 + F[(h + 20) >> 2] = 0 + d = ((((c - d) >> 2) >>> 0) / 3) | 0 + c = F[(g + 96) >> 2] + f = (((F[(g + 100) >> 2] - c) | 0) / 12) | 0 + a: { + if (d >>> 0 > f >>> 0) { + e = (d - f) | 0 + i = F[(g + 104) >> 2] + c = F[(g + 100) >> 2] + if (e >>> 0 <= (((i - c) | 0) / 12) >>> 0) { + b: { + if (!e) { + break b + } + d = c + f = (L(e, 12) - 12) | 0 + i = ((((f >>> 0) / 12) | 0) + 1) & 3 + if (i) { + while (1) { + l = F[(h + 20) >> 2] + F[d >> 2] = F[(h + 16) >> 2] + F[(d + 4) >> 2] = l + F[(d + 8) >> 2] = F[(h + 24) >> 2] + d = (d + 12) | 0 + j = (j + 1) | 0 + if ((i | 0) != (j | 0)) { + continue + } + break + } + } + c = (L(e, 12) + c) | 0 + if (f >>> 0 < 36) { + break b + } + while (1) { + f = F[(h + 20) >> 2] + F[d >> 2] = F[(h + 16) >> 2] + F[(d + 4) >> 2] = f + F[(d + 8) >> 2] = F[(h + 24) >> 2] + F[(d + 20) >> 2] = F[(h + 24) >> 2] + f = F[(h + 20) >> 2] + F[(d + 12) >> 2] = F[(h + 16) >> 2] + F[(d + 16) >> 2] = f + F[(d + 32) >> 2] = F[(h + 24) >> 2] + f = F[(h + 20) >> 2] + F[(d + 24) >> 2] = F[(h + 16) >> 2] + F[(d + 28) >> 2] = f + f = F[(h + 20) >> 2] + F[(d + 36) >> 2] = F[(h + 16) >> 2] + F[(d + 40) >> 2] = f + F[(d + 44) >> 2] = F[(h + 24) >> 2] + d = (d + 48) | 0 + if ((d | 0) != (c | 0)) { + continue + } + break + } + } + F[(g + 100) >> 2] = c + break a + } + c: { + f = F[(g + 96) >> 2] + n = (((c - f) | 0) / 12) | 0 + d = (n + e) | 0 + if (d >>> 0 < 357913942) { + f = (((i - f) | 0) / 12) | 0 + i = f << 1 + i = + f >>> 0 >= 178956970 + ? 357913941 + : d >>> 0 < i >>> 0 + ? i + : d + if (i) { + if (i >>> 0 >= 357913942) { + break c + } + l = ka(L(i, 12)) + } + f = (L(n, 12) + l) | 0 + d = f + e = L(e, 12) + n = (e - 12) | 0 + q = ((((n >>> 0) / 12) | 0) + 1) & 3 + if (q) { + while (1) { + r = F[(h + 20) >> 2] + F[d >> 2] = F[(h + 16) >> 2] + F[(d + 4) >> 2] = r + F[(d + 8) >> 2] = F[(h + 24) >> 2] + d = (d + 12) | 0 + j = (j + 1) | 0 + if ((q | 0) != (j | 0)) { + continue + } + break + } + } + e = (e + f) | 0 + if (n >>> 0 >= 36) { + while (1) { + j = F[(h + 20) >> 2] + F[d >> 2] = F[(h + 16) >> 2] + F[(d + 4) >> 2] = j + F[(d + 8) >> 2] = F[(h + 24) >> 2] + F[(d + 20) >> 2] = F[(h + 24) >> 2] + j = F[(h + 20) >> 2] + F[(d + 12) >> 2] = F[(h + 16) >> 2] + F[(d + 16) >> 2] = j + F[(d + 32) >> 2] = F[(h + 24) >> 2] + j = F[(h + 20) >> 2] + F[(d + 24) >> 2] = F[(h + 16) >> 2] + F[(d + 28) >> 2] = j + j = F[(h + 20) >> 2] + F[(d + 36) >> 2] = F[(h + 16) >> 2] + F[(d + 40) >> 2] = j + F[(d + 44) >> 2] = F[(h + 24) >> 2] + d = (d + 48) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + j = F[(g + 96) >> 2] + if ((j | 0) != (c | 0)) { + while (1) { + c = (c - 12) | 0 + n = F[(c + 4) >> 2] + f = (f - 12) | 0 + d = f + F[d >> 2] = F[c >> 2] + F[(d + 4) >> 2] = n + F[(d + 8) >> 2] = F[(c + 8) >> 2] + if ((c | 0) != (j | 0)) { + continue + } + break + } + c = F[(g + 96) >> 2] + } + F[(g + 104) >> 2] = L(i, 12) + l + F[(g + 100) >> 2] = e + F[(g + 96) >> 2] = f + if (c) { + ja(c) + } + break a + } + na() + v() + } + oa() + v() + } + if (d >>> 0 >= f >>> 0) { + break a + } + F[(g + 100) >> 2] = c + L(d, 12) + } + d: { + if (F[(a + 216) >> 2] == F[(a + 220) >> 2]) { + j = F[(a + 4) >> 2] + c = F[(j + 44) >> 2] + d = F[(c + 100) >> 2] + f = F[(c + 96) >> 2] + if ((d | 0) != (f | 0)) { + c = (((d - f) | 0) / 12) | 0 + o = c >>> 0 <= 1 ? 1 : c + c = 0 + while (1) { + d = F[(a + 8) >> 2] + i = (f + L(c, 12)) | 0 + g = L(c, 3) + e: { + f: { + if ((g | 0) == -1) { + e = F[(((F[d >> 2] + (g << 2)) | 0) + 4) >> 2] + k = -1 + g = 1 + break f + } + e = -1 + k = F[(F[d >> 2] + (g << 2)) >> 2] + l = (g + 1) | 0 + if ((l | 0) == -1) { + g = 0 + break f + } + e = F[(F[d >> 2] + (l << 2)) >> 2] + g = (g + 2) | 0 + m = -1 + if ((g | 0) == -1) { + break e + } + } + m = F[(F[d >> 2] + (g << 2)) >> 2] + } + F[(i + 8) >> 2] = m + F[(i + 4) >> 2] = e + F[i >> 2] = k + c = (c + 1) | 0 + if ((o | 0) != (c | 0)) { + continue + } + break + } + } + F[(F[(j + 4) >> 2] + 80) >> 2] = b + c = 1 + break d + } + d = 0 + F[(h + 24) >> 2] = 0 + F[(h + 16) >> 2] = 0 + F[(h + 20) >> 2] = 0 + l = F[(a + 8) >> 2] + c = F[l >> 2] + g = F[(l + 4) >> 2] + F[(h + 8) >> 2] = 0 + F[h >> 2] = 0 + F[(h + 4) >> 2] = 0 + b = 0 + g: { + h: { + i: { + j: { + k: { + l: { + if ((c | 0) != (g | 0)) { + c = (g - c) | 0 + if ((c | 0) < 0) { + break l + } + b = ka(c) + F[h >> 2] = b + F[(h + 8) >> 2] = (c & -4) + b + ;(u = h), + (w = (ma(b, 0, c) + c) | 0), + (F[(u + 4) >> 2] = w) + } + c = F[(l + 24) >> 2] + if (((F[(l + 28) >> 2] - c) | 0) < 4) { + break h + } + f = 0 + while (1) { + g = F[((p << 2) + c) >> 2] + m: { + if ((g | 0) == -1) { + break m + } + n: { + if ( + (F[ + (F[(a + 120) >> 2] + + ((p >>> 3) & 536870908)) >> + 2 + ] >>> + p) & + 1 + ) { + break n + } + n = F[(a + 216) >> 2] + c = F[(a + 220) >> 2] + if ((n | 0) == (c | 0)) { + break n + } + e = (g + 2) | 0 + i = (g >>> 0) % 3 | 0 + q = i ? (g - 1) | 0 : e + c = (((c - n) | 0) / 144) | 0 + r = c >>> 0 <= 1 ? 1 : c + j = 0 + t = ((i | 0) != 0) | ((e | 0) != -1) + while (1) { + s = g << 2 + i = (L(j, 144) + n) | 0 + c = F[(s + F[F[(i + 68) >> 2] >> 2]) >> 2] + o: { + if ( + !( + (F[ + (F[(i + 16) >> 2] + + ((c >>> 3) & 536870908)) >> + 2 + ] >>> + c) & + 1 + ) + ) { + break o + } + c = -1 + p: { + if (!t) { + break p + } + e = + F[ + (F[(l + 12) >> 2] + (q << 2)) >> 2 + ] + c = -1 + if ((e | 0) == -1) { + break p + } + c = (e - 1) | 0 + if ((e >>> 0) % 3 | 0) { + break p + } + c = (e + 2) | 0 + } + if ((g | 0) == (c | 0)) { + break o + } + e = s + s = F[(i + 32) >> 2] + i = F[(e + s) >> 2] + while (1) { + e = 0 + if ((c | 0) == -1) { + break g + } + if ( + (i | 0) != + F[(s + (c << 2)) >> 2] + ) { + g = c + break n + } + q: { + r: { + if ((c >>> 0) % 3 | 0) { + e = (c - 1) | 0 + break r + } + e = (c + 2) | 0 + m = -1 + if ((e | 0) == -1) { + break q + } + } + c = + F[ + (F[(l + 12) >> 2] + (e << 2)) >> + 2 + ] + m = -1 + if ((c | 0) == -1) { + break q + } + m = (c - 1) | 0 + if ((c >>> 0) % 3 | 0) { + break q + } + m = (c + 2) | 0 + } + c = m + if ((g | 0) != (c | 0)) { + continue + } + break + } + } + j = (j + 1) | 0 + if ((r | 0) != (j | 0)) { + continue + } + break + } + } + i = (k - f) | 0 + e = i >> 2 + F[((g << 2) + b) >> 2] = e + s: { + if (k >>> 0 < o >>> 0) { + F[k >> 2] = g + k = (k + 4) | 0 + F[(h + 20) >> 2] = k + break s + } + c = (e + 1) | 0 + if (c >>> 0 >= 1073741824) { + break k + } + d = (o - f) | 0 + k = (d >>> 1) | 0 + c = + d >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < k >>> 0 + ? k + : c + if (c) { + if (c >>> 0 >= 1073741824) { + break j + } + d = ka(c << 2) + } else { + d = 0 + } + e = (d + (e << 2)) | 0 + F[e >> 2] = g + m = c << 2 + c = pa(d, f, i) + o = (m + c) | 0 + F[(h + 24) >> 2] = o + k = (e + 4) | 0 + F[(h + 20) >> 2] = k + F[(h + 16) >> 2] = c + if (f) { + ja(f) + l = F[(a + 8) >> 2] + } + f = c + } + if ((g | 0) == -1) { + break m + } + t: { + if ((g >>> 0) % 3 | 0) { + c = (g - 1) | 0 + break t + } + c = (g + 2) | 0 + if ((c | 0) == -1) { + break m + } + } + c = F[(F[(l + 12) >> 2] + (c << 2)) >> 2] + if ((c | 0) == -1) { + break m + } + c = (c + ((c >>> 0) % 3 | 0 ? -1 : 2)) | 0 + if ((c | 0) == -1) { + break m + } + e = g + if ((c | 0) == (g | 0)) { + break m + } + while (1) { + i = c + u: { + v: { + c = F[(a + 220) >> 2] + j = F[(a + 216) >> 2] + if ((c | 0) == (j | 0)) { + break v + } + c = (((c - j) | 0) / 144) | 0 + n = c >>> 0 <= 1 ? 1 : c + c = 0 + while (1) { + q = + F[(((j + L(c, 144)) | 0) + 32) >> 2] + r = i << 2 + if ( + F[(q + r) >> 2] == + F[(q + (e << 2)) >> 2] + ) { + c = (c + 1) | 0 + if ((n | 0) != (c | 0)) { + continue + } + break v + } + break + } + j = (k - d) | 0 + e = j >> 2 + F[(b + r) >> 2] = e + if (k >>> 0 < o >>> 0) { + F[k >> 2] = i + k = (k + 4) | 0 + F[(h + 20) >> 2] = k + f = d + break u + } + c = (e + 1) | 0 + if (c >>> 0 >= 1073741824) { + break i + } + f = (o - d) | 0 + k = (f >>> 1) | 0 + c = + f >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < k >>> 0 + ? k + : c + if (c) { + if (c >>> 0 >= 1073741824) { + break j + } + f = ka(c << 2) + } else { + f = 0 + } + e = (f + (e << 2)) | 0 + F[e >> 2] = i + m = c << 2 + c = pa(f, d, j) + o = (m + c) | 0 + F[(h + 24) >> 2] = o + k = (e + 4) | 0 + F[(h + 20) >> 2] = k + F[(h + 16) >> 2] = c + if (!d) { + d = c + break u + } + ja(d) + l = F[(a + 8) >> 2] + d = c + break u + } + F[((i << 2) + b) >> 2] = + F[((e << 2) + b) >> 2] + } + if ((i | 0) == -1) { + break m + } + w: { + if ((i >>> 0) % 3 | 0) { + c = (i - 1) | 0 + break w + } + c = (i + 2) | 0 + if ((c | 0) == -1) { + break m + } + } + c = F[(F[(l + 12) >> 2] + (c << 2)) >> 2] + if ((c | 0) == -1) { + break m + } + c = (c + ((c >>> 0) % 3 | 0 ? -1 : 2)) | 0 + if ((c | 0) == -1) { + break m + } + e = i + if ((c | 0) != (g | 0)) { + continue + } + break + } + } + p = (p + 1) | 0 + c = F[(l + 24) >> 2] + if ((p | 0) < (F[(l + 28) >> 2] - c) >> 2) { + continue + } + break + } + break h + } + na() + v() + } + na() + v() + } + oa() + v() + } + na() + v() + } + i = F[(a + 4) >> 2] + a = F[(i + 44) >> 2] + c = F[(a + 100) >> 2] + a = F[(a + 96) >> 2] + x: { + if ((c | 0) == (a | 0)) { + break x + } + g = (((c - a) | 0) / 12) | 0 + f = g >>> 0 <= 1 ? 1 : g + l = f & 1 + c = 0 + if (g >>> 0 >= 2) { + j = f & -2 + g = 0 + while (1) { + e = L(c, 12) + f = (e + b) | 0 + o = F[f >> 2] + p = F[(f + 4) >> 2] + e = (a + e) | 0 + F[(e + 8) >> 2] = F[(f + 8) >> 2] + F[e >> 2] = o + F[(e + 4) >> 2] = p + e = L(c | 1, 12) + f = (e + b) | 0 + o = F[f >> 2] + p = F[(f + 4) >> 2] + e = (a + e) | 0 + F[(e + 8) >> 2] = F[(f + 8) >> 2] + F[e >> 2] = o + F[(e + 4) >> 2] = p + c = (c + 2) | 0 + g = (g + 2) | 0 + if ((j | 0) != (g | 0)) { + continue + } + break + } + } + if (!l) { + break x + } + g = L(c, 12) + c = (g + b) | 0 + f = F[c >> 2] + e = F[(c + 4) >> 2] + a = (a + g) | 0 + F[(a + 8) >> 2] = F[(c + 8) >> 2] + F[a >> 2] = f + F[(a + 4) >> 2] = e + } + F[(F[(i + 4) >> 2] + 80) >> 2] = (k - d) >> 2 + e = 1 + } + c = e + if (b) { + ja(b) + } + if (!d) { + break d + } + F[(h + 20) >> 2] = d + ja(d) + } + Z = (h + 32) | 0 + return c + } + function de(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + M = 0, + N = 0, + O = 0, + P = 0 + g = (Z + -64) | 0 + Z = g + F[(a + 8) >> 2] = e + y = (a + 32) | 0 + f = F[y >> 2] + d = (F[(a + 36) >> 2] - f) >> 2 + a: { + b: { + if (d >>> 0 < e >>> 0) { + qa(y, (e - d) | 0) + F[(g + 56) >> 2] = 0 + F[(g + 60) >> 2] = 0 + F[(g + 48) >> 2] = 0 + F[(g + 52) >> 2] = 0 + F[(g + 40) >> 2] = 0 + F[(g + 44) >> 2] = 0 + F[(g + 32) >> 2] = 0 + F[(g + 36) >> 2] = 0 + F[(g + 24) >> 2] = 0 + F[(g + 28) >> 2] = 0 + F[(g + 16) >> 2] = 0 + F[(g + 20) >> 2] = 0 + F[g >> 2] = 0 + break b + } + if (d >>> 0 > e >>> 0) { + F[(a + 36) >> 2] = f + (e << 2) + } + F[(g + 56) >> 2] = 0 + F[(g + 60) >> 2] = 0 + F[(g + 48) >> 2] = 0 + F[(g + 52) >> 2] = 0 + F[(g + 40) >> 2] = 0 + F[(g + 44) >> 2] = 0 + F[(g + 32) >> 2] = 0 + F[(g + 36) >> 2] = 0 + F[(g + 24) >> 2] = 0 + F[(g + 28) >> 2] = 0 + F[(g + 16) >> 2] = 0 + F[(g + 20) >> 2] = 0 + F[g >> 2] = 0 + d = 0 + if (!e) { + break a + } + } + Fa((g + 16) | 0, e, g) + h = F[(g + 28) >> 2] + d = F[(g + 32) >> 2] + } + F[g >> 2] = 0 + d = (d - h) >> 2 + c: { + if (d >>> 0 >= e >>> 0) { + if (d >>> 0 <= e >>> 0) { + break c + } + F[(g + 32) >> 2] = (e << 2) + h + break c + } + Fa((g + 16) | 12, (e - d) | 0, g) + } + F[g >> 2] = 0 + f = F[(g + 40) >> 2] + d = (F[(g + 44) >> 2] - f) >> 2 + d: { + if (d >>> 0 >= e >>> 0) { + if (d >>> 0 <= e >>> 0) { + break d + } + F[(g + 44) >> 2] = f + (e << 2) + break d + } + Fa((g + 40) | 0, (e - d) | 0, g) + } + F[g >> 2] = 0 + f = F[(g + 52) >> 2] + d = (F[(g + 56) >> 2] - f) >> 2 + e: { + if (d >>> 0 >= e >>> 0) { + if (d >>> 0 <= e >>> 0) { + break e + } + F[(g + 56) >> 2] = f + (e << 2) + break e + } + Fa((g + 52) | 0, (e - d) | 0, g) + } + f: { + if (F[(a + 8) >> 2] <= 0) { + break f + } + i = F[(g + 16) >> 2] + j = F[(a + 32) >> 2] + h = 0 + while (1) { + d = h << 2 + f = F[(d + i) >> 2] + m = F[(a + 16) >> 2] + g: { + if ((f | 0) > (m | 0)) { + F[(d + j) >> 2] = m + break g + } + d = (d + j) | 0 + m = F[(a + 12) >> 2] + if ((m | 0) > (f | 0)) { + F[d >> 2] = m + break g + } + F[d >> 2] = f + } + h = (h + 1) | 0 + d = F[(a + 8) >> 2] + if ((h | 0) < (d | 0)) { + continue + } + break + } + if ((d | 0) <= 0) { + break f + } + d = 0 + while (1) { + i = d << 2 + f = (i + c) | 0 + i = (F[(b + i) >> 2] + F[(j + i) >> 2]) | 0 + F[f >> 2] = i + h: { + if ((i | 0) > F[(a + 16) >> 2]) { + i = (i - F[(a + 20) >> 2]) | 0 + } else { + if ((i | 0) >= F[(a + 12) >> 2]) { + break h + } + i = (i + F[(a + 20) >> 2]) | 0 + } + F[f >> 2] = i + } + d = (d + 1) | 0 + if ((d | 0) < F[(a + 8) >> 2]) { + continue + } + break + } + } + H = F[(a + 52) >> 2] + t = F[(a + 48) >> 2] + z = ka(16) + d = z + F[d >> 2] = 0 + F[(d + 4) >> 2] = 0 + F[(d + 8) >> 2] = 0 + F[(d + 12) >> 2] = 0 + F[(g + 8) >> 2] = 0 + F[g >> 2] = 0 + F[(g + 4) >> 2] = 0 + i: { + if (e) { + if (e >>> 0 >= 1073741824) { + break i + } + d = e << 2 + r = ka(d) + F[g >> 2] = r + F[(g + 8) >> 2] = d + r + ma(r, 0, d) + } + A = 1 + d = F[(a + 56) >> 2] + B = F[d >> 2] + d = (F[(d + 4) >> 2] - B) | 0 + j: { + if ((d | 0) < 8) { + break j + } + w = d >> 2 + I = (w | 0) <= 2 ? 2 : w + J = w >>> 0 <= 1 ? 1 : w + C = e & -2 + D = e & 1 + K = e & -4 + E = e & 3 + G = (e - 1) | 0 + M = e << 2 + N = e >>> 0 < 4 + A = 0 + m = 1 + while (1) { + k: { + l: { + m: { + n: { + if ((m | 0) != (J | 0)) { + o: { + p: { + f = F[((m << 2) + B) >> 2] + if ((f | 0) == -1) { + break p + } + k = 1 + d = (f + 2) | 0 + j = (f >>> 0) % 3 | 0 + x = j ? (f - 1) | 0 : d + s = 1 << x + n = F[t >> 2] + O = (n + ((x >>> 3) & 536870908)) | 0 + i = 0 + P = ((j | 0) != 0) | ((d | 0) != -1) + d = f + q: { + while (1) { + r: { + if ( + (F[ + (n + ((d >>> 3) & 536870908)) >> 2 + ] >>> + d) & + 1 + ) { + break r + } + j = + F[ + (F[(F[(t + 64) >> 2] + 12) >> 2] + + (d << 2)) >> + 2 + ] + if ((j | 0) == -1) { + break r + } + l = F[H >> 2] + h = F[(t + 28) >> 2] + p = + F[ + (l + + (F[(h + (j << 2)) >> 2] << + 2)) >> + 2 + ] + if ((p | 0) >= (m | 0)) { + break r + } + q = (j + 1) | 0 + q = + F[ + (l + + (F[ + (h + + (((q >>> 0) % 3 | 0 + ? q + : (j - 2) | 0) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] + if ((q | 0) >= (m | 0)) { + break r + } + h = + F[ + (l + + (F[ + (h + + ((j + + ((j >>> 0) % 3 | 0 + ? -1 + : 2)) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] + if ((h | 0) >= (m | 0)) { + break r + } + s: { + if (!e) { + break s + } + j = + F[ + (((g + 16) | 0) + L(i, 12)) >> 2 + ] + l = L(e, h) + q = L(e, q) + p = L(e, p) + h = 0 + o = 0 + if (G) { + while (1) { + F[(j + (h << 2)) >> 2] = + ((F[ + (((h + l) << 2) + c) >> 2 + ] + + F[ + (((h + q) << 2) + c) >> 2 + ]) | + 0) - + F[(((h + p) << 2) + c) >> 2] + u = h | 1 + F[(j + (u << 2)) >> 2] = + ((F[ + (((l + u) << 2) + c) >> 2 + ] + + F[ + (((q + u) << 2) + c) >> 2 + ]) | + 0) - + F[(((p + u) << 2) + c) >> 2] + h = (h + 2) | 0 + o = (o + 2) | 0 + if ((C | 0) != (o | 0)) { + continue + } + break + } + } + if (!D) { + break s + } + F[(j + (h << 2)) >> 2] = + ((F[(((h + l) << 2) + c) >> 2] + + F[(((h + q) << 2) + c) >> 2]) | + 0) - + F[(((h + p) << 2) + c) >> 2] + } + j = 4 + i = (i + 1) | 0 + if ((i | 0) == 4) { + break q + } + } + t: { + if (k & 1) { + h = (d - 2) | 0 + j = (d + 1) | 0 + d = -1 + j = (j >>> 0) % 3 | 0 ? j : h + if ( + ((j | 0) == -1) | + ((F[ + (n + ((j >>> 3) & 536870908)) >> + 2 + ] >>> + j) & + 1) + ) { + break t + } + j = + F[ + (F[ + (F[(t + 64) >> 2] + 12) >> 2 + ] + + (j << 2)) >> + 2 + ] + if ((j | 0) == -1) { + break t + } + d = (j + 1) | 0 + d = + (d >>> 0) % 3 | 0 + ? d + : (j - 2) | 0 + break t + } + u: { + if ((d >>> 0) % 3 | 0) { + h = (d - 1) | 0 + break u + } + h = (d + 2) | 0 + d = -1 + if ((h | 0) == -1) { + break t + } + } + d = -1 + if ( + (F[ + (n + ((h >>> 3) & 536870908)) >> 2 + ] >>> + h) & + 1 + ) { + break t + } + j = + F[ + (F[(F[(t + 64) >> 2] + 12) >> 2] + + (h << 2)) >> + 2 + ] + if ((j | 0) == -1) { + break t + } + if ((j >>> 0) % 3 | 0) { + d = (j - 1) | 0 + break t + } + d = (j + 2) | 0 + } + v: { + if ((d | 0) == (f | 0)) { + break v + } + if (((d | 0) == -1) & k) { + if (!P | (s & F[O >> 2])) { + break v + } + d = + F[ + (F[ + (F[(t + 64) >> 2] + 12) >> 2 + ] + + (x << 2)) >> + 2 + ] + if ((d | 0) == -1) { + break v + } + k = 0 + d = + (d >>> 0) % 3 | 0 + ? (d - 1) | 0 + : (d + 2) | 0 + } + if ((d | 0) != -1) { + continue + } + } + break + } + j = i + if ((j | 0) <= 0) { + break p + } + } + if (e) { + ma(r, 0, M) + } + d = (j - 1) | 0 + q = ((d << 2) + z) | 0 + d = (L(d, 12) + a) | 0 + u = d + x = F[(d - -64) >> 2] + k = 0 + d = F[g >> 2] + f = 0 + while (1) { + i = F[q >> 2] + F[q >> 2] = i + 1 + if (i >>> 0 >= x >>> 0) { + break j + } + w: { + if ( + (F[ + (F[(u + 60) >> 2] + + ((i >>> 3) & 536870908)) >> + 2 + ] >>> + i) & + 1 + ) { + break w + } + f = (f + 1) | 0 + if (!e) { + break w + } + n = F[(((g + 16) | 0) + L(k, 12)) >> 2] + i = 0 + h = 0 + p = 0 + if (!N) { + while (1) { + l = h << 2 + o = (l + d) | 0 + F[o >> 2] = + F[(l + n) >> 2] + F[o >> 2] + o = l | 4 + s = (o + d) | 0 + F[s >> 2] = + F[(n + o) >> 2] + F[s >> 2] + o = l | 8 + s = (o + d) | 0 + F[s >> 2] = + F[(n + o) >> 2] + F[s >> 2] + l = l | 12 + o = (l + d) | 0 + F[o >> 2] = + F[(l + n) >> 2] + F[o >> 2] + h = (h + 4) | 0 + p = (p + 4) | 0 + if ((K | 0) != (p | 0)) { + continue + } + break + } + } + if (!E) { + break w + } + while (1) { + l = h << 2 + p = (l + d) | 0 + F[p >> 2] = + F[(l + n) >> 2] + F[p >> 2] + h = (h + 1) | 0 + i = (i + 1) | 0 + if ((E | 0) != (i | 0)) { + continue + } + break + } + } + k = (k + 1) | 0 + if ((k | 0) != (j | 0)) { + continue + } + break + } + i = L(e, m) + if (!f) { + break o + } + if (!e) { + break l + } + h = 0 + d = 0 + if (G) { + break n + } + break m + } + i = L(e, m) + } + if (F[(a + 8) >> 2] <= 0) { + break k + } + k = ((L((m - 1) | 0, e) << 2) + c) | 0 + j = F[y >> 2] + h = 0 + while (1) { + d = h << 2 + f = F[(d + k) >> 2] + n = F[(a + 16) >> 2] + x: { + if ((f | 0) > (n | 0)) { + F[(d + j) >> 2] = n + break x + } + d = (d + j) | 0 + n = F[(a + 12) >> 2] + if ((n | 0) > (f | 0)) { + F[d >> 2] = n + break x + } + F[d >> 2] = f + } + h = (h + 1) | 0 + f = F[(a + 8) >> 2] + if ((h | 0) < (f | 0)) { + continue + } + break + } + d = 0 + if ((f | 0) <= 0) { + break k + } + f = i << 2 + h = (f + c) | 0 + k = (b + f) | 0 + while (1) { + i = d << 2 + f = (i + h) | 0 + i = (F[(i + k) >> 2] + F[(j + i) >> 2]) | 0 + F[f >> 2] = i + y: { + if ((i | 0) > F[(a + 16) >> 2]) { + i = (i - F[(a + 20) >> 2]) | 0 + } else { + if ((i | 0) >= F[(a + 12) >> 2]) { + break y + } + i = (i + F[(a + 20) >> 2]) | 0 + } + F[f >> 2] = i + } + d = (d + 1) | 0 + if ((d | 0) < F[(a + 8) >> 2]) { + continue + } + break + } + break k + } + ta() + v() + } + while (1) { + j = h << 2 + k = (j + r) | 0 + F[k >> 2] = F[k >> 2] / (f | 0) + j = ((j | 4) + r) | 0 + F[j >> 2] = F[j >> 2] / (f | 0) + h = (h + 2) | 0 + d = (d + 2) | 0 + if ((C | 0) != (d | 0)) { + continue + } + break + } + } + if (!D) { + break l + } + d = ((h << 2) + r) | 0 + F[d >> 2] = F[d >> 2] / (f | 0) + } + if (F[(a + 8) >> 2] <= 0) { + break k + } + j = F[y >> 2] + h = 0 + while (1) { + d = h << 2 + f = F[(d + r) >> 2] + k = F[(a + 16) >> 2] + z: { + if ((f | 0) > (k | 0)) { + F[(d + j) >> 2] = k + break z + } + d = (d + j) | 0 + k = F[(a + 12) >> 2] + if ((k | 0) > (f | 0)) { + F[d >> 2] = k + break z + } + F[d >> 2] = f + } + h = (h + 1) | 0 + f = F[(a + 8) >> 2] + if ((h | 0) < (f | 0)) { + continue + } + break + } + d = 0 + if ((f | 0) <= 0) { + break k + } + f = i << 2 + h = (f + c) | 0 + k = (b + f) | 0 + while (1) { + i = d << 2 + f = (i + h) | 0 + i = (F[(i + k) >> 2] + F[(j + i) >> 2]) | 0 + F[f >> 2] = i + A: { + if ((i | 0) > F[(a + 16) >> 2]) { + i = (i - F[(a + 20) >> 2]) | 0 + } else { + if ((i | 0) >= F[(a + 12) >> 2]) { + break A + } + i = (i + F[(a + 20) >> 2]) | 0 + } + F[f >> 2] = i + } + d = (d + 1) | 0 + if ((d | 0) < F[(a + 8) >> 2]) { + continue + } + break + } + } + m = (m + 1) | 0 + A = (w | 0) <= (m | 0) + if ((m | 0) != (I | 0)) { + continue + } + break + } + } + a = F[g >> 2] + if (a) { + ja(a) + } + ja(z) + a = F[(g + 52) >> 2] + if (a) { + F[(g + 56) >> 2] = a + ja(a) + } + a = F[(g + 40) >> 2] + if (a) { + F[(g + 44) >> 2] = a + ja(a) + } + a = F[(g + 28) >> 2] + if (a) { + F[(g + 32) >> 2] = a + ja(a) + } + a = F[(g + 16) >> 2] + if (a) { + F[(g + 20) >> 2] = a + ja(a) + } + Z = (g - -64) | 0 + return A | 0 + } + na() + v() + } + function $h(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + M = 0, + N = 0 + h = (Z + -64) | 0 + Z = h + F[(a + 8) >> 2] = e + x = (a + 32) | 0 + f = F[x >> 2] + d = (F[(a + 36) >> 2] - f) >> 2 + a: { + b: { + if (d >>> 0 < e >>> 0) { + qa(x, (e - d) | 0) + F[(h + 56) >> 2] = 0 + F[(h + 60) >> 2] = 0 + F[(h + 48) >> 2] = 0 + F[(h + 52) >> 2] = 0 + F[(h + 40) >> 2] = 0 + F[(h + 44) >> 2] = 0 + F[(h + 32) >> 2] = 0 + F[(h + 36) >> 2] = 0 + F[(h + 24) >> 2] = 0 + F[(h + 28) >> 2] = 0 + F[(h + 16) >> 2] = 0 + F[(h + 20) >> 2] = 0 + F[h >> 2] = 0 + break b + } + if (d >>> 0 > e >>> 0) { + F[(a + 36) >> 2] = f + (e << 2) + } + F[(h + 56) >> 2] = 0 + F[(h + 60) >> 2] = 0 + F[(h + 48) >> 2] = 0 + F[(h + 52) >> 2] = 0 + F[(h + 40) >> 2] = 0 + F[(h + 44) >> 2] = 0 + F[(h + 32) >> 2] = 0 + F[(h + 36) >> 2] = 0 + F[(h + 24) >> 2] = 0 + F[(h + 28) >> 2] = 0 + F[(h + 16) >> 2] = 0 + F[(h + 20) >> 2] = 0 + F[h >> 2] = 0 + d = 0 + if (!e) { + break a + } + } + Fa((h + 16) | 0, e, h) + i = F[(h + 28) >> 2] + d = F[(h + 32) >> 2] + } + F[h >> 2] = 0 + d = (d - i) >> 2 + c: { + if (d >>> 0 >= e >>> 0) { + if (d >>> 0 <= e >>> 0) { + break c + } + F[(h + 32) >> 2] = (e << 2) + i + break c + } + Fa((h + 16) | 12, (e - d) | 0, h) + } + F[h >> 2] = 0 + f = F[(h + 40) >> 2] + d = (F[(h + 44) >> 2] - f) >> 2 + d: { + if (d >>> 0 >= e >>> 0) { + if (d >>> 0 <= e >>> 0) { + break d + } + F[(h + 44) >> 2] = f + (e << 2) + break d + } + Fa((h + 40) | 0, (e - d) | 0, h) + } + F[h >> 2] = 0 + f = F[(h + 52) >> 2] + d = (F[(h + 56) >> 2] - f) >> 2 + e: { + if (d >>> 0 >= e >>> 0) { + if (d >>> 0 <= e >>> 0) { + break e + } + F[(h + 56) >> 2] = f + (e << 2) + break e + } + Fa((h + 52) | 0, (e - d) | 0, h) + } + f: { + if (F[(a + 8) >> 2] <= 0) { + break f + } + g = F[(h + 16) >> 2] + j = F[(a + 32) >> 2] + i = 0 + while (1) { + d = i << 2 + f = F[(d + g) >> 2] + m = F[(a + 16) >> 2] + g: { + if ((f | 0) > (m | 0)) { + F[(d + j) >> 2] = m + break g + } + d = (d + j) | 0 + m = F[(a + 12) >> 2] + if ((m | 0) > (f | 0)) { + F[d >> 2] = m + break g + } + F[d >> 2] = f + } + i = (i + 1) | 0 + d = F[(a + 8) >> 2] + if ((i | 0) < (d | 0)) { + continue + } + break + } + if ((d | 0) <= 0) { + break f + } + d = 0 + while (1) { + g = d << 2 + f = (g + c) | 0 + g = (F[(b + g) >> 2] + F[(g + j) >> 2]) | 0 + F[f >> 2] = g + h: { + if ((g | 0) > F[(a + 16) >> 2]) { + g = (g - F[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= F[(a + 12) >> 2]) { + break h + } + g = (g + F[(a + 20) >> 2]) | 0 + } + F[f >> 2] = g + } + d = (d + 1) | 0 + if ((d | 0) < F[(a + 8) >> 2]) { + continue + } + break + } + } + H = F[(a + 52) >> 2] + A = F[(a + 48) >> 2] + y = ka(16) + d = y + F[d >> 2] = 0 + F[(d + 4) >> 2] = 0 + F[(d + 8) >> 2] = 0 + F[(d + 12) >> 2] = 0 + F[(h + 8) >> 2] = 0 + F[h >> 2] = 0 + F[(h + 4) >> 2] = 0 + i: { + if (e) { + if (e >>> 0 >= 1073741824) { + break i + } + d = e << 2 + t = ka(d) + F[h >> 2] = t + F[(h + 8) >> 2] = d + t + ma(t, 0, d) + } + z = 1 + d = F[(a + 56) >> 2] + B = F[d >> 2] + d = (F[(d + 4) >> 2] - B) | 0 + j: { + if ((d | 0) < 8) { + break j + } + w = d >> 2 + I = (w | 0) <= 2 ? 2 : w + J = w >>> 0 <= 1 ? 1 : w + C = e & -2 + D = e & 1 + K = e & -4 + E = e & 3 + G = (e - 1) | 0 + M = e << 2 + N = e >>> 0 < 4 + z = 0 + m = 1 + while (1) { + k: { + l: { + m: { + n: { + if ((m | 0) != (J | 0)) { + o: { + p: { + f = F[((m << 2) + B) >> 2] + if ((f | 0) == -1) { + break p + } + n = F[(A + 12) >> 2] + d = (f + 2) | 0 + g = (f >>> 0) % 3 | 0 + q = (n + ((g ? (f - 1) | 0 : d) << 2)) | 0 + j = 0 + u = ((g | 0) != 0) | ((d | 0) != -1) + k = 1 + d = f + q: { + while (1) { + g = F[(n + (d << 2)) >> 2] + r: { + if ((g | 0) == -1) { + break r + } + l = -1 + p = F[H >> 2] + r = F[A >> 2] + i = + (p + + (F[(r + (g << 2)) >> 2] << 2)) | + 0 + o = (g + 1) | 0 + o = + (o >>> 0) % 3 | 0 ? o : (g - 2) | 0 + if ((o | 0) != -1) { + l = F[(r + (o << 2)) >> 2] + } + o = F[i >> 2] + s: { + t: { + if ((g >>> 0) % 3 | 0) { + i = (g - 1) | 0 + break t + } + i = (g + 2) | 0 + s = -1 + if ((i | 0) == -1) { + break s + } + } + s = F[(r + (i << 2)) >> 2] + } + if ((m | 0) <= (o | 0)) { + break r + } + i = F[(p + (l << 2)) >> 2] + if ((i | 0) >= (m | 0)) { + break r + } + l = F[(p + (s << 2)) >> 2] + if ((l | 0) >= (m | 0)) { + break r + } + g = + F[(((h + 16) | 0) + L(j, 12)) >> 2] + u: { + if (!e) { + break u + } + l = L(e, l) + r = L(e, i) + p = L(e, o) + i = 0 + s = 0 + if (G) { + while (1) { + F[(g + (i << 2)) >> 2] = + ((F[ + (((i + l) << 2) + c) >> 2 + ] + + F[ + (((i + r) << 2) + c) >> 2 + ]) | + 0) - + F[(((i + p) << 2) + c) >> 2] + o = i | 1 + F[(g + (o << 2)) >> 2] = + ((F[ + (((l + o) << 2) + c) >> 2 + ] + + F[ + (((o + r) << 2) + c) >> 2 + ]) | + 0) - + F[(((o + p) << 2) + c) >> 2] + i = (i + 2) | 0 + s = (s + 2) | 0 + if ((C | 0) != (s | 0)) { + continue + } + break + } + } + if (!D) { + break u + } + F[(g + (i << 2)) >> 2] = + ((F[(((i + l) << 2) + c) >> 2] + + F[(((i + r) << 2) + c) >> 2]) | + 0) - + F[(((i + p) << 2) + c) >> 2] + } + g = 4 + j = (j + 1) | 0 + if ((j | 0) == 4) { + break q + } + } + v: { + if (k & 1) { + i = (d + 1) | 0 + d = + (i >>> 0) % 3 | 0 + ? i + : (d - 2) | 0 + g = -1 + if ((d | 0) == -1) { + break v + } + d = F[(n + (d << 2)) >> 2] + g = -1 + if ((d | 0) == -1) { + break v + } + g = (d + 1) | 0 + g = + (g >>> 0) % 3 | 0 + ? g + : (d - 2) | 0 + break v + } + w: { + if ((d >>> 0) % 3 | 0) { + i = (d - 1) | 0 + break w + } + i = (d + 2) | 0 + g = -1 + if ((i | 0) == -1) { + break v + } + } + d = F[(n + (i << 2)) >> 2] + g = -1 + if ((d | 0) == -1) { + break v + } + g = (d - 1) | 0 + if ((d >>> 0) % 3 | 0) { + break v + } + g = (d + 2) | 0 + } + d = g + x: { + if ((f | 0) == (d | 0)) { + break x + } + if (((d | 0) == -1) & k) { + if (!u) { + break x + } + d = F[q >> 2] + if ((d | 0) == -1) { + break x + } + k = 0 + d = + (d >>> 0) % 3 | 0 + ? (d - 1) | 0 + : (d + 2) | 0 + } + if ((d | 0) != -1) { + continue + } + } + break + } + g = j + if ((g | 0) <= 0) { + break p + } + } + if (e) { + ma(t, 0, M) + } + d = (g - 1) | 0 + r = ((d << 2) + y) | 0 + d = (L(d, 12) + a) | 0 + o = d + s = F[(d - -64) >> 2] + k = 0 + d = F[h >> 2] + f = 0 + while (1) { + j = F[r >> 2] + F[r >> 2] = j + 1 + if (j >>> 0 >= s >>> 0) { + break j + } + y: { + if ( + (F[ + (F[(o + 60) >> 2] + + ((j >>> 3) & 536870908)) >> + 2 + ] >>> + j) & + 1 + ) { + break y + } + f = (f + 1) | 0 + if (!e) { + break y + } + j = F[(((h + 16) | 0) + L(k, 12)) >> 2] + l = 0 + i = 0 + p = 0 + if (!N) { + while (1) { + n = i << 2 + q = (n + d) | 0 + F[q >> 2] = + F[(j + n) >> 2] + F[q >> 2] + q = n | 4 + u = (q + d) | 0 + F[u >> 2] = + F[(j + q) >> 2] + F[u >> 2] + q = n | 8 + u = (q + d) | 0 + F[u >> 2] = + F[(j + q) >> 2] + F[u >> 2] + n = n | 12 + q = (n + d) | 0 + F[q >> 2] = + F[(j + n) >> 2] + F[q >> 2] + i = (i + 4) | 0 + p = (p + 4) | 0 + if ((K | 0) != (p | 0)) { + continue + } + break + } + } + if (!E) { + break y + } + while (1) { + n = i << 2 + p = (n + d) | 0 + F[p >> 2] = + F[(j + n) >> 2] + F[p >> 2] + i = (i + 1) | 0 + l = (l + 1) | 0 + if ((E | 0) != (l | 0)) { + continue + } + break + } + } + k = (k + 1) | 0 + if ((k | 0) != (g | 0)) { + continue + } + break + } + g = L(e, m) + if (!f) { + break o + } + if (!e) { + break l + } + i = 0 + d = 0 + if (G) { + break n + } + break m + } + g = L(e, m) + } + if (F[(a + 8) >> 2] <= 0) { + break k + } + k = ((L((m - 1) | 0, e) << 2) + c) | 0 + j = F[x >> 2] + i = 0 + while (1) { + d = i << 2 + f = F[(d + k) >> 2] + l = F[(a + 16) >> 2] + z: { + if ((f | 0) > (l | 0)) { + F[(d + j) >> 2] = l + break z + } + d = (d + j) | 0 + l = F[(a + 12) >> 2] + if ((l | 0) > (f | 0)) { + F[d >> 2] = l + break z + } + F[d >> 2] = f + } + i = (i + 1) | 0 + f = F[(a + 8) >> 2] + if ((i | 0) < (f | 0)) { + continue + } + break + } + d = 0 + if ((f | 0) <= 0) { + break k + } + f = g << 2 + i = (f + c) | 0 + k = (b + f) | 0 + while (1) { + g = d << 2 + f = (g + i) | 0 + g = (F[(g + k) >> 2] + F[(g + j) >> 2]) | 0 + F[f >> 2] = g + A: { + if ((g | 0) > F[(a + 16) >> 2]) { + g = (g - F[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= F[(a + 12) >> 2]) { + break A + } + g = (g + F[(a + 20) >> 2]) | 0 + } + F[f >> 2] = g + } + d = (d + 1) | 0 + if ((d | 0) < F[(a + 8) >> 2]) { + continue + } + break + } + break k + } + ta() + v() + } + while (1) { + j = i << 2 + k = (j + t) | 0 + F[k >> 2] = F[k >> 2] / (f | 0) + j = ((j | 4) + t) | 0 + F[j >> 2] = F[j >> 2] / (f | 0) + i = (i + 2) | 0 + d = (d + 2) | 0 + if ((C | 0) != (d | 0)) { + continue + } + break + } + } + if (!D) { + break l + } + d = ((i << 2) + t) | 0 + F[d >> 2] = F[d >> 2] / (f | 0) + } + if (F[(a + 8) >> 2] <= 0) { + break k + } + j = F[x >> 2] + i = 0 + while (1) { + d = i << 2 + f = F[(d + t) >> 2] + k = F[(a + 16) >> 2] + B: { + if ((f | 0) > (k | 0)) { + F[(d + j) >> 2] = k + break B + } + d = (d + j) | 0 + k = F[(a + 12) >> 2] + if ((k | 0) > (f | 0)) { + F[d >> 2] = k + break B + } + F[d >> 2] = f + } + i = (i + 1) | 0 + f = F[(a + 8) >> 2] + if ((i | 0) < (f | 0)) { + continue + } + break + } + d = 0 + if ((f | 0) <= 0) { + break k + } + f = g << 2 + i = (f + c) | 0 + k = (b + f) | 0 + while (1) { + g = d << 2 + f = (g + i) | 0 + g = (F[(g + k) >> 2] + F[(g + j) >> 2]) | 0 + F[f >> 2] = g + C: { + if ((g | 0) > F[(a + 16) >> 2]) { + g = (g - F[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= F[(a + 12) >> 2]) { + break C + } + g = (g + F[(a + 20) >> 2]) | 0 + } + F[f >> 2] = g + } + d = (d + 1) | 0 + if ((d | 0) < F[(a + 8) >> 2]) { + continue + } + break + } + } + m = (m + 1) | 0 + z = (w | 0) <= (m | 0) + if ((m | 0) != (I | 0)) { + continue + } + break + } + } + a = F[h >> 2] + if (a) { + ja(a) + } + ja(y) + a = F[(h + 52) >> 2] + if (a) { + F[(h + 56) >> 2] = a + ja(a) + } + a = F[(h + 40) >> 2] + if (a) { + F[(h + 44) >> 2] = a + ja(a) + } + a = F[(h + 28) >> 2] + if (a) { + F[(h + 32) >> 2] = a + ja(a) + } + a = F[(h + 16) >> 2] + if (a) { + F[(h + 20) >> 2] = a + ja(a) + } + Z = (h - -64) | 0 + return z | 0 + } + na() + v() + } + function Yh(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + E = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + $ = 0, + aa = 0 + a: { + b: { + if ((e | 0) != 2) { + break b + } + F[(a + 8) >> 2] = 2 + F[(a - -64) >> 2] = f + M = (a + 32) | 0 + e = F[M >> 2] + d = (F[(a + 36) >> 2] - e) | 0 + c: { + if (d >>> 0 <= 7) { + qa(M, (2 - ((d >>> 2) | 0)) | 0) + break c + } + if ((d | 0) == 8) { + break c + } + F[(a + 36) >> 2] = e + 8 + } + i = 1 + d = F[(a + 56) >> 2] + d = (F[(d + 4) >> 2] - F[d >> 2]) | 0 + if ((d | 0) <= 0) { + break b + } + o = (a + 60) | 0 + d = (d >>> 2) | 0 + X = d >>> 0 <= 1 ? 1 : d + Y = (a + 68) | 0 + d = 0 + while (1) { + f = F[(a + 56) >> 2] + e = F[f >> 2] + if (((F[(f + 4) >> 2] - e) >> 2) >>> 0 <= d >>> 0) { + break a + } + k = (Z - 80) | 0 + Z = k + f = -1 + d: { + e: { + e = F[(e + (d << 2)) >> 2] + if ((e | 0) == -1) { + break e + } + i = F[(o + 32) >> 2] + g = (e + 1) | 0 + g = (g >>> 0) % 3 | 0 ? g : (e - 2) | 0 + if ((g | 0) != -1) { + f = F[(F[i >> 2] + (g << 2)) >> 2] + } + p = -1 + e = (e + ((e >>> 0) % 3 | 0 ? -1 : 2)) | 0 + if ((e | 0) != -1) { + p = F[(F[i >> 2] + (e << 2)) >> 2] + } + i = F[(o + 36) >> 2] + e = F[i >> 2] + i = (F[(i + 4) >> 2] - e) >> 2 + if ((i >>> 0 <= f >>> 0) | (i >>> 0 <= p >>> 0)) { + break e + } + f: { + g: { + h: { + i: { + j: { + k: { + j = F[(e + (p << 2)) >> 2] + f = F[(e + (f << 2)) >> 2] + if ( + ((j | 0) >= (d | 0)) | + ((f | 0) >= (d | 0)) + ) { + break k + } + i = ((j << 3) + c) | 0 + w = F[(i + 4) >> 2] + g = ((f << 3) + c) | 0 + e = F[(g + 4) >> 2] + l = F[i >> 2] + i = F[g >> 2] + if ( + !( + ((l | 0) != (i | 0)) | + ((e | 0) != (w | 0)) + ) + ) { + F[(o + 8) >> 2] = i + F[(o + 12) >> 2] = e + break j + } + p = F[(F[(o + 4) >> 2] + (d << 2)) >> 2] + F[(k + 72) >> 2] = 0 + F[(k + 76) >> 2] = 0 + g = (k - -64) | 0 + F[g >> 2] = 0 + F[(g + 4) >> 2] = 0 + F[(k + 56) >> 2] = 0 + F[(k + 60) >> 2] = 0 + g = F[o >> 2] + if (!G[(g + 84) | 0]) { + p = + F[(F[(g + 68) >> 2] + (p << 2)) >> 2] + } + Ga(g, p, D[(g + 24) | 0], (k + 56) | 0) + p = F[(F[(o + 4) >> 2] + (f << 2)) >> 2] + F[(k + 48) >> 2] = 0 + F[(k + 52) >> 2] = 0 + F[(k + 40) >> 2] = 0 + F[(k + 44) >> 2] = 0 + F[(k + 32) >> 2] = 0 + F[(k + 36) >> 2] = 0 + g = F[o >> 2] + if (!G[(g + 84) | 0]) { + p = + F[(F[(g + 68) >> 2] + (p << 2)) >> 2] + } + Ga(g, p, D[(g + 24) | 0], (k + 32) | 0) + p = F[(F[(o + 4) >> 2] + (j << 2)) >> 2] + F[(k + 24) >> 2] = 0 + F[(k + 28) >> 2] = 0 + F[(k + 16) >> 2] = 0 + F[(k + 20) >> 2] = 0 + F[(k + 8) >> 2] = 0 + F[(k + 12) >> 2] = 0 + g = F[o >> 2] + if (!G[(g + 84) | 0]) { + p = + F[(F[(g + 68) >> 2] + (p << 2)) >> 2] + } + Ga(g, p, D[(g + 24) | 0], (k + 8) | 0) + g = F[(k + 16) >> 2] + n = F[(k + 40) >> 2] + x = (g - n) | 0 + N = F[(k + 44) >> 2] + g = + (F[(k + 20) >> 2] - + ((N + (g >>> 0 < n >>> 0)) | 0)) | + 0 + H = g + j = ki(x, g, x, g) + q = _ + g = F[(k + 8) >> 2] + z = F[(k + 32) >> 2] + A = (g - z) | 0 + O = F[(k + 36) >> 2] + g = + (F[(k + 12) >> 2] - + ((O + (g >>> 0 < z >>> 0)) | 0)) | + 0 + I = g + h = j + j = ki(A, g, A, g) + g = (h + j) | 0 + h = (_ + q) | 0 + h = g >>> 0 < j >>> 0 ? (h + 1) | 0 : h + j = F[(k + 24) >> 2] + B = F[(k + 48) >> 2] + C = (j - B) | 0 + P = F[(k + 52) >> 2] + j = + (F[(k + 28) >> 2] - + ((P + (j >>> 0 < B >>> 0)) | 0)) | + 0 + J = j + m = g + g = ki(C, j, C, j) + r = (m + g) | 0 + h = (_ + h) | 0 + s = g >>> 0 > r >>> 0 ? (h + 1) | 0 : h + if (!(s | r)) { + break k + } + p = 0 + E = mi(-1, 2147483647, r, s) + f = i >> 31 + R = f + h = f >> 31 + Q = i + g = h + q = i ^ g + i = (q - g) | 0 + f = + ((f ^ g) - + (((g >>> 0 > q >>> 0) + g) | 0)) | + 0 + g = f + f = e >> 31 + S = f + K = e + e = f >> 31 + q = K ^ e + m = (q - e) | 0 + h = f >> 31 + e = + ((h ^ f) - + (((e >>> 0 > q >>> 0) + h) | 0)) | + 0 + f = + (((g | 0) == (e | 0)) & + (i >>> 0 > m >>> 0)) | + (e >>> 0 < g >>> 0) + i = f ? i : m + j = _ + e = f ? g : e + if ( + (((j | 0) == (e | 0)) & + (i >>> 0 > E >>> 0)) | + (e >>> 0 > j >>> 0) + ) { + break f + } + i = F[(k + 64) >> 2] + T = F[(k + 68) >> 2] + e = ki( + (i - n) | 0, + (T - (((i >>> 0 < n >>> 0) + N) | 0)) | + 0, + x, + H, + ) + f = _ + g = F[(k + 56) >> 2] + U = F[(k + 60) >> 2] + j = ki( + (g - z) | 0, + (U - (((g >>> 0 < z >>> 0) + O) | 0)) | + 0, + A, + I, + ) + e = (j + e) | 0 + h = (_ + f) | 0 + h = e >>> 0 < j >>> 0 ? (h + 1) | 0 : h + f = e + m = F[(k + 72) >> 2] + V = F[(k + 76) >> 2] + e = ki( + (m - B) | 0, + (V - (((m >>> 0 < B >>> 0) + P) | 0)) | + 0, + C, + J, + ) + j = (f + e) | 0 + f = (_ + h) | 0 + q = e >>> 0 > j >>> 0 ? (f + 1) | 0 : f + e = l + E = (e - Q) | 0 + e = + ((e >> 31) - + (((e >>> 0 < Q >>> 0) + R) | 0)) | + 0 + W = e + l = e >> 31 + y = l ^ E + f = (y - l) | 0 + h = e >> 31 + e = + ((h ^ e) - + (((l >>> 0 > y >>> 0) + h) | 0)) | + 0 + h = e + y = (w - K) | 0 + e = + ((w >> 31) - + (((w >>> 0 < K >>> 0) + S) | 0)) | + 0 + w = e + l = f + t = e >> 31 + u = t ^ y + L = (u - t) | 0 + f = e >> 31 + e = + ((f ^ e) - + (((t >>> 0 > u >>> 0) + f) | 0)) | + 0 + f = + (((h | 0) == (e | 0)) & + (l >>> 0 > L >>> 0)) | + (e >>> 0 < h >>> 0) + f = + mi( + -1, + 2147483647, + f ? l : L, + f ? h : e, + ) >>> + 0 < + j >>> 0 + e = _ + if ( + (f & ((e | 0) <= (q | 0))) | + ((e | 0) < (q | 0)) + ) { + break f + } + e = I >> 31 + f = e + l = e ^ A + e = (l - e) | 0 + f = + ((f ^ I) - + (((f >>> 0 > l >>> 0) + f) | 0)) | + 0 + h = H >> 31 + t = h ^ x + u = (t - h) | 0 + l = + ((h ^ H) - + (((h >>> 0 > t >>> 0) + h) | 0)) | + 0 + h = + (((f | 0) == (l | 0)) & + (e >>> 0 > u >>> 0)) | + (f >>> 0 > l >>> 0) + e = h ? e : u + f = h ? f : l + h = J >> 31 + L = e + t = h ^ C + u = (t - h) | 0 + l = + ((h ^ J) - + (((h >>> 0 > t >>> 0) + h) | 0)) | + 0 + e = + (((f | 0) == (l | 0)) & + (e >>> 0 > u >>> 0)) | + (f >>> 0 > l >>> 0) + f = + mi( + -1, + 2147483647, + e ? L : u, + e ? f : l, + ) >>> + 0 < + j >>> 0 + e = _ + if ( + (f & ((e | 0) <= (q | 0))) | + ((e | 0) < (q | 0)) + ) { + break f + } + l = 1 + e = 0 + f = n + n = li(ki(j, q, x, H), _, r, s) + f = (f + n) | 0 + h = (_ + N) | 0 + h = f >>> 0 < n >>> 0 ? (h + 1) | 0 : h + n = (i - f) | 0 + f = + (T - (((f >>> 0 > i >>> 0) + h) | 0)) | + 0 + n = ki(n, f, n, f) + x = _ + f = g + h = li(ki(j, q, A, I), _, r, s) + i = (h + z) | 0 + g = (_ + O) | 0 + g = h >>> 0 > i >>> 0 ? (g + 1) | 0 : g + h = (f - i) | 0 + f = + (U - (((f >>> 0 < i >>> 0) + g) | 0)) | + 0 + g = ki(h, f, h, f) + i = (g + n) | 0 + f = (_ + x) | 0 + f = g >>> 0 > i >>> 0 ? (f + 1) | 0 : f + n = i + g = li(ki(j, q, C, J), _, r, s) + i = (g + B) | 0 + h = (_ + P) | 0 + h = g >>> 0 > i >>> 0 ? (h + 1) | 0 : h + g = (m - i) | 0 + i = + (V - (((i >>> 0 > m >>> 0) + h) | 0)) | + 0 + m = ki(g, i, g, i) + i = (m + n) | 0 + g = (_ + f) | 0 + f = ki( + i, + i >>> 0 < m >>> 0 ? (g + 1) | 0 : g, + r, + s, + ) + i = _ + m = i + if (!i & (f >>> 0 <= 1)) { + break i + } + h = f + while (1) { + g = (e << 1) | (l >>> 31) + l = l << 1 + e = g + n = + (!i & (h >>> 0 > 7)) | ((i | 0) != 0) + h = ((i & 3) << 30) | (h >>> 2) + i = (i >>> 2) | 0 + if (n) { + continue + } + break + } + break h + } + if ((d | 0) > (f | 0)) { + e = f << 1 + } else { + if ((d | 0) <= 0) { + F[(o + 8) >> 2] = 0 + F[(o + 12) >> 2] = 0 + break j + } + e = ((d << 1) - 2) | 0 + } + e = ((e << 2) + c) | 0 + F[(o + 8) >> 2] = F[e >> 2] + F[(o + 12) >> 2] = F[(e + 4) >> 2] + } + p = 1 + break f + } + e = m + l = f + if ((f - 1) | 0) { + break g + } + } + while (1) { + i = mi(f, m, l, e) + h = (e + _) | 0 + e = (i + l) | 0 + h = e >>> 0 < l >>> 0 ? (h + 1) | 0 : h + l = ((h & 1) << 31) | (e >>> 1) + e = (h >>> 1) | 0 + i = ki(l, e, l, e) + g = _ + if ( + (((m | 0) == (g | 0)) & (f >>> 0 < i >>> 0)) | + (g >>> 0 > m >>> 0) + ) { + continue + } + break + } + } + f = F[(o + 20) >> 2] + if (!f) { + break f + } + g = (f - 1) | 0 + h = + F[ + (F[(o + 16) >> 2] + ((g >>> 3) & 536870908)) >> + 2 + ] + F[(o + 20) >> 2] = g + p = 1 + f = ki(j, q, y, w) + i = _ + n = ki(r, s, K, S) + m = (n + f) | 0 + f = (_ + i) | 0 + f = m >>> 0 < n >>> 0 ? (f + 1) | 0 : f + i = ki(l, e, E, W) + g = (h >>> g) & 1 + h = g ? (0 - i) | 0 : i + m = (h + m) | 0 + n = f + f = _ + i = + (n + + (g + ? (0 - ((f + ((i | 0) != 0)) | 0)) | 0 + : f)) | + 0 + ;($ = o), + (aa = li( + m, + h >>> 0 > m >>> 0 ? (i + 1) | 0 : i, + r, + s, + )), + (F[($ + 12) >> 2] = aa) + f = ki(j, q, E, W) + i = _ + j = ki(r, s, Q, R) + f = (j + f) | 0 + h = (_ + i) | 0 + e = ki(l, e, y, w) + i = (0 - e) | 0 + l = _ + h = + ((f >>> 0 < j >>> 0 ? (h + 1) | 0 : h) + + (g + ? l + : (0 - ((((e | 0) != 0) + l) | 0)) | 0)) | + 0 + i = g ? e : i + f = (i + f) | 0 + ;($ = o), + (aa = li( + f, + f >>> 0 < i >>> 0 ? (h + 1) | 0 : h, + r, + s, + )), + (F[($ + 8) >> 2] = aa) + } + Z = (k + 80) | 0 + e = p + break d + } + ta() + v() + } + i = e + if (!e) { + return 0 + } + l: { + if (F[(a + 8) >> 2] <= 0) { + break l + } + l = F[M >> 2] + e = 0 + while (1) { + f = e << 2 + g = F[(f + Y) >> 2] + j = F[(a + 16) >> 2] + m: { + if ((g | 0) > (j | 0)) { + F[(f + l) >> 2] = j + break m + } + f = (f + l) | 0 + j = F[(a + 12) >> 2] + if ((j | 0) > (g | 0)) { + F[f >> 2] = j + break m + } + F[f >> 2] = g + } + e = (e + 1) | 0 + g = F[(a + 8) >> 2] + if ((e | 0) < (g | 0)) { + continue + } + break + } + f = 0 + if ((g | 0) <= 0) { + break l + } + e = d << 3 + j = (e + c) | 0 + q = (b + e) | 0 + while (1) { + g = f << 2 + e = (g + j) | 0 + g = (F[(g + q) >> 2] + F[(g + l) >> 2]) | 0 + F[e >> 2] = g + n: { + if ((g | 0) > F[(a + 16) >> 2]) { + g = (g - F[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= F[(a + 12) >> 2]) { + break n + } + g = (g + F[(a + 20) >> 2]) | 0 + } + F[e >> 2] = g + } + f = (f + 1) | 0 + if ((f | 0) < F[(a + 8) >> 2]) { + continue + } + break + } + } + d = (d + 1) | 0 + if ((X | 0) != (d | 0)) { + continue + } + break + } + } + return i | 0 + } + ta() + v() + } + function hi(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + E = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + $ = 0, + aa = 0 + a: { + b: { + if ((e | 0) != 2) { + break b + } + F[(a + 8) >> 2] = 2 + F[(a - -64) >> 2] = f + M = (a + 32) | 0 + e = F[M >> 2] + d = (F[(a + 36) >> 2] - e) | 0 + c: { + if (d >>> 0 <= 7) { + qa(M, (2 - ((d >>> 2) | 0)) | 0) + break c + } + if ((d | 0) == 8) { + break c + } + F[(a + 36) >> 2] = e + 8 + } + p = 1 + d = F[(a + 56) >> 2] + d = (F[(d + 4) >> 2] - F[d >> 2]) | 0 + if ((d | 0) <= 0) { + break b + } + o = (a + 60) | 0 + d = (d >>> 2) | 0 + X = d >>> 0 <= 1 ? 1 : d + Y = (a + 68) | 0 + d = 0 + while (1) { + e = F[(a + 56) >> 2] + h = F[e >> 2] + if (((F[(e + 4) >> 2] - h) >> 2) >>> 0 <= d >>> 0) { + break a + } + k = (Z - 80) | 0 + Z = k + f = -1 + h = F[(h + (d << 2)) >> 2] + e = -1 + d: { + if ((h | 0) == -1) { + break d + } + e = (h + 1) | 0 + f = (e >>> 0) % 3 | 0 ? e : (h - 2) | 0 + e = (h - 1) | 0 + if ((h >>> 0) % 3 | 0) { + break d + } + e = (h + 2) | 0 + } + g = F[(o + 36) >> 2] + h = F[g >> 2] + e: { + f: { + g: { + h: { + i: { + g = (F[(g + 4) >> 2] - h) >> 2 + i = f << 2 + f = F[(F[(o + 32) >> 2] + 28) >> 2] + j = F[(i + f) >> 2] + if (g >>> 0 <= j >>> 0) { + break i + } + e = F[(f + (e << 2)) >> 2] + if (e >>> 0 >= g >>> 0) { + break i + } + j: { + k: { + l = F[(h + (e << 2)) >> 2] + f = F[(h + (j << 2)) >> 2] + if ( + ((l | 0) >= (d | 0)) | + ((f | 0) >= (d | 0)) + ) { + break k + } + h = ((l << 3) + c) | 0 + w = F[(h + 4) >> 2] + g = ((f << 3) + c) | 0 + e = F[(g + 4) >> 2] + j = F[h >> 2] + h = F[g >> 2] + if ( + !( + ((j | 0) != (h | 0)) | + ((e | 0) != (w | 0)) + ) + ) { + F[(o + 8) >> 2] = h + F[(o + 12) >> 2] = e + break j + } + p = F[(F[(o + 4) >> 2] + (d << 2)) >> 2] + F[(k + 72) >> 2] = 0 + F[(k + 76) >> 2] = 0 + g = (k - -64) | 0 + F[g >> 2] = 0 + F[(g + 4) >> 2] = 0 + F[(k + 56) >> 2] = 0 + F[(k + 60) >> 2] = 0 + g = F[o >> 2] + if (!G[(g + 84) | 0]) { + p = F[(F[(g + 68) >> 2] + (p << 2)) >> 2] + } + Ga(g, p, D[(g + 24) | 0], (k + 56) | 0) + p = F[(F[(o + 4) >> 2] + (f << 2)) >> 2] + F[(k + 48) >> 2] = 0 + F[(k + 52) >> 2] = 0 + F[(k + 40) >> 2] = 0 + F[(k + 44) >> 2] = 0 + F[(k + 32) >> 2] = 0 + F[(k + 36) >> 2] = 0 + g = F[o >> 2] + if (!G[(g + 84) | 0]) { + p = F[(F[(g + 68) >> 2] + (p << 2)) >> 2] + } + Ga(g, p, D[(g + 24) | 0], (k + 32) | 0) + p = F[(F[(o + 4) >> 2] + (l << 2)) >> 2] + F[(k + 24) >> 2] = 0 + F[(k + 28) >> 2] = 0 + F[(k + 16) >> 2] = 0 + F[(k + 20) >> 2] = 0 + F[(k + 8) >> 2] = 0 + F[(k + 12) >> 2] = 0 + g = F[o >> 2] + if (!G[(g + 84) | 0]) { + p = F[(F[(g + 68) >> 2] + (p << 2)) >> 2] + } + Ga(g, p, D[(g + 24) | 0], (k + 8) | 0) + g = F[(k + 16) >> 2] + n = F[(k + 40) >> 2] + x = (g - n) | 0 + N = F[(k + 44) >> 2] + g = + (F[(k + 20) >> 2] - + ((N + (g >>> 0 < n >>> 0)) | 0)) | + 0 + H = g + l = ki(x, g, x, g) + q = _ + g = F[(k + 8) >> 2] + z = F[(k + 32) >> 2] + A = (g - z) | 0 + O = F[(k + 36) >> 2] + g = + (F[(k + 12) >> 2] - + ((O + (g >>> 0 < z >>> 0)) | 0)) | + 0 + I = g + i = l + l = ki(A, g, A, g) + g = (i + l) | 0 + i = (_ + q) | 0 + i = g >>> 0 < l >>> 0 ? (i + 1) | 0 : i + l = F[(k + 24) >> 2] + B = F[(k + 48) >> 2] + C = (l - B) | 0 + P = F[(k + 52) >> 2] + l = + (F[(k + 28) >> 2] - + ((P + (l >>> 0 < B >>> 0)) | 0)) | + 0 + J = l + m = g + g = ki(C, l, C, l) + r = (m + g) | 0 + i = (_ + i) | 0 + s = g >>> 0 > r >>> 0 ? (i + 1) | 0 : i + if (!(s | r)) { + break k + } + p = 0 + E = mi(-1, 2147483647, r, s) + f = h >> 31 + R = f + i = f >> 31 + Q = h + g = i + q = h ^ g + h = (q - g) | 0 + f = + ((f ^ g) - + (((g >>> 0 > q >>> 0) + g) | 0)) | + 0 + g = f + f = e >> 31 + S = f + K = e + e = f >> 31 + q = K ^ e + m = (q - e) | 0 + i = f >> 31 + e = + ((i ^ f) - + (((e >>> 0 > q >>> 0) + i) | 0)) | + 0 + f = + (((g | 0) == (e | 0)) & + (h >>> 0 > m >>> 0)) | + (e >>> 0 < g >>> 0) + h = f ? h : m + l = _ + e = f ? g : e + if ( + (((l | 0) == (e | 0)) & + (h >>> 0 > E >>> 0)) | + (e >>> 0 > l >>> 0) + ) { + break e + } + h = F[(k + 64) >> 2] + T = F[(k + 68) >> 2] + e = ki( + (h - n) | 0, + (T - (((h >>> 0 < n >>> 0) + N) | 0)) | 0, + x, + H, + ) + f = _ + g = F[(k + 56) >> 2] + U = F[(k + 60) >> 2] + l = ki( + (g - z) | 0, + (U - (((g >>> 0 < z >>> 0) + O) | 0)) | 0, + A, + I, + ) + e = (l + e) | 0 + i = (_ + f) | 0 + i = e >>> 0 < l >>> 0 ? (i + 1) | 0 : i + f = e + m = F[(k + 72) >> 2] + V = F[(k + 76) >> 2] + e = ki( + (m - B) | 0, + (V - (((m >>> 0 < B >>> 0) + P) | 0)) | 0, + C, + J, + ) + l = (f + e) | 0 + f = (_ + i) | 0 + q = e >>> 0 > l >>> 0 ? (f + 1) | 0 : f + e = j + E = (e - Q) | 0 + e = + ((e >> 31) - + (((e >>> 0 < Q >>> 0) + R) | 0)) | + 0 + W = e + j = e >> 31 + y = j ^ E + f = (y - j) | 0 + i = e >> 31 + e = + ((i ^ e) - + (((j >>> 0 > y >>> 0) + i) | 0)) | + 0 + i = e + y = (w - K) | 0 + e = + ((w >> 31) - + (((w >>> 0 < K >>> 0) + S) | 0)) | + 0 + w = e + j = f + t = e >> 31 + u = t ^ y + L = (u - t) | 0 + f = e >> 31 + e = + ((f ^ e) - + (((t >>> 0 > u >>> 0) + f) | 0)) | + 0 + f = + (((i | 0) == (e | 0)) & + (j >>> 0 > L >>> 0)) | + (e >>> 0 < i >>> 0) + f = + mi( + -1, + 2147483647, + f ? j : L, + f ? i : e, + ) >>> + 0 < + l >>> 0 + e = _ + if ( + (f & ((e | 0) <= (q | 0))) | + ((e | 0) < (q | 0)) + ) { + break e + } + e = I >> 31 + f = e + j = e ^ A + e = (j - e) | 0 + f = + ((f ^ I) - + (((f >>> 0 > j >>> 0) + f) | 0)) | + 0 + i = H >> 31 + t = i ^ x + u = (t - i) | 0 + j = + ((i ^ H) - + (((i >>> 0 > t >>> 0) + i) | 0)) | + 0 + i = + (((f | 0) == (j | 0)) & + (e >>> 0 > u >>> 0)) | + (f >>> 0 > j >>> 0) + e = i ? e : u + f = i ? f : j + i = J >> 31 + L = e + t = i ^ C + u = (t - i) | 0 + j = + ((i ^ J) - + (((i >>> 0 > t >>> 0) + i) | 0)) | + 0 + e = + (((f | 0) == (j | 0)) & + (e >>> 0 > u >>> 0)) | + (f >>> 0 > j >>> 0) + f = + mi( + -1, + 2147483647, + e ? L : u, + e ? f : j, + ) >>> + 0 < + l >>> 0 + e = _ + if ( + (f & ((e | 0) <= (q | 0))) | + ((e | 0) < (q | 0)) + ) { + break e + } + j = 1 + e = 0 + f = n + n = li(ki(l, q, x, H), _, r, s) + f = (f + n) | 0 + i = (_ + N) | 0 + i = f >>> 0 < n >>> 0 ? (i + 1) | 0 : i + n = (h - f) | 0 + f = + (T - (((f >>> 0 > h >>> 0) + i) | 0)) | 0 + n = ki(n, f, n, f) + x = _ + f = g + i = li(ki(l, q, A, I), _, r, s) + h = (i + z) | 0 + g = (_ + O) | 0 + g = h >>> 0 < i >>> 0 ? (g + 1) | 0 : g + i = (f - h) | 0 + f = + (U - (((f >>> 0 < h >>> 0) + g) | 0)) | 0 + g = ki(i, f, i, f) + h = (g + n) | 0 + f = (_ + x) | 0 + f = h >>> 0 < g >>> 0 ? (f + 1) | 0 : f + n = h + g = li(ki(l, q, C, J), _, r, s) + h = (g + B) | 0 + i = (_ + P) | 0 + i = h >>> 0 < g >>> 0 ? (i + 1) | 0 : i + g = (m - h) | 0 + h = + (V - (((h >>> 0 > m >>> 0) + i) | 0)) | 0 + m = ki(g, h, g, h) + h = (m + n) | 0 + g = (_ + f) | 0 + f = ki( + h, + h >>> 0 < m >>> 0 ? (g + 1) | 0 : g, + r, + s, + ) + h = _ + m = h + if (!h & (f >>> 0 <= 1)) { + break h + } + i = f + while (1) { + g = (e << 1) | (j >>> 31) + j = j << 1 + e = g + n = (!h & (i >>> 0 > 7)) | ((h | 0) != 0) + i = ((h & 3) << 30) | (i >>> 2) + h = (h >>> 2) | 0 + if (n) { + continue + } + break + } + break g + } + if ((d | 0) > (f | 0)) { + e = f << 1 + } else { + if ((d | 0) <= 0) { + F[(o + 8) >> 2] = 0 + F[(o + 12) >> 2] = 0 + break j + } + e = ((d << 1) - 2) | 0 + } + e = ((e << 2) + c) | 0 + F[(o + 8) >> 2] = F[e >> 2] + F[(o + 12) >> 2] = F[(e + 4) >> 2] + } + p = 1 + break e + } + ta() + v() + } + e = m + j = f + if ((f - 1) | 0) { + break f + } + } + while (1) { + h = mi(f, m, j, e) + i = (e + _) | 0 + e = (h + j) | 0 + i = e >>> 0 < j >>> 0 ? (i + 1) | 0 : i + j = ((i & 1) << 31) | (e >>> 1) + e = (i >>> 1) | 0 + h = ki(j, e, j, e) + g = _ + if ( + (((m | 0) == (g | 0)) & (f >>> 0 < h >>> 0)) | + (g >>> 0 > m >>> 0) + ) { + continue + } + break + } + } + f = F[(o + 20) >> 2] + if (!f) { + break e + } + g = (f - 1) | 0 + i = F[(F[(o + 16) >> 2] + ((g >>> 3) & 536870908)) >> 2] + F[(o + 20) >> 2] = g + p = 1 + f = ki(l, q, y, w) + h = _ + n = ki(r, s, K, S) + m = (n + f) | 0 + f = (_ + h) | 0 + f = m >>> 0 < n >>> 0 ? (f + 1) | 0 : f + h = ki(j, e, E, W) + g = (i >>> g) & 1 + i = g ? (0 - h) | 0 : h + m = (i + m) | 0 + n = f + f = _ + h = + (n + (g ? (0 - ((f + ((h | 0) != 0)) | 0)) | 0 : f)) | + 0 + ;($ = o), + (aa = li( + m, + i >>> 0 > m >>> 0 ? (h + 1) | 0 : h, + r, + s, + )), + (F[($ + 12) >> 2] = aa) + f = ki(l, q, E, W) + h = _ + l = ki(r, s, Q, R) + f = (l + f) | 0 + i = (_ + h) | 0 + e = ki(j, e, y, w) + h = (0 - e) | 0 + j = _ + i = + ((f >>> 0 < l >>> 0 ? (i + 1) | 0 : i) + + (g ? j : (0 - ((((e | 0) != 0) + j) | 0)) | 0)) | + 0 + h = g ? e : h + f = (h + f) | 0 + ;($ = o), + (aa = li( + f, + f >>> 0 < h >>> 0 ? (i + 1) | 0 : i, + r, + s, + )), + (F[($ + 8) >> 2] = aa) + } + Z = (k + 80) | 0 + if (!p) { + return 0 + } + l: { + if (F[(a + 8) >> 2] <= 0) { + break l + } + g = F[M >> 2] + e = 0 + while (1) { + f = e << 2 + h = F[(f + Y) >> 2] + j = F[(a + 16) >> 2] + m: { + if ((h | 0) > (j | 0)) { + F[(f + g) >> 2] = j + break m + } + f = (f + g) | 0 + j = F[(a + 12) >> 2] + if ((j | 0) > (h | 0)) { + F[f >> 2] = j + break m + } + F[f >> 2] = h + } + e = (e + 1) | 0 + h = F[(a + 8) >> 2] + if ((e | 0) < (h | 0)) { + continue + } + break + } + f = 0 + if ((h | 0) <= 0) { + break l + } + e = d << 3 + j = (e + c) | 0 + l = (b + e) | 0 + while (1) { + h = f << 2 + e = (h + j) | 0 + h = (F[(h + l) >> 2] + F[(h + g) >> 2]) | 0 + F[e >> 2] = h + n: { + if ((h | 0) > F[(a + 16) >> 2]) { + i = (h - F[(a + 20) >> 2]) | 0 + } else { + if ((h | 0) >= F[(a + 12) >> 2]) { + break n + } + i = (h + F[(a + 20) >> 2]) | 0 + } + F[e >> 2] = i + } + f = (f + 1) | 0 + if ((f | 0) < F[(a + 8) >> 2]) { + continue + } + break + } + } + d = (d + 1) | 0 + if ((X | 0) != (d | 0)) { + continue + } + break + } + } + return p | 0 + } + ta() + v() + } + function Gd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + n = (Z - 96) | 0 + Z = n + m = F[(a + 4) >> 2] + d = F[(m + 32) >> 2] + j = F[(d + 8) >> 2] + i = F[(d + 12) >> 2] + e = i + c = F[(d + 20) >> 2] + f = F[(d + 16) >> 2] + a: { + if ( + (((e | 0) <= (c | 0)) & (f >>> 0 >= j >>> 0)) | + ((c | 0) > (e | 0)) + ) { + break a + } + o = F[d >> 2] + h = G[(o + f) | 0] + g = (f + 1) | 0 + e = g ? c : (c + 1) | 0 + F[(d + 16) >> 2] = g + F[(d + 20) >> 2] = e + if ( + (((e | 0) >= (i | 0)) & (g >>> 0 >= j >>> 0)) | + ((e | 0) > (i | 0)) + ) { + break a + } + p = G[(g + o) | 0] + g = (f + 2) | 0 + e = g >>> 0 < 2 ? (c + 1) | 0 : c + F[(d + 16) >> 2] = g + F[(d + 20) >> 2] = e + l = (h << 24) >> 24 + b: { + if ((l | 0) >= 0) { + k = F[(a + 216) >> 2] + if ( + h >>> 0 >= + (((F[(a + 220) >> 2] - k) | 0) / 144) >>> 0 + ) { + break a + } + k = (k + L(h, 144)) | 0 + if (F[k >> 2] < 0) { + break b + } + break a + } + if (F[(a + 212) >> 2] >= 0) { + break a + } + k = (a + 212) | 0 + } + F[k >> 2] = b + c: { + d: { + e: { + f: { + g: { + h: { + k = H[(m + 36) >> 1] + i: { + if ( + (((k << 8) | (k >>> 8)) & 65535) >>> 0 >= + 258 + ) { + if ( + (((e | 0) >= (i | 0)) & + (g >>> 0 >= j >>> 0)) | + ((e | 0) > (i | 0)) + ) { + break a + } + e = G[(g + o) | 0] + f = (f + 3) | 0 + c = f >>> 0 < 3 ? (c + 1) | 0 : c + F[(d + 16) >> 2] = f + F[(d + 20) >> 2] = c + if (e >>> 0 > 1) { + break a + } + d = e >>> 0 < 2 ? e : 0 + if (!p) { + break i + } + if (!d) { + break h + } + break a + } + if (p) { + break g + } + d = 0 + } + if ((l | 0) < 0) { + e = (a + 184) | 0 + } else { + c = (F[(a + 216) >> 2] + L(h, 144)) | 0 + D[(c + 100) | 0] = 0 + e = (c + 104) | 0 + } + if ((d | 0) != 1) { + break e + } + c = (Z - 112) | 0 + Z = c + g = F[(F[(a + 4) >> 2] + 44) >> 2] + d = ka(120) + F[d >> 2] = 8924 + F[(d + 4) >> 2] = 0 + F[(d + 116) >> 2] = 0 + F[(d + 112) >> 2] = e + F[(d + 108) >> 2] = g + F[(d + 12) >> 2] = 0 + F[(d + 16) >> 2] = 0 + F[(d + 20) >> 2] = 0 + F[(d + 24) >> 2] = 0 + F[(d + 28) >> 2] = 0 + F[(d + 32) >> 2] = 0 + F[(d + 36) >> 2] = 0 + F[(d + 40) >> 2] = 0 + F[(d + 44) >> 2] = 0 + F[(d + 48) >> 2] = 0 + F[(d + 52) >> 2] = 0 + F[(d + 56) >> 2] = 0 + F[(d + 60) >> 2] = 0 + F[(d + 8) >> 2] = 9136 + f = (d - -64) | 0 + F[f >> 2] = 0 + F[(f + 4) >> 2] = 0 + F[(d + 72) >> 2] = 0 + F[(d + 76) >> 2] = 0 + F[(d + 80) >> 2] = 0 + F[(d + 84) >> 2] = 0 + F[(d + 88) >> 2] = 0 + F[(d + 104) >> 2] = 0 + F[(d + 96) >> 2] = 0 + F[(d + 100) >> 2] = 0 + f = F[(a + 8) >> 2] + F[(c + 48) >> 2] = 0 + F[(c + 52) >> 2] = 0 + F[(c + 40) >> 2] = 0 + F[(c + 44) >> 2] = 0 + j = (c + 32) | 0 + F[j >> 2] = 0 + F[(j + 4) >> 2] = 0 + F[(c + 24) >> 2] = 0 + F[(c + 28) >> 2] = 0 + h = (c - -64) | 0 + F[h >> 2] = 0 + F[(h + 4) >> 2] = 0 + F[(c + 72) >> 2] = 0 + F[(c + 76) >> 2] = 0 + F[(c + 80) >> 2] = 0 + F[(c + 84) >> 2] = 0 + F[(c + 88) >> 2] = 0 + F[(c + 104) >> 2] = 0 + F[(c + 16) >> 2] = 0 + F[(c + 20) >> 2] = 0 + F[(c + 56) >> 2] = 0 + F[(c + 60) >> 2] = 0 + F[(c + 8) >> 2] = 9136 + F[(c + 96) >> 2] = 0 + F[(c + 100) >> 2] = 0 + F[(c + 12) >> 2] = f + h = F[f >> 2] + i = F[(f + 4) >> 2] + D[(c + 111) | 0] = 0 + k = j + j = (c + 111) | 0 + Ea(k, ((((i - h) >> 2) >>> 0) / 3) | 0, j) + h = F[(c + 12) >> 2] + i = F[(h + 28) >> 2] + h = F[(h + 24) >> 2] + D[(c + 111) | 0] = 0 + Ea((c + 44) | 0, (i - h) >> 2, j) + F[(c + 28) >> 2] = d + F[(c + 24) >> 2] = g + F[(c + 20) >> 2] = e + F[(c + 16) >> 2] = f + f = (d + 8) | 0 + e = (c + 8) | 0 + lc(f, e) + j: { + if ((e | 0) == (f | 0)) { + F[(d + 92) >> 2] = F[(e + 84) >> 2] + break j + } + gb( + (d + 56) | 0, + F[(e + 48) >> 2], + F[(e + 52) >> 2], + ) + gb( + (d + 68) | 0, + F[(e + 60) >> 2], + F[(e - -64) >> 2], + ) + gb( + (d + 80) | 0, + F[(e + 72) >> 2], + F[(e + 76) >> 2], + ) + F[(d + 92) >> 2] = F[(e + 84) >> 2] + k: { + h = F[(e + 92) >> 2] + j = F[(e + 88) >> 2] + i = (h - j) | 0 + e = i >> 2 + f = F[(d + 104) >> 2] + g = F[(d + 96) >> 2] + if (e >>> 0 <= ((f - g) >> 2) >>> 0) { + i = (F[(d + 100) >> 2] - g) | 0 + f = (i + j) | 0 + m = i >> 2 + i = e >>> 0 > m >>> 0 ? f : h + l = (i - j) | 0 + if ((i | 0) != (j | 0)) { + pa(g, j, l) + } + if (e >>> 0 > m >>> 0) { + e = F[(d + 100) >> 2] + if ((h | 0) != (i | 0)) { + while (1) { + F[e >> 2] = F[f >> 2] + e = (e + 4) | 0 + f = (f + 4) | 0 + if ((h | 0) != (f | 0)) { + continue + } + break + } + } + F[(d + 100) >> 2] = e + break k + } + F[(d + 100) >> 2] = g + l + break k + } + if (g) { + F[(d + 100) >> 2] = g + ja(g) + F[(d + 104) >> 2] = 0 + F[(d + 96) >> 2] = 0 + F[(d + 100) >> 2] = 0 + f = 0 + } + l: { + if ((i | 0) < 0) { + break l + } + g = (f >>> 1) | 0 + e = + f >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 < g >>> 0 + ? g + : e + if (e >>> 0 >= 1073741824) { + break l + } + f = e << 2 + e = ka(f) + F[(d + 96) >> 2] = e + F[(d + 104) >> 2] = e + f + if ((h | 0) != (j | 0)) { + f = e + e = (((i - 4) & -4) + 4) | 0 + e = (la(f, j, e) + e) | 0 + } + F[(d + 100) >> 2] = e + break k + } + na() + v() + } + } + F[(c + 8) >> 2] = 9136 + e = F[(c + 96) >> 2] + if (e) { + F[(c + 100) >> 2] = e + ja(e) + } + e = F[(c + 80) >> 2] + if (e) { + F[(c + 84) >> 2] = e + ja(e) + } + e = F[(c + 68) >> 2] + if (e) { + F[(c + 72) >> 2] = e + ja(e) + } + e = F[(c + 56) >> 2] + if (e) { + F[(c + 60) >> 2] = e + ja(e) + } + F[(c + 8) >> 2] = 9372 + e = F[(c + 44) >> 2] + if (e) { + ja(e) + } + e = F[(c + 32) >> 2] + if (e) { + ja(e) + } + Z = (c + 112) | 0 + break d + } + if ((l | 0) >= 0) { + break f + } + break a + } + if ((l | 0) < 0) { + break a + } + } + e = F[(a + 216) >> 2] + c = F[(m + 44) >> 2] + d = ka(80) + F[d >> 2] = 9684 + F[(d + 4) >> 2] = 0 + F[(d + 76) >> 2] = 0 + F[(d + 68) >> 2] = c + F[(d + 8) >> 2] = 8624 + F[(d + 12) >> 2] = 0 + F[(d + 16) >> 2] = 0 + F[(d + 20) >> 2] = 0 + F[(d + 24) >> 2] = 0 + F[(d + 28) >> 2] = 0 + F[(d + 32) >> 2] = 0 + F[(d + 36) >> 2] = 0 + F[(d + 40) >> 2] = 0 + F[(d + 44) >> 2] = 0 + F[(d + 48) >> 2] = 0 + F[(d + 52) >> 2] = 0 + e = (e + L(h, 144)) | 0 + f = (e + 104) | 0 + F[(d + 72) >> 2] = f + F[(d - -64) >> 2] = 0 + F[(d + 56) >> 2] = 0 + F[(d + 60) >> 2] = 0 + F[(n + 24) >> 2] = c + c = n + F[(c + 68) >> 2] = 0 + F[(c + 72) >> 2] = 0 + F[(c + 60) >> 2] = 0 + F[(c + 64) >> 2] = 0 + F[(c + 52) >> 2] = 0 + F[(c + 56) >> 2] = 0 + F[(c + 44) >> 2] = 0 + F[(c + 48) >> 2] = 0 + F[(c + 84) >> 2] = 0 + F[(c + 88) >> 2] = 0 + F[(c + 76) >> 2] = 0 + F[(c + 80) >> 2] = 0 + F[(c + 28) >> 2] = d + g = F[(c + 28) >> 2] + F[(c + 8) >> 2] = F[(c + 24) >> 2] + F[(c + 12) >> 2] = g + F[(c + 20) >> 2] = f + f = (e + 4) | 0 + F[(c + 16) >> 2] = f + F[(c + 36) >> 2] = 0 + F[(c + 40) >> 2] = 0 + F[(c + 32) >> 2] = 8624 + e = F[(c + 20) >> 2] + F[c >> 2] = F[(c + 16) >> 2] + F[(c + 4) >> 2] = e + e = (c + 32) | 0 + Fd(e, f, c) + c = (d + 8) | 0 + lc(c, e) + if ((c | 0) != (e | 0)) { + gb((d + 56) | 0, F[(e + 48) >> 2], F[(e + 52) >> 2]) + } + Ed(e) + break c + } + c = (Z + -64) | 0 + Z = c + g = F[(F[(a + 4) >> 2] + 44) >> 2] + d = ka(80) + F[d >> 2] = 9392 + F[(d + 4) >> 2] = 0 + F[(d + 76) >> 2] = 0 + F[(d + 72) >> 2] = e + F[(d + 68) >> 2] = g + F[(d + 8) >> 2] = 9556 + F[(d + 12) >> 2] = 0 + F[(d + 16) >> 2] = 0 + F[(d + 20) >> 2] = 0 + F[(d + 24) >> 2] = 0 + F[(d + 28) >> 2] = 0 + F[(d + 32) >> 2] = 0 + F[(d + 36) >> 2] = 0 + F[(d + 40) >> 2] = 0 + F[(d + 44) >> 2] = 0 + F[(d + 48) >> 2] = 0 + F[(d + 52) >> 2] = 0 + F[(d - -64) >> 2] = 0 + j = (d + 56) | 0 + f = j + F[f >> 2] = 0 + F[(f + 4) >> 2] = 0 + f = F[(a + 8) >> 2] + F[(c + 40) >> 2] = 0 + F[(c + 44) >> 2] = 0 + F[(c + 32) >> 2] = 0 + F[(c + 36) >> 2] = 0 + h = (c + 24) | 0 + F[h >> 2] = 0 + F[(h + 4) >> 2] = 0 + F[(c + 16) >> 2] = 0 + F[(c + 20) >> 2] = 0 + F[(c + 56) >> 2] = 0 + F[(c + 8) >> 2] = 0 + F[(c + 12) >> 2] = 0 + F[(c + 48) >> 2] = 0 + F[(c + 52) >> 2] = 0 + F[c >> 2] = 9556 + F[(c + 4) >> 2] = f + i = F[f >> 2] + l = F[(f + 4) >> 2] + D[(c + 63) | 0] = 0 + k = h + h = (c + 63) | 0 + Ea(k, ((((l - i) >> 2) >>> 0) / 3) | 0, h) + i = F[(c + 4) >> 2] + l = F[(i + 28) >> 2] + i = F[(i + 24) >> 2] + D[(c + 63) | 0] = 0 + Ea((c + 36) | 0, (l - i) >> 2, h) + F[(c + 20) >> 2] = d + F[(c + 16) >> 2] = g + F[(c + 12) >> 2] = e + F[(c + 8) >> 2] = f + lc((d + 8) | 0, c) + gb(j, F[(c + 48) >> 2], F[(c + 52) >> 2]) + F[c >> 2] = 9556 + e = F[(c + 48) >> 2] + if (e) { + F[(c + 52) >> 2] = e + ja(e) + } + F[c >> 2] = 9372 + e = F[(c + 36) >> 2] + if (e) { + ja(e) + } + e = F[(c + 24) >> 2] + if (e) { + ja(e) + } + Z = (c - -64) | 0 + } + if (!d) { + break a + } + } + d = yc(ka(64), d) + c = F[(a + 4) >> 2] + a = d + d = b + m: { + n: { + if ((d | 0) >= 0) { + g = (c + 8) | 0 + b = F[(c + 12) >> 2] + j = F[(c + 8) >> 2] + e = (b - j) >> 2 + o: { + if ((e | 0) > (d | 0)) { + break o + } + f = (d + 1) | 0 + if (d >>> 0 >= e >>> 0) { + Pb(g, (f - e) | 0) + break o + } + if (e >>> 0 <= f >>> 0) { + break o + } + f = (j + (f << 2)) | 0 + if ((f | 0) != (b | 0)) { + while (1) { + b = (b - 4) | 0 + e = F[b >> 2] + F[b >> 2] = 0 + if (e) { + $[F[(F[e >> 2] + 4) >> 2]](e) + } + if ((b | 0) != (f | 0)) { + continue + } + break + } + } + F[(c + 12) >> 2] = f + } + c = (F[g >> 2] + (d << 2)) | 0 + b = F[c >> 2] + F[c >> 2] = a + if (b) { + break n + } + break m + } + b = a + if (!a) { + break m + } + } + $[F[(F[b >> 2] + 4) >> 2]](b) + } + q = ((d ^ -1) >>> 31) | 0 + } + Z = (n + 96) | 0 + return q | 0 + } + function Ab(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = M(0), + n = M(0), + o = 0 + a: { + b: { + if (!d) { + break b + } + c: { + switch ((F[(a + 28) >> 2] - 1) | 0) { + case 0: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + E[((g << 1) + d) >> 1] = D[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 1: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + E[((g << 1) + d) >> 1] = G[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 2: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + E[((g << 1) + d) >> 1] = H[b >> 1] + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 3: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + return 0 + } + e = E[b >> 1] + if ((e | 0) < 0) { + break b + } + E[((g << 1) + d) >> 1] = e + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 4: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + e = F[b >> 2] + if ((e + 32768) >>> 0 > 65535) { + break b + } + E[((g << 1) + d) >> 1] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 5: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + e = F[b >> 2] + if (e >>> 0 > 32767) { + break b + } + E[((g << 1) + d) >> 1] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 6: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + k = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= k >>> 0) { + break b + } + h = F[(b + 4) >> 2] + e = F[b >> 2] + i = (e + 32768) | 0 + h = i >>> 0 < 32768 ? (h + 1) | 0 : h + if ((!h & (i >>> 0 > 65535)) | h) { + break b + } + E[((g << 1) + d) >> 1] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 7: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + k = F[(b + 4) >> 2] + e = F[b >> 2] + if ((!k & (e >>> 0 > 32767)) | k) { + break b + } + E[((g << 1) + d) >> 1] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 8: + d: { + e: { + e = G[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break e + } + e = F[a >> 2] + j = F[e >> 2] + g = j + f = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = F[(e + 4) >> 2] + e = (f - j) | 0 + if (!G[(a + 32) | 0]) { + j = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = J[g >> 2] + if ( + (m >= M(32767)) | + (m < M(-32768)) | + (m != m) + ) { + break d + } + n = M(N(m)) + if (n == M(Infinity)) { + break d + } + e = ((b << 1) + d) | 0 + if (n < M(2147483648)) { + i = ~~m + } else { + i = -2147483648 + } + E[e >> 1] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + j = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = J[g >> 2] + if ( + (m >= M(32767)) | + (m < M(-32768)) | + ((M(N(m)) == M(Infinity)) | (m != m)) + ) { + break d + } + if ((m < M(0)) | (m > M(1))) { + break d + } + e = ((b << 1) + d) | 0 + l = R(+m * 32767 + 0.5) + f: { + if (N(l) < 2147483648) { + i = ~~l + break f + } + i = -2147483648 + } + E[e >> 1] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + j = 1 + if (c >>> 0 <= e >>> 0) { + break d + } + ma(((e << 1) + d) | 0, 0, (c - e) << 1) + } + return j + case 9: + g: { + h: { + e = G[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break h + } + e = F[a >> 2] + j = F[e >> 2] + g = j + f = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = F[(e + 4) >> 2] + e = (f - j) | 0 + if (!G[(a + 32) | 0]) { + j = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + l = K[g >> 3] + if ((l >= 32767) | (l < -32768) | (l != l)) { + break g + } + o = N(l) + if (o == Infinity) { + break g + } + e = ((b << 1) + d) | 0 + if (o < 2147483648) { + i = ~~l + } else { + i = -2147483648 + } + E[e >> 1] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + j = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + l = K[g >> 3] + if ( + (l >= 32767) | + (l < -32768) | + ((N(l) == Infinity) | (l != l)) + ) { + break g + } + if ((l < 0) | (l > 1)) { + break g + } + e = ((b << 1) + d) | 0 + l = R(l * 32767 + 0.5) + i: { + if (N(l) < 2147483648) { + i = ~~l + break i + } + i = -2147483648 + } + E[e >> 1] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + j = 1 + if (c >>> 0 <= e >>> 0) { + break g + } + ma(((e << 1) + d) | 0, 0, (c - e) << 1) + } + return j + case 10: + break c + default: + break b + } + } + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + E[((g << 1) + d) >> 1] = G[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + ma(((e << 1) + d) | 0, 0, ((c & 255) - e) << 1) + } + return j + } + ma(((e << 1) + d) | 0, 0, ((c & 255) - e) << 1) + return 1 + } + function yb(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = M(0), + n = M(0), + o = 0 + a: { + b: { + if (!d) { + break b + } + c: { + switch ((F[(a + 28) >> 2] - 1) | 0) { + case 0: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = D[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 1: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = G[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 2: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = E[b >> 1] + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 3: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = H[b >> 1] + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 4: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = F[b >> 2] + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 5: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + return 0 + } + e = F[b >> 2] + if ((e | 0) < 0) { + break b + } + F[((g << 2) + d) >> 2] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 6: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + k = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= k >>> 0) { + break b + } + h = F[(b + 4) >> 2] + e = F[b >> 2] + if ( + (e - -2147483648) >>> 0 < 2147483648 + ? (h + 1) | 0 + : h + ) { + break b + } + F[((g << 2) + d) >> 2] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 7: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + k = F[(b + 4) >> 2] + e = F[b >> 2] + if ((!k & (e >>> 0 > 2147483647)) | k) { + break b + } + F[((g << 2) + d) >> 2] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 8: + d: { + e: { + e = G[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break e + } + e = F[a >> 2] + j = F[e >> 2] + g = j + f = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = F[(e + 4) >> 2] + e = (f - j) | 0 + if (!G[(a + 32) | 0]) { + j = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = J[g >> 2] + if ( + (m >= M(2147483648)) | + (m < M(-2147483648)) | + (m != m) + ) { + break d + } + n = M(N(m)) + if (n == M(Infinity)) { + break d + } + e = ((b << 2) + d) | 0 + if (n < M(2147483648)) { + i = ~~m + } else { + i = -2147483648 + } + F[e >> 2] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + j = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = J[g >> 2] + if ( + (m >= M(2147483648)) | + (m < M(-2147483648)) | + ((M(N(m)) == M(Infinity)) | (m != m)) + ) { + break d + } + if ((m < M(0)) | (m > M(1))) { + break d + } + e = ((b << 2) + d) | 0 + l = R(+m * 2147483647 + 0.5) + f: { + if (N(l) < 2147483648) { + i = ~~l + break f + } + i = -2147483648 + } + F[e >> 2] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + j = 1 + if (c >>> 0 <= e >>> 0) { + break d + } + ma(((e << 2) + d) | 0, 0, (c - e) << 2) + } + return j + case 9: + g: { + h: { + e = G[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break h + } + e = F[a >> 2] + j = F[e >> 2] + g = j + f = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = F[(e + 4) >> 2] + e = (f - j) | 0 + if (!G[(a + 32) | 0]) { + j = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + l = K[g >> 3] + if ( + (l >= 2147483647) | + (l < -2147483648) | + (l != l) + ) { + break g + } + o = N(l) + if (o == Infinity) { + break g + } + e = ((b << 2) + d) | 0 + if (o < 2147483648) { + i = ~~l + } else { + i = -2147483648 + } + F[e >> 2] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + j = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + l = K[g >> 3] + if ( + (l >= 2147483647) | + (l < -2147483648) | + ((N(l) == Infinity) | (l != l)) + ) { + break g + } + if ((l < 0) | (l > 1)) { + break g + } + e = ((b << 2) + d) | 0 + l = R(l * 2147483647 + 0.5) + i: { + if (N(l) < 2147483648) { + i = ~~l + break i + } + i = -2147483648 + } + F[e >> 2] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + j = 1 + if (c >>> 0 <= e >>> 0) { + break g + } + ma(((e << 2) + d) | 0, 0, (c - e) << 2) + } + return j + case 10: + break c + default: + break b + } + } + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = G[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + j = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + ma(((e << 2) + d) | 0, 0, ((c & 255) - e) << 2) + } + return j + } + ma(((e << 2) + d) | 0, 0, ((c & 255) - e) << 2) + return 1 + } + function zb(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = M(0) + a: { + b: { + if (!d) { + break b + } + c: { + switch ((F[(a + 28) >> 2] - 1) | 0) { + case 0: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + return 0 + } + e = D[b | 0] + if ((e | 0) < 0) { + break b + } + E[((g << 1) + d) >> 1] = e & 255 + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 1: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + E[((g << 1) + d) >> 1] = G[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 2: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + return 0 + } + e = E[b >> 1] + if ((e | 0) < 0) { + break b + } + E[((g << 1) + d) >> 1] = e + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 3: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + E[((g << 1) + d) >> 1] = H[b >> 1] + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 4: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + e = F[b >> 2] + if (e >>> 0 > 65535) { + break b + } + E[((g << 1) + d) >> 1] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 5: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + e = F[b >> 2] + if (e >>> 0 > 65535) { + break b + } + E[((g << 1) + d) >> 1] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 6: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + k = F[(b + 4) >> 2] + e = F[b >> 2] + if ((!k & (e >>> 0 > 65535)) | k) { + break b + } + E[((g << 1) + d) >> 1] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 7: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + k = F[(b + 4) >> 2] + e = F[b >> 2] + if ((!k & (e >>> 0 > 65535)) | k) { + break b + } + E[((g << 1) + d) >> 1] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 8: + d: { + e: { + e = G[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break e + } + e = F[a >> 2] + l = F[e >> 2] + g = l + f = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = F[(e + 4) >> 2] + e = (f - l) | 0 + if (!G[(a + 32) | 0]) { + l = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = J[g >> 2] + if ( + (m >= M(65535)) | + (m < M(0)) | + ((M(N(m)) == M(Infinity)) | (m != m)) + ) { + break d + } + e = ((b << 1) + d) | 0 + if ((m < M(4294967296)) & (m >= M(0))) { + i = ~~m >>> 0 + } else { + i = 0 + } + E[e >> 1] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + l = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = J[g >> 2] + if ( + (m >= M(65535)) | + (m < M(0)) | + ((M(N(m)) == M(Infinity)) | (m != m)) + ) { + break d + } + if (m > M(1)) { + break d + } + e = ((b << 1) + d) | 0 + j = R(+m * 65535 + 0.5) + f: { + if ((j < 4294967296) & (j >= 0)) { + i = ~~j >>> 0 + break f + } + i = 0 + } + E[e >> 1] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + l = 1 + if (c >>> 0 <= e >>> 0) { + break d + } + ma(((e << 1) + d) | 0, 0, (c - e) << 1) + } + return l + case 9: + g: { + h: { + e = G[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break h + } + e = F[a >> 2] + l = F[e >> 2] + g = l + f = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = F[(e + 4) >> 2] + e = (f - l) | 0 + if (!G[(a + 32) | 0]) { + l = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + j = K[g >> 3] + if ( + (j >= 65535) | + (j < 0) | + ((N(j) == Infinity) | (j != j)) + ) { + break g + } + e = ((b << 1) + d) | 0 + if ((j < 4294967296) & (j >= 0)) { + i = ~~j >>> 0 + } else { + i = 0 + } + E[e >> 1] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + l = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + j = K[g >> 3] + if ( + (j >= 65535) | + (j < 0) | + ((N(j) == Infinity) | (j != j)) + ) { + break g + } + if (j > 1) { + break g + } + e = ((b << 1) + d) | 0 + j = R(j * 65535 + 0.5) + i: { + if ((j < 4294967296) & (j >= 0)) { + i = ~~j >>> 0 + break i + } + i = 0 + } + E[e >> 1] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + l = 1 + if (c >>> 0 <= e >>> 0) { + break g + } + ma(((e << 1) + d) | 0, 0, (c - e) << 1) + } + return l + case 10: + break c + default: + break b + } + } + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + k = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + k) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + E[((g << 1) + d) >> 1] = G[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + ma(((e << 1) + d) | 0, 0, ((c & 255) - e) << 1) + } + return l + } + ma(((e << 1) + d) | 0, 0, ((c & 255) - e) << 1) + return 1 + } + function Ga(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = M(0), + l = 0, + m = 0, + n = M(0), + o = 0 + a: { + if (!d) { + break a + } + b: { + c: { + switch ((F[(a + 28) >> 2] - 1) | 0) { + case 0: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + i = D[b | 0] + F[e >> 2] = i + F[(e + 4) >> 2] = i >> 31 + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 1: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + F[e >> 2] = G[b | 0] + F[(e + 4) >> 2] = 0 + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 2: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + i = E[b >> 1] + F[e >> 2] = i + F[(e + 4) >> 2] = i >> 31 + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 3: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + F[e >> 2] = H[b >> 1] + F[(e + 4) >> 2] = 0 + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 4: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + i = F[b >> 2] + F[e >> 2] = i + F[(e + 4) >> 2] = i >> 31 + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 5: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + F[e >> 2] = F[b >> 2] + F[(e + 4) >> 2] = 0 + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 6: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + i = F[(b + 4) >> 2] + e = ((g << 3) + d) | 0 + F[e >> 2] = F[b >> 2] + F[(e + 4) >> 2] = i + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 7: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = F[b >> 2] + i = F[(b + 4) >> 2] + if ((i | 0) < 0) { + break a + } + j = ((g << 3) + d) | 0 + F[j >> 2] = e + F[(j + 4) >> 2] = i + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 8: + d: { + e = G[(a + 24) | 0] + f = c & 255 + if (!(e >>> 0 < f >>> 0 ? e : f)) { + break d + } + if (G[(a + 32) | 0]) { + break a + } + e = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + j = b + b = (b + e) | 0 + e = F[a >> 2] + i = F[(e + 4) >> 2] + e = F[e >> 2] + if ((b | 0) >= ((i - e) | 0)) { + break a + } + g = (b + e) | 0 + h = c & 255 + b = 0 + while (1) { + k = J[g >> 2] + if ( + (k >= M(0x8000000000000000)) | + (k < M(-0x8000000000000000)) | + (k != k) + ) { + break a + } + n = M(N(k)) + if (n == M(Infinity)) { + break a + } + e = ((b << 3) + d) | 0 + e: { + if (n < M(0x8000000000000000)) { + j = + M(N(k)) >= M(1) + ? ~~(k > M(0) + ? M( + P( + M( + R( + M( + k * + M( + 2.3283064365386963e-10, + ), + ), + ), + ), + M(4294967296), + ), + ) + : M( + S( + M( + M(k - M((~~k >>> 0) >>> 0)) * + M(2.3283064365386963e-10), + ), + ), + )) >>> 0 + : 0 + m = ~~k >>> 0 + break e + } + j = -2147483648 + m = 0 + } + F[e >> 2] = m + F[(e + 4) >> 2] = j + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (e >>> 0 < h >>> 0 ? e : h) >>> 0 + ) { + break d + } + g = (g + 4) | 0 + if (i >>> 0 > g >>> 0) { + continue + } + break + } + break a + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 9: + f: { + e = G[(a + 24) | 0] + f = c & 255 + if (!(e >>> 0 < f >>> 0 ? e : f)) { + break f + } + if (G[(a + 32) | 0]) { + break a + } + e = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + j = b + b = (b + e) | 0 + e = F[a >> 2] + i = F[(e + 4) >> 2] + e = F[e >> 2] + if ((b | 0) >= ((i - e) | 0)) { + break a + } + g = (b + e) | 0 + h = c & 255 + b = 0 + while (1) { + l = K[g >> 3] + if ( + (l >= 0x8000000000000000) | + (l < -0x8000000000000000) | + (l != l) + ) { + break a + } + o = N(l) + if (o == Infinity) { + break a + } + e = ((b << 3) + d) | 0 + g: { + if (o < 0x8000000000000000) { + j = + N(l) >= 1 + ? ~~(l > 0 + ? P( + R(l * 2.3283064365386963e-10), + 4294967295, + ) + : S( + (l - +((~~l >>> 0) >>> 0)) * + 2.3283064365386963e-10, + )) >>> 0 + : 0 + m = ~~l >>> 0 + break g + } + j = -2147483648 + m = 0 + } + F[e >> 2] = m + F[(e + 4) >> 2] = j + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (e >>> 0 < h >>> 0 ? e : h) >>> 0 + ) { + break f + } + g = (g + 8) | 0 + if (i >>> 0 > g >>> 0) { + continue + } + break + } + break a + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 10: + break c + default: + break a + } + } + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + j = b + b = (b + i) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break a + } + e = ((g << 3) + d) | 0 + F[e >> 2] = G[b | 0] + F[(e + 4) >> 2] = 0 + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 3) + d) | 0 + a = ((c & 255) - e) | 0 + } + ma(d, 0, a << 3) + } + } + function le(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + j = a + a: { + b: { + c: { + d: { + e: { + f: { + g: { + h: { + a = F[(a + 8) >> 2] + switch ((F[(a + 28) >> 2] - 1) | 0) { + case 4: + break c + case 5: + break d + case 2: + break e + case 3: + break f + case 0: + break g + case 1: + break h + default: + break a + } + } + f = G[(a + 24) | 0] + c = ka(f) + a = F[(j + 16) >> 2] + if (F[(a + 80) >> 2]) { + g = (F[F[a >> 2] >> 2] + F[(a + 48) >> 2]) | 0 + } else { + g = 0 + } + if (!b) { + break b + } + if (f) { + o = f & 252 + l = f & 3 + h = f >>> 0 < 4 + while (1) { + a = 0 + e = 0 + if (!h) { + while (1) { + k = (g + (d << 2)) | 0 + D[(a + c) | 0] = F[k >> 2] + D[((a | 1) + c) | 0] = F[(k + 4) >> 2] + D[((a | 2) + c) | 0] = F[(k + 8) >> 2] + D[((a | 3) + c) | 0] = F[(k + 12) >> 2] + a = (a + 4) | 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((o | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + if (l) { + while (1) { + D[(a + c) | 0] = F[(g + (d << 2)) >> 2] + a = (a + 1) | 0 + d = (d + 1) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + + m) | + 0, + c, + f, + ) + m = (f + m) | 0 + n = (n + 1) | 0 + if ((n | 0) != (b | 0)) { + continue + } + break + } + break b + } + a = 0 + if ((b | 0) != 1) { + g = b & -2 + while (1) { + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + + a) | + 0, + c, + f, + ) + a = (a + f) | 0 + la( + (a + + F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2]) | + 0, + c, + f, + ) + a = (a + f) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if (!(b & 1)) { + break b + } + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | + 0, + c, + f, + ) + break b + } + f = G[(a + 24) | 0] + c = ka(f) + a = F[(j + 16) >> 2] + if (F[(a + 80) >> 2]) { + g = (F[F[a >> 2] >> 2] + F[(a + 48) >> 2]) | 0 + } else { + g = 0 + } + if (!b) { + break b + } + if (f) { + o = f & 252 + l = f & 3 + h = f >>> 0 < 4 + while (1) { + a = 0 + e = 0 + if (!h) { + while (1) { + k = (g + (d << 2)) | 0 + D[(a + c) | 0] = F[k >> 2] + D[((a | 1) + c) | 0] = F[(k + 4) >> 2] + D[((a | 2) + c) | 0] = F[(k + 8) >> 2] + D[((a | 3) + c) | 0] = F[(k + 12) >> 2] + a = (a + 4) | 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((o | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + if (l) { + while (1) { + D[(a + c) | 0] = F[(g + (d << 2)) >> 2] + a = (a + 1) | 0 + d = (d + 1) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + m) | + 0, + c, + f, + ) + m = (f + m) | 0 + n = (n + 1) | 0 + if ((n | 0) != (b | 0)) { + continue + } + break + } + break b + } + a = 0 + if ((b | 0) != 1) { + g = b & -2 + while (1) { + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | + 0, + c, + f, + ) + a = (a + f) | 0 + la( + (a + F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2]) | + 0, + c, + f, + ) + a = (a + f) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if (!(b & 1)) { + break b + } + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, + c, + f, + ) + break b + } + h = G[(a + 24) | 0] + i = h << 1 + c = ka(i) + a = F[(j + 16) >> 2] + if (F[(a + 80) >> 2]) { + g = (F[F[a >> 2] >> 2] + F[(a + 48) >> 2]) | 0 + } else { + g = 0 + } + if (!b) { + break b + } + if (h) { + o = h & 252 + l = h & 3 + h = h >>> 0 < 4 + while (1) { + a = 0 + e = 0 + if (!h) { + while (1) { + f = a << 1 + k = (g + (d << 2)) | 0 + E[(f + c) >> 1] = F[k >> 2] + E[((f | 2) + c) >> 1] = F[(k + 4) >> 2] + E[((f | 4) + c) >> 1] = F[(k + 8) >> 2] + E[((f | 6) + c) >> 1] = F[(k + 12) >> 2] + a = (a + 4) | 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((o | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + if (l) { + while (1) { + E[((a << 1) + c) >> 1] = + F[(g + (d << 2)) >> 2] + a = (a + 1) | 0 + d = (d + 1) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + n) | + 0, + c, + i, + ) + n = (i + n) | 0 + m = (m + 1) | 0 + if ((m | 0) != (b | 0)) { + continue + } + break + } + break b + } + a = 0 + if ((b | 0) != 1) { + g = b & -2 + while (1) { + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | + 0, + c, + i, + ) + a = (a + i) | 0 + la( + (a + F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2]) | + 0, + c, + i, + ) + a = (a + i) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if (!(b & 1)) { + break b + } + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, + c, + i, + ) + break b + } + h = G[(a + 24) | 0] + i = h << 1 + c = ka(i) + a = F[(j + 16) >> 2] + if (F[(a + 80) >> 2]) { + g = (F[F[a >> 2] >> 2] + F[(a + 48) >> 2]) | 0 + } else { + g = 0 + } + if (!b) { + break b + } + if (h) { + o = h & 252 + l = h & 3 + h = h >>> 0 < 4 + while (1) { + a = 0 + e = 0 + if (!h) { + while (1) { + f = a << 1 + k = (g + (d << 2)) | 0 + E[(f + c) >> 1] = F[k >> 2] + E[((f | 2) + c) >> 1] = F[(k + 4) >> 2] + E[((f | 4) + c) >> 1] = F[(k + 8) >> 2] + E[((f | 6) + c) >> 1] = F[(k + 12) >> 2] + a = (a + 4) | 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((o | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + if (l) { + while (1) { + E[((a << 1) + c) >> 1] = F[(g + (d << 2)) >> 2] + a = (a + 1) | 0 + d = (d + 1) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + n) | 0, + c, + i, + ) + n = (i + n) | 0 + m = (m + 1) | 0 + if ((m | 0) != (b | 0)) { + continue + } + break + } + break b + } + a = 0 + if ((b | 0) != 1) { + g = b & -2 + while (1) { + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, + c, + i, + ) + a = (a + i) | 0 + la( + (a + F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2]) | 0, + c, + i, + ) + a = (a + i) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if (!(b & 1)) { + break b + } + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, + c, + i, + ) + break b + } + h = G[(a + 24) | 0] + i = h << 2 + c = ka(i) + a = F[(j + 16) >> 2] + if (F[(a + 80) >> 2]) { + g = (F[F[a >> 2] >> 2] + F[(a + 48) >> 2]) | 0 + } else { + g = 0 + } + if (!b) { + break b + } + if (h) { + o = h & 252 + l = h & 3 + h = h >>> 0 < 4 + while (1) { + a = 0 + e = 0 + if (!h) { + while (1) { + f = a << 2 + k = (g + (d << 2)) | 0 + F[(f + c) >> 2] = F[k >> 2] + F[((f | 4) + c) >> 2] = F[(k + 4) >> 2] + F[((f | 8) + c) >> 2] = F[(k + 8) >> 2] + F[((f | 12) + c) >> 2] = F[(k + 12) >> 2] + a = (a + 4) | 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((o | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + if (l) { + while (1) { + F[((a << 2) + c) >> 2] = F[(g + (d << 2)) >> 2] + a = (a + 1) | 0 + d = (d + 1) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + n) | 0, + c, + i, + ) + n = (i + n) | 0 + m = (m + 1) | 0 + if ((m | 0) != (b | 0)) { + continue + } + break + } + break b + } + a = 0 + if ((b | 0) != 1) { + g = b & -2 + while (1) { + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, + c, + i, + ) + a = (a + i) | 0 + la( + (a + F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2]) | 0, + c, + i, + ) + a = (a + i) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if (!(b & 1)) { + break b + } + la((F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, c, i) + break b + } + h = G[(a + 24) | 0] + i = h << 2 + c = ka(i) + a = F[(j + 16) >> 2] + if (F[(a + 80) >> 2]) { + g = (F[F[a >> 2] >> 2] + F[(a + 48) >> 2]) | 0 + } else { + g = 0 + } + if (!b) { + break b + } + if (h) { + o = h & 252 + l = h & 3 + h = h >>> 0 < 4 + while (1) { + a = 0 + e = 0 + if (!h) { + while (1) { + f = a << 2 + k = (g + (d << 2)) | 0 + F[(f + c) >> 2] = F[k >> 2] + F[((f | 4) + c) >> 2] = F[(k + 4) >> 2] + F[((f | 8) + c) >> 2] = F[(k + 8) >> 2] + F[((f | 12) + c) >> 2] = F[(k + 12) >> 2] + a = (a + 4) | 0 + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((o | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + if (l) { + while (1) { + F[((a << 2) + c) >> 2] = F[(g + (d << 2)) >> 2] + a = (a + 1) | 0 + d = (d + 1) | 0 + e = (e + 1) | 0 + if ((l | 0) != (e | 0)) { + continue + } + break + } + } + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + n) | 0, + c, + i, + ) + n = (i + n) | 0 + m = (m + 1) | 0 + if ((m | 0) != (b | 0)) { + continue + } + break + } + break b + } + a = 0 + if ((b | 0) != 1) { + g = b & -2 + while (1) { + la( + (F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, + c, + i, + ) + a = (a + i) | 0 + la( + (a + F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2]) | 0, + c, + i, + ) + a = (a + i) | 0 + d = (d + 2) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if (!(b & 1)) { + break b + } + la((F[F[(F[(j + 8) >> 2] + 64) >> 2] >> 2] + a) | 0, c, i) + } + ja(c) + c = 1 + } + return c | 0 + } + function xb(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = M(0) + a: { + b: { + if (!d) { + break b + } + c: { + switch ((F[(a + 28) >> 2] - 1) | 0) { + case 0: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + l = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = D[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 1: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + l = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = G[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 2: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + l = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = E[b >> 1] + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 3: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + l = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = H[b >> 1] + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 4: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + l = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = F[b >> 2] + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 5: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + l = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = F[b >> 2] + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 6: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + l = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + e = F[b >> 2] + if (F[(b + 4) >> 2]) { + break b + } + F[((g << 2) + d) >> 2] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 7: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + l = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + e = F[b >> 2] + if (F[(b + 4) >> 2]) { + break b + } + F[((g << 2) + d) >> 2] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 8: + d: { + e: { + e = G[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break e + } + e = F[a >> 2] + k = F[e >> 2] + g = k + f = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = F[(e + 4) >> 2] + e = (f - k) | 0 + if (!G[(a + 32) | 0]) { + k = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = J[g >> 2] + if ( + (m >= M(4294967296)) | + (m < M(0)) | + ((M(N(m)) == M(Infinity)) | (m != m)) + ) { + break d + } + e = ((b << 2) + d) | 0 + if ((m < M(4294967296)) & (m >= M(0))) { + i = ~~m >>> 0 + } else { + i = 0 + } + F[e >> 2] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + k = 0 + if ((b | 0) >= (e | 0)) { + break d + } + b = 0 + while (1) { + m = J[g >> 2] + if ( + (m >= M(4294967296)) | + (m < M(0)) | + ((M(N(m)) == M(Infinity)) | (m != m)) + ) { + break d + } + if (m > M(1)) { + break d + } + e = ((b << 2) + d) | 0 + j = R(+m * 4294967295 + 0.5) + f: { + if ((j < 4294967296) & (j >= 0)) { + i = ~~j >>> 0 + break f + } + i = 0 + } + F[e >> 2] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break e + } + g = (g + 4) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break d + } + k = 1 + if (c >>> 0 <= e >>> 0) { + break d + } + ma(((e << 2) + d) | 0, 0, (c - e) << 2) + } + return k + case 9: + g: { + h: { + e = G[(a + 24) | 0] + c = c & 255 + if (!(c >>> 0 > e >>> 0 ? e : c)) { + break h + } + e = F[a >> 2] + k = F[e >> 2] + g = k + f = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + f) | 0 + g = (b + g) | 0 + f = F[(e + 4) >> 2] + e = (f - k) | 0 + if (!G[(a + 32) | 0]) { + k = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + j = K[g >> 3] + if ( + (j >= 4294967295) | + (j < 0) | + ((N(j) == Infinity) | (j != j)) + ) { + break g + } + e = ((b << 2) + d) | 0 + if ((j < 4294967296) & (j >= 0)) { + i = ~~j >>> 0 + } else { + i = 0 + } + F[e >> 2] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + k = 0 + if ((b | 0) >= (e | 0)) { + break g + } + b = 0 + while (1) { + j = K[g >> 3] + if ( + (j >= 4294967295) | + (j < 0) | + ((N(j) == Infinity) | (j != j)) + ) { + break g + } + if (j > 1) { + break g + } + e = ((b << 2) + d) | 0 + j = R(j * 4294967295 + 0.5) + i: { + if ((j < 4294967296) & (j >= 0)) { + i = ~~j >>> 0 + break i + } + i = 0 + } + F[e >> 2] = i + b = (b + 1) | 0 + e = G[(a + 24) | 0] + if ( + b >>> 0 >= + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + break h + } + g = (g + 8) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + break g + } + k = 1 + if (c >>> 0 <= e >>> 0) { + break g + } + ma(((e << 2) + d) | 0, 0, (c - e) << 2) + } + return k + case 10: + break c + default: + break b + } + } + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + h = F[e >> 2] + l = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + i = b + b = (b + l) | 0 + b = (b + h) | 0 + h = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= h >>> 0) { + break b + } + F[((g << 2) + d) >> 2] = G[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + ma(((e << 2) + d) | 0, 0, ((c & 255) - e) << 2) + } + return k + } + ma(((e << 2) + d) | 0, 0, ((c & 255) - e) << 2) + return 1 + } + function rd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + a: { + b: { + c: { + d: { + e: { + if (F[(a + 92) >> 2] == F[(a + 88) >> 2]) { + break e + } + c = F[(a + 52) >> 2] + f: { + if ((c | 0) != F[(a + 56) >> 2]) { + F[c >> 2] = b + F[(a + 52) >> 2] = c + 4 + break f + } + h = F[(a + 48) >> 2] + g = (c - h) | 0 + d = g >> 2 + f = (d + 1) | 0 + if (f >>> 0 >= 1073741824) { + break a + } + e = (g >>> 1) | 0 + g = + g >>> 0 >= 2147483644 + ? 1073741823 + : f >>> 0 < e >>> 0 + ? e + : f + if (g) { + if (g >>> 0 >= 1073741824) { + break d + } + e = ka(g << 2) + } else { + e = 0 + } + f = (e + (d << 2)) | 0 + F[f >> 2] = b + d = (f + 4) | 0 + if ((c | 0) != (h | 0)) { + while (1) { + f = (f - 4) | 0 + c = (c - 4) | 0 + F[f >> 2] = F[c >> 2] + if ((c | 0) != (h | 0)) { + continue + } + break + } + } + F[(a + 56) >> 2] = e + (g << 2) + F[(a + 52) >> 2] = d + F[(a + 48) >> 2] = f + if (!h) { + break f + } + ja(h) + } + F[(a + 84) >> 2] = 0 + c = -1 + e = -1 + g: { + if ((b | 0) == -1) { + break g + } + d = F[(a + 4) >> 2] + e = (b + 1) | 0 + e = (e >>> 0) % 3 | 0 ? e : (b - 2) | 0 + if ((e | 0) != -1) { + c = F[(F[d >> 2] + (e << 2)) >> 2] + } + h: { + if ((b >>> 0) % 3 | 0) { + l = (b - 1) | 0 + break h + } + l = (b + 2) | 0 + e = -1 + if ((l | 0) == -1) { + break g + } + } + e = F[(F[d >> 2] + (l << 2)) >> 2] + } + i = (e >>> 3) & 536870908 + d = F[(a + 36) >> 2] + h = (d + ((c >>> 3) & 536870908)) | 0 + g = F[h >> 2] + f = 1 << c + if (!(g & f)) { + F[h >> 2] = f | g + f = (a + 8) | 0 + if ((b | 0) != -1) { + d = (b + 1) | 0 + d = (d >>> 0) % 3 | 0 ? d : (b - 2) | 0 + } else { + d = -1 + } + Ka(f, c, d) + d = F[(a + 36) >> 2] + } + f = (d + i) | 0 + d = F[f >> 2] + c = 1 << e + if (!(d & c)) { + F[f >> 2] = c | d + d = (a + 8) | 0 + c = -1 + i: { + if ((b | 0) == -1) { + break i + } + c = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break i + } + c = (b + 2) | 0 + } + Ka(d, e, c) + } + c = -1 + c = + (b | 0) != -1 + ? F[(F[F[(a + 4) >> 2] >> 2] + (b << 2)) >> 2] + : c + f = (F[(a + 36) >> 2] + ((c >>> 3) & 536870908)) | 0 + d = F[f >> 2] + e = 1 << c + if (!(d & e)) { + F[f >> 2] = d | e + Ka((a + 8) | 0, c, b) + } + d = F[(a + 84) >> 2] + if ((d | 0) > 2) { + break e + } + while (1) { + e = (L(d, 12) + a) | 0 + b = F[(e + 52) >> 2] + if ((b | 0) == F[(e + 48) >> 2]) { + d = (d + 1) | 0 + if ((d | 0) != 3) { + continue + } + break e + } + b = (b - 4) | 0 + c = F[b >> 2] + F[(e + 52) >> 2] = b + F[(a + 84) >> 2] = d + if ((c | 0) == -1) { + break e + } + f = F[(a + 24) >> 2] + b = ((c >>> 0) / 3) | 0 + j: { + if ( + (F[(f + ((b >>> 3) & 268435452)) >> 2] >>> b) & + 1 + ) { + break j + } + k: { + while (1) { + k = ((c >>> 0) / 3) | 0 + b = (((k >>> 3) & 268435452) + f) | 0 + F[b >> 2] = F[b >> 2] | (1 << k) + d = -1 + l: { + m: { + n: { + o: { + p: { + q: { + r: { + s: { + d = + (c | 0) != -1 + ? F[ + (F[ + F[(a + 4) >> 2] >> 2 + ] + + (c << 2)) >> + 2 + ] + : d + f = + (F[(a + 36) >> 2] + + ((d >>> 3) & 536870908)) | + 0 + e = F[f >> 2] + b = 1 << d + if (!(e & b)) { + F[f >> 2] = b | e + i = + F[ + (((F[ + (F[(a + 16) >> 2] + + 96) >> + 2 + ] + + L(k, 12)) | + 0) + + ((c >>> 0) % 3 << + 2)) >> + 2 + ] + l = + F[ + (F[(a + 20) >> 2] + + 4) >> + 2 + ] + f = F[(l + 4) >> 2] + t: { + if ( + (f | 0) != + F[(l + 8) >> 2] + ) { + F[f >> 2] = i + F[(l + 4) >> 2] = f + 4 + break t + } + j = F[l >> 2] + h = (f - j) | 0 + g = h >> 2 + e = (g + 1) | 0 + if ( + e >>> 0 >= + 1073741824 + ) { + break s + } + b = (h >>> 1) | 0 + h = + h >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 > e >>> 0 + ? b + : e + if (h) { + if ( + h >>> 0 >= + 1073741824 + ) { + break d + } + e = ka(h << 2) + } else { + e = 0 + } + b = (e + (g << 2)) | 0 + F[b >> 2] = i + g = (b + 4) | 0 + if ((f | 0) != (j | 0)) { + while (1) { + b = (b - 4) | 0 + f = (f - 4) | 0 + F[b >> 2] = F[f >> 2] + if ( + (f | 0) != + (j | 0) + ) { + continue + } + break + } + } + F[(l + 8) >> 2] = + e + (h << 2) + F[(l + 4) >> 2] = g + F[l >> 2] = b + if (!j) { + break t + } + ja(j) + } + j = F[(a + 12) >> 2] + f = F[(j + 4) >> 2] + u: { + if ( + (f | 0) != + F[(j + 8) >> 2] + ) { + F[f >> 2] = c + F[(j + 4) >> 2] = f + 4 + break u + } + i = F[j >> 2] + h = (f - i) | 0 + g = h >> 2 + e = (g + 1) | 0 + if ( + e >>> 0 >= + 1073741824 + ) { + break r + } + b = (h >>> 1) | 0 + h = + h >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 > e >>> 0 + ? b + : e + if (h) { + if ( + h >>> 0 >= + 1073741824 + ) { + break d + } + e = ka(h << 2) + } else { + e = 0 + } + b = (e + (g << 2)) | 0 + F[b >> 2] = c + g = (b + 4) | 0 + if ((f | 0) != (i | 0)) { + while (1) { + b = (b - 4) | 0 + f = (f - 4) | 0 + F[b >> 2] = F[f >> 2] + if ( + (f | 0) != + (i | 0) + ) { + continue + } + break + } + } + F[(j + 8) >> 2] = + e + (h << 2) + F[(j + 4) >> 2] = g + F[j >> 2] = b + if (!i) { + break u + } + ja(i) + } + b = F[(a + 12) >> 2] + F[ + (F[(b + 12) >> 2] + + (d << 2)) >> + 2 + ] = F[(b + 24) >> 2] + F[(b + 24) >> 2] = + F[(b + 24) >> 2] + 1 + } + if ((c | 0) == -1) { + break k + } + g = F[(a + 4) >> 2] + f = -1 + b = (c + 1) | 0 + b = + (b >>> 0) % 3 | 0 + ? b + : (c - 2) | 0 + if ((b | 0) != -1) { + f = + F[ + (F[(g + 12) >> 2] + + (b << 2)) >> + 2 + ] + } + v: { + w: { + if ( + (L(k, 3) | 0) != + (c | 0) + ) { + d = (c - 1) | 0 + break w + } + d = (c + 2) | 0 + c = -1 + if ((d | 0) == -1) { + break v + } + } + c = + F[ + (F[(g + 12) >> 2] + + (d << 2)) >> + 2 + ] + } + d = (c | 0) == -1 + e = ((c >>> 0) / 3) | 0 + if ((f | 0) != -1) { + b = ((f >>> 0) / 3) | 0 + b = + F[ + (F[(a + 24) >> 2] + + ((b >>> 3) & + 268435452)) >> + 2 + ] & + (1 << b) + if (d) { + break q + } + l = (b | 0) != 0 + break p + } + l = 1 + if (!d) { + break p + } + break k + } + na() + v() + } + na() + v() + } + if (!b) { + break o + } + break k + } + b = d ? -1 : e + x: { + if ( + (F[ + (F[(a + 24) >> 2] + + ((b >>> 3) & 536870908)) >> + 2 + ] >>> + b) & + 1 + ) { + break x + } + k = 0 + b = F[(F[g >> 2] + (c << 2)) >> 2] + if ( + !( + (F[ + (F[(a + 36) >> 2] + + ((b >>> 3) & 536870908)) >> + 2 + ] >>> + b) & + 1 + ) + ) { + b = + (F[(a + 88) >> 2] + (b << 2)) | + 0 + e = F[b >> 2] + F[b >> 2] = e + 1 + k = (e | 0) <= 0 ? 2 : 1 + } + if ( + (F[(a + 84) >> 2] >= (k | 0)) & + l + ) { + break m + } + j = (L(k, 12) + a) | 0 + b = F[(j + 52) >> 2] + y: { + if ((b | 0) != F[(j + 56) >> 2]) { + F[b >> 2] = c + F[(j + 52) >> 2] = b + 4 + break y + } + i = F[(j + 48) >> 2] + h = (b - i) | 0 + d = h >> 2 + g = (d + 1) | 0 + if (g >>> 0 >= 1073741824) { + break c + } + e = (h >>> 1) | 0 + g = + h >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 > g >>> 0 + ? e + : g + if (g) { + if (g >>> 0 >= 1073741824) { + break d + } + e = ka(g << 2) + } else { + e = 0 + } + d = (e + (d << 2)) | 0 + F[d >> 2] = c + c = (d + 4) | 0 + if ((b | 0) != (i | 0)) { + while (1) { + d = (d - 4) | 0 + b = (b - 4) | 0 + F[d >> 2] = F[b >> 2] + if ((b | 0) != (i | 0)) { + continue + } + break + } + } + F[(j + 48) >> 2] = d + F[(j + 52) >> 2] = c + F[(j + 56) >> 2] = e + (g << 2) + if (!i) { + break y + } + ja(i) + } + if (F[(a + 84) >> 2] <= (k | 0)) { + break x + } + F[(a + 84) >> 2] = k + } + if (l) { + break k + } + c = -1 + if ((f | 0) == -1) { + break n + } + } + c = + F[ + (F[F[(a + 4) >> 2] >> 2] + + (f << 2)) >> + 2 + ] + } + b = 0 + if ( + !( + (F[ + (F[(a + 36) >> 2] + + ((c >>> 3) & 536870908)) >> + 2 + ] >>> + c) & + 1 + ) + ) { + b = (F[(a + 88) >> 2] + (c << 2)) | 0 + c = F[b >> 2] + F[b >> 2] = c + 1 + b = (c | 0) <= 0 ? 2 : 1 + } + if (F[(a + 84) >> 2] < (b | 0)) { + break l + } + c = f + } + f = F[(a + 24) >> 2] + continue + } + break + } + k = (L(b, 12) + a) | 0 + c = F[(k + 52) >> 2] + z: { + if ((c | 0) != F[(k + 56) >> 2]) { + F[c >> 2] = f + F[(k + 52) >> 2] = c + 4 + break z + } + i = F[(k + 48) >> 2] + h = (c - i) | 0 + d = h >> 2 + g = (d + 1) | 0 + if (g >>> 0 >= 1073741824) { + break b + } + e = (h >>> 1) | 0 + g = + h >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 > g >>> 0 + ? e + : g + if (g) { + if (g >>> 0 >= 1073741824) { + break d + } + e = ka(g << 2) + } else { + e = 0 + } + d = (e + (d << 2)) | 0 + F[d >> 2] = f + f = (d + 4) | 0 + if ((c | 0) != (i | 0)) { + while (1) { + d = (d - 4) | 0 + c = (c - 4) | 0 + F[d >> 2] = F[c >> 2] + if ((c | 0) != (i | 0)) { + continue + } + break + } + } + F[(k + 48) >> 2] = d + F[(k + 52) >> 2] = f + F[(k + 56) >> 2] = e + (g << 2) + if (!i) { + break z + } + ja(i) + } + d = F[(a + 84) >> 2] + if ((d | 0) <= (b | 0)) { + break j + } + F[(a + 84) >> 2] = b + d = b + break j + } + d = F[(a + 84) >> 2] + } + if ((d | 0) < 3) { + continue + } + break + } + } + return 1 + } + oa() + v() + } + na() + v() + } + na() + v() + } + na() + v() + } + function Mc(a) { + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + e = (Z - 16) | 0 + Z = e + F[(e + 12) >> 2] = a + a: { + if (a >>> 0 <= 211) { + d = F[Lc(10352, 10544, (e + 12) | 0) >> 2] + break a + } + if (a >>> 0 >= 4294967292) { + V() + v() + } + f = ((a >>> 0) / 210) | 0 + d = L(f, 210) + F[(e + 8) >> 2] = a - d + g = (Lc(10544, 10736, (e + 8) | 0) - 10544) >> 2 + while (1) { + d = (F[((g << 2) + 10544) >> 2] + d) | 0 + a = 5 + while (1) { + b: { + if ((a | 0) == 47) { + a = 211 + while (1) { + b = ((d >>> 0) / (a >>> 0)) | 0 + if (b >>> 0 < a >>> 0) { + break a + } + if ((L(a, b) | 0) == (d | 0)) { + break b + } + b = (a + 10) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 12) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 16) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 18) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 22) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 28) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 30) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 36) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 40) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 42) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 46) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 52) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 58) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 60) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 66) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 70) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 72) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 78) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 82) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 88) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 96) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 100) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 102) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 106) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 108) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 112) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 120) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 126) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 130) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 136) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 138) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 142) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 148) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 150) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 156) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 162) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 166) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 168) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 172) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 178) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 180) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 186) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 190) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 192) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 196) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 198) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + if ((L(b, c) | 0) == (d | 0)) { + break b + } + b = (a + 208) | 0 + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + a = (a + 210) | 0 + if ((L(b, c) | 0) != (d | 0)) { + continue + } + break + } + break b + } + b = F[((a << 2) + 10352) >> 2] + c = ((d >>> 0) / (b >>> 0)) | 0 + if (b >>> 0 > c >>> 0) { + break a + } + a = (a + 1) | 0 + if ((L(b, c) | 0) != (d | 0)) { + continue + } + } + break + } + d = (g + 1) | 0 + a = (d | 0) == 48 + g = a ? 0 : d + f = (a + f) | 0 + d = L(f, 210) + continue + } + } + Z = (e + 16) | 0 + return d + } + function lb(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = M(0), + k = 0, + l = 0 + a: { + if (!d) { + break a + } + b: { + c: { + switch ((F[(a + 28) >> 2] - 1) | 0) { + case 0: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + g = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = F[(e + 4) >> 2] + i = G[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = M(D[b | 0]) + J[((h << 2) + d) >> 2] = i ? M(j / M(127)) : j + b = (b + 1) | 0 + h = (h + 1) | 0 + e = G[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 1: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + g = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = F[(e + 4) >> 2] + i = G[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = M(G[b | 0]) + J[((h << 2) + d) >> 2] = i ? M(j / M(255)) : j + b = (b + 1) | 0 + h = (h + 1) | 0 + e = G[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 2: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + g = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = F[(e + 4) >> 2] + i = G[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = M(E[b >> 1]) + J[((h << 2) + d) >> 2] = i ? M(j / M(32767)) : j + b = (b + 2) | 0 + h = (h + 1) | 0 + e = G[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 3: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + g = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = F[(e + 4) >> 2] + i = G[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = M(H[b >> 1]) + J[((h << 2) + d) >> 2] = i ? M(j / M(65535)) : j + b = (b + 2) | 0 + h = (h + 1) | 0 + e = G[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 4: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + g = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = F[(e + 4) >> 2] + i = G[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = M(F[b >> 2]) + J[((h << 2) + d) >> 2] = i + ? M(j * M(4.656612873077393e-10)) + : j + b = (b + 4) | 0 + h = (h + 1) | 0 + e = G[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 5: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + g = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = F[(e + 4) >> 2] + i = G[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = M(I[b >> 2]) + J[((h << 2) + d) >> 2] = i + ? M(j * M(2.3283064365386963e-10)) + : j + b = (b + 4) | 0 + h = (h + 1) | 0 + e = G[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 6: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + g = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = F[(e + 4) >> 2] + i = G[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = M(+I[b >> 2] + +F[(b + 4) >> 2] * 4294967296) + J[((h << 2) + d) >> 2] = i + ? M(j * M(10842021724855044e-35)) + : j + b = (b + 8) | 0 + h = (h + 1) | 0 + e = G[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 7: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + g = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = F[(e + 4) >> 2] + i = G[(a + 32) | 0] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + j = M(+I[b >> 2] + +I[(b + 4) >> 2] * 4294967296) + J[((h << 2) + d) >> 2] = i + ? M(j * M(5.421010862427522e-20)) + : j + b = (b + 8) | 0 + h = (h + 1) | 0 + e = G[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 8: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + g = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + J[((h << 2) + d) >> 2] = J[b >> 2] + b = (b + 4) | 0 + h = (h + 1) | 0 + e = G[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 9: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + g = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + J[((h << 2) + d) >> 2] = K[b >> 3] + b = (b + 8) | 0 + h = (h + 1) | 0 + e = G[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + break b + case 10: + break c + default: + break a + } + } + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[a >> 2] + g = F[e >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + k = b + b = (b + i) | 0 + b = (b + g) | 0 + g = F[(e + 4) >> 2] + while (1) { + if (b >>> 0 >= g >>> 0) { + break a + } + J[((h << 2) + d) >> 2] = G[b | 0] ? M(1) : M(0) + b = (b + 1) | 0 + h = (h + 1) | 0 + e = G[(a + 24) | 0] + if (h >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + l = 1 + if (e >>> 0 >= f >>> 0) { + break a + } + d = ((e << 2) + d) | 0 + a = ((c & 255) - e) | 0 + } + ma(d, 0, a << 2) + } + return l + } + function Cb(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = M(0), + m = M(0) + a: { + b: { + if (!d) { + break b + } + c: { + switch ((F[(a + 28) >> 2] - 1) | 0) { + case 0: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + D[(d + g) | 0] = G[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 1: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + return 0 + } + e = D[b | 0] + if ((e | 0) < 0) { + break b + } + D[(d + g) | 0] = e + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 2: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = H[b >> 1] + if (((e + 128) & 65535) >>> 0 > 255) { + break b + } + D[(d + g) | 0] = e + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 3: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = H[b >> 1] + if (e >>> 0 > 127) { + break b + } + D[(d + g) | 0] = e + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 4: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = F[b >> 2] + if ((e + 128) >>> 0 > 255) { + break b + } + D[(d + g) | 0] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 5: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = F[b >> 2] + if (e >>> 0 > 127) { + break b + } + D[(d + g) | 0] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 6: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + i = F[(b + 4) >> 2] + e = F[b >> 2] + h = (e + 128) | 0 + i = h >>> 0 < 128 ? (i + 1) | 0 : i + if ((!i & (h >>> 0 > 255)) | i) { + break b + } + D[(d + g) | 0] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 7: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + i = F[(b + 4) >> 2] + e = F[b >> 2] + if ((!i & (e >>> 0 > 127)) | i) { + break b + } + D[(d + g) | 0] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 8: + e = G[(a + 24) | 0] + c = c & 255 + d: { + if (c >>> 0 > e >>> 0 ? e : c) { + e = F[F[a >> 2] >> 2] + f = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + f) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break d + } + l = J[b >> 2] + if ((l >= M(127)) | (l < M(-128)) | (l != l)) { + break d + } + m = M(N(l)) + if (m == M(Infinity)) { + break d + } + e = (d + g) | 0 + e: { + f: { + if (G[(a + 32) | 0]) { + if ((l < M(0)) | (l > M(1))) { + break d + } + j = R(+l * 127 + 0.5) + if (!(N(j) < 2147483648)) { + break f + } + h = ~~j + break e + } + if (!(m < M(2147483648))) { + break f + } + h = ~~l + break e + } + h = -2147483648 + } + D[e | 0] = h + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if ( + g >>> 0 < + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + continue + } + break + } + } + k = 1 + if (c >>> 0 <= e >>> 0) { + break d + } + ma((d + e) | 0, 0, (c - e) | 0) + } + return k + case 9: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + j = K[b >> 3] + if ( + (j >= 127) | + (j < -128) | + ((N(j) == Infinity) | (j != j)) + ) { + break b + } + e = (d + g) | 0 + if (G[(a + 32) | 0]) { + if ((j < 0) | (j > 1)) { + break b + } + j = R(j * 127 + 0.5) + } + g: { + if (N(j) < 2147483648) { + h = ~~j + break g + } + h = -2147483648 + } + D[e | 0] = h + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 10: + break c + default: + break b + } + } + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + D[(d + g) | 0] = G[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + ma((d + e) | 0, 0, ((c & 255) - e) | 0) + } + return k + } + ma((d + e) | 0, 0, ((c & 255) - e) | 0) + return 1 + } + function Bb(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = M(0) + a: { + b: { + if (!d) { + break b + } + c: { + switch ((F[(a + 28) >> 2] - 1) | 0) { + case 0: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + return 0 + } + e = D[b | 0] + if ((e | 0) < 0) { + break b + } + D[(d + g) | 0] = e + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 1: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + D[(d + g) | 0] = G[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 2: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = H[b >> 1] + if (e >>> 0 > 255) { + break b + } + D[(d + g) | 0] = e + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 3: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = H[b >> 1] + if (e >>> 0 > 255) { + break b + } + D[(d + g) | 0] = e + b = (b + 2) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 4: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = F[b >> 2] + if (e >>> 0 > 255) { + break b + } + D[(d + g) | 0] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 5: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + e = F[b >> 2] + if (e >>> 0 > 255) { + break b + } + D[(d + g) | 0] = e + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 6: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + i = F[(b + 4) >> 2] + e = F[b >> 2] + if ((!i & (e >>> 0 > 255)) | i) { + break b + } + D[(d + g) | 0] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 7: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + i = F[(b + 4) >> 2] + e = F[b >> 2] + if ((!i & (e >>> 0 > 255)) | i) { + break b + } + D[(d + g) | 0] = e + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 8: + e = G[(a + 24) | 0] + c = c & 255 + d: { + if (c >>> 0 > e >>> 0 ? e : c) { + e = F[F[a >> 2] >> 2] + f = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + f) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break d + } + l = J[b >> 2] + if ( + (l >= M(255)) | + (l < M(0)) | + ((M(N(l)) == M(Infinity)) | (l != l)) + ) { + break d + } + e = (d + g) | 0 + e: { + f: { + if (G[(a + 32) | 0]) { + if (l > M(1)) { + break d + } + j = R(+l * 255 + 0.5) + if (!((j < 4294967296) & (j >= 0))) { + break f + } + h = ~~j >>> 0 + break e + } + if (!((l < M(4294967296)) & (l >= M(0)))) { + break f + } + h = ~~l >>> 0 + break e + } + h = 0 + } + D[e | 0] = h + b = (b + 4) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if ( + g >>> 0 < + (c >>> 0 > e >>> 0 ? e : c) >>> 0 + ) { + continue + } + break + } + } + k = 1 + if (c >>> 0 <= e >>> 0) { + break d + } + ma((d + e) | 0, 0, (c - e) | 0) + } + return k + case 9: + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + j = K[b >> 3] + if ( + (j >= 255) | + (j < 0) | + ((N(j) == Infinity) | (j != j)) + ) { + break b + } + e = (d + g) | 0 + if (G[(a + 32) | 0]) { + if (j > 1) { + break b + } + j = R(j * 255 + 0.5) + } + g: { + if ((j < 4294967296) & (j >= 0)) { + h = ~~j >>> 0 + break g + } + h = 0 + } + D[e | 0] = h + b = (b + 8) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + break a + case 10: + break c + default: + break b + } + } + e = G[(a + 24) | 0] + f = c & 255 + if (e >>> 0 < f >>> 0 ? e : f) { + e = F[F[a >> 2] >> 2] + i = F[(a + 48) >> 2] + b = ki(F[(a + 40) >> 2], F[(a + 44) >> 2], b, 0) + h = b + b = (b + i) | 0 + b = (b + e) | 0 + while (1) { + if (I[(F[a >> 2] + 4) >> 2] <= b >>> 0) { + break b + } + D[(d + g) | 0] = G[b | 0] + b = (b + 1) | 0 + g = (g + 1) | 0 + e = G[(a + 24) | 0] + if (g >>> 0 < (e >>> 0 < f >>> 0 ? e : f) >>> 0) { + continue + } + break + } + } + k = 1 + if (e >>> 0 >= f >>> 0) { + break b + } + ma((d + e) | 0, 0, ((c & 255) - e) | 0) + } + return k + } + ma((d + e) | 0, 0, ((c & 255) - e) | 0) + return 1 + } + function jc(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + e = (Z - 48) | 0 + Z = e + f = H[5053] | (H[5054] << 16) + d = H[5051] | (H[5052] << 16) + E[(e + 38) >> 1] = d + E[(e + 40) >> 1] = d >>> 16 + E[(e + 42) >> 1] = f + E[(e + 44) >> 1] = f >>> 16 + d = F[2525] + F[(e + 32) >> 2] = F[2524] + F[(e + 36) >> 2] = d + d = F[2523] + F[(e + 24) >> 2] = F[2522] + F[(e + 28) >> 2] = d + d = F[2521] + F[(e + 16) >> 2] = F[2520] + F[(e + 20) >> 2] = d + g = F[(b + 8) >> 2] + i = F[(b + 12) >> 2] + h = F[(b + 20) >> 2] + d = F[(b + 16) >> 2] + f = (d + 5) | 0 + h = f >>> 0 < 5 ? (h + 1) | 0 : h + a: { + b: { + if ( + ((g >>> 0 < f >>> 0) & ((h | 0) >= (i | 0))) | + ((h | 0) > (i | 0)) + ) { + d = ya((e + 16) | 0) + if (d >>> 0 >= 2147483632) { + break a + } + c: { + d: { + if (d >>> 0 >= 11) { + b = ((d | 15) + 1) | 0 + c = ka(b) + F[(e + 8) >> 2] = b | -2147483648 + F[e >> 2] = c + F[(e + 4) >> 2] = d + b = (c + d) | 0 + break d + } + D[(e + 11) | 0] = d + b = (d + e) | 0 + c = e + if (!d) { + break c + } + } + la(c, (e + 16) | 0, d) + } + D[b | 0] = 0 + F[a >> 2] = -2 + b = (a + 4) | 0 + if (D[(e + 11) | 0] >= 0) { + a = F[(e + 4) >> 2] + F[b >> 2] = F[e >> 2] + F[(b + 4) >> 2] = a + F[(b + 8) >> 2] = F[(e + 8) >> 2] + break b + } + ra(b, F[e >> 2], F[(e + 4) >> 2]) + if (D[(e + 11) | 0] >= 0) { + break b + } + ja(F[e >> 2]) + break b + } + f = (d + F[b >> 2]) | 0 + d = + G[f | 0] | + (G[(f + 1) | 0] << 8) | + ((G[(f + 2) | 0] << 16) | (G[(f + 3) | 0] << 24)) + D[c | 0] = d + D[(c + 1) | 0] = d >>> 8 + D[(c + 2) | 0] = d >>> 16 + D[(c + 3) | 0] = d >>> 24 + D[(c + 4) | 0] = G[(f + 4) | 0] + d = F[(b + 20) >> 2] + f = (F[(b + 16) >> 2] + 5) | 0 + d = f >>> 0 < 5 ? (d + 1) | 0 : d + F[(b + 16) >> 2] = f + F[(b + 20) >> 2] = d + if (sa(c, 1250, 5)) { + d = ka(32) + D[(d + 17) | 0] = 0 + D[(d + 16) | 0] = G[1494] + c = + G[1490] | + (G[1491] << 8) | + ((G[1492] << 16) | (G[1493] << 24)) + b = + G[1486] | + (G[1487] << 8) | + ((G[1488] << 16) | (G[1489] << 24)) + D[(d + 8) | 0] = b + D[(d + 9) | 0] = b >>> 8 + D[(d + 10) | 0] = b >>> 16 + D[(d + 11) | 0] = b >>> 24 + D[(d + 12) | 0] = c + D[(d + 13) | 0] = c >>> 8 + D[(d + 14) | 0] = c >>> 16 + D[(d + 15) | 0] = c >>> 24 + c = + G[1482] | + (G[1483] << 8) | + ((G[1484] << 16) | (G[1485] << 24)) + b = + G[1478] | + (G[1479] << 8) | + ((G[1480] << 16) | (G[1481] << 24)) + D[d | 0] = b + D[(d + 1) | 0] = b >>> 8 + D[(d + 2) | 0] = b >>> 16 + D[(d + 3) | 0] = b >>> 24 + D[(d + 4) | 0] = c + D[(d + 5) | 0] = c >>> 8 + D[(d + 6) | 0] = c >>> 16 + D[(d + 7) | 0] = c >>> 24 + F[a >> 2] = -1 + ra((a + 4) | 0, d, 17) + ja(d) + break b + } + g = F[(b + 12) >> 2] + if ( + (((g | 0) <= (d | 0)) & (I[(b + 8) >> 2] <= f >>> 0)) | + ((d | 0) > (g | 0)) + ) { + d = ya((e + 16) | 0) + if (d >>> 0 >= 2147483632) { + break a + } + e: { + f: { + if (d >>> 0 >= 11) { + b = ((d | 15) + 1) | 0 + c = ka(b) + F[(e + 8) >> 2] = b | -2147483648 + F[e >> 2] = c + F[(e + 4) >> 2] = d + b = (c + d) | 0 + break f + } + D[(e + 11) | 0] = d + b = (d + e) | 0 + c = e + if (!d) { + break e + } + } + la(c, (e + 16) | 0, d) + } + D[b | 0] = 0 + F[a >> 2] = -2 + b = (a + 4) | 0 + if (D[(e + 11) | 0] >= 0) { + a = F[(e + 4) >> 2] + F[b >> 2] = F[e >> 2] + F[(b + 4) >> 2] = a + F[(b + 8) >> 2] = F[(e + 8) >> 2] + break b + } + ra(b, F[e >> 2], F[(e + 4) >> 2]) + if (D[(e + 11) | 0] >= 0) { + break b + } + ja(F[e >> 2]) + break b + } + D[(c + 5) | 0] = G[(f + F[b >> 2]) | 0] + g = F[(b + 20) >> 2] + d = (F[(b + 16) >> 2] + 1) | 0 + g = d ? g : (g + 1) | 0 + F[(b + 16) >> 2] = d + F[(b + 20) >> 2] = g + f = F[(b + 12) >> 2] + if ( + (((f | 0) <= (g | 0)) & (I[(b + 8) >> 2] <= d >>> 0)) | + ((g | 0) > (f | 0)) + ) { + d = ya((e + 16) | 0) + if (d >>> 0 >= 2147483632) { + break a + } + g: { + h: { + if (d >>> 0 >= 11) { + b = ((d | 15) + 1) | 0 + c = ka(b) + F[(e + 8) >> 2] = b | -2147483648 + F[e >> 2] = c + F[(e + 4) >> 2] = d + b = (c + d) | 0 + break h + } + D[(e + 11) | 0] = d + b = (d + e) | 0 + c = e + if (!d) { + break g + } + } + la(c, (e + 16) | 0, d) + } + D[b | 0] = 0 + F[a >> 2] = -2 + b = (a + 4) | 0 + if (D[(e + 11) | 0] >= 0) { + a = F[(e + 4) >> 2] + F[b >> 2] = F[e >> 2] + F[(b + 4) >> 2] = a + F[(b + 8) >> 2] = F[(e + 8) >> 2] + break b + } + ra(b, F[e >> 2], F[(e + 4) >> 2]) + if (D[(e + 11) | 0] >= 0) { + break b + } + ja(F[e >> 2]) + break b + } + D[(c + 6) | 0] = G[(d + F[b >> 2]) | 0] + h = F[(b + 20) >> 2] + d = (F[(b + 16) >> 2] + 1) | 0 + h = d ? h : (h + 1) | 0 + F[(b + 16) >> 2] = d + F[(b + 20) >> 2] = h + f = F[(b + 12) >> 2] + if ( + (((f | 0) <= (h | 0)) & (I[(b + 8) >> 2] <= d >>> 0)) | + ((f | 0) < (h | 0)) + ) { + d = ya((e + 16) | 0) + if (d >>> 0 >= 2147483632) { + break a + } + i: { + j: { + if (d >>> 0 >= 11) { + b = ((d | 15) + 1) | 0 + c = ka(b) + F[(e + 8) >> 2] = b | -2147483648 + F[e >> 2] = c + F[(e + 4) >> 2] = d + b = (c + d) | 0 + break j + } + D[(e + 11) | 0] = d + b = (d + e) | 0 + c = e + if (!d) { + break i + } + } + la(c, (e + 16) | 0, d) + } + D[b | 0] = 0 + F[a >> 2] = -2 + b = (a + 4) | 0 + if (D[(e + 11) | 0] >= 0) { + a = F[(e + 4) >> 2] + F[b >> 2] = F[e >> 2] + F[(b + 4) >> 2] = a + F[(b + 8) >> 2] = F[(e + 8) >> 2] + break b + } + ra(b, F[e >> 2], F[(e + 4) >> 2]) + if (D[(e + 11) | 0] >= 0) { + break b + } + ja(F[e >> 2]) + break b + } + D[(c + 7) | 0] = G[(d + F[b >> 2]) | 0] + g = F[(b + 20) >> 2] + d = (F[(b + 16) >> 2] + 1) | 0 + g = d ? g : (g + 1) | 0 + F[(b + 16) >> 2] = d + F[(b + 20) >> 2] = g + f = F[(b + 12) >> 2] + if ( + (((f | 0) <= (g | 0)) & (I[(b + 8) >> 2] <= d >>> 0)) | + ((g | 0) > (f | 0)) + ) { + c = Eb(e, (e + 16) | 0) + F[a >> 2] = -2 + b = (a + 4) | 0 + if (D[(c + 11) | 0] >= 0) { + a = F[(c + 4) >> 2] + F[b >> 2] = F[c >> 2] + F[(b + 4) >> 2] = a + F[(b + 8) >> 2] = F[(c + 8) >> 2] + break b + } + ra(b, F[c >> 2], F[(c + 4) >> 2]) + if (D[(c + 11) | 0] >= 0) { + break b + } + ja(F[c >> 2]) + break b + } + D[(c + 8) | 0] = G[(d + F[b >> 2]) | 0] + d = F[(b + 20) >> 2] + g = F[(b + 16) >> 2] + f = (g + 1) | 0 + i = f ? d : (d + 1) | 0 + F[(b + 16) >> 2] = f + F[(b + 20) >> 2] = i + i = F[(b + 8) >> 2] + h = F[(b + 12) >> 2] + g = (g + 3) | 0 + d = g >>> 0 < 3 ? (d + 1) | 0 : d + if ( + ((g >>> 0 > i >>> 0) & ((d | 0) >= (h | 0))) | + ((d | 0) > (h | 0)) + ) { + c = Eb(e, (e + 16) | 0) + F[a >> 2] = -2 + b = (a + 4) | 0 + if (D[(c + 11) | 0] >= 0) { + a = F[(c + 4) >> 2] + F[b >> 2] = F[c >> 2] + F[(b + 4) >> 2] = a + F[(b + 8) >> 2] = F[(c + 8) >> 2] + break b + } + ra(b, F[c >> 2], F[(c + 4) >> 2]) + if (D[(c + 11) | 0] >= 0) { + break b + } + ja(F[c >> 2]) + break b + } + d = c + c = (F[b >> 2] + f) | 0 + E[(d + 10) >> 1] = G[c | 0] | (G[(c + 1) | 0] << 8) + g = F[(b + 20) >> 2] + c = (F[(b + 16) >> 2] + 2) | 0 + g = c >>> 0 < 2 ? (g + 1) | 0 : g + F[(b + 16) >> 2] = c + F[(b + 20) >> 2] = g + F[(a + 8) >> 2] = 0 + F[(a + 12) >> 2] = 0 + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + } + Z = (e + 48) | 0 + return + } + za() + v() + } + function Mb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0 + e = (Z - 96) | 0 + Z = e + f = F[(a + 16) >> 2] + D[(e + 92) | 0] = 1 + F[(e + 88) >> 2] = b + F[(e + 84) >> 2] = b + F[(e + 80) >> 2] = f + j = F[(a + 20) >> 2] + d = F[j >> 2] + a: { + b: { + f = F[(F[(f + 28) >> 2] + (b << 2)) >> 2] + if (f >>> 0 < ((F[(j + 4) >> 2] - d) >> 2) >>> 0) { + d = + F[ + (F[(a + 8) >> 2] + (F[(d + (f << 2)) >> 2] << 2)) >> 2 + ] + f = F[(a + 4) >> 2] + if (!G[(f + 84) | 0]) { + d = F[(F[(f + 68) >> 2] + (d << 2)) >> 2] + } + F[(e + 72) >> 2] = 0 + F[(e + 76) >> 2] = 0 + j = (e - -64) | 0 + F[j >> 2] = 0 + F[(j + 4) >> 2] = 0 + F[(e + 56) >> 2] = 0 + F[(e + 60) >> 2] = 0 + Ga(f, d, D[(f + 24) | 0], (e + 56) | 0) + if ((b | 0) != -1) { + f = (b + 1) | 0 + j = (f >>> 0) % 3 | 0 ? f : (b - 2) | 0 + m = (((b >>> 0) % 3 | 0 ? -1 : 2) + b) | 0 + while (1) { + d = j + f = m + c: { + if (!F[(a + 28) >> 2]) { + break c + } + f = (b + 1) | 0 + d = (f >>> 0) % 3 | 0 ? f : (b - 2) | 0 + f = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break c + } + f = (b + 2) | 0 + } + n = F[(a + 20) >> 2] + b = F[n >> 2] + d = + F[(F[(F[(a + 16) >> 2] + 28) >> 2] + (d << 2)) >> 2] + if (d >>> 0 >= ((F[(n + 4) >> 2] - b) >> 2) >>> 0) { + break b + } + d = + F[ + (F[(a + 8) >> 2] + + (F[(b + (d << 2)) >> 2] << 2)) >> + 2 + ] + b = F[(a + 4) >> 2] + if (!G[(b + 84) | 0]) { + d = F[(F[(b + 68) >> 2] + (d << 2)) >> 2] + } + F[(e + 48) >> 2] = 0 + F[(e + 52) >> 2] = 0 + F[(e + 40) >> 2] = 0 + F[(e + 44) >> 2] = 0 + F[(e + 32) >> 2] = 0 + F[(e + 36) >> 2] = 0 + Ga(b, d, D[(b + 24) | 0], (e + 32) | 0) + d = F[(a + 20) >> 2] + b = F[d >> 2] + f = + F[(F[(F[(a + 16) >> 2] + 28) >> 2] + (f << 2)) >> 2] + if (f >>> 0 >= ((F[(d + 4) >> 2] - b) >> 2) >>> 0) { + break a + } + d = + F[ + (F[(a + 8) >> 2] + + (F[(b + (f << 2)) >> 2] << 2)) >> + 2 + ] + b = F[(a + 4) >> 2] + if (!G[(b + 84) | 0]) { + d = F[(F[(b + 68) >> 2] + (d << 2)) >> 2] + } + F[(e + 24) >> 2] = 0 + F[(e + 28) >> 2] = 0 + F[(e + 16) >> 2] = 0 + F[(e + 20) >> 2] = 0 + F[(e + 8) >> 2] = 0 + F[(e + 12) >> 2] = 0 + Ga(b, d, D[(b + 24) | 0], (e + 8) | 0) + g = F[(e + 8) >> 2] + b = F[(e + 56) >> 2] + d = (g - b) | 0 + p = F[(e + 60) >> 2] + t = + (F[(e + 12) >> 2] - + ((p + (b >>> 0 > g >>> 0)) | 0)) | + 0 + h = F[(e + 40) >> 2] + f = F[(e + 64) >> 2] + n = (h - f) | 0 + u = F[(e + 68) >> 2] + y = + (F[(e + 44) >> 2] - + ((u + (f >>> 0 > h >>> 0)) | 0)) | + 0 + g = ki(d, t, n, y) + w = (o - g) | 0 + x = (i - ((_ + (g >>> 0 > o >>> 0)) | 0)) | 0 + i = w + h = F[(e + 16) >> 2] + g = (h - f) | 0 + u = + (F[(e + 20) >> 2] - + (((f >>> 0 > h >>> 0) + u) | 0)) | + 0 + k = F[(e + 32) >> 2] + h = (k - b) | 0 + w = + (F[(e + 36) >> 2] - + (((b >>> 0 > k >>> 0) + p) | 0)) | + 0 + b = ki(g, u, h, w) + o = (i + b) | 0 + i = (_ + x) | 0 + i = b >>> 0 > o >>> 0 ? (i + 1) | 0 : i + b = l + l = d + p = t + k = F[(e + 48) >> 2] + f = F[(e + 72) >> 2] + d = (k - f) | 0 + t = F[(e + 76) >> 2] + x = + (F[(e + 52) >> 2] - + ((t + (f >>> 0 > k >>> 0)) | 0)) | + 0 + l = ki(l, p, d, x) + k = (b + l) | 0 + b = (_ + q) | 0 + b = k >>> 0 < l >>> 0 ? (b + 1) | 0 : b + l = F[(e + 24) >> 2] + p = (l - f) | 0 + f = + (F[(e + 28) >> 2] - + (((f >>> 0 > l >>> 0) + t) | 0)) | + 0 + q = ki(p, f, h, w) + l = (k - q) | 0 + q = (b - ((_ + (k >>> 0 < q >>> 0)) | 0)) | 0 + b = ki(g, u, d, x) + d = (r - b) | 0 + b = (s - ((_ + (b >>> 0 > r >>> 0)) | 0)) | 0 + s = ki(p, f, n, y) + r = (s + d) | 0 + b = (_ + b) | 0 + s = r >>> 0 < s >>> 0 ? (b + 1) | 0 : b + b = F[(e + 88) >> 2] + f = F[(e + 80) >> 2] + d: { + if (G[(e + 92) | 0]) { + e: { + f: { + g: { + h: { + if ((b | 0) == -1) { + break h + } + d = (b + 1) | 0 + b = (d >>> 0) % 3 | 0 ? d : (b - 2) | 0 + if ( + ((b | 0) == -1) | + ((F[ + (F[f >> 2] + + ((b >>> 3) & 536870908)) >> + 2 + ] >>> + b) & + 1) + ) { + break h + } + b = + F[ + (F[(F[(f + 64) >> 2] + 12) >> 2] + + (b << 2)) >> + 2 + ] + if ((b | 0) != -1) { + break g + } + } + F[(e + 88) >> 2] = -1 + break f + } + d = (b + 1) | 0 + b = (d >>> 0) % 3 | 0 ? d : (b - 2) | 0 + F[(e + 88) >> 2] = b + if ((b | 0) != -1) { + break e + } + } + b = F[(e + 84) >> 2] + d = -1 + i: { + if ((b | 0) == -1) { + break i + } + j: { + if ((b >>> 0) % 3 | 0) { + b = (b - 1) | 0 + break j + } + b = (b + 2) | 0 + d = -1 + if ((b | 0) == -1) { + break i + } + } + d = -1 + if ( + (F[ + (F[f >> 2] + ((b >>> 3) & 536870908)) >> 2 + ] >>> + b) & + 1 + ) { + break i + } + b = + F[ + (F[(F[(f + 64) >> 2] + 12) >> 2] + + (b << 2)) >> + 2 + ] + d = -1 + if ((b | 0) == -1) { + break i + } + d = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break i + } + d = (b + 2) | 0 + } + D[(e + 92) | 0] = 0 + F[(e + 88) >> 2] = d + break d + } + if ((b | 0) != F[(e + 84) >> 2]) { + break d + } + F[(e + 88) >> 2] = -1 + break d + } + d = -1 + k: { + if ((b | 0) == -1) { + break k + } + l: { + if ((b >>> 0) % 3 | 0) { + b = (b - 1) | 0 + break l + } + b = (b + 2) | 0 + d = -1 + if ((b | 0) == -1) { + break k + } + } + d = -1 + if ( + (F[ + (F[f >> 2] + ((b >>> 3) & 536870908)) >> 2 + ] >>> + b) & + 1 + ) { + break k + } + b = + F[ + (F[(F[(f + 64) >> 2] + 12) >> 2] + + (b << 2)) >> + 2 + ] + d = -1 + if ((b | 0) == -1) { + break k + } + d = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break k + } + d = (b + 2) | 0 + } + F[(e + 88) >> 2] = d + } + b = F[(e + 88) >> 2] + if ((b | 0) != -1) { + continue + } + break + } + } + b = s >> 31 + f = b ^ r + d = (f - b) | 0 + b = ((b ^ s) - (((b >>> 0 > f >>> 0) + b) | 0)) | 0 + m = -1 + f = 2147483647 + g = q >> 31 + h = g ^ l + j = (h - g) | 0 + n = ((g ^ q) - (((h >>> 0 < g >>> 0) + g) | 0)) | 0 + h = n + k = j ^ -1 + g = h ^ 2147483647 + n = i + m: { + n: { + if (!F[(a + 28) >> 2]) { + if ( + (((b | 0) == (g | 0)) & (d >>> 0 > k >>> 0)) | + (b >>> 0 > g >>> 0) + ) { + break m + } + b = (b + h) | 0 + a = (d + j) | 0 + b = a >>> 0 < j >>> 0 ? (b + 1) | 0 : b + f = a + g = i + a = g >> 31 + d = a + m = d ^ o + a = (m - d) | 0 + i = a + d = ((d ^ g) - (((d >>> 0 > m >>> 0) + d) | 0)) | 0 + a = (a + f) | 0 + d = d ^ 2147483647 + i = + (((d | 0) == (b | 0)) & + ((i ^ -1) >>> 0 < f >>> 0)) | + (b >>> 0 > d >>> 0) + a = i ? -1 : a + if ( + (!(i & 0) & ((a | 0) <= 536870912)) | + ((a | 0) < 536870912) + ) { + break m + } + b = 0 + a = (a >>> 29) | 0 + break n + } + o: { + if ( + (((b | 0) == (g | 0)) & (d >>> 0 > k >>> 0)) | + (b >>> 0 > g >>> 0) + ) { + break o + } + b = (b + h) | 0 + a = (d + j) | 0 + b = a >>> 0 < j >>> 0 ? (b + 1) | 0 : b + k = i + d = i >> 31 + h = d ^ o + i = (h - d) | 0 + j = ((d ^ k) - (((d >>> 0 > h >>> 0) + d) | 0)) | 0 + g = j ^ 2147483647 + d = a + a = i + if ( + (((g | 0) == (b | 0)) & + (d >>> 0 > (a ^ -1) >>> 0)) | + (b >>> 0 > g >>> 0) + ) { + break o + } + b = (b + j) | 0 + m = (a + d) | 0 + b = m >>> 0 < a >>> 0 ? (b + 1) | 0 : b + f = b + if (!b & (m >>> 0 < 536870913)) { + break m + } + } + b = (f >>> 29) | 0 + a = ((f & 536870911) << 3) | (m >>> 29) + } + o = li(o, n, a, b) + l = li(l, q, a, b) + r = li(r, s, a, b) + } + F[(c + 8) >> 2] = o + F[(c + 4) >> 2] = l + F[c >> 2] = r + Z = (e + 96) | 0 + return + } + ta() + v() + } + ta() + v() + } + ta() + v() + } + function te(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + g = (Z - 16) | 0 + Z = g + f = 1 + m = $[F[(F[a >> 2] + 24) >> 2]](a) | 0 + a: { + if ((m | 0) <= 0) { + break a + } + r = (a + 48) | 0 + f = 0 + while (1) { + b: { + c: { + if ( + !F[(($[F[(F[a >> 2] + 28) >> 2]](a) | 0) + 40) >> 2] + ) { + break c + } + o = l << 2 + d = F[(o + F[(a + 36) >> 2]) >> 2] + c = F[(d + 8) >> 2] + e = bb(d) + if (!e) { + break c + } + h = F[(($[F[(F[a >> 2] + 28) >> 2]](a) | 0) + 40) >> 2] + F[(g + 12) >> 2] = F[(c + 56) >> 2] + d = ka(32) + F[g >> 2] = d + F[(g + 4) >> 2] = 24 + F[(g + 8) >> 2] = -2147483616 + c = + G[1196] | + (G[1197] << 8) | + ((G[1198] << 16) | (G[1199] << 24)) + b = + G[1192] | + (G[1193] << 8) | + ((G[1194] << 16) | (G[1195] << 24)) + D[(d + 16) | 0] = b + D[(d + 17) | 0] = b >>> 8 + D[(d + 18) | 0] = b >>> 16 + D[(d + 19) | 0] = b >>> 24 + D[(d + 20) | 0] = c + D[(d + 21) | 0] = c >>> 8 + D[(d + 22) | 0] = c >>> 16 + D[(d + 23) | 0] = c >>> 24 + c = + G[1188] | + (G[1189] << 8) | + ((G[1190] << 16) | (G[1191] << 24)) + b = + G[1184] | + (G[1185] << 8) | + ((G[1186] << 16) | (G[1187] << 24)) + D[(d + 8) | 0] = b + D[(d + 9) | 0] = b >>> 8 + D[(d + 10) | 0] = b >>> 16 + D[(d + 11) | 0] = b >>> 24 + D[(d + 12) | 0] = c + D[(d + 13) | 0] = c >>> 8 + D[(d + 14) | 0] = c >>> 16 + D[(d + 15) | 0] = c >>> 24 + c = + G[1180] | + (G[1181] << 8) | + ((G[1182] << 16) | (G[1183] << 24)) + b = + G[1176] | + (G[1177] << 8) | + ((G[1178] << 16) | (G[1179] << 24)) + D[d | 0] = b + D[(d + 1) | 0] = b >>> 8 + D[(d + 2) | 0] = b >>> 16 + D[(d + 3) | 0] = b >>> 24 + D[(d + 4) | 0] = c + D[(d + 5) | 0] = c >>> 8 + D[(d + 6) | 0] = c >>> 16 + D[(d + 7) | 0] = c >>> 24 + D[(d + 24) | 0] = 0 + c = (h + 16) | 0 + b = F[c >> 2] + d: { + e: { + if (!b) { + break e + } + i = F[(g + 12) >> 2] + d = c + while (1) { + k = (i | 0) > F[(b + 16) >> 2] + d = k ? d : b + b = F[(k ? (b + 4) | 0 : b) >> 2] + if (b) { + continue + } + break + } + if ( + ((c | 0) == (d | 0)) | + ((i | 0) < F[(d + 16) >> 2]) + ) { + break e + } + b = F[(d + 24) >> 2] + if (!b) { + break e + } + i = (d + 20) | 0 + d = G[(g + 11) | 0] + c = (d << 24) >> 24 < 0 + k = c ? F[g >> 2] : g + d = c ? F[(g + 4) >> 2] : d + while (1) { + c = G[(b + 27) | 0] + j = (c << 24) >> 24 < 0 + c = j ? F[(b + 20) >> 2] : c + p = c >>> 0 < d >>> 0 + f: { + g: { + h: { + i: { + j: { + k: { + n = p ? c : d + if (n) { + j = j + ? F[(b + 16) >> 2] + : (b + 16) | 0 + q = sa(k, j, n) + if (q) { + break k + } + if (c >>> 0 <= d >>> 0) { + break j + } + break f + } + if (c >>> 0 <= d >>> 0) { + break i + } + break f + } + if ((q | 0) < 0) { + break f + } + } + c = sa(j, k, n) + if (c) { + break h + } + } + if (p) { + break g + } + d = gc(i, g) + break d + } + if ((c | 0) < 0) { + break g + } + d = gc(i, g) + break d + } + b = (b + 4) | 0 + } + b = F[b >> 2] + if (b) { + continue + } + break + } + } + d = gc(h, g) + } + if (D[(g + 11) | 0] < 0) { + ja(F[g >> 2]) + } + if (!d) { + break c + } + d = 0 + c = F[(F[(o + F[(a + 36) >> 2]) >> 2] + 8) >> 2] + if (!F[(c + 64) >> 2]) { + b = ka(32) + F[(b + 16) >> 2] = 0 + F[(b + 20) >> 2] = 0 + F[(b + 8) >> 2] = 0 + F[b >> 2] = 0 + F[(b + 4) >> 2] = 0 + F[(b + 24) >> 2] = 0 + F[(b + 28) >> 2] = 0 + f = F[(c + 64) >> 2] + F[(c + 64) >> 2] = b + if (f) { + b = F[f >> 2] + if (b) { + F[(f + 4) >> 2] = b + ja(b) + } + ja(f) + b = F[(c + 64) >> 2] + } + F[c >> 2] = b + f = F[(b + 20) >> 2] + F[(c + 8) >> 2] = F[(b + 16) >> 2] + F[(c + 12) >> 2] = f + f = F[(b + 24) >> 2] + b = F[(b + 28) >> 2] + F[(c + 48) >> 2] = 0 + F[(c + 52) >> 2] = 0 + F[(c + 40) >> 2] = 0 + F[(c + 44) >> 2] = 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = b + } + l: { + D[(c + 24) | 0] = G[(e + 24) | 0] + F[(c + 28) >> 2] = F[(e + 28) >> 2] + D[(c + 32) | 0] = G[(e + 32) | 0] + b = F[(e + 44) >> 2] + F[(c + 40) >> 2] = F[(e + 40) >> 2] + F[(c + 44) >> 2] = b + b = F[(e + 52) >> 2] + F[(c + 48) >> 2] = F[(e + 48) >> 2] + F[(c + 52) >> 2] = b + F[(c + 56) >> 2] = F[(e + 56) >> 2] + b = F[(e + 12) >> 2] + F[(c + 8) >> 2] = F[(e + 8) >> 2] + F[(c + 12) >> 2] = b + b = F[(e + 20) >> 2] + F[(c + 16) >> 2] = F[(e + 16) >> 2] + F[(c + 20) >> 2] = b + F[(c + 60) >> 2] = F[(e + 60) >> 2] + f = F[e >> 2] + m: { + if (!f) { + F[c >> 2] = 0 + b = 1 + break m + } + h = F[c >> 2] + b = 0 + if (!h) { + break m + } + b = F[f >> 2] + f = (F[(f + 4) >> 2] - b) | 0 + md(h, b, f, 0) + b = 1 + } + if (!b) { + break l + } + D[(c + 84) | 0] = G[(e + 84) | 0] + F[(c + 80) >> 2] = F[(e + 80) >> 2] + if ((c | 0) != (e | 0)) { + gb((c + 68) | 0, F[(e + 68) >> 2], F[(e + 72) >> 2]) + } + n: { + h = F[(e + 88) >> 2] + o: { + if (h) { + f = ka(40) + e = F[h >> 2] + F[(f + 16) >> 2] = 0 + F[(f + 8) >> 2] = 0 + F[(f + 12) >> 2] = 0 + F[f >> 2] = e + e = F[(h + 12) >> 2] + b = F[(h + 8) >> 2] + if ((e | 0) != (b | 0)) { + b = (e - b) | 0 + if ((b | 0) < 0) { + break n + } + e = ka(b) + F[(f + 12) >> 2] = e + F[(f + 8) >> 2] = e + F[(f + 16) >> 2] = b + e + b = F[(h + 8) >> 2] + i = F[(h + 12) >> 2] + p: { + if ((b | 0) == (i | 0)) { + break p + } + k = (i + (b ^ -1)) | 0 + j = (i - b) & 7 + if (j) { + while (1) { + D[e | 0] = G[b | 0] + e = (e + 1) | 0 + b = (b + 1) | 0 + d = (d + 1) | 0 + if ((j | 0) != (d | 0)) { + continue + } + break + } + } + if (k >>> 0 < 7) { + break p + } + while (1) { + D[e | 0] = G[b | 0] + D[(e + 1) | 0] = G[(b + 1) | 0] + D[(e + 2) | 0] = G[(b + 2) | 0] + D[(e + 3) | 0] = G[(b + 3) | 0] + D[(e + 4) | 0] = G[(b + 4) | 0] + D[(e + 5) | 0] = G[(b + 5) | 0] + D[(e + 6) | 0] = G[(b + 6) | 0] + D[(e + 7) | 0] = G[(b + 7) | 0] + e = (e + 8) | 0 + b = (b + 8) | 0 + if ((i | 0) != (b | 0)) { + continue + } + break + } + } + F[(f + 12) >> 2] = e + } + d = F[(h + 36) >> 2] + F[(f + 32) >> 2] = F[(h + 32) >> 2] + F[(f + 36) >> 2] = d + d = F[(h + 28) >> 2] + F[(f + 24) >> 2] = F[(h + 24) >> 2] + F[(f + 28) >> 2] = d + e = F[(c + 88) >> 2] + F[(c + 88) >> 2] = f + if (e) { + break o + } + break l + } + e = F[(c + 88) >> 2] + F[(c + 88) >> 2] = 0 + if (!e) { + break l + } + } + d = F[(e + 8) >> 2] + if (d) { + F[(e + 12) >> 2] = d + ja(d) + } + ja(e) + break l + } + na() + v() + } + break b + } + d = F[(F[(a + 36) >> 2] + (l << 2)) >> 2] + if (!($[F[(F[d >> 2] + 24) >> 2]](d, r) | 0)) { + break a + } + } + l = (l + 1) | 0 + f = (m | 0) <= (l | 0) + if ((l | 0) != (m | 0)) { + continue + } + break + } + } + Z = (g + 16) | 0 + return f | 0 + } + function Jg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + f = (Z - 32) | 0 + Z = f + a: { + if (!hb(1, (f + 28) | 0, F[(a + 32) >> 2])) { + break a + } + if (!hb(1, (f + 24) | 0, F[(a + 32) >> 2])) { + break a + } + l = F[(f + 28) >> 2] + if (l >>> 0 > 1431655765) { + break a + } + d = F[(a + 32) >> 2] + c = d + i = F[(c + 8) >> 2] + b = F[(c + 16) >> 2] + h = F[(c + 12) >> 2] + c = F[(c + 20) >> 2] + g = li( + (i - b) | 0, + (h - ((c + (b >>> 0 > i >>> 0)) | 0)) | 0, + 3, + 0, + ) + if (!_ & (g >>> 0 < l >>> 0)) { + break a + } + n = F[(f + 24) >> 2] + g = ki(l, 0, 3, 0) + if ( + (!_ & (g >>> 0 < n >>> 0)) | + ((((c | 0) >= (h | 0)) & (b >>> 0 >= i >>> 0)) | + ((c | 0) > (h | 0))) + ) { + break a + } + i = G[(b + F[d >> 2]) | 0] + b = (b + 1) | 0 + c = b ? c : (c + 1) | 0 + F[(d + 16) >> 2] = b + F[(d + 20) >> 2] = c + b: { + c: { + if (!i) { + d = 0 + c = (Z - 32) | 0 + Z = c + F[(c + 24) >> 2] = 0 + F[(c + 16) >> 2] = 0 + F[(c + 20) >> 2] = 0 + d: { + e: { + b = L(l, 3) + if (b) { + if (b >>> 0 >= 1073741824) { + break e + } + i = L(l, 12) + d = ka(i) + ma(d, 0, i) + } + b = mc(b, 1, F[(a + 32) >> 2], d) + f: { + g: { + if (!(!l | !b)) { + i = 0 + while (1) { + h: { + g = e + b = ((i << 2) + d) | 0 + h = F[b >> 2] + e = (h >>> 1) | 0 + h = (g + (h & 1 ? (0 - e) | 0 : e)) | 0 + if ((h | 0) < 0) { + break h + } + F[c >> 2] = h + e = F[(b + 4) >> 2] + g = (e >>> 1) | 0 + h = (h + (e & 1 ? (0 - g) | 0 : g)) | 0 + if ((h | 0) < 0) { + break h + } + F[(c + 4) >> 2] = h + b = F[(b + 8) >> 2] + e = (b >>> 1) | 0 + e = (h + (b & 1 ? (0 - e) | 0 : e)) | 0 + if ((e | 0) < 0) { + break h + } + F[(c + 8) >> 2] = e + mb((F[(a + 44) >> 2] + 96) | 0, c) + i = (i + 3) | 0 + b = 1 + j = (j + 1) | 0 + if ((j | 0) != (l | 0)) { + continue + } + break g + } + break + } + b = 0 + break g + } + if (!d) { + break f + } + } + ja(d) + } + Z = (c + 32) | 0 + break d + } + na() + v() + } + if (b) { + break c + } + break a + } + if (n >>> 0 <= 255) { + if (!l) { + break c + } + while (1) { + i: { + F[(f + 16) >> 2] = 0 + F[(f + 8) >> 2] = 0 + F[(f + 12) >> 2] = 0 + d = F[(a + 32) >> 2] + b = d + i = F[(b + 16) >> 2] + e = F[(b + 8) >> 2] + c = F[(b + 20) >> 2] + g = F[(b + 12) >> 2] + b = g + if ( + ((e >>> 0 <= i >>> 0) & ((c | 0) >= (b | 0))) | + ((b | 0) < (c | 0)) + ) { + break i + } + j = F[d >> 2] + m = G[(j + i) | 0] + b = c + h = (i + 1) | 0 + b = h ? b : (b + 1) | 0 + F[(d + 16) >> 2] = h + F[(d + 20) >> 2] = b + F[(f + 8) >> 2] = m + m = + ((e >>> 0 < i >>> 0) & ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + e = m ? i : e + g = m ? c : g + if (((e | 0) == (h | 0)) & ((g | 0) == (b | 0))) { + break i + } + m = G[(h + j) | 0] + b = c + h = (i + 2) | 0 + b = h >>> 0 < 2 ? (b + 1) | 0 : b + F[(d + 16) >> 2] = h + F[(d + 20) >> 2] = b + F[(f + 12) >> 2] = m + if (((e | 0) == (h | 0)) & ((b | 0) == (g | 0))) { + break i + } + h = G[(h + j) | 0] + b = c + c = (i + 3) | 0 + b = c >>> 0 < 3 ? (b + 1) | 0 : b + F[(d + 16) >> 2] = c + F[(d + 20) >> 2] = b + F[(f + 16) >> 2] = h + mb((F[(a + 44) >> 2] + 96) | 0, (f + 8) | 0) + k = (k + 1) | 0 + if ((l | 0) != (k | 0)) { + continue + } + break c + } + break + } + k = 0 + break a + } + if (n >>> 0 <= 65535) { + if (!l) { + break c + } + while (1) { + j: { + F[(f + 16) >> 2] = 0 + F[(f + 8) >> 2] = 0 + F[(f + 12) >> 2] = 0 + j = F[(a + 32) >> 2] + b = j + c = F[(b + 8) >> 2] + d = F[(b + 12) >> 2] + h = F[(b + 16) >> 2] + b = F[(b + 20) >> 2] + i = b + e = (h + 2) | 0 + b = e >>> 0 < 2 ? (b + 1) | 0 : b + if ( + ((c >>> 0 < e >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break j + } + m = F[j >> 2] + g = (m + h) | 0 + g = G[g | 0] | (G[(g + 1) | 0] << 8) + F[(j + 16) >> 2] = e + F[(j + 20) >> 2] = b + F[(f + 8) >> 2] = g + b = i + g = (h + 4) | 0 + b = g >>> 0 < 4 ? (b + 1) | 0 : b + if ( + ((c >>> 0 < g >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break j + } + e = (e + m) | 0 + e = G[e | 0] | (G[(e + 1) | 0] << 8) + F[(j + 16) >> 2] = g + F[(j + 20) >> 2] = b + F[(f + 12) >> 2] = e + e = c + b = i + c = (h + 6) | 0 + b = c >>> 0 < 6 ? (b + 1) | 0 : b + if ( + ((c >>> 0 > e >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break j + } + d = (g + m) | 0 + d = G[d | 0] | (G[(d + 1) | 0] << 8) + F[(j + 16) >> 2] = c + F[(j + 20) >> 2] = b + F[(f + 16) >> 2] = d + mb((F[(a + 44) >> 2] + 96) | 0, (f + 8) | 0) + k = (k + 1) | 0 + if ((l | 0) != (k | 0)) { + continue + } + break c + } + break + } + k = 0 + break a + } + k: { + if (n >>> 0 > 2097151) { + break k + } + b = H[(a + 36) >> 1] + if ((((b << 8) | (b >>> 8)) & 65535) >>> 0 < 514) { + break k + } + if (!l) { + break c + } + while (1) { + l: { + F[(f + 16) >> 2] = 0 + F[(f + 8) >> 2] = 0 + F[(f + 12) >> 2] = 0 + if (!hb(1, (f + 4) | 0, F[(a + 32) >> 2])) { + break l + } + F[(f + 8) >> 2] = F[(f + 4) >> 2] + if (!hb(1, (f + 4) | 0, F[(a + 32) >> 2])) { + break l + } + F[(f + 12) >> 2] = F[(f + 4) >> 2] + if (!hb(1, (f + 4) | 0, F[(a + 32) >> 2])) { + break l + } + F[(f + 16) >> 2] = F[(f + 4) >> 2] + mb((F[(a + 44) >> 2] + 96) | 0, (f + 8) | 0) + k = (k + 1) | 0 + if ((l | 0) != (k | 0)) { + continue + } + break c + } + break + } + k = 0 + break a + } + if (!l) { + break c + } + while (1) { + F[(f + 16) >> 2] = 0 + F[(f + 8) >> 2] = 0 + F[(f + 12) >> 2] = 0 + j = F[(a + 32) >> 2] + b = j + c = F[(b + 8) >> 2] + d = F[(b + 12) >> 2] + h = F[(b + 16) >> 2] + b = F[(b + 20) >> 2] + i = b + e = (h + 4) | 0 + b = e >>> 0 < 4 ? (b + 1) | 0 : b + if ( + ((c >>> 0 < e >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break b + } + m = F[j >> 2] + g = (m + h) | 0 + g = + G[g | 0] | + (G[(g + 1) | 0] << 8) | + ((G[(g + 2) | 0] << 16) | (G[(g + 3) | 0] << 24)) + F[(j + 16) >> 2] = e + F[(j + 20) >> 2] = b + F[(f + 8) >> 2] = g + b = i + g = (h + 8) | 0 + b = g >>> 0 < 8 ? (b + 1) | 0 : b + if ( + ((c >>> 0 < g >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break b + } + e = (e + m) | 0 + e = + G[e | 0] | + (G[(e + 1) | 0] << 8) | + ((G[(e + 2) | 0] << 16) | (G[(e + 3) | 0] << 24)) + F[(j + 16) >> 2] = g + F[(j + 20) >> 2] = b + F[(f + 12) >> 2] = e + e = c + b = i + c = (h + 12) | 0 + b = c >>> 0 < 12 ? (b + 1) | 0 : b + if ( + ((c >>> 0 > e >>> 0) & ((b | 0) >= (d | 0))) | + ((b | 0) > (d | 0)) + ) { + break b + } + d = (g + m) | 0 + d = + G[d | 0] | + (G[(d + 1) | 0] << 8) | + ((G[(d + 2) | 0] << 16) | (G[(d + 3) | 0] << 24)) + F[(j + 16) >> 2] = c + F[(j + 20) >> 2] = b + F[(f + 16) >> 2] = d + mb((F[(a + 44) >> 2] + 96) | 0, (f + 8) | 0) + k = (k + 1) | 0 + if ((l | 0) != (k | 0)) { + continue + } + break + } + } + F[(F[(a + 4) >> 2] + 80) >> 2] = n + k = 1 + break a + } + k = 0 + } + Z = (f + 32) | 0 + return k | 0 + } + function Ld(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + g = (Z + -64) | 0 + Z = g + F[(g + 56) >> 2] = 0 + F[(g + 48) >> 2] = 0 + F[(g + 52) >> 2] = 0 + F[(g + 40) >> 2] = 0 + F[(g + 44) >> 2] = 0 + F[(g + 32) >> 2] = 0 + F[(g + 36) >> 2] = 0 + F[(g + 24) >> 2] = 0 + F[(g + 28) >> 2] = 0 + F[(g + 16) >> 2] = 0 + F[(g + 20) >> 2] = 0 + F[(g + 8) >> 2] = 0 + F[(g + 12) >> 2] = 0 + h = (g + 8) | 0 + a: { + b: { + if (!H[(b + 38) >> 1]) { + break b + } + if (!Ta(1, (h + 12) | 0, b)) { + break b + } + e = F[(b + 8) >> 2] + f = F[(b + 16) >> 2] + j = (e - f) | 0 + k = F[(h + 12) >> 2] + e = + (F[(b + 12) >> 2] - + ((F[(b + 20) >> 2] + (e >>> 0 < f >>> 0)) | 0)) | + 0 + if ( + ((j >>> 0 < (k >>> 6) >>> 0) & ((e | 0) <= 0)) | + ((e | 0) < 0) + ) { + break b + } + e = F[h >> 2] + d = (F[(h + 4) >> 2] - e) >> 2 + c: { + if (d >>> 0 < k >>> 0) { + qa(h, (k - d) | 0) + k = F[(h + 12) >> 2] + break c + } + if (d >>> 0 <= k >>> 0) { + break c + } + F[(h + 4) >> 2] = e + (k << 2) + } + i = 1 + if (!k) { + break a + } + e = F[(b + 16) >> 2] + d = F[(b + 20) >> 2] + r = F[h >> 2] + l = F[(b + 8) >> 2] + o = F[(b + 12) >> 2] + j = 0 + while (1) { + i = 0 + if ( + (((d | 0) >= (o | 0)) & (e >>> 0 >= l >>> 0)) | + ((d | 0) > (o | 0)) + ) { + break a + } + i = F[b >> 2] + p = G[(i + e) | 0] + e = (e + 1) | 0 + d = e ? d : (d + 1) | 0 + F[(b + 16) >> 2] = e + F[(b + 20) >> 2] = d + f = (p >>> 2) | 0 + m = 0 + d: { + e: { + f: { + g: { + s = p & 3 + switch (s | 0) { + case 3: + break g + case 0: + break e + default: + break f + } + } + f = (f + j) | 0 + i = 0 + if (f >>> 0 >= k >>> 0) { + break a + } + ma((r + (j << 2)) | 0, 0, ((p & 252) + 4) | 0) + j = f + break d + } + while (1) { + if (((e | 0) == (l | 0)) & ((d | 0) == (o | 0))) { + break b + } + k = G[(e + i) | 0] + e = (e + 1) | 0 + d = e ? d : (d + 1) | 0 + F[(b + 16) >> 2] = e + F[(b + 20) >> 2] = d + f = (k << ((m << 3) | 6)) | f + m = (m + 1) | 0 + if ((s | 0) != (m | 0)) { + continue + } + break + } + } + F[(r + (j << 2)) >> 2] = f + } + j = (j + 1) | 0 + k = F[(h + 12) >> 2] + if (j >>> 0 < k >>> 0) { + continue + } + break + } + d = (h + 16) | 0 + o = F[h >> 2] + f = F[(h + 16) >> 2] + e = (F[(h + 20) >> 2] - f) | 0 + h: { + if (e >>> 0 <= 4194303) { + qa(d, (1048576 - ((e >>> 2) | 0)) | 0) + break h + } + if ((e | 0) == 4194304) { + break h + } + F[(h + 20) >> 2] = f + 4194304 + } + e = (h + 28) | 0 + j = F[e >> 2] + f = (F[(h + 32) >> 2] - j) >> 3 + i: { + if (f >>> 0 < k >>> 0) { + _a(e, (k - f) | 0) + j = F[e >> 2] + break i + } + if (f >>> 0 > k >>> 0) { + F[(h + 32) >> 2] = (k << 3) + j + } + if (!k) { + break b + } + } + l = F[d >> 2] + d = 0 + i = 0 + while (1) { + e = (o + (d << 2)) | 0 + h = F[e >> 2] + m = ((d << 3) + j) | 0 + f = i + F[(m + 4) >> 2] = f + F[m >> 2] = h + e = F[e >> 2] + i = (e + f) | 0 + if (i >>> 0 > 1048576) { + break b + } + j: { + if (f >>> 0 >= i >>> 0) { + break j + } + m = 0 + h = e & 7 + if (h) { + while (1) { + F[(l + (f << 2)) >> 2] = d + f = (f + 1) | 0 + m = (m + 1) | 0 + if ((h | 0) != (m | 0)) { + continue + } + break + } + } + if ((e - 1) >>> 0 <= 6) { + break j + } + while (1) { + e = (l + (f << 2)) | 0 + F[e >> 2] = d + F[(e + 28) >> 2] = d + F[(e + 24) >> 2] = d + F[(e + 20) >> 2] = d + F[(e + 16) >> 2] = d + F[(e + 12) >> 2] = d + F[(e + 8) >> 2] = d + F[(e + 4) >> 2] = d + f = (f + 8) | 0 + if ((i | 0) != (f | 0)) { + continue + } + break + } + } + d = (d + 1) | 0 + if ((k | 0) != (d | 0)) { + continue + } + break + } + n = (i | 0) == 1048576 + } + i = n + } + k: { + if (!i | (F[(g + 20) >> 2] ? 0 : a)) { + break k + } + i = 0 + j = (Z - 16) | 0 + Z = j + l: { + if (!Sa(1, (j + 8) | 0, b)) { + break l + } + d = F[(b + 8) >> 2] + f = F[(b + 16) >> 2] + l = (d - f) | 0 + n = F[(j + 12) >> 2] + h = F[(b + 20) >> 2] + d = (F[(b + 12) >> 2] - ((h + (d >>> 0 < f >>> 0)) | 0)) | 0 + e = F[(j + 8) >> 2] + if ( + (((n | 0) == (d | 0)) & (e >>> 0 > l >>> 0)) | + (d >>> 0 < n >>> 0) + ) { + break l + } + d = (h + n) | 0 + l = (e + f) | 0 + d = l >>> 0 < f >>> 0 ? (d + 1) | 0 : d + F[(b + 16) >> 2] = l + F[(b + 20) >> 2] = d + if ((e | 0) <= 0) { + break l + } + b = (f + F[b >> 2]) | 0 + F[(g + 48) >> 2] = b + d = (e - 1) | 0 + f = (d + b) | 0 + l = G[f | 0] + m: { + if (l >>> 0 <= 63) { + F[(g + 52) >> 2] = d + b = G[f | 0] & 63 + break m + } + n: { + switch ((((l >>> 6) | 0) - 1) | 0) { + case 0: + if (e >>> 0 < 2) { + break l + } + d = (e - 2) | 0 + F[(g + 52) >> 2] = d + b = (b + d) | 0 + b = ((G[(b + 1) | 0] << 8) & 16128) | G[b | 0] + break m + case 1: + if (e >>> 0 < 3) { + break l + } + d = (e - 3) | 0 + F[(g + 52) >> 2] = d + b = (b + d) | 0 + b = + (G[(b + 1) | 0] << 8) | + ((G[(b + 2) | 0] << 16) & 4128768) | + G[b | 0] + break m + default: + break n + } + } + d = (e - 4) | 0 + F[(g + 52) >> 2] = d + b = (b + d) | 0 + b = + (G[b | 0] | + (G[(b + 1) | 0] << 8) | + ((G[(b + 2) | 0] << 16) | (G[(b + 3) | 0] << 24))) & + 1073741823 + } + F[(g + 56) >> 2] = b + 4194304 + i = b >>> 0 < 1069547520 + } + Z = (j + 16) | 0 + if (!i) { + break k + } + if (!a) { + t = 1 + break k + } + b = F[(g + 52) >> 2] + f = F[(g + 56) >> 2] + d = F[(g + 36) >> 2] + e = F[(g + 48) >> 2] + j = F[(g + 24) >> 2] + while (1) { + o: { + if (f >>> 0 > 4194303) { + break o + } + while (1) { + if ((b | 0) <= 0) { + break o + } + b = (b - 1) | 0 + F[(g + 52) >> 2] = b + f = G[(b + e) | 0] | (f << 8) + F[(g + 56) >> 2] = f + if (f >>> 0 < 4194304) { + continue + } + break + } + } + i = f & 1048575 + l = F[(j + (i << 2)) >> 2] + n = (d + (l << 3)) | 0 + f = + (((L(F[n >> 2], (f >>> 20) | 0) + i) | 0) - + F[(n + 4) >> 2]) | + 0 + F[(g + 56) >> 2] = f + F[((q << 2) + c) >> 2] = l + t = 1 + q = (q + 1) | 0 + if ((q | 0) != (a | 0)) { + continue + } + break + } + } + a = F[(g + 36) >> 2] + if (a) { + F[(g + 40) >> 2] = a + ja(a) + } + a = F[(g + 24) >> 2] + if (a) { + F[(g + 28) >> 2] = a + ja(a) + } + a = F[(g + 8) >> 2] + if (a) { + F[(g + 12) >> 2] = a + ja(a) + } + Z = (g - -64) | 0 + return t + } + function kh(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = M(0), + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = M(0), + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0 + if (F[c >> 2] == F[(c + 4) >> 2]) { + m = F[(d + 80) >> 2] + u = (Z - 16) | 0 + Z = u + g = F[(a + 4) >> 2] + k = G[(b + 24) | 0] + h = F[(d + 48) >> 2] + n = F[F[d >> 2] >> 2] + c = (u + 8) | 0 + F[c >> 2] = 1065353216 + d = c + J[c >> 2] = M((-1 << g) ^ -1) / J[(a + 20) >> 2] + c = ka(k << 2) + a: { + if (!m | !k) { + break a + } + p = (h + n) | 0 + o = J[d >> 2] + n = F[(a + 8) >> 2] + v = F[b >> 2] + d = F[(b + 48) >> 2] + g = F[(b + 40) >> 2] + w = F[(b + 44) >> 2] + if (!G[(b + 84) | 0]) { + f = F[(b + 68) >> 2] + s = k & 254 + t = k & 1 + a = 0 + while (1) { + b = F[v >> 2] + l = (ki(g, w, F[(f + (i << 2)) >> 2], 0) + d) | 0 + h = la(c, (b + l) | 0, g) + b = 0 + q = 0 + if ((k | 0) != 1) { + while (1) { + l = (p + (a << 2)) | 0 + j = b << 2 + e = M( + R( + M( + M(o * M(J[(j + h) >> 2] - J[(n + j) >> 2])) + + M(0.5), + ), + ), + ) + b: { + if (M(N(e)) < M(2147483648)) { + r = ~~e + break b + } + r = -2147483648 + } + F[l >> 2] = r + j = j | 4 + e = M( + R( + M( + M(o * M(J[(j + h) >> 2] - J[(n + j) >> 2])) + + M(0.5), + ), + ), + ) + c: { + if (M(N(e)) < M(2147483648)) { + j = ~~e + break c + } + j = -2147483648 + } + F[(l + 4) >> 2] = j + b = (b + 2) | 0 + a = (a + 2) | 0 + q = (q + 2) | 0 + if ((s | 0) != (q | 0)) { + continue + } + break + } + } + if (t) { + l = (p + (a << 2)) | 0 + b = b << 2 + e = M( + R( + M( + M(o * M(J[(b + h) >> 2] - J[(b + n) >> 2])) + + M(0.5), + ), + ), + ) + d: { + if (M(N(e)) < M(2147483648)) { + b = ~~e + break d + } + b = -2147483648 + } + F[l >> 2] = b + a = (a + 1) | 0 + } + i = (i + 1) | 0 + if ((m | 0) != (i | 0)) { + continue + } + break + } + break a + } + s = k & 254 + t = k & 1 + a = 0 + while (1) { + b = F[v >> 2] + h = (ki(g, w, i, l) + d) | 0 + j = la(c, (b + h) | 0, g) + b = 0 + q = 0 + if ((k | 0) != 1) { + while (1) { + h = (p + (a << 2)) | 0 + f = b << 2 + e = M( + R( + M( + M(o * M(J[(f + j) >> 2] - J[(f + n) >> 2])) + + M(0.5), + ), + ), + ) + e: { + if (M(N(e)) < M(2147483648)) { + r = ~~e + break e + } + r = -2147483648 + } + F[h >> 2] = r + f = f | 4 + e = M( + R( + M( + M(o * M(J[(f + j) >> 2] - J[(f + n) >> 2])) + + M(0.5), + ), + ), + ) + f: { + if (M(N(e)) < M(2147483648)) { + f = ~~e + break f + } + f = -2147483648 + } + F[(h + 4) >> 2] = f + b = (b + 2) | 0 + a = (a + 2) | 0 + q = (q + 2) | 0 + if ((s | 0) != (q | 0)) { + continue + } + break + } + } + if (t) { + h = (p + (a << 2)) | 0 + b = b << 2 + e = M( + R( + M( + M(o * M(J[(b + j) >> 2] - J[(b + n) >> 2])) + + M(0.5), + ), + ), + ) + g: { + if (M(N(e)) < M(2147483648)) { + b = ~~e + break g + } + b = -2147483648 + } + F[h >> 2] = b + a = (a + 1) | 0 + } + b = l + i = (i + 1) | 0 + b = i ? b : (b + 1) | 0 + l = b + if (((i | 0) != (m | 0)) | b) { + continue + } + break + } + } + ja(c) + Z = (u + 16) | 0 + return 1 + } + j = (Z - 16) | 0 + Z = j + m = F[(a + 4) >> 2] + i = G[(b + 24) | 0] + g = F[(d + 48) >> 2] + h = F[F[d >> 2] >> 2] + d = (j + 8) | 0 + F[d >> 2] = 1065353216 + l = d + J[d >> 2] = M((-1 << m) ^ -1) / J[(a + 20) >> 2] + d = ka(i << 2) + m = F[(c + 4) >> 2] + q = F[c >> 2] + h: { + if (!i | ((m | 0) == (q | 0))) { + break h + } + n = (h + g) | 0 + c = (m - q) >> 2 + u = c >>> 0 <= 1 ? 1 : c + o = J[l >> 2] + h = F[(a + 8) >> 2] + v = F[b >> 2] + l = F[(b + 48) >> 2] + m = F[(b + 40) >> 2] + w = F[(b + 44) >> 2] + if (G[(b + 84) | 0]) { + s = i & 254 + t = i & 1 + a = 0 + c = 0 + while (1) { + b = F[v >> 2] + g = (ki(m, w, F[(q + (c << 2)) >> 2], 0) + l) | 0 + p = la(d, (b + g) | 0, m) + b = 0 + k = 0 + if ((i | 0) != 1) { + while (1) { + g = (n + (a << 2)) | 0 + f = b << 2 + e = M( + R( + M( + M(o * M(J[(f + p) >> 2] - J[(h + f) >> 2])) + + M(0.5), + ), + ), + ) + i: { + if (M(N(e)) < M(2147483648)) { + r = ~~e + break i + } + r = -2147483648 + } + F[g >> 2] = r + f = f | 4 + e = M( + R( + M( + M(o * M(J[(f + p) >> 2] - J[(h + f) >> 2])) + + M(0.5), + ), + ), + ) + j: { + if (M(N(e)) < M(2147483648)) { + f = ~~e + break j + } + f = -2147483648 + } + F[(g + 4) >> 2] = f + b = (b + 2) | 0 + a = (a + 2) | 0 + k = (k + 2) | 0 + if ((s | 0) != (k | 0)) { + continue + } + break + } + } + if (t) { + g = (n + (a << 2)) | 0 + b = b << 2 + e = M( + R( + M( + M(o * M(J[(b + p) >> 2] - J[(b + h) >> 2])) + + M(0.5), + ), + ), + ) + k: { + if (M(N(e)) < M(2147483648)) { + b = ~~e + break k + } + b = -2147483648 + } + F[g >> 2] = b + a = (a + 1) | 0 + } + c = (c + 1) | 0 + if ((u | 0) != (c | 0)) { + continue + } + break + } + break h + } + s = F[(b + 68) >> 2] + t = i & 254 + x = i & 1 + a = 0 + c = 0 + while (1) { + b = F[v >> 2] + g = + (ki( + m, + w, + F[(s + (F[(q + (c << 2)) >> 2] << 2)) >> 2], + 0, + ) + + l) | + 0 + p = la(d, (b + g) | 0, m) + b = 0 + k = 0 + if ((i | 0) != 1) { + while (1) { + g = (n + (a << 2)) | 0 + f = b << 2 + e = M( + R( + M( + M(o * M(J[(f + p) >> 2] - J[(h + f) >> 2])) + + M(0.5), + ), + ), + ) + l: { + if (M(N(e)) < M(2147483648)) { + r = ~~e + break l + } + r = -2147483648 + } + F[g >> 2] = r + f = f | 4 + e = M( + R( + M( + M(o * M(J[(f + p) >> 2] - J[(h + f) >> 2])) + + M(0.5), + ), + ), + ) + m: { + if (M(N(e)) < M(2147483648)) { + f = ~~e + break m + } + f = -2147483648 + } + F[(g + 4) >> 2] = f + b = (b + 2) | 0 + a = (a + 2) | 0 + k = (k + 2) | 0 + if ((t | 0) != (k | 0)) { + continue + } + break + } + } + if (x) { + g = (n + (a << 2)) | 0 + b = b << 2 + e = M( + R( + M( + M(o * M(J[(b + p) >> 2] - J[(b + h) >> 2])) + + M(0.5), + ), + ), + ) + n: { + if (M(N(e)) < M(2147483648)) { + b = ~~e + break n + } + b = -2147483648 + } + F[g >> 2] = b + a = (a + 1) | 0 + } + c = (c + 1) | 0 + if ((u | 0) != (c | 0)) { + continue + } + break + } + } + ja(d) + Z = (j + 16) | 0 + return 1 + } + function Cd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + c = F[(a + 4) >> 2] + e = F[a >> 2] + f = (((c - e) | 0) / 144) | 0 + if (f >>> 0 < b >>> 0) { + e = a + b = (b - f) | 0 + h = F[(a + 8) >> 2] + c = F[(a + 4) >> 2] + a: { + if (b >>> 0 <= (((h - c) | 0) / 144) >>> 0) { + b: { + if (!b) { + break b + } + a = c + f = b & 7 + if (f) { + while (1) { + va(a) + a = (a + 144) | 0 + d = (d + 1) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + } + c = (L(b, 144) + c) | 0 + if (((b - 1) & 268435455) >>> 0 < 7) { + break b + } + while (1) { + va(a) + va((a + 144) | 0) + va((a + 288) | 0) + va((a + 432) | 0) + va((a + 576) | 0) + va((a + 720) | 0) + va((a + 864) | 0) + va((a + 1008) | 0) + a = (a + 1152) | 0 + if ((c | 0) != (a | 0)) { + continue + } + break + } + } + F[(e + 4) >> 2] = c + break a + } + c: { + d: { + e: { + a = c + c = F[e >> 2] + i = (((a - c) | 0) / 144) | 0 + a = (i + b) | 0 + if (a >>> 0 < 29826162) { + c = (((h - c) | 0) / 144) | 0 + f = c << 1 + f = + c >>> 0 >= 14913080 + ? 29826161 + : a >>> 0 < f >>> 0 + ? f + : a + if (f) { + if (f >>> 0 >= 29826162) { + break e + } + g = ka(L(f, 144)) + } + c = (L(i, 144) + g) | 0 + a = c + h = b & 7 + if (h) { + while (1) { + va(a) + a = (a + 144) | 0 + d = (d + 1) | 0 + if ((h | 0) != (d | 0)) { + continue + } + break + } + } + h = (L(b, 144) + c) | 0 + if (((b - 1) & 268435455) >>> 0 >= 7) { + while (1) { + va(a) + va((a + 144) | 0) + va((a + 288) | 0) + va((a + 432) | 0) + va((a + 576) | 0) + va((a + 720) | 0) + va((a + 864) | 0) + va((a + 1008) | 0) + a = (a + 1152) | 0 + if ((h | 0) != (a | 0)) { + continue + } + break + } + } + b = (L(f, 144) + g) | 0 + d = F[(e + 4) >> 2] + f = F[e >> 2] + if ((d | 0) == (f | 0)) { + break d + } + while (1) { + c = (c - 144) | 0 + d = (d - 144) | 0 + a = d + F[c >> 2] = F[a >> 2] + F[(c + 4) >> 2] = F[(a + 4) >> 2] + F[(c + 8) >> 2] = F[(a + 8) >> 2] + F[(c + 12) >> 2] = F[(a + 12) >> 2] + F[(a + 12) >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[(c + 16) >> 2] = F[(a + 16) >> 2] + F[(c + 20) >> 2] = F[(a + 20) >> 2] + F[(c + 24) >> 2] = F[(a + 24) >> 2] + F[(a + 24) >> 2] = 0 + F[(a + 16) >> 2] = 0 + F[(a + 20) >> 2] = 0 + g = G[(a + 28) | 0] + F[(c + 40) >> 2] = 0 + F[(c + 32) >> 2] = 0 + F[(c + 36) >> 2] = 0 + D[(c + 28) | 0] = g + F[(c + 32) >> 2] = F[(a + 32) >> 2] + F[(c + 36) >> 2] = F[(a + 36) >> 2] + F[(c + 40) >> 2] = F[(a + 40) >> 2] + F[(a + 40) >> 2] = 0 + F[(a + 32) >> 2] = 0 + F[(a + 36) >> 2] = 0 + F[(c + 52) >> 2] = 0 + F[(c + 44) >> 2] = 0 + F[(c + 48) >> 2] = 0 + F[(c + 44) >> 2] = F[(a + 44) >> 2] + F[(c + 48) >> 2] = F[(a + 48) >> 2] + F[(c + 52) >> 2] = F[(a + 52) >> 2] + F[(a + 52) >> 2] = 0 + F[(a + 44) >> 2] = 0 + F[(a + 48) >> 2] = 0 + g = (c - -64) | 0 + F[g >> 2] = 0 + F[(c + 56) >> 2] = 0 + F[(c + 60) >> 2] = 0 + F[(c + 56) >> 2] = F[(a + 56) >> 2] + F[(c + 60) >> 2] = F[(a + 60) >> 2] + i = g + g = (a - -64) | 0 + F[i >> 2] = F[g >> 2] + F[g >> 2] = 0 + F[(a + 56) >> 2] = 0 + F[(a + 60) >> 2] = 0 + F[(c + 68) >> 2] = F[(a + 68) >> 2] + g = F[(a + 72) >> 2] + F[(c + 84) >> 2] = 0 + F[(c + 76) >> 2] = 0 + F[(c + 80) >> 2] = 0 + F[(c + 72) >> 2] = g + F[(c + 76) >> 2] = F[(a + 76) >> 2] + F[(c + 80) >> 2] = F[(a + 80) >> 2] + F[(c + 84) >> 2] = F[(a + 84) >> 2] + F[(a + 84) >> 2] = 0 + F[(a + 76) >> 2] = 0 + F[(a + 80) >> 2] = 0 + F[(c + 96) >> 2] = 0 + F[(c + 88) >> 2] = 0 + F[(c + 92) >> 2] = 0 + F[(c + 88) >> 2] = F[(a + 88) >> 2] + F[(c + 92) >> 2] = F[(a + 92) >> 2] + F[(c + 96) >> 2] = F[(a + 96) >> 2] + F[(a + 96) >> 2] = 0 + F[(a + 88) >> 2] = 0 + F[(a + 92) >> 2] = 0 + g = G[(a + 100) | 0] + F[(c + 112) >> 2] = 0 + F[(c + 104) >> 2] = 0 + F[(c + 108) >> 2] = 0 + D[(c + 100) | 0] = g + F[(c + 104) >> 2] = F[(a + 104) >> 2] + F[(c + 108) >> 2] = F[(a + 108) >> 2] + F[(c + 112) >> 2] = F[(a + 112) >> 2] + F[(a + 112) >> 2] = 0 + F[(a + 104) >> 2] = 0 + F[(a + 108) >> 2] = 0 + F[(c + 124) >> 2] = 0 + F[(c + 116) >> 2] = 0 + F[(c + 120) >> 2] = 0 + F[(c + 116) >> 2] = F[(a + 116) >> 2] + F[(c + 120) >> 2] = F[(a + 120) >> 2] + F[(c + 124) >> 2] = F[(a + 124) >> 2] + F[(a + 124) >> 2] = 0 + F[(a + 116) >> 2] = 0 + F[(a + 120) >> 2] = 0 + g = F[(a + 128) >> 2] + F[(c + 140) >> 2] = 0 + F[(c + 132) >> 2] = 0 + F[(c + 136) >> 2] = 0 + F[(c + 128) >> 2] = g + F[(c + 132) >> 2] = F[(a + 132) >> 2] + F[(c + 136) >> 2] = F[(a + 136) >> 2] + F[(c + 140) >> 2] = F[(a + 140) >> 2] + F[(a + 140) >> 2] = 0 + F[(a + 132) >> 2] = 0 + F[(a + 136) >> 2] = 0 + if ((a | 0) != (f | 0)) { + continue + } + break + } + F[(e + 8) >> 2] = b + a = F[(e + 4) >> 2] + F[(e + 4) >> 2] = h + d = F[e >> 2] + F[e >> 2] = c + if ((a | 0) == (d | 0)) { + break c + } + while (1) { + b = (a - 144) | 0 + c = F[(b + 132) >> 2] + if (c) { + F[(a - 8) >> 2] = c + ja(c) + } + c = F[(a - 28) >> 2] + if (c) { + F[(a - 24) >> 2] = c + ja(c) + } + c = F[(a - 40) >> 2] + if (c) { + F[(a - 36) >> 2] = c + ja(c) + } + Gb((a - 140) | 0) + a = b + if ((d | 0) != (a | 0)) { + continue + } + break + } + break c + } + na() + v() + } + oa() + v() + } + F[(e + 8) >> 2] = b + F[(e + 4) >> 2] = h + F[e >> 2] = c + } + if (d) { + ja(d) + } + } + return + } + if (b >>> 0 < f >>> 0) { + e = (e + L(b, 144)) | 0 + if ((e | 0) != (c | 0)) { + while (1) { + b = (c - 144) | 0 + d = F[(b + 132) >> 2] + if (d) { + F[(c - 8) >> 2] = d + ja(d) + } + d = F[(c - 28) >> 2] + if (d) { + F[(c - 24) >> 2] = d + ja(d) + } + d = F[(c - 40) >> 2] + if (d) { + F[(c - 36) >> 2] = d + ja(d) + } + Gb((c - 140) | 0) + c = b + if ((e | 0) != (c | 0)) { + continue + } + break + } + } + F[(a + 4) >> 2] = e + } + } + function Yc(a) { + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + F[(a + 56) >> 2] = F[(a + 52) >> 2] + F[(a + 44) >> 2] = F[(a + 40) >> 2] + b = F[(a + 64) >> 2] + c = F[(b + 24) >> 2] + if ((c | 0) == F[(b + 28) >> 2]) { + return 1 + } + a: { + b: { + c: { + while (1) { + g = i + i = F[((k << 2) + c) >> 2] + d: { + if ((i | 0) == -1) { + i = g + break d + } + b = F[(a + 56) >> 2] + e: { + if ((b | 0) != F[(a + 60) >> 2]) { + F[b >> 2] = g + F[(a + 56) >> 2] = b + 4 + break e + } + d = F[(a + 52) >> 2] + e = (b - d) | 0 + h = e >> 2 + c = (h + 1) | 0 + if (c >>> 0 >= 1073741824) { + break c + } + f = (e >>> 1) | 0 + f = + e >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < f >>> 0 + ? f + : c + if (f) { + if (f >>> 0 >= 1073741824) { + break b + } + e = ka(f << 2) + } else { + e = 0 + } + c = (e + (h << 2)) | 0 + F[c >> 2] = g + h = (c + 4) | 0 + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + F[c >> 2] = F[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + F[(a + 60) >> 2] = e + (f << 2) + F[(a + 56) >> 2] = h + F[(a + 52) >> 2] = c + if (!d) { + break e + } + ja(d) + } + f: { + g: { + if ( + !( + (F[ + (F[(a + 12) >> 2] + + ((k >>> 3) & 536870908)) >> + 2 + ] >>> + k) & + 1 + ) + ) { + break g + } + e = (i + 1) | 0 + e = (e >>> 0) % 3 | 0 ? e : (i - 2) | 0 + if ( + ((e | 0) == -1) | + ((F[ + (F[a >> 2] + ((e >>> 3) & 536870908)) >> 2 + ] >>> + e) & + 1) + ) { + break g + } + e = + F[ + (F[(F[(a + 64) >> 2] + 12) >> 2] + + (e << 2)) >> + 2 + ] + if ((e | 0) == -1) { + break g + } + b = (e + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (e - 2) | 0 + if ((b | 0) == -1) { + break g + } + c = F[(a + 64) >> 2] + f = F[a >> 2] + while (1) { + e = b + b = -1 + d = (e + 1) | 0 + d = (d >>> 0) % 3 | 0 ? d : (e - 2) | 0 + h: { + if ( + ((d | 0) == -1) | + ((F[(f + ((d >>> 3) & 536870908)) >> 2] >>> + d) & + 1) + ) { + break h + } + d = F[(F[(c + 12) >> 2] + (d << 2)) >> 2] + if ((d | 0) == -1) { + break h + } + b = (d + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (d - 2) | 0 + } + if ((b | 0) != (i | 0)) { + if ((b | 0) == -1) { + break f + } + continue + } + break + } + return 0 + } + e = i + } + F[(F[(a + 28) >> 2] + (e << 2)) >> 2] = g + b = F[(a + 44) >> 2] + i: { + if ((b | 0) != F[(a + 48) >> 2]) { + F[b >> 2] = e + F[(a + 44) >> 2] = b + 4 + break i + } + d = F[(a + 40) >> 2] + i = (b - d) | 0 + h = i >> 2 + c = (h + 1) | 0 + if (c >>> 0 >= 1073741824) { + break a + } + f = (i >>> 1) | 0 + f = + i >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < f >>> 0 + ? f + : c + if (f) { + if (f >>> 0 >= 1073741824) { + break b + } + i = ka(f << 2) + } else { + i = 0 + } + c = (i + (h << 2)) | 0 + F[c >> 2] = e + h = (c + 4) | 0 + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + F[c >> 2] = F[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + F[(a + 48) >> 2] = i + (f << 2) + F[(a + 44) >> 2] = h + F[(a + 40) >> 2] = c + if (!d) { + break i + } + ja(d) + } + i = (g + 1) | 0 + b = F[(a + 64) >> 2] + if ((e | 0) == -1) { + break d + } + j: { + if ((e >>> 0) % 3 | 0) { + c = (e - 1) | 0 + break j + } + c = (e + 2) | 0 + if ((c | 0) == -1) { + break d + } + } + d = F[(F[(b + 12) >> 2] + (c << 2)) >> 2] + if ((d | 0) == -1) { + break d + } + f = (d + ((d >>> 0) % 3 | 0 ? -1 : 2)) | 0 + if (((f | 0) == -1) | ((e | 0) == (f | 0))) { + break d + } + while (1) { + b = (f + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (f - 2) | 0 + if ( + (F[(F[a >> 2] + ((b >>> 3) & 536870908)) >> 2] >>> + b) & + 1 + ) { + b = F[(a + 56) >> 2] + k: { + if ((b | 0) != F[(a + 60) >> 2]) { + F[b >> 2] = i + F[(a + 56) >> 2] = b + 4 + break k + } + d = F[(a + 52) >> 2] + g = (b - d) | 0 + j = g >> 2 + c = (j + 1) | 0 + if (c >>> 0 >= 1073741824) { + break c + } + h = (g >>> 1) | 0 + h = + g >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < h >>> 0 + ? h + : c + if (h) { + if (h >>> 0 >= 1073741824) { + break b + } + g = ka(h << 2) + } else { + g = 0 + } + c = (g + (j << 2)) | 0 + F[c >> 2] = i + j = (c + 4) | 0 + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + F[c >> 2] = F[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + F[(a + 60) >> 2] = g + (h << 2) + F[(a + 56) >> 2] = j + F[(a + 52) >> 2] = c + if (!d) { + break k + } + ja(d) + } + d = (i + 1) | 0 + b = F[(a + 44) >> 2] + l: { + if ((b | 0) != F[(a + 48) >> 2]) { + F[b >> 2] = f + F[(a + 44) >> 2] = b + 4 + break l + } + h = F[(a + 40) >> 2] + g = (b - h) | 0 + l = g >> 2 + c = (l + 1) | 0 + if (c >>> 0 >= 1073741824) { + break a + } + j = (g >>> 1) | 0 + j = + g >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 < j >>> 0 + ? j + : c + if (j) { + if (j >>> 0 >= 1073741824) { + break b + } + g = ka(j << 2) + } else { + g = 0 + } + c = (g + (l << 2)) | 0 + F[c >> 2] = f + l = (c + 4) | 0 + if ((b | 0) != (h | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + F[c >> 2] = F[b >> 2] + if ((b | 0) != (h | 0)) { + continue + } + break + } + } + F[(a + 48) >> 2] = g + (j << 2) + F[(a + 44) >> 2] = l + F[(a + 40) >> 2] = c + if (!h) { + break l + } + ja(h) + } + g = i + i = d + } + F[(F[(a + 28) >> 2] + (f << 2)) >> 2] = g + b = F[(a + 64) >> 2] + m: { + if ((f >>> 0) % 3 | 0) { + c = (f - 1) | 0 + break m + } + c = (f + 2) | 0 + if ((c | 0) == -1) { + break d + } + } + d = F[(F[(b + 12) >> 2] + (c << 2)) >> 2] + if ((d | 0) == -1) { + break d + } + f = (d + ((d >>> 0) % 3 | 0 ? -1 : 2)) | 0 + if ((f | 0) == -1) { + break d + } + if ((e | 0) != (f | 0)) { + continue + } + break + } + } + k = (k + 1) | 0 + c = F[(b + 24) >> 2] + if (k >>> 0 < ((F[(b + 28) >> 2] - c) >> 2) >>> 0) { + continue + } + break + } + return 1 + } + na() + v() + } + oa() + v() + } + na() + v() + } + function Kb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0, + x = 0, + y = 0 + f = (Z - 96) | 0 + Z = f + e = F[(a + 16) >> 2] + D[(f + 92) | 0] = 1 + F[(f + 88) >> 2] = b + F[(f + 84) >> 2] = b + F[(f + 80) >> 2] = e + a: { + if ((b | 0) == -1) { + break a + } + j = F[(a + 20) >> 2] + d = F[j >> 2] + e = F[(F[e >> 2] + (b << 2)) >> 2] + if (e >>> 0 >= ((F[(j + 4) >> 2] - d) >> 2) >>> 0) { + break a + } + e = F[(F[(a + 8) >> 2] + (F[(d + (e << 2)) >> 2] << 2)) >> 2] + d = F[(a + 4) >> 2] + if (!G[(d + 84) | 0]) { + e = F[(F[(d + 68) >> 2] + (e << 2)) >> 2] + } + F[(f + 72) >> 2] = 0 + F[(f + 76) >> 2] = 0 + j = (f - -64) | 0 + F[j >> 2] = 0 + F[(j + 4) >> 2] = 0 + F[(f + 56) >> 2] = 0 + F[(f + 60) >> 2] = 0 + Ga(d, e, D[(d + 24) | 0], (f + 56) | 0) + e = (b + 1) | 0 + j = (e >>> 0) % 3 | 0 ? e : (b - 2) | 0 + n = (((b >>> 0) % 3 | 0 ? -1 : 2) + b) | 0 + b: { + c: { + while (1) { + d = j + e = n + d: { + if (!F[(a + 28) >> 2]) { + break d + } + e = (b + 1) | 0 + d = (e >>> 0) % 3 | 0 ? e : (b - 2) | 0 + e = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break d + } + e = (b + 2) | 0 + } + if ((d | 0) == -1) { + break b + } + m = F[(a + 20) >> 2] + b = F[m >> 2] + d = F[(F[F[(a + 16) >> 2] >> 2] + (d << 2)) >> 2] + if (d >>> 0 >= ((F[(m + 4) >> 2] - b) >> 2) >>> 0) { + break b + } + d = + F[ + (F[(a + 8) >> 2] + (F[((d << 2) + b) >> 2] << 2)) >> + 2 + ] + b = F[(a + 4) >> 2] + if (!G[(b + 84) | 0]) { + d = F[(F[(b + 68) >> 2] + (d << 2)) >> 2] + } + F[(f + 48) >> 2] = 0 + F[(f + 52) >> 2] = 0 + F[(f + 40) >> 2] = 0 + F[(f + 44) >> 2] = 0 + F[(f + 32) >> 2] = 0 + F[(f + 36) >> 2] = 0 + Ga(b, d, D[(b + 24) | 0], (f + 32) | 0) + if ((e | 0) == -1) { + break c + } + d = F[(a + 20) >> 2] + b = F[d >> 2] + e = F[(F[F[(a + 16) >> 2] >> 2] + (e << 2)) >> 2] + if (e >>> 0 >= ((F[(d + 4) >> 2] - b) >> 2) >>> 0) { + break c + } + d = + F[ + (F[(a + 8) >> 2] + (F[(b + (e << 2)) >> 2] << 2)) >> + 2 + ] + b = F[(a + 4) >> 2] + if (!G[(b + 84) | 0]) { + d = F[(F[(b + 68) >> 2] + (d << 2)) >> 2] + } + F[(f + 24) >> 2] = 0 + F[(f + 28) >> 2] = 0 + F[(f + 16) >> 2] = 0 + F[(f + 20) >> 2] = 0 + F[(f + 8) >> 2] = 0 + F[(f + 12) >> 2] = 0 + Ga(b, d, D[(b + 24) | 0], (f + 8) | 0) + g = F[(f + 8) >> 2] + b = F[(f + 56) >> 2] + d = (g - b) | 0 + p = F[(f + 60) >> 2] + t = + (F[(f + 12) >> 2] - ((p + (b >>> 0 > g >>> 0)) | 0)) | + 0 + i = F[(f + 40) >> 2] + e = F[(f + 64) >> 2] + m = (i - e) | 0 + u = F[(f + 68) >> 2] + y = + (F[(f + 44) >> 2] - ((u + (e >>> 0 > i >>> 0)) | 0)) | + 0 + g = ki(d, t, m, y) + w = (o - g) | 0 + x = (h - ((_ + (g >>> 0 > o >>> 0)) | 0)) | 0 + h = w + i = F[(f + 16) >> 2] + g = (i - e) | 0 + u = + (F[(f + 20) >> 2] - (((e >>> 0 > i >>> 0) + u) | 0)) | + 0 + k = F[(f + 32) >> 2] + i = (k - b) | 0 + w = + (F[(f + 36) >> 2] - (((b >>> 0 > k >>> 0) + p) | 0)) | + 0 + b = ki(g, u, i, w) + o = (h + b) | 0 + h = (_ + x) | 0 + h = b >>> 0 > o >>> 0 ? (h + 1) | 0 : h + b = l + l = d + p = t + k = F[(f + 48) >> 2] + e = F[(f + 72) >> 2] + d = (k - e) | 0 + t = F[(f + 76) >> 2] + x = + (F[(f + 52) >> 2] - ((t + (e >>> 0 > k >>> 0)) | 0)) | + 0 + l = ki(l, p, d, x) + k = (b + l) | 0 + b = (_ + q) | 0 + b = k >>> 0 < l >>> 0 ? (b + 1) | 0 : b + l = F[(f + 24) >> 2] + p = (l - e) | 0 + e = + (F[(f + 28) >> 2] - (((e >>> 0 > l >>> 0) + t) | 0)) | + 0 + q = ki(p, e, i, w) + l = (k - q) | 0 + q = (b - ((_ + (k >>> 0 < q >>> 0)) | 0)) | 0 + b = ki(g, u, d, x) + d = (r - b) | 0 + b = (s - ((_ + (b >>> 0 > r >>> 0)) | 0)) | 0 + s = ki(p, e, m, y) + r = (s + d) | 0 + b = (_ + b) | 0 + s = r >>> 0 < s >>> 0 ? (b + 1) | 0 : b + nc((f + 80) | 0) + b = F[(f + 88) >> 2] + if ((b | 0) != -1) { + continue + } + break + } + b = s >> 31 + e = b ^ r + d = (e - b) | 0 + b = ((b ^ s) - (((b >>> 0 > e >>> 0) + b) | 0)) | 0 + n = -1 + e = 2147483647 + m = q >> 31 + g = m + i = g ^ l + j = (i - g) | 0 + m = ((g ^ q) - (((i >>> 0 < g >>> 0) + g) | 0)) | 0 + i = m + k = j ^ -1 + g = i ^ 2147483647 + m = h + e: { + f: { + if (!F[(a + 28) >> 2]) { + if ( + (((b | 0) == (g | 0)) & (d >>> 0 > k >>> 0)) | + (b >>> 0 > g >>> 0) + ) { + break e + } + b = (b + i) | 0 + a = (d + j) | 0 + b = a >>> 0 < j >>> 0 ? (b + 1) | 0 : b + e = a + g = h + a = g >> 31 + d = a + n = d ^ o + a = (n - d) | 0 + h = a + d = ((d ^ g) - (((d >>> 0 > n >>> 0) + d) | 0)) | 0 + a = (a + e) | 0 + d = d ^ 2147483647 + h = + (((d | 0) == (b | 0)) & + ((h ^ -1) >>> 0 < e >>> 0)) | + (b >>> 0 > d >>> 0) + a = h ? -1 : a + if ( + (!(h & 0) & ((a | 0) <= 536870912)) | + ((a | 0) < 536870912) + ) { + break e + } + b = 0 + a = (a >>> 29) | 0 + break f + } + g: { + if ( + (((b | 0) == (g | 0)) & (d >>> 0 > k >>> 0)) | + (b >>> 0 > g >>> 0) + ) { + break g + } + b = (b + i) | 0 + a = (d + j) | 0 + b = a >>> 0 < j >>> 0 ? (b + 1) | 0 : b + k = h + h = h >> 31 + g = h + i = g ^ o + h = (i - g) | 0 + j = ((g ^ k) - (((g >>> 0 > i >>> 0) + g) | 0)) | 0 + g = j ^ 2147483647 + d = a + a = h + if ( + (((g | 0) == (b | 0)) & + (d >>> 0 > (a ^ -1) >>> 0)) | + (b >>> 0 > g >>> 0) + ) { + break g + } + b = (b + j) | 0 + n = (a + d) | 0 + b = n >>> 0 < a >>> 0 ? (b + 1) | 0 : b + e = b + if (!b & (n >>> 0 < 536870913)) { + break e + } + } + b = (e >>> 29) | 0 + a = ((e & 536870911) << 3) | (n >>> 29) + } + o = li(o, m, a, b) + l = li(l, q, a, b) + r = li(r, s, a, b) + } + F[(c + 8) >> 2] = o + F[(c + 4) >> 2] = l + F[c >> 2] = r + Z = (f + 96) | 0 + return + } + ta() + v() + } + ta() + v() + } + ta() + v() + } + function Nc(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + a: { + if ((b | 0) < 0) { + break a + } + c = F[(a + 12) >> 2] + d = F[(a + 8) >> 2] + if (((c - d) >> 2) >>> 0 <= b >>> 0) { + break a + } + d = (d + (b << 2)) | 0 + e = F[d >> 2] + i = F[(e + 60) >> 2] + f = F[(e + 56) >> 2] + e = (d + 4) | 0 + if ((e | 0) != (c | 0)) { + while (1) { + h = F[e >> 2] + F[e >> 2] = 0 + g = F[d >> 2] + F[d >> 2] = h + if (g) { + xa(g) + } + d = (d + 4) | 0 + e = (e + 4) | 0 + if ((e | 0) != (c | 0)) { + continue + } + break + } + c = F[(a + 12) >> 2] + } + if ((c | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + e = F[c >> 2] + F[c >> 2] = 0 + if (e) { + xa(e) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + } + F[(a + 12) >> 2] = d + g = F[(a + 4) >> 2] + b: { + if (!g | ((i | 0) < 0)) { + break b + } + c = F[(g + 24) >> 2] + d = F[(g + 28) >> 2] + if ((c | 0) == (d | 0)) { + break b + } + while (1) { + if ((i | 0) == F[(F[c >> 2] + 24) >> 2]) { + d = (c + 4) | 0 + i = F[(g + 28) >> 2] + if ((d | 0) != (i | 0)) { + while (1) { + h = F[d >> 2] + F[d >> 2] = 0 + e = F[c >> 2] + F[c >> 2] = h + if (e) { + Ca((e + 12) | 0, F[(e + 16) >> 2]) + Ba(e, F[(e + 4) >> 2]) + ja(e) + } + c = (c + 4) | 0 + d = (d + 4) | 0 + if ((i | 0) != (d | 0)) { + continue + } + break + } + d = F[(g + 28) >> 2] + } + if ((c | 0) != (d | 0)) { + while (1) { + d = (d - 4) | 0 + e = F[d >> 2] + F[d >> 2] = 0 + if (e) { + Ca((e + 12) | 0, F[(e + 16) >> 2]) + Ba(e, F[(e + 4) >> 2]) + ja(e) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + } + F[(g + 28) >> 2] = c + break b + } + c = (c + 4) | 0 + if ((d | 0) != (c | 0)) { + continue + } + break + } + } + c: { + if ((f | 0) > 4) { + break c + } + d: { + e = (L(f, 12) + a) | 0 + c = F[(e + 20) >> 2] + d = F[(e + 24) >> 2] + if ((c | 0) == (d | 0)) { + break d + } + while (1) { + if (F[c >> 2] == (b | 0)) { + break d + } + c = (c + 4) | 0 + if ((d | 0) != (c | 0)) { + continue + } + break + } + break c + } + if ((c | 0) == (d | 0)) { + break c + } + f = c + c = (c + 4) | 0 + pa(f, c, (d - c) | 0) + F[(e + 24) >> 2] = d - 4 + } + c = F[(a + 24) >> 2] + d = F[(a + 20) >> 2] + e: { + if ((c | 0) == (d | 0)) { + break e + } + e = (c - d) | 0 + c = e >> 2 + g = c >>> 0 <= 1 ? 1 : c + i = g & 1 + c = 0 + if (e >>> 0 >= 8) { + g = g & -2 + e = 0 + while (1) { + f = c << 2 + h = (f + d) | 0 + j = F[h >> 2] + if ((j | 0) > (b | 0)) { + F[h >> 2] = j - 1 + } + f = (d + (f | 4)) | 0 + h = F[f >> 2] + if ((h | 0) > (b | 0)) { + F[f >> 2] = h - 1 + } + c = (c + 2) | 0 + e = (e + 2) | 0 + if ((g | 0) != (e | 0)) { + continue + } + break + } + } + if (!i) { + break e + } + c = (d + (c << 2)) | 0 + d = F[c >> 2] + if ((d | 0) <= (b | 0)) { + break e + } + F[c >> 2] = d - 1 + } + c = F[(a + 36) >> 2] + d = F[(a + 32) >> 2] + f: { + if ((c | 0) == (d | 0)) { + break f + } + e = (c - d) | 0 + c = e >> 2 + g = c >>> 0 <= 1 ? 1 : c + i = g & 1 + c = 0 + if (e >>> 0 >= 8) { + g = g & -2 + e = 0 + while (1) { + f = c << 2 + h = (f + d) | 0 + j = F[h >> 2] + if ((j | 0) > (b | 0)) { + F[h >> 2] = j - 1 + } + f = (d + (f | 4)) | 0 + h = F[f >> 2] + if ((h | 0) > (b | 0)) { + F[f >> 2] = h - 1 + } + c = (c + 2) | 0 + e = (e + 2) | 0 + if ((g | 0) != (e | 0)) { + continue + } + break + } + } + if (!i) { + break f + } + c = (d + (c << 2)) | 0 + d = F[c >> 2] + if ((d | 0) <= (b | 0)) { + break f + } + F[c >> 2] = d - 1 + } + c = F[(a + 48) >> 2] + d = F[(a + 44) >> 2] + g: { + if ((c | 0) == (d | 0)) { + break g + } + e = (c - d) | 0 + c = e >> 2 + g = c >>> 0 <= 1 ? 1 : c + i = g & 1 + c = 0 + if (e >>> 0 >= 8) { + g = g & -2 + e = 0 + while (1) { + f = c << 2 + h = (f + d) | 0 + j = F[h >> 2] + if ((j | 0) > (b | 0)) { + F[h >> 2] = j - 1 + } + f = (d + (f | 4)) | 0 + h = F[f >> 2] + if ((h | 0) > (b | 0)) { + F[f >> 2] = h - 1 + } + c = (c + 2) | 0 + e = (e + 2) | 0 + if ((g | 0) != (e | 0)) { + continue + } + break + } + } + if (!i) { + break g + } + c = (d + (c << 2)) | 0 + d = F[c >> 2] + if ((d | 0) <= (b | 0)) { + break g + } + F[c >> 2] = d - 1 + } + c = F[(a + 60) >> 2] + d = F[(a + 56) >> 2] + h: { + if ((c | 0) == (d | 0)) { + break h + } + e = (c - d) | 0 + c = e >> 2 + g = c >>> 0 <= 1 ? 1 : c + i = g & 1 + c = 0 + if (e >>> 0 >= 8) { + g = g & -2 + e = 0 + while (1) { + f = c << 2 + h = (f + d) | 0 + j = F[h >> 2] + if ((j | 0) > (b | 0)) { + F[h >> 2] = j - 1 + } + f = (d + (f | 4)) | 0 + h = F[f >> 2] + if ((h | 0) > (b | 0)) { + F[f >> 2] = h - 1 + } + c = (c + 2) | 0 + e = (e + 2) | 0 + if ((g | 0) != (e | 0)) { + continue + } + break + } + } + if (!i) { + break h + } + c = (d + (c << 2)) | 0 + d = F[c >> 2] + if ((d | 0) <= (b | 0)) { + break h + } + F[c >> 2] = d - 1 + } + c = F[(a + 72) >> 2] + a = F[(a + 68) >> 2] + if ((c | 0) == (a | 0)) { + break a + } + d = (c - a) | 0 + c = d >> 2 + e = c >>> 0 <= 1 ? 1 : c + g = e & 1 + c = 0 + if (d >>> 0 >= 8) { + d = e & -2 + e = 0 + while (1) { + i = c << 2 + f = (i + a) | 0 + h = F[f >> 2] + if ((h | 0) > (b | 0)) { + F[f >> 2] = h - 1 + } + i = (a + (i | 4)) | 0 + f = F[i >> 2] + if ((f | 0) > (b | 0)) { + F[i >> 2] = f - 1 + } + c = (c + 2) | 0 + e = (e + 2) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!g) { + break a + } + f = b + a = (a + (c << 2)) | 0 + b = F[a >> 2] + if ((f | 0) >= (b | 0)) { + break a + } + F[a >> 2] = b - 1 + } + } + function ja(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + a: { + if (!a) { + break a + } + d = (a - 8) | 0 + b = F[(a - 4) >> 2] + a = b & -8 + f = (d + a) | 0 + b: { + if (b & 1) { + break b + } + if (!(b & 3)) { + break a + } + b = F[d >> 2] + d = (d - b) | 0 + if (d >>> 0 < I[2945]) { + break a + } + a = (a + b) | 0 + if (F[2946] != (d | 0)) { + if (b >>> 0 <= 255) { + e = F[(d + 8) >> 2] + b = (b >>> 3) | 0 + c = F[(d + 12) >> 2] + if ((c | 0) == (e | 0)) { + ;(i = 11764), (j = F[2941] & oi(b)), (F[i >> 2] = j) + break b + } + F[(e + 12) >> 2] = c + F[(c + 8) >> 2] = e + break b + } + h = F[(d + 24) >> 2] + b = F[(d + 12) >> 2] + c: { + if ((d | 0) != (b | 0)) { + c = F[(d + 8) >> 2] + F[(c + 12) >> 2] = b + F[(b + 8) >> 2] = c + break c + } + d: { + e = (d + 20) | 0 + c = F[e >> 2] + if (c) { + break d + } + e = (d + 16) | 0 + c = F[e >> 2] + if (c) { + break d + } + b = 0 + break c + } + while (1) { + g = e + b = c + e = (b + 20) | 0 + c = F[e >> 2] + if (c) { + continue + } + e = (b + 16) | 0 + c = F[(b + 16) >> 2] + if (c) { + continue + } + break + } + F[g >> 2] = 0 + } + if (!h) { + break b + } + e = F[(d + 28) >> 2] + c = ((e << 2) + 12068) | 0 + e: { + if (F[c >> 2] == (d | 0)) { + F[c >> 2] = b + if (b) { + break e + } + ;(i = 11768), (j = F[2942] & oi(e)), (F[i >> 2] = j) + break b + } + F[(h + (F[(h + 16) >> 2] == (d | 0) ? 16 : 20)) >> 2] = + b + if (!b) { + break b + } + } + F[(b + 24) >> 2] = h + c = F[(d + 16) >> 2] + if (c) { + F[(b + 16) >> 2] = c + F[(c + 24) >> 2] = b + } + c = F[(d + 20) >> 2] + if (!c) { + break b + } + F[(b + 20) >> 2] = c + F[(c + 24) >> 2] = b + break b + } + b = F[(f + 4) >> 2] + if ((b & 3) != 3) { + break b + } + F[2943] = a + F[(f + 4) >> 2] = b & -2 + F[(d + 4) >> 2] = a | 1 + F[(a + d) >> 2] = a + return + } + if (d >>> 0 >= f >>> 0) { + break a + } + b = F[(f + 4) >> 2] + if (!(b & 1)) { + break a + } + f: { + if (!(b & 2)) { + if (F[2947] == (f | 0)) { + F[2947] = d + a = (F[2944] + a) | 0 + F[2944] = a + F[(d + 4) >> 2] = a | 1 + if (F[2946] != (d | 0)) { + break a + } + F[2943] = 0 + F[2946] = 0 + return + } + if (F[2946] == (f | 0)) { + F[2946] = d + a = (F[2943] + a) | 0 + F[2943] = a + F[(d + 4) >> 2] = a | 1 + F[(a + d) >> 2] = a + return + } + a = ((b & -8) + a) | 0 + g: { + if (b >>> 0 <= 255) { + e = F[(f + 8) >> 2] + b = (b >>> 3) | 0 + c = F[(f + 12) >> 2] + if ((c | 0) == (e | 0)) { + ;(i = 11764), (j = F[2941] & oi(b)), (F[i >> 2] = j) + break g + } + F[(e + 12) >> 2] = c + F[(c + 8) >> 2] = e + break g + } + h = F[(f + 24) >> 2] + b = F[(f + 12) >> 2] + h: { + if ((f | 0) != (b | 0)) { + c = F[(f + 8) >> 2] + F[(c + 12) >> 2] = b + F[(b + 8) >> 2] = c + break h + } + i: { + e = (f + 20) | 0 + c = F[e >> 2] + if (c) { + break i + } + e = (f + 16) | 0 + c = F[e >> 2] + if (c) { + break i + } + b = 0 + break h + } + while (1) { + g = e + b = c + e = (b + 20) | 0 + c = F[e >> 2] + if (c) { + continue + } + e = (b + 16) | 0 + c = F[(b + 16) >> 2] + if (c) { + continue + } + break + } + F[g >> 2] = 0 + } + if (!h) { + break g + } + e = F[(f + 28) >> 2] + c = ((e << 2) + 12068) | 0 + j: { + if (F[c >> 2] == (f | 0)) { + F[c >> 2] = b + if (b) { + break j + } + ;(i = 11768), (j = F[2942] & oi(e)), (F[i >> 2] = j) + break g + } + F[ + (h + (F[(h + 16) >> 2] == (f | 0) ? 16 : 20)) >> 2 + ] = b + if (!b) { + break g + } + } + F[(b + 24) >> 2] = h + c = F[(f + 16) >> 2] + if (c) { + F[(b + 16) >> 2] = c + F[(c + 24) >> 2] = b + } + c = F[(f + 20) >> 2] + if (!c) { + break g + } + F[(b + 20) >> 2] = c + F[(c + 24) >> 2] = b + } + F[(d + 4) >> 2] = a | 1 + F[(a + d) >> 2] = a + if (F[2946] != (d | 0)) { + break f + } + F[2943] = a + return + } + F[(f + 4) >> 2] = b & -2 + F[(d + 4) >> 2] = a | 1 + F[(a + d) >> 2] = a + } + if (a >>> 0 <= 255) { + b = ((a & -8) + 11804) | 0 + c = F[2941] + a = 1 << (a >>> 3) + k: { + if (!(c & a)) { + F[2941] = a | c + a = b + break k + } + a = F[(b + 8) >> 2] + } + F[(b + 8) >> 2] = d + F[(a + 12) >> 2] = d + F[(d + 12) >> 2] = b + F[(d + 8) >> 2] = a + return + } + e = 31 + if (a >>> 0 <= 16777215) { + b = O((a >>> 8) | 0) + e = (((((a >>> (38 - b)) & 1) - (b << 1)) | 0) + 62) | 0 + } + F[(d + 28) >> 2] = e + F[(d + 16) >> 2] = 0 + F[(d + 20) >> 2] = 0 + g = ((e << 2) + 12068) | 0 + l: { + m: { + c = F[2942] + b = 1 << e + n: { + if (!(c & b)) { + F[2942] = b | c + F[g >> 2] = d + F[(d + 24) >> 2] = g + break n + } + e = + a << ((e | 0) != 31 ? (25 - ((e >>> 1) | 0)) | 0 : 0) + b = F[g >> 2] + while (1) { + c = b + if ((F[(b + 4) >> 2] & -8) == (a | 0)) { + break m + } + b = (e >>> 29) | 0 + e = e << 1 + g = (c + (b & 4)) | 0 + b = F[(g + 16) >> 2] + if (b) { + continue + } + break + } + F[(g + 16) >> 2] = d + F[(d + 24) >> 2] = c + } + F[(d + 12) >> 2] = d + F[(d + 8) >> 2] = d + break l + } + a = F[(c + 8) >> 2] + F[(a + 12) >> 2] = d + F[(c + 8) >> 2] = d + F[(d + 24) >> 2] = 0 + F[(d + 12) >> 2] = c + F[(d + 8) >> 2] = a + } + a = (F[2949] - 1) | 0 + F[2949] = a ? a : -1 + } + } + function di(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0 + F[(a + 8) >> 2] = e + n = (a + 32) | 0 + h = F[n >> 2] + f = (F[(a + 36) >> 2] - h) >> 2 + a: { + if (f >>> 0 < e >>> 0) { + qa(n, (e - f) | 0) + d = F[(a + 8) >> 2] + break a + } + d = e + if (d >>> 0 >= f >>> 0) { + break a + } + F[(a + 36) >> 2] = h + (e << 2) + d = e + } + s = F[(a + 52) >> 2] + p = F[(a + 48) >> 2] + f = 0 + h = e >>> 0 > 1073741823 ? -1 : e << 2 + m = ma(ka(h), 0, h) + b: { + if ((d | 0) <= 0) { + break b + } + g = F[(a + 32) >> 2] + while (1) { + d = f << 2 + h = F[(d + m) >> 2] + j = F[(a + 16) >> 2] + c: { + if ((h | 0) > (j | 0)) { + F[(d + g) >> 2] = j + break c + } + d = (d + g) | 0 + j = F[(a + 12) >> 2] + if ((j | 0) > (h | 0)) { + F[d >> 2] = j + break c + } + F[d >> 2] = h + } + d = F[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + if ((d | 0) <= 0) { + break b + } + f = 0 + while (1) { + h = f << 2 + d = (h + c) | 0 + h = (F[(b + h) >> 2] + F[(g + h) >> 2]) | 0 + F[d >> 2] = h + d: { + if ((h | 0) > F[(a + 16) >> 2]) { + i = (h - F[(a + 20) >> 2]) | 0 + } else { + if ((h | 0) >= F[(a + 12) >> 2]) { + break d + } + i = (h + F[(a + 20) >> 2]) | 0 + } + F[d >> 2] = i + } + d = F[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + } + f = F[(a + 56) >> 2] + q = F[f >> 2] + f = (F[(f + 4) >> 2] - q) | 0 + if ((f | 0) >= 5) { + o = (f >>> 2) | 0 + t = o >>> 0 <= 2 ? 2 : o + u = e & -2 + w = e & 1 + h = 1 + while (1) { + e: { + f: { + if ((h | 0) != (o | 0)) { + r = L(e, h) + f = F[((h << 2) + q) >> 2] + if ((f | 0) == -1) { + break f + } + f = F[(F[(p + 12) >> 2] + (f << 2)) >> 2] + if ((f | 0) == -1) { + break f + } + j = F[s >> 2] + g = F[p >> 2] + k = F[(j + (F[(g + (f << 2)) >> 2] << 2)) >> 2] + i = (f + 1) | 0 + i = (i >>> 0) % 3 | 0 ? i : (f - 2) | 0 + if ((i | 0) != -1) { + i = F[(g + (i << 2)) >> 2] + } else { + i = -1 + } + g: { + h: { + if ((f >>> 0) % 3 | 0) { + f = (f - 1) | 0 + break h + } + f = (f + 2) | 0 + l = -1 + if ((f | 0) == -1) { + break g + } + } + l = F[(g + (f << 2)) >> 2] + } + if ((h | 0) <= (k | 0)) { + break f + } + f = F[((i << 2) + j) >> 2] + if ((f | 0) >= (h | 0)) { + break f + } + g = F[(j + (l << 2)) >> 2] + if ((g | 0) >= (h | 0)) { + break f + } + i: { + if ((e | 0) <= 0) { + break i + } + g = L(e, g) + j = L(e, f) + k = L(e, k) + f = 0 + l = 0 + if ((e | 0) != 1) { + while (1) { + F[((f << 2) + m) >> 2] = + ((F[(((f + g) << 2) + c) >> 2] + + F[(((f + j) << 2) + c) >> 2]) | + 0) - + F[(((f + k) << 2) + c) >> 2] + i = f | 1 + F[((i << 2) + m) >> 2] = + ((F[(((g + i) << 2) + c) >> 2] + + F[(((j + i) << 2) + c) >> 2]) | + 0) - + F[(((i + k) << 2) + c) >> 2] + f = (f + 2) | 0 + l = (l + 2) | 0 + if ((u | 0) != (l | 0)) { + continue + } + break + } + } + if (!w) { + break i + } + F[((f << 2) + m) >> 2] = + ((F[(((f + g) << 2) + c) >> 2] + + F[(((f + j) << 2) + c) >> 2]) | + 0) - + F[(((f + k) << 2) + c) >> 2] + } + if ((d | 0) <= 0) { + break e + } + j = F[n >> 2] + f = 0 + while (1) { + d = f << 2 + g = F[(d + m) >> 2] + k = F[(a + 16) >> 2] + j: { + if ((g | 0) > (k | 0)) { + F[(d + j) >> 2] = k + break j + } + d = (d + j) | 0 + k = F[(a + 12) >> 2] + if ((k | 0) > (g | 0)) { + F[d >> 2] = k + break j + } + F[d >> 2] = g + } + d = F[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + f = 0 + if ((d | 0) <= 0) { + break e + } + d = r << 2 + k = (d + c) | 0 + i = (b + d) | 0 + while (1) { + g = f << 2 + d = (g + k) | 0 + g = (F[(g + i) >> 2] + F[(g + j) >> 2]) | 0 + F[d >> 2] = g + k: { + if ((g | 0) > F[(a + 16) >> 2]) { + l = (g - F[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= F[(a + 12) >> 2]) { + break k + } + l = (g + F[(a + 20) >> 2]) | 0 + } + F[d >> 2] = l + } + d = F[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + break e + } + ta() + v() + } + if ((d | 0) <= 0) { + break e + } + k = ((L((h - 1) | 0, e) << 2) + c) | 0 + j = F[n >> 2] + f = 0 + while (1) { + d = f << 2 + g = F[(d + k) >> 2] + i = F[(a + 16) >> 2] + l: { + if ((g | 0) > (i | 0)) { + F[(d + j) >> 2] = i + break l + } + d = (d + j) | 0 + i = F[(a + 12) >> 2] + if ((i | 0) > (g | 0)) { + F[d >> 2] = i + break l + } + F[d >> 2] = g + } + d = F[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + f = 0 + if ((d | 0) <= 0) { + break e + } + d = r << 2 + k = (d + c) | 0 + i = (b + d) | 0 + while (1) { + g = f << 2 + d = (g + k) | 0 + g = (F[(g + i) >> 2] + F[(g + j) >> 2]) | 0 + F[d >> 2] = g + m: { + if ((g | 0) > F[(a + 16) >> 2]) { + l = (g - F[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= F[(a + 12) >> 2]) { + break m + } + l = (g + F[(a + 20) >> 2]) | 0 + } + F[d >> 2] = l + } + d = F[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + } + h = (h + 1) | 0 + if ((t | 0) != (h | 0)) { + continue + } + break + } + } + ja(m) + return 1 + } + function od(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + if ((b | 0) == -1) { + return 1 + } + g = ((b >>> 0) / 3) | 0 + if ( + !( + (F[(F[(a + 24) >> 2] + ((g >>> 3) & 268435452)) >> 2] >>> + g) & + 1 + ) + ) { + e = F[(a + 48) >> 2] + F[(a + 52) >> 2] = e + a: { + if ((e | 0) != F[(a + 56) >> 2]) { + F[e >> 2] = b + F[(a + 52) >> 2] = e + 4 + break a + } + d = ka(4) + F[d >> 2] = b + c = (d + 4) | 0 + F[(a + 56) >> 2] = c + F[(a + 52) >> 2] = c + F[(a + 48) >> 2] = d + if (!e) { + break a + } + ja(e) + } + c = (b + 1) | 0 + i = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + c = F[(F[(a + 4) >> 2] + 28) >> 2] + k = F[((i << 2) + c) >> 2] + if ((k | 0) == -1) { + return 0 + } + e = (((b - L(g, 3)) | 0 ? -1 : 2) + b) | 0 + j = F[(c + (e << 2)) >> 2] + if ((j | 0) == -1) { + return 0 + } + b = F[(a + 36) >> 2] + g = (b + ((k >>> 3) & 536870908)) | 0 + d = F[g >> 2] + c = 1 << k + if (!(d & c)) { + F[g >> 2] = c | d + Ka((a + 8) | 0, k, i) + b = F[(a + 36) >> 2] + } + d = (((j >>> 3) & 536870908) + b) | 0 + c = F[d >> 2] + b = 1 << j + if (!(c & b)) { + F[d >> 2] = b | c + Ka((a + 8) | 0, j, e) + } + f = F[(a + 52) >> 2] + if ((f | 0) == F[(a + 48) >> 2]) { + return 1 + } + k = (a + 8) | 0 + while (1) { + b: { + c: { + f = (f - 4) | 0 + b = F[f >> 2] + if ((b | 0) == -1) { + break c + } + c = ((b >>> 0) / 3) | 0 + g = (F[(a + 24) >> 2] + ((c >>> 3) & 268435452)) | 0 + d = F[g >> 2] + c = 1 << c + if (d & c) { + break c + } + F[g >> 2] = c | d + h = F[(a + 4) >> 2] + c = F[(F[(h + 28) >> 2] + (b << 2)) >> 2] + if ((c | 0) == -1) { + return 0 + } + while (1) { + d = b + d: { + e: { + j = + (F[(a + 36) >> 2] + ((c >>> 3) & 536870908)) | 0 + i = F[j >> 2] + e = 1 << c + if (i & e) { + break e + } + f: { + g = F[(F[(h + 40) >> 2] + (c << 2)) >> 2] + g: { + if ((g | 0) == -1) { + break g + } + b = (g + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (g - 2) | 0 + if ( + ((b | 0) == -1) | + ((F[ + (F[h >> 2] + ((b >>> 3) & 536870908)) >> 2 + ] >>> + b) & + 1) + ) { + break g + } + g = + F[ + (F[(F[(h + 64) >> 2] + 12) >> 2] + + (b << 2)) >> + 2 + ] + if ((g | 0) != -1) { + break f + } + } + F[j >> 2] = e | i + Ka(k, c, d) + h = F[(a + 4) >> 2] + break e + } + F[j >> 2] = e | i + Ka(k, c, d) + h = F[(a + 4) >> 2] + b = (g + 1) | 0 + if ( + (((b >>> 0) % 3 | 0 ? b : (g - 2) | 0) | 0) == + -1 + ) { + break e + } + b = -1 + h: { + if ((d | 0) == -1) { + break h + } + c = (d + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (d - 2) | 0 + if ( + ((c | 0) == -1) | + ((F[ + (F[h >> 2] + ((c >>> 3) & 536870908)) >> 2 + ] >>> + c) & + 1) + ) { + break h + } + b = + F[ + (F[(F[(h + 64) >> 2] + 12) >> 2] + + (c << 2)) >> + 2 + ] + } + c = ((b >>> 0) / 3) | 0 + d = 1 << c + f = F[(a + 24) >> 2] + e = (c >>> 5) | 0 + j = F[(f + (e << 2)) >> 2] + break d + } + i: { + j: { + if ((d | 0) == -1) { + break j + } + c = -1 + b = (d + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (d - 2) | 0 + if ( + !( + ((b | 0) == -1) | + ((F[ + (F[h >> 2] + ((b >>> 3) & 536870908)) >> 2 + ] >>> + b) & + 1) + ) + ) { + c = + F[ + (F[(F[(h + 64) >> 2] + 12) >> 2] + + (b << 2)) >> + 2 + ] + } + k: { + l: { + if ((d >>> 0) % 3 | 0) { + f = (d - 1) | 0 + break l + } + f = (d + 2) | 0 + b = -1 + if ((f | 0) == -1) { + break k + } + } + b = -1 + if ( + (F[ + (F[h >> 2] + ((f >>> 3) & 536870908)) >> 2 + ] >>> + f) & + 1 + ) { + break k + } + b = + F[ + (F[(F[(h + 64) >> 2] + 12) >> 2] + + (f << 2)) >> + 2 + ] + } + g = (b | 0) == -1 + i = g ? -1 : ((b >>> 0) / 3) | 0 + if ((c | 0) != -1) { + f = F[(a + 24) >> 2] + d = ((c >>> 0) / 3) | 0 + e = (d >>> 5) | 0 + j = F[(f + (e << 2)) >> 2] + d = 1 << d + if (!(j & d)) { + break i + } + } + if (g) { + break j + } + d = 1 << i + f = F[(a + 24) >> 2] + e = (i >>> 5) | 0 + j = F[(f + (e << 2)) >> 2] + if (!(d & j)) { + break d + } + } + f = (F[(a + 52) >> 2] - 4) | 0 + F[(a + 52) >> 2] = f + break b + } + if (g) { + b = c + break d + } + if ( + (F[(((i >>> 3) & 536870908) + f) >> 2] >>> i) & + 1 + ) { + b = c + break d + } + h = F[(a + 52) >> 2] + F[(h - 4) >> 2] = b + if (F[(a + 56) >> 2] != (h | 0)) { + F[h >> 2] = c + f = (h + 4) | 0 + break c + } + m: { + i = F[(a + 48) >> 2] + e = (h - i) | 0 + g = e >> 2 + d = (g + 1) | 0 + if (d >>> 0 < 1073741824) { + b = (e >>> 1) | 0 + e = + e >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 > d >>> 0 + ? b + : d + if (e) { + if (e >>> 0 >= 1073741824) { + break m + } + d = ka(e << 2) + } else { + d = 0 + } + b = (d + (g << 2)) | 0 + F[b >> 2] = c + f = (b + 4) | 0 + if ((h | 0) != (i | 0)) { + while (1) { + b = (b - 4) | 0 + h = (h - 4) | 0 + F[b >> 2] = F[h >> 2] + if ((h | 0) != (i | 0)) { + continue + } + break + } + } + F[(a + 56) >> 2] = d + (e << 2) + F[(a + 52) >> 2] = f + F[(a + 48) >> 2] = b + if (!i) { + break b + } + ja(i) + f = F[(a + 52) >> 2] + break b + } + na() + v() + } + oa() + v() + } + F[((e << 2) + f) >> 2] = d | j + c = F[(F[(h + 28) >> 2] + (b << 2)) >> 2] + if ((c | 0) != -1) { + continue + } + break + } + return 0 + } + F[(a + 52) >> 2] = f + } + if (F[(a + 48) >> 2] != (f | 0)) { + continue + } + break + } + } + return 1 + } + function he(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + w = 0 + F[(a + 8) >> 2] = e + m = (a + 32) | 0 + h = F[m >> 2] + f = (F[(a + 36) >> 2] - h) >> 2 + a: { + if (f >>> 0 < e >>> 0) { + qa(m, (e - f) | 0) + d = F[(a + 8) >> 2] + break a + } + d = e + if (d >>> 0 >= f >>> 0) { + break a + } + F[(a + 36) >> 2] = h + (e << 2) + d = e + } + s = F[(a + 52) >> 2] + n = F[(a + 48) >> 2] + f = 0 + h = e >>> 0 > 1073741823 ? -1 : e << 2 + l = ma(ka(h), 0, h) + b: { + if ((d | 0) <= 0) { + break b + } + g = F[(a + 32) >> 2] + while (1) { + d = f << 2 + h = F[(d + l) >> 2] + i = F[(a + 16) >> 2] + c: { + if ((h | 0) > (i | 0)) { + F[(d + g) >> 2] = i + break c + } + d = (d + g) | 0 + i = F[(a + 12) >> 2] + if ((i | 0) > (h | 0)) { + F[d >> 2] = i + break c + } + F[d >> 2] = h + } + d = F[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + if ((d | 0) <= 0) { + break b + } + f = 0 + while (1) { + h = f << 2 + d = (h + c) | 0 + h = (F[(b + h) >> 2] + F[(g + h) >> 2]) | 0 + F[d >> 2] = h + d: { + if ((h | 0) > F[(a + 16) >> 2]) { + h = (h - F[(a + 20) >> 2]) | 0 + } else { + if ((h | 0) >= F[(a + 12) >> 2]) { + break d + } + h = (h + F[(a + 20) >> 2]) | 0 + } + F[d >> 2] = h + } + d = F[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + } + f = F[(a + 56) >> 2] + q = F[f >> 2] + f = (F[(f + 4) >> 2] - q) | 0 + if ((f | 0) >= 5) { + o = (f >>> 2) | 0 + t = o >>> 0 <= 2 ? 2 : o + u = e & -2 + w = e & 1 + h = 1 + while (1) { + e: { + f: { + if ((h | 0) != (o | 0)) { + r = L(e, h) + f = F[((h << 2) + q) >> 2] + if ( + ((f | 0) == -1) | + ((F[(F[n >> 2] + ((f >>> 3) & 536870908)) >> 2] >>> + f) & + 1) + ) { + break f + } + f = + F[(F[(F[(n + 64) >> 2] + 12) >> 2] + (f << 2)) >> 2] + if ((f | 0) == -1) { + break f + } + i = F[s >> 2] + g = F[(n + 28) >> 2] + k = F[(i + (F[(g + (f << 2)) >> 2] << 2)) >> 2] + if ((k | 0) >= (h | 0)) { + break f + } + j = (f + 1) | 0 + j = + F[ + (i + + (F[ + (g + + (((j >>> 0) % 3 | 0 ? j : (f - 2) | 0) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] + if ((j | 0) >= (h | 0)) { + break f + } + f = + F[ + (i + + (F[ + (g + + ((f + ((f >>> 0) % 3 | 0 ? -1 : 2)) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] + if ((f | 0) >= (h | 0)) { + break f + } + g: { + if ((e | 0) <= 0) { + break g + } + g = L(e, f) + i = L(e, j) + k = L(e, k) + f = 0 + p = 0 + if ((e | 0) != 1) { + while (1) { + F[((f << 2) + l) >> 2] = + ((F[(((f + g) << 2) + c) >> 2] + + F[(((f + i) << 2) + c) >> 2]) | + 0) - + F[(((f + k) << 2) + c) >> 2] + j = f | 1 + F[((j << 2) + l) >> 2] = + ((F[(((g + j) << 2) + c) >> 2] + + F[(((i + j) << 2) + c) >> 2]) | + 0) - + F[(((k + j) << 2) + c) >> 2] + f = (f + 2) | 0 + p = (p + 2) | 0 + if ((u | 0) != (p | 0)) { + continue + } + break + } + } + if (!w) { + break g + } + F[((f << 2) + l) >> 2] = + ((F[(((f + g) << 2) + c) >> 2] + + F[(((f + i) << 2) + c) >> 2]) | + 0) - + F[(((f + k) << 2) + c) >> 2] + } + if ((d | 0) <= 0) { + break e + } + i = F[m >> 2] + f = 0 + while (1) { + d = f << 2 + g = F[(d + l) >> 2] + k = F[(a + 16) >> 2] + h: { + if ((g | 0) > (k | 0)) { + F[(d + i) >> 2] = k + break h + } + d = (d + i) | 0 + k = F[(a + 12) >> 2] + if ((k | 0) > (g | 0)) { + F[d >> 2] = k + break h + } + F[d >> 2] = g + } + d = F[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + f = 0 + if ((d | 0) <= 0) { + break e + } + d = r << 2 + k = (d + c) | 0 + j = (b + d) | 0 + while (1) { + g = f << 2 + d = (g + k) | 0 + g = (F[(g + j) >> 2] + F[(g + i) >> 2]) | 0 + F[d >> 2] = g + i: { + if ((g | 0) > F[(a + 16) >> 2]) { + g = (g - F[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= F[(a + 12) >> 2]) { + break i + } + g = (g + F[(a + 20) >> 2]) | 0 + } + F[d >> 2] = g + } + d = F[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + break e + } + ta() + v() + } + if ((d | 0) <= 0) { + break e + } + k = ((L((h - 1) | 0, e) << 2) + c) | 0 + i = F[m >> 2] + f = 0 + while (1) { + d = f << 2 + g = F[(d + k) >> 2] + j = F[(a + 16) >> 2] + j: { + if ((g | 0) > (j | 0)) { + F[(d + i) >> 2] = j + break j + } + d = (d + i) | 0 + j = F[(a + 12) >> 2] + if ((j | 0) > (g | 0)) { + F[d >> 2] = j + break j + } + F[d >> 2] = g + } + d = F[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + f = 0 + if ((d | 0) <= 0) { + break e + } + d = r << 2 + k = (d + c) | 0 + j = (b + d) | 0 + while (1) { + g = f << 2 + d = (g + k) | 0 + g = (F[(g + j) >> 2] + F[(g + i) >> 2]) | 0 + F[d >> 2] = g + k: { + if ((g | 0) > F[(a + 16) >> 2]) { + g = (g - F[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= F[(a + 12) >> 2]) { + break k + } + g = (g + F[(a + 20) >> 2]) | 0 + } + F[d >> 2] = g + } + d = F[(a + 8) >> 2] + f = (f + 1) | 0 + if ((d | 0) > (f | 0)) { + continue + } + break + } + } + h = (h + 1) | 0 + if ((t | 0) != (h | 0)) { + continue + } + break + } + } + ja(l) + return 1 + } + function Fb(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = M(0), + k = 0, + l = 0, + m = M(0) + i = F[c >> 2] + a: { + b: { + f = F[(b + 4) >> 2] + if (!f) { + break b + } + g = ni(f) + c: { + if (g >>> 0 >= 2) { + e = i + if (f >>> 0 <= e >>> 0) { + e = (i >>> 0) % (f >>> 0) | 0 + } + c = F[(F[b >> 2] + (e << 2)) >> 2] + if (!c) { + break b + } + if (g >>> 0 <= 1) { + break c + } + while (1) { + c = F[c >> 2] + if (!c) { + break b + } + g = F[(c + 4) >> 2] + if ((g | 0) != (i | 0)) { + if (f >>> 0 <= g >>> 0) { + g = (g >>> 0) % (f >>> 0) | 0 + } + if ((e | 0) != (g | 0)) { + break b + } + } + if (F[(c + 8) >> 2] != (i | 0)) { + continue + } + break + } + b = 0 + break a + } + e = (f - 1) & i + c = F[(F[b >> 2] + (e << 2)) >> 2] + if (!c) { + break b + } + } + h = (f - 1) | 0 + while (1) { + c = F[c >> 2] + if (!c) { + break b + } + g = F[(c + 4) >> 2] + if (((g | 0) != (i | 0)) & ((g & h) != (e | 0))) { + break b + } + if (F[(c + 8) >> 2] != (i | 0)) { + continue + } + break + } + b = 0 + break a + } + c = ka(16) + d = F[F[d >> 2] >> 2] + F[(c + 12) >> 2] = 0 + F[(c + 8) >> 2] = d + F[(c + 4) >> 2] = i + F[c >> 2] = 0 + m = M((F[(b + 12) >> 2] + 1) >>> 0) + j = J[(b + 16) >> 2] + d: { + if (m > M(j * M(f >>> 0)) ? 0 : f) { + break d + } + e = 2 + d = (((f - 1) & f) != 0) | (f >>> 0 < 3) | (f << 1) + j = M(S(M(m / j))) + e: { + if ((j < M(4294967296)) & (j >= M(0))) { + g = ~~j >>> 0 + break e + } + g = 0 + } + d = d >>> 0 > g >>> 0 ? d : g + f: { + if ((d | 0) == 1) { + break f + } + if (!(d & (d - 1))) { + e = d + break f + } + e = Mc(d) + f = F[(b + 4) >> 2] + } + g: { + if (e >>> 0 <= f >>> 0) { + if (e >>> 0 >= f >>> 0) { + break g + } + g = f >>> 0 < 3 + j = M(S(M(M(I[(b + 12) >> 2]) / J[(b + 16) >> 2]))) + h: { + if ((j < M(4294967296)) & (j >= M(0))) { + d = ~~j >>> 0 + break h + } + d = 0 + } + i: { + j: { + if (g) { + break j + } + if (ni(f) >>> 0 > 1) { + break j + } + d = d >>> 0 < 2 ? d : 1 << (32 - O((d - 1) | 0)) + break i + } + d = Mc(d) + } + e = d >>> 0 < e >>> 0 ? e : d + if (f >>> 0 <= e >>> 0) { + break g + } + } + f = 0 + g = 0 + h = e + k: { + l: { + m: { + n: { + if (e) { + if (h >>> 0 >= 1073741824) { + break n + } + d = ka(h << 2) + e = F[b >> 2] + F[b >> 2] = d + if (e) { + ja(e) + } + F[(b + 4) >> 2] = h + d = 0 + if (h >>> 0 >= 4) { + e = h & -4 + while (1) { + k = d << 2 + F[(k + F[b >> 2]) >> 2] = 0 + F[(F[b >> 2] + (k | 4)) >> 2] = 0 + F[(F[b >> 2] + (k | 8)) >> 2] = 0 + F[(F[b >> 2] + (k | 12)) >> 2] = 0 + d = (d + 4) | 0 + g = (g + 4) | 0 + if ((e | 0) != (g | 0)) { + continue + } + break + } + } + e = h & 3 + if (e) { + while (1) { + F[(F[b >> 2] + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + f = (f + 1) | 0 + if ((e | 0) != (f | 0)) { + continue + } + break + } + } + e = F[(b + 8) >> 2] + if (!e) { + break k + } + d = (b + 8) | 0 + f = F[(e + 4) >> 2] + g = ni(h) + if (g >>> 0 < 2) { + break m + } + f = + f >>> 0 >= h >>> 0 + ? (f >>> 0) % (h >>> 0) | 0 + : f + F[(F[b >> 2] + (f << 2)) >> 2] = d + d = F[e >> 2] + if (!d) { + break k + } + if (g >>> 0 <= 1) { + break l + } + while (1) { + g = F[(d + 4) >> 2] + if (h >>> 0 <= g >>> 0) { + g = (g >>> 0) % (h >>> 0) | 0 + } + o: { + if ((f | 0) == (g | 0)) { + e = d + break o + } + l = g << 2 + k = (l + F[b >> 2]) | 0 + if (!F[k >> 2]) { + F[k >> 2] = e + e = d + f = g + break o + } + F[e >> 2] = F[d >> 2] + F[d >> 2] = F[F[(l + F[b >> 2]) >> 2] >> 2] + F[F[(l + F[b >> 2]) >> 2] >> 2] = d + } + d = F[e >> 2] + if (d) { + continue + } + break + } + break k + } + d = F[b >> 2] + F[b >> 2] = 0 + if (d) { + ja(d) + } + F[(b + 4) >> 2] = 0 + break k + } + oa() + v() + } + f = (h - 1) & f + F[(F[b >> 2] + (f << 2)) >> 2] = d + d = F[e >> 2] + if (!d) { + break k + } + } + k = (h - 1) | 0 + while (1) { + g = k & F[(d + 4) >> 2] + p: { + if ((g | 0) == (f | 0)) { + e = d + break p + } + l = g << 2 + h = (l + F[b >> 2]) | 0 + if (F[h >> 2]) { + F[e >> 2] = F[d >> 2] + F[d >> 2] = F[F[(l + F[b >> 2]) >> 2] >> 2] + F[F[(l + F[b >> 2]) >> 2] >> 2] = d + break p + } + F[h >> 2] = e + e = d + f = g + } + d = F[e >> 2] + if (d) { + continue + } + break + } + } + } + f = F[(b + 4) >> 2] + d = (f - 1) | 0 + if (!(d & f)) { + e = d & i + break d + } + if (f >>> 0 > i >>> 0) { + e = i + break d + } + e = (i >>> 0) % (f >>> 0) | 0 + } + e = (F[b >> 2] + (e << 2)) | 0 + d = F[e >> 2] + q: { + r: { + if (!d) { + d = (b + 8) | 0 + F[c >> 2] = F[d >> 2] + F[(b + 8) >> 2] = c + F[e >> 2] = d + d = F[c >> 2] + if (!d) { + break q + } + d = F[(d + 4) >> 2] + e = (f - 1) | 0 + s: { + if (!(e & f)) { + d = d & e + break s + } + if (d >>> 0 < f >>> 0) { + break s + } + d = (d >>> 0) % (f >>> 0) | 0 + } + d = (F[b >> 2] + (d << 2)) | 0 + break r + } + F[c >> 2] = F[d >> 2] + } + F[d >> 2] = c + } + F[(b + 12) >> 2] = F[(b + 12) >> 2] + 1 + b = 1 + } + D[(a + 4) | 0] = b + F[a >> 2] = c + } + function Vb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + j = (L(b, 12) + a) | 0 + F[(j + 12) >> 2] = F[(j + 8) >> 2] + m = (c | 0) == -1 ? -1 : ((c >>> 0) / 3) | 0 + d = 1 + k = c + a: { + b: { + c: { + while (1) { + d: { + l = d + if (!d) { + if ((k | 0) == -1) { + break d + } + if ( + (Wc(a, (((k >>> 0) % 3 | 0 ? -1 : 2) + k) | 0) | + 0) == + -1 + ) { + break a + } + c = (k + 1) | 0 + d = (c >>> 0) % 3 | 0 ? c : (k - 2) | 0 + if ((d | 0) == -1) { + break a + } + c = (d + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (d - 2) | 0 + if ((c | 0) == -1) { + break a + } + d = + F[ + (F[(F[(a + 4) >> 2] + 12) >> 2] + (c << 2)) >> 2 + ] + if ((d | 0) == -1) { + break a + } + c = (d + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (d - 2) | 0 + if ((c | 0) == -1) { + break a + } + m = ((c >>> 0) / 3) | 0 + } + e: { + d = (F[(a + 56) >> 2] + ((m >>> 3) & 536870908)) | 0 + h = F[d >> 2] + e = 1 << m + if (h & e) { + break e + } + f = 0 + while (1) { + F[d >> 2] = e | h + d = F[(j + 12) >> 2] + f: { + if ((d | 0) != F[(j + 16) >> 2]) { + F[d >> 2] = m + F[(j + 12) >> 2] = d + 4 + break f + } + n = F[(j + 8) >> 2] + h = (d - n) | 0 + e = h >> 2 + i = (e + 1) | 0 + if (i >>> 0 >= 1073741824) { + break c + } + g = (h >>> 1) | 0 + i = + h >>> 0 >= 2147483644 + ? 1073741823 + : i >>> 0 < g >>> 0 + ? g + : i + if (i) { + if (i >>> 0 >= 1073741824) { + break b + } + g = ka(i << 2) + } else { + g = 0 + } + h = (g + (e << 2)) | 0 + F[h >> 2] = m + e = (h + 4) | 0 + if ((d | 0) != (n | 0)) { + while (1) { + h = (h - 4) | 0 + d = (d - 4) | 0 + F[h >> 2] = F[d >> 2] + if ((d | 0) != (n | 0)) { + continue + } + break + } + } + F[(j + 8) >> 2] = h + F[(j + 12) >> 2] = e + F[(j + 16) >> 2] = g + (i << 2) + if (!n) { + break f + } + ja(n) + } + g = (f + 1) | 0 + g: { + h: { + i: { + if (!f) { + break i + } + if (g & 1) { + if ((c | 0) == -1) { + c = -1 + break g + } + d = (c + 1) | 0 + c = (d >>> 0) % 3 | 0 ? d : (c - 2) | 0 + break i + } + k = l ? k : c + if ((c | 0) == -1) { + c = -1 + break g + } + if ((c >>> 0) % 3 | 0) { + d = (c - 1) | 0 + break h + } + c = (c + 2) | 0 + } + d = c + c = -1 + if ((d | 0) == -1) { + break g + } + } + c = + F[ + (F[(F[(a + 4) >> 2] + 12) >> 2] + + (d << 2)) >> + 2 + ] + h = -1 + f = -1 + e = (d + 1) | 0 + e = (e >>> 0) % 3 | 0 ? e : (d - 2) | 0 + if ((e | 0) >= 0) { + f = ((e >>> 0) / 3) | 0 + f = + F[ + (((F[(F[a >> 2] + 96) >> 2] + L(f, 12)) | + 0) + + ((e - L(f, 3)) << 2)) >> + 2 + ] + } + j: { + if ((c | 0) == -1) { + break j + } + i = (((c >>> 0) % 3 | 0 ? -1 : 2) + c) | 0 + if ((i | 0) < 0) { + break j + } + e = ((i >>> 0) / 3) | 0 + h = + F[ + (((F[(F[a >> 2] + 96) >> 2] + L(e, 12)) | + 0) + + ((i - L(e, 3)) << 2)) >> + 2 + ] + } + if ((f | 0) != (h | 0)) { + c = -1 + break g + } + k: { + l: { + f = (((d >>> 0) % 3 | 0 ? -1 : 2) + d) | 0 + if ((f | 0) >= 0) { + d = ((f >>> 0) / 3) | 0 + if ((c | 0) != -1) { + break l + } + c = -1 + break g + } + d = -1 + if ((c | 0) != -1) { + break k + } + c = -1 + break g + } + d = + F[ + (((F[(F[a >> 2] + 96) >> 2] + L(d, 12)) | + 0) + + ((f - L(d, 3)) << 2)) >> + 2 + ] + } + f = (c + 1) | 0 + e = (f >>> 0) % 3 | 0 ? f : (c - 2) | 0 + if ((e | 0) >= 0) { + f = ((e >>> 0) / 3) | 0 + f = + F[ + (((F[(F[a >> 2] + 96) >> 2] + L(f, 12)) | + 0) + + ((e - L(f, 3)) << 2)) >> + 2 + ] + } else { + f = -1 + } + if ((f | 0) != (d | 0)) { + c = -1 + break g + } + f = g + m = ((c >>> 0) / 3) | 0 + d = + (F[(a + 56) >> 2] + ((m >>> 3) & 268435452)) | + 0 + h = F[d >> 2] + e = 1 << m + if (!(h & e)) { + continue + } + } + break + } + if (l | !(g & 1)) { + break e + } + l = (F[(j + 12) >> 2] - 4) | 0 + g = F[l >> 2] + d = (F[(a + 56) >> 2] + ((g >>> 3) & 536870908)) | 0 + c = F[d >> 2] + ;(o = d), (p = oi(g) & c), (F[o >> 2] = p) + F[(j + 12) >> 2] = l + break a + } + d = 0 + if (l) { + continue + } + break a + } + break + } + k = -1 + Wc(a, -1) + break a + } + na() + v() + } + oa() + v() + } + F[((((b << 2) + a) | 0) + 44) >> 2] = k + b = F[(j + 12) >> 2] + i = F[(j + 8) >> 2] + m: { + if ((b | 0) == (i | 0)) { + break m + } + c = (b - i) | 0 + b = c >> 2 + b = b >>> 0 <= 1 ? 1 : b + k = b & 1 + e = F[(a + 56) >> 2] + d = 0 + if (c >>> 0 >= 8) { + f = b & -2 + c = 0 + while (1) { + l = d << 2 + g = F[(l + i) >> 2] + b = (e + ((g >>> 3) & 536870908)) | 0 + a = F[b >> 2] + ;(o = b), (p = oi(g) & a), (F[o >> 2] = p) + g = F[(i + (l | 4)) >> 2] + b = (e + ((g >>> 3) & 536870908)) | 0 + a = F[b >> 2] + ;(o = b), (p = oi(g) & a), (F[o >> 2] = p) + d = (d + 2) | 0 + c = (c + 2) | 0 + if ((f | 0) != (c | 0)) { + continue + } + break + } + } + if (!k) { + break m + } + c = F[(i + (d << 2)) >> 2] + b = (e + ((c >>> 3) & 536870908)) | 0 + a = F[b >> 2] + ;(o = b), (p = oi(c) & a), (F[o >> 2] = p) + } + } + function pd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + if ((b | 0) == -1) { + return 1 + } + g = ((b >>> 0) / 3) | 0 + if ( + !( + (F[(F[(a + 24) >> 2] + ((g >>> 3) & 268435452)) >> 2] >>> + g) & + 1 + ) + ) { + f = F[(a + 48) >> 2] + F[(a + 52) >> 2] = f + a: { + if ((f | 0) != F[(a + 56) >> 2]) { + F[f >> 2] = b + F[(a + 52) >> 2] = f + 4 + break a + } + d = ka(4) + F[d >> 2] = b + c = (d + 4) | 0 + F[(a + 56) >> 2] = c + F[(a + 52) >> 2] = c + F[(a + 48) >> 2] = d + if (!f) { + break a + } + ja(f) + } + e = -1 + d = F[(a + 4) >> 2] + c = (b + 1) | 0 + i = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + if ((i | 0) != -1) { + e = F[(F[d >> 2] + (i << 2)) >> 2] + } + b: { + h = (b - L(g, 3)) | 0 + if (h) { + c = (b - 1) | 0 + break b + } + c = (b + 2) | 0 + if ((c | 0) != -1) { + break b + } + return 0 + } + if ((e | 0) == -1) { + return 0 + } + j = F[(F[d >> 2] + (c << 2)) >> 2] + if ((j | 0) == -1) { + return 0 + } + c = F[(a + 36) >> 2] + f = (c + ((e >>> 3) & 536870908)) | 0 + g = F[f >> 2] + d = 1 << e + if (!(g & d)) { + F[f >> 2] = d | g + Ka((a + 8) | 0, e, i) + c = F[(a + 36) >> 2] + } + g = (((j >>> 3) & 536870908) + c) | 0 + d = F[g >> 2] + c = 1 << j + if (!(d & c)) { + F[g >> 2] = c | d + Ka((a + 8) | 0, j, ((h ? -1 : 2) + b) | 0) + } + c = F[(a + 52) >> 2] + if ((c | 0) == F[(a + 48) >> 2]) { + return 1 + } + j = (a + 8) | 0 + while (1) { + c: { + d: { + c = (c - 4) | 0 + b = F[c >> 2] + if ((b | 0) == -1) { + break d + } + d = ((b >>> 0) / 3) | 0 + f = (F[(a + 24) >> 2] + ((d >>> 3) & 268435452)) | 0 + g = F[f >> 2] + d = 1 << d + if (g & d) { + break d + } + F[f >> 2] = d | g + while (1) { + i = F[(a + 4) >> 2] + e = F[(F[i >> 2] + (b << 2)) >> 2] + if ((e | 0) == -1) { + return 0 + } + e: { + f: { + h = + (F[(a + 36) >> 2] + ((e >>> 3) & 536870908)) | 0 + f = F[h >> 2] + g = 1 << e + if (f & g) { + break f + } + g: { + d = F[(F[(i + 24) >> 2] + (e << 2)) >> 2] + h: { + if ((d | 0) == -1) { + break h + } + c = (d + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (d - 2) | 0 + if ((c | 0) == -1) { + break h + } + d = F[(F[(i + 12) >> 2] + (c << 2)) >> 2] + if ((d | 0) != -1) { + break g + } + } + F[h >> 2] = f | g + Ka(j, e, b) + break f + } + F[h >> 2] = f | g + Ka(j, e, b) + c = (d + 1) | 0 + if ( + (((c >>> 0) % 3 | 0 ? c : (d - 2) | 0) | 0) == + -1 + ) { + break f + } + c = (b - 2) | 0 + d = (b + 1) | 0 + b = -1 + c = (d >>> 0) % 3 | 0 ? d : c + if ((c | 0) != -1) { + b = + F[ + (F[(F[(a + 4) >> 2] + 12) >> 2] + + (c << 2)) >> + 2 + ] + } + c = ((b >>> 0) / 3) | 0 + d = 1 << c + e = F[(a + 24) >> 2] + f = (c >>> 5) | 0 + i = F[(e + (f << 2)) >> 2] + break e + } + c = -1 + g = F[(a + 4) >> 2] + d = (b + 1) | 0 + d = (d >>> 0) % 3 | 0 ? d : (b - 2) | 0 + if ((d | 0) != -1) { + c = F[(F[(g + 12) >> 2] + (d << 2)) >> 2] + } + i: { + j: { + if ((b >>> 0) % 3 | 0) { + e = (b - 1) | 0 + break j + } + e = (b + 2) | 0 + b = -1 + if ((e | 0) == -1) { + break i + } + } + b = F[(F[(g + 12) >> 2] + (e << 2)) >> 2] + } + g = (b | 0) == -1 + h = g ? -1 : ((b >>> 0) / 3) | 0 + k: { + if ((c | 0) != -1) { + e = F[(a + 24) >> 2] + d = ((c >>> 0) / 3) | 0 + f = (d >>> 5) | 0 + i = F[(e + (f << 2)) >> 2] + d = 1 << d + if (!(i & d)) { + break k + } + } + if (!g) { + d = 1 << h + e = F[(a + 24) >> 2] + f = (h >>> 5) | 0 + i = F[(e + (f << 2)) >> 2] + if (!(d & i)) { + break e + } + } + c = (F[(a + 52) >> 2] - 4) | 0 + F[(a + 52) >> 2] = c + break c + } + if (g) { + b = c + break e + } + if ( + (F[(((h >>> 3) & 536870908) + e) >> 2] >>> h) & + 1 + ) { + b = c + break e + } + e = F[(a + 52) >> 2] + F[(e - 4) >> 2] = b + if (F[(a + 56) >> 2] != (e | 0)) { + F[e >> 2] = c + c = (e + 4) | 0 + break d + } + l: { + h = F[(a + 48) >> 2] + f = (e - h) | 0 + g = f >> 2 + d = (g + 1) | 0 + if (d >>> 0 < 1073741824) { + b = (f >>> 1) | 0 + f = + f >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 > d >>> 0 + ? b + : d + if (f) { + if (f >>> 0 >= 1073741824) { + break l + } + d = ka(f << 2) + } else { + d = 0 + } + b = (d + (g << 2)) | 0 + F[b >> 2] = c + c = (b + 4) | 0 + if ((e | 0) != (h | 0)) { + while (1) { + b = (b - 4) | 0 + e = (e - 4) | 0 + F[b >> 2] = F[e >> 2] + if ((e | 0) != (h | 0)) { + continue + } + break + } + } + F[(a + 56) >> 2] = d + (f << 2) + F[(a + 52) >> 2] = c + F[(a + 48) >> 2] = b + if (!h) { + break c + } + ja(h) + c = F[(a + 52) >> 2] + break c + } + na() + v() + } + oa() + v() + } + F[((f << 2) + e) >> 2] = d | i + if ((b | 0) != -1) { + continue + } + break + } + return 0 + } + F[(a + 52) >> 2] = c + } + if (F[(a + 48) >> 2] != (c | 0)) { + continue + } + break + } + } + return 1 + } + function ee(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + h = (Z - 32) | 0 + Z = h + a: { + b: { + if (!Oa(1, (h + 28) | 0, b)) { + break b + } + d = F[(h + 28) >> 2] + c = F[(F[(a + 48) >> 2] + 64) >> 2] + if (d >>> 0 > ((F[(c + 4) >> 2] - F[c >> 2]) >> 2) >>> 0) { + break b + } + c: { + if (d) { + Na((a + 60) | 0, d) + c = (h + 8) | 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + D[(c + 5) | 0] = 0 + D[(c + 6) | 0] = 0 + D[(c + 7) | 0] = 0 + D[(c + 8) | 0] = 0 + D[(c + 9) | 0] = 0 + D[(c + 10) | 0] = 0 + D[(c + 11) | 0] = 0 + D[(c + 12) | 0] = 0 + if (!Aa(c, b)) { + break c + } + while (1) { + f = 1 << e + j = wa(c) + g = (F[(a + 60) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | F[g >> 2] + } else { + i = F[g >> 2] & (f ^ -1) + } + F[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!Oa(1, (h + 28) | 0, b)) { + break b + } + d = F[(h + 28) >> 2] + c = F[(F[(a + 48) >> 2] + 64) >> 2] + if ( + d >>> 0 > + ((F[(c + 4) >> 2] - F[c >> 2]) >> 2) >>> 0 + ) { + break b + } + if (d) { + e = 0 + Na((a + 72) | 0, d) + c = (h + 8) | 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + D[(c + 5) | 0] = 0 + D[(c + 6) | 0] = 0 + D[(c + 7) | 0] = 0 + D[(c + 8) | 0] = 0 + D[(c + 9) | 0] = 0 + D[(c + 10) | 0] = 0 + D[(c + 11) | 0] = 0 + D[(c + 12) | 0] = 0 + if (!Aa(c, b)) { + break c + } + while (1) { + f = 1 << e + j = wa(c) + g = (F[(a + 72) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | F[g >> 2] + } else { + i = F[g >> 2] & (f ^ -1) + } + F[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!Oa(1, (h + 28) | 0, b)) { + break b + } + d = F[(h + 28) >> 2] + c = F[(F[(a + 48) >> 2] + 64) >> 2] + if ( + d >>> 0 > + ((F[(c + 4) >> 2] - F[c >> 2]) >> 2) >>> 0 + ) { + break b + } + if (d) { + e = 0 + Na((a + 84) | 0, d) + c = (h + 8) | 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + D[(c + 5) | 0] = 0 + D[(c + 6) | 0] = 0 + D[(c + 7) | 0] = 0 + D[(c + 8) | 0] = 0 + D[(c + 9) | 0] = 0 + D[(c + 10) | 0] = 0 + D[(c + 11) | 0] = 0 + D[(c + 12) | 0] = 0 + if (!Aa(c, b)) { + break c + } + while (1) { + f = 1 << e + j = wa(c) + g = (F[(a + 84) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | F[g >> 2] + } else { + i = F[g >> 2] & (f ^ -1) + } + F[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!Oa(1, (h + 28) | 0, b)) { + break b + } + d = F[(h + 28) >> 2] + c = F[(F[(a + 48) >> 2] + 64) >> 2] + if ( + d >>> 0 > + ((F[(c + 4) >> 2] - F[c >> 2]) >> 2) >>> 0 + ) { + break b + } + if (d) { + e = 0 + Na((a + 96) | 0, d) + c = (h + 8) | 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + D[(c + 5) | 0] = 0 + D[(c + 6) | 0] = 0 + D[(c + 7) | 0] = 0 + D[(c + 8) | 0] = 0 + D[(c + 9) | 0] = 0 + D[(c + 10) | 0] = 0 + D[(c + 11) | 0] = 0 + D[(c + 12) | 0] = 0 + if (!Aa(c, b)) { + break c + } + while (1) { + f = 1 << e + j = wa(c) + g = (F[(a + 96) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | F[g >> 2] + } else { + i = F[g >> 2] & (f ^ -1) + } + F[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + c = F[(b + 8) >> 2] + f = F[(b + 12) >> 2] + d = c + c = F[(b + 20) >> 2] + i = c + g = F[(b + 16) >> 2] + j = (g + 4) | 0 + c = j >>> 0 < 4 ? (c + 1) | 0 : c + if ( + ((d >>> 0 < j >>> 0) & ((c | 0) >= (f | 0))) | + ((c | 0) > (f | 0)) + ) { + break a + } + m = F[b >> 2] + k = (m + g) | 0 + l = + G[k | 0] | + (G[(k + 1) | 0] << 8) | + ((G[(k + 2) | 0] << 16) | (G[(k + 3) | 0] << 24)) + F[(b + 16) >> 2] = j + F[(b + 20) >> 2] = c + k = d + d = f + c = i + f = (g + 8) | 0 + c = f >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((f >>> 0 > k >>> 0) & ((c | 0) >= (d | 0))) | + ((c | 0) > (d | 0)) + ) { + break a + } + d = (j + m) | 0 + d = + G[d | 0] | + (G[(d + 1) | 0] << 8) | + ((G[(d + 2) | 0] << 16) | (G[(d + 3) | 0] << 24)) + F[(b + 16) >> 2] = f + F[(b + 20) >> 2] = c + if ((d | 0) < (l | 0)) { + break a + } + F[(a + 16) >> 2] = d + F[(a + 12) >> 2] = l + c = + ((d >> 31) - (((l >> 31) + (d >>> 0 < l >>> 0)) | 0)) | + 0 + b = (d - l) | 0 + if ((!c & (b >>> 0 > 2147483646)) | c) { + break a + } + e = 1 + b = (b + 1) | 0 + F[(a + 20) >> 2] = b + c = (b >>> 1) | 0 + F[(a + 24) >> 2] = c + F[(a + 28) >> 2] = 0 - c + if (b & 1) { + break a + } + F[(a + 24) >> 2] = c - 1 + break a + } + } + e = 0 + } + Z = (h + 32) | 0 + return e | 0 + } + function ai(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + h = (Z - 32) | 0 + Z = h + a: { + b: { + if (!Oa(1, (h + 28) | 0, b)) { + break b + } + d = F[(h + 28) >> 2] + c = F[(a + 48) >> 2] + if (d >>> 0 > ((F[(c + 4) >> 2] - F[c >> 2]) >> 2) >>> 0) { + break b + } + c: { + if (d) { + Na((a + 60) | 0, d) + c = (h + 8) | 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + D[(c + 5) | 0] = 0 + D[(c + 6) | 0] = 0 + D[(c + 7) | 0] = 0 + D[(c + 8) | 0] = 0 + D[(c + 9) | 0] = 0 + D[(c + 10) | 0] = 0 + D[(c + 11) | 0] = 0 + D[(c + 12) | 0] = 0 + if (!Aa(c, b)) { + break c + } + while (1) { + f = 1 << e + j = wa(c) + g = (F[(a + 60) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | F[g >> 2] + } else { + i = F[g >> 2] & (f ^ -1) + } + F[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!Oa(1, (h + 28) | 0, b)) { + break b + } + d = F[(h + 28) >> 2] + c = F[(a + 48) >> 2] + if ( + d >>> 0 > + ((F[(c + 4) >> 2] - F[c >> 2]) >> 2) >>> 0 + ) { + break b + } + if (d) { + e = 0 + Na((a + 72) | 0, d) + c = (h + 8) | 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + D[(c + 5) | 0] = 0 + D[(c + 6) | 0] = 0 + D[(c + 7) | 0] = 0 + D[(c + 8) | 0] = 0 + D[(c + 9) | 0] = 0 + D[(c + 10) | 0] = 0 + D[(c + 11) | 0] = 0 + D[(c + 12) | 0] = 0 + if (!Aa(c, b)) { + break c + } + while (1) { + f = 1 << e + j = wa(c) + g = (F[(a + 72) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | F[g >> 2] + } else { + i = F[g >> 2] & (f ^ -1) + } + F[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!Oa(1, (h + 28) | 0, b)) { + break b + } + d = F[(h + 28) >> 2] + c = F[(a + 48) >> 2] + if ( + d >>> 0 > + ((F[(c + 4) >> 2] - F[c >> 2]) >> 2) >>> 0 + ) { + break b + } + if (d) { + e = 0 + Na((a + 84) | 0, d) + c = (h + 8) | 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + D[(c + 5) | 0] = 0 + D[(c + 6) | 0] = 0 + D[(c + 7) | 0] = 0 + D[(c + 8) | 0] = 0 + D[(c + 9) | 0] = 0 + D[(c + 10) | 0] = 0 + D[(c + 11) | 0] = 0 + D[(c + 12) | 0] = 0 + if (!Aa(c, b)) { + break c + } + while (1) { + f = 1 << e + j = wa(c) + g = (F[(a + 84) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | F[g >> 2] + } else { + i = F[g >> 2] & (f ^ -1) + } + F[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + if (!Oa(1, (h + 28) | 0, b)) { + break b + } + d = F[(h + 28) >> 2] + c = F[(a + 48) >> 2] + if ( + d >>> 0 > + ((F[(c + 4) >> 2] - F[c >> 2]) >> 2) >>> 0 + ) { + break b + } + if (d) { + e = 0 + Na((a + 96) | 0, d) + c = (h + 8) | 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + D[(c + 5) | 0] = 0 + D[(c + 6) | 0] = 0 + D[(c + 7) | 0] = 0 + D[(c + 8) | 0] = 0 + D[(c + 9) | 0] = 0 + D[(c + 10) | 0] = 0 + D[(c + 11) | 0] = 0 + D[(c + 12) | 0] = 0 + if (!Aa(c, b)) { + break c + } + while (1) { + f = 1 << e + j = wa(c) + g = (F[(a + 96) >> 2] + ((e >>> 3) & 536870908)) | 0 + if (j) { + i = f | F[g >> 2] + } else { + i = F[g >> 2] & (f ^ -1) + } + F[g >> 2] = i + e = (e + 1) | 0 + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + e = 0 + c = F[(b + 8) >> 2] + f = F[(b + 12) >> 2] + d = c + c = F[(b + 20) >> 2] + i = c + g = F[(b + 16) >> 2] + j = (g + 4) | 0 + c = j >>> 0 < 4 ? (c + 1) | 0 : c + if ( + ((d >>> 0 < j >>> 0) & ((c | 0) >= (f | 0))) | + ((c | 0) > (f | 0)) + ) { + break a + } + m = F[b >> 2] + k = (m + g) | 0 + l = + G[k | 0] | + (G[(k + 1) | 0] << 8) | + ((G[(k + 2) | 0] << 16) | (G[(k + 3) | 0] << 24)) + F[(b + 16) >> 2] = j + F[(b + 20) >> 2] = c + k = d + d = f + c = i + f = (g + 8) | 0 + c = f >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((f >>> 0 > k >>> 0) & ((c | 0) >= (d | 0))) | + ((c | 0) > (d | 0)) + ) { + break a + } + d = (j + m) | 0 + d = + G[d | 0] | + (G[(d + 1) | 0] << 8) | + ((G[(d + 2) | 0] << 16) | (G[(d + 3) | 0] << 24)) + F[(b + 16) >> 2] = f + F[(b + 20) >> 2] = c + if ((d | 0) < (l | 0)) { + break a + } + F[(a + 16) >> 2] = d + F[(a + 12) >> 2] = l + c = + ((d >> 31) - (((l >> 31) + (d >>> 0 < l >>> 0)) | 0)) | + 0 + b = (d - l) | 0 + if ((!c & (b >>> 0 > 2147483646)) | c) { + break a + } + e = 1 + b = (b + 1) | 0 + F[(a + 20) >> 2] = b + c = (b >>> 1) | 0 + F[(a + 24) >> 2] = c + F[(a + 28) >> 2] = 0 - c + if (b & 1) { + break a + } + F[(a + 24) >> 2] = c - 1 + break a + } + } + e = 0 + } + Z = (h + 32) | 0 + return e | 0 + } + function uh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + c = F[(a + 32) >> 2] + d = F[(c + 16) >> 2] + e = F[(c + 12) >> 2] + b = F[(c + 20) >> 2] + if ( + ((I[(c + 8) >> 2] > d >>> 0) & ((e | 0) >= (b | 0))) | + ((b | 0) < (e | 0)) + ) { + e = G[(F[c >> 2] + d) | 0] + d = (d + 1) | 0 + b = d ? b : (b + 1) | 0 + F[(c + 16) >> 2] = d + F[(c + 20) >> 2] = b + b = F[(a + 48) >> 2] + F[(a + 48) >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + a: { + b: { + c: { + d: { + switch (e | 0) { + case 0: + b = ka(384) + F[b >> 2] = 8284 + ma((b + 4) | 0, 0, 80) + F[(b + 96) >> 2] = 0 + F[(b + 100) >> 2] = 0 + F[(b + 92) >> 2] = -1 + F[(b + 84) >> 2] = -1 + F[(b + 88) >> 2] = -1 + F[(b + 104) >> 2] = 0 + F[(b + 108) >> 2] = 0 + F[(b + 112) >> 2] = 0 + F[(b + 116) >> 2] = 0 + F[(b + 120) >> 2] = 0 + F[(b + 124) >> 2] = 0 + F[(b + 128) >> 2] = 0 + F[(b + 132) >> 2] = 0 + F[(b + 136) >> 2] = 0 + F[(b + 140) >> 2] = 0 + F[(b + 144) >> 2] = 0 + F[(b + 148) >> 2] = 0 + F[(b + 156) >> 2] = 0 + F[(b + 160) >> 2] = 0 + F[(b + 152) >> 2] = 1065353216 + F[(b + 164) >> 2] = 0 + F[(b + 168) >> 2] = 0 + F[(b + 172) >> 2] = 0 + F[(b + 176) >> 2] = 0 + F[(b + 180) >> 2] = 0 + F[(b + 184) >> 2] = 0 + F[(b + 188) >> 2] = 0 + F[(b + 192) >> 2] = 0 + F[(b + 196) >> 2] = 0 + F[(b + 200) >> 2] = 0 + F[(b + 204) >> 2] = 0 + F[(b + 208) >> 2] = 0 + F[(b + 212) >> 2] = -1 + F[(b + 216) >> 2] = 0 + F[(b + 220) >> 2] = 0 + F[(b + 224) >> 2] = 0 + Ja((b + 232) | 0) + Ja((b + 272) | 0) + c = (b + 312) | 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + D[(c + 5) | 0] = 0 + D[(c + 6) | 0] = 0 + D[(c + 7) | 0] = 0 + D[(c + 8) | 0] = 0 + D[(c + 9) | 0] = 0 + D[(c + 10) | 0] = 0 + D[(c + 11) | 0] = 0 + D[(c + 12) | 0] = 0 + Ja((b + 328) | 0) + F[(b + 376) >> 2] = 0 + F[(b + 368) >> 2] = 0 + F[(b + 372) >> 2] = 0 + break c + case 2: + break d + default: + break b + } + } + b = ka(440) + F[b >> 2] = 8336 + ma((b + 4) | 0, 0, 80) + F[(b + 96) >> 2] = 0 + F[(b + 100) >> 2] = 0 + F[(b + 92) >> 2] = -1 + F[(b + 84) >> 2] = -1 + F[(b + 88) >> 2] = -1 + F[(b + 104) >> 2] = 0 + F[(b + 108) >> 2] = 0 + F[(b + 112) >> 2] = 0 + F[(b + 116) >> 2] = 0 + F[(b + 120) >> 2] = 0 + F[(b + 124) >> 2] = 0 + F[(b + 128) >> 2] = 0 + F[(b + 132) >> 2] = 0 + F[(b + 136) >> 2] = 0 + F[(b + 140) >> 2] = 0 + F[(b + 144) >> 2] = 0 + F[(b + 148) >> 2] = 0 + F[(b + 156) >> 2] = 0 + F[(b + 160) >> 2] = 0 + F[(b + 152) >> 2] = 1065353216 + F[(b + 164) >> 2] = 0 + F[(b + 168) >> 2] = 0 + F[(b + 172) >> 2] = 0 + F[(b + 176) >> 2] = 0 + F[(b + 180) >> 2] = 0 + F[(b + 184) >> 2] = 0 + F[(b + 188) >> 2] = 0 + F[(b + 192) >> 2] = 0 + F[(b + 196) >> 2] = 0 + F[(b + 200) >> 2] = 0 + F[(b + 204) >> 2] = 0 + F[(b + 208) >> 2] = 0 + F[(b + 212) >> 2] = -1 + F[(b + 216) >> 2] = 0 + F[(b + 220) >> 2] = 0 + F[(b + 224) >> 2] = 0 + Ja((b + 232) | 0) + Ja((b + 272) | 0) + c = (b + 312) | 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + D[(c + 5) | 0] = 0 + D[(c + 6) | 0] = 0 + D[(c + 7) | 0] = 0 + D[(c + 8) | 0] = 0 + D[(c + 9) | 0] = 0 + D[(c + 10) | 0] = 0 + D[(c + 11) | 0] = 0 + D[(c + 12) | 0] = 0 + Ja((b + 328) | 0) + F[(b + 392) >> 2] = 0 + F[(b + 396) >> 2] = 0 + F[(b + 384) >> 2] = 0 + F[(b + 388) >> 2] = 0 + F[(b + 376) >> 2] = 0 + F[(b + 380) >> 2] = 0 + F[(b + 368) >> 2] = 0 + F[(b + 372) >> 2] = 0 + F[(b + 416) >> 2] = 0 + F[(b + 420) >> 2] = 0 + F[(b + 408) >> 2] = 2 + F[(b + 412) >> 2] = 7 + F[(b + 400) >> 2] = -1 + F[(b + 404) >> 2] = -1 + F[(b + 424) >> 2] = 0 + F[(b + 428) >> 2] = 0 + F[(b + 432) >> 2] = 0 + F[(b + 436) >> 2] = 0 + } + c = F[(a + 48) >> 2] + F[(a + 48) >> 2] = b + if (!c) { + break a + } + $[F[(F[c >> 2] + 4) >> 2]](c) + } + b = F[(a + 48) >> 2] + if (b) { + break a + } + return 0 + } + a = $[F[(F[b >> 2] + 8) >> 2]](b, a) | 0 + } else { + a = 0 + } + return a | 0 + } + function ei(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + g = (Z - 32) | 0 + Z = g + F[(a + 68) >> 2] = f + d = F[(a + 56) >> 2] + e = F[d >> 2] + d = F[(d + 4) >> 2] + F[(g + 24) >> 2] = 0 + F[(g + 16) >> 2] = 0 + F[(g + 20) >> 2] = 0 + a: { + d = (d - e) | 0 + if ((d | 0) > 0) { + m = (a + 60) | 0 + d = (d >>> 2) | 0 + n = d >>> 0 <= 1 ? 1 : d + o = (a + 112) | 0 + while (1) { + e = F[(a + 56) >> 2] + d = F[e >> 2] + if (((F[(e + 4) >> 2] - d) >> 2) >>> 0 <= j >>> 0) { + break a + } + Mb(m, F[(d + (j << 2)) >> 2], (g + 16) | 0) + i = F[(g + 20) >> 2] + d = i >> 31 + h = F[(g + 16) >> 2] + e = h >> 31 + f = ((d ^ i) - d + ((e ^ h) - e)) | 0 + k = F[(g + 24) >> 2] + d = k >> 31 + e = ((d ^ k) - d) | 0 + d = 0 + l = e + e = (e + f) | 0 + d = l >>> 0 > e >>> 0 ? 1 : d + b: { + if (!(d | e)) { + F[(g + 16) >> 2] = F[(a + 108) >> 2] + break b + } + f = F[(a + 108) >> 2] + l = f >> 31 + h = li(ki(f, l, h, h >> 31), _, e, d) + F[(g + 16) >> 2] = h + d = li(ki(f, l, i, i >> 31), _, e, d) + F[(g + 20) >> 2] = d + e = d + d = d >> 31 + e = ((e ^ d) - d) | 0 + d = h >> 31 + d = (e + (((d ^ h) - d) | 0)) | 0 + if ((k | 0) >= 0) { + F[(g + 24) >> 2] = f - d + break b + } + F[(g + 24) >> 2] = d - f + } + d = wa(o) + f = F[(g + 16) >> 2] + c: { + if (d) { + F[(g + 24) >> 2] = 0 - F[(g + 24) >> 2] + e = (0 - F[(g + 20) >> 2]) | 0 + F[(g + 20) >> 2] = e + f = (0 - f) | 0 + F[(g + 16) >> 2] = f + break c + } + e = F[(g + 20) >> 2] + } + d: { + if ((f | 0) >= 0) { + f = F[(a + 108) >> 2] + d = (f + F[(g + 24) >> 2]) | 0 + f = (e + f) | 0 + break d + } + e: { + if ((e | 0) < 0) { + d = F[(g + 24) >> 2] + f = d >> 31 + f = ((d ^ f) - f) | 0 + break e + } + d = F[(g + 24) >> 2] + f = d >> 31 + f = (F[(a + 100) >> 2] + ((f - (d ^ f)) | 0)) | 0 + } + if ((d | 0) < 0) { + d = e >> 31 + d = ((d ^ e) - d) | 0 + break d + } + d = e >> 31 + d = (F[(a + 100) >> 2] + ((d - (d ^ e)) | 0)) | 0 + } + e = F[(a + 100) >> 2] + f: { + if (!(d | f)) { + d = e + f = d + break f + } + if (!(((d | 0) != (e | 0)) | f)) { + f = d + break f + } + if (!(((e | 0) != (f | 0)) | d)) { + d = f + break f + } + g: { + if (f) { + break g + } + i = F[(a + 108) >> 2] + if ((i | 0) >= (d | 0)) { + break g + } + d = ((i << 1) - d) | 0 + f = 0 + break f + } + h: { + if ((e | 0) != (f | 0)) { + break h + } + i = F[(a + 108) >> 2] + if ((i | 0) <= (d | 0)) { + break h + } + d = ((i << 1) - d) | 0 + break f + } + i: { + if ((d | 0) != (e | 0)) { + break i + } + e = F[(a + 108) >> 2] + if ((e | 0) <= (f | 0)) { + break i + } + f = ((e << 1) - f) | 0 + break f + } + if (d) { + break f + } + d = 0 + e = F[(a + 108) >> 2] + if ((e | 0) >= (f | 0)) { + break f + } + f = ((e << 1) - f) | 0 + } + F[(g + 12) >> 2] = d + F[(g + 8) >> 2] = f + j: { + if (F[(a + 8) >> 2] <= 0) { + break j + } + i = F[(a + 32) >> 2] + f = 0 + while (1) { + d = f << 2 + e = F[(d + ((g + 8) | 0)) >> 2] + h = F[(a + 16) >> 2] + k: { + if ((e | 0) > (h | 0)) { + F[(d + i) >> 2] = h + break k + } + d = (d + i) | 0 + h = F[(a + 12) >> 2] + if ((h | 0) > (e | 0)) { + F[d >> 2] = h + break k + } + F[d >> 2] = e + } + f = (f + 1) | 0 + e = F[(a + 8) >> 2] + if ((f | 0) < (e | 0)) { + continue + } + break + } + d = 0 + if ((e | 0) <= 0) { + break j + } + e = j << 3 + h = (e + c) | 0 + k = (b + e) | 0 + while (1) { + f = d << 2 + e = (f + h) | 0 + f = (F[(f + k) >> 2] + F[(f + i) >> 2]) | 0 + F[e >> 2] = f + l: { + if ((f | 0) > F[(a + 16) >> 2]) { + f = (f - F[(a + 20) >> 2]) | 0 + } else { + if ((f | 0) >= F[(a + 12) >> 2]) { + break l + } + f = (f + F[(a + 20) >> 2]) | 0 + } + F[e >> 2] = f + } + d = (d + 1) | 0 + if ((d | 0) < F[(a + 8) >> 2]) { + continue + } + break + } + } + j = (j + 1) | 0 + if ((n | 0) != (j | 0)) { + continue + } + break + } + } + Z = (g + 32) | 0 + return 1 + } + ta() + v() + } + function Vh(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + g = (Z - 32) | 0 + Z = g + F[(a + 68) >> 2] = f + d = F[(a + 56) >> 2] + e = F[d >> 2] + d = F[(d + 4) >> 2] + F[(g + 24) >> 2] = 0 + F[(g + 16) >> 2] = 0 + F[(g + 20) >> 2] = 0 + a: { + d = (d - e) | 0 + if ((d | 0) > 0) { + m = (a + 60) | 0 + d = (d >>> 2) | 0 + n = d >>> 0 <= 1 ? 1 : d + o = (a + 112) | 0 + while (1) { + e = F[(a + 56) >> 2] + d = F[e >> 2] + if (((F[(e + 4) >> 2] - d) >> 2) >>> 0 <= j >>> 0) { + break a + } + Kb(m, F[(d + (j << 2)) >> 2], (g + 16) | 0) + i = F[(g + 20) >> 2] + d = i >> 31 + h = F[(g + 16) >> 2] + e = h >> 31 + f = ((d ^ i) - d + ((e ^ h) - e)) | 0 + k = F[(g + 24) >> 2] + d = k >> 31 + e = ((d ^ k) - d) | 0 + d = 0 + l = e + e = (e + f) | 0 + d = l >>> 0 > e >>> 0 ? 1 : d + b: { + if (!(d | e)) { + F[(g + 16) >> 2] = F[(a + 108) >> 2] + break b + } + f = F[(a + 108) >> 2] + l = f >> 31 + h = li(ki(f, l, h, h >> 31), _, e, d) + F[(g + 16) >> 2] = h + d = li(ki(f, l, i, i >> 31), _, e, d) + F[(g + 20) >> 2] = d + e = d + d = d >> 31 + e = ((e ^ d) - d) | 0 + d = h >> 31 + d = (e + (((d ^ h) - d) | 0)) | 0 + if ((k | 0) >= 0) { + F[(g + 24) >> 2] = f - d + break b + } + F[(g + 24) >> 2] = d - f + } + d = wa(o) + f = F[(g + 16) >> 2] + c: { + if (d) { + F[(g + 24) >> 2] = 0 - F[(g + 24) >> 2] + e = (0 - F[(g + 20) >> 2]) | 0 + F[(g + 20) >> 2] = e + f = (0 - f) | 0 + F[(g + 16) >> 2] = f + break c + } + e = F[(g + 20) >> 2] + } + d: { + if ((f | 0) >= 0) { + f = F[(a + 108) >> 2] + d = (f + F[(g + 24) >> 2]) | 0 + f = (e + f) | 0 + break d + } + e: { + if ((e | 0) < 0) { + d = F[(g + 24) >> 2] + f = d >> 31 + f = ((d ^ f) - f) | 0 + break e + } + d = F[(g + 24) >> 2] + f = d >> 31 + f = (F[(a + 100) >> 2] + ((f - (d ^ f)) | 0)) | 0 + } + if ((d | 0) < 0) { + d = e >> 31 + d = ((d ^ e) - d) | 0 + break d + } + d = e >> 31 + d = (F[(a + 100) >> 2] + ((d - (d ^ e)) | 0)) | 0 + } + e = F[(a + 100) >> 2] + f: { + if (!(d | f)) { + d = e + f = d + break f + } + if (!(((d | 0) != (e | 0)) | f)) { + f = d + break f + } + if (!(((e | 0) != (f | 0)) | d)) { + d = f + break f + } + g: { + if (f) { + break g + } + i = F[(a + 108) >> 2] + if ((i | 0) >= (d | 0)) { + break g + } + d = ((i << 1) - d) | 0 + f = 0 + break f + } + h: { + if ((e | 0) != (f | 0)) { + break h + } + i = F[(a + 108) >> 2] + if ((i | 0) <= (d | 0)) { + break h + } + d = ((i << 1) - d) | 0 + break f + } + i: { + if ((d | 0) != (e | 0)) { + break i + } + e = F[(a + 108) >> 2] + if ((e | 0) <= (f | 0)) { + break i + } + f = ((e << 1) - f) | 0 + break f + } + if (d) { + break f + } + d = 0 + e = F[(a + 108) >> 2] + if ((e | 0) >= (f | 0)) { + break f + } + f = ((e << 1) - f) | 0 + } + F[(g + 12) >> 2] = d + F[(g + 8) >> 2] = f + j: { + if (F[(a + 8) >> 2] <= 0) { + break j + } + i = F[(a + 32) >> 2] + f = 0 + while (1) { + d = f << 2 + e = F[(d + ((g + 8) | 0)) >> 2] + h = F[(a + 16) >> 2] + k: { + if ((e | 0) > (h | 0)) { + F[(d + i) >> 2] = h + break k + } + d = (d + i) | 0 + h = F[(a + 12) >> 2] + if ((h | 0) > (e | 0)) { + F[d >> 2] = h + break k + } + F[d >> 2] = e + } + f = (f + 1) | 0 + e = F[(a + 8) >> 2] + if ((f | 0) < (e | 0)) { + continue + } + break + } + d = 0 + if ((e | 0) <= 0) { + break j + } + e = j << 3 + h = (e + c) | 0 + k = (b + e) | 0 + while (1) { + f = d << 2 + e = (f + h) | 0 + f = (F[(f + k) >> 2] + F[(f + i) >> 2]) | 0 + F[e >> 2] = f + l: { + if ((f | 0) > F[(a + 16) >> 2]) { + f = (f - F[(a + 20) >> 2]) | 0 + } else { + if ((f | 0) >= F[(a + 12) >> 2]) { + break l + } + f = (f + F[(a + 20) >> 2]) | 0 + } + F[e >> 2] = f + } + d = (d + 1) | 0 + if ((d | 0) < F[(a + 8) >> 2]) { + continue + } + break + } + } + j = (j + 1) | 0 + if ((n | 0) != (j | 0)) { + continue + } + break + } + } + Z = (g + 32) | 0 + return 1 + } + ta() + v() + } + function $a(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + h = (Z - 32) | 0 + Z = h + a: { + b: { + if ((F[(a + 8) >> 2] << 5) >>> 0 >= b >>> 0) { + break b + } + if ((b | 0) < 0) { + break a + } + b = ((((b - 1) >>> 5) | 0) + 1) | 0 + c = ka(b << 2) + F[(h + 24) >> 2] = b + F[(h + 20) >> 2] = 0 + F[(h + 16) >> 2] = c + b = F[a >> 2] + F[(h + 12) >> 2] = 0 + F[(h + 8) >> 2] = b + c = F[(a + 4) >> 2] + F[(h + 4) >> 2] = c & 31 + F[h >> 2] = b + ((c >>> 3) & 536870908) + e = (Z - 32) | 0 + Z = e + i = F[(h + 4) >> 2] + g = F[(h + 12) >> 2] + j = F[h >> 2] + d = F[(h + 8) >> 2] + b = (((i - g) | 0) + ((j - d) << 3)) | 0 + f = F[(h + 20) >> 2] + c = (b + f) | 0 + F[(h + 20) >> 2] = c + if (!(((c - 1) ^ (f - 1)) >>> 0 < 32 ? f : 0)) { + F[ + (F[(h + 16) >> 2] + + ((c >>> 0 >= 33 ? ((c - 1) >>> 5) | 0 : 0) << 2)) >> + 2 + ] = 0 + } + c = (F[(h + 16) >> 2] + ((f >>> 3) & 536870908)) | 0 + f = f & 31 + c: { + if ((f | 0) == (g | 0)) { + if ((b | 0) <= 0) { + break c + } + if (g) { + i = (32 - g) | 0 + f = (b | 0) < (i | 0) ? b : i + i = (-1 << g) & (-1 >>> (i - f)) + F[c >> 2] = (F[c >> 2] & (i ^ -1)) | (i & F[d >> 2]) + d = (d + 4) | 0 + c = ((((g + f) >>> 3) & 536870908) + c) | 0 + b = (b - f) | 0 + } + g = ((b | 0) / 32) | 0 + if ((b + 31) >>> 0 >= 63) { + pa(c, d, g << 2) + } + b = (b - (g << 5)) | 0 + if ((b | 0) <= 0) { + break c + } + f = c + c = g << 2 + g = (f + c) | 0 + b = (-1 >>> (32 - b)) | 0 + F[g >> 2] = + (F[g >> 2] & (b ^ -1)) | (b & F[(c + d) >> 2]) + break c + } + F[(e + 28) >> 2] = g + F[(e + 24) >> 2] = d + F[(e + 20) >> 2] = i + F[(e + 16) >> 2] = j + F[(e + 12) >> 2] = f + F[(e + 8) >> 2] = c + b = F[(e + 28) >> 2] + c = F[(e + 24) >> 2] + g = + (((F[(e + 20) >> 2] - b) | 0) + + ((F[(e + 16) >> 2] - c) << 3)) | + 0 + d: { + if ((g | 0) <= 0) { + b = F[(e + 12) >> 2] + d = F[(e + 8) >> 2] + break d + } + e: { + if (!b) { + b = F[(e + 12) >> 2] + break e + } + d = F[(e + 12) >> 2] + j = (32 - d) | 0 + k = (32 - b) | 0 + f = (g | 0) < (k | 0) ? g : k + i = f >>> 0 > j >>> 0 ? j : f + l = F[(e + 8) >> 2] + m = F[l >> 2] & (((-1 << d) & (-1 >>> (j - i))) ^ -1) + j = F[c >> 2] & ((-1 << b) & (-1 >>> (k - f))) + F[l >> 2] = + m | + (b >>> 0 < d >>> 0 + ? j << (d - b) + : (j >>> (b - d)) | 0) + c = (d + i) | 0 + b = c & 31 + F[(e + 12) >> 2] = b + d = (l + ((c >>> 3) & 536870908)) | 0 + F[(e + 8) >> 2] = d + c = (f - i) | 0 + if ((c | 0) > 0) { + F[d >> 2] = + (F[d >> 2] & ((-1 >>> (32 - c)) ^ -1)) | + (j >>> (i + F[(e + 28) >> 2])) + F[(e + 12) >> 2] = c + b = c + } + g = (g - f) | 0 + c = (F[(e + 24) >> 2] + 4) | 0 + F[(e + 24) >> 2] = c + } + i = -1 << b + f = (32 - b) | 0 + if ((g | 0) >= 32) { + j = i ^ -1 + while (1) { + d = F[(e + 8) >> 2] + c = F[c >> 2] + F[d >> 2] = (j & F[d >> 2]) | (c << b) + F[(e + 8) >> 2] = d + 4 + F[(d + 4) >> 2] = (i & F[(d + 4) >> 2]) | (c >>> f) + c = (F[(e + 24) >> 2] + 4) | 0 + F[(e + 24) >> 2] = c + d = g >>> 0 > 63 + g = (g - 32) | 0 + if (d) { + continue + } + break + } + } + d = F[(e + 8) >> 2] + if ((g | 0) <= 0) { + break d + } + j = f + f = (g | 0) > (f | 0) ? f : g + j = F[d >> 2] & ((i & (-1 >>> (j - f))) ^ -1) + i = F[c >> 2] & (-1 >>> (32 - g)) + F[d >> 2] = j | (i << b) + b = (b + f) | 0 + c = b & 31 + F[(e + 12) >> 2] = c + d = (((b >>> 3) & 536870908) + d) | 0 + F[(e + 8) >> 2] = d + b = (g - f) | 0 + if ((b | 0) <= 0) { + b = c + break d + } + F[d >> 2] = + (F[d >> 2] & ((-1 >>> (32 - b)) ^ -1)) | (i >>> f) + F[(e + 12) >> 2] = b + } + F[(e + 4) >> 2] = b + F[e >> 2] = d + } + Z = (e + 32) | 0 + b = F[a >> 2] + F[a >> 2] = F[(h + 16) >> 2] + F[(h + 16) >> 2] = b + c = F[(a + 4) >> 2] + F[(a + 4) >> 2] = F[(h + 20) >> 2] + F[(h + 20) >> 2] = c + c = F[(a + 8) >> 2] + F[(a + 8) >> 2] = F[(h + 24) >> 2] + F[(h + 24) >> 2] = c + if (!b) { + break b + } + ja(b) + } + Z = (h + 32) | 0 + return + } + na() + v() + } + function xc(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + n = $[F[(F[a >> 2] + 44) >> 2]](a) | 0 + a: { + if ((n | 0) <= 0) { + break a + } + i = (F[(b + 4) >> 2] - F[b >> 2]) >> 2 + e = (Z + -64) | 0 + Z = e + f = kb(e) + d = L(F[2541], n) + cc( + f, + F[(F[(a + 8) >> 2] + 56) >> 2], + n & 255, + 5, + 0, + d, + d >> 31, + ) + f = bc(ka(96), f) + D[(f + 84) | 0] = 1 + F[(f + 72) >> 2] = F[(f + 68) >> 2] + ac(f, i) + F[(f + 60) >> 2] = F[(F[(a + 8) >> 2] + 60) >> 2] + d = F[(a + 16) >> 2] + F[(a + 16) >> 2] = f + if (d) { + xa(d) + } + Z = (e - -64) | 0 + h = F[(a + 16) >> 2] + if (!F[(h + 80) >> 2]) { + break a + } + j = F[F[h >> 2] >> 2] + if (!j) { + break a + } + m = F[(c + 12) >> 2] + e = m + d = F[(c + 20) >> 2] + g = F[(c + 8) >> 2] + k = F[(c + 16) >> 2] + if ( + (((e | 0) <= (d | 0)) & (g >>> 0 <= k >>> 0)) | + ((d | 0) > (e | 0)) + ) { + break a + } + l = L(i, n) + i = (j + F[(h + 48) >> 2]) | 0 + h = F[c >> 2] + j = G[(h + k) | 0] + e = (k + 1) | 0 + f = e ? d : (d + 1) | 0 + F[(c + 16) >> 2] = e + F[(c + 20) >> 2] = f + b: { + c: { + if (j) { + if (mc(l, n, c, i)) { + break c + } + break a + } + if ( + (((f | 0) >= (m | 0)) & (e >>> 0 >= g >>> 0)) | + ((f | 0) > (m | 0)) + ) { + break a + } + g = G[(e + h) | 0] + f = (k + 2) | 0 + d = f >>> 0 < 2 ? (d + 1) | 0 : d + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + d = F[(F[(a + 16) >> 2] + 64) >> 2] + d = (F[(d + 4) >> 2] - F[d >> 2]) | 0 + if ((g | 0) == F[2541]) { + e = l << 2 + if (e >>> 0 > d >>> 0) { + break a + } + g = F[(c + 8) >> 2] + k = F[(c + 12) >> 2] + j = F[(c + 20) >> 2] + d = F[(c + 16) >> 2] + f = (e + d) | 0 + j = f >>> 0 < e >>> 0 ? (j + 1) | 0 : j + if ( + ((f >>> 0 > g >>> 0) & ((j | 0) >= (k | 0))) | + ((j | 0) > (k | 0)) + ) { + break a + } + la(i, (d + F[c >> 2]) | 0, e) + f = F[(c + 20) >> 2] + d = (e + F[(c + 16) >> 2]) | 0 + f = d >>> 0 < e >>> 0 ? (f + 1) | 0 : f + F[(c + 16) >> 2] = d + F[(c + 20) >> 2] = f + break c + } + if (d >>> 0 < L(g, l) >>> 0) { + break a + } + d = F[(c + 8) >> 2] + f = F[(c + 16) >> 2] + e = (d - f) | 0 + m = d >>> 0 < f >>> 0 + d = F[(c + 20) >> 2] + k = (F[(c + 12) >> 2] - ((m + d) | 0)) | 0 + m = ki(g, 0, l, 0) >>> 0 > e >>> 0 + e = _ + if ((m & ((e | 0) >= (k | 0))) | ((e | 0) > (k | 0))) { + break a + } + e = 1 + if (!l) { + break b + } + h = 0 + while (1) { + k = F[(c + 8) >> 2] + j = F[(c + 12) >> 2] + e = (f + g) | 0 + d = e >>> 0 < g >>> 0 ? (d + 1) | 0 : d + if ( + ((e >>> 0 > k >>> 0) & ((d | 0) >= (j | 0))) | + ((d | 0) > (j | 0)) + ) { + return 0 + } + la((i + (h << 2)) | 0, (F[c >> 2] + f) | 0, g) + d = F[(c + 20) >> 2] + f = (g + F[(c + 16) >> 2]) | 0 + d = f >>> 0 < g >>> 0 ? (d + 1) | 0 : d + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + h = (h + 1) | 0 + if ((l | 0) != (h | 0)) { + continue + } + break + } + } + e = 1 + if (!l) { + break b + } + d = F[(a + 20) >> 2] + if (d) { + e = 0 + if ($[F[(F[d >> 2] + 32) >> 2]](d) | 0) { + break b + } + } + g = 0 + h = 0 + d: { + if ((l | 0) <= 0) { + break d + } + if ((l | 0) != 1) { + f = l & -2 + while (1) { + e = g << 2 + d = F[(e + i) >> 2] + F[(e + i) >> 2] = (0 - (d & 1)) ^ (d >>> 1) + d = e | 4 + e = F[(d + i) >> 2] + F[(d + i) >> 2] = (0 - (e & 1)) ^ (e >>> 1) + g = (g + 2) | 0 + h = (h + 2) | 0 + if ((f | 0) != (h | 0)) { + continue + } + break + } + } + if (!(l & 1)) { + break d + } + d = g << 2 + f = F[(d + i) >> 2] + F[(d + i) >> 2] = (0 - (f & 1)) ^ (f >>> 1) + } + e = 0 + } + d = e + f = F[(a + 20) >> 2] + e: { + if (!f) { + break e + } + if (!($[F[(F[f >> 2] + 40) >> 2]](f, c) | 0)) { + break a + } + if (d) { + break e + } + a = F[(a + 20) >> 2] + if ( + !( + $[F[(F[a >> 2] + 44) >> 2]](a, i, i, l, n, F[b >> 2]) | + 0 + ) + ) { + break a + } + } + o = 1 + } + return o | 0 + } + function Lh(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + g = (Z - 48) | 0 + Z = g + d = F[(a + 8) >> 2] + if ((d - 2) >>> 0 <= 28) { + F[(a + 76) >> 2] = d + e = -1 << d + d = (-2 - e) | 0 + F[(a + 84) >> 2] = d + F[(a + 80) >> 2] = e ^ -1 + F[(a + 92) >> 2] = (d | 0) / 2 + J[(a + 88) >> 2] = M(2) / M(d | 0) + } + F[(a + 52) >> 2] = f + d = F[(a + 40) >> 2] + e = F[d >> 2] + d = F[(d + 4) >> 2] + F[(g + 16) >> 2] = 0 + F[(g + 8) >> 2] = 0 + F[(g + 12) >> 2] = 0 + a: { + d = (d - e) | 0 + if ((d | 0) > 0) { + m = (a + 8) | 0 + n = (a + 44) | 0 + d = (d >>> 2) | 0 + o = d >>> 0 <= 1 ? 1 : d + p = (a + 96) | 0 + while (1) { + e = F[(a + 40) >> 2] + d = F[e >> 2] + if (((F[(e + 4) >> 2] - d) >> 2) >>> 0 <= j >>> 0) { + break a + } + Mb(n, F[(d + (j << 2)) >> 2], (g + 8) | 0) + h = F[(g + 12) >> 2] + d = h >> 31 + i = F[(g + 8) >> 2] + e = i >> 31 + f = ((d ^ h) - d + ((e ^ i) - e)) | 0 + l = F[(g + 16) >> 2] + d = l >> 31 + e = ((d ^ l) - d) | 0 + d = 0 + k = e + e = (e + f) | 0 + d = k >>> 0 > e >>> 0 ? 1 : d + b: { + if (!(d | e)) { + F[(g + 8) >> 2] = F[(a + 92) >> 2] + break b + } + f = F[(a + 92) >> 2] + k = f >> 31 + i = li(ki(f, k, i, i >> 31), _, e, d) + F[(g + 8) >> 2] = i + d = li(ki(f, k, h, h >> 31), _, e, d) + F[(g + 12) >> 2] = d + e = d >> 31 + e = ((d ^ e) - e) | 0 + d = i >> 31 + d = (e + (((d ^ i) - d) | 0)) | 0 + if ((l | 0) >= 0) { + F[(g + 16) >> 2] = f - d + break b + } + F[(g + 16) >> 2] = d - f + } + d = wa(p) + f = F[(g + 8) >> 2] + c: { + if (d) { + F[(g + 16) >> 2] = 0 - F[(g + 16) >> 2] + e = (0 - F[(g + 12) >> 2]) | 0 + F[(g + 12) >> 2] = e + f = (0 - f) | 0 + F[(g + 8) >> 2] = f + break c + } + e = F[(g + 12) >> 2] + } + d: { + if ((f | 0) >= 0) { + f = F[(a + 92) >> 2] + d = (f + F[(g + 16) >> 2]) | 0 + f = (e + f) | 0 + break d + } + e: { + if ((e | 0) < 0) { + d = F[(g + 16) >> 2] + f = d >> 31 + f = ((d ^ f) - f) | 0 + break e + } + d = F[(g + 16) >> 2] + f = d >> 31 + f = (F[(a + 84) >> 2] + ((f - (d ^ f)) | 0)) | 0 + } + if ((d | 0) < 0) { + d = e >> 31 + d = ((d ^ e) - d) | 0 + break d + } + d = e >> 31 + d = (F[(a + 84) >> 2] + ((d - (d ^ e)) | 0)) | 0 + } + e = F[(a + 84) >> 2] + f: { + if (!(d | f)) { + d = e + f = d + break f + } + if (!(((d | 0) != (e | 0)) | f)) { + f = d + break f + } + if (!(((e | 0) != (f | 0)) | d)) { + d = f + break f + } + g: { + if (f) { + break g + } + h = F[(a + 92) >> 2] + if ((h | 0) >= (d | 0)) { + break g + } + d = ((h << 1) - d) | 0 + f = 0 + break f + } + h: { + if ((e | 0) != (f | 0)) { + break h + } + h = F[(a + 92) >> 2] + if ((h | 0) <= (d | 0)) { + break h + } + d = ((h << 1) - d) | 0 + break f + } + i: { + if ((d | 0) != (e | 0)) { + break i + } + e = F[(a + 92) >> 2] + if ((e | 0) <= (f | 0)) { + break i + } + f = ((e << 1) - f) | 0 + break f + } + if (d) { + break f + } + d = 0 + e = F[(a + 92) >> 2] + if ((e | 0) >= (f | 0)) { + break f + } + f = ((e << 1) - f) | 0 + } + e = j << 3 + h = (e + b) | 0 + i = F[h >> 2] + h = F[(h + 4) >> 2] + F[(g + 36) >> 2] = d + F[(g + 32) >> 2] = f + F[(g + 24) >> 2] = i + F[(g + 28) >> 2] = h + Jb((g + 40) | 0, m, (g + 32) | 0, (g + 24) | 0) + d = (c + e) | 0 + F[d >> 2] = F[(g + 40) >> 2] + F[(d + 4) >> 2] = F[(g + 44) >> 2] + j = (j + 1) | 0 + if ((o | 0) != (j | 0)) { + continue + } + break + } + } + Z = (g + 48) | 0 + return 1 + } + ta() + v() + } + function Hh(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + g = (Z - 48) | 0 + Z = g + d = F[(a + 8) >> 2] + if ((d - 2) >>> 0 <= 28) { + F[(a + 76) >> 2] = d + e = -1 << d + d = (-2 - e) | 0 + F[(a + 84) >> 2] = d + F[(a + 80) >> 2] = e ^ -1 + F[(a + 92) >> 2] = (d | 0) / 2 + J[(a + 88) >> 2] = M(2) / M(d | 0) + } + F[(a + 52) >> 2] = f + d = F[(a + 40) >> 2] + e = F[d >> 2] + d = F[(d + 4) >> 2] + F[(g + 16) >> 2] = 0 + F[(g + 8) >> 2] = 0 + F[(g + 12) >> 2] = 0 + a: { + d = (d - e) | 0 + if ((d | 0) > 0) { + m = (a + 8) | 0 + n = (a + 44) | 0 + d = (d >>> 2) | 0 + o = d >>> 0 <= 1 ? 1 : d + p = (a + 96) | 0 + while (1) { + e = F[(a + 40) >> 2] + d = F[e >> 2] + if (((F[(e + 4) >> 2] - d) >> 2) >>> 0 <= j >>> 0) { + break a + } + Kb(n, F[(d + (j << 2)) >> 2], (g + 8) | 0) + h = F[(g + 12) >> 2] + d = h >> 31 + i = F[(g + 8) >> 2] + e = i >> 31 + f = ((d ^ h) - d + ((e ^ i) - e)) | 0 + l = F[(g + 16) >> 2] + d = l >> 31 + e = ((d ^ l) - d) | 0 + d = 0 + k = e + e = (e + f) | 0 + d = k >>> 0 > e >>> 0 ? 1 : d + b: { + if (!(d | e)) { + F[(g + 8) >> 2] = F[(a + 92) >> 2] + break b + } + f = F[(a + 92) >> 2] + k = f >> 31 + i = li(ki(f, k, i, i >> 31), _, e, d) + F[(g + 8) >> 2] = i + d = li(ki(f, k, h, h >> 31), _, e, d) + F[(g + 12) >> 2] = d + e = d >> 31 + e = ((d ^ e) - e) | 0 + d = i >> 31 + d = (e + (((d ^ i) - d) | 0)) | 0 + if ((l | 0) >= 0) { + F[(g + 16) >> 2] = f - d + break b + } + F[(g + 16) >> 2] = d - f + } + d = wa(p) + f = F[(g + 8) >> 2] + c: { + if (d) { + F[(g + 16) >> 2] = 0 - F[(g + 16) >> 2] + e = (0 - F[(g + 12) >> 2]) | 0 + F[(g + 12) >> 2] = e + f = (0 - f) | 0 + F[(g + 8) >> 2] = f + break c + } + e = F[(g + 12) >> 2] + } + d: { + if ((f | 0) >= 0) { + f = F[(a + 92) >> 2] + d = (f + F[(g + 16) >> 2]) | 0 + f = (e + f) | 0 + break d + } + e: { + if ((e | 0) < 0) { + d = F[(g + 16) >> 2] + f = d >> 31 + f = ((d ^ f) - f) | 0 + break e + } + d = F[(g + 16) >> 2] + f = d >> 31 + f = (F[(a + 84) >> 2] + ((f - (d ^ f)) | 0)) | 0 + } + if ((d | 0) < 0) { + d = e >> 31 + d = ((d ^ e) - d) | 0 + break d + } + d = e >> 31 + d = (F[(a + 84) >> 2] + ((d - (d ^ e)) | 0)) | 0 + } + e = F[(a + 84) >> 2] + f: { + if (!(d | f)) { + d = e + f = d + break f + } + if (!(((d | 0) != (e | 0)) | f)) { + f = d + break f + } + if (!(((e | 0) != (f | 0)) | d)) { + d = f + break f + } + g: { + if (f) { + break g + } + h = F[(a + 92) >> 2] + if ((h | 0) >= (d | 0)) { + break g + } + d = ((h << 1) - d) | 0 + f = 0 + break f + } + h: { + if ((e | 0) != (f | 0)) { + break h + } + h = F[(a + 92) >> 2] + if ((h | 0) <= (d | 0)) { + break h + } + d = ((h << 1) - d) | 0 + break f + } + i: { + if ((d | 0) != (e | 0)) { + break i + } + e = F[(a + 92) >> 2] + if ((e | 0) <= (f | 0)) { + break i + } + f = ((e << 1) - f) | 0 + break f + } + if (d) { + break f + } + d = 0 + e = F[(a + 92) >> 2] + if ((e | 0) >= (f | 0)) { + break f + } + f = ((e << 1) - f) | 0 + } + e = j << 3 + h = (e + b) | 0 + i = F[h >> 2] + h = F[(h + 4) >> 2] + F[(g + 36) >> 2] = d + F[(g + 32) >> 2] = f + F[(g + 24) >> 2] = i + F[(g + 28) >> 2] = h + Jb((g + 40) | 0, m, (g + 32) | 0, (g + 24) | 0) + d = (c + e) | 0 + F[d >> 2] = F[(g + 40) >> 2] + F[(d + 4) >> 2] = F[(g + 44) >> 2] + j = (j + 1) | 0 + if ((o | 0) != (j | 0)) { + continue + } + break + } + } + Z = (g + 48) | 0 + return 1 + } + ta() + v() + } + function Nd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + a: { + if (!H[(b + 38) >> 1]) { + break a + } + if (!Ta(1, (a + 12) | 0, b)) { + break a + } + d = F[(b + 8) >> 2] + e = F[(b + 16) >> 2] + g = (d - e) | 0 + f = F[(a + 12) >> 2] + d = + (F[(b + 12) >> 2] - + ((F[(b + 20) >> 2] + (d >>> 0 < e >>> 0)) | 0)) | + 0 + if ( + ((g >>> 0 < (f >>> 6) >>> 0) & ((d | 0) <= 0)) | + ((d | 0) < 0) + ) { + break a + } + d = F[a >> 2] + c = (F[(a + 4) >> 2] - d) >> 2 + b: { + if (c >>> 0 < f >>> 0) { + qa(a, (f - c) | 0) + f = F[(a + 12) >> 2] + break b + } + if (c >>> 0 <= f >>> 0) { + break b + } + F[(a + 4) >> 2] = d + (f << 2) + } + if (!f) { + return 1 + } + d = F[(b + 16) >> 2] + c = F[(b + 20) >> 2] + l = F[a >> 2] + j = F[(b + 8) >> 2] + i = F[(b + 12) >> 2] + g = 0 + while (1) { + if ( + (((c | 0) >= (i | 0)) & (d >>> 0 >= j >>> 0)) | + ((c | 0) > (i | 0)) + ) { + return 0 + } + m = F[b >> 2] + k = G[(m + d) | 0] + d = (d + 1) | 0 + c = d ? c : (c + 1) | 0 + F[(b + 16) >> 2] = d + F[(b + 20) >> 2] = c + e = (k >>> 2) | 0 + h = 0 + c: { + d: { + e: { + f: { + n = k & 3 + switch (n | 0) { + case 3: + break f + case 0: + break d + default: + break e + } + } + e = (e + g) | 0 + if (e >>> 0 >= f >>> 0) { + return 0 + } + ma((l + (g << 2)) | 0, 0, ((k & 252) + 4) | 0) + g = e + break c + } + while (1) { + if (((d | 0) == (j | 0)) & ((c | 0) == (i | 0))) { + break a + } + f = G[(d + m) | 0] + d = (d + 1) | 0 + c = d ? c : (c + 1) | 0 + F[(b + 16) >> 2] = d + F[(b + 20) >> 2] = c + e = (f << ((h << 3) | 6)) | e + h = (h + 1) | 0 + if ((n | 0) != (h | 0)) { + continue + } + break + } + } + F[(l + (g << 2)) >> 2] = e + } + f = F[(a + 12) >> 2] + g = (g + 1) | 0 + if (f >>> 0 > g >>> 0) { + continue + } + break + } + b = (a + 16) | 0 + j = F[a >> 2] + d = F[(a + 16) >> 2] + c = (F[(a + 20) >> 2] - d) | 0 + g: { + if (c >>> 0 <= 16383) { + qa(b, (4096 - ((c >>> 2) | 0)) | 0) + break g + } + if ((c | 0) == 16384) { + break g + } + F[(a + 20) >> 2] = d + 16384 + } + c = (a + 28) | 0 + g = F[c >> 2] + d = (F[(a + 32) >> 2] - g) >> 3 + h: { + if (d >>> 0 < f >>> 0) { + _a(c, (f - d) | 0) + g = F[c >> 2] + break h + } + if (d >>> 0 > f >>> 0) { + F[(a + 32) >> 2] = (f << 3) + g + } + if (!f) { + break a + } + } + d = F[b >> 2] + b = 0 + a = 0 + while (1) { + c = (j + (b << 2)) | 0 + h = F[c >> 2] + e = a + i = ((b << 3) + g) | 0 + F[(i + 4) >> 2] = a + F[i >> 2] = h + c = F[c >> 2] + a = (c + a) | 0 + if (a >>> 0 > 4096) { + break a + } + i: { + if (a >>> 0 <= e >>> 0) { + break i + } + h = 0 + i = c & 7 + if (i) { + while (1) { + F[(d + (e << 2)) >> 2] = b + e = (e + 1) | 0 + h = (h + 1) | 0 + if ((i | 0) != (h | 0)) { + continue + } + break + } + } + if ((c - 1) >>> 0 <= 6) { + break i + } + while (1) { + c = (d + (e << 2)) | 0 + F[c >> 2] = b + F[(c + 28) >> 2] = b + F[(c + 24) >> 2] = b + F[(c + 20) >> 2] = b + F[(c + 16) >> 2] = b + F[(c + 12) >> 2] = b + F[(c + 8) >> 2] = b + F[(c + 4) >> 2] = b + e = (e + 8) | 0 + if ((e | 0) != (a | 0)) { + continue + } + break + } + } + b = (b + 1) | 0 + if ((f | 0) != (b | 0)) { + continue + } + break + } + o = (a | 0) == 4096 + } + return o + } + function qf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0 + f = (Z - 32) | 0 + Z = f + e = (f + 8) | 0 + c = (Z - 80) | 0 + Z = c + a = F[(b + 36) >> 2] + F[(c + 72) >> 2] = F[(b + 32) >> 2] + F[(c + 76) >> 2] = a + d = F[(b + 28) >> 2] + a = (c - -64) | 0 + F[a >> 2] = F[(b + 24) >> 2] + F[(a + 4) >> 2] = d + a = F[(b + 20) >> 2] + F[(c + 56) >> 2] = F[(b + 16) >> 2] + F[(c + 60) >> 2] = a + a = F[(b + 12) >> 2] + F[(c + 48) >> 2] = F[(b + 8) >> 2] + F[(c + 52) >> 2] = a + a = F[(b + 4) >> 2] + F[(c + 40) >> 2] = F[b >> 2] + F[(c + 44) >> 2] = a + jc((c + 8) | 0, (c + 40) | 0, (c + 24) | 0) + a = F[(c + 8) >> 2] + a: { + if (a) { + F[e >> 2] = a + a = (e + 4) | 0 + if (D[(c + 23) | 0] >= 0) { + b = (c + 8) | 4 + e = F[(b + 4) >> 2] + F[a >> 2] = F[b >> 2] + F[(a + 4) >> 2] = e + F[(a + 8) >> 2] = F[(b + 8) >> 2] + break a + } + ra(a, F[(c + 12) >> 2], F[(c + 16) >> 2]) + if (D[(c + 23) | 0] >= 0) { + break a + } + ja(F[(c + 12) >> 2]) + break a + } + if (D[(c + 23) | 0] < 0) { + ja(F[(c + 12) >> 2]) + } + a = G[(c + 31) | 0] + if (a >>> 0 >= 2) { + b = ka(32) + D[(b + 26) | 0] = 0 + a = G[1475] | (G[1476] << 8) + D[(b + 24) | 0] = a + D[(b + 25) | 0] = a >>> 8 + a = + G[1471] | + (G[1472] << 8) | + ((G[1473] << 16) | (G[1474] << 24)) + d = + G[1467] | + (G[1468] << 8) | + ((G[1469] << 16) | (G[1470] << 24)) + D[(b + 16) | 0] = d + D[(b + 17) | 0] = d >>> 8 + D[(b + 18) | 0] = d >>> 16 + D[(b + 19) | 0] = d >>> 24 + D[(b + 20) | 0] = a + D[(b + 21) | 0] = a >>> 8 + D[(b + 22) | 0] = a >>> 16 + D[(b + 23) | 0] = a >>> 24 + a = + G[1463] | + (G[1464] << 8) | + ((G[1465] << 16) | (G[1466] << 24)) + d = + G[1459] | + (G[1460] << 8) | + ((G[1461] << 16) | (G[1462] << 24)) + D[(b + 8) | 0] = d + D[(b + 9) | 0] = d >>> 8 + D[(b + 10) | 0] = d >>> 16 + D[(b + 11) | 0] = d >>> 24 + D[(b + 12) | 0] = a + D[(b + 13) | 0] = a >>> 8 + D[(b + 14) | 0] = a >>> 16 + D[(b + 15) | 0] = a >>> 24 + a = + G[1455] | + (G[1456] << 8) | + ((G[1457] << 16) | (G[1458] << 24)) + d = + G[1451] | + (G[1452] << 8) | + ((G[1453] << 16) | (G[1454] << 24)) + D[b | 0] = d + D[(b + 1) | 0] = d >>> 8 + D[(b + 2) | 0] = d >>> 16 + D[(b + 3) | 0] = d >>> 24 + D[(b + 4) | 0] = a + D[(b + 5) | 0] = a >>> 8 + D[(b + 6) | 0] = a >>> 16 + D[(b + 7) | 0] = a >>> 24 + F[(c + 8) >> 2] = -1 + a = (c + 8) | 4 + ra(a, b, 26) + d = D[(c + 23) | 0] + F[e >> 2] = F[(c + 8) >> 2] + e = (e + 4) | 0 + if ((d | 0) >= 0) { + d = F[(a + 4) >> 2] + F[e >> 2] = F[a >> 2] + F[(e + 4) >> 2] = d + F[(e + 8) >> 2] = F[(a + 8) >> 2] + ja(b) + break a + } + ra(e, F[(c + 12) >> 2], F[(c + 16) >> 2]) + if (D[(c + 23) | 0] < 0) { + ja(F[(c + 12) >> 2]) + } + ja(b) + break a + } + F[e >> 2] = 0 + F[(e + 4) >> 2] = 0 + F[(e + 16) >> 2] = a + F[(e + 8) >> 2] = 0 + F[(e + 12) >> 2] = 0 + } + Z = (c + 80) | 0 + a = F[(f + 24) >> 2] + if (D[(f + 23) | 0] < 0) { + ja(F[(f + 12) >> 2]) + } + Z = (f + 32) | 0 + return a | 0 + } + function Ph(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + e = (Z - 32) | 0 + Z = e + a: { + if ((c | 0) != 3) { + break a + } + c = F[(a + 4) >> 2] + f = F[(a + 12) >> 2] + F[(e + 24) >> 2] = -1 + F[(e + 16) >> 2] = -1 + F[(e + 20) >> 2] = 1065353216 + F[(e + 8) >> 2] = -1 + F[(e + 12) >> 2] = -1 + if ((b | 0) == -2) { + break a + } + i = F[(F[(F[(c + 4) >> 2] + 8) >> 2] + (f << 2)) >> 2] + if (($[F[(F[c >> 2] + 8) >> 2]](c) | 0) == 1) { + h = F[(F[(F[(c + 4) >> 2] + 8) >> 2] + (f << 2)) >> 2] + b: { + if ( + (($[F[(F[c >> 2] + 8) >> 2]](c) | 0) != 1) | + ((b - 1) >>> 0 > 5) + ) { + break b + } + g = $[F[(F[c >> 2] + 36) >> 2]](c) | 0 + a = $[F[(F[c >> 2] + 44) >> 2]](c, f) | 0 + if (!g | !a) { + break b + } + f = $[F[(F[c >> 2] + 40) >> 2]](c, f) | 0 + c: { + if (f) { + if ((b | 0) != 6) { + break b + } + b = F[(c + 44) >> 2] + d = ka(112) + F[(d + 4) >> 2] = h + c = F[(e + 12) >> 2] + F[(d + 8) >> 2] = F[(e + 8) >> 2] + F[(d + 12) >> 2] = c + c = F[(e + 20) >> 2] + F[(d + 16) >> 2] = F[(e + 16) >> 2] + F[(d + 20) >> 2] = c + F[(d + 24) >> 2] = F[(e + 24) >> 2] + F[(d + 40) >> 2] = a + c = (a + 12) | 0 + F[(d + 36) >> 2] = c + F[(d + 32) >> 2] = f + F[(d + 28) >> 2] = b + F[(d + 68) >> 2] = a + F[(d - -64) >> 2] = c + F[(d + 60) >> 2] = f + F[(d + 56) >> 2] = b + F[(d + 48) >> 2] = 0 + F[(d + 52) >> 2] = 0 + F[d >> 2] = 5928 + F[(d + 88) >> 2] = 1065353216 + F[(d + 92) >> 2] = -1 + F[(d + 80) >> 2] = -1 + F[(d + 84) >> 2] = -1 + F[(d + 72) >> 2] = 1 + F[(d + 76) >> 2] = -1 + F[(d + 44) >> 2] = 6492 + a = (d + 96) | 0 + break c + } + if ((b | 0) != 6) { + break b + } + b = F[(c + 44) >> 2] + d = ka(112) + F[(d + 4) >> 2] = h + c = F[(e + 12) >> 2] + F[(d + 8) >> 2] = F[(e + 8) >> 2] + F[(d + 12) >> 2] = c + c = F[(e + 20) >> 2] + F[(d + 16) >> 2] = F[(e + 16) >> 2] + F[(d + 20) >> 2] = c + F[(d + 24) >> 2] = F[(e + 24) >> 2] + F[(d + 40) >> 2] = a + c = (a + 12) | 0 + F[(d + 36) >> 2] = c + F[(d + 32) >> 2] = g + F[(d + 28) >> 2] = b + F[(d + 68) >> 2] = a + F[(d - -64) >> 2] = c + F[(d + 60) >> 2] = g + F[(d + 56) >> 2] = b + F[(d + 48) >> 2] = 0 + F[(d + 52) >> 2] = 0 + F[d >> 2] = 6932 + F[(d + 88) >> 2] = 1065353216 + F[(d + 92) >> 2] = -1 + F[(d + 80) >> 2] = -1 + F[(d + 84) >> 2] = -1 + F[(d + 72) >> 2] = 1 + F[(d + 76) >> 2] = -1 + F[(d + 44) >> 2] = 7352 + a = (d + 96) | 0 + } + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + D[(a + 5) | 0] = 0 + D[(a + 6) | 0] = 0 + D[(a + 7) | 0] = 0 + D[(a + 8) | 0] = 0 + D[(a + 9) | 0] = 0 + D[(a + 10) | 0] = 0 + D[(a + 11) | 0] = 0 + D[(a + 12) | 0] = 0 + } + if (d) { + break a + } + } + d = ka(28) + F[(d + 4) >> 2] = i + a = F[(e + 12) >> 2] + F[(d + 8) >> 2] = F[(e + 8) >> 2] + F[(d + 12) >> 2] = a + a = F[(e + 20) >> 2] + F[(d + 16) >> 2] = F[(e + 16) >> 2] + F[(d + 20) >> 2] = a + F[(d + 24) >> 2] = F[(e + 24) >> 2] + F[d >> 2] = 7764 + } + Z = (e + 32) | 0 + return d | 0 + } + function $c(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + f = (Z - 80) | 0 + Z = f + a: { + if (!Wb(1, (f + 76) | 0, b)) { + break a + } + k = F[(f + 76) >> 2] + if (!k) { + break a + } + c = F[(b + 8) >> 2] + e = F[(b + 16) >> 2] + c = ki( + (c - e) | 0, + (F[(b + 12) >> 2] - + ((F[(b + 20) >> 2] + (c >>> 0 < e >>> 0)) | 0)) | + 0, + 5, + 0, + ) + e = _ + if (((c >>> 0 < k >>> 0) & ((e | 0) <= 0)) | ((e | 0) < 0)) { + break a + } + c = F[(a + 4) >> 2] + d = (F[(a + 8) >> 2] - c) >> 2 + b: { + if (d >>> 0 < k >>> 0) { + qa((a + 4) | 0, (k - d) | 0) + break b + } + if (d >>> 0 <= k >>> 0) { + break b + } + F[(a + 8) >> 2] = c + (k << 2) + } + p = (a + 16) | 0 + l = F[(a + 32) >> 2] + while (1) { + g = F[(b + 12) >> 2] + c = g + d = F[(b + 20) >> 2] + h = F[(b + 8) >> 2] + e = F[(b + 16) >> 2] + if ( + (((c | 0) <= (d | 0)) & (h >>> 0 <= e >>> 0)) | + ((c | 0) < (d | 0)) + ) { + d = 0 + break a + } + m = F[b >> 2] + q = G[(m + e) | 0] + c = d + i = (e + 1) | 0 + c = i ? c : (c + 1) | 0 + F[(b + 16) >> 2] = i + F[(b + 20) >> 2] = c + if ( + ((h >>> 0 <= i >>> 0) & ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + d = 0 + break a + } + i = G[(i + m) | 0] + c = d + j = (e + 2) | 0 + c = j >>> 0 < 2 ? (c + 1) | 0 : c + F[(b + 16) >> 2] = j + F[(b + 20) >> 2] = c + if ( + ((h >>> 0 <= j >>> 0) & ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + d = 0 + break a + } + j = G[(j + m) | 0] + c = d + n = (e + 3) | 0 + c = n >>> 0 < 3 ? (c + 1) | 0 : c + F[(b + 16) >> 2] = n + F[(b + 20) >> 2] = c + if ( + ((h >>> 0 <= n >>> 0) & ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + d = 0 + break a + } + h = G[(m + n) | 0] + c = d + d = (e + 4) | 0 + c = d >>> 0 < 4 ? (c + 1) | 0 : c + F[(b + 16) >> 2] = d + F[(b + 20) >> 2] = c + if (q >>> 0 > 4) { + d = 0 + break a + } + if (((i - 12) & 255) >>> 0 < 245) { + d = 0 + break a + } + if (!j) { + d = 0 + break a + } + c = kb((f + 8) | 0) + g = (h | 0) != 0 + d = (i - 1) | 0 + if (d >>> 0 <= 10) { + d = F[((d << 2) + 10148) >> 2] + } else { + d = -1 + } + d = L(d, j) + cc(c, q, j, i, g, d, d >> 31) + if (Wb(1, (f + 4) | 0, b)) { + e = F[(f + 4) >> 2] + F[(f + 68) >> 2] = e + d = bc(ka(96), c) + $[F[(F[l >> 2] + 8) >> 2]]( + l, + (F[(l + 12) >> 2] - F[(l + 8) >> 2]) >> 2, + d, + ) + d = (((F[(l + 12) >> 2] - F[(l + 8) >> 2]) >> 2) - 1) | 0 + h = d << 2 + F[(F[(h + F[(l + 8) >> 2]) >> 2] + 60) >> 2] = e + F[(F[(a + 4) >> 2] + (o << 2)) >> 2] = d + c = F[(a + 16) >> 2] + e = (F[(a + 20) >> 2] - c) >> 2 + c: { + if ((e | 0) > (d | 0)) { + break c + } + F[f >> 2] = -1 + d = (d + 1) | 0 + if (d >>> 0 > e >>> 0) { + Fa(p, (d - e) | 0, f) + c = F[p >> 2] + break c + } + if (d >>> 0 >= e >>> 0) { + break c + } + F[(a + 20) >> 2] = (d << 2) + c + } + F[(c + h) >> 2] = o + d = 1 + o = (o + 1) | 0 + if ((o | 0) != (k | 0)) { + continue + } + break a + } + break + } + d = 0 + } + Z = (f + 80) | 0 + return d | 0 + } + function Oc(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + k = (Z - 16) | 0 + Z = k + F[(k + 8) >> 2] = c + h = F[(a + 12) >> 2] + d = F[(a + 8) >> 2] + g = (h - d) >> 2 + a: { + if ((g | 0) > (b | 0)) { + break a + } + e = (b + 1) | 0 + if (e >>> 0 > g >>> 0) { + l = (e - g) | 0 + f = F[(a + 16) >> 2] + d = F[(a + 12) >> 2] + if (l >>> 0 <= ((f - d) >> 2) >>> 0) { + if (l) { + e = d + d = l << 2 + d = (ma(e, 0, d) + d) | 0 + } + F[(a + 12) >> 2] = d + break a + } + b: { + c: { + d: { + m = F[(a + 8) >> 2] + g = (d - m) >> 2 + i = (g + l) | 0 + if (i >>> 0 < 1073741824) { + e = (f - m) | 0 + f = (e >>> 1) | 0 + e = + e >>> 0 >= 2147483644 + ? 1073741823 + : f >>> 0 > i >>> 0 + ? f + : i + if (e) { + if (e >>> 0 >= 1073741824) { + break d + } + j = ka(e << 2) + } + h = ((g << 2) + j) | 0 + f = l << 2 + i = ma(h, 0, f) + g = (f + i) | 0 + e = ((e << 2) + j) | 0 + if ((d | 0) == (m | 0)) { + break c + } + while (1) { + d = (d - 4) | 0 + f = F[d >> 2] + F[d >> 2] = 0 + h = (h - 4) | 0 + F[h >> 2] = f + if ((d | 0) != (m | 0)) { + continue + } + break + } + F[(a + 16) >> 2] = e + e = F[(a + 12) >> 2] + F[(a + 12) >> 2] = g + d = F[(a + 8) >> 2] + F[(a + 8) >> 2] = h + if ((d | 0) == (e | 0)) { + break b + } + while (1) { + e = (e - 4) | 0 + f = F[e >> 2] + F[e >> 2] = 0 + if (f) { + xa(f) + } + if ((d | 0) != (e | 0)) { + continue + } + break + } + break b + } + na() + v() + } + oa() + v() + } + F[(a + 16) >> 2] = e + F[(a + 12) >> 2] = g + F[(a + 8) >> 2] = i + } + if (d) { + ja(d) + } + break a + } + if (e >>> 0 >= g >>> 0) { + break a + } + d = (d + (e << 2)) | 0 + if ((d | 0) != (h | 0)) { + while (1) { + h = (h - 4) | 0 + c = F[h >> 2] + F[h >> 2] = 0 + if (c) { + xa(c) + } + if ((d | 0) != (h | 0)) { + continue + } + break + } + c = F[(k + 8) >> 2] + } + F[(a + 12) >> 2] = d + } + e: { + f: { + d = F[(c + 56) >> 2] + g: { + if ((d | 0) > 4) { + break g + } + j = (L(d, 12) + a) | 0 + d = F[(j + 24) >> 2] + if ((d | 0) != F[(j + 28) >> 2]) { + F[d >> 2] = b + F[(j + 24) >> 2] = d + 4 + break g + } + i = F[(j + 20) >> 2] + g = (d - i) | 0 + f = g >> 2 + e = (f + 1) | 0 + if (e >>> 0 >= 1073741824) { + break f + } + d = (g >>> 1) | 0 + e = + g >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 > e >>> 0 + ? d + : e + if (e) { + if (e >>> 0 >= 1073741824) { + break e + } + d = ka(e << 2) + } else { + d = 0 + } + f = (d + (f << 2)) | 0 + F[f >> 2] = b + d = pa(d, i, g) + F[(j + 20) >> 2] = d + F[(j + 24) >> 2] = f + 4 + F[(j + 28) >> 2] = d + (e << 2) + if (!i) { + break g + } + ja(i) + } + F[(c + 60) >> 2] = b + a = F[(a + 8) >> 2] + F[(k + 8) >> 2] = 0 + a = (a + (b << 2)) | 0 + b = F[a >> 2] + F[a >> 2] = c + if (b) { + xa(b) + } + a = F[(k + 8) >> 2] + F[(k + 8) >> 2] = 0 + if (a) { + xa(a) + } + Z = (k + 16) | 0 + return + } + na() + v() + } + oa() + v() + } + function Pf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + i = c + d = a + a: { + if (F[(a + 12) >> 2] == (b | 0)) { + break a + } + a = b + b = F[(d + 4) >> 2] + e = F[d >> 2] + if ((b | 0) != (e | 0)) { + while (1) { + c = (b - 12) | 0 + if (D[(b - 1) | 0] < 0) { + ja(F[c >> 2]) + } + b = c + if ((e | 0) != (b | 0)) { + continue + } + break + } + } + F[(d + 12) >> 2] = a + F[(d + 4) >> 2] = e + c = F[a >> 2] + j = (a + 4) | 0 + if ((c | 0) == (j | 0)) { + break a + } + while (1) { + a = F[(d + 4) >> 2] + b: { + if ((a | 0) != F[(d + 8) >> 2]) { + c: { + if (D[(c + 27) | 0] >= 0) { + b = F[(c + 20) >> 2] + F[a >> 2] = F[(c + 16) >> 2] + F[(a + 4) >> 2] = b + F[(a + 8) >> 2] = F[(c + 24) >> 2] + break c + } + ra(a, F[(c + 16) >> 2], F[(c + 20) >> 2]) + } + F[(d + 4) >> 2] = a + 12 + break b + } + g = 0 + d: { + e: { + f: { + a = F[(d + 4) >> 2] + e = F[d >> 2] + f = (((a - e) | 0) / 12) | 0 + b = (f + 1) | 0 + if (b >>> 0 < 357913942) { + h = (((F[(d + 8) >> 2] - e) | 0) / 12) | 0 + k = h << 1 + b = + h >>> 0 >= 178956970 + ? 357913941 + : b >>> 0 < k >>> 0 + ? k + : b + if (b) { + if (b >>> 0 >= 357913942) { + break f + } + g = ka(L(b, 12)) + } + h = L(b, 12) + b = (L(f, 12) + g) | 0 + g: { + if (D[(c + 27) | 0] >= 0) { + f = F[(c + 20) >> 2] + F[b >> 2] = F[(c + 16) >> 2] + F[(b + 4) >> 2] = f + F[(b + 8) >> 2] = F[(c + 24) >> 2] + break g + } + ra(b, F[(c + 16) >> 2], F[(c + 20) >> 2]) + e = F[d >> 2] + a = F[(d + 4) >> 2] + } + g = (g + h) | 0 + f = (b + 12) | 0 + if ((a | 0) == (e | 0)) { + break e + } + while (1) { + a = (a - 12) | 0 + h = F[(a + 4) >> 2] + b = (b - 12) | 0 + F[b >> 2] = F[a >> 2] + F[(b + 4) >> 2] = h + F[(b + 8) >> 2] = F[(a + 8) >> 2] + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + if ((a | 0) != (e | 0)) { + continue + } + break + } + F[(d + 8) >> 2] = g + a = F[(d + 4) >> 2] + F[(d + 4) >> 2] = f + e = F[d >> 2] + F[d >> 2] = b + if ((a | 0) == (e | 0)) { + break d + } + while (1) { + b = (a - 12) | 0 + if (D[(a - 1) | 0] < 0) { + ja(F[b >> 2]) + } + a = b + if ((e | 0) != (b | 0)) { + continue + } + break + } + break d + } + na() + v() + } + oa() + v() + } + F[(d + 8) >> 2] = g + F[(d + 4) >> 2] = f + F[d >> 2] = b + } + if (e) { + ja(e) + } + } + b = F[(c + 4) >> 2] + h: { + if (b) { + while (1) { + a = b + b = F[b >> 2] + if (b) { + continue + } + break h + } + } + while (1) { + a = F[(c + 8) >> 2] + b = F[a >> 2] != (c | 0) + c = a + if (b) { + continue + } + break + } + } + c = a + if ((j | 0) != (a | 0)) { + continue + } + break + } + } + a = 0 + i: { + if ((i | 0) < 0) { + break i + } + b = F[d >> 2] + if ((((F[(d + 4) >> 2] - b) | 0) / 12) >>> 0 <= i >>> 0) { + break i + } + a = (b + L(i, 12)) | 0 + a = D[(a + 11) | 0] < 0 ? F[a >> 2] : a + } + return a | 0 + } + function Ad(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + i = (Z - 16) | 0 + Z = i + F[i >> 2] = b + f = -1 + a: { + if ((b | 0) == -1) { + F[(i + 4) >> 2] = -1 + break a + } + f = (b + 1) | 0 + F[(i + 4) >> 2] = (f >>> 0) % 3 | 0 ? f : (b - 2) | 0 + if ((b >>> 0) % 3 | 0) { + f = (b - 1) | 0 + break a + } + f = (b + 2) | 0 + } + F[(i + 8) >> 2] = f + n = ((b >>> 0) / 3) | 0 + b: { + c: { + d: { + while (1) { + e: { + f: { + j = F[((l << 2) + i) >> 2] + if ((j | 0) != -1) { + f = + F[ + (F[(F[(a + 8) >> 2] + 12) >> 2] + (j << 2)) >> + 2 + ] + if ((f | 0) != -1) { + break f + } + } + f = 0 + g = F[(a + 216) >> 2] + if ((g | 0) == F[(a + 220) >> 2]) { + break e + } + while (1) { + g = (L(f, 144) + g) | 0 + d = F[(g + 136) >> 2] + c = F[(g + 140) >> 2] + g: { + if (d >>> 0 < c >>> 0) { + F[d >> 2] = j + F[(g + 136) >> 2] = d + 4 + break g + } + e = d + d = F[(g + 132) >> 2] + k = (e - d) | 0 + e = k >> 2 + h = (e + 1) | 0 + if (h >>> 0 >= 1073741824) { + break d + } + m = e << 2 + c = (c - d) | 0 + e = (c >>> 1) | 0 + h = + c >>> 0 >= 2147483644 + ? 1073741823 + : h >>> 0 < e >>> 0 + ? e + : h + if (h) { + if (h >>> 0 >= 1073741824) { + break c + } + c = ka(h << 2) + } else { + c = 0 + } + e = (m + c) | 0 + F[e >> 2] = j + c = pa(c, d, k) + F[(g + 132) >> 2] = c + F[(g + 136) >> 2] = e + 4 + F[(g + 140) >> 2] = c + (h << 2) + if (!d) { + break g + } + ja(d) + } + f = (f + 1) | 0 + g = F[(a + 216) >> 2] + if ( + f >>> 0 < + (((F[(a + 220) >> 2] - g) | 0) / 144) >>> 0 + ) { + continue + } + break + } + break e + } + if ( + ((b | 0) == -1) | + (((f >>> 0) / 3) >>> 0 < n >>> 0) + ) { + break e + } + f = 0 + if (F[(a + 220) >> 2] == F[(a + 216) >> 2]) { + break e + } + while (1) { + h: { + if (!wa((F[(a + 368) >> 2] + (f << 4)) | 0)) { + break h + } + g = (F[(a + 216) >> 2] + L(f, 144)) | 0 + d = F[(g + 136) >> 2] + c = F[(g + 140) >> 2] + if (d >>> 0 < c >>> 0) { + F[d >> 2] = j + F[(g + 136) >> 2] = d + 4 + break h + } + e = d + d = F[(g + 132) >> 2] + k = (e - d) | 0 + e = k >> 2 + h = (e + 1) | 0 + if (h >>> 0 >= 1073741824) { + break b + } + m = e << 2 + c = (c - d) | 0 + e = (c >>> 1) | 0 + h = + c >>> 0 >= 2147483644 + ? 1073741823 + : h >>> 0 < e >>> 0 + ? e + : h + if (h) { + if (h >>> 0 >= 1073741824) { + break c + } + c = ka(h << 2) + } else { + c = 0 + } + e = (m + c) | 0 + F[e >> 2] = j + c = pa(c, d, k) + F[(g + 132) >> 2] = c + F[(g + 136) >> 2] = e + 4 + F[(g + 140) >> 2] = c + (h << 2) + if (!d) { + break h + } + ja(d) + } + f = (f + 1) | 0 + if ( + f >>> 0 < + (((F[(a + 220) >> 2] - F[(a + 216) >> 2]) | 0) / + 144) >>> + 0 + ) { + continue + } + break + } + } + l = (l + 1) | 0 + if ((l | 0) != 3) { + continue + } + break + } + Z = (i + 16) | 0 + return 1 + } + na() + v() + } + oa() + v() + } + na() + v() + } + function Bd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + h = (Z - 16) | 0 + Z = h + m = -1 + a: { + b: { + c: { + if (!Da(1, (h + 12) | 0, b)) { + break c + } + j = F[(h + 12) >> 2] + if (j) { + c = F[(a + 8) >> 2] + if ( + ((((F[(c + 4) >> 2] - F[c >> 2]) >> 2) >>> 0) / 3) >>> + 0 < + j >>> 0 + ) { + break c + } + while (1) { + if (!Da(1, (h + 8) | 0, b)) { + break c + } + c = F[(h + 8) >> 2] + if (!Da(1, (h + 8) | 0, b)) { + break c + } + g = (c + g) | 0 + c = F[(h + 8) >> 2] + if (g >>> 0 < c >>> 0) { + break c + } + e = (g - c) | 0 + c = F[(a + 40) >> 2] + d: { + if ((c | 0) != F[(a + 44) >> 2]) { + F[(c + 4) >> 2] = g + F[c >> 2] = e + F[(a + 40) >> 2] = c + 12 + j = F[(h + 12) >> 2] + break d + } + d = c + c = F[(a + 36) >> 2] + l = (d - c) | 0 + d = ((l | 0) / 12) | 0 + f = (d + 1) | 0 + if (f >>> 0 >= 357913942) { + break b + } + i = d << 1 + f = + d >>> 0 >= 178956970 + ? 357913941 + : f >>> 0 < i >>> 0 + ? i + : f + if (f) { + if (f >>> 0 >= 357913942) { + break a + } + i = ka(L(f, 12)) + } else { + i = 0 + } + d = (i + L(d, 12)) | 0 + F[(d + 4) >> 2] = g + F[d >> 2] = e + e = pa((d + L(((l | 0) / -12) | 0, 12)) | 0, c, l) + F[(a + 44) >> 2] = i + L(f, 12) + F[(a + 40) >> 2] = d + 12 + F[(a + 36) >> 2] = e + if (!c) { + break d + } + ja(c) + } + k = (k + 1) | 0 + if (k >>> 0 < j >>> 0) { + continue + } + break + } + g = 0 + hc(b, 0, 0) + if (j) { + while (1) { + c = G[(b + 36) | 0] + d = H[(F[(a + 4) >> 2] + 36) >> 1] + e: { + f: { + if ( + (((d << 8) | (d >>> 8)) & 65535) >>> 0 <= + 513 + ) { + if (!c) { + break e + } + e = 0 + d = F[(b + 32) >> 2] + k = (d >>> 3) | 0 + f = F[(b + 24) >> 2] + c = (k + f) | 0 + i = F[(b + 28) >> 2] + g: { + if (c >>> 0 >= i >>> 0) { + c = d + break g + } + e = G[c | 0] + c = (d + 1) | 0 + F[(b + 32) >> 2] = c + k = (c >>> 3) | 0 + e = (e >>> (d & 7)) & 1 + } + if (i >>> 0 > (f + k) >>> 0) { + break f + } + break e + } + if (!c) { + break e + } + e = 0 + c = F[(b + 32) >> 2] + d = (F[(b + 24) >> 2] + ((c >>> 3) | 0)) | 0 + if (d >>> 0 >= I[(b + 28) >> 2]) { + break e + } + e = (G[d | 0] >>> (c & 7)) & 1 + } + F[(b + 32) >> 2] = c + 1 + } + c = (F[(a + 36) >> 2] + L(g, 12)) | 0 + D[(c + 8) | 0] = (G[(c + 8) | 0] & 254) | (e & 1) + g = (g + 1) | 0 + if ((j | 0) != (g | 0)) { + continue + } + break + } + } + D[(b + 36) | 0] = 0 + d = F[(b + 20) >> 2] + a = 0 + e = (F[(b + 32) >> 2] + 7) | 0 + a = e >>> 0 < 7 ? 1 : a + e = (a << 29) | (e >>> 3) + c = (e + F[(b + 16) >> 2]) | 0 + a = (((a >>> 3) | 0) + d) | 0 + F[(b + 16) >> 2] = c + F[(b + 20) >> 2] = c >>> 0 < e >>> 0 ? (a + 1) | 0 : a + } + m = F[(b + 16) >> 2] + } + Z = (h + 16) | 0 + return m + } + na() + v() + } + oa() + v() + } + function xf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + m = (Z - 16) | 0 + Z = m + l = F[(b + 80) >> 2] + e = G[(c + 24) | 0] + a = L(l, e) + a: { + b: { + c: { + d: { + b = F[(c + 28) >> 2] + if ( + !( + !G[(c + 84) | 0] | + (((b | 0) != 1) & ((b | 0) != 2)) + ) + ) { + b = F[(c + 48) >> 2] + c = F[F[c >> 2] >> 2] + F[(m + 8) >> 2] = 0 + F[m >> 2] = 0 + F[(m + 4) >> 2] = 0 + if (a) { + if ((a | 0) < 0) { + break d + } + f = ka(a) + h = (la(f, (b + c) | 0, a) + a) | 0 + } + a = F[d >> 2] + if (a) { + F[(d + 4) >> 2] = a + ja(a) + } + F[(d + 8) >> 2] = h + F[(d + 4) >> 2] = h + F[d >> 2] = f + b = 1 + break a + } + if (e) { + f = ka(e) + ma(f, 0, e) + } + e: { + i = F[(d + 4) >> 2] + b = F[d >> 2] + g = (i - b) | 0 + f: { + if (g >>> 0 < a >>> 0) { + k = (a - g) | 0 + j = F[(d + 8) >> 2] + if (k >>> 0 <= (j - i) >>> 0) { + ;(n = d), + (o = (ma(i, 0, k) + k) | 0), + (F[(n + 4) >> 2] = o) + break f + } + if ((a | 0) < 0) { + break e + } + i = (j - b) | 0 + j = i << 1 + i = + i >>> 0 >= 1073741823 + ? 2147483647 + : a >>> 0 < j >>> 0 + ? j + : a + j = ka(i) + ma((j + g) | 0, 0, k) + g = pa(j, b, g) + F[(d + 8) >> 2] = g + i + F[(d + 4) >> 2] = a + g + F[d >> 2] = g + if (!b) { + break f + } + ja(b) + break f + } + if (a >>> 0 >= g >>> 0) { + break f + } + F[(d + 4) >> 2] = a + b + } + if (!l) { + b = 1 + break c + } + if (!e) { + b = 0 + a = 0 + while (1) { + if ( + !Cb( + c, + G[(c + 84) | 0] + ? a + : F[(F[(c + 68) >> 2] + (a << 2)) >> 2], + D[(c + 24) | 0], + f, + ) + ) { + break c + } + a = (a + 1) | 0 + b = l >>> 0 <= a >>> 0 + if ((a | 0) != (l | 0)) { + continue + } + break + } + break c + } + i = e & 252 + g = e & 3 + b = 0 + j = e >>> 0 < 4 + e = 0 + while (1) { + if ( + !Cb( + c, + G[(c + 84) | 0] + ? e + : F[(F[(c + 68) >> 2] + (e << 2)) >> 2], + D[(c + 24) | 0], + f, + ) + ) { + break c + } + b = 0 + a = 0 + k = 0 + if (!j) { + while (1) { + D[(F[d >> 2] + h) | 0] = G[(a + f) | 0] + D[(((F[d >> 2] + h) | 0) + 1) | 0] = + G[((a | 1) + f) | 0] + D[(((F[d >> 2] + h) | 0) + 2) | 0] = + G[((a | 2) + f) | 0] + D[(((F[d >> 2] + h) | 0) + 3) | 0] = + G[((a | 3) + f) | 0] + a = (a + 4) | 0 + h = (h + 4) | 0 + k = (k + 4) | 0 + if ((i | 0) != (k | 0)) { + continue + } + break + } + } + if (g) { + while (1) { + D[(F[d >> 2] + h) | 0] = G[(a + f) | 0] + a = (a + 1) | 0 + h = (h + 1) | 0 + b = (b + 1) | 0 + if ((g | 0) != (b | 0)) { + continue + } + break + } + } + e = (e + 1) | 0 + b = l >>> 0 <= e >>> 0 + if ((e | 0) != (l | 0)) { + continue + } + break + } + break b + } + na() + v() + } + na() + v() + } + if (!f) { + break a + } + } + ja(f) + } + Z = (m + 16) | 0 + return b & 1 + } + function wf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + m = (Z - 16) | 0 + Z = m + l = F[(b + 80) >> 2] + e = G[(c + 24) | 0] + a = L(l, e) + a: { + b: { + c: { + d: { + b = F[(c + 28) >> 2] + if ( + !( + !G[(c + 84) | 0] | + (((b | 0) != 1) & ((b | 0) != 2)) + ) + ) { + b = F[(c + 48) >> 2] + c = F[F[c >> 2] >> 2] + F[(m + 8) >> 2] = 0 + F[m >> 2] = 0 + F[(m + 4) >> 2] = 0 + if (a) { + if ((a | 0) < 0) { + break d + } + f = ka(a) + h = (la(f, (b + c) | 0, a) + a) | 0 + } + a = F[d >> 2] + if (a) { + F[(d + 4) >> 2] = a + ja(a) + } + F[(d + 8) >> 2] = h + F[(d + 4) >> 2] = h + F[d >> 2] = f + b = 1 + break a + } + if (e) { + f = ka(e) + ma(f, 0, e) + } + e: { + i = F[(d + 4) >> 2] + b = F[d >> 2] + g = (i - b) | 0 + f: { + if (g >>> 0 < a >>> 0) { + k = (a - g) | 0 + j = F[(d + 8) >> 2] + if (k >>> 0 <= (j - i) >>> 0) { + ;(n = d), + (o = (ma(i, 0, k) + k) | 0), + (F[(n + 4) >> 2] = o) + break f + } + if ((a | 0) < 0) { + break e + } + i = (j - b) | 0 + j = i << 1 + i = + i >>> 0 >= 1073741823 + ? 2147483647 + : a >>> 0 < j >>> 0 + ? j + : a + j = ka(i) + ma((j + g) | 0, 0, k) + g = pa(j, b, g) + F[(d + 8) >> 2] = g + i + F[(d + 4) >> 2] = a + g + F[d >> 2] = g + if (!b) { + break f + } + ja(b) + break f + } + if (a >>> 0 >= g >>> 0) { + break f + } + F[(d + 4) >> 2] = a + b + } + if (!l) { + b = 1 + break c + } + if (!e) { + b = 0 + a = 0 + while (1) { + if ( + !Bb( + c, + G[(c + 84) | 0] + ? a + : F[(F[(c + 68) >> 2] + (a << 2)) >> 2], + D[(c + 24) | 0], + f, + ) + ) { + break c + } + a = (a + 1) | 0 + b = l >>> 0 <= a >>> 0 + if ((a | 0) != (l | 0)) { + continue + } + break + } + break c + } + i = e & 252 + g = e & 3 + b = 0 + j = e >>> 0 < 4 + e = 0 + while (1) { + if ( + !Bb( + c, + G[(c + 84) | 0] + ? e + : F[(F[(c + 68) >> 2] + (e << 2)) >> 2], + D[(c + 24) | 0], + f, + ) + ) { + break c + } + b = 0 + a = 0 + k = 0 + if (!j) { + while (1) { + D[(F[d >> 2] + h) | 0] = G[(a + f) | 0] + D[(((F[d >> 2] + h) | 0) + 1) | 0] = + G[((a | 1) + f) | 0] + D[(((F[d >> 2] + h) | 0) + 2) | 0] = + G[((a | 2) + f) | 0] + D[(((F[d >> 2] + h) | 0) + 3) | 0] = + G[((a | 3) + f) | 0] + a = (a + 4) | 0 + h = (h + 4) | 0 + k = (k + 4) | 0 + if ((i | 0) != (k | 0)) { + continue + } + break + } + } + if (g) { + while (1) { + D[(F[d >> 2] + h) | 0] = G[(a + f) | 0] + a = (a + 1) | 0 + h = (h + 1) | 0 + b = (b + 1) | 0 + if ((g | 0) != (b | 0)) { + continue + } + break + } + } + e = (e + 1) | 0 + b = l >>> 0 <= e >>> 0 + if ((e | 0) != (l | 0)) { + continue + } + break + } + break b + } + na() + v() + } + na() + v() + } + if (!f) { + break a + } + } + ja(f) + } + Z = (m + 16) | 0 + return b & 1 + } + function Jb(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + k = F[(b + 16) >> 2] + h = (F[(c + 4) >> 2] - k) | 0 + e = (F[c >> 2] - k) | 0 + F[c >> 2] = e + f = h + F[(c + 4) >> 2] = f + l = F[(b + 16) >> 2] + f = f >> 31 + g = ((h ^ f) - f) | 0 + f = e >> 31 + m = l >>> 0 >= (g + (((f ^ e) - f) | 0)) >>> 0 + a: { + if (m) { + f = h + break a + } + b: { + c: { + if ((e | 0) >= 0) { + g = 1 + j = 1 + if ((h | 0) >= 0) { + break b + } + i = 1 + g = -1 + j = -1 + if (e) { + break c + } + break b + } + i = -1 + g = -1 + j = -1 + if ((h | 0) <= 0) { + break b + } + } + g = (h | 0) <= 0 ? -1 : 1 + j = i + } + n = L(j, l) + f = ((e << 1) - n) | 0 + i = (L(g, j) | 0) >= 0 + e = L(g, l) + f = ((((i ? (0 - f) | 0 : f) + e) | 0) / 2) | 0 + F[(c + 4) >> 2] = f + e = ((h << 1) - e) | 0 + e = ((((i ? (0 - e) | 0 : e) + n) | 0) / 2) | 0 + F[c >> 2] = e + } + d: { + e: { + f: { + g: { + h: { + i: { + j: { + if (e) { + if ((e | 0) < 0) { + break j + } + if ((f | 0) >= 0) { + break i + } + break f + } + if (f) { + break h + } + j = 1 + g = 0 + f = 0 + i = 0 + break d + } + j = 1 + if ((f | 0) > 0) { + break g + } + i = (f | 0) > 0 ? 3 : 0 + g = f + f = e + break d + } + g = (0 - f) | 0 + f = (0 - e) | 0 + i = 2 + break e + } + if ((f | 0) <= 0) { + break f + } + } + f = (0 - f) | 0 + g = e + i = 3 + break e + } + g = (0 - e) | 0 + i = 1 + } + F[c >> 2] = f + F[(c + 4) >> 2] = g + j = 0 + } + e = (F[d >> 2] + f) | 0 + h = F[(b + 16) >> 2] + k: { + if ((e | 0) > (h | 0)) { + e = (e - F[(b + 4) >> 2]) | 0 + break k + } + if (((0 - h) | 0) <= (e | 0)) { + break k + } + e = (F[(b + 4) >> 2] + e) | 0 + } + c = (F[(d + 4) >> 2] + g) | 0 + l: { + if ((h | 0) < (c | 0)) { + c = (c - F[(b + 4) >> 2]) | 0 + break l + } + if (((0 - h) | 0) <= (c | 0)) { + break l + } + c = (F[(b + 4) >> 2] + c) | 0 + } + m: { + if (j) { + b = c + break m + } + b = c + n: { + o: { + p: { + d = (4 - i) | 0 + switch (((d >>> 0 < 4 ? d : (0 - i) | 0) - 1) | 0) { + case 2: + break n + case 1: + break o + case 0: + break p + default: + break m + } + } + b = (0 - e) | 0 + e = c + break m + } + b = (0 - c) | 0 + e = (0 - e) | 0 + break m + } + b = e + e = (0 - c) | 0 + } + q: { + if (m) { + c = b + break q + } + r: { + s: { + if ((e | 0) >= 0) { + c = 1 + f = 1 + if ((b | 0) >= 0) { + break r + } + d = 1 + c = -1 + f = -1 + if (e) { + break s + } + break r + } + d = -1 + c = -1 + f = -1 + if ((b | 0) <= 0) { + break r + } + } + c = (b | 0) <= 0 ? -1 : 1 + f = d + } + d = e << 1 + e = L(f, h) + d = (d - e) | 0 + f = (L(c, f) | 0) >= 0 + g = f ? (0 - d) | 0 : d + d = L(c, h) + c = (((g + d) | 0) / 2) | 0 + b = ((b << 1) - d) | 0 + e = (((e + (f ? (0 - b) | 0 : b)) | 0) / 2) | 0 + } + b = a + F[b >> 2] = e + k + F[(b + 4) >> 2] = c + k + } + function Uh(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + F[(a + 8) >> 2] = e + m = (a + 32) | 0 + h = F[m >> 2] + g = (F[(a + 36) >> 2] - h) >> 2 + a: { + if (g >>> 0 < e >>> 0) { + qa(m, (e - g) | 0) + f = F[(a + 8) >> 2] + break a + } + f = e + if (f >>> 0 >= g >>> 0) { + break a + } + F[(a + 36) >> 2] = h + (e << 2) + f = e + } + g = e >>> 0 > 1073741823 ? -1 : e << 2 + n = ma(ka(g), 0, g) + b: { + if ((f | 0) <= 0) { + break b + } + h = F[(a + 32) >> 2] + while (1) { + f = i << 2 + g = F[(f + n) >> 2] + j = F[(a + 16) >> 2] + c: { + if ((g | 0) > (j | 0)) { + F[(f + h) >> 2] = j + break c + } + f = (f + h) | 0 + j = F[(a + 12) >> 2] + if ((j | 0) > (g | 0)) { + F[f >> 2] = j + break c + } + F[f >> 2] = g + } + f = F[(a + 8) >> 2] + i = (i + 1) | 0 + if ((f | 0) > (i | 0)) { + continue + } + break + } + if ((f | 0) <= 0) { + break b + } + i = 0 + while (1) { + g = i << 2 + f = (g + c) | 0 + g = (F[(b + g) >> 2] + F[(g + h) >> 2]) | 0 + F[f >> 2] = g + d: { + if ((g | 0) > F[(a + 16) >> 2]) { + g = (g - F[(a + 20) >> 2]) | 0 + } else { + if ((g | 0) >= F[(a + 12) >> 2]) { + break d + } + g = (g + F[(a + 20) >> 2]) | 0 + } + F[f >> 2] = g + } + f = F[(a + 8) >> 2] + i = (i + 1) | 0 + if ((f | 0) > (i | 0)) { + continue + } + break + } + } + if (!(((d | 0) <= (e | 0)) | ((f | 0) <= 0))) { + p = (0 - e) << 2 + g = e + while (1) { + e: { + if ((f | 0) <= 0) { + break e + } + l = g << 2 + o = (l + c) | 0 + q = (o + p) | 0 + j = F[m >> 2] + i = 0 + while (1) { + f = i << 2 + h = F[(f + q) >> 2] + k = F[(a + 16) >> 2] + f: { + if ((h | 0) > (k | 0)) { + F[(f + j) >> 2] = k + break f + } + f = (f + j) | 0 + k = F[(a + 12) >> 2] + if ((k | 0) > (h | 0)) { + F[f >> 2] = k + break f + } + F[f >> 2] = h + } + f = F[(a + 8) >> 2] + i = (i + 1) | 0 + if ((f | 0) > (i | 0)) { + continue + } + break + } + i = 0 + if ((f | 0) <= 0) { + break e + } + l = (b + l) | 0 + while (1) { + h = i << 2 + f = (h + o) | 0 + h = (F[(h + l) >> 2] + F[(h + j) >> 2]) | 0 + F[f >> 2] = h + g: { + if ((h | 0) > F[(a + 16) >> 2]) { + h = (h - F[(a + 20) >> 2]) | 0 + } else { + if ((h | 0) >= F[(a + 12) >> 2]) { + break g + } + h = (h + F[(a + 20) >> 2]) | 0 + } + F[f >> 2] = h + } + f = F[(a + 8) >> 2] + i = (i + 1) | 0 + if ((f | 0) > (i | 0)) { + continue + } + break + } + } + g = (e + g) | 0 + if ((g | 0) < (d | 0)) { + continue + } + break + } + } + ja(n) + return 1 + } + function yf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + j = F[(b + 80) >> 2] + b = G[(c + 24) | 0] + g = L(j, b) + a: { + if (!b) { + break a + } + h = b << 2 + f = ka(h) + a = f + k = b & 7 + if (k) { + while (1) { + F[a >> 2] = -1073741824 + a = (a + 4) | 0 + e = (e + 1) | 0 + if ((k | 0) != (e | 0)) { + continue + } + break + } + } + if (((b - 1) & 1073741823) >>> 0 < 7) { + break a + } + e = (f + h) | 0 + while (1) { + F[(a + 24) >> 2] = -1073741824 + F[(a + 28) >> 2] = -1073741824 + F[(a + 16) >> 2] = -1073741824 + F[(a + 20) >> 2] = -1073741824 + F[(a + 8) >> 2] = -1073741824 + F[(a + 12) >> 2] = -1073741824 + F[a >> 2] = -1073741824 + F[(a + 4) >> 2] = -1073741824 + a = (a + 32) | 0 + if ((e | 0) != (a | 0)) { + continue + } + break + } + } + e = F[d >> 2] + a = (F[(d + 4) >> 2] - e) >> 2 + b: { + if (a >>> 0 < g >>> 0) { + qa(d, (g - a) | 0) + break b + } + if (a >>> 0 <= g >>> 0) { + break b + } + F[(d + 4) >> 2] = e + (g << 2) + } + c: { + d: { + e: { + if (!j) { + i = 1 + break e + } + if (!b) { + a = 0 + while (1) { + if ( + !lb( + c, + G[(c + 84) | 0] + ? a + : F[(F[(c + 68) >> 2] + (a << 2)) >> 2], + D[(c + 24) | 0], + f, + ) + ) { + break e + } + a = (a + 1) | 0 + i = j >>> 0 <= a >>> 0 + if ((a | 0) != (j | 0)) { + continue + } + break + } + break e + } + n = b & 252 + k = b & 3 + o = b >>> 0 < 4 + e = 0 + b = 0 + while (1) { + if ( + !lb( + c, + G[(c + 84) | 0] + ? b + : F[(F[(c + 68) >> 2] + (b << 2)) >> 2], + D[(c + 24) | 0], + f, + ) + ) { + break e + } + m = F[d >> 2] + i = 0 + a = 0 + l = 0 + if (!o) { + while (1) { + g = ((e << 2) + m) | 0 + h = a << 2 + J[g >> 2] = J[(h + f) >> 2] + J[(g + 4) >> 2] = J[((h | 4) + f) >> 2] + J[(g + 8) >> 2] = J[((h | 8) + f) >> 2] + J[(g + 12) >> 2] = J[((h | 12) + f) >> 2] + a = (a + 4) | 0 + e = (e + 4) | 0 + l = (l + 4) | 0 + if ((n | 0) != (l | 0)) { + continue + } + break + } + } + if (k) { + while (1) { + J[((e << 2) + m) >> 2] = J[((a << 2) + f) >> 2] + a = (a + 1) | 0 + e = (e + 1) | 0 + i = (i + 1) | 0 + if ((k | 0) != (i | 0)) { + continue + } + break + } + } + b = (b + 1) | 0 + i = j >>> 0 <= b >>> 0 + if ((b | 0) != (j | 0)) { + continue + } + break + } + break d + } + if (!f) { + break c + } + } + ja(f) + } + return i | 0 + } + function $d(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + k = (Z - 16) | 0 + Z = k + c = F[(b + 20) >> 2] + d = F[(b + 16) >> 2] + e = (d + 4) | 0 + c = e >>> 0 < 4 ? (c + 1) | 0 : c + g = F[(b + 12) >> 2] + a: { + if ( + ((I[(b + 8) >> 2] < e >>> 0) & ((g | 0) <= (c | 0))) | + ((c | 0) > (g | 0)) + ) { + break a + } + d = (d + F[b >> 2]) | 0 + h = + G[d | 0] | + (G[(d + 1) | 0] << 8) | + ((G[(d + 2) | 0] << 16) | (G[(d + 3) | 0] << 24)) + F[(b + 16) >> 2] = e + F[(b + 20) >> 2] = c + if ((h | 0) < 0) { + break a + } + Na((a + 76) | 0, h) + c = k + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + D[(c + 5) | 0] = 0 + D[(c + 6) | 0] = 0 + D[(c + 7) | 0] = 0 + D[(c + 8) | 0] = 0 + D[(c + 9) | 0] = 0 + D[(c + 10) | 0] = 0 + D[(c + 11) | 0] = 0 + D[(c + 12) | 0] = 0 + b: { + if (!Aa(c, b)) { + break b + } + if (h) { + g = 1 + while (1) { + d = 1 << i + e = wa(c) + f = (F[(a + 76) >> 2] + ((i >>> 3) & 536870908)) | 0 + e = e ^ g + if (e & 1) { + d = F[f >> 2] & (d ^ -1) + } else { + d = d | F[f >> 2] + } + g = e ^ 1 + F[f >> 2] = d + i = (i + 1) | 0 + if ((h | 0) != (i | 0)) { + continue + } + break + } + } + i = 0 + c = F[(b + 8) >> 2] + e = F[(b + 12) >> 2] + f = e + e = F[(b + 20) >> 2] + g = e + l = F[(b + 16) >> 2] + d = (l + 4) | 0 + e = d >>> 0 < 4 ? (e + 1) | 0 : e + h = d + if ( + ((d >>> 0 > c >>> 0) & ((e | 0) >= (f | 0))) | + ((e | 0) > (f | 0)) + ) { + break b + } + m = F[b >> 2] + d = (m + l) | 0 + j = + G[d | 0] | + (G[(d + 1) | 0] << 8) | + ((G[(d + 2) | 0] << 16) | (G[(d + 3) | 0] << 24)) + F[(b + 16) >> 2] = h + F[(b + 20) >> 2] = e + d = c + c = g + e = (l + 8) | 0 + c = e >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((d >>> 0 < e >>> 0) & ((c | 0) >= (f | 0))) | + ((c | 0) > (f | 0)) + ) { + break b + } + d = (h + m) | 0 + d = + G[d | 0] | + (G[(d + 1) | 0] << 8) | + ((G[(d + 2) | 0] << 16) | (G[(d + 3) | 0] << 24)) + F[(b + 16) >> 2] = e + F[(b + 20) >> 2] = c + if ((d | 0) < (j | 0)) { + break b + } + F[(a + 16) >> 2] = d + F[(a + 12) >> 2] = j + c = + ((d >> 31) - (((j >> 31) + (d >>> 0 < j >>> 0)) | 0)) | 0 + b = (d - j) | 0 + if ((!c & (b >>> 0 > 2147483646)) | c) { + break b + } + i = 1 + c = (b + 1) | 0 + F[(a + 20) >> 2] = c + b = (c >>> 1) | 0 + F[(a + 24) >> 2] = b + F[(a + 28) >> 2] = 0 - b + if (c & 1) { + break b + } + F[(a + 24) >> 2] = b - 1 + } + } + Z = (k + 16) | 0 + return i | 0 + } + function tf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + a = 0 + k = (Z - 16) | 0 + Z = k + j = F[(b + 80) >> 2] + e = G[(c + 24) | 0] + b = L(j, e) + a: { + b: { + c: { + d: { + f = F[(c + 28) >> 2] + if ( + !( + !G[(c + 84) | 0] | + (((f | 0) != 5) & ((f | 0) != 6)) + ) + ) { + e = F[(c + 48) >> 2] + c = F[F[c >> 2] >> 2] + F[(k + 8) >> 2] = 0 + F[k >> 2] = 0 + F[(k + 4) >> 2] = 0 + if (b) { + if ((b | 0) < 0) { + break d + } + b = b << 2 + a = ka(b) + g = (la(a, (c + e) | 0, b) + b) | 0 + } + b = F[d >> 2] + if (b) { + F[(d + 4) >> 2] = b + ja(b) + } + F[(d + 8) >> 2] = g + F[(d + 4) >> 2] = g + F[d >> 2] = a + h = 1 + break a + } + if (e) { + f = e << 2 + a = ka(f) + ma(a, 0, f) + } + i = F[d >> 2] + f = (F[(d + 4) >> 2] - i) >> 2 + e: { + if (f >>> 0 < b >>> 0) { + qa(d, (b - f) | 0) + break e + } + if (b >>> 0 >= f >>> 0) { + break e + } + F[(d + 4) >> 2] = i + (b << 2) + } + if (!j) { + h = 1 + break c + } + if (!e) { + b = 0 + while (1) { + if ( + !xb( + c, + G[(c + 84) | 0] + ? b + : F[(F[(c + 68) >> 2] + (b << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break c + } + b = (b + 1) | 0 + h = j >>> 0 <= b >>> 0 + if ((b | 0) != (j | 0)) { + continue + } + break + } + break c + } + o = e & 252 + m = e & 3 + p = e >>> 0 < 4 + e = 0 + while (1) { + if ( + !xb( + c, + G[(c + 84) | 0] + ? e + : F[(F[(c + 68) >> 2] + (e << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break c + } + n = F[d >> 2] + l = 0 + b = 0 + h = 0 + if (!p) { + while (1) { + f = ((g << 2) + n) | 0 + i = b << 2 + F[f >> 2] = F[(i + a) >> 2] + F[(f + 4) >> 2] = F[((i | 4) + a) >> 2] + F[(f + 8) >> 2] = F[((i | 8) + a) >> 2] + F[(f + 12) >> 2] = F[((i | 12) + a) >> 2] + b = (b + 4) | 0 + g = (g + 4) | 0 + h = (h + 4) | 0 + if ((o | 0) != (h | 0)) { + continue + } + break + } + } + if (m) { + while (1) { + F[((g << 2) + n) >> 2] = F[((b << 2) + a) >> 2] + b = (b + 1) | 0 + g = (g + 1) | 0 + l = (l + 1) | 0 + if ((l | 0) != (m | 0)) { + continue + } + break + } + } + e = (e + 1) | 0 + h = j >>> 0 <= e >>> 0 + if ((e | 0) != (j | 0)) { + continue + } + break + } + break b + } + na() + v() + } + if (!a) { + break a + } + } + ja(a) + } + Z = (k + 16) | 0 + return h | 0 + } + function cd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + a = 0 + k = (Z - 16) | 0 + Z = k + j = F[(b + 80) >> 2] + e = G[(c + 24) | 0] + b = L(j, e) + a: { + b: { + c: { + d: { + f = F[(c + 28) >> 2] + if ( + !( + !G[(c + 84) | 0] | + (((f | 0) != 5) & ((f | 0) != 6)) + ) + ) { + e = F[(c + 48) >> 2] + c = F[F[c >> 2] >> 2] + F[(k + 8) >> 2] = 0 + F[k >> 2] = 0 + F[(k + 4) >> 2] = 0 + if (b) { + if ((b | 0) < 0) { + break d + } + b = b << 2 + a = ka(b) + g = (la(a, (c + e) | 0, b) + b) | 0 + } + b = F[d >> 2] + if (b) { + F[(d + 4) >> 2] = b + ja(b) + } + F[(d + 8) >> 2] = g + F[(d + 4) >> 2] = g + F[d >> 2] = a + h = 1 + break a + } + if (e) { + f = e << 2 + a = ka(f) + ma(a, 0, f) + } + i = F[d >> 2] + f = (F[(d + 4) >> 2] - i) >> 2 + e: { + if (f >>> 0 < b >>> 0) { + qa(d, (b - f) | 0) + break e + } + if (b >>> 0 >= f >>> 0) { + break e + } + F[(d + 4) >> 2] = i + (b << 2) + } + if (!j) { + h = 1 + break c + } + if (!e) { + b = 0 + while (1) { + if ( + !yb( + c, + G[(c + 84) | 0] + ? b + : F[(F[(c + 68) >> 2] + (b << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break c + } + b = (b + 1) | 0 + h = j >>> 0 <= b >>> 0 + if ((b | 0) != (j | 0)) { + continue + } + break + } + break c + } + o = e & 252 + m = e & 3 + p = e >>> 0 < 4 + e = 0 + while (1) { + if ( + !yb( + c, + G[(c + 84) | 0] + ? e + : F[(F[(c + 68) >> 2] + (e << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break c + } + n = F[d >> 2] + l = 0 + b = 0 + h = 0 + if (!p) { + while (1) { + f = ((g << 2) + n) | 0 + i = b << 2 + F[f >> 2] = F[(i + a) >> 2] + F[(f + 4) >> 2] = F[((i | 4) + a) >> 2] + F[(f + 8) >> 2] = F[((i | 8) + a) >> 2] + F[(f + 12) >> 2] = F[((i | 12) + a) >> 2] + b = (b + 4) | 0 + g = (g + 4) | 0 + h = (h + 4) | 0 + if ((o | 0) != (h | 0)) { + continue + } + break + } + } + if (m) { + while (1) { + F[((g << 2) + n) >> 2] = F[((b << 2) + a) >> 2] + b = (b + 1) | 0 + g = (g + 1) | 0 + l = (l + 1) | 0 + if ((l | 0) != (m | 0)) { + continue + } + break + } + } + e = (e + 1) | 0 + h = j >>> 0 <= e >>> 0 + if ((e | 0) != (j | 0)) { + continue + } + break + } + break b + } + na() + v() + } + if (!a) { + break a + } + } + ja(a) + } + Z = (k + 16) | 0 + return h | 0 + } + function vf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + a = 0 + k = (Z - 16) | 0 + Z = k + j = F[(b + 80) >> 2] + e = G[(c + 24) | 0] + b = L(j, e) + a: { + b: { + c: { + d: { + f = F[(c + 28) >> 2] + if ( + !( + !G[(c + 84) | 0] | + (((f | 0) != 3) & ((f | 0) != 4)) + ) + ) { + e = F[(c + 48) >> 2] + c = F[F[c >> 2] >> 2] + F[(k + 8) >> 2] = 0 + F[k >> 2] = 0 + F[(k + 4) >> 2] = 0 + if (b) { + if ((b | 0) < 0) { + break d + } + b = b << 1 + a = ka(b) + g = (la(a, (c + e) | 0, b) + b) | 0 + } + b = F[d >> 2] + if (b) { + F[(d + 4) >> 2] = b + ja(b) + } + F[(d + 8) >> 2] = g + F[(d + 4) >> 2] = g + F[d >> 2] = a + h = 1 + break a + } + if (e) { + f = e << 1 + a = ka(f) + ma(a, 0, f) + } + i = F[d >> 2] + f = (F[(d + 4) >> 2] - i) >> 1 + e: { + if (f >>> 0 < b >>> 0) { + kd(d, (b - f) | 0) + break e + } + if (b >>> 0 >= f >>> 0) { + break e + } + F[(d + 4) >> 2] = i + (b << 1) + } + if (!j) { + h = 1 + break c + } + if (!e) { + b = 0 + while (1) { + if ( + !Ab( + c, + G[(c + 84) | 0] + ? b + : F[(F[(c + 68) >> 2] + (b << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break c + } + b = (b + 1) | 0 + h = j >>> 0 <= b >>> 0 + if ((b | 0) != (j | 0)) { + continue + } + break + } + break c + } + o = e & 252 + m = e & 3 + p = e >>> 0 < 4 + e = 0 + while (1) { + if ( + !Ab( + c, + G[(c + 84) | 0] + ? e + : F[(F[(c + 68) >> 2] + (e << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break c + } + n = F[d >> 2] + l = 0 + b = 0 + h = 0 + if (!p) { + while (1) { + f = ((g << 1) + n) | 0 + i = b << 1 + E[f >> 1] = H[(i + a) >> 1] + E[(f + 2) >> 1] = H[((i | 2) + a) >> 1] + E[(f + 4) >> 1] = H[((i | 4) + a) >> 1] + E[(f + 6) >> 1] = H[((i | 6) + a) >> 1] + b = (b + 4) | 0 + g = (g + 4) | 0 + h = (h + 4) | 0 + if ((o | 0) != (h | 0)) { + continue + } + break + } + } + if (m) { + while (1) { + E[((g << 1) + n) >> 1] = H[((b << 1) + a) >> 1] + b = (b + 1) | 0 + g = (g + 1) | 0 + l = (l + 1) | 0 + if ((l | 0) != (m | 0)) { + continue + } + break + } + } + e = (e + 1) | 0 + h = j >>> 0 <= e >>> 0 + if ((e | 0) != (j | 0)) { + continue + } + break + } + break b + } + na() + v() + } + if (!a) { + break a + } + } + ja(a) + } + Z = (k + 16) | 0 + return h | 0 + } + function uf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + a = 0 + k = (Z - 16) | 0 + Z = k + j = F[(b + 80) >> 2] + e = G[(c + 24) | 0] + b = L(j, e) + a: { + b: { + c: { + d: { + f = F[(c + 28) >> 2] + if ( + !( + !G[(c + 84) | 0] | + (((f | 0) != 3) & ((f | 0) != 4)) + ) + ) { + e = F[(c + 48) >> 2] + c = F[F[c >> 2] >> 2] + F[(k + 8) >> 2] = 0 + F[k >> 2] = 0 + F[(k + 4) >> 2] = 0 + if (b) { + if ((b | 0) < 0) { + break d + } + b = b << 1 + a = ka(b) + g = (la(a, (c + e) | 0, b) + b) | 0 + } + b = F[d >> 2] + if (b) { + F[(d + 4) >> 2] = b + ja(b) + } + F[(d + 8) >> 2] = g + F[(d + 4) >> 2] = g + F[d >> 2] = a + h = 1 + break a + } + if (e) { + f = e << 1 + a = ka(f) + ma(a, 0, f) + } + i = F[d >> 2] + f = (F[(d + 4) >> 2] - i) >> 1 + e: { + if (f >>> 0 < b >>> 0) { + kd(d, (b - f) | 0) + break e + } + if (b >>> 0 >= f >>> 0) { + break e + } + F[(d + 4) >> 2] = i + (b << 1) + } + if (!j) { + h = 1 + break c + } + if (!e) { + b = 0 + while (1) { + if ( + !zb( + c, + G[(c + 84) | 0] + ? b + : F[(F[(c + 68) >> 2] + (b << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break c + } + b = (b + 1) | 0 + h = j >>> 0 <= b >>> 0 + if ((b | 0) != (j | 0)) { + continue + } + break + } + break c + } + o = e & 252 + m = e & 3 + p = e >>> 0 < 4 + e = 0 + while (1) { + if ( + !zb( + c, + G[(c + 84) | 0] + ? e + : F[(F[(c + 68) >> 2] + (e << 2)) >> 2], + D[(c + 24) | 0], + a, + ) + ) { + break c + } + n = F[d >> 2] + l = 0 + b = 0 + h = 0 + if (!p) { + while (1) { + f = ((g << 1) + n) | 0 + i = b << 1 + E[f >> 1] = H[(i + a) >> 1] + E[(f + 2) >> 1] = H[((i | 2) + a) >> 1] + E[(f + 4) >> 1] = H[((i | 4) + a) >> 1] + E[(f + 6) >> 1] = H[((i | 6) + a) >> 1] + b = (b + 4) | 0 + g = (g + 4) | 0 + h = (h + 4) | 0 + if ((o | 0) != (h | 0)) { + continue + } + break + } + } + if (m) { + while (1) { + E[((g << 1) + n) >> 1] = H[((b << 1) + a) >> 1] + b = (b + 1) | 0 + g = (g + 1) | 0 + l = (l + 1) | 0 + if ((l | 0) != (m | 0)) { + continue + } + break + } + } + e = (e + 1) | 0 + h = j >>> 0 <= e >>> 0 + if ((e | 0) != (j | 0)) { + continue + } + break + } + break b + } + na() + v() + } + if (!a) { + break a + } + } + ja(a) + } + Z = (k + 16) | 0 + return h | 0 + } + function kc(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + f = -1 + d = -1 + a: { + if ((b | 0) == -1) { + break a + } + d = (b + 1) | 0 + f = (d >>> 0) % 3 | 0 ? d : (b - 2) | 0 + d = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break a + } + d = (b + 2) | 0 + } + b: { + c: { + d: { + switch (F[(a + 168) >> 2]) { + case 0: + case 1: + e = F[(a + 148) >> 2] + c = 1 + b = F[(a + 156) >> 2] + g = + (b + + (((f | 0) == -1 + ? -1 + : F[(F[e >> 2] + (f << 2)) >> 2]) << + 2)) | + 0 + F[g >> 2] = F[g >> 2] + 1 + b = + ((((d | 0) == -1 + ? -1 + : F[(F[e >> 2] + (d << 2)) >> 2]) << + 2) + + b) | + 0 + break c + case 5: + e = F[(a + 148) >> 2] + c = -1 + c = + ((b | 0) != -1 + ? F[(F[e >> 2] + (b << 2)) >> 2] + : c) << 2 + b = F[(a + 156) >> 2] + c = (c + b) | 0 + F[c >> 2] = F[c >> 2] + 1 + c = + ((((f | 0) == -1 + ? -1 + : F[(F[e >> 2] + (f << 2)) >> 2]) << + 2) + + b) | + 0 + F[c >> 2] = F[c >> 2] + 1 + c = 2 + b = + ((((d | 0) == -1 + ? -1 + : F[(F[e >> 2] + (d << 2)) >> 2]) << + 2) + + b) | + 0 + break c + case 3: + e = F[(a + 148) >> 2] + c = -1 + c = + ((b | 0) != -1 + ? F[(F[e >> 2] + (b << 2)) >> 2] + : c) << 2 + b = F[(a + 156) >> 2] + c = (c + b) | 0 + F[c >> 2] = F[c >> 2] + 1 + c = + ((((f | 0) == -1 + ? -1 + : F[(F[e >> 2] + (f << 2)) >> 2]) << + 2) + + b) | + 0 + F[c >> 2] = F[c >> 2] + 2 + c = 1 + b = + ((((d | 0) == -1 + ? -1 + : F[(F[e >> 2] + (d << 2)) >> 2]) << + 2) + + b) | + 0 + break c + case 7: + break d + default: + break b + } + } + e = F[(a + 148) >> 2] + c = -1 + c = + ((b | 0) != -1 ? F[(F[e >> 2] + (b << 2)) >> 2] : c) << 2 + b = F[(a + 156) >> 2] + c = (c + b) | 0 + F[c >> 2] = F[c >> 2] + 2 + c = + ((((f | 0) == -1 ? -1 : F[(F[e >> 2] + (f << 2)) >> 2]) << + 2) + + b) | + 0 + F[c >> 2] = F[c >> 2] + 2 + c = 2 + b = + ((((d | 0) == -1 ? -1 : F[(F[e >> 2] + (d << 2)) >> 2]) << + 2) + + b) | + 0 + } + F[b >> 2] = F[b >> 2] + c + } + c = a + b = + F[ + (F[(a + 156) >> 2] + + (((f | 0) == -1 + ? -1 + : F[(F[F[(a + 148) >> 2] >> 2] + (f << 2)) >> 2]) << + 2)) >> + 2 + ] + d = F[(a + 180) >> 2] + a = F[(a + 176) >> 2] + F[(c + 172) >> 2] = + (a | 0) <= (b | 0) ? (((b | 0) < (d | 0) ? b : d) - a) | 0 : 0 + } + function Dg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + a: { + b = F[(a + 32) >> 2] + f = F[(b + 8) >> 2] + h = F[(b + 12) >> 2] + g = F[(b + 20) >> 2] + c = F[(b + 16) >> 2] + e = 0 + b: { + if ( + (((h | 0) <= (g | 0)) & (c >>> 0 >= f >>> 0)) | + ((g | 0) > (h | 0)) + ) { + break b + } + f = G[(F[b >> 2] + c) | 0] + e = b + b = g + c = (c + 1) | 0 + b = c ? b : (b + 1) | 0 + F[(e + 16) >> 2] = c + F[(e + 20) >> 2] = b + c: { + if (!f) { + break c + } + while (1) { + if ($[F[(F[a >> 2] + 16) >> 2]](a, d) | 0) { + d = (d + 1) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break c + } + break + } + return 0 + } + d = F[(a + 8) >> 2] + b = F[(a + 12) >> 2] + if ((d | 0) != (b | 0)) { + while (1) { + c = F[d >> 2] + if ( + !( + $[F[(F[c >> 2] + 8) >> 2]](c, a, F[(a + 4) >> 2]) | + 0 + ) + ) { + break a + } + d = (d + 4) | 0 + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + d: { + if (!f) { + break d + } + d = 0 + while (1) { + b = F[(F[(a + 8) >> 2] + (d << 2)) >> 2] + if ( + !( + $[F[(F[b >> 2] + 12) >> 2]](b, F[(a + 32) >> 2]) | 0 + ) + ) { + break a + } + d = (d + 1) | 0 + if ((f | 0) != (d | 0)) { + continue + } + break + } + if (!f) { + break d + } + i = (a + 20) | 0 + b = 0 + while (1) { + d = 0 + j = b << 2 + c = F[(j + F[(a + 8) >> 2]) >> 2] + k = $[F[(F[c >> 2] + 24) >> 2]](c) | 0 + if ((k | 0) > 0) { + while (1) { + c = F[(F[(a + 8) >> 2] + j) >> 2] + c = $[F[(F[c >> 2] + 20) >> 2]](c, d) | 0 + e = F[(a + 20) >> 2] + g = (F[(a + 24) >> 2] - e) >> 2 + e: { + if (c >>> 0 < g >>> 0) { + break e + } + h = (c + 1) | 0 + if (h >>> 0 > g >>> 0) { + qa(i, (h - g) | 0) + e = F[i >> 2] + break e + } + if (g >>> 0 <= h >>> 0) { + break e + } + F[(a + 24) >> 2] = (h << 2) + e + } + F[((c << 2) + e) >> 2] = b + d = (d + 1) | 0 + if ((k | 0) != (d | 0)) { + continue + } + break + } + } + b = (b + 1) | 0 + if ((f | 0) != (b | 0)) { + continue + } + break + } + } + e = 0 + if (!($[F[(F[a >> 2] + 28) >> 2]](a) | 0)) { + break b + } + e = $[F[(F[a >> 2] + 32) >> 2]](a) | 0 + } + return e | 0 + } + return 0 + } + function Ye(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + Oc(a, b, c) + c = F[(a + 84) >> 2] + d = (F[(a + 88) >> 2] - c) >> 2 + a: { + if ((d | 0) > (b | 0)) { + break a + } + b = (b + 1) | 0 + if (b >>> 0 > d >>> 0) { + b: { + d = (b - d) | 0 + e = F[(a + 92) >> 2] + c = F[(a + 88) >> 2] + if (d >>> 0 <= ((e - c) >> 2) >>> 0) { + c: { + if (!d) { + break c + } + b = c + e = d & 7 + if (e) { + while (1) { + F[b >> 2] = 1 + b = (b + 4) | 0 + f = (f + 1) | 0 + if ((e | 0) != (f | 0)) { + continue + } + break + } + } + c = ((d << 2) + c) | 0 + if (((d - 1) & 1073741823) >>> 0 < 7) { + break c + } + while (1) { + F[(b + 24) >> 2] = 1 + F[(b + 28) >> 2] = 1 + F[(b + 16) >> 2] = 1 + F[(b + 20) >> 2] = 1 + F[(b + 8) >> 2] = 1 + F[(b + 12) >> 2] = 1 + F[b >> 2] = 1 + F[(b + 4) >> 2] = 1 + b = (b + 32) | 0 + if ((c | 0) != (b | 0)) { + continue + } + break + } + } + F[(a + 88) >> 2] = c + break b + } + d: { + b = c + c = F[(a + 84) >> 2] + i = (b - c) | 0 + g = i >> 2 + b = (g + d) | 0 + if (b >>> 0 < 1073741824) { + e = (e - c) | 0 + h = (e >>> 1) | 0 + e = + e >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 < h >>> 0 + ? h + : b + if (e) { + if (e >>> 0 >= 1073741824) { + break d + } + j = ka(e << 2) + } + g = ((g << 2) + j) | 0 + b = g + h = d & 7 + if (h) { + while (1) { + F[b >> 2] = 1 + b = (b + 4) | 0 + f = (f + 1) | 0 + if ((h | 0) != (f | 0)) { + continue + } + break + } + } + f = (g + (d << 2)) | 0 + if (((d - 1) & 1073741823) >>> 0 >= 7) { + while (1) { + F[(b + 24) >> 2] = 1 + F[(b + 28) >> 2] = 1 + F[(b + 16) >> 2] = 1 + F[(b + 20) >> 2] = 1 + F[(b + 8) >> 2] = 1 + F[(b + 12) >> 2] = 1 + F[b >> 2] = 1 + F[(b + 4) >> 2] = 1 + b = (b + 32) | 0 + if ((f | 0) != (b | 0)) { + continue + } + break + } + } + b = pa(j, c, i) + F[(a + 88) >> 2] = f + F[(a + 84) >> 2] = b + F[(a + 92) >> 2] = b + (e << 2) + if (c) { + ja(c) + } + break b + } + na() + v() + } + oa() + v() + } + return + } + if (b >>> 0 >= d >>> 0) { + break a + } + F[(a + 88) >> 2] = c + (b << 2) + } + } + function ab(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = F[(a + 8) >> 2] + e = F[(a + 4) >> 2] + if (((d - e) >> 2) >>> 0 >= b >>> 0) { + a: { + if (!b) { + break a + } + d = e + g = b & 7 + if (g) { + while (1) { + F[d >> 2] = F[c >> 2] + d = (d + 4) | 0 + f = (f + 1) | 0 + if ((g | 0) != (f | 0)) { + continue + } + break + } + } + e = ((b << 2) + e) | 0 + if (((b - 1) & 1073741823) >>> 0 < 7) { + break a + } + while (1) { + F[d >> 2] = F[c >> 2] + F[(d + 4) >> 2] = F[c >> 2] + F[(d + 8) >> 2] = F[c >> 2] + F[(d + 12) >> 2] = F[c >> 2] + F[(d + 16) >> 2] = F[c >> 2] + F[(d + 20) >> 2] = F[c >> 2] + F[(d + 24) >> 2] = F[c >> 2] + F[(d + 28) >> 2] = F[c >> 2] + d = (d + 32) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + F[(a + 4) >> 2] = e + return + } + b: { + i = F[a >> 2] + f = (e - i) >> 2 + h = (f + b) | 0 + if (h >>> 0 < 1073741824) { + j = (d - i) | 0 + d = (j >>> 1) | 0 + h = + j >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 > h >>> 0 + ? d + : h + if (h) { + if (h >>> 0 >= 1073741824) { + break b + } + k = ka(h << 2) + } + f = ((f << 2) + k) | 0 + d = f + j = b & 7 + if (j) { + while (1) { + F[d >> 2] = F[c >> 2] + d = (d + 4) | 0 + g = (g + 1) | 0 + if ((j | 0) != (g | 0)) { + continue + } + break + } + } + g = ((b << 2) + f) | 0 + if (((b - 1) & 1073741823) >>> 0 >= 7) { + while (1) { + F[d >> 2] = F[c >> 2] + F[(d + 4) >> 2] = F[c >> 2] + F[(d + 8) >> 2] = F[c >> 2] + F[(d + 12) >> 2] = F[c >> 2] + F[(d + 16) >> 2] = F[c >> 2] + F[(d + 20) >> 2] = F[c >> 2] + F[(d + 24) >> 2] = F[c >> 2] + F[(d + 28) >> 2] = F[c >> 2] + d = (d + 32) | 0 + if ((g | 0) != (d | 0)) { + continue + } + break + } + } + if ((e | 0) != (i | 0)) { + while (1) { + f = (f - 4) | 0 + e = (e - 4) | 0 + F[f >> 2] = F[e >> 2] + if ((e | 0) != (i | 0)) { + continue + } + break + } + } + F[(a + 8) >> 2] = (h << 2) + k + F[(a + 4) >> 2] = g + F[a >> 2] = f + if (i) { + ja(i) + } + return + } + na() + v() + } + oa() + v() + } + function Xb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = F[(a + 8) >> 2] + e = F[a >> 2] + if (((d - e) >> 2) >>> 0 >= b >>> 0) { + f = F[(a + 4) >> 2] + h = (f - e) >> 2 + i = b >>> 0 > h >>> 0 ? h : b + a: { + if (!i) { + break a + } + d = e + g = i + j = g & 7 + if (j) { + while (1) { + F[d >> 2] = F[c >> 2] + g = (g - 1) | 0 + d = (d + 4) | 0 + k = (k + 1) | 0 + if ((k | 0) != (j | 0)) { + continue + } + break + } + } + if (i >>> 0 < 8) { + break a + } + while (1) { + F[d >> 2] = F[c >> 2] + F[(d + 4) >> 2] = F[c >> 2] + F[(d + 8) >> 2] = F[c >> 2] + F[(d + 12) >> 2] = F[c >> 2] + F[(d + 16) >> 2] = F[c >> 2] + F[(d + 20) >> 2] = F[c >> 2] + F[(d + 24) >> 2] = F[c >> 2] + F[(d + 28) >> 2] = F[c >> 2] + d = (d + 32) | 0 + g = (g - 8) | 0 + if (g) { + continue + } + break + } + } + if (b >>> 0 > h >>> 0) { + b = (((b - h) << 2) + f) | 0 + while (1) { + F[f >> 2] = F[c >> 2] + f = (f + 4) | 0 + if ((b | 0) != (f | 0)) { + continue + } + break + } + F[(a + 4) >> 2] = b + return + } + F[(a + 4) >> 2] = e + (b << 2) + return + } + if (e) { + F[(a + 4) >> 2] = e + ja(e) + F[(a + 8) >> 2] = 0 + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + d = 0 + } + b: { + if (b >>> 0 >= 1073741824) { + break b + } + e = (d >>> 1) | 0 + d = + d >>> 0 >= 2147483644 + ? 1073741823 + : b >>> 0 < e >>> 0 + ? e + : b + if (d >>> 0 >= 1073741824) { + break b + } + d = d << 2 + e = ka(d) + F[a >> 2] = e + F[(a + 8) >> 2] = d + e + c = F[c >> 2] + d = e + g = b & 7 + if (g) { + while (1) { + F[d >> 2] = c + d = (d + 4) | 0 + f = (f + 1) | 0 + if ((g | 0) != (f | 0)) { + continue + } + break + } + } + e = (e + (b << 2)) | 0 + if (((b - 1) & 1073741823) >>> 0 >= 7) { + while (1) { + F[(d + 28) >> 2] = c + F[(d + 24) >> 2] = c + F[(d + 20) >> 2] = c + F[(d + 16) >> 2] = c + F[(d + 12) >> 2] = c + F[(d + 8) >> 2] = c + F[(d + 4) >> 2] = c + F[d >> 2] = c + d = (d + 32) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + F[(a + 4) >> 2] = e + return + } + na() + v() + } + function Ka(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + f = ((c >>> 0) / 3) | 0 + j = + F[ + (((F[(F[(a + 8) >> 2] + 96) >> 2] + L(f, 12)) | 0) + + ((c - L(f, 3)) << 2)) >> + 2 + ] + a: { + h = F[(F[(a + 12) >> 2] + 4) >> 2] + e = F[(h + 4) >> 2] + if ((e | 0) != F[(h + 8) >> 2]) { + F[e >> 2] = j + F[(h + 4) >> 2] = e + 4 + break a + } + b: { + i = F[h >> 2] + f = (e - i) | 0 + g = f >> 2 + d = (g + 1) | 0 + if (d >>> 0 < 1073741824) { + k = g << 2 + g = (f >>> 1) | 0 + g = + f >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < g >>> 0 + ? g + : d + if (g) { + if (g >>> 0 >= 1073741824) { + break b + } + f = ka(g << 2) + } else { + f = 0 + } + d = (k + f) | 0 + F[d >> 2] = j + j = (d + 4) | 0 + if ((e | 0) != (i | 0)) { + while (1) { + d = (d - 4) | 0 + e = (e - 4) | 0 + F[d >> 2] = F[e >> 2] + if ((e | 0) != (i | 0)) { + continue + } + break + } + } + F[(h + 8) >> 2] = f + (g << 2) + F[(h + 4) >> 2] = j + F[h >> 2] = d + if (i) { + ja(i) + } + break a + } + na() + v() + } + oa() + v() + } + c: { + d: { + h = F[(a + 4) >> 2] + e = F[(h + 4) >> 2] + e: { + if ((e | 0) != F[(h + 8) >> 2]) { + F[e >> 2] = c + F[(h + 4) >> 2] = e + 4 + break e + } + i = F[h >> 2] + f = (e - i) | 0 + j = f >> 2 + d = (j + 1) | 0 + if (d >>> 0 >= 1073741824) { + break d + } + g = (f >>> 1) | 0 + g = + f >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < g >>> 0 + ? g + : d + if (g) { + if (g >>> 0 >= 1073741824) { + break c + } + f = ka(g << 2) + } else { + f = 0 + } + d = (f + (j << 2)) | 0 + F[d >> 2] = c + c = (d + 4) | 0 + if ((e | 0) != (i | 0)) { + while (1) { + d = (d - 4) | 0 + e = (e - 4) | 0 + F[d >> 2] = F[e >> 2] + if ((e | 0) != (i | 0)) { + continue + } + break + } + } + F[(h + 8) >> 2] = f + (g << 2) + F[(h + 4) >> 2] = c + F[h >> 2] = d + if (!i) { + break e + } + ja(i) + } + a = F[(a + 4) >> 2] + F[(F[(a + 12) >> 2] + (b << 2)) >> 2] = F[(a + 24) >> 2] + F[(a + 24) >> 2] = F[(a + 24) >> 2] + 1 + return + } + na() + v() + } + oa() + v() + } + function pb(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + h = (d - c) | 0 + if ((h | 0) <= 0) { + return + } + a: { + e = F[(a + 8) >> 2] + i = F[(a + 4) >> 2] + if (((e - i) | 0) >= (h | 0)) { + j = (i - b) | 0 + if ((j | 0) >= (h | 0)) { + f = i + g = d + break a + } + f = i + g = (c + j) | 0 + if ((g | 0) != (d | 0)) { + e = g + while (1) { + D[f | 0] = G[e | 0] + f = (f + 1) | 0 + e = (e + 1) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + F[(a + 4) >> 2] = f + if ((j | 0) > 0) { + break a + } + return + } + k = F[a >> 2] + g = (((i - k) | 0) + h) | 0 + if ((g | 0) >= 0) { + j = (b - k) | 0 + f = (e - k) | 0 + e = f << 1 + f = + f >>> 0 >= 1073741823 + ? 2147483647 + : e >>> 0 > g >>> 0 + ? e + : g + if (f) { + e = ka(f) + } else { + e = 0 + } + g = (j + e) | 0 + if ((c | 0) != (d | 0)) { + g = (la(g, c, h) + h) | 0 + } + d = pa(e, k, j) + c = (i - b) | 0 + b = pa(g, b, c) + F[(a + 8) >> 2] = e + f + F[(a + 4) >> 2] = b + c + F[a >> 2] = d + if (k) { + ja(k) + } + return + } + na() + v() + } + e = f + d = (e - h) | 0 + if (i >>> 0 > d >>> 0) { + while (1) { + D[e | 0] = G[d | 0] + e = (e + 1) | 0 + d = (d + 1) | 0 + if (i >>> 0 > d >>> 0) { + continue + } + break + } + } + F[(a + 4) >> 2] = e + a = (b + h) | 0 + if ((a | 0) != (f | 0)) { + a = (f - a) | 0 + pa((f - a) | 0, b, a) + } + if ((c | 0) == (g | 0)) { + return + } + f = ((c ^ -1) + g) | 0 + a = (g - c) & 7 + b: { + if (!a) { + e = b + break b + } + d = 0 + e = b + while (1) { + D[e | 0] = G[c | 0] + e = (e + 1) | 0 + c = (c + 1) | 0 + d = (d + 1) | 0 + if ((a | 0) != (d | 0)) { + continue + } + break + } + } + if (f >>> 0 < 7) { + return + } + while (1) { + D[e | 0] = G[c | 0] + D[(e + 1) | 0] = G[(c + 1) | 0] + D[(e + 2) | 0] = G[(c + 2) | 0] + D[(e + 3) | 0] = G[(c + 3) | 0] + D[(e + 4) | 0] = G[(c + 4) | 0] + D[(e + 5) | 0] = G[(c + 5) | 0] + D[(e + 6) | 0] = G[(c + 6) | 0] + D[(e + 7) | 0] = G[(c + 7) | 0] + e = (e + 8) | 0 + c = (c + 8) | 0 + if ((g | 0) != (c | 0)) { + continue + } + break + } + } + function la(a, b, c) { + var d = 0, + e = 0, + f = 0 + if (c >>> 0 >= 512) { + Y(a | 0, b | 0, c | 0) + return a + } + e = (a + c) | 0 + a: { + if (!((a ^ b) & 3)) { + b: { + if (!(a & 3)) { + c = a + break b + } + if (!c) { + c = a + break b + } + c = a + while (1) { + D[c | 0] = G[b | 0] + b = (b + 1) | 0 + c = (c + 1) | 0 + if (!(c & 3)) { + break b + } + if (c >>> 0 < e >>> 0) { + continue + } + break + } + } + d = e & -4 + c: { + if (d >>> 0 < 64) { + break c + } + f = (d + -64) | 0 + if (f >>> 0 < c >>> 0) { + break c + } + while (1) { + F[c >> 2] = F[b >> 2] + F[(c + 4) >> 2] = F[(b + 4) >> 2] + F[(c + 8) >> 2] = F[(b + 8) >> 2] + F[(c + 12) >> 2] = F[(b + 12) >> 2] + F[(c + 16) >> 2] = F[(b + 16) >> 2] + F[(c + 20) >> 2] = F[(b + 20) >> 2] + F[(c + 24) >> 2] = F[(b + 24) >> 2] + F[(c + 28) >> 2] = F[(b + 28) >> 2] + F[(c + 32) >> 2] = F[(b + 32) >> 2] + F[(c + 36) >> 2] = F[(b + 36) >> 2] + F[(c + 40) >> 2] = F[(b + 40) >> 2] + F[(c + 44) >> 2] = F[(b + 44) >> 2] + F[(c + 48) >> 2] = F[(b + 48) >> 2] + F[(c + 52) >> 2] = F[(b + 52) >> 2] + F[(c + 56) >> 2] = F[(b + 56) >> 2] + F[(c + 60) >> 2] = F[(b + 60) >> 2] + b = (b - -64) | 0 + c = (c - -64) | 0 + if (f >>> 0 >= c >>> 0) { + continue + } + break + } + } + if (c >>> 0 >= d >>> 0) { + break a + } + while (1) { + F[c >> 2] = F[b >> 2] + b = (b + 4) | 0 + c = (c + 4) | 0 + if (d >>> 0 > c >>> 0) { + continue + } + break + } + break a + } + if (e >>> 0 < 4) { + c = a + break a + } + d = (e - 4) | 0 + if (d >>> 0 < a >>> 0) { + c = a + break a + } + c = a + while (1) { + D[c | 0] = G[b | 0] + D[(c + 1) | 0] = G[(b + 1) | 0] + D[(c + 2) | 0] = G[(b + 2) | 0] + D[(c + 3) | 0] = G[(b + 3) | 0] + b = (b + 4) | 0 + c = (c + 4) | 0 + if (d >>> 0 >= c >>> 0) { + continue + } + break + } + } + if (c >>> 0 < e >>> 0) { + while (1) { + D[c | 0] = G[b | 0] + b = (b + 1) | 0 + c = (c + 1) | 0 + if ((e | 0) != (c | 0)) { + continue + } + break + } + } + return a + } + function sd(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0 + F[a >> 2] = 8336 + d = (a + 232) | 0 + b = F[(d + 196) >> 2] + if (b) { + F[(d + 200) >> 2] = b + ja(b) + } + c = F[(d + 184) >> 2] + if (c) { + b = c + e = F[(d + 188) >> 2] + if ((b | 0) != (e | 0)) { + while (1) { + b = (e - 12) | 0 + f = F[b >> 2] + if (f) { + F[(e - 8) >> 2] = f + ja(f) + } + e = b + if ((b | 0) != (c | 0)) { + continue + } + break + } + b = F[(d + 184) >> 2] + } + F[(d + 188) >> 2] = c + ja(b) + } + b = F[(d + 156) >> 2] + if (b) { + F[(d + 160) >> 2] = b + ja(b) + } + c = F[(d + 136) >> 2] + F[(d + 136) >> 2] = 0 + if (c) { + e = (c - 4) | 0 + b = F[e >> 2] + if (b) { + b = (c + (b << 4)) | 0 + while (1) { + b = (b - 16) | 0 + if ((c | 0) != (b | 0)) { + continue + } + break + } + } + ja(e) + } + td((a + 216) | 0) + b = F[(a + 196) >> 2] + if (b) { + F[(a + 200) >> 2] = b + ja(b) + } + b = F[(a + 184) >> 2] + if (b) { + F[(a + 188) >> 2] = b + ja(b) + } + b = F[(a + 172) >> 2] + if (b) { + F[(a + 176) >> 2] = b + ja(b) + } + b = F[(a + 160) >> 2] + if (b) { + F[(a + 164) >> 2] = b + ja(b) + } + b = F[(a + 144) >> 2] + if (b) { + while (1) { + c = F[b >> 2] + ja(b) + b = c + if (b) { + continue + } + break + } + } + b = F[(a + 136) >> 2] + F[(a + 136) >> 2] = 0 + if (b) { + ja(b) + } + b = F[(a + 120) >> 2] + if (b) { + ja(b) + } + b = F[(a + 108) >> 2] + if (b) { + ja(b) + } + b = F[(a + 96) >> 2] + if (b) { + ja(b) + } + b = F[(a + 72) >> 2] + if (b) { + F[(a + 76) >> 2] = b + ja(b) + } + b = F[(a + 60) >> 2] + if (b) { + ja(b) + } + b = F[(a + 48) >> 2] + if (b) { + F[(a + 52) >> 2] = b + ja(b) + } + b = F[(a + 36) >> 2] + if (b) { + F[(a + 40) >> 2] = b + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + F[(a + 28) >> 2] = b + ja(b) + } + b = F[(a + 12) >> 2] + if (b) { + F[(a + 16) >> 2] = b + ja(b) + } + b = F[(a + 8) >> 2] + F[(a + 8) >> 2] = 0 + if (b) { + Za(b) + } + return a | 0 + } + function Fa(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = F[(a + 8) >> 2] + e = F[(a + 4) >> 2] + if (((d - e) >> 2) >>> 0 >= b >>> 0) { + a: { + if (!b) { + break a + } + d = e + f = b & 7 + if (f) { + while (1) { + F[d >> 2] = F[c >> 2] + d = (d + 4) | 0 + h = (h + 1) | 0 + if ((f | 0) != (h | 0)) { + continue + } + break + } + } + e = ((b << 2) + e) | 0 + if (((b - 1) & 1073741823) >>> 0 < 7) { + break a + } + while (1) { + F[d >> 2] = F[c >> 2] + F[(d + 4) >> 2] = F[c >> 2] + F[(d + 8) >> 2] = F[c >> 2] + F[(d + 12) >> 2] = F[c >> 2] + F[(d + 16) >> 2] = F[c >> 2] + F[(d + 20) >> 2] = F[c >> 2] + F[(d + 24) >> 2] = F[c >> 2] + F[(d + 28) >> 2] = F[c >> 2] + d = (d + 32) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + F[(a + 4) >> 2] = e + return + } + b: { + i = F[a >> 2] + j = (e - i) | 0 + f = j >> 2 + g = (f + b) | 0 + if (g >>> 0 < 1073741824) { + d = (d - i) | 0 + e = (d >>> 1) | 0 + g = + d >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 > g >>> 0 + ? e + : g + if (g) { + if (g >>> 0 >= 1073741824) { + break b + } + k = ka(g << 2) + } + f = ((f << 2) + k) | 0 + d = f + e = b & 7 + if (e) { + while (1) { + F[d >> 2] = F[c >> 2] + d = (d + 4) | 0 + h = (h + 1) | 0 + if ((e | 0) != (h | 0)) { + continue + } + break + } + } + e = (f + (b << 2)) | 0 + if (((b - 1) & 1073741823) >>> 0 >= 7) { + while (1) { + F[d >> 2] = F[c >> 2] + F[(d + 4) >> 2] = F[c >> 2] + F[(d + 8) >> 2] = F[c >> 2] + F[(d + 12) >> 2] = F[c >> 2] + F[(d + 16) >> 2] = F[c >> 2] + F[(d + 20) >> 2] = F[c >> 2] + F[(d + 24) >> 2] = F[c >> 2] + F[(d + 28) >> 2] = F[c >> 2] + d = (d + 32) | 0 + if ((e | 0) != (d | 0)) { + continue + } + break + } + } + b = pa(k, i, j) + F[(a + 4) >> 2] = e + F[a >> 2] = b + F[(a + 8) >> 2] = b + (g << 2) + if (i) { + ja(i) + } + return + } + na() + v() + } + oa() + v() + } + function Sb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + if ((G[(a + 11) | 0] >>> 7) | 0) { + d = F[(a + 4) >> 2] + } else { + d = G[(a + 11) | 0] & 127 + } + if (d >>> 0 < b >>> 0) { + h = (Z - 16) | 0 + Z = h + b = (b - d) | 0 + if (b) { + g = + (G[(a + 11) | 0] >>> 7) | 0 + ? ((F[(a + 8) >> 2] & 2147483647) - 1) | 0 + : 10 + if ((G[(a + 11) | 0] >>> 7) | 0) { + d = F[(a + 4) >> 2] + } else { + d = G[(a + 11) | 0] & 127 + } + i = (d + b) | 0 + if ((g - d) >>> 0 < b >>> 0) { + a: { + e = (Z - 16) | 0 + Z = e + c = (i - g) | 0 + if (c >>> 0 <= (2147483631 - g) >>> 0) { + if ((G[(a + 11) | 0] >>> 7) | 0) { + f = F[a >> 2] + } else { + f = a + } + if (g >>> 0 < 1073741799) { + F[(e + 12) >> 2] = g << 1 + F[e >> 2] = c + g + c = (Z - 16) | 0 + Z = c + Z = (c + 16) | 0 + c = (e + 12) | 0 + c = F[(I[e >> 2] < I[c >> 2] ? c : e) >> 2] + if (c >>> 0 >= 11) { + j = (c + 16) & -16 + c = (j - 1) | 0 + c = (c | 0) == 11 ? j : c + } else { + c = 10 + } + c = (c + 1) | 0 + } else { + c = 2147483631 + } + sb(e, c) + c = F[e >> 2] + if (d) { + db(c, f, d) + } + if ((g | 0) != 10) { + ja(f) + } + F[a >> 2] = c + F[(a + 8) >> 2] = + (F[(a + 8) >> 2] & -2147483648) | + (F[(e + 4) >> 2] & 2147483647) + F[(a + 8) >> 2] = F[(a + 8) >> 2] | -2147483648 + Z = (e + 16) | 0 + break a + } + za() + v() + } + } + f = d + if ((G[(a + 11) | 0] >>> 7) | 0) { + d = F[a >> 2] + } else { + d = a + } + f = (f + d) | 0 + e = (Z - 16) | 0 + Z = e + D[(e + 15) | 0] = 0 + while (1) { + if (b) { + D[f | 0] = G[(e + 15) | 0] + b = (b - 1) | 0 + f = (f + 1) | 0 + continue + } + break + } + Z = (e + 16) | 0 + Ic(a, i) + D[(h + 15) | 0] = 0 + D[(d + i) | 0] = G[(h + 15) | 0] + } + Z = (h + 16) | 0 + return + } + if ((G[(a + 11) | 0] >>> 7) | 0) { + d = F[a >> 2] + } else { + d = a + } + f = (Z - 16) | 0 + Z = f + Ic(a, b) + D[(f + 15) | 0] = 0 + D[(b + d) | 0] = G[(f + 15) | 0] + Z = (f + 16) | 0 + } + function Zc(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + g = (Z - 16) | 0 + Z = g + a: { + b: { + if (b) { + F[(a + 88) >> 2] = 0 + F[(a + 92) >> 2] = 0 + d = F[(a + 84) >> 2] + F[(a + 84) >> 2] = 0 + if (d) { + ja(d) + } + F[(a + 76) >> 2] = 0 + F[(a + 80) >> 2] = 0 + d = F[(a + 72) >> 2] + F[(a + 72) >> 2] = 0 + if (d) { + ja(d) + } + d = F[b >> 2] + c = F[(b + 4) >> 2] + D[(g + 15) | 0] = 0 + Ea(a, (c - d) >> 2, (g + 15) | 0) + d = F[(b + 28) >> 2] + c = F[(b + 24) >> 2] + D[(g + 14) | 0] = 0 + Ea((a + 12) | 0, (d - c) >> 2, (g + 14) | 0) + Xb( + (a + 28) | 0, + (F[(b + 4) >> 2] - F[b >> 2]) >> 2, + 10284, + ) + c = (F[(b + 28) >> 2] - F[(b + 24) >> 2]) | 0 + f = c >> 2 + e = F[(a + 52) >> 2] + c: { + if (f >>> 0 <= ((F[(a + 60) >> 2] - e) >> 2) >>> 0) { + break c + } + if ((c | 0) < 0) { + break b + } + d = F[(a + 56) >> 2] + c = ka(c) + f = (c + (f << 2)) | 0 + h = (c + ((d - e) & -4)) | 0 + c = h + if ((d | 0) != (e | 0)) { + while (1) { + c = (c - 4) | 0 + d = (d - 4) | 0 + F[c >> 2] = F[d >> 2] + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + F[(a + 60) >> 2] = f + F[(a + 56) >> 2] = h + F[(a + 52) >> 2] = c + if (!e) { + break c + } + ja(e) + } + c = (F[(b + 28) >> 2] - F[(b + 24) >> 2]) | 0 + f = c >> 2 + e = F[(a + 40) >> 2] + d: { + if (f >>> 0 <= ((F[(a + 48) >> 2] - e) >> 2) >>> 0) { + break d + } + if ((c | 0) < 0) { + break a + } + d = F[(a + 44) >> 2] + c = ka(c) + f = (c + (f << 2)) | 0 + h = (c + ((d - e) & -4)) | 0 + c = h + if ((d | 0) != (e | 0)) { + while (1) { + c = (c - 4) | 0 + d = (d - 4) | 0 + F[c >> 2] = F[d >> 2] + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + F[(a + 48) >> 2] = f + F[(a + 44) >> 2] = h + F[(a + 40) >> 2] = c + if (!e) { + break d + } + ja(e) + } + D[(a + 24) | 0] = 1 + F[(a + 64) >> 2] = b + } + Z = (g + 16) | 0 + return + } + na() + v() + } + na() + v() + } + function nb(a, b) { + var c = 0, + d = 0, + e = 0 + c = (a | 0) == (b | 0) + D[(b + 12) | 0] = c + a: { + if (c) { + break a + } + while (1) { + d = F[(b + 8) >> 2] + if (G[(d + 12) | 0]) { + break a + } + b: { + c = F[(d + 8) >> 2] + e = F[c >> 2] + if ((e | 0) == (d | 0)) { + e = F[(c + 4) >> 2] + if (!(!e | G[(e + 12) | 0])) { + break b + } + c: { + if (F[d >> 2] == (b | 0)) { + b = d + break c + } + b = F[(d + 4) >> 2] + a = F[b >> 2] + F[(d + 4) >> 2] = a + if (a) { + F[(a + 8) >> 2] = d + c = F[(d + 8) >> 2] + } + F[(b + 8) >> 2] = c + a = F[(d + 8) >> 2] + F[(((F[a >> 2] != (d | 0)) << 2) + a) >> 2] = b + F[b >> 2] = d + F[(d + 8) >> 2] = b + c = F[(b + 8) >> 2] + d = F[c >> 2] + } + D[(b + 12) | 0] = 1 + D[(c + 12) | 0] = 0 + a = F[(d + 4) >> 2] + F[c >> 2] = a + if (a) { + F[(a + 8) >> 2] = c + } + F[(d + 8) >> 2] = F[(c + 8) >> 2] + a = F[(c + 8) >> 2] + F[(((F[a >> 2] != (c | 0)) << 2) + a) >> 2] = d + F[(d + 4) >> 2] = c + F[(c + 8) >> 2] = d + return + } + if (!(G[(e + 12) | 0] | !e)) { + break b + } + d: { + if (F[d >> 2] != (b | 0)) { + b = d + break d + } + a = F[(b + 4) >> 2] + F[d >> 2] = a + if (a) { + F[(a + 8) >> 2] = d + c = F[(d + 8) >> 2] + } + F[(b + 8) >> 2] = c + a = F[(d + 8) >> 2] + F[(((F[a >> 2] != (d | 0)) << 2) + a) >> 2] = b + F[(b + 4) >> 2] = d + F[(d + 8) >> 2] = b + c = F[(b + 8) >> 2] + } + D[(b + 12) | 0] = 1 + D[(c + 12) | 0] = 0 + a = F[(c + 4) >> 2] + b = F[a >> 2] + F[(c + 4) >> 2] = b + if (b) { + F[(b + 8) >> 2] = c + } + F[(a + 8) >> 2] = F[(c + 8) >> 2] + b = F[(c + 8) >> 2] + F[(((F[b >> 2] != (c | 0)) << 2) + b) >> 2] = a + F[a >> 2] = c + F[(c + 8) >> 2] = a + break a + } + D[(d + 12) | 0] = 1 + D[(c + 12) | 0] = (a | 0) == (c | 0) + D[(e + 12) | 0] = 1 + b = c + if ((c | 0) != (a | 0)) { + continue + } + break + } + } + } + function mi(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + a: { + b: { + c: { + d: { + e: { + f: { + g: { + h: { + i: { + j: { + k: { + if (b) { + if (!c) { + break k + } + if (!d) { + break j + } + e = (O(d) - O(b)) | 0 + if (e >>> 0 <= 31) { + break i + } + break c + } + if (((d | 0) == 1) | (d >>> 0 > 1)) { + break c + } + _ = 0 + a = ((a >>> 0) / (c >>> 0)) | 0 + break a + } + if (!a) { + break h + } + if (!d | ((d - 1) & d)) { + break g + } + a = (b >>> ji(d)) | 0 + _ = 0 + break a + } + if (!((c - 1) & c)) { + break f + } + h = (((O(c) + 33) | 0) - O(b)) | 0 + g = (0 - h) | 0 + break d + } + h = (e + 1) | 0 + g = (63 - e) | 0 + break d + } + _ = 0 + a = ((b >>> 0) / (d >>> 0)) | 0 + break a + } + e = (O(d) - O(b)) | 0 + if (e >>> 0 < 31) { + break e + } + break c + } + if ((c | 0) == 1) { + break b + } + d = ji(c) + c = d & 31 + if ((d & 63) >>> 0 >= 32) { + a = (b >>> c) | 0 + } else { + e = (b >>> c) | 0 + a = ((((1 << c) - 1) & b) << (32 - c)) | (a >>> c) + } + _ = e + break a + } + h = (e + 1) | 0 + g = (63 - e) | 0 + } + e = h & 63 + f = e & 31 + if (e >>> 0 >= 32) { + e = 0 + i = (b >>> f) | 0 + } else { + e = (b >>> f) | 0 + i = ((((1 << f) - 1) & b) << (32 - f)) | (a >>> f) + } + g = g & 63 + f = g & 31 + if (g >>> 0 >= 32) { + b = a << f + a = 0 + } else { + b = (((1 << f) - 1) & (a >>> (32 - f))) | (b << f) + a = a << f + } + if (h) { + f = (d - 1) | 0 + g = (c - 1) | 0 + m = (g | 0) != -1 ? (f + 1) | 0 : f + while (1) { + j = (e << 1) | (i >>> 31) + e = (i << 1) | (b >>> 31) + f = (m - ((j + (e >>> 0 > g >>> 0)) | 0)) >> 31 + k = c & f + i = (e - k) | 0 + e = (j - (((d & f) + (e >>> 0 < k >>> 0)) | 0)) | 0 + b = (b << 1) | (a >>> 31) + a = l | (a << 1) + l = f & 1 + h = (h - 1) | 0 + if (h) { + continue + } + break + } + } + _ = (b << 1) | (a >>> 31) + a = l | (a << 1) + break a + } + a = 0 + b = 0 + } + _ = b + } + return a + } + function yh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + c = F[(b + 88) >> 2] + if (!(!c | (F[c >> 2] != 1))) { + e = F[(c + 8) >> 2] + F[(a + 4) >> 2] = + G[e | 0] | + (G[(e + 1) | 0] << 8) | + ((G[(e + 2) | 0] << 16) | (G[(e + 3) | 0] << 24)) + f = (a + 8) | 0 + d = G[(b + 24) | 0] + h = F[(a + 8) >> 2] + g = (F[(a + 12) >> 2] - h) >> 2 + a: { + if (d >>> 0 > g >>> 0) { + qa(f, (d - g) | 0) + d = G[(b + 24) | 0] + e = F[(c + 8) >> 2] + break a + } + if (d >>> 0 >= g >>> 0) { + break a + } + F[(a + 12) >> 2] = h + (d << 2) + } + b: { + if (!d) { + b = 4 + break b + } + h = d & 3 + f = F[f >> 2] + c: { + if ((d - 1) >>> 0 < 3) { + b = 4 + d = 0 + break c + } + k = d & 252 + d = 0 + b = 4 + while (1) { + g = d << 2 + c = (b + e) | 0 + F[(g + f) >> 2] = + G[c | 0] | + (G[(c + 1) | 0] << 8) | + ((G[(c + 2) | 0] << 16) | (G[(c + 3) | 0] << 24)) + F[(f + (g | 4)) >> 2] = + G[(c + 4) | 0] | + (G[(c + 5) | 0] << 8) | + ((G[(c + 6) | 0] << 16) | (G[(c + 7) | 0] << 24)) + F[(f + (g | 8)) >> 2] = + G[(c + 8) | 0] | + (G[(c + 9) | 0] << 8) | + ((G[(c + 10) | 0] << 16) | (G[(c + 11) | 0] << 24)) + F[(f + (g | 12)) >> 2] = + G[(c + 12) | 0] | + (G[(c + 13) | 0] << 8) | + ((G[(c + 14) | 0] << 16) | (G[(c + 15) | 0] << 24)) + d = (d + 4) | 0 + b = (b + 16) | 0 + i = (i + 4) | 0 + if ((k | 0) != (i | 0)) { + continue + } + break + } + } + if (!h) { + break b + } + while (1) { + c = (b + e) | 0 + F[(f + (d << 2)) >> 2] = + G[c | 0] | + (G[(c + 1) | 0] << 8) | + ((G[(c + 2) | 0] << 16) | (G[(c + 3) | 0] << 24)) + d = (d + 1) | 0 + b = (b + 4) | 0 + j = (j + 1) | 0 + if ((h | 0) != (j | 0)) { + continue + } + break + } + } + d = a + a = (b + e) | 0 + F[(d + 20) >> 2] = + G[a | 0] | + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) | (G[(a + 3) | 0] << 24)) + d = 1 + } + return d | 0 + } + function Yg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + g = (Z - 16) | 0 + Z = g + e = F[(a + 4) >> 2] + d = F[e >> 2] + a: { + b = F[(a + 12) >> 2] + c = (F[(b + 28) >> 2] - F[(b + 24) >> 2]) | 0 + f = c >> 2 + b: { + if (f >>> 0 <= ((F[(e + 8) >> 2] - d) >> 2) >>> 0) { + break b + } + if ((c | 0) < 0) { + break a + } + b = F[(e + 4) >> 2] + c = ka(c) + f = (c + (f << 2)) | 0 + h = (c + ((b - d) & -4)) | 0 + c = h + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + F[c >> 2] = F[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + F[(e + 8) >> 2] = f + F[(e + 4) >> 2] = h + F[e >> 2] = c + if (!d) { + break b + } + ja(d) + } + b = F[(a + 12) >> 2] + c = F[(b + 28) >> 2] + b = F[(b + 24) >> 2] + F[(g + 12) >> 2] = 0 + b = (c - b) >> 2 + d = (a + 96) | 0 + e = F[d >> 2] + c = (F[(a + 100) >> 2] - e) >> 2 + c: { + if (b >>> 0 > c >>> 0) { + Fa(d, (b - c) | 0, (g + 12) | 0) + break c + } + if (b >>> 0 >= c >>> 0) { + break c + } + F[(a + 100) >> 2] = e + (b << 2) + } + e = (a + 8) | 0 + b = F[(a + 116) >> 2] + d: { + if (b) { + d = F[b >> 2] + if ((d | 0) == F[(b + 4) >> 2]) { + c = 1 + break d + } + b = 0 + while (1) { + c = rd(e, F[((b << 2) + d) >> 2]) + if (!c) { + break d + } + f = F[(a + 116) >> 2] + d = F[f >> 2] + b = (b + 1) | 0 + if (b >>> 0 < ((F[(f + 4) >> 2] - d) >> 2) >>> 0) { + continue + } + break + } + break d + } + c = 1 + a = F[(a + 12) >> 2] + a = (F[(a + 4) >> 2] - F[a >> 2]) | 0 + if (a >>> 0 < 12) { + break d + } + a = (((a >> 2) >>> 0) / 3) | 0 + b = 0 + while (1) { + c = rd(e, L(b, 3)) + if (!c) { + break d + } + b = (b + 1) | 0 + if ((a | 0) != (b | 0)) { + continue + } + break + } + } + Z = (g + 16) | 0 + return c | 0 + } + na() + v() + } + function md(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + a: { + b: { + c: { + if (!b) { + if ((d | 0) < 0) { + break a + } + f = F[(a + 4) >> 2] + b = F[a >> 2] + d = (f - b) | 0 + if (c >>> 0 > d >>> 0) { + g = (c - d) | 0 + e = F[(a + 8) >> 2] + if (g >>> 0 <= (e - f) >>> 0) { + ;(i = a), + (j = (ma(f, 0, g) + g) | 0), + (F[(i + 4) >> 2] = j) + break c + } + if ((c | 0) < 0) { + break b + } + f = (e - b) | 0 + e = f << 1 + f = + f >>> 0 >= 1073741823 + ? 2147483647 + : c >>> 0 < e >>> 0 + ? e + : c + e = ka(f) + ma((e + d) | 0, 0, g) + d = pa(e, b, d) + F[(a + 8) >> 2] = d + f + F[(a + 4) >> 2] = c + d + F[a >> 2] = d + if (!b) { + break c + } + ja(b) + break c + } + if (c >>> 0 >= d >>> 0) { + break c + } + F[(a + 4) >> 2] = b + c + break c + } + if ((d | 0) < 0) { + break a + } + e = F[(a + 4) >> 2] + f = F[a >> 2] + g = (e - f) | 0 + d: { + if ( + (((d | 0) <= 0) & (c >>> 0 <= g >>> 0)) | + ((d | 0) < 0) + ) { + break d + } + if (c >>> 0 > g >>> 0) { + d = (c - g) | 0 + h = F[(a + 8) >> 2] + if (d >>> 0 <= (h - e) >>> 0) { + ;(i = a), + (j = (ma(e, 0, d) + d) | 0), + (F[(i + 4) >> 2] = j) + break d + } + if ((c | 0) < 0) { + break b + } + e = (h - f) | 0 + h = e << 1 + e = + e >>> 0 >= 1073741823 + ? 2147483647 + : c >>> 0 < h >>> 0 + ? h + : c + h = ka(e) + ma((h + g) | 0, 0, d) + d = pa(h, f, g) + F[(a + 8) >> 2] = d + e + F[(a + 4) >> 2] = c + d + F[a >> 2] = d + if (!f) { + break d + } + ja(f) + break d + } + if (c >>> 0 >= g >>> 0) { + break d + } + F[(a + 4) >> 2] = c + f + } + if (!c) { + break c + } + pa(F[a >> 2], b, c) + } + b = F[(a + 28) >> 2] + c = (F[(a + 24) >> 2] + 1) | 0 + b = c ? b : (b + 1) | 0 + F[(a + 24) >> 2] = c + F[(a + 28) >> 2] = b + g = 1 + break a + } + na() + v() + } + return g + } + function Lg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + k = F[(a + 12) >> 2] + c = F[(a + 68) >> 2] + d = F[(c + 80) >> 2] + D[(b + 84) | 0] = 0 + n = (b + 68) | 0 + i = F[(b + 68) >> 2] + e = (F[(b + 72) >> 2] - i) >> 2 + a: { + if (e >>> 0 < d >>> 0) { + ab(n, (d - e) | 0, 9124) + c = F[(a + 68) >> 2] + d = F[(c + 80) >> 2] + break a + } + if (d >>> 0 >= e >>> 0) { + break a + } + F[(b + 72) >> 2] = i + (d << 2) + } + b = F[(c + 100) >> 2] + e = F[(c + 96) >> 2] + i = (((b - e) | 0) / 12) | 0 + m = 1 + b: { + if ((b | 0) == (e | 0)) { + break b + } + k = F[(k + 28) >> 2] + f = F[k >> 2] + if ((f | 0) == -1) { + return 0 + } + o = i >>> 0 <= 1 ? 1 : i + c = e + b = 0 + m = 0 + while (1) { + g = F[c >> 2] + if (g >>> 0 >= d >>> 0) { + break b + } + j = F[(F[(a + 72) >> 2] + 12) >> 2] + h = F[(j + (f << 2)) >> 2] + if (h >>> 0 >= d >>> 0) { + break b + } + f = F[n >> 2] + F[(f + (g << 2)) >> 2] = h + g = (k + (l << 2)) | 0 + h = F[(g + 4) >> 2] + if ((h | 0) == -1) { + break b + } + l = F[(c + 4) >> 2] + if (l >>> 0 >= d >>> 0) { + break b + } + h = F[((h << 2) + j) >> 2] + if (h >>> 0 >= d >>> 0) { + break b + } + F[(f + (l << 2)) >> 2] = h + g = F[(g + 8) >> 2] + if ((g | 0) == -1) { + break b + } + c = F[(c + 8) >> 2] + if (c >>> 0 >= d >>> 0) { + break b + } + j = F[((g << 2) + j) >> 2] + if (j >>> 0 >= d >>> 0) { + break b + } + F[(f + (c << 2)) >> 2] = j + b = (b + 1) | 0 + m = i >>> 0 <= b >>> 0 + if ((b | 0) == (o | 0)) { + break b + } + c = (e + L(b, 12)) | 0 + l = L(b, 3) + f = F[(k + (l << 2)) >> 2] + if ((f | 0) != -1) { + continue + } + break + } + } + return m | 0 + } + function ag(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + h = F[(d + 80) >> 2] + e = (Z - 48) | 0 + Z = e + a = F[(a + 4) >> 2] + m = (a - 2) | 0 + a: { + if (m >>> 0 > 28) { + break a + } + j = (F[F[d >> 2] >> 2] + F[(d + 48) >> 2]) | 0 + F[(e + 16) >> 2] = a + a = -1 << a + F[(e + 20) >> 2] = a ^ -1 + a = (-2 - a) | 0 + F[(e + 24) >> 2] = a + F[(e + 32) >> 2] = (a | 0) / 2 + J[(e + 28) >> 2] = M(2) / M(a | 0) + f = F[c >> 2] + if ((f | 0) != F[(c + 4) >> 2]) { + a = 0 + d = 0 + while (1) { + g = F[((d << 2) + f) >> 2] + h = (e + 36) | 0 + k = F[F[b >> 2] >> 2] + l = F[(b + 48) >> 2] + f = F[(b + 40) >> 2] + i = F[(b + 44) >> 2] + if (!G[(b + 84) | 0]) { + g = F[(F[(b + 68) >> 2] + (g << 2)) >> 2] + } + g = ki(f, i, g, 0) + i = g + g = (g + l) | 0 + la(h, (g + k) | 0, f) + Kc((e + 16) | 0, h, (e + 12) | 0, (e + 8) | 0) + f = a << 2 + F[(f + j) >> 2] = F[(e + 12) >> 2] + F[((f | 4) + j) >> 2] = F[(e + 8) >> 2] + a = (a + 2) | 0 + d = (d + 1) | 0 + f = F[c >> 2] + if (d >>> 0 < ((F[(c + 4) >> 2] - f) >> 2) >>> 0) { + continue + } + break + } + break a + } + if (!h) { + break a + } + d = 0 + a = 0 + while (1) { + k = (e + 36) | 0 + l = F[F[b >> 2] >> 2] + i = F[(b + 48) >> 2] + c = F[(b + 40) >> 2] + f = ki( + c, + F[(b + 44) >> 2], + G[(b + 84) | 0] + ? a + : F[(F[(b + 68) >> 2] + (a << 2)) >> 2], + 0, + ) + g = f + f = (f + i) | 0 + la(k, (f + l) | 0, c) + Kc((e + 16) | 0, k, (e + 12) | 0, (e + 8) | 0) + c = d << 2 + F[(c + j) >> 2] = F[(e + 12) >> 2] + F[((c | 4) + j) >> 2] = F[(e + 8) >> 2] + d = (d + 2) | 0 + a = (a + 1) | 0 + if ((h | 0) != (a | 0)) { + continue + } + break + } + } + Z = (e + 48) | 0 + return (m >>> 0 < 29) | 0 + } + function Zg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + c = F[(a + 12) >> 2] + d = F[(a + 108) >> 2] + e = F[(d + 80) >> 2] + D[(b + 84) | 0] = 0 + m = (b + 68) | 0 + h = F[(b + 68) >> 2] + f = (F[(b + 72) >> 2] - h) >> 2 + a: { + if (f >>> 0 < e >>> 0) { + ab(m, (e - f) | 0, 9124) + d = F[(a + 108) >> 2] + e = F[(d + 80) >> 2] + break a + } + if (e >>> 0 >= f >>> 0) { + break a + } + F[(b + 72) >> 2] = h + (e << 2) + } + b = F[(d + 100) >> 2] + f = F[(d + 96) >> 2] + h = (((b - f) | 0) / 12) | 0 + k = 1 + b: { + if ((b | 0) == (f | 0)) { + break b + } + n = h >>> 0 <= 1 ? 1 : h + o = F[c >> 2] + c = 0 + d = f + b = 0 + k = 0 + while (1) { + c = ((c << 2) + o) | 0 + i = F[c >> 2] + if ((i | 0) == -1) { + break b + } + g = F[d >> 2] + if (g >>> 0 >= e >>> 0) { + break b + } + l = F[(F[(a + 112) >> 2] + 12) >> 2] + j = F[(l + (i << 2)) >> 2] + if (j >>> 0 >= e >>> 0) { + break b + } + i = F[m >> 2] + F[(i + (g << 2)) >> 2] = j + g = F[(c + 4) >> 2] + if ((g | 0) == -1) { + break b + } + j = F[(d + 4) >> 2] + if (j >>> 0 >= e >>> 0) { + break b + } + g = F[((g << 2) + l) >> 2] + if (g >>> 0 >= e >>> 0) { + break b + } + F[(i + (j << 2)) >> 2] = g + c = F[(c + 8) >> 2] + if ((c | 0) == -1) { + break b + } + d = F[(d + 8) >> 2] + if (d >>> 0 >= e >>> 0) { + break b + } + c = F[((c << 2) + l) >> 2] + if (c >>> 0 >= e >>> 0) { + break b + } + F[(i + (d << 2)) >> 2] = c + b = (b + 1) | 0 + k = h >>> 0 <= b >>> 0 + if ((b | 0) == (n | 0)) { + break b + } + c = L(b, 3) + d = (f + L(b, 12)) | 0 + if ((b | 0) != 1431655765) { + continue + } + break + } + } + return k | 0 + } + function xd(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = M(0), + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0 + k = (Z - 16) | 0 + Z = k + if (F[(c + 28) >> 2] == 9) { + d = F[(a + 4) >> 2] + h = G[(c + 24) | 0] + e = h << 2 + f = ka(e) + l = (k + 8) | 0 + F[l >> 2] = 1065353216 + i = J[(a + 20) >> 2] + d = (-1 << d) ^ -1 + if ((d | 0) > 0) { + J[l >> 2] = i / M(d | 0) + } + o = (d | 0) > 0 + a: { + if (!o) { + break a + } + j = F[(c + 80) >> 2] + if (!j) { + break a + } + if (h) { + p = (F[F[b >> 2] >> 2] + F[(b + 48) >> 2]) | 0 + t = h & 254 + u = h & 1 + b = 0 + while (1) { + m = F[(a + 8) >> 2] + i = J[l >> 2] + d = 0 + n = 0 + if ((h | 0) != 1) { + while (1) { + g = d << 2 + q = ((b << 2) + p) | 0 + J[(g + f) >> 2] = + M(i * M(F[q >> 2])) + J[(g + m) >> 2] + g = g | 4 + J[(g + f) >> 2] = + M(i * M(F[(q + 4) >> 2])) + J[(g + m) >> 2] + d = (d + 2) | 0 + b = (b + 2) | 0 + n = (n + 2) | 0 + if ((t | 0) != (n | 0)) { + continue + } + break + } + } + if (u) { + d = d << 2 + J[(d + f) >> 2] = + M(i * M(F[((b << 2) + p) >> 2])) + J[(d + m) >> 2] + b = (b + 1) | 0 + } + la((F[F[(c + 64) >> 2] >> 2] + r) | 0, f, e) + r = (e + r) | 0 + s = (s + 1) | 0 + if ((s | 0) != (j | 0)) { + continue + } + break + } + break a + } + b = 0 + if ((j | 0) != 1) { + a = j & -2 + d = 0 + while (1) { + la((F[F[(c + 64) >> 2] >> 2] + b) | 0, f, e) + b = (b + e) | 0 + la((b + F[F[(c + 64) >> 2] >> 2]) | 0, f, e) + b = (b + e) | 0 + d = (d + 2) | 0 + if ((a | 0) != (d | 0)) { + continue + } + break + } + } + if (!(j & 1)) { + break a + } + la((F[F[(c + 64) >> 2] >> 2] + b) | 0, f, e) + } + ja(f) + } + Z = (k + 16) | 0 + return o | 0 + } + function Rg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + c = F[(a + 12) >> 2] + d = F[(a + 68) >> 2] + e = F[(d + 80) >> 2] + D[(b + 84) | 0] = 0 + m = (b + 68) | 0 + h = F[(b + 68) >> 2] + f = (F[(b + 72) >> 2] - h) >> 2 + a: { + if (f >>> 0 < e >>> 0) { + ab(m, (e - f) | 0, 9124) + d = F[(a + 68) >> 2] + e = F[(d + 80) >> 2] + break a + } + if (e >>> 0 >= f >>> 0) { + break a + } + F[(b + 72) >> 2] = h + (e << 2) + } + b = F[(d + 100) >> 2] + f = F[(d + 96) >> 2] + h = (((b - f) | 0) / 12) | 0 + k = 1 + b: { + if ((b | 0) == (f | 0)) { + break b + } + n = h >>> 0 <= 1 ? 1 : h + o = F[c >> 2] + c = 0 + d = f + b = 0 + k = 0 + while (1) { + c = ((c << 2) + o) | 0 + i = F[c >> 2] + if ((i | 0) == -1) { + break b + } + g = F[d >> 2] + if (g >>> 0 >= e >>> 0) { + break b + } + l = F[(F[(a + 72) >> 2] + 12) >> 2] + j = F[(l + (i << 2)) >> 2] + if (j >>> 0 >= e >>> 0) { + break b + } + i = F[m >> 2] + F[(i + (g << 2)) >> 2] = j + g = F[(c + 4) >> 2] + if ((g | 0) == -1) { + break b + } + j = F[(d + 4) >> 2] + if (j >>> 0 >= e >>> 0) { + break b + } + g = F[((g << 2) + l) >> 2] + if (g >>> 0 >= e >>> 0) { + break b + } + F[(i + (j << 2)) >> 2] = g + c = F[(c + 8) >> 2] + if ((c | 0) == -1) { + break b + } + d = F[(d + 8) >> 2] + if (d >>> 0 >= e >>> 0) { + break b + } + c = F[((c << 2) + l) >> 2] + if (c >>> 0 >= e >>> 0) { + break b + } + F[(i + (d << 2)) >> 2] = c + b = (b + 1) | 0 + k = h >>> 0 <= b >>> 0 + if ((b | 0) == (n | 0)) { + break b + } + c = L(b, 3) + d = (f + L(b, 12)) | 0 + if ((b | 0) != 1431655765) { + continue + } + break + } + } + return k | 0 + } + function Na(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + d = (Z - 16) | 0 + Z = d + a: { + f = F[(a + 4) >> 2] + b: { + if (f >>> 0 < b >>> 0) { + e = (b - f) | 0 + c = F[(a + 8) >> 2] + g = c << 5 + c: { + if ( + !((e >>> 0 > g >>> 0) | (f >>> 0 > (g - e) >>> 0)) + ) { + F[(a + 4) >> 2] = b + h = f & 31 + b = (F[a >> 2] + ((f >>> 3) & 536870908)) | 0 + break c + } + F[(d + 8) >> 2] = 0 + F[d >> 2] = 0 + F[(d + 4) >> 2] = 0 + if ((b | 0) < 0) { + break a + } + if (g >>> 0 <= 1073741822) { + c = c << 6 + b = (b + 31) & -32 + b = b >>> 0 < c >>> 0 ? c : b + } else { + b = 2147483647 + } + $a(d, b) + f = F[(a + 4) >> 2] + F[(d + 4) >> 2] = f + e + i = F[a >> 2] + b = F[d >> 2] + d: { + if ((f | 0) <= 0) { + break d + } + c = (f >>> 5) | 0 + if (f >>> 0 >= 32) { + pa(b, i, c << 2) + } + g = c << 2 + b = (g + b) | 0 + h = f & 31 + if (h) { + c = (-1 >>> (32 - h)) | 0 + F[b >> 2] = + (F[b >> 2] & (c ^ -1)) | (F[(i + g) >> 2] & c) + } + i = F[a >> 2] + } + F[a >> 2] = F[d >> 2] + F[d >> 2] = i + c = F[(a + 4) >> 2] + F[(a + 4) >> 2] = F[(d + 4) >> 2] + F[(d + 4) >> 2] = c + c = F[(a + 8) >> 2] + F[(a + 8) >> 2] = F[(d + 8) >> 2] + F[(d + 8) >> 2] = c + if (!i) { + break c + } + ja(i) + } + if (!e) { + break b + } + if (h) { + c = (32 - h) | 0 + a = c >>> 0 < e >>> 0 ? c : e + F[b >> 2] = + F[b >> 2] & (((-1 << h) & (-1 >>> (c - a))) ^ -1) + e = (e - a) | 0 + b = (b + 4) | 0 + } + a = (e >>> 5) | 0 + if (e >>> 0 >= 32) { + ma(b, 0, a << 2) + } + if ((e & -32) == (e | 0)) { + break b + } + a = ((a << 2) + b) | 0 + F[a >> 2] = F[a >> 2] & ((-1 >>> (32 - (e & 31))) ^ -1) + break b + } + F[(a + 4) >> 2] = b + } + Z = (d + 16) | 0 + return + } + na() + v() + } + function Aa(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + i = (Z - 16) | 0 + Z = i + f = F[(b + 20) >> 2] + h = F[(b + 12) >> 2] + c = F[(b + 16) >> 2] + a: { + if ( + (((f | 0) >= (h | 0)) & (c >>> 0 >= I[(b + 8) >> 2])) | + ((f | 0) > (h | 0)) + ) { + break a + } + D[(a + 12) | 0] = G[(c + F[b >> 2]) | 0] + c = F[(b + 20) >> 2] + f = (F[(b + 16) >> 2] + 1) | 0 + c = f ? c : (c + 1) | 0 + F[(b + 16) >> 2] = f + F[(b + 20) >> 2] = c + if (!Qd(1, (i + 12) | 0, b)) { + break a + } + h = F[(b + 8) >> 2] + f = F[(b + 16) >> 2] + g = (h - f) | 0 + c = F[(i + 12) >> 2] + d = f >>> 0 > h >>> 0 + h = F[(b + 20) >> 2] + e = (F[(b + 12) >> 2] - ((d + h) | 0)) | 0 + if ( + ((g >>> 0 < c >>> 0) & ((e | 0) <= 0)) | + ((e | 0) < 0) | + ((c | 0) <= 0) + ) { + break a + } + g = (f + F[b >> 2]) | 0 + F[a >> 2] = g + b: { + c: { + e = (c - 1) | 0 + j = (e + g) | 0 + d = G[j | 0] + d: { + if (d >>> 0 <= 63) { + F[(a + 4) >> 2] = e + d = G[j | 0] & 63 + break d + } + e: { + switch ((((d >>> 6) | 0) - 1) | 0) { + case 1: + break c + case 0: + break e + default: + break a + } + } + if (c >>> 0 < 2) { + break a + } + e = (c - 2) | 0 + F[(a + 4) >> 2] = e + g = (g + e) | 0 + d = ((G[(g + 1) | 0] << 8) & 16128) | G[g | 0] + } + F[(a + 8) >> 2] = d + 4096 + break b + } + if (c >>> 0 < 3) { + break a + } + e = (c - 3) | 0 + F[(a + 4) >> 2] = e + d = a + a = (g + e) | 0 + a = + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) & 4128768) | + G[a | 0] + F[(d + 8) >> 2] = a + 4096 + if (a >>> 0 > 1044479) { + break a + } + } + a = h + d = c + c = (c + f) | 0 + a = d >>> 0 > c >>> 0 ? (a + 1) | 0 : a + F[(b + 16) >> 2] = c + F[(b + 20) >> 2] = a + k = 1 + } + Z = (i + 16) | 0 + return k + } + function qd(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + e = F[(a + 12) >> 2] + i = F[(a + 8) >> 2] + d = (e - i) >> 2 + b = G[(b + 24) | 0] + a: { + if (d >>> 0 < b >>> 0) { + qa((a + 8) | 0, (b - d) | 0) + i = F[(a + 8) >> 2] + e = F[(a + 12) >> 2] + break a + } + if (b >>> 0 >= d >>> 0) { + break a + } + e = ((b << 2) + i) | 0 + F[(a + 12) >> 2] = e + } + b = 0 + f = F[(c + 8) >> 2] + h = F[(c + 12) >> 2] + j = F[(c + 20) >> 2] + e = (e - i) | 0 + d = F[(c + 16) >> 2] + g = (e + d) | 0 + j = e >>> 0 > g >>> 0 ? (j + 1) | 0 : j + b: { + if ( + ((f >>> 0 < g >>> 0) & ((h | 0) <= (j | 0))) | + ((h | 0) < (j | 0)) + ) { + break b + } + la(i, (d + F[c >> 2]) | 0, e) + d = F[(c + 20) >> 2] + g = e + e = (e + F[(c + 16) >> 2]) | 0 + d = g >>> 0 > e >>> 0 ? (d + 1) | 0 : d + F[(c + 16) >> 2] = e + F[(c + 20) >> 2] = d + f = F[(c + 8) >> 2] + h = F[(c + 12) >> 2] + g = (e + 4) | 0 + d = g >>> 0 < 4 ? (d + 1) | 0 : d + if ( + ((f >>> 0 < g >>> 0) & ((d | 0) >= (h | 0))) | + ((d | 0) > (h | 0)) + ) { + break b + } + d = (e + F[c >> 2]) | 0 + F[(a + 20) >> 2] = + G[d | 0] | + (G[(d + 1) | 0] << 8) | + ((G[(d + 2) | 0] << 16) | (G[(d + 3) | 0] << 24)) + d = F[(c + 20) >> 2] + g = d + f = d + e = F[(c + 16) >> 2] + d = (e + 4) | 0 + f = d >>> 0 < 4 ? (f + 1) | 0 : f + F[(c + 16) >> 2] = d + F[(c + 20) >> 2] = f + h = F[(c + 12) >> 2] + if ( + (((f | 0) >= (h | 0)) & (d >>> 0 >= I[(c + 8) >> 2])) | + ((f | 0) > (h | 0)) + ) { + break b + } + f = G[(d + F[c >> 2]) | 0] + d = g + e = (e + 5) | 0 + d = e >>> 0 < 5 ? (d + 1) | 0 : d + F[(c + 16) >> 2] = e + F[(c + 20) >> 2] = d + if ((f - 1) >>> 0 > 29) { + break b + } + F[(a + 4) >> 2] = f + b = 1 + } + return b | 0 + } + function Kc(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + j = +J[b >> 2] + k = +J[(b + 4) >> 2] + l = +J[(b + 8) >> 2] + g = N(j) + N(k) + N(l) + a: { + if (!(g > 1e-6)) { + j = 1 + k = 0 + e = 0 + break a + } + g = 1 / g + k = g * k + j = g * j + e = g * l < 0 + } + h = F[(a + 16) >> 2] + l = +(h | 0) + g = R(j * l + 0.5) + b: { + if (N(g) < 2147483648) { + m = ~~g + break b + } + m = -2147483648 + } + f = m >> 31 + i = ((f ^ m) - f) | 0 + g = R(k * l + 0.5) + c: { + if (N(g) < 2147483648) { + f = ~~g + break c + } + f = -2147483648 + } + b = f >> 31 + b = (h - ((i + (((f ^ b) - b) | 0)) | 0)) | 0 + i = (b | 0) > 0 ? b : 0 + e = e ? (0 - i) | 0 : i + f = (f + ((b >> 31) & ((f | 0) > 0 ? b : (0 - b) | 0))) | 0 + d: { + if ((m | 0) >= 0) { + b = (e + h) | 0 + a = F[(a + 8) >> 2] + e = (h + f) | 0 + break d + } + b = f >> 31 + b = ((b ^ f) - b) | 0 + a = F[(a + 8) >> 2] + b = (e | 0) < 0 ? b : (a - b) | 0 + e = (f | 0) < 0 ? i : (a - i) | 0 + } + e: { + if (!(b | e)) { + b = a + break e + } + if (!(((a | 0) != (b | 0)) | e)) { + b = a + break e + } + if (!(((a | 0) != (e | 0)) | b)) { + b = a + break e + } + if (!(((b | 0) <= (h | 0)) | e)) { + b = ((h << 1) - b) | 0 + a = 0 + break e + } + if (!(((a | 0) != (e | 0)) | ((b | 0) >= (h | 0)))) { + b = ((h << 1) - b) | 0 + break e + } + if (!(((a | 0) != (b | 0)) | ((e | 0) >= (h | 0)))) { + b = a + a = ((h << 1) - e) | 0 + break e + } + if (b) { + a = e + break e + } + b = 0 + if ((e | 0) <= (h | 0)) { + a = e + break e + } + a = ((h << 1) - e) | 0 + } + F[c >> 2] = a + F[d >> 2] = b + } + function ye(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + a: { + if (!$c(a, b)) { + break a + } + h = (a + 36) | 0 + g = $[F[(F[a >> 2] + 24) >> 2]](a) | 0 + e = F[(a + 40) >> 2] + d = F[(a + 36) >> 2] + c = (e - d) >> 2 + b: { + if (g >>> 0 > c >>> 0) { + Pb(h, (g - c) | 0) + break b + } + if (c >>> 0 <= g >>> 0) { + break b + } + d = (d + (g << 2)) | 0 + if ((d | 0) != (e | 0)) { + while (1) { + e = (e - 4) | 0 + c = F[e >> 2] + F[e >> 2] = 0 + if (c) { + $[F[(F[c >> 2] + 4) >> 2]](c) + } + if ((d | 0) != (e | 0)) { + continue + } + break + } + } + F[(a + 40) >> 2] = d + } + c = 1 + if ((g | 0) <= 0) { + break a + } + e = 0 + while (1) { + c: { + c = F[(b + 20) >> 2] + f = F[(b + 12) >> 2] + d = F[(b + 16) >> 2] + if ( + (((c | 0) >= (f | 0)) & (d >>> 0 >= I[(b + 8) >> 2])) | + ((c | 0) > (f | 0)) + ) { + break c + } + f = G[(F[b >> 2] + d) | 0] + d = (d + 1) | 0 + c = d ? c : (c + 1) | 0 + F[(b + 16) >> 2] = d + F[(b + 20) >> 2] = c + d = $[F[(F[a >> 2] + 48) >> 2]](a, f) | 0 + f = e << 2 + i = (f + F[(a + 36) >> 2]) | 0 + c = F[i >> 2] + F[i >> 2] = d + if (c) { + $[F[(F[c >> 2] + 4) >> 2]](c) + } + c = F[(F[h >> 2] + f) >> 2] + if (!c) { + break c + } + if ( + !((k = c), + (l = $[F[(F[a >> 2] + 28) >> 2]](a) | 0), + (m = $[F[(F[a >> 2] + 20) >> 2]](a, e) | 0), + (j = F[(F[c >> 2] + 8) >> 2]), + $[j](k | 0, l | 0, m | 0) | 0) + ) { + break c + } + c = 1 + e = (e + 1) | 0 + if ((g | 0) != (e | 0)) { + continue + } + break a + } + break + } + c = 0 + } + return c | 0 + } + function Xc(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + g = F[a >> 2] + c = (g + ((b >>> 3) & 536870908)) | 0 + F[c >> 2] = F[c >> 2] | (1 << b) + f = F[(a + 64) >> 2] + e = (b | 0) == -1 + d = -1 + a: { + if (e) { + break a + } + c = (b + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + d = -1 + if ((c | 0) == -1) { + break a + } + d = F[(F[f >> 2] + (c << 2)) >> 2] + } + c = F[(a + 12) >> 2] + h = (((d >>> 3) & 536870908) + c) | 0 + F[h >> 2] = F[h >> 2] | (1 << d) + b: { + c: { + if (!e) { + d: { + e: { + if ((b >>> 0) % 3 | 0) { + e = (b - 1) | 0 + break e + } + e = (b + 2) | 0 + d = -1 + if ((e | 0) == -1) { + break d + } + } + d = F[(F[f >> 2] + (e << 2)) >> 2] + } + e = (((d >>> 3) & 536870908) + c) | 0 + F[e >> 2] = F[e >> 2] | (1 << d) + d = -1 + b = F[(F[(f + 12) >> 2] + (b << 2)) >> 2] + if ((b | 0) == -1) { + break b + } + D[(a + 24) | 0] = 0 + a = (((b >>> 3) & 536870908) + g) | 0 + F[a >> 2] = F[a >> 2] | (1 << b) + a = (b + 1) | 0 + a = (a >>> 0) % 3 | 0 ? a : (b - 2) | 0 + if ((a | 0) != -1) { + d = F[(F[f >> 2] + (a << 2)) >> 2] + } + a = (c + ((d >>> 3) & 536870908)) | 0 + F[a >> 2] = F[a >> 2] | (1 << d) + f: { + g: { + if ((b >>> 0) % 3 | 0) { + b = (b - 1) | 0 + break g + } + b = (b + 2) | 0 + a = -1 + if ((b | 0) == -1) { + break f + } + } + a = F[(F[f >> 2] + (b << 2)) >> 2] + } + b = 1 << a + a = (c + ((a >>> 3) & 536870908)) | 0 + c = F[a >> 2] + break c + } + a = (c + 536870908) | 0 + b = F[(c + 536870908) >> 2] + c = -2147483648 + } + F[a >> 2] = b | c + } + } + function zc(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = M(0), + f = M(0), + g = M(0), + h = M(0), + i = M(0), + j = 0, + k = M(0), + l = M(0), + m = M(0), + n = M(0), + o = 0 + a: { + if ((F[(c + 28) >> 2] != 9) | (G[(c + 24) | 0] != 3)) { + break a + } + a = F[(a + 4) >> 2] + if ((a - 2) >>> 0 > 28) { + break a + } + o = 1 + j = F[(c + 80) >> 2] + if (!j) { + break a + } + k = M(M(2) / M(((1 << a) - 2) | 0)) + c = (F[F[c >> 2] >> 2] + F[(c + 48) >> 2]) | 0 + a = (F[F[b >> 2] >> 2] + F[(b + 48) >> 2]) | 0 + b = 0 + while (1) { + g = M(0) + l = M(0) + m = M(0) + e = M(M(M(F[a >> 2]) * k) + M(-1)) + f = M(M(M(F[(a + 4) >> 2]) * k) + M(-1)) + i = M(M(M(1) - M(N(e))) - M(N(f))) + h = M(Q(M(-i), M(0))) + n = M(-h) + f = M(f + (f < M(0) ? h : n)) + e = M(e + (e < M(0) ? h : n)) + h = M(M(f * f) + M(M(i * i) + M(e * e))) + if (!(+h < 1e-6)) { + g = M(M(1) / M(U(h))) + m = M(f * g) + l = M(e * g) + g = M(i * g) + } + a = (a + 8) | 0 + d = (w(m), y(2)) + D[(c + 8) | 0] = d + D[(c + 9) | 0] = d >>> 8 + D[(c + 10) | 0] = d >>> 16 + D[(c + 11) | 0] = d >>> 24 + d = (w(l), y(2)) + D[(c + 4) | 0] = d + D[(c + 5) | 0] = d >>> 8 + D[(c + 6) | 0] = d >>> 16 + D[(c + 7) | 0] = d >>> 24 + d = (w(g), y(2)) + D[c | 0] = d + D[(c + 1) | 0] = d >>> 8 + D[(c + 2) | 0] = d >>> 16 + D[(c + 3) | 0] = d >>> 24 + c = (c + 12) | 0 + b = (b + 1) | 0 + if ((j | 0) != (b | 0)) { + continue + } + break + } + } + return o | 0 + } + function Md(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + g = (Z - 16) | 0 + Z = g + a: { + if (!Sa(1, (g + 8) | 0, b)) { + break a + } + d = F[(b + 8) >> 2] + e = F[(b + 16) >> 2] + f = (d - e) | 0 + h = F[(g + 12) >> 2] + c = d >>> 0 < e >>> 0 + d = F[(b + 20) >> 2] + i = (F[(b + 12) >> 2] - ((c + d) | 0)) | 0 + c = F[(g + 8) >> 2] + if ( + (((h | 0) == (i | 0)) & (c >>> 0 > f >>> 0)) | + (h >>> 0 > i >>> 0) + ) { + break a + } + d = (d + h) | 0 + f = (c + e) | 0 + d = f >>> 0 < e >>> 0 ? (d + 1) | 0 : d + F[(b + 16) >> 2] = f + F[(b + 20) >> 2] = d + if ((c | 0) <= 0) { + break a + } + b = (F[b >> 2] + e) | 0 + F[(a + 40) >> 2] = b + e = (c - 1) | 0 + d = (b + e) | 0 + f = G[d | 0] + b: { + if (f >>> 0 <= 63) { + F[(a + 44) >> 2] = e + b = G[d | 0] & 63 + break b + } + c: { + switch ((((f >>> 6) | 0) - 1) | 0) { + case 0: + if (c >>> 0 < 2) { + break a + } + c = (c - 2) | 0 + F[(a + 44) >> 2] = c + b = (b + c) | 0 + b = ((G[(b + 1) | 0] << 8) & 16128) | G[b | 0] + break b + case 1: + if (c >>> 0 < 3) { + break a + } + c = (c - 3) | 0 + F[(a + 44) >> 2] = c + b = (b + c) | 0 + b = + (G[(b + 1) | 0] << 8) | + ((G[(b + 2) | 0] << 16) & 4128768) | + G[b | 0] + break b + default: + break c + } + } + c = (c - 4) | 0 + F[(a + 44) >> 2] = c + b = (b + c) | 0 + b = + (G[b | 0] | + (G[(b + 1) | 0] << 8) | + ((G[(b + 2) | 0] << 16) | (G[(b + 3) | 0] << 24))) & + 1073741823 + } + F[(a + 48) >> 2] = b + 16384 + j = b >>> 0 < 4177920 + } + Z = (g + 16) | 0 + return j + } + function Tf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0 + a: { + a = (Z - 32) | 0 + Z = a + e = ya(c) + if (e >>> 0 < 2147483632) { + b: { + c: { + if (e >>> 0 >= 11) { + g = ((e | 15) + 1) | 0 + f = ka(g) + F[(a + 24) >> 2] = g | -2147483648 + F[(a + 16) >> 2] = f + F[(a + 20) >> 2] = e + g = (e + f) | 0 + break c + } + D[(a + 27) | 0] = e + f = (a + 16) | 0 + g = (e + f) | 0 + if (!e) { + break b + } + } + la(f, c, e) + } + D[g | 0] = 0 + F[(a + 8) >> 2] = 0 + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + d: { + c = Ya(b, (a + 16) | 0) + if ((c | 0) == ((b + 4) | 0)) { + break d + } + b = F[(c + 28) >> 2] + e = F[(c + 32) >> 2] + if ((b | 0) == (e | 0)) { + break d + } + b = (e - b) | 0 + if (b & 3) { + break d + } + e = (b >>> 2) | 0 + f = F[(a + 4) >> 2] + b = F[a >> 2] + g = (f - b) >> 2 + e: { + if (e >>> 0 > g >>> 0) { + qa(a, (e - g) | 0) + b = F[a >> 2] + f = F[(a + 4) >> 2] + break e + } + if (e >>> 0 >= g >>> 0) { + break e + } + f = ((e << 2) + b) | 0 + F[(a + 4) >> 2] = f + } + if ((b | 0) != (f | 0)) { + e = b + b = F[(c + 28) >> 2] + la(e, b, (F[(c + 32) >> 2] - b) | 0) + break d + } + ta() + v() + } + b = F[d >> 2] + if (b) { + F[(d + 4) >> 2] = b + ja(b) + } + F[d >> 2] = F[a >> 2] + F[(d + 4) >> 2] = F[(a + 4) >> 2] + F[(d + 8) >> 2] = F[(a + 8) >> 2] + if (D[(a + 27) | 0] < 0) { + ja(F[(a + 16) >> 2]) + } + Z = (a + 32) | 0 + break a + } + za() + v() + } + } + function ud(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + F[a >> 2] = 8284 + d = F[(a + 368) >> 2] + F[(a + 368) >> 2] = 0 + if (d) { + e = (d - 4) | 0 + b = F[e >> 2] + if (b) { + c = ((b << 4) + d) | 0 + while (1) { + c = (c - 16) | 0 + if ((d | 0) != (c | 0)) { + continue + } + break + } + } + ja(e) + } + td((a + 216) | 0) + b = F[(a + 196) >> 2] + if (b) { + F[(a + 200) >> 2] = b + ja(b) + } + b = F[(a + 184) >> 2] + if (b) { + F[(a + 188) >> 2] = b + ja(b) + } + b = F[(a + 172) >> 2] + if (b) { + F[(a + 176) >> 2] = b + ja(b) + } + b = F[(a + 160) >> 2] + if (b) { + F[(a + 164) >> 2] = b + ja(b) + } + c = F[(a + 144) >> 2] + if (c) { + while (1) { + b = F[c >> 2] + ja(c) + c = b + if (b) { + continue + } + break + } + } + b = F[(a + 136) >> 2] + F[(a + 136) >> 2] = 0 + if (b) { + ja(b) + } + b = F[(a + 120) >> 2] + if (b) { + ja(b) + } + b = F[(a + 108) >> 2] + if (b) { + ja(b) + } + b = F[(a + 96) >> 2] + if (b) { + ja(b) + } + b = F[(a + 72) >> 2] + if (b) { + F[(a + 76) >> 2] = b + ja(b) + } + b = F[(a + 60) >> 2] + if (b) { + ja(b) + } + b = F[(a + 48) >> 2] + if (b) { + F[(a + 52) >> 2] = b + ja(b) + } + b = F[(a + 36) >> 2] + if (b) { + F[(a + 40) >> 2] = b + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + F[(a + 28) >> 2] = b + ja(b) + } + b = F[(a + 12) >> 2] + if (b) { + F[(a + 16) >> 2] = b + ja(b) + } + b = F[(a + 8) >> 2] + F[(a + 8) >> 2] = 0 + if (b) { + Za(b) + } + return a | 0 + } + function Vf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = (Z - 16) | 0 + Z = d + a: { + e = ya(c) + if (e >>> 0 < 2147483632) { + b: { + c: { + if (e >>> 0 >= 11) { + f = ((e | 15) + 1) | 0 + a = ka(f) + F[(d + 8) >> 2] = f | -2147483648 + F[d >> 2] = a + F[(d + 4) >> 2] = e + f = (a + e) | 0 + break c + } + D[(d + 11) | 0] = e + f = (d + e) | 0 + a = d + if (!e) { + break b + } + } + la(a, c, e) + } + D[f | 0] = 0 + c = G[(d + 11) | 0] + e = (c << 24) >> 24 + b = F[(b + 4) >> 2] + a = 0 + d: { + if (!b) { + break d + } + a = c + c = (e | 0) < 0 + a = c ? F[(d + 4) >> 2] : a + f = c ? F[d >> 2] : d + while (1) { + c = G[(b + 27) | 0] + g = (c << 24) >> 24 < 0 + c = g ? F[(b + 20) >> 2] : c + i = c >>> 0 < a >>> 0 + e: { + f: { + g: { + h: { + i: { + j: { + h = i ? c : a + if (h) { + g = g ? F[(b + 16) >> 2] : (b + 16) | 0 + j = sa(f, g, h) + if (j) { + break j + } + if (a >>> 0 >= c >>> 0) { + break i + } + break e + } + if (a >>> 0 >= c >>> 0) { + break h + } + break e + } + if ((j | 0) < 0) { + break e + } + } + c = sa(g, f, h) + if (c) { + break g + } + } + if (i) { + break f + } + a = 1 + break d + } + if ((c | 0) < 0) { + break f + } + a = 1 + break d + } + b = (b + 4) | 0 + } + b = F[b >> 2] + if (b) { + continue + } + break + } + a = 0 + } + if ((e | 0) < 0) { + ja(F[d >> 2]) + } + Z = (d + 16) | 0 + break a + } + za() + v() + } + return a | 0 + } + function lc(a, b) { + var c = 0, + d = 0 + c = F[(b + 8) >> 2] + F[(a + 4) >> 2] = F[(b + 4) >> 2] + F[(a + 8) >> 2] = c + F[(a + 20) >> 2] = F[(b + 20) >> 2] + c = F[(b + 16) >> 2] + F[(a + 12) >> 2] = F[(b + 12) >> 2] + F[(a + 16) >> 2] = c + a: { + b: { + if ((a | 0) != (b | 0)) { + c = F[(b + 28) >> 2] + if (c) { + d = F[(a + 24) >> 2] + if ((F[(a + 32) >> 2] << 5) >>> 0 < c >>> 0) { + if (d) { + ja(d) + F[(a + 32) >> 2] = 0 + F[(a + 24) >> 2] = 0 + F[(a + 28) >> 2] = 0 + c = F[(b + 28) >> 2] + } + if ((c | 0) < 0) { + break b + } + c = ((((c - 1) >>> 5) | 0) + 1) | 0 + d = ka(c << 2) + F[(a + 32) >> 2] = c + F[(a + 28) >> 2] = 0 + F[(a + 24) >> 2] = d + c = F[(b + 28) >> 2] + } + pa( + d, + F[(b + 24) >> 2], + ((((c - 1) >>> 3) & 536870908) + 4) | 0, + ) + c = F[(b + 28) >> 2] + } else { + c = 0 + } + F[(a + 28) >> 2] = c + c = F[(b + 40) >> 2] + if (c) { + d = F[(a + 36) >> 2] + if ((F[(a + 44) >> 2] << 5) >>> 0 < c >>> 0) { + if (d) { + ja(d) + F[(a + 44) >> 2] = 0 + F[(a + 36) >> 2] = 0 + F[(a + 40) >> 2] = 0 + c = F[(b + 40) >> 2] + } + if ((c | 0) < 0) { + break a + } + c = ((((c - 1) >>> 5) | 0) + 1) | 0 + d = ka(c << 2) + F[(a + 44) >> 2] = c + F[(a + 40) >> 2] = 0 + F[(a + 36) >> 2] = d + c = F[(b + 40) >> 2] + } + pa( + d, + F[(b + 36) >> 2], + ((((c - 1) >>> 3) & 536870908) + 4) | 0, + ) + b = F[(b + 40) >> 2] + } else { + b = 0 + } + F[(a + 40) >> 2] = b + } + return + } + na() + v() + } + na() + v() + } + function nc(a) { + var b = 0, + c = 0, + d = 0 + b = F[(a + 8) >> 2] + d = F[a >> 2] + a: { + if (G[(a + 12) | 0]) { + b: { + c: { + d: { + e: { + if ((b | 0) == -1) { + break e + } + c = (b + 1) | 0 + b = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + if ((b | 0) == -1) { + break e + } + b = F[(F[(d + 12) >> 2] + (b << 2)) >> 2] + if ((b | 0) != -1) { + break d + } + } + F[(a + 8) >> 2] = -1 + break c + } + c = (b + 1) | 0 + b = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + F[(a + 8) >> 2] = b + if ((b | 0) != -1) { + break b + } + } + c = F[(a + 4) >> 2] + b = -1 + f: { + if ((c | 0) == -1) { + break f + } + g: { + if ((c >>> 0) % 3 | 0) { + c = (c - 1) | 0 + break g + } + c = (c + 2) | 0 + b = -1 + if ((c | 0) == -1) { + break f + } + } + c = F[(F[(d + 12) >> 2] + (c << 2)) >> 2] + b = -1 + if ((c | 0) == -1) { + break f + } + b = (c - 1) | 0 + if ((c >>> 0) % 3 | 0) { + break f + } + b = (c + 2) | 0 + } + D[(a + 12) | 0] = 0 + F[(a + 8) >> 2] = b + return + } + if ((b | 0) != F[(a + 4) >> 2]) { + break a + } + F[(a + 8) >> 2] = -1 + return + } + c = -1 + h: { + if ((b | 0) == -1) { + break h + } + i: { + if ((b >>> 0) % 3 | 0) { + b = (b - 1) | 0 + break i + } + b = (b + 2) | 0 + c = -1 + if ((b | 0) == -1) { + break h + } + } + b = F[(F[(d + 12) >> 2] + (b << 2)) >> 2] + c = -1 + if ((b | 0) == -1) { + break h + } + c = (b - 1) | 0 + if ((b >>> 0) % 3 | 0) { + break h + } + c = (b + 2) | 0 + } + F[(a + 8) >> 2] = c + } + } + function Od(a) { + var b = 0, + c = 0, + d = 0 + b = ka(32) + D[(b + 26) | 0] = 0 + c = G[1475] | (G[1476] << 8) + D[(b + 24) | 0] = c + D[(b + 25) | 0] = c >>> 8 + c = + G[1471] | (G[1472] << 8) | ((G[1473] << 16) | (G[1474] << 24)) + d = + G[1467] | (G[1468] << 8) | ((G[1469] << 16) | (G[1470] << 24)) + D[(b + 16) | 0] = d + D[(b + 17) | 0] = d >>> 8 + D[(b + 18) | 0] = d >>> 16 + D[(b + 19) | 0] = d >>> 24 + D[(b + 20) | 0] = c + D[(b + 21) | 0] = c >>> 8 + D[(b + 22) | 0] = c >>> 16 + D[(b + 23) | 0] = c >>> 24 + c = + G[1463] | (G[1464] << 8) | ((G[1465] << 16) | (G[1466] << 24)) + d = + G[1459] | (G[1460] << 8) | ((G[1461] << 16) | (G[1462] << 24)) + D[(b + 8) | 0] = d + D[(b + 9) | 0] = d >>> 8 + D[(b + 10) | 0] = d >>> 16 + D[(b + 11) | 0] = d >>> 24 + D[(b + 12) | 0] = c + D[(b + 13) | 0] = c >>> 8 + D[(b + 14) | 0] = c >>> 16 + D[(b + 15) | 0] = c >>> 24 + c = + G[1455] | (G[1456] << 8) | ((G[1457] << 16) | (G[1458] << 24)) + d = + G[1451] | (G[1452] << 8) | ((G[1453] << 16) | (G[1454] << 24)) + D[b | 0] = d + D[(b + 1) | 0] = d >>> 8 + D[(b + 2) | 0] = d >>> 16 + D[(b + 3) | 0] = d >>> 24 + D[(b + 4) | 0] = c + D[(b + 5) | 0] = c >>> 8 + D[(b + 6) | 0] = c >>> 16 + D[(b + 7) | 0] = c >>> 24 + F[a >> 2] = -1 + ra((a + 4) | 0, b, 26) + ja(b) + } + function Kg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + e = F[(a + 4) >> 2] + d = F[e >> 2] + a: { + b = F[(a + 12) >> 2] + c = (F[(b + 56) >> 2] - F[(b + 52) >> 2]) | 0 + f = c >> 2 + b: { + if (f >>> 0 <= ((F[(e + 8) >> 2] - d) >> 2) >>> 0) { + break b + } + if ((c | 0) < 0) { + break a + } + b = F[(e + 4) >> 2] + c = ka(c) + f = (c + (f << 2)) | 0 + g = (c + ((b - d) & -4)) | 0 + c = g + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + F[c >> 2] = F[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + F[(e + 8) >> 2] = f + F[(e + 4) >> 2] = g + F[e >> 2] = c + if (!d) { + break b + } + ja(d) + } + e = (a + 8) | 0 + b = F[(a + 76) >> 2] + c: { + if (b) { + d = F[b >> 2] + if ((d | 0) == F[(b + 4) >> 2]) { + return 1 + } + b = 0 + while (1) { + c = od(e, F[((b << 2) + d) >> 2]) + if (!c) { + break c + } + f = F[(a + 76) >> 2] + d = F[f >> 2] + b = (b + 1) | 0 + if (b >>> 0 < ((F[(f + 4) >> 2] - d) >> 2) >>> 0) { + continue + } + break + } + break c + } + c = 1 + a = F[(F[(a + 12) >> 2] + 64) >> 2] + a = (F[(a + 4) >> 2] - F[a >> 2]) | 0 + if (a >>> 0 < 12) { + break c + } + a = (((a >> 2) >>> 0) / 3) | 0 + b = 0 + while (1) { + c = od(e, L(b, 3)) + if (!c) { + break c + } + b = (b + 1) | 0 + if ((a | 0) != (b | 0)) { + continue + } + break + } + } + return c | 0 + } + na() + v() + } + function Qg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + e = F[(a + 4) >> 2] + d = F[e >> 2] + a: { + b = F[(a + 12) >> 2] + c = (F[(b + 28) >> 2] - F[(b + 24) >> 2]) | 0 + f = c >> 2 + b: { + if (f >>> 0 <= ((F[(e + 8) >> 2] - d) >> 2) >>> 0) { + break b + } + if ((c | 0) < 0) { + break a + } + b = F[(e + 4) >> 2] + c = ka(c) + f = (c + (f << 2)) | 0 + g = (c + ((b - d) & -4)) | 0 + c = g + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + F[c >> 2] = F[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + F[(e + 8) >> 2] = f + F[(e + 4) >> 2] = g + F[e >> 2] = c + if (!d) { + break b + } + ja(d) + } + e = (a + 8) | 0 + b = F[(a + 76) >> 2] + c: { + if (b) { + d = F[b >> 2] + if ((d | 0) == F[(b + 4) >> 2]) { + return 1 + } + b = 0 + while (1) { + c = pd(e, F[((b << 2) + d) >> 2]) + if (!c) { + break c + } + f = F[(a + 76) >> 2] + d = F[f >> 2] + b = (b + 1) | 0 + if (b >>> 0 < ((F[(f + 4) >> 2] - d) >> 2) >>> 0) { + continue + } + break + } + break c + } + c = 1 + a = F[(a + 12) >> 2] + a = (F[(a + 4) >> 2] - F[a >> 2]) | 0 + if (a >>> 0 < 12) { + break c + } + a = (((a >> 2) >>> 0) / 3) | 0 + b = 0 + while (1) { + c = pd(e, L(b, 3)) + if (!c) { + break c + } + b = (b + 1) | 0 + if ((a | 0) != (b | 0)) { + continue + } + break + } + } + return c | 0 + } + na() + v() + } + function pa(a, b, c) { + var d = 0, + e = 0 + a: { + if ((a | 0) == (b | 0)) { + break a + } + e = (a + c) | 0 + if ((b - e) >>> 0 <= (0 - (c << 1)) >>> 0) { + return la(a, b, c) + } + d = (a ^ b) & 3 + b: { + c: { + if (a >>> 0 < b >>> 0) { + if (d) { + d = a + break b + } + if (!(a & 3)) { + d = a + break c + } + d = a + while (1) { + if (!c) { + break a + } + D[d | 0] = G[b | 0] + b = (b + 1) | 0 + c = (c - 1) | 0 + d = (d + 1) | 0 + if (d & 3) { + continue + } + break + } + break c + } + d: { + if (d) { + break d + } + if (e & 3) { + while (1) { + if (!c) { + break a + } + c = (c - 1) | 0 + d = (c + a) | 0 + D[d | 0] = G[(b + c) | 0] + if (d & 3) { + continue + } + break + } + } + if (c >>> 0 <= 3) { + break d + } + while (1) { + c = (c - 4) | 0 + F[(c + a) >> 2] = F[(b + c) >> 2] + if (c >>> 0 > 3) { + continue + } + break + } + } + if (!c) { + break a + } + while (1) { + c = (c - 1) | 0 + D[(c + a) | 0] = G[(b + c) | 0] + if (c) { + continue + } + break + } + break a + } + if (c >>> 0 <= 3) { + break b + } + while (1) { + F[d >> 2] = F[b >> 2] + b = (b + 4) | 0 + d = (d + 4) | 0 + c = (c - 4) | 0 + if (c >>> 0 > 3) { + continue + } + break + } + } + if (!c) { + break a + } + while (1) { + D[d | 0] = G[b | 0] + d = (d + 1) | 0 + b = (b + 1) | 0 + c = (c - 1) | 0 + if (c) { + continue + } + break + } + } + return a + } + function Pb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + d = F[(a + 8) >> 2] + c = F[(a + 4) >> 2] + if (((d - c) >> 2) >>> 0 >= b >>> 0) { + if (b) { + b = b << 2 + c = (ma(c, 0, b) + b) | 0 + } + F[(a + 4) >> 2] = c + return + } + a: { + b: { + c: { + g = F[a >> 2] + f = (c - g) >> 2 + e = (f + b) | 0 + if (e >>> 0 < 1073741824) { + d = (d - g) | 0 + h = (d >>> 1) | 0 + e = + d >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 < h >>> 0 + ? h + : e + if (e) { + if (e >>> 0 >= 1073741824) { + break c + } + i = ka(e << 2) + } + d = ((f << 2) + i) | 0 + f = b << 2 + b = ma(d, 0, f) + f = (b + f) | 0 + e = ((e << 2) + i) | 0 + if ((c | 0) == (g | 0)) { + break b + } + while (1) { + c = (c - 4) | 0 + b = F[c >> 2] + F[c >> 2] = 0 + d = (d - 4) | 0 + F[d >> 2] = b + if ((c | 0) != (g | 0)) { + continue + } + break + } + F[(a + 8) >> 2] = e + b = F[(a + 4) >> 2] + F[(a + 4) >> 2] = f + c = F[a >> 2] + F[a >> 2] = d + if ((b | 0) == (c | 0)) { + break a + } + while (1) { + b = (b - 4) | 0 + a = F[b >> 2] + F[b >> 2] = 0 + if (a) { + $[F[(F[a >> 2] + 4) >> 2]](a) + } + if ((b | 0) != (c | 0)) { + continue + } + break + } + break a + } + na() + v() + } + oa() + v() + } + F[(a + 8) >> 2] = e + F[(a + 4) >> 2] = f + F[a >> 2] = b + } + if (c) { + ja(c) + } + } + function Yd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + e = F[(b + 8) >> 2] + d = F[(b + 12) >> 2] + g = d + d = F[(b + 20) >> 2] + k = d + h = F[(b + 16) >> 2] + c = (h + 4) | 0 + d = c >>> 0 < 4 ? (d + 1) | 0 : d + i = c + a: { + if ( + ((c >>> 0 > e >>> 0) & ((d | 0) >= (g | 0))) | + ((d | 0) > (g | 0)) + ) { + break a + } + j = F[b >> 2] + c = (j + h) | 0 + f = + G[c | 0] | + (G[(c + 1) | 0] << 8) | + ((G[(c + 2) | 0] << 16) | (G[(c + 3) | 0] << 24)) + F[(b + 16) >> 2] = i + F[(b + 20) >> 2] = d + c = e + e = k + d = (h + 8) | 0 + e = d >>> 0 < 8 ? (e + 1) | 0 : e + if ( + ((c >>> 0 < d >>> 0) & ((e | 0) >= (g | 0))) | + ((e | 0) > (g | 0)) + ) { + break a + } + c = (i + j) | 0 + c = + G[c | 0] | + (G[(c + 1) | 0] << 8) | + ((G[(c + 2) | 0] << 16) | (G[(c + 3) | 0] << 24)) + F[(b + 16) >> 2] = d + F[(b + 20) >> 2] = e + if ((c | 0) < (f | 0)) { + break a + } + F[(a + 16) >> 2] = c + F[(a + 12) >> 2] = f + d = ((c >> 31) - (((f >> 31) + (c >>> 0 < f >>> 0)) | 0)) | 0 + e = (c - f) | 0 + if ((!d & (e >>> 0 > 2147483646)) | d) { + break a + } + d = (e + 1) | 0 + F[(a + 20) >> 2] = d + e = (d >>> 1) | 0 + F[(a + 24) >> 2] = e + F[(a + 28) >> 2] = 0 - e + if (!(d & 1)) { + F[(a + 24) >> 2] = e - 1 + } + l = Aa((a + 112) | 0, b) + } + return l | 0 + } + function Wc(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0 + d = -1 + e = -1 + f = -1 + a: { + b: { + if ((b | 0) == -1) { + break b + } + e = F[(F[(F[(a + 4) >> 2] + 12) >> 2] + (b << 2)) >> 2] + c = (b + 1) | 0 + c = (c >>> 0) % 3 | 0 ? c : (b - 2) | 0 + if ((c | 0) >= 0) { + f = ((c >>> 0) / 3) | 0 + f = + F[ + (((F[(F[a >> 2] + 96) >> 2] + L(f, 12)) | 0) + + ((c - L(f, 3)) << 2)) >> + 2 + ] + } + c: { + if ((e | 0) == -1) { + break c + } + c = (((e >>> 0) % 3 | 0 ? -1 : 2) + e) | 0 + if ((c | 0) < 0) { + break c + } + d = ((c >>> 0) / 3) | 0 + d = + F[ + (((F[(F[a >> 2] + 96) >> 2] + L(d, 12)) | 0) + + ((c - L(d, 3)) << 2)) >> + 2 + ] + } + c = -1 + if ((d | 0) != (f | 0)) { + break a + } + f = -1 + d: { + b = (((b >>> 0) % 3 | 0 ? -1 : 2) + b) | 0 + if ((b | 0) >= 0) { + d = ((b >>> 0) / 3) | 0 + d = + F[ + (((F[(F[a >> 2] + 96) >> 2] + L(d, 12)) | 0) + + ((b - L(d, 3)) << 2)) >> + 2 + ] + if ((e | 0) == -1) { + break b + } + break d + } + d = -1 + if ((e | 0) != -1) { + break d + } + break b + } + b = (e + 1) | 0 + b = (b >>> 0) % 3 | 0 ? b : (e - 2) | 0 + if ((b | 0) < 0) { + break b + } + c = F[(F[a >> 2] + 96) >> 2] + a = ((b >>> 0) / 3) | 0 + f = F[(((c + L(a, 12)) | 0) + ((b - L(a, 3)) << 2)) >> 2] + } + c = (d | 0) != (f | 0) ? -1 : e + } + return c + } + function Fc(a, b) { + var c = 0, + d = 0, + e = 0 + c = (Z + -64) | 0 + Z = c + d = F[a >> 2] + e = F[(d - 4) >> 2] + d = F[(d - 8) >> 2] + F[(c + 32) >> 2] = 0 + F[(c + 36) >> 2] = 0 + F[(c + 40) >> 2] = 0 + F[(c + 44) >> 2] = 0 + F[(c + 48) >> 2] = 0 + F[(c + 52) >> 2] = 0 + D[(c + 55) | 0] = 0 + D[(c + 56) | 0] = 0 + D[(c + 57) | 0] = 0 + D[(c + 58) | 0] = 0 + D[(c + 59) | 0] = 0 + D[(c + 60) | 0] = 0 + D[(c + 61) | 0] = 0 + D[(c + 62) | 0] = 0 + F[(c + 24) >> 2] = 0 + F[(c + 28) >> 2] = 0 + F[(c + 20) >> 2] = 0 + F[(c + 16) >> 2] = 11020 + F[(c + 12) >> 2] = a + F[(c + 8) >> 2] = b + a = (a + d) | 0 + d = 0 + a: { + if (La(e, b, 0)) { + F[(c + 56) >> 2] = 1 + $[F[(F[e >> 2] + 20) >> 2]](e, (c + 8) | 0, a, a, 1, 0) + d = F[(c + 32) >> 2] == 1 ? a : 0 + break a + } + $[F[(F[e >> 2] + 24) >> 2]](e, (c + 8) | 0, a, 1, 0) + b: { + switch (F[(c + 44) >> 2]) { + case 0: + d = + F[(c + 48) >> 2] == 1 + ? F[(c + 36) >> 2] == 1 + ? F[(c + 40) >> 2] == 1 + ? F[(c + 28) >> 2] + : 0 + : 0 + : 0 + break a + case 1: + break b + default: + break a + } + } + if (F[(c + 32) >> 2] != 1) { + if ( + F[(c + 48) >> 2] | + (F[(c + 36) >> 2] != 1) | + (F[(c + 40) >> 2] != 1) + ) { + break a + } + } + d = F[(c + 24) >> 2] + } + Z = (c - -64) | 0 + return d + } + function ma(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (!c) { + break a + } + D[a | 0] = b + d = (a + c) | 0 + D[(d - 1) | 0] = b + if (c >>> 0 < 3) { + break a + } + D[(a + 2) | 0] = b + D[(a + 1) | 0] = b + D[(d - 3) | 0] = b + D[(d - 2) | 0] = b + if (c >>> 0 < 7) { + break a + } + D[(a + 3) | 0] = b + D[(d - 4) | 0] = b + if (c >>> 0 < 9) { + break a + } + d = (0 - a) & 3 + e = (d + a) | 0 + b = L(b & 255, 16843009) + F[e >> 2] = b + d = (c - d) & -4 + c = (d + e) | 0 + F[(c - 4) >> 2] = b + if (d >>> 0 < 9) { + break a + } + F[(e + 8) >> 2] = b + F[(e + 4) >> 2] = b + F[(c - 8) >> 2] = b + F[(c - 12) >> 2] = b + if (d >>> 0 < 25) { + break a + } + F[(e + 24) >> 2] = b + F[(e + 20) >> 2] = b + F[(e + 16) >> 2] = b + F[(e + 12) >> 2] = b + F[(c - 16) >> 2] = b + F[(c - 20) >> 2] = b + F[(c - 24) >> 2] = b + F[(c - 28) >> 2] = b + g = (e & 4) | 24 + c = (d - g) | 0 + if (c >>> 0 < 32) { + break a + } + d = ki(b, 0, 1, 1) + f = _ + b = (e + g) | 0 + while (1) { + F[(b + 24) >> 2] = d + F[(b + 28) >> 2] = f + F[(b + 16) >> 2] = d + F[(b + 20) >> 2] = f + F[(b + 8) >> 2] = d + F[(b + 12) >> 2] = f + F[b >> 2] = d + F[(b + 4) >> 2] = f + b = (b + 32) | 0 + c = (c - 32) | 0 + if (c >>> 0 > 31) { + continue + } + break + } + } + return a + } + function ie(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + d = F[(b + 8) >> 2] + e = F[(b + 12) >> 2] + g = e + e = F[(b + 20) >> 2] + k = e + h = F[(b + 16) >> 2] + c = (h + 4) | 0 + e = c >>> 0 < 4 ? (e + 1) | 0 : e + i = c + a: { + if ( + ((c >>> 0 > d >>> 0) & ((e | 0) >= (g | 0))) | + ((e | 0) > (g | 0)) + ) { + break a + } + j = F[b >> 2] + c = (j + h) | 0 + f = + G[c | 0] | + (G[(c + 1) | 0] << 8) | + ((G[(c + 2) | 0] << 16) | (G[(c + 3) | 0] << 24)) + F[(b + 16) >> 2] = i + F[(b + 20) >> 2] = e + c = d + d = k + e = (h + 8) | 0 + d = e >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((c >>> 0 < e >>> 0) & ((d | 0) >= (g | 0))) | + ((d | 0) > (g | 0)) + ) { + break a + } + c = (i + j) | 0 + c = + G[c | 0] | + (G[(c + 1) | 0] << 8) | + ((G[(c + 2) | 0] << 16) | (G[(c + 3) | 0] << 24)) + F[(b + 16) >> 2] = e + F[(b + 20) >> 2] = d + if ((c | 0) < (f | 0)) { + break a + } + F[(a + 16) >> 2] = c + F[(a + 12) >> 2] = f + d = ((c >> 31) - (((f >> 31) + (c >>> 0 < f >>> 0)) | 0)) | 0 + b = (c - f) | 0 + if ((!d & (b >>> 0 > 2147483646)) | d) { + break a + } + l = 1 + d = (b + 1) | 0 + F[(a + 20) >> 2] = d + b = (d >>> 1) | 0 + F[(a + 24) >> 2] = b + F[(a + 28) >> 2] = 0 - b + if (d & 1) { + break a + } + F[(a + 24) >> 2] = b - 1 + } + return l | 0 + } + function Uc(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + d = (Z - 16) | 0 + Z = d + f = F[(a + 24) >> 2] + k = F[(a + 28) >> 2] + a: { + if ((f | 0) != (k | 0)) { + while (1) { + F[(d + 8) >> 2] = 0 + F[d >> 2] = 0 + F[(d + 4) >> 2] = 0 + a = Sc(F[f >> 2], b, d) + g = G[(d + 11) | 0] + h = (g << 24) >> 24 + i = 3 + b: { + c: { + d: { + if (!a) { + break d + } + i = 0 + a = G[(c + 11) | 0] + e = (a << 24) >> 24 + j = (h | 0) < 0 ? F[(d + 4) >> 2] : g + if ( + (j | 0) != + (((e | 0) < 0 ? F[(c + 4) >> 2] : a) | 0) + ) { + break d + } + a = (e | 0) < 0 ? F[c >> 2] : c + e = (h | 0) < 0 + e: { + if (!e) { + e = d + if (!h) { + break e + } + while (1) { + if (G[e | 0] != G[a | 0]) { + break d + } + a = (a + 1) | 0 + e = (e + 1) | 0 + g = (g - 1) | 0 + if (g) { + continue + } + break + } + break e + } + if (!j) { + break e + } + if (sa(e ? F[d >> 2] : d, a, j)) { + break c + } + } + l = F[f >> 2] + i = 1 + } + if ((h | 0) >= 0) { + break b + } + } + ja(F[d >> 2]) + } + f: { + switch (i | 0) { + case 0: + case 3: + break f + default: + break a + } + } + f = (f + 4) | 0 + if ((k | 0) != (f | 0)) { + continue + } + break + } + } + l = 0 + } + Z = (d + 16) | 0 + return l + } + function gb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + f = (c - b) | 0 + h = f >> 2 + d = F[(a + 8) >> 2] + e = F[a >> 2] + if (h >>> 0 <= ((d - e) >> 2) >>> 0) { + d = F[(a + 4) >> 2] + g = (d - e) | 0 + f = (g + b) | 0 + i = g >> 2 + g = i >>> 0 < h >>> 0 ? f : c + if ((g | 0) != (b | 0)) { + while (1) { + F[e >> 2] = F[b >> 2] + e = (e + 4) | 0 + b = (b + 4) | 0 + if ((g | 0) != (b | 0)) { + continue + } + break + } + } + if (h >>> 0 > i >>> 0) { + if ((c | 0) != (g | 0)) { + while (1) { + F[d >> 2] = F[f >> 2] + d = (d + 4) | 0 + f = (f + 4) | 0 + if ((f | 0) != (c | 0)) { + continue + } + break + } + } + F[(a + 4) >> 2] = d + return + } + F[(a + 4) >> 2] = e + return + } + if (e) { + F[(a + 4) >> 2] = e + ja(e) + F[(a + 8) >> 2] = 0 + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + d = 0 + } + a: { + if ((f | 0) < 0) { + break a + } + e = (d >>> 1) | 0 + d = + d >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 > h >>> 0 + ? e + : h + if (d >>> 0 >= 1073741824) { + break a + } + e = d << 2 + d = ka(e) + F[a >> 2] = d + F[(a + 8) >> 2] = d + e + if ((b | 0) != (c | 0)) { + c = b + b = (((f - 4) & -4) + 4) | 0 + d = (la(d, c, b) + b) | 0 + } + F[(a + 4) >> 2] = d + return + } + na() + v() + } + function Ea(a, b, c) { + var d = 0, + e = 0, + f = 0 + e = (Z - 16) | 0 + Z = e + F[(a + 4) >> 2] = 0 + a: { + b: { + if (!b) { + break b + } + f = F[(a + 8) >> 2] + d = f << 5 + c: { + if (d >>> 0 >= b >>> 0) { + F[(a + 4) >> 2] = b + break c + } + F[(e + 8) >> 2] = 0 + F[e >> 2] = 0 + F[(e + 4) >> 2] = 0 + if ((b | 0) < 0) { + break a + } + if (d >>> 0 <= 1073741822) { + f = f << 6 + d = (b + 31) & -32 + d = d >>> 0 < f >>> 0 ? f : d + } else { + d = 2147483647 + } + $a(e, d) + f = F[a >> 2] + F[a >> 2] = F[e >> 2] + F[e >> 2] = f + d = F[(a + 4) >> 2] + F[(a + 4) >> 2] = b + F[(e + 4) >> 2] = d + d = F[(a + 8) >> 2] + F[(a + 8) >> 2] = F[(e + 8) >> 2] + F[(e + 8) >> 2] = d + if (!f) { + break c + } + ja(f) + } + d = (b >>> 5) | 0 + a = F[a >> 2] + if (G[c | 0]) { + if (b >>> 0 >= 32) { + ma(a, 255, d << 2) + } + if ((b & -32) == (b | 0)) { + break b + } + a = (a + (d << 2)) | 0 + F[a >> 2] = F[a >> 2] | (-1 >>> (32 - (b & 31))) + break b + } + if (b >>> 0 >= 32) { + ma(a, 0, d << 2) + } + if ((b & -32) == (b | 0)) { + break b + } + a = (a + (d << 2)) | 0 + F[a >> 2] = F[a >> 2] & ((-1 >>> (32 - (b & 31))) ^ -1) + } + Z = (e + 16) | 0 + return + } + na() + v() + } + function If(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0 + e = (Z - 32) | 0 + Z = e + a: { + b: { + f = ya(c) + if (f >>> 0 < 2147483632) { + c: { + d: { + if (f >>> 0 >= 11) { + a = ((f | 15) + 1) | 0 + g = ka(a) + F[(e + 24) >> 2] = a | -2147483648 + F[(e + 16) >> 2] = g + F[(e + 20) >> 2] = f + a = (f + g) | 0 + break d + } + D[(e + 27) | 0] = f + g = (e + 16) | 0 + a = (f + g) | 0 + if (!f) { + break c + } + } + la(g, c, f) + } + D[a | 0] = 0 + c = ya(d) + if (c >>> 0 >= 2147483632) { + break b + } + e: { + f: { + if (c >>> 0 >= 11) { + f = ((c | 15) + 1) | 0 + a = ka(f) + F[(e + 8) >> 2] = f | -2147483648 + F[e >> 2] = a + F[(e + 4) >> 2] = c + g = (a + c) | 0 + break f + } + D[(e + 11) | 0] = c + g = (c + e) | 0 + a = e + if (!c) { + break e + } + } + la(a, d, c) + } + D[g | 0] = 0 + c = F[(b + 4) >> 2] + a = -1 + g: { + if (!c) { + break g + } + c = Uc(c, (e + 16) | 0, e) + a = -1 + if (!c) { + break g + } + a = Pc(b, F[(c + 24) >> 2]) + } + if (D[(e + 11) | 0] < 0) { + ja(F[e >> 2]) + } + if (D[(e + 27) | 0] < 0) { + ja(F[(e + 16) >> 2]) + } + Z = (e + 32) | 0 + break a + } + za() + v() + } + za() + v() + } + return a | 0 + } + function se(a, b) { + a = a | 0 + b = b | 0 + a = 0 + a: { + switch (b | 0) { + case 0: + a = ka(20) + F[(a + 12) >> 2] = -1 + F[(a + 16) >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[a >> 2] = 1920 + return a | 0 + case 1: + a = ka(24) + F[(a + 12) >> 2] = -1 + F[(a + 16) >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[a >> 2] = 1920 + F[(a + 20) >> 2] = 0 + F[a >> 2] = 2136 + return a | 0 + case 2: + a = ka(48) + F[(a + 12) >> 2] = -1 + F[(a + 16) >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[a >> 2] = 1920 + F[(a + 20) >> 2] = 0 + F[a >> 2] = 2136 + F[(a + 24) >> 2] = 1624 + F[a >> 2] = 7948 + F[(a + 32) >> 2] = 0 + F[(a + 36) >> 2] = 0 + F[(a + 28) >> 2] = -1 + F[(a + 40) >> 2] = 0 + F[(a + 44) >> 2] = 0 + return a | 0 + case 3: + a = ka(32) + F[(a + 12) >> 2] = -1 + F[(a + 16) >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[a >> 2] = 1920 + F[(a + 20) >> 2] = 0 + F[a >> 2] = 2136 + F[(a + 24) >> 2] = 1032 + F[a >> 2] = 5812 + F[(a + 28) >> 2] = -1 + break + default: + break a + } + } + return a | 0 + } + function Be(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + f = F[b >> 2] + b = F[(b + 4) >> 2] + d = F[(F[(a + 8) >> 2] + 40) >> 2] + j = d + m = ka((d | 0) < 0 ? -1 : d) + i = (b - f) | 0 + e = 1 + a: { + if ((i | 0) < 4) { + break a + } + b = 0 + g = F[(c + 16) >> 2] + k = d + f = (g + d) | 0 + d = (0 + F[(c + 20) >> 2]) | 0 + d = f >>> 0 < k >>> 0 ? (d + 1) | 0 : d + h = F[(c + 12) >> 2] + e = 0 + if ( + ((I[(c + 8) >> 2] < f >>> 0) & ((d | 0) >= (h | 0))) | + ((d | 0) > (h | 0)) + ) { + break a + } + e = i >> 2 + i = (e | 0) <= 1 ? 1 : e + while (1) { + b: { + g = la(m, (F[c >> 2] + g) | 0, j) + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + la((F[F[(F[(a + 8) >> 2] + 64) >> 2] >> 2] + b) | 0, g, j) + l = (l + 1) | 0 + if ((i | 0) == (l | 0)) { + break b + } + b = (b + j) | 0 + d = (n + F[(c + 20) >> 2]) | 0 + g = F[(c + 16) >> 2] + f = (k + g) | 0 + d = f >>> 0 < k >>> 0 ? (d + 1) | 0 : d + h = F[(c + 12) >> 2] + if ( + (((d | 0) <= (h | 0)) & (I[(c + 8) >> 2] >= f >>> 0)) | + ((d | 0) < (h | 0)) + ) { + continue + } + } + break + } + e = (e | 0) <= (l | 0) + } + ja(m) + return e | 0 + } + function mh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + F[b >> 2] = 1 + f = (b + 8) | 0 + c = F[(b + 8) >> 2] + d = (F[(b + 12) >> 2] - c) | 0 + if (d >>> 0 <= 4294967291) { + Db(f, (d + 4) | 0) + c = F[f >> 2] + } + c = (c + d) | 0 + d = F[(a + 4) >> 2] + D[c | 0] = d + D[(c + 1) | 0] = d >>> 8 + D[(c + 2) | 0] = d >>> 16 + D[(c + 3) | 0] = d >>> 24 + c = F[(a + 8) >> 2] + if ((c | 0) != F[(a + 12) >> 2]) { + d = 0 + while (1) { + g = ((d << 2) + c) | 0 + c = F[(b + 8) >> 2] + e = (F[(b + 12) >> 2] - c) | 0 + if (e >>> 0 <= 4294967291) { + Db(f, (e + 4) | 0) + c = F[f >> 2] + } + c = (c + e) | 0 + e = F[g >> 2] + D[c | 0] = e + D[(c + 1) | 0] = e >>> 8 + D[(c + 2) | 0] = e >>> 16 + D[(c + 3) | 0] = e >>> 24 + d = (d + 1) | 0 + c = F[(a + 8) >> 2] + if (d >>> 0 < ((F[(a + 12) >> 2] - c) >> 2) >>> 0) { + continue + } + break + } + } + c = F[(b + 12) >> 2] + b = F[(b + 8) >> 2] + c = (c - b) | 0 + if (c >>> 0 <= 4294967291) { + Db(f, (c + 4) | 0) + b = F[f >> 2] + } + b = (b + c) | 0 + a = F[(a + 20) >> 2] + D[b | 0] = a + D[(b + 1) | 0] = a >>> 8 + D[(b + 2) | 0] = a >>> 16 + D[(b + 3) | 0] = a >>> 24 + } + function mb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + c = F[(a + 4) >> 2] + if ((c | 0) != F[(a + 8) >> 2]) { + e = F[(b + 4) >> 2] + F[c >> 2] = F[b >> 2] + F[(c + 4) >> 2] = e + F[(c + 8) >> 2] = F[(b + 8) >> 2] + F[(a + 4) >> 2] = c + 12 + return + } + a: { + g = F[a >> 2] + d = (((c - g) | 0) / 12) | 0 + e = (d + 1) | 0 + if (e >>> 0 < 357913942) { + f = d << 1 + f = + d >>> 0 >= 178956970 + ? 357913941 + : e >>> 0 < f >>> 0 + ? f + : e + if (f) { + if (f >>> 0 >= 357913942) { + break a + } + e = ka(L(f, 12)) + } else { + e = 0 + } + d = (e + L(d, 12)) | 0 + h = F[(b + 4) >> 2] + F[d >> 2] = F[b >> 2] + F[(d + 4) >> 2] = h + F[(d + 8) >> 2] = F[(b + 8) >> 2] + b = (d + 12) | 0 + if ((c | 0) != (g | 0)) { + while (1) { + c = (c - 12) | 0 + h = F[(c + 4) >> 2] + d = (d - 12) | 0 + F[d >> 2] = F[c >> 2] + F[(d + 4) >> 2] = h + F[(d + 8) >> 2] = F[(c + 8) >> 2] + if ((c | 0) != (g | 0)) { + continue + } + break + } + c = F[a >> 2] + } + F[(a + 8) >> 2] = e + L(f, 12) + F[(a + 4) >> 2] = b + F[a >> 2] = d + if (c) { + ja(c) + } + return + } + na() + v() + } + oa() + v() + } + function ne(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + h = F[(c + 12) >> 2] + f = h + e = F[(c + 20) >> 2] + i = F[(c + 8) >> 2] + g = F[(c + 16) >> 2] + a: { + if ( + (((f | 0) <= (e | 0)) & (i >>> 0 <= g >>> 0)) | + ((e | 0) > (f | 0)) + ) { + break a + } + j = F[c >> 2] + k = D[(j + g) | 0] + d = e + f = (g + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + b: { + if ((k | 0) == -2) { + break b + } + if ( + (((d | 0) >= (h | 0)) & (f >>> 0 >= i >>> 0)) | + ((d | 0) > (h | 0)) + ) { + break a + } + d = D[(f + j) | 0] + g = (g + 2) | 0 + e = g >>> 0 < 2 ? (e + 1) | 0 : e + F[(c + 16) >> 2] = g + F[(c + 20) >> 2] = e + if (((d - 4) & 255) >>> 0 < 251) { + break a + } + e = $[F[(F[a >> 2] + 40) >> 2]](a, k, d) | 0 + d = F[(a + 20) >> 2] + F[(a + 20) >> 2] = e + if (!d) { + break b + } + $[F[(F[d >> 2] + 4) >> 2]](d) + } + d = F[(a + 20) >> 2] + if (d) { + if (!($[F[(F[a >> 2] + 28) >> 2]](a, d) | 0)) { + break a + } + } + l = $[F[(F[a >> 2] + 36) >> 2]](a, b, c) | 0 + } + return l | 0 + } + function Bf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + a: { + if (I[(b + 80) >> 2] > 65535) { + break a + } + a = F[(b + 100) >> 2] + b = F[(b + 96) >> 2] + e = (((a - b) | 0) / 12) | 0 + f = L(e, 6) + g = (f | 0) == (c | 0) + if (((a | 0) == (b | 0)) | ((c | 0) != (f | 0))) { + break a + } + g = 1 + c = e >>> 0 <= 1 ? 1 : e + i = c & 1 + a = 0 + if (e >>> 0 >= 2) { + j = c & -2 + c = 0 + while (1) { + f = L(a, 6) + h = (f + d) | 0 + e = (b + L(a, 12)) | 0 + E[h >> 1] = F[e >> 2] + E[((f | 2) + d) >> 1] = F[(e + 4) >> 2] + E[(h + 4) >> 1] = F[(e + 8) >> 2] + f = a | 1 + e = (L(f, 6) + d) | 0 + f = (b + L(f, 12)) | 0 + E[e >> 1] = F[f >> 2] + E[(e + 2) >> 1] = F[(f + 4) >> 2] + E[(e + 4) >> 1] = F[(f + 8) >> 2] + a = (a + 2) | 0 + c = (c + 2) | 0 + if ((j | 0) != (c | 0)) { + continue + } + break + } + } + if (!i) { + break a + } + c = (L(a, 6) + d) | 0 + a = (b + L(a, 12)) | 0 + E[c >> 1] = F[a >> 2] + E[(c + 2) >> 1] = F[(a + 4) >> 2] + E[(c + 4) >> 1] = F[(a + 8) >> 2] + } + return g | 0 + } + function Gh(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + f = (Z - 32) | 0 + Z = f + h = e >>> 0 > 1073741823 ? -1 : e << 2 + h = ma(ka(h), 0, h) + g = F[b >> 2] + i = F[(b + 4) >> 2] + k = F[(h + 4) >> 2] + F[(f + 16) >> 2] = F[h >> 2] + F[(f + 20) >> 2] = k + F[(f + 8) >> 2] = g + F[(f + 12) >> 2] = i + i = (a + 8) | 0 + Jb((f + 24) | 0, i, (f + 16) | 0, (f + 8) | 0) + F[c >> 2] = F[(f + 24) >> 2] + F[(c + 4) >> 2] = F[(f + 28) >> 2] + if ((d | 0) > (e | 0)) { + k = (0 - e) << 2 + a = e + while (1) { + g = a << 2 + j = (g + b) | 0 + m = F[j >> 2] + j = F[(j + 4) >> 2] + g = (c + g) | 0 + l = (g + k) | 0 + n = F[(l + 4) >> 2] + F[(f + 16) >> 2] = F[l >> 2] + F[(f + 20) >> 2] = n + F[(f + 8) >> 2] = m + F[(f + 12) >> 2] = j + Jb((f + 24) | 0, i, (f + 16) | 0, (f + 8) | 0) + F[g >> 2] = F[(f + 24) >> 2] + F[(g + 4) >> 2] = F[(f + 28) >> 2] + a = (a + e) | 0 + if ((d | 0) > (a | 0)) { + continue + } + break + } + } + ja(h) + Z = (f + 32) | 0 + return 1 + } + function Sf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0 + a = (Z - 32) | 0 + Z = a + F[(a + 24) >> 2] = 0 + F[(a + 28) >> 2] = 0 + a: { + d = ya(c) + if (d >>> 0 < 2147483632) { + b: { + c: { + if (d >>> 0 >= 11) { + e = ((d | 15) + 1) | 0 + f = ka(e) + F[(a + 16) >> 2] = e | -2147483648 + F[(a + 8) >> 2] = f + F[(a + 12) >> 2] = d + e = (d + f) | 0 + break c + } + D[(a + 19) | 0] = d + f = (a + 8) | 0 + e = (f + d) | 0 + if (!d) { + break b + } + } + la(f, c, d) + } + D[e | 0] = 0 + c = (b + 4) | 0 + b = Ya(b, (a + 8) | 0) + d: { + if ((c | 0) == (b | 0)) { + break d + } + c = F[(b + 32) >> 2] + b = F[(b + 28) >> 2] + if (((c - b) | 0) != 8) { + break d + } + c = + G[(b + 4) | 0] | + (G[(b + 5) | 0] << 8) | + ((G[(b + 6) | 0] << 16) | (G[(b + 7) | 0] << 24)) + F[(a + 24) >> 2] = + G[b | 0] | + (G[(b + 1) | 0] << 8) | + ((G[(b + 2) | 0] << 16) | (G[(b + 3) | 0] << 24)) + F[(a + 28) >> 2] = c + } + g = K[(a + 24) >> 3] + if (D[(a + 19) | 0] < 0) { + ja(F[(a + 8) >> 2]) + } + Z = (a + 32) | 0 + break a + } + za() + v() + } + return +g + } + function Gc(a, b, c, d, e, f, g) { + var h = 0, + i = 0, + j = 0 + h = (Z - 16) | 0 + Z = h + if (((b ^ -1) + 2147483631) >>> 0 >= c >>> 0) { + if ((G[(a + 11) | 0] >>> 7) | 0) { + i = F[a >> 2] + } else { + i = a + } + if (b >>> 0 < 1073741799) { + F[(h + 12) >> 2] = b << 1 + F[h >> 2] = b + c + c = (Z - 16) | 0 + Z = c + Z = (c + 16) | 0 + c = (h + 12) | 0 + c = F[(I[h >> 2] < I[c >> 2] ? c : h) >> 2] + if (c >>> 0 >= 11) { + j = (c + 16) & -16 + c = (j - 1) | 0 + c = (c | 0) == 11 ? j : c + } else { + c = 10 + } + c = (c + 1) | 0 + } else { + c = 2147483631 + } + sb(h, c) + c = F[h >> 2] + if (f) { + db(c, g, f) + } + g = (d - e) | 0 + if ((d | 0) != (e | 0)) { + db((c + f) | 0, (e + i) | 0, g) + } + if ((b | 0) != 10) { + ja(i) + } + F[a >> 2] = c + F[(a + 8) >> 2] = + (F[(a + 8) >> 2] & -2147483648) | + (F[(h + 4) >> 2] & 2147483647) + F[(a + 8) >> 2] = F[(a + 8) >> 2] | -2147483648 + b = a + a = (f + g) | 0 + F[(b + 4) >> 2] = a + D[(h + 12) | 0] = 0 + D[(a + c) | 0] = G[(h + 12) | 0] + Z = (h + 16) | 0 + return + } + za() + v() + } + function _c(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + f = (b >>> 0 < 1431655766) & ((b | c) >= 0) + b: { + if (!f) { + break b + } + b = L(b, 3) + Xb(a, b, 10224) + Xb((a + 12) | 0, b, 10228) + d = F[(a + 24) >> 2] + c: { + if (((F[(a + 32) >> 2] - d) >> 2) >>> 0 >= c >>> 0) { + break c + } + if (c >>> 0 >= 1073741824) { + break a + } + b = F[(a + 28) >> 2] + e = c << 2 + c = ka(e) + e = (c + e) | 0 + g = (c + ((b - d) & -4)) | 0 + c = g + if ((b | 0) != (d | 0)) { + while (1) { + c = (c - 4) | 0 + b = (b - 4) | 0 + F[c >> 2] = F[b >> 2] + if ((b | 0) != (d | 0)) { + continue + } + break + } + } + F[(a + 32) >> 2] = e + F[(a + 28) >> 2] = g + F[(a + 24) >> 2] = c + if (!d) { + break c + } + ja(d) + } + F[(a + 80) >> 2] = 0 + F[(a + 84) >> 2] = 0 + b = F[(a + 76) >> 2] + F[(a + 76) >> 2] = 0 + if (b) { + ja(b) + } + F[(a + 68) >> 2] = 0 + F[(a + 72) >> 2] = 0 + b = (a - -64) | 0 + a = F[b >> 2] + F[b >> 2] = 0 + if (!a) { + break b + } + ja(a) + } + return f + } + na() + v() + } + function yd(a) { + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0 + f = 1 + c = F[(a + 140) >> 2] + a: { + if ((c | 0) <= 0) { + break a + } + b = c << 4 + d = ka(c >>> 0 > 268435455 ? -1 : b | 4) + F[d >> 2] = c + d = (d + 4) | 0 + c = (d + b) | 0 + b = d + while (1) { + F[b >> 2] = 0 + F[(b + 4) >> 2] = 0 + D[(b + 5) | 0] = 0 + D[(b + 6) | 0] = 0 + D[(b + 7) | 0] = 0 + D[(b + 8) | 0] = 0 + D[(b + 9) | 0] = 0 + D[(b + 10) | 0] = 0 + D[(b + 11) | 0] = 0 + D[(b + 12) | 0] = 0 + b = (b + 16) | 0 + if ((c | 0) != (b | 0)) { + continue + } + break + } + e = F[(a + 136) >> 2] + F[(a + 136) >> 2] = d + if (e) { + c = (e - 4) | 0 + d = F[c >> 2] + if (d) { + b = ((d << 4) + e) | 0 + while (1) { + b = (b - 16) | 0 + if ((e | 0) != (b | 0)) { + continue + } + break + } + } + ja(c) + } + b = 0 + if (F[(a + 140) >> 2] <= 0) { + break a + } + while (1) { + f = Aa((F[(a + 136) >> 2] + (b << 4)) | 0, a) + if (!f) { + break a + } + b = (b + 1) | 0 + if ((b | 0) < F[(a + 140) >> 2]) { + continue + } + break + } + } + return f + } + function Sd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = F[(b + 8) >> 2] + c = F[(b + 12) >> 2] + g = c + c = F[(b + 20) >> 2] + i = c + h = F[(b + 16) >> 2] + f = (h + 4) | 0 + c = f >>> 0 < 4 ? (c + 1) | 0 : c + a: { + if ( + ((d >>> 0 < f >>> 0) & ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break a + } + e = (h + F[b >> 2]) | 0 + e = + G[e | 0] | + (G[(e + 1) | 0] << 8) | + ((G[(e + 2) | 0] << 16) | (G[(e + 3) | 0] << 24)) + F[(b + 16) >> 2] = f + F[(b + 20) >> 2] = c + f = d + d = i + c = (h + 8) | 0 + d = c >>> 0 < 8 ? (d + 1) | 0 : d + if ( + ((c >>> 0 > f >>> 0) & ((d | 0) >= (g | 0))) | + ((d | 0) > (g | 0)) + ) { + break a + } + F[(b + 16) >> 2] = c + F[(b + 20) >> 2] = d + if (!(e & 1)) { + break a + } + d = O(e) ^ 31 + if ((d - 1) >>> 0 > 28) { + break a + } + F[(a + 8) >> 2] = d + 1 + d = -2 << d + c = d ^ -2 + F[(a + 16) >> 2] = c + F[(a + 12) >> 2] = d ^ -1 + F[(a + 24) >> 2] = c >> 1 + J[(a + 20) >> 2] = M(2) / M(c | 0) + j = Aa((a + 96) | 0, b) + } + return j | 0 + } + function bc(a, b) { + var c = 0 + c = F[(b + 4) >> 2] + F[a >> 2] = F[b >> 2] + F[(a + 4) >> 2] = c + c = F[(b + 60) >> 2] + F[(a + 56) >> 2] = F[(b + 56) >> 2] + F[(a + 60) >> 2] = c + c = F[(b + 52) >> 2] + F[(a + 48) >> 2] = F[(b + 48) >> 2] + F[(a + 52) >> 2] = c + c = F[(b + 44) >> 2] + F[(a + 40) >> 2] = F[(b + 40) >> 2] + F[(a + 44) >> 2] = c + c = F[(b + 36) >> 2] + F[(a + 32) >> 2] = F[(b + 32) >> 2] + F[(a + 36) >> 2] = c + c = F[(b + 28) >> 2] + F[(a + 24) >> 2] = F[(b + 24) >> 2] + F[(a + 28) >> 2] = c + c = F[(b + 20) >> 2] + F[(a + 16) >> 2] = F[(b + 16) >> 2] + F[(a + 20) >> 2] = c + c = F[(b + 12) >> 2] + F[(a + 8) >> 2] = F[(b + 8) >> 2] + F[(a + 12) >> 2] = c + F[(a + 88) >> 2] = 0 + F[(a + 64) >> 2] = 0 + F[(a + 68) >> 2] = 0 + F[(a + 72) >> 2] = 0 + F[(a + 76) >> 2] = 0 + D[(a + 77) | 0] = 0 + D[(a + 78) | 0] = 0 + D[(a + 79) | 0] = 0 + D[(a + 80) | 0] = 0 + D[(a + 81) | 0] = 0 + D[(a + 82) | 0] = 0 + D[(a + 83) | 0] = 0 + D[(a + 84) | 0] = 0 + return a + } + function ac(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (F[(a + 64) >> 2]) { + break a + } + c = ka(32) + F[(c + 16) >> 2] = 0 + F[(c + 20) >> 2] = 0 + F[(c + 8) >> 2] = 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + F[(c + 24) >> 2] = 0 + F[(c + 28) >> 2] = 0 + d = F[(a + 64) >> 2] + F[(a + 64) >> 2] = c + if (!d) { + break a + } + c = F[d >> 2] + if (c) { + F[(d + 4) >> 2] = c + ja(c) + } + ja(d) + } + d = F[(a + 64) >> 2] + c = (F[(a + 28) >> 2] - 1) | 0 + if (c >>> 0 <= 10) { + c = F[((c << 2) + 10148) >> 2] + } else { + c = -1 + } + c = L(c, G[(a + 24) | 0]) + f = c >> 31 + g = md(d, 0, ki(c, f, b, 0), _) + if (g) { + d = F[(a + 64) >> 2] + F[a >> 2] = d + e = F[(d + 20) >> 2] + F[(a + 8) >> 2] = F[(d + 16) >> 2] + F[(a + 12) >> 2] = e + e = F[(d + 24) >> 2] + d = F[(d + 28) >> 2] + F[(a + 48) >> 2] = 0 + F[(a + 52) >> 2] = 0 + F[(a + 40) >> 2] = c + F[(a + 44) >> 2] = f + F[(a + 16) >> 2] = e + F[(a + 20) >> 2] = d + F[(a + 80) >> 2] = b + } + return g + } + function Af(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + a = F[(b + 100) >> 2] + b = F[(b + 96) >> 2] + h = (a - b) | 0 + a: { + if (((h | 0) != (c | 0)) | ((a | 0) == (b | 0))) { + break a + } + g = ((c | 0) / 12) | 0 + e = g >>> 0 <= 1 ? 1 : g + j = e & 1 + a = 0 + if (g >>> 0 >= 2) { + k = e & -2 + g = 0 + while (1) { + e = L(a, 12) + i = (e + d) | 0 + f = (b + e) | 0 + F[i >> 2] = F[f >> 2] + F[((e | 4) + d) >> 2] = F[(f + 4) >> 2] + F[(i + 8) >> 2] = F[(f + 8) >> 2] + f = L(a | 1, 12) + e = (f + d) | 0 + f = (b + f) | 0 + F[e >> 2] = F[f >> 2] + F[(e + 4) >> 2] = F[(f + 4) >> 2] + F[(e + 8) >> 2] = F[(f + 8) >> 2] + a = (a + 2) | 0 + g = (g + 2) | 0 + if ((k | 0) != (g | 0)) { + continue + } + break + } + } + if (!j) { + break a + } + e = d + d = L(a, 12) + a = (e + d) | 0 + b = (b + d) | 0 + F[a >> 2] = F[b >> 2] + F[(a + 4) >> 2] = F[(b + 4) >> 2] + F[(a + 8) >> 2] = F[(b + 8) >> 2] + } + return ((c | 0) == (h | 0)) | 0 + } + function Kh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = F[(b + 8) >> 2] + d = F[(b + 12) >> 2] + g = d + d = F[(b + 20) >> 2] + i = d + h = F[(b + 16) >> 2] + f = (h + 4) | 0 + d = f >>> 0 < 4 ? (d + 1) | 0 : d + a: { + if ( + ((c >>> 0 < f >>> 0) & ((d | 0) >= (g | 0))) | + ((d | 0) > (g | 0)) + ) { + break a + } + e = (h + F[b >> 2]) | 0 + e = + G[e | 0] | + (G[(e + 1) | 0] << 8) | + ((G[(e + 2) | 0] << 16) | (G[(e + 3) | 0] << 24)) + F[(b + 16) >> 2] = f + F[(b + 20) >> 2] = d + f = c + c = i + d = (h + 8) | 0 + c = d >>> 0 < 8 ? (c + 1) | 0 : c + if ( + ((d >>> 0 > f >>> 0) & ((c | 0) >= (g | 0))) | + ((c | 0) > (g | 0)) + ) { + break a + } + F[(b + 16) >> 2] = d + F[(b + 20) >> 2] = c + if (!(e & 1)) { + break a + } + b = O(e) ^ 31 + if ((b - 1) >>> 0 > 28) { + break a + } + j = 1 + F[(a + 8) >> 2] = b + 1 + b = -2 << b + c = b ^ -2 + F[(a + 16) >> 2] = c + F[(a + 12) >> 2] = b ^ -1 + F[(a + 24) >> 2] = c >> 1 + J[(a + 20) >> 2] = M(2) / M(c | 0) + } + return j | 0 + } + function Ya(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + f = (a + 4) | 0 + a = F[(a + 4) >> 2] + a: { + b: { + if (!a) { + break b + } + d = G[(b + 11) | 0] + c = (d << 24) >> 24 < 0 + g = c ? F[b >> 2] : b + d = c ? F[(b + 4) >> 2] : d + b = f + while (1) { + e = G[(a + 27) | 0] + c = (e << 24) >> 24 < 0 + e = c ? F[(a + 20) >> 2] : e + h = e >>> 0 > d >>> 0 + i = h ? d : e + c: { + if (i) { + c = sa(c ? F[(a + 16) >> 2] : (a + 16) | 0, g, i) + if (c) { + break c + } + } + c = d >>> 0 > e >>> 0 ? -1 : h + } + c = (c | 0) < 0 + b = c ? b : a + a = F[(c ? (a + 4) | 0 : a) >> 2] + if (a) { + continue + } + break + } + if ((b | 0) == (f | 0)) { + break b + } + c = G[(b + 27) | 0] + a = (c << 24) >> 24 < 0 + d: { + c = a ? F[(b + 20) >> 2] : c + e = c >>> 0 < d >>> 0 ? c : d + if (e) { + a = sa(g, a ? F[(b + 16) >> 2] : (b + 16) | 0, e) + if (a) { + break d + } + } + if (c >>> 0 > d >>> 0) { + break b + } + break a + } + if ((a | 0) >= 0) { + break a + } + } + b = f + } + return b + } + function Oe(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + if (La(a, F[(b + 8) >> 2], e)) { + if ( + !((F[(b + 28) >> 2] == 1) | (F[(b + 4) >> 2] != (c | 0))) + ) { + F[(b + 28) >> 2] = d + } + return + } + a: { + if (La(a, F[b >> 2], e)) { + if ( + !( + (F[(b + 16) >> 2] != (c | 0)) & + (F[(b + 20) >> 2] != (c | 0)) + ) + ) { + if ((d | 0) != 1) { + break a + } + F[(b + 32) >> 2] = 1 + return + } + F[(b + 32) >> 2] = d + b: { + if (F[(b + 44) >> 2] == 4) { + break b + } + E[(b + 52) >> 1] = 0 + a = F[(a + 8) >> 2] + $[F[(F[a >> 2] + 20) >> 2]](a, b, c, c, 1, e) + if (G[(b + 53) | 0]) { + F[(b + 44) >> 2] = 3 + if (!G[(b + 52) | 0]) { + break b + } + break a + } + F[(b + 44) >> 2] = 4 + } + F[(b + 20) >> 2] = c + F[(b + 40) >> 2] = F[(b + 40) >> 2] + 1 + if ((F[(b + 36) >> 2] != 1) | (F[(b + 24) >> 2] != 2)) { + break a + } + D[(b + 54) | 0] = 1 + return + } + a = F[(a + 8) >> 2] + $[F[(F[a >> 2] + 24) >> 2]](a, b, c, d, e) + } + } + function Ig(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + f = ka(64) + c = ka(12) + F[(c + 8) >> 2] = F[(F[(a + 4) >> 2] + 80) >> 2] + F[c >> 2] = 9968 + F[(c + 4) >> 2] = 0 + f = yc(f, c) + a: { + b: { + if ((b | 0) < 0) { + c = f + break b + } + h = (a + 8) | 0 + c = F[(a + 12) >> 2] + e = F[(a + 8) >> 2] + g = (c - e) >> 2 + c: { + if ((g | 0) > (b | 0)) { + break c + } + d = (b + 1) | 0 + if (b >>> 0 >= g >>> 0) { + Pb(h, (d - g) | 0) + break c + } + if (d >>> 0 >= g >>> 0) { + break c + } + e = (e + (d << 2)) | 0 + if ((e | 0) != (c | 0)) { + while (1) { + c = (c - 4) | 0 + d = F[c >> 2] + F[c >> 2] = 0 + if (d) { + $[F[(F[d >> 2] + 4) >> 2]](d) + } + if ((c | 0) != (e | 0)) { + continue + } + break + } + } + F[(a + 12) >> 2] = e + } + a = (F[h >> 2] + (b << 2)) | 0 + c = F[a >> 2] + F[a >> 2] = f + if (!c) { + break a + } + } + $[F[(F[c >> 2] + 4) >> 2]](c) + } + return ((b ^ -1) >>> 31) | 0 + } + function we(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + c = F[(a + 60) >> 2] + a: { + if (!c) { + break a + } + F[(c + 4) >> 2] = a + 48 + if (!($[F[(F[c >> 2] + 12) >> 2]](c) | 0)) { + break a + } + b: { + c = $[F[(F[a >> 2] + 24) >> 2]](a) | 0 + if ((c | 0) <= 0) { + break b + } + while (1) { + c: { + f = F[(($[F[(F[a >> 2] + 28) >> 2]](a) | 0) + 4) >> 2] + g = $[F[(F[a >> 2] + 20) >> 2]](a, d) | 0 + e = F[(a + 60) >> 2] + if ( + !( + $[F[(F[e >> 2] + 8) >> 2]]( + e, + F[(F[(f + 8) >> 2] + (g << 2)) >> 2], + ) | 0 + ) + ) { + break c + } + d = (d + 1) | 0 + if ((c | 0) != (d | 0)) { + continue + } + break b + } + break + } + return 0 + } + d = 0 + if (!($[F[(F[a >> 2] + 36) >> 2]](a, b) | 0)) { + break a + } + if (!($[F[(F[a >> 2] + 40) >> 2]](a, b) | 0)) { + break a + } + d = $[F[(F[a >> 2] + 44) >> 2]](a) | 0 + } + return d | 0 + } + function Id(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0 + c = F[(a + 216) >> 2] + if ((c | 0) != F[(a + 220) >> 2]) { + while (1) { + a: { + c = F[(L(e, 144) + c) >> 2] + if ((c | 0) < 0) { + break a + } + d = F[(a + 4) >> 2] + f = F[(d + 8) >> 2] + if ((c | 0) >= (F[(d + 12) >> 2] - f) >> 2) { + break a + } + d = 0 + c = F[((c << 2) + f) >> 2] + if (($[F[(F[c >> 2] + 24) >> 2]](c) | 0) <= 0) { + break a + } + while (1) { + if ( + ($[F[(F[c >> 2] + 20) >> 2]](c, d) | 0) != + (b | 0) + ) { + d = (d + 1) | 0 + if (($[F[(F[c >> 2] + 24) >> 2]](c) | 0) > (d | 0)) { + continue + } + break a + } + break + } + a = (F[(a + 216) >> 2] + L(e, 144)) | 0 + return (G[(a + 100) | 0] ? (a + 4) | 0 : 0) | 0 + } + e = (e + 1) | 0 + c = F[(a + 216) >> 2] + if (e >>> 0 < (((F[(a + 220) >> 2] - c) | 0) / 144) >>> 0) { + continue + } + break + } + } + return 0 + } + function nd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + c = F[(a + 8) >> 2] + d = F[(a + 4) >> 2] + if (((c - d) >> 2) >>> 0 >= b >>> 0) { + if (b) { + b = b << 2 + d = (ma(d, 0, b) + b) | 0 + } + F[(a + 4) >> 2] = d + return + } + a: { + f = F[a >> 2] + g = (d - f) >> 2 + e = (g + b) | 0 + if (e >>> 0 < 1073741824) { + c = (c - f) | 0 + h = (c >>> 1) | 0 + e = + c >>> 0 >= 2147483644 + ? 1073741823 + : e >>> 0 < h >>> 0 + ? h + : e + if (e) { + if (e >>> 0 >= 1073741824) { + break a + } + i = ka(e << 2) + } + c = ((g << 2) + i) | 0 + b = b << 2 + b = (ma(c, 0, b) + b) | 0 + if ((d | 0) != (f | 0)) { + while (1) { + c = (c - 4) | 0 + d = (d - 4) | 0 + F[c >> 2] = F[d >> 2] + if ((d | 0) != (f | 0)) { + continue + } + break + } + } + F[(a + 8) >> 2] = (e << 2) + i + F[(a + 4) >> 2] = b + F[a >> 2] = c + if (f) { + ja(f) + } + return + } + na() + v() + } + oa() + v() + } + function bb(a) { + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0 + d = F[(a + 8) >> 2] + a: { + if (G[(d + 84) | 0]) { + break a + } + b = F[(a + 16) >> 2] + if (!b | !G[(b + 84) | 0]) { + break a + } + c = F[(d + 72) >> 2] + e = F[(d + 68) >> 2] + D[(b + 84) | 0] = 0 + c = (c - e) >> 2 + f = F[(b + 68) >> 2] + e = (F[(b + 72) >> 2] - f) >> 2 + b: { + if (c >>> 0 > e >>> 0) { + ab((b + 68) | 0, (c - e) | 0, 2004) + d = F[(a + 8) >> 2] + break b + } + if (c >>> 0 >= e >>> 0) { + break b + } + F[(b + 72) >> 2] = f + (c << 2) + } + if (G[(d + 84) | 0]) { + break a + } + c = F[(d + 68) >> 2] + if ((c | 0) == F[(d + 72) >> 2]) { + break a + } + e = F[(F[(a + 16) >> 2] + 68) >> 2] + b = 0 + while (1) { + f = b << 2 + F[(f + e) >> 2] = F[(c + f) >> 2] + b = (b + 1) | 0 + c = F[(d + 68) >> 2] + if (b >>> 0 < ((F[(d + 72) >> 2] - c) >> 2) >>> 0) { + continue + } + break + } + } + return F[(a + 16) >> 2] + } + function Lf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0 + e = (Z + -64) | 0 + Z = e + f = Ja((e + 8) | 0) + F[(f + 16) >> 2] = 0 + F[(f + 20) >> 2] = 0 + F[f >> 2] = b + F[(f + 8) >> 2] = c + F[(f + 12) >> 2] = 0 + b = (e + 48) | 0 + Pd(b, a, f, d) + F[(a + 24) >> 2] = F[(e + 48) >> 2] + f = (a + 24) | 0 + a: { + if ((f | 0) == (b | 0)) { + break a + } + b = (a + 28) | 0 + c = (e + 48) | 4 + g = G[(e + 63) | 0] + d = (g << 24) >> 24 + if (D[(a + 39) | 0] >= 0) { + if ((d | 0) >= 0) { + a = F[(c + 4) >> 2] + F[b >> 2] = F[c >> 2] + F[(b + 4) >> 2] = a + F[(b + 8) >> 2] = F[(c + 8) >> 2] + break a + } + qb(b, F[(e + 52) >> 2], F[(e + 56) >> 2]) + break a + } + a = (d | 0) < 0 + rb(b, a ? F[(e + 52) >> 2] : c, a ? F[(e + 56) >> 2] : g) + } + if (D[(e + 63) | 0] < 0) { + ja(F[(e + 52) >> 2]) + } + Z = (e - -64) | 0 + return f | 0 + } + function Jf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0 + a = (Z - 32) | 0 + Z = a + a: { + d = ya(c) + if (d >>> 0 < 2147483632) { + b: { + c: { + if (d >>> 0 >= 11) { + e = ((d | 15) + 1) | 0 + f = ka(e) + F[(a + 24) >> 2] = e | -2147483648 + F[(a + 16) >> 2] = f + F[(a + 20) >> 2] = d + e = (d + f) | 0 + break c + } + D[(a + 27) | 0] = d + f = (a + 16) | 0 + e = (f + d) | 0 + if (!d) { + break b + } + } + la(f, c, d) + } + D[e | 0] = 0 + D[(a + 4) | 0] = 0 + F[a >> 2] = 1701667182 + D[(a + 11) | 0] = 4 + d = F[(b + 4) >> 2] + c = -1 + d: { + if (!d) { + break d + } + d = Uc(d, a, (a + 16) | 0) + c = -1 + if (!d) { + break d + } + c = Pc(b, F[(d + 24) >> 2]) + } + b = c + if (D[(a + 11) | 0] < 0) { + ja(F[a >> 2]) + } + if (D[(a + 27) | 0] < 0) { + ja(F[(a + 16) >> 2]) + } + Z = (a + 32) | 0 + break a + } + za() + v() + } + return b | 0 + } + function Hd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0 + c = F[(a + 216) >> 2] + if ((c | 0) != F[(a + 220) >> 2]) { + while (1) { + a: { + c = F[(L(e, 144) + c) >> 2] + if ((c | 0) < 0) { + break a + } + d = F[(a + 4) >> 2] + f = F[(d + 8) >> 2] + if ((c | 0) >= (F[(d + 12) >> 2] - f) >> 2) { + break a + } + d = 0 + c = F[((c << 2) + f) >> 2] + if (($[F[(F[c >> 2] + 24) >> 2]](c) | 0) <= 0) { + break a + } + while (1) { + if ( + ($[F[(F[c >> 2] + 20) >> 2]](c, d) | 0) != + (b | 0) + ) { + d = (d + 1) | 0 + if (($[F[(F[c >> 2] + 24) >> 2]](c) | 0) > (d | 0)) { + continue + } + break a + } + break + } + return (((F[(a + 216) >> 2] + L(e, 144)) | 0) + 104) | 0 + } + e = (e + 1) | 0 + c = F[(a + 216) >> 2] + if (e >>> 0 < (((F[(a + 220) >> 2] - c) | 0) / 144) >>> 0) { + continue + } + break + } + } + return (a + 184) | 0 + } + function Uf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0 + d = (Z - 16) | 0 + Z = d + F[(d + 12) >> 2] = 0 + a: { + e = ya(c) + if (e >>> 0 < 2147483632) { + b: { + c: { + if (e >>> 0 >= 11) { + f = ((e | 15) + 1) | 0 + a = ka(f) + F[(d + 8) >> 2] = f | -2147483648 + F[d >> 2] = a + F[(d + 4) >> 2] = e + f = (a + e) | 0 + break c + } + D[(d + 11) | 0] = e + f = (d + e) | 0 + a = d + if (!e) { + break b + } + } + la(a, c, e) + } + D[f | 0] = 0 + a = Ya(b, d) + d: { + if ((a | 0) == ((b + 4) | 0)) { + break d + } + b = F[(a + 32) >> 2] + a = F[(a + 28) >> 2] + if (((b - a) | 0) != 4) { + break d + } + F[(d + 12) >> 2] = + G[a | 0] | + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) | (G[(a + 3) | 0] << 24)) + } + a = F[(d + 12) >> 2] + if (D[(d + 11) | 0] < 0) { + ja(F[d >> 2]) + } + Z = (d + 16) | 0 + break a + } + za() + v() + } + return a | 0 + } + function Mf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0 + d = (Z + -64) | 0 + Z = d + e = Ja((d + 8) | 0) + F[(e + 16) >> 2] = 0 + F[(e + 20) >> 2] = 0 + F[e >> 2] = b + F[(e + 8) >> 2] = c + F[(e + 12) >> 2] = 0 + b = (d + 48) | 0 + Od(b) + F[(a + 24) >> 2] = F[(d + 48) >> 2] + f = (a + 24) | 0 + a: { + if ((b | 0) == (f | 0)) { + break a + } + b = (a + 28) | 0 + c = (d + 48) | 4 + g = G[(d + 63) | 0] + e = (g << 24) >> 24 + if (D[(a + 39) | 0] >= 0) { + if ((e | 0) >= 0) { + a = F[(c + 4) >> 2] + F[b >> 2] = F[c >> 2] + F[(b + 4) >> 2] = a + F[(b + 8) >> 2] = F[(c + 8) >> 2] + break a + } + qb(b, F[(d + 52) >> 2], F[(d + 56) >> 2]) + break a + } + a = (e | 0) < 0 + rb(b, a ? F[(d + 52) >> 2] : c, a ? F[(d + 56) >> 2] : g) + } + if (D[(d + 63) | 0] < 0) { + ja(F[(d + 52) >> 2]) + } + Z = (d - -64) | 0 + return f | 0 + } + function Ce(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + e = 1 + a: { + if (($[F[(F[b >> 2] + 20) >> 2]](b) | 0) <= 0) { + break a + } + while (1) { + e = 0 + d = Qc( + F[(F[(a + 4) >> 2] + 4) >> 2], + $[F[(F[b >> 2] + 24) >> 2]](b, f) | 0, + ) + if ((d | 0) == -1) { + break a + } + g = F[(a + 4) >> 2] + c = 0 + b: { + if ((d | 0) < 0) { + break b + } + h = F[(g + 4) >> 2] + if ( + (d | 0) >= + (F[(h + 12) >> 2] - F[(h + 8) >> 2]) >> 2 + ) { + break b + } + c = + F[ + (F[(g + 8) >> 2] + + (F[(F[(g + 20) >> 2] + (d << 2)) >> 2] << 2)) >> + 2 + ] + c = $[F[(F[c >> 2] + 32) >> 2]](c, d) | 0 + } + if (!c) { + break a + } + if (!($[F[(F[b >> 2] + 28) >> 2]](b, c) | 0)) { + break a + } + e = 1 + f = (f + 1) | 0 + if (($[F[(F[b >> 2] + 20) >> 2]](b) | 0) > (f | 0)) { + continue + } + break + } + } + return e | 0 + } + function Db(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + a: { + c = F[(a + 4) >> 2] + e = F[a >> 2] + d = (c - e) | 0 + b: { + if (d >>> 0 < b >>> 0) { + g = (b - d) | 0 + f = F[(a + 8) >> 2] + if (g >>> 0 <= (f - c) >>> 0) { + ;(h = a), + (i = (ma(c, 0, g) + g) | 0), + (F[(h + 4) >> 2] = i) + break b + } + if ((b | 0) < 0) { + break a + } + c = (f - e) | 0 + f = c << 1 + c = + c >>> 0 >= 1073741823 + ? 2147483647 + : b >>> 0 < f >>> 0 + ? f + : b + f = ka(c) + ma((f + d) | 0, 0, g) + d = pa(f, e, d) + F[(a + 8) >> 2] = d + c + F[(a + 4) >> 2] = b + d + F[a >> 2] = d + if (!e) { + break b + } + ja(e) + break b + } + if (b >>> 0 >= d >>> 0) { + break b + } + F[(a + 4) >> 2] = b + e + } + b = F[(a + 28) >> 2] + c = b + d = (b + 1) | 0 + b = (F[(a + 24) >> 2] + 1) | 0 + e = b ? c : d + F[(a + 24) >> 2] = b + F[(a + 28) >> 2] = e + return + } + na() + v() + } + function Ma(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + e = F[(a + 4) >> 2] + if ((e | 0) != F[(a + 8) >> 2]) { + F[e >> 2] = F[b >> 2] + F[(a + 4) >> 2] = e + 4 + return + } + a: { + g = F[a >> 2] + f = (e - g) | 0 + c = f >> 2 + d = (c + 1) | 0 + if (d >>> 0 < 1073741824) { + h = c << 2 + c = (f >>> 1) | 0 + c = + f >>> 0 >= 2147483644 + ? 1073741823 + : c >>> 0 > d >>> 0 + ? c + : d + if (c) { + if (c >>> 0 >= 1073741824) { + break a + } + f = ka(c << 2) + } else { + f = 0 + } + d = (h + f) | 0 + F[d >> 2] = F[b >> 2] + b = (d + 4) | 0 + if ((e | 0) != (g | 0)) { + while (1) { + d = (d - 4) | 0 + e = (e - 4) | 0 + F[d >> 2] = F[e >> 2] + if ((e | 0) != (g | 0)) { + continue + } + break + } + } + F[(a + 8) >> 2] = f + (c << 2) + F[(a + 4) >> 2] = b + F[a >> 2] = d + if (g) { + ja(g) + } + return + } + na() + v() + } + oa() + v() + } + function va(a) { + F[a >> 2] = -1 + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[(a + 32) >> 2] = 0 + F[(a + 36) >> 2] = 0 + D[(a + 28) | 0] = 1 + F[(a + 20) >> 2] = 0 + F[(a + 24) >> 2] = 0 + F[(a + 12) >> 2] = 0 + F[(a + 16) >> 2] = 0 + F[(a + 40) >> 2] = 0 + F[(a + 44) >> 2] = 0 + F[(a + 48) >> 2] = 0 + F[(a + 52) >> 2] = 0 + F[(a + 56) >> 2] = 0 + F[(a + 60) >> 2] = 0 + F[(a + 64) >> 2] = 0 + F[(a + 68) >> 2] = 0 + F[(a + 76) >> 2] = 0 + F[(a + 80) >> 2] = 0 + F[(a + 84) >> 2] = 0 + F[(a + 88) >> 2] = 0 + F[(a + 92) >> 2] = 0 + F[(a + 96) >> 2] = 0 + F[(a + 72) >> 2] = a + 4 + F[(a + 104) >> 2] = 0 + F[(a + 108) >> 2] = 0 + D[(a + 100) | 0] = 1 + F[(a + 112) >> 2] = 0 + F[(a + 116) >> 2] = 0 + F[(a + 120) >> 2] = 0 + F[(a + 124) >> 2] = 0 + F[(a + 128) >> 2] = 0 + F[(a + 132) >> 2] = 0 + F[(a + 136) >> 2] = 0 + F[(a + 140) >> 2] = 0 + } + function Hb(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0 + d = F[(a + 12) >> 2] + c = (F[(a + 16) >> 2] - d) >> 2 + a: { + if (c >>> 0 < b >>> 0) { + qa((a + 12) | 0, (b - c) | 0) + break a + } + if (b >>> 0 >= c >>> 0) { + break a + } + F[(a + 16) >> 2] = d + (b << 2) + } + b: { + c = F[a >> 2] + c: { + if (((F[(a + 8) >> 2] - c) >> 2) >>> 0 >= b >>> 0) { + break c + } + if (b >>> 0 >= 1073741824) { + break b + } + d = F[(a + 4) >> 2] + e = b << 2 + b = ka(e) + e = (b + e) | 0 + f = (b + ((d - c) & -4)) | 0 + b = f + if ((c | 0) != (d | 0)) { + while (1) { + b = (b - 4) | 0 + d = (d - 4) | 0 + F[b >> 2] = F[d >> 2] + if ((c | 0) != (d | 0)) { + continue + } + break + } + } + F[(a + 8) >> 2] = e + F[(a + 4) >> 2] = f + F[a >> 2] = b + if (!c) { + break c + } + ja(c) + } + return + } + na() + v() + } + function tb(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + F[a >> 2] = 10300 + b = F[(a + 68) >> 2] + if (b) { + F[(a + 72) >> 2] = b + ja(b) + } + b = F[(a + 56) >> 2] + if (b) { + F[(a + 60) >> 2] = b + ja(b) + } + b = F[(a + 44) >> 2] + if (b) { + F[(a + 48) >> 2] = b + ja(b) + } + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + b = F[(a + 20) >> 2] + if (b) { + F[(a + 24) >> 2] = b + ja(b) + } + b = F[(a + 8) >> 2] + if (b) { + d = b + c = F[(a + 12) >> 2] + if ((b | 0) != (c | 0)) { + while (1) { + c = (c - 4) | 0 + d = F[c >> 2] + F[c >> 2] = 0 + if (d) { + xa(d) + } + if ((b | 0) != (c | 0)) { + continue + } + break + } + d = F[(a + 8) >> 2] + } + F[(a + 12) >> 2] = b + ja(d) + } + b = F[(a + 4) >> 2] + F[(a + 4) >> 2] = 0 + if (b) { + ic(b) + } + return a | 0 + } + function qa(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + e = F[(a + 8) >> 2] + c = F[(a + 4) >> 2] + if (((e - c) >> 2) >>> 0 >= b >>> 0) { + if (b) { + b = b << 2 + c = (ma(c, 0, b) + b) | 0 + } + F[(a + 4) >> 2] = c + return + } + a: { + f = c + c = F[a >> 2] + g = (f - c) | 0 + h = g >> 2 + d = (h + b) | 0 + if (d >>> 0 < 1073741824) { + e = (e - c) | 0 + f = (e >>> 1) | 0 + d = + e >>> 0 >= 2147483644 + ? 1073741823 + : d >>> 0 < f >>> 0 + ? f + : d + if (d) { + if (d >>> 0 >= 1073741824) { + break a + } + i = ka(d << 2) + } + b = b << 2 + e = ma(((h << 2) + i) | 0, 0, b) + f = d << 2 + d = pa(i, c, g) + F[(a + 8) >> 2] = f + d + F[(a + 4) >> 2] = b + e + F[a >> 2] = d + if (c) { + ja(c) + } + return + } + na() + v() + } + oa() + v() + } + function gc(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0 + c = (a + 4) | 0 + a = Ya(a, b) + a: { + if ((c | 0) == (a | 0)) { + break a + } + b = (a + 28) | 0 + b = D[(a + 39) | 0] < 0 ? F[b >> 2] : b + while (1) { + a = b + b = (a + 1) | 0 + c = D[a | 0] + if (((c | 0) == 32) | ((c - 9) >>> 0 < 5)) { + continue + } + break + } + b: { + c: { + d: { + c = D[a | 0] + switch ((c - 43) | 0) { + case 0: + break c + case 2: + break d + default: + break b + } + } + e = 1 + } + c = D[b | 0] + a = b + } + if ((c - 48) >>> 0 < 10) { + while (1) { + d = (((L(d, 10) - D[a | 0]) | 0) + 48) | 0 + b = D[(a + 1) | 0] + a = (a + 1) | 0 + if ((b - 48) >>> 0 < 10) { + continue + } + break + } + } + a = e ? d : (0 - d) | 0 + if ((a | 0) == -1) { + break a + } + f = (a | 0) != 0 + } + return f + } + function Qa(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + a = F[a >> 2] + c = F[(a + 4) >> 2] + e = F[(a + 8) >> 2] + if (c >>> 0 < e >>> 0) { + F[c >> 2] = F[b >> 2] + F[(a + 4) >> 2] = c + 4 + return + } + a: { + d = c + c = F[a >> 2] + g = (d - c) | 0 + d = g >> 2 + f = (d + 1) | 0 + if (f >>> 0 < 1073741824) { + h = d << 2 + e = (e - c) | 0 + d = (e >>> 1) | 0 + f = + e >>> 0 >= 2147483644 + ? 1073741823 + : f >>> 0 < d >>> 0 + ? d + : f + if (f) { + if (f >>> 0 >= 1073741824) { + break a + } + e = ka(f << 2) + } else { + e = 0 + } + d = (h + e) | 0 + F[d >> 2] = F[b >> 2] + b = pa(e, c, g) + F[(a + 8) >> 2] = b + (f << 2) + F[(a + 4) >> 2] = d + 4 + F[a >> 2] = b + if (c) { + ja(c) + } + return + } + na() + v() + } + oa() + v() + } + function db(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + f = (Z - 16) | 0 + Z = f + d = (Z - 32) | 0 + Z = d + e = (Z - 16) | 0 + Z = e + F[(e + 12) >> 2] = b + F[(e + 8) >> 2] = b + c + F[(d + 24) >> 2] = F[(e + 12) >> 2] + F[(d + 28) >> 2] = F[(e + 8) >> 2] + Z = (e + 16) | 0 + c = (Z - 16) | 0 + Z = c + h = F[(d + 28) >> 2] + e = F[(d + 24) >> 2] + g = (h - e) | 0 + if ((e | 0) != (h | 0)) { + pa(a, e, g) + } + F[(c + 12) >> 2] = e + g + F[(c + 8) >> 2] = a + g + F[(d + 16) >> 2] = F[(c + 12) >> 2] + F[(d + 20) >> 2] = F[(c + 8) >> 2] + Z = (c + 16) | 0 + F[(d + 12) >> 2] = ((F[(d + 16) >> 2] - b) | 0) + b + F[(d + 8) >> 2] = ((F[(d + 20) >> 2] - a) | 0) + a + F[(f + 8) >> 2] = F[(d + 12) >> 2] + F[(f + 12) >> 2] = F[(d + 8) >> 2] + Z = (d + 32) | 0 + Z = (f + 16) | 0 + } + function _a(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + e = F[(a + 8) >> 2] + c = F[(a + 4) >> 2] + if (((e - c) >> 3) >>> 0 >= b >>> 0) { + if (b) { + b = b << 3 + c = (ma(c, 0, b) + b) | 0 + } + F[(a + 4) >> 2] = c + return + } + a: { + f = c + c = F[a >> 2] + g = (f - c) | 0 + h = g >> 3 + d = (h + b) | 0 + if (d >>> 0 < 536870912) { + e = (e - c) | 0 + f = (e >>> 2) | 0 + d = + e >>> 0 >= 2147483640 + ? 536870911 + : d >>> 0 < f >>> 0 + ? f + : d + if (d) { + if (d >>> 0 >= 536870912) { + break a + } + i = ka(d << 3) + } + b = b << 3 + e = ma(((h << 3) + i) | 0, 0, b) + f = d << 3 + d = pa(i, c, g) + F[(a + 8) >> 2] = f + d + F[(a + 4) >> 2] = b + e + F[a >> 2] = d + if (c) { + ja(c) + } + return + } + na() + v() + } + oa() + v() + } + function re(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + F[a >> 2] = 2016 + b = F[(a + 60) >> 2] + F[(a + 60) >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + b = F[(a + 48) >> 2] + if (b) { + F[(a + 52) >> 2] = b + ja(b) + } + d = F[(a + 36) >> 2] + if (d) { + c = F[(a + 40) >> 2] + b = d + if ((c | 0) != (b | 0)) { + while (1) { + c = (c - 4) | 0 + b = F[c >> 2] + F[c >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = F[(a + 36) >> 2] + } + F[(a + 40) >> 2] = d + ja(b) + } + F[a >> 2] = 1776 + b = F[(a + 16) >> 2] + if (b) { + F[(a + 20) >> 2] = b + ja(b) + } + b = F[(a + 4) >> 2] + if (b) { + F[(a + 8) >> 2] = b + ja(b) + } + return a | 0 + } + function qe(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + F[a >> 2] = 2016 + b = F[(a + 60) >> 2] + F[(a + 60) >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + b = F[(a + 48) >> 2] + if (b) { + F[(a + 52) >> 2] = b + ja(b) + } + d = F[(a + 36) >> 2] + if (d) { + c = F[(a + 40) >> 2] + b = d + if ((c | 0) != (b | 0)) { + while (1) { + c = (c - 4) | 0 + b = F[c >> 2] + F[c >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = F[(a + 36) >> 2] + } + F[(a + 40) >> 2] = d + ja(b) + } + F[a >> 2] = 1776 + b = F[(a + 16) >> 2] + if (b) { + F[(a + 20) >> 2] = b + ja(b) + } + b = F[(a + 4) >> 2] + if (b) { + F[(a + 8) >> 2] = b + ja(b) + } + ja(a) + } + function Eg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0 + a: { + b = F[(a + 8) >> 2] + b: { + if ((b | 0) < 0) { + break b + } + c = F[(a + 4) >> 2] + e = F[c >> 2] + d = (F[(c + 4) >> 2] - e) >> 2 + c: { + if (d >>> 0 < b >>> 0) { + nd(c, (b - d) | 0) + f = F[(a + 8) >> 2] + break c + } + f = b + if (b >>> 0 >= d >>> 0) { + break c + } + F[(c + 4) >> 2] = e + (b << 2) + f = b + } + d = f + if ((d | 0) <= 0) { + break b + } + a = F[(a + 4) >> 2] + c = F[a >> 2] + e = (F[(a + 4) >> 2] - c) >> 2 + a = 0 + while (1) { + if ((a | 0) == (e | 0)) { + break a + } + F[(c + (a << 2)) >> 2] = a + a = (a + 1) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + return ((b ^ -1) >>> 31) | 0 + } + ta() + v() + } + function fh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0 + d = (Z - 16) | 0 + Z = d + e = F[(a + 4) >> 2] + a: { + if ((e | 0) == -1) { + break a + } + c = F[(b + 20) >> 2] + if ((!!F[(b + 16) >> 2] & ((c | 0) >= 0)) | ((c | 0) > 0)) { + break a + } + pb(b, F[(b + 4) >> 2], F[(a + 8) >> 2], F[(a + 12) >> 2]) + c = F[(b + 20) >> 2] + if ((!!F[(b + 16) >> 2] & ((c | 0) >= 0)) | ((c | 0) > 0)) { + break a + } + pb(b, F[(b + 4) >> 2], (a + 20) | 0, (a + 24) | 0) + c = F[(b + 20) >> 2] + f = F[(b + 16) >> 2] + D[(d + 15) | 0] = F[(a + 4) >> 2] + if ((!!f & ((c | 0) >= 0)) | ((c | 0) > 0)) { + break a + } + pb(b, F[(b + 4) >> 2], (d + 15) | 0, (d + 16) | 0) + } + Z = (d + 16) | 0 + return ((e | 0) != -1) | 0 + } + function kd(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0 + e = F[(a + 8) >> 2] + c = F[(a + 4) >> 2] + if (((e - c) >> 1) >>> 0 >= b >>> 0) { + if (b) { + b = b << 1 + c = (ma(c, 0, b) + b) | 0 + } + F[(a + 4) >> 2] = c + return + } + a: { + f = c + c = F[a >> 2] + g = (f - c) | 0 + f = g >> 1 + d = (f + b) | 0 + if ((d | 0) >= 0) { + e = (e - c) | 0 + d = + e >>> 0 >= 2147483646 + ? 2147483647 + : d >>> 0 < e >>> 0 + ? e + : d + if (d) { + if ((d | 0) < 0) { + break a + } + h = ka(d << 1) + } + b = b << 1 + e = ma(((f << 1) + h) | 0, 0, b) + f = d << 1 + d = pa(h, c, g) + F[(a + 8) >> 2] = f + d + F[(a + 4) >> 2] = b + e + F[a >> 2] = d + if (c) { + ja(c) + } + return + } + na() + v() + } + oa() + v() + } + function of(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0 + d = (Z - 16) | 0 + Z = d + Pd(d, a, b, c) + F[(a + 24) >> 2] = F[d >> 2] + e = (a + 24) | 0 + a: { + if ((e | 0) == (d | 0)) { + break a + } + b = (a + 28) | 0 + c = d | 4 + f = G[(d + 15) | 0] + g = (f << 24) >> 24 + if (D[(a + 39) | 0] >= 0) { + if ((g | 0) >= 0) { + a = F[(c + 4) >> 2] + F[b >> 2] = F[c >> 2] + F[(b + 4) >> 2] = a + F[(b + 8) >> 2] = F[(c + 8) >> 2] + break a + } + qb(b, F[(d + 4) >> 2], F[(d + 8) >> 2]) + break a + } + a = (g | 0) < 0 + rb(b, a ? F[(d + 4) >> 2] : c, a ? F[(d + 8) >> 2] : f) + } + if (D[(d + 15) | 0] < 0) { + ja(F[(d + 4) >> 2]) + } + Z = (d + 16) | 0 + return e | 0 + } + function ra(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + e = (Z - 16) | 0 + Z = e + a: { + b: { + if (c >>> 0 < 11) { + d = a + D[(a + 11) | 0] = (G[(a + 11) | 0] & 128) | c + D[(a + 11) | 0] = G[(a + 11) | 0] & 127 + break b + } + if (c >>> 0 > 2147483631) { + break a + } + g = (e + 8) | 0 + if (c >>> 0 >= 11) { + f = (c + 16) & -16 + d = (f - 1) | 0 + d = (d | 0) == 11 ? f : d + } else { + d = 10 + } + sb(g, (d + 1) | 0) + d = F[(e + 8) >> 2] + F[a >> 2] = d + F[(a + 8) >> 2] = + (F[(a + 8) >> 2] & -2147483648) | + (F[(e + 12) >> 2] & 2147483647) + F[(a + 8) >> 2] = F[(a + 8) >> 2] | -2147483648 + F[(a + 4) >> 2] = c + } + db(d, b, (c + 1) | 0) + Z = (e + 16) | 0 + return + } + za() + v() + } + function pf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0 + b = (Z - 16) | 0 + Z = b + Od(b) + F[(a + 24) >> 2] = F[b >> 2] + e = (a + 24) | 0 + a: { + if ((e | 0) == (b | 0)) { + break a + } + c = (a + 28) | 0 + d = b | 4 + f = G[(b + 15) | 0] + g = (f << 24) >> 24 + if (D[(a + 39) | 0] >= 0) { + if ((g | 0) >= 0) { + a = F[(d + 4) >> 2] + F[c >> 2] = F[d >> 2] + F[(c + 4) >> 2] = a + F[(c + 8) >> 2] = F[(d + 8) >> 2] + break a + } + qb(c, F[(b + 4) >> 2], F[(b + 8) >> 2]) + break a + } + a = (g | 0) < 0 + rb(c, a ? F[(b + 4) >> 2] : d, a ? F[(b + 8) >> 2] : f) + } + if (D[(b + 15) | 0] < 0) { + ja(F[(b + 4) >> 2]) + } + Z = (b + 16) | 0 + return e | 0 + } + function Rf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0 + d = (Z - 16) | 0 + Z = d + a: { + e = ya(c) + if (e >>> 0 < 2147483632) { + b: { + c: { + if (e >>> 0 >= 11) { + g = ((e | 15) + 1) | 0 + f = ka(g) + F[(d + 8) >> 2] = g | -2147483648 + F[d >> 2] = f + F[(d + 4) >> 2] = e + g = (e + f) | 0 + break c + } + D[(d + 11) | 0] = e + g = (d + e) | 0 + f = d + if (!e) { + break b + } + } + la(f, c, e) + } + D[g | 0] = 0 + f = (a + 16) | 0 + c = Sc(b, d, f) + b = F[(a + 16) >> 2] + a = D[(a + 27) | 0] + if (D[(d + 11) | 0] < 0) { + ja(F[d >> 2]) + } + Z = (d + 16) | 0 + a = c ? ((a | 0) < 0 ? b : f) : 0 + break a + } + za() + v() + } + return a | 0 + } + function Yb(a, b) { + var c = 0, + d = 0, + e = 0 + c = F[(a + 4) >> 2] + d = (c + b) | 0 + F[(a + 4) >> 2] = d + if (!(((d - 1) ^ (c - 1)) >>> 0 < 32 ? c : 0)) { + F[ + (F[a >> 2] + + ((d >>> 0 >= 33 ? ((d - 1) >>> 5) | 0 : 0) << 2)) >> + 2 + ] = 0 + } + a: { + if (!b) { + break a + } + a = (F[a >> 2] + ((c >>> 3) & 536870908)) | 0 + c = c & 31 + if (c) { + d = (32 - c) | 0 + e = b >>> 0 > d >>> 0 ? d : b + F[a >> 2] = + F[a >> 2] & (((-1 << c) & (-1 >>> (d - e))) ^ -1) + b = (b - e) | 0 + a = (a + 4) | 0 + } + c = (b >>> 5) | 0 + if (b >>> 0 >= 32) { + ma(a, 0, c << 2) + } + if ((b & -32) == (b | 0)) { + break a + } + a = ((c << 2) + a) | 0 + F[a >> 2] = F[a >> 2] & ((-1 >>> (32 - (b & 31))) ^ -1) + } + } + function ld(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 10) { + break a + } + d = F[(c + 20) >> 2] + f = F[(c + 12) >> 2] + e = F[(c + 16) >> 2] + if ( + (((d | 0) >= (f | 0)) & (e >>> 0 >= I[(c + 8) >> 2])) | + ((d | 0) > (f | 0)) + ) { + break a + } + f = D[(e + F[c >> 2]) | 0] + e = (e + 1) | 0 + d = e ? d : (d + 1) | 0 + F[(c + 16) >> 2] = e + F[(c + 20) >> 2] = d + d = f + b: { + if ((d | 0) < 0) { + if (!ld((a + 1) | 0, b, c)) { + break a + } + a = F[b >> 2] + d = (d & 127) | (a << 7) + a = (F[(b + 4) >> 2] << 7) | (a >>> 25) + break b + } + d = d & 255 + a = 0 + } + F[b >> 2] = d + F[(b + 4) >> 2] = a + g = 1 + } + return g + } + function Sa(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 10) { + break a + } + d = F[(c + 20) >> 2] + f = F[(c + 12) >> 2] + e = F[(c + 16) >> 2] + if ( + (((d | 0) >= (f | 0)) & (e >>> 0 >= I[(c + 8) >> 2])) | + ((d | 0) > (f | 0)) + ) { + break a + } + f = D[(e + F[c >> 2]) | 0] + e = (e + 1) | 0 + d = e ? d : (d + 1) | 0 + F[(c + 16) >> 2] = e + F[(c + 20) >> 2] = d + d = f + b: { + if ((d | 0) < 0) { + if (!Sa((a + 1) | 0, b, c)) { + break a + } + a = F[b >> 2] + d = (d & 127) | (a << 7) + a = (F[(b + 4) >> 2] << 7) | (a >>> 25) + break b + } + d = d & 255 + a = 0 + } + F[b >> 2] = d + F[(b + 4) >> 2] = a + g = 1 + } + return g + } + function Ne(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + if (La(a, F[(b + 8) >> 2], e)) { + if ( + !((F[(b + 28) >> 2] == 1) | (F[(b + 4) >> 2] != (c | 0))) + ) { + F[(b + 28) >> 2] = d + } + return + } + a: { + if (!La(a, F[b >> 2], e)) { + break a + } + if ( + !( + (F[(b + 16) >> 2] != (c | 0)) & + (F[(b + 20) >> 2] != (c | 0)) + ) + ) { + if ((d | 0) != 1) { + break a + } + F[(b + 32) >> 2] = 1 + return + } + F[(b + 20) >> 2] = c + F[(b + 32) >> 2] = d + F[(b + 40) >> 2] = F[(b + 40) >> 2] + 1 + if (!((F[(b + 36) >> 2] != 1) | (F[(b + 24) >> 2] != 2))) { + D[(b + 54) | 0] = 1 + } + F[(b + 44) >> 2] = 4 + } + } + function jg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + e = (Z + -64) | 0 + Z = e + d = $[F[(F[a >> 2] + 44) >> 2]](a, b) | 0 + a = $[F[(F[a >> 2] + 40) >> 2]](a, b) | 0 + f = kb(e) + g = F[(b + 56) >> 2] + h = d & 255 + i = a + a = (a - 1) | 0 + if (a >>> 0 <= 10) { + a = F[((a << 2) + 10148) >> 2] + } else { + a = -1 + } + d = L(a, d) + cc(f, g, h, i, 0, d, d >> 31) + a = bc(ka(96), f) + ac(a, c) + D[(a + 84) | 0] = 1 + F[(a + 72) >> 2] = F[(a + 68) >> 2] + F[(a + 60) >> 2] = F[(b + 60) >> 2] + Z = (e - -64) | 0 + return a | 0 + } + function rh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + F[a >> 2] = 8176 + b = F[(a + 48) >> 2] + F[(a + 48) >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + F[a >> 2] = 10032 + b = F[(a + 20) >> 2] + if (b) { + F[(a + 24) >> 2] = b + ja(b) + } + d = F[(a + 8) >> 2] + if (d) { + c = F[(a + 12) >> 2] + b = d + if ((c | 0) != (b | 0)) { + while (1) { + c = (c - 4) | 0 + b = F[c >> 2] + F[c >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = F[(a + 8) >> 2] + } + F[(a + 12) >> 2] = d + ja(b) + } + return a | 0 + } + function Dc(a, b, c, d) { + D[(a + 53) | 0] = 1 + a: { + if (F[(a + 4) >> 2] != (c | 0)) { + break a + } + D[(a + 52) | 0] = 1 + c = F[(a + 16) >> 2] + b: { + if (!c) { + F[(a + 36) >> 2] = 1 + F[(a + 24) >> 2] = d + F[(a + 16) >> 2] = b + if ((d | 0) != 1) { + break a + } + if (F[(a + 48) >> 2] == 1) { + break b + } + break a + } + if ((b | 0) == (c | 0)) { + c = F[(a + 24) >> 2] + if ((c | 0) == 2) { + F[(a + 24) >> 2] = d + c = d + } + if (F[(a + 48) >> 2] != 1) { + break a + } + if ((c | 0) == 1) { + break b + } + break a + } + F[(a + 36) >> 2] = F[(a + 36) >> 2] + 1 + } + D[(a + 54) | 0] = 1 + } + } + function qh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + F[a >> 2] = 8176 + b = F[(a + 48) >> 2] + F[(a + 48) >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + F[a >> 2] = 10032 + b = F[(a + 20) >> 2] + if (b) { + F[(a + 24) >> 2] = b + ja(b) + } + d = F[(a + 8) >> 2] + if (d) { + c = F[(a + 12) >> 2] + b = d + if ((c | 0) != (b | 0)) { + while (1) { + c = (c - 4) | 0 + b = F[c >> 2] + F[c >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = F[(a + 8) >> 2] + } + F[(a + 12) >> 2] = d + ja(b) + } + ja(a) + } + function Se(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + e = (Z + -64) | 0 + Z = e + d = 1 + a: { + if (La(a, b, 0)) { + break a + } + d = 0 + if (!b) { + break a + } + b = Fc(b, 11068) + d = 0 + if (!b) { + break a + } + d = (e + 8) | 0 + ma(d | 4, 0, 52) + F[(e + 56) >> 2] = 1 + F[(e + 20) >> 2] = -1 + F[(e + 16) >> 2] = a + F[(e + 8) >> 2] = b + $[F[(F[b >> 2] + 28) >> 2]](b, d, F[c >> 2], 1) + a = F[(e + 32) >> 2] + if ((a | 0) == 1) { + F[c >> 2] = F[(e + 24) >> 2] + } + d = (a | 0) == 1 + } + Z = (e - -64) | 0 + return d | 0 + } + function Fd(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = (Z - 16) | 0 + Z = d + F[(a + 4) >> 2] = b + b = F[(b + 64) >> 2] + e = F[b >> 2] + b = F[(b + 4) >> 2] + D[(d + 15) | 0] = 0 + Ea((a + 24) | 0, ((((b - e) >> 2) >>> 0) / 3) | 0, (d + 15) | 0) + b = F[(a + 4) >> 2] + e = F[(b + 56) >> 2] + b = F[(b + 52) >> 2] + D[(d + 14) | 0] = 0 + Ea((a + 36) | 0, (e - b) >> 2, (d + 14) | 0) + b = F[(c + 12) >> 2] + F[(a + 16) >> 2] = F[(c + 8) >> 2] + F[(a + 20) >> 2] = b + b = F[(c + 4) >> 2] + F[(a + 8) >> 2] = F[c >> 2] + F[(a + 12) >> 2] = b + Z = (d + 16) | 0 + } + function zf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0 + a = (Z - 16) | 0 + Z = a + f = D[(b + 24) | 0] + e = F[2555] + F[(a + 8) >> 2] = F[2554] + F[(a + 12) >> 2] = e + e = F[2553] + F[a >> 2] = F[2552] + F[(a + 4) >> 2] = e + e = lb(b, c, f, a) + if (e) { + b = 0 + if (f) { + c = (f & 255) << 2 + b = ka(c) + g = (la(b, a, c) + c) | 0 + } + c = F[d >> 2] + if (c) { + F[(d + 4) >> 2] = c + ja(c) + } + F[(d + 8) >> 2] = g + F[(d + 4) >> 2] = g + F[d >> 2] = b + } + Z = (a + 16) | 0 + return e | 0 + } + function wd(a, b) { + var c = 0, + d = 0 + a: { + c = F[(a + 4) >> 2] + d = F[(a + 8) >> 2] + if ((c | 0) == d << 5) { + if (((c + 1) | 0) < 0) { + break a + } + if (c >>> 0 <= 1073741822) { + d = d << 6 + c = ((c & -32) + 32) | 0 + c = c >>> 0 < d >>> 0 ? d : c + } else { + c = 2147483647 + } + $a(a, c) + c = F[(a + 4) >> 2] + } + F[(a + 4) >> 2] = c + 1 + d = 1 << c + a = (F[a >> 2] + ((c >>> 3) & 536870908)) | 0 + if (G[b | 0]) { + F[a >> 2] = d | F[a >> 2] + return + } + F[a >> 2] = F[a >> 2] & (d ^ -1) + return + } + na() + v() + } + function Zb(a) { + var b = 0 + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 56) >> 2] = 0 + F[(a + 48) >> 2] = 0 + F[(a + 52) >> 2] = 0 + F[(a + 40) >> 2] = 0 + F[(a + 44) >> 2] = 0 + F[(a + 32) >> 2] = 0 + F[(a + 36) >> 2] = 0 + F[(a + 24) >> 2] = 0 + F[(a + 28) >> 2] = 0 + F[(a + 16) >> 2] = 0 + F[(a + 20) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[(a + 12) >> 2] = 0 + b = (a - -64) | 0 + F[b >> 2] = 0 + F[(b + 4) >> 2] = 0 + F[(a + 72) >> 2] = 0 + F[(a + 76) >> 2] = 0 + F[(a + 80) >> 2] = 0 + F[(a + 84) >> 2] = 0 + F[(a + 60) >> 2] = a + return a + } + function ve(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + f = $[F[(F[a >> 2] + 24) >> 2]](a) | 0 + c = 1 + a: { + if ((f | 0) <= 0) { + break a + } + d = F[F[(a + 36) >> 2] >> 2] + g = (a + 48) | 0 + c = 0 + if (!($[F[(F[d >> 2] + 16) >> 2]](d, g, b) | 0)) { + break a + } + while (1) { + e = (e + 1) | 0 + if ((f | 0) != (e | 0)) { + d = F[(F[(a + 36) >> 2] + (e << 2)) >> 2] + if ($[F[(F[d >> 2] + 16) >> 2]](d, g, b) | 0) { + continue + } + } + break + } + c = (e | 0) >= (f | 0) + } + return c | 0 + } + function ue(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0 + f = $[F[(F[a >> 2] + 24) >> 2]](a) | 0 + c = 1 + a: { + if ((f | 0) <= 0) { + break a + } + d = F[F[(a + 36) >> 2] >> 2] + g = (a + 48) | 0 + c = 0 + if (!($[F[(F[d >> 2] + 20) >> 2]](d, g, b) | 0)) { + break a + } + while (1) { + e = (e + 1) | 0 + if ((f | 0) != (e | 0)) { + d = F[(F[(a + 36) >> 2] + (e << 2)) >> 2] + if ($[F[(F[d >> 2] + 20) >> 2]](d, g, b) | 0) { + continue + } + } + break + } + c = (e | 0) >= (f | 0) + } + return c | 0 + } + function bh(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = (Z - 16) | 0 + Z = d + F[(a + 4) >> 2] = b + e = F[b >> 2] + b = F[(b + 4) >> 2] + D[(d + 15) | 0] = 0 + Ea((a + 24) | 0, ((((b - e) >> 2) >>> 0) / 3) | 0, (d + 15) | 0) + b = F[(a + 4) >> 2] + e = F[(b + 28) >> 2] + b = F[(b + 24) >> 2] + D[(d + 14) | 0] = 0 + Ea((a + 36) | 0, (e - b) >> 2, (d + 14) | 0) + b = F[(c + 12) >> 2] + F[(a + 16) >> 2] = F[(c + 8) >> 2] + F[(a + 20) >> 2] = b + b = F[(c + 4) >> 2] + F[(a + 8) >> 2] = F[c >> 2] + F[(a + 12) >> 2] = b + Z = (d + 16) | 0 + } + function hb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = F[(c + 20) >> 2] + e = F[(c + 12) >> 2] + f = F[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= I[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = G[(F[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!hb((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (F[b >> 2] << 7) + } + F[b >> 2] = e + g = 1 + } + return g + } + function fb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = F[(c + 20) >> 2] + e = F[(c + 12) >> 2] + f = F[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= I[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = G[(F[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!fb((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (F[b >> 2] << 7) + } + F[b >> 2] = e + g = 1 + } + return g + } + function Wb(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = F[(c + 20) >> 2] + e = F[(c + 12) >> 2] + f = F[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= I[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = G[(F[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!Wb((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (F[b >> 2] << 7) + } + F[b >> 2] = e + g = 1 + } + return g + } + function Ta(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = F[(c + 20) >> 2] + e = F[(c + 12) >> 2] + f = F[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= I[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = G[(F[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!Ta((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (F[b >> 2] << 7) + } + F[b >> 2] = e + g = 1 + } + return g + } + function Qd(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = F[(c + 20) >> 2] + e = F[(c + 12) >> 2] + f = F[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= I[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = G[(F[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!Qd((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (F[b >> 2] << 7) + } + F[b >> 2] = e + g = 1 + } + return g + } + function Oa(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = F[(c + 20) >> 2] + e = F[(c + 12) >> 2] + f = F[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= I[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = G[(F[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!Oa((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (F[b >> 2] << 7) + } + F[b >> 2] = e + g = 1 + } + return g + } + function Da(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + a: { + if (a >>> 0 > 5) { + break a + } + d = F[(c + 20) >> 2] + e = F[(c + 12) >> 2] + f = F[(c + 16) >> 2] + if ( + (((d | 0) >= (e | 0)) & (f >>> 0 >= I[(c + 8) >> 2])) | + ((d | 0) > (e | 0)) + ) { + break a + } + e = G[(F[c >> 2] + f) | 0] + f = (f + 1) | 0 + d = f ? d : (d + 1) | 0 + F[(c + 16) >> 2] = f + F[(c + 20) >> 2] = d + d = (e << 24) >> 24 + if ((d | 0) < 0) { + if (!Da((a + 1) | 0, b, c)) { + break a + } + e = (d & 127) | (F[b >> 2] << 7) + } + F[b >> 2] = e + g = 1 + } + return g + } + function sa(a, b, c) { + var d = 0, + e = 0 + a: { + b: { + if (c >>> 0 >= 4) { + if ((a | b) & 3) { + break b + } + while (1) { + if (F[a >> 2] != F[b >> 2]) { + break b + } + b = (b + 4) | 0 + a = (a + 4) | 0 + c = (c - 4) | 0 + if (c >>> 0 > 3) { + continue + } + break + } + } + if (!c) { + break a + } + } + while (1) { + d = G[a | 0] + e = G[b | 0] + if ((d | 0) == (e | 0)) { + b = (b + 1) | 0 + a = (a + 1) | 0 + c = (c - 1) | 0 + if (c) { + continue + } + break a + } + break + } + return (d - e) | 0 + } + return 0 + } + function td(a) { + var b = 0, + c = 0, + d = 0, + e = 0 + d = F[a >> 2] + if (d) { + e = d + c = F[(a + 4) >> 2] + if ((d | 0) != (c | 0)) { + while (1) { + e = (c - 144) | 0 + b = F[(e + 132) >> 2] + if (b) { + F[(c - 8) >> 2] = b + ja(b) + } + b = F[(c - 28) >> 2] + if (b) { + F[(c - 24) >> 2] = b + ja(b) + } + b = F[(c - 40) >> 2] + if (b) { + F[(c - 36) >> 2] = b + ja(b) + } + Gb((c - 140) | 0) + c = e + if ((d | 0) != (c | 0)) { + continue + } + break + } + e = F[a >> 2] + } + F[(a + 4) >> 2] = d + ja(e) + } + } + function Ef(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = F[(b + 4) >> 2] + a: { + if (!d) { + break a + } + b = F[(F[(F[(b + 8) >> 2] + (c << 2)) >> 2] + 60) >> 2] + if ((b | 0) < 0) { + break a + } + a = F[(d + 24) >> 2] + c = F[(d + 28) >> 2] + if ((a | 0) == (c | 0)) { + break a + } + b: { + while (1) { + e = F[a >> 2] + if ((b | 0) == F[(e + 24) >> 2]) { + break b + } + a = (a + 4) | 0 + if ((c | 0) != (a | 0)) { + continue + } + break + } + e = 0 + } + } + return e | 0 + } + function ic(a) { + var b = 0, + c = 0, + d = 0 + if (a) { + d = F[(a + 24) >> 2] + if (d) { + b = d + c = F[(a + 28) >> 2] + if ((b | 0) != (c | 0)) { + while (1) { + c = (c - 4) | 0 + b = F[c >> 2] + F[c >> 2] = 0 + if (b) { + Ca((b + 12) | 0, F[(b + 16) >> 2]) + Ba(b, F[(b + 4) >> 2]) + ja(b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = F[(a + 24) >> 2] + } + F[(a + 28) >> 2] = d + ja(b) + } + Ca((a + 12) | 0, F[(a + 16) >> 2]) + Ba(a, F[(a + 4) >> 2]) + ja(a) + } + } + function $g(a) { + a = a | 0 + var b = 0 + F[(a + 8) >> 2] = 9136 + F[a >> 2] = 8924 + b = F[(a + 96) >> 2] + if (b) { + F[(a + 100) >> 2] = b + ja(b) + } + b = F[(a + 80) >> 2] + if (b) { + F[(a + 84) >> 2] = b + ja(b) + } + b = F[(a + 68) >> 2] + if (b) { + F[(a + 72) >> 2] = b + ja(b) + } + b = F[(a + 56) >> 2] + if (b) { + F[(a + 60) >> 2] = b + ja(b) + } + F[(a + 8) >> 2] = 9372 + b = F[(a + 44) >> 2] + if (b) { + ja(b) + } + b = F[(a + 32) >> 2] + if (b) { + ja(b) + } + return a | 0 + } + function _g(a) { + a = a | 0 + var b = 0 + F[(a + 8) >> 2] = 9136 + F[a >> 2] = 8924 + b = F[(a + 96) >> 2] + if (b) { + F[(a + 100) >> 2] = b + ja(b) + } + b = F[(a + 80) >> 2] + if (b) { + F[(a + 84) >> 2] = b + ja(b) + } + b = F[(a + 68) >> 2] + if (b) { + F[(a + 72) >> 2] = b + ja(b) + } + b = F[(a + 56) >> 2] + if (b) { + F[(a + 60) >> 2] = b + ja(b) + } + F[(a + 8) >> 2] = 9372 + b = F[(a + 44) >> 2] + if (b) { + ja(b) + } + b = F[(a + 32) >> 2] + if (b) { + ja(b) + } + ja(a) + } + function wh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + F[a >> 2] = 10032 + b = F[(a + 20) >> 2] + if (b) { + F[(a + 24) >> 2] = b + ja(b) + } + d = F[(a + 8) >> 2] + if (d) { + c = F[(a + 12) >> 2] + b = d + if ((c | 0) != (b | 0)) { + while (1) { + c = (c - 4) | 0 + b = F[c >> 2] + F[c >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = F[(a + 8) >> 2] + } + F[(a + 12) >> 2] = d + ja(b) + } + return a | 0 + } + function uc(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + h = F[(c + 8) >> 2] + e = F[(c + 16) >> 2] + g = F[(c + 12) >> 2] + f = g + d = F[(c + 20) >> 2] + if ( + ((h >>> 0 > e >>> 0) & ((f | 0) >= (d | 0))) | + ((d | 0) < (f | 0)) + ) { + b = G[(F[c >> 2] + e) | 0] + i = (e + 1) | 0 + f = i ? d : (d + 1) | 0 + F[(c + 16) >> 2] = i + F[(c + 20) >> 2] = f + F[(a + 4) >> 2] = b + } + return ( + ((e >>> 0 < h >>> 0) & ((d | 0) <= (g | 0))) | + ((d | 0) < (g | 0)) + ) + } + function La(a, b, c) { + var d = 0 + if (!c) { + return F[(a + 4) >> 2] == F[(b + 4) >> 2] + } + if ((a | 0) == (b | 0)) { + return 1 + } + d = F[(a + 4) >> 2] + a = G[d | 0] + c = F[(b + 4) >> 2] + b = G[c | 0] + a: { + if (!a | ((b | 0) != (a | 0))) { + break a + } + while (1) { + b = G[(c + 1) | 0] + a = G[(d + 1) | 0] + if (!a) { + break a + } + c = (c + 1) | 0 + d = (d + 1) | 0 + if ((a | 0) == (b | 0)) { + continue + } + break + } + } + return (a | 0) == (b | 0) + } + function Gg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + F[a >> 2] = 10032 + b = F[(a + 20) >> 2] + if (b) { + F[(a + 24) >> 2] = b + ja(b) + } + d = F[(a + 8) >> 2] + if (d) { + c = F[(a + 12) >> 2] + b = d + if ((c | 0) != (b | 0)) { + while (1) { + c = (c - 4) | 0 + b = F[c >> 2] + F[c >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + if ((c | 0) != (d | 0)) { + continue + } + break + } + b = F[(a + 8) >> 2] + } + F[(a + 12) >> 2] = d + ja(b) + } + ja(a) + } + function Gf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = F[(b + 12) >> 2] + b = F[(b + 8) >> 2] + a = 0 + a: { + if ((d | 0) == (b | 0)) { + break a + } + a = (d - b) >> 2 + d = a >>> 0 <= 1 ? 1 : a + a = 0 + b: { + while (1) { + e = F[(b + (a << 2)) >> 2] + if (F[(e + 60) >> 2] == (c | 0)) { + break b + } + a = (a + 1) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + a = 0 + break a + } + a = (a | 0) != -1 ? e : 0 + } + return a | 0 + } + function ah(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 9136 + b = F[(a + 88) >> 2] + if (b) { + F[(a + 92) >> 2] = b + ja(b) + } + b = F[(a + 72) >> 2] + if (b) { + F[(a + 76) >> 2] = b + ja(b) + } + b = F[(a + 60) >> 2] + if (b) { + F[(a - -64) >> 2] = b + ja(b) + } + b = F[(a + 48) >> 2] + if (b) { + F[(a + 52) >> 2] = b + ja(b) + } + F[a >> 2] = 9372 + b = F[(a + 36) >> 2] + if (b) { + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + ja(b) + } + return a | 0 + } + function Tc(a, b) { + var c = 0, + d = 0, + e = 0 + F[(a + 8) >> 2] = 0 + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + a: { + c = F[(b + 4) >> 2] + d = F[b >> 2] + b: { + if ((c | 0) == (d | 0)) { + a = c + break b + } + c = (c - d) | 0 + if ((c | 0) < 0) { + break a + } + d = c + e = ka(c) + c = ma(e, 0, c) + d = (d + c) | 0 + F[(a + 8) >> 2] = d + F[(a + 4) >> 2] = d + F[a >> 2] = c + c = F[b >> 2] + a = F[(b + 4) >> 2] + } + la(e, c, (a - c) | 0) + return + } + na() + v() + } + function Dd(a) { + var b = 0, + c = 0, + d = 0, + e = 0 + c = F[(a + 4) >> 2] + d = F[a >> 2] + if ((c | 0) != (d | 0)) { + while (1) { + e = (c - 144) | 0 + b = F[(e + 132) >> 2] + if (b) { + F[(c - 8) >> 2] = b + ja(b) + } + b = F[(c - 28) >> 2] + if (b) { + F[(c - 24) >> 2] = b + ja(b) + } + b = F[(c - 40) >> 2] + if (b) { + F[(c - 36) >> 2] = b + ja(b) + } + Gb((c - 140) | 0) + c = e + if ((d | 0) != (c | 0)) { + continue + } + break + } + } + F[(a + 4) >> 2] = d + } + function Xg(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 9136 + b = F[(a + 88) >> 2] + if (b) { + F[(a + 92) >> 2] = b + ja(b) + } + b = F[(a + 72) >> 2] + if (b) { + F[(a + 76) >> 2] = b + ja(b) + } + b = F[(a + 60) >> 2] + if (b) { + F[(a - -64) >> 2] = b + ja(b) + } + b = F[(a + 48) >> 2] + if (b) { + F[(a + 52) >> 2] = b + ja(b) + } + F[a >> 2] = 9372 + b = F[(a + 36) >> 2] + if (b) { + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + ja(b) + } + ja(a) + } + function Za(a) { + var b = 0 + if (a) { + b = F[(a + 76) >> 2] + if (b) { + F[(a + 80) >> 2] = b + ja(b) + } + b = F[(a - -64) >> 2] + if (b) { + F[(a + 68) >> 2] = b + ja(b) + } + b = F[(a + 48) >> 2] + if (b) { + F[(a + 52) >> 2] = b + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + F[(a + 28) >> 2] = b + ja(b) + } + b = F[(a + 12) >> 2] + if (b) { + F[(a + 16) >> 2] = b + ja(b) + } + b = F[a >> 2] + if (b) { + F[(a + 4) >> 2] = b + ja(b) + } + ja(a) + } + } + function Gb(a) { + var b = 0 + b = F[(a + 84) >> 2] + if (b) { + F[(a + 88) >> 2] = b + ja(b) + } + b = F[(a + 72) >> 2] + if (b) { + F[(a + 76) >> 2] = b + ja(b) + } + b = F[(a + 52) >> 2] + if (b) { + F[(a + 56) >> 2] = b + ja(b) + } + b = F[(a + 40) >> 2] + if (b) { + F[(a + 44) >> 2] = b + ja(b) + } + b = F[(a + 28) >> 2] + if (b) { + F[(a + 32) >> 2] = b + ja(b) + } + b = F[(a + 12) >> 2] + if (b) { + ja(b) + } + a = F[a >> 2] + if (a) { + ja(a) + } + } + function Lc(a, b, c) { + var d = 0, + e = 0, + f = 0, + g = 0 + f = (Z - 16) | 0 + Z = f + d = (Z - 16) | 0 + Z = d + b = (b - a) >> 2 + while (1) { + if (b) { + F[(d + 12) >> 2] = a + e = (b >>> 1) | 0 + F[(d + 12) >> 2] = F[(d + 12) >> 2] + (e << 2) + g = ((e ^ -1) + b) | 0 + b = e + e = I[F[(d + 12) >> 2] >> 2] < I[c >> 2] + b = e ? g : b + a = e ? (F[(d + 12) >> 2] + 4) | 0 : a + continue + } + break + } + Z = (d + 16) | 0 + Z = (f + 16) | 0 + return a + } + function id(a, b) { + var c = 0, + d = 0 + d = ka(40) + F[d >> 2] = -1 + c = (d + 8) | 0 + F[(c + 16) >> 2] = 0 + F[(c + 20) >> 2] = 0 + F[(c + 8) >> 2] = 0 + F[c >> 2] = 0 + F[(c + 4) >> 2] = 0 + F[(c + 24) >> 2] = 0 + F[(c + 28) >> 2] = 0 + $[F[(F[a >> 2] + 16) >> 2]](a, d) + a = F[(b + 88) >> 2] + F[(b + 88) >> 2] = d + if (a) { + b = F[(a + 8) >> 2] + if (b) { + F[(a + 12) >> 2] = b + ja(b) + } + ja(a) + } + return 1 + } + function ya(a) { + var b = 0, + c = 0, + d = 0 + b = a + a: { + if (b & 3) { + while (1) { + if (!G[b | 0]) { + break a + } + b = (b + 1) | 0 + if (b & 3) { + continue + } + break + } + } + while (1) { + c = b + b = (b + 4) | 0 + d = F[c >> 2] + if (!((d ^ -1) & (d - 16843009) & -2139062144)) { + continue + } + break + } + while (1) { + b = c + c = (b + 1) | 0 + if (G[b | 0]) { + continue + } + break + } + } + return (b - a) | 0 + } + function wa(a) { + var b = 0, + c = 0, + d = 0, + e = 0, + f = 0 + d = G[(a + 12) | 0] + c = F[(a + 8) >> 2] + a: { + if (c >>> 0 > 4095) { + break a + } + b = F[(a + 4) >> 2] + if ((b | 0) <= 0) { + break a + } + b = (b - 1) | 0 + F[(a + 4) >> 2] = b + c = G[(b + F[a >> 2]) | 0] | (c << 8) + } + d = (0 - d) & 255 + b = L(d, (c >>> 8) | 0) + e = c & 255 + f = e >>> 0 < d >>> 0 + F[(a + 8) >> 2] = f ? (b + e) | 0 : (c - ((b + d) | 0)) | 0 + return f + } + function yc(a, b) { + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[a >> 2] = 1776 + F[(a + 12) >> 2] = 0 + F[(a + 16) >> 2] = 0 + F[(a + 20) >> 2] = 0 + F[(a + 24) >> 2] = 0 + F[(a + 28) >> 2] = 0 + F[(a + 32) >> 2] = 0 + F[(a + 36) >> 2] = 0 + F[(a + 40) >> 2] = 0 + F[a >> 2] = 2016 + F[(a + 60) >> 2] = b + F[(a + 44) >> 2] = 0 + F[(a + 48) >> 2] = 0 + F[(a + 52) >> 2] = 0 + F[(a + 56) >> 2] = 0 + return a + } + function Eb(a, b) { + var c = 0, + d = 0, + e = 0 + c = ya(b) + if (c >>> 0 < 2147483632) { + a: { + b: { + if (c >>> 0 >= 11) { + d = ((c | 15) + 1) | 0 + e = ka(d) + F[(a + 8) >> 2] = d | -2147483648 + F[a >> 2] = e + F[(a + 4) >> 2] = c + d = (c + e) | 0 + break b + } + D[(a + 11) | 0] = c + d = (a + c) | 0 + e = a + if (!c) { + break a + } + } + pa(e, b, c) + } + D[d | 0] = 0 + return a + } + za() + v() + } + function Of(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + if (a) { + if (D[(a + 27) | 0] < 0) { + ja(F[(a + 16) >> 2]) + } + b = F[a >> 2] + if (b) { + c = b + d = F[(a + 4) >> 2] + if ((b | 0) != (d | 0)) { + while (1) { + c = (d - 12) | 0 + if (D[(d - 1) | 0] < 0) { + ja(F[c >> 2]) + } + d = c + if ((d | 0) != (b | 0)) { + continue + } + break + } + c = F[a >> 2] + } + F[(a + 4) >> 2] = b + ja(c) + } + ja(a) + } + } + function xa(a) { + a = a | 0 + var b = 0, + c = 0 + if (a) { + b = F[(a + 88) >> 2] + F[(a + 88) >> 2] = 0 + if (b) { + c = F[(b + 8) >> 2] + if (c) { + F[(b + 12) >> 2] = c + ja(c) + } + ja(b) + } + b = F[(a + 68) >> 2] + if (b) { + F[(a + 72) >> 2] = b + ja(b) + } + b = F[(a + 64) >> 2] + F[(a + 64) >> 2] = 0 + if (b) { + c = F[b >> 2] + if (c) { + F[(b + 4) >> 2] = c + ja(c) + } + ja(b) + } + ja(a) + } + } + function Ib(a, b) { + var c = 0, + d = 0, + e = 0 + a: { + c = F[a >> 2] + b: { + if (((F[(a + 8) >> 2] - c) >> 2) >>> 0 >= b >>> 0) { + break b + } + if (b >>> 0 >= 1073741824) { + break a + } + d = (F[(a + 4) >> 2] - c) | 0 + e = b << 2 + b = pa(ka(e), c, d) + F[(a + 8) >> 2] = b + e + F[(a + 4) >> 2] = b + d + F[a >> 2] = b + if (!c) { + break b + } + ja(c) + } + return + } + na() + v() + } + function Df(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + b = F[(b + 96) >> 2] + a = ka(12) + b = (b + L(c, 12)) | 0 + c = F[(b + 4) >> 2] + F[a >> 2] = F[b >> 2] + F[(a + 4) >> 2] = c + F[(a + 8) >> 2] = F[(b + 8) >> 2] + b = F[d >> 2] + if (b) { + F[(d + 4) >> 2] = b + ja(b) + } + F[d >> 2] = a + a = (a + 12) | 0 + F[(d + 8) >> 2] = a + F[(d + 4) >> 2] = a + return 1 + } + function Ah(a) { + a = a | 0 + var b = 0 + F[(a + 24) >> 2] = 1624 + F[a >> 2] = 7948 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + F[a >> 2] = 2136 + b = F[(a + 20) >> 2] + F[(a + 20) >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + F[a >> 2] = 1920 + b = F[(a + 16) >> 2] + F[(a + 16) >> 2] = 0 + if (b) { + xa(b) + } + return a | 0 + } + function li(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0 + f = b ^ d + g = f >> 31 + e = b >> 31 + a = a ^ e + h = (a - e) | 0 + e = ((b ^ e) - (((a >>> 0 < e >>> 0) + e) | 0)) | 0 + a = d >> 31 + b = c ^ a + f = f >> 31 + a = + mi( + h, + e, + (b - a) | 0, + ((a ^ d) - (((a >>> 0 > b >>> 0) + a) | 0)) | 0, + ) ^ f + b = (a - f) | 0 + _ = ((g ^ _) - (((a >>> 0 < f >>> 0) + g) | 0)) | 0 + return b + } + function zh(a) { + a = a | 0 + var b = 0 + F[(a + 24) >> 2] = 1624 + F[a >> 2] = 7948 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + F[a >> 2] = 2136 + b = F[(a + 20) >> 2] + F[(a + 20) >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + F[a >> 2] = 1920 + b = F[(a + 16) >> 2] + F[(a + 16) >> 2] = 0 + if (b) { + xa(b) + } + ja(a) + } + function rb(a, b, c) { + var d = 0, + e = 0, + f = 0 + e = (Z - 16) | 0 + Z = e + d = F[(a + 8) >> 2] & 2147483647 + a: { + if (d >>> 0 > c >>> 0) { + d = F[a >> 2] + F[(a + 4) >> 2] = c + db(d, b, c) + D[(e + 15) | 0] = 0 + D[(c + d) | 0] = G[(e + 15) | 0] + break a + } + f = a + a = F[(a + 4) >> 2] + Gc(f, (d - 1) | 0, (((c - d) | 0) + 1) | 0, a, a, c, b) + } + Z = (e + 16) | 0 + } + function xe(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + c = (Z - 16) | 0 + Z = c + a = F[(a + 4) >> 2] + a: { + if ((a | 0) == -1) { + break a + } + D[(c + 15) | 0] = a + d = F[(b + 20) >> 2] + if ((!!F[(b + 16) >> 2] & ((d | 0) >= 0)) | ((d | 0) > 0)) { + break a + } + pb(b, F[(b + 4) >> 2], (c + 15) | 0, (c + 16) | 0) + } + Z = (c + 16) | 0 + return ((a | 0) != -1) | 0 + } + function ki(a, b, c, d) { + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + e = (c >>> 16) | 0 + f = (a >>> 16) | 0 + j = L(e, f) + g = c & 65535 + h = a & 65535 + i = L(g, h) + f = (((i >>> 16) | 0) + L(f, g)) | 0 + e = ((f & 65535) + L(e, h)) | 0 + _ = + (((L(b, c) + j) | 0) + L(a, d) + (f >>> 16) + (e >>> 16)) | 0 + return (i & 65535) | (e << 16) + } + function qb(a, b, c) { + var d = 0, + e = 0 + d = (Z - 16) | 0 + Z = d + a: { + if (c >>> 0 <= 10) { + D[(a + 11) | 0] = (G[(a + 11) | 0] & 128) | c + D[(a + 11) | 0] = G[(a + 11) | 0] & 127 + db(a, b, c) + D[(d + 15) | 0] = 0 + D[(a + c) | 0] = G[(d + 15) | 0] + break a + } + e = a + a = G[(a + 11) | 0] & 127 + Gc(e, 10, (c - 10) | 0, a, a, c, b) + } + Z = (d + 16) | 0 + } + function Ec(a, b, c) { + var d = 0 + d = F[(a + 16) >> 2] + if (!d) { + F[(a + 36) >> 2] = 1 + F[(a + 24) >> 2] = c + F[(a + 16) >> 2] = b + return + } + a: { + if ((b | 0) == (d | 0)) { + if (F[(a + 24) >> 2] != 2) { + break a + } + F[(a + 24) >> 2] = c + return + } + D[(a + 54) | 0] = 1 + F[(a + 24) >> 2] = 2 + F[(a + 36) >> 2] = F[(a + 36) >> 2] + 1 + } + } + function vg() { + var a = 0 + a = kb(ka(96)) + F[(a + 64) >> 2] = 0 + F[(a + 68) >> 2] = 0 + F[(a + 88) >> 2] = 0 + F[(a + 72) >> 2] = 0 + F[(a + 76) >> 2] = 0 + D[(a + 77) | 0] = 0 + D[(a + 78) | 0] = 0 + D[(a + 79) | 0] = 0 + D[(a + 80) | 0] = 0 + D[(a + 81) | 0] = 0 + D[(a + 82) | 0] = 0 + D[(a + 83) | 0] = 0 + D[(a + 84) | 0] = 0 + return a | 0 + } + function jh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + F[b >> 2] = 2 + c = F[(b + 8) >> 2] + d = (F[(b + 12) >> 2] - c) | 0 + if (d >>> 0 <= 4294967291) { + Db((b + 8) | 0, (d + 4) | 0) + c = F[(b + 8) >> 2] + } + b = (c + d) | 0 + a = F[(a + 4) >> 2] + D[b | 0] = a + D[(b + 1) | 0] = a >>> 8 + D[(b + 2) | 0] = a >>> 16 + D[(b + 3) | 0] = a >>> 24 + } + function ge(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 3016 + b = F[(a + 96) >> 2] + if (b) { + ja(b) + } + b = F[(a + 84) >> 2] + if (b) { + ja(b) + } + b = F[(a + 72) >> 2] + if (b) { + ja(b) + } + b = F[(a + 60) >> 2] + if (b) { + ja(b) + } + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + return a | 0 + } + function ci(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 4580 + b = F[(a + 96) >> 2] + if (b) { + ja(b) + } + b = F[(a + 84) >> 2] + if (b) { + ja(b) + } + b = F[(a + 72) >> 2] + if (b) { + ja(b) + } + b = F[(a + 60) >> 2] + if (b) { + ja(b) + } + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + return a | 0 + } + function Cg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = F[(a + 8) >> 2] + d = F[(a + 12) >> 2] + if ((b | 0) == (d | 0)) { + return 1 + } + while (1) { + c = F[b >> 2] + c = $[F[(F[c >> 2] + 16) >> 2]](c, F[(a + 32) >> 2]) | 0 + if (c) { + b = (b + 4) | 0 + if ((d | 0) != (b | 0)) { + continue + } + } + break + } + return c | 0 + } + function Pc(a, b) { + var c = 0, + d = 0 + c = F[(a + 8) >> 2] + a = F[(a + 12) >> 2] + if ((c | 0) != (a | 0)) { + a = (a - c) >> 2 + d = a >>> 0 <= 1 ? 1 : a + a = 0 + while (1) { + if (F[(F[((a << 2) + c) >> 2] + 60) >> 2] == (b | 0)) { + return a + } + a = (a + 1) | 0 + if ((d | 0) != (a | 0)) { + continue + } + break + } + } + return -1 + } + function fe(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 3016 + b = F[(a + 96) >> 2] + if (b) { + ja(b) + } + b = F[(a + 84) >> 2] + if (b) { + ja(b) + } + b = F[(a + 72) >> 2] + if (b) { + ja(b) + } + b = F[(a + 60) >> 2] + if (b) { + ja(b) + } + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + ja(a) + } + function bi(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 4580 + b = F[(a + 96) >> 2] + if (b) { + ja(b) + } + b = F[(a + 84) >> 2] + if (b) { + ja(b) + } + b = F[(a + 72) >> 2] + if (b) { + ja(b) + } + b = F[(a + 60) >> 2] + if (b) { + ja(b) + } + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + ja(a) + } + function Sc(a, b, c) { + var d = 0, + e = 0 + d = (a + 4) | 0 + a = Ya(a, b) + a: { + if ((d | 0) == (a | 0)) { + break a + } + b = F[(a + 32) >> 2] + d = F[(a + 28) >> 2] + if ((b | 0) == (d | 0)) { + break a + } + Sb(c, (b - d) | 0) + c = Tb(c) + b = F[(a + 28) >> 2] + la(c, b, (F[(a + 32) >> 2] - b) | 0) + e = 1 + } + return e + } + function Kd(a) { + F[(a + 40) >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[a >> 2] = 10032 + F[(a + 12) >> 2] = 0 + F[(a + 16) >> 2] = 0 + F[(a + 20) >> 2] = 0 + F[(a + 24) >> 2] = 0 + F[(a + 28) >> 2] = 0 + F[(a + 32) >> 2] = 0 + E[(a + 36) >> 1] = 0 + F[(a + 44) >> 2] = 0 + F[a >> 2] = 8080 + return a + } + function kb(a) { + F[(a + 8) >> 2] = 0 + F[(a + 12) >> 2] = 0 + F[a >> 2] = 0 + F[(a + 40) >> 2] = 0 + F[(a + 44) >> 2] = 0 + F[(a + 28) >> 2] = 9 + D[(a + 24) | 0] = 1 + F[(a + 56) >> 2] = -1 + F[(a + 60) >> 2] = 0 + F[(a + 16) >> 2] = 0 + F[(a + 20) >> 2] = 0 + F[(a + 48) >> 2] = 0 + F[(a + 52) >> 2] = 0 + return a + } + function pe(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + d = F[(a + 16) >> 2] + c = 0 + a: { + if ((F[(a + 20) >> 2] - d) >> 2 <= (b | 0)) { + break a + } + b = F[((b << 2) + d) >> 2] + c = 0 + if ((b | 0) < 0) { + break a + } + c = bb(F[(F[(a + 36) >> 2] + (b << 2)) >> 2]) + } + return c | 0 + } + function Nf() { + var a = 0, + b = 0 + a = ka(40) + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[(a + 24) >> 2] = 0 + F[(a + 28) >> 2] = 0 + b = (a + 16) | 0 + F[b >> 2] = 0 + F[(b + 4) >> 2] = 0 + F[a >> 2] = a + 4 + F[(a + 12) >> 2] = b + F[(a + 32) >> 2] = 0 + F[(a + 36) >> 2] = 0 + return a | 0 + } + function Xe(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + Nc(a, b) + a: { + if ((b | 0) < 0) { + break a + } + d = F[(a + 88) >> 2] + c = F[(a + 84) >> 2] + if ((d - c) >> 2 <= (b | 0)) { + break a + } + c = ((b << 2) + c) | 0 + b = (c + 4) | 0 + pa(c, b, (d - b) | 0) + F[(a + 88) >> 2] = d - 4 + } + } + function eb(a) { + var b = 0, + c = 0 + b = F[2909] + c = (a + 7) & -8 + a = (b + c) | 0 + a: { + if (a >>> 0 <= b >>> 0 ? c : 0) { + break a + } + if (a >>> 0 > (aa() << 16) >>> 0) { + if (!(X(a | 0) | 0)) { + break a + } + } + F[2909] = a + return b + } + F[2940] = 48 + return -1 + } + function Th(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0 + F[(a + 4) >> 2] = b + b = F[(F[(F[(b + 4) >> 2] + 8) >> 2] + (c << 2)) >> 2] + F[(a + 12) >> 2] = c + F[(a + 8) >> 2] = b + a = F[(a + 8) >> 2] + if (G[(a + 24) | 0] == 3) { + d = F[(a + 28) >> 2] == 9 + } + return d | 0 + } + function Tg(a) { + a = a | 0 + var b = 0 + F[(a + 8) >> 2] = 9556 + F[a >> 2] = 9392 + b = F[(a + 56) >> 2] + if (b) { + F[(a + 60) >> 2] = b + ja(b) + } + F[(a + 8) >> 2] = 9372 + b = F[(a + 44) >> 2] + if (b) { + ja(b) + } + b = F[(a + 32) >> 2] + if (b) { + ja(b) + } + return a | 0 + } + function Ng(a) { + a = a | 0 + var b = 0 + F[(a + 8) >> 2] = 8624 + F[a >> 2] = 9684 + b = F[(a + 56) >> 2] + if (b) { + F[(a + 60) >> 2] = b + ja(b) + } + F[(a + 8) >> 2] = 8876 + b = F[(a + 44) >> 2] + if (b) { + ja(b) + } + b = F[(a + 32) >> 2] + if (b) { + ja(b) + } + return a | 0 + } + function Ee(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = F[(a + 8) >> 2] + a: { + if (!G[(d + 24) | 0]) { + break a + } + if (!ac(d, (F[(b + 4) >> 2] - F[b >> 2]) >> 2)) { + break a + } + e = $[F[(F[a >> 2] + 32) >> 2]](a, b, c) | 0 + } + return e | 0 + } + function Fh(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0 + F[(a + 4) >> 2] = b + d = F[(F[(F[(b + 4) >> 2] + 8) >> 2] + (c << 2)) >> 2] + F[(a + 12) >> 2] = c + F[(a + 8) >> 2] = d + return ( + (F[ + (F[(F[(F[(b + 4) >> 2] + 8) >> 2] + (c << 2)) >> 2] + 28) >> + 2 + ] == + 9) | + 0 + ) + } + function Ca(a, b) { + if (b) { + Ca(a, F[b >> 2]) + Ca(a, F[(b + 4) >> 2]) + a = F[(b + 28) >> 2] + F[(b + 28) >> 2] = 0 + if (a) { + Ca((a + 12) | 0, F[(a + 16) >> 2]) + Ba(a, F[(a + 4) >> 2]) + ja(a) + } + if (D[(b + 27) | 0] < 0) { + ja(F[(b + 16) >> 2]) + } + ja(b) + } + } + function Sg(a) { + a = a | 0 + var b = 0 + F[(a + 8) >> 2] = 9556 + F[a >> 2] = 9392 + b = F[(a + 56) >> 2] + if (b) { + F[(a + 60) >> 2] = b + ja(b) + } + F[(a + 8) >> 2] = 9372 + b = F[(a + 44) >> 2] + if (b) { + ja(b) + } + b = F[(a + 32) >> 2] + if (b) { + ja(b) + } + ja(a) + } + function Mg(a) { + a = a | 0 + var b = 0 + F[(a + 8) >> 2] = 8624 + F[a >> 2] = 9684 + b = F[(a + 56) >> 2] + if (b) { + F[(a + 60) >> 2] = b + ja(b) + } + F[(a + 8) >> 2] = 8876 + b = F[(a + 44) >> 2] + if (b) { + ja(b) + } + b = F[(a + 32) >> 2] + if (b) { + ja(b) + } + ja(a) + } + function Hc(a, b) { + var c = 0, + d = 0, + e = 0, + f = 0 + F[a >> 2] = 11356 + F[a >> 2] = 11468 + c = ya(b) + d = ka((c + 13) | 0) + F[(d + 8) >> 2] = 0 + F[(d + 4) >> 2] = c + F[d >> 2] = c + ;(e = a), + (f = la((d + 12) | 0, b, (c + 1) | 0)), + (F[(e + 4) >> 2] = f) + return a + } + function hc(a, b, c) { + a: { + if (b) { + b = 0 + if (!ld(1, c, a)) { + break a + } + } + D[(a + 36) | 0] = 1 + F[(a + 32) >> 2] = 0 + b = F[(a + 16) >> 2] + c = (b + F[a >> 2]) | 0 + F[(a + 24) >> 2] = c + F[(a + 28) >> 2] = c + ((F[(a + 8) >> 2] - b) | 0) + b = 1 + } + return b + } + function Ue(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + a: { + if (!($[F[(F[a >> 2] + 36) >> 2]](a, b) | 0)) { + break a + } + if (!($[F[(F[a >> 2] + 40) >> 2]](a, b) | 0)) { + break a + } + c = $[F[(F[a >> 2] + 44) >> 2]](a) | 0 + } + return c | 0 + } + function _d(a) { + a = a | 0 + var b = 0 + a: { + if ( + !F[(a - -64) >> 2] | + !F[(a + 68) >> 2] | + (!F[(a + 44) >> 2] | !F[(a + 48) >> 2]) + ) { + break a + } + if (!F[(a + 52) >> 2] | !F[(a + 56) >> 2]) { + break a + } + b = F[(a + 92) >> 2] != -1 + } + return b | 0 + } + function ii(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + b = F[(b + 88) >> 2] + if (!(!b | (F[b >> 2] != 2))) { + c = a + a = F[(b + 8) >> 2] + F[(c + 4) >> 2] = + G[a | 0] | + (G[(a + 1) | 0] << 8) | + ((G[(a + 2) | 0] << 16) | (G[(a + 3) | 0] << 24)) + c = 1 + } + return c | 0 + } + function wc(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 2136 + b = F[(a + 20) >> 2] + F[(a + 20) >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + F[a >> 2] = 1920 + b = F[(a + 16) >> 2] + F[(a + 16) >> 2] = 0 + if (b) { + xa(b) + } + return a | 0 + } + function Ud(a) { + a = a | 0 + var b = 0 + a: { + if ( + !F[(a + 48) >> 2] | + !F[(a + 52) >> 2] | + (!F[(a + 28) >> 2] | !F[(a + 32) >> 2]) + ) { + break a + } + if (!F[(a + 36) >> 2] | !F[(a + 40) >> 2]) { + break a + } + b = F[(a + 76) >> 2] != -1 + } + return b | 0 + } + function Ug(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 9556 + b = F[(a + 48) >> 2] + if (b) { + F[(a + 52) >> 2] = b + ja(b) + } + F[a >> 2] = 9372 + b = F[(a + 36) >> 2] + if (b) { + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + ja(b) + } + return a | 0 + } + function Ed(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 8624 + b = F[(a + 48) >> 2] + if (b) { + F[(a + 52) >> 2] = b + ja(b) + } + F[a >> 2] = 8876 + b = F[(a + 36) >> 2] + if (b) { + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + ja(b) + } + return a | 0 + } + function vc(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 2136 + b = F[(a + 20) >> 2] + F[(a + 20) >> 2] = 0 + if (b) { + $[F[(F[b >> 2] + 4) >> 2]](b) + } + F[a >> 2] = 1920 + b = F[(a + 16) >> 2] + F[(a + 16) >> 2] = 0 + if (b) { + xa(b) + } + ja(a) + } + function yg() { + var a = 0, + b = 0 + b = ka(40) + F[b >> 2] = -1 + a = (b + 8) | 0 + F[(a + 16) >> 2] = 0 + F[(a + 20) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 24) >> 2] = 0 + F[(a + 28) >> 2] = 0 + return b | 0 + } + function eh(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 8624 + b = F[(a + 48) >> 2] + if (b) { + F[(a + 52) >> 2] = b + ja(b) + } + F[a >> 2] = 8876 + b = F[(a + 36) >> 2] + if (b) { + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + ja(b) + } + ja(a) + } + function Og(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 9556 + b = F[(a + 48) >> 2] + if (b) { + F[(a + 52) >> 2] = b + ja(b) + } + F[a >> 2] = 9372 + b = F[(a + 36) >> 2] + if (b) { + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + ja(b) + } + ja(a) + } + function Ja(a) { + F[(a + 8) >> 2] = 0 + F[(a + 12) >> 2] = 0 + F[a >> 2] = 0 + F[(a + 16) >> 2] = 0 + F[(a + 20) >> 2] = 0 + F[(a + 32) >> 2] = 0 + F[(a + 24) >> 2] = 0 + F[(a + 28) >> 2] = 0 + E[(a + 38) >> 1] = 0 + D[(a + 36) | 0] = 0 + return a + } + function Me(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + if (La(a, F[(b + 8) >> 2], f)) { + Dc(b, c, d, e) + return + } + a = F[(a + 8) >> 2] + $[F[(F[a >> 2] + 20) >> 2]](a, b, c, d, e, f) + } + function Eh(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + a: { + if (G[(F[(a + 4) >> 2] + 36) | 0] >= 2) { + b = 0 + if (!($[F[(F[a >> 2] + 52) >> 2]](a) | 0)) { + break a + } + } + b = id((a + 24) | 0, F[(a + 16) >> 2]) + } + return b | 0 + } + function hg() { + var a = 0 + a = Rc(ka(108)) + F[(a + 84) >> 2] = 0 + F[(a + 88) >> 2] = 0 + F[a >> 2] = 10240 + F[(a + 92) >> 2] = 0 + F[(a + 96) >> 2] = 0 + F[(a + 100) >> 2] = 0 + F[(a + 104) >> 2] = 0 + return a | 0 + } + function Qc(a, b) { + var c = 0 + c = -1 + a: { + if (((b | 0) == -1) | ((b | 0) > 4)) { + break a + } + b = (L(b, 12) + a) | 0 + a = F[(b + 20) >> 2] + if (((F[(b + 24) >> 2] - a) | 0) <= 0) { + break a + } + c = F[a >> 2] + } + return c + } + function cc(a, b, c, d, e, f, g) { + F[a >> 2] = 0 + F[(a + 56) >> 2] = b + F[(a + 48) >> 2] = 0 + F[(a + 52) >> 2] = 0 + F[(a + 40) >> 2] = f + F[(a + 44) >> 2] = g + D[(a + 32) | 0] = e + F[(a + 28) >> 2] = d + D[(a + 24) | 0] = c + } + function Sh(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + a: { + if (G[(F[(a + 4) >> 2] + 36) | 0] >= 2) { + b = 0 + if (!uc((a + 24) | 0, bb(a), c)) { + break a + } + } + b = id((a + 24) | 0, F[(a + 16) >> 2]) + } + return b | 0 + } + function _e(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 10240 + b = F[(a + 96) >> 2] + if (b) { + F[(a + 100) >> 2] = b + ja(b) + } + b = F[(a + 84) >> 2] + if (b) { + F[(a + 88) >> 2] = b + ja(b) + } + return tb(a) | 0 + } + function Tb(a) { + var b = 0 + if ((G[(a + 11) | 0] >>> 7) | 0) { + b = F[(a + 4) >> 2] + } else { + b = G[(a + 11) | 0] & 127 + } + if (!b) { + sc(1222) + v() + } + if ((G[(a + 11) | 0] >>> 7) | 0) { + a = F[a >> 2] + } + return a + } + function Ze(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 10240 + b = F[(a + 96) >> 2] + if (b) { + F[(a + 100) >> 2] = b + ja(b) + } + b = F[(a + 84) >> 2] + if (b) { + F[(a + 88) >> 2] = b + ja(b) + } + ja(tb(a)) + } + function ce(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 3264 + b = F[(a + 76) >> 2] + if (b) { + ja(b) + } + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + return a | 0 + } + function _h(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 4816 + b = F[(a + 76) >> 2] + if (b) { + ja(b) + } + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + return a | 0 + } + function Ba(a, b) { + if (b) { + Ba(a, F[b >> 2]) + Ba(a, F[(b + 4) >> 2]) + a = F[(b + 28) >> 2] + if (a) { + F[(b + 32) >> 2] = a + ja(a) + } + if (D[(b + 27) | 0] < 0) { + ja(F[(b + 16) >> 2]) + } + ja(b) + } + } + function Wf() { + var a = 0 + a = ka(28) + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 24) >> 2] = 0 + F[(a + 16) >> 2] = 0 + F[(a + 20) >> 2] = 0 + F[(a + 8) >> 2] = 0 + F[(a + 12) >> 2] = 0 + return a | 0 + } + function We(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 1776 + b = F[(a + 16) >> 2] + if (b) { + F[(a + 20) >> 2] = b + ja(b) + } + b = F[(a + 4) >> 2] + if (b) { + F[(a + 8) >> 2] = b + ja(b) + } + return a | 0 + } + function fg() { + var a = 0, + b = 0 + a = ka(24) + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + b = (a + 16) | 0 + F[b >> 2] = 0 + F[(b + 4) >> 2] = 0 + F[a >> 2] = a + 4 + F[(a + 12) >> 2] = b + return a | 0 + } + function Pe(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + if (La(a, F[(b + 8) >> 2], 0)) { + Ec(b, c, d) + return + } + a = F[(a + 8) >> 2] + $[F[(F[a >> 2] + 28) >> 2]](a, b, c, d) + } + function be(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 3264 + b = F[(a + 76) >> 2] + if (b) { + ja(b) + } + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + ja(a) + } + function Zh(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 4816 + b = F[(a + 76) >> 2] + if (b) { + ja(b) + } + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + ja(a) + } + function ka(a) { + var b = 0 + a = a ? a : 1 + a: { + while (1) { + b = Ub(a) + if (b) { + break a + } + b = F[3065] + if (b) { + $[b | 0]() + continue + } + break + } + V() + v() + } + return b + } + function ib(a, b) { + if (b) { + ib(a, F[b >> 2]) + ib(a, F[(b + 4) >> 2]) + if (D[(b + 39) | 0] < 0) { + ja(F[(b + 28) >> 2]) + } + if (D[(b + 27) | 0] < 0) { + ja(F[(b + 16) >> 2]) + } + ja(b) + } + } + function Cc(a) { + a = a | 0 + var b = 0, + c = 0 + F[a >> 2] = 11468 + b = (F[(a + 4) >> 2] - 12) | 0 + c = (F[(b + 8) >> 2] - 1) | 0 + F[(b + 8) >> 2] = c + if ((c | 0) < 0) { + ja(b) + } + return a | 0 + } + function ng() { + var a = 0 + a = ka(24) + F[(a + 8) >> 2] = 0 + F[(a + 12) >> 2] = 0 + F[(a + 4) >> 2] = -1 + F[a >> 2] = 1624 + F[(a + 16) >> 2] = 0 + F[(a + 20) >> 2] = 0 + return a | 0 + } + function Ac(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + F[(a + 4) >> 2] = b + b = F[(F[(F[(b + 4) >> 2] + 8) >> 2] + (c << 2)) >> 2] + F[(a + 12) >> 2] = c + F[(a + 8) >> 2] = b + return 1 + } + function pc(a) { + a = a | 0 + var b = 0 + if ( + !( + !F[(a + 60) >> 2] | + !F[(a + 44) >> 2] | + (!F[(a + 48) >> 2] | !F[(a + 52) >> 2]) + ) + ) { + b = F[(a + 56) >> 2] != 0 + } + return b | 0 + } + function Ic(a, b) { + if ((G[(a + 11) | 0] >>> 7) | 0) { + F[(a + 4) >> 2] = b + return + } + D[(a + 11) | 0] = (G[(a + 11) | 0] & 128) | b + D[(a + 11) | 0] = G[(a + 11) | 0] & 127 + } + function gi(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 3500 + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + return a | 0 + } + function Xh(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 5040 + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + return a | 0 + } + function nf(a) { + a = a | 0 + if (a) { + if (D[(a + 39) | 0] < 0) { + ja(F[(a + 28) >> 2]) + } + $b((a + 12) | 0, F[(a + 16) >> 2]) + ib(a, F[(a + 4) >> 2]) + ja(a) + } + } + function dh(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 8876 + b = F[(a + 36) >> 2] + if (b) { + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + ja(b) + } + return a | 0 + } + function Wg(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 9372 + b = F[(a + 36) >> 2] + if (b) { + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + ja(b) + } + return a | 0 + } + function ob(a) { + a = a | 0 + var b = 0 + if ( + !(!F[(a + 52) >> 2] | (!F[(a + 44) >> 2] | !F[(a + 48) >> 2])) + ) { + b = F[(a + 56) >> 2] != 0 + } + return b | 0 + } + function oc(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (!(F[(b + 56) >> 2] | !b | (G[(b + 24) | 0] != 3))) { + F[(a + 60) >> 2] = b + c = 1 + } + return c | 0 + } + function fi(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 3500 + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + ja(a) + } + function Wh(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 5040 + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + ja(a) + } + function zg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + F[(a + 16) >> 2] = 0 + F[(a + 20) >> 2] = 0 + F[a >> 2] = b + F[(a + 8) >> 2] = c + F[(a + 12) >> 2] = 0 + } + function ch(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 8876 + b = F[(a + 36) >> 2] + if (b) { + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + ja(b) + } + ja(a) + } + function Zd(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (!(F[(b + 56) >> 2] | (G[(b + 24) | 0] != 3))) { + F[(a - -64) >> 2] = b + c = 1 + } + return c | 0 + } + function Vg(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 9372 + b = F[(a + 36) >> 2] + if (b) { + ja(b) + } + b = F[(a + 24) >> 2] + if (b) { + ja(b) + } + ja(a) + } + function Td(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (!(F[(b + 56) >> 2] | (G[(b + 24) | 0] != 3))) { + F[(a + 48) >> 2] = b + c = 1 + } + return c | 0 + } + function Le(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + if (La(a, F[(b + 8) >> 2], f)) { + Dc(b, c, d, e) + } + } + function oa() { + var a = 0 + a = Rb(4) + F[a >> 2] = 11356 + F[a >> 2] = 11316 + F[a >> 2] = 11336 + W(a | 0, 11448, 14) + v() + } + function je(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + return a | 0 + } + function Ae(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 1920 + b = F[(a + 16) >> 2] + F[(a + 16) >> 2] = 0 + if (b) { + xa(b) + } + return a | 0 + } + function Pg(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 1624 + b = F[(a + 8) >> 2] + if (b) { + F[(a + 12) >> 2] = b + ja(b) + } + return a | 0 + } + function Ch(a) { + a = a | 0 + var b = 0 + b = bb(a) + return ( + qd( + (a + 24) | 0, + b ? b : F[(a + 8) >> 2], + F[(F[(a + 4) >> 2] + 32) >> 2], + ) | 0 + ) + } + function ze(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 1920 + b = F[(a + 16) >> 2] + F[(a + 16) >> 2] = 0 + if (b) { + xa(b) + } + ja(a) + } + function Ob(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 2960 + b = F[(a + 32) >> 2] + if (b) { + F[(a + 36) >> 2] = b + ja(b) + } + ja(a) + } + function Hg(a) { + a = a | 0 + var b = 0 + F[a >> 2] = 1624 + b = F[(a + 8) >> 2] + if (b) { + F[(a + 12) >> 2] = b + ja(b) + } + ja(a) + } + function oe(a, b) { + a = a | 0 + b = b | 0 + return ( + $[F[(F[a >> 2] + 48) >> 2]]( + a, + (F[(b + 4) >> 2] - F[b >> 2]) >> 2, + ) | 0 + ) + } + function $b(a, b) { + if (b) { + $b(a, F[b >> 2]) + $b(a, F[(b + 4) >> 2]) + ib((b + 20) | 0, F[(b + 24) >> 2]) + ja(b) + } + } + function xg(a) { + a = a | 0 + var b = 0 + if (a) { + b = F[(a + 8) >> 2] + if (b) { + F[(a + 12) >> 2] = b + ja(b) + } + ja(a) + } + } + function xh(a) { + a = a | 0 + if (!F[(a + 44) >> 2]) { + return 0 + } + return $[F[(F[a >> 2] + 48) >> 2]](a) | 0 + } + function ni(a) { + var b = 0 + while (1) { + if (a) { + a = (a - 1) & a + b = (b + 1) | 0 + continue + } + break + } + return b + } + function Qe(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + if (La(a, F[(b + 8) >> 2], 0)) { + Ec(b, c, d) + } + } + function vh(a, b) { + a = a | 0 + b = b | 0 + a = F[(a + 48) >> 2] + return $[F[(F[a >> 2] + 20) >> 2]](a, b) | 0 + } + function oi(a) { + var b = 0 + b = a & 31 + a = (0 - a) & 31 + return (((-1 >>> b) & -2) << b) | (((-1 << a) & -2) >>> a) + } + function oh(a, b) { + a = a | 0 + b = b | 0 + a = F[(a + 48) >> 2] + return $[F[(F[a >> 2] + 12) >> 2]](a, b) | 0 + } + function nh(a, b) { + a = a | 0 + b = b | 0 + a = F[(a + 48) >> 2] + return $[F[(F[a >> 2] + 16) >> 2]](a, b) | 0 + } + function Xa() { + var a = 0 + a = ka(12) + F[a >> 2] = 0 + F[(a + 4) >> 2] = 0 + F[(a + 8) >> 2] = 0 + return a | 0 + } + function Wa(a) { + a = a | 0 + var b = 0 + if (a) { + b = F[a >> 2] + if (b) { + F[(a + 4) >> 2] = b + ja(b) + } + ja(a) + } + } + function mf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + F[(a + 32) >> 2] = c + F[(a + 28) >> 2] = b + return 1 + } + function eg(a) { + a = a | 0 + if (a) { + Ca((a + 12) | 0, F[(a + 16) >> 2]) + Ba(a, F[(a + 4) >> 2]) + ja(a) + } + } + function Lb(a, b) { + a = a | 0 + b = b | 0 + if (b >>> 0 <= 1) { + F[(a + 28) >> 2] = b + } + return (b >>> 0 < 2) | 0 + } + function Fg(a, b) { + a = a | 0 + b = b | 0 + D[(b + 84) | 0] = 1 + F[(b + 72) >> 2] = F[(b + 68) >> 2] + return 1 + } + function kg() { + var a = 0 + a = ka(8) + F[(a + 4) >> 2] = -1 + F[a >> 2] = 1032 + return a | 0 + } + function Hf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return F[(F[(b + 8) >> 2] + (c << 2)) >> 2] + } + function th(a) { + a = a | 0 + a = F[(a + 48) >> 2] + return $[F[(F[a >> 2] + 24) >> 2]](a) | 0 + } + function sh(a) { + a = a | 0 + a = F[(a + 48) >> 2] + return $[F[(F[a >> 2] + 28) >> 2]](a) | 0 + } + function ph(a) { + a = a | 0 + a = F[(a + 48) >> 2] + return $[F[(F[a >> 2] + 36) >> 2]](a) | 0 + } + function Rh(a, b) { + a = a | 0 + b = b | 0 + return zc((a + 24) | 0, bb(a), F[(a + 8) >> 2]) | 0 + } + function Bh(a, b) { + a = a | 0 + b = b | 0 + return xd((a + 24) | 0, bb(a), F[(a + 8) >> 2]) | 0 + } + function bg(a) { + a = a | 0 + if (a) { + if (D[(a + 15) | 0] < 0) { + ja(F[(a + 4) >> 2]) + } + ja(a) + } + } + function Ke(a) { + a = a | 0 + if (!a) { + return 0 + } + return ((Fc(a, 11164) | 0) != 0) | 0 + } + function Fe(a, b) { + a = a | 0 + b = b | 0 + F[(a + 12) >> 2] = -1 + F[(a + 8) >> 2] = b + return 1 + } + function hd(a, b) { + a = a | 0 + b = b | 0 + return $[F[(F[a >> 2] + 12) >> 2]](a, b) | 0 + } + function Dh(a, b) { + a = a | 0 + b = b | 0 + return $[F[(F[a >> 2] + 56) >> 2]](a, b) | 0 + } + function sc(a) { + a = Hc(Rb(8), a) + F[a >> 2] = 11568 + W(a | 0, 11600, 1) + v() + } + function mg(a, b) { + a = a | 0 + b = b | 0 + return M(J[(F[(a + 8) >> 2] + (b << 2)) >> 2]) + } + function Rd(a) { + a = Hc(Rb(8), a) + F[a >> 2] = 11516 + W(a | 0, 11548, 1) + v() + } + function $f(a, b) { + a = a | 0 + b = b | 0 + return M(J[(F[a >> 2] + (b << 2)) >> 2]) + } + function gg(a) { + a = a | 0 + return (((F[(a + 100) >> 2] - F[(a + 96) >> 2]) | 0) / 12) | 0 + } + function cg(a) { + a = a | 0 + return (D[(a + 15) | 0] < 0 ? F[(a + 4) >> 2] : (a + 4) | 0) | 0 + } + function Re(a, b) { + a = a | 0 + b = b | 0 + return F[(F[(a + 4) >> 2] + (b << 2)) >> 2] + } + function dd(a, b) { + a = a | 0 + b = b | 0 + return F[(F[a >> 2] + (b << 2)) >> 2] + } + function Yf(a, b) { + a = a | 0 + b = b | 0 + return E[(F[a >> 2] + (b << 1)) >> 1] + } + function Xf(a, b) { + a = a | 0 + b = b | 0 + return H[(F[a >> 2] + (b << 1)) >> 1] + } + function Vd(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return xc(a, b, c) | 0 + } + function sb(a, b) { + var c = 0 + c = ka(b) + F[(a + 4) >> 2] = b + F[a >> 2] = c + } + function Kf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return Qc(b, c) | 0 + } + function Rc(a) { + F[a >> 2] = 10300 + ma((a + 4) | 0, 0, 80) + return a + } + function ji(a) { + if (a) { + return (31 - O((a - 1) ^ a)) | 0 + } + return 32 + } + function gd(a) { + a = a | 0 + return (F[(a + 12) >> 2] - F[(a + 8) >> 2]) >> 2 + } + function _f(a, b) { + a = a | 0 + b = b | 0 + return D[(F[a >> 2] + b) | 0] + } + function Zf(a, b) { + a = a | 0 + b = b | 0 + return G[(F[a >> 2] + b) | 0] + } + function Ie(a) { + a = a | 0 + return (F[(a + 8) >> 2] - F[(a + 4) >> 2]) >> 2 + } + function wb(a) { + a = a | 0 + if (a) { + $[F[(F[a >> 2] + 4) >> 2]](a) + } + } + function Jd(a, b) { + a = a | 0 + b = b | 0 + F[(a + 4) >> 2] = b + return 1 + } + function ed(a) { + a = a | 0 + return (F[(a + 4) >> 2] - F[a >> 2]) >> 1 + } + function dc(a) { + a = a | 0 + return (F[(a + 4) >> 2] - F[a >> 2]) >> 2 + } + function fd(a) { + a = a | 0 + return (F[(a + 4) >> 2] - F[a >> 2]) | 0 + } + function ke(a) { + a = a | 0 + return G[(F[(a + 8) >> 2] + 24) | 0] + } + function Qf(a, b) { + a = a | 0 + b = b | 0 + return F[(b + 8) >> 2] + } + function Ff(a, b) { + a = a | 0 + b = b | 0 + return F[(b + 4) >> 2] + } + function De(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return 1 + } + function Bg(a, b) { + a = a | 0 + b = b | 0 + return G[(b + 24) | 0] + } + function Oh(a) { + a = a | 0 + F[a >> 2] = 5928 + return a | 0 + } + function Jh(a) { + a = a | 0 + F[a >> 2] = 6932 + return a | 0 + } + function lg(a) { + a = a | 0 + return M(J[(a + 20) >> 2]) + } + function Nh(a) { + a = a | 0 + F[a >> 2] = 5928 + ja(a) + } + function Ih(a) { + a = a | 0 + F[a >> 2] = 6932 + ja(a) + } + function ug(a) { + a = a | 0 + return F[(a + 88) >> 2] + } + function tg(a) { + a = a | 0 + return F[(a + 56) >> 2] + } + function qg(a) { + a = a | 0 + return F[(a + 40) >> 2] + } + function pg(a) { + a = a | 0 + return F[(a + 48) >> 2] + } + function og(a) { + a = a | 0 + return F[(a + 60) >> 2] + } + function ec(a) { + a = a | 0 + return F[(a + 80) >> 2] + } + function cb(a) { + a = a | 0 + return F[(a + 28) >> 2] + } + function vd(a) { + a = a | 0 + return F[(a + 8) >> 2] + } + function tc(a, b) { + a = a | 0 + b = b | 0 + return -1 + } + function sg(a) { + a = a | 0 + return D[(a + 24) | 0] + } + function rg(a) { + a = a | 0 + return G[(a + 32) | 0] + } + function dg(a) { + a = a | 0 + return !F[a >> 2] | 0 + } + function Wd(a, b) { + a = a | 0 + b = b | 0 + return 6 + } + function Va(a) { + a = a | 0 + return F[(a + 4) >> 2] + } + function Rb(a) { + return (Ub((a + 80) | 0) + 80) | 0 + } + function Qh(a, b) { + a = a | 0 + b = b | 0 + return 2 + } + function Ia(a, b) { + a = a | 0 + b = b | 0 + return 0 + } + function Bc(a, b) { + a = a | 0 + b = b | 0 + return 1 + } + function jd(a) { + a = a | 0 + return F[a >> 2] + } + function wg() { + return kb(ka(64)) | 0 + } + function ig() { + return Rc(ka(84)) | 0 + } + function fc(a) { + a = a | 0 + if (a) { + ja(a) + } + } + function Ag() { + return Ja(ka(40)) | 0 + } + function Qb(a) { + a = a | 0 + Cc(a) + ja(a) + } + function Je(a) { + a = a | 0 + return 1161 + } + function He(a) { + a = a | 0 + return 1235 + } + function Ge(a) { + a = a | 0 + return 1201 + } + function Pa(a) { + a = a | 0 + return a | 0 + } + function hh(a) { + a = a | 0 + ja(ud(a)) + } + function gh(a) { + a = a | 0 + ja(sd(a)) + } + function Ve(a) { + a = a | 0 + ja(tb(a)) + } + function ua(a) { + a = a | 0 + return 1 + } + function rc(a) { + a = a | 0 + return 4 + } + function qc(a) { + a = a | 0 + return 5 + } + function Xd(a) { + a = a | 0 + return 2 + } + function Ua(a) { + a = a | 0 + return 0 + } + function Nb(a) { + a = a | 0 + return 6 + } + function Mh(a) { + a = a | 0 + return 3 + } + function za() { + Rd(1222) + v() + } + function ta() { + sc(1154) + v() + } + function na() { + Rd(1154) + v() + } + function Ha(a) { + a = a | 0 + ja(a) + } + function Ra(a) { + a = a | 0 + v() + } + function ff() { + return 10 + } + function ef() { + return 11 + } + function df() { + return 12 + } + function vb() { + return -1 + } + function ub() { + return 1 + } + function lf() { + return 5 + } + function kf() { + return 6 + } + function jf() { + return 7 + } + function jb() { + return 0 + } + function hf() { + return 8 + } + function gf() { + return 9 + } + function cf() { + return -2 + } + function bf() { + return -3 + } + function bd() { + return 3 + } + function af() { + return -4 + } + function ad() { + return 4 + } + function _b() { + return 2 + } + function $e() { + return -5 + } + function Te() { + V() + v() + } + function Jc(a) { + a = a | 0 + } + function ae() {} + // EMSCRIPTEN_END_FUNCS + e = G + p(q) + var $ = c([ + null, + Cc, + Pa, + Ha, + Xd, + ii, + jh, + ag, + zc, + xe, + uc, + jg, + Wd, + Qh, + Pa, + Pg, + Hg, + ua, + yh, + mh, + kh, + xd, + fh, + qd, + Wd, + Bg, + We, + Ra, + mf, + $c, + Ue, + Re, + Ie, + cb, + Ia, + Te, + Bc, + ua, + Ae, + ze, + Ac, + Fe, + Ee, + De, + Bc, + Ce, + Be, + re, + qe, + ye, + we, + pe, + ve, + ue, + te, + se, + wc, + vc, + Ac, + oe, + ne, + xc, + me, + ke, + le, + je, + Ob, + ua, + Va, + ob, + Ua, + tc, + Ia, + Ua, + ua, + ie, + he, + Ra, + Ra, + ge, + fe, + rc, + ob, + ee, + de, + ce, + be, + qc, + pc, + ua, + Ia, + oc, + $d, + hi, + gi, + fi, + Nb, + _d, + ua, + Ia, + Zd, + Yd, + ei, + Pa, + Ha, + Lb, + cb, + Mb, + Ra, + Ob, + ua, + ob, + di, + Ra, + ci, + bi, + rc, + ob, + ai, + $h, + _h, + Zh, + qc, + pc, + ua, + Ia, + oc, + $d, + Yh, + Xh, + Wh, + Nb, + _d, + ua, + Ia, + Zd, + Yd, + Vh, + Pa, + Ha, + Lb, + cb, + Kb, + Ra, + Ob, + Ua, + ua, + Uh, + wc, + vc, + Th, + Sh, + Vd, + Ph, + Xd, + Rh, + Oh, + Nh, + Nb, + Va, + Ud, + ua, + Ia, + Td, + ua, + Mh, + Sd, + Lh, + Pa, + Ha, + Lb, + cb, + Mb, + Jh, + Ih, + Nb, + Ud, + ua, + Ia, + Td, + Sd, + Hh, + Pa, + Ha, + Lb, + cb, + Kb, + Pa, + Ha, + Ua, + ua, + Ua, + tc, + Ia, + Kh, + Gh, + Ah, + zh, + Fh, + Eh, + Vd, + Dh, + Ch, + Bh, + wh, + Ra, + ua, + ua, + xh, + Dg, + Cg, + ua, + Ua, + Ia, + Ia, + rh, + qh, + uh, + vh, + sh, + ph, + oh, + nh, + th, + ud, + hh, + Jd, + Id, + Hd, + Gd, + lh, + ua, + Va, + vd, + sd, + gh, + Jd, + Id, + Hd, + Gd, + ih, + ua, + Va, + vd, + Ed, + eh, + Fd, + dh, + ch, + $g, + _g, + Zg, + Yg, + ah, + Xg, + bh, + Wg, + Vg, + Tg, + Sg, + Rg, + Qg, + Ug, + Og, + Ng, + Mg, + Lg, + Kg, + Gg, + Ig, + Jg, + Pa, + Ha, + Fg, + Eg, + Ra, + Ua, + ua, + _e, + Ze, + Ye, + Xe, + tb, + Ve, + Oc, + Nc, + Pa, + Ha, + Jc, + Jc, + Se, + Le, + Ne, + Qe, + Ha, + Me, + Oe, + Pe, + Ha, + He, + Ha, + Ge, + Ha, + Je, + Qb, + Va, + Qb, + Qb, + ]) + function aa() { + return (C.byteLength / 65536) | 0 + } + function fa(ga) { + ga = ga | 0 + var ba = aa() | 0 + var ca = (ba + ga) | 0 + if (ba < ca && ca < 65536) { + var da = new ArrayBuffer(L(ca, 65536)) + var ea = new Int8Array(da) + ea.set(D) + D = new Int8Array(da) + E = new Int16Array(da) + F = new Int32Array(da) + G = new Uint8Array(da) + H = new Uint16Array(da) + I = new Uint32Array(da) + J = new Float32Array(da) + K = new Float64Array(da) + C = da + B.buffer = C + e = G + } + return ba + } + return { + f: ae, + g: $, + h: fc, + i: Ag, + j: zg, + k: fc, + l: yg, + m: jd, + n: xg, + o: wg, + p: fc, + q: vg, + r: ec, + s: ug, + t: tg, + u: cb, + v: sg, + w: rg, + x: qg, + y: pg, + z: og, + A: xa, + B: ng, + C: hd, + D: Va, + E: mg, + F: lg, + G: wb, + H: kg, + I: hd, + J: Va, + K: wb, + L: ig, + M: gd, + N: ec, + O: wb, + P: hg, + Q: gg, + R: gd, + S: ec, + T: wb, + U: fg, + V: eg, + W: jd, + X: dg, + Y: cg, + Z: bg, + _: Xa, + $: $f, + aa: dc, + ba: Wa, + ca: Xa, + da: _f, + ea: fd, + fa: Wa, + ga: Xa, + ha: Zf, + ia: fd, + ja: Wa, + ka: Xa, + la: Yf, + ma: ed, + na: Wa, + oa: Xa, + pa: Xf, + qa: ed, + ra: Wa, + sa: Xa, + ta: dd, + ua: dc, + va: Wa, + wa: Xa, + xa: dd, + ya: dc, + za: Wa, + Aa: Wf, + Ba: Vf, + Ca: Uf, + Da: Tf, + Ea: Sf, + Fa: Rf, + Ga: Qf, + Ha: Pf, + Ia: Of, + Ja: Nf, + Ka: Mf, + La: Lf, + Ma: Kf, + Na: Jf, + Oa: If, + Pa: Hf, + Qa: Gf, + Ra: Ff, + Sa: Ef, + Ta: Df, + Ua: Cf, + Va: Bf, + Wa: Af, + Xa: zf, + Ya: yf, + Za: cd, + _a: xf, + $a: wf, + ab: vf, + bb: uf, + cb: cd, + db: tf, + eb: sf, + fb: rf, + gb: qf, + hb: pf, + ib: of, + jb: nf, + kb: vb, + lb: jb, + mb: ub, + nb: _b, + ob: vb, + pb: jb, + qb: ub, + rb: _b, + sb: bd, + tb: ad, + ub: vb, + vb: jb, + wb: ub, + xb: jb, + yb: ub, + zb: _b, + Ab: bd, + Bb: ad, + Cb: lf, + Db: kf, + Eb: jf, + Fb: hf, + Gb: gf, + Hb: ff, + Ib: ef, + Jb: df, + Kb: jb, + Lb: vb, + Mb: cf, + Nb: bf, + Ob: af, + Pb: $e, + Qb: Ub, + Rb: ja, + Sb: Ke, + } + } + return ha(ia) + })( + // EMSCRIPTEN_END_ASM + info, + ) + }, + instantiate: function (binary, info) { + return { + then: function (ok) { + var module = new WebAssembly.Module(binary) + ok({ instance: new WebAssembly.Instance(module, info) }) + }, + } + }, + RuntimeError: Error, + } + wasmBinary = [] + if (typeof WebAssembly != 'object') { + abort('no native wasm support detected') + } + var wasmMemory + var ABORT = false + var EXITSTATUS + function assert(condition, text) { + if (!condition) { + abort(text) + } + } + var UTF8Decoder = + typeof TextDecoder != 'undefined' ? new TextDecoder('utf8') : undefined + function UTF8ArrayToString(heapOrArray, idx, maxBytesToRead) { + var endIdx = idx + maxBytesToRead + var endPtr = idx + while (heapOrArray[endPtr] && !(endPtr >= endIdx)) ++endPtr + if (endPtr - idx > 16 && heapOrArray.buffer && UTF8Decoder) { + return UTF8Decoder.decode(heapOrArray.subarray(idx, endPtr)) + } + var str = '' + while (idx < endPtr) { + var u0 = heapOrArray[idx++] + if (!(u0 & 128)) { + str += String.fromCharCode(u0) + continue + } + var u1 = heapOrArray[idx++] & 63 + if ((u0 & 224) == 192) { + str += String.fromCharCode(((u0 & 31) << 6) | u1) + continue + } + var u2 = heapOrArray[idx++] & 63 + if ((u0 & 240) == 224) { + u0 = ((u0 & 15) << 12) | (u1 << 6) | u2 + } else { + u0 = + ((u0 & 7) << 18) | + (u1 << 12) | + (u2 << 6) | + (heapOrArray[idx++] & 63) + } + if (u0 < 65536) { + str += String.fromCharCode(u0) + } else { + var ch = u0 - 65536 + str += String.fromCharCode(55296 | (ch >> 10), 56320 | (ch & 1023)) + } + } + return str + } + function UTF8ToString(ptr, maxBytesToRead) { + return ptr ? UTF8ArrayToString(HEAPU8, ptr, maxBytesToRead) : '' + } + function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) { + if (!(maxBytesToWrite > 0)) return 0 + var startIdx = outIdx + var endIdx = outIdx + maxBytesToWrite - 1 + for (var i = 0; i < str.length; ++i) { + var u = str.charCodeAt(i) + if (u >= 55296 && u <= 57343) { + var u1 = str.charCodeAt(++i) + u = (65536 + ((u & 1023) << 10)) | (u1 & 1023) + } + if (u <= 127) { + if (outIdx >= endIdx) break + heap[outIdx++] = u + } else if (u <= 2047) { + if (outIdx + 1 >= endIdx) break + heap[outIdx++] = 192 | (u >> 6) + heap[outIdx++] = 128 | (u & 63) + } else if (u <= 65535) { + if (outIdx + 2 >= endIdx) break + heap[outIdx++] = 224 | (u >> 12) + heap[outIdx++] = 128 | ((u >> 6) & 63) + heap[outIdx++] = 128 | (u & 63) + } else { + if (outIdx + 3 >= endIdx) break + heap[outIdx++] = 240 | (u >> 18) + heap[outIdx++] = 128 | ((u >> 12) & 63) + heap[outIdx++] = 128 | ((u >> 6) & 63) + heap[outIdx++] = 128 | (u & 63) + } + } + heap[outIdx] = 0 + return outIdx - startIdx + } + function lengthBytesUTF8(str) { + var len = 0 + for (var i = 0; i < str.length; ++i) { + var c = str.charCodeAt(i) + if (c <= 127) { + len++ + } else if (c <= 2047) { + len += 2 + } else if (c >= 55296 && c <= 57343) { + len += 4 + ++i + } else { + len += 3 + } + } + return len + } + var HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64 + function updateMemoryViews() { + var b = wasmMemory.buffer + Module['HEAP8'] = HEAP8 = new Int8Array(b) + Module['HEAP16'] = HEAP16 = new Int16Array(b) + Module['HEAP32'] = HEAP32 = new Int32Array(b) + Module['HEAPU8'] = HEAPU8 = new Uint8Array(b) + Module['HEAPU16'] = HEAPU16 = new Uint16Array(b) + Module['HEAPU32'] = HEAPU32 = new Uint32Array(b) + Module['HEAPF32'] = HEAPF32 = new Float32Array(b) + Module['HEAPF64'] = HEAPF64 = new Float64Array(b) + } + var INITIAL_MEMORY = Module['INITIAL_MEMORY'] || 16777216 + assert( + INITIAL_MEMORY >= 65536, + 'INITIAL_MEMORY should be larger than STACK_SIZE, was ' + + INITIAL_MEMORY + + '! (STACK_SIZE=' + + 65536 + + ')', + ) + if (Module['wasmMemory']) { + wasmMemory = Module['wasmMemory'] + } else { + wasmMemory = new WebAssembly.Memory({ + initial: INITIAL_MEMORY / 65536, + maximum: 2147483648 / 65536, + }) + } + updateMemoryViews() + INITIAL_MEMORY = wasmMemory.buffer.byteLength + var wasmTable + var __ATPRERUN__ = [] + var __ATINIT__ = [] + var __ATPOSTRUN__ = [] + var runtimeInitialized = false + function keepRuntimeAlive() { + return noExitRuntime + } + function preRun() { + if (Module['preRun']) { + if (typeof Module['preRun'] == 'function') + Module['preRun'] = [Module['preRun']] + while (Module['preRun'].length) { + addOnPreRun(Module['preRun'].shift()) + } + } + callRuntimeCallbacks(__ATPRERUN__) + } + function initRuntime() { + runtimeInitialized = true + callRuntimeCallbacks(__ATINIT__) + } + function postRun() { + if (Module['postRun']) { + if (typeof Module['postRun'] == 'function') + Module['postRun'] = [Module['postRun']] + while (Module['postRun'].length) { + addOnPostRun(Module['postRun'].shift()) + } + } + callRuntimeCallbacks(__ATPOSTRUN__) + } + function addOnPreRun(cb) { + __ATPRERUN__.unshift(cb) + } + function addOnInit(cb) { + __ATINIT__.unshift(cb) + } + function addOnPostRun(cb) { + __ATPOSTRUN__.unshift(cb) + } + var runDependencies = 0 + var runDependencyWatcher = null + var dependenciesFulfilled = null + function addRunDependency(id) { + runDependencies++ + if (Module['monitorRunDependencies']) { + Module['monitorRunDependencies'](runDependencies) + } + } + function removeRunDependency(id) { + runDependencies-- + if (Module['monitorRunDependencies']) { + Module['monitorRunDependencies'](runDependencies) + } + if (runDependencies == 0) { + if (runDependencyWatcher !== null) { + clearInterval(runDependencyWatcher) + runDependencyWatcher = null + } + if (dependenciesFulfilled) { + var callback = dependenciesFulfilled + dependenciesFulfilled = null + callback() + } + } + } + function abort(what) { + if (Module['onAbort']) { + Module['onAbort'](what) + } + what = 'Aborted(' + what + ')' + err(what) + ABORT = true + EXITSTATUS = 1 + what += '. Build with -sASSERTIONS for more info.' + var e = new WebAssembly.RuntimeError(what) + readyPromiseReject(e) + throw e + } + var dataURIPrefix = 'data:application/octet-stream;base64,' + function isDataURI(filename) { + return filename.startsWith(dataURIPrefix) + } + function isFileURI(filename) { + return filename.startsWith('file://') + } + var wasmBinaryFile + wasmBinaryFile = 'draco_decoder_gltf.wasm' + if (!isDataURI(wasmBinaryFile)) { + wasmBinaryFile = locateFile(wasmBinaryFile) + } + function getBinary(file) { + try { + if (file == wasmBinaryFile && wasmBinary) { + return new Uint8Array(wasmBinary) + } + var binary = tryParseAsDataURI(file) + if (binary) { + return binary + } + if (readBinary) { + return readBinary(file) + } + throw 'both async and sync fetching of the wasm failed' + } catch (err) { + abort(err) + } + } + function getBinaryPromise() { + if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) { + if (typeof fetch == 'function' && !isFileURI(wasmBinaryFile)) { + return fetch(wasmBinaryFile, { credentials: 'same-origin' }) + .then(function (response) { + if (!response['ok']) { + throw ( + "failed to load wasm binary file at '" + wasmBinaryFile + "'" + ) + } + return response['arrayBuffer']() + }) + .catch(function () { + return getBinary(wasmBinaryFile) + }) + } else { + if (readAsync) { + return new Promise(function (resolve, reject) { + readAsync( + wasmBinaryFile, + function (response) { + resolve(new Uint8Array(response)) + }, + reject, + ) + }) + } + } + } + return Promise.resolve().then(function () { + return getBinary(wasmBinaryFile) + }) + } + function createWasm() { + var info = { a: wasmImports } + function receiveInstance(instance, module) { + var exports = instance.exports + Module['asm'] = exports + wasmTable = Module['asm']['g'] + addOnInit(Module['asm']['f']) + removeRunDependency('wasm-instantiate') + } + addRunDependency('wasm-instantiate') + function receiveInstantiationResult(result) { + receiveInstance(result['instance']) + } + function instantiateArrayBuffer(receiver) { + return getBinaryPromise() + .then(function (binary) { + return WebAssembly.instantiate(binary, info) + }) + .then(function (instance) { + return instance + }) + .then(receiver, function (reason) { + err('failed to asynchronously prepare wasm: ' + reason) + abort(reason) + }) + } + function instantiateAsync() { + if ( + !wasmBinary && + typeof WebAssembly.instantiateStreaming == 'function' && + !isDataURI(wasmBinaryFile) && + !isFileURI(wasmBinaryFile) && + !ENVIRONMENT_IS_NODE && + typeof fetch == 'function' + ) { + return fetch(wasmBinaryFile, { credentials: 'same-origin' }).then( + function (response) { + var result = WebAssembly.instantiateStreaming(response, info) + return result.then(receiveInstantiationResult, function (reason) { + err('wasm streaming compile failed: ' + reason) + err('falling back to ArrayBuffer instantiation') + return instantiateArrayBuffer(receiveInstantiationResult) + }) + }, + ) + } else { + return instantiateArrayBuffer(receiveInstantiationResult) + } + } + if (Module['instantiateWasm']) { + try { + var exports = Module['instantiateWasm'](info, receiveInstance) + return exports + } catch (e) { + err('Module.instantiateWasm callback failed with error: ' + e) + readyPromiseReject(e) + } + } + instantiateAsync().catch(readyPromiseReject) + return {} + } + function ExitStatus(status) { + this.name = 'ExitStatus' + this.message = 'Program terminated with exit(' + status + ')' + this.status = status + } + function callRuntimeCallbacks(callbacks) { + while (callbacks.length > 0) { + callbacks.shift()(Module) + } + } + function intArrayToString(array) { + var ret = [] + for (var i = 0; i < array.length; i++) { + var chr = array[i] + if (chr > 255) { + chr &= 255 + } + ret.push(String.fromCharCode(chr)) + } + return ret.join('') + } + function ExceptionInfo(excPtr) { + this.excPtr = excPtr + this.ptr = excPtr - 24 + this.set_type = function (type) { + HEAPU32[(this.ptr + 4) >> 2] = type + } + this.get_type = function () { + return HEAPU32[(this.ptr + 4) >> 2] + } + this.set_destructor = function (destructor) { + HEAPU32[(this.ptr + 8) >> 2] = destructor + } + this.get_destructor = function () { + return HEAPU32[(this.ptr + 8) >> 2] + } + this.set_refcount = function (refcount) { + HEAP32[this.ptr >> 2] = refcount + } + this.set_caught = function (caught) { + caught = caught ? 1 : 0 + HEAP8[(this.ptr + 12) >> 0] = caught + } + this.get_caught = function () { + return HEAP8[(this.ptr + 12) >> 0] != 0 + } + this.set_rethrown = function (rethrown) { + rethrown = rethrown ? 1 : 0 + HEAP8[(this.ptr + 13) >> 0] = rethrown + } + this.get_rethrown = function () { + return HEAP8[(this.ptr + 13) >> 0] != 0 + } + this.init = function (type, destructor) { + this.set_adjusted_ptr(0) + this.set_type(type) + this.set_destructor(destructor) + this.set_refcount(0) + this.set_caught(false) + this.set_rethrown(false) + } + this.add_ref = function () { + var value = HEAP32[this.ptr >> 2] + HEAP32[this.ptr >> 2] = value + 1 + } + this.release_ref = function () { + var prev = HEAP32[this.ptr >> 2] + HEAP32[this.ptr >> 2] = prev - 1 + return prev === 1 + } + this.set_adjusted_ptr = function (adjustedPtr) { + HEAPU32[(this.ptr + 16) >> 2] = adjustedPtr + } + this.get_adjusted_ptr = function () { + return HEAPU32[(this.ptr + 16) >> 2] + } + this.get_exception_ptr = function () { + var isPointer = ___cxa_is_pointer_type(this.get_type()) + if (isPointer) { + return HEAPU32[this.excPtr >> 2] + } + var adjusted = this.get_adjusted_ptr() + if (adjusted !== 0) return adjusted + return this.excPtr + } + } + var exceptionLast = 0 + var uncaughtExceptionCount = 0 + function ___cxa_throw(ptr, type, destructor) { + var info = new ExceptionInfo(ptr) + info.init(type, destructor) + exceptionLast = ptr + uncaughtExceptionCount++ + throw ptr + } + function _abort() { + abort('') + } + function _emscripten_memcpy_big(dest, src, num) { + HEAPU8.copyWithin(dest, src, src + num) + } + function getHeapMax() { + return 2147483648 + } + function emscripten_realloc_buffer(size) { + var b = wasmMemory.buffer + try { + wasmMemory.grow((size - b.byteLength + 65535) >>> 16) + updateMemoryViews() + return 1 + } catch (e) {} + } + function _emscripten_resize_heap(requestedSize) { + var oldSize = HEAPU8.length + requestedSize = requestedSize >>> 0 + var maxHeapSize = getHeapMax() + if (requestedSize > maxHeapSize) { + return false + } + let alignUp = (x, multiple) => + x + ((multiple - (x % multiple)) % multiple) + for (var cutDown = 1; cutDown <= 4; cutDown *= 2) { + var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown) + overGrownHeapSize = Math.min( + overGrownHeapSize, + requestedSize + 100663296, + ) + var newSize = Math.min( + maxHeapSize, + alignUp(Math.max(requestedSize, overGrownHeapSize), 65536), + ) + var replacement = emscripten_realloc_buffer(newSize) + if (replacement) { + return true + } + } + return false + } + function intArrayFromString(stringy, dontAddNull, length) { + var len = length > 0 ? length : lengthBytesUTF8(stringy) + 1 + var u8array = new Array(len) + var numBytesWritten = stringToUTF8Array( + stringy, + u8array, + 0, + u8array.length, + ) + if (dontAddNull) u8array.length = numBytesWritten + return u8array + } + var decodeBase64 = + typeof atob == 'function' + ? atob + : function (input) { + var keyStr = + 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=' + var output = '' + var chr1, chr2, chr3 + var enc1, enc2, enc3, enc4 + var i = 0 + input = input.replace(/[^A-Za-z0-9\+\/\=]/g, '') + do { + enc1 = keyStr.indexOf(input.charAt(i++)) + enc2 = keyStr.indexOf(input.charAt(i++)) + enc3 = keyStr.indexOf(input.charAt(i++)) + enc4 = keyStr.indexOf(input.charAt(i++)) + chr1 = (enc1 << 2) | (enc2 >> 4) + chr2 = ((enc2 & 15) << 4) | (enc3 >> 2) + chr3 = ((enc3 & 3) << 6) | enc4 + output = output + String.fromCharCode(chr1) + if (enc3 !== 64) { + output = output + String.fromCharCode(chr2) + } + if (enc4 !== 64) { + output = output + String.fromCharCode(chr3) + } + } while (i < input.length) + return output + } + function intArrayFromBase64(s) { + if (typeof ENVIRONMENT_IS_NODE == 'boolean' && ENVIRONMENT_IS_NODE) { + var buf = Buffer.from(s, 'base64') + return new Uint8Array( + buf['buffer'], + buf['byteOffset'], + buf['byteLength'], + ) + } + try { + var decoded = decodeBase64(s) + var bytes = new Uint8Array(decoded.length) + for (var i = 0; i < decoded.length; ++i) { + bytes[i] = decoded.charCodeAt(i) + } + return bytes + } catch (_) { + throw new Error('Converting base64 string to bytes failed.') + } + } + function tryParseAsDataURI(filename) { + if (!isDataURI(filename)) { + return + } + return intArrayFromBase64(filename.slice(dataURIPrefix.length)) + } + var wasmImports = { + c: ___cxa_throw, + b: _abort, + e: _emscripten_memcpy_big, + d: _emscripten_resize_heap, + a: wasmMemory, + } + var asm = createWasm() + var ___wasm_call_ctors = function () { + return (___wasm_call_ctors = Module['asm']['f']).apply(null, arguments) + } + var _emscripten_bind_VoidPtr___destroy___0 = (Module[ + '_emscripten_bind_VoidPtr___destroy___0' + ] = function () { + return (_emscripten_bind_VoidPtr___destroy___0 = Module[ + '_emscripten_bind_VoidPtr___destroy___0' + ] = + Module['asm']['h']).apply(null, arguments) + }) + var _emscripten_bind_DecoderBuffer_DecoderBuffer_0 = (Module[ + '_emscripten_bind_DecoderBuffer_DecoderBuffer_0' + ] = function () { + return (_emscripten_bind_DecoderBuffer_DecoderBuffer_0 = Module[ + '_emscripten_bind_DecoderBuffer_DecoderBuffer_0' + ] = + Module['asm']['i']).apply(null, arguments) + }) + var _emscripten_bind_DecoderBuffer_Init_2 = (Module[ + '_emscripten_bind_DecoderBuffer_Init_2' + ] = function () { + return (_emscripten_bind_DecoderBuffer_Init_2 = Module[ + '_emscripten_bind_DecoderBuffer_Init_2' + ] = + Module['asm']['j']).apply(null, arguments) + }) + var _emscripten_bind_DecoderBuffer___destroy___0 = (Module[ + '_emscripten_bind_DecoderBuffer___destroy___0' + ] = function () { + return (_emscripten_bind_DecoderBuffer___destroy___0 = Module[ + '_emscripten_bind_DecoderBuffer___destroy___0' + ] = + Module['asm']['k']).apply(null, arguments) + }) + var _emscripten_bind_AttributeTransformData_AttributeTransformData_0 = + (Module[ + '_emscripten_bind_AttributeTransformData_AttributeTransformData_0' + ] = function () { + return (_emscripten_bind_AttributeTransformData_AttributeTransformData_0 = + Module[ + '_emscripten_bind_AttributeTransformData_AttributeTransformData_0' + ] = + Module['asm']['l']).apply(null, arguments) + }) + var _emscripten_bind_AttributeTransformData_transform_type_0 = (Module[ + '_emscripten_bind_AttributeTransformData_transform_type_0' + ] = function () { + return (_emscripten_bind_AttributeTransformData_transform_type_0 = Module[ + '_emscripten_bind_AttributeTransformData_transform_type_0' + ] = + Module['asm']['m']).apply(null, arguments) + }) + var _emscripten_bind_AttributeTransformData___destroy___0 = (Module[ + '_emscripten_bind_AttributeTransformData___destroy___0' + ] = function () { + return (_emscripten_bind_AttributeTransformData___destroy___0 = Module[ + '_emscripten_bind_AttributeTransformData___destroy___0' + ] = + Module['asm']['n']).apply(null, arguments) + }) + var _emscripten_bind_GeometryAttribute_GeometryAttribute_0 = (Module[ + '_emscripten_bind_GeometryAttribute_GeometryAttribute_0' + ] = function () { + return (_emscripten_bind_GeometryAttribute_GeometryAttribute_0 = Module[ + '_emscripten_bind_GeometryAttribute_GeometryAttribute_0' + ] = + Module['asm']['o']).apply(null, arguments) + }) + var _emscripten_bind_GeometryAttribute___destroy___0 = (Module[ + '_emscripten_bind_GeometryAttribute___destroy___0' + ] = function () { + return (_emscripten_bind_GeometryAttribute___destroy___0 = Module[ + '_emscripten_bind_GeometryAttribute___destroy___0' + ] = + Module['asm']['p']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_PointAttribute_0 = (Module[ + '_emscripten_bind_PointAttribute_PointAttribute_0' + ] = function () { + return (_emscripten_bind_PointAttribute_PointAttribute_0 = Module[ + '_emscripten_bind_PointAttribute_PointAttribute_0' + ] = + Module['asm']['q']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_size_0 = (Module[ + '_emscripten_bind_PointAttribute_size_0' + ] = function () { + return (_emscripten_bind_PointAttribute_size_0 = Module[ + '_emscripten_bind_PointAttribute_size_0' + ] = + Module['asm']['r']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_GetAttributeTransformData_0 = (Module[ + '_emscripten_bind_PointAttribute_GetAttributeTransformData_0' + ] = function () { + return (_emscripten_bind_PointAttribute_GetAttributeTransformData_0 = + Module['_emscripten_bind_PointAttribute_GetAttributeTransformData_0'] = + Module['asm']['s']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_attribute_type_0 = (Module[ + '_emscripten_bind_PointAttribute_attribute_type_0' + ] = function () { + return (_emscripten_bind_PointAttribute_attribute_type_0 = Module[ + '_emscripten_bind_PointAttribute_attribute_type_0' + ] = + Module['asm']['t']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_data_type_0 = (Module[ + '_emscripten_bind_PointAttribute_data_type_0' + ] = function () { + return (_emscripten_bind_PointAttribute_data_type_0 = Module[ + '_emscripten_bind_PointAttribute_data_type_0' + ] = + Module['asm']['u']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_num_components_0 = (Module[ + '_emscripten_bind_PointAttribute_num_components_0' + ] = function () { + return (_emscripten_bind_PointAttribute_num_components_0 = Module[ + '_emscripten_bind_PointAttribute_num_components_0' + ] = + Module['asm']['v']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_normalized_0 = (Module[ + '_emscripten_bind_PointAttribute_normalized_0' + ] = function () { + return (_emscripten_bind_PointAttribute_normalized_0 = Module[ + '_emscripten_bind_PointAttribute_normalized_0' + ] = + Module['asm']['w']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_byte_stride_0 = (Module[ + '_emscripten_bind_PointAttribute_byte_stride_0' + ] = function () { + return (_emscripten_bind_PointAttribute_byte_stride_0 = Module[ + '_emscripten_bind_PointAttribute_byte_stride_0' + ] = + Module['asm']['x']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_byte_offset_0 = (Module[ + '_emscripten_bind_PointAttribute_byte_offset_0' + ] = function () { + return (_emscripten_bind_PointAttribute_byte_offset_0 = Module[ + '_emscripten_bind_PointAttribute_byte_offset_0' + ] = + Module['asm']['y']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute_unique_id_0 = (Module[ + '_emscripten_bind_PointAttribute_unique_id_0' + ] = function () { + return (_emscripten_bind_PointAttribute_unique_id_0 = Module[ + '_emscripten_bind_PointAttribute_unique_id_0' + ] = + Module['asm']['z']).apply(null, arguments) + }) + var _emscripten_bind_PointAttribute___destroy___0 = (Module[ + '_emscripten_bind_PointAttribute___destroy___0' + ] = function () { + return (_emscripten_bind_PointAttribute___destroy___0 = Module[ + '_emscripten_bind_PointAttribute___destroy___0' + ] = + Module['asm']['A']).apply(null, arguments) + }) + var _emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0 = + (Module[ + '_emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0' + ] = function () { + return (_emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0 = + Module[ + '_emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0' + ] = + Module['asm']['B']).apply(null, arguments) + }) + var _emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1 = + (Module[ + '_emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1' + ] = function () { + return (_emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1 = + Module[ + '_emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1' + ] = + Module['asm']['C']).apply(null, arguments) + }) + var _emscripten_bind_AttributeQuantizationTransform_quantization_bits_0 = + (Module[ + '_emscripten_bind_AttributeQuantizationTransform_quantization_bits_0' + ] = function () { + return (_emscripten_bind_AttributeQuantizationTransform_quantization_bits_0 = + Module[ + '_emscripten_bind_AttributeQuantizationTransform_quantization_bits_0' + ] = + Module['asm']['D']).apply(null, arguments) + }) + var _emscripten_bind_AttributeQuantizationTransform_min_value_1 = (Module[ + '_emscripten_bind_AttributeQuantizationTransform_min_value_1' + ] = function () { + return (_emscripten_bind_AttributeQuantizationTransform_min_value_1 = + Module['_emscripten_bind_AttributeQuantizationTransform_min_value_1'] = + Module['asm']['E']).apply(null, arguments) + }) + var _emscripten_bind_AttributeQuantizationTransform_range_0 = (Module[ + '_emscripten_bind_AttributeQuantizationTransform_range_0' + ] = function () { + return (_emscripten_bind_AttributeQuantizationTransform_range_0 = Module[ + '_emscripten_bind_AttributeQuantizationTransform_range_0' + ] = + Module['asm']['F']).apply(null, arguments) + }) + var _emscripten_bind_AttributeQuantizationTransform___destroy___0 = (Module[ + '_emscripten_bind_AttributeQuantizationTransform___destroy___0' + ] = function () { + return (_emscripten_bind_AttributeQuantizationTransform___destroy___0 = + Module[ + '_emscripten_bind_AttributeQuantizationTransform___destroy___0' + ] = + Module['asm']['G']).apply(null, arguments) + }) + var _emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0 = + (Module[ + '_emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0' + ] = function () { + return (_emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0 = + Module[ + '_emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0' + ] = + Module['asm']['H']).apply(null, arguments) + }) + var _emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1 = + (Module[ + '_emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1' + ] = function () { + return (_emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1 = + Module[ + '_emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1' + ] = + Module['asm']['I']).apply(null, arguments) + }) + var _emscripten_bind_AttributeOctahedronTransform_quantization_bits_0 = + (Module[ + '_emscripten_bind_AttributeOctahedronTransform_quantization_bits_0' + ] = function () { + return (_emscripten_bind_AttributeOctahedronTransform_quantization_bits_0 = + Module[ + '_emscripten_bind_AttributeOctahedronTransform_quantization_bits_0' + ] = + Module['asm']['J']).apply(null, arguments) + }) + var _emscripten_bind_AttributeOctahedronTransform___destroy___0 = (Module[ + '_emscripten_bind_AttributeOctahedronTransform___destroy___0' + ] = function () { + return (_emscripten_bind_AttributeOctahedronTransform___destroy___0 = + Module['_emscripten_bind_AttributeOctahedronTransform___destroy___0'] = + Module['asm']['K']).apply(null, arguments) + }) + var _emscripten_bind_PointCloud_PointCloud_0 = (Module[ + '_emscripten_bind_PointCloud_PointCloud_0' + ] = function () { + return (_emscripten_bind_PointCloud_PointCloud_0 = Module[ + '_emscripten_bind_PointCloud_PointCloud_0' + ] = + Module['asm']['L']).apply(null, arguments) + }) + var _emscripten_bind_PointCloud_num_attributes_0 = (Module[ + '_emscripten_bind_PointCloud_num_attributes_0' + ] = function () { + return (_emscripten_bind_PointCloud_num_attributes_0 = Module[ + '_emscripten_bind_PointCloud_num_attributes_0' + ] = + Module['asm']['M']).apply(null, arguments) + }) + var _emscripten_bind_PointCloud_num_points_0 = (Module[ + '_emscripten_bind_PointCloud_num_points_0' + ] = function () { + return (_emscripten_bind_PointCloud_num_points_0 = Module[ + '_emscripten_bind_PointCloud_num_points_0' + ] = + Module['asm']['N']).apply(null, arguments) + }) + var _emscripten_bind_PointCloud___destroy___0 = (Module[ + '_emscripten_bind_PointCloud___destroy___0' + ] = function () { + return (_emscripten_bind_PointCloud___destroy___0 = Module[ + '_emscripten_bind_PointCloud___destroy___0' + ] = + Module['asm']['O']).apply(null, arguments) + }) + var _emscripten_bind_Mesh_Mesh_0 = (Module['_emscripten_bind_Mesh_Mesh_0'] = + function () { + return (_emscripten_bind_Mesh_Mesh_0 = Module[ + '_emscripten_bind_Mesh_Mesh_0' + ] = + Module['asm']['P']).apply(null, arguments) + }) + var _emscripten_bind_Mesh_num_faces_0 = (Module[ + '_emscripten_bind_Mesh_num_faces_0' + ] = function () { + return (_emscripten_bind_Mesh_num_faces_0 = Module[ + '_emscripten_bind_Mesh_num_faces_0' + ] = + Module['asm']['Q']).apply(null, arguments) + }) + var _emscripten_bind_Mesh_num_attributes_0 = (Module[ + '_emscripten_bind_Mesh_num_attributes_0' + ] = function () { + return (_emscripten_bind_Mesh_num_attributes_0 = Module[ + '_emscripten_bind_Mesh_num_attributes_0' + ] = + Module['asm']['R']).apply(null, arguments) + }) + var _emscripten_bind_Mesh_num_points_0 = (Module[ + '_emscripten_bind_Mesh_num_points_0' + ] = function () { + return (_emscripten_bind_Mesh_num_points_0 = Module[ + '_emscripten_bind_Mesh_num_points_0' + ] = + Module['asm']['S']).apply(null, arguments) + }) + var _emscripten_bind_Mesh___destroy___0 = (Module[ + '_emscripten_bind_Mesh___destroy___0' + ] = function () { + return (_emscripten_bind_Mesh___destroy___0 = Module[ + '_emscripten_bind_Mesh___destroy___0' + ] = + Module['asm']['T']).apply(null, arguments) + }) + var _emscripten_bind_Metadata_Metadata_0 = (Module[ + '_emscripten_bind_Metadata_Metadata_0' + ] = function () { + return (_emscripten_bind_Metadata_Metadata_0 = Module[ + '_emscripten_bind_Metadata_Metadata_0' + ] = + Module['asm']['U']).apply(null, arguments) + }) + var _emscripten_bind_Metadata___destroy___0 = (Module[ + '_emscripten_bind_Metadata___destroy___0' + ] = function () { + return (_emscripten_bind_Metadata___destroy___0 = Module[ + '_emscripten_bind_Metadata___destroy___0' + ] = + Module['asm']['V']).apply(null, arguments) + }) + var _emscripten_bind_Status_code_0 = (Module[ + '_emscripten_bind_Status_code_0' + ] = function () { + return (_emscripten_bind_Status_code_0 = Module[ + '_emscripten_bind_Status_code_0' + ] = + Module['asm']['W']).apply(null, arguments) + }) + var _emscripten_bind_Status_ok_0 = (Module['_emscripten_bind_Status_ok_0'] = + function () { + return (_emscripten_bind_Status_ok_0 = Module[ + '_emscripten_bind_Status_ok_0' + ] = + Module['asm']['X']).apply(null, arguments) + }) + var _emscripten_bind_Status_error_msg_0 = (Module[ + '_emscripten_bind_Status_error_msg_0' + ] = function () { + return (_emscripten_bind_Status_error_msg_0 = Module[ + '_emscripten_bind_Status_error_msg_0' + ] = + Module['asm']['Y']).apply(null, arguments) + }) + var _emscripten_bind_Status___destroy___0 = (Module[ + '_emscripten_bind_Status___destroy___0' + ] = function () { + return (_emscripten_bind_Status___destroy___0 = Module[ + '_emscripten_bind_Status___destroy___0' + ] = + Module['asm']['Z']).apply(null, arguments) + }) + var _emscripten_bind_DracoFloat32Array_DracoFloat32Array_0 = (Module[ + '_emscripten_bind_DracoFloat32Array_DracoFloat32Array_0' + ] = function () { + return (_emscripten_bind_DracoFloat32Array_DracoFloat32Array_0 = Module[ + '_emscripten_bind_DracoFloat32Array_DracoFloat32Array_0' + ] = + Module['asm']['_']).apply(null, arguments) + }) + var _emscripten_bind_DracoFloat32Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoFloat32Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoFloat32Array_GetValue_1 = Module[ + '_emscripten_bind_DracoFloat32Array_GetValue_1' + ] = + Module['asm']['$']).apply(null, arguments) + }) + var _emscripten_bind_DracoFloat32Array_size_0 = (Module[ + '_emscripten_bind_DracoFloat32Array_size_0' + ] = function () { + return (_emscripten_bind_DracoFloat32Array_size_0 = Module[ + '_emscripten_bind_DracoFloat32Array_size_0' + ] = + Module['asm']['aa']).apply(null, arguments) + }) + var _emscripten_bind_DracoFloat32Array___destroy___0 = (Module[ + '_emscripten_bind_DracoFloat32Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoFloat32Array___destroy___0 = Module[ + '_emscripten_bind_DracoFloat32Array___destroy___0' + ] = + Module['asm']['ba']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt8Array_DracoInt8Array_0 = (Module[ + '_emscripten_bind_DracoInt8Array_DracoInt8Array_0' + ] = function () { + return (_emscripten_bind_DracoInt8Array_DracoInt8Array_0 = Module[ + '_emscripten_bind_DracoInt8Array_DracoInt8Array_0' + ] = + Module['asm']['ca']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt8Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoInt8Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoInt8Array_GetValue_1 = Module[ + '_emscripten_bind_DracoInt8Array_GetValue_1' + ] = + Module['asm']['da']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt8Array_size_0 = (Module[ + '_emscripten_bind_DracoInt8Array_size_0' + ] = function () { + return (_emscripten_bind_DracoInt8Array_size_0 = Module[ + '_emscripten_bind_DracoInt8Array_size_0' + ] = + Module['asm']['ea']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt8Array___destroy___0 = (Module[ + '_emscripten_bind_DracoInt8Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoInt8Array___destroy___0 = Module[ + '_emscripten_bind_DracoInt8Array___destroy___0' + ] = + Module['asm']['fa']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt8Array_DracoUInt8Array_0 = (Module[ + '_emscripten_bind_DracoUInt8Array_DracoUInt8Array_0' + ] = function () { + return (_emscripten_bind_DracoUInt8Array_DracoUInt8Array_0 = Module[ + '_emscripten_bind_DracoUInt8Array_DracoUInt8Array_0' + ] = + Module['asm']['ga']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt8Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoUInt8Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoUInt8Array_GetValue_1 = Module[ + '_emscripten_bind_DracoUInt8Array_GetValue_1' + ] = + Module['asm']['ha']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt8Array_size_0 = (Module[ + '_emscripten_bind_DracoUInt8Array_size_0' + ] = function () { + return (_emscripten_bind_DracoUInt8Array_size_0 = Module[ + '_emscripten_bind_DracoUInt8Array_size_0' + ] = + Module['asm']['ia']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt8Array___destroy___0 = (Module[ + '_emscripten_bind_DracoUInt8Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoUInt8Array___destroy___0 = Module[ + '_emscripten_bind_DracoUInt8Array___destroy___0' + ] = + Module['asm']['ja']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt16Array_DracoInt16Array_0 = (Module[ + '_emscripten_bind_DracoInt16Array_DracoInt16Array_0' + ] = function () { + return (_emscripten_bind_DracoInt16Array_DracoInt16Array_0 = Module[ + '_emscripten_bind_DracoInt16Array_DracoInt16Array_0' + ] = + Module['asm']['ka']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt16Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoInt16Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoInt16Array_GetValue_1 = Module[ + '_emscripten_bind_DracoInt16Array_GetValue_1' + ] = + Module['asm']['la']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt16Array_size_0 = (Module[ + '_emscripten_bind_DracoInt16Array_size_0' + ] = function () { + return (_emscripten_bind_DracoInt16Array_size_0 = Module[ + '_emscripten_bind_DracoInt16Array_size_0' + ] = + Module['asm']['ma']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt16Array___destroy___0 = (Module[ + '_emscripten_bind_DracoInt16Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoInt16Array___destroy___0 = Module[ + '_emscripten_bind_DracoInt16Array___destroy___0' + ] = + Module['asm']['na']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt16Array_DracoUInt16Array_0 = (Module[ + '_emscripten_bind_DracoUInt16Array_DracoUInt16Array_0' + ] = function () { + return (_emscripten_bind_DracoUInt16Array_DracoUInt16Array_0 = Module[ + '_emscripten_bind_DracoUInt16Array_DracoUInt16Array_0' + ] = + Module['asm']['oa']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt16Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoUInt16Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoUInt16Array_GetValue_1 = Module[ + '_emscripten_bind_DracoUInt16Array_GetValue_1' + ] = + Module['asm']['pa']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt16Array_size_0 = (Module[ + '_emscripten_bind_DracoUInt16Array_size_0' + ] = function () { + return (_emscripten_bind_DracoUInt16Array_size_0 = Module[ + '_emscripten_bind_DracoUInt16Array_size_0' + ] = + Module['asm']['qa']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt16Array___destroy___0 = (Module[ + '_emscripten_bind_DracoUInt16Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoUInt16Array___destroy___0 = Module[ + '_emscripten_bind_DracoUInt16Array___destroy___0' + ] = + Module['asm']['ra']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt32Array_DracoInt32Array_0 = (Module[ + '_emscripten_bind_DracoInt32Array_DracoInt32Array_0' + ] = function () { + return (_emscripten_bind_DracoInt32Array_DracoInt32Array_0 = Module[ + '_emscripten_bind_DracoInt32Array_DracoInt32Array_0' + ] = + Module['asm']['sa']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt32Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoInt32Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoInt32Array_GetValue_1 = Module[ + '_emscripten_bind_DracoInt32Array_GetValue_1' + ] = + Module['asm']['ta']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt32Array_size_0 = (Module[ + '_emscripten_bind_DracoInt32Array_size_0' + ] = function () { + return (_emscripten_bind_DracoInt32Array_size_0 = Module[ + '_emscripten_bind_DracoInt32Array_size_0' + ] = + Module['asm']['ua']).apply(null, arguments) + }) + var _emscripten_bind_DracoInt32Array___destroy___0 = (Module[ + '_emscripten_bind_DracoInt32Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoInt32Array___destroy___0 = Module[ + '_emscripten_bind_DracoInt32Array___destroy___0' + ] = + Module['asm']['va']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt32Array_DracoUInt32Array_0 = (Module[ + '_emscripten_bind_DracoUInt32Array_DracoUInt32Array_0' + ] = function () { + return (_emscripten_bind_DracoUInt32Array_DracoUInt32Array_0 = Module[ + '_emscripten_bind_DracoUInt32Array_DracoUInt32Array_0' + ] = + Module['asm']['wa']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt32Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoUInt32Array_GetValue_1' + ] = function () { + return (_emscripten_bind_DracoUInt32Array_GetValue_1 = Module[ + '_emscripten_bind_DracoUInt32Array_GetValue_1' + ] = + Module['asm']['xa']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt32Array_size_0 = (Module[ + '_emscripten_bind_DracoUInt32Array_size_0' + ] = function () { + return (_emscripten_bind_DracoUInt32Array_size_0 = Module[ + '_emscripten_bind_DracoUInt32Array_size_0' + ] = + Module['asm']['ya']).apply(null, arguments) + }) + var _emscripten_bind_DracoUInt32Array___destroy___0 = (Module[ + '_emscripten_bind_DracoUInt32Array___destroy___0' + ] = function () { + return (_emscripten_bind_DracoUInt32Array___destroy___0 = Module[ + '_emscripten_bind_DracoUInt32Array___destroy___0' + ] = + Module['asm']['za']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_MetadataQuerier_0 = (Module[ + '_emscripten_bind_MetadataQuerier_MetadataQuerier_0' + ] = function () { + return (_emscripten_bind_MetadataQuerier_MetadataQuerier_0 = Module[ + '_emscripten_bind_MetadataQuerier_MetadataQuerier_0' + ] = + Module['asm']['Aa']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_HasEntry_2 = (Module[ + '_emscripten_bind_MetadataQuerier_HasEntry_2' + ] = function () { + return (_emscripten_bind_MetadataQuerier_HasEntry_2 = Module[ + '_emscripten_bind_MetadataQuerier_HasEntry_2' + ] = + Module['asm']['Ba']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_GetIntEntry_2 = (Module[ + '_emscripten_bind_MetadataQuerier_GetIntEntry_2' + ] = function () { + return (_emscripten_bind_MetadataQuerier_GetIntEntry_2 = Module[ + '_emscripten_bind_MetadataQuerier_GetIntEntry_2' + ] = + Module['asm']['Ca']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_GetIntEntryArray_3 = (Module[ + '_emscripten_bind_MetadataQuerier_GetIntEntryArray_3' + ] = function () { + return (_emscripten_bind_MetadataQuerier_GetIntEntryArray_3 = Module[ + '_emscripten_bind_MetadataQuerier_GetIntEntryArray_3' + ] = + Module['asm']['Da']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_GetDoubleEntry_2 = (Module[ + '_emscripten_bind_MetadataQuerier_GetDoubleEntry_2' + ] = function () { + return (_emscripten_bind_MetadataQuerier_GetDoubleEntry_2 = Module[ + '_emscripten_bind_MetadataQuerier_GetDoubleEntry_2' + ] = + Module['asm']['Ea']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_GetStringEntry_2 = (Module[ + '_emscripten_bind_MetadataQuerier_GetStringEntry_2' + ] = function () { + return (_emscripten_bind_MetadataQuerier_GetStringEntry_2 = Module[ + '_emscripten_bind_MetadataQuerier_GetStringEntry_2' + ] = + Module['asm']['Fa']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_NumEntries_1 = (Module[ + '_emscripten_bind_MetadataQuerier_NumEntries_1' + ] = function () { + return (_emscripten_bind_MetadataQuerier_NumEntries_1 = Module[ + '_emscripten_bind_MetadataQuerier_NumEntries_1' + ] = + Module['asm']['Ga']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier_GetEntryName_2 = (Module[ + '_emscripten_bind_MetadataQuerier_GetEntryName_2' + ] = function () { + return (_emscripten_bind_MetadataQuerier_GetEntryName_2 = Module[ + '_emscripten_bind_MetadataQuerier_GetEntryName_2' + ] = + Module['asm']['Ha']).apply(null, arguments) + }) + var _emscripten_bind_MetadataQuerier___destroy___0 = (Module[ + '_emscripten_bind_MetadataQuerier___destroy___0' + ] = function () { + return (_emscripten_bind_MetadataQuerier___destroy___0 = Module[ + '_emscripten_bind_MetadataQuerier___destroy___0' + ] = + Module['asm']['Ia']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_Decoder_0 = (Module[ + '_emscripten_bind_Decoder_Decoder_0' + ] = function () { + return (_emscripten_bind_Decoder_Decoder_0 = Module[ + '_emscripten_bind_Decoder_Decoder_0' + ] = + Module['asm']['Ja']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_DecodeArrayToPointCloud_3 = (Module[ + '_emscripten_bind_Decoder_DecodeArrayToPointCloud_3' + ] = function () { + return (_emscripten_bind_Decoder_DecodeArrayToPointCloud_3 = Module[ + '_emscripten_bind_Decoder_DecodeArrayToPointCloud_3' + ] = + Module['asm']['Ka']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_DecodeArrayToMesh_3 = (Module[ + '_emscripten_bind_Decoder_DecodeArrayToMesh_3' + ] = function () { + return (_emscripten_bind_Decoder_DecodeArrayToMesh_3 = Module[ + '_emscripten_bind_Decoder_DecodeArrayToMesh_3' + ] = + Module['asm']['La']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeId_2 = (Module[ + '_emscripten_bind_Decoder_GetAttributeId_2' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeId_2 = Module[ + '_emscripten_bind_Decoder_GetAttributeId_2' + ] = + Module['asm']['Ma']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeIdByName_2 = (Module[ + '_emscripten_bind_Decoder_GetAttributeIdByName_2' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeIdByName_2 = Module[ + '_emscripten_bind_Decoder_GetAttributeIdByName_2' + ] = + Module['asm']['Na']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3' + ] = + Module['asm']['Oa']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttribute_2 = (Module[ + '_emscripten_bind_Decoder_GetAttribute_2' + ] = function () { + return (_emscripten_bind_Decoder_GetAttribute_2 = Module[ + '_emscripten_bind_Decoder_GetAttribute_2' + ] = + Module['asm']['Pa']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeByUniqueId_2 = (Module[ + '_emscripten_bind_Decoder_GetAttributeByUniqueId_2' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeByUniqueId_2 = Module[ + '_emscripten_bind_Decoder_GetAttributeByUniqueId_2' + ] = + Module['asm']['Qa']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetMetadata_1 = (Module[ + '_emscripten_bind_Decoder_GetMetadata_1' + ] = function () { + return (_emscripten_bind_Decoder_GetMetadata_1 = Module[ + '_emscripten_bind_Decoder_GetMetadata_1' + ] = + Module['asm']['Ra']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeMetadata_2 = (Module[ + '_emscripten_bind_Decoder_GetAttributeMetadata_2' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeMetadata_2 = Module[ + '_emscripten_bind_Decoder_GetAttributeMetadata_2' + ] = + Module['asm']['Sa']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetFaceFromMesh_3 = (Module[ + '_emscripten_bind_Decoder_GetFaceFromMesh_3' + ] = function () { + return (_emscripten_bind_Decoder_GetFaceFromMesh_3 = Module[ + '_emscripten_bind_Decoder_GetFaceFromMesh_3' + ] = + Module['asm']['Ta']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetTriangleStripsFromMesh_2 = (Module[ + '_emscripten_bind_Decoder_GetTriangleStripsFromMesh_2' + ] = function () { + return (_emscripten_bind_Decoder_GetTriangleStripsFromMesh_2 = Module[ + '_emscripten_bind_Decoder_GetTriangleStripsFromMesh_2' + ] = + Module['asm']['Ua']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetTrianglesUInt16Array_3 = (Module[ + '_emscripten_bind_Decoder_GetTrianglesUInt16Array_3' + ] = function () { + return (_emscripten_bind_Decoder_GetTrianglesUInt16Array_3 = Module[ + '_emscripten_bind_Decoder_GetTrianglesUInt16Array_3' + ] = + Module['asm']['Va']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetTrianglesUInt32Array_3 = (Module[ + '_emscripten_bind_Decoder_GetTrianglesUInt32Array_3' + ] = function () { + return (_emscripten_bind_Decoder_GetTrianglesUInt32Array_3 = Module[ + '_emscripten_bind_Decoder_GetTrianglesUInt32Array_3' + ] = + Module['asm']['Wa']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeFloat_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeFloat_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeFloat_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeFloat_3' + ] = + Module['asm']['Xa']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3' + ] = + Module['asm']['Ya']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeIntForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeIntForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeIntForAllPoints_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeIntForAllPoints_3' + ] = + Module['asm']['Za']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3' + ] = + Module['asm']['_a']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3' + ] = + Module['asm']['$a']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3' + ] = + Module['asm']['ab']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3 = + Module['_emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3'] = + Module['asm']['bb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3 = Module[ + '_emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3' + ] = + Module['asm']['cb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3 = (Module[ + '_emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3 = + Module['_emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3'] = + Module['asm']['db']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5 = (Module[ + '_emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5' + ] = function () { + return (_emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5 = + Module['_emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5'] = + Module['asm']['eb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_SkipAttributeTransform_1 = (Module[ + '_emscripten_bind_Decoder_SkipAttributeTransform_1' + ] = function () { + return (_emscripten_bind_Decoder_SkipAttributeTransform_1 = Module[ + '_emscripten_bind_Decoder_SkipAttributeTransform_1' + ] = + Module['asm']['fb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1 = (Module[ + '_emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1' + ] = function () { + return (_emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1 = + Module['_emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1'] = + Module['asm']['gb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_DecodeBufferToPointCloud_2 = (Module[ + '_emscripten_bind_Decoder_DecodeBufferToPointCloud_2' + ] = function () { + return (_emscripten_bind_Decoder_DecodeBufferToPointCloud_2 = Module[ + '_emscripten_bind_Decoder_DecodeBufferToPointCloud_2' + ] = + Module['asm']['hb']).apply(null, arguments) + }) + var _emscripten_bind_Decoder_DecodeBufferToMesh_2 = (Module[ + '_emscripten_bind_Decoder_DecodeBufferToMesh_2' + ] = function () { + return (_emscripten_bind_Decoder_DecodeBufferToMesh_2 = Module[ + '_emscripten_bind_Decoder_DecodeBufferToMesh_2' + ] = + Module['asm']['ib']).apply(null, arguments) + }) + var _emscripten_bind_Decoder___destroy___0 = (Module[ + '_emscripten_bind_Decoder___destroy___0' + ] = function () { + return (_emscripten_bind_Decoder___destroy___0 = Module[ + '_emscripten_bind_Decoder___destroy___0' + ] = + Module['asm']['jb']).apply(null, arguments) + }) + var _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM = + (Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM' + ] = function () { + return (_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM = + Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM' + ] = + Module['asm']['kb']).apply(null, arguments) + }) + var _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM = + (Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM' + ] = function () { + return (_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM = + Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM' + ] = + Module['asm']['lb']).apply(null, arguments) + }) + var _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM = + (Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM' + ] = function () { + return (_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM = + Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM' + ] = + Module['asm']['mb']).apply(null, arguments) + }) + var _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM = + (Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM' + ] = function () { + return (_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM = + Module[ + '_emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM' + ] = + Module['asm']['nb']).apply(null, arguments) + }) + var _emscripten_enum_draco_GeometryAttribute_Type_INVALID = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_INVALID' + ] = function () { + return (_emscripten_enum_draco_GeometryAttribute_Type_INVALID = Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_INVALID' + ] = + Module['asm']['ob']).apply(null, arguments) + }) + var _emscripten_enum_draco_GeometryAttribute_Type_POSITION = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_POSITION' + ] = function () { + return (_emscripten_enum_draco_GeometryAttribute_Type_POSITION = Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_POSITION' + ] = + Module['asm']['pb']).apply(null, arguments) + }) + var _emscripten_enum_draco_GeometryAttribute_Type_NORMAL = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_NORMAL' + ] = function () { + return (_emscripten_enum_draco_GeometryAttribute_Type_NORMAL = Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_NORMAL' + ] = + Module['asm']['qb']).apply(null, arguments) + }) + var _emscripten_enum_draco_GeometryAttribute_Type_COLOR = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_COLOR' + ] = function () { + return (_emscripten_enum_draco_GeometryAttribute_Type_COLOR = Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_COLOR' + ] = + Module['asm']['rb']).apply(null, arguments) + }) + var _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD' + ] = function () { + return (_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD = Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD' + ] = + Module['asm']['sb']).apply(null, arguments) + }) + var _emscripten_enum_draco_GeometryAttribute_Type_GENERIC = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_GENERIC' + ] = function () { + return (_emscripten_enum_draco_GeometryAttribute_Type_GENERIC = Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_GENERIC' + ] = + Module['asm']['tb']).apply(null, arguments) + }) + var _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE = + (Module[ + '_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE' + ] = function () { + return (_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE = + Module[ + '_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE' + ] = + Module['asm']['ub']).apply(null, arguments) + }) + var _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD = (Module[ + '_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD' + ] = function () { + return (_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD = Module[ + '_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD' + ] = + Module['asm']['vb']).apply(null, arguments) + }) + var _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH = (Module[ + '_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH' + ] = function () { + return (_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH = + Module['_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH'] = + Module['asm']['wb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_INVALID = (Module[ + '_emscripten_enum_draco_DataType_DT_INVALID' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_INVALID = Module[ + '_emscripten_enum_draco_DataType_DT_INVALID' + ] = + Module['asm']['xb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_INT8 = (Module[ + '_emscripten_enum_draco_DataType_DT_INT8' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_INT8 = Module[ + '_emscripten_enum_draco_DataType_DT_INT8' + ] = + Module['asm']['yb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_UINT8 = (Module[ + '_emscripten_enum_draco_DataType_DT_UINT8' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_UINT8 = Module[ + '_emscripten_enum_draco_DataType_DT_UINT8' + ] = + Module['asm']['zb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_INT16 = (Module[ + '_emscripten_enum_draco_DataType_DT_INT16' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_INT16 = Module[ + '_emscripten_enum_draco_DataType_DT_INT16' + ] = + Module['asm']['Ab']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_UINT16 = (Module[ + '_emscripten_enum_draco_DataType_DT_UINT16' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_UINT16 = Module[ + '_emscripten_enum_draco_DataType_DT_UINT16' + ] = + Module['asm']['Bb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_INT32 = (Module[ + '_emscripten_enum_draco_DataType_DT_INT32' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_INT32 = Module[ + '_emscripten_enum_draco_DataType_DT_INT32' + ] = + Module['asm']['Cb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_UINT32 = (Module[ + '_emscripten_enum_draco_DataType_DT_UINT32' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_UINT32 = Module[ + '_emscripten_enum_draco_DataType_DT_UINT32' + ] = + Module['asm']['Db']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_INT64 = (Module[ + '_emscripten_enum_draco_DataType_DT_INT64' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_INT64 = Module[ + '_emscripten_enum_draco_DataType_DT_INT64' + ] = + Module['asm']['Eb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_UINT64 = (Module[ + '_emscripten_enum_draco_DataType_DT_UINT64' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_UINT64 = Module[ + '_emscripten_enum_draco_DataType_DT_UINT64' + ] = + Module['asm']['Fb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_FLOAT32 = (Module[ + '_emscripten_enum_draco_DataType_DT_FLOAT32' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_FLOAT32 = Module[ + '_emscripten_enum_draco_DataType_DT_FLOAT32' + ] = + Module['asm']['Gb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_FLOAT64 = (Module[ + '_emscripten_enum_draco_DataType_DT_FLOAT64' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_FLOAT64 = Module[ + '_emscripten_enum_draco_DataType_DT_FLOAT64' + ] = + Module['asm']['Hb']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_BOOL = (Module[ + '_emscripten_enum_draco_DataType_DT_BOOL' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_BOOL = Module[ + '_emscripten_enum_draco_DataType_DT_BOOL' + ] = + Module['asm']['Ib']).apply(null, arguments) + }) + var _emscripten_enum_draco_DataType_DT_TYPES_COUNT = (Module[ + '_emscripten_enum_draco_DataType_DT_TYPES_COUNT' + ] = function () { + return (_emscripten_enum_draco_DataType_DT_TYPES_COUNT = Module[ + '_emscripten_enum_draco_DataType_DT_TYPES_COUNT' + ] = + Module['asm']['Jb']).apply(null, arguments) + }) + var _emscripten_enum_draco_StatusCode_OK = (Module[ + '_emscripten_enum_draco_StatusCode_OK' + ] = function () { + return (_emscripten_enum_draco_StatusCode_OK = Module[ + '_emscripten_enum_draco_StatusCode_OK' + ] = + Module['asm']['Kb']).apply(null, arguments) + }) + var _emscripten_enum_draco_StatusCode_DRACO_ERROR = (Module[ + '_emscripten_enum_draco_StatusCode_DRACO_ERROR' + ] = function () { + return (_emscripten_enum_draco_StatusCode_DRACO_ERROR = Module[ + '_emscripten_enum_draco_StatusCode_DRACO_ERROR' + ] = + Module['asm']['Lb']).apply(null, arguments) + }) + var _emscripten_enum_draco_StatusCode_IO_ERROR = (Module[ + '_emscripten_enum_draco_StatusCode_IO_ERROR' + ] = function () { + return (_emscripten_enum_draco_StatusCode_IO_ERROR = Module[ + '_emscripten_enum_draco_StatusCode_IO_ERROR' + ] = + Module['asm']['Mb']).apply(null, arguments) + }) + var _emscripten_enum_draco_StatusCode_INVALID_PARAMETER = (Module[ + '_emscripten_enum_draco_StatusCode_INVALID_PARAMETER' + ] = function () { + return (_emscripten_enum_draco_StatusCode_INVALID_PARAMETER = Module[ + '_emscripten_enum_draco_StatusCode_INVALID_PARAMETER' + ] = + Module['asm']['Nb']).apply(null, arguments) + }) + var _emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION = (Module[ + '_emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION' + ] = function () { + return (_emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION = Module[ + '_emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION' + ] = + Module['asm']['Ob']).apply(null, arguments) + }) + var _emscripten_enum_draco_StatusCode_UNKNOWN_VERSION = (Module[ + '_emscripten_enum_draco_StatusCode_UNKNOWN_VERSION' + ] = function () { + return (_emscripten_enum_draco_StatusCode_UNKNOWN_VERSION = Module[ + '_emscripten_enum_draco_StatusCode_UNKNOWN_VERSION' + ] = + Module['asm']['Pb']).apply(null, arguments) + }) + var ___errno_location = function () { + return (___errno_location = Module['asm']['__errno_location']).apply( + null, + arguments, + ) + } + var _malloc = (Module['_malloc'] = function () { + return (_malloc = Module['_malloc'] = Module['asm']['Qb']).apply( + null, + arguments, + ) + }) + var _free = (Module['_free'] = function () { + return (_free = Module['_free'] = Module['asm']['Rb']).apply( + null, + arguments, + ) + }) + var ___cxa_is_pointer_type = function () { + return (___cxa_is_pointer_type = Module['asm']['Sb']).apply( + null, + arguments, + ) + } + var ___start_em_js = (Module['___start_em_js'] = 11660) + var ___stop_em_js = (Module['___stop_em_js'] = 11758) + var calledRun + dependenciesFulfilled = function runCaller() { + if (!calledRun) run() + if (!calledRun) dependenciesFulfilled = runCaller + } + function run() { + if (runDependencies > 0) { + return + } + preRun() + if (runDependencies > 0) { + return + } + function doRun() { + if (calledRun) return + calledRun = true + Module['calledRun'] = true + if (ABORT) return + initRuntime() + readyPromiseResolve(Module) + if (Module['onRuntimeInitialized']) Module['onRuntimeInitialized']() + postRun() + } + if (Module['setStatus']) { + Module['setStatus']('Running...') + setTimeout(function () { + setTimeout(function () { + Module['setStatus']('') + }, 1) + doRun() + }, 1) + } else { + doRun() + } + } + if (Module['preInit']) { + if (typeof Module['preInit'] == 'function') + Module['preInit'] = [Module['preInit']] + while (Module['preInit'].length > 0) { + Module['preInit'].pop()() + } + } + run() + function WrapperObject() {} + WrapperObject.prototype = Object.create(WrapperObject.prototype) + WrapperObject.prototype.constructor = WrapperObject + WrapperObject.prototype.__class__ = WrapperObject + WrapperObject.__cache__ = {} + Module['WrapperObject'] = WrapperObject + function getCache(__class__) { + return (__class__ || WrapperObject).__cache__ + } + Module['getCache'] = getCache + function wrapPointer(ptr, __class__) { + var cache = getCache(__class__) + var ret = cache[ptr] + if (ret) return ret + ret = Object.create((__class__ || WrapperObject).prototype) + ret.ptr = ptr + return (cache[ptr] = ret) + } + Module['wrapPointer'] = wrapPointer + function castObject(obj, __class__) { + return wrapPointer(obj.ptr, __class__) + } + Module['castObject'] = castObject + Module['NULL'] = wrapPointer(0) + function destroy(obj) { + if (!obj['__destroy__']) + throw 'Error: Cannot destroy object. (Did you create it yourself?)' + obj['__destroy__']() + delete getCache(obj.__class__)[obj.ptr] + } + Module['destroy'] = destroy + function compare(obj1, obj2) { + return obj1.ptr === obj2.ptr + } + Module['compare'] = compare + function getPointer(obj) { + return obj.ptr + } + Module['getPointer'] = getPointer + function getClass(obj) { + return obj.__class__ + } + Module['getClass'] = getClass + var ensureCache = { + buffer: 0, + size: 0, + pos: 0, + temps: [], + needed: 0, + prepare: function () { + if (ensureCache.needed) { + for (var i = 0; i < ensureCache.temps.length; i++) { + Module['_free'](ensureCache.temps[i]) + } + ensureCache.temps.length = 0 + Module['_free'](ensureCache.buffer) + ensureCache.buffer = 0 + ensureCache.size += ensureCache.needed + ensureCache.needed = 0 + } + if (!ensureCache.buffer) { + ensureCache.size += 128 + ensureCache.buffer = Module['_malloc'](ensureCache.size) + assert(ensureCache.buffer) + } + ensureCache.pos = 0 + }, + alloc: function (array, view) { + assert(ensureCache.buffer) + var bytes = view.BYTES_PER_ELEMENT + var len = array.length * bytes + len = (len + 7) & -8 + var ret + if (ensureCache.pos + len >= ensureCache.size) { + assert(len > 0) + ensureCache.needed += len + ret = Module['_malloc'](len) + ensureCache.temps.push(ret) + } else { + ret = ensureCache.buffer + ensureCache.pos + ensureCache.pos += len + } + return ret + }, + copy: function (array, view, offset) { + offset >>>= 0 + var bytes = view.BYTES_PER_ELEMENT + switch (bytes) { + case 2: + offset >>>= 1 + break + case 4: + offset >>>= 2 + break + case 8: + offset >>>= 3 + break + } + for (var i = 0; i < array.length; i++) { + view[offset + i] = array[i] + } + }, + } + function ensureString(value) { + if (typeof value === 'string') { + var intArray = intArrayFromString(value) + var offset = ensureCache.alloc(intArray, HEAP8) + ensureCache.copy(intArray, HEAP8, offset) + return offset + } + return value + } + function ensureInt8(value) { + if (typeof value === 'object') { + var offset = ensureCache.alloc(value, HEAP8) + ensureCache.copy(value, HEAP8, offset) + return offset + } + return value + } + function VoidPtr() { + throw 'cannot construct a VoidPtr, no constructor in IDL' + } + VoidPtr.prototype = Object.create(WrapperObject.prototype) + VoidPtr.prototype.constructor = VoidPtr + VoidPtr.prototype.__class__ = VoidPtr + VoidPtr.__cache__ = {} + Module['VoidPtr'] = VoidPtr + VoidPtr.prototype['__destroy__'] = VoidPtr.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_VoidPtr___destroy___0(self) + } + function DecoderBuffer() { + this.ptr = _emscripten_bind_DecoderBuffer_DecoderBuffer_0() + getCache(DecoderBuffer)[this.ptr] = this + } + DecoderBuffer.prototype = Object.create(WrapperObject.prototype) + DecoderBuffer.prototype.constructor = DecoderBuffer + DecoderBuffer.prototype.__class__ = DecoderBuffer + DecoderBuffer.__cache__ = {} + Module['DecoderBuffer'] = DecoderBuffer + DecoderBuffer.prototype['Init'] = DecoderBuffer.prototype.Init = function ( + data, + data_size, + ) { + var self = this.ptr + ensureCache.prepare() + if (typeof data == 'object') { + data = ensureInt8(data) + } + if (data_size && typeof data_size === 'object') data_size = data_size.ptr + _emscripten_bind_DecoderBuffer_Init_2(self, data, data_size) + } + DecoderBuffer.prototype['__destroy__'] = + DecoderBuffer.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DecoderBuffer___destroy___0(self) + } + function AttributeTransformData() { + this.ptr = + _emscripten_bind_AttributeTransformData_AttributeTransformData_0() + getCache(AttributeTransformData)[this.ptr] = this + } + AttributeTransformData.prototype = Object.create(WrapperObject.prototype) + AttributeTransformData.prototype.constructor = AttributeTransformData + AttributeTransformData.prototype.__class__ = AttributeTransformData + AttributeTransformData.__cache__ = {} + Module['AttributeTransformData'] = AttributeTransformData + AttributeTransformData.prototype['transform_type'] = + AttributeTransformData.prototype.transform_type = function () { + var self = this.ptr + return _emscripten_bind_AttributeTransformData_transform_type_0(self) + } + AttributeTransformData.prototype['__destroy__'] = + AttributeTransformData.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_AttributeTransformData___destroy___0(self) + } + function GeometryAttribute() { + this.ptr = _emscripten_bind_GeometryAttribute_GeometryAttribute_0() + getCache(GeometryAttribute)[this.ptr] = this + } + GeometryAttribute.prototype = Object.create(WrapperObject.prototype) + GeometryAttribute.prototype.constructor = GeometryAttribute + GeometryAttribute.prototype.__class__ = GeometryAttribute + GeometryAttribute.__cache__ = {} + Module['GeometryAttribute'] = GeometryAttribute + GeometryAttribute.prototype['__destroy__'] = + GeometryAttribute.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_GeometryAttribute___destroy___0(self) + } + function PointAttribute() { + this.ptr = _emscripten_bind_PointAttribute_PointAttribute_0() + getCache(PointAttribute)[this.ptr] = this + } + PointAttribute.prototype = Object.create(WrapperObject.prototype) + PointAttribute.prototype.constructor = PointAttribute + PointAttribute.prototype.__class__ = PointAttribute + PointAttribute.__cache__ = {} + Module['PointAttribute'] = PointAttribute + PointAttribute.prototype['size'] = PointAttribute.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_size_0(self) + } + PointAttribute.prototype['GetAttributeTransformData'] = + PointAttribute.prototype.GetAttributeTransformData = function () { + var self = this.ptr + return wrapPointer( + _emscripten_bind_PointAttribute_GetAttributeTransformData_0(self), + AttributeTransformData, + ) + } + PointAttribute.prototype['attribute_type'] = + PointAttribute.prototype.attribute_type = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_attribute_type_0(self) + } + PointAttribute.prototype['data_type'] = PointAttribute.prototype.data_type = + function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_data_type_0(self) + } + PointAttribute.prototype['num_components'] = + PointAttribute.prototype.num_components = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_num_components_0(self) + } + PointAttribute.prototype['normalized'] = + PointAttribute.prototype.normalized = function () { + var self = this.ptr + return !!_emscripten_bind_PointAttribute_normalized_0(self) + } + PointAttribute.prototype['byte_stride'] = + PointAttribute.prototype.byte_stride = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_byte_stride_0(self) + } + PointAttribute.prototype['byte_offset'] = + PointAttribute.prototype.byte_offset = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_byte_offset_0(self) + } + PointAttribute.prototype['unique_id'] = PointAttribute.prototype.unique_id = + function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_unique_id_0(self) + } + PointAttribute.prototype['__destroy__'] = + PointAttribute.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_PointAttribute___destroy___0(self) + } + function AttributeQuantizationTransform() { + this.ptr = + _emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0() + getCache(AttributeQuantizationTransform)[this.ptr] = this + } + AttributeQuantizationTransform.prototype = Object.create( + WrapperObject.prototype, + ) + AttributeQuantizationTransform.prototype.constructor = + AttributeQuantizationTransform + AttributeQuantizationTransform.prototype.__class__ = + AttributeQuantizationTransform + AttributeQuantizationTransform.__cache__ = {} + Module['AttributeQuantizationTransform'] = AttributeQuantizationTransform + AttributeQuantizationTransform.prototype['InitFromAttribute'] = + AttributeQuantizationTransform.prototype.InitFromAttribute = function ( + att, + ) { + var self = this.ptr + if (att && typeof att === 'object') att = att.ptr + return !!_emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1( + self, + att, + ) + } + AttributeQuantizationTransform.prototype['quantization_bits'] = + AttributeQuantizationTransform.prototype.quantization_bits = function () { + var self = this.ptr + return _emscripten_bind_AttributeQuantizationTransform_quantization_bits_0( + self, + ) + } + AttributeQuantizationTransform.prototype['min_value'] = + AttributeQuantizationTransform.prototype.min_value = function (axis) { + var self = this.ptr + if (axis && typeof axis === 'object') axis = axis.ptr + return _emscripten_bind_AttributeQuantizationTransform_min_value_1( + self, + axis, + ) + } + AttributeQuantizationTransform.prototype['range'] = + AttributeQuantizationTransform.prototype.range = function () { + var self = this.ptr + return _emscripten_bind_AttributeQuantizationTransform_range_0(self) + } + AttributeQuantizationTransform.prototype['__destroy__'] = + AttributeQuantizationTransform.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_AttributeQuantizationTransform___destroy___0(self) + } + function AttributeOctahedronTransform() { + this.ptr = + _emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0() + getCache(AttributeOctahedronTransform)[this.ptr] = this + } + AttributeOctahedronTransform.prototype = Object.create( + WrapperObject.prototype, + ) + AttributeOctahedronTransform.prototype.constructor = + AttributeOctahedronTransform + AttributeOctahedronTransform.prototype.__class__ = + AttributeOctahedronTransform + AttributeOctahedronTransform.__cache__ = {} + Module['AttributeOctahedronTransform'] = AttributeOctahedronTransform + AttributeOctahedronTransform.prototype['InitFromAttribute'] = + AttributeOctahedronTransform.prototype.InitFromAttribute = function ( + att, + ) { + var self = this.ptr + if (att && typeof att === 'object') att = att.ptr + return !!_emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1( + self, + att, + ) + } + AttributeOctahedronTransform.prototype['quantization_bits'] = + AttributeOctahedronTransform.prototype.quantization_bits = function () { + var self = this.ptr + return _emscripten_bind_AttributeOctahedronTransform_quantization_bits_0( + self, + ) + } + AttributeOctahedronTransform.prototype['__destroy__'] = + AttributeOctahedronTransform.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_AttributeOctahedronTransform___destroy___0(self) + } + function PointCloud() { + this.ptr = _emscripten_bind_PointCloud_PointCloud_0() + getCache(PointCloud)[this.ptr] = this + } + PointCloud.prototype = Object.create(WrapperObject.prototype) + PointCloud.prototype.constructor = PointCloud + PointCloud.prototype.__class__ = PointCloud + PointCloud.__cache__ = {} + Module['PointCloud'] = PointCloud + PointCloud.prototype['num_attributes'] = + PointCloud.prototype.num_attributes = function () { + var self = this.ptr + return _emscripten_bind_PointCloud_num_attributes_0(self) + } + PointCloud.prototype['num_points'] = PointCloud.prototype.num_points = + function () { + var self = this.ptr + return _emscripten_bind_PointCloud_num_points_0(self) + } + PointCloud.prototype['__destroy__'] = PointCloud.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_PointCloud___destroy___0(self) + } + function Mesh() { + this.ptr = _emscripten_bind_Mesh_Mesh_0() + getCache(Mesh)[this.ptr] = this + } + Mesh.prototype = Object.create(WrapperObject.prototype) + Mesh.prototype.constructor = Mesh + Mesh.prototype.__class__ = Mesh + Mesh.__cache__ = {} + Module['Mesh'] = Mesh + Mesh.prototype['num_faces'] = Mesh.prototype.num_faces = function () { + var self = this.ptr + return _emscripten_bind_Mesh_num_faces_0(self) + } + Mesh.prototype['num_attributes'] = Mesh.prototype.num_attributes = + function () { + var self = this.ptr + return _emscripten_bind_Mesh_num_attributes_0(self) + } + Mesh.prototype['num_points'] = Mesh.prototype.num_points = function () { + var self = this.ptr + return _emscripten_bind_Mesh_num_points_0(self) + } + Mesh.prototype['__destroy__'] = Mesh.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_Mesh___destroy___0(self) + } + function Metadata() { + this.ptr = _emscripten_bind_Metadata_Metadata_0() + getCache(Metadata)[this.ptr] = this + } + Metadata.prototype = Object.create(WrapperObject.prototype) + Metadata.prototype.constructor = Metadata + Metadata.prototype.__class__ = Metadata + Metadata.__cache__ = {} + Module['Metadata'] = Metadata + Metadata.prototype['__destroy__'] = Metadata.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_Metadata___destroy___0(self) + } + function Status() { + throw 'cannot construct a Status, no constructor in IDL' + } + Status.prototype = Object.create(WrapperObject.prototype) + Status.prototype.constructor = Status + Status.prototype.__class__ = Status + Status.__cache__ = {} + Module['Status'] = Status + Status.prototype['code'] = Status.prototype.code = function () { + var self = this.ptr + return _emscripten_bind_Status_code_0(self) + } + Status.prototype['ok'] = Status.prototype.ok = function () { + var self = this.ptr + return !!_emscripten_bind_Status_ok_0(self) + } + Status.prototype['error_msg'] = Status.prototype.error_msg = function () { + var self = this.ptr + return UTF8ToString(_emscripten_bind_Status_error_msg_0(self)) + } + Status.prototype['__destroy__'] = Status.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_Status___destroy___0(self) + } + function DracoFloat32Array() { + this.ptr = _emscripten_bind_DracoFloat32Array_DracoFloat32Array_0() + getCache(DracoFloat32Array)[this.ptr] = this + } + DracoFloat32Array.prototype = Object.create(WrapperObject.prototype) + DracoFloat32Array.prototype.constructor = DracoFloat32Array + DracoFloat32Array.prototype.__class__ = DracoFloat32Array + DracoFloat32Array.__cache__ = {} + Module['DracoFloat32Array'] = DracoFloat32Array + DracoFloat32Array.prototype['GetValue'] = + DracoFloat32Array.prototype.GetValue = function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoFloat32Array_GetValue_1(self, index) + } + DracoFloat32Array.prototype['size'] = DracoFloat32Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoFloat32Array_size_0(self) + } + DracoFloat32Array.prototype['__destroy__'] = + DracoFloat32Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoFloat32Array___destroy___0(self) + } + function DracoInt8Array() { + this.ptr = _emscripten_bind_DracoInt8Array_DracoInt8Array_0() + getCache(DracoInt8Array)[this.ptr] = this + } + DracoInt8Array.prototype = Object.create(WrapperObject.prototype) + DracoInt8Array.prototype.constructor = DracoInt8Array + DracoInt8Array.prototype.__class__ = DracoInt8Array + DracoInt8Array.__cache__ = {} + Module['DracoInt8Array'] = DracoInt8Array + DracoInt8Array.prototype['GetValue'] = DracoInt8Array.prototype.GetValue = + function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoInt8Array_GetValue_1(self, index) + } + DracoInt8Array.prototype['size'] = DracoInt8Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoInt8Array_size_0(self) + } + DracoInt8Array.prototype['__destroy__'] = + DracoInt8Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoInt8Array___destroy___0(self) + } + function DracoUInt8Array() { + this.ptr = _emscripten_bind_DracoUInt8Array_DracoUInt8Array_0() + getCache(DracoUInt8Array)[this.ptr] = this + } + DracoUInt8Array.prototype = Object.create(WrapperObject.prototype) + DracoUInt8Array.prototype.constructor = DracoUInt8Array + DracoUInt8Array.prototype.__class__ = DracoUInt8Array + DracoUInt8Array.__cache__ = {} + Module['DracoUInt8Array'] = DracoUInt8Array + DracoUInt8Array.prototype['GetValue'] = DracoUInt8Array.prototype.GetValue = + function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoUInt8Array_GetValue_1(self, index) + } + DracoUInt8Array.prototype['size'] = DracoUInt8Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoUInt8Array_size_0(self) + } + DracoUInt8Array.prototype['__destroy__'] = + DracoUInt8Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoUInt8Array___destroy___0(self) + } + function DracoInt16Array() { + this.ptr = _emscripten_bind_DracoInt16Array_DracoInt16Array_0() + getCache(DracoInt16Array)[this.ptr] = this + } + DracoInt16Array.prototype = Object.create(WrapperObject.prototype) + DracoInt16Array.prototype.constructor = DracoInt16Array + DracoInt16Array.prototype.__class__ = DracoInt16Array + DracoInt16Array.__cache__ = {} + Module['DracoInt16Array'] = DracoInt16Array + DracoInt16Array.prototype['GetValue'] = DracoInt16Array.prototype.GetValue = + function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoInt16Array_GetValue_1(self, index) + } + DracoInt16Array.prototype['size'] = DracoInt16Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoInt16Array_size_0(self) + } + DracoInt16Array.prototype['__destroy__'] = + DracoInt16Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoInt16Array___destroy___0(self) + } + function DracoUInt16Array() { + this.ptr = _emscripten_bind_DracoUInt16Array_DracoUInt16Array_0() + getCache(DracoUInt16Array)[this.ptr] = this + } + DracoUInt16Array.prototype = Object.create(WrapperObject.prototype) + DracoUInt16Array.prototype.constructor = DracoUInt16Array + DracoUInt16Array.prototype.__class__ = DracoUInt16Array + DracoUInt16Array.__cache__ = {} + Module['DracoUInt16Array'] = DracoUInt16Array + DracoUInt16Array.prototype['GetValue'] = + DracoUInt16Array.prototype.GetValue = function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoUInt16Array_GetValue_1(self, index) + } + DracoUInt16Array.prototype['size'] = DracoUInt16Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoUInt16Array_size_0(self) + } + DracoUInt16Array.prototype['__destroy__'] = + DracoUInt16Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoUInt16Array___destroy___0(self) + } + function DracoInt32Array() { + this.ptr = _emscripten_bind_DracoInt32Array_DracoInt32Array_0() + getCache(DracoInt32Array)[this.ptr] = this + } + DracoInt32Array.prototype = Object.create(WrapperObject.prototype) + DracoInt32Array.prototype.constructor = DracoInt32Array + DracoInt32Array.prototype.__class__ = DracoInt32Array + DracoInt32Array.__cache__ = {} + Module['DracoInt32Array'] = DracoInt32Array + DracoInt32Array.prototype['GetValue'] = DracoInt32Array.prototype.GetValue = + function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoInt32Array_GetValue_1(self, index) + } + DracoInt32Array.prototype['size'] = DracoInt32Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoInt32Array_size_0(self) + } + DracoInt32Array.prototype['__destroy__'] = + DracoInt32Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoInt32Array___destroy___0(self) + } + function DracoUInt32Array() { + this.ptr = _emscripten_bind_DracoUInt32Array_DracoUInt32Array_0() + getCache(DracoUInt32Array)[this.ptr] = this + } + DracoUInt32Array.prototype = Object.create(WrapperObject.prototype) + DracoUInt32Array.prototype.constructor = DracoUInt32Array + DracoUInt32Array.prototype.__class__ = DracoUInt32Array + DracoUInt32Array.__cache__ = {} + Module['DracoUInt32Array'] = DracoUInt32Array + DracoUInt32Array.prototype['GetValue'] = + DracoUInt32Array.prototype.GetValue = function (index) { + var self = this.ptr + if (index && typeof index === 'object') index = index.ptr + return _emscripten_bind_DracoUInt32Array_GetValue_1(self, index) + } + DracoUInt32Array.prototype['size'] = DracoUInt32Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoUInt32Array_size_0(self) + } + DracoUInt32Array.prototype['__destroy__'] = + DracoUInt32Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoUInt32Array___destroy___0(self) + } + function MetadataQuerier() { + this.ptr = _emscripten_bind_MetadataQuerier_MetadataQuerier_0() + getCache(MetadataQuerier)[this.ptr] = this + } + MetadataQuerier.prototype = Object.create(WrapperObject.prototype) + MetadataQuerier.prototype.constructor = MetadataQuerier + MetadataQuerier.prototype.__class__ = MetadataQuerier + MetadataQuerier.__cache__ = {} + Module['MetadataQuerier'] = MetadataQuerier + MetadataQuerier.prototype['HasEntry'] = MetadataQuerier.prototype.HasEntry = + function (metadata, entry_name) { + var self = this.ptr + ensureCache.prepare() + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + if (entry_name && typeof entry_name === 'object') + entry_name = entry_name.ptr + else entry_name = ensureString(entry_name) + return !!_emscripten_bind_MetadataQuerier_HasEntry_2( + self, + metadata, + entry_name, + ) + } + MetadataQuerier.prototype['GetIntEntry'] = + MetadataQuerier.prototype.GetIntEntry = function (metadata, entry_name) { + var self = this.ptr + ensureCache.prepare() + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + if (entry_name && typeof entry_name === 'object') + entry_name = entry_name.ptr + else entry_name = ensureString(entry_name) + return _emscripten_bind_MetadataQuerier_GetIntEntry_2( + self, + metadata, + entry_name, + ) + } + MetadataQuerier.prototype['GetIntEntryArray'] = + MetadataQuerier.prototype.GetIntEntryArray = function ( + metadata, + entry_name, + out_values, + ) { + var self = this.ptr + ensureCache.prepare() + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + if (entry_name && typeof entry_name === 'object') + entry_name = entry_name.ptr + else entry_name = ensureString(entry_name) + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + _emscripten_bind_MetadataQuerier_GetIntEntryArray_3( + self, + metadata, + entry_name, + out_values, + ) + } + MetadataQuerier.prototype['GetDoubleEntry'] = + MetadataQuerier.prototype.GetDoubleEntry = function ( + metadata, + entry_name, + ) { + var self = this.ptr + ensureCache.prepare() + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + if (entry_name && typeof entry_name === 'object') + entry_name = entry_name.ptr + else entry_name = ensureString(entry_name) + return _emscripten_bind_MetadataQuerier_GetDoubleEntry_2( + self, + metadata, + entry_name, + ) + } + MetadataQuerier.prototype['GetStringEntry'] = + MetadataQuerier.prototype.GetStringEntry = function ( + metadata, + entry_name, + ) { + var self = this.ptr + ensureCache.prepare() + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + if (entry_name && typeof entry_name === 'object') + entry_name = entry_name.ptr + else entry_name = ensureString(entry_name) + return UTF8ToString( + _emscripten_bind_MetadataQuerier_GetStringEntry_2( + self, + metadata, + entry_name, + ), + ) + } + MetadataQuerier.prototype['NumEntries'] = + MetadataQuerier.prototype.NumEntries = function (metadata) { + var self = this.ptr + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + return _emscripten_bind_MetadataQuerier_NumEntries_1(self, metadata) + } + MetadataQuerier.prototype['GetEntryName'] = + MetadataQuerier.prototype.GetEntryName = function (metadata, entry_id) { + var self = this.ptr + if (metadata && typeof metadata === 'object') metadata = metadata.ptr + if (entry_id && typeof entry_id === 'object') entry_id = entry_id.ptr + return UTF8ToString( + _emscripten_bind_MetadataQuerier_GetEntryName_2( + self, + metadata, + entry_id, + ), + ) + } + MetadataQuerier.prototype['__destroy__'] = + MetadataQuerier.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_MetadataQuerier___destroy___0(self) + } + function Decoder() { + this.ptr = _emscripten_bind_Decoder_Decoder_0() + getCache(Decoder)[this.ptr] = this + } + Decoder.prototype = Object.create(WrapperObject.prototype) + Decoder.prototype.constructor = Decoder + Decoder.prototype.__class__ = Decoder + Decoder.__cache__ = {} + Module['Decoder'] = Decoder + Decoder.prototype['DecodeArrayToPointCloud'] = + Decoder.prototype.DecodeArrayToPointCloud = function ( + data, + data_size, + out_point_cloud, + ) { + var self = this.ptr + ensureCache.prepare() + if (typeof data == 'object') { + data = ensureInt8(data) + } + if (data_size && typeof data_size === 'object') + data_size = data_size.ptr + if (out_point_cloud && typeof out_point_cloud === 'object') + out_point_cloud = out_point_cloud.ptr + return wrapPointer( + _emscripten_bind_Decoder_DecodeArrayToPointCloud_3( + self, + data, + data_size, + out_point_cloud, + ), + Status, + ) + } + Decoder.prototype['DecodeArrayToMesh'] = + Decoder.prototype.DecodeArrayToMesh = function ( + data, + data_size, + out_mesh, + ) { + var self = this.ptr + ensureCache.prepare() + if (typeof data == 'object') { + data = ensureInt8(data) + } + if (data_size && typeof data_size === 'object') + data_size = data_size.ptr + if (out_mesh && typeof out_mesh === 'object') out_mesh = out_mesh.ptr + return wrapPointer( + _emscripten_bind_Decoder_DecodeArrayToMesh_3( + self, + data, + data_size, + out_mesh, + ), + Status, + ) + } + Decoder.prototype['GetAttributeId'] = Decoder.prototype.GetAttributeId = + function (pc, type) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (type && typeof type === 'object') type = type.ptr + return _emscripten_bind_Decoder_GetAttributeId_2(self, pc, type) + } + Decoder.prototype['GetAttributeIdByName'] = + Decoder.prototype.GetAttributeIdByName = function (pc, name) { + var self = this.ptr + ensureCache.prepare() + if (pc && typeof pc === 'object') pc = pc.ptr + if (name && typeof name === 'object') name = name.ptr + else name = ensureString(name) + return _emscripten_bind_Decoder_GetAttributeIdByName_2(self, pc, name) + } + Decoder.prototype['GetAttributeIdByMetadataEntry'] = + Decoder.prototype.GetAttributeIdByMetadataEntry = function ( + pc, + name, + value, + ) { + var self = this.ptr + ensureCache.prepare() + if (pc && typeof pc === 'object') pc = pc.ptr + if (name && typeof name === 'object') name = name.ptr + else name = ensureString(name) + if (value && typeof value === 'object') value = value.ptr + else value = ensureString(value) + return _emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3( + self, + pc, + name, + value, + ) + } + Decoder.prototype['GetAttribute'] = Decoder.prototype.GetAttribute = + function (pc, att_id) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (att_id && typeof att_id === 'object') att_id = att_id.ptr + return wrapPointer( + _emscripten_bind_Decoder_GetAttribute_2(self, pc, att_id), + PointAttribute, + ) + } + Decoder.prototype['GetAttributeByUniqueId'] = + Decoder.prototype.GetAttributeByUniqueId = function (pc, unique_id) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (unique_id && typeof unique_id === 'object') + unique_id = unique_id.ptr + return wrapPointer( + _emscripten_bind_Decoder_GetAttributeByUniqueId_2( + self, + pc, + unique_id, + ), + PointAttribute, + ) + } + Decoder.prototype['GetMetadata'] = Decoder.prototype.GetMetadata = + function (pc) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + return wrapPointer( + _emscripten_bind_Decoder_GetMetadata_1(self, pc), + Metadata, + ) + } + Decoder.prototype['GetAttributeMetadata'] = + Decoder.prototype.GetAttributeMetadata = function (pc, att_id) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (att_id && typeof att_id === 'object') att_id = att_id.ptr + return wrapPointer( + _emscripten_bind_Decoder_GetAttributeMetadata_2(self, pc, att_id), + Metadata, + ) + } + Decoder.prototype['GetFaceFromMesh'] = Decoder.prototype.GetFaceFromMesh = + function (m, face_id, out_values) { + var self = this.ptr + if (m && typeof m === 'object') m = m.ptr + if (face_id && typeof face_id === 'object') face_id = face_id.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetFaceFromMesh_3( + self, + m, + face_id, + out_values, + ) + } + Decoder.prototype['GetTriangleStripsFromMesh'] = + Decoder.prototype.GetTriangleStripsFromMesh = function (m, strip_values) { + var self = this.ptr + if (m && typeof m === 'object') m = m.ptr + if (strip_values && typeof strip_values === 'object') + strip_values = strip_values.ptr + return _emscripten_bind_Decoder_GetTriangleStripsFromMesh_2( + self, + m, + strip_values, + ) + } + Decoder.prototype['GetTrianglesUInt16Array'] = + Decoder.prototype.GetTrianglesUInt16Array = function ( + m, + out_size, + out_values, + ) { + var self = this.ptr + if (m && typeof m === 'object') m = m.ptr + if (out_size && typeof out_size === 'object') out_size = out_size.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetTrianglesUInt16Array_3( + self, + m, + out_size, + out_values, + ) + } + Decoder.prototype['GetTrianglesUInt32Array'] = + Decoder.prototype.GetTrianglesUInt32Array = function ( + m, + out_size, + out_values, + ) { + var self = this.ptr + if (m && typeof m === 'object') m = m.ptr + if (out_size && typeof out_size === 'object') out_size = out_size.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetTrianglesUInt32Array_3( + self, + m, + out_size, + out_values, + ) + } + Decoder.prototype['GetAttributeFloat'] = + Decoder.prototype.GetAttributeFloat = function ( + pa, + att_index, + out_values, + ) { + var self = this.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (att_index && typeof att_index === 'object') + att_index = att_index.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeFloat_3( + self, + pa, + att_index, + out_values, + ) + } + Decoder.prototype['GetAttributeFloatForAllPoints'] = + Decoder.prototype.GetAttributeFloatForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeIntForAllPoints'] = + Decoder.prototype.GetAttributeIntForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeIntForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeInt8ForAllPoints'] = + Decoder.prototype.GetAttributeInt8ForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeUInt8ForAllPoints'] = + Decoder.prototype.GetAttributeUInt8ForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeInt16ForAllPoints'] = + Decoder.prototype.GetAttributeInt16ForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeUInt16ForAllPoints'] = + Decoder.prototype.GetAttributeUInt16ForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeInt32ForAllPoints'] = + Decoder.prototype.GetAttributeInt32ForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeUInt32ForAllPoints'] = + Decoder.prototype.GetAttributeUInt32ForAllPoints = function ( + pc, + pa, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3( + self, + pc, + pa, + out_values, + ) + } + Decoder.prototype['GetAttributeDataArrayForAllPoints'] = + Decoder.prototype.GetAttributeDataArrayForAllPoints = function ( + pc, + pa, + data_type, + out_size, + out_values, + ) { + var self = this.ptr + if (pc && typeof pc === 'object') pc = pc.ptr + if (pa && typeof pa === 'object') pa = pa.ptr + if (data_type && typeof data_type === 'object') + data_type = data_type.ptr + if (out_size && typeof out_size === 'object') out_size = out_size.ptr + if (out_values && typeof out_values === 'object') + out_values = out_values.ptr + return !!_emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5( + self, + pc, + pa, + data_type, + out_size, + out_values, + ) + } + Decoder.prototype['SkipAttributeTransform'] = + Decoder.prototype.SkipAttributeTransform = function (att_type) { + var self = this.ptr + if (att_type && typeof att_type === 'object') att_type = att_type.ptr + _emscripten_bind_Decoder_SkipAttributeTransform_1(self, att_type) + } + Decoder.prototype['GetEncodedGeometryType_Deprecated'] = + Decoder.prototype.GetEncodedGeometryType_Deprecated = function ( + in_buffer, + ) { + var self = this.ptr + if (in_buffer && typeof in_buffer === 'object') + in_buffer = in_buffer.ptr + return _emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1( + self, + in_buffer, + ) + } + Decoder.prototype['DecodeBufferToPointCloud'] = + Decoder.prototype.DecodeBufferToPointCloud = function ( + in_buffer, + out_point_cloud, + ) { + var self = this.ptr + if (in_buffer && typeof in_buffer === 'object') + in_buffer = in_buffer.ptr + if (out_point_cloud && typeof out_point_cloud === 'object') + out_point_cloud = out_point_cloud.ptr + return wrapPointer( + _emscripten_bind_Decoder_DecodeBufferToPointCloud_2( + self, + in_buffer, + out_point_cloud, + ), + Status, + ) + } + Decoder.prototype['DecodeBufferToMesh'] = + Decoder.prototype.DecodeBufferToMesh = function (in_buffer, out_mesh) { + var self = this.ptr + if (in_buffer && typeof in_buffer === 'object') + in_buffer = in_buffer.ptr + if (out_mesh && typeof out_mesh === 'object') out_mesh = out_mesh.ptr + return wrapPointer( + _emscripten_bind_Decoder_DecodeBufferToMesh_2( + self, + in_buffer, + out_mesh, + ), + Status, + ) + } + Decoder.prototype['__destroy__'] = Decoder.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_Decoder___destroy___0(self) + } + ;(function () { + function setupEnums() { + Module['ATTRIBUTE_INVALID_TRANSFORM'] = + _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM() + Module['ATTRIBUTE_NO_TRANSFORM'] = + _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM() + Module['ATTRIBUTE_QUANTIZATION_TRANSFORM'] = + _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM() + Module['ATTRIBUTE_OCTAHEDRON_TRANSFORM'] = + _emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM() + Module['INVALID'] = + _emscripten_enum_draco_GeometryAttribute_Type_INVALID() + Module['POSITION'] = + _emscripten_enum_draco_GeometryAttribute_Type_POSITION() + Module['NORMAL'] = + _emscripten_enum_draco_GeometryAttribute_Type_NORMAL() + Module['COLOR'] = _emscripten_enum_draco_GeometryAttribute_Type_COLOR() + Module['TEX_COORD'] = + _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD() + Module['GENERIC'] = + _emscripten_enum_draco_GeometryAttribute_Type_GENERIC() + Module['INVALID_GEOMETRY_TYPE'] = + _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE() + Module['POINT_CLOUD'] = + _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD() + Module['TRIANGULAR_MESH'] = + _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH() + Module['DT_INVALID'] = _emscripten_enum_draco_DataType_DT_INVALID() + Module['DT_INT8'] = _emscripten_enum_draco_DataType_DT_INT8() + Module['DT_UINT8'] = _emscripten_enum_draco_DataType_DT_UINT8() + Module['DT_INT16'] = _emscripten_enum_draco_DataType_DT_INT16() + Module['DT_UINT16'] = _emscripten_enum_draco_DataType_DT_UINT16() + Module['DT_INT32'] = _emscripten_enum_draco_DataType_DT_INT32() + Module['DT_UINT32'] = _emscripten_enum_draco_DataType_DT_UINT32() + Module['DT_INT64'] = _emscripten_enum_draco_DataType_DT_INT64() + Module['DT_UINT64'] = _emscripten_enum_draco_DataType_DT_UINT64() + Module['DT_FLOAT32'] = _emscripten_enum_draco_DataType_DT_FLOAT32() + Module['DT_FLOAT64'] = _emscripten_enum_draco_DataType_DT_FLOAT64() + Module['DT_BOOL'] = _emscripten_enum_draco_DataType_DT_BOOL() + Module['DT_TYPES_COUNT'] = + _emscripten_enum_draco_DataType_DT_TYPES_COUNT() + Module['OK'] = _emscripten_enum_draco_StatusCode_OK() + Module['DRACO_ERROR'] = _emscripten_enum_draco_StatusCode_DRACO_ERROR() + Module['IO_ERROR'] = _emscripten_enum_draco_StatusCode_IO_ERROR() + Module['INVALID_PARAMETER'] = + _emscripten_enum_draco_StatusCode_INVALID_PARAMETER() + Module['UNSUPPORTED_VERSION'] = + _emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION() + Module['UNKNOWN_VERSION'] = + _emscripten_enum_draco_StatusCode_UNKNOWN_VERSION() + } + if (runtimeInitialized) setupEnums() + else addOnInit(setupEnums) + })() + if (typeof Module['onModuleParsed'] === 'function') { + Module['onModuleParsed']() + } + Module['Decoder'].prototype.GetEncodedGeometryType = function (array) { + if (array.__class__ && array.__class__ === Module.DecoderBuffer) { + return Module.Decoder.prototype.GetEncodedGeometryType_Deprecated(array) + } + if (array.byteLength < 8) return Module.INVALID_GEOMETRY_TYPE + switch (array[7]) { + case 0: + return Module.POINT_CLOUD + case 1: + return Module.TRIANGULAR_MESH + default: + return Module.INVALID_GEOMETRY_TYPE + } + } - return DracoDecoderModule.ready -} -); -})(); + return DracoDecoderModule.ready + } +})() if (typeof exports === 'object' && typeof module === 'object') - module.exports = DracoDecoderModule; + module.exports = DracoDecoderModule else if (typeof define === 'function' && define['amd']) - define([], function() { return DracoDecoderModule; }); + define([], function () { + return DracoDecoderModule + }) else if (typeof exports === 'object') - exports["DracoDecoderModule"] = DracoDecoderModule; + exports['DracoDecoderModule'] = DracoDecoderModule diff --git a/public/draco/gltf/draco_encoder.js b/public/draco/gltf/draco_encoder.js index a67cdf20..e2e7125c 100755 --- a/public/draco/gltf/draco_encoder.js +++ b/public/draco/gltf/draco_encoder.js @@ -1,33 +1,94018 @@ -var DracoEncoderModule = function(DracoEncoderModule) { - DracoEncoderModule = DracoEncoderModule || {}; +var DracoEncoderModule = function (DracoEncoderModule) { + DracoEncoderModule = DracoEncoderModule || {} -var Module=typeof DracoEncoderModule!=="undefined"?DracoEncoderModule:{};var isRuntimeInitialized=false;var isModuleParsed=false;Module["onRuntimeInitialized"]=(function(){isRuntimeInitialized=true;if(isModuleParsed){if(typeof Module["onModuleLoaded"]==="function"){Module["onModuleLoaded"](Module)}}});Module["onModuleParsed"]=(function(){isModuleParsed=true;if(isRuntimeInitialized){if(typeof Module["onModuleLoaded"]==="function"){Module["onModuleLoaded"](Module)}}});function isVersionSupported(versionString){if(typeof versionString!=="string")return false;const version=versionString.split(".");if(version.length<2||version.length>3)return false;if(version[0]==1&&version[1]>=0&&version[1]<=3)return true;if(version[0]!=0||version[1]>10)return false;return true}Module["isVersionSupported"]=isVersionSupported;var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}Module["arguments"]=[];Module["thisProgram"]="./this.program";Module["quit"]=(function(status,toThrow){throw toThrow});Module["preRun"]=[];Module["postRun"]=[];var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;if(Module["ENVIRONMENT"]){if(Module["ENVIRONMENT"]==="WEB"){ENVIRONMENT_IS_WEB=true}else if(Module["ENVIRONMENT"]==="WORKER"){ENVIRONMENT_IS_WORKER=true}else if(Module["ENVIRONMENT"]==="NODE"){ENVIRONMENT_IS_NODE=true}else if(Module["ENVIRONMENT"]==="SHELL"){ENVIRONMENT_IS_SHELL=true}else{throw new Error("Module['ENVIRONMENT'] value is not valid. must be one of: WEB|WORKER|NODE|SHELL.")}}else{ENVIRONMENT_IS_WEB=typeof window==="object";ENVIRONMENT_IS_WORKER=typeof importScripts==="function";ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof require==="function"&&!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_WORKER;ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER}if(ENVIRONMENT_IS_NODE){var nodeFS;var nodePath;Module["read"]=function shell_read(filename,binary){var ret;ret=tryParseAsDataURI(filename);if(!ret){if(!nodeFS)nodeFS=require("fs");if(!nodePath)nodePath=require("path");filename=nodePath["normalize"](filename);ret=nodeFS["readFileSync"](filename)}return binary?ret:ret.toString()};Module["readBinary"]=function readBinary(filename){var ret=Module["read"](filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process["argv"].length>1){Module["thisProgram"]=process["argv"][1].replace(/\\/g,"/")}Module["arguments"]=process["argv"].slice(2);process["on"]("uncaughtException",(function(ex){if(!(ex instanceof ExitStatus)){throw ex}}));process["on"]("unhandledRejection",(function(reason,p){process["exit"](1)}));Module["inspect"]=(function(){return"[Emscripten Module object]"})}else if(ENVIRONMENT_IS_SHELL){if(typeof read!="undefined"){Module["read"]=function shell_read(f){var data=tryParseAsDataURI(f);if(data){return intArrayToString(data)}return read(f)}}Module["readBinary"]=function readBinary(f){var data;data=tryParseAsDataURI(f);if(data){return data}if(typeof readbuffer==="function"){return new Uint8Array(readbuffer(f))}data=read(f,"binary");assert(typeof data==="object");return data};if(typeof scriptArgs!="undefined"){Module["arguments"]=scriptArgs}else if(typeof arguments!="undefined"){Module["arguments"]=arguments}if(typeof quit==="function"){Module["quit"]=(function(status,toThrow){quit(status)})}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){Module["read"]=function shell_read(url){try{var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.send(null);return xhr.responseText}catch(err){var data=tryParseAsDataURI(url);if(data){return intArrayToString(data)}throw err}};if(ENVIRONMENT_IS_WORKER){Module["readBinary"]=function readBinary(url){try{var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.responseType="arraybuffer";xhr.send(null);return new Uint8Array(xhr.response)}catch(err){var data=tryParseAsDataURI(url);if(data){return data}throw err}}}Module["readAsync"]=function readAsync(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open("GET",url,true);xhr.responseType="arraybuffer";xhr.onload=function xhr_onload(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}var data=tryParseAsDataURI(url);if(data){onload(data.buffer);return}onerror()};xhr.onerror=onerror;xhr.send(null)};Module["setWindowTitle"]=(function(title){document.title=title})}Module["print"]=typeof console!=="undefined"?console.log.bind(console):typeof print!=="undefined"?print:null;Module["printErr"]=typeof printErr!=="undefined"?printErr:typeof console!=="undefined"&&console.warn.bind(console)||Module["print"];Module.print=Module["print"];Module.printErr=Module["printErr"];for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=undefined;var STACK_ALIGN=16;function staticAlloc(size){assert(!staticSealed);var ret=STATICTOP;STATICTOP=STATICTOP+size+15&-16;return ret}function dynamicAlloc(size){assert(DYNAMICTOP_PTR);var ret=HEAP32[DYNAMICTOP_PTR>>2];var end=ret+size+15&-16;HEAP32[DYNAMICTOP_PTR>>2]=end;if(end>=TOTAL_MEMORY){var success=enlargeMemory();if(!success){HEAP32[DYNAMICTOP_PTR>>2]=ret;return 0}}return ret}function alignMemory(size,factor){if(!factor)factor=STACK_ALIGN;var ret=size=Math.ceil(size/factor)*factor;return ret}function getNativeTypeSize(type){switch(type){case"i1":case"i8":return 1;case"i16":return 2;case"i32":return 4;case"i64":return 8;case"float":return 4;case"double":return 8;default:{if(type[type.length-1]==="*"){return 4}else if(type[0]==="i"){var bits=parseInt(type.substr(1));assert(bits%8===0);return bits/8}else{return 0}}}}function warnOnce(text){if(!warnOnce.shown)warnOnce.shown={};if(!warnOnce.shown[text]){warnOnce.shown[text]=1;Module.printErr(text)}}var jsCallStartIndex=1;var functionPointers=new Array(0);var funcWrappers={};function dynCall(sig,ptr,args){if(args&&args.length){return Module["dynCall_"+sig].apply(null,[ptr].concat(args))}else{return Module["dynCall_"+sig].call(null,ptr)}}var GLOBAL_BASE=8;var ABORT=0;var EXITSTATUS=0;function assert(condition,text){if(!condition){abort("Assertion failed: "+text)}}function getCFunc(ident){var func=Module["_"+ident];assert(func,"Cannot call unknown function "+ident+", make sure it is exported");return func}var JSfuncs={"stackSave":(function(){stackSave()}),"stackRestore":(function(){stackRestore()}),"arrayToC":(function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}),"stringToC":(function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret})};var toC={"string":JSfuncs["stringToC"],"array":JSfuncs["arrayToC"]};function ccall(ident,returnType,argTypes,args,opts){var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i>0]=value;break;case"i8":HEAP8[ptr>>0]=value;break;case"i16":HEAP16[ptr>>1]=value;break;case"i32":HEAP32[ptr>>2]=value;break;case"i64":tempI64=[value>>>0,(tempDouble=value,+Math_abs(tempDouble)>=+1?tempDouble>+0?(Math_min(+Math_floor(tempDouble/+4294967296),+4294967295)|0)>>>0:~~+Math_ceil((tempDouble- +(~~tempDouble>>>0))/+4294967296)>>>0:0)],HEAP32[ptr>>2]=tempI64[0],HEAP32[ptr+4>>2]=tempI64[1];break;case"float":HEAPF32[ptr>>2]=value;break;case"double":HEAPF64[ptr>>3]=value;break;default:abort("invalid type for setValue: "+type)}}var ALLOC_STATIC=2;var ALLOC_NONE=4;function allocate(slab,types,allocator,ptr){var zeroinit,size;if(typeof slab==="number"){zeroinit=true;size=slab}else{zeroinit=false;size=slab.length}var singleType=typeof types==="string"?types:null;var ret;if(allocator==ALLOC_NONE){ret=ptr}else{ret=[typeof _malloc==="function"?_malloc:staticAlloc,stackAlloc,staticAlloc,dynamicAlloc][allocator===undefined?ALLOC_STATIC:allocator](Math.max(size,singleType?1:types.length))}if(zeroinit){var stop;ptr=ret;assert((ret&3)==0);stop=ret+(size&~3);for(;ptr>2]=0}stop=ret+size;while(ptr>0]=0}return ret}if(singleType==="i8"){if(slab.subarray||slab.slice){HEAPU8.set(slab,ret)}else{HEAPU8.set(new Uint8Array(slab),ret)}return ret}var i=0,type,typeSize,previousType;while(i>0];hasUtf|=t;if(t==0&&!length)break;i++;if(length&&i==length)break}if(!length)length=i;var ret="";if(hasUtf<128){var MAX_CHUNK=1024;var curr;while(length>0){curr=String.fromCharCode.apply(String,HEAPU8.subarray(ptr,ptr+Math.min(length,MAX_CHUNK)));ret=ret?ret+curr:curr;ptr+=MAX_CHUNK;length-=MAX_CHUNK}return ret}return UTF8ToString(ptr)}var UTF8Decoder=typeof TextDecoder!=="undefined"?new TextDecoder("utf8"):undefined;function UTF8ArrayToString(u8Array,idx){var endPtr=idx;while(u8Array[endPtr])++endPtr;if(endPtr-idx>16&&u8Array.subarray&&UTF8Decoder){return UTF8Decoder.decode(u8Array.subarray(idx,endPtr))}else{var u0,u1,u2,u3,u4,u5;var str="";while(1){u0=u8Array[idx++];if(!u0)return str;if(!(u0&128)){str+=String.fromCharCode(u0);continue}u1=u8Array[idx++]&63;if((u0&224)==192){str+=String.fromCharCode((u0&31)<<6|u1);continue}u2=u8Array[idx++]&63;if((u0&240)==224){u0=(u0&15)<<12|u1<<6|u2}else{u3=u8Array[idx++]&63;if((u0&248)==240){u0=(u0&7)<<18|u1<<12|u2<<6|u3}else{u4=u8Array[idx++]&63;if((u0&252)==248){u0=(u0&3)<<24|u1<<18|u2<<12|u3<<6|u4}else{u5=u8Array[idx++]&63;u0=(u0&1)<<30|u1<<24|u2<<18|u3<<12|u4<<6|u5}}}if(u0<65536){str+=String.fromCharCode(u0)}else{var ch=u0-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}}}}function UTF8ToString(ptr){return UTF8ArrayToString(HEAPU8,ptr)}function stringToUTF8Array(str,outU8Array,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127){if(outIdx>=endIdx)break;outU8Array[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;outU8Array[outIdx++]=192|u>>6;outU8Array[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;outU8Array[outIdx++]=224|u>>12;outU8Array[outIdx++]=128|u>>6&63;outU8Array[outIdx++]=128|u&63}else if(u<=2097151){if(outIdx+3>=endIdx)break;outU8Array[outIdx++]=240|u>>18;outU8Array[outIdx++]=128|u>>12&63;outU8Array[outIdx++]=128|u>>6&63;outU8Array[outIdx++]=128|u&63}else if(u<=67108863){if(outIdx+4>=endIdx)break;outU8Array[outIdx++]=248|u>>24;outU8Array[outIdx++]=128|u>>18&63;outU8Array[outIdx++]=128|u>>12&63;outU8Array[outIdx++]=128|u>>6&63;outU8Array[outIdx++]=128|u&63}else{if(outIdx+5>=endIdx)break;outU8Array[outIdx++]=252|u>>30;outU8Array[outIdx++]=128|u>>24&63;outU8Array[outIdx++]=128|u>>18&63;outU8Array[outIdx++]=128|u>>12&63;outU8Array[outIdx++]=128|u>>6&63;outU8Array[outIdx++]=128|u&63}}outU8Array[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,HEAPU8,outPtr,maxBytesToWrite)}function lengthBytesUTF8(str){var len=0;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127){++len}else if(u<=2047){len+=2}else if(u<=65535){len+=3}else if(u<=2097151){len+=4}else if(u<=67108863){len+=5}else{len+=6}}return len}var UTF16Decoder=typeof TextDecoder!=="undefined"?new TextDecoder("utf-16le"):undefined;function demangle(func){return func}function demangleAll(text){var regex=/__Z[\w\d_]+/g;return text.replace(regex,(function(x){var y=demangle(x);return x===y?x:x+" ["+y+"]"}))}function jsStackTrace(){var err=new Error;if(!err.stack){try{throw new Error(0)}catch(e){err=e}if(!err.stack){return"(no stack trace available)"}}return err.stack.toString()}var WASM_PAGE_SIZE=65536;var ASMJS_PAGE_SIZE=16777216;var MIN_TOTAL_MEMORY=16777216;function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBuffer(buf){Module["buffer"]=buffer=buf}function updateGlobalBufferViews(){Module["HEAP8"]=HEAP8=new Int8Array(buffer);Module["HEAP16"]=HEAP16=new Int16Array(buffer);Module["HEAP32"]=HEAP32=new Int32Array(buffer);Module["HEAPU8"]=HEAPU8=new Uint8Array(buffer);Module["HEAPU16"]=HEAPU16=new Uint16Array(buffer);Module["HEAPU32"]=HEAPU32=new Uint32Array(buffer);Module["HEAPF32"]=HEAPF32=new Float32Array(buffer);Module["HEAPF64"]=HEAPF64=new Float64Array(buffer)}var STATIC_BASE,STATICTOP,staticSealed;var STACK_BASE,STACKTOP,STACK_MAX;var DYNAMIC_BASE,DYNAMICTOP_PTR;STATIC_BASE=STATICTOP=STACK_BASE=STACKTOP=STACK_MAX=DYNAMIC_BASE=DYNAMICTOP_PTR=0;staticSealed=false;function abortOnCannotGrowMemory(){abort("Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value "+TOTAL_MEMORY+", (2) compile with -s ALLOW_MEMORY_GROWTH=1 which allows increasing the size at runtime but prevents some optimizations, (3) set Module.TOTAL_MEMORY to a higher value before the program runs, or (4) if you want malloc to return NULL (0) instead of this abort, compile with -s ABORTING_MALLOC=0 ")}if(!Module["reallocBuffer"])Module["reallocBuffer"]=(function(size){var ret;try{if(ArrayBuffer.transfer){ret=ArrayBuffer.transfer(buffer,size)}else{var oldHEAP8=HEAP8;ret=new ArrayBuffer(size);var temp=new Int8Array(ret);temp.set(oldHEAP8)}}catch(e){return false}var success=_emscripten_replace_memory(ret);if(!success)return false;return ret});function enlargeMemory(){var PAGE_MULTIPLE=Module["usingWasm"]?WASM_PAGE_SIZE:ASMJS_PAGE_SIZE;var LIMIT=2147483648-PAGE_MULTIPLE;if(HEAP32[DYNAMICTOP_PTR>>2]>LIMIT){return false}var OLD_TOTAL_MEMORY=TOTAL_MEMORY;TOTAL_MEMORY=Math.max(TOTAL_MEMORY,MIN_TOTAL_MEMORY);while(TOTAL_MEMORY>2]){if(TOTAL_MEMORY<=536870912){TOTAL_MEMORY=alignUp(2*TOTAL_MEMORY,PAGE_MULTIPLE)}else{TOTAL_MEMORY=Math.min(alignUp((3*TOTAL_MEMORY+2147483648)/4,PAGE_MULTIPLE),LIMIT)}}var replacement=Module["reallocBuffer"](TOTAL_MEMORY);if(!replacement||replacement.byteLength!=TOTAL_MEMORY){TOTAL_MEMORY=OLD_TOTAL_MEMORY;return false}updateGlobalBuffer(replacement);updateGlobalBufferViews();return true}var byteLength;try{byteLength=Function.prototype.call.bind(Object.getOwnPropertyDescriptor(ArrayBuffer.prototype,"byteLength").get);byteLength(new ArrayBuffer(4))}catch(e){byteLength=(function(buffer){return buffer.byteLength})}var TOTAL_STACK=Module["TOTAL_STACK"]||5242880;var TOTAL_MEMORY=Module["TOTAL_MEMORY"]||16777216;if(TOTAL_MEMORY0){var callback=callbacks.shift();if(typeof callback=="function"){callback();continue}var func=callback.func;if(typeof func==="number"){if(callback.arg===undefined){Module["dynCall_v"](func)}else{Module["dynCall_vi"](func,callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATEXIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;var runtimeExited=false;function preRun(){if(Module["preRun"]){if(typeof Module["preRun"]=="function")Module["preRun"]=[Module["preRun"]];while(Module["preRun"].length){addOnPreRun(Module["preRun"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function ensureInitRuntime(){if(runtimeInitialized)return;runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function preMain(){callRuntimeCallbacks(__ATMAIN__)}function exitRuntime(){callRuntimeCallbacks(__ATEXIT__);runtimeExited=true}function postRun(){if(Module["postRun"]){if(typeof Module["postRun"]=="function")Module["postRun"]=[Module["postRun"]];while(Module["postRun"].length){addOnPostRun(Module["postRun"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPreMain(cb){__ATMAIN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}function writeArrayToMemory(array,buffer){HEAP8.set(array,buffer)}function writeAsciiToMemory(str,buffer,dontAddNull){for(var i=0;i>0]=str.charCodeAt(i)}if(!dontAddNull)HEAP8[buffer>>0]=0}var Math_abs=Math.abs;var Math_cos=Math.cos;var Math_sin=Math.sin;var Math_tan=Math.tan;var Math_acos=Math.acos;var Math_asin=Math.asin;var Math_atan=Math.atan;var Math_atan2=Math.atan2;var Math_exp=Math.exp;var Math_log=Math.log;var Math_sqrt=Math.sqrt;var Math_ceil=Math.ceil;var Math_floor=Math.floor;var Math_pow=Math.pow;var Math_imul=Math.imul;var Math_fround=Math.fround;var Math_round=Math.round;var Math_min=Math.min;var Math_max=Math.max;var Math_clz32=Math.clz32;var Math_trunc=Math.trunc;var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){runDependencies++;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module["preloadedImages"]={};Module["preloadedAudios"]={};var memoryInitializer=null;var dataURIPrefix="data:application/octet-stream;base64,";function isDataURI(filename){return String.prototype.startsWith?filename.startsWith(dataURIPrefix):filename.indexOf(dataURIPrefix)===0}STATIC_BASE=GLOBAL_BASE;STATICTOP=STATIC_BASE+19728;__ATINIT__.push();memoryInitializer="data:application/octet-stream;base64,HBwAAGQcAAAYAAAAAAAAAPQbAACLHAAAHBwAAKgcAAAYAAAAAAAAAPQbAADRHAAAHBwAAO0cAAAwAAAAAAAAAPQbAAAPHQAAHBwAADQdAAAwAAAAAAAAABwcAADsKQAASAAAAAAAAAAcHAAAZB0AAIAAAAAAAAAAHBwAAL0dAACQAAAAAAAAABwcAAARHgAAoAAAAAAAAAAcHAAARR4AALAAAAAAAAAA9BsAAHAeAAAcHAAAlB4AAMgAAAAAAAAA9BsAADIfAAAcHAAA0B8AAOAAAAAAAAAAHBwAAGggAACAAAAAAAAAABwcAADxIAAA4AAAAAAAAAAcHAAAiyEAAOAAAAAAAAAAHBwAAB0iAADgAAAAAAAAABwcAADDIgAA4AAAAAAAAAAcHAAAXiMAAOAAAAAAAAAAHBwAAPQjAABQAQAAAAAAAPQbAACfJAAAHBwAAEolAABoAQAAAAAAABwcAADvJQAAgAAAAAAAAAAcHAAAhSYAAGgBAAAAAAAAHBwAACwnAABoAQAAAAAAABwcAADLJwAAaAEAAAAAAAAcHAAAfigAAGgBAAAAAAAAHBwAACYpAABoAQAAAAAAABwcAADaNwAAYAAAAAAAAAAcHAAAGCoAAOgBAAAAAAAAHBwAAIkqAACQAAAAAAAAABwcAAD1KgAACAIAAAAAAAD0GwAAqysAABwcAABhLAAAIAIAAAAAAAAcHAAAES0AAOgBAAAAAAAAHBwAALItAAAgAgAAAAAAABwcAABkLgAAIAIAAAAAAAAcHAAADi8AACACAAAAAAAAHBwAAMwvAAAgAgAAAAAAABwcAAB/MAAAIAIAAAAAAAAcHAAALTEAAJACAAAAAAAA9BsAAPAxAAAcHAAAszIAAKgCAAAAAAAAHBwAAHAzAADoAQAAAAAAABwcAAAeNAAAqAIAAAAAAAAcHAAA3TQAAKgCAAAAAAAAHBwAAJQ1AACoAgAAAAAAABwcAABfNgAAqAIAAAAAAAAcHAAAHzcAAKgCAAAAAAAAHBwAAAU4AABgAAAAAAAAABwcAAAJOQAAmAMAAAAAAAAcHAAACzwAAIADAAAAAAAA9BsAACo5AAAcHAAAcjkAAFADAAAAAAAA9BsAADw6AAD0GwAAVjoAABwcAACROgAAUAMAAAAAAAAcHAAATjsAAFADAAAAAAAA9BsAAFc8AAAcHAAAhTwAAIADAAAAAAAAHBwAANg8AADIAwAAAAAAABwcAAAePQAAmAMAAAAAAAAcHAAABD0AAFADAAAAAAAA9BsAAD49AAAcHAAAFD4AAMgDAAAAAAAAHBwAADY+AADIAwAAAAAAABwcAACVPgAAAAQAAAAAAAD0GwAA5z4AAPQbAAAWSQAAHBwAAHZJAAAgBAAAAAAAABwcAAAjSQAAMAQAAAAAAAD0GwAAREkAABwcAABRSQAAEAQAAAAAAAAcHAAAWEoAAAgEAAAAAAAAHBwAAGhKAABIBAAAAAAAABwcAACdSgAAIAQAAAAAAAAcHAAAeUoAAGgEAAAAAAAAAAAAAAgAAAABAAAAAgAAAAEAAAABAAAAAQAAAAAAAAAgAAAAAwAAAAQAAAACAAAAAgAAAAIAAAD//////////wAAAAAwAAAABQAAAAYAAAABAAAAAwAAAAEAAAAEAAAABQAAAAIAAAAGAAAABwAAAAMAAAABAAAACAAAAAAAAAA4AAAABwAAAAgAAAABAAAAAwAAAAQAAAAEAAAABQAAAAIAAAAGAAAABwAAAAUAAAAJAAAACgAAAAAAAABIAAAACQAAAAoAAAADAAAACwAAAAwAAAAEAAAADQAAAAYAAAAHAAAADgAAAA8AAAAFAAAAAAAAAFAAAAALAAAADAAAAAYAAAAQAAAACAAAABEAAAASAAAABwAAABMAAAAUAAAACQAAABUAAAAWAAAACgAAAAEAAAAAAAAAYAAAAA0AAAAOAAAACAAAAAsAAAAXAAAABAAAAA0AAAAGAAAACwAAAA4AAAAPAAAACQAAAAIAAAAKAAAA/////wAAAACAAAAADwAAABAAAAABAAAADAAAAAEAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAABAAAAAAAAAHAAAAAPAAAAEQAAABAAAAAMAAAAEQAAAA0AAAAYAAAAGQAAAA4AAAAPAAAAGgAAAAEAAAAAAAAAMAEAAA8AAAASAAAAEgAAAAwAAAATAAAADQAAABgAAAAZAAAADgAAAA8AAAAaAAAAAgAAAAAAAAAgAQAADwAAABMAAAAUAAAADAAAABUAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAADAAAAAAAAAAABAAAUAAAAFQAAABYAAAAMAAAAFwAAABgAAAAbAAAAHAAAAA4AAAAPAAAAHQAAAAQAAAAAAAAA8AAAABYAAAAXAAAAGQAAAAwAAAAaAAAAGwAAAB4AAAAfAAAADgAAAA8AAAAgAAAABQAAAAAAAADQAAAAGAAAABkAAAAcAAAADAAAAB0AAAAeAAAAIQAAACIAAAAOAAAADwAAACMAAAAGAAAAAAAAALgAAAAaAAAAGwAAACQAAAAfAAAAAwAAAAAAAADgAAAADwAAABwAAAABAAAADAAAAAEAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAABAAAAAAAAABABAAAdAAAAHgAAACAAAAAMAAAAIQAAAA0AAAAYAAAAGQAAAA4AAAAPAAAAJQAAAAcAAAAAAAAAuAEAAA8AAAAfAAAAIgAAAAwAAAAjAAAADQAAABgAAAAZAAAADgAAAA8AAAAaAAAACAAAAAAAAACoAQAADwAAACAAAAAkAAAADAAAACUAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAAJAAAAAAAAAIgBAAAhAAAAIgAAACYAAAAMAAAAJwAAACgAAAAmAAAAJwAAAA4AAAAPAAAAKAAAAAoAAAAAAAAAeAEAACMAAAAkAAAAKQAAAAwAAAAqAAAAKwAAACkAAAAqAAAADgAAAA8AAAArAAAACwAAAAAAAABYAQAAJQAAACYAAAAsAAAADAAAAC0AAAAuAAAALAAAAC0AAAAOAAAADwAAAC4AAAAMAAAAAAAAAEABAAAnAAAAKAAAAC8AAAAvAAAABAAAAAAAAABoAQAADwAAACkAAAABAAAADAAAAAEAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAABAAAAAAAAAJgBAAAqAAAAKwAAADAAAAAMAAAAMQAAAA0AAAAYAAAAGQAAAA4AAAAPAAAAMAAAAA0AAAAAAAAAyAEAACwAAAAtAAAACwAAAAsAAAAXAAAABAAAADEAAAAyAAAAMwAAAA4AAAAPAAAACQAAAAUAAAAMAAAAAAAAANgBAAAuAAAALwAAADQAAAA1AAAANgAAADcAAAAyAAAAMwAAADgAAAA5AAAANAAAAA4AAAAAAAAAcAIAAC4AAAAwAAAAOgAAADUAAAA7AAAANwAAADIAAAAzAAAAOAAAADkAAAA0AAAADwAAAAAAAABgAgAALgAAADEAAAA8AAAANQAAAD0AAAA3AAAAMgAAADMAAAA4AAAAOQAAADQAAAAQAAAAAAAAAFACAAAyAAAAMwAAAD4AAAA1AAAAPwAAADcAAAAyAAAAMwAAADgAAAA5AAAANQAAABEAAAAAAAAAQAIAADQAAAA1AAAAQAAAADUAAABBAAAAQgAAADYAAAA3AAAAOAAAADkAAAA4AAAAEgAAAAAAAAAwAgAANgAAADcAAABDAAAANQAAAEQAAABFAAAAOQAAADoAAAA4AAAAOQAAADsAAAATAAAAAAAAABACAAA4AAAAOQAAAEYAAAA1AAAARwAAAEgAAAA8AAAAPQAAADgAAAA5AAAAPgAAABQAAAAAAAAA+AEAADoAAAA7AAAAPwAAAEkAAAAGAAAAAAAAAPgCAAAuAAAAPAAAAEoAAAA1AAAASwAAADcAAAAyAAAAMwAAADgAAAA5AAAANAAAABUAAAAAAAAA6AIAAC4AAAA9AAAATAAAADUAAABNAAAANwAAADIAAAAzAAAAOAAAADkAAAA0AAAAFgAAAAAAAADYAgAAPgAAAD8AAABOAAAANQAAAE8AAAA3AAAAMgAAADMAAAA4AAAAOQAAAEAAAAAXAAAAAAAAAMgCAABAAAAAQQAAAFAAAAA1AAAAUQAAAFIAAABBAAAAQgAAADgAAAA5AAAAQwAAABgAAAAAAAAAuAIAAEIAAABDAAAAUwAAADUAAABUAAAAVQAAAEQAAABFAAAAOAAAADkAAABGAAAAGQAAAAAAAACYAgAARAAAAEUAAABWAAAANQAAAFcAAABYAAAARwAAAEgAAAA4AAAAOQAAAEkAAAAaAAAAAAAAAIACAABGAAAARwAAAEoAAABZAAAABwAAAAAAAAAIAwAASAAAAEkAAAANAAAACwAAABcAAAAEAAAASwAAAFoAAABbAAAADgAAAA8AAAAJAAAAAgAAAA4AAAAAAAAAGAMAAEoAAABLAAAAXAAAAF0AAABeAAAAXwAAAGAAAABhAAAAYgAAAEwAAABNAAAAYwAAAGQAAABOAAAATwAAAGUAAAAAAAAAKAMAAEwAAABNAAAAUAAAAFEAAABSAAAAUwAAAFQAAABmAAAAZwAAAFUAAABoAAAAAQAAAAMAAAAAAAAAAwAAAAAAAAADAAAAAAAAAAMAAAAAAAAAQAMAAE4AAABPAAAAVgAAAGkAAAAAAAAAOAMAAFAAAABRAAAAUgAAAP////8AAAAAYAMAAFMAAABUAAAAVwAAAGoAAAAAAAAAWAMAAFUAAABWAAAAVwAAAAAAAABwAwAAWAAAAFkAAABYAAAAawAAAAAAAACIAwAAWgAAAFsAAABZAAAAWgAAAFsAAABcAAAAXQAAAGwAAABtAAAAXgAAAG4AAAAAAAAAAQAAAAUAAAACAAAABQAAAAMAAAAFAAAABAAAAAAAAACYAwAAXAAAAF0AAABcAAAAAQAAAG8AAABfAAAAYAAAAGEAAABiAAAAAQAAAF8AAABjAAAAcAAAAGAAAABhAAAAAQAAAAAAAACoAwAAXAAAAF4AAABcAAAAcQAAAG8AAABfAAAAYAAAAGEAAABiAAAAYgAAAF8AAABjAAAAcAAAAGAAAABhAAAAcgAAAAAAAAC4AwAAXwAAAGAAAABjAAAAcwAAAAAAAADIAwAAXAAAAGEAAAB0AAAAAQAAAG8AAABfAAAAdQAAAGEAAABiAAAAAQAAAF8AAABjAAAAAAAAANADAABcAAAAYgAAAHQAAAB2AAAAbwAAAF8AAAB3AAAAYQAAAGIAAABkAAAAXwAAAGMAAAAAAAAA4AMAAFwAAABjAAAAdAAAAHgAAABvAAAAXwAAAHkAAABhAAAAYgAAAGUAAABfAAAAYwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAFZVVVUCAAAAAAAAAAIAAACamZmZAwAAAFZVVVUDAAAAJUmSJAMAAAAAAAAAAwAAAMhxHMcEAAAAmpmZmQQAAABGF110BAAAAFZVVVUEAAAAPLETOwQAAAAlSZIkBAAAABIREREEAAAAAAAAAAQAAADi4eHhBQAAAMhxHMcFAAAAy2sorwUAAACamZmZBQAAAIdhGIYFAAAARhdddAUAAACRhSxkBQAAAFZVVVUFAAAAexSuRwUAAAA8sRM7BQAAANtLaC8FAAAAJUmSJAUAAAASlnsaBQAAABIREREFAAAAhRBCCAUAAAAAAAAABQAAAAgffPAGAAAA4uHh4QYAAADVQR3UBgAAAMhxHMcGAAAATZHPugYAAADLayivBgAAAKVBGqQGAAAAmpmZmQYAAAD6GJyPBgAAAIdhGIYGAAAAGPQFfQYAAABGF110BgAAAG3BFmwGAAAAkYUsZAYAAAC6gphcBgAAAFZVVVUGAAAAcwpeTgYAAAB7FK5HBgAAAEJBQUEGAAAAPLETOwYAAACzzyE1BgAAANtLaC8GAAAAnxLkKQYAAAAlSZIkBgAAAN1HcB8GAAAAEpZ7GgYAAAD45bEVBgAAABIREREGAAAA/BSXDAYAAACFEEIIBgAAAAVBEAQGAAAAAAAAAAYAAAD5gR/4BwAAAAgffPAHAAAAwBoT6QcAAADi4eHhBwAAAGwH5toHAAAA1UEd1AcAAACRaIXNBwAAAMhxHMcHAAAAOXDgwAcAAABNkc+6BwAAAE8b6LQHAAAAy2sorwcAAAAH9o6pBwAAAKVBGqQHAAAAUunIngcAAACamZmZBwAAAM4Pi5QHAAAA+hicjwcAAAD3kMuKBwAAAIdhGIYHAAAAgoGBgQcAAAAY9AV9BwAAABjIpHgHAAAARhdddAcAAADBBS5wBwAAAG3BFmwHAAAAaYEWaAcAAACRhSxkBwAAAAYWWGAHAAAAuoKYXAcAAAAJI+1YBwAAAFZVVVUHAAAAr37QUQcAAABzCl5OBwAAAAZq/UoHAAAAexSuRwcAAABXhm9EBwAAAEJBQUEHAAAAz8siPgcAAAA8sRM7BwAAADmBEzgHAAAAs88hNQcAAACjND4yBwAAANtLaC8HAAAA2bSfLAcAAACfEuQpBwAAAIkLNScHAAAAJUmSJAcAAAATePshBwAAAN1HcB8HAAAA22rwHAcAAAASlnsaBwAAABmBERgHAAAA+OWxFQcAAAAUgVwTBwAAABIREREHAAAAv1bPDgcAAAD8FJcMBwAAAKcQaAoHAAAAhRBCCAcAAAAw3SQGBwAAAAVBEAQHAAAAEQgEAgcAAAAAAAAABwAAACDwB/wIAAAA+YEf+AgAAADlWUb0CAAAAAgffPAIAAAAMXvA7AgAAADAGhPpCAAAAJGsc+UIAAAA4uHh4QgAAABAbl3eCAAAAGwH5toIAAAATGV71wgAAADVQR3UCAAAAPdYy9AIAAAAkWiFzQgAAABWMEvKCAAAAMhxHMcIAAAAHfD4wwgAAAA5cODACAAAAJq40r0IAAAATZHPuggAAADew9a3CAAAAE8b6LQIAAAAB2QDsggAAADLayivCAAAAK0BV6wIAAAAB/aOqQgAAABuGtCmCAAAAKVBGqQIAAAAmD9toQgAAABS6cieCAAAAO8ULZwIAAAAmpmZmQgAAACBTw6XCAAAAM4Pi5QIAAAAnrQPkggAAAD6GJyPCAAAANQYMI0IAAAA95DLiggAAAALX26ICAAAAIdhGIYIAAAArHfJgwgAAACCgYGBCAAAANFfQH8IAAAAGPQFfQgAAACPINJ6CAAAABjIpHgIAAAARM59dggAAABGF110CAAAAPWHQnIIAAAAwQUucAgAAAC1dh9uCAAAAG3BFmwIAAAAFs0TaggAAABpgRZoCAAAAKbGHmYIAAAAkYUsZAgAAABxpz9iCAAAAAYWWGAIAAAAjrt1XggAAAC6gphcCAAAALFWwFoIAAAACSPtWAgAAADG0x5XCAAAAFZVVVUIAAAAkJSQUwgAAACvftBRCAAAAFEBFVAIAAAAcwpeTggAAABziKtMCAAAAAZq/UoIAAAAPJ5TSQgAAAB7FK5HCAAAAIC8DEYIAAAAV4ZvRAgAAABeYtZCCAAAAEJBQUEIAAAA/BOwPwgAAADPyyI+CAAAAEhamTwIAAAAPLETOwgAAADCwpE5CAAAADmBEzgIAAAAPt+YNggAAACzzyE1CAAAALZFrjMIAAAAozQ+MggAAAAUkNEwCAAAANtLaC8IAAAABVwCLggAAADZtJ8sCAAAANFKQCsIAAAAnxLkKQgAAAApAYsoCAAAAIkLNScIAAAACSfiJQgAAAAlSZIkCAAAAIpnRSMIAAAAE3j7IQgAAADHcLQgCAAAAN1HcB8IAAAAtPMuHggAAADbavAcCAAAAAWktBsIAAAAEpZ7GggAAAAJOEUZCAAAABmBERgIAAAAlWjgFggAAAD45bEVCAAAAOHwhRQIAAAAFIFcEwgAAAB2jjUSCAAAABIREREIAAAAEAHvDwgAAAC/Vs8OCAAAAIkKsg0IAAAA/BSXDAgAAADDbn4LCAAAAKcQaAoIAAAAkfNTCQgAAACFEEIICAAAAKVgMgcIAAAAMN0kBggAAAB+fxkFCAAAAAVBEAQIAAAAUhsJAwgAAAARCAQCCAAAAAIBAQEIAAAA/////wAAAADwAwAAZAAAAGUAAAAIAAAAAwAAAHoAAABmAAAACQAAAP////8AAAAAAAQAAGcAAABoAAAACgAAAAQAAAB6AAAAZgAAAAsAAAD/////VBgAAAUAAAAAAAAAAAAAAHsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8AAAAQAAAACE0AAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAP//////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANxMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAAABkAAAA6AMAABAnAACghgEAQEIPAICWmAAA4fUFX3CJAP8JLw8AAAAAAgAAAAMAAAAFAAAABwAAAAsAAAANAAAAEQAAABMAAAAXAAAAHQAAAB8AAAAlAAAAKQAAACsAAAAvAAAANQAAADsAAAA9AAAAQwAAAEcAAABJAAAATwAAAFMAAABZAAAAYQAAAGUAAABnAAAAawAAAG0AAABxAAAAfwAAAIMAAACJAAAAiwAAAJUAAACXAAAAnQAAAKMAAACnAAAArQAAALMAAAC1AAAAvwAAAMEAAADFAAAAxwAAANMAAAABAAAACwAAAA0AAAARAAAAEwAAABcAAAAdAAAAHwAAACUAAAApAAAAKwAAAC8AAAA1AAAAOwAAAD0AAABDAAAARwAAAEkAAABPAAAAUwAAAFkAAABhAAAAZQAAAGcAAABrAAAAbQAAAHEAAAB5AAAAfwAAAIMAAACJAAAAiwAAAI8AAACVAAAAlwAAAJ0AAACjAAAApwAAAKkAAACtAAAAswAAALUAAAC7AAAAvwAAAMEAAADFAAAAxwAAANEAAAACAAAAAAAAABAEAABpAAAAagAAAGsAAABsAAAAEgAAAAEAAAABAAAAAQAAAAAAAAA4BAAAaQAAAG0AAABrAAAAbAAAABIAAAACAAAAAgAAAAIAAAAAAAAASAQAAG4AAABvAAAAfAAAAAAAAABYBAAAbgAAAHAAAAB8AAAATjVkcmFjbzI4QXR0cmlidXRlT2N0YWhlZHJvblRyYW5zZm9ybUUATjVkcmFjbzE4QXR0cmlidXRlVHJhbnNmb3JtRQBONWRyYWNvMzBBdHRyaWJ1dGVRdWFudGl6YXRpb25UcmFuc2Zvcm1FAE41ZHJhY28xN0F0dHJpYnV0ZXNFbmNvZGVyRQBONWRyYWNvMjNLZFRyZWVBdHRyaWJ1dGVzRW5jb2RlckUATjVkcmFjbzI2U2VxdWVudGlhbEF0dHJpYnV0ZUVuY29kZXJFAE41ZHJhY28zN1NlcXVlbnRpYWxBdHRyaWJ1dGVFbmNvZGVyc0NvbnRyb2xsZXJFAE41ZHJhY28yOFByZWRpY3Rpb25TY2hlbWVEZWx0YUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFRUUATjVkcmFjbzIzUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFRUUATjVkcmFjbzM3UHJlZGljdGlvblNjaGVtZVR5cGVkRW5jb2RlckludGVyZmFjZUlpaUVFAE41ZHJhY28zMlByZWRpY3Rpb25TY2hlbWVFbmNvZGVySW50ZXJmYWNlRQBONWRyYWNvMjVQcmVkaWN0aW9uU2NoZW1lSW50ZXJmYWNlRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckFyZWFJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280NE1lc2hQcmVkaWN0aW9uU2NoZW1lVGV4Q29vcmRzUG9ydGFibGVFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMzZNZXNoUHJlZGljdGlvblNjaGVtZVRleENvb3Jkc0VuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY281Nk1lc2hQcmVkaWN0aW9uU2NoZW1lQ29uc3RyYWluZWRNdWx0aVBhcmFsbGVsb2dyYW1FbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDVNZXNoUHJlZGljdGlvblNjaGVtZU11bHRpUGFyYWxsZWxvZ3JhbUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280ME1lc2hQcmVkaWN0aW9uU2NoZW1lUGFyYWxsZWxvZ3JhbUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQXJlYUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280Mk1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsRW5jb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28yN01lc2hQcmVkaWN0aW9uU2NoZW1lRW5jb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280NE1lc2hQcmVkaWN0aW9uU2NoZW1lVGV4Q29vcmRzUG9ydGFibGVFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzM2TWVzaFByZWRpY3Rpb25TY2hlbWVUZXhDb29yZHNFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzU2TWVzaFByZWRpY3Rpb25TY2hlbWVDb25zdHJhaW5lZE11bHRpUGFyYWxsZWxvZ3JhbUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDVNZXNoUHJlZGljdGlvblNjaGVtZU11bHRpUGFyYWxsZWxvZ3JhbUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDBNZXNoUHJlZGljdGlvblNjaGVtZVBhcmFsbGVsb2dyYW1FbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUAdXNlX2J1aWx0X2luX2F0dHJpYnV0ZV9jb21wcmVzc2lvbgBONWRyYWNvMzNTZXF1ZW50aWFsSW50ZWdlckF0dHJpYnV0ZUVuY29kZXJFAE41ZHJhY28yOFByZWRpY3Rpb25TY2hlbWVEZWx0YUVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFRUUATjVkcmFjbzIzUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JBcmVhSWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckJhc2VJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280Mk1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzI3TWVzaFByZWRpY3Rpb25TY2hlbWVFbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDRNZXNoUHJlZGljdGlvblNjaGVtZVRleENvb3Jkc1BvcnRhYmxlRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzM2TWVzaFByZWRpY3Rpb25TY2hlbWVUZXhDb29yZHNFbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNTZNZXNoUHJlZGljdGlvblNjaGVtZUNvbnN0cmFpbmVkTXVsdGlQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ1TWVzaFByZWRpY3Rpb25TY2hlbWVNdWx0aVBhcmFsbGVsb2dyYW1FbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDBNZXNoUHJlZGljdGlvblNjaGVtZVBhcmFsbGVsb2dyYW1FbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckFyZWFJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckJhc2VJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDJNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbEVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDRNZXNoUHJlZGljdGlvblNjaGVtZVRleENvb3Jkc1BvcnRhYmxlRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28zNk1lc2hQcmVkaWN0aW9uU2NoZW1lVGV4Q29vcmRzRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY281Nk1lc2hQcmVkaWN0aW9uU2NoZW1lQ29uc3RyYWluZWRNdWx0aVBhcmFsbGVsb2dyYW1FbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ1TWVzaFByZWRpY3Rpb25TY2hlbWVNdWx0aVBhcmFsbGVsb2dyYW1FbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQwTWVzaFByZWRpY3Rpb25TY2hlbWVQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28zMlNlcXVlbnRpYWxOb3JtYWxBdHRyaWJ1dGVFbmNvZGVyRQBONWRyYWNvMzhTZXF1ZW50aWFsUXVhbnRpemF0aW9uQXR0cmlidXRlRW5jb2RlckUAcHJlZGljdGlvbl9zY2hlbWUAZW5jb2Rpbmdfc3BlZWQAZGVjb2Rpbmdfc3BlZWQAcXVhbnRpemF0aW9uX29yaWdpbgBxdWFudGl6YXRpb25fcmFuZ2UAIABlbmNvZGluZ19tZXRob2QAcXVhbnRpemF0aW9uX2JpdHMASW52YWxpZCBlbmNvZGluZyBtZXRob2QuAHN0YW5kYXJkX2VkZ2VicmVha2VyAHByZWRpY3RpdmVfZWRnZWJyZWFrZXIAZWRnZWJyZWFrZXJfbWV0aG9kAE41ZHJhY28yMk1lc2hFZGdlQnJlYWtlckVuY29kZXJFAE41ZHJhY28yOUNvcm5lclRhYmxlVHJhdmVyc2FsUHJvY2Vzc29ySU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFAE41ZHJhY28yMk1lc2hUcmF2ZXJzYWxTZXF1ZW5jZXJJTlNfMjBFZGdlQnJlYWtlclRyYXZlcnNlcklOU18yOUNvcm5lclRhYmxlVHJhdmVyc2FsUHJvY2Vzc29ySU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzNfRUVOU18xOUVkZ2VCcmVha2VyT2JzZXJ2ZXJFRUVFRQBONWRyYWNvMTVQb2ludHNTZXF1ZW5jZXJFAE41ZHJhY28yOUNvcm5lclRhYmxlVHJhdmVyc2FsUHJvY2Vzc29ySU5TXzExQ29ybmVyVGFibGVFRUUATjVkcmFjbzIyTWVzaFRyYXZlcnNhbFNlcXVlbmNlcklOU18yMEVkZ2VCcmVha2VyVHJhdmVyc2VySU5TXzI5Q29ybmVyVGFibGVUcmF2ZXJzYWxQcm9jZXNzb3JJTlNfMTFDb3JuZXJUYWJsZUVFRU5TXzM2TWVzaEF0dHJpYnV0ZUluZGljZXNFbmNvZGluZ09ic2VydmVySVMzX0VFTlNfMTlFZGdlQnJlYWtlck9ic2VydmVyRUVFRUUATjVkcmFjbzIyTWVzaFRyYXZlcnNhbFNlcXVlbmNlcklOU18yNVByZWRpY3Rpb25EZWdyZWVUcmF2ZXJzZXJJTlNfMjlDb3JuZXJUYWJsZVRyYXZlcnNhbFByb2Nlc3NvcklOU18xMUNvcm5lclRhYmxlRUVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzNfRUVFRUVFAHNwbGl0X21lc2hfb25fc2VhbXMATjVkcmFjbzI2TWVzaEVkZ2VCcmVha2VyRW5jb2RlckltcGxJTlNfMzFNZXNoRWRnZUJyZWFrZXJUcmF2ZXJzYWxFbmNvZGVyRUVFAE41ZHJhY28zNU1lc2hFZGdlQnJlYWtlckVuY29kZXJJbXBsSW50ZXJmYWNlRQBONWRyYWNvMjZNZXNoRWRnZUJyZWFrZXJFbmNvZGVySW1wbElOU18zOE1lc2hFZGdlQnJlYWtlclRyYXZlcnNhbFZhbGVuY2VFbmNvZGVyRUVFAE41ZHJhY28xMU1lc2hFbmNvZGVyRQBjb21wcmVzc19jb25uZWN0aXZpdHkATjVkcmFjbzE1TGluZWFyU2VxdWVuY2VyRQBONWRyYWNvMjFNZXNoU2VxdWVudGlhbEVuY29kZXJFAE41ZHJhY28xN1BvaW50Q2xvdWRFbmNvZGVyRQBJbnZhbGlkIGlucHV0IGdlb21ldHJ5LgBGYWlsZWQgdG8gaW5pdGlhbGl6ZSBlbmNvZGVyLgBGYWlsZWQgdG8gZW5jb2RlIGludGVybmFsIGRhdGEuAEZhaWxlZCB0byBlbmNvZGUgZ2VvbWV0cnkgZGF0YS4ARmFpbGVkIHRvIGVuY29kZSBwb2ludCBhdHRyaWJ1dGVzLgBGYWlsZWQgdG8gZW5jb2RlIG1ldGFkYXRhLgBEUkFDTwBONWRyYWNvMjNQb2ludENsb3VkS2RUcmVlRW5jb2RlckUATjVkcmFjbzI3UG9pbnRDbG91ZFNlcXVlbnRpYWxFbmNvZGVyRQBzeW1ib2xfZW5jb2RpbmdfbWV0aG9kAHN5bWJvbF9lbmNvZGluZ19jb21wcmVzc2lvbl9sZXZlbABONWRyYWNvNE1lc2hFAGFsbG9jYXRvcjxUPjo6YWxsb2NhdGUoc2l6ZV90IG4pICduJyBleGNlZWRzIG1heGltdW0gc3VwcG9ydGVkIHNpemUATjVkcmFjbzEwUG9pbnRDbG91ZEUAEQAKABEREQAAAAAFAAAAAAAACQAAAAALAAAAAAAAAAARAA8KERERAwoHAAETCQsLAAAJBgsAAAsABhEAAAAREREAAAAAAAAAAAAAAAAAAAAACwAAAAAAAAAAEQAKChEREQAKAAACAAkLAAAACQALAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAAAAAAAAAAAAwAAAAADAAAAAAJDAAAAAAADAAADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAAAAAAAAAAAAAAANAAAABA0AAAAACQ4AAAAAAA4AAA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAADwAAAAAPAAAAAAkQAAAAAAAQAAAQAAASAAAAEhISAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIAAAASEhIAAAAAAAAJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAAAAAAAAAAAAAAAKAAAAAAoAAAAACQsAAAAAAAsAAAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAAAAAAAAAAADAAAAAAMAAAAAAkMAAAAAAAMAAAMAAAtKyAgIDBYMHgAKG51bGwpAC0wWCswWCAwWC0weCsweCAweABpbmYASU5GAE5BTgAwMTIzNDU2Nzg5QUJDREVGLgBUISIZDQECAxFLHAwQBAsdEh4naG5vcHFiIAUGDxMUFRoIFgcoJBcYCQoOGx8lI4OCfSYqKzw9Pj9DR0pNWFlaW1xdXl9gYWNkZWZnaWprbHJzdHl6e3wASWxsZWdhbCBieXRlIHNlcXVlbmNlAERvbWFpbiBlcnJvcgBSZXN1bHQgbm90IHJlcHJlc2VudGFibGUATm90IGEgdHR5AFBlcm1pc3Npb24gZGVuaWVkAE9wZXJhdGlvbiBub3QgcGVybWl0dGVkAE5vIHN1Y2ggZmlsZSBvciBkaXJlY3RvcnkATm8gc3VjaCBwcm9jZXNzAEZpbGUgZXhpc3RzAFZhbHVlIHRvbyBsYXJnZSBmb3IgZGF0YSB0eXBlAE5vIHNwYWNlIGxlZnQgb24gZGV2aWNlAE91dCBvZiBtZW1vcnkAUmVzb3VyY2UgYnVzeQBJbnRlcnJ1cHRlZCBzeXN0ZW0gY2FsbABSZXNvdXJjZSB0ZW1wb3JhcmlseSB1bmF2YWlsYWJsZQBJbnZhbGlkIHNlZWsAQ3Jvc3MtZGV2aWNlIGxpbmsAUmVhZC1vbmx5IGZpbGUgc3lzdGVtAERpcmVjdG9yeSBub3QgZW1wdHkAQ29ubmVjdGlvbiByZXNldCBieSBwZWVyAE9wZXJhdGlvbiB0aW1lZCBvdXQAQ29ubmVjdGlvbiByZWZ1c2VkAEhvc3QgaXMgZG93bgBIb3N0IGlzIHVucmVhY2hhYmxlAEFkZHJlc3MgaW4gdXNlAEJyb2tlbiBwaXBlAEkvTyBlcnJvcgBObyBzdWNoIGRldmljZSBvciBhZGRyZXNzAEJsb2NrIGRldmljZSByZXF1aXJlZABObyBzdWNoIGRldmljZQBOb3QgYSBkaXJlY3RvcnkASXMgYSBkaXJlY3RvcnkAVGV4dCBmaWxlIGJ1c3kARXhlYyBmb3JtYXQgZXJyb3IASW52YWxpZCBhcmd1bWVudABBcmd1bWVudCBsaXN0IHRvbyBsb25nAFN5bWJvbGljIGxpbmsgbG9vcABGaWxlbmFtZSB0b28gbG9uZwBUb28gbWFueSBvcGVuIGZpbGVzIGluIHN5c3RlbQBObyBmaWxlIGRlc2NyaXB0b3JzIGF2YWlsYWJsZQBCYWQgZmlsZSBkZXNjcmlwdG9yAE5vIGNoaWxkIHByb2Nlc3MAQmFkIGFkZHJlc3MARmlsZSB0b28gbGFyZ2UAVG9vIG1hbnkgbGlua3MATm8gbG9ja3MgYXZhaWxhYmxlAFJlc291cmNlIGRlYWRsb2NrIHdvdWxkIG9jY3VyAFN0YXRlIG5vdCByZWNvdmVyYWJsZQBQcmV2aW91cyBvd25lciBkaWVkAE9wZXJhdGlvbiBjYW5jZWxlZABGdW5jdGlvbiBub3QgaW1wbGVtZW50ZWQATm8gbWVzc2FnZSBvZiBkZXNpcmVkIHR5cGUASWRlbnRpZmllciByZW1vdmVkAERldmljZSBub3QgYSBzdHJlYW0ATm8gZGF0YSBhdmFpbGFibGUARGV2aWNlIHRpbWVvdXQAT3V0IG9mIHN0cmVhbXMgcmVzb3VyY2VzAExpbmsgaGFzIGJlZW4gc2V2ZXJlZABQcm90b2NvbCBlcnJvcgBCYWQgbWVzc2FnZQBGaWxlIGRlc2NyaXB0b3IgaW4gYmFkIHN0YXRlAE5vdCBhIHNvY2tldABEZXN0aW5hdGlvbiBhZGRyZXNzIHJlcXVpcmVkAE1lc3NhZ2UgdG9vIGxhcmdlAFByb3RvY29sIHdyb25nIHR5cGUgZm9yIHNvY2tldABQcm90b2NvbCBub3QgYXZhaWxhYmxlAFByb3RvY29sIG5vdCBzdXBwb3J0ZWQAU29ja2V0IHR5cGUgbm90IHN1cHBvcnRlZABOb3Qgc3VwcG9ydGVkAFByb3RvY29sIGZhbWlseSBub3Qgc3VwcG9ydGVkAEFkZHJlc3MgZmFtaWx5IG5vdCBzdXBwb3J0ZWQgYnkgcHJvdG9jb2wAQWRkcmVzcyBub3QgYXZhaWxhYmxlAE5ldHdvcmsgaXMgZG93bgBOZXR3b3JrIHVucmVhY2hhYmxlAENvbm5lY3Rpb24gcmVzZXQgYnkgbmV0d29yawBDb25uZWN0aW9uIGFib3J0ZWQATm8gYnVmZmVyIHNwYWNlIGF2YWlsYWJsZQBTb2NrZXQgaXMgY29ubmVjdGVkAFNvY2tldCBub3QgY29ubmVjdGVkAENhbm5vdCBzZW5kIGFmdGVyIHNvY2tldCBzaHV0ZG93bgBPcGVyYXRpb24gYWxyZWFkeSBpbiBwcm9ncmVzcwBPcGVyYXRpb24gaW4gcHJvZ3Jlc3MAU3RhbGUgZmlsZSBoYW5kbGUAUmVtb3RlIEkvTyBlcnJvcgBRdW90YSBleGNlZWRlZABObyBtZWRpdW0gZm91bmQAV3JvbmcgbWVkaXVtIHR5cGUATm8gZXJyb3IgaW5mb3JtYXRpb24AAGluZmluaXR5AG5hbgAlZAAlZgB0ZXJtaW5hdGluZyB3aXRoICVzIGV4Y2VwdGlvbiBvZiB0eXBlICVzOiAlcwB0ZXJtaW5hdGluZyB3aXRoICVzIGV4Y2VwdGlvbiBvZiB0eXBlICVzAHRlcm1pbmF0aW5nIHdpdGggJXMgZm9yZWlnbiBleGNlcHRpb24AdGVybWluYXRpbmcAdW5jYXVnaHQAU3Q5ZXhjZXB0aW9uAE4xMF9fY3h4YWJpdjExNl9fc2hpbV90eXBlX2luZm9FAFN0OXR5cGVfaW5mbwBOMTBfX2N4eGFiaXYxMjBfX3NpX2NsYXNzX3R5cGVfaW5mb0UATjEwX19jeHhhYml2MTE3X19jbGFzc190eXBlX2luZm9FAHB0aHJlYWRfb25jZSBmYWlsdXJlIGluIF9fY3hhX2dldF9nbG9iYWxzX2Zhc3QoKQBjYW5ub3QgY3JlYXRlIHB0aHJlYWQga2V5IGZvciBfX2N4YV9nZXRfZ2xvYmFscygpAGNhbm5vdCB6ZXJvIG91dCB0aHJlYWQgdmFsdWUgZm9yIF9fY3hhX2dldF9nbG9iYWxzKCkAdGVybWluYXRlX2hhbmRsZXIgdW5leHBlY3RlZGx5IHJldHVybmVkAFN0MTFsb2dpY19lcnJvcgBTdDEybGVuZ3RoX2Vycm9yAE4xMF9fY3h4YWJpdjExOV9fcG9pbnRlcl90eXBlX2luZm9FAE4xMF9fY3h4YWJpdjExN19fcGJhc2VfdHlwZV9pbmZvRQ==";var tempDoublePtr=STATICTOP;STATICTOP+=16;function ___cxa_allocate_exception(size){return _malloc(size)}function __ZSt18uncaught_exceptionv(){return!!__ZSt18uncaught_exceptionv.uncaught_exception}var EXCEPTIONS={last:0,caught:[],infos:{},deAdjust:(function(adjusted){if(!adjusted||EXCEPTIONS.infos[adjusted])return adjusted;for(var ptr in EXCEPTIONS.infos){var info=EXCEPTIONS.infos[ptr];if(info.adjusted===adjusted){return ptr}}return adjusted}),addRef:(function(ptr){if(!ptr)return;var info=EXCEPTIONS.infos[ptr];info.refcount++}),decRef:(function(ptr){if(!ptr)return;var info=EXCEPTIONS.infos[ptr];assert(info.refcount>0);info.refcount--;if(info.refcount===0&&!info.rethrown){if(info.destructor){Module["dynCall_vi"](info.destructor,ptr)}delete EXCEPTIONS.infos[ptr];___cxa_free_exception(ptr)}}),clearRef:(function(ptr){if(!ptr)return;var info=EXCEPTIONS.infos[ptr];info.refcount=0})};function ___cxa_begin_catch(ptr){var info=EXCEPTIONS.infos[ptr];if(info&&!info.caught){info.caught=true;__ZSt18uncaught_exceptionv.uncaught_exception--}if(info)info.rethrown=false;EXCEPTIONS.caught.push(ptr);EXCEPTIONS.addRef(EXCEPTIONS.deAdjust(ptr));return ptr}function ___cxa_pure_virtual(){ABORT=true;throw"Pure virtual function called!"}function ___resumeException(ptr){if(!EXCEPTIONS.last){EXCEPTIONS.last=ptr}throw ptr+" - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch."}function ___cxa_find_matching_catch(){var thrown=EXCEPTIONS.last;if(!thrown){return(setTempRet0(0),0)|0}var info=EXCEPTIONS.infos[thrown];var throwntype=info.type;if(!throwntype){return(setTempRet0(0),thrown)|0}var typeArray=Array.prototype.slice.call(arguments);var pointer=Module["___cxa_is_pointer_type"](throwntype);if(!___cxa_find_matching_catch.buffer)___cxa_find_matching_catch.buffer=_malloc(4);HEAP32[___cxa_find_matching_catch.buffer>>2]=thrown;thrown=___cxa_find_matching_catch.buffer;for(var i=0;i>2];info.adjusted=thrown;return(setTempRet0(typeArray[i]),thrown)|0}}thrown=HEAP32[thrown>>2];return(setTempRet0(throwntype),thrown)|0}function ___cxa_throw(ptr,type,destructor){EXCEPTIONS.infos[ptr]={ptr:ptr,adjusted:ptr,type:type,destructor:destructor,refcount:0,caught:false,rethrown:false};EXCEPTIONS.last=ptr;if(!("uncaught_exception"in __ZSt18uncaught_exceptionv)){__ZSt18uncaught_exceptionv.uncaught_exception=1}else{__ZSt18uncaught_exceptionv.uncaught_exception++}throw ptr+" - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch."}var cttz_i8=allocate([8,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0],"i8",ALLOC_STATIC);function ___gxx_personality_v0(){}var SYSCALLS={varargs:0,get:(function(varargs){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret}),getStr:(function(){var ret=Pointer_stringify(SYSCALLS.get());return ret}),get64:(function(){var low=SYSCALLS.get(),high=SYSCALLS.get();if(low>=0)assert(high===0);else assert(high===-1);return low}),getZero:(function(){assert(SYSCALLS.get()===0)})};function ___syscall140(which,varargs){SYSCALLS.varargs=varargs;try{var stream=SYSCALLS.getStreamFromFD(),offset_high=SYSCALLS.get(),offset_low=SYSCALLS.get(),result=SYSCALLS.get(),whence=SYSCALLS.get();var offset=offset_low;FS.llseek(stream,offset,whence);HEAP32[result>>2]=stream.position;if(stream.getdents&&offset===0&&whence===0)stream.getdents=null;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}function flush_NO_FILESYSTEM(){var fflush=Module["_fflush"];if(fflush)fflush(0);var printChar=___syscall146.printChar;if(!printChar)return;var buffers=___syscall146.buffers;if(buffers[1].length)printChar(1,10);if(buffers[2].length)printChar(2,10)}function ___syscall146(which,varargs){SYSCALLS.varargs=varargs;try{var stream=SYSCALLS.get(),iov=SYSCALLS.get(),iovcnt=SYSCALLS.get();var ret=0;if(!___syscall146.buffers){___syscall146.buffers=[null,[],[]];___syscall146.printChar=(function(stream,curr){var buffer=___syscall146.buffers[stream];assert(buffer);if(curr===0||curr===10){(stream===1?Module["print"]:Module["printErr"])(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}})}for(var i=0;i>2];var len=HEAP32[iov+(i*8+4)>>2];for(var j=0;j>2]=PTHREAD_SPECIFIC_NEXT_KEY;PTHREAD_SPECIFIC[PTHREAD_SPECIFIC_NEXT_KEY]=0;PTHREAD_SPECIFIC_NEXT_KEY++;return 0}function _pthread_once(ptr,func){if(!_pthread_once.seen)_pthread_once.seen={};if(ptr in _pthread_once.seen)return;Module["dynCall_v"](func);_pthread_once.seen[ptr]=1}function _pthread_setspecific(key,value){if(!(key in PTHREAD_SPECIFIC)){return ERRNO_CODES.EINVAL}PTHREAD_SPECIFIC[key]=value;return 0}function ___setErrNo(value){if(Module["___errno_location"])HEAP32[Module["___errno_location"]()>>2]=value;return value}DYNAMICTOP_PTR=staticAlloc(4);STACK_BASE=STACKTOP=alignMemory(STATICTOP);STACK_MAX=STACK_BASE+TOTAL_STACK;DYNAMIC_BASE=alignMemory(STACK_MAX);HEAP32[DYNAMICTOP_PTR>>2]=DYNAMIC_BASE;staticSealed=true;var ASSERTIONS=false;function intArrayFromString(stringy,dontAddNull,length){var len=length>0?length:lengthBytesUTF8(stringy)+1;var u8array=new Array(len);var numBytesWritten=stringToUTF8Array(stringy,u8array,0,u8array.length);if(dontAddNull)u8array.length=numBytesWritten;return u8array}function intArrayToString(array){var ret=[];for(var i=0;i255){if(ASSERTIONS){assert(false,"Character code "+chr+" ("+String.fromCharCode(chr)+") at offset "+i+" not in 0x00-0xFF.")}chr&=255}ret.push(String.fromCharCode(chr))}return ret.join("")}var decodeBase64=typeof atob==="function"?atob:(function(input){var keyStr="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";var output="";var chr1,chr2,chr3;var enc1,enc2,enc3,enc4;var i=0;input=input.replace(/[^A-Za-z0-9\+\/\=]/g,"");do{enc1=keyStr.indexOf(input.charAt(i++));enc2=keyStr.indexOf(input.charAt(i++));enc3=keyStr.indexOf(input.charAt(i++));enc4=keyStr.indexOf(input.charAt(i++));chr1=enc1<<2|enc2>>4;chr2=(enc2&15)<<4|enc3>>2;chr3=(enc3&3)<<6|enc4;output=output+String.fromCharCode(chr1);if(enc3!==64){output=output+String.fromCharCode(chr2)}if(enc4!==64){output=output+String.fromCharCode(chr3)}}while(i2147483648)return false;b=new a(newBuffer);d=new c(newBuffer);f=new e(newBuffer);h=new g(newBuffer);j=new i(newBuffer);l=new k(newBuffer);n=new m(newBuffer);p=new o(newBuffer);buffer=newBuffer;return true} -// EMSCRIPTEN_START_FUNCS -function be(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0;h=u;u=u+16|0;i=h+4|0;j=h;f[a+72>>2]=e;f[a+64>>2]=g;g=Lq(e>>>0>1073741823?-1:e<<2)|0;k=a+68|0;l=f[k>>2]|0;f[k>>2]=g;if(l|0)Mq(l);l=a+8|0;Mh(l,b,d,e);d=a+56|0;g=f[d>>2]|0;m=f[g+4>>2]|0;n=f[g>>2]|0;o=m-n|0;if((o|0)<=0){u=h;return 1}p=(o>>>2)+-1|0;o=a+16|0;q=a+32|0;r=a+12|0;s=a+28|0;t=a+20|0;v=a+24|0;if(m-n>>2>>>0>p>>>0){w=p;x=n}else{y=g;aq(y)}while(1){f[j>>2]=f[x+(w<<2)>>2];f[i>>2]=f[j>>2];Cc(a,i,b,w);g=X(w,e)|0;n=b+(g<<2)|0;p=c+(g<<2)|0;g=f[l>>2]|0;if((g|0)>0){m=0;z=f[k>>2]|0;A=g;while(1){if((A|0)>0){g=0;do{B=f[z+(g<<2)>>2]|0;C=f[o>>2]|0;if((B|0)>(C|0)){D=f[q>>2]|0;f[D+(g<<2)>>2]=C;E=D}else{D=f[r>>2]|0;C=f[q>>2]|0;f[C+(g<<2)>>2]=(B|0)<(D|0)?D:B;E=C}g=g+1|0}while((g|0)<(f[l>>2]|0));F=E}else F=f[q>>2]|0;g=(f[n+(m<<2)>>2]|0)-(f[F+(m<<2)>>2]|0)|0;C=p+(m<<2)|0;f[C>>2]=g;if((g|0)>=(f[s>>2]|0)){if((g|0)>(f[v>>2]|0)){G=g-(f[t>>2]|0)|0;H=21}}else{G=(f[t>>2]|0)+g|0;H=21}if((H|0)==21){H=0;f[C>>2]=G}m=m+1|0;A=f[l>>2]|0;if((m|0)>=(A|0))break;else z=F}}w=w+-1|0;if((w|0)<=-1){H=5;break}z=f[d>>2]|0;x=f[z>>2]|0;if((f[z+4>>2]|0)-x>>2>>>0<=w>>>0){y=z;H=6;break}}if((H|0)==5){u=h;return 1}else if((H|0)==6)aq(y);return 0}function ce(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;Uc(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=4194304;if(d){d=c;c=4194304;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<20)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Mf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function de(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;Vc(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=4194304;if(d){d=c;c=4194304;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<20)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Mf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function ee(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;Wc(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=4194304;if(d){d=c;c=4194304;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<20)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Mf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function fe(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;Xc(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=4194304;if(d){d=c;c=4194304;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<20)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Mf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function ge(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;Yc(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=4194304;if(d){d=c;c=4194304;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<20)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Mf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function he(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;Zc(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=2097152;if(d){d=c;c=2097152;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<19)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Nf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function ie(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;_c(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=1048576;if(d){d=c;c=1048576;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<18)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Of(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function je(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=Oa,t=Oa,u=Oa,v=0,w=0,x=0,y=0,z=0;c=f[b>>2]|0;b=a+4|0;d=f[b>>2]|0;e=(d|0)==0;a:do if(!e){g=d+-1|0;h=(g&d|0)==0;if(!h)if(c>>>0>>0)i=c;else i=(c>>>0)%(d>>>0)|0;else i=g&c;j=f[(f[a>>2]|0)+(i<<2)>>2]|0;if(!j)k=i;else{if(h){h=j;while(1){l=f[h>>2]|0;if(!l){k=i;break a}m=f[l+4>>2]|0;if(!((m|0)==(c|0)|(m&g|0)==(i|0))){k=i;break a}if((f[l+8>>2]|0)==(c|0)){o=l;break}else h=l}p=o+12|0;return p|0}else q=j;while(1){h=f[q>>2]|0;if(!h){k=i;break a}g=f[h+4>>2]|0;if((g|0)!=(c|0)){if(g>>>0>>0)r=g;else r=(g>>>0)%(d>>>0)|0;if((r|0)!=(i|0)){k=i;break a}}if((f[h+8>>2]|0)==(c|0)){o=h;break}else q=h}p=o+12|0;return p|0}}else k=0;while(0);q=ln(16)|0;f[q+8>>2]=c;f[q+12>>2]=0;f[q+4>>2]=c;f[q>>2]=0;i=a+12|0;s=$(((f[i>>2]|0)+1|0)>>>0);t=$(d>>>0);u=$(n[a+16>>2]);do if(e|$(u*t)>>0<3|(d+-1&d|0)!=0)&1;j=~~$(W($(s/u)))>>>0;Hi(a,r>>>0>>0?j:r);r=f[b>>2]|0;j=r+-1|0;if(!(j&r)){v=r;w=j&c;break}if(c>>>0>>0){v=r;w=c}else{v=r;w=(c>>>0)%(r>>>0)|0}}else{v=d;w=k}while(0);k=(f[a>>2]|0)+(w<<2)|0;w=f[k>>2]|0;if(!w){d=a+8|0;f[q>>2]=f[d>>2];f[d>>2]=q;f[k>>2]=d;d=f[q>>2]|0;if(d|0){k=f[d+4>>2]|0;d=v+-1|0;if(d&v)if(k>>>0>>0)x=k;else x=(k>>>0)%(v>>>0)|0;else x=k&d;y=(f[a>>2]|0)+(x<<2)|0;z=30}}else{f[q>>2]=f[w>>2];y=w;z=30}if((z|0)==30)f[y>>2]=q;f[i>>2]=(f[i>>2]|0)+1;o=q;p=o+12|0;return p|0}function ke(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;$c(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=262144;if(d){d=c;c=262144;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<16)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Rf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function le(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;ad(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=131072;if(d){d=c;c=131072;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<15)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Sf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function me(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;bd(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=32768;if(d){d=c;c=32768;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<13)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}Uf(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function ne(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;cd(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}_f(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function oe(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;dd(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}_f(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function pe(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;ed(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}_f(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function qe(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;fd(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}_f(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function re(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;gd(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}_f(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function se(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;hd(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}_f(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function te(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;id(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}_f(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function ue(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;g=u;u=u+64|0;h=g+48|0;i=g;j=d+1|0;f[h>>2]=0;k=h+4|0;f[k>>2]=0;f[h+8>>2]=0;do if(j)if(j>>>0>536870911)aq(h);else{l=ln(j<<3)|0;f[h>>2]=l;m=l+(j<<3)|0;f[h+8>>2]=m;sj(l|0,0,(d<<3)+8|0)|0;f[k>>2]=m;n=l;o=m;break}else{n=0;o=0}while(0);d=(c|0)>0;if(d){j=0;do{m=n+(f[a+(j<<2)>>2]<<3)|0;l=m;p=Vn(f[l>>2]|0,f[l+4>>2]|0,1,0)|0;l=m;f[l>>2]=p;f[l+4>>2]=I;j=j+1|0}while((j|0)!=(c|0))}j=i+40|0;l=j;f[l>>2]=0;f[l+4>>2]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;f[i+16>>2]=0;f[i+20>>2]=0;jd(i,n,o-n>>3,e)|0;n=i+16|0;o=Tn(f[n>>2]|0,f[n+4>>2]|0,1)|0;n=(f[e+4>>2]|0)-(f[e>>2]|0)|0;l=j;f[l>>2]=n;f[l+4>>2]=0;l=Vn(o|0,I|0,39,0)|0;o=Yn(l|0,I|0,3)|0;l=Vn(o|0,I|0,8,0)|0;o=Vn(l|0,I|0,n|0,0)|0;Cl(e,o,I);o=i+24|0;f[o>>2]=(f[e>>2]|0)+(f[j>>2]|0);j=i+28|0;f[j>>2]=0;n=i+32|0;f[n>>2]=16384;if(d){d=c;c=16384;do{l=d;d=d+-1|0;p=f[a+(d<<2)>>2]|0;m=f[i>>2]|0;q=f[m+(p<<3)>>2]|0;r=q<<10;if(c>>>0>>0)s=c;else{t=c;while(1){v=f[o>>2]|0;w=f[j>>2]|0;f[j>>2]=w+1;b[v+w>>0]=t;w=(f[n>>2]|0)>>>8;f[n>>2]=w;if(w>>>0>>0){s=w;break}else t=w}}c=(((s>>>0)/(q>>>0)|0)<<12)+((s>>>0)%(q>>>0)|0)+(f[m+(p<<3)+4>>2]|0)|0;f[n>>2]=c}while((l|0)>1)}_f(i,e);e=f[i>>2]|0;if(e|0){c=i+4|0;i=f[c>>2]|0;if((i|0)!=(e|0))f[c>>2]=i+(~((i+-8-e|0)>>>3)<<3);Oq(e)}e=f[h>>2]|0;if(!e){u=g;return 1}h=f[k>>2]|0;if((h|0)!=(e|0))f[k>>2]=h+(~((h+-8-e|0)>>>3)<<3);Oq(e);u=g;return 1}function ve(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0;c=u;u=u+16|0;d=c+4|0;e=c;f[a+64>>2]=b;g=a+128|0;f[g>>2]=2;h=a+132|0;f[h>>2]=7;i=Qa[f[(f[b>>2]|0)+32>>2]&127](b)|0;b=a+88|0;f[b>>2]=i;j=a+104|0;k=(f[i+28>>2]|0)-(f[i+24>>2]|0)>>2;i=a+108|0;l=f[i>>2]|0;m=f[j>>2]|0;n=l-m>>2;o=m;p=l;if(k>>>0<=n>>>0)if(k>>>0>>0?(q=o+(k<<2)|0,(q|0)!=(p|0)):0){o=p+(~((p+-4-q|0)>>>2)<<2)|0;f[i>>2]=o;r=o;s=m}else{r=l;s=m}else{Ci(j,k-n|0);r=f[i>>2]|0;s=f[j>>2]|0}if((r|0)!=(s|0)){s=0;do{r=f[b>>2]|0;f[e>>2]=s;f[d>>2]=f[e>>2];n=hh(r,d)|0;r=f[j>>2]|0;f[r+(s<<2)>>2]=n;s=s+1|0}while(s>>>0<(f[i>>2]|0)-r>>2>>>0)}i=a+92|0;s=f[b>>2]|0;j=f[s>>2]|0;d=(f[s+4>>2]|0)-j>>2;e=a+96|0;r=f[e>>2]|0;n=f[i>>2]|0;k=r-n>>2;m=n;n=r;if(d>>>0<=k>>>0)if(d>>>0>>0?(r=m+(d<<2)|0,(r|0)!=(n|0)):0){f[e>>2]=n+(~((n+-4-r|0)>>>2)<<2);t=s;v=j}else{t=s;v=j}else{Ci(i,d-k|0);k=f[b>>2]|0;t=k;v=f[k>>2]|0}k=f[t+4>>2]|0;if((k|0)!=(v|0)){v=f[i>>2]|0;i=f[t>>2]|0;t=k-i>>2;k=0;do{f[v+(k<<2)>>2]=f[i+(k<<2)>>2];k=k+1|0}while(k>>>0>>0)}t=(f[h>>2]|0)-(f[g>>2]|0)+1|0;g=a+136|0;h=a+140|0;a=f[h>>2]|0;k=f[g>>2]|0;i=(a-k|0)/12|0;v=a;if(t>>>0>i>>>0){Kf(g,t-i|0);u=c;return 1}if(t>>>0>=i>>>0){u=c;return 1}i=k+(t*12|0)|0;if((i|0)==(v|0)){u=c;return 1}else w=v;while(1){v=w+-12|0;f[h>>2]=v;t=f[v>>2]|0;if(!t)x=v;else{v=w+-8|0;k=f[v>>2]|0;if((k|0)!=(t|0))f[v>>2]=k+(~((k+-4-t|0)>>>2)<<2);Oq(t);x=f[h>>2]|0}if((x|0)==(i|0))break;else w=x}u=c;return 1}function we(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0;e=f[b>>2]|0;g=f[b+4>>2]|0;h=((f[c>>2]|0)-e<<3)+(f[c+4>>2]|0)-g|0;c=e;if((h|0)<=0){i=d+4|0;j=f[d>>2]|0;f[a>>2]=j;k=a+4|0;l=f[i>>2]|0;f[k>>2]=l;return}if(!g){e=d+4|0;m=h;n=e;o=f[e>>2]|0;p=c}else{e=32-g|0;q=(h|0)<(e|0)?h:e;r=-1>>>(e-q|0)&-1<>2];e=d+4|0;s=f[e>>2]|0;t=32-s|0;u=t>>>0>>0?t:q;v=f[d>>2]|0;w=f[v>>2]&~(-1>>>(t-u|0)&-1<>2]=w;s=f[e>>2]|0;f[v>>2]=(s>>>0>g>>>0?r<>>(g-s|0))|w;w=(f[e>>2]|0)+u|0;s=v+(w>>>5<<2)|0;f[d>>2]=s;v=w&31;f[e>>2]=v;w=q-u|0;if((w|0)>0){f[s>>2]=f[s>>2]&~(-1>>>(32-w|0))|r>>>(g+u|0);f[e>>2]=w;x=w}else x=v;v=c+4|0;f[b>>2]=v;m=h-q|0;n=e;o=x;p=v}v=32-o|0;x=-1<31){o=~x;e=f[d>>2]|0;q=~m;h=m+((q|0)>-64?q:-64)+32|0;q=(h>>>5)+1|0;c=m+-32-(h&-32)|0;h=m;w=p;u=f[e>>2]|0;g=e;while(1){r=f[w>>2]|0;s=u&o;f[g>>2]=s;f[g>>2]=s|r<>2];g=g+4|0;u=f[g>>2]&x|r>>>v;f[g>>2]=u;if((h|0)<=63)break;else{h=h+-32|0;w=w+4|0}}w=p+(q<<2)|0;f[b>>2]=w;f[d>>2]=e+(q<<2);y=c;z=w}else{y=m;z=p}if((y|0)<=0){i=n;j=f[d>>2]|0;f[a>>2]=j;k=a+4|0;l=f[i>>2]|0;f[k>>2]=l;return}p=f[z>>2]&-1>>>(32-y|0);z=(v|0)<(y|0)?v:y;m=f[d>>2]|0;w=f[m>>2]&~(-1<>2]&-1>>>(v-z|0));f[m>>2]=w;f[m>>2]=w|p<>2];w=(f[n>>2]|0)+z|0;v=m+(w>>>5<<2)|0;f[d>>2]=v;f[n>>2]=w&31;w=y-z|0;if((w|0)<=0){i=n;j=f[d>>2]|0;f[a>>2]=j;k=a+4|0;l=f[i>>2]|0;f[k>>2]=l;return}f[v>>2]=f[v>>2]&~(-1>>>(32-w|0))|p>>>z;f[n>>2]=w;i=n;j=f[d>>2]|0;f[a>>2]=j;k=a+4|0;l=f[i>>2]|0;f[k>>2]=l;return}function xe(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0;e=f[b>>2]|0;g=b+4|0;h=f[g>>2]|0;i=((f[c>>2]|0)-e<<3)+(f[c+4>>2]|0)-h|0;c=e;if((i|0)<=0){j=d+4|0;k=f[d>>2]|0;f[a>>2]=k;l=a+4|0;m=f[j>>2]|0;f[l>>2]=m;return}if(!h){e=d+4|0;n=i;o=e;p=c;q=f[e>>2]|0}else{e=32-h|0;r=(i|0)<(e|0)?i:e;s=-1>>>(e-r|0)&-1<>2];c=d+4|0;h=f[c>>2]|0;e=32-h|0;t=e>>>0>>0?e:r;u=f[d>>2]|0;v=f[u>>2]&~(-1>>>(e-t|0)&-1<>2]=v;h=f[c>>2]|0;e=f[g>>2]|0;f[u>>2]=(h>>>0>e>>>0?s<>>(e-h|0))|v;v=(f[c>>2]|0)+t|0;h=u+(v>>>5<<2)|0;f[d>>2]=h;u=v&31;f[c>>2]=u;v=r-t|0;if((v|0)>0){e=f[h>>2]&~(-1>>>(32-v|0));f[h>>2]=e;f[h>>2]=e|s>>>((f[g>>2]|0)+t|0);f[c>>2]=v;w=v}else w=u;u=(f[b>>2]|0)+4|0;f[b>>2]=u;n=i-r|0;o=c;p=u;q=w}w=32-q|0;u=-1<31){q=~u;c=~n;r=n+((c|0)>-64?c:-64)+32&-32;c=n;i=p;while(1){v=f[i>>2]|0;t=f[d>>2]|0;g=f[t>>2]&q;f[t>>2]=g;f[t>>2]=g|v<>2];g=t+4|0;f[d>>2]=g;f[g>>2]=f[g>>2]&u|v>>>w;i=(f[b>>2]|0)+4|0;f[b>>2]=i;if((c|0)<=63)break;else c=c+-32|0}x=n+-32-r|0;y=i}else{x=n;y=p}if((x|0)<=0){j=o;k=f[d>>2]|0;f[a>>2]=k;l=a+4|0;m=f[j>>2]|0;f[l>>2]=m;return}p=f[y>>2]&-1>>>(32-x|0);y=(w|0)<(x|0)?w:x;n=f[d>>2]|0;i=f[n>>2]&~(-1<>2]&-1>>>(w-y|0));f[n>>2]=i;f[n>>2]=i|p<>2];i=(f[o>>2]|0)+y|0;w=n+(i>>>5<<2)|0;f[d>>2]=w;f[o>>2]=i&31;i=x-y|0;if((i|0)<=0){j=o;k=f[d>>2]|0;f[a>>2]=k;l=a+4|0;m=f[j>>2]|0;f[l>>2]=m;return}f[w>>2]=f[w>>2]&~(-1>>>(32-i|0))|p>>>y;f[o>>2]=i;j=o;k=f[d>>2]|0;f[a>>2]=k;l=a+4|0;m=f[j>>2]|0;f[l>>2]=m;return}function ye(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+9|0;i=d+8|0;j=f[(f[a+184>>2]|0)+(c<<2)>>2]&255;b[h>>0]=j;c=a+4|0;k=f[(f[c>>2]|0)+44>>2]|0;l=k+16|0;m=f[l+4>>2]|0;if((m|0)>0|(m|0)==0&(f[l>>2]|0)>>>0>0)n=j;else{f[g>>2]=f[k+4>>2];f[e>>2]=f[g>>2];Me(k,e,h,h+1|0)|0;n=b[h>>0]|0}a:do if(n<<24>>24>-1){k=a+172|0;j=f[(f[k>>2]|0)+((n<<24>>24)*136|0)>>2]|0;l=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+52|0;m=b[h>>0]|0;o=f[k>>2]|0;k=f[o+(m*136|0)+132>>2]|0;switch(f[(f[(f[l>>2]|0)+84>>2]|0)+(j<<2)>>2]|0){case 0:{p=k;q=7;break a;break}case 1:{if(b[o+(m*136|0)+28>>0]|0){p=k;q=7;break a}break}default:{}}m=f[(f[c>>2]|0)+44>>2]|0;b[i>>0]=1;o=m+16|0;j=f[o+4>>2]|0;if(!((j|0)>0|(j|0)==0&(f[o>>2]|0)>>>0>0)){f[g>>2]=f[m+4>>2];f[e>>2]=f[g>>2];Me(m,e,i,i+1|0)|0}r=k}else{p=f[a+68>>2]|0;q=7}while(0);if((q|0)==7){q=f[(f[c>>2]|0)+44>>2]|0;b[i>>0]=0;a=q+16|0;h=f[a+4>>2]|0;if(!((h|0)>0|(h|0)==0&(f[a>>2]|0)>>>0>0)){f[g>>2]=f[q+4>>2];f[e>>2]=f[g>>2];Me(q,e,i,i+1|0)|0}r=p}p=f[(f[c>>2]|0)+44>>2]|0;b[i>>0]=r;r=p+16|0;c=f[r+4>>2]|0;if((c|0)>0|(c|0)==0&(f[r>>2]|0)>>>0>0){u=d;return 1}f[g>>2]=f[p+4>>2];f[e>>2]=f[g>>2];Me(p,e,i,i+1|0)|0;u=d;return 1}function ze(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0;h=u;u=u+16|0;i=h+4|0;j=h;k=a+60|0;f[a+64>>2]=g;g=a+8|0;Mh(g,b,d,e);d=a+56|0;l=f[d>>2]|0;m=f[l+4>>2]|0;n=f[l>>2]|0;o=m-n|0;if((o|0)<=0){u=h;return 1}p=(o>>>2)+-1|0;o=a+68|0;q=a+16|0;r=a+32|0;s=a+12|0;t=a+28|0;v=a+20|0;w=a+24|0;if(m-n>>2>>>0>p>>>0){x=p;y=n}else{z=l;aq(z)}while(1){f[j>>2]=f[y+(x<<2)>>2];f[i>>2]=f[j>>2];ub(k,i,b,x);l=X(x,e)|0;n=b+(l<<2)|0;p=c+(l<<2)|0;l=f[g>>2]|0;if((l|0)>0){m=0;a=o;A=l;while(1){if((A|0)>0){l=0;do{B=f[a+(l<<2)>>2]|0;C=f[q>>2]|0;if((B|0)>(C|0)){D=f[r>>2]|0;f[D+(l<<2)>>2]=C;E=D}else{D=f[s>>2]|0;C=f[r>>2]|0;f[C+(l<<2)>>2]=(B|0)<(D|0)?D:B;E=C}l=l+1|0}while((l|0)<(f[g>>2]|0));F=E}else F=f[r>>2]|0;l=(f[n+(m<<2)>>2]|0)-(f[F+(m<<2)>>2]|0)|0;C=p+(m<<2)|0;f[C>>2]=l;if((l|0)>=(f[t>>2]|0)){if((l|0)>(f[w>>2]|0)){G=l-(f[v>>2]|0)|0;H=18}}else{G=(f[v>>2]|0)+l|0;H=18}if((H|0)==18){H=0;f[C>>2]=G}m=m+1|0;A=f[g>>2]|0;if((m|0)>=(A|0))break;else a=F}}x=x+-1|0;if((x|0)<=-1){H=3;break}a=f[d>>2]|0;y=f[a>>2]|0;if((f[a+4>>2]|0)-y>>2>>>0<=x>>>0){z=a;H=4;break}}if((H|0)==3){u=h;return 1}else if((H|0)==4)aq(z);return 0}function Ae(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0;h=u;u=u+16|0;i=h+4|0;j=h;k=a+60|0;f[a+64>>2]=g;g=a+8|0;Mh(g,b,d,e);d=a+56|0;l=f[d>>2]|0;m=f[l+4>>2]|0;n=f[l>>2]|0;o=m-n|0;if((o|0)<=0){u=h;return 1}p=(o>>>2)+-1|0;o=a+68|0;q=a+16|0;r=a+32|0;s=a+12|0;t=a+28|0;v=a+20|0;w=a+24|0;if(m-n>>2>>>0>p>>>0){x=p;y=n}else{z=l;aq(z)}while(1){f[j>>2]=f[y+(x<<2)>>2];f[i>>2]=f[j>>2];tb(k,i,b,x);l=X(x,e)|0;n=b+(l<<2)|0;p=c+(l<<2)|0;l=f[g>>2]|0;if((l|0)>0){m=0;a=o;A=l;while(1){if((A|0)>0){l=0;do{B=f[a+(l<<2)>>2]|0;C=f[q>>2]|0;if((B|0)>(C|0)){D=f[r>>2]|0;f[D+(l<<2)>>2]=C;E=D}else{D=f[s>>2]|0;C=f[r>>2]|0;f[C+(l<<2)>>2]=(B|0)<(D|0)?D:B;E=C}l=l+1|0}while((l|0)<(f[g>>2]|0));F=E}else F=f[r>>2]|0;l=(f[n+(m<<2)>>2]|0)-(f[F+(m<<2)>>2]|0)|0;C=p+(m<<2)|0;f[C>>2]=l;if((l|0)>=(f[t>>2]|0)){if((l|0)>(f[w>>2]|0)){G=l-(f[v>>2]|0)|0;H=18}}else{G=(f[v>>2]|0)+l|0;H=18}if((H|0)==18){H=0;f[C>>2]=G}m=m+1|0;A=f[g>>2]|0;if((m|0)>=(A|0))break;else a=F}}x=x+-1|0;if((x|0)<=-1){H=3;break}a=f[d>>2]|0;y=f[a>>2]|0;if((f[a+4>>2]|0)-y>>2>>>0<=x>>>0){z=a;H=4;break}}if((H|0)==3){u=h;return 1}else if((H|0)==4)aq(z);return 0}function Be(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0;b=u;u=u+16|0;c=b+4|0;d=b;e=a+12|0;g=f[e>>2]|0;h=(f[g+4>>2]|0)-(f[g>>2]|0)>>2;if(!h){u=b;return 1}i=a+152|0;j=a+140|0;k=a+144|0;l=a+148|0;a=0;m=g;while(1){f[d>>2]=(a>>>0)/3|0;f[c>>2]=f[d>>2];if(!(_j(m,c)|0)?(g=f[e>>2]|0,(f[(f[g+12>>2]|0)+(a<<2)>>2]|0)==-1):0){n=a+1|0;o=((n>>>0)%3|0|0)==0?a+-2|0:n;if((o|0)==-1)p=-1;else p=f[(f[g>>2]|0)+(o<<2)>>2]|0;o=f[i>>2]|0;if((f[o+(p<<2)>>2]|0)==-1){g=f[k>>2]|0;n=f[l>>2]|0;if((g|0)==(n<<5|0)){if((g+1|0)<0){q=11;break}r=n<<6;n=g+32&-32;vi(j,g>>>0<1073741823?(r>>>0>>0?n:r):2147483647);s=f[k>>2]|0;t=f[i>>2]|0}else{s=g;t=o}f[k>>2]=s+1;o=(f[j>>2]|0)+(s>>>5<<2)|0;f[o>>2]=f[o>>2]&~(1<<(s&31));o=t+(p<<2)|0;if((f[o>>2]|0)==-1){r=a;n=o;while(1){f[n>>2]=g;o=r+1|0;a:do if((r|0)!=-1?(v=((o>>>0)%3|0|0)==0?r+-2|0:o,(v|0)!=-1):0){w=f[e>>2]|0;x=f[w+12>>2]|0;y=v;while(1){v=f[x+(y<<2)>>2]|0;if((v|0)==-1)break;z=v+1|0;A=((z>>>0)%3|0|0)==0?v+-2|0:z;if((A|0)==-1){B=-1;C=-1;break a}else y=A}x=y+1|0;A=((x>>>0)%3|0|0)==0?y+-2|0:x;if((A|0)==-1){B=y;C=-1}else{B=y;C=f[(f[w>>2]|0)+(A<<2)>>2]|0}}else{B=-1;C=-1}while(0);n=t+(C<<2)|0;if((f[n>>2]|0)!=-1)break;else r=B}}}}r=a+1|0;if(r>>>0>=h>>>0){q=3;break}a=r;m=f[e>>2]|0}if((q|0)==3){u=b;return 1}else if((q|0)==11)aq(j);return 0}function Ce(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;d=u;u=u+32|0;e=d+8|0;g=d;h=a+4|0;i=f[h>>2]|0;if(i>>>0>=b>>>0){f[h>>2]=b;u=d;return}j=a+8|0;k=f[j>>2]|0;l=k<<5;m=b-i|0;if(l>>>0>>0|i>>>0>(l-m|0)>>>0){f[e>>2]=0;n=e+4|0;f[n>>2]=0;o=e+8|0;f[o>>2]=0;if((b|0)<0)aq(a);p=k<<6;k=b+31&-32;vi(e,l>>>0<1073741823?(p>>>0>>0?k:p):2147483647);p=f[h>>2]|0;f[n>>2]=p+m;k=f[a>>2]|0;l=k;q=f[e>>2]|0;r=(l+(p>>>5<<2)-k<<3)+(p&31)|0;if((r|0)>0){p=r>>>5;im(q|0,k|0,p<<2|0)|0;k=r&31;r=q+(p<<2)|0;s=r;if(!k){t=0;v=s}else{w=-1>>>(32-k|0);f[r>>2]=f[r>>2]&~w|f[l+(p<<2)>>2]&w;t=k;v=s}}else{t=0;v=q}f[g>>2]=v;f[g+4>>2]=t;t=g;g=f[t>>2]|0;v=f[t+4>>2]|0;t=f[a>>2]|0;f[a>>2]=f[e>>2];f[e>>2]=t;e=f[h>>2]|0;f[h>>2]=f[n>>2];f[n>>2]=e;e=f[j>>2]|0;f[j>>2]=f[o>>2];f[o>>2]=e;if(t|0)Oq(t);x=g;y=v}else{v=(f[a>>2]|0)+(i>>>5<<2)|0;f[h>>2]=b;x=v;y=i&31}if(!m){u=d;return}i=(y|0)==0;v=x;if(c){if(i){z=m;A=x;B=v}else{c=32-y|0;b=c>>>0>m>>>0?m:c;f[v>>2]=f[v>>2]|-1>>>(c-b|0)&-1<>>5;sj(A|0,-1,c<<2|0)|0;A=z&31;z=B+(c<<2)|0;if(!A){u=d;return}f[z>>2]=f[z>>2]|-1>>>(32-A|0);u=d;return}else{if(i){C=m;D=x;E=v}else{x=32-y|0;i=x>>>0>m>>>0?m:x;f[v>>2]=f[v>>2]&~(-1>>>(x-i|0)&-1<>>5;sj(D|0,0,y<<2|0)|0;D=C&31;C=E+(y<<2)|0;if(!D){u=d;return}f[C>>2]=f[C>>2]&~(-1>>>(32-D|0));u=d;return}}function De(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0;a=u;u=u+48|0;g=a+36|0;h=a+24|0;i=a+12|0;j=a;if(!c){k=0;u=a;return k|0}f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;l=Gj(d)|0;if(l>>>0>4294967279)aq(g);if(l>>>0<11){b[g+11>>0]=l;if(!l)m=g;else{n=g;o=7}}else{p=l+16&-16;q=ln(p)|0;f[g>>2]=q;f[g+8>>2]=p|-2147483648;f[g+4>>2]=l;n=q;o=7}if((o|0)==7){kh(n|0,d|0,l|0)|0;m=n}b[m+l>>0]=0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;l=Gj(e)|0;if(l>>>0>4294967279)aq(h);if(l>>>0<11){b[h+11>>0]=l;if(!l)r=h;else{s=h;o=13}}else{m=l+16&-16;n=ln(m)|0;f[h>>2]=n;f[h+8>>2]=m|-2147483648;f[h+4>>2]=l;s=n;o=13}if((o|0)==13){kh(s|0,e|0,l|0)|0;r=s}b[r+l>>0]=0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;l=Gj(d)|0;if(l>>>0>4294967279)aq(i);if(l>>>0<11){b[i+11>>0]=l;if(!l)t=i;else{v=i;o=19}}else{r=l+16&-16;s=ln(r)|0;f[i>>2]=s;f[i+8>>2]=r|-2147483648;f[i+4>>2]=l;v=s;o=19}if((o|0)==19){kh(v|0,d|0,l|0)|0;t=v}b[t+l>>0]=0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;l=Gj(e)|0;if(l>>>0>4294967279)aq(j);if(l>>>0<11){b[j+11>>0]=l;if(!l)w=j;else{x=j;o=25}}else{t=l+16&-16;v=ln(t)|0;f[j>>2]=v;f[j+8>>2]=t|-2147483648;f[j+4>>2]=l;x=v;o=25}if((o|0)==25){kh(x|0,e|0,l|0)|0;w=x}b[w+l>>0]=0;mn(c,i,j);if((b[j+11>>0]|0)<0)Oq(f[j>>2]|0);if((b[i+11>>0]|0)<0)Oq(f[i>>2]|0);if((b[h+11>>0]|0)<0)Oq(f[h>>2]|0);if((b[g+11>>0]|0)<0)Oq(f[g>>2]|0);k=1;u=a;return k|0}function Ee(a,c){a=a|0;c=c|0;var d=0,e=0,g=0;f[a>>2]=f[c>>2];d=c+4|0;f[a+4>>2]=f[d>>2];e=c+8|0;f[a+8>>2]=f[e>>2];g=c+12|0;f[a+12>>2]=f[g>>2];f[d>>2]=0;f[e>>2]=0;f[g>>2]=0;g=c+16|0;f[a+16>>2]=f[g>>2];e=c+20|0;f[a+20>>2]=f[e>>2];d=c+24|0;f[a+24>>2]=f[d>>2];f[g>>2]=0;f[e>>2]=0;f[d>>2]=0;b[a+28>>0]=b[c+28>>0]|0;d=a+32|0;e=c+32|0;f[d>>2]=0;g=a+36|0;f[g>>2]=0;f[a+40>>2]=0;f[d>>2]=f[e>>2];d=c+36|0;f[g>>2]=f[d>>2];g=c+40|0;f[a+40>>2]=f[g>>2];f[g>>2]=0;f[d>>2]=0;f[e>>2]=0;e=a+44|0;d=c+44|0;f[e>>2]=0;g=a+48|0;f[g>>2]=0;f[a+52>>2]=0;f[e>>2]=f[d>>2];e=c+48|0;f[g>>2]=f[e>>2];g=c+52|0;f[a+52>>2]=f[g>>2];f[g>>2]=0;f[e>>2]=0;f[d>>2]=0;d=a+56|0;e=c+56|0;f[d>>2]=0;g=a+60|0;f[g>>2]=0;f[a+64>>2]=0;f[d>>2]=f[e>>2];d=c+60|0;f[g>>2]=f[d>>2];g=c+64|0;f[a+64>>2]=f[g>>2];f[g>>2]=0;f[d>>2]=0;f[e>>2]=0;f[a+68>>2]=f[c+68>>2];f[a+72>>2]=f[c+72>>2];e=a+76|0;d=c+76|0;f[e>>2]=0;g=a+80|0;f[g>>2]=0;f[a+84>>2]=0;f[e>>2]=f[d>>2];e=c+80|0;f[g>>2]=f[e>>2];g=c+84|0;f[a+84>>2]=f[g>>2];f[g>>2]=0;f[e>>2]=0;f[d>>2]=0;d=a+88|0;e=c+88|0;f[d>>2]=0;g=a+92|0;f[g>>2]=0;f[a+96>>2]=0;f[d>>2]=f[e>>2];d=c+92|0;f[g>>2]=f[d>>2];g=c+96|0;f[a+96>>2]=f[g>>2];f[g>>2]=0;f[d>>2]=0;f[e>>2]=0;b[a+100>>0]=b[c+100>>0]|0;e=a+104|0;d=c+104|0;f[e>>2]=0;g=a+108|0;f[g>>2]=0;f[a+112>>2]=0;f[e>>2]=f[d>>2];e=c+108|0;f[g>>2]=f[e>>2];g=c+112|0;f[a+112>>2]=f[g>>2];f[g>>2]=0;f[e>>2]=0;f[d>>2]=0;d=a+116|0;e=c+116|0;f[d>>2]=0;g=a+120|0;f[g>>2]=0;f[a+124>>2]=0;f[d>>2]=f[e>>2];d=c+120|0;f[g>>2]=f[d>>2];g=c+124|0;f[a+124>>2]=f[g>>2];f[g>>2]=0;f[d>>2]=0;f[e>>2]=0;f[a+128>>2]=f[c+128>>2];f[a+132>>2]=f[c+132>>2];return}function Fe(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0;h=u;u=u+48|0;i=h+36|0;j=h+24|0;k=h+8|0;l=h+4|0;m=h;n=e+4|0;Rh(i,c,(f[n>>2]|0)-(f[e>>2]|0)>>2,2,g,d,1);g=f[i>>2]|0;o=(f[f[g>>2]>>2]|0)+(f[g+48>>2]|0)|0;f[k>>2]=-1;f[k+4>>2]=-1;f[k+8>>2]=-1;f[k+12>>2]=-1;p=f[c+4>>2]|0;if((p+-2|0)>>>0<=28){f[k>>2]=p;c=1<>2]=c+-1;p=c+-2|0;f[k+8>>2]=p;f[k+12>>2]=(p|0)/2|0;p=f[e>>2]|0;if((f[n>>2]|0)==(p|0))q=g;else{c=d+84|0;r=d+68|0;s=d+48|0;t=d+40|0;v=0;w=0;x=p;while(1){p=f[x+(v<<2)>>2]|0;if(!(b[c>>0]|0))y=f[(f[r>>2]|0)+(p<<2)>>2]|0;else y=p;p=s;z=f[p>>2]|0;A=f[p+4>>2]|0;p=t;B=f[p>>2]|0;C=un(B|0,f[p+4>>2]|0,y|0,0)|0;p=Vn(C|0,I|0,z|0,A|0)|0;kh(j|0,(f[f[d>>2]>>2]|0)+p|0,B|0)|0;rf(k,j,l,m);f[o+(w<<2)>>2]=f[l>>2];f[o+((w|1)<<2)>>2]=f[m>>2];v=v+1|0;x=f[e>>2]|0;if(v>>>0>=(f[n>>2]|0)-x>>2>>>0)break;else w=w+2|0}q=f[i>>2]|0}f[a>>2]=q;f[i>>2]=0;u=h;return}f[a>>2]=0;f[i>>2]=0;if(!g){u=h;return}i=g+88|0;a=f[i>>2]|0;f[i>>2]=0;if(a|0){i=f[a+8>>2]|0;if(i|0){q=a+12|0;if((f[q>>2]|0)!=(i|0))f[q>>2]=i;Oq(i)}Oq(a)}a=f[g+68>>2]|0;if(a|0){i=g+72|0;q=f[i>>2]|0;if((q|0)!=(a|0))f[i>>2]=q+(~((q+-4-a|0)>>>2)<<2);Oq(a)}a=g+64|0;q=f[a>>2]|0;f[a>>2]=0;if(q|0){a=f[q>>2]|0;if(a|0){i=q+4|0;if((f[i>>2]|0)!=(a|0))f[i>>2]=a;Oq(a)}Oq(q)}Oq(g);u=h;return}function Ge(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=a+8|0;e=f[d>>2]|0;g=a+4|0;h=f[g>>2]|0;if(((e-h|0)/136|0)>>>0>=c>>>0){i=c;j=h;do{f[j>>2]=-1;Ok(j+4|0);b[j+100>>0]=1;k=j+104|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;f[k+16>>2]=0;f[k+20>>2]=0;f[k+24>>2]=0;j=(f[g>>2]|0)+136|0;f[g>>2]=j;i=i+-1|0}while((i|0)!=0);return}i=f[a>>2]|0;j=(h-i|0)/136|0;h=j+c|0;if(h>>>0>31580641)aq(a);k=(e-i|0)/136|0;i=k<<1;e=k>>>0<15790320?(i>>>0>>0?h:i):31580641;do if(e)if(e>>>0>31580641){i=ra(8)|0;Oo(i,16035);f[i>>2]=7256;va(i|0,1112,110)}else{l=ln(e*136|0)|0;break}else l=0;while(0);i=l+(j*136|0)|0;j=i;h=l+(e*136|0)|0;e=c;c=j;l=i;do{f[l>>2]=-1;Ok(l+4|0);b[l+100>>0]=1;k=l+104|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;f[k+16>>2]=0;f[k+20>>2]=0;f[k+24>>2]=0;l=c+136|0;c=l;e=e+-1|0}while((e|0)!=0);e=f[a>>2]|0;l=f[g>>2]|0;if((l|0)==(e|0)){m=j;n=e;o=e}else{k=l;l=j;j=i;do{k=k+-136|0;Ee(j+-136|0,k);j=l+-136|0;l=j}while((k|0)!=(e|0));m=l;n=f[a>>2]|0;o=f[g>>2]|0}f[a>>2]=m;f[g>>2]=c;f[d>>2]=h;h=n;if((o|0)!=(h|0)){d=o;do{o=f[d+-20>>2]|0;if(o|0){c=d+-16|0;g=f[c>>2]|0;if((g|0)!=(o|0))f[c>>2]=g+(~((g+-4-o|0)>>>2)<<2);Oq(o)}o=f[d+-32>>2]|0;if(o|0){g=d+-28|0;c=f[g>>2]|0;if((c|0)!=(o|0))f[g>>2]=c+(~((c+-4-o|0)>>>2)<<2);Oq(o)}Mi(d+-132|0);d=d+-136|0}while((d|0)!=(h|0))}if(!n)return;Oq(n);return}function He(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=f[b>>2]|0;b=a+12|0;d=(c|0)==-1;e=c+1|0;do if(!d){g=((e>>>0)%3|0|0)==0?c+-2|0:e;if(!((c>>>0)%3|0)){h=g;i=c+2|0;break}else{h=g;i=c+-1|0;break}}else{h=-1;i=-1}while(0);e=d?-1:(c>>>0)/3|0;g=a+28|0;j=(f[g>>2]|0)+(e>>>5<<2)|0;f[j>>2]=1<<(e&31)|f[j>>2];j=a+172|0;e=a+176|0;k=a+280|0;if(((!d?(d=f[(f[(f[b>>2]|0)+12>>2]|0)+(c<<2)>>2]|0,(d|0)!=-1):0)?(a=(d>>>0)/3|0,(f[(f[g>>2]|0)+(a>>>5<<2)>>2]&1<<(a&31)|0)==0):0)?(a=f[j>>2]|0,(f[e>>2]|0)!=(a|0)):0){d=c>>>5;l=1<<(c&31);c=0;m=a;do{a=(f[k>>2]|0)+(c<<5)|0;if(!(l&f[(f[m+(c*136|0)+4>>2]|0)+(d<<2)>>2]))fj(a,0);else fj(a,1);c=c+1|0;m=f[j>>2]|0}while(c>>>0<(((f[e>>2]|0)-m|0)/136|0)>>>0)}if((((h|0)!=-1?(m=f[(f[(f[b>>2]|0)+12>>2]|0)+(h<<2)>>2]|0,(m|0)!=-1):0)?(c=(m>>>0)/3|0,(f[(f[g>>2]|0)+(c>>>5<<2)>>2]&1<<(c&31)|0)==0):0)?(c=f[j>>2]|0,(f[e>>2]|0)!=(c|0)):0){m=h>>>5;d=1<<(h&31);h=0;l=c;do{c=(f[k>>2]|0)+(h<<5)|0;if(!(d&f[(f[l+(h*136|0)+4>>2]|0)+(m<<2)>>2]))fj(c,0);else fj(c,1);h=h+1|0;l=f[j>>2]|0}while(h>>>0<(((f[e>>2]|0)-l|0)/136|0)>>>0)}if((i|0)==-1)return 1;l=f[(f[(f[b>>2]|0)+12>>2]|0)+(i<<2)>>2]|0;if((l|0)==-1)return 1;b=(l>>>0)/3|0;if(f[(f[g>>2]|0)+(b>>>5<<2)>>2]&1<<(b&31)|0)return 1;b=f[j>>2]|0;if((f[e>>2]|0)==(b|0))return 1;g=i>>>5;l=1<<(i&31);i=0;h=b;do{b=(f[k>>2]|0)+(i<<5)|0;if(!(l&f[(f[h+(i*136|0)+4>>2]|0)+(g<<2)>>2]))fj(b,0);else fj(b,1);i=i+1|0;h=f[j>>2]|0}while(i>>>0<(((f[e>>2]|0)-h|0)/136|0)>>>0);return 1}function Ie(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+8|0;i=a+4|0;j=a+8|0;ci((f[j>>2]|0)-(f[i>>2]|0)>>2,c)|0;k=f[i>>2]|0;if((f[j>>2]|0)==(k|0)){u=d;return 1}l=a+32|0;a=c+16|0;m=c+4|0;n=h+1|0;o=h+1|0;p=h+1|0;q=h+1|0;r=0;s=k;do{k=f[(f[(f[l>>2]|0)+8>>2]|0)+(f[s+(r<<2)>>2]<<2)>>2]|0;b[h>>0]=f[k+56>>2];t=a;v=f[t>>2]|0;w=f[t+4>>2]|0;if((w|0)>0|(w|0)==0&v>>>0>0){x=w;y=v}else{f[g>>2]=f[m>>2];f[e>>2]=f[g>>2];Me(c,e,h,q)|0;v=a;x=f[v+4>>2]|0;y=f[v>>2]|0}b[h>>0]=f[k+28>>2];if((x|0)>0|(x|0)==0&y>>>0>0){z=x;A=y}else{f[g>>2]=f[m>>2];f[e>>2]=f[g>>2];Me(c,e,h,p)|0;v=a;z=f[v+4>>2]|0;A=f[v>>2]|0}b[h>>0]=b[k+24>>0]|0;if((z|0)>0|(z|0)==0&A>>>0>0){B=z;C=A}else{f[g>>2]=f[m>>2];f[e>>2]=f[g>>2];Me(c,e,h,o)|0;v=a;B=f[v+4>>2]|0;C=f[v>>2]|0}b[h>>0]=b[k+32>>0]|0;if(!((B|0)>0|(B|0)==0&C>>>0>0)){f[g>>2]=f[m>>2];f[e>>2]=f[g>>2];Me(c,e,h,n)|0}ci(f[k+60>>2]|0,c)|0;r=r+1|0;s=f[i>>2]|0}while(r>>>0<(f[j>>2]|0)-s>>2>>>0);u=d;return 1}function Je(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=Oa,D=Oa,E=Oa,F=Oa;h=u;u=u+16|0;i=h;j=e+4|0;k=b[d+24>>0]|0;l=k<<24>>24;Rh(a,c,(f[j>>2]|0)-(f[e>>2]|0)>>2,l,g,d,1);g=f[a>>2]|0;a=(f[f[g>>2]>>2]|0)+(f[g+48>>2]|0)|0;g=f[c+4>>2]|0;Ap(i);Ko(i,$(n[c+20>>2]),(1<>>0>1073741823?-1:l<<2)|0;m=f[j>>2]|0;j=f[e>>2]|0;e=j;if((m|0)==(j|0)){Mq(g);u=h;return}o=d+68|0;p=d+48|0;q=d+40|0;r=c+8|0;c=i+4|0;s=(b[d+84>>0]|0)==0;t=m-j>>2;if(k<<24>>24>0){v=0;w=0}else{k=0;do{j=f[e+(k<<2)>>2]|0;if(s)x=f[(f[o>>2]|0)+(j<<2)>>2]|0;else x=j;j=p;m=f[j>>2]|0;y=f[j+4>>2]|0;j=q;z=f[j>>2]|0;A=un(z|0,f[j+4>>2]|0,x|0,0)|0;j=Vn(A|0,I|0,m|0,y|0)|0;kh(g|0,(f[f[d>>2]>>2]|0)+j|0,z|0)|0;k=k+1|0}while(k>>>0>>0);Mq(g);u=h;return}while(1){k=f[e+(v<<2)>>2]|0;if(s)B=f[(f[o>>2]|0)+(k<<2)>>2]|0;else B=k;k=p;x=f[k>>2]|0;z=f[k+4>>2]|0;k=q;j=f[k>>2]|0;y=un(j|0,f[k+4>>2]|0,B|0,0)|0;k=Vn(y|0,I|0,x|0,z|0)|0;kh(g|0,(f[f[d>>2]>>2]|0)+k|0,j|0)|0;j=f[r>>2]|0;C=$(n[i>>2]);k=0;z=w;while(1){D=$(n[g+(k<<2)>>2]);E=$(D-$(n[j+(k<<2)>>2]));x=E<$(0.0);D=$(-E);F=$((x?D:E)/C);y=~~$(J($($(F*$(f[c>>2]|0))+$(.5))));f[a+(z<<2)>>2]=x?0-y|0:y;k=k+1|0;if((k|0)==(l|0))break;else z=z+1|0}v=v+1|0;if(v>>>0>=t>>>0)break;else w=w+l|0}Mq(g);u=h;return}function Ke(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0;d=u;u=u+32|0;e=d+16|0;g=d+12|0;h=d+8|0;i=d+4|0;j=d;lp(a);f[a+16>>2]=0;f[a+20>>2]=0;f[a+12>>2]=a+16;k=a+24|0;lp(k);if((a|0)!=(b|0)){f[h>>2]=f[b>>2];f[i>>2]=b+4;f[g>>2]=f[h>>2];f[e>>2]=f[i>>2];Oc(a,g,e)}l=b+24|0;if((k|0)!=(l|0)){f[h>>2]=f[l>>2];f[i>>2]=b+28;f[g>>2]=f[h>>2];f[e>>2]=f[i>>2];Oc(k,g,e)}f[j>>2]=0;k=c+8|0;l=c+12|0;c=f[l>>2]|0;m=f[k>>2]|0;if((c-m|0)<=0){u=d;return}n=b+16|0;b=m;m=c;c=0;while(1){o=f[(f[b+(c<<2)>>2]|0)+56>>2]|0;p=f[n>>2]|0;if(p){q=n;r=p;a:while(1){p=r;while(1){if((f[p+16>>2]|0)>=(o|0))break;s=f[p+4>>2]|0;if(!s){t=q;break a}else p=s}r=f[p>>2]|0;if(!r){t=p;break}else q=p}if((t|0)!=(n|0)?(o|0)>=(f[t+16>>2]|0):0){q=t+20|0;r=Hd(a,j)|0;if((r|0)!=(q|0)){f[h>>2]=f[q>>2];f[i>>2]=t+24;f[g>>2]=f[h>>2];f[e>>2]=f[i>>2];Oc(r,g,e)}v=f[j>>2]|0;w=f[k>>2]|0;x=f[l>>2]|0}else{v=c;w=b;x=m}}else{v=c;w=b;x=m}c=v+1|0;f[j>>2]=c;if((c|0)>=(x-w>>2|0))break;else{b=w;m=x}}u=d;return}function Le(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+8|0;i=a+12|0;ci(f[i>>2]|0,c)|0;if(!(f[i>>2]|0)){j=1;u=d;return j|0}k=c+16|0;l=c+4|0;m=h+1|0;n=h+1|0;o=h+1|0;p=0;while(1){q=f[a>>2]|0;r=f[q+(p<<3)>>2]|0;if(r>>>0>63)if(r>>>0>16383)if(r>>>0>4194303){j=0;s=20;break}else{t=2;s=13}else{t=1;s=13}else if(!r){v=p+1|0;w=0;while(1){if(f[q+(v+w<<3)>>2]|0){x=w;break}y=w+1|0;if(y>>>0<63)w=y;else{x=y;break}}b[h>>0]=x<<2|3;w=k;v=f[w+4>>2]|0;if(!((v|0)>0|(v|0)==0&(f[w>>2]|0)>>>0>0)){f[g>>2]=f[l>>2];f[e>>2]=f[g>>2];Me(c,e,h,o)|0}z=x+p|0}else{t=0;s=13}if((s|0)==13){s=0;b[h>>0]=t|r<<2;w=k;v=f[w+4>>2]|0;if(!((v|0)>0|(v|0)==0&(f[w>>2]|0)>>>0>0)){f[g>>2]=f[l>>2];f[e>>2]=f[g>>2];Me(c,e,h,n)|0}if(!t)z=p;else{w=0;do{w=w+1|0;b[h>>0]=r>>>((w<<3)+-2|0);v=k;q=f[v+4>>2]|0;if(!((q|0)>0|(q|0)==0&(f[v>>2]|0)>>>0>0)){f[g>>2]=f[l>>2];f[e>>2]=f[g>>2];Me(c,e,h,m)|0}}while((w|0)<(t|0));z=p}}p=z+1|0;if(p>>>0>=(f[i>>2]|0)>>>0){j=1;s=20;break}}if((s|0)==20){u=d;return j|0}return 0}function Me(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;g=f[a>>2]|0;h=g;i=(f[c>>2]|0)-h|0;c=g+i|0;j=e-d|0;if((j|0)<=0){k=c;return k|0}l=a+8|0;m=f[l>>2]|0;n=a+4|0;o=f[n>>2]|0;p=o;if((j|0)<=(m-p|0)){q=p-c|0;if((j|0)>(q|0)){r=d+q|0;if((r|0)==(e|0))s=o;else{t=r;u=o;while(1){b[u>>0]=b[t>>0]|0;t=t+1|0;v=(f[n>>2]|0)+1|0;f[n>>2]=v;if((t|0)==(e|0)){s=v;break}else u=v}}if((q|0)>0){w=r;x=s}else{k=c;return k|0}}else{w=e;x=o}s=x-(c+j)|0;r=c+s|0;if(r>>>0>>0){q=r;r=x;do{b[r>>0]=b[q>>0]|0;q=q+1|0;r=(f[n>>2]|0)+1|0;f[n>>2]=r}while((q|0)!=(o|0))}if(s|0)im(x+(0-s)|0,c|0,s|0)|0;if((w|0)==(d|0)){k=c;return k|0}else{y=d;z=c}while(1){b[z>>0]=b[y>>0]|0;y=y+1|0;if((y|0)==(w|0)){k=c;break}else z=z+1|0}return k|0}z=p-h+j|0;if((z|0)<0)aq(a);j=m-h|0;h=j<<1;m=j>>>0<1073741823?(h>>>0>>0?z:h):2147483647;h=c;if(!m)A=0;else A=ln(m)|0;z=A+i|0;i=z;j=A+m|0;if((d|0)==(e|0)){B=i;C=g}else{g=d;d=i;i=z;do{b[i>>0]=b[g>>0]|0;i=d+1|0;d=i;g=g+1|0}while((g|0)!=(e|0));B=d;C=f[a>>2]|0}d=h-C|0;e=z+(0-d)|0;if((d|0)>0)kh(e|0,C|0,d|0)|0;d=(f[n>>2]|0)-h|0;if((d|0)>0){h=B;kh(h|0,c|0,d|0)|0;D=h+d|0;E=f[a>>2]|0}else{D=B;E=C}f[a>>2]=e;f[n>>2]=D;f[l>>2]=j;if(!E){k=z;return k|0}Oq(E);k=z;return k|0}function Ne(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;e=u;u=u+16|0;g=e;h=f[(f[c+4>>2]|0)+(d<<2)>>2]|0;d=f[c+28>>2]|0;c=f[(f[(f[d+4>>2]|0)+8>>2]|0)+(h<<2)>>2]|0;switch(f[c+28>>2]|0){case 5:case 6:case 3:case 4:case 1:case 2:{i=ln(40)|0;zo(i);j=i;k=j;f[a>>2]=k;u=e;return}case 9:{l=3;break}default:{}}if((l|0)==3){i=f[d+48>>2]|0;d=ln(32)|0;f[g>>2]=d;f[g+8>>2]=-2147483616;f[g+4>>2]=17;m=d;n=14495;o=m+17|0;do{b[m>>0]=b[n>>0]|0;m=m+1|0;n=n+1|0}while((m|0)<(o|0));b[d+17>>0]=0;d=i+16|0;n=f[d>>2]|0;if(n){p=d;q=n;a:while(1){n=q;while(1){if((f[n+16>>2]|0)>=(h|0))break;r=f[n+4>>2]|0;if(!r){s=p;break a}else n=r}q=f[n>>2]|0;if(!q){s=n;break}else p=n}if(((s|0)!=(d|0)?(h|0)>=(f[s+16>>2]|0):0)?(h=s+20|0,(Jh(h,g)|0)!=0):0)t=Hk(h,g,-1)|0;else l=12}else l=12;if((l|0)==12)t=Hk(i,g,-1)|0;if((b[g+11>>0]|0)<0)Oq(f[g>>2]|0);if((t|0)>0)if((f[c+56>>2]|0)==1){c=ln(48)|0;m=c;o=m+48|0;do{f[m>>2]=0;m=m+4|0}while((m|0)<(o|0));zo(c);f[c>>2]=2496;f[c+40>>2]=1168;f[c+44>>2]=-1;j=c;k=j;f[a>>2]=k;u=e;return}else{c=ln(64)|0;ym(c);j=c;k=j;f[a>>2]=k;u=e;return}}c=ln(36)|0;Hm(c);j=c;k=j;f[a>>2]=k;u=e;return}function Oe(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;d=(c|0)==(a|0);b[c+12>>0]=d&1;if(d)return;else e=c;while(1){g=e+8|0;h=f[g>>2]|0;c=h+12|0;if(b[c>>0]|0){i=23;break}j=h+8|0;k=f[j>>2]|0;d=f[k>>2]|0;if((d|0)==(h|0)){l=f[k+4>>2]|0;if(!l){i=7;break}m=l+12|0;if(!(b[m>>0]|0))n=m;else{i=7;break}}else{if(!d){i=16;break}m=d+12|0;if(!(b[m>>0]|0))n=m;else{i=16;break}}b[c>>0]=1;c=(k|0)==(a|0);b[k+12>>0]=c&1;b[n>>0]=1;if(c){i=23;break}else e=k}if((i|0)==7){if((f[h>>2]|0)==(e|0)){o=h;p=k}else{n=h+4|0;a=f[n>>2]|0;c=f[a>>2]|0;f[n>>2]=c;if(!c)q=k;else{f[c+8>>2]=h;q=f[j>>2]|0}f[a+8>>2]=q;q=f[j>>2]|0;f[((f[q>>2]|0)==(h|0)?q:q+4|0)>>2]=a;f[a>>2]=h;f[j>>2]=a;o=a;p=f[a+8>>2]|0}b[o+12>>0]=1;b[p+12>>0]=0;o=f[p>>2]|0;a=o+4|0;q=f[a>>2]|0;f[p>>2]=q;if(q|0)f[q+8>>2]=p;q=p+8|0;f[o+8>>2]=f[q>>2];c=f[q>>2]|0;f[((f[c>>2]|0)==(p|0)?c:c+4|0)>>2]=o;f[a>>2]=p;f[q>>2]=o;return}else if((i|0)==16){if((f[h>>2]|0)==(e|0)){o=e+4|0;q=f[o>>2]|0;f[h>>2]=q;if(!q)r=k;else{f[q+8>>2]=h;r=f[j>>2]|0}f[g>>2]=r;r=f[j>>2]|0;f[((f[r>>2]|0)==(h|0)?r:r+4|0)>>2]=e;f[o>>2]=h;f[j>>2]=e;s=e;t=f[e+8>>2]|0}else{s=h;t=k}b[s+12>>0]=1;b[t+12>>0]=0;s=t+4|0;k=f[s>>2]|0;h=f[k>>2]|0;f[s>>2]=h;if(h|0)f[h+8>>2]=t;h=t+8|0;f[k+8>>2]=f[h>>2];s=f[h>>2]|0;f[((f[s>>2]|0)==(t|0)?s:s+4|0)>>2]=k;f[k>>2]=t;f[h>>2]=k;return}else if((i|0)==23)return}function Pe(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0;d=f[b>>2]|0;b=a+12|0;e=(d|0)==-1;do if(e){g=1;h=-1;i=-1}else{j=d+(((d>>>0)%3|0|0)==0?2:-1)|0;if((j|0)!=-1){k=f[(f[b>>2]|0)+12>>2]|0;l=j;while(1){j=f[k+(l<<2)>>2]|0;if((j|0)==-1){m=0;n=l;break}o=j+1|0;l=((o>>>0)%3|0|0)==0?j+-2|0:o;if((l|0)==-1){m=1;n=-1;break}}if(e){g=m;h=-1;i=n;break}else{p=m;q=n}}else{p=1;q=-1}g=p;h=f[(f[f[b>>2]>>2]|0)+(d<<2)>>2]|0;i=q}while(0);if(c){c=(f[a+84>>2]|0)+(h>>>5<<2)|0;f[c>>2]=f[c>>2]|1<<(h&31);r=1}else r=0;c=f[(f[a+152>>2]|0)+(h<<2)>>2]|0;q=(f[a+140>>2]|0)+(c>>>5<<2)|0;f[q>>2]=f[q>>2]|1<<(c&31);if(!g){g=(((i>>>0)%3|0|0)==0?2:-1)+i|0;if((g|0)==-1){s=-1;t=i}else{s=f[(f[f[b>>2]>>2]|0)+(g<<2)>>2]|0;t=i}}else{s=-1;t=-1}if((s|0)==(h|0)){u=r;return u|0}i=f[a+84>>2]|0;a=r;r=s;s=t;while(1){t=i+(r>>>5<<2)|0;f[t>>2]=f[t>>2]|1<<(r&31);t=a+1|0;g=s+1|0;a:do if((s|0)!=-1?(c=((g>>>0)%3|0|0)==0?s+-2|0:g,(c|0)!=-1):0){q=f[b>>2]|0;d=f[q+12>>2]|0;p=c;while(1){c=f[d+(p<<2)>>2]|0;if((c|0)==-1)break;n=c+1|0;m=((n>>>0)%3|0|0)==0?c+-2|0:n;if((m|0)==-1){v=-1;w=-1;break a}else p=m}d=(((p>>>0)%3|0|0)==0?2:-1)+p|0;if((d|0)==-1){v=-1;w=p}else{v=f[(f[q>>2]|0)+(d<<2)>>2]|0;w=p}}else{v=-1;w=-1}while(0);if((v|0)==(h|0)){u=t;break}else{a=t;r=v;s=w}}return u|0}function Qe(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=Oa,C=Oa,D=Oa,E=Oa;g=u;u=u+16|0;h=g;i=b[d+24>>0]|0;j=i<<24>>24;Rh(a,c,e,j,0,d,1);k=f[a>>2]|0;a=(f[f[k>>2]>>2]|0)+(f[k+48>>2]|0)|0;k=f[c+4>>2]|0;Ap(h);Ko(h,$(n[c+20>>2]),(1<>>0>1073741823?-1:j<<2)|0;if(!e){Mq(k);u=g;return}l=d+68|0;m=d+48|0;o=d+40|0;p=c+8|0;c=h+4|0;q=(b[d+84>>0]|0)==0;if(i<<24>>24>0){r=0;s=0}else{i=0;do{if(q)t=f[(f[l>>2]|0)+(i<<2)>>2]|0;else t=i;v=m;w=f[v>>2]|0;x=f[v+4>>2]|0;v=o;y=f[v>>2]|0;z=un(y|0,f[v+4>>2]|0,t|0,0)|0;v=Vn(z|0,I|0,w|0,x|0)|0;kh(k|0,(f[f[d>>2]>>2]|0)+v|0,y|0)|0;i=i+1|0}while((i|0)!=(e|0));Mq(k);u=g;return}while(1){if(q)A=f[(f[l>>2]|0)+(s<<2)>>2]|0;else A=s;i=m;t=f[i>>2]|0;y=f[i+4>>2]|0;i=o;v=f[i>>2]|0;x=un(v|0,f[i+4>>2]|0,A|0,0)|0;i=Vn(x|0,I|0,t|0,y|0)|0;kh(k|0,(f[f[d>>2]>>2]|0)+i|0,v|0)|0;v=f[p>>2]|0;B=$(n[h>>2]);i=0;y=r;while(1){C=$(n[k+(i<<2)>>2]);D=$(C-$(n[v+(i<<2)>>2]));t=D<$(0.0);C=$(-D);E=$((t?C:D)/B);x=~~$(J($($(E*$(f[c>>2]|0))+$(.5))));f[a+(y<<2)>>2]=t?0-x|0:x;i=i+1|0;if((i|0)==(j|0))break;else y=y+1|0}s=s+1|0;if((s|0)==(e|0))break;else r=r+j|0}Mq(k);u=g;return}function Re(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0;c=a+4|0;d=f[c>>2]|0;e=a+100|0;if(d>>>0<(f[e>>2]|0)>>>0){f[c>>2]=d+1;g=h[d>>0]|0}else g=Si(a)|0;switch(g|0){case 43:case 45:{d=(g|0)==45&1;i=f[c>>2]|0;if(i>>>0<(f[e>>2]|0)>>>0){f[c>>2]=i+1;j=h[i>>0]|0}else j=Si(a)|0;if((b|0)!=0&(j+-48|0)>>>0>9?(f[e>>2]|0)!=0:0){f[c>>2]=(f[c>>2]|0)+-1;k=d;l=j}else{k=d;l=j}break}default:{k=0;l=g}}if((l+-48|0)>>>0>9)if(!(f[e>>2]|0)){m=-2147483648;n=0}else{f[c>>2]=(f[c>>2]|0)+-1;m=-2147483648;n=0}else{g=0;j=l;while(1){g=j+-48+(g*10|0)|0;l=f[c>>2]|0;if(l>>>0<(f[e>>2]|0)>>>0){f[c>>2]=l+1;o=h[l>>0]|0}else o=Si(a)|0;if(!((o+-48|0)>>>0<10&(g|0)<214748364))break;else j=o}j=((g|0)<0)<<31>>31;if((o+-48|0)>>>0<10){l=o;d=g;b=j;while(1){i=un(d|0,b|0,10,0)|0;p=I;q=Vn(l|0,((l|0)<0)<<31>>31|0,-48,-1)|0;r=Vn(q|0,I|0,i|0,p|0)|0;p=I;i=f[c>>2]|0;if(i>>>0<(f[e>>2]|0)>>>0){f[c>>2]=i+1;s=h[i>>0]|0}else s=Si(a)|0;if((s+-48|0)>>>0<10&((p|0)<21474836|(p|0)==21474836&r>>>0<2061584302)){l=s;d=r;b=p}else{t=s;u=r;v=p;break}}}else{t=o;u=g;v=j}if((t+-48|0)>>>0<10)do{t=f[c>>2]|0;if(t>>>0<(f[e>>2]|0)>>>0){f[c>>2]=t+1;w=h[t>>0]|0}else w=Si(a)|0}while((w+-48|0)>>>0<10);if(f[e>>2]|0)f[c>>2]=(f[c>>2]|0)+-1;c=(k|0)!=0;k=Xn(0,0,u|0,v|0)|0;m=c?I:v;n=c?k:u}I=m;return n|0}function Se(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;b=a+1176|0;c=f[b>>2]|0;if(c|0){d=a+1180|0;e=f[d>>2]|0;if((e|0)==(c|0))g=c;else{h=e;while(1){e=h+-12|0;f[d>>2]=e;i=f[e>>2]|0;if(!i)j=e;else{e=h+-8|0;k=f[e>>2]|0;if((k|0)!=(i|0))f[e>>2]=k+(~((k+-4-i|0)>>>2)<<2);Oq(i);j=f[d>>2]|0}if((j|0)==(c|0))break;else h=j}g=f[b>>2]|0}Oq(g)}g=a+1164|0;b=f[g>>2]|0;if(b|0){j=a+1168|0;h=f[j>>2]|0;if((h|0)==(b|0))l=b;else{c=h;while(1){h=c+-12|0;f[j>>2]=h;d=f[h>>2]|0;if(!d)m=h;else{h=c+-8|0;i=f[h>>2]|0;if((i|0)!=(d|0))f[h>>2]=i+(~((i+-4-d|0)>>>2)<<2);Oq(d);m=f[j>>2]|0}if((m|0)==(b|0))break;else c=m}l=f[g>>2]|0}Oq(l)}l=f[a+1152>>2]|0;if(l|0){g=a+1156|0;m=f[g>>2]|0;if((m|0)!=(l|0))f[g>>2]=m+(~((m+-4-l|0)>>>2)<<2);Oq(l)}l=f[a+1140>>2]|0;if(l|0){m=a+1144|0;g=f[m>>2]|0;if((g|0)!=(l|0))f[m>>2]=g+(~((g+-4-l|0)>>>2)<<2);Oq(l)}l=f[a+1128>>2]|0;if(!l){n=a+1108|0;jl(n);o=a+1088|0;jl(o);p=a+1068|0;jl(p);q=a+1036|0;Fj(q);r=a+12|0;Nh(r);return}g=a+1132|0;m=f[g>>2]|0;if((m|0)!=(l|0))f[g>>2]=m+(~((m+-4-l|0)>>>2)<<2);Oq(l);n=a+1108|0;jl(n);o=a+1088|0;jl(o);p=a+1068|0;jl(p);q=a+1036|0;Fj(q);r=a+12|0;Nh(r);return}function Te(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;d=u;u=u+16|0;e=d;g=a+4|0;h=f[g>>2]|0;i=f[(f[a>>2]|0)+52>>2]|0;if(!h){if(!(Sa[i&31](a,c,0)|0)){j=0;u=d;return j|0}}else if(!(Sa[i&31](a,c,f[(f[h+4>>2]|0)+80>>2]|0)|0)){j=0;u=d;return j|0}if(!(b[a+28>>0]|0)){j=1;u=d;return j|0}h=f[a+8>>2]|0;i=f[a+32>>2]|0;a=f[h+80>>2]|0;f[e>>2]=0;k=e+4|0;f[k>>2]=0;f[e+8>>2]=0;do if(a)if(a>>>0>1073741823)aq(e);else{l=a<<2;m=ln(l)|0;f[e>>2]=m;n=m+(a<<2)|0;f[e+8>>2]=n;sj(m|0,0,l|0)|0;f[k>>2]=n;o=m;p=n;q=m;break}else{o=0;p=0;q=0}while(0);e=f[c+4>>2]|0;a=f[c>>2]|0;c=a;a:do if((e|0)!=(a|0)){m=e-a>>2;if(b[h+84>>0]|0){n=0;while(1){f[o+(f[c+(n<<2)>>2]<<2)>>2]=n;n=n+1|0;if(n>>>0>=m>>>0)break a}}n=f[h+68>>2]|0;l=0;do{f[o+(f[n+(f[c+(l<<2)>>2]<<2)>>2]<<2)>>2]=l;l=l+1|0}while(l>>>0>>0)}while(0);c=f[(f[(f[g>>2]|0)+4>>2]|0)+80>>2]|0;b:do if(c|0){g=f[i+68>>2]|0;if(b[h+84>>0]|0){a=0;while(1){f[g+(a<<2)>>2]=f[o+(a<<2)>>2];a=a+1|0;if(a>>>0>=c>>>0)break b}}a=f[h+68>>2]|0;e=0;do{f[g+(e<<2)>>2]=f[o+(f[a+(e<<2)>>2]<<2)>>2];e=e+1|0}while(e>>>0>>0)}while(0);if(o|0){if((p|0)!=(o|0))f[k>>2]=p+(~((p+-4-o|0)>>>2)<<2);Oq(q)}j=1;u=d;return j|0}function Ue(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;c=u;u=u+16|0;d=c;f[a>>2]=0;f[a+8>>2]=b;Oh(a+12|0);wn(a+1036|0);vo(a+1068|0);vo(a+1088|0);vo(a+1108|0);e=a+1128|0;f[e>>2]=0;g=a+1132|0;f[g>>2]=0;f[a+1136>>2]=0;h=(b|0)==0;do if(!h)if(b>>>0>1073741823)aq(e);else{i=b<<2;j=ln(i)|0;f[e>>2]=j;k=j+(b<<2)|0;f[a+1136>>2]=k;sj(j|0,0,i|0)|0;f[g>>2]=k;break}while(0);g=a+1140|0;f[g>>2]=0;e=a+1144|0;f[e>>2]=0;f[a+1148>>2]=0;if(!h){k=b<<2;i=ln(k)|0;f[g>>2]=i;g=i+(b<<2)|0;f[a+1148>>2]=g;sj(i|0,0,k|0)|0;f[e>>2]=g}g=a+1152|0;f[g>>2]=0;e=a+1156|0;f[e>>2]=0;f[a+1160>>2]=0;if(!h){k=b<<2;i=ln(k)|0;f[g>>2]=i;g=i+(b<<2)|0;f[a+1160>>2]=g;sj(i|0,0,k|0)|0;f[e>>2]=g}g=b<<5|1;f[d>>2]=0;e=d+4|0;f[e>>2]=0;f[d+8>>2]=0;if(!h){k=b<<2;i=ln(k)|0;f[d>>2]=i;j=i+(b<<2)|0;f[d+8>>2]=j;sj(i|0,0,k|0)|0;f[e>>2]=j}lk(a+1164|0,g,d);j=f[d>>2]|0;if(j|0){k=f[e>>2]|0;if((k|0)!=(j|0))f[e>>2]=k+(~((k+-4-j|0)>>>2)<<2);Oq(j)}f[d>>2]=0;j=d+4|0;f[j>>2]=0;f[d+8>>2]=0;if(!h){h=b<<2;k=ln(h)|0;f[d>>2]=k;e=k+(b<<2)|0;f[d+8>>2]=e;sj(k|0,0,h|0)|0;f[j>>2]=e}lk(a+1176|0,g,d);g=f[d>>2]|0;if(!g){u=c;return}d=f[j>>2]|0;if((d|0)!=(g|0))f[j>>2]=d+(~((d+-4-g|0)>>>2)<<2);Oq(g);u=c;return}function Ve(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0.0,D=0.0,E=0.0;g=u;u=u+16|0;h=g;i=b+16|0;f[a>>2]=f[i>>2];f[a+4>>2]=f[i+4>>2];f[a+8>>2]=f[i+8>>2];f[a+12>>2]=f[i+12>>2];f[a+16>>2]=f[i+16>>2];f[a+20>>2]=f[i+20>>2];j=a+8|0;f[j>>2]=(f[j>>2]|0)+d;j=(d|0)>0;if(j){k=b+4|0;l=a+16|0;m=a+12|0;n=f[b>>2]|0;o=n;q=0;r=o;s=n;n=o;while(1){o=f[c+(q<<2)>>2]|0;t=f[k>>2]|0;if(t-s>>2>>>0>o>>>0){v=r;w=n}else{x=o+1|0;f[h>>2]=0;y=t-s>>2;z=s;A=t;if(x>>>0<=y>>>0)if(x>>>0>>0?(t=z+(x<<2)|0,(t|0)!=(A|0)):0){f[k>>2]=A+(~((A+-4-t|0)>>>2)<<2);B=r}else B=r;else{Ch(b,x-y|0,h);B=f[b>>2]|0}v=B;w=B}y=w+(o<<2)|0;x=f[y>>2]|0;s=w;if((x|0)<=1)if((x|0)==0?(f[l>>2]=(f[l>>2]|0)+1,o>>>0>(f[m>>2]|0)>>>0):0){f[m>>2]=o;C=0.0}else C=0.0;else{D=+(x|0);C=+Zg(D)*D}x=(f[y>>2]|0)+1|0;f[y>>2]=x;D=+(x|0);E=+Zg(D)*D-C;p[a>>3]=+p[a>>3]+E;q=q+1|0;if((q|0)==(d|0))break;else{r=v;n=w}}}if(e){f[i>>2]=f[a>>2];f[i+4>>2]=f[a+4>>2];f[i+8>>2]=f[a+8>>2];f[i+12>>2]=f[a+12>>2];f[i+16>>2]=f[a+16>>2];u=g;return}if(!j){u=g;return}j=f[b>>2]|0;b=0;do{a=j+(f[c+(b<<2)>>2]<<2)|0;f[a>>2]=(f[a>>2]|0)+-1;b=b+1|0}while((b|0)!=(d|0));u=g;return}function We(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0.0;a:do if(b>>>0<=20)do switch(b|0){case 9:{d=(f[c>>2]|0)+(4-1)&~(4-1);e=f[d>>2]|0;f[c>>2]=d+4;f[a>>2]=e;break a;break}case 10:{e=(f[c>>2]|0)+(4-1)&~(4-1);d=f[e>>2]|0;f[c>>2]=e+4;e=a;f[e>>2]=d;f[e+4>>2]=((d|0)<0)<<31>>31;break a;break}case 11:{d=(f[c>>2]|0)+(4-1)&~(4-1);e=f[d>>2]|0;f[c>>2]=d+4;d=a;f[d>>2]=e;f[d+4>>2]=0;break a;break}case 12:{d=(f[c>>2]|0)+(8-1)&~(8-1);e=d;g=f[e>>2]|0;h=f[e+4>>2]|0;f[c>>2]=d+8;d=a;f[d>>2]=g;f[d+4>>2]=h;break a;break}case 13:{h=(f[c>>2]|0)+(4-1)&~(4-1);d=f[h>>2]|0;f[c>>2]=h+4;h=(d&65535)<<16>>16;d=a;f[d>>2]=h;f[d+4>>2]=((h|0)<0)<<31>>31;break a;break}case 14:{h=(f[c>>2]|0)+(4-1)&~(4-1);d=f[h>>2]|0;f[c>>2]=h+4;h=a;f[h>>2]=d&65535;f[h+4>>2]=0;break a;break}case 15:{h=(f[c>>2]|0)+(4-1)&~(4-1);d=f[h>>2]|0;f[c>>2]=h+4;h=(d&255)<<24>>24;d=a;f[d>>2]=h;f[d+4>>2]=((h|0)<0)<<31>>31;break a;break}case 16:{h=(f[c>>2]|0)+(4-1)&~(4-1);d=f[h>>2]|0;f[c>>2]=h+4;h=a;f[h>>2]=d&255;f[h+4>>2]=0;break a;break}case 17:{h=(f[c>>2]|0)+(8-1)&~(8-1);i=+p[h>>3];f[c>>2]=h+8;p[a>>3]=i;break a;break}case 18:{h=(f[c>>2]|0)+(8-1)&~(8-1);i=+p[h>>3];f[c>>2]=h+8;p[a>>3]=i;break a;break}default:break a}while(0);while(0);return}function Xe(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;c=u;u=u+16|0;d=c+4|0;e=c;g=c+8|0;if(!(Qa[f[(f[a>>2]|0)+32>>2]&127](a)|0)){h=0;u=c;return h|0}i=a+44|0;j=f[i>>2]|0;k=a+8|0;l=a+12|0;m=f[l>>2]|0;n=f[k>>2]|0;b[g>>0]=(m-n|0)>>>2;o=j+16|0;p=f[o+4>>2]|0;if((p|0)>0|(p|0)==0&(f[o>>2]|0)>>>0>0){q=k;r=n;s=m}else{f[e>>2]=f[j+4>>2];f[d>>2]=f[e>>2];Me(j,d,g,g+1|0)|0;q=k;r=f[k>>2]|0;s=f[l>>2]|0}a:do if((r|0)!=(s|0)){l=a+4|0;k=r;while(1){g=f[k>>2]|0;k=k+4|0;if(!(Sa[f[(f[g>>2]|0)+8>>2]&31](g,a,f[l>>2]|0)|0)){h=0;break}if((k|0)==(s|0))break a}u=c;return h|0}while(0);if(!(xc(a)|0)){h=0;u=c;return h|0}s=a+32|0;r=f[s>>2]|0;k=a+36|0;l=f[k>>2]|0;b:do if((r|0)!=(l|0)){g=r;do{if(!(Ra[f[(f[a>>2]|0)+40>>2]&127](a,f[g>>2]|0)|0)){h=0;t=18;break}g=g+4|0}while((g|0)!=(l|0));if((t|0)==18){u=c;return h|0}g=f[s>>2]|0;d=f[k>>2]|0;if((g|0)!=(d|0)){j=g;while(1){g=f[(f[q>>2]|0)+(f[j>>2]<<2)>>2]|0;j=j+4|0;if(!(Ra[f[(f[g>>2]|0)+12>>2]&127](g,f[i>>2]|0)|0)){h=0;break}if((j|0)==(d|0))break b}u=c;return h|0}}while(0);h=Qa[f[(f[a>>2]|0)+44>>2]&127](a)|0;u=c;return h|0}function Ye(a,b){a=a|0;b=b|0;ld(a,b);ld(a+32|0,b);ld(a+64|0,b);ld(a+96|0,b);ld(a+128|0,b);ld(a+160|0,b);ld(a+192|0,b);ld(a+224|0,b);ld(a+256|0,b);ld(a+288|0,b);ld(a+320|0,b);ld(a+352|0,b);ld(a+384|0,b);ld(a+416|0,b);ld(a+448|0,b);ld(a+480|0,b);ld(a+512|0,b);ld(a+544|0,b);ld(a+576|0,b);ld(a+608|0,b);ld(a+640|0,b);ld(a+672|0,b);ld(a+704|0,b);ld(a+736|0,b);ld(a+768|0,b);ld(a+800|0,b);ld(a+832|0,b);ld(a+864|0,b);ld(a+896|0,b);ld(a+928|0,b);ld(a+960|0,b);ld(a+992|0,b);ld(a+1024|0,b);return}function Ze(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0;c=u;u=u+32|0;d=c;e=a+4|0;g=f[a>>2]|0;h=(f[e>>2]|0)-g>>2;i=h+1|0;if(i>>>0>1073741823)aq(a);j=a+8|0;k=(f[j>>2]|0)-g|0;g=k>>1;l=k>>2>>>0<536870911?(g>>>0>>0?i:g):1073741823;f[d+12>>2]=0;f[d+16>>2]=a+8;do if(l)if(l>>>0>1073741823){g=ra(8)|0;Oo(g,16035);f[g>>2]=7256;va(g|0,1112,110)}else{m=ln(l<<2)|0;break}else m=0;while(0);f[d>>2]=m;g=m+(h<<2)|0;h=d+8|0;i=d+4|0;f[i>>2]=g;k=m+(l<<2)|0;l=d+12|0;f[l>>2]=k;m=f[b>>2]|0;f[b>>2]=0;f[g>>2]=m;m=g+4|0;f[h>>2]=m;b=f[a>>2]|0;n=f[e>>2]|0;if((n|0)==(b|0)){o=g;p=l;q=h;r=b;s=m;t=n;v=k;w=o;f[a>>2]=w;f[i>>2]=r;f[e>>2]=s;f[q>>2]=t;x=f[j>>2]|0;f[j>>2]=v;f[p>>2]=x;f[d>>2]=r;ki(d);u=c;return}else{y=n;z=g}do{y=y+-4|0;g=f[y>>2]|0;f[y>>2]=0;f[z+-4>>2]=g;z=(f[i>>2]|0)+-4|0;f[i>>2]=z}while((y|0)!=(b|0));o=z;p=l;q=h;r=f[a>>2]|0;s=f[h>>2]|0;t=f[e>>2]|0;v=f[l>>2]|0;w=o;f[a>>2]=w;f[i>>2]=r;f[e>>2]=s;f[q>>2]=t;x=f[j>>2]|0;f[j>>2]=v;f[p>>2]=x;f[d>>2]=r;ki(d);u=c;return}function _e(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;d=u;u=u+32|0;e=d+12|0;g=d;h=nl(c,0)|0;if(!h){f[a>>2]=0;u=d;return}i=f[c+100>>2]|0;j=f[c+96>>2]|0;c=i-j|0;k=(c|0)/12|0;f[e>>2]=0;l=e+4|0;f[l>>2]=0;f[e+8>>2]=0;m=j;do if(c)if(k>>>0>357913941)aq(e);else{n=ln(c)|0;f[e>>2]=n;f[e+8>>2]=n+(k*12|0);sj(n|0,0,c|0)|0;f[l>>2]=n+c;o=n;break}else o=0;while(0);f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;a:do if((i|0)!=(j|0)){c=g+4|0;n=g+8|0;if(b[h+84>>0]|0){p=0;while(1){q=m+(p*12|0)|0;f[g>>2]=f[q>>2];f[g+4>>2]=f[q+4>>2];f[g+8>>2]=f[q+8>>2];f[o+(p*12|0)>>2]=f[g>>2];f[o+(p*12|0)+4>>2]=f[c>>2];f[o+(p*12|0)+8>>2]=f[n>>2];p=p+1|0;if(p>>>0>=k>>>0)break a}}p=f[h+68>>2]|0;q=0;do{r=f[p+(f[m+(q*12|0)>>2]<<2)>>2]|0;f[g>>2]=r;s=f[p+(f[m+(q*12|0)+4>>2]<<2)>>2]|0;f[c>>2]=s;t=f[p+(f[m+(q*12|0)+8>>2]<<2)>>2]|0;f[n>>2]=t;f[o+(q*12|0)>>2]=r;f[o+(q*12|0)+4>>2]=s;f[o+(q*12|0)+8>>2]=t;q=q+1|0}while(q>>>0>>0)}while(0);Kj(a,e);a=f[e>>2]|0;if(a|0){e=f[l>>2]|0;if((e|0)!=(a|0))f[l>>2]=e+(~(((e+-12-a|0)>>>0)/12|0)*12|0);Oq(a)}u=d;return}function $e(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;c=u;u=u+16|0;d=c;f[a>>2]=0;f[a+8>>2]=b;wn(a+12|0);vo(a+44|0);vo(a+64|0);vo(a+84|0);e=a+104|0;f[e>>2]=0;g=a+108|0;f[g>>2]=0;f[a+112>>2]=0;h=(b|0)==0;do if(!h)if(b>>>0>1073741823)aq(e);else{i=b<<2;j=ln(i)|0;f[e>>2]=j;k=j+(b<<2)|0;f[a+112>>2]=k;sj(j|0,0,i|0)|0;f[g>>2]=k;break}while(0);g=a+116|0;f[g>>2]=0;e=a+120|0;f[e>>2]=0;f[a+124>>2]=0;if(!h){k=b<<2;i=ln(k)|0;f[g>>2]=i;g=i+(b<<2)|0;f[a+124>>2]=g;sj(i|0,0,k|0)|0;f[e>>2]=g}g=a+128|0;f[g>>2]=0;e=a+132|0;f[e>>2]=0;f[a+136>>2]=0;if(!h){k=b<<2;i=ln(k)|0;f[g>>2]=i;g=i+(b<<2)|0;f[a+136>>2]=g;sj(i|0,0,k|0)|0;f[e>>2]=g}g=b<<5|1;f[d>>2]=0;e=d+4|0;f[e>>2]=0;f[d+8>>2]=0;if(!h){k=b<<2;i=ln(k)|0;f[d>>2]=i;j=i+(b<<2)|0;f[d+8>>2]=j;sj(i|0,0,k|0)|0;f[e>>2]=j}lk(a+140|0,g,d);j=f[d>>2]|0;if(j|0){k=f[e>>2]|0;if((k|0)!=(j|0))f[e>>2]=k+(~((k+-4-j|0)>>>2)<<2);Oq(j)}f[d>>2]=0;j=d+4|0;f[j>>2]=0;f[d+8>>2]=0;if(!h){h=b<<2;k=ln(h)|0;f[d>>2]=k;e=k+(b<<2)|0;f[d+8>>2]=e;sj(k|0,0,h|0)|0;f[j>>2]=e}lk(a+152|0,g,d);g=f[d>>2]|0;if(!g){u=c;return}d=f[j>>2]|0;if((d|0)!=(g|0))f[j>>2]=d+(~((d+-4-g|0)>>>2)<<2);Oq(g);u=c;return}function af(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;c=u;u=u+16|0;d=c;f[a>>2]=0;f[a+8>>2]=b;vo(a+12|0);vo(a+32|0);vo(a+52|0);vo(a+72|0);e=a+92|0;f[e>>2]=0;g=a+96|0;f[g>>2]=0;f[a+100>>2]=0;h=(b|0)==0;do if(!h)if(b>>>0>1073741823)aq(e);else{i=b<<2;j=ln(i)|0;f[e>>2]=j;k=j+(b<<2)|0;f[a+100>>2]=k;sj(j|0,0,i|0)|0;f[g>>2]=k;break}while(0);g=a+104|0;f[g>>2]=0;e=a+108|0;f[e>>2]=0;f[a+112>>2]=0;if(!h){k=b<<2;i=ln(k)|0;f[g>>2]=i;g=i+(b<<2)|0;f[a+112>>2]=g;sj(i|0,0,k|0)|0;f[e>>2]=g}g=a+116|0;f[g>>2]=0;e=a+120|0;f[e>>2]=0;f[a+124>>2]=0;if(!h){k=b<<2;i=ln(k)|0;f[g>>2]=i;g=i+(b<<2)|0;f[a+124>>2]=g;sj(i|0,0,k|0)|0;f[e>>2]=g}g=b<<5|1;f[d>>2]=0;e=d+4|0;f[e>>2]=0;f[d+8>>2]=0;if(!h){k=b<<2;i=ln(k)|0;f[d>>2]=i;j=i+(b<<2)|0;f[d+8>>2]=j;sj(i|0,0,k|0)|0;f[e>>2]=j}lk(a+128|0,g,d);j=f[d>>2]|0;if(j|0){k=f[e>>2]|0;if((k|0)!=(j|0))f[e>>2]=k+(~((k+-4-j|0)>>>2)<<2);Oq(j)}f[d>>2]=0;j=d+4|0;f[j>>2]=0;f[d+8>>2]=0;if(!h){h=b<<2;k=ln(h)|0;f[d>>2]=k;e=k+(b<<2)|0;f[d+8>>2]=e;sj(k|0,0,h|0)|0;f[j>>2]=e}lk(a+140|0,g,d);g=f[d>>2]|0;if(!g){u=c;return}d=f[j>>2]|0;if((d|0)!=(g|0))f[j>>2]=d+(~((d+-4-g|0)>>>2)<<2);Oq(g);u=c;return}function bf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0;d=ln(40)|0;e=d+16|0;pj(e,c);pj(d+28|0,c+12|0);c=a+4|0;g=f[c>>2]|0;do if(g){h=b[d+27>>0]|0;i=h<<24>>24<0;j=i?f[d+20>>2]|0:h&255;h=i?f[e>>2]|0:e;i=g;while(1){k=i+16|0;l=b[k+11>>0]|0;m=l<<24>>24<0;n=m?f[i+20>>2]|0:l&255;l=n>>>0>>0?n:j;if((l|0)!=0?(o=Vk(h,m?f[k>>2]|0:k,l)|0,(o|0)!=0):0)if((o|0)<0)p=7;else p=9;else if(j>>>0>>0)p=7;else p=9;if((p|0)==7){p=0;n=f[i>>2]|0;if(!n){p=8;break}else q=n}else if((p|0)==9){p=0;r=i+4|0;n=f[r>>2]|0;if(!n){p=11;break}else q=n}i=q}if((p|0)==8){s=i;t=i;break}else if((p|0)==11){s=i;t=r;break}}else{s=c;t=c}while(0);f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=s;f[t>>2]=d;s=f[f[a>>2]>>2]|0;if(!s){u=d;v=a+4|0;w=f[v>>2]|0;Oe(w,u);x=a+8|0;y=f[x>>2]|0;z=y+1|0;f[x>>2]=z;return d|0}f[a>>2]=s;u=f[t>>2]|0;v=a+4|0;w=f[v>>2]|0;Oe(w,u);x=a+8|0;y=f[x>>2]|0;z=y+1|0;f[x>>2]=z;return d|0}function cf(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3680;wi(a+200|0);b=f[a+184>>2]|0;if(b|0){c=a+188|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}kj(a+172|0);b=f[a+152>>2]|0;if(b|0){d=a+156|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+140>>2]|0;if(b|0)Oq(b);b=f[a+128>>2]|0;if(b|0){c=b;do{b=c;c=f[c>>2]|0;Oq(b)}while((c|0)!=0)}c=a+120|0;b=f[c>>2]|0;f[c>>2]=0;if(b|0)Oq(b);b=f[a+108>>2]|0;if(b|0){c=a+112|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~(((d+-12-b|0)>>>0)/12|0)*12|0);Oq(b)}b=f[a+96>>2]|0;if(b|0){d=a+100|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+84>>2]|0;if(b|0)Oq(b);b=f[a+72>>2]|0;if(b|0){c=a+76|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+52>>2]|0;if(b|0){d=a+56|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+40>>2]|0;if(b|0){c=a+44|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+28>>2]|0;if(b|0)Oq(b);b=f[a+16>>2]|0;if(b|0){d=a+20|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=a+12|0;a=f[b>>2]|0;f[b>>2]=0;if(!a)return;Ii(a);Oq(a);return}function df(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;b=a+140|0;c=f[b>>2]|0;if(c|0){d=a+144|0;e=f[d>>2]|0;if((e|0)==(c|0))g=c;else{h=e;while(1){e=h+-12|0;f[d>>2]=e;i=f[e>>2]|0;if(!i)j=e;else{e=h+-8|0;k=f[e>>2]|0;if((k|0)!=(i|0))f[e>>2]=k+(~((k+-4-i|0)>>>2)<<2);Oq(i);j=f[d>>2]|0}if((j|0)==(c|0))break;else h=j}g=f[b>>2]|0}Oq(g)}g=a+128|0;b=f[g>>2]|0;if(b|0){j=a+132|0;h=f[j>>2]|0;if((h|0)==(b|0))l=b;else{c=h;while(1){h=c+-12|0;f[j>>2]=h;d=f[h>>2]|0;if(!d)m=h;else{h=c+-8|0;i=f[h>>2]|0;if((i|0)!=(d|0))f[h>>2]=i+(~((i+-4-d|0)>>>2)<<2);Oq(d);m=f[j>>2]|0}if((m|0)==(b|0))break;else c=m}l=f[g>>2]|0}Oq(l)}l=f[a+116>>2]|0;if(l|0){g=a+120|0;m=f[g>>2]|0;if((m|0)!=(l|0))f[g>>2]=m+(~((m+-4-l|0)>>>2)<<2);Oq(l)}l=f[a+104>>2]|0;if(l|0){m=a+108|0;g=f[m>>2]|0;if((g|0)!=(l|0))f[m>>2]=g+(~((g+-4-l|0)>>>2)<<2);Oq(l)}l=f[a+92>>2]|0;if(!l){n=a+72|0;jl(n);o=a+52|0;jl(o);p=a+32|0;jl(p);q=a+12|0;jl(q);return}g=a+96|0;m=f[g>>2]|0;if((m|0)!=(l|0))f[g>>2]=m+(~((m+-4-l|0)>>>2)<<2);Oq(l);n=a+72|0;jl(n);o=a+52|0;jl(o);p=a+32|0;jl(p);q=a+12|0;jl(q);return}function ef(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;b=a+152|0;c=f[b>>2]|0;if(c|0){d=a+156|0;e=f[d>>2]|0;if((e|0)==(c|0))g=c;else{h=e;while(1){e=h+-12|0;f[d>>2]=e;i=f[e>>2]|0;if(!i)j=e;else{e=h+-8|0;k=f[e>>2]|0;if((k|0)!=(i|0))f[e>>2]=k+(~((k+-4-i|0)>>>2)<<2);Oq(i);j=f[d>>2]|0}if((j|0)==(c|0))break;else h=j}g=f[b>>2]|0}Oq(g)}g=a+140|0;b=f[g>>2]|0;if(b|0){j=a+144|0;h=f[j>>2]|0;if((h|0)==(b|0))l=b;else{c=h;while(1){h=c+-12|0;f[j>>2]=h;d=f[h>>2]|0;if(!d)m=h;else{h=c+-8|0;i=f[h>>2]|0;if((i|0)!=(d|0))f[h>>2]=i+(~((i+-4-d|0)>>>2)<<2);Oq(d);m=f[j>>2]|0}if((m|0)==(b|0))break;else c=m}l=f[g>>2]|0}Oq(l)}l=f[a+128>>2]|0;if(l|0){g=a+132|0;m=f[g>>2]|0;if((m|0)!=(l|0))f[g>>2]=m+(~((m+-4-l|0)>>>2)<<2);Oq(l)}l=f[a+116>>2]|0;if(l|0){m=a+120|0;g=f[m>>2]|0;if((g|0)!=(l|0))f[m>>2]=g+(~((g+-4-l|0)>>>2)<<2);Oq(l)}l=f[a+104>>2]|0;if(!l){n=a+84|0;jl(n);o=a+64|0;jl(o);p=a+44|0;jl(p);q=a+12|0;Fj(q);return}g=a+108|0;m=f[g>>2]|0;if((m|0)!=(l|0))f[g>>2]=m+(~((m+-4-l|0)>>>2)<<2);Oq(l);n=a+84|0;jl(n);o=a+64|0;jl(o);p=a+44|0;jl(p);q=a+12|0;Fj(q);return}function ff(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3480;uj(a+200|0);b=f[a+184>>2]|0;if(b|0){c=a+188|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}kj(a+172|0);b=f[a+152>>2]|0;if(b|0){d=a+156|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+140>>2]|0;if(b|0)Oq(b);b=f[a+128>>2]|0;if(b|0){c=b;do{b=c;c=f[c>>2]|0;Oq(b)}while((c|0)!=0)}c=a+120|0;b=f[c>>2]|0;f[c>>2]=0;if(b|0)Oq(b);b=f[a+108>>2]|0;if(b|0){c=a+112|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~(((d+-12-b|0)>>>0)/12|0)*12|0);Oq(b)}b=f[a+96>>2]|0;if(b|0){d=a+100|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+84>>2]|0;if(b|0)Oq(b);b=f[a+72>>2]|0;if(b|0){c=a+76|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+52>>2]|0;if(b|0){d=a+56|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+40>>2]|0;if(b|0){c=a+44|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+28>>2]|0;if(b|0)Oq(b);b=f[a+16>>2]|0;if(b|0){d=a+20|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=a+12|0;a=f[b>>2]|0;f[b>>2]=0;if(!a)return;Ii(a);Oq(a);return}function gf(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;e=u;u=u+144|0;g=e+136|0;h=e+104|0;i=e;j=ln(124)|0;k=f[c+8>>2]|0;f[j+4>>2]=0;f[j>>2]=3656;f[j+12>>2]=3636;f[j+100>>2]=0;f[j+104>>2]=0;f[j+108>>2]=0;l=j+16|0;m=l+80|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(m|0));f[j+112>>2]=k;f[j+116>>2]=d;n=j+120|0;f[n>>2]=0;o=j;f[h>>2]=3636;p=h+4|0;q=p+4|0;f[q>>2]=0;f[q+4>>2]=0;f[q+8>>2]=0;f[q+12>>2]=0;f[q+16>>2]=0;f[q+20>>2]=0;q=f[c+12>>2]|0;f[i+4>>2]=3636;f[i+92>>2]=0;f[i+96>>2]=0;f[i+100>>2]=0;l=i+8|0;m=l+80|0;do{f[l>>2]=0;l=l+4|0}while((l|0)<(m|0));l=q;f[p>>2]=l;m=((f[l+4>>2]|0)-(f[q>>2]|0)>>2>>>0)/3|0;b[g>>0]=0;qh(h+8|0,m,g);Va[f[(f[h>>2]|0)+8>>2]&127](h);f[i>>2]=f[p>>2];fg(i+4|0,h)|0;f[i+36>>2]=q;f[i+40>>2]=d;f[i+44>>2]=k;f[i+48>>2]=j;f[n>>2]=c+72;Sg(j,i);f[a>>2]=o;Qi(i);f[h>>2]=3636;i=f[h+20>>2]|0;if(i|0)Oq(i);i=f[h+8>>2]|0;if(!i){u=e;return}Oq(i);u=e;return}function hf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=u;u=u+48|0;d=c+44|0;e=c+40|0;g=c+36|0;h=c+32|0;i=c;f[h>>2]=f[a+60>>2];j=b+16|0;k=j;l=f[k+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0)){f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,h,h+4|0)|0}wn(i);tk(i);if((f[h>>2]|0)>0){k=a+56|0;l=1;m=0;do{n=l;l=(f[(f[k>>2]|0)+(m>>>5<<2)>>2]&1<<(m&31)|0)!=0;fj(i,n^l^1);m=m+1|0}while((m|0)<(f[h>>2]|0))}ld(i,b);f[g>>2]=f[a+12>>2];h=j;m=f[h>>2]|0;l=f[h+4>>2]|0;if((l|0)>0|(l|0)==0&m>>>0>0){o=l;p=m}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;m=j;o=f[m+4>>2]|0;p=f[m>>2]|0}f[g>>2]=f[a+20>>2];if((o|0)>0|(o|0)==0&p>>>0>0){Fj(i);u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;Fj(i);u=c;return 1}function jf(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;g=u;u=u+16|0;h=g;if((f[c+56>>2]|0)==-1){i=-1;u=g;return i|0}j=ln(96)|0;tl(j,c);f[h>>2]=j;j=vh(a,h)|0;c=f[h>>2]|0;f[h>>2]=0;if(c|0){h=c+88|0;k=f[h>>2]|0;f[h>>2]=0;if(k|0){h=f[k+8>>2]|0;if(h|0){l=k+12|0;if((f[l>>2]|0)!=(h|0))f[l>>2]=h;Oq(h)}Oq(k)}k=f[c+68>>2]|0;if(k|0){h=c+72|0;l=f[h>>2]|0;if((l|0)!=(k|0))f[h>>2]=l+(~((l+-4-k|0)>>>2)<<2);Oq(k)}k=c+64|0;l=f[k>>2]|0;f[k>>2]=0;if(l|0){k=f[l>>2]|0;if(k|0){h=l+4|0;if((f[h>>2]|0)!=(k|0))f[h>>2]=k;Oq(k)}Oq(l)}Oq(c)}c=a+8|0;l=(f[c>>2]|0)+(j<<2)|0;k=f[l>>2]|0;do if(!d){h=f[a+80>>2]|0;b[k+84>>0]=0;m=k+68|0;n=k+72|0;o=f[n>>2]|0;p=f[m>>2]|0;q=o-p>>2;r=o;if(h>>>0>q>>>0){Ch(m,h-q|0,6220);break}if(h>>>0>>0?(q=p+(h<<2)|0,(q|0)!=(r|0)):0)f[n>>2]=r+(~((r+-4-q|0)>>>2)<<2)}else{b[k+84>>0]=1;q=f[k+68>>2]|0;r=k+72|0;n=f[r>>2]|0;if((n|0)==(q|0))s=k;else{f[r>>2]=n+(~((n+-4-q|0)>>>2)<<2);s=f[l>>2]|0}f[s+80>>2]=f[a+80>>2]}while(0);if(!e){i=j;u=g;return i|0}Bj(f[(f[c>>2]|0)+(j<<2)>>2]|0,e)|0;i=j;u=g;return i|0}function kf(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0;d=u;u=u+32|0;h=d+24|0;i=d+16|0;j=d;k=d+8|0;f[a+52>>2]=e;f[a+44>>2]=g;g=Lq(e>>>0>1073741823?-1:e<<2)|0;l=a+48|0;m=f[l>>2]|0;f[l>>2]=g;if(m|0)Mq(m);m=a+36|0;g=f[m>>2]|0;n=f[g+4>>2]|0;o=f[g>>2]|0;p=n-o|0;if((p|0)<=0){u=d;return 1}q=(p>>>2)+-1|0;p=a+8|0;r=i+4|0;s=j+4|0;t=h+4|0;if(n-o>>2>>>0>q>>>0){v=q;w=o}else{x=g;aq(x)}while(1){f[k>>2]=f[w+(v<<2)>>2];f[h>>2]=f[k>>2];Bc(a,h,b,v);g=X(v,e)|0;o=b+(g<<2)|0;q=f[l>>2]|0;n=c+(g<<2)|0;g=f[o+4>>2]|0;y=f[q>>2]|0;z=f[q+4>>2]|0;f[i>>2]=f[o>>2];f[r>>2]=g;f[j>>2]=y;f[s>>2]=z;Od(h,p,i,j);f[n>>2]=f[h>>2];f[n+4>>2]=f[t>>2];v=v+-1|0;if((v|0)<=-1){A=5;break}n=f[m>>2]|0;w=f[n>>2]|0;if((f[n+4>>2]|0)-w>>2>>>0<=v>>>0){x=n;A=6;break}}if((A|0)==5){u=d;return 1}else if((A|0)==6)aq(x);return 0}function lf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;d=f[c>>2]|0;c=f[d>>2]|0;e=f[a+4>>2]|0;g=f[d+4>>2]|0;h=e+-1|0;i=(h&e|0)==0;if(!i)if(g>>>0>>0)j=g;else j=(g>>>0)%(e>>>0)|0;else j=h&g;g=(f[a>>2]|0)+(j<<2)|0;k=f[g>>2]|0;while(1){l=f[k>>2]|0;if((l|0)==(d|0))break;else k=l}if((k|0)!=(a+8|0)){l=f[k+4>>2]|0;if(!i)if(l>>>0>>0)m=l;else m=(l>>>0)%(e>>>0)|0;else m=l&h;if((m|0)==(j|0)){n=c;o=21}else o=13}else o=13;do if((o|0)==13){if(c|0){m=f[c+4>>2]|0;if(!i)if(m>>>0>>0)p=m;else p=(m>>>0)%(e>>>0)|0;else p=m&h;if((p|0)==(j|0)){q=c;r=c;o=22;break}}f[g>>2]=0;n=f[d>>2]|0;o=21}while(0);if((o|0)==21){g=n;if(!n)s=g;else{q=n;r=g;o=22}}if((o|0)==22){o=f[q+4>>2]|0;if(!i)if(o>>>0>>0)t=o;else t=(o>>>0)%(e>>>0)|0;else t=o&h;if((t|0)==(j|0))s=r;else{f[(f[a>>2]|0)+(t<<2)>>2]=k;s=f[d>>2]|0}}f[k>>2]=s;f[d>>2]=0;s=a+12|0;f[s>>2]=(f[s>>2]|0)+-1;if(!d)return c|0;s=d+8|0;a=f[d+20>>2]|0;if(a|0){k=d+24|0;if((f[k>>2]|0)!=(a|0))f[k>>2]=a;Oq(a)}if((b[s+11>>0]|0)<0)Oq(f[s>>2]|0);Oq(d);return c|0}function mf(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0;b=u;u=u+16|0;c=b+4|0;d=b;f[c>>2]=0;e=c+4|0;f[e>>2]=0;f[c+8>>2]=0;g=a+52|0;h=f[g>>2]|0;i=(f[h+100>>2]|0)-(f[h+96>>2]|0)|0;j=(i|0)/12|0;if(!i){k=0;l=0}else{i=c+8|0;m=0;n=0;o=h;h=0;p=0;while(1){q=f[o+96>>2]|0;r=f[q+(n*12|0)>>2]|0;s=r-m|0;t=((s|0)>-1?s:0-s|0)<<1|s>>>31;f[d>>2]=t;if((h|0)==(p|0)){Ri(c,d);v=f[e>>2]|0;w=f[i>>2]|0}else{f[h>>2]=t;t=h+4|0;f[e>>2]=t;v=t;w=p}t=f[q+(n*12|0)+4>>2]|0;s=t-r|0;r=((s|0)>-1?s:0-s|0)<<1|s>>>31;f[d>>2]=r;if((v|0)==(w|0)){Ri(c,d);x=f[e>>2]|0;y=f[i>>2]|0}else{f[v>>2]=r;r=v+4|0;f[e>>2]=r;x=r;y=w}r=f[q+(n*12|0)+8>>2]|0;q=r-t|0;t=((q|0)>-1?q:0-q|0)<<1|q>>>31;f[d>>2]=t;if((x|0)==(y|0))Ri(c,d);else{f[x>>2]=t;f[e>>2]=x+4}t=n+1|0;if(t>>>0>=j>>>0)break;m=r;n=t;o=f[g>>2]|0;h=f[e>>2]|0;p=f[i>>2]|0}k=f[c>>2]|0;l=f[e>>2]|0}Mc(k,l-k>>2,1,0,f[a+44>>2]|0)|0;a=f[c>>2]|0;if(!a){u=b;return 1}c=f[e>>2]|0;if((c|0)!=(a|0))f[e>>2]=c+(~((c+-4-a|0)>>>2)<<2);Oq(a);u=b;return 1}function nf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=u;u=u+48|0;d=c+44|0;e=c+40|0;g=c+36|0;h=c+32|0;i=c;f[h>>2]=f[a+80>>2];j=b+16|0;k=j;l=f[k+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0)){f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,h,h+4|0)|0}wn(i);tk(i);if((f[h>>2]|0)>0){k=a+76|0;l=1;m=0;do{n=l;l=(f[(f[k>>2]|0)+(m>>>5<<2)>>2]&1<<(m&31)|0)!=0;fj(i,n^l^1);m=m+1|0}while((m|0)<(f[h>>2]|0))}ld(i,b);f[g>>2]=f[a+12>>2];h=j;m=f[h>>2]|0;l=f[h+4>>2]|0;if((l|0)>0|(l|0)==0&m>>>0>0){o=l;p=m}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;m=j;o=f[m+4>>2]|0;p=f[m>>2]|0}f[g>>2]=f[a+16>>2];if((o|0)>0|(o|0)==0&p>>>0>0){Fj(i);u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;Fj(i);u=c;return 1}function of(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;c=u;u=u+16|0;d=c+12|0;e=c+8|0;g=c+4|0;h=c;if(!b){i=ln(76)|0;j=ln(12)|0;k=f[(f[a+4>>2]|0)+80>>2]|0;f[j+4>>2]=0;f[j>>2]=3908;f[j+8>>2]=k;f[h>>2]=j;rl(i,h,0);j=i;f[g>>2]=j;i=a+12|0;k=f[i>>2]|0;if(k>>>0<(f[a+16>>2]|0)>>>0){f[g>>2]=0;f[k>>2]=j;f[i>>2]=k+4;l=g}else{Qg(a+8|0,g);l=g}g=f[l>>2]|0;f[l>>2]=0;if(g|0)Va[f[(f[g>>2]|0)+4>>2]&127](g);g=f[h>>2]|0;f[h>>2]=0;if(!g){u=c;return 1}Va[f[(f[g>>2]|0)+4>>2]&127](g);u=c;return 1}g=f[f[a+8>>2]>>2]|0;f[d>>2]=b;a=g+4|0;h=g+8|0;l=f[h>>2]|0;if((l|0)==(f[g+12>>2]|0))Ri(a,d);else{f[l>>2]=b;f[h>>2]=l+4}l=f[d>>2]|0;b=g+16|0;k=g+20|0;g=f[k>>2]|0;i=f[b>>2]|0;j=g-i>>2;m=i;if((l|0)<(j|0)){n=m;o=l}else{i=l+1|0;f[e>>2]=-1;p=g;if(i>>>0<=j>>>0)if(i>>>0>>0?(g=m+(i<<2)|0,(g|0)!=(p|0)):0){f[k>>2]=p+(~((p+-4-g|0)>>>2)<<2);q=l;r=m}else{q=l;r=m}else{Ch(b,i-j|0,e);q=f[d>>2]|0;r=f[b>>2]|0}n=r;o=q}f[n+(o<<2)>>2]=((f[h>>2]|0)-(f[a>>2]|0)>>2)+-1;u=c;return 1}function pf(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0;d=u;u=u+32|0;h=d+24|0;i=d+16|0;j=d;k=d+8|0;f[a+52>>2]=e;f[a+44>>2]=g;g=Lq(e>>>0>1073741823?-1:e<<2)|0;l=a+48|0;m=f[l>>2]|0;f[l>>2]=g;if(m|0)Mq(m);m=a+36|0;g=f[m>>2]|0;n=f[g+4>>2]|0;o=f[g>>2]|0;p=n-o|0;if((p|0)<=0){u=d;return 1}q=(p>>>2)+-1|0;p=a+8|0;r=i+4|0;s=j+4|0;t=h+4|0;if(n-o>>2>>>0>q>>>0){v=q;w=o}else{x=g;aq(x)}while(1){f[k>>2]=f[w+(v<<2)>>2];f[h>>2]=f[k>>2];Ac(a,h,b,v);g=X(v,e)|0;o=b+(g<<2)|0;q=f[l>>2]|0;n=c+(g<<2)|0;g=f[o+4>>2]|0;y=f[q>>2]|0;z=f[q+4>>2]|0;f[i>>2]=f[o>>2];f[r>>2]=g;f[j>>2]=y;f[s>>2]=z;Od(h,p,i,j);f[n>>2]=f[h>>2];f[n+4>>2]=f[t>>2];v=v+-1|0;if((v|0)<=-1){A=5;break}n=f[m>>2]|0;w=f[n>>2]|0;if((f[n+4>>2]|0)-w>>2>>>0<=v>>>0){x=n;A=6;break}}if((A|0)==5){u=d;return 1}else if((A|0)==6)aq(x);return 0}function qf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0;d=a+8|0;e=f[d>>2]|0;g=f[a>>2]|0;h=g;do if(e-g>>3>>>0>=b>>>0){i=a+4|0;j=f[i>>2]|0;k=j-g>>3;l=k>>>0>>0;m=l?k:b;n=j;if(m|0){j=m;m=h;while(1){o=c;p=f[o+4>>2]|0;q=m;f[q>>2]=f[o>>2];f[q+4>>2]=p;j=j+-1|0;if(!j)break;else m=m+8|0}}if(!l){m=h+(b<<3)|0;if((m|0)==(n|0))return;else{r=i;s=n+(~((n+-8-m|0)>>>3)<<3)|0;break}}else{m=b-k|0;j=m;p=n;while(1){q=c;o=f[q+4>>2]|0;t=p;f[t>>2]=f[q>>2];f[t+4>>2]=o;j=j+-1|0;if(!j)break;else p=p+8|0}r=i;s=n+(m<<3)|0;break}}else{p=g;if(!g)u=e;else{j=a+4|0;k=f[j>>2]|0;if((k|0)!=(h|0))f[j>>2]=k+(~((k+-8-g|0)>>>3)<<3);Oq(p);f[d>>2]=0;f[j>>2]=0;f[a>>2]=0;u=0}if(b>>>0>536870911)aq(a);j=u>>2;p=u>>3>>>0<268435455?(j>>>0>>0?b:j):536870911;if(p>>>0>536870911)aq(a);j=ln(p<<3)|0;k=a+4|0;f[k>>2]=j;f[a>>2]=j;f[d>>2]=j+(p<<3);p=b;l=j;while(1){o=c;t=f[o+4>>2]|0;q=l;f[q>>2]=f[o>>2];f[q+4>>2]=t;p=p+-1|0;if(!p)break;else l=l+8|0}r=k;s=j+(b<<3)|0}while(0);f[r>>2]=s;return}function rf(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0.0,g=0.0,h=0.0,i=0.0,j=0.0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0;e=+$(n[b>>2]);g=+K(+e);h=+$(n[b+4>>2]);i=g+ +K(+h);g=+$(n[b+8>>2]);j=i+ +K(+g);b=j>1.0e-06;i=1.0/j;k=f[a+12>>2]|0;j=+(k|0);l=~~+J(+((b?i*e:1.0)*j+.5));m=~~+J(+((b?i*h:0.0)*j+.5));o=(l|0)>-1;p=k-(o?l:0-l|0)-((m|0)>-1?m:0-m|0)|0;l=(p|0)<0;q=(l?((m|0)>0?p:0-p|0):0)+m|0;m=l?0:p;p=(b?i*g:0.0)<0.0?0-m|0:m;do if(!o){if((q|0)<0)r=(p|0)>-1?p:0-p|0;else r=(f[a+8>>2]|0)-((p|0)>-1?p:0-p|0)|0;if((p|0)<0){s=(q|0)>-1?q:0-q|0;t=r;break}else{s=(f[a+8>>2]|0)-((q|0)>-1?q:0-q|0)|0;t=r;break}}else{s=k+p|0;t=k+q|0}while(0);q=(t|0)==0;p=(s|0)==0;r=f[a+8>>2]|0;if(!(s|t)){u=r;v=r;f[c>>2]=u;f[d>>2]=v;return}a=(r|0)==(s|0);if(q&a){u=s;v=s;f[c>>2]=u;f[d>>2]=v;return}o=(r|0)==(t|0);if(p&o){u=t;v=t;f[c>>2]=u;f[d>>2]=v;return}if(q&(k|0)<(s|0)){u=0;v=(k<<1)-s|0;f[c>>2]=u;f[d>>2]=v;return}if(o&(k|0)>(s|0)){u=t;v=(k<<1)-s|0;f[c>>2]=u;f[d>>2]=v;return}if(a&(k|0)>(t|0)){u=(k<<1)-t|0;v=s;f[c>>2]=u;f[d>>2]=v;return}if(!p){u=t;v=s;f[c>>2]=u;f[d>>2]=v;return}u=(k|0)<(t|0)?(k<<1)-t|0:t;v=0;f[c>>2]=u;f[d>>2]=v;return}function sf(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=u;u=u+32|0;h=g+12|0;i=g;f[a>>2]=f[d>>2];d=a+4|0;f[d>>2]=(f[c>>2]|0)-(f[b>>2]|0);j=e+16|0;k=j;l=f[k+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0)?(k=e+4|0,f[i>>2]=f[k>>2],f[h>>2]=f[i>>2],Me(e,h,a,a+4|0)|0,l=j,j=f[l+4>>2]|0,!((j|0)>0|(j|0)==0&(f[l>>2]|0)>>>0>0)):0){f[i>>2]=f[k>>2];f[h>>2]=f[i>>2];Me(e,h,d,d+4|0)|0;m=i}else m=i;if(!(f[d>>2]|0)){u=g;return 1}d=a+12|0;Gg(d);m=a+1068|0;Mm(m);k=a+1088|0;Mm(k);l=a+1108|0;Mm(l);f[i>>2]=f[b>>2];f[i+4>>2]=f[b+4>>2];f[i+8>>2]=f[b+8>>2];f[h>>2]=f[c>>2];f[h+4>>2]=f[c+4>>2];f[h+8>>2]=f[c+8>>2];ib(a,i,h);Ye(d,e);Bg(m,e);Bg(k,e);Bg(l,e);u=g;return 1}function tf(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=u;u=u+32|0;h=g+12|0;i=g;f[a>>2]=f[d>>2];d=a+4|0;f[d>>2]=(f[c>>2]|0)-(f[b>>2]|0);j=e+16|0;k=j;l=f[k+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0)?(k=e+4|0,f[i>>2]=f[k>>2],f[h>>2]=f[i>>2],Me(e,h,a,a+4|0)|0,l=j,j=f[l+4>>2]|0,!((j|0)>0|(j|0)==0&(f[l>>2]|0)>>>0>0)):0){f[i>>2]=f[k>>2];f[h>>2]=f[i>>2];Me(e,h,d,d+4|0)|0;m=i}else m=i;if(!(f[d>>2]|0)){u=g;return 1}d=a+12|0;Gg(d);m=a+1068|0;Mm(m);k=a+1088|0;Mm(k);l=a+1108|0;Mm(l);f[i>>2]=f[b>>2];f[i+4>>2]=f[b+4>>2];f[i+8>>2]=f[b+8>>2];f[h>>2]=f[c>>2];f[h+4>>2]=f[c+4>>2];f[h+8>>2]=f[c+8>>2];kb(a,i,h);Ye(d,e);Bg(m,e);Bg(k,e);Bg(l,e);u=g;return 1}function uf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0;c=u;u=u+32|0;d=c;e=a+8|0;g=f[e>>2]|0;h=a+4|0;i=f[h>>2]|0;j=i;if(g-i>>2>>>0>=b>>>0){sj(i|0,0,b<<2|0)|0;f[h>>2]=i+(b<<2);u=c;return}k=f[a>>2]|0;l=i-k>>2;m=l+b|0;n=k;if(m>>>0>1073741823)aq(a);o=g-k|0;p=o>>1;q=o>>2>>>0<536870911?(p>>>0>>0?m:p):1073741823;f[d+12>>2]=0;f[d+16>>2]=a+8;do if(q)if(q>>>0>1073741823){p=ra(8)|0;Oo(p,16035);f[p>>2]=7256;va(p|0,1112,110)}else{r=ln(q<<2)|0;break}else r=0;while(0);f[d>>2]=r;p=r+(l<<2)|0;l=d+8|0;m=d+4|0;f[m>>2]=p;o=r+(q<<2)|0;q=d+12|0;f[q>>2]=o;r=p+(b<<2)|0;sj(p|0,0,b<<2|0)|0;f[l>>2]=r;if((j|0)==(n|0)){s=p;t=q;v=l;w=k;x=r;y=i;z=o;A=g}else{g=j;j=p;do{g=g+-4|0;p=f[g>>2]|0;f[g>>2]=0;f[j+-4>>2]=p;j=(f[m>>2]|0)+-4|0;f[m>>2]=j}while((g|0)!=(n|0));s=j;t=q;v=l;w=f[a>>2]|0;x=f[l>>2]|0;y=f[h>>2]|0;z=f[q>>2]|0;A=f[e>>2]|0}f[a>>2]=s;f[m>>2]=w;f[h>>2]=x;f[v>>2]=y;f[e>>2]=z;f[t>>2]=A;f[d>>2]=w;ki(d);u=c;return}function vf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0;d=f[a+8>>2]|0;e=a+76|0;g=f[e>>2]|0;h=f[g+80>>2]|0;b[c+84>>0]=0;i=c+68|0;j=c+72|0;k=f[j>>2]|0;l=f[i>>2]|0;m=k-l>>2;n=l;l=k;if(h>>>0<=m>>>0)if(h>>>0>>0?(k=n+(h<<2)|0,(k|0)!=(l|0)):0){f[j>>2]=l+(~((l+-4-k|0)>>>2)<<2);o=g;p=h}else{o=g;p=h}else{Ch(i,h-m|0,3600);m=f[e>>2]|0;o=m;p=f[m+80>>2]|0}m=(f[o+100>>2]|0)-(f[o+96>>2]|0)|0;e=(m|0)/12|0;if(!m){q=1;return q|0}m=a+80|0;a=c+68|0;c=f[o+96>>2]|0;o=0;while(1){h=o*3|0;if((h|0)==-1)r=-1;else r=f[(f[d>>2]|0)+(h<<2)>>2]|0;i=f[(f[m>>2]|0)+12>>2]|0;g=f[i+(r<<2)>>2]|0;if(g>>>0>=p>>>0){q=0;s=12;break}k=f[a>>2]|0;f[k+(f[c+(o*12|0)>>2]<<2)>>2]=g;g=h+1|0;if((g|0)==-1)t=-1;else t=f[(f[d>>2]|0)+(g<<2)>>2]|0;g=f[i+(t<<2)>>2]|0;if(g>>>0>=p>>>0){q=0;s=12;break}f[k+(f[c+(o*12|0)+4>>2]<<2)>>2]=g;g=h+2|0;if((g|0)==-1)u=-1;else u=f[(f[d>>2]|0)+(g<<2)>>2]|0;g=f[i+(u<<2)>>2]|0;if(g>>>0>=p>>>0){q=0;s=12;break}f[k+(f[c+(o*12|0)+8>>2]<<2)>>2]=g;o=o+1|0;if(o>>>0>=e>>>0){q=1;s=12;break}}if((s|0)==12)return q|0;return 0}function wf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0;d=f[a+8>>2]|0;e=a+112|0;g=f[e>>2]|0;h=f[g+80>>2]|0;b[c+84>>0]=0;i=c+68|0;j=c+72|0;k=f[j>>2]|0;l=f[i>>2]|0;m=k-l>>2;n=l;l=k;if(h>>>0<=m>>>0)if(h>>>0>>0?(k=n+(h<<2)|0,(k|0)!=(l|0)):0){f[j>>2]=l+(~((l+-4-k|0)>>>2)<<2);o=g;p=h}else{o=g;p=h}else{Ch(i,h-m|0,3600);m=f[e>>2]|0;o=m;p=f[m+80>>2]|0}m=(f[o+100>>2]|0)-(f[o+96>>2]|0)|0;e=(m|0)/12|0;if(!m){q=1;return q|0}m=a+116|0;a=c+68|0;c=f[o+96>>2]|0;o=0;while(1){h=o*3|0;if((h|0)==-1)r=-1;else r=f[(f[d>>2]|0)+(h<<2)>>2]|0;i=f[(f[m>>2]|0)+12>>2]|0;g=f[i+(r<<2)>>2]|0;if(g>>>0>=p>>>0){q=0;s=12;break}k=f[a>>2]|0;f[k+(f[c+(o*12|0)>>2]<<2)>>2]=g;g=h+1|0;if((g|0)==-1)t=-1;else t=f[(f[d>>2]|0)+(g<<2)>>2]|0;g=f[i+(t<<2)>>2]|0;if(g>>>0>=p>>>0){q=0;s=12;break}f[k+(f[c+(o*12|0)+4>>2]<<2)>>2]=g;g=h+2|0;if((g|0)==-1)u=-1;else u=f[(f[d>>2]|0)+(g<<2)>>2]|0;g=f[i+(u<<2)>>2]|0;if(g>>>0>=p>>>0){q=0;s=12;break}f[k+(f[c+(o*12|0)+8>>2]<<2)>>2]=g;o=o+1|0;if(o>>>0>=e>>>0){q=1;s=12;break}}if((s|0)==12)return q|0;return 0}function xf(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;d=u;u=u+16|0;h=d;i=f[a+124>>2]|0;if(!i){u=d;return}j=i+-1|0;k=(j&i|0)==0;if(!k)if(i>>>0>g>>>0)l=g;else l=(g>>>0)%(i>>>0)|0;else l=j&g;m=f[(f[a+120>>2]|0)+(l<<2)>>2]|0;if(!m){u=d;return}n=f[m>>2]|0;if(!n){u=d;return}a:do if(k){m=n;while(1){o=f[m+4>>2]|0;p=(o|0)==(g|0);if(!(p|(o&j|0)==(l|0))){q=24;break}if(p?(f[m+8>>2]|0)==(g|0):0){r=m;break a}m=f[m>>2]|0;if(!m){q=24;break}}if((q|0)==24){u=d;return}}else{m=n;while(1){p=f[m+4>>2]|0;if((p|0)==(g|0)){if((f[m+8>>2]|0)==(g|0)){r=m;break a}}else{if(p>>>0>>0)s=p;else s=(p>>>0)%(i>>>0)|0;if((s|0)!=(l|0)){q=24;break}}m=f[m>>2]|0;if(!m){q=24;break}}if((q|0)==24){u=d;return}}while(0);q=f[r+12>>2]|0;if((q|0)==-1){u=d;return}f[h>>2]=q;f[h+4>>2]=c;b[h+8>>0]=e&1;e=a+112|0;c=f[e>>2]|0;if((c|0)==(f[a+116>>2]|0))yi(a+108|0,h);else{f[c>>2]=f[h>>2];f[c+4>>2]=f[h+4>>2];f[c+8>>2]=f[h+8>>2];f[e>>2]=(f[e>>2]|0)+12}u=d;return}function yf(a,b){a=a|0;b=b|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;c=d[b>>1]|0;e=d[b+2>>1]|0;g=d[b+4>>1]|0;h=d[b+6>>1]|0;b=((((c^318)&65535)+239^e&65535)+239^g&65535)+239^h&65535;i=f[a+4>>2]|0;if(!i){j=0;return j|0}k=i+-1|0;l=(k&i|0)==0;if(!l)if(b>>>0>>0)m=b;else m=(b>>>0)%(i>>>0)|0;else m=b&k;n=f[(f[a>>2]|0)+(m<<2)>>2]|0;if(!n){j=0;return j|0}a=f[n>>2]|0;if(!a){j=0;return j|0}if(l){l=a;while(1){n=f[l+4>>2]|0;o=(n|0)==(b|0);if(!(o|(n&k|0)==(m|0))){j=0;p=25;break}if((((o?(o=l+8|0,(d[o>>1]|0)==c<<16>>16):0)?(d[o+2>>1]|0)==e<<16>>16:0)?(d[l+12>>1]|0)==g<<16>>16:0)?(d[o+6>>1]|0)==h<<16>>16:0){j=l;p=25;break}l=f[l>>2]|0;if(!l){j=0;p=25;break}}if((p|0)==25)return j|0}else q=a;while(1){a=f[q+4>>2]|0;if((a|0)==(b|0)){l=q+8|0;if((((d[l>>1]|0)==c<<16>>16?(d[l+2>>1]|0)==e<<16>>16:0)?(d[q+12>>1]|0)==g<<16>>16:0)?(d[l+6>>1]|0)==h<<16>>16:0){j=q;p=25;break}}else{if(a>>>0>>0)r=a;else r=(a>>>0)%(i>>>0)|0;if((r|0)!=(m|0)){j=0;p=25;break}}q=f[q>>2]|0;if(!q){j=0;p=25;break}}if((p|0)==25)return j|0;return 0}function zf(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=u;u=u+32|0;h=g+12|0;i=g;f[a>>2]=f[d>>2];d=a+4|0;f[d>>2]=(f[c>>2]|0)-(f[b>>2]|0);j=e+16|0;k=j;l=f[k+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0)?(k=e+4|0,f[i>>2]=f[k>>2],f[h>>2]=f[i>>2],Me(e,h,a,a+4|0)|0,l=j,j=f[l+4>>2]|0,!((j|0)>0|(j|0)==0&(f[l>>2]|0)>>>0>0)):0){f[i>>2]=f[k>>2];f[h>>2]=f[i>>2];Me(e,h,d,d+4|0)|0;m=i}else m=i;if(!(f[d>>2]|0)){u=g;return 1}d=a+12|0;Mm(d);m=a+32|0;Mm(m);k=a+52|0;Mm(k);l=a+72|0;Mm(l);f[i>>2]=f[b>>2];f[i+4>>2]=f[b+4>>2];f[i+8>>2]=f[b+8>>2];f[h>>2]=f[c>>2];f[h+4>>2]=f[c+4>>2];f[h+8>>2]=f[c+8>>2];hb(a,i,h);Bg(d,e);Bg(m,e);Bg(k,e);Bg(l,e);u=g;return 1}function Af(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=u;u=u+32|0;h=g+12|0;i=g;f[a>>2]=f[d>>2];d=a+4|0;f[d>>2]=(f[c>>2]|0)-(f[b>>2]|0);j=e+16|0;k=j;l=f[k+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0)?(k=e+4|0,f[i>>2]=f[k>>2],f[h>>2]=f[i>>2],Me(e,h,a,a+4|0)|0,l=j,j=f[l+4>>2]|0,!((j|0)>0|(j|0)==0&(f[l>>2]|0)>>>0>0)):0){f[i>>2]=f[k>>2];f[h>>2]=f[i>>2];Me(e,h,d,d+4|0)|0;m=i}else m=i;if(!(f[d>>2]|0)){u=g;return 1}d=a+12|0;tk(d);m=a+44|0;Mm(m);k=a+64|0;Mm(k);l=a+84|0;Mm(l);f[i>>2]=f[b>>2];f[i+4>>2]=f[b+4>>2];f[i+8>>2]=f[b+8>>2];f[h>>2]=f[c>>2];f[h+4>>2]=f[c+4>>2];f[h+8>>2]=f[c+8>>2];lb(a,i,h);ld(d,e);Bg(m,e);Bg(k,e);Bg(l,e);u=g;return 1}function Bf(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0;a=u;u=u+16|0;e=a+4|0;g=a;h=a+8|0;i=d+11|0;j=b[i>>0]|0;k=j<<24>>24<0;if(k){l=f[d+4>>2]|0;if(l>>>0>255){m=0;u=a;return m|0}else n=l}else n=j&255;if(!n){b[h>>0]=0;n=c+16|0;l=f[n+4>>2]|0;if(!((l|0)>0|(l|0)==0&(f[n>>2]|0)>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];Me(c,e,h,h+1|0)|0}m=1;u=a;return m|0}n=d+4|0;l=f[n>>2]|0;b[h>>0]=k?l:j&255;k=c+16|0;o=k;p=f[o>>2]|0;q=f[o+4>>2]|0;if((q|0)>0|(q|0)==0&p>>>0>0){r=j;s=q;t=p;v=l}else{f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];Me(c,e,h,h+1|0)|0;h=k;r=b[i>>0]|0;s=f[h+4>>2]|0;t=f[h>>2]|0;v=f[n>>2]|0}n=r<<24>>24<0;h=n?f[d>>2]|0:d;if(!((s|0)>0|(s|0)==0&t>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];Me(c,e,h,h+(n?v:r&255)|0)|0}m=1;u=a;return m|0}function Cf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=a+4|0;d=f[a>>2]|0;e=((f[c>>2]|0)-d|0)/24|0;g=e+1|0;if(g>>>0>178956970)aq(a);h=a+8|0;i=((f[h>>2]|0)-d|0)/24|0;d=i<<1;j=i>>>0<89478485?(d>>>0>>0?g:d):178956970;do if(j)if(j>>>0>178956970){d=ra(8)|0;Oo(d,16035);f[d>>2]=7256;va(d|0,1112,110)}else{k=ln(j*24|0)|0;break}else k=0;while(0);d=k+(e*24|0)|0;g=d;i=k+(j*24|0)|0;f[d>>2]=1196;f[k+(e*24|0)+4>>2]=f[b+4>>2];fk(k+(e*24|0)+8|0,b+8|0);f[k+(e*24|0)+20>>2]=f[b+20>>2];b=d+24|0;e=f[a>>2]|0;k=f[c>>2]|0;if((k|0)==(e|0)){l=g;m=e;n=e}else{j=k;k=g;g=d;do{f[g+-24>>2]=1196;f[g+-20>>2]=f[j+-20>>2];d=g+-16|0;o=j+-16|0;f[d>>2]=0;p=g+-12|0;f[p>>2]=0;f[g+-8>>2]=0;f[d>>2]=f[o>>2];d=j+-12|0;f[p>>2]=f[d>>2];p=j+-8|0;f[g+-8>>2]=f[p>>2];f[p>>2]=0;f[d>>2]=0;f[o>>2]=0;f[g+-4>>2]=f[j+-4>>2];j=j+-24|0;g=k+-24|0;k=g}while((j|0)!=(e|0));l=k;m=f[a>>2]|0;n=f[c>>2]|0}f[a>>2]=l;f[c>>2]=b;f[h>>2]=i;i=m;if((n|0)!=(i|0)){h=n;do{h=h+-24|0;Va[f[f[h>>2]>>2]&127](h)}while((h|0)!=(i|0))}if(!m)return;Oq(m);return}function Df(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=u;u=u+32|0;d=c+24|0;e=c+16|0;g=c+8|0;h=c;f[a>>2]=3588;f[a+4>>2]=f[b+4>>2];i=a+8|0;j=b+8|0;f[i>>2]=0;k=a+12|0;f[k>>2]=0;l=a+16|0;f[l>>2]=0;m=b+12|0;n=f[m>>2]|0;do if(n|0)if((n|0)<0)aq(i);else{o=((n+-1|0)>>>5)+1|0;p=ln(o<<2)|0;f[i>>2]=p;f[k>>2]=0;f[l>>2]=o;o=f[j>>2]|0;f[g>>2]=o;f[g+4>>2]=0;p=f[m>>2]|0;f[h>>2]=o+(p>>>5<<2);f[h+4>>2]=p&31;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[d>>2]=f[h>>2];f[d+4>>2]=f[h+4>>2];Tf(i,e,d);break}while(0);i=a+20|0;f[i>>2]=0;m=a+24|0;f[m>>2]=0;j=a+28|0;f[j>>2]=0;a=b+24|0;l=f[a>>2]|0;if(!l){u=c;return}if((l|0)<0)aq(i);k=((l+-1|0)>>>5)+1|0;l=ln(k<<2)|0;f[i>>2]=l;f[m>>2]=0;f[j>>2]=k;k=f[b+20>>2]|0;f[g>>2]=k;f[g+4>>2]=0;b=f[a>>2]|0;f[h>>2]=k+(b>>>5<<2);f[h+4>>2]=b&31;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[d>>2]=f[h>>2];f[d+4>>2]=f[h+4>>2];Tf(i,e,d);u=c;return}function Ef(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=b[c>>0]|0;e=b[c+1>>0]|0;g=b[c+2>>0]|0;h=b[c+3>>0]|0;c=(((d&255^318)+239^e&255)+239^g&255)+239^h&255;i=f[a+4>>2]|0;if(!i){j=0;return j|0}k=i+-1|0;l=(k&i|0)==0;if(!l)if(c>>>0>>0)m=c;else m=(c>>>0)%(i>>>0)|0;else m=c&k;n=f[(f[a>>2]|0)+(m<<2)>>2]|0;if(!n){j=0;return j|0}a=f[n>>2]|0;if(!a){j=0;return j|0}if(l){l=a;while(1){n=f[l+4>>2]|0;o=(n|0)==(c|0);if(!(o|(n&k|0)==(m|0))){j=0;p=25;break}if((((o?(o=l+8|0,(b[o>>0]|0)==d<<24>>24):0)?(b[o+1>>0]|0)==e<<24>>24:0)?(b[o+2>>0]|0)==g<<24>>24:0)?(b[o+3>>0]|0)==h<<24>>24:0){j=l;p=25;break}l=f[l>>2]|0;if(!l){j=0;p=25;break}}if((p|0)==25)return j|0}else q=a;while(1){a=f[q+4>>2]|0;if((a|0)==(c|0)){l=q+8|0;if((((b[l>>0]|0)==d<<24>>24?(b[l+1>>0]|0)==e<<24>>24:0)?(b[l+2>>0]|0)==g<<24>>24:0)?(b[l+3>>0]|0)==h<<24>>24:0){j=q;p=25;break}}else{if(a>>>0>>0)r=a;else r=(a>>>0)%(i>>>0)|0;if((r|0)!=(m|0)){j=0;p=25;break}}q=f[q>>2]|0;if(!q){j=0;p=25;break}}if((p|0)==25)return j|0;return 0}function Ff(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=u;u=u+32|0;d=c+24|0;e=c+16|0;g=c+8|0;h=c;f[a>>2]=3636;f[a+4>>2]=f[b+4>>2];i=a+8|0;j=b+8|0;f[i>>2]=0;k=a+12|0;f[k>>2]=0;l=a+16|0;f[l>>2]=0;m=b+12|0;n=f[m>>2]|0;do if(n|0)if((n|0)<0)aq(i);else{o=((n+-1|0)>>>5)+1|0;p=ln(o<<2)|0;f[i>>2]=p;f[k>>2]=0;f[l>>2]=o;o=f[j>>2]|0;f[g>>2]=o;f[g+4>>2]=0;p=f[m>>2]|0;f[h>>2]=o+(p>>>5<<2);f[h+4>>2]=p&31;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[d>>2]=f[h>>2];f[d+4>>2]=f[h+4>>2];Tf(i,e,d);break}while(0);i=a+20|0;f[i>>2]=0;m=a+24|0;f[m>>2]=0;j=a+28|0;f[j>>2]=0;a=b+24|0;l=f[a>>2]|0;if(!l){u=c;return}if((l|0)<0)aq(i);k=((l+-1|0)>>>5)+1|0;l=ln(k<<2)|0;f[i>>2]=l;f[m>>2]=0;f[j>>2]=k;k=f[b+20>>2]|0;f[g>>2]=k;f[g+4>>2]=0;b=f[a>>2]|0;f[h>>2]=k+(b>>>5<<2);f[h+4>>2]=b&31;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[d>>2]=f[h>>2];f[d+4>>2]=f[h+4>>2];Tf(i,e,d);u=c;return}function Gf(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0;d=u;u=u+32|0;h=d+24|0;i=d+16|0;j=d;k=d+8|0;l=a+40|0;f[a+44>>2]=g;g=a+36|0;m=f[g>>2]|0;n=f[m+4>>2]|0;o=f[m>>2]|0;p=n-o|0;if((p|0)<=0){u=d;return 1}q=(p>>>2)+-1|0;p=a+8|0;r=a+48|0;s=a+52|0;a=i+4|0;t=j+4|0;v=h+4|0;if(n-o>>2>>>0>q>>>0){w=q;x=o}else{y=m;aq(y)}while(1){f[k>>2]=f[x+(w<<2)>>2];f[h>>2]=f[k>>2];ub(l,h,b,w);m=X(w,e)|0;o=b+(m<<2)|0;q=c+(m<<2)|0;m=f[o+4>>2]|0;n=f[r>>2]|0;z=f[s>>2]|0;f[i>>2]=f[o>>2];f[a>>2]=m;f[j>>2]=n;f[t>>2]=z;Od(h,p,i,j);f[q>>2]=f[h>>2];f[q+4>>2]=f[v>>2];w=w+-1|0;if((w|0)<=-1){A=3;break}q=f[g>>2]|0;x=f[q>>2]|0;if((f[q+4>>2]|0)-x>>2>>>0<=w>>>0){y=q;A=4;break}}if((A|0)==3){u=d;return 1}else if((A|0)==4)aq(y);return 0}function Hf(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0;h=u;u=u+32|0;i=h;j=h+16|0;k=f[(f[(f[b+4>>2]|0)+8>>2]|0)+(d<<2)>>2]|0;do if((c+-1|0)>>>0<6&(Qa[f[(f[b>>2]|0)+8>>2]&127](b)|0)==1){l=Qa[f[(f[b>>2]|0)+48>>2]&127](b)|0;m=Ra[f[(f[b>>2]|0)+56>>2]&127](b,d)|0;if((l|0)==0|(m|0)==0){f[a>>2]=0;u=h;return}n=Ra[f[(f[b>>2]|0)+52>>2]&127](b,d)|0;if(!n){f[i>>2]=f[b+52>>2];f[i+4>>2]=l;f[i+12>>2]=m;f[i+8>>2]=m+12;Cd(a,j,c,k,e,i,g);if(!(f[a>>2]|0)){f[a>>2]=0;break}u=h;return}else{f[i>>2]=f[b+52>>2];f[i+4>>2]=n;f[i+12>>2]=m;f[i+8>>2]=m+12;Ad(a,j,c,k,e,i,g);if(!(f[a>>2]|0)){f[a>>2]=0;break}u=h;return}}while(0);f[a>>2]=0;u=h;return}function If(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0;d=u;u=u+32|0;h=d+24|0;i=d+16|0;j=d;k=d+8|0;l=a+40|0;f[a+44>>2]=g;g=a+36|0;m=f[g>>2]|0;n=f[m+4>>2]|0;o=f[m>>2]|0;p=n-o|0;if((p|0)<=0){u=d;return 1}q=(p>>>2)+-1|0;p=a+8|0;r=a+48|0;s=a+52|0;a=i+4|0;t=j+4|0;v=h+4|0;if(n-o>>2>>>0>q>>>0){w=q;x=o}else{y=m;aq(y)}while(1){f[k>>2]=f[x+(w<<2)>>2];f[h>>2]=f[k>>2];tb(l,h,b,w);m=X(w,e)|0;o=b+(m<<2)|0;q=c+(m<<2)|0;m=f[o+4>>2]|0;n=f[r>>2]|0;z=f[s>>2]|0;f[i>>2]=f[o>>2];f[a>>2]=m;f[j>>2]=n;f[t>>2]=z;Od(h,p,i,j);f[q>>2]=f[h>>2];f[q+4>>2]=f[v>>2];w=w+-1|0;if((w|0)<=-1){A=3;break}q=f[g>>2]|0;x=f[q>>2]|0;if((f[q+4>>2]|0)-x>>2>>>0<=w>>>0){y=q;A=4;break}}if((A|0)==3){u=d;return 1}else if((A|0)==4)aq(y);return 0}function Jf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;d=f[b>>2]|0;b=f[c>>2]|0;e=b-d>>2;g=a+8|0;h=f[g>>2]|0;i=f[a>>2]|0;j=i;k=b;if(e>>>0<=h-i>>2>>>0){l=a+4|0;m=(f[l>>2]|0)-i>>2;n=e>>>0>m>>>0;o=n?d+(m<<2)|0:b;b=o-d|0;m=b>>2;if(m|0)im(i|0,d|0,b|0)|0;b=j+(m<<2)|0;if(!n){n=f[l>>2]|0;if((n|0)==(b|0))return;f[l>>2]=n+(~((n+-4-b|0)>>>2)<<2);return}b=f[c>>2]|0;c=o;if((b|0)==(c|0))return;n=f[l>>2]|0;m=b+-4-o|0;o=c;c=n;while(1){f[c>>2]=f[o>>2];o=o+4|0;if((o|0)==(b|0))break;else c=c+4|0}f[l>>2]=n+((m>>>2)+1<<2);return}m=i;if(!i)p=h;else{h=a+4|0;n=f[h>>2]|0;if((n|0)!=(j|0))f[h>>2]=n+(~((n+-4-i|0)>>>2)<<2);Oq(m);f[g>>2]=0;f[h>>2]=0;f[a>>2]=0;p=0}if(e>>>0>1073741823)aq(a);h=p>>1;m=p>>2>>>0<536870911?(h>>>0>>0?e:h):1073741823;if(m>>>0>1073741823)aq(a);h=ln(m<<2)|0;e=a+4|0;f[e>>2]=h;f[a>>2]=h;f[g>>2]=h+(m<<2);m=d;if((k|0)==(m|0))return;g=k+-4-d|0;d=m;m=h;while(1){f[m>>2]=f[d>>2];d=d+4|0;if((d|0)==(k|0))break;else m=m+4|0}f[e>>2]=h+((g>>>2)+1<<2);return}function Kf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;c=a+8|0;d=f[c>>2]|0;e=a+4|0;g=f[e>>2]|0;h=g;if(((d-g|0)/12|0)>>>0>=b>>>0){sj(g|0,0,b*12|0)|0;f[e>>2]=h+(b*12|0);return}i=f[a>>2]|0;j=(g-i|0)/12|0;g=j+b|0;k=i;if(g>>>0>357913941)aq(a);l=(d-i|0)/12|0;d=l<<1;m=l>>>0<178956970?(d>>>0>>0?g:d):357913941;do if(m)if(m>>>0>357913941){d=ra(8)|0;Oo(d,16035);f[d>>2]=7256;va(d|0,1112,110)}else{n=ln(m*12|0)|0;break}else n=0;while(0);d=n+(j*12|0)|0;j=d;g=n+(m*12|0)|0;sj(d|0,0,b*12|0)|0;m=d+(b*12|0)|0;if((h|0)==(k|0)){o=j;p=i;q=h}else{i=h;h=j;j=d;do{d=j+-12|0;b=i;i=i+-12|0;f[d>>2]=0;n=j+-8|0;f[n>>2]=0;f[j+-4>>2]=0;f[d>>2]=f[i>>2];d=b+-8|0;f[n>>2]=f[d>>2];n=b+-4|0;f[j+-4>>2]=f[n>>2];f[n>>2]=0;f[d>>2]=0;f[i>>2]=0;j=h+-12|0;h=j}while((i|0)!=(k|0));o=h;p=f[a>>2]|0;q=f[e>>2]|0}f[a>>2]=o;f[e>>2]=m;f[c>>2]=g;g=p;if((q|0)!=(g|0)){c=q;do{q=c;c=c+-12|0;m=f[c>>2]|0;if(m|0){e=q+-8|0;q=f[e>>2]|0;if((q|0)!=(m|0))f[e>>2]=q+(~((q+-4-m|0)>>>2)<<2);Oq(m)}}while((c|0)!=(g|0))}if(!p)return;Oq(p);return}function Lf(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;b=u;u=u+16|0;c=b+4|0;d=b;e=a+8|0;g=f[e>>2]|0;gk(f[a+4>>2]|0,(f[g+28>>2]|0)-(f[g+24>>2]|0)>>2);g=a+100|0;h=f[e>>2]|0;i=(f[h+28>>2]|0)-(f[h+24>>2]|0)>>2;f[c>>2]=0;h=a+104|0;j=f[h>>2]|0;k=f[g>>2]|0;l=j-k>>2;m=k;k=j;if(i>>>0<=l>>>0){if(i>>>0>>0?(j=m+(i<<2)|0,(j|0)!=(k|0)):0)f[h>>2]=k+(~((k+-4-j|0)>>>2)<<2)}else Ch(g,i-l|0,c);l=a+120|0;a=f[l>>2]|0;if(!a){i=f[e>>2]|0;g=(f[i+4>>2]|0)-(f[i>>2]|0)>>2;i=(g>>>0)/3|0;if(g>>>0<=2){u=b;return 1}g=0;do{f[d>>2]=g*3;f[c>>2]=f[d>>2];wb(e,c);g=g+1|0}while((g|0)<(i|0));u=b;return 1}else{i=f[a>>2]|0;if((f[a+4>>2]|0)==(i|0)){u=b;return 1}a=0;g=i;do{f[d>>2]=f[g+(a<<2)>>2];f[c>>2]=f[d>>2];wb(e,c);a=a+1|0;i=f[l>>2]|0;g=f[i>>2]|0}while(a>>>0<(f[i+4>>2]|0)-g>>2>>>0);u=b;return 1}return 0}function Mf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-4194304|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-4177920|0;b[m>>0]=n;b[m+1>>0]=n>>>8;o=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;n=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+4194304|0;b[n>>0]=m;b[n+1>>0]=m>>>8;b[n+2>>0]=m>>>16;o=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1077936128|0;b[m>>0]=n;b[m+1>>0]=n>>>8;b[m+2>>0]=n>>>16;b[m+3>>0]=n>>>24;o=(f[l>>2]|0)+4|0;break}else{o=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;o=(f[l>>2]|0)+1|0}while(0);k=((o|0)<0)<<31>>31;Gn(e);yh(o,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;im(h+a|0,h|0,o|0)|0;kh(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Vn(a|0,0,o|0,k|0)|0;k=Vn(h|0,I|0,g|0,j|0)|0;Cl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)Oq(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;Oq(c);u=d;return}function Nf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-2097152|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-2080768|0;b[m>>0]=n;b[m+1>>0]=n>>>8;o=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;n=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+6291456|0;b[n>>0]=m;b[n+1>>0]=m>>>8;b[n+2>>0]=m>>>16;o=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1075838976|0;b[m>>0]=n;b[m+1>>0]=n>>>8;b[m+2>>0]=n>>>16;b[m+3>>0]=n>>>24;o=(f[l>>2]|0)+4|0;break}else{o=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;o=(f[l>>2]|0)+1|0}while(0);k=((o|0)<0)<<31>>31;Gn(e);yh(o,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;im(h+a|0,h|0,o|0)|0;kh(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Vn(a|0,0,o|0,k|0)|0;k=Vn(h|0,I|0,g|0,j|0)|0;Cl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)Oq(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;Oq(c);u=d;return}function Of(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-1048576|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1032192|0;b[m>>0]=n;b[m+1>>0]=n>>>8;o=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;n=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+7340032|0;b[n>>0]=m;b[n+1>>0]=m>>>8;b[n+2>>0]=m>>>16;o=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1074790400|0;b[m>>0]=n;b[m+1>>0]=n>>>8;b[m+2>>0]=n>>>16;b[m+3>>0]=n>>>24;o=(f[l>>2]|0)+4|0;break}else{o=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;o=(f[l>>2]|0)+1|0}while(0);k=((o|0)<0)<<31>>31;Gn(e);yh(o,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;im(h+a|0,h|0,o|0)|0;kh(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Vn(a|0,0,o|0,k|0)|0;k=Vn(h|0,I|0,g|0,j|0)|0;Cl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)Oq(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;Oq(c);u=d;return}function Pf(a,c,d,e,g,h,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;a=u;u=u+96|0;j=a;if(!c){k=-1;u=a;return k|0}Tm(j);Jj(j,d,0,g&255,i,0,g<<1,0,0,0);i=jf(c,j,1,e)|0;d=f[(f[c+8>>2]|0)+(i<<2)>>2]|0;if(e|0){l=d+84|0;m=d+68|0;n=d+40|0;o=d+64|0;d=0;do{if(!(b[l>>0]|0))p=f[(f[m>>2]|0)+(d<<2)>>2]|0;else p=d;q=h+((X(d,g)|0)<<1)|0;r=n;s=f[r>>2]|0;t=un(s|0,f[r+4>>2]|0,p|0,0)|0;kh((f[f[o>>2]>>2]|0)+t|0,q|0,s|0)|0;d=d+1|0}while((d|0)!=(e|0))}d=c+80|0;c=f[d>>2]|0;if(c)if((c|0)==(e|0))v=10;else w=-1;else{f[d>>2]=e;v=10}if((v|0)==10)w=i;i=j+88|0;v=f[i>>2]|0;f[i>>2]=0;if(v|0){i=f[v+8>>2]|0;if(i|0){e=v+12|0;if((f[e>>2]|0)!=(i|0))f[e>>2]=i;Oq(i)}Oq(v)}v=f[j+68>>2]|0;if(v|0){i=j+72|0;e=f[i>>2]|0;if((e|0)!=(v|0))f[i>>2]=e+(~((e+-4-v|0)>>>2)<<2);Oq(v)}v=j+64|0;j=f[v>>2]|0;f[v>>2]=0;if(j|0){v=f[j>>2]|0;if(v|0){e=j+4|0;if((f[e>>2]|0)!=(v|0))f[e>>2]=v;Oq(v)}Oq(j)}k=w;u=a;return k|0}function Qf(a,c,d,e,g,h,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;a=u;u=u+96|0;j=a;if(!c){k=-1;u=a;return k|0}Tm(j);Jj(j,d,0,g&255,i,0,g<<2,0,0,0);i=jf(c,j,1,e)|0;d=f[(f[c+8>>2]|0)+(i<<2)>>2]|0;if(e|0){l=d+84|0;m=d+68|0;n=d+40|0;o=d+64|0;d=0;do{if(!(b[l>>0]|0))p=f[(f[m>>2]|0)+(d<<2)>>2]|0;else p=d;q=h+((X(d,g)|0)<<2)|0;r=n;s=f[r>>2]|0;t=un(s|0,f[r+4>>2]|0,p|0,0)|0;kh((f[f[o>>2]>>2]|0)+t|0,q|0,s|0)|0;d=d+1|0}while((d|0)!=(e|0))}d=c+80|0;c=f[d>>2]|0;if(c)if((c|0)==(e|0))v=10;else w=-1;else{f[d>>2]=e;v=10}if((v|0)==10)w=i;i=j+88|0;v=f[i>>2]|0;f[i>>2]=0;if(v|0){i=f[v+8>>2]|0;if(i|0){e=v+12|0;if((f[e>>2]|0)!=(i|0))f[e>>2]=i;Oq(i)}Oq(v)}v=f[j+68>>2]|0;if(v|0){i=j+72|0;e=f[i>>2]|0;if((e|0)!=(v|0))f[i>>2]=e+(~((e+-4-v|0)>>>2)<<2);Oq(v)}v=j+64|0;j=f[v>>2]|0;f[v>>2]=0;if(j|0){v=f[j>>2]|0;if(v|0){e=j+4|0;if((f[e>>2]|0)!=(v|0))f[e>>2]=v;Oq(v)}Oq(j)}k=w;u=a;return k|0}function Rf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-262144|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-245760|0;b[m>>0]=n;b[m+1>>0]=n>>>8;o=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;n=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+8126464|0;b[n>>0]=m;b[n+1>>0]=m>>>8;b[n+2>>0]=m>>>16;o=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1074003968|0;b[m>>0]=n;b[m+1>>0]=n>>>8;b[m+2>>0]=n>>>16;b[m+3>>0]=n>>>24;o=(f[l>>2]|0)+4|0;break}else{o=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;o=(f[l>>2]|0)+1|0}while(0);k=((o|0)<0)<<31>>31;Gn(e);yh(o,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;im(h+a|0,h|0,o|0)|0;kh(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Vn(a|0,0,o|0,k|0)|0;k=Vn(h|0,I|0,g|0,j|0)|0;Cl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)Oq(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;Oq(c);u=d;return}function Sf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-131072|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-114688|0;b[m>>0]=n;b[m+1>>0]=n>>>8;o=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;n=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+8257536|0;b[n>>0]=m;b[n+1>>0]=m>>>8;b[n+2>>0]=m>>>16;o=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1073872896|0;b[m>>0]=n;b[m+1>>0]=n>>>8;b[m+2>>0]=n>>>16;b[m+3>>0]=n>>>24;o=(f[l>>2]|0)+4|0;break}else{o=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;o=(f[l>>2]|0)+1|0}while(0);k=((o|0)<0)<<31>>31;Gn(e);yh(o,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;im(h+a|0,h|0,o|0)|0;kh(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Vn(a|0,0,o|0,k|0)|0;k=Vn(h|0,I|0,g|0,j|0)|0;Cl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)Oq(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;Oq(c);u=d;return}function Tf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0;d=u;u=u+48|0;e=d+40|0;g=d+32|0;h=d+8|0;i=d;j=d+24|0;k=d+16|0;l=a+4|0;m=f[l>>2]|0;n=b;b=f[n>>2]|0;o=f[n+4>>2]|0;n=c;c=f[n>>2]|0;p=f[n+4>>2]|0;n=c-b<<3;f[l>>2]=m-o+p+n;l=(f[a>>2]|0)+(m>>>5<<2)|0;a=m&31;m=l;if((a|0)!=(o|0)){q=h;f[q>>2]=b;f[q+4>>2]=o;q=i;f[q>>2]=c;f[q+4>>2]=p;f[j>>2]=m;f[j+4>>2]=a;f[g>>2]=f[h>>2];f[g+4>>2]=f[h+4>>2];f[e>>2]=f[i>>2];f[e+4>>2]=f[i+4>>2];we(k,g,e,j);u=d;return}j=p-o+n|0;n=b;if((j|0)>0){if(!o){r=j;s=0;t=l;v=b;w=n}else{b=32-o|0;p=(j|0)<(b|0)?j:b;e=-1>>>(b-p|0)&-1<>2]=f[l>>2]&~e|f[n>>2]&e;e=p+o|0;b=n+4|0;r=j-p|0;s=e&31;t=l+(e>>>5<<2)|0;v=b;w=b}b=(r|0)/32|0;im(t|0,v|0,b<<2|0)|0;v=r-(b<<5)|0;r=t+(b<<2)|0;t=r;if((v|0)>0){e=-1>>>(32-v|0);f[r>>2]=f[r>>2]&~e|f[w+(b<<2)>>2]&e;x=v;y=t}else{x=s;y=t}}else{x=o;y=m}f[k>>2]=y;f[k+4>>2]=x;u=d;return}function Uf(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-32768|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-16384|0;b[m>>0]=n;b[m+1>>0]=n>>>8;o=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;n=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+8355840|0;b[n>>0]=m;b[n+1>>0]=m>>>8;b[n+2>>0]=m>>>16;o=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;n=j+-1073774592|0;b[m>>0]=n;b[m+1>>0]=n>>>8;b[m+2>>0]=n>>>16;b[m+3>>0]=n>>>24;o=(f[l>>2]|0)+4|0;break}else{o=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;o=(f[l>>2]|0)+1|0}while(0);k=((o|0)<0)<<31>>31;Gn(e);yh(o,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;im(h+a|0,h|0,o|0)|0;kh(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Vn(a|0,0,o|0,k|0)|0;k=Vn(h|0,I|0,g|0,j|0)|0;Cl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)Oq(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;Oq(c);u=d;return}function Vf(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;c=f[b>>2]|0;d=f[b+4>>2]|0;e=f[b+8>>2]|0;g=f[b+12>>2]|0;b=(((c^318)+239^d)+239^e)+239^g;h=f[a+4>>2]|0;if(!h){i=0;return i|0}j=h+-1|0;k=(j&h|0)==0;if(!k)if(b>>>0>>0)l=b;else l=(b>>>0)%(h>>>0)|0;else l=b&j;m=f[(f[a>>2]|0)+(l<<2)>>2]|0;if(!m){i=0;return i|0}a=f[m>>2]|0;if(!a){i=0;return i|0}if(k){k=a;while(1){m=f[k+4>>2]|0;n=(m|0)==(b|0);if(!(n|(m&j|0)==(l|0))){i=0;o=25;break}if((((n?(f[k+8>>2]|0)==(c|0):0)?(f[k+12>>2]|0)==(d|0):0)?(f[k+16>>2]|0)==(e|0):0)?(f[k+20>>2]|0)==(g|0):0){i=k;o=25;break}k=f[k>>2]|0;if(!k){i=0;o=25;break}}if((o|0)==25)return i|0}else p=a;while(1){a=f[p+4>>2]|0;if((a|0)==(b|0)){if((((f[p+8>>2]|0)==(c|0)?(f[p+12>>2]|0)==(d|0):0)?(f[p+16>>2]|0)==(e|0):0)?(f[p+20>>2]|0)==(g|0):0){i=p;o=25;break}}else{if(a>>>0>>0)q=a;else q=(a>>>0)%(h>>>0)|0;if((q|0)!=(l|0)){i=0;o=25;break}}p=f[p>>2]|0;if(!p){i=0;o=25;break}}if((o|0)==25)return i|0;return 0}function Wf(a,c,d,e,g,h,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;a=u;u=u+96|0;j=a;if(!c){k=-1;u=a;return k|0}Tm(j);Jj(j,d,0,g&255,i,0,g,0,0,0);i=jf(c,j,1,e)|0;d=f[(f[c+8>>2]|0)+(i<<2)>>2]|0;if(e|0){l=d+84|0;m=d+68|0;n=d+40|0;o=d+64|0;d=0;do{if(!(b[l>>0]|0))p=f[(f[m>>2]|0)+(d<<2)>>2]|0;else p=d;q=h+(X(d,g)|0)|0;r=n;s=f[r>>2]|0;t=un(s|0,f[r+4>>2]|0,p|0,0)|0;kh((f[f[o>>2]>>2]|0)+t|0,q|0,s|0)|0;d=d+1|0}while((d|0)!=(e|0))}d=c+80|0;c=f[d>>2]|0;if(c)if((c|0)==(e|0))v=10;else w=-1;else{f[d>>2]=e;v=10}if((v|0)==10)w=i;i=j+88|0;v=f[i>>2]|0;f[i>>2]=0;if(v|0){i=f[v+8>>2]|0;if(i|0){e=v+12|0;if((f[e>>2]|0)!=(i|0))f[e>>2]=i;Oq(i)}Oq(v)}v=f[j+68>>2]|0;if(v|0){i=j+72|0;e=f[i>>2]|0;if((e|0)!=(v|0))f[i>>2]=e+(~((e+-4-v|0)>>>2)<<2);Oq(v)}v=j+64|0;j=f[v>>2]|0;f[v>>2]=0;if(j|0){v=f[j>>2]|0;if(v|0){e=j+4|0;if((f[e>>2]|0)!=(v|0))f[e>>2]=v;Oq(v)}Oq(j)}k=w;u=a;return k|0}function Xf(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0;h=u;u=u+32|0;i=h;j=h+16|0;k=f[(f[(f[b+4>>2]|0)+8>>2]|0)+(d<<2)>>2]|0;do if((c+-1|0)>>>0<6&(Qa[f[(f[b>>2]|0)+8>>2]&127](b)|0)==1){l=Qa[f[(f[b>>2]|0)+48>>2]&127](b)|0;m=Ra[f[(f[b>>2]|0)+56>>2]&127](b,d)|0;if((l|0)==0|(m|0)==0){f[a>>2]=0;u=h;return}n=Ra[f[(f[b>>2]|0)+52>>2]&127](b,d)|0;if(!n){f[i>>2]=f[b+52>>2];f[i+4>>2]=l;f[i+12>>2]=m;f[i+8>>2]=m+12;qd(a,j,c,k,e,i,g);if(!(f[a>>2]|0)){f[a>>2]=0;break}u=h;return}else{f[i>>2]=f[b+52>>2];f[i+4>>2]=n;f[i+12>>2]=m;f[i+8>>2]=m+12;pd(a,j,c,k,e,i,g);if(!(f[a>>2]|0)){f[a>>2]=0;break}u=h;return}}while(0);f[a>>2]=0;u=h;return}function Yf(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0;e=f[d>>2]|0;g=f[d+4>>2]|0;if((e|0)==(g|0)){h=0;i=a+12|0;j=a+8|0}else{d=f[c>>2]|0;c=a+8|0;k=a+12|0;a=0;l=e;while(1){e=f[l>>2]|0;m=f[d+(e<<2)>>2]|0;if(m>>>0>>0)n=a;else{o=f[c>>2]|0;p=(f[k>>2]|0)-o|0;q=o;if((p|0)>0){o=p>>>2;p=0;do{r=f[q+(p<<2)>>2]|0;s=f[r+68>>2]|0;if(!(b[r+84>>0]|0))t=f[s+(e<<2)>>2]|0;else t=e;f[s+(m<<2)>>2]=t;p=p+1|0}while((p|0)<(o|0))}n=m+1|0}l=l+4|0;if((l|0)==(g|0)){h=n;i=k;j=c;break}else a=n}}n=f[i>>2]|0;a=f[j>>2]|0;if((n-a|0)>0){u=0;v=a;w=n}else return;while(1){n=f[v+(u<<2)>>2]|0;b[n+84>>0]=0;a=n+68|0;c=n+72|0;n=f[c>>2]|0;k=f[a>>2]|0;g=n-k>>2;l=k;k=n;if(h>>>0<=g>>>0)if(h>>>0>>0?(n=l+(h<<2)|0,(n|0)!=(k|0)):0){f[c>>2]=k+(~((k+-4-n|0)>>>2)<<2);x=v;y=w}else{x=v;y=w}else{Ch(a,h-g|0,6220);x=f[j>>2]|0;y=f[i>>2]|0}u=u+1|0;if((u|0)>=(y-x>>2|0))break;else{v=x;w=y}}return}function Zf(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=b;e=c-d>>2;g=a+8|0;h=f[g>>2]|0;i=f[a>>2]|0;j=i;if(e>>>0<=h-i>>2>>>0){k=a+4|0;l=(f[k>>2]|0)-i>>2;m=e>>>0>l>>>0;n=b+(l<<2)|0;l=m?n:c;o=l;p=o-d|0;q=p>>2;if(q|0)im(i|0,b|0,p|0)|0;p=j+(q<<2)|0;if(!m){m=f[k>>2]|0;if((m|0)==(p|0))return;f[k>>2]=m+(~((m+-4-p|0)>>>2)<<2);return}if((l|0)==(c|0))return;l=f[k>>2]|0;p=((c+-4-o|0)>>>2)+1|0;o=n;n=l;while(1){f[n>>2]=f[o>>2];o=o+4|0;if((o|0)==(c|0))break;else n=n+4|0}f[k>>2]=l+(p<<2);return}p=i;if(!i)r=h;else{h=a+4|0;l=f[h>>2]|0;if((l|0)!=(j|0))f[h>>2]=l+(~((l+-4-i|0)>>>2)<<2);Oq(p);f[g>>2]=0;f[h>>2]=0;f[a>>2]=0;r=0}if(e>>>0>1073741823)aq(a);h=r>>1;p=r>>2>>>0<536870911?(h>>>0>>0?e:h):1073741823;if(p>>>0>1073741823)aq(a);h=ln(p<<2)|0;e=a+4|0;f[e>>2]=h;f[a>>2]=h;f[g>>2]=h+(p<<2);if((b|0)==(c|0))return;p=((c+-4-d|0)>>>2)+1|0;d=b;b=h;while(1){f[b>>2]=f[d>>2];d=d+4|0;if((d|0)==(c|0))break;else b=b+4|0}f[e>>2]=h+(p<<2);return}function _f(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=u;u=u+32|0;e=d;g=a+40|0;h=(f[c>>2]|0)+(f[g>>2]|0)|0;i=a+24|0;j=f[a+32>>2]|0;k=j+-16384|0;do if(k>>>0>=64){if(k>>>0<16384){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;b[m>>0]=j;b[m+1>>0]=j>>>8;n=(f[l>>2]|0)+2|0;break}if(k>>>0<4194304){l=a+28|0;m=(f[i>>2]|0)+(f[l>>2]|0)|0;o=j+8372224|0;b[m>>0]=o;b[m+1>>0]=o>>>8;b[m+2>>0]=o>>>16;n=(f[l>>2]|0)+3|0;break}if(k>>>0<1073741824){l=a+28|0;o=(f[i>>2]|0)+(f[l>>2]|0)|0;m=j+-1073758208|0;b[o>>0]=m;b[o+1>>0]=m>>>8;b[o+2>>0]=m>>>16;b[o+3>>0]=m>>>24;n=(f[l>>2]|0)+4|0;break}else{n=f[a+28>>2]|0;break}}else{l=a+28|0;b[(f[i>>2]|0)+(f[l>>2]|0)>>0]=k;n=(f[l>>2]|0)+1|0}while(0);k=((n|0)<0)<<31>>31;Gn(e);yh(n,k,e)|0;i=e+4|0;a=(f[i>>2]|0)-(f[e>>2]|0)|0;im(h+a|0,h|0,n|0)|0;kh(h|0,f[e>>2]|0,a|0)|0;h=g;g=f[h>>2]|0;j=f[h+4>>2]|0;h=Vn(a|0,0,n|0,k|0)|0;k=Vn(h|0,I|0,g|0,j|0)|0;Cl(c,k,I);k=e+12|0;c=f[k>>2]|0;f[k>>2]=0;if(c|0)Oq(c);c=f[e>>2]|0;if(!c){u=d;return}if((f[i>>2]|0)!=(c|0))f[i>>2]=c;Oq(c);u=d;return}function $f(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=b;e=c-d>>2;g=a+8|0;h=f[g>>2]|0;i=f[a>>2]|0;j=i;if(e>>>0<=h-i>>2>>>0){k=a+4|0;l=(f[k>>2]|0)-i>>2;m=e>>>0>l>>>0;n=b+(l<<2)|0;l=m?n:c;o=l;p=o-d|0;q=p>>2;if(q|0)im(i|0,b|0,p|0)|0;p=j+(q<<2)|0;if(!m){m=f[k>>2]|0;if((m|0)==(p|0))return;f[k>>2]=m+(~((m+-4-p|0)>>>2)<<2);return}if((l|0)==(c|0))return;l=f[k>>2]|0;p=c+-4-o|0;o=n;n=l;while(1){f[n>>2]=f[o>>2];o=o+4|0;if((o|0)==(c|0))break;else n=n+4|0}f[k>>2]=l+((p>>>2)+1<<2);return}p=i;if(!i)r=h;else{h=a+4|0;l=f[h>>2]|0;if((l|0)!=(j|0))f[h>>2]=l+(~((l+-4-i|0)>>>2)<<2);Oq(p);f[g>>2]=0;f[h>>2]=0;f[a>>2]=0;r=0}if(e>>>0>1073741823)aq(a);h=r>>1;p=r>>2>>>0<536870911?(h>>>0>>0?e:h):1073741823;if(p>>>0>1073741823)aq(a);h=ln(p<<2)|0;e=a+4|0;f[e>>2]=h;f[a>>2]=h;f[g>>2]=h+(p<<2);if((b|0)==(c|0))return;p=c+-4-d|0;d=b;b=h;while(1){f[b>>2]=f[d>>2];d=d+4|0;if((d|0)==(c|0))break;else b=b+4|0}f[e>>2]=h+((p>>>2)+1<<2);return}function ag(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0;g=u;u=u+80|0;h=g;i=g+64|0;Il(h);j=f[(f[a+8>>2]|0)+56>>2]|0;k=X(Vl(5)|0,d)|0;Jj(h,j,0,d&255,5,0,k,((k|0)<0)<<31>>31,0,0);k=ln(96)|0;tl(k,h);Bj(k,c)|0;f[i>>2]=k;gj(a,i);k=f[i>>2]|0;f[i>>2]=0;if(k|0){i=k+88|0;c=f[i>>2]|0;f[i>>2]=0;if(c|0){i=f[c+8>>2]|0;if(i|0){h=c+12|0;if((f[h>>2]|0)!=(i|0))f[h>>2]=i;Oq(i)}Oq(c)}c=f[k+68>>2]|0;if(c|0){i=k+72|0;h=f[i>>2]|0;if((h|0)!=(c|0))f[i>>2]=h+(~((h+-4-c|0)>>>2)<<2);Oq(c)}c=k+64|0;h=f[c>>2]|0;f[c>>2]=0;if(h|0){c=f[h>>2]|0;if(c|0){i=h+4|0;if((f[i>>2]|0)!=(c|0))f[i>>2]=c;Oq(c)}Oq(h)}Oq(k)}if(!e){u=g;return}k=f[a+32>>2]|0;b[k+84>>0]=0;a=k+68|0;h=k+72|0;k=f[h>>2]|0;c=f[a>>2]|0;i=k-c>>2;d=k;if(i>>>0>>0){Ch(a,e-i|0,1532);u=g;return}if(i>>>0<=e>>>0){u=g;return}i=c+(e<<2)|0;if((i|0)==(d|0)){u=g;return}f[h>>2]=d+(~((d+-4-i|0)>>>2)<<2);u=g;return}function bg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0;c=u;u=u+16|0;d=c+4|0;e=c;g=a+4|0;h=f[g>>2]|0;i=a+8|0;j=f[i>>2]|0;if((j|0)==(h|0))k=h;else{l=j+(~((j+-4-h|0)>>>2)<<2)|0;f[i>>2]=l;k=l}l=a+16|0;h=f[l>>2]|0;j=a+20|0;m=f[j>>2]|0;n=h;if((m|0)!=(h|0))f[j>>2]=m+(~((m+-4-n|0)>>>2)<<2);m=f[b>>2]|0;h=f[b+4>>2]|0;if((m|0)==(h|0)){u=c;return}b=a+12|0;a=m;m=k;k=n;while(1){n=f[a>>2]|0;f[d>>2]=n;if((m|0)==(f[b>>2]|0)){Ri(g,d);o=f[l>>2]|0}else{f[m>>2]=n;f[i>>2]=m+4;o=k}n=f[d>>2]|0;p=f[j>>2]|0;q=p-o>>2;r=o;if((n|0)<(q|0)){s=r;t=n;v=o}else{w=n+1|0;f[e>>2]=-1;x=p;if(w>>>0<=q>>>0)if(w>>>0>>0?(p=r+(w<<2)|0,(p|0)!=(x|0)):0){f[j>>2]=x+(~((x+-4-p|0)>>>2)<<2);y=n;z=r;A=o}else{y=n;z=r;A=o}else{Ch(l,w-q|0,e);q=f[l>>2]|0;y=f[d>>2]|0;z=q;A=q}s=z;t=y;v=A}m=f[i>>2]|0;f[s+(t<<2)>>2]=(m-(f[g>>2]|0)>>2)+-1;a=a+4|0;if((a|0)==(h|0))break;else k=v}u=c;return}function cg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;c=u;u=u+16|0;d=c;e=a+76|0;g=f[e>>2]|0;h=a+80|0;i=f[h>>2]|0;if((i|0)!=(g|0))f[h>>2]=i+(~((i+-4-g|0)>>>2)<<2);f[e>>2]=0;f[h>>2]=0;f[a+84>>2]=0;if(g|0)Oq(g);g=a+64|0;h=f[g>>2]|0;e=a+68|0;if((f[e>>2]|0)!=(h|0))f[e>>2]=h;f[g>>2]=0;f[e>>2]=0;f[a+72>>2]=0;if(h|0)Oq(h);h=b+4|0;e=f[h>>2]|0;g=f[b>>2]|0;i=((e-g|0)/12|0)*3|0;j=a+4|0;k=f[j>>2]|0;l=f[a>>2]|0;m=k-l>>2;n=l;l=k;k=g;if(i>>>0<=m>>>0)if(i>>>0>>0?(o=n+(i<<2)|0,(o|0)!=(l|0)):0){f[j>>2]=l+(~((l+-4-o|0)>>>2)<<2);p=e;q=g;r=k}else{p=e;q=g;r=k}else{Ci(a,i-m|0);m=f[b>>2]|0;p=f[h>>2]|0;q=m;r=m}if((p|0)!=(q|0)){q=f[a>>2]|0;m=(p-r|0)/12|0;p=0;do{h=p*3|0;f[q+(h<<2)>>2]=f[r+(p*12|0)>>2];f[q+(h+1<<2)>>2]=f[r+(p*12|0)+4>>2];f[q+(h+2<<2)>>2]=f[r+(p*12|0)+8>>2];p=p+1|0}while(p>>>0>>0)}f[d>>2]=-1;if(!(rc(a,d)|0)){s=0;u=c;return s|0}eb(a,f[d>>2]|0)|0;s=1;u=c;return s|0}function dg(a,b){a=a|0;b=b|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;c=d[b>>1]|0;e=d[b+2>>1]|0;g=d[b+4>>1]|0;b=(((c^318)&65535)+239^e&65535)+239^g&65535;h=f[a+4>>2]|0;if(!h){i=0;return i|0}j=h+-1|0;k=(j&h|0)==0;if(!k)if(b>>>0>>0)l=b;else l=(b>>>0)%(h>>>0)|0;else l=b&j;m=f[(f[a>>2]|0)+(l<<2)>>2]|0;if(!m){i=0;return i|0}a=f[m>>2]|0;if(!a){i=0;return i|0}if(k){k=a;while(1){m=f[k+4>>2]|0;n=(m|0)==(b|0);if(!(n|(m&j|0)==(l|0))){i=0;o=23;break}if(((n?(n=k+8|0,(d[n>>1]|0)==c<<16>>16):0)?(d[n+2>>1]|0)==e<<16>>16:0)?(d[k+12>>1]|0)==g<<16>>16:0){i=k;o=23;break}k=f[k>>2]|0;if(!k){i=0;o=23;break}}if((o|0)==23)return i|0}else p=a;while(1){a=f[p+4>>2]|0;if((a|0)==(b|0)){k=p+8|0;if(((d[k>>1]|0)==c<<16>>16?(d[k+2>>1]|0)==e<<16>>16:0)?(d[p+12>>1]|0)==g<<16>>16:0){i=p;o=23;break}}else{if(a>>>0>>0)q=a;else q=(a>>>0)%(h>>>0)|0;if((q|0)!=(l|0)){i=0;o=23;break}}p=f[p>>2]|0;if(!p){i=0;o=23;break}}if((o|0)==23)return i|0;return 0}function eg(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;c=u;u=u+32|0;d=c;e=a+16|0;g=e;h=f[g>>2]|0;i=f[g+4>>2]|0;if(!((i|0)>0|(i|0)==0&h>>>0>0)){u=c;return}g=Vn(f[(f[a+12>>2]|0)+4>>2]|0,0,7,0)|0;j=Yn(g|0,I|0,3)|0;g=I;if(!(b[a+24>>0]|0)){k=a+4|0;l=k;m=k;n=h;o=i}else{k=f[a>>2]|0;p=a+4|0;q=k+((f[p>>2]|0)-k)|0;k=Vn(h|0,i|0,8,0)|0;i=q+(0-k)|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;b[d+24>>0]=0;yh(j,g,d)|0;k=d+4|0;q=(f[k>>2]|0)-(f[d>>2]|0)|0;im(i+q|0,i+8|0,j|0)|0;kh(i|0,f[d>>2]|0,q|0)|0;i=e;h=Vn(f[i>>2]|0,f[i+4>>2]|0,8-q|0,0)|0;q=e;f[q>>2]=h;f[q+4>>2]=I;q=d+12|0;h=f[q>>2]|0;f[q>>2]=0;if(h|0)Oq(h);h=f[d>>2]|0;if(h|0){if((f[k>>2]|0)!=(h|0))f[k>>2]=h;Oq(h)}h=e;l=p;m=p;n=f[h>>2]|0;o=f[h+4>>2]|0}h=f[l>>2]|0;l=f[a>>2]|0;p=h-l|0;k=Xn(j|0,g|0,n|0,o|0)|0;o=Vn(k|0,I|0,p|0,0)|0;k=l;l=h;if(p>>>0>=o>>>0){if(p>>>0>o>>>0?(h=k+o|0,(h|0)!=(l|0)):0)f[m>>2]=h}else Fi(a,o-p|0);p=e;f[p>>2]=0;f[p+4>>2]=0;u=c;return}function fg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;f[a+4>>2]=f[b+4>>2];c=a+8|0;d=b+8|0;if((a|0)==(b|0))return a|0;e=b+12|0;g=f[e>>2]|0;if(!g)h=0;else{i=a+16|0;do if(g>>>0>f[i>>2]<<5>>>0){j=f[c>>2]|0;if(!j)k=g;else{Oq(j);f[c>>2]=0;f[i>>2]=0;f[a+12>>2]=0;k=f[e>>2]|0}if((k|0)<0)aq(c);else{j=((k+-1|0)>>>5)+1|0;l=ln(j<<2)|0;f[c>>2]=l;f[a+12>>2]=0;f[i>>2]=j;m=f[e>>2]|0;n=l;break}}else{m=g;n=f[c>>2]|0}while(0);im(n|0,f[d>>2]|0,((m+-1|0)>>>5<<2)+4|0)|0;h=f[e>>2]|0}f[a+12>>2]=h;h=a+20|0;e=b+20|0;m=b+24|0;b=f[m>>2]|0;if(!b)o=0;else{d=a+28|0;do if(b>>>0>f[d>>2]<<5>>>0){n=f[h>>2]|0;if(!n)p=b;else{Oq(n);f[h>>2]=0;f[d>>2]=0;f[a+24>>2]=0;p=f[m>>2]|0}if((p|0)<0)aq(h);else{n=((p+-1|0)>>>5)+1|0;c=ln(n<<2)|0;f[h>>2]=c;f[a+24>>2]=0;f[d>>2]=n;q=f[m>>2]|0;r=c;break}}else{q=b;r=f[h>>2]|0}while(0);im(r|0,f[e>>2]|0,((q+-1|0)>>>5<<2)+4|0)|0;o=f[m>>2]|0}f[a+24>>2]=o;return a|0}function gg(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;f[c>>2]=1;d=a+4|0;e=c+8|0;g=c+12|0;c=f[e>>2]|0;i=(f[g>>2]|0)-c|0;if(i>>>0<4294967292){Lk(e,i+4|0,0);j=f[e>>2]|0}else j=c;c=j+i|0;i=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;b[c>>0]=i;b[c+1>>0]=i>>8;b[c+2>>0]=i>>16;b[c+3>>0]=i>>24;i=a+8|0;c=a+12|0;d=f[i>>2]|0;if((f[c>>2]|0)!=(d|0)){j=0;k=d;do{d=k+(j<<2)|0;l=f[e>>2]|0;m=(f[g>>2]|0)-l|0;if(m>>>0<4294967292){Lk(e,m+4|0,0);n=f[e>>2]|0}else n=l;l=n+m|0;m=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;b[l>>0]=m;b[l+1>>0]=m>>8;b[l+2>>0]=m>>16;b[l+3>>0]=m>>24;j=j+1|0;k=f[i>>2]|0}while(j>>>0<(f[c>>2]|0)-k>>2>>>0)}k=a+20|0;a=f[e>>2]|0;c=(f[g>>2]|0)-a|0;if(c>>>0<4294967292){Lk(e,c+4|0,0);o=f[e>>2]|0;p=o+c|0;q=h[k>>0]|h[k+1>>0]<<8|h[k+2>>0]<<16|h[k+3>>0]<<24;b[p>>0]=q;b[p+1>>0]=q>>8;b[p+2>>0]=q>>16;b[p+3>>0]=q>>24;return}else{o=a;p=o+c|0;q=h[k>>0]|h[k+1>>0]<<8|h[k+2>>0]<<16|h[k+3>>0]<<24;b[p>>0]=q;b[p+1>>0]=q>>8;b[p+2>>0]=q>>16;b[p+3>>0]=q>>24;return}}function hg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=a+8|0;e=f[d>>2]|0;g=f[a>>2]|0;h=g;do if(e-g>>2>>>0>=b>>>0){i=a+4|0;j=f[i>>2]|0;k=j-g>>2;l=k>>>0>>0;m=l?k:b;n=j;if(m|0){j=m;m=h;while(1){f[m>>2]=f[c>>2];j=j+-1|0;if(!j)break;else m=m+4|0}}if(!l){m=h+(b<<2)|0;if((m|0)==(n|0))return;else{o=i;p=n+(~((n+-4-m|0)>>>2)<<2)|0;break}}else{m=b-k|0;j=m;q=n;while(1){f[q>>2]=f[c>>2];j=j+-1|0;if(!j)break;else q=q+4|0}o=i;p=n+(m<<2)|0;break}}else{q=g;if(!g)r=e;else{j=a+4|0;k=f[j>>2]|0;if((k|0)!=(h|0))f[j>>2]=k+(~((k+-4-g|0)>>>2)<<2);Oq(q);f[d>>2]=0;f[j>>2]=0;f[a>>2]=0;r=0}if(b>>>0>1073741823)aq(a);j=r>>1;q=r>>2>>>0<536870911?(j>>>0>>0?b:j):1073741823;if(q>>>0>1073741823)aq(a);j=ln(q<<2)|0;k=a+4|0;f[k>>2]=j;f[a>>2]=j;f[d>>2]=j+(q<<2);q=b;l=j;while(1){f[l>>2]=f[c>>2];q=q+-1|0;if(!q)break;else l=l+4|0}o=k;p=j+(b<<2)|0}while(0);f[o>>2]=p;return}function ig(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0;h=jh(a,b,c,d,g)|0;i=f[e>>2]|0;j=f[d>>2]|0;k=f[g>>2]|0;g=f[k>>2]|0;l=(f[k+4>>2]|0)-g>>3;if(l>>>0<=i>>>0)aq(k);m=g;if(l>>>0<=j>>>0)aq(k);if((f[m+(i<<3)>>2]|0)>>>0>=(f[m+(j<<3)>>2]|0)>>>0){n=h;return n|0}f[d>>2]=i;f[e>>2]=j;j=f[d>>2]|0;e=f[c>>2]|0;if(l>>>0<=j>>>0)aq(k);if(l>>>0<=e>>>0)aq(k);if((f[m+(j<<3)>>2]|0)>>>0>=(f[m+(e<<3)>>2]|0)>>>0){n=h+1|0;return n|0}f[c>>2]=j;f[d>>2]=e;e=f[c>>2]|0;d=f[b>>2]|0;if(l>>>0<=e>>>0)aq(k);if(l>>>0<=d>>>0)aq(k);if((f[m+(e<<3)>>2]|0)>>>0>=(f[m+(d<<3)>>2]|0)>>>0){n=h+2|0;return n|0}f[b>>2]=e;f[c>>2]=d;d=f[b>>2]|0;c=f[a>>2]|0;if(l>>>0<=d>>>0)aq(k);if(l>>>0<=c>>>0)aq(k);if((f[m+(d<<3)>>2]|0)>>>0>=(f[m+(c<<3)>>2]|0)>>>0){n=h+3|0;return n|0}f[a>>2]=d;f[b>>2]=c;n=h+4|0;return n|0}function jg(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;d=b[c>>0]|0;e=b[c+1>>0]|0;g=b[c+2>>0]|0;c=((d&255^318)+239^e&255)+239^g&255;h=f[a+4>>2]|0;if(!h){i=0;return i|0}j=h+-1|0;k=(j&h|0)==0;if(!k)if(c>>>0>>0)l=c;else l=(c>>>0)%(h>>>0)|0;else l=c&j;m=f[(f[a>>2]|0)+(l<<2)>>2]|0;if(!m){i=0;return i|0}a=f[m>>2]|0;if(!a){i=0;return i|0}if(k){k=a;while(1){m=f[k+4>>2]|0;n=(m|0)==(c|0);if(!(n|(m&j|0)==(l|0))){i=0;o=23;break}if(((n?(n=k+8|0,(b[n>>0]|0)==d<<24>>24):0)?(b[n+1>>0]|0)==e<<24>>24:0)?(b[n+2>>0]|0)==g<<24>>24:0){i=k;o=23;break}k=f[k>>2]|0;if(!k){i=0;o=23;break}}if((o|0)==23)return i|0}else p=a;while(1){a=f[p+4>>2]|0;if((a|0)==(c|0)){k=p+8|0;if(((b[k>>0]|0)==d<<24>>24?(b[k+1>>0]|0)==e<<24>>24:0)?(b[k+2>>0]|0)==g<<24>>24:0){i=p;o=23;break}}else{if(a>>>0>>0)q=a;else q=(a>>>0)%(h>>>0)|0;if((q|0)!=(l|0)){i=0;o=23;break}}p=f[p>>2]|0;if(!p){i=0;o=23;break}}if((o|0)==23)return i|0;return 0}function kg(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;b=u;u=u+16|0;c=b;d=a+36|0;e=a+4|0;g=a+8|0;h=(f[g>>2]|0)-(f[e>>2]|0)>>2;i=a+40|0;j=f[i>>2]|0;k=f[d>>2]|0;l=j-k>>2;m=k;k=j;if(h>>>0<=l>>>0){if(h>>>0>>0?(j=m+(h<<2)|0,(j|0)!=(k|0)):0){m=k;do{k=m+-4|0;f[i>>2]=k;n=f[k>>2]|0;f[k>>2]=0;if(n|0)Va[f[(f[n>>2]|0)+4>>2]&127](n);m=f[i>>2]|0}while((m|0)!=(j|0))}}else Eg(d,h-l|0);if((f[g>>2]|0)==(f[e>>2]|0)){o=1;u=b;return o|0}l=a+52|0;h=a+48|0;j=0;while(1){Xa[f[(f[a>>2]|0)+56>>2]&15](c,a,j);m=(f[d>>2]|0)+(j<<2)|0;i=f[c>>2]|0;f[c>>2]=0;n=f[m>>2]|0;f[m>>2]=i;if(n|0)Va[f[(f[n>>2]|0)+4>>2]&127](n);n=f[c>>2]|0;f[c>>2]=0;if(n|0)Va[f[(f[n>>2]|0)+4>>2]&127](n);n=f[(f[d>>2]|0)+(j<<2)>>2]|0;if(!n){o=0;p=19;break}if(j>>>0<(f[l>>2]|0)>>>0?f[(f[h>>2]|0)+(j>>>5<<2)>>2]&1<<(j&31)|0:0)Bp(n);j=j+1|0;if(j>>>0>=(f[g>>2]|0)-(f[e>>2]|0)>>2>>>0){o=1;p=19;break}}if((p|0)==19){u=b;return o|0}return 0}function lg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=u;u=u+16|0;e=d+4|0;g=d;ci(f[c+12>>2]|0,b)|0;h=f[c+8>>2]|0;a:do if(h|0){i=b+16|0;j=b+4|0;k=h;while(1){l=k;if(!(Bf(0,b,l+8|0)|0)){m=0;break}n=l+20|0;o=(f[l+24>>2]|0)-(f[n>>2]|0)|0;ci(o,b)|0;l=f[n>>2]|0;n=i;p=f[n+4>>2]|0;if(!((p|0)>0|(p|0)==0&(f[n>>2]|0)>>>0>0)){f[g>>2]=f[j>>2];f[e>>2]=f[g>>2];Me(b,e,l,l+o|0)|0}k=f[k>>2]|0;if(!k)break a}u=d;return m|0}while(0);ci(f[c+32>>2]|0,b)|0;e=f[c+28>>2]|0;if(!e){m=1;u=d;return m|0}else q=e;while(1){e=q;if(!(Bf(0,b,e+8|0)|0)){m=0;r=10;break}lg(a,b,f[e+20>>2]|0)|0;q=f[q>>2]|0;if(!q){m=1;r=10;break}}if((r|0)==10){u=d;return m|0}return 0}function mg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;h=a+8|0;i=a+12|0;j=f[h>>2]|0;if((f[i>>2]|0)==(j|0)){k=ln(76)|0;vn(k,b);l=k;f[g>>2]=l;k=f[i>>2]|0;if(k>>>0<(f[a+16>>2]|0)>>>0){f[g>>2]=0;f[k>>2]=l;f[i>>2]=k+4;m=g}else{Qg(h,g);m=g}g=f[m>>2]|0;f[m>>2]=0;if(!g){u=c;return 1}Va[f[(f[g>>2]|0)+4>>2]&127](g);u=c;return 1}g=f[j>>2]|0;f[d>>2]=b;j=g+4|0;m=g+8|0;h=f[m>>2]|0;if((h|0)==(f[g+12>>2]|0))Ri(j,d);else{f[h>>2]=b;f[m>>2]=h+4}h=f[d>>2]|0;b=g+16|0;k=g+20|0;g=f[k>>2]|0;i=f[b>>2]|0;l=g-i>>2;a=i;if((h|0)<(l|0)){n=a;o=h}else{i=h+1|0;f[e>>2]=-1;p=g;if(i>>>0<=l>>>0)if(i>>>0>>0?(g=a+(i<<2)|0,(g|0)!=(p|0)):0){f[k>>2]=p+(~((p+-4-g|0)>>>2)<<2);q=h;r=a}else{q=h;r=a}else{Ch(b,i-l|0,e);q=f[d>>2]|0;r=f[b>>2]|0}n=r;o=q}f[n+(o<<2)>>2]=((f[m>>2]|0)-(f[j>>2]|0)>>2)+-1;u=c;return 1}function ng(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;d=c;e=b;g=d-e|0;h=g>>2;i=a+8|0;j=f[i>>2]|0;k=f[a>>2]|0;l=k;if(h>>>0>j-k>>2>>>0){m=k;if(!k)n=j;else{j=a+4|0;o=f[j>>2]|0;if((o|0)!=(l|0))f[j>>2]=o+(~((o+-4-k|0)>>>2)<<2);Oq(m);f[i>>2]=0;f[j>>2]=0;f[a>>2]=0;n=0}if(h>>>0>1073741823)aq(a);j=n>>1;m=n>>2>>>0<536870911?(j>>>0>>0?h:j):1073741823;if(m>>>0>1073741823)aq(a);j=ln(m<<2)|0;n=a+4|0;f[n>>2]=j;f[a>>2]=j;f[i>>2]=j+(m<<2);if((g|0)<=0)return;kh(j|0,b|0,g|0)|0;f[n>>2]=j+(g>>>2<<2);return}g=a+4|0;a=f[g>>2]|0;j=a-k>>2;k=h>>>0>j>>>0;h=k?b+(j<<2)|0:c;c=a;j=a;if((h|0)==(b|0))p=l;else{a=h+-4-e|0;e=b;b=l;while(1){f[b>>2]=f[e>>2];e=e+4|0;if((e|0)==(h|0))break;else b=b+4|0}p=l+((a>>>2)+1<<2)|0}if(k){k=d-h|0;if((k|0)<=0)return;kh(j|0,h|0,k|0)|0;f[g>>2]=(f[g>>2]|0)+(k>>>2<<2);return}else{if((p|0)==(c|0))return;f[g>>2]=c+(~((c+-4-p|0)>>>2)<<2);return}}function og(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=f[a+8>>2]|0;e=a+76|0;g=f[e>>2]|0;h=f[g+80>>2]|0;b[c+84>>0]=0;i=c+68|0;j=c+72|0;k=f[j>>2]|0;l=f[i>>2]|0;m=k-l>>2;n=l;l=k;if(h>>>0<=m>>>0)if(h>>>0>>0?(k=n+(h<<2)|0,(k|0)!=(l|0)):0){f[j>>2]=l+(~((l+-4-k|0)>>>2)<<2);o=g;p=h}else{o=g;p=h}else{Ch(i,h-m|0,3600);m=f[e>>2]|0;o=m;p=f[m+80>>2]|0}m=(f[o+100>>2]|0)-(f[o+96>>2]|0)|0;e=(m|0)/12|0;if(!m){q=1;return q|0}m=c+68|0;c=f[o+96>>2]|0;o=f[d+28>>2]|0;d=f[(f[a+80>>2]|0)+12>>2]|0;a=0;while(1){h=a*3|0;i=f[d+(f[o+(h<<2)>>2]<<2)>>2]|0;if(i>>>0>=p>>>0){q=0;r=10;break}g=f[m>>2]|0;f[g+(f[c+(a*12|0)>>2]<<2)>>2]=i;i=f[d+(f[o+(h+1<<2)>>2]<<2)>>2]|0;if(i>>>0>=p>>>0){q=0;r=10;break}f[g+(f[c+(a*12|0)+4>>2]<<2)>>2]=i;i=f[d+(f[o+(h+2<<2)>>2]<<2)>>2]|0;if(i>>>0>=p>>>0){q=0;r=10;break}f[g+(f[c+(a*12|0)+8>>2]<<2)>>2]=i;a=a+1|0;if(a>>>0>=e>>>0){q=1;r=10;break}}if((r|0)==10)return q|0;return 0}function pg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;e=u;u=u+16|0;g=e;if(!(xh(a,c,d)|0)){h=0;u=e;return h|0}if((b[(f[a+8>>2]|0)+24>>0]|0)!=3){h=0;u=e;return h|0}i=f[c+48>>2]|0;c=ln(32)|0;f[g>>2]=c;f[g+8>>2]=-2147483616;f[g+4>>2]=17;j=c;k=14495;l=j+17|0;do{b[j>>0]=b[k>>0]|0;j=j+1|0;k=k+1|0}while((j|0)<(l|0));b[c+17>>0]=0;c=i+16|0;k=f[c>>2]|0;if(k){j=c;l=k;a:while(1){k=l;while(1){if((f[k+16>>2]|0)>=(d|0))break;m=f[k+4>>2]|0;if(!m){n=j;break a}else k=m}l=f[k>>2]|0;if(!l){n=k;break}else j=k}if(((n|0)!=(c|0)?(f[n+16>>2]|0)<=(d|0):0)?(d=n+20|0,(Jh(d,g)|0)!=0):0)o=Hk(d,g,-1)|0;else p=12}else p=12;if((p|0)==12)o=Hk(i,g,-1)|0;if((b[g+11>>0]|0)<0)Oq(f[g>>2]|0);if((o|0)<1){h=0;u=e;return h|0}ip(a+40|0,o);h=1;u=e;return h|0}function qg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=f[b>>2]|0;d=f[b+4>>2]|0;e=f[b+8>>2]|0;b=((c^318)+239^d)+239^e;g=f[a+4>>2]|0;if(!g){h=0;return h|0}i=g+-1|0;j=(i&g|0)==0;if(!j)if(b>>>0>>0)k=b;else k=(b>>>0)%(g>>>0)|0;else k=b&i;l=f[(f[a>>2]|0)+(k<<2)>>2]|0;if(!l){h=0;return h|0}a=f[l>>2]|0;if(!a){h=0;return h|0}if(j){j=a;while(1){l=f[j+4>>2]|0;m=(l|0)==(b|0);if(!(m|(l&i|0)==(k|0))){h=0;n=23;break}if(((m?(f[j+8>>2]|0)==(c|0):0)?(f[j+12>>2]|0)==(d|0):0)?(f[j+16>>2]|0)==(e|0):0){h=j;n=23;break}j=f[j>>2]|0;if(!j){h=0;n=23;break}}if((n|0)==23)return h|0}else o=a;while(1){a=f[o+4>>2]|0;if((a|0)==(b|0)){if(((f[o+8>>2]|0)==(c|0)?(f[o+12>>2]|0)==(d|0):0)?(f[o+16>>2]|0)==(e|0):0){h=o;n=23;break}}else{if(a>>>0>>0)p=a;else p=(a>>>0)%(g>>>0)|0;if((p|0)!=(k|0)){h=0;n=23;break}}o=f[o>>2]|0;if(!o){h=0;n=23;break}}if((n|0)==23)return h|0;return 0}function rg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;e=c;g=d-e|0;h=a+8|0;i=f[h>>2]|0;j=f[a>>2]|0;k=j;if(g>>>0>(i-j|0)>>>0){if(!j)l=i;else{i=a+4|0;if((f[i>>2]|0)!=(k|0))f[i>>2]=k;Oq(k);f[h>>2]=0;f[i>>2]=0;f[a>>2]=0;l=0}if((g|0)<0)aq(a);i=l<<1;m=l>>>0<1073741823?(i>>>0>>0?g:i):2147483647;if((m|0)<0)aq(a);i=ln(m)|0;l=a+4|0;f[l>>2]=i;f[a>>2]=i;f[h>>2]=i+m;if((c|0)==(d|0))return;else{n=c;o=i}do{b[o>>0]=b[n>>0]|0;n=n+1|0;o=(f[l>>2]|0)+1|0;f[l>>2]=o}while((n|0)!=(d|0));return}n=a+4|0;a=(f[n>>2]|0)-j|0;j=g>>>0>a>>>0;g=c+a|0;a=j?g:d;if((a|0)==(c|0))p=k;else{o=c;c=k;while(1){b[c>>0]=b[o>>0]|0;o=o+1|0;if((o|0)==(a|0))break;else c=c+1|0}p=k+(a-e)|0}if(!j){if((f[n>>2]|0)==(p|0))return;f[n>>2]=p;return}if((a|0)==(d|0))return;a=g;g=f[n>>2]|0;do{b[g>>0]=b[a>>0]|0;a=a+1|0;g=(f[n>>2]|0)+1|0;f[n>>2]=g}while((a|0)!=(d|0));return}function sg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;d=c>>>1&1431655765|c<<1&-1431655766;c=d>>>2&858993459|d<<2&-858993460;d=c>>>4&252645135|c<<4&-252645136;c=d>>>8&16711935|d<<8&-16711936;d=32-b|0;e=(c>>>16|c<<16)>>>d;c=e-(e>>>1&1431655765)|0;g=(c>>>2&858993459)+(c&858993459)|0;c=(X((g>>>4)+g&252645135,16843009)|0)>>>24;g=b-c|0;h=f[a>>2]|0;i=h;j=Vn(f[i>>2]|0,f[i+4>>2]|0,g|0,((g|0)<0)<<31>>31|0)|0;g=h;f[g>>2]=j;f[g+4>>2]=I;g=h+8|0;h=g;j=Vn(f[h>>2]|0,f[h+4>>2]|0,c|0,0)|0;c=g;f[c>>2]=j;f[c+4>>2]=I;c=a+28|0;j=f[c>>2]|0;g=32-j|0;h=a+24|0;do if((g|0)>=(b|0)){i=-1>>>d<>2]&~i|i&e<>2]=k;i=j+b|0;f[c>>2]=i;if((i|0)!=32)return;i=a+16|0;l=f[i>>2]|0;if((l|0)==(f[a+20>>2]|0)){Ri(a+12|0,h);m=0;n=0;break}else{f[l>>2]=k;f[i>>2]=l+4;m=0;n=0;break}}else{l=-1>>>j<>2]&~l|l&e<>2]=i;l=a+16|0;k=f[l>>2]|0;if((k|0)==(f[a+20>>2]|0))Ri(a+12|0,h);else{f[k>>2]=i;f[l>>2]=k+4}k=b-g|0;m=k;n=-1>>>(32-k|0)&e>>>g}while(0);f[h>>2]=n;f[c>>2]=m;return}function tg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0;e=c&255;g=(d|0)!=0;a:do if(g&(a&3|0)!=0){h=c&255;i=a;j=d;while(1){if((b[i>>0]|0)==h<<24>>24){k=i;l=j;m=6;break a}n=i+1|0;o=j+-1|0;p=(o|0)!=0;if(p&(n&3|0)!=0){i=n;j=o}else{q=n;r=o;s=p;m=5;break}}}else{q=a;r=d;s=g;m=5}while(0);if((m|0)==5)if(s){k=q;l=r;m=6}else{t=q;u=0}b:do if((m|0)==6){q=c&255;if((b[k>>0]|0)==q<<24>>24){t=k;u=l}else{r=X(e,16843009)|0;c:do if(l>>>0>3){s=k;g=l;while(1){d=f[s>>2]^r;if((d&-2139062144^-2139062144)&d+-16843009|0)break;d=s+4|0;a=g+-4|0;if(a>>>0>3){s=d;g=a}else{v=d;w=a;m=11;break c}}x=s;y=g}else{v=k;w=l;m=11}while(0);if((m|0)==11)if(!w){t=v;u=0;break}else{x=v;y=w}while(1){if((b[x>>0]|0)==q<<24>>24){t=x;u=y;break b}r=x+1|0;y=y+-1|0;if(!y){t=r;u=0;break}else x=r}}}while(0);return (u|0?t:0)|0}function ug(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0;c=a+4|0;d=f[c>>2]|0;e=f[a>>2]|0;g=e;do if((d|0)==(e|0)){h=a+8|0;i=f[h>>2]|0;j=a+12|0;k=f[j>>2]|0;l=k;if(i>>>0>>0){k=i;m=((l-k>>2)+1|0)/2|0;n=i+(m<<2)|0;o=k-d|0;k=o>>2;p=n+(0-k<<2)|0;if(!k){q=n;r=i}else{im(p|0,d|0,o|0)|0;q=p;r=f[h>>2]|0}f[c>>2]=q;f[h>>2]=r+(m<<2);s=q;break}m=l-g>>1;l=(m|0)==0?1:m;if(l>>>0>1073741823){m=ra(8)|0;Oo(m,16035);f[m>>2]=7256;va(m|0,1112,110)}m=ln(l<<2)|0;p=m;o=m+((l+3|0)>>>2<<2)|0;n=o;k=m+(l<<2)|0;if((d|0)==(i|0)){t=n;u=d}else{l=o;m=n;v=d;do{f[l>>2]=f[v>>2];l=m+4|0;m=l;v=v+4|0}while((v|0)!=(i|0));t=m;u=f[a>>2]|0}f[a>>2]=p;f[c>>2]=n;f[h>>2]=t;f[j>>2]=k;if(!u)s=o;else{Oq(u);s=f[c>>2]|0}}else s=d;while(0);f[s+-4>>2]=f[b>>2];f[c>>2]=(f[c>>2]|0)+-4;return}function vg(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+8|0;i=a+4|0;if((f[i>>2]|0)==-1){j=0;u=d;return j|0}k=f[a+8>>2]|0;l=c+16|0;m=l;n=f[m>>2]|0;o=f[m+4>>2]|0;if(!((o|0)>0|(o|0)==0&n>>>0>0)){m=(f[a+12>>2]|0)-k|0;p=c+4|0;f[g>>2]=f[p>>2];f[e>>2]=f[g>>2];Me(c,e,k,k+m|0)|0;m=l;k=f[m>>2]|0;q=f[m+4>>2]|0;m=a+20|0;if((q|0)>0|(q|0)==0&k>>>0>0){r=q;s=k;t=g}else{f[g>>2]=f[p>>2];f[e>>2]=f[g>>2];Me(c,e,m,m+4|0)|0;m=l;r=f[m+4>>2]|0;s=f[m>>2]|0;t=g}}else{r=o;s=n;t=g}b[h>>0]=f[i>>2];if(!((r|0)>0|(r|0)==0&s>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];Me(c,e,h,h+1|0)|0}j=1;u=d;return j|0}function wg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0;e=u;u=u+16|0;g=e+4|0;h=e;i=a+8|0;a=f[i>>2]|0;j=f[a+40>>2]|0;k=Lq((j|0)>-1?j:-1)|0;l=c+4|0;m=f[l>>2]|0;n=f[c>>2]|0;if((m|0)==(n|0)){Mq(k);u=e;return 1}o=d+16|0;p=d+4|0;q=k+j|0;j=0;r=n;n=a;s=a;a=m;while(1){m=f[r+(j<<2)>>2]|0;if(!(b[n+84>>0]|0))t=f[(f[n+68>>2]|0)+(m<<2)>>2]|0;else t=m;m=s+48|0;v=f[m>>2]|0;w=f[m+4>>2]|0;m=s+40|0;x=f[m>>2]|0;y=un(x|0,f[m+4>>2]|0,t|0,0)|0;m=Vn(y|0,I|0,v|0,w|0)|0;kh(k|0,(f[f[s>>2]>>2]|0)+m|0,x|0)|0;x=o;m=f[x+4>>2]|0;if((m|0)>0|(m|0)==0&(f[x>>2]|0)>>>0>0){z=r;A=a}else{f[h>>2]=f[p>>2];f[g>>2]=f[h>>2];Me(d,g,k,q)|0;z=f[c>>2]|0;A=f[l>>2]|0}x=j+1|0;if(x>>>0>=A-z>>2>>>0)break;m=f[i>>2]|0;j=x;r=z;n=m;s=m;a=A}Mq(k);u=e;return 1}function xg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;d=(f[b>>2]|0)*3|0;if((d|0)==-1){e=0;g=-1;f[c>>2]=g;return e|0}b=f[a+12>>2]|0;h=f[b+12>>2]|0;if((f[h+(d<<2)>>2]|0)==-1){e=0;g=d;f[c>>2]=g;return e|0}i=f[b>>2]|0;b=f[a+152>>2]|0;if((f[b+(f[i+(d<<2)>>2]<<2)>>2]|0)==-1){a=d+1|0;j=((a>>>0)%3|0|0)==0?d+-2|0:a;if((j|0)==-1){e=0;g=-1;f[c>>2]=g;return e|0}if((f[h+(j<<2)>>2]|0)==-1){e=0;g=j;f[c>>2]=g;return e|0}if((f[b+(f[i+(j<<2)>>2]<<2)>>2]|0)==-1){a=j+1|0;k=((a>>>0)%3|0|0)==0?j+-2|0:a;if((k|0)==-1){e=0;g=-1;f[c>>2]=g;return e|0}if((f[h+(k<<2)>>2]|0)==-1){e=0;g=k;f[c>>2]=g;return e|0}if((f[b+(f[i+(k<<2)>>2]<<2)>>2]|0)==-1){i=k+1|0;e=1;g=((i>>>0)%3|0|0)==0?k+-2|0:i;f[c>>2]=g;return e|0}else l=k}else l=j}else l=d;while(1){d=(((l>>>0)%3|0|0)==0?2:-1)+l|0;if((d|0)==-1)break;j=f[h+(d<<2)>>2]|0;if((j|0)==-1)break;d=j+(((j>>>0)%3|0|0)==0?2:-1)|0;if((d|0)==-1)break;else l=d}e=0;g=(((l>>>0)%3|0|0)==0?2:-1)+l|0;f[c>>2]=g;return e|0}function yg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;e=a+4|0;g=f[e>>2]|0;if(!g){f[c>>2]=e;h=e;return h|0}e=b[d+11>>0]|0;i=e<<24>>24<0;j=i?f[d+4>>2]|0:e&255;e=i?f[d>>2]|0:d;d=a+4|0;a=g;while(1){g=a+16|0;i=b[g+11>>0]|0;k=i<<24>>24<0;l=k?f[a+20>>2]|0:i&255;i=l>>>0>>0;m=i?l:j;if((m|0)!=0?(n=Vk(e,k?f[g>>2]|0:g,m)|0,(n|0)!=0):0)if((n|0)<0)o=8;else o=10;else if(j>>>0>>0)o=8;else o=10;if((o|0)==8){o=0;n=f[a>>2]|0;if(!n){o=9;break}else{p=a;q=n}}else if((o|0)==10){o=0;n=j>>>0>>0?j:l;if((n|0)!=0?(l=Vk(k?f[g>>2]|0:g,e,n)|0,(l|0)!=0):0){if((l|0)>=0){o=16;break}}else o=12;if((o|0)==12?(o=0,!i):0){o=16;break}r=a+4|0;i=f[r>>2]|0;if(!i){o=15;break}else{p=r;q=i}}d=p;a=q}if((o|0)==9){f[c>>2]=a;h=a;return h|0}else if((o|0)==15){f[c>>2]=a;h=r;return h|0}else if((o|0)==16){f[c>>2]=a;h=d;return h|0}return 0}function zg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0;d=u;u=u+32|0;e=d+24|0;g=d+16|0;h=d+8|0;i=d;j=a+4|0;k=f[j>>2]|0;l=f[b>>2]|0;m=f[b+4>>2]|0;b=f[c>>2]|0;n=f[c+4>>2]|0;c=b-l<<3;f[j>>2]=k-m+n+c;j=(f[a>>2]|0)+(k>>>5<<2)|0;a=k&31;k=j;if((m|0)!=(a|0)){f[e>>2]=l;f[e+4>>2]=m;f[g>>2]=b;f[g+4>>2]=n;f[h>>2]=k;f[h+4>>2]=a;xe(i,e,g,h);u=d;return}h=n-m+c|0;c=l;if((h|0)>0){if(!m){o=h;p=j;q=0;r=l;s=c}else{l=32-m|0;n=(h|0)<(l|0)?h:l;g=-1>>>(l-n|0)&-1<>2]=f[j>>2]&~g|f[c>>2]&g;g=n+m|0;l=c+4|0;o=h-n|0;p=j+(g>>>5<<2)|0;q=g&31;r=l;s=l}l=(o|0)/32|0;im(p|0,r|0,l<<2|0)|0;r=o-(l<<5)|0;o=p+(l<<2)|0;p=o;if((r|0)>0){g=-1>>>(32-r|0);f[o>>2]=f[o>>2]&~g|f[s+(l<<2)>>2]&g;t=r;v=p}else{t=q;v=p}}else{t=m;v=k}f[i>>2]=v;f[i+4>>2]=t;u=d;return}function Ag(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0;c=a+8|0;d=f[c>>2]|0;e=a+12|0;g=f[e>>2]|0;h=g;do if((d|0)==(g|0)){i=a+4|0;j=f[i>>2]|0;k=f[a>>2]|0;l=k;if(j>>>0>k>>>0){m=j;n=((m-l>>2)+1|0)/-2|0;o=j+(n<<2)|0;p=d-m|0;m=p>>2;if(!m)q=j;else{im(o|0,j|0,p|0)|0;q=f[i>>2]|0}p=o+(m<<2)|0;f[c>>2]=p;f[i>>2]=q+(n<<2);r=p;break}p=h-l>>1;l=(p|0)==0?1:p;if(l>>>0>1073741823){p=ra(8)|0;Oo(p,16035);f[p>>2]=7256;va(p|0,1112,110)}p=ln(l<<2)|0;n=p;m=p+(l>>>2<<2)|0;o=m;s=p+(l<<2)|0;if((j|0)==(d|0)){t=o;u=k}else{k=m;m=o;l=j;do{f[k>>2]=f[l>>2];k=m+4|0;m=k;l=l+4|0}while((l|0)!=(d|0));t=m;u=f[a>>2]|0}f[a>>2]=n;f[i>>2]=o;f[c>>2]=t;f[e>>2]=s;if(!u)r=t;else{Oq(u);r=f[c>>2]|0}}else r=d;while(0);f[r>>2]=f[b>>2];f[c>>2]=(f[c>>2]|0)+4;return}function Bg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;h=a+12|0;i=a+4|0;j=f[i>>2]|0;if((j|0)==(f[a+8>>2]|0)){Ri(a,h);k=f[i>>2]|0}else{f[j>>2]=f[h>>2];l=j+4|0;f[i>>2]=l;k=l}l=f[a>>2]|0;f[g>>2]=k-l;k=b+16|0;j=k;m=f[j+4>>2]|0;if(!((m|0)>0|(m|0)==0&(f[j>>2]|0)>>>0>0)){f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;j=f[a>>2]|0;m=f[g>>2]|0;g=k;k=f[g+4>>2]|0;if((k|0)>0|(k|0)==0&(f[g>>2]|0)>>>0>0){n=j;o=e}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,j,j+m|0)|0;n=f[a>>2]|0;o=e}}else{n=l;o=e}e=f[i>>2]|0;if((e|0)==(n|0)){f[h>>2]=0;p=a+16|0;f[p>>2]=0;u=c;return}f[i>>2]=e+(~((e+-4-n|0)>>>2)<<2);f[h>>2]=0;p=a+16|0;f[p>>2]=0;u=c;return}function Cg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;e=c;g=d-e|0;h=a+8|0;i=f[h>>2]|0;j=f[a>>2]|0;k=j;if(g>>>0>(i-j|0)>>>0){if(!j)l=i;else{i=a+4|0;if((f[i>>2]|0)!=(k|0))f[i>>2]=k;Oq(k);f[h>>2]=0;f[i>>2]=0;f[a>>2]=0;l=0}if((g|0)<0)aq(a);i=l<<1;m=l>>>0<1073741823?(i>>>0>>0?g:i):2147483647;if((m|0)<0)aq(a);i=ln(m)|0;l=a+4|0;f[l>>2]=i;f[a>>2]=i;f[h>>2]=i+m;if((c|0)==(d|0))return;else{n=c;o=i}do{b[o>>0]=b[n>>0]|0;n=n+1|0;o=(f[l>>2]|0)+1|0;f[l>>2]=o}while((n|0)!=(d|0));return}else{n=a+4|0;a=(f[n>>2]|0)-j|0;j=g>>>0>a>>>0;g=c+a|0;a=j?g:d;o=a-e|0;if(o|0)im(k|0,c|0,o|0)|0;c=k+o|0;if(!j){if((f[n>>2]|0)==(c|0))return;f[n>>2]=c;return}if((a|0)==(d|0))return;a=g;g=f[n>>2]|0;do{b[g>>0]=b[a>>0]|0;a=a+1|0;g=(f[n>>2]|0)+1|0;f[n>>2]=g}while((a|0)!=(d|0));return}}function Dg(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=u;u=u+16|0;d=c;if(b[a+352>>0]|0){u=c;return 1}e=a+8|0;g=f[e>>2]|0;h=(f[g+12>>2]|0)-(f[g+8>>2]|0)|0;g=h>>2;i=a+172|0;Gi(i,g+-1|0);if(!((g|0)!=1&(h|0)>0)){u=c;return 1}h=a+12|0;a=0;j=0;while(1){k=f[(f[(f[e>>2]|0)+8>>2]|0)+(a<<2)>>2]|0;if(!(f[k+56>>2]|0))l=j;else{m=f[i>>2]|0;f[m+(j*136|0)>>2]=a;n=f[m+(j*136|0)+104>>2]|0;o=m+(j*136|0)+108|0;p=f[o>>2]|0;if((p|0)!=(n|0))f[o>>2]=p+(~((p+-4-n|0)>>>2)<<2);n=f[h>>2]|0;gk(m+(j*136|0)+104|0,(f[n+4>>2]|0)-(f[n>>2]|0)>>2);n=(f[i>>2]|0)+(j*136|0)+116|0;m=f[h>>2]|0;p=(f[m+4>>2]|0)-(f[m>>2]|0)>>2;f[d>>2]=-1;hg(n,p,d);p=f[i>>2]|0;f[p+(j*136|0)+128>>2]=0;Gc(p+(j*136|0)+4|0,f[e>>2]|0,f[h>>2]|0,k)|0;l=j+1|0}a=a+1|0;if((a|0)>=(g|0))break;else j=l}u=c;return 1}function Eg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;c=a+8|0;d=f[c>>2]|0;e=a+4|0;g=f[e>>2]|0;h=g;if(d-g>>2>>>0>=b>>>0){sj(g|0,0,b<<2|0)|0;f[e>>2]=g+(b<<2);return}i=f[a>>2]|0;j=g-i>>2;g=j+b|0;k=i;if(g>>>0>1073741823)aq(a);l=d-i|0;d=l>>1;m=l>>2>>>0<536870911?(d>>>0>>0?g:d):1073741823;do if(m)if(m>>>0>1073741823){d=ra(8)|0;Oo(d,16035);f[d>>2]=7256;va(d|0,1112,110)}else{n=ln(m<<2)|0;break}else n=0;while(0);d=n+(j<<2)|0;sj(d|0,0,b<<2|0)|0;b=d;j=n+(m<<2)|0;m=n+(g<<2)|0;if((h|0)==(k|0)){o=b;p=i;q=h}else{i=h;h=b;b=d;do{i=i+-4|0;d=f[i>>2]|0;f[i>>2]=0;f[b+-4>>2]=d;b=h+-4|0;h=b}while((i|0)!=(k|0));o=h;p=f[a>>2]|0;q=f[e>>2]|0}f[a>>2]=o;f[e>>2]=m;f[c>>2]=j;j=p;if((q|0)!=(j|0)){c=q;do{c=c+-4|0;q=f[c>>2]|0;f[c>>2]=0;if(q|0)Va[f[(f[q>>2]|0)+4>>2]&127](q)}while((c|0)!=(j|0))}if(!p)return;Oq(p);return}function Fg(a,c,d,e,g,h){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=$(h);var i=0,j=0,k=0,l=0,m=0,n=0;i=u;u=u+16|0;j=i;k=i+4|0;f[j>>2]=c;c=ln(32)|0;f[k>>2]=c;f[k+8>>2]=-2147483616;f[k+4>>2]=17;l=c;m=14495;n=l+17|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[c+17>>0]=0;Xj(Hd(a,j)|0,k,d);if((b[k+11>>0]|0)<0)Oq(f[k>>2]|0);d=ln(32)|0;f[k>>2]=d;f[k+8>>2]=-2147483616;f[k+4>>2]=19;l=d;m=14438;n=l+19|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[d+19>>0]=0;si(Hd(a,j)|0,k,g,e);if((b[k+11>>0]|0)<0)Oq(f[k>>2]|0);e=ln(32)|0;f[k>>2]=e;f[k+8>>2]=-2147483616;f[k+4>>2]=18;l=e;m=14458;n=l+18|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[e+18>>0]=0;Tj(Hd(a,j)|0,k,h);if((b[k+11>>0]|0)>=0){u=i;return}Oq(f[k>>2]|0);u=i;return}function Gg(a){a=a|0;tk(a);tk(a+32|0);tk(a+64|0);tk(a+96|0);tk(a+128|0);tk(a+160|0);tk(a+192|0);tk(a+224|0);tk(a+256|0);tk(a+288|0);tk(a+320|0);tk(a+352|0);tk(a+384|0);tk(a+416|0);tk(a+448|0);tk(a+480|0);tk(a+512|0);tk(a+544|0);tk(a+576|0);tk(a+608|0);tk(a+640|0);tk(a+672|0);tk(a+704|0);tk(a+736|0);tk(a+768|0);tk(a+800|0);tk(a+832|0);tk(a+864|0);tk(a+896|0);tk(a+928|0);tk(a+960|0);tk(a+992|0);tk(a+1024|0);return}function Hg(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;c=u;u=u+16|0;d=c;if(b[a+288>>0]|0){u=c;return 1}e=a+8|0;g=f[e>>2]|0;h=(f[g+12>>2]|0)-(f[g+8>>2]|0)|0;g=h>>2;i=a+172|0;Gi(i,g+-1|0);if(!((g|0)!=1&(h|0)>0)){u=c;return 1}h=a+12|0;a=0;j=0;while(1){k=f[(f[(f[e>>2]|0)+8>>2]|0)+(a<<2)>>2]|0;if(!(f[k+56>>2]|0))l=j;else{m=f[i>>2]|0;f[m+(j*136|0)>>2]=a;n=f[m+(j*136|0)+104>>2]|0;o=m+(j*136|0)+108|0;p=f[o>>2]|0;if((p|0)!=(n|0))f[o>>2]=p+(~((p+-4-n|0)>>>2)<<2);n=f[h>>2]|0;gk(m+(j*136|0)+104|0,(f[n+4>>2]|0)-(f[n>>2]|0)>>2);n=(f[i>>2]|0)+(j*136|0)+116|0;m=f[h>>2]|0;p=(f[m+4>>2]|0)-(f[m>>2]|0)>>2;f[d>>2]=-1;hg(n,p,d);p=f[i>>2]|0;f[p+(j*136|0)+128>>2]=0;Gc(p+(j*136|0)+4|0,f[e>>2]|0,f[h>>2]|0,k)|0;l=j+1|0}a=a+1|0;if((a|0)>=(g|0))break;else j=l}u=c;return 1}function Ig(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;d=c;e=b;g=d-e|0;h=g>>2;i=a+8|0;j=f[i>>2]|0;k=f[a>>2]|0;l=k;if(h>>>0<=j-k>>2>>>0){m=a+4|0;n=(f[m>>2]|0)-k>>2;o=h>>>0>n>>>0;p=o?b+(n<<2)|0:c;c=p;n=c-e|0;e=n>>2;if(e|0)im(k|0,b|0,n|0)|0;n=l+(e<<2)|0;if(o){o=d-c|0;if((o|0)<=0)return;kh(f[m>>2]|0,p|0,o|0)|0;f[m>>2]=(f[m>>2]|0)+(o>>>2<<2);return}else{o=f[m>>2]|0;if((o|0)==(n|0))return;f[m>>2]=o+(~((o+-4-n|0)>>>2)<<2);return}}n=k;if(!k)q=j;else{j=a+4|0;o=f[j>>2]|0;if((o|0)!=(l|0))f[j>>2]=o+(~((o+-4-k|0)>>>2)<<2);Oq(n);f[i>>2]=0;f[j>>2]=0;f[a>>2]=0;q=0}if(h>>>0>1073741823)aq(a);j=q>>1;n=q>>2>>>0<536870911?(j>>>0>>0?h:j):1073741823;if(n>>>0>1073741823)aq(a);j=ln(n<<2)|0;h=a+4|0;f[h>>2]=j;f[a>>2]=j;f[i>>2]=j+(n<<2);if((g|0)<=0)return;kh(j|0,b|0,g|0)|0;f[h>>2]=j+(g>>>2<<2);return}function Jg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0.0,p=0,q=0.0,r=0.0,s=0.0,t=0,v=0.0;e=u;u=u+16|0;g=e;h=c+1|0;f[g>>2]=0;i=g+4|0;f[i>>2]=0;f[g+8>>2]=0;do if(h)if(h>>>0>1073741823)aq(g);else{j=ln(h<<2)|0;f[g>>2]=j;k=j+(h<<2)|0;f[g+8>>2]=k;sj(j|0,0,(c<<2)+4|0)|0;f[i>>2]=k;l=j;m=k;n=j;break}else{l=0;m=0;n=0}while(0);if((b|0)>0){g=0;do{j=l+(f[a+(g<<2)>>2]<<2)|0;f[j>>2]=(f[j>>2]|0)+1;g=g+1|0}while((g|0)!=(b|0))}o=+(b|0);if((c|0)<0){p=0;q=0.0}else{c=0;r=0.0;b=0;while(1){g=f[l+(b<<2)>>2]|0;s=+(g|0);if((g|0)>0){t=c+1|0;v=r+ +Zg(s/o)*s}else{t=c;v=r}b=b+1|0;if((b|0)==(h|0)){p=t;q=v;break}else{c=t;r=v}}}if(d|0)f[d>>2]=p;v=-q;p=~~v>>>0;d=+K(v)>=1.0?(v>0.0?~~+Y(+J(v/4294967296.0),4294967295.0)>>>0:~~+W((v-+(~~v>>>0))/4294967296.0)>>>0):0;if(!l){I=d;u=e;return p|0}if((m|0)!=(l|0))f[i>>2]=m+(~((m+-4-l|0)>>>2)<<2);Oq(n);I=d;u=e;return p|0}function Kg(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;e=u;u=u+16|0;g=e+4|0;h=e;i=ln(32)|0;f[a>>2]=i;f[a+4>>2]=c+4;c=a+8|0;b[c>>0]=0;f[i+16>>2]=f[d>>2];a=i+20|0;f[i+24>>2]=0;f[i+28>>2]=0;j=i+24|0;f[a>>2]=j;i=f[d+4>>2]|0;k=d+8|0;if((i|0)==(k|0)){b[c>>0]=1;u=e;return}d=j;j=i;while(1){i=j+16|0;f[h>>2]=d;f[g>>2]=f[h>>2];ph(a,g,i,i)|0;i=f[j+4>>2]|0;if(!i){l=j+8|0;m=f[l>>2]|0;if((f[m>>2]|0)==(j|0))n=m;else{m=l;do{l=f[m>>2]|0;m=l+8|0;o=f[m>>2]|0}while((f[o>>2]|0)!=(l|0));n=o}}else{m=i;while(1){o=f[m>>2]|0;if(!o)break;else m=o}n=m}if((n|0)==(k|0))break;else j=n}b[c>>0]=1;u=e;return}function Lg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;d=u;u=u+16|0;e=d;f[e>>2]=b;g=a+8|0;if(((f[a+12>>2]|0)-(f[g>>2]|0)>>2|0)<=(b|0))Bh(g,b+1|0);h=f[(f[c>>2]|0)+56>>2]|0;do if((h|0)<5){i=a+20+(h*12|0)+4|0;j=f[i>>2]|0;if((j|0)==(f[a+20+(h*12|0)+8>>2]|0)){Ri(a+20+(h*12|0)|0,e);break}else{f[j>>2]=b;f[i>>2]=j+4;break}}while(0);b=f[c>>2]|0;h=f[e>>2]|0;f[b+60>>2]=h;e=(f[g>>2]|0)+(h<<2)|0;f[c>>2]=0;c=f[e>>2]|0;f[e>>2]=b;if(!c){u=d;return}b=c+88|0;e=f[b>>2]|0;f[b>>2]=0;if(e|0){b=f[e+8>>2]|0;if(b|0){h=e+12|0;if((f[h>>2]|0)!=(b|0))f[h>>2]=b;Oq(b)}Oq(e)}e=f[c+68>>2]|0;if(e|0){b=c+72|0;h=f[b>>2]|0;if((h|0)!=(e|0))f[b>>2]=h+(~((h+-4-e|0)>>>2)<<2);Oq(e)}e=c+64|0;h=f[e>>2]|0;f[e>>2]=0;if(h|0){e=f[h>>2]|0;if(e|0){b=h+4|0;if((f[b>>2]|0)!=(e|0))f[b>>2]=e;Oq(e)}Oq(h)}Oq(c);u=d;return}function Mg(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0;b=u;u=u+16|0;c=b+4|0;d=b;e=a+8|0;g=f[e>>2]|0;gk(f[a+4>>2]|0,(f[g+56>>2]|0)-(f[g+52>>2]|0)>>2);g=a+84|0;a=f[g>>2]|0;if(!a){h=f[(f[e>>2]|0)+64>>2]|0;i=(f[h+4>>2]|0)-(f[h>>2]|0)>>2;h=(i>>>0)/3|0;if(i>>>0<=2){u=b;return 1}i=0;do{f[d>>2]=i*3;f[c>>2]=f[d>>2];Zb(e,c);i=i+1|0}while((i|0)<(h|0));u=b;return 1}else{h=f[a>>2]|0;if((f[a+4>>2]|0)==(h|0)){u=b;return 1}a=0;i=h;do{f[d>>2]=f[i+(a<<2)>>2];f[c>>2]=f[d>>2];Zb(e,c);a=a+1|0;h=f[g>>2]|0;i=f[h>>2]|0}while(a>>>0<(f[h+4>>2]|0)-i>>2>>>0);u=b;return 1}return 0}function Ng(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0;d=u;u=u+48|0;e=d+16|0;g=d;h=d+32|0;i=a+28|0;j=f[i>>2]|0;f[h>>2]=j;k=a+20|0;l=(f[k>>2]|0)-j|0;f[h+4>>2]=l;f[h+8>>2]=b;f[h+12>>2]=c;b=l+c|0;l=a+60|0;f[g>>2]=f[l>>2];f[g+4>>2]=h;f[g+8>>2]=2;j=to(Aa(146,g|0)|0)|0;a:do if((b|0)!=(j|0)){g=2;m=b;n=h;o=j;while(1){if((o|0)<0)break;m=m-o|0;p=f[n+4>>2]|0;q=o>>>0>p>>>0;r=q?n+8|0:n;s=g+(q<<31>>31)|0;t=o-(q?p:0)|0;f[r>>2]=(f[r>>2]|0)+t;p=r+4|0;f[p>>2]=(f[p>>2]|0)-t;f[e>>2]=f[l>>2];f[e+4>>2]=r;f[e+8>>2]=s;o=to(Aa(146,e|0)|0)|0;if((m|0)==(o|0)){v=3;break a}else{g=s;n=r}}f[a+16>>2]=0;f[i>>2]=0;f[k>>2]=0;f[a>>2]=f[a>>2]|32;if((g|0)==2)w=0;else w=c-(f[n+4>>2]|0)|0}else v=3;while(0);if((v|0)==3){v=f[a+44>>2]|0;f[a+16>>2]=v+(f[a+48>>2]|0);a=v;f[i>>2]=a;f[k>>2]=a;w=c}u=d;return w|0}function Og(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0;f[a>>2]=6192;b=f[a+68>>2]|0;if(b|0){c=a+72|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+56>>2]|0;if(b|0){d=a+60|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+44>>2]|0;if(b|0){c=a+48|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+32>>2]|0;if(b|0){d=a+36|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+20>>2]|0;if(b|0){c=a+24|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}hi(a+8|0);b=a+4|0;a=f[b>>2]|0;f[b>>2]=0;if(!a)return;b=a+40|0;d=f[b>>2]|0;if(d|0){c=a+44|0;e=f[c>>2]|0;if((e|0)==(d|0))g=d;else{h=e;do{e=h+-4|0;f[c>>2]=e;i=f[e>>2]|0;f[e>>2]=0;if(i|0){bj(i);Oq(i)}h=f[c>>2]|0}while((h|0)!=(d|0));g=f[b>>2]|0}Oq(g)}bj(a);Oq(a);return}function Pg(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;c=a+12|0;d=f[a>>2]|0;e=a+8|0;g=f[e>>2]|0;h=(g|0)==-1;if(!(b[c>>0]|0)){do if(((!h?(i=(((g>>>0)%3|0|0)==0?2:-1)+g|0,(i|0)!=-1):0)?(f[(f[d>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)==0:0)?(j=f[(f[(f[d+64>>2]|0)+12>>2]|0)+(i<<2)>>2]|0,(j|0)!=-1):0)if(!((j>>>0)%3|0)){k=j+2|0;break}else{k=j+-1|0;break}else k=-1;while(0);f[e>>2]=k;return}k=g+1|0;if(((!h?(h=((k>>>0)%3|0|0)==0?g+-2|0:k,(h|0)!=-1):0)?(f[(f[d>>2]|0)+(h>>>5<<2)>>2]&1<<(h&31)|0)==0:0)?(k=f[(f[(f[d+64>>2]|0)+12>>2]|0)+(h<<2)>>2]|0,h=k+1|0,(k|0)!=-1):0){g=((h>>>0)%3|0|0)==0?k+-2|0:h;f[e>>2]=g;if((g|0)!=-1){if((g|0)!=(f[a+4>>2]|0))return;f[e>>2]=-1;return}}else f[e>>2]=-1;g=f[a+4>>2]|0;do if((((g|0)!=-1?(a=(((g>>>0)%3|0|0)==0?2:-1)+g|0,(a|0)!=-1):0)?(f[(f[d>>2]|0)+(a>>>5<<2)>>2]&1<<(a&31)|0)==0:0)?(h=f[(f[(f[d+64>>2]|0)+12>>2]|0)+(a<<2)>>2]|0,(h|0)!=-1):0)if(!((h>>>0)%3|0)){l=h+2|0;break}else{l=h+-1|0;break}else l=-1;while(0);f[e>>2]=l;b[c>>0]=0;return}function Qg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=a+4|0;d=f[a>>2]|0;e=(f[c>>2]|0)-d>>2;g=e+1|0;if(g>>>0>1073741823)aq(a);h=a+8|0;i=(f[h>>2]|0)-d|0;d=i>>1;j=i>>2>>>0<536870911?(d>>>0>>0?g:d):1073741823;do if(j)if(j>>>0>1073741823){d=ra(8)|0;Oo(d,16035);f[d>>2]=7256;va(d|0,1112,110)}else{k=ln(j<<2)|0;break}else k=0;while(0);d=k+(e<<2)|0;e=d;g=k+(j<<2)|0;j=f[b>>2]|0;f[b>>2]=0;f[d>>2]=j;j=d+4|0;b=f[a>>2]|0;k=f[c>>2]|0;if((k|0)==(b|0)){l=e;m=b;n=b}else{i=k;k=e;e=d;do{i=i+-4|0;d=f[i>>2]|0;f[i>>2]=0;f[e+-4>>2]=d;e=k+-4|0;k=e}while((i|0)!=(b|0));l=k;m=f[a>>2]|0;n=f[c>>2]|0}f[a>>2]=l;f[c>>2]=j;f[h>>2]=g;g=m;if((n|0)!=(g|0)){h=n;do{h=h+-4|0;n=f[h>>2]|0;f[h>>2]=0;if(n|0)Va[f[(f[n>>2]|0)+4>>2]&127](n)}while((h|0)!=(g|0))}if(!m)return;Oq(m);return}function Rg(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=a+4|0;a=f[d>>2]|0;do if(a|0){e=b[c+11>>0]|0;g=e<<24>>24<0;h=g?f[c+4>>2]|0:e&255;e=g?f[c>>2]|0:c;g=d;i=a;a:while(1){j=i;while(1){k=j+16|0;l=b[k+11>>0]|0;m=l<<24>>24<0;n=m?f[j+20>>2]|0:l&255;l=h>>>0>>0?h:n;if((l|0)!=0?(o=Vk(m?f[k>>2]|0:k,e,l)|0,(o|0)!=0):0){if((o|0)>=0)break}else p=6;if((p|0)==6?(p=0,n>>>0>=h>>>0):0)break;n=f[j+4>>2]|0;if(!n){q=g;break a}else j=n}i=f[j>>2]|0;if(!i){q=j;break}else g=j}if((q|0)!=(d|0)){g=q+16|0;i=b[g+11>>0]|0;n=i<<24>>24<0;o=n?f[q+20>>2]|0:i&255;i=o>>>0>>0?o:h;if(i|0?(l=Vk(e,n?f[g>>2]|0:g,i)|0,l|0):0){if((l|0)<0)break;else r=q;return r|0}if(h>>>0>=o>>>0){r=q;return r|0}}}while(0);r=d;return r|0}function Sg(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;c=a+8|0;f[c>>2]=f[b>>2];fg(a+12|0,b+4|0)|0;d=a+44|0;e=b+36|0;f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];f[d+8>>2]=f[e+8>>2];f[d+12>>2]=f[e+12>>2];if((c|0)==(b|0)){f[a+96>>2]=f[b+88>>2];return}else{ng(a+60|0,f[b+52>>2]|0,f[b+56>>2]|0);ng(a+72|0,f[b+64>>2]|0,f[b+68>>2]|0);ng(a+84|0,f[b+76>>2]|0,f[b+80>>2]|0);f[a+96>>2]=f[b+88>>2];Ig(a+100|0,f[b+92>>2]|0,f[b+96>>2]|0);return}}function Tg(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;d=a+8|0;e=f[d>>2]|0;g=a+4|0;h=f[g>>2]|0;if(((e-h|0)/12|0)>>>0>=b>>>0){i=b;j=h;do{f[j>>2]=f[c>>2];f[j+4>>2]=f[c+4>>2];f[j+8>>2]=f[c+8>>2];j=(f[g>>2]|0)+12|0;f[g>>2]=j;i=i+-1|0}while((i|0)!=0);return}i=f[a>>2]|0;j=(h-i|0)/12|0;h=j+b|0;if(h>>>0>357913941)aq(a);k=(e-i|0)/12|0;i=k<<1;e=k>>>0<178956970?(i>>>0>>0?h:i):357913941;do if(e)if(e>>>0>357913941){i=ra(8)|0;Oo(i,16035);f[i>>2]=7256;va(i|0,1112,110)}else{l=ln(e*12|0)|0;break}else l=0;while(0);i=l+(j*12|0)|0;j=l+(e*12|0)|0;e=b;b=i;l=i;do{f[b>>2]=f[c>>2];f[b+4>>2]=f[c+4>>2];f[b+8>>2]=f[c+8>>2];b=l+12|0;l=b;e=e+-1|0}while((e|0)!=0);e=f[a>>2]|0;b=(f[g>>2]|0)-e|0;c=i+(((b|0)/-12|0)*12|0)|0;if((b|0)>0)kh(c|0,e|0,b|0)|0;f[a>>2]=c;f[g>>2]=l;f[d>>2]=j;if(!e)return;Oq(e);return}function Ug(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=a+4|0;d=f[a>>2]|0;e=(f[c>>2]|0)-d>>2;g=e+1|0;if(g>>>0>1073741823)aq(a);h=a+8|0;i=(f[h>>2]|0)-d|0;d=i>>1;j=i>>2>>>0<536870911?(d>>>0>>0?g:d):1073741823;do if(j)if(j>>>0>1073741823){d=ra(8)|0;Oo(d,16035);f[d>>2]=7256;va(d|0,1112,110)}else{k=ln(j<<2)|0;break}else k=0;while(0);d=k+(e<<2)|0;e=d;g=k+(j<<2)|0;j=f[b>>2]|0;f[b>>2]=0;f[d>>2]=j;j=d+4|0;b=f[a>>2]|0;k=f[c>>2]|0;if((k|0)==(b|0)){l=e;m=b;n=b}else{i=k;k=e;e=d;do{i=i+-4|0;d=f[i>>2]|0;f[i>>2]=0;f[e+-4>>2]=d;e=k+-4|0;k=e}while((i|0)!=(b|0));l=k;m=f[a>>2]|0;n=f[c>>2]|0}f[a>>2]=l;f[c>>2]=j;f[h>>2]=g;g=m;if((n|0)!=(g|0)){h=n;do{h=h+-4|0;n=f[h>>2]|0;f[h>>2]=0;if(n|0){bj(n);Oq(n)}}while((h|0)!=(g|0))}if(!m)return;Oq(m);return}function Vg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;e=f[b>>2]|0;g=f[a>>2]|0;h=f[d>>2]|0;d=f[h>>2]|0;i=(f[h+4>>2]|0)-d>>3;if(i>>>0<=e>>>0)aq(h);j=d;if(i>>>0<=g>>>0)aq(h);d=f[j+(e<<3)>>2]|0;k=f[c>>2]|0;if(i>>>0<=k>>>0)aq(h);l=j+(g<<3)|0;m=(f[j+(k<<3)>>2]|0)>>>0>>0;if(d>>>0<(f[l>>2]|0)>>>0){if(m){f[a>>2]=k;f[c>>2]=g;n=1;return n|0}f[a>>2]=e;f[b>>2]=g;d=f[c>>2]|0;if(i>>>0<=d>>>0)aq(h);if((f[j+(d<<3)>>2]|0)>>>0>=(f[l>>2]|0)>>>0){n=1;return n|0}f[b>>2]=d;f[c>>2]=g;n=2;return n|0}if(!m){n=0;return n|0}f[b>>2]=k;f[c>>2]=e;e=f[b>>2]|0;c=f[a>>2]|0;if(i>>>0<=e>>>0)aq(h);if(i>>>0<=c>>>0)aq(h);if((f[j+(e<<3)>>2]|0)>>>0>=(f[j+(c<<3)>>2]|0)>>>0){n=1;return n|0}f[a>>2]=e;f[b>>2]=c;n=2;return n|0}function Wg(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0;b=u;u=u+16|0;c=b+4|0;d=b;e=a+8|0;g=f[e>>2]|0;gk(f[a+4>>2]|0,(f[g+28>>2]|0)-(f[g+24>>2]|0)>>2);g=a+84|0;a=f[g>>2]|0;if(!a){h=f[e>>2]|0;i=(f[h+4>>2]|0)-(f[h>>2]|0)>>2;h=(i>>>0)/3|0;if(i>>>0<=2){u=b;return 1}i=0;do{f[d>>2]=i*3;f[c>>2]=f[d>>2];dc(e,c);i=i+1|0}while((i|0)<(h|0));u=b;return 1}else{h=f[a>>2]|0;if((f[a+4>>2]|0)==(h|0)){u=b;return 1}a=0;i=h;do{f[d>>2]=f[i+(a<<2)>>2];f[c>>2]=f[d>>2];dc(e,c);a=a+1|0;h=f[g>>2]|0;i=f[h>>2]|0}while(a>>>0<(f[h+4>>2]|0)-i>>2>>>0);u=b;return 1}return 0}function Xg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;a=u;u=u+16|0;e=a;if(!b){g=0;u=a;return g|0}h=b+96|0;i=b+100|0;f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;b=f[i>>2]|0;j=f[h>>2]|0;k=(b-j|0)/12|0;l=j;j=b;if(k>>>0>=c>>>0){if(k>>>0>c>>>0?(b=l+(c*12|0)|0,(b|0)!=(j|0)):0)f[i>>2]=j+(~(((j+-12-b|0)>>>0)/12|0)*12|0);if(!c){g=1;u=a;return g|0}}else Tg(h,c-k|0,e);k=0;b=f[h>>2]|0;while(1){j=k*3|0;l=f[d+(j<<2)>>2]|0;m=f[d+(j+1<<2)>>2]|0;n=f[d+(j+2<<2)>>2]|0;j=((f[i>>2]|0)-b|0)/12|0;o=k;k=k+1|0;if(o>>>0>>0){p=b;q=b}else{f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;Tg(h,k-j|0,e);j=f[h>>2]|0;p=j;q=j}f[p+(o*12|0)>>2]=l;f[p+(o*12|0)+4>>2]=m;f[p+(o*12|0)+8>>2]=n;if((k|0)==(c|0)){g=1;break}else b=q}u=a;return g|0}function Yg(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0;e=u;u=u+80|0;g=e+36|0;h=e;ao(g,c);Ke(h,b,c);Ph(g,h);Ej(h+24|0,f[h+28>>2]|0);Oj(h+12|0,f[h+16>>2]|0);Ej(h,f[h+4>>2]|0);cj(a,g,d);Ej(g+24|0,f[g+28>>2]|0);Oj(g+12|0,f[g+16>>2]|0);Ej(g,f[g+4>>2]|0);u=e;return}function Zg(a){a=+a;var b=0,c=0,d=0,e=0.0,g=0,h=0,i=0,j=0,k=0,l=0,m=0.0,n=0.0,o=0.0,q=0.0,r=0.0,t=0.0;p[s>>3]=a;b=f[s>>2]|0;c=f[s+4>>2]|0;d=(c|0)<0;do if(d|c>>>0<1048576){if((b|0)==0&(c&2147483647|0)==0){e=-1.0/(a*a);break}if(d){e=(a-a)/0.0;break}else{p[s>>3]=a*18014398509481984.0;g=f[s+4>>2]|0;h=-1077;i=g;j=f[s>>2]|0;k=g;l=9;break}}else if(c>>>0<=2146435071)if((b|0)==0&0==0&(c|0)==1072693248)e=0.0;else{h=-1023;i=c;j=b;k=c;l=9}else e=a;while(0);if((l|0)==9){l=i+614242|0;f[s>>2]=j;f[s+4>>2]=(l&1048575)+1072079006;a=+p[s>>3]+-1.0;m=a*a*.5;n=a/(a+2.0);o=n*n;q=o*o;p[s>>3]=a-m;j=f[s+4>>2]|0;f[s>>2]=0;f[s+4>>2]=j;r=+p[s>>3];t=a-r-m+n*(m+(q*(q*(q*.15313837699209373+.22222198432149784)+.3999999999940942)+o*(q*(q*(q*.14798198605116586+.1818357216161805)+.2857142874366239)+.6666666666666735)));q=r*1.4426950407214463;o=+(h+(l>>>20)|0);m=q+o;e=m+(q+(o-m)+(t*1.4426950407214463+(t+r)*1.6751713164886512e-10))}return +e}function _g(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;d=u;u=u+16|0;e=d;g=ln(32)|0;f[e>>2]=g;f[e+8>>2]=-2147483616;f[e+4>>2]=17;h=g;i=14390;j=h+17|0;do{b[h>>0]=b[i>>0]|0;h=h+1|0;i=i+1|0}while((h|0)<(j|0));b[g+17>>0]=0;g=c+16|0;i=f[g>>2]|0;if(i){h=g;j=i;a:while(1){i=j;while(1){if((f[i+16>>2]|0)>=(a|0))break;k=f[i+4>>2]|0;if(!k){l=h;break a}else i=k}j=f[i>>2]|0;if(!j){l=i;break}else h=i}if(((l|0)!=(g|0)?(f[l+16>>2]|0)<=(a|0):0)?(a=l+20|0,(Jh(a,e)|0)!=0):0)m=a;else n=10}else n=10;if((n|0)==10)m=c;c=Hk(m,e,-1)|0;if((b[e+11>>0]|0)>=0){o=(c|0)==-1;p=c>>>0>6;q=p?-2:c;r=o?-1:q;u=d;return r|0}Oq(f[e>>2]|0);o=(c|0)==-1;p=c>>>0>6;q=p?-2:c;r=o?-1:q;u=d;return r|0}function $g(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0;d=u;u=u+16|0;e=d;g=f[c>>2]|0;f[c>>2]=0;f[e>>2]=g;Lg(a,b,e);g=f[e>>2]|0;f[e>>2]=0;if(g|0){e=g+88|0;c=f[e>>2]|0;f[e>>2]=0;if(c|0){e=f[c+8>>2]|0;if(e|0){h=c+12|0;if((f[h>>2]|0)!=(e|0))f[h>>2]=e;Oq(e)}Oq(c)}c=f[g+68>>2]|0;if(c|0){e=g+72|0;h=f[e>>2]|0;if((h|0)!=(c|0))f[e>>2]=h+(~((h+-4-c|0)>>>2)<<2);Oq(c)}c=g+64|0;h=f[c>>2]|0;f[c>>2]=0;if(h|0){c=f[h>>2]|0;if(c|0){e=h+4|0;if((f[e>>2]|0)!=(c|0))f[e>>2]=c;Oq(c)}Oq(h)}Oq(g)}g=a+84|0;h=a+88|0;a=f[h>>2]|0;c=f[g>>2]|0;e=a-c>>2;if((e|0)>(b|0)){u=d;return}i=b+1|0;b=a;if(i>>>0>e>>>0){Fh(g,i-e|0);u=d;return}if(i>>>0>=e>>>0){u=d;return}e=c+(i<<2)|0;if((e|0)==(b|0)){u=d;return}f[h>>2]=b+(~((b+-4-e|0)>>>2)<<2);u=d;return}function ah(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+16|0;e=d;g=a+4|0;f[g>>2]=c;f[a+8>>2]=f[c+52>>2];h=f[a+184>>2]|0;i=a+188|0;j=f[i>>2]|0;if((j|0)!=(h|0))f[i>>2]=j+(~((j+-4-h|0)>>>2)<<2);h=f[c+48>>2]|0;c=ln(32)|0;f[e>>2]=c;f[e+8>>2]=-2147483616;f[e+4>>2]=19;j=c;i=15351;k=j+19|0;do{b[j>>0]=b[i>>0]|0;j=j+1|0;i=i+1|0}while((j|0)<(k|0));b[c+19>>0]=0;c=(Jh(h,e)|0)==0;if((b[e+11>>0]|0)<0)Oq(f[e>>2]|0);h=f[(f[g>>2]|0)+48>>2]|0;if(c){c=(mi(h)|0)>5&1;b[a+352>>0]=c;u=d;return 1}c=ln(32)|0;f[e>>2]=c;f[e+8>>2]=-2147483616;f[e+4>>2]=19;j=c;i=15351;k=j+19|0;do{b[j>>0]=b[i>>0]|0;j=j+1|0;i=i+1|0}while((j|0)<(k|0));b[c+19>>0]=0;c=(Yj(h,e,0)|0)&1;b[a+352>>0]=c;if((b[e+11>>0]|0)<0)Oq(f[e>>2]|0);u=d;return 1}function bh(a){a=a|0;var c=0,d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0;c=a+108|0;d=(f[a+112>>2]|0)-(f[c>>2]|0)|0;e=(d|0)/12|0;g=a+4|0;ci(e,f[(f[g>>2]|0)+44>>2]|0)|0;if(!d)return 1;d=0;a=0;while(1){i=f[c>>2]|0;j=i+(d*12|0)+4|0;ci((f[j>>2]|0)-a|0,f[(f[g>>2]|0)+44>>2]|0)|0;ci((f[j>>2]|0)-(f[i+(d*12|0)>>2]|0)|0,f[(f[g>>2]|0)+44>>2]|0)|0;d=d+1|0;if(d>>>0>=e>>>0)break;else a=f[j>>2]|0}zi(f[(f[g>>2]|0)+44>>2]|0,e,0,0)|0;a=0;do{d=f[(f[g>>2]|0)+44>>2]|0;j=d+16|0;i=f[j+4>>2]|0;if((i|0)>0|(i|0)==0&(f[j>>2]|0)>>>0>0){j=f[d+12>>2]|0;d=j+4|0;i=f[d>>2]|0;k=b[(f[c>>2]|0)+(a*12|0)+8>>0]&1;l=i>>>3;m=i&7;i=(f[j>>2]|0)+l|0;b[i>>0]=(1<>0]|0);i=(f[j>>2]|0)+l|0;b[i>>0]=k<>0]|0);f[d>>2]=(f[d>>2]|0)+1}a=a+1|0}while(a>>>0>>0);eg(f[(f[g>>2]|0)+44>>2]|0);return 1}function ch(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0;e=u;u=u+80|0;g=e+36|0;h=e;io(g,c);Ke(h,b,c);Ph(g,h);Ej(h+24|0,f[h+28>>2]|0);Oj(h+12|0,f[h+16>>2]|0);Ej(h,f[h+4>>2]|0);cj(a,g,d);Ej(g+24|0,f[g+28>>2]|0);Oj(g+12|0,f[g+16>>2]|0);Ej(g,f[g+4>>2]|0);u=e;return}function dh(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+16|0;e=d;g=a+4|0;f[g>>2]=c;f[a+8>>2]=f[c+52>>2];h=f[a+184>>2]|0;i=a+188|0;j=f[i>>2]|0;if((j|0)!=(h|0))f[i>>2]=j+(~((j+-4-h|0)>>>2)<<2);h=f[c+48>>2]|0;c=ln(32)|0;f[e>>2]=c;f[e+8>>2]=-2147483616;f[e+4>>2]=19;j=c;i=15351;k=j+19|0;do{b[j>>0]=b[i>>0]|0;j=j+1|0;i=i+1|0}while((j|0)<(k|0));b[c+19>>0]=0;c=(Jh(h,e)|0)==0;if((b[e+11>>0]|0)<0)Oq(f[e>>2]|0);h=f[(f[g>>2]|0)+48>>2]|0;if(c){c=(mi(h)|0)>5&1;b[a+288>>0]=c;u=d;return 1}c=ln(32)|0;f[e>>2]=c;f[e+8>>2]=-2147483616;f[e+4>>2]=19;j=c;i=15351;k=j+19|0;do{b[j>>0]=b[i>>0]|0;j=j+1|0;i=i+1|0}while((j|0)<(k|0));b[c+19>>0]=0;c=(Yj(h,e,0)|0)&1;b[a+288>>0]=c;if((b[e+11>>0]|0)<0)Oq(f[e>>2]|0);u=d;return 1}function eh(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;g=u;u=u+32|0;h=g+16|0;i=g+8|0;j=g;k=d-e|0;d=a+8|0;if((k|0)>0){a=0-e|0;l=i+4|0;m=j+4|0;n=h+4|0;o=k;do{k=b+(o<<2)|0;p=k+(a<<2)|0;q=c+(o<<2)|0;r=f[k+4>>2]|0;s=f[p>>2]|0;t=f[p+4>>2]|0;f[i>>2]=f[k>>2];f[l>>2]=r;f[j>>2]=s;f[m>>2]=t;Od(h,d,i,j);f[q>>2]=f[h>>2];f[q+4>>2]=f[n>>2];o=o-e|0}while((o|0)>0)}o=e>>>0>1073741823?-1:e<<2;e=Lq(o)|0;sj(e|0,0,o|0)|0;o=f[b+4>>2]|0;n=f[e>>2]|0;m=f[e+4>>2]|0;f[i>>2]=f[b>>2];f[i+4>>2]=o;f[j>>2]=n;f[j+4>>2]=m;Od(h,d,i,j);f[c>>2]=f[h>>2];f[c+4>>2]=f[h+4>>2];Mq(e);u=g;return 1}function fh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=u;u=u+32|0;d=c+12|0;e=c;g=f[b+100>>2]|0;h=f[b+96>>2]|0;b=g-h|0;i=(b|0)/12|0;f[d>>2]=0;j=d+4|0;f[j>>2]=0;f[d+8>>2]=0;k=h;do if(b)if(i>>>0>357913941)aq(d);else{l=ln(b)|0;f[d>>2]=l;f[d+8>>2]=l+(i*12|0);sj(l|0,0,b|0)|0;f[j>>2]=l+b;m=l;break}else m=0;while(0);f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;if((g|0)!=(h|0)){h=e+4|0;g=e+8|0;b=0;do{l=k+(b*12|0)|0;f[e>>2]=f[l>>2];f[e+4>>2]=f[l+4>>2];f[e+8>>2]=f[l+8>>2];f[m+(b*12|0)>>2]=f[e>>2];f[m+(b*12|0)+4>>2]=f[h>>2];f[m+(b*12|0)+8>>2]=f[g>>2];b=b+1|0}while(b>>>0>>0)}Kj(a,d);a=f[d>>2]|0;if(!a){u=c;return}d=f[j>>2]|0;if((d|0)!=(a|0))f[j>>2]=d+(~(((d+-12-a|0)>>>0)/12|0)*12|0);Oq(a);u=c;return}function gh(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;if(c>>>0>4294967279)aq(a);d=a+11|0;e=b[d>>0]|0;g=e<<24>>24<0;if(g){h=f[a+4>>2]|0;i=(f[a+8>>2]&2147483647)+-1|0}else{h=e&255;i=10}j=h>>>0>c>>>0?h:c;c=j>>>0<11;k=c?10:(j+16&-16)+-1|0;do if((k|0)!=(i|0)){do if(c){j=f[a>>2]|0;if(g){l=0;m=j;n=a;o=13}else{Fo(a,j,(e&255)+1|0)|0;Oq(j);o=16}}else{j=k+1|0;p=ln(j)|0;if(g){l=1;m=f[a>>2]|0;n=p;o=13;break}else{Fo(p,a,(e&255)+1|0)|0;q=p;r=j;s=a+4|0;o=15;break}}while(0);if((o|0)==13){j=a+4|0;Fo(n,m,(f[j>>2]|0)+1|0)|0;Oq(m);if(l){q=n;r=k+1|0;s=j;o=15}else o=16}if((o|0)==15){f[a+8>>2]=r|-2147483648;f[s>>2]=h;f[a>>2]=q;break}else if((o|0)==16){b[d>>0]=h;break}}while(0);return}function hh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;c=f[b>>2]|0;if((c|0)==-1){d=-1;return d|0}b=f[(f[a+24>>2]|0)+(c<<2)>>2]|0;if((b|0)==-1){d=0;return d|0}c=a+12|0;a=0;e=0;g=b;a:while(1){b:do if(e){h=a+1|0;i=(((g>>>0)%3|0|0)==0?2:-1)+g|0;if((i|0)==-1){d=h;j=15;break a}k=f[(f[c>>2]|0)+(i<<2)>>2]|0;if((k|0)==-1){d=h;j=15;break a}if(!((k>>>0)%3|0)){l=k+2|0;m=h;break}else{l=k+-1|0;m=h;break}}else{h=a;k=g;while(1){i=h+1|0;n=k+1|0;o=((n>>>0)%3|0|0)==0?k+-2|0:n;if((o|0)==-1){l=b;m=i;break b}n=f[(f[c>>2]|0)+(o<<2)>>2]|0;o=n+1|0;if((n|0)==-1){l=b;m=i;break b}k=((o>>>0)%3|0|0)==0?n+-2|0:o;if((k|0)==-1){l=b;m=i;break b}if((k|0)==(b|0)){d=i;j=15;break a}else h=i}}while(0);if((l|0)==-1){d=m;j=15;break}else{a=m;e=1;g=l}}if((j|0)==15)return d|0;return 0}function ih(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;d=a+8|0;Vg(a,a+4|0,d,c)|0;e=a+12|0;if((e|0)==(b|0))return;g=f[c>>2]|0;c=f[g>>2]|0;h=(f[g+4>>2]|0)-c>>3;i=c;c=e;e=d;a:while(1){d=f[c>>2]|0;j=f[e>>2]|0;if(h>>>0<=d>>>0){k=5;break}if(h>>>0<=j>>>0){k=7;break}l=i+(d<<3)|0;if((f[l>>2]|0)>>>0<(f[i+(j<<3)>>2]|0)>>>0){m=e;n=c;o=j;while(1){f[n>>2]=o;if((m|0)==(a|0)){p=a;break}j=m+-4|0;o=f[j>>2]|0;if(h>>>0<=o>>>0){k=11;break a}if((f[l>>2]|0)>>>0>=(f[i+(o<<3)>>2]|0)>>>0){p=m;break}else{q=m;m=j;n=q}}f[p>>2]=d}n=c+4|0;if((n|0)==(b|0)){k=3;break}else{m=c;c=n;e=m}}if((k|0)==3)return;else if((k|0)==5)aq(g);else if((k|0)==7)aq(g);else if((k|0)==11)aq(g)}function jh(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=Vg(a,b,c,e)|0;h=f[d>>2]|0;i=f[c>>2]|0;j=f[e>>2]|0;e=f[j>>2]|0;k=(f[j+4>>2]|0)-e>>3;if(k>>>0<=h>>>0)aq(j);l=e;if(k>>>0<=i>>>0)aq(j);if((f[l+(h<<3)>>2]|0)>>>0>=(f[l+(i<<3)>>2]|0)>>>0){m=g;return m|0}f[c>>2]=h;f[d>>2]=i;i=f[c>>2]|0;d=f[b>>2]|0;if(k>>>0<=i>>>0)aq(j);if(k>>>0<=d>>>0)aq(j);if((f[l+(i<<3)>>2]|0)>>>0>=(f[l+(d<<3)>>2]|0)>>>0){m=g+1|0;return m|0}f[b>>2]=i;f[c>>2]=d;d=f[b>>2]|0;c=f[a>>2]|0;if(k>>>0<=d>>>0)aq(j);if(k>>>0<=c>>>0)aq(j);if((f[l+(d<<3)>>2]|0)>>>0>=(f[l+(c<<3)>>2]|0)>>>0){m=g+2|0;return m|0}f[a>>2]=d;f[b>>2]=c;m=g+3|0;return m|0}function kh(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0;if((d|0)>=8192)return Da(a|0,c|0,d|0)|0;e=a|0;g=a+d|0;if((a&3)==(c&3)){while(a&3){if(!d)return e|0;b[a>>0]=b[c>>0]|0;a=a+1|0;c=c+1|0;d=d-1|0}h=g&-4|0;d=h-64|0;while((a|0)<=(d|0)){f[a>>2]=f[c>>2];f[a+4>>2]=f[c+4>>2];f[a+8>>2]=f[c+8>>2];f[a+12>>2]=f[c+12>>2];f[a+16>>2]=f[c+16>>2];f[a+20>>2]=f[c+20>>2];f[a+24>>2]=f[c+24>>2];f[a+28>>2]=f[c+28>>2];f[a+32>>2]=f[c+32>>2];f[a+36>>2]=f[c+36>>2];f[a+40>>2]=f[c+40>>2];f[a+44>>2]=f[c+44>>2];f[a+48>>2]=f[c+48>>2];f[a+52>>2]=f[c+52>>2];f[a+56>>2]=f[c+56>>2];f[a+60>>2]=f[c+60>>2];a=a+64|0;c=c+64|0}while((a|0)<(h|0)){f[a>>2]=f[c>>2];a=a+4|0;c=c+4|0}}else{h=g-4|0;while((a|0)<(h|0)){b[a>>0]=b[c>>0]|0;b[a+1>>0]=b[c+1>>0]|0;b[a+2>>0]=b[c+2>>0]|0;b[a+3>>0]=b[c+3>>0]|0;a=a+4|0;c=c+4|0}}while((a|0)<(g|0)){b[a>>0]=b[c>>0]|0;a=a+1|0;c=c+1|0}return e|0}function lh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0;c=u;u=u+16|0;d=c+4|0;e=c;f[a>>2]=1232;g=a+4|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;f[g+16>>2]=0;f[g+20>>2]=0;f[g+24>>2]=0;f[g+28>>2]=0;f[d>>2]=b;b=a+4|0;g=a+8|0;Ri(b,d);h=f[d>>2]|0;i=a+20|0;j=f[i>>2]|0;k=a+16|0;a=f[k>>2]|0;l=j-a>>2;m=a;if((h|0)<(l|0)){n=m;o=h;p=f[g>>2]|0;q=f[b>>2]|0;r=p-q|0;s=r>>2;t=s+-1|0;v=n+(o<<2)|0;f[v>>2]=t;u=c;return}a=h+1|0;f[e>>2]=-1;w=j;if(a>>>0<=l>>>0)if(a>>>0>>0?(j=m+(a<<2)|0,(j|0)!=(w|0)):0){f[i>>2]=w+(~((w+-4-j|0)>>>2)<<2);x=h;y=m}else{x=h;y=m}else{Ch(k,a-l|0,e);x=f[d>>2]|0;y=f[k>>2]|0}n=y;o=x;p=f[g>>2]|0;q=f[b>>2]|0;r=p-q|0;s=r>>2;t=s+-1|0;v=n+(o<<2)|0;f[v>>2]=t;u=c;return}function mh(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;b=a+4|0;c=f[b>>2]|0;d=(f[c+12>>2]|0)-(f[c+8>>2]|0)|0;c=d>>2;a:do if((d|0)>0){e=0;while(1){if(!(Ra[f[(f[a>>2]|0)+36>>2]&127](a,e)|0)){g=0;break}e=e+1|0;h=f[b>>2]|0;i=(f[h+12>>2]|0)-(f[h+8>>2]|0)>>2;if((e|0)>=(i|0)){j=i;break a}}return g|0}else j=c;while(0);c=a+20|0;b=a+24|0;d=f[b>>2]|0;e=f[c>>2]|0;i=d-e>>2;h=e;e=d;if(j>>>0<=i>>>0){if(j>>>0>>0?(d=h+(j<<2)|0,(d|0)!=(e|0)):0)f[b>>2]=e+(~((e+-4-d|0)>>>2)<<2)}else Ci(c,j-i|0);i=f[a+12>>2]|0;j=f[a+8>>2]|0;a=j;if((i|0)==(j|0)){g=1;return g|0}d=i-j>>2;j=0;do{i=f[a+(j<<2)>>2]|0;e=f[i+8>>2]|0;b=f[i+4>>2]|0;i=b;if((e|0)!=(b|0)?(h=f[c>>2]|0,k=e-b>>2,f[h+(f[i>>2]<<2)>>2]=j,k>>>0>1):0){b=1;do{f[h+(f[i+(b<<2)>>2]<<2)>>2]=j;b=b+1|0}while(b>>>0>>0)}j=j+1|0}while(j>>>0>>0);g=1;return g|0}function nh(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;d=f[c+88>>2]|0;if(!d){e=0;return e|0}if((f[d>>2]|0)!=1){e=0;return e|0}g=d+8|0;d=f[g>>2]|0;f[a+4>>2]=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;i=a+8|0;j=c+24|0;c=b[j>>0]|0;k=c<<24>>24;l=a+12|0;m=f[l>>2]|0;n=f[i>>2]|0;o=m-n>>2;p=n;n=m;if(o>>>0>=k>>>0)if(o>>>0>k>>>0?(m=p+(k<<2)|0,(m|0)!=(n|0)):0){f[l>>2]=n+(~((n+-4-m|0)>>>2)<<2);q=c;r=d}else{q=c;r=d}else{Ci(i,k-o|0);q=b[j>>0]|0;r=f[g>>2]|0}g=r+4|0;j=h[g>>0]|h[g+1>>0]<<8|h[g+2>>0]<<16|h[g+3>>0]<<24;if(q<<24>>24>0){g=f[i>>2]|0;i=q<<24>>24;q=j;o=4;k=0;while(1){f[g+(k<<2)>>2]=q;o=o+4|0;k=k+1|0;d=r+o|0;c=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;if((k|0)>=(i|0)){s=c;break}else q=c}}else s=j;f[a+20>>2]=s;e=1;return e|0}function oh(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;do if(!(fp(a,f[c+8>>2]|0,g)|0)){if(!(fp(a,f[c>>2]|0,g)|0)){h=f[a+8>>2]|0;Za[f[(f[h>>2]|0)+24>>2]&3](h,c,d,e,g);break}if((f[c+16>>2]|0)!=(d|0)?(h=c+20|0,(f[h>>2]|0)!=(d|0)):0){f[c+32>>2]=e;i=c+44|0;if((f[i>>2]|0)==4)break;j=c+52|0;b[j>>0]=0;k=c+53|0;b[k>>0]=0;l=f[a+8>>2]|0;_a[f[(f[l>>2]|0)+20>>2]&3](l,c,d,d,1,g);if(b[k>>0]|0)if(!(b[j>>0]|0)){m=3;n=11}else o=3;else{m=4;n=11}if((n|0)==11){f[h>>2]=d;h=c+40|0;f[h>>2]=(f[h>>2]|0)+1;if((f[c+36>>2]|0)==1?(f[c+24>>2]|0)==2:0){b[c+54>>0]=1;o=m}else o=m}f[i>>2]=o;break}if((e|0)==1)f[c+32>>2]=1}else Vm(0,c,d,e);while(0);return}function ph(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0;e=u;u=u+16|0;g=e+12|0;h=e+8|0;i=e;f[i>>2]=f[b>>2];f[g>>2]=f[i>>2];i=Kd(a,g,h,e+4|0,c)|0;c=f[i>>2]|0;if(c|0){j=c;u=e;return j|0}c=ln(40)|0;pj(c+16|0,d);pj(c+28|0,d+12|0);d=f[h>>2]|0;f[c>>2]=0;f[c+4>>2]=0;f[c+8>>2]=d;f[i>>2]=c;d=f[f[a>>2]>>2]|0;if(!d)k=c;else{f[a>>2]=d;k=f[i>>2]|0}Oe(f[a+4>>2]|0,k);k=a+8|0;f[k>>2]=(f[k>>2]|0)+1;j=c;u=e;return j|0}function qh(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;e=u;u=u+16|0;g=e;h=a+4|0;f[h>>2]=0;if(!c){u=e;return}i=a+8|0;j=f[i>>2]|0;k=j<<5;if(k>>>0>>0){f[g>>2]=0;l=g+4|0;f[l>>2]=0;m=g+8|0;f[m>>2]=0;if((c|0)<0)aq(a);n=j<<6;j=c+31&-32;vi(g,k>>>0<1073741823?(n>>>0>>0?j:n):2147483647);n=f[a>>2]|0;f[a>>2]=f[g>>2];f[g>>2]=n;g=f[h>>2]|0;f[h>>2]=c;f[l>>2]=g;g=f[i>>2]|0;f[i>>2]=f[m>>2];f[m>>2]=g;if(n|0)Oq(n);o=a}else{f[h>>2]=c;o=a}a=f[o>>2]|0;o=a;h=a;a=c>>>5;n=a<<2;if(!(b[d>>0]|0)){sj(h|0,0,n|0)|0;d=c&31;g=o+(a<<2)|0;if(!d){u=e;return}f[g>>2]=f[g>>2]&~(-1>>>(32-d|0));u=e;return}else{sj(h|0,-1,n|0)|0;n=c&31;c=o+(a<<2)|0;if(!n){u=e;return}f[c>>2]=f[c>>2]|-1>>>(32-n|0);u=e;return}}function rh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;f[g>>2]=f[a+12>>2];h=b+16|0;i=h;j=f[i>>2]|0;k=f[i+4>>2]|0;if((k|0)>0|(k|0)==0&j>>>0>0){l=k;m=j}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;j=h;l=f[j+4>>2]|0;m=f[j>>2]|0}f[g>>2]=f[a+20>>2];if((l|0)>0|(l|0)==0&m>>>0>0){n=a+88|0;ld(n,b);u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;n=a+88|0;ld(n,b);u=c;return 1}function sh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;f[g>>2]=f[a+12>>2];h=b+16|0;i=h;j=f[i>>2]|0;k=f[i+4>>2]|0;if((k|0)>0|(k|0)==0&j>>>0>0){l=k;m=j}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;j=h;l=f[j+4>>2]|0;m=f[j>>2]|0}f[g>>2]=f[a+16>>2];if((l|0)>0|(l|0)==0&m>>>0>0){n=a+108|0;ld(n,b);u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;n=a+108|0;ld(n,b);u=c;return 1}function th(a){a=a|0;var c=0,d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;c=a+32|0;d=f[a+64>>2]|0;e=(Qa[f[(f[d>>2]|0)+40>>2]&127](d)|0)+52|0;d=f[e>>2]|0;zi(c,(((f[d+100>>2]|0)-(f[d+96>>2]|0)|0)/12|0)*3|0,0,1)|0;d=a+68|0;e=f[d>>2]|0;g=(f[a+72>>2]|0)-e|0;if((g|0)<=0){eg(c);return}i=a+48|0;j=a+44|0;a=(g>>>2)+-1|0;g=e;while(1){e=f[g+(a<<2)>>2]|0;k=f[3524+(e<<2)>>2]|0;l=i;m=f[l+4>>2]|0;if((m|0)>0|(m|0)==0&(f[l>>2]|0)>>>0>0?(l=f[j>>2]|0,171>>>e&1|0):0){m=l+4|0;n=0;o=f[m>>2]|0;do{p=o>>>3;q=o&7;r=(f[l>>2]|0)+p|0;b[r>>0]=(1<>0]|0);r=(f[l>>2]|0)+p|0;b[r>>0]=(e>>>n&1)<>0]|0);o=(f[m>>2]|0)+1|0;f[m>>2]=o;n=n+1|0}while((n|0)!=(k|0))}k=a+-1|0;if((k|0)<=-1)break;a=k;g=f[d>>2]|0}eg(c);return}function uh(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0;g=u;u=u+48|0;h=g;i=g+32|0;if(!c){j=0;u=g;return j|0}Gn(h);do if((dm(c,0)|0)!=-1){if(d){if(!(Qa[f[(f[c>>2]|0)+16>>2]&127](c)|0)){k=0;break}Va[f[(f[c>>2]|0)+20>>2]&127](c)}Yg(i,a,c,h);l=(f[i>>2]|0)==0;m=i+4|0;if((b[m+11>>0]|0)<0)Oq(f[m>>2]|0);if(l){l=f[h>>2]|0;m=h+4|0;rg(e,l,l+((f[m>>2]|0)-l)|0);k=(f[m>>2]|0)-(f[h>>2]|0)|0}else k=0}else k=0;while(0);e=h+12|0;i=f[e>>2]|0;f[e>>2]=0;if(i|0)Oq(i);i=f[h>>2]|0;if(i|0){e=h+4|0;if((f[e>>2]|0)!=(i|0))f[e>>2]=i;Oq(i)}j=k;u=g;return j|0}function vh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;c=u;u=u+16|0;d=c;e=f[(f[a>>2]|0)+8>>2]|0;g=a+8|0;h=a+12|0;i=(f[h>>2]|0)-(f[g>>2]|0)>>2;j=f[b>>2]|0;f[b>>2]=0;f[d>>2]=j;Xa[e&15](a,i,d);i=f[d>>2]|0;f[d>>2]=0;if(!i){k=f[h>>2]|0;l=f[g>>2]|0;m=k-l|0;n=m>>2;o=n+-1|0;u=c;return o|0}d=i+88|0;a=f[d>>2]|0;f[d>>2]=0;if(a|0){d=f[a+8>>2]|0;if(d|0){e=a+12|0;if((f[e>>2]|0)!=(d|0))f[e>>2]=d;Oq(d)}Oq(a)}a=f[i+68>>2]|0;if(a|0){d=i+72|0;e=f[d>>2]|0;if((e|0)!=(a|0))f[d>>2]=e+(~((e+-4-a|0)>>>2)<<2);Oq(a)}a=i+64|0;e=f[a>>2]|0;f[a>>2]=0;if(e|0){a=f[e>>2]|0;if(a|0){d=e+4|0;if((f[d>>2]|0)!=(a|0))f[d>>2]=a;Oq(a)}Oq(e)}Oq(i);k=f[h>>2]|0;l=f[g>>2]|0;m=k-l|0;n=m>>2;o=n+-1|0;u=c;return o|0}function wh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;c=a+8|0;d=f[c>>2]|0;e=a+4|0;g=f[e>>2]|0;if(d-g>>3>>>0>=b>>>0){h=b;i=g;do{j=i;f[j>>2]=0;f[j+4>>2]=0;i=(f[e>>2]|0)+8|0;f[e>>2]=i;h=h+-1|0}while((h|0)!=0);return}h=f[a>>2]|0;i=g-h>>3;g=i+b|0;if(g>>>0>536870911)aq(a);j=d-h|0;h=j>>2;d=j>>3>>>0<268435455?(h>>>0>>0?g:h):536870911;do if(d)if(d>>>0>536870911){h=ra(8)|0;Oo(h,16035);f[h>>2]=7256;va(h|0,1112,110)}else{k=ln(d<<3)|0;break}else k=0;while(0);h=k+(i<<3)|0;i=k+(d<<3)|0;d=b;b=h;k=h;do{g=b;f[g>>2]=0;f[g+4>>2]=0;b=k+8|0;k=b;d=d+-1|0}while((d|0)!=0);d=f[a>>2]|0;b=(f[e>>2]|0)-d|0;g=h+(0-(b>>3)<<3)|0;if((b|0)>0)kh(g|0,d|0,b|0)|0;f[a>>2]=g;f[e>>2]=k;f[c>>2]=i;if(!d)return;Oq(d);return}function xh(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0;d=u;u=u+16|0;e=d;if(!(bn(a,b,c)|0)){g=0;u=d;return g|0}if((Qa[f[(f[a>>2]|0)+32>>2]&127](a)|0)<<24>>24==1?((f[(f[a+8>>2]|0)+28>>2]|0)+-1|0)>>>0>=6:0){g=0;u=d;return g|0}h=_g(c,f[b+48>>2]|0)|0;Xa[f[(f[a>>2]|0)+48>>2]&15](e,a,h);h=a+36|0;b=f[e>>2]|0;f[e>>2]=0;c=f[h>>2]|0;f[h>>2]=b;if(!c){f[e>>2]=0;i=b}else{Va[f[(f[c>>2]|0)+4>>2]&127](c);c=f[e>>2]|0;f[e>>2]=0;if(c|0)Va[f[(f[c>>2]|0)+4>>2]&127](c);i=f[h>>2]|0}if(!i){g=1;u=d;return g|0}if(Ra[f[(f[a>>2]|0)+36>>2]&127](a,i)|0){g=1;u=d;return g|0}i=f[h>>2]|0;f[h>>2]=0;if(!i){g=1;u=d;return g|0}Va[f[(f[i>>2]|0)+4>>2]&127](i);g=1;u=d;return g|0}function yh(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;e=u;u=u+16|0;g=e+4|0;h=e;i=e+8|0;j=a&255;b[i>>0]=j&127;do if(c>>>0>0|(c|0)==0&a>>>0>127){b[i>>0]=j|-128;k=d+16|0;l=f[k+4>>2]|0;if((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0){m=0;break}else{f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];Me(d,g,i,i+1|0)|0;k=Yn(a|0,c|0,7)|0;m=yh(k,I,d)|0;break}}else{k=d+16|0;l=f[k+4>>2]|0;if((l|0)>0|(l|0)==0&(f[k>>2]|0)>>>0>0){m=0;break}f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];Me(d,g,i,i+1|0)|0;n=1;u=e;return n|0}while(0);n=m;u=e;return n|0}function zh(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0;g=f[(f[(f[d+4>>2]|0)+8>>2]|0)+(c<<2)>>2]|0;if((b|0)==-1)h=Xi(c,d)|0;else h=b;if((h|0)==-2)i=0;else{do if((Qa[f[(f[d>>2]|0)+8>>2]&127](d)|0)==1){Xf(a,d,h,c,e,514);if(!(f[a>>2]|0)){f[a>>2]=0;break}else return}while(0);c=ln(44)|0;f[c>>2]=1544;f[c+4>>2]=g;g=c+8|0;f[g>>2]=f[e>>2];f[g+4>>2]=f[e+4>>2];f[g+8>>2]=f[e+8>>2];f[g+12>>2]=f[e+12>>2];f[g+16>>2]=f[e+16>>2];f[g+20>>2]=f[e+20>>2];fk(c+32|0,e+24|0);f[c>>2]=1600;i=c}f[a>>2]=i;return}function Ah(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;e=u;u=u+224|0;g=e+120|0;h=e+80|0;i=e;j=e+136|0;k=h;l=k+40|0;do{f[k>>2]=0;k=k+4|0}while((k|0)<(l|0));f[g>>2]=f[d>>2];if((qb(0,c,g,i,h)|0)<0)m=-1;else{if((f[a+76>>2]|0)>-1)n=Tq(a)|0;else n=0;d=f[a>>2]|0;k=d&32;if((b[a+74>>0]|0)<1)f[a>>2]=d&-33;d=a+48|0;if(!(f[d>>2]|0)){l=a+44|0;o=f[l>>2]|0;f[l>>2]=j;p=a+28|0;f[p>>2]=j;q=a+20|0;f[q>>2]=j;f[d>>2]=80;r=a+16|0;f[r>>2]=j+80;j=qb(a,c,g,i,h)|0;if(!o)s=j;else{Sa[f[a+36>>2]&31](a,0,0)|0;t=(f[q>>2]|0)==0?-1:j;f[l>>2]=o;f[d>>2]=0;f[r>>2]=0;f[p>>2]=0;f[q>>2]=0;s=t}}else s=qb(a,c,g,i,h)|0;h=f[a>>2]|0;f[a>>2]=h|k;if(n|0)Sq(a);m=(h&32|0)==0?s:-1}u=e;return m|0}function Bh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=a+4|0;d=f[c>>2]|0;e=f[a>>2]|0;g=d-e>>2;h=d;if(g>>>0>>0){uf(a,b-g|0);return}if(g>>>0<=b>>>0)return;g=e+(b<<2)|0;if((g|0)==(h|0))return;else i=h;do{h=i+-4|0;f[c>>2]=h;b=f[h>>2]|0;f[h>>2]=0;if(b|0){h=b+88|0;e=f[h>>2]|0;f[h>>2]=0;if(e|0){h=f[e+8>>2]|0;if(h|0){a=e+12|0;if((f[a>>2]|0)!=(h|0))f[a>>2]=h;Oq(h)}Oq(e)}e=f[b+68>>2]|0;if(e|0){h=b+72|0;a=f[h>>2]|0;if((a|0)!=(e|0))f[h>>2]=a+(~((a+-4-e|0)>>>2)<<2);Oq(e)}e=b+64|0;a=f[e>>2]|0;f[e>>2]=0;if(a|0){e=f[a>>2]|0;if(e|0){h=a+4|0;if((f[h>>2]|0)!=(e|0))f[h>>2]=e;Oq(e)}Oq(a)}Oq(b)}i=f[c>>2]|0}while((i|0)!=(g|0));return}function Ch(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;d=a+8|0;e=f[d>>2]|0;g=a+4|0;h=f[g>>2]|0;i=h;if(e-h>>2>>>0>=b>>>0){j=b;k=i;while(1){f[k>>2]=f[c>>2];j=j+-1|0;if(!j)break;else k=k+4|0}f[g>>2]=i+(b<<2);return}i=f[a>>2]|0;k=h-i|0;h=k>>2;j=h+b|0;if(j>>>0>1073741823)aq(a);l=e-i|0;e=l>>1;m=l>>2>>>0<536870911?(e>>>0>>0?j:e):1073741823;do if(m)if(m>>>0>1073741823){e=ra(8)|0;Oo(e,16035);f[e>>2]=7256;va(e|0,1112,110)}else{e=ln(m<<2)|0;n=e;o=e;break}else{n=0;o=0}while(0);e=n+(h<<2)|0;h=n+(m<<2)|0;m=b;j=e;while(1){f[j>>2]=f[c>>2];m=m+-1|0;if(!m)break;else j=j+4|0}if((k|0)>0)kh(o|0,i|0,k|0)|0;f[a>>2]=n;f[g>>2]=e+(b<<2);f[d>>2]=h;if(!i)return;Oq(i);return}function Dh(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;e=(f[a>>2]|0)+1794895138|0;g=gp(f[a+8>>2]|0,e)|0;h=gp(f[a+12>>2]|0,e)|0;i=gp(f[a+16>>2]|0,e)|0;a:do if((g>>>0>>2>>>0?(j=c-(g<<2)|0,h>>>0>>0&i>>>0>>0):0)?((i|h)&3|0)==0:0){j=h>>>2;k=i>>>2;l=0;m=g;while(1){n=m>>>1;o=l+n|0;p=o<<1;q=p+j|0;r=gp(f[a+(q<<2)>>2]|0,e)|0;s=gp(f[a+(q+1<<2)>>2]|0,e)|0;if(!(s>>>0>>0&r>>>0<(c-s|0)>>>0)){t=0;break a}if(b[a+(s+r)>>0]|0){t=0;break a}r=hl(d,a+s|0)|0;if(!r)break;s=(r|0)<0;if((m|0)==1){t=0;break a}else{l=s?l:o;m=s?n:m-n|0}}m=p+k|0;l=gp(f[a+(m<<2)>>2]|0,e)|0;j=gp(f[a+(m+1<<2)>>2]|0,e)|0;if(j>>>0>>0&l>>>0<(c-j|0)>>>0)t=(b[a+(j+l)>>0]|0)==0?a+j|0:0;else t=0}else t=0;while(0);return t|0}function Eh(a,c,e,g){a=a|0;c=c|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;h=u;u=u+64|0;i=h;j=f[a>>2]|0;k=a+(f[j+-8>>2]|0)|0;l=f[j+-4>>2]|0;f[i>>2]=e;f[i+4>>2]=a;f[i+8>>2]=c;f[i+12>>2]=g;g=i+16|0;c=i+20|0;a=i+24|0;j=i+28|0;m=i+32|0;n=i+40|0;o=g;p=o+36|0;do{f[o>>2]=0;o=o+4|0}while((o|0)<(p|0));d[g+36>>1]=0;b[g+38>>0]=0;a:do if(fp(l,e,0)|0){f[i+48>>2]=1;_a[f[(f[l>>2]|0)+20>>2]&3](l,i,k,k,1,0);q=(f[a>>2]|0)==1?k:0}else{Za[f[(f[l>>2]|0)+24>>2]&3](l,i,k,1,0);switch(f[i+36>>2]|0){case 0:{q=(f[n>>2]|0)==1&(f[j>>2]|0)==1&(f[m>>2]|0)==1?f[c>>2]|0:0;break a;break}case 1:break;default:{q=0;break a}}if((f[a>>2]|0)!=1?!((f[n>>2]|0)==0&(f[j>>2]|0)==1&(f[m>>2]|0)==1):0){q=0;break}q=f[g>>2]|0}while(0);u=h;return q|0}function Fh(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=a+8|0;d=f[c>>2]|0;e=a+4|0;g=f[e>>2]|0;h=g;if(d-g>>2>>>0>=b>>>0){i=b;j=h;while(1){f[j>>2]=1;i=i+-1|0;if(!i)break;else j=j+4|0}f[e>>2]=h+(b<<2);return}h=f[a>>2]|0;j=g-h|0;g=j>>2;i=g+b|0;if(i>>>0>1073741823)aq(a);k=d-h|0;d=k>>1;l=k>>2>>>0<536870911?(d>>>0>>0?i:d):1073741823;do if(l)if(l>>>0>1073741823){d=ra(8)|0;Oo(d,16035);f[d>>2]=7256;va(d|0,1112,110)}else{d=ln(l<<2)|0;m=d;n=d;break}else{m=0;n=0}while(0);d=m+(g<<2)|0;g=m+(l<<2)|0;l=b;i=d;while(1){f[i>>2]=1;l=l+-1|0;if(!l)break;else i=i+4|0}if((j|0)>0)kh(n|0,h|0,j|0)|0;f[a>>2]=m;f[e>>2]=d+(b<<2);f[c>>2]=g;if(!h)return;Oq(h);return}function Gh(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+16|0;e=d;if(!c){g=0;u=d;return g|0}h=a+84|0;i=f[h>>2]|0;j=a+88|0;k=f[j>>2]|0;if((k|0)!=(i|0))f[j>>2]=k+(~((k+-4-i|0)>>>2)<<2);f[h>>2]=0;f[j>>2]=0;f[a+92>>2]=0;if(i|0)Oq(i);i=a+72|0;j=f[i>>2]|0;h=a+76|0;if((f[h>>2]|0)!=(j|0))f[h>>2]=j;f[i>>2]=0;f[h>>2]=0;f[a+80>>2]=0;if(j|0)Oq(j);j=c+4|0;h=(f[j>>2]|0)-(f[c>>2]|0)>>2;b[e>>0]=0;qh(a,h,e);h=c+24|0;i=c+28|0;k=(f[i>>2]|0)-(f[h>>2]|0)>>2;b[e>>0]=0;qh(a+12|0,k,e);hg(a+28|0,(f[j>>2]|0)-(f[c>>2]|0)>>2,6180);gk(a+52|0,(f[i>>2]|0)-(f[h>>2]|0)>>2);gk(a+40|0,(f[i>>2]|0)-(f[h>>2]|0)>>2);f[a+64>>2]=c;b[a+24>>0]=1;g=1;u=d;return g|0}function Hh(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;c=a+12|0;d=f[a>>2]|0;e=a+8|0;g=f[e>>2]|0;h=(g|0)==-1;if(!(b[c>>0]|0)){do if((!h?(i=(((g>>>0)%3|0|0)==0?2:-1)+g|0,(i|0)!=-1):0)?(j=f[(f[d+12>>2]|0)+(i<<2)>>2]|0,(j|0)!=-1):0)if(!((j>>>0)%3|0)){k=j+2|0;break}else{k=j+-1|0;break}else k=-1;while(0);f[e>>2]=k;return}k=g+1|0;if((!h?(h=((k>>>0)%3|0|0)==0?g+-2|0:k,(h|0)!=-1):0)?(k=f[(f[d+12>>2]|0)+(h<<2)>>2]|0,h=k+1|0,(k|0)!=-1):0){g=((h>>>0)%3|0|0)==0?k+-2|0:h;f[e>>2]=g;if((g|0)!=-1){if((g|0)!=(f[a+4>>2]|0))return;f[e>>2]=-1;return}}else f[e>>2]=-1;g=f[a+4>>2]|0;do if(((g|0)!=-1?(a=(((g>>>0)%3|0|0)==0?2:-1)+g|0,(a|0)!=-1):0)?(h=f[(f[d+12>>2]|0)+(a<<2)>>2]|0,(h|0)!=-1):0)if(!((h>>>0)%3|0)){l=h+2|0;break}else{l=h+-1|0;break}else l=-1;while(0);f[e>>2]=l;b[c>>0]=0;return}function Ih(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){Td(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+20>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;Td(a,e);return}function Jh(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;d=f[a+4>>2]|0;if(!d){e=0;return e|0}a=b[c+11>>0]|0;g=a<<24>>24<0;h=g?f[c+4>>2]|0:a&255;a=g?f[c>>2]|0:c;c=d;while(1){d=c+16|0;g=b[d+11>>0]|0;i=g<<24>>24<0;j=i?f[c+20>>2]|0:g&255;g=j>>>0>>0;k=g?j:h;if((k|0)!=0?(l=Vk(a,i?f[d>>2]|0:d,k)|0,(l|0)!=0):0)if((l|0)<0)m=7;else m=8;else if(h>>>0>>0)m=7;else m=8;if((m|0)==7){m=0;n=c}else if((m|0)==8){m=0;l=h>>>0>>0?h:j;if((l|0)!=0?(j=Vk(i?f[d>>2]|0:d,a,l)|0,(j|0)!=0):0){if((j|0)>=0){e=1;m=14;break}}else m=10;if((m|0)==10?(m=0,!g):0){e=1;m=14;break}n=c+4|0}c=f[n>>2]|0;if(!c){e=0;m=14;break}}if((m|0)==14)return e|0;return 0}function Kh(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;e=u;u=u+16|0;g=e+4|0;h=e;i=f[a+8>>2]|0;j=i+24|0;k=b[j>>0]|0;l=c+4|0;ag(a,(f[l>>2]|0)-(f[c>>2]|0)>>2,k,d);d=f[a+32>>2]|0;a=(f[f[d>>2]>>2]|0)+(f[d+48>>2]|0)|0;d=f[c>>2]|0;c=f[l>>2]|0;if((d|0)==(c|0)){m=1;u=e;return m|0}l=i+84|0;n=i+68|0;o=0;p=d;while(1){d=f[p>>2]|0;if(!(b[l>>0]|0))q=f[(f[n>>2]|0)+(d<<2)>>2]|0;else q=d;f[h>>2]=q;d=b[j>>0]|0;f[g>>2]=f[h>>2];if(!(Qb(i,g,d,a+(o<<2)|0)|0)){m=0;r=7;break}p=p+4|0;if((p|0)==(c|0)){m=1;r=7;break}else o=o+k|0}if((r|0)==7){u=e;return m|0}return 0}function Lh(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0;f[a>>2]=1408;b=a+72|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0)Va[f[(f[c>>2]|0)+4>>2]&127](c);c=f[a+60>>2]|0;if(c|0){b=a+64|0;d=f[b>>2]|0;if((d|0)!=(c|0))f[b>>2]=d+(~((d+-4-c|0)>>>2)<<2);Oq(c)}c=f[a+48>>2]|0;if(c|0)Oq(c);c=a+36|0;d=f[c>>2]|0;if(d|0){b=a+40|0;e=f[b>>2]|0;if((e|0)==(d|0))g=d;else{h=e;do{e=h+-4|0;f[b>>2]=e;i=f[e>>2]|0;f[e>>2]=0;if(i|0)Va[f[(f[i>>2]|0)+4>>2]&127](i);h=f[b>>2]|0}while((h|0)!=(d|0));g=f[c>>2]|0}Oq(g)}f[a>>2]=1232;g=f[a+16>>2]|0;if(g|0){c=a+20|0;d=f[c>>2]|0;if((d|0)!=(g|0))f[c>>2]=d+(~((d+-4-g|0)>>>2)<<2);Oq(g)}g=f[a+4>>2]|0;if(!g)return;d=a+8|0;a=f[d>>2]|0;if((a|0)!=(g|0))f[d>>2]=a+(~((a+-4-g|0)>>>2)<<2);Oq(g);return}function Mh(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;f[a>>2]=d;e=a+24|0;g=a+28|0;h=f[g>>2]|0;i=f[e>>2]|0;j=h-i>>2;k=i;i=h;if(j>>>0>=d>>>0){if(j>>>0>d>>>0?(h=k+(d<<2)|0,(h|0)!=(i|0)):0)f[g>>2]=i+(~((i+-4-h|0)>>>2)<<2)}else Ci(e,d-j|0);if(!c)return;j=f[b>>2]|0;if((c|0)>1){d=j;e=j;h=1;while(1){i=f[b+(h<<2)>>2]|0;g=(i|0)<(e|0);k=g?i:e;l=g?d:(i|0)>(d|0)?i:d;h=h+1|0;if((h|0)==(c|0)){m=l;n=k;break}else{d=l;e=k}}}else{m=j;n=j}f[a+4>>2]=n;f[a+8>>2]=m;j=Xn(m|0,((m|0)<0)<<31>>31|0,n|0,((n|0)<0)<<31>>31|0)|0;n=I;if(!(n>>>0<0|(n|0)==0&j>>>0<2147483647))return;n=j+1|0;f[a+12>>2]=n;j=(n|0)/2|0;m=a+16|0;f[m>>2]=j;f[a+20>>2]=0-j;if(n&1|0)return;f[m>>2]=j+-1;return}function Nh(a){a=a|0;Fj(a+992|0);Fj(a+960|0);Fj(a+928|0);Fj(a+896|0);Fj(a+864|0);Fj(a+832|0);Fj(a+800|0);Fj(a+768|0);Fj(a+736|0);Fj(a+704|0);Fj(a+672|0);Fj(a+640|0);Fj(a+608|0);Fj(a+576|0);Fj(a+544|0);Fj(a+512|0);Fj(a+480|0);Fj(a+448|0);Fj(a+416|0);Fj(a+384|0);Fj(a+352|0);Fj(a+320|0);Fj(a+288|0);Fj(a+256|0);Fj(a+224|0);Fj(a+192|0);Fj(a+160|0);Fj(a+128|0);Fj(a+96|0);Fj(a+64|0);Fj(a+32|0);Fj(a);return}function Oh(a){a=a|0;wn(a);wn(a+32|0);wn(a+64|0);wn(a+96|0);wn(a+128|0);wn(a+160|0);wn(a+192|0);wn(a+224|0);wn(a+256|0);wn(a+288|0);wn(a+320|0);wn(a+352|0);wn(a+384|0);wn(a+416|0);wn(a+448|0);wn(a+480|0);wn(a+512|0);wn(a+544|0);wn(a+576|0);wn(a+608|0);wn(a+640|0);wn(a+672|0);wn(a+704|0);wn(a+736|0);wn(a+768|0);wn(a+800|0);wn(a+832|0);wn(a+864|0);wn(a+896|0);wn(a+928|0);wn(a+960|0);wn(a+992|0);return}function Ph(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=u;u=u+16|0;d=c+12|0;e=c+8|0;g=c+4|0;h=c;i=(a|0)==(b|0);if(!i){f[g>>2]=f[b>>2];f[h>>2]=b+4;f[e>>2]=f[g>>2];f[d>>2]=f[h>>2];Oc(a,e,d)}if(!i){f[g>>2]=f[b+12>>2];f[h>>2]=b+16;f[e>>2]=f[g>>2];f[d>>2]=f[h>>2];Hc(a+12|0,e,d)}if(i){u=c;return}f[g>>2]=f[b+24>>2];f[h>>2]=b+28;f[e>>2]=f[g>>2];f[d>>2]=f[h>>2];Oc(a+24|0,e,d);u=c;return}function Qh(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0;a=u;u=u+16|0;e=a;if((c|0)<0|((b|0)==0|(d|0)==0)){g=0;u=a;return g|0}h=f[b+8>>2]|0;if(((f[b+12>>2]|0)-h>>2|0)<=(c|0)){g=0;u=a;return g|0}i=b+4|0;if(!(f[i>>2]|0)){j=ln(52)|0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;f[j+12>>2]=0;n[j+16>>2]=$(1.0);k=j+20|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;n[j+36>>2]=$(1.0);f[j+40>>2]=0;f[j+44>>2]=0;f[j+48>>2]=0;f[b+4>>2]=j}j=f[(f[h+(c<<2)>>2]|0)+60>>2]|0;c=ln(44)|0;Ub(c,d);f[c+40>>2]=j;j=f[i>>2]|0;f[e>>2]=c;mk(j,e)|0;j=f[e>>2]|0;f[e>>2]=0;if(!j){g=1;u=a;return g|0}bj(j);Oq(j);g=1;u=a;return g|0}function Rh(a,c,d,e,g,h,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;var j=0,k=0;c=u;u=u+64|0;j=c;k=i?6:5;Il(j);i=f[h+56>>2]|0;h=X(Vl(k)|0,e)|0;Jj(j,i,0,e&255,k,0,h,((h|0)<0)<<31>>31,0,0);h=ln(96)|0;tl(h,j);f[a>>2]=h;Bj(h,d)|0;d=h+84|0;if(!g){b[d>>0]=1;a=f[h+68>>2]|0;j=h+72|0;k=f[j>>2]|0;if((k|0)==(a|0)){u=c;return}f[j>>2]=k+(~((k+-4-a|0)>>>2)<<2);u=c;return}b[d>>0]=0;d=h+68|0;a=h+72|0;h=f[a>>2]|0;k=f[d>>2]|0;j=h-k>>2;e=h;if(j>>>0>>0){Ch(d,g-j|0,1216);u=c;return}if(j>>>0<=g>>>0){u=c;return}j=k+(g<<2)|0;if((j|0)==(e|0)){u=c;return}f[a>>2]=e+(~((e+-4-j|0)>>>2)<<2);u=c;return}function Sh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){rd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;rd(a,e);return}function Th(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){vd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;vd(a,e);return}function Uh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){Fd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;Fd(a,e);return}function Vh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){Pd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;Pd(a,e);return}function Wh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){ud(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;ud(a,e);return}function Xh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){zd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;zd(a,e);return}function Yh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){Jd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;Jd(a,e);return}function Zh(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){sd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;sd(a,e);return}function _h(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){wd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;wd(a,e);return}function $h(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){Gd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;Gd(a,e);return}function ai(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){Qd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;Qd(a,e);return}function bi(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;g=u;u=u+16|0;h=g;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;i=ln(16)|0;f[h>>2]=i;f[h+8>>2]=-2147483632;f[h+4>>2]=15;j=i;k=14479;l=j+15|0;do{b[j>>0]=b[k>>0]|0;j=j+1|0;k=k+1|0}while((j|0)<(l|0));b[i+15>>0]=0;i=Hk(c,h,-1)|0;if((b[h+11>>0]|0)<0)Oq(f[h>>2]|0);switch(i|0){case -1:{if((mi(c)|0)==10)m=6;else m=5;break}case 1:{m=5;break}default:m=6}if((m|0)==5){i=ln(60)|0;Lo(i);n=i}else if((m|0)==6){m=ln(56)|0;tp(m);n=m}xo(n,d);Md(a,n,c,e);Va[f[(f[n>>2]|0)+4>>2]&127](n);u=g;return}function ci(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+8|0;b[h>>0]=a&127;do if(a>>>0>127){b[h>>0]=a|128;i=c+16|0;j=f[i+4>>2]|0;if((j|0)>0|(j|0)==0&(f[i>>2]|0)>>>0>0){k=0;break}else{f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];Me(c,e,h,h+1|0)|0;k=ci(a>>>7,c)|0;break}}else{i=c+16|0;j=f[i+4>>2]|0;if((j|0)>0|(j|0)==0&(f[i>>2]|0)>>>0>0){k=0;break}f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];Me(c,e,h,h+1|0)|0;l=1;u=d;return l|0}while(0);l=k;u=d;return l|0} -function vc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0;e=u;u=u+32|0;g=e+16|0;h=e+12|0;i=e+8|0;j=e+4|0;k=e;switch(f[c+28>>2]|0){case 9:{l=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=l;f[g>>2]=f[h>>2];m=hc(a,c,g)|0;break}case 2:{f[i>>2]=l;f[g>>2]=f[i>>2];m=Wb(a,c,g)|0;break}case 3:{f[j>>2]=l;f[g>>2]=f[j>>2];m=uc(a,c,g)|0;break}case 4:{f[k>>2]=l;f[g>>2]=f[k>>2];m=mc(a,c,g)|0;break}default:m=0}n=m;break}case 1:{m=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=m;f[g>>2]=f[h>>2];o=gc(a,c,g)|0;break}case 2:{f[i>>2]=m;f[g>>2]=f[i>>2];o=Xb(a,c,g)|0;break}case 3:{f[j>>2]=m;f[g>>2]=f[j>>2];o=sc(a,c,g)|0;break}case 4:{f[k>>2]=m;f[g>>2]=f[k>>2];o=lc(a,c,g)|0;break}default:o=0}n=o;break}case 11:case 2:{o=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=o;f[g>>2]=f[h>>2];p=gc(a,c,g)|0;break}case 2:{f[i>>2]=o;f[g>>2]=f[i>>2];p=Xb(a,c,g)|0;break}case 3:{f[j>>2]=o;f[g>>2]=f[j>>2];p=sc(a,c,g)|0;break}case 4:{f[k>>2]=o;f[g>>2]=f[k>>2];p=lc(a,c,g)|0;break}default:p=0}n=p;break}case 4:{p=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=p;f[g>>2]=f[h>>2];q=ec(a,c,g)|0;break}case 2:{f[i>>2]=p;f[g>>2]=f[i>>2];q=Vb(a,c,g)|0;break}case 3:{f[j>>2]=p;f[g>>2]=f[j>>2];q=nc(a,c,g)|0;break}case 4:{f[k>>2]=p;f[g>>2]=f[k>>2];q=jc(a,c,g)|0;break}default:q=0}n=q;break}case 3:{q=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=q;f[g>>2]=f[h>>2];r=ec(a,c,g)|0;break}case 2:{f[i>>2]=q;f[g>>2]=f[i>>2];r=Vb(a,c,g)|0;break}case 3:{f[j>>2]=q;f[g>>2]=f[j>>2];r=nc(a,c,g)|0;break}case 4:{f[k>>2]=q;f[g>>2]=f[k>>2];r=jc(a,c,g)|0;break}default:r=0}n=r;break}case 6:{r=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=r;f[g>>2]=f[h>>2];s=hc(a,c,g)|0;break}case 2:{f[i>>2]=r;f[g>>2]=f[i>>2];s=Wb(a,c,g)|0;break}case 3:{f[j>>2]=r;f[g>>2]=f[j>>2];s=uc(a,c,g)|0;break}case 4:{f[k>>2]=r;f[g>>2]=f[k>>2];s=mc(a,c,g)|0;break}default:s=0}n=s;break}case 5:{s=f[d>>2]|0;switch(b[c+24>>0]|0){case 1:{f[h>>2]=s;f[g>>2]=f[h>>2];t=hc(a,c,g)|0;break}case 2:{f[i>>2]=s;f[g>>2]=f[i>>2];t=Wb(a,c,g)|0;break}case 3:{f[j>>2]=s;f[g>>2]=f[j>>2];t=uc(a,c,g)|0;break}case 4:{f[k>>2]=s;f[g>>2]=f[k>>2];t=mc(a,c,g)|0;break}default:t=0}n=t;break}default:{v=-1;u=e;return v|0}}v=(n|0)==0?-1:n;u=e;return v|0}function wc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;e=u;u=u+32|0;g=e+16|0;h=e+12|0;i=e+29|0;j=e;k=e+28|0;if(!(f[(f[a+8>>2]|0)+80>>2]|0)){l=1;u=e;return l|0}b[i>>0]=-2;m=a+36|0;n=f[m>>2]|0;if(n)if(Ra[f[(f[a>>2]|0)+40>>2]&127](a,n)|0){n=f[m>>2]|0;o=(Qa[f[(f[n>>2]|0)+8>>2]&127](n)|0)&255;b[i>>0]=o;p=5}else q=0;else p=5;if((p|0)==5){o=d+16|0;n=o;r=f[n+4>>2]|0;if(!((r|0)>0|(r|0)==0&(f[n>>2]|0)>>>0>0)){f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];Me(d,g,i,i+1|0)|0}i=f[m>>2]|0;if(i|0?(n=(Qa[f[(f[i>>2]|0)+36>>2]&127](i)|0)&255,b[j>>0]=n,n=o,i=f[n+4>>2]|0,!((i|0)>0|(i|0)==0&(f[n>>2]|0)>>>0>0)):0){f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];Me(d,g,j,j+1|0)|0}n=f[a+32>>2]|0;i=b[n+24>>0]|0;r=X(f[n+80>>2]|0,i)|0;s=(f[f[n>>2]>>2]|0)+(f[n+48>>2]|0)|0;f[j>>2]=0;n=j+4|0;f[n>>2]=0;f[j+8>>2]=0;t=(r|0)==0;do if(!t)if(r>>>0>1073741823)aq(j);else{v=r<<2;w=ln(v)|0;f[j>>2]=w;x=w+(r<<2)|0;f[j+8>>2]=x;sj(w|0,0,v|0)|0;f[n>>2]=x;y=w;break}else y=0;while(0);w=f[m>>2]|0;do if(w){Ta[f[(f[w>>2]|0)+44>>2]&31](w,s,y,r,i,f[c>>2]|0)|0;x=f[m>>2]|0;if(!x){z=s;A=f[j>>2]|0;p=20;break}if(!(Qa[f[(f[x>>2]|0)+32>>2]&127](x)|0)){x=f[j>>2]|0;z=f[m>>2]|0?x:s;A=x;p=20}}else{z=s;A=y;p=20}while(0);if((p|0)==20)xm(z,r,A);A=a+4|0;a=f[A>>2]|0;do if(a){z=f[a+48>>2]|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;y=ln(48)|0;f[g>>2]=y;f[g+8>>2]=-2147483600;f[g+4>>2]=34;s=y;w=10697;x=s+34|0;do{b[s>>0]=b[w>>0]|0;s=s+1|0;w=w+1|0}while((s|0)<(x|0));b[y+34>>0]=0;w=Yj(z,g,1)|0;if((b[g+11>>0]|0)<0)Oq(f[g>>2]|0);if(!w){if(!t){w=f[j>>2]|0;s=0;x=0;do{x=f[w+(s<<2)>>2]|x;s=s+1|0}while((s|0)!=(r|0));if(x)B=((_(x|0)|0)>>>3^3)+1|0;else B=1}else B=1;b[k>>0]=0;s=o;w=f[s>>2]|0;z=f[s+4>>2]|0;if((z|0)>0|(z|0)==0&w>>>0>0){C=z;D=w}else{f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];Me(d,g,k,k+1|0)|0;w=o;C=f[w+4>>2]|0;D=f[w>>2]|0}b[k>>0]=B;if(!((C|0)>0|(C|0)==0&D>>>0>0)){f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];Me(d,g,k,k+1|0)|0}if((B|0)==(Vl(5)|0)){w=f[j>>2]|0;z=o;s=f[z+4>>2]|0;if(!((s|0)>0|(s|0)==0&(f[z>>2]|0)>>>0>0)){f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];Me(d,g,w,w+(r<<2)|0)|0}p=48;break}if(t)p=48;else{w=d+4|0;z=0;do{s=(f[j>>2]|0)+(z<<2)|0;y=o;v=f[y+4>>2]|0;if(!((v|0)>0|(v|0)==0&(f[y>>2]|0)>>>0>0)){f[h>>2]=f[w>>2];f[g>>2]=f[h>>2];Me(d,g,s,s+B|0)|0}z=z+1|0}while(z>>>0>>0);p=48}}else p=27}else p=27;while(0);if((p|0)==27){b[k>>0]=1;r=o;o=f[r+4>>2]|0;if(!((o|0)>0|(o|0)==0&(f[r>>2]|0)>>>0>0)){f[h>>2]=f[d+4>>2];f[g>>2]=f[h>>2];Me(d,g,k,k+1|0)|0}lp(g);k=f[A>>2]|0;if(k|0)Zj(g,10-(mi(f[k+48>>2]|0)|0)|0)|0;k=Mc(f[j>>2]|0,X((f[c+4>>2]|0)-(f[c>>2]|0)>>2,i)|0,i,g,d)|0;Ej(g,f[g+4>>2]|0);if(k)p=48;else E=0}if((p|0)==48){p=f[m>>2]|0;if(!p)E=1;else{Ra[f[(f[p>>2]|0)+40>>2]&127](p,d)|0;E=1}}d=f[j>>2]|0;if(d|0){j=f[n>>2]|0;if((j|0)!=(d|0))f[n>>2]=j+(~((j+-4-d|0)>>>2)<<2);Oq(d)}q=E}l=q;u=e;return l|0}function xc(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0;b=u;u=u+48|0;c=b+24|0;d=b+12|0;e=b;g=a+32|0;h=a+8|0;i=a+12|0;j=f[i>>2]|0;k=f[h>>2]|0;l=j-k>>2;m=a+36|0;n=f[m>>2]|0;o=f[g>>2]|0;p=n-o>>2;q=o;o=n;n=k;if(l>>>0<=p>>>0)if(l>>>0

>>0?(r=q+(l<<2)|0,(r|0)!=(o|0)):0){f[m>>2]=o+(~((o+-4-r|0)>>>2)<<2);s=n;t=k;v=j}else{s=n;t=k;v=j}else{Ci(g,l-p|0);p=f[h>>2]|0;s=p;t=p;v=f[i>>2]|0}p=v-t|0;l=p>>2;f[c>>2]=0;j=c+4|0;f[j>>2]=0;k=c+8|0;f[k>>2]=0;if(l|0){if((p|0)<0)aq(c);p=((l+-1|0)>>>5)+1|0;n=ln(p<<2)|0;f[c>>2]=n;f[k>>2]=p;f[j>>2]=l;j=l>>>5;sj(n|0,0,j<<2|0)|0;p=l&31;l=n+(j<<2)|0;if(p|0)f[l>>2]=f[l>>2]&~(-1>>>(32-p|0))}p=a+20|0;l=0;j=s;s=t;t=v;while(1){if(l>>>0>2>>>0){w=0;x=0;y=l;z=s;A=j}else{B=25;break}while(1){v=x>>>5;n=1<<(x&31);do if(!(f[(f[c>>2]|0)+(v<<2)>>2]&n)){k=f[A+(x<<2)>>2]|0;if((f[k+8>>2]|0)!=(f[k+4>>2]|0)){r=0;o=1;m=A;q=k;while(1){k=f[(f[q+4>>2]|0)+(r<<2)>>2]|0;C=0;D=m;while(1){E=f[D+(x<<2)>>2]|0;if((C|0)>=(Ra[f[(f[E>>2]|0)+24>>2]&127](E,k)|0)){F=o;break}E=f[(f[h>>2]|0)+(x<<2)>>2]|0;G=Sa[f[(f[E>>2]|0)+28>>2]&31](E,k,C)|0;if((G|0)!=(x|0)?(E=f[(f[p>>2]|0)+(G<<2)>>2]|0,(1<<(E&31)&f[(f[c>>2]|0)+(E>>>5<<2)>>2]|0)==0):0){F=0;break}C=C+1|0;D=f[h>>2]|0}r=r+1|0;m=f[h>>2]|0;q=f[m+(x<<2)>>2]|0;if(r>>>0>=(f[q+8>>2]|0)-(f[q+4>>2]|0)>>2>>>0)break;else o=F}o=m;if(F)H=o;else{I=w;J=y;K=o;break}}else H=z;f[(f[g>>2]|0)+(y<<2)>>2]=x;o=(f[c>>2]|0)+(v<<2)|0;f[o>>2]=f[o>>2]|n;I=1;J=y+1|0;K=H}else{I=w;J=y;K=z}while(0);x=x+1|0;L=f[i>>2]|0;M=L-K>>2;A=K;if(x>>>0>=M>>>0)break;else{w=I;y=J;z=K}}if(J>>>0>>0&(I^1)){N=0;break}else{l=J;j=A;s=K;t=L}}if((B|0)==25){f[d>>2]=0;B=d+4|0;f[B>>2]=0;f[d+8>>2]=0;L=f[a+4>>2]|0;a=(f[L+12>>2]|0)-(f[L+8>>2]|0)|0;L=a>>2;f[e>>2]=0;K=e+4|0;f[K>>2]=0;A=e+8|0;f[A>>2]=0;if(L|0){if((a|0)<0)aq(e);a=((L+-1|0)>>>5)+1|0;J=ln(a<<2)|0;f[e>>2]=J;f[A>>2]=a;f[K>>2]=L;K=L>>>5;sj(J|0,0,K<<2|0)|0;a=L&31;L=J+(K<<2)|0;if(a|0)f[L>>2]=f[L>>2]&~(-1>>>(32-a|0))}a:do if((t|0)==(s|0))O=1;else{a=0;L=j;K=s;J=t;while(1){A=f[(f[g>>2]|0)+(a<<2)>>2]|0;l=f[L+(A<<2)>>2]|0;I=(f[l+8>>2]|0)-(f[l+4>>2]|0)|0;l=I>>2;if((I|0)<8){P=K;Q=J}else{I=f[B>>2]|0;M=f[d>>2]|0;z=I-M>>2;y=M;M=I;if(l>>>0<=z>>>0)if(l>>>0>>0?(I=y+(l<<2)|0,(I|0)!=(M|0)):0){f[B>>2]=M+(~((M+-4-I|0)>>>2)<<2);R=0}else R=0;else{Ci(d,l-z|0);R=0}while(1){if((R|0)<(l|0)){S=0;T=0;U=R}else break;while(1){z=f[(f[h>>2]|0)+(A<<2)>>2]|0;I=f[(f[z+4>>2]|0)+(S<<2)>>2]|0;M=S>>>5;y=1<<(S&31);if(!(f[(f[e>>2]|0)+(M<<2)>>2]&y)){w=0;x=1;H=z;while(1){if((w|0)>=(Ra[f[(f[H>>2]|0)+24>>2]&127](H,I)|0)){V=x;break}z=f[(f[h>>2]|0)+(A<<2)>>2]|0;F=Sa[f[(f[z>>2]|0)+28>>2]&31](z,I,w)|0;z=(f[(f[e>>2]|0)+(F>>>5<<2)>>2]&1<<(F&31)|0)!=0;F=x&z;if(!z){V=F;break}w=w+1|0;x=F;H=f[(f[h>>2]|0)+(A<<2)>>2]|0}if(V){f[(f[d>>2]|0)+(U<<2)>>2]=S;H=(f[e>>2]|0)+(M<<2)|0;f[H>>2]=f[H>>2]|y;W=1;X=U+1|0}else{W=T;X=U}}else{W=T;X=U}S=S+1|0;if((S|0)>=(l|0))break;else{T=W;U=X}}if(W|(X|0)>=(l|0))R=X;else{O=0;break a}}bg(f[(f[h>>2]|0)+(A<<2)>>2]|0,d);P=f[h>>2]|0;Q=f[i>>2]|0}a=a+1|0;if(a>>>0>=Q-P>>2>>>0){O=1;break}else{L=P;K=P;J=Q}}}while(0);Q=f[e>>2]|0;if(Q|0)Oq(Q);Q=f[d>>2]|0;if(Q|0){d=f[B>>2]|0;if((d|0)!=(Q|0))f[B>>2]=d+(~((d+-4-Q|0)>>>2)<<2);Oq(Q)}N=O}O=f[c>>2]|0;if(!O){u=b;return N|0}Oq(O);u=b;return N|0}function yc(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0;if(!a)return;b=a+-8|0;c=f[4788]|0;d=f[a+-4>>2]|0;a=d&-8;e=b+a|0;do if(!(d&1)){g=f[b>>2]|0;if(!(d&3))return;h=b+(0-g)|0;i=g+a|0;if(h>>>0>>0)return;if((f[4789]|0)==(h|0)){j=e+4|0;k=f[j>>2]|0;if((k&3|0)!=3){l=h;m=i;n=h;break}f[4786]=i;f[j>>2]=k&-2;f[h+4>>2]=i|1;f[h+i>>2]=i;return}k=g>>>3;if(g>>>0<256){g=f[h+8>>2]|0;j=f[h+12>>2]|0;if((j|0)==(g|0)){f[4784]=f[4784]&~(1<>2]=j;f[j+8>>2]=g;l=h;m=i;n=h;break}}g=f[h+24>>2]|0;j=f[h+12>>2]|0;do if((j|0)==(h|0)){k=h+16|0;o=k+4|0;p=f[o>>2]|0;if(!p){q=f[k>>2]|0;if(!q){r=0;break}else{s=q;t=k}}else{s=p;t=o}while(1){o=s+20|0;p=f[o>>2]|0;if(p|0){s=p;t=o;continue}o=s+16|0;p=f[o>>2]|0;if(!p)break;else{s=p;t=o}}f[t>>2]=0;r=s}else{o=f[h+8>>2]|0;f[o+12>>2]=j;f[j+8>>2]=o;r=j}while(0);if(g){j=f[h+28>>2]|0;o=19440+(j<<2)|0;if((f[o>>2]|0)==(h|0)){f[o>>2]=r;if(!r){f[4785]=f[4785]&~(1<>2]|0)!=(h|0)&1)<<2)>>2]=r;if(!r){l=h;m=i;n=h;break}}f[r+24>>2]=g;j=h+16|0;o=f[j>>2]|0;if(o|0){f[r+16>>2]=o;f[o+24>>2]=r}o=f[j+4>>2]|0;if(o){f[r+20>>2]=o;f[o+24>>2]=r;l=h;m=i;n=h}else{l=h;m=i;n=h}}else{l=h;m=i;n=h}}else{l=b;m=a;n=b}while(0);if(n>>>0>=e>>>0)return;b=e+4|0;a=f[b>>2]|0;if(!(a&1))return;if(!(a&2)){if((f[4790]|0)==(e|0)){r=(f[4787]|0)+m|0;f[4787]=r;f[4790]=l;f[l+4>>2]=r|1;if((l|0)!=(f[4789]|0))return;f[4789]=0;f[4786]=0;return}if((f[4789]|0)==(e|0)){r=(f[4786]|0)+m|0;f[4786]=r;f[4789]=n;f[l+4>>2]=r|1;f[n+r>>2]=r;return}r=(a&-8)+m|0;s=a>>>3;do if(a>>>0<256){t=f[e+8>>2]|0;c=f[e+12>>2]|0;if((c|0)==(t|0)){f[4784]=f[4784]&~(1<>2]=c;f[c+8>>2]=t;break}}else{t=f[e+24>>2]|0;c=f[e+12>>2]|0;do if((c|0)==(e|0)){d=e+16|0;o=d+4|0;j=f[o>>2]|0;if(!j){p=f[d>>2]|0;if(!p){u=0;break}else{v=p;w=d}}else{v=j;w=o}while(1){o=v+20|0;j=f[o>>2]|0;if(j|0){v=j;w=o;continue}o=v+16|0;j=f[o>>2]|0;if(!j)break;else{v=j;w=o}}f[w>>2]=0;u=v}else{o=f[e+8>>2]|0;f[o+12>>2]=c;f[c+8>>2]=o;u=c}while(0);if(t|0){c=f[e+28>>2]|0;h=19440+(c<<2)|0;if((f[h>>2]|0)==(e|0)){f[h>>2]=u;if(!u){f[4785]=f[4785]&~(1<>2]|0)!=(e|0)&1)<<2)>>2]=u;if(!u)break}f[u+24>>2]=t;c=e+16|0;h=f[c>>2]|0;if(h|0){f[u+16>>2]=h;f[h+24>>2]=u}h=f[c+4>>2]|0;if(h|0){f[u+20>>2]=h;f[h+24>>2]=u}}}while(0);f[l+4>>2]=r|1;f[n+r>>2]=r;if((l|0)==(f[4789]|0)){f[4786]=r;return}else x=r}else{f[b>>2]=a&-2;f[l+4>>2]=m|1;f[n+m>>2]=m;x=m}m=x>>>3;if(x>>>0<256){n=19176+(m<<1<<2)|0;a=f[4784]|0;b=1<>2]|0;z=b}f[z>>2]=l;f[y+12>>2]=l;f[l+8>>2]=y;f[l+12>>2]=n;return}n=x>>>8;if(n)if(x>>>0>16777215)A=31;else{y=(n+1048320|0)>>>16&8;z=n<>>16&4;b=z<>>16&2;a=14-(n|y|z)+(b<>>15)|0;A=x>>>(a+7|0)&1|a<<1}else A=0;a=19440+(A<<2)|0;f[l+28>>2]=A;f[l+20>>2]=0;f[l+16>>2]=0;z=f[4785]|0;b=1<>>1)|0);n=f[a>>2]|0;while(1){if((f[n+4>>2]&-8|0)==(x|0)){B=73;break}C=n+16+(y>>>31<<2)|0;m=f[C>>2]|0;if(!m){B=72;break}else{y=y<<1;n=m}}if((B|0)==72){f[C>>2]=l;f[l+24>>2]=n;f[l+12>>2]=l;f[l+8>>2]=l;break}else if((B|0)==73){y=n+8|0;t=f[y>>2]|0;f[t+12>>2]=l;f[y>>2]=l;f[l+8>>2]=t;f[l+12>>2]=n;f[l+24>>2]=0;break}}else{f[4785]=z|b;f[a>>2]=l;f[l+24>>2]=a;f[l+12>>2]=l;f[l+8>>2]=l}while(0);l=(f[4792]|0)+-1|0;f[4792]=l;if(!l)D=19592;else return;while(1){l=f[D>>2]|0;if(!l)break;else D=l+8|0}f[4792]=-1;return}function zc(a){a=a|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0;c=u;u=u+32|0;e=c+4|0;g=c;h=c+16|0;i=a+52|0;j=f[i>>2]|0;k=(f[j+100>>2]|0)-(f[j+96>>2]|0)|0;j=(k|0)/12|0;l=a+44|0;ci(j,f[l>>2]|0)|0;ci(f[(f[i>>2]|0)+80>>2]|0,f[l>>2]|0)|0;m=f[a+48>>2]|0;n=ln(32)|0;f[e>>2]=n;f[e+8>>2]=-2147483616;f[e+4>>2]=21;o=n;p=15598;q=o+21|0;do{b[o>>0]=b[p>>0]|0;o=o+1|0;p=p+1|0}while((o|0)<(q|0));b[n+21>>0]=0;n=Yj(m,e,0)|0;if((b[e+11>>0]|0)<0)Oq(f[e>>2]|0);m=f[l>>2]|0;if(n){b[h>>0]=0;n=m+16|0;p=f[n+4>>2]|0;if(!((p|0)>0|(p|0)==0&(f[n>>2]|0)>>>0>0)){f[g>>2]=f[m+4>>2];f[e>>2]=f[g>>2];Me(m,e,h,h+1|0)|0}mf(a)|0;u=c;return 1}b[h>>0]=1;a=m+16|0;n=f[a+4>>2]|0;if(!((n|0)>0|(n|0)==0&(f[a>>2]|0)>>>0>0)){f[g>>2]=f[m+4>>2];f[e>>2]=f[g>>2];Me(m,e,h,h+1|0)|0}m=f[i>>2]|0;a=f[m+80>>2]|0;if(a>>>0<256){if(!k){u=c;return 1}n=h+1|0;p=h+1|0;o=h+1|0;q=0;r=m;while(1){s=f[r+96>>2]|0;t=f[l>>2]|0;b[h>>0]=f[s+(q*12|0)>>2];v=t+16|0;w=f[v>>2]|0;x=f[v+4>>2]|0;if((x|0)>0|(x|0)==0&w>>>0>0){y=w;z=t;A=x}else{f[g>>2]=f[t+4>>2];f[e>>2]=f[g>>2];Me(t,e,h,o)|0;t=f[l>>2]|0;x=t+16|0;y=f[x>>2]|0;z=t;A=f[x+4>>2]|0}b[h>>0]=f[s+(q*12|0)+4>>2];if((A|0)>0|(A|0)==0&y>>>0>0){B=A;C=y;D=z}else{f[g>>2]=f[z+4>>2];f[e>>2]=f[g>>2];Me(z,e,h,p)|0;x=f[l>>2]|0;t=x+16|0;B=f[t+4>>2]|0;C=f[t>>2]|0;D=x}b[h>>0]=f[s+(q*12|0)+8>>2];if(!((B|0)>0|(B|0)==0&C>>>0>0)){f[g>>2]=f[D+4>>2];f[e>>2]=f[g>>2];Me(D,e,h,n)|0}s=q+1|0;if(s>>>0>=j>>>0)break;q=s;r=f[i>>2]|0}u=c;return 1}if(a>>>0<65536){if(!k){u=c;return 1}r=h+2|0;q=h+2|0;n=h+2|0;D=0;C=m;while(1){B=f[C+96>>2]|0;p=f[l>>2]|0;d[h>>1]=f[B+(D*12|0)>>2];z=p+16|0;y=f[z>>2]|0;A=f[z+4>>2]|0;if((A|0)>0|(A|0)==0&y>>>0>0){E=A;F=y;G=p}else{f[g>>2]=f[p+4>>2];f[e>>2]=f[g>>2];Me(p,e,h,n)|0;p=f[l>>2]|0;y=p+16|0;E=f[y+4>>2]|0;F=f[y>>2]|0;G=p}d[h>>1]=f[B+(D*12|0)+4>>2];if((E|0)>0|(E|0)==0&F>>>0>0){H=E;I=F;J=G}else{f[g>>2]=f[G+4>>2];f[e>>2]=f[g>>2];Me(G,e,h,q)|0;p=f[l>>2]|0;y=p+16|0;H=f[y+4>>2]|0;I=f[y>>2]|0;J=p}d[h>>1]=f[B+(D*12|0)+8>>2];if(!((H|0)>0|(H|0)==0&I>>>0>0)){f[g>>2]=f[J+4>>2];f[e>>2]=f[g>>2];Me(J,e,h,r)|0}B=D+1|0;if(B>>>0>=j>>>0)break;D=B;C=f[i>>2]|0}u=c;return 1}C=(k|0)!=0;if(a>>>0<2097152){if(C){K=0;L=m}else{u=c;return 1}while(1){a=f[L+96>>2]|0;ci(f[a+(K*12|0)>>2]|0,f[l>>2]|0)|0;ci(f[a+(K*12|0)+4>>2]|0,f[l>>2]|0)|0;ci(f[a+(K*12|0)+8>>2]|0,f[l>>2]|0)|0;a=K+1|0;if(a>>>0>=j>>>0)break;K=a;L=f[i>>2]|0}u=c;return 1}if(!C){u=c;return 1}C=0;L=m;while(1){m=(f[L+96>>2]|0)+(C*12|0)|0;K=f[l>>2]|0;a=K+16|0;k=f[a+4>>2]|0;if(!((k|0)>0|(k|0)==0&(f[a>>2]|0)>>>0>0)){f[g>>2]=f[K+4>>2];f[e>>2]=f[g>>2];Me(K,e,m,m+12|0)|0}m=C+1|0;if(m>>>0>=j>>>0)break;C=m;L=f[i>>2]|0}u=c;return 1}function Ac(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=Oa,w=Oa,x=Oa,y=Oa,z=0,A=0,B=0,C=Oa,D=Oa,E=Oa,F=Oa,G=Oa,H=Oa,I=Oa,K=Oa,M=Oa,N=Oa,O=Oa,P=0,Q=Oa,R=Oa,S=0;g=u;u=u+48|0;h=g+40|0;i=g+36|0;j=g+24|0;k=g+12|0;l=g;m=a+28|0;o=f[c>>2]|0;c=o+1|0;if((o|0)!=-1){p=((c>>>0)%3|0|0)==0?o+-2|0:c;c=o+(((o>>>0)%3|0|0)==0?2:-1)|0;if((p|0)==-1)q=-1;else q=f[(f[f[m>>2]>>2]|0)+(p<<2)>>2]|0;if((c|0)==-1){r=-1;s=q}else{r=f[(f[f[m>>2]>>2]|0)+(c<<2)>>2]|0;s=q}}else{r=-1;s=-1}q=f[a+32>>2]|0;c=f[q>>2]|0;m=(f[q+4>>2]|0)-c>>2;if(m>>>0<=s>>>0)aq(q);p=c;c=f[p+(s<<2)>>2]|0;if(m>>>0<=r>>>0)aq(q);q=f[p+(r<<2)>>2]|0;r=(c|0)<(e|0);if(!(r&(q|0)<(e|0))){do if(r)t=c;else{if((e|0)>0){t=e+-1|0;break}p=a+52|0;if((f[p>>2]|0)<=0){u=g;return}m=f[a+48>>2]|0;s=0;do{f[m+(s<<2)>>2]=0;s=s+1|0}while((s|0)<(f[p>>2]|0));u=g;return}while(0);r=a+52|0;p=f[r>>2]|0;s=X(p,t)|0;if((p|0)<=0){u=g;return}p=f[a+48>>2]|0;t=0;do{f[p+(t<<2)>>2]=f[d+(t+s<<2)>>2];t=t+1|0}while((t|0)<(f[r>>2]|0));u=g;return}r=a+52|0;t=f[r>>2]|0;s=X(t,c)|0;v=$(f[d+(s<<2)>>2]|0);w=$(f[d+(s+1<<2)>>2]|0);s=X(t,q)|0;x=$(f[d+(s<<2)>>2]|0);y=$(f[d+(s+1<<2)>>2]|0);if(!(x!=v|y!=w)){s=f[a+48>>2]|0;f[s>>2]=~~x;f[s+4>>2]=~~y;u=g;return}s=a+44|0;t=f[(f[s>>2]|0)+(e<<2)>>2]|0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;p=a+40|0;m=f[p>>2]|0;if(!(b[m+84>>0]|0))z=f[(f[m+68>>2]|0)+(t<<2)>>2]|0;else z=t;f[i>>2]=z;z=b[m+24>>0]|0;f[h>>2]=f[i>>2];mb(m,h,z,j)|0;z=f[(f[s>>2]|0)+(c<<2)>>2]|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;c=f[p>>2]|0;if(!(b[c+84>>0]|0))A=f[(f[c+68>>2]|0)+(z<<2)>>2]|0;else A=z;f[i>>2]=A;A=b[c+24>>0]|0;f[h>>2]=f[i>>2];mb(c,h,A,k)|0;A=f[(f[s>>2]|0)+(q<<2)>>2]|0;f[l>>2]=0;f[l+4>>2]=0;f[l+8>>2]=0;q=f[p>>2]|0;if(!(b[q+84>>0]|0))B=f[(f[q+68>>2]|0)+(A<<2)>>2]|0;else B=A;f[i>>2]=B;B=b[q+24>>0]|0;f[h>>2]=f[i>>2];mb(q,h,B,l)|0;C=$(n[l>>2]);D=$(n[k>>2]);E=$(C-D);C=$(n[l+4>>2]);F=$(n[k+4>>2]);G=$(C-F);C=$(n[l+8>>2]);H=$(n[k+8>>2]);I=$(C-H);C=$($(n[j>>2])-D);D=$($(n[j+4>>2])-F);F=$($(n[j+8>>2])-H);H=$($($($(E*E)+$(0.0))+$(G*G))+$(I*I));if(H>$(0.0)){K=$($($($($(E*C)+$(0.0))+$(G*D))+$(I*F))/H);M=$(C-$(E*K));E=$(D-$(G*K));G=$(F-$(I*K));N=K;O=$(L($($($(G*G)+$($(E*E)+$($(M*M)+$(0.0))))/H)))}else{N=$(0.0);O=$(0.0)}H=$(x-v);x=$(y-w);y=$($(H*N)+v);v=$(H*O);H=$($(x*N)+w);w=$(x*O);O=$(y-w);x=$(H+v);N=$(y+w);w=$(H-v);j=X(f[r>>2]|0,e)|0;v=$(f[d+(j<<2)>>2]|0);H=$(f[d+(j+1<<2)>>2]|0);y=$(v-O);M=$(H-x);E=$(v-N);v=$(H-w);j=$($($(y*y)+$(0.0))+$(M*M))<$($($(E*E)+$(0.0))+$(v*v));d=a+56|0;e=a+60|0;r=f[e>>2]|0;k=f[a+64>>2]|0;l=(r|0)==(k<<5|0);if(j){do if(l)if((r+1|0)<0)aq(d);else{j=k<<6;B=r+32&-32;vi(d,r>>>0<1073741823?(j>>>0>>0?B:j):2147483647);P=f[e>>2]|0;break}else P=r;while(0);f[e>>2]=P+1;j=(f[d>>2]|0)+(P>>>5<<2)|0;f[j>>2]=f[j>>2]|1<<(P&31);Q=O;R=x}else{do if(l)if((r+1|0)<0)aq(d);else{P=k<<6;j=r+32&-32;vi(d,r>>>0<1073741823?(P>>>0>>0?j:P):2147483647);S=f[e>>2]|0;break}else S=r;while(0);f[e>>2]=S+1;e=(f[d>>2]|0)+(S>>>5<<2)|0;f[e>>2]=f[e>>2]&~(1<<(S&31));Q=N;R=w}S=~~+J(+(+Q+.5));e=f[a+48>>2]|0;f[e>>2]=S;S=~~+J(+(+R+.5));f[e+4>>2]=S;u=g;return}function Bc(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=Oa,v=Oa,w=Oa,x=Oa,y=0,z=0,A=0,B=Oa,C=Oa,D=Oa,E=Oa,F=Oa,G=Oa,H=Oa,I=Oa,K=Oa,M=Oa,N=Oa,O=0,P=Oa,Q=Oa,R=0;g=u;u=u+48|0;h=g+40|0;i=g+36|0;j=g+24|0;k=g+12|0;l=g;m=a+28|0;o=f[c>>2]|0;c=o+1|0;do if((o|0)!=-1){p=((c>>>0)%3|0|0)==0?o+-2|0:c;if(!((o>>>0)%3|0)){q=o+2|0;r=p;break}else{q=o+-1|0;r=p;break}}else{q=-1;r=-1}while(0);o=f[(f[m>>2]|0)+28>>2]|0;m=f[o+(r<<2)>>2]|0;r=f[o+(q<<2)>>2]|0;q=f[a+32>>2]|0;o=f[q>>2]|0;c=(f[q+4>>2]|0)-o>>2;if(c>>>0<=m>>>0)aq(q);p=o;o=f[p+(m<<2)>>2]|0;if(c>>>0<=r>>>0)aq(q);q=f[p+(r<<2)>>2]|0;r=(o|0)<(e|0);if(!(r&(q|0)<(e|0))){do if(r)s=o;else{if((e|0)>0){s=e+-1|0;break}p=a+52|0;if((f[p>>2]|0)<=0){u=g;return}c=f[a+48>>2]|0;m=0;do{f[c+(m<<2)>>2]=0;m=m+1|0}while((m|0)<(f[p>>2]|0));u=g;return}while(0);r=a+52|0;p=f[r>>2]|0;m=X(p,s)|0;if((p|0)<=0){u=g;return}p=f[a+48>>2]|0;s=0;do{f[p+(s<<2)>>2]=f[d+(s+m<<2)>>2];s=s+1|0}while((s|0)<(f[r>>2]|0));u=g;return}r=a+52|0;s=f[r>>2]|0;m=X(s,o)|0;t=$(f[d+(m<<2)>>2]|0);v=$(f[d+(m+1<<2)>>2]|0);m=X(s,q)|0;w=$(f[d+(m<<2)>>2]|0);x=$(f[d+(m+1<<2)>>2]|0);if(!(w!=t|x!=v)){m=f[a+48>>2]|0;f[m>>2]=~~w;f[m+4>>2]=~~x;u=g;return}m=a+44|0;s=f[(f[m>>2]|0)+(e<<2)>>2]|0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;p=a+40|0;c=f[p>>2]|0;if(!(b[c+84>>0]|0))y=f[(f[c+68>>2]|0)+(s<<2)>>2]|0;else y=s;f[i>>2]=y;y=b[c+24>>0]|0;f[h>>2]=f[i>>2];mb(c,h,y,j)|0;y=f[(f[m>>2]|0)+(o<<2)>>2]|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;o=f[p>>2]|0;if(!(b[o+84>>0]|0))z=f[(f[o+68>>2]|0)+(y<<2)>>2]|0;else z=y;f[i>>2]=z;z=b[o+24>>0]|0;f[h>>2]=f[i>>2];mb(o,h,z,k)|0;z=f[(f[m>>2]|0)+(q<<2)>>2]|0;f[l>>2]=0;f[l+4>>2]=0;f[l+8>>2]=0;q=f[p>>2]|0;if(!(b[q+84>>0]|0))A=f[(f[q+68>>2]|0)+(z<<2)>>2]|0;else A=z;f[i>>2]=A;A=b[q+24>>0]|0;f[h>>2]=f[i>>2];mb(q,h,A,l)|0;B=$(n[l>>2]);C=$(n[k>>2]);D=$(B-C);B=$(n[l+4>>2]);E=$(n[k+4>>2]);F=$(B-E);B=$(n[l+8>>2]);G=$(n[k+8>>2]);H=$(B-G);B=$($(n[j>>2])-C);C=$($(n[j+4>>2])-E);E=$($(n[j+8>>2])-G);G=$($($($(D*D)+$(0.0))+$(F*F))+$(H*H));if(G>$(0.0)){I=$($($($($(D*B)+$(0.0))+$(F*C))+$(H*E))/G);K=$(B-$(D*I));D=$(C-$(F*I));F=$(E-$(H*I));M=I;N=$(L($($($(F*F)+$($(D*D)+$($(K*K)+$(0.0))))/G)))}else{M=$(0.0);N=$(0.0)}G=$(w-t);w=$(x-v);x=$($(G*M)+t);t=$(G*N);G=$($(w*M)+v);v=$(w*N);N=$(x-v);w=$(G+t);M=$(x+v);v=$(G-t);j=X(f[r>>2]|0,e)|0;t=$(f[d+(j<<2)>>2]|0);G=$(f[d+(j+1<<2)>>2]|0);x=$(t-N);K=$(G-w);D=$(t-M);t=$(G-v);j=$($($(x*x)+$(0.0))+$(K*K))<$($($(D*D)+$(0.0))+$(t*t));d=a+56|0;e=a+60|0;r=f[e>>2]|0;k=f[a+64>>2]|0;l=(r|0)==(k<<5|0);if(j){do if(l)if((r+1|0)<0)aq(d);else{j=k<<6;A=r+32&-32;vi(d,r>>>0<1073741823?(j>>>0>>0?A:j):2147483647);O=f[e>>2]|0;break}else O=r;while(0);f[e>>2]=O+1;j=(f[d>>2]|0)+(O>>>5<<2)|0;f[j>>2]=f[j>>2]|1<<(O&31);P=N;Q=w}else{do if(l)if((r+1|0)<0)aq(d);else{O=k<<6;j=r+32&-32;vi(d,r>>>0<1073741823?(O>>>0>>0?j:O):2147483647);R=f[e>>2]|0;break}else R=r;while(0);f[e>>2]=R+1;e=(f[d>>2]|0)+(R>>>5<<2)|0;f[e>>2]=f[e>>2]&~(1<<(R&31));P=M;Q=v}R=~~+J(+(+P+.5));e=f[a+48>>2]|0;f[e>>2]=R;R=~~+J(+(+Q+.5));f[e+4>>2]=R;u=g;return}function Cc(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=Oa,w=Oa,x=Oa,y=Oa,z=0,A=0,B=0,C=Oa,D=Oa,E=Oa,F=Oa,G=Oa,H=Oa,I=Oa,K=Oa,M=Oa,N=Oa,O=Oa,P=0,Q=Oa,R=Oa,S=0;g=u;u=u+48|0;h=g+40|0;i=g+36|0;j=g+24|0;k=g+12|0;l=g;m=a+48|0;o=f[c>>2]|0;c=o+1|0;if((o|0)!=-1){p=((c>>>0)%3|0|0)==0?o+-2|0:c;c=o+(((o>>>0)%3|0|0)==0?2:-1)|0;if((p|0)==-1)q=-1;else q=f[(f[f[m>>2]>>2]|0)+(p<<2)>>2]|0;if((c|0)==-1){r=-1;s=q}else{r=f[(f[f[m>>2]>>2]|0)+(c<<2)>>2]|0;s=q}}else{r=-1;s=-1}q=f[a+52>>2]|0;c=f[q>>2]|0;m=(f[q+4>>2]|0)-c>>2;if(m>>>0<=s>>>0)aq(q);p=c;c=f[p+(s<<2)>>2]|0;if(m>>>0<=r>>>0)aq(q);q=f[p+(r<<2)>>2]|0;r=(c|0)<(e|0);if(!(r&(q|0)<(e|0))){do if(r)t=c;else{if((e|0)>0){t=e+-1|0;break}p=a+72|0;if((f[p>>2]|0)<=0){u=g;return}m=f[a+68>>2]|0;s=0;do{f[m+(s<<2)>>2]=0;s=s+1|0}while((s|0)<(f[p>>2]|0));u=g;return}while(0);r=a+72|0;p=f[r>>2]|0;s=X(p,t)|0;if((p|0)<=0){u=g;return}p=f[a+68>>2]|0;t=0;do{f[p+(t<<2)>>2]=f[d+(t+s<<2)>>2];t=t+1|0}while((t|0)<(f[r>>2]|0));u=g;return}r=a+72|0;t=f[r>>2]|0;s=X(t,c)|0;v=$(f[d+(s<<2)>>2]|0);w=$(f[d+(s+1<<2)>>2]|0);s=X(t,q)|0;x=$(f[d+(s<<2)>>2]|0);y=$(f[d+(s+1<<2)>>2]|0);if(!(x!=v|y!=w)){s=f[a+68>>2]|0;f[s>>2]=~~x;f[s+4>>2]=~~y;u=g;return}s=a+64|0;t=f[(f[s>>2]|0)+(e<<2)>>2]|0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;p=a+60|0;m=f[p>>2]|0;if(!(b[m+84>>0]|0))z=f[(f[m+68>>2]|0)+(t<<2)>>2]|0;else z=t;f[i>>2]=z;z=b[m+24>>0]|0;f[h>>2]=f[i>>2];mb(m,h,z,j)|0;z=f[(f[s>>2]|0)+(c<<2)>>2]|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;c=f[p>>2]|0;if(!(b[c+84>>0]|0))A=f[(f[c+68>>2]|0)+(z<<2)>>2]|0;else A=z;f[i>>2]=A;A=b[c+24>>0]|0;f[h>>2]=f[i>>2];mb(c,h,A,k)|0;A=f[(f[s>>2]|0)+(q<<2)>>2]|0;f[l>>2]=0;f[l+4>>2]=0;f[l+8>>2]=0;q=f[p>>2]|0;if(!(b[q+84>>0]|0))B=f[(f[q+68>>2]|0)+(A<<2)>>2]|0;else B=A;f[i>>2]=B;B=b[q+24>>0]|0;f[h>>2]=f[i>>2];mb(q,h,B,l)|0;C=$(n[l>>2]);D=$(n[k>>2]);E=$(C-D);C=$(n[l+4>>2]);F=$(n[k+4>>2]);G=$(C-F);C=$(n[l+8>>2]);H=$(n[k+8>>2]);I=$(C-H);C=$($(n[j>>2])-D);D=$($(n[j+4>>2])-F);F=$($(n[j+8>>2])-H);H=$($($($(E*E)+$(0.0))+$(G*G))+$(I*I));if(H>$(0.0)){K=$($($($($(E*C)+$(0.0))+$(G*D))+$(I*F))/H);M=$(C-$(E*K));E=$(D-$(G*K));G=$(F-$(I*K));N=K;O=$(L($($($(G*G)+$($(E*E)+$($(M*M)+$(0.0))))/H)))}else{N=$(0.0);O=$(0.0)}H=$(x-v);x=$(y-w);y=$($(H*N)+v);v=$(H*O);H=$($(x*N)+w);w=$(x*O);O=$(y-w);x=$(H+v);N=$(y+w);w=$(H-v);j=X(f[r>>2]|0,e)|0;v=$(f[d+(j<<2)>>2]|0);H=$(f[d+(j+1<<2)>>2]|0);y=$(v-O);M=$(H-x);E=$(v-N);v=$(H-w);j=$($($(y*y)+$(0.0))+$(M*M))<$($($(E*E)+$(0.0))+$(v*v));d=a+76|0;e=a+80|0;r=f[e>>2]|0;k=f[a+84>>2]|0;l=(r|0)==(k<<5|0);if(j){do if(l)if((r+1|0)<0)aq(d);else{j=k<<6;B=r+32&-32;vi(d,r>>>0<1073741823?(j>>>0>>0?B:j):2147483647);P=f[e>>2]|0;break}else P=r;while(0);f[e>>2]=P+1;j=(f[d>>2]|0)+(P>>>5<<2)|0;f[j>>2]=f[j>>2]|1<<(P&31);Q=O;R=x}else{do if(l)if((r+1|0)<0)aq(d);else{P=k<<6;j=r+32&-32;vi(d,r>>>0<1073741823?(P>>>0>>0?j:P):2147483647);S=f[e>>2]|0;break}else S=r;while(0);f[e>>2]=S+1;e=(f[d>>2]|0)+(S>>>5<<2)|0;f[e>>2]=f[e>>2]&~(1<<(S&31));Q=N;R=w}S=~~+J(+(+Q+.5));e=f[a+68>>2]|0;f[e>>2]=S;S=~~+J(+(+R+.5));f[e+4>>2]=S;u=g;return}function Dc(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=Oa,v=Oa,w=Oa,x=Oa,y=0,z=0,A=0,B=Oa,C=Oa,D=Oa,E=Oa,F=Oa,G=Oa,H=Oa,I=Oa,K=Oa,M=Oa,N=Oa,O=0,P=Oa,Q=Oa,R=0;g=u;u=u+48|0;h=g+40|0;i=g+36|0;j=g+24|0;k=g+12|0;l=g;m=a+48|0;o=f[c>>2]|0;c=o+1|0;do if((o|0)!=-1){p=((c>>>0)%3|0|0)==0?o+-2|0:c;if(!((o>>>0)%3|0)){q=o+2|0;r=p;break}else{q=o+-1|0;r=p;break}}else{q=-1;r=-1}while(0);o=f[(f[m>>2]|0)+28>>2]|0;m=f[o+(r<<2)>>2]|0;r=f[o+(q<<2)>>2]|0;q=f[a+52>>2]|0;o=f[q>>2]|0;c=(f[q+4>>2]|0)-o>>2;if(c>>>0<=m>>>0)aq(q);p=o;o=f[p+(m<<2)>>2]|0;if(c>>>0<=r>>>0)aq(q);q=f[p+(r<<2)>>2]|0;r=(o|0)<(e|0);if(!(r&(q|0)<(e|0))){do if(r)s=o;else{if((e|0)>0){s=e+-1|0;break}p=a+72|0;if((f[p>>2]|0)<=0){u=g;return}c=f[a+68>>2]|0;m=0;do{f[c+(m<<2)>>2]=0;m=m+1|0}while((m|0)<(f[p>>2]|0));u=g;return}while(0);r=a+72|0;p=f[r>>2]|0;m=X(p,s)|0;if((p|0)<=0){u=g;return}p=f[a+68>>2]|0;s=0;do{f[p+(s<<2)>>2]=f[d+(s+m<<2)>>2];s=s+1|0}while((s|0)<(f[r>>2]|0));u=g;return}r=a+72|0;s=f[r>>2]|0;m=X(s,o)|0;t=$(f[d+(m<<2)>>2]|0);v=$(f[d+(m+1<<2)>>2]|0);m=X(s,q)|0;w=$(f[d+(m<<2)>>2]|0);x=$(f[d+(m+1<<2)>>2]|0);if(!(w!=t|x!=v)){m=f[a+68>>2]|0;f[m>>2]=~~w;f[m+4>>2]=~~x;u=g;return}m=a+64|0;s=f[(f[m>>2]|0)+(e<<2)>>2]|0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;p=a+60|0;c=f[p>>2]|0;if(!(b[c+84>>0]|0))y=f[(f[c+68>>2]|0)+(s<<2)>>2]|0;else y=s;f[i>>2]=y;y=b[c+24>>0]|0;f[h>>2]=f[i>>2];mb(c,h,y,j)|0;y=f[(f[m>>2]|0)+(o<<2)>>2]|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;o=f[p>>2]|0;if(!(b[o+84>>0]|0))z=f[(f[o+68>>2]|0)+(y<<2)>>2]|0;else z=y;f[i>>2]=z;z=b[o+24>>0]|0;f[h>>2]=f[i>>2];mb(o,h,z,k)|0;z=f[(f[m>>2]|0)+(q<<2)>>2]|0;f[l>>2]=0;f[l+4>>2]=0;f[l+8>>2]=0;q=f[p>>2]|0;if(!(b[q+84>>0]|0))A=f[(f[q+68>>2]|0)+(z<<2)>>2]|0;else A=z;f[i>>2]=A;A=b[q+24>>0]|0;f[h>>2]=f[i>>2];mb(q,h,A,l)|0;B=$(n[l>>2]);C=$(n[k>>2]);D=$(B-C);B=$(n[l+4>>2]);E=$(n[k+4>>2]);F=$(B-E);B=$(n[l+8>>2]);G=$(n[k+8>>2]);H=$(B-G);B=$($(n[j>>2])-C);C=$($(n[j+4>>2])-E);E=$($(n[j+8>>2])-G);G=$($($($(D*D)+$(0.0))+$(F*F))+$(H*H));if(G>$(0.0)){I=$($($($($(D*B)+$(0.0))+$(F*C))+$(H*E))/G);K=$(B-$(D*I));D=$(C-$(F*I));F=$(E-$(H*I));M=I;N=$(L($($($(F*F)+$($(D*D)+$($(K*K)+$(0.0))))/G)))}else{M=$(0.0);N=$(0.0)}G=$(w-t);w=$(x-v);x=$($(G*M)+t);t=$(G*N);G=$($(w*M)+v);v=$(w*N);N=$(x-v);w=$(G+t);M=$(x+v);v=$(G-t);j=X(f[r>>2]|0,e)|0;t=$(f[d+(j<<2)>>2]|0);G=$(f[d+(j+1<<2)>>2]|0);x=$(t-N);K=$(G-w);D=$(t-M);t=$(G-v);j=$($($(x*x)+$(0.0))+$(K*K))<$($($(D*D)+$(0.0))+$(t*t));d=a+76|0;e=a+80|0;r=f[e>>2]|0;k=f[a+84>>2]|0;l=(r|0)==(k<<5|0);if(j){do if(l)if((r+1|0)<0)aq(d);else{j=k<<6;A=r+32&-32;vi(d,r>>>0<1073741823?(j>>>0>>0?A:j):2147483647);O=f[e>>2]|0;break}else O=r;while(0);f[e>>2]=O+1;j=(f[d>>2]|0)+(O>>>5<<2)|0;f[j>>2]=f[j>>2]|1<<(O&31);P=N;Q=w}else{do if(l)if((r+1|0)<0)aq(d);else{O=k<<6;j=r+32&-32;vi(d,r>>>0<1073741823?(O>>>0>>0?j:O):2147483647);R=f[e>>2]|0;break}else R=r;while(0);f[e>>2]=R+1;e=(f[d>>2]|0)+(R>>>5<<2)|0;f[e>>2]=f[e>>2]&~(1<<(R&31));P=M;Q=v}R=~~+J(+(+P+.5));e=f[a+68>>2]|0;f[e>>2]=R;R=~~+J(+(+Q+.5));f[e+4>>2]=R;u=g;return}function Ec(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=Oa,F=Oa,G=Oa,H=0,I=0,J=0,K=0;d=b[c+11>>0]|0;e=d<<24>>24<0;g=e?f[c>>2]|0:c;i=e?f[c+4>>2]|0:d&255;if(i>>>0>3){d=g;e=i;j=i;while(1){k=X(h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24,1540483477)|0;e=(X(k>>>24^k,1540483477)|0)^(X(e,1540483477)|0);j=j+-4|0;if(j>>>0<=3)break;else d=d+4|0}d=i+-4|0;j=d&-4;l=d-j|0;m=g+(j+4)|0;o=e}else{l=i;m=g;o=i}switch(l|0){case 3:{p=h[m+2>>0]<<16^o;q=6;break}case 2:{p=o;q=6;break}case 1:{r=o;q=7;break}default:s=o}if((q|0)==6){r=h[m+1>>0]<<8^p;q=7}if((q|0)==7)s=X(r^h[m>>0],1540483477)|0;m=X(s>>>13^s,1540483477)|0;s=m>>>15^m;m=a+4|0;r=f[m>>2]|0;p=(r|0)==0;a:do if(!p){o=r+-1|0;l=(o&r|0)==0;if(!l)if(s>>>0>>0)t=s;else t=(s>>>0)%(r>>>0)|0;else t=s&o;e=f[(f[a>>2]|0)+(t<<2)>>2]|0;if((e|0)!=0?(j=f[e>>2]|0,(j|0)!=0):0){e=(i|0)==0;if(l){if(e){l=j;while(1){d=f[l+4>>2]|0;if(!((d|0)==(s|0)|(d&o|0)==(t|0))){u=t;break a}d=b[l+8+11>>0]|0;if(!((d<<24>>24<0?f[l+12>>2]|0:d&255)|0)){v=l;break}l=f[l>>2]|0;if(!l){u=t;break a}}w=v+20|0;return w|0}else x=j;b:while(1){l=f[x+4>>2]|0;if(!((l|0)==(s|0)|(l&o|0)==(t|0))){u=t;break a}l=x+8|0;d=b[l+11>>0]|0;k=d<<24>>24<0;y=d&255;do if(((k?f[x+12>>2]|0:y)|0)==(i|0)){d=f[l>>2]|0;if(k)if(!(Vk(d,g,i)|0)){v=x;q=63;break b}else break;if((b[g>>0]|0)==(d&255)<<24>>24){d=l;z=y;A=g;do{z=z+-1|0;d=d+1|0;if(!z){v=x;q=63;break b}A=A+1|0}while((b[d>>0]|0)==(b[A>>0]|0))}}while(0);x=f[x>>2]|0;if(!x){u=t;break a}}if((q|0)==63){w=v+20|0;return w|0}}if(e){o=j;while(1){y=f[o+4>>2]|0;if((y|0)!=(s|0)){if(y>>>0>>0)B=y;else B=(y>>>0)%(r>>>0)|0;if((B|0)!=(t|0)){u=t;break a}}y=b[o+8+11>>0]|0;if(!((y<<24>>24<0?f[o+12>>2]|0:y&255)|0)){v=o;break}o=f[o>>2]|0;if(!o){u=t;break a}}w=v+20|0;return w|0}else C=j;c:while(1){o=f[C+4>>2]|0;if((o|0)!=(s|0)){if(o>>>0>>0)D=o;else D=(o>>>0)%(r>>>0)|0;if((D|0)!=(t|0)){u=t;break a}}o=C+8|0;e=b[o+11>>0]|0;y=e<<24>>24<0;l=e&255;do if(((y?f[C+12>>2]|0:l)|0)==(i|0)){e=f[o>>2]|0;if(y)if(!(Vk(e,g,i)|0)){v=C;q=63;break c}else break;if((b[g>>0]|0)==(e&255)<<24>>24){e=o;k=l;A=g;do{k=k+-1|0;e=e+1|0;if(!k){v=C;q=63;break c}A=A+1|0}while((b[e>>0]|0)==(b[A>>0]|0))}}while(0);C=f[C>>2]|0;if(!C){u=t;break a}}if((q|0)==63){w=v+20|0;return w|0}}else u=t}else u=0;while(0);t=ln(24)|0;pj(t+8|0,c);f[t+20>>2]=0;f[t+4>>2]=s;f[t>>2]=0;c=a+12|0;E=$(((f[c>>2]|0)+1|0)>>>0);F=$(r>>>0);G=$(n[a+16>>2]);do if(p|$(G*F)>>0<3|(r+-1&r|0)!=0)&1;g=~~$(W($(E/G)))>>>0;ei(a,C>>>0>>0?g:C);C=f[m>>2]|0;g=C+-1|0;if(!(g&C)){H=C;I=g&s;break}if(s>>>0>>0){H=C;I=s}else{H=C;I=(s>>>0)%(C>>>0)|0}}else{H=r;I=u}while(0);u=(f[a>>2]|0)+(I<<2)|0;I=f[u>>2]|0;if(!I){r=a+8|0;f[t>>2]=f[r>>2];f[r>>2]=t;f[u>>2]=r;r=f[t>>2]|0;if(r|0){u=f[r+4>>2]|0;r=H+-1|0;if(r&H)if(u>>>0>>0)J=u;else J=(u>>>0)%(H>>>0)|0;else J=u&r;K=(f[a>>2]|0)+(J<<2)|0;q=61}}else{f[t>>2]=f[I>>2];K=I;q=61}if((q|0)==61)f[K>>2]=t;f[c>>2]=(f[c>>2]|0)+1;v=t;w=v+20|0;return w|0}function Fc(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0.0,q=0.0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0.0,G=0.0,H=0,J=0,K=0,L=0,M=0,N=0,O=0.0,P=0,Q=0.0,R=0.0,S=0,T=0.0,U=0,V=0,W=0,X=0.0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0.0,da=0,ea=0.0;g=a+4|0;i=f[g>>2]|0;j=a+100|0;if(i>>>0<(f[j>>2]|0)>>>0){f[g>>2]=i+1;k=h[i>>0]|0;l=0}else{k=Si(a)|0;l=0}a:while(1){switch(k|0){case 46:{m=8;break a;break}case 48:break;default:{n=0;o=0;p=1.0;q=0.0;r=0;s=k;t=l;u=0;v=0;w=0;x=0;break a}}i=f[g>>2]|0;if(i>>>0<(f[j>>2]|0)>>>0){f[g>>2]=i+1;k=h[i>>0]|0;l=1;continue}else{k=Si(a)|0;l=1;continue}}if((m|0)==8){k=f[g>>2]|0;if(k>>>0<(f[j>>2]|0)>>>0){f[g>>2]=k+1;y=h[k>>0]|0}else y=Si(a)|0;if((y|0)==48){k=0;i=0;while(1){z=f[g>>2]|0;if(z>>>0<(f[j>>2]|0)>>>0){f[g>>2]=z+1;A=h[z>>0]|0}else A=Si(a)|0;z=Vn(k|0,i|0,-1,-1)|0;B=I;if((A|0)==48){k=z;i=B}else{n=1;o=0;p=1.0;q=0.0;r=0;s=A;t=1;u=0;v=0;w=z;x=B;break}}}else{n=1;o=0;p=1.0;q=0.0;r=0;s=y;t=l;u=0;v=0;w=0;x=0}}while(1){l=s+-48|0;y=s|32;if(l>>>0>=10){A=(s|0)==46;if(!(A|(y+-97|0)>>>0<6)){C=s;break}if(A)if(!n){D=1;E=o;F=p;G=q;H=r;J=t;K=v;L=u;M=v;N=u}else{C=46;break}else m=20}else m=20;if((m|0)==20){m=0;A=(s|0)>57?y+-87|0:l;do if(!((u|0)<0|(u|0)==0&v>>>0<8))if((u|0)<0|(u|0)==0&v>>>0<14){O=p*.0625;P=o;Q=O;R=q+O*+(A|0);S=r;break}else{l=(o|0)!=0|(A|0)==0;P=l?o:1;Q=p;R=l?q:q+p*.5;S=r;break}else{P=o;Q=p;R=q;S=A+(r<<4)|0}while(0);A=Vn(v|0,u|0,1,0)|0;D=n;E=P;F=Q;G=R;H=S;J=1;K=w;L=x;M=A;N=I}A=f[g>>2]|0;if(A>>>0<(f[j>>2]|0)>>>0){f[g>>2]=A+1;n=D;o=E;p=F;q=G;r=H;s=h[A>>0]|0;t=J;u=N;v=M;w=K;x=L;continue}else{n=D;o=E;p=F;q=G;r=H;s=Si(a)|0;t=J;u=N;v=M;w=K;x=L;continue}}do if(!t){L=(f[j>>2]|0)==0;if(!L)f[g>>2]=(f[g>>2]|0)+-1;if(e){if(!L)f[g>>2]=(f[g>>2]|0)+-1;if(!((n|0)==0|L))f[g>>2]=(f[g>>2]|0)+-1}else Ym(a,0);T=+(d|0)*0.0}else{L=(n|0)==0;K=L?v:w;M=L?u:x;if((u|0)<0|(u|0)==0&v>>>0<8){L=r;N=v;J=u;while(1){s=L<<4;H=N;N=Vn(N|0,J|0,1,0)|0;if(!((J|0)<0|(J|0)==0&H>>>0<7)){U=s;break}else{L=s;J=I}}}else U=r;if((C|32|0)==112){J=Re(a,e)|0;L=I;if((J|0)==0&(L|0)==-2147483648){if(!e){Ym(a,0);T=0.0;break}if(!(f[j>>2]|0)){V=0;W=0}else{f[g>>2]=(f[g>>2]|0)+-1;V=0;W=0}}else{V=J;W=L}}else if(!(f[j>>2]|0)){V=0;W=0}else{f[g>>2]=(f[g>>2]|0)+-1;V=0;W=0}L=Tn(K|0,M|0,2)|0;J=Vn(L|0,I|0,-32,-1)|0;L=Vn(J|0,I|0,V|0,W|0)|0;J=I;if(!U){T=+(d|0)*0.0;break}N=0-c|0;s=((N|0)<0)<<31>>31;if((J|0)>(s|0)|(J|0)==(s|0)&L>>>0>N>>>0){N=Vq()|0;f[N>>2]=34;T=+(d|0)*1797693134862315708145274.0e284*1797693134862315708145274.0e284;break}N=c+-106|0;s=((N|0)<0)<<31>>31;if((J|0)<(s|0)|(J|0)==(s|0)&L>>>0>>0){N=Vq()|0;f[N>>2]=34;T=+(d|0)*2.2250738585072014e-308*2.2250738585072014e-308;break}if((U|0)>-1){G=q;N=U;s=L;H=J;while(1){E=!(G>=.5);o=N<<1|(E^1)&1;F=G+(E?G:G+-1.0);E=Vn(s|0,H|0,-1,-1)|0;D=I;if((o|0)>-1){G=F;N=o;s=E;H=D}else{X=F;Y=o;Z=E;_=D;break}}}else{X=q;Y=U;Z=L;_=J}H=((b|0)<0)<<31>>31;s=Xn(32,0,c|0,((c|0)<0)<<31>>31|0)|0;N=Vn(s|0,I|0,Z|0,_|0)|0;s=I;if((s|0)<(H|0)|(s|0)==(H|0)&N>>>0>>0)if((N|0)>0){$=N;m=59}else{aa=0;ba=84;m=61}else{$=b;m=59}if((m|0)==59)if(($|0)<53){aa=$;ba=84-$|0;m=61}else{ca=0.0;da=$;ea=+(d|0)}if((m|0)==61){G=+(d|0);ca=+rq(+bk(1.0,ba),G);da=aa;ea=G}N=(Y&1|0)==0&(X!=0.0&(da|0)<32);G=(N?0.0:X)*ea+(ca+ea*+((Y+(N&1)|0)>>>0))-ca;if(!(G!=0.0)){N=Vq()|0;f[N>>2]=34}T=+sq(G,Z)}while(0);return +T}function Gc(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0;g=u;u=u+16|0;h=g+4|0;i=g;if(!(Gh(a,d)|0)){j=0;u=g;return j|0}d=a+84|0;k=f[d>>2]|0;l=a+88|0;m=f[l>>2]|0;if((m|0)!=(k|0))f[l>>2]=m+(~((m+-4-k|0)>>>2)<<2);f[d>>2]=0;f[l>>2]=0;f[a+92>>2]=0;if(k|0)Oq(k);k=a+72|0;l=f[k>>2]|0;d=a+76|0;if((f[d>>2]|0)!=(l|0))f[d>>2]=l;f[k>>2]=0;f[d>>2]=0;f[a+80>>2]=0;if(l|0)Oq(l);l=a+64|0;d=f[l>>2]|0;if((f[d+4>>2]|0)!=(f[d>>2]|0)){k=a+12|0;m=e+84|0;n=e+68|0;o=c+96|0;p=a+24|0;q=0;r=d;do{f[i>>2]=(q>>>0)/3|0;f[h>>2]=f[i>>2];d=_j(r,h)|0;r=f[l>>2]|0;do if(!d){s=f[(f[r+12>>2]|0)+(q<<2)>>2]|0;if((s|0)==-1){t=(f[a>>2]|0)+(q>>>5<<2)|0;f[t>>2]=f[t>>2]|1<<(q&31);t=q+1|0;v=((t>>>0)%3|0|0)==0?q+-2|0:t;if((v|0)==-1)w=-1;else w=f[(f[r>>2]|0)+(v<<2)>>2]|0;v=(f[k>>2]|0)+(w>>>5<<2)|0;f[v>>2]=f[v>>2]|1<<(w&31);v=(((q>>>0)%3|0|0)==0?2:-1)+q|0;if((v|0)==-1)x=-1;else x=f[(f[r>>2]|0)+(v<<2)>>2]|0;v=(f[k>>2]|0)+(x>>>5<<2)|0;f[v>>2]=f[v>>2]|1<<(x&31);break}if(s>>>0>=q>>>0){v=q+1|0;t=((v>>>0)%3|0|0)==0?q+-2|0:v;y=s+(((s>>>0)%3|0|0)==0?2:-1)|0;z=(t|0)==-1;if(!(b[m>>0]|0)){if(z)A=-1;else A=f[(f[o>>2]|0)+(((t|0)/3|0)*12|0)+(((t|0)%3|0)<<2)>>2]|0;B=(y|0)==-1;if(B)C=-1;else C=f[(f[o>>2]|0)+(((y|0)/3|0)*12|0)+(((y|0)%3|0)<<2)>>2]|0;D=f[n>>2]|0;if((f[D+(A<<2)>>2]|0)==(f[D+(C<<2)>>2]|0)){E=t+1|0;if(z)F=-1;else F=((E>>>0)%3|0|0)==0?t+-2|0:E;do if(!B)if(!((y>>>0)%3|0)){G=y+2|0;break}else{G=y+-1|0;break}else G=-1;while(0);if((F|0)==-1)H=-1;else H=f[(f[o>>2]|0)+(((F|0)/3|0)*12|0)+(((F|0)%3|0)<<2)>>2]|0;if((G|0)==-1)I=-1;else I=f[(f[o>>2]|0)+(((G|0)/3|0)*12|0)+(((G|0)%3|0)<<2)>>2]|0;if((f[D+(H<<2)>>2]|0)==(f[D+(I<<2)>>2]|0))break}}else{if(z)J=-1;else J=f[(f[o>>2]|0)+(((t|0)/3|0)*12|0)+(((t|0)%3|0)<<2)>>2]|0;B=(y|0)==-1;if(B)K=-1;else K=f[(f[o>>2]|0)+(((y|0)/3|0)*12|0)+(((y|0)%3|0)<<2)>>2]|0;if((J|0)==(K|0)){E=t+1|0;if(z)L=-1;else L=((E>>>0)%3|0|0)==0?t+-2|0:E;do if(!B)if(!((y>>>0)%3|0)){M=y+2|0;break}else{M=y+-1|0;break}else M=-1;while(0);if((L|0)==-1)N=-1;else N=f[(f[o>>2]|0)+(((L|0)/3|0)*12|0)+(((L|0)%3|0)<<2)>>2]|0;if((M|0)==-1)O=-1;else O=f[(f[o>>2]|0)+(((M|0)/3|0)*12|0)+(((M|0)%3|0)<<2)>>2]|0;if((N|0)==(O|0))break}}b[p>>0]=0;y=f[a>>2]|0;B=y+(q>>>5<<2)|0;f[B>>2]=f[B>>2]|1<<(q&31);B=y+(s>>>5<<2)|0;f[B>>2]=f[B>>2]|1<<(s&31);B=((v>>>0)%3|0|0)==0?q+-2|0:v;if((B|0)==-1)P=-1;else P=f[(f[r>>2]|0)+(B<<2)>>2]|0;B=(f[k>>2]|0)+(P>>>5<<2)|0;f[B>>2]=f[B>>2]|1<<(P&31);B=(((q>>>0)%3|0|0)==0?2:-1)+q|0;if((B|0)==-1)Q=-1;else Q=f[(f[r>>2]|0)+(B<<2)>>2]|0;B=(f[k>>2]|0)+(Q>>>5<<2)|0;f[B>>2]=f[B>>2]|1<<(Q&31);B=s+1|0;y=((B>>>0)%3|0|0)==0?s+-2|0:B;if((y|0)==-1)R=-1;else R=f[(f[r>>2]|0)+(y<<2)>>2]|0;y=(f[k>>2]|0)+(R>>>5<<2)|0;f[y>>2]=f[y>>2]|1<<(R&31);y=(((s>>>0)%3|0|0)==0?2:-1)+s|0;if((y|0)==-1)S=-1;else S=f[(f[r>>2]|0)+(y<<2)>>2]|0;y=(f[k>>2]|0)+(S>>>5<<2)|0;f[y>>2]=f[y>>2]|1<<(S&31)}}while(0);q=q+1|0}while(q>>>0<(f[r+4>>2]|0)-(f[r>>2]|0)>>2>>>0)}if((c|0)!=0&(e|0)!=0){Qc(a,c,e);j=1;u=g;return j|0}else{md(a,0,0);j=1;u=g;return j|0}return 0}function Hc(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0;d=u;u=u+32|0;e=d+12|0;g=d+8|0;h=d+4|0;i=d;j=a+8|0;a:do if(f[j>>2]|0?(k=f[a>>2]|0,l=a+4|0,f[a>>2]=l,f[(f[l>>2]|0)+8>>2]=0,f[l>>2]=0,f[j>>2]=0,m=f[k+4>>2]|0,n=(m|0)==0?k:m,n|0):0){m=a+4|0;k=n;n=f[b>>2]|0;while(1){if((n|0)==(f[c>>2]|0))break;o=k+16|0;f[o>>2]=f[n+16>>2];if((k|0)!=(n|0)){f[h>>2]=f[n+20>>2];f[i>>2]=n+24;f[g>>2]=f[h>>2];f[e>>2]=f[i>>2];Oc(k+20|0,g,e)}p=k+8|0;q=f[p>>2]|0;do if(q){r=f[q>>2]|0;if((r|0)==(k|0)){f[q>>2]=0;s=f[q+4>>2]|0;if(!s){t=q;break}else v=s;while(1){s=f[v>>2]|0;if(s|0){v=s;continue}s=f[v+4>>2]|0;if(!s)break;else v=s}t=v;break}else{f[q+4>>2]=0;if(!r){t=q;break}else w=r;while(1){s=f[w>>2]|0;if(s|0){w=s;continue}s=f[w+4>>2]|0;if(!s)break;else w=s}t=w;break}}else t=0;while(0);q=f[l>>2]|0;do if(q){r=f[o>>2]|0;s=q;while(1){if((r|0)<(f[s+16>>2]|0)){x=f[s>>2]|0;if(!x){y=22;break}else z=x}else{A=s+4|0;x=f[A>>2]|0;if(!x){y=25;break}else z=x}s=z}if((y|0)==22){y=0;B=s;C=s;break}else if((y|0)==25){y=0;B=s;C=A;break}}else{B=l;C=l}while(0);f[k>>2]=0;f[k+4>>2]=0;f[p>>2]=B;f[C>>2]=k;q=f[f[a>>2]>>2]|0;if(!q)D=k;else{f[a>>2]=q;D=f[C>>2]|0}Oe(f[m>>2]|0,D);f[j>>2]=(f[j>>2]|0)+1;q=f[n+4>>2]|0;if(!q){o=n+8|0;r=f[o>>2]|0;if((f[r>>2]|0)==(n|0))E=r;else{r=o;do{o=f[r>>2]|0;r=o+8|0;x=f[r>>2]|0}while((f[x>>2]|0)!=(o|0));E=x}}else{r=q;while(1){p=f[r>>2]|0;if(!p)break;else r=p}E=r}f[b>>2]=E;if(!t)break a;else{k=t;n=E}}n=f[k+8>>2]|0;if(!n)F=k;else{m=n;while(1){n=f[m+8>>2]|0;if(!n)break;else m=n}F=m}Oj(a,F)}while(0);F=f[b>>2]|0;E=f[c>>2]|0;if((F|0)==(E|0)){u=d;return}c=a+4|0;t=a+4|0;D=F;while(1){Kg(e,a,D+16|0);F=f[c>>2]|0;do if(F){C=f[e>>2]|0;B=f[C+16>>2]|0;A=F;while(1){if((B|0)<(f[A+16>>2]|0)){z=f[A>>2]|0;if(!z){y=43;break}else G=z}else{H=A+4|0;z=f[H>>2]|0;if(!z){y=46;break}else G=z}A=G}if((y|0)==43){y=0;I=A;J=A;K=C;break}else if((y|0)==46){y=0;I=A;J=H;K=C;break}}else{I=c;J=c;K=f[e>>2]|0}while(0);f[K>>2]=0;f[K+4>>2]=0;f[K+8>>2]=I;f[J>>2]=K;F=f[f[a>>2]>>2]|0;if(!F)L=K;else{f[a>>2]=F;L=f[J>>2]|0}Oe(f[t>>2]|0,L);f[j>>2]=(f[j>>2]|0)+1;F=f[D+4>>2]|0;if(!F){m=D+8|0;B=f[m>>2]|0;if((f[B>>2]|0)==(D|0))M=B;else{B=m;do{m=f[B>>2]|0;B=m+8|0;r=f[B>>2]|0}while((f[r>>2]|0)!=(m|0));M=r}}else{B=F;while(1){r=f[B>>2]|0;if(!r)break;else B=r}M=B}f[b>>2]=M;if((M|0)==(E|0))break;else D=M}u=d;return}function Ic(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0;g=u;u=u+32|0;d=g+16|0;h=g+8|0;i=g;j=f[a+28>>2]|0;k=f[a+32>>2]|0;l=e>>>0>1073741823?-1:e<<2;m=Lq(l)|0;sj(m|0,0,l|0)|0;n=Lq(l)|0;sj(n|0,0,l|0)|0;l=a+36|0;o=f[l>>2]|0;p=f[o+4>>2]|0;q=f[o>>2]|0;r=p-q|0;a:do if((r|0)>4){s=r>>2;t=(e|0)>0;v=a+8|0;w=h+4|0;x=i+4|0;y=d+4|0;z=m+4|0;A=h+4|0;B=i+4|0;C=d+4|0;D=j+12|0;E=e<<2;F=s+-1|0;if(p-q>>2>>>0>F>>>0){G=s;H=F;I=q}else{J=o;aq(J)}while(1){F=f[I+(H<<2)>>2]|0;if(t)sj(m|0,0,E|0)|0;if((F|0)!=-1){s=f[D>>2]|0;K=0;L=F;while(1){M=f[s+(L<<2)>>2]|0;if((M|0)!=-1){N=f[j>>2]|0;O=f[k>>2]|0;P=f[O+(f[N+(M<<2)>>2]<<2)>>2]|0;Q=M+1|0;R=((Q>>>0)%3|0|0)==0?M+-2|0:Q;if((R|0)==-1)S=-1;else S=f[N+(R<<2)>>2]|0;R=f[O+(S<<2)>>2]|0;Q=(((M>>>0)%3|0|0)==0?2:-1)+M|0;if((Q|0)==-1)T=-1;else T=f[N+(Q<<2)>>2]|0;Q=f[O+(T<<2)>>2]|0;if((P|0)<(H|0)&(R|0)<(H|0)&(Q|0)<(H|0)){O=X(P,e)|0;P=X(R,e)|0;R=X(Q,e)|0;if(t){Q=0;do{f[n+(Q<<2)>>2]=(f[b+(Q+R<<2)>>2]|0)+(f[b+(Q+P<<2)>>2]|0)-(f[b+(Q+O<<2)>>2]|0);Q=Q+1|0}while((Q|0)!=(e|0));if(t){Q=0;do{O=m+(Q<<2)|0;f[O>>2]=(f[O>>2]|0)+(f[n+(Q<<2)>>2]|0);Q=Q+1|0}while((Q|0)!=(e|0))}}U=K+1|0}else U=K}else U=K;Q=(((L>>>0)%3|0|0)==0?2:-1)+L|0;do if((Q|0)!=-1?(O=f[s+(Q<<2)>>2]|0,(O|0)!=-1):0)if(!((O>>>0)%3|0)){V=O+2|0;break}else{V=O+-1|0;break}else V=-1;while(0);L=(V|0)==(F|0)?-1:V;if((L|0)==-1)break;else K=U}K=X(H,e)|0;if(!U){W=K;Y=30}else{if(t){L=0;do{F=m+(L<<2)|0;f[F>>2]=(f[F>>2]|0)/(U|0)|0;L=L+1|0}while((L|0)!=(e|0))}L=b+(K<<2)|0;F=c+(K<<2)|0;s=f[L+4>>2]|0;Q=f[m>>2]|0;O=f[z>>2]|0;f[h>>2]=f[L>>2];f[A>>2]=s;f[i>>2]=Q;f[B>>2]=O;Od(d,v,h,i);f[F>>2]=f[d>>2];f[F+4>>2]=f[C>>2]}}else{W=X(H,e)|0;Y=30}if((Y|0)==30){Y=0;F=b+(W<<2)|0;O=b+((X(G+-2|0,e)|0)<<2)|0;Q=c+(W<<2)|0;s=f[F+4>>2]|0;L=f[O>>2]|0;P=f[O+4>>2]|0;f[h>>2]=f[F>>2];f[w>>2]=s;f[i>>2]=L;f[x>>2]=P;Od(d,v,h,i);f[Q>>2]=f[d>>2];f[Q+4>>2]=f[y>>2]}if((G|0)<=2)break a;Q=f[l>>2]|0;I=f[Q>>2]|0;P=H+-1|0;if((f[Q+4>>2]|0)-I>>2>>>0<=P>>>0){J=Q;break}else{Q=H;H=P;G=Q}}aq(J)}while(0);if((e|0)<=0){Z=a+8|0;_=b+4|0;$=f[b>>2]|0;aa=f[_>>2]|0;ba=m+4|0;ca=f[m>>2]|0;da=f[ba>>2]|0;f[h>>2]=$;ea=h+4|0;f[ea>>2]=aa;f[i>>2]=ca;fa=i+4|0;f[fa>>2]=da;Od(d,Z,h,i);ga=f[d>>2]|0;f[c>>2]=ga;ha=d+4|0;ia=f[ha>>2]|0;ja=c+4|0;f[ja>>2]=ia;Mq(n);Mq(m);u=g;return 1}sj(m|0,0,e<<2|0)|0;Z=a+8|0;_=b+4|0;$=f[b>>2]|0;aa=f[_>>2]|0;ba=m+4|0;ca=f[m>>2]|0;da=f[ba>>2]|0;f[h>>2]=$;ea=h+4|0;f[ea>>2]=aa;f[i>>2]=ca;fa=i+4|0;f[fa>>2]=da;Od(d,Z,h,i);ga=f[d>>2]|0;f[c>>2]=ga;ha=d+4|0;ia=f[ha>>2]|0;ja=c+4|0;f[ja>>2]=ia;Mq(n);Mq(m);u=g;return 1}function Jc(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0;g=a+8|0;Mh(g,b,d,e);d=e>>>0>1073741823?-1:e<<2;h=Lq(d)|0;sj(h|0,0,d|0)|0;d=f[a+48>>2]|0;i=f[a+56>>2]|0;j=f[i>>2]|0;k=(f[i+4>>2]|0)-j|0;l=k>>2;a:do if((k|0)>4){m=f[a+52>>2]|0;n=a+16|0;o=a+32|0;p=a+12|0;q=a+28|0;r=a+20|0;s=a+24|0;t=d+12|0;u=(e|0)>0;v=j;w=l;while(1){x=w;w=w+-1|0;if(l>>>0<=w>>>0)break;y=f[v+(w<<2)>>2]|0;z=X(w,e)|0;if((y|0)!=-1?(A=f[(f[t>>2]|0)+(y<<2)>>2]|0,(A|0)!=-1):0){y=f[d>>2]|0;B=f[m>>2]|0;C=f[B+(f[y+(A<<2)>>2]<<2)>>2]|0;D=A+1|0;E=((D>>>0)%3|0|0)==0?A+-2|0:D;if((E|0)==-1)F=-1;else F=f[y+(E<<2)>>2]|0;E=f[B+(F<<2)>>2]|0;D=(((A>>>0)%3|0|0)==0?2:-1)+A|0;if((D|0)==-1)G=-1;else G=f[y+(D<<2)>>2]|0;D=f[B+(G<<2)>>2]|0;if((C|0)<(w|0)&(E|0)<(w|0)&(D|0)<(w|0)){B=X(C,e)|0;C=X(E,e)|0;E=X(D,e)|0;if(u){D=0;do{f[h+(D<<2)>>2]=(f[b+(D+E<<2)>>2]|0)+(f[b+(D+C<<2)>>2]|0)-(f[b+(D+B<<2)>>2]|0);D=D+1|0}while((D|0)!=(e|0))}D=b+(z<<2)|0;B=c+(z<<2)|0;C=f[g>>2]|0;if((C|0)>0){E=0;y=h;A=C;while(1){if((A|0)>0){C=0;do{H=f[y+(C<<2)>>2]|0;I=f[n>>2]|0;if((H|0)>(I|0)){J=f[o>>2]|0;f[J+(C<<2)>>2]=I;K=J}else{J=f[p>>2]|0;I=f[o>>2]|0;f[I+(C<<2)>>2]=(H|0)<(J|0)?J:H;K=I}C=C+1|0}while((C|0)<(f[g>>2]|0));L=K}else L=f[o>>2]|0;C=(f[D+(E<<2)>>2]|0)-(f[L+(E<<2)>>2]|0)|0;I=B+(E<<2)|0;f[I>>2]=C;if((C|0)>=(f[q>>2]|0)){if((C|0)>(f[s>>2]|0)){M=C-(f[r>>2]|0)|0;N=42}}else{M=(f[r>>2]|0)+C|0;N=42}if((N|0)==42){N=0;f[I>>2]=M}E=E+1|0;A=f[g>>2]|0;if((E|0)>=(A|0))break;else y=L}}}else N=16}else N=16;if((N|0)==16?(N=0,y=b+(z<<2)|0,A=c+(z<<2)|0,E=f[g>>2]|0,(E|0)>0):0){B=0;D=b+((X(x+-2|0,e)|0)<<2)|0;I=E;while(1){if((I|0)>0){E=0;do{C=f[D+(E<<2)>>2]|0;H=f[n>>2]|0;if((C|0)>(H|0)){J=f[o>>2]|0;f[J+(E<<2)>>2]=H;O=J}else{J=f[p>>2]|0;H=f[o>>2]|0;f[H+(E<<2)>>2]=(C|0)<(J|0)?J:C;O=H}E=E+1|0}while((E|0)<(f[g>>2]|0));P=O}else P=f[o>>2]|0;E=(f[y+(B<<2)>>2]|0)-(f[P+(B<<2)>>2]|0)|0;H=A+(B<<2)|0;f[H>>2]=E;if((E|0)>=(f[q>>2]|0)){if((E|0)>(f[s>>2]|0)){Q=E-(f[r>>2]|0)|0;N=29}}else{Q=(f[r>>2]|0)+E|0;N=29}if((N|0)==29){N=0;f[H>>2]=Q}B=B+1|0;I=f[g>>2]|0;if((B|0)>=(I|0))break;else D=P}}if((x|0)<=2)break a}aq(i)}while(0);if((e|0)>0)sj(h|0,0,e<<2|0)|0;e=f[g>>2]|0;if((e|0)<=0){Mq(h);return 1}i=a+16|0;P=a+32|0;Q=a+12|0;O=a+28|0;L=a+20|0;M=a+24|0;a=0;K=h;G=e;while(1){if((G|0)>0){e=0;do{F=f[K+(e<<2)>>2]|0;d=f[i>>2]|0;if((F|0)>(d|0)){l=f[P>>2]|0;f[l+(e<<2)>>2]=d;R=l}else{l=f[Q>>2]|0;d=f[P>>2]|0;f[d+(e<<2)>>2]=(F|0)<(l|0)?l:F;R=d}e=e+1|0}while((e|0)<(f[g>>2]|0));S=R}else S=f[P>>2]|0;e=(f[b+(a<<2)>>2]|0)-(f[S+(a<<2)>>2]|0)|0;d=c+(a<<2)|0;f[d>>2]=e;if((e|0)>=(f[O>>2]|0)){if((e|0)>(f[M>>2]|0)){T=e-(f[L>>2]|0)|0;N=56}}else{T=(f[L>>2]|0)+e|0;N=56}if((N|0)==56){N=0;f[d>>2]=T}a=a+1|0;G=f[g>>2]|0;if((a|0)>=(G|0))break;else K=S}Mq(h);return 1}function Kc(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0;g=u;u=u+32|0;d=g+16|0;h=g+8|0;i=g;j=f[a+28>>2]|0;k=f[a+32>>2]|0;l=e>>>0>1073741823?-1:e<<2;m=Lq(l)|0;sj(m|0,0,l|0)|0;n=Lq(l)|0;sj(n|0,0,l|0)|0;l=a+36|0;o=f[l>>2]|0;p=f[o+4>>2]|0;q=f[o>>2]|0;r=p-q|0;a:do if((r|0)>4){s=r>>2;t=(e|0)>0;v=a+8|0;w=h+4|0;x=i+4|0;y=d+4|0;z=m+4|0;A=h+4|0;B=i+4|0;C=d+4|0;D=j+64|0;E=j+28|0;F=e<<2;G=s+-1|0;if(p-q>>2>>>0>G>>>0){H=s;I=G;J=q}else{K=o;aq(K)}while(1){G=f[J+(I<<2)>>2]|0;if(t)sj(m|0,0,F|0)|0;if((G|0)!=-1){s=f[j>>2]|0;L=0;M=G;while(1){if(((f[s+(M>>>5<<2)>>2]&1<<(M&31)|0)==0?(N=f[(f[(f[D>>2]|0)+12>>2]|0)+(M<<2)>>2]|0,(N|0)!=-1):0)?(O=f[E>>2]|0,P=f[k>>2]|0,Q=f[P+(f[O+(N<<2)>>2]<<2)>>2]|0,R=N+1|0,S=f[P+(f[O+((((R>>>0)%3|0|0)==0?N+-2|0:R)<<2)>>2]<<2)>>2]|0,R=f[P+(f[O+((((N>>>0)%3|0|0)==0?2:-1)+N<<2)>>2]<<2)>>2]|0,(Q|0)<(I|0)&(S|0)<(I|0)&(R|0)<(I|0)):0){N=X(Q,e)|0;Q=X(S,e)|0;S=X(R,e)|0;if(t){R=0;do{f[n+(R<<2)>>2]=(f[b+(R+S<<2)>>2]|0)+(f[b+(R+Q<<2)>>2]|0)-(f[b+(R+N<<2)>>2]|0);R=R+1|0}while((R|0)!=(e|0));if(t){R=0;do{N=m+(R<<2)|0;f[N>>2]=(f[N>>2]|0)+(f[n+(R<<2)>>2]|0);R=R+1|0}while((R|0)!=(e|0))}}T=L+1|0}else T=L;R=(((M>>>0)%3|0|0)==0?2:-1)+M|0;do if(((R|0)!=-1?(f[s+(R>>>5<<2)>>2]&1<<(R&31)|0)==0:0)?(N=f[(f[(f[D>>2]|0)+12>>2]|0)+(R<<2)>>2]|0,(N|0)!=-1):0)if(!((N>>>0)%3|0)){U=N+2|0;break}else{U=N+-1|0;break}else U=-1;while(0);M=(U|0)==(G|0)?-1:U;if((M|0)==-1)break;else L=T}L=X(I,e)|0;if(!T){V=L;W=28}else{if(t){M=0;do{G=m+(M<<2)|0;f[G>>2]=(f[G>>2]|0)/(T|0)|0;M=M+1|0}while((M|0)!=(e|0))}M=b+(L<<2)|0;G=c+(L<<2)|0;s=f[M+4>>2]|0;R=f[m>>2]|0;N=f[z>>2]|0;f[h>>2]=f[M>>2];f[A>>2]=s;f[i>>2]=R;f[B>>2]=N;Od(d,v,h,i);f[G>>2]=f[d>>2];f[G+4>>2]=f[C>>2]}}else{V=X(I,e)|0;W=28}if((W|0)==28){W=0;G=b+(V<<2)|0;N=b+((X(H+-2|0,e)|0)<<2)|0;R=c+(V<<2)|0;s=f[G+4>>2]|0;M=f[N>>2]|0;Q=f[N+4>>2]|0;f[h>>2]=f[G>>2];f[w>>2]=s;f[i>>2]=M;f[x>>2]=Q;Od(d,v,h,i);f[R>>2]=f[d>>2];f[R+4>>2]=f[y>>2]}if((H|0)<=2)break a;R=f[l>>2]|0;J=f[R>>2]|0;Q=I+-1|0;if((f[R+4>>2]|0)-J>>2>>>0<=Q>>>0){K=R;break}else{R=I;I=Q;H=R}}aq(K)}while(0);if((e|0)<=0){Y=a+8|0;Z=b+4|0;_=f[b>>2]|0;$=f[Z>>2]|0;aa=m+4|0;ba=f[m>>2]|0;ca=f[aa>>2]|0;f[h>>2]=_;da=h+4|0;f[da>>2]=$;f[i>>2]=ba;ea=i+4|0;f[ea>>2]=ca;Od(d,Y,h,i);fa=f[d>>2]|0;f[c>>2]=fa;ga=d+4|0;ha=f[ga>>2]|0;ia=c+4|0;f[ia>>2]=ha;Mq(n);Mq(m);u=g;return 1}sj(m|0,0,e<<2|0)|0;Y=a+8|0;Z=b+4|0;_=f[b>>2]|0;$=f[Z>>2]|0;aa=m+4|0;ba=f[m>>2]|0;ca=f[aa>>2]|0;f[h>>2]=_;da=h+4|0;f[da>>2]=$;f[i>>2]=ba;ea=i+4|0;f[ea>>2]=ca;Od(d,Y,h,i);fa=f[d>>2]|0;f[c>>2]=fa;ga=d+4|0;ha=f[ga>>2]|0;ia=c+4|0;f[ia>>2]=ha;Mq(n);Mq(m);u=g;return 1}function Lc(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0;g=a+8|0;Mh(g,b,d,e);d=e>>>0>1073741823?-1:e<<2;h=Lq(d)|0;sj(h|0,0,d|0)|0;d=f[a+48>>2]|0;i=f[a+56>>2]|0;j=f[i>>2]|0;k=(f[i+4>>2]|0)-j|0;l=k>>2;a:do if((k|0)>4){m=f[a+52>>2]|0;n=a+16|0;o=a+32|0;p=a+12|0;q=a+28|0;r=a+20|0;s=a+24|0;t=d+64|0;u=d+28|0;v=(e|0)>0;w=j;x=l;while(1){y=x;x=x+-1|0;if(l>>>0<=x>>>0)break;z=f[w+(x<<2)>>2]|0;A=X(x,e)|0;if((((z|0)!=-1?(f[(f[d>>2]|0)+(z>>>5<<2)>>2]&1<<(z&31)|0)==0:0)?(B=f[(f[(f[t>>2]|0)+12>>2]|0)+(z<<2)>>2]|0,(B|0)!=-1):0)?(z=f[u>>2]|0,C=f[m>>2]|0,D=f[C+(f[z+(B<<2)>>2]<<2)>>2]|0,E=B+1|0,F=f[C+(f[z+((((E>>>0)%3|0|0)==0?B+-2|0:E)<<2)>>2]<<2)>>2]|0,E=f[C+(f[z+((((B>>>0)%3|0|0)==0?2:-1)+B<<2)>>2]<<2)>>2]|0,(D|0)<(x|0)&(F|0)<(x|0)&(E|0)<(x|0)):0){B=X(D,e)|0;D=X(F,e)|0;F=X(E,e)|0;if(v){E=0;do{f[h+(E<<2)>>2]=(f[b+(E+F<<2)>>2]|0)+(f[b+(E+D<<2)>>2]|0)-(f[b+(E+B<<2)>>2]|0);E=E+1|0}while((E|0)!=(e|0))}E=b+(A<<2)|0;B=c+(A<<2)|0;D=f[g>>2]|0;if((D|0)>0){F=0;z=h;C=D;while(1){if((C|0)>0){D=0;do{G=f[z+(D<<2)>>2]|0;H=f[n>>2]|0;if((G|0)>(H|0)){I=f[o>>2]|0;f[I+(D<<2)>>2]=H;J=I}else{I=f[p>>2]|0;H=f[o>>2]|0;f[H+(D<<2)>>2]=(G|0)<(I|0)?I:G;J=H}D=D+1|0}while((D|0)<(f[g>>2]|0));K=J}else K=f[o>>2]|0;D=(f[E+(F<<2)>>2]|0)-(f[K+(F<<2)>>2]|0)|0;H=B+(F<<2)|0;f[H>>2]=D;if((D|0)>=(f[q>>2]|0)){if((D|0)>(f[s>>2]|0)){L=D-(f[r>>2]|0)|0;M=39}}else{L=(f[r>>2]|0)+D|0;M=39}if((M|0)==39){M=0;f[H>>2]=L}F=F+1|0;C=f[g>>2]|0;if((F|0)>=(C|0))break;else z=K}}}else M=13;if((M|0)==13?(M=0,z=b+(A<<2)|0,C=c+(A<<2)|0,F=f[g>>2]|0,(F|0)>0):0){B=0;E=b+((X(y+-2|0,e)|0)<<2)|0;H=F;while(1){if((H|0)>0){F=0;do{D=f[E+(F<<2)>>2]|0;G=f[n>>2]|0;if((D|0)>(G|0)){I=f[o>>2]|0;f[I+(F<<2)>>2]=G;N=I}else{I=f[p>>2]|0;G=f[o>>2]|0;f[G+(F<<2)>>2]=(D|0)<(I|0)?I:D;N=G}F=F+1|0}while((F|0)<(f[g>>2]|0));O=N}else O=f[o>>2]|0;F=(f[z+(B<<2)>>2]|0)-(f[O+(B<<2)>>2]|0)|0;G=C+(B<<2)|0;f[G>>2]=F;if((F|0)>=(f[q>>2]|0)){if((F|0)>(f[s>>2]|0)){P=F-(f[r>>2]|0)|0;M=26}}else{P=(f[r>>2]|0)+F|0;M=26}if((M|0)==26){M=0;f[G>>2]=P}B=B+1|0;H=f[g>>2]|0;if((B|0)>=(H|0))break;else E=O}}if((y|0)<=2)break a}aq(i)}while(0);if((e|0)>0)sj(h|0,0,e<<2|0)|0;e=f[g>>2]|0;if((e|0)<=0){Mq(h);return 1}i=a+16|0;O=a+32|0;P=a+12|0;N=a+28|0;K=a+20|0;L=a+24|0;a=0;J=h;d=e;while(1){if((d|0)>0){e=0;do{l=f[J+(e<<2)>>2]|0;j=f[i>>2]|0;if((l|0)>(j|0)){k=f[O>>2]|0;f[k+(e<<2)>>2]=j;Q=k}else{k=f[P>>2]|0;j=f[O>>2]|0;f[j+(e<<2)>>2]=(l|0)<(k|0)?k:l;Q=j}e=e+1|0}while((e|0)<(f[g>>2]|0));R=Q}else R=f[O>>2]|0;e=(f[b+(a<<2)>>2]|0)-(f[R+(a<<2)>>2]|0)|0;j=c+(a<<2)|0;f[j>>2]=e;if((e|0)>=(f[N>>2]|0)){if((e|0)>(f[L>>2]|0)){S=e-(f[K>>2]|0)|0;M=53}}else{S=(f[K>>2]|0)+e|0;M=53}if((M|0)==53){M=0;f[j>>2]=S}a=a+1|0;d=f[g>>2]|0;if((a|0)>=(d|0))break;else J=R}Mq(h);return 1}function Mc(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0;h=u;u=u+48|0;i=h+28|0;j=h+24|0;k=h;l=h+12|0;m=h+40|0;if((c|0)<0){n=0;u=h;return n|0}if(!c){n=1;u=h;return n|0}o=(d|0)>1;p=o?d:1;f[k>>2]=0;d=k+4|0;f[d>>2]=0;f[k+8>>2]=0;gk(k,c);q=k+8|0;if(o){o=0;r=0;while(1){s=1;t=f[a+(r<<2)>>2]|0;do{v=f[a+(s+r<<2)>>2]|0;t=t>>>0>>0?v:t;s=s+1|0}while((s|0)!=(p|0));s=(_(t|0)|0)^31;v=t>>>0>o>>>0?t:o;w=(t|0)==0?1:s+1|0;f[i>>2]=w;s=f[d>>2]|0;if(s>>>0<(f[q>>2]|0)>>>0){f[s>>2]=w;f[d>>2]=s+4}else Ri(k,i);r=r+p|0;if((r|0)>=(c|0)){x=v;break}else o=v}}else{o=0;r=0;while(1){v=f[a+(o<<2)>>2]|0;s=(_(v|0)|0)^31;w=v>>>0>r>>>0?v:r;y=(v|0)==0?1:s+1|0;f[i>>2]=y;s=f[d>>2]|0;if(s>>>0<(f[q>>2]|0)>>>0){f[s>>2]=y;f[d>>2]=s+4}else Ri(k,i);o=o+p|0;if((o|0)>=(c|0)){x=w;break}else r=w}}f[l>>2]=0;r=l+4|0;f[r>>2]=0;f[l+8>>2]=0;o=f[k>>2]|0;q=(f[d>>2]|0)-o|0;w=q>>2;if(w){if(w>>>0>1073741823)aq(l);s=ln(q)|0;f[r>>2]=s;f[l>>2]=s;f[l+8>>2]=s+(w<<2);w=s;if((q|0)>0){y=s+(q>>>2<<2)|0;kh(s|0,o|0,q|0)|0;f[r>>2]=y;q=y-w>>2;if((y|0)==(s|0)){z=q;A=s;B=0;C=0}else{y=0;o=0;v=0;while(1){D=Vn(o|0,v|0,f[s+(y<<2)>>2]|0,0)|0;E=I;y=y+1|0;if(y>>>0>=q>>>0){z=q;A=s;B=D;C=E;break}else{o=D;v=E}}}}else{F=w;G=18}}else{F=0;G=18}if((G|0)==18){z=0;A=F;B=0;C=0}F=Jg(A,z,32,i)|0;z=I;A=f[i>>2]<<3;w=Tn(A|0,((A|0)<0)<<31>>31|0,1)|0;A=I;v=un(B|0,C|0,p|0,0)|0;C=Vn(F|0,z|0,v|0,I|0)|0;v=Vn(C|0,I|0,w|0,A|0)|0;A=I;w=f[l>>2]|0;if(w|0){l=f[r>>2]|0;if((l|0)!=(w|0))f[r>>2]=l+(~((l+-4-w|0)>>>2)<<2);Oq(w)}w=Jg(a,c,x,i)|0;l=f[i>>2]|0;r=((x-l|0)/64|0)+l<<3;C=l<<3;z=Vn(w|0,I|0,C|0,((C|0)<0)<<31>>31|0)|0;C=Vn(z|0,I|0,r|0,((r|0)<0)<<31>>31|0)|0;r=I;z=(_((x>>>0>1?x:1)|0)|0)^30;if(e){f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;w=ln(32)|0;f[i>>2]=w;f[i+8>>2]=-2147483616;f[i+4>>2]=22;F=w;B=15964;o=F+22|0;do{b[F>>0]=b[B>>0]|0;F=F+1|0;B=B+1|0}while((F|0)<(o|0));b[w+22>>0]=0;w=(Jh(e,i)|0)==0;if((b[i+11>>0]|0)<0)Oq(f[i>>2]|0);if(!w){f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;w=ln(32)|0;f[i>>2]=w;f[i+8>>2]=-2147483616;f[i+4>>2]=22;F=w;B=15964;o=F+22|0;do{b[F>>0]=b[B>>0]|0;F=F+1|0;B=B+1|0}while((F|0)<(o|0));b[w+22>>0]=0;w=Mk(e,i)|0;if((b[i+11>>0]|0)<0)Oq(f[i>>2]|0);H=w}else G=32}else G=32;if((G|0)==32)H=z>>>0<18&((A|0)>(r|0)|(A|0)==(r|0)&v>>>0>=C>>>0)&1;b[m>>0]=H;C=g+16|0;v=f[C+4>>2]|0;if(!((v|0)>0|(v|0)==0&(f[C>>2]|0)>>>0>0)){f[j>>2]=f[g+4>>2];f[i>>2]=f[j>>2];Me(g,i,m,m+1|0)|0}switch(H|0){case 0:{J=td(a,c,p,k,g)|0;break}case 1:{J=Tc(a,c,x,l,e,g)|0;break}default:J=0}g=f[k>>2]|0;if(g|0){k=f[d>>2]|0;if((k|0)!=(g|0))f[d>>2]=k+(~((k+-4-g|0)>>>2)<<2);Oq(g)}n=J;u=h;return n|0}function Nc(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0;if((b|0)<0)return;c=a+12|0;d=f[c>>2]|0;e=f[a+8>>2]|0;g=e;h=d;if(d-e>>2>>>0<=b>>>0)return;e=g+(b<<2)|0;d=f[(f[e>>2]|0)+56>>2]|0;i=f[(f[g+(b<<2)>>2]|0)+60>>2]|0;g=e+4|0;if((g|0)!=(h|0)){j=g;g=e;do{k=f[j>>2]|0;f[j>>2]=0;l=f[g>>2]|0;f[g>>2]=k;if(l|0){k=l+88|0;m=f[k>>2]|0;f[k>>2]=0;if(m|0){k=f[m+8>>2]|0;if(k|0){n=m+12|0;if((f[n>>2]|0)!=(k|0))f[n>>2]=k;Oq(k)}Oq(m)}m=f[l+68>>2]|0;if(m|0){k=l+72|0;n=f[k>>2]|0;if((n|0)!=(m|0))f[k>>2]=n+(~((n+-4-m|0)>>>2)<<2);Oq(m)}m=l+64|0;n=f[m>>2]|0;f[m>>2]=0;if(n|0){m=f[n>>2]|0;if(m|0){k=n+4|0;if((f[k>>2]|0)!=(m|0))f[k>>2]=m;Oq(m)}Oq(n)}Oq(l)}j=j+4|0;g=g+4|0}while((j|0)!=(h|0));j=f[c>>2]|0;if((j|0)!=(g|0)){o=g;p=j;q=24}}else{o=e;p=h;q=24}if((q|0)==24){q=p;do{p=q+-4|0;f[c>>2]=p;h=f[p>>2]|0;f[p>>2]=0;if(h|0){p=h+88|0;e=f[p>>2]|0;f[p>>2]=0;if(e|0){p=f[e+8>>2]|0;if(p|0){j=e+12|0;if((f[j>>2]|0)!=(p|0))f[j>>2]=p;Oq(p)}Oq(e)}e=f[h+68>>2]|0;if(e|0){p=h+72|0;j=f[p>>2]|0;if((j|0)!=(e|0))f[p>>2]=j+(~((j+-4-e|0)>>>2)<<2);Oq(e)}e=h+64|0;j=f[e>>2]|0;f[e>>2]=0;if(j|0){e=f[j>>2]|0;if(e|0){p=j+4|0;if((f[p>>2]|0)!=(e|0))f[p>>2]=e;Oq(e)}Oq(j)}Oq(h)}q=f[c>>2]|0}while((q|0)!=(o|0))}o=f[a+4>>2]|0;a:do if(o|0){q=o+44|0;c=f[q>>2]|0;h=f[o+40>>2]|0;while(1){if((h|0)==(c|0))break a;r=h+4|0;if((f[(f[h>>2]|0)+40>>2]|0)==(i|0))break;else h=r}if((r|0)!=(c|0)){j=r;e=h;do{p=f[j>>2]|0;f[j>>2]=0;g=f[e>>2]|0;f[e>>2]=p;if(g|0){bj(g);Oq(g)}j=j+4|0;e=e+4|0}while((j|0)!=(c|0));j=f[q>>2]|0;if((j|0)==(e|0))break;else{s=e;t=j}}else{s=h;t=c}j=t;do{g=j+-4|0;f[q>>2]=g;p=f[g>>2]|0;f[g>>2]=0;if(p|0){bj(p);Oq(p)}j=f[q>>2]|0}while((j|0)!=(s|0))}while(0);b:do if((d|0)<5){s=f[a+20+(d*12|0)>>2]|0;t=a+20+(d*12|0)+4|0;r=f[t>>2]|0;i=r;c:do if((s|0)==(r|0))u=s;else{o=s;while(1){if((f[o>>2]|0)==(b|0)){u=o;break c}o=o+4|0;if((o|0)==(r|0))break b}}while(0);if((u|0)!=(r|0)){s=u+4|0;o=i-s|0;j=o>>2;if(!j)v=r;else{im(u|0,s|0,o|0)|0;v=f[t>>2]|0}o=u+(j<<2)|0;if((v|0)!=(o|0))f[t>>2]=v+(~((v+-4-o|0)>>>2)<<2)}}while(0);v=f[a+24>>2]|0;u=f[a+20>>2]|0;d=u;if((v|0)!=(u|0)){o=v-u>>2;u=0;do{v=d+(u<<2)|0;j=f[v>>2]|0;if((j|0)>(b|0))f[v>>2]=j+-1;u=u+1|0}while(u>>>0>>0)}o=f[a+36>>2]|0;u=f[a+32>>2]|0;d=u;if((o|0)!=(u|0)){j=o-u>>2;u=0;do{o=d+(u<<2)|0;v=f[o>>2]|0;if((v|0)>(b|0))f[o>>2]=v+-1;u=u+1|0}while(u>>>0>>0)}j=f[a+48>>2]|0;u=f[a+44>>2]|0;d=u;if((j|0)!=(u|0)){v=j-u>>2;u=0;do{j=d+(u<<2)|0;o=f[j>>2]|0;if((o|0)>(b|0))f[j>>2]=o+-1;u=u+1|0}while(u>>>0>>0)}v=f[a+60>>2]|0;u=f[a+56>>2]|0;d=u;if((v|0)!=(u|0)){o=v-u>>2;u=0;do{v=d+(u<<2)|0;j=f[v>>2]|0;if((j|0)>(b|0))f[v>>2]=j+-1;u=u+1|0}while(u>>>0>>0)}o=f[a+72>>2]|0;u=f[a+68>>2]|0;a=u;if((o|0)==(u|0))return;d=o-u>>2;u=0;do{o=a+(u<<2)|0;j=f[o>>2]|0;if((j|0)>(b|0))f[o>>2]=j+-1;u=u+1|0}while(u>>>0>>0);return}function Oc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0;e=a+8|0;a:do if(f[e>>2]|0?(g=f[a>>2]|0,h=a+4|0,f[a>>2]=h,f[(f[h>>2]|0)+8>>2]=0,f[h>>2]=0,f[e>>2]=0,i=f[g+4>>2]|0,j=(i|0)==0?g:i,j|0):0){i=a+4|0;g=j;j=f[c>>2]|0;while(1){if((j|0)==(f[d>>2]|0))break;k=g+16|0;am(k,j+16|0)|0;am(g+28|0,j+28|0)|0;l=g+8|0;m=f[l>>2]|0;do if(m){n=f[m>>2]|0;if((n|0)==(g|0)){f[m>>2]=0;o=f[m+4>>2]|0;if(!o){p=m;break}else q=o;while(1){o=f[q>>2]|0;if(o|0){q=o;continue}o=f[q+4>>2]|0;if(!o)break;else q=o}p=q;break}else{f[m+4>>2]=0;if(!n){p=m;break}else r=n;while(1){o=f[r>>2]|0;if(o|0){r=o;continue}o=f[r+4>>2]|0;if(!o)break;else r=o}p=r;break}}else p=0;while(0);m=f[h>>2]|0;do if(m){n=b[k+11>>0]|0;o=n<<24>>24<0;s=o?f[g+20>>2]|0:n&255;n=o?f[k>>2]|0:k;o=m;while(1){t=o+16|0;u=b[t+11>>0]|0;v=u<<24>>24<0;w=v?f[o+20>>2]|0:u&255;u=w>>>0>>0?w:s;if((u|0)!=0?(x=Vk(n,v?f[t>>2]|0:t,u)|0,(x|0)!=0):0)if((x|0)<0)y=22;else y=24;else if(s>>>0>>0)y=22;else y=24;if((y|0)==22){y=0;w=f[o>>2]|0;if(!w){y=23;break}else z=w}else if((y|0)==24){y=0;A=o+4|0;w=f[A>>2]|0;if(!w){y=26;break}else z=w}o=z}if((y|0)==23){y=0;B=o;C=o;break}else if((y|0)==26){y=0;B=A;C=o;break}}else{B=h;C=h}while(0);f[g>>2]=0;f[g+4>>2]=0;f[l>>2]=C;f[B>>2]=g;m=f[f[a>>2]>>2]|0;if(!m)D=g;else{f[a>>2]=m;D=f[B>>2]|0}Oe(f[i>>2]|0,D);f[e>>2]=(f[e>>2]|0)+1;m=f[j+4>>2]|0;if(!m){k=j+8|0;s=f[k>>2]|0;if((f[s>>2]|0)==(j|0))E=s;else{s=k;do{k=f[s>>2]|0;s=k+8|0;n=f[s>>2]|0}while((f[n>>2]|0)!=(k|0));E=n}}else{s=m;while(1){l=f[s>>2]|0;if(!l)break;else s=l}E=s}f[c>>2]=E;if(!p)break a;else{g=p;j=E}}j=f[g+8>>2]|0;if(!j)F=g;else{i=j;while(1){j=f[i+8>>2]|0;if(!j)break;else i=j}F=i}Ej(a,F)}while(0);F=f[c>>2]|0;E=f[d>>2]|0;if((F|0)==(E|0))return;else G=F;while(1){bf(a,G+16|0)|0;F=f[G+4>>2]|0;if(!F){d=G+8|0;p=f[d>>2]|0;if((f[p>>2]|0)==(G|0))H=p;else{p=d;do{d=f[p>>2]|0;p=d+8|0;e=f[p>>2]|0}while((f[e>>2]|0)!=(d|0));H=e}}else{p=F;while(1){i=f[p>>2]|0;if(!i)break;else p=i}H=p}f[c>>2]=H;if((H|0)==(E|0))break;else G=H}return}function Pc(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0;b=u;u=u+32|0;c=b+4|0;d=b;e=a+16|0;g=f[e>>2]|0;if(g>>>0>112){f[e>>2]=g+-113;g=a+4|0;e=f[g>>2]|0;h=f[e>>2]|0;i=e+4|0;f[g>>2]=i;e=a+8|0;j=f[e>>2]|0;k=a+12|0;l=f[k>>2]|0;m=l;do if((j|0)==(l|0)){n=f[a>>2]|0;o=n;if(i>>>0>n>>>0){p=i;q=((p-o>>2)+1|0)/-2|0;r=i+(q<<2)|0;s=j-p|0;p=s>>2;if(!p)t=i;else{im(r|0,i|0,s|0)|0;t=f[g>>2]|0}s=r+(p<<2)|0;f[e>>2]=s;f[g>>2]=t+(q<<2);v=s;break}s=m-o>>1;o=(s|0)==0?1:s;if(o>>>0>1073741823){s=ra(8)|0;Oo(s,16035);f[s>>2]=7256;va(s|0,1112,110)}s=ln(o<<2)|0;q=s;p=s+(o>>>2<<2)|0;r=p;w=s+(o<<2)|0;if((i|0)==(j|0)){x=r;y=n}else{n=p;p=r;o=i;do{f[n>>2]=f[o>>2];n=p+4|0;p=n;o=o+4|0}while((o|0)!=(j|0));x=p;y=f[a>>2]|0}f[a>>2]=q;f[g>>2]=r;f[e>>2]=x;f[k>>2]=w;if(!y)v=x;else{Oq(y);v=f[e>>2]|0}}else v=j;while(0);f[v>>2]=h;f[e>>2]=(f[e>>2]|0)+4;u=b;return}e=a+8|0;h=f[e>>2]|0;v=a+4|0;j=h-(f[v>>2]|0)|0;y=a+12|0;x=f[y>>2]|0;k=x-(f[a>>2]|0)|0;if(j>>>0>=k>>>0){g=k>>1;k=(g|0)==0?1:g;f[c+12>>2]=0;f[c+16>>2]=a+12;if(k>>>0>1073741823){g=ra(8)|0;Oo(g,16035);f[g>>2]=7256;va(g|0,1112,110)}g=ln(k<<2)|0;f[c>>2]=g;i=g+(j>>2<<2)|0;j=c+8|0;f[j>>2]=i;m=c+4|0;f[m>>2]=i;i=c+12|0;f[i>>2]=g+(k<<2);k=ln(4068)|0;f[d>>2]=k;Ag(c,d);d=f[e>>2]|0;while(1){z=f[v>>2]|0;if((d|0)==(z|0))break;k=d+-4|0;ug(c,k);d=k}k=z;z=f[a>>2]|0;f[a>>2]=f[c>>2];f[c>>2]=z;f[v>>2]=f[m>>2];f[m>>2]=k;m=f[e>>2]|0;f[e>>2]=f[j>>2];f[j>>2]=m;g=f[y>>2]|0;f[y>>2]=f[i>>2];f[i>>2]=g;g=m;if((d|0)!=(g|0))f[j>>2]=g+(~((g+-4-k|0)>>>2)<<2);if(z|0)Oq(z);u=b;return}if((x|0)!=(h|0)){h=ln(4068)|0;f[c>>2]=h;Ag(a,c);u=b;return}h=ln(4068)|0;f[c>>2]=h;ug(a,c);c=f[v>>2]|0;h=f[c>>2]|0;x=c+4|0;f[v>>2]=x;c=f[e>>2]|0;z=f[y>>2]|0;k=z;do if((c|0)==(z|0)){g=f[a>>2]|0;j=g;if(x>>>0>g>>>0){d=x;m=((d-j>>2)+1|0)/-2|0;i=x+(m<<2)|0;t=c-d|0;d=t>>2;if(!d)A=x;else{im(i|0,x|0,t|0)|0;A=f[v>>2]|0}t=i+(d<<2)|0;f[e>>2]=t;f[v>>2]=A+(m<<2);B=t;break}t=k-j>>1;j=(t|0)==0?1:t;if(j>>>0>1073741823){t=ra(8)|0;Oo(t,16035);f[t>>2]=7256;va(t|0,1112,110)}t=ln(j<<2)|0;m=t;d=t+(j>>>2<<2)|0;i=d;l=t+(j<<2)|0;if((x|0)==(c|0)){C=i;D=g}else{g=d;d=i;j=x;do{f[g>>2]=f[j>>2];g=d+4|0;d=g;j=j+4|0}while((j|0)!=(c|0));C=d;D=f[a>>2]|0}f[a>>2]=m;f[v>>2]=i;f[e>>2]=C;f[y>>2]=l;if(!D)B=C;else{Oq(D);B=f[e>>2]|0}}else B=c;while(0);f[B>>2]=h;f[e>>2]=(f[e>>2]|0)+4;u=b;return}function Qc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0;e=u;u=u+16|0;g=e+8|0;h=e+4|0;i=e;j=a+64|0;k=f[j>>2]|0;if((f[k+28>>2]|0)==(f[k+24>>2]|0)){u=e;return}l=c+96|0;c=a+52|0;m=d+84|0;n=d+68|0;d=a+56|0;o=a+60|0;p=a+12|0;q=a+28|0;r=a+40|0;s=a+44|0;t=a+48|0;v=0;w=0;x=k;while(1){k=f[(f[x+24>>2]|0)+(w<<2)>>2]|0;if((k|0)==-1){y=v;z=x}else{A=v+1|0;B=f[(f[l>>2]|0)+(((k|0)/3|0)*12|0)+(((k|0)%3|0)<<2)>>2]|0;if(!(b[m>>0]|0))C=f[(f[n>>2]|0)+(B<<2)>>2]|0;else C=B;f[g>>2]=C;B=f[d>>2]|0;if(B>>>0<(f[o>>2]|0)>>>0){f[B>>2]=C;f[d>>2]=B+4}else Ri(c,g);f[g>>2]=k;f[h>>2]=0;a:do if(!(f[(f[p>>2]|0)+(w>>>5<<2)>>2]&1<<(w&31)))D=k;else{B=k+1|0;E=((B>>>0)%3|0|0)==0?k+-2|0:B;if(((E|0)!=-1?(f[(f[a>>2]|0)+(E>>>5<<2)>>2]&1<<(E&31)|0)==0:0)?(B=f[(f[(f[j>>2]|0)+12>>2]|0)+(E<<2)>>2]|0,E=B+1|0,(B|0)!=-1):0){F=((E>>>0)%3|0|0)==0?B+-2|0:E;f[h>>2]=F;if((F|0)==-1){D=k;break}else G=F;while(1){f[g>>2]=G;F=G+1|0;E=((F>>>0)%3|0|0)==0?G+-2|0:F;if((E|0)==-1)break;if(f[(f[a>>2]|0)+(E>>>5<<2)>>2]&1<<(E&31)|0)break;F=f[(f[(f[j>>2]|0)+12>>2]|0)+(E<<2)>>2]|0;E=F+1|0;if((F|0)==-1)break;B=((E>>>0)%3|0|0)==0?F+-2|0:E;f[h>>2]=B;if((B|0)==-1){D=G;break a}else G=B}f[h>>2]=-1;D=G;break}f[h>>2]=-1;D=k}while(0);f[(f[q>>2]|0)+(D<<2)>>2]=v;k=f[s>>2]|0;if((k|0)==(f[t>>2]|0))Ri(r,g);else{f[k>>2]=f[g>>2];f[s>>2]=k+4}k=f[j>>2]|0;B=f[g>>2]|0;b:do if(((B|0)!=-1?(E=(((B>>>0)%3|0|0)==0?2:-1)+B|0,(E|0)!=-1):0)?(F=f[(f[k+12>>2]|0)+(E<<2)>>2]|0,(F|0)!=-1):0){E=F+(((F>>>0)%3|0|0)==0?2:-1)|0;f[h>>2]=E;if((E|0)!=-1&(E|0)!=(B|0)){F=A;H=v;I=E;while(1){E=I+1|0;J=((E>>>0)%3|0|0)==0?I+-2|0:E;do if(f[(f[a>>2]|0)+(J>>>5<<2)>>2]&1<<(J&31)){E=F+1|0;K=f[(f[l>>2]|0)+(((I|0)/3|0)*12|0)+(((I|0)%3|0)<<2)>>2]|0;if(!(b[m>>0]|0))L=f[(f[n>>2]|0)+(K<<2)>>2]|0;else L=K;f[i>>2]=L;K=f[d>>2]|0;if(K>>>0<(f[o>>2]|0)>>>0){f[K>>2]=L;f[d>>2]=K+4}else Ri(c,i);K=f[s>>2]|0;if((K|0)==(f[t>>2]|0)){Ri(r,h);M=E;N=F;break}else{f[K>>2]=f[h>>2];f[s>>2]=K+4;M=E;N=F;break}}else{M=F;N=H}while(0);f[(f[q>>2]|0)+(f[h>>2]<<2)>>2]=N;O=f[j>>2]|0;J=f[h>>2]|0;if((J|0)==-1)break;E=(((J>>>0)%3|0|0)==0?2:-1)+J|0;if((E|0)==-1)break;J=f[(f[O+12>>2]|0)+(E<<2)>>2]|0;if((J|0)==-1)break;I=J+(((J>>>0)%3|0|0)==0?2:-1)|0;f[h>>2]=I;if(!((I|0)!=-1?(I|0)!=(f[g>>2]|0):0)){P=M;Q=O;break b}else{F=M;H=N}}f[h>>2]=-1;P=M;Q=O}else{P=A;Q=k}}else R=28;while(0);if((R|0)==28){R=0;f[h>>2]=-1;P=A;Q=k}y=P;z=Q}w=w+1|0;if(w>>>0>=(f[z+28>>2]|0)-(f[z+24>>2]|0)>>2>>>0)break;else{v=y;x=z}}u=e;return}function Rc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0.0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,D=0,E=0,F=0;switch(c|0){case 0:{e=-149;g=24;i=4;break}case 1:{e=-1074;g=53;i=4;break}case 2:{e=-1074;g=53;i=4;break}default:j=0.0}a:do if((i|0)==4){c=a+4|0;k=a+100|0;do{l=f[c>>2]|0;if(l>>>0<(f[k>>2]|0)>>>0){f[c>>2]=l+1;m=h[l>>0]|0}else m=Si(a)|0}while((eq(m)|0)!=0);b:do switch(m|0){case 43:case 45:{l=1-(((m|0)==45&1)<<1)|0;n=f[c>>2]|0;if(n>>>0<(f[k>>2]|0)>>>0){f[c>>2]=n+1;o=h[n>>0]|0;p=l;break b}else{o=Si(a)|0;p=l;break b}break}default:{o=m;p=1}}while(0);l=0;n=o;while(1){if((n|32|0)!=(b[18546+l>>0]|0)){q=l;r=n;break}do if(l>>>0<7){s=f[c>>2]|0;if(s>>>0<(f[k>>2]|0)>>>0){f[c>>2]=s+1;t=h[s>>0]|0;break}else{t=Si(a)|0;break}}else t=n;while(0);s=l+1|0;if(s>>>0<8){l=s;n=t}else{q=s;r=t;break}}c:do switch(q|0){case 8:break;case 3:{i=23;break}default:{n=(d|0)!=0;if(n&q>>>0>3)if((q|0)==8)break c;else{i=23;break c}d:do if(!q){l=0;s=r;while(1){if((s|32|0)!=(b[18555+l>>0]|0)){u=l;v=s;break d}do if(l>>>0<2){w=f[c>>2]|0;if(w>>>0<(f[k>>2]|0)>>>0){f[c>>2]=w+1;x=h[w>>0]|0;break}else{x=Si(a)|0;break}}else x=s;while(0);w=l+1|0;if(w>>>0<3){l=w;s=x}else{u=w;v=x;break}}}else{u=q;v=r}while(0);switch(u|0){case 3:{s=f[c>>2]|0;if(s>>>0<(f[k>>2]|0)>>>0){f[c>>2]=s+1;y=h[s>>0]|0}else y=Si(a)|0;if((y|0)==40)z=1;else{if(!(f[k>>2]|0)){j=B;break a}f[c>>2]=(f[c>>2]|0)+-1;j=B;break a}while(1){s=f[c>>2]|0;if(s>>>0<(f[k>>2]|0)>>>0){f[c>>2]=s+1;A=h[s>>0]|0}else A=Si(a)|0;if(!((A+-48|0)>>>0<10|(A+-65|0)>>>0<26)?!((A|0)==95|(A+-97|0)>>>0<26):0)break;z=z+1|0}if((A|0)==41){j=B;break a}s=(f[k>>2]|0)==0;if(!s)f[c>>2]=(f[c>>2]|0)+-1;if(!n){l=Vq()|0;f[l>>2]=22;Ym(a,0);j=0.0;break a}if(!z){j=B;break a}else D=z;while(1){D=D+-1|0;if(!s)f[c>>2]=(f[c>>2]|0)+-1;if(!D){j=B;break a}}break}case 0:{if((v|0)==48){s=f[c>>2]|0;if(s>>>0<(f[k>>2]|0)>>>0){f[c>>2]=s+1;E=h[s>>0]|0}else E=Si(a)|0;if((E|32|0)==120){j=+Fc(a,g,e,p,d);break a}if(!(f[k>>2]|0))F=48;else{f[c>>2]=(f[c>>2]|0)+-1;F=48}}else F=v;j=+nb(a,F,g,e,p,d);break a;break}default:{if(f[k>>2]|0)f[c>>2]=(f[c>>2]|0)+-1;s=Vq()|0;f[s>>2]=22;Ym(a,0);j=0.0;break a}}}}while(0);if((i|0)==23){s=(f[k>>2]|0)==0;if(!s)f[c>>2]=(f[c>>2]|0)+-1;if((d|0)!=0&q>>>0>3){n=q;do{if(!s)f[c>>2]=(f[c>>2]|0)+-1;n=n+-1|0}while(n>>>0>3)}}j=+$($(p|0)*$(C))}while(0);return +j}function Sc(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0;g=u;u=u+16|0;h=g;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;i=ln(16)|0;f[h>>2]=i;f[h+8>>2]=-2147483632;f[h+4>>2]=15;j=i;k=14479;l=j+15|0;do{b[j>>0]=b[k>>0]|0;j=j+1|0;k=k+1|0}while((j|0)<(l|0));b[i+15>>0]=0;i=Hk(c,h,-1)|0;if((b[h+11>>0]|0)<0)Oq(f[h>>2]|0);switch(i|0){case 0:{m=ln(52)|0;j=m;l=j+52|0;do{f[j>>2]=0;j=j+4|0}while((j|0)<(l|0));Zn(m);n=4044;o=m;break}case -1:{if((mi(c)|0)==10){m=ln(52)|0;j=m;l=j+52|0;do{f[j>>2]=0;j=j+4|0}while((j|0)<(l|0));Zn(m);n=4044;o=m}else p=6;break}default:p=6}a:do if((p|0)==6){m=d+8|0;q=d+12|0;r=f[q>>2]|0;s=f[m>>2]|0;b:do if((r-s|0)>0){t=h+8|0;v=h+4|0;w=c+16|0;x=h+11|0;y=0;z=s;A=r;c:while(1){B=f[(f[z+(y<<2)>>2]|0)+28>>2]|0;switch(B|0){case 9:{p=12;break}case 6:case 5:case 4:case 2:{C=z;D=A;break}default:{if((B|2|0)!=3)break c;if((B|0)==9)p=12;else{C=z;D=A}}}if((p|0)==12){p=0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;B=ln(32)|0;f[h>>2]=B;f[t>>2]=-2147483616;f[v>>2]=17;j=B;k=14495;l=j+17|0;do{b[j>>0]=b[k>>0]|0;j=j+1|0;k=k+1|0}while((j|0)<(l|0));b[B+17>>0]=0;E=f[w>>2]|0;if(E){F=w;G=E;d:while(1){E=G;while(1){if((f[E+16>>2]|0)>=0)break;H=f[E+4>>2]|0;if(!H){I=F;break d}else E=H}G=f[E>>2]|0;if(!G){I=E;break}else F=E}if(((I|0)!=(w|0)?(f[I+16>>2]|0)<=0:0)?(F=I+20|0,(Jh(F,h)|0)!=0):0)J=Hk(F,h,-1)|0;else p=21}else p=21;if((p|0)==21){p=0;J=Hk(c,h,-1)|0}if((b[x>>0]|0)<0)Oq(f[h>>2]|0);if((J|0)<1)break;C=f[m>>2]|0;D=f[q>>2]|0}y=y+1|0;if((y|0)>=(D-C>>2|0))break b;else{z=C;A=D}}if((i|0)!=1){A=ln(52)|0;j=A;l=j+52|0;do{f[j>>2]=0;j=j+4|0}while((j|0)<(l|0));Zn(A);n=4044;o=A;break a}f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;z=ln(32)|0;f[h>>2]=z;f[h+8>>2]=-2147483616;f[h+4>>2]=24;j=z;k=14513;l=j+24|0;do{b[j>>0]=b[k>>0]|0;j=j+1|0;k=k+1|0}while((j|0)<(l|0));b[z+24>>0]=0;f[a>>2]=-1;pj(a+4|0,h);if((b[h+11>>0]|0)<0)Oq(f[h>>2]|0);u=g;return}while(0);q=ln(52)|0;j=q;l=j+52|0;do{f[j>>2]=0;j=j+4|0}while((j|0)<(l|0));Zn(q);n=3988;o=q}while(0);f[o>>2]=n;ip(o,d);Md(a,o,c,e);Va[f[(f[o>>2]|0)+4>>2]&127](o);u=g;return}function Tc(a,c,d,e,g,h){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;var i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;i=u;u=u+32|0;j=i+4|0;k=i;l=i+16|0;m=(_(e|0)|0)^31;if((e|0)>0)if(m>>>0>17){n=0;u=i;return n|0}else o=m+1|0;else o=1;do if(g){m=ln(48)|0;f[j>>2]=m;f[j+8>>2]=-2147483600;f[j+4>>2]=33;e=m;p=15987;q=e+33|0;do{b[e>>0]=b[p>>0]|0;e=e+1|0;p=p+1|0}while((e|0)<(q|0));b[m+33>>0]=0;r=(Jh(g,j)|0)==0;if((b[j+11>>0]|0)<0)Oq(f[j>>2]|0);if(!r){r=ln(48)|0;f[j>>2]=r;f[j+8>>2]=-2147483600;f[j+4>>2]=33;e=r;p=15987;q=e+33|0;do{b[e>>0]=b[p>>0]|0;e=e+1|0;p=p+1|0}while((e|0)<(q|0));b[r+33>>0]=0;p=Mk(g,j)|0;if((b[j+11>>0]|0)<0)Oq(f[j>>2]|0);if((p|0)<4){s=o+-2|0;break}if((p|0)<6){s=o+-1|0;break}if((p|0)>9){s=o+2|0;break}else{s=o+((p|0)>7&1)|0;break}}else s=o}else s=o;while(0);o=(s|0)>1?s:1;s=(o|0)<18?o:18;b[l>>0]=s;o=h+16|0;g=f[o+4>>2]|0;if(!((g|0)>0|(g|0)==0&(f[o>>2]|0)>>>0>0)){f[k>>2]=f[h+4>>2];f[j>>2]=f[k>>2];Me(h,j,l,l+1|0)|0}do switch(s&31){case 1:case 0:{n=ue(a,c,d,h)|0;u=i;return n|0}case 2:{n=te(a,c,d,h)|0;u=i;return n|0}case 3:{n=se(a,c,d,h)|0;u=i;return n|0}case 4:{n=re(a,c,d,h)|0;u=i;return n|0}case 5:{n=qe(a,c,d,h)|0;u=i;return n|0}case 6:{n=pe(a,c,d,h)|0;u=i;return n|0}case 7:{n=oe(a,c,d,h)|0;u=i;return n|0}case 8:{n=ne(a,c,d,h)|0;u=i;return n|0}case 9:{n=me(a,c,d,h)|0;u=i;return n|0}case 10:{n=le(a,c,d,h)|0;u=i;return n|0}case 11:{n=ke(a,c,d,h)|0;u=i;return n|0}case 12:{n=ie(a,c,d,h)|0;u=i;return n|0}case 13:{n=he(a,c,d,h)|0;u=i;return n|0}case 14:{n=ge(a,c,d,h)|0;u=i;return n|0}case 15:{n=fe(a,c,d,h)|0;u=i;return n|0}case 16:{n=ee(a,c,d,h)|0;u=i;return n|0}case 17:{n=de(a,c,d,h)|0;u=i;return n|0}case 18:{n=ce(a,c,d,h)|0;u=i;return n|0}default:{n=0;u=i;return n|0}}while(0);return 0}function Uc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*1048576.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==1048576){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;xb(z,A,g);a:do if((x|0)<1048576){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=1048576-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>1048576;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-1048576|0;m=x;while(1){v=1048576.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==1048576){C=p;D=1048576;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=1048576){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*9.5367431640625e-07)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function Vc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*1048576.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==1048576){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;yb(z,A,g);a:do if((x|0)<1048576){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=1048576-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>1048576;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-1048576|0;m=x;while(1){v=1048576.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==1048576){C=p;D=1048576;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=1048576){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*9.5367431640625e-07)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function Wc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*1048576.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==1048576){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;zb(z,A,g);a:do if((x|0)<1048576){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=1048576-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>1048576;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-1048576|0;m=x;while(1){v=1048576.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==1048576){C=p;D=1048576;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=1048576){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*9.5367431640625e-07)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function Xc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*1048576.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==1048576){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Ab(z,A,g);a:do if((x|0)<1048576){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=1048576-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>1048576;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-1048576|0;m=x;while(1){v=1048576.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==1048576){C=p;D=1048576;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=1048576){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*9.5367431640625e-07)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function Yc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*1048576.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==1048576){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Fb(z,A,g);a:do if((x|0)<1048576){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=1048576-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>1048576;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-1048576|0;m=x;while(1){v=1048576.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==1048576){C=p;D=1048576;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=1048576){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*9.5367431640625e-07)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function Zc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*524288.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==524288){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Bb(z,A,g);a:do if((x|0)<524288){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=524288-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>524288;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-524288|0;m=x;while(1){v=524288.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==524288){C=p;D=524288;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=524288){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*1.9073486328125e-06)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function _c(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*262144.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==262144){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Cb(z,A,g);a:do if((x|0)<262144){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=262144-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>262144;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-262144|0;m=x;while(1){v=262144.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==262144){C=p;D=262144;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=262144){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*3.814697265625e-06)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function $c(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*65536.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==65536){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Db(z,A,g);a:do if((x|0)<65536){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=65536-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>65536;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-65536|0;m=x;while(1){v=65536.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==65536){C=p;D=65536;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=65536){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*.0000152587890625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function ad(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*32768.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==32768){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Eb(z,A,g);a:do if((x|0)<32768){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=32768-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>32768;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-32768|0;m=x;while(1){v=32768.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==32768){C=p;D=32768;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=32768){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*.000030517578125)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function bd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*8192.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==8192){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Gb(z,A,g);a:do if((x|0)<8192){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=8192-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>8192;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-8192|0;m=x;while(1){v=8192.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==8192){C=p;D=8192;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=8192){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*.0001220703125)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function cd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Hb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function dd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Ib(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function ed(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Jb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function fd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Kb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function gd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Lb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function hd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Mb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function id(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Nb(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function jd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0.0;e=u;u=u+16|0;g=e;h=e+4|0;if((c|0)>0){i=0;j=0;k=0;l=0;while(1){m=b+(j<<3)|0;n=f[m>>2]|0;o=f[m+4>>2]|0;m=Vn(n|0,o|0,k|0,l|0)|0;p=I;q=(n|0)==0&(o|0)==0?i:j;j=j+1|0;if((j|0)==(c|0)){r=q;s=p;t=m;break}else{i=q;k=m;l=p}}}else{r=0;s=0;t=0}l=r+1|0;f[a+12>>2]=l;k=a+4|0;i=f[k>>2]|0;c=f[a>>2]|0;j=i-c>>3;p=c;c=i;if(l>>>0<=j>>>0){if(l>>>0>>0?(i=p+(l<<3)|0,(i|0)!=(c|0)):0)f[k>>2]=c+(~((c+-8-i|0)>>>3)<<3)}else wh(a,l-j|0);v=+(t>>>0)+4294967296.0*+(s>>>0);s=(r|0)<0;if(!s){t=f[a>>2]|0;j=0;i=0;do{c=b+(i<<3)|0;k=f[c>>2]|0;p=f[c+4>>2]|0;c=~~((+(k>>>0)+4294967296.0*+(p>>>0))/v*4096.0+.5)>>>0;m=((k|0)!=0|(p|0)!=0)&(c|0)==0?1:c;f[t+(i<<3)>>2]=m;j=m+j|0;i=i+1|0}while((i|0)!=(l|0));if((j|0)==4096){if(s){w=0;u=e;return w|0}}else{x=j;y=12}}else{x=0;y=12}if((y|0)==12){f[h>>2]=0;j=h+4|0;f[j>>2]=0;f[h+8>>2]=0;do if(l)if(l>>>0>1073741823)aq(h);else{i=l<<2;t=ln(i)|0;f[h>>2]=t;m=t+(l<<2)|0;f[h+8>>2]=m;sj(t|0,0,i|0)|0;f[j>>2]=m;z=t;A=m;break}else{z=0;A=0}while(0);if(!s?(f[z>>2]=0,r|0):0){m=1;do{f[z+(m<<2)>>2]=m;m=m+1|0}while((m|0)!=(l|0))}f[g>>2]=a;Ob(z,A,g);a:do if((x|0)<4096){g=(f[a>>2]|0)+(f[(f[j>>2]|0)+-4>>2]<<3)|0;f[g>>2]=4096-x+(f[g>>2]|0);B=0}else{g=f[h>>2]|0;if((r|0)<=0){A=(x|0)>4096;while(1)if(!A){B=0;break a}}A=f[a>>2]|0;z=x+-4096|0;m=x;while(1){v=4096.0/+(m|0);t=r;i=z;c=m;while(1){p=A+(f[g+(t<<2)>>2]<<3)|0;k=f[p>>2]|0;if(k>>>0<2){y=28;break}q=k-~~+J(+(v*+(k>>>0)))|0;o=(q|0)==0?1:q;q=(o|0)<(k|0)?o:k+-1|0;o=(q|0)>(i|0)?i:q;f[p>>2]=k-o;k=c-o|0;p=i-o|0;if((k|0)==4096){C=p;D=4096;break}if((t|0)>1){t=t+-1|0;i=p;c=k}else{C=p;D=k;break}}if((y|0)==28){y=0;if((t|0)==(r|0)){B=1;break a}else{C=i;D=c}}if((C|0)>0){z=C;m=D}else{B=0;break}}}while(0);D=f[h>>2]|0;if(D|0){h=f[j>>2]|0;if((h|0)!=(D|0))f[j>>2]=h+(~((h+-4-D|0)>>>2)<<2);Oq(D)}if((B|0)!=0|s){w=0;u=e;return w|0}}B=f[a>>2]|0;D=0;h=0;do{f[B+(D<<3)+4>>2]=h;h=(f[B+(D<<3)>>2]|0)+h|0;D=D+1|0}while((D|0)!=(l|0));if((h|0)!=4096){w=0;u=e;return w|0}if(s)E=0.0;else{s=f[a>>2]|0;h=0;v=0.0;while(1){D=f[s+(h<<3)>>2]|0;if(!D)F=v;else{B=b+(h<<3)|0;G=+((f[B>>2]|0)>>>0)+4294967296.0*+((f[B+4>>2]|0)>>>0);F=v+ +Zg(+(D>>>0)*.000244140625)*G}h=h+1|0;if((h|0)==(l|0)){E=F;break}else v=F}}F=+W(+-E);l=+K(F)>=1.0?(F>0.0?~~+Y(+J(F/4294967296.0),4294967295.0)>>>0:~~+W((F-+(~~F>>>0))/4294967296.0)>>>0):0;h=a+16|0;f[h>>2]=~~F>>>0;f[h+4>>2]=l;w=Le(a,d)|0;u=e;return w|0}function kd(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0;g=u;u=u+32|0;d=g+16|0;h=g+8|0;i=g;j=e>>>0>1073741823?-1:e<<2;k=Lq(j)|0;sj(k|0,0,j|0)|0;j=f[a+28>>2]|0;l=a+36|0;m=f[l>>2]|0;n=f[m+4>>2]|0;o=f[m>>2]|0;p=n-o|0;a:do if((p|0)>4){q=p>>2;r=f[a+32>>2]|0;s=a+8|0;t=h+4|0;v=i+4|0;w=d+4|0;x=j+12|0;y=(e|0)>0;z=k+4|0;A=h+4|0;B=i+4|0;C=d+4|0;D=q+-1|0;if(n-o>>2>>>0>D>>>0){E=q;F=D;G=o}else{H=m;aq(H)}while(1){D=f[G+(F<<2)>>2]|0;q=X(F,e)|0;if((D|0)!=-1?(I=f[(f[x>>2]|0)+(D<<2)>>2]|0,(I|0)!=-1):0){D=f[j>>2]|0;J=f[r>>2]|0;K=f[J+(f[D+(I<<2)>>2]<<2)>>2]|0;L=I+1|0;M=((L>>>0)%3|0|0)==0?I+-2|0:L;if((M|0)==-1)N=-1;else N=f[D+(M<<2)>>2]|0;M=f[J+(N<<2)>>2]|0;L=(((I>>>0)%3|0|0)==0?2:-1)+I|0;if((L|0)==-1)O=-1;else O=f[D+(L<<2)>>2]|0;L=f[J+(O<<2)>>2]|0;if((K|0)<(F|0)&(M|0)<(F|0)&(L|0)<(F|0)){J=X(K,e)|0;K=X(M,e)|0;M=X(L,e)|0;if(y){L=0;do{f[k+(L<<2)>>2]=(f[b+(L+M<<2)>>2]|0)+(f[b+(L+K<<2)>>2]|0)-(f[b+(L+J<<2)>>2]|0);L=L+1|0}while((L|0)!=(e|0))}L=b+(q<<2)|0;J=c+(q<<2)|0;K=f[L+4>>2]|0;M=f[k>>2]|0;D=f[z>>2]|0;f[h>>2]=f[L>>2];f[A>>2]=K;f[i>>2]=M;f[B>>2]=D;Od(d,s,h,i);f[J>>2]=f[d>>2];f[J+4>>2]=f[C>>2]}else P=15}else P=15;if((P|0)==15){P=0;J=b+(q<<2)|0;D=b+((X(E+-2|0,e)|0)<<2)|0;M=c+(q<<2)|0;K=f[J+4>>2]|0;L=f[D>>2]|0;I=f[D+4>>2]|0;f[h>>2]=f[J>>2];f[t>>2]=K;f[i>>2]=L;f[v>>2]=I;Od(d,s,h,i);f[M>>2]=f[d>>2];f[M+4>>2]=f[w>>2]}if((E|0)<=2)break a;M=f[l>>2]|0;G=f[M>>2]|0;I=F+-1|0;if((f[M+4>>2]|0)-G>>2>>>0<=I>>>0){H=M;break}else{M=F;F=I;E=M}}aq(H)}while(0);if((e|0)<=0){Q=a+8|0;R=b+4|0;S=f[b>>2]|0;T=f[R>>2]|0;U=k+4|0;V=f[k>>2]|0;W=f[U>>2]|0;f[h>>2]=S;Y=h+4|0;f[Y>>2]=T;f[i>>2]=V;Z=i+4|0;f[Z>>2]=W;Od(d,Q,h,i);_=f[d>>2]|0;f[c>>2]=_;$=d+4|0;aa=f[$>>2]|0;ba=c+4|0;f[ba>>2]=aa;Mq(k);u=g;return 1}sj(k|0,0,e<<2|0)|0;Q=a+8|0;R=b+4|0;S=f[b>>2]|0;T=f[R>>2]|0;U=k+4|0;V=f[k>>2]|0;W=f[U>>2]|0;f[h>>2]=S;Y=h+4|0;f[Y>>2]=T;f[i>>2]=V;Z=i+4|0;f[Z>>2]=W;Od(d,Q,h,i);_=f[d>>2]|0;f[c>>2]=_;$=d+4|0;aa=f[$>>2]|0;ba=c+4|0;f[ba>>2]=aa;Mq(k);u=g;return 1}function ld(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0;d=u;u=u+32|0;e=d;g=d+20|0;h=d+24|0;i=d+8|0;j=f[a>>2]|0;k=j+8|0;l=j;j=f[l>>2]|0;m=f[l+4>>2]|0;l=Vn(j|0,m|0,f[k>>2]|0,f[k+4>>2]|0)|0;k=I;n=Vn(l|0,k|0,(l|0)==0&(k|0)==0&1|0,0)|0;k=~~((+(j>>>0)+4294967296.0*+(m>>>0))/(+(n>>>0)+4294967296.0*+(I>>>0))*256.0+.5)>>>0;n=k>>>0<255?k:255;k=n+((n|0)==0&1)&255;b[h>>0]=k;n=a+12|0;m=a+16|0;j=((f[m>>2]|0)-(f[n>>2]|0)<<1)+64|0;f[i>>2]=0;l=i+4|0;f[l>>2]=0;f[i+8>>2]=0;if(!j)o=0;else{if((j|0)<0)aq(i);p=ln(j)|0;f[l>>2]=p;f[i>>2]=p;f[i+8>>2]=p+j;q=j;j=p;do{b[j>>0]=0;j=(f[l>>2]|0)+1|0;f[l>>2]=j;q=q+-1|0}while((q|0)!=0);o=f[i>>2]|0}q=a+28|0;j=(f[q>>2]|0)+-1|0;a:do if((j|0)>-1){p=a+24|0;r=j;s=4096;t=0;v=k;while(1){w=(f[p>>2]&1<>>0>>0){y=t;z=s}else{b[o+t>>0]=s;y=t+1|0;z=s>>>8}un(f[4092+(x<<3)>>2]|0,0,z|0,0)|0;A=z+(w?0:0-v&255)+(X((z+I|0)>>>(f[4092+(x<<3)+4>>2]|0),256-x|0)|0)|0;x=r+-1|0;if((x|0)<=-1){B=A;C=y;break a}r=x;s=A;t=y;v=b[h>>0]|0}}else{B=4096;C=0}while(0);y=f[m>>2]|0;if((f[n>>2]|0)==(y|0)){D=B;E=C}else{z=B;B=C;C=y;while(1){C=C+-4|0;y=f[C>>2]|0;k=31;j=z;v=B;while(1){t=b[h>>0]|0;s=(1<>>0>>0){F=v;G=j}else{b[o+v>>0]=j;F=v+1|0;G=j>>>8}un(f[4092+(r<<3)>>2]|0,0,G|0,0)|0;j=G+(s?0:0-t&255)+(X((G+I|0)>>>(f[4092+(r<<3)+4>>2]|0),256-r|0)|0)|0;if((k|0)<=0)break;else{k=k+-1|0;v=F}}if((f[n>>2]|0)==(C|0)){D=j;E=F;break}else{z=j;B=F}}}F=D+-4096|0;do if(F>>>0>=64){if(F>>>0<16384){B=o+E|0;z=D+12288|0;b[B>>0]=z;H=2;J=z>>>8;K=B+1|0;L=25;break}if(F>>>0<4194304){B=o+E|0;z=D+8384512|0;b[B>>0]=z;b[B+1>>0]=z>>>8;H=3;J=z>>>16;K=B+2|0;L=25}else M=E}else{H=1;J=F;K=o+E|0;L=25}while(0);if((L|0)==25){b[K>>0]=J;M=H+E|0}E=c+16|0;H=E;J=f[H+4>>2]|0;if(!((J|0)>0|(J|0)==0&(f[H>>2]|0)>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];Me(c,e,h,h+1|0)|0}ci(M,c)|0;h=f[i>>2]|0;H=E;E=f[H+4>>2]|0;if(!((E|0)>0|(E|0)==0&(f[H>>2]|0)>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];Me(c,e,h,h+M|0)|0}M=e;f[M>>2]=0;f[M+4>>2]=0;qf(a,2,e);e=f[a+12>>2]|0;M=f[m>>2]|0;if((M|0)!=(e|0))f[m>>2]=M+(~((M+-4-e|0)>>>2)<<2);f[a+24>>2]=0;f[q>>2]=0;q=f[i>>2]|0;if(!q){u=d;return}if((f[l>>2]|0)!=(q|0))f[l>>2]=q;Oq(q);u=d;return}function md(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0;c=u;u=u+16|0;b=c+8|0;d=c+4|0;e=c;g=a+64|0;h=f[g>>2]|0;if((f[h+28>>2]|0)==(f[h+24>>2]|0)){u=c;return}i=a+52|0;j=a+56|0;k=a+60|0;l=a+12|0;m=a+28|0;n=a+40|0;o=a+44|0;p=a+48|0;q=0;r=0;s=h;while(1){h=f[(f[s+24>>2]|0)+(r<<2)>>2]|0;if((h|0)==-1){t=q;v=s}else{w=q+1|0;f[b>>2]=q;x=f[j>>2]|0;if((x|0)==(f[k>>2]|0))Ri(i,b);else{f[x>>2]=q;f[j>>2]=x+4}f[d>>2]=h;f[e>>2]=0;a:do if(!(f[(f[l>>2]|0)+(r>>>5<<2)>>2]&1<<(r&31)))y=h;else{x=h+1|0;z=((x>>>0)%3|0|0)==0?h+-2|0:x;if(((z|0)!=-1?(f[(f[a>>2]|0)+(z>>>5<<2)>>2]&1<<(z&31)|0)==0:0)?(x=f[(f[(f[g>>2]|0)+12>>2]|0)+(z<<2)>>2]|0,z=x+1|0,(x|0)!=-1):0){A=((z>>>0)%3|0|0)==0?x+-2|0:z;f[e>>2]=A;if((A|0)==-1){y=h;break}else B=A;while(1){f[d>>2]=B;A=B+1|0;z=((A>>>0)%3|0|0)==0?B+-2|0:A;if((z|0)==-1)break;if(f[(f[a>>2]|0)+(z>>>5<<2)>>2]&1<<(z&31)|0)break;A=f[(f[(f[g>>2]|0)+12>>2]|0)+(z<<2)>>2]|0;z=A+1|0;if((A|0)==-1)break;x=((z>>>0)%3|0|0)==0?A+-2|0:z;f[e>>2]=x;if((x|0)==-1){y=B;break a}else B=x}f[e>>2]=-1;y=B;break}f[e>>2]=-1;y=h}while(0);f[(f[m>>2]|0)+(y<<2)>>2]=f[b>>2];h=f[o>>2]|0;if((h|0)==(f[p>>2]|0))Ri(n,d);else{f[h>>2]=f[d>>2];f[o>>2]=h+4}h=f[g>>2]|0;x=f[d>>2]|0;b:do if(((x|0)!=-1?(z=(((x>>>0)%3|0|0)==0?2:-1)+x|0,(z|0)!=-1):0)?(A=f[(f[h+12>>2]|0)+(z<<2)>>2]|0,(A|0)!=-1):0){z=A+(((A>>>0)%3|0|0)==0?2:-1)|0;f[e>>2]=z;if((z|0)!=-1&(z|0)!=(x|0)){A=w;C=z;while(1){z=C+1|0;D=((z>>>0)%3|0|0)==0?C+-2|0:z;do if(f[(f[a>>2]|0)+(D>>>5<<2)>>2]&1<<(D&31)){z=A+1|0;f[b>>2]=A;E=f[j>>2]|0;if((E|0)==(f[k>>2]|0))Ri(i,b);else{f[E>>2]=A;f[j>>2]=E+4}E=f[o>>2]|0;if((E|0)==(f[p>>2]|0)){Ri(n,e);F=z;break}else{f[E>>2]=f[e>>2];f[o>>2]=E+4;F=z;break}}else F=A;while(0);f[(f[m>>2]|0)+(f[e>>2]<<2)>>2]=f[b>>2];G=f[g>>2]|0;D=f[e>>2]|0;if((D|0)==-1)break;z=(((D>>>0)%3|0|0)==0?2:-1)+D|0;if((z|0)==-1)break;D=f[(f[G+12>>2]|0)+(z<<2)>>2]|0;if((D|0)==-1)break;C=D+(((D>>>0)%3|0|0)==0?2:-1)|0;f[e>>2]=C;if(!((C|0)!=-1?(C|0)!=(f[d>>2]|0):0)){H=F;I=G;break b}else A=F}f[e>>2]=-1;H=F;I=G}else{H=w;I=h}}else J=26;while(0);if((J|0)==26){J=0;f[e>>2]=-1;H=w;I=h}t=H;v=I}r=r+1|0;if(r>>>0>=(f[v+28>>2]|0)-(f[v+24>>2]|0)>>2>>>0)break;else{q=t;s=v}}u=c;return}function nd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;h=a+124|0;f[h>>2]=(f[h>>2]|0)+1;h=a+88|0;i=a+120|0;j=f[i>>2]|0;k=j+1|0;do if((j|0)!=-1){l=((k>>>0)%3|0|0)==0?j+-2|0:k;if(!((j>>>0)%3|0)){m=j+2|0;n=l;break}else{m=j+-1|0;n=l;break}}else{m=-1;n=-1}while(0);k=a+104|0;l=a+92|0;o=f[l>>2]|0;p=o+(n<<2)|0;q=f[k>>2]|0;r=q+(f[p>>2]<<2)|0;s=f[r>>2]|0;switch(b|0){case 1:case 0:{f[r>>2]=s+-1;r=q+(f[o+(m<<2)>>2]<<2)|0;f[r>>2]=(f[r>>2]|0)+-1;if((b|0)==1){if((m|0)!=-1?(r=f[(f[(f[h>>2]|0)+12>>2]|0)+(m<<2)>>2]|0,(r|0)!=-1):0){t=a+64|0;v=1;w=r;while(1){r=f[t>>2]|0;x=f[(f[r>>2]|0)+36>>2]|0;f[e>>2]=(w>>>0)/3|0;f[d>>2]=f[e>>2];if(Ra[x&127](r,d)|0){y=v;break}r=w+1|0;x=((r>>>0)%3|0|0)==0?w+-2|0:r;if((x|0)==-1){z=12;break}w=f[(f[(f[h>>2]|0)+12>>2]|0)+(x<<2)>>2]|0;x=v+1|0;if((w|0)==-1){y=x;break}else v=x}if((z|0)==12)y=v+1|0;A=y;B=f[k>>2]|0;C=f[l>>2]|0}else{A=1;B=q;C=o}f[B+(f[C+(f[i>>2]<<2)>>2]<<2)>>2]=A;A=a+108|0;i=f[A>>2]|0;C=i-B>>2;B=i;if((n|0)!=-1?(i=f[(f[(f[h>>2]|0)+12>>2]|0)+(n<<2)>>2]|0,(i|0)!=-1):0){n=a+64|0;y=1;v=i;while(1){i=f[n>>2]|0;w=f[(f[i>>2]|0)+36>>2]|0;f[g>>2]=(v>>>0)/3|0;f[d>>2]=f[g>>2];if(Ra[w&127](i,d)|0){D=y;break}i=v+1|0;f[(f[l>>2]|0)+((((i>>>0)%3|0|0)==0?v+-2|0:i)<<2)>>2]=C;i=(((v>>>0)%3|0|0)==0?2:-1)+v|0;if((i|0)==-1){z=20;break}v=f[(f[(f[h>>2]|0)+12>>2]|0)+(i<<2)>>2]|0;i=y+1|0;if((v|0)==-1){D=i;break}else y=i}if((z|0)==20)D=y+1|0;E=D;F=f[A>>2]|0}else{E=1;F=B}f[d>>2]=E;if(F>>>0<(f[a+112>>2]|0)>>>0){f[F>>2]=E;f[A>>2]=F+4}else Ri(k,d)}break}case 5:{k=q+(f[o+(j<<2)>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-1;k=q+(f[p>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-1;k=q+(f[o+(m<<2)>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-2;break}case 3:{k=q+(f[o+(j<<2)>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-1;k=q+(f[p>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-2;k=q+(f[o+(m<<2)>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-1;break}case 7:{k=q+(f[o+(j<<2)>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-2;k=q+(f[p>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-2;k=q+(f[o+(m<<2)>>2]<<2)|0;f[k>>2]=(f[k>>2]|0)+-2;break}default:{}}k=a+116|0;m=f[k>>2]|0;if((m|0)==-1){f[k>>2]=b;u=c;return}o=f[a+128>>2]|0;if((s|0)<(o|0))G=o;else{q=f[a+132>>2]|0;G=(s|0)>(q|0)?q:s}s=G-o|0;o=f[a+136>>2]|0;a=f[3724+(m<<2)>>2]|0;f[d>>2]=a;m=o+(s*12|0)+4|0;G=f[m>>2]|0;if(G>>>0<(f[o+(s*12|0)+8>>2]|0)>>>0){f[G>>2]=a;f[m>>2]=G+4}else Ri(o+(s*12|0)|0,d);f[k>>2]=b;u=c;return}function od(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,_=0,$=0;g=u;u=u+32|0;d=g+16|0;h=g+8|0;i=g;j=e>>>0>1073741823?-1:e<<2;k=Lq(j)|0;sj(k|0,0,j|0)|0;j=f[a+28>>2]|0;l=a+36|0;m=f[l>>2]|0;n=f[m+4>>2]|0;o=f[m>>2]|0;p=n-o|0;a:do if((p|0)>4){q=p>>2;r=f[a+32>>2]|0;s=a+8|0;t=h+4|0;v=i+4|0;w=d+4|0;x=j+64|0;y=j+28|0;z=(e|0)>0;A=k+4|0;B=h+4|0;C=i+4|0;D=d+4|0;E=q+-1|0;if(n-o>>2>>>0>E>>>0){F=q;G=E;H=o}else{I=m;aq(I)}while(1){E=f[H+(G<<2)>>2]|0;q=X(G,e)|0;if((((E|0)!=-1?(f[(f[j>>2]|0)+(E>>>5<<2)>>2]&1<<(E&31)|0)==0:0)?(J=f[(f[(f[x>>2]|0)+12>>2]|0)+(E<<2)>>2]|0,(J|0)!=-1):0)?(E=f[y>>2]|0,K=f[r>>2]|0,L=f[K+(f[E+(J<<2)>>2]<<2)>>2]|0,M=J+1|0,N=f[K+(f[E+((((M>>>0)%3|0|0)==0?J+-2|0:M)<<2)>>2]<<2)>>2]|0,M=f[K+(f[E+((((J>>>0)%3|0|0)==0?2:-1)+J<<2)>>2]<<2)>>2]|0,(L|0)<(G|0)&(N|0)<(G|0)&(M|0)<(G|0)):0){J=X(L,e)|0;L=X(N,e)|0;N=X(M,e)|0;if(z){M=0;do{f[k+(M<<2)>>2]=(f[b+(M+N<<2)>>2]|0)+(f[b+(M+L<<2)>>2]|0)-(f[b+(M+J<<2)>>2]|0);M=M+1|0}while((M|0)!=(e|0))}M=b+(q<<2)|0;J=c+(q<<2)|0;L=f[M+4>>2]|0;N=f[k>>2]|0;E=f[A>>2]|0;f[h>>2]=f[M>>2];f[B>>2]=L;f[i>>2]=N;f[C>>2]=E;Od(d,s,h,i);f[J>>2]=f[d>>2];f[J+4>>2]=f[D>>2]}else{J=b+(q<<2)|0;E=b+((X(F+-2|0,e)|0)<<2)|0;N=c+(q<<2)|0;L=f[J+4>>2]|0;M=f[E>>2]|0;K=f[E+4>>2]|0;f[h>>2]=f[J>>2];f[t>>2]=L;f[i>>2]=M;f[v>>2]=K;Od(d,s,h,i);f[N>>2]=f[d>>2];f[N+4>>2]=f[w>>2]}if((F|0)<=2)break a;N=f[l>>2]|0;H=f[N>>2]|0;K=G+-1|0;if((f[N+4>>2]|0)-H>>2>>>0<=K>>>0){I=N;break}else{N=G;G=K;F=N}}aq(I)}while(0);if((e|0)<=0){O=a+8|0;P=b+4|0;Q=f[b>>2]|0;R=f[P>>2]|0;S=k+4|0;T=f[k>>2]|0;U=f[S>>2]|0;f[h>>2]=Q;V=h+4|0;f[V>>2]=R;f[i>>2]=T;W=i+4|0;f[W>>2]=U;Od(d,O,h,i);Y=f[d>>2]|0;f[c>>2]=Y;Z=d+4|0;_=f[Z>>2]|0;$=c+4|0;f[$>>2]=_;Mq(k);u=g;return 1}sj(k|0,0,e<<2|0)|0;O=a+8|0;P=b+4|0;Q=f[b>>2]|0;R=f[P>>2]|0;S=k+4|0;T=f[k>>2]|0;U=f[S>>2]|0;f[h>>2]=Q;V=h+4|0;f[V>>2]=R;f[i>>2]=T;W=i+4|0;f[W>>2]=U;Od(d,O,h,i);Y=f[d>>2]|0;f[c>>2]=Y;Z=d+4|0;_=f[Z>>2]|0;$=c+4|0;f[$>>2]=_;Mq(k);u=g;return 1}function pd(a,b,c,d,e,g,h){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;var i=0;switch(c|0){case 1:{c=ln(60)|0;f[c>>2]=1544;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[h+16>>2]=f[e+16>>2];f[h+20>>2]=f[e+20>>2];fk(c+32|0,e+24|0);h=c+44|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2076;i=c;f[a>>2]=i;return}case 2:{c=ln(60)|0;f[c>>2]=1544;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[h+16>>2]=f[e+16>>2];f[h+20>>2]=f[e+20>>2];fk(c+32|0,e+24|0);h=c+44|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2132;i=c;f[a>>2]=i;return}case 4:{c=ln(168)|0;Ti(c,d,e,g);i=c;f[a>>2]=i;return}case 3:{c=ln(88)|0;f[c>>2]=1544;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[h+16>>2]=f[e+16>>2];f[h+20>>2]=f[e+20>>2];fk(c+32|0,e+24|0);h=c+44|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2188;h=c+60|0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;f[h+12>>2]=0;f[h+16>>2]=0;f[h+20>>2]=0;f[h+24>>2]=0;i=c;f[a>>2]=i;return}case 5:{c=ln(104)|0;f[c>>2]=1544;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[h+16>>2]=f[e+16>>2];f[h+20>>2]=f[e+20>>2];fk(c+32|0,e+24|0);h=c+44|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2244;f[c+60>>2]=0;f[c+64>>2]=0;f[c+76>>2]=0;f[c+80>>2]=0;f[c+84>>2]=0;h=c+88|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];i=c;f[a>>2]=i;return}case 6:{c=ln(140)|0;f[c>>2]=1544;f[c+4>>2]=d;d=c+8|0;f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];f[d+8>>2]=f[e+8>>2];f[d+12>>2]=f[e+12>>2];f[d+16>>2]=f[e+16>>2];f[d+20>>2]=f[e+20>>2];fk(c+32|0,e+24|0);e=c+44|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c>>2]=2300;f[c+64>>2]=0;f[c+68>>2]=0;e=c+72|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c+60>>2]=2356;f[c+88>>2]=1;g=c+92|0;f[g>>2]=-1;f[g+4>>2]=-1;f[g+8>>2]=-1;f[g+12>>2]=-1;wn(c+108|0);i=c;f[a>>2]=i;return}default:{i=0;f[a>>2]=i;return}}}function qd(a,b,c,d,e,g,h){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;var i=0;switch(c|0){case 1:{c=ln(60)|0;f[c>>2]=1544;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[h+16>>2]=f[e+16>>2];f[h+20>>2]=f[e+20>>2];fk(c+32|0,e+24|0);h=c+44|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=1656;i=c;f[a>>2]=i;return}case 2:{c=ln(60)|0;f[c>>2]=1544;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[h+16>>2]=f[e+16>>2];f[h+20>>2]=f[e+20>>2];fk(c+32|0,e+24|0);h=c+44|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=1712;i=c;f[a>>2]=i;return}case 4:{c=ln(168)|0;Ui(c,d,e,g);i=c;f[a>>2]=i;return}case 3:{c=ln(88)|0;f[c>>2]=1544;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[h+16>>2]=f[e+16>>2];f[h+20>>2]=f[e+20>>2];fk(c+32|0,e+24|0);h=c+44|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=1768;h=c+60|0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;f[h+12>>2]=0;f[h+16>>2]=0;f[h+20>>2]=0;f[h+24>>2]=0;i=c;f[a>>2]=i;return}case 5:{c=ln(104)|0;f[c>>2]=1544;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[h+16>>2]=f[e+16>>2];f[h+20>>2]=f[e+20>>2];fk(c+32|0,e+24|0);h=c+44|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=1824;f[c+60>>2]=0;f[c+64>>2]=0;f[c+76>>2]=0;f[c+80>>2]=0;f[c+84>>2]=0;h=c+88|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];i=c;f[a>>2]=i;return}case 6:{c=ln(140)|0;f[c>>2]=1544;f[c+4>>2]=d;d=c+8|0;f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];f[d+8>>2]=f[e+8>>2];f[d+12>>2]=f[e+12>>2];f[d+16>>2]=f[e+16>>2];f[d+20>>2]=f[e+20>>2];fk(c+32|0,e+24|0);e=c+44|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c>>2]=1880;f[c+64>>2]=0;f[c+68>>2]=0;e=c+72|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c+60>>2]=1936;f[c+88>>2]=1;g=c+92|0;f[g>>2]=-1;f[g+4>>2]=-1;f[g+8>>2]=-1;f[g+12>>2]=-1;wn(c+108|0);i=c;f[a>>2]=i;return}default:{i=0;f[a>>2]=i;return}}}function rd(a,b){a=a|0;b=b|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0;c=a+4|0;if(!b){e=f[a>>2]|0;f[a>>2]=0;if(e|0)Oq(e);f[c>>2]=0;return}if(b>>>0>1073741823){e=ra(8)|0;Oo(e,16035);f[e>>2]=7256;va(e|0,1112,110)}e=ln(b<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)Oq(g);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;g=f[c>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=b+-1|0;i=(h&b|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(b>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=c;c=f[g>>2]|0;if(!c)return;else{k=j;l=g;m=c;n=g}a:while(1){g=l;c=m;j=n;b:while(1){c:do if(i){e=c;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0)){p=e;break c}q=(f[a>>2]|0)+(o<<2)|0;if(!(f[q>>2]|0)){r=e;s=o;t=q;break b}q=e+8|0;u=q+2|0;v=e+12|0;w=q+6|0;x=f[e>>2]|0;d:do if(!x)y=e;else{z=d[q>>1]|0;A=e;B=x;while(1){C=B+8|0;if(z<<16>>16!=(d[C>>1]|0)){y=A;break d}if((d[u>>1]|0)!=(d[C+2>>1]|0)){y=A;break d}if((d[v>>1]|0)!=(d[B+12>>1]|0)){y=A;break d}if((d[w>>1]|0)!=(d[C+6>>1]|0)){y=A;break d}C=f[B>>2]|0;if(!C){y=B;break}else{D=B;B=C;A=D}}}while(0);f[j>>2]=f[y>>2];f[y>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){E=43;break a}}}else{e=c;while(1){w=f[e+4>>2]|0;if(w>>>0>>0)F=w;else F=(w>>>0)%(b>>>0)|0;if((F|0)==(k|0)){p=e;break c}w=(f[a>>2]|0)+(F<<2)|0;if(!(f[w>>2]|0)){r=e;s=F;t=w;break b}w=e+8|0;v=w+2|0;u=e+12|0;x=w+6|0;q=f[e>>2]|0;e:do if(!q)G=e;else{A=d[w>>1]|0;B=e;z=q;while(1){D=z+8|0;if(A<<16>>16!=(d[D>>1]|0)){G=B;break e}if((d[v>>1]|0)!=(d[D+2>>1]|0)){G=B;break e}if((d[u>>1]|0)!=(d[z+12>>1]|0)){G=B;break e}if((d[x>>1]|0)!=(d[D+6>>1]|0)){G=B;break e}D=f[z>>2]|0;if(!D){G=z;break}else{C=z;z=D;B=C}}}while(0);f[j>>2]=f[G>>2];f[G>>2]=f[f[(f[a>>2]|0)+(F<<2)>>2]>>2];f[f[(f[a>>2]|0)+(F<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){E=43;break a}}}while(0);c=f[p>>2]|0;if(!c){E=43;break a}else{g=p;j=p}}f[t>>2]=j;m=f[r>>2]|0;if(!m){E=43;break}else{k=s;l=r;n=r}}if((E|0)==43)return}function sd(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0;d=a+4|0;if(!c){e=f[a>>2]|0;f[a>>2]=0;if(e|0)Oq(e);f[d>>2]=0;return}if(c>>>0>1073741823){e=ra(8)|0;Oo(e,16035);f[e>>2]=7256;va(e|0,1112,110)}e=ln(c<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)Oq(g);f[d>>2]=c;d=0;do{f[(f[a>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(c|0));d=a+8|0;g=f[d>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=c+-1|0;i=(h&c|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(c>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=d;d=f[g>>2]|0;if(!d)return;else{k=j;l=g;m=d;n=g}a:while(1){g=l;d=m;j=n;b:while(1){c:do if(i){e=d;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0)){p=e;break c}q=(f[a>>2]|0)+(o<<2)|0;if(!(f[q>>2]|0)){r=e;s=o;t=q;break b}q=e+8|0;u=q+1|0;v=q+2|0;w=q+3|0;x=f[e>>2]|0;d:do if(!x)y=e;else{z=b[q>>0]|0;A=e;B=x;while(1){C=B+8|0;if(z<<24>>24!=(b[C>>0]|0)){y=A;break d}if((b[u>>0]|0)!=(b[C+1>>0]|0)){y=A;break d}if((b[v>>0]|0)!=(b[C+2>>0]|0)){y=A;break d}if((b[w>>0]|0)!=(b[C+3>>0]|0)){y=A;break d}C=f[B>>2]|0;if(!C){y=B;break}else{D=B;B=C;A=D}}}while(0);f[j>>2]=f[y>>2];f[y>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){E=43;break a}}}else{e=d;while(1){w=f[e+4>>2]|0;if(w>>>0>>0)F=w;else F=(w>>>0)%(c>>>0)|0;if((F|0)==(k|0)){p=e;break c}w=(f[a>>2]|0)+(F<<2)|0;if(!(f[w>>2]|0)){r=e;s=F;t=w;break b}w=e+8|0;v=w+1|0;u=w+2|0;x=w+3|0;q=f[e>>2]|0;e:do if(!q)G=e;else{A=b[w>>0]|0;B=e;z=q;while(1){D=z+8|0;if(A<<24>>24!=(b[D>>0]|0)){G=B;break e}if((b[v>>0]|0)!=(b[D+1>>0]|0)){G=B;break e}if((b[u>>0]|0)!=(b[D+2>>0]|0)){G=B;break e}if((b[x>>0]|0)!=(b[D+3>>0]|0)){G=B;break e}D=f[z>>2]|0;if(!D){G=z;break}else{C=z;z=D;B=C}}}while(0);f[j>>2]=f[G>>2];f[G>>2]=f[f[(f[a>>2]|0)+(F<<2)>>2]>>2];f[f[(f[a>>2]|0)+(F<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){E=43;break a}}}while(0);d=f[p>>2]|0;if(!d){E=43;break a}else{g=p;j=p}}f[t>>2]=j;m=f[r>>2]|0;if(!m){E=43;break}else{k=s;l=r;n=r}}if((E|0)==43)return}function td(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0;i=u;u=u+352|0;j=i+340|0;k=i+336|0;l=i+80|0;m=i+48|0;n=i;sj(l|0,0,256)|0;o=f[e+4>>2]|0;p=f[e>>2]|0;q=p;if((o|0)!=(p|0)){r=o-p>>2;p=0;do{o=l+(f[q+(p<<2)>>2]<<3)|0;s=o;t=Vn(f[s>>2]|0,f[s+4>>2]|0,1,0)|0;s=o;f[s>>2]=t;f[s+4>>2]=I;p=p+1|0}while(p>>>0>>0)}Gn(m);r=Tn(c|0,((c|0)<0)<<31>>31|0,5)|0;p=I;q=n+40|0;s=q;f[s>>2]=0;f[s+4>>2]=0;f[n>>2]=0;f[n+4>>2]=0;f[n+8>>2]=0;f[n+12>>2]=0;f[n+16>>2]=0;f[n+20>>2]=0;fd(n,l,32,g)|0;l=n+16|0;s=Tn(f[l>>2]|0,f[l+4>>2]|0,1)|0;l=g+4|0;t=(f[l>>2]|0)-(f[g>>2]|0)|0;o=q;f[o>>2]=t;f[o+4>>2]=0;o=Vn(s|0,I|0,39,0)|0;s=Yn(o|0,I|0,3)|0;o=Vn(s|0,I|0,8,0)|0;s=Vn(o|0,I|0,t|0,0)|0;Cl(g,s,I);s=n+24|0;f[s>>2]=(f[g>>2]|0)+(f[q>>2]|0);q=n+28|0;f[q>>2]=0;t=n+32|0;f[t>>2]=16384;zi(m,r,p,0)|0;p=c-d|0;if((p|0)>-1){c=(d|0)>0;r=m+16|0;o=m+12|0;v=p;do{w=f[e>>2]|0;x=f[w+(((v|0)/(d|0)|0)<<2)>>2]|0;y=f[n>>2]|0;z=f[y+(x<<3)>>2]|0;A=f[t>>2]|0;B=z<<10;if(A>>>0>>0){C=A;D=w}else{w=A;do{A=f[s>>2]|0;E=f[q>>2]|0;f[q>>2]=E+1;b[A+E>>0]=w;w=(f[t>>2]|0)>>>8;f[t>>2]=w}while(w>>>0>=B>>>0);C=w;D=f[e>>2]|0}f[t>>2]=(((C>>>0)/(z>>>0)|0)<<12)+((C>>>0)%(z>>>0)|0)+(f[y+(x<<3)+4>>2]|0);B=p-v|0;E=f[D+(((B|0)/(d|0)|0)<<2)>>2]|0;if(c&(E|0)>0){A=0;do{F=f[a+(A+B<<2)>>2]|0;G=r;H=f[G+4>>2]|0;if((H|0)>0|(H|0)==0&(f[G>>2]|0)>>>0>0){G=f[o>>2]|0;H=G+4|0;J=0;K=f[H>>2]|0;do{L=K>>>3;M=K&7;N=(f[G>>2]|0)+L|0;b[N>>0]=(1<>0]|0);N=(f[G>>2]|0)+L|0;b[N>>0]=(F>>>J&1)<>0]|0);K=(f[H>>2]|0)+1|0;f[H>>2]=K;J=J+1|0}while((J|0)!=(E|0))}A=A+1|0}while((A|0)!=(d|0))}v=v-d|0}while((v|0)>-1)}_f(n,g);eg(m);v=f[m>>2]|0;d=m+4|0;o=g+16|0;r=f[o+4>>2]|0;if(!((r|0)>0|(r|0)==0&(f[o>>2]|0)>>>0>0)){o=(f[d>>2]|0)-v|0;f[k>>2]=f[l>>2];f[j>>2]=f[k>>2];Me(g,j,v,v+o|0)|0}o=f[n>>2]|0;if(o|0){v=n+4|0;n=f[v>>2]|0;if((n|0)!=(o|0))f[v>>2]=n+(~((n+-8-o|0)>>>3)<<3);Oq(o)}o=m+12|0;n=f[o>>2]|0;f[o>>2]=0;if(n|0)Oq(n);n=f[m>>2]|0;if(!n){u=i;return 1}if((f[d>>2]|0)!=(n|0))f[d>>2]=n;Oq(n);u=i;return 1}function ud(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;c=a+4|0;if(!b){d=f[a>>2]|0;f[a>>2]=0;if(d|0)Oq(d);f[c>>2]=0;return}if(b>>>0>1073741823){d=ra(8)|0;Oo(d,16035);f[d>>2]=7256;va(d|0,1112,110)}d=ln(b<<2)|0;e=f[a>>2]|0;f[a>>2]=d;if(e|0)Oq(e);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;e=f[c>>2]|0;if(!e)return;d=f[e+4>>2]|0;g=b+-1|0;h=(g&b|0)==0;if(!h)if(d>>>0>>0)i=d;else i=(d>>>0)%(b>>>0)|0;else i=d&g;f[(f[a>>2]|0)+(i<<2)>>2]=c;c=f[e>>2]|0;if(!c)return;else{j=i;k=e;l=c;m=e}a:while(1){e=k;c=l;i=m;b:while(1){c:do if(h){d=c;while(1){n=f[d+4>>2]&g;if((n|0)==(j|0)){o=d;break c}p=(f[a>>2]|0)+(n<<2)|0;if(!(f[p>>2]|0)){q=d;r=n;s=p;break b}p=d+12|0;t=d+16|0;u=d+20|0;v=f[d>>2]|0;d:do if(!v)w=d;else{x=f[d+8>>2]|0;y=d;z=v;while(1){if((x|0)!=(f[z+8>>2]|0)){w=y;break d}if((f[p>>2]|0)!=(f[z+12>>2]|0)){w=y;break d}if((f[t>>2]|0)!=(f[z+16>>2]|0)){w=y;break d}if((f[u>>2]|0)!=(f[z+20>>2]|0)){w=y;break d}A=f[z>>2]|0;if(!A){w=z;break}else{B=z;z=A;y=B}}}while(0);f[i>>2]=f[w>>2];f[w>>2]=f[f[(f[a>>2]|0)+(n<<2)>>2]>>2];f[f[(f[a>>2]|0)+(n<<2)>>2]>>2]=d;d=f[e>>2]|0;if(!d){C=43;break a}}}else{d=c;while(1){u=f[d+4>>2]|0;if(u>>>0>>0)D=u;else D=(u>>>0)%(b>>>0)|0;if((D|0)==(j|0)){o=d;break c}u=(f[a>>2]|0)+(D<<2)|0;if(!(f[u>>2]|0)){q=d;r=D;s=u;break b}u=d+12|0;t=d+16|0;p=d+20|0;v=f[d>>2]|0;e:do if(!v)E=d;else{y=f[d+8>>2]|0;z=d;x=v;while(1){if((y|0)!=(f[x+8>>2]|0)){E=z;break e}if((f[u>>2]|0)!=(f[x+12>>2]|0)){E=z;break e}if((f[t>>2]|0)!=(f[x+16>>2]|0)){E=z;break e}if((f[p>>2]|0)!=(f[x+20>>2]|0)){E=z;break e}B=f[x>>2]|0;if(!B){E=x;break}else{A=x;x=B;z=A}}}while(0);f[i>>2]=f[E>>2];f[E>>2]=f[f[(f[a>>2]|0)+(D<<2)>>2]>>2];f[f[(f[a>>2]|0)+(D<<2)>>2]>>2]=d;d=f[e>>2]|0;if(!d){C=43;break a}}}while(0);c=f[o>>2]|0;if(!c){C=43;break a}else{e=o;i=o}}f[s>>2]=i;l=f[q>>2]|0;if(!l){C=43;break}else{j=r;k=q;m=q}}if((C|0)==43)return}function vd(a,b){a=a|0;b=b|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0;c=a+4|0;if(!b){e=f[a>>2]|0;f[a>>2]=0;if(e|0)Oq(e);f[c>>2]=0;return}if(b>>>0>1073741823){e=ra(8)|0;Oo(e,16035);f[e>>2]=7256;va(e|0,1112,110)}e=ln(b<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)Oq(g);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;g=f[c>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=b+-1|0;i=(h&b|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(b>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=c;c=f[g>>2]|0;if(!c)return;else{k=j;l=g;m=c;n=g}a:while(1){g=l;c=m;j=n;b:while(1){c:do if(i){e=c;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0)){p=e;break c}q=(f[a>>2]|0)+(o<<2)|0;if(!(f[q>>2]|0)){r=e;s=o;t=q;break b}q=e+8|0;u=e+12|0;v=f[e>>2]|0;d:do if(!v)w=e;else{x=d[q>>1]|0;y=q+2|0;z=e;A=v;while(1){B=A+8|0;if(x<<16>>16!=(d[B>>1]|0)){w=z;break d}if((d[y>>1]|0)!=(d[B+2>>1]|0)){w=z;break d}if((d[u>>1]|0)!=(d[A+12>>1]|0)){w=z;break d}B=f[A>>2]|0;if(!B){w=A;break}else{C=A;A=B;z=C}}}while(0);f[j>>2]=f[w>>2];f[w>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){D=41;break a}}}else{e=c;while(1){u=f[e+4>>2]|0;if(u>>>0>>0)E=u;else E=(u>>>0)%(b>>>0)|0;if((E|0)==(k|0)){p=e;break c}u=(f[a>>2]|0)+(E<<2)|0;if(!(f[u>>2]|0)){r=e;s=E;t=u;break b}u=e+8|0;v=e+12|0;q=f[e>>2]|0;e:do if(!q)F=e;else{z=d[u>>1]|0;A=u+2|0;y=e;x=q;while(1){C=x+8|0;if(z<<16>>16!=(d[C>>1]|0)){F=y;break e}if((d[A>>1]|0)!=(d[C+2>>1]|0)){F=y;break e}if((d[v>>1]|0)!=(d[x+12>>1]|0)){F=y;break e}C=f[x>>2]|0;if(!C){F=x;break}else{B=x;x=C;y=B}}}while(0);f[j>>2]=f[F>>2];f[F>>2]=f[f[(f[a>>2]|0)+(E<<2)>>2]>>2];f[f[(f[a>>2]|0)+(E<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){D=41;break a}}}while(0);c=f[p>>2]|0;if(!c){D=41;break a}else{g=p;j=p}}f[t>>2]=j;m=f[r>>2]|0;if(!m){D=41;break}else{k=s;l=r;n=r}}if((D|0)==41)return}function wd(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0;d=a+4|0;if(!c){e=f[a>>2]|0;f[a>>2]=0;if(e|0)Oq(e);f[d>>2]=0;return}if(c>>>0>1073741823){e=ra(8)|0;Oo(e,16035);f[e>>2]=7256;va(e|0,1112,110)}e=ln(c<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)Oq(g);f[d>>2]=c;d=0;do{f[(f[a>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(c|0));d=a+8|0;g=f[d>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=c+-1|0;i=(h&c|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(c>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=d;d=f[g>>2]|0;if(!d)return;else{k=j;l=g;m=d;n=g}a:while(1){g=l;d=m;j=n;b:while(1){c:do if(i){e=d;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0)){p=e;break c}q=(f[a>>2]|0)+(o<<2)|0;if(!(f[q>>2]|0)){r=e;s=o;t=q;break b}q=e+8|0;u=q+1|0;v=q+2|0;w=f[e>>2]|0;d:do if(!w)x=e;else{y=b[q>>0]|0;z=e;A=w;while(1){B=A+8|0;if(y<<24>>24!=(b[B>>0]|0)){x=z;break d}if((b[u>>0]|0)!=(b[B+1>>0]|0)){x=z;break d}if((b[v>>0]|0)!=(b[B+2>>0]|0)){x=z;break d}B=f[A>>2]|0;if(!B){x=A;break}else{C=A;A=B;z=C}}}while(0);f[j>>2]=f[x>>2];f[x>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){D=41;break a}}}else{e=d;while(1){v=f[e+4>>2]|0;if(v>>>0>>0)E=v;else E=(v>>>0)%(c>>>0)|0;if((E|0)==(k|0)){p=e;break c}v=(f[a>>2]|0)+(E<<2)|0;if(!(f[v>>2]|0)){r=e;s=E;t=v;break b}v=e+8|0;u=v+1|0;w=v+2|0;q=f[e>>2]|0;e:do if(!q)F=e;else{z=b[v>>0]|0;A=e;y=q;while(1){C=y+8|0;if(z<<24>>24!=(b[C>>0]|0)){F=A;break e}if((b[u>>0]|0)!=(b[C+1>>0]|0)){F=A;break e}if((b[w>>0]|0)!=(b[C+2>>0]|0)){F=A;break e}C=f[y>>2]|0;if(!C){F=y;break}else{B=y;y=C;A=B}}}while(0);f[j>>2]=f[F>>2];f[F>>2]=f[f[(f[a>>2]|0)+(E<<2)>>2]>>2];f[f[(f[a>>2]|0)+(E<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){D=41;break a}}}while(0);d=f[p>>2]|0;if(!d){D=41;break a}else{g=p;j=p}}f[t>>2]=j;m=f[r>>2]|0;if(!m){D=41;break}else{k=s;l=r;n=r}}if((D|0)==41)return}function xd(a,b){a=+a;b=+b;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,q=0,r=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0.0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0.0;p[s>>3]=a;c=f[s>>2]|0;d=f[s+4>>2]|0;p[s>>3]=b;e=f[s>>2]|0;g=f[s+4>>2]|0;h=Yn(c|0,d|0,52)|0;i=h&2047;h=Yn(e|0,g|0,52)|0;j=h&2047;h=d&-2147483648;k=Tn(e|0,g|0,1)|0;l=I;a:do if(!((k|0)==0&(l|0)==0)?(m=yo(b)|0,n=I&2147483647,!((i|0)==2047|(n>>>0>2146435072|(n|0)==2146435072&m>>>0>0))):0){m=Tn(c|0,d|0,1)|0;n=I;if(!(n>>>0>l>>>0|(n|0)==(l|0)&m>>>0>k>>>0))return +((m|0)==(k|0)&(n|0)==(l|0)?a*0.0:a);if(!i){n=Tn(c|0,d|0,12)|0;m=I;if((m|0)>-1|(m|0)==-1&n>>>0>4294967295){o=0;q=n;n=m;while(1){m=o+-1|0;q=Tn(q|0,n|0,1)|0;n=I;if(!((n|0)>-1|(n|0)==-1&q>>>0>4294967295)){r=m;break}else o=m}}else r=0;o=Tn(c|0,d|0,1-r|0)|0;t=r;u=o;v=I}else{t=i;u=c;v=d&1048575|1048576}if(!j){o=Tn(e|0,g|0,12)|0;q=I;if((q|0)>-1|(q|0)==-1&o>>>0>4294967295){n=0;m=o;o=q;while(1){q=n+-1|0;m=Tn(m|0,o|0,1)|0;o=I;if(!((o|0)>-1|(o|0)==-1&m>>>0>4294967295)){w=q;break}else n=q}}else w=0;n=Tn(e|0,g|0,1-w|0)|0;x=w;y=n;z=I}else{x=j;y=e;z=g&1048575|1048576}n=Xn(u|0,v|0,y|0,z|0)|0;m=I;o=(m|0)>-1|(m|0)==-1&n>>>0>4294967295;b:do if((t|0)>(x|0)){q=t;A=m;B=o;C=u;D=v;E=n;while(1){if(B)if((E|0)==0&(A|0)==0)break;else{F=E;G=A}else{F=C;G=D}H=Tn(F|0,G|0,1)|0;J=I;K=q+-1|0;L=Xn(H|0,J|0,y|0,z|0)|0;M=I;N=(M|0)>-1|(M|0)==-1&L>>>0>4294967295;if((K|0)>(x|0)){q=K;A=M;B=N;C=H;D=J;E=L}else{O=K;P=N;Q=L;R=M;S=H;T=J;break b}}U=a*0.0;break a}else{O=t;P=o;Q=n;R=m;S=u;T=v}while(0);if(P)if((Q|0)==0&(R|0)==0){U=a*0.0;break}else{V=R;W=Q}else{V=T;W=S}if(V>>>0<1048576|(V|0)==1048576&W>>>0<0){m=O;n=W;o=V;while(1){E=Tn(n|0,o|0,1)|0;D=I;C=m+-1|0;if(D>>>0<1048576|(D|0)==1048576&E>>>0<0){m=C;n=E;o=D}else{X=C;Y=E;Z=D;break}}}else{X=O;Y=W;Z=V}if((X|0)>0){o=Vn(Y|0,Z|0,0,-1048576)|0;n=I;m=Tn(X|0,0,52)|0;_=n|I;$=o|m}else{m=Yn(Y|0,Z|0,1-X|0)|0;_=I;$=m}f[s>>2]=$;f[s+4>>2]=_|h;U=+p[s>>3]}else aa=3;while(0);if((aa|0)==3){ba=a*b;U=ba/ba}return +U}function yd(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0;d=u;u=u+32|0;e=d+8|0;g=d;h=c+4|0;i=f[(f[h>>2]|0)+48>>2]|0;j=c+12|0;c=f[j>>2]|0;k=ln(32)|0;f[e>>2]=k;f[e+8>>2]=-2147483616;f[e+4>>2]=17;l=k;m=14495;n=l+17|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[k+17>>0]=0;k=i+16|0;m=f[k>>2]|0;if(m){l=k;n=m;a:while(1){m=n;while(1){if((f[m+16>>2]|0)>=(c|0))break;o=f[m+4>>2]|0;if(!o){p=l;break a}else m=o}n=f[m>>2]|0;if(!n){p=m;break}else l=m}if(((p|0)!=(k|0)?(c|0)>=(f[p+16>>2]|0):0)?(c=p+20|0,(Jh(c,e)|0)!=0):0)q=Hk(c,e,-1)|0;else r=10}else r=10;if((r|0)==10)q=Hk(i,e,-1)|0;if((b[e+11>>0]|0)<0)Oq(f[e>>2]|0);f[e>>2]=-1;f[e+4>>2]=-1;f[e+8>>2]=-1;f[e+12>>2]=-1;i=(_((1<>>0<=28){f[e>>2]=i+1;q=2<>2]=q+-1;i=q+-2|0;f[e+8>>2]=i;f[e+12>>2]=(i|0)/2|0}switch(Xi(f[j>>2]|0,f[h>>2]|0)|0){case 6:{i=f[j>>2]|0;q=f[h>>2]|0;c=f[(f[(f[q+4>>2]|0)+8>>2]|0)+(i<<2)>>2]|0;do if((Qa[f[(f[q>>2]|0)+8>>2]&127](q)|0)==1){Hf(g,q,6,i,e,514);p=f[g>>2]|0;if(!p){f[g>>2]=0;s=g;r=21;break}else{t=g;v=p;break}}else{s=g;r=21}while(0);if((r|0)==21){i=ln(24)|0;f[i+4>>2]=c;c=i+8|0;f[c>>2]=f[e>>2];f[c+4>>2]=f[e+4>>2];f[c+8>>2]=f[e+8>>2];f[c+12>>2]=f[e+12>>2];f[i>>2]=2560;c=i;f[g>>2]=c;t=s;v=c}f[a>>2]=v;f[t>>2]=0;u=d;return}case 0:{t=f[j>>2]|0;j=f[h>>2]|0;h=f[(f[(f[j+4>>2]|0)+8>>2]|0)+(t<<2)>>2]|0;do if((Qa[f[(f[j>>2]|0)+8>>2]&127](j)|0)==1){Hf(g,j,0,t,e,514);v=f[g>>2]|0;if(!v){f[g>>2]=0;w=g;r=28;break}else{x=g;y=v;break}}else{w=g;r=28}while(0);if((r|0)==28){r=ln(24)|0;f[r+4>>2]=h;h=r+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];f[r>>2]=2560;e=r;f[g>>2]=e;x=w;y=e}f[a>>2]=y;f[x>>2]=0;u=d;return}default:{f[a>>2]=0;u=d;return}}}function zd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0;c=a+4|0;if(!b){d=f[a>>2]|0;f[a>>2]=0;if(d|0)Oq(d);f[c>>2]=0;return}if(b>>>0>1073741823){d=ra(8)|0;Oo(d,16035);f[d>>2]=7256;va(d|0,1112,110)}d=ln(b<<2)|0;e=f[a>>2]|0;f[a>>2]=d;if(e|0)Oq(e);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;e=f[c>>2]|0;if(!e)return;d=f[e+4>>2]|0;g=b+-1|0;h=(g&b|0)==0;if(!h)if(d>>>0>>0)i=d;else i=(d>>>0)%(b>>>0)|0;else i=d&g;f[(f[a>>2]|0)+(i<<2)>>2]=c;c=f[e>>2]|0;if(!c)return;else{j=i;k=e;l=c;m=e}a:while(1){e=k;c=l;i=m;b:while(1){c:do if(h){d=c;while(1){n=f[d+4>>2]&g;if((n|0)==(j|0)){o=d;break c}p=(f[a>>2]|0)+(n<<2)|0;if(!(f[p>>2]|0)){q=d;r=n;s=p;break b}p=d+12|0;t=d+16|0;u=f[d>>2]|0;d:do if(!u)v=d;else{w=f[d+8>>2]|0;x=d;y=u;while(1){if((w|0)!=(f[y+8>>2]|0)){v=x;break d}if((f[p>>2]|0)!=(f[y+12>>2]|0)){v=x;break d}if((f[t>>2]|0)!=(f[y+16>>2]|0)){v=x;break d}z=f[y>>2]|0;if(!z){v=y;break}else{A=y;y=z;x=A}}}while(0);f[i>>2]=f[v>>2];f[v>>2]=f[f[(f[a>>2]|0)+(n<<2)>>2]>>2];f[f[(f[a>>2]|0)+(n<<2)>>2]>>2]=d;d=f[e>>2]|0;if(!d){B=41;break a}}}else{d=c;while(1){t=f[d+4>>2]|0;if(t>>>0>>0)C=t;else C=(t>>>0)%(b>>>0)|0;if((C|0)==(j|0)){o=d;break c}t=(f[a>>2]|0)+(C<<2)|0;if(!(f[t>>2]|0)){q=d;r=C;s=t;break b}t=d+12|0;p=d+16|0;u=f[d>>2]|0;e:do if(!u)D=d;else{x=f[d+8>>2]|0;y=d;w=u;while(1){if((x|0)!=(f[w+8>>2]|0)){D=y;break e}if((f[t>>2]|0)!=(f[w+12>>2]|0)){D=y;break e}if((f[p>>2]|0)!=(f[w+16>>2]|0)){D=y;break e}A=f[w>>2]|0;if(!A){D=w;break}else{z=w;w=A;y=z}}}while(0);f[i>>2]=f[D>>2];f[D>>2]=f[f[(f[a>>2]|0)+(C<<2)>>2]>>2];f[f[(f[a>>2]|0)+(C<<2)>>2]>>2]=d;d=f[e>>2]|0;if(!d){B=41;break a}}}while(0);c=f[o>>2]|0;if(!c){B=41;break a}else{e=o;i=o}}f[s>>2]=i;l=f[q>>2]|0;if(!l){B=41;break}else{j=r;k=q;m=q}}if((B|0)==41)return}function Ad(a,b,c,d,e,g,h){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;var i=0,j=0;switch(c|0){case 1:{c=ln(40)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2980;i=c;f[a>>2]=i;return}case 2:{c=ln(40)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=3036;i=c;f[a>>2]=i;return}case 4:{c=ln(152)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=3092;h=c+96|0;b=c+40|0;j=b+52|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(j|0));Zm(h);f[c+136>>2]=0;f[c+140>>2]=0;f[c+144>>2]=0;i=c;f[a>>2]=i;return}case 3:{c=ln(68)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=3148;h=c+40|0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;f[h+12>>2]=0;f[h+16>>2]=0;f[h+20>>2]=0;f[h+24>>2]=0;i=c;f[a>>2]=i;return}case 5:{c=ln(84)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=3204;f[c+40>>2]=0;f[c+44>>2]=0;f[c+56>>2]=0;f[c+60>>2]=0;f[c+64>>2]=0;h=c+68|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];i=c;f[a>>2]=i;return}case 6:{c=ln(120)|0;f[c+4>>2]=d;d=c+8|0;f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];f[d+8>>2]=f[e+8>>2];f[d+12>>2]=f[e+12>>2];e=c+24|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c>>2]=3260;f[c+44>>2]=0;f[c+48>>2]=0;e=c+52|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c+40>>2]=3316;f[c+68>>2]=1;g=c+72|0;f[g>>2]=-1;f[g+4>>2]=-1;f[g+8>>2]=-1;f[g+12>>2]=-1;wn(c+88|0);i=c;f[a>>2]=i;return}default:{i=0;f[a>>2]=i;return}}}function Bd(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;d=a+4|0;if(!c){e=f[a>>2]|0;f[a>>2]=0;if(e|0)Oq(e);f[d>>2]=0;return}if(c>>>0>1073741823){e=ra(8)|0;Oo(e,16035);f[e>>2]=7256;va(e|0,1112,110)}e=ln(c<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)Oq(g);f[d>>2]=c;d=0;do{f[(f[a>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(c|0));d=a+8|0;g=f[d>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=c+-1|0;i=(h&c|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(c>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=d;d=f[g>>2]|0;if(!d)return;else{k=j;l=g;m=d;n=g}a:while(1){g=l;d=m;j=n;b:while(1){o=d;while(1){e=f[o+4>>2]|0;if(!i)if(e>>>0>>0)p=e;else p=(e>>>0)%(c>>>0)|0;else p=e&h;if((p|0)==(k|0))break;q=(f[a>>2]|0)+(p<<2)|0;if(!(f[q>>2]|0))break b;e=f[o>>2]|0;c:do if(!e)r=o;else{s=o+8|0;t=b[s+11>>0]|0;u=t<<24>>24<0;v=t&255;t=u?f[o+12>>2]|0:v;w=(t|0)==0;if(u){u=o;x=e;while(1){y=x+8|0;z=b[y+11>>0]|0;A=z<<24>>24<0;if((t|0)!=((A?f[x+12>>2]|0:z&255)|0)){r=u;break c}if(!w?Vk(f[s>>2]|0,A?f[y>>2]|0:y,t)|0:0){r=u;break c}y=f[x>>2]|0;if(!y){r=x;break c}else{A=x;x=y;u=A}}}if(w){u=o;x=e;while(1){A=b[x+8+11>>0]|0;if((A<<24>>24<0?f[x+12>>2]|0:A&255)|0){r=u;break c}A=f[x>>2]|0;if(!A){r=x;break c}else{y=x;x=A;u=y}}}u=o;x=e;while(1){w=x+8|0;y=b[w+11>>0]|0;A=y<<24>>24<0;if((t|0)!=((A?f[x+12>>2]|0:y&255)|0)){r=u;break c}y=A?f[w>>2]|0:w;if((b[y>>0]|0)==(f[s>>2]&255)<<24>>24){B=s;C=v;D=y}else{r=u;break c}while(1){C=C+-1|0;B=B+1|0;if(!C)break;D=D+1|0;if((b[B>>0]|0)!=(b[D>>0]|0)){r=u;break c}}y=f[x>>2]|0;if(!y){r=x;break}else{w=x;x=y;u=w}}}while(0);f[j>>2]=f[r>>2];f[r>>2]=f[f[(f[a>>2]|0)+(p<<2)>>2]>>2];f[f[(f[a>>2]|0)+(p<<2)>>2]>>2]=o;e=f[g>>2]|0;if(!e){E=43;break a}else o=e}d=f[o>>2]|0;if(!d){E=43;break a}else{g=o;j=o}}f[q>>2]=j;m=f[o>>2]|0;if(!m){E=43;break}else{k=p;l=o;n=o}}if((E|0)==43)return}function Cd(a,b,c,d,e,g,h){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;var i=0,j=0;switch(c|0){case 1:{c=ln(40)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2616;i=c;f[a>>2]=i;return}case 2:{c=ln(40)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2672;i=c;f[a>>2]=i;return}case 4:{c=ln(152)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2728;h=c+96|0;b=c+40|0;j=b+52|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(j|0));Zm(h);f[c+136>>2]=0;f[c+140>>2]=0;f[c+144>>2]=0;i=c;f[a>>2]=i;return}case 3:{c=ln(68)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2784;h=c+40|0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;f[h+12>>2]=0;f[h+16>>2]=0;f[h+20>>2]=0;f[h+24>>2]=0;i=c;f[a>>2]=i;return}case 5:{c=ln(84)|0;f[c+4>>2]=d;h=c+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[h+12>>2]=f[e+12>>2];h=c+24|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];f[c>>2]=2840;f[c+40>>2]=0;f[c+44>>2]=0;f[c+56>>2]=0;f[c+60>>2]=0;f[c+64>>2]=0;h=c+68|0;f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];f[h+12>>2]=f[g+12>>2];i=c;f[a>>2]=i;return}case 6:{c=ln(120)|0;f[c+4>>2]=d;d=c+8|0;f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];f[d+8>>2]=f[e+8>>2];f[d+12>>2]=f[e+12>>2];e=c+24|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c>>2]=2896;f[c+44>>2]=0;f[c+48>>2]=0;e=c+52|0;f[e>>2]=f[g>>2];f[e+4>>2]=f[g+4>>2];f[e+8>>2]=f[g+8>>2];f[e+12>>2]=f[g+12>>2];f[c+40>>2]=2952;f[c+68>>2]=1;g=c+72|0;f[g>>2]=-1;f[g+4>>2]=-1;f[g+8>>2]=-1;f[g+12>>2]=-1;wn(c+88|0);i=c;f[a>>2]=i;return}default:{i=0;f[a>>2]=i;return}}}function Dd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=u;u=u+48|0;d=c+8|0;e=c+4|0;g=c;h=a+44|0;ci(f[h>>2]|0,b)|0;if(f[h>>2]|0){wn(d);tk(d);i=(f[h>>2]|0)+-1|0;if((i|0)>-1){h=a+40|0;j=i;do{fj(d,(f[(f[h>>2]|0)+(j>>>5<<2)>>2]&1<<(j&31)|0)!=0);j=j+-1|0}while((j|0)>-1)}ld(d,b);Fj(d)}j=a+56|0;ci(f[j>>2]|0,b)|0;if(f[j>>2]|0){wn(d);tk(d);h=(f[j>>2]|0)+-2|0;if((h|0)>-1){j=a+52|0;i=h;do{fj(d,(f[(f[j>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)!=0);h=i+1|0;fj(d,(f[(f[j>>2]|0)+(h>>>5<<2)>>2]&1<<(h&31)|0)!=0);i=i+-2|0}while((i|0)>-1)}ld(d,b);Fj(d)}i=a+68|0;ci(f[i>>2]|0,b)|0;if(f[i>>2]|0){wn(d);tk(d);j=(f[i>>2]|0)+-3|0;if((j|0)>-1){i=a+64|0;h=j;do{fj(d,(f[(f[i>>2]|0)+(h>>>5<<2)>>2]&1<<(h&31)|0)!=0);j=h+1|0;fj(d,(f[(f[i>>2]|0)+(j>>>5<<2)>>2]&1<<(j&31)|0)!=0);j=h+2|0;fj(d,(f[(f[i>>2]|0)+(j>>>5<<2)>>2]&1<<(j&31)|0)!=0);h=h+-3|0}while((h|0)>-1)}ld(d,b);Fj(d)}h=a+80|0;ci(f[h>>2]|0,b)|0;if(f[h>>2]|0){wn(d);tk(d);i=(f[h>>2]|0)+-4|0;if((i|0)>-1){h=a+76|0;j=i;do{fj(d,(f[(f[h>>2]|0)+(j>>>5<<2)>>2]&1<<(j&31)|0)!=0);i=j+1|0;fj(d,(f[(f[h>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)!=0);i=j+2|0;fj(d,(f[(f[h>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)!=0);i=j+3|0;fj(d,(f[(f[h>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)!=0);j=j+-4|0}while((j|0)>-1)}ld(d,b);Fj(d)}f[g>>2]=f[a+12>>2];j=b+16|0;h=j;i=f[h>>2]|0;k=f[h+4>>2]|0;if((k|0)>0|(k|0)==0&i>>>0>0){l=k;m=i}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;i=j;l=f[i+4>>2]|0;m=f[i>>2]|0}f[g>>2]=f[a+20>>2];if((l|0)>0|(l|0)==0&m>>>0>0){u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;u=c;return 1}function Ed(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=u;u=u+48|0;d=c+8|0;e=c+4|0;g=c;h=a+64|0;ci(f[h>>2]|0,b)|0;if(f[h>>2]|0){wn(d);tk(d);i=(f[h>>2]|0)+-1|0;if((i|0)>-1){h=a+60|0;j=i;do{fj(d,(f[(f[h>>2]|0)+(j>>>5<<2)>>2]&1<<(j&31)|0)!=0);j=j+-1|0}while((j|0)>-1)}ld(d,b);Fj(d)}j=a+76|0;ci(f[j>>2]|0,b)|0;if(f[j>>2]|0){wn(d);tk(d);h=(f[j>>2]|0)+-2|0;if((h|0)>-1){j=a+72|0;i=h;do{fj(d,(f[(f[j>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)!=0);h=i+1|0;fj(d,(f[(f[j>>2]|0)+(h>>>5<<2)>>2]&1<<(h&31)|0)!=0);i=i+-2|0}while((i|0)>-1)}ld(d,b);Fj(d)}i=a+88|0;ci(f[i>>2]|0,b)|0;if(f[i>>2]|0){wn(d);tk(d);j=(f[i>>2]|0)+-3|0;if((j|0)>-1){i=a+84|0;h=j;do{fj(d,(f[(f[i>>2]|0)+(h>>>5<<2)>>2]&1<<(h&31)|0)!=0);j=h+1|0;fj(d,(f[(f[i>>2]|0)+(j>>>5<<2)>>2]&1<<(j&31)|0)!=0);j=h+2|0;fj(d,(f[(f[i>>2]|0)+(j>>>5<<2)>>2]&1<<(j&31)|0)!=0);h=h+-3|0}while((h|0)>-1)}ld(d,b);Fj(d)}h=a+100|0;ci(f[h>>2]|0,b)|0;if(f[h>>2]|0){wn(d);tk(d);i=(f[h>>2]|0)+-4|0;if((i|0)>-1){h=a+96|0;j=i;do{fj(d,(f[(f[h>>2]|0)+(j>>>5<<2)>>2]&1<<(j&31)|0)!=0);i=j+1|0;fj(d,(f[(f[h>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)!=0);i=j+2|0;fj(d,(f[(f[h>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)!=0);i=j+3|0;fj(d,(f[(f[h>>2]|0)+(i>>>5<<2)>>2]&1<<(i&31)|0)!=0);j=j+-4|0}while((j|0)>-1)}ld(d,b);Fj(d)}f[g>>2]=f[a+12>>2];j=b+16|0;h=j;i=f[h>>2]|0;k=f[h+4>>2]|0;if((k|0)>0|(k|0)==0&i>>>0>0){l=k;m=i}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;i=j;l=f[i+4>>2]|0;m=f[i>>2]|0}f[g>>2]=f[a+16>>2];if((l|0)>0|(l|0)==0&m>>>0>0){u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;u=c;return 1}function Fd(a,b){a=a|0;b=b|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;c=a+4|0;if(!b){e=f[a>>2]|0;f[a>>2]=0;if(e|0)Oq(e);f[c>>2]=0;return}if(b>>>0>1073741823){e=ra(8)|0;Oo(e,16035);f[e>>2]=7256;va(e|0,1112,110)}e=ln(b<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)Oq(g);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;g=f[c>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=b+-1|0;i=(h&b|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(b>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=c;c=f[g>>2]|0;if(!c)return;else{k=j;l=g;m=c;n=g}a:while(1){g=l;c=m;j=n;b:while(1){c:do if(i){e=c;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0)){p=e;break c}q=(f[a>>2]|0)+(o<<2)|0;if(!(f[q>>2]|0)){r=e;s=o;t=q;break b}q=e+8|0;u=f[e>>2]|0;d:do if(!u)v=e;else{w=d[q>>1]|0;x=q+2|0;y=e;z=u;while(1){A=z+8|0;if(w<<16>>16!=(d[A>>1]|0)){v=y;break d}if((d[x>>1]|0)!=(d[A+2>>1]|0)){v=y;break d}A=f[z>>2]|0;if(!A){v=z;break}else{B=z;z=A;y=B}}}while(0);f[j>>2]=f[v>>2];f[v>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){C=39;break a}}}else{e=c;while(1){u=f[e+4>>2]|0;if(u>>>0>>0)D=u;else D=(u>>>0)%(b>>>0)|0;if((D|0)==(k|0)){p=e;break c}u=(f[a>>2]|0)+(D<<2)|0;if(!(f[u>>2]|0)){r=e;s=D;t=u;break b}u=e+8|0;q=f[e>>2]|0;e:do if(!q)E=e;else{y=d[u>>1]|0;z=u+2|0;x=e;w=q;while(1){B=w+8|0;if(y<<16>>16!=(d[B>>1]|0)){E=x;break e}if((d[z>>1]|0)!=(d[B+2>>1]|0)){E=x;break e}B=f[w>>2]|0;if(!B){E=w;break}else{A=w;w=B;x=A}}}while(0);f[j>>2]=f[E>>2];f[E>>2]=f[f[(f[a>>2]|0)+(D<<2)>>2]>>2];f[f[(f[a>>2]|0)+(D<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){C=39;break a}}}while(0);c=f[p>>2]|0;if(!c){C=39;break a}else{g=p;j=p}}f[t>>2]=j;m=f[r>>2]|0;if(!m){C=39;break}else{k=s;l=r;n=r}}if((C|0)==39)return}function Gd(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;d=a+4|0;if(!c){e=f[a>>2]|0;f[a>>2]=0;if(e|0)Oq(e);f[d>>2]=0;return}if(c>>>0>1073741823){e=ra(8)|0;Oo(e,16035);f[e>>2]=7256;va(e|0,1112,110)}e=ln(c<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)Oq(g);f[d>>2]=c;d=0;do{f[(f[a>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(c|0));d=a+8|0;g=f[d>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=c+-1|0;i=(h&c|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(c>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=d;d=f[g>>2]|0;if(!d)return;else{k=j;l=g;m=d;n=g}a:while(1){g=l;d=m;j=n;b:while(1){c:do if(i){e=d;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0)){p=e;break c}q=(f[a>>2]|0)+(o<<2)|0;if(!(f[q>>2]|0)){r=e;s=o;t=q;break b}q=e+8|0;u=f[e>>2]|0;d:do if(!u)v=e;else{w=b[q>>0]|0;x=q+1|0;y=e;z=u;while(1){A=z+8|0;if(w<<24>>24!=(b[A>>0]|0)){v=y;break d}if((b[x>>0]|0)!=(b[A+1>>0]|0)){v=y;break d}A=f[z>>2]|0;if(!A){v=z;break}else{B=z;z=A;y=B}}}while(0);f[j>>2]=f[v>>2];f[v>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){C=39;break a}}}else{e=d;while(1){u=f[e+4>>2]|0;if(u>>>0>>0)D=u;else D=(u>>>0)%(c>>>0)|0;if((D|0)==(k|0)){p=e;break c}u=(f[a>>2]|0)+(D<<2)|0;if(!(f[u>>2]|0)){r=e;s=D;t=u;break b}u=e+8|0;q=f[e>>2]|0;e:do if(!q)E=e;else{y=b[u>>0]|0;z=u+1|0;x=e;w=q;while(1){B=w+8|0;if(y<<24>>24!=(b[B>>0]|0)){E=x;break e}if((b[z>>0]|0)!=(b[B+1>>0]|0)){E=x;break e}B=f[w>>2]|0;if(!B){E=w;break}else{A=w;w=B;x=A}}}while(0);f[j>>2]=f[E>>2];f[E>>2]=f[f[(f[a>>2]|0)+(D<<2)>>2]>>2];f[f[(f[a>>2]|0)+(D<<2)>>2]>>2]=e;e=f[g>>2]|0;if(!e){C=39;break a}}}while(0);d=f[p>>2]|0;if(!d){C=39;break a}else{g=p;j=p}}f[t>>2]=j;m=f[r>>2]|0;if(!m){C=39;break}else{k=s;l=r;n=r}}if((C|0)==39)return}function Hd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;c=u;u=u+48|0;d=c+32|0;e=c+28|0;g=c+16|0;h=c;i=a+16|0;j=f[i>>2]|0;if(j|0){k=f[b>>2]|0;l=i;m=j;a:while(1){j=m;while(1){if((f[j+16>>2]|0)>=(k|0))break;n=f[j+4>>2]|0;if(!n){o=l;break a}else j=n}m=f[j>>2]|0;if(!m){o=j;break}else l=j}if((o|0)!=(i|0)?(k|0)>=(f[o+16>>2]|0):0){p=o;q=p+20|0;u=c;return q|0}}lp(g);f[h>>2]=f[b>>2];b=h+4|0;f[h+8>>2]=0;o=h+12|0;f[o>>2]=0;k=h+8|0;f[b>>2]=k;l=f[g>>2]|0;m=g+4|0;if((l|0)!=(m|0)){n=k;r=l;while(1){l=r+16|0;f[e>>2]=n;f[d>>2]=f[e>>2];ph(b,d,l,l)|0;l=f[r+4>>2]|0;if(!l){s=r+8|0;t=f[s>>2]|0;if((f[t>>2]|0)==(r|0))v=t;else{t=s;do{s=f[t>>2]|0;t=s+8|0;w=f[t>>2]|0}while((f[w>>2]|0)!=(s|0));v=w}}else{t=l;while(1){j=f[t>>2]|0;if(!j)break;else t=j}v=t}if((v|0)==(m|0))break;else r=v}}v=a+12|0;r=f[i>>2]|0;do if(r){d=f[h>>2]|0;e=a+16|0;n=r;while(1){l=f[n+16>>2]|0;if((d|0)<(l|0)){j=f[n>>2]|0;if(!j){x=23;break}else{y=n;z=j}}else{if((l|0)>=(d|0)){x=27;break}A=n+4|0;l=f[A>>2]|0;if(!l){x=26;break}else{y=A;z=l}}e=y;n=z}if((x|0)==23){B=n;C=n;break}else if((x|0)==26){B=n;C=A;break}else if((x|0)==27){B=n;C=e;break}}else{B=i;C=i}while(0);i=f[C>>2]|0;if(!i){x=ln(32)|0;f[x+16>>2]=f[h>>2];A=x+20|0;f[A>>2]=f[b>>2];z=x+24|0;y=f[h+8>>2]|0;f[z>>2]=y;r=f[o>>2]|0;f[x+28>>2]=r;if(!r)f[A>>2]=z;else{f[y+8>>2]=z;f[b>>2]=k;f[k>>2]=0;f[o>>2]=0}f[x>>2]=0;f[x+4>>2]=0;f[x+8>>2]=B;f[C>>2]=x;B=f[f[v>>2]>>2]|0;if(!B)D=x;else{f[v>>2]=B;D=f[C>>2]|0}Oe(f[a+16>>2]|0,D);D=a+20|0;f[D>>2]=(f[D>>2]|0)+1;E=x}else E=i;Ej(h+4|0,f[k>>2]|0);Ej(g,f[m>>2]|0);p=E;q=p+20|0;u=c;return q|0}function Id(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0;d=b[c+11>>0]|0;e=d<<24>>24<0;g=e?f[c>>2]|0:c;i=e?f[c+4>>2]|0:d&255;if(i>>>0>3){d=g;c=i;e=i;while(1){j=X(h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24,1540483477)|0;c=(X(j>>>24^j,1540483477)|0)^(X(c,1540483477)|0);e=e+-4|0;if(e>>>0<=3)break;else d=d+4|0}d=i+-4|0;e=d&-4;k=d-e|0;l=g+(e+4)|0;m=c}else{k=i;l=g;m=i}switch(k|0){case 3:{n=h[l+2>>0]<<16^m;o=6;break}case 2:{n=m;o=6;break}case 1:{p=m;o=7;break}default:q=m}if((o|0)==6){p=h[l+1>>0]<<8^n;o=7}if((o|0)==7)q=X(p^h[l>>0],1540483477)|0;l=X(q>>>13^q,1540483477)|0;q=l>>>15^l;l=f[a+4>>2]|0;if(!l){r=0;return r|0}p=l+-1|0;n=(p&l|0)==0;if(!n)if(q>>>0>>0)s=q;else s=(q>>>0)%(l>>>0)|0;else s=q&p;m=f[(f[a>>2]|0)+(s<<2)>>2]|0;if(!m){r=0;return r|0}a=f[m>>2]|0;if(!a){r=0;return r|0}m=(i|0)==0;if(n){n=a;a:while(1){k=f[n+4>>2]|0;c=(k|0)==(q|0);if(!(c|(k&p|0)==(s|0))){r=0;o=40;break}do if(c?(k=n+8|0,e=b[k+11>>0]|0,d=e<<24>>24<0,j=e&255,((d?f[n+12>>2]|0:j)|0)==(i|0)):0){e=f[k>>2]|0;t=d?e:k;if(d){if(m){r=n;o=40;break a}if(!(Vk(t,g,i)|0)){r=n;o=40;break a}else break}if(m){r=n;o=40;break a}if((b[g>>0]|0)==(e&255)<<24>>24){e=k;k=j;j=g;do{k=k+-1|0;e=e+1|0;if(!k){r=n;o=40;break a}j=j+1|0}while((b[e>>0]|0)==(b[j>>0]|0))}}while(0);n=f[n>>2]|0;if(!n){r=0;o=40;break}}if((o|0)==40)return r|0}else u=a;b:while(1){a=f[u+4>>2]|0;do if((a|0)==(q|0)){n=u+8|0;p=b[n+11>>0]|0;c=p<<24>>24<0;j=p&255;if(((c?f[u+12>>2]|0:j)|0)==(i|0)){p=f[n>>2]|0;e=c?p:n;if(c){if(m){r=u;o=40;break b}if(!(Vk(e,g,i)|0)){r=u;o=40;break b}else break}if(m){r=u;o=40;break b}if((b[g>>0]|0)==(p&255)<<24>>24){p=n;n=j;j=g;do{n=n+-1|0;p=p+1|0;if(!n){r=u;o=40;break b}j=j+1|0}while((b[p>>0]|0)==(b[j>>0]|0))}}}else{if(a>>>0>>0)v=a;else v=(a>>>0)%(l>>>0)|0;if((v|0)!=(s|0)){r=0;o=40;break b}}while(0);u=f[u>>2]|0;if(!u){r=0;o=40;break}}if((o|0)==40)return r|0;return 0}function Jd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0;c=a+4|0;if(!b){d=f[a>>2]|0;f[a>>2]=0;if(d|0)Oq(d);f[c>>2]=0;return}if(b>>>0>1073741823){d=ra(8)|0;Oo(d,16035);f[d>>2]=7256;va(d|0,1112,110)}d=ln(b<<2)|0;e=f[a>>2]|0;f[a>>2]=d;if(e|0)Oq(e);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;e=f[c>>2]|0;if(!e)return;d=f[e+4>>2]|0;g=b+-1|0;h=(g&b|0)==0;if(!h)if(d>>>0>>0)i=d;else i=(d>>>0)%(b>>>0)|0;else i=d&g;f[(f[a>>2]|0)+(i<<2)>>2]=c;c=f[e>>2]|0;if(!c)return;else{j=i;k=e;l=c;m=e}a:while(1){e=k;c=l;i=m;b:while(1){c:do if(h){d=c;while(1){n=f[d+4>>2]&g;if((n|0)==(j|0)){o=d;break c}p=(f[a>>2]|0)+(n<<2)|0;if(!(f[p>>2]|0)){q=d;r=n;s=p;break b}p=d+12|0;t=f[d>>2]|0;d:do if(!t)u=d;else{v=f[d+8>>2]|0;w=d;x=t;while(1){if((v|0)!=(f[x+8>>2]|0)){u=w;break d}if((f[p>>2]|0)!=(f[x+12>>2]|0)){u=w;break d}y=f[x>>2]|0;if(!y){u=x;break}else{z=x;x=y;w=z}}}while(0);f[i>>2]=f[u>>2];f[u>>2]=f[f[(f[a>>2]|0)+(n<<2)>>2]>>2];f[f[(f[a>>2]|0)+(n<<2)>>2]>>2]=d;d=f[e>>2]|0;if(!d){A=39;break a}}}else{d=c;while(1){p=f[d+4>>2]|0;if(p>>>0>>0)B=p;else B=(p>>>0)%(b>>>0)|0;if((B|0)==(j|0)){o=d;break c}p=(f[a>>2]|0)+(B<<2)|0;if(!(f[p>>2]|0)){q=d;r=B;s=p;break b}p=d+12|0;t=f[d>>2]|0;e:do if(!t)C=d;else{w=f[d+8>>2]|0;x=d;v=t;while(1){if((w|0)!=(f[v+8>>2]|0)){C=x;break e}if((f[p>>2]|0)!=(f[v+12>>2]|0)){C=x;break e}z=f[v>>2]|0;if(!z){C=v;break}else{y=v;v=z;x=y}}}while(0);f[i>>2]=f[C>>2];f[C>>2]=f[f[(f[a>>2]|0)+(B<<2)>>2]>>2];f[f[(f[a>>2]|0)+(B<<2)>>2]>>2]=d;d=f[e>>2]|0;if(!d){A=39;break a}}}while(0);c=f[o>>2]|0;if(!c){A=39;break a}else{e=o;i=o}}f[s>>2]=i;l=f[q>>2]|0;if(!l){A=39;break}else{j=r;k=q;m=q}}if((A|0)==39)return}function Kd(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0;h=a+4|0;i=f[c>>2]|0;c=i;do if((i|0)!=(h|0)){j=i+16|0;k=b[j+11>>0]|0;l=k<<24>>24<0;m=l?f[i+20>>2]|0:k&255;k=b[g+11>>0]|0;n=k<<24>>24<0;o=n?f[g+4>>2]|0:k&255;k=m>>>0>>0;p=k?m:o;if((p|0)!=0?(q=Vk(n?f[g>>2]|0:g,l?f[j>>2]|0:j,p)|0,(q|0)!=0):0){if((q|0)<0)break}else r=4;if((r|0)==4?o>>>0>>0:0)break;q=o>>>0>>0?o:m;if((q|0)!=0?(m=Vk(l?f[j>>2]|0:j,n?f[g>>2]|0:g,q)|0,(m|0)!=0):0){if((m|0)>=0)r=37}else r=21;if((r|0)==21?!k:0)r=37;if((r|0)==37){f[d>>2]=c;f[e>>2]=c;s=e;return s|0}k=f[i+4>>2]|0;m=(k|0)==0;if(m){q=i+8|0;j=f[q>>2]|0;if((f[j>>2]|0)==(i|0))t=j;else{j=q;do{q=f[j>>2]|0;j=q+8|0;l=f[j>>2]|0}while((f[l>>2]|0)!=(q|0));t=l}}else{j=k;while(1){l=f[j>>2]|0;if(!l)break;else j=l}t=j}do if((t|0)!=(h|0)){k=t+16|0;l=b[k+11>>0]|0;q=l<<24>>24<0;p=q?f[t+20>>2]|0:l&255;l=p>>>0>>0?p:o;if((l|0)!=0?(u=Vk(n?f[g>>2]|0:g,q?f[k>>2]|0:k,l)|0,(u|0)!=0):0){if((u|0)<0)break}else r=31;if((r|0)==31?o>>>0

>>0:0)break;s=yg(a,d,g)|0;return s|0}while(0);if(m){f[d>>2]=c;s=i+4|0;return s|0}else{f[d>>2]=t;s=t;return s|0}}while(0);t=f[i>>2]|0;do if((f[a>>2]|0)==(i|0))v=c;else{if(!t){h=i;while(1){e=f[h+8>>2]|0;if((f[e>>2]|0)==(h|0))h=e;else{w=e;break}}}else{h=t;while(1){m=f[h+4>>2]|0;if(!m){w=h;break}else h=m}}h=w;m=w+16|0;e=b[g+11>>0]|0;o=e<<24>>24<0;n=o?f[g+4>>2]|0:e&255;e=b[m+11>>0]|0;j=e<<24>>24<0;p=j?f[w+20>>2]|0:e&255;e=n>>>0

>>0?n:p;if((e|0)!=0?(u=Vk(j?f[m>>2]|0:m,o?f[g>>2]|0:g,e)|0,(u|0)!=0):0){if((u|0)<0){v=h;break}}else r=13;if((r|0)==13?p>>>0>>0:0){v=h;break}s=yg(a,d,g)|0;return s|0}while(0);if(!t){f[d>>2]=i;s=i;return s|0}else{f[d>>2]=v;s=v+4|0;return s|0}return 0}function Ld(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0;g=a;h=b;i=h;j=c;k=d;l=k;if(!i){m=(e|0)!=0;if(!l){if(m){f[e>>2]=(g>>>0)%(j>>>0);f[e+4>>2]=0}n=0;o=(g>>>0)/(j>>>0)>>>0;return (I=n,o)|0}else{if(!m){n=0;o=0;return (I=n,o)|0}f[e>>2]=a|0;f[e+4>>2]=b&0;n=0;o=0;return (I=n,o)|0}}m=(l|0)==0;do if(j){if(!m){p=(_(l|0)|0)-(_(i|0)|0)|0;if(p>>>0<=31){q=p+1|0;r=31-p|0;s=p-31>>31;t=q;u=g>>>(q>>>0)&s|i<>>(q>>>0)&s;w=0;x=g<>2]=a|0;f[e+4>>2]=h|b&0;n=0;o=0;return (I=n,o)|0}r=j-1|0;if(r&j|0){s=(_(j|0)|0)+33-(_(i|0)|0)|0;q=64-s|0;p=32-s|0;y=p>>31;z=s-32|0;A=z>>31;t=s;u=p-1>>31&i>>>(z>>>0)|(i<>>(s>>>0))&A;v=A&i>>>(s>>>0);w=g<>>(z>>>0))&y|g<>31;break}if(e|0){f[e>>2]=r&g;f[e+4>>2]=0}if((j|0)==1){n=h|b&0;o=a|0|0;return (I=n,o)|0}else{r=vm(j|0)|0;n=i>>>(r>>>0)|0;o=i<<32-r|g>>>(r>>>0)|0;return (I=n,o)|0}}else{if(m){if(e|0){f[e>>2]=(i>>>0)%(j>>>0);f[e+4>>2]=0}n=0;o=(i>>>0)/(j>>>0)>>>0;return (I=n,o)|0}if(!g){if(e|0){f[e>>2]=0;f[e+4>>2]=(i>>>0)%(l>>>0)}n=0;o=(i>>>0)/(l>>>0)>>>0;return (I=n,o)|0}r=l-1|0;if(!(r&l)){if(e|0){f[e>>2]=a|0;f[e+4>>2]=r&i|b&0}n=0;o=i>>>((vm(l|0)|0)>>>0);return (I=n,o)|0}r=(_(l|0)|0)-(_(i|0)|0)|0;if(r>>>0<=30){s=r+1|0;p=31-r|0;t=s;u=i<>>(s>>>0);v=i>>>(s>>>0);w=0;x=g<>2]=a|0;f[e+4>>2]=h|b&0;n=0;o=0;return (I=n,o)|0}while(0);if(!t){B=x;C=w;D=v;E=u;F=0;G=0}else{b=c|0|0;c=k|d&0;d=Vn(b|0,c|0,-1,-1)|0;k=I;h=x;x=w;w=v;v=u;u=t;t=0;do{a=h;h=x>>>31|h<<1;x=t|x<<1;g=v<<1|a>>>31|0;a=v>>>31|w<<1|0;Xn(d|0,k|0,g|0,a|0)|0;i=I;l=i>>31|((i|0)<0?-1:0)<<1;t=l&1;v=Xn(g|0,a|0,l&b|0,(((i|0)<0?-1:0)>>31|((i|0)<0?-1:0)<<1)&c|0)|0;w=I;u=u-1|0}while((u|0)!=0);B=h;C=x;D=w;E=v;F=0;G=t}t=C;C=0;if(e|0){f[e>>2]=E;f[e+4>>2]=D}n=(t|0)>>>31|(B|C)<<1|(C<<1|t>>>31)&0|F;o=(t<<1|0>>>31)&-2|G;return (I=n,o)|0}function Md(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;g=u;u=u+16|0;h=g;f[c+48>>2]=d;f[c+44>>2]=e;e=f[c+8>>2]|0;d=c+12|0;i=f[d>>2]|0;if((i|0)!=(e|0)){j=i;do{i=j+-4|0;f[d>>2]=i;k=f[i>>2]|0;f[i>>2]=0;if(k|0)Va[f[(f[k>>2]|0)+4>>2]&127](k);j=f[d>>2]|0}while((j|0)!=(e|0))}e=f[c+20>>2]|0;j=c+24|0;d=f[j>>2]|0;if((d|0)!=(e|0))f[j>>2]=d+(~((d+-4-e|0)>>>2)<<2);e=f[c+32>>2]|0;d=c+36|0;j=f[d>>2]|0;if((j|0)!=(e|0))f[d>>2]=j+(~((j+-4-e|0)>>>2)<<2);if(!(f[c+4>>2]|0)){e=ln(32)|0;f[h>>2]=e;f[h+8>>2]=-2147483616;f[h+4>>2]=23;l=e;m=15706;n=l+23|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[e+23>>0]=0;f[a>>2]=-1;pj(a+4|0,h);if((b[h+11>>0]|0)<0)Oq(f[h>>2]|0);u=g;return}Ud(a,c);if(f[a>>2]|0){u=g;return}e=a+4|0;j=e+11|0;if((b[j>>0]|0)<0)Oq(f[e>>2]|0);Wi(a,c);if(f[a>>2]|0){u=g;return}if((b[j>>0]|0)<0)Oq(f[e>>2]|0);if(!(Qa[f[(f[c>>2]|0)+16>>2]&127](c)|0)){j=ln(32)|0;f[h>>2]=j;f[h+8>>2]=-2147483616;f[h+4>>2]=29;l=j;m=15730;n=l+29|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[j+29>>0]=0;f[a>>2]=-1;pj(e,h);if((b[h+11>>0]|0)<0)Oq(f[h>>2]|0);u=g;return}if(!(Qa[f[(f[c>>2]|0)+20>>2]&127](c)|0)){j=ln(32)|0;f[h>>2]=j;f[h+8>>2]=-2147483616;f[h+4>>2]=31;l=j;m=15760;n=l+31|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[j+31>>0]=0;f[a>>2]=-1;pj(e,h);if((b[h+11>>0]|0)<0)Oq(f[h>>2]|0);u=g;return}if(!(Qa[f[(f[c>>2]|0)+24>>2]&127](c)|0)){j=ln(32)|0;f[h>>2]=j;f[h+8>>2]=-2147483616;f[h+4>>2]=31;l=j;m=15792;n=l+31|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[j+31>>0]=0;f[a>>2]=-1;pj(e,h);if((b[h+11>>0]|0)<0)Oq(f[h>>2]|0);u=g;return}if(Qa[f[(f[c>>2]|0)+28>>2]&127](c)|0){f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=g;return}c=ln(48)|0;f[h>>2]=c;f[h+8>>2]=-2147483600;f[h+4>>2]=34;l=c;m=15824;n=l+34|0;do{b[l>>0]=b[m>>0]|0;l=l+1|0;m=m+1|0}while((l|0)<(n|0));b[c+34>>0]=0;f[a>>2]=-1;pj(e,h);if((b[h+11>>0]|0)<0)Oq(f[h>>2]|0);u=g;return}function Nd(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;c=u;u=u+32|0;d=c+4|0;e=c;g=c+16|0;h=a+48|0;i=f[h>>2]|0;j=ln(32)|0;f[d>>2]=j;f[d+8>>2]=-2147483616;f[d+4>>2]=20;k=j;l=14538;m=k+20|0;do{b[k>>0]=b[l>>0]|0;k=k+1|0;l=l+1|0}while((k|0)<(m|0));b[j+20>>0]=0;j=Fk(i+24|0,d)|0;if((b[d+11>>0]|0)<0)Oq(f[d>>2]|0);i=f[h>>2]|0;n=ln(32)|0;f[d>>2]=n;f[d+8>>2]=-2147483616;f[d+4>>2]=22;k=n;l=14559;m=k+22|0;do{b[k>>0]=b[l>>0]|0;k=k+1|0;l=l+1|0}while((k|0)<(m|0));b[n+22>>0]=0;n=Fk(i+24|0,d)|0;if((b[d+11>>0]|0)<0)Oq(f[d>>2]|0);i=a+56|0;o=f[i>>2]|0;f[i>>2]=0;if(o|0)Va[f[(f[o>>2]|0)+4>>2]&127](o);o=f[a+52>>2]|0;p=(((f[o+100>>2]|0)-(f[o+96>>2]|0)|0)/12|0)>>>0<1e3;o=f[h>>2]|0;q=ln(32)|0;f[d>>2]=q;f[d+8>>2]=-2147483616;f[d+4>>2]=18;k=q;l=14582;m=k+18|0;do{b[k>>0]=b[l>>0]|0;k=k+1|0;l=l+1|0}while((k|0)<(m|0));b[q+18>>0]=0;q=Hk(o,d,-1)|0;if((b[d+11>>0]|0)<0)Oq(f[d>>2]|0);switch(q|0){case -1:{if(j?p|((mi(f[h>>2]|0)|0)>4|n^1):0)r=13;else r=17;break}case 0:{if(j)r=13;else r=21;break}case 2:{r=17;break}default:r=21}if((r|0)==13){j=f[a+44>>2]|0;b[g>>0]=0;n=j+16|0;h=f[n+4>>2]|0;if(!((h|0)>0|(h|0)==0&(f[n>>2]|0)>>>0>0)){f[e>>2]=f[j+4>>2];f[d>>2]=f[e>>2];Me(j,d,g,g+1|0)|0}j=ln(296)|0;_i(j);n=f[i>>2]|0;f[i>>2]=j;if(!n)s=j;else{Va[f[(f[n>>2]|0)+4>>2]&127](n);r=21}}else if((r|0)==17){n=f[a+44>>2]|0;b[g>>0]=2;j=n+16|0;h=f[j+4>>2]|0;if(!((h|0)>0|(h|0)==0&(f[j>>2]|0)>>>0>0)){f[e>>2]=f[n+4>>2];f[d>>2]=f[e>>2];Me(n,d,g,g+1|0)|0}g=ln(360)|0;xi(g);d=f[i>>2]|0;f[i>>2]=g;if(!d)s=g;else{Va[f[(f[d>>2]|0)+4>>2]&127](d);r=21}}if((r|0)==21){r=f[i>>2]|0;if(!r){t=0;u=c;return t|0}else s=r}t=Ra[f[(f[s>>2]|0)+8>>2]&127](s,a)|0;u=c;return t|0}function Od(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0;e=b+12|0;g=f[e>>2]|0;h=c+4|0;i=(f[h>>2]|0)-g|0;j=c;f[j>>2]=(f[c>>2]|0)-g;f[j+4>>2]=i;i=(f[d>>2]|0)-g|0;j=d+4|0;k=(f[j>>2]|0)-g|0;g=d;f[g>>2]=i;f[g+4>>2]=k;g=f[e>>2]|0;if((((k|0)>-1?k:0-k|0)+((i|0)>-1?i:0-i|0)|0)>(g|0)){l=f[c>>2]|0;m=f[h>>2]|0;if((l|0)>-1)if((m|0)<=-1)if((l|0)<1){n=-1;o=-1}else p=6;else{n=1;o=1}else if((m|0)<1){n=-1;o=-1}else p=6;if((p|0)==6){n=(l|0)>0?1:-1;o=(m|0)>0?1:-1}q=X(g,n)|0;r=X(g,o)|0;g=(l<<1)-q|0;f[c>>2]=g;l=(m<<1)-r|0;f[h>>2]=l;if((X(n,o)|0)>-1){o=0-l|0;f[c>>2]=o;s=0-g|0;t=o}else{f[c>>2]=l;s=g;t=l}f[c>>2]=(t+q|0)/2|0;f[h>>2]=(s+r|0)/2|0;r=f[d>>2]|0;s=f[j>>2]|0;if((r|0)>-1)if((s|0)<=-1)if((r|0)<1){u=-1;v=-1}else p=14;else{u=1;v=1}else if((s|0)<1){u=-1;v=-1}else p=14;if((p|0)==14){u=(r|0)>0?1:-1;v=(s|0)>0?1:-1}q=f[e>>2]|0;e=X(q,u)|0;t=X(q,v)|0;q=(r<<1)-e|0;f[d>>2]=q;r=(s<<1)-t|0;f[j>>2]=r;if((X(u,v)|0)>-1){v=0-r|0;f[d>>2]=v;w=0-q|0;x=v}else{f[d>>2]=r;w=q;x=r}r=(x+e|0)/2|0;f[d>>2]=r;e=(w+t|0)/2|0;f[j>>2]=e;y=r;z=e}else{y=i;z=k}if(!y)if(!z){A=y;B=z}else p=22;else if((y|0)<0&(z|0)<1){A=y;B=z}else p=22;if((p|0)==22){if(!y)C=(z|0)==0?0:(z|0)>0?3:1;else C=(y|0)>0?(z>>31)+2|0:(z|0)<1?0:3;z=f[c>>2]|0;y=f[h>>2]|0;switch(C|0){case 1:{C=c;f[C>>2]=y;f[C+4>>2]=0-z;D=f[j>>2]|0;E=0-(f[d>>2]|0)|0;break}case 2:{C=c;f[C>>2]=0-z;f[C+4>>2]=0-y;D=0-(f[d>>2]|0)|0;E=0-(f[j>>2]|0)|0;break}case 3:{C=c;f[C>>2]=0-y;f[C+4>>2]=z;D=0-(f[j>>2]|0)|0;E=f[d>>2]|0;break}default:{C=c;f[C>>2]=z;f[C+4>>2]=y;D=f[d>>2]|0;E=f[j>>2]|0}}j=d;f[j>>2]=D;f[j+4>>2]=E;A=D;B=E}E=(f[c>>2]|0)-A|0;f[a>>2]=E;A=(f[h>>2]|0)-B|0;B=a+4|0;f[B>>2]=A;if((E|0)<0)F=(f[b+4>>2]|0)+E|0;else F=E;f[a>>2]=F;if((A|0)>=0){G=A;f[B>>2]=G;return}G=(f[b+4>>2]|0)+A|0;f[B>>2]=G;return}function Pd(a,b){a=a|0;b=b|0;var c=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0;c=a+4|0;if(!b){e=f[a>>2]|0;f[a>>2]=0;if(e|0)Oq(e);f[c>>2]=0;return}if(b>>>0>1073741823){e=ra(8)|0;Oo(e,16035);f[e>>2]=7256;va(e|0,1112,110)}e=ln(b<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)Oq(g);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;g=f[c>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=b+-1|0;i=(h&b|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(b>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=c;c=f[g>>2]|0;if(!c)return;else{k=j;l=g;m=c;n=g}a:while(1){b:do if(i){g=l;c=m;j=n;while(1){e=c;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0))break;p=(f[a>>2]|0)+(o<<2)|0;if(!(f[p>>2]|0)){q=e;r=j;s=o;t=p;break b}p=e+8|0;u=e;while(1){v=f[u>>2]|0;if(!v)break;if((d[p>>1]|0)==(d[v+8>>1]|0))u=v;else break}f[j>>2]=v;f[u>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;p=f[g>>2]|0;if(!p){w=37;break a}else e=p}c=f[e>>2]|0;if(!c){w=37;break a}else{g=e;j=e}}}else{j=l;g=m;c=n;while(1){p=g;while(1){x=f[p+4>>2]|0;if(x>>>0>>0)y=x;else y=(x>>>0)%(b>>>0)|0;if((y|0)==(k|0))break;x=(f[a>>2]|0)+(y<<2)|0;if(!(f[x>>2]|0)){q=p;r=c;s=y;t=x;break b}x=p+8|0;z=p;while(1){A=f[z>>2]|0;if(!A)break;if((d[x>>1]|0)==(d[A+8>>1]|0))z=A;else break}f[c>>2]=A;f[z>>2]=f[f[(f[a>>2]|0)+(y<<2)>>2]>>2];f[f[(f[a>>2]|0)+(y<<2)>>2]>>2]=p;x=f[j>>2]|0;if(!x){w=37;break a}else p=x}g=f[p>>2]|0;if(!g){w=37;break a}else{j=p;c=p}}}while(0);f[t>>2]=r;m=f[q>>2]|0;if(!m){w=37;break}else{k=s;l=q;n=q}}if((w|0)==37)return}function Qd(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0;d=a+4|0;if(!c){e=f[a>>2]|0;f[a>>2]=0;if(e|0)Oq(e);f[d>>2]=0;return}if(c>>>0>1073741823){e=ra(8)|0;Oo(e,16035);f[e>>2]=7256;va(e|0,1112,110)}e=ln(c<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)Oq(g);f[d>>2]=c;d=0;do{f[(f[a>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(c|0));d=a+8|0;g=f[d>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=c+-1|0;i=(h&c|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(c>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=d;d=f[g>>2]|0;if(!d)return;else{k=j;l=g;m=d;n=g}a:while(1){b:do if(i){g=l;d=m;j=n;while(1){e=d;while(1){o=f[e+4>>2]&h;if((o|0)==(k|0))break;p=(f[a>>2]|0)+(o<<2)|0;if(!(f[p>>2]|0)){q=e;r=j;s=o;t=p;break b}p=e+8|0;u=e;while(1){v=f[u>>2]|0;if(!v)break;if((b[p>>0]|0)==(b[v+8>>0]|0))u=v;else break}f[j>>2]=v;f[u>>2]=f[f[(f[a>>2]|0)+(o<<2)>>2]>>2];f[f[(f[a>>2]|0)+(o<<2)>>2]>>2]=e;p=f[g>>2]|0;if(!p){w=37;break a}else e=p}d=f[e>>2]|0;if(!d){w=37;break a}else{g=e;j=e}}}else{j=l;g=m;d=n;while(1){p=g;while(1){x=f[p+4>>2]|0;if(x>>>0>>0)y=x;else y=(x>>>0)%(c>>>0)|0;if((y|0)==(k|0))break;x=(f[a>>2]|0)+(y<<2)|0;if(!(f[x>>2]|0)){q=p;r=d;s=y;t=x;break b}x=p+8|0;z=p;while(1){A=f[z>>2]|0;if(!A)break;if((b[x>>0]|0)==(b[A+8>>0]|0))z=A;else break}f[d>>2]=A;f[z>>2]=f[f[(f[a>>2]|0)+(y<<2)>>2]>>2];f[f[(f[a>>2]|0)+(y<<2)>>2]>>2]=p;x=f[j>>2]|0;if(!x){w=37;break a}else p=x}g=f[p>>2]|0;if(!g){w=37;break a}else{j=p;d=p}}}while(0);f[t>>2]=r;m=f[q>>2]|0;if(!m){w=37;break}else{k=s;l=q;n=q}}if((w|0)==37)return}function Rd(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0;g=f[c>>2]|0;c=f[b>>2]|0;h=g-c|0;i=a+8|0;j=f[i>>2]|0;if(h>>>0<64){if(j>>>0<=1){k=0;return k|0}l=f[e>>2]|0;m=0;n=1;while(1){o=(f[l+(m<<2)>>2]|0)>>>0>(f[l+(n<<2)>>2]|0)>>>0?n:m;n=n+1|0;if(n>>>0>=j>>>0){k=o;break}else m=o}return k|0}if(j){j=f[a+1128>>2]|0;m=f[e>>2]|0;e=f[a+1140>>2]|0;n=f[d>>2]|0;d=b+4|0;l=b+8|0;if((g|0)==(c|0)){b=0;do{o=j+(b<<2)|0;f[o>>2]=0;p=(f[a>>2]|0)-(f[m+(b<<2)>>2]|0)|0;f[e+(b<<2)>>2]=p;if(p|0){p=f[o>>2]|0;q=h-p|0;f[o>>2]=q>>>0

>>0?p:q}b=b+1|0;q=f[i>>2]|0}while(b>>>0>>0);r=q}else{b=0;do{q=j+(b<<2)|0;f[q>>2]=0;p=(f[a>>2]|0)-(f[m+(b<<2)>>2]|0)|0;f[e+(b<<2)>>2]=p;if(p|0){o=(f[n+(b<<2)>>2]|0)+(1<>2]|0;s=f[(f[d>>2]|0)+24>>2]|0;t=c;u=f[q>>2]|0;do{v=s+((X(t,p)|0)<<2)+(b<<2)|0;u=u+((f[v>>2]|0)>>>0>>0&1)|0;f[q>>2]=u;t=t+1|0}while((t|0)!=(g|0));t=h-u|0;f[q>>2]=t>>>0>>0?u:t}b=b+1|0;t=f[i>>2]|0}while(b>>>0>>0);r=t}if(r){b=f[a+1140>>2]|0;i=a+1128|0;h=0;g=0;c=0;while(1){if(!(f[b+(g<<2)>>2]|0)){w=h;x=c}else{d=f[(f[i>>2]|0)+(g<<2)>>2]|0;l=h>>>0>>0;w=l?d:h;x=l?g:c}g=g+1|0;if(g>>>0>=r>>>0){y=x;break}else{h=w;c=x}}}else y=0}else y=0;x=a+1088|0;c=a+1104|0;w=f[c>>2]|0;h=32-w|0;if((h|0)<4){r=y&15;g=4-h|0;f[c>>2]=g;h=a+1100|0;i=f[h>>2]|r>>>g;f[h>>2]=i;g=a+1092|0;b=f[g>>2]|0;if((b|0)==(f[a+1096>>2]|0))Ri(x,h);else{f[b>>2]=i;f[g>>2]=b+4}f[h>>2]=r<<32-(f[c>>2]|0);k=y;return k|0}r=a+1100|0;h=f[r>>2]|y<<28>>>w;f[r>>2]=h;b=w+4|0;f[c>>2]=b;if((b|0)!=32){k=y;return k|0}b=a+1092|0;w=f[b>>2]|0;if((w|0)==(f[a+1096>>2]|0))Ri(x,r);else{f[w>>2]=h;f[b>>2]=w+4}f[r>>2]=0;f[c>>2]=0;k=y;return k|0}function Sd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0;c=a+4|0;if(!b){d=f[a>>2]|0;f[a>>2]=0;if(d|0)Oq(d);f[c>>2]=0;return}if(b>>>0>1073741823){d=ra(8)|0;Oo(d,16035);f[d>>2]=7256;va(d|0,1112,110)}d=ln(b<<2)|0;e=f[a>>2]|0;f[a>>2]=d;if(e|0)Oq(e);f[c>>2]=b;c=0;do{f[(f[a>>2]|0)+(c<<2)>>2]=0;c=c+1|0}while((c|0)!=(b|0));c=a+8|0;e=f[c>>2]|0;if(!e)return;d=f[e+4>>2]|0;g=b+-1|0;h=(g&b|0)==0;if(!h)if(d>>>0>>0)i=d;else i=(d>>>0)%(b>>>0)|0;else i=d&g;f[(f[a>>2]|0)+(i<<2)>>2]=c;c=f[e>>2]|0;if(!c)return;else{j=i;k=e;l=c;m=e}a:while(1){b:do if(h){e=k;c=l;i=m;while(1){d=c;while(1){n=f[d+4>>2]&g;if((n|0)==(j|0))break;o=(f[a>>2]|0)+(n<<2)|0;if(!(f[o>>2]|0)){p=d;q=i;r=n;s=o;break b}o=d+8|0;t=d;while(1){u=f[t>>2]|0;if(!u)break;if((f[o>>2]|0)==(f[u+8>>2]|0))t=u;else break}f[i>>2]=u;f[t>>2]=f[f[(f[a>>2]|0)+(n<<2)>>2]>>2];f[f[(f[a>>2]|0)+(n<<2)>>2]>>2]=d;o=f[e>>2]|0;if(!o){v=37;break a}else d=o}c=f[d>>2]|0;if(!c){v=37;break a}else{e=d;i=d}}}else{i=k;e=l;c=m;while(1){o=e;while(1){w=f[o+4>>2]|0;if(w>>>0>>0)x=w;else x=(w>>>0)%(b>>>0)|0;if((x|0)==(j|0))break;w=(f[a>>2]|0)+(x<<2)|0;if(!(f[w>>2]|0)){p=o;q=c;r=x;s=w;break b}w=o+8|0;y=o;while(1){z=f[y>>2]|0;if(!z)break;if((f[w>>2]|0)==(f[z+8>>2]|0))y=z;else break}f[c>>2]=z;f[y>>2]=f[f[(f[a>>2]|0)+(x<<2)>>2]>>2];f[f[(f[a>>2]|0)+(x<<2)>>2]>>2]=o;w=f[i>>2]|0;if(!w){v=37;break a}else o=w}e=f[o>>2]|0;if(!e){v=37;break a}else{i=o;c=o}}}while(0);f[s>>2]=q;l=f[p>>2]|0;if(!l){v=37;break}else{j=r;k=p;m=p}}if((v|0)==37)return}function Td(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;d=a+4|0;if(!c){e=f[a>>2]|0;f[a>>2]=0;if(e|0)Oq(e);f[d>>2]=0;return}if(c>>>0>1073741823){e=ra(8)|0;Oo(e,16035);f[e>>2]=7256;va(e|0,1112,110)}e=ln(c<<2)|0;g=f[a>>2]|0;f[a>>2]=e;if(g|0)Oq(g);f[d>>2]=c;d=0;do{f[(f[a>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(c|0));d=a+8|0;g=f[d>>2]|0;if(!g)return;e=f[g+4>>2]|0;h=c+-1|0;i=(h&c|0)==0;if(!i)if(e>>>0>>0)j=e;else j=(e>>>0)%(c>>>0)|0;else j=e&h;f[(f[a>>2]|0)+(j<<2)>>2]=d;d=f[g>>2]|0;if(!d)return;e=a+24|0;k=j;j=g;l=d;d=g;a:while(1){g=j;m=l;n=d;b:while(1){o=m;while(1){p=f[o+4>>2]|0;if(!i)if(p>>>0>>0)q=p;else q=(p>>>0)%(c>>>0)|0;else q=p&h;if((q|0)==(k|0))break;r=(f[a>>2]|0)+(q<<2)|0;if(!(f[r>>2]|0))break b;p=f[o>>2]|0;c:do if(!p)s=o;else{t=f[o+8>>2]|0;u=f[e>>2]|0;v=f[u+8>>2]|0;w=(f[u+12>>2]|0)-v|0;u=v;v=w>>>2;if((w|0)>0){x=o;y=p}else{w=p;while(1){z=f[w>>2]|0;if(!z){s=w;break c}else w=z}}while(1){w=f[y+8>>2]|0;z=0;do{A=f[u+(z<<2)>>2]|0;if(!(b[A+84>>0]|0)){B=f[A+68>>2]|0;C=f[B+(w<<2)>>2]|0;D=f[B+(t<<2)>>2]|0}else{C=w;D=t}z=z+1|0;if((D|0)!=(C|0)){s=x;break c}}while((z|0)<(v|0));z=f[y>>2]|0;if(!z){s=y;break}else{w=y;y=z;x=w}}}while(0);f[n>>2]=f[s>>2];f[s>>2]=f[f[(f[a>>2]|0)+(q<<2)>>2]>>2];f[f[(f[a>>2]|0)+(q<<2)>>2]>>2]=o;p=f[g>>2]|0;if(!p){E=38;break a}else o=p}m=f[o>>2]|0;if(!m){E=38;break a}else{g=o;n=o}}f[r>>2]=n;l=f[o>>2]|0;if(!l){E=38;break}else{k=q;j=o;d=o}}if((E|0)==38)return}function Ud(a,c){a=a|0;c=c|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0;e=u;u=u+16|0;g=e+4|0;h=e;i=e+12|0;j=e+11|0;k=e+10|0;l=e+8|0;m=c+44|0;n=f[m>>2]|0;o=n+16|0;p=f[o+4>>2]|0;if(!((p|0)>0|(p|0)==0&(f[o>>2]|0)>>>0>0)){f[h>>2]=f[n+4>>2];f[g>>2]=f[h>>2];Me(n,g,15886,15891)|0}n=Qa[f[(f[c>>2]|0)+8>>2]&127](c)|0;b[i>>0]=n;b[j>>0]=2;b[k>>0]=(n&255|0)==0?3:2;n=f[m>>2]|0;o=n+16|0;p=f[o+4>>2]|0;if(!((p|0)>0|(p|0)==0&(f[o>>2]|0)>>>0>0)){f[h>>2]=f[n+4>>2];f[g>>2]=f[h>>2];Me(n,g,j,j+1|0)|0;j=f[m>>2]|0;o=j+16|0;p=f[o+4>>2]|0;if(!((p|0)>0|(p|0)==0&(f[o>>2]|0)>>>0>0)){f[h>>2]=f[j+4>>2];f[g>>2]=f[h>>2];Me(j,g,k,k+1|0)|0;k=f[m>>2]|0;o=k+16|0;p=f[o+4>>2]|0;if((p|0)>0|(p|0)==0&(f[o>>2]|0)>>>0>0){q=h;r=k}else{f[h>>2]=f[k+4>>2];f[g>>2]=f[h>>2];Me(k,g,i,i+1|0)|0;q=h;r=f[m>>2]|0}}else{s=h;t=j;v=6}}else{s=h;t=n;v=6}if((v|0)==6){q=h;r=t}t=Qa[f[(f[c>>2]|0)+12>>2]&127](c)|0;b[l>>0]=t;t=r+16|0;q=f[t+4>>2]|0;if(!((q|0)>0|(q|0)==0&(f[t>>2]|0)>>>0>0)){f[h>>2]=f[r+4>>2];f[g>>2]=f[h>>2];Me(r,g,l,l+1|0)|0}d[l>>1]=(f[(f[c+4>>2]|0)+4>>2]|0)==0?0:-32768;c=f[m>>2]|0;m=c+16|0;r=f[m+4>>2]|0;if((r|0)>0|(r|0)==0&(f[m>>2]|0)>>>0>0){f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}f[h>>2]=f[c+4>>2];f[g>>2]=f[h>>2];Me(c,g,l,l+2|0)|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=e;return}function Vd(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0;e=u;u=u+176|0;g=e+136|0;h=e+104|0;i=e;j=e+72|0;k=ln(88)|0;l=f[c+8>>2]|0;f[k+4>>2]=0;f[k>>2]=3612;m=k+12|0;f[m>>2]=3636;n=k+64|0;f[n>>2]=0;f[k+68>>2]=0;f[k+72>>2]=0;o=k+16|0;p=o+44|0;do{f[o>>2]=0;o=o+4|0}while((o|0)<(p|0));f[k+76>>2]=l;f[k+80>>2]=d;q=k+84|0;f[q>>2]=0;r=k;f[h>>2]=3636;s=h+4|0;t=s+4|0;f[t>>2]=0;f[t+4>>2]=0;f[t+8>>2]=0;f[t+12>>2]=0;f[t+16>>2]=0;f[t+20>>2]=0;t=f[c+12>>2]|0;v=i+4|0;f[v>>2]=3636;w=i+56|0;f[w>>2]=0;x=i+60|0;f[x>>2]=0;f[i+64>>2]=0;o=i+8|0;p=o+44|0;do{f[o>>2]=0;o=o+4|0}while((o|0)<(p|0));o=t;f[s>>2]=o;s=((f[o+4>>2]|0)-(f[t>>2]|0)>>2>>>0)/3|0;b[g>>0]=0;qh(h+8|0,s,g);Va[f[(f[h>>2]|0)+8>>2]&127](h);Ff(j,h);Ff(g,j);f[i>>2]=f[g+4>>2];s=i+4|0;fg(s,g)|0;f[g>>2]=3636;o=f[g+20>>2]|0;if(o|0)Oq(o);o=f[g+8>>2]|0;if(o|0)Oq(o);f[i+36>>2]=t;f[i+40>>2]=d;f[i+44>>2]=l;f[i+48>>2]=k;f[j>>2]=3636;l=f[j+20>>2]|0;if(l|0)Oq(l);l=f[j+8>>2]|0;if(l|0)Oq(l);f[q>>2]=c+72;f[k+8>>2]=f[i>>2];fg(m,s)|0;s=k+44|0;k=i+36|0;f[s>>2]=f[k>>2];f[s+4>>2]=f[k+4>>2];f[s+8>>2]=f[k+8>>2];f[s+12>>2]=f[k+12>>2];b[s+16>>0]=b[k+16>>0]|0;ng(n,f[w>>2]|0,f[x>>2]|0);f[a>>2]=r;r=f[w>>2]|0;if(r|0){w=f[x>>2]|0;if((w|0)!=(r|0))f[x>>2]=w+(~((w+-4-r|0)>>>2)<<2);Oq(r)}f[v>>2]=3636;v=f[i+24>>2]|0;if(v|0)Oq(v);v=f[i+12>>2]|0;if(v|0)Oq(v);f[h>>2]=3636;v=f[h+20>>2]|0;if(v|0)Oq(v);v=f[h+8>>2]|0;if(!v){u=e;return}Oq(v);u=e;return}function Wd(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=Oa,x=0,y=Oa,z=Oa,A=Oa;e=u;u=u+16|0;g=e;h=a+4|0;if((f[h>>2]|0)!=-1){i=0;u=e;return i|0}f[h>>2]=d;d=b[c+24>>0]|0;h=d<<24>>24;j=a+20|0;n[j>>2]=$(0.0);f[g>>2]=0;k=g+4|0;f[k>>2]=0;f[g+8>>2]=0;do if(d<<24>>24)if(d<<24>>24<0)aq(g);else{l=h<<2;m=ln(l)|0;f[g>>2]=m;o=m+(h<<2)|0;f[g+8>>2]=o;sj(m|0,0,l|0)|0;l=m+(h<<2)|0;f[k>>2]=l;p=m;q=l;r=o;break}else{p=0;q=0;r=0}while(0);k=a+8|0;g=f[k>>2]|0;o=a+12|0;if(!g)s=a+16|0;else{l=f[o>>2]|0;if((l|0)!=(g|0))f[o>>2]=l+(~((l+-4-g|0)>>>2)<<2);Oq(g);g=a+16|0;f[g>>2]=0;f[o>>2]=0;f[k>>2]=0;s=g}f[k>>2]=p;f[o>>2]=q;f[s>>2]=r;r=h>>>0>1073741823?-1:h<<2;s=Lq(r)|0;q=Lq(r)|0;r=c+48|0;o=f[r>>2]|0;g=c+40|0;a=f[g>>2]|0;l=f[c>>2]|0;kh(q|0,(f[l>>2]|0)+o|0,a|0)|0;kh(p|0,(f[l>>2]|0)+o|0,a|0)|0;a=r;r=f[a>>2]|0;o=f[a+4>>2]|0;a=g;g=f[a>>2]|0;l=f[a+4>>2]|0;a=f[c>>2]|0;kh(s|0,(f[a>>2]|0)+r|0,g|0)|0;p=f[c+80>>2]|0;a:do if(p>>>0>1){if(d<<24>>24<=0){c=1;while(1){m=un(g|0,l|0,c|0,0)|0;t=Vn(m|0,I|0,r|0,o|0)|0;kh(q|0,(f[a>>2]|0)+t|0,g|0)|0;c=c+1|0;if(c>>>0>=p>>>0)break a}}c=f[k>>2]|0;t=1;do{m=un(g|0,l|0,t|0,0)|0;v=Vn(m|0,I|0,r|0,o|0)|0;kh(q|0,(f[a>>2]|0)+v|0,g|0)|0;v=0;do{m=c+(v<<2)|0;w=$(n[m>>2]);x=q+(v<<2)|0;y=$(n[x>>2]);if(w>y){n[m>>2]=y;z=$(n[x>>2])}else z=y;x=s+(v<<2)|0;if($(n[x>>2])>2]=z;v=v+1|0}while((v|0)!=(h|0));t=t+1|0}while(t>>>0

>>0)}while(0);if(d<<24>>24>0){d=f[k>>2]|0;k=0;z=$(n[j>>2]);while(1){y=$(n[s+(k<<2)>>2]);w=$(y-$(n[d+(k<<2)>>2]));if(w>z){n[j>>2]=w;A=w}else A=z;k=k+1|0;if((k|0)==(h|0))break;else z=A}}Mq(q);Mq(s);i=1;u=e;return i|0}function Xd(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0;g=a+8|0;Mh(g,b,d,e);h=d-e|0;if((h|0)>0){d=0-e|0;i=a+16|0;j=a+32|0;k=a+12|0;l=a+28|0;m=a+20|0;n=a+24|0;o=h;h=f[g>>2]|0;while(1){p=b+(o<<2)|0;q=c+(o<<2)|0;if((h|0)>0){r=0;s=p+(d<<2)|0;t=h;while(1){if((t|0)>0){u=0;do{v=f[s+(u<<2)>>2]|0;w=f[i>>2]|0;if((v|0)>(w|0)){x=f[j>>2]|0;f[x+(u<<2)>>2]=w;y=x}else{x=f[k>>2]|0;w=f[j>>2]|0;f[w+(u<<2)>>2]=(v|0)<(x|0)?x:v;y=w}u=u+1|0}while((u|0)<(f[g>>2]|0));z=y}else z=f[j>>2]|0;u=(f[p+(r<<2)>>2]|0)-(f[z+(r<<2)>>2]|0)|0;w=q+(r<<2)|0;f[w>>2]=u;if((u|0)>=(f[l>>2]|0)){if((u|0)>(f[n>>2]|0)){A=u-(f[m>>2]|0)|0;B=31}}else{A=(f[m>>2]|0)+u|0;B=31}if((B|0)==31){B=0;f[w>>2]=A}r=r+1|0;w=f[g>>2]|0;if((r|0)>=(w|0)){C=w;break}else{s=z;t=w}}}else C=h;o=o-e|0;if((o|0)<=0){D=C;break}else h=C}}else D=f[g>>2]|0;C=e>>>0>1073741823?-1:e<<2;e=Lq(C)|0;sj(e|0,0,C|0)|0;if((D|0)<=0){Mq(e);return 1}C=a+16|0;h=a+32|0;o=a+12|0;z=a+28|0;A=a+20|0;m=a+24|0;a=0;n=e;l=D;while(1){if((l|0)>0){D=0;do{j=f[n+(D<<2)>>2]|0;y=f[C>>2]|0;if((j|0)>(y|0)){k=f[h>>2]|0;f[k+(D<<2)>>2]=y;E=k}else{k=f[o>>2]|0;y=f[h>>2]|0;f[y+(D<<2)>>2]=(j|0)<(k|0)?k:j;E=y}D=D+1|0}while((D|0)<(f[g>>2]|0));F=E}else F=f[h>>2]|0;D=(f[b+(a<<2)>>2]|0)-(f[F+(a<<2)>>2]|0)|0;y=c+(a<<2)|0;f[y>>2]=D;if((D|0)>=(f[z>>2]|0)){if((D|0)>(f[m>>2]|0)){G=D-(f[A>>2]|0)|0;B=16}}else{G=(f[A>>2]|0)+D|0;B=16}if((B|0)==16){B=0;f[y>>2]=G}a=a+1|0;l=f[g>>2]|0;if((a|0)>=(l|0))break;else n=F}Mq(e);return 1}function Yd(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0;e=f[a>>2]|0;g=e;h=(f[b>>2]|0)-g|0;b=e+(h>>2<<2)|0;i=f[c>>2]|0;c=f[d>>2]|0;d=c-i|0;j=d>>2;k=i;l=c;if((d|0)<=0){m=b;return m|0}d=a+8|0;n=f[d>>2]|0;o=a+4|0;p=f[o>>2]|0;q=p;if((j|0)<=(n-q>>2|0)){r=b;s=q-r|0;t=s>>2;if((j|0)>(t|0)){u=k+(t<<2)|0;t=u;if((u|0)==(l|0))v=p;else{w=l+-4-t|0;x=u;u=p;while(1){f[u>>2]=f[x>>2];x=x+4|0;if((x|0)==(l|0))break;else u=u+4|0}u=p+((w>>>2)+1<<2)|0;f[o>>2]=u;v=u}if((s|0)>0){y=t;z=v}else{m=b;return m|0}}else{y=c;z=p}c=z-(b+(j<<2))>>2;v=b+(c<<2)|0;if(v>>>0

>>0){t=(p+(0-c<<2)+~r|0)>>>2;r=v;s=z;while(1){f[s>>2]=f[r>>2];r=r+4|0;if(r>>>0>=p>>>0)break;else s=s+4|0}f[o>>2]=z+(t+1<<2)}if(c|0){c=v;v=z;do{c=c+-4|0;v=v+-4|0;f[v>>2]=f[c>>2]}while((c|0)!=(b|0))}c=y;if((k|0)==(c|0)){m=b;return m|0}else{A=b;B=k}while(1){f[A>>2]=f[B>>2];B=B+4|0;if((B|0)==(c|0)){m=b;break}else A=A+4|0}return m|0}A=(q-g>>2)+j|0;if(A>>>0>1073741823)aq(a);j=n-g|0;g=j>>1;n=j>>2>>>0<536870911?(g>>>0>>0?A:g):1073741823;g=b;A=h>>2;do if(n)if(n>>>0>1073741823){j=ra(8)|0;Oo(j,16035);f[j>>2]=7256;va(j|0,1112,110)}else{j=ln(n<<2)|0;C=j;D=j;break}else{C=0;D=0}while(0);j=D+(A<<2)|0;A=D+(n<<2)|0;if((l|0)==(k|0))E=j;else{n=((l+-4-i|0)>>>2)+1|0;i=k;k=j;while(1){f[k>>2]=f[i>>2];i=i+4|0;if((i|0)==(l|0))break;else k=k+4|0}E=j+(n<<2)|0}if((h|0)>0)kh(C|0,e|0,h|0)|0;h=q-g|0;if((h|0)>0){kh(E|0,b|0,h|0)|0;F=E+(h>>>2<<2)|0}else F=E;f[a>>2]=D;f[o>>2]=F;f[d>>2]=A;if(!e){m=j;return m|0}Oq(e);m=j;return m|0}function Zd(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0;c=u;u=u+48|0;d=c+40|0;e=c+36|0;g=c+32|0;h=c;i=a+60|0;ci(f[i>>2]|0,b)|0;wn(h);tk(h);j=f[a+56>>2]|0;k=f[i>>2]|0;i=k>>>5;l=j+(i<<2)|0;m=k&31;k=(i|0)!=0;a:do if(i|m|0){if(!m){n=1;o=j;p=k;while(1){if(p){q=n;r=0;while(1){s=(f[o>>2]&1<>2]&1<>2]&1<>2]&1<>2]=f[a+12>>2];m=b+16|0;w=m;v=f[w>>2]|0;j=f[w+4>>2]|0;if((j|0)>0|(j|0)==0&v>>>0>0){x=j;y=v}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;v=m;x=f[v+4>>2]|0;y=f[v>>2]|0}f[g>>2]=f[a+20>>2];if((x|0)>0|(x|0)==0&y>>>0>0){Fj(h);u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;Fj(h);u=c;return 1}function _d(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0;switch(b-a>>2|0){case 2:{d=b+-4|0;e=f[d>>2]|0;g=f[a>>2]|0;h=f[c>>2]|0;i=f[h>>2]|0;j=(f[h+4>>2]|0)-i>>3;if(j>>>0<=e>>>0)aq(h);k=i;if(j>>>0<=g>>>0)aq(h);if((f[k+(e<<3)>>2]|0)>>>0>=(f[k+(g<<3)>>2]|0)>>>0){l=1;return l|0}f[a>>2]=e;f[d>>2]=g;l=1;return l|0}case 3:{Vg(a,a+4|0,b+-4|0,c)|0;l=1;return l|0}case 4:{jh(a,a+4|0,a+8|0,b+-4|0,c)|0;l=1;return l|0}case 5:{ig(a,a+4|0,a+8|0,a+12|0,b+-4|0,c)|0;l=1;return l|0}case 1:case 0:{l=1;return l|0}default:{g=a+8|0;Vg(a,a+4|0,g,c)|0;d=a+12|0;a:do if((d|0)!=(b|0)){e=f[c>>2]|0;k=f[e>>2]|0;h=(f[e+4>>2]|0)-k>>3;j=k;k=d;i=0;m=g;b:while(1){n=f[k>>2]|0;o=f[m>>2]|0;if(h>>>0<=n>>>0){p=14;break}if(h>>>0<=o>>>0){p=16;break}q=j+(n<<3)|0;if((f[q>>2]|0)>>>0<(f[j+(o<<3)>>2]|0)>>>0){r=m;s=k;t=o;while(1){f[s>>2]=t;if((r|0)==(a|0)){u=a;break}o=r+-4|0;t=f[o>>2]|0;if(h>>>0<=t>>>0){p=20;break b}if((f[q>>2]|0)>>>0>=(f[j+(t<<3)>>2]|0)>>>0){u=r;break}else{v=r;r=o;s=v}}f[u>>2]=n;s=i+1|0;if((s|0)==8){w=0;x=(k+4|0)==(b|0);break a}else y=s}else y=i;s=k+4|0;if((s|0)==(b|0)){w=1;x=0;break a}else{r=k;k=s;i=y;m=r}}if((p|0)==14)aq(e);else if((p|0)==16)aq(e);else if((p|0)==20)aq(e)}else{w=1;x=0}while(0);l=x|w;return l|0}}return 0}function $d(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0;c=u;u=u+48|0;d=c+40|0;e=c+36|0;g=c+32|0;h=c;i=a+80|0;ci(f[i>>2]|0,b)|0;wn(h);tk(h);j=f[a+76>>2]|0;k=f[i>>2]|0;i=k>>>5;l=j+(i<<2)|0;m=k&31;k=(i|0)!=0;a:do if(i|m|0){if(!m){n=1;o=j;p=k;while(1){if(p){q=n;r=0;while(1){s=(f[o>>2]&1<>2]&1<>2]&1<>2]&1<>2]=f[a+12>>2];m=b+16|0;w=m;v=f[w>>2]|0;j=f[w+4>>2]|0;if((j|0)>0|(j|0)==0&v>>>0>0){x=j;y=v}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;v=m;x=f[v+4>>2]|0;y=f[v>>2]|0}f[g>>2]=f[a+16>>2];if((x|0)>0|(x|0)==0&y>>>0>0){Fj(h);u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;Fj(h);u=c;return 1}function ae(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0;h=u;u=u+16|0;i=h+4|0;j=h;f[a+72>>2]=e;f[a+64>>2]=g;g=Lq(e>>>0>1073741823?-1:e<<2)|0;k=a+68|0;l=f[k>>2]|0;f[k>>2]=g;if(l|0)Mq(l);l=a+8|0;Mh(l,b,d,e);d=a+56|0;g=f[d>>2]|0;m=f[g+4>>2]|0;n=f[g>>2]|0;o=m-n|0;if((o|0)<=0){u=h;return 1}p=(o>>>2)+-1|0;o=a+16|0;q=a+32|0;r=a+12|0;s=a+28|0;t=a+20|0;v=a+24|0;if(m-n>>2>>>0>p>>>0){w=p;x=n}else{y=g;aq(y)}while(1){f[j>>2]=f[x+(w<<2)>>2];f[i>>2]=f[j>>2];Dc(a,i,b,w);g=X(w,e)|0;n=b+(g<<2)|0;p=c+(g<<2)|0;g=f[l>>2]|0;if((g|0)>0){m=0;z=f[k>>2]|0;A=g;while(1){if((A|0)>0){g=0;do{B=f[z+(g<<2)>>2]|0;C=f[o>>2]|0;if((B|0)>(C|0)){D=f[q>>2]|0;f[D+(g<<2)>>2]=C;E=D}else{D=f[r>>2]|0;C=f[q>>2]|0;f[C+(g<<2)>>2]=(B|0)<(D|0)?D:B;E=C}g=g+1|0}while((g|0)<(f[l>>2]|0));F=E}else F=f[q>>2]|0;g=(f[n+(m<<2)>>2]|0)-(f[F+(m<<2)>>2]|0)|0;C=p+(m<<2)|0;f[C>>2]=g;if((g|0)>=(f[s>>2]|0)){if((g|0)>(f[v>>2]|0)){G=g-(f[t>>2]|0)|0;H=21}}else{G=(f[t>>2]|0)+g|0;H=21}if((H|0)==21){H=0;f[C>>2]=G}m=m+1|0;A=f[l>>2]|0;if((m|0)>=(A|0))break;else z=F}}w=w+-1|0;if((w|0)<=-1){H=5;break}z=f[d>>2]|0;x=f[z>>2]|0;if((f[z+4>>2]|0)-x>>2>>>0<=w>>>0){y=z;H=6;break}}if((H|0)==5){u=h;return 1}else if((H|0)==6)aq(y);return 0} -function $a(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0;b=u;u=u+16|0;c=b;do if(a>>>0<245){d=a>>>0<11?16:a+11&-8;e=d>>>3;g=f[4784]|0;h=g>>>e;if(h&3|0){i=(h&1^1)+e|0;j=19176+(i<<1<<2)|0;k=j+8|0;l=f[k>>2]|0;m=l+8|0;n=f[m>>2]|0;if((n|0)==(j|0))f[4784]=g&~(1<>2]=j;f[k>>2]=n}n=i<<3;f[l+4>>2]=n|3;i=l+n+4|0;f[i>>2]=f[i>>2]|1;o=m;u=b;return o|0}m=f[4786]|0;if(d>>>0>m>>>0){if(h|0){i=2<>>12&16;e=i>>>n;i=e>>>5&8;h=e>>>i;e=h>>>2&4;l=h>>>e;h=l>>>1&2;k=l>>>h;l=k>>>1&1;j=(i|n|e|h|l)+(k>>>l)|0;l=19176+(j<<1<<2)|0;k=l+8|0;h=f[k>>2]|0;e=h+8|0;n=f[e>>2]|0;if((n|0)==(l|0)){i=g&~(1<>2]=l;f[k>>2]=n;p=g}n=j<<3;j=n-d|0;f[h+4>>2]=d|3;k=h+d|0;f[k+4>>2]=j|1;f[h+n>>2]=j;if(m|0){n=f[4789]|0;h=m>>>3;l=19176+(h<<1<<2)|0;i=1<>2]|0;r=i}f[r>>2]=n;f[q+12>>2]=n;f[n+8>>2]=q;f[n+12>>2]=l}f[4786]=j;f[4789]=k;o=e;u=b;return o|0}e=f[4785]|0;if(e){k=(e&0-e)+-1|0;j=k>>>12&16;l=k>>>j;k=l>>>5&8;n=l>>>k;l=n>>>2&4;i=n>>>l;n=i>>>1&2;h=i>>>n;i=h>>>1&1;s=f[19440+((k|j|l|n|i)+(h>>>i)<<2)>>2]|0;i=(f[s+4>>2]&-8)-d|0;h=f[s+16+(((f[s+16>>2]|0)==0&1)<<2)>>2]|0;if(!h){t=s;v=i}else{n=s;s=i;i=h;while(1){h=(f[i+4>>2]&-8)-d|0;l=h>>>0>>0;j=l?h:s;h=l?i:n;i=f[i+16+(((f[i+16>>2]|0)==0&1)<<2)>>2]|0;if(!i){t=h;v=j;break}else{n=h;s=j}}}s=t+d|0;if(s>>>0>t>>>0){n=f[t+24>>2]|0;i=f[t+12>>2]|0;do if((i|0)==(t|0)){j=t+20|0;h=f[j>>2]|0;if(!h){l=t+16|0;k=f[l>>2]|0;if(!k){w=0;break}else{x=k;y=l}}else{x=h;y=j}while(1){j=x+20|0;h=f[j>>2]|0;if(h|0){x=h;y=j;continue}j=x+16|0;h=f[j>>2]|0;if(!h)break;else{x=h;y=j}}f[y>>2]=0;w=x}else{j=f[t+8>>2]|0;f[j+12>>2]=i;f[i+8>>2]=j;w=i}while(0);do if(n|0){i=f[t+28>>2]|0;j=19440+(i<<2)|0;if((t|0)==(f[j>>2]|0)){f[j>>2]=w;if(!w){f[4785]=e&~(1<>2]|0)!=(t|0)&1)<<2)>>2]=w;if(!w)break}f[w+24>>2]=n;i=f[t+16>>2]|0;if(i|0){f[w+16>>2]=i;f[i+24>>2]=w}i=f[t+20>>2]|0;if(i|0){f[w+20>>2]=i;f[i+24>>2]=w}}while(0);if(v>>>0<16){n=v+d|0;f[t+4>>2]=n|3;e=t+n+4|0;f[e>>2]=f[e>>2]|1}else{f[t+4>>2]=d|3;f[s+4>>2]=v|1;f[s+v>>2]=v;if(m|0){e=f[4789]|0;n=m>>>3;i=19176+(n<<1<<2)|0;j=1<>2]|0;A=j}f[A>>2]=e;f[z+12>>2]=e;f[e+8>>2]=z;f[e+12>>2]=i}f[4786]=v;f[4789]=s}o=t+8|0;u=b;return o|0}else B=d}else B=d}else B=d}else if(a>>>0<=4294967231){i=a+11|0;e=i&-8;j=f[4785]|0;if(j){n=0-e|0;h=i>>>8;if(h)if(e>>>0>16777215)C=31;else{i=(h+1048320|0)>>>16&8;l=h<>>16&4;k=l<>>16&2;D=14-(h|i|l)+(k<>>15)|0;C=e>>>(D+7|0)&1|D<<1}else C=0;D=f[19440+(C<<2)>>2]|0;a:do if(!D){E=0;F=0;G=n;H=57}else{l=0;k=n;i=D;h=e<<((C|0)==31?0:25-(C>>>1)|0);I=0;while(1){J=(f[i+4>>2]&-8)-e|0;if(J>>>0>>0)if(!J){K=0;L=i;M=i;H=61;break a}else{N=i;O=J}else{N=l;O=k}J=f[i+20>>2]|0;i=f[i+16+(h>>>31<<2)>>2]|0;P=(J|0)==0|(J|0)==(i|0)?I:J;J=(i|0)==0;if(J){E=P;F=N;G=O;H=57;break}else{l=N;k=O;h=h<<((J^1)&1);I=P}}}while(0);if((H|0)==57){if((E|0)==0&(F|0)==0){D=2<>>12&16;d=D>>>n;D=d>>>5&8;s=d>>>D;d=s>>>2&4;g=s>>>d;s=g>>>1&2;m=g>>>s;g=m>>>1&1;Q=0;R=f[19440+((D|n|d|s|g)+(m>>>g)<<2)>>2]|0}else{Q=F;R=E}if(!R){S=Q;T=G}else{K=G;L=R;M=Q;H=61}}if((H|0)==61)while(1){H=0;g=(f[L+4>>2]&-8)-e|0;m=g>>>0>>0;s=m?g:K;g=m?L:M;L=f[L+16+(((f[L+16>>2]|0)==0&1)<<2)>>2]|0;if(!L){S=g;T=s;break}else{K=s;M=g;H=61}}if((S|0)!=0?T>>>0<((f[4786]|0)-e|0)>>>0:0){g=S+e|0;if(g>>>0<=S>>>0){o=0;u=b;return o|0}s=f[S+24>>2]|0;m=f[S+12>>2]|0;do if((m|0)==(S|0)){d=S+20|0;n=f[d>>2]|0;if(!n){D=S+16|0;I=f[D>>2]|0;if(!I){U=0;break}else{V=I;W=D}}else{V=n;W=d}while(1){d=V+20|0;n=f[d>>2]|0;if(n|0){V=n;W=d;continue}d=V+16|0;n=f[d>>2]|0;if(!n)break;else{V=n;W=d}}f[W>>2]=0;U=V}else{d=f[S+8>>2]|0;f[d+12>>2]=m;f[m+8>>2]=d;U=m}while(0);do if(s){m=f[S+28>>2]|0;d=19440+(m<<2)|0;if((S|0)==(f[d>>2]|0)){f[d>>2]=U;if(!U){d=j&~(1<>2]|0)!=(S|0)&1)<<2)>>2]=U;if(!U){X=j;break}}f[U+24>>2]=s;d=f[S+16>>2]|0;if(d|0){f[U+16>>2]=d;f[d+24>>2]=U}d=f[S+20>>2]|0;if(d){f[U+20>>2]=d;f[d+24>>2]=U;X=j}else X=j}else X=j;while(0);do if(T>>>0>=16){f[S+4>>2]=e|3;f[g+4>>2]=T|1;f[g+T>>2]=T;j=T>>>3;if(T>>>0<256){s=19176+(j<<1<<2)|0;d=f[4784]|0;m=1<>2]|0;Z=m}f[Z>>2]=g;f[Y+12>>2]=g;f[g+8>>2]=Y;f[g+12>>2]=s;break}s=T>>>8;if(s)if(T>>>0>16777215)_=31;else{m=(s+1048320|0)>>>16&8;d=s<>>16&4;j=d<>>16&2;n=14-(s|m|d)+(j<>>15)|0;_=T>>>(n+7|0)&1|n<<1}else _=0;n=19440+(_<<2)|0;f[g+28>>2]=_;d=g+16|0;f[d+4>>2]=0;f[d>>2]=0;d=1<<_;if(!(X&d)){f[4785]=X|d;f[n>>2]=g;f[g+24>>2]=n;f[g+12>>2]=g;f[g+8>>2]=g;break}d=T<<((_|0)==31?0:25-(_>>>1)|0);j=f[n>>2]|0;while(1){if((f[j+4>>2]&-8|0)==(T|0)){H=97;break}$=j+16+(d>>>31<<2)|0;n=f[$>>2]|0;if(!n){H=96;break}else{d=d<<1;j=n}}if((H|0)==96){f[$>>2]=g;f[g+24>>2]=j;f[g+12>>2]=g;f[g+8>>2]=g;break}else if((H|0)==97){d=j+8|0;n=f[d>>2]|0;f[n+12>>2]=g;f[d>>2]=g;f[g+8>>2]=n;f[g+12>>2]=j;f[g+24>>2]=0;break}}else{n=T+e|0;f[S+4>>2]=n|3;d=S+n+4|0;f[d>>2]=f[d>>2]|1}while(0);o=S+8|0;u=b;return o|0}else B=e}else B=e}else B=-1;while(0);S=f[4786]|0;if(S>>>0>=B>>>0){T=S-B|0;$=f[4789]|0;if(T>>>0>15){_=$+B|0;f[4789]=_;f[4786]=T;f[_+4>>2]=T|1;f[$+S>>2]=T;f[$+4>>2]=B|3}else{f[4786]=0;f[4789]=0;f[$+4>>2]=S|3;T=$+S+4|0;f[T>>2]=f[T>>2]|1}o=$+8|0;u=b;return o|0}$=f[4787]|0;if($>>>0>B>>>0){T=$-B|0;f[4787]=T;S=f[4790]|0;_=S+B|0;f[4790]=_;f[_+4>>2]=T|1;f[S+4>>2]=B|3;o=S+8|0;u=b;return o|0}if(!(f[4902]|0)){f[4904]=4096;f[4903]=4096;f[4905]=-1;f[4906]=-1;f[4907]=0;f[4895]=0;f[4902]=c&-16^1431655768;aa=4096}else aa=f[4904]|0;c=B+48|0;S=B+47|0;T=aa+S|0;_=0-aa|0;aa=T&_;if(aa>>>0<=B>>>0){o=0;u=b;return o|0}X=f[4894]|0;if(X|0?(Y=f[4892]|0,Z=Y+aa|0,Z>>>0<=Y>>>0|Z>>>0>X>>>0):0){o=0;u=b;return o|0}b:do if(!(f[4895]&4)){X=f[4790]|0;c:do if(X){Z=19584;while(1){Y=f[Z>>2]|0;if(Y>>>0<=X>>>0?(ba=Z+4|0,(Y+(f[ba>>2]|0)|0)>>>0>X>>>0):0)break;Y=f[Z+8>>2]|0;if(!Y){H=118;break c}else Z=Y}j=T-$&_;if(j>>>0<2147483647){Y=Nl(j|0)|0;if((Y|0)==((f[Z>>2]|0)+(f[ba>>2]|0)|0))if((Y|0)==(-1|0))ca=j;else{da=j;ea=Y;H=135;break b}else{fa=Y;ga=j;H=126}}else ca=0}else H=118;while(0);do if((H|0)==118){X=Nl(0)|0;if((X|0)!=(-1|0)?(e=X,j=f[4903]|0,Y=j+-1|0,U=((Y&e|0)==0?0:(Y+e&0-j)-e|0)+aa|0,e=f[4892]|0,j=U+e|0,U>>>0>B>>>0&U>>>0<2147483647):0){Y=f[4894]|0;if(Y|0?j>>>0<=e>>>0|j>>>0>Y>>>0:0){ca=0;break}Y=Nl(U|0)|0;if((Y|0)==(X|0)){da=U;ea=X;H=135;break b}else{fa=Y;ga=U;H=126}}else ca=0}while(0);do if((H|0)==126){U=0-ga|0;if(!(c>>>0>ga>>>0&(ga>>>0<2147483647&(fa|0)!=(-1|0))))if((fa|0)==(-1|0)){ca=0;break}else{da=ga;ea=fa;H=135;break b}Y=f[4904]|0;X=S-ga+Y&0-Y;if(X>>>0>=2147483647){da=ga;ea=fa;H=135;break b}if((Nl(X|0)|0)==(-1|0)){Nl(U|0)|0;ca=0;break}else{da=X+ga|0;ea=fa;H=135;break b}}while(0);f[4895]=f[4895]|4;ha=ca;H=133}else{ha=0;H=133}while(0);if(((H|0)==133?aa>>>0<2147483647:0)?(ca=Nl(aa|0)|0,aa=Nl(0)|0,fa=aa-ca|0,ga=fa>>>0>(B+40|0)>>>0,!((ca|0)==(-1|0)|ga^1|ca>>>0>>0&((ca|0)!=(-1|0)&(aa|0)!=(-1|0))^1)):0){da=ga?fa:ha;ea=ca;H=135}if((H|0)==135){ca=(f[4892]|0)+da|0;f[4892]=ca;if(ca>>>0>(f[4893]|0)>>>0)f[4893]=ca;ca=f[4790]|0;do if(ca){ha=19584;while(1){ia=f[ha>>2]|0;ja=ha+4|0;ka=f[ja>>2]|0;if((ea|0)==(ia+ka|0)){H=143;break}fa=f[ha+8>>2]|0;if(!fa)break;else ha=fa}if(((H|0)==143?(f[ha+12>>2]&8|0)==0:0)?ea>>>0>ca>>>0&ia>>>0<=ca>>>0:0){f[ja>>2]=ka+da;fa=(f[4787]|0)+da|0;ga=ca+8|0;aa=(ga&7|0)==0?0:0-ga&7;ga=ca+aa|0;S=fa-aa|0;f[4790]=ga;f[4787]=S;f[ga+4>>2]=S|1;f[ca+fa+4>>2]=40;f[4791]=f[4906];break}if(ea>>>0<(f[4788]|0)>>>0)f[4788]=ea;fa=ea+da|0;S=19584;while(1){if((f[S>>2]|0)==(fa|0)){H=151;break}ga=f[S+8>>2]|0;if(!ga){la=19584;break}else S=ga}if((H|0)==151)if(!(f[S+12>>2]&8)){f[S>>2]=ea;ha=S+4|0;f[ha>>2]=(f[ha>>2]|0)+da;ha=ea+8|0;ga=ea+((ha&7|0)==0?0:0-ha&7)|0;ha=fa+8|0;aa=fa+((ha&7|0)==0?0:0-ha&7)|0;ha=ga+B|0;c=aa-ga-B|0;f[ga+4>>2]=B|3;do if((ca|0)!=(aa|0)){if((f[4789]|0)==(aa|0)){ba=(f[4786]|0)+c|0;f[4786]=ba;f[4789]=ha;f[ha+4>>2]=ba|1;f[ha+ba>>2]=ba;break}ba=f[aa+4>>2]|0;if((ba&3|0)==1){_=ba&-8;$=ba>>>3;d:do if(ba>>>0<256){T=f[aa+8>>2]|0;X=f[aa+12>>2]|0;if((X|0)==(T|0)){f[4784]=f[4784]&~(1<<$);break}else{f[T+12>>2]=X;f[X+8>>2]=T;break}}else{T=f[aa+24>>2]|0;X=f[aa+12>>2]|0;do if((X|0)==(aa|0)){U=aa+16|0;Y=U+4|0;j=f[Y>>2]|0;if(!j){e=f[U>>2]|0;if(!e){ma=0;break}else{na=e;oa=U}}else{na=j;oa=Y}while(1){Y=na+20|0;j=f[Y>>2]|0;if(j|0){na=j;oa=Y;continue}Y=na+16|0;j=f[Y>>2]|0;if(!j)break;else{na=j;oa=Y}}f[oa>>2]=0;ma=na}else{Y=f[aa+8>>2]|0;f[Y+12>>2]=X;f[X+8>>2]=Y;ma=X}while(0);if(!T)break;X=f[aa+28>>2]|0;Y=19440+(X<<2)|0;do if((f[Y>>2]|0)!=(aa|0)){f[T+16+(((f[T+16>>2]|0)!=(aa|0)&1)<<2)>>2]=ma;if(!ma)break d}else{f[Y>>2]=ma;if(ma|0)break;f[4785]=f[4785]&~(1<>2]=T;X=aa+16|0;Y=f[X>>2]|0;if(Y|0){f[ma+16>>2]=Y;f[Y+24>>2]=ma}Y=f[X+4>>2]|0;if(!Y)break;f[ma+20>>2]=Y;f[Y+24>>2]=ma}while(0);pa=aa+_|0;qa=_+c|0}else{pa=aa;qa=c}$=pa+4|0;f[$>>2]=f[$>>2]&-2;f[ha+4>>2]=qa|1;f[ha+qa>>2]=qa;$=qa>>>3;if(qa>>>0<256){ba=19176+($<<1<<2)|0;Z=f[4784]|0;Y=1<<$;if(!(Z&Y)){f[4784]=Z|Y;ra=ba;sa=ba+8|0}else{Y=ba+8|0;ra=f[Y>>2]|0;sa=Y}f[sa>>2]=ha;f[ra+12>>2]=ha;f[ha+8>>2]=ra;f[ha+12>>2]=ba;break}ba=qa>>>8;do if(!ba)ta=0;else{if(qa>>>0>16777215){ta=31;break}Y=(ba+1048320|0)>>>16&8;Z=ba<>>16&4;X=Z<<$;Z=(X+245760|0)>>>16&2;j=14-($|Y|Z)+(X<>>15)|0;ta=qa>>>(j+7|0)&1|j<<1}while(0);ba=19440+(ta<<2)|0;f[ha+28>>2]=ta;_=ha+16|0;f[_+4>>2]=0;f[_>>2]=0;_=f[4785]|0;j=1<>2]=ha;f[ha+24>>2]=ba;f[ha+12>>2]=ha;f[ha+8>>2]=ha;break}j=qa<<((ta|0)==31?0:25-(ta>>>1)|0);_=f[ba>>2]|0;while(1){if((f[_+4>>2]&-8|0)==(qa|0)){H=192;break}ua=_+16+(j>>>31<<2)|0;ba=f[ua>>2]|0;if(!ba){H=191;break}else{j=j<<1;_=ba}}if((H|0)==191){f[ua>>2]=ha;f[ha+24>>2]=_;f[ha+12>>2]=ha;f[ha+8>>2]=ha;break}else if((H|0)==192){j=_+8|0;ba=f[j>>2]|0;f[ba+12>>2]=ha;f[j>>2]=ha;f[ha+8>>2]=ba;f[ha+12>>2]=_;f[ha+24>>2]=0;break}}else{ba=(f[4787]|0)+c|0;f[4787]=ba;f[4790]=ha;f[ha+4>>2]=ba|1}while(0);o=ga+8|0;u=b;return o|0}else la=19584;while(1){ha=f[la>>2]|0;if(ha>>>0<=ca>>>0?(va=ha+(f[la+4>>2]|0)|0,va>>>0>ca>>>0):0)break;la=f[la+8>>2]|0}ga=va+-47|0;ha=ga+8|0;c=ga+((ha&7|0)==0?0:0-ha&7)|0;ha=ca+16|0;ga=c>>>0>>0?ca:c;c=ga+8|0;aa=da+-40|0;fa=ea+8|0;S=(fa&7|0)==0?0:0-fa&7;fa=ea+S|0;ba=aa-S|0;f[4790]=fa;f[4787]=ba;f[fa+4>>2]=ba|1;f[ea+aa+4>>2]=40;f[4791]=f[4906];aa=ga+4|0;f[aa>>2]=27;f[c>>2]=f[4896];f[c+4>>2]=f[4897];f[c+8>>2]=f[4898];f[c+12>>2]=f[4899];f[4896]=ea;f[4897]=da;f[4899]=0;f[4898]=c;c=ga+24|0;do{ba=c;c=c+4|0;f[c>>2]=7}while((ba+8|0)>>>0>>0);if((ga|0)!=(ca|0)){c=ga-ca|0;f[aa>>2]=f[aa>>2]&-2;f[ca+4>>2]=c|1;f[ga>>2]=c;ba=c>>>3;if(c>>>0<256){fa=19176+(ba<<1<<2)|0;S=f[4784]|0;j=1<>2]|0;xa=j}f[xa>>2]=ca;f[wa+12>>2]=ca;f[ca+8>>2]=wa;f[ca+12>>2]=fa;break}fa=c>>>8;if(fa)if(c>>>0>16777215)ya=31;else{j=(fa+1048320|0)>>>16&8;S=fa<>>16&4;ba=S<>>16&2;Z=14-(fa|j|S)+(ba<>>15)|0;ya=c>>>(Z+7|0)&1|Z<<1}else ya=0;Z=19440+(ya<<2)|0;f[ca+28>>2]=ya;f[ca+20>>2]=0;f[ha>>2]=0;S=f[4785]|0;ba=1<>2]=ca;f[ca+24>>2]=Z;f[ca+12>>2]=ca;f[ca+8>>2]=ca;break}ba=c<<((ya|0)==31?0:25-(ya>>>1)|0);S=f[Z>>2]|0;while(1){if((f[S+4>>2]&-8|0)==(c|0)){H=213;break}za=S+16+(ba>>>31<<2)|0;Z=f[za>>2]|0;if(!Z){H=212;break}else{ba=ba<<1;S=Z}}if((H|0)==212){f[za>>2]=ca;f[ca+24>>2]=S;f[ca+12>>2]=ca;f[ca+8>>2]=ca;break}else if((H|0)==213){ba=S+8|0;c=f[ba>>2]|0;f[c+12>>2]=ca;f[ba>>2]=ca;f[ca+8>>2]=c;f[ca+12>>2]=S;f[ca+24>>2]=0;break}}}else{c=f[4788]|0;if((c|0)==0|ea>>>0>>0)f[4788]=ea;f[4896]=ea;f[4897]=da;f[4899]=0;f[4793]=f[4902];f[4792]=-1;f[4797]=19176;f[4796]=19176;f[4799]=19184;f[4798]=19184;f[4801]=19192;f[4800]=19192;f[4803]=19200;f[4802]=19200;f[4805]=19208;f[4804]=19208;f[4807]=19216;f[4806]=19216;f[4809]=19224;f[4808]=19224;f[4811]=19232;f[4810]=19232;f[4813]=19240;f[4812]=19240;f[4815]=19248;f[4814]=19248;f[4817]=19256;f[4816]=19256;f[4819]=19264;f[4818]=19264;f[4821]=19272;f[4820]=19272;f[4823]=19280;f[4822]=19280;f[4825]=19288;f[4824]=19288;f[4827]=19296;f[4826]=19296;f[4829]=19304;f[4828]=19304;f[4831]=19312;f[4830]=19312;f[4833]=19320;f[4832]=19320;f[4835]=19328;f[4834]=19328;f[4837]=19336;f[4836]=19336;f[4839]=19344;f[4838]=19344;f[4841]=19352;f[4840]=19352;f[4843]=19360;f[4842]=19360;f[4845]=19368;f[4844]=19368;f[4847]=19376;f[4846]=19376;f[4849]=19384;f[4848]=19384;f[4851]=19392;f[4850]=19392;f[4853]=19400;f[4852]=19400;f[4855]=19408;f[4854]=19408;f[4857]=19416;f[4856]=19416;f[4859]=19424;f[4858]=19424;c=da+-40|0;ba=ea+8|0;ha=(ba&7|0)==0?0:0-ba&7;ba=ea+ha|0;ga=c-ha|0;f[4790]=ba;f[4787]=ga;f[ba+4>>2]=ga|1;f[ea+c+4>>2]=40;f[4791]=f[4906]}while(0);ea=f[4787]|0;if(ea>>>0>B>>>0){da=ea-B|0;f[4787]=da;ea=f[4790]|0;ca=ea+B|0;f[4790]=ca;f[ca+4>>2]=da|1;f[ea+4>>2]=B|3;o=ea+8|0;u=b;return o|0}}ea=Vq()|0;f[ea>>2]=12;o=0;u=b;return o|0}function ab(a,c,d,e,g,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0,Sa=0,Ta=0,Ua=0,Va=0.0,Wa=0.0,Xa=0.0,Ya=0,Za=0,_a=0,$a=0,ab=0,bb=0,cb=0,db=0,eb=0,fb=0,gb=0,hb=0,ib=0,jb=0,kb=0,lb=0,mb=0,nb=0,ob=0,pb=0,qb=0,rb=0,sb=0,tb=0,ub=0,vb=0,wb=0,xb=0,yb=0,zb=0,Ab=0,Bb=0,Cb=0,Db=0,Eb=0,Fb=0,Gb=0,Hb=0,Ib=0,Jb=0,Kb=0,Lb=0,Mb=0,Nb=0,Ob=0;i=u;u=u+240|0;j=i+104|0;k=i+224|0;l=i+176|0;m=i+160|0;n=i+228|0;o=i+72|0;p=i+40|0;q=i+132|0;r=i;s=i+172|0;t=i+156|0;v=i+152|0;w=i+148|0;x=i+144|0;y=i+128|0;z=a+8|0;Mh(z,c,e,g);e=f[a+48>>2]|0;A=f[a+52>>2]|0;B=l;C=B+48|0;do{f[B>>2]=0;B=B+4|0}while((B|0)<(C|0));if(!g){D=0;E=0}else{Ci(l,g);D=f[l+12>>2]|0;E=f[l+16>>2]|0}B=l+16|0;C=E-D>>2;F=D;D=E;if(C>>>0>=g>>>0){if(C>>>0>g>>>0?(E=F+(g<<2)|0,(E|0)!=(D|0)):0)f[B>>2]=D+(~((D+-4-E|0)>>>2)<<2)}else Ci(l+12|0,g-C|0);C=l+24|0;E=l+28|0;D=f[E>>2]|0;B=f[C>>2]|0;F=D-B>>2;G=B;B=D;if(F>>>0>=g>>>0){if(F>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[E>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else Ci(C,g-F|0);F=l+36|0;C=l+40|0;D=f[C>>2]|0;B=f[F>>2]|0;E=D-B>>2;G=B;B=D;if(E>>>0>=g>>>0){if(E>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[C>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else Ci(F,g-E|0);f[m>>2]=0;E=m+4|0;f[E>>2]=0;f[m+8>>2]=0;F=(g|0)==0;do if(!F)if(g>>>0>1073741823)aq(m);else{D=g<<2;B=ln(D)|0;f[m>>2]=B;C=B+(g<<2)|0;f[m+8>>2]=C;sj(B|0,0,D|0)|0;f[E>>2]=C;break}while(0);C=a+152|0;D=a+156|0;B=f[D>>2]|0;G=f[C>>2]|0;H=B-G>>2;L=G;G=B;if(H>>>0>=g>>>0){if(H>>>0>g>>>0?(B=L+(g<<2)|0,(B|0)!=(G|0)):0)f[D>>2]=G+(~((G+-4-B|0)>>>2)<<2)}else Ci(C,g-H|0);f[o>>2]=0;f[o+4>>2]=0;f[o+8>>2]=0;f[o+12>>2]=0;f[o+16>>2]=0;f[o+20>>2]=0;f[o+24>>2]=0;f[o+28>>2]=0;f[p>>2]=0;f[p+4>>2]=0;f[p+8>>2]=0;f[p+12>>2]=0;f[p+16>>2]=0;f[p+20>>2]=0;f[p+24>>2]=0;f[p+28>>2]=0;f[q>>2]=0;H=q+4|0;f[H>>2]=0;f[q+8>>2]=0;if(F){M=0;N=0;O=0;P=0}else{F=g<<2;B=ln(F)|0;f[q>>2]=B;G=B+(g<<2)|0;f[q+8>>2]=G;sj(B|0,0,F|0)|0;f[H>>2]=G;M=B;N=G;O=G;P=B}B=a+56|0;G=f[B>>2]|0;F=f[G+4>>2]|0;D=f[G>>2]|0;L=F-D|0;a:do if((L|0)>4){Q=L>>2;R=e+64|0;S=e+28|0;T=(g|0)>0;U=r+4|0;V=r+8|0;Z=r+12|0;_=a+152|0;$=a+112|0;aa=r+16|0;ba=r+28|0;ca=a+16|0;da=a+32|0;ea=a+12|0;fa=a+28|0;ga=a+20|0;ha=a+24|0;ia=r+28|0;ja=r+16|0;ka=r+20|0;la=r+32|0;ma=n+1|0;na=g<<2;oa=(g|0)==1;pa=Q+-1|0;if(F-D>>2>>>0>pa>>>0){qa=Q;ra=pa;sa=D;ta=P;ua=O;va=M;wa=M;xa=N;ya=M;za=N}else{Aa=G;aq(Aa)}b:while(1){pa=f[sa+(ra<<2)>>2]|0;Q=(((pa>>>0)%3|0|0)==0?2:-1)+pa|0;Ba=Q>>>5;Ca=1<<(Q&31);Da=(pa|0)==-1|(Q|0)==-1;Ea=1;Fa=0;Ga=pa;c:while(1){Ha=Ea^1;Ia=Fa;Ja=Ga;while(1){if((Ja|0)==-1){Ka=Ia;break c}La=f[l+(Ia*12|0)>>2]|0;if(((f[(f[e>>2]|0)+(Ja>>>5<<2)>>2]&1<<(Ja&31)|0)==0?(Ma=f[(f[(f[R>>2]|0)+12>>2]|0)+(Ja<<2)>>2]|0,(Ma|0)!=-1):0)?(Na=f[S>>2]|0,Oa=f[A>>2]|0,Pa=f[Oa+(f[Na+(Ma<<2)>>2]<<2)>>2]|0,Qa=Ma+1|0,Ra=f[Oa+(f[Na+((((Qa>>>0)%3|0|0)==0?Ma+-2|0:Qa)<<2)>>2]<<2)>>2]|0,Qa=f[Oa+(f[Na+((((Ma>>>0)%3|0|0)==0?2:-1)+Ma<<2)>>2]<<2)>>2]|0,(Pa|0)<(ra|0)&(Ra|0)<(ra|0)&(Qa|0)<(ra|0)):0){Ma=X(Pa,g)|0;Pa=X(Ra,g)|0;Ra=X(Qa,g)|0;if(T){Qa=0;do{f[La+(Qa<<2)>>2]=(f[c+(Qa+Ra<<2)>>2]|0)+(f[c+(Qa+Pa<<2)>>2]|0)-(f[c+(Qa+Ma<<2)>>2]|0);Qa=Qa+1|0}while((Qa|0)!=(g|0))}Qa=Ia+1|0;if((Qa|0)==4){Ka=4;break c}else Sa=Qa}else Sa=Ia;do if(Ea){Qa=Ja+1|0;Ma=((Qa>>>0)%3|0|0)==0?Ja+-2|0:Qa;if(((Ma|0)!=-1?(f[(f[e>>2]|0)+(Ma>>>5<<2)>>2]&1<<(Ma&31)|0)==0:0)?(Qa=f[(f[(f[R>>2]|0)+12>>2]|0)+(Ma<<2)>>2]|0,Ma=Qa+1|0,(Qa|0)!=-1):0)Ta=((Ma>>>0)%3|0|0)==0?Qa+-2|0:Ma;else Ta=-1}else{Ma=(((Ja>>>0)%3|0|0)==0?2:-1)+Ja|0;if(((Ma|0)!=-1?(f[(f[e>>2]|0)+(Ma>>>5<<2)>>2]&1<<(Ma&31)|0)==0:0)?(Qa=f[(f[(f[R>>2]|0)+12>>2]|0)+(Ma<<2)>>2]|0,(Qa|0)!=-1):0)if(!((Qa>>>0)%3|0)){Ta=Qa+2|0;break}else{Ta=Qa+-1|0;break}else Ta=-1}while(0);if((Ta|0)==(pa|0)){Ka=Sa;break c}if((Ta|0)!=-1|Ha){Ia=Sa;Ja=Ta}else break}if(Da){Ea=0;Fa=Sa;Ga=-1;continue}if(f[(f[e>>2]|0)+(Ba<<2)>>2]&Ca|0){Ea=0;Fa=Sa;Ga=-1;continue}Ja=f[(f[(f[R>>2]|0)+12>>2]|0)+(Q<<2)>>2]|0;if((Ja|0)==-1){Ea=0;Fa=Sa;Ga=-1;continue}if(!((Ja>>>0)%3|0)){Ea=0;Fa=Sa;Ga=Ja+2|0;continue}else{Ea=0;Fa=Sa;Ga=Ja+-1|0;continue}}Ga=X(ra,g)|0;f[r>>2]=0;f[U>>2]=0;b[V>>0]=0;f[Z>>2]=0;f[Z+4>>2]=0;f[Z+8>>2]=0;f[Z+12>>2]=0;f[Z+16>>2]=0;f[Z+20>>2]=0;f[Z+24>>2]=0;Fa=Ka+-1|0;Ea=p+(Fa<<3)|0;Q=Ea;Ca=Vn(f[Q>>2]|0,f[Q+4>>2]|0,Ka|0,((Ka|0)<0)<<31>>31|0)|0;Q=I;Ba=Ea;f[Ba>>2]=Ca;f[Ba+4>>2]=Q;Ba=c+((X(qa+-2|0,g)|0)<<2)|0;Ea=c+(Ga<<2)|0;Da=f[_>>2]|0;if(T){pa=0;Ja=0;while(1){Ia=(f[Ba+(pa<<2)>>2]|0)-(f[Ea+(pa<<2)>>2]|0)|0;Ha=((Ia|0)>-1?Ia:0-Ia|0)+Ja|0;f[va+(pa<<2)>>2]=Ia;f[Da+(pa<<2)>>2]=Ia<<1^Ia>>31;pa=pa+1|0;if((pa|0)==(g|0)){Ua=Ha;break}else Ja=Ha}}else Ua=0;mo(j,$,Da,g);Ja=Zk(j)|0;pa=I;Ha=Bm(j)|0;Ia=I;Qa=o+(Fa<<3)|0;Ma=Qa;Pa=f[Ma>>2]|0;Ra=f[Ma+4>>2]|0;Va=+wm(Ca,Pa);Ma=Vn(Ha|0,Ia|0,Ja|0,pa|0)|0;Wa=+(Ca>>>0)+4294967296.0*+(Q|0);Xa=+W(+(Va*Wa));pa=Vn(Ma|0,I|0,~~Xa>>>0|0,(+K(Xa)>=1.0?(Xa>0.0?~~+Y(+J(Xa/4294967296.0),4294967295.0)>>>0:~~+W((Xa-+(~~Xa>>>0))/4294967296.0)>>>0):0)|0)|0;Ma=r;f[Ma>>2]=pa;f[Ma+4>>2]=Ua;b[V>>0]=0;f[Z>>2]=0;$f(aa,Ba,Ba+(g<<2)|0);f[s>>2]=ta;f[t>>2]=ua;f[k>>2]=f[s>>2];f[j>>2]=f[t>>2];Jf(ba,k,j);if((Ka|0)<1){Ya=za;Za=ya;_a=xa;$a=wa;ab=ua;bb=ta;cb=ta}else{Ma=n+Ka|0;pa=f[q>>2]|0;Ja=pa;Ia=f[H>>2]|0;Ha=Ma+-1|0;La=(Ha|0)==(n|0);Na=Ma+-2|0;Oa=ma>>>0>>0;db=~Ka;eb=Ka+2+((db|0)>-2?db:-2)|0;db=Ia;fb=Ha>>>0>n>>>0;gb=0;hb=1;while(1){gb=gb+1|0;sj(n|0,1,eb|0)|0;sj(n|0,0,gb|0)|0;ib=Vn(Pa|0,Ra|0,hb|0,0)|0;d:while(1){if(T){sj(f[m>>2]|0,0,na|0)|0;jb=f[m>>2]|0;kb=0;lb=0;while(1){if(!(b[n+kb>>0]|0)){mb=f[l+(kb*12|0)>>2]|0;nb=0;do{ob=jb+(nb<<2)|0;f[ob>>2]=(f[ob>>2]|0)+(f[mb+(nb<<2)>>2]|0);nb=nb+1|0}while((nb|0)!=(g|0));pb=(1<>0]|0))rb=(1<>2]|0;do if(T){f[kb>>2]=(f[kb>>2]|0)/(hb|0)|0;if(!oa){lb=1;do{jb=kb+(lb<<2)|0;f[jb>>2]=(f[jb>>2]|0)/(hb|0)|0;lb=lb+1|0}while((lb|0)!=(g|0));lb=f[_>>2]|0;if(T)sb=lb;else{tb=0;ub=lb;break}}else sb=f[_>>2]|0;lb=0;jb=0;while(1){nb=(f[kb+(lb<<2)>>2]|0)-(f[Ea+(lb<<2)>>2]|0)|0;mb=((nb|0)>-1?nb:0-nb|0)+jb|0;f[pa+(lb<<2)>>2]=nb;f[sb+(lb<<2)>>2]=nb<<1^nb>>31;lb=lb+1|0;if((lb|0)==(g|0)){tb=mb;ub=sb;break}else jb=mb}}else{tb=0;ub=f[_>>2]|0}while(0);mo(j,$,ub,g);kb=Zk(j)|0;jb=I;lb=Bm(j)|0;mb=I;Xa=+wm(Ca,ib);nb=Vn(lb|0,mb|0,kb|0,jb|0)|0;Va=+W(+(Xa*Wa));jb=Vn(nb|0,I|0,~~Va>>>0|0,(+K(Va)>=1.0?(Va>0.0?~~+Y(+J(Va/4294967296.0),4294967295.0)>>>0:~~+W((Va-+(~~Va>>>0))/4294967296.0)>>>0):0)|0)|0;nb=f[r>>2]|0;if(!((nb|0)<=(jb|0)?!((nb|0)>=(jb|0)?(tb|0)<(f[U>>2]|0):0):0)){nb=r;f[nb>>2]=jb;f[nb+4>>2]=tb;b[V>>0]=qb;f[Z>>2]=hb;f[v>>2]=f[m>>2];f[w>>2]=f[E>>2];f[k>>2]=f[v>>2];f[j>>2]=f[w>>2];Jf(aa,k,j);f[x>>2]=Ja;f[y>>2]=Ia;f[k>>2]=f[x>>2];f[j>>2]=f[y>>2];Jf(ba,k,j)}if(La)break;vb=b[Ha>>0]|0;nb=-1;jb=vb;while(1){kb=nb+-1|0;wb=Ma+kb|0;mb=jb;jb=b[wb>>0]|0;if((jb&255)<(mb&255))break;if((wb|0)==(n|0)){xb=84;break d}else nb=kb}kb=Ma+nb|0;if((jb&255)<(vb&255)){yb=Ha;zb=vb}else{mb=Ma;lb=Ha;while(1){ob=lb+-1|0;if((jb&255)<(h[mb+-2>>0]|0)){yb=ob;zb=1;break}else{Ab=lb;lb=ob;mb=Ab}}}b[wb>>0]=zb;b[yb>>0]=jb;if((nb|0)<-1){Bb=kb;Cb=Ha}else continue;while(1){mb=b[Bb>>0]|0;b[Bb>>0]=b[Cb>>0]|0;b[Cb>>0]=mb;mb=Bb+1|0;lb=Cb+-1|0;if(mb>>>0>>0){Bb=mb;Cb=lb}else continue d}}if(((xb|0)==84?(xb=0,fb):0)?(ib=b[n>>0]|0,b[n>>0]=vb,b[Ha>>0]=ib,Oa):0){ib=Na;kb=ma;do{nb=b[kb>>0]|0;b[kb>>0]=b[ib>>0]|0;b[ib>>0]=nb;kb=kb+1|0;ib=ib+-1|0}while(kb>>>0>>0)}if((hb|0)>=(Ka|0)){Ya=db;Za=pa;_a=db;$a=pa;ab=Ia;bb=Ja;cb=pa;break}else hb=hb+1|0}}hb=f[Z>>2]|0;pa=Vn(Pa|0,Ra|0,hb|0,((hb|0)<0)<<31>>31|0)|0;hb=Qa;f[hb>>2]=pa;f[hb+4>>2]=I;if(T){hb=f[ba>>2]|0;pa=f[C>>2]|0;Ja=0;do{Ia=f[hb+(Ja<<2)>>2]|0;f[pa+(Ja<<2)>>2]=Ia<<1^Ia>>31;Ja=Ja+1|0}while((Ja|0)!=(g|0));Db=pa}else Db=f[C>>2]|0;lo(j,$,Db,g);if((Ka|0)>0){Eb=a+60+(Fa*12|0)|0;pa=a+60+(Fa*12|0)+4|0;Ja=a+60+(Fa*12|0)+8|0;hb=0;do{Qa=f[pa>>2]|0;Ra=f[Ja>>2]|0;Pa=(Qa|0)==(Ra<<5|0);if(!(1<>0])){if(Pa){if((Qa+1|0)<0){xb=108;break b}Ia=Ra<<6;db=Qa+32&-32;vi(Eb,Qa>>>0<1073741823?(Ia>>>0>>0?db:Ia):2147483647);Fb=f[pa>>2]|0}else Fb=Qa;f[pa>>2]=Fb+1;Ia=(f[Eb>>2]|0)+(Fb>>>5<<2)|0;f[Ia>>2]=f[Ia>>2]|1<<(Fb&31)}else{if(Pa){if((Qa+1|0)<0){xb=113;break b}Pa=Ra<<6;Ra=Qa+32&-32;vi(Eb,Qa>>>0<1073741823?(Pa>>>0>>0?Ra:Pa):2147483647);Gb=f[pa>>2]|0}else Gb=Qa;f[pa>>2]=Gb+1;Qa=(f[Eb>>2]|0)+(Gb>>>5<<2)|0;f[Qa>>2]=f[Qa>>2]&~(1<<(Gb&31))}hb=hb+1|0}while((hb|0)<(Ka|0))}hb=d+(Ga<<2)|0;pa=f[z>>2]|0;if((pa|0)>0){Ja=0;Fa=f[aa>>2]|0;Qa=pa;while(1){if((Qa|0)>0){pa=0;do{Pa=f[Fa+(pa<<2)>>2]|0;Ra=f[ca>>2]|0;if((Pa|0)>(Ra|0)){Ia=f[da>>2]|0;f[Ia+(pa<<2)>>2]=Ra;Hb=Ia}else{Ia=f[ea>>2]|0;Ra=f[da>>2]|0;f[Ra+(pa<<2)>>2]=(Pa|0)<(Ia|0)?Ia:Pa;Hb=Ra}pa=pa+1|0}while((pa|0)<(f[z>>2]|0));Ib=Hb}else Ib=f[da>>2]|0;pa=(f[Ea+(Ja<<2)>>2]|0)-(f[Ib+(Ja<<2)>>2]|0)|0;Ra=hb+(Ja<<2)|0;f[Ra>>2]=pa;do if((pa|0)<(f[fa>>2]|0)){Jb=(f[ga>>2]|0)+pa|0;xb=103}else{if((pa|0)<=(f[ha>>2]|0))break;Jb=pa-(f[ga>>2]|0)|0;xb=103}while(0);if((xb|0)==103){xb=0;f[Ra>>2]=Jb}Ja=Ja+1|0;Qa=f[z>>2]|0;if((Ja|0)>=(Qa|0))break;else Fa=Ib}}Fa=f[ia>>2]|0;if(Fa|0){Qa=f[la>>2]|0;if((Qa|0)!=(Fa|0))f[la>>2]=Qa+(~((Qa+-4-Fa|0)>>>2)<<2);Oq(Fa)}Fa=f[ja>>2]|0;if(Fa|0){Qa=f[ka>>2]|0;if((Qa|0)!=(Fa|0))f[ka>>2]=Qa+(~((Qa+-4-Fa|0)>>>2)<<2);Oq(Fa)}if((qa|0)<=2){Kb=$a;Lb=_a;break a}Fa=f[B>>2]|0;sa=f[Fa>>2]|0;Qa=ra+-1|0;if((f[Fa+4>>2]|0)-sa>>2>>>0<=Qa>>>0){Aa=Fa;xb=18;break}else{Fa=ra;ra=Qa;ta=bb;ua=ab;va=cb;wa=$a;xa=_a;ya=Za;za=Ya;qa=Fa}}if((xb|0)==18)aq(Aa);else if((xb|0)==108)aq(Eb);else if((xb|0)==113)aq(Eb)}else{Kb=M;Lb=N}while(0);N=f[l>>2]|0;if((g|0)>0?(f[N>>2]=0,(g|0)!=1):0){M=1;do{f[N+(M<<2)>>2]=0;M=M+1|0}while((M|0)!=(g|0))}g=f[z>>2]|0;if((g|0)>0){M=a+16|0;Eb=a+32|0;Aa=a+12|0;qa=a+28|0;Ya=a+20|0;za=a+24|0;a=0;Za=N;N=g;while(1){if((N|0)>0){g=0;do{ya=f[Za+(g<<2)>>2]|0;_a=f[M>>2]|0;if((ya|0)>(_a|0)){xa=f[Eb>>2]|0;f[xa+(g<<2)>>2]=_a;Mb=xa}else{xa=f[Aa>>2]|0;_a=f[Eb>>2]|0;f[_a+(g<<2)>>2]=(ya|0)<(xa|0)?xa:ya;Mb=_a}g=g+1|0}while((g|0)<(f[z>>2]|0));Nb=Mb}else Nb=f[Eb>>2]|0;g=(f[c+(a<<2)>>2]|0)-(f[Nb+(a<<2)>>2]|0)|0;_a=d+(a<<2)|0;f[_a>>2]=g;if((g|0)>=(f[qa>>2]|0)){if((g|0)>(f[za>>2]|0)){Ob=g-(f[Ya>>2]|0)|0;xb=139}}else{Ob=(f[Ya>>2]|0)+g|0;xb=139}if((xb|0)==139){xb=0;f[_a>>2]=Ob}a=a+1|0;N=f[z>>2]|0;if((a|0)>=(N|0))break;else Za=Nb}}if(Kb|0){if((Lb|0)!=(Kb|0))f[H>>2]=Lb+(~((Lb+-4-Kb|0)>>>2)<<2);Oq(Kb)}Kb=f[m>>2]|0;if(Kb|0){m=f[E>>2]|0;if((m|0)!=(Kb|0))f[E>>2]=m+(~((m+-4-Kb|0)>>>2)<<2);Oq(Kb)}Kb=f[l+36>>2]|0;if(Kb|0){m=l+40|0;E=f[m>>2]|0;if((E|0)!=(Kb|0))f[m>>2]=E+(~((E+-4-Kb|0)>>>2)<<2);Oq(Kb)}Kb=f[l+24>>2]|0;if(Kb|0){E=l+28|0;m=f[E>>2]|0;if((m|0)!=(Kb|0))f[E>>2]=m+(~((m+-4-Kb|0)>>>2)<<2);Oq(Kb)}Kb=f[l+12>>2]|0;if(Kb|0){m=l+16|0;E=f[m>>2]|0;if((E|0)!=(Kb|0))f[m>>2]=E+(~((E+-4-Kb|0)>>>2)<<2);Oq(Kb)}Kb=f[l>>2]|0;if(!Kb){u=i;return 1}E=l+4|0;l=f[E>>2]|0;if((l|0)!=(Kb|0))f[E>>2]=l+(~((l+-4-Kb|0)>>>2)<<2);Oq(Kb);u=i;return 1}function bb(a,c,d,e,g,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0,Sa=0,Ta=0,Ua=0,Va=0.0,Wa=0.0,Xa=0.0,Ya=0,Za=0,_a=0,$a=0,ab=0,bb=0,cb=0,db=0,eb=0,fb=0,gb=0,hb=0,ib=0,jb=0,kb=0,lb=0,mb=0,nb=0,ob=0,pb=0,qb=0,rb=0,sb=0,tb=0,ub=0,vb=0,wb=0,xb=0,yb=0,zb=0,Ab=0,Bb=0,Cb=0,Db=0,Eb=0,Fb=0,Gb=0,Hb=0,Ib=0,Jb=0,Kb=0,Lb=0,Mb=0,Nb=0,Ob=0,Pb=0,Qb=0;i=u;u=u+240|0;j=i+104|0;k=i+224|0;l=i+176|0;m=i+160|0;n=i+228|0;o=i+72|0;p=i+40|0;q=i+132|0;r=i;s=i+172|0;t=i+156|0;v=i+152|0;w=i+148|0;x=i+144|0;y=i+128|0;z=a+8|0;Mh(z,c,e,g);e=f[a+48>>2]|0;A=f[a+52>>2]|0;B=l;C=B+48|0;do{f[B>>2]=0;B=B+4|0}while((B|0)<(C|0));if(!g){D=0;E=0}else{Ci(l,g);D=f[l+12>>2]|0;E=f[l+16>>2]|0}B=l+16|0;C=E-D>>2;F=D;D=E;if(C>>>0>=g>>>0){if(C>>>0>g>>>0?(E=F+(g<<2)|0,(E|0)!=(D|0)):0)f[B>>2]=D+(~((D+-4-E|0)>>>2)<<2)}else Ci(l+12|0,g-C|0);C=l+24|0;E=l+28|0;D=f[E>>2]|0;B=f[C>>2]|0;F=D-B>>2;G=B;B=D;if(F>>>0>=g>>>0){if(F>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[E>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else Ci(C,g-F|0);F=l+36|0;C=l+40|0;D=f[C>>2]|0;B=f[F>>2]|0;E=D-B>>2;G=B;B=D;if(E>>>0>=g>>>0){if(E>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[C>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else Ci(F,g-E|0);f[m>>2]=0;E=m+4|0;f[E>>2]=0;f[m+8>>2]=0;F=(g|0)==0;do if(!F)if(g>>>0>1073741823)aq(m);else{D=g<<2;B=ln(D)|0;f[m>>2]=B;C=B+(g<<2)|0;f[m+8>>2]=C;sj(B|0,0,D|0)|0;f[E>>2]=C;break}while(0);C=a+152|0;D=a+156|0;B=f[D>>2]|0;G=f[C>>2]|0;H=B-G>>2;L=G;G=B;if(H>>>0>=g>>>0){if(H>>>0>g>>>0?(B=L+(g<<2)|0,(B|0)!=(G|0)):0)f[D>>2]=G+(~((G+-4-B|0)>>>2)<<2)}else Ci(C,g-H|0);f[o>>2]=0;f[o+4>>2]=0;f[o+8>>2]=0;f[o+12>>2]=0;f[o+16>>2]=0;f[o+20>>2]=0;f[o+24>>2]=0;f[o+28>>2]=0;f[p>>2]=0;f[p+4>>2]=0;f[p+8>>2]=0;f[p+12>>2]=0;f[p+16>>2]=0;f[p+20>>2]=0;f[p+24>>2]=0;f[p+28>>2]=0;f[q>>2]=0;H=q+4|0;f[H>>2]=0;f[q+8>>2]=0;if(F){M=0;N=0;O=0;P=0}else{F=g<<2;B=ln(F)|0;f[q>>2]=B;G=B+(g<<2)|0;f[q+8>>2]=G;sj(B|0,0,F|0)|0;f[H>>2]=G;M=B;N=G;O=G;P=B}B=a+56|0;G=f[B>>2]|0;F=f[G+4>>2]|0;D=f[G>>2]|0;L=F-D|0;a:do if((L|0)>4){Q=L>>2;R=e+12|0;S=(g|0)>0;T=r+4|0;U=r+8|0;V=r+12|0;Z=a+152|0;_=a+112|0;$=r+16|0;aa=r+28|0;ba=a+16|0;ca=a+32|0;da=a+12|0;ea=a+28|0;fa=a+20|0;ga=a+24|0;ha=r+28|0;ia=r+16|0;ja=r+20|0;ka=r+32|0;la=n+1|0;ma=g<<2;na=(g|0)==1;oa=Q+-1|0;if(F-D>>2>>>0>oa>>>0){pa=Q;qa=oa;ra=D;sa=P;ta=O;ua=M;va=M;wa=N;xa=M;ya=N}else{za=G;aq(za)}b:while(1){oa=f[ra+(qa<<2)>>2]|0;Q=(((oa>>>0)%3|0|0)==0?2:-1)+oa|0;Aa=(oa|0)==-1|(Q|0)==-1;Ba=1;Ca=0;Da=oa;c:while(1){Ea=Ba^1;Fa=Ca;Ga=Da;while(1){if((Ga|0)==-1){Ha=Fa;break c}Ia=f[l+(Fa*12|0)>>2]|0;Ja=f[R>>2]|0;Ka=f[Ja+(Ga<<2)>>2]|0;if((Ka|0)!=-1){La=f[e>>2]|0;Ma=f[A>>2]|0;Na=f[Ma+(f[La+(Ka<<2)>>2]<<2)>>2]|0;Oa=Ka+1|0;Pa=((Oa>>>0)%3|0|0)==0?Ka+-2|0:Oa;if((Pa|0)==-1)Qa=-1;else Qa=f[La+(Pa<<2)>>2]|0;Pa=f[Ma+(Qa<<2)>>2]|0;Oa=(((Ka>>>0)%3|0|0)==0?2:-1)+Ka|0;if((Oa|0)==-1)Ra=-1;else Ra=f[La+(Oa<<2)>>2]|0;Oa=f[Ma+(Ra<<2)>>2]|0;if((Na|0)<(qa|0)&(Pa|0)<(qa|0)&(Oa|0)<(qa|0)){Ma=X(Na,g)|0;Na=X(Pa,g)|0;Pa=X(Oa,g)|0;if(S){Oa=0;do{f[Ia+(Oa<<2)>>2]=(f[c+(Oa+Pa<<2)>>2]|0)+(f[c+(Oa+Na<<2)>>2]|0)-(f[c+(Oa+Ma<<2)>>2]|0);Oa=Oa+1|0}while((Oa|0)!=(g|0))}Oa=Fa+1|0;if((Oa|0)==4){Ha=4;break c}else Sa=Oa}else Sa=Fa}else Sa=Fa;do if(Ba){Oa=Ga+1|0;Ma=((Oa>>>0)%3|0|0)==0?Ga+-2|0:Oa;if((Ma|0)!=-1?(Oa=f[Ja+(Ma<<2)>>2]|0,Ma=Oa+1|0,(Oa|0)!=-1):0)Ta=((Ma>>>0)%3|0|0)==0?Oa+-2|0:Ma;else Ta=-1}else{Ma=(((Ga>>>0)%3|0|0)==0?2:-1)+Ga|0;if((Ma|0)!=-1?(Oa=f[Ja+(Ma<<2)>>2]|0,(Oa|0)!=-1):0)if(!((Oa>>>0)%3|0)){Ta=Oa+2|0;break}else{Ta=Oa+-1|0;break}else Ta=-1}while(0);if((Ta|0)==(oa|0)){Ha=Sa;break c}if((Ta|0)!=-1|Ea){Fa=Sa;Ga=Ta}else break}if(Aa){Ba=0;Ca=Sa;Da=-1;continue}Ga=f[Ja+(Q<<2)>>2]|0;if((Ga|0)==-1){Ba=0;Ca=Sa;Da=-1;continue}if(!((Ga>>>0)%3|0)){Ba=0;Ca=Sa;Da=Ga+2|0;continue}else{Ba=0;Ca=Sa;Da=Ga+-1|0;continue}}Da=X(qa,g)|0;f[r>>2]=0;f[T>>2]=0;b[U>>0]=0;f[V>>2]=0;f[V+4>>2]=0;f[V+8>>2]=0;f[V+12>>2]=0;f[V+16>>2]=0;f[V+20>>2]=0;f[V+24>>2]=0;Ca=Ha+-1|0;Ba=p+(Ca<<3)|0;Q=Ba;Aa=Vn(f[Q>>2]|0,f[Q+4>>2]|0,Ha|0,((Ha|0)<0)<<31>>31|0)|0;Q=I;oa=Ba;f[oa>>2]=Aa;f[oa+4>>2]=Q;oa=c+((X(pa+-2|0,g)|0)<<2)|0;Ba=c+(Da<<2)|0;Ga=f[Z>>2]|0;if(S){Fa=0;Ea=0;while(1){Oa=(f[oa+(Fa<<2)>>2]|0)-(f[Ba+(Fa<<2)>>2]|0)|0;Ma=((Oa|0)>-1?Oa:0-Oa|0)+Ea|0;f[ua+(Fa<<2)>>2]=Oa;f[Ga+(Fa<<2)>>2]=Oa<<1^Oa>>31;Fa=Fa+1|0;if((Fa|0)==(g|0)){Ua=Ma;break}else Ea=Ma}}else Ua=0;mo(j,_,Ga,g);Ea=Zk(j)|0;Fa=I;Ma=Bm(j)|0;Oa=I;Na=o+(Ca<<3)|0;Pa=Na;Ia=f[Pa>>2]|0;La=f[Pa+4>>2]|0;Va=+wm(Aa,Ia);Pa=Vn(Ma|0,Oa|0,Ea|0,Fa|0)|0;Wa=+(Aa>>>0)+4294967296.0*+(Q|0);Xa=+W(+(Va*Wa));Fa=Vn(Pa|0,I|0,~~Xa>>>0|0,(+K(Xa)>=1.0?(Xa>0.0?~~+Y(+J(Xa/4294967296.0),4294967295.0)>>>0:~~+W((Xa-+(~~Xa>>>0))/4294967296.0)>>>0):0)|0)|0;Pa=r;f[Pa>>2]=Fa;f[Pa+4>>2]=Ua;b[U>>0]=0;f[V>>2]=0;$f($,oa,oa+(g<<2)|0);f[s>>2]=sa;f[t>>2]=ta;f[k>>2]=f[s>>2];f[j>>2]=f[t>>2];Jf(aa,k,j);if((Ha|0)<1){Ya=ya;Za=xa;_a=wa;$a=va;ab=ta;bb=sa;cb=sa}else{Pa=n+Ha|0;Fa=f[q>>2]|0;Ea=Fa;Oa=f[H>>2]|0;Ma=Pa+-1|0;Ka=(Ma|0)==(n|0);db=Pa+-2|0;eb=la>>>0>>0;fb=~Ha;gb=Ha+2+((fb|0)>-2?fb:-2)|0;fb=Oa;hb=Ma>>>0>n>>>0;ib=0;jb=1;while(1){ib=ib+1|0;sj(n|0,1,gb|0)|0;sj(n|0,0,ib|0)|0;kb=Vn(Ia|0,La|0,jb|0,0)|0;d:while(1){if(S){sj(f[m>>2]|0,0,ma|0)|0;lb=f[m>>2]|0;mb=0;nb=0;while(1){if(!(b[n+mb>>0]|0)){ob=f[l+(mb*12|0)>>2]|0;pb=0;do{qb=lb+(pb<<2)|0;f[qb>>2]=(f[qb>>2]|0)+(f[ob+(pb<<2)>>2]|0);pb=pb+1|0}while((pb|0)!=(g|0));rb=(1<>0]|0))tb=(1<>2]|0;do if(S){f[mb>>2]=(f[mb>>2]|0)/(jb|0)|0;if(!na){nb=1;do{lb=mb+(nb<<2)|0;f[lb>>2]=(f[lb>>2]|0)/(jb|0)|0;nb=nb+1|0}while((nb|0)!=(g|0));nb=f[Z>>2]|0;if(S)ub=nb;else{vb=0;wb=nb;break}}else ub=f[Z>>2]|0;nb=0;lb=0;while(1){pb=(f[mb+(nb<<2)>>2]|0)-(f[Ba+(nb<<2)>>2]|0)|0;ob=((pb|0)>-1?pb:0-pb|0)+lb|0;f[Fa+(nb<<2)>>2]=pb;f[ub+(nb<<2)>>2]=pb<<1^pb>>31;nb=nb+1|0;if((nb|0)==(g|0)){vb=ob;wb=ub;break}else lb=ob}}else{vb=0;wb=f[Z>>2]|0}while(0);mo(j,_,wb,g);mb=Zk(j)|0;lb=I;nb=Bm(j)|0;ob=I;Xa=+wm(Aa,kb);pb=Vn(nb|0,ob|0,mb|0,lb|0)|0;Va=+W(+(Xa*Wa));lb=Vn(pb|0,I|0,~~Va>>>0|0,(+K(Va)>=1.0?(Va>0.0?~~+Y(+J(Va/4294967296.0),4294967295.0)>>>0:~~+W((Va-+(~~Va>>>0))/4294967296.0)>>>0):0)|0)|0;pb=f[r>>2]|0;if(!((pb|0)<=(lb|0)?!((pb|0)>=(lb|0)?(vb|0)<(f[T>>2]|0):0):0)){pb=r;f[pb>>2]=lb;f[pb+4>>2]=vb;b[U>>0]=sb;f[V>>2]=jb;f[v>>2]=f[m>>2];f[w>>2]=f[E>>2];f[k>>2]=f[v>>2];f[j>>2]=f[w>>2];Jf($,k,j);f[x>>2]=Ea;f[y>>2]=Oa;f[k>>2]=f[x>>2];f[j>>2]=f[y>>2];Jf(aa,k,j)}if(Ka)break;xb=b[Ma>>0]|0;pb=-1;lb=xb;while(1){mb=pb+-1|0;yb=Pa+mb|0;ob=lb;lb=b[yb>>0]|0;if((lb&255)<(ob&255))break;if((yb|0)==(n|0)){zb=84;break d}else pb=mb}mb=Pa+pb|0;if((lb&255)<(xb&255)){Ab=Ma;Bb=xb}else{ob=Pa;nb=Ma;while(1){qb=nb+-1|0;if((lb&255)<(h[ob+-2>>0]|0)){Ab=qb;Bb=1;break}else{Cb=nb;nb=qb;ob=Cb}}}b[yb>>0]=Bb;b[Ab>>0]=lb;if((pb|0)<-1){Db=mb;Eb=Ma}else continue;while(1){ob=b[Db>>0]|0;b[Db>>0]=b[Eb>>0]|0;b[Eb>>0]=ob;ob=Db+1|0;nb=Eb+-1|0;if(ob>>>0>>0){Db=ob;Eb=nb}else continue d}}if(((zb|0)==84?(zb=0,hb):0)?(kb=b[n>>0]|0,b[n>>0]=xb,b[Ma>>0]=kb,eb):0){kb=db;mb=la;do{pb=b[mb>>0]|0;b[mb>>0]=b[kb>>0]|0;b[kb>>0]=pb;mb=mb+1|0;kb=kb+-1|0}while(mb>>>0>>0)}if((jb|0)>=(Ha|0)){Ya=fb;Za=Fa;_a=fb;$a=Fa;ab=Oa;bb=Ea;cb=Fa;break}else jb=jb+1|0}}jb=f[V>>2]|0;Fa=Vn(Ia|0,La|0,jb|0,((jb|0)<0)<<31>>31|0)|0;jb=Na;f[jb>>2]=Fa;f[jb+4>>2]=I;if(S){jb=f[aa>>2]|0;Fa=f[C>>2]|0;Ea=0;do{Oa=f[jb+(Ea<<2)>>2]|0;f[Fa+(Ea<<2)>>2]=Oa<<1^Oa>>31;Ea=Ea+1|0}while((Ea|0)!=(g|0));Fb=Fa}else Fb=f[C>>2]|0;lo(j,_,Fb,g);if((Ha|0)>0){Gb=a+60+(Ca*12|0)|0;Fa=a+60+(Ca*12|0)+4|0;Ea=a+60+(Ca*12|0)+8|0;jb=0;do{Na=f[Fa>>2]|0;La=f[Ea>>2]|0;Ia=(Na|0)==(La<<5|0);if(!(1<>0])){if(Ia){if((Na+1|0)<0){zb=108;break b}Oa=La<<6;fb=Na+32&-32;vi(Gb,Na>>>0<1073741823?(Oa>>>0>>0?fb:Oa):2147483647);Hb=f[Fa>>2]|0}else Hb=Na;f[Fa>>2]=Hb+1;Oa=(f[Gb>>2]|0)+(Hb>>>5<<2)|0;f[Oa>>2]=f[Oa>>2]|1<<(Hb&31)}else{if(Ia){if((Na+1|0)<0){zb=113;break b}Ia=La<<6;La=Na+32&-32;vi(Gb,Na>>>0<1073741823?(Ia>>>0>>0?La:Ia):2147483647);Ib=f[Fa>>2]|0}else Ib=Na;f[Fa>>2]=Ib+1;Na=(f[Gb>>2]|0)+(Ib>>>5<<2)|0;f[Na>>2]=f[Na>>2]&~(1<<(Ib&31))}jb=jb+1|0}while((jb|0)<(Ha|0))}jb=d+(Da<<2)|0;Fa=f[z>>2]|0;if((Fa|0)>0){Ea=0;Ca=f[$>>2]|0;Na=Fa;while(1){if((Na|0)>0){Fa=0;do{Ia=f[Ca+(Fa<<2)>>2]|0;La=f[ba>>2]|0;if((Ia|0)>(La|0)){Oa=f[ca>>2]|0;f[Oa+(Fa<<2)>>2]=La;Jb=Oa}else{Oa=f[da>>2]|0;La=f[ca>>2]|0;f[La+(Fa<<2)>>2]=(Ia|0)<(Oa|0)?Oa:Ia;Jb=La}Fa=Fa+1|0}while((Fa|0)<(f[z>>2]|0));Kb=Jb}else Kb=f[ca>>2]|0;Fa=(f[Ba+(Ea<<2)>>2]|0)-(f[Kb+(Ea<<2)>>2]|0)|0;La=jb+(Ea<<2)|0;f[La>>2]=Fa;do if((Fa|0)<(f[ea>>2]|0)){Lb=(f[fa>>2]|0)+Fa|0;zb=103}else{if((Fa|0)<=(f[ga>>2]|0))break;Lb=Fa-(f[fa>>2]|0)|0;zb=103}while(0);if((zb|0)==103){zb=0;f[La>>2]=Lb}Ea=Ea+1|0;Na=f[z>>2]|0;if((Ea|0)>=(Na|0))break;else Ca=Kb}}Ca=f[ha>>2]|0;if(Ca|0){Na=f[ka>>2]|0;if((Na|0)!=(Ca|0))f[ka>>2]=Na+(~((Na+-4-Ca|0)>>>2)<<2);Oq(Ca)}Ca=f[ia>>2]|0;if(Ca|0){Na=f[ja>>2]|0;if((Na|0)!=(Ca|0))f[ja>>2]=Na+(~((Na+-4-Ca|0)>>>2)<<2);Oq(Ca)}if((pa|0)<=2){Mb=$a;Nb=_a;break a}Ca=f[B>>2]|0;ra=f[Ca>>2]|0;Na=qa+-1|0;if((f[Ca+4>>2]|0)-ra>>2>>>0<=Na>>>0){za=Ca;zb=18;break}else{Ca=qa;qa=Na;sa=bb;ta=ab;ua=cb;va=$a;wa=_a;xa=Za;ya=Ya;pa=Ca}}if((zb|0)==18)aq(za);else if((zb|0)==108)aq(Gb);else if((zb|0)==113)aq(Gb)}else{Mb=M;Nb=N}while(0);N=f[l>>2]|0;if((g|0)>0?(f[N>>2]=0,(g|0)!=1):0){M=1;do{f[N+(M<<2)>>2]=0;M=M+1|0}while((M|0)!=(g|0))}g=f[z>>2]|0;if((g|0)>0){M=a+16|0;Gb=a+32|0;za=a+12|0;pa=a+28|0;Ya=a+20|0;ya=a+24|0;a=0;Za=N;N=g;while(1){if((N|0)>0){g=0;do{xa=f[Za+(g<<2)>>2]|0;_a=f[M>>2]|0;if((xa|0)>(_a|0)){wa=f[Gb>>2]|0;f[wa+(g<<2)>>2]=_a;Ob=wa}else{wa=f[za>>2]|0;_a=f[Gb>>2]|0;f[_a+(g<<2)>>2]=(xa|0)<(wa|0)?wa:xa;Ob=_a}g=g+1|0}while((g|0)<(f[z>>2]|0));Pb=Ob}else Pb=f[Gb>>2]|0;g=(f[c+(a<<2)>>2]|0)-(f[Pb+(a<<2)>>2]|0)|0;_a=d+(a<<2)|0;f[_a>>2]=g;if((g|0)>=(f[pa>>2]|0)){if((g|0)>(f[ya>>2]|0)){Qb=g-(f[Ya>>2]|0)|0;zb=139}}else{Qb=(f[Ya>>2]|0)+g|0;zb=139}if((zb|0)==139){zb=0;f[_a>>2]=Qb}a=a+1|0;N=f[z>>2]|0;if((a|0)>=(N|0))break;else Za=Pb}}if(Mb|0){if((Nb|0)!=(Mb|0))f[H>>2]=Nb+(~((Nb+-4-Mb|0)>>>2)<<2);Oq(Mb)}Mb=f[m>>2]|0;if(Mb|0){m=f[E>>2]|0;if((m|0)!=(Mb|0))f[E>>2]=m+(~((m+-4-Mb|0)>>>2)<<2);Oq(Mb)}Mb=f[l+36>>2]|0;if(Mb|0){m=l+40|0;E=f[m>>2]|0;if((E|0)!=(Mb|0))f[m>>2]=E+(~((E+-4-Mb|0)>>>2)<<2);Oq(Mb)}Mb=f[l+24>>2]|0;if(Mb|0){E=l+28|0;m=f[E>>2]|0;if((m|0)!=(Mb|0))f[E>>2]=m+(~((m+-4-Mb|0)>>>2)<<2);Oq(Mb)}Mb=f[l+12>>2]|0;if(Mb|0){m=l+16|0;E=f[m>>2]|0;if((E|0)!=(Mb|0))f[m>>2]=E+(~((E+-4-Mb|0)>>>2)<<2);Oq(Mb)}Mb=f[l>>2]|0;if(!Mb){u=i;return 1}E=l+4|0;l=f[E>>2]|0;if((l|0)!=(Mb|0))f[E>>2]=l+(~((l+-4-Mb|0)>>>2)<<2);Oq(Mb);u=i;return 1}function cb(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;b=u;u=u+16|0;c=b;d=b+8|0;e=b+4|0;f[d>>2]=a;do if(a>>>0>=212){g=(a>>>0)/210|0;h=g*210|0;f[e>>2]=a-h;i=0;j=g;g=(Hl(6952,7144,e,c)|0)-6952>>2;k=h;a:while(1){l=(f[6952+(g<<2)>>2]|0)+k|0;h=5;while(1){if(h>>>0>=47){m=211;n=i;o=8;break}p=f[6760+(h<<2)>>2]|0;q=(l>>>0)/(p>>>0)|0;if(q>>>0

>>0){o=106;break a}if((l|0)==(X(q,p)|0)){r=i;break}else h=h+1|0}b:do if((o|0)==8){c:while(1){o=0;h=(l>>>0)/(m>>>0)|0;do if(h>>>0>=m>>>0)if((l|0)!=(X(h,m)|0)){p=m+10|0;q=(l>>>0)/(p>>>0)|0;if(q>>>0>=p>>>0)if((l|0)!=(X(q,p)|0)){q=m+12|0;s=(l>>>0)/(q>>>0)|0;if(s>>>0>=q>>>0)if((l|0)!=(X(s,q)|0)){s=m+16|0;t=(l>>>0)/(s>>>0)|0;if(t>>>0>=s>>>0)if((l|0)!=(X(t,s)|0)){t=m+18|0;v=(l>>>0)/(t>>>0)|0;if(v>>>0>=t>>>0)if((l|0)!=(X(v,t)|0)){v=m+22|0;w=(l>>>0)/(v>>>0)|0;if(w>>>0>=v>>>0)if((l|0)!=(X(w,v)|0)){w=m+28|0;x=(l>>>0)/(w>>>0)|0;if(x>>>0>=w>>>0)if((l|0)==(X(x,w)|0)){y=w;z=9;A=n}else{x=m+30|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+36|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+40|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+42|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+46|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+52|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+58|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+60|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+66|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+70|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+72|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+78|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+82|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+88|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+96|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+100|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+102|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+106|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+108|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+112|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+120|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+126|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+130|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+136|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+138|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+142|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+148|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+150|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+156|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+162|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+166|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+168|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+172|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+178|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+180|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+186|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+190|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+192|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+196|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+198|0;B=(l>>>0)/(x>>>0)|0;if(B>>>0>>0){y=x;z=1;A=l;break}if((l|0)==(X(B,x)|0)){y=x;z=9;A=n;break}x=m+208|0;B=(l>>>0)/(x>>>0)|0;C=B>>>0>>0;D=(l|0)==(X(B,x)|0);y=C|D?x:m+210|0;z=C?1:D?9:0;A=C?l:n}else{y=w;z=1;A=l}}else{y=v;z=9;A=n}else{y=v;z=1;A=l}}else{y=t;z=9;A=n}else{y=t;z=1;A=l}}else{y=s;z=9;A=n}else{y=s;z=1;A=l}}else{y=q;z=9;A=n}else{y=q;z=1;A=l}}else{y=p;z=9;A=n}else{y=p;z=1;A=l}}else{y=m;z=9;A=n}else{y=m;z=1;A=l}while(0);switch(z&15){case 9:{r=A;break b;break}case 0:{m=y;n=A;o=8;break}default:break c}}if(!z)r=A;else{o=107;break a}}while(0);h=g+1|0;p=(h|0)==48;q=j+(p&1)|0;i=r;j=q;g=p?0:h;k=q*210|0}if((o|0)==106){f[d>>2]=l;E=l;break}else if((o|0)==107){f[d>>2]=l;E=A;break}}else{k=Hl(6760,6952,d,c)|0;E=f[k>>2]|0}while(0);u=b;return E|0}function db(a,c,d,e,g,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0,Sa=0,Ta=0.0,Ua=0.0,Va=0.0,Wa=0,Xa=0,Ya=0,Za=0,_a=0,$a=0,ab=0,bb=0,cb=0,db=0,eb=0,fb=0,gb=0,hb=0,ib=0,jb=0,kb=0,lb=0,mb=0,nb=0,ob=0,pb=0,qb=0,rb=0,sb=0,tb=0,ub=0,vb=0,wb=0,xb=0,yb=0,zb=0,Ab=0,Bb=0,Cb=0,Db=0,Eb=0,Fb=0,Gb=0;i=u;u=u+256|0;e=i+104|0;j=i+240|0;k=i+224|0;l=i+160|0;m=i+140|0;n=i+248|0;o=i+72|0;p=i+40|0;q=i+128|0;r=i;s=i+232|0;t=i+220|0;v=i+216|0;w=i+212|0;x=i+208|0;y=i+152|0;z=f[a+28>>2]|0;A=f[a+32>>2]|0;B=l;C=B+48|0;do{f[B>>2]=0;B=B+4|0}while((B|0)<(C|0));if(!g){D=0;E=0}else{Ci(l,g);D=f[l+12>>2]|0;E=f[l+16>>2]|0}B=l+16|0;C=E-D>>2;F=D;D=E;if(C>>>0>=g>>>0){if(C>>>0>g>>>0?(E=F+(g<<2)|0,(E|0)!=(D|0)):0)f[B>>2]=D+(~((D+-4-E|0)>>>2)<<2)}else Ci(l+12|0,g-C|0);C=l+24|0;E=l+28|0;D=f[E>>2]|0;B=f[C>>2]|0;F=D-B>>2;G=B;B=D;if(F>>>0>=g>>>0){if(F>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[E>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else Ci(C,g-F|0);F=l+36|0;C=l+40|0;D=f[C>>2]|0;B=f[F>>2]|0;E=D-B>>2;G=B;B=D;if(E>>>0>=g>>>0){if(E>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[C>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else Ci(F,g-E|0);f[m>>2]=0;E=m+4|0;f[E>>2]=0;f[m+8>>2]=0;F=(g|0)==0;do if(!F)if(g>>>0>1073741823)aq(m);else{D=g<<2;B=ln(D)|0;f[m>>2]=B;C=B+(g<<2)|0;f[m+8>>2]=C;sj(B|0,0,D|0)|0;f[E>>2]=C;break}while(0);C=a+136|0;D=a+140|0;B=f[D>>2]|0;G=f[C>>2]|0;H=B-G>>2;L=G;G=B;if(H>>>0>=g>>>0){if(H>>>0>g>>>0?(B=L+(g<<2)|0,(B|0)!=(G|0)):0)f[D>>2]=G+(~((G+-4-B|0)>>>2)<<2)}else Ci(C,g-H|0);f[o>>2]=0;f[o+4>>2]=0;f[o+8>>2]=0;f[o+12>>2]=0;f[o+16>>2]=0;f[o+20>>2]=0;f[o+24>>2]=0;f[o+28>>2]=0;f[p>>2]=0;f[p+4>>2]=0;f[p+8>>2]=0;f[p+12>>2]=0;f[p+16>>2]=0;f[p+20>>2]=0;f[p+24>>2]=0;f[p+28>>2]=0;f[q>>2]=0;H=q+4|0;f[H>>2]=0;f[q+8>>2]=0;if(F){M=0;N=0;O=0;P=0}else{F=g<<2;B=ln(F)|0;f[q>>2]=B;G=B+(g<<2)|0;f[q+8>>2]=G;sj(B|0,0,F|0)|0;f[H>>2]=G;M=B;N=G;O=G;P=B}B=a+36|0;G=f[B>>2]|0;F=f[G+4>>2]|0;D=f[G>>2]|0;L=F-D|0;a:do if((L|0)>4){Q=L>>2;R=z+64|0;S=z+28|0;T=(g|0)>0;U=r+4|0;V=r+8|0;Z=r+12|0;_=a+136|0;$=a+96|0;aa=r+16|0;ba=r+28|0;ca=a+8|0;da=j+4|0;ea=k+4|0;fa=e+4|0;ga=r+28|0;ha=r+16|0;ia=r+20|0;ja=r+32|0;ka=n+1|0;la=g<<2;ma=(g|0)==1;na=Q+-1|0;if(F-D>>2>>>0>na>>>0){oa=Q;pa=na;qa=D;ra=P;sa=O;ta=M;ua=M;va=N;wa=M;xa=N}else{ya=G;aq(ya)}b:while(1){na=f[qa+(pa<<2)>>2]|0;Q=(((na>>>0)%3|0|0)==0?2:-1)+na|0;za=Q>>>5;Aa=1<<(Q&31);Ba=(na|0)==-1|(Q|0)==-1;Ca=1;Da=0;Ea=na;c:while(1){Fa=Ca^1;Ga=Da;Ha=Ea;while(1){if((Ha|0)==-1){Ia=Ga;break c}Ja=f[l+(Ga*12|0)>>2]|0;if(((f[(f[z>>2]|0)+(Ha>>>5<<2)>>2]&1<<(Ha&31)|0)==0?(Ka=f[(f[(f[R>>2]|0)+12>>2]|0)+(Ha<<2)>>2]|0,(Ka|0)!=-1):0)?(La=f[S>>2]|0,Ma=f[A>>2]|0,Na=f[Ma+(f[La+(Ka<<2)>>2]<<2)>>2]|0,Oa=Ka+1|0,Pa=f[Ma+(f[La+((((Oa>>>0)%3|0|0)==0?Ka+-2|0:Oa)<<2)>>2]<<2)>>2]|0,Oa=f[Ma+(f[La+((((Ka>>>0)%3|0|0)==0?2:-1)+Ka<<2)>>2]<<2)>>2]|0,(Na|0)<(pa|0)&(Pa|0)<(pa|0)&(Oa|0)<(pa|0)):0){Ka=X(Na,g)|0;Na=X(Pa,g)|0;Pa=X(Oa,g)|0;if(T){Oa=0;do{f[Ja+(Oa<<2)>>2]=(f[c+(Oa+Pa<<2)>>2]|0)+(f[c+(Oa+Na<<2)>>2]|0)-(f[c+(Oa+Ka<<2)>>2]|0);Oa=Oa+1|0}while((Oa|0)!=(g|0))}Oa=Ga+1|0;if((Oa|0)==4){Ia=4;break c}else Qa=Oa}else Qa=Ga;do if(Ca){Oa=Ha+1|0;Ka=((Oa>>>0)%3|0|0)==0?Ha+-2|0:Oa;if(((Ka|0)!=-1?(f[(f[z>>2]|0)+(Ka>>>5<<2)>>2]&1<<(Ka&31)|0)==0:0)?(Oa=f[(f[(f[R>>2]|0)+12>>2]|0)+(Ka<<2)>>2]|0,Ka=Oa+1|0,(Oa|0)!=-1):0)Ra=((Ka>>>0)%3|0|0)==0?Oa+-2|0:Ka;else Ra=-1}else{Ka=(((Ha>>>0)%3|0|0)==0?2:-1)+Ha|0;if(((Ka|0)!=-1?(f[(f[z>>2]|0)+(Ka>>>5<<2)>>2]&1<<(Ka&31)|0)==0:0)?(Oa=f[(f[(f[R>>2]|0)+12>>2]|0)+(Ka<<2)>>2]|0,(Oa|0)!=-1):0)if(!((Oa>>>0)%3|0)){Ra=Oa+2|0;break}else{Ra=Oa+-1|0;break}else Ra=-1}while(0);if((Ra|0)==(na|0)){Ia=Qa;break c}if((Ra|0)!=-1|Fa){Ga=Qa;Ha=Ra}else break}if(Ba){Ca=0;Da=Qa;Ea=-1;continue}if(f[(f[z>>2]|0)+(za<<2)>>2]&Aa|0){Ca=0;Da=Qa;Ea=-1;continue}Ha=f[(f[(f[R>>2]|0)+12>>2]|0)+(Q<<2)>>2]|0;if((Ha|0)==-1){Ca=0;Da=Qa;Ea=-1;continue}if(!((Ha>>>0)%3|0)){Ca=0;Da=Qa;Ea=Ha+2|0;continue}else{Ca=0;Da=Qa;Ea=Ha+-1|0;continue}}Ea=X(pa,g)|0;f[r>>2]=0;f[U>>2]=0;b[V>>0]=0;f[Z>>2]=0;f[Z+4>>2]=0;f[Z+8>>2]=0;f[Z+12>>2]=0;f[Z+16>>2]=0;f[Z+20>>2]=0;f[Z+24>>2]=0;Da=Ia+-1|0;Ca=p+(Da<<3)|0;Q=Ca;Aa=Vn(f[Q>>2]|0,f[Q+4>>2]|0,Ia|0,((Ia|0)<0)<<31>>31|0)|0;Q=I;za=Ca;f[za>>2]=Aa;f[za+4>>2]=Q;za=c+((X(oa+-2|0,g)|0)<<2)|0;Ca=c+(Ea<<2)|0;Ba=f[_>>2]|0;if(T){na=0;Ha=0;while(1){Ga=(f[za+(na<<2)>>2]|0)-(f[Ca+(na<<2)>>2]|0)|0;Fa=((Ga|0)>-1?Ga:0-Ga|0)+Ha|0;f[ta+(na<<2)>>2]=Ga;f[Ba+(na<<2)>>2]=Ga<<1^Ga>>31;na=na+1|0;if((na|0)==(g|0)){Sa=Fa;break}else Ha=Fa}}else Sa=0;mo(e,$,Ba,g);Ha=Zk(e)|0;na=I;Fa=Bm(e)|0;Ga=I;Oa=o+(Da<<3)|0;Ka=Oa;Na=f[Ka>>2]|0;Pa=f[Ka+4>>2]|0;Ta=+wm(Aa,Na);Ka=Vn(Fa|0,Ga|0,Ha|0,na|0)|0;Ua=+(Aa>>>0)+4294967296.0*+(Q|0);Va=+W(+(Ta*Ua));na=Vn(Ka|0,I|0,~~Va>>>0|0,(+K(Va)>=1.0?(Va>0.0?~~+Y(+J(Va/4294967296.0),4294967295.0)>>>0:~~+W((Va-+(~~Va>>>0))/4294967296.0)>>>0):0)|0)|0;Ka=r;f[Ka>>2]=na;f[Ka+4>>2]=Sa;b[V>>0]=0;f[Z>>2]=0;$f(aa,za,za+(g<<2)|0);f[s>>2]=ra;f[t>>2]=sa;f[j>>2]=f[s>>2];f[e>>2]=f[t>>2];Jf(ba,j,e);if((Ia|0)<1){Wa=xa;Xa=wa;Ya=va;Za=ua;_a=sa;$a=ra;ab=ra}else{Ka=n+Ia|0;na=f[q>>2]|0;Ha=na;Ga=f[H>>2]|0;Fa=Ka+-1|0;Ja=(Fa|0)==(n|0);La=Ka+-2|0;Ma=ka>>>0>>0;bb=~Ia;cb=Ia+2+((bb|0)>-2?bb:-2)|0;bb=Ga;db=Fa>>>0>n>>>0;eb=0;fb=1;while(1){eb=eb+1|0;sj(n|0,1,cb|0)|0;sj(n|0,0,eb|0)|0;gb=Vn(Na|0,Pa|0,fb|0,0)|0;d:while(1){if(T){sj(f[m>>2]|0,0,la|0)|0;hb=f[m>>2]|0;ib=0;jb=0;while(1){if(!(b[n+ib>>0]|0)){kb=f[l+(ib*12|0)>>2]|0;lb=0;do{mb=hb+(lb<<2)|0;f[mb>>2]=(f[mb>>2]|0)+(f[kb+(lb<<2)>>2]|0);lb=lb+1|0}while((lb|0)!=(g|0));nb=(1<>0]|0))pb=(1<>2]|0;do if(T){f[ib>>2]=(f[ib>>2]|0)/(fb|0)|0;if(!ma){jb=1;do{hb=ib+(jb<<2)|0;f[hb>>2]=(f[hb>>2]|0)/(fb|0)|0;jb=jb+1|0}while((jb|0)!=(g|0));jb=f[_>>2]|0;if(T)qb=jb;else{rb=0;sb=jb;break}}else qb=f[_>>2]|0;jb=0;hb=0;while(1){lb=(f[ib+(jb<<2)>>2]|0)-(f[Ca+(jb<<2)>>2]|0)|0;kb=((lb|0)>-1?lb:0-lb|0)+hb|0;f[na+(jb<<2)>>2]=lb;f[qb+(jb<<2)>>2]=lb<<1^lb>>31;jb=jb+1|0;if((jb|0)==(g|0)){rb=kb;sb=qb;break}else hb=kb}}else{rb=0;sb=f[_>>2]|0}while(0);mo(e,$,sb,g);ib=Zk(e)|0;hb=I;jb=Bm(e)|0;kb=I;Va=+wm(Aa,gb);lb=Vn(jb|0,kb|0,ib|0,hb|0)|0;Ta=+W(+(Va*Ua));hb=Vn(lb|0,I|0,~~Ta>>>0|0,(+K(Ta)>=1.0?(Ta>0.0?~~+Y(+J(Ta/4294967296.0),4294967295.0)>>>0:~~+W((Ta-+(~~Ta>>>0))/4294967296.0)>>>0):0)|0)|0;lb=f[r>>2]|0;if(!((lb|0)<=(hb|0)?!((lb|0)>=(hb|0)?(rb|0)<(f[U>>2]|0):0):0)){lb=r;f[lb>>2]=hb;f[lb+4>>2]=rb;b[V>>0]=ob;f[Z>>2]=fb;f[v>>2]=f[m>>2];f[w>>2]=f[E>>2];f[j>>2]=f[v>>2];f[e>>2]=f[w>>2];Jf(aa,j,e);f[x>>2]=Ha;f[y>>2]=Ga;f[j>>2]=f[x>>2];f[e>>2]=f[y>>2];Jf(ba,j,e)}if(Ja)break;tb=b[Fa>>0]|0;lb=-1;hb=tb;while(1){ib=lb+-1|0;ub=Ka+ib|0;kb=hb;hb=b[ub>>0]|0;if((hb&255)<(kb&255))break;if((ub|0)==(n|0)){vb=84;break d}else lb=ib}ib=Ka+lb|0;if((hb&255)<(tb&255)){wb=Fa;xb=tb}else{kb=Ka;jb=Fa;while(1){mb=jb+-1|0;if((hb&255)<(h[kb+-2>>0]|0)){wb=mb;xb=1;break}else{yb=jb;jb=mb;kb=yb}}}b[ub>>0]=xb;b[wb>>0]=hb;if((lb|0)<-1){zb=ib;Ab=Fa}else continue;while(1){kb=b[zb>>0]|0;b[zb>>0]=b[Ab>>0]|0;b[Ab>>0]=kb;kb=zb+1|0;jb=Ab+-1|0;if(kb>>>0>>0){zb=kb;Ab=jb}else continue d}}if(((vb|0)==84?(vb=0,db):0)?(gb=b[n>>0]|0,b[n>>0]=tb,b[Fa>>0]=gb,Ma):0){gb=La;ib=ka;do{lb=b[ib>>0]|0;b[ib>>0]=b[gb>>0]|0;b[gb>>0]=lb;ib=ib+1|0;gb=gb+-1|0}while(ib>>>0>>0)}if((fb|0)>=(Ia|0)){Wa=bb;Xa=na;Ya=bb;Za=na;_a=Ga;$a=Ha;ab=na;break}else fb=fb+1|0}}fb=f[Z>>2]|0;na=Vn(Na|0,Pa|0,fb|0,((fb|0)<0)<<31>>31|0)|0;fb=Oa;f[fb>>2]=na;f[fb+4>>2]=I;if(T){fb=f[ba>>2]|0;na=f[C>>2]|0;Ha=0;do{Ga=f[fb+(Ha<<2)>>2]|0;f[na+(Ha<<2)>>2]=Ga<<1^Ga>>31;Ha=Ha+1|0}while((Ha|0)!=(g|0));Bb=na}else Bb=f[C>>2]|0;lo(e,$,Bb,g);if((Ia|0)>0){Cb=a+40+(Da*12|0)|0;na=a+40+(Da*12|0)+4|0;Ha=a+40+(Da*12|0)+8|0;fb=0;do{Oa=f[na>>2]|0;Pa=f[Ha>>2]|0;Na=(Oa|0)==(Pa<<5|0);if(!(1<>0])){if(Na){if((Oa+1|0)<0){vb=95;break b}Ga=Pa<<6;bb=Oa+32&-32;vi(Cb,Oa>>>0<1073741823?(Ga>>>0>>0?bb:Ga):2147483647);Db=f[na>>2]|0}else Db=Oa;f[na>>2]=Db+1;Ga=(f[Cb>>2]|0)+(Db>>>5<<2)|0;f[Ga>>2]=f[Ga>>2]|1<<(Db&31)}else{if(Na){if((Oa+1|0)<0){vb=100;break b}Na=Pa<<6;Pa=Oa+32&-32;vi(Cb,Oa>>>0<1073741823?(Na>>>0>>0?Pa:Na):2147483647);Eb=f[na>>2]|0}else Eb=Oa;f[na>>2]=Eb+1;Oa=(f[Cb>>2]|0)+(Eb>>>5<<2)|0;f[Oa>>2]=f[Oa>>2]&~(1<<(Eb&31))}fb=fb+1|0}while((fb|0)<(Ia|0))}fb=f[aa>>2]|0;na=d+(Ea<<2)|0;Ha=f[Ca+4>>2]|0;Da=f[fb>>2]|0;Oa=f[fb+4>>2]|0;f[j>>2]=f[Ca>>2];f[da>>2]=Ha;f[k>>2]=Da;f[ea>>2]=Oa;Od(e,ca,j,k);f[na>>2]=f[e>>2];f[na+4>>2]=f[fa>>2];na=f[ga>>2]|0;if(na|0){Oa=f[ja>>2]|0;if((Oa|0)!=(na|0))f[ja>>2]=Oa+(~((Oa+-4-na|0)>>>2)<<2);Oq(na)}na=f[ha>>2]|0;if(na|0){Oa=f[ia>>2]|0;if((Oa|0)!=(na|0))f[ia>>2]=Oa+(~((Oa+-4-na|0)>>>2)<<2);Oq(na)}if((oa|0)<=2){Fb=Za;Gb=Ya;break a}na=f[B>>2]|0;qa=f[na>>2]|0;Oa=pa+-1|0;if((f[na+4>>2]|0)-qa>>2>>>0<=Oa>>>0){ya=na;vb=18;break}else{na=pa;pa=Oa;ra=$a;sa=_a;ta=ab;ua=Za;va=Ya;wa=Xa;xa=Wa;oa=na}}if((vb|0)==18)aq(ya);else if((vb|0)==95)aq(Cb);else if((vb|0)==100)aq(Cb)}else{Fb=M;Gb=N}while(0);if((g|0)>0)sj(f[l>>2]|0,0,g<<2|0)|0;g=f[l>>2]|0;N=f[c+4>>2]|0;M=f[g>>2]|0;Cb=f[g+4>>2]|0;f[j>>2]=f[c>>2];f[j+4>>2]=N;f[k>>2]=M;f[k+4>>2]=Cb;Od(e,a+8|0,j,k);f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];if(Fb|0){if((Gb|0)!=(Fb|0))f[H>>2]=Gb+(~((Gb+-4-Fb|0)>>>2)<<2);Oq(Fb)}Fb=f[m>>2]|0;if(Fb|0){m=f[E>>2]|0;if((m|0)!=(Fb|0))f[E>>2]=m+(~((m+-4-Fb|0)>>>2)<<2);Oq(Fb)}Fb=f[l+36>>2]|0;if(Fb|0){m=l+40|0;E=f[m>>2]|0;if((E|0)!=(Fb|0))f[m>>2]=E+(~((E+-4-Fb|0)>>>2)<<2);Oq(Fb)}Fb=f[l+24>>2]|0;if(Fb|0){E=l+28|0;m=f[E>>2]|0;if((m|0)!=(Fb|0))f[E>>2]=m+(~((m+-4-Fb|0)>>>2)<<2);Oq(Fb)}Fb=f[l+12>>2]|0;if(Fb|0){m=l+16|0;E=f[m>>2]|0;if((E|0)!=(Fb|0))f[m>>2]=E+(~((E+-4-Fb|0)>>>2)<<2);Oq(Fb)}Fb=f[l>>2]|0;if(!Fb){u=i;return 1}E=l+4|0;l=f[E>>2]|0;if((l|0)!=(Fb|0))f[E>>2]=l+(~((l+-4-Fb|0)>>>2)<<2);Oq(Fb);u=i;return 1}function eb(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0,Sa=0,Ta=0,Ua=0,Va=0,Wa=0,Xa=0,Ya=0,Za=0,_a=0,$a=0,ab=0,bb=0,cb=0,db=0,eb=0,fb=0,gb=0,hb=0,ib=0,jb=0,kb=0,lb=0,mb=0,nb=0,ob=0,pb=0,qb=0,rb=0,sb=0,tb=0,ub=0,vb=0,wb=0,xb=0,yb=0,zb=0,Ab=0,Bb=0,Cb=0,Db=0,Eb=0,Fb=0,Gb=0,Hb=0,Ib=0,Jb=0,Kb=0,Lb=0,Mb=0,Nb=0,Ob=0,Pb=0,Qb=0,Rb=0,Sb=0,Tb=0,Ub=0,Vb=0,Wb=0,Xb=0,Yb=0,Zb=0,_b=0;c=u;u=u+32|0;d=c+16|0;e=c+4|0;g=c;f[a+36>>2]=b;h=a+24|0;i=a+28|0;j=f[i>>2]|0;k=f[h>>2]|0;l=j-k>>2;m=k;k=j;if(l>>>0>=b>>>0){if(l>>>0>b>>>0?(j=m+(b<<2)|0,(j|0)!=(k|0)):0)f[i>>2]=k+(~((k+-4-j|0)>>>2)<<2)}else Ch(h,b-l|0,6140);f[d>>2]=0;l=d+4|0;f[l>>2]=0;j=d+8|0;f[j>>2]=0;if(b){if((b|0)<0)aq(d);k=((b+-1|0)>>>5)+1|0;m=ln(k<<2)|0;f[d>>2]=m;f[j>>2]=k;f[l>>2]=b;k=b>>>5;sj(m|0,0,k<<2|0)|0;n=b&31;o=m+(k<<2)|0;k=m;if(!n){p=b;q=k;r=m}else{f[o>>2]=f[o>>2]&~(-1>>>(32-n|0));p=b;q=k;r=m}}else{p=0;q=0;r=0}m=a+4|0;k=f[a>>2]|0;n=(f[m>>2]|0)-k|0;o=n>>2;f[e>>2]=0;s=e+4|0;f[s>>2]=0;t=e+8|0;f[t>>2]=0;do if(o){if((n|0)<0)aq(e);v=((o+-1|0)>>>5)+1|0;w=ln(v<<2)|0;f[e>>2]=w;f[t>>2]=v;f[s>>2]=o;v=o>>>5;sj(w|0,0,v<<2|0)|0;x=o&31;y=w+(v<<2)|0;if(x|0)f[y>>2]=f[y>>2]&~(-1>>>(32-x|0));if(o>>>0>2){x=a+12|0;y=a+32|0;v=a+52|0;w=a+56|0;z=a+48|0;A=b;B=k;C=0;D=q;E=r;a:while(1){F=B;G=C*3|0;if((G|0)!=-1){H=f[F+(G<<2)>>2]|0;I=G+1|0;J=((I>>>0)%3|0|0)==0?G+-2|0:I;if((J|0)==-1)K=-1;else K=f[F+(J<<2)>>2]|0;J=(((G>>>0)%3|0|0)==0?2:-1)+G|0;if((J|0)==-1)L=-1;else L=f[F+(J<<2)>>2]|0;if((H|0)!=(K|0)?!((H|0)==(L|0)|(K|0)==(L|0)):0){H=0;J=A;F=E;I=D;while(1){M=H+G|0;if(!(f[(f[e>>2]|0)+(M>>>5<<2)>>2]&1<<(M&31))){N=f[(f[a>>2]|0)+(M<<2)>>2]|0;f[g>>2]=N;if(!(f[F+(N>>>5<<2)>>2]&1<<(N&31))){O=0;P=J;Q=N}else{N=f[i>>2]|0;if((N|0)==(f[y>>2]|0))Ri(h,6140);else{f[N>>2]=-1;f[i>>2]=N+4}N=f[v>>2]|0;if((N|0)==(f[w>>2]|0))Ri(z,g);else{f[N>>2]=f[g>>2];f[v>>2]=N+4}N=f[l>>2]|0;R=f[j>>2]|0;if((N|0)==(R<<5|0)){if((N+1|0)<0){S=50;break a}T=R<<6;R=N+32&-32;vi(d,N>>>0<1073741823?(T>>>0>>0?R:T):2147483647);U=f[l>>2]|0}else U=N;f[l>>2]=U+1;N=(f[d>>2]|0)+(U>>>5<<2)|0;f[N>>2]=f[N>>2]&~(1<<(U&31));f[g>>2]=J;O=1;P=J+1|0;Q=J}N=f[d>>2]|0;T=N+(Q>>>5<<2)|0;f[T>>2]=f[T>>2]|1<<(Q&31);T=N;b:do if(O){R=M;while(1){if((R|0)==-1){S=64;break b}V=(f[e>>2]|0)+(R>>>5<<2)|0;f[V>>2]=f[V>>2]|1<<(R&31);V=f[g>>2]|0;f[(f[h>>2]|0)+(V<<2)>>2]=R;f[(f[a>>2]|0)+(R<<2)>>2]=V;V=R+1|0;W=((V>>>0)%3|0|0)==0?R+-2|0:V;do if((W|0)==-1)X=-1;else{V=f[(f[x>>2]|0)+(W<<2)>>2]|0;Y=V+1|0;if((V|0)==-1){X=-1;break}X=((Y>>>0)%3|0|0)==0?V+-2|0:Y}while(0);if((X|0)==(M|0))break;else R=X}}else{R=M;while(1){if((R|0)==-1){S=64;break b}W=(f[e>>2]|0)+(R>>>5<<2)|0;f[W>>2]=f[W>>2]|1<<(R&31);f[(f[h>>2]|0)+(f[g>>2]<<2)>>2]=R;W=R+1|0;Y=((W>>>0)%3|0|0)==0?R+-2|0:W;do if((Y|0)==-1)Z=-1;else{W=f[(f[x>>2]|0)+(Y<<2)>>2]|0;V=W+1|0;if((W|0)==-1){Z=-1;break}Z=((V>>>0)%3|0|0)==0?W+-2|0:V}while(0);if((Z|0)==(M|0))break;else R=Z}}while(0);c:do if((S|0)==64){S=0;if((M|0)==-1)break;R=(((M>>>0)%3|0|0)==0?2:-1)+M|0;if((R|0)==-1)break;Y=f[(f[x>>2]|0)+(R<<2)>>2]|0;if((Y|0)==-1)break;R=Y+(((Y>>>0)%3|0|0)==0?2:-1)|0;if((R|0)==-1)break;if(!O){Y=R;while(1){V=(f[e>>2]|0)+(Y>>>5<<2)|0;f[V>>2]=f[V>>2]|1<<(Y&31);V=(((Y>>>0)%3|0|0)==0?2:-1)+Y|0;if((V|0)==-1)break c;W=f[(f[x>>2]|0)+(V<<2)>>2]|0;if((W|0)==-1)break c;Y=W+(((W>>>0)%3|0|0)==0?2:-1)|0;if((Y|0)==-1)break c}}Y=f[a>>2]|0;W=R;do{V=(f[e>>2]|0)+(W>>>5<<2)|0;f[V>>2]=f[V>>2]|1<<(W&31);f[Y+(W<<2)>>2]=f[g>>2];V=(((W>>>0)%3|0|0)==0?2:-1)+W|0;if((V|0)==-1)break c;_=f[(f[x>>2]|0)+(V<<2)>>2]|0;if((_|0)==-1)break c;W=_+(((_>>>0)%3|0|0)==0?2:-1)|0}while((W|0)!=-1)}while(0);$=P;aa=T;ba=N}else{$=J;aa=I;ba=F}if((H|0)<2){H=H+1|0;J=$;F=ba;I=aa}else{ca=$;da=aa;ea=ba;break}}}else{ca=A;da=D;ea=E}}else{ca=A;da=D;ea=E}C=C+1|0;B=f[a>>2]|0;if(C>>>0>=(((f[m>>2]|0)-B>>2>>>0)/3|0)>>>0){S=18;break}else{A=ca;D=da;E=ea}}if((S|0)==18){fa=da;ga=f[l>>2]|0;break}else if((S|0)==50)aq(d)}else{fa=q;ga=p}}else{fa=q;ga=p}while(0);p=a+44|0;f[p>>2]=0;a=fa;fa=ga>>>5;q=a+(fa<<2)|0;S=ga&31;ga=(fa|0)!=0;d:do if(fa|S|0)if(!S){l=a;da=0;ea=ga;while(1){e:do if(ea){if(!(f[l>>2]&1)){ca=da+1|0;f[p>>2]=ca;ha=ca}else ha=da;if(!(f[l>>2]&2)){ca=ha+1|0;f[p>>2]=ca;ia=ca}else ia=ha;if(!(f[l>>2]&4)){ca=ia+1|0;f[p>>2]=ca;ja=ca}else ja=ia;if(!(f[l>>2]&8)){ca=ja+1|0;f[p>>2]=ca;ka=ca}else ka=ja;if(!(f[l>>2]&16)){ca=ka+1|0;f[p>>2]=ca;la=ca}else la=ka;if(!(f[l>>2]&32)){ca=la+1|0;f[p>>2]=ca;ma=ca}else ma=la;if(!(f[l>>2]&64)){ca=ma+1|0;f[p>>2]=ca;na=ca}else na=ma;if(!(f[l>>2]&128)){ca=na+1|0;f[p>>2]=ca;oa=ca}else oa=na;if(!(f[l>>2]&256)){ca=oa+1|0;f[p>>2]=ca;pa=ca}else pa=oa;if(!(f[l>>2]&512)){ca=pa+1|0;f[p>>2]=ca;qa=ca}else qa=pa;if(!(f[l>>2]&1024)){ca=qa+1|0;f[p>>2]=ca;ra=ca}else ra=qa;if(!(f[l>>2]&2048)){ca=ra+1|0;f[p>>2]=ca;sa=ca}else sa=ra;if(!(f[l>>2]&4096)){ca=sa+1|0;f[p>>2]=ca;ta=ca}else ta=sa;if(!(f[l>>2]&8192)){ca=ta+1|0;f[p>>2]=ca;ua=ca}else ua=ta;if(!(f[l>>2]&16384)){ca=ua+1|0;f[p>>2]=ca;va=ca}else va=ua;if(!(f[l>>2]&32768)){ca=va+1|0;f[p>>2]=ca;wa=ca}else wa=va;if(!(f[l>>2]&65536)){ca=wa+1|0;f[p>>2]=ca;xa=ca}else xa=wa;if(!(f[l>>2]&131072)){ca=xa+1|0;f[p>>2]=ca;ya=ca}else ya=xa;if(!(f[l>>2]&262144)){ca=ya+1|0;f[p>>2]=ca;za=ca}else za=ya;if(!(f[l>>2]&524288)){ca=za+1|0;f[p>>2]=ca;Aa=ca}else Aa=za;if(!(f[l>>2]&1048576)){ca=Aa+1|0;f[p>>2]=ca;Ba=ca}else Ba=Aa;if(!(f[l>>2]&2097152)){ca=Ba+1|0;f[p>>2]=ca;Ca=ca}else Ca=Ba;if(!(f[l>>2]&4194304)){ca=Ca+1|0;f[p>>2]=ca;Da=ca}else Da=Ca;if(!(f[l>>2]&8388608)){ca=Da+1|0;f[p>>2]=ca;Ea=ca}else Ea=Da;if(!(f[l>>2]&16777216)){ca=Ea+1|0;f[p>>2]=ca;Fa=ca}else Fa=Ea;if(!(f[l>>2]&33554432)){ca=Fa+1|0;f[p>>2]=ca;Ga=ca}else Ga=Fa;if(!(f[l>>2]&67108864)){ca=Ga+1|0;f[p>>2]=ca;Ha=ca}else Ha=Ga;if(!(f[l>>2]&134217728)){ca=Ha+1|0;f[p>>2]=ca;Ia=ca}else Ia=Ha;if(!(f[l>>2]&268435456)){ca=Ia+1|0;f[p>>2]=ca;Ja=ca}else Ja=Ia;if(!(f[l>>2]&536870912)){ca=Ja+1|0;f[p>>2]=ca;Ka=ca}else Ka=Ja;if(!(f[l>>2]&1073741824)){ca=Ka+1|0;f[p>>2]=ca;La=ca}else La=Ka;if((f[l>>2]|0)<=-1){Ma=La;break}ca=La+1|0;f[p>>2]=ca;Ma=ca}else{ca=0;m=da;while(1){if(!(f[l>>2]&1<>2]=ba;Na=ba}else Na=m;if((ca|0)==31){Ma=Na;break e}ca=ca+1|0;if(!ca)break d;else m=Na}}while(0);l=l+4|0;if((q|0)==(l|0))break;else{da=Ma;ea=1}}}else{if(ga){ea=0;da=a;l=0;while(1){if(!(f[da>>2]&1)){m=l+1|0;f[p>>2]=m;Oa=m;Pa=m}else{Oa=l;Pa=ea}if(!(f[da>>2]&2)){m=Oa+1|0;f[p>>2]=m;Qa=m;Ra=m}else{Qa=Oa;Ra=Pa}if(!(f[da>>2]&4)){m=Qa+1|0;f[p>>2]=m;Sa=m;Ta=m}else{Sa=Qa;Ta=Ra}if(!(f[da>>2]&8)){m=Sa+1|0;f[p>>2]=m;Ua=m;Va=m}else{Ua=Sa;Va=Ta}if(!(f[da>>2]&16)){m=Ua+1|0;f[p>>2]=m;Wa=m;Xa=m}else{Wa=Ua;Xa=Va}if(!(f[da>>2]&32)){m=Wa+1|0;f[p>>2]=m;Ya=m;Za=m}else{Ya=Wa;Za=Xa}if(!(f[da>>2]&64)){m=Ya+1|0;f[p>>2]=m;_a=m;$a=m}else{_a=Ya;$a=Za}if(!(f[da>>2]&128)){m=_a+1|0;f[p>>2]=m;ab=m;bb=m}else{ab=_a;bb=$a}if(!(f[da>>2]&256)){m=ab+1|0;f[p>>2]=m;cb=m;db=m}else{cb=ab;db=bb}if(!(f[da>>2]&512)){m=cb+1|0;f[p>>2]=m;eb=m;fb=m}else{eb=cb;fb=db}if(!(f[da>>2]&1024)){m=eb+1|0;f[p>>2]=m;gb=m;hb=m}else{gb=eb;hb=fb}if(!(f[da>>2]&2048)){m=gb+1|0;f[p>>2]=m;ib=m;jb=m}else{ib=gb;jb=hb}if(!(f[da>>2]&4096)){m=ib+1|0;f[p>>2]=m;kb=m;lb=m}else{kb=ib;lb=jb}if(!(f[da>>2]&8192)){m=kb+1|0;f[p>>2]=m;mb=m;nb=m}else{mb=kb;nb=lb}if(!(f[da>>2]&16384)){m=mb+1|0;f[p>>2]=m;ob=m;pb=m}else{ob=mb;pb=nb}if(!(f[da>>2]&32768)){m=ob+1|0;f[p>>2]=m;qb=m;rb=m}else{qb=ob;rb=pb}if(!(f[da>>2]&65536)){m=qb+1|0;f[p>>2]=m;sb=m;tb=m}else{sb=qb;tb=rb}if(!(f[da>>2]&131072)){m=sb+1|0;f[p>>2]=m;ub=m;vb=m}else{ub=sb;vb=tb}if(!(f[da>>2]&262144)){m=ub+1|0;f[p>>2]=m;wb=m;xb=m}else{wb=ub;xb=vb}if(!(f[da>>2]&524288)){m=wb+1|0;f[p>>2]=m;yb=m;zb=m}else{yb=wb;zb=xb}if(!(f[da>>2]&1048576)){m=yb+1|0;f[p>>2]=m;Ab=m;Bb=m}else{Ab=yb;Bb=zb}if(!(f[da>>2]&2097152)){m=Ab+1|0;f[p>>2]=m;Cb=m;Db=m}else{Cb=Ab;Db=Bb}if(!(f[da>>2]&4194304)){m=Cb+1|0;f[p>>2]=m;Eb=m;Fb=m}else{Eb=Cb;Fb=Db}if(!(f[da>>2]&8388608)){m=Eb+1|0;f[p>>2]=m;Gb=m;Hb=m}else{Gb=Eb;Hb=Fb}if(!(f[da>>2]&16777216)){m=Gb+1|0;f[p>>2]=m;Ib=m;Jb=m}else{Ib=Gb;Jb=Hb}if(!(f[da>>2]&33554432)){m=Ib+1|0;f[p>>2]=m;Kb=m;Lb=m}else{Kb=Ib;Lb=Jb}if(!(f[da>>2]&67108864)){m=Kb+1|0;f[p>>2]=m;Mb=m;Nb=m}else{Mb=Kb;Nb=Lb}if(!(f[da>>2]&134217728)){m=Mb+1|0;f[p>>2]=m;Ob=m;Pb=m}else{Ob=Mb;Pb=Nb}if(!(f[da>>2]&268435456)){m=Ob+1|0;f[p>>2]=m;Qb=m;Rb=m}else{Qb=Ob;Rb=Pb}if(!(f[da>>2]&536870912)){m=Qb+1|0;f[p>>2]=m;Sb=m;Tb=m}else{Sb=Qb;Tb=Rb}if(!(f[da>>2]&1073741824)){m=Sb+1|0;f[p>>2]=m;Ub=m;Vb=m}else{Ub=Sb;Vb=Tb}if((f[da>>2]|0)>-1){m=Ub+1|0;f[p>>2]=m;Wb=m;Xb=m}else{Wb=Ub;Xb=Vb}m=da+4|0;if((q|0)==(m|0)){Yb=m;Zb=Xb;break}else{ea=Xb;da=m;l=Wb}}}else{Yb=a;Zb=0}l=0;da=Zb;while(1){if(!(f[Yb>>2]&1<>2]=ea;_b=ea}else _b=da;l=l+1|0;if((l|0)==(S|0))break;else da=_b}}while(0);_b=f[e>>2]|0;if(_b|0)Oq(_b);_b=f[d>>2]|0;if(!_b){u=c;return 1}Oq(_b);u=c;return 1}function fb(a,c,d,e,g,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0,Sa=0,Ta=0.0,Ua=0.0,Va=0.0,Wa=0,Xa=0,Ya=0,Za=0,_a=0,$a=0,ab=0,bb=0,cb=0,db=0,eb=0,fb=0,gb=0,hb=0,ib=0,jb=0,kb=0,lb=0,mb=0,nb=0,ob=0,pb=0,qb=0,rb=0,sb=0,tb=0,ub=0,vb=0,wb=0,xb=0,yb=0,zb=0,Ab=0,Bb=0,Cb=0,Db=0,Eb=0,Fb=0,Gb=0,Hb=0,Ib=0;i=u;u=u+256|0;e=i+104|0;j=i+240|0;k=i+224|0;l=i+160|0;m=i+140|0;n=i+248|0;o=i+72|0;p=i+40|0;q=i+128|0;r=i;s=i+232|0;t=i+220|0;v=i+216|0;w=i+212|0;x=i+208|0;y=i+152|0;z=f[a+28>>2]|0;A=f[a+32>>2]|0;B=l;C=B+48|0;do{f[B>>2]=0;B=B+4|0}while((B|0)<(C|0));if(!g){D=0;E=0}else{Ci(l,g);D=f[l+12>>2]|0;E=f[l+16>>2]|0}B=l+16|0;C=E-D>>2;F=D;D=E;if(C>>>0>=g>>>0){if(C>>>0>g>>>0?(E=F+(g<<2)|0,(E|0)!=(D|0)):0)f[B>>2]=D+(~((D+-4-E|0)>>>2)<<2)}else Ci(l+12|0,g-C|0);C=l+24|0;E=l+28|0;D=f[E>>2]|0;B=f[C>>2]|0;F=D-B>>2;G=B;B=D;if(F>>>0>=g>>>0){if(F>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[E>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else Ci(C,g-F|0);F=l+36|0;C=l+40|0;D=f[C>>2]|0;B=f[F>>2]|0;E=D-B>>2;G=B;B=D;if(E>>>0>=g>>>0){if(E>>>0>g>>>0?(D=G+(g<<2)|0,(D|0)!=(B|0)):0)f[C>>2]=B+(~((B+-4-D|0)>>>2)<<2)}else Ci(F,g-E|0);f[m>>2]=0;E=m+4|0;f[E>>2]=0;f[m+8>>2]=0;F=(g|0)==0;do if(!F)if(g>>>0>1073741823)aq(m);else{D=g<<2;B=ln(D)|0;f[m>>2]=B;C=B+(g<<2)|0;f[m+8>>2]=C;sj(B|0,0,D|0)|0;f[E>>2]=C;break}while(0);C=a+136|0;D=a+140|0;B=f[D>>2]|0;G=f[C>>2]|0;H=B-G>>2;L=G;G=B;if(H>>>0>=g>>>0){if(H>>>0>g>>>0?(B=L+(g<<2)|0,(B|0)!=(G|0)):0)f[D>>2]=G+(~((G+-4-B|0)>>>2)<<2)}else Ci(C,g-H|0);f[o>>2]=0;f[o+4>>2]=0;f[o+8>>2]=0;f[o+12>>2]=0;f[o+16>>2]=0;f[o+20>>2]=0;f[o+24>>2]=0;f[o+28>>2]=0;f[p>>2]=0;f[p+4>>2]=0;f[p+8>>2]=0;f[p+12>>2]=0;f[p+16>>2]=0;f[p+20>>2]=0;f[p+24>>2]=0;f[p+28>>2]=0;f[q>>2]=0;H=q+4|0;f[H>>2]=0;f[q+8>>2]=0;if(F){M=0;N=0;O=0;P=0}else{F=g<<2;B=ln(F)|0;f[q>>2]=B;G=B+(g<<2)|0;f[q+8>>2]=G;sj(B|0,0,F|0)|0;f[H>>2]=G;M=B;N=G;O=G;P=B}B=a+36|0;G=f[B>>2]|0;F=f[G+4>>2]|0;D=f[G>>2]|0;L=F-D|0;a:do if((L|0)>4){Q=L>>2;R=z+12|0;S=(g|0)>0;T=r+4|0;U=r+8|0;V=r+12|0;Z=a+136|0;_=a+96|0;$=r+16|0;aa=r+28|0;ba=a+8|0;ca=j+4|0;da=k+4|0;ea=e+4|0;fa=r+28|0;ga=r+16|0;ha=r+20|0;ia=r+32|0;ja=n+1|0;ka=g<<2;la=(g|0)==1;ma=Q+-1|0;if(F-D>>2>>>0>ma>>>0){na=Q;oa=ma;pa=P;qa=O;ra=M;sa=M;ta=N;ua=M;va=N;wa=D}else{xa=G;aq(xa)}b:while(1){ma=f[wa+(oa<<2)>>2]|0;Q=(((ma>>>0)%3|0|0)==0?2:-1)+ma|0;ya=(ma|0)==-1|(Q|0)==-1;za=1;Aa=0;Ba=ma;c:while(1){Ca=za^1;Da=Aa;Ea=Ba;while(1){if((Ea|0)==-1){Fa=Da;break c}Ga=f[l+(Da*12|0)>>2]|0;Ha=f[R>>2]|0;Ia=f[Ha+(Ea<<2)>>2]|0;if((Ia|0)!=-1){Ja=f[z>>2]|0;Ka=f[A>>2]|0;La=f[Ka+(f[Ja+(Ia<<2)>>2]<<2)>>2]|0;Ma=Ia+1|0;Na=((Ma>>>0)%3|0|0)==0?Ia+-2|0:Ma;if((Na|0)==-1)Oa=-1;else Oa=f[Ja+(Na<<2)>>2]|0;Na=f[Ka+(Oa<<2)>>2]|0;Ma=(((Ia>>>0)%3|0|0)==0?2:-1)+Ia|0;if((Ma|0)==-1)Pa=-1;else Pa=f[Ja+(Ma<<2)>>2]|0;Ma=f[Ka+(Pa<<2)>>2]|0;if((La|0)<(oa|0)&(Na|0)<(oa|0)&(Ma|0)<(oa|0)){Ka=X(La,g)|0;La=X(Na,g)|0;Na=X(Ma,g)|0;if(S){Ma=0;do{f[Ga+(Ma<<2)>>2]=(f[c+(Ma+Na<<2)>>2]|0)+(f[c+(Ma+La<<2)>>2]|0)-(f[c+(Ma+Ka<<2)>>2]|0);Ma=Ma+1|0}while((Ma|0)!=(g|0))}Ma=Da+1|0;if((Ma|0)==4){Fa=4;break c}else Qa=Ma}else Qa=Da}else Qa=Da;do if(za){Ma=Ea+1|0;Ka=((Ma>>>0)%3|0|0)==0?Ea+-2|0:Ma;if((Ka|0)!=-1?(Ma=f[Ha+(Ka<<2)>>2]|0,Ka=Ma+1|0,(Ma|0)!=-1):0)Ra=((Ka>>>0)%3|0|0)==0?Ma+-2|0:Ka;else Ra=-1}else{Ka=(((Ea>>>0)%3|0|0)==0?2:-1)+Ea|0;if((Ka|0)!=-1?(Ma=f[Ha+(Ka<<2)>>2]|0,(Ma|0)!=-1):0)if(!((Ma>>>0)%3|0)){Ra=Ma+2|0;break}else{Ra=Ma+-1|0;break}else Ra=-1}while(0);if((Ra|0)==(ma|0)){Fa=Qa;break c}if((Ra|0)!=-1|Ca){Da=Qa;Ea=Ra}else break}if(ya){za=0;Aa=Qa;Ba=-1;continue}Ea=f[Ha+(Q<<2)>>2]|0;if((Ea|0)==-1){za=0;Aa=Qa;Ba=-1;continue}if(!((Ea>>>0)%3|0)){za=0;Aa=Qa;Ba=Ea+2|0;continue}else{za=0;Aa=Qa;Ba=Ea+-1|0;continue}}Ba=X(oa,g)|0;f[r>>2]=0;f[T>>2]=0;b[U>>0]=0;f[V>>2]=0;f[V+4>>2]=0;f[V+8>>2]=0;f[V+12>>2]=0;f[V+16>>2]=0;f[V+20>>2]=0;f[V+24>>2]=0;Aa=Fa+-1|0;za=p+(Aa<<3)|0;Q=za;ya=Vn(f[Q>>2]|0,f[Q+4>>2]|0,Fa|0,((Fa|0)<0)<<31>>31|0)|0;Q=I;ma=za;f[ma>>2]=ya;f[ma+4>>2]=Q;ma=c+((X(na+-2|0,g)|0)<<2)|0;za=c+(Ba<<2)|0;Ea=f[Z>>2]|0;if(S){Da=0;Ca=0;while(1){Ma=(f[ma+(Da<<2)>>2]|0)-(f[za+(Da<<2)>>2]|0)|0;Ka=((Ma|0)>-1?Ma:0-Ma|0)+Ca|0;f[ra+(Da<<2)>>2]=Ma;f[Ea+(Da<<2)>>2]=Ma<<1^Ma>>31;Da=Da+1|0;if((Da|0)==(g|0)){Sa=Ka;break}else Ca=Ka}}else Sa=0;mo(e,_,Ea,g);Ca=Zk(e)|0;Da=I;Ka=Bm(e)|0;Ma=I;La=o+(Aa<<3)|0;Na=La;Ga=f[Na>>2]|0;Ja=f[Na+4>>2]|0;Ta=+wm(ya,Ga);Na=Vn(Ka|0,Ma|0,Ca|0,Da|0)|0;Ua=+(ya>>>0)+4294967296.0*+(Q|0);Va=+W(+(Ta*Ua));Da=Vn(Na|0,I|0,~~Va>>>0|0,(+K(Va)>=1.0?(Va>0.0?~~+Y(+J(Va/4294967296.0),4294967295.0)>>>0:~~+W((Va-+(~~Va>>>0))/4294967296.0)>>>0):0)|0)|0;Na=r;f[Na>>2]=Da;f[Na+4>>2]=Sa;b[U>>0]=0;f[V>>2]=0;$f($,ma,ma+(g<<2)|0);f[s>>2]=pa;f[t>>2]=qa;f[j>>2]=f[s>>2];f[e>>2]=f[t>>2];Jf(aa,j,e);if((Fa|0)<1){Wa=va;Xa=ua;Ya=ta;Za=sa;_a=qa;$a=pa;ab=pa}else{Na=n+Fa|0;Da=f[q>>2]|0;Ca=Da;Ma=f[H>>2]|0;Ka=Na+-1|0;Ia=(Ka|0)==(n|0);bb=Na+-2|0;cb=ja>>>0>>0;db=~Fa;eb=Fa+2+((db|0)>-2?db:-2)|0;db=Ma;fb=Ka>>>0>n>>>0;gb=0;hb=1;while(1){gb=gb+1|0;sj(n|0,1,eb|0)|0;sj(n|0,0,gb|0)|0;ib=Vn(Ga|0,Ja|0,hb|0,0)|0;d:while(1){if(S){sj(f[m>>2]|0,0,ka|0)|0;jb=f[m>>2]|0;kb=0;lb=0;while(1){if(!(b[n+kb>>0]|0)){mb=f[l+(kb*12|0)>>2]|0;nb=0;do{ob=jb+(nb<<2)|0;f[ob>>2]=(f[ob>>2]|0)+(f[mb+(nb<<2)>>2]|0);nb=nb+1|0}while((nb|0)!=(g|0));pb=(1<>0]|0))rb=(1<>2]|0;do if(S){f[kb>>2]=(f[kb>>2]|0)/(hb|0)|0;if(!la){lb=1;do{jb=kb+(lb<<2)|0;f[jb>>2]=(f[jb>>2]|0)/(hb|0)|0;lb=lb+1|0}while((lb|0)!=(g|0));lb=f[Z>>2]|0;if(S)sb=lb;else{tb=0;ub=lb;break}}else sb=f[Z>>2]|0;lb=0;jb=0;while(1){nb=(f[kb+(lb<<2)>>2]|0)-(f[za+(lb<<2)>>2]|0)|0;mb=((nb|0)>-1?nb:0-nb|0)+jb|0;f[Da+(lb<<2)>>2]=nb;f[sb+(lb<<2)>>2]=nb<<1^nb>>31;lb=lb+1|0;if((lb|0)==(g|0)){tb=mb;ub=sb;break}else jb=mb}}else{tb=0;ub=f[Z>>2]|0}while(0);mo(e,_,ub,g);kb=Zk(e)|0;jb=I;lb=Bm(e)|0;mb=I;Va=+wm(ya,ib);nb=Vn(lb|0,mb|0,kb|0,jb|0)|0;Ta=+W(+(Va*Ua));jb=Vn(nb|0,I|0,~~Ta>>>0|0,(+K(Ta)>=1.0?(Ta>0.0?~~+Y(+J(Ta/4294967296.0),4294967295.0)>>>0:~~+W((Ta-+(~~Ta>>>0))/4294967296.0)>>>0):0)|0)|0;nb=f[r>>2]|0;if(!((nb|0)<=(jb|0)?!((nb|0)>=(jb|0)?(tb|0)<(f[T>>2]|0):0):0)){nb=r;f[nb>>2]=jb;f[nb+4>>2]=tb;b[U>>0]=qb;f[V>>2]=hb;f[v>>2]=f[m>>2];f[w>>2]=f[E>>2];f[j>>2]=f[v>>2];f[e>>2]=f[w>>2];Jf($,j,e);f[x>>2]=Ca;f[y>>2]=Ma;f[j>>2]=f[x>>2];f[e>>2]=f[y>>2];Jf(aa,j,e)}if(Ia)break;vb=b[Ka>>0]|0;nb=-1;jb=vb;while(1){kb=nb+-1|0;wb=Na+kb|0;mb=jb;jb=b[wb>>0]|0;if((jb&255)<(mb&255))break;if((wb|0)==(n|0)){xb=84;break d}else nb=kb}kb=Na+nb|0;if((jb&255)<(vb&255)){yb=Ka;zb=vb}else{mb=Na;lb=Ka;while(1){ob=lb+-1|0;if((jb&255)<(h[mb+-2>>0]|0)){yb=ob;zb=1;break}else{Ab=lb;lb=ob;mb=Ab}}}b[wb>>0]=zb;b[yb>>0]=jb;if((nb|0)<-1){Bb=kb;Cb=Ka}else continue;while(1){mb=b[Bb>>0]|0;b[Bb>>0]=b[Cb>>0]|0;b[Cb>>0]=mb;mb=Bb+1|0;lb=Cb+-1|0;if(mb>>>0>>0){Bb=mb;Cb=lb}else continue d}}if(((xb|0)==84?(xb=0,fb):0)?(ib=b[n>>0]|0,b[n>>0]=vb,b[Ka>>0]=ib,cb):0){ib=bb;kb=ja;do{nb=b[kb>>0]|0;b[kb>>0]=b[ib>>0]|0;b[ib>>0]=nb;kb=kb+1|0;ib=ib+-1|0}while(kb>>>0>>0)}if((hb|0)>=(Fa|0)){Wa=db;Xa=Da;Ya=db;Za=Da;_a=Ma;$a=Ca;ab=Da;break}else hb=hb+1|0}}hb=f[V>>2]|0;Da=Vn(Ga|0,Ja|0,hb|0,((hb|0)<0)<<31>>31|0)|0;hb=La;f[hb>>2]=Da;f[hb+4>>2]=I;if(S){hb=f[aa>>2]|0;Da=f[C>>2]|0;Ca=0;do{Ma=f[hb+(Ca<<2)>>2]|0;f[Da+(Ca<<2)>>2]=Ma<<1^Ma>>31;Ca=Ca+1|0}while((Ca|0)!=(g|0));Db=Da}else Db=f[C>>2]|0;lo(e,_,Db,g);if((Fa|0)>0){Eb=a+40+(Aa*12|0)|0;Da=a+40+(Aa*12|0)+4|0;Ca=a+40+(Aa*12|0)+8|0;hb=0;do{La=f[Da>>2]|0;Ja=f[Ca>>2]|0;Ga=(La|0)==(Ja<<5|0);if(!(1<>0])){if(Ga){if((La+1|0)<0){xb=95;break b}Ma=Ja<<6;db=La+32&-32;vi(Eb,La>>>0<1073741823?(Ma>>>0>>0?db:Ma):2147483647);Fb=f[Da>>2]|0}else Fb=La;f[Da>>2]=Fb+1;Ma=(f[Eb>>2]|0)+(Fb>>>5<<2)|0;f[Ma>>2]=f[Ma>>2]|1<<(Fb&31)}else{if(Ga){if((La+1|0)<0){xb=100;break b}Ga=Ja<<6;Ja=La+32&-32;vi(Eb,La>>>0<1073741823?(Ga>>>0>>0?Ja:Ga):2147483647);Gb=f[Da>>2]|0}else Gb=La;f[Da>>2]=Gb+1;La=(f[Eb>>2]|0)+(Gb>>>5<<2)|0;f[La>>2]=f[La>>2]&~(1<<(Gb&31))}hb=hb+1|0}while((hb|0)<(Fa|0))}hb=f[$>>2]|0;Da=d+(Ba<<2)|0;Ca=f[za+4>>2]|0;Aa=f[hb>>2]|0;La=f[hb+4>>2]|0;f[j>>2]=f[za>>2];f[ca>>2]=Ca;f[k>>2]=Aa;f[da>>2]=La;Od(e,ba,j,k);f[Da>>2]=f[e>>2];f[Da+4>>2]=f[ea>>2];Da=f[fa>>2]|0;if(Da|0){La=f[ia>>2]|0;if((La|0)!=(Da|0))f[ia>>2]=La+(~((La+-4-Da|0)>>>2)<<2);Oq(Da)}Da=f[ga>>2]|0;if(Da|0){La=f[ha>>2]|0;if((La|0)!=(Da|0))f[ha>>2]=La+(~((La+-4-Da|0)>>>2)<<2);Oq(Da)}if((na|0)<=2){Hb=Za;Ib=Ya;break a}Da=f[B>>2]|0;wa=f[Da>>2]|0;La=oa+-1|0;if((f[Da+4>>2]|0)-wa>>2>>>0<=La>>>0){xa=Da;xb=18;break}else{Da=oa;oa=La;pa=$a;qa=_a;ra=ab;sa=Za;ta=Ya;ua=Xa;va=Wa;na=Da}}if((xb|0)==18)aq(xa);else if((xb|0)==95)aq(Eb);else if((xb|0)==100)aq(Eb)}else{Hb=M;Ib=N}while(0);if((g|0)>0)sj(f[l>>2]|0,0,g<<2|0)|0;g=f[l>>2]|0;N=f[c+4>>2]|0;M=f[g>>2]|0;Eb=f[g+4>>2]|0;f[j>>2]=f[c>>2];f[j+4>>2]=N;f[k>>2]=M;f[k+4>>2]=Eb;Od(e,a+8|0,j,k);f[d>>2]=f[e>>2];f[d+4>>2]=f[e+4>>2];if(Hb|0){if((Ib|0)!=(Hb|0))f[H>>2]=Ib+(~((Ib+-4-Hb|0)>>>2)<<2);Oq(Hb)}Hb=f[m>>2]|0;if(Hb|0){m=f[E>>2]|0;if((m|0)!=(Hb|0))f[E>>2]=m+(~((m+-4-Hb|0)>>>2)<<2);Oq(Hb)}Hb=f[l+36>>2]|0;if(Hb|0){m=l+40|0;E=f[m>>2]|0;if((E|0)!=(Hb|0))f[m>>2]=E+(~((E+-4-Hb|0)>>>2)<<2);Oq(Hb)}Hb=f[l+24>>2]|0;if(Hb|0){E=l+28|0;m=f[E>>2]|0;if((m|0)!=(Hb|0))f[E>>2]=m+(~((m+-4-Hb|0)>>>2)<<2);Oq(Hb)}Hb=f[l+12>>2]|0;if(Hb|0){m=l+16|0;E=f[m>>2]|0;if((E|0)!=(Hb|0))f[m>>2]=E+(~((E+-4-Hb|0)>>>2)<<2);Oq(Hb)}Hb=f[l>>2]|0;if(!Hb){u=i;return 1}E=l+4|0;l=f[E>>2]|0;if((l|0)!=(Hb|0))f[E>>2]=l+(~((l+-4-Hb|0)>>>2)<<2);Oq(Hb);u=i;return 1}function gb(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=Oa,La=0,Ma=0,Na=0,Pa=0,Qa=Oa,Ra=0,Sa=0,Ta=0,Ua=0,Va=0;c=u;u=u+80|0;d=c+60|0;e=c+48|0;g=c+24|0;h=c+12|0;i=c;j=a+28|0;k=f[j>>2]|0;l=f[k+4>>2]|0;m=f[l+80>>2]|0;o=a+4|0;p=a+8|0;q=f[p>>2]|0;r=f[o>>2]|0;s=(q|0)==(r|0);t=r;if(s){f[a+72>>2]=0;v=1;u=c;return v|0}w=f[l+8>>2]|0;x=q-r>>2;r=0;q=0;do{r=r+(b[(f[w+(f[t+(q<<2)>>2]<<2)>>2]|0)+24>>0]|0)|0;q=q+1|0}while(q>>>0>>0);f[a+72>>2]=r;if(s){v=1;u=c;return v|0}s=g+4|0;r=g+8|0;x=d+8|0;q=d+4|0;w=d+11|0;y=g+12|0;z=d+8|0;A=d+4|0;B=d+11|0;C=h+4|0;D=h+8|0;E=i+8|0;F=i+4|0;G=d+11|0;H=d+4|0;I=i+11|0;J=d+8|0;K=d+4|0;L=d+11|0;M=d+11|0;N=d+4|0;O=h+8|0;P=a+40|0;Q=a+44|0;R=a+36|0;S=a+64|0;T=a+68|0;U=a+60|0;V=g+8|0;W=g+20|0;X=e+8|0;Y=e+4|0;Z=e+11|0;_=g+4|0;aa=g+8|0;ba=h+4|0;ca=h+8|0;da=h+8|0;ea=a+52|0;fa=a+56|0;ga=a+48|0;a=g+8|0;ha=0;ia=t;t=l;l=k;a:while(1){k=f[ia+(ha<<2)>>2]|0;ja=f[(f[t+8>>2]|0)+(k<<2)>>2]|0;switch(f[ja+28>>2]|0){case 9:{f[g>>2]=1196;f[s>>2]=-1;f[r>>2]=0;f[r+4>>2]=0;f[r+8>>2]=0;f[r+12>>2]=0;ka=f[l+48>>2]|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;la=ln(32)|0;f[d>>2]=la;f[x>>2]=-2147483616;f[q>>2]=17;ma=la;na=14495;oa=ma+17|0;do{b[ma>>0]=b[na>>0]|0;ma=ma+1|0;na=na+1|0}while((ma|0)<(oa|0));b[la+17>>0]=0;pa=ka+16|0;qa=f[pa>>2]|0;if(qa){ra=pa;sa=qa;b:while(1){qa=sa;while(1){if((f[qa+16>>2]|0)>=(k|0))break;ta=f[qa+4>>2]|0;if(!ta){ua=ra;break b}else qa=ta}sa=f[qa>>2]|0;if(!sa){ua=qa;break}else ra=qa}if(((ua|0)!=(pa|0)?(k|0)>=(f[ua+16>>2]|0):0)?(ra=ua+20|0,(Jh(ra,d)|0)!=0):0)va=Hk(ra,d,-1)|0;else wa=17}else wa=17;if((wa|0)==17){wa=0;va=Hk(ka,d,-1)|0}if((b[w>>0]|0)<0)Oq(f[d>>2]|0);if((va|0)<1)xa=1;else{ra=f[(f[j>>2]|0)+48>>2]|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;sa=ln(32)|0;f[d>>2]=sa;f[z>>2]=-2147483616;f[A>>2]=19;ma=sa;na=14438;oa=ma+19|0;do{b[ma>>0]=b[na>>0]|0;ma=ma+1|0;na=na+1|0}while((ma|0)<(oa|0));b[sa+19>>0]=0;ka=ra+16|0;pa=f[ka>>2]|0;if(pa){la=ka;ta=pa;c:while(1){pa=ta;while(1){if((f[pa+16>>2]|0)>=(k|0))break;ya=f[pa+4>>2]|0;if(!ya){za=la;break c}else pa=ya}ta=f[pa>>2]|0;if(!ta){za=pa;break}else la=pa}if((za|0)!=(ka|0)?(k|0)>=(f[za+16>>2]|0):0)Aa=za+20|0;else wa=29}else wa=29;if((wa|0)==29){wa=0;Aa=ra}if(!(Jh(Aa,d)|0))Ba=0;else{la=f[(f[j>>2]|0)+48>>2]|0;f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;ta=ln(32)|0;f[e>>2]=ta;f[X>>2]=-2147483616;f[Y>>2]=18;ma=ta;na=14458;oa=ma+18|0;do{b[ma>>0]=b[na>>0]|0;ma=ma+1|0;na=na+1|0}while((ma|0)<(oa|0));b[ta+18>>0]=0;ra=la+16|0;ka=f[ra>>2]|0;if(ka){sa=ra;qa=ka;d:while(1){ka=qa;while(1){if((f[ka+16>>2]|0)>=(k|0))break;ya=f[ka+4>>2]|0;if(!ya){Ca=sa;break d}else ka=ya}qa=f[ka>>2]|0;if(!qa){Ca=ka;break}else sa=ka}if((Ca|0)!=(ra|0)?(k|0)>=(f[Ca+16>>2]|0):0)Da=Ca+20|0;else wa=39}else wa=39;if((wa|0)==39){wa=0;Da=la}sa=(Jh(Da,e)|0)!=0;if((b[Z>>0]|0)<0)Oq(f[e>>2]|0);Ba=sa}if((b[B>>0]|0)<0)Oq(f[d>>2]|0);if(Ba){sa=ja+24|0;qa=b[sa>>0]|0;ta=qa<<24>>24;f[h>>2]=0;f[C>>2]=0;f[D>>2]=0;if(!(qa<<24>>24))Ea=0;else{if(qa<<24>>24<0){wa=48;break a}qa=ta<<2;pa=ln(qa)|0;f[h>>2]=pa;ya=pa+(ta<<2)|0;f[O>>2]=ya;sj(pa|0,0,qa|0)|0;f[C>>2]=ya;Ea=pa}pa=f[(f[j>>2]|0)+48>>2]|0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;ya=ln(32)|0;f[i>>2]=ya;f[E>>2]=-2147483616;f[F>>2]=19;ma=ya;na=14438;oa=ma+19|0;do{b[ma>>0]=b[na>>0]|0;ma=ma+1|0;na=na+1|0}while((ma|0)<(oa|0));b[ya+19>>0]=0;la=b[sa>>0]|0;ra=la<<24>>24;qa=pa+16|0;ta=f[qa>>2]|0;if(ta){Fa=qa;Ga=ta;e:while(1){ta=Ga;while(1){if((f[ta+16>>2]|0)>=(k|0))break;Ha=f[ta+4>>2]|0;if(!Ha){Ia=Fa;break e}else ta=Ha}Ga=f[ta>>2]|0;if(!Ga){Ia=ta;break}else Fa=ta}if(((Ia|0)!=(qa|0)?(k|0)>=(f[Ia+16>>2]|0):0)?(Fa=Ia+20|0,(Jh(Fa,i)|0)!=0):0){Ga=Rg(Fa,i)|0;if((Ga|0)!=(Ia+24|0)){pj(d,Ga+28|0);Ga=b[M>>0]|0;Fa=Ga<<24>>24<0;if(!((Fa?f[N>>2]|0:Ga&255)|0))Ja=Ga;else{if(la<<24>>24>0){ya=Fa?f[d>>2]|0:d;Fa=0;do{Ka=$(bq(ya,e));ka=ya;ya=f[e>>2]|0;if((ka|0)==(ya|0))break;n[Ea+(Fa<<2)>>2]=Ka;Fa=Fa+1|0}while((Fa|0)<(ra|0));La=b[M>>0]|0}else La=Ga;Ja=La}if(Ja<<24>>24<0)Oq(f[d>>2]|0)}}else wa=69}else wa=69;if((wa|0)==69?(wa=0,Fa=Rg(pa,i)|0,(Fa|0)!=(pa+4|0)):0){pj(d,Fa+28|0);Fa=b[G>>0]|0;ya=Fa<<24>>24<0;if(!((ya?f[H>>2]|0:Fa&255)|0))Ma=Fa;else{if(la<<24>>24>0){qa=ya?f[d>>2]|0:d;ya=0;do{Ka=$(bq(qa,e));ka=qa;qa=f[e>>2]|0;if((ka|0)==(qa|0))break;n[Ea+(ya<<2)>>2]=Ka;ya=ya+1|0}while((ya|0)<(ra|0));Na=b[G>>0]|0}else Na=Fa;Ma=Na}if(Ma<<24>>24<0)Oq(f[d>>2]|0)}if((b[I>>0]|0)<0)Oq(f[i>>2]|0);ra=f[(f[j>>2]|0)+48>>2]|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;ya=ln(32)|0;f[d>>2]=ya;f[J>>2]=-2147483616;f[K>>2]=18;ma=ya;na=14458;oa=ma+18|0;do{b[ma>>0]=b[na>>0]|0;ma=ma+1|0;na=na+1|0}while((ma|0)<(oa|0));b[ya+18>>0]=0;na=ra+16|0;ma=f[na>>2]|0;do if(ma){oa=na;Fa=ma;f:while(1){qa=Fa;while(1){if((f[qa+16>>2]|0)>=(k|0))break;la=f[qa+4>>2]|0;if(!la){Pa=oa;break f}else qa=la}Fa=f[qa>>2]|0;if(!Fa){Pa=qa;break}else oa=qa}if((Pa|0)!=(na|0)?(k|0)>=(f[Pa+16>>2]|0):0){oa=Pa+20|0;if(!(Jh(oa,d)|0)){wa=91;break}Qa=$(sk(oa,d,$(1.0)))}else wa=91}else wa=91;while(0);if((wa|0)==91){wa=0;Qa=$(sk(ra,d,$(1.0)))}if((b[L>>0]|0)<0)Oq(f[d>>2]|0);Dl(g,va,f[h>>2]|0,b[sa>>0]|0,Qa);k=f[h>>2]|0;if(k|0){na=f[C>>2]|0;if((na|0)!=(k|0))f[C>>2]=na+(~((na+-4-k|0)>>>2)<<2);Oq(k)}}else Wd(g,ja,va)|0;k=f[P>>2]|0;if((k|0)==(f[Q>>2]|0))Cf(R,g);else{f[k>>2]=1196;f[k+4>>2]=f[s>>2];Ra=k+8|0;f[Ra>>2]=0;na=k+12|0;f[na>>2]=0;f[k+16>>2]=0;ma=(f[y>>2]|0)-(f[V>>2]|0)|0;ya=ma>>2;if(ya|0){if(ya>>>0>1073741823){wa=103;break a}oa=ln(ma)|0;f[na>>2]=oa;f[Ra>>2]=oa;f[k+16>>2]=oa+(ya<<2);ya=f[V>>2]|0;ma=(f[y>>2]|0)-ya|0;if((ma|0)>0){kh(oa|0,ya|0,ma|0)|0;f[na>>2]=oa+(ma>>>2<<2)}}f[k+20>>2]=f[W>>2];f[P>>2]=(f[P>>2]|0)+24}Qe(d,g,ja,m);k=f[S>>2]|0;if(k>>>0<(f[T>>2]|0)>>>0){ma=f[d>>2]|0;f[d>>2]=0;f[k>>2]=ma;f[S>>2]=k+4}else Ze(U,d);k=f[d>>2]|0;f[d>>2]=0;if(k|0){ma=k+88|0;oa=f[ma>>2]|0;f[ma>>2]=0;if(oa|0){ma=f[oa+8>>2]|0;if(ma|0){na=oa+12|0;if((f[na>>2]|0)!=(ma|0))f[na>>2]=ma;Oq(ma)}Oq(oa)}oa=f[k+68>>2]|0;if(oa|0){ma=k+72|0;na=f[ma>>2]|0;if((na|0)!=(oa|0))f[ma>>2]=na+(~((na+-4-oa|0)>>>2)<<2);Oq(oa)}oa=k+64|0;na=f[oa>>2]|0;f[oa>>2]=0;if(na|0){oa=f[na>>2]|0;if(oa|0){ma=na+4|0;if((f[ma>>2]|0)!=(oa|0))f[ma>>2]=oa;Oq(oa)}Oq(na)}Oq(k)}xa=0}f[g>>2]=1196;k=f[r>>2]|0;if(k|0){na=f[y>>2]|0;if((na|0)!=(k|0))f[y>>2]=na+(~((na+-4-k|0)>>>2)<<2);Oq(k)}if(xa|0){v=0;wa=169;break a}break}case 1:case 3:case 5:{k=ja+24|0;na=b[k>>0]|0;oa=na<<24>>24;f[g>>2]=0;f[_>>2]=0;f[aa>>2]=0;if(!(na<<24>>24))Sa=0;else{if(na<<24>>24<0){wa=137;break a}na=ln(oa<<2)|0;f[_>>2]=na;f[g>>2]=na;ma=na+(oa<<2)|0;f[a>>2]=ma;ya=oa;oa=na;while(1){f[oa>>2]=2147483647;ya=ya+-1|0;if(!ya)break;else oa=oa+4|0}f[_>>2]=ma;Sa=b[k>>0]|0}oa=Sa<<24>>24;f[h>>2]=0;f[ba>>2]=0;f[ca>>2]=0;if(!(Sa<<24>>24))Ta=0;else{if(Sa<<24>>24<0){wa=144;break a}ya=oa<<2;sa=ln(ya)|0;f[h>>2]=sa;ra=sa+(oa<<2)|0;f[da>>2]=ra;sj(sa|0,0,ya|0)|0;f[ba>>2]=ra;Ta=sa}sa=ja+80|0;ra=b[k>>0]|0;g:do if(!(f[sa>>2]|0))Ua=ra;else{ya=0;oa=ra;na=Ta;while(1){f[e>>2]=ya;f[d>>2]=f[e>>2];Qb(ja,d,oa,na)|0;Fa=b[k>>0]|0;if(Fa<<24>>24>0){ta=f[g>>2]|0;la=f[h>>2]|0;pa=Fa<<24>>24;Ga=0;do{ka=ta+(Ga<<2)|0;Ha=f[la+(Ga<<2)>>2]|0;if((f[ka>>2]|0)>(Ha|0))f[ka>>2]=Ha;Ga=Ga+1|0}while((Ga|0)<(pa|0))}pa=ya+1|0;if(pa>>>0>=(f[sa>>2]|0)>>>0){Ua=Fa;break g}ya=pa;oa=Fa;na=f[h>>2]|0}}while(0);if(Ua<<24>>24>0){sa=0;ja=Ua;while(1){ra=(f[g>>2]|0)+(sa<<2)|0;ma=f[ea>>2]|0;if((ma|0)==(f[fa>>2]|0)){Ri(ga,ra);Va=b[k>>0]|0}else{f[ma>>2]=f[ra>>2];f[ea>>2]=ma+4;Va=ja}sa=sa+1|0;if((sa|0)>=(Va<<24>>24|0))break;else ja=Va}}ja=f[h>>2]|0;if(ja|0){sa=f[ba>>2]|0;if((sa|0)!=(ja|0))f[ba>>2]=sa+(~((sa+-4-ja|0)>>>2)<<2);Oq(ja)}ja=f[g>>2]|0;if(ja|0){sa=f[_>>2]|0;if((sa|0)!=(ja|0))f[_>>2]=sa+(~((sa+-4-ja|0)>>>2)<<2);Oq(ja)}break}default:{}}ja=ha+1|0;sa=f[o>>2]|0;if(ja>>>0>=(f[p>>2]|0)-sa>>2>>>0){v=1;wa=169;break}k=f[j>>2]|0;ha=ja;ia=sa;t=f[k+4>>2]|0;l=k}if((wa|0)==48)aq(h);else if((wa|0)==103)aq(Ra);else if((wa|0)==137)aq(g);else if((wa|0)==144)aq(h);else if((wa|0)==169){u=c;return v|0}return 0}function hb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0;d=u;u=u+32|0;e=d;g=a+8|0;h=f[g>>2]|0;f[e>>2]=0;i=e+4|0;f[i>>2]=0;f[e+8>>2]=0;do if(h)if(h>>>0>1073741823)aq(e);else{j=h<<2;k=ln(j)|0;f[e>>2]=k;l=k+(h<<2)|0;f[e+8>>2]=l;sj(k|0,0,j|0)|0;f[i>>2]=l;m=l;n=k;break}else{m=0;n=0}while(0);k=a+128|0;l=f[k>>2]|0;j=f[l>>2]|0;o=l+4|0;if(!j){p=l+8|0;q=n;r=m;s=h}else{h=f[o>>2]|0;if((h|0)!=(j|0))f[o>>2]=h+(~((h+-4-j|0)>>>2)<<2);Oq(j);j=l+8|0;f[j>>2]=0;f[o>>2]=0;f[l>>2]=0;p=j;q=f[e>>2]|0;r=f[i>>2]|0;s=f[g>>2]|0}f[l>>2]=q;f[o>>2]=r;f[p>>2]=f[e+8>>2];f[e>>2]=0;p=e+4|0;f[p>>2]=0;f[e+8>>2]=0;do if(s)if(s>>>0>1073741823)aq(e);else{r=s<<2;o=ln(r)|0;f[e>>2]=o;q=o+(s<<2)|0;f[e+8>>2]=q;sj(o|0,0,r|0)|0;f[p>>2]=q;t=q;v=o;break}else{t=0;v=0}while(0);s=a+140|0;o=f[s>>2]|0;q=f[o>>2]|0;r=o+4|0;if(!q){w=o+8|0;x=v;y=t}else{t=f[r>>2]|0;if((t|0)!=(q|0))f[r>>2]=t+(~((t+-4-q|0)>>>2)<<2);Oq(q);q=o+8|0;f[q>>2]=0;f[r>>2]=0;f[o>>2]=0;w=q;x=f[e>>2]|0;y=f[p>>2]|0}f[o>>2]=x;f[r>>2]=y;f[w>>2]=f[e+8>>2];w=f[b>>2]|0;y=b+4|0;r=f[y>>2]|0;x=f[y+4>>2]|0;y=f[c>>2]|0;o=c+4|0;p=f[o>>2]|0;q=f[o+4>>2]|0;f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;f[e+12>>2]=0;f[e+16>>2]=0;f[e+20>>2]=0;o=e+8|0;t=e+4|0;v=e+16|0;l=e+20|0;i=r;Pc(e);j=f[t>>2]|0;h=(f[l>>2]|0)+(f[v>>2]|0)|0;if((f[o>>2]|0)==(j|0))z=0;else z=(f[j+(((h>>>0)/113|0)<<2)>>2]|0)+(((h>>>0)%113|0)*36|0)|0;f[z>>2]=w;h=z+4|0;f[h>>2]=r;f[h+4>>2]=x;f[z+12>>2]=y;h=z+16|0;f[h>>2]=p;f[h+4>>2]=q;f[z+24>>2]=0;f[z+28>>2]=y-w;f[z+32>>2]=0;z=(f[l>>2]|0)+1|0;f[l>>2]=z;if(z|0){w=a+116|0;y=a+48|0;h=a+44|0;j=a+36|0;m=a+40|0;n=a+32|0;A=b+8|0;B=c+8|0;C=a+28|0;D=a+24|0;E=a+16|0;F=a+20|0;G=a+12|0;H=a+88|0;I=a+84|0;J=a+76|0;K=a+80|0;L=a+72|0;M=i+4|0;N=i+24|0;O=i+24|0;P=p+24|0;Q=z;while(1){z=f[v>>2]|0;R=Q+-1|0;S=R+z|0;T=f[t>>2]|0;U=f[T+(((S>>>0)/113|0)<<2)>>2]|0;V=(S>>>0)%113|0;S=f[U+(V*36|0)>>2]|0;W=f[U+(V*36|0)+12>>2]|0;Y=f[U+(V*36|0)+24>>2]|0;Z=f[U+(V*36|0)+32>>2]|0;f[l>>2]=R;R=f[o>>2]|0;V=R-T>>2;if((1-Q-z+((V|0)==0?0:(V*113|0)+-1|0)|0)>>>0>225){Oq(f[R+-4>>2]|0);f[o>>2]=(f[o>>2]|0)+-4}f[b>>2]=S;f[c>>2]=W;R=f[k>>2]|0;V=((f[g>>2]|0)+-1|0)==(Y|0)?0:Y+1|0;Y=(f[s>>2]|0)+(Z*12|0)|0;z=W-S|0;T=(f[a>>2]|0)-(f[(f[Y>>2]|0)+(V<<2)>>2]|0)|0;a:do if(T){if(z>>>0<3){U=f[w>>2]|0;f[U>>2]=V;$=f[g>>2]|0;if($>>>0>1){aa=1;ba=$;ca=V;while(1){ca=(ca|0)==(ba+-1|0)?0:ca+1|0;f[U+(aa<<2)>>2]=ca;aa=aa+1|0;da=f[g>>2]|0;if(aa>>>0>=da>>>0){ea=da;break}else ba=da}}else ea=$;if(!z){fa=99;break}else{ga=0;ha=ea}while(1){ba=(f[N>>2]|0)+((X(f[M>>2]|0,S+ga|0)|0)<<2)|0;if(!ha)ia=0;else{aa=0;do{ca=f[(f[w>>2]|0)+(aa<<2)>>2]|0;U=(f[a>>2]|0)-(f[(f[Y>>2]|0)+(ca<<2)>>2]|0)|0;do if(U|0){da=f[y>>2]|0;ja=32-da|0;ka=32-U|0;la=f[ba+(ca<<2)>>2]<(ja|0)){ma=la>>>ka;ka=U-ja|0;f[y>>2]=ka;ja=f[h>>2]|ma>>>ka;f[h>>2]=ja;ka=f[j>>2]|0;if((ka|0)==(f[m>>2]|0))Ri(n,h);else{f[ka>>2]=ja;f[j>>2]=ka+4}f[h>>2]=ma<<32-(f[y>>2]|0);break}ma=f[h>>2]|la>>>da;f[h>>2]=ma;la=da+U|0;f[y>>2]=la;if((la|0)!=32)break;la=f[j>>2]|0;if((la|0)==(f[m>>2]|0))Ri(n,h);else{f[la>>2]=ma;f[j>>2]=la+4}f[h>>2]=0;f[y>>2]=0}while(0);aa=aa+1|0;U=f[g>>2]|0}while(aa>>>0>>0);ia=U}ga=ga+1|0;if(ga>>>0>=z>>>0){fa=99;break a}else ha=ia}}$=Z+1|0;Ig(R+($*12|0)|0,f[R+(Z*12|0)>>2]|0,f[R+(Z*12|0)+4>>2]|0);aa=(f[(f[k>>2]|0)+($*12|0)>>2]|0)+(V<<2)|0;ba=(f[aa>>2]|0)+(1<>2]=ba;aa=f[A>>2]|0;U=f[B>>2]|0;b:do if((W|0)==(S|0))na=S;else{ca=f[O>>2]|0;if(!aa){if((f[ca+(V<<2)>>2]|0)>>>0>>0){na=W;break}else{oa=W;pa=S}while(1){la=oa;do{la=la+-1|0;if((pa|0)==(la|0)){na=pa;break b}ma=(f[P>>2]|0)+((X(la,U)|0)<<2)+(V<<2)|0}while((f[ma>>2]|0)>>>0>=ba>>>0);pa=pa+1|0;if((pa|0)==(la|0)){na=la;break b}else oa=la}}else{qa=W;ra=S}while(1){ma=ra;while(1){sa=ca+((X(ma,aa)|0)<<2)|0;if((f[sa+(V<<2)>>2]|0)>>>0>=ba>>>0){ta=qa;break}da=ma+1|0;if((da|0)==(qa|0)){na=qa;break b}else ma=da}while(1){ta=ta+-1|0;if((ma|0)==(ta|0)){na=ma;break b}ua=(f[P>>2]|0)+((X(ta,U)|0)<<2)|0;if((f[ua+(V<<2)>>2]|0)>>>0>>0){va=0;break}}do{la=sa+(va<<2)|0;da=ua+(va<<2)|0;ka=f[la>>2]|0;f[la>>2]=f[da>>2];f[da>>2]=ka;va=va+1|0}while((va|0)!=(aa|0));ra=ma+1|0;if((ra|0)==(ta|0)){na=ta;break}else qa=ta}}while(0);ba=(_(z|0)|0)^31;U=na-S|0;ca=W-na|0;ka=U>>>0>>0;if((U|0)!=(ca|0)){da=f[H>>2]|0;if(ka)f[I>>2]=f[I>>2]|1<<31-da;la=da+1|0;f[H>>2]=la;if((la|0)==32){la=f[J>>2]|0;if((la|0)==(f[K>>2]|0))Ri(L,I);else{f[la>>2]=f[I>>2];f[J>>2]=la+4}f[H>>2]=0;f[I>>2]=0}}la=z>>>1;do if(ka){da=f[C>>2]|0;ja=32-da|0;wa=32-ba|0;xa=la-U<(ja|0)){ya=xa>>>wa;wa=ba-ja|0;f[C>>2]=wa;ja=f[D>>2]|ya>>>wa;f[D>>2]=ja;wa=f[E>>2]|0;if((wa|0)==(f[F>>2]|0))Ri(G,D);else{f[wa>>2]=ja;f[E>>2]=wa+4}f[D>>2]=ya<<32-(f[C>>2]|0);break}ya=f[D>>2]|xa>>>da;f[D>>2]=ya;xa=da+ba|0;f[C>>2]=xa;if((xa|0)==32){xa=f[E>>2]|0;if((xa|0)==(f[F>>2]|0))Ri(G,D);else{f[xa>>2]=ya;f[E>>2]=xa+4}f[D>>2]=0;f[C>>2]=0}}else{xa=f[C>>2]|0;ya=32-xa|0;da=32-ba|0;wa=la-ca<(ya|0)){ja=wa>>>da;da=ba-ya|0;f[C>>2]=da;ya=f[D>>2]|ja>>>da;f[D>>2]=ya;da=f[E>>2]|0;if((da|0)==(f[F>>2]|0))Ri(G,D);else{f[da>>2]=ya;f[E>>2]=da+4}f[D>>2]=ja<<32-(f[C>>2]|0);break}ja=f[D>>2]|wa>>>xa;f[D>>2]=ja;wa=xa+ba|0;f[C>>2]=wa;if((wa|0)==32){wa=f[E>>2]|0;if((wa|0)==(f[F>>2]|0))Ri(G,D);else{f[wa>>2]=ja;f[E>>2]=wa+4}f[D>>2]=0;f[C>>2]=0}}while(0);ba=f[s>>2]|0;la=f[ba+(Z*12|0)>>2]|0;ka=la+(V<<2)|0;f[ka>>2]=(f[ka>>2]|0)+1;Ig(ba+($*12|0)|0,la,f[ba+(Z*12|0)+4>>2]|0);if((na|0)!=(S|0)){ba=f[o>>2]|0;la=f[t>>2]|0;ka=ba-la>>2;wa=f[v>>2]|0;ja=f[l>>2]|0;if((((ka|0)==0?0:(ka*113|0)+-1|0)|0)==(ja+wa|0)){Pc(e);za=f[v>>2]|0;Aa=f[l>>2]|0;Ba=f[o>>2]|0;Ca=f[t>>2]|0}else{za=wa;Aa=ja;Ba=ba;Ca=la}la=Aa+za|0;if((Ba|0)==(Ca|0))Da=0;else Da=(f[Ca+(((la>>>0)/113|0)<<2)>>2]|0)+(((la>>>0)%113|0)*36|0)|0;f[Da>>2]=S;la=Da+4|0;f[la>>2]=r;f[la+4>>2]=x;f[Da+12>>2]=na;f[Da+16>>2]=i;f[Da+20>>2]=aa;f[Da+24>>2]=V;f[Da+28>>2]=U;f[Da+32>>2]=Z;f[l>>2]=(f[l>>2]|0)+1}if((W|0)!=(na|0)){la=f[o>>2]|0;ba=f[t>>2]|0;ja=la-ba>>2;wa=f[v>>2]|0;ka=f[l>>2]|0;if((((ja|0)==0?0:(ja*113|0)+-1|0)|0)==(ka+wa|0)){Pc(e);Ea=f[v>>2]|0;Fa=f[l>>2]|0;Ga=f[o>>2]|0;Ha=f[t>>2]|0}else{Ea=wa;Fa=ka;Ga=la;Ha=ba}ba=Fa+Ea|0;if((Ga|0)==(Ha|0))Ia=0;else Ia=(f[Ha+(((ba>>>0)/113|0)<<2)>>2]|0)+(((ba>>>0)%113|0)*36|0)|0;f[Ia>>2]=na;f[Ia+4>>2]=i;f[Ia+8>>2]=aa;f[Ia+12>>2]=W;ba=Ia+16|0;f[ba>>2]=p;f[ba+4>>2]=q;f[Ia+24>>2]=V;f[Ia+28>>2]=ca;f[Ia+32>>2]=$;ba=(f[l>>2]|0)+1|0;f[l>>2]=ba;Ja=ba}else fa=99}else fa=99;while(0);if((fa|0)==99){fa=0;Ja=f[l>>2]|0}if(!Ja)break;else Q=Ja}}Ja=f[t>>2]|0;Q=f[v>>2]|0;Ia=Ja+(((Q>>>0)/113|0)<<2)|0;q=f[o>>2]|0;p=q;i=Ja;if((q|0)==(Ja|0)){Ka=0;La=0}else{na=(f[Ia>>2]|0)+(((Q>>>0)%113|0)*36|0)|0;Ka=na;La=na}na=Ia;Ia=La;c:while(1){La=Ia;do{Q=La;if((Ka|0)==(Q|0))break c;La=Q+36|0}while((La-(f[na>>2]|0)|0)!=4068);La=na+4|0;na=La;Ia=f[La>>2]|0}f[l>>2]=0;l=p-i>>2;if(l>>>0>2){i=Ja;do{Oq(f[i>>2]|0);i=(f[t>>2]|0)+4|0;f[t>>2]=i;Ma=f[o>>2]|0;Na=Ma-i>>2}while(Na>>>0>2);Oa=Na;Pa=i;Qa=Ma}else{Oa=l;Pa=Ja;Qa=q}switch(Oa|0){case 1:{Ra=56;fa=113;break}case 2:{Ra=113;fa=113;break}default:{}}if((fa|0)==113)f[v>>2]=Ra;if((Pa|0)!=(Qa|0)){Ra=Pa;do{Oq(f[Ra>>2]|0);Ra=Ra+4|0}while((Ra|0)!=(Qa|0));Qa=f[t>>2]|0;t=f[o>>2]|0;if((t|0)!=(Qa|0))f[o>>2]=t+(~((t+-4-Qa|0)>>>2)<<2)}Qa=f[e>>2]|0;if(!Qa){u=d;return}Oq(Qa);u=d;return}function ib(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0;d=u;u=u+48|0;e=d+36|0;g=d+24|0;h=d;i=a+8|0;j=f[i>>2]|0;f[e>>2]=0;k=e+4|0;f[k>>2]=0;f[e+8>>2]=0;do if(j)if(j>>>0>1073741823)aq(e);else{l=j<<2;m=ln(l)|0;f[e>>2]=m;n=m+(j<<2)|0;f[e+8>>2]=n;sj(m|0,0,l|0)|0;f[k>>2]=n;o=n;p=m;break}else{o=0;p=0}while(0);m=a+1164|0;n=f[m>>2]|0;l=f[n>>2]|0;q=n+4|0;if(!l){r=n+8|0;s=p;t=o;v=j}else{j=f[q>>2]|0;if((j|0)!=(l|0))f[q>>2]=j+(~((j+-4-l|0)>>>2)<<2);Oq(l);l=n+8|0;f[l>>2]=0;f[q>>2]=0;f[n>>2]=0;r=l;s=f[e>>2]|0;t=f[k>>2]|0;v=f[i>>2]|0}f[n>>2]=s;f[q>>2]=t;f[r>>2]=f[e+8>>2];f[e>>2]=0;r=e+4|0;f[r>>2]=0;f[e+8>>2]=0;do if(v)if(v>>>0>1073741823)aq(e);else{t=v<<2;q=ln(t)|0;f[e>>2]=q;s=q+(v<<2)|0;f[e+8>>2]=s;sj(q|0,0,t|0)|0;f[r>>2]=s;w=s;x=q;break}else{w=0;x=0}while(0);v=a+1176|0;q=f[v>>2]|0;s=f[q>>2]|0;t=q+4|0;if(!s){y=q+8|0;z=x;A=w}else{w=f[t>>2]|0;if((w|0)!=(s|0))f[t>>2]=w+(~((w+-4-s|0)>>>2)<<2);Oq(s);s=q+8|0;f[s>>2]=0;f[t>>2]=0;f[q>>2]=0;y=s;z=f[e>>2]|0;A=f[r>>2]|0}f[q>>2]=z;f[t>>2]=A;f[y>>2]=f[e+8>>2];y=f[b>>2]|0;A=b+4|0;t=f[A>>2]|0;z=f[A+4>>2]|0;A=f[c>>2]|0;q=c+4|0;r=f[q>>2]|0;s=f[q+4>>2]|0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;f[h+12>>2]=0;f[h+16>>2]=0;f[h+20>>2]=0;q=h+8|0;w=h+4|0;x=h+16|0;n=h+20|0;k=t;Pc(h);l=f[w>>2]|0;j=(f[n>>2]|0)+(f[x>>2]|0)|0;if((f[q>>2]|0)==(l|0))B=0;else B=(f[l+(((j>>>0)/113|0)<<2)>>2]|0)+(((j>>>0)%113|0)*36|0)|0;f[B>>2]=y;j=B+4|0;f[j>>2]=t;f[j+4>>2]=z;f[B+12>>2]=A;j=B+16|0;f[j>>2]=r;f[j+4>>2]=s;f[B+24>>2]=0;f[B+28>>2]=A-y;f[B+32>>2]=0;B=(f[n>>2]|0)+1|0;f[n>>2]=B;if(B|0){y=a+1152|0;A=a+1084|0;j=a+1080|0;l=a+1072|0;o=a+1076|0;p=a+1068|0;C=b+8|0;D=c+8|0;E=a+1124|0;F=a+1120|0;G=a+1112|0;H=a+1116|0;I=a+1108|0;J=k+4|0;K=k+24|0;L=k+24|0;M=r+24|0;N=B;while(1){B=f[x>>2]|0;O=N+-1|0;P=O+B|0;Q=f[w>>2]|0;R=f[Q+(((P>>>0)/113|0)<<2)>>2]|0;S=(P>>>0)%113|0;P=f[R+(S*36|0)>>2]|0;T=f[R+(S*36|0)+12>>2]|0;U=f[R+(S*36|0)+24>>2]|0;V=f[R+(S*36|0)+32>>2]|0;f[n>>2]=O;O=f[q>>2]|0;S=O-Q>>2;if((1-N-B+((S|0)==0?0:(S*113|0)+-1|0)|0)>>>0>225){Oq(f[O+-4>>2]|0);f[q>>2]=(f[q>>2]|0)+-4}f[b>>2]=P;f[c>>2]=T;O=f[m>>2]|0;S=O+(V*12|0)|0;B=(f[v>>2]|0)+(V*12|0)|0;f[g>>2]=f[b>>2];f[g+4>>2]=f[b+4>>2];f[g+8>>2]=f[b+8>>2];f[e>>2]=f[c>>2];f[e+4>>2]=f[c+4>>2];f[e+8>>2]=f[c+8>>2];Q=Rd(a,g,e,S,B,U)|0;U=T-P|0;R=(f[a>>2]|0)-(f[(f[B>>2]|0)+(Q<<2)>>2]|0)|0;a:do if(R){if(U>>>0<3){W=f[y>>2]|0;f[W>>2]=Q;Y=f[i>>2]|0;if(Y>>>0>1){Z=1;$=Y;aa=Q;while(1){aa=(aa|0)==($+-1|0)?0:aa+1|0;f[W+(Z<<2)>>2]=aa;Z=Z+1|0;ba=f[i>>2]|0;if(Z>>>0>=ba>>>0){ca=ba;break}else $=ba}}else ca=Y;if(!U){da=87;break}else{ea=0;fa=ca}while(1){$=(f[K>>2]|0)+((X(f[J>>2]|0,P+ea|0)|0)<<2)|0;if(!fa)ga=0;else{Z=0;do{aa=f[(f[y>>2]|0)+(Z<<2)>>2]|0;W=(f[a>>2]|0)-(f[(f[B>>2]|0)+(aa<<2)>>2]|0)|0;do if(W|0){ba=f[A>>2]|0;ha=32-ba|0;ia=32-W|0;ja=f[$+(aa<<2)>>2]<(ha|0)){ka=ja>>>ia;ia=W-ha|0;f[A>>2]=ia;ha=f[j>>2]|ka>>>ia;f[j>>2]=ha;ia=f[l>>2]|0;if((ia|0)==(f[o>>2]|0))Ri(p,j);else{f[ia>>2]=ha;f[l>>2]=ia+4}f[j>>2]=ka<<32-(f[A>>2]|0);break}ka=f[j>>2]|ja>>>ba;f[j>>2]=ka;ja=ba+W|0;f[A>>2]=ja;if((ja|0)!=32)break;ja=f[l>>2]|0;if((ja|0)==(f[o>>2]|0))Ri(p,j);else{f[ja>>2]=ka;f[l>>2]=ja+4}f[j>>2]=0;f[A>>2]=0}while(0);Z=Z+1|0;W=f[i>>2]|0}while(Z>>>0>>0);ga=W}ea=ea+1|0;if(ea>>>0>=U>>>0){da=87;break a}else fa=ga}}Y=V+1|0;Z=f[m>>2]|0;$=Z+(Y*12|0)|0;if(($|0)==(S|0))la=Z;else{Ig($,f[S>>2]|0,f[O+(V*12|0)+4>>2]|0);la=f[m>>2]|0}$=(f[la+(Y*12|0)>>2]|0)+(Q<<2)|0;Z=(f[$>>2]|0)+(1<>2]=Z;$=f[C>>2]|0;W=f[D>>2]|0;b:do if((T|0)==(P|0))ma=P;else{aa=f[L>>2]|0;if(!$){if((f[aa+(Q<<2)>>2]|0)>>>0>>0){ma=T;break}else{na=T;oa=P}while(1){ja=na;do{ja=ja+-1|0;if((oa|0)==(ja|0)){ma=oa;break b}ka=(f[M>>2]|0)+((X(ja,W)|0)<<2)+(Q<<2)|0}while((f[ka>>2]|0)>>>0>=Z>>>0);oa=oa+1|0;if((oa|0)==(ja|0)){ma=ja;break b}else na=ja}}else{pa=T;qa=P}while(1){ka=qa;while(1){ra=aa+((X(ka,$)|0)<<2)|0;if((f[ra+(Q<<2)>>2]|0)>>>0>=Z>>>0){sa=pa;break}ba=ka+1|0;if((ba|0)==(pa|0)){ma=pa;break b}else ka=ba}while(1){sa=sa+-1|0;if((ka|0)==(sa|0)){ma=ka;break b}ta=(f[M>>2]|0)+((X(sa,W)|0)<<2)|0;if((f[ta+(Q<<2)>>2]|0)>>>0>>0){ua=0;break}}do{ja=ra+(ua<<2)|0;ba=ta+(ua<<2)|0;ia=f[ja>>2]|0;f[ja>>2]=f[ba>>2];f[ba>>2]=ia;ua=ua+1|0}while((ua|0)!=($|0));qa=ka+1|0;if((qa|0)==(sa|0)){ma=sa;break}else pa=sa}}while(0);Z=(_(U|0)|0)^31;W=ma-P|0;aa=T-ma|0;ia=W>>>0>>0;if((W|0)!=(aa|0)){ba=f[E>>2]|0;if(ia)f[F>>2]=f[F>>2]|1<<31-ba;ja=ba+1|0;f[E>>2]=ja;if((ja|0)==32){ja=f[G>>2]|0;if((ja|0)==(f[H>>2]|0))Ri(I,F);else{f[ja>>2]=f[F>>2];f[G>>2]=ja+4}f[E>>2]=0;f[F>>2]=0}}ja=U>>>1;if(ia){ia=ja-W|0;if(Z|0){ba=0;ha=1<>>1}}}else{ha=ja-aa|0;if(Z|0){ba=0;ia=1<>>1}}}ia=f[v>>2]|0;Z=f[ia+(V*12|0)>>2]|0;ba=Z+(Q<<2)|0;f[ba>>2]=(f[ba>>2]|0)+1;Ig(ia+(Y*12|0)|0,Z,f[ia+(V*12|0)+4>>2]|0);if((ma|0)!=(P|0)){ia=f[q>>2]|0;Z=f[w>>2]|0;ba=ia-Z>>2;ha=f[x>>2]|0;ja=f[n>>2]|0;if((((ba|0)==0?0:(ba*113|0)+-1|0)|0)==(ja+ha|0)){Pc(h);va=f[x>>2]|0;wa=f[n>>2]|0;xa=f[q>>2]|0;ya=f[w>>2]|0}else{va=ha;wa=ja;xa=ia;ya=Z}Z=wa+va|0;if((xa|0)==(ya|0))za=0;else za=(f[ya+(((Z>>>0)/113|0)<<2)>>2]|0)+(((Z>>>0)%113|0)*36|0)|0;f[za>>2]=P;Z=za+4|0;f[Z>>2]=t;f[Z+4>>2]=z;f[za+12>>2]=ma;f[za+16>>2]=k;f[za+20>>2]=$;f[za+24>>2]=Q;f[za+28>>2]=W;f[za+32>>2]=V;f[n>>2]=(f[n>>2]|0)+1}if((T|0)!=(ma|0)){Z=f[q>>2]|0;ia=f[w>>2]|0;ja=Z-ia>>2;ha=f[x>>2]|0;ba=f[n>>2]|0;if((((ja|0)==0?0:(ja*113|0)+-1|0)|0)==(ba+ha|0)){Pc(h);Aa=f[x>>2]|0;Ba=f[n>>2]|0;Ca=f[q>>2]|0;Da=f[w>>2]|0}else{Aa=ha;Ba=ba;Ca=Z;Da=ia}ia=Ba+Aa|0;if((Ca|0)==(Da|0))Ea=0;else Ea=(f[Da+(((ia>>>0)/113|0)<<2)>>2]|0)+(((ia>>>0)%113|0)*36|0)|0;f[Ea>>2]=ma;f[Ea+4>>2]=k;f[Ea+8>>2]=$;f[Ea+12>>2]=T;ia=Ea+16|0;f[ia>>2]=r;f[ia+4>>2]=s;f[Ea+24>>2]=Q;f[Ea+28>>2]=aa;f[Ea+32>>2]=Y;ia=(f[n>>2]|0)+1|0;f[n>>2]=ia;Fa=ia}else da=87}else da=87;while(0);if((da|0)==87){da=0;Fa=f[n>>2]|0}if(!Fa)break;else N=Fa}}Fa=f[w>>2]|0;N=f[x>>2]|0;Ea=Fa+(((N>>>0)/113|0)<<2)|0;s=f[q>>2]|0;r=s;k=Fa;if((s|0)==(Fa|0)){Ga=0;Ha=0}else{ma=(f[Ea>>2]|0)+(((N>>>0)%113|0)*36|0)|0;Ga=ma;Ha=ma}ma=Ea;Ea=Ha;c:while(1){Ha=Ea;do{N=Ha;if((Ga|0)==(N|0))break c;Ha=N+36|0}while((Ha-(f[ma>>2]|0)|0)!=4068);Ha=ma+4|0;ma=Ha;Ea=f[Ha>>2]|0}f[n>>2]=0;n=r-k>>2;if(n>>>0>2){k=Fa;do{Oq(f[k>>2]|0);k=(f[w>>2]|0)+4|0;f[w>>2]=k;Ia=f[q>>2]|0;Ja=Ia-k>>2}while(Ja>>>0>2);Ka=Ja;La=k;Ma=Ia}else{Ka=n;La=Fa;Ma=s}switch(Ka|0){case 1:{Na=56;da=101;break}case 2:{Na=113;da=101;break}default:{}}if((da|0)==101)f[x>>2]=Na;if((La|0)!=(Ma|0)){Na=La;do{Oq(f[Na>>2]|0);Na=Na+4|0}while((Na|0)!=(Ma|0));Ma=f[w>>2]|0;w=f[q>>2]|0;if((w|0)!=(Ma|0))f[q>>2]=w+(~((w+-4-Ma|0)>>>2)<<2)}Ma=f[h>>2]|0;if(!Ma){u=d;return}Oq(Ma);u=d;return}function jb(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0;d=u;u=u+1424|0;e=d+1408|0;g=d+1396|0;h=d+1420|0;i=d+1200|0;j=d+12|0;k=d;l=d+1384|0;m=d+1372|0;n=d+1360|0;o=d+1348|0;p=d+1336|0;q=d+1324|0;r=d+1312|0;s=d+1300|0;t=d+1288|0;v=d+1276|0;w=d+1264|0;x=d+1252|0;y=d+1240|0;z=d+1228|0;A=a+28|0;B=10-(mi(f[(f[A>>2]|0)+48>>2]|0)|0)|0;C=(B|0)<6?B:6;b[h>>0]=C;if((C&255|0)==6?(f[a+72>>2]|0)>15:0)b[h>>0]=5;C=c+16|0;B=f[C+4>>2]|0;if(!((B|0)>0|(B|0)==0&(f[C>>2]|0)>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];Me(c,e,h,h+1|0)|0}C=f[A>>2]|0;B=f[(f[C+4>>2]|0)+80>>2]|0;D=a+72|0;E=f[D>>2]|0;f[i>>2]=B;F=i+4|0;f[F>>2]=E;f[i+8>>2]=E<<2;G=i+12|0;H=X(E,B)|0;f[G>>2]=0;J=i+16|0;f[J>>2]=0;f[i+20>>2]=0;do if(H)if(H>>>0>1073741823)aq(G);else{K=H<<2;L=ln(K)|0;f[G>>2]=L;M=L+(H<<2)|0;f[i+20>>2]=M;sj(L|0,0,K|0)|0;f[J>>2]=M;N=L;break}else N=0;while(0);H=i+24|0;f[H>>2]=N;G=a+4|0;L=a+8|0;M=f[G>>2]|0;a:do if((f[L>>2]|0)!=(M|0)){K=j+4|0;O=j+8|0;P=j+8|0;Q=(B|0)==0;R=j+4|0;S=j+8|0;T=k+4|0;U=k+8|0;V=k+8|0;W=a+48|0;Y=j+8|0;Z=a+60|0;$=0;aa=0;ba=0;ca=0;da=M;ea=C;b:while(1){fa=f[(f[(f[ea+4>>2]|0)+8>>2]|0)+(f[da+(ca<<2)>>2]<<2)>>2]|0;switch(f[fa+28>>2]|0){case 1:case 3:case 5:case 2:case 4:case 6:{ga=fa;ha=aa;break}case 9:{ga=f[(f[Z>>2]|0)+(aa<<2)>>2]|0;ha=aa+1|0;break}default:{ia=0;break a}}if(!ga){ia=0;break a}c:do switch(f[ga+28>>2]|0){case 6:{if(Q){ja=ba;ka=ga+24|0;break c}fa=ga+84|0;la=ga+68|0;ma=ga+48|0;na=ga+40|0;oa=ga+24|0;pa=0;do{if(!(b[fa>>0]|0))qa=f[(f[la>>2]|0)+(pa<<2)>>2]|0;else qa=pa;ra=ma;sa=f[ra>>2]|0;ta=f[ra+4>>2]|0;ra=na;ua=un(f[ra>>2]|0,f[ra+4>>2]|0,qa|0,0)|0;ra=Vn(ua|0,I|0,sa|0,ta|0)|0;kh((f[H>>2]|0)+((X(f[F>>2]|0,pa)|0)<<2)+($<<2)|0,(f[f[ga>>2]>>2]|0)+ra|0,b[oa>>0]<<2|0)|0;pa=pa+1|0}while((pa|0)!=(B|0));ja=ba;ka=oa;break}case 1:case 3:case 5:{oa=ga+24|0;pa=b[oa>>0]|0;na=pa<<24>>24;f[j>>2]=0;f[R>>2]=0;f[S>>2]=0;if(!(pa<<24>>24))va=0;else{if(pa<<24>>24<0){wa=24;break b}pa=na<<2;ma=ln(pa)|0;f[j>>2]=ma;la=ma+(na<<2)|0;f[Y>>2]=la;sj(ma|0,0,pa|0)|0;f[R>>2]=la;va=b[oa>>0]|0}la=va<<24>>24;f[k>>2]=0;f[T>>2]=0;f[U>>2]=0;if(!(va<<24>>24)){xa=0;ya=0}else{if(va<<24>>24<0){wa=30;break b}pa=la<<2;ma=ln(pa)|0;f[k>>2]=ma;na=ma+(la<<2)|0;f[V>>2]=na;sj(ma|0,0,pa|0)|0;f[T>>2]=na;xa=ma;ya=ma}if(Q){za=ya;Aa=xa}else{ma=ga+84|0;na=ga+68|0;pa=0;do{if(!(b[ma>>0]|0))Ba=f[(f[na>>2]|0)+(pa<<2)>>2]|0;else Ba=pa;la=f[j>>2]|0;f[g>>2]=Ba;fa=b[oa>>0]|0;f[e>>2]=f[g>>2];Qb(ga,e,fa,la)|0;la=b[oa>>0]|0;fa=la<<24>>24;if(la<<24>>24>0){la=f[j>>2]|0;ra=f[W>>2]|0;ta=f[k>>2]|0;sa=0;do{f[ta+(sa<<2)>>2]=(f[la+(sa<<2)>>2]|0)-(f[ra+(sa+ba<<2)>>2]|0);sa=sa+1|0}while((sa|0)<(fa|0));Ca=ta}else Ca=f[k>>2]|0;kh((f[H>>2]|0)+((X(f[F>>2]|0,pa)|0)<<2)+($<<2)|0,Ca|0,fa<<2|0)|0;pa=pa+1|0}while(pa>>>0>>0);pa=f[k>>2]|0;za=pa;Aa=pa}pa=ba+(b[oa>>0]|0)|0;if(za|0){na=f[T>>2]|0;if((na|0)!=(za|0))f[T>>2]=na+(~((na+-4-za|0)>>>2)<<2);Oq(Aa)}na=f[j>>2]|0;if(na|0){ma=f[R>>2]|0;if((ma|0)!=(na|0))f[R>>2]=ma+(~((ma+-4-na|0)>>>2)<<2);Oq(na)}ja=pa;ka=oa;break}default:{pa=ga+24|0;na=b[pa>>0]|0;ma=na<<24>>24;f[j>>2]=0;f[K>>2]=0;f[O>>2]=0;if(!(na<<24>>24)){Da=0;Ea=0}else{if(na<<24>>24<0){wa=53;break b}na=ma<<2;ta=ln(na)|0;f[j>>2]=ta;sa=ta+(ma<<2)|0;f[P>>2]=sa;sj(ta|0,0,na|0)|0;f[K>>2]=sa;Da=ta;Ea=ta}if(Q){Fa=Ea;Ga=Da}else{ta=ga+84|0;sa=ga+68|0;na=0;do{if(!(b[ta>>0]|0))Ha=f[(f[sa>>2]|0)+(na<<2)>>2]|0;else Ha=na;ma=f[j>>2]|0;f[g>>2]=Ha;ra=b[pa>>0]|0;f[e>>2]=f[g>>2];Pb(ga,e,ra,ma)|0;kh((f[H>>2]|0)+((X(f[F>>2]|0,na)|0)<<2)+($<<2)|0,f[j>>2]|0,b[pa>>0]<<2|0)|0;na=na+1|0}while(na>>>0>>0);na=f[j>>2]|0;Fa=na;Ga=na}if(Fa|0){na=f[K>>2]|0;if((na|0)!=(Fa|0))f[K>>2]=na+(~((na+-4-Fa|0)>>>2)<<2);Oq(Ga)}ja=ba;ka=pa}}while(0);na=ca+1|0;sa=f[G>>2]|0;if(na>>>0>=(f[L>>2]|0)-sa>>2>>>0){wa=66;break}$=$+(b[ka>>0]|0)|0;aa=ha;ba=ja;ca=na;da=sa;ea=f[A>>2]|0}if((wa|0)==24)aq(j);else if((wa|0)==30)aq(k);else if((wa|0)==53)aq(j);else if((wa|0)==66){Ia=f[D>>2]|0;Ja=f[H>>2]|0;wa=67;break}}else{Ia=E;Ja=N;wa=67}while(0);d:do if((wa|0)==67){N=X(Ia,B)|0;if((N|0)>0){E=0;H=0;while(1){D=f[Ja+(E<<2)>>2]|0;if(!D)Ka=H;else{A=(_(D|0)|0)^31;Ka=(A|0)<(H|0)?H:A+1|0}E=E+1|0;if((E|0)>=(N|0)){La=Ka;break}else H=Ka}}else La=0;switch(b[h>>0]|0){case 6:{Ue(j,Ia);f[l>>2]=0;f[l+4>>2]=i;H=f[F>>2]|0;f[l+8>>2]=H;f[m>>2]=f[i>>2];f[m+4>>2]=i;f[m+8>>2]=H;f[k>>2]=La;f[g>>2]=f[l>>2];f[g+4>>2]=f[l+4>>2];f[g+8>>2]=f[l+8>>2];f[e>>2]=f[m>>2];f[e+4>>2]=f[m+4>>2];f[e+8>>2]=f[m+8>>2];H=sf(j,g,e,k,c)|0;Se(j);if(!H){ia=0;break d}break}case 5:{Ue(j,Ia);f[n>>2]=0;f[n+4>>2]=i;H=f[F>>2]|0;f[n+8>>2]=H;f[o>>2]=f[i>>2];f[o+4>>2]=i;f[o+8>>2]=H;f[k>>2]=La;f[g>>2]=f[n>>2];f[g+4>>2]=f[n+4>>2];f[g+8>>2]=f[n+8>>2];f[e>>2]=f[o>>2];f[e+4>>2]=f[o+4>>2];f[e+8>>2]=f[o+8>>2];H=tf(j,g,e,k,c)|0;Se(j);if(!H){ia=0;break d}break}case 4:{Ue(j,Ia);f[p>>2]=0;f[p+4>>2]=i;H=f[F>>2]|0;f[p+8>>2]=H;f[q>>2]=f[i>>2];f[q+4>>2]=i;f[q+8>>2]=H;f[k>>2]=La;f[g>>2]=f[p>>2];f[g+4>>2]=f[p+4>>2];f[g+8>>2]=f[p+8>>2];f[e>>2]=f[q>>2];f[e+4>>2]=f[q+4>>2];f[e+8>>2]=f[q+8>>2];H=tf(j,g,e,k,c)|0;Se(j);if(!H){ia=0;break d}break}case 3:{$e(j,Ia);f[r>>2]=0;f[r+4>>2]=i;H=f[F>>2]|0;f[r+8>>2]=H;f[s>>2]=f[i>>2];f[s+4>>2]=i;f[s+8>>2]=H;f[k>>2]=La;f[g>>2]=f[r>>2];f[g+4>>2]=f[r+4>>2];f[g+8>>2]=f[r+8>>2];f[e>>2]=f[s>>2];f[e+4>>2]=f[s+4>>2];f[e+8>>2]=f[s+8>>2];H=Af(j,g,e,k,c)|0;ef(j);if(!H){ia=0;break d}break}case 2:{$e(j,Ia);f[t>>2]=0;f[t+4>>2]=i;H=f[F>>2]|0;f[t+8>>2]=H;f[v>>2]=f[i>>2];f[v+4>>2]=i;f[v+8>>2]=H;f[k>>2]=La;f[g>>2]=f[t>>2];f[g+4>>2]=f[t+4>>2];f[g+8>>2]=f[t+8>>2];f[e>>2]=f[v>>2];f[e+4>>2]=f[v+4>>2];f[e+8>>2]=f[v+8>>2];H=Af(j,g,e,k,c)|0;ef(j);if(!H){ia=0;break d}break}case 1:{af(j,Ia);f[w>>2]=0;f[w+4>>2]=i;H=f[F>>2]|0;f[w+8>>2]=H;f[x>>2]=f[i>>2];f[x+4>>2]=i;f[x+8>>2]=H;f[k>>2]=La;f[g>>2]=f[w>>2];f[g+4>>2]=f[w+4>>2];f[g+8>>2]=f[w+8>>2];f[e>>2]=f[x>>2];f[e+4>>2]=f[x+4>>2];f[e+8>>2]=f[x+8>>2];H=zf(j,g,e,k,c)|0;df(j);if(!H){ia=0;break d}break}case 0:{af(j,Ia);f[y>>2]=0;f[y+4>>2]=i;H=f[F>>2]|0;f[y+8>>2]=H;f[z>>2]=f[i>>2];f[z+4>>2]=i;f[z+8>>2]=H;f[k>>2]=La;f[g>>2]=f[y>>2];f[g+4>>2]=f[y+4>>2];f[g+8>>2]=f[y+8>>2];f[e>>2]=f[z>>2];f[e+4>>2]=f[z+4>>2];f[e+8>>2]=f[z+8>>2];H=zf(j,g,e,k,c)|0;df(j);if(!H){ia=0;break d}break}default:{ia=0;break d}}ia=1}while(0);j=f[i+12>>2]|0;if(!j){u=d;return ia|0}i=f[J>>2]|0;if((i|0)!=(j|0))f[J>>2]=i+(~((i+-4-j|0)>>>2)<<2);Oq(j);u=d;return ia|0}function kb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0;d=u;u=u+32|0;e=d;g=a+8|0;h=f[g>>2]|0;f[e>>2]=0;i=e+4|0;f[i>>2]=0;f[e+8>>2]=0;do if(h)if(h>>>0>1073741823)aq(e);else{j=h<<2;k=ln(j)|0;f[e>>2]=k;l=k+(h<<2)|0;f[e+8>>2]=l;sj(k|0,0,j|0)|0;f[i>>2]=l;m=l;n=k;break}else{m=0;n=0}while(0);k=a+1164|0;l=f[k>>2]|0;j=f[l>>2]|0;o=l+4|0;if(!j){p=l+8|0;q=n;r=m;s=h}else{h=f[o>>2]|0;if((h|0)!=(j|0))f[o>>2]=h+(~((h+-4-j|0)>>>2)<<2);Oq(j);j=l+8|0;f[j>>2]=0;f[o>>2]=0;f[l>>2]=0;p=j;q=f[e>>2]|0;r=f[i>>2]|0;s=f[g>>2]|0}f[l>>2]=q;f[o>>2]=r;f[p>>2]=f[e+8>>2];f[e>>2]=0;p=e+4|0;f[p>>2]=0;f[e+8>>2]=0;do if(s)if(s>>>0>1073741823)aq(e);else{r=s<<2;o=ln(r)|0;f[e>>2]=o;q=o+(s<<2)|0;f[e+8>>2]=q;sj(o|0,0,r|0)|0;f[p>>2]=q;t=q;v=o;break}else{t=0;v=0}while(0);s=a+1176|0;o=f[s>>2]|0;q=f[o>>2]|0;r=o+4|0;if(!q){w=o+8|0;x=v;y=t}else{t=f[r>>2]|0;if((t|0)!=(q|0))f[r>>2]=t+(~((t+-4-q|0)>>>2)<<2);Oq(q);q=o+8|0;f[q>>2]=0;f[r>>2]=0;f[o>>2]=0;w=q;x=f[e>>2]|0;y=f[p>>2]|0}f[o>>2]=x;f[r>>2]=y;f[w>>2]=f[e+8>>2];w=f[b>>2]|0;y=b+4|0;r=f[y>>2]|0;x=f[y+4>>2]|0;y=f[c>>2]|0;o=c+4|0;p=f[o>>2]|0;q=f[o+4>>2]|0;f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;f[e+12>>2]=0;f[e+16>>2]=0;f[e+20>>2]=0;o=e+8|0;t=e+4|0;v=e+16|0;l=e+20|0;i=r;Pc(e);j=f[t>>2]|0;h=(f[l>>2]|0)+(f[v>>2]|0)|0;if((f[o>>2]|0)==(j|0))z=0;else z=(f[j+(((h>>>0)/113|0)<<2)>>2]|0)+(((h>>>0)%113|0)*36|0)|0;f[z>>2]=w;h=z+4|0;f[h>>2]=r;f[h+4>>2]=x;f[z+12>>2]=y;h=z+16|0;f[h>>2]=p;f[h+4>>2]=q;f[z+24>>2]=0;f[z+28>>2]=y-w;f[z+32>>2]=0;z=(f[l>>2]|0)+1|0;f[l>>2]=z;if(z|0){w=a+1152|0;y=a+1084|0;h=a+1080|0;j=a+1072|0;m=a+1076|0;n=a+1068|0;A=b+8|0;B=c+8|0;C=a+1124|0;D=a+1120|0;E=a+1112|0;F=a+1116|0;G=a+1108|0;H=i+4|0;I=i+24|0;J=i+24|0;K=p+24|0;L=z;while(1){z=f[v>>2]|0;M=L+-1|0;N=M+z|0;O=f[t>>2]|0;P=f[O+(((N>>>0)/113|0)<<2)>>2]|0;Q=(N>>>0)%113|0;N=f[P+(Q*36|0)>>2]|0;R=f[P+(Q*36|0)+12>>2]|0;S=f[P+(Q*36|0)+24>>2]|0;T=f[P+(Q*36|0)+32>>2]|0;f[l>>2]=M;M=f[o>>2]|0;Q=M-O>>2;if((1-L-z+((Q|0)==0?0:(Q*113|0)+-1|0)|0)>>>0>225){Oq(f[M+-4>>2]|0);f[o>>2]=(f[o>>2]|0)+-4}f[b>>2]=N;f[c>>2]=R;M=f[k>>2]|0;Q=((f[g>>2]|0)+-1|0)==(S|0)?0:S+1|0;S=(f[s>>2]|0)+(T*12|0)|0;z=R-N|0;O=(f[a>>2]|0)-(f[(f[S>>2]|0)+(Q<<2)>>2]|0)|0;a:do if(O){if(z>>>0<3){P=f[w>>2]|0;f[P>>2]=Q;U=f[g>>2]|0;if(U>>>0>1){V=1;W=U;Y=Q;while(1){Y=(Y|0)==(W+-1|0)?0:Y+1|0;f[P+(V<<2)>>2]=Y;V=V+1|0;Z=f[g>>2]|0;if(V>>>0>=Z>>>0){$=Z;break}else W=Z}}else $=U;if(!z){aa=85;break}else{ba=0;ca=$}while(1){W=(f[I>>2]|0)+((X(f[H>>2]|0,N+ba|0)|0)<<2)|0;if(!ca)da=0;else{V=0;do{Y=f[(f[w>>2]|0)+(V<<2)>>2]|0;P=(f[a>>2]|0)-(f[(f[S>>2]|0)+(Y<<2)>>2]|0)|0;do if(P|0){Z=f[y>>2]|0;ea=32-Z|0;fa=32-P|0;ga=f[W+(Y<<2)>>2]<(ea|0)){ha=ga>>>fa;fa=P-ea|0;f[y>>2]=fa;ea=f[h>>2]|ha>>>fa;f[h>>2]=ea;fa=f[j>>2]|0;if((fa|0)==(f[m>>2]|0))Ri(n,h);else{f[fa>>2]=ea;f[j>>2]=fa+4}f[h>>2]=ha<<32-(f[y>>2]|0);break}ha=f[h>>2]|ga>>>Z;f[h>>2]=ha;ga=Z+P|0;f[y>>2]=ga;if((ga|0)!=32)break;ga=f[j>>2]|0;if((ga|0)==(f[m>>2]|0))Ri(n,h);else{f[ga>>2]=ha;f[j>>2]=ga+4}f[h>>2]=0;f[y>>2]=0}while(0);V=V+1|0;P=f[g>>2]|0}while(V>>>0

>>0);da=P}ba=ba+1|0;if(ba>>>0>=z>>>0){aa=85;break a}else ca=da}}U=T+1|0;Ig(M+(U*12|0)|0,f[M+(T*12|0)>>2]|0,f[M+(T*12|0)+4>>2]|0);V=(f[(f[k>>2]|0)+(U*12|0)>>2]|0)+(Q<<2)|0;W=(f[V>>2]|0)+(1<>2]=W;V=f[A>>2]|0;P=f[B>>2]|0;b:do if((R|0)==(N|0))ia=N;else{Y=f[J>>2]|0;if(!V){if((f[Y+(Q<<2)>>2]|0)>>>0>>0){ia=R;break}else{ja=R;ka=N}while(1){ga=ja;do{ga=ga+-1|0;if((ka|0)==(ga|0)){ia=ka;break b}ha=(f[K>>2]|0)+((X(ga,P)|0)<<2)+(Q<<2)|0}while((f[ha>>2]|0)>>>0>=W>>>0);ka=ka+1|0;if((ka|0)==(ga|0)){ia=ga;break b}else ja=ga}}else{la=R;ma=N}while(1){ha=ma;while(1){na=Y+((X(ha,V)|0)<<2)|0;if((f[na+(Q<<2)>>2]|0)>>>0>=W>>>0){oa=la;break}Z=ha+1|0;if((Z|0)==(la|0)){ia=la;break b}else ha=Z}while(1){oa=oa+-1|0;if((ha|0)==(oa|0)){ia=ha;break b}pa=(f[K>>2]|0)+((X(oa,P)|0)<<2)|0;if((f[pa+(Q<<2)>>2]|0)>>>0>>0){qa=0;break}}do{ga=na+(qa<<2)|0;Z=pa+(qa<<2)|0;fa=f[ga>>2]|0;f[ga>>2]=f[Z>>2];f[Z>>2]=fa;qa=qa+1|0}while((qa|0)!=(V|0));ma=ha+1|0;if((ma|0)==(oa|0)){ia=oa;break}else la=oa}}while(0);W=(_(z|0)|0)^31;P=ia-N|0;Y=R-ia|0;fa=P>>>0>>0;if((P|0)!=(Y|0)){Z=f[C>>2]|0;if(fa)f[D>>2]=f[D>>2]|1<<31-Z;ga=Z+1|0;f[C>>2]=ga;if((ga|0)==32){ga=f[E>>2]|0;if((ga|0)==(f[F>>2]|0))Ri(G,D);else{f[ga>>2]=f[D>>2];f[E>>2]=ga+4}f[C>>2]=0;f[D>>2]=0}}ga=z>>>1;if(fa){fa=ga-P|0;if(W|0){Z=0;ea=1<>>1}}}else{ea=ga-Y|0;if(W|0){Z=0;fa=1<>>1}}}fa=f[s>>2]|0;W=f[fa+(T*12|0)>>2]|0;Z=W+(Q<<2)|0;f[Z>>2]=(f[Z>>2]|0)+1;Ig(fa+(U*12|0)|0,W,f[fa+(T*12|0)+4>>2]|0);if((ia|0)!=(N|0)){fa=f[o>>2]|0;W=f[t>>2]|0;Z=fa-W>>2;ea=f[v>>2]|0;ga=f[l>>2]|0;if((((Z|0)==0?0:(Z*113|0)+-1|0)|0)==(ga+ea|0)){Pc(e);ra=f[v>>2]|0;sa=f[l>>2]|0;ta=f[o>>2]|0;ua=f[t>>2]|0}else{ra=ea;sa=ga;ta=fa;ua=W}W=sa+ra|0;if((ta|0)==(ua|0))va=0;else va=(f[ua+(((W>>>0)/113|0)<<2)>>2]|0)+(((W>>>0)%113|0)*36|0)|0;f[va>>2]=N;W=va+4|0;f[W>>2]=r;f[W+4>>2]=x;f[va+12>>2]=ia;f[va+16>>2]=i;f[va+20>>2]=V;f[va+24>>2]=Q;f[va+28>>2]=P;f[va+32>>2]=T;f[l>>2]=(f[l>>2]|0)+1}if((R|0)!=(ia|0)){W=f[o>>2]|0;fa=f[t>>2]|0;ga=W-fa>>2;ea=f[v>>2]|0;Z=f[l>>2]|0;if((((ga|0)==0?0:(ga*113|0)+-1|0)|0)==(Z+ea|0)){Pc(e);wa=f[v>>2]|0;xa=f[l>>2]|0;ya=f[o>>2]|0;za=f[t>>2]|0}else{wa=ea;xa=Z;ya=W;za=fa}fa=xa+wa|0;if((ya|0)==(za|0))Aa=0;else Aa=(f[za+(((fa>>>0)/113|0)<<2)>>2]|0)+(((fa>>>0)%113|0)*36|0)|0;f[Aa>>2]=ia;f[Aa+4>>2]=i;f[Aa+8>>2]=V;f[Aa+12>>2]=R;fa=Aa+16|0;f[fa>>2]=p;f[fa+4>>2]=q;f[Aa+24>>2]=Q;f[Aa+28>>2]=Y;f[Aa+32>>2]=U;fa=(f[l>>2]|0)+1|0;f[l>>2]=fa;Ba=fa}else aa=85}else aa=85;while(0);if((aa|0)==85){aa=0;Ba=f[l>>2]|0}if(!Ba)break;else L=Ba}}Ba=f[t>>2]|0;L=f[v>>2]|0;Aa=Ba+(((L>>>0)/113|0)<<2)|0;q=f[o>>2]|0;p=q;i=Ba;if((q|0)==(Ba|0)){Ca=0;Da=0}else{ia=(f[Aa>>2]|0)+(((L>>>0)%113|0)*36|0)|0;Ca=ia;Da=ia}ia=Aa;Aa=Da;c:while(1){Da=Aa;do{L=Da;if((Ca|0)==(L|0))break c;Da=L+36|0}while((Da-(f[ia>>2]|0)|0)!=4068);Da=ia+4|0;ia=Da;Aa=f[Da>>2]|0}f[l>>2]=0;l=p-i>>2;if(l>>>0>2){i=Ba;do{Oq(f[i>>2]|0);i=(f[t>>2]|0)+4|0;f[t>>2]=i;Ea=f[o>>2]|0;Fa=Ea-i>>2}while(Fa>>>0>2);Ga=Fa;Ha=i;Ia=Ea}else{Ga=l;Ha=Ba;Ia=q}switch(Ga|0){case 1:{Ja=56;aa=99;break}case 2:{Ja=113;aa=99;break}default:{}}if((aa|0)==99)f[v>>2]=Ja;if((Ha|0)!=(Ia|0)){Ja=Ha;do{Oq(f[Ja>>2]|0);Ja=Ja+4|0}while((Ja|0)!=(Ia|0));Ia=f[t>>2]|0;t=f[o>>2]|0;if((t|0)!=(Ia|0))f[o>>2]=t+(~((t+-4-Ia|0)>>>2)<<2)}Ia=f[e>>2]|0;if(!Ia){u=d;return}Oq(Ia);u=d;return}function lb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0;d=u;u=u+32|0;e=d;g=a+8|0;h=f[g>>2]|0;f[e>>2]=0;i=e+4|0;f[i>>2]=0;f[e+8>>2]=0;do if(h)if(h>>>0>1073741823)aq(e);else{j=h<<2;k=ln(j)|0;f[e>>2]=k;l=k+(h<<2)|0;f[e+8>>2]=l;sj(k|0,0,j|0)|0;f[i>>2]=l;m=l;n=k;break}else{m=0;n=0}while(0);k=a+140|0;l=f[k>>2]|0;j=f[l>>2]|0;o=l+4|0;if(!j){p=l+8|0;q=n;r=m;s=h}else{h=f[o>>2]|0;if((h|0)!=(j|0))f[o>>2]=h+(~((h+-4-j|0)>>>2)<<2);Oq(j);j=l+8|0;f[j>>2]=0;f[o>>2]=0;f[l>>2]=0;p=j;q=f[e>>2]|0;r=f[i>>2]|0;s=f[g>>2]|0}f[l>>2]=q;f[o>>2]=r;f[p>>2]=f[e+8>>2];f[e>>2]=0;p=e+4|0;f[p>>2]=0;f[e+8>>2]=0;do if(s)if(s>>>0>1073741823)aq(e);else{r=s<<2;o=ln(r)|0;f[e>>2]=o;q=o+(s<<2)|0;f[e+8>>2]=q;sj(o|0,0,r|0)|0;f[p>>2]=q;t=q;v=o;break}else{t=0;v=0}while(0);s=a+152|0;o=f[s>>2]|0;q=f[o>>2]|0;r=o+4|0;if(!q){w=o+8|0;x=v;y=t}else{t=f[r>>2]|0;if((t|0)!=(q|0))f[r>>2]=t+(~((t+-4-q|0)>>>2)<<2);Oq(q);q=o+8|0;f[q>>2]=0;f[r>>2]=0;f[o>>2]=0;w=q;x=f[e>>2]|0;y=f[p>>2]|0}f[o>>2]=x;f[r>>2]=y;f[w>>2]=f[e+8>>2];w=f[b>>2]|0;y=b+4|0;r=f[y>>2]|0;x=f[y+4>>2]|0;y=f[c>>2]|0;o=c+4|0;p=f[o>>2]|0;q=f[o+4>>2]|0;f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;f[e+12>>2]=0;f[e+16>>2]=0;f[e+20>>2]=0;o=e+8|0;t=e+4|0;v=e+16|0;l=e+20|0;i=r;Pc(e);j=f[t>>2]|0;h=(f[l>>2]|0)+(f[v>>2]|0)|0;if((f[o>>2]|0)==(j|0))z=0;else z=(f[j+(((h>>>0)/113|0)<<2)>>2]|0)+(((h>>>0)%113|0)*36|0)|0;f[z>>2]=w;h=z+4|0;f[h>>2]=r;f[h+4>>2]=x;f[z+12>>2]=y;h=z+16|0;f[h>>2]=p;f[h+4>>2]=q;f[z+24>>2]=0;f[z+28>>2]=y-w;f[z+32>>2]=0;z=(f[l>>2]|0)+1|0;f[l>>2]=z;if(z|0){w=a+128|0;y=a+60|0;h=a+56|0;j=a+48|0;m=a+52|0;n=a+44|0;A=b+8|0;B=c+8|0;C=a+12|0;D=a+100|0;E=a+96|0;F=a+88|0;G=a+92|0;H=a+84|0;I=i+4|0;J=i+24|0;K=i+24|0;L=p+24|0;M=z;while(1){z=f[v>>2]|0;N=M+-1|0;O=N+z|0;P=f[t>>2]|0;Q=f[P+(((O>>>0)/113|0)<<2)>>2]|0;R=(O>>>0)%113|0;O=f[Q+(R*36|0)>>2]|0;S=f[Q+(R*36|0)+12>>2]|0;T=f[Q+(R*36|0)+24>>2]|0;U=f[Q+(R*36|0)+32>>2]|0;f[l>>2]=N;N=f[o>>2]|0;R=N-P>>2;if((1-M-z+((R|0)==0?0:(R*113|0)+-1|0)|0)>>>0>225){Oq(f[N+-4>>2]|0);f[o>>2]=(f[o>>2]|0)+-4}f[b>>2]=O;f[c>>2]=S;N=f[k>>2]|0;R=((f[g>>2]|0)+-1|0)==(T|0)?0:T+1|0;T=(f[s>>2]|0)+(U*12|0)|0;z=S-O|0;P=(f[a>>2]|0)-(f[(f[T>>2]|0)+(R<<2)>>2]|0)|0;a:do if(P){if(z>>>0<3){Q=f[w>>2]|0;f[Q>>2]=R;V=f[g>>2]|0;if(V>>>0>1){W=1;Y=V;Z=R;while(1){Z=(Z|0)==(Y+-1|0)?0:Z+1|0;f[Q+(W<<2)>>2]=Z;W=W+1|0;$=f[g>>2]|0;if(W>>>0>=$>>>0){aa=$;break}else Y=$}}else aa=V;if(!z){ba=81;break}else{ca=0;da=aa}while(1){Y=(f[J>>2]|0)+((X(f[I>>2]|0,O+ca|0)|0)<<2)|0;if(!da)ea=0;else{W=0;do{Z=f[(f[w>>2]|0)+(W<<2)>>2]|0;Q=(f[a>>2]|0)-(f[(f[T>>2]|0)+(Z<<2)>>2]|0)|0;do if(Q|0){$=f[y>>2]|0;fa=32-$|0;ga=32-Q|0;ha=f[Y+(Z<<2)>>2]<(fa|0)){ia=ha>>>ga;ga=Q-fa|0;f[y>>2]=ga;fa=f[h>>2]|ia>>>ga;f[h>>2]=fa;ga=f[j>>2]|0;if((ga|0)==(f[m>>2]|0))Ri(n,h);else{f[ga>>2]=fa;f[j>>2]=ga+4}f[h>>2]=ia<<32-(f[y>>2]|0);break}ia=f[h>>2]|ha>>>$;f[h>>2]=ia;ha=$+Q|0;f[y>>2]=ha;if((ha|0)!=32)break;ha=f[j>>2]|0;if((ha|0)==(f[m>>2]|0))Ri(n,h);else{f[ha>>2]=ia;f[j>>2]=ha+4}f[h>>2]=0;f[y>>2]=0}while(0);W=W+1|0;Q=f[g>>2]|0}while(W>>>0>>0);ea=Q}ca=ca+1|0;if(ca>>>0>=z>>>0){ba=81;break a}else da=ea}}V=U+1|0;Ig(N+(V*12|0)|0,f[N+(U*12|0)>>2]|0,f[N+(U*12|0)+4>>2]|0);W=(f[(f[k>>2]|0)+(V*12|0)>>2]|0)+(R<<2)|0;Y=(f[W>>2]|0)+(1<>2]=Y;W=f[A>>2]|0;Q=f[B>>2]|0;b:do if((S|0)==(O|0))ja=O;else{Z=f[K>>2]|0;if(!W){if((f[Z+(R<<2)>>2]|0)>>>0>>0){ja=S;break}else{ka=S;la=O}while(1){ha=ka;do{ha=ha+-1|0;if((la|0)==(ha|0)){ja=la;break b}ia=(f[L>>2]|0)+((X(ha,Q)|0)<<2)+(R<<2)|0}while((f[ia>>2]|0)>>>0>=Y>>>0);la=la+1|0;if((la|0)==(ha|0)){ja=ha;break b}else ka=ha}}else{ma=S;na=O}while(1){ia=na;while(1){oa=Z+((X(ia,W)|0)<<2)|0;if((f[oa+(R<<2)>>2]|0)>>>0>=Y>>>0){pa=ma;break}$=ia+1|0;if(($|0)==(ma|0)){ja=ma;break b}else ia=$}while(1){pa=pa+-1|0;if((ia|0)==(pa|0)){ja=ia;break b}qa=(f[L>>2]|0)+((X(pa,Q)|0)<<2)|0;if((f[qa+(R<<2)>>2]|0)>>>0>>0){ra=0;break}}do{ha=oa+(ra<<2)|0;$=qa+(ra<<2)|0;ga=f[ha>>2]|0;f[ha>>2]=f[$>>2];f[$>>2]=ga;ra=ra+1|0}while((ra|0)!=(W|0));na=ia+1|0;if((na|0)==(pa|0)){ja=pa;break}else ma=pa}}while(0);Y=(_(z|0)|0)^31;Q=ja-O|0;Z=S-ja|0;ga=Q>>>0>>0;if((Q|0)!=(Z|0)){$=f[D>>2]|0;if(ga)f[E>>2]=f[E>>2]|1<<31-$;ha=$+1|0;f[D>>2]=ha;if((ha|0)==32){ha=f[F>>2]|0;if((ha|0)==(f[G>>2]|0))Ri(H,E);else{f[ha>>2]=f[E>>2];f[F>>2]=ha+4}f[D>>2]=0;f[E>>2]=0}}ha=z>>>1;if(ga)sg(C,Y,ha-Q|0);else sg(C,Y,ha-Z|0);ha=f[s>>2]|0;Y=f[ha+(U*12|0)>>2]|0;ga=Y+(R<<2)|0;f[ga>>2]=(f[ga>>2]|0)+1;Ig(ha+(V*12|0)|0,Y,f[ha+(U*12|0)+4>>2]|0);if((ja|0)!=(O|0)){ha=f[o>>2]|0;Y=f[t>>2]|0;ga=ha-Y>>2;$=f[v>>2]|0;fa=f[l>>2]|0;if((((ga|0)==0?0:(ga*113|0)+-1|0)|0)==(fa+$|0)){Pc(e);sa=f[v>>2]|0;ta=f[l>>2]|0;ua=f[o>>2]|0;va=f[t>>2]|0}else{sa=$;ta=fa;ua=ha;va=Y}Y=ta+sa|0;if((ua|0)==(va|0))wa=0;else wa=(f[va+(((Y>>>0)/113|0)<<2)>>2]|0)+(((Y>>>0)%113|0)*36|0)|0;f[wa>>2]=O;Y=wa+4|0;f[Y>>2]=r;f[Y+4>>2]=x;f[wa+12>>2]=ja;f[wa+16>>2]=i;f[wa+20>>2]=W;f[wa+24>>2]=R;f[wa+28>>2]=Q;f[wa+32>>2]=U;f[l>>2]=(f[l>>2]|0)+1}if((S|0)!=(ja|0)){Q=f[o>>2]|0;Y=f[t>>2]|0;ha=Q-Y>>2;fa=f[v>>2]|0;$=f[l>>2]|0;if((((ha|0)==0?0:(ha*113|0)+-1|0)|0)==($+fa|0)){Pc(e);xa=f[v>>2]|0;ya=f[l>>2]|0;za=f[o>>2]|0;Aa=f[t>>2]|0}else{xa=fa;ya=$;za=Q;Aa=Y}Y=ya+xa|0;if((za|0)==(Aa|0))Ba=0;else Ba=(f[Aa+(((Y>>>0)/113|0)<<2)>>2]|0)+(((Y>>>0)%113|0)*36|0)|0;f[Ba>>2]=ja;f[Ba+4>>2]=i;f[Ba+8>>2]=W;f[Ba+12>>2]=S;Y=Ba+16|0;f[Y>>2]=p;f[Y+4>>2]=q;f[Ba+24>>2]=R;f[Ba+28>>2]=Z;f[Ba+32>>2]=V;Z=(f[l>>2]|0)+1|0;f[l>>2]=Z;Ca=Z}else ba=81}else ba=81;while(0);if((ba|0)==81){ba=0;Ca=f[l>>2]|0}if(!Ca)break;else M=Ca}}Ca=f[t>>2]|0;M=f[v>>2]|0;Ba=Ca+(((M>>>0)/113|0)<<2)|0;q=f[o>>2]|0;p=q;i=Ca;if((q|0)==(Ca|0)){Da=0;Ea=0}else{ja=(f[Ba>>2]|0)+(((M>>>0)%113|0)*36|0)|0;Da=ja;Ea=ja}ja=Ba;Ba=Ea;c:while(1){Ea=Ba;do{M=Ea;if((Da|0)==(M|0))break c;Ea=M+36|0}while((Ea-(f[ja>>2]|0)|0)!=4068);Ea=ja+4|0;ja=Ea;Ba=f[Ea>>2]|0}f[l>>2]=0;l=p-i>>2;if(l>>>0>2){i=Ca;do{Oq(f[i>>2]|0);i=(f[t>>2]|0)+4|0;f[t>>2]=i;Fa=f[o>>2]|0;Ga=Fa-i>>2}while(Ga>>>0>2);Ha=Ga;Ia=i;Ja=Fa}else{Ha=l;Ia=Ca;Ja=q}switch(Ha|0){case 1:{Ka=56;ba=95;break}case 2:{Ka=113;ba=95;break}default:{}}if((ba|0)==95)f[v>>2]=Ka;if((Ia|0)!=(Ja|0)){Ka=Ia;do{Oq(f[Ka>>2]|0);Ka=Ka+4|0}while((Ka|0)!=(Ja|0));Ja=f[t>>2]|0;t=f[o>>2]|0;if((t|0)!=(Ja|0))f[o>>2]=t+(~((t+-4-Ja|0)>>>2)<<2)}Ja=f[e>>2]|0;if(!Ja){u=d;return}Oq(Ja);u=d;return}function mb(a,c,e,g){a=a|0;c=c|0;e=e|0;g=g|0;var i=0,k=0,l=0,m=0,o=0,q=0,r=0,s=Oa,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0;if(!g){i=0;return i|0}do switch(f[a+28>>2]|0){case 1:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){m=f[f[a>>2]>>2]|0;o=a+40|0;q=un(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;r=Vn(q|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=m+r|0;if(!(b[a+32>>0]|0)){r=o;m=0;while(1){s=$(b[r>>0]|0);n[g+(m<<2)>>2]=s;m=m+1|0;q=b[k>>0]|0;if((m|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){t=q;break}else r=r+1|0}}else{r=o;m=0;while(1){s=$($(b[r>>0]|0)/$(127.0));n[g+(m<<2)>>2]=s;m=m+1|0;q=b[k>>0]|0;if((m|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){t=q;break}else r=r+1|0}}}else t=l;r=t<<24>>24;if(t<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(r<<2)|0,0,(e<<24>>24)-r<<2|0)|0;i=1;return i|0}case 2:{r=a+24|0;m=b[r>>0]|0;if((m<<24>>24>e<<24>>24?e:m)<<24>>24>0){k=f[f[a>>2]>>2]|0;o=a+40|0;q=un(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;u=Vn(q|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=k+u|0;if(!(b[a+32>>0]|0)){u=o;k=0;while(1){s=$(h[u>>0]|0);n[g+(k<<2)>>2]=s;k=k+1|0;q=b[r>>0]|0;if((k|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){v=q;break}else u=u+1|0}}else{u=o;k=0;while(1){s=$($(h[u>>0]|0)/$(255.0));n[g+(k<<2)>>2]=s;k=k+1|0;l=b[r>>0]|0;if((k|0)>=((l<<24>>24>e<<24>>24?e:l)<<24>>24|0)){v=l;break}else u=u+1|0}}}else v=m;u=v<<24>>24;if(v<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(u<<2)|0,0,(e<<24>>24)-u<<2|0)|0;i=1;return i|0}case 3:{u=a+48|0;k=f[u>>2]|0;r=f[u+4>>2]|0;u=a+40|0;o=(Vn(un(f[u>>2]|0,f[u+4>>2]|0,f[c>>2]|0,0)|0,I|0,k|0,r|0)|0)+(f[f[a>>2]>>2]|0)|0;r=a+24|0;k=b[r>>0]|0;if((k<<24>>24>e<<24>>24?e:k)<<24>>24>0)if(!(b[a+32>>0]|0)){u=o;l=0;while(1){s=$(d[u>>1]|0);n[g+(l<<2)>>2]=s;l=l+1|0;q=b[r>>0]|0;if((l|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){w=q;break}else u=u+2|0}}else{u=o;l=0;while(1){s=$($(d[u>>1]|0)/$(32767.0));n[g+(l<<2)>>2]=s;l=l+1|0;m=b[r>>0]|0;if((l|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){w=m;break}else u=u+2|0}}else w=k;u=w<<24>>24;if(w<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(u<<2)|0,0,(e<<24>>24)-u<<2|0)|0;i=1;return i|0}case 4:{u=a+48|0;l=f[u>>2]|0;r=f[u+4>>2]|0;u=a+40|0;o=(Vn(un(f[u>>2]|0,f[u+4>>2]|0,f[c>>2]|0,0)|0,I|0,l|0,r|0)|0)+(f[f[a>>2]>>2]|0)|0;r=a+24|0;l=b[r>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0)if(!(b[a+32>>0]|0)){u=o;m=0;while(1){s=$(j[u>>1]|0);n[g+(m<<2)>>2]=s;m=m+1|0;q=b[r>>0]|0;if((m|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){x=q;break}else u=u+2|0}}else{u=o;m=0;while(1){s=$($(j[u>>1]|0)/$(65535.0));n[g+(m<<2)>>2]=s;m=m+1|0;k=b[r>>0]|0;if((m|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){x=k;break}else u=u+2|0}}else x=l;u=x<<24>>24;if(x<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(u<<2)|0,0,(e<<24>>24)-u<<2|0)|0;i=1;return i|0}case 5:{u=a+48|0;m=f[u>>2]|0;r=f[u+4>>2]|0;u=a+40|0;o=(Vn(un(f[u>>2]|0,f[u+4>>2]|0,f[c>>2]|0,0)|0,I|0,m|0,r|0)|0)+(f[f[a>>2]>>2]|0)|0;r=a+24|0;m=b[r>>0]|0;if((m<<24>>24>e<<24>>24?e:m)<<24>>24>0)if(!(b[a+32>>0]|0)){u=o;k=0;while(1){s=$(f[u>>2]|0);n[g+(k<<2)>>2]=s;k=k+1|0;q=b[r>>0]|0;if((k|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){y=q;break}else u=u+4|0}}else{u=o;k=0;while(1){s=$($(f[u>>2]|0)*$(4.65661287e-10));n[g+(k<<2)>>2]=s;k=k+1|0;l=b[r>>0]|0;if((k|0)>=((l<<24>>24>e<<24>>24?e:l)<<24>>24|0)){y=l;break}else u=u+4|0}}else y=m;u=y<<24>>24;if(y<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(u<<2)|0,0,(e<<24>>24)-u<<2|0)|0;i=1;return i|0}case 6:{u=a+48|0;k=f[u>>2]|0;r=f[u+4>>2]|0;u=a+40|0;o=(Vn(un(f[u>>2]|0,f[u+4>>2]|0,f[c>>2]|0,0)|0,I|0,k|0,r|0)|0)+(f[f[a>>2]>>2]|0)|0;r=a+24|0;k=b[r>>0]|0;if((k<<24>>24>e<<24>>24?e:k)<<24>>24>0)if(!(b[a+32>>0]|0)){u=o;l=0;while(1){s=$((f[u>>2]|0)>>>0);n[g+(l<<2)>>2]=s;l=l+1|0;q=b[r>>0]|0;if((l|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){z=q;break}else u=u+4|0}}else{u=o;l=0;while(1){s=$($((f[u>>2]|0)>>>0)*$(2.32830644e-10));n[g+(l<<2)>>2]=s;l=l+1|0;m=b[r>>0]|0;if((l|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){z=m;break}else u=u+4|0}}else z=k;u=z<<24>>24;if(z<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(u<<2)|0,0,(e<<24>>24)-u<<2|0)|0;i=1;return i|0}case 7:{u=a+48|0;l=f[u>>2]|0;r=f[u+4>>2]|0;u=a+40|0;o=(Vn(un(f[u>>2]|0,f[u+4>>2]|0,f[c>>2]|0,0)|0,I|0,l|0,r|0)|0)+(f[f[a>>2]>>2]|0)|0;r=a+24|0;l=b[r>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0)if(!(b[a+32>>0]|0)){u=o;m=0;while(1){q=u;s=$(+((f[q>>2]|0)>>>0)+4294967296.0*+(f[q+4>>2]|0));n[g+(m<<2)>>2]=s;m=m+1|0;q=b[r>>0]|0;if((m|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){A=q;break}else u=u+8|0}}else{u=o;m=0;while(1){k=u;s=$($(+((f[k>>2]|0)>>>0)+4294967296.0*+(f[k+4>>2]|0))*$(1.08420217e-19));n[g+(m<<2)>>2]=s;m=m+1|0;k=b[r>>0]|0;if((m|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){A=k;break}else u=u+8|0}}else A=l;u=A<<24>>24;if(A<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(u<<2)|0,0,(e<<24>>24)-u<<2|0)|0;i=1;return i|0}case 8:{u=a+48|0;m=f[u>>2]|0;r=f[u+4>>2]|0;u=a+40|0;o=(Vn(un(f[u>>2]|0,f[u+4>>2]|0,f[c>>2]|0,0)|0,I|0,m|0,r|0)|0)+(f[f[a>>2]>>2]|0)|0;r=a+24|0;m=b[r>>0]|0;if((m<<24>>24>e<<24>>24?e:m)<<24>>24>0)if(!(b[a+32>>0]|0)){u=o;k=0;while(1){q=u;s=$(+((f[q>>2]|0)>>>0)+4294967296.0*+((f[q+4>>2]|0)>>>0));n[g+(k<<2)>>2]=s;k=k+1|0;q=b[r>>0]|0;if((k|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){B=q;break}else u=u+8|0}}else{u=o;k=0;while(1){l=u;s=$($(+((f[l>>2]|0)>>>0)+4294967296.0*+((f[l+4>>2]|0)>>>0))*$(5.42101086e-20));n[g+(k<<2)>>2]=s;k=k+1|0;l=b[r>>0]|0;if((k|0)>=((l<<24>>24>e<<24>>24?e:l)<<24>>24|0)){B=l;break}else u=u+8|0}}else B=m;u=B<<24>>24;if(B<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(u<<2)|0,0,(e<<24>>24)-u<<2|0)|0;i=1;return i|0}case 9:{u=a+24|0;k=b[u>>0]|0;if((k<<24>>24>e<<24>>24?e:k)<<24>>24>0){r=f[f[a>>2]>>2]|0;o=a+40|0;l=un(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;q=Vn(l|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=r+q|0;q=0;while(1){f[g+(q<<2)>>2]=f[o>>2];q=q+1|0;r=b[u>>0]|0;if((q|0)>=((r<<24>>24>e<<24>>24?e:r)<<24>>24|0)){C=r;break}else o=o+4|0}}else C=k;o=C<<24>>24;if(C<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(o<<2)|0,0,(e<<24>>24)-o<<2|0)|0;i=1;return i|0}case 10:{o=a+24|0;q=b[o>>0]|0;if((q<<24>>24>e<<24>>24?e:q)<<24>>24>0){u=f[f[a>>2]>>2]|0;m=a+40|0;r=un(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;l=Vn(r|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=u+l|0;l=0;while(1){s=$(+p[m>>3]);n[g+(l<<2)>>2]=s;l=l+1|0;u=b[o>>0]|0;if((l|0)>=((u<<24>>24>e<<24>>24?e:u)<<24>>24|0)){D=u;break}else m=m+8|0}}else D=q;m=D<<24>>24;if(D<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(m<<2)|0,0,(e<<24>>24)-m<<2|0)|0;i=1;return i|0}case 11:{m=a+24|0;l=b[m>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){o=f[f[a>>2]>>2]|0;k=a+40|0;u=un(f[k>>2]|0,f[k+4>>2]|0,f[c>>2]|0,0)|0;k=a+48|0;r=Vn(u|0,I|0,f[k>>2]|0,f[k+4>>2]|0)|0;k=o+r|0;r=0;while(1){s=$((b[k>>0]|0)!=0&1);n[g+(r<<2)>>2]=s;r=r+1|0;o=b[m>>0]|0;if((r|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){E=o;break}else k=k+1|0}}else E=l;k=E<<24>>24;if(E<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(k<<2)|0,0,(e<<24>>24)-k<<2|0)|0;i=1;return i|0}default:{i=0;return i|0}}while(0);return 0}function nb(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0.0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0,Ja=0,Ka=0,La=0,Ma=0,Na=0,Oa=0,Pa=0,Qa=0,Ra=0,Sa=0,Ta=0,Ua=0,Va=0,Wa=0,Xa=0,Ya=0,Za=0,_a=0,$a=0,ab=0,bb=0.0,cb=0,db=0,eb=0,fb=0,gb=0,hb=0,ib=0,jb=0.0,kb=0.0,lb=0.0,mb=0.0,nb=0.0,ob=0.0,pb=0.0,qb=0.0,rb=0.0,sb=0.0,tb=0;i=u;u=u+512|0;j=i;k=d+c|0;l=0-k|0;m=a+4|0;n=a+100|0;o=b;b=0;a:while(1){switch(o|0){case 46:{p=6;break a;break}case 48:break;default:{q=0;r=o;s=b;t=0;v=0;break a}}w=f[m>>2]|0;if(w>>>0<(f[n>>2]|0)>>>0){f[m>>2]=w+1;o=h[w>>0]|0;b=1;continue}else{o=Si(a)|0;b=1;continue}}if((p|0)==6){o=f[m>>2]|0;if(o>>>0<(f[n>>2]|0)>>>0){f[m>>2]=o+1;x=h[o>>0]|0}else x=Si(a)|0;if((x|0)==48){o=0;w=0;while(1){y=Vn(o|0,w|0,-1,-1)|0;z=I;A=f[m>>2]|0;if(A>>>0<(f[n>>2]|0)>>>0){f[m>>2]=A+1;B=h[A>>0]|0}else B=Si(a)|0;if((B|0)==48){o=y;w=z}else{q=1;r=B;s=1;t=y;v=z;break}}}else{q=1;r=x;s=b;t=0;v=0}}f[j>>2]=0;b=r+-48|0;x=(r|0)==46;b:do if(x|b>>>0<10){B=j+496|0;w=0;o=0;z=0;y=q;A=s;C=r;D=x;E=b;F=t;G=v;H=0;J=0;c:while(1){do if(D)if(!y){L=w;M=o;N=1;O=z;P=A;Q=H;R=J;S=H;T=J}else break c;else{U=Vn(H|0,J|0,1,0)|0;V=I;W=(C|0)!=48;if((o|0)>=125){if(!W){L=w;M=o;N=y;O=z;P=A;Q=F;R=G;S=U;T=V;break}f[B>>2]=f[B>>2]|1;L=w;M=o;N=y;O=z;P=A;Q=F;R=G;S=U;T=V;break}Y=j+(o<<2)|0;if(!w)Z=E;else Z=C+-48+((f[Y>>2]|0)*10|0)|0;f[Y>>2]=Z;Y=w+1|0;_=(Y|0)==9;L=_?0:Y;M=o+(_&1)|0;N=y;O=W?U:z;P=1;Q=F;R=G;S=U;T=V}while(0);V=f[m>>2]|0;if(V>>>0<(f[n>>2]|0)>>>0){f[m>>2]=V+1;$=h[V>>0]|0}else $=Si(a)|0;E=$+-48|0;D=($|0)==46;if(!(D|E>>>0<10)){aa=L;ba=M;ca=O;da=N;ea=$;fa=P;ga=S;ha=Q;ia=T;ja=R;p=29;break b}else{w=L;o=M;z=O;y=N;A=P;C=$;F=Q;G=R;H=S;J=T}}ka=w;la=o;ma=z;na=H;oa=J;pa=F;qa=G;ra=(A|0)!=0;p=37}else{aa=0;ba=0;ca=0;da=q;ea=r;fa=s;ga=0;ha=t;ia=0;ja=v;p=29}while(0);do if((p|0)==29){v=(da|0)==0;t=v?ga:ha;s=v?ia:ja;v=(fa|0)!=0;if(!(v&(ea|32|0)==101))if((ea|0)>-1){ka=aa;la=ba;ma=ca;na=ga;oa=ia;pa=t;qa=s;ra=v;p=37;break}else{sa=aa;ta=ba;ua=ca;va=ga;wa=ia;xa=v;ya=t;za=s;p=39;break}v=Re(a,g)|0;r=I;if((v|0)==0&(r|0)==-2147483648){if(!g){Ym(a,0);Aa=0.0;break}if(!(f[n>>2]|0)){Ba=0;Ca=0}else{f[m>>2]=(f[m>>2]|0)+-1;Ba=0;Ca=0}}else{Ba=v;Ca=r}r=Vn(Ba|0,Ca|0,t|0,s|0)|0;Da=aa;Ea=ba;Fa=ca;Ga=r;Ha=ga;Ia=I;Ja=ia;p=41}while(0);if((p|0)==37)if(f[n>>2]|0){f[m>>2]=(f[m>>2]|0)+-1;if(ra){Da=ka;Ea=la;Fa=ma;Ga=pa;Ha=na;Ia=qa;Ja=oa;p=41}else p=40}else{sa=ka;ta=la;ua=ma;va=na;wa=oa;xa=ra;ya=pa;za=qa;p=39}if((p|0)==39)if(xa){Da=sa;Ea=ta;Fa=ua;Ga=ya;Ha=va;Ia=za;Ja=wa;p=41}else p=40;do if((p|0)==40){wa=Vq()|0;f[wa>>2]=22;Ym(a,0);Aa=0.0}else if((p|0)==41){wa=f[j>>2]|0;if(!wa){Aa=+(e|0)*0.0;break}if(((Ja|0)<0|(Ja|0)==0&Ha>>>0<10)&((Ga|0)==(Ha|0)&(Ia|0)==(Ja|0))?(c|0)>30|(wa>>>c|0)==0:0){Aa=+(e|0)*+(wa>>>0);break}wa=(d|0)/-2|0;za=((wa|0)<0)<<31>>31;if((Ia|0)>(za|0)|(Ia|0)==(za|0)&Ga>>>0>wa>>>0){wa=Vq()|0;f[wa>>2]=34;Aa=+(e|0)*1797693134862315708145274.0e284*1797693134862315708145274.0e284;break}wa=d+-106|0;za=((wa|0)<0)<<31>>31;if((Ia|0)<(za|0)|(Ia|0)==(za|0)&Ga>>>0>>0){wa=Vq()|0;f[wa>>2]=34;Aa=+(e|0)*2.2250738585072014e-308*2.2250738585072014e-308;break}if(!Da)Ka=Ea;else{if((Da|0)<9){wa=j+(Ea<<2)|0;za=Da;va=f[wa>>2]|0;while(1){va=va*10|0;if((za|0)>=8)break;else za=za+1|0}f[wa>>2]=va}Ka=Ea+1|0}if((Fa|0)<9?(Fa|0)<=(Ga|0)&(Ga|0)<18:0){if((Ga|0)==9){Aa=+(e|0)*+((f[j>>2]|0)>>>0);break}if((Ga|0)<9){Aa=+(e|0)*+((f[j>>2]|0)>>>0)/+(f[6720+(8-Ga<<2)>>2]|0);break}za=c+27+(X(Ga,-3)|0)|0;A=f[j>>2]|0;if((za|0)>30|(A>>>za|0)==0){Aa=+(e|0)*+(A>>>0)*+(f[6720+(Ga+-10<<2)>>2]|0);break}}A=(Ga|0)%9|0;if(!A){La=0;Ma=Ka;Na=0;Oa=Ga}else{za=(Ga|0)>-1?A:A+9|0;A=f[6720+(8-za<<2)>>2]|0;if(Ka){G=1e9/(A|0)|0;F=0;J=0;H=Ga;z=0;do{o=j+(z<<2)|0;w=f[o>>2]|0;ya=((w>>>0)/(A>>>0)|0)+F|0;f[o>>2]=ya;F=X(G,(w>>>0)%(A>>>0)|0)|0;w=(z|0)==(J|0)&(ya|0)==0;H=w?H+-9|0:H;J=w?J+1&127:J;z=z+1|0}while((z|0)!=(Ka|0));if(!F){Pa=J;Qa=Ka;Ra=H}else{f[j+(Ka<<2)>>2]=F;Pa=J;Qa=Ka+1|0;Ra=H}}else{Pa=0;Qa=0;Ra=Ga}La=0;Ma=Qa;Na=Pa;Oa=9-za+Ra|0}d:while(1){z=(Oa|0)<18;A=(Oa|0)==18;G=j+(Na<<2)|0;va=La;wa=Ma;while(1){if(!z){if(!A){Sa=va;Ta=Na;Ua=Oa;Va=wa;break d}if((f[G>>2]|0)>>>0>=9007199){Sa=va;Ta=Na;Ua=18;Va=wa;break d}}w=0;Wa=wa;ya=wa+127|0;while(1){o=ya&127;ua=j+(o<<2)|0;ta=Tn(f[ua>>2]|0,0,29)|0;sa=Vn(ta|0,I|0,w|0,0)|0;ta=I;if(ta>>>0>0|(ta|0)==0&sa>>>0>1e9){xa=jp(sa|0,ta|0,1e9,0)|0;qa=hn(sa|0,ta|0,1e9,0)|0;Xa=xa;Ya=qa}else{Xa=0;Ya=sa}f[ua>>2]=Ya;ua=(o|0)==(Na|0);Wa=(Ya|0)==0&(((o|0)!=(Wa+127&127|0)|ua)^1)?o:Wa;if(ua)break;else{w=Xa;ya=o+-1|0}}va=va+-29|0;if(Xa|0)break;else wa=Wa}wa=Na+127&127;G=Wa+127&127;A=j+((Wa+126&127)<<2)|0;if((wa|0)==(Wa|0)){f[A>>2]=f[A>>2]|f[j+(G<<2)>>2];Za=G}else Za=Wa;f[j+(wa<<2)>>2]=Xa;La=va;Ma=Za;Na=wa;Oa=Oa+9|0}e:while(1){za=Va+1&127;H=j+((Va+127&127)<<2)|0;J=Sa;F=Ta;wa=Ua;while(1){G=(wa|0)==18;A=(wa|0)>27?9:1;_a=J;$a=F;while(1){z=0;while(1){ya=z+$a&127;if((ya|0)==(Va|0)){ab=2;p=88;break}w=f[j+(ya<<2)>>2]|0;ya=f[6752+(z<<2)>>2]|0;if(w>>>0>>0){ab=2;p=88;break}if(w>>>0>ya>>>0)break;ya=z+1|0;if((z|0)<1)z=ya;else{ab=ya;p=88;break}}if((p|0)==88?(p=0,G&(ab|0)==2):0){bb=0.0;cb=0;db=Va;break e}eb=A+_a|0;if(($a|0)==(Va|0)){_a=eb;$a=Va}else break}G=(1<>>A;fb=0;gb=$a;hb=wa;ya=$a;do{w=j+(ya<<2)|0;o=f[w>>2]|0;ua=(o>>>A)+fb|0;f[w>>2]=ua;fb=X(o&G,z)|0;o=(ya|0)==(gb|0)&(ua|0)==0;hb=o?hb+-9|0:hb;gb=o?gb+1&127:gb;ya=ya+1&127}while((ya|0)!=(Va|0));if(!fb){J=eb;F=gb;wa=hb;continue}if((za|0)!=(gb|0))break;f[H>>2]=f[H>>2]|1;J=eb;F=gb;wa=hb}f[j+(Va<<2)>>2]=fb;Sa=eb;Ta=gb;Ua=hb;Va=za}while(1){wa=cb+$a&127;F=db+1&127;if((wa|0)==(db|0)){f[j+(F+-1<<2)>>2]=0;ib=F}else ib=db;bb=bb*1.0e9+ +((f[j+(wa<<2)>>2]|0)>>>0);cb=cb+1|0;if((cb|0)==2)break;else db=ib}jb=+(e|0);kb=bb*jb;wa=_a+53|0;F=wa-d|0;J=(F|0)<(c|0);H=J?((F|0)>0?F:0):c;if((H|0)<53){lb=+rq(+bk(1.0,105-H|0),kb);mb=+Dq(kb,+bk(1.0,53-H|0));nb=lb;ob=mb;pb=lb+(kb-mb)}else{nb=0.0;ob=0.0;pb=kb}va=$a+2&127;if((va|0)!=(ib|0)){ya=f[j+(va<<2)>>2]|0;do if(ya>>>0>=5e8){if((ya|0)!=5e8){qb=jb*.75+ob;break}if(($a+3&127|0)==(ib|0)){qb=jb*.5+ob;break}else{qb=jb*.75+ob;break}}else{if((ya|0)==0?($a+3&127|0)==(ib|0):0){qb=ob;break}qb=jb*.25+ob}while(0);if((53-H|0)>1?!(+Dq(qb,1.0)!=0.0):0)rb=qb+1.0;else rb=qb}else rb=ob;jb=pb+rb-nb;do if((wa&2147483647|0)>(-2-k|0)){ya=!(+K(+jb)>=9007199254740992.0);va=_a+((ya^1)&1)|0;kb=ya?jb:jb*.5;if((va+50|0)<=(l|0)?!(rb!=0.0&(J&((H|0)!=(F|0)|ya))):0){sb=kb;tb=va;break}ya=Vq()|0;f[ya>>2]=34;sb=kb;tb=va}else{sb=jb;tb=_a}while(0);Aa=+sq(sb,tb)}while(0);u=i;return +Aa}function ob(a,c,d,e,g,i){a=a|0;c=+c;d=d|0;e=e|0;g=g|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0.0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0.0,C=0,D=0.0,E=0,F=0,G=0,H=0.0,J=0,K=0,L=0,M=0,N=0,O=0.0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0.0,ga=0.0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0;j=u;u=u+560|0;k=j+8|0;l=j;m=j+524|0;n=m;o=j+512|0;f[l>>2]=0;p=o+12|0;yo(c)|0;if((I|0)<0){q=-c;r=1;s=16605}else{q=c;r=(g&2049|0)!=0&1;s=(g&2048|0)==0?((g&1|0)==0?16606:16611):16608}yo(q)|0;do if(0==0&(I&2146435072|0)==2146435072){t=(i&32|0)!=0;v=r+3|0;Qk(a,32,d,v,g&-65537);Xo(a,s,r);Xo(a,q!=q|0.0!=0.0?(t?18555:16632):t?16624:16628,3);Qk(a,32,d,v,g^8192);w=v}else{c=+tq(q,l)*2.0;v=c!=0.0;if(v)f[l>>2]=(f[l>>2]|0)+-1;t=i|32;if((t|0)==97){x=i&32;y=(x|0)==0?s:s+9|0;z=r|2;A=12-e|0;do if(!(e>>>0>11|(A|0)==0)){B=8.0;C=A;do{C=C+-1|0;B=B*16.0}while((C|0)!=0);if((b[y>>0]|0)==45){D=-(B+(-c-B));break}else{D=c+B-B;break}}else D=c;while(0);A=f[l>>2]|0;C=(A|0)<0?0-A|0:A;E=Rj(C,((C|0)<0)<<31>>31,p)|0;if((E|0)==(p|0)){C=o+11|0;b[C>>0]=48;F=C}else F=E;b[F+-1>>0]=(A>>31&2)+43;A=F+-2|0;b[A>>0]=i+15;E=(e|0)<1;C=(g&8|0)==0;G=m;H=D;while(1){J=~~H;K=G+1|0;b[G>>0]=x|h[16636+J>>0];H=(H-+(J|0))*16.0;if((K-n|0)==1?!(C&(E&H==0.0)):0){b[K>>0]=46;L=G+2|0}else L=K;if(!(H!=0.0))break;else G=L}G=L;if((e|0)!=0?(-2-n+G|0)<(e|0):0){M=G-n|0;N=e+2|0}else{E=G-n|0;M=E;N=E}E=p-A|0;G=E+z+N|0;Qk(a,32,d,G,g);Xo(a,y,z);Qk(a,48,d,G,g^65536);Xo(a,m,M);Qk(a,48,N-M|0,0,0);Xo(a,A,E);Qk(a,32,d,G,g^8192);w=G;break}G=(e|0)<0?6:e;if(v){E=(f[l>>2]|0)+-28|0;f[l>>2]=E;O=c*268435456.0;P=E}else{O=c;P=f[l>>2]|0}E=(P|0)<0?k:k+288|0;C=E;H=O;do{x=~~H>>>0;f[C>>2]=x;C=C+4|0;H=(H-+(x>>>0))*1.0e9}while(H!=0.0);if((P|0)>0){v=E;A=C;z=P;while(1){y=(z|0)<29?z:29;x=A+-4|0;if(x>>>0>=v>>>0){K=x;x=0;do{J=Tn(f[K>>2]|0,0,y|0)|0;Q=Vn(J|0,I|0,x|0,0)|0;J=I;R=hn(Q|0,J|0,1e9,0)|0;f[K>>2]=R;x=jp(Q|0,J|0,1e9,0)|0;K=K+-4|0}while(K>>>0>=v>>>0);if(x){K=v+-4|0;f[K>>2]=x;S=K}else S=v}else S=v;K=A;while(1){if(K>>>0<=S>>>0)break;J=K+-4|0;if(!(f[J>>2]|0))K=J;else break}x=(f[l>>2]|0)-y|0;f[l>>2]=x;if((x|0)>0){v=S;A=K;z=x}else{T=S;U=K;V=x;break}}}else{T=E;U=C;V=P}if((V|0)<0){z=((G+25|0)/9|0)+1|0;A=(t|0)==102;v=T;x=U;J=V;while(1){Q=0-J|0;R=(Q|0)<9?Q:9;if(v>>>0>>0){Q=(1<>>R;Y=0;Z=v;do{_=f[Z>>2]|0;f[Z>>2]=(_>>>R)+Y;Y=X(_&Q,W)|0;Z=Z+4|0}while(Z>>>0>>0);Z=(f[v>>2]|0)==0?v+4|0:v;if(!Y){$=Z;aa=x}else{f[x>>2]=Y;$=Z;aa=x+4|0}}else{$=(f[v>>2]|0)==0?v+4|0:v;aa=x}Z=A?E:$;W=(aa-Z>>2|0)>(z|0)?Z+(z<<2)|0:aa;J=(f[l>>2]|0)+R|0;f[l>>2]=J;if((J|0)>=0){ba=$;ca=W;break}else{v=$;x=W}}}else{ba=T;ca=U}x=E;if(ba>>>0>>0){v=(x-ba>>2)*9|0;J=f[ba>>2]|0;if(J>>>0<10)da=v;else{z=v;v=10;while(1){v=v*10|0;A=z+1|0;if(J>>>0>>0){da=A;break}else z=A}}}else da=0;z=(t|0)==103;v=(G|0)!=0;J=G-((t|0)!=102?da:0)+((v&z)<<31>>31)|0;if((J|0)<(((ca-x>>2)*9|0)+-9|0)){A=J+9216|0;J=E+4+(((A|0)/9|0)+-1024<<2)|0;C=(A|0)%9|0;if((C|0)<8){A=C;C=10;while(1){W=C*10|0;if((A|0)<7){A=A+1|0;C=W}else{ea=W;break}}}else ea=10;C=f[J>>2]|0;A=(C>>>0)%(ea>>>0)|0;t=(J+4|0)==(ca|0);if(!(t&(A|0)==0)){B=(((C>>>0)/(ea>>>0)|0)&1|0)==0?9007199254740992.0:9007199254740994.0;W=(ea|0)/2|0;H=A>>>0>>0?.5:t&(A|0)==(W|0)?1.0:1.5;if(!r){fa=H;ga=B}else{W=(b[s>>0]|0)==45;fa=W?-H:H;ga=W?-B:B}W=C-A|0;f[J>>2]=W;if(ga+fa!=ga){A=W+ea|0;f[J>>2]=A;if(A>>>0>999999999){A=ba;W=J;while(1){C=W+-4|0;f[W>>2]=0;if(C>>>0>>0){t=A+-4|0;f[t>>2]=0;ha=t}else ha=A;t=(f[C>>2]|0)+1|0;f[C>>2]=t;if(t>>>0>999999999){A=ha;W=C}else{ia=ha;ja=C;break}}}else{ia=ba;ja=J}W=(x-ia>>2)*9|0;A=f[ia>>2]|0;if(A>>>0<10){ka=ja;la=W;ma=ia}else{C=W;W=10;while(1){W=W*10|0;t=C+1|0;if(A>>>0>>0){ka=ja;la=t;ma=ia;break}else C=t}}}else{ka=J;la=da;ma=ba}}else{ka=J;la=da;ma=ba}C=ka+4|0;na=la;oa=ca>>>0>C>>>0?C:ca;pa=ma}else{na=da;oa=ca;pa=ba}C=oa;while(1){if(C>>>0<=pa>>>0){qa=0;break}W=C+-4|0;if(!(f[W>>2]|0))C=W;else{qa=1;break}}J=0-na|0;do if(z){W=G+((v^1)&1)|0;if((W|0)>(na|0)&(na|0)>-5){ra=i+-1|0;sa=W+-1-na|0}else{ra=i+-2|0;sa=W+-1|0}W=g&8;if(!W){if(qa?(A=f[C+-4>>2]|0,(A|0)!=0):0)if(!((A>>>0)%10|0)){t=0;Z=10;while(1){Z=Z*10|0;Q=t+1|0;if((A>>>0)%(Z>>>0)|0|0){ta=Q;break}else t=Q}}else ta=0;else ta=9;t=((C-x>>2)*9|0)+-9|0;if((ra|32|0)==102){Z=t-ta|0;A=(Z|0)>0?Z:0;ua=ra;va=(sa|0)<(A|0)?sa:A;wa=0;break}else{A=t+na-ta|0;t=(A|0)>0?A:0;ua=ra;va=(sa|0)<(t|0)?sa:t;wa=0;break}}else{ua=ra;va=sa;wa=W}}else{ua=i;va=G;wa=g&8}while(0);G=va|wa;x=(G|0)!=0&1;v=(ua|32|0)==102;if(v){xa=0;ya=(na|0)>0?na:0}else{z=(na|0)<0?J:na;t=Rj(z,((z|0)<0)<<31>>31,p)|0;z=p;if((z-t|0)<2){A=t;while(1){Z=A+-1|0;b[Z>>0]=48;if((z-Z|0)<2)A=Z;else{za=Z;break}}}else za=t;b[za+-1>>0]=(na>>31&2)+43;A=za+-2|0;b[A>>0]=ua;xa=A;ya=z-A|0}A=r+1+va+x+ya|0;Qk(a,32,d,A,g);Xo(a,s,r);Qk(a,48,d,A,g^65536);if(v){J=pa>>>0>E>>>0?E:pa;Z=m+9|0;R=Z;Y=m+8|0;Q=J;do{K=Rj(f[Q>>2]|0,0,Z)|0;if((Q|0)==(J|0))if((K|0)==(Z|0)){b[Y>>0]=48;Aa=Y}else Aa=K;else if(K>>>0>m>>>0){sj(m|0,48,K-n|0)|0;y=K;while(1){_=y+-1|0;if(_>>>0>m>>>0)y=_;else{Aa=_;break}}}else Aa=K;Xo(a,Aa,R-Aa|0);Q=Q+4|0}while(Q>>>0<=E>>>0);if(G|0)Xo(a,16652,1);if(Q>>>0>>0&(va|0)>0){E=va;R=Q;while(1){Y=Rj(f[R>>2]|0,0,Z)|0;if(Y>>>0>m>>>0){sj(m|0,48,Y-n|0)|0;J=Y;while(1){v=J+-1|0;if(v>>>0>m>>>0)J=v;else{Ba=v;break}}}else Ba=Y;Xo(a,Ba,(E|0)<9?E:9);R=R+4|0;J=E+-9|0;if(!(R>>>0>>0&(E|0)>9)){Ca=J;break}else E=J}}else Ca=va;Qk(a,48,Ca+9|0,9,0)}else{E=qa?C:pa+4|0;if((va|0)>-1){R=m+9|0;Z=(wa|0)==0;Q=R;G=0-n|0;J=m+8|0;K=va;v=pa;while(1){x=Rj(f[v>>2]|0,0,R)|0;if((x|0)==(R|0)){b[J>>0]=48;Da=J}else Da=x;do if((v|0)==(pa|0)){x=Da+1|0;Xo(a,Da,1);if(Z&(K|0)<1){Ea=x;break}Xo(a,16652,1);Ea=x}else{if(Da>>>0<=m>>>0){Ea=Da;break}sj(m|0,48,Da+G|0)|0;x=Da;while(1){z=x+-1|0;if(z>>>0>m>>>0)x=z;else{Ea=z;break}}}while(0);Y=Q-Ea|0;Xo(a,Ea,(K|0)>(Y|0)?Y:K);x=K-Y|0;v=v+4|0;if(!(v>>>0>>0&(x|0)>-1)){Fa=x;break}else K=x}}else Fa=va;Qk(a,48,Fa+18|0,18,0);Xo(a,xa,p-xa|0)}Qk(a,32,d,A,g^8192);w=A}while(0);u=j;return ((w|0)<(d|0)?d:w)|0}function pb(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0;c=u;u=u+64|0;d=c+56|0;e=c+52|0;g=c+48|0;h=c+60|0;i=c;j=c+44|0;k=c+40|0;l=c+36|0;m=c+32|0;n=c+28|0;o=c+24|0;p=c+20|0;q=c+16|0;r=c+12|0;if(!(b[a+288>>0]|0)){_e(d,f[a+8>>2]|0);s=a+12|0;t=f[d>>2]|0;f[d>>2]=0;v=f[s>>2]|0;f[s>>2]=t;if(v){Ii(v);Oq(v);v=f[d>>2]|0;f[d>>2]=0;if(v|0){Ii(v);Oq(v)}}else f[d>>2]=0}else{fh(d,f[a+8>>2]|0);v=a+12|0;t=f[d>>2]|0;f[d>>2]=0;s=f[v>>2]|0;f[v>>2]=t;if(s){Ii(s);Oq(s);s=f[d>>2]|0;f[d>>2]=0;if(s|0){Ii(s);Oq(s)}}else f[d>>2]=0}s=a+12|0;t=f[s>>2]|0;if(!t){w=0;u=c;return w|0}if((((f[t+4>>2]|0)-(f[t>>2]|0)>>2>>>0)/3|0|0)==(f[t+40>>2]|0)){w=0;u=c;return w|0}v=a+200|0;f[a+264>>2]=a;x=a+4|0;ci(((f[t+28>>2]|0)-(f[t+24>>2]|0)>>2)-(f[t+44>>2]|0)|0,f[(f[x>>2]|0)+44>>2]|0)|0;t=f[s>>2]|0;ci((((f[t+4>>2]|0)-(f[t>>2]|0)>>2>>>0)/3|0)-(f[t+40>>2]|0)|0,f[(f[x>>2]|0)+44>>2]|0)|0;t=a+28|0;y=a+8|0;z=f[y>>2]|0;A=((f[z+100>>2]|0)-(f[z+96>>2]|0)|0)/12|0;b[d>>0]=0;qh(t,A,d);A=f[s>>2]|0;z=(f[A+28>>2]|0)-(f[A+24>>2]|0)>>2;f[d>>2]=-1;hg(a+52|0,z,d);z=a+40|0;A=f[z>>2]|0;B=a+44|0;C=f[B>>2]|0;if((C|0)!=(A|0))f[B>>2]=C+(~((C+-4-A|0)>>>2)<<2);A=f[s>>2]|0;C=(f[A+4>>2]|0)-(f[A>>2]|0)>>2;gk(z,C-((C>>>0)%3|0)|0);C=a+84|0;z=f[s>>2]|0;A=(f[z+28>>2]|0)-(f[z+24>>2]|0)>>2;b[d>>0]=0;qh(C,A,d);A=a+96|0;z=f[A>>2]|0;B=a+100|0;D=f[B>>2]|0;if((D|0)!=(z|0))f[B>>2]=D+(~((D+-4-z|0)>>>2)<<2);f[a+164>>2]=-1;z=a+168|0;f[z>>2]=0;D=f[a+108>>2]|0;E=a+112|0;F=f[E>>2]|0;if((F|0)!=(D|0))f[E>>2]=F+(~(((F+-12-D|0)>>>0)/12|0)*12|0);D=a+132|0;if(f[D>>2]|0){F=a+128|0;E=f[F>>2]|0;if(E|0){G=E;do{E=G;G=f[G>>2]|0;Oq(E)}while((G|0)!=0)}f[F>>2]=0;F=f[a+124>>2]|0;if(F|0){G=a+120|0;E=0;do{f[(f[G>>2]|0)+(E<<2)>>2]=0;E=E+1|0}while((E|0)!=(F|0))}f[D>>2]=0}f[a+144>>2]=0;D=f[s>>2]|0;F=(f[D+28>>2]|0)-(f[D+24>>2]|0)>>2;f[d>>2]=-1;hg(a+152|0,F,d);F=a+72|0;D=f[F>>2]|0;E=a+76|0;G=f[E>>2]|0;if((G|0)!=(D|0))f[E>>2]=G+(~((G+-4-D|0)>>>2)<<2);D=f[s>>2]|0;gk(F,((f[D+4>>2]|0)-(f[D>>2]|0)>>2>>>0)/3|0);f[a+64>>2]=0;if(!(Be(a)|0)){w=0;u=c;return w|0}if(!(Hg(a)|0)){w=0;u=c;return w|0}D=a+172|0;G=a+176|0;H=(((f[G>>2]|0)-(f[D>>2]|0)|0)/136|0)&255;b[h>>0]=H;I=f[(f[x>>2]|0)+44>>2]|0;J=I+16|0;K=f[J+4>>2]|0;if((K|0)>0|(K|0)==0&(f[J>>2]|0)>>>0>0)L=H;else{f[e>>2]=f[I+4>>2];f[d>>2]=f[e>>2];Me(I,d,h,h+1|0)|0;L=b[h>>0]|0}h=a+284|0;f[h>>2]=L&255;L=f[s>>2]|0;I=(f[L+4>>2]|0)-(f[L>>2]|0)|0;L=I>>2;dj(v);f[i>>2]=0;H=i+4|0;f[H>>2]=0;f[i+8>>2]=0;a:do if((I|0)>0){J=a+104|0;K=i+8|0;M=0;b:while(1){N=(M>>>0)/3|0;O=N>>>5;P=1<<(N&31);if((f[(f[t>>2]|0)+(O<<2)>>2]&P|0)==0?(Q=f[s>>2]|0,f[j>>2]=N,f[d>>2]=f[j>>2],!(_j(Q,d)|0)):0){f[e>>2]=0;f[k>>2]=N;f[d>>2]=f[k>>2];N=xg(a,d,e)|0;fj(v,N);Q=f[e>>2]|0;R=(Q|0)==-1;do if(N){do if(R){S=-1;T=-1;U=-1}else{V=f[f[s>>2]>>2]|0;W=f[V+(Q<<2)>>2]|0;X=Q+1|0;Y=((X>>>0)%3|0|0)==0?Q+-2|0:X;if((Y|0)==-1)Z=-1;else Z=f[V+(Y<<2)>>2]|0;Y=(((Q>>>0)%3|0|0)==0?2:-1)+Q|0;if((Y|0)==-1){S=W;T=-1;U=Z;break}S=W;T=f[V+(Y<<2)>>2]|0;U=Z}while(0);Y=f[C>>2]|0;V=Y+(S>>>5<<2)|0;f[V>>2]=f[V>>2]|1<<(S&31);V=Y+(U>>>5<<2)|0;f[V>>2]=f[V>>2]|1<<(U&31);V=Y+(T>>>5<<2)|0;f[V>>2]=f[V>>2]|1<<(T&31);f[d>>2]=1;V=f[B>>2]|0;if(V>>>0<(f[J>>2]|0)>>>0){f[V>>2]=1;f[B>>2]=V+4}else Ri(A,d);V=(f[t>>2]|0)+(O<<2)|0;f[V>>2]=f[V>>2]|P;V=Q+1|0;if(R)_=-1;else _=((V>>>0)%3|0|0)==0?Q+-2|0:V;f[d>>2]=_;Y=f[H>>2]|0;if(Y>>>0<(f[K>>2]|0)>>>0){f[Y>>2]=_;f[H>>2]=Y+4}else Ri(i,d);if(R)break;Y=((V>>>0)%3|0|0)==0?Q+-2|0:V;if((Y|0)==-1)break;V=f[(f[(f[s>>2]|0)+12>>2]|0)+(Y<<2)>>2]|0;Y=(V|0)==-1;W=Y?-1:(V>>>0)/3|0;if(Y)break;if(f[(f[t>>2]|0)+(W>>>5<<2)>>2]&1<<(W&31)|0)break;f[l>>2]=V;f[d>>2]=f[l>>2];if(!(kc(a,d)|0))break b}else{V=Q+1|0;if(R)$=-1;else $=((V>>>0)%3|0|0)==0?Q+-2|0:V;f[m>>2]=$;f[d>>2]=f[m>>2];Pe(a,d,1)|0;f[n>>2]=f[e>>2];f[d>>2]=f[n>>2];if(!(kc(a,d)|0))break b}while(0)}M=M+1|0;if((M|0)>=(L|0)){aa=62;break a}}ba=0}else aa=62;while(0);if((aa|0)==62){aa=f[F>>2]|0;L=f[E>>2]|0;n=L;if((aa|0)!=(L|0)?(m=L+-4|0,aa>>>0>>0):0){L=aa;aa=m;do{m=f[L>>2]|0;f[L>>2]=f[aa>>2];f[aa>>2]=m;L=L+4|0;aa=aa+-4|0}while(L>>>0>>0)}f[o>>2]=n;f[p>>2]=f[i>>2];f[q>>2]=f[H>>2];f[g>>2]=f[o>>2];f[e>>2]=f[p>>2];f[d>>2]=f[q>>2];Yd(F,g,e,d)|0;if((f[G>>2]|0)!=(f[D>>2]|0)?(D=f[y>>2]|0,y=((f[D+100>>2]|0)-(f[D+96>>2]|0)|0)/12|0,b[d>>0]=0,qh(t,y,d),y=f[F>>2]|0,F=f[E>>2]|0,(y|0)!=(F|0)):0){E=y;do{f[r>>2]=f[E>>2];f[d>>2]=f[r>>2];He(a,d)|0;E=E+4|0}while((E|0)!=(F|0))}th(v);F=a+232|0;ld(v,F);v=a+280|0;E=f[v>>2]|0;if((E|0?(f[h>>2]|0)>0:0)?(ld(E,F),(f[h>>2]|0)>1):0){E=1;do{ld((f[v>>2]|0)+(E<<5)|0,F);E=E+1|0}while((E|0)<(f[h>>2]|0))}ci((f[a+272>>2]|0)-(f[a+268>>2]|0)>>2,f[(f[x>>2]|0)+44>>2]|0)|0;ci(f[z>>2]|0,f[(f[x>>2]|0)+44>>2]|0)|0;if(bh(a)|0){z=f[(f[x>>2]|0)+44>>2]|0;x=f[F>>2]|0;F=z+16|0;h=f[F+4>>2]|0;if(!((h|0)>0|(h|0)==0&(f[F>>2]|0)>>>0>0)){F=(f[a+236>>2]|0)-x|0;f[e>>2]=f[z+4>>2];f[d>>2]=f[e>>2];Me(z,d,x,x+F|0)|0}ba=1}else ba=0}F=f[i>>2]|0;if(F|0){i=f[H>>2]|0;if((i|0)!=(F|0))f[H>>2]=i+(~((i+-4-F|0)>>>2)<<2);Oq(F)}w=ba;u=c;return w|0}function qb(a,c,e,g,h){a=a|0;c=c|0;e=e|0;g=g|0;h=h|0;var i=0,j=0,k=0,l=0,m=0,n=0,o=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0,Aa=0,Ba=0,Ca=0,Da=0,Ea=0,Fa=0,Ga=0,Ha=0,Ia=0;i=u;u=u+64|0;j=i+16|0;k=i;l=i+24|0;m=i+8|0;n=i+20|0;f[j>>2]=c;c=(a|0)!=0;o=l+40|0;q=o;r=l+39|0;l=m+4|0;s=0;t=0;v=0;a:while(1){do if((t|0)>-1)if((s|0)>(2147483647-t|0)){w=Vq()|0;f[w>>2]=75;x=-1;break}else{x=s+t|0;break}else x=t;while(0);w=f[j>>2]|0;y=b[w>>0]|0;if(!(y<<24>>24)){z=88;break}else{A=y;B=w}b:while(1){switch(A<<24>>24){case 37:{C=B;D=B;z=9;break b;break}case 0:{E=B;break b;break}default:{}}y=B+1|0;f[j>>2]=y;A=b[y>>0]|0;B=y}c:do if((z|0)==9)while(1){z=0;if((b[D+1>>0]|0)!=37){E=C;break c}y=C+1|0;D=D+2|0;f[j>>2]=D;if((b[D>>0]|0)!=37){E=y;break}else{C=y;z=9}}while(0);y=E-w|0;if(c)Xo(a,w,y);if(y|0){s=y;t=x;continue}y=(Aq(b[(f[j>>2]|0)+1>>0]|0)|0)==0;F=f[j>>2]|0;if(!y?(b[F+2>>0]|0)==36:0){G=(b[F+1>>0]|0)+-48|0;H=1;J=3}else{G=-1;H=v;J=1}y=F+J|0;f[j>>2]=y;F=b[y>>0]|0;K=(F<<24>>24)+-32|0;if(K>>>0>31|(1<>24)+-32|K;P=F+1|0;f[j>>2]=P;Q=b[P>>0]|0;R=(Q<<24>>24)+-32|0;if(R>>>0>31|(1<>24==42){if((Aq(b[N+1>>0]|0)|0)!=0?(F=f[j>>2]|0,(b[F+2>>0]|0)==36):0){O=F+1|0;f[h+((b[O>>0]|0)+-48<<2)>>2]=10;S=f[g+((b[O>>0]|0)+-48<<3)>>2]|0;T=1;U=F+3|0}else{if(H|0){V=-1;break}if(c){F=(f[e>>2]|0)+(4-1)&~(4-1);O=f[F>>2]|0;f[e>>2]=F+4;W=O}else W=0;S=W;T=0;U=(f[j>>2]|0)+1|0}f[j>>2]=U;O=(S|0)<0;X=O?0-S|0:S;Y=O?L|8192:L;Z=T;_=U}else{O=Ll(j)|0;if((O|0)<0){V=-1;break}X=O;Y=L;Z=H;_=f[j>>2]|0}do if((b[_>>0]|0)==46){if((b[_+1>>0]|0)!=42){f[j>>2]=_+1;O=Ll(j)|0;$=O;aa=f[j>>2]|0;break}if(Aq(b[_+2>>0]|0)|0?(O=f[j>>2]|0,(b[O+3>>0]|0)==36):0){F=O+2|0;f[h+((b[F>>0]|0)+-48<<2)>>2]=10;K=f[g+((b[F>>0]|0)+-48<<3)>>2]|0;F=O+4|0;f[j>>2]=F;$=K;aa=F;break}if(Z|0){V=-1;break a}if(c){F=(f[e>>2]|0)+(4-1)&~(4-1);K=f[F>>2]|0;f[e>>2]=F+4;ba=K}else ba=0;K=(f[j>>2]|0)+2|0;f[j>>2]=K;$=ba;aa=K}else{$=-1;aa=_}while(0);K=0;F=aa;while(1){if(((b[F>>0]|0)+-65|0)>>>0>57){V=-1;break a}O=F;F=F+1|0;f[j>>2]=F;ca=b[(b[O>>0]|0)+-65+(16124+(K*58|0))>>0]|0;da=ca&255;if((da+-1|0)>>>0>=8)break;else K=da}if(!(ca<<24>>24)){V=-1;break}O=(G|0)>-1;do if(ca<<24>>24==19)if(O){V=-1;break a}else z=50;else{if(O){f[h+(G<<2)>>2]=da;P=g+(G<<3)|0;Q=f[P+4>>2]|0;y=k;f[y>>2]=f[P>>2];f[y+4>>2]=Q;z=50;break}if(!c){V=0;break a}We(k,da,e);ea=f[j>>2]|0}while(0);if((z|0)==50){z=0;if(c)ea=F;else{s=0;t=x;v=Z;continue}}O=b[ea+-1>>0]|0;Q=(K|0)!=0&(O&15|0)==3?O&-33:O;O=Y&-65537;y=(Y&8192|0)==0?Y:O;d:do switch(Q|0){case 110:{switch((K&255)<<24>>24){case 0:{f[f[k>>2]>>2]=x;s=0;t=x;v=Z;continue a;break}case 1:{f[f[k>>2]>>2]=x;s=0;t=x;v=Z;continue a;break}case 2:{P=f[k>>2]|0;f[P>>2]=x;f[P+4>>2]=((x|0)<0)<<31>>31;s=0;t=x;v=Z;continue a;break}case 3:{d[f[k>>2]>>1]=x;s=0;t=x;v=Z;continue a;break}case 4:{b[f[k>>2]>>0]=x;s=0;t=x;v=Z;continue a;break}case 6:{f[f[k>>2]>>2]=x;s=0;t=x;v=Z;continue a;break}case 7:{P=f[k>>2]|0;f[P>>2]=x;f[P+4>>2]=((x|0)<0)<<31>>31;s=0;t=x;v=Z;continue a;break}default:{s=0;t=x;v=Z;continue a}}break}case 112:{fa=120;ga=$>>>0>8?$:8;ha=y|8;z=62;break}case 88:case 120:{fa=Q;ga=$;ha=y;z=62;break}case 111:{P=k;R=f[P>>2]|0;ia=f[P+4>>2]|0;P=Ol(R,ia,o)|0;ja=q-P|0;ka=P;la=0;ma=16588;na=(y&8|0)==0|($|0)>(ja|0)?$:ja+1|0;oa=y;pa=R;qa=ia;z=68;break}case 105:case 100:{ia=k;R=f[ia>>2]|0;ja=f[ia+4>>2]|0;if((ja|0)<0){ia=Xn(0,0,R|0,ja|0)|0;P=I;ra=k;f[ra>>2]=ia;f[ra+4>>2]=P;sa=1;ta=16588;ua=ia;va=P;z=67;break d}else{sa=(y&2049|0)!=0&1;ta=(y&2048|0)==0?((y&1|0)==0?16588:16590):16589;ua=R;va=ja;z=67;break d}break}case 117:{ja=k;sa=0;ta=16588;ua=f[ja>>2]|0;va=f[ja+4>>2]|0;z=67;break}case 99:{b[r>>0]=f[k>>2];wa=r;xa=0;ya=16588;za=o;Aa=1;Ba=O;break}case 109:{ja=Vq()|0;Ca=$o(f[ja>>2]|0)|0;z=72;break}case 115:{ja=f[k>>2]|0;Ca=ja|0?ja:16598;z=72;break}case 67:{f[m>>2]=f[k>>2];f[l>>2]=0;f[k>>2]=m;Da=-1;Ea=m;z=76;break}case 83:{ja=f[k>>2]|0;if(!$){Qk(a,32,X,0,y);Fa=0;z=85}else{Da=$;Ea=ja;z=76}break}case 65:case 71:case 70:case 69:case 97:case 103:case 102:case 101:{s=ob(a,+p[k>>3],X,$,y,Q)|0;t=x;v=Z;continue a;break}default:{wa=w;xa=0;ya=16588;za=o;Aa=$;Ba=y}}while(0);e:do if((z|0)==62){z=0;w=k;Q=f[w>>2]|0;K=f[w+4>>2]|0;w=ul(Q,K,o,fa&32)|0;F=(ha&8|0)==0|(Q|0)==0&(K|0)==0;ka=w;la=F?0:2;ma=F?16588:16588+(fa>>4)|0;na=ga;oa=ha;pa=Q;qa=K;z=68}else if((z|0)==67){z=0;ka=Rj(ua,va,o)|0;la=sa;ma=ta;na=$;oa=y;pa=ua;qa=va;z=68}else if((z|0)==72){z=0;K=tg(Ca,0,$)|0;Q=(K|0)==0;wa=Ca;xa=0;ya=16588;za=Q?Ca+$|0:K;Aa=Q?$:K-Ca|0;Ba=O}else if((z|0)==76){z=0;K=Ea;Q=0;F=0;while(1){w=f[K>>2]|0;if(!w){Ga=Q;Ha=F;break}ja=Po(n,w)|0;if((ja|0)<0|ja>>>0>(Da-Q|0)>>>0){Ga=Q;Ha=ja;break}w=ja+Q|0;if(Da>>>0>w>>>0){K=K+4|0;Q=w;F=ja}else{Ga=w;Ha=ja;break}}if((Ha|0)<0){V=-1;break a}Qk(a,32,X,Ga,y);if(!Ga){Fa=0;z=85}else{F=Ea;Q=0;while(1){K=f[F>>2]|0;if(!K){Fa=Ga;z=85;break e}ja=Po(n,K)|0;Q=ja+Q|0;if((Q|0)>(Ga|0)){Fa=Ga;z=85;break e}Xo(a,n,ja);if(Q>>>0>=Ga>>>0){Fa=Ga;z=85;break}else F=F+4|0}}}while(0);if((z|0)==68){z=0;O=(pa|0)!=0|(qa|0)!=0;F=(na|0)!=0|O;Q=q-ka+((O^1)&1)|0;wa=F?ka:o;xa=la;ya=ma;za=o;Aa=F?((na|0)>(Q|0)?na:Q):na;Ba=(na|0)>-1?oa&-65537:oa}else if((z|0)==85){z=0;Qk(a,32,X,Fa,y^8192);s=(X|0)>(Fa|0)?X:Fa;t=x;v=Z;continue}Q=za-wa|0;F=(Aa|0)<(Q|0)?Q:Aa;O=F+xa|0;ja=(X|0)<(O|0)?O:X;Qk(a,32,ja,O,Ba);Xo(a,ya,xa);Qk(a,48,ja,O,Ba^65536);Qk(a,48,F,Q,0);Xo(a,wa,Q);Qk(a,32,ja,O,Ba^8192);s=ja;t=x;v=Z}f:do if((z|0)==88)if(!a)if(v){Z=1;while(1){t=f[h+(Z<<2)>>2]|0;if(!t){Ia=Z;break}We(g+(Z<<3)|0,t,e);t=Z+1|0;if((Z|0)<9)Z=t;else{Ia=t;break}}if((Ia|0)<10){Z=Ia;while(1){if(f[h+(Z<<2)>>2]|0){V=-1;break f}if((Z|0)<9)Z=Z+1|0;else{V=1;break}}}else V=1}else V=0;else V=x;while(0);u=i;return V|0}function rb(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0;c=u;u=u+64|0;d=c+56|0;e=c+52|0;g=c+48|0;h=c+60|0;i=c;j=c+44|0;k=c+40|0;l=c+36|0;m=c+32|0;n=c+28|0;o=c+24|0;p=c+20|0;q=c+16|0;r=c+12|0;if(!(b[a+352>>0]|0)){_e(d,f[a+8>>2]|0);s=a+12|0;t=f[d>>2]|0;f[d>>2]=0;v=f[s>>2]|0;f[s>>2]=t;if(v){Ii(v);Oq(v);v=f[d>>2]|0;f[d>>2]=0;if(v|0){Ii(v);Oq(v)}}else f[d>>2]=0}else{fh(d,f[a+8>>2]|0);v=a+12|0;t=f[d>>2]|0;f[d>>2]=0;s=f[v>>2]|0;f[v>>2]=t;if(s){Ii(s);Oq(s);s=f[d>>2]|0;f[d>>2]=0;if(s|0){Ii(s);Oq(s)}}else f[d>>2]=0}s=a+12|0;t=f[s>>2]|0;if(!t){w=0;u=c;return w|0}if((((f[t+4>>2]|0)-(f[t>>2]|0)>>2>>>0)/3|0|0)==(f[t+40>>2]|0)){w=0;u=c;return w|0}t=a+200|0;ve(t,a)|0;v=f[s>>2]|0;x=a+4|0;ci(((f[v+28>>2]|0)-(f[v+24>>2]|0)>>2)-(f[v+44>>2]|0)|0,f[(f[x>>2]|0)+44>>2]|0)|0;v=f[s>>2]|0;ci((((f[v+4>>2]|0)-(f[v>>2]|0)>>2>>>0)/3|0)-(f[v+40>>2]|0)|0,f[(f[x>>2]|0)+44>>2]|0)|0;v=a+28|0;y=a+8|0;z=f[y>>2]|0;A=((f[z+100>>2]|0)-(f[z+96>>2]|0)|0)/12|0;b[d>>0]=0;qh(v,A,d);A=f[s>>2]|0;z=(f[A+28>>2]|0)-(f[A+24>>2]|0)>>2;f[d>>2]=-1;hg(a+52|0,z,d);z=a+40|0;A=f[z>>2]|0;B=a+44|0;C=f[B>>2]|0;if((C|0)!=(A|0))f[B>>2]=C+(~((C+-4-A|0)>>>2)<<2);A=f[s>>2]|0;C=(f[A+4>>2]|0)-(f[A>>2]|0)>>2;gk(z,C-((C>>>0)%3|0)|0);C=a+84|0;z=f[s>>2]|0;A=(f[z+28>>2]|0)-(f[z+24>>2]|0)>>2;b[d>>0]=0;qh(C,A,d);A=a+96|0;z=f[A>>2]|0;B=a+100|0;D=f[B>>2]|0;if((D|0)!=(z|0))f[B>>2]=D+(~((D+-4-z|0)>>>2)<<2);f[a+164>>2]=-1;z=a+168|0;f[z>>2]=0;D=f[a+108>>2]|0;E=a+112|0;F=f[E>>2]|0;if((F|0)!=(D|0))f[E>>2]=F+(~(((F+-12-D|0)>>>0)/12|0)*12|0);D=a+132|0;if(f[D>>2]|0){F=a+128|0;E=f[F>>2]|0;if(E|0){G=E;do{E=G;G=f[G>>2]|0;Oq(E)}while((G|0)!=0)}f[F>>2]=0;F=f[a+124>>2]|0;if(F|0){G=a+120|0;E=0;do{f[(f[G>>2]|0)+(E<<2)>>2]=0;E=E+1|0}while((E|0)!=(F|0))}f[D>>2]=0}f[a+144>>2]=0;D=f[s>>2]|0;F=(f[D+28>>2]|0)-(f[D+24>>2]|0)>>2;f[d>>2]=-1;hg(a+152|0,F,d);F=a+72|0;D=f[F>>2]|0;E=a+76|0;G=f[E>>2]|0;if((G|0)!=(D|0))f[E>>2]=G+(~((G+-4-D|0)>>>2)<<2);D=f[s>>2]|0;gk(F,((f[D+4>>2]|0)-(f[D>>2]|0)>>2>>>0)/3|0);f[a+64>>2]=0;if(!(Be(a)|0)){w=0;u=c;return w|0}if(!(Dg(a)|0)){w=0;u=c;return w|0}D=a+172|0;G=a+176|0;H=(((f[G>>2]|0)-(f[D>>2]|0)|0)/136|0)&255;b[h>>0]=H;I=f[(f[x>>2]|0)+44>>2]|0;J=I+16|0;K=f[J+4>>2]|0;if((K|0)>0|(K|0)==0&(f[J>>2]|0)>>>0>0)L=H;else{f[e>>2]=f[I+4>>2];f[d>>2]=f[e>>2];Me(I,d,h,h+1|0)|0;L=b[h>>0]|0}f[a+284>>2]=L&255;L=f[s>>2]|0;h=(f[L+4>>2]|0)-(f[L>>2]|0)|0;L=h>>2;dj(t);f[i>>2]=0;I=i+4|0;f[I>>2]=0;f[i+8>>2]=0;a:do if((h|0)>0){H=a+104|0;J=i+8|0;K=0;b:while(1){M=(K>>>0)/3|0;N=M>>>5;O=1<<(M&31);if((f[(f[v>>2]|0)+(N<<2)>>2]&O|0)==0?(P=f[s>>2]|0,f[j>>2]=M,f[d>>2]=f[j>>2],!(_j(P,d)|0)):0){f[e>>2]=0;f[k>>2]=M;f[d>>2]=f[k>>2];M=xg(a,d,e)|0;fj(t,M);P=f[e>>2]|0;Q=(P|0)==-1;do if(M){do if(Q){R=-1;S=-1;T=-1}else{U=f[f[s>>2]>>2]|0;V=f[U+(P<<2)>>2]|0;W=P+1|0;X=((W>>>0)%3|0|0)==0?P+-2|0:W;if((X|0)==-1)Y=-1;else Y=f[U+(X<<2)>>2]|0;X=(((P>>>0)%3|0|0)==0?2:-1)+P|0;if((X|0)==-1){R=-1;S=Y;T=V;break}R=f[U+(X<<2)>>2]|0;S=Y;T=V}while(0);V=f[C>>2]|0;X=V+(T>>>5<<2)|0;f[X>>2]=f[X>>2]|1<<(T&31);X=V+(S>>>5<<2)|0;f[X>>2]=f[X>>2]|1<<(S&31);X=V+(R>>>5<<2)|0;f[X>>2]=f[X>>2]|1<<(R&31);f[d>>2]=1;X=f[B>>2]|0;if(X>>>0<(f[H>>2]|0)>>>0){f[X>>2]=1;f[B>>2]=X+4}else Ri(A,d);X=(f[v>>2]|0)+(N<<2)|0;f[X>>2]=f[X>>2]|O;X=P+1|0;if(Q)Z=-1;else Z=((X>>>0)%3|0|0)==0?P+-2|0:X;f[d>>2]=Z;V=f[I>>2]|0;if(V>>>0<(f[J>>2]|0)>>>0){f[V>>2]=Z;f[I>>2]=V+4}else Ri(i,d);if(Q)break;V=((X>>>0)%3|0|0)==0?P+-2|0:X;if((V|0)==-1)break;X=f[(f[(f[s>>2]|0)+12>>2]|0)+(V<<2)>>2]|0;V=(X|0)==-1;U=V?-1:(X>>>0)/3|0;if(V)break;if(f[(f[v>>2]|0)+(U>>>5<<2)>>2]&1<<(U&31)|0)break;f[l>>2]=X;f[d>>2]=f[l>>2];if(!(Yb(a,d)|0))break b}else{X=P+1|0;if(Q)_=-1;else _=((X>>>0)%3|0|0)==0?P+-2|0:X;f[m>>2]=_;f[d>>2]=f[m>>2];Pe(a,d,1)|0;f[n>>2]=f[e>>2];f[d>>2]=f[n>>2];if(!(Yb(a,d)|0))break b}while(0)}K=K+1|0;if((K|0)>=(L|0)){$=62;break a}}aa=0}else $=62;while(0);if(($|0)==62){$=f[F>>2]|0;L=f[E>>2]|0;n=L;if(($|0)!=(L|0)?(m=L+-4|0,$>>>0>>0):0){L=$;$=m;do{m=f[L>>2]|0;f[L>>2]=f[$>>2];f[$>>2]=m;L=L+4|0;$=$+-4|0}while(L>>>0<$>>>0)}f[o>>2]=n;f[p>>2]=f[i>>2];f[q>>2]=f[I>>2];f[g>>2]=f[o>>2];f[e>>2]=f[p>>2];f[d>>2]=f[q>>2];Yd(F,g,e,d)|0;if((f[G>>2]|0)!=(f[D>>2]|0)?(D=f[y>>2]|0,y=((f[D+100>>2]|0)-(f[D+96>>2]|0)|0)/12|0,b[d>>0]=0,qh(v,y,d),y=f[F>>2]|0,F=f[E>>2]|0,(y|0)!=(F|0)):0){E=y;do{f[r>>2]=f[E>>2];f[d>>2]=f[r>>2];He(a,d)|0;E=E+4|0}while((E|0)!=(F|0))}pi(t);ci(f[a+324>>2]|0,f[(f[x>>2]|0)+44>>2]|0)|0;ci(f[z>>2]|0,f[(f[x>>2]|0)+44>>2]|0)|0;if(bh(a)|0){z=f[(f[x>>2]|0)+44>>2]|0;x=f[a+232>>2]|0;t=z+16|0;F=f[t+4>>2]|0;if(!((F|0)>0|(F|0)==0&(f[t>>2]|0)>>>0>0)){t=(f[a+236>>2]|0)-x|0;f[e>>2]=f[z+4>>2];f[d>>2]=f[e>>2];Me(z,d,x,x+t|0)|0}aa=1}else aa=0}t=f[i>>2]|0;if(t|0){i=f[I>>2]|0;if((i|0)!=(t|0))f[I>>2]=i+(~((i+-4-t|0)>>>2)<<2);Oq(t)}w=aa;u=c;return w|0}function sb(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=Oa,ma=Oa,na=Oa,oa=0,pa=0,qa=0,ra=0,sa=0;c=u;u=u+64|0;d=c+28|0;e=c+16|0;g=c+4|0;h=c;i=a;j=a+80|0;k=f[j>>2]|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=i;l=d+20|0;n[l>>2]=$(1.0);f[d+24>>2]=i;Ih(d,k);k=f[j>>2]|0;f[e>>2]=0;i=e+4|0;f[i>>2]=0;f[e+8>>2]=0;m=(k|0)==0;do if(!m)if(k>>>0>1073741823)aq(e);else{o=k<<2;p=ln(o)|0;f[e>>2]=p;q=p+(k<<2)|0;f[e+8>>2]=q;sj(p|0,0,o|0)|0;f[i>>2]=q;break}while(0);f[g>>2]=0;k=g+4|0;f[k>>2]=0;f[g+8>>2]=0;f[h>>2]=0;if(!m){m=d+16|0;q=d+4|0;o=d+12|0;p=d+8|0;r=g+8|0;s=d+24|0;t=0;v=0;while(1){w=f[m>>2]|0;x=f[w+8>>2]|0;y=(f[w+12>>2]|0)-x|0;w=(y|0)>0;z=x;if(w){x=y>>>2;A=0;B=0;while(1){C=f[z+(A<<2)>>2]|0;if(!(b[C+84>>0]|0))D=f[(f[C+68>>2]|0)+(v<<2)>>2]|0;else D=v;C=D+239^B;A=A+1|0;if((A|0)>=(x|0)){E=C;break}else B=C}}else E=0;B=f[q>>2]|0;x=(B|0)==0;a:do if(!x){A=B+-1|0;C=(A&B|0)==0;if(!C)if(E>>>0>>0)F=E;else F=(E>>>0)%(B>>>0)|0;else F=A&E;G=f[(f[d>>2]|0)+(F<<2)>>2]|0;if((G|0)!=0?(H=f[G>>2]|0,(H|0)!=0):0){G=f[s>>2]|0;I=G+8|0;J=G+12|0;b:do if(C){G=H;while(1){K=f[G+4>>2]|0;L=(K|0)==(E|0);if(!(L|(K&A|0)==(F|0))){M=44;break a}c:do if(L){K=f[G+8>>2]|0;N=f[I>>2]|0;O=(f[J>>2]|0)-N|0;P=N;if((O|0)<=0){Q=G;break b}N=O>>>2;O=0;while(1){R=f[P+(O<<2)>>2]|0;if(!(b[R+84>>0]|0)){S=f[R+68>>2]|0;T=f[S+(v<<2)>>2]|0;U=f[S+(K<<2)>>2]|0}else{T=v;U=K}O=O+1|0;if((U|0)!=(T|0))break c;if((O|0)>=(N|0)){V=G;M=42;break b}}}while(0);G=f[G>>2]|0;if(!G){M=44;break a}}}else{G=H;while(1){L=f[G+4>>2]|0;d:do if((L|0)!=(E|0)){if(L>>>0>>0)X=L;else X=(L>>>0)%(B>>>0)|0;if((X|0)!=(F|0)){M=44;break a}}else{N=f[G+8>>2]|0;O=f[I>>2]|0;K=(f[J>>2]|0)-O|0;P=O;if((K|0)<=0){Q=G;break b}O=K>>>2;K=0;while(1){S=f[P+(K<<2)>>2]|0;if(!(b[S+84>>0]|0)){R=f[S+68>>2]|0;Y=f[R+(v<<2)>>2]|0;Z=f[R+(N<<2)>>2]|0}else{Y=v;Z=N}K=K+1|0;if((Z|0)!=(Y|0))break d;if((K|0)>=(O|0)){V=G;M=42;break b}}}while(0);G=f[G>>2]|0;if(!G){M=44;break a}}}while(0);if((M|0)==42){M=0;if(!V){M=44;break}else Q=V}f[(f[e>>2]|0)+(v<<2)>>2]=f[Q+12>>2];_=t}else M=44}else M=44;while(0);do if((M|0)==44){M=0;if(w){J=y>>>2;I=0;H=0;while(1){A=f[z+(I<<2)>>2]|0;if(!(b[A+84>>0]|0))aa=f[(f[A+68>>2]|0)+(v<<2)>>2]|0;else aa=v;A=aa+239^H;I=I+1|0;if((I|0)>=(J|0)){ba=A;break}else H=A}}else ba=0;e:do if(!x){H=B+-1|0;J=(H&B|0)==0;if(!J)if(ba>>>0>>0)ca=ba;else ca=(ba>>>0)%(B>>>0)|0;else ca=H&ba;I=f[(f[d>>2]|0)+(ca<<2)>>2]|0;if((I|0)!=0?(A=f[I>>2]|0,(A|0)!=0):0){I=f[s>>2]|0;C=I+8|0;G=I+12|0;if(J){J=A;while(1){I=f[J+4>>2]|0;if(!((I|0)==(ba|0)|(I&H|0)==(ca|0))){da=ca;M=76;break e}I=f[J+8>>2]|0;L=f[C>>2]|0;O=(f[G>>2]|0)-L|0;K=L;if((O|0)<=0){ea=v;break e}L=O>>>2;O=0;while(1){N=f[K+(O<<2)>>2]|0;if(!(b[N+84>>0]|0)){P=f[N+68>>2]|0;fa=f[P+(v<<2)>>2]|0;ga=f[P+(I<<2)>>2]|0}else{fa=v;ga=I}O=O+1|0;if((ga|0)!=(fa|0))break;if((O|0)>=(L|0)){ea=v;break e}}J=f[J>>2]|0;if(!J){da=ca;M=76;break e}}}else ha=A;while(1){J=f[ha+4>>2]|0;if((J|0)!=(ba|0)){if(J>>>0>>0)ia=J;else ia=(J>>>0)%(B>>>0)|0;if((ia|0)!=(ca|0)){da=ca;M=76;break e}}J=f[ha+8>>2]|0;H=f[C>>2]|0;L=(f[G>>2]|0)-H|0;O=H;if((L|0)<=0){ea=v;break e}H=L>>>2;L=0;while(1){I=f[O+(L<<2)>>2]|0;if(!(b[I+84>>0]|0)){K=f[I+68>>2]|0;ja=f[K+(v<<2)>>2]|0;ka=f[K+(J<<2)>>2]|0}else{ja=v;ka=J}L=L+1|0;if((ka|0)!=(ja|0))break;if((L|0)>=(H|0)){ea=v;break e}}ha=f[ha>>2]|0;if(!ha){da=ca;M=76;break}}}else{da=ca;M=76}}else{da=0;M=76}while(0);if((M|0)==76){M=0;G=ln(16)|0;f[G+8>>2]=v;f[G+12>>2]=t;f[G+4>>2]=ba;f[G>>2]=0;la=$(((f[o>>2]|0)+1|0)>>>0);ma=$(B>>>0);na=$(n[l>>2]);do if(x|$(na*ma)>>0<3|(B+-1&B|0)!=0)&1;A=~~$(W($(la/na)))>>>0;Ih(d,C>>>0>>0?A:C);C=f[q>>2]|0;A=C+-1|0;if(!(A&C)){oa=C;pa=A&ba;break}if(ba>>>0>>0){oa=C;pa=ba}else{oa=C;pa=(ba>>>0)%(C>>>0)|0}}else{oa=B;pa=da}while(0);C=(f[d>>2]|0)+(pa<<2)|0;A=f[C>>2]|0;if(!A){f[G>>2]=f[p>>2];f[p>>2]=G;f[C>>2]=p;C=f[G>>2]|0;if(C|0){H=f[C+4>>2]|0;C=oa+-1|0;if(C&oa)if(H>>>0>>0)qa=H;else qa=(H>>>0)%(oa>>>0)|0;else qa=H&C;ra=(f[d>>2]|0)+(qa<<2)|0;M=89}}else{f[G>>2]=f[A>>2];ra=A;M=89}if((M|0)==89){M=0;f[ra>>2]=G}f[o>>2]=(f[o>>2]|0)+1;ea=f[h>>2]|0}A=t+1|0;f[(f[e>>2]|0)+(ea<<2)>>2]=t;C=f[k>>2]|0;if((C|0)==(f[r>>2]|0)){Ri(g,h);_=A;break}else{f[C>>2]=f[h>>2];f[k>>2]=C+4;_=A;break}}while(0);v=(f[h>>2]|0)+1|0;f[h>>2]=v;sa=f[j>>2]|0;if(v>>>0>=sa>>>0)break;else t=_}if((_|0)!=(sa|0)){Xa[f[(f[a>>2]|0)+24>>2]&15](a,e,g);f[j>>2]=_}}_=f[g>>2]|0;if(_|0){g=f[k>>2]|0;if((g|0)!=(_|0))f[k>>2]=g+(~((g+-4-_|0)>>>2)<<2);Oq(_)}_=f[e>>2]|0;if(_|0){e=f[i>>2]|0;if((e|0)!=(_|0))f[i>>2]=e+(~((e+-4-_|0)>>>2)<<2);Oq(_)}_=f[d+8>>2]|0;if(_|0){e=_;do{_=e;e=f[e>>2]|0;Oq(_)}while((e|0)!=0)}e=f[d>>2]|0;f[d>>2]=0;if(!e){u=c;return}Oq(e);u=c;return}function tb(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0;g=u;u=u+80|0;h=g+76|0;i=g+72|0;j=g+48|0;k=g+24|0;l=g;m=a+32|0;n=f[c>>2]|0;c=n+1|0;if((n|0)!=-1){o=((c>>>0)%3|0|0)==0?n+-2|0:c;c=(((n>>>0)%3|0|0)==0?2:-1)+n|0;if((o|0)==-1)p=-1;else p=f[(f[f[m>>2]>>2]|0)+(o<<2)>>2]|0;if((c|0)==-1){q=p;r=-1}else{q=p;r=f[(f[f[m>>2]>>2]|0)+(c<<2)>>2]|0}}else{q=-1;r=-1}c=f[a+36>>2]|0;m=f[c>>2]|0;p=(f[c+4>>2]|0)-m>>2;if(p>>>0<=q>>>0)aq(c);o=m;m=f[o+(q<<2)>>2]|0;if(p>>>0<=r>>>0)aq(c);c=f[o+(r<<2)>>2]|0;r=(m|0)<(e|0);do if(r&(c|0)<(e|0)){o=m<<1;p=f[d+(o<<2)>>2]|0;q=((p|0)<0)<<31>>31;n=f[d+((o|1)<<2)>>2]|0;o=((n|0)<0)<<31>>31;s=c<<1;t=f[d+(s<<2)>>2]|0;v=f[d+((s|1)<<2)>>2]|0;if(!((t|0)!=(p|0)|(v|0)!=(n|0))){f[a+8>>2]=p;f[a+12>>2]=n;u=g;return}s=a+4|0;w=f[(f[s>>2]|0)+(e<<2)>>2]|0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;f[j+12>>2]=0;f[j+16>>2]=0;f[j+20>>2]=0;x=f[a>>2]|0;if(!(b[x+84>>0]|0))y=f[(f[x+68>>2]|0)+(w<<2)>>2]|0;else y=w;f[i>>2]=y;w=b[x+24>>0]|0;f[h>>2]=f[i>>2];vb(x,h,w,j)|0;w=f[(f[s>>2]|0)+(m<<2)>>2]|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;f[k+16>>2]=0;f[k+20>>2]=0;x=f[a>>2]|0;if(!(b[x+84>>0]|0))z=f[(f[x+68>>2]|0)+(w<<2)>>2]|0;else z=w;f[i>>2]=z;w=b[x+24>>0]|0;f[h>>2]=f[i>>2];vb(x,h,w,k)|0;w=f[(f[s>>2]|0)+(c<<2)>>2]|0;f[l>>2]=0;f[l+4>>2]=0;f[l+8>>2]=0;f[l+12>>2]=0;f[l+16>>2]=0;f[l+20>>2]=0;s=f[a>>2]|0;if(!(b[s+84>>0]|0))A=f[(f[s+68>>2]|0)+(w<<2)>>2]|0;else A=w;f[i>>2]=A;w=b[s+24>>0]|0;f[h>>2]=f[i>>2];vb(s,h,w,l)|0;w=l;s=k;x=f[s>>2]|0;B=f[s+4>>2]|0;s=Xn(f[w>>2]|0,f[w+4>>2]|0,x|0,B|0)|0;w=I;C=l+8|0;D=k+8|0;E=f[D>>2]|0;F=f[D+4>>2]|0;D=Xn(f[C>>2]|0,f[C+4>>2]|0,E|0,F|0)|0;C=I;G=l+16|0;H=k+16|0;J=f[H>>2]|0;K=f[H+4>>2]|0;H=Xn(f[G>>2]|0,f[G+4>>2]|0,J|0,K|0)|0;G=I;L=un(s|0,w|0,s|0,w|0)|0;M=I;N=un(D|0,C|0,D|0,C|0)|0;O=Vn(N|0,I|0,L|0,M|0)|0;M=I;L=un(H|0,G|0,H|0,G|0)|0;N=Vn(O|0,M|0,L|0,I|0)|0;L=I;if((N|0)==0&(L|0)==0)break;M=j;O=Xn(f[M>>2]|0,f[M+4>>2]|0,x|0,B|0)|0;B=I;x=j+8|0;M=Xn(f[x>>2]|0,f[x+4>>2]|0,E|0,F|0)|0;F=I;E=j+16|0;x=Xn(f[E>>2]|0,f[E+4>>2]|0,J|0,K|0)|0;K=I;J=un(O|0,B|0,s|0,w|0)|0;E=I;P=un(M|0,F|0,D|0,C|0)|0;Q=Vn(P|0,I|0,J|0,E|0)|0;E=I;J=un(x|0,K|0,H|0,G|0)|0;P=Vn(Q|0,E|0,J|0,I|0)|0;J=I;E=Xn(t|0,((t|0)<0)<<31>>31|0,p|0,q|0)|0;t=I;Q=Xn(v|0,((v|0)<0)<<31>>31|0,n|0,o|0)|0;v=I;R=un(N|0,L|0,p|0,q|0)|0;q=I;p=un(N|0,L|0,n|0,o|0)|0;o=I;n=un(P|0,J|0,E|0,t|0)|0;S=I;T=un(P|0,J|0,Q|0,v|0)|0;U=I;V=Vn(n|0,S|0,R|0,q|0)|0;q=I;R=Vn(T|0,U|0,p|0,o|0)|0;o=I;p=un(P|0,J|0,s|0,w|0)|0;w=I;s=un(P|0,J|0,D|0,C|0)|0;C=I;D=un(P|0,J|0,H|0,G|0)|0;G=I;H=Ik(p|0,w|0,N|0,L|0)|0;w=I;p=Ik(s|0,C|0,N|0,L|0)|0;C=I;s=Ik(D|0,G|0,N|0,L|0)|0;G=I;D=Xn(O|0,B|0,H|0,w|0)|0;w=I;H=Xn(M|0,F|0,p|0,C|0)|0;C=I;p=Xn(x|0,K|0,s|0,G|0)|0;G=I;s=un(D|0,w|0,D|0,w|0)|0;w=I;D=un(H|0,C|0,H|0,C|0)|0;C=Vn(D|0,I|0,s|0,w|0)|0;w=I;s=un(p|0,G|0,p|0,G|0)|0;G=Vn(C|0,w|0,s|0,I|0)|0;s=I;w=Xn(0,0,E|0,t|0)|0;t=I;E=un(G|0,s|0,N|0,L|0)|0;s=I;switch(E|0){case 0:{if(!s){W=0;X=0}else{Y=1;Z=0;_=E;$=s;aa=23}break}case 1:{if(!s){ba=1;ca=0;aa=24}else{Y=1;Z=0;_=E;$=s;aa=23}break}default:{Y=1;Z=0;_=E;$=s;aa=23}}if((aa|0)==23)while(1){aa=0;G=Tn(Y|0,Z|0,1)|0;C=I;p=_;_=Yn(_|0,$|0,2)|0;if(!($>>>0>0|($|0)==0&p>>>0>7)){ba=G;ca=C;aa=24;break}else{Y=G;Z=C;$=I;aa=23}}if((aa|0)==24)while(1){aa=0;C=jp(E|0,s|0,ba|0,ca|0)|0;G=Vn(C|0,I|0,ba|0,ca|0)|0;C=Yn(G|0,I|0,1)|0;G=I;p=un(C|0,G|0,C|0,G|0)|0;D=I;if(D>>>0>s>>>0|(D|0)==(s|0)&p>>>0>E>>>0){ba=C;ca=G;aa=24}else{W=C;X=G;break}}E=un(W|0,X|0,Q|0,v|0)|0;s=I;G=un(W|0,X|0,w|0,t|0)|0;C=I;p=Vn(E|0,s|0,V|0,q|0)|0;D=I;H=Vn(G|0,C|0,R|0,o|0)|0;K=I;x=Ik(p|0,D|0,N|0,L|0)|0;D=I;p=Ik(H|0,K|0,N|0,L|0)|0;K=I;H=Xn(V|0,q|0,E|0,s|0)|0;s=I;E=Xn(R|0,o|0,G|0,C|0)|0;C=I;G=Ik(H|0,s|0,N|0,L|0)|0;s=I;H=Ik(E|0,C|0,N|0,L|0)|0;C=I;E=e<<1;F=f[d+(E<<2)>>2]|0;M=((F|0)<0)<<31>>31;B=f[d+((E|1)<<2)>>2]|0;E=((B|0)<0)<<31>>31;O=Xn(F|0,M|0,x|0,D|0)|0;J=I;P=Xn(B|0,E|0,p|0,K|0)|0;U=I;T=un(O|0,J|0,O|0,J|0)|0;J=I;O=un(P|0,U|0,P|0,U|0)|0;U=Vn(O|0,I|0,T|0,J|0)|0;J=I;T=Xn(F|0,M|0,G|0,s|0)|0;M=I;F=Xn(B|0,E|0,H|0,C|0)|0;E=I;B=un(T|0,M|0,T|0,M|0)|0;M=I;T=un(F|0,E|0,F|0,E|0)|0;E=Vn(T|0,I|0,B|0,M|0)|0;M=I;B=a+16|0;T=a+20|0;F=f[T>>2]|0;O=f[a+24>>2]|0;P=(F|0)==(O<<5|0);if(J>>>0>>0|(J|0)==(M|0)&U>>>0>>0){do if(P)if((F+1|0)<0)aq(B);else{E=O<<6;U=F+32&-32;vi(B,F>>>0<1073741823?(E>>>0>>0?U:E):2147483647);da=f[T>>2]|0;break}else da=F;while(0);f[T>>2]=da+1;L=(f[B>>2]|0)+(da>>>5<<2)|0;f[L>>2]=f[L>>2]|1<<(da&31);ea=x;fa=p;ga=K;ha=D}else{do if(P)if((F+1|0)<0)aq(B);else{L=O<<6;N=F+32&-32;vi(B,F>>>0<1073741823?(L>>>0>>0?N:L):2147483647);ia=f[T>>2]|0;break}else ia=F;while(0);f[T>>2]=ia+1;F=(f[B>>2]|0)+(ia>>>5<<2)|0;f[F>>2]=f[F>>2]&~(1<<(ia&31));ea=G;fa=H;ga=C;ha=s}f[a+8>>2]=ea;f[a+12>>2]=fa;u=g;return}while(0);do if(r)ja=m<<1;else{if((e|0)>0){ja=(e<<1)+-2|0;break}fa=a+8|0;f[fa>>2]=0;f[fa+4>>2]=0;u=g;return}while(0);f[a+8>>2]=f[d+(ja<<2)>>2];f[a+12>>2]=f[d+(ja+1<<2)>>2];u=g;return}function ub(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0;g=u;u=u+80|0;h=g+76|0;i=g+72|0;j=g+48|0;k=g+24|0;l=g;m=a+32|0;n=f[c>>2]|0;c=n+1|0;do if((n|0)!=-1){o=((c>>>0)%3|0|0)==0?n+-2|0:c;if(!((n>>>0)%3|0)){p=n+2|0;q=o;break}else{p=n+-1|0;q=o;break}}else{p=-1;q=-1}while(0);n=f[(f[m>>2]|0)+28>>2]|0;m=f[n+(q<<2)>>2]|0;q=f[n+(p<<2)>>2]|0;p=f[a+36>>2]|0;n=f[p>>2]|0;c=(f[p+4>>2]|0)-n>>2;if(c>>>0<=m>>>0)aq(p);o=n;n=f[o+(m<<2)>>2]|0;if(c>>>0<=q>>>0)aq(p);p=f[o+(q<<2)>>2]|0;q=(n|0)<(e|0);do if(q&(p|0)<(e|0)){o=n<<1;c=f[d+(o<<2)>>2]|0;m=((c|0)<0)<<31>>31;r=f[d+((o|1)<<2)>>2]|0;o=((r|0)<0)<<31>>31;s=p<<1;t=f[d+(s<<2)>>2]|0;v=f[d+((s|1)<<2)>>2]|0;if(!((t|0)!=(c|0)|(v|0)!=(r|0))){f[a+8>>2]=c;f[a+12>>2]=r;u=g;return}s=a+4|0;w=f[(f[s>>2]|0)+(e<<2)>>2]|0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;f[j+12>>2]=0;f[j+16>>2]=0;f[j+20>>2]=0;x=f[a>>2]|0;if(!(b[x+84>>0]|0))y=f[(f[x+68>>2]|0)+(w<<2)>>2]|0;else y=w;f[i>>2]=y;w=b[x+24>>0]|0;f[h>>2]=f[i>>2];vb(x,h,w,j)|0;w=f[(f[s>>2]|0)+(n<<2)>>2]|0;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;f[k+16>>2]=0;f[k+20>>2]=0;x=f[a>>2]|0;if(!(b[x+84>>0]|0))z=f[(f[x+68>>2]|0)+(w<<2)>>2]|0;else z=w;f[i>>2]=z;w=b[x+24>>0]|0;f[h>>2]=f[i>>2];vb(x,h,w,k)|0;w=f[(f[s>>2]|0)+(p<<2)>>2]|0;f[l>>2]=0;f[l+4>>2]=0;f[l+8>>2]=0;f[l+12>>2]=0;f[l+16>>2]=0;f[l+20>>2]=0;s=f[a>>2]|0;if(!(b[s+84>>0]|0))A=f[(f[s+68>>2]|0)+(w<<2)>>2]|0;else A=w;f[i>>2]=A;w=b[s+24>>0]|0;f[h>>2]=f[i>>2];vb(s,h,w,l)|0;w=l;s=k;x=f[s>>2]|0;B=f[s+4>>2]|0;s=Xn(f[w>>2]|0,f[w+4>>2]|0,x|0,B|0)|0;w=I;C=l+8|0;D=k+8|0;E=f[D>>2]|0;F=f[D+4>>2]|0;D=Xn(f[C>>2]|0,f[C+4>>2]|0,E|0,F|0)|0;C=I;G=l+16|0;H=k+16|0;J=f[H>>2]|0;K=f[H+4>>2]|0;H=Xn(f[G>>2]|0,f[G+4>>2]|0,J|0,K|0)|0;G=I;L=un(s|0,w|0,s|0,w|0)|0;M=I;N=un(D|0,C|0,D|0,C|0)|0;O=Vn(N|0,I|0,L|0,M|0)|0;M=I;L=un(H|0,G|0,H|0,G|0)|0;N=Vn(O|0,M|0,L|0,I|0)|0;L=I;if((N|0)==0&(L|0)==0)break;M=j;O=Xn(f[M>>2]|0,f[M+4>>2]|0,x|0,B|0)|0;B=I;x=j+8|0;M=Xn(f[x>>2]|0,f[x+4>>2]|0,E|0,F|0)|0;F=I;E=j+16|0;x=Xn(f[E>>2]|0,f[E+4>>2]|0,J|0,K|0)|0;K=I;J=un(O|0,B|0,s|0,w|0)|0;E=I;P=un(M|0,F|0,D|0,C|0)|0;Q=Vn(P|0,I|0,J|0,E|0)|0;E=I;J=un(x|0,K|0,H|0,G|0)|0;P=Vn(Q|0,E|0,J|0,I|0)|0;J=I;E=Xn(t|0,((t|0)<0)<<31>>31|0,c|0,m|0)|0;t=I;Q=Xn(v|0,((v|0)<0)<<31>>31|0,r|0,o|0)|0;v=I;R=un(N|0,L|0,c|0,m|0)|0;m=I;c=un(N|0,L|0,r|0,o|0)|0;o=I;r=un(P|0,J|0,E|0,t|0)|0;S=I;T=un(P|0,J|0,Q|0,v|0)|0;U=I;V=Vn(r|0,S|0,R|0,m|0)|0;m=I;R=Vn(T|0,U|0,c|0,o|0)|0;o=I;c=un(P|0,J|0,s|0,w|0)|0;w=I;s=un(P|0,J|0,D|0,C|0)|0;C=I;D=un(P|0,J|0,H|0,G|0)|0;G=I;H=Ik(c|0,w|0,N|0,L|0)|0;w=I;c=Ik(s|0,C|0,N|0,L|0)|0;C=I;s=Ik(D|0,G|0,N|0,L|0)|0;G=I;D=Xn(O|0,B|0,H|0,w|0)|0;w=I;H=Xn(M|0,F|0,c|0,C|0)|0;C=I;c=Xn(x|0,K|0,s|0,G|0)|0;G=I;s=un(D|0,w|0,D|0,w|0)|0;w=I;D=un(H|0,C|0,H|0,C|0)|0;C=Vn(D|0,I|0,s|0,w|0)|0;w=I;s=un(c|0,G|0,c|0,G|0)|0;G=Vn(C|0,w|0,s|0,I|0)|0;s=I;w=Xn(0,0,E|0,t|0)|0;t=I;E=un(G|0,s|0,N|0,L|0)|0;s=I;switch(E|0){case 0:{if(!s){W=0;X=0}else{Y=1;Z=0;_=E;$=s;aa=22}break}case 1:{if(!s){ba=1;ca=0;aa=23}else{Y=1;Z=0;_=E;$=s;aa=22}break}default:{Y=1;Z=0;_=E;$=s;aa=22}}if((aa|0)==22)while(1){aa=0;G=Tn(Y|0,Z|0,1)|0;C=I;c=_;_=Yn(_|0,$|0,2)|0;if(!($>>>0>0|($|0)==0&c>>>0>7)){ba=G;ca=C;aa=23;break}else{Y=G;Z=C;$=I;aa=22}}if((aa|0)==23)while(1){aa=0;C=jp(E|0,s|0,ba|0,ca|0)|0;G=Vn(C|0,I|0,ba|0,ca|0)|0;C=Yn(G|0,I|0,1)|0;G=I;c=un(C|0,G|0,C|0,G|0)|0;D=I;if(D>>>0>s>>>0|(D|0)==(s|0)&c>>>0>E>>>0){ba=C;ca=G;aa=23}else{W=C;X=G;break}}E=un(W|0,X|0,Q|0,v|0)|0;s=I;G=un(W|0,X|0,w|0,t|0)|0;C=I;c=Vn(E|0,s|0,V|0,m|0)|0;D=I;H=Vn(G|0,C|0,R|0,o|0)|0;K=I;x=Ik(c|0,D|0,N|0,L|0)|0;D=I;c=Ik(H|0,K|0,N|0,L|0)|0;K=I;H=Xn(V|0,m|0,E|0,s|0)|0;s=I;E=Xn(R|0,o|0,G|0,C|0)|0;C=I;G=Ik(H|0,s|0,N|0,L|0)|0;s=I;H=Ik(E|0,C|0,N|0,L|0)|0;C=I;E=e<<1;F=f[d+(E<<2)>>2]|0;M=((F|0)<0)<<31>>31;B=f[d+((E|1)<<2)>>2]|0;E=((B|0)<0)<<31>>31;O=Xn(F|0,M|0,x|0,D|0)|0;J=I;P=Xn(B|0,E|0,c|0,K|0)|0;U=I;T=un(O|0,J|0,O|0,J|0)|0;J=I;O=un(P|0,U|0,P|0,U|0)|0;U=Vn(O|0,I|0,T|0,J|0)|0;J=I;T=Xn(F|0,M|0,G|0,s|0)|0;M=I;F=Xn(B|0,E|0,H|0,C|0)|0;E=I;B=un(T|0,M|0,T|0,M|0)|0;M=I;T=un(F|0,E|0,F|0,E|0)|0;E=Vn(T|0,I|0,B|0,M|0)|0;M=I;B=a+16|0;T=a+20|0;F=f[T>>2]|0;O=f[a+24>>2]|0;P=(F|0)==(O<<5|0);if(J>>>0>>0|(J|0)==(M|0)&U>>>0>>0){do if(P)if((F+1|0)<0)aq(B);else{E=O<<6;U=F+32&-32;vi(B,F>>>0<1073741823?(E>>>0>>0?U:E):2147483647);da=f[T>>2]|0;break}else da=F;while(0);f[T>>2]=da+1;L=(f[B>>2]|0)+(da>>>5<<2)|0;f[L>>2]=f[L>>2]|1<<(da&31);ea=x;fa=c;ga=K;ha=D}else{do if(P)if((F+1|0)<0)aq(B);else{L=O<<6;N=F+32&-32;vi(B,F>>>0<1073741823?(L>>>0>>0?N:L):2147483647);ia=f[T>>2]|0;break}else ia=F;while(0);f[T>>2]=ia+1;F=(f[B>>2]|0)+(ia>>>5<<2)|0;f[F>>2]=f[F>>2]&~(1<<(ia&31));ea=G;fa=H;ga=C;ha=s}f[a+8>>2]=ea;f[a+12>>2]=fa;u=g;return}while(0);do if(q)ja=n<<1;else{if((e|0)>0){ja=(e<<1)+-2|0;break}fa=a+8|0;f[fa>>2]=0;f[fa+4>>2]=0;u=g;return}while(0);f[a+8>>2]=f[d+(ja<<2)>>2];f[a+12>>2]=f[d+(ja+1<<2)>>2];u=g;return}function vb(a,c,e,g){a=a|0;c=c|0;e=e|0;g=g|0;var i=0,k=0,l=0,m=0,o=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=Oa,D=0,E=0.0,F=0,G=0;if(!g){i=0;return i|0}do switch(f[a+28>>2]|0){case 1:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){m=f[f[a>>2]>>2]|0;o=a+40|0;q=un(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;r=Vn(q|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=m+r|0;r=0;while(1){m=b[o>>0]|0;q=g+(r<<3)|0;f[q>>2]=m;f[q+4>>2]=((m|0)<0)<<31>>31;r=r+1|0;m=b[k>>0]|0;if((r|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){s=m;break}else o=o+1|0}}else s=l;o=s<<24>>24;if(s<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(o<<3)|0,0,(e<<24>>24)-o<<3|0)|0;i=1;return i|0}case 2:{o=a+24|0;r=b[o>>0]|0;if((r<<24>>24>e<<24>>24?e:r)<<24>>24>0){k=f[f[a>>2]>>2]|0;m=a+40|0;q=un(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;t=Vn(q|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=k+t|0;t=0;while(1){k=g+(t<<3)|0;f[k>>2]=h[m>>0];f[k+4>>2]=0;t=t+1|0;k=b[o>>0]|0;if((t|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){u=k;break}else m=m+1|0}}else u=r;m=u<<24>>24;if(u<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(m<<3)|0,0,(e<<24>>24)-m<<3|0)|0;i=1;return i|0}case 3:{m=a+24|0;t=b[m>>0]|0;if((t<<24>>24>e<<24>>24?e:t)<<24>>24>0){o=f[f[a>>2]>>2]|0;l=a+40|0;k=un(f[l>>2]|0,f[l+4>>2]|0,f[c>>2]|0,0)|0;l=a+48|0;q=Vn(k|0,I|0,f[l>>2]|0,f[l+4>>2]|0)|0;l=o+q|0;q=0;while(1){o=d[l>>1]|0;k=g+(q<<3)|0;f[k>>2]=o;f[k+4>>2]=((o|0)<0)<<31>>31;q=q+1|0;o=b[m>>0]|0;if((q|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){v=o;break}else l=l+2|0}}else v=t;l=v<<24>>24;if(v<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(l<<3)|0,0,(e<<24>>24)-l<<3|0)|0;i=1;return i|0}case 4:{l=a+24|0;q=b[l>>0]|0;if((q<<24>>24>e<<24>>24?e:q)<<24>>24>0){m=f[f[a>>2]>>2]|0;r=a+40|0;o=un(f[r>>2]|0,f[r+4>>2]|0,f[c>>2]|0,0)|0;r=a+48|0;k=Vn(o|0,I|0,f[r>>2]|0,f[r+4>>2]|0)|0;r=m+k|0;k=0;while(1){m=g+(k<<3)|0;f[m>>2]=j[r>>1];f[m+4>>2]=0;k=k+1|0;m=b[l>>0]|0;if((k|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){w=m;break}else r=r+2|0}}else w=q;r=w<<24>>24;if(w<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(r<<3)|0,0,(e<<24>>24)-r<<3|0)|0;i=1;return i|0}case 5:{r=a+24|0;k=b[r>>0]|0;if((k<<24>>24>e<<24>>24?e:k)<<24>>24>0){l=f[f[a>>2]>>2]|0;t=a+40|0;m=un(f[t>>2]|0,f[t+4>>2]|0,f[c>>2]|0,0)|0;t=a+48|0;o=Vn(m|0,I|0,f[t>>2]|0,f[t+4>>2]|0)|0;t=l+o|0;o=0;while(1){l=f[t>>2]|0;m=g+(o<<3)|0;f[m>>2]=l;f[m+4>>2]=((l|0)<0)<<31>>31;o=o+1|0;l=b[r>>0]|0;if((o|0)>=((l<<24>>24>e<<24>>24?e:l)<<24>>24|0)){x=l;break}else t=t+4|0}}else x=k;t=x<<24>>24;if(x<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(t<<3)|0,0,(e<<24>>24)-t<<3|0)|0;i=1;return i|0}case 6:{t=a+24|0;o=b[t>>0]|0;if((o<<24>>24>e<<24>>24?e:o)<<24>>24>0){r=f[f[a>>2]>>2]|0;q=a+40|0;l=un(f[q>>2]|0,f[q+4>>2]|0,f[c>>2]|0,0)|0;q=a+48|0;m=Vn(l|0,I|0,f[q>>2]|0,f[q+4>>2]|0)|0;q=r+m|0;m=0;while(1){r=g+(m<<3)|0;f[r>>2]=f[q>>2];f[r+4>>2]=0;m=m+1|0;r=b[t>>0]|0;if((m|0)>=((r<<24>>24>e<<24>>24?e:r)<<24>>24|0)){y=r;break}else q=q+4|0}}else y=o;q=y<<24>>24;if(y<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(q<<3)|0,0,(e<<24>>24)-q<<3|0)|0;i=1;return i|0}case 7:{q=a+24|0;m=b[q>>0]|0;if((m<<24>>24>e<<24>>24?e:m)<<24>>24>0){t=f[f[a>>2]>>2]|0;k=a+40|0;r=un(f[k>>2]|0,f[k+4>>2]|0,f[c>>2]|0,0)|0;k=a+48|0;l=Vn(r|0,I|0,f[k>>2]|0,f[k+4>>2]|0)|0;k=t+l|0;l=0;while(1){t=k;r=f[t+4>>2]|0;z=g+(l<<3)|0;f[z>>2]=f[t>>2];f[z+4>>2]=r;l=l+1|0;r=b[q>>0]|0;if((l|0)>=((r<<24>>24>e<<24>>24?e:r)<<24>>24|0)){A=r;break}else k=k+8|0}}else A=m;k=A<<24>>24;if(A<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(k<<3)|0,0,(e<<24>>24)-k<<3|0)|0;i=1;return i|0}case 8:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){q=f[f[a>>2]>>2]|0;o=a+40|0;r=un(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;z=Vn(r|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=q+z|0;z=0;while(1){q=o;r=f[q+4>>2]|0;t=g+(z<<3)|0;f[t>>2]=f[q>>2];f[t+4>>2]=r;z=z+1|0;r=b[k>>0]|0;if((z|0)>=((r<<24>>24>e<<24>>24?e:r)<<24>>24|0)){B=r;break}else o=o+8|0}}else B=l;o=B<<24>>24;if(B<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(o<<3)|0,0,(e<<24>>24)-o<<3|0)|0;i=1;return i|0}case 9:{o=a+24|0;z=b[o>>0]|0;if((z<<24>>24>e<<24>>24?e:z)<<24>>24>0){k=f[f[a>>2]>>2]|0;m=a+40|0;r=un(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;t=Vn(r|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=k+t|0;t=0;while(1){C=$(n[m>>2]);k=+K(+C)>=1.0?(+C>0.0?~~+Y(+J(+C/4294967296.0),4294967295.0)>>>0:~~+W((+C-+(~~+C>>>0))/4294967296.0)>>>0):0;r=g+(t<<3)|0;f[r>>2]=~~+C>>>0;f[r+4>>2]=k;t=t+1|0;k=b[o>>0]|0;if((t|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){D=k;break}else m=m+4|0}}else D=z;m=D<<24>>24;if(D<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(m<<3)|0,0,(e<<24>>24)-m<<3|0)|0;i=1;return i|0}case 10:{m=a+24|0;t=b[m>>0]|0;if((t<<24>>24>e<<24>>24?e:t)<<24>>24>0){o=f[f[a>>2]>>2]|0;l=a+40|0;k=un(f[l>>2]|0,f[l+4>>2]|0,f[c>>2]|0,0)|0;l=a+48|0;r=Vn(k|0,I|0,f[l>>2]|0,f[l+4>>2]|0)|0;l=o+r|0;r=0;while(1){E=+p[l>>3];o=+K(E)>=1.0?(E>0.0?~~+Y(+J(E/4294967296.0),4294967295.0)>>>0:~~+W((E-+(~~E>>>0))/4294967296.0)>>>0):0;k=g+(r<<3)|0;f[k>>2]=~~E>>>0;f[k+4>>2]=o;r=r+1|0;o=b[m>>0]|0;if((r|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){F=o;break}else l=l+8|0}}else F=t;l=F<<24>>24;if(F<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(l<<3)|0,0,(e<<24>>24)-l<<3|0)|0;i=1;return i|0}case 11:{l=a+24|0;r=b[l>>0]|0;if((r<<24>>24>e<<24>>24?e:r)<<24>>24>0){m=f[f[a>>2]>>2]|0;z=a+40|0;o=un(f[z>>2]|0,f[z+4>>2]|0,f[c>>2]|0,0)|0;z=a+48|0;k=Vn(o|0,I|0,f[z>>2]|0,f[z+4>>2]|0)|0;z=m+k|0;k=0;while(1){m=g+(k<<3)|0;f[m>>2]=h[z>>0];f[m+4>>2]=0;k=k+1|0;m=b[l>>0]|0;if((k|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){G=m;break}else z=z+1|0}}else G=r;z=G<<24>>24;if(G<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(z<<3)|0,0,(e<<24>>24)-z<<3|0)|0;i=1;return i|0}default:{i=0;return i|0}}while(0);return 0}function wb(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0;c=u;u=u+16|0;d=c+8|0;e=c;if((f[a+96>>2]|0)==(f[a+92>>2]|0)){u=c;return}g=a+56|0;h=f[g>>2]|0;if((h|0)==(f[a+60>>2]|0)){Ri(a+52|0,b);i=b}else{f[h>>2]=f[b>>2];f[g>>2]=h+4;i=b}b=a+88|0;f[b>>2]=0;h=f[a>>2]|0;g=f[i>>2]|0;j=g+1|0;if((g|0)!=-1){k=((j>>>0)%3|0|0)==0?g+-2|0:j;if((k|0)==-1)l=-1;else l=f[(f[h>>2]|0)+(k<<2)>>2]|0;k=(((g>>>0)%3|0|0)==0?2:-1)+g|0;if((k|0)==-1){m=l;n=-1}else{m=l;n=f[(f[h>>2]|0)+(k<<2)>>2]|0}}else{m=-1;n=-1}k=a+24|0;h=f[k>>2]|0;l=h+(m>>>5<<2)|0;g=1<<(m&31);j=f[l>>2]|0;if(!(j&g)){f[l>>2]=j|g;g=f[i>>2]|0;j=g+1|0;if((g|0)==-1)o=-1;else o=((j>>>0)%3|0|0)==0?g+-2|0:j;f[e>>2]=o;j=f[(f[(f[a+44>>2]|0)+96>>2]|0)+(((o>>>0)/3|0)*12|0)+(((o>>>0)%3|0)<<2)>>2]|0;o=f[a+48>>2]|0;f[d>>2]=j;g=f[o+4>>2]|0;o=g+4|0;l=f[o>>2]|0;if((l|0)==(f[g+8>>2]|0))Ri(g,d);else{f[l>>2]=j;f[o>>2]=l+4}l=a+40|0;o=f[l>>2]|0;j=o+4|0;g=f[j>>2]|0;if((g|0)==(f[o+8>>2]|0)){Ri(o,e);p=f[l>>2]|0}else{f[g>>2]=f[e>>2];f[j>>2]=g+4;p=o}o=p+24|0;f[(f[p+12>>2]|0)+(m<<2)>>2]=f[o>>2];f[o>>2]=(f[o>>2]|0)+1;q=f[k>>2]|0}else q=h;h=q+(n>>>5<<2)|0;q=1<<(n&31);o=f[h>>2]|0;if(!(o&q)){f[h>>2]=o|q;q=f[i>>2]|0;do if((q|0)!=-1)if(!((q>>>0)%3|0)){r=q+2|0;break}else{r=q+-1|0;break}else r=-1;while(0);f[e>>2]=r;q=f[(f[(f[a+44>>2]|0)+96>>2]|0)+(((r>>>0)/3|0)*12|0)+(((r>>>0)%3|0)<<2)>>2]|0;r=f[a+48>>2]|0;f[d>>2]=q;o=f[r+4>>2]|0;r=o+4|0;h=f[r>>2]|0;if((h|0)==(f[o+8>>2]|0))Ri(o,d);else{f[h>>2]=q;f[r>>2]=h+4}h=a+40|0;r=f[h>>2]|0;q=r+4|0;o=f[q>>2]|0;if((o|0)==(f[r+8>>2]|0)){Ri(r,e);s=f[h>>2]|0}else{f[o>>2]=f[e>>2];f[q>>2]=o+4;s=r}r=s+24|0;f[(f[s+12>>2]|0)+(n<<2)>>2]=f[r>>2];f[r>>2]=(f[r>>2]|0)+1}r=f[i>>2]|0;if((r|0)==-1)t=-1;else t=f[(f[f[a>>2]>>2]|0)+(r<<2)>>2]|0;r=(f[k>>2]|0)+(t>>>5<<2)|0;n=1<<(t&31);s=f[r>>2]|0;if(!(n&s)){f[r>>2]=s|n;n=f[i>>2]|0;f[e>>2]=n;s=f[(f[(f[a+44>>2]|0)+96>>2]|0)+(((n>>>0)/3|0)*12|0)+(((n>>>0)%3|0)<<2)>>2]|0;n=f[a+48>>2]|0;f[d>>2]=s;r=f[n+4>>2]|0;n=r+4|0;o=f[n>>2]|0;if((o|0)==(f[r+8>>2]|0))Ri(r,d);else{f[o>>2]=s;f[n>>2]=o+4}o=a+40|0;n=f[o>>2]|0;s=n+4|0;r=f[s>>2]|0;if((r|0)==(f[n+8>>2]|0)){Ri(n,e);v=f[o>>2]|0}else{f[r>>2]=f[e>>2];f[s>>2]=r+4;v=n}n=v+24|0;f[(f[v+12>>2]|0)+(t<<2)>>2]=f[n>>2];f[n>>2]=(f[n>>2]|0)+1}n=f[b>>2]|0;a:do if((n|0)<3){t=a+12|0;v=a+44|0;r=a+48|0;s=a+40|0;o=a+92|0;q=n;while(1){h=q;while(1){w=a+52+(h*12|0)+4|0;x=f[w>>2]|0;if((f[a+52+(h*12|0)>>2]|0)!=(x|0))break;if((h|0)<2)h=h+1|0;else break a}m=x+-4|0;p=f[m>>2]|0;f[w>>2]=m;f[b>>2]=h;f[i>>2]=p;if((p|0)==-1)break;m=(p>>>0)/3|0;g=f[t>>2]|0;do if(!(f[g+(m>>>5<<2)>>2]&1<<(m&31))){j=p;l=g;b:while(1){y=(j>>>0)/3|0;z=l+(y>>>5<<2)|0;f[z>>2]=1<<(y&31)|f[z>>2];z=f[i>>2]|0;if((z|0)==-1)A=-1;else A=f[(f[f[a>>2]>>2]|0)+(z<<2)>>2]|0;y=(f[k>>2]|0)+(A>>>5<<2)|0;B=1<<(A&31);C=f[y>>2]|0;if(!(B&C)){f[y>>2]=C|B;B=f[i>>2]|0;f[e>>2]=B;C=f[(f[(f[v>>2]|0)+96>>2]|0)+(((B>>>0)/3|0)*12|0)+(((B>>>0)%3|0)<<2)>>2]|0;B=f[r>>2]|0;f[d>>2]=C;y=f[B+4>>2]|0;B=y+4|0;D=f[B>>2]|0;if((D|0)==(f[y+8>>2]|0))Ri(y,d);else{f[D>>2]=C;f[B>>2]=D+4}D=f[s>>2]|0;B=D+4|0;C=f[B>>2]|0;if((C|0)==(f[D+8>>2]|0)){Ri(D,e);E=f[s>>2]|0}else{f[C>>2]=f[e>>2];f[B>>2]=C+4;E=D}D=E+24|0;f[(f[E+12>>2]|0)+(A<<2)>>2]=f[D>>2];f[D>>2]=(f[D>>2]|0)+1;F=f[i>>2]|0}else F=z;z=f[a>>2]|0;if((F|0)==-1){G=93;break}D=F+1|0;C=((D>>>0)%3|0|0)==0?F+-2|0:D;if((C|0)==-1)H=-1;else H=f[(f[z+12>>2]|0)+(C<<2)>>2]|0;C=(((F>>>0)%3|0|0)==0?2:-1)+F|0;if((C|0)==-1)I=-1;else I=f[(f[z+12>>2]|0)+(C<<2)>>2]|0;C=(H|0)==-1;D=C?-1:(H>>>0)/3|0;B=(I|0)==-1;y=B?-1:(I>>>0)/3|0;if(C)J=1;else J=(f[(f[t>>2]|0)+(D>>>5<<2)>>2]&1<<(D&31)|0)!=0;do if(B)if(J){G=93;break b}else G=82;else{if(f[(f[t>>2]|0)+(y>>>5<<2)>>2]&1<<(y&31)|0)if(J){G=93;break b}else{G=82;break}D=f[(f[z>>2]|0)+(I<<2)>>2]|0;if(!(1<<(D&31)&f[(f[k>>2]|0)+(D>>>5<<2)>>2])){K=(f[o>>2]|0)+(D<<2)|0;D=f[K>>2]|0;f[K>>2]=D+1;L=(D|0)>0?1:2}else L=0;if(J?(L|0)<=(f[b>>2]|0):0){M=I;break}f[d>>2]=I;D=a+52+(L*12|0)+4|0;K=f[D>>2]|0;if((K|0)==(f[a+52+(L*12|0)+8>>2]|0))Ri(a+52+(L*12|0)|0,d);else{f[K>>2]=I;f[D>>2]=K+4}if((f[b>>2]|0)>(L|0))f[b>>2]=L;if(J){G=93;break b}else G=82}while(0);if((G|0)==82){G=0;if(C)N=-1;else N=f[(f[f[a>>2]>>2]|0)+(H<<2)>>2]|0;if(!(1<<(N&31)&f[(f[k>>2]|0)+(N>>>5<<2)>>2])){z=(f[o>>2]|0)+(N<<2)|0;y=f[z>>2]|0;f[z>>2]=y+1;O=(y|0)>0?1:2}else O=0;if((O|0)>(f[b>>2]|0))break;else M=H}f[i>>2]=M;j=M;l=f[t>>2]|0}if((G|0)==93){G=0;P=f[b>>2]|0;break}f[d>>2]=H;l=a+52+(O*12|0)+4|0;j=f[l>>2]|0;if((j|0)==(f[a+52+(O*12|0)+8>>2]|0))Ri(a+52+(O*12|0)|0,d);else{f[j>>2]=H;f[l>>2]=j+4}j=f[b>>2]|0;if((j|0)>(O|0)){f[b>>2]=O;Q=O}else Q=j;P=Q}else P=h;while(0);if((P|0)<3)q=P;else break a}u=c;return}while(0);f[i>>2]=-1;u=c;return}function xb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}xb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;xb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function yb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}yb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;yb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function zb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}zb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;zb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Ab(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Ab(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Ab(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}} -function Bb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Bb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Bb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Cb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Cb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Cb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Db(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Db(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Db(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Eb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Eb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Eb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Fb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Fb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Fb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Gb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Gb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Gb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Hb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Hb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Hb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Ib(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Ib(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Ib(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Jb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Jb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Jb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Kb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Kb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Kb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Lb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Lb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Lb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Mb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Mb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Mb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Nb(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Nb(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Nb(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Ob(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0;d=a;a=b;a:while(1){b=a;e=a+-4|0;g=d;while(1){h=g;b:while(1){i=h;j=b-i|0;k=j>>2;switch(k|0){case 2:{l=5;break a;break}case 3:{l=11;break a;break}case 4:{l=12;break a;break}case 5:{l=13;break a;break}case 1:case 0:{l=84;break a;break}default:{}}if((j|0)<124){l=15;break a}m=h+(((k|0)/2|0)<<2)|0;if((j|0)>3996){j=(k|0)/4|0;n=ig(h,h+(j<<2)|0,m,m+(j<<2)|0,e,c)|0}else n=Vg(h,m,e,c)|0;o=f[h>>2]|0;j=f[m>>2]|0;p=f[c>>2]|0;k=f[p>>2]|0;q=(f[p+4>>2]|0)-k>>3;if(q>>>0<=o>>>0){l=20;break a}r=k;if(q>>>0<=j>>>0){l=22;break a}k=f[r+(o<<3)>>2]|0;s=f[r+(j<<3)>>2]|0;if(k>>>0>>0){t=e;u=n;break}else v=e;while(1){v=v+-4|0;if((h|0)==(v|0))break;w=f[v>>2]|0;if(q>>>0<=w>>>0){l=51;break a}if((f[r+(w<<3)>>2]|0)>>>0>>0){l=53;break b}}s=h+4|0;j=f[e>>2]|0;if(q>>>0<=j>>>0){l=26;break a}if(k>>>0<(f[r+(j<<3)>>2]|0)>>>0)x=s;else{if((s|0)==(e|0)){l=84;break a}else y=s;while(1){z=f[y>>2]|0;if(q>>>0<=z>>>0){l=32;break a}if(k>>>0<(f[r+(z<<3)>>2]|0)>>>0)break;s=y+4|0;if((s|0)==(e|0)){l=84;break a}else y=s}f[y>>2]=j;f[e>>2]=z;x=y+4|0}if((x|0)==(e|0)){l=84;break a}r=f[h>>2]|0;A=f[c>>2]|0;k=f[A>>2]|0;q=(f[A+4>>2]|0)-k>>3;if(q>>>0<=r>>>0){l=38;break a}s=k;k=e;B=x;C=r;while(1){r=s+(C<<3)|0;D=q>>>0>C>>>0;E=B;while(1){F=f[E>>2]|0;if(q>>>0<=F>>>0){l=40;break a}G=f[r>>2]|0;if(G>>>0<(f[s+(F<<3)>>2]|0)>>>0)break;if(D)E=E+4|0;else{l=38;break a}}if(q>>>0>C>>>0)H=k;else{l=46;break a}do{H=H+-4|0;I=f[H>>2]|0;if(q>>>0<=I>>>0){l=47;break a}}while(G>>>0<(f[s+(I<<3)>>2]|0)>>>0);if(E>>>0>=H>>>0){h=E;continue b}D=f[E>>2]|0;f[E>>2]=I;f[H>>2]=D;C=f[h>>2]|0;if(q>>>0<=C>>>0){l=38;break a}else{k=H;B=E+4|0}}}if((l|0)==53){l=0;f[h>>2]=w;f[v>>2]=o;t=v;u=n+1|0}B=h+4|0;c:do if(B>>>0>>0){k=f[B>>2]|0;C=f[c>>2]|0;q=f[C>>2]|0;s=(f[C+4>>2]|0)-q>>3;if(s>>>0>k>>>0){J=t;K=B;L=u;M=m;N=s;O=q;P=C;Q=k}else{R=C;l=57;break a}while(1){C=f[c>>2]|0;k=C+4|0;q=f[M>>2]|0;s=K;j=O;D=N;S=P;r=Q;while(1){F=j;if(D>>>0<=q>>>0){l=59;break a}if((f[F+(r<<3)>>2]|0)>>>0>=(f[F+(q<<3)>>2]|0)>>>0)break;F=s+4|0;T=f[F>>2]|0;j=f[C>>2]|0;D=(f[k>>2]|0)-j>>3;if(D>>>0<=T>>>0){R=C;l=57;break a}else{s=F;S=C;r=T}}C=f[M>>2]|0;O=f[S>>2]|0;N=(f[S+4>>2]|0)-O>>3;D=O;j=D+(C<<3)|0;if(N>>>0>C>>>0)U=J;else{l=65;break a}do{U=U+-4|0;V=f[U>>2]|0;if(N>>>0<=V>>>0){l=66;break a}}while((f[D+(V<<3)>>2]|0)>>>0>=(f[j>>2]|0)>>>0);if(s>>>0>U>>>0){W=M;X=L;Y=s;break c}f[s>>2]=V;f[U>>2]=r;K=s+4|0;Q=f[K>>2]|0;if(N>>>0<=Q>>>0){R=S;l=57;break a}else{J=U;L=L+1|0;M=(M|0)==(s|0)?U:M;P=S}}}else{W=m;X=u;Y=B}while(0);if((Y|0)!=(W|0)){B=f[W>>2]|0;j=f[Y>>2]|0;Z=f[c>>2]|0;D=f[Z>>2]|0;C=(f[Z+4>>2]|0)-D>>3;if(C>>>0<=B>>>0){l=72;break a}k=D;if(C>>>0<=j>>>0){l=74;break a}if((f[k+(B<<3)>>2]|0)>>>0<(f[k+(j<<3)>>2]|0)>>>0){f[Y>>2]=B;f[W>>2]=j;_=X+1|0}else _=X}else _=X;if(!_){$=_d(h,Y,c)|0;j=Y+4|0;if(_d(j,a,c)|0){l=83;break}if($){g=j;continue}}j=Y;if((j-i|0)>=(b-j|0)){l=82;break}Ob(h,Y,c);g=Y+4|0}if((l|0)==82){l=0;Ob(Y+4|0,a,c);d=h;a=Y;continue}else if((l|0)==83){l=0;if($){l=84;break}else{d=h;a=Y;continue}}}switch(l|0){case 5:{l=f[e>>2]|0;Y=f[h>>2]|0;d=f[c>>2]|0;$=f[d>>2]|0;i=(f[d+4>>2]|0)-$>>3;if(i>>>0<=l>>>0)aq(d);_=$;if(i>>>0<=Y>>>0)aq(d);if((f[_+(l<<3)>>2]|0)>>>0>=(f[_+(Y<<3)>>2]|0)>>>0)return;f[h>>2]=l;f[e>>2]=Y;return}case 11:{Vg(h,h+4|0,e,c)|0;return}case 12:{jh(h,h+4|0,h+8|0,e,c)|0;return}case 13:{ig(h,h+4|0,h+8|0,h+12|0,e,c)|0;return}case 15:{ih(h,a,c);return}case 20:{aq(p);break}case 22:{aq(p);break}case 26:{aq(p);break}case 32:{aq(p);break}case 38:{aq(A);break}case 40:{aq(A);break}case 46:{aq(A);break}case 47:{aq(A);break}case 51:{aq(p);break}case 57:{aq(R);break}case 59:{aq(S);break}case 65:{if(N>>>0>(f[J+-4>>2]|0)>>>0)aq(S);else aq(S);break}case 66:{aq(S);break}case 72:{aq(Z);break}case 74:{aq(Z);break}case 84:return}}function Pb(a,c,e,g){a=a|0;c=c|0;e=e|0;g=g|0;var i=0,k=0,l=0,m=0,o=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0;if(!g){i=0;return i|0}do switch(f[a+28>>2]|0){case 1:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){m=f[f[a>>2]>>2]|0;o=a+40|0;q=un(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;r=Vn(q|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=m+r|0;r=0;while(1){f[g+(r<<2)>>2]=b[o>>0];r=r+1|0;m=b[k>>0]|0;if((r|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){s=m;break}else o=o+1|0}}else s=l;o=s<<24>>24;if(s<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(o<<2)|0,0,(e<<24>>24)-o<<2|0)|0;i=1;return i|0}case 2:{o=a+24|0;r=b[o>>0]|0;if((r<<24>>24>e<<24>>24?e:r)<<24>>24>0){k=f[f[a>>2]>>2]|0;m=a+40|0;q=un(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;t=Vn(q|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=k+t|0;t=0;while(1){f[g+(t<<2)>>2]=h[m>>0];t=t+1|0;k=b[o>>0]|0;if((t|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){u=k;break}else m=m+1|0}}else u=r;m=u<<24>>24;if(u<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(m<<2)|0,0,(e<<24>>24)-m<<2|0)|0;i=1;return i|0}case 3:{m=a+24|0;t=b[m>>0]|0;if((t<<24>>24>e<<24>>24?e:t)<<24>>24>0){o=f[f[a>>2]>>2]|0;l=a+40|0;k=un(f[l>>2]|0,f[l+4>>2]|0,f[c>>2]|0,0)|0;l=a+48|0;q=Vn(k|0,I|0,f[l>>2]|0,f[l+4>>2]|0)|0;l=o+q|0;q=0;while(1){f[g+(q<<2)>>2]=d[l>>1];q=q+1|0;o=b[m>>0]|0;if((q|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){v=o;break}else l=l+2|0}}else v=t;l=v<<24>>24;if(v<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(l<<2)|0,0,(e<<24>>24)-l<<2|0)|0;i=1;return i|0}case 4:{l=a+24|0;q=b[l>>0]|0;if((q<<24>>24>e<<24>>24?e:q)<<24>>24>0){m=f[f[a>>2]>>2]|0;r=a+40|0;o=un(f[r>>2]|0,f[r+4>>2]|0,f[c>>2]|0,0)|0;r=a+48|0;k=Vn(o|0,I|0,f[r>>2]|0,f[r+4>>2]|0)|0;r=m+k|0;k=0;while(1){f[g+(k<<2)>>2]=j[r>>1];k=k+1|0;m=b[l>>0]|0;if((k|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){w=m;break}else r=r+2|0}}else w=q;r=w<<24>>24;if(w<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(r<<2)|0,0,(e<<24>>24)-r<<2|0)|0;i=1;return i|0}case 5:{r=a+24|0;k=b[r>>0]|0;if((k<<24>>24>e<<24>>24?e:k)<<24>>24>0){l=f[f[a>>2]>>2]|0;t=a+40|0;m=un(f[t>>2]|0,f[t+4>>2]|0,f[c>>2]|0,0)|0;t=a+48|0;o=Vn(m|0,I|0,f[t>>2]|0,f[t+4>>2]|0)|0;t=l+o|0;o=0;while(1){f[g+(o<<2)>>2]=f[t>>2];o=o+1|0;l=b[r>>0]|0;if((o|0)>=((l<<24>>24>e<<24>>24?e:l)<<24>>24|0)){x=l;break}else t=t+4|0}}else x=k;t=x<<24>>24;if(x<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(t<<2)|0,0,(e<<24>>24)-t<<2|0)|0;i=1;return i|0}case 6:{t=a+24|0;o=b[t>>0]|0;if((o<<24>>24>e<<24>>24?e:o)<<24>>24>0){r=f[f[a>>2]>>2]|0;q=a+40|0;l=un(f[q>>2]|0,f[q+4>>2]|0,f[c>>2]|0,0)|0;q=a+48|0;m=Vn(l|0,I|0,f[q>>2]|0,f[q+4>>2]|0)|0;q=r+m|0;m=0;while(1){f[g+(m<<2)>>2]=f[q>>2];m=m+1|0;r=b[t>>0]|0;if((m|0)>=((r<<24>>24>e<<24>>24?e:r)<<24>>24|0)){y=r;break}else q=q+4|0}}else y=o;q=y<<24>>24;if(y<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(q<<2)|0,0,(e<<24>>24)-q<<2|0)|0;i=1;return i|0}case 7:{q=a+24|0;m=b[q>>0]|0;if((m<<24>>24>e<<24>>24?e:m)<<24>>24>0){t=f[f[a>>2]>>2]|0;k=a+40|0;r=un(f[k>>2]|0,f[k+4>>2]|0,f[c>>2]|0,0)|0;k=a+48|0;l=Vn(r|0,I|0,f[k>>2]|0,f[k+4>>2]|0)|0;k=t+l|0;l=0;while(1){f[g+(l<<2)>>2]=f[k>>2];l=l+1|0;t=b[q>>0]|0;if((l|0)>=((t<<24>>24>e<<24>>24?e:t)<<24>>24|0)){z=t;break}else k=k+8|0}}else z=m;k=z<<24>>24;if(z<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(k<<2)|0,0,(e<<24>>24)-k<<2|0)|0;i=1;return i|0}case 8:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){q=f[f[a>>2]>>2]|0;o=a+40|0;t=un(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;r=Vn(t|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=q+r|0;r=0;while(1){f[g+(r<<2)>>2]=f[o>>2];r=r+1|0;q=b[k>>0]|0;if((r|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){A=q;break}else o=o+8|0}}else A=l;o=A<<24>>24;if(A<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(o<<2)|0,0,(e<<24>>24)-o<<2|0)|0;i=1;return i|0}case 9:{o=a+24|0;r=b[o>>0]|0;if((r<<24>>24>e<<24>>24?e:r)<<24>>24>0){k=f[f[a>>2]>>2]|0;m=a+40|0;q=un(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;t=Vn(q|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=k+t|0;t=0;while(1){k=~~$(n[m>>2])>>>0;f[g+(t<<2)>>2]=k;t=t+1|0;k=b[o>>0]|0;if((t|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){B=k;break}else m=m+4|0}}else B=r;m=B<<24>>24;if(B<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(m<<2)|0,0,(e<<24>>24)-m<<2|0)|0;i=1;return i|0}case 10:{m=a+24|0;t=b[m>>0]|0;if((t<<24>>24>e<<24>>24?e:t)<<24>>24>0){o=f[f[a>>2]>>2]|0;l=a+40|0;k=un(f[l>>2]|0,f[l+4>>2]|0,f[c>>2]|0,0)|0;l=a+48|0;q=Vn(k|0,I|0,f[l>>2]|0,f[l+4>>2]|0)|0;l=o+q|0;q=0;while(1){f[g+(q<<2)>>2]=~~+p[l>>3]>>>0;q=q+1|0;o=b[m>>0]|0;if((q|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){C=o;break}else l=l+8|0}}else C=t;l=C<<24>>24;if(C<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(l<<2)|0,0,(e<<24>>24)-l<<2|0)|0;i=1;return i|0}case 11:{l=a+24|0;q=b[l>>0]|0;if((q<<24>>24>e<<24>>24?e:q)<<24>>24>0){m=f[f[a>>2]>>2]|0;r=a+40|0;o=un(f[r>>2]|0,f[r+4>>2]|0,f[c>>2]|0,0)|0;r=a+48|0;k=Vn(o|0,I|0,f[r>>2]|0,f[r+4>>2]|0)|0;r=m+k|0;k=0;while(1){f[g+(k<<2)>>2]=h[r>>0];k=k+1|0;m=b[l>>0]|0;if((k|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){D=m;break}else r=r+1|0}}else D=q;r=D<<24>>24;if(D<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(r<<2)|0,0,(e<<24>>24)-r<<2|0)|0;i=1;return i|0}default:{i=0;return i|0}}while(0);return 0}function Qb(a,c,e,g){a=a|0;c=c|0;e=e|0;g=g|0;var i=0,k=0,l=0,m=0,o=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0;if(!g){i=0;return i|0}do switch(f[a+28>>2]|0){case 1:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){m=f[f[a>>2]>>2]|0;o=a+40|0;q=un(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;r=Vn(q|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=m+r|0;r=0;while(1){f[g+(r<<2)>>2]=b[o>>0];r=r+1|0;m=b[k>>0]|0;if((r|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){s=m;break}else o=o+1|0}}else s=l;o=s<<24>>24;if(s<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(o<<2)|0,0,(e<<24>>24)-o<<2|0)|0;i=1;return i|0}case 2:{o=a+24|0;r=b[o>>0]|0;if((r<<24>>24>e<<24>>24?e:r)<<24>>24>0){k=f[f[a>>2]>>2]|0;m=a+40|0;q=un(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;t=Vn(q|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=k+t|0;t=0;while(1){f[g+(t<<2)>>2]=h[m>>0];t=t+1|0;k=b[o>>0]|0;if((t|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){u=k;break}else m=m+1|0}}else u=r;m=u<<24>>24;if(u<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(m<<2)|0,0,(e<<24>>24)-m<<2|0)|0;i=1;return i|0}case 3:{m=a+24|0;t=b[m>>0]|0;if((t<<24>>24>e<<24>>24?e:t)<<24>>24>0){o=f[f[a>>2]>>2]|0;l=a+40|0;k=un(f[l>>2]|0,f[l+4>>2]|0,f[c>>2]|0,0)|0;l=a+48|0;q=Vn(k|0,I|0,f[l>>2]|0,f[l+4>>2]|0)|0;l=o+q|0;q=0;while(1){f[g+(q<<2)>>2]=d[l>>1];q=q+1|0;o=b[m>>0]|0;if((q|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){v=o;break}else l=l+2|0}}else v=t;l=v<<24>>24;if(v<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(l<<2)|0,0,(e<<24>>24)-l<<2|0)|0;i=1;return i|0}case 4:{l=a+24|0;q=b[l>>0]|0;if((q<<24>>24>e<<24>>24?e:q)<<24>>24>0){m=f[f[a>>2]>>2]|0;r=a+40|0;o=un(f[r>>2]|0,f[r+4>>2]|0,f[c>>2]|0,0)|0;r=a+48|0;k=Vn(o|0,I|0,f[r>>2]|0,f[r+4>>2]|0)|0;r=m+k|0;k=0;while(1){f[g+(k<<2)>>2]=j[r>>1];k=k+1|0;m=b[l>>0]|0;if((k|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){w=m;break}else r=r+2|0}}else w=q;r=w<<24>>24;if(w<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(r<<2)|0,0,(e<<24>>24)-r<<2|0)|0;i=1;return i|0}case 5:{r=a+24|0;k=b[r>>0]|0;if((k<<24>>24>e<<24>>24?e:k)<<24>>24>0){l=f[f[a>>2]>>2]|0;t=a+40|0;m=un(f[t>>2]|0,f[t+4>>2]|0,f[c>>2]|0,0)|0;t=a+48|0;o=Vn(m|0,I|0,f[t>>2]|0,f[t+4>>2]|0)|0;t=l+o|0;o=0;while(1){f[g+(o<<2)>>2]=f[t>>2];o=o+1|0;l=b[r>>0]|0;if((o|0)>=((l<<24>>24>e<<24>>24?e:l)<<24>>24|0)){x=l;break}else t=t+4|0}}else x=k;t=x<<24>>24;if(x<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(t<<2)|0,0,(e<<24>>24)-t<<2|0)|0;i=1;return i|0}case 6:{t=a+24|0;o=b[t>>0]|0;if((o<<24>>24>e<<24>>24?e:o)<<24>>24>0){r=f[f[a>>2]>>2]|0;q=a+40|0;l=un(f[q>>2]|0,f[q+4>>2]|0,f[c>>2]|0,0)|0;q=a+48|0;m=Vn(l|0,I|0,f[q>>2]|0,f[q+4>>2]|0)|0;q=r+m|0;m=0;while(1){f[g+(m<<2)>>2]=f[q>>2];m=m+1|0;r=b[t>>0]|0;if((m|0)>=((r<<24>>24>e<<24>>24?e:r)<<24>>24|0)){y=r;break}else q=q+4|0}}else y=o;q=y<<24>>24;if(y<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(q<<2)|0,0,(e<<24>>24)-q<<2|0)|0;i=1;return i|0}case 7:{q=a+24|0;m=b[q>>0]|0;if((m<<24>>24>e<<24>>24?e:m)<<24>>24>0){t=f[f[a>>2]>>2]|0;k=a+40|0;r=un(f[k>>2]|0,f[k+4>>2]|0,f[c>>2]|0,0)|0;k=a+48|0;l=Vn(r|0,I|0,f[k>>2]|0,f[k+4>>2]|0)|0;k=t+l|0;l=0;while(1){f[g+(l<<2)>>2]=f[k>>2];l=l+1|0;t=b[q>>0]|0;if((l|0)>=((t<<24>>24>e<<24>>24?e:t)<<24>>24|0)){z=t;break}else k=k+8|0}}else z=m;k=z<<24>>24;if(z<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(k<<2)|0,0,(e<<24>>24)-k<<2|0)|0;i=1;return i|0}case 8:{k=a+24|0;l=b[k>>0]|0;if((l<<24>>24>e<<24>>24?e:l)<<24>>24>0){q=f[f[a>>2]>>2]|0;o=a+40|0;t=un(f[o>>2]|0,f[o+4>>2]|0,f[c>>2]|0,0)|0;o=a+48|0;r=Vn(t|0,I|0,f[o>>2]|0,f[o+4>>2]|0)|0;o=q+r|0;r=0;while(1){f[g+(r<<2)>>2]=f[o>>2];r=r+1|0;q=b[k>>0]|0;if((r|0)>=((q<<24>>24>e<<24>>24?e:q)<<24>>24|0)){A=q;break}else o=o+8|0}}else A=l;o=A<<24>>24;if(A<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(o<<2)|0,0,(e<<24>>24)-o<<2|0)|0;i=1;return i|0}case 9:{o=a+24|0;r=b[o>>0]|0;if((r<<24>>24>e<<24>>24?e:r)<<24>>24>0){k=f[f[a>>2]>>2]|0;m=a+40|0;q=un(f[m>>2]|0,f[m+4>>2]|0,f[c>>2]|0,0)|0;m=a+48|0;t=Vn(q|0,I|0,f[m>>2]|0,f[m+4>>2]|0)|0;m=k+t|0;t=0;while(1){k=~~$(n[m>>2]);f[g+(t<<2)>>2]=k;t=t+1|0;k=b[o>>0]|0;if((t|0)>=((k<<24>>24>e<<24>>24?e:k)<<24>>24|0)){B=k;break}else m=m+4|0}}else B=r;m=B<<24>>24;if(B<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(m<<2)|0,0,(e<<24>>24)-m<<2|0)|0;i=1;return i|0}case 10:{m=a+24|0;t=b[m>>0]|0;if((t<<24>>24>e<<24>>24?e:t)<<24>>24>0){o=f[f[a>>2]>>2]|0;l=a+40|0;k=un(f[l>>2]|0,f[l+4>>2]|0,f[c>>2]|0,0)|0;l=a+48|0;q=Vn(k|0,I|0,f[l>>2]|0,f[l+4>>2]|0)|0;l=o+q|0;q=0;while(1){f[g+(q<<2)>>2]=~~+p[l>>3];q=q+1|0;o=b[m>>0]|0;if((q|0)>=((o<<24>>24>e<<24>>24?e:o)<<24>>24|0)){C=o;break}else l=l+8|0}}else C=t;l=C<<24>>24;if(C<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(l<<2)|0,0,(e<<24>>24)-l<<2|0)|0;i=1;return i|0}case 11:{l=a+24|0;q=b[l>>0]|0;if((q<<24>>24>e<<24>>24?e:q)<<24>>24>0){m=f[f[a>>2]>>2]|0;r=a+40|0;o=un(f[r>>2]|0,f[r+4>>2]|0,f[c>>2]|0,0)|0;r=a+48|0;k=Vn(o|0,I|0,f[r>>2]|0,f[r+4>>2]|0)|0;r=m+k|0;k=0;while(1){f[g+(k<<2)>>2]=h[r>>0];k=k+1|0;m=b[l>>0]|0;if((k|0)>=((m<<24>>24>e<<24>>24?e:m)<<24>>24|0)){D=m;break}else r=r+1|0}}else D=q;r=D<<24>>24;if(D<<24>>24>=e<<24>>24){i=1;return i|0}sj(g+(r<<2)|0,0,(e<<24>>24)-r<<2|0)|0;i=1;return i|0}default:{i=0;return i|0}}while(0);return 0}function Rb(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=Oa,J=0,K=0,L=0,M=0,N=Oa;e=u;u=u+48|0;g=e+36|0;h=e+24|0;i=e+12|0;j=e;if(!(xh(a,c,d)|0)){k=0;u=e;return k|0}l=f[(f[(f[c+4>>2]|0)+8>>2]|0)+(d<<2)>>2]|0;if((f[l+28>>2]|0)!=9){k=0;u=e;return k|0}m=c+48|0;c=f[m>>2]|0;o=ln(32)|0;f[g>>2]=o;f[g+8>>2]=-2147483616;f[g+4>>2]=17;p=o;q=14495;r=p+17|0;do{b[p>>0]=b[q>>0]|0;p=p+1|0;q=q+1|0}while((p|0)<(r|0));b[o+17>>0]=0;o=c+16|0;s=f[o>>2]|0;if(s){t=o;v=s;a:while(1){s=v;while(1){if((f[s+16>>2]|0)>=(d|0))break;w=f[s+4>>2]|0;if(!w){x=t;break a}else s=w}v=f[s>>2]|0;if(!v){x=s;break}else t=s}if(((x|0)!=(o|0)?(f[x+16>>2]|0)<=(d|0):0)?(o=x+20|0,(Jh(o,g)|0)!=0):0)y=Hk(o,g,-1)|0;else z=12}else z=12;if((z|0)==12)y=Hk(c,g,-1)|0;if((b[g+11>>0]|0)<0)Oq(f[g>>2]|0);if((y|0)<1){k=0;u=e;return k|0}c=f[m>>2]|0;o=ln(32)|0;f[g>>2]=o;f[g+8>>2]=-2147483616;f[g+4>>2]=19;p=o;q=14438;r=p+19|0;do{b[p>>0]=b[q>>0]|0;p=p+1|0;q=q+1|0}while((p|0)<(r|0));b[o+19>>0]=0;o=c+16|0;x=f[o>>2]|0;if(x){t=o;v=x;b:while(1){x=v;while(1){if((f[x+16>>2]|0)>=(d|0))break;w=f[x+4>>2]|0;if(!w){A=t;break b}else x=w}v=f[x>>2]|0;if(!v){A=x;break}else t=x}if((A|0)!=(o|0)?(f[A+16>>2]|0)<=(d|0):0)B=A+20|0;else z=24}else z=24;if((z|0)==24)B=c;if(!(Jh(B,g)|0))C=0;else{B=f[m>>2]|0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;c=ln(32)|0;f[h>>2]=c;f[h+8>>2]=-2147483616;f[h+4>>2]=18;p=c;q=14458;r=p+18|0;do{b[p>>0]=b[q>>0]|0;p=p+1|0;q=q+1|0}while((p|0)<(r|0));b[c+18>>0]=0;c=B+16|0;A=f[c>>2]|0;if(A){o=c;t=A;c:while(1){A=t;while(1){if((f[A+16>>2]|0)>=(d|0))break;v=f[A+4>>2]|0;if(!v){D=o;break c}else A=v}t=f[A>>2]|0;if(!t){D=A;break}else o=A}if((D|0)!=(c|0)?(f[D+16>>2]|0)<=(d|0):0)E=D+20|0;else z=34}else z=34;if((z|0)==34)E=B;B=(Jh(E,h)|0)!=0;if((b[h+11>>0]|0)<0)Oq(f[h>>2]|0);C=B}if((b[g+11>>0]|0)<0)Oq(f[g>>2]|0);if(!C){Wd(a+40|0,l,y)|0;k=1;u=e;return k|0}C=l+24|0;l=b[C>>0]|0;B=l<<24>>24;f[i>>2]=0;E=i+4|0;f[E>>2]=0;f[i+8>>2]=0;do if(l<<24>>24)if(l<<24>>24<0)aq(i);else{D=B<<2;c=ln(D)|0;f[i>>2]=c;o=c+(B<<2)|0;f[i+8>>2]=o;sj(c|0,0,D|0)|0;f[E>>2]=o;F=c;break}else F=0;while(0);B=f[m>>2]|0;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;l=ln(32)|0;f[j>>2]=l;f[j+8>>2]=-2147483616;f[j+4>>2]=19;p=l;q=14438;r=p+19|0;do{b[p>>0]=b[q>>0]|0;p=p+1|0;q=q+1|0}while((p|0)<(r|0));b[l+19>>0]=0;l=b[C>>0]|0;c=l<<24>>24;o=B+16|0;D=f[o>>2]|0;if(D){t=o;x=D;d:while(1){D=x;while(1){if((f[D+16>>2]|0)>=(d|0))break;v=f[D+4>>2]|0;if(!v){G=t;break d}else D=v}x=f[D>>2]|0;if(!x){G=D;break}else t=D}if(((G|0)!=(o|0)?(f[G+16>>2]|0)<=(d|0):0)?(o=G+20|0,(Jh(o,j)|0)!=0):0){t=Rg(o,j)|0;if((t|0)!=(G+24|0)){pj(g,t+28|0);t=g+11|0;G=b[t>>0]|0;o=G<<24>>24<0;if(!((o?f[g+4>>2]|0:G&255)|0))H=G;else{if(l<<24>>24>0){x=o?f[g>>2]|0:g;o=0;do{I=$(bq(x,h));A=x;x=f[h>>2]|0;if((A|0)==(x|0))break;n[F+(o<<2)>>2]=I;o=o+1|0}while((o|0)<(c|0));J=b[t>>0]|0}else J=G;H=J}if(H<<24>>24<0)Oq(f[g>>2]|0)}}else z=64}else z=64;if((z|0)==64?(H=Rg(B,j)|0,(H|0)!=(B+4|0)):0){pj(g,H+28|0);H=g+11|0;B=b[H>>0]|0;J=B<<24>>24<0;if(!((J?f[g+4>>2]|0:B&255)|0))K=B;else{if(l<<24>>24>0){l=J?f[g>>2]|0:g;J=0;do{I=$(bq(l,h));G=l;l=f[h>>2]|0;if((G|0)==(l|0))break;n[F+(J<<2)>>2]=I;J=J+1|0}while((J|0)<(c|0));L=b[H>>0]|0}else L=B;K=L}if(K<<24>>24<0)Oq(f[g>>2]|0)}if((b[j+11>>0]|0)<0)Oq(f[j>>2]|0);j=f[m>>2]|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;m=ln(32)|0;f[g>>2]=m;f[g+8>>2]=-2147483616;f[g+4>>2]=18;p=m;q=14458;r=p+18|0;do{b[p>>0]=b[q>>0]|0;p=p+1|0;q=q+1|0}while((p|0)<(r|0));b[m+18>>0]=0;m=j+16|0;q=f[m>>2]|0;if(q){p=m;r=q;e:while(1){q=r;while(1){if((f[q+16>>2]|0)>=(d|0))break;K=f[q+4>>2]|0;if(!K){M=p;break e}else q=K}r=f[q>>2]|0;if(!r){M=q;break}else p=q}if(((M|0)!=(m|0)?(f[M+16>>2]|0)<=(d|0):0)?(d=M+20|0,(Jh(d,g)|0)!=0):0)N=$(sk(d,g,$(1.0)));else z=86}else z=86;if((z|0)==86)N=$(sk(j,g,$(1.0)));if((b[g+11>>0]|0)<0)Oq(f[g>>2]|0);Dl(a+40|0,y,f[i>>2]|0,b[C>>0]|0,N);C=f[i>>2]|0;if(C|0){i=f[E>>2]|0;if((i|0)!=(C|0))f[E>>2]=i+(~((i+-4-C|0)>>>2)<<2);Oq(C)}k=1;u=e;return k|0}function Sb(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0;e=u;u=u+64|0;d=e+48|0;h=e+36|0;i=e+24|0;j=e+16|0;k=e+8|0;l=e;m=e+32|0;n=a+60|0;f[a+68>>2]=g;g=a+108|0;tk(g);o=a+56|0;p=f[o>>2]|0;q=(f[p+4>>2]|0)-(f[p>>2]|0)|0;r=q>>2;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;s=i;f[s>>2]=0;f[s+4>>2]=0;s=j;f[s>>2]=0;f[s+4>>2]=0;s=k;f[s>>2]=0;f[s+4>>2]=0;s=l;f[s>>2]=0;f[s+4>>2]=0;if((q|0)<=0){u=e;return 1}q=h+4|0;s=h+8|0;t=a+104|0;v=i+4|0;w=a+100|0;x=j+4|0;y=a+8|0;z=a+16|0;A=a+32|0;B=a+12|0;C=a+28|0;D=a+20|0;E=a+24|0;F=a+96|0;a=k+4|0;G=l+4|0;H=f[p>>2]|0;if((f[p+4>>2]|0)==(H|0)){J=p;aq(J)}else{K=0;L=H}while(1){f[m>>2]=f[L+(K<<2)>>2];f[d>>2]=f[m>>2];ic(n,d,h);H=f[h>>2]|0;p=(H|0)>-1?H:0-H|0;M=f[q>>2]|0;N=(M|0)>-1?M:0-M|0;O=Vn(N|0,((N|0)<0)<<31>>31|0,p|0,((p|0)<0)<<31>>31|0)|0;p=f[s>>2]|0;N=(p|0)>-1;P=N?p:0-p|0;p=Vn(O|0,I|0,P|0,((P|0)<0)<<31>>31|0)|0;P=I;if((p|0)==0&(P|0)==0){O=f[t>>2]|0;Q=O;R=h;S=M;T=O}else{O=f[t>>2]|0;U=((O|0)<0)<<31>>31;V=un(O|0,U|0,H|0,((H|0)<0)<<31>>31|0)|0;H=Ik(V|0,I|0,p|0,P|0)|0;f[h>>2]=H;V=un(O|0,U|0,M|0,((M|0)<0)<<31>>31|0)|0;M=Ik(V|0,I|0,p|0,P|0)|0;f[q>>2]=M;P=O-((H|0)>-1?H:0-H|0)-((M|0)>-1?M:0-M|0)|0;Q=N?P:0-P|0;R=s;S=M;T=O}f[R>>2]=Q;O=f[h>>2]|0;do if((O|0)<=-1){if((S|0)<0){M=f[s>>2]|0;W=(M|0)>-1?M:0-M|0;X=M}else{M=f[s>>2]|0;W=(f[w>>2]|0)-((M|0)>-1?M:0-M|0)|0;X=M}if((X|0)<0){Y=(S|0)>-1?S:0-S|0;Z=W;_=X;break}else{Y=(f[w>>2]|0)-((S|0)>-1?S:0-S|0)|0;Z=W;_=X;break}}else{M=f[s>>2]|0;Y=M+T|0;Z=T+S|0;_=M}while(0);M=(Z|0)==0;P=(Y|0)==0;N=f[w>>2]|0;do if(Y|Z){H=(N|0)==(Y|0);if(!(M&H)){p=(N|0)==(Z|0);if(!(P&p)){if(M&(T|0)<(Y|0)){$=0;aa=(T<<1)-Y|0;break}if(p&(T|0)>(Y|0)){$=Z;aa=(T<<1)-Y|0;break}if(H&(T|0)>(Z|0)){$=(T<<1)-Z|0;aa=Y;break}if(P){$=(T|0)<(Z|0)?(T<<1)-Z|0:Z;aa=0}else{$=Z;aa=Y}}else{$=Z;aa=Z}}else{$=Y;aa=Y}}else{$=N;aa=N}while(0);f[i>>2]=$;f[v>>2]=aa;P=0-S|0;M=0-_|0;f[h>>2]=0-O;f[q>>2]=P;f[s>>2]=M;if((O|0)<1){ba=T-_|0;ca=T-S|0}else{H=(_|0)<1?M:_;M=(S|0)<1?P:S;ba=(_|0)>0?M:N-M|0;ca=(S|0)>0?H:N-H|0}H=(ca|0)==0;M=(ba|0)==0;do if(((ba|ca|0)!=0?(P=(N|0)==(ba|0),!(H&P)):0)?(p=(N|0)==(ca|0),!(M&p)):0){if(H&(T|0)<(ba|0)){da=0;ea=(T<<1)-ba|0;break}if(p&(T|0)>(ba|0)){da=N;ea=(T<<1)-ba|0;break}if(P&(T|0)>(ca|0)){da=(T<<1)-ca|0;ea=N;break}if(M){da=(T|0)<(ca|0)?(T<<1)-ca|0:ca;ea=0}else{da=ca;ea=ba}}else{da=N;ea=N}while(0);f[j>>2]=da;f[x>>2]=ea;N=K<<1;M=b+(N<<2)|0;H=f[y>>2]|0;if((H|0)>0){O=0;P=i;p=H;while(1){if((p|0)>0){H=0;do{V=f[P+(H<<2)>>2]|0;U=f[z>>2]|0;if((V|0)>(U|0)){fa=f[A>>2]|0;f[fa+(H<<2)>>2]=U;ga=fa}else{fa=f[B>>2]|0;U=f[A>>2]|0;f[U+(H<<2)>>2]=(V|0)<(fa|0)?fa:V;ga=U}H=H+1|0;U=f[y>>2]|0}while((H|0)<(U|0));ha=ga;ia=U}else{ha=f[A>>2]|0;ia=p}H=(f[M+(O<<2)>>2]|0)-(f[ha+(O<<2)>>2]|0)|0;U=k+(O<<2)|0;f[U>>2]=H;ja=f[C>>2]|0;if((H|0)>=(ja|0)){if((H|0)>(f[E>>2]|0)){ka=H-(f[D>>2]|0)|0;la=52}}else{ka=(f[D>>2]|0)+H|0;la=52}if((la|0)==52){la=0;f[U>>2]=ka}O=O+1|0;if((O|0)>=(ia|0))break;else{P=ha;p=ia}}if((ia|0)>0){p=0;P=j;O=ia;U=ja;while(1){if((O|0)>0){H=0;do{V=f[P+(H<<2)>>2]|0;fa=f[z>>2]|0;if((V|0)>(fa|0))f[ha+(H<<2)>>2]=fa;else{fa=f[B>>2]|0;f[ha+(H<<2)>>2]=(V|0)<(fa|0)?fa:V}H=H+1|0;ma=f[y>>2]|0}while((H|0)<(ma|0));na=f[C>>2]|0;oa=ma}else{na=U;oa=O}H=(f[M+(p<<2)>>2]|0)-(f[ha+(p<<2)>>2]|0)|0;V=l+(p<<2)|0;f[V>>2]=H;if((H|0)>=(na|0)){if((H|0)>(f[E>>2]|0)){pa=H-(f[D>>2]|0)|0;la=65}}else{pa=(f[D>>2]|0)+H|0;la=65}if((la|0)==65){la=0;f[V>>2]=pa}p=p+1|0;if((p|0)>=(oa|0))break;else{P=ha;O=oa;U=na}}}}U=f[k>>2]|0;O=f[t>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))qa=(f[F>>2]|0)+U|0;else qa=U;else qa=U-(f[F>>2]|0)|0;f[k>>2]=qa;U=f[a>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))ra=(f[F>>2]|0)+U|0;else ra=U;else ra=U-(f[F>>2]|0)|0;f[a>>2]=ra;U=f[l>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))sa=(f[F>>2]|0)+U|0;else sa=U;else sa=U-(f[F>>2]|0)|0;f[l>>2]=sa;U=f[G>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))ta=(f[F>>2]|0)+U|0;else ta=U;else ta=U-(f[F>>2]|0)|0;f[G>>2]=ta;if((((ra|0)>-1?ra:0-ra|0)+((qa|0)>-1?qa:0-qa|0)|0)<(((sa|0)>-1?sa:0-sa|0)+((ta|0)>-1?ta:0-ta|0)|0)){fj(g,0);ua=k}else{fj(g,1);ua=l}U=f[ua>>2]|0;if((U|0)<0)va=(f[F>>2]|0)+U|0;else va=U;U=c+(N<<2)|0;f[U>>2]=va;O=f[ua+4>>2]|0;if((O|0)<0)wa=(f[F>>2]|0)+O|0;else wa=O;f[U+4>>2]=wa;K=K+1|0;if((K|0)>=(r|0)){la=3;break}U=f[o>>2]|0;L=f[U>>2]|0;if((f[U+4>>2]|0)-L>>2>>>0<=K>>>0){J=U;la=4;break}}if((la|0)==3){u=e;return 1}else if((la|0)==4)aq(J);return 0}function Tb(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0;e=u;u=u+64|0;d=e+48|0;h=e+36|0;i=e+24|0;j=e+16|0;k=e+8|0;l=e;m=e+32|0;n=a+60|0;f[a+68>>2]=g;g=a+108|0;tk(g);o=a+56|0;p=f[o>>2]|0;q=(f[p+4>>2]|0)-(f[p>>2]|0)|0;r=q>>2;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;s=i;f[s>>2]=0;f[s+4>>2]=0;s=j;f[s>>2]=0;f[s+4>>2]=0;s=k;f[s>>2]=0;f[s+4>>2]=0;s=l;f[s>>2]=0;f[s+4>>2]=0;if((q|0)<=0){u=e;return 1}q=h+4|0;s=h+8|0;t=a+104|0;v=i+4|0;w=a+100|0;x=j+4|0;y=a+8|0;z=a+16|0;A=a+32|0;B=a+12|0;C=a+28|0;D=a+20|0;E=a+24|0;F=a+96|0;a=k+4|0;G=l+4|0;H=f[p>>2]|0;if((f[p+4>>2]|0)==(H|0)){J=p;aq(J)}else{K=0;L=H}while(1){f[m>>2]=f[L+(K<<2)>>2];f[d>>2]=f[m>>2];$b(n,d,h);H=f[h>>2]|0;p=(H|0)>-1?H:0-H|0;M=f[q>>2]|0;N=(M|0)>-1?M:0-M|0;O=Vn(N|0,((N|0)<0)<<31>>31|0,p|0,((p|0)<0)<<31>>31|0)|0;p=f[s>>2]|0;N=(p|0)>-1;P=N?p:0-p|0;p=Vn(O|0,I|0,P|0,((P|0)<0)<<31>>31|0)|0;P=I;if((p|0)==0&(P|0)==0){O=f[t>>2]|0;Q=O;R=h;S=M;T=O}else{O=f[t>>2]|0;U=((O|0)<0)<<31>>31;V=un(O|0,U|0,H|0,((H|0)<0)<<31>>31|0)|0;H=Ik(V|0,I|0,p|0,P|0)|0;f[h>>2]=H;V=un(O|0,U|0,M|0,((M|0)<0)<<31>>31|0)|0;M=Ik(V|0,I|0,p|0,P|0)|0;f[q>>2]=M;P=O-((H|0)>-1?H:0-H|0)-((M|0)>-1?M:0-M|0)|0;Q=N?P:0-P|0;R=s;S=M;T=O}f[R>>2]=Q;O=f[h>>2]|0;do if((O|0)<=-1){if((S|0)<0){M=f[s>>2]|0;W=(M|0)>-1?M:0-M|0;X=M}else{M=f[s>>2]|0;W=(f[w>>2]|0)-((M|0)>-1?M:0-M|0)|0;X=M}if((X|0)<0){Y=(S|0)>-1?S:0-S|0;Z=W;_=X;break}else{Y=(f[w>>2]|0)-((S|0)>-1?S:0-S|0)|0;Z=W;_=X;break}}else{M=f[s>>2]|0;Y=M+T|0;Z=T+S|0;_=M}while(0);M=(Z|0)==0;P=(Y|0)==0;N=f[w>>2]|0;do if(Y|Z){H=(N|0)==(Y|0);if(!(M&H)){p=(N|0)==(Z|0);if(!(P&p)){if(M&(T|0)<(Y|0)){$=0;aa=(T<<1)-Y|0;break}if(p&(T|0)>(Y|0)){$=Z;aa=(T<<1)-Y|0;break}if(H&(T|0)>(Z|0)){$=(T<<1)-Z|0;aa=Y;break}if(P){$=(T|0)<(Z|0)?(T<<1)-Z|0:Z;aa=0}else{$=Z;aa=Y}}else{$=Z;aa=Z}}else{$=Y;aa=Y}}else{$=N;aa=N}while(0);f[i>>2]=$;f[v>>2]=aa;P=0-S|0;M=0-_|0;f[h>>2]=0-O;f[q>>2]=P;f[s>>2]=M;if((O|0)<1){ba=T-_|0;ca=T-S|0}else{H=(_|0)<1?M:_;M=(S|0)<1?P:S;ba=(_|0)>0?M:N-M|0;ca=(S|0)>0?H:N-H|0}H=(ca|0)==0;M=(ba|0)==0;do if(((ba|ca|0)!=0?(P=(N|0)==(ba|0),!(H&P)):0)?(p=(N|0)==(ca|0),!(M&p)):0){if(H&(T|0)<(ba|0)){da=0;ea=(T<<1)-ba|0;break}if(p&(T|0)>(ba|0)){da=N;ea=(T<<1)-ba|0;break}if(P&(T|0)>(ca|0)){da=(T<<1)-ca|0;ea=N;break}if(M){da=(T|0)<(ca|0)?(T<<1)-ca|0:ca;ea=0}else{da=ca;ea=ba}}else{da=N;ea=N}while(0);f[j>>2]=da;f[x>>2]=ea;N=K<<1;M=b+(N<<2)|0;H=f[y>>2]|0;if((H|0)>0){O=0;P=i;p=H;while(1){if((p|0)>0){H=0;do{V=f[P+(H<<2)>>2]|0;U=f[z>>2]|0;if((V|0)>(U|0)){fa=f[A>>2]|0;f[fa+(H<<2)>>2]=U;ga=fa}else{fa=f[B>>2]|0;U=f[A>>2]|0;f[U+(H<<2)>>2]=(V|0)<(fa|0)?fa:V;ga=U}H=H+1|0;U=f[y>>2]|0}while((H|0)<(U|0));ha=ga;ia=U}else{ha=f[A>>2]|0;ia=p}H=(f[M+(O<<2)>>2]|0)-(f[ha+(O<<2)>>2]|0)|0;U=k+(O<<2)|0;f[U>>2]=H;ja=f[C>>2]|0;if((H|0)>=(ja|0)){if((H|0)>(f[E>>2]|0)){ka=H-(f[D>>2]|0)|0;la=52}}else{ka=(f[D>>2]|0)+H|0;la=52}if((la|0)==52){la=0;f[U>>2]=ka}O=O+1|0;if((O|0)>=(ia|0))break;else{P=ha;p=ia}}if((ia|0)>0){p=0;P=j;O=ia;U=ja;while(1){if((O|0)>0){H=0;do{V=f[P+(H<<2)>>2]|0;fa=f[z>>2]|0;if((V|0)>(fa|0))f[ha+(H<<2)>>2]=fa;else{fa=f[B>>2]|0;f[ha+(H<<2)>>2]=(V|0)<(fa|0)?fa:V}H=H+1|0;ma=f[y>>2]|0}while((H|0)<(ma|0));na=f[C>>2]|0;oa=ma}else{na=U;oa=O}H=(f[M+(p<<2)>>2]|0)-(f[ha+(p<<2)>>2]|0)|0;V=l+(p<<2)|0;f[V>>2]=H;if((H|0)>=(na|0)){if((H|0)>(f[E>>2]|0)){pa=H-(f[D>>2]|0)|0;la=65}}else{pa=(f[D>>2]|0)+H|0;la=65}if((la|0)==65){la=0;f[V>>2]=pa}p=p+1|0;if((p|0)>=(oa|0))break;else{P=ha;O=oa;U=na}}}}U=f[k>>2]|0;O=f[t>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))qa=(f[F>>2]|0)+U|0;else qa=U;else qa=U-(f[F>>2]|0)|0;f[k>>2]=qa;U=f[a>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))ra=(f[F>>2]|0)+U|0;else ra=U;else ra=U-(f[F>>2]|0)|0;f[a>>2]=ra;U=f[l>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))sa=(f[F>>2]|0)+U|0;else sa=U;else sa=U-(f[F>>2]|0)|0;f[l>>2]=sa;U=f[G>>2]|0;if((O|0)>=(U|0))if((U|0)<(0-O|0))ta=(f[F>>2]|0)+U|0;else ta=U;else ta=U-(f[F>>2]|0)|0;f[G>>2]=ta;if((((ra|0)>-1?ra:0-ra|0)+((qa|0)>-1?qa:0-qa|0)|0)<(((sa|0)>-1?sa:0-sa|0)+((ta|0)>-1?ta:0-ta|0)|0)){fj(g,0);ua=k}else{fj(g,1);ua=l}U=f[ua>>2]|0;if((U|0)<0)va=(f[F>>2]|0)+U|0;else va=U;U=c+(N<<2)|0;f[U>>2]=va;O=f[ua+4>>2]|0;if((O|0)<0)wa=(f[F>>2]|0)+O|0;else wa=O;f[U+4>>2]=wa;K=K+1|0;if((K|0)>=(r|0)){la=3;break}U=f[o>>2]|0;L=f[U>>2]|0;if((f[U+4>>2]|0)-L>>2>>>0<=K>>>0){J=U;la=4;break}}if((la|0)==3){u=e;return 1}else if((la|0)==4)aq(J);return 0}function Ub(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=Oa,V=Oa,Y=Oa,Z=0,_=0,aa=0,ba=0;d=u;u=u+16|0;e=d;g=a+16|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;n[g>>2]=$(1.0);i=a+20|0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;n[a+36>>2]=$(1.0);j=f[c+8>>2]|0;a:do if(j|0){k=a+4|0;l=a+12|0;m=a+8|0;o=j;p=j;while(1){q=o+8|0;r=b[q+11>>0]|0;s=r<<24>>24<0;t=s?f[q>>2]|0:q;v=s?f[o+12>>2]|0:r&255;if(v>>>0>3){r=t;s=v;w=v;while(1){x=X(h[r>>0]|h[r+1>>0]<<8|h[r+2>>0]<<16|h[r+3>>0]<<24,1540483477)|0;s=(X(x>>>24^x,1540483477)|0)^(X(s,1540483477)|0);w=w+-4|0;if(w>>>0<=3)break;else r=r+4|0}r=v+-4|0;w=r&-4;y=r-w|0;z=t+(w+4)|0;A=s}else{y=v;z=t;A=v}switch(y|0){case 3:{B=h[z+2>>0]<<16^A;C=8;break}case 2:{B=A;C=8;break}case 1:{D=A;C=9;break}default:E=A}if((C|0)==8){C=0;D=h[z+1>>0]<<8^B;C=9}if((C|0)==9){C=0;E=X(D^h[z>>0],1540483477)|0}w=X(E>>>13^E,1540483477)|0;r=w>>>15^w;w=f[k>>2]|0;x=(w|0)==0;b:do if(!x){F=w+-1|0;G=(F&w|0)==0;if(!G)if(r>>>0>>0)H=r;else H=(r>>>0)%(w>>>0)|0;else H=r&F;I=f[(f[a>>2]|0)+(H<<2)>>2]|0;if((I|0)!=0?(J=f[I>>2]|0,(J|0)!=0):0){I=(v|0)==0;if(G){if(I){G=J;while(1){K=f[G+4>>2]|0;if(!((K|0)==(r|0)|(K&F|0)==(H|0))){L=H;C=50;break b}K=b[G+8+11>>0]|0;if(!((K<<24>>24<0?f[G+12>>2]|0:K&255)|0))break b;G=f[G>>2]|0;if(!G){L=H;C=50;break b}}}else M=J;while(1){G=f[M+4>>2]|0;if(!((G|0)==(r|0)|(G&F|0)==(H|0))){L=H;C=50;break b}G=M+8|0;K=b[G+11>>0]|0;N=K<<24>>24<0;O=K&255;do if(((N?f[M+12>>2]|0:O)|0)==(v|0)){K=f[G>>2]|0;if(N)if(!(Vk(K,t,v)|0))break b;else break;if((b[t>>0]|0)==(K&255)<<24>>24){K=G;P=O;Q=t;do{P=P+-1|0;K=K+1|0;if(!P)break b;Q=Q+1|0}while((b[K>>0]|0)==(b[Q>>0]|0))}}while(0);M=f[M>>2]|0;if(!M){L=H;C=50;break b}}}if(I){F=J;while(1){O=f[F+4>>2]|0;if((O|0)!=(r|0)){if(O>>>0>>0)R=O;else R=(O>>>0)%(w>>>0)|0;if((R|0)!=(H|0)){L=H;C=50;break b}}O=b[F+8+11>>0]|0;if(!((O<<24>>24<0?f[F+12>>2]|0:O&255)|0))break b;F=f[F>>2]|0;if(!F){L=H;C=50;break b}}}else S=J;while(1){F=f[S+4>>2]|0;if((F|0)!=(r|0)){if(F>>>0>>0)T=F;else T=(F>>>0)%(w>>>0)|0;if((T|0)!=(H|0)){L=H;C=50;break b}}F=S+8|0;I=b[F+11>>0]|0;O=I<<24>>24<0;G=I&255;do if(((O?f[S+12>>2]|0:G)|0)==(v|0)){I=f[F>>2]|0;if(O)if(!(Vk(I,t,v)|0))break b;else break;if((b[t>>0]|0)==(I&255)<<24>>24){I=F;N=G;Q=t;do{N=N+-1|0;I=I+1|0;if(!N)break b;Q=Q+1|0}while((b[I>>0]|0)==(b[Q>>0]|0))}}while(0);S=f[S>>2]|0;if(!S){L=H;C=50;break}}}else{L=H;C=50}}else{L=0;C=50}while(0);if((C|0)==50){C=0;Di(e,a,r,q);U=$(((f[l>>2]|0)+1|0)>>>0);V=$(w>>>0);Y=$(n[g>>2]);do if(x|$(Y*V)>>0<3|(w+-1&w|0)!=0)&1;v=~~$(W($(U/Y)))>>>0;ei(a,t>>>0>>0?v:t);t=f[k>>2]|0;v=t+-1|0;if(!(v&t)){Z=t;_=v&r;break}if(r>>>0>>0){Z=t;_=r}else{Z=t;_=(r>>>0)%(t>>>0)|0}}else{Z=w;_=L}while(0);w=f[(f[a>>2]|0)+(_<<2)>>2]|0;if(!w){f[f[e>>2]>>2]=f[m>>2];f[m>>2]=f[e>>2];f[(f[a>>2]|0)+(_<<2)>>2]=m;r=f[e>>2]|0;x=f[r>>2]|0;if(x|0){q=f[x+4>>2]|0;x=Z+-1|0;if(x&Z)if(q>>>0>>0)aa=q;else aa=(q>>>0)%(Z>>>0)|0;else aa=q&x;f[(f[a>>2]|0)+(aa<<2)>>2]=r}}else{f[f[e>>2]>>2]=f[w>>2];f[w>>2]=f[e>>2]}f[l>>2]=(f[l>>2]|0)+1}w=f[p>>2]|0;if(!w)break a;else{o=w;p=w}}}while(0);e=f[c+28>>2]|0;if(!e){u=d;return}else ba=e;do{e=ba;c=ln(40)|0;Ub(c,f[e+20>>2]|0);aa=Ec(i,e+8|0)|0;e=f[aa>>2]|0;f[aa>>2]=c;if(e|0){c=f[e+28>>2]|0;if(c|0){aa=c;do{c=aa;aa=f[aa>>2]|0;ri(c+8|0);Oq(c)}while((aa|0)!=0)}aa=e+20|0;c=f[aa>>2]|0;f[aa>>2]=0;if(c|0)Oq(c);c=f[e+8>>2]|0;if(c|0){aa=c;do{c=aa;aa=f[aa>>2]|0;a=c+8|0;Z=f[c+20>>2]|0;if(Z|0){_=c+24|0;if((f[_>>2]|0)!=(Z|0))f[_>>2]=Z;Oq(Z)}if((b[a+11>>0]|0)<0)Oq(f[a>>2]|0);Oq(c)}while((aa|0)!=0)}aa=f[e>>2]|0;f[e>>2]=0;if(aa|0)Oq(aa);Oq(e)}ba=f[ba>>2]|0}while((ba|0)!=0);u=d;return}function Vb(a,c,e){a=a|0;c=c|0;e=e|0;var g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=Oa,fa=Oa,ga=Oa,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0;g=u;u=u+48|0;i=g+16|0;j=g+12|0;k=g;l=i+16|0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;n[l>>2]=$(1.0);m=a+80|0;o=f[m>>2]|0;f[k>>2]=0;p=k+4|0;f[p>>2]=0;f[k+8>>2]=0;if(o){if(o>>>0>1073741823)aq(k);q=o<<2;r=ln(q)|0;f[k>>2]=r;s=r+(o<<2)|0;f[k+8>>2]=s;sj(r|0,0,q|0)|0;f[p>>2]=s;s=c+48|0;q=c+40|0;o=i+4|0;t=i+12|0;v=i+8|0;w=a+40|0;x=a+64|0;y=f[e>>2]|0;e=r;z=0;A=0;B=r;C=r;D=0;E=r;while(1){r=s;F=f[r>>2]|0;G=f[r+4>>2]|0;r=q;H=un(f[r>>2]|0,f[r+4>>2]|0,y+z|0,0)|0;r=Vn(H|0,I|0,F|0,G|0)|0;G=(f[f[c>>2]>>2]|0)+r|0;r=h[G>>0]|h[G+1>>0]<<8|h[G+2>>0]<<16|h[G+3>>0]<<24;f[j>>2]=r;G=r&65535;F=r>>>16;H=F&65535;J=(r&65535^318)+239^F;F=(D|0)==0;a:do if(!F){K=D+-1|0;L=(K&D|0)==0;if(!L)if(J>>>0>>0)M=J;else M=(J>>>0)%(D>>>0)|0;else M=J&K;N=f[(f[i>>2]|0)+(M<<2)>>2]|0;do if(N|0?(O=f[N>>2]|0,O|0):0){b:do if(L){P=O;while(1){Q=f[P+4>>2]|0;R=(Q|0)==(J|0);if(!(R|(Q&K|0)==(M|0))){S=27;break b}if((R?(R=P+8|0,(d[R>>1]|0)==G<<16>>16):0)?(d[R+2>>1]|0)==H<<16>>16:0){T=P;S=26;break b}P=f[P>>2]|0;if(!P){S=27;break}}}else{P=O;while(1){R=f[P+4>>2]|0;if((R|0)==(J|0)){Q=P+8|0;if((d[Q>>1]|0)==G<<16>>16?(d[Q+2>>1]|0)==H<<16>>16:0){T=P;S=26;break b}}else{if(R>>>0>>0)U=R;else U=(R>>>0)%(D>>>0)|0;if((U|0)!=(M|0)){S=27;break b}}P=f[P>>2]|0;if(!P){S=27;break}}}while(0);if((S|0)==26){S=0;f[E+(z<<2)>>2]=f[T+12>>2];V=e;X=A;Y=C;Z=B;_=E;break a}else if((S|0)==27){S=0;if(F){aa=0;S=46;break a}else break}}while(0);K=D+-1|0;L=(K&D|0)==0;if(!L)if(J>>>0>>0)ba=J;else ba=(J>>>0)%(D>>>0)|0;else ba=K&J;N=f[(f[i>>2]|0)+(ba<<2)>>2]|0;if((N|0)!=0?(O=f[N>>2]|0,(O|0)!=0):0){if(L){L=O;while(1){N=f[L+4>>2]|0;if(!((N|0)==(J|0)|(N&K|0)==(ba|0))){aa=ba;S=46;break a}N=L+8|0;if((d[N>>1]|0)==G<<16>>16?(d[N+2>>1]|0)==H<<16>>16:0){S=61;break a}L=f[L>>2]|0;if(!L){aa=ba;S=46;break a}}}else ca=O;while(1){L=f[ca+4>>2]|0;if((L|0)!=(J|0)){if(L>>>0>>0)da=L;else da=(L>>>0)%(D>>>0)|0;if((da|0)!=(ba|0)){aa=ba;S=46;break a}}L=ca+8|0;if((d[L>>1]|0)==G<<16>>16?(d[L+2>>1]|0)==H<<16>>16:0){S=61;break a}ca=f[ca>>2]|0;if(!ca){aa=ba;S=46;break}}}else{aa=ba;S=46}}else{aa=0;S=46}while(0);if((S|0)==46){S=0;H=ln(16)|0;G=H+8|0;d[G>>1]=r;d[G+2>>1]=r>>>16;f[H+12>>2]=A;f[H+4>>2]=J;f[H>>2]=0;ea=$(((f[t>>2]|0)+1|0)>>>0);fa=$(D>>>0);ga=$(n[l>>2]);do if(F|$(ga*fa)>>0<3|(D+-1&D|0)!=0)&1;O=~~$(W($(ea/ga)))>>>0;Uh(i,G>>>0>>0?O:G);G=f[o>>2]|0;O=G+-1|0;if(!(O&G)){ha=G;ia=O&J;break}if(J>>>0>>0){ha=G;ia=J}else{ha=G;ia=(J>>>0)%(G>>>0)|0}}else{ha=D;ia=aa}while(0);J=(f[i>>2]|0)+(ia<<2)|0;F=f[J>>2]|0;if(!F){f[H>>2]=f[v>>2];f[v>>2]=H;f[J>>2]=v;J=f[H>>2]|0;if(J|0){r=f[J+4>>2]|0;J=ha+-1|0;if(J&ha)if(r>>>0>>0)ja=r;else ja=(r>>>0)%(ha>>>0)|0;else ja=r&J;ka=(f[i>>2]|0)+(ja<<2)|0;S=59}}else{f[H>>2]=f[F>>2];ka=F;S=59}if((S|0)==59){S=0;f[ka>>2]=H}f[t>>2]=(f[t>>2]|0)+1;S=61}if((S|0)==61){S=0;F=w;J=f[F>>2]|0;r=un(J|0,f[F+4>>2]|0,A|0,0)|0;kh((f[f[x>>2]>>2]|0)+r|0,j|0,J|0)|0;J=f[k>>2]|0;f[J+(z<<2)>>2]=A;V=J;X=A+1|0;Y=J;Z=J;_=J}J=z+1|0;la=f[m>>2]|0;if(J>>>0>=la>>>0)break;e=V;z=J;A=X;B=Z;C=Y;D=f[o>>2]|0;E=_}if((X|0)==(la|0))ma=Z;else{Z=a+84|0;if(!(b[Z>>0]|0)){_=f[a+72>>2]|0;E=f[a+68>>2]|0;o=E;if((_|0)==(E|0))na=V;else{D=_-E>>2;E=0;do{_=o+(E<<2)|0;f[_>>2]=f[Y+(f[_>>2]<<2)>>2];E=E+1|0}while(E>>>0>>0);na=V}}else{b[Z>>0]=0;Z=a+68|0;V=a+72|0;D=f[V>>2]|0;E=f[Z>>2]|0;Y=D-E>>2;o=E;E=D;if(la>>>0<=Y>>>0)if(la>>>0>>0?(D=o+(la<<2)|0,(D|0)!=(E|0)):0){f[V>>2]=E+(~((E+-4-D|0)>>>2)<<2);oa=la}else oa=la;else{Ch(Z,la-Y|0,1220);oa=f[m>>2]|0}Y=f[k>>2]|0;if(!oa)na=Y;else{k=f[a+68>>2]|0;a=0;do{f[k+(a<<2)>>2]=f[Y+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);na=Y}}f[m>>2]=X;ma=na}if(!ma)pa=X;else{na=f[p>>2]|0;if((na|0)!=(ma|0))f[p>>2]=na+(~((na+-4-ma|0)>>>2)<<2);Oq(ma);pa=X}}else pa=0;X=f[i+8>>2]|0;if(X|0){ma=X;do{X=ma;ma=f[ma>>2]|0;Oq(X)}while((ma|0)!=0)}ma=f[i>>2]|0;f[i>>2]=0;if(!ma){u=g;return pa|0}Oq(ma);u=g;return pa|0}function Wb(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=Oa,da=Oa,ea=Oa,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0;e=u;u=u+48|0;g=e+20|0;i=e;j=e+8|0;k=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[k>>2]=$(1.0);l=a+80|0;m=f[l>>2]|0;f[j>>2]=0;o=j+4|0;f[o>>2]=0;f[j+8>>2]=0;if(m){if(m>>>0>1073741823)aq(j);p=m<<2;q=ln(p)|0;f[j>>2]=q;r=q+(m<<2)|0;f[j+8>>2]=r;sj(q|0,0,p|0)|0;f[o>>2]=r;r=c+48|0;p=c+40|0;m=g+4|0;s=g+12|0;t=g+8|0;v=a+40|0;w=a+64|0;x=f[d>>2]|0;d=q;y=0;z=0;A=q;B=q;C=q;q=0;while(1){D=r;E=f[D>>2]|0;F=f[D+4>>2]|0;D=p;G=un(f[D>>2]|0,f[D+4>>2]|0,x+y|0,0)|0;D=Vn(G|0,I|0,E|0,F|0)|0;F=(f[f[c>>2]>>2]|0)+D|0;D=F;E=h[D>>0]|h[D+1>>0]<<8|h[D+2>>0]<<16|h[D+3>>0]<<24;D=F+4|0;F=h[D>>0]|h[D+1>>0]<<8|h[D+2>>0]<<16|h[D+3>>0]<<24;D=i;f[D>>2]=E;f[D+4>>2]=F;D=(E^318)+239^F;G=(q|0)==0;a:do if(!G){H=q+-1|0;J=(H&q|0)==0;if(!J)if(D>>>0>>0)K=D;else K=(D>>>0)%(q>>>0)|0;else K=D&H;L=f[(f[g>>2]|0)+(K<<2)>>2]|0;do if(L|0?(M=f[L>>2]|0,M|0):0){b:do if(J){N=M;while(1){O=f[N+4>>2]|0;P=(O|0)==(D|0);if(!(P|(O&H|0)==(K|0))){Q=27;break b}if((P?(f[N+8>>2]|0)==(E|0):0)?(f[N+12>>2]|0)==(F|0):0){R=N;Q=26;break b}N=f[N>>2]|0;if(!N){Q=27;break}}}else{N=M;while(1){P=f[N+4>>2]|0;if((P|0)==(D|0)){if((f[N+8>>2]|0)==(E|0)?(f[N+12>>2]|0)==(F|0):0){R=N;Q=26;break b}}else{if(P>>>0>>0)S=P;else S=(P>>>0)%(q>>>0)|0;if((S|0)!=(K|0)){Q=27;break b}}N=f[N>>2]|0;if(!N){Q=27;break}}}while(0);if((Q|0)==26){Q=0;f[A+(y<<2)>>2]=f[R+16>>2];T=d;U=z;V=C;X=B;Y=A;break a}else if((Q|0)==27){Q=0;if(G){Z=0;Q=46;break a}else break}}while(0);H=q+-1|0;J=(H&q|0)==0;if(!J)if(D>>>0>>0)_=D;else _=(D>>>0)%(q>>>0)|0;else _=H&D;L=f[(f[g>>2]|0)+(_<<2)>>2]|0;if((L|0)!=0?(M=f[L>>2]|0,(M|0)!=0):0){if(J){J=M;while(1){L=f[J+4>>2]|0;if(!((L|0)==(D|0)|(L&H|0)==(_|0))){Z=_;Q=46;break a}if((f[J+8>>2]|0)==(E|0)?(f[J+12>>2]|0)==(F|0):0){Q=61;break a}J=f[J>>2]|0;if(!J){Z=_;Q=46;break a}}}else aa=M;while(1){J=f[aa+4>>2]|0;if((J|0)!=(D|0)){if(J>>>0>>0)ba=J;else ba=(J>>>0)%(q>>>0)|0;if((ba|0)!=(_|0)){Z=_;Q=46;break a}}if((f[aa+8>>2]|0)==(E|0)?(f[aa+12>>2]|0)==(F|0):0){Q=61;break a}aa=f[aa>>2]|0;if(!aa){Z=_;Q=46;break}}}else{Z=_;Q=46}}else{Z=0;Q=46}while(0);if((Q|0)==46){Q=0;M=ln(20)|0;J=M+8|0;f[J>>2]=E;f[J+4>>2]=F;f[M+16>>2]=z;f[M+4>>2]=D;f[M>>2]=0;ca=$(((f[s>>2]|0)+1|0)>>>0);da=$(q>>>0);ea=$(n[k>>2]);do if(G|$(ea*da)>>0<3|(q+-1&q|0)!=0)&1;H=~~$(W($(ca/ea)))>>>0;Yh(g,J>>>0>>0?H:J);J=f[m>>2]|0;H=J+-1|0;if(!(H&J)){fa=J;ga=H&D;break}if(D>>>0>>0){fa=J;ga=D}else{fa=J;ga=(D>>>0)%(J>>>0)|0}}else{fa=q;ga=Z}while(0);D=(f[g>>2]|0)+(ga<<2)|0;G=f[D>>2]|0;if(!G){f[M>>2]=f[t>>2];f[t>>2]=M;f[D>>2]=t;D=f[M>>2]|0;if(D|0){F=f[D+4>>2]|0;D=fa+-1|0;if(D&fa)if(F>>>0>>0)ha=F;else ha=(F>>>0)%(fa>>>0)|0;else ha=F&D;ia=(f[g>>2]|0)+(ha<<2)|0;Q=59}}else{f[M>>2]=f[G>>2];ia=G;Q=59}if((Q|0)==59){Q=0;f[ia>>2]=M}f[s>>2]=(f[s>>2]|0)+1;Q=61}if((Q|0)==61){Q=0;G=v;D=f[G>>2]|0;F=un(D|0,f[G+4>>2]|0,z|0,0)|0;kh((f[f[w>>2]>>2]|0)+F|0,i|0,D|0)|0;D=f[j>>2]|0;f[D+(y<<2)>>2]=z;T=D;U=z+1|0;V=D;X=D;Y=D}D=y+1|0;ja=f[l>>2]|0;if(D>>>0>=ja>>>0)break;d=T;y=D;z=U;A=Y;B=X;C=V;q=f[m>>2]|0}if((U|0)==(ja|0))ka=X;else{X=a+84|0;if(!(b[X>>0]|0)){m=f[a+72>>2]|0;q=f[a+68>>2]|0;C=q;if((m|0)==(q|0))la=T;else{B=m-q>>2;q=0;do{m=C+(q<<2)|0;f[m>>2]=f[V+(f[m>>2]<<2)>>2];q=q+1|0}while(q>>>0>>0);la=T}}else{b[X>>0]=0;X=a+68|0;T=a+72|0;B=f[T>>2]|0;q=f[X>>2]|0;V=B-q>>2;C=q;q=B;if(ja>>>0<=V>>>0)if(ja>>>0>>0?(B=C+(ja<<2)|0,(B|0)!=(q|0)):0){f[T>>2]=q+(~((q+-4-B|0)>>>2)<<2);ma=ja}else ma=ja;else{Ch(X,ja-V|0,1220);ma=f[l>>2]|0}V=f[j>>2]|0;if(!ma)la=V;else{j=f[a+68>>2]|0;a=0;do{f[j+(a<<2)>>2]=f[V+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);la=V}}f[l>>2]=U;ka=la}if(!ka)na=U;else{la=f[o>>2]|0;if((la|0)!=(ka|0))f[o>>2]=la+(~((la+-4-ka|0)>>>2)<<2);Oq(ka);na=U}}else na=0;U=f[g+8>>2]|0;if(U|0){ka=U;do{U=ka;ka=f[ka>>2]|0;Oq(U)}while((ka|0)!=0)}ka=f[g>>2]|0;f[g>>2]=0;if(!ka){u=e;return na|0}Oq(ka);u=e;return na|0}function Xb(a,c,e){a=a|0;c=c|0;e=e|0;var g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=Oa,fa=Oa,ga=Oa,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0;g=u;u=u+48|0;i=g+12|0;j=g+32|0;k=g;l=i+16|0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;n[l>>2]=$(1.0);m=a+80|0;o=f[m>>2]|0;f[k>>2]=0;p=k+4|0;f[p>>2]=0;f[k+8>>2]=0;if(o){if(o>>>0>1073741823)aq(k);q=o<<2;r=ln(q)|0;f[k>>2]=r;s=r+(o<<2)|0;f[k+8>>2]=s;sj(r|0,0,q|0)|0;f[p>>2]=s;s=c+48|0;q=c+40|0;o=i+4|0;t=i+12|0;v=i+8|0;w=a+40|0;x=a+64|0;y=f[e>>2]|0;e=r;z=0;A=0;B=r;C=r;D=0;E=r;while(1){r=s;F=f[r>>2]|0;G=f[r+4>>2]|0;r=q;H=un(f[r>>2]|0,f[r+4>>2]|0,y+z|0,0)|0;r=Vn(H|0,I|0,F|0,G|0)|0;G=(f[f[c>>2]>>2]|0)+r|0;r=h[G>>0]|h[G+1>>0]<<8;d[j>>1]=r;G=r&255;F=(r&65535)>>>8;H=F&255;J=((r&255^318)+239<<16>>16^F)&65535;F=(D|0)==0;a:do if(!F){K=D+-1|0;L=(K&D|0)==0;if(!L)if(D>>>0>J>>>0)M=J;else M=(J>>>0)%(D>>>0)|0;else M=K&J;N=f[(f[i>>2]|0)+(M<<2)>>2]|0;do if(N|0?(O=f[N>>2]|0,O|0):0){b:do if(L){P=O;while(1){Q=f[P+4>>2]|0;R=(Q|0)==(J|0);if(!(R|(Q&K|0)==(M|0))){S=27;break b}if((R?(R=P+8|0,(b[R>>0]|0)==G<<24>>24):0)?(b[R+1>>0]|0)==H<<24>>24:0){T=P;S=26;break b}P=f[P>>2]|0;if(!P){S=27;break}}}else{P=O;while(1){R=f[P+4>>2]|0;if((R|0)==(J|0)){Q=P+8|0;if((b[Q>>0]|0)==G<<24>>24?(b[Q+1>>0]|0)==H<<24>>24:0){T=P;S=26;break b}}else{if(R>>>0>>0)U=R;else U=(R>>>0)%(D>>>0)|0;if((U|0)!=(M|0)){S=27;break b}}P=f[P>>2]|0;if(!P){S=27;break}}}while(0);if((S|0)==26){S=0;f[E+(z<<2)>>2]=f[T+12>>2];V=e;X=A;Y=C;Z=B;_=E;break a}else if((S|0)==27){S=0;if(F){aa=0;S=46;break a}else break}}while(0);K=D+-1|0;L=(K&D|0)==0;if(!L)if(D>>>0>J>>>0)ba=J;else ba=(J>>>0)%(D>>>0)|0;else ba=K&J;N=f[(f[i>>2]|0)+(ba<<2)>>2]|0;if((N|0)!=0?(O=f[N>>2]|0,(O|0)!=0):0){if(L){L=O;while(1){N=f[L+4>>2]|0;if(!((N|0)==(J|0)|(N&K|0)==(ba|0))){aa=ba;S=46;break a}N=L+8|0;if((b[N>>0]|0)==G<<24>>24?(b[N+1>>0]|0)==H<<24>>24:0){S=61;break a}L=f[L>>2]|0;if(!L){aa=ba;S=46;break a}}}else ca=O;while(1){L=f[ca+4>>2]|0;if((L|0)!=(J|0)){if(L>>>0>>0)da=L;else da=(L>>>0)%(D>>>0)|0;if((da|0)!=(ba|0)){aa=ba;S=46;break a}}L=ca+8|0;if((b[L>>0]|0)==G<<24>>24?(b[L+1>>0]|0)==H<<24>>24:0){S=61;break a}ca=f[ca>>2]|0;if(!ca){aa=ba;S=46;break}}}else{aa=ba;S=46}}else{aa=0;S=46}while(0);if((S|0)==46){S=0;H=ln(16)|0;G=H+8|0;b[G>>0]=r;b[G+1>>0]=r>>8;f[H+12>>2]=A;f[H+4>>2]=J;f[H>>2]=0;ea=$(((f[t>>2]|0)+1|0)>>>0);fa=$(D>>>0);ga=$(n[l>>2]);do if(F|$(ga*fa)>>0<3|(D+-1&D|0)!=0)&1;O=~~$(W($(ea/ga)))>>>0;$h(i,G>>>0>>0?O:G);G=f[o>>2]|0;O=G+-1|0;if(!(O&G)){ha=G;ia=O&J;break}if(G>>>0>J>>>0){ha=G;ia=J}else{ha=G;ia=(J>>>0)%(G>>>0)|0}}else{ha=D;ia=aa}while(0);J=(f[i>>2]|0)+(ia<<2)|0;F=f[J>>2]|0;if(!F){f[H>>2]=f[v>>2];f[v>>2]=H;f[J>>2]=v;J=f[H>>2]|0;if(J|0){r=f[J+4>>2]|0;J=ha+-1|0;if(J&ha)if(r>>>0>>0)ja=r;else ja=(r>>>0)%(ha>>>0)|0;else ja=r&J;ka=(f[i>>2]|0)+(ja<<2)|0;S=59}}else{f[H>>2]=f[F>>2];ka=F;S=59}if((S|0)==59){S=0;f[ka>>2]=H}f[t>>2]=(f[t>>2]|0)+1;S=61}if((S|0)==61){S=0;F=w;J=f[F>>2]|0;r=un(J|0,f[F+4>>2]|0,A|0,0)|0;kh((f[f[x>>2]>>2]|0)+r|0,j|0,J|0)|0;J=f[k>>2]|0;f[J+(z<<2)>>2]=A;V=J;X=A+1|0;Y=J;Z=J;_=J}J=z+1|0;la=f[m>>2]|0;if(J>>>0>=la>>>0)break;e=V;z=J;A=X;B=Z;C=Y;D=f[o>>2]|0;E=_}if((X|0)==(la|0))ma=Z;else{Z=a+84|0;if(!(b[Z>>0]|0)){_=f[a+72>>2]|0;E=f[a+68>>2]|0;o=E;if((_|0)==(E|0))na=V;else{D=_-E>>2;E=0;do{_=o+(E<<2)|0;f[_>>2]=f[Y+(f[_>>2]<<2)>>2];E=E+1|0}while(E>>>0>>0);na=V}}else{b[Z>>0]=0;Z=a+68|0;V=a+72|0;D=f[V>>2]|0;E=f[Z>>2]|0;Y=D-E>>2;o=E;E=D;if(la>>>0<=Y>>>0)if(la>>>0>>0?(D=o+(la<<2)|0,(D|0)!=(E|0)):0){f[V>>2]=E+(~((E+-4-D|0)>>>2)<<2);oa=la}else oa=la;else{Ch(Z,la-Y|0,1220);oa=f[m>>2]|0}Y=f[k>>2]|0;if(!oa)na=Y;else{k=f[a+68>>2]|0;a=0;do{f[k+(a<<2)>>2]=f[Y+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);na=Y}}f[m>>2]=X;ma=na}if(!ma)pa=X;else{na=f[p>>2]|0;if((na|0)!=(ma|0))f[p>>2]=na+(~((na+-4-ma|0)>>>2)<<2);Oq(ma);pa=X}}else pa=0;X=f[i+8>>2]|0;if(X|0){ma=X;do{X=ma;ma=f[ma>>2]|0;Oq(X)}while((ma|0)!=0)}ma=f[i>>2]|0;f[i>>2]=0;if(!ma){u=g;return pa|0}Oq(ma);u=g;return pa|0}function Yb(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0;c=u;u=u+16|0;d=c+8|0;e=c;g=c+4|0;h=a+16|0;i=f[h>>2]|0;j=a+20|0;k=f[j>>2]|0;if((k|0)==(i|0))l=i;else{m=k+(~((k+-4-i|0)>>>2)<<2)|0;f[j>>2]=m;l=m}m=a+24|0;if((l|0)==(f[m>>2]|0)){Ri(h,b);n=f[h>>2]|0;o=f[j>>2]|0}else{f[l>>2]=f[b>>2];k=l+4|0;f[j>>2]=k;n=i;o=k}k=f[a+8>>2]|0;i=(f[k+100>>2]|0)-(f[k+96>>2]|0)|0;k=(i|0)/12|0;if((n|0)==(o|0)){u=c;return 1}n=a+28|0;l=(i|0)>0;i=a+164|0;p=a+12|0;q=a+76|0;r=a+80|0;s=a+72|0;t=a+200|0;v=a+320|0;w=a+152|0;x=a+84|0;y=a+324|0;z=a+292|0;A=a+304|0;B=a+316|0;C=a+328|0;D=a+336|0;E=a+332|0;F=a+168|0;G=a+140|0;H=a+120|0;I=o;do{o=f[I+-4>>2]|0;f[b>>2]=o;a:do if((o|0)!=-1?(J=(o>>>0)/3|0,K=f[n>>2]|0,(f[K+(J>>>5<<2)>>2]&1<<(J&31)|0)==0):0){if(l){J=0;L=K;b:while(1){K=J+1|0;f[i>>2]=(f[i>>2]|0)+1;M=f[b>>2]|0;N=(M|0)==-1?-1:(M>>>0)/3|0;M=L+(N>>>5<<2)|0;f[M>>2]=1<<(N&31)|f[M>>2];M=f[q>>2]|0;if((M|0)==(f[r>>2]|0))Ri(s,b);else{f[M>>2]=f[b>>2];f[q>>2]=M+4}f[v>>2]=f[b>>2];M=f[b>>2]|0;if((M|0)==-1)O=-1;else O=f[(f[f[p>>2]>>2]|0)+(M<<2)>>2]|0;P=(f[(f[w>>2]|0)+(O<<2)>>2]|0)!=-1;Q=(f[x>>2]|0)+(O>>>5<<2)|0;R=1<<(O&31);S=f[Q>>2]|0;do if(!(S&R)){f[Q>>2]=S|R;if(P){T=f[b>>2]|0;U=38;break}f[y>>2]=(f[y>>2]|0)+1;V=f[v>>2]|0;W=V+1|0;do if((V|0)!=-1){X=((W>>>0)%3|0|0)==0?V+-2|0:W;if(!((V>>>0)%3|0)){Y=V+2|0;Z=X;break}else{Y=V+-1|0;Z=X;break}}else{Y=-1;Z=-1}while(0);V=f[z>>2]|0;W=f[A>>2]|0;X=W+(f[V+(Z<<2)>>2]<<2)|0;_=f[X>>2]|0;f[X>>2]=_+-1;X=W+(f[V+(Y<<2)>>2]<<2)|0;f[X>>2]=(f[X>>2]|0)+-1;X=f[B>>2]|0;if((X|0)!=-1){V=f[C>>2]|0;if((_|0)<(V|0))$=V;else{W=f[E>>2]|0;$=(_|0)>(W|0)?W:_}_=$-V|0;V=f[D>>2]|0;W=f[3724+(X<<2)>>2]|0;f[d>>2]=W;X=V+(_*12|0)+4|0;aa=f[X>>2]|0;if(aa>>>0<(f[V+(_*12|0)+8>>2]|0)>>>0){f[aa>>2]=W;f[X>>2]=aa+4}else Ri(V+(_*12|0)|0,d)}f[B>>2]=0;_=f[b>>2]|0;V=_+1|0;if((_|0)!=-1?(aa=((V>>>0)%3|0|0)==0?_+-2|0:V,(aa|0)!=-1):0)ba=f[(f[(f[p>>2]|0)+12>>2]|0)+(aa<<2)>>2]|0;else ba=-1;f[b>>2]=ba}else{T=M;U=38}while(0);if((U|0)==38){U=0;M=T+1|0;if((T|0)==-1){U=43;break}R=((M>>>0)%3|0|0)==0?T+-2|0:M;if((R|0)==-1)ca=-1;else ca=f[(f[(f[p>>2]|0)+12>>2]|0)+(R<<2)>>2]|0;f[e>>2]=ca;R=(((T>>>0)%3|0|0)==0?2:-1)+T|0;if((R|0)==-1)da=-1;else da=f[(f[(f[p>>2]|0)+12>>2]|0)+(R<<2)>>2]|0;R=(ca|0)==-1;S=R?-1:(ca>>>0)/3|0;ea=(da|0)==-1;fa=ea?-1:(da>>>0)/3|0;Q=((M>>>0)%3|0|0)==0?T+-2|0:M;if(((Q|0)!=-1?(M=f[(f[p>>2]|0)+12>>2]|0,aa=f[M+(Q<<2)>>2]|0,(aa|0)!=-1):0)?(Q=(aa>>>0)/3|0,aa=f[n>>2]|0,(f[aa+(Q>>>5<<2)>>2]&1<<(Q&31)|0)==0):0){Q=(((T>>>0)%3|0|0)==0?2:-1)+T|0;do if((Q|0)!=-1){V=f[M+(Q<<2)>>2]|0;if((V|0)==-1)break;_=(V>>>0)/3|0;if(!(f[aa+(_>>>5<<2)>>2]&1<<(_&31))){U=62;break b}}while(0);if(!ea)xf(a,f[i>>2]|0,N,0,fa);nd(t,3);ga=f[e>>2]|0}else{if(!R){xf(a,f[i>>2]|0,N,1,S);aa=f[b>>2]|0;if((aa|0)==-1){U=52;break}else ha=aa}else ha=T;aa=(((ha>>>0)%3|0|0)==0?2:-1)+ha|0;if((aa|0)==-1){U=52;break}Q=f[(f[(f[p>>2]|0)+12>>2]|0)+(aa<<2)>>2]|0;if((Q|0)==-1){U=52;break}aa=(Q>>>0)/3|0;if(f[(f[n>>2]|0)+(aa>>>5<<2)>>2]&1<<(aa&31)|0){U=52;break}nd(t,5);ga=da}f[b>>2]=ga}if((K|0)>=(k|0))break a;J=K;L=f[n>>2]|0}do if((U|0)==43){U=0;f[e>>2]=-1;U=54}else if((U|0)==52){U=0;if(ea)U=54;else{xf(a,f[i>>2]|0,N,0,fa);U=54}}else if((U|0)==62){U=0;nd(t,1);f[F>>2]=(f[F>>2]|0)+1;if(P?(L=f[(f[w>>2]|0)+(O<<2)>>2]|0,(1<<(L&31)&f[(f[G>>2]|0)+(L>>>5<<2)>>2]|0)==0):0){f[g>>2]=f[b>>2];f[d>>2]=f[g>>2];Pe(a,d,0)|0}L=f[i>>2]|0;f[d>>2]=N;J=je(H,d)|0;f[J>>2]=L;L=f[j>>2]|0;f[L+-4>>2]=da;if((L|0)==(f[m>>2]|0)){Ri(h,e);break}else{f[L>>2]=f[e>>2];f[j>>2]=L+4;break}}while(0);if((U|0)==54){U=0;nd(t,7);f[j>>2]=(f[j>>2]|0)+-4}}}else U=11;while(0);if((U|0)==11){U=0;f[j>>2]=I+-4}I=f[j>>2]|0}while((f[h>>2]|0)!=(I|0));u=c;return 1}function Zb(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0;c=u;u=u+16|0;d=c+8|0;e=c;g=f[b>>2]|0;if((g|0)==-1){u=c;return}h=(g>>>0)/3|0;i=a+12|0;if(f[(f[i>>2]|0)+(h>>>5<<2)>>2]&1<<(h&31)|0){u=c;return}h=a+56|0;j=f[h>>2]|0;k=a+60|0;l=f[k>>2]|0;if((l|0)==(j|0))m=j;else{n=l+(~((l+-4-j|0)>>>2)<<2)|0;f[k>>2]=n;m=n}n=a+64|0;if((m|0)==(f[n>>2]|0))Ri(h,b);else{f[m>>2]=g;f[k>>2]=m+4}m=f[a>>2]|0;g=f[b>>2]|0;j=g+1|0;do if((g|0)!=-1){l=f[m+28>>2]|0;o=f[l+((((j>>>0)%3|0|0)==0?g+-2|0:j)<<2)>>2]|0;if(!((g>>>0)%3|0)){p=o;q=g+2|0;r=l;break}else{p=o;q=g+-1|0;r=l;break}}else{l=f[m+28>>2]|0;p=f[l+-4>>2]|0;q=-1;r=l}while(0);m=f[r+(q<<2)>>2]|0;q=a+24|0;r=f[q>>2]|0;g=r+(p>>>5<<2)|0;j=1<<(p&31);l=f[g>>2]|0;if(!(l&j)){f[g>>2]=l|j;j=f[b>>2]|0;l=j+1|0;if((j|0)==-1)s=-1;else s=((l>>>0)%3|0|0)==0?j+-2|0:l;f[e>>2]=s;l=f[(f[(f[a+44>>2]|0)+96>>2]|0)+(((s>>>0)/3|0)*12|0)+(((s>>>0)%3|0)<<2)>>2]|0;s=f[a+48>>2]|0;f[d>>2]=l;j=f[s+4>>2]|0;s=j+4|0;g=f[s>>2]|0;if((g|0)==(f[j+8>>2]|0))Ri(j,d);else{f[g>>2]=l;f[s>>2]=g+4}g=a+40|0;s=f[g>>2]|0;l=s+4|0;j=f[l>>2]|0;if((j|0)==(f[s+8>>2]|0)){Ri(s,e);t=f[g>>2]|0}else{f[j>>2]=f[e>>2];f[l>>2]=j+4;t=s}s=t+24|0;f[(f[t+12>>2]|0)+(p<<2)>>2]=f[s>>2];f[s>>2]=(f[s>>2]|0)+1;v=f[q>>2]|0}else v=r;r=v+(m>>>5<<2)|0;v=1<<(m&31);s=f[r>>2]|0;if(!(s&v)){f[r>>2]=s|v;v=f[b>>2]|0;do if((v|0)!=-1)if(!((v>>>0)%3|0)){w=v+2|0;break}else{w=v+-1|0;break}else w=-1;while(0);f[e>>2]=w;v=f[(f[(f[a+44>>2]|0)+96>>2]|0)+(((w>>>0)/3|0)*12|0)+(((w>>>0)%3|0)<<2)>>2]|0;w=f[a+48>>2]|0;f[d>>2]=v;s=f[w+4>>2]|0;w=s+4|0;r=f[w>>2]|0;if((r|0)==(f[s+8>>2]|0))Ri(s,d);else{f[r>>2]=v;f[w>>2]=r+4}r=a+40|0;w=f[r>>2]|0;v=w+4|0;s=f[v>>2]|0;if((s|0)==(f[w+8>>2]|0)){Ri(w,e);x=f[r>>2]|0}else{f[s>>2]=f[e>>2];f[v>>2]=s+4;x=w}w=x+24|0;f[(f[x+12>>2]|0)+(m<<2)>>2]=f[w>>2];f[w>>2]=(f[w>>2]|0)+1}w=f[h>>2]|0;m=f[k>>2]|0;if((w|0)==(m|0)){u=c;return}x=a+44|0;s=a+48|0;v=a+40|0;r=m;m=w;while(1){w=f[r+-4>>2]|0;f[b>>2]=w;p=(w>>>0)/3|0;if((w|0)!=-1?(w=f[i>>2]|0,(f[w+(p>>>5<<2)>>2]&1<<(p&31)|0)==0):0){t=p;p=w;w=f[a>>2]|0;a:while(1){j=p+(t>>>5<<2)|0;f[j>>2]=f[j>>2]|1<<(t&31);j=f[b>>2]|0;l=f[(f[w+28>>2]|0)+(j<<2)>>2]|0;g=(f[q>>2]|0)+(l>>>5<<2)|0;o=1<<(l&31);y=f[g>>2]|0;if(!(o&y)){z=f[(f[w+40>>2]|0)+(l<<2)>>2]|0;if((z|0)==-1)A=1;else{B=f[(f[f[w+64>>2]>>2]|0)+(z<<2)>>2]|0;A=(1<<(B&31)&f[(f[w+12>>2]|0)+(B>>>5<<2)>>2]|0)!=0}f[g>>2]=y|o;o=f[b>>2]|0;f[e>>2]=o;y=f[(f[(f[x>>2]|0)+96>>2]|0)+(((o>>>0)/3|0)*12|0)+(((o>>>0)%3|0)<<2)>>2]|0;o=f[s>>2]|0;f[d>>2]=y;g=f[o+4>>2]|0;o=g+4|0;B=f[o>>2]|0;if((B|0)==(f[g+8>>2]|0))Ri(g,d);else{f[B>>2]=y;f[o>>2]=B+4}B=f[v>>2]|0;o=B+4|0;y=f[o>>2]|0;if((y|0)==(f[B+8>>2]|0)){Ri(B,e);C=f[v>>2]|0}else{f[y>>2]=f[e>>2];f[o>>2]=y+4;C=B}B=C+24|0;f[(f[C+12>>2]|0)+(l<<2)>>2]=f[B>>2];f[B>>2]=(f[B>>2]|0)+1;B=f[a>>2]|0;l=f[b>>2]|0;if(A){D=l;E=B;F=57}else{y=l+1|0;do if((l|0)==-1)G=-1;else{o=((y>>>0)%3|0|0)==0?l+-2|0:y;if((o|0)==-1){G=-1;break}if(f[(f[B>>2]|0)+(o>>>5<<2)>>2]&1<<(o&31)|0){G=-1;break}G=f[(f[(f[B+64>>2]|0)+12>>2]|0)+(o<<2)>>2]|0}while(0);f[b>>2]=G;H=(G>>>0)/3|0;I=B}}else{D=j;E=w;F=57}if((F|0)==57){F=0;y=D+1|0;if((D|0)==-1){F=58;break}l=((y>>>0)%3|0|0)==0?D+-2|0:y;if((l|0)!=-1?(f[(f[E>>2]|0)+(l>>>5<<2)>>2]&1<<(l&31)|0)==0:0)J=f[(f[(f[E+64>>2]|0)+12>>2]|0)+(l<<2)>>2]|0;else J=-1;f[d>>2]=J;l=(((D>>>0)%3|0|0)==0?2:-1)+D|0;if((l|0)!=-1?(f[(f[E>>2]|0)+(l>>>5<<2)>>2]&1<<(l&31)|0)==0:0)K=f[(f[(f[E+64>>2]|0)+12>>2]|0)+(l<<2)>>2]|0;else K=-1;l=(J|0)==-1;y=(J>>>0)/3|0;o=l?-1:y;g=(K|0)==-1;z=(K>>>0)/3|0;L=g?-1:z;do if(!l){M=f[i>>2]|0;if(f[M+(o>>>5<<2)>>2]&1<<(o&31)|0){F=67;break}if(g){N=J;O=y;break}if(!(f[M+(L>>>5<<2)>>2]&1<<(L&31))){F=72;break a}else{N=J;O=y}}else F=67;while(0);if((F|0)==67){F=0;if(g){F=69;break}if(!(f[(f[i>>2]|0)+(L>>>5<<2)>>2]&1<<(L&31))){N=K;O=z}else{F=69;break}}f[b>>2]=N;H=O;I=E}t=H;p=f[i>>2]|0;w=I}do if((F|0)==58){F=0;f[d>>2]=-1;F=69}else if((F|0)==72){F=0;w=f[k>>2]|0;f[w+-4>>2]=K;if((w|0)==(f[n>>2]|0)){Ri(h,d);P=f[k>>2]|0;break}else{f[w>>2]=f[d>>2];p=w+4|0;f[k>>2]=p;P=p;break}}while(0);if((F|0)==69){F=0;p=(f[k>>2]|0)+-4|0;f[k>>2]=p;P=p}Q=f[h>>2]|0;R=P}else{p=r+-4|0;f[k>>2]=p;Q=m;R=p}if((Q|0)==(R|0))break;else{r=R;m=Q}}u=c;return}function _b(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=Oa,K=Oa,L=Oa,M=0,N=0,O=0,P=0;e=u;u=u+64|0;g=e+40|0;i=e+16|0;j=e;k=Id(a,c)|0;if(k|0){f[i>>2]=k;f[g>>2]=f[i>>2];lf(a,g)|0}f[j>>2]=0;k=j+4|0;f[k>>2]=0;f[j+8>>2]=0;Fi(j,8);l=d;d=l;m=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;d=l+4|0;l=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;d=f[j>>2]|0;o=d;b[o>>0]=m;b[o+1>>0]=m>>8;b[o+2>>0]=m>>16;b[o+3>>0]=m>>24;m=d+4|0;b[m>>0]=l;b[m+1>>0]=l>>8;b[m+2>>0]=l>>16;b[m+3>>0]=l>>24;pj(i,c);c=i+12|0;f[c>>2]=0;l=i+16|0;f[l>>2]=0;f[i+20>>2]=0;m=f[k>>2]|0;d=f[j>>2]|0;o=m-d|0;if(!o){p=d;q=m;r=0}else{Fi(c,o);p=f[j>>2]|0;q=f[k>>2]|0;r=f[c>>2]|0}kh(r|0,p|0,q-p|0)|0;p=i+11|0;q=b[p>>0]|0;r=q<<24>>24<0;c=r?f[i>>2]|0:i;o=r?f[i+4>>2]|0:q&255;if(o>>>0>3){q=c;r=o;m=o;while(1){d=X(h[q>>0]|h[q+1>>0]<<8|h[q+2>>0]<<16|h[q+3>>0]<<24,1540483477)|0;r=(X(d>>>24^d,1540483477)|0)^(X(r,1540483477)|0);m=m+-4|0;if(m>>>0<=3)break;else q=q+4|0}q=o+-4|0;m=q&-4;s=q-m|0;t=c+(m+4)|0;v=r}else{s=o;t=c;v=o}switch(s|0){case 3:{w=h[t+2>>0]<<16^v;x=10;break}case 2:{w=v;x=10;break}case 1:{y=v;x=11;break}default:z=v}if((x|0)==10){y=h[t+1>>0]<<8^w;x=11}if((x|0)==11)z=X(y^h[t>>0],1540483477)|0;t=X(z>>>13^z,1540483477)|0;z=t>>>15^t;t=a+4|0;y=f[t>>2]|0;w=(y|0)==0;a:do if(!w){v=y+-1|0;s=(v&y|0)==0;if(!s)if(z>>>0>>0)A=z;else A=(z>>>0)%(y>>>0)|0;else A=z&v;r=f[(f[a>>2]|0)+(A<<2)>>2]|0;if((r|0)!=0?(m=f[r>>2]|0,(m|0)!=0):0){r=(o|0)==0;if(s){if(r){s=m;while(1){q=f[s+4>>2]|0;if(!((q|0)==(z|0)|(q&v|0)==(A|0))){B=A;x=52;break a}q=b[s+8+11>>0]|0;if(!((q<<24>>24<0?f[s+12>>2]|0:q&255)|0))break a;s=f[s>>2]|0;if(!s){B=A;x=52;break a}}}else C=m;while(1){s=f[C+4>>2]|0;if(!((s|0)==(z|0)|(s&v|0)==(A|0))){B=A;x=52;break a}s=C+8|0;q=b[s+11>>0]|0;d=q<<24>>24<0;D=q&255;do if(((d?f[C+12>>2]|0:D)|0)==(o|0)){q=f[s>>2]|0;if(d)if(!(Vk(q,c,o)|0))break a;else break;if((b[c>>0]|0)==(q&255)<<24>>24){q=s;E=D;F=c;do{E=E+-1|0;q=q+1|0;if(!E)break a;F=F+1|0}while((b[q>>0]|0)==(b[F>>0]|0))}}while(0);C=f[C>>2]|0;if(!C){B=A;x=52;break a}}}if(r){v=m;while(1){D=f[v+4>>2]|0;if((D|0)!=(z|0)){if(D>>>0>>0)G=D;else G=(D>>>0)%(y>>>0)|0;if((G|0)!=(A|0)){B=A;x=52;break a}}D=b[v+8+11>>0]|0;if(!((D<<24>>24<0?f[v+12>>2]|0:D&255)|0))break a;v=f[v>>2]|0;if(!v){B=A;x=52;break a}}}else H=m;while(1){v=f[H+4>>2]|0;if((v|0)!=(z|0)){if(v>>>0>>0)I=v;else I=(v>>>0)%(y>>>0)|0;if((I|0)!=(A|0)){B=A;x=52;break a}}v=H+8|0;r=b[v+11>>0]|0;D=r<<24>>24<0;s=r&255;do if(((D?f[H+12>>2]|0:s)|0)==(o|0)){r=f[v>>2]|0;if(D)if(!(Vk(r,c,o)|0))break a;else break;if((b[c>>0]|0)==(r&255)<<24>>24){r=v;d=s;F=c;do{d=d+-1|0;r=r+1|0;if(!d)break a;F=F+1|0}while((b[r>>0]|0)==(b[F>>0]|0))}}while(0);H=f[H>>2]|0;if(!H){B=A;x=52;break}}}else{B=A;x=52}}else{B=0;x=52}while(0);if((x|0)==52){oi(g,a,z,i);x=a+12|0;J=$(((f[x>>2]|0)+1|0)>>>0);K=$(y>>>0);L=$(n[a+16>>2]);do if(w|$(L*K)>>0<3|(y+-1&y|0)!=0)&1;H=~~$(W($(J/L)))>>>0;ei(a,A>>>0>>0?H:A);A=f[t>>2]|0;H=A+-1|0;if(!(H&A)){M=A;N=H&z;break}if(z>>>0>>0){M=A;N=z}else{M=A;N=(z>>>0)%(A>>>0)|0}}else{M=y;N=B}while(0);B=f[(f[a>>2]|0)+(N<<2)>>2]|0;if(!B){y=a+8|0;f[f[g>>2]>>2]=f[y>>2];f[y>>2]=f[g>>2];f[(f[a>>2]|0)+(N<<2)>>2]=y;y=f[g>>2]|0;N=f[y>>2]|0;if(!N)O=g;else{z=f[N+4>>2]|0;N=M+-1|0;if(N&M)if(z>>>0>>0)P=z;else P=(z>>>0)%(M>>>0)|0;else P=z&N;f[(f[a>>2]|0)+(P<<2)>>2]=y;O=g}}else{f[f[g>>2]>>2]=f[B>>2];f[B>>2]=f[g>>2];O=g}f[x>>2]=(f[x>>2]|0)+1;f[O>>2]=0}O=f[i+12>>2]|0;if(O|0){if((f[l>>2]|0)!=(O|0))f[l>>2]=O;Oq(O)}if((b[p>>0]|0)<0)Oq(f[i>>2]|0);i=f[j>>2]|0;if(!i){u=e;return}if((f[k>>2]|0)!=(i|0))f[k>>2]=i;Oq(i);u=e;return}function $b(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0,ua=0,va=0,wa=0,xa=0,ya=0,za=0;e=u;u=u+96|0;g=e+92|0;h=e+88|0;i=e+72|0;j=e+48|0;k=e+24|0;l=e;m=a+16|0;n=f[m>>2]|0;o=f[c>>2]|0;f[i>>2]=n;f[i+4>>2]=o;c=i+8|0;f[c>>2]=o;b[i+12>>0]=1;p=(o|0)==-1;if(p)q=-1;else q=f[(f[n>>2]|0)+(o<<2)>>2]|0;n=a+20|0;r=f[n>>2]|0;s=f[r>>2]|0;if((f[r+4>>2]|0)-s>>2>>>0<=q>>>0)aq(r);r=a+8|0;t=f[(f[r>>2]|0)+(f[s+(q<<2)>>2]<<2)>>2]|0;q=a+4|0;s=f[q>>2]|0;if(!(b[s+84>>0]|0))v=f[(f[s+68>>2]|0)+(t<<2)>>2]|0;else v=t;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;f[j+12>>2]=0;f[j+16>>2]=0;f[j+20>>2]=0;f[h>>2]=v;v=b[s+24>>0]|0;f[g>>2]=f[h>>2];vb(s,g,v,j)|0;v=a+28|0;a=(f[v>>2]|0)==0;a:do if(!p){s=k+8|0;t=j+8|0;w=k+16|0;x=j+16|0;y=l+8|0;z=l+16|0;A=o;B=o;C=0;D=0;E=0;F=0;G=0;H=0;J=a;K=o;while(1){do if(J){L=K+1|0;if((K|0)==-1){M=A;N=-1;O=-1;P=-1;break}Q=((L>>>0)%3|0|0)==0?K+-2|0:L;if((A|0)!=-1)if(!((A>>>0)%3|0)){R=A;S=A+2|0;T=Q;U=A;V=19;break}else{R=A;S=A+-1|0;T=Q;U=A;V=19;break}else{R=-1;S=-1;T=Q;U=-1;V=19}}else{Q=B+1|0;L=((Q>>>0)%3|0|0)==0?B+-2|0:Q;if(!((B>>>0)%3|0)){R=A;S=B+2|0;T=L;U=K;V=19;break}else{R=A;S=B+-1|0;T=L;U=K;V=19;break}}while(0);if((V|0)==19){V=0;if((T|0)==-1){M=R;N=-1;O=S;P=U}else{M=R;N=f[(f[f[m>>2]>>2]|0)+(T<<2)>>2]|0;O=S;P=U}}W=f[n>>2]|0;L=f[W>>2]|0;if((f[W+4>>2]|0)-L>>2>>>0<=N>>>0){V=22;break}Q=f[(f[r>>2]|0)+(f[L+(N<<2)>>2]<<2)>>2]|0;L=f[q>>2]|0;if(!(b[L+84>>0]|0))X=f[(f[L+68>>2]|0)+(Q<<2)>>2]|0;else X=Q;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;f[k+16>>2]=0;f[k+20>>2]=0;f[h>>2]=X;Q=b[L+24>>0]|0;f[g>>2]=f[h>>2];vb(L,g,Q,k)|0;if((O|0)==-1)Y=-1;else Y=f[(f[f[m>>2]>>2]|0)+(O<<2)>>2]|0;Z=f[n>>2]|0;Q=f[Z>>2]|0;if((f[Z+4>>2]|0)-Q>>2>>>0<=Y>>>0){V=28;break}L=f[(f[r>>2]|0)+(f[Q+(Y<<2)>>2]<<2)>>2]|0;Q=f[q>>2]|0;if(!(b[Q+84>>0]|0))_=f[(f[Q+68>>2]|0)+(L<<2)>>2]|0;else _=L;f[l>>2]=0;f[l+4>>2]=0;f[l+8>>2]=0;f[l+12>>2]=0;f[l+16>>2]=0;f[l+20>>2]=0;f[h>>2]=_;L=b[Q+24>>0]|0;f[g>>2]=f[h>>2];vb(Q,g,L,l)|0;L=k;Q=j;$=f[Q>>2]|0;aa=f[Q+4>>2]|0;Q=Xn(f[L>>2]|0,f[L+4>>2]|0,$|0,aa|0)|0;L=I;ba=s;ca=t;da=f[ca>>2]|0;ea=f[ca+4>>2]|0;ca=Xn(f[ba>>2]|0,f[ba+4>>2]|0,da|0,ea|0)|0;ba=I;fa=w;ga=x;ha=f[ga>>2]|0;ia=f[ga+4>>2]|0;ga=Xn(f[fa>>2]|0,f[fa+4>>2]|0,ha|0,ia|0)|0;fa=I;ja=l;ka=Xn(f[ja>>2]|0,f[ja+4>>2]|0,$|0,aa|0)|0;aa=I;$=y;ja=Xn(f[$>>2]|0,f[$+4>>2]|0,da|0,ea|0)|0;ea=I;da=z;$=Xn(f[da>>2]|0,f[da+4>>2]|0,ha|0,ia|0)|0;ia=I;ha=un($|0,ia|0,ca|0,ba|0)|0;da=I;la=un(ja|0,ea|0,ga|0,fa|0)|0;ma=I;na=un(ka|0,aa|0,ga|0,fa|0)|0;fa=I;ga=un($|0,ia|0,Q|0,L|0)|0;ia=I;$=un(ja|0,ea|0,Q|0,L|0)|0;L=I;Q=un(ka|0,aa|0,ca|0,ba|0)|0;ba=I;ca=Xn(C|0,D|0,la|0,ma|0)|0;ma=Vn(ca|0,I|0,ha|0,da|0)|0;da=I;ha=Vn(na|0,fa|0,E|0,F|0)|0;fa=Xn(ha|0,I|0,ga|0,ia|0)|0;ia=I;ga=Xn(G|0,H|0,Q|0,ba|0)|0;ba=Vn(ga|0,I|0,$|0,L|0)|0;L=I;Hh(i);B=f[c>>2]|0;$=(f[v>>2]|0)==0;if((B|0)==-1){oa=$;pa=da;qa=ma;ra=ia;sa=fa;ta=L;ua=ba;break a}else{A=M;C=ma;D=da;E=fa;F=ia;G=ba;H=L;J=$;K=P}}if((V|0)==22)aq(W);else if((V|0)==28)aq(Z)}else{oa=a;pa=0;qa=0;ra=0;sa=0;ta=0;ua=0}while(0);a=(pa|0)>-1|(pa|0)==-1&qa>>>0>4294967295;Z=Xn(0,0,qa|0,pa|0)|0;V=a?pa:I;W=(ra|0)>-1|(ra|0)==-1&sa>>>0>4294967295;P=Xn(0,0,sa|0,ra|0)|0;M=W?ra:I;v=(ta|0)>-1|(ta|0)==-1&ua>>>0>4294967295;c=Xn(0,0,ua|0,ta|0)|0;i=Vn((W?sa:P)|0,M|0,(v?ua:c)|0,(v?ta:I)|0)|0;v=Vn(i|0,I|0,(a?qa:Z)|0,V|0)|0;V=I;if(oa){if((v|0)<=536870912){va=qa;wa=sa;xa=ua;f[d>>2]=va;ya=d+4|0;f[ya>>2]=wa;za=d+8|0;f[za>>2]=xa;u=e;return}oa=Yn(v|0,V|0,29)|0;Z=oa&7;oa=Ik(qa|0,pa|0,Z|0,0)|0;a=Ik(sa|0,ra|0,Z|0,0)|0;i=Ik(ua|0,ta|0,Z|0,0)|0;va=oa;wa=a;xa=i;f[d>>2]=va;ya=d+4|0;f[ya>>2]=wa;za=d+8|0;f[za>>2]=xa;u=e;return}else{if(!((V|0)>0|(V|0)==0&v>>>0>536870912)){va=qa;wa=sa;xa=ua;f[d>>2]=va;ya=d+4|0;f[ya>>2]=wa;za=d+8|0;f[za>>2]=xa;u=e;return}i=Yn(v|0,V|0,29)|0;V=I;v=Ik(qa|0,pa|0,i|0,V|0)|0;pa=Ik(sa|0,ra|0,i|0,V|0)|0;ra=Ik(ua|0,ta|0,i|0,V|0)|0;va=v;wa=pa;xa=ra;f[d>>2]=va;ya=d+4|0;f[ya>>2]=wa;za=d+8|0;f[za>>2]=xa;u=e;return}}function ac(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=Oa,M=Oa,N=Oa,O=0,P=0,Q=0,R=0;e=u;u=u+64|0;g=e+40|0;i=e+16|0;j=e;k=Id(a,c)|0;if(k|0){f[i>>2]=k;f[g>>2]=f[i>>2];lf(a,g)|0}f[j>>2]=0;k=j+4|0;f[k>>2]=0;f[j+8>>2]=0;l=d+11|0;m=b[l>>0]|0;o=d+4|0;p=f[o>>2]|0;q=m<<24>>24<0?p:m&255;if(!q){r=m;s=p;t=0}else{Fi(j,q);r=b[l>>0]|0;s=f[o>>2]|0;t=f[j>>2]|0}o=r<<24>>24<0;kh(t|0,(o?f[d>>2]|0:d)|0,(o?s:r&255)|0)|0;pj(i,c);c=i+12|0;f[c>>2]=0;r=i+16|0;f[r>>2]=0;f[i+20>>2]=0;s=f[k>>2]|0;o=f[j>>2]|0;d=s-o|0;if(!d){v=o;w=s;x=0}else{Fi(c,d);v=f[j>>2]|0;w=f[k>>2]|0;x=f[c>>2]|0}kh(x|0,v|0,w-v|0)|0;v=i+11|0;w=b[v>>0]|0;x=w<<24>>24<0;c=x?f[i>>2]|0:i;d=x?f[i+4>>2]|0:w&255;if(d>>>0>3){w=c;x=d;s=d;while(1){o=X(h[w>>0]|h[w+1>>0]<<8|h[w+2>>0]<<16|h[w+3>>0]<<24,1540483477)|0;x=(X(o>>>24^o,1540483477)|0)^(X(x,1540483477)|0);s=s+-4|0;if(s>>>0<=3)break;else w=w+4|0}w=d+-4|0;s=w&-4;y=w-s|0;z=c+(s+4)|0;A=x}else{y=d;z=c;A=d}switch(y|0){case 3:{B=h[z+2>>0]<<16^A;C=12;break}case 2:{B=A;C=12;break}case 1:{D=A;C=13;break}default:E=A}if((C|0)==12){D=h[z+1>>0]<<8^B;C=13}if((C|0)==13)E=X(D^h[z>>0],1540483477)|0;z=X(E>>>13^E,1540483477)|0;E=z>>>15^z;z=a+4|0;D=f[z>>2]|0;B=(D|0)==0;a:do if(!B){A=D+-1|0;y=(A&D|0)==0;if(!y)if(E>>>0>>0)F=E;else F=(E>>>0)%(D>>>0)|0;else F=E&A;x=f[(f[a>>2]|0)+(F<<2)>>2]|0;if((x|0)!=0?(s=f[x>>2]|0,(s|0)!=0):0){x=(d|0)==0;if(y){if(x){y=s;while(1){w=f[y+4>>2]|0;if(!((w|0)==(E|0)|(w&A|0)==(F|0))){G=F;C=54;break a}w=b[y+8+11>>0]|0;if(!((w<<24>>24<0?f[y+12>>2]|0:w&255)|0))break a;y=f[y>>2]|0;if(!y){G=F;C=54;break a}}}else H=s;while(1){y=f[H+4>>2]|0;if(!((y|0)==(E|0)|(y&A|0)==(F|0))){G=F;C=54;break a}y=H+8|0;w=b[y+11>>0]|0;o=w<<24>>24<0;t=w&255;do if(((o?f[H+12>>2]|0:t)|0)==(d|0)){w=f[y>>2]|0;if(o)if(!(Vk(w,c,d)|0))break a;else break;if((b[c>>0]|0)==(w&255)<<24>>24){w=y;l=t;q=c;do{l=l+-1|0;w=w+1|0;if(!l)break a;q=q+1|0}while((b[w>>0]|0)==(b[q>>0]|0))}}while(0);H=f[H>>2]|0;if(!H){G=F;C=54;break a}}}if(x){A=s;while(1){t=f[A+4>>2]|0;if((t|0)!=(E|0)){if(t>>>0>>0)I=t;else I=(t>>>0)%(D>>>0)|0;if((I|0)!=(F|0)){G=F;C=54;break a}}t=b[A+8+11>>0]|0;if(!((t<<24>>24<0?f[A+12>>2]|0:t&255)|0))break a;A=f[A>>2]|0;if(!A){G=F;C=54;break a}}}else J=s;while(1){A=f[J+4>>2]|0;if((A|0)!=(E|0)){if(A>>>0>>0)K=A;else K=(A>>>0)%(D>>>0)|0;if((K|0)!=(F|0)){G=F;C=54;break a}}A=J+8|0;x=b[A+11>>0]|0;t=x<<24>>24<0;y=x&255;do if(((t?f[J+12>>2]|0:y)|0)==(d|0)){x=f[A>>2]|0;if(t)if(!(Vk(x,c,d)|0))break a;else break;if((b[c>>0]|0)==(x&255)<<24>>24){x=A;o=y;q=c;do{o=o+-1|0;x=x+1|0;if(!o)break a;q=q+1|0}while((b[x>>0]|0)==(b[q>>0]|0))}}while(0);J=f[J>>2]|0;if(!J){G=F;C=54;break}}}else{G=F;C=54}}else{G=0;C=54}while(0);if((C|0)==54){oi(g,a,E,i);C=a+12|0;L=$(((f[C>>2]|0)+1|0)>>>0);M=$(D>>>0);N=$(n[a+16>>2]);do if(B|$(N*M)>>0<3|(D+-1&D|0)!=0)&1;J=~~$(W($(L/N)))>>>0;ei(a,F>>>0>>0?J:F);F=f[z>>2]|0;J=F+-1|0;if(!(J&F)){O=F;P=J&E;break}if(E>>>0>>0){O=F;P=E}else{O=F;P=(E>>>0)%(F>>>0)|0}}else{O=D;P=G}while(0);G=f[(f[a>>2]|0)+(P<<2)>>2]|0;if(!G){D=a+8|0;f[f[g>>2]>>2]=f[D>>2];f[D>>2]=f[g>>2];f[(f[a>>2]|0)+(P<<2)>>2]=D;D=f[g>>2]|0;P=f[D>>2]|0;if(!P)Q=g;else{E=f[P+4>>2]|0;P=O+-1|0;if(P&O)if(E>>>0>>0)R=E;else R=(E>>>0)%(O>>>0)|0;else R=E&P;f[(f[a>>2]|0)+(R<<2)>>2]=D;Q=g}}else{f[f[g>>2]>>2]=f[G>>2];f[G>>2]=f[g>>2];Q=g}f[C>>2]=(f[C>>2]|0)+1;f[Q>>2]=0}Q=f[i+12>>2]|0;if(Q|0){if((f[r>>2]|0)!=(Q|0))f[r>>2]=Q;Oq(Q)}if((b[v>>0]|0)<0)Oq(f[i>>2]|0);i=f[j>>2]|0;if(!i){u=e;return}if((f[k>>2]|0)!=(i|0))f[k>>2]=i;Oq(i);u=e;return}function bc(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0;d=u;u=u+192|0;e=d+152|0;g=d+144|0;h=d+72|0;i=d;j=d+112|0;k=d+108|0;l=d+104|0;m=a+352|0;if(b[m>>0]|0?(n=Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0,((f[n+12>>2]|0)-(f[n+8>>2]|0)|0)>0):0){n=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+8|0;o=f[f[n>>2]>>2]|0;f[e>>2]=c;n=o+4|0;p=o+8|0;q=f[p>>2]|0;if((q|0)==(f[o+12>>2]|0))Ri(n,e);else{f[q>>2]=c;f[p>>2]=q+4}q=f[e>>2]|0;r=o+16|0;s=o+20|0;o=f[s>>2]|0;t=f[r>>2]|0;v=o-t>>2;w=t;if((q|0)<(v|0)){x=w;y=q}else{t=q+1|0;f[g>>2]=-1;z=o;if(t>>>0<=v>>>0)if(t>>>0>>0?(o=w+(t<<2)|0,(o|0)!=(z|0)):0){f[s>>2]=z+(~((z+-4-o|0)>>>2)<<2);A=q;B=w}else{A=q;B=w}else{Ch(r,t-v|0,g);A=f[e>>2]|0;B=f[r>>2]|0}x=B;y=A}f[x+(y<<2)>>2]=((f[p>>2]|0)-(f[n>>2]|0)>>2)+-1;C=1;u=d;return C|0}n=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+52|0;p=f[(f[(f[n>>2]|0)+84>>2]|0)+(c<<2)>>2]|0;n=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+4|0;y=f[(f[(f[n>>2]|0)+8>>2]|0)+(c<<2)>>2]|0;f[g>>2]=-1;n=a+172|0;x=f[a+176>>2]|0;A=f[n>>2]|0;B=A;a:do if((x|0)==(A|0))D=-1;else{r=(x-A|0)/136|0;v=0;while(1){if((f[B+(v*136|0)>>2]|0)==(c|0))break;t=v+1|0;if(t>>>0>>0)v=t;else{D=-1;break a}}f[g>>2]=v;D=v}while(0);b:do if(!(b[m>>0]|0)){A=(f[y+56>>2]|0)==0;do if(!((p|0)==0|A)){if((p|0)==1?b[B+(D*136|0)+28>>0]|0:0)break;x=ln(88)|0;r=f[a+8>>2]|0;t=B+(D*136|0)+104|0;f[x+4>>2]=0;f[x>>2]=3564;w=x+12|0;f[w>>2]=3588;q=x+64|0;f[q>>2]=0;f[x+68>>2]=0;f[x+72>>2]=0;o=x+16|0;z=o+44|0;do{f[o>>2]=0;o=o+4|0}while((o|0)<(z|0));f[x+76>>2]=r;f[x+80>>2]=t;s=x+84|0;f[s>>2]=0;f[h>>2]=3588;E=h+4|0;F=E+4|0;f[F>>2]=0;f[F+4>>2]=0;f[F+8>>2]=0;f[F+12>>2]=0;f[F+16>>2]=0;f[F+20>>2]=0;F=B+(D*136|0)+4|0;G=i+4|0;f[G>>2]=3588;H=i+56|0;f[H>>2]=0;I=i+60|0;f[I>>2]=0;f[i+64>>2]=0;o=i+8|0;z=o+44|0;do{f[o>>2]=0;o=o+4|0}while((o|0)<(z|0));f[E>>2]=F;o=f[B+(D*136|0)+68>>2]|0;z=((f[o+4>>2]|0)-(f[o>>2]|0)>>2>>>0)/3|0;b[e>>0]=0;qh(h+8|0,z,e);Va[f[(f[h>>2]|0)+8>>2]&127](h);Df(j,h);Df(e,j);f[i>>2]=f[e+4>>2];z=i+4|0;fg(z,e)|0;f[e>>2]=3588;o=f[e+20>>2]|0;if(o|0)Oq(o);o=f[e+8>>2]|0;if(o|0)Oq(o);f[i+36>>2]=F;f[i+40>>2]=t;f[i+44>>2]=r;f[i+48>>2]=x;f[j>>2]=3588;o=f[j+20>>2]|0;if(o|0)Oq(o);o=f[j+8>>2]|0;if(o|0)Oq(o);f[s>>2]=a+72;f[x+8>>2]=f[i>>2];fg(w,z)|0;z=x+44|0;o=i+36|0;f[z>>2]=f[o>>2];f[z+4>>2]=f[o+4>>2];f[z+8>>2]=f[o+8>>2];f[z+12>>2]=f[o+12>>2];b[z+16>>0]=b[o+16>>0]|0;ng(q,f[H>>2]|0,f[I>>2]|0);o=x;z=f[H>>2]|0;if(z|0){J=f[I>>2]|0;if((J|0)!=(z|0))f[I>>2]=J+(~((J+-4-z|0)>>>2)<<2);Oq(z)}f[G>>2]=3588;z=f[i+24>>2]|0;if(z|0)Oq(z);z=f[i+12>>2]|0;if(z|0)Oq(z);f[h>>2]=3588;z=f[h+20>>2]|0;if(z|0)Oq(z);z=f[h+8>>2]|0;if(z|0)Oq(z);K=0;L=o;M=54;break b}while(0);if(!A){b[B+(D*136|0)+100>>0]=0;N=B+(D*136|0)+104|0;M=26}else M=24}else M=24;while(0);if((M|0)==24){N=a+40|0;M=26}if((M|0)==26){D=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+48|0;do if((mi(f[D>>2]|0)|0)==0?(f[y+56>>2]|0)==0:0){if(b[m>>0]|0?(B=f[a+8>>2]|0,((f[B+12>>2]|0)-(f[B+8>>2]|0)|0)>4):0){M=31;break}gf(e,a,N);O=1;P=f[e>>2]|0}else M=31;while(0);if((M|0)==31){Vd(e,a,N);O=0;P=f[e>>2]|0}if(!P)Q=0;else{K=O;L=P;M=54}}if((M|0)==54){M=f[g>>2]|0;if((M|0)==-1)R=a+68|0;else R=(f[n>>2]|0)+(M*136|0)+132|0;f[R>>2]=K;K=ln(76)|0;f[k>>2]=L;rl(K,k,c);c=K;K=f[k>>2]|0;f[k>>2]=0;if(K|0)Va[f[(f[K>>2]|0)+4>>2]&127](K);K=a+188|0;k=f[K>>2]|0;if((k|0)==(f[a+192>>2]|0))Ri(a+184|0,g);else{f[k>>2]=f[g>>2];f[K>>2]=k+4}k=Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0;f[l>>2]=c;a=k+12|0;K=f[a>>2]|0;if(K>>>0<(f[k+16>>2]|0)>>>0){f[l>>2]=0;f[K>>2]=c;f[a>>2]=K+4;S=l}else{Qg(k+8|0,l);S=l}l=f[S>>2]|0;f[S>>2]=0;if(!l)Q=1;else{Va[f[(f[l>>2]|0)+4>>2]&127](l);Q=1}}C=Q;u=d;return C|0}function cc(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0;d=u;u=u+192|0;e=d+152|0;g=d+144|0;h=d+72|0;i=d;j=d+112|0;k=d+108|0;l=d+104|0;m=a+288|0;if(b[m>>0]|0?(n=Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0,((f[n+12>>2]|0)-(f[n+8>>2]|0)|0)>0):0){n=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+8|0;o=f[f[n>>2]>>2]|0;f[e>>2]=c;n=o+4|0;p=o+8|0;q=f[p>>2]|0;if((q|0)==(f[o+12>>2]|0))Ri(n,e);else{f[q>>2]=c;f[p>>2]=q+4}q=f[e>>2]|0;r=o+16|0;s=o+20|0;o=f[s>>2]|0;t=f[r>>2]|0;v=o-t>>2;w=t;if((q|0)<(v|0)){x=w;y=q}else{t=q+1|0;f[g>>2]=-1;z=o;if(t>>>0<=v>>>0)if(t>>>0>>0?(o=w+(t<<2)|0,(o|0)!=(z|0)):0){f[s>>2]=z+(~((z+-4-o|0)>>>2)<<2);A=q;B=w}else{A=q;B=w}else{Ch(r,t-v|0,g);A=f[e>>2]|0;B=f[r>>2]|0}x=B;y=A}f[x+(y<<2)>>2]=((f[p>>2]|0)-(f[n>>2]|0)>>2)+-1;C=1;u=d;return C|0}n=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+52|0;p=f[(f[(f[n>>2]|0)+84>>2]|0)+(c<<2)>>2]|0;n=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+4|0;y=f[(f[(f[n>>2]|0)+8>>2]|0)+(c<<2)>>2]|0;f[g>>2]=-1;n=a+172|0;x=f[a+176>>2]|0;A=f[n>>2]|0;B=A;a:do if((x|0)==(A|0))D=-1;else{r=(x-A|0)/136|0;v=0;while(1){if((f[B+(v*136|0)>>2]|0)==(c|0))break;t=v+1|0;if(t>>>0>>0)v=t;else{D=-1;break a}}f[g>>2]=v;D=v}while(0);b:do if(!(b[m>>0]|0)){A=(f[y+56>>2]|0)==0;do if(!((p|0)==0|A)){if((p|0)==1?b[B+(D*136|0)+28>>0]|0:0)break;x=ln(88)|0;r=f[a+8>>2]|0;t=B+(D*136|0)+104|0;f[x+4>>2]=0;f[x>>2]=3564;w=x+12|0;f[w>>2]=3588;q=x+64|0;f[q>>2]=0;f[x+68>>2]=0;f[x+72>>2]=0;o=x+16|0;z=o+44|0;do{f[o>>2]=0;o=o+4|0}while((o|0)<(z|0));f[x+76>>2]=r;f[x+80>>2]=t;s=x+84|0;f[s>>2]=0;f[h>>2]=3588;E=h+4|0;F=E+4|0;f[F>>2]=0;f[F+4>>2]=0;f[F+8>>2]=0;f[F+12>>2]=0;f[F+16>>2]=0;f[F+20>>2]=0;F=B+(D*136|0)+4|0;G=i+4|0;f[G>>2]=3588;H=i+56|0;f[H>>2]=0;I=i+60|0;f[I>>2]=0;f[i+64>>2]=0;o=i+8|0;z=o+44|0;do{f[o>>2]=0;o=o+4|0}while((o|0)<(z|0));f[E>>2]=F;o=f[B+(D*136|0)+68>>2]|0;z=((f[o+4>>2]|0)-(f[o>>2]|0)>>2>>>0)/3|0;b[e>>0]=0;qh(h+8|0,z,e);Va[f[(f[h>>2]|0)+8>>2]&127](h);Df(j,h);Df(e,j);f[i>>2]=f[e+4>>2];z=i+4|0;fg(z,e)|0;f[e>>2]=3588;o=f[e+20>>2]|0;if(o|0)Oq(o);o=f[e+8>>2]|0;if(o|0)Oq(o);f[i+36>>2]=F;f[i+40>>2]=t;f[i+44>>2]=r;f[i+48>>2]=x;f[j>>2]=3588;o=f[j+20>>2]|0;if(o|0)Oq(o);o=f[j+8>>2]|0;if(o|0)Oq(o);f[s>>2]=a+72;f[x+8>>2]=f[i>>2];fg(w,z)|0;z=x+44|0;o=i+36|0;f[z>>2]=f[o>>2];f[z+4>>2]=f[o+4>>2];f[z+8>>2]=f[o+8>>2];f[z+12>>2]=f[o+12>>2];b[z+16>>0]=b[o+16>>0]|0;ng(q,f[H>>2]|0,f[I>>2]|0);o=x;z=f[H>>2]|0;if(z|0){J=f[I>>2]|0;if((J|0)!=(z|0))f[I>>2]=J+(~((J+-4-z|0)>>>2)<<2);Oq(z)}f[G>>2]=3588;z=f[i+24>>2]|0;if(z|0)Oq(z);z=f[i+12>>2]|0;if(z|0)Oq(z);f[h>>2]=3588;z=f[h+20>>2]|0;if(z|0)Oq(z);z=f[h+8>>2]|0;if(z|0)Oq(z);K=0;L=o;M=54;break b}while(0);if(!A){b[B+(D*136|0)+100>>0]=0;N=B+(D*136|0)+104|0;M=26}else M=24}else M=24;while(0);if((M|0)==24){N=a+40|0;M=26}if((M|0)==26){D=(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)+48|0;do if((mi(f[D>>2]|0)|0)==0?(f[y+56>>2]|0)==0:0){if(b[m>>0]|0?(B=f[a+8>>2]|0,((f[B+12>>2]|0)-(f[B+8>>2]|0)|0)>4):0){M=31;break}gf(e,a,N);O=1;P=f[e>>2]|0}else M=31;while(0);if((M|0)==31){Vd(e,a,N);O=0;P=f[e>>2]|0}if(!P)Q=0;else{K=O;L=P;M=54}}if((M|0)==54){M=f[g>>2]|0;if((M|0)==-1)R=a+68|0;else R=(f[n>>2]|0)+(M*136|0)+132|0;f[R>>2]=K;K=ln(76)|0;f[k>>2]=L;rl(K,k,c);c=K;K=f[k>>2]|0;f[k>>2]=0;if(K|0)Va[f[(f[K>>2]|0)+4>>2]&127](K);K=a+188|0;k=f[K>>2]|0;if((k|0)==(f[a+192>>2]|0))Ri(a+184|0,g);else{f[k>>2]=f[g>>2];f[K>>2]=k+4}k=Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0;f[l>>2]=c;a=k+12|0;K=f[a>>2]|0;if(K>>>0<(f[k+16>>2]|0)>>>0){f[l>>2]=0;f[K>>2]=c;f[a>>2]=K+4;S=l}else{Qg(k+8|0,l);S=l}l=f[S>>2]|0;f[S>>2]=0;if(!l)Q=1;else{Va[f[(f[l>>2]|0)+4>>2]&127](l);Q=1}}C=Q;u=d;return C|0}function dc(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0;c=u;u=u+16|0;d=c+8|0;e=c;g=f[b>>2]|0;if((g|0)==-1){u=c;return}h=(g>>>0)/3|0;i=a+12|0;if(f[(f[i>>2]|0)+(h>>>5<<2)>>2]&1<<(h&31)|0){u=c;return}h=a+56|0;j=f[h>>2]|0;k=a+60|0;l=f[k>>2]|0;if((l|0)==(j|0))m=j;else{n=l+(~((l+-4-j|0)>>>2)<<2)|0;f[k>>2]=n;m=n}n=a+64|0;if((m|0)==(f[n>>2]|0))Ri(h,b);else{f[m>>2]=g;f[k>>2]=m+4}m=f[a>>2]|0;g=f[b>>2]|0;j=g+1|0;if((g|0)!=-1){l=((j>>>0)%3|0|0)==0?g+-2|0:j;if((l|0)==-1)o=-1;else o=f[(f[m>>2]|0)+(l<<2)>>2]|0;l=(((g>>>0)%3|0|0)==0?2:-1)+g|0;if((l|0)==-1){p=o;q=-1}else{p=o;q=f[(f[m>>2]|0)+(l<<2)>>2]|0}}else{p=-1;q=-1}l=a+24|0;m=f[l>>2]|0;o=m+(p>>>5<<2)|0;g=1<<(p&31);j=f[o>>2]|0;if(!(j&g)){f[o>>2]=j|g;g=f[b>>2]|0;j=g+1|0;if((g|0)==-1)r=-1;else r=((j>>>0)%3|0|0)==0?g+-2|0:j;f[e>>2]=r;j=f[(f[(f[a+44>>2]|0)+96>>2]|0)+(((r>>>0)/3|0)*12|0)+(((r>>>0)%3|0)<<2)>>2]|0;r=f[a+48>>2]|0;f[d>>2]=j;g=f[r+4>>2]|0;r=g+4|0;o=f[r>>2]|0;if((o|0)==(f[g+8>>2]|0))Ri(g,d);else{f[o>>2]=j;f[r>>2]=o+4}o=a+40|0;r=f[o>>2]|0;j=r+4|0;g=f[j>>2]|0;if((g|0)==(f[r+8>>2]|0)){Ri(r,e);s=f[o>>2]|0}else{f[g>>2]=f[e>>2];f[j>>2]=g+4;s=r}r=s+24|0;f[(f[s+12>>2]|0)+(p<<2)>>2]=f[r>>2];f[r>>2]=(f[r>>2]|0)+1;t=f[l>>2]|0}else t=m;m=t+(q>>>5<<2)|0;t=1<<(q&31);r=f[m>>2]|0;if(!(r&t)){f[m>>2]=r|t;t=f[b>>2]|0;do if((t|0)!=-1)if(!((t>>>0)%3|0)){v=t+2|0;break}else{v=t+-1|0;break}else v=-1;while(0);f[e>>2]=v;t=f[(f[(f[a+44>>2]|0)+96>>2]|0)+(((v>>>0)/3|0)*12|0)+(((v>>>0)%3|0)<<2)>>2]|0;v=f[a+48>>2]|0;f[d>>2]=t;r=f[v+4>>2]|0;v=r+4|0;m=f[v>>2]|0;if((m|0)==(f[r+8>>2]|0))Ri(r,d);else{f[m>>2]=t;f[v>>2]=m+4}m=a+40|0;v=f[m>>2]|0;t=v+4|0;r=f[t>>2]|0;if((r|0)==(f[v+8>>2]|0)){Ri(v,e);w=f[m>>2]|0}else{f[r>>2]=f[e>>2];f[t>>2]=r+4;w=v}v=w+24|0;f[(f[w+12>>2]|0)+(q<<2)>>2]=f[v>>2];f[v>>2]=(f[v>>2]|0)+1}v=f[h>>2]|0;q=f[k>>2]|0;if((v|0)==(q|0)){u=c;return}w=a+44|0;r=a+48|0;t=a+40|0;m=q;q=v;while(1){v=f[m+-4>>2]|0;f[b>>2]=v;p=(v>>>0)/3|0;if((v|0)!=-1?(v=f[i>>2]|0,(f[v+(p>>>5<<2)>>2]&1<<(p&31)|0)==0):0){s=p;p=v;a:while(1){v=p+(s>>>5<<2)|0;f[v>>2]=f[v>>2]|1<<(s&31);v=f[b>>2]|0;if((v|0)==-1)x=-1;else x=f[(f[f[a>>2]>>2]|0)+(v<<2)>>2]|0;g=(f[l>>2]|0)+(x>>>5<<2)|0;j=1<<(x&31);o=f[g>>2]|0;do if(!(j&o)){y=f[a>>2]|0;z=f[(f[y+24>>2]|0)+(x<<2)>>2]|0;A=z+1|0;if(((z|0)!=-1?(B=((A>>>0)%3|0|0)==0?z+-2|0:A,(B|0)!=-1):0)?(A=f[(f[y+12>>2]|0)+(B<<2)>>2]|0,B=A+1|0,(A|0)!=-1):0)C=((((B>>>0)%3|0|0)==0?A+-2|0:B)|0)==-1;else C=1;f[g>>2]=o|j;B=f[b>>2]|0;f[e>>2]=B;A=f[(f[(f[w>>2]|0)+96>>2]|0)+(((B>>>0)/3|0)*12|0)+(((B>>>0)%3|0)<<2)>>2]|0;B=f[r>>2]|0;f[d>>2]=A;y=f[B+4>>2]|0;B=y+4|0;z=f[B>>2]|0;if((z|0)==(f[y+8>>2]|0))Ri(y,d);else{f[z>>2]=A;f[B>>2]=z+4}z=f[t>>2]|0;B=z+4|0;A=f[B>>2]|0;if((A|0)==(f[z+8>>2]|0)){Ri(z,e);D=f[t>>2]|0}else{f[A>>2]=f[e>>2];f[B>>2]=A+4;D=z}z=D+24|0;f[(f[D+12>>2]|0)+(x<<2)>>2]=f[z>>2];f[z>>2]=(f[z>>2]|0)+1;if(C){E=f[b>>2]|0;F=60;break}z=f[a>>2]|0;A=f[b>>2]|0;do if((A|0)==-1)G=-1;else{B=A+1|0;y=((B>>>0)%3|0|0)==0?A+-2|0:B;if((y|0)==-1){G=-1;break}G=f[(f[z+12>>2]|0)+(y<<2)>>2]|0}while(0);f[b>>2]=G;H=(G>>>0)/3|0}else{E=v;F=60}while(0);if((F|0)==60){F=0;v=f[a>>2]|0;if((E|0)==-1){F=61;break}j=E+1|0;o=((j>>>0)%3|0|0)==0?E+-2|0:j;if((o|0)==-1)I=-1;else I=f[(f[v+12>>2]|0)+(o<<2)>>2]|0;f[d>>2]=I;o=(((E>>>0)%3|0|0)==0?2:-1)+E|0;if((o|0)==-1)J=-1;else J=f[(f[v+12>>2]|0)+(o<<2)>>2]|0;o=(I|0)==-1;v=(I>>>0)/3|0;j=o?-1:v;g=(J|0)==-1;z=(J>>>0)/3|0;A=g?-1:z;do if(!o){y=f[i>>2]|0;if(f[y+(j>>>5<<2)>>2]&1<<(j&31)|0){F=68;break}if(g){K=I;L=v;break}if(!(f[y+(A>>>5<<2)>>2]&1<<(A&31))){F=73;break a}else{K=I;L=v}}else F=68;while(0);if((F|0)==68){F=0;if(g){F=70;break}if(!(f[(f[i>>2]|0)+(A>>>5<<2)>>2]&1<<(A&31))){K=J;L=z}else{F=70;break}}f[b>>2]=K;H=L}s=H;p=f[i>>2]|0}do if((F|0)==61){F=0;f[d>>2]=-1;F=70}else if((F|0)==73){F=0;p=f[k>>2]|0;f[p+-4>>2]=J;if((p|0)==(f[n>>2]|0)){Ri(h,d);M=f[k>>2]|0;break}else{f[p>>2]=f[d>>2];s=p+4|0;f[k>>2]=s;M=s;break}}while(0);if((F|0)==70){F=0;s=(f[k>>2]|0)+-4|0;f[k>>2]=s;M=s}N=f[h>>2]|0;O=M}else{s=m+-4|0;f[k>>2]=s;N=q;O=s}if((N|0)==(O|0))break;else{m=O;q=N}}u=c;return}function ec(a,c,e){a=a|0;c=c|0;e=e|0;var g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=Oa,fa=Oa,ga=Oa,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0;g=u;u=u+48|0;i=g+12|0;j=g+32|0;k=g;l=i+16|0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;n[l>>2]=$(1.0);m=a+80|0;o=f[m>>2]|0;f[k>>2]=0;p=k+4|0;f[p>>2]=0;f[k+8>>2]=0;if(o){if(o>>>0>1073741823)aq(k);q=o<<2;r=ln(q)|0;f[k>>2]=r;s=r+(o<<2)|0;f[k+8>>2]=s;sj(r|0,0,q|0)|0;f[p>>2]=s;s=c+48|0;q=c+40|0;o=i+4|0;t=i+12|0;v=i+8|0;w=a+40|0;x=a+64|0;y=f[e>>2]|0;e=0;z=r;A=0;B=0;C=r;D=r;E=r;while(1){r=s;F=f[r>>2]|0;G=f[r+4>>2]|0;r=q;H=un(f[r>>2]|0,f[r+4>>2]|0,y+A|0,0)|0;r=Vn(H|0,I|0,F|0,G|0)|0;G=(f[f[c>>2]>>2]|0)+r|0;r=h[G>>0]|h[G+1>>0]<<8;d[j>>1]=r;G=(r^318)&65535;a:do if(e){F=e+-1|0;H=(F&e|0)==0;if(!H)if(e>>>0>G>>>0)J=G;else J=(G>>>0)%(e>>>0)|0;else J=F&G;K=f[i>>2]|0;L=f[K+(J<<2)>>2]|0;b:do if(L|0?(M=f[L>>2]|0,M|0):0){c:do if(H){N=M;while(1){O=f[N+4>>2]|0;P=(O|0)==(G|0);if(!(P|(O&F|0)==(J|0)))break b;if(P?(d[N+8>>1]|0)==r<<16>>16:0){Q=N;break c}N=f[N>>2]|0;if(!N)break b}}else{N=M;while(1){P=f[N+4>>2]|0;if((P|0)==(G|0)){if((d[N+8>>1]|0)==r<<16>>16){Q=N;break c}}else{if(P>>>0>>0)R=P;else R=(P>>>0)%(e>>>0)|0;if((R|0)!=(J|0))break b}N=f[N>>2]|0;if(!N)break b}}while(0);f[E+(A<<2)>>2]=f[Q+12>>2];S=z;T=B;U=D;V=C;X=E;break a}while(0);if(!H)if(e>>>0>G>>>0)Y=G;else Y=(G>>>0)%(e>>>0)|0;else Y=F&G;L=f[K+(Y<<2)>>2]|0;if(!L){Z=Y;_=e;aa=0;ba=40}else{if(H){M=L;while(1){M=f[M>>2]|0;if(!M){Z=Y;_=e;aa=0;ba=40;break a}N=f[M+4>>2]|0;if(!((N|0)==(G|0)|(N&F|0)==(Y|0))){Z=Y;_=e;aa=0;ba=40;break a}if((d[M+8>>1]|0)==r<<16>>16){ba=55;break a}}}else ca=L;while(1){ca=f[ca>>2]|0;if(!ca){Z=Y;_=e;aa=0;ba=40;break a}M=f[ca+4>>2]|0;if((M|0)!=(G|0)){if(M>>>0>>0)da=M;else da=(M>>>0)%(e>>>0)|0;if((da|0)!=(Y|0)){Z=Y;_=e;aa=0;ba=40;break a}}if((d[ca+8>>1]|0)==r<<16>>16){ba=55;break}}}}else{Z=0;_=0;aa=1;ba=40}while(0);if((ba|0)==40){ba=0;L=ln(16)|0;d[L+8>>1]=r;f[L+12>>2]=B;f[L+4>>2]=G;f[L>>2]=0;ea=$(((f[t>>2]|0)+1|0)>>>0);fa=$(_>>>0);ga=$(n[l>>2]);do if(aa|$(ga*fa)>>0<3|(_+-1&_|0)!=0)&1;F=~~$(W($(ea/ga)))>>>0;Vh(i,M>>>0>>0?F:M);M=f[o>>2]|0;F=M+-1|0;if(!(F&M)){ha=M;ia=F&G;break}if(M>>>0>G>>>0){ha=M;ia=G}else{ha=M;ia=(G>>>0)%(M>>>0)|0}}else{ha=_;ia=Z}while(0);G=(f[i>>2]|0)+(ia<<2)|0;r=f[G>>2]|0;if(!r){f[L>>2]=f[v>>2];f[v>>2]=L;f[G>>2]=v;G=f[L>>2]|0;if(G|0){M=f[G+4>>2]|0;G=ha+-1|0;if(G&ha)if(M>>>0>>0)ja=M;else ja=(M>>>0)%(ha>>>0)|0;else ja=M&G;ka=(f[i>>2]|0)+(ja<<2)|0;ba=53}}else{f[L>>2]=f[r>>2];ka=r;ba=53}if((ba|0)==53){ba=0;f[ka>>2]=L}f[t>>2]=(f[t>>2]|0)+1;ba=55}if((ba|0)==55){ba=0;r=w;G=f[r>>2]|0;M=un(G|0,f[r+4>>2]|0,B|0,0)|0;kh((f[f[x>>2]>>2]|0)+M|0,j|0,G|0)|0;G=f[k>>2]|0;f[G+(A<<2)>>2]=B;S=G;T=B+1|0;U=G;V=G;X=G}G=A+1|0;la=f[m>>2]|0;if(G>>>0>=la>>>0)break;e=f[o>>2]|0;z=S;A=G;B=T;C=V;D=U;E=X}if((T|0)==(la|0))ma=V;else{V=a+84|0;if(!(b[V>>0]|0)){X=f[a+72>>2]|0;E=f[a+68>>2]|0;D=E;if((X|0)==(E|0))na=S;else{C=X-E>>2;E=0;do{X=D+(E<<2)|0;f[X>>2]=f[U+(f[X>>2]<<2)>>2];E=E+1|0}while(E>>>0>>0);na=S}}else{b[V>>0]=0;V=a+68|0;S=a+72|0;C=f[S>>2]|0;E=f[V>>2]|0;U=C-E>>2;D=E;E=C;if(la>>>0<=U>>>0)if(la>>>0>>0?(C=D+(la<<2)|0,(C|0)!=(E|0)):0){f[S>>2]=E+(~((E+-4-C|0)>>>2)<<2);oa=la}else oa=la;else{Ch(V,la-U|0,1220);oa=f[m>>2]|0}U=f[k>>2]|0;if(!oa)na=U;else{k=f[a+68>>2]|0;a=0;do{f[k+(a<<2)>>2]=f[U+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);na=U}}f[m>>2]=T;ma=na}if(!ma)pa=T;else{na=f[p>>2]|0;if((na|0)!=(ma|0))f[p>>2]=na+(~((na+-4-ma|0)>>>2)<<2);Oq(ma);pa=T}}else pa=0;T=f[i+8>>2]|0;if(T|0){ma=T;do{T=ma;ma=f[ma>>2]|0;Oq(T)}while((ma|0)!=0)}ma=f[i>>2]|0;f[i>>2]=0;if(!ma){u=g;return pa|0}Oq(ma);u=g;return pa|0}function fc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=Oa,K=Oa,L=Oa,M=0,N=0,O=0,P=0;e=u;u=u+64|0;g=e+40|0;i=e+16|0;j=e;k=Id(a,c)|0;if(k|0){f[i>>2]=k;f[g>>2]=f[i>>2];lf(a,g)|0}f[j>>2]=0;k=j+4|0;f[k>>2]=0;f[j+8>>2]=0;Fi(j,4);l=f[j>>2]|0;m=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;b[l>>0]=m;b[l+1>>0]=m>>8;b[l+2>>0]=m>>16;b[l+3>>0]=m>>24;pj(i,c);c=i+12|0;f[c>>2]=0;m=i+16|0;f[m>>2]=0;f[i+20>>2]=0;l=f[k>>2]|0;d=f[j>>2]|0;o=l-d|0;if(!o){p=d;q=l;r=0}else{Fi(c,o);p=f[j>>2]|0;q=f[k>>2]|0;r=f[c>>2]|0}kh(r|0,p|0,q-p|0)|0;p=i+11|0;q=b[p>>0]|0;r=q<<24>>24<0;c=r?f[i>>2]|0:i;o=r?f[i+4>>2]|0:q&255;if(o>>>0>3){q=c;r=o;l=o;while(1){d=X(h[q>>0]|h[q+1>>0]<<8|h[q+2>>0]<<16|h[q+3>>0]<<24,1540483477)|0;r=(X(d>>>24^d,1540483477)|0)^(X(r,1540483477)|0);l=l+-4|0;if(l>>>0<=3)break;else q=q+4|0}q=o+-4|0;l=q&-4;s=q-l|0;t=c+(l+4)|0;v=r}else{s=o;t=c;v=o}switch(s|0){case 3:{w=h[t+2>>0]<<16^v;x=10;break}case 2:{w=v;x=10;break}case 1:{y=v;x=11;break}default:z=v}if((x|0)==10){y=h[t+1>>0]<<8^w;x=11}if((x|0)==11)z=X(y^h[t>>0],1540483477)|0;t=X(z>>>13^z,1540483477)|0;z=t>>>15^t;t=a+4|0;y=f[t>>2]|0;w=(y|0)==0;a:do if(!w){v=y+-1|0;s=(v&y|0)==0;if(!s)if(z>>>0>>0)A=z;else A=(z>>>0)%(y>>>0)|0;else A=z&v;r=f[(f[a>>2]|0)+(A<<2)>>2]|0;if((r|0)!=0?(l=f[r>>2]|0,(l|0)!=0):0){r=(o|0)==0;if(s){if(r){s=l;while(1){q=f[s+4>>2]|0;if(!((q|0)==(z|0)|(q&v|0)==(A|0))){B=A;x=52;break a}q=b[s+8+11>>0]|0;if(!((q<<24>>24<0?f[s+12>>2]|0:q&255)|0))break a;s=f[s>>2]|0;if(!s){B=A;x=52;break a}}}else C=l;while(1){s=f[C+4>>2]|0;if(!((s|0)==(z|0)|(s&v|0)==(A|0))){B=A;x=52;break a}s=C+8|0;q=b[s+11>>0]|0;d=q<<24>>24<0;D=q&255;do if(((d?f[C+12>>2]|0:D)|0)==(o|0)){q=f[s>>2]|0;if(d)if(!(Vk(q,c,o)|0))break a;else break;if((b[c>>0]|0)==(q&255)<<24>>24){q=s;E=D;F=c;do{E=E+-1|0;q=q+1|0;if(!E)break a;F=F+1|0}while((b[q>>0]|0)==(b[F>>0]|0))}}while(0);C=f[C>>2]|0;if(!C){B=A;x=52;break a}}}if(r){v=l;while(1){D=f[v+4>>2]|0;if((D|0)!=(z|0)){if(D>>>0>>0)G=D;else G=(D>>>0)%(y>>>0)|0;if((G|0)!=(A|0)){B=A;x=52;break a}}D=b[v+8+11>>0]|0;if(!((D<<24>>24<0?f[v+12>>2]|0:D&255)|0))break a;v=f[v>>2]|0;if(!v){B=A;x=52;break a}}}else H=l;while(1){v=f[H+4>>2]|0;if((v|0)!=(z|0)){if(v>>>0>>0)I=v;else I=(v>>>0)%(y>>>0)|0;if((I|0)!=(A|0)){B=A;x=52;break a}}v=H+8|0;r=b[v+11>>0]|0;D=r<<24>>24<0;s=r&255;do if(((D?f[H+12>>2]|0:s)|0)==(o|0)){r=f[v>>2]|0;if(D)if(!(Vk(r,c,o)|0))break a;else break;if((b[c>>0]|0)==(r&255)<<24>>24){r=v;d=s;F=c;do{d=d+-1|0;r=r+1|0;if(!d)break a;F=F+1|0}while((b[r>>0]|0)==(b[F>>0]|0))}}while(0);H=f[H>>2]|0;if(!H){B=A;x=52;break}}}else{B=A;x=52}}else{B=0;x=52}while(0);if((x|0)==52){oi(g,a,z,i);x=a+12|0;J=$(((f[x>>2]|0)+1|0)>>>0);K=$(y>>>0);L=$(n[a+16>>2]);do if(w|$(L*K)>>0<3|(y+-1&y|0)!=0)&1;H=~~$(W($(J/L)))>>>0;ei(a,A>>>0>>0?H:A);A=f[t>>2]|0;H=A+-1|0;if(!(H&A)){M=A;N=H&z;break}if(z>>>0>>0){M=A;N=z}else{M=A;N=(z>>>0)%(A>>>0)|0}}else{M=y;N=B}while(0);B=f[(f[a>>2]|0)+(N<<2)>>2]|0;if(!B){y=a+8|0;f[f[g>>2]>>2]=f[y>>2];f[y>>2]=f[g>>2];f[(f[a>>2]|0)+(N<<2)>>2]=y;y=f[g>>2]|0;N=f[y>>2]|0;if(!N)O=g;else{z=f[N+4>>2]|0;N=M+-1|0;if(N&M)if(z>>>0>>0)P=z;else P=(z>>>0)%(M>>>0)|0;else P=z&N;f[(f[a>>2]|0)+(P<<2)>>2]=y;O=g}}else{f[f[g>>2]>>2]=f[B>>2];f[B>>2]=f[g>>2];O=g}f[x>>2]=(f[x>>2]|0)+1;f[O>>2]=0}O=f[i+12>>2]|0;if(O|0){if((f[m>>2]|0)!=(O|0))f[m>>2]=O;Oq(O)}if((b[p>>0]|0)<0)Oq(f[i>>2]|0);i=f[j>>2]|0;if(!i){u=e;return}if((f[k>>2]|0)!=(i|0))f[k>>2]=i;Oq(i);u=e;return}function gc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=Oa,da=Oa,ea=Oa,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0;e=u;u=u+48|0;g=e+12|0;h=e+32|0;i=e;j=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[j>>2]=$(1.0);k=a+80|0;l=f[k>>2]|0;f[i>>2]=0;m=i+4|0;f[m>>2]=0;f[i+8>>2]=0;if(l){if(l>>>0>1073741823)aq(i);o=l<<2;p=ln(o)|0;f[i>>2]=p;q=p+(l<<2)|0;f[i+8>>2]=q;sj(p|0,0,o|0)|0;f[m>>2]=q;q=c+48|0;o=c+40|0;l=g+4|0;r=g+12|0;s=g+8|0;t=a+40|0;v=a+64|0;w=f[d>>2]|0;d=0;x=p;y=0;z=0;A=p;B=p;C=p;while(1){p=q;D=f[p>>2]|0;E=f[p+4>>2]|0;p=o;F=un(f[p>>2]|0,f[p+4>>2]|0,w+y|0,0)|0;p=Vn(F|0,I|0,D|0,E|0)|0;E=b[(f[f[c>>2]>>2]|0)+p>>0]|0;b[h>>0]=E;p=E&255^318;a:do if(d){D=d+-1|0;F=(D&d|0)==0;if(!F)if(p>>>0>>0)G=p;else G=(p>>>0)%(d>>>0)|0;else G=D&p;H=f[g>>2]|0;J=f[H+(G<<2)>>2]|0;b:do if(J|0?(K=f[J>>2]|0,K|0):0){c:do if(F){L=K;while(1){M=f[L+4>>2]|0;N=(M|0)==(p|0);if(!(N|(M&D|0)==(G|0)))break b;if(N?(b[L+8>>0]|0)==E<<24>>24:0){O=L;break c}L=f[L>>2]|0;if(!L)break b}}else{L=K;while(1){N=f[L+4>>2]|0;if((N|0)==(p|0)){if((b[L+8>>0]|0)==E<<24>>24){O=L;break c}}else{if(N>>>0>>0)P=N;else P=(N>>>0)%(d>>>0)|0;if((P|0)!=(G|0))break b}L=f[L>>2]|0;if(!L)break b}}while(0);f[C+(y<<2)>>2]=f[O+12>>2];Q=x;R=z;S=B;T=A;U=C;break a}while(0);if(!F)if(p>>>0>>0)V=p;else V=(p>>>0)%(d>>>0)|0;else V=D&p;J=f[H+(V<<2)>>2]|0;if(!J){X=V;Y=d;Z=0;_=40}else{if(F){K=J;while(1){K=f[K>>2]|0;if(!K){X=V;Y=d;Z=0;_=40;break a}L=f[K+4>>2]|0;if(!((L|0)==(p|0)|(L&D|0)==(V|0))){X=V;Y=d;Z=0;_=40;break a}if((b[K+8>>0]|0)==E<<24>>24){_=55;break a}}}else aa=J;while(1){aa=f[aa>>2]|0;if(!aa){X=V;Y=d;Z=0;_=40;break a}K=f[aa+4>>2]|0;if((K|0)!=(p|0)){if(K>>>0>>0)ba=K;else ba=(K>>>0)%(d>>>0)|0;if((ba|0)!=(V|0)){X=V;Y=d;Z=0;_=40;break a}}if((b[aa+8>>0]|0)==E<<24>>24){_=55;break}}}}else{X=0;Y=0;Z=1;_=40}while(0);if((_|0)==40){_=0;J=ln(16)|0;b[J+8>>0]=E;f[J+12>>2]=z;f[J+4>>2]=p;f[J>>2]=0;ca=$(((f[r>>2]|0)+1|0)>>>0);da=$(Y>>>0);ea=$(n[j>>2]);do if(Z|$(ea*da)>>0<3|(Y+-1&Y|0)!=0)&1;D=~~$(W($(ca/ea)))>>>0;ai(g,K>>>0>>0?D:K);K=f[l>>2]|0;D=K+-1|0;if(!(D&K)){fa=K;ga=D&p;break}if(p>>>0>>0){fa=K;ga=p}else{fa=K;ga=(p>>>0)%(K>>>0)|0}}else{fa=Y;ga=X}while(0);p=(f[g>>2]|0)+(ga<<2)|0;E=f[p>>2]|0;if(!E){f[J>>2]=f[s>>2];f[s>>2]=J;f[p>>2]=s;p=f[J>>2]|0;if(p|0){K=f[p+4>>2]|0;p=fa+-1|0;if(p&fa)if(K>>>0>>0)ha=K;else ha=(K>>>0)%(fa>>>0)|0;else ha=K&p;ia=(f[g>>2]|0)+(ha<<2)|0;_=53}}else{f[J>>2]=f[E>>2];ia=E;_=53}if((_|0)==53){_=0;f[ia>>2]=J}f[r>>2]=(f[r>>2]|0)+1;_=55}if((_|0)==55){_=0;E=t;p=f[E>>2]|0;K=un(p|0,f[E+4>>2]|0,z|0,0)|0;kh((f[f[v>>2]>>2]|0)+K|0,h|0,p|0)|0;p=f[i>>2]|0;f[p+(y<<2)>>2]=z;Q=p;R=z+1|0;S=p;T=p;U=p}p=y+1|0;ja=f[k>>2]|0;if(p>>>0>=ja>>>0)break;d=f[l>>2]|0;x=Q;y=p;z=R;A=T;B=S;C=U}if((R|0)==(ja|0))ka=T;else{T=a+84|0;if(!(b[T>>0]|0)){U=f[a+72>>2]|0;C=f[a+68>>2]|0;B=C;if((U|0)==(C|0))la=Q;else{A=U-C>>2;C=0;do{U=B+(C<<2)|0;f[U>>2]=f[S+(f[U>>2]<<2)>>2];C=C+1|0}while(C>>>0>>0);la=Q}}else{b[T>>0]=0;T=a+68|0;Q=a+72|0;A=f[Q>>2]|0;C=f[T>>2]|0;S=A-C>>2;B=C;C=A;if(ja>>>0<=S>>>0)if(ja>>>0>>0?(A=B+(ja<<2)|0,(A|0)!=(C|0)):0){f[Q>>2]=C+(~((C+-4-A|0)>>>2)<<2);ma=ja}else ma=ja;else{Ch(T,ja-S|0,1220);ma=f[k>>2]|0}S=f[i>>2]|0;if(!ma)la=S;else{i=f[a+68>>2]|0;a=0;do{f[i+(a<<2)>>2]=f[S+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);la=S}}f[k>>2]=R;ka=la}if(!ka)na=R;else{la=f[m>>2]|0;if((la|0)!=(ka|0))f[m>>2]=la+(~((la+-4-ka|0)>>>2)<<2);Oq(ka);na=R}}else na=0;R=f[g+8>>2]|0;if(R|0){ka=R;do{R=ka;ka=f[ka>>2]|0;Oq(R)}while((ka|0)!=0)}ka=f[g>>2]|0;f[g>>2]=0;if(!ka){u=e;return na|0}Oq(ka);u=e;return na|0}function hc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=Oa,ea=Oa,fa=Oa,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0;e=u;u=u+48|0;g=e+16|0;i=e+12|0;j=e;k=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[k>>2]=$(1.0);l=a+80|0;m=f[l>>2]|0;f[j>>2]=0;o=j+4|0;f[o>>2]=0;f[j+8>>2]=0;if(m){if(m>>>0>1073741823)aq(j);p=m<<2;q=ln(p)|0;f[j>>2]=q;r=q+(m<<2)|0;f[j+8>>2]=r;sj(q|0,0,p|0)|0;f[o>>2]=r;r=c+48|0;p=c+40|0;m=g+4|0;s=g+12|0;t=g+8|0;v=a+40|0;w=a+64|0;x=f[d>>2]|0;d=0;y=q;z=0;A=0;B=q;C=q;D=q;while(1){q=r;E=f[q>>2]|0;F=f[q+4>>2]|0;q=p;G=un(f[q>>2]|0,f[q+4>>2]|0,x+z|0,0)|0;q=Vn(G|0,I|0,E|0,F|0)|0;F=(f[f[c>>2]>>2]|0)+q|0;q=h[F>>0]|h[F+1>>0]<<8|h[F+2>>0]<<16|h[F+3>>0]<<24;f[i>>2]=q;F=q^318;a:do if(d){E=d+-1|0;G=(E&d|0)==0;if(!G)if(F>>>0>>0)H=F;else H=(F>>>0)%(d>>>0)|0;else H=E&F;J=f[g>>2]|0;K=f[J+(H<<2)>>2]|0;b:do if(K|0?(L=f[K>>2]|0,L|0):0){c:do if(G){M=L;while(1){N=f[M+4>>2]|0;O=(N|0)==(F|0);if(!(O|(N&E|0)==(H|0)))break b;if(O?(f[M+8>>2]|0)==(q|0):0){P=M;break c}M=f[M>>2]|0;if(!M)break b}}else{M=L;while(1){O=f[M+4>>2]|0;if((O|0)==(F|0)){if((f[M+8>>2]|0)==(q|0)){P=M;break c}}else{if(O>>>0>>0)Q=O;else Q=(O>>>0)%(d>>>0)|0;if((Q|0)!=(H|0))break b}M=f[M>>2]|0;if(!M)break b}}while(0);f[D+(z<<2)>>2]=f[P+12>>2];R=y;S=A;T=C;U=B;V=D;break a}while(0);if(!G)if(F>>>0>>0)X=F;else X=(F>>>0)%(d>>>0)|0;else X=E&F;K=f[J+(X<<2)>>2]|0;if(!K){Y=X;Z=d;_=0;aa=40}else{if(G){L=K;while(1){L=f[L>>2]|0;if(!L){Y=X;Z=d;_=0;aa=40;break a}M=f[L+4>>2]|0;if(!((M|0)==(F|0)|(M&E|0)==(X|0))){Y=X;Z=d;_=0;aa=40;break a}if((f[L+8>>2]|0)==(q|0)){aa=55;break a}}}else ba=K;while(1){ba=f[ba>>2]|0;if(!ba){Y=X;Z=d;_=0;aa=40;break a}L=f[ba+4>>2]|0;if((L|0)!=(F|0)){if(L>>>0>>0)ca=L;else ca=(L>>>0)%(d>>>0)|0;if((ca|0)!=(X|0)){Y=X;Z=d;_=0;aa=40;break a}}if((f[ba+8>>2]|0)==(q|0)){aa=55;break}}}}else{Y=0;Z=0;_=1;aa=40}while(0);if((aa|0)==40){aa=0;K=ln(16)|0;f[K+8>>2]=q;f[K+12>>2]=A;f[K+4>>2]=F;f[K>>2]=0;da=$(((f[s>>2]|0)+1|0)>>>0);ea=$(Z>>>0);fa=$(n[k>>2]);do if(_|$(fa*ea)>>0<3|(Z+-1&Z|0)!=0)&1;E=~~$(W($(da/fa)))>>>0;Hi(g,L>>>0>>0?E:L);L=f[m>>2]|0;E=L+-1|0;if(!(E&L)){ga=L;ha=E&F;break}if(F>>>0>>0){ga=L;ha=F}else{ga=L;ha=(F>>>0)%(L>>>0)|0}}else{ga=Z;ha=Y}while(0);F=(f[g>>2]|0)+(ha<<2)|0;q=f[F>>2]|0;if(!q){f[K>>2]=f[t>>2];f[t>>2]=K;f[F>>2]=t;F=f[K>>2]|0;if(F|0){L=f[F+4>>2]|0;F=ga+-1|0;if(F&ga)if(L>>>0>>0)ia=L;else ia=(L>>>0)%(ga>>>0)|0;else ia=L&F;ja=(f[g>>2]|0)+(ia<<2)|0;aa=53}}else{f[K>>2]=f[q>>2];ja=q;aa=53}if((aa|0)==53){aa=0;f[ja>>2]=K}f[s>>2]=(f[s>>2]|0)+1;aa=55}if((aa|0)==55){aa=0;q=v;F=f[q>>2]|0;L=un(F|0,f[q+4>>2]|0,A|0,0)|0;kh((f[f[w>>2]>>2]|0)+L|0,i|0,F|0)|0;F=f[j>>2]|0;f[F+(z<<2)>>2]=A;R=F;S=A+1|0;T=F;U=F;V=F}F=z+1|0;ka=f[l>>2]|0;if(F>>>0>=ka>>>0)break;d=f[m>>2]|0;y=R;z=F;A=S;B=U;C=T;D=V}if((S|0)==(ka|0))la=U;else{U=a+84|0;if(!(b[U>>0]|0)){V=f[a+72>>2]|0;D=f[a+68>>2]|0;C=D;if((V|0)==(D|0))ma=R;else{B=V-D>>2;D=0;do{V=C+(D<<2)|0;f[V>>2]=f[T+(f[V>>2]<<2)>>2];D=D+1|0}while(D>>>0>>0);ma=R}}else{b[U>>0]=0;U=a+68|0;R=a+72|0;B=f[R>>2]|0;D=f[U>>2]|0;T=B-D>>2;C=D;D=B;if(ka>>>0<=T>>>0)if(ka>>>0>>0?(B=C+(ka<<2)|0,(B|0)!=(D|0)):0){f[R>>2]=D+(~((D+-4-B|0)>>>2)<<2);na=ka}else na=ka;else{Ch(U,ka-T|0,1220);na=f[l>>2]|0}T=f[j>>2]|0;if(!na)ma=T;else{j=f[a+68>>2]|0;a=0;do{f[j+(a<<2)>>2]=f[T+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);ma=T}}f[l>>2]=S;la=ma}if(!la)oa=S;else{ma=f[o>>2]|0;if((ma|0)!=(la|0))f[o>>2]=ma+(~((ma+-4-la|0)>>>2)<<2);Oq(la);oa=S}}else oa=0;S=f[g+8>>2]|0;if(S|0){la=S;do{S=la;la=f[la>>2]|0;Oq(S)}while((la|0)!=0)}la=f[g>>2]|0;f[g>>2]=0;if(!la){u=e;return oa|0}Oq(la);u=e;return oa|0}function ic(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0,na=0,oa=0,pa=0,qa=0,ra=0,sa=0,ta=0;e=u;u=u+96|0;g=e+92|0;h=e+88|0;i=e+72|0;j=e+48|0;k=e+24|0;l=e;m=a+16|0;n=f[m>>2]|0;o=f[c>>2]|0;f[i>>2]=n;f[i+4>>2]=o;c=i+8|0;f[c>>2]=o;b[i+12>>0]=1;p=f[(f[n+28>>2]|0)+(o<<2)>>2]|0;n=a+20|0;q=f[n>>2]|0;r=f[q>>2]|0;if((f[q+4>>2]|0)-r>>2>>>0<=p>>>0)aq(q);q=a+8|0;s=f[(f[q>>2]|0)+(f[r+(p<<2)>>2]<<2)>>2]|0;p=a+4|0;r=f[p>>2]|0;if(!(b[r+84>>0]|0))t=f[(f[r+68>>2]|0)+(s<<2)>>2]|0;else t=s;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;f[j+12>>2]=0;f[j+16>>2]=0;f[j+20>>2]=0;f[h>>2]=t;t=b[r+24>>0]|0;f[g>>2]=f[h>>2];vb(r,g,t,j)|0;t=a+28|0;a=(f[t>>2]|0)==0;a:do if((o|0)!=-1){r=k+8|0;s=j+8|0;v=k+16|0;w=j+16|0;x=l+8|0;y=l+16|0;z=o;A=o;B=0;C=0;D=0;E=0;F=0;G=0;H=a;J=o;while(1){do if(H){K=J+1|0;if((J|0)!=-1){L=((K>>>0)%3|0|0)==0?J+-2|0:K;if((z|0)!=-1)if(!((z>>>0)%3|0)){M=z;N=z+2|0;O=L;P=z;break}else{M=z;N=z+-1|0;O=L;P=z;break}else{M=-1;N=-1;O=L;P=-1}}else{M=z;N=-1;O=-1;P=-1}}else{L=A+1|0;K=((L>>>0)%3|0|0)==0?A+-2|0:L;if(!((A>>>0)%3|0)){M=z;N=A+2|0;O=K;P=J;break}else{M=z;N=A+-1|0;O=K;P=J;break}}while(0);K=f[(f[(f[m>>2]|0)+28>>2]|0)+(O<<2)>>2]|0;Q=f[n>>2]|0;L=f[Q>>2]|0;if((f[Q+4>>2]|0)-L>>2>>>0<=K>>>0){R=17;break}S=f[(f[q>>2]|0)+(f[L+(K<<2)>>2]<<2)>>2]|0;K=f[p>>2]|0;if(!(b[K+84>>0]|0))T=f[(f[K+68>>2]|0)+(S<<2)>>2]|0;else T=S;f[k>>2]=0;f[k+4>>2]=0;f[k+8>>2]=0;f[k+12>>2]=0;f[k+16>>2]=0;f[k+20>>2]=0;f[h>>2]=T;S=b[K+24>>0]|0;f[g>>2]=f[h>>2];vb(K,g,S,k)|0;S=f[(f[(f[m>>2]|0)+28>>2]|0)+(N<<2)>>2]|0;U=f[n>>2]|0;K=f[U>>2]|0;if((f[U+4>>2]|0)-K>>2>>>0<=S>>>0){R=21;break}L=f[(f[q>>2]|0)+(f[K+(S<<2)>>2]<<2)>>2]|0;S=f[p>>2]|0;if(!(b[S+84>>0]|0))V=f[(f[S+68>>2]|0)+(L<<2)>>2]|0;else V=L;f[l>>2]=0;f[l+4>>2]=0;f[l+8>>2]=0;f[l+12>>2]=0;f[l+16>>2]=0;f[l+20>>2]=0;f[h>>2]=V;L=b[S+24>>0]|0;f[g>>2]=f[h>>2];vb(S,g,L,l)|0;L=k;S=j;K=f[S>>2]|0;W=f[S+4>>2]|0;S=Xn(f[L>>2]|0,f[L+4>>2]|0,K|0,W|0)|0;L=I;X=r;Y=s;Z=f[Y>>2]|0;_=f[Y+4>>2]|0;Y=Xn(f[X>>2]|0,f[X+4>>2]|0,Z|0,_|0)|0;X=I;$=v;aa=w;ba=f[aa>>2]|0;ca=f[aa+4>>2]|0;aa=Xn(f[$>>2]|0,f[$+4>>2]|0,ba|0,ca|0)|0;$=I;da=l;ea=Xn(f[da>>2]|0,f[da+4>>2]|0,K|0,W|0)|0;W=I;K=x;da=Xn(f[K>>2]|0,f[K+4>>2]|0,Z|0,_|0)|0;_=I;Z=y;K=Xn(f[Z>>2]|0,f[Z+4>>2]|0,ba|0,ca|0)|0;ca=I;ba=un(K|0,ca|0,Y|0,X|0)|0;Z=I;fa=un(da|0,_|0,aa|0,$|0)|0;ga=I;ha=un(ea|0,W|0,aa|0,$|0)|0;$=I;aa=un(K|0,ca|0,S|0,L|0)|0;ca=I;K=un(da|0,_|0,S|0,L|0)|0;L=I;S=un(ea|0,W|0,Y|0,X|0)|0;X=I;Y=Xn(B|0,C|0,fa|0,ga|0)|0;ga=Vn(Y|0,I|0,ba|0,Z|0)|0;Z=I;ba=Vn(ha|0,$|0,D|0,E|0)|0;$=Xn(ba|0,I|0,aa|0,ca|0)|0;ca=I;aa=Xn(F|0,G|0,S|0,X|0)|0;X=Vn(aa|0,I|0,K|0,L|0)|0;L=I;Pg(i);A=f[c>>2]|0;K=(f[t>>2]|0)==0;if((A|0)==-1){ia=K;ja=Z;ka=ga;la=ca;ma=$;na=L;oa=X;break a}else{z=M;B=ga;C=Z;D=$;E=ca;F=X;G=L;H=K;J=P}}if((R|0)==17)aq(Q);else if((R|0)==21)aq(U)}else{ia=a;ja=0;ka=0;la=0;ma=0;na=0;oa=0}while(0);a=(ja|0)>-1|(ja|0)==-1&ka>>>0>4294967295;U=Xn(0,0,ka|0,ja|0)|0;R=a?ja:I;Q=(la|0)>-1|(la|0)==-1&ma>>>0>4294967295;P=Xn(0,0,ma|0,la|0)|0;M=Q?la:I;t=(na|0)>-1|(na|0)==-1&oa>>>0>4294967295;c=Xn(0,0,oa|0,na|0)|0;i=Vn((Q?ma:P)|0,M|0,(t?oa:c)|0,(t?na:I)|0)|0;t=Vn(i|0,I|0,(a?ka:U)|0,R|0)|0;R=I;if(ia){if((t|0)<=536870912){pa=ka;qa=ma;ra=oa;f[d>>2]=pa;sa=d+4|0;f[sa>>2]=qa;ta=d+8|0;f[ta>>2]=ra;u=e;return}ia=Yn(t|0,R|0,29)|0;U=ia&7;ia=Ik(ka|0,ja|0,U|0,0)|0;a=Ik(ma|0,la|0,U|0,0)|0;i=Ik(oa|0,na|0,U|0,0)|0;pa=ia;qa=a;ra=i;f[d>>2]=pa;sa=d+4|0;f[sa>>2]=qa;ta=d+8|0;f[ta>>2]=ra;u=e;return}else{if(!((R|0)>0|(R|0)==0&t>>>0>536870912)){pa=ka;qa=ma;ra=oa;f[d>>2]=pa;sa=d+4|0;f[sa>>2]=qa;ta=d+8|0;f[ta>>2]=ra;u=e;return}i=Yn(t|0,R|0,29)|0;R=I;t=Ik(ka|0,ja|0,i|0,R|0)|0;ja=Ik(ma|0,la|0,i|0,R|0)|0;la=Ik(oa|0,na|0,i|0,R|0)|0;pa=t;qa=ja;ra=la;f[d>>2]=pa;sa=d+4|0;f[sa>>2]=qa;ta=d+8|0;f[ta>>2]=ra;u=e;return}}function jc(a,c,e){a=a|0;c=c|0;e=e|0;var g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=Oa,V=Oa,X=Oa,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0;g=u;u=u+48|0;i=g+28|0;j=g+8|0;k=g;l=g+16|0;m=i+16|0;f[i>>2]=0;f[i+4>>2]=0;f[i+8>>2]=0;f[i+12>>2]=0;n[m>>2]=$(1.0);o=a+80|0;p=f[o>>2]|0;f[l>>2]=0;q=l+4|0;f[q>>2]=0;f[l+8>>2]=0;if(p){if(p>>>0>1073741823)aq(l);r=p<<2;s=ln(r)|0;f[l>>2]=s;t=s+(p<<2)|0;f[l+8>>2]=t;sj(s|0,0,r|0)|0;f[q>>2]=t;t=f[e>>2]|0;e=c+48|0;r=c+40|0;s=i+4|0;p=i+12|0;v=i+8|0;w=a+40|0;x=a+64|0;y=0;z=0;while(1){A=e;B=f[A>>2]|0;C=f[A+4>>2]|0;A=r;D=un(f[A>>2]|0,f[A+4>>2]|0,t+y|0,0)|0;A=Vn(D|0,I|0,B|0,C|0)|0;C=(f[f[c>>2]>>2]|0)+A|0;A=C;B=h[A>>0]|h[A+1>>0]<<8|h[A+2>>0]<<16|h[A+3>>0]<<24;A=C+4|0;C=h[A>>0]|h[A+1>>0]<<8|h[A+2>>0]<<16|h[A+3>>0]<<24;A=j;f[A>>2]=B;f[A+4>>2]=C;A=k;f[A>>2]=B;f[A+4>>2]=C;C=yf(i,k)|0;if(!C){A=k;B=f[A>>2]|0;D=f[A+4>>2]|0;A=B&65535;E=Yn(B|0,D|0,16)|0;F=E&65535;G=D&65535;H=Yn(B|0,D|0,48)|0;J=H&65535;K=((((A^318)&65535)+239^E&65535)+239^D&65535)+239^H&65535;H=f[s>>2]|0;E=(H|0)==0;a:do if(!E){L=H+-1|0;M=(L&H|0)==0;if(!M)if(K>>>0>>0)N=K;else N=(K>>>0)%(H>>>0)|0;else N=K&L;O=f[(f[i>>2]|0)+(N<<2)>>2]|0;if((O|0)!=0?(P=f[O>>2]|0,(P|0)!=0):0){if(M){M=P;while(1){O=f[M+4>>2]|0;if(!((O|0)==(K|0)|(O&L|0)==(N|0))){Q=N;R=31;break a}O=M+8|0;if((((d[O>>1]|0)==A<<16>>16?(d[O+2>>1]|0)==F<<16>>16:0)?(d[M+12>>1]|0)==G<<16>>16:0)?(d[O+6>>1]|0)==J<<16>>16:0)break a;M=f[M>>2]|0;if(!M){Q=N;R=31;break a}}}else S=P;while(1){M=f[S+4>>2]|0;if((M|0)!=(K|0)){if(M>>>0>>0)T=M;else T=(M>>>0)%(H>>>0)|0;if((T|0)!=(N|0)){Q=N;R=31;break a}}M=S+8|0;if((((d[M>>1]|0)==A<<16>>16?(d[M+2>>1]|0)==F<<16>>16:0)?(d[S+12>>1]|0)==G<<16>>16:0)?(d[M+6>>1]|0)==J<<16>>16:0)break a;S=f[S>>2]|0;if(!S){Q=N;R=31;break}}}else{Q=N;R=31}}else{Q=0;R=31}while(0);if((R|0)==31){R=0;J=ln(20)|0;G=J+8|0;F=G;d[F>>1]=B;d[F+2>>1]=B>>>16;F=G+4|0;d[F>>1]=D;d[F+2>>1]=D>>>16;f[J+16>>2]=z;f[J+4>>2]=K;f[J>>2]=0;U=$(((f[p>>2]|0)+1|0)>>>0);V=$(H>>>0);X=$(n[m>>2]);do if(E|$(X*V)>>0<3|(H+-1&H|0)!=0)&1;G=~~$(W($(U/X)))>>>0;Sh(i,F>>>0>>0?G:F);F=f[s>>2]|0;G=F+-1|0;if(!(G&F)){Y=F;Z=G&K;break}if(K>>>0>>0){Y=F;Z=K}else{Y=F;Z=(K>>>0)%(F>>>0)|0}}else{Y=H;Z=Q}while(0);H=(f[i>>2]|0)+(Z<<2)|0;K=f[H>>2]|0;if(!K){f[J>>2]=f[v>>2];f[v>>2]=J;f[H>>2]=v;H=f[J>>2]|0;if(H|0){E=f[H+4>>2]|0;H=Y+-1|0;if(H&Y)if(E>>>0>>0)_=E;else _=(E>>>0)%(Y>>>0)|0;else _=E&H;aa=(f[i>>2]|0)+(_<<2)|0;R=44}}else{f[J>>2]=f[K>>2];aa=K;R=44}if((R|0)==44){R=0;f[aa>>2]=J}f[p>>2]=(f[p>>2]|0)+1}K=w;H=f[K>>2]|0;E=un(H|0,f[K+4>>2]|0,z|0,0)|0;kh((f[f[x>>2]>>2]|0)+E|0,j|0,H|0)|0;H=f[l>>2]|0;f[H+(y<<2)>>2]=z;ba=z+1|0;ca=H}else{H=f[l>>2]|0;f[H+(y<<2)>>2]=f[C+16>>2];ba=z;ca=H}y=y+1|0;da=f[o>>2]|0;if(y>>>0>=da>>>0)break;else z=ba}if((ba|0)==(da|0))ea=ca;else{z=a+84|0;if(!(b[z>>0]|0)){y=f[a+72>>2]|0;j=f[a+68>>2]|0;x=j;if((y|0)==(j|0))fa=ca;else{w=y-j>>2;j=0;do{y=x+(j<<2)|0;f[y>>2]=f[ca+(f[y>>2]<<2)>>2];j=j+1|0}while(j>>>0>>0);fa=ca}}else{b[z>>0]=0;z=a+68|0;ca=a+72|0;w=f[ca>>2]|0;j=f[z>>2]|0;x=w-j>>2;y=j;j=w;if(da>>>0<=x>>>0)if(da>>>0>>0?(w=y+(da<<2)|0,(w|0)!=(j|0)):0){f[ca>>2]=j+(~((j+-4-w|0)>>>2)<<2);ga=da}else ga=da;else{Ch(z,da-x|0,1220);ga=f[o>>2]|0}x=f[l>>2]|0;if(!ga)fa=x;else{l=f[a+68>>2]|0;a=0;do{f[l+(a<<2)>>2]=f[x+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);fa=x}}f[o>>2]=ba;ea=fa}if(!ea)ha=ba;else{fa=f[q>>2]|0;if((fa|0)!=(ea|0))f[q>>2]=fa+(~((fa+-4-ea|0)>>>2)<<2);Oq(ea);ha=ba}}else ha=0;ba=f[i+8>>2]|0;if(ba|0){ea=ba;do{ba=ea;ea=f[ea>>2]|0;Oq(ba)}while((ea|0)!=0)}ea=f[i>>2]|0;f[i>>2]=0;if(!ea){u=g;return ha|0}Oq(ea);u=g;return ha|0}function kc(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0;c=u;u=u+16|0;d=c+8|0;e=c;g=c+4|0;h=a+16|0;i=f[h>>2]|0;j=a+20|0;k=f[j>>2]|0;if((k|0)==(i|0))l=i;else{m=k+(~((k+-4-i|0)>>>2)<<2)|0;f[j>>2]=m;l=m}m=a+24|0;if((l|0)==(f[m>>2]|0)){Ri(h,b);n=f[h>>2]|0;o=f[j>>2]|0}else{f[l>>2]=f[b>>2];k=l+4|0;f[j>>2]=k;n=i;o=k}k=f[a+8>>2]|0;i=(f[k+100>>2]|0)-(f[k+96>>2]|0)|0;k=(i|0)/12|0;if((n|0)==(o|0)){u=c;return 1}n=a+28|0;l=(i|0)>0;i=a+164|0;p=a+12|0;q=a+76|0;r=a+80|0;s=a+72|0;t=a+152|0;v=a+84|0;w=a+272|0;x=a+276|0;y=a+268|0;z=a+168|0;A=a+140|0;B=a+120|0;C=o;do{o=f[C+-4>>2]|0;f[b>>2]=o;a:do if((o|0)!=-1?(D=(o>>>0)/3|0,E=f[n>>2]|0,(f[E+(D>>>5<<2)>>2]&1<<(D&31)|0)==0):0){if(l){D=0;F=E;b:while(1){E=D+1|0;f[i>>2]=(f[i>>2]|0)+1;G=f[b>>2]|0;H=(G|0)==-1?-1:(G>>>0)/3|0;G=F+(H>>>5<<2)|0;f[G>>2]=1<<(H&31)|f[G>>2];G=f[q>>2]|0;if((G|0)==(f[r>>2]|0))Ri(s,b);else{f[G>>2]=f[b>>2];f[q>>2]=G+4}G=f[b>>2]|0;if((G|0)==-1)I=-1;else I=f[(f[f[p>>2]>>2]|0)+(G<<2)>>2]|0;J=(f[(f[t>>2]|0)+(I<<2)>>2]|0)!=-1;K=(f[v>>2]|0)+(I>>>5<<2)|0;L=1<<(I&31);M=f[K>>2]|0;do if(!(M&L)){f[K>>2]=M|L;if(J){N=f[b>>2]|0;O=30;break}f[d>>2]=0;P=f[w>>2]|0;if((P|0)==(f[x>>2]|0))Ri(y,d);else{f[P>>2]=0;f[w>>2]=P+4}P=f[b>>2]|0;Q=P+1|0;if((P|0)!=-1?(R=((Q>>>0)%3|0|0)==0?P+-2|0:Q,(R|0)!=-1):0)S=f[(f[(f[p>>2]|0)+12>>2]|0)+(R<<2)>>2]|0;else S=-1;f[b>>2]=S}else{N=G;O=30}while(0);if((O|0)==30){O=0;G=N+1|0;if((N|0)==-1){O=35;break}L=((G>>>0)%3|0|0)==0?N+-2|0:G;if((L|0)==-1)T=-1;else T=f[(f[(f[p>>2]|0)+12>>2]|0)+(L<<2)>>2]|0;f[e>>2]=T;L=(((N>>>0)%3|0|0)==0?2:-1)+N|0;if((L|0)==-1)U=-1;else U=f[(f[(f[p>>2]|0)+12>>2]|0)+(L<<2)>>2]|0;L=(T|0)==-1;M=L?-1:(T>>>0)/3|0;V=(U|0)==-1;W=V?-1:(U>>>0)/3|0;K=((G>>>0)%3|0|0)==0?N+-2|0:G;if(((K|0)!=-1?(G=f[(f[p>>2]|0)+12>>2]|0,R=f[G+(K<<2)>>2]|0,(R|0)!=-1):0)?(K=(R>>>0)/3|0,R=f[n>>2]|0,(f[R+(K>>>5<<2)>>2]&1<<(K&31)|0)==0):0){K=(((N>>>0)%3|0|0)==0?2:-1)+N|0;do if((K|0)!=-1){Q=f[G+(K<<2)>>2]|0;if((Q|0)==-1)break;P=(Q>>>0)/3|0;if(!(f[R+(P>>>5<<2)>>2]&1<<(P&31))){O=63;break b}}while(0);if(!V)xf(a,f[i>>2]|0,H,0,W);f[d>>2]=3;R=f[w>>2]|0;if((R|0)==(f[x>>2]|0))Ri(y,d);else{f[R>>2]=3;f[w>>2]=R+4}X=f[e>>2]|0}else{if(!L){xf(a,f[i>>2]|0,H,1,M);R=f[b>>2]|0;if((R|0)==-1){O=44;break}else Y=R}else Y=N;R=(((Y>>>0)%3|0|0)==0?2:-1)+Y|0;if((R|0)==-1){O=44;break}K=f[(f[(f[p>>2]|0)+12>>2]|0)+(R<<2)>>2]|0;if((K|0)==-1){O=44;break}R=(K>>>0)/3|0;if(f[(f[n>>2]|0)+(R>>>5<<2)>>2]&1<<(R&31)|0){O=44;break}f[d>>2]=5;R=f[w>>2]|0;if((R|0)==(f[x>>2]|0))Ri(y,d);else{f[R>>2]=5;f[w>>2]=R+4}X=U}f[b>>2]=X}if((E|0)>=(k|0))break a;D=E;F=f[n>>2]|0}do if((O|0)==35){O=0;f[e>>2]=-1;O=46}else if((O|0)==44){O=0;if(V)O=46;else{xf(a,f[i>>2]|0,H,0,W);O=46}}else if((O|0)==63){O=0;f[d>>2]=1;F=f[w>>2]|0;if((F|0)==(f[x>>2]|0))Ri(y,d);else{f[F>>2]=1;f[w>>2]=F+4}f[z>>2]=(f[z>>2]|0)+1;if(J?(F=f[(f[t>>2]|0)+(I<<2)>>2]|0,(1<<(F&31)&f[(f[A>>2]|0)+(F>>>5<<2)>>2]|0)==0):0){f[g>>2]=f[b>>2];f[d>>2]=f[g>>2];Pe(a,d,0)|0}F=f[i>>2]|0;f[d>>2]=H;D=je(B,d)|0;f[D>>2]=F;F=f[j>>2]|0;f[F+-4>>2]=U;if((F|0)==(f[m>>2]|0)){Ri(h,e);break}else{f[F>>2]=f[e>>2];f[j>>2]=F+4;break}}while(0);if((O|0)==46){O=0;f[d>>2]=7;F=f[w>>2]|0;if((F|0)==(f[x>>2]|0))Ri(y,d);else{f[F>>2]=7;f[w>>2]=F+4}f[j>>2]=(f[j>>2]|0)+-4}}}else O=11;while(0);if((O|0)==11){O=0;f[j>>2]=C+-4}C=f[j>>2]|0}while((f[h>>2]|0)!=(C|0));u=c;return 1}function lc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=Oa,V=Oa,X=Oa,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0;e=u;u=u+48|0;g=e+20|0;i=e+16|0;j=e+12|0;k=e;l=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[l>>2]=$(1.0);m=a+80|0;o=f[m>>2]|0;f[k>>2]=0;p=k+4|0;f[p>>2]=0;f[k+8>>2]=0;if(o){if(o>>>0>1073741823)aq(k);q=o<<2;r=ln(q)|0;f[k>>2]=r;s=r+(o<<2)|0;f[k+8>>2]=s;sj(r|0,0,q|0)|0;f[p>>2]=s;s=f[d>>2]|0;d=c+48|0;q=c+40|0;r=g+4|0;o=g+12|0;t=g+8|0;v=a+40|0;w=a+64|0;x=0;y=0;while(1){z=d;A=f[z>>2]|0;B=f[z+4>>2]|0;z=q;C=un(f[z>>2]|0,f[z+4>>2]|0,s+x|0,0)|0;z=Vn(C|0,I|0,A|0,B|0)|0;B=(f[f[c>>2]>>2]|0)+z|0;z=h[B>>0]|h[B+1>>0]<<8|h[B+2>>0]<<16|h[B+3>>0]<<24;f[i>>2]=z;f[j>>2]=z;z=Ef(g,j)|0;if(!z){B=f[j>>2]|0;A=B&255;C=B>>>8;D=C&255;E=B>>>16;F=E&255;G=B>>>24;H=G&255;J=C&255;C=E&255;E=(((B&255^318)+239^J)+239^C)+239^G;G=f[r>>2]|0;K=(G|0)==0;a:do if(!K){L=G+-1|0;M=(L&G|0)==0;if(!M)if(E>>>0>>0)N=E;else N=(E>>>0)%(G>>>0)|0;else N=E&L;O=f[(f[g>>2]|0)+(N<<2)>>2]|0;if((O|0)!=0?(P=f[O>>2]|0,(P|0)!=0):0){if(M){M=P;while(1){O=f[M+4>>2]|0;if(!((O|0)==(E|0)|(O&L|0)==(N|0))){Q=N;R=31;break a}O=M+8|0;if((((b[O>>0]|0)==A<<24>>24?(b[O+1>>0]|0)==D<<24>>24:0)?(b[O+2>>0]|0)==F<<24>>24:0)?(b[O+3>>0]|0)==H<<24>>24:0)break a;M=f[M>>2]|0;if(!M){Q=N;R=31;break a}}}else S=P;while(1){M=f[S+4>>2]|0;if((M|0)!=(E|0)){if(M>>>0>>0)T=M;else T=(M>>>0)%(G>>>0)|0;if((T|0)!=(N|0)){Q=N;R=31;break a}}M=S+8|0;if((((b[M>>0]|0)==A<<24>>24?(b[M+1>>0]|0)==D<<24>>24:0)?(b[M+2>>0]|0)==F<<24>>24:0)?(b[M+3>>0]|0)==H<<24>>24:0)break a;S=f[S>>2]|0;if(!S){Q=N;R=31;break}}}else{Q=N;R=31}}else{Q=0;R=31}while(0);if((R|0)==31){R=0;H=ln(16)|0;F=H+8|0;D=B&-16776961|C<<16|J<<8;b[F>>0]=D;b[F+1>>0]=D>>8;b[F+2>>0]=D>>16;b[F+3>>0]=D>>24;f[H+12>>2]=y;f[H+4>>2]=E;f[H>>2]=0;U=$(((f[o>>2]|0)+1|0)>>>0);V=$(G>>>0);X=$(n[l>>2]);do if(K|$(X*V)>>0<3|(G+-1&G|0)!=0)&1;F=~~$(W($(U/X)))>>>0;Zh(g,D>>>0>>0?F:D);D=f[r>>2]|0;F=D+-1|0;if(!(F&D)){Y=D;Z=F&E;break}if(E>>>0>>0){Y=D;Z=E}else{Y=D;Z=(E>>>0)%(D>>>0)|0}}else{Y=G;Z=Q}while(0);G=(f[g>>2]|0)+(Z<<2)|0;E=f[G>>2]|0;if(!E){f[H>>2]=f[t>>2];f[t>>2]=H;f[G>>2]=t;G=f[H>>2]|0;if(G|0){K=f[G+4>>2]|0;G=Y+-1|0;if(G&Y)if(K>>>0>>0)_=K;else _=(K>>>0)%(Y>>>0)|0;else _=K&G;aa=(f[g>>2]|0)+(_<<2)|0;R=44}}else{f[H>>2]=f[E>>2];aa=E;R=44}if((R|0)==44){R=0;f[aa>>2]=H}f[o>>2]=(f[o>>2]|0)+1}E=v;G=f[E>>2]|0;K=un(G|0,f[E+4>>2]|0,y|0,0)|0;kh((f[f[w>>2]>>2]|0)+K|0,i|0,G|0)|0;G=f[k>>2]|0;f[G+(x<<2)>>2]=y;ba=y+1|0;ca=G}else{G=f[k>>2]|0;f[G+(x<<2)>>2]=f[z+12>>2];ba=y;ca=G}x=x+1|0;da=f[m>>2]|0;if(x>>>0>=da>>>0)break;else y=ba}if((ba|0)==(da|0))ea=ca;else{y=a+84|0;if(!(b[y>>0]|0)){x=f[a+72>>2]|0;i=f[a+68>>2]|0;w=i;if((x|0)==(i|0))fa=ca;else{v=x-i>>2;i=0;do{x=w+(i<<2)|0;f[x>>2]=f[ca+(f[x>>2]<<2)>>2];i=i+1|0}while(i>>>0>>0);fa=ca}}else{b[y>>0]=0;y=a+68|0;ca=a+72|0;v=f[ca>>2]|0;i=f[y>>2]|0;w=v-i>>2;x=i;i=v;if(da>>>0<=w>>>0)if(da>>>0>>0?(v=x+(da<<2)|0,(v|0)!=(i|0)):0){f[ca>>2]=i+(~((i+-4-v|0)>>>2)<<2);ga=da}else ga=da;else{Ch(y,da-w|0,1220);ga=f[m>>2]|0}w=f[k>>2]|0;if(!ga)fa=w;else{k=f[a+68>>2]|0;a=0;do{f[k+(a<<2)>>2]=f[w+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);fa=w}}f[m>>2]=ba;ea=fa}if(!ea)ha=ba;else{fa=f[p>>2]|0;if((fa|0)!=(ea|0))f[p>>2]=fa+(~((fa+-4-ea|0)>>>2)<<2);Oq(ea);ha=ba}}else ha=0;ba=f[g+8>>2]|0;if(ba|0){ea=ba;do{ba=ea;ea=f[ea>>2]|0;Oq(ba)}while((ea|0)!=0)}ea=f[g>>2]|0;f[g>>2]=0;if(!ea){u=e;return ha|0}Oq(ea);u=e;return ha|0}function mc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=Oa,V=Oa,X=Oa,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0;e=u;u=u+80|0;g=e+48|0;h=e+32|0;i=e+16|0;j=e;k=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[k>>2]=$(1.0);l=a+80|0;m=f[l>>2]|0;f[j>>2]=0;o=j+4|0;f[o>>2]=0;f[j+8>>2]=0;if(m){if(m>>>0>1073741823)aq(j);p=m<<2;q=ln(p)|0;f[j>>2]=q;r=q+(m<<2)|0;f[j+8>>2]=r;sj(q|0,0,p|0)|0;f[o>>2]=r;r=f[d>>2]|0;d=c+48|0;p=c+40|0;q=i+4|0;m=i+8|0;s=i+12|0;t=g+4|0;v=g+12|0;w=g+8|0;x=a+40|0;y=a+64|0;z=0;A=0;while(1){B=d;C=f[B>>2]|0;D=f[B+4>>2]|0;B=p;E=un(f[B>>2]|0,f[B+4>>2]|0,r+A|0,0)|0;B=Vn(E|0,I|0,C|0,D|0)|0;D=(f[f[c>>2]>>2]|0)+B|0;B=h;C=D;E=B+16|0;do{b[B>>0]=b[C>>0]|0;B=B+1|0;C=C+1|0}while((B|0)<(E|0));im(i|0,D|0,16)|0;C=Vf(g,i)|0;if(!C){B=f[i>>2]|0;E=f[q>>2]|0;F=f[m>>2]|0;G=f[s>>2]|0;H=(((B^318)+239^E)+239^F)+239^G;J=f[t>>2]|0;K=(J|0)==0;a:do if(!K){L=J+-1|0;M=(L&J|0)==0;if(!M)if(H>>>0>>0)N=H;else N=(H>>>0)%(J>>>0)|0;else N=H&L;O=f[(f[g>>2]|0)+(N<<2)>>2]|0;if((O|0)!=0?(P=f[O>>2]|0,(P|0)!=0):0){if(M){M=P;while(1){O=f[M+4>>2]|0;if(!((O|0)==(H|0)|(O&L|0)==(N|0))){Q=N;R=31;break a}if((((f[M+8>>2]|0)==(B|0)?(f[M+12>>2]|0)==(E|0):0)?(f[M+16>>2]|0)==(F|0):0)?(f[M+20>>2]|0)==(G|0):0)break a;M=f[M>>2]|0;if(!M){Q=N;R=31;break a}}}else S=P;while(1){M=f[S+4>>2]|0;if((M|0)!=(H|0)){if(M>>>0>>0)T=M;else T=(M>>>0)%(J>>>0)|0;if((T|0)!=(N|0)){Q=N;R=31;break a}}if((((f[S+8>>2]|0)==(B|0)?(f[S+12>>2]|0)==(E|0):0)?(f[S+16>>2]|0)==(F|0):0)?(f[S+20>>2]|0)==(G|0):0)break a;S=f[S>>2]|0;if(!S){Q=N;R=31;break}}}else{Q=N;R=31}}else{Q=0;R=31}while(0);if((R|0)==31){R=0;D=ln(28)|0;f[D+8>>2]=B;f[D+12>>2]=E;f[D+16>>2]=F;f[D+20>>2]=G;f[D+24>>2]=z;f[D+4>>2]=H;f[D>>2]=0;U=$(((f[v>>2]|0)+1|0)>>>0);V=$(J>>>0);X=$(n[k>>2]);do if(K|$(X*V)>>0<3|(J+-1&J|0)!=0)&1;M=~~$(W($(U/X)))>>>0;Wh(g,P>>>0>>0?M:P);P=f[t>>2]|0;M=P+-1|0;if(!(M&P)){Y=P;Z=M&H;break}if(H>>>0

>>0){Y=P;Z=H}else{Y=P;Z=(H>>>0)%(P>>>0)|0}}else{Y=J;Z=Q}while(0);J=(f[g>>2]|0)+(Z<<2)|0;H=f[J>>2]|0;if(!H){f[D>>2]=f[w>>2];f[w>>2]=D;f[J>>2]=w;J=f[D>>2]|0;if(J|0){K=f[J+4>>2]|0;J=Y+-1|0;if(J&Y)if(K>>>0>>0)_=K;else _=(K>>>0)%(Y>>>0)|0;else _=K&J;aa=(f[g>>2]|0)+(_<<2)|0;R=44}}else{f[D>>2]=f[H>>2];aa=H;R=44}if((R|0)==44){R=0;f[aa>>2]=D}f[v>>2]=(f[v>>2]|0)+1}H=x;J=f[H>>2]|0;K=un(J|0,f[H+4>>2]|0,z|0,0)|0;kh((f[f[y>>2]>>2]|0)+K|0,h|0,J|0)|0;J=f[j>>2]|0;f[J+(A<<2)>>2]=z;ba=z+1|0;ca=J}else{J=f[j>>2]|0;f[J+(A<<2)>>2]=f[C+24>>2];ba=z;ca=J}A=A+1|0;da=f[l>>2]|0;if(A>>>0>=da>>>0)break;else z=ba}if((ba|0)==(da|0))ea=ca;else{z=a+84|0;if(!(b[z>>0]|0)){A=f[a+72>>2]|0;h=f[a+68>>2]|0;y=h;if((A|0)==(h|0))fa=ca;else{x=A-h>>2;h=0;do{A=y+(h<<2)|0;f[A>>2]=f[ca+(f[A>>2]<<2)>>2];h=h+1|0}while(h>>>0>>0);fa=ca}}else{b[z>>0]=0;z=a+68|0;ca=a+72|0;x=f[ca>>2]|0;h=f[z>>2]|0;y=x-h>>2;A=h;h=x;if(da>>>0<=y>>>0)if(da>>>0>>0?(x=A+(da<<2)|0,(x|0)!=(h|0)):0){f[ca>>2]=h+(~((h+-4-x|0)>>>2)<<2);ga=da}else ga=da;else{Ch(z,da-y|0,1220);ga=f[l>>2]|0}y=f[j>>2]|0;if(!ga)fa=y;else{j=f[a+68>>2]|0;a=0;do{f[j+(a<<2)>>2]=f[y+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);fa=y}}f[l>>2]=ba;ea=fa}if(!ea)ha=ba;else{fa=f[o>>2]|0;if((fa|0)!=(ea|0))f[o>>2]=fa+(~((fa+-4-ea|0)>>>2)<<2);Oq(ea);ha=ba}}else ha=0;ba=f[g+8>>2]|0;if(ba|0){ea=ba;do{ba=ea;ea=f[ea>>2]|0;Oq(ba)}while((ea|0)!=0)}ea=f[g>>2]|0;f[g>>2]=0;if(!ea){u=e;return ha|0}Oq(ea);u=e;return ha|0}function nc(a,c,e){a=a|0;c=c|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=Oa,T=Oa,U=Oa,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0;g=u;u=u+48|0;h=g+12|0;i=g+38|0;j=g+32|0;k=g;l=h+16|0;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;f[h+12>>2]=0;n[l>>2]=$(1.0);m=a+80|0;o=f[m>>2]|0;f[k>>2]=0;p=k+4|0;f[p>>2]=0;f[k+8>>2]=0;if(o){if(o>>>0>1073741823)aq(k);q=o<<2;r=ln(q)|0;f[k>>2]=r;s=r+(o<<2)|0;f[k+8>>2]=s;sj(r|0,0,q|0)|0;f[p>>2]=s;s=f[e>>2]|0;e=c+48|0;q=c+40|0;r=j+2|0;o=j+4|0;t=h+4|0;v=h+12|0;w=h+8|0;x=a+40|0;y=a+64|0;z=0;A=0;while(1){B=e;C=f[B>>2]|0;D=f[B+4>>2]|0;B=q;E=un(f[B>>2]|0,f[B+4>>2]|0,s+A|0,0)|0;B=Vn(E|0,I|0,C|0,D|0)|0;D=(f[f[c>>2]>>2]|0)+B|0;b[i>>0]=b[D>>0]|0;b[i+1>>0]=b[D+1>>0]|0;b[i+2>>0]=b[D+2>>0]|0;b[i+3>>0]=b[D+3>>0]|0;b[i+4>>0]=b[D+4>>0]|0;b[i+5>>0]=b[D+5>>0]|0;im(j|0,D|0,6)|0;D=dg(h,j)|0;if(!D){B=d[j>>1]|0;C=d[r>>1]|0;E=d[o>>1]|0;F=(((B^318)&65535)+239^C&65535)+239^E&65535;G=f[t>>2]|0;H=(G|0)==0;a:do if(!H){J=G+-1|0;K=(J&G|0)==0;if(!K)if(F>>>0>>0)L=F;else L=(F>>>0)%(G>>>0)|0;else L=F&J;M=f[(f[h>>2]|0)+(L<<2)>>2]|0;if((M|0)!=0?(N=f[M>>2]|0,(N|0)!=0):0){if(K){K=N;while(1){M=f[K+4>>2]|0;if(!((M|0)==(F|0)|(M&J|0)==(L|0))){O=L;P=29;break a}M=K+8|0;if(((d[M>>1]|0)==B<<16>>16?(d[M+2>>1]|0)==C<<16>>16:0)?(d[K+12>>1]|0)==E<<16>>16:0)break a;K=f[K>>2]|0;if(!K){O=L;P=29;break a}}}else Q=N;while(1){K=f[Q+4>>2]|0;if((K|0)!=(F|0)){if(K>>>0>>0)R=K;else R=(K>>>0)%(G>>>0)|0;if((R|0)!=(L|0)){O=L;P=29;break a}}K=Q+8|0;if(((d[K>>1]|0)==B<<16>>16?(d[K+2>>1]|0)==C<<16>>16:0)?(d[Q+12>>1]|0)==E<<16>>16:0)break a;Q=f[Q>>2]|0;if(!Q){O=L;P=29;break}}}else{O=L;P=29}}else{O=0;P=29}while(0);if((P|0)==29){P=0;N=ln(20)|0;d[N+8>>1]=B;d[N+10>>1]=C;d[N+12>>1]=E;f[N+16>>2]=z;f[N+4>>2]=F;f[N>>2]=0;S=$(((f[v>>2]|0)+1|0)>>>0);T=$(G>>>0);U=$(n[l>>2]);do if(H|$(U*T)>>0<3|(G+-1&G|0)!=0)&1;J=~~$(W($(S/U)))>>>0;Th(h,K>>>0>>0?J:K);K=f[t>>2]|0;J=K+-1|0;if(!(J&K)){V=K;X=J&F;break}if(F>>>0>>0){V=K;X=F}else{V=K;X=(F>>>0)%(K>>>0)|0}}else{V=G;X=O}while(0);G=(f[h>>2]|0)+(X<<2)|0;F=f[G>>2]|0;if(!F){f[N>>2]=f[w>>2];f[w>>2]=N;f[G>>2]=w;G=f[N>>2]|0;if(G|0){H=f[G+4>>2]|0;G=V+-1|0;if(G&V)if(H>>>0>>0)Y=H;else Y=(H>>>0)%(V>>>0)|0;else Y=H&G;Z=(f[h>>2]|0)+(Y<<2)|0;P=42}}else{f[N>>2]=f[F>>2];Z=F;P=42}if((P|0)==42){P=0;f[Z>>2]=N}f[v>>2]=(f[v>>2]|0)+1}F=x;G=f[F>>2]|0;H=un(G|0,f[F+4>>2]|0,z|0,0)|0;kh((f[f[y>>2]>>2]|0)+H|0,i|0,G|0)|0;G=f[k>>2]|0;f[G+(A<<2)>>2]=z;_=z+1|0;aa=G}else{G=f[k>>2]|0;f[G+(A<<2)>>2]=f[D+16>>2];_=z;aa=G}A=A+1|0;ba=f[m>>2]|0;if(A>>>0>=ba>>>0)break;else z=_}if((_|0)==(ba|0))ca=aa;else{z=a+84|0;if(!(b[z>>0]|0)){A=f[a+72>>2]|0;i=f[a+68>>2]|0;y=i;if((A|0)==(i|0))da=aa;else{x=A-i>>2;i=0;do{A=y+(i<<2)|0;f[A>>2]=f[aa+(f[A>>2]<<2)>>2];i=i+1|0}while(i>>>0>>0);da=aa}}else{b[z>>0]=0;z=a+68|0;aa=a+72|0;x=f[aa>>2]|0;i=f[z>>2]|0;y=x-i>>2;A=i;i=x;if(ba>>>0<=y>>>0)if(ba>>>0>>0?(x=A+(ba<<2)|0,(x|0)!=(i|0)):0){f[aa>>2]=i+(~((i+-4-x|0)>>>2)<<2);ea=ba}else ea=ba;else{Ch(z,ba-y|0,1220);ea=f[m>>2]|0}y=f[k>>2]|0;if(!ea)da=y;else{k=f[a+68>>2]|0;a=0;do{f[k+(a<<2)>>2]=f[y+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);da=y}}f[m>>2]=_;ca=da}if(!ca)fa=_;else{da=f[p>>2]|0;if((da|0)!=(ca|0))f[p>>2]=da+(~((da+-4-ca|0)>>>2)<<2);Oq(ca);fa=_}}else fa=0;_=f[h+8>>2]|0;if(_|0){ca=_;do{_=ca;ca=f[ca>>2]|0;Oq(_)}while((ca|0)!=0)}ca=f[h>>2]|0;f[h>>2]=0;if(!ca){u=g;return fa|0}Oq(ca);u=g;return fa|0}function oc(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0,_=0;g=a+8|0;Mh(g,b,d,e);d=f[a+48>>2]|0;h=f[a+52>>2]|0;i=e>>>0>1073741823?-1:e<<2;j=Lq(i)|0;sj(j|0,0,i|0)|0;k=Lq(i)|0;sj(k|0,0,i|0)|0;i=f[a+56>>2]|0;l=i+4|0;m=f[l>>2]|0;n=f[i>>2]|0;o=m-n|0;a:do if((o|0)>4){p=o>>2;q=(e|0)>0;r=a+16|0;s=a+32|0;t=a+12|0;u=a+28|0;v=a+20|0;w=a+24|0;x=d+12|0;y=e<<2;z=p+-1|0;if(m-n>>2>>>0>z>>>0){A=p;B=z;C=n}else aq(i);while(1){z=f[C+(B<<2)>>2]|0;if(q)sj(j|0,0,y|0)|0;if((z|0)!=-1){p=f[x>>2]|0;D=0;E=z;while(1){F=f[p+(E<<2)>>2]|0;if((F|0)!=-1){G=f[d>>2]|0;H=f[h>>2]|0;I=f[H+(f[G+(F<<2)>>2]<<2)>>2]|0;J=F+1|0;K=((J>>>0)%3|0|0)==0?F+-2|0:J;if((K|0)==-1)L=-1;else L=f[G+(K<<2)>>2]|0;K=f[H+(L<<2)>>2]|0;J=(((F>>>0)%3|0|0)==0?2:-1)+F|0;if((J|0)==-1)M=-1;else M=f[G+(J<<2)>>2]|0;J=f[H+(M<<2)>>2]|0;if((I|0)<(B|0)&(K|0)<(B|0)&(J|0)<(B|0)){H=X(I,e)|0;I=X(K,e)|0;K=X(J,e)|0;if(q){J=0;do{f[k+(J<<2)>>2]=(f[b+(J+K<<2)>>2]|0)+(f[b+(J+I<<2)>>2]|0)-(f[b+(J+H<<2)>>2]|0);J=J+1|0}while((J|0)!=(e|0));if(q){J=0;do{H=j+(J<<2)|0;f[H>>2]=(f[H>>2]|0)+(f[k+(J<<2)>>2]|0);J=J+1|0}while((J|0)!=(e|0))}}N=D+1|0}else N=D}else N=D;J=(((E>>>0)%3|0|0)==0?2:-1)+E|0;do if((J|0)!=-1?(H=f[p+(J<<2)>>2]|0,(H|0)!=-1):0)if(!((H>>>0)%3|0)){O=H+2|0;break}else{O=H+-1|0;break}else O=-1;while(0);E=(O|0)==(z|0)?-1:O;if((E|0)==-1)break;else D=N}D=X(B,e)|0;if(N){if(q){E=0;do{z=j+(E<<2)|0;f[z>>2]=(f[z>>2]|0)/(N|0)|0;E=E+1|0}while((E|0)!=(e|0))}E=b+(D<<2)|0;z=c+(D<<2)|0;p=f[g>>2]|0;if((p|0)>0){J=0;H=j;I=p;while(1){if((I|0)>0){p=0;do{K=f[H+(p<<2)>>2]|0;G=f[r>>2]|0;if((K|0)>(G|0)){F=f[s>>2]|0;f[F+(p<<2)>>2]=G;P=F}else{F=f[t>>2]|0;G=f[s>>2]|0;f[G+(p<<2)>>2]=(K|0)<(F|0)?F:K;P=G}p=p+1|0}while((p|0)<(f[g>>2]|0));Q=P}else Q=f[s>>2]|0;p=(f[E+(J<<2)>>2]|0)-(f[Q+(J<<2)>>2]|0)|0;G=z+(J<<2)|0;f[G>>2]=p;if((p|0)>=(f[u>>2]|0)){if((p|0)>(f[w>>2]|0)){R=p-(f[v>>2]|0)|0;S=57}}else{R=(f[v>>2]|0)+p|0;S=57}if((S|0)==57){S=0;f[G>>2]=R}J=J+1|0;I=f[g>>2]|0;if((J|0)>=(I|0))break;else H=Q}}}else{T=D;S=30}}else{T=X(B,e)|0;S=30}if((S|0)==30?(S=0,H=b+(T<<2)|0,I=c+(T<<2)|0,J=f[g>>2]|0,(J|0)>0):0){z=0;E=b+((X(A+-2|0,e)|0)<<2)|0;G=J;while(1){if((G|0)>0){J=0;do{p=f[E+(J<<2)>>2]|0;K=f[r>>2]|0;if((p|0)>(K|0)){F=f[s>>2]|0;f[F+(J<<2)>>2]=K;U=F}else{F=f[t>>2]|0;K=f[s>>2]|0;f[K+(J<<2)>>2]=(p|0)<(F|0)?F:p;U=K}J=J+1|0}while((J|0)<(f[g>>2]|0));V=U}else V=f[s>>2]|0;J=(f[H+(z<<2)>>2]|0)-(f[V+(z<<2)>>2]|0)|0;K=I+(z<<2)|0;f[K>>2]=J;if((J|0)>=(f[u>>2]|0)){if((J|0)>(f[w>>2]|0)){W=J-(f[v>>2]|0)|0;S=42}}else{W=(f[v>>2]|0)+J|0;S=42}if((S|0)==42){S=0;f[K>>2]=W}z=z+1|0;G=f[g>>2]|0;if((z|0)>=(G|0))break;else E=V}}if((A|0)<=2)break a;C=f[i>>2]|0;E=B+-1|0;if((f[l>>2]|0)-C>>2>>>0<=E>>>0)break;else{G=B;B=E;A=G}}aq(i)}while(0);if((e|0)>0)sj(j|0,0,e<<2|0)|0;e=f[g>>2]|0;if((e|0)<=0){Mq(k);Mq(j);return 1}i=a+16|0;A=a+32|0;B=a+12|0;C=a+28|0;l=a+20|0;V=a+24|0;a=0;W=j;U=e;while(1){if((U|0)>0){e=0;do{T=f[W+(e<<2)>>2]|0;Q=f[i>>2]|0;if((T|0)>(Q|0)){R=f[A>>2]|0;f[R+(e<<2)>>2]=Q;Y=R}else{R=f[B>>2]|0;Q=f[A>>2]|0;f[Q+(e<<2)>>2]=(T|0)<(R|0)?R:T;Y=Q}e=e+1|0}while((e|0)<(f[g>>2]|0));Z=Y}else Z=f[A>>2]|0;e=(f[b+(a<<2)>>2]|0)-(f[Z+(a<<2)>>2]|0)|0;Q=c+(a<<2)|0;f[Q>>2]=e;if((e|0)>=(f[C>>2]|0)){if((e|0)>(f[V>>2]|0)){_=e-(f[l>>2]|0)|0;S=72}}else{_=(f[l>>2]|0)+e|0;S=72}if((S|0)==72){S=0;f[Q>>2]=_}a=a+1|0;U=f[g>>2]|0;if((a|0)>=(U|0))break;else W=Z}Mq(k);Mq(j);return 1}function pc(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,Y=0,Z=0;g=a+8|0;Mh(g,b,d,e);d=f[a+48>>2]|0;h=f[a+52>>2]|0;i=e>>>0>1073741823?-1:e<<2;j=Lq(i)|0;sj(j|0,0,i|0)|0;k=Lq(i)|0;sj(k|0,0,i|0)|0;i=f[a+56>>2]|0;l=i+4|0;m=f[l>>2]|0;n=f[i>>2]|0;o=m-n|0;a:do if((o|0)>4){p=o>>2;q=(e|0)>0;r=a+16|0;s=a+32|0;t=a+12|0;u=a+28|0;v=a+20|0;w=a+24|0;x=d+64|0;y=d+28|0;z=e<<2;A=p+-1|0;if(m-n>>2>>>0>A>>>0){B=p;C=A;D=n}else aq(i);while(1){A=f[D+(C<<2)>>2]|0;if(q)sj(j|0,0,z|0)|0;if((A|0)!=-1){p=f[d>>2]|0;E=0;F=A;while(1){if(((f[p+(F>>>5<<2)>>2]&1<<(F&31)|0)==0?(G=f[(f[(f[x>>2]|0)+12>>2]|0)+(F<<2)>>2]|0,(G|0)!=-1):0)?(H=f[y>>2]|0,I=f[h>>2]|0,J=f[I+(f[H+(G<<2)>>2]<<2)>>2]|0,K=G+1|0,L=f[I+(f[H+((((K>>>0)%3|0|0)==0?G+-2|0:K)<<2)>>2]<<2)>>2]|0,K=f[I+(f[H+((((G>>>0)%3|0|0)==0?2:-1)+G<<2)>>2]<<2)>>2]|0,(J|0)<(C|0)&(L|0)<(C|0)&(K|0)<(C|0)):0){G=X(J,e)|0;J=X(L,e)|0;L=X(K,e)|0;if(q){K=0;do{f[k+(K<<2)>>2]=(f[b+(K+L<<2)>>2]|0)+(f[b+(K+J<<2)>>2]|0)-(f[b+(K+G<<2)>>2]|0);K=K+1|0}while((K|0)!=(e|0));if(q){K=0;do{G=j+(K<<2)|0;f[G>>2]=(f[G>>2]|0)+(f[k+(K<<2)>>2]|0);K=K+1|0}while((K|0)!=(e|0))}}M=E+1|0}else M=E;K=(((F>>>0)%3|0|0)==0?2:-1)+F|0;do if(((K|0)!=-1?(f[p+(K>>>5<<2)>>2]&1<<(K&31)|0)==0:0)?(G=f[(f[(f[x>>2]|0)+12>>2]|0)+(K<<2)>>2]|0,(G|0)!=-1):0)if(!((G>>>0)%3|0)){N=G+2|0;break}else{N=G+-1|0;break}else N=-1;while(0);F=(N|0)==(A|0)?-1:N;if((F|0)==-1)break;else E=M}E=X(C,e)|0;if(M){if(q){F=0;do{A=j+(F<<2)|0;f[A>>2]=(f[A>>2]|0)/(M|0)|0;F=F+1|0}while((F|0)!=(e|0))}F=b+(E<<2)|0;A=c+(E<<2)|0;p=f[g>>2]|0;if((p|0)>0){K=0;G=j;J=p;while(1){if((J|0)>0){p=0;do{L=f[G+(p<<2)>>2]|0;H=f[r>>2]|0;if((L|0)>(H|0)){I=f[s>>2]|0;f[I+(p<<2)>>2]=H;O=I}else{I=f[t>>2]|0;H=f[s>>2]|0;f[H+(p<<2)>>2]=(L|0)<(I|0)?I:L;O=H}p=p+1|0}while((p|0)<(f[g>>2]|0));P=O}else P=f[s>>2]|0;p=(f[F+(K<<2)>>2]|0)-(f[P+(K<<2)>>2]|0)|0;H=A+(K<<2)|0;f[H>>2]=p;if((p|0)>=(f[u>>2]|0)){if((p|0)>(f[w>>2]|0)){Q=p-(f[v>>2]|0)|0;R=55}}else{Q=(f[v>>2]|0)+p|0;R=55}if((R|0)==55){R=0;f[H>>2]=Q}K=K+1|0;J=f[g>>2]|0;if((K|0)>=(J|0))break;else G=P}}}else{S=E;R=28}}else{S=X(C,e)|0;R=28}if((R|0)==28?(R=0,G=b+(S<<2)|0,J=c+(S<<2)|0,K=f[g>>2]|0,(K|0)>0):0){A=0;F=b+((X(B+-2|0,e)|0)<<2)|0;H=K;while(1){if((H|0)>0){K=0;do{p=f[F+(K<<2)>>2]|0;L=f[r>>2]|0;if((p|0)>(L|0)){I=f[s>>2]|0;f[I+(K<<2)>>2]=L;T=I}else{I=f[t>>2]|0;L=f[s>>2]|0;f[L+(K<<2)>>2]=(p|0)<(I|0)?I:p;T=L}K=K+1|0}while((K|0)<(f[g>>2]|0));U=T}else U=f[s>>2]|0;K=(f[G+(A<<2)>>2]|0)-(f[U+(A<<2)>>2]|0)|0;L=J+(A<<2)|0;f[L>>2]=K;if((K|0)>=(f[u>>2]|0)){if((K|0)>(f[w>>2]|0)){V=K-(f[v>>2]|0)|0;R=40}}else{V=(f[v>>2]|0)+K|0;R=40}if((R|0)==40){R=0;f[L>>2]=V}A=A+1|0;H=f[g>>2]|0;if((A|0)>=(H|0))break;else F=U}}if((B|0)<=2)break a;D=f[i>>2]|0;F=C+-1|0;if((f[l>>2]|0)-D>>2>>>0<=F>>>0)break;else{H=C;C=F;B=H}}aq(i)}while(0);if((e|0)>0)sj(j|0,0,e<<2|0)|0;e=f[g>>2]|0;if((e|0)<=0){Mq(k);Mq(j);return 1}i=a+16|0;B=a+32|0;C=a+12|0;D=a+28|0;l=a+20|0;U=a+24|0;a=0;V=j;T=e;while(1){if((T|0)>0){e=0;do{S=f[V+(e<<2)>>2]|0;P=f[i>>2]|0;if((S|0)>(P|0)){Q=f[B>>2]|0;f[Q+(e<<2)>>2]=P;W=Q}else{Q=f[C>>2]|0;P=f[B>>2]|0;f[P+(e<<2)>>2]=(S|0)<(Q|0)?Q:S;W=P}e=e+1|0}while((e|0)<(f[g>>2]|0));Y=W}else Y=f[B>>2]|0;e=(f[b+(a<<2)>>2]|0)-(f[Y+(a<<2)>>2]|0)|0;P=c+(a<<2)|0;f[P>>2]=e;if((e|0)>=(f[D>>2]|0)){if((e|0)>(f[U>>2]|0)){Z=e-(f[l>>2]|0)|0;R=70}}else{Z=(f[l>>2]|0)+e|0;R=70}if((R|0)==70){R=0;f[P>>2]=Z}a=a+1|0;T=f[g>>2]|0;if((a|0)>=(T|0))break;else V=Y}Mq(k);Mq(j);return 1}function qc(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0;e=u;u=u+64|0;d=e+48|0;h=e+40|0;i=e+32|0;j=e+16|0;k=e+8|0;l=e;m=e+28|0;n=a+8|0;o=f[n>>2]|0;if((o+-2|0)>>>0<=28){f[a+72>>2]=o;p=1<>2]=p+-1;o=p+-2|0;f[a+80>>2]=o;f[a+84>>2]=(o|0)/2|0}o=a+40|0;f[a+48>>2]=g;g=a+88|0;tk(g);p=a+36|0;q=f[p>>2]|0;r=(f[q+4>>2]|0)-(f[q>>2]|0)|0;s=r>>2;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;t=k;f[t>>2]=0;f[t+4>>2]=0;t=l;f[t>>2]=0;f[t+4>>2]=0;if((r|0)<=0){u=e;return 1}r=j+4|0;t=j+8|0;v=a+84|0;w=a+80|0;x=h+4|0;y=i+4|0;z=d+4|0;A=k+4|0;B=h+4|0;C=i+4|0;D=d+4|0;E=l+4|0;F=a+76|0;a=k+4|0;G=l+4|0;H=f[q>>2]|0;if((f[q+4>>2]|0)==(H|0)){J=q;aq(J)}else{K=0;L=H}while(1){f[m>>2]=f[L+(K<<2)>>2];f[d>>2]=f[m>>2];ic(o,d,j);H=f[j>>2]|0;q=(H|0)>-1?H:0-H|0;M=f[r>>2]|0;N=(M|0)>-1?M:0-M|0;O=Vn(N|0,((N|0)<0)<<31>>31|0,q|0,((q|0)<0)<<31>>31|0)|0;q=f[t>>2]|0;N=(q|0)>-1;P=N?q:0-q|0;q=Vn(O|0,I|0,P|0,((P|0)<0)<<31>>31|0)|0;P=I;if((q|0)==0&(P|0)==0){O=f[v>>2]|0;Q=O;R=j;S=M;T=O}else{O=f[v>>2]|0;U=((O|0)<0)<<31>>31;V=un(O|0,U|0,H|0,((H|0)<0)<<31>>31|0)|0;H=Ik(V|0,I|0,q|0,P|0)|0;f[j>>2]=H;V=un(O|0,U|0,M|0,((M|0)<0)<<31>>31|0)|0;M=Ik(V|0,I|0,q|0,P|0)|0;f[r>>2]=M;P=O-((H|0)>-1?H:0-H|0)-((M|0)>-1?M:0-M|0)|0;Q=N?P:0-P|0;R=t;S=M;T=O}f[R>>2]=Q;O=f[j>>2]|0;do if((O|0)<=-1){if((S|0)<0){M=f[t>>2]|0;W=(M|0)>-1?M:0-M|0;X=M}else{M=f[t>>2]|0;W=(f[w>>2]|0)-((M|0)>-1?M:0-M|0)|0;X=M}if((X|0)<0){Y=(S|0)>-1?S:0-S|0;Z=W;_=X;break}else{Y=(f[w>>2]|0)-((S|0)>-1?S:0-S|0)|0;Z=W;_=X;break}}else{M=f[t>>2]|0;Y=M+T|0;Z=T+S|0;_=M}while(0);M=(Z|0)==0;P=(Y|0)==0;N=f[w>>2]|0;do if(Y|Z){H=(N|0)==(Y|0);if(!(M&H)){q=(N|0)==(Z|0);if(!(P&q)){if(M&(T|0)<(Y|0)){$=0;aa=(T<<1)-Y|0;break}if(q&(T|0)>(Y|0)){$=Z;aa=(T<<1)-Y|0;break}if(H&(T|0)>(Z|0)){$=(T<<1)-Z|0;aa=Y;break}if(P){$=(T|0)<(Z|0)?(T<<1)-Z|0:Z;aa=0}else{$=Z;aa=Y}}else{$=Z;aa=Z}}else{$=Y;aa=Y}}else{$=N;aa=N}while(0);P=0-S|0;M=0-_|0;f[j>>2]=0-O;f[r>>2]=P;f[t>>2]=M;if((O|0)<1){ba=T-_|0;ca=T-S|0}else{H=(_|0)<1?M:_;M=(S|0)<1?P:S;ba=(_|0)>0?M:N-M|0;ca=(S|0)>0?H:N-H|0}H=(ca|0)==0;M=(ba|0)==0;do if(((ba|ca|0)!=0?(P=(N|0)==(ba|0),!(H&P)):0)?(q=(N|0)==(ca|0),!(M&q)):0){if(H&(T|0)<(ba|0)){da=0;ea=(T<<1)-ba|0;break}if(q&(T|0)>(ba|0)){da=N;ea=(T<<1)-ba|0;break}if(P&(T|0)>(ca|0)){da=(T<<1)-ca|0;ea=N;break}if(M){da=(T|0)<(ca|0)?(T<<1)-ca|0:ca;ea=0}else{da=ca;ea=ba}}else{da=N;ea=N}while(0);N=K<<1;M=b+(N<<2)|0;H=M+4|0;O=f[H>>2]|0;f[h>>2]=f[M>>2];f[x>>2]=O;f[i>>2]=$;f[y>>2]=aa;Od(d,n,h,i);O=f[d>>2]|0;f[k>>2]=O;P=f[z>>2]|0;f[A>>2]=P;q=f[H>>2]|0;f[h>>2]=f[M>>2];f[B>>2]=q;f[i>>2]=da;f[C>>2]=ea;Od(d,n,h,i);q=f[d>>2]|0;f[l>>2]=q;M=f[D>>2]|0;f[E>>2]=M;H=f[v>>2]|0;if((H|0)>=(O|0))if((O|0)<(0-H|0))fa=(f[F>>2]|0)+O|0;else fa=O;else fa=O-(f[F>>2]|0)|0;f[k>>2]=fa;if((H|0)>=(P|0))if((P|0)<(0-H|0))ga=(f[F>>2]|0)+P|0;else ga=P;else ga=P-(f[F>>2]|0)|0;f[a>>2]=ga;if((H|0)>=(q|0))if((q|0)<(0-H|0))ha=(f[F>>2]|0)+q|0;else ha=q;else ha=q-(f[F>>2]|0)|0;f[l>>2]=ha;if((H|0)>=(M|0))if((M|0)<(0-H|0))ia=(f[F>>2]|0)+M|0;else ia=M;else ia=M-(f[F>>2]|0)|0;f[G>>2]=ia;if((((ga|0)>-1?ga:0-ga|0)+((fa|0)>-1?fa:0-fa|0)|0)<(((ha|0)>-1?ha:0-ha|0)+((ia|0)>-1?ia:0-ia|0)|0)){fj(g,0);ja=k}else{fj(g,1);ja=l}M=f[ja>>2]|0;if((M|0)<0)ka=(f[F>>2]|0)+M|0;else ka=M;M=c+(N<<2)|0;f[M>>2]=ka;N=f[ja+4>>2]|0;if((N|0)<0)la=(f[F>>2]|0)+N|0;else la=N;f[M+4>>2]=la;K=K+1|0;if((K|0)>=(s|0)){ma=5;break}M=f[p>>2]|0;L=f[M>>2]|0;if((f[M+4>>2]|0)-L>>2>>>0<=K>>>0){J=M;ma=6;break}}if((ma|0)==5){u=e;return 1}else if((ma|0)==6)aq(J);return 0}function rc(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0;c=u;u=u+48|0;d=c+24|0;e=c+12|0;g=c;if(!b){h=0;u=c;return h|0}i=a+12|0;j=a+4|0;k=f[j>>2]|0;l=f[a>>2]|0;m=k-l>>2;n=a+16|0;o=f[n>>2]|0;p=f[i>>2]|0;q=o-p>>2;r=p;p=o;if(m>>>0<=q>>>0)if(m>>>0>>0?(o=r+(m<<2)|0,(o|0)!=(p|0)):0){f[n>>2]=p+(~((p+-4-o|0)>>>2)<<2);s=l;t=k}else{s=l;t=k}else{Ch(i,m-q|0,6140);s=f[a>>2]|0;t=f[j>>2]|0}f[d>>2]=0;q=d+4|0;f[q>>2]=0;f[d+8>>2]=0;gk(d,t-s>>2);s=f[j>>2]|0;t=f[a>>2]|0;if((s|0)==(t|0)){v=s;w=s}else{m=f[d>>2]|0;k=m;l=k;o=0;p=s;s=k;k=t;t=m;while(1){m=f[k+(o<<2)>>2]|0;n=f[q>>2]|0;if(m>>>0>2>>>0){x=l;y=s;z=k;A=p}else{r=m+1|0;f[e>>2]=0;B=n-t>>2;C=t;D=n;if(r>>>0<=B>>>0)if(r>>>0>>0?(n=C+(r<<2)|0,(n|0)!=(D|0)):0){f[q>>2]=D+(~((D+-4-n|0)>>>2)<<2);E=l;F=p;G=k}else{E=l;F=p;G=k}else{Ch(d,r-B|0,e);E=f[d>>2]|0;F=f[j>>2]|0;G=f[a>>2]|0}x=E;y=E;z=G;A=F}B=y+(m<<2)|0;f[B>>2]=(f[B>>2]|0)+1;o=o+1|0;if(o>>>0>=A-z>>2>>>0){v=z;w=A;break}else{l=x;p=A;s=y;k=z;t=y}}}y=w-v|0;v=y>>2;f[e>>2]=0;w=e+4|0;f[w>>2]=0;f[e+8>>2]=0;if(!v){H=0;I=0}else{if(v>>>0>536870911)aq(e);t=ln(y<<1)|0;f[w>>2]=t;f[e>>2]=t;y=t+(v<<3)|0;f[e+8>>2]=y;z=v;v=t;k=t;while(1){s=v;f[s>>2]=-1;f[s+4>>2]=-1;s=k+8|0;A=z+-1|0;if(!A)break;else{z=A;v=s;k=s}}f[w>>2]=y;H=t;I=t}t=f[q>>2]|0;y=f[d>>2]|0;k=t-y|0;v=k>>2;f[g>>2]=0;z=g+4|0;f[z>>2]=0;f[g+8>>2]=0;s=y;do if(v)if(v>>>0>1073741823)aq(g);else{A=ln(k)|0;f[g>>2]=A;p=A+(v<<2)|0;f[g+8>>2]=p;sj(A|0,0,k|0)|0;f[z>>2]=p;J=A;K=p;L=A;break}else{J=0;K=0;L=0}while(0);if((t|0)!=(y|0)){y=0;t=0;while(1){f[J+(t<<2)>>2]=y;k=t+1|0;if(k>>>0>>0){y=(f[s+(t<<2)>>2]|0)+y|0;t=k}else break}}t=f[j>>2]|0;j=f[a>>2]|0;y=j;if((t|0)!=(j|0)){k=a+40|0;a=t-j>>2;j=H;t=H;g=H;A=H;p=H;x=H;l=0;o=J;while(1){F=f[y+(l<<2)>>2]|0;G=l+1|0;E=((G>>>0)%3|0|0)==0?l+-2|0:G;if((E|0)==-1)M=-1;else M=f[y+(E<<2)>>2]|0;E=((l>>>0)%3|0|0)==0;G=(E?2:-1)+l|0;if((G|0)==-1)N=-1;else N=f[y+(G<<2)>>2]|0;if(E?(M|0)==(N|0)|((F|0)==(M|0)|(F|0)==(N|0)):0){f[k>>2]=(f[k>>2]|0)+1;O=j;P=t;Q=g;R=A;S=p;T=x;U=l+2|0;V=o}else W=51;a:do if((W|0)==51){W=0;E=f[s+(N<<2)>>2]|0;b:do if((E|0)>0){G=0;B=f[o+(N<<2)>>2]|0;while(1){m=f[p+(B<<3)>>2]|0;if((m|0)==-1){X=j;Y=t;Z=A;_=p;break b}if((m|0)==(M|0)){m=f[p+(B<<3)+4>>2]|0;if((m|0)==-1)$=-1;else $=f[y+(m<<2)>>2]|0;if((F|0)!=($|0))break}m=G+1|0;if((m|0)<(E|0)){G=m;B=B+1|0}else{X=j;Y=t;Z=A;_=p;break b}}m=f[A+(B<<3)+4>>2]|0;r=G;n=B;D=t;while(1){r=r+1|0;if((r|0)>=(E|0))break;C=n+1|0;f[D+(n<<3)>>2]=f[D+(C<<3)>>2];f[D+(n<<3)+4>>2]=f[D+(C<<3)+4>>2];if((f[j+(n<<3)>>2]|0)==-1)break;else{n=C;D=j}}f[g+(n<<3)>>2]=-1;if((m|0)==-1){X=g;Y=g;Z=g;_=g}else{D=f[i>>2]|0;f[D+(l<<2)>>2]=m;f[D+(m<<2)>>2]=l;O=g;P=g;Q=g;R=g;S=g;T=x;U=l;V=o;break a}}else{X=j;Y=t;Z=A;_=p}while(0);E=f[s+(M<<2)>>2]|0;if((E|0)>0){D=0;r=f[J+(M<<2)>>2]|0;while(1){aa=x+(r<<3)|0;if((f[aa>>2]|0)==-1)break;D=D+1|0;if((D|0)>=(E|0)){O=x;P=x;Q=x;R=x;S=x;T=x;U=l;V=J;break a}else r=r+1|0}f[aa>>2]=N;f[H+(r<<3)+4>>2]=l;O=H;P=H;Q=H;R=H;S=H;T=H;U=l;V=J}else{O=X;P=Y;Q=g;R=Z;S=_;T=x;U=l;V=o}}while(0);l=U+1|0;if(l>>>0>=a>>>0)break;else{j=O;t=P;g=Q;A=R;p=S;x=T;o=V}}}f[b>>2]=v;if(!J){ba=H;ca=I}else{if((K|0)!=(J|0))f[z>>2]=K+(~((K+-4-J|0)>>>2)<<2);Oq(L);L=f[e>>2]|0;ba=L;ca=L}if(ba|0){L=f[w>>2]|0;if((L|0)!=(ba|0))f[w>>2]=L+(~((L+-8-ba|0)>>>3)<<3);Oq(ca)}ca=f[d>>2]|0;if(ca|0){d=f[q>>2]|0;if((d|0)!=(ca|0))f[q>>2]=d+(~((d+-4-ca|0)>>>2)<<2);Oq(ca)}h=1;u=c;return h|0}function sc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=Oa,S=Oa,T=Oa,U=0,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0;e=u;u=u+48|0;g=e+12|0;h=e+35|0;i=e+32|0;j=e;k=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[k>>2]=$(1.0);l=a+80|0;m=f[l>>2]|0;f[j>>2]=0;o=j+4|0;f[o>>2]=0;f[j+8>>2]=0;if(m){if(m>>>0>1073741823)aq(j);p=m<<2;q=ln(p)|0;f[j>>2]=q;r=q+(m<<2)|0;f[j+8>>2]=r;sj(q|0,0,p|0)|0;f[o>>2]=r;r=f[d>>2]|0;d=c+48|0;p=c+40|0;q=i+1|0;m=i+2|0;s=g+4|0;t=g+12|0;v=g+8|0;w=a+40|0;x=a+64|0;y=0;z=0;while(1){A=d;B=f[A>>2]|0;C=f[A+4>>2]|0;A=p;D=un(f[A>>2]|0,f[A+4>>2]|0,r+y|0,0)|0;A=Vn(D|0,I|0,B|0,C|0)|0;C=(f[f[c>>2]>>2]|0)+A|0;b[h>>0]=b[C>>0]|0;b[h+1>>0]=b[C+1>>0]|0;b[h+2>>0]=b[C+2>>0]|0;im(i|0,C|0,3)|0;C=jg(g,i)|0;if(!C){A=b[i>>0]|0;B=b[q>>0]|0;D=b[m>>0]|0;E=((A&255^318)+239^B&255)+239^D&255;F=f[s>>2]|0;G=(F|0)==0;a:do if(!G){H=F+-1|0;J=(H&F|0)==0;if(!J)if(E>>>0>>0)K=E;else K=(E>>>0)%(F>>>0)|0;else K=E&H;L=f[(f[g>>2]|0)+(K<<2)>>2]|0;if((L|0)!=0?(M=f[L>>2]|0,(M|0)!=0):0){if(J){J=M;while(1){L=f[J+4>>2]|0;if(!((L|0)==(E|0)|(L&H|0)==(K|0))){N=K;O=29;break a}L=J+8|0;if(((b[L>>0]|0)==A<<24>>24?(b[L+1>>0]|0)==B<<24>>24:0)?(b[L+2>>0]|0)==D<<24>>24:0)break a;J=f[J>>2]|0;if(!J){N=K;O=29;break a}}}else P=M;while(1){J=f[P+4>>2]|0;if((J|0)!=(E|0)){if(J>>>0>>0)Q=J;else Q=(J>>>0)%(F>>>0)|0;if((Q|0)!=(K|0)){N=K;O=29;break a}}J=P+8|0;if(((b[J>>0]|0)==A<<24>>24?(b[J+1>>0]|0)==B<<24>>24:0)?(b[J+2>>0]|0)==D<<24>>24:0)break a;P=f[P>>2]|0;if(!P){N=K;O=29;break}}}else{N=K;O=29}}else{N=0;O=29}while(0);if((O|0)==29){O=0;M=ln(16)|0;b[M+8>>0]=A;b[M+9>>0]=B;b[M+10>>0]=D;f[M+12>>2]=z;f[M+4>>2]=E;f[M>>2]=0;R=$(((f[t>>2]|0)+1|0)>>>0);S=$(F>>>0);T=$(n[k>>2]);do if(G|$(T*S)>>0<3|(F+-1&F|0)!=0)&1;H=~~$(W($(R/T)))>>>0;_h(g,J>>>0>>0?H:J);J=f[s>>2]|0;H=J+-1|0;if(!(H&J)){U=J;V=H&E;break}if(E>>>0>>0){U=J;V=E}else{U=J;V=(E>>>0)%(J>>>0)|0}}else{U=F;V=N}while(0);F=(f[g>>2]|0)+(V<<2)|0;E=f[F>>2]|0;if(!E){f[M>>2]=f[v>>2];f[v>>2]=M;f[F>>2]=v;F=f[M>>2]|0;if(F|0){G=f[F+4>>2]|0;F=U+-1|0;if(F&U)if(G>>>0>>0)X=G;else X=(G>>>0)%(U>>>0)|0;else X=G&F;Y=(f[g>>2]|0)+(X<<2)|0;O=42}}else{f[M>>2]=f[E>>2];Y=E;O=42}if((O|0)==42){O=0;f[Y>>2]=M}f[t>>2]=(f[t>>2]|0)+1}E=w;F=f[E>>2]|0;G=un(F|0,f[E+4>>2]|0,z|0,0)|0;kh((f[f[x>>2]>>2]|0)+G|0,h|0,F|0)|0;F=f[j>>2]|0;f[F+(y<<2)>>2]=z;Z=z+1|0;_=F}else{F=f[j>>2]|0;f[F+(y<<2)>>2]=f[C+12>>2];Z=z;_=F}y=y+1|0;aa=f[l>>2]|0;if(y>>>0>=aa>>>0)break;else z=Z}if((Z|0)==(aa|0))ba=_;else{z=a+84|0;if(!(b[z>>0]|0)){y=f[a+72>>2]|0;h=f[a+68>>2]|0;x=h;if((y|0)==(h|0))ca=_;else{w=y-h>>2;h=0;do{y=x+(h<<2)|0;f[y>>2]=f[_+(f[y>>2]<<2)>>2];h=h+1|0}while(h>>>0>>0);ca=_}}else{b[z>>0]=0;z=a+68|0;_=a+72|0;w=f[_>>2]|0;h=f[z>>2]|0;x=w-h>>2;y=h;h=w;if(aa>>>0<=x>>>0)if(aa>>>0>>0?(w=y+(aa<<2)|0,(w|0)!=(h|0)):0){f[_>>2]=h+(~((h+-4-w|0)>>>2)<<2);da=aa}else da=aa;else{Ch(z,aa-x|0,1220);da=f[l>>2]|0}x=f[j>>2]|0;if(!da)ca=x;else{j=f[a+68>>2]|0;a=0;do{f[j+(a<<2)>>2]=f[x+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);ca=x}}f[l>>2]=Z;ba=ca}if(!ba)ea=Z;else{ca=f[o>>2]|0;if((ca|0)!=(ba|0))f[o>>2]=ca+(~((ca+-4-ba|0)>>>2)<<2);Oq(ba);ea=Z}}else ea=0;Z=f[g+8>>2]|0;if(Z|0){ba=Z;do{Z=ba;ba=f[ba>>2]|0;Oq(Z)}while((ba|0)!=0)}ba=f[g>>2]|0;f[g>>2]=0;if(!ba){u=e;return ea|0}Oq(ba);u=e;return ea|0}function tc(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0,ka=0,la=0,ma=0;e=u;u=u+64|0;d=e+48|0;h=e+40|0;i=e+32|0;j=e+16|0;k=e+8|0;l=e;m=e+28|0;n=a+8|0;o=f[n>>2]|0;if((o+-2|0)>>>0<=28){f[a+72>>2]=o;p=1<>2]=p+-1;o=p+-2|0;f[a+80>>2]=o;f[a+84>>2]=(o|0)/2|0}o=a+40|0;f[a+48>>2]=g;g=a+88|0;tk(g);p=a+36|0;q=f[p>>2]|0;r=(f[q+4>>2]|0)-(f[q>>2]|0)|0;s=r>>2;f[j>>2]=0;f[j+4>>2]=0;f[j+8>>2]=0;t=k;f[t>>2]=0;f[t+4>>2]=0;t=l;f[t>>2]=0;f[t+4>>2]=0;if((r|0)<=0){u=e;return 1}r=j+4|0;t=j+8|0;v=a+84|0;w=a+80|0;x=h+4|0;y=i+4|0;z=d+4|0;A=k+4|0;B=h+4|0;C=i+4|0;D=d+4|0;E=l+4|0;F=a+76|0;a=k+4|0;G=l+4|0;H=f[q>>2]|0;if((f[q+4>>2]|0)==(H|0)){J=q;aq(J)}else{K=0;L=H}while(1){f[m>>2]=f[L+(K<<2)>>2];f[d>>2]=f[m>>2];$b(o,d,j);H=f[j>>2]|0;q=(H|0)>-1?H:0-H|0;M=f[r>>2]|0;N=(M|0)>-1?M:0-M|0;O=Vn(N|0,((N|0)<0)<<31>>31|0,q|0,((q|0)<0)<<31>>31|0)|0;q=f[t>>2]|0;N=(q|0)>-1;P=N?q:0-q|0;q=Vn(O|0,I|0,P|0,((P|0)<0)<<31>>31|0)|0;P=I;if((q|0)==0&(P|0)==0){O=f[v>>2]|0;Q=O;R=j;S=M;T=O}else{O=f[v>>2]|0;U=((O|0)<0)<<31>>31;V=un(O|0,U|0,H|0,((H|0)<0)<<31>>31|0)|0;H=Ik(V|0,I|0,q|0,P|0)|0;f[j>>2]=H;V=un(O|0,U|0,M|0,((M|0)<0)<<31>>31|0)|0;M=Ik(V|0,I|0,q|0,P|0)|0;f[r>>2]=M;P=O-((H|0)>-1?H:0-H|0)-((M|0)>-1?M:0-M|0)|0;Q=N?P:0-P|0;R=t;S=M;T=O}f[R>>2]=Q;O=f[j>>2]|0;do if((O|0)<=-1){if((S|0)<0){M=f[t>>2]|0;W=(M|0)>-1?M:0-M|0;X=M}else{M=f[t>>2]|0;W=(f[w>>2]|0)-((M|0)>-1?M:0-M|0)|0;X=M}if((X|0)<0){Y=(S|0)>-1?S:0-S|0;Z=W;_=X;break}else{Y=(f[w>>2]|0)-((S|0)>-1?S:0-S|0)|0;Z=W;_=X;break}}else{M=f[t>>2]|0;Y=M+T|0;Z=T+S|0;_=M}while(0);M=(Z|0)==0;P=(Y|0)==0;N=f[w>>2]|0;do if(Y|Z){H=(N|0)==(Y|0);if(!(M&H)){q=(N|0)==(Z|0);if(!(P&q)){if(M&(T|0)<(Y|0)){$=0;aa=(T<<1)-Y|0;break}if(q&(T|0)>(Y|0)){$=Z;aa=(T<<1)-Y|0;break}if(H&(T|0)>(Z|0)){$=(T<<1)-Z|0;aa=Y;break}if(P){$=(T|0)<(Z|0)?(T<<1)-Z|0:Z;aa=0}else{$=Z;aa=Y}}else{$=Z;aa=Z}}else{$=Y;aa=Y}}else{$=N;aa=N}while(0);P=0-S|0;M=0-_|0;f[j>>2]=0-O;f[r>>2]=P;f[t>>2]=M;if((O|0)<1){ba=T-_|0;ca=T-S|0}else{H=(_|0)<1?M:_;M=(S|0)<1?P:S;ba=(_|0)>0?M:N-M|0;ca=(S|0)>0?H:N-H|0}H=(ca|0)==0;M=(ba|0)==0;do if(((ba|ca|0)!=0?(P=(N|0)==(ba|0),!(H&P)):0)?(q=(N|0)==(ca|0),!(M&q)):0){if(H&(T|0)<(ba|0)){da=0;ea=(T<<1)-ba|0;break}if(q&(T|0)>(ba|0)){da=N;ea=(T<<1)-ba|0;break}if(P&(T|0)>(ca|0)){da=(T<<1)-ca|0;ea=N;break}if(M){da=(T|0)<(ca|0)?(T<<1)-ca|0:ca;ea=0}else{da=ca;ea=ba}}else{da=N;ea=N}while(0);N=K<<1;M=b+(N<<2)|0;H=M+4|0;O=f[H>>2]|0;f[h>>2]=f[M>>2];f[x>>2]=O;f[i>>2]=$;f[y>>2]=aa;Od(d,n,h,i);O=f[d>>2]|0;f[k>>2]=O;P=f[z>>2]|0;f[A>>2]=P;q=f[H>>2]|0;f[h>>2]=f[M>>2];f[B>>2]=q;f[i>>2]=da;f[C>>2]=ea;Od(d,n,h,i);q=f[d>>2]|0;f[l>>2]=q;M=f[D>>2]|0;f[E>>2]=M;H=f[v>>2]|0;if((H|0)>=(O|0))if((O|0)<(0-H|0))fa=(f[F>>2]|0)+O|0;else fa=O;else fa=O-(f[F>>2]|0)|0;f[k>>2]=fa;if((H|0)>=(P|0))if((P|0)<(0-H|0))ga=(f[F>>2]|0)+P|0;else ga=P;else ga=P-(f[F>>2]|0)|0;f[a>>2]=ga;if((H|0)>=(q|0))if((q|0)<(0-H|0))ha=(f[F>>2]|0)+q|0;else ha=q;else ha=q-(f[F>>2]|0)|0;f[l>>2]=ha;if((H|0)>=(M|0))if((M|0)<(0-H|0))ia=(f[F>>2]|0)+M|0;else ia=M;else ia=M-(f[F>>2]|0)|0;f[G>>2]=ia;if((((ga|0)>-1?ga:0-ga|0)+((fa|0)>-1?fa:0-fa|0)|0)<(((ha|0)>-1?ha:0-ha|0)+((ia|0)>-1?ia:0-ia|0)|0)){fj(g,0);ja=k}else{fj(g,1);ja=l}M=f[ja>>2]|0;if((M|0)<0)ka=(f[F>>2]|0)+M|0;else ka=M;M=c+(N<<2)|0;f[M>>2]=ka;N=f[ja+4>>2]|0;if((N|0)<0)la=(f[F>>2]|0)+N|0;else la=N;f[M+4>>2]=la;K=K+1|0;if((K|0)>=(s|0)){ma=5;break}M=f[p>>2]|0;L=f[M>>2]|0;if((f[M+4>>2]|0)-L>>2>>>0<=K>>>0){J=M;ma=6;break}}if((ma|0)==5){u=e;return 1}else if((ma|0)==6)aq(J);return 0}function uc(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0,p=0,q=0,r=0,s=0,t=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=Oa,T=Oa,U=Oa,V=0,X=0,Y=0,Z=0,_=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0;e=u;u=u+64|0;g=e+36|0;h=e+24|0;i=e+12|0;j=e;k=g+16|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;f[g+12>>2]=0;n[k>>2]=$(1.0);l=a+80|0;m=f[l>>2]|0;f[j>>2]=0;o=j+4|0;f[o>>2]=0;f[j+8>>2]=0;if(m){if(m>>>0>1073741823)aq(j);p=m<<2;q=ln(p)|0;f[j>>2]=q;r=q+(m<<2)|0;f[j+8>>2]=r;sj(q|0,0,p|0)|0;f[o>>2]=r;r=f[d>>2]|0;d=c+48|0;p=c+40|0;q=i+4|0;m=i+8|0;s=g+4|0;t=g+12|0;v=g+8|0;w=a+40|0;x=a+64|0;y=0;z=0;while(1){A=d;B=f[A>>2]|0;C=f[A+4>>2]|0;A=p;D=un(f[A>>2]|0,f[A+4>>2]|0,r+z|0,0)|0;A=Vn(D|0,I|0,B|0,C|0)|0;C=(f[f[c>>2]>>2]|0)+A|0;A=h;B=C;D=A+12|0;do{b[A>>0]=b[B>>0]|0;A=A+1|0;B=B+1|0}while((A|0)<(D|0));im(i|0,C|0,12)|0;B=qg(g,i)|0;if(!B){A=f[i>>2]|0;D=f[q>>2]|0;E=f[m>>2]|0;F=((A^318)+239^D)+239^E;G=f[s>>2]|0;H=(G|0)==0;a:do if(!H){J=G+-1|0;K=(J&G|0)==0;if(!K)if(F>>>0>>0)L=F;else L=(F>>>0)%(G>>>0)|0;else L=F&J;M=f[(f[g>>2]|0)+(L<<2)>>2]|0;if((M|0)!=0?(N=f[M>>2]|0,(N|0)!=0):0){if(K){K=N;while(1){M=f[K+4>>2]|0;if(!((M|0)==(F|0)|(M&J|0)==(L|0))){O=L;P=29;break a}if(((f[K+8>>2]|0)==(A|0)?(f[K+12>>2]|0)==(D|0):0)?(f[K+16>>2]|0)==(E|0):0)break a;K=f[K>>2]|0;if(!K){O=L;P=29;break a}}}else Q=N;while(1){K=f[Q+4>>2]|0;if((K|0)!=(F|0)){if(K>>>0>>0)R=K;else R=(K>>>0)%(G>>>0)|0;if((R|0)!=(L|0)){O=L;P=29;break a}}if(((f[Q+8>>2]|0)==(A|0)?(f[Q+12>>2]|0)==(D|0):0)?(f[Q+16>>2]|0)==(E|0):0)break a;Q=f[Q>>2]|0;if(!Q){O=L;P=29;break}}}else{O=L;P=29}}else{O=0;P=29}while(0);if((P|0)==29){P=0;C=ln(24)|0;f[C+8>>2]=A;f[C+12>>2]=D;f[C+16>>2]=E;f[C+20>>2]=y;f[C+4>>2]=F;f[C>>2]=0;S=$(((f[t>>2]|0)+1|0)>>>0);T=$(G>>>0);U=$(n[k>>2]);do if(H|$(U*T)>>0<3|(G+-1&G|0)!=0)&1;K=~~$(W($(S/U)))>>>0;Xh(g,N>>>0>>0?K:N);N=f[s>>2]|0;K=N+-1|0;if(!(K&N)){V=N;X=K&F;break}if(F>>>0>>0){V=N;X=F}else{V=N;X=(F>>>0)%(N>>>0)|0}}else{V=G;X=O}while(0);G=(f[g>>2]|0)+(X<<2)|0;F=f[G>>2]|0;if(!F){f[C>>2]=f[v>>2];f[v>>2]=C;f[G>>2]=v;G=f[C>>2]|0;if(G|0){H=f[G+4>>2]|0;G=V+-1|0;if(G&V)if(H>>>0>>0)Y=H;else Y=(H>>>0)%(V>>>0)|0;else Y=H&G;Z=(f[g>>2]|0)+(Y<<2)|0;P=42}}else{f[C>>2]=f[F>>2];Z=F;P=42}if((P|0)==42){P=0;f[Z>>2]=C}f[t>>2]=(f[t>>2]|0)+1}F=w;G=f[F>>2]|0;H=un(G|0,f[F+4>>2]|0,y|0,0)|0;kh((f[f[x>>2]>>2]|0)+H|0,h|0,G|0)|0;G=f[j>>2]|0;f[G+(z<<2)>>2]=y;_=y+1|0;aa=G}else{G=f[j>>2]|0;f[G+(z<<2)>>2]=f[B+20>>2];_=y;aa=G}z=z+1|0;ba=f[l>>2]|0;if(z>>>0>=ba>>>0)break;else y=_}if((_|0)==(ba|0))ca=aa;else{y=a+84|0;if(!(b[y>>0]|0)){z=f[a+72>>2]|0;h=f[a+68>>2]|0;x=h;if((z|0)==(h|0))da=aa;else{w=z-h>>2;h=0;do{z=x+(h<<2)|0;f[z>>2]=f[aa+(f[z>>2]<<2)>>2];h=h+1|0}while(h>>>0>>0);da=aa}}else{b[y>>0]=0;y=a+68|0;aa=a+72|0;w=f[aa>>2]|0;h=f[y>>2]|0;x=w-h>>2;z=h;h=w;if(ba>>>0<=x>>>0)if(ba>>>0>>0?(w=z+(ba<<2)|0,(w|0)!=(h|0)):0){f[aa>>2]=h+(~((h+-4-w|0)>>>2)<<2);ea=ba}else ea=ba;else{Ch(y,ba-x|0,1220);ea=f[l>>2]|0}x=f[j>>2]|0;if(!ea)da=x;else{j=f[a+68>>2]|0;a=0;do{f[j+(a<<2)>>2]=f[x+(a<<2)>>2];a=a+1|0}while(a>>>0>>0);da=x}}f[l>>2]=_;ca=da}if(!ca)fa=_;else{da=f[o>>2]|0;if((da|0)!=(ca|0))f[o>>2]=da+(~((da+-4-ca|0)>>>2)<<2);Oq(ca);fa=_}}else fa=0;_=f[g+8>>2]|0;if(_|0){ca=_;do{_=ca;ca=f[ca>>2]|0;Oq(_)}while((ca|0)!=0)}ca=f[g>>2]|0;f[g>>2]=0;if(!ca){u=e;return fa|0}Oq(ca);u=e;return fa|0} -function di(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=u;u=u+16|0;e=d;Je(e,a+40|0,f[a+8>>2]|0,b,c);gj(a,e);a=f[e>>2]|0;f[e>>2]=0;if(!a){u=d;return 1}e=a+88|0;c=f[e>>2]|0;f[e>>2]=0;if(c|0){e=f[c+8>>2]|0;if(e|0){b=c+12|0;if((f[b>>2]|0)!=(e|0))f[b>>2]=e;Oq(e)}Oq(c)}c=f[a+68>>2]|0;if(c|0){e=a+72|0;b=f[e>>2]|0;if((b|0)!=(c|0))f[e>>2]=b+(~((b+-4-c|0)>>>2)<<2);Oq(c)}c=a+64|0;b=f[c>>2]|0;f[c>>2]=0;if(b|0){c=f[b>>2]|0;if(c|0){e=b+4|0;if((f[e>>2]|0)!=(c|0))f[e>>2]=c;Oq(c)}Oq(b)}Oq(a);u=d;return 1}function ei(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){Bd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;Bd(a,e);return}function fi(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0;e=u;u=u+48|0;g=e;h=e+32|0;if(!c){i=0;u=e;return i|0}Gn(g);if((dm(c,0)|0)!=-1?Qa[f[(f[c>>2]|0)+16>>2]&127](c)|0:0){Va[f[(f[c>>2]|0)+20>>2]&127](c);ch(h,a,c,g);c=(f[h>>2]|0)==0;a=h+4|0;if((b[a+11>>0]|0)<0)Oq(f[a>>2]|0);if(c){c=f[g>>2]|0;a=g+4|0;rg(d,c,c+((f[a>>2]|0)-c)|0);j=(f[a>>2]|0)-(f[g>>2]|0)|0}else j=0}else j=0;a=g+12|0;c=f[a>>2]|0;f[a>>2]=0;if(c|0)Oq(c);c=f[g>>2]|0;if(c|0){a=g+4|0;if((f[a>>2]|0)!=(c|0))f[a>>2]=c;Oq(c)}i=j;u=e;return i|0}function gi(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=u;u=u+16|0;e=d;Fe(e,a+40|0,f[a+8>>2]|0,b,c);gj(a,e);a=f[e>>2]|0;f[e>>2]=0;if(!a){u=d;return 1}e=a+88|0;c=f[e>>2]|0;f[e>>2]=0;if(c|0){e=f[c+8>>2]|0;if(e|0){b=c+12|0;if((f[b>>2]|0)!=(e|0))f[b>>2]=e;Oq(e)}Oq(c)}c=f[a+68>>2]|0;if(c|0){e=a+72|0;b=f[e>>2]|0;if((b|0)!=(c|0))f[e>>2]=b+(~((b+-4-c|0)>>>2)<<2);Oq(c)}c=a+64|0;b=f[c>>2]|0;f[c>>2]=0;if(b|0){c=f[b>>2]|0;if(c|0){e=b+4|0;if((f[e>>2]|0)!=(c|0))f[e>>2]=c;Oq(c)}Oq(b)}Oq(a);u=d;return 1}function hi(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0;b=f[a>>2]|0;if(!b)return;c=a+4|0;d=f[c>>2]|0;if((d|0)==(b|0))e=b;else{g=d;do{d=g+-4|0;f[c>>2]=d;h=f[d>>2]|0;f[d>>2]=0;if(h|0){d=h+88|0;i=f[d>>2]|0;f[d>>2]=0;if(i|0){d=f[i+8>>2]|0;if(d|0){j=i+12|0;if((f[j>>2]|0)!=(d|0))f[j>>2]=d;Oq(d)}Oq(i)}i=f[h+68>>2]|0;if(i|0){d=h+72|0;j=f[d>>2]|0;if((j|0)!=(i|0))f[d>>2]=j+(~((j+-4-i|0)>>>2)<<2);Oq(i)}i=h+64|0;j=f[i>>2]|0;f[i>>2]=0;if(j|0){i=f[j>>2]|0;if(i|0){d=j+4|0;if((f[d>>2]|0)!=(i|0))f[d>>2]=i;Oq(i)}Oq(j)}Oq(h)}g=f[c>>2]|0}while((g|0)!=(b|0));e=f[a>>2]|0}Oq(e);return}function ii(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+8|0;if(!(Ie(a,c)|0)){i=0;u=d;return i|0}j=a+36|0;k=a+40|0;a=f[j>>2]|0;if((f[k>>2]|0)==(a|0)){i=1;u=d;return i|0}l=c+16|0;m=c+4|0;n=h+1|0;o=0;p=a;do{a=f[p+(o<<2)>>2]|0;q=Qa[f[(f[a>>2]|0)+32>>2]&127](a)|0;b[h>>0]=q;q=l;a=f[q+4>>2]|0;if(!((a|0)>0|(a|0)==0&(f[q>>2]|0)>>>0>0)){f[g>>2]=f[m>>2];f[e>>2]=f[g>>2];Me(c,e,h,n)|0}o=o+1|0;p=f[j>>2]|0}while(o>>>0<(f[k>>2]|0)-p>>2>>>0);i=1;u=d;return i|0}function ji(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=u;u=u+16|0;d=c;lp(a);f[a+16>>2]=0;f[a+20>>2]=0;f[a+12>>2]=a+16;e=a+24|0;lp(e);f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;a=ln(32)|0;f[d>>2]=a;f[d+8>>2]=-2147483616;f[d+4>>2]=20;g=a;h=14538;i=g+20|0;do{b[g>>0]=b[h>>0]|0;g=g+1|0;h=h+1|0}while((g|0)<(i|0));b[a+20>>0]=0;Vj(e,d,1);if((b[d+11>>0]|0)<0)Oq(f[d>>2]|0);f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;a=ln(32)|0;f[d>>2]=a;f[d+8>>2]=-2147483616;f[d+4>>2]=22;g=a;h=14559;i=g+22|0;do{b[g>>0]=b[h>>0]|0;g=g+1|0;h=h+1|0}while((g|0)<(i|0));b[a+22>>0]=0;Vj(e,d,1);if((b[d+11>>0]|0)>=0){u=c;return}Oq(f[d>>2]|0);u=c;return}function ki(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0;b=f[a+4>>2]|0;c=a+8|0;d=f[c>>2]|0;if((d|0)!=(b|0)){e=d;do{d=e+-4|0;f[c>>2]=d;g=f[d>>2]|0;f[d>>2]=0;if(g|0){d=g+88|0;h=f[d>>2]|0;f[d>>2]=0;if(h|0){d=f[h+8>>2]|0;if(d|0){i=h+12|0;if((f[i>>2]|0)!=(d|0))f[i>>2]=d;Oq(d)}Oq(h)}h=f[g+68>>2]|0;if(h|0){d=g+72|0;i=f[d>>2]|0;if((i|0)!=(h|0))f[d>>2]=i+(~((i+-4-h|0)>>>2)<<2);Oq(h)}h=g+64|0;i=f[h>>2]|0;f[h>>2]=0;if(i|0){h=f[i>>2]|0;if(h|0){d=i+4|0;if((f[d>>2]|0)!=(h|0))f[d>>2]=h;Oq(h)}Oq(i)}Oq(g)}e=f[c>>2]|0}while((e|0)!=(b|0))}b=f[a>>2]|0;if(!b)return;Oq(b);return}function li(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;f[g>>2]=f[a+12>>2];h=b+16|0;i=h;j=f[i>>2]|0;k=f[i+4>>2]|0;if((k|0)>0|(k|0)==0&j>>>0>0){l=k;m=j}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;j=h;l=f[j+4>>2]|0;m=f[j>>2]|0}f[g>>2]=f[a+20>>2];if((l|0)>0|(l|0)==0&m>>>0>0){u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;u=c;return 1}function mi(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=u;u=u+16|0;d=c;e=ln(16)|0;f[d>>2]=e;f[d+8>>2]=-2147483632;f[d+4>>2]=14;g=e;h=14408;i=g+14|0;do{b[g>>0]=b[h>>0]|0;g=g+1|0;h=h+1|0}while((g|0)<(i|0));b[e+14>>0]=0;e=Hk(a,d,-1)|0;if((b[d+11>>0]|0)<0)Oq(f[d>>2]|0);j=ln(16)|0;f[d>>2]=j;f[d+8>>2]=-2147483632;f[d+4>>2]=14;g=j;h=14423;i=g+14|0;do{b[g>>0]=b[h>>0]|0;g=g+1|0;h=h+1|0}while((g|0)<(i|0));b[j+14>>0]=0;j=Hk(a,d,-1)|0;if((b[d+11>>0]|0)>=0){k=(e|0)<(j|0);l=k?j:e;m=(l|0)==-1;n=m?5:l;u=c;return n|0}Oq(f[d>>2]|0);k=(e|0)<(j|0);l=k?j:e;m=(l|0)==-1;n=m?5:l;u=c;return n|0}function ni(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=u;u=u+16|0;d=c+8|0;e=c+4|0;g=c;f[g>>2]=f[a+12>>2];h=b+16|0;i=h;j=f[i>>2]|0;k=f[i+4>>2]|0;if((k|0)>0|(k|0)==0&j>>>0>0){l=k;m=j}else{f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;j=h;l=f[j+4>>2]|0;m=f[j>>2]|0}f[g>>2]=f[a+16>>2];if((l|0)>0|(l|0)==0&m>>>0>0){u=c;return 1}f[e>>2]=f[b+4>>2];f[d>>2]=f[e>>2];Me(b,d,g,g+4|0)|0;u=c;return 1}function oi(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;g=ln(32)|0;f[a>>2]=g;f[a+4>>2]=c+8;c=a+8|0;b[c>>0]=0;h=g+8|0;f[h>>2]=f[e>>2];f[h+4>>2]=f[e+4>>2];f[h+8>>2]=f[e+8>>2];f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;h=g+20|0;i=e+12|0;f[h>>2]=0;f[g+24>>2]=0;f[g+28>>2]=0;g=e+16|0;e=f[g>>2]|0;j=f[i>>2]|0;k=e-j|0;if(!k){l=j;m=e;n=0}else{Fi(h,k);l=f[i>>2]|0;m=f[g>>2]|0;n=f[h>>2]|0}kh(n|0,l|0,m-l|0)|0;b[c>>0]=1;c=f[a>>2]|0;f[c+4>>2]=d;f[c>>2]=0;return}function pi(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0;b=a+32|0;ld(a,b);c=a+80|0;d=f[c>>2]|0;if((d|0?(e=a+84|0,(f[e>>2]|0)>0):0)?(ld(d,b),(f[e>>2]|0)>1):0){d=1;do{ld((f[c>>2]|0)+(d<<5)|0,b);d=d+1|0}while((d|0)<(f[e>>2]|0))}e=a+136|0;d=a+140|0;a=f[e>>2]|0;if((f[d>>2]|0)==(a|0))return;c=0;g=a;while(1){a=g;ci((f[a+(c*12|0)+4>>2]|0)-(f[a+(c*12|0)>>2]|0)>>2,b)|0;a=f[e>>2]|0;h=f[a+(c*12|0)>>2]|0;i=(f[a+(c*12|0)+4>>2]|0)-h>>2;if(!i)j=a;else{Mc(h,i,1,0,b)|0;j=f[e>>2]|0}c=c+1|0;if(c>>>0>=(((f[d>>2]|0)-j|0)/12|0)>>>0)break;else g=j}return}function qi(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;e=d+16|0;g=f[e>>2]|0;if(!g)if(!(vl(d)|0)){h=f[e>>2]|0;i=5}else j=0;else{h=g;i=5}a:do if((i|0)==5){g=d+20|0;e=f[g>>2]|0;k=e;if((h-e|0)>>>0>>0){j=Sa[f[d+36>>2]&31](d,a,c)|0;break}b:do if((b[d+75>>0]|0)>-1){e=c;while(1){if(!e){l=0;m=a;n=c;o=k;break b}p=e+-1|0;if((b[a+p>>0]|0)==10)break;else e=p}p=Sa[f[d+36>>2]&31](d,a,e)|0;if(p>>>0>>0){j=p;break a}l=e;m=a+e|0;n=c-e|0;o=f[g>>2]|0}else{l=0;m=a;n=c;o=k}while(0);kh(o|0,m|0,n|0)|0;f[g>>2]=(f[g>>2]|0)+n;j=l+n|0}while(0);return j|0}function ri(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=a+12|0;d=f[c>>2]|0;f[c>>2]=0;if(d|0){c=f[d+28>>2]|0;if(c|0){e=c;do{c=e;e=f[e>>2]|0;ri(c+8|0);Oq(c)}while((e|0)!=0)}e=d+20|0;c=f[e>>2]|0;f[e>>2]=0;if(c|0)Oq(c);c=f[d+8>>2]|0;if(c|0){e=c;do{c=e;e=f[e>>2]|0;g=c+8|0;h=f[c+20>>2]|0;if(h|0){i=c+24|0;if((f[i>>2]|0)!=(h|0))f[i>>2]=h;Oq(h)}if((b[g+11>>0]|0)<0)Oq(f[g>>2]|0);Oq(c)}while((e|0)!=0)}e=f[d>>2]|0;f[d>>2]=0;if(e|0)Oq(e);Oq(d)}if((b[a+11>>0]|0)>=0)return;Oq(f[a>>2]|0);return}function si(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,o=0;g=u;u=u+32|0;h=g+12|0;i=g;f[h>>2]=0;f[h+4>>2]=0;f[h+8>>2]=0;if((e|0)>0){j=i+11|0;k=i+4|0;l=0;do{if((l|0)>0)An(h,14477)|0;il(i,$(n[d+(l<<2)>>2]));m=b[j>>0]|0;o=m<<24>>24<0;lj(h,o?f[i>>2]|0:i,o?f[k>>2]|0:m&255)|0;if((b[j>>0]|0)<0)Oq(f[i>>2]|0);l=l+1|0}while((l|0)<(e|0))}am(Ai(a,c)|0,h)|0;if((b[h+11>>0]|0)>=0){u=g;return}Oq(f[h>>2]|0);u=g;return}function ti(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=u;u=u+16|0;d=c;if((Qa[f[(f[b>>2]|0)+20>>2]&127](b)|0)<=0){e=1;u=c;return e|0}g=a+4|0;h=a+20|0;i=a+24|0;j=a+16|0;a=0;while(1){k=f[(f[g>>2]|0)+4>>2]|0;l=dm(k,Ra[f[(f[b>>2]|0)+24>>2]&127](b,a)|0)|0;f[d>>2]=l;if((l|0)==-1)break;k=f[h>>2]|0;if((k|0)==(f[i>>2]|0))Ri(j,d);else{f[k>>2]=l;f[h>>2]=k+4}gl(f[g>>2]|0,f[d>>2]|0)|0;a=a+1|0;if((a|0)>=(Qa[f[(f[b>>2]|0)+20>>2]&127](b)|0)){e=1;m=9;break}}if((m|0)==9){u=c;return e|0}e=0;u=c;return e|0}function ui(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;f[a>>2]=1292;hi(a+60|0);b=f[a+48>>2]|0;if(b|0){c=a+52|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=a+36|0;d=f[b>>2]|0;if(d|0){c=a+40|0;e=f[c>>2]|0;if((e|0)==(d|0))g=d;else{h=e;do{e=h+-24|0;f[c>>2]=e;Va[f[f[e>>2]>>2]&127](e);h=f[c>>2]|0}while((h|0)!=(d|0));g=f[b>>2]|0}Oq(g)}f[a>>2]=1232;g=f[a+16>>2]|0;if(g|0){b=a+20|0;d=f[b>>2]|0;if((d|0)!=(g|0))f[b>>2]=d+(~((d+-4-g|0)>>>2)<<2);Oq(g)}g=f[a+4>>2]|0;if(!g)return;d=a+8|0;a=f[d>>2]|0;if((a|0)!=(g|0))f[d>>2]=a+(~((a+-4-g|0)>>>2)<<2);Oq(g);return}function vi(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;c=u;u=u+32|0;d=c+16|0;e=c+8|0;g=c;h=a+8|0;if(f[h>>2]<<5>>>0>=b>>>0){u=c;return}f[d>>2]=0;i=d+4|0;f[i>>2]=0;j=d+8|0;f[j>>2]=0;if((b|0)<0)aq(d);k=((b+-1|0)>>>5)+1|0;b=ln(k<<2)|0;f[d>>2]=b;f[i>>2]=0;f[j>>2]=k;k=f[a>>2]|0;f[e>>2]=k;f[e+4>>2]=0;b=a+4|0;l=f[b>>2]|0;f[g>>2]=k+(l>>>5<<2);f[g+4>>2]=l&31;zg(d,e,g);g=f[a>>2]|0;f[a>>2]=f[d>>2];f[d>>2]=g;d=f[b>>2]|0;f[b>>2]=f[i>>2];f[i>>2]=d;d=f[h>>2]|0;f[h>>2]=f[j>>2];f[j>>2]=d;if(g|0)Oq(g);u=c;return}function wi(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;b=a+136|0;c=f[b>>2]|0;if(c|0){d=a+140|0;e=f[d>>2]|0;if((e|0)==(c|0))g=c;else{h=e;while(1){e=h+-12|0;f[d>>2]=e;i=f[e>>2]|0;if(!i)j=e;else{e=h+-8|0;k=f[e>>2]|0;if((k|0)!=(i|0))f[e>>2]=k+(~((k+-4-i|0)>>>2)<<2);Oq(i);j=f[d>>2]|0}if((j|0)==(c|0))break;else h=j}g=f[b>>2]|0}Oq(g)}g=f[a+104>>2]|0;if(g|0){b=a+108|0;j=f[b>>2]|0;if((j|0)!=(g|0))f[b>>2]=j+(~((j+-4-g|0)>>>2)<<2);Oq(g)}g=f[a+92>>2]|0;if(!g){uj(a);return}j=a+96|0;b=f[j>>2]|0;if((b|0)!=(g|0))f[j>>2]=b+(~((b+-4-g|0)>>>2)<<2);Oq(g);uj(a);return}function xi(a){a=a|0;var c=0,d=0,e=0,g=0;f[a>>2]=3680;c=a+72|0;d=a+136|0;e=a+4|0;g=e+64|0;do{f[e>>2]=0;e=e+4|0}while((e|0)<(g|0));e=c;g=e+64|0;do{f[e>>2]=0;e=e+4|0}while((e|0)<(g|0));n[d>>2]=$(1.0);d=a+140|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;f[a+164>>2]=-1;d=a+168|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;f[d+24>>2]=0;wn(a+200|0);Gn(a+232|0);d=a+316|0;e=a+264|0;g=e+52|0;do{f[e>>2]=0;e=e+4|0}while((e|0)<(g|0));f[d>>2]=-1;f[a+320>>2]=-1;f[a+324>>2]=0;f[a+328>>2]=2;f[a+332>>2]=7;f[a+336>>2]=0;f[a+340>>2]=0;f[a+344>>2]=0;b[a+352>>0]=0;return}function yi(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;c=a+4|0;d=f[a>>2]|0;e=(f[c>>2]|0)-d|0;g=(e|0)/12|0;h=g+1|0;if(h>>>0>357913941)aq(a);i=a+8|0;j=((f[i>>2]|0)-d|0)/12|0;k=j<<1;l=j>>>0<178956970?(k>>>0>>0?h:k):357913941;do if(l)if(l>>>0>357913941){k=ra(8)|0;Oo(k,16035);f[k>>2]=7256;va(k|0,1112,110)}else{m=ln(l*12|0)|0;break}else m=0;while(0);k=m+(g*12|0)|0;f[k>>2]=f[b>>2];f[k+4>>2]=f[b+4>>2];f[k+8>>2]=f[b+8>>2];b=k+(((e|0)/-12|0)*12|0)|0;if((e|0)>0)kh(b|0,d|0,e|0)|0;f[a>>2]=b;f[c>>2]=k+12;f[i>>2]=m+(l*12|0);if(!d)return;Oq(d);return}function zi(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;g=a+16|0;h=g;i=f[h+4>>2]|0;if((d|0)<0|(d|0)==0&c>>>0<1|((i|0)>0|(i|0)==0&(f[h>>2]|0)>>>0>0)){j=0;return j|0}b[a+24>>0]=e&1;h=Vn(c|0,d|0,7,0)|0;d=Ik(h|0,I|0,8,0)|0;h=I;c=g;f[c>>2]=d;f[c+4>>2]=h;c=a+4|0;g=f[c>>2]|0;i=f[a>>2]|0;k=g-i|0;l=Vn(k|0,0,8,0)|0;m=e?l:k;l=Vn(m|0,(e?I:0)|0,d|0,h|0)|0;h=i;i=g;if(k>>>0>=l>>>0)if(k>>>0>l>>>0?(g=h+l|0,(g|0)!=(i|0)):0){f[c>>2]=g;n=h}else n=h;else{Fi(a,l-k|0);n=f[a>>2]|0}k=ln(8)|0;f[k>>2]=n+m;f[k+4>>2]=0;m=a+12|0;a=f[m>>2]|0;f[m>>2]=k;if(!a){j=1;return j|0}Oq(a);j=1;return j|0}function Ai(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0;c=u;u=u+16|0;d=c;e=yg(a,d,b)|0;g=f[e>>2]|0;if(g|0){h=g;i=h+28|0;u=c;return i|0}g=ln(40)|0;pj(g+16|0,b);b=g+28|0;f[b>>2]=0;f[b+4>>2]=0;f[b+8>>2]=0;b=f[d>>2]|0;f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=b;f[e>>2]=g;b=f[f[a>>2]>>2]|0;if(!b)j=g;else{f[a>>2]=b;j=f[e>>2]|0}Oe(f[a+4>>2]|0,j);j=a+8|0;f[j>>2]=(f[j>>2]|0)+1;h=g;i=h+28|0;u=c;return i|0}function Bi(a,c,d,e,g,h,i,j){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;j=j|0;var k=0,l=0,m=0,n=0,o=0,p=0;k=u;u=u+16|0;l=k;if((-18-c|0)>>>0>>0)aq(a);if((b[a+11>>0]|0)<0)m=f[a>>2]|0;else m=a;if(c>>>0<2147483623){n=d+c|0;d=c<<1;o=n>>>0>>0?d:n;p=o>>>0<11?11:o+16&-16}else p=-17;o=ln(p)|0;if(g|0)Fo(o,m,g)|0;if(i|0)Fo(o+g|0,j,i)|0;j=e-h|0;e=j-g|0;if(e|0)Fo(o+g+i|0,m+g+h|0,e)|0;if((c|0)!=10)Oq(m);f[a>>2]=o;f[a+8>>2]=p|-2147483648;p=j+i|0;f[a+4>>2]=p;b[l>>0]=0;up(o+p|0,l);u=k;return}function Ci(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=a+8|0;d=f[c>>2]|0;e=a+4|0;g=f[e>>2]|0;if(d-g>>2>>>0>=b>>>0){sj(g|0,0,b<<2|0)|0;f[e>>2]=g+(b<<2);return}h=f[a>>2]|0;i=g-h|0;g=i>>2;j=g+b|0;if(j>>>0>1073741823)aq(a);k=d-h|0;d=k>>1;l=k>>2>>>0<536870911?(d>>>0>>0?j:d):1073741823;do if(l)if(l>>>0>1073741823){d=ra(8)|0;Oo(d,16035);f[d>>2]=7256;va(d|0,1112,110)}else{d=ln(l<<2)|0;m=d;n=d;break}else{m=0;n=0}while(0);d=m+(g<<2)|0;sj(d|0,0,b<<2|0)|0;if((i|0)>0)kh(n|0,h|0,i|0)|0;f[a>>2]=m;f[e>>2]=d+(b<<2);f[c>>2]=m+(l<<2);if(!h)return;Oq(h);return}function Di(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;g=ln(32)|0;f[a>>2]=g;f[a+4>>2]=c+8;c=a+8|0;b[c>>0]=0;pj(g+8|0,e);h=g+20|0;i=e+12|0;f[h>>2]=0;f[g+24>>2]=0;f[g+28>>2]=0;g=e+16|0;e=f[g>>2]|0;j=f[i>>2]|0;k=e-j|0;if(!k){l=j;m=e;n=0}else{Fi(h,k);l=f[i>>2]|0;m=f[g>>2]|0;n=f[h>>2]|0}kh(n|0,l|0,m-l|0)|0;b[c>>0]=1;c=f[a>>2]|0;f[c+4>>2]=d;f[c>>2]=0;return}function Ei(a,c,d){a=a|0;c=c|0;d=$(d);var e=0,g=0,h=0,i=0,j=0,k=0.0,l=0,m=0,n=0,o=0;e=u;u=u+16|0;g=e;h=c+11|0;i=b[h>>0]|0;if(i<<24>>24<0)j=f[c+4>>2]|0;else j=i&255;k=+d;l=j;j=i;while(1){if(j<<24>>24<0)m=f[c>>2]|0;else m=c;p[g>>3]=k;n=Bn(m,l+1|0,18562,g)|0;if((n|0)>-1)if(n>>>0>l>>>0)o=n;else break;else o=l<<1|1;Hj(c,o,0);l=o;j=b[h>>0]|0}Hj(c,n,0);f[a>>2]=f[c>>2];f[a+4>>2]=f[c+4>>2];f[a+8>>2]=f[c+8>>2];a=0;while(1){if((a|0)==3)break;f[c+(a<<2)>>2]=0;a=a+1|0}u=e;return}function Fi(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;d=a+8|0;e=f[d>>2]|0;g=a+4|0;h=f[g>>2]|0;if((e-h|0)>>>0>=c>>>0){i=c;j=h;do{b[j>>0]=0;j=(f[g>>2]|0)+1|0;f[g>>2]=j;i=i+-1|0}while((i|0)!=0);return}i=f[a>>2]|0;j=h-i|0;h=j+c|0;if((h|0)<0)aq(a);k=e-i|0;i=k<<1;e=k>>>0<1073741823?(i>>>0>>0?h:i):2147483647;if(!e)l=0;else l=ln(e)|0;i=l+j|0;j=l+e|0;e=c;c=i;l=i;do{b[l>>0]=0;l=c+1|0;c=l;e=e+-1|0}while((e|0)!=0);e=f[a>>2]|0;l=(f[g>>2]|0)-e|0;h=i+(0-l)|0;if((l|0)>0)kh(h|0,e|0,l|0)|0;f[a>>2]=h;f[g>>2]=c;f[d>>2]=j;if(!e)return;Oq(e);return}function Gi(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=a+4|0;d=f[c>>2]|0;e=f[a>>2]|0;g=(d-e|0)/136|0;h=d;if(g>>>0>>0){Ge(a,b-g|0);return}if(g>>>0<=b>>>0)return;g=e+(b*136|0)|0;if((g|0)==(h|0))return;else i=h;do{f[c>>2]=i+-136;h=f[i+-20>>2]|0;if(h|0){b=i+-16|0;e=f[b>>2]|0;if((e|0)!=(h|0))f[b>>2]=e+(~((e+-4-h|0)>>>2)<<2);Oq(h)}h=f[i+-32>>2]|0;if(h|0){e=i+-28|0;b=f[e>>2]|0;if((b|0)!=(h|0))f[e>>2]=b+(~((b+-4-h|0)>>>2)<<2);Oq(h)}Mi(i+-132|0);i=f[c>>2]|0}while((i|0)!=(g|0));return}function Hi(a,b){a=a|0;b=b|0;var c=0,d=Oa,e=0,g=0;if((b|0)!=1)if(!(b+-1&b))c=b;else c=cb(b)|0;else c=2;b=f[a+4>>2]|0;if(c>>>0>b>>>0){Sd(a,c);return}if(c>>>0>=b>>>0)return;d=$((f[a+12>>2]|0)>>>0);e=~~$(W($(d/$(n[a+16>>2]))))>>>0;if(b>>>0>2&(b+-1&b|0)==0)g=1<<32-(_(e+-1|0)|0);else g=cb(e)|0;e=c>>>0>>0?g:c;if(e>>>0>=b>>>0)return;Sd(a,e);return}function Ii(a){a=a|0;var b=0,c=0,d=0;b=f[a+76>>2]|0;if(b|0){c=a+80|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+64>>2]|0;if(b|0){d=a+68|0;if((f[d>>2]|0)!=(b|0))f[d>>2]=b;Oq(b)}b=f[a+48>>2]|0;if(b|0){d=a+52|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+24>>2]|0;if(b|0){c=a+28|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+12>>2]|0;if(b|0){d=a+16|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a>>2]|0;if(!b)return;c=a+4|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);Oq(b);return}function Ji(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;e=u;u=u+16|0;g=e;h=c+11|0;i=b[h>>0]|0;if(i<<24>>24<0)j=f[c+4>>2]|0;else j=i&255;k=j;j=i;while(1){if(j<<24>>24<0)l=f[c>>2]|0;else l=c;f[g>>2]=d;m=Bn(l,k+1|0,18559,g)|0;if((m|0)>-1)if(m>>>0>k>>>0)n=m;else break;else n=k<<1|1;Hj(c,n,0);k=n;j=b[h>>0]|0}Hj(c,m,0);f[a>>2]=f[c>>2];f[a+4>>2]=f[c+4>>2];f[a+8>>2]=f[c+8>>2];a=0;while(1){if((a|0)==3)break;f[c+(a<<2)>>2]=0;a=a+1|0}u=e;return}function Ki(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;b=a+8|0;c=f[b>>2]|0;if((c|0)<0){d=0;return d|0}e=a+4|0;a=f[e>>2]|0;g=a+4|0;h=f[g>>2]|0;i=f[a>>2]|0;j=h-i>>2;k=i;i=h;if(c>>>0<=j>>>0)if(c>>>0>>0?(h=k+(c<<2)|0,(h|0)!=(i|0)):0){f[g>>2]=i+(~((i+-4-h|0)>>>2)<<2);l=c}else l=c;else{Ci(a,c-j|0);l=f[b>>2]|0}if((l|0)<=0){d=1;return d|0}b=f[e>>2]|0;e=f[b>>2]|0;j=(f[b+4>>2]|0)-e>>2;c=e;e=0;while(1){if(j>>>0<=e>>>0){m=10;break}f[c+(e<<2)>>2]=e;e=e+1|0;if((e|0)>=(l|0)){d=1;m=12;break}}if((m|0)==10)aq(b);else if((m|0)==12)return d|0;return 0}function Li(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0;e=u;u=u+16|0;g=e;h=ln(16)|0;f[g>>2]=h;f[g+8>>2]=-2147483632;f[g+4>>2]=14;i=h;j=14408;k=i+14|0;do{b[i>>0]=b[j>>0]|0;i=i+1|0;j=j+1|0}while((i|0)<(k|0));b[h+14>>0]=0;Xj(a,g,c);if((b[g+11>>0]|0)<0)Oq(f[g>>2]|0);c=ln(16)|0;f[g>>2]=c;f[g+8>>2]=-2147483632;f[g+4>>2]=14;i=c;j=14423;k=i+14|0;do{b[i>>0]=b[j>>0]|0;i=i+1|0;j=j+1|0}while((i|0)<(k|0));b[c+14>>0]=0;Xj(a,g,d);if((b[g+11>>0]|0)>=0){u=e;return}Oq(f[g>>2]|0);u=e;return}function Mi(a){a=a|0;var b=0,c=0,d=0;b=f[a+84>>2]|0;if(b|0){c=a+88|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+72>>2]|0;if(b|0){d=a+76|0;if((f[d>>2]|0)!=(b|0))f[d>>2]=b;Oq(b)}b=f[a+52>>2]|0;if(b|0){d=a+56|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+40>>2]|0;if(b|0){c=a+44|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+28>>2]|0;if(b|0){d=a+32|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+12>>2]|0;if(b|0)Oq(b);b=f[a>>2]|0;if(!b)return;Oq(b);return}function Ni(a){a=a|0;var b=0,c=0,d=0,e=0;f[a>>2]=1352;b=a+32|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0){b=c+88|0;d=f[b>>2]|0;f[b>>2]=0;if(d|0){b=f[d+8>>2]|0;if(b|0){e=d+12|0;if((f[e>>2]|0)!=(b|0))f[e>>2]=b;Oq(b)}Oq(d)}d=f[c+68>>2]|0;if(d|0){b=c+72|0;e=f[b>>2]|0;if((e|0)!=(d|0))f[b>>2]=e+(~((e+-4-d|0)>>>2)<<2);Oq(d)}d=c+64|0;e=f[d>>2]|0;f[d>>2]=0;if(e|0){d=f[e>>2]|0;if(d|0){b=e+4|0;if((f[b>>2]|0)!=(d|0))f[b>>2]=d;Oq(d)}Oq(e)}Oq(c)}c=f[a+16>>2]|0;if(!c)return;e=a+20|0;a=f[e>>2]|0;if((a|0)!=(c|0))f[e>>2]=a+(~((a+-4-c|0)>>>2)<<2);Oq(c);return}function Oi(){var a=0,b=0,c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0;a=u;u=u+48|0;b=a+32|0;c=a+24|0;d=a+16|0;e=a;g=a+36|0;a=sn()|0;if(a|0?(h=f[a>>2]|0,h|0):0){a=h+48|0;i=f[a>>2]|0;j=f[a+4>>2]|0;if(!((i&-256|0)==1126902528&(j|0)==1129074247)){f[c>>2]=18701;Hn(18651,c)}if((i|0)==1126902529&(j|0)==1129074247)k=f[h+44>>2]|0;else k=h+80|0;f[g>>2]=k;k=f[h>>2]|0;h=f[k+4>>2]|0;if(Sa[f[(f[258]|0)+16>>2]&31](1032,k,g)|0){k=f[g>>2]|0;g=Qa[f[(f[k>>2]|0)+8>>2]&127](k)|0;f[e>>2]=18701;f[e+4>>2]=h;f[e+8>>2]=g;Hn(18565,e)}else{f[d>>2]=18701;f[d+4>>2]=h;Hn(18610,d)}}Hn(18689,b)}function Pi(a,c,d){a=a|0;c=c|0;d=d|0;var e=0;do if(a){if(c>>>0<128){b[a>>0]=c;e=1;break}d=(Jq()|0)+188|0;if(!(f[f[d>>2]>>2]|0))if((c&-128|0)==57216){b[a>>0]=c;e=1;break}else{d=Vq()|0;f[d>>2]=84;e=-1;break}if(c>>>0<2048){b[a>>0]=c>>>6|192;b[a+1>>0]=c&63|128;e=2;break}if(c>>>0<55296|(c&-8192|0)==57344){b[a>>0]=c>>>12|224;b[a+1>>0]=c>>>6&63|128;b[a+2>>0]=c&63|128;e=3;break}if((c+-65536|0)>>>0<1048576){b[a>>0]=c>>>18|240;b[a+1>>0]=c>>>12&63|128;b[a+2>>0]=c>>>6&63|128;b[a+3>>0]=c&63|128;e=4;break}else{d=Vq()|0;f[d>>2]=84;e=-1;break}}else e=1;while(0);return e|0}function Qi(a){a=a|0;var b=0,c=0,d=0;b=f[a+92>>2]|0;if(b|0){c=a+96|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+76>>2]|0;if(b|0){d=a+80|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+64>>2]|0;if(b|0){c=a+68|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+52>>2]|0;if(b|0){d=a+56|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}f[a+4>>2]=3636;b=f[a+24>>2]|0;if(b|0)Oq(b);b=f[a+12>>2]|0;if(!b)return;Oq(b);return}function Ri(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c=a+4|0;d=f[a>>2]|0;e=(f[c>>2]|0)-d|0;g=e>>2;h=g+1|0;if(h>>>0>1073741823)aq(a);i=a+8|0;j=(f[i>>2]|0)-d|0;k=j>>1;l=j>>2>>>0<536870911?(k>>>0>>0?h:k):1073741823;do if(l)if(l>>>0>1073741823){k=ra(8)|0;Oo(k,16035);f[k>>2]=7256;va(k|0,1112,110)}else{k=ln(l<<2)|0;m=k;n=k;break}else{m=0;n=0}while(0);k=m+(g<<2)|0;f[k>>2]=f[b>>2];if((e|0)>0)kh(n|0,d|0,e|0)|0;f[a>>2]=m;f[c>>2]=k+4;f[i>>2]=m+(l<<2);if(!d)return;Oq(d);return}function Si(a){a=a|0;var c=0,d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;c=a+104|0;d=f[c>>2]|0;if((d|0)!=0?(f[a+108>>2]|0)>=(d|0):0)e=4;else{d=Wm(a)|0;if((d|0)>=0){g=f[c>>2]|0;c=a+8|0;if(g){i=f[c>>2]|0;j=f[a+4>>2]|0;k=g-(f[a+108>>2]|0)|0;g=i;if((i-j|0)<(k|0)){l=g;m=g}else{l=j+(k+-1)|0;m=g}}else{g=f[c>>2]|0;l=g;m=g}f[a+100>>2]=l;l=a+4|0;if(!m)n=f[l>>2]|0;else{g=f[l>>2]|0;l=a+108|0;f[l>>2]=m+1-g+(f[l>>2]|0);n=g}g=n+-1|0;if((d|0)==(h[g>>0]|0|0))o=d;else{b[g>>0]=d;o=d}}else e=4}if((e|0)==4){f[a+100>>2]=0;o=-1}return o|0}function Ti(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;f[a>>2]=1544;f[a+4>>2]=b;b=a+8|0;f[b>>2]=f[c>>2];f[b+4>>2]=f[c+4>>2];f[b+8>>2]=f[c+8>>2];f[b+12>>2]=f[c+12>>2];f[b+16>>2]=f[c+16>>2];f[b+20>>2]=f[c+20>>2];fk(a+32|0,c+24|0);f[a>>2]=2384;c=a+44|0;f[c>>2]=f[d>>2];f[c+4>>2]=f[d+4>>2];f[c+8>>2]=f[d+8>>2];f[c+12>>2]=f[d+12>>2];f[a>>2]=2440;d=a+112|0;c=a+60|0;b=c+52|0;do{f[c>>2]=0;c=c+4|0}while((c|0)<(b|0));Zm(d);f[a+152>>2]=0;f[a+156>>2]=0;f[a+160>>2]=0;return}function Ui(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;f[a>>2]=1544;f[a+4>>2]=b;b=a+8|0;f[b>>2]=f[c>>2];f[b+4>>2]=f[c+4>>2];f[b+8>>2]=f[c+8>>2];f[b+12>>2]=f[c+12>>2];f[b+16>>2]=f[c+16>>2];f[b+20>>2]=f[c+20>>2];fk(a+32|0,c+24|0);f[a>>2]=1964;c=a+44|0;f[c>>2]=f[d>>2];f[c+4>>2]=f[d+4>>2];f[c+8>>2]=f[d+8>>2];f[c+12>>2]=f[d+12>>2];f[a>>2]=2020;d=a+112|0;c=a+60|0;b=c+52|0;do{f[c>>2]=0;c=c+4|0}while((c|0)<(b|0));Zm(d);f[a+152>>2]=0;f[a+156>>2]=0;f[a+160>>2]=0;return}function Vi(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2440;b=f[a+152>>2]|0;if(b|0){c=a+156|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+112>>2]|0;if(b|0){d=a+116|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+96>>2]|0;if(b|0)Oq(b);b=f[a+84>>2]|0;if(b|0)Oq(b);b=f[a+72>>2]|0;if(b|0)Oq(b);b=f[a+60>>2]|0;if(b|0)Oq(b);f[a>>2]=1544;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);Oq(b);return}function Wi(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0;d=u;u=u+16|0;e=d;g=f[(f[c+4>>2]|0)+4>>2]|0;if(!g){f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;u=d;return}if(!(Dj(d+12|0,f[c+44>>2]|0,g)|0)){g=ln(32)|0;f[e>>2]=g;f[e+8>>2]=-2147483616;f[e+4>>2]=26;c=g;h=15859;i=c+26|0;do{b[c>>0]=b[h>>0]|0;c=c+1|0;h=h+1|0}while((c|0)<(i|0));b[g+26>>0]=0;f[a>>2]=-1;pj(a+4|0,e);if((b[e+11>>0]|0)<0)Oq(f[e>>2]|0)}else{f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0}u=d;return}function Xi(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0;c=b+48|0;if((mi(f[c>>2]|0)|0)>9){d=0;return d|0}if((Qa[f[(f[b>>2]|0)+8>>2]&127](b)|0)!=1){d=0;return d|0}e=b+4|0;b=(f[(f[(f[e>>2]|0)+8>>2]|0)+(a<<2)>>2]|0)+56|0;a=f[b>>2]|0;do if((a|0)==3)if((mi(f[c>>2]|0)|0)<4){d=5;return d|0}else{g=f[b>>2]|0;break}else g=a;while(0);a=mi(f[c>>2]|0)|0;if((g|0)==1){d=(a|0)<4?6:0;return d|0}if((a|0)>7){d=0;return d|0}if((mi(f[c>>2]|0)|0)>1){d=1;return d|0}else return ((f[(f[e>>2]|0)+80>>2]|0)>>>0<40?1:4)|0;return 0}function Yi(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2020;b=f[a+152>>2]|0;if(b|0){c=a+156|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+112>>2]|0;if(b|0){d=a+116|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+96>>2]|0;if(b|0)Oq(b);b=f[a+84>>2]|0;if(b|0)Oq(b);b=f[a+72>>2]|0;if(b|0)Oq(b);b=f[a+60>>2]|0;if(b|0)Oq(b);f[a>>2]=1544;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);Oq(b);return}function Zi(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;g=u;u=u+128|0;h=g+124|0;i=g;j=i;k=6596;l=j+124|0;do{f[j>>2]=f[k>>2];j=j+4|0;k=k+4|0}while((j|0)<(l|0));if((c+-1|0)>>>0>2147483646)if(!c){m=h;n=1;o=4}else{h=Vq()|0;f[h>>2]=75;p=-1}else{m=a;n=c;o=4}if((o|0)==4){o=-2-m|0;c=n>>>0>o>>>0?o:n;f[i+48>>2]=c;n=i+20|0;f[n>>2]=m;f[i+44>>2]=m;o=m+c|0;m=i+16|0;f[m>>2]=o;f[i+28>>2]=o;o=Ah(i,d,e)|0;if(!c)p=o;else{c=f[n>>2]|0;b[c+(((c|0)==(f[m>>2]|0))<<31>>31)>>0]=0;p=o}}u=g;return p|0}function _i(a){a=a|0;var c=0,d=0,e=0,g=0;f[a>>2]=3480;c=a+72|0;d=a+136|0;e=a+4|0;g=e+64|0;do{f[e>>2]=0;e=e+4|0}while((e|0)<(g|0));e=c;g=e+64|0;do{f[e>>2]=0;e=e+4|0}while((e|0)<(g|0));n[d>>2]=$(1.0);d=a+140|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;f[a+164>>2]=-1;d=a+168|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;f[d+24>>2]=0;wn(a+200|0);Gn(a+232|0);d=a+264|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;b[d+24>>0]=0;return}function $i(a,c,d,e){a=a|0;c=c|0;d=d|0;e=+e;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;a=u;u=u+16|0;g=a;if(!c){h=0;u=a;return h|0}f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;i=Gj(d)|0;if(i>>>0>4294967279)aq(g);if(i>>>0<11){b[g+11>>0]=i;if(!i)j=g;else{k=g;l=7}}else{m=i+16&-16;n=ln(m)|0;f[g>>2]=n;f[g+8>>2]=m|-2147483648;f[g+4>>2]=i;k=n;l=7}if((l|0)==7){kh(k|0,d|0,i|0)|0;j=k}b[j+i>>0]=0;Zl(c,g,e);if((b[g+11>>0]|0)<0)Oq(f[g>>2]|0);h=1;u=a;return h|0}function aj(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;a=u;u=u+16|0;g=a;if(!c){h=0;u=a;return h|0}f[g>>2]=0;f[g+4>>2]=0;f[g+8>>2]=0;i=Gj(d)|0;if(i>>>0>4294967279)aq(g);if(i>>>0<11){b[g+11>>0]=i;if(!i)j=g;else{k=g;l=7}}else{m=i+16&-16;n=ln(m)|0;f[g>>2]=n;f[g+8>>2]=m|-2147483648;f[g+4>>2]=i;k=n;l=7}if((l|0)==7){kh(k|0,d|0,i|0)|0;j=k}b[j+i>>0]=0;$l(c,g,e);if((b[g+11>>0]|0)<0)Oq(f[g>>2]|0);h=1;u=a;return h|0}function bj(a){a=a|0;var c=0,d=0,e=0,g=0,h=0;c=f[a+28>>2]|0;if(c|0){d=c;do{c=d;d=f[d>>2]|0;e=c+8|0;g=c+20|0;h=f[g>>2]|0;f[g>>2]=0;if(h|0){bj(h);Oq(h)}if((b[e+11>>0]|0)<0)Oq(f[e>>2]|0);Oq(c)}while((d|0)!=0)}d=a+20|0;c=f[d>>2]|0;f[d>>2]=0;if(c|0)Oq(c);c=f[a+8>>2]|0;if(c|0){d=c;do{c=d;d=f[d>>2]|0;e=c+8|0;h=f[c+20>>2]|0;if(h|0){g=c+24|0;if((f[g>>2]|0)!=(h|0))f[g>>2]=h;Oq(h)}if((b[e+11>>0]|0)<0)Oq(f[e>>2]|0);Oq(c)}while((d|0)!=0)}d=f[a>>2]|0;f[a>>2]=0;if(!d)return;Oq(d);return}function cj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0;e=u;u=u+16|0;g=e;h=f[c+36>>2]|0;if(!h){i=ln(32)|0;f[g>>2]=i;f[g+8>>2]=-2147483616;f[g+4>>2]=23;j=i;k=15706;l=j+23|0;do{b[j>>0]=b[k>>0]|0;j=j+1|0;k=k+1|0}while((j|0)<(l|0));b[i+23>>0]=0;f[a>>2]=-1;pj(a+4|0,g);if((b[g+11>>0]|0)<0)Oq(f[g>>2]|0);u=e;return}g=f[c+40>>2]|0;if(!g){Sc(a,c,h,d);u=e;return}else{bi(a,c,g,d);u=e;return}}function dj(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;tk(a);b=a+84|0;c=f[b>>2]|0;if((c|0)<=0)return;d=c<<5;e=Lq(c>>>0>134217727|d>>>0>4294967291?-1:d+4|0)|0;f[e>>2]=c;d=e+4|0;e=d+(c<<5)|0;c=d;do{wn(c);c=c+32|0}while((c|0)!=(e|0));e=a+80|0;a=f[e>>2]|0;f[e>>2]=d;if(a|0){d=a+-4|0;c=f[d>>2]|0;if(c|0){g=a+(c<<5)|0;do{g=g+-32|0;Fj(g)}while((g|0)!=(a|0))}Mq(d)}if((f[b>>2]|0)>0)h=0;else return;do{tk((f[e>>2]|0)+(h<<5)|0);h=h+1|0}while((h|0)<(f[b>>2]|0));return}function ej(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;if(!b){d=0;return d|0}if(f[b+4>>2]|0){d=0;return d|0}a=ln(52)|0;Ub(a,c);f[a+40>>2]=0;f[a+44>>2]=0;f[a+48>>2]=0;c=b+4|0;b=f[c>>2]|0;f[c>>2]=a;if(!b){d=1;return d|0}a=b+40|0;c=f[a>>2]|0;if(c|0){e=b+44|0;g=f[e>>2]|0;if((g|0)==(c|0))h=c;else{i=g;do{g=i+-4|0;f[e>>2]=g;j=f[g>>2]|0;f[g>>2]=0;if(j|0){bj(j);Oq(j)}i=f[e>>2]|0}while((i|0)!=(c|0));h=f[a>>2]|0}Oq(h)}bj(b);Oq(b);d=1;return d|0}function fj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0;c=f[a>>2]|0;if(b){b=c+8|0;d=b;e=Vn(f[d>>2]|0,f[d+4>>2]|0,1,0)|0;d=b;f[d>>2]=e;f[d+4>>2]=I;d=a+28|0;e=f[d>>2]|0;b=a+24|0;f[b>>2]=f[b>>2]|1<>2]|0,f[e+4>>2]|0,1,0)|0;e=c;f[e>>2]=d;f[e+4>>2]=I;e=a+28|0;g=e;h=f[e>>2]|0}e=h+1|0;f[g>>2]=e;if((e|0)!=32)return;e=a+24|0;h=a+16|0;d=f[h>>2]|0;if((d|0)==(f[a+20>>2]|0))Ri(a+12|0,e);else{f[d>>2]=f[e>>2];f[h>>2]=d+4}f[g>>2]=0;f[e>>2]=0;return}function gj(a,b){a=a|0;b=b|0;var c=0,d=0;c=a+32|0;a=f[b>>2]|0;f[b>>2]=0;b=f[c>>2]|0;f[c>>2]=a;if(!b)return;a=b+88|0;c=f[a>>2]|0;f[a>>2]=0;if(c|0){a=f[c+8>>2]|0;if(a|0){d=c+12|0;if((f[d>>2]|0)!=(a|0))f[d>>2]=a;Oq(a)}Oq(c)}c=f[b+68>>2]|0;if(c|0){a=b+72|0;d=f[a>>2]|0;if((d|0)!=(c|0))f[a>>2]=d+(~((d+-4-c|0)>>>2)<<2);Oq(c)}c=b+64|0;d=f[c>>2]|0;f[c>>2]=0;if(d|0){c=f[d>>2]|0;if(c|0){a=d+4|0;if((f[a>>2]|0)!=(c|0))f[a>>2]=c;Oq(c)}Oq(d)}Oq(b);return}function hj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;e=u;u=u+16|0;g=e;if(c|0){h=a+11|0;i=b[h>>0]|0;if(i<<24>>24<0){j=f[a+4>>2]|0;k=(f[a+8>>2]&2147483647)+-1|0}else{j=i&255;k=10}if((k-j|0)>>>0>>0){xj(a,k,c-k+j|0,j,j,0,0);l=b[h>>0]|0}else l=i;if(l<<24>>24<0)m=f[a>>2]|0;else m=a;Qn(m+j|0,c,d)|0;d=j+c|0;if((b[h>>0]|0)<0)f[a+4>>2]=d;else b[h>>0]=d;b[g>>0]=0;up(m+d|0,g)}u=e;return a|0}function ij(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+48|0;e=d+4|0;g=d;h=f[b+12>>2]|0;i=f[b+4>>2]|0;b=e;j=b+36|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(j|0));zh(g,c,h,i,e);i=f[e+24>>2]|0;if(!i){k=f[g>>2]|0;f[a>>2]=k;u=d;return}h=e+28|0;e=f[h>>2]|0;if((e|0)!=(i|0))f[h>>2]=e+(~((e+-4-i|0)>>>2)<<2);Oq(i);k=f[g>>2]|0;f[a>>2]=k;u=d;return}function jj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;e=u;u=u+16|0;g=e;h=a+11|0;i=b[h>>0]|0;j=i<<24>>24<0;if(j)k=(f[a+8>>2]&2147483647)+-1|0;else k=10;do if(k>>>0>=d>>>0){if(j)l=f[a>>2]|0;else l=a;Eo(l,c,d)|0;b[g>>0]=0;up(l+d|0,g);if((b[h>>0]|0)<0){f[a+4>>2]=d;break}else{b[h>>0]=d;break}}else{if(j)m=f[a+4>>2]|0;else m=i&255;Bi(a,k,d-k|0,m,0,m,d,c)}while(0);u=e;return a|0}function kj(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0;b=f[a>>2]|0;if(!b)return;c=a+4|0;d=f[c>>2]|0;if((d|0)==(b|0))e=b;else{g=d;do{f[c>>2]=g+-136;d=f[g+-20>>2]|0;if(d|0){h=g+-16|0;i=f[h>>2]|0;if((i|0)!=(d|0))f[h>>2]=i+(~((i+-4-d|0)>>>2)<<2);Oq(d)}d=f[g+-32>>2]|0;if(d|0){i=g+-28|0;h=f[i>>2]|0;if((h|0)!=(d|0))f[i>>2]=h+(~((h+-4-d|0)>>>2)<<2);Oq(d)}Mi(g+-132|0);g=f[c>>2]|0}while((g|0)!=(b|0));e=f[a>>2]|0}Oq(e);return}function lj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;e=u;u=u+16|0;g=e;h=a+11|0;i=b[h>>0]|0;j=i<<24>>24<0;if(j){k=f[a+4>>2]|0;l=(f[a+8>>2]&2147483647)+-1|0}else{k=i&255;l=10}if((l-k|0)>>>0>=d>>>0){if(d|0){if(j)m=f[a>>2]|0;else m=a;Fo(m+k|0,c,d)|0;j=k+d|0;if((b[h>>0]|0)<0)f[a+4>>2]=j;else b[h>>0]=j;b[g>>0]=0;up(m+j|0,g)}}else Bi(a,l,d-l+k|0,k,k,0,d,c);u=e;return a|0}function mj(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;f[a>>2]=3932;b=f[a+32>>2]|0;if(b|0){c=a+36|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+20>>2]|0;if(b|0){d=a+24|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=a+8|0;c=f[b>>2]|0;if(!c)return;d=a+12|0;a=f[d>>2]|0;if((a|0)==(c|0))e=c;else{g=a;do{a=g+-4|0;f[d>>2]=a;h=f[a>>2]|0;f[a>>2]=0;if(h|0)Va[f[(f[h>>2]|0)+4>>2]&127](h);g=f[d>>2]|0}while((g|0)!=(c|0));e=f[b>>2]|0}Oq(e);return}function nj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=a+4|0;if((Qa[f[(f[b>>2]|0)+20>>2]&127](b)|0)<=0){d=1;return d|0}a=0;while(1){e=f[(f[c>>2]|0)+4>>2]|0;g=dm(e,Ra[f[(f[b>>2]|0)+24>>2]&127](b,a)|0)|0;if((g|0)==-1){d=0;h=6;break}e=f[(f[b>>2]|0)+28>>2]|0;i=fl(f[c>>2]|0,g)|0;a=a+1|0;if(!(Ra[e&127](b,i)|0)){d=0;h=6;break}if((a|0)>=(Qa[f[(f[b>>2]|0)+20>>2]&127](b)|0)){d=1;h=6;break}}if((h|0)==6)return d|0;return 0}function oj(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;if(!(ho(a,b,c)|0)){d=0;return d|0}if(!(Qa[f[(f[a>>2]|0)+52>>2]&127](a)|0)){d=0;return d|0}c=a+4|0;e=a+8|0;g=f[c>>2]|0;if((f[e>>2]|0)==(g|0)){d=1;return d|0}h=a+36|0;a=0;i=g;while(1){g=f[(f[h>>2]|0)+(a<<2)>>2]|0;if(!(Sa[f[(f[g>>2]|0)+8>>2]&31](g,b,f[i+(a<<2)>>2]|0)|0)){d=0;j=7;break}a=a+1|0;i=f[c>>2]|0;if(a>>>0>=(f[e>>2]|0)-i>>2>>>0){d=1;j=7;break}}if((j|0)==7)return d|0;return 0}function pj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+16|0;e=d;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;if((b[c+11>>0]|0)<0){g=f[c>>2]|0;h=f[c+4>>2]|0;if(h>>>0>4294967279)aq(a);if(h>>>0<11){b[a+11>>0]=h;i=a}else{j=h+16&-16;k=ln(j)|0;f[a>>2]=k;f[a+8>>2]=j|-2147483648;f[a+4>>2]=h;i=k}Fo(i,g,h)|0;b[e>>0]=0;up(i+h|0,e)}else{f[a>>2]=f[c>>2];f[a+4>>2]=f[c+4>>2];f[a+8>>2]=f[c+8>>2]}u=d;return}function qj(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0;b[c+53>>0]=1;do if((f[c+4>>2]|0)==(e|0)){b[c+52>>0]=1;a=c+16|0;h=f[a>>2]|0;if(!h){f[a>>2]=d;f[c+24>>2]=g;f[c+36>>2]=1;if(!((g|0)==1?(f[c+48>>2]|0)==1:0))break;b[c+54>>0]=1;break}if((h|0)!=(d|0)){h=c+36|0;f[h>>2]=(f[h>>2]|0)+1;b[c+54>>0]=1;break}h=c+24|0;a=f[h>>2]|0;if((a|0)==2){f[h>>2]=g;i=g}else i=a;if((i|0)==1?(f[c+48>>2]|0)==1:0)b[c+54>>0]=1}while(0);return}function rj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0;c=a+36|0;d=a+40|0;e=f[c>>2]|0;if((f[d>>2]|0)!=(e|0)){g=0;h=e;do{vg(h+(g*24|0)|0,b)|0;g=g+1|0;h=f[c>>2]|0}while(g>>>0<(((f[d>>2]|0)-h|0)/24|0)>>>0)}h=a+48|0;d=a+52|0;a=f[h>>2]|0;if((f[d>>2]|0)==(a|0))return 1;else{i=0;j=a}do{a=f[j+(i<<2)>>2]|0;ci(a<<1^a>>31,b)|0;i=i+1|0;j=f[h>>2]|0}while(i>>>0<(f[d>>2]|0)-j>>2>>>0);return 1}function sj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0;e=a+d|0;c=c&255;if((d|0)>=67){while(a&3){b[a>>0]=c;a=a+1|0}g=e&-4|0;h=g-64|0;i=c|c<<8|c<<16|c<<24;while((a|0)<=(h|0)){f[a>>2]=i;f[a+4>>2]=i;f[a+8>>2]=i;f[a+12>>2]=i;f[a+16>>2]=i;f[a+20>>2]=i;f[a+24>>2]=i;f[a+28>>2]=i;f[a+32>>2]=i;f[a+36>>2]=i;f[a+40>>2]=i;f[a+44>>2]=i;f[a+48>>2]=i;f[a+52>>2]=i;f[a+56>>2]=i;f[a+60>>2]=i;a=a+64|0}while((a|0)<(g|0)){f[a>>2]=i;a=a+4|0}}while((a|0)<(e|0)){b[a>>0]=c;a=a+1|0}return e-d|0}function tj(a,c,d,e,g){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0;do if(!(fp(a,f[c+8>>2]|0,g)|0)){if(fp(a,f[c>>2]|0,g)|0){if((f[c+16>>2]|0)!=(d|0)?(h=c+20|0,(f[h>>2]|0)!=(d|0)):0){f[c+32>>2]=e;f[h>>2]=d;h=c+40|0;f[h>>2]=(f[h>>2]|0)+1;if((f[c+36>>2]|0)==1?(f[c+24>>2]|0)==2:0)b[c+54>>0]=1;f[c+44>>2]=4;break}if((e|0)==1)f[c+32>>2]=1}}else Vm(0,c,d,e);while(0);return}function uj(a){a=a|0;var b=0,c=0,d=0,e=0;b=a+80|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0){b=c+-4|0;d=f[b>>2]|0;if(d|0){e=c+(d<<5)|0;do{e=e+-32|0;Fj(e)}while((e|0)!=(c|0))}Mq(b)}b=f[a+68>>2]|0;if(b|0){c=a+72|0;e=f[c>>2]|0;if((e|0)!=(b|0))f[c>>2]=e+(~((e+-4-b|0)>>>2)<<2);Oq(b)}b=a+44|0;e=f[b>>2]|0;f[b>>2]=0;if(e|0)Oq(e);e=f[a+32>>2]|0;if(!e){Fj(a);return}b=a+36|0;if((f[b>>2]|0)!=(e|0))f[b>>2]=e;Oq(e);Fj(a);return}function vj(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3092;b=f[a+136>>2]|0;if(b|0){c=a+140|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+96>>2]|0;if(b|0){d=a+100|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+76>>2]|0;if(b|0)Oq(b);b=f[a+64>>2]|0;if(b|0)Oq(b);b=f[a+52>>2]|0;if(b|0)Oq(b);b=f[a+40>>2]|0;if(!b)return;Oq(b);return}function wj(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0;if((d|0)<0){e=0;return e|0}do if(!b){d=a+4|0;g=f[d>>2]|0;h=f[a>>2]|0;i=g-h|0;if(i>>>0>>0){Fi(a,c-i|0);break}if(i>>>0>c>>>0?(i=h+c|0,(i|0)!=(g|0)):0)f[d>>2]=i}else Cg(a,b,b+c|0);while(0);c=a+24|0;a=c;b=Vn(f[a>>2]|0,f[a+4>>2]|0,1,0)|0;a=c;f[a>>2]=b;f[a+4>>2]=I;e=1;return e|0}function xj(a,c,d,e,g,h,i){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;var j=0,k=0,l=0,m=0;if((-17-c|0)>>>0>>0)aq(a);if((b[a+11>>0]|0)<0)j=f[a>>2]|0;else j=a;if(c>>>0<2147483623){k=d+c|0;d=c<<1;l=k>>>0>>0?d:k;m=l>>>0<11?11:l+16&-16}else m=-17;l=ln(m)|0;if(g|0)Fo(l,j,g)|0;k=e-h-g|0;if(k|0)Fo(l+g+i|0,j+g+h|0,k)|0;if((c|0)!=10)Oq(j);f[a>>2]=l;f[a+8>>2]=m|-2147483648;return}function yj(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2728;b=f[a+136>>2]|0;if(b|0){c=a+140|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+96>>2]|0;if(b|0){d=a+100|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+76>>2]|0;if(b|0)Oq(b);b=f[a+64>>2]|0;if(b|0)Oq(b);b=f[a+52>>2]|0;if(b|0)Oq(b);b=f[a+40>>2]|0;if(!b)return;Oq(b);return}function zj(a,b){a=a|0;b=b|0;if(!b)return;else{zj(a,f[b>>2]|0);zj(a,f[b+4>>2]|0);Ej(b+20|0,f[b+24>>2]|0);Oq(b);return}}function Aj(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;Yf(a,b,c);c=f[a+100>>2]|0;d=f[a+96>>2]|0;a=d;if((c|0)==(d|0))return;e=f[b>>2]|0;b=(c-d|0)/12|0;d=0;do{c=a+(d*12|0)|0;f[c>>2]=f[e+(f[c>>2]<<2)>>2];c=a+(d*12|0)+4|0;f[c>>2]=f[e+(f[c>>2]<<2)>>2];c=a+(d*12|0)+8|0;f[c>>2]=f[e+(f[c>>2]<<2)>>2];d=d+1|0}while(d>>>0>>0);return}function Bj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;d=a+64|0;if((f[d>>2]|0)==0?(e=ln(32)|0,yn(e),g=f[d>>2]|0,f[d>>2]=e,g|0):0){e=f[g>>2]|0;if(e|0){h=g+4|0;if((f[h>>2]|0)!=(e|0))f[h>>2]=e;Oq(e)}Oq(g)}g=Vl(f[a+28>>2]|0)|0;e=X(g,b[a+24>>0]|0)|0;g=((e|0)<0)<<31>>31;h=f[d>>2]|0;i=un(e|0,g|0,c|0,0)|0;if(!(wj(h,0,i,I)|0)){j=0;return j|0}Kk(a,f[d>>2]|0,e,g,0,0);f[a+80>>2]=c;j=1;return j|0}function Cj(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;d=u;u=u+64|0;e=d;if(!(fp(a,b,0)|0))if((b|0)!=0?(g=Eh(b,1056,1040,0)|0,(g|0)!=0):0){b=e+4|0;h=b+52|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(h|0));f[e>>2]=g;f[e+8>>2]=a;f[e+12>>2]=-1;f[e+48>>2]=1;Ya[f[(f[g>>2]|0)+28>>2]&3](g,e,f[c>>2]|0,1);if((f[e+24>>2]|0)==1){f[c>>2]=f[e+16>>2];i=1}else i=0;j=i}else j=0;else j=1;u=d;return j|0}function Dj(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0;if(!c){d=0;return d|0}e=c+40|0;g=c+44|0;ci((f[g>>2]|0)-(f[e>>2]|0)>>2,b)|0;h=f[e>>2]|0;e=f[g>>2]|0;if((h|0)!=(e|0)){g=h;do{h=f[g>>2]|0;if(h|0){ci(f[h+40>>2]|0,b)|0;lg(a,b,h)|0}g=g+4|0}while((g|0)!=(e|0))}lg(a,b,c)|0;d=1;return d|0}function Ej(a,c){a=a|0;c=c|0;var d=0;if(!c)return;Ej(a,f[c>>2]|0);Ej(a,f[c+4>>2]|0);a=c+16|0;d=c+28|0;if((b[d+11>>0]|0)<0)Oq(f[d>>2]|0);if((b[a+11>>0]|0)<0)Oq(f[a>>2]|0);Oq(c);return}function Fj(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;b=u;u=u+16|0;c=b;d=c;f[d>>2]=0;f[d+4>>2]=0;qf(a,2,c);c=f[a+12>>2]|0;d=a+16|0;e=f[d>>2]|0;if((e|0)==(c|0))g=c;else{h=e+(~((e+-4-c|0)>>>2)<<2)|0;f[d>>2]=h;g=h}f[a+24>>2]=0;f[a+28>>2]=0;if(c|0){if((g|0)!=(c|0))f[d>>2]=g+(~((g+-4-c|0)>>>2)<<2);Oq(c)}c=f[a>>2]|0;if(!c){u=b;return}g=a+4|0;a=f[g>>2]|0;if((a|0)!=(c|0))f[g>>2]=a+(~((a+-8-c|0)>>>3)<<3);Oq(c);u=b;return}function Gj(a){a=a|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0,k=0,l=0;c=a;a:do if(!(c&3)){d=a;e=4}else{g=a;h=c;while(1){if(!(b[g>>0]|0)){i=h;break a}j=g+1|0;h=j;if(!(h&3)){d=j;e=4;break}else g=j}}while(0);if((e|0)==4){e=d;while(1){k=f[e>>2]|0;if(!((k&-2139062144^-2139062144)&k+-16843009))e=e+4|0;else break}if(!((k&255)<<24>>24))l=e;else{k=e;while(1){e=k+1|0;if(!(b[e>>0]|0)){l=e;break}else k=e}}i=l}return i-c|0}function Hj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0;e=u;u=u+16|0;g=e;h=a+11|0;i=b[h>>0]|0;j=i<<24>>24<0;if(j)k=f[a+4>>2]|0;else k=i&255;do if(k>>>0>=c>>>0)if(j){i=(f[a>>2]|0)+c|0;b[g>>0]=0;up(i,g);f[a+4>>2]=c;break}else{b[g>>0]=0;up(a+c|0,g);b[h>>0]=c;break}else hj(a,c-k|0,d)|0;while(0);u=e;return}function Ij(a){a=a|0;var b=0,c=0,d=0;if(!a)return;b=a+88|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0){b=f[c+8>>2]|0;if(b|0){d=c+12|0;if((f[d>>2]|0)!=(b|0))f[d>>2]=b;Oq(b)}Oq(c)}c=f[a+68>>2]|0;if(c|0){b=a+72|0;d=f[b>>2]|0;if((d|0)!=(c|0))f[b>>2]=d+(~((d+-4-c|0)>>>2)<<2);Oq(c)}c=a+64|0;d=f[c>>2]|0;f[c>>2]=0;if(d|0){c=f[d>>2]|0;if(c|0){b=d+4|0;if((f[b>>2]|0)!=(c|0))f[b>>2]=c;Oq(c)}Oq(d)}Oq(a);return}function Jj(a,c,d,e,g,h,i,j,k,l){a=a|0;c=c|0;d=d|0;e=e|0;g=g|0;h=h|0;i=i|0;j=j|0;k=k|0;l=l|0;var m=0,n=0,o=0;f[a>>2]=d;if(d|0){m=d+16|0;n=f[m+4>>2]|0;o=a+8|0;f[o>>2]=f[m>>2];f[o+4>>2]=n;n=d+24|0;d=f[n+4>>2]|0;o=a+16|0;f[o>>2]=f[n>>2];f[o+4>>2]=d}b[a+24>>0]=e;f[a+28>>2]=g;b[a+32>>0]=h&1;h=a+40|0;f[h>>2]=i;f[h+4>>2]=j;j=a+48|0;f[j>>2]=k;f[j+4>>2]=l;f[a+56>>2]=c;return}function Kj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0;c=ln(88)|0;d=c+60|0;e=c;g=e+60|0;do{f[e>>2]=0;e=e+4|0}while((e|0)<(g|0));f[d>>2]=c;d=c+64|0;f[d>>2]=0;f[d+4>>2]=0;f[d+8>>2]=0;f[d+12>>2]=0;f[d+16>>2]=0;f[d+20>>2]=0;d=cg(c,b)|0;f[a>>2]=d?c:0;a=d?0:c;if(d)return;Ii(a);Oq(a);return}function Lj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;if((f[c+76>>2]|0)>=0?(Tq(c)|0)!=0:0){d=a&255;e=a&255;if((e|0)!=(b[c+75>>0]|0)?(g=c+20|0,h=f[g>>2]|0,h>>>0<(f[c+16>>2]|0)>>>0):0){f[g>>2]=h+1;b[h>>0]=d;i=e}else i=Nj(c,a)|0;Sq(c);j=i}else k=3;do if((k|0)==3){i=a&255;e=a&255;if((e|0)!=(b[c+75>>0]|0)?(d=c+20|0,h=f[d>>2]|0,h>>>0<(f[c+16>>2]|0)>>>0):0){f[d>>2]=h+1;b[h>>0]=i;j=e;break}j=Nj(c,a)|0}while(0);return j|0}function Mj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;d=u;u=u+16|0;e=d+4|0;g=d;h=d+8|0;i=f[a+4>>2]|0;if((i|0)==-1){j=0;u=d;return j|0}b[h>>0]=i;i=c+16|0;a=f[i+4>>2]|0;if(!((a|0)>0|(a|0)==0&(f[i>>2]|0)>>>0>0)){f[g>>2]=f[c+4>>2];f[e>>2]=f[g>>2];Me(c,e,h,h+1|0)|0}j=1;u=d;return j|0}function Nj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0,l=0,m=0,n=0;d=u;u=u+16|0;e=d;g=c&255;b[e>>0]=g;i=a+16|0;j=f[i>>2]|0;if(!j)if(!(vl(a)|0)){k=f[i>>2]|0;l=4}else m=-1;else{k=j;l=4}do if((l|0)==4){j=a+20|0;i=f[j>>2]|0;if(i>>>0>>0?(n=c&255,(n|0)!=(b[a+75>>0]|0)):0){f[j>>2]=i+1;b[i>>0]=g;m=n;break}if((Sa[f[a+36>>2]&31](a,e,1)|0)==1)m=h[e>>0]|0;else m=-1}while(0);u=d;return m|0}function Oj(a,b){a=a|0;b=b|0;if(!b)return;else{Oj(a,f[b>>2]|0);Oj(a,f[b+4>>2]|0);Ej(b+20|0,f[b+24>>2]|0);Oq(b);return}}function Pj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0;e=u;u=u+16|0;g=e;h=e+4|0;f[g>>2]=c;c=ln(32)|0;f[h>>2]=c;f[h+8>>2]=-2147483616;f[h+4>>2]=17;i=c;j=14495;k=i+17|0;do{b[i>>0]=b[j>>0]|0;i=i+1|0;j=j+1|0}while((i|0)<(k|0));b[c+17>>0]=0;Xj(Hd(a,g)|0,h,d);if((b[h+11>>0]|0)>=0){u=e;return}Oq(f[h>>2]|0);u=e;return}function Qj(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;c=f[a+16>>2]|0;if(((f[a+20>>2]|0)-c>>2|0)<=(b|0)){d=0;return d|0}e=f[c+(b<<2)>>2]|0;if((e|0)<0){d=0;return d|0}b=a+48|0;if((f[a+52>>2]|0)>>>0<=e>>>0)Ce(b,e+1|0,0);c=(f[b>>2]|0)+(e>>>5<<2)|0;f[c>>2]=f[c>>2]|1<<(e&31);c=f[a+36>>2]|0;if((f[a+40>>2]|0)-c>>2>>>0<=e>>>0){d=1;return d|0}Bp(f[c+(e<<2)>>2]|0);d=1;return d|0}function Rj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0;if(c>>>0>0|(c|0)==0&a>>>0>4294967295){e=d;f=a;g=c;while(1){c=hn(f|0,g|0,10,0)|0;e=e+-1|0;b[e>>0]=c&255|48;c=f;f=jp(f|0,g|0,10,0)|0;if(!(g>>>0>9|(g|0)==9&c>>>0>4294967295))break;else g=I}h=f;i=e}else{h=a;i=d}if(!h)j=i;else{d=h;h=i;while(1){i=h+-1|0;b[i>>0]=(d>>>0)%10|0|48;if(d>>>0<10){j=i;break}else{d=(d>>>0)/10|0;h=i}}}return j|0}function Sj(a){a=a|0;var c=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0;c=a;while(1){d=c+1|0;if(!(eq(b[c>>0]|0)|0))break;else c=d}a=b[c>>0]|0;switch(a<<24>>24|0){case 45:{e=1;f=5;break}case 43:{e=0;f=5;break}default:{g=0;h=c;i=a}}if((f|0)==5){g=e;h=d;i=b[d>>0]|0}if(!(Aq(i<<24>>24)|0))j=0;else{i=0;d=h;while(1){h=(i*10|0)+48-(b[d>>0]|0)|0;d=d+1|0;if(!(Aq(b[d>>0]|0)|0)){j=h;break}else i=h}}return (g|0?j:0-j|0)|0}function Tj(a,c,d){a=a|0;c=c|0;d=$(d);var e=0,g=0,h=0;e=u;u=u+16|0;g=e;il(g,d);h=Ai(a,c)|0;c=h+11|0;if((b[c>>0]|0)<0){b[f[h>>2]>>0]=0;f[h+4>>2]=0}else{b[h>>0]=0;b[c>>0]=0}gh(h,0);f[h>>2]=f[g>>2];f[h+4>>2]=f[g+4>>2];f[h+8>>2]=f[g+8>>2];u=e;return}function Uj(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;b=u;u=u+16|0;c=b+8|0;d=b+4|0;e=b;f[e>>2]=f[(f[a+4>>2]|0)+80>>2];g=f[a+44>>2]|0;a=g+16|0;h=f[a+4>>2]|0;if((h|0)>0|(h|0)==0&(f[a>>2]|0)>>>0>0){u=b;return 1}f[d>>2]=f[g+4>>2];f[c>>2]=f[d>>2];Me(g,c,e,e+4|0)|0;u=b;return 1}function Vj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0;e=u;u=u+16|0;g=e;ll(g,d&1);d=Ai(a,c)|0;c=d+11|0;if((b[c>>0]|0)<0){b[f[d>>2]>>0]=0;f[d+4>>2]=0}else{b[d>>0]=0;b[c>>0]=0}gh(d,0);f[d>>2]=f[g>>2];f[d+4>>2]=f[g+4>>2];f[d+8>>2]=f[g+8>>2];u=e;return}function Wj(a){a=a|0;if(!a)return;Ej(a+24|0,f[a+28>>2]|0);zj(a+12|0,f[a+16>>2]|0);Ej(a,f[a+4>>2]|0);Oq(a);return}function Xj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0;e=u;u=u+16|0;g=e;ll(g,d);d=Ai(a,c)|0;c=d+11|0;if((b[c>>0]|0)<0){b[f[d>>2]>>0]=0;f[d+4>>2]=0}else{b[d>>0]=0;b[c>>0]=0}gh(d,0);f[d>>2]=f[g>>2];f[d+4>>2]=f[g+4>>2];f[d+8>>2]=f[g+8>>2];u=e;return}function Yj(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0,i=0,j=0,k=0;e=Rg(a,c)|0;if((e|0)==(a+4|0)){g=-1;h=(g|0)==-1;i=(g|0)!=0;j=h?d:i;return j|0}a=e+28|0;if((b[a+11>>0]|0)<0)k=f[a>>2]|0;else k=a;g=Sj(k)|0;h=(g|0)==-1;i=(g|0)!=0;j=h?d:i;return j|0}function Zj(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0,k=0;d=u;u=u+16|0;e=d;if(c>>>0>10){g=0;u=d;return g|0}h=ln(48)|0;f[e>>2]=h;f[e+8>>2]=-2147483600;f[e+4>>2]=33;i=h;j=15987;k=i+33|0;do{b[i>>0]=b[j>>0]|0;i=i+1|0;j=j+1|0}while((i|0)<(k|0));b[h+33>>0]=0;Xj(a,e,c);if((b[e+11>>0]|0)<0)Oq(f[e>>2]|0);g=1;u=d;return g|0}function _j(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0;c=f[b>>2]|0;if((c|0)==-1)return 1;b=c*3|0;if((b|0)==-1)return 1;c=f[a>>2]|0;a=f[c+(b<<2)>>2]|0;d=b+1|0;e=((d>>>0)%3|0|0)==0?b+-2|0:d;if((e|0)==-1)g=-1;else g=f[c+(e<<2)>>2]|0;e=(((b>>>0)%3|0|0)==0?2:-1)+b|0;if((e|0)==-1)h=-1;else h=f[c+(e<<2)>>2]|0;if((a|0)==(g|0))return 1;else return (a|0)==(h|0)|(g|0)==(h|0)|0;return 0}function $j(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0,j=0,k=0;d=0;while(1){if((h[16654+d>>0]|0)==(a|0)){e=2;break}g=d+1|0;if((g|0)==87){i=16742;j=87;e=5;break}else d=g}if((e|0)==2)if(!d)k=16742;else{i=16742;j=d;e=5}if((e|0)==5)while(1){e=0;d=i;do{a=d;d=d+1|0}while((b[a>>0]|0)!=0);j=j+-1|0;if(!j){k=d;break}else{i=d;e=5}}return jq(k,f[c+20>>2]|0)|0}function ak(a,b){a=+a;b=b|0;var c=0,d=0,e=0,g=0.0,h=0.0,i=0,j=0.0;p[s>>3]=a;c=f[s>>2]|0;d=f[s+4>>2]|0;e=Yn(c|0,d|0,52)|0;switch(e&2047){case 0:{if(a!=0.0){g=+ak(a*18446744073709551616.0,b);h=g;i=(f[b>>2]|0)+-64|0}else{h=a;i=0}f[b>>2]=i;j=h;break}case 2047:{j=a;break}default:{f[b>>2]=(e&2047)+-1022;f[s>>2]=c;f[s+4>>2]=d&-2146435073|1071644672;j=+p[s>>3]}}return +j}function bk(a,b){a=+a;b=b|0;var c=0.0,d=0,e=0,g=0.0,h=0;if((b|0)<=1023)if((b|0)<-1022){c=a*2.2250738585072014e-308;d=(b|0)<-2044;e=b+2044|0;g=d?c*2.2250738585072014e-308:c;h=d?((e|0)>-1022?e:-1022):b+1022|0}else{g=a;h=b}else{c=a*8988465674311579538646525.0e283;e=(b|0)>2046;d=b+-2046|0;g=e?c*8988465674311579538646525.0e283:c;h=e?((d|0)<1023?d:1023):b+-1023|0}b=Tn(h+1023|0,0,52)|0;h=I;f[s>>2]=b;f[s+4>>2]=h;return +(g*+p[s>>3])}function ck(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;if(!(f[a+80>>2]|0)){b=0;return b|0}c=a+8|0;d=a+12|0;a=f[c>>2]|0;if(((f[d>>2]|0)-a|0)>0){e=0;g=a}else{b=1;return b|0}while(1){a=f[g+(e<<2)>>2]|0;e=e+1|0;if(!(Gl(a,a)|0)){b=0;h=5;break}g=f[c>>2]|0;if((e|0)>=((f[d>>2]|0)-g>>2|0)){b=1;h=5;break}}if((h|0)==5)return b|0;return 0}function dk(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0;c=a+36|0;d=a+40|0;e=f[c>>2]|0;if((f[d>>2]|0)==(e|0)){g=1;return g|0}h=a+60|0;a=0;i=e;while(1){e=f[i+(a<<2)>>2]|0;a=a+1|0;if(!(Sa[f[(f[e>>2]|0)+20>>2]&31](e,h,b)|0)){g=0;j=5;break}i=f[c>>2]|0;if(a>>>0>=(f[d>>2]|0)-i>>2>>>0){g=1;j=5;break}}if((j|0)==5)return g|0;return 0}function ek(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0;c=a+36|0;d=a+40|0;a=f[c>>2]|0;if((f[d>>2]|0)==(a|0)){e=1;return e|0}else{g=0;h=a}while(1){a=f[h+(g<<2)>>2]|0;g=g+1|0;if(!(Ra[f[(f[a>>2]|0)+24>>2]&127](a,b)|0)){e=0;i=4;break}h=f[c>>2]|0;if(g>>>0>=(f[d>>2]|0)-h>>2>>>0){e=1;i=4;break}}if((i|0)==4)return e|0;return 0}function fk(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0;f[a>>2]=0;c=a+4|0;f[c>>2]=0;f[a+8>>2]=0;d=b+4|0;e=(f[d>>2]|0)-(f[b>>2]|0)|0;g=e>>2;if(!g)return;if(g>>>0>1073741823)aq(a);h=ln(e)|0;f[c>>2]=h;f[a>>2]=h;f[a+8>>2]=h+(g<<2);g=f[b>>2]|0;b=(f[d>>2]|0)-g|0;if((b|0)<=0)return;kh(h|0,g|0,b|0)|0;f[c>>2]=h+(b>>>2<<2);return}function gk(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0;c=a+8|0;d=f[a>>2]|0;if((f[c>>2]|0)-d>>2>>>0>=b>>>0)return;e=a+4|0;if(b>>>0>1073741823){g=ra(8)|0;Oo(g,16035);f[g>>2]=7256;va(g|0,1112,110)}g=(f[e>>2]|0)-d|0;h=ln(b<<2)|0;if((g|0)>0)kh(h|0,d|0,g|0)|0;f[a>>2]=h;f[e>>2]=h+(g>>2<<2);f[c>>2]=h+(b<<2);if(!d)return;Oq(d);return}function hk(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0,i=0;b=a+36|0;c=a+40|0;d=f[b>>2]|0;if((f[c>>2]|0)==(d|0)){e=1;return e|0}g=a+60|0;a=0;h=d;while(1){d=f[h+(a<<2)>>2]|0;a=a+1|0;if(!(Ra[f[(f[d>>2]|0)+16>>2]&127](d,g)|0)){e=0;i=5;break}h=f[b>>2]|0;if(a>>>0>=(f[c>>2]|0)-h>>2>>>0){e=1;i=5;break}}if((i|0)==5)return e|0;return 0}function ik(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0;d=f[a+176>>2]|0;e=f[a+172>>2]|0;a=e;if((d|0)==(e|0))return 0;g=(d-e|0)/136|0;e=0;while(1){if((f[a+(e*136|0)>>2]|0)==(c|0)){h=4;break}d=e+1|0;if(d>>>0>>0)e=d;else{h=6;break}}if((h|0)==4)return ((b[a+(e*136|0)+100>>0]|0)==0?0:a+(e*136|0)+4|0)|0;else if((h|0)==6)return 0;return 0}function jk(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,h=0,i=0,j=0;d=u;u=u+16|0;e=d;g=ln(16)|0;f[e>>2]=g;f[e+8>>2]=-2147483632;f[e+4>>2]=15;h=g;i=14479;j=h+15|0;do{b[h>>0]=b[i>>0]|0;h=h+1|0;i=i+1|0}while((h|0)<(j|0));b[g+15>>0]=0;Xj(a,e,c);if((b[e+11>>0]|0)>=0){u=d;return}Oq(f[e>>2]|0);u=d;return}function kk(a,b){a=a|0;b=b|0;var c=0,d=0;c=f[a+72>>2]|0;if(!c){d=0;return d|0}f[c+4>>2]=a+60;if(!(Qa[f[(f[c>>2]|0)+12>>2]&127](c)|0)){d=0;return d|0}if(!(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)){d=0;return d|0}if(!(Ra[f[(f[a>>2]|0)+44>>2]&127](a,b)|0)){d=0;return d|0}d=Ra[f[(f[a>>2]|0)+48>>2]&127](a,b)|0;return d|0}function lk(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;f[a>>2]=0;d=a+4|0;f[d>>2]=0;f[a+8>>2]=0;if(!b)return;if(b>>>0>357913941)aq(a);e=ln(b*12|0)|0;f[d>>2]=e;f[a>>2]=e;f[a+8>>2]=e+(b*12|0);a=b;b=e;do{fk(b,c);b=(f[d>>2]|0)+12|0;f[d>>2]=b;a=a+-1|0}while((a|0)!=0);return}function mk(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0;c=f[b>>2]|0;if(!c){d=0;return d|0}e=a+44|0;g=f[e>>2]|0;if(g>>>0<(f[a+48>>2]|0)>>>0){f[b>>2]=0;f[g>>2]=c;f[e>>2]=(f[e>>2]|0)+4;d=1;return d|0}else{Ug(a+40|0,b);d=1;return d|0}return 0}function nk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3564;b=f[a+64>>2]|0;if(b|0){c=a+68|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}f[a+12>>2]=3588;b=f[a+32>>2]|0;if(b|0)Oq(b);b=f[a+20>>2]|0;if(!b){Oq(a);return}Oq(b);Oq(a);return}function ok(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3344;f[a+40>>2]=1196;b=f[a+48>>2]|0;if(b|0){c=a+52|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}f[a>>2]=1476;b=a+36|0;d=f[b>>2]|0;f[b>>2]=0;if(!d){Ni(a);Oq(a);return}Va[f[(f[d>>2]|0)+4>>2]&127](d);Ni(a);Oq(a);return}function pk(a,c){a=a|0;c=c|0;var d=0,e=0,g=0,i=0;f[c>>2]=2;d=a+4|0;a=c+8|0;e=f[a>>2]|0;g=(f[c+12>>2]|0)-e|0;if(g>>>0<4294967292){Lk(a,g+4|0,0);i=f[a>>2]|0}else i=e;e=i+g|0;g=h[d>>0]|h[d+1>>0]<<8|h[d+2>>0]<<16|h[d+3>>0]<<24;b[e>>0]=g;b[e+1>>0]=g>>8;b[e+2>>0]=g>>16;b[e+3>>0]=g>>24;return}function qk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3612;b=f[a+64>>2]|0;if(b|0){c=a+68|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}f[a+12>>2]=3636;b=f[a+32>>2]|0;if(b|0)Oq(b);b=f[a+20>>2]|0;if(!b){Oq(a);return}Oq(b);Oq(a);return}function rk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2188;b=f[a+76>>2]|0;if(b|0)Oq(b);b=a+68|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0)Mq(c);f[a>>2]=1544;c=f[a+32>>2]|0;if(!c){Oq(a);return}b=a+36|0;d=f[b>>2]|0;if((d|0)!=(c|0))f[b>>2]=d+(~((d+-4-c|0)>>>2)<<2);Oq(c);Oq(a);return}function sk(a,c,d){a=a|0;c=c|0;d=$(d);var e=0,g=Oa,h=0;e=Rg(a,c)|0;if((e|0)==(a+4|0)){g=d;return $(g)}a=e+28|0;if((b[a+11>>0]|0)<0)h=f[a>>2]|0;else h=a;g=$(+Iq(h));return $(g)}function tk(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;b=u;u=u+16|0;c=b;d=c;f[d>>2]=0;f[d+4>>2]=0;qf(a,2,c);c=f[a+12>>2]|0;d=a+16|0;e=f[d>>2]|0;if((e|0)==(c|0)){g=a+24|0;f[g>>2]=0;h=a+28|0;f[h>>2]=0;u=b;return}f[d>>2]=e+(~((e+-4-c|0)>>>2)<<2);g=a+24|0;f[g>>2]=0;h=a+28|0;f[h>>2]=0;u=b;return}function uk(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0,i=0,j=0;c=f[a+176>>2]|0;d=f[a+172>>2]|0;e=d;a:do if((c|0)!=(d|0)){g=(c-d|0)/136|0;h=0;while(1){if((f[e+(h*136|0)>>2]|0)==(b|0))break;i=h+1|0;if(i>>>0>>0)h=i;else break a}j=e+(h*136|0)+104|0;return j|0}while(0);j=a+40|0;return j|0}function vk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3564;b=f[a+64>>2]|0;if(b|0){c=a+68|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}f[a+12>>2]=3588;b=f[a+32>>2]|0;if(b|0)Oq(b);b=f[a+20>>2]|0;if(!b)return;Oq(b);return}function wk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=1768;b=f[a+76>>2]|0;if(b|0)Oq(b);b=a+68|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0)Mq(c);f[a>>2]=1544;c=f[a+32>>2]|0;if(!c){Oq(a);return}b=a+36|0;d=f[b>>2]|0;if((d|0)!=(c|0))f[b>>2]=d+(~((d+-4-c|0)>>>2)<<2);Oq(c);Oq(a);return}function xk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3344;f[a+40>>2]=1196;b=f[a+48>>2]|0;if(b|0){c=a+52|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}f[a>>2]=1476;b=a+36|0;d=f[b>>2]|0;f[b>>2]=0;if(!d){Ni(a);return}Va[f[(f[d>>2]|0)+4>>2]&127](d);Ni(a);return}function yk(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,g=0,h=0;Nc(a,b);if((b|0)<=-1)return;c=a+88|0;d=f[c>>2]|0;e=f[a+84>>2]|0;if((d-e>>2|0)<=(b|0))return;a=e+(b<<2)|0;b=a+4|0;e=d-b|0;g=e>>2;if(!g)h=d;else{im(a|0,b|0,e|0)|0;h=f[c>>2]|0}e=a+(g<<2)|0;if((h|0)==(e|0))return;f[c>>2]=h+(~((h+-4-e|0)>>>2)<<2);return}function zk(a){a=a|0;var b=0,c=0,d=0,e=0,g=0,h=0;b=f[a+32>>2]|0;c=f[a+36>>2]|0;if((b|0)==(c|0)){d=1;return d|0}e=a+8|0;g=a+44|0;a=b;while(1){b=f[(f[e>>2]|0)+(f[a>>2]<<2)>>2]|0;a=a+4|0;if(!(Ra[f[(f[b>>2]|0)+20>>2]&127](b,f[g>>2]|0)|0)){d=0;h=5;break}if((a|0)==(c|0)){d=1;h=5;break}}if((h|0)==5)return d|0;return 0}function Ak(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=3612;b=f[a+64>>2]|0;if(b|0){c=a+68|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}f[a+12>>2]=3636;b=f[a+32>>2]|0;if(b|0)Oq(b);b=f[a+20>>2]|0;if(!b)return;Oq(b);return}function Bk(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0,i=0.0;d=u;u=u+128|0;e=d;g=e;h=g+124|0;do{f[g>>2]=0;g=g+4|0}while((g|0)<(h|0));g=e+4|0;f[g>>2]=a;h=e+8|0;f[h>>2]=-1;f[e+44>>2]=a;f[e+76>>2]=-1;Ym(e,0);i=+Rc(e,c,1);c=(f[g>>2]|0)-(f[h>>2]|0)+(f[e+108>>2]|0)|0;if(b|0)f[b>>2]=c|0?a+c|0:a;u=d;return +i}function Ck(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var g=0,h=0;a=c+16|0;g=f[a>>2]|0;do if(g){if((g|0)!=(d|0)){h=c+36|0;f[h>>2]=(f[h>>2]|0)+1;f[c+24>>2]=2;b[c+54>>0]=1;break}h=c+24|0;if((f[h>>2]|0)==2)f[h>>2]=e}else{f[a>>2]=d;f[c+24>>2]=e;f[c+36>>2]=1}while(0);return}function Dk(a){a=a|0;var b=0,c=0;f[a>>2]=2188;b=f[a+76>>2]|0;if(b|0)Oq(b);b=a+68|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0)Mq(c);f[a>>2]=1544;c=f[a+32>>2]|0;if(!c)return;b=a+36|0;a=f[b>>2]|0;if((a|0)!=(c|0))f[b>>2]=a+(~((a+-4-c|0)>>>2)<<2);Oq(c);return}function Ek(a){a=a|0;var c=0,d=0,e=0;c=a+74|0;d=b[c>>0]|0;b[c>>0]=d+255|d;d=a+20|0;c=a+28|0;if((f[d>>2]|0)>>>0>(f[c>>2]|0)>>>0)Sa[f[a+36>>2]&31](a,0,0)|0;f[a+16>>2]=0;f[c>>2]=0;f[d>>2]=0;d=f[a>>2]|0;if(!(d&4)){c=(f[a+44>>2]|0)+(f[a+48>>2]|0)|0;f[a+8>>2]=c;f[a+4>>2]=c;e=d<<27>>31}else{f[a>>2]=d|32;e=-1}return e|0}function Fk(a,c){a=a|0;c=c|0;var d=0,e=0,g=0;d=Rg(a,c)|0;if((d|0)==(a+4|0)){e=0;return e|0}a=d+28|0;if((b[a+11>>0]|0)<0)g=f[a>>2]|0;else g=a;e=((Sj(g)|0)+1|0)>>>0>1;return e|0}function Gk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=6152;b=f[a+96>>2]|0;if(b|0){c=a+100|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~(((d+-12-b|0)>>>0)/12|0)*12|0);Oq(b)}b=f[a+84>>2]|0;if(!b){Og(a);Oq(a);return}d=a+88|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b);Og(a);Oq(a);return}function Hk(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,g=0,h=0;e=Rg(a,c)|0;if((e|0)==(a+4|0)){g=d;return g|0}d=e+28|0;if((b[d+11>>0]|0)<0)h=f[d>>2]|0;else h=d;g=Sj(h)|0;return g|0}function Ik(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0;e=b>>31|((b|0)<0?-1:0)<<1;f=((b|0)<0?-1:0)>>31|((b|0)<0?-1:0)<<1;g=d>>31|((d|0)<0?-1:0)<<1;h=((d|0)<0?-1:0)>>31|((d|0)<0?-1:0)<<1;i=Xn(e^a|0,f^b|0,e|0,f|0)|0;b=I;a=g^e;e=h^f;return Xn((Ld(i,b,Xn(g^c|0,h^d|0,g|0,h|0)|0,I,0)|0)^a|0,I^e|0,a|0,e|0)|0}function Jk(a){a=a|0;var b=0,c=0;f[a>>2]=1768;b=f[a+76>>2]|0;if(b|0)Oq(b);b=a+68|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0)Mq(c);f[a>>2]=1544;c=f[a+32>>2]|0;if(!c)return;b=a+36|0;a=f[b>>2]|0;if((a|0)!=(c|0))f[b>>2]=a+(~((a+-4-c|0)>>>2)<<2);Oq(c);return}function Kk(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0,i=0,j=0;f[a>>2]=b;h=b+16|0;i=f[h+4>>2]|0;j=a+8|0;f[j>>2]=f[h>>2];f[j+4>>2]=i;i=b+24|0;b=f[i+4>>2]|0;j=a+16|0;f[j>>2]=f[i>>2];f[j+4>>2]=b;b=a+40|0;f[b>>2]=c;f[b+4>>2]=d;d=a+48|0;f[d>>2]=e;f[d+4>>2]=g;return}function Lk(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0;c=a+4|0;d=f[c>>2]|0;e=f[a>>2]|0;g=d-e|0;h=e;e=d;if(g>>>0>=b>>>0){if(g>>>0>b>>>0?(d=h+b|0,(d|0)!=(e|0)):0)f[c>>2]=d}else Fi(a,b-g|0);g=a+24|0;a=g;b=Vn(f[a>>2]|0,f[a+4>>2]|0,1,0)|0;a=g;f[a>>2]=b;f[a+4>>2]=I;return}function Mk(a,c){a=a|0;c=c|0;var d=0,e=0,g=0;d=Rg(a,c)|0;if((d|0)==(a+4|0)){e=-1;return e|0}a=d+28|0;if((b[a+11>>0]|0)<0)g=f[a>>2]|0;else g=a;e=Sj(g)|0;return e|0}function Nk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=6152;b=f[a+96>>2]|0;if(b|0){c=a+100|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~(((d+-12-b|0)>>>0)/12|0)*12|0);Oq(b)}b=f[a+84>>2]|0;if(!b){Og(a);return}d=a+88|0;c=f[d>>2]|0;if((c|0)!=(b|0))f[d>>2]=c+(~((c+-4-b|0)>>>2)<<2);Oq(b);Og(a);return}function Ok(a){a=a|0;var c=0,d=0,e=0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;f[a+16>>2]=0;f[a+20>>2]=0;b[a+24>>0]=1;c=a+68|0;d=a+28|0;e=d+40|0;do{f[d>>2]=0;d=d+4|0}while((d|0)<(e|0));f[c>>2]=a;c=a+72|0;f[c>>2]=0;f[c+4>>2]=0;f[c+8>>2]=0;f[c+12>>2]=0;f[c+16>>2]=0;f[c+20>>2]=0;return}function Pk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2244;b=f[a+76>>2]|0;if(b|0)Oq(b);f[a>>2]=1544;b=f[a+32>>2]|0;if(!b){Oq(a);return}c=a+36|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b);Oq(a);return}function Qk(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;var f=0,g=0,h=0;f=u;u=u+256|0;g=f;if((c|0)>(d|0)&(e&73728|0)==0){e=c-d|0;sj(g|0,b<<24>>24|0,(e>>>0<256?e:256)|0)|0;if(e>>>0>255){b=c-d|0;d=e;do{Xo(a,g,256);d=d+-256|0}while(d>>>0>255);h=b&255}else h=e;Xo(a,g,h)}u=f;return}function Rk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=1824;b=f[a+76>>2]|0;if(b|0)Oq(b);f[a>>2]=1544;b=f[a+32>>2]|0;if(!b){Oq(a);return}c=a+36|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b);Oq(a);return}function Sk(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;var h=0;if(fp(a,f[b+8>>2]|0,g)|0)qj(0,b,c,d,e);else{h=f[a+8>>2]|0;_a[f[(f[h>>2]|0)+20>>2]&3](h,b,c,d,e,g)}return}function Tk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=2300;Fj(a+108|0);f[a>>2]=1544;b=f[a+32>>2]|0;if(!b){Oq(a);return}c=a+36|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b);Oq(a);return}function Uk(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=1880;Fj(a+108|0);f[a>>2]=1544;b=f[a+32>>2]|0;if(!b){Oq(a);return}c=a+36|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b);Oq(a);return}function Vk(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0;a:do if(!d)e=0;else{f=a;g=d;h=c;while(1){i=b[f>>0]|0;j=b[h>>0]|0;if(i<<24>>24!=j<<24>>24)break;g=g+-1|0;if(!g){e=0;break a}else{f=f+1|0;h=h+1|0}}e=(i&255)-(j&255)|0}while(0);return e|0}function Wk(a){a=a|0;if(!(f[a+44>>2]|0))return 0;if(!(f[a+48>>2]|0))return 0;if(!(f[a+24>>2]|0))return 0;if(!(f[a+28>>2]|0))return 0;if(!(f[a+32>>2]|0))return 0;else return (f[a+36>>2]|0)!=0|0;return 0}function Xk(a){a=a|0;var b=0,c=0;f[a>>2]=2244;b=f[a+76>>2]|0;if(b|0)Oq(b);f[a>>2]=1544;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);Oq(b);return}function Yk(a){a=a|0;var c=0,d=0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;c=0;while(1){if((c|0)==3)break;f[a+(c<<2)>>2]=0;c=c+1|0}if((b[a+11>>0]|0)<0)d=(f[a+8>>2]&2147483647)+-1|0;else d=10;Hj(a,d,0);return}function Zk(a){a=a|0;var b=0,c=0,d=0,e=0.0,g=0.0;b=f[a+8>>2]|0;if((b|0)<2){c=0;d=0;I=c;return d|0}e=+(b|0);g=+Zg(e)*e;e=+W(+(g-+p[a>>3]));c=+K(e)>=1.0?(e>0.0?~~+Y(+J(e/4294967296.0),4294967295.0)>>>0:~~+W((e-+(~~e>>>0))/4294967296.0)>>>0):0;d=~~e>>>0;I=c;return d|0}function _k(a){a=a|0;var b=0,c=0;f[a>>2]=1824;b=f[a+76>>2]|0;if(b|0)Oq(b);f[a>>2]=1544;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);Oq(b);return}function $k(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;c=f[a+16>>2]|0;if(((f[a+20>>2]|0)-c>>2|0)<=(b|0)){d=0;return d|0}e=f[c+(b<<2)>>2]|0;if((e|0)<0){d=0;return d|0}b=f[(f[a+36>>2]|0)+(e<<2)>>2]|0;e=f[b+32>>2]|0;if(e|0){d=e;return d|0}d=f[b+8>>2]|0;return d|0}function al(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=1232;b=f[a+16>>2]|0;if(b|0){c=a+20|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b)}b=f[a+4>>2]|0;if(!b)return;d=a+8|0;a=f[d>>2]|0;if((a|0)!=(b|0))f[d>>2]=a+(~((a+-4-b|0)>>>2)<<2);Oq(b);return}function bl(a){a=a|0;var b=0,c=0;f[a>>2]=2300;Fj(a+108|0);f[a>>2]=1544;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);Oq(b);return}function cl(a){a=a|0;if(!(f[a+64>>2]|0))return 0;if(!(f[a+68>>2]|0))return 0;if(!(f[a+44>>2]|0))return 0;if(!(f[a+48>>2]|0))return 0;if(!(f[a+52>>2]|0))return 0;else return (f[a+56>>2]|0)!=0|0;return 0}function dl(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0;if(fp(a,f[b+8>>2]|0,0)|0)Ck(0,b,c,d);else{e=f[a+8>>2]|0;Ya[f[(f[e>>2]|0)+28>>2]&3](e,b,c,d)}return}function el(a){a=a|0;var b=0,c=0;f[a>>2]=1880;Fj(a+108|0);f[a>>2]=1544;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);Oq(b);return}function fl(a,b){a=a|0;b=b|0;var c=0,d=0;if((b|0)<0){c=0;return c|0}d=f[a+4>>2]|0;if(((f[d+12>>2]|0)-(f[d+8>>2]|0)>>2|0)<=(b|0)){c=0;return c|0}d=f[(f[a+8>>2]|0)+(f[(f[a+20>>2]|0)+(b<<2)>>2]<<2)>>2]|0;c=Ra[f[(f[d>>2]|0)+36>>2]&127](d,b)|0;return c|0}function gl(a,b){a=a|0;b=b|0;var c=0,d=0;if((b|0)<0){c=0;return c|0}d=f[a+4>>2]|0;if(((f[d+12>>2]|0)-(f[d+8>>2]|0)>>2|0)<=(b|0)){c=0;return c|0}d=f[(f[a+8>>2]|0)+(f[(f[a+20>>2]|0)+(b<<2)>>2]<<2)>>2]|0;c=Ra[f[(f[d>>2]|0)+32>>2]&127](d,b)|0;return c|0}function hl(a,c){a=a|0;c=c|0;var d=0,e=0,f=0,g=0;d=b[a>>0]|0;e=b[c>>0]|0;if(d<<24>>24==0?1:d<<24>>24!=e<<24>>24){f=e;g=d}else{d=c;c=a;do{c=c+1|0;d=d+1|0;a=b[c>>0]|0;e=b[d>>0]|0}while(!(a<<24>>24==0?1:a<<24>>24!=e<<24>>24));f=e;g=a}return (g&255)-(f&255)|0}function il(a,b){a=a|0;b=$(b);var c=0,d=0;c=u;u=u+16|0;d=c;Yk(d);Ei(a,d,b);Bo(d);u=c;return}function jl(a){a=a|0;var b=0,c=0,d=0,e=0,g=0;b=f[a>>2]|0;c=a+4|0;d=f[c>>2]|0;if((d|0)==(b|0))e=b;else{g=d+(~((d+-4-b|0)>>>2)<<2)|0;f[c>>2]=g;e=g}f[a+12>>2]=0;f[a+16>>2]=0;if(!b)return;if((e|0)!=(b|0))f[c>>2]=e+(~((e+-4-b|0)>>>2)<<2);Oq(b);return}function kl(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0;d=f[a+16>>2]|0;if(((f[a+20>>2]|0)-d>>2|0)<=(b|0)){e=-1;return e|0}g=f[d+(b<<2)>>2]|0;if((g|0)<0){e=-1;return e|0}e=f[(f[(f[(f[a+36>>2]|0)+(g<<2)>>2]|0)+16>>2]|0)+(c<<2)>>2]|0;return e|0}function ll(a,b){a=a|0;b=b|0;var c=0,d=0;c=u;u=u+16|0;d=c;Yk(d);Ji(a,d,b);Bo(d);u=c;return}function ml(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0,h=0;d=u;u=u+32|0;e=d;g=d+20|0;f[e>>2]=f[a+60>>2];f[e+4>>2]=0;f[e+8>>2]=b;f[e+12>>2]=g;f[e+16>>2]=c;if((to(za(140,e|0)|0)|0)<0){f[g>>2]=-1;h=-1}else h=f[g>>2]|0;u=d;return h|0}function nl(a,b){a=a|0;b=b|0;var c=0,d=0;if((b|0)==-1|(b|0)>4){c=0;return c|0}d=f[a+20+(b*12|0)>>2]|0;if(((f[a+20+(b*12|0)+4>>2]|0)-d|0)<=0){c=0;return c|0}b=f[d>>2]|0;if((b|0)==-1){c=0;return c|0}c=f[(f[a+8>>2]|0)+(b<<2)>>2]|0;return c|0}function ol(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;c=f[a+16>>2]|0;if(((f[a+20>>2]|0)-c>>2|0)<=(b|0)){d=0;return d|0}e=f[c+(b<<2)>>2]|0;if((e|0)<0){d=0;return d|0}b=f[(f[a+36>>2]|0)+(e<<2)>>2]|0;d=(f[b+20>>2]|0)-(f[b+16>>2]|0)>>2;return d|0}function pl(a){a=a|0;if(!(f[a+40>>2]|0))return 0;if(!(f[a+24>>2]|0))return 0;if(!(f[a+28>>2]|0))return 0;if(!(f[a+32>>2]|0))return 0;else return (f[a+36>>2]|0)!=0|0;return 0}function ql(a){a=a|0;var b=0;if(!(f[a+24>>2]|0)){b=0;return b|0}if(!(f[a+28>>2]|0)){b=0;return b|0}if(!(f[a+32>>2]|0)){b=0;return b|0}b=(f[a+36>>2]|0)!=0;return b|0}function rl(a,b,c){a=a|0;b=b|0;c=c|0;var d=0;lh(a,c);f[a>>2]=1408;c=a+72|0;d=a+36|0;a=d+36|0;do{f[d>>2]=0;d=d+4|0}while((d|0)<(a|0));d=f[b>>2]|0;f[b>>2]=0;f[c>>2]=d;return}function sl(a){a=a|0;var b=0,c=0;f[a>>2]=3148;b=f[a+56>>2]|0;if(b|0)Oq(b);b=a+48|0;c=f[b>>2]|0;f[b>>2]=0;if(!c){Oq(a);return}Mq(c);Oq(a);return}function tl(a,c){a=a|0;c=c|0;var d=0,e=0;d=a;e=c;c=d+64|0;do{f[d>>2]=f[e>>2];d=d+4|0;e=e+4|0}while((d|0)<(c|0));e=a+64|0;f[a+88>>2]=0;f[e>>2]=0;f[e+4>>2]=0;f[e+8>>2]=0;f[e+12>>2]=0;f[e+16>>2]=0;b[e+20>>0]=0;return}function ul(a,c,d,e){a=a|0;c=c|0;d=d|0;e=e|0;var f=0,g=0;if((a|0)==0&(c|0)==0)f=d;else{g=d;d=c;c=a;while(1){a=g+-1|0;b[a>>0]=h[16636+(c&15)>>0]|0|e;c=Yn(c|0,d|0,4)|0;d=I;if((c|0)==0&(d|0)==0){f=a;break}else g=a}}return f|0}function vl(a){a=a|0;var c=0,d=0,e=0;c=a+74|0;d=b[c>>0]|0;b[c>>0]=d+255|d;d=f[a>>2]|0;if(!(d&8)){f[a+8>>2]=0;f[a+4>>2]=0;c=f[a+44>>2]|0;f[a+28>>2]=c;f[a+20>>2]=c;f[a+16>>2]=c+(f[a+48>>2]|0);e=0}else{f[a>>2]=d|32;e=-1}return e|0}function wl(a){a=a|0;if(!(f[a+60>>2]|0))return 0;if(!(f[a+44>>2]|0))return 0;if(!(f[a+48>>2]|0))return 0;if(!(f[a+52>>2]|0))return 0;else return (f[a+56>>2]|0)!=0|0;return 0}function xl(a,b){a=a|0;b=b|0;var c=0,d=0;c=f[b+88>>2]|0;if(!c){d=0;return d|0}if((f[c>>2]|0)!=2){d=0;return d|0}b=f[c+8>>2]|0;f[a+4>>2]=h[b>>0]|h[b+1>>0]<<8|h[b+2>>0]<<16|h[b+3>>0]<<24;d=1;return d|0}function yl(a){a=a|0;var b=0;if(!(f[a+44>>2]|0)){b=0;return b|0}if(!(f[a+48>>2]|0)){b=0;return b|0}if(!(f[a+52>>2]|0)){b=0;return b|0}b=(f[a+56>>2]|0)!=0;return b|0}function zl(a){a=a|0;vj(a);Oq(a);return}function Al(a){a=a|0;var b=0,c=0;f[a>>2]=2784;b=f[a+56>>2]|0;if(b|0)Oq(b);b=a+48|0;c=f[b>>2]|0;f[b>>2]=0;if(!c){Oq(a);return}Mq(c);Oq(a);return}function Bl(a,c){a=a|0;c=c|0;var d=0;if(f[c+56>>2]|0){d=0;return d|0}if((b[c+24>>0]|0)!=3){d=0;return d|0}f[a+44>>2]=c;d=1;return d|0}function Cl(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0;c=a+4|0;d=f[c>>2]|0;e=f[a>>2]|0;g=d-e|0;if(g>>>0>>0){Fi(a,b-g|0);return}if(g>>>0<=b>>>0)return;g=e+b|0;if((g|0)==(d|0))return;f[c>>2]=g;return}function Dl(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=$(e);f[a+4>>2]=b;Zf(a+8|0,c,c+(d<<2)|0);n[a+20>>2]=e;return}function El(a,b){a=a|0;b=b|0;var c=0;if(!(Qa[f[(f[a>>2]|0)+40>>2]&127](a)|0)){c=0;return c|0}if(!(Ra[f[(f[a>>2]|0)+44>>2]&127](a,b)|0)){c=0;return c|0}c=Ra[f[(f[a>>2]|0)+48>>2]&127](a,b)|0;return c|0}function Fl(a,c){a=a|0;c=c|0;var d=0;if(f[c+56>>2]|0){d=0;return d|0}if((b[c+24>>0]|0)!=3){d=0;return d|0}f[a+40>>2]=c;d=1;return d|0}function Gl(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;c=u;u=u+16|0;d=c+4|0;e=c;f[e>>2]=0;f[d>>2]=f[e>>2];e=vc(a,b,d)|0;u=c;return e|0}function Hl(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0;d=f[c>>2]|0;c=a;e=b-a>>2;while(1){if(!e)break;a=(e|0)/2|0;b=c+(a<<2)|0;g=(f[b>>2]|0)>>>0>>0;c=g?b+4|0:c;e=g?e+-1-a|0:a}return c|0}function Il(a){a=a|0;var c=0;f[a>>2]=0;c=a+8|0;f[c>>2]=0;f[c+4>>2]=0;f[c+8>>2]=0;f[c+12>>2]=0;b[a+24>>0]=1;f[a+28>>2]=9;c=a+40|0;f[c>>2]=0;f[c+4>>2]=0;f[c+8>>2]=0;f[c+12>>2]=0;f[a+56>>2]=-1;f[a+60>>2]=0;return}function Jl(a){a=a|0;yj(a);Oq(a);return}function Kl(a){a=a|0;var b=0;f[a>>2]=3148;b=f[a+56>>2]|0;if(b|0)Oq(b);b=a+48|0;a=f[b>>2]|0;f[b>>2]=0;if(!a)return;Mq(a);return}function Ll(a){a=a|0;var c=0,d=0,e=0,g=0,h=0;if(!(Aq(b[f[a>>2]>>0]|0)|0))c=0;else{d=0;while(1){e=f[a>>2]|0;g=(d*10|0)+-48+(b[e>>0]|0)|0;h=e+1|0;f[a>>2]=h;if(!(Aq(b[h>>0]|0)|0)){c=g;break}else d=g}}return c|0}function Ml(a,c){a=a|0;c=c|0;var d=0;if(f[c+56>>2]|0){d=0;return d|0}if((b[c+24>>0]|0)!=3){d=0;return d|0}f[a+64>>2]=c;d=1;return d|0}function Nl(a){a=a|0;var b=0,c=0;b=f[r>>2]|0;c=b+a|0;if((a|0)>0&(c|0)<(b|0)|(c|0)<0){ea()|0;ya(12);return -1}f[r>>2]=c;if((c|0)>(da()|0)?(ca()|0)==0:0){f[r>>2]=b;ya(12);return -1}return b|0}function Ol(a,c,d){a=a|0;c=c|0;d=d|0;var e=0,f=0;if((a|0)==0&(c|0)==0)e=d;else{f=d;d=c;c=a;while(1){a=f+-1|0;b[a>>0]=c&7|48;c=Yn(c|0,d|0,3)|0;d=I;if((c|0)==0&(d|0)==0){e=a;break}else f=a}}return e|0}function Pl(a,c){a=a|0;c=c|0;var d=0;if(f[c+56>>2]|0){d=0;return d|0}if((b[c+24>>0]|0)!=3){d=0;return d|0}f[a+60>>2]=c;d=1;return d|0}function Ql(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=1544;b=f[a+32>>2]|0;if(!b){Oq(a);return}c=a+36|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b);Oq(a);return}function Rl(a,b,c,d,e,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;g=g|0;if(fp(a,f[b+8>>2]|0,g)|0)qj(0,b,c,d,e);return}function Sl(a){a=a|0;var b=0;f[a>>2]=2784;b=f[a+56>>2]|0;if(b|0)Oq(b);b=a+48|0;a=f[b>>2]|0;f[b>>2]=0;if(!a)return;Mq(a);return}function Tl(a){a=a|0;var c=0,d=0,e=0,g=0;c=u;u=u+16|0;d=c;e=f[a+4>>2]|0;g=(f[e+56>>2]|0)-(f[e+52>>2]|0)>>2;b[d>>0]=0;qh(a+20|0,g,d);u=c;return}function Ul(a){a=a|0;Vi(a);Oq(a);return}function Vl(a){a=a|0;var b=0;switch(a|0){case 11:case 2:case 1:{b=1;break}case 4:case 3:{b=2;break}case 6:case 5:{b=4;break}case 8:case 7:{b=8;break}case 9:{b=4;break}case 10:{b=8;break}default:b=-1}return b|0}function Wl(a){a=a|0;var c=0,d=0,e=0,g=0;c=u;u=u+16|0;d=c;e=f[a+4>>2]|0;g=(f[e+28>>2]|0)-(f[e+24>>2]|0)>>2;b[d>>0]=0;qh(a+20|0,g,d);u=c;return}function Xl(){var a=0,b=0;a=ln(40)|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;n[a+16>>2]=$(1.0);b=a+20|0;f[b>>2]=0;f[b+4>>2]=0;f[b+8>>2]=0;f[b+12>>2]=0;n[a+36>>2]=$(1.0);return a|0}function Yl(a,b){a=+a;b=+b;var c=0,d=0,e=0;p[s>>3]=a;c=f[s>>2]|0;d=f[s+4>>2]|0;p[s>>3]=b;e=f[s+4>>2]&-2147483648|d&2147483647;f[s>>2]=c;f[s+4>>2]=e;return +(+p[s>>3])}function Zl(a,b,c){a=a|0;b=b|0;c=+c;var d=0,e=0;d=u;u=u+16|0;e=d;p[e>>3]=c;_b(a,b,e);u=d;return}function _l(a){a=a|0;f[a>>2]=3656;Qi(a+8|0);Oq(a);return}function $l(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;d=u;u=u+16|0;e=d;f[e>>2]=c;fc(a,b,e);u=d;return}function am(a,c){a=a|0;c=c|0;var d=0,e=0;if((a|0)!=(c|0)){d=b[c+11>>0]|0;e=d<<24>>24<0;jj(a,e?f[c>>2]|0:c,e?f[c+4>>2]|0:d&255)|0}return a|0}function bm(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0;c=a&65535;d=b&65535;e=X(d,c)|0;f=a>>>16;a=(e>>>16)+(X(d,f)|0)|0;d=b>>>16;b=X(d,c)|0;return (I=(a>>>16)+(X(d,f)|0)+(((a&65535)+b|0)>>>16)|0,a+b<<16|e&65535|0)|0}function cm(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;c=Gj(b)|0;d=ln(c+13|0)|0;f[d>>2]=c;f[d+4>>2]=c;f[d+8>>2]=0;e=Fp(d)|0;kh(e|0,b|0,c+1|0)|0;f[a>>2]=e;return}function dm(a,b){a=a|0;b=b|0;var c=0,d=0;if((b|0)==-1|(b|0)>4){c=-1;return c|0}d=f[a+20+(b*12|0)>>2]|0;if(((f[a+20+(b*12|0)+4>>2]|0)-d|0)<=0){c=-1;return c|0}c=f[d>>2]|0;return c|0}function em(a){a=a|0;Yi(a);Oq(a);return}function fm(a){a=a|0;f[a>>2]=3656;Qi(a+8|0);return}function gm(a){a=a|0;var b=0,c=0;f[a>>2]=1544;b=f[a+32>>2]|0;if(!b)return;c=a+36|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);Oq(b);return}function hm(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;if(fp(a,f[b+8>>2]|0,0)|0)Ck(0,b,c,d);return}function im(a,c,d){a=a|0;c=c|0;d=d|0;var e=0;if((c|0)<(a|0)&(a|0)<(c+d|0)){e=a;c=c+d|0;a=a+d|0;while((d|0)>0){a=a-1|0;c=c-1|0;d=d-1|0;b[a>>0]=b[c>>0]|0}a=e}else kh(a,c,d)|0;return a|0}function jm(a){a=a|0;var b=0,c=0,d=0;f[a>>2]=1196;b=f[a+8>>2]|0;if(!b){Oq(a);return}c=a+12|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);Oq(b);Oq(a);return}function km(a){a=a|0;var b=0;f[a>>2]=3204;b=f[a+56>>2]|0;if(!b){Oq(a);return}Oq(b);Oq(a);return}function lm(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0;d=u;u=u+16|0;e=d;f[e>>2]=f[c>>2];g=Sa[f[(f[a>>2]|0)+16>>2]&31](a,b,e)|0;if(g)f[c>>2]=f[e>>2];u=d;return g&1|0}function mm(a,b){a=a|0;b=b|0;var c=0;if(b>>>0>=2){c=0;return c|0}f[a+28>>2]=b;c=1;return c|0}function nm(a){a=a|0;var b=0,c=0;f[a>>2]=3408;b=a+56|0;c=f[b>>2]|0;f[b>>2]=0;if(!c){mj(a);return}Va[f[(f[c>>2]|0)+4>>2]&127](c);mj(a);return}function om(){var a=0,b=0;a=sn()|0;if((a|0?(b=f[a>>2]|0,b|0):0)?(a=b+48|0,(f[a>>2]&-256|0)==1126902528?(f[a+4>>2]|0)==1129074247:0):0)Ho(f[b+12>>2]|0);Ho(Qp()|0)}function pm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Qf(a,b,c,d,e,f,6)|0}function qm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Pf(a,b,c,d,e,f,4)|0}function rm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Wf(a,b,c,d,e,f,2)|0}function sm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Pf(a,b,c,d,e,f,3)|0}function tm(a){a=a|0;var b=0;f[a>>2]=2840;b=f[a+56>>2]|0;if(!b){Oq(a);return}Oq(b);Oq(a);return}function um(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Wf(a,b,c,d,e,f,1)|0}function vm(a){a=a|0;var c=0;c=b[w+(a&255)>>0]|0;if((c|0)<8)return c|0;c=b[w+(a>>8&255)>>0]|0;if((c|0)<8)return c+8|0;c=b[w+(a>>16&255)>>0]|0;if((c|0)<8)return c+16|0;return (b[w+(a>>>24)>>0]|0)+24|0}function wm(a,b){a=a|0;b=b|0;var c=0.0,d=0.0,e=0.0,f=0.0;if(!a){c=0.0;return +c}if((b|0)==0|(a|0)==(b|0)){c=0.0;return +c}d=+(b>>>0)/+(a>>>0);e=1.0-d;f=d*+Zg(d);c=-(f+e*+Zg(e));return +c}function xm(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0;if((b|0)>0)d=0;else return;do{e=f[a+(d<<2)>>2]|0;f[c+(d<<2)>>2]=e<<1^e>>31;d=d+1|0}while((d|0)!=(b|0));return}function ym(a){a=a|0;var b=0;zo(a);f[a>>2]=3344;f[a+40>>2]=1196;f[a+44>>2]=-1;b=a+48|0;f[b>>2]=0;f[b+4>>2]=0;f[b+8>>2]=0;f[b+12>>2]=0;return}function zm(a,c){a=a|0;c=c|0;var d=0;b[c+84>>0]=1;a=f[c+68>>2]|0;d=c+72|0;c=f[d>>2]|0;if((c|0)==(a|0))return 1;f[d>>2]=c+(~((c+-4-a|0)>>>2)<<2);return 1}function Am(a){a=a|0;var b=0,c=0;if(pq(a)|0?(b=Mp(f[a>>2]|0)|0,a=b+8|0,c=f[a>>2]|0,f[a>>2]=c+-1,(c+-1|0)<0):0)Oq(b);return}function Bm(a){a=a|0;var b=0,c=0;b=f[a+16>>2]|0;c=(((f[a+12>>2]|0)+1-b|0)/64|0)+b<<3;a=b<<3;b=Vn(c|0,((c|0)<0)<<31>>31|0,a|0,((a|0)<0)<<31>>31|0)|0;return b|0}function Cm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Qf(a,b,c,d,e,f,5)|0}function Dm(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Qf(a,b,c,d,e,f,9)|0}function Em(a){a=a|0;var b=0;f[a>>2]=3204;b=f[a+56>>2]|0;if(!b)return;Oq(b);return}function Fm(a){a=a|0;var b=0,c=0;f[a>>2]=1476;b=a+36|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0)Va[f[(f[c>>2]|0)+4>>2]&127](c);Ni(a);Oq(a);return}function Gm(a){a=a|0;var b=0,c=0;f[a>>2]=1196;b=f[a+8>>2]|0;if(!b)return;c=a+12|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);Oq(b);return}function Hm(a){a=a|0;var c=0;f[a>>2]=1352;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=-1;c=a+16|0;f[a+32>>2]=0;f[c>>2]=0;f[c+4>>2]=0;f[c+8>>2]=0;b[c+12>>0]=0;return}function Im(a){a=a|0;var b=0;f[a>>2]=2840;b=f[a+56>>2]|0;if(!b)return;Oq(b);return}function Jm(a){a=a|0;var b=0,c=0;f[a>>2]=1476;b=a+36|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0)Va[f[(f[c>>2]|0)+4>>2]&127](c);Ni(a);return}function Km(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=$(f);Fg(a,b,c,d,e,f);return}function Lm(a){a=a|0;var b=0,c=0;f[a>>2]=3408;b=a+56|0;c=f[b>>2]|0;f[b>>2]=0;if(c|0)Va[f[(f[c>>2]|0)+4>>2]&127](c);mj(a);Oq(a);return}function Mm(a){a=a|0;var b=0,c=0,d=0;b=f[a>>2]|0;c=a+4|0;d=f[c>>2]|0;if((d|0)!=(b|0))f[c>>2]=d+(~((d+-4-b|0)>>>2)<<2);f[a+12>>2]=0;f[a+16>>2]=0;return}function Nm(a,b,c){a=a|0;b=b|0;c=c|0;var d=0,e=0,g=0;d=a+20|0;e=f[d>>2]|0;g=(f[a+16>>2]|0)-e|0;a=g>>>0>c>>>0?c:g;kh(e|0,b|0,a|0)|0;f[d>>2]=(f[d>>2]|0)+a;return c|0}function Om(a){a=a|0;var b=0;f[a>>2]=3588;b=f[a+20>>2]|0;if(b|0)Oq(b);b=f[a+8>>2]|0;if(!b){Oq(a);return}Oq(b);Oq(a);return}function Pm(a){a=a|0;var b=0,c=0;b=f[a>>2]|0;if(!b)return;c=a+4|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-8-b|0)>>>3)<<3);Oq(b);return}function Qm(a){a=a|0;var b=0,c=0;b=f[a>>2]|0;if(!b)return;c=a+4|0;a=f[c>>2]|0;if((a|0)!=(b|0))f[c>>2]=a+(~((a+-4-b|0)>>>2)<<2);Oq(b);return}function Rm(a,b){a=a|0;b=b|0;var c=0;c=f[b>>2]|0;return (1<<(c&31)&f[(f[a+28>>2]|0)+(c>>>5<<2)>>2]|0)!=0|0}function Sm(a,b,c){a=a|0;b=b|0;c=c|0;return Sa[f[(f[a>>2]|0)+44>>2]&31](a,b,c)|0}function Tm(a){a=a|0;var c=0;Il(a);c=a+64|0;f[a+88>>2]=0;f[c>>2]=0;f[c+4>>2]=0;f[c+8>>2]=0;f[c+12>>2]=0;f[c+16>>2]=0;b[c+20>>0]=0;return}function Um(a){a=a|0;f[a>>2]=3260;Fj(a+88|0);Oq(a);return}function Vm(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;if((f[b+4>>2]|0)==(c|0)?(c=b+28|0,(f[c>>2]|0)!=1):0)f[c>>2]=d;return}function Wm(a){a=a|0;var b=0,c=0,d=0;b=u;u=u+16|0;c=b;if((Ek(a)|0)==0?(Sa[f[a+32>>2]&31](a,c,1)|0)==1:0)d=h[c>>0]|0;else d=-1;u=b;return d|0}function Xm(a){a=a|0;var b=0;f[a>>2]=3636;b=f[a+20>>2]|0;if(b|0)Oq(b);b=f[a+8>>2]|0;if(!b){Oq(a);return}Oq(b);Oq(a);return}function Ym(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;f[a+104>>2]=b;c=f[a+8>>2]|0;d=f[a+4>>2]|0;e=c-d|0;f[a+108>>2]=e;f[a+100>>2]=(b|0)!=0&(e|0)>(b|0)?d+b|0:c;return}function Zm(a){a=a|0;var b=0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;b=a+16|0;f[b>>2]=0;f[b+4>>2]=0;f[b+8>>2]=0;f[b+12>>2]=0;f[b+16>>2]=0;return}function _m(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=$(f);Km(a,b,c,d,e,f);return}function $m(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return pm(a,b,c,d,e,f)|0}function an(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return qm(a,b,c,d,e,f)|0}function bn(a,b,c){a=a|0;b=b|0;c=c|0;f[a+4>>2]=b;f[a+8>>2]=f[(f[(f[b+4>>2]|0)+8>>2]|0)+(c<<2)>>2];f[a+12>>2]=c;return 1}function cn(a){a=a|0;var b=0,c=0;if(!a)return;b=f[a>>2]|0;if(b|0){c=a+4|0;if((f[c>>2]|0)!=(b|0))f[c>>2]=b;Oq(b)}Oq(a);return}function dn(a){a=a|0;f[a>>2]=2896;Fj(a+88|0);Oq(a);return}function en(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return rm(a,b,c,d,e,f)|0}function fn(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return sm(a,b,c,d,e,f)|0}function gn(a){a=a|0;f[a>>2]=3260;Fj(a+88|0);return}function hn(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0;e=u;u=u+16|0;g=e|0;Ld(a,b,c,d,g)|0;u=e;return (I=f[g+4>>2]|0,f[g>>2]|0)|0}function jn(a){a=a|0;var b=0;eo(a);f[a>>2]=6152;b=a+84|0;f[b>>2]=0;f[b+4>>2]=0;f[b+8>>2]=0;f[b+12>>2]=0;f[b+16>>2]=0;f[b+20>>2]=0;return}function kn(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return um(a,b,c,d,e,f)|0}function ln(a){a=a|0;var b=0,c=0;b=(a|0)==0?1:a;while(1){a=$a(b)|0;if(a|0){c=a;break}a=Op()|0;if(!a){c=0;break}Ua[a&3]()}return c|0}function mn(a,b,c){a=a|0;b=b|0;c=c|0;ac(a,b,c);return}function nn(a){a=a|0;var b=0;f[a>>2]=3588;b=f[a+20>>2]|0;if(b|0)Oq(b);b=f[a+8>>2]|0;if(!b)return;Oq(b);return}function on(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Cm(a,b,c,d,e,f)|0}function pn(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return Dm(a,b,c,d,e,f)|0}function qn(a){a=a|0;f[a>>2]=2896;Fj(a+88|0);return}function rn(a){a=a|0;var b=0,c=0,d=0;b=u;u=u+16|0;c=b;d=Qq(f[a+60>>2]|0)|0;f[c>>2]=d;d=to(Ba(6,c|0)|0)|0;u=b;return d|0}function sn(){var a=0,b=0;a=u;u=u+16|0;if(!(Ka(19700,3)|0)){b=Ia(f[4926]|0)|0;u=a;return b|0}else Hn(18840,a);return 0}function tn(a){a=a|0;var b=0;f[a>>2]=3636;b=f[a+20>>2]|0;if(b|0)Oq(b);b=f[a+8>>2]|0;if(!b)return;Oq(b);return}function un(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0;e=a;a=c;c=bm(e,a)|0;f=I;return (I=(X(b,a)|0)+(X(d,e)|0)+f|f&0,c|0|0)|0}function vn(a,b){a=a|0;b=b|0;lh(a,b);f[a>>2]=1292;b=a+36|0;a=b+40|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(a|0));return}function wn(a){a=a|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;f[a+16>>2]=0;f[a+20>>2]=0;f[a+24>>2]=0;f[a+28>>2]=0;return}function xn(a){a=a|0;var b=0;b=u;u=u+16|0;yc(a);if(!(La(f[4926]|0,0)|0)){u=b;return}else Hn(18939,b)}function yn(a){a=a|0;var b=0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;b=a+16|0;f[b>>2]=0;f[b+4>>2]=0;f[b+8>>2]=0;f[b+12>>2]=0;return}function zn(a,b){a=a|0;b=b|0;return vg(a+40|0,b)|0}function An(a,b){a=a|0;b=b|0;return lj(a,b,lq(b)|0)|0}function Bn(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,g=0;e=u;u=u+16|0;g=e;f[g>>2]=d;d=Zi(a,b,c,g)|0;u=e;return d|0}function Cn(a,b){a=a|0;b=b|0;return Mj(a+40|0,b)|0}function Dn(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return Qh(a,b,c,d)|0}function En(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return uh(a,b,c,d)|0}function Fn(a,b){a=a|0;b=b|0;var c=0;c=f[a+56>>2]|0;return Ra[f[(f[c>>2]|0)+24>>2]&127](c,b)|0}function Gn(a){a=a|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;f[a+16>>2]=0;f[a+20>>2]=0;b[a+24>>0]=0;return}function Hn(a,b){a=a|0;b=b|0;var c=0,d=0;c=u;u=u+16|0;d=c;f[d>>2]=b;b=f[1556]|0;Ah(b,a,d)|0;Lj(10,b)|0;Ca()}function In(a,b,c,d,e,f,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;return Ta[a&31](b|0,c|0,d|0,e|0,f|0,g|0)|0}function Jn(a,b){a=a|0;b=b|0;var c=0;c=f[a+56>>2]|0;return Ra[f[(f[c>>2]|0)+16>>2]&127](c,b)|0}function Kn(a,b){a=a|0;b=b|0;var c=0;c=f[a+56>>2]|0;return Ra[f[(f[c>>2]|0)+20>>2]&127](c,b)|0}function Ln(a,b){a=a|0;b=b|0;var c=0;c=f[a+56>>2]|0;return Ra[f[(f[c>>2]|0)+12>>2]&127](c,b)|0}function Mn(){var a=0;a=u;u=u+16|0;if(!(Ja(19704,113)|0)){u=a;return}else Hn(18889,a)}function Nn(a,b,c){a=a|0;b=b|0;c=c|0;Pj(a,b,c);return}function On(a){a=a|0;cf(a);Oq(a);return}function Pn(a,b,c,d,e,f,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;_a[a&3](b|0,c|0,d|0,e|0,f|0,g|0)}function Qn(a,b,c){a=a|0;b=b|0;c=c|0;if(b|0)sj(a|0,(kq(c)|0)&255|0,b|0)|0;return a|0}function Rn(a){a=a|0;return 4}function Sn(a,b,c){a=a|0;b=b|0;c=c|0;return ej(0,b,c)|0}function Tn(a,b,c){a=a|0;b=b|0;c=c|0;if((c|0)<32){I=b<>>32-c;return a<>>0;return (I=b+d+(e>>>0>>0|0)>>>0,e|0)|0}function Wn(a,b){a=a|0;b=b|0;var c=0;if(!b)c=0;else c=Dh(f[b>>2]|0,f[b+4>>2]|0,a)|0;return (c|0?c:a)|0}function Xn(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0;e=b-d>>>0;e=b-d-(c>>>0>a>>>0|0)>>>0;return (I=e,a-c>>>0|0)|0}function Yn(a,b,c){a=a|0;b=b|0;c=c|0;if((c|0)<32){I=b>>>c;return a>>>c|(b&(1<>>c-32|0}function Zn(a){a=a|0;var b=0;f[a>>2]=3932;b=a+4|0;a=b+44|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(a|0));return}function _n(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return De(a,b,c,d)|0}function $n(a){a=a|0;ff(a);Oq(a);return}function ao(a,b){a=a|0;b=b|0;ji(a);f[a+36>>2]=b;f[a+40>>2]=0;return}function bo(a,b,c,d){a=a|0;b=b|0;c=c|0;d=+d;return $i(a,b,c,d)|0}function co(a){a=a|0;return 5}function eo(a){a=a|0;var b=0;f[a>>2]=6192;b=a+4|0;a=b+80|0;do{f[b>>2]=0;b=b+4|0}while((b|0)<(a|0));return}function fo(a){a=a|0;return 6}function go(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return aj(a,b,c,d)|0}function ho(a,b,c){a=a|0;b=b|0;c=c|0;f[a+28>>2]=b;f[a+32>>2]=c;return 1}function io(a,b){a=a|0;b=b|0;ji(a);f[a+36>>2]=b;f[a+40>>2]=b;return}function jo(a,b,c){a=a|0;b=b|0;c=c|0;Nn(a,b,c);return}function ko(a){a=a|0;var b=0;b=f[a+56>>2]|0;return Qa[f[(f[b>>2]|0)+28>>2]&127](b)|0}function lo(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;Ve(a,b,c,d,1);return}function mo(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;Ve(a,b,c,d,0);return}function no(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return Xg(a,b,c,d)|0}function oo(a,b,c){a=a|0;b=b|0;c=c|0;return fi(a,b,c)|0}function po(a){a=a|0;var b=0;b=f[a+56>>2]|0;return Qa[f[(f[b>>2]|0)+32>>2]&127](b)|0}function qo(a,b,c){a=a|0;b=b|0;c=c|0;return ej(a,b,c)|0}function ro(a,b,c){a=a|0;b=b|0;c=c|0;return Sn(a,b,c)|0}function so(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;Za[a&3](b|0,c|0,d|0,e|0,f|0)}function to(a){a=a|0;var b=0,c=0;if(a>>>0>4294963200){b=Vq()|0;f[b>>2]=0-a;c=-1}else c=a;return c|0}function uo(a,b,c){a=a|0;b=b|0;c=c|0;Li(a,b,c);return}function vo(a){a=a|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;f[a+12>>2]=0;f[a+16>>2]=0;return}function wo(a,b){a=a|0;b=b|0;f[a+8>>2]=b;f[a+12>>2]=-1;return 1}function xo(a,b){a=a|0;b=b|0;f[a+52>>2]=b;ip(a,b);return}function yo(a){a=+a;var b=0;p[s>>3]=a;b=f[s>>2]|0;I=f[s+4>>2]|0;return b|0}function zo(a){a=a|0;Hm(a);f[a>>2]=1476;f[a+36>>2]=0;return}function Ao(a){a=a|0;var b=0;if(!a)b=0;else b=(Eh(a,1056,1144,0)|0)!=0&1;return b|0}function Bo(a){a=a|0;if((b[a+11>>0]|0)<0)Oq(f[a>>2]|0);return}function Co(a){a=a|0;if(!a)return;Va[f[(f[a>>2]|0)+4>>2]&127](a);return}function Do(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;Ya[a&3](b|0,c|0,d|0,e|0)}function Eo(a,b,c){a=a|0;b=b|0;c=c|0;if(c|0)im(a|0,b|0,c|0)|0;return a|0}function Fo(a,b,c){a=a|0;b=b|0;c=c|0;if(c|0)kh(a|0,b|0,c|0)|0;return a|0}function Go(a,b){a=a|0;b=b|0;return -1}function Ho(a){a=a|0;var b=0;b=u;u=u+16|0;Ua[a&3]();Hn(18992,b)}function Io(a){a=a|0;Lh(a);Oq(a);return}function Jo(a,b,c){a=a|0;b=b|0;c=c|0;Ro(a,b,c);return}function Ko(a,b,c){a=a|0;b=$(b);c=c|0;f[a+4>>2]=c;n[a>>2]=b;return}function Lo(a){a=a|0;To(a);f[a>>2]=3408;f[a+56>>2]=0;return}function Mo(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return Sa[a&31](b|0,c|0,d|0)|0}function No(a,b){a=a|0;b=b|0;return (wp(a,b)|0)<<24>>24|0}function Oo(a,b){a=a|0;b=b|0;f[a>>2]=7236;cm(a+4|0,b);return}function Po(a,b){a=a|0;b=b|0;var c=0;if(!a)c=0;else c=Pi(a,b,0)|0;return c|0}function Qo(a){a=a|0;return f[a+12>>2]|0}function Ro(a,b,c){a=a|0;b=b|0;c=c|0;uo(a,b,c);return}function So(){var a=0;a=ln(64)|0;Il(a);return a|0}function To(a){a=a|0;Zn(a);f[a>>2]=3764;f[a+52>>2]=0;return}function Uo(a){a=a|0;if(!a)return;bj(a);Oq(a);return}function Vo(a){a=a|0;return Qa[f[(f[a>>2]|0)+60>>2]&127](a)|0}function Wo(a){a=a|0;return f[a+4>>2]|0}function Xo(a,b,c){a=a|0;b=b|0;c=c|0;if(!(f[a>>2]&32))qi(b,c,a)|0;return}function Yo(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;Xa[a&15](b|0,c|0,d|0)}function Zo(){var a=0;a=ln(96)|0;Tm(a);return a|0}function _o(a){a=a|0;var b=0;b=u;u=u+a|0;u=u+15&-16;return b|0}function $o(a){a=a|0;var b=0;b=(Jq()|0)+188|0;return $j(a,f[b>>2]|0)|0}function ap(a){a=a|0;return ((f[a+100>>2]|0)-(f[a+96>>2]|0)|0)/12|0|0}function bp(a,b){a=a|0;b=b|0;kp(a,b);return}function cp(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;aa(3);return 0}function dp(){var a=0;a=ln(12)|0;op(a);return a|0}function ep(a){a=a|0;Ni(a);Oq(a);return}function fp(a,b,c){a=a|0;b=b|0;c=c|0;return (a|0)==(b|0)|0}function gp(a,b){a=a|0;b=b|0;var c=0;c=sp(a|0)|0;return ((b|0)==0?a:c)|0}function hp(a){a=a|0;return (f[a+12>>2]|0)-(f[a+8>>2]|0)>>2|0}function ip(a,b){a=a|0;b=b|0;f[a+4>>2]=b;return}function jp(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return Ld(a,b,c,d,0)|0}function kp(a,b){a=a|0;b=b|0;jk(a,b);return}function lp(a){a=a|0;f[a+4>>2]=0;f[a+8>>2]=0;f[a>>2]=a+4;return}function mp(){var a=0;a=ln(84)|0;eo(a);return a|0}function np(a){a=a|0;ui(a);Oq(a);return}function op(a){a=a|0;f[a>>2]=0;f[a+4>>2]=0;f[a+8>>2]=0;return}function pp(a){a=a|0;f[a>>2]=7236;Am(a+4|0);return}function qp(a,b,c){a=a|0;b=b|0;c=c|0;return Ra[a&127](b|0,c|0)|0}function rp(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;aa(10)}function sp(a){a=a|0;return (a&255)<<24|(a>>8&255)<<16|(a>>16&255)<<8|a>>>24|0}function tp(a){a=a|0;To(a);f[a>>2]=3836;return}function up(a,c){a=a|0;c=c|0;b[a>>0]=b[c>>0]|0;return}function vp(a,b,c){a=a|0;b=b|0;c=c|0;return -1}function wp(a,c){a=a|0;c=c|0;return b[(f[a>>2]|0)+c>>0]|0}function xp(a){a=a|0;return (f[a+4>>2]|0)-(f[a>>2]|0)|0}function yp(a){a=a|0;mj(a);Oq(a);return}function zp(a){a=a|0;if(!a)return;Oq(a);return}function Ap(a){a=a|0;n[a>>2]=$(1.0);f[a+4>>2]=1;return}function Bp(a){a=a|0;b[a+28>>0]=1;return}function Cp(a,b){a=a|0;b=b|0;if(!x){x=a;y=b}}function Dp(a){a=a|0;ji(a);return}function Ep(a,b){a=a|0;b=b|0;return 1}function Fp(a){a=a|0;return a+12|0}function Gp(a,b){a=a|0;b=b|0;f[a+80>>2]=b;return}function Hp(a,b,c){a=a|0;b=b|0;c=c|0;Wa[a&7](b|0,c|0)}function Ip(){var a=0;a=ln(36)|0;qq(a);return a|0}function Jp(a){a=a|0;return gq(a+4|0)|0}function Kp(){var a=0;a=ln(108)|0;jn(a);return a|0}function Lp(a){a=a|0;return (b[a+32>>0]|0)!=0|0}function Mp(a){a=a|0;return a+-12|0}function Np(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;aa(9)}function Op(){var a=0;a=f[4927]|0;f[4927]=a+0;return a|0}function Pp(a){a=a|0;return f[a+56>>2]|0}function Qp(){var a=0;a=f[1786]|0;f[1786]=a+0;return a|0}function Rp(a){a=a|0;Og(a);Oq(a);return}function Sp(a){a=a|0;Sq(a);Oq(a);return}function Tp(a){a=a|0;return b[a+24>>0]|0}function Up(a,b){a=a|0;b=b|0;return 0}function Vp(a){a=a|0;return f[a+40>>2]|0}function Wp(a){a=a|0;return f[a+48>>2]|0}function Xp(a,b){a=a|0;b=b|0;return Qa[a&127](b|0)|0}function Yp(a){a=a|0;return f[a+60>>2]|0}function Zp(a){a=a|0;return f[a+28>>2]|0}function _p(a){a=a|0;sa(a|0)|0;om()}function $p(a){a=a|0;pp(a);Oq(a);return}function aq(a){a=a|0;Ca()}function bq(a,b){a=a|0;b=b|0;return $(+Bk(a,b,0))}function cq(a){a=a|0;return 3}function dq(a,b){a=a|0;b=b|0;u=a;v=b}function eq(a){a=a|0;return ((a|0)==32|(a+-9|0)>>>0<5)&1|0}function fq(a){a=a|0;return f[a+80>>2]|0}function gq(a){a=a|0;return f[a>>2]|0}function hq(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;aa(8)}function iq(a,b){a=a|0;b=b|0;Va[a&127](b|0)}function jq(a,b){a=a|0;b=b|0;return Wn(a,b)|0}function kq(a){a=a|0;return a&255|0}function lq(a){a=a|0;return Gj(a)|0}function mq(a,b){a=a|0;b=b|0;return +(+Bk(a,b,1))}function nq(a,b,c){a=a|0;b=b|0;c=c|0;aa(2);return 0}function oq(a){a=a|0;return 2}function pq(a){a=a|0;return 1}function qq(a){a=a|0;Dp(a);return}function rq(a,b){a=+a;b=+b;return +(+Yl(a,b))}function sq(a,b){a=+a;b=b|0;return +(+bk(a,b))}function tq(a,b){a=+a;b=b|0;return +(+ak(a,b))}function uq(){return 3}function vq(a,b,c){a=a|0;b=b|0;c=c|0;aa(7)}function wq(){return 0}function xq(){return -1}function yq(){return ln(1)|0}function zq(){return 4}function Aq(a){a=a|0;return (a+-48|0)>>>0<10|0}function Bq(){return 1}function Cq(){return 2}function Dq(a,b){a=+a;b=+b;return +(+xd(a,b))}function Eq(a,b){a=a|0;b=b|0;aa(1);return 0}function Fq(a){a=a|0;Ha()}function Gq(a){a=a|0;Ua[a&3]()}function Hq(){ua()}function Iq(a){a=a|0;return +(+mq(a,0))}function Jq(){return Yq()|0}function Kq(a,b){a=a|0;b=b|0;aa(6)}function Lq(a){a=a|0;return ln(a)|0}function Mq(a){a=a|0;Oq(a);return}function Nq(a){a=a|0;u=a}function Oq(a){a=a|0;yc(a);return}function Pq(a){a=a|0;I=a}function Qq(a){a=a|0;return a|0}function Rq(a){a=a|0;aa(0);return 0}function Sq(a){a=a|0;return}function Tq(a){a=a|0;return 0}function Uq(){return I|0}function Vq(){return 19632}function Wq(){return u|0}function Xq(a){a=a|0;aa(5)}function Yq(){return 6352}function Zq(){aa(4)} + var Module = + typeof DracoEncoderModule !== 'undefined' ? DracoEncoderModule : {} + var isRuntimeInitialized = false + var isModuleParsed = false + Module['onRuntimeInitialized'] = function () { + isRuntimeInitialized = true + if (isModuleParsed) { + if (typeof Module['onModuleLoaded'] === 'function') { + Module['onModuleLoaded'](Module) + } + } + } + Module['onModuleParsed'] = function () { + isModuleParsed = true + if (isRuntimeInitialized) { + if (typeof Module['onModuleLoaded'] === 'function') { + Module['onModuleLoaded'](Module) + } + } + } + function isVersionSupported(versionString) { + if (typeof versionString !== 'string') return false + const version = versionString.split('.') + if (version.length < 2 || version.length > 3) return false + if (version[0] == 1 && version[1] >= 0 && version[1] <= 3) return true + if (version[0] != 0 || version[1] > 10) return false + return true + } + Module['isVersionSupported'] = isVersionSupported + var moduleOverrides = {} + var key + for (key in Module) { + if (Module.hasOwnProperty(key)) { + moduleOverrides[key] = Module[key] + } + } + Module['arguments'] = [] + Module['thisProgram'] = './this.program' + Module['quit'] = function (status, toThrow) { + throw toThrow + } + Module['preRun'] = [] + Module['postRun'] = [] + var ENVIRONMENT_IS_WEB = false + var ENVIRONMENT_IS_WORKER = false + var ENVIRONMENT_IS_NODE = false + var ENVIRONMENT_IS_SHELL = false + if (Module['ENVIRONMENT']) { + if (Module['ENVIRONMENT'] === 'WEB') { + ENVIRONMENT_IS_WEB = true + } else if (Module['ENVIRONMENT'] === 'WORKER') { + ENVIRONMENT_IS_WORKER = true + } else if (Module['ENVIRONMENT'] === 'NODE') { + ENVIRONMENT_IS_NODE = true + } else if (Module['ENVIRONMENT'] === 'SHELL') { + ENVIRONMENT_IS_SHELL = true + } else { + throw new Error( + "Module['ENVIRONMENT'] value is not valid. must be one of: WEB|WORKER|NODE|SHELL.", + ) + } + } else { + ENVIRONMENT_IS_WEB = typeof window === 'object' + ENVIRONMENT_IS_WORKER = typeof importScripts === 'function' + ENVIRONMENT_IS_NODE = + typeof process === 'object' && + typeof require === 'function' && + !ENVIRONMENT_IS_WEB && + !ENVIRONMENT_IS_WORKER + ENVIRONMENT_IS_SHELL = + !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER + } + if (ENVIRONMENT_IS_NODE) { + var nodeFS + var nodePath + Module['read'] = function shell_read(filename, binary) { + var ret + ret = tryParseAsDataURI(filename) + if (!ret) { + if (!nodeFS) nodeFS = require('fs') + if (!nodePath) nodePath = require('path') + filename = nodePath['normalize'](filename) + ret = nodeFS['readFileSync'](filename) + } + return binary ? ret : ret.toString() + } + Module['readBinary'] = function readBinary(filename) { + var ret = Module['read'](filename, true) + if (!ret.buffer) { + ret = new Uint8Array(ret) + } + assert(ret.buffer) + return ret + } + if (process['argv'].length > 1) { + Module['thisProgram'] = process['argv'][1].replace(/\\/g, '/') + } + Module['arguments'] = process['argv'].slice(2) + process['on']('uncaughtException', function (ex) { + if (!(ex instanceof ExitStatus)) { + throw ex + } + }) + process['on']('unhandledRejection', function (reason, p) { + process['exit'](1) + }) + Module['inspect'] = function () { + return '[Emscripten Module object]' + } + } else if (ENVIRONMENT_IS_SHELL) { + if (typeof read != 'undefined') { + Module['read'] = function shell_read(f) { + var data = tryParseAsDataURI(f) + if (data) { + return intArrayToString(data) + } + return read(f) + } + } + Module['readBinary'] = function readBinary(f) { + var data + data = tryParseAsDataURI(f) + if (data) { + return data + } + if (typeof readbuffer === 'function') { + return new Uint8Array(readbuffer(f)) + } + data = read(f, 'binary') + assert(typeof data === 'object') + return data + } + if (typeof scriptArgs != 'undefined') { + Module['arguments'] = scriptArgs + } else if (typeof arguments != 'undefined') { + Module['arguments'] = arguments + } + if (typeof quit === 'function') { + Module['quit'] = function (status, toThrow) { + quit(status) + } + } + } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { + Module['read'] = function shell_read(url) { + try { + var xhr = new XMLHttpRequest() + xhr.open('GET', url, false) + xhr.send(null) + return xhr.responseText + } catch (err) { + var data = tryParseAsDataURI(url) + if (data) { + return intArrayToString(data) + } + throw err + } + } + if (ENVIRONMENT_IS_WORKER) { + Module['readBinary'] = function readBinary(url) { + try { + var xhr = new XMLHttpRequest() + xhr.open('GET', url, false) + xhr.responseType = 'arraybuffer' + xhr.send(null) + return new Uint8Array(xhr.response) + } catch (err) { + var data = tryParseAsDataURI(url) + if (data) { + return data + } + throw err + } + } + } + Module['readAsync'] = function readAsync(url, onload, onerror) { + var xhr = new XMLHttpRequest() + xhr.open('GET', url, true) + xhr.responseType = 'arraybuffer' + xhr.onload = function xhr_onload() { + if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { + onload(xhr.response) + return + } + var data = tryParseAsDataURI(url) + if (data) { + onload(data.buffer) + return + } + onerror() + } + xhr.onerror = onerror + xhr.send(null) + } + Module['setWindowTitle'] = function (title) { + document.title = title + } + } + Module['print'] = + typeof console !== 'undefined' + ? console.log.bind(console) + : typeof print !== 'undefined' + ? print + : null + Module['printErr'] = + typeof printErr !== 'undefined' + ? printErr + : (typeof console !== 'undefined' && console.warn.bind(console)) || + Module['print'] + Module.print = Module['print'] + Module.printErr = Module['printErr'] + for (key in moduleOverrides) { + if (moduleOverrides.hasOwnProperty(key)) { + Module[key] = moduleOverrides[key] + } + } + moduleOverrides = undefined + var STACK_ALIGN = 16 + function staticAlloc(size) { + assert(!staticSealed) + var ret = STATICTOP + STATICTOP = (STATICTOP + size + 15) & -16 + return ret + } + function dynamicAlloc(size) { + assert(DYNAMICTOP_PTR) + var ret = HEAP32[DYNAMICTOP_PTR >> 2] + var end = (ret + size + 15) & -16 + HEAP32[DYNAMICTOP_PTR >> 2] = end + if (end >= TOTAL_MEMORY) { + var success = enlargeMemory() + if (!success) { + HEAP32[DYNAMICTOP_PTR >> 2] = ret + return 0 + } + } + return ret + } + function alignMemory(size, factor) { + if (!factor) factor = STACK_ALIGN + var ret = (size = Math.ceil(size / factor) * factor) + return ret + } + function getNativeTypeSize(type) { + switch (type) { + case 'i1': + case 'i8': + return 1 + case 'i16': + return 2 + case 'i32': + return 4 + case 'i64': + return 8 + case 'float': + return 4 + case 'double': + return 8 + default: { + if (type[type.length - 1] === '*') { + return 4 + } else if (type[0] === 'i') { + var bits = parseInt(type.substr(1)) + assert(bits % 8 === 0) + return bits / 8 + } else { + return 0 + } + } + } + } + function warnOnce(text) { + if (!warnOnce.shown) warnOnce.shown = {} + if (!warnOnce.shown[text]) { + warnOnce.shown[text] = 1 + Module.printErr(text) + } + } + var jsCallStartIndex = 1 + var functionPointers = new Array(0) + var funcWrappers = {} + function dynCall(sig, ptr, args) { + if (args && args.length) { + return Module['dynCall_' + sig].apply(null, [ptr].concat(args)) + } else { + return Module['dynCall_' + sig].call(null, ptr) + } + } + var GLOBAL_BASE = 8 + var ABORT = 0 + var EXITSTATUS = 0 + function assert(condition, text) { + if (!condition) { + abort('Assertion failed: ' + text) + } + } + function getCFunc(ident) { + var func = Module['_' + ident] + assert( + func, + 'Cannot call unknown function ' + ident + ', make sure it is exported', + ) + return func + } + var JSfuncs = { + stackSave: function () { + stackSave() + }, + stackRestore: function () { + stackRestore() + }, + arrayToC: function (arr) { + var ret = stackAlloc(arr.length) + writeArrayToMemory(arr, ret) + return ret + }, + stringToC: function (str) { + var ret = 0 + if (str !== null && str !== undefined && str !== 0) { + var len = (str.length << 2) + 1 + ret = stackAlloc(len) + stringToUTF8(str, ret, len) + } + return ret + }, + } + var toC = { string: JSfuncs['stringToC'], array: JSfuncs['arrayToC'] } + function ccall(ident, returnType, argTypes, args, opts) { + var func = getCFunc(ident) + var cArgs = [] + var stack = 0 + if (args) { + for (var i = 0; i < args.length; i++) { + var converter = toC[argTypes[i]] + if (converter) { + if (stack === 0) stack = stackSave() + cArgs[i] = converter(args[i]) + } else { + cArgs[i] = args[i] + } + } + } + var ret = func.apply(null, cArgs) + if (returnType === 'string') ret = Pointer_stringify(ret) + if (returnType === 'boolean') ret = Boolean(ret) + if (stack !== 0) { + stackRestore(stack) + } + return ret + } + function setValue(ptr, value, type, noSafe) { + type = type || 'i8' + if (type.charAt(type.length - 1) === '*') type = 'i32' + switch (type) { + case 'i1': + HEAP8[ptr >> 0] = value + break + case 'i8': + HEAP8[ptr >> 0] = value + break + case 'i16': + HEAP16[ptr >> 1] = value + break + case 'i32': + HEAP32[ptr >> 2] = value + break + case 'i64': + ;(tempI64 = [ + value >>> 0, + ((tempDouble = value), + +Math_abs(tempDouble) >= +1 + ? tempDouble > +0 + ? (Math_min(+Math_floor(tempDouble / +4294967296), +4294967295) | + 0) >>> + 0 + : ~~+Math_ceil( + (tempDouble - +(~~tempDouble >>> 0)) / +4294967296, + ) >>> 0 + : 0), + ]), + (HEAP32[ptr >> 2] = tempI64[0]), + (HEAP32[(ptr + 4) >> 2] = tempI64[1]) + break + case 'float': + HEAPF32[ptr >> 2] = value + break + case 'double': + HEAPF64[ptr >> 3] = value + break + default: + abort('invalid type for setValue: ' + type) + } + } + var ALLOC_STATIC = 2 + var ALLOC_NONE = 4 + function allocate(slab, types, allocator, ptr) { + var zeroinit, size + if (typeof slab === 'number') { + zeroinit = true + size = slab + } else { + zeroinit = false + size = slab.length + } + var singleType = typeof types === 'string' ? types : null + var ret + if (allocator == ALLOC_NONE) { + ret = ptr + } else { + ret = [ + typeof _malloc === 'function' ? _malloc : staticAlloc, + stackAlloc, + staticAlloc, + dynamicAlloc, + ][allocator === undefined ? ALLOC_STATIC : allocator]( + Math.max(size, singleType ? 1 : types.length), + ) + } + if (zeroinit) { + var stop + ptr = ret + assert((ret & 3) == 0) + stop = ret + (size & ~3) + for (; ptr < stop; ptr += 4) { + HEAP32[ptr >> 2] = 0 + } + stop = ret + size + while (ptr < stop) { + HEAP8[ptr++ >> 0] = 0 + } + return ret + } + if (singleType === 'i8') { + if (slab.subarray || slab.slice) { + HEAPU8.set(slab, ret) + } else { + HEAPU8.set(new Uint8Array(slab), ret) + } + return ret + } + var i = 0, + type, + typeSize, + previousType + while (i < size) { + var curr = slab[i] + type = singleType || types[i] + if (type === 0) { + i++ + continue + } + if (type == 'i64') type = 'i32' + setValue(ret + i, curr, type) + if (previousType !== type) { + typeSize = getNativeTypeSize(type) + previousType = type + } + i += typeSize + } + return ret + } + function Pointer_stringify(ptr, length) { + if (length === 0 || !ptr) return '' + var hasUtf = 0 + var t + var i = 0 + while (1) { + t = HEAPU8[(ptr + i) >> 0] + hasUtf |= t + if (t == 0 && !length) break + i++ + if (length && i == length) break + } + if (!length) length = i + var ret = '' + if (hasUtf < 128) { + var MAX_CHUNK = 1024 + var curr + while (length > 0) { + curr = String.fromCharCode.apply( + String, + HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK)), + ) + ret = ret ? ret + curr : curr + ptr += MAX_CHUNK + length -= MAX_CHUNK + } + return ret + } + return UTF8ToString(ptr) + } + var UTF8Decoder = + typeof TextDecoder !== 'undefined' ? new TextDecoder('utf8') : undefined + function UTF8ArrayToString(u8Array, idx) { + var endPtr = idx + while (u8Array[endPtr]) ++endPtr + if (endPtr - idx > 16 && u8Array.subarray && UTF8Decoder) { + return UTF8Decoder.decode(u8Array.subarray(idx, endPtr)) + } else { + var u0, u1, u2, u3, u4, u5 + var str = '' + while (1) { + u0 = u8Array[idx++] + if (!u0) return str + if (!(u0 & 128)) { + str += String.fromCharCode(u0) + continue + } + u1 = u8Array[idx++] & 63 + if ((u0 & 224) == 192) { + str += String.fromCharCode(((u0 & 31) << 6) | u1) + continue + } + u2 = u8Array[idx++] & 63 + if ((u0 & 240) == 224) { + u0 = ((u0 & 15) << 12) | (u1 << 6) | u2 + } else { + u3 = u8Array[idx++] & 63 + if ((u0 & 248) == 240) { + u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | u3 + } else { + u4 = u8Array[idx++] & 63 + if ((u0 & 252) == 248) { + u0 = ((u0 & 3) << 24) | (u1 << 18) | (u2 << 12) | (u3 << 6) | u4 + } else { + u5 = u8Array[idx++] & 63 + u0 = + ((u0 & 1) << 30) | + (u1 << 24) | + (u2 << 18) | + (u3 << 12) | + (u4 << 6) | + u5 + } + } + } + if (u0 < 65536) { + str += String.fromCharCode(u0) + } else { + var ch = u0 - 65536 + str += String.fromCharCode(55296 | (ch >> 10), 56320 | (ch & 1023)) + } + } + } + } + function UTF8ToString(ptr) { + return UTF8ArrayToString(HEAPU8, ptr) + } + function stringToUTF8Array(str, outU8Array, outIdx, maxBytesToWrite) { + if (!(maxBytesToWrite > 0)) return 0 + var startIdx = outIdx + var endIdx = outIdx + maxBytesToWrite - 1 + for (var i = 0; i < str.length; ++i) { + var u = str.charCodeAt(i) + if (u >= 55296 && u <= 57343) + u = (65536 + ((u & 1023) << 10)) | (str.charCodeAt(++i) & 1023) + if (u <= 127) { + if (outIdx >= endIdx) break + outU8Array[outIdx++] = u + } else if (u <= 2047) { + if (outIdx + 1 >= endIdx) break + outU8Array[outIdx++] = 192 | (u >> 6) + outU8Array[outIdx++] = 128 | (u & 63) + } else if (u <= 65535) { + if (outIdx + 2 >= endIdx) break + outU8Array[outIdx++] = 224 | (u >> 12) + outU8Array[outIdx++] = 128 | ((u >> 6) & 63) + outU8Array[outIdx++] = 128 | (u & 63) + } else if (u <= 2097151) { + if (outIdx + 3 >= endIdx) break + outU8Array[outIdx++] = 240 | (u >> 18) + outU8Array[outIdx++] = 128 | ((u >> 12) & 63) + outU8Array[outIdx++] = 128 | ((u >> 6) & 63) + outU8Array[outIdx++] = 128 | (u & 63) + } else if (u <= 67108863) { + if (outIdx + 4 >= endIdx) break + outU8Array[outIdx++] = 248 | (u >> 24) + outU8Array[outIdx++] = 128 | ((u >> 18) & 63) + outU8Array[outIdx++] = 128 | ((u >> 12) & 63) + outU8Array[outIdx++] = 128 | ((u >> 6) & 63) + outU8Array[outIdx++] = 128 | (u & 63) + } else { + if (outIdx + 5 >= endIdx) break + outU8Array[outIdx++] = 252 | (u >> 30) + outU8Array[outIdx++] = 128 | ((u >> 24) & 63) + outU8Array[outIdx++] = 128 | ((u >> 18) & 63) + outU8Array[outIdx++] = 128 | ((u >> 12) & 63) + outU8Array[outIdx++] = 128 | ((u >> 6) & 63) + outU8Array[outIdx++] = 128 | (u & 63) + } + } + outU8Array[outIdx] = 0 + return outIdx - startIdx + } + function stringToUTF8(str, outPtr, maxBytesToWrite) { + return stringToUTF8Array(str, HEAPU8, outPtr, maxBytesToWrite) + } + function lengthBytesUTF8(str) { + var len = 0 + for (var i = 0; i < str.length; ++i) { + var u = str.charCodeAt(i) + if (u >= 55296 && u <= 57343) + u = (65536 + ((u & 1023) << 10)) | (str.charCodeAt(++i) & 1023) + if (u <= 127) { + ++len + } else if (u <= 2047) { + len += 2 + } else if (u <= 65535) { + len += 3 + } else if (u <= 2097151) { + len += 4 + } else if (u <= 67108863) { + len += 5 + } else { + len += 6 + } + } + return len + } + var UTF16Decoder = + typeof TextDecoder !== 'undefined' ? new TextDecoder('utf-16le') : undefined + function demangle(func) { + return func + } + function demangleAll(text) { + var regex = /__Z[\w\d_]+/g + return text.replace(regex, function (x) { + var y = demangle(x) + return x === y ? x : x + ' [' + y + ']' + }) + } + function jsStackTrace() { + var err = new Error() + if (!err.stack) { + try { + throw new Error(0) + } catch (e) { + err = e + } + if (!err.stack) { + return '(no stack trace available)' + } + } + return err.stack.toString() + } + var WASM_PAGE_SIZE = 65536 + var ASMJS_PAGE_SIZE = 16777216 + var MIN_TOTAL_MEMORY = 16777216 + function alignUp(x, multiple) { + if (x % multiple > 0) { + x += multiple - (x % multiple) + } + return x + } + var buffer, HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64 + function updateGlobalBuffer(buf) { + Module['buffer'] = buffer = buf + } + function updateGlobalBufferViews() { + Module['HEAP8'] = HEAP8 = new Int8Array(buffer) + Module['HEAP16'] = HEAP16 = new Int16Array(buffer) + Module['HEAP32'] = HEAP32 = new Int32Array(buffer) + Module['HEAPU8'] = HEAPU8 = new Uint8Array(buffer) + Module['HEAPU16'] = HEAPU16 = new Uint16Array(buffer) + Module['HEAPU32'] = HEAPU32 = new Uint32Array(buffer) + Module['HEAPF32'] = HEAPF32 = new Float32Array(buffer) + Module['HEAPF64'] = HEAPF64 = new Float64Array(buffer) + } + var STATIC_BASE, STATICTOP, staticSealed + var STACK_BASE, STACKTOP, STACK_MAX + var DYNAMIC_BASE, DYNAMICTOP_PTR + STATIC_BASE = + STATICTOP = + STACK_BASE = + STACKTOP = + STACK_MAX = + DYNAMIC_BASE = + DYNAMICTOP_PTR = + 0 + staticSealed = false + function abortOnCannotGrowMemory() { + abort( + 'Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value ' + + TOTAL_MEMORY + + ', (2) compile with -s ALLOW_MEMORY_GROWTH=1 which allows increasing the size at runtime but prevents some optimizations, (3) set Module.TOTAL_MEMORY to a higher value before the program runs, or (4) if you want malloc to return NULL (0) instead of this abort, compile with -s ABORTING_MALLOC=0 ', + ) + } + if (!Module['reallocBuffer']) + Module['reallocBuffer'] = function (size) { + var ret + try { + if (ArrayBuffer.transfer) { + ret = ArrayBuffer.transfer(buffer, size) + } else { + var oldHEAP8 = HEAP8 + ret = new ArrayBuffer(size) + var temp = new Int8Array(ret) + temp.set(oldHEAP8) + } + } catch (e) { + return false + } + var success = _emscripten_replace_memory(ret) + if (!success) return false + return ret + } + function enlargeMemory() { + var PAGE_MULTIPLE = Module['usingWasm'] ? WASM_PAGE_SIZE : ASMJS_PAGE_SIZE + var LIMIT = 2147483648 - PAGE_MULTIPLE + if (HEAP32[DYNAMICTOP_PTR >> 2] > LIMIT) { + return false + } + var OLD_TOTAL_MEMORY = TOTAL_MEMORY + TOTAL_MEMORY = Math.max(TOTAL_MEMORY, MIN_TOTAL_MEMORY) + while (TOTAL_MEMORY < HEAP32[DYNAMICTOP_PTR >> 2]) { + if (TOTAL_MEMORY <= 536870912) { + TOTAL_MEMORY = alignUp(2 * TOTAL_MEMORY, PAGE_MULTIPLE) + } else { + TOTAL_MEMORY = Math.min( + alignUp((3 * TOTAL_MEMORY + 2147483648) / 4, PAGE_MULTIPLE), + LIMIT, + ) + } + } + var replacement = Module['reallocBuffer'](TOTAL_MEMORY) + if (!replacement || replacement.byteLength != TOTAL_MEMORY) { + TOTAL_MEMORY = OLD_TOTAL_MEMORY + return false + } + updateGlobalBuffer(replacement) + updateGlobalBufferViews() + return true + } + var byteLength + try { + byteLength = Function.prototype.call.bind( + Object.getOwnPropertyDescriptor(ArrayBuffer.prototype, 'byteLength').get, + ) + byteLength(new ArrayBuffer(4)) + } catch (e) { + byteLength = function (buffer) { + return buffer.byteLength + } + } + var TOTAL_STACK = Module['TOTAL_STACK'] || 5242880 + var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 16777216 + if (TOTAL_MEMORY < TOTAL_STACK) + Module.printErr( + 'TOTAL_MEMORY should be larger than TOTAL_STACK, was ' + + TOTAL_MEMORY + + '! (TOTAL_STACK=' + + TOTAL_STACK + + ')', + ) + if (Module['buffer']) { + buffer = Module['buffer'] + } else { + { + buffer = new ArrayBuffer(TOTAL_MEMORY) + } + Module['buffer'] = buffer + } + updateGlobalBufferViews() + function getTotalMemory() { + return TOTAL_MEMORY + } + HEAP32[0] = 1668509029 + HEAP16[1] = 25459 + if (HEAPU8[2] !== 115 || HEAPU8[3] !== 99) + throw 'Runtime error: expected the system to be little-endian!' + function callRuntimeCallbacks(callbacks) { + while (callbacks.length > 0) { + var callback = callbacks.shift() + if (typeof callback == 'function') { + callback() + continue + } + var func = callback.func + if (typeof func === 'number') { + if (callback.arg === undefined) { + Module['dynCall_v'](func) + } else { + Module['dynCall_vi'](func, callback.arg) + } + } else { + func(callback.arg === undefined ? null : callback.arg) + } + } + } + var __ATPRERUN__ = [] + var __ATINIT__ = [] + var __ATMAIN__ = [] + var __ATEXIT__ = [] + var __ATPOSTRUN__ = [] + var runtimeInitialized = false + var runtimeExited = false + function preRun() { + if (Module['preRun']) { + if (typeof Module['preRun'] == 'function') + Module['preRun'] = [Module['preRun']] + while (Module['preRun'].length) { + addOnPreRun(Module['preRun'].shift()) + } + } + callRuntimeCallbacks(__ATPRERUN__) + } + function ensureInitRuntime() { + if (runtimeInitialized) return + runtimeInitialized = true + callRuntimeCallbacks(__ATINIT__) + } + function preMain() { + callRuntimeCallbacks(__ATMAIN__) + } + function exitRuntime() { + callRuntimeCallbacks(__ATEXIT__) + runtimeExited = true + } + function postRun() { + if (Module['postRun']) { + if (typeof Module['postRun'] == 'function') + Module['postRun'] = [Module['postRun']] + while (Module['postRun'].length) { + addOnPostRun(Module['postRun'].shift()) + } + } + callRuntimeCallbacks(__ATPOSTRUN__) + } + function addOnPreRun(cb) { + __ATPRERUN__.unshift(cb) + } + function addOnPreMain(cb) { + __ATMAIN__.unshift(cb) + } + function addOnPostRun(cb) { + __ATPOSTRUN__.unshift(cb) + } + function writeArrayToMemory(array, buffer) { + HEAP8.set(array, buffer) + } + function writeAsciiToMemory(str, buffer, dontAddNull) { + for (var i = 0; i < str.length; ++i) { + HEAP8[buffer++ >> 0] = str.charCodeAt(i) + } + if (!dontAddNull) HEAP8[buffer >> 0] = 0 + } + var Math_abs = Math.abs + var Math_cos = Math.cos + var Math_sin = Math.sin + var Math_tan = Math.tan + var Math_acos = Math.acos + var Math_asin = Math.asin + var Math_atan = Math.atan + var Math_atan2 = Math.atan2 + var Math_exp = Math.exp + var Math_log = Math.log + var Math_sqrt = Math.sqrt + var Math_ceil = Math.ceil + var Math_floor = Math.floor + var Math_pow = Math.pow + var Math_imul = Math.imul + var Math_fround = Math.fround + var Math_round = Math.round + var Math_min = Math.min + var Math_max = Math.max + var Math_clz32 = Math.clz32 + var Math_trunc = Math.trunc + var runDependencies = 0 + var runDependencyWatcher = null + var dependenciesFulfilled = null + function addRunDependency(id) { + runDependencies++ + if (Module['monitorRunDependencies']) { + Module['monitorRunDependencies'](runDependencies) + } + } + function removeRunDependency(id) { + runDependencies-- + if (Module['monitorRunDependencies']) { + Module['monitorRunDependencies'](runDependencies) + } + if (runDependencies == 0) { + if (runDependencyWatcher !== null) { + clearInterval(runDependencyWatcher) + runDependencyWatcher = null + } + if (dependenciesFulfilled) { + var callback = dependenciesFulfilled + dependenciesFulfilled = null + callback() + } + } + } + Module['preloadedImages'] = {} + Module['preloadedAudios'] = {} + var memoryInitializer = null + var dataURIPrefix = 'data:application/octet-stream;base64,' + function isDataURI(filename) { + return String.prototype.startsWith + ? filename.startsWith(dataURIPrefix) + : filename.indexOf(dataURIPrefix) === 0 + } + STATIC_BASE = GLOBAL_BASE + STATICTOP = STATIC_BASE + 19728 + __ATINIT__.push() + memoryInitializer = + 'data:application/octet-stream;base64,HBwAAGQcAAAYAAAAAAAAAPQbAACLHAAAHBwAAKgcAAAYAAAAAAAAAPQbAADRHAAAHBwAAO0cAAAwAAAAAAAAAPQbAAAPHQAAHBwAADQdAAAwAAAAAAAAABwcAADsKQAASAAAAAAAAAAcHAAAZB0AAIAAAAAAAAAAHBwAAL0dAACQAAAAAAAAABwcAAARHgAAoAAAAAAAAAAcHAAARR4AALAAAAAAAAAA9BsAAHAeAAAcHAAAlB4AAMgAAAAAAAAA9BsAADIfAAAcHAAA0B8AAOAAAAAAAAAAHBwAAGggAACAAAAAAAAAABwcAADxIAAA4AAAAAAAAAAcHAAAiyEAAOAAAAAAAAAAHBwAAB0iAADgAAAAAAAAABwcAADDIgAA4AAAAAAAAAAcHAAAXiMAAOAAAAAAAAAAHBwAAPQjAABQAQAAAAAAAPQbAACfJAAAHBwAAEolAABoAQAAAAAAABwcAADvJQAAgAAAAAAAAAAcHAAAhSYAAGgBAAAAAAAAHBwAACwnAABoAQAAAAAAABwcAADLJwAAaAEAAAAAAAAcHAAAfigAAGgBAAAAAAAAHBwAACYpAABoAQAAAAAAABwcAADaNwAAYAAAAAAAAAAcHAAAGCoAAOgBAAAAAAAAHBwAAIkqAACQAAAAAAAAABwcAAD1KgAACAIAAAAAAAD0GwAAqysAABwcAABhLAAAIAIAAAAAAAAcHAAAES0AAOgBAAAAAAAAHBwAALItAAAgAgAAAAAAABwcAABkLgAAIAIAAAAAAAAcHAAADi8AACACAAAAAAAAHBwAAMwvAAAgAgAAAAAAABwcAAB/MAAAIAIAAAAAAAAcHAAALTEAAJACAAAAAAAA9BsAAPAxAAAcHAAAszIAAKgCAAAAAAAAHBwAAHAzAADoAQAAAAAAABwcAAAeNAAAqAIAAAAAAAAcHAAA3TQAAKgCAAAAAAAAHBwAAJQ1AACoAgAAAAAAABwcAABfNgAAqAIAAAAAAAAcHAAAHzcAAKgCAAAAAAAAHBwAAAU4AABgAAAAAAAAABwcAAAJOQAAmAMAAAAAAAAcHAAACzwAAIADAAAAAAAA9BsAACo5AAAcHAAAcjkAAFADAAAAAAAA9BsAADw6AAD0GwAAVjoAABwcAACROgAAUAMAAAAAAAAcHAAATjsAAFADAAAAAAAA9BsAAFc8AAAcHAAAhTwAAIADAAAAAAAAHBwAANg8AADIAwAAAAAAABwcAAAePQAAmAMAAAAAAAAcHAAABD0AAFADAAAAAAAA9BsAAD49AAAcHAAAFD4AAMgDAAAAAAAAHBwAADY+AADIAwAAAAAAABwcAACVPgAAAAQAAAAAAAD0GwAA5z4AAPQbAAAWSQAAHBwAAHZJAAAgBAAAAAAAABwcAAAjSQAAMAQAAAAAAAD0GwAAREkAABwcAABRSQAAEAQAAAAAAAAcHAAAWEoAAAgEAAAAAAAAHBwAAGhKAABIBAAAAAAAABwcAACdSgAAIAQAAAAAAAAcHAAAeUoAAGgEAAAAAAAAAAAAAAgAAAABAAAAAgAAAAEAAAABAAAAAQAAAAAAAAAgAAAAAwAAAAQAAAACAAAAAgAAAAIAAAD//////////wAAAAAwAAAABQAAAAYAAAABAAAAAwAAAAEAAAAEAAAABQAAAAIAAAAGAAAABwAAAAMAAAABAAAACAAAAAAAAAA4AAAABwAAAAgAAAABAAAAAwAAAAQAAAAEAAAABQAAAAIAAAAGAAAABwAAAAUAAAAJAAAACgAAAAAAAABIAAAACQAAAAoAAAADAAAACwAAAAwAAAAEAAAADQAAAAYAAAAHAAAADgAAAA8AAAAFAAAAAAAAAFAAAAALAAAADAAAAAYAAAAQAAAACAAAABEAAAASAAAABwAAABMAAAAUAAAACQAAABUAAAAWAAAACgAAAAEAAAAAAAAAYAAAAA0AAAAOAAAACAAAAAsAAAAXAAAABAAAAA0AAAAGAAAACwAAAA4AAAAPAAAACQAAAAIAAAAKAAAA/////wAAAACAAAAADwAAABAAAAABAAAADAAAAAEAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAABAAAAAAAAAHAAAAAPAAAAEQAAABAAAAAMAAAAEQAAAA0AAAAYAAAAGQAAAA4AAAAPAAAAGgAAAAEAAAAAAAAAMAEAAA8AAAASAAAAEgAAAAwAAAATAAAADQAAABgAAAAZAAAADgAAAA8AAAAaAAAAAgAAAAAAAAAgAQAADwAAABMAAAAUAAAADAAAABUAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAADAAAAAAAAAAABAAAUAAAAFQAAABYAAAAMAAAAFwAAABgAAAAbAAAAHAAAAA4AAAAPAAAAHQAAAAQAAAAAAAAA8AAAABYAAAAXAAAAGQAAAAwAAAAaAAAAGwAAAB4AAAAfAAAADgAAAA8AAAAgAAAABQAAAAAAAADQAAAAGAAAABkAAAAcAAAADAAAAB0AAAAeAAAAIQAAACIAAAAOAAAADwAAACMAAAAGAAAAAAAAALgAAAAaAAAAGwAAACQAAAAfAAAAAwAAAAAAAADgAAAADwAAABwAAAABAAAADAAAAAEAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAABAAAAAAAAABABAAAdAAAAHgAAACAAAAAMAAAAIQAAAA0AAAAYAAAAGQAAAA4AAAAPAAAAJQAAAAcAAAAAAAAAuAEAAA8AAAAfAAAAIgAAAAwAAAAjAAAADQAAABgAAAAZAAAADgAAAA8AAAAaAAAACAAAAAAAAACoAQAADwAAACAAAAAkAAAADAAAACUAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAAJAAAAAAAAAIgBAAAhAAAAIgAAACYAAAAMAAAAJwAAACgAAAAmAAAAJwAAAA4AAAAPAAAAKAAAAAoAAAAAAAAAeAEAACMAAAAkAAAAKQAAAAwAAAAqAAAAKwAAACkAAAAqAAAADgAAAA8AAAArAAAACwAAAAAAAABYAQAAJQAAACYAAAAsAAAADAAAAC0AAAAuAAAALAAAAC0AAAAOAAAADwAAAC4AAAAMAAAAAAAAAEABAAAnAAAAKAAAAC8AAAAvAAAABAAAAAAAAABoAQAADwAAACkAAAABAAAADAAAAAEAAAANAAAAGAAAABkAAAAOAAAADwAAABoAAAABAAAAAAAAAJgBAAAqAAAAKwAAADAAAAAMAAAAMQAAAA0AAAAYAAAAGQAAAA4AAAAPAAAAMAAAAA0AAAAAAAAAyAEAACwAAAAtAAAACwAAAAsAAAAXAAAABAAAADEAAAAyAAAAMwAAAA4AAAAPAAAACQAAAAUAAAAMAAAAAAAAANgBAAAuAAAALwAAADQAAAA1AAAANgAAADcAAAAyAAAAMwAAADgAAAA5AAAANAAAAA4AAAAAAAAAcAIAAC4AAAAwAAAAOgAAADUAAAA7AAAANwAAADIAAAAzAAAAOAAAADkAAAA0AAAADwAAAAAAAABgAgAALgAAADEAAAA8AAAANQAAAD0AAAA3AAAAMgAAADMAAAA4AAAAOQAAADQAAAAQAAAAAAAAAFACAAAyAAAAMwAAAD4AAAA1AAAAPwAAADcAAAAyAAAAMwAAADgAAAA5AAAANQAAABEAAAAAAAAAQAIAADQAAAA1AAAAQAAAADUAAABBAAAAQgAAADYAAAA3AAAAOAAAADkAAAA4AAAAEgAAAAAAAAAwAgAANgAAADcAAABDAAAANQAAAEQAAABFAAAAOQAAADoAAAA4AAAAOQAAADsAAAATAAAAAAAAABACAAA4AAAAOQAAAEYAAAA1AAAARwAAAEgAAAA8AAAAPQAAADgAAAA5AAAAPgAAABQAAAAAAAAA+AEAADoAAAA7AAAAPwAAAEkAAAAGAAAAAAAAAPgCAAAuAAAAPAAAAEoAAAA1AAAASwAAADcAAAAyAAAAMwAAADgAAAA5AAAANAAAABUAAAAAAAAA6AIAAC4AAAA9AAAATAAAADUAAABNAAAANwAAADIAAAAzAAAAOAAAADkAAAA0AAAAFgAAAAAAAADYAgAAPgAAAD8AAABOAAAANQAAAE8AAAA3AAAAMgAAADMAAAA4AAAAOQAAAEAAAAAXAAAAAAAAAMgCAABAAAAAQQAAAFAAAAA1AAAAUQAAAFIAAABBAAAAQgAAADgAAAA5AAAAQwAAABgAAAAAAAAAuAIAAEIAAABDAAAAUwAAADUAAABUAAAAVQAAAEQAAABFAAAAOAAAADkAAABGAAAAGQAAAAAAAACYAgAARAAAAEUAAABWAAAANQAAAFcAAABYAAAARwAAAEgAAAA4AAAAOQAAAEkAAAAaAAAAAAAAAIACAABGAAAARwAAAEoAAABZAAAABwAAAAAAAAAIAwAASAAAAEkAAAANAAAACwAAABcAAAAEAAAASwAAAFoAAABbAAAADgAAAA8AAAAJAAAAAgAAAA4AAAAAAAAAGAMAAEoAAABLAAAAXAAAAF0AAABeAAAAXwAAAGAAAABhAAAAYgAAAEwAAABNAAAAYwAAAGQAAABOAAAATwAAAGUAAAAAAAAAKAMAAEwAAABNAAAAUAAAAFEAAABSAAAAUwAAAFQAAABmAAAAZwAAAFUAAABoAAAAAQAAAAMAAAAAAAAAAwAAAAAAAAADAAAAAAAAAAMAAAAAAAAAQAMAAE4AAABPAAAAVgAAAGkAAAAAAAAAOAMAAFAAAABRAAAAUgAAAP////8AAAAAYAMAAFMAAABUAAAAVwAAAGoAAAAAAAAAWAMAAFUAAABWAAAAVwAAAAAAAABwAwAAWAAAAFkAAABYAAAAawAAAAAAAACIAwAAWgAAAFsAAABZAAAAWgAAAFsAAABcAAAAXQAAAGwAAABtAAAAXgAAAG4AAAAAAAAAAQAAAAUAAAACAAAABQAAAAMAAAAFAAAABAAAAAAAAACYAwAAXAAAAF0AAABcAAAAAQAAAG8AAABfAAAAYAAAAGEAAABiAAAAAQAAAF8AAABjAAAAcAAAAGAAAABhAAAAAQAAAAAAAACoAwAAXAAAAF4AAABcAAAAcQAAAG8AAABfAAAAYAAAAGEAAABiAAAAYgAAAF8AAABjAAAAcAAAAGAAAABhAAAAcgAAAAAAAAC4AwAAXwAAAGAAAABjAAAAcwAAAAAAAADIAwAAXAAAAGEAAAB0AAAAAQAAAG8AAABfAAAAdQAAAGEAAABiAAAAAQAAAF8AAABjAAAAAAAAANADAABcAAAAYgAAAHQAAAB2AAAAbwAAAF8AAAB3AAAAYQAAAGIAAABkAAAAXwAAAGMAAAAAAAAA4AMAAFwAAABjAAAAdAAAAHgAAABvAAAAXwAAAHkAAABhAAAAYgAAAGUAAABfAAAAYwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAFZVVVUCAAAAAAAAAAIAAACamZmZAwAAAFZVVVUDAAAAJUmSJAMAAAAAAAAAAwAAAMhxHMcEAAAAmpmZmQQAAABGF110BAAAAFZVVVUEAAAAPLETOwQAAAAlSZIkBAAAABIREREEAAAAAAAAAAQAAADi4eHhBQAAAMhxHMcFAAAAy2sorwUAAACamZmZBQAAAIdhGIYFAAAARhdddAUAAACRhSxkBQAAAFZVVVUFAAAAexSuRwUAAAA8sRM7BQAAANtLaC8FAAAAJUmSJAUAAAASlnsaBQAAABIREREFAAAAhRBCCAUAAAAAAAAABQAAAAgffPAGAAAA4uHh4QYAAADVQR3UBgAAAMhxHMcGAAAATZHPugYAAADLayivBgAAAKVBGqQGAAAAmpmZmQYAAAD6GJyPBgAAAIdhGIYGAAAAGPQFfQYAAABGF110BgAAAG3BFmwGAAAAkYUsZAYAAAC6gphcBgAAAFZVVVUGAAAAcwpeTgYAAAB7FK5HBgAAAEJBQUEGAAAAPLETOwYAAACzzyE1BgAAANtLaC8GAAAAnxLkKQYAAAAlSZIkBgAAAN1HcB8GAAAAEpZ7GgYAAAD45bEVBgAAABIREREGAAAA/BSXDAYAAACFEEIIBgAAAAVBEAQGAAAAAAAAAAYAAAD5gR/4BwAAAAgffPAHAAAAwBoT6QcAAADi4eHhBwAAAGwH5toHAAAA1UEd1AcAAACRaIXNBwAAAMhxHMcHAAAAOXDgwAcAAABNkc+6BwAAAE8b6LQHAAAAy2sorwcAAAAH9o6pBwAAAKVBGqQHAAAAUunIngcAAACamZmZBwAAAM4Pi5QHAAAA+hicjwcAAAD3kMuKBwAAAIdhGIYHAAAAgoGBgQcAAAAY9AV9BwAAABjIpHgHAAAARhdddAcAAADBBS5wBwAAAG3BFmwHAAAAaYEWaAcAAACRhSxkBwAAAAYWWGAHAAAAuoKYXAcAAAAJI+1YBwAAAFZVVVUHAAAAr37QUQcAAABzCl5OBwAAAAZq/UoHAAAAexSuRwcAAABXhm9EBwAAAEJBQUEHAAAAz8siPgcAAAA8sRM7BwAAADmBEzgHAAAAs88hNQcAAACjND4yBwAAANtLaC8HAAAA2bSfLAcAAACfEuQpBwAAAIkLNScHAAAAJUmSJAcAAAATePshBwAAAN1HcB8HAAAA22rwHAcAAAASlnsaBwAAABmBERgHAAAA+OWxFQcAAAAUgVwTBwAAABIREREHAAAAv1bPDgcAAAD8FJcMBwAAAKcQaAoHAAAAhRBCCAcAAAAw3SQGBwAAAAVBEAQHAAAAEQgEAgcAAAAAAAAABwAAACDwB/wIAAAA+YEf+AgAAADlWUb0CAAAAAgffPAIAAAAMXvA7AgAAADAGhPpCAAAAJGsc+UIAAAA4uHh4QgAAABAbl3eCAAAAGwH5toIAAAATGV71wgAAADVQR3UCAAAAPdYy9AIAAAAkWiFzQgAAABWMEvKCAAAAMhxHMcIAAAAHfD4wwgAAAA5cODACAAAAJq40r0IAAAATZHPuggAAADew9a3CAAAAE8b6LQIAAAAB2QDsggAAADLayivCAAAAK0BV6wIAAAAB/aOqQgAAABuGtCmCAAAAKVBGqQIAAAAmD9toQgAAABS6cieCAAAAO8ULZwIAAAAmpmZmQgAAACBTw6XCAAAAM4Pi5QIAAAAnrQPkggAAAD6GJyPCAAAANQYMI0IAAAA95DLiggAAAALX26ICAAAAIdhGIYIAAAArHfJgwgAAACCgYGBCAAAANFfQH8IAAAAGPQFfQgAAACPINJ6CAAAABjIpHgIAAAARM59dggAAABGF110CAAAAPWHQnIIAAAAwQUucAgAAAC1dh9uCAAAAG3BFmwIAAAAFs0TaggAAABpgRZoCAAAAKbGHmYIAAAAkYUsZAgAAABxpz9iCAAAAAYWWGAIAAAAjrt1XggAAAC6gphcCAAAALFWwFoIAAAACSPtWAgAAADG0x5XCAAAAFZVVVUIAAAAkJSQUwgAAACvftBRCAAAAFEBFVAIAAAAcwpeTggAAABziKtMCAAAAAZq/UoIAAAAPJ5TSQgAAAB7FK5HCAAAAIC8DEYIAAAAV4ZvRAgAAABeYtZCCAAAAEJBQUEIAAAA/BOwPwgAAADPyyI+CAAAAEhamTwIAAAAPLETOwgAAADCwpE5CAAAADmBEzgIAAAAPt+YNggAAACzzyE1CAAAALZFrjMIAAAAozQ+MggAAAAUkNEwCAAAANtLaC8IAAAABVwCLggAAADZtJ8sCAAAANFKQCsIAAAAnxLkKQgAAAApAYsoCAAAAIkLNScIAAAACSfiJQgAAAAlSZIkCAAAAIpnRSMIAAAAE3j7IQgAAADHcLQgCAAAAN1HcB8IAAAAtPMuHggAAADbavAcCAAAAAWktBsIAAAAEpZ7GggAAAAJOEUZCAAAABmBERgIAAAAlWjgFggAAAD45bEVCAAAAOHwhRQIAAAAFIFcEwgAAAB2jjUSCAAAABIREREIAAAAEAHvDwgAAAC/Vs8OCAAAAIkKsg0IAAAA/BSXDAgAAADDbn4LCAAAAKcQaAoIAAAAkfNTCQgAAACFEEIICAAAAKVgMgcIAAAAMN0kBggAAAB+fxkFCAAAAAVBEAQIAAAAUhsJAwgAAAARCAQCCAAAAAIBAQEIAAAA/////wAAAADwAwAAZAAAAGUAAAAIAAAAAwAAAHoAAABmAAAACQAAAP////8AAAAAAAQAAGcAAABoAAAACgAAAAQAAAB6AAAAZgAAAAsAAAD/////VBgAAAUAAAAAAAAAAAAAAHsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8AAAAQAAAACE0AAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAP//////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANxMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAAABkAAAA6AMAABAnAACghgEAQEIPAICWmAAA4fUFX3CJAP8JLw8AAAAAAgAAAAMAAAAFAAAABwAAAAsAAAANAAAAEQAAABMAAAAXAAAAHQAAAB8AAAAlAAAAKQAAACsAAAAvAAAANQAAADsAAAA9AAAAQwAAAEcAAABJAAAATwAAAFMAAABZAAAAYQAAAGUAAABnAAAAawAAAG0AAABxAAAAfwAAAIMAAACJAAAAiwAAAJUAAACXAAAAnQAAAKMAAACnAAAArQAAALMAAAC1AAAAvwAAAMEAAADFAAAAxwAAANMAAAABAAAACwAAAA0AAAARAAAAEwAAABcAAAAdAAAAHwAAACUAAAApAAAAKwAAAC8AAAA1AAAAOwAAAD0AAABDAAAARwAAAEkAAABPAAAAUwAAAFkAAABhAAAAZQAAAGcAAABrAAAAbQAAAHEAAAB5AAAAfwAAAIMAAACJAAAAiwAAAI8AAACVAAAAlwAAAJ0AAACjAAAApwAAAKkAAACtAAAAswAAALUAAAC7AAAAvwAAAMEAAADFAAAAxwAAANEAAAACAAAAAAAAABAEAABpAAAAagAAAGsAAABsAAAAEgAAAAEAAAABAAAAAQAAAAAAAAA4BAAAaQAAAG0AAABrAAAAbAAAABIAAAACAAAAAgAAAAIAAAAAAAAASAQAAG4AAABvAAAAfAAAAAAAAABYBAAAbgAAAHAAAAB8AAAATjVkcmFjbzI4QXR0cmlidXRlT2N0YWhlZHJvblRyYW5zZm9ybUUATjVkcmFjbzE4QXR0cmlidXRlVHJhbnNmb3JtRQBONWRyYWNvMzBBdHRyaWJ1dGVRdWFudGl6YXRpb25UcmFuc2Zvcm1FAE41ZHJhY28xN0F0dHJpYnV0ZXNFbmNvZGVyRQBONWRyYWNvMjNLZFRyZWVBdHRyaWJ1dGVzRW5jb2RlckUATjVkcmFjbzI2U2VxdWVudGlhbEF0dHJpYnV0ZUVuY29kZXJFAE41ZHJhY28zN1NlcXVlbnRpYWxBdHRyaWJ1dGVFbmNvZGVyc0NvbnRyb2xsZXJFAE41ZHJhY28yOFByZWRpY3Rpb25TY2hlbWVEZWx0YUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFRUUATjVkcmFjbzIzUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFRUUATjVkcmFjbzM3UHJlZGljdGlvblNjaGVtZVR5cGVkRW5jb2RlckludGVyZmFjZUlpaUVFAE41ZHJhY28zMlByZWRpY3Rpb25TY2hlbWVFbmNvZGVySW50ZXJmYWNlRQBONWRyYWNvMjVQcmVkaWN0aW9uU2NoZW1lSW50ZXJmYWNlRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckFyZWFJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQyTWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280NE1lc2hQcmVkaWN0aW9uU2NoZW1lVGV4Q29vcmRzUG9ydGFibGVFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMzZNZXNoUHJlZGljdGlvblNjaGVtZVRleENvb3Jkc0VuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY281Nk1lc2hQcmVkaWN0aW9uU2NoZW1lQ29uc3RyYWluZWRNdWx0aVBhcmFsbGVsb2dyYW1FbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDVNZXNoUHJlZGljdGlvblNjaGVtZU11bHRpUGFyYWxsZWxvZ3JhbUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280ME1lc2hQcmVkaWN0aW9uU2NoZW1lUGFyYWxsZWxvZ3JhbUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQXJlYUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280OE1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsUHJlZGljdG9yQmFzZUlpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280Mk1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsRW5jb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28yN01lc2hQcmVkaWN0aW9uU2NoZW1lRW5jb2RlcklpTlNfMzdQcmVkaWN0aW9uU2NoZW1lV3JhcEVuY29kaW5nVHJhbnNmb3JtSWlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280NE1lc2hQcmVkaWN0aW9uU2NoZW1lVGV4Q29vcmRzUG9ydGFibGVFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzM2TWVzaFByZWRpY3Rpb25TY2hlbWVUZXhDb29yZHNFbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzU2TWVzaFByZWRpY3Rpb25TY2hlbWVDb25zdHJhaW5lZE11bHRpUGFyYWxsZWxvZ3JhbUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDVNZXNoUHJlZGljdGlvblNjaGVtZU11bHRpUGFyYWxsZWxvZ3JhbUVuY29kZXJJaU5TXzM3UHJlZGljdGlvblNjaGVtZVdyYXBFbmNvZGluZ1RyYW5zZm9ybUlpaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDBNZXNoUHJlZGljdGlvblNjaGVtZVBhcmFsbGVsb2dyYW1FbmNvZGVySWlOU18zN1ByZWRpY3Rpb25TY2hlbWVXcmFwRW5jb2RpbmdUcmFuc2Zvcm1JaWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUAdXNlX2J1aWx0X2luX2F0dHJpYnV0ZV9jb21wcmVzc2lvbgBONWRyYWNvMzNTZXF1ZW50aWFsSW50ZWdlckF0dHJpYnV0ZUVuY29kZXJFAE41ZHJhY28yOFByZWRpY3Rpb25TY2hlbWVEZWx0YUVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFRUUATjVkcmFjbzIzUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFRUUATjVkcmFjbzQ4TWVzaFByZWRpY3Rpb25TY2hlbWVHZW9tZXRyaWNOb3JtYWxQcmVkaWN0b3JBcmVhSWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckJhc2VJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMTFDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY280Mk1lc2hQcmVkaWN0aW9uU2NoZW1lR2VvbWV0cmljTm9ybWFsRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzI3TWVzaFByZWRpY3Rpb25TY2hlbWVFbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDRNZXNoUHJlZGljdGlvblNjaGVtZVRleENvb3Jkc1BvcnRhYmxlRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzM2TWVzaFByZWRpY3Rpb25TY2hlbWVUZXhDb29yZHNFbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNTZNZXNoUHJlZGljdGlvblNjaGVtZUNvbnN0cmFpbmVkTXVsdGlQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18xMUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ1TWVzaFByZWRpY3Rpb25TY2hlbWVNdWx0aVBhcmFsbGVsb2dyYW1FbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDBNZXNoUHJlZGljdGlvblNjaGVtZVBhcmFsbGVsb2dyYW1FbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzExQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckFyZWFJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDhNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbFByZWRpY3RvckJhc2VJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDJNZXNoUHJlZGljdGlvblNjaGVtZUdlb21ldHJpY05vcm1hbEVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvMjdNZXNoUHJlZGljdGlvblNjaGVtZUVuY29kZXJJaU5TXzYyUHJlZGljdGlvblNjaGVtZU5vcm1hbE9jdGFoZWRyb25DYW5vbmljYWxpemVkRW5jb2RpbmdUcmFuc2Zvcm1JaUVFTlNfMjRNZXNoUHJlZGljdGlvblNjaGVtZURhdGFJTlNfMjRNZXNoQXR0cmlidXRlQ29ybmVyVGFibGVFRUVFRQBONWRyYWNvNDRNZXNoUHJlZGljdGlvblNjaGVtZVRleENvb3Jkc1BvcnRhYmxlRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28zNk1lc2hQcmVkaWN0aW9uU2NoZW1lVGV4Q29vcmRzRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY281Nk1lc2hQcmVkaWN0aW9uU2NoZW1lQ29uc3RyYWluZWRNdWx0aVBhcmFsbGVsb2dyYW1FbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQ1TWVzaFByZWRpY3Rpb25TY2hlbWVNdWx0aVBhcmFsbGVsb2dyYW1FbmNvZGVySWlOU182MlByZWRpY3Rpb25TY2hlbWVOb3JtYWxPY3RhaGVkcm9uQ2Fub25pY2FsaXplZEVuY29kaW5nVHJhbnNmb3JtSWlFRU5TXzI0TWVzaFByZWRpY3Rpb25TY2hlbWVEYXRhSU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFRUUATjVkcmFjbzQwTWVzaFByZWRpY3Rpb25TY2hlbWVQYXJhbGxlbG9ncmFtRW5jb2RlcklpTlNfNjJQcmVkaWN0aW9uU2NoZW1lTm9ybWFsT2N0YWhlZHJvbkNhbm9uaWNhbGl6ZWRFbmNvZGluZ1RyYW5zZm9ybUlpRUVOU18yNE1lc2hQcmVkaWN0aW9uU2NoZW1lRGF0YUlOU18yNE1lc2hBdHRyaWJ1dGVDb3JuZXJUYWJsZUVFRUVFAE41ZHJhY28zMlNlcXVlbnRpYWxOb3JtYWxBdHRyaWJ1dGVFbmNvZGVyRQBONWRyYWNvMzhTZXF1ZW50aWFsUXVhbnRpemF0aW9uQXR0cmlidXRlRW5jb2RlckUAcHJlZGljdGlvbl9zY2hlbWUAZW5jb2Rpbmdfc3BlZWQAZGVjb2Rpbmdfc3BlZWQAcXVhbnRpemF0aW9uX29yaWdpbgBxdWFudGl6YXRpb25fcmFuZ2UAIABlbmNvZGluZ19tZXRob2QAcXVhbnRpemF0aW9uX2JpdHMASW52YWxpZCBlbmNvZGluZyBtZXRob2QuAHN0YW5kYXJkX2VkZ2VicmVha2VyAHByZWRpY3RpdmVfZWRnZWJyZWFrZXIAZWRnZWJyZWFrZXJfbWV0aG9kAE41ZHJhY28yMk1lc2hFZGdlQnJlYWtlckVuY29kZXJFAE41ZHJhY28yOUNvcm5lclRhYmxlVHJhdmVyc2FsUHJvY2Vzc29ySU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFAE41ZHJhY28yMk1lc2hUcmF2ZXJzYWxTZXF1ZW5jZXJJTlNfMjBFZGdlQnJlYWtlclRyYXZlcnNlcklOU18yOUNvcm5lclRhYmxlVHJhdmVyc2FsUHJvY2Vzc29ySU5TXzI0TWVzaEF0dHJpYnV0ZUNvcm5lclRhYmxlRUVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzNfRUVOU18xOUVkZ2VCcmVha2VyT2JzZXJ2ZXJFRUVFRQBONWRyYWNvMTVQb2ludHNTZXF1ZW5jZXJFAE41ZHJhY28yOUNvcm5lclRhYmxlVHJhdmVyc2FsUHJvY2Vzc29ySU5TXzExQ29ybmVyVGFibGVFRUUATjVkcmFjbzIyTWVzaFRyYXZlcnNhbFNlcXVlbmNlcklOU18yMEVkZ2VCcmVha2VyVHJhdmVyc2VySU5TXzI5Q29ybmVyVGFibGVUcmF2ZXJzYWxQcm9jZXNzb3JJTlNfMTFDb3JuZXJUYWJsZUVFRU5TXzM2TWVzaEF0dHJpYnV0ZUluZGljZXNFbmNvZGluZ09ic2VydmVySVMzX0VFTlNfMTlFZGdlQnJlYWtlck9ic2VydmVyRUVFRUUATjVkcmFjbzIyTWVzaFRyYXZlcnNhbFNlcXVlbmNlcklOU18yNVByZWRpY3Rpb25EZWdyZWVUcmF2ZXJzZXJJTlNfMjlDb3JuZXJUYWJsZVRyYXZlcnNhbFByb2Nlc3NvcklOU18xMUNvcm5lclRhYmxlRUVFTlNfMzZNZXNoQXR0cmlidXRlSW5kaWNlc0VuY29kaW5nT2JzZXJ2ZXJJUzNfRUVFRUVFAHNwbGl0X21lc2hfb25fc2VhbXMATjVkcmFjbzI2TWVzaEVkZ2VCcmVha2VyRW5jb2RlckltcGxJTlNfMzFNZXNoRWRnZUJyZWFrZXJUcmF2ZXJzYWxFbmNvZGVyRUVFAE41ZHJhY28zNU1lc2hFZGdlQnJlYWtlckVuY29kZXJJbXBsSW50ZXJmYWNlRQBONWRyYWNvMjZNZXNoRWRnZUJyZWFrZXJFbmNvZGVySW1wbElOU18zOE1lc2hFZGdlQnJlYWtlclRyYXZlcnNhbFZhbGVuY2VFbmNvZGVyRUVFAE41ZHJhY28xMU1lc2hFbmNvZGVyRQBjb21wcmVzc19jb25uZWN0aXZpdHkATjVkcmFjbzE1TGluZWFyU2VxdWVuY2VyRQBONWRyYWNvMjFNZXNoU2VxdWVudGlhbEVuY29kZXJFAE41ZHJhY28xN1BvaW50Q2xvdWRFbmNvZGVyRQBJbnZhbGlkIGlucHV0IGdlb21ldHJ5LgBGYWlsZWQgdG8gaW5pdGlhbGl6ZSBlbmNvZGVyLgBGYWlsZWQgdG8gZW5jb2RlIGludGVybmFsIGRhdGEuAEZhaWxlZCB0byBlbmNvZGUgZ2VvbWV0cnkgZGF0YS4ARmFpbGVkIHRvIGVuY29kZSBwb2ludCBhdHRyaWJ1dGVzLgBGYWlsZWQgdG8gZW5jb2RlIG1ldGFkYXRhLgBEUkFDTwBONWRyYWNvMjNQb2ludENsb3VkS2RUcmVlRW5jb2RlckUATjVkcmFjbzI3UG9pbnRDbG91ZFNlcXVlbnRpYWxFbmNvZGVyRQBzeW1ib2xfZW5jb2RpbmdfbWV0aG9kAHN5bWJvbF9lbmNvZGluZ19jb21wcmVzc2lvbl9sZXZlbABONWRyYWNvNE1lc2hFAGFsbG9jYXRvcjxUPjo6YWxsb2NhdGUoc2l6ZV90IG4pICduJyBleGNlZWRzIG1heGltdW0gc3VwcG9ydGVkIHNpemUATjVkcmFjbzEwUG9pbnRDbG91ZEUAEQAKABEREQAAAAAFAAAAAAAACQAAAAALAAAAAAAAAAARAA8KERERAwoHAAETCQsLAAAJBgsAAAsABhEAAAAREREAAAAAAAAAAAAAAAAAAAAACwAAAAAAAAAAEQAKChEREQAKAAACAAkLAAAACQALAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAAAAAAAAAAAAwAAAAADAAAAAAJDAAAAAAADAAADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAAAAAAAAAAAAAAANAAAABA0AAAAACQ4AAAAAAA4AAA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAADwAAAAAPAAAAAAkQAAAAAAAQAAAQAAASAAAAEhISAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIAAAASEhIAAAAAAAAJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAAAAAAAAAAAAAAAKAAAAAAoAAAAACQsAAAAAAAsAAAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAAAAAAAAAAADAAAAAAMAAAAAAkMAAAAAAAMAAAMAAAtKyAgIDBYMHgAKG51bGwpAC0wWCswWCAwWC0weCsweCAweABpbmYASU5GAE5BTgAwMTIzNDU2Nzg5QUJDREVGLgBUISIZDQECAxFLHAwQBAsdEh4naG5vcHFiIAUGDxMUFRoIFgcoJBcYCQoOGx8lI4OCfSYqKzw9Pj9DR0pNWFlaW1xdXl9gYWNkZWZnaWprbHJzdHl6e3wASWxsZWdhbCBieXRlIHNlcXVlbmNlAERvbWFpbiBlcnJvcgBSZXN1bHQgbm90IHJlcHJlc2VudGFibGUATm90IGEgdHR5AFBlcm1pc3Npb24gZGVuaWVkAE9wZXJhdGlvbiBub3QgcGVybWl0dGVkAE5vIHN1Y2ggZmlsZSBvciBkaXJlY3RvcnkATm8gc3VjaCBwcm9jZXNzAEZpbGUgZXhpc3RzAFZhbHVlIHRvbyBsYXJnZSBmb3IgZGF0YSB0eXBlAE5vIHNwYWNlIGxlZnQgb24gZGV2aWNlAE91dCBvZiBtZW1vcnkAUmVzb3VyY2UgYnVzeQBJbnRlcnJ1cHRlZCBzeXN0ZW0gY2FsbABSZXNvdXJjZSB0ZW1wb3JhcmlseSB1bmF2YWlsYWJsZQBJbnZhbGlkIHNlZWsAQ3Jvc3MtZGV2aWNlIGxpbmsAUmVhZC1vbmx5IGZpbGUgc3lzdGVtAERpcmVjdG9yeSBub3QgZW1wdHkAQ29ubmVjdGlvbiByZXNldCBieSBwZWVyAE9wZXJhdGlvbiB0aW1lZCBvdXQAQ29ubmVjdGlvbiByZWZ1c2VkAEhvc3QgaXMgZG93bgBIb3N0IGlzIHVucmVhY2hhYmxlAEFkZHJlc3MgaW4gdXNlAEJyb2tlbiBwaXBlAEkvTyBlcnJvcgBObyBzdWNoIGRldmljZSBvciBhZGRyZXNzAEJsb2NrIGRldmljZSByZXF1aXJlZABObyBzdWNoIGRldmljZQBOb3QgYSBkaXJlY3RvcnkASXMgYSBkaXJlY3RvcnkAVGV4dCBmaWxlIGJ1c3kARXhlYyBmb3JtYXQgZXJyb3IASW52YWxpZCBhcmd1bWVudABBcmd1bWVudCBsaXN0IHRvbyBsb25nAFN5bWJvbGljIGxpbmsgbG9vcABGaWxlbmFtZSB0b28gbG9uZwBUb28gbWFueSBvcGVuIGZpbGVzIGluIHN5c3RlbQBObyBmaWxlIGRlc2NyaXB0b3JzIGF2YWlsYWJsZQBCYWQgZmlsZSBkZXNjcmlwdG9yAE5vIGNoaWxkIHByb2Nlc3MAQmFkIGFkZHJlc3MARmlsZSB0b28gbGFyZ2UAVG9vIG1hbnkgbGlua3MATm8gbG9ja3MgYXZhaWxhYmxlAFJlc291cmNlIGRlYWRsb2NrIHdvdWxkIG9jY3VyAFN0YXRlIG5vdCByZWNvdmVyYWJsZQBQcmV2aW91cyBvd25lciBkaWVkAE9wZXJhdGlvbiBjYW5jZWxlZABGdW5jdGlvbiBub3QgaW1wbGVtZW50ZWQATm8gbWVzc2FnZSBvZiBkZXNpcmVkIHR5cGUASWRlbnRpZmllciByZW1vdmVkAERldmljZSBub3QgYSBzdHJlYW0ATm8gZGF0YSBhdmFpbGFibGUARGV2aWNlIHRpbWVvdXQAT3V0IG9mIHN0cmVhbXMgcmVzb3VyY2VzAExpbmsgaGFzIGJlZW4gc2V2ZXJlZABQcm90b2NvbCBlcnJvcgBCYWQgbWVzc2FnZQBGaWxlIGRlc2NyaXB0b3IgaW4gYmFkIHN0YXRlAE5vdCBhIHNvY2tldABEZXN0aW5hdGlvbiBhZGRyZXNzIHJlcXVpcmVkAE1lc3NhZ2UgdG9vIGxhcmdlAFByb3RvY29sIHdyb25nIHR5cGUgZm9yIHNvY2tldABQcm90b2NvbCBub3QgYXZhaWxhYmxlAFByb3RvY29sIG5vdCBzdXBwb3J0ZWQAU29ja2V0IHR5cGUgbm90IHN1cHBvcnRlZABOb3Qgc3VwcG9ydGVkAFByb3RvY29sIGZhbWlseSBub3Qgc3VwcG9ydGVkAEFkZHJlc3MgZmFtaWx5IG5vdCBzdXBwb3J0ZWQgYnkgcHJvdG9jb2wAQWRkcmVzcyBub3QgYXZhaWxhYmxlAE5ldHdvcmsgaXMgZG93bgBOZXR3b3JrIHVucmVhY2hhYmxlAENvbm5lY3Rpb24gcmVzZXQgYnkgbmV0d29yawBDb25uZWN0aW9uIGFib3J0ZWQATm8gYnVmZmVyIHNwYWNlIGF2YWlsYWJsZQBTb2NrZXQgaXMgY29ubmVjdGVkAFNvY2tldCBub3QgY29ubmVjdGVkAENhbm5vdCBzZW5kIGFmdGVyIHNvY2tldCBzaHV0ZG93bgBPcGVyYXRpb24gYWxyZWFkeSBpbiBwcm9ncmVzcwBPcGVyYXRpb24gaW4gcHJvZ3Jlc3MAU3RhbGUgZmlsZSBoYW5kbGUAUmVtb3RlIEkvTyBlcnJvcgBRdW90YSBleGNlZWRlZABObyBtZWRpdW0gZm91bmQAV3JvbmcgbWVkaXVtIHR5cGUATm8gZXJyb3IgaW5mb3JtYXRpb24AAGluZmluaXR5AG5hbgAlZAAlZgB0ZXJtaW5hdGluZyB3aXRoICVzIGV4Y2VwdGlvbiBvZiB0eXBlICVzOiAlcwB0ZXJtaW5hdGluZyB3aXRoICVzIGV4Y2VwdGlvbiBvZiB0eXBlICVzAHRlcm1pbmF0aW5nIHdpdGggJXMgZm9yZWlnbiBleGNlcHRpb24AdGVybWluYXRpbmcAdW5jYXVnaHQAU3Q5ZXhjZXB0aW9uAE4xMF9fY3h4YWJpdjExNl9fc2hpbV90eXBlX2luZm9FAFN0OXR5cGVfaW5mbwBOMTBfX2N4eGFiaXYxMjBfX3NpX2NsYXNzX3R5cGVfaW5mb0UATjEwX19jeHhhYml2MTE3X19jbGFzc190eXBlX2luZm9FAHB0aHJlYWRfb25jZSBmYWlsdXJlIGluIF9fY3hhX2dldF9nbG9iYWxzX2Zhc3QoKQBjYW5ub3QgY3JlYXRlIHB0aHJlYWQga2V5IGZvciBfX2N4YV9nZXRfZ2xvYmFscygpAGNhbm5vdCB6ZXJvIG91dCB0aHJlYWQgdmFsdWUgZm9yIF9fY3hhX2dldF9nbG9iYWxzKCkAdGVybWluYXRlX2hhbmRsZXIgdW5leHBlY3RlZGx5IHJldHVybmVkAFN0MTFsb2dpY19lcnJvcgBTdDEybGVuZ3RoX2Vycm9yAE4xMF9fY3h4YWJpdjExOV9fcG9pbnRlcl90eXBlX2luZm9FAE4xMF9fY3h4YWJpdjExN19fcGJhc2VfdHlwZV9pbmZvRQ==' + var tempDoublePtr = STATICTOP + STATICTOP += 16 + function ___cxa_allocate_exception(size) { + return _malloc(size) + } + function __ZSt18uncaught_exceptionv() { + return !!__ZSt18uncaught_exceptionv.uncaught_exception + } + var EXCEPTIONS = { + last: 0, + caught: [], + infos: {}, + deAdjust: function (adjusted) { + if (!adjusted || EXCEPTIONS.infos[adjusted]) return adjusted + for (var ptr in EXCEPTIONS.infos) { + var info = EXCEPTIONS.infos[ptr] + if (info.adjusted === adjusted) { + return ptr + } + } + return adjusted + }, + addRef: function (ptr) { + if (!ptr) return + var info = EXCEPTIONS.infos[ptr] + info.refcount++ + }, + decRef: function (ptr) { + if (!ptr) return + var info = EXCEPTIONS.infos[ptr] + assert(info.refcount > 0) + info.refcount-- + if (info.refcount === 0 && !info.rethrown) { + if (info.destructor) { + Module['dynCall_vi'](info.destructor, ptr) + } + delete EXCEPTIONS.infos[ptr] + ___cxa_free_exception(ptr) + } + }, + clearRef: function (ptr) { + if (!ptr) return + var info = EXCEPTIONS.infos[ptr] + info.refcount = 0 + }, + } + function ___cxa_begin_catch(ptr) { + var info = EXCEPTIONS.infos[ptr] + if (info && !info.caught) { + info.caught = true + __ZSt18uncaught_exceptionv.uncaught_exception-- + } + if (info) info.rethrown = false + EXCEPTIONS.caught.push(ptr) + EXCEPTIONS.addRef(EXCEPTIONS.deAdjust(ptr)) + return ptr + } + function ___cxa_pure_virtual() { + ABORT = true + throw 'Pure virtual function called!' + } + function ___resumeException(ptr) { + if (!EXCEPTIONS.last) { + EXCEPTIONS.last = ptr + } + throw ( + ptr + + ' - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch.' + ) + } + function ___cxa_find_matching_catch() { + var thrown = EXCEPTIONS.last + if (!thrown) { + return (setTempRet0(0), 0) | 0 + } + var info = EXCEPTIONS.infos[thrown] + var throwntype = info.type + if (!throwntype) { + return (setTempRet0(0), thrown) | 0 + } + var typeArray = Array.prototype.slice.call(arguments) + var pointer = Module['___cxa_is_pointer_type'](throwntype) + if (!___cxa_find_matching_catch.buffer) + ___cxa_find_matching_catch.buffer = _malloc(4) + HEAP32[___cxa_find_matching_catch.buffer >> 2] = thrown + thrown = ___cxa_find_matching_catch.buffer + for (var i = 0; i < typeArray.length; i++) { + if ( + typeArray[i] && + Module['___cxa_can_catch'](typeArray[i], throwntype, thrown) + ) { + thrown = HEAP32[thrown >> 2] + info.adjusted = thrown + return (setTempRet0(typeArray[i]), thrown) | 0 + } + } + thrown = HEAP32[thrown >> 2] + return (setTempRet0(throwntype), thrown) | 0 + } + function ___cxa_throw(ptr, type, destructor) { + EXCEPTIONS.infos[ptr] = { + ptr: ptr, + adjusted: ptr, + type: type, + destructor: destructor, + refcount: 0, + caught: false, + rethrown: false, + } + EXCEPTIONS.last = ptr + if (!('uncaught_exception' in __ZSt18uncaught_exceptionv)) { + __ZSt18uncaught_exceptionv.uncaught_exception = 1 + } else { + __ZSt18uncaught_exceptionv.uncaught_exception++ + } + throw ( + ptr + + ' - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch.' + ) + } + var cttz_i8 = allocate( + [ + 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, + 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, + 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, + 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, + 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, + 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, + 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, + 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, + 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, + 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, + 1, 0, 2, 0, 1, 0, + ], + 'i8', + ALLOC_STATIC, + ) + function ___gxx_personality_v0() {} + var SYSCALLS = { + varargs: 0, + get: function (varargs) { + SYSCALLS.varargs += 4 + var ret = HEAP32[(SYSCALLS.varargs - 4) >> 2] + return ret + }, + getStr: function () { + var ret = Pointer_stringify(SYSCALLS.get()) + return ret + }, + get64: function () { + var low = SYSCALLS.get(), + high = SYSCALLS.get() + if (low >= 0) assert(high === 0) + else assert(high === -1) + return low + }, + getZero: function () { + assert(SYSCALLS.get() === 0) + }, + } + function ___syscall140(which, varargs) { + SYSCALLS.varargs = varargs + try { + var stream = SYSCALLS.getStreamFromFD(), + offset_high = SYSCALLS.get(), + offset_low = SYSCALLS.get(), + result = SYSCALLS.get(), + whence = SYSCALLS.get() + var offset = offset_low + FS.llseek(stream, offset, whence) + HEAP32[result >> 2] = stream.position + if (stream.getdents && offset === 0 && whence === 0) + stream.getdents = null + return 0 + } catch (e) { + if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e) + return -e.errno + } + } + function flush_NO_FILESYSTEM() { + var fflush = Module['_fflush'] + if (fflush) fflush(0) + var printChar = ___syscall146.printChar + if (!printChar) return + var buffers = ___syscall146.buffers + if (buffers[1].length) printChar(1, 10) + if (buffers[2].length) printChar(2, 10) + } + function ___syscall146(which, varargs) { + SYSCALLS.varargs = varargs + try { + var stream = SYSCALLS.get(), + iov = SYSCALLS.get(), + iovcnt = SYSCALLS.get() + var ret = 0 + if (!___syscall146.buffers) { + ___syscall146.buffers = [null, [], []] + ___syscall146.printChar = function (stream, curr) { + var buffer = ___syscall146.buffers[stream] + assert(buffer) + if (curr === 0 || curr === 10) { + ;(stream === 1 ? Module['print'] : Module['printErr'])( + UTF8ArrayToString(buffer, 0), + ) + buffer.length = 0 + } else { + buffer.push(curr) + } + } + } + for (var i = 0; i < iovcnt; i++) { + var ptr = HEAP32[(iov + i * 8) >> 2] + var len = HEAP32[(iov + (i * 8 + 4)) >> 2] + for (var j = 0; j < len; j++) { + ___syscall146.printChar(stream, HEAPU8[ptr + j]) + } + ret += len + } + return ret + } catch (e) { + if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e) + return -e.errno + } + } + function ___syscall6(which, varargs) { + SYSCALLS.varargs = varargs + try { + var stream = SYSCALLS.getStreamFromFD() + FS.close(stream) + return 0 + } catch (e) { + if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e) + return -e.errno + } + } + function _abort() { + Module['abort']() + } + var _llvm_ceil_f64 = Math_ceil + var _llvm_fabs_f64 = Math_abs + var _llvm_floor_f64 = Math_floor + function _llvm_trap() { + abort('trap!') + } + function _emscripten_memcpy_big(dest, src, num) { + HEAPU8.set(HEAPU8.subarray(src, src + num), dest) + return dest + } + var PTHREAD_SPECIFIC = {} + function _pthread_getspecific(key) { + return PTHREAD_SPECIFIC[key] || 0 + } + var PTHREAD_SPECIFIC_NEXT_KEY = 1 + var ERRNO_CODES = { + EPERM: 1, + ENOENT: 2, + ESRCH: 3, + EINTR: 4, + EIO: 5, + ENXIO: 6, + E2BIG: 7, + ENOEXEC: 8, + EBADF: 9, + ECHILD: 10, + EAGAIN: 11, + EWOULDBLOCK: 11, + ENOMEM: 12, + EACCES: 13, + EFAULT: 14, + ENOTBLK: 15, + EBUSY: 16, + EEXIST: 17, + EXDEV: 18, + ENODEV: 19, + ENOTDIR: 20, + EISDIR: 21, + EINVAL: 22, + ENFILE: 23, + EMFILE: 24, + ENOTTY: 25, + ETXTBSY: 26, + EFBIG: 27, + ENOSPC: 28, + ESPIPE: 29, + EROFS: 30, + EMLINK: 31, + EPIPE: 32, + EDOM: 33, + ERANGE: 34, + ENOMSG: 42, + EIDRM: 43, + ECHRNG: 44, + EL2NSYNC: 45, + EL3HLT: 46, + EL3RST: 47, + ELNRNG: 48, + EUNATCH: 49, + ENOCSI: 50, + EL2HLT: 51, + EDEADLK: 35, + ENOLCK: 37, + EBADE: 52, + EBADR: 53, + EXFULL: 54, + ENOANO: 55, + EBADRQC: 56, + EBADSLT: 57, + EDEADLOCK: 35, + EBFONT: 59, + ENOSTR: 60, + ENODATA: 61, + ETIME: 62, + ENOSR: 63, + ENONET: 64, + ENOPKG: 65, + EREMOTE: 66, + ENOLINK: 67, + EADV: 68, + ESRMNT: 69, + ECOMM: 70, + EPROTO: 71, + EMULTIHOP: 72, + EDOTDOT: 73, + EBADMSG: 74, + ENOTUNIQ: 76, + EBADFD: 77, + EREMCHG: 78, + ELIBACC: 79, + ELIBBAD: 80, + ELIBSCN: 81, + ELIBMAX: 82, + ELIBEXEC: 83, + ENOSYS: 38, + ENOTEMPTY: 39, + ENAMETOOLONG: 36, + ELOOP: 40, + EOPNOTSUPP: 95, + EPFNOSUPPORT: 96, + ECONNRESET: 104, + ENOBUFS: 105, + EAFNOSUPPORT: 97, + EPROTOTYPE: 91, + ENOTSOCK: 88, + ENOPROTOOPT: 92, + ESHUTDOWN: 108, + ECONNREFUSED: 111, + EADDRINUSE: 98, + ECONNABORTED: 103, + ENETUNREACH: 101, + ENETDOWN: 100, + ETIMEDOUT: 110, + EHOSTDOWN: 112, + EHOSTUNREACH: 113, + EINPROGRESS: 115, + EALREADY: 114, + EDESTADDRREQ: 89, + EMSGSIZE: 90, + EPROTONOSUPPORT: 93, + ESOCKTNOSUPPORT: 94, + EADDRNOTAVAIL: 99, + ENETRESET: 102, + EISCONN: 106, + ENOTCONN: 107, + ETOOMANYREFS: 109, + EUSERS: 87, + EDQUOT: 122, + ESTALE: 116, + ENOTSUP: 95, + ENOMEDIUM: 123, + EILSEQ: 84, + EOVERFLOW: 75, + ECANCELED: 125, + ENOTRECOVERABLE: 131, + EOWNERDEAD: 130, + ESTRPIPE: 86, + } + function _pthread_key_create(key, destructor) { + if (key == 0) { + return ERRNO_CODES.EINVAL + } + HEAP32[key >> 2] = PTHREAD_SPECIFIC_NEXT_KEY + PTHREAD_SPECIFIC[PTHREAD_SPECIFIC_NEXT_KEY] = 0 + PTHREAD_SPECIFIC_NEXT_KEY++ + return 0 + } + function _pthread_once(ptr, func) { + if (!_pthread_once.seen) _pthread_once.seen = {} + if (ptr in _pthread_once.seen) return + Module['dynCall_v'](func) + _pthread_once.seen[ptr] = 1 + } + function _pthread_setspecific(key, value) { + if (!(key in PTHREAD_SPECIFIC)) { + return ERRNO_CODES.EINVAL + } + PTHREAD_SPECIFIC[key] = value + return 0 + } + function ___setErrNo(value) { + if (Module['___errno_location']) + HEAP32[Module['___errno_location']() >> 2] = value + return value + } + DYNAMICTOP_PTR = staticAlloc(4) + STACK_BASE = STACKTOP = alignMemory(STATICTOP) + STACK_MAX = STACK_BASE + TOTAL_STACK + DYNAMIC_BASE = alignMemory(STACK_MAX) + HEAP32[DYNAMICTOP_PTR >> 2] = DYNAMIC_BASE + staticSealed = true + var ASSERTIONS = false + function intArrayFromString(stringy, dontAddNull, length) { + var len = length > 0 ? length : lengthBytesUTF8(stringy) + 1 + var u8array = new Array(len) + var numBytesWritten = stringToUTF8Array(stringy, u8array, 0, u8array.length) + if (dontAddNull) u8array.length = numBytesWritten + return u8array + } + function intArrayToString(array) { + var ret = [] + for (var i = 0; i < array.length; i++) { + var chr = array[i] + if (chr > 255) { + if (ASSERTIONS) { + assert( + false, + 'Character code ' + + chr + + ' (' + + String.fromCharCode(chr) + + ') at offset ' + + i + + ' not in 0x00-0xFF.', + ) + } + chr &= 255 + } + ret.push(String.fromCharCode(chr)) + } + return ret.join('') + } + var decodeBase64 = + typeof atob === 'function' + ? atob + : function (input) { + var keyStr = + 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=' + var output = '' + var chr1, chr2, chr3 + var enc1, enc2, enc3, enc4 + var i = 0 + input = input.replace(/[^A-Za-z0-9\+\/\=]/g, '') + do { + enc1 = keyStr.indexOf(input.charAt(i++)) + enc2 = keyStr.indexOf(input.charAt(i++)) + enc3 = keyStr.indexOf(input.charAt(i++)) + enc4 = keyStr.indexOf(input.charAt(i++)) + chr1 = (enc1 << 2) | (enc2 >> 4) + chr2 = ((enc2 & 15) << 4) | (enc3 >> 2) + chr3 = ((enc3 & 3) << 6) | enc4 + output = output + String.fromCharCode(chr1) + if (enc3 !== 64) { + output = output + String.fromCharCode(chr2) + } + if (enc4 !== 64) { + output = output + String.fromCharCode(chr3) + } + } while (i < input.length) + return output + } + function intArrayFromBase64(s) { + if (typeof ENVIRONMENT_IS_NODE === 'boolean' && ENVIRONMENT_IS_NODE) { + var buf + try { + buf = Buffer.from(s, 'base64') + } catch (_) { + buf = new Buffer(s, 'base64') + } + return new Uint8Array(buf.buffer, buf.byteOffset, buf.byteLength) + } + try { + var decoded = decodeBase64(s) + var bytes = new Uint8Array(decoded.length) + for (var i = 0; i < decoded.length; ++i) { + bytes[i] = decoded.charCodeAt(i) + } + return bytes + } catch (_) { + throw new Error('Converting base64 string to bytes failed.') + } + } + function tryParseAsDataURI(filename) { + if (!isDataURI(filename)) { + return + } + return intArrayFromBase64(filename.slice(dataURIPrefix.length)) + } + function invoke_ii(index, a1) { + try { + return Module['dynCall_ii'](index, a1) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_iii(index, a1, a2) { + try { + return Module['dynCall_iii'](index, a1, a2) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_iiii(index, a1, a2, a3) { + try { + return Module['dynCall_iiii'](index, a1, a2, a3) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_iiiiiii(index, a1, a2, a3, a4, a5, a6) { + try { + return Module['dynCall_iiiiiii'](index, a1, a2, a3, a4, a5, a6) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_v(index) { + try { + Module['dynCall_v'](index) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_vi(index, a1) { + try { + Module['dynCall_vi'](index, a1) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_vii(index, a1, a2) { + try { + Module['dynCall_vii'](index, a1, a2) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_viii(index, a1, a2, a3) { + try { + Module['dynCall_viii'](index, a1, a2, a3) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_viiii(index, a1, a2, a3, a4) { + try { + Module['dynCall_viiii'](index, a1, a2, a3, a4) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_viiiii(index, a1, a2, a3, a4, a5) { + try { + Module['dynCall_viiiii'](index, a1, a2, a3, a4, a5) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + function invoke_viiiiii(index, a1, a2, a3, a4, a5, a6) { + try { + Module['dynCall_viiiiii'](index, a1, a2, a3, a4, a5, a6) + } catch (e) { + if (typeof e !== 'number' && e !== 'longjmp') throw e + Module['setThrew'](1, 0) + } + } + Module.asmGlobalArg = { + Math: Math, + Int8Array: Int8Array, + Int16Array: Int16Array, + Int32Array: Int32Array, + Uint8Array: Uint8Array, + Uint16Array: Uint16Array, + Uint32Array: Uint32Array, + Float32Array: Float32Array, + Float64Array: Float64Array, + NaN: NaN, + Infinity: Infinity, + byteLength: byteLength, + } + Module.asmLibraryArg = { + abort: abort, + assert: assert, + enlargeMemory: enlargeMemory, + getTotalMemory: getTotalMemory, + abortOnCannotGrowMemory: abortOnCannotGrowMemory, + invoke_ii: invoke_ii, + invoke_iii: invoke_iii, + invoke_iiii: invoke_iiii, + invoke_iiiiiii: invoke_iiiiiii, + invoke_v: invoke_v, + invoke_vi: invoke_vi, + invoke_vii: invoke_vii, + invoke_viii: invoke_viii, + invoke_viiii: invoke_viiii, + invoke_viiiii: invoke_viiiii, + invoke_viiiiii: invoke_viiiiii, + __ZSt18uncaught_exceptionv: __ZSt18uncaught_exceptionv, + ___cxa_allocate_exception: ___cxa_allocate_exception, + ___cxa_begin_catch: ___cxa_begin_catch, + ___cxa_find_matching_catch: ___cxa_find_matching_catch, + ___cxa_pure_virtual: ___cxa_pure_virtual, + ___cxa_throw: ___cxa_throw, + ___gxx_personality_v0: ___gxx_personality_v0, + ___resumeException: ___resumeException, + ___setErrNo: ___setErrNo, + ___syscall140: ___syscall140, + ___syscall146: ___syscall146, + ___syscall6: ___syscall6, + _abort: _abort, + _emscripten_memcpy_big: _emscripten_memcpy_big, + _llvm_ceil_f64: _llvm_ceil_f64, + _llvm_fabs_f64: _llvm_fabs_f64, + _llvm_floor_f64: _llvm_floor_f64, + _llvm_trap: _llvm_trap, + _pthread_getspecific: _pthread_getspecific, + _pthread_key_create: _pthread_key_create, + _pthread_once: _pthread_once, + _pthread_setspecific: _pthread_setspecific, + flush_NO_FILESYSTEM: flush_NO_FILESYSTEM, + DYNAMICTOP_PTR: DYNAMICTOP_PTR, + tempDoublePtr: tempDoublePtr, + ABORT: ABORT, + STACKTOP: STACKTOP, + STACK_MAX: STACK_MAX, + cttz_i8: cttz_i8, + } // EMSCRIPTEN_START_ASM + var asm = /** @suppress {uselessCode} */ (function (global, env, buffer) { + 'almost asm' + var a = global.Int8Array + var b = new a(buffer) + var c = global.Int16Array + var d = new c(buffer) + var e = global.Int32Array + var f = new e(buffer) + var g = global.Uint8Array + var h = new g(buffer) + var i = global.Uint16Array + var j = new i(buffer) + var k = global.Uint32Array + var l = new k(buffer) + var m = global.Float32Array + var n = new m(buffer) + var o = global.Float64Array + var p = new o(buffer) + var q = global.byteLength + var r = env.DYNAMICTOP_PTR | 0 + var s = env.tempDoublePtr | 0 + var t = env.ABORT | 0 + var u = env.STACKTOP | 0 + var v = env.STACK_MAX | 0 + var w = env.cttz_i8 | 0 + var x = 0 + var y = 0 + var z = 0 + var A = 0 + var B = global.NaN, + C = global.Infinity + var D = 0, + E = 0, + F = 0, + G = 0, + H = 0.0 + var I = 0 + var J = global.Math.floor + var K = global.Math.abs + var L = global.Math.sqrt + var M = global.Math.pow + var N = global.Math.cos + var O = global.Math.sin + var P = global.Math.tan + var Q = global.Math.acos + var R = global.Math.asin + var S = global.Math.atan + var T = global.Math.atan2 + var U = global.Math.exp + var V = global.Math.log + var W = global.Math.ceil + var X = global.Math.imul + var Y = global.Math.min + var Z = global.Math.max + var _ = global.Math.clz32 + var $ = global.Math.fround + var aa = env.abort + var ba = env.assert + var ca = env.enlargeMemory + var da = env.getTotalMemory + var ea = env.abortOnCannotGrowMemory + var fa = env.invoke_ii + var ga = env.invoke_iii + var ha = env.invoke_iiii + var ia = env.invoke_iiiiiii + var ja = env.invoke_v + var ka = env.invoke_vi + var la = env.invoke_vii + var ma = env.invoke_viii + var na = env.invoke_viiii + var oa = env.invoke_viiiii + var pa = env.invoke_viiiiii + var qa = env.__ZSt18uncaught_exceptionv + var ra = env.___cxa_allocate_exception + var sa = env.___cxa_begin_catch + var ta = env.___cxa_find_matching_catch + var ua = env.___cxa_pure_virtual + var va = env.___cxa_throw + var wa = env.___gxx_personality_v0 + var xa = env.___resumeException + var ya = env.___setErrNo + var za = env.___syscall140 + var Aa = env.___syscall146 + var Ba = env.___syscall6 + var Ca = env._abort + var Da = env._emscripten_memcpy_big + var Ea = env._llvm_ceil_f64 + var Fa = env._llvm_fabs_f64 + var Ga = env._llvm_floor_f64 + var Ha = env._llvm_trap + var Ia = env._pthread_getspecific + var Ja = env._pthread_key_create + var Ka = env._pthread_once + var La = env._pthread_setspecific + var Ma = env.flush_NO_FILESYSTEM + var Na = $(0) + const Oa = $(0) + function Pa(newBuffer) { + if ( + q(newBuffer) & 16777215 || + q(newBuffer) <= 16777215 || + q(newBuffer) > 2147483648 + ) + return false + b = new a(newBuffer) + d = new c(newBuffer) + f = new e(newBuffer) + h = new g(newBuffer) + j = new i(newBuffer) + l = new k(newBuffer) + n = new m(newBuffer) + p = new o(newBuffer) + buffer = newBuffer + return true + } + // EMSCRIPTEN_START_FUNCS + function be(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0 + h = u + u = (u + 16) | 0 + i = (h + 4) | 0 + j = h + f[(a + 72) >> 2] = e + f[(a + 64) >> 2] = g + g = Lq(e >>> 0 > 1073741823 ? -1 : e << 2) | 0 + k = (a + 68) | 0 + l = f[k >> 2] | 0 + f[k >> 2] = g + if (l | 0) Mq(l) + l = (a + 8) | 0 + Mh(l, b, d, e) + d = (a + 56) | 0 + g = f[d >> 2] | 0 + m = f[(g + 4) >> 2] | 0 + n = f[g >> 2] | 0 + o = (m - n) | 0 + if ((o | 0) <= 0) { + u = h + return 1 + } + p = ((o >>> 2) + -1) | 0 + o = (a + 16) | 0 + q = (a + 32) | 0 + r = (a + 12) | 0 + s = (a + 28) | 0 + t = (a + 20) | 0 + v = (a + 24) | 0 + if (((m - n) >> 2) >>> 0 > p >>> 0) { + w = p + x = n + } else { + y = g + aq(y) + } + while (1) { + f[j >> 2] = f[(x + (w << 2)) >> 2] + f[i >> 2] = f[j >> 2] + Cc(a, i, b, w) + g = X(w, e) | 0 + n = (b + (g << 2)) | 0 + p = (c + (g << 2)) | 0 + g = f[l >> 2] | 0 + if ((g | 0) > 0) { + m = 0 + z = f[k >> 2] | 0 + A = g + while (1) { + if ((A | 0) > 0) { + g = 0 + do { + B = f[(z + (g << 2)) >> 2] | 0 + C = f[o >> 2] | 0 + if ((B | 0) > (C | 0)) { + D = f[q >> 2] | 0 + f[(D + (g << 2)) >> 2] = C + E = D + } else { + D = f[r >> 2] | 0 + C = f[q >> 2] | 0 + f[(C + (g << 2)) >> 2] = (B | 0) < (D | 0) ? D : B + E = C + } + g = (g + 1) | 0 + } while ((g | 0) < (f[l >> 2] | 0)) + F = E + } else F = f[q >> 2] | 0 + g = + ((f[(n + (m << 2)) >> 2] | 0) - (f[(F + (m << 2)) >> 2] | 0)) | 0 + C = (p + (m << 2)) | 0 + f[C >> 2] = g + if ((g | 0) >= (f[s >> 2] | 0)) { + if ((g | 0) > (f[v >> 2] | 0)) { + G = (g - (f[t >> 2] | 0)) | 0 + H = 21 + } + } else { + G = ((f[t >> 2] | 0) + g) | 0 + H = 21 + } + if ((H | 0) == 21) { + H = 0 + f[C >> 2] = G + } + m = (m + 1) | 0 + A = f[l >> 2] | 0 + if ((m | 0) >= (A | 0)) break + else z = F + } + } + w = (w + -1) | 0 + if ((w | 0) <= -1) { + H = 5 + break + } + z = f[d >> 2] | 0 + x = f[z >> 2] | 0 + if ((((f[(z + 4) >> 2] | 0) - x) >> 2) >>> 0 <= w >>> 0) { + y = z + H = 6 + break + } + } + if ((H | 0) == 5) { + u = h + return 1 + } else if ((H | 0) == 6) aq(y) + return 0 + } + function ce(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + Uc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 4194304 + if (d) { + d = c + c = 4194304 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 20) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Mf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function de(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + Vc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 4194304 + if (d) { + d = c + c = 4194304 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 20) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Mf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function ee(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + Wc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 4194304 + if (d) { + d = c + c = 4194304 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 20) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Mf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function fe(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + Xc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 4194304 + if (d) { + d = c + c = 4194304 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 20) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Mf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function ge(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + Yc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 4194304 + if (d) { + d = c + c = 4194304 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 20) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Mf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function he(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + Zc(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 2097152 + if (d) { + d = c + c = 2097152 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 19) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Nf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function ie(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + _c(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 1048576 + if (d) { + d = c + c = 1048576 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 18) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Of(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function je(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = Oa, + t = Oa, + u = Oa, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + c = f[b >> 2] | 0 + b = (a + 4) | 0 + d = f[b >> 2] | 0 + e = (d | 0) == 0 + a: do + if (!e) { + g = (d + -1) | 0 + h = ((g & d) | 0) == 0 + if (!h) + if (c >>> 0 < d >>> 0) i = c + else i = (c >>> 0) % (d >>> 0) | 0 + else i = g & c + j = f[((f[a >> 2] | 0) + (i << 2)) >> 2] | 0 + if (!j) k = i + else { + if (h) { + h = j + while (1) { + l = f[h >> 2] | 0 + if (!l) { + k = i + break a + } + m = f[(l + 4) >> 2] | 0 + if (!(((m | 0) == (c | 0)) | (((m & g) | 0) == (i | 0)))) { + k = i + break a + } + if ((f[(l + 8) >> 2] | 0) == (c | 0)) { + o = l + break + } else h = l + } + p = (o + 12) | 0 + return p | 0 + } else q = j + while (1) { + h = f[q >> 2] | 0 + if (!h) { + k = i + break a + } + g = f[(h + 4) >> 2] | 0 + if ((g | 0) != (c | 0)) { + if (g >>> 0 < d >>> 0) r = g + else r = (g >>> 0) % (d >>> 0) | 0 + if ((r | 0) != (i | 0)) { + k = i + break a + } + } + if ((f[(h + 8) >> 2] | 0) == (c | 0)) { + o = h + break + } else q = h + } + p = (o + 12) | 0 + return p | 0 + } + } else k = 0 + while (0) + q = ln(16) | 0 + f[(q + 8) >> 2] = c + f[(q + 12) >> 2] = 0 + f[(q + 4) >> 2] = c + f[q >> 2] = 0 + i = (a + 12) | 0 + s = $((((f[i >> 2] | 0) + 1) | 0) >>> 0) + t = $(d >>> 0) + u = $(n[(a + 16) >> 2]) + do + if (e | ($(u * t) < s)) { + r = (d << 1) | (((d >>> 0 < 3) | ((((d + -1) & d) | 0) != 0)) & 1) + j = ~~$(W($(s / u))) >>> 0 + Hi(a, r >>> 0 < j >>> 0 ? j : r) + r = f[b >> 2] | 0 + j = (r + -1) | 0 + if (!(j & r)) { + v = r + w = j & c + break + } + if (c >>> 0 < r >>> 0) { + v = r + w = c + } else { + v = r + w = (c >>> 0) % (r >>> 0) | 0 + } + } else { + v = d + w = k + } + while (0) + k = ((f[a >> 2] | 0) + (w << 2)) | 0 + w = f[k >> 2] | 0 + if (!w) { + d = (a + 8) | 0 + f[q >> 2] = f[d >> 2] + f[d >> 2] = q + f[k >> 2] = d + d = f[q >> 2] | 0 + if (d | 0) { + k = f[(d + 4) >> 2] | 0 + d = (v + -1) | 0 + if (d & v) + if (k >>> 0 < v >>> 0) x = k + else x = (k >>> 0) % (v >>> 0) | 0 + else x = k & d + y = ((f[a >> 2] | 0) + (x << 2)) | 0 + z = 30 + } + } else { + f[q >> 2] = f[w >> 2] + y = w + z = 30 + } + if ((z | 0) == 30) f[y >> 2] = q + f[i >> 2] = (f[i >> 2] | 0) + 1 + o = q + p = (o + 12) | 0 + return p | 0 + } + function ke(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + $c(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 262144 + if (d) { + d = c + c = 262144 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 16) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Rf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function le(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + ad(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 131072 + if (d) { + d = c + c = 131072 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 15) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Sf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function me(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + bd(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 32768 + if (d) { + d = c + c = 32768 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 13) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + Uf(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function ne(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + cd(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + _f(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function oe(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + dd(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + _f(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function pe(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + ed(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + _f(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function qe(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + fd(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + _f(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function re(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + gd(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + _f(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function se(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + hd(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + _f(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function te(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + id(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + _f(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function ue(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + g = u + u = (u + 64) | 0 + h = (g + 48) | 0 + i = g + j = (d + 1) | 0 + f[h >> 2] = 0 + k = (h + 4) | 0 + f[k >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 536870911) aq(h) + else { + l = ln(j << 3) | 0 + f[h >> 2] = l + m = (l + (j << 3)) | 0 + f[(h + 8) >> 2] = m + sj(l | 0, 0, ((d << 3) + 8) | 0) | 0 + f[k >> 2] = m + n = l + o = m + break + } + else { + n = 0 + o = 0 + } + while (0) + d = (c | 0) > 0 + if (d) { + j = 0 + do { + m = (n + (f[(a + (j << 2)) >> 2] << 3)) | 0 + l = m + p = Vn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1, 0) | 0 + l = m + f[l >> 2] = p + f[(l + 4) >> 2] = I + j = (j + 1) | 0 + } while ((j | 0) != (c | 0)) + } + j = (i + 40) | 0 + l = j + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + f[(i + 16) >> 2] = 0 + f[(i + 20) >> 2] = 0 + jd(i, n, (o - n) >> 3, e) | 0 + n = (i + 16) | 0 + o = Tn(f[n >> 2] | 0, f[(n + 4) >> 2] | 0, 1) | 0 + n = ((f[(e + 4) >> 2] | 0) - (f[e >> 2] | 0)) | 0 + l = j + f[l >> 2] = n + f[(l + 4) >> 2] = 0 + l = Vn(o | 0, I | 0, 39, 0) | 0 + o = Yn(l | 0, I | 0, 3) | 0 + l = Vn(o | 0, I | 0, 8, 0) | 0 + o = Vn(l | 0, I | 0, n | 0, 0) | 0 + Cl(e, o, I) + o = (i + 24) | 0 + f[o >> 2] = (f[e >> 2] | 0) + (f[j >> 2] | 0) + j = (i + 28) | 0 + f[j >> 2] = 0 + n = (i + 32) | 0 + f[n >> 2] = 16384 + if (d) { + d = c + c = 16384 + do { + l = d + d = (d + -1) | 0 + p = f[(a + (d << 2)) >> 2] | 0 + m = f[i >> 2] | 0 + q = f[(m + (p << 3)) >> 2] | 0 + r = q << 10 + if (c >>> 0 < r >>> 0) s = c + else { + t = c + while (1) { + v = f[o >> 2] | 0 + w = f[j >> 2] | 0 + f[j >> 2] = w + 1 + b[(v + w) >> 0] = t + w = (f[n >> 2] | 0) >>> 8 + f[n >> 2] = w + if (w >>> 0 < r >>> 0) { + s = w + break + } else t = w + } + } + c = + (((((s >>> 0) / (q >>> 0)) | 0) << 12) + + ((s >>> 0) % (q >>> 0) | 0) + + (f[(m + (p << 3) + 4) >> 2] | 0)) | + 0 + f[n >> 2] = c + } while ((l | 0) > 1) + } + _f(i, e) + e = f[i >> 2] | 0 + if (e | 0) { + c = (i + 4) | 0 + i = f[c >> 2] | 0 + if ((i | 0) != (e | 0)) + f[c >> 2] = i + (~(((i + -8 - e) | 0) >>> 3) << 3) + Oq(e) + } + e = f[h >> 2] | 0 + if (!e) { + u = g + return 1 + } + h = f[k >> 2] | 0 + if ((h | 0) != (e | 0)) f[k >> 2] = h + (~(((h + -8 - e) | 0) >>> 3) << 3) + Oq(e) + u = g + return 1 + } + function ve(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0 + c = u + u = (u + 16) | 0 + d = (c + 4) | 0 + e = c + f[(a + 64) >> 2] = b + g = (a + 128) | 0 + f[g >> 2] = 2 + h = (a + 132) | 0 + f[h >> 2] = 7 + i = Qa[f[((f[b >> 2] | 0) + 32) >> 2] & 127](b) | 0 + b = (a + 88) | 0 + f[b >> 2] = i + j = (a + 104) | 0 + k = ((f[(i + 28) >> 2] | 0) - (f[(i + 24) >> 2] | 0)) >> 2 + i = (a + 108) | 0 + l = f[i >> 2] | 0 + m = f[j >> 2] | 0 + n = (l - m) >> 2 + o = m + p = l + if (k >>> 0 <= n >>> 0) + if ( + k >>> 0 < n >>> 0 ? ((q = (o + (k << 2)) | 0), (q | 0) != (p | 0)) : 0 + ) { + o = (p + (~(((p + -4 - q) | 0) >>> 2) << 2)) | 0 + f[i >> 2] = o + r = o + s = m + } else { + r = l + s = m + } + else { + Ci(j, (k - n) | 0) + r = f[i >> 2] | 0 + s = f[j >> 2] | 0 + } + if ((r | 0) != (s | 0)) { + s = 0 + do { + r = f[b >> 2] | 0 + f[e >> 2] = s + f[d >> 2] = f[e >> 2] + n = hh(r, d) | 0 + r = f[j >> 2] | 0 + f[(r + (s << 2)) >> 2] = n + s = (s + 1) | 0 + } while (s >>> 0 < (((f[i >> 2] | 0) - r) >> 2) >>> 0) + } + i = (a + 92) | 0 + s = f[b >> 2] | 0 + j = f[s >> 2] | 0 + d = ((f[(s + 4) >> 2] | 0) - j) >> 2 + e = (a + 96) | 0 + r = f[e >> 2] | 0 + n = f[i >> 2] | 0 + k = (r - n) >> 2 + m = n + n = r + if (d >>> 0 <= k >>> 0) + if ( + d >>> 0 < k >>> 0 ? ((r = (m + (d << 2)) | 0), (r | 0) != (n | 0)) : 0 + ) { + f[e >> 2] = n + (~(((n + -4 - r) | 0) >>> 2) << 2) + t = s + v = j + } else { + t = s + v = j + } + else { + Ci(i, (d - k) | 0) + k = f[b >> 2] | 0 + t = k + v = f[k >> 2] | 0 + } + k = f[(t + 4) >> 2] | 0 + if ((k | 0) != (v | 0)) { + v = f[i >> 2] | 0 + i = f[t >> 2] | 0 + t = (k - i) >> 2 + k = 0 + do { + f[(v + (k << 2)) >> 2] = f[(i + (k << 2)) >> 2] + k = (k + 1) | 0 + } while (k >>> 0 < t >>> 0) + } + t = ((f[h >> 2] | 0) - (f[g >> 2] | 0) + 1) | 0 + g = (a + 136) | 0 + h = (a + 140) | 0 + a = f[h >> 2] | 0 + k = f[g >> 2] | 0 + i = (((a - k) | 0) / 12) | 0 + v = a + if (t >>> 0 > i >>> 0) { + Kf(g, (t - i) | 0) + u = c + return 1 + } + if (t >>> 0 >= i >>> 0) { + u = c + return 1 + } + i = (k + ((t * 12) | 0)) | 0 + if ((i | 0) == (v | 0)) { + u = c + return 1 + } else w = v + while (1) { + v = (w + -12) | 0 + f[h >> 2] = v + t = f[v >> 2] | 0 + if (!t) x = v + else { + v = (w + -8) | 0 + k = f[v >> 2] | 0 + if ((k | 0) != (t | 0)) + f[v >> 2] = k + (~(((k + -4 - t) | 0) >>> 2) << 2) + Oq(t) + x = f[h >> 2] | 0 + } + if ((x | 0) == (i | 0)) break + else w = x + } + u = c + return 1 + } + function we(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + e = f[b >> 2] | 0 + g = f[(b + 4) >> 2] | 0 + h = ((((f[c >> 2] | 0) - e) << 3) + (f[(c + 4) >> 2] | 0) - g) | 0 + c = e + if ((h | 0) <= 0) { + i = (d + 4) | 0 + j = f[d >> 2] | 0 + f[a >> 2] = j + k = (a + 4) | 0 + l = f[i >> 2] | 0 + f[k >> 2] = l + return + } + if (!g) { + e = (d + 4) | 0 + m = h + n = e + o = f[e >> 2] | 0 + p = c + } else { + e = (32 - g) | 0 + q = (h | 0) < (e | 0) ? h : e + r = (-1 >>> ((e - q) | 0)) & (-1 << g) & f[c >> 2] + e = (d + 4) | 0 + s = f[e >> 2] | 0 + t = (32 - s) | 0 + u = t >>> 0 < q >>> 0 ? t : q + v = f[d >> 2] | 0 + w = f[v >> 2] & ~((-1 >>> ((t - u) | 0)) & (-1 << s)) + f[v >> 2] = w + s = f[e >> 2] | 0 + f[v >> 2] = (s >>> 0 > g >>> 0 ? r << (s - g) : r >>> ((g - s) | 0)) | w + w = ((f[e >> 2] | 0) + u) | 0 + s = (v + ((w >>> 5) << 2)) | 0 + f[d >> 2] = s + v = w & 31 + f[e >> 2] = v + w = (q - u) | 0 + if ((w | 0) > 0) { + f[s >> 2] = + (f[s >> 2] & ~(-1 >>> ((32 - w) | 0))) | (r >>> ((g + u) | 0)) + f[e >> 2] = w + x = w + } else x = v + v = (c + 4) | 0 + f[b >> 2] = v + m = (h - q) | 0 + n = e + o = x + p = v + } + v = (32 - o) | 0 + x = -1 << o + if ((m | 0) > 31) { + o = ~x + e = f[d >> 2] | 0 + q = ~m + h = (m + ((q | 0) > -64 ? q : -64) + 32) | 0 + q = ((h >>> 5) + 1) | 0 + c = (m + -32 - (h & -32)) | 0 + h = m + w = p + u = f[e >> 2] | 0 + g = e + while (1) { + r = f[w >> 2] | 0 + s = u & o + f[g >> 2] = s + f[g >> 2] = s | (r << f[n >> 2]) + g = (g + 4) | 0 + u = (f[g >> 2] & x) | (r >>> v) + f[g >> 2] = u + if ((h | 0) <= 63) break + else { + h = (h + -32) | 0 + w = (w + 4) | 0 + } + } + w = (p + (q << 2)) | 0 + f[b >> 2] = w + f[d >> 2] = e + (q << 2) + y = c + z = w + } else { + y = m + z = p + } + if ((y | 0) <= 0) { + i = n + j = f[d >> 2] | 0 + f[a >> 2] = j + k = (a + 4) | 0 + l = f[i >> 2] | 0 + f[k >> 2] = l + return + } + p = f[z >> 2] & (-1 >>> ((32 - y) | 0)) + z = (v | 0) < (y | 0) ? v : y + m = f[d >> 2] | 0 + w = f[m >> 2] & ~((-1 << f[n >> 2]) & (-1 >>> ((v - z) | 0))) + f[m >> 2] = w + f[m >> 2] = w | (p << f[n >> 2]) + w = ((f[n >> 2] | 0) + z) | 0 + v = (m + ((w >>> 5) << 2)) | 0 + f[d >> 2] = v + f[n >> 2] = w & 31 + w = (y - z) | 0 + if ((w | 0) <= 0) { + i = n + j = f[d >> 2] | 0 + f[a >> 2] = j + k = (a + 4) | 0 + l = f[i >> 2] | 0 + f[k >> 2] = l + return + } + f[v >> 2] = (f[v >> 2] & ~(-1 >>> ((32 - w) | 0))) | (p >>> z) + f[n >> 2] = w + i = n + j = f[d >> 2] | 0 + f[a >> 2] = j + k = (a + 4) | 0 + l = f[i >> 2] | 0 + f[k >> 2] = l + return + } + function xe(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0 + e = f[b >> 2] | 0 + g = (b + 4) | 0 + h = f[g >> 2] | 0 + i = ((((f[c >> 2] | 0) - e) << 3) + (f[(c + 4) >> 2] | 0) - h) | 0 + c = e + if ((i | 0) <= 0) { + j = (d + 4) | 0 + k = f[d >> 2] | 0 + f[a >> 2] = k + l = (a + 4) | 0 + m = f[j >> 2] | 0 + f[l >> 2] = m + return + } + if (!h) { + e = (d + 4) | 0 + n = i + o = e + p = c + q = f[e >> 2] | 0 + } else { + e = (32 - h) | 0 + r = (i | 0) < (e | 0) ? i : e + s = (-1 >>> ((e - r) | 0)) & (-1 << h) & f[c >> 2] + c = (d + 4) | 0 + h = f[c >> 2] | 0 + e = (32 - h) | 0 + t = e >>> 0 < r >>> 0 ? e : r + u = f[d >> 2] | 0 + v = f[u >> 2] & ~((-1 >>> ((e - t) | 0)) & (-1 << h)) + f[u >> 2] = v + h = f[c >> 2] | 0 + e = f[g >> 2] | 0 + f[u >> 2] = (h >>> 0 > e >>> 0 ? s << (h - e) : s >>> ((e - h) | 0)) | v + v = ((f[c >> 2] | 0) + t) | 0 + h = (u + ((v >>> 5) << 2)) | 0 + f[d >> 2] = h + u = v & 31 + f[c >> 2] = u + v = (r - t) | 0 + if ((v | 0) > 0) { + e = f[h >> 2] & ~(-1 >>> ((32 - v) | 0)) + f[h >> 2] = e + f[h >> 2] = e | (s >>> (((f[g >> 2] | 0) + t) | 0)) + f[c >> 2] = v + w = v + } else w = u + u = ((f[b >> 2] | 0) + 4) | 0 + f[b >> 2] = u + n = (i - r) | 0 + o = c + p = u + q = w + } + w = (32 - q) | 0 + u = -1 << q + if ((n | 0) > 31) { + q = ~u + c = ~n + r = (n + ((c | 0) > -64 ? c : -64) + 32) & -32 + c = n + i = p + while (1) { + v = f[i >> 2] | 0 + t = f[d >> 2] | 0 + g = f[t >> 2] & q + f[t >> 2] = g + f[t >> 2] = g | (v << f[o >> 2]) + g = (t + 4) | 0 + f[d >> 2] = g + f[g >> 2] = (f[g >> 2] & u) | (v >>> w) + i = ((f[b >> 2] | 0) + 4) | 0 + f[b >> 2] = i + if ((c | 0) <= 63) break + else c = (c + -32) | 0 + } + x = (n + -32 - r) | 0 + y = i + } else { + x = n + y = p + } + if ((x | 0) <= 0) { + j = o + k = f[d >> 2] | 0 + f[a >> 2] = k + l = (a + 4) | 0 + m = f[j >> 2] | 0 + f[l >> 2] = m + return + } + p = f[y >> 2] & (-1 >>> ((32 - x) | 0)) + y = (w | 0) < (x | 0) ? w : x + n = f[d >> 2] | 0 + i = f[n >> 2] & ~((-1 << f[o >> 2]) & (-1 >>> ((w - y) | 0))) + f[n >> 2] = i + f[n >> 2] = i | (p << f[o >> 2]) + i = ((f[o >> 2] | 0) + y) | 0 + w = (n + ((i >>> 5) << 2)) | 0 + f[d >> 2] = w + f[o >> 2] = i & 31 + i = (x - y) | 0 + if ((i | 0) <= 0) { + j = o + k = f[d >> 2] | 0 + f[a >> 2] = k + l = (a + 4) | 0 + m = f[j >> 2] | 0 + f[l >> 2] = m + return + } + f[w >> 2] = (f[w >> 2] & ~(-1 >>> ((32 - i) | 0))) | (p >>> y) + f[o >> 2] = i + j = o + k = f[d >> 2] | 0 + f[a >> 2] = k + l = (a + 4) | 0 + m = f[j >> 2] | 0 + f[l >> 2] = m + return + } + function ye(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 9) | 0 + i = (d + 8) | 0 + j = f[((f[(a + 184) >> 2] | 0) + (c << 2)) >> 2] & 255 + b[h >> 0] = j + c = (a + 4) | 0 + k = f[((f[c >> 2] | 0) + 44) >> 2] | 0 + l = (k + 16) | 0 + m = f[(l + 4) >> 2] | 0 + if (((m | 0) > 0) | (((m | 0) == 0) & ((f[l >> 2] | 0) >>> 0 > 0))) n = j + else { + f[g >> 2] = f[(k + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(k, e, h, (h + 1) | 0) | 0 + n = b[h >> 0] | 0 + } + a: do + if ((n << 24) >> 24 > -1) { + k = (a + 172) | 0 + j = f[((f[k >> 2] | 0) + ((((n << 24) >> 24) * 136) | 0)) >> 2] | 0 + l = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 52) | 0 + m = b[h >> 0] | 0 + o = f[k >> 2] | 0 + k = f[(o + ((m * 136) | 0) + 132) >> 2] | 0 + switch ( + f[((f[((f[l >> 2] | 0) + 84) >> 2] | 0) + (j << 2)) >> 2] | 0 + ) { + case 0: { + p = k + q = 7 + break a + break + } + case 1: { + if (b[(o + ((m * 136) | 0) + 28) >> 0] | 0) { + p = k + q = 7 + break a + } + break + } + default: { + } + } + m = f[((f[c >> 2] | 0) + 44) >> 2] | 0 + b[i >> 0] = 1 + o = (m + 16) | 0 + j = f[(o + 4) >> 2] | 0 + if ( + !(((j | 0) > 0) | (((j | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0))) + ) { + f[g >> 2] = f[(m + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(m, e, i, (i + 1) | 0) | 0 + } + r = k + } else { + p = f[(a + 68) >> 2] | 0 + q = 7 + } + while (0) + if ((q | 0) == 7) { + q = f[((f[c >> 2] | 0) + 44) >> 2] | 0 + b[i >> 0] = 0 + a = (q + 16) | 0 + h = f[(a + 4) >> 2] | 0 + if (!(((h | 0) > 0) | (((h | 0) == 0) & ((f[a >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(q + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(q, e, i, (i + 1) | 0) | 0 + } + r = p + } + p = f[((f[c >> 2] | 0) + 44) >> 2] | 0 + b[i >> 0] = r + r = (p + 16) | 0 + c = f[(r + 4) >> 2] | 0 + if (((c | 0) > 0) | (((c | 0) == 0) & ((f[r >> 2] | 0) >>> 0 > 0))) { + u = d + return 1 + } + f[g >> 2] = f[(p + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(p, e, i, (i + 1) | 0) | 0 + u = d + return 1 + } + function ze(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0 + h = u + u = (u + 16) | 0 + i = (h + 4) | 0 + j = h + k = (a + 60) | 0 + f[(a + 64) >> 2] = g + g = (a + 8) | 0 + Mh(g, b, d, e) + d = (a + 56) | 0 + l = f[d >> 2] | 0 + m = f[(l + 4) >> 2] | 0 + n = f[l >> 2] | 0 + o = (m - n) | 0 + if ((o | 0) <= 0) { + u = h + return 1 + } + p = ((o >>> 2) + -1) | 0 + o = (a + 68) | 0 + q = (a + 16) | 0 + r = (a + 32) | 0 + s = (a + 12) | 0 + t = (a + 28) | 0 + v = (a + 20) | 0 + w = (a + 24) | 0 + if (((m - n) >> 2) >>> 0 > p >>> 0) { + x = p + y = n + } else { + z = l + aq(z) + } + while (1) { + f[j >> 2] = f[(y + (x << 2)) >> 2] + f[i >> 2] = f[j >> 2] + ub(k, i, b, x) + l = X(x, e) | 0 + n = (b + (l << 2)) | 0 + p = (c + (l << 2)) | 0 + l = f[g >> 2] | 0 + if ((l | 0) > 0) { + m = 0 + a = o + A = l + while (1) { + if ((A | 0) > 0) { + l = 0 + do { + B = f[(a + (l << 2)) >> 2] | 0 + C = f[q >> 2] | 0 + if ((B | 0) > (C | 0)) { + D = f[r >> 2] | 0 + f[(D + (l << 2)) >> 2] = C + E = D + } else { + D = f[s >> 2] | 0 + C = f[r >> 2] | 0 + f[(C + (l << 2)) >> 2] = (B | 0) < (D | 0) ? D : B + E = C + } + l = (l + 1) | 0 + } while ((l | 0) < (f[g >> 2] | 0)) + F = E + } else F = f[r >> 2] | 0 + l = + ((f[(n + (m << 2)) >> 2] | 0) - (f[(F + (m << 2)) >> 2] | 0)) | 0 + C = (p + (m << 2)) | 0 + f[C >> 2] = l + if ((l | 0) >= (f[t >> 2] | 0)) { + if ((l | 0) > (f[w >> 2] | 0)) { + G = (l - (f[v >> 2] | 0)) | 0 + H = 18 + } + } else { + G = ((f[v >> 2] | 0) + l) | 0 + H = 18 + } + if ((H | 0) == 18) { + H = 0 + f[C >> 2] = G + } + m = (m + 1) | 0 + A = f[g >> 2] | 0 + if ((m | 0) >= (A | 0)) break + else a = F + } + } + x = (x + -1) | 0 + if ((x | 0) <= -1) { + H = 3 + break + } + a = f[d >> 2] | 0 + y = f[a >> 2] | 0 + if ((((f[(a + 4) >> 2] | 0) - y) >> 2) >>> 0 <= x >>> 0) { + z = a + H = 4 + break + } + } + if ((H | 0) == 3) { + u = h + return 1 + } else if ((H | 0) == 4) aq(z) + return 0 + } + function Ae(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0 + h = u + u = (u + 16) | 0 + i = (h + 4) | 0 + j = h + k = (a + 60) | 0 + f[(a + 64) >> 2] = g + g = (a + 8) | 0 + Mh(g, b, d, e) + d = (a + 56) | 0 + l = f[d >> 2] | 0 + m = f[(l + 4) >> 2] | 0 + n = f[l >> 2] | 0 + o = (m - n) | 0 + if ((o | 0) <= 0) { + u = h + return 1 + } + p = ((o >>> 2) + -1) | 0 + o = (a + 68) | 0 + q = (a + 16) | 0 + r = (a + 32) | 0 + s = (a + 12) | 0 + t = (a + 28) | 0 + v = (a + 20) | 0 + w = (a + 24) | 0 + if (((m - n) >> 2) >>> 0 > p >>> 0) { + x = p + y = n + } else { + z = l + aq(z) + } + while (1) { + f[j >> 2] = f[(y + (x << 2)) >> 2] + f[i >> 2] = f[j >> 2] + tb(k, i, b, x) + l = X(x, e) | 0 + n = (b + (l << 2)) | 0 + p = (c + (l << 2)) | 0 + l = f[g >> 2] | 0 + if ((l | 0) > 0) { + m = 0 + a = o + A = l + while (1) { + if ((A | 0) > 0) { + l = 0 + do { + B = f[(a + (l << 2)) >> 2] | 0 + C = f[q >> 2] | 0 + if ((B | 0) > (C | 0)) { + D = f[r >> 2] | 0 + f[(D + (l << 2)) >> 2] = C + E = D + } else { + D = f[s >> 2] | 0 + C = f[r >> 2] | 0 + f[(C + (l << 2)) >> 2] = (B | 0) < (D | 0) ? D : B + E = C + } + l = (l + 1) | 0 + } while ((l | 0) < (f[g >> 2] | 0)) + F = E + } else F = f[r >> 2] | 0 + l = + ((f[(n + (m << 2)) >> 2] | 0) - (f[(F + (m << 2)) >> 2] | 0)) | 0 + C = (p + (m << 2)) | 0 + f[C >> 2] = l + if ((l | 0) >= (f[t >> 2] | 0)) { + if ((l | 0) > (f[w >> 2] | 0)) { + G = (l - (f[v >> 2] | 0)) | 0 + H = 18 + } + } else { + G = ((f[v >> 2] | 0) + l) | 0 + H = 18 + } + if ((H | 0) == 18) { + H = 0 + f[C >> 2] = G + } + m = (m + 1) | 0 + A = f[g >> 2] | 0 + if ((m | 0) >= (A | 0)) break + else a = F + } + } + x = (x + -1) | 0 + if ((x | 0) <= -1) { + H = 3 + break + } + a = f[d >> 2] | 0 + y = f[a >> 2] | 0 + if ((((f[(a + 4) >> 2] | 0) - y) >> 2) >>> 0 <= x >>> 0) { + z = a + H = 4 + break + } + } + if ((H | 0) == 3) { + u = h + return 1 + } else if ((H | 0) == 4) aq(z) + return 0 + } + function Be(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0 + b = u + u = (u + 16) | 0 + c = (b + 4) | 0 + d = b + e = (a + 12) | 0 + g = f[e >> 2] | 0 + h = ((f[(g + 4) >> 2] | 0) - (f[g >> 2] | 0)) >> 2 + if (!h) { + u = b + return 1 + } + i = (a + 152) | 0 + j = (a + 140) | 0 + k = (a + 144) | 0 + l = (a + 148) | 0 + a = 0 + m = g + while (1) { + f[d >> 2] = ((a >>> 0) / 3) | 0 + f[c >> 2] = f[d >> 2] + if ( + !(_j(m, c) | 0) + ? ((g = f[e >> 2] | 0), + (f[((f[(g + 12) >> 2] | 0) + (a << 2)) >> 2] | 0) == -1) + : 0 + ) { + n = (a + 1) | 0 + o = ((n >>> 0) % 3 | 0 | 0) == 0 ? (a + -2) | 0 : n + if ((o | 0) == -1) p = -1 + else p = f[((f[g >> 2] | 0) + (o << 2)) >> 2] | 0 + o = f[i >> 2] | 0 + if ((f[(o + (p << 2)) >> 2] | 0) == -1) { + g = f[k >> 2] | 0 + n = f[l >> 2] | 0 + if ((g | 0) == ((n << 5) | 0)) { + if (((g + 1) | 0) < 0) { + q = 11 + break + } + r = n << 6 + n = (g + 32) & -32 + vi( + j, + g >>> 0 < 1073741823 ? (r >>> 0 < n >>> 0 ? n : r) : 2147483647, + ) + s = f[k >> 2] | 0 + t = f[i >> 2] | 0 + } else { + s = g + t = o + } + f[k >> 2] = s + 1 + o = ((f[j >> 2] | 0) + ((s >>> 5) << 2)) | 0 + f[o >> 2] = f[o >> 2] & ~(1 << (s & 31)) + o = (t + (p << 2)) | 0 + if ((f[o >> 2] | 0) == -1) { + r = a + n = o + while (1) { + f[n >> 2] = g + o = (r + 1) | 0 + a: do + if ( + (r | 0) != -1 + ? ((v = ((o >>> 0) % 3 | 0 | 0) == 0 ? (r + -2) | 0 : o), + (v | 0) != -1) + : 0 + ) { + w = f[e >> 2] | 0 + x = f[(w + 12) >> 2] | 0 + y = v + while (1) { + v = f[(x + (y << 2)) >> 2] | 0 + if ((v | 0) == -1) break + z = (v + 1) | 0 + A = ((z >>> 0) % 3 | 0 | 0) == 0 ? (v + -2) | 0 : z + if ((A | 0) == -1) { + B = -1 + C = -1 + break a + } else y = A + } + x = (y + 1) | 0 + A = ((x >>> 0) % 3 | 0 | 0) == 0 ? (y + -2) | 0 : x + if ((A | 0) == -1) { + B = y + C = -1 + } else { + B = y + C = f[((f[w >> 2] | 0) + (A << 2)) >> 2] | 0 + } + } else { + B = -1 + C = -1 + } + while (0) + n = (t + (C << 2)) | 0 + if ((f[n >> 2] | 0) != -1) break + else r = B + } + } + } + } + r = (a + 1) | 0 + if (r >>> 0 >= h >>> 0) { + q = 3 + break + } + a = r + m = f[e >> 2] | 0 + } + if ((q | 0) == 3) { + u = b + return 1 + } else if ((q | 0) == 11) aq(j) + return 0 + } + function Ce(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + d = u + u = (u + 32) | 0 + e = (d + 8) | 0 + g = d + h = (a + 4) | 0 + i = f[h >> 2] | 0 + if (i >>> 0 >= b >>> 0) { + f[h >> 2] = b + u = d + return + } + j = (a + 8) | 0 + k = f[j >> 2] | 0 + l = k << 5 + m = (b - i) | 0 + if ((l >>> 0 < m >>> 0) | (i >>> 0 > ((l - m) | 0) >>> 0)) { + f[e >> 2] = 0 + n = (e + 4) | 0 + f[n >> 2] = 0 + o = (e + 8) | 0 + f[o >> 2] = 0 + if ((b | 0) < 0) aq(a) + p = k << 6 + k = (b + 31) & -32 + vi(e, l >>> 0 < 1073741823 ? (p >>> 0 < k >>> 0 ? k : p) : 2147483647) + p = f[h >> 2] | 0 + f[n >> 2] = p + m + k = f[a >> 2] | 0 + l = k + q = f[e >> 2] | 0 + r = (((l + ((p >>> 5) << 2) - k) << 3) + (p & 31)) | 0 + if ((r | 0) > 0) { + p = r >>> 5 + im(q | 0, k | 0, (p << 2) | 0) | 0 + k = r & 31 + r = (q + (p << 2)) | 0 + s = r + if (!k) { + t = 0 + v = s + } else { + w = -1 >>> ((32 - k) | 0) + f[r >> 2] = (f[r >> 2] & ~w) | (f[(l + (p << 2)) >> 2] & w) + t = k + v = s + } + } else { + t = 0 + v = q + } + f[g >> 2] = v + f[(g + 4) >> 2] = t + t = g + g = f[t >> 2] | 0 + v = f[(t + 4) >> 2] | 0 + t = f[a >> 2] | 0 + f[a >> 2] = f[e >> 2] + f[e >> 2] = t + e = f[h >> 2] | 0 + f[h >> 2] = f[n >> 2] + f[n >> 2] = e + e = f[j >> 2] | 0 + f[j >> 2] = f[o >> 2] + f[o >> 2] = e + if (t | 0) Oq(t) + x = g + y = v + } else { + v = ((f[a >> 2] | 0) + ((i >>> 5) << 2)) | 0 + f[h >> 2] = b + x = v + y = i & 31 + } + if (!m) { + u = d + return + } + i = (y | 0) == 0 + v = x + if (c) { + if (i) { + z = m + A = x + B = v + } else { + c = (32 - y) | 0 + b = c >>> 0 > m >>> 0 ? m : c + f[v >> 2] = f[v >> 2] | ((-1 >>> ((c - b) | 0)) & (-1 << y)) + c = (v + 4) | 0 + z = (m - b) | 0 + A = c + B = c + } + c = z >>> 5 + sj(A | 0, -1, (c << 2) | 0) | 0 + A = z & 31 + z = (B + (c << 2)) | 0 + if (!A) { + u = d + return + } + f[z >> 2] = f[z >> 2] | (-1 >>> ((32 - A) | 0)) + u = d + return + } else { + if (i) { + C = m + D = x + E = v + } else { + x = (32 - y) | 0 + i = x >>> 0 > m >>> 0 ? m : x + f[v >> 2] = f[v >> 2] & ~((-1 >>> ((x - i) | 0)) & (-1 << y)) + y = (v + 4) | 0 + C = (m - i) | 0 + D = y + E = y + } + y = C >>> 5 + sj(D | 0, 0, (y << 2) | 0) | 0 + D = C & 31 + C = (E + (y << 2)) | 0 + if (!D) { + u = d + return + } + f[C >> 2] = f[C >> 2] & ~(-1 >>> ((32 - D) | 0)) + u = d + return + } + } + function De(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0 + a = u + u = (u + 48) | 0 + g = (a + 36) | 0 + h = (a + 24) | 0 + i = (a + 12) | 0 + j = a + if (!c) { + k = 0 + u = a + return k | 0 + } + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + l = Gj(d) | 0 + if (l >>> 0 > 4294967279) aq(g) + if (l >>> 0 < 11) { + b[(g + 11) >> 0] = l + if (!l) m = g + else { + n = g + o = 7 + } + } else { + p = (l + 16) & -16 + q = ln(p) | 0 + f[g >> 2] = q + f[(g + 8) >> 2] = p | -2147483648 + f[(g + 4) >> 2] = l + n = q + o = 7 + } + if ((o | 0) == 7) { + kh(n | 0, d | 0, l | 0) | 0 + m = n + } + b[(m + l) >> 0] = 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + l = Gj(e) | 0 + if (l >>> 0 > 4294967279) aq(h) + if (l >>> 0 < 11) { + b[(h + 11) >> 0] = l + if (!l) r = h + else { + s = h + o = 13 + } + } else { + m = (l + 16) & -16 + n = ln(m) | 0 + f[h >> 2] = n + f[(h + 8) >> 2] = m | -2147483648 + f[(h + 4) >> 2] = l + s = n + o = 13 + } + if ((o | 0) == 13) { + kh(s | 0, e | 0, l | 0) | 0 + r = s + } + b[(r + l) >> 0] = 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + l = Gj(d) | 0 + if (l >>> 0 > 4294967279) aq(i) + if (l >>> 0 < 11) { + b[(i + 11) >> 0] = l + if (!l) t = i + else { + v = i + o = 19 + } + } else { + r = (l + 16) & -16 + s = ln(r) | 0 + f[i >> 2] = s + f[(i + 8) >> 2] = r | -2147483648 + f[(i + 4) >> 2] = l + v = s + o = 19 + } + if ((o | 0) == 19) { + kh(v | 0, d | 0, l | 0) | 0 + t = v + } + b[(t + l) >> 0] = 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + l = Gj(e) | 0 + if (l >>> 0 > 4294967279) aq(j) + if (l >>> 0 < 11) { + b[(j + 11) >> 0] = l + if (!l) w = j + else { + x = j + o = 25 + } + } else { + t = (l + 16) & -16 + v = ln(t) | 0 + f[j >> 2] = v + f[(j + 8) >> 2] = t | -2147483648 + f[(j + 4) >> 2] = l + x = v + o = 25 + } + if ((o | 0) == 25) { + kh(x | 0, e | 0, l | 0) | 0 + w = x + } + b[(w + l) >> 0] = 0 + mn(c, i, j) + if ((b[(j + 11) >> 0] | 0) < 0) Oq(f[j >> 2] | 0) + if ((b[(i + 11) >> 0] | 0) < 0) Oq(f[i >> 2] | 0) + if ((b[(h + 11) >> 0] | 0) < 0) Oq(f[h >> 2] | 0) + if ((b[(g + 11) >> 0] | 0) < 0) Oq(f[g >> 2] | 0) + k = 1 + u = a + return k | 0 + } + function Ee(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + f[a >> 2] = f[c >> 2] + d = (c + 4) | 0 + f[(a + 4) >> 2] = f[d >> 2] + e = (c + 8) | 0 + f[(a + 8) >> 2] = f[e >> 2] + g = (c + 12) | 0 + f[(a + 12) >> 2] = f[g >> 2] + f[d >> 2] = 0 + f[e >> 2] = 0 + f[g >> 2] = 0 + g = (c + 16) | 0 + f[(a + 16) >> 2] = f[g >> 2] + e = (c + 20) | 0 + f[(a + 20) >> 2] = f[e >> 2] + d = (c + 24) | 0 + f[(a + 24) >> 2] = f[d >> 2] + f[g >> 2] = 0 + f[e >> 2] = 0 + f[d >> 2] = 0 + b[(a + 28) >> 0] = b[(c + 28) >> 0] | 0 + d = (a + 32) | 0 + e = (c + 32) | 0 + f[d >> 2] = 0 + g = (a + 36) | 0 + f[g >> 2] = 0 + f[(a + 40) >> 2] = 0 + f[d >> 2] = f[e >> 2] + d = (c + 36) | 0 + f[g >> 2] = f[d >> 2] + g = (c + 40) | 0 + f[(a + 40) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[d >> 2] = 0 + f[e >> 2] = 0 + e = (a + 44) | 0 + d = (c + 44) | 0 + f[e >> 2] = 0 + g = (a + 48) | 0 + f[g >> 2] = 0 + f[(a + 52) >> 2] = 0 + f[e >> 2] = f[d >> 2] + e = (c + 48) | 0 + f[g >> 2] = f[e >> 2] + g = (c + 52) | 0 + f[(a + 52) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[e >> 2] = 0 + f[d >> 2] = 0 + d = (a + 56) | 0 + e = (c + 56) | 0 + f[d >> 2] = 0 + g = (a + 60) | 0 + f[g >> 2] = 0 + f[(a + 64) >> 2] = 0 + f[d >> 2] = f[e >> 2] + d = (c + 60) | 0 + f[g >> 2] = f[d >> 2] + g = (c + 64) | 0 + f[(a + 64) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[d >> 2] = 0 + f[e >> 2] = 0 + f[(a + 68) >> 2] = f[(c + 68) >> 2] + f[(a + 72) >> 2] = f[(c + 72) >> 2] + e = (a + 76) | 0 + d = (c + 76) | 0 + f[e >> 2] = 0 + g = (a + 80) | 0 + f[g >> 2] = 0 + f[(a + 84) >> 2] = 0 + f[e >> 2] = f[d >> 2] + e = (c + 80) | 0 + f[g >> 2] = f[e >> 2] + g = (c + 84) | 0 + f[(a + 84) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[e >> 2] = 0 + f[d >> 2] = 0 + d = (a + 88) | 0 + e = (c + 88) | 0 + f[d >> 2] = 0 + g = (a + 92) | 0 + f[g >> 2] = 0 + f[(a + 96) >> 2] = 0 + f[d >> 2] = f[e >> 2] + d = (c + 92) | 0 + f[g >> 2] = f[d >> 2] + g = (c + 96) | 0 + f[(a + 96) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[d >> 2] = 0 + f[e >> 2] = 0 + b[(a + 100) >> 0] = b[(c + 100) >> 0] | 0 + e = (a + 104) | 0 + d = (c + 104) | 0 + f[e >> 2] = 0 + g = (a + 108) | 0 + f[g >> 2] = 0 + f[(a + 112) >> 2] = 0 + f[e >> 2] = f[d >> 2] + e = (c + 108) | 0 + f[g >> 2] = f[e >> 2] + g = (c + 112) | 0 + f[(a + 112) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[e >> 2] = 0 + f[d >> 2] = 0 + d = (a + 116) | 0 + e = (c + 116) | 0 + f[d >> 2] = 0 + g = (a + 120) | 0 + f[g >> 2] = 0 + f[(a + 124) >> 2] = 0 + f[d >> 2] = f[e >> 2] + d = (c + 120) | 0 + f[g >> 2] = f[d >> 2] + g = (c + 124) | 0 + f[(a + 124) >> 2] = f[g >> 2] + f[g >> 2] = 0 + f[d >> 2] = 0 + f[e >> 2] = 0 + f[(a + 128) >> 2] = f[(c + 128) >> 2] + f[(a + 132) >> 2] = f[(c + 132) >> 2] + return + } + function Fe(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0 + h = u + u = (u + 48) | 0 + i = (h + 36) | 0 + j = (h + 24) | 0 + k = (h + 8) | 0 + l = (h + 4) | 0 + m = h + n = (e + 4) | 0 + Rh(i, c, ((f[n >> 2] | 0) - (f[e >> 2] | 0)) >> 2, 2, g, d, 1) + g = f[i >> 2] | 0 + o = ((f[f[g >> 2] >> 2] | 0) + (f[(g + 48) >> 2] | 0)) | 0 + f[k >> 2] = -1 + f[(k + 4) >> 2] = -1 + f[(k + 8) >> 2] = -1 + f[(k + 12) >> 2] = -1 + p = f[(c + 4) >> 2] | 0 + if (((p + -2) | 0) >>> 0 <= 28) { + f[k >> 2] = p + c = 1 << p + f[(k + 4) >> 2] = c + -1 + p = (c + -2) | 0 + f[(k + 8) >> 2] = p + f[(k + 12) >> 2] = ((p | 0) / 2) | 0 + p = f[e >> 2] | 0 + if ((f[n >> 2] | 0) == (p | 0)) q = g + else { + c = (d + 84) | 0 + r = (d + 68) | 0 + s = (d + 48) | 0 + t = (d + 40) | 0 + v = 0 + w = 0 + x = p + while (1) { + p = f[(x + (v << 2)) >> 2] | 0 + if (!(b[c >> 0] | 0)) y = f[((f[r >> 2] | 0) + (p << 2)) >> 2] | 0 + else y = p + p = s + z = f[p >> 2] | 0 + A = f[(p + 4) >> 2] | 0 + p = t + B = f[p >> 2] | 0 + C = un(B | 0, f[(p + 4) >> 2] | 0, y | 0, 0) | 0 + p = Vn(C | 0, I | 0, z | 0, A | 0) | 0 + kh(j | 0, ((f[f[d >> 2] >> 2] | 0) + p) | 0, B | 0) | 0 + rf(k, j, l, m) + f[(o + (w << 2)) >> 2] = f[l >> 2] + f[(o + ((w | 1) << 2)) >> 2] = f[m >> 2] + v = (v + 1) | 0 + x = f[e >> 2] | 0 + if (v >>> 0 >= (((f[n >> 2] | 0) - x) >> 2) >>> 0) break + else w = (w + 2) | 0 + } + q = f[i >> 2] | 0 + } + f[a >> 2] = q + f[i >> 2] = 0 + u = h + return + } + f[a >> 2] = 0 + f[i >> 2] = 0 + if (!g) { + u = h + return + } + i = (g + 88) | 0 + a = f[i >> 2] | 0 + f[i >> 2] = 0 + if (a | 0) { + i = f[(a + 8) >> 2] | 0 + if (i | 0) { + q = (a + 12) | 0 + if ((f[q >> 2] | 0) != (i | 0)) f[q >> 2] = i + Oq(i) + } + Oq(a) + } + a = f[(g + 68) >> 2] | 0 + if (a | 0) { + i = (g + 72) | 0 + q = f[i >> 2] | 0 + if ((q | 0) != (a | 0)) + f[i >> 2] = q + (~(((q + -4 - a) | 0) >>> 2) << 2) + Oq(a) + } + a = (g + 64) | 0 + q = f[a >> 2] | 0 + f[a >> 2] = 0 + if (q | 0) { + a = f[q >> 2] | 0 + if (a | 0) { + i = (q + 4) | 0 + if ((f[i >> 2] | 0) != (a | 0)) f[i >> 2] = a + Oq(a) + } + Oq(q) + } + Oq(g) + u = h + return + } + function Ge(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = (a + 8) | 0 + e = f[d >> 2] | 0 + g = (a + 4) | 0 + h = f[g >> 2] | 0 + if (((((e - h) | 0) / 136) | 0) >>> 0 >= c >>> 0) { + i = c + j = h + do { + f[j >> 2] = -1 + Ok((j + 4) | 0) + b[(j + 100) >> 0] = 1 + k = (j + 104) | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + f[(k + 16) >> 2] = 0 + f[(k + 20) >> 2] = 0 + f[(k + 24) >> 2] = 0 + j = ((f[g >> 2] | 0) + 136) | 0 + f[g >> 2] = j + i = (i + -1) | 0 + } while ((i | 0) != 0) + return + } + i = f[a >> 2] | 0 + j = (((h - i) | 0) / 136) | 0 + h = (j + c) | 0 + if (h >>> 0 > 31580641) aq(a) + k = (((e - i) | 0) / 136) | 0 + i = k << 1 + e = k >>> 0 < 15790320 ? (i >>> 0 < h >>> 0 ? h : i) : 31580641 + do + if (e) + if (e >>> 0 > 31580641) { + i = ra(8) | 0 + Oo(i, 16035) + f[i >> 2] = 7256 + va(i | 0, 1112, 110) + } else { + l = ln((e * 136) | 0) | 0 + break + } + else l = 0 + while (0) + i = (l + ((j * 136) | 0)) | 0 + j = i + h = (l + ((e * 136) | 0)) | 0 + e = c + c = j + l = i + do { + f[l >> 2] = -1 + Ok((l + 4) | 0) + b[(l + 100) >> 0] = 1 + k = (l + 104) | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + f[(k + 16) >> 2] = 0 + f[(k + 20) >> 2] = 0 + f[(k + 24) >> 2] = 0 + l = (c + 136) | 0 + c = l + e = (e + -1) | 0 + } while ((e | 0) != 0) + e = f[a >> 2] | 0 + l = f[g >> 2] | 0 + if ((l | 0) == (e | 0)) { + m = j + n = e + o = e + } else { + k = l + l = j + j = i + do { + k = (k + -136) | 0 + Ee((j + -136) | 0, k) + j = (l + -136) | 0 + l = j + } while ((k | 0) != (e | 0)) + m = l + n = f[a >> 2] | 0 + o = f[g >> 2] | 0 + } + f[a >> 2] = m + f[g >> 2] = c + f[d >> 2] = h + h = n + if ((o | 0) != (h | 0)) { + d = o + do { + o = f[(d + -20) >> 2] | 0 + if (o | 0) { + c = (d + -16) | 0 + g = f[c >> 2] | 0 + if ((g | 0) != (o | 0)) + f[c >> 2] = g + (~(((g + -4 - o) | 0) >>> 2) << 2) + Oq(o) + } + o = f[(d + -32) >> 2] | 0 + if (o | 0) { + g = (d + -28) | 0 + c = f[g >> 2] | 0 + if ((c | 0) != (o | 0)) + f[g >> 2] = c + (~(((c + -4 - o) | 0) >>> 2) << 2) + Oq(o) + } + Mi((d + -132) | 0) + d = (d + -136) | 0 + } while ((d | 0) != (h | 0)) + } + if (!n) return + Oq(n) + return + } + function He(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = f[b >> 2] | 0 + b = (a + 12) | 0 + d = (c | 0) == -1 + e = (c + 1) | 0 + do + if (!d) { + g = ((e >>> 0) % 3 | 0 | 0) == 0 ? (c + -2) | 0 : e + if (!((c >>> 0) % 3 | 0)) { + h = g + i = (c + 2) | 0 + break + } else { + h = g + i = (c + -1) | 0 + break + } + } else { + h = -1 + i = -1 + } + while (0) + e = d ? -1 : ((c >>> 0) / 3) | 0 + g = (a + 28) | 0 + j = ((f[g >> 2] | 0) + ((e >>> 5) << 2)) | 0 + f[j >> 2] = (1 << (e & 31)) | f[j >> 2] + j = (a + 172) | 0 + e = (a + 176) | 0 + k = (a + 280) | 0 + if ( + ( + ( + !d + ? ((d = + f[((f[((f[b >> 2] | 0) + 12) >> 2] | 0) + (c << 2)) >> 2] | + 0), + (d | 0) != -1) + : 0 + ) + ? ((a = ((d >>> 0) / 3) | 0), + ((f[((f[g >> 2] | 0) + ((a >>> 5) << 2)) >> 2] & + (1 << (a & 31))) | + 0) == + 0) + : 0 + ) + ? ((a = f[j >> 2] | 0), (f[e >> 2] | 0) != (a | 0)) + : 0 + ) { + d = c >>> 5 + l = 1 << (c & 31) + c = 0 + m = a + do { + a = ((f[k >> 2] | 0) + (c << 5)) | 0 + if ( + !(l & f[((f[(m + ((c * 136) | 0) + 4) >> 2] | 0) + (d << 2)) >> 2]) + ) + fj(a, 0) + else fj(a, 1) + c = (c + 1) | 0 + m = f[j >> 2] | 0 + } while (c >>> 0 < (((((f[e >> 2] | 0) - m) | 0) / 136) | 0) >>> 0) + } + if ( + ( + ( + (h | 0) != -1 + ? ((m = + f[((f[((f[b >> 2] | 0) + 12) >> 2] | 0) + (h << 2)) >> 2] | + 0), + (m | 0) != -1) + : 0 + ) + ? ((c = ((m >>> 0) / 3) | 0), + ((f[((f[g >> 2] | 0) + ((c >>> 5) << 2)) >> 2] & + (1 << (c & 31))) | + 0) == + 0) + : 0 + ) + ? ((c = f[j >> 2] | 0), (f[e >> 2] | 0) != (c | 0)) + : 0 + ) { + m = h >>> 5 + d = 1 << (h & 31) + h = 0 + l = c + do { + c = ((f[k >> 2] | 0) + (h << 5)) | 0 + if ( + !(d & f[((f[(l + ((h * 136) | 0) + 4) >> 2] | 0) + (m << 2)) >> 2]) + ) + fj(c, 0) + else fj(c, 1) + h = (h + 1) | 0 + l = f[j >> 2] | 0 + } while (h >>> 0 < (((((f[e >> 2] | 0) - l) | 0) / 136) | 0) >>> 0) + } + if ((i | 0) == -1) return 1 + l = f[((f[((f[b >> 2] | 0) + 12) >> 2] | 0) + (i << 2)) >> 2] | 0 + if ((l | 0) == -1) return 1 + b = ((l >>> 0) / 3) | 0 + if ((f[((f[g >> 2] | 0) + ((b >>> 5) << 2)) >> 2] & (1 << (b & 31))) | 0) + return 1 + b = f[j >> 2] | 0 + if ((f[e >> 2] | 0) == (b | 0)) return 1 + g = i >>> 5 + l = 1 << (i & 31) + i = 0 + h = b + do { + b = ((f[k >> 2] | 0) + (i << 5)) | 0 + if (!(l & f[((f[(h + ((i * 136) | 0) + 4) >> 2] | 0) + (g << 2)) >> 2])) + fj(b, 0) + else fj(b, 1) + i = (i + 1) | 0 + h = f[j >> 2] | 0 + } while (i >>> 0 < (((((f[e >> 2] | 0) - h) | 0) / 136) | 0) >>> 0) + return 1 + } + function Ie(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 8) | 0 + i = (a + 4) | 0 + j = (a + 8) | 0 + ci(((f[j >> 2] | 0) - (f[i >> 2] | 0)) >> 2, c) | 0 + k = f[i >> 2] | 0 + if ((f[j >> 2] | 0) == (k | 0)) { + u = d + return 1 + } + l = (a + 32) | 0 + a = (c + 16) | 0 + m = (c + 4) | 0 + n = (h + 1) | 0 + o = (h + 1) | 0 + p = (h + 1) | 0 + q = (h + 1) | 0 + r = 0 + s = k + do { + k = + f[ + ((f[((f[l >> 2] | 0) + 8) >> 2] | 0) + + (f[(s + (r << 2)) >> 2] << 2)) >> + 2 + ] | 0 + b[h >> 0] = f[(k + 56) >> 2] + t = a + v = f[t >> 2] | 0 + w = f[(t + 4) >> 2] | 0 + if (((w | 0) > 0) | (((w | 0) == 0) & (v >>> 0 > 0))) { + x = w + y = v + } else { + f[g >> 2] = f[m >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, q) | 0 + v = a + x = f[(v + 4) >> 2] | 0 + y = f[v >> 2] | 0 + } + b[h >> 0] = f[(k + 28) >> 2] + if (((x | 0) > 0) | (((x | 0) == 0) & (y >>> 0 > 0))) { + z = x + A = y + } else { + f[g >> 2] = f[m >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, p) | 0 + v = a + z = f[(v + 4) >> 2] | 0 + A = f[v >> 2] | 0 + } + b[h >> 0] = b[(k + 24) >> 0] | 0 + if (((z | 0) > 0) | (((z | 0) == 0) & (A >>> 0 > 0))) { + B = z + C = A + } else { + f[g >> 2] = f[m >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, o) | 0 + v = a + B = f[(v + 4) >> 2] | 0 + C = f[v >> 2] | 0 + } + b[h >> 0] = b[(k + 32) >> 0] | 0 + if (!(((B | 0) > 0) | (((B | 0) == 0) & (C >>> 0 > 0)))) { + f[g >> 2] = f[m >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, n) | 0 + } + ci(f[(k + 60) >> 2] | 0, c) | 0 + r = (r + 1) | 0 + s = f[i >> 2] | 0 + } while (r >>> 0 < (((f[j >> 2] | 0) - s) >> 2) >>> 0) + u = d + return 1 + } + function Je(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = Oa, + D = Oa, + E = Oa, + F = Oa + h = u + u = (u + 16) | 0 + i = h + j = (e + 4) | 0 + k = b[(d + 24) >> 0] | 0 + l = (k << 24) >> 24 + Rh(a, c, ((f[j >> 2] | 0) - (f[e >> 2] | 0)) >> 2, l, g, d, 1) + g = f[a >> 2] | 0 + a = ((f[f[g >> 2] >> 2] | 0) + (f[(g + 48) >> 2] | 0)) | 0 + g = f[(c + 4) >> 2] | 0 + Ap(i) + Ko(i, $(n[(c + 20) >> 2]), ((1 << g) + -1) | 0) + g = Lq(l >>> 0 > 1073741823 ? -1 : l << 2) | 0 + m = f[j >> 2] | 0 + j = f[e >> 2] | 0 + e = j + if ((m | 0) == (j | 0)) { + Mq(g) + u = h + return + } + o = (d + 68) | 0 + p = (d + 48) | 0 + q = (d + 40) | 0 + r = (c + 8) | 0 + c = (i + 4) | 0 + s = (b[(d + 84) >> 0] | 0) == 0 + t = (m - j) >> 2 + if ((k << 24) >> 24 > 0) { + v = 0 + w = 0 + } else { + k = 0 + do { + j = f[(e + (k << 2)) >> 2] | 0 + if (s) x = f[((f[o >> 2] | 0) + (j << 2)) >> 2] | 0 + else x = j + j = p + m = f[j >> 2] | 0 + y = f[(j + 4) >> 2] | 0 + j = q + z = f[j >> 2] | 0 + A = un(z | 0, f[(j + 4) >> 2] | 0, x | 0, 0) | 0 + j = Vn(A | 0, I | 0, m | 0, y | 0) | 0 + kh(g | 0, ((f[f[d >> 2] >> 2] | 0) + j) | 0, z | 0) | 0 + k = (k + 1) | 0 + } while (k >>> 0 < t >>> 0) + Mq(g) + u = h + return + } + while (1) { + k = f[(e + (v << 2)) >> 2] | 0 + if (s) B = f[((f[o >> 2] | 0) + (k << 2)) >> 2] | 0 + else B = k + k = p + x = f[k >> 2] | 0 + z = f[(k + 4) >> 2] | 0 + k = q + j = f[k >> 2] | 0 + y = un(j | 0, f[(k + 4) >> 2] | 0, B | 0, 0) | 0 + k = Vn(y | 0, I | 0, x | 0, z | 0) | 0 + kh(g | 0, ((f[f[d >> 2] >> 2] | 0) + k) | 0, j | 0) | 0 + j = f[r >> 2] | 0 + C = $(n[i >> 2]) + k = 0 + z = w + while (1) { + D = $(n[(g + (k << 2)) >> 2]) + E = $(D - $(n[(j + (k << 2)) >> 2])) + x = E < $(0.0) + D = $(-E) + F = $((x ? D : E) / C) + y = ~~$(J($($(F * $(f[c >> 2] | 0)) + $(0.5)))) + f[(a + (z << 2)) >> 2] = x ? (0 - y) | 0 : y + k = (k + 1) | 0 + if ((k | 0) == (l | 0)) break + else z = (z + 1) | 0 + } + v = (v + 1) | 0 + if (v >>> 0 >= t >>> 0) break + else w = (w + l) | 0 + } + Mq(g) + u = h + return + } + function Ke(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0 + d = u + u = (u + 32) | 0 + e = (d + 16) | 0 + g = (d + 12) | 0 + h = (d + 8) | 0 + i = (d + 4) | 0 + j = d + lp(a) + f[(a + 16) >> 2] = 0 + f[(a + 20) >> 2] = 0 + f[(a + 12) >> 2] = a + 16 + k = (a + 24) | 0 + lp(k) + if ((a | 0) != (b | 0)) { + f[h >> 2] = f[b >> 2] + f[i >> 2] = b + 4 + f[g >> 2] = f[h >> 2] + f[e >> 2] = f[i >> 2] + Oc(a, g, e) + } + l = (b + 24) | 0 + if ((k | 0) != (l | 0)) { + f[h >> 2] = f[l >> 2] + f[i >> 2] = b + 28 + f[g >> 2] = f[h >> 2] + f[e >> 2] = f[i >> 2] + Oc(k, g, e) + } + f[j >> 2] = 0 + k = (c + 8) | 0 + l = (c + 12) | 0 + c = f[l >> 2] | 0 + m = f[k >> 2] | 0 + if (((c - m) | 0) <= 0) { + u = d + return + } + n = (b + 16) | 0 + b = m + m = c + c = 0 + while (1) { + o = f[((f[(b + (c << 2)) >> 2] | 0) + 56) >> 2] | 0 + p = f[n >> 2] | 0 + if (p) { + q = n + r = p + a: while (1) { + p = r + while (1) { + if ((f[(p + 16) >> 2] | 0) >= (o | 0)) break + s = f[(p + 4) >> 2] | 0 + if (!s) { + t = q + break a + } else p = s + } + r = f[p >> 2] | 0 + if (!r) { + t = p + break + } else q = p + } + if ((t | 0) != (n | 0) ? (o | 0) >= (f[(t + 16) >> 2] | 0) : 0) { + q = (t + 20) | 0 + r = Hd(a, j) | 0 + if ((r | 0) != (q | 0)) { + f[h >> 2] = f[q >> 2] + f[i >> 2] = t + 24 + f[g >> 2] = f[h >> 2] + f[e >> 2] = f[i >> 2] + Oc(r, g, e) + } + v = f[j >> 2] | 0 + w = f[k >> 2] | 0 + x = f[l >> 2] | 0 + } else { + v = c + w = b + x = m + } + } else { + v = c + w = b + x = m + } + c = (v + 1) | 0 + f[j >> 2] = c + if ((c | 0) >= (((x - w) >> 2) | 0)) break + else { + b = w + m = x + } + } + u = d + return + } + function Le(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 8) | 0 + i = (a + 12) | 0 + ci(f[i >> 2] | 0, c) | 0 + if (!(f[i >> 2] | 0)) { + j = 1 + u = d + return j | 0 + } + k = (c + 16) | 0 + l = (c + 4) | 0 + m = (h + 1) | 0 + n = (h + 1) | 0 + o = (h + 1) | 0 + p = 0 + while (1) { + q = f[a >> 2] | 0 + r = f[(q + (p << 3)) >> 2] | 0 + if (r >>> 0 > 63) + if (r >>> 0 > 16383) + if (r >>> 0 > 4194303) { + j = 0 + s = 20 + break + } else { + t = 2 + s = 13 + } + else { + t = 1 + s = 13 + } + else if (!r) { + v = (p + 1) | 0 + w = 0 + while (1) { + if (f[(q + ((v + w) << 3)) >> 2] | 0) { + x = w + break + } + y = (w + 1) | 0 + if (y >>> 0 < 63) w = y + else { + x = y + break + } + } + b[h >> 0] = (x << 2) | 3 + w = k + v = f[(w + 4) >> 2] | 0 + if ( + !(((v | 0) > 0) | (((v | 0) == 0) & ((f[w >> 2] | 0) >>> 0 > 0))) + ) { + f[g >> 2] = f[l >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, o) | 0 + } + z = (x + p) | 0 + } else { + t = 0 + s = 13 + } + if ((s | 0) == 13) { + s = 0 + b[h >> 0] = t | (r << 2) + w = k + v = f[(w + 4) >> 2] | 0 + if ( + !(((v | 0) > 0) | (((v | 0) == 0) & ((f[w >> 2] | 0) >>> 0 > 0))) + ) { + f[g >> 2] = f[l >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, n) | 0 + } + if (!t) z = p + else { + w = 0 + do { + w = (w + 1) | 0 + b[h >> 0] = r >>> (((w << 3) + -2) | 0) + v = k + q = f[(v + 4) >> 2] | 0 + if ( + !( + ((q | 0) > 0) | + (((q | 0) == 0) & ((f[v >> 2] | 0) >>> 0 > 0)) + ) + ) { + f[g >> 2] = f[l >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, m) | 0 + } + } while ((w | 0) < (t | 0)) + z = p + } + } + p = (z + 1) | 0 + if (p >>> 0 >= (f[i >> 2] | 0) >>> 0) { + j = 1 + s = 20 + break + } + } + if ((s | 0) == 20) { + u = d + return j | 0 + } + return 0 + } + function Me(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + g = f[a >> 2] | 0 + h = g + i = ((f[c >> 2] | 0) - h) | 0 + c = (g + i) | 0 + j = (e - d) | 0 + if ((j | 0) <= 0) { + k = c + return k | 0 + } + l = (a + 8) | 0 + m = f[l >> 2] | 0 + n = (a + 4) | 0 + o = f[n >> 2] | 0 + p = o + if ((j | 0) <= ((m - p) | 0)) { + q = (p - c) | 0 + if ((j | 0) > (q | 0)) { + r = (d + q) | 0 + if ((r | 0) == (e | 0)) s = o + else { + t = r + u = o + while (1) { + b[u >> 0] = b[t >> 0] | 0 + t = (t + 1) | 0 + v = ((f[n >> 2] | 0) + 1) | 0 + f[n >> 2] = v + if ((t | 0) == (e | 0)) { + s = v + break + } else u = v + } + } + if ((q | 0) > 0) { + w = r + x = s + } else { + k = c + return k | 0 + } + } else { + w = e + x = o + } + s = (x - (c + j)) | 0 + r = (c + s) | 0 + if (r >>> 0 < o >>> 0) { + q = r + r = x + do { + b[r >> 0] = b[q >> 0] | 0 + q = (q + 1) | 0 + r = ((f[n >> 2] | 0) + 1) | 0 + f[n >> 2] = r + } while ((q | 0) != (o | 0)) + } + if (s | 0) im((x + (0 - s)) | 0, c | 0, s | 0) | 0 + if ((w | 0) == (d | 0)) { + k = c + return k | 0 + } else { + y = d + z = c + } + while (1) { + b[z >> 0] = b[y >> 0] | 0 + y = (y + 1) | 0 + if ((y | 0) == (w | 0)) { + k = c + break + } else z = (z + 1) | 0 + } + return k | 0 + } + z = (p - h + j) | 0 + if ((z | 0) < 0) aq(a) + j = (m - h) | 0 + h = j << 1 + m = j >>> 0 < 1073741823 ? (h >>> 0 < z >>> 0 ? z : h) : 2147483647 + h = c + if (!m) A = 0 + else A = ln(m) | 0 + z = (A + i) | 0 + i = z + j = (A + m) | 0 + if ((d | 0) == (e | 0)) { + B = i + C = g + } else { + g = d + d = i + i = z + do { + b[i >> 0] = b[g >> 0] | 0 + i = (d + 1) | 0 + d = i + g = (g + 1) | 0 + } while ((g | 0) != (e | 0)) + B = d + C = f[a >> 2] | 0 + } + d = (h - C) | 0 + e = (z + (0 - d)) | 0 + if ((d | 0) > 0) kh(e | 0, C | 0, d | 0) | 0 + d = ((f[n >> 2] | 0) - h) | 0 + if ((d | 0) > 0) { + h = B + kh(h | 0, c | 0, d | 0) | 0 + D = (h + d) | 0 + E = f[a >> 2] | 0 + } else { + D = B + E = C + } + f[a >> 2] = e + f[n >> 2] = D + f[l >> 2] = j + if (!E) { + k = z + return k | 0 + } + Oq(E) + k = z + return k | 0 + } + function Ne(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + e = u + u = (u + 16) | 0 + g = e + h = f[((f[(c + 4) >> 2] | 0) + (d << 2)) >> 2] | 0 + d = f[(c + 28) >> 2] | 0 + c = f[((f[((f[(d + 4) >> 2] | 0) + 8) >> 2] | 0) + (h << 2)) >> 2] | 0 + switch (f[(c + 28) >> 2] | 0) { + case 5: + case 6: + case 3: + case 4: + case 1: + case 2: { + i = ln(40) | 0 + zo(i) + j = i + k = j + f[a >> 2] = k + u = e + return + } + case 9: { + l = 3 + break + } + default: { + } + } + if ((l | 0) == 3) { + i = f[(d + 48) >> 2] | 0 + d = ln(32) | 0 + f[g >> 2] = d + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 17 + m = d + n = 14495 + o = (m + 17) | 0 + do { + b[m >> 0] = b[n >> 0] | 0 + m = (m + 1) | 0 + n = (n + 1) | 0 + } while ((m | 0) < (o | 0)) + b[(d + 17) >> 0] = 0 + d = (i + 16) | 0 + n = f[d >> 2] | 0 + if (n) { + p = d + q = n + a: while (1) { + n = q + while (1) { + if ((f[(n + 16) >> 2] | 0) >= (h | 0)) break + r = f[(n + 4) >> 2] | 0 + if (!r) { + s = p + break a + } else n = r + } + q = f[n >> 2] | 0 + if (!q) { + s = n + break + } else p = n + } + if ( + ((s | 0) != (d | 0) ? (h | 0) >= (f[(s + 16) >> 2] | 0) : 0) + ? ((h = (s + 20) | 0), (Jh(h, g) | 0) != 0) + : 0 + ) + t = Hk(h, g, -1) | 0 + else l = 12 + } else l = 12 + if ((l | 0) == 12) t = Hk(i, g, -1) | 0 + if ((b[(g + 11) >> 0] | 0) < 0) Oq(f[g >> 2] | 0) + if ((t | 0) > 0) + if ((f[(c + 56) >> 2] | 0) == 1) { + c = ln(48) | 0 + m = c + o = (m + 48) | 0 + do { + f[m >> 2] = 0 + m = (m + 4) | 0 + } while ((m | 0) < (o | 0)) + zo(c) + f[c >> 2] = 2496 + f[(c + 40) >> 2] = 1168 + f[(c + 44) >> 2] = -1 + j = c + k = j + f[a >> 2] = k + u = e + return + } else { + c = ln(64) | 0 + ym(c) + j = c + k = j + f[a >> 2] = k + u = e + return + } + } + c = ln(36) | 0 + Hm(c) + j = c + k = j + f[a >> 2] = k + u = e + return + } + function Oe(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + d = (c | 0) == (a | 0) + b[(c + 12) >> 0] = d & 1 + if (d) return + else e = c + while (1) { + g = (e + 8) | 0 + h = f[g >> 2] | 0 + c = (h + 12) | 0 + if (b[c >> 0] | 0) { + i = 23 + break + } + j = (h + 8) | 0 + k = f[j >> 2] | 0 + d = f[k >> 2] | 0 + if ((d | 0) == (h | 0)) { + l = f[(k + 4) >> 2] | 0 + if (!l) { + i = 7 + break + } + m = (l + 12) | 0 + if (!(b[m >> 0] | 0)) n = m + else { + i = 7 + break + } + } else { + if (!d) { + i = 16 + break + } + m = (d + 12) | 0 + if (!(b[m >> 0] | 0)) n = m + else { + i = 16 + break + } + } + b[c >> 0] = 1 + c = (k | 0) == (a | 0) + b[(k + 12) >> 0] = c & 1 + b[n >> 0] = 1 + if (c) { + i = 23 + break + } else e = k + } + if ((i | 0) == 7) { + if ((f[h >> 2] | 0) == (e | 0)) { + o = h + p = k + } else { + n = (h + 4) | 0 + a = f[n >> 2] | 0 + c = f[a >> 2] | 0 + f[n >> 2] = c + if (!c) q = k + else { + f[(c + 8) >> 2] = h + q = f[j >> 2] | 0 + } + f[(a + 8) >> 2] = q + q = f[j >> 2] | 0 + f[((f[q >> 2] | 0) == (h | 0) ? q : (q + 4) | 0) >> 2] = a + f[a >> 2] = h + f[j >> 2] = a + o = a + p = f[(a + 8) >> 2] | 0 + } + b[(o + 12) >> 0] = 1 + b[(p + 12) >> 0] = 0 + o = f[p >> 2] | 0 + a = (o + 4) | 0 + q = f[a >> 2] | 0 + f[p >> 2] = q + if (q | 0) f[(q + 8) >> 2] = p + q = (p + 8) | 0 + f[(o + 8) >> 2] = f[q >> 2] + c = f[q >> 2] | 0 + f[((f[c >> 2] | 0) == (p | 0) ? c : (c + 4) | 0) >> 2] = o + f[a >> 2] = p + f[q >> 2] = o + return + } else if ((i | 0) == 16) { + if ((f[h >> 2] | 0) == (e | 0)) { + o = (e + 4) | 0 + q = f[o >> 2] | 0 + f[h >> 2] = q + if (!q) r = k + else { + f[(q + 8) >> 2] = h + r = f[j >> 2] | 0 + } + f[g >> 2] = r + r = f[j >> 2] | 0 + f[((f[r >> 2] | 0) == (h | 0) ? r : (r + 4) | 0) >> 2] = e + f[o >> 2] = h + f[j >> 2] = e + s = e + t = f[(e + 8) >> 2] | 0 + } else { + s = h + t = k + } + b[(s + 12) >> 0] = 1 + b[(t + 12) >> 0] = 0 + s = (t + 4) | 0 + k = f[s >> 2] | 0 + h = f[k >> 2] | 0 + f[s >> 2] = h + if (h | 0) f[(h + 8) >> 2] = t + h = (t + 8) | 0 + f[(k + 8) >> 2] = f[h >> 2] + s = f[h >> 2] | 0 + f[((f[s >> 2] | 0) == (t | 0) ? s : (s + 4) | 0) >> 2] = k + f[k >> 2] = t + f[h >> 2] = k + return + } else if ((i | 0) == 23) return + } + function Pe(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0 + d = f[b >> 2] | 0 + b = (a + 12) | 0 + e = (d | 0) == -1 + do + if (e) { + g = 1 + h = -1 + i = -1 + } else { + j = (d + (((d >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + if ((j | 0) != -1) { + k = f[((f[b >> 2] | 0) + 12) >> 2] | 0 + l = j + while (1) { + j = f[(k + (l << 2)) >> 2] | 0 + if ((j | 0) == -1) { + m = 0 + n = l + break + } + o = (j + 1) | 0 + l = ((o >>> 0) % 3 | 0 | 0) == 0 ? (j + -2) | 0 : o + if ((l | 0) == -1) { + m = 1 + n = -1 + break + } + } + if (e) { + g = m + h = -1 + i = n + break + } else { + p = m + q = n + } + } else { + p = 1 + q = -1 + } + g = p + h = f[((f[f[b >> 2] >> 2] | 0) + (d << 2)) >> 2] | 0 + i = q + } + while (0) + if (c) { + c = ((f[(a + 84) >> 2] | 0) + ((h >>> 5) << 2)) | 0 + f[c >> 2] = f[c >> 2] | (1 << (h & 31)) + r = 1 + } else r = 0 + c = f[((f[(a + 152) >> 2] | 0) + (h << 2)) >> 2] | 0 + q = ((f[(a + 140) >> 2] | 0) + ((c >>> 5) << 2)) | 0 + f[q >> 2] = f[q >> 2] | (1 << (c & 31)) + if (!g) { + g = ((((i >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + i) | 0 + if ((g | 0) == -1) { + s = -1 + t = i + } else { + s = f[((f[f[b >> 2] >> 2] | 0) + (g << 2)) >> 2] | 0 + t = i + } + } else { + s = -1 + t = -1 + } + if ((s | 0) == (h | 0)) { + u = r + return u | 0 + } + i = f[(a + 84) >> 2] | 0 + a = r + r = s + s = t + while (1) { + t = (i + ((r >>> 5) << 2)) | 0 + f[t >> 2] = f[t >> 2] | (1 << (r & 31)) + t = (a + 1) | 0 + g = (s + 1) | 0 + a: do + if ( + (s | 0) != -1 + ? ((c = ((g >>> 0) % 3 | 0 | 0) == 0 ? (s + -2) | 0 : g), + (c | 0) != -1) + : 0 + ) { + q = f[b >> 2] | 0 + d = f[(q + 12) >> 2] | 0 + p = c + while (1) { + c = f[(d + (p << 2)) >> 2] | 0 + if ((c | 0) == -1) break + n = (c + 1) | 0 + m = ((n >>> 0) % 3 | 0 | 0) == 0 ? (c + -2) | 0 : n + if ((m | 0) == -1) { + v = -1 + w = -1 + break a + } else p = m + } + d = ((((p >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + p) | 0 + if ((d | 0) == -1) { + v = -1 + w = p + } else { + v = f[((f[q >> 2] | 0) + (d << 2)) >> 2] | 0 + w = p + } + } else { + v = -1 + w = -1 + } + while (0) + if ((v | 0) == (h | 0)) { + u = t + break + } else { + a = t + r = v + s = w + } + } + return u | 0 + } + function Qe(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = Oa, + C = Oa, + D = Oa, + E = Oa + g = u + u = (u + 16) | 0 + h = g + i = b[(d + 24) >> 0] | 0 + j = (i << 24) >> 24 + Rh(a, c, e, j, 0, d, 1) + k = f[a >> 2] | 0 + a = ((f[f[k >> 2] >> 2] | 0) + (f[(k + 48) >> 2] | 0)) | 0 + k = f[(c + 4) >> 2] | 0 + Ap(h) + Ko(h, $(n[(c + 20) >> 2]), ((1 << k) + -1) | 0) + k = Lq(j >>> 0 > 1073741823 ? -1 : j << 2) | 0 + if (!e) { + Mq(k) + u = g + return + } + l = (d + 68) | 0 + m = (d + 48) | 0 + o = (d + 40) | 0 + p = (c + 8) | 0 + c = (h + 4) | 0 + q = (b[(d + 84) >> 0] | 0) == 0 + if ((i << 24) >> 24 > 0) { + r = 0 + s = 0 + } else { + i = 0 + do { + if (q) t = f[((f[l >> 2] | 0) + (i << 2)) >> 2] | 0 + else t = i + v = m + w = f[v >> 2] | 0 + x = f[(v + 4) >> 2] | 0 + v = o + y = f[v >> 2] | 0 + z = un(y | 0, f[(v + 4) >> 2] | 0, t | 0, 0) | 0 + v = Vn(z | 0, I | 0, w | 0, x | 0) | 0 + kh(k | 0, ((f[f[d >> 2] >> 2] | 0) + v) | 0, y | 0) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (e | 0)) + Mq(k) + u = g + return + } + while (1) { + if (q) A = f[((f[l >> 2] | 0) + (s << 2)) >> 2] | 0 + else A = s + i = m + t = f[i >> 2] | 0 + y = f[(i + 4) >> 2] | 0 + i = o + v = f[i >> 2] | 0 + x = un(v | 0, f[(i + 4) >> 2] | 0, A | 0, 0) | 0 + i = Vn(x | 0, I | 0, t | 0, y | 0) | 0 + kh(k | 0, ((f[f[d >> 2] >> 2] | 0) + i) | 0, v | 0) | 0 + v = f[p >> 2] | 0 + B = $(n[h >> 2]) + i = 0 + y = r + while (1) { + C = $(n[(k + (i << 2)) >> 2]) + D = $(C - $(n[(v + (i << 2)) >> 2])) + t = D < $(0.0) + C = $(-D) + E = $((t ? C : D) / B) + x = ~~$(J($($(E * $(f[c >> 2] | 0)) + $(0.5)))) + f[(a + (y << 2)) >> 2] = t ? (0 - x) | 0 : x + i = (i + 1) | 0 + if ((i | 0) == (j | 0)) break + else y = (y + 1) | 0 + } + s = (s + 1) | 0 + if ((s | 0) == (e | 0)) break + else r = (r + j) | 0 + } + Mq(k) + u = g + return + } + function Re(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + e = (a + 100) | 0 + if (d >>> 0 < (f[e >> 2] | 0) >>> 0) { + f[c >> 2] = d + 1 + g = h[d >> 0] | 0 + } else g = Si(a) | 0 + switch (g | 0) { + case 43: + case 45: { + d = ((g | 0) == 45) & 1 + i = f[c >> 2] | 0 + if (i >>> 0 < (f[e >> 2] | 0) >>> 0) { + f[c >> 2] = i + 1 + j = h[i >> 0] | 0 + } else j = Si(a) | 0 + if ( + ((b | 0) != 0) & (((j + -48) | 0) >>> 0 > 9) + ? (f[e >> 2] | 0) != 0 + : 0 + ) { + f[c >> 2] = (f[c >> 2] | 0) + -1 + k = d + l = j + } else { + k = d + l = j + } + break + } + default: { + k = 0 + l = g + } + } + if (((l + -48) | 0) >>> 0 > 9) + if (!(f[e >> 2] | 0)) { + m = -2147483648 + n = 0 + } else { + f[c >> 2] = (f[c >> 2] | 0) + -1 + m = -2147483648 + n = 0 + } + else { + g = 0 + j = l + while (1) { + g = (j + -48 + ((g * 10) | 0)) | 0 + l = f[c >> 2] | 0 + if (l >>> 0 < (f[e >> 2] | 0) >>> 0) { + f[c >> 2] = l + 1 + o = h[l >> 0] | 0 + } else o = Si(a) | 0 + if (!((((o + -48) | 0) >>> 0 < 10) & ((g | 0) < 214748364))) break + else j = o + } + j = (((g | 0) < 0) << 31) >> 31 + if (((o + -48) | 0) >>> 0 < 10) { + l = o + d = g + b = j + while (1) { + i = un(d | 0, b | 0, 10, 0) | 0 + p = I + q = Vn(l | 0, ((((l | 0) < 0) << 31) >> 31) | 0, -48, -1) | 0 + r = Vn(q | 0, I | 0, i | 0, p | 0) | 0 + p = I + i = f[c >> 2] | 0 + if (i >>> 0 < (f[e >> 2] | 0) >>> 0) { + f[c >> 2] = i + 1 + s = h[i >> 0] | 0 + } else s = Si(a) | 0 + if ( + (((s + -48) | 0) >>> 0 < 10) & + (((p | 0) < 21474836) | + (((p | 0) == 21474836) & (r >>> 0 < 2061584302))) + ) { + l = s + d = r + b = p + } else { + t = s + u = r + v = p + break + } + } + } else { + t = o + u = g + v = j + } + if (((t + -48) | 0) >>> 0 < 10) + do { + t = f[c >> 2] | 0 + if (t >>> 0 < (f[e >> 2] | 0) >>> 0) { + f[c >> 2] = t + 1 + w = h[t >> 0] | 0 + } else w = Si(a) | 0 + } while (((w + -48) | 0) >>> 0 < 10) + if (f[e >> 2] | 0) f[c >> 2] = (f[c >> 2] | 0) + -1 + c = (k | 0) != 0 + k = Xn(0, 0, u | 0, v | 0) | 0 + m = c ? I : v + n = c ? k : u + } + I = m + return n | 0 + } + function Se(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + b = (a + 1176) | 0 + c = f[b >> 2] | 0 + if (c | 0) { + d = (a + 1180) | 0 + e = f[d >> 2] | 0 + if ((e | 0) == (c | 0)) g = c + else { + h = e + while (1) { + e = (h + -12) | 0 + f[d >> 2] = e + i = f[e >> 2] | 0 + if (!i) j = e + else { + e = (h + -8) | 0 + k = f[e >> 2] | 0 + if ((k | 0) != (i | 0)) + f[e >> 2] = k + (~(((k + -4 - i) | 0) >>> 2) << 2) + Oq(i) + j = f[d >> 2] | 0 + } + if ((j | 0) == (c | 0)) break + else h = j + } + g = f[b >> 2] | 0 + } + Oq(g) + } + g = (a + 1164) | 0 + b = f[g >> 2] | 0 + if (b | 0) { + j = (a + 1168) | 0 + h = f[j >> 2] | 0 + if ((h | 0) == (b | 0)) l = b + else { + c = h + while (1) { + h = (c + -12) | 0 + f[j >> 2] = h + d = f[h >> 2] | 0 + if (!d) m = h + else { + h = (c + -8) | 0 + i = f[h >> 2] | 0 + if ((i | 0) != (d | 0)) + f[h >> 2] = i + (~(((i + -4 - d) | 0) >>> 2) << 2) + Oq(d) + m = f[j >> 2] | 0 + } + if ((m | 0) == (b | 0)) break + else c = m + } + l = f[g >> 2] | 0 + } + Oq(l) + } + l = f[(a + 1152) >> 2] | 0 + if (l | 0) { + g = (a + 1156) | 0 + m = f[g >> 2] | 0 + if ((m | 0) != (l | 0)) + f[g >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + Oq(l) + } + l = f[(a + 1140) >> 2] | 0 + if (l | 0) { + m = (a + 1144) | 0 + g = f[m >> 2] | 0 + if ((g | 0) != (l | 0)) + f[m >> 2] = g + (~(((g + -4 - l) | 0) >>> 2) << 2) + Oq(l) + } + l = f[(a + 1128) >> 2] | 0 + if (!l) { + n = (a + 1108) | 0 + jl(n) + o = (a + 1088) | 0 + jl(o) + p = (a + 1068) | 0 + jl(p) + q = (a + 1036) | 0 + Fj(q) + r = (a + 12) | 0 + Nh(r) + return + } + g = (a + 1132) | 0 + m = f[g >> 2] | 0 + if ((m | 0) != (l | 0)) f[g >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + Oq(l) + n = (a + 1108) | 0 + jl(n) + o = (a + 1088) | 0 + jl(o) + p = (a + 1068) | 0 + jl(p) + q = (a + 1036) | 0 + Fj(q) + r = (a + 12) | 0 + Nh(r) + return + } + function Te(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + d = u + u = (u + 16) | 0 + e = d + g = (a + 4) | 0 + h = f[g >> 2] | 0 + i = f[((f[a >> 2] | 0) + 52) >> 2] | 0 + if (!h) { + if (!(Sa[i & 31](a, c, 0) | 0)) { + j = 0 + u = d + return j | 0 + } + } else if ( + !(Sa[i & 31](a, c, f[((f[(h + 4) >> 2] | 0) + 80) >> 2] | 0) | 0) + ) { + j = 0 + u = d + return j | 0 + } + if (!(b[(a + 28) >> 0] | 0)) { + j = 1 + u = d + return j | 0 + } + h = f[(a + 8) >> 2] | 0 + i = f[(a + 32) >> 2] | 0 + a = f[(h + 80) >> 2] | 0 + f[e >> 2] = 0 + k = (e + 4) | 0 + f[k >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (a) + if (a >>> 0 > 1073741823) aq(e) + else { + l = a << 2 + m = ln(l) | 0 + f[e >> 2] = m + n = (m + (a << 2)) | 0 + f[(e + 8) >> 2] = n + sj(m | 0, 0, l | 0) | 0 + f[k >> 2] = n + o = m + p = n + q = m + break + } + else { + o = 0 + p = 0 + q = 0 + } + while (0) + e = f[(c + 4) >> 2] | 0 + a = f[c >> 2] | 0 + c = a + a: do + if ((e | 0) != (a | 0)) { + m = (e - a) >> 2 + if (b[(h + 84) >> 0] | 0) { + n = 0 + while (1) { + f[(o + (f[(c + (n << 2)) >> 2] << 2)) >> 2] = n + n = (n + 1) | 0 + if (n >>> 0 >= m >>> 0) break a + } + } + n = f[(h + 68) >> 2] | 0 + l = 0 + do { + f[(o + (f[(n + (f[(c + (l << 2)) >> 2] << 2)) >> 2] << 2)) >> 2] = l + l = (l + 1) | 0 + } while (l >>> 0 < m >>> 0) + } + while (0) + c = f[((f[((f[g >> 2] | 0) + 4) >> 2] | 0) + 80) >> 2] | 0 + b: do + if (c | 0) { + g = f[(i + 68) >> 2] | 0 + if (b[(h + 84) >> 0] | 0) { + a = 0 + while (1) { + f[(g + (a << 2)) >> 2] = f[(o + (a << 2)) >> 2] + a = (a + 1) | 0 + if (a >>> 0 >= c >>> 0) break b + } + } + a = f[(h + 68) >> 2] | 0 + e = 0 + do { + f[(g + (e << 2)) >> 2] = f[(o + (f[(a + (e << 2)) >> 2] << 2)) >> 2] + e = (e + 1) | 0 + } while (e >>> 0 < c >>> 0) + } + while (0) + if (o | 0) { + if ((p | 0) != (o | 0)) + f[k >> 2] = p + (~(((p + -4 - o) | 0) >>> 2) << 2) + Oq(q) + } + j = 1 + u = d + return j | 0 + } + function Ue(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + c = u + u = (u + 16) | 0 + d = c + f[a >> 2] = 0 + f[(a + 8) >> 2] = b + Oh((a + 12) | 0) + wn((a + 1036) | 0) + vo((a + 1068) | 0) + vo((a + 1088) | 0) + vo((a + 1108) | 0) + e = (a + 1128) | 0 + f[e >> 2] = 0 + g = (a + 1132) | 0 + f[g >> 2] = 0 + f[(a + 1136) >> 2] = 0 + h = (b | 0) == 0 + do + if (!h) + if (b >>> 0 > 1073741823) aq(e) + else { + i = b << 2 + j = ln(i) | 0 + f[e >> 2] = j + k = (j + (b << 2)) | 0 + f[(a + 1136) >> 2] = k + sj(j | 0, 0, i | 0) | 0 + f[g >> 2] = k + break + } + while (0) + g = (a + 1140) | 0 + f[g >> 2] = 0 + e = (a + 1144) | 0 + f[e >> 2] = 0 + f[(a + 1148) >> 2] = 0 + if (!h) { + k = b << 2 + i = ln(k) | 0 + f[g >> 2] = i + g = (i + (b << 2)) | 0 + f[(a + 1148) >> 2] = g + sj(i | 0, 0, k | 0) | 0 + f[e >> 2] = g + } + g = (a + 1152) | 0 + f[g >> 2] = 0 + e = (a + 1156) | 0 + f[e >> 2] = 0 + f[(a + 1160) >> 2] = 0 + if (!h) { + k = b << 2 + i = ln(k) | 0 + f[g >> 2] = i + g = (i + (b << 2)) | 0 + f[(a + 1160) >> 2] = g + sj(i | 0, 0, k | 0) | 0 + f[e >> 2] = g + } + g = (b << 5) | 1 + f[d >> 2] = 0 + e = (d + 4) | 0 + f[e >> 2] = 0 + f[(d + 8) >> 2] = 0 + if (!h) { + k = b << 2 + i = ln(k) | 0 + f[d >> 2] = i + j = (i + (b << 2)) | 0 + f[(d + 8) >> 2] = j + sj(i | 0, 0, k | 0) | 0 + f[e >> 2] = j + } + lk((a + 1164) | 0, g, d) + j = f[d >> 2] | 0 + if (j | 0) { + k = f[e >> 2] | 0 + if ((k | 0) != (j | 0)) + f[e >> 2] = k + (~(((k + -4 - j) | 0) >>> 2) << 2) + Oq(j) + } + f[d >> 2] = 0 + j = (d + 4) | 0 + f[j >> 2] = 0 + f[(d + 8) >> 2] = 0 + if (!h) { + h = b << 2 + k = ln(h) | 0 + f[d >> 2] = k + e = (k + (b << 2)) | 0 + f[(d + 8) >> 2] = e + sj(k | 0, 0, h | 0) | 0 + f[j >> 2] = e + } + lk((a + 1176) | 0, g, d) + g = f[d >> 2] | 0 + if (!g) { + u = c + return + } + d = f[j >> 2] | 0 + if ((d | 0) != (g | 0)) f[j >> 2] = d + (~(((d + -4 - g) | 0) >>> 2) << 2) + Oq(g) + u = c + return + } + function Ve(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0.0, + D = 0.0, + E = 0.0 + g = u + u = (u + 16) | 0 + h = g + i = (b + 16) | 0 + f[a >> 2] = f[i >> 2] + f[(a + 4) >> 2] = f[(i + 4) >> 2] + f[(a + 8) >> 2] = f[(i + 8) >> 2] + f[(a + 12) >> 2] = f[(i + 12) >> 2] + f[(a + 16) >> 2] = f[(i + 16) >> 2] + f[(a + 20) >> 2] = f[(i + 20) >> 2] + j = (a + 8) | 0 + f[j >> 2] = (f[j >> 2] | 0) + d + j = (d | 0) > 0 + if (j) { + k = (b + 4) | 0 + l = (a + 16) | 0 + m = (a + 12) | 0 + n = f[b >> 2] | 0 + o = n + q = 0 + r = o + s = n + n = o + while (1) { + o = f[(c + (q << 2)) >> 2] | 0 + t = f[k >> 2] | 0 + if (((t - s) >> 2) >>> 0 > o >>> 0) { + v = r + w = n + } else { + x = (o + 1) | 0 + f[h >> 2] = 0 + y = (t - s) >> 2 + z = s + A = t + if (x >>> 0 <= y >>> 0) + if ( + x >>> 0 < y >>> 0 + ? ((t = (z + (x << 2)) | 0), (t | 0) != (A | 0)) + : 0 + ) { + f[k >> 2] = A + (~(((A + -4 - t) | 0) >>> 2) << 2) + B = r + } else B = r + else { + Ch(b, (x - y) | 0, h) + B = f[b >> 2] | 0 + } + v = B + w = B + } + y = (w + (o << 2)) | 0 + x = f[y >> 2] | 0 + s = w + if ((x | 0) <= 1) + if ( + (x | 0) == 0 + ? ((f[l >> 2] = (f[l >> 2] | 0) + 1), + o >>> 0 > (f[m >> 2] | 0) >>> 0) + : 0 + ) { + f[m >> 2] = o + C = 0.0 + } else C = 0.0 + else { + D = +(x | 0) + C = +Zg(D) * D + } + x = ((f[y >> 2] | 0) + 1) | 0 + f[y >> 2] = x + D = +(x | 0) + E = +Zg(D) * D - C + p[a >> 3] = +p[a >> 3] + E + q = (q + 1) | 0 + if ((q | 0) == (d | 0)) break + else { + r = v + n = w + } + } + } + if (e) { + f[i >> 2] = f[a >> 2] + f[(i + 4) >> 2] = f[(a + 4) >> 2] + f[(i + 8) >> 2] = f[(a + 8) >> 2] + f[(i + 12) >> 2] = f[(a + 12) >> 2] + f[(i + 16) >> 2] = f[(a + 16) >> 2] + u = g + return + } + if (!j) { + u = g + return + } + j = f[b >> 2] | 0 + b = 0 + do { + a = (j + (f[(c + (b << 2)) >> 2] << 2)) | 0 + f[a >> 2] = (f[a >> 2] | 0) + -1 + b = (b + 1) | 0 + } while ((b | 0) != (d | 0)) + u = g + return + } + function We(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0.0 + a: do + if (b >>> 0 <= 20) + do + switch (b | 0) { + case 9: { + d = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + e = f[d >> 2] | 0 + f[c >> 2] = d + 4 + f[a >> 2] = e + break a + break + } + case 10: { + e = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + d = f[e >> 2] | 0 + f[c >> 2] = e + 4 + e = a + f[e >> 2] = d + f[(e + 4) >> 2] = (((d | 0) < 0) << 31) >> 31 + break a + break + } + case 11: { + d = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + e = f[d >> 2] | 0 + f[c >> 2] = d + 4 + d = a + f[d >> 2] = e + f[(d + 4) >> 2] = 0 + break a + break + } + case 12: { + d = ((f[c >> 2] | 0) + (8 - 1)) & ~(8 - 1) + e = d + g = f[e >> 2] | 0 + h = f[(e + 4) >> 2] | 0 + f[c >> 2] = d + 8 + d = a + f[d >> 2] = g + f[(d + 4) >> 2] = h + break a + break + } + case 13: { + h = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + d = f[h >> 2] | 0 + f[c >> 2] = h + 4 + h = ((d & 65535) << 16) >> 16 + d = a + f[d >> 2] = h + f[(d + 4) >> 2] = (((h | 0) < 0) << 31) >> 31 + break a + break + } + case 14: { + h = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + d = f[h >> 2] | 0 + f[c >> 2] = h + 4 + h = a + f[h >> 2] = d & 65535 + f[(h + 4) >> 2] = 0 + break a + break + } + case 15: { + h = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + d = f[h >> 2] | 0 + f[c >> 2] = h + 4 + h = ((d & 255) << 24) >> 24 + d = a + f[d >> 2] = h + f[(d + 4) >> 2] = (((h | 0) < 0) << 31) >> 31 + break a + break + } + case 16: { + h = ((f[c >> 2] | 0) + (4 - 1)) & ~(4 - 1) + d = f[h >> 2] | 0 + f[c >> 2] = h + 4 + h = a + f[h >> 2] = d & 255 + f[(h + 4) >> 2] = 0 + break a + break + } + case 17: { + h = ((f[c >> 2] | 0) + (8 - 1)) & ~(8 - 1) + i = +p[h >> 3] + f[c >> 2] = h + 8 + p[a >> 3] = i + break a + break + } + case 18: { + h = ((f[c >> 2] | 0) + (8 - 1)) & ~(8 - 1) + i = +p[h >> 3] + f[c >> 2] = h + 8 + p[a >> 3] = i + break a + break + } + default: + break a + } + while (0) + while (0) + return + } + function Xe(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + c = u + u = (u + 16) | 0 + d = (c + 4) | 0 + e = c + g = (c + 8) | 0 + if (!(Qa[f[((f[a >> 2] | 0) + 32) >> 2] & 127](a) | 0)) { + h = 0 + u = c + return h | 0 + } + i = (a + 44) | 0 + j = f[i >> 2] | 0 + k = (a + 8) | 0 + l = (a + 12) | 0 + m = f[l >> 2] | 0 + n = f[k >> 2] | 0 + b[g >> 0] = ((m - n) | 0) >>> 2 + o = (j + 16) | 0 + p = f[(o + 4) >> 2] | 0 + if (((p | 0) > 0) | (((p | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0))) { + q = k + r = n + s = m + } else { + f[e >> 2] = f[(j + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(j, d, g, (g + 1) | 0) | 0 + q = k + r = f[k >> 2] | 0 + s = f[l >> 2] | 0 + } + a: do + if ((r | 0) != (s | 0)) { + l = (a + 4) | 0 + k = r + while (1) { + g = f[k >> 2] | 0 + k = (k + 4) | 0 + if ( + !(Sa[f[((f[g >> 2] | 0) + 8) >> 2] & 31](g, a, f[l >> 2] | 0) | 0) + ) { + h = 0 + break + } + if ((k | 0) == (s | 0)) break a + } + u = c + return h | 0 + } + while (0) + if (!(xc(a) | 0)) { + h = 0 + u = c + return h | 0 + } + s = (a + 32) | 0 + r = f[s >> 2] | 0 + k = (a + 36) | 0 + l = f[k >> 2] | 0 + b: do + if ((r | 0) != (l | 0)) { + g = r + do { + if ( + !(Ra[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a, f[g >> 2] | 0) | 0) + ) { + h = 0 + t = 18 + break + } + g = (g + 4) | 0 + } while ((g | 0) != (l | 0)) + if ((t | 0) == 18) { + u = c + return h | 0 + } + g = f[s >> 2] | 0 + d = f[k >> 2] | 0 + if ((g | 0) != (d | 0)) { + j = g + while (1) { + g = f[((f[q >> 2] | 0) + (f[j >> 2] << 2)) >> 2] | 0 + j = (j + 4) | 0 + if ( + !( + Ra[f[((f[g >> 2] | 0) + 12) >> 2] & 127](g, f[i >> 2] | 0) | 0 + ) + ) { + h = 0 + break + } + if ((j | 0) == (d | 0)) break b + } + u = c + return h | 0 + } + } + while (0) + h = Qa[f[((f[a >> 2] | 0) + 44) >> 2] & 127](a) | 0 + u = c + return h | 0 + } + function Ye(a, b) { + a = a | 0 + b = b | 0 + ld(a, b) + ld((a + 32) | 0, b) + ld((a + 64) | 0, b) + ld((a + 96) | 0, b) + ld((a + 128) | 0, b) + ld((a + 160) | 0, b) + ld((a + 192) | 0, b) + ld((a + 224) | 0, b) + ld((a + 256) | 0, b) + ld((a + 288) | 0, b) + ld((a + 320) | 0, b) + ld((a + 352) | 0, b) + ld((a + 384) | 0, b) + ld((a + 416) | 0, b) + ld((a + 448) | 0, b) + ld((a + 480) | 0, b) + ld((a + 512) | 0, b) + ld((a + 544) | 0, b) + ld((a + 576) | 0, b) + ld((a + 608) | 0, b) + ld((a + 640) | 0, b) + ld((a + 672) | 0, b) + ld((a + 704) | 0, b) + ld((a + 736) | 0, b) + ld((a + 768) | 0, b) + ld((a + 800) | 0, b) + ld((a + 832) | 0, b) + ld((a + 864) | 0, b) + ld((a + 896) | 0, b) + ld((a + 928) | 0, b) + ld((a + 960) | 0, b) + ld((a + 992) | 0, b) + ld((a + 1024) | 0, b) + return + } + function Ze(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + c = u + u = (u + 32) | 0 + d = c + e = (a + 4) | 0 + g = f[a >> 2] | 0 + h = ((f[e >> 2] | 0) - g) >> 2 + i = (h + 1) | 0 + if (i >>> 0 > 1073741823) aq(a) + j = (a + 8) | 0 + k = ((f[j >> 2] | 0) - g) | 0 + g = k >> 1 + l = (k >> 2) >>> 0 < 536870911 ? (g >>> 0 < i >>> 0 ? i : g) : 1073741823 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = a + 8 + do + if (l) + if (l >>> 0 > 1073741823) { + g = ra(8) | 0 + Oo(g, 16035) + f[g >> 2] = 7256 + va(g | 0, 1112, 110) + } else { + m = ln(l << 2) | 0 + break + } + else m = 0 + while (0) + f[d >> 2] = m + g = (m + (h << 2)) | 0 + h = (d + 8) | 0 + i = (d + 4) | 0 + f[i >> 2] = g + k = (m + (l << 2)) | 0 + l = (d + 12) | 0 + f[l >> 2] = k + m = f[b >> 2] | 0 + f[b >> 2] = 0 + f[g >> 2] = m + m = (g + 4) | 0 + f[h >> 2] = m + b = f[a >> 2] | 0 + n = f[e >> 2] | 0 + if ((n | 0) == (b | 0)) { + o = g + p = l + q = h + r = b + s = m + t = n + v = k + w = o + f[a >> 2] = w + f[i >> 2] = r + f[e >> 2] = s + f[q >> 2] = t + x = f[j >> 2] | 0 + f[j >> 2] = v + f[p >> 2] = x + f[d >> 2] = r + ki(d) + u = c + return + } else { + y = n + z = g + } + do { + y = (y + -4) | 0 + g = f[y >> 2] | 0 + f[y >> 2] = 0 + f[(z + -4) >> 2] = g + z = ((f[i >> 2] | 0) + -4) | 0 + f[i >> 2] = z + } while ((y | 0) != (b | 0)) + o = z + p = l + q = h + r = f[a >> 2] | 0 + s = f[h >> 2] | 0 + t = f[e >> 2] | 0 + v = f[l >> 2] | 0 + w = o + f[a >> 2] = w + f[i >> 2] = r + f[e >> 2] = s + f[q >> 2] = t + x = f[j >> 2] | 0 + f[j >> 2] = v + f[p >> 2] = x + f[d >> 2] = r + ki(d) + u = c + return + } + function _e(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + d = u + u = (u + 32) | 0 + e = (d + 12) | 0 + g = d + h = nl(c, 0) | 0 + if (!h) { + f[a >> 2] = 0 + u = d + return + } + i = f[(c + 100) >> 2] | 0 + j = f[(c + 96) >> 2] | 0 + c = (i - j) | 0 + k = ((c | 0) / 12) | 0 + f[e >> 2] = 0 + l = (e + 4) | 0 + f[l >> 2] = 0 + f[(e + 8) >> 2] = 0 + m = j + do + if (c) + if (k >>> 0 > 357913941) aq(e) + else { + n = ln(c) | 0 + f[e >> 2] = n + f[(e + 8) >> 2] = n + ((k * 12) | 0) + sj(n | 0, 0, c | 0) | 0 + f[l >> 2] = n + c + o = n + break + } + else o = 0 + while (0) + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + a: do + if ((i | 0) != (j | 0)) { + c = (g + 4) | 0 + n = (g + 8) | 0 + if (b[(h + 84) >> 0] | 0) { + p = 0 + while (1) { + q = (m + ((p * 12) | 0)) | 0 + f[g >> 2] = f[q >> 2] + f[(g + 4) >> 2] = f[(q + 4) >> 2] + f[(g + 8) >> 2] = f[(q + 8) >> 2] + f[(o + ((p * 12) | 0)) >> 2] = f[g >> 2] + f[(o + ((p * 12) | 0) + 4) >> 2] = f[c >> 2] + f[(o + ((p * 12) | 0) + 8) >> 2] = f[n >> 2] + p = (p + 1) | 0 + if (p >>> 0 >= k >>> 0) break a + } + } + p = f[(h + 68) >> 2] | 0 + q = 0 + do { + r = f[(p + (f[(m + ((q * 12) | 0)) >> 2] << 2)) >> 2] | 0 + f[g >> 2] = r + s = f[(p + (f[(m + ((q * 12) | 0) + 4) >> 2] << 2)) >> 2] | 0 + f[c >> 2] = s + t = f[(p + (f[(m + ((q * 12) | 0) + 8) >> 2] << 2)) >> 2] | 0 + f[n >> 2] = t + f[(o + ((q * 12) | 0)) >> 2] = r + f[(o + ((q * 12) | 0) + 4) >> 2] = s + f[(o + ((q * 12) | 0) + 8) >> 2] = t + q = (q + 1) | 0 + } while (q >>> 0 < k >>> 0) + } + while (0) + Kj(a, e) + a = f[e >> 2] | 0 + if (a | 0) { + e = f[l >> 2] | 0 + if ((e | 0) != (a | 0)) + f[l >> 2] = e + ((~(((((e + -12 - a) | 0) >>> 0) / 12) | 0) * 12) | 0) + Oq(a) + } + u = d + return + } + function $e(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + c = u + u = (u + 16) | 0 + d = c + f[a >> 2] = 0 + f[(a + 8) >> 2] = b + wn((a + 12) | 0) + vo((a + 44) | 0) + vo((a + 64) | 0) + vo((a + 84) | 0) + e = (a + 104) | 0 + f[e >> 2] = 0 + g = (a + 108) | 0 + f[g >> 2] = 0 + f[(a + 112) >> 2] = 0 + h = (b | 0) == 0 + do + if (!h) + if (b >>> 0 > 1073741823) aq(e) + else { + i = b << 2 + j = ln(i) | 0 + f[e >> 2] = j + k = (j + (b << 2)) | 0 + f[(a + 112) >> 2] = k + sj(j | 0, 0, i | 0) | 0 + f[g >> 2] = k + break + } + while (0) + g = (a + 116) | 0 + f[g >> 2] = 0 + e = (a + 120) | 0 + f[e >> 2] = 0 + f[(a + 124) >> 2] = 0 + if (!h) { + k = b << 2 + i = ln(k) | 0 + f[g >> 2] = i + g = (i + (b << 2)) | 0 + f[(a + 124) >> 2] = g + sj(i | 0, 0, k | 0) | 0 + f[e >> 2] = g + } + g = (a + 128) | 0 + f[g >> 2] = 0 + e = (a + 132) | 0 + f[e >> 2] = 0 + f[(a + 136) >> 2] = 0 + if (!h) { + k = b << 2 + i = ln(k) | 0 + f[g >> 2] = i + g = (i + (b << 2)) | 0 + f[(a + 136) >> 2] = g + sj(i | 0, 0, k | 0) | 0 + f[e >> 2] = g + } + g = (b << 5) | 1 + f[d >> 2] = 0 + e = (d + 4) | 0 + f[e >> 2] = 0 + f[(d + 8) >> 2] = 0 + if (!h) { + k = b << 2 + i = ln(k) | 0 + f[d >> 2] = i + j = (i + (b << 2)) | 0 + f[(d + 8) >> 2] = j + sj(i | 0, 0, k | 0) | 0 + f[e >> 2] = j + } + lk((a + 140) | 0, g, d) + j = f[d >> 2] | 0 + if (j | 0) { + k = f[e >> 2] | 0 + if ((k | 0) != (j | 0)) + f[e >> 2] = k + (~(((k + -4 - j) | 0) >>> 2) << 2) + Oq(j) + } + f[d >> 2] = 0 + j = (d + 4) | 0 + f[j >> 2] = 0 + f[(d + 8) >> 2] = 0 + if (!h) { + h = b << 2 + k = ln(h) | 0 + f[d >> 2] = k + e = (k + (b << 2)) | 0 + f[(d + 8) >> 2] = e + sj(k | 0, 0, h | 0) | 0 + f[j >> 2] = e + } + lk((a + 152) | 0, g, d) + g = f[d >> 2] | 0 + if (!g) { + u = c + return + } + d = f[j >> 2] | 0 + if ((d | 0) != (g | 0)) f[j >> 2] = d + (~(((d + -4 - g) | 0) >>> 2) << 2) + Oq(g) + u = c + return + } + function af(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + c = u + u = (u + 16) | 0 + d = c + f[a >> 2] = 0 + f[(a + 8) >> 2] = b + vo((a + 12) | 0) + vo((a + 32) | 0) + vo((a + 52) | 0) + vo((a + 72) | 0) + e = (a + 92) | 0 + f[e >> 2] = 0 + g = (a + 96) | 0 + f[g >> 2] = 0 + f[(a + 100) >> 2] = 0 + h = (b | 0) == 0 + do + if (!h) + if (b >>> 0 > 1073741823) aq(e) + else { + i = b << 2 + j = ln(i) | 0 + f[e >> 2] = j + k = (j + (b << 2)) | 0 + f[(a + 100) >> 2] = k + sj(j | 0, 0, i | 0) | 0 + f[g >> 2] = k + break + } + while (0) + g = (a + 104) | 0 + f[g >> 2] = 0 + e = (a + 108) | 0 + f[e >> 2] = 0 + f[(a + 112) >> 2] = 0 + if (!h) { + k = b << 2 + i = ln(k) | 0 + f[g >> 2] = i + g = (i + (b << 2)) | 0 + f[(a + 112) >> 2] = g + sj(i | 0, 0, k | 0) | 0 + f[e >> 2] = g + } + g = (a + 116) | 0 + f[g >> 2] = 0 + e = (a + 120) | 0 + f[e >> 2] = 0 + f[(a + 124) >> 2] = 0 + if (!h) { + k = b << 2 + i = ln(k) | 0 + f[g >> 2] = i + g = (i + (b << 2)) | 0 + f[(a + 124) >> 2] = g + sj(i | 0, 0, k | 0) | 0 + f[e >> 2] = g + } + g = (b << 5) | 1 + f[d >> 2] = 0 + e = (d + 4) | 0 + f[e >> 2] = 0 + f[(d + 8) >> 2] = 0 + if (!h) { + k = b << 2 + i = ln(k) | 0 + f[d >> 2] = i + j = (i + (b << 2)) | 0 + f[(d + 8) >> 2] = j + sj(i | 0, 0, k | 0) | 0 + f[e >> 2] = j + } + lk((a + 128) | 0, g, d) + j = f[d >> 2] | 0 + if (j | 0) { + k = f[e >> 2] | 0 + if ((k | 0) != (j | 0)) + f[e >> 2] = k + (~(((k + -4 - j) | 0) >>> 2) << 2) + Oq(j) + } + f[d >> 2] = 0 + j = (d + 4) | 0 + f[j >> 2] = 0 + f[(d + 8) >> 2] = 0 + if (!h) { + h = b << 2 + k = ln(h) | 0 + f[d >> 2] = k + e = (k + (b << 2)) | 0 + f[(d + 8) >> 2] = e + sj(k | 0, 0, h | 0) | 0 + f[j >> 2] = e + } + lk((a + 140) | 0, g, d) + g = f[d >> 2] | 0 + if (!g) { + u = c + return + } + d = f[j >> 2] | 0 + if ((d | 0) != (g | 0)) f[j >> 2] = d + (~(((d + -4 - g) | 0) >>> 2) << 2) + Oq(g) + u = c + return + } + function bf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + d = ln(40) | 0 + e = (d + 16) | 0 + pj(e, c) + pj((d + 28) | 0, (c + 12) | 0) + c = (a + 4) | 0 + g = f[c >> 2] | 0 + do + if (g) { + h = b[(d + 27) >> 0] | 0 + i = (h << 24) >> 24 < 0 + j = i ? f[(d + 20) >> 2] | 0 : h & 255 + h = i ? f[e >> 2] | 0 : e + i = g + while (1) { + k = (i + 16) | 0 + l = b[(k + 11) >> 0] | 0 + m = (l << 24) >> 24 < 0 + n = m ? f[(i + 20) >> 2] | 0 : l & 255 + l = n >>> 0 < j >>> 0 ? n : j + if ( + (l | 0) != 0 + ? ((o = Vk(h, m ? f[k >> 2] | 0 : k, l) | 0), (o | 0) != 0) + : 0 + ) + if ((o | 0) < 0) p = 7 + else p = 9 + else if (j >>> 0 < n >>> 0) p = 7 + else p = 9 + if ((p | 0) == 7) { + p = 0 + n = f[i >> 2] | 0 + if (!n) { + p = 8 + break + } else q = n + } else if ((p | 0) == 9) { + p = 0 + r = (i + 4) | 0 + n = f[r >> 2] | 0 + if (!n) { + p = 11 + break + } else q = n + } + i = q + } + if ((p | 0) == 8) { + s = i + t = i + break + } else if ((p | 0) == 11) { + s = i + t = r + break + } + } else { + s = c + t = c + } + while (0) + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = s + f[t >> 2] = d + s = f[f[a >> 2] >> 2] | 0 + if (!s) { + u = d + v = (a + 4) | 0 + w = f[v >> 2] | 0 + Oe(w, u) + x = (a + 8) | 0 + y = f[x >> 2] | 0 + z = (y + 1) | 0 + f[x >> 2] = z + return d | 0 + } + f[a >> 2] = s + u = f[t >> 2] | 0 + v = (a + 4) | 0 + w = f[v >> 2] | 0 + Oe(w, u) + x = (a + 8) | 0 + y = f[x >> 2] | 0 + z = (y + 1) | 0 + f[x >> 2] = z + return d | 0 + } + function cf(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3680 + wi((a + 200) | 0) + b = f[(a + 184) >> 2] | 0 + if (b | 0) { + c = (a + 188) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + kj((a + 172) | 0) + b = f[(a + 152) >> 2] | 0 + if (b | 0) { + d = (a + 156) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 140) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 128) >> 2] | 0 + if (b | 0) { + c = b + do { + b = c + c = f[c >> 2] | 0 + Oq(b) + } while ((c | 0) != 0) + } + c = (a + 120) | 0 + b = f[c >> 2] | 0 + f[c >> 2] = 0 + if (b | 0) Oq(b) + b = f[(a + 108) >> 2] | 0 + if (b | 0) { + c = (a + 112) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + ((~(((((d + -12 - b) | 0) >>> 0) / 12) | 0) * 12) | 0) + Oq(b) + } + b = f[(a + 96) >> 2] | 0 + if (b | 0) { + d = (a + 100) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 84) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 72) >> 2] | 0 + if (b | 0) { + c = (a + 76) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 52) >> 2] | 0 + if (b | 0) { + d = (a + 56) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 40) >> 2] | 0 + if (b | 0) { + c = (a + 44) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 28) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 16) >> 2] | 0 + if (b | 0) { + d = (a + 20) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = (a + 12) | 0 + a = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!a) return + Ii(a) + Oq(a) + return + } + function df(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + b = (a + 140) | 0 + c = f[b >> 2] | 0 + if (c | 0) { + d = (a + 144) | 0 + e = f[d >> 2] | 0 + if ((e | 0) == (c | 0)) g = c + else { + h = e + while (1) { + e = (h + -12) | 0 + f[d >> 2] = e + i = f[e >> 2] | 0 + if (!i) j = e + else { + e = (h + -8) | 0 + k = f[e >> 2] | 0 + if ((k | 0) != (i | 0)) + f[e >> 2] = k + (~(((k + -4 - i) | 0) >>> 2) << 2) + Oq(i) + j = f[d >> 2] | 0 + } + if ((j | 0) == (c | 0)) break + else h = j + } + g = f[b >> 2] | 0 + } + Oq(g) + } + g = (a + 128) | 0 + b = f[g >> 2] | 0 + if (b | 0) { + j = (a + 132) | 0 + h = f[j >> 2] | 0 + if ((h | 0) == (b | 0)) l = b + else { + c = h + while (1) { + h = (c + -12) | 0 + f[j >> 2] = h + d = f[h >> 2] | 0 + if (!d) m = h + else { + h = (c + -8) | 0 + i = f[h >> 2] | 0 + if ((i | 0) != (d | 0)) + f[h >> 2] = i + (~(((i + -4 - d) | 0) >>> 2) << 2) + Oq(d) + m = f[j >> 2] | 0 + } + if ((m | 0) == (b | 0)) break + else c = m + } + l = f[g >> 2] | 0 + } + Oq(l) + } + l = f[(a + 116) >> 2] | 0 + if (l | 0) { + g = (a + 120) | 0 + m = f[g >> 2] | 0 + if ((m | 0) != (l | 0)) + f[g >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + Oq(l) + } + l = f[(a + 104) >> 2] | 0 + if (l | 0) { + m = (a + 108) | 0 + g = f[m >> 2] | 0 + if ((g | 0) != (l | 0)) + f[m >> 2] = g + (~(((g + -4 - l) | 0) >>> 2) << 2) + Oq(l) + } + l = f[(a + 92) >> 2] | 0 + if (!l) { + n = (a + 72) | 0 + jl(n) + o = (a + 52) | 0 + jl(o) + p = (a + 32) | 0 + jl(p) + q = (a + 12) | 0 + jl(q) + return + } + g = (a + 96) | 0 + m = f[g >> 2] | 0 + if ((m | 0) != (l | 0)) f[g >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + Oq(l) + n = (a + 72) | 0 + jl(n) + o = (a + 52) | 0 + jl(o) + p = (a + 32) | 0 + jl(p) + q = (a + 12) | 0 + jl(q) + return + } + function ef(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + b = (a + 152) | 0 + c = f[b >> 2] | 0 + if (c | 0) { + d = (a + 156) | 0 + e = f[d >> 2] | 0 + if ((e | 0) == (c | 0)) g = c + else { + h = e + while (1) { + e = (h + -12) | 0 + f[d >> 2] = e + i = f[e >> 2] | 0 + if (!i) j = e + else { + e = (h + -8) | 0 + k = f[e >> 2] | 0 + if ((k | 0) != (i | 0)) + f[e >> 2] = k + (~(((k + -4 - i) | 0) >>> 2) << 2) + Oq(i) + j = f[d >> 2] | 0 + } + if ((j | 0) == (c | 0)) break + else h = j + } + g = f[b >> 2] | 0 + } + Oq(g) + } + g = (a + 140) | 0 + b = f[g >> 2] | 0 + if (b | 0) { + j = (a + 144) | 0 + h = f[j >> 2] | 0 + if ((h | 0) == (b | 0)) l = b + else { + c = h + while (1) { + h = (c + -12) | 0 + f[j >> 2] = h + d = f[h >> 2] | 0 + if (!d) m = h + else { + h = (c + -8) | 0 + i = f[h >> 2] | 0 + if ((i | 0) != (d | 0)) + f[h >> 2] = i + (~(((i + -4 - d) | 0) >>> 2) << 2) + Oq(d) + m = f[j >> 2] | 0 + } + if ((m | 0) == (b | 0)) break + else c = m + } + l = f[g >> 2] | 0 + } + Oq(l) + } + l = f[(a + 128) >> 2] | 0 + if (l | 0) { + g = (a + 132) | 0 + m = f[g >> 2] | 0 + if ((m | 0) != (l | 0)) + f[g >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + Oq(l) + } + l = f[(a + 116) >> 2] | 0 + if (l | 0) { + m = (a + 120) | 0 + g = f[m >> 2] | 0 + if ((g | 0) != (l | 0)) + f[m >> 2] = g + (~(((g + -4 - l) | 0) >>> 2) << 2) + Oq(l) + } + l = f[(a + 104) >> 2] | 0 + if (!l) { + n = (a + 84) | 0 + jl(n) + o = (a + 64) | 0 + jl(o) + p = (a + 44) | 0 + jl(p) + q = (a + 12) | 0 + Fj(q) + return + } + g = (a + 108) | 0 + m = f[g >> 2] | 0 + if ((m | 0) != (l | 0)) f[g >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + Oq(l) + n = (a + 84) | 0 + jl(n) + o = (a + 64) | 0 + jl(o) + p = (a + 44) | 0 + jl(p) + q = (a + 12) | 0 + Fj(q) + return + } + function ff(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3480 + uj((a + 200) | 0) + b = f[(a + 184) >> 2] | 0 + if (b | 0) { + c = (a + 188) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + kj((a + 172) | 0) + b = f[(a + 152) >> 2] | 0 + if (b | 0) { + d = (a + 156) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 140) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 128) >> 2] | 0 + if (b | 0) { + c = b + do { + b = c + c = f[c >> 2] | 0 + Oq(b) + } while ((c | 0) != 0) + } + c = (a + 120) | 0 + b = f[c >> 2] | 0 + f[c >> 2] = 0 + if (b | 0) Oq(b) + b = f[(a + 108) >> 2] | 0 + if (b | 0) { + c = (a + 112) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + ((~(((((d + -12 - b) | 0) >>> 0) / 12) | 0) * 12) | 0) + Oq(b) + } + b = f[(a + 96) >> 2] | 0 + if (b | 0) { + d = (a + 100) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 84) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 72) >> 2] | 0 + if (b | 0) { + c = (a + 76) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 52) >> 2] | 0 + if (b | 0) { + d = (a + 56) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 40) >> 2] | 0 + if (b | 0) { + c = (a + 44) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 28) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 16) >> 2] | 0 + if (b | 0) { + d = (a + 20) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = (a + 12) | 0 + a = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!a) return + Ii(a) + Oq(a) + return + } + function gf(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + e = u + u = (u + 144) | 0 + g = (e + 136) | 0 + h = (e + 104) | 0 + i = e + j = ln(124) | 0 + k = f[(c + 8) >> 2] | 0 + f[(j + 4) >> 2] = 0 + f[j >> 2] = 3656 + f[(j + 12) >> 2] = 3636 + f[(j + 100) >> 2] = 0 + f[(j + 104) >> 2] = 0 + f[(j + 108) >> 2] = 0 + l = (j + 16) | 0 + m = (l + 80) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (m | 0)) + f[(j + 112) >> 2] = k + f[(j + 116) >> 2] = d + n = (j + 120) | 0 + f[n >> 2] = 0 + o = j + f[h >> 2] = 3636 + p = (h + 4) | 0 + q = (p + 4) | 0 + f[q >> 2] = 0 + f[(q + 4) >> 2] = 0 + f[(q + 8) >> 2] = 0 + f[(q + 12) >> 2] = 0 + f[(q + 16) >> 2] = 0 + f[(q + 20) >> 2] = 0 + q = f[(c + 12) >> 2] | 0 + f[(i + 4) >> 2] = 3636 + f[(i + 92) >> 2] = 0 + f[(i + 96) >> 2] = 0 + f[(i + 100) >> 2] = 0 + l = (i + 8) | 0 + m = (l + 80) | 0 + do { + f[l >> 2] = 0 + l = (l + 4) | 0 + } while ((l | 0) < (m | 0)) + l = q + f[p >> 2] = l + m = (((((f[(l + 4) >> 2] | 0) - (f[q >> 2] | 0)) >> 2) >>> 0) / 3) | 0 + b[g >> 0] = 0 + qh((h + 8) | 0, m, g) + Va[f[((f[h >> 2] | 0) + 8) >> 2] & 127](h) + f[i >> 2] = f[p >> 2] + fg((i + 4) | 0, h) | 0 + f[(i + 36) >> 2] = q + f[(i + 40) >> 2] = d + f[(i + 44) >> 2] = k + f[(i + 48) >> 2] = j + f[n >> 2] = c + 72 + Sg(j, i) + f[a >> 2] = o + Qi(i) + f[h >> 2] = 3636 + i = f[(h + 20) >> 2] | 0 + if (i | 0) Oq(i) + i = f[(h + 8) >> 2] | 0 + if (!i) { + u = e + return + } + Oq(i) + u = e + return + } + function hf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = u + u = (u + 48) | 0 + d = (c + 44) | 0 + e = (c + 40) | 0 + g = (c + 36) | 0 + h = (c + 32) | 0 + i = c + f[h >> 2] = f[(a + 60) >> 2] + j = (b + 16) | 0 + k = j + l = f[(k + 4) >> 2] | 0 + if (!(((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0)))) { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, h, (h + 4) | 0) | 0 + } + wn(i) + tk(i) + if ((f[h >> 2] | 0) > 0) { + k = (a + 56) | 0 + l = 1 + m = 0 + do { + n = l + l = + ((f[((f[k >> 2] | 0) + ((m >>> 5) << 2)) >> 2] & (1 << (m & 31))) | + 0) != + 0 + fj(i, n ^ l ^ 1) + m = (m + 1) | 0 + } while ((m | 0) < (f[h >> 2] | 0)) + } + ld(i, b) + f[g >> 2] = f[(a + 12) >> 2] + h = j + m = f[h >> 2] | 0 + l = f[(h + 4) >> 2] | 0 + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + o = l + p = m + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + m = j + o = f[(m + 4) >> 2] | 0 + p = f[m >> 2] | 0 + } + f[g >> 2] = f[(a + 20) >> 2] + if (((o | 0) > 0) | (((o | 0) == 0) & (p >>> 0 > 0))) { + Fj(i) + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + Fj(i) + u = c + return 1 + } + function jf(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + g = u + u = (u + 16) | 0 + h = g + if ((f[(c + 56) >> 2] | 0) == -1) { + i = -1 + u = g + return i | 0 + } + j = ln(96) | 0 + tl(j, c) + f[h >> 2] = j + j = vh(a, h) | 0 + c = f[h >> 2] | 0 + f[h >> 2] = 0 + if (c | 0) { + h = (c + 88) | 0 + k = f[h >> 2] | 0 + f[h >> 2] = 0 + if (k | 0) { + h = f[(k + 8) >> 2] | 0 + if (h | 0) { + l = (k + 12) | 0 + if ((f[l >> 2] | 0) != (h | 0)) f[l >> 2] = h + Oq(h) + } + Oq(k) + } + k = f[(c + 68) >> 2] | 0 + if (k | 0) { + h = (c + 72) | 0 + l = f[h >> 2] | 0 + if ((l | 0) != (k | 0)) + f[h >> 2] = l + (~(((l + -4 - k) | 0) >>> 2) << 2) + Oq(k) + } + k = (c + 64) | 0 + l = f[k >> 2] | 0 + f[k >> 2] = 0 + if (l | 0) { + k = f[l >> 2] | 0 + if (k | 0) { + h = (l + 4) | 0 + if ((f[h >> 2] | 0) != (k | 0)) f[h >> 2] = k + Oq(k) + } + Oq(l) + } + Oq(c) + } + c = (a + 8) | 0 + l = ((f[c >> 2] | 0) + (j << 2)) | 0 + k = f[l >> 2] | 0 + do + if (!d) { + h = f[(a + 80) >> 2] | 0 + b[(k + 84) >> 0] = 0 + m = (k + 68) | 0 + n = (k + 72) | 0 + o = f[n >> 2] | 0 + p = f[m >> 2] | 0 + q = (o - p) >> 2 + r = o + if (h >>> 0 > q >>> 0) { + Ch(m, (h - q) | 0, 6220) + break + } + if ( + h >>> 0 < q >>> 0 + ? ((q = (p + (h << 2)) | 0), (q | 0) != (r | 0)) + : 0 + ) + f[n >> 2] = r + (~(((r + -4 - q) | 0) >>> 2) << 2) + } else { + b[(k + 84) >> 0] = 1 + q = f[(k + 68) >> 2] | 0 + r = (k + 72) | 0 + n = f[r >> 2] | 0 + if ((n | 0) == (q | 0)) s = k + else { + f[r >> 2] = n + (~(((n + -4 - q) | 0) >>> 2) << 2) + s = f[l >> 2] | 0 + } + f[(s + 80) >> 2] = f[(a + 80) >> 2] + } + while (0) + if (!e) { + i = j + u = g + return i | 0 + } + Bj(f[((f[c >> 2] | 0) + (j << 2)) >> 2] | 0, e) | 0 + i = j + u = g + return i | 0 + } + function kf(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + d = u + u = (u + 32) | 0 + h = (d + 24) | 0 + i = (d + 16) | 0 + j = d + k = (d + 8) | 0 + f[(a + 52) >> 2] = e + f[(a + 44) >> 2] = g + g = Lq(e >>> 0 > 1073741823 ? -1 : e << 2) | 0 + l = (a + 48) | 0 + m = f[l >> 2] | 0 + f[l >> 2] = g + if (m | 0) Mq(m) + m = (a + 36) | 0 + g = f[m >> 2] | 0 + n = f[(g + 4) >> 2] | 0 + o = f[g >> 2] | 0 + p = (n - o) | 0 + if ((p | 0) <= 0) { + u = d + return 1 + } + q = ((p >>> 2) + -1) | 0 + p = (a + 8) | 0 + r = (i + 4) | 0 + s = (j + 4) | 0 + t = (h + 4) | 0 + if (((n - o) >> 2) >>> 0 > q >>> 0) { + v = q + w = o + } else { + x = g + aq(x) + } + while (1) { + f[k >> 2] = f[(w + (v << 2)) >> 2] + f[h >> 2] = f[k >> 2] + Bc(a, h, b, v) + g = X(v, e) | 0 + o = (b + (g << 2)) | 0 + q = f[l >> 2] | 0 + n = (c + (g << 2)) | 0 + g = f[(o + 4) >> 2] | 0 + y = f[q >> 2] | 0 + z = f[(q + 4) >> 2] | 0 + f[i >> 2] = f[o >> 2] + f[r >> 2] = g + f[j >> 2] = y + f[s >> 2] = z + Od(h, p, i, j) + f[n >> 2] = f[h >> 2] + f[(n + 4) >> 2] = f[t >> 2] + v = (v + -1) | 0 + if ((v | 0) <= -1) { + A = 5 + break + } + n = f[m >> 2] | 0 + w = f[n >> 2] | 0 + if ((((f[(n + 4) >> 2] | 0) - w) >> 2) >>> 0 <= v >>> 0) { + x = n + A = 6 + break + } + } + if ((A | 0) == 5) { + u = d + return 1 + } else if ((A | 0) == 6) aq(x) + return 0 + } + function lf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + d = f[c >> 2] | 0 + c = f[d >> 2] | 0 + e = f[(a + 4) >> 2] | 0 + g = f[(d + 4) >> 2] | 0 + h = (e + -1) | 0 + i = ((h & e) | 0) == 0 + if (!i) + if (g >>> 0 < e >>> 0) j = g + else j = (g >>> 0) % (e >>> 0) | 0 + else j = h & g + g = ((f[a >> 2] | 0) + (j << 2)) | 0 + k = f[g >> 2] | 0 + while (1) { + l = f[k >> 2] | 0 + if ((l | 0) == (d | 0)) break + else k = l + } + if ((k | 0) != ((a + 8) | 0)) { + l = f[(k + 4) >> 2] | 0 + if (!i) + if (l >>> 0 < e >>> 0) m = l + else m = (l >>> 0) % (e >>> 0) | 0 + else m = l & h + if ((m | 0) == (j | 0)) { + n = c + o = 21 + } else o = 13 + } else o = 13 + do + if ((o | 0) == 13) { + if (c | 0) { + m = f[(c + 4) >> 2] | 0 + if (!i) + if (m >>> 0 < e >>> 0) p = m + else p = (m >>> 0) % (e >>> 0) | 0 + else p = m & h + if ((p | 0) == (j | 0)) { + q = c + r = c + o = 22 + break + } + } + f[g >> 2] = 0 + n = f[d >> 2] | 0 + o = 21 + } + while (0) + if ((o | 0) == 21) { + g = n + if (!n) s = g + else { + q = n + r = g + o = 22 + } + } + if ((o | 0) == 22) { + o = f[(q + 4) >> 2] | 0 + if (!i) + if (o >>> 0 < e >>> 0) t = o + else t = (o >>> 0) % (e >>> 0) | 0 + else t = o & h + if ((t | 0) == (j | 0)) s = r + else { + f[((f[a >> 2] | 0) + (t << 2)) >> 2] = k + s = f[d >> 2] | 0 + } + } + f[k >> 2] = s + f[d >> 2] = 0 + s = (a + 12) | 0 + f[s >> 2] = (f[s >> 2] | 0) + -1 + if (!d) return c | 0 + s = (d + 8) | 0 + a = f[(d + 20) >> 2] | 0 + if (a | 0) { + k = (d + 24) | 0 + if ((f[k >> 2] | 0) != (a | 0)) f[k >> 2] = a + Oq(a) + } + if ((b[(s + 11) >> 0] | 0) < 0) Oq(f[s >> 2] | 0) + Oq(d) + return c | 0 + } + function mf(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0 + b = u + u = (u + 16) | 0 + c = (b + 4) | 0 + d = b + f[c >> 2] = 0 + e = (c + 4) | 0 + f[e >> 2] = 0 + f[(c + 8) >> 2] = 0 + g = (a + 52) | 0 + h = f[g >> 2] | 0 + i = ((f[(h + 100) >> 2] | 0) - (f[(h + 96) >> 2] | 0)) | 0 + j = ((i | 0) / 12) | 0 + if (!i) { + k = 0 + l = 0 + } else { + i = (c + 8) | 0 + m = 0 + n = 0 + o = h + h = 0 + p = 0 + while (1) { + q = f[(o + 96) >> 2] | 0 + r = f[(q + ((n * 12) | 0)) >> 2] | 0 + s = (r - m) | 0 + t = (((s | 0) > -1 ? s : (0 - s) | 0) << 1) | (s >>> 31) + f[d >> 2] = t + if ((h | 0) == (p | 0)) { + Ri(c, d) + v = f[e >> 2] | 0 + w = f[i >> 2] | 0 + } else { + f[h >> 2] = t + t = (h + 4) | 0 + f[e >> 2] = t + v = t + w = p + } + t = f[(q + ((n * 12) | 0) + 4) >> 2] | 0 + s = (t - r) | 0 + r = (((s | 0) > -1 ? s : (0 - s) | 0) << 1) | (s >>> 31) + f[d >> 2] = r + if ((v | 0) == (w | 0)) { + Ri(c, d) + x = f[e >> 2] | 0 + y = f[i >> 2] | 0 + } else { + f[v >> 2] = r + r = (v + 4) | 0 + f[e >> 2] = r + x = r + y = w + } + r = f[(q + ((n * 12) | 0) + 8) >> 2] | 0 + q = (r - t) | 0 + t = (((q | 0) > -1 ? q : (0 - q) | 0) << 1) | (q >>> 31) + f[d >> 2] = t + if ((x | 0) == (y | 0)) Ri(c, d) + else { + f[x >> 2] = t + f[e >> 2] = x + 4 + } + t = (n + 1) | 0 + if (t >>> 0 >= j >>> 0) break + m = r + n = t + o = f[g >> 2] | 0 + h = f[e >> 2] | 0 + p = f[i >> 2] | 0 + } + k = f[c >> 2] | 0 + l = f[e >> 2] | 0 + } + Mc(k, (l - k) >> 2, 1, 0, f[(a + 44) >> 2] | 0) | 0 + a = f[c >> 2] | 0 + if (!a) { + u = b + return 1 + } + c = f[e >> 2] | 0 + if ((c | 0) != (a | 0)) f[e >> 2] = c + (~(((c + -4 - a) | 0) >>> 2) << 2) + Oq(a) + u = b + return 1 + } + function nf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = u + u = (u + 48) | 0 + d = (c + 44) | 0 + e = (c + 40) | 0 + g = (c + 36) | 0 + h = (c + 32) | 0 + i = c + f[h >> 2] = f[(a + 80) >> 2] + j = (b + 16) | 0 + k = j + l = f[(k + 4) >> 2] | 0 + if (!(((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0)))) { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, h, (h + 4) | 0) | 0 + } + wn(i) + tk(i) + if ((f[h >> 2] | 0) > 0) { + k = (a + 76) | 0 + l = 1 + m = 0 + do { + n = l + l = + ((f[((f[k >> 2] | 0) + ((m >>> 5) << 2)) >> 2] & (1 << (m & 31))) | + 0) != + 0 + fj(i, n ^ l ^ 1) + m = (m + 1) | 0 + } while ((m | 0) < (f[h >> 2] | 0)) + } + ld(i, b) + f[g >> 2] = f[(a + 12) >> 2] + h = j + m = f[h >> 2] | 0 + l = f[(h + 4) >> 2] | 0 + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + o = l + p = m + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + m = j + o = f[(m + 4) >> 2] | 0 + p = f[m >> 2] | 0 + } + f[g >> 2] = f[(a + 16) >> 2] + if (((o | 0) > 0) | (((o | 0) == 0) & (p >>> 0 > 0))) { + Fj(i) + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + Fj(i) + u = c + return 1 + } + function of(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + c = u + u = (u + 16) | 0 + d = (c + 12) | 0 + e = (c + 8) | 0 + g = (c + 4) | 0 + h = c + if (!b) { + i = ln(76) | 0 + j = ln(12) | 0 + k = f[((f[(a + 4) >> 2] | 0) + 80) >> 2] | 0 + f[(j + 4) >> 2] = 0 + f[j >> 2] = 3908 + f[(j + 8) >> 2] = k + f[h >> 2] = j + rl(i, h, 0) + j = i + f[g >> 2] = j + i = (a + 12) | 0 + k = f[i >> 2] | 0 + if (k >>> 0 < (f[(a + 16) >> 2] | 0) >>> 0) { + f[g >> 2] = 0 + f[k >> 2] = j + f[i >> 2] = k + 4 + l = g + } else { + Qg((a + 8) | 0, g) + l = g + } + g = f[l >> 2] | 0 + f[l >> 2] = 0 + if (g | 0) Va[f[((f[g >> 2] | 0) + 4) >> 2] & 127](g) + g = f[h >> 2] | 0 + f[h >> 2] = 0 + if (!g) { + u = c + return 1 + } + Va[f[((f[g >> 2] | 0) + 4) >> 2] & 127](g) + u = c + return 1 + } + g = f[f[(a + 8) >> 2] >> 2] | 0 + f[d >> 2] = b + a = (g + 4) | 0 + h = (g + 8) | 0 + l = f[h >> 2] | 0 + if ((l | 0) == (f[(g + 12) >> 2] | 0)) Ri(a, d) + else { + f[l >> 2] = b + f[h >> 2] = l + 4 + } + l = f[d >> 2] | 0 + b = (g + 16) | 0 + k = (g + 20) | 0 + g = f[k >> 2] | 0 + i = f[b >> 2] | 0 + j = (g - i) >> 2 + m = i + if ((l | 0) < (j | 0)) { + n = m + o = l + } else { + i = (l + 1) | 0 + f[e >> 2] = -1 + p = g + if (i >>> 0 <= j >>> 0) + if ( + i >>> 0 < j >>> 0 + ? ((g = (m + (i << 2)) | 0), (g | 0) != (p | 0)) + : 0 + ) { + f[k >> 2] = p + (~(((p + -4 - g) | 0) >>> 2) << 2) + q = l + r = m + } else { + q = l + r = m + } + else { + Ch(b, (i - j) | 0, e) + q = f[d >> 2] | 0 + r = f[b >> 2] | 0 + } + n = r + o = q + } + f[(n + (o << 2)) >> 2] = (((f[h >> 2] | 0) - (f[a >> 2] | 0)) >> 2) + -1 + u = c + return 1 + } + function pf(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + d = u + u = (u + 32) | 0 + h = (d + 24) | 0 + i = (d + 16) | 0 + j = d + k = (d + 8) | 0 + f[(a + 52) >> 2] = e + f[(a + 44) >> 2] = g + g = Lq(e >>> 0 > 1073741823 ? -1 : e << 2) | 0 + l = (a + 48) | 0 + m = f[l >> 2] | 0 + f[l >> 2] = g + if (m | 0) Mq(m) + m = (a + 36) | 0 + g = f[m >> 2] | 0 + n = f[(g + 4) >> 2] | 0 + o = f[g >> 2] | 0 + p = (n - o) | 0 + if ((p | 0) <= 0) { + u = d + return 1 + } + q = ((p >>> 2) + -1) | 0 + p = (a + 8) | 0 + r = (i + 4) | 0 + s = (j + 4) | 0 + t = (h + 4) | 0 + if (((n - o) >> 2) >>> 0 > q >>> 0) { + v = q + w = o + } else { + x = g + aq(x) + } + while (1) { + f[k >> 2] = f[(w + (v << 2)) >> 2] + f[h >> 2] = f[k >> 2] + Ac(a, h, b, v) + g = X(v, e) | 0 + o = (b + (g << 2)) | 0 + q = f[l >> 2] | 0 + n = (c + (g << 2)) | 0 + g = f[(o + 4) >> 2] | 0 + y = f[q >> 2] | 0 + z = f[(q + 4) >> 2] | 0 + f[i >> 2] = f[o >> 2] + f[r >> 2] = g + f[j >> 2] = y + f[s >> 2] = z + Od(h, p, i, j) + f[n >> 2] = f[h >> 2] + f[(n + 4) >> 2] = f[t >> 2] + v = (v + -1) | 0 + if ((v | 0) <= -1) { + A = 5 + break + } + n = f[m >> 2] | 0 + w = f[n >> 2] | 0 + if ((((f[(n + 4) >> 2] | 0) - w) >> 2) >>> 0 <= v >>> 0) { + x = n + A = 6 + break + } + } + if ((A | 0) == 5) { + u = d + return 1 + } else if ((A | 0) == 6) aq(x) + return 0 + } + function qf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0 + d = (a + 8) | 0 + e = f[d >> 2] | 0 + g = f[a >> 2] | 0 + h = g + do + if (((e - g) >> 3) >>> 0 >= b >>> 0) { + i = (a + 4) | 0 + j = f[i >> 2] | 0 + k = (j - g) >> 3 + l = k >>> 0 < b >>> 0 + m = l ? k : b + n = j + if (m | 0) { + j = m + m = h + while (1) { + o = c + p = f[(o + 4) >> 2] | 0 + q = m + f[q >> 2] = f[o >> 2] + f[(q + 4) >> 2] = p + j = (j + -1) | 0 + if (!j) break + else m = (m + 8) | 0 + } + } + if (!l) { + m = (h + (b << 3)) | 0 + if ((m | 0) == (n | 0)) return + else { + r = i + s = (n + (~(((n + -8 - m) | 0) >>> 3) << 3)) | 0 + break + } + } else { + m = (b - k) | 0 + j = m + p = n + while (1) { + q = c + o = f[(q + 4) >> 2] | 0 + t = p + f[t >> 2] = f[q >> 2] + f[(t + 4) >> 2] = o + j = (j + -1) | 0 + if (!j) break + else p = (p + 8) | 0 + } + r = i + s = (n + (m << 3)) | 0 + break + } + } else { + p = g + if (!g) u = e + else { + j = (a + 4) | 0 + k = f[j >> 2] | 0 + if ((k | 0) != (h | 0)) + f[j >> 2] = k + (~(((k + -8 - g) | 0) >>> 3) << 3) + Oq(p) + f[d >> 2] = 0 + f[j >> 2] = 0 + f[a >> 2] = 0 + u = 0 + } + if (b >>> 0 > 536870911) aq(a) + j = u >> 2 + p = + (u >> 3) >>> 0 < 268435455 ? (j >>> 0 < b >>> 0 ? b : j) : 536870911 + if (p >>> 0 > 536870911) aq(a) + j = ln(p << 3) | 0 + k = (a + 4) | 0 + f[k >> 2] = j + f[a >> 2] = j + f[d >> 2] = j + (p << 3) + p = b + l = j + while (1) { + o = c + t = f[(o + 4) >> 2] | 0 + q = l + f[q >> 2] = f[o >> 2] + f[(q + 4) >> 2] = t + p = (p + -1) | 0 + if (!p) break + else l = (l + 8) | 0 + } + r = k + s = (j + (b << 3)) | 0 + } + while (0) + f[r >> 2] = s + return + } + function rf(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0.0, + g = 0.0, + h = 0.0, + i = 0.0, + j = 0.0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0 + e = +$(n[b >> 2]) + g = +K(+e) + h = +$(n[(b + 4) >> 2]) + i = g + +K(+h) + g = +$(n[(b + 8) >> 2]) + j = i + +K(+g) + b = j > 1.0e-6 + i = 1.0 / j + k = f[(a + 12) >> 2] | 0 + j = +(k | 0) + l = ~~+J(+((b ? i * e : 1.0) * j + 0.5)) + m = ~~+J(+((b ? i * h : 0.0) * j + 0.5)) + o = (l | 0) > -1 + p = (k - (o ? l : (0 - l) | 0) - ((m | 0) > -1 ? m : (0 - m) | 0)) | 0 + l = (p | 0) < 0 + q = ((l ? ((m | 0) > 0 ? p : (0 - p) | 0) : 0) + m) | 0 + m = l ? 0 : p + p = (b ? i * g : 0.0) < 0.0 ? (0 - m) | 0 : m + do + if (!o) { + if ((q | 0) < 0) r = (p | 0) > -1 ? p : (0 - p) | 0 + else + r = ((f[(a + 8) >> 2] | 0) - ((p | 0) > -1 ? p : (0 - p) | 0)) | 0 + if ((p | 0) < 0) { + s = (q | 0) > -1 ? q : (0 - q) | 0 + t = r + break + } else { + s = ((f[(a + 8) >> 2] | 0) - ((q | 0) > -1 ? q : (0 - q) | 0)) | 0 + t = r + break + } + } else { + s = (k + p) | 0 + t = (k + q) | 0 + } + while (0) + q = (t | 0) == 0 + p = (s | 0) == 0 + r = f[(a + 8) >> 2] | 0 + if (!(s | t)) { + u = r + v = r + f[c >> 2] = u + f[d >> 2] = v + return + } + a = (r | 0) == (s | 0) + if (q & a) { + u = s + v = s + f[c >> 2] = u + f[d >> 2] = v + return + } + o = (r | 0) == (t | 0) + if (p & o) { + u = t + v = t + f[c >> 2] = u + f[d >> 2] = v + return + } + if (q & ((k | 0) < (s | 0))) { + u = 0 + v = ((k << 1) - s) | 0 + f[c >> 2] = u + f[d >> 2] = v + return + } + if (o & ((k | 0) > (s | 0))) { + u = t + v = ((k << 1) - s) | 0 + f[c >> 2] = u + f[d >> 2] = v + return + } + if (a & ((k | 0) > (t | 0))) { + u = ((k << 1) - t) | 0 + v = s + f[c >> 2] = u + f[d >> 2] = v + return + } + if (!p) { + u = t + v = s + f[c >> 2] = u + f[d >> 2] = v + return + } + u = (k | 0) < (t | 0) ? ((k << 1) - t) | 0 : t + v = 0 + f[c >> 2] = u + f[d >> 2] = v + return + } + function sf(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = u + u = (u + 32) | 0 + h = (g + 12) | 0 + i = g + f[a >> 2] = f[d >> 2] + d = (a + 4) | 0 + f[d >> 2] = (f[c >> 2] | 0) - (f[b >> 2] | 0) + j = (e + 16) | 0 + k = j + l = f[(k + 4) >> 2] | 0 + if ( + !(((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0))) + ? ((k = (e + 4) | 0), + (f[i >> 2] = f[k >> 2]), + (f[h >> 2] = f[i >> 2]), + Me(e, h, a, (a + 4) | 0) | 0, + (l = j), + (j = f[(l + 4) >> 2] | 0), + !(((j | 0) > 0) | (((j | 0) == 0) & ((f[l >> 2] | 0) >>> 0 > 0)))) + : 0 + ) { + f[i >> 2] = f[k >> 2] + f[h >> 2] = f[i >> 2] + Me(e, h, d, (d + 4) | 0) | 0 + m = i + } else m = i + if (!(f[d >> 2] | 0)) { + u = g + return 1 + } + d = (a + 12) | 0 + Gg(d) + m = (a + 1068) | 0 + Mm(m) + k = (a + 1088) | 0 + Mm(k) + l = (a + 1108) | 0 + Mm(l) + f[i >> 2] = f[b >> 2] + f[(i + 4) >> 2] = f[(b + 4) >> 2] + f[(i + 8) >> 2] = f[(b + 8) >> 2] + f[h >> 2] = f[c >> 2] + f[(h + 4) >> 2] = f[(c + 4) >> 2] + f[(h + 8) >> 2] = f[(c + 8) >> 2] + ib(a, i, h) + Ye(d, e) + Bg(m, e) + Bg(k, e) + Bg(l, e) + u = g + return 1 + } + function tf(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = u + u = (u + 32) | 0 + h = (g + 12) | 0 + i = g + f[a >> 2] = f[d >> 2] + d = (a + 4) | 0 + f[d >> 2] = (f[c >> 2] | 0) - (f[b >> 2] | 0) + j = (e + 16) | 0 + k = j + l = f[(k + 4) >> 2] | 0 + if ( + !(((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0))) + ? ((k = (e + 4) | 0), + (f[i >> 2] = f[k >> 2]), + (f[h >> 2] = f[i >> 2]), + Me(e, h, a, (a + 4) | 0) | 0, + (l = j), + (j = f[(l + 4) >> 2] | 0), + !(((j | 0) > 0) | (((j | 0) == 0) & ((f[l >> 2] | 0) >>> 0 > 0)))) + : 0 + ) { + f[i >> 2] = f[k >> 2] + f[h >> 2] = f[i >> 2] + Me(e, h, d, (d + 4) | 0) | 0 + m = i + } else m = i + if (!(f[d >> 2] | 0)) { + u = g + return 1 + } + d = (a + 12) | 0 + Gg(d) + m = (a + 1068) | 0 + Mm(m) + k = (a + 1088) | 0 + Mm(k) + l = (a + 1108) | 0 + Mm(l) + f[i >> 2] = f[b >> 2] + f[(i + 4) >> 2] = f[(b + 4) >> 2] + f[(i + 8) >> 2] = f[(b + 8) >> 2] + f[h >> 2] = f[c >> 2] + f[(h + 4) >> 2] = f[(c + 4) >> 2] + f[(h + 8) >> 2] = f[(c + 8) >> 2] + kb(a, i, h) + Ye(d, e) + Bg(m, e) + Bg(k, e) + Bg(l, e) + u = g + return 1 + } + function uf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + c = u + u = (u + 32) | 0 + d = c + e = (a + 8) | 0 + g = f[e >> 2] | 0 + h = (a + 4) | 0 + i = f[h >> 2] | 0 + j = i + if (((g - i) >> 2) >>> 0 >= b >>> 0) { + sj(i | 0, 0, (b << 2) | 0) | 0 + f[h >> 2] = i + (b << 2) + u = c + return + } + k = f[a >> 2] | 0 + l = (i - k) >> 2 + m = (l + b) | 0 + n = k + if (m >>> 0 > 1073741823) aq(a) + o = (g - k) | 0 + p = o >> 1 + q = (o >> 2) >>> 0 < 536870911 ? (p >>> 0 < m >>> 0 ? m : p) : 1073741823 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = a + 8 + do + if (q) + if (q >>> 0 > 1073741823) { + p = ra(8) | 0 + Oo(p, 16035) + f[p >> 2] = 7256 + va(p | 0, 1112, 110) + } else { + r = ln(q << 2) | 0 + break + } + else r = 0 + while (0) + f[d >> 2] = r + p = (r + (l << 2)) | 0 + l = (d + 8) | 0 + m = (d + 4) | 0 + f[m >> 2] = p + o = (r + (q << 2)) | 0 + q = (d + 12) | 0 + f[q >> 2] = o + r = (p + (b << 2)) | 0 + sj(p | 0, 0, (b << 2) | 0) | 0 + f[l >> 2] = r + if ((j | 0) == (n | 0)) { + s = p + t = q + v = l + w = k + x = r + y = i + z = o + A = g + } else { + g = j + j = p + do { + g = (g + -4) | 0 + p = f[g >> 2] | 0 + f[g >> 2] = 0 + f[(j + -4) >> 2] = p + j = ((f[m >> 2] | 0) + -4) | 0 + f[m >> 2] = j + } while ((g | 0) != (n | 0)) + s = j + t = q + v = l + w = f[a >> 2] | 0 + x = f[l >> 2] | 0 + y = f[h >> 2] | 0 + z = f[q >> 2] | 0 + A = f[e >> 2] | 0 + } + f[a >> 2] = s + f[m >> 2] = w + f[h >> 2] = x + f[v >> 2] = y + f[e >> 2] = z + f[t >> 2] = A + f[d >> 2] = w + ki(d) + u = c + return + } + function vf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0 + d = f[(a + 8) >> 2] | 0 + e = (a + 76) | 0 + g = f[e >> 2] | 0 + h = f[(g + 80) >> 2] | 0 + b[(c + 84) >> 0] = 0 + i = (c + 68) | 0 + j = (c + 72) | 0 + k = f[j >> 2] | 0 + l = f[i >> 2] | 0 + m = (k - l) >> 2 + n = l + l = k + if (h >>> 0 <= m >>> 0) + if ( + h >>> 0 < m >>> 0 ? ((k = (n + (h << 2)) | 0), (k | 0) != (l | 0)) : 0 + ) { + f[j >> 2] = l + (~(((l + -4 - k) | 0) >>> 2) << 2) + o = g + p = h + } else { + o = g + p = h + } + else { + Ch(i, (h - m) | 0, 3600) + m = f[e >> 2] | 0 + o = m + p = f[(m + 80) >> 2] | 0 + } + m = ((f[(o + 100) >> 2] | 0) - (f[(o + 96) >> 2] | 0)) | 0 + e = ((m | 0) / 12) | 0 + if (!m) { + q = 1 + return q | 0 + } + m = (a + 80) | 0 + a = (c + 68) | 0 + c = f[(o + 96) >> 2] | 0 + o = 0 + while (1) { + h = (o * 3) | 0 + if ((h | 0) == -1) r = -1 + else r = f[((f[d >> 2] | 0) + (h << 2)) >> 2] | 0 + i = f[((f[m >> 2] | 0) + 12) >> 2] | 0 + g = f[(i + (r << 2)) >> 2] | 0 + if (g >>> 0 >= p >>> 0) { + q = 0 + s = 12 + break + } + k = f[a >> 2] | 0 + f[(k + (f[(c + ((o * 12) | 0)) >> 2] << 2)) >> 2] = g + g = (h + 1) | 0 + if ((g | 0) == -1) t = -1 + else t = f[((f[d >> 2] | 0) + (g << 2)) >> 2] | 0 + g = f[(i + (t << 2)) >> 2] | 0 + if (g >>> 0 >= p >>> 0) { + q = 0 + s = 12 + break + } + f[(k + (f[(c + ((o * 12) | 0) + 4) >> 2] << 2)) >> 2] = g + g = (h + 2) | 0 + if ((g | 0) == -1) u = -1 + else u = f[((f[d >> 2] | 0) + (g << 2)) >> 2] | 0 + g = f[(i + (u << 2)) >> 2] | 0 + if (g >>> 0 >= p >>> 0) { + q = 0 + s = 12 + break + } + f[(k + (f[(c + ((o * 12) | 0) + 8) >> 2] << 2)) >> 2] = g + o = (o + 1) | 0 + if (o >>> 0 >= e >>> 0) { + q = 1 + s = 12 + break + } + } + if ((s | 0) == 12) return q | 0 + return 0 + } + function wf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0 + d = f[(a + 8) >> 2] | 0 + e = (a + 112) | 0 + g = f[e >> 2] | 0 + h = f[(g + 80) >> 2] | 0 + b[(c + 84) >> 0] = 0 + i = (c + 68) | 0 + j = (c + 72) | 0 + k = f[j >> 2] | 0 + l = f[i >> 2] | 0 + m = (k - l) >> 2 + n = l + l = k + if (h >>> 0 <= m >>> 0) + if ( + h >>> 0 < m >>> 0 ? ((k = (n + (h << 2)) | 0), (k | 0) != (l | 0)) : 0 + ) { + f[j >> 2] = l + (~(((l + -4 - k) | 0) >>> 2) << 2) + o = g + p = h + } else { + o = g + p = h + } + else { + Ch(i, (h - m) | 0, 3600) + m = f[e >> 2] | 0 + o = m + p = f[(m + 80) >> 2] | 0 + } + m = ((f[(o + 100) >> 2] | 0) - (f[(o + 96) >> 2] | 0)) | 0 + e = ((m | 0) / 12) | 0 + if (!m) { + q = 1 + return q | 0 + } + m = (a + 116) | 0 + a = (c + 68) | 0 + c = f[(o + 96) >> 2] | 0 + o = 0 + while (1) { + h = (o * 3) | 0 + if ((h | 0) == -1) r = -1 + else r = f[((f[d >> 2] | 0) + (h << 2)) >> 2] | 0 + i = f[((f[m >> 2] | 0) + 12) >> 2] | 0 + g = f[(i + (r << 2)) >> 2] | 0 + if (g >>> 0 >= p >>> 0) { + q = 0 + s = 12 + break + } + k = f[a >> 2] | 0 + f[(k + (f[(c + ((o * 12) | 0)) >> 2] << 2)) >> 2] = g + g = (h + 1) | 0 + if ((g | 0) == -1) t = -1 + else t = f[((f[d >> 2] | 0) + (g << 2)) >> 2] | 0 + g = f[(i + (t << 2)) >> 2] | 0 + if (g >>> 0 >= p >>> 0) { + q = 0 + s = 12 + break + } + f[(k + (f[(c + ((o * 12) | 0) + 4) >> 2] << 2)) >> 2] = g + g = (h + 2) | 0 + if ((g | 0) == -1) u = -1 + else u = f[((f[d >> 2] | 0) + (g << 2)) >> 2] | 0 + g = f[(i + (u << 2)) >> 2] | 0 + if (g >>> 0 >= p >>> 0) { + q = 0 + s = 12 + break + } + f[(k + (f[(c + ((o * 12) | 0) + 8) >> 2] << 2)) >> 2] = g + o = (o + 1) | 0 + if (o >>> 0 >= e >>> 0) { + q = 1 + s = 12 + break + } + } + if ((s | 0) == 12) return q | 0 + return 0 + } + function xf(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + d = u + u = (u + 16) | 0 + h = d + i = f[(a + 124) >> 2] | 0 + if (!i) { + u = d + return + } + j = (i + -1) | 0 + k = ((j & i) | 0) == 0 + if (!k) + if (i >>> 0 > g >>> 0) l = g + else l = (g >>> 0) % (i >>> 0) | 0 + else l = j & g + m = f[((f[(a + 120) >> 2] | 0) + (l << 2)) >> 2] | 0 + if (!m) { + u = d + return + } + n = f[m >> 2] | 0 + if (!n) { + u = d + return + } + a: do + if (k) { + m = n + while (1) { + o = f[(m + 4) >> 2] | 0 + p = (o | 0) == (g | 0) + if (!(p | (((o & j) | 0) == (l | 0)))) { + q = 24 + break + } + if (p ? (f[(m + 8) >> 2] | 0) == (g | 0) : 0) { + r = m + break a + } + m = f[m >> 2] | 0 + if (!m) { + q = 24 + break + } + } + if ((q | 0) == 24) { + u = d + return + } + } else { + m = n + while (1) { + p = f[(m + 4) >> 2] | 0 + if ((p | 0) == (g | 0)) { + if ((f[(m + 8) >> 2] | 0) == (g | 0)) { + r = m + break a + } + } else { + if (p >>> 0 < i >>> 0) s = p + else s = (p >>> 0) % (i >>> 0) | 0 + if ((s | 0) != (l | 0)) { + q = 24 + break + } + } + m = f[m >> 2] | 0 + if (!m) { + q = 24 + break + } + } + if ((q | 0) == 24) { + u = d + return + } + } + while (0) + q = f[(r + 12) >> 2] | 0 + if ((q | 0) == -1) { + u = d + return + } + f[h >> 2] = q + f[(h + 4) >> 2] = c + b[(h + 8) >> 0] = e & 1 + e = (a + 112) | 0 + c = f[e >> 2] | 0 + if ((c | 0) == (f[(a + 116) >> 2] | 0)) yi((a + 108) | 0, h) + else { + f[c >> 2] = f[h >> 2] + f[(c + 4) >> 2] = f[(h + 4) >> 2] + f[(c + 8) >> 2] = f[(h + 8) >> 2] + f[e >> 2] = (f[e >> 2] | 0) + 12 + } + u = d + return + } + function yf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + c = d[b >> 1] | 0 + e = d[(b + 2) >> 1] | 0 + g = d[(b + 4) >> 1] | 0 + h = d[(b + 6) >> 1] | 0 + b = + (((((((c ^ 318) & 65535) + 239) ^ (e & 65535)) + 239) ^ (g & 65535)) + + 239) ^ + (h & 65535) + i = f[(a + 4) >> 2] | 0 + if (!i) { + j = 0 + return j | 0 + } + k = (i + -1) | 0 + l = ((k & i) | 0) == 0 + if (!l) + if (b >>> 0 < i >>> 0) m = b + else m = (b >>> 0) % (i >>> 0) | 0 + else m = b & k + n = f[((f[a >> 2] | 0) + (m << 2)) >> 2] | 0 + if (!n) { + j = 0 + return j | 0 + } + a = f[n >> 2] | 0 + if (!a) { + j = 0 + return j | 0 + } + if (l) { + l = a + while (1) { + n = f[(l + 4) >> 2] | 0 + o = (n | 0) == (b | 0) + if (!(o | (((n & k) | 0) == (m | 0)))) { + j = 0 + p = 25 + break + } + if ( + ( + ( + ( + o + ? ((o = (l + 8) | 0), (d[o >> 1] | 0) == (c << 16) >> 16) + : 0 + ) + ? (d[(o + 2) >> 1] | 0) == (e << 16) >> 16 + : 0 + ) + ? (d[(l + 12) >> 1] | 0) == (g << 16) >> 16 + : 0 + ) + ? (d[(o + 6) >> 1] | 0) == (h << 16) >> 16 + : 0 + ) { + j = l + p = 25 + break + } + l = f[l >> 2] | 0 + if (!l) { + j = 0 + p = 25 + break + } + } + if ((p | 0) == 25) return j | 0 + } else q = a + while (1) { + a = f[(q + 4) >> 2] | 0 + if ((a | 0) == (b | 0)) { + l = (q + 8) | 0 + if ( + ( + ( + (d[l >> 1] | 0) == (c << 16) >> 16 + ? (d[(l + 2) >> 1] | 0) == (e << 16) >> 16 + : 0 + ) + ? (d[(q + 12) >> 1] | 0) == (g << 16) >> 16 + : 0 + ) + ? (d[(l + 6) >> 1] | 0) == (h << 16) >> 16 + : 0 + ) { + j = q + p = 25 + break + } + } else { + if (a >>> 0 < i >>> 0) r = a + else r = (a >>> 0) % (i >>> 0) | 0 + if ((r | 0) != (m | 0)) { + j = 0 + p = 25 + break + } + } + q = f[q >> 2] | 0 + if (!q) { + j = 0 + p = 25 + break + } + } + if ((p | 0) == 25) return j | 0 + return 0 + } + function zf(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = u + u = (u + 32) | 0 + h = (g + 12) | 0 + i = g + f[a >> 2] = f[d >> 2] + d = (a + 4) | 0 + f[d >> 2] = (f[c >> 2] | 0) - (f[b >> 2] | 0) + j = (e + 16) | 0 + k = j + l = f[(k + 4) >> 2] | 0 + if ( + !(((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0))) + ? ((k = (e + 4) | 0), + (f[i >> 2] = f[k >> 2]), + (f[h >> 2] = f[i >> 2]), + Me(e, h, a, (a + 4) | 0) | 0, + (l = j), + (j = f[(l + 4) >> 2] | 0), + !(((j | 0) > 0) | (((j | 0) == 0) & ((f[l >> 2] | 0) >>> 0 > 0)))) + : 0 + ) { + f[i >> 2] = f[k >> 2] + f[h >> 2] = f[i >> 2] + Me(e, h, d, (d + 4) | 0) | 0 + m = i + } else m = i + if (!(f[d >> 2] | 0)) { + u = g + return 1 + } + d = (a + 12) | 0 + Mm(d) + m = (a + 32) | 0 + Mm(m) + k = (a + 52) | 0 + Mm(k) + l = (a + 72) | 0 + Mm(l) + f[i >> 2] = f[b >> 2] + f[(i + 4) >> 2] = f[(b + 4) >> 2] + f[(i + 8) >> 2] = f[(b + 8) >> 2] + f[h >> 2] = f[c >> 2] + f[(h + 4) >> 2] = f[(c + 4) >> 2] + f[(h + 8) >> 2] = f[(c + 8) >> 2] + hb(a, i, h) + Bg(d, e) + Bg(m, e) + Bg(k, e) + Bg(l, e) + u = g + return 1 + } + function Af(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = u + u = (u + 32) | 0 + h = (g + 12) | 0 + i = g + f[a >> 2] = f[d >> 2] + d = (a + 4) | 0 + f[d >> 2] = (f[c >> 2] | 0) - (f[b >> 2] | 0) + j = (e + 16) | 0 + k = j + l = f[(k + 4) >> 2] | 0 + if ( + !(((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0))) + ? ((k = (e + 4) | 0), + (f[i >> 2] = f[k >> 2]), + (f[h >> 2] = f[i >> 2]), + Me(e, h, a, (a + 4) | 0) | 0, + (l = j), + (j = f[(l + 4) >> 2] | 0), + !(((j | 0) > 0) | (((j | 0) == 0) & ((f[l >> 2] | 0) >>> 0 > 0)))) + : 0 + ) { + f[i >> 2] = f[k >> 2] + f[h >> 2] = f[i >> 2] + Me(e, h, d, (d + 4) | 0) | 0 + m = i + } else m = i + if (!(f[d >> 2] | 0)) { + u = g + return 1 + } + d = (a + 12) | 0 + tk(d) + m = (a + 44) | 0 + Mm(m) + k = (a + 64) | 0 + Mm(k) + l = (a + 84) | 0 + Mm(l) + f[i >> 2] = f[b >> 2] + f[(i + 4) >> 2] = f[(b + 4) >> 2] + f[(i + 8) >> 2] = f[(b + 8) >> 2] + f[h >> 2] = f[c >> 2] + f[(h + 4) >> 2] = f[(c + 4) >> 2] + f[(h + 8) >> 2] = f[(c + 8) >> 2] + lb(a, i, h) + ld(d, e) + Bg(m, e) + Bg(k, e) + Bg(l, e) + u = g + return 1 + } + function Bf(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0 + a = u + u = (u + 16) | 0 + e = (a + 4) | 0 + g = a + h = (a + 8) | 0 + i = (d + 11) | 0 + j = b[i >> 0] | 0 + k = (j << 24) >> 24 < 0 + if (k) { + l = f[(d + 4) >> 2] | 0 + if (l >>> 0 > 255) { + m = 0 + u = a + return m | 0 + } else n = l + } else n = j & 255 + if (!n) { + b[h >> 0] = 0 + n = (c + 16) | 0 + l = f[(n + 4) >> 2] | 0 + if (!(((l | 0) > 0) | (((l | 0) == 0) & ((f[n >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, (h + 1) | 0) | 0 + } + m = 1 + u = a + return m | 0 + } + n = (d + 4) | 0 + l = f[n >> 2] | 0 + b[h >> 0] = k ? l : j & 255 + k = (c + 16) | 0 + o = k + p = f[o >> 2] | 0 + q = f[(o + 4) >> 2] | 0 + if (((q | 0) > 0) | (((q | 0) == 0) & (p >>> 0 > 0))) { + r = j + s = q + t = p + v = l + } else { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, (h + 1) | 0) | 0 + h = k + r = b[i >> 0] | 0 + s = f[(h + 4) >> 2] | 0 + t = f[h >> 2] | 0 + v = f[n >> 2] | 0 + } + n = (r << 24) >> 24 < 0 + h = n ? f[d >> 2] | 0 : d + if (!(((s | 0) > 0) | (((s | 0) == 0) & (t >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, (h + (n ? v : r & 255)) | 0) | 0 + } + m = 1 + u = a + return m | 0 + } + function Cf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = (a + 4) | 0 + d = f[a >> 2] | 0 + e = ((((f[c >> 2] | 0) - d) | 0) / 24) | 0 + g = (e + 1) | 0 + if (g >>> 0 > 178956970) aq(a) + h = (a + 8) | 0 + i = ((((f[h >> 2] | 0) - d) | 0) / 24) | 0 + d = i << 1 + j = i >>> 0 < 89478485 ? (d >>> 0 < g >>> 0 ? g : d) : 178956970 + do + if (j) + if (j >>> 0 > 178956970) { + d = ra(8) | 0 + Oo(d, 16035) + f[d >> 2] = 7256 + va(d | 0, 1112, 110) + } else { + k = ln((j * 24) | 0) | 0 + break + } + else k = 0 + while (0) + d = (k + ((e * 24) | 0)) | 0 + g = d + i = (k + ((j * 24) | 0)) | 0 + f[d >> 2] = 1196 + f[(k + ((e * 24) | 0) + 4) >> 2] = f[(b + 4) >> 2] + fk((k + ((e * 24) | 0) + 8) | 0, (b + 8) | 0) + f[(k + ((e * 24) | 0) + 20) >> 2] = f[(b + 20) >> 2] + b = (d + 24) | 0 + e = f[a >> 2] | 0 + k = f[c >> 2] | 0 + if ((k | 0) == (e | 0)) { + l = g + m = e + n = e + } else { + j = k + k = g + g = d + do { + f[(g + -24) >> 2] = 1196 + f[(g + -20) >> 2] = f[(j + -20) >> 2] + d = (g + -16) | 0 + o = (j + -16) | 0 + f[d >> 2] = 0 + p = (g + -12) | 0 + f[p >> 2] = 0 + f[(g + -8) >> 2] = 0 + f[d >> 2] = f[o >> 2] + d = (j + -12) | 0 + f[p >> 2] = f[d >> 2] + p = (j + -8) | 0 + f[(g + -8) >> 2] = f[p >> 2] + f[p >> 2] = 0 + f[d >> 2] = 0 + f[o >> 2] = 0 + f[(g + -4) >> 2] = f[(j + -4) >> 2] + j = (j + -24) | 0 + g = (k + -24) | 0 + k = g + } while ((j | 0) != (e | 0)) + l = k + m = f[a >> 2] | 0 + n = f[c >> 2] | 0 + } + f[a >> 2] = l + f[c >> 2] = b + f[h >> 2] = i + i = m + if ((n | 0) != (i | 0)) { + h = n + do { + h = (h + -24) | 0 + Va[f[f[h >> 2] >> 2] & 127](h) + } while ((h | 0) != (i | 0)) + } + if (!m) return + Oq(m) + return + } + function Df(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = u + u = (u + 32) | 0 + d = (c + 24) | 0 + e = (c + 16) | 0 + g = (c + 8) | 0 + h = c + f[a >> 2] = 3588 + f[(a + 4) >> 2] = f[(b + 4) >> 2] + i = (a + 8) | 0 + j = (b + 8) | 0 + f[i >> 2] = 0 + k = (a + 12) | 0 + f[k >> 2] = 0 + l = (a + 16) | 0 + f[l >> 2] = 0 + m = (b + 12) | 0 + n = f[m >> 2] | 0 + do + if (n | 0) + if ((n | 0) < 0) aq(i) + else { + o = ((((n + -1) | 0) >>> 5) + 1) | 0 + p = ln(o << 2) | 0 + f[i >> 2] = p + f[k >> 2] = 0 + f[l >> 2] = o + o = f[j >> 2] | 0 + f[g >> 2] = o + f[(g + 4) >> 2] = 0 + p = f[m >> 2] | 0 + f[h >> 2] = o + ((p >>> 5) << 2) + f[(h + 4) >> 2] = p & 31 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[d >> 2] = f[h >> 2] + f[(d + 4) >> 2] = f[(h + 4) >> 2] + Tf(i, e, d) + break + } + while (0) + i = (a + 20) | 0 + f[i >> 2] = 0 + m = (a + 24) | 0 + f[m >> 2] = 0 + j = (a + 28) | 0 + f[j >> 2] = 0 + a = (b + 24) | 0 + l = f[a >> 2] | 0 + if (!l) { + u = c + return + } + if ((l | 0) < 0) aq(i) + k = ((((l + -1) | 0) >>> 5) + 1) | 0 + l = ln(k << 2) | 0 + f[i >> 2] = l + f[m >> 2] = 0 + f[j >> 2] = k + k = f[(b + 20) >> 2] | 0 + f[g >> 2] = k + f[(g + 4) >> 2] = 0 + b = f[a >> 2] | 0 + f[h >> 2] = k + ((b >>> 5) << 2) + f[(h + 4) >> 2] = b & 31 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[d >> 2] = f[h >> 2] + f[(d + 4) >> 2] = f[(h + 4) >> 2] + Tf(i, e, d) + u = c + return + } + function Ef(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = b[c >> 0] | 0 + e = b[(c + 1) >> 0] | 0 + g = b[(c + 2) >> 0] | 0 + h = b[(c + 3) >> 0] | 0 + c = + (((((((d & 255) ^ 318) + 239) ^ (e & 255)) + 239) ^ (g & 255)) + 239) ^ + (h & 255) + i = f[(a + 4) >> 2] | 0 + if (!i) { + j = 0 + return j | 0 + } + k = (i + -1) | 0 + l = ((k & i) | 0) == 0 + if (!l) + if (c >>> 0 < i >>> 0) m = c + else m = (c >>> 0) % (i >>> 0) | 0 + else m = c & k + n = f[((f[a >> 2] | 0) + (m << 2)) >> 2] | 0 + if (!n) { + j = 0 + return j | 0 + } + a = f[n >> 2] | 0 + if (!a) { + j = 0 + return j | 0 + } + if (l) { + l = a + while (1) { + n = f[(l + 4) >> 2] | 0 + o = (n | 0) == (c | 0) + if (!(o | (((n & k) | 0) == (m | 0)))) { + j = 0 + p = 25 + break + } + if ( + ( + ( + ( + o + ? ((o = (l + 8) | 0), (b[o >> 0] | 0) == (d << 24) >> 24) + : 0 + ) + ? (b[(o + 1) >> 0] | 0) == (e << 24) >> 24 + : 0 + ) + ? (b[(o + 2) >> 0] | 0) == (g << 24) >> 24 + : 0 + ) + ? (b[(o + 3) >> 0] | 0) == (h << 24) >> 24 + : 0 + ) { + j = l + p = 25 + break + } + l = f[l >> 2] | 0 + if (!l) { + j = 0 + p = 25 + break + } + } + if ((p | 0) == 25) return j | 0 + } else q = a + while (1) { + a = f[(q + 4) >> 2] | 0 + if ((a | 0) == (c | 0)) { + l = (q + 8) | 0 + if ( + ( + ( + (b[l >> 0] | 0) == (d << 24) >> 24 + ? (b[(l + 1) >> 0] | 0) == (e << 24) >> 24 + : 0 + ) + ? (b[(l + 2) >> 0] | 0) == (g << 24) >> 24 + : 0 + ) + ? (b[(l + 3) >> 0] | 0) == (h << 24) >> 24 + : 0 + ) { + j = q + p = 25 + break + } + } else { + if (a >>> 0 < i >>> 0) r = a + else r = (a >>> 0) % (i >>> 0) | 0 + if ((r | 0) != (m | 0)) { + j = 0 + p = 25 + break + } + } + q = f[q >> 2] | 0 + if (!q) { + j = 0 + p = 25 + break + } + } + if ((p | 0) == 25) return j | 0 + return 0 + } + function Ff(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = u + u = (u + 32) | 0 + d = (c + 24) | 0 + e = (c + 16) | 0 + g = (c + 8) | 0 + h = c + f[a >> 2] = 3636 + f[(a + 4) >> 2] = f[(b + 4) >> 2] + i = (a + 8) | 0 + j = (b + 8) | 0 + f[i >> 2] = 0 + k = (a + 12) | 0 + f[k >> 2] = 0 + l = (a + 16) | 0 + f[l >> 2] = 0 + m = (b + 12) | 0 + n = f[m >> 2] | 0 + do + if (n | 0) + if ((n | 0) < 0) aq(i) + else { + o = ((((n + -1) | 0) >>> 5) + 1) | 0 + p = ln(o << 2) | 0 + f[i >> 2] = p + f[k >> 2] = 0 + f[l >> 2] = o + o = f[j >> 2] | 0 + f[g >> 2] = o + f[(g + 4) >> 2] = 0 + p = f[m >> 2] | 0 + f[h >> 2] = o + ((p >>> 5) << 2) + f[(h + 4) >> 2] = p & 31 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[d >> 2] = f[h >> 2] + f[(d + 4) >> 2] = f[(h + 4) >> 2] + Tf(i, e, d) + break + } + while (0) + i = (a + 20) | 0 + f[i >> 2] = 0 + m = (a + 24) | 0 + f[m >> 2] = 0 + j = (a + 28) | 0 + f[j >> 2] = 0 + a = (b + 24) | 0 + l = f[a >> 2] | 0 + if (!l) { + u = c + return + } + if ((l | 0) < 0) aq(i) + k = ((((l + -1) | 0) >>> 5) + 1) | 0 + l = ln(k << 2) | 0 + f[i >> 2] = l + f[m >> 2] = 0 + f[j >> 2] = k + k = f[(b + 20) >> 2] | 0 + f[g >> 2] = k + f[(g + 4) >> 2] = 0 + b = f[a >> 2] | 0 + f[h >> 2] = k + ((b >>> 5) << 2) + f[(h + 4) >> 2] = b & 31 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[d >> 2] = f[h >> 2] + f[(d + 4) >> 2] = f[(h + 4) >> 2] + Tf(i, e, d) + u = c + return + } + function Gf(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + d = u + u = (u + 32) | 0 + h = (d + 24) | 0 + i = (d + 16) | 0 + j = d + k = (d + 8) | 0 + l = (a + 40) | 0 + f[(a + 44) >> 2] = g + g = (a + 36) | 0 + m = f[g >> 2] | 0 + n = f[(m + 4) >> 2] | 0 + o = f[m >> 2] | 0 + p = (n - o) | 0 + if ((p | 0) <= 0) { + u = d + return 1 + } + q = ((p >>> 2) + -1) | 0 + p = (a + 8) | 0 + r = (a + 48) | 0 + s = (a + 52) | 0 + a = (i + 4) | 0 + t = (j + 4) | 0 + v = (h + 4) | 0 + if (((n - o) >> 2) >>> 0 > q >>> 0) { + w = q + x = o + } else { + y = m + aq(y) + } + while (1) { + f[k >> 2] = f[(x + (w << 2)) >> 2] + f[h >> 2] = f[k >> 2] + ub(l, h, b, w) + m = X(w, e) | 0 + o = (b + (m << 2)) | 0 + q = (c + (m << 2)) | 0 + m = f[(o + 4) >> 2] | 0 + n = f[r >> 2] | 0 + z = f[s >> 2] | 0 + f[i >> 2] = f[o >> 2] + f[a >> 2] = m + f[j >> 2] = n + f[t >> 2] = z + Od(h, p, i, j) + f[q >> 2] = f[h >> 2] + f[(q + 4) >> 2] = f[v >> 2] + w = (w + -1) | 0 + if ((w | 0) <= -1) { + A = 3 + break + } + q = f[g >> 2] | 0 + x = f[q >> 2] | 0 + if ((((f[(q + 4) >> 2] | 0) - x) >> 2) >>> 0 <= w >>> 0) { + y = q + A = 4 + break + } + } + if ((A | 0) == 3) { + u = d + return 1 + } else if ((A | 0) == 4) aq(y) + return 0 + } + function Hf(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + h = u + u = (u + 32) | 0 + i = h + j = (h + 16) | 0 + k = f[((f[((f[(b + 4) >> 2] | 0) + 8) >> 2] | 0) + (d << 2)) >> 2] | 0 + do + if ( + (((c + -1) | 0) >>> 0 < 6) & + ((Qa[f[((f[b >> 2] | 0) + 8) >> 2] & 127](b) | 0) == 1) + ) { + l = Qa[f[((f[b >> 2] | 0) + 48) >> 2] & 127](b) | 0 + m = Ra[f[((f[b >> 2] | 0) + 56) >> 2] & 127](b, d) | 0 + if (((l | 0) == 0) | ((m | 0) == 0)) { + f[a >> 2] = 0 + u = h + return + } + n = Ra[f[((f[b >> 2] | 0) + 52) >> 2] & 127](b, d) | 0 + if (!n) { + f[i >> 2] = f[(b + 52) >> 2] + f[(i + 4) >> 2] = l + f[(i + 12) >> 2] = m + f[(i + 8) >> 2] = m + 12 + Cd(a, j, c, k, e, i, g) + if (!(f[a >> 2] | 0)) { + f[a >> 2] = 0 + break + } + u = h + return + } else { + f[i >> 2] = f[(b + 52) >> 2] + f[(i + 4) >> 2] = n + f[(i + 12) >> 2] = m + f[(i + 8) >> 2] = m + 12 + Ad(a, j, c, k, e, i, g) + if (!(f[a >> 2] | 0)) { + f[a >> 2] = 0 + break + } + u = h + return + } + } + while (0) + f[a >> 2] = 0 + u = h + return + } + function If(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + d = u + u = (u + 32) | 0 + h = (d + 24) | 0 + i = (d + 16) | 0 + j = d + k = (d + 8) | 0 + l = (a + 40) | 0 + f[(a + 44) >> 2] = g + g = (a + 36) | 0 + m = f[g >> 2] | 0 + n = f[(m + 4) >> 2] | 0 + o = f[m >> 2] | 0 + p = (n - o) | 0 + if ((p | 0) <= 0) { + u = d + return 1 + } + q = ((p >>> 2) + -1) | 0 + p = (a + 8) | 0 + r = (a + 48) | 0 + s = (a + 52) | 0 + a = (i + 4) | 0 + t = (j + 4) | 0 + v = (h + 4) | 0 + if (((n - o) >> 2) >>> 0 > q >>> 0) { + w = q + x = o + } else { + y = m + aq(y) + } + while (1) { + f[k >> 2] = f[(x + (w << 2)) >> 2] + f[h >> 2] = f[k >> 2] + tb(l, h, b, w) + m = X(w, e) | 0 + o = (b + (m << 2)) | 0 + q = (c + (m << 2)) | 0 + m = f[(o + 4) >> 2] | 0 + n = f[r >> 2] | 0 + z = f[s >> 2] | 0 + f[i >> 2] = f[o >> 2] + f[a >> 2] = m + f[j >> 2] = n + f[t >> 2] = z + Od(h, p, i, j) + f[q >> 2] = f[h >> 2] + f[(q + 4) >> 2] = f[v >> 2] + w = (w + -1) | 0 + if ((w | 0) <= -1) { + A = 3 + break + } + q = f[g >> 2] | 0 + x = f[q >> 2] | 0 + if ((((f[(q + 4) >> 2] | 0) - x) >> 2) >>> 0 <= w >>> 0) { + y = q + A = 4 + break + } + } + if ((A | 0) == 3) { + u = d + return 1 + } else if ((A | 0) == 4) aq(y) + return 0 + } + function Jf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + d = f[b >> 2] | 0 + b = f[c >> 2] | 0 + e = (b - d) >> 2 + g = (a + 8) | 0 + h = f[g >> 2] | 0 + i = f[a >> 2] | 0 + j = i + k = b + if (e >>> 0 <= ((h - i) >> 2) >>> 0) { + l = (a + 4) | 0 + m = ((f[l >> 2] | 0) - i) >> 2 + n = e >>> 0 > m >>> 0 + o = n ? (d + (m << 2)) | 0 : b + b = (o - d) | 0 + m = b >> 2 + if (m | 0) im(i | 0, d | 0, b | 0) | 0 + b = (j + (m << 2)) | 0 + if (!n) { + n = f[l >> 2] | 0 + if ((n | 0) == (b | 0)) return + f[l >> 2] = n + (~(((n + -4 - b) | 0) >>> 2) << 2) + return + } + b = f[c >> 2] | 0 + c = o + if ((b | 0) == (c | 0)) return + n = f[l >> 2] | 0 + m = (b + -4 - o) | 0 + o = c + c = n + while (1) { + f[c >> 2] = f[o >> 2] + o = (o + 4) | 0 + if ((o | 0) == (b | 0)) break + else c = (c + 4) | 0 + } + f[l >> 2] = n + (((m >>> 2) + 1) << 2) + return + } + m = i + if (!i) p = h + else { + h = (a + 4) | 0 + n = f[h >> 2] | 0 + if ((n | 0) != (j | 0)) + f[h >> 2] = n + (~(((n + -4 - i) | 0) >>> 2) << 2) + Oq(m) + f[g >> 2] = 0 + f[h >> 2] = 0 + f[a >> 2] = 0 + p = 0 + } + if (e >>> 0 > 1073741823) aq(a) + h = p >> 1 + m = (p >> 2) >>> 0 < 536870911 ? (h >>> 0 < e >>> 0 ? e : h) : 1073741823 + if (m >>> 0 > 1073741823) aq(a) + h = ln(m << 2) | 0 + e = (a + 4) | 0 + f[e >> 2] = h + f[a >> 2] = h + f[g >> 2] = h + (m << 2) + m = d + if ((k | 0) == (m | 0)) return + g = (k + -4 - d) | 0 + d = m + m = h + while (1) { + f[m >> 2] = f[d >> 2] + d = (d + 4) | 0 + if ((d | 0) == (k | 0)) break + else m = (m + 4) | 0 + } + f[e >> 2] = h + (((g >>> 2) + 1) << 2) + return + } + function Kf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = (a + 4) | 0 + g = f[e >> 2] | 0 + h = g + if (((((d - g) | 0) / 12) | 0) >>> 0 >= b >>> 0) { + sj(g | 0, 0, (b * 12) | 0) | 0 + f[e >> 2] = h + ((b * 12) | 0) + return + } + i = f[a >> 2] | 0 + j = (((g - i) | 0) / 12) | 0 + g = (j + b) | 0 + k = i + if (g >>> 0 > 357913941) aq(a) + l = (((d - i) | 0) / 12) | 0 + d = l << 1 + m = l >>> 0 < 178956970 ? (d >>> 0 < g >>> 0 ? g : d) : 357913941 + do + if (m) + if (m >>> 0 > 357913941) { + d = ra(8) | 0 + Oo(d, 16035) + f[d >> 2] = 7256 + va(d | 0, 1112, 110) + } else { + n = ln((m * 12) | 0) | 0 + break + } + else n = 0 + while (0) + d = (n + ((j * 12) | 0)) | 0 + j = d + g = (n + ((m * 12) | 0)) | 0 + sj(d | 0, 0, (b * 12) | 0) | 0 + m = (d + ((b * 12) | 0)) | 0 + if ((h | 0) == (k | 0)) { + o = j + p = i + q = h + } else { + i = h + h = j + j = d + do { + d = (j + -12) | 0 + b = i + i = (i + -12) | 0 + f[d >> 2] = 0 + n = (j + -8) | 0 + f[n >> 2] = 0 + f[(j + -4) >> 2] = 0 + f[d >> 2] = f[i >> 2] + d = (b + -8) | 0 + f[n >> 2] = f[d >> 2] + n = (b + -4) | 0 + f[(j + -4) >> 2] = f[n >> 2] + f[n >> 2] = 0 + f[d >> 2] = 0 + f[i >> 2] = 0 + j = (h + -12) | 0 + h = j + } while ((i | 0) != (k | 0)) + o = h + p = f[a >> 2] | 0 + q = f[e >> 2] | 0 + } + f[a >> 2] = o + f[e >> 2] = m + f[c >> 2] = g + g = p + if ((q | 0) != (g | 0)) { + c = q + do { + q = c + c = (c + -12) | 0 + m = f[c >> 2] | 0 + if (m | 0) { + e = (q + -8) | 0 + q = f[e >> 2] | 0 + if ((q | 0) != (m | 0)) + f[e >> 2] = q + (~(((q + -4 - m) | 0) >>> 2) << 2) + Oq(m) + } + } while ((c | 0) != (g | 0)) + } + if (!p) return + Oq(p) + return + } + function Lf(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + b = u + u = (u + 16) | 0 + c = (b + 4) | 0 + d = b + e = (a + 8) | 0 + g = f[e >> 2] | 0 + gk( + f[(a + 4) >> 2] | 0, + ((f[(g + 28) >> 2] | 0) - (f[(g + 24) >> 2] | 0)) >> 2, + ) + g = (a + 100) | 0 + h = f[e >> 2] | 0 + i = ((f[(h + 28) >> 2] | 0) - (f[(h + 24) >> 2] | 0)) >> 2 + f[c >> 2] = 0 + h = (a + 104) | 0 + j = f[h >> 2] | 0 + k = f[g >> 2] | 0 + l = (j - k) >> 2 + m = k + k = j + if (i >>> 0 <= l >>> 0) { + if ( + i >>> 0 < l >>> 0 ? ((j = (m + (i << 2)) | 0), (j | 0) != (k | 0)) : 0 + ) + f[h >> 2] = k + (~(((k + -4 - j) | 0) >>> 2) << 2) + } else Ch(g, (i - l) | 0, c) + l = (a + 120) | 0 + a = f[l >> 2] | 0 + if (!a) { + i = f[e >> 2] | 0 + g = ((f[(i + 4) >> 2] | 0) - (f[i >> 2] | 0)) >> 2 + i = ((g >>> 0) / 3) | 0 + if (g >>> 0 <= 2) { + u = b + return 1 + } + g = 0 + do { + f[d >> 2] = g * 3 + f[c >> 2] = f[d >> 2] + wb(e, c) + g = (g + 1) | 0 + } while ((g | 0) < (i | 0)) + u = b + return 1 + } else { + i = f[a >> 2] | 0 + if ((f[(a + 4) >> 2] | 0) == (i | 0)) { + u = b + return 1 + } + a = 0 + g = i + do { + f[d >> 2] = f[(g + (a << 2)) >> 2] + f[c >> 2] = f[d >> 2] + wb(e, c) + a = (a + 1) | 0 + i = f[l >> 2] | 0 + g = f[i >> 2] | 0 + } while (a >>> 0 < (((f[(i + 4) >> 2] | 0) - g) >> 2) >>> 0) + u = b + return 1 + } + return 0 + } + function Mf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -4194304) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -4177920) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + o = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + n = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + 4194304) | 0 + b[n >> 0] = m + b[(n + 1) >> 0] = m >>> 8 + b[(n + 2) >> 0] = m >>> 16 + o = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1077936128) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + b[(m + 2) >> 0] = n >>> 16 + b[(m + 3) >> 0] = n >>> 24 + o = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + o = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + o = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((o | 0) < 0) << 31) >> 31 + Gn(e) + yh(o, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + im((h + a) | 0, h | 0, o | 0) | 0 + kh(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Vn(a | 0, 0, o | 0, k | 0) | 0 + k = Vn(h | 0, I | 0, g | 0, j | 0) | 0 + Cl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) Oq(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + Oq(c) + u = d + return + } + function Nf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -2097152) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -2080768) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + o = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + n = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + 6291456) | 0 + b[n >> 0] = m + b[(n + 1) >> 0] = m >>> 8 + b[(n + 2) >> 0] = m >>> 16 + o = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1075838976) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + b[(m + 2) >> 0] = n >>> 16 + b[(m + 3) >> 0] = n >>> 24 + o = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + o = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + o = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((o | 0) < 0) << 31) >> 31 + Gn(e) + yh(o, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + im((h + a) | 0, h | 0, o | 0) | 0 + kh(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Vn(a | 0, 0, o | 0, k | 0) | 0 + k = Vn(h | 0, I | 0, g | 0, j | 0) | 0 + Cl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) Oq(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + Oq(c) + u = d + return + } + function Of(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -1048576) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1032192) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + o = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + n = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + 7340032) | 0 + b[n >> 0] = m + b[(n + 1) >> 0] = m >>> 8 + b[(n + 2) >> 0] = m >>> 16 + o = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1074790400) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + b[(m + 2) >> 0] = n >>> 16 + b[(m + 3) >> 0] = n >>> 24 + o = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + o = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + o = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((o | 0) < 0) << 31) >> 31 + Gn(e) + yh(o, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + im((h + a) | 0, h | 0, o | 0) | 0 + kh(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Vn(a | 0, 0, o | 0, k | 0) | 0 + k = Vn(h | 0, I | 0, g | 0, j | 0) | 0 + Cl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) Oq(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + Oq(c) + u = d + return + } + function Pf(a, c, d, e, g, h, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + a = u + u = (u + 96) | 0 + j = a + if (!c) { + k = -1 + u = a + return k | 0 + } + Tm(j) + Jj(j, d, 0, g & 255, i, 0, g << 1, 0, 0, 0) + i = jf(c, j, 1, e) | 0 + d = f[((f[(c + 8) >> 2] | 0) + (i << 2)) >> 2] | 0 + if (e | 0) { + l = (d + 84) | 0 + m = (d + 68) | 0 + n = (d + 40) | 0 + o = (d + 64) | 0 + d = 0 + do { + if (!(b[l >> 0] | 0)) p = f[((f[m >> 2] | 0) + (d << 2)) >> 2] | 0 + else p = d + q = (h + ((X(d, g) | 0) << 1)) | 0 + r = n + s = f[r >> 2] | 0 + t = un(s | 0, f[(r + 4) >> 2] | 0, p | 0, 0) | 0 + kh(((f[f[o >> 2] >> 2] | 0) + t) | 0, q | 0, s | 0) | 0 + d = (d + 1) | 0 + } while ((d | 0) != (e | 0)) + } + d = (c + 80) | 0 + c = f[d >> 2] | 0 + if (c) + if ((c | 0) == (e | 0)) v = 10 + else w = -1 + else { + f[d >> 2] = e + v = 10 + } + if ((v | 0) == 10) w = i + i = (j + 88) | 0 + v = f[i >> 2] | 0 + f[i >> 2] = 0 + if (v | 0) { + i = f[(v + 8) >> 2] | 0 + if (i | 0) { + e = (v + 12) | 0 + if ((f[e >> 2] | 0) != (i | 0)) f[e >> 2] = i + Oq(i) + } + Oq(v) + } + v = f[(j + 68) >> 2] | 0 + if (v | 0) { + i = (j + 72) | 0 + e = f[i >> 2] | 0 + if ((e | 0) != (v | 0)) + f[i >> 2] = e + (~(((e + -4 - v) | 0) >>> 2) << 2) + Oq(v) + } + v = (j + 64) | 0 + j = f[v >> 2] | 0 + f[v >> 2] = 0 + if (j | 0) { + v = f[j >> 2] | 0 + if (v | 0) { + e = (j + 4) | 0 + if ((f[e >> 2] | 0) != (v | 0)) f[e >> 2] = v + Oq(v) + } + Oq(j) + } + k = w + u = a + return k | 0 + } + function Qf(a, c, d, e, g, h, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + a = u + u = (u + 96) | 0 + j = a + if (!c) { + k = -1 + u = a + return k | 0 + } + Tm(j) + Jj(j, d, 0, g & 255, i, 0, g << 2, 0, 0, 0) + i = jf(c, j, 1, e) | 0 + d = f[((f[(c + 8) >> 2] | 0) + (i << 2)) >> 2] | 0 + if (e | 0) { + l = (d + 84) | 0 + m = (d + 68) | 0 + n = (d + 40) | 0 + o = (d + 64) | 0 + d = 0 + do { + if (!(b[l >> 0] | 0)) p = f[((f[m >> 2] | 0) + (d << 2)) >> 2] | 0 + else p = d + q = (h + ((X(d, g) | 0) << 2)) | 0 + r = n + s = f[r >> 2] | 0 + t = un(s | 0, f[(r + 4) >> 2] | 0, p | 0, 0) | 0 + kh(((f[f[o >> 2] >> 2] | 0) + t) | 0, q | 0, s | 0) | 0 + d = (d + 1) | 0 + } while ((d | 0) != (e | 0)) + } + d = (c + 80) | 0 + c = f[d >> 2] | 0 + if (c) + if ((c | 0) == (e | 0)) v = 10 + else w = -1 + else { + f[d >> 2] = e + v = 10 + } + if ((v | 0) == 10) w = i + i = (j + 88) | 0 + v = f[i >> 2] | 0 + f[i >> 2] = 0 + if (v | 0) { + i = f[(v + 8) >> 2] | 0 + if (i | 0) { + e = (v + 12) | 0 + if ((f[e >> 2] | 0) != (i | 0)) f[e >> 2] = i + Oq(i) + } + Oq(v) + } + v = f[(j + 68) >> 2] | 0 + if (v | 0) { + i = (j + 72) | 0 + e = f[i >> 2] | 0 + if ((e | 0) != (v | 0)) + f[i >> 2] = e + (~(((e + -4 - v) | 0) >>> 2) << 2) + Oq(v) + } + v = (j + 64) | 0 + j = f[v >> 2] | 0 + f[v >> 2] = 0 + if (j | 0) { + v = f[j >> 2] | 0 + if (v | 0) { + e = (j + 4) | 0 + if ((f[e >> 2] | 0) != (v | 0)) f[e >> 2] = v + Oq(v) + } + Oq(j) + } + k = w + u = a + return k | 0 + } + function Rf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -262144) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -245760) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + o = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + n = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + 8126464) | 0 + b[n >> 0] = m + b[(n + 1) >> 0] = m >>> 8 + b[(n + 2) >> 0] = m >>> 16 + o = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1074003968) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + b[(m + 2) >> 0] = n >>> 16 + b[(m + 3) >> 0] = n >>> 24 + o = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + o = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + o = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((o | 0) < 0) << 31) >> 31 + Gn(e) + yh(o, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + im((h + a) | 0, h | 0, o | 0) | 0 + kh(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Vn(a | 0, 0, o | 0, k | 0) | 0 + k = Vn(h | 0, I | 0, g | 0, j | 0) | 0 + Cl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) Oq(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + Oq(c) + u = d + return + } + function Sf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -131072) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -114688) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + o = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + n = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + 8257536) | 0 + b[n >> 0] = m + b[(n + 1) >> 0] = m >>> 8 + b[(n + 2) >> 0] = m >>> 16 + o = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1073872896) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + b[(m + 2) >> 0] = n >>> 16 + b[(m + 3) >> 0] = n >>> 24 + o = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + o = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + o = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((o | 0) < 0) << 31) >> 31 + Gn(e) + yh(o, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + im((h + a) | 0, h | 0, o | 0) | 0 + kh(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Vn(a | 0, 0, o | 0, k | 0) | 0 + k = Vn(h | 0, I | 0, g | 0, j | 0) | 0 + Cl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) Oq(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + Oq(c) + u = d + return + } + function Tf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0 + d = u + u = (u + 48) | 0 + e = (d + 40) | 0 + g = (d + 32) | 0 + h = (d + 8) | 0 + i = d + j = (d + 24) | 0 + k = (d + 16) | 0 + l = (a + 4) | 0 + m = f[l >> 2] | 0 + n = b + b = f[n >> 2] | 0 + o = f[(n + 4) >> 2] | 0 + n = c + c = f[n >> 2] | 0 + p = f[(n + 4) >> 2] | 0 + n = (c - b) << 3 + f[l >> 2] = m - o + p + n + l = ((f[a >> 2] | 0) + ((m >>> 5) << 2)) | 0 + a = m & 31 + m = l + if ((a | 0) != (o | 0)) { + q = h + f[q >> 2] = b + f[(q + 4) >> 2] = o + q = i + f[q >> 2] = c + f[(q + 4) >> 2] = p + f[j >> 2] = m + f[(j + 4) >> 2] = a + f[g >> 2] = f[h >> 2] + f[(g + 4) >> 2] = f[(h + 4) >> 2] + f[e >> 2] = f[i >> 2] + f[(e + 4) >> 2] = f[(i + 4) >> 2] + we(k, g, e, j) + u = d + return + } + j = (p - o + n) | 0 + n = b + if ((j | 0) > 0) { + if (!o) { + r = j + s = 0 + t = l + v = b + w = n + } else { + b = (32 - o) | 0 + p = (j | 0) < (b | 0) ? j : b + e = (-1 >>> ((b - p) | 0)) & (-1 << o) + f[l >> 2] = (f[l >> 2] & ~e) | (f[n >> 2] & e) + e = (p + o) | 0 + b = (n + 4) | 0 + r = (j - p) | 0 + s = e & 31 + t = (l + ((e >>> 5) << 2)) | 0 + v = b + w = b + } + b = ((r | 0) / 32) | 0 + im(t | 0, v | 0, (b << 2) | 0) | 0 + v = (r - (b << 5)) | 0 + r = (t + (b << 2)) | 0 + t = r + if ((v | 0) > 0) { + e = -1 >>> ((32 - v) | 0) + f[r >> 2] = (f[r >> 2] & ~e) | (f[(w + (b << 2)) >> 2] & e) + x = v + y = t + } else { + x = s + y = t + } + } else { + x = o + y = m + } + f[k >> 2] = y + f[(k + 4) >> 2] = x + u = d + return + } + function Uf(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -32768) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -16384) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + o = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + n = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + 8355840) | 0 + b[n >> 0] = m + b[(n + 1) >> 0] = m >>> 8 + b[(n + 2) >> 0] = m >>> 16 + o = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + n = (j + -1073774592) | 0 + b[m >> 0] = n + b[(m + 1) >> 0] = n >>> 8 + b[(m + 2) >> 0] = n >>> 16 + b[(m + 3) >> 0] = n >>> 24 + o = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + o = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + o = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((o | 0) < 0) << 31) >> 31 + Gn(e) + yh(o, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + im((h + a) | 0, h | 0, o | 0) | 0 + kh(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Vn(a | 0, 0, o | 0, k | 0) | 0 + k = Vn(h | 0, I | 0, g | 0, j | 0) | 0 + Cl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) Oq(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + Oq(c) + u = d + return + } + function Vf(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + c = f[b >> 2] | 0 + d = f[(b + 4) >> 2] | 0 + e = f[(b + 8) >> 2] | 0 + g = f[(b + 12) >> 2] | 0 + b = ((((((c ^ 318) + 239) ^ d) + 239) ^ e) + 239) ^ g + h = f[(a + 4) >> 2] | 0 + if (!h) { + i = 0 + return i | 0 + } + j = (h + -1) | 0 + k = ((j & h) | 0) == 0 + if (!k) + if (b >>> 0 < h >>> 0) l = b + else l = (b >>> 0) % (h >>> 0) | 0 + else l = b & j + m = f[((f[a >> 2] | 0) + (l << 2)) >> 2] | 0 + if (!m) { + i = 0 + return i | 0 + } + a = f[m >> 2] | 0 + if (!a) { + i = 0 + return i | 0 + } + if (k) { + k = a + while (1) { + m = f[(k + 4) >> 2] | 0 + n = (m | 0) == (b | 0) + if (!(n | (((m & j) | 0) == (l | 0)))) { + i = 0 + o = 25 + break + } + if ( + ( + ( + (n ? (f[(k + 8) >> 2] | 0) == (c | 0) : 0) + ? (f[(k + 12) >> 2] | 0) == (d | 0) + : 0 + ) + ? (f[(k + 16) >> 2] | 0) == (e | 0) + : 0 + ) + ? (f[(k + 20) >> 2] | 0) == (g | 0) + : 0 + ) { + i = k + o = 25 + break + } + k = f[k >> 2] | 0 + if (!k) { + i = 0 + o = 25 + break + } + } + if ((o | 0) == 25) return i | 0 + } else p = a + while (1) { + a = f[(p + 4) >> 2] | 0 + if ((a | 0) == (b | 0)) { + if ( + ( + ( + (f[(p + 8) >> 2] | 0) == (c | 0) + ? (f[(p + 12) >> 2] | 0) == (d | 0) + : 0 + ) + ? (f[(p + 16) >> 2] | 0) == (e | 0) + : 0 + ) + ? (f[(p + 20) >> 2] | 0) == (g | 0) + : 0 + ) { + i = p + o = 25 + break + } + } else { + if (a >>> 0 < h >>> 0) q = a + else q = (a >>> 0) % (h >>> 0) | 0 + if ((q | 0) != (l | 0)) { + i = 0 + o = 25 + break + } + } + p = f[p >> 2] | 0 + if (!p) { + i = 0 + o = 25 + break + } + } + if ((o | 0) == 25) return i | 0 + return 0 + } + function Wf(a, c, d, e, g, h, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + a = u + u = (u + 96) | 0 + j = a + if (!c) { + k = -1 + u = a + return k | 0 + } + Tm(j) + Jj(j, d, 0, g & 255, i, 0, g, 0, 0, 0) + i = jf(c, j, 1, e) | 0 + d = f[((f[(c + 8) >> 2] | 0) + (i << 2)) >> 2] | 0 + if (e | 0) { + l = (d + 84) | 0 + m = (d + 68) | 0 + n = (d + 40) | 0 + o = (d + 64) | 0 + d = 0 + do { + if (!(b[l >> 0] | 0)) p = f[((f[m >> 2] | 0) + (d << 2)) >> 2] | 0 + else p = d + q = (h + (X(d, g) | 0)) | 0 + r = n + s = f[r >> 2] | 0 + t = un(s | 0, f[(r + 4) >> 2] | 0, p | 0, 0) | 0 + kh(((f[f[o >> 2] >> 2] | 0) + t) | 0, q | 0, s | 0) | 0 + d = (d + 1) | 0 + } while ((d | 0) != (e | 0)) + } + d = (c + 80) | 0 + c = f[d >> 2] | 0 + if (c) + if ((c | 0) == (e | 0)) v = 10 + else w = -1 + else { + f[d >> 2] = e + v = 10 + } + if ((v | 0) == 10) w = i + i = (j + 88) | 0 + v = f[i >> 2] | 0 + f[i >> 2] = 0 + if (v | 0) { + i = f[(v + 8) >> 2] | 0 + if (i | 0) { + e = (v + 12) | 0 + if ((f[e >> 2] | 0) != (i | 0)) f[e >> 2] = i + Oq(i) + } + Oq(v) + } + v = f[(j + 68) >> 2] | 0 + if (v | 0) { + i = (j + 72) | 0 + e = f[i >> 2] | 0 + if ((e | 0) != (v | 0)) + f[i >> 2] = e + (~(((e + -4 - v) | 0) >>> 2) << 2) + Oq(v) + } + v = (j + 64) | 0 + j = f[v >> 2] | 0 + f[v >> 2] = 0 + if (j | 0) { + v = f[j >> 2] | 0 + if (v | 0) { + e = (j + 4) | 0 + if ((f[e >> 2] | 0) != (v | 0)) f[e >> 2] = v + Oq(v) + } + Oq(j) + } + k = w + u = a + return k | 0 + } + function Xf(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + h = u + u = (u + 32) | 0 + i = h + j = (h + 16) | 0 + k = f[((f[((f[(b + 4) >> 2] | 0) + 8) >> 2] | 0) + (d << 2)) >> 2] | 0 + do + if ( + (((c + -1) | 0) >>> 0 < 6) & + ((Qa[f[((f[b >> 2] | 0) + 8) >> 2] & 127](b) | 0) == 1) + ) { + l = Qa[f[((f[b >> 2] | 0) + 48) >> 2] & 127](b) | 0 + m = Ra[f[((f[b >> 2] | 0) + 56) >> 2] & 127](b, d) | 0 + if (((l | 0) == 0) | ((m | 0) == 0)) { + f[a >> 2] = 0 + u = h + return + } + n = Ra[f[((f[b >> 2] | 0) + 52) >> 2] & 127](b, d) | 0 + if (!n) { + f[i >> 2] = f[(b + 52) >> 2] + f[(i + 4) >> 2] = l + f[(i + 12) >> 2] = m + f[(i + 8) >> 2] = m + 12 + qd(a, j, c, k, e, i, g) + if (!(f[a >> 2] | 0)) { + f[a >> 2] = 0 + break + } + u = h + return + } else { + f[i >> 2] = f[(b + 52) >> 2] + f[(i + 4) >> 2] = n + f[(i + 12) >> 2] = m + f[(i + 8) >> 2] = m + 12 + pd(a, j, c, k, e, i, g) + if (!(f[a >> 2] | 0)) { + f[a >> 2] = 0 + break + } + u = h + return + } + } + while (0) + f[a >> 2] = 0 + u = h + return + } + function Yf(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0 + e = f[d >> 2] | 0 + g = f[(d + 4) >> 2] | 0 + if ((e | 0) == (g | 0)) { + h = 0 + i = (a + 12) | 0 + j = (a + 8) | 0 + } else { + d = f[c >> 2] | 0 + c = (a + 8) | 0 + k = (a + 12) | 0 + a = 0 + l = e + while (1) { + e = f[l >> 2] | 0 + m = f[(d + (e << 2)) >> 2] | 0 + if (m >>> 0 < a >>> 0) n = a + else { + o = f[c >> 2] | 0 + p = ((f[k >> 2] | 0) - o) | 0 + q = o + if ((p | 0) > 0) { + o = p >>> 2 + p = 0 + do { + r = f[(q + (p << 2)) >> 2] | 0 + s = f[(r + 68) >> 2] | 0 + if (!(b[(r + 84) >> 0] | 0)) t = f[(s + (e << 2)) >> 2] | 0 + else t = e + f[(s + (m << 2)) >> 2] = t + p = (p + 1) | 0 + } while ((p | 0) < (o | 0)) + } + n = (m + 1) | 0 + } + l = (l + 4) | 0 + if ((l | 0) == (g | 0)) { + h = n + i = k + j = c + break + } else a = n + } + } + n = f[i >> 2] | 0 + a = f[j >> 2] | 0 + if (((n - a) | 0) > 0) { + u = 0 + v = a + w = n + } else return + while (1) { + n = f[(v + (u << 2)) >> 2] | 0 + b[(n + 84) >> 0] = 0 + a = (n + 68) | 0 + c = (n + 72) | 0 + n = f[c >> 2] | 0 + k = f[a >> 2] | 0 + g = (n - k) >> 2 + l = k + k = n + if (h >>> 0 <= g >>> 0) + if ( + h >>> 0 < g >>> 0 + ? ((n = (l + (h << 2)) | 0), (n | 0) != (k | 0)) + : 0 + ) { + f[c >> 2] = k + (~(((k + -4 - n) | 0) >>> 2) << 2) + x = v + y = w + } else { + x = v + y = w + } + else { + Ch(a, (h - g) | 0, 6220) + x = f[j >> 2] | 0 + y = f[i >> 2] | 0 + } + u = (u + 1) | 0 + if ((u | 0) >= (((y - x) >> 2) | 0)) break + else { + v = x + w = y + } + } + return + } + function Zf(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = b + e = (c - d) >> 2 + g = (a + 8) | 0 + h = f[g >> 2] | 0 + i = f[a >> 2] | 0 + j = i + if (e >>> 0 <= ((h - i) >> 2) >>> 0) { + k = (a + 4) | 0 + l = ((f[k >> 2] | 0) - i) >> 2 + m = e >>> 0 > l >>> 0 + n = (b + (l << 2)) | 0 + l = m ? n : c + o = l + p = (o - d) | 0 + q = p >> 2 + if (q | 0) im(i | 0, b | 0, p | 0) | 0 + p = (j + (q << 2)) | 0 + if (!m) { + m = f[k >> 2] | 0 + if ((m | 0) == (p | 0)) return + f[k >> 2] = m + (~(((m + -4 - p) | 0) >>> 2) << 2) + return + } + if ((l | 0) == (c | 0)) return + l = f[k >> 2] | 0 + p = ((((c + -4 - o) | 0) >>> 2) + 1) | 0 + o = n + n = l + while (1) { + f[n >> 2] = f[o >> 2] + o = (o + 4) | 0 + if ((o | 0) == (c | 0)) break + else n = (n + 4) | 0 + } + f[k >> 2] = l + (p << 2) + return + } + p = i + if (!i) r = h + else { + h = (a + 4) | 0 + l = f[h >> 2] | 0 + if ((l | 0) != (j | 0)) + f[h >> 2] = l + (~(((l + -4 - i) | 0) >>> 2) << 2) + Oq(p) + f[g >> 2] = 0 + f[h >> 2] = 0 + f[a >> 2] = 0 + r = 0 + } + if (e >>> 0 > 1073741823) aq(a) + h = r >> 1 + p = (r >> 2) >>> 0 < 536870911 ? (h >>> 0 < e >>> 0 ? e : h) : 1073741823 + if (p >>> 0 > 1073741823) aq(a) + h = ln(p << 2) | 0 + e = (a + 4) | 0 + f[e >> 2] = h + f[a >> 2] = h + f[g >> 2] = h + (p << 2) + if ((b | 0) == (c | 0)) return + p = ((((c + -4 - d) | 0) >>> 2) + 1) | 0 + d = b + b = h + while (1) { + f[b >> 2] = f[d >> 2] + d = (d + 4) | 0 + if ((d | 0) == (c | 0)) break + else b = (b + 4) | 0 + } + f[e >> 2] = h + (p << 2) + return + } + function _f(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 40) | 0 + h = ((f[c >> 2] | 0) + (f[g >> 2] | 0)) | 0 + i = (a + 24) | 0 + j = f[(a + 32) >> 2] | 0 + k = (j + -16384) | 0 + do + if (k >>> 0 >= 64) { + if (k >>> 0 < 16384) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + b[m >> 0] = j + b[(m + 1) >> 0] = j >>> 8 + n = ((f[l >> 2] | 0) + 2) | 0 + break + } + if (k >>> 0 < 4194304) { + l = (a + 28) | 0 + m = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + o = (j + 8372224) | 0 + b[m >> 0] = o + b[(m + 1) >> 0] = o >>> 8 + b[(m + 2) >> 0] = o >>> 16 + n = ((f[l >> 2] | 0) + 3) | 0 + break + } + if (k >>> 0 < 1073741824) { + l = (a + 28) | 0 + o = ((f[i >> 2] | 0) + (f[l >> 2] | 0)) | 0 + m = (j + -1073758208) | 0 + b[o >> 0] = m + b[(o + 1) >> 0] = m >>> 8 + b[(o + 2) >> 0] = m >>> 16 + b[(o + 3) >> 0] = m >>> 24 + n = ((f[l >> 2] | 0) + 4) | 0 + break + } else { + n = f[(a + 28) >> 2] | 0 + break + } + } else { + l = (a + 28) | 0 + b[((f[i >> 2] | 0) + (f[l >> 2] | 0)) >> 0] = k + n = ((f[l >> 2] | 0) + 1) | 0 + } + while (0) + k = (((n | 0) < 0) << 31) >> 31 + Gn(e) + yh(n, k, e) | 0 + i = (e + 4) | 0 + a = ((f[i >> 2] | 0) - (f[e >> 2] | 0)) | 0 + im((h + a) | 0, h | 0, n | 0) | 0 + kh(h | 0, f[e >> 2] | 0, a | 0) | 0 + h = g + g = f[h >> 2] | 0 + j = f[(h + 4) >> 2] | 0 + h = Vn(a | 0, 0, n | 0, k | 0) | 0 + k = Vn(h | 0, I | 0, g | 0, j | 0) | 0 + Cl(c, k, I) + k = (e + 12) | 0 + c = f[k >> 2] | 0 + f[k >> 2] = 0 + if (c | 0) Oq(c) + c = f[e >> 2] | 0 + if (!c) { + u = d + return + } + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + Oq(c) + u = d + return + } + function $f(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = b + e = (c - d) >> 2 + g = (a + 8) | 0 + h = f[g >> 2] | 0 + i = f[a >> 2] | 0 + j = i + if (e >>> 0 <= ((h - i) >> 2) >>> 0) { + k = (a + 4) | 0 + l = ((f[k >> 2] | 0) - i) >> 2 + m = e >>> 0 > l >>> 0 + n = (b + (l << 2)) | 0 + l = m ? n : c + o = l + p = (o - d) | 0 + q = p >> 2 + if (q | 0) im(i | 0, b | 0, p | 0) | 0 + p = (j + (q << 2)) | 0 + if (!m) { + m = f[k >> 2] | 0 + if ((m | 0) == (p | 0)) return + f[k >> 2] = m + (~(((m + -4 - p) | 0) >>> 2) << 2) + return + } + if ((l | 0) == (c | 0)) return + l = f[k >> 2] | 0 + p = (c + -4 - o) | 0 + o = n + n = l + while (1) { + f[n >> 2] = f[o >> 2] + o = (o + 4) | 0 + if ((o | 0) == (c | 0)) break + else n = (n + 4) | 0 + } + f[k >> 2] = l + (((p >>> 2) + 1) << 2) + return + } + p = i + if (!i) r = h + else { + h = (a + 4) | 0 + l = f[h >> 2] | 0 + if ((l | 0) != (j | 0)) + f[h >> 2] = l + (~(((l + -4 - i) | 0) >>> 2) << 2) + Oq(p) + f[g >> 2] = 0 + f[h >> 2] = 0 + f[a >> 2] = 0 + r = 0 + } + if (e >>> 0 > 1073741823) aq(a) + h = r >> 1 + p = (r >> 2) >>> 0 < 536870911 ? (h >>> 0 < e >>> 0 ? e : h) : 1073741823 + if (p >>> 0 > 1073741823) aq(a) + h = ln(p << 2) | 0 + e = (a + 4) | 0 + f[e >> 2] = h + f[a >> 2] = h + f[g >> 2] = h + (p << 2) + if ((b | 0) == (c | 0)) return + p = (c + -4 - d) | 0 + d = b + b = h + while (1) { + f[b >> 2] = f[d >> 2] + d = (d + 4) | 0 + if ((d | 0) == (c | 0)) break + else b = (b + 4) | 0 + } + f[e >> 2] = h + (((p >>> 2) + 1) << 2) + return + } + function ag(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + g = u + u = (u + 80) | 0 + h = g + i = (g + 64) | 0 + Il(h) + j = f[((f[(a + 8) >> 2] | 0) + 56) >> 2] | 0 + k = X(Vl(5) | 0, d) | 0 + Jj(h, j, 0, d & 255, 5, 0, k, (((k | 0) < 0) << 31) >> 31, 0, 0) + k = ln(96) | 0 + tl(k, h) + Bj(k, c) | 0 + f[i >> 2] = k + gj(a, i) + k = f[i >> 2] | 0 + f[i >> 2] = 0 + if (k | 0) { + i = (k + 88) | 0 + c = f[i >> 2] | 0 + f[i >> 2] = 0 + if (c | 0) { + i = f[(c + 8) >> 2] | 0 + if (i | 0) { + h = (c + 12) | 0 + if ((f[h >> 2] | 0) != (i | 0)) f[h >> 2] = i + Oq(i) + } + Oq(c) + } + c = f[(k + 68) >> 2] | 0 + if (c | 0) { + i = (k + 72) | 0 + h = f[i >> 2] | 0 + if ((h | 0) != (c | 0)) + f[i >> 2] = h + (~(((h + -4 - c) | 0) >>> 2) << 2) + Oq(c) + } + c = (k + 64) | 0 + h = f[c >> 2] | 0 + f[c >> 2] = 0 + if (h | 0) { + c = f[h >> 2] | 0 + if (c | 0) { + i = (h + 4) | 0 + if ((f[i >> 2] | 0) != (c | 0)) f[i >> 2] = c + Oq(c) + } + Oq(h) + } + Oq(k) + } + if (!e) { + u = g + return + } + k = f[(a + 32) >> 2] | 0 + b[(k + 84) >> 0] = 0 + a = (k + 68) | 0 + h = (k + 72) | 0 + k = f[h >> 2] | 0 + c = f[a >> 2] | 0 + i = (k - c) >> 2 + d = k + if (i >>> 0 < e >>> 0) { + Ch(a, (e - i) | 0, 1532) + u = g + return + } + if (i >>> 0 <= e >>> 0) { + u = g + return + } + i = (c + (e << 2)) | 0 + if ((i | 0) == (d | 0)) { + u = g + return + } + f[h >> 2] = d + (~(((d + -4 - i) | 0) >>> 2) << 2) + u = g + return + } + function bg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + c = u + u = (u + 16) | 0 + d = (c + 4) | 0 + e = c + g = (a + 4) | 0 + h = f[g >> 2] | 0 + i = (a + 8) | 0 + j = f[i >> 2] | 0 + if ((j | 0) == (h | 0)) k = h + else { + l = (j + (~(((j + -4 - h) | 0) >>> 2) << 2)) | 0 + f[i >> 2] = l + k = l + } + l = (a + 16) | 0 + h = f[l >> 2] | 0 + j = (a + 20) | 0 + m = f[j >> 2] | 0 + n = h + if ((m | 0) != (h | 0)) f[j >> 2] = m + (~(((m + -4 - n) | 0) >>> 2) << 2) + m = f[b >> 2] | 0 + h = f[(b + 4) >> 2] | 0 + if ((m | 0) == (h | 0)) { + u = c + return + } + b = (a + 12) | 0 + a = m + m = k + k = n + while (1) { + n = f[a >> 2] | 0 + f[d >> 2] = n + if ((m | 0) == (f[b >> 2] | 0)) { + Ri(g, d) + o = f[l >> 2] | 0 + } else { + f[m >> 2] = n + f[i >> 2] = m + 4 + o = k + } + n = f[d >> 2] | 0 + p = f[j >> 2] | 0 + q = (p - o) >> 2 + r = o + if ((n | 0) < (q | 0)) { + s = r + t = n + v = o + } else { + w = (n + 1) | 0 + f[e >> 2] = -1 + x = p + if (w >>> 0 <= q >>> 0) + if ( + w >>> 0 < q >>> 0 + ? ((p = (r + (w << 2)) | 0), (p | 0) != (x | 0)) + : 0 + ) { + f[j >> 2] = x + (~(((x + -4 - p) | 0) >>> 2) << 2) + y = n + z = r + A = o + } else { + y = n + z = r + A = o + } + else { + Ch(l, (w - q) | 0, e) + q = f[l >> 2] | 0 + y = f[d >> 2] | 0 + z = q + A = q + } + s = z + t = y + v = A + } + m = f[i >> 2] | 0 + f[(s + (t << 2)) >> 2] = ((m - (f[g >> 2] | 0)) >> 2) + -1 + a = (a + 4) | 0 + if ((a | 0) == (h | 0)) break + else k = v + } + u = c + return + } + function cg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + c = u + u = (u + 16) | 0 + d = c + e = (a + 76) | 0 + g = f[e >> 2] | 0 + h = (a + 80) | 0 + i = f[h >> 2] | 0 + if ((i | 0) != (g | 0)) f[h >> 2] = i + (~(((i + -4 - g) | 0) >>> 2) << 2) + f[e >> 2] = 0 + f[h >> 2] = 0 + f[(a + 84) >> 2] = 0 + if (g | 0) Oq(g) + g = (a + 64) | 0 + h = f[g >> 2] | 0 + e = (a + 68) | 0 + if ((f[e >> 2] | 0) != (h | 0)) f[e >> 2] = h + f[g >> 2] = 0 + f[e >> 2] = 0 + f[(a + 72) >> 2] = 0 + if (h | 0) Oq(h) + h = (b + 4) | 0 + e = f[h >> 2] | 0 + g = f[b >> 2] | 0 + i = (((((e - g) | 0) / 12) | 0) * 3) | 0 + j = (a + 4) | 0 + k = f[j >> 2] | 0 + l = f[a >> 2] | 0 + m = (k - l) >> 2 + n = l + l = k + k = g + if (i >>> 0 <= m >>> 0) + if ( + i >>> 0 < m >>> 0 ? ((o = (n + (i << 2)) | 0), (o | 0) != (l | 0)) : 0 + ) { + f[j >> 2] = l + (~(((l + -4 - o) | 0) >>> 2) << 2) + p = e + q = g + r = k + } else { + p = e + q = g + r = k + } + else { + Ci(a, (i - m) | 0) + m = f[b >> 2] | 0 + p = f[h >> 2] | 0 + q = m + r = m + } + if ((p | 0) != (q | 0)) { + q = f[a >> 2] | 0 + m = (((p - r) | 0) / 12) | 0 + p = 0 + do { + h = (p * 3) | 0 + f[(q + (h << 2)) >> 2] = f[(r + ((p * 12) | 0)) >> 2] + f[(q + ((h + 1) << 2)) >> 2] = f[(r + ((p * 12) | 0) + 4) >> 2] + f[(q + ((h + 2) << 2)) >> 2] = f[(r + ((p * 12) | 0) + 8) >> 2] + p = (p + 1) | 0 + } while (p >>> 0 < m >>> 0) + } + f[d >> 2] = -1 + if (!(rc(a, d) | 0)) { + s = 0 + u = c + return s | 0 + } + eb(a, f[d >> 2] | 0) | 0 + s = 1 + u = c + return s | 0 + } + function dg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + c = d[b >> 1] | 0 + e = d[(b + 2) >> 1] | 0 + g = d[(b + 4) >> 1] | 0 + b = (((((c ^ 318) & 65535) + 239) ^ (e & 65535)) + 239) ^ (g & 65535) + h = f[(a + 4) >> 2] | 0 + if (!h) { + i = 0 + return i | 0 + } + j = (h + -1) | 0 + k = ((j & h) | 0) == 0 + if (!k) + if (b >>> 0 < h >>> 0) l = b + else l = (b >>> 0) % (h >>> 0) | 0 + else l = b & j + m = f[((f[a >> 2] | 0) + (l << 2)) >> 2] | 0 + if (!m) { + i = 0 + return i | 0 + } + a = f[m >> 2] | 0 + if (!a) { + i = 0 + return i | 0 + } + if (k) { + k = a + while (1) { + m = f[(k + 4) >> 2] | 0 + n = (m | 0) == (b | 0) + if (!(n | (((m & j) | 0) == (l | 0)))) { + i = 0 + o = 23 + break + } + if ( + ( + (n ? ((n = (k + 8) | 0), (d[n >> 1] | 0) == (c << 16) >> 16) : 0) + ? (d[(n + 2) >> 1] | 0) == (e << 16) >> 16 + : 0 + ) + ? (d[(k + 12) >> 1] | 0) == (g << 16) >> 16 + : 0 + ) { + i = k + o = 23 + break + } + k = f[k >> 2] | 0 + if (!k) { + i = 0 + o = 23 + break + } + } + if ((o | 0) == 23) return i | 0 + } else p = a + while (1) { + a = f[(p + 4) >> 2] | 0 + if ((a | 0) == (b | 0)) { + k = (p + 8) | 0 + if ( + ( + (d[k >> 1] | 0) == (c << 16) >> 16 + ? (d[(k + 2) >> 1] | 0) == (e << 16) >> 16 + : 0 + ) + ? (d[(p + 12) >> 1] | 0) == (g << 16) >> 16 + : 0 + ) { + i = p + o = 23 + break + } + } else { + if (a >>> 0 < h >>> 0) q = a + else q = (a >>> 0) % (h >>> 0) | 0 + if ((q | 0) != (l | 0)) { + i = 0 + o = 23 + break + } + } + p = f[p >> 2] | 0 + if (!p) { + i = 0 + o = 23 + break + } + } + if ((o | 0) == 23) return i | 0 + return 0 + } + function eg(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + c = u + u = (u + 32) | 0 + d = c + e = (a + 16) | 0 + g = e + h = f[g >> 2] | 0 + i = f[(g + 4) >> 2] | 0 + if (!(((i | 0) > 0) | (((i | 0) == 0) & (h >>> 0 > 0)))) { + u = c + return + } + g = Vn(f[((f[(a + 12) >> 2] | 0) + 4) >> 2] | 0, 0, 7, 0) | 0 + j = Yn(g | 0, I | 0, 3) | 0 + g = I + if (!(b[(a + 24) >> 0] | 0)) { + k = (a + 4) | 0 + l = k + m = k + n = h + o = i + } else { + k = f[a >> 2] | 0 + p = (a + 4) | 0 + q = (k + ((f[p >> 2] | 0) - k)) | 0 + k = Vn(h | 0, i | 0, 8, 0) | 0 + i = (q + (0 - k)) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + b[(d + 24) >> 0] = 0 + yh(j, g, d) | 0 + k = (d + 4) | 0 + q = ((f[k >> 2] | 0) - (f[d >> 2] | 0)) | 0 + im((i + q) | 0, (i + 8) | 0, j | 0) | 0 + kh(i | 0, f[d >> 2] | 0, q | 0) | 0 + i = e + h = Vn(f[i >> 2] | 0, f[(i + 4) >> 2] | 0, (8 - q) | 0, 0) | 0 + q = e + f[q >> 2] = h + f[(q + 4) >> 2] = I + q = (d + 12) | 0 + h = f[q >> 2] | 0 + f[q >> 2] = 0 + if (h | 0) Oq(h) + h = f[d >> 2] | 0 + if (h | 0) { + if ((f[k >> 2] | 0) != (h | 0)) f[k >> 2] = h + Oq(h) + } + h = e + l = p + m = p + n = f[h >> 2] | 0 + o = f[(h + 4) >> 2] | 0 + } + h = f[l >> 2] | 0 + l = f[a >> 2] | 0 + p = (h - l) | 0 + k = Xn(j | 0, g | 0, n | 0, o | 0) | 0 + o = Vn(k | 0, I | 0, p | 0, 0) | 0 + k = l + l = h + if (p >>> 0 >= o >>> 0) { + if (p >>> 0 > o >>> 0 ? ((h = (k + o) | 0), (h | 0) != (l | 0)) : 0) + f[m >> 2] = h + } else Fi(a, (o - p) | 0) + p = e + f[p >> 2] = 0 + f[(p + 4) >> 2] = 0 + u = c + return + } + function fg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + f[(a + 4) >> 2] = f[(b + 4) >> 2] + c = (a + 8) | 0 + d = (b + 8) | 0 + if ((a | 0) == (b | 0)) return a | 0 + e = (b + 12) | 0 + g = f[e >> 2] | 0 + if (!g) h = 0 + else { + i = (a + 16) | 0 + do + if (g >>> 0 > (f[i >> 2] << 5) >>> 0) { + j = f[c >> 2] | 0 + if (!j) k = g + else { + Oq(j) + f[c >> 2] = 0 + f[i >> 2] = 0 + f[(a + 12) >> 2] = 0 + k = f[e >> 2] | 0 + } + if ((k | 0) < 0) aq(c) + else { + j = ((((k + -1) | 0) >>> 5) + 1) | 0 + l = ln(j << 2) | 0 + f[c >> 2] = l + f[(a + 12) >> 2] = 0 + f[i >> 2] = j + m = f[e >> 2] | 0 + n = l + break + } + } else { + m = g + n = f[c >> 2] | 0 + } + while (0) + im(n | 0, f[d >> 2] | 0, (((((m + -1) | 0) >>> 5) << 2) + 4) | 0) | 0 + h = f[e >> 2] | 0 + } + f[(a + 12) >> 2] = h + h = (a + 20) | 0 + e = (b + 20) | 0 + m = (b + 24) | 0 + b = f[m >> 2] | 0 + if (!b) o = 0 + else { + d = (a + 28) | 0 + do + if (b >>> 0 > (f[d >> 2] << 5) >>> 0) { + n = f[h >> 2] | 0 + if (!n) p = b + else { + Oq(n) + f[h >> 2] = 0 + f[d >> 2] = 0 + f[(a + 24) >> 2] = 0 + p = f[m >> 2] | 0 + } + if ((p | 0) < 0) aq(h) + else { + n = ((((p + -1) | 0) >>> 5) + 1) | 0 + c = ln(n << 2) | 0 + f[h >> 2] = c + f[(a + 24) >> 2] = 0 + f[d >> 2] = n + q = f[m >> 2] | 0 + r = c + break + } + } else { + q = b + r = f[h >> 2] | 0 + } + while (0) + im(r | 0, f[e >> 2] | 0, (((((q + -1) | 0) >>> 5) << 2) + 4) | 0) | 0 + o = f[m >> 2] | 0 + } + f[(a + 24) >> 2] = o + return a | 0 + } + function gg(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + f[c >> 2] = 1 + d = (a + 4) | 0 + e = (c + 8) | 0 + g = (c + 12) | 0 + c = f[e >> 2] | 0 + i = ((f[g >> 2] | 0) - c) | 0 + if (i >>> 0 < 4294967292) { + Lk(e, (i + 4) | 0, 0) + j = f[e >> 2] | 0 + } else j = c + c = (j + i) | 0 + i = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + b[c >> 0] = i + b[(c + 1) >> 0] = i >> 8 + b[(c + 2) >> 0] = i >> 16 + b[(c + 3) >> 0] = i >> 24 + i = (a + 8) | 0 + c = (a + 12) | 0 + d = f[i >> 2] | 0 + if ((f[c >> 2] | 0) != (d | 0)) { + j = 0 + k = d + do { + d = (k + (j << 2)) | 0 + l = f[e >> 2] | 0 + m = ((f[g >> 2] | 0) - l) | 0 + if (m >>> 0 < 4294967292) { + Lk(e, (m + 4) | 0, 0) + n = f[e >> 2] | 0 + } else n = l + l = (n + m) | 0 + m = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + b[l >> 0] = m + b[(l + 1) >> 0] = m >> 8 + b[(l + 2) >> 0] = m >> 16 + b[(l + 3) >> 0] = m >> 24 + j = (j + 1) | 0 + k = f[i >> 2] | 0 + } while (j >>> 0 < (((f[c >> 2] | 0) - k) >> 2) >>> 0) + } + k = (a + 20) | 0 + a = f[e >> 2] | 0 + c = ((f[g >> 2] | 0) - a) | 0 + if (c >>> 0 < 4294967292) { + Lk(e, (c + 4) | 0, 0) + o = f[e >> 2] | 0 + p = (o + c) | 0 + q = + h[k >> 0] | + (h[(k + 1) >> 0] << 8) | + (h[(k + 2) >> 0] << 16) | + (h[(k + 3) >> 0] << 24) + b[p >> 0] = q + b[(p + 1) >> 0] = q >> 8 + b[(p + 2) >> 0] = q >> 16 + b[(p + 3) >> 0] = q >> 24 + return + } else { + o = a + p = (o + c) | 0 + q = + h[k >> 0] | + (h[(k + 1) >> 0] << 8) | + (h[(k + 2) >> 0] << 16) | + (h[(k + 3) >> 0] << 24) + b[p >> 0] = q + b[(p + 1) >> 0] = q >> 8 + b[(p + 2) >> 0] = q >> 16 + b[(p + 3) >> 0] = q >> 24 + return + } + } + function hg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = (a + 8) | 0 + e = f[d >> 2] | 0 + g = f[a >> 2] | 0 + h = g + do + if (((e - g) >> 2) >>> 0 >= b >>> 0) { + i = (a + 4) | 0 + j = f[i >> 2] | 0 + k = (j - g) >> 2 + l = k >>> 0 < b >>> 0 + m = l ? k : b + n = j + if (m | 0) { + j = m + m = h + while (1) { + f[m >> 2] = f[c >> 2] + j = (j + -1) | 0 + if (!j) break + else m = (m + 4) | 0 + } + } + if (!l) { + m = (h + (b << 2)) | 0 + if ((m | 0) == (n | 0)) return + else { + o = i + p = (n + (~(((n + -4 - m) | 0) >>> 2) << 2)) | 0 + break + } + } else { + m = (b - k) | 0 + j = m + q = n + while (1) { + f[q >> 2] = f[c >> 2] + j = (j + -1) | 0 + if (!j) break + else q = (q + 4) | 0 + } + o = i + p = (n + (m << 2)) | 0 + break + } + } else { + q = g + if (!g) r = e + else { + j = (a + 4) | 0 + k = f[j >> 2] | 0 + if ((k | 0) != (h | 0)) + f[j >> 2] = k + (~(((k + -4 - g) | 0) >>> 2) << 2) + Oq(q) + f[d >> 2] = 0 + f[j >> 2] = 0 + f[a >> 2] = 0 + r = 0 + } + if (b >>> 0 > 1073741823) aq(a) + j = r >> 1 + q = + (r >> 2) >>> 0 < 536870911 + ? j >>> 0 < b >>> 0 + ? b + : j + : 1073741823 + if (q >>> 0 > 1073741823) aq(a) + j = ln(q << 2) | 0 + k = (a + 4) | 0 + f[k >> 2] = j + f[a >> 2] = j + f[d >> 2] = j + (q << 2) + q = b + l = j + while (1) { + f[l >> 2] = f[c >> 2] + q = (q + -1) | 0 + if (!q) break + else l = (l + 4) | 0 + } + o = k + p = (j + (b << 2)) | 0 + } + while (0) + f[o >> 2] = p + return + } + function ig(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + h = jh(a, b, c, d, g) | 0 + i = f[e >> 2] | 0 + j = f[d >> 2] | 0 + k = f[g >> 2] | 0 + g = f[k >> 2] | 0 + l = ((f[(k + 4) >> 2] | 0) - g) >> 3 + if (l >>> 0 <= i >>> 0) aq(k) + m = g + if (l >>> 0 <= j >>> 0) aq(k) + if ( + (f[(m + (i << 3)) >> 2] | 0) >>> 0 >= + (f[(m + (j << 3)) >> 2] | 0) >>> 0 + ) { + n = h + return n | 0 + } + f[d >> 2] = i + f[e >> 2] = j + j = f[d >> 2] | 0 + e = f[c >> 2] | 0 + if (l >>> 0 <= j >>> 0) aq(k) + if (l >>> 0 <= e >>> 0) aq(k) + if ( + (f[(m + (j << 3)) >> 2] | 0) >>> 0 >= + (f[(m + (e << 3)) >> 2] | 0) >>> 0 + ) { + n = (h + 1) | 0 + return n | 0 + } + f[c >> 2] = j + f[d >> 2] = e + e = f[c >> 2] | 0 + d = f[b >> 2] | 0 + if (l >>> 0 <= e >>> 0) aq(k) + if (l >>> 0 <= d >>> 0) aq(k) + if ( + (f[(m + (e << 3)) >> 2] | 0) >>> 0 >= + (f[(m + (d << 3)) >> 2] | 0) >>> 0 + ) { + n = (h + 2) | 0 + return n | 0 + } + f[b >> 2] = e + f[c >> 2] = d + d = f[b >> 2] | 0 + c = f[a >> 2] | 0 + if (l >>> 0 <= d >>> 0) aq(k) + if (l >>> 0 <= c >>> 0) aq(k) + if ( + (f[(m + (d << 3)) >> 2] | 0) >>> 0 >= + (f[(m + (c << 3)) >> 2] | 0) >>> 0 + ) { + n = (h + 3) | 0 + return n | 0 + } + f[a >> 2] = d + f[b >> 2] = c + n = (h + 4) | 0 + return n | 0 + } + function jg(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + d = b[c >> 0] | 0 + e = b[(c + 1) >> 0] | 0 + g = b[(c + 2) >> 0] | 0 + c = (((((d & 255) ^ 318) + 239) ^ (e & 255)) + 239) ^ (g & 255) + h = f[(a + 4) >> 2] | 0 + if (!h) { + i = 0 + return i | 0 + } + j = (h + -1) | 0 + k = ((j & h) | 0) == 0 + if (!k) + if (c >>> 0 < h >>> 0) l = c + else l = (c >>> 0) % (h >>> 0) | 0 + else l = c & j + m = f[((f[a >> 2] | 0) + (l << 2)) >> 2] | 0 + if (!m) { + i = 0 + return i | 0 + } + a = f[m >> 2] | 0 + if (!a) { + i = 0 + return i | 0 + } + if (k) { + k = a + while (1) { + m = f[(k + 4) >> 2] | 0 + n = (m | 0) == (c | 0) + if (!(n | (((m & j) | 0) == (l | 0)))) { + i = 0 + o = 23 + break + } + if ( + ( + (n ? ((n = (k + 8) | 0), (b[n >> 0] | 0) == (d << 24) >> 24) : 0) + ? (b[(n + 1) >> 0] | 0) == (e << 24) >> 24 + : 0 + ) + ? (b[(n + 2) >> 0] | 0) == (g << 24) >> 24 + : 0 + ) { + i = k + o = 23 + break + } + k = f[k >> 2] | 0 + if (!k) { + i = 0 + o = 23 + break + } + } + if ((o | 0) == 23) return i | 0 + } else p = a + while (1) { + a = f[(p + 4) >> 2] | 0 + if ((a | 0) == (c | 0)) { + k = (p + 8) | 0 + if ( + ( + (b[k >> 0] | 0) == (d << 24) >> 24 + ? (b[(k + 1) >> 0] | 0) == (e << 24) >> 24 + : 0 + ) + ? (b[(k + 2) >> 0] | 0) == (g << 24) >> 24 + : 0 + ) { + i = p + o = 23 + break + } + } else { + if (a >>> 0 < h >>> 0) q = a + else q = (a >>> 0) % (h >>> 0) | 0 + if ((q | 0) != (l | 0)) { + i = 0 + o = 23 + break + } + } + p = f[p >> 2] | 0 + if (!p) { + i = 0 + o = 23 + break + } + } + if ((o | 0) == 23) return i | 0 + return 0 + } + function kg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + b = u + u = (u + 16) | 0 + c = b + d = (a + 36) | 0 + e = (a + 4) | 0 + g = (a + 8) | 0 + h = ((f[g >> 2] | 0) - (f[e >> 2] | 0)) >> 2 + i = (a + 40) | 0 + j = f[i >> 2] | 0 + k = f[d >> 2] | 0 + l = (j - k) >> 2 + m = k + k = j + if (h >>> 0 <= l >>> 0) { + if ( + h >>> 0 < l >>> 0 ? ((j = (m + (h << 2)) | 0), (j | 0) != (k | 0)) : 0 + ) { + m = k + do { + k = (m + -4) | 0 + f[i >> 2] = k + n = f[k >> 2] | 0 + f[k >> 2] = 0 + if (n | 0) Va[f[((f[n >> 2] | 0) + 4) >> 2] & 127](n) + m = f[i >> 2] | 0 + } while ((m | 0) != (j | 0)) + } + } else Eg(d, (h - l) | 0) + if ((f[g >> 2] | 0) == (f[e >> 2] | 0)) { + o = 1 + u = b + return o | 0 + } + l = (a + 52) | 0 + h = (a + 48) | 0 + j = 0 + while (1) { + Xa[f[((f[a >> 2] | 0) + 56) >> 2] & 15](c, a, j) + m = ((f[d >> 2] | 0) + (j << 2)) | 0 + i = f[c >> 2] | 0 + f[c >> 2] = 0 + n = f[m >> 2] | 0 + f[m >> 2] = i + if (n | 0) Va[f[((f[n >> 2] | 0) + 4) >> 2] & 127](n) + n = f[c >> 2] | 0 + f[c >> 2] = 0 + if (n | 0) Va[f[((f[n >> 2] | 0) + 4) >> 2] & 127](n) + n = f[((f[d >> 2] | 0) + (j << 2)) >> 2] | 0 + if (!n) { + o = 0 + p = 19 + break + } + if ( + j >>> 0 < (f[l >> 2] | 0) >>> 0 + ? (f[((f[h >> 2] | 0) + ((j >>> 5) << 2)) >> 2] & (1 << (j & 31))) | + 0 + : 0 + ) + Bp(n) + j = (j + 1) | 0 + if (j >>> 0 >= (((f[g >> 2] | 0) - (f[e >> 2] | 0)) >> 2) >>> 0) { + o = 1 + p = 19 + break + } + } + if ((p | 0) == 19) { + u = b + return o | 0 + } + return 0 + } + function lg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + ci(f[(c + 12) >> 2] | 0, b) | 0 + h = f[(c + 8) >> 2] | 0 + a: do + if (h | 0) { + i = (b + 16) | 0 + j = (b + 4) | 0 + k = h + while (1) { + l = k + if (!(Bf(0, b, (l + 8) | 0) | 0)) { + m = 0 + break + } + n = (l + 20) | 0 + o = ((f[(l + 24) >> 2] | 0) - (f[n >> 2] | 0)) | 0 + ci(o, b) | 0 + l = f[n >> 2] | 0 + n = i + p = f[(n + 4) >> 2] | 0 + if ( + !(((p | 0) > 0) | (((p | 0) == 0) & ((f[n >> 2] | 0) >>> 0 > 0))) + ) { + f[g >> 2] = f[j >> 2] + f[e >> 2] = f[g >> 2] + Me(b, e, l, (l + o) | 0) | 0 + } + k = f[k >> 2] | 0 + if (!k) break a + } + u = d + return m | 0 + } + while (0) + ci(f[(c + 32) >> 2] | 0, b) | 0 + e = f[(c + 28) >> 2] | 0 + if (!e) { + m = 1 + u = d + return m | 0 + } else q = e + while (1) { + e = q + if (!(Bf(0, b, (e + 8) | 0) | 0)) { + m = 0 + r = 10 + break + } + lg(a, b, f[(e + 20) >> 2] | 0) | 0 + q = f[q >> 2] | 0 + if (!q) { + m = 1 + r = 10 + break + } + } + if ((r | 0) == 10) { + u = d + return m | 0 + } + return 0 + } + function mg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + h = (a + 8) | 0 + i = (a + 12) | 0 + j = f[h >> 2] | 0 + if ((f[i >> 2] | 0) == (j | 0)) { + k = ln(76) | 0 + vn(k, b) + l = k + f[g >> 2] = l + k = f[i >> 2] | 0 + if (k >>> 0 < (f[(a + 16) >> 2] | 0) >>> 0) { + f[g >> 2] = 0 + f[k >> 2] = l + f[i >> 2] = k + 4 + m = g + } else { + Qg(h, g) + m = g + } + g = f[m >> 2] | 0 + f[m >> 2] = 0 + if (!g) { + u = c + return 1 + } + Va[f[((f[g >> 2] | 0) + 4) >> 2] & 127](g) + u = c + return 1 + } + g = f[j >> 2] | 0 + f[d >> 2] = b + j = (g + 4) | 0 + m = (g + 8) | 0 + h = f[m >> 2] | 0 + if ((h | 0) == (f[(g + 12) >> 2] | 0)) Ri(j, d) + else { + f[h >> 2] = b + f[m >> 2] = h + 4 + } + h = f[d >> 2] | 0 + b = (g + 16) | 0 + k = (g + 20) | 0 + g = f[k >> 2] | 0 + i = f[b >> 2] | 0 + l = (g - i) >> 2 + a = i + if ((h | 0) < (l | 0)) { + n = a + o = h + } else { + i = (h + 1) | 0 + f[e >> 2] = -1 + p = g + if (i >>> 0 <= l >>> 0) + if ( + i >>> 0 < l >>> 0 + ? ((g = (a + (i << 2)) | 0), (g | 0) != (p | 0)) + : 0 + ) { + f[k >> 2] = p + (~(((p + -4 - g) | 0) >>> 2) << 2) + q = h + r = a + } else { + q = h + r = a + } + else { + Ch(b, (i - l) | 0, e) + q = f[d >> 2] | 0 + r = f[b >> 2] | 0 + } + n = r + o = q + } + f[(n + (o << 2)) >> 2] = (((f[m >> 2] | 0) - (f[j >> 2] | 0)) >> 2) + -1 + u = c + return 1 + } + function ng(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + d = c + e = b + g = (d - e) | 0 + h = g >> 2 + i = (a + 8) | 0 + j = f[i >> 2] | 0 + k = f[a >> 2] | 0 + l = k + if (h >>> 0 > ((j - k) >> 2) >>> 0) { + m = k + if (!k) n = j + else { + j = (a + 4) | 0 + o = f[j >> 2] | 0 + if ((o | 0) != (l | 0)) + f[j >> 2] = o + (~(((o + -4 - k) | 0) >>> 2) << 2) + Oq(m) + f[i >> 2] = 0 + f[j >> 2] = 0 + f[a >> 2] = 0 + n = 0 + } + if (h >>> 0 > 1073741823) aq(a) + j = n >> 1 + m = + (n >> 2) >>> 0 < 536870911 ? (j >>> 0 < h >>> 0 ? h : j) : 1073741823 + if (m >>> 0 > 1073741823) aq(a) + j = ln(m << 2) | 0 + n = (a + 4) | 0 + f[n >> 2] = j + f[a >> 2] = j + f[i >> 2] = j + (m << 2) + if ((g | 0) <= 0) return + kh(j | 0, b | 0, g | 0) | 0 + f[n >> 2] = j + ((g >>> 2) << 2) + return + } + g = (a + 4) | 0 + a = f[g >> 2] | 0 + j = (a - k) >> 2 + k = h >>> 0 > j >>> 0 + h = k ? (b + (j << 2)) | 0 : c + c = a + j = a + if ((h | 0) == (b | 0)) p = l + else { + a = (h + -4 - e) | 0 + e = b + b = l + while (1) { + f[b >> 2] = f[e >> 2] + e = (e + 4) | 0 + if ((e | 0) == (h | 0)) break + else b = (b + 4) | 0 + } + p = (l + (((a >>> 2) + 1) << 2)) | 0 + } + if (k) { + k = (d - h) | 0 + if ((k | 0) <= 0) return + kh(j | 0, h | 0, k | 0) | 0 + f[g >> 2] = (f[g >> 2] | 0) + ((k >>> 2) << 2) + return + } else { + if ((p | 0) == (c | 0)) return + f[g >> 2] = c + (~(((c + -4 - p) | 0) >>> 2) << 2) + return + } + } + function og(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = f[(a + 8) >> 2] | 0 + e = (a + 76) | 0 + g = f[e >> 2] | 0 + h = f[(g + 80) >> 2] | 0 + b[(c + 84) >> 0] = 0 + i = (c + 68) | 0 + j = (c + 72) | 0 + k = f[j >> 2] | 0 + l = f[i >> 2] | 0 + m = (k - l) >> 2 + n = l + l = k + if (h >>> 0 <= m >>> 0) + if ( + h >>> 0 < m >>> 0 ? ((k = (n + (h << 2)) | 0), (k | 0) != (l | 0)) : 0 + ) { + f[j >> 2] = l + (~(((l + -4 - k) | 0) >>> 2) << 2) + o = g + p = h + } else { + o = g + p = h + } + else { + Ch(i, (h - m) | 0, 3600) + m = f[e >> 2] | 0 + o = m + p = f[(m + 80) >> 2] | 0 + } + m = ((f[(o + 100) >> 2] | 0) - (f[(o + 96) >> 2] | 0)) | 0 + e = ((m | 0) / 12) | 0 + if (!m) { + q = 1 + return q | 0 + } + m = (c + 68) | 0 + c = f[(o + 96) >> 2] | 0 + o = f[(d + 28) >> 2] | 0 + d = f[((f[(a + 80) >> 2] | 0) + 12) >> 2] | 0 + a = 0 + while (1) { + h = (a * 3) | 0 + i = f[(d + (f[(o + (h << 2)) >> 2] << 2)) >> 2] | 0 + if (i >>> 0 >= p >>> 0) { + q = 0 + r = 10 + break + } + g = f[m >> 2] | 0 + f[(g + (f[(c + ((a * 12) | 0)) >> 2] << 2)) >> 2] = i + i = f[(d + (f[(o + ((h + 1) << 2)) >> 2] << 2)) >> 2] | 0 + if (i >>> 0 >= p >>> 0) { + q = 0 + r = 10 + break + } + f[(g + (f[(c + ((a * 12) | 0) + 4) >> 2] << 2)) >> 2] = i + i = f[(d + (f[(o + ((h + 2) << 2)) >> 2] << 2)) >> 2] | 0 + if (i >>> 0 >= p >>> 0) { + q = 0 + r = 10 + break + } + f[(g + (f[(c + ((a * 12) | 0) + 8) >> 2] << 2)) >> 2] = i + a = (a + 1) | 0 + if (a >>> 0 >= e >>> 0) { + q = 1 + r = 10 + break + } + } + if ((r | 0) == 10) return q | 0 + return 0 + } + function pg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + e = u + u = (u + 16) | 0 + g = e + if (!(xh(a, c, d) | 0)) { + h = 0 + u = e + return h | 0 + } + if ((b[((f[(a + 8) >> 2] | 0) + 24) >> 0] | 0) != 3) { + h = 0 + u = e + return h | 0 + } + i = f[(c + 48) >> 2] | 0 + c = ln(32) | 0 + f[g >> 2] = c + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 17 + j = c + k = 14495 + l = (j + 17) | 0 + do { + b[j >> 0] = b[k >> 0] | 0 + j = (j + 1) | 0 + k = (k + 1) | 0 + } while ((j | 0) < (l | 0)) + b[(c + 17) >> 0] = 0 + c = (i + 16) | 0 + k = f[c >> 2] | 0 + if (k) { + j = c + l = k + a: while (1) { + k = l + while (1) { + if ((f[(k + 16) >> 2] | 0) >= (d | 0)) break + m = f[(k + 4) >> 2] | 0 + if (!m) { + n = j + break a + } else k = m + } + l = f[k >> 2] | 0 + if (!l) { + n = k + break + } else j = k + } + if ( + ((n | 0) != (c | 0) ? (f[(n + 16) >> 2] | 0) <= (d | 0) : 0) + ? ((d = (n + 20) | 0), (Jh(d, g) | 0) != 0) + : 0 + ) + o = Hk(d, g, -1) | 0 + else p = 12 + } else p = 12 + if ((p | 0) == 12) o = Hk(i, g, -1) | 0 + if ((b[(g + 11) >> 0] | 0) < 0) Oq(f[g >> 2] | 0) + if ((o | 0) < 1) { + h = 0 + u = e + return h | 0 + } + ip((a + 40) | 0, o) + h = 1 + u = e + return h | 0 + } + function qg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = f[b >> 2] | 0 + d = f[(b + 4) >> 2] | 0 + e = f[(b + 8) >> 2] | 0 + b = ((((c ^ 318) + 239) ^ d) + 239) ^ e + g = f[(a + 4) >> 2] | 0 + if (!g) { + h = 0 + return h | 0 + } + i = (g + -1) | 0 + j = ((i & g) | 0) == 0 + if (!j) + if (b >>> 0 < g >>> 0) k = b + else k = (b >>> 0) % (g >>> 0) | 0 + else k = b & i + l = f[((f[a >> 2] | 0) + (k << 2)) >> 2] | 0 + if (!l) { + h = 0 + return h | 0 + } + a = f[l >> 2] | 0 + if (!a) { + h = 0 + return h | 0 + } + if (j) { + j = a + while (1) { + l = f[(j + 4) >> 2] | 0 + m = (l | 0) == (b | 0) + if (!(m | (((l & i) | 0) == (k | 0)))) { + h = 0 + n = 23 + break + } + if ( + ( + (m ? (f[(j + 8) >> 2] | 0) == (c | 0) : 0) + ? (f[(j + 12) >> 2] | 0) == (d | 0) + : 0 + ) + ? (f[(j + 16) >> 2] | 0) == (e | 0) + : 0 + ) { + h = j + n = 23 + break + } + j = f[j >> 2] | 0 + if (!j) { + h = 0 + n = 23 + break + } + } + if ((n | 0) == 23) return h | 0 + } else o = a + while (1) { + a = f[(o + 4) >> 2] | 0 + if ((a | 0) == (b | 0)) { + if ( + ( + (f[(o + 8) >> 2] | 0) == (c | 0) + ? (f[(o + 12) >> 2] | 0) == (d | 0) + : 0 + ) + ? (f[(o + 16) >> 2] | 0) == (e | 0) + : 0 + ) { + h = o + n = 23 + break + } + } else { + if (a >>> 0 < g >>> 0) p = a + else p = (a >>> 0) % (g >>> 0) | 0 + if ((p | 0) != (k | 0)) { + h = 0 + n = 23 + break + } + } + o = f[o >> 2] | 0 + if (!o) { + h = 0 + n = 23 + break + } + } + if ((n | 0) == 23) return h | 0 + return 0 + } + function rg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + e = c + g = (d - e) | 0 + h = (a + 8) | 0 + i = f[h >> 2] | 0 + j = f[a >> 2] | 0 + k = j + if (g >>> 0 > ((i - j) | 0) >>> 0) { + if (!j) l = i + else { + i = (a + 4) | 0 + if ((f[i >> 2] | 0) != (k | 0)) f[i >> 2] = k + Oq(k) + f[h >> 2] = 0 + f[i >> 2] = 0 + f[a >> 2] = 0 + l = 0 + } + if ((g | 0) < 0) aq(a) + i = l << 1 + m = l >>> 0 < 1073741823 ? (i >>> 0 < g >>> 0 ? g : i) : 2147483647 + if ((m | 0) < 0) aq(a) + i = ln(m) | 0 + l = (a + 4) | 0 + f[l >> 2] = i + f[a >> 2] = i + f[h >> 2] = i + m + if ((c | 0) == (d | 0)) return + else { + n = c + o = i + } + do { + b[o >> 0] = b[n >> 0] | 0 + n = (n + 1) | 0 + o = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = o + } while ((n | 0) != (d | 0)) + return + } + n = (a + 4) | 0 + a = ((f[n >> 2] | 0) - j) | 0 + j = g >>> 0 > a >>> 0 + g = (c + a) | 0 + a = j ? g : d + if ((a | 0) == (c | 0)) p = k + else { + o = c + c = k + while (1) { + b[c >> 0] = b[o >> 0] | 0 + o = (o + 1) | 0 + if ((o | 0) == (a | 0)) break + else c = (c + 1) | 0 + } + p = (k + (a - e)) | 0 + } + if (!j) { + if ((f[n >> 2] | 0) == (p | 0)) return + f[n >> 2] = p + return + } + if ((a | 0) == (d | 0)) return + a = g + g = f[n >> 2] | 0 + do { + b[g >> 0] = b[a >> 0] | 0 + a = (a + 1) | 0 + g = ((f[n >> 2] | 0) + 1) | 0 + f[n >> 2] = g + } while ((a | 0) != (d | 0)) + return + } + function sg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + d = ((c >>> 1) & 1431655765) | ((c << 1) & -1431655766) + c = ((d >>> 2) & 858993459) | ((d << 2) & -858993460) + d = ((c >>> 4) & 252645135) | ((c << 4) & -252645136) + c = ((d >>> 8) & 16711935) | ((d << 8) & -16711936) + d = (32 - b) | 0 + e = ((c >>> 16) | (c << 16)) >>> d + c = (e - ((e >>> 1) & 1431655765)) | 0 + g = (((c >>> 2) & 858993459) + (c & 858993459)) | 0 + c = (X(((g >>> 4) + g) & 252645135, 16843009) | 0) >>> 24 + g = (b - c) | 0 + h = f[a >> 2] | 0 + i = h + j = + Vn( + f[i >> 2] | 0, + f[(i + 4) >> 2] | 0, + g | 0, + ((((g | 0) < 0) << 31) >> 31) | 0, + ) | 0 + g = h + f[g >> 2] = j + f[(g + 4) >> 2] = I + g = (h + 8) | 0 + h = g + j = Vn(f[h >> 2] | 0, f[(h + 4) >> 2] | 0, c | 0, 0) | 0 + c = g + f[c >> 2] = j + f[(c + 4) >> 2] = I + c = (a + 28) | 0 + j = f[c >> 2] | 0 + g = (32 - j) | 0 + h = (a + 24) | 0 + do + if ((g | 0) >= (b | 0)) { + i = (-1 >>> d) << j + k = (f[h >> 2] & ~i) | (i & (e << j)) + f[h >> 2] = k + i = (j + b) | 0 + f[c >> 2] = i + if ((i | 0) != 32) return + i = (a + 16) | 0 + l = f[i >> 2] | 0 + if ((l | 0) == (f[(a + 20) >> 2] | 0)) { + Ri((a + 12) | 0, h) + m = 0 + n = 0 + break + } else { + f[l >> 2] = k + f[i >> 2] = l + 4 + m = 0 + n = 0 + break + } + } else { + l = (-1 >>> j) << j + i = (f[h >> 2] & ~l) | (l & (e << j)) + f[h >> 2] = i + l = (a + 16) | 0 + k = f[l >> 2] | 0 + if ((k | 0) == (f[(a + 20) >> 2] | 0)) Ri((a + 12) | 0, h) + else { + f[k >> 2] = i + f[l >> 2] = k + 4 + } + k = (b - g) | 0 + m = k + n = (-1 >>> ((32 - k) | 0)) & (e >>> g) + } + while (0) + f[h >> 2] = n + f[c >> 2] = m + return + } + function tg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0 + e = c & 255 + g = (d | 0) != 0 + a: do + if (g & (((a & 3) | 0) != 0)) { + h = c & 255 + i = a + j = d + while (1) { + if ((b[i >> 0] | 0) == (h << 24) >> 24) { + k = i + l = j + m = 6 + break a + } + n = (i + 1) | 0 + o = (j + -1) | 0 + p = (o | 0) != 0 + if (p & (((n & 3) | 0) != 0)) { + i = n + j = o + } else { + q = n + r = o + s = p + m = 5 + break + } + } + } else { + q = a + r = d + s = g + m = 5 + } + while (0) + if ((m | 0) == 5) + if (s) { + k = q + l = r + m = 6 + } else { + t = q + u = 0 + } + b: do + if ((m | 0) == 6) { + q = c & 255 + if ((b[k >> 0] | 0) == (q << 24) >> 24) { + t = k + u = l + } else { + r = X(e, 16843009) | 0 + c: do + if (l >>> 0 > 3) { + s = k + g = l + while (1) { + d = f[s >> 2] ^ r + if ((((d & -2139062144) ^ -2139062144) & (d + -16843009)) | 0) + break + d = (s + 4) | 0 + a = (g + -4) | 0 + if (a >>> 0 > 3) { + s = d + g = a + } else { + v = d + w = a + m = 11 + break c + } + } + x = s + y = g + } else { + v = k + w = l + m = 11 + } + while (0) + if ((m | 0) == 11) + if (!w) { + t = v + u = 0 + break + } else { + x = v + y = w + } + while (1) { + if ((b[x >> 0] | 0) == (q << 24) >> 24) { + t = x + u = y + break b + } + r = (x + 1) | 0 + y = (y + -1) | 0 + if (!y) { + t = r + u = 0 + break + } else x = r + } + } + } + while (0) + return (u | 0 ? t : 0) | 0 + } + function ug(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + e = f[a >> 2] | 0 + g = e + do + if ((d | 0) == (e | 0)) { + h = (a + 8) | 0 + i = f[h >> 2] | 0 + j = (a + 12) | 0 + k = f[j >> 2] | 0 + l = k + if (i >>> 0 < k >>> 0) { + k = i + m = (((((l - k) >> 2) + 1) | 0) / 2) | 0 + n = (i + (m << 2)) | 0 + o = (k - d) | 0 + k = o >> 2 + p = (n + ((0 - k) << 2)) | 0 + if (!k) { + q = n + r = i + } else { + im(p | 0, d | 0, o | 0) | 0 + q = p + r = f[h >> 2] | 0 + } + f[c >> 2] = q + f[h >> 2] = r + (m << 2) + s = q + break + } + m = (l - g) >> 1 + l = (m | 0) == 0 ? 1 : m + if (l >>> 0 > 1073741823) { + m = ra(8) | 0 + Oo(m, 16035) + f[m >> 2] = 7256 + va(m | 0, 1112, 110) + } + m = ln(l << 2) | 0 + p = m + o = (m + ((((l + 3) | 0) >>> 2) << 2)) | 0 + n = o + k = (m + (l << 2)) | 0 + if ((d | 0) == (i | 0)) { + t = n + u = d + } else { + l = o + m = n + v = d + do { + f[l >> 2] = f[v >> 2] + l = (m + 4) | 0 + m = l + v = (v + 4) | 0 + } while ((v | 0) != (i | 0)) + t = m + u = f[a >> 2] | 0 + } + f[a >> 2] = p + f[c >> 2] = n + f[h >> 2] = t + f[j >> 2] = k + if (!u) s = o + else { + Oq(u) + s = f[c >> 2] | 0 + } + } else s = d + while (0) + f[(s + -4) >> 2] = f[b >> 2] + f[c >> 2] = (f[c >> 2] | 0) + -4 + return + } + function vg(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 8) | 0 + i = (a + 4) | 0 + if ((f[i >> 2] | 0) == -1) { + j = 0 + u = d + return j | 0 + } + k = f[(a + 8) >> 2] | 0 + l = (c + 16) | 0 + m = l + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + if (!(((o | 0) > 0) | (((o | 0) == 0) & (n >>> 0 > 0)))) { + m = ((f[(a + 12) >> 2] | 0) - k) | 0 + p = (c + 4) | 0 + f[g >> 2] = f[p >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, k, (k + m) | 0) | 0 + m = l + k = f[m >> 2] | 0 + q = f[(m + 4) >> 2] | 0 + m = (a + 20) | 0 + if (((q | 0) > 0) | (((q | 0) == 0) & (k >>> 0 > 0))) { + r = q + s = k + t = g + } else { + f[g >> 2] = f[p >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, m, (m + 4) | 0) | 0 + m = l + r = f[(m + 4) >> 2] | 0 + s = f[m >> 2] | 0 + t = g + } + } else { + r = o + s = n + t = g + } + b[h >> 0] = f[i >> 2] + if (!(((r | 0) > 0) | (((r | 0) == 0) & (s >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, (h + 1) | 0) | 0 + } + j = 1 + u = d + return j | 0 + } + function wg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + e = u + u = (u + 16) | 0 + g = (e + 4) | 0 + h = e + i = (a + 8) | 0 + a = f[i >> 2] | 0 + j = f[(a + 40) >> 2] | 0 + k = Lq((j | 0) > -1 ? j : -1) | 0 + l = (c + 4) | 0 + m = f[l >> 2] | 0 + n = f[c >> 2] | 0 + if ((m | 0) == (n | 0)) { + Mq(k) + u = e + return 1 + } + o = (d + 16) | 0 + p = (d + 4) | 0 + q = (k + j) | 0 + j = 0 + r = n + n = a + s = a + a = m + while (1) { + m = f[(r + (j << 2)) >> 2] | 0 + if (!(b[(n + 84) >> 0] | 0)) + t = f[((f[(n + 68) >> 2] | 0) + (m << 2)) >> 2] | 0 + else t = m + m = (s + 48) | 0 + v = f[m >> 2] | 0 + w = f[(m + 4) >> 2] | 0 + m = (s + 40) | 0 + x = f[m >> 2] | 0 + y = un(x | 0, f[(m + 4) >> 2] | 0, t | 0, 0) | 0 + m = Vn(y | 0, I | 0, v | 0, w | 0) | 0 + kh(k | 0, ((f[f[s >> 2] >> 2] | 0) + m) | 0, x | 0) | 0 + x = o + m = f[(x + 4) >> 2] | 0 + if (((m | 0) > 0) | (((m | 0) == 0) & ((f[x >> 2] | 0) >>> 0 > 0))) { + z = r + A = a + } else { + f[h >> 2] = f[p >> 2] + f[g >> 2] = f[h >> 2] + Me(d, g, k, q) | 0 + z = f[c >> 2] | 0 + A = f[l >> 2] | 0 + } + x = (j + 1) | 0 + if (x >>> 0 >= ((A - z) >> 2) >>> 0) break + m = f[i >> 2] | 0 + j = x + r = z + n = m + s = m + a = A + } + Mq(k) + u = e + return 1 + } + function xg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + d = ((f[b >> 2] | 0) * 3) | 0 + if ((d | 0) == -1) { + e = 0 + g = -1 + f[c >> 2] = g + return e | 0 + } + b = f[(a + 12) >> 2] | 0 + h = f[(b + 12) >> 2] | 0 + if ((f[(h + (d << 2)) >> 2] | 0) == -1) { + e = 0 + g = d + f[c >> 2] = g + return e | 0 + } + i = f[b >> 2] | 0 + b = f[(a + 152) >> 2] | 0 + if ((f[(b + (f[(i + (d << 2)) >> 2] << 2)) >> 2] | 0) == -1) { + a = (d + 1) | 0 + j = ((a >>> 0) % 3 | 0 | 0) == 0 ? (d + -2) | 0 : a + if ((j | 0) == -1) { + e = 0 + g = -1 + f[c >> 2] = g + return e | 0 + } + if ((f[(h + (j << 2)) >> 2] | 0) == -1) { + e = 0 + g = j + f[c >> 2] = g + return e | 0 + } + if ((f[(b + (f[(i + (j << 2)) >> 2] << 2)) >> 2] | 0) == -1) { + a = (j + 1) | 0 + k = ((a >>> 0) % 3 | 0 | 0) == 0 ? (j + -2) | 0 : a + if ((k | 0) == -1) { + e = 0 + g = -1 + f[c >> 2] = g + return e | 0 + } + if ((f[(h + (k << 2)) >> 2] | 0) == -1) { + e = 0 + g = k + f[c >> 2] = g + return e | 0 + } + if ((f[(b + (f[(i + (k << 2)) >> 2] << 2)) >> 2] | 0) == -1) { + i = (k + 1) | 0 + e = 1 + g = ((i >>> 0) % 3 | 0 | 0) == 0 ? (k + -2) | 0 : i + f[c >> 2] = g + return e | 0 + } else l = k + } else l = j + } else l = d + while (1) { + d = ((((l >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + l) | 0 + if ((d | 0) == -1) break + j = f[(h + (d << 2)) >> 2] | 0 + if ((j | 0) == -1) break + d = (j + (((j >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + if ((d | 0) == -1) break + else l = d + } + e = 0 + g = ((((l >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + l) | 0 + f[c >> 2] = g + return e | 0 + } + function yg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + e = (a + 4) | 0 + g = f[e >> 2] | 0 + if (!g) { + f[c >> 2] = e + h = e + return h | 0 + } + e = b[(d + 11) >> 0] | 0 + i = (e << 24) >> 24 < 0 + j = i ? f[(d + 4) >> 2] | 0 : e & 255 + e = i ? f[d >> 2] | 0 : d + d = (a + 4) | 0 + a = g + while (1) { + g = (a + 16) | 0 + i = b[(g + 11) >> 0] | 0 + k = (i << 24) >> 24 < 0 + l = k ? f[(a + 20) >> 2] | 0 : i & 255 + i = l >>> 0 < j >>> 0 + m = i ? l : j + if ( + (m | 0) != 0 + ? ((n = Vk(e, k ? f[g >> 2] | 0 : g, m) | 0), (n | 0) != 0) + : 0 + ) + if ((n | 0) < 0) o = 8 + else o = 10 + else if (j >>> 0 < l >>> 0) o = 8 + else o = 10 + if ((o | 0) == 8) { + o = 0 + n = f[a >> 2] | 0 + if (!n) { + o = 9 + break + } else { + p = a + q = n + } + } else if ((o | 0) == 10) { + o = 0 + n = j >>> 0 < l >>> 0 ? j : l + if ( + (n | 0) != 0 + ? ((l = Vk(k ? f[g >> 2] | 0 : g, e, n) | 0), (l | 0) != 0) + : 0 + ) { + if ((l | 0) >= 0) { + o = 16 + break + } + } else o = 12 + if ((o | 0) == 12 ? ((o = 0), !i) : 0) { + o = 16 + break + } + r = (a + 4) | 0 + i = f[r >> 2] | 0 + if (!i) { + o = 15 + break + } else { + p = r + q = i + } + } + d = p + a = q + } + if ((o | 0) == 9) { + f[c >> 2] = a + h = a + return h | 0 + } else if ((o | 0) == 15) { + f[c >> 2] = a + h = r + return h | 0 + } else if ((o | 0) == 16) { + f[c >> 2] = a + h = d + return h | 0 + } + return 0 + } + function zg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0 + d = u + u = (u + 32) | 0 + e = (d + 24) | 0 + g = (d + 16) | 0 + h = (d + 8) | 0 + i = d + j = (a + 4) | 0 + k = f[j >> 2] | 0 + l = f[b >> 2] | 0 + m = f[(b + 4) >> 2] | 0 + b = f[c >> 2] | 0 + n = f[(c + 4) >> 2] | 0 + c = (b - l) << 3 + f[j >> 2] = k - m + n + c + j = ((f[a >> 2] | 0) + ((k >>> 5) << 2)) | 0 + a = k & 31 + k = j + if ((m | 0) != (a | 0)) { + f[e >> 2] = l + f[(e + 4) >> 2] = m + f[g >> 2] = b + f[(g + 4) >> 2] = n + f[h >> 2] = k + f[(h + 4) >> 2] = a + xe(i, e, g, h) + u = d + return + } + h = (n - m + c) | 0 + c = l + if ((h | 0) > 0) { + if (!m) { + o = h + p = j + q = 0 + r = l + s = c + } else { + l = (32 - m) | 0 + n = (h | 0) < (l | 0) ? h : l + g = (-1 >>> ((l - n) | 0)) & (-1 << m) + f[j >> 2] = (f[j >> 2] & ~g) | (f[c >> 2] & g) + g = (n + m) | 0 + l = (c + 4) | 0 + o = (h - n) | 0 + p = (j + ((g >>> 5) << 2)) | 0 + q = g & 31 + r = l + s = l + } + l = ((o | 0) / 32) | 0 + im(p | 0, r | 0, (l << 2) | 0) | 0 + r = (o - (l << 5)) | 0 + o = (p + (l << 2)) | 0 + p = o + if ((r | 0) > 0) { + g = -1 >>> ((32 - r) | 0) + f[o >> 2] = (f[o >> 2] & ~g) | (f[(s + (l << 2)) >> 2] & g) + t = r + v = p + } else { + t = q + v = p + } + } else { + t = m + v = k + } + f[i >> 2] = v + f[(i + 4) >> 2] = t + u = d + return + } + function Ag(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = (a + 12) | 0 + g = f[e >> 2] | 0 + h = g + do + if ((d | 0) == (g | 0)) { + i = (a + 4) | 0 + j = f[i >> 2] | 0 + k = f[a >> 2] | 0 + l = k + if (j >>> 0 > k >>> 0) { + m = j + n = (((((m - l) >> 2) + 1) | 0) / -2) | 0 + o = (j + (n << 2)) | 0 + p = (d - m) | 0 + m = p >> 2 + if (!m) q = j + else { + im(o | 0, j | 0, p | 0) | 0 + q = f[i >> 2] | 0 + } + p = (o + (m << 2)) | 0 + f[c >> 2] = p + f[i >> 2] = q + (n << 2) + r = p + break + } + p = (h - l) >> 1 + l = (p | 0) == 0 ? 1 : p + if (l >>> 0 > 1073741823) { + p = ra(8) | 0 + Oo(p, 16035) + f[p >> 2] = 7256 + va(p | 0, 1112, 110) + } + p = ln(l << 2) | 0 + n = p + m = (p + ((l >>> 2) << 2)) | 0 + o = m + s = (p + (l << 2)) | 0 + if ((j | 0) == (d | 0)) { + t = o + u = k + } else { + k = m + m = o + l = j + do { + f[k >> 2] = f[l >> 2] + k = (m + 4) | 0 + m = k + l = (l + 4) | 0 + } while ((l | 0) != (d | 0)) + t = m + u = f[a >> 2] | 0 + } + f[a >> 2] = n + f[i >> 2] = o + f[c >> 2] = t + f[e >> 2] = s + if (!u) r = t + else { + Oq(u) + r = f[c >> 2] | 0 + } + } else r = d + while (0) + f[r >> 2] = f[b >> 2] + f[c >> 2] = (f[c >> 2] | 0) + 4 + return + } + function Bg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + h = (a + 12) | 0 + i = (a + 4) | 0 + j = f[i >> 2] | 0 + if ((j | 0) == (f[(a + 8) >> 2] | 0)) { + Ri(a, h) + k = f[i >> 2] | 0 + } else { + f[j >> 2] = f[h >> 2] + l = (j + 4) | 0 + f[i >> 2] = l + k = l + } + l = f[a >> 2] | 0 + f[g >> 2] = k - l + k = (b + 16) | 0 + j = k + m = f[(j + 4) >> 2] | 0 + if (!(((m | 0) > 0) | (((m | 0) == 0) & ((f[j >> 2] | 0) >>> 0 > 0)))) { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + j = f[a >> 2] | 0 + m = f[g >> 2] | 0 + g = k + k = f[(g + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & ((f[g >> 2] | 0) >>> 0 > 0))) { + n = j + o = e + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, j, (j + m) | 0) | 0 + n = f[a >> 2] | 0 + o = e + } + } else { + n = l + o = e + } + e = f[i >> 2] | 0 + if ((e | 0) == (n | 0)) { + f[h >> 2] = 0 + p = (a + 16) | 0 + f[p >> 2] = 0 + u = c + return + } + f[i >> 2] = e + (~(((e + -4 - n) | 0) >>> 2) << 2) + f[h >> 2] = 0 + p = (a + 16) | 0 + f[p >> 2] = 0 + u = c + return + } + function Cg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + e = c + g = (d - e) | 0 + h = (a + 8) | 0 + i = f[h >> 2] | 0 + j = f[a >> 2] | 0 + k = j + if (g >>> 0 > ((i - j) | 0) >>> 0) { + if (!j) l = i + else { + i = (a + 4) | 0 + if ((f[i >> 2] | 0) != (k | 0)) f[i >> 2] = k + Oq(k) + f[h >> 2] = 0 + f[i >> 2] = 0 + f[a >> 2] = 0 + l = 0 + } + if ((g | 0) < 0) aq(a) + i = l << 1 + m = l >>> 0 < 1073741823 ? (i >>> 0 < g >>> 0 ? g : i) : 2147483647 + if ((m | 0) < 0) aq(a) + i = ln(m) | 0 + l = (a + 4) | 0 + f[l >> 2] = i + f[a >> 2] = i + f[h >> 2] = i + m + if ((c | 0) == (d | 0)) return + else { + n = c + o = i + } + do { + b[o >> 0] = b[n >> 0] | 0 + n = (n + 1) | 0 + o = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = o + } while ((n | 0) != (d | 0)) + return + } else { + n = (a + 4) | 0 + a = ((f[n >> 2] | 0) - j) | 0 + j = g >>> 0 > a >>> 0 + g = (c + a) | 0 + a = j ? g : d + o = (a - e) | 0 + if (o | 0) im(k | 0, c | 0, o | 0) | 0 + c = (k + o) | 0 + if (!j) { + if ((f[n >> 2] | 0) == (c | 0)) return + f[n >> 2] = c + return + } + if ((a | 0) == (d | 0)) return + a = g + g = f[n >> 2] | 0 + do { + b[g >> 0] = b[a >> 0] | 0 + a = (a + 1) | 0 + g = ((f[n >> 2] | 0) + 1) | 0 + f[n >> 2] = g + } while ((a | 0) != (d | 0)) + return + } + } + function Dg(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = u + u = (u + 16) | 0 + d = c + if (b[(a + 352) >> 0] | 0) { + u = c + return 1 + } + e = (a + 8) | 0 + g = f[e >> 2] | 0 + h = ((f[(g + 12) >> 2] | 0) - (f[(g + 8) >> 2] | 0)) | 0 + g = h >> 2 + i = (a + 172) | 0 + Gi(i, (g + -1) | 0) + if (!(((g | 0) != 1) & ((h | 0) > 0))) { + u = c + return 1 + } + h = (a + 12) | 0 + a = 0 + j = 0 + while (1) { + k = f[((f[((f[e >> 2] | 0) + 8) >> 2] | 0) + (a << 2)) >> 2] | 0 + if (!(f[(k + 56) >> 2] | 0)) l = j + else { + m = f[i >> 2] | 0 + f[(m + ((j * 136) | 0)) >> 2] = a + n = f[(m + ((j * 136) | 0) + 104) >> 2] | 0 + o = (m + ((j * 136) | 0) + 108) | 0 + p = f[o >> 2] | 0 + if ((p | 0) != (n | 0)) + f[o >> 2] = p + (~(((p + -4 - n) | 0) >>> 2) << 2) + n = f[h >> 2] | 0 + gk( + (m + ((j * 136) | 0) + 104) | 0, + ((f[(n + 4) >> 2] | 0) - (f[n >> 2] | 0)) >> 2, + ) + n = ((f[i >> 2] | 0) + ((j * 136) | 0) + 116) | 0 + m = f[h >> 2] | 0 + p = ((f[(m + 4) >> 2] | 0) - (f[m >> 2] | 0)) >> 2 + f[d >> 2] = -1 + hg(n, p, d) + p = f[i >> 2] | 0 + f[(p + ((j * 136) | 0) + 128) >> 2] = 0 + Gc((p + ((j * 136) | 0) + 4) | 0, f[e >> 2] | 0, f[h >> 2] | 0, k) | 0 + l = (j + 1) | 0 + } + a = (a + 1) | 0 + if ((a | 0) >= (g | 0)) break + else j = l + } + u = c + return 1 + } + function Eg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = (a + 4) | 0 + g = f[e >> 2] | 0 + h = g + if (((d - g) >> 2) >>> 0 >= b >>> 0) { + sj(g | 0, 0, (b << 2) | 0) | 0 + f[e >> 2] = g + (b << 2) + return + } + i = f[a >> 2] | 0 + j = (g - i) >> 2 + g = (j + b) | 0 + k = i + if (g >>> 0 > 1073741823) aq(a) + l = (d - i) | 0 + d = l >> 1 + m = (l >> 2) >>> 0 < 536870911 ? (d >>> 0 < g >>> 0 ? g : d) : 1073741823 + do + if (m) + if (m >>> 0 > 1073741823) { + d = ra(8) | 0 + Oo(d, 16035) + f[d >> 2] = 7256 + va(d | 0, 1112, 110) + } else { + n = ln(m << 2) | 0 + break + } + else n = 0 + while (0) + d = (n + (j << 2)) | 0 + sj(d | 0, 0, (b << 2) | 0) | 0 + b = d + j = (n + (m << 2)) | 0 + m = (n + (g << 2)) | 0 + if ((h | 0) == (k | 0)) { + o = b + p = i + q = h + } else { + i = h + h = b + b = d + do { + i = (i + -4) | 0 + d = f[i >> 2] | 0 + f[i >> 2] = 0 + f[(b + -4) >> 2] = d + b = (h + -4) | 0 + h = b + } while ((i | 0) != (k | 0)) + o = h + p = f[a >> 2] | 0 + q = f[e >> 2] | 0 + } + f[a >> 2] = o + f[e >> 2] = m + f[c >> 2] = j + j = p + if ((q | 0) != (j | 0)) { + c = q + do { + c = (c + -4) | 0 + q = f[c >> 2] | 0 + f[c >> 2] = 0 + if (q | 0) Va[f[((f[q >> 2] | 0) + 4) >> 2] & 127](q) + } while ((c | 0) != (j | 0)) + } + if (!p) return + Oq(p) + return + } + function Fg(a, c, d, e, g, h) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = $(h) + var i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + i = u + u = (u + 16) | 0 + j = i + k = (i + 4) | 0 + f[j >> 2] = c + c = ln(32) | 0 + f[k >> 2] = c + f[(k + 8) >> 2] = -2147483616 + f[(k + 4) >> 2] = 17 + l = c + m = 14495 + n = (l + 17) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(c + 17) >> 0] = 0 + Xj(Hd(a, j) | 0, k, d) + if ((b[(k + 11) >> 0] | 0) < 0) Oq(f[k >> 2] | 0) + d = ln(32) | 0 + f[k >> 2] = d + f[(k + 8) >> 2] = -2147483616 + f[(k + 4) >> 2] = 19 + l = d + m = 14438 + n = (l + 19) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(d + 19) >> 0] = 0 + si(Hd(a, j) | 0, k, g, e) + if ((b[(k + 11) >> 0] | 0) < 0) Oq(f[k >> 2] | 0) + e = ln(32) | 0 + f[k >> 2] = e + f[(k + 8) >> 2] = -2147483616 + f[(k + 4) >> 2] = 18 + l = e + m = 14458 + n = (l + 18) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(e + 18) >> 0] = 0 + Tj(Hd(a, j) | 0, k, h) + if ((b[(k + 11) >> 0] | 0) >= 0) { + u = i + return + } + Oq(f[k >> 2] | 0) + u = i + return + } + function Gg(a) { + a = a | 0 + tk(a) + tk((a + 32) | 0) + tk((a + 64) | 0) + tk((a + 96) | 0) + tk((a + 128) | 0) + tk((a + 160) | 0) + tk((a + 192) | 0) + tk((a + 224) | 0) + tk((a + 256) | 0) + tk((a + 288) | 0) + tk((a + 320) | 0) + tk((a + 352) | 0) + tk((a + 384) | 0) + tk((a + 416) | 0) + tk((a + 448) | 0) + tk((a + 480) | 0) + tk((a + 512) | 0) + tk((a + 544) | 0) + tk((a + 576) | 0) + tk((a + 608) | 0) + tk((a + 640) | 0) + tk((a + 672) | 0) + tk((a + 704) | 0) + tk((a + 736) | 0) + tk((a + 768) | 0) + tk((a + 800) | 0) + tk((a + 832) | 0) + tk((a + 864) | 0) + tk((a + 896) | 0) + tk((a + 928) | 0) + tk((a + 960) | 0) + tk((a + 992) | 0) + tk((a + 1024) | 0) + return + } + function Hg(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + c = u + u = (u + 16) | 0 + d = c + if (b[(a + 288) >> 0] | 0) { + u = c + return 1 + } + e = (a + 8) | 0 + g = f[e >> 2] | 0 + h = ((f[(g + 12) >> 2] | 0) - (f[(g + 8) >> 2] | 0)) | 0 + g = h >> 2 + i = (a + 172) | 0 + Gi(i, (g + -1) | 0) + if (!(((g | 0) != 1) & ((h | 0) > 0))) { + u = c + return 1 + } + h = (a + 12) | 0 + a = 0 + j = 0 + while (1) { + k = f[((f[((f[e >> 2] | 0) + 8) >> 2] | 0) + (a << 2)) >> 2] | 0 + if (!(f[(k + 56) >> 2] | 0)) l = j + else { + m = f[i >> 2] | 0 + f[(m + ((j * 136) | 0)) >> 2] = a + n = f[(m + ((j * 136) | 0) + 104) >> 2] | 0 + o = (m + ((j * 136) | 0) + 108) | 0 + p = f[o >> 2] | 0 + if ((p | 0) != (n | 0)) + f[o >> 2] = p + (~(((p + -4 - n) | 0) >>> 2) << 2) + n = f[h >> 2] | 0 + gk( + (m + ((j * 136) | 0) + 104) | 0, + ((f[(n + 4) >> 2] | 0) - (f[n >> 2] | 0)) >> 2, + ) + n = ((f[i >> 2] | 0) + ((j * 136) | 0) + 116) | 0 + m = f[h >> 2] | 0 + p = ((f[(m + 4) >> 2] | 0) - (f[m >> 2] | 0)) >> 2 + f[d >> 2] = -1 + hg(n, p, d) + p = f[i >> 2] | 0 + f[(p + ((j * 136) | 0) + 128) >> 2] = 0 + Gc((p + ((j * 136) | 0) + 4) | 0, f[e >> 2] | 0, f[h >> 2] | 0, k) | 0 + l = (j + 1) | 0 + } + a = (a + 1) | 0 + if ((a | 0) >= (g | 0)) break + else j = l + } + u = c + return 1 + } + function Ig(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + d = c + e = b + g = (d - e) | 0 + h = g >> 2 + i = (a + 8) | 0 + j = f[i >> 2] | 0 + k = f[a >> 2] | 0 + l = k + if (h >>> 0 <= ((j - k) >> 2) >>> 0) { + m = (a + 4) | 0 + n = ((f[m >> 2] | 0) - k) >> 2 + o = h >>> 0 > n >>> 0 + p = o ? (b + (n << 2)) | 0 : c + c = p + n = (c - e) | 0 + e = n >> 2 + if (e | 0) im(k | 0, b | 0, n | 0) | 0 + n = (l + (e << 2)) | 0 + if (o) { + o = (d - c) | 0 + if ((o | 0) <= 0) return + kh(f[m >> 2] | 0, p | 0, o | 0) | 0 + f[m >> 2] = (f[m >> 2] | 0) + ((o >>> 2) << 2) + return + } else { + o = f[m >> 2] | 0 + if ((o | 0) == (n | 0)) return + f[m >> 2] = o + (~(((o + -4 - n) | 0) >>> 2) << 2) + return + } + } + n = k + if (!k) q = j + else { + j = (a + 4) | 0 + o = f[j >> 2] | 0 + if ((o | 0) != (l | 0)) + f[j >> 2] = o + (~(((o + -4 - k) | 0) >>> 2) << 2) + Oq(n) + f[i >> 2] = 0 + f[j >> 2] = 0 + f[a >> 2] = 0 + q = 0 + } + if (h >>> 0 > 1073741823) aq(a) + j = q >> 1 + n = (q >> 2) >>> 0 < 536870911 ? (j >>> 0 < h >>> 0 ? h : j) : 1073741823 + if (n >>> 0 > 1073741823) aq(a) + j = ln(n << 2) | 0 + h = (a + 4) | 0 + f[h >> 2] = j + f[a >> 2] = j + f[i >> 2] = j + (n << 2) + if ((g | 0) <= 0) return + kh(j | 0, b | 0, g | 0) | 0 + f[h >> 2] = j + ((g >>> 2) << 2) + return + } + function Jg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0.0, + p = 0, + q = 0.0, + r = 0.0, + s = 0.0, + t = 0, + v = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (c + 1) | 0 + f[g >> 2] = 0 + i = (g + 4) | 0 + f[i >> 2] = 0 + f[(g + 8) >> 2] = 0 + do + if (h) + if (h >>> 0 > 1073741823) aq(g) + else { + j = ln(h << 2) | 0 + f[g >> 2] = j + k = (j + (h << 2)) | 0 + f[(g + 8) >> 2] = k + sj(j | 0, 0, ((c << 2) + 4) | 0) | 0 + f[i >> 2] = k + l = j + m = k + n = j + break + } + else { + l = 0 + m = 0 + n = 0 + } + while (0) + if ((b | 0) > 0) { + g = 0 + do { + j = (l + (f[(a + (g << 2)) >> 2] << 2)) | 0 + f[j >> 2] = (f[j >> 2] | 0) + 1 + g = (g + 1) | 0 + } while ((g | 0) != (b | 0)) + } + o = +(b | 0) + if ((c | 0) < 0) { + p = 0 + q = 0.0 + } else { + c = 0 + r = 0.0 + b = 0 + while (1) { + g = f[(l + (b << 2)) >> 2] | 0 + s = +(g | 0) + if ((g | 0) > 0) { + t = (c + 1) | 0 + v = r + +Zg(s / o) * s + } else { + t = c + v = r + } + b = (b + 1) | 0 + if ((b | 0) == (h | 0)) { + p = t + q = v + break + } else { + c = t + r = v + } + } + } + if (d | 0) f[d >> 2] = p + v = -q + p = ~~v >>> 0 + d = + +K(v) >= 1.0 + ? v > 0.0 + ? ~~+Y(+J(v / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((v - +(~~v >>> 0)) / 4294967296.0) >>> 0 + : 0 + if (!l) { + I = d + u = e + return p | 0 + } + if ((m | 0) != (l | 0)) f[i >> 2] = m + (~(((m + -4 - l) | 0) >>> 2) << 2) + Oq(n) + I = d + u = e + return p | 0 + } + function Kg(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + e = u + u = (u + 16) | 0 + g = (e + 4) | 0 + h = e + i = ln(32) | 0 + f[a >> 2] = i + f[(a + 4) >> 2] = c + 4 + c = (a + 8) | 0 + b[c >> 0] = 0 + f[(i + 16) >> 2] = f[d >> 2] + a = (i + 20) | 0 + f[(i + 24) >> 2] = 0 + f[(i + 28) >> 2] = 0 + j = (i + 24) | 0 + f[a >> 2] = j + i = f[(d + 4) >> 2] | 0 + k = (d + 8) | 0 + if ((i | 0) == (k | 0)) { + b[c >> 0] = 1 + u = e + return + } + d = j + j = i + while (1) { + i = (j + 16) | 0 + f[h >> 2] = d + f[g >> 2] = f[h >> 2] + ph(a, g, i, i) | 0 + i = f[(j + 4) >> 2] | 0 + if (!i) { + l = (j + 8) | 0 + m = f[l >> 2] | 0 + if ((f[m >> 2] | 0) == (j | 0)) n = m + else { + m = l + do { + l = f[m >> 2] | 0 + m = (l + 8) | 0 + o = f[m >> 2] | 0 + } while ((f[o >> 2] | 0) != (l | 0)) + n = o + } + } else { + m = i + while (1) { + o = f[m >> 2] | 0 + if (!o) break + else m = o + } + n = m + } + if ((n | 0) == (k | 0)) break + else j = n + } + b[c >> 0] = 1 + u = e + return + } + function Lg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = u + u = (u + 16) | 0 + e = d + f[e >> 2] = b + g = (a + 8) | 0 + if (((((f[(a + 12) >> 2] | 0) - (f[g >> 2] | 0)) >> 2) | 0) <= (b | 0)) + Bh(g, (b + 1) | 0) + h = f[((f[c >> 2] | 0) + 56) >> 2] | 0 + do + if ((h | 0) < 5) { + i = (a + 20 + ((h * 12) | 0) + 4) | 0 + j = f[i >> 2] | 0 + if ((j | 0) == (f[(a + 20 + ((h * 12) | 0) + 8) >> 2] | 0)) { + Ri((a + 20 + ((h * 12) | 0)) | 0, e) + break + } else { + f[j >> 2] = b + f[i >> 2] = j + 4 + break + } + } + while (0) + b = f[c >> 2] | 0 + h = f[e >> 2] | 0 + f[(b + 60) >> 2] = h + e = ((f[g >> 2] | 0) + (h << 2)) | 0 + f[c >> 2] = 0 + c = f[e >> 2] | 0 + f[e >> 2] = b + if (!c) { + u = d + return + } + b = (c + 88) | 0 + e = f[b >> 2] | 0 + f[b >> 2] = 0 + if (e | 0) { + b = f[(e + 8) >> 2] | 0 + if (b | 0) { + h = (e + 12) | 0 + if ((f[h >> 2] | 0) != (b | 0)) f[h >> 2] = b + Oq(b) + } + Oq(e) + } + e = f[(c + 68) >> 2] | 0 + if (e | 0) { + b = (c + 72) | 0 + h = f[b >> 2] | 0 + if ((h | 0) != (e | 0)) + f[b >> 2] = h + (~(((h + -4 - e) | 0) >>> 2) << 2) + Oq(e) + } + e = (c + 64) | 0 + h = f[e >> 2] | 0 + f[e >> 2] = 0 + if (h | 0) { + e = f[h >> 2] | 0 + if (e | 0) { + b = (h + 4) | 0 + if ((f[b >> 2] | 0) != (e | 0)) f[b >> 2] = e + Oq(e) + } + Oq(h) + } + Oq(c) + u = d + return + } + function Mg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + b = u + u = (u + 16) | 0 + c = (b + 4) | 0 + d = b + e = (a + 8) | 0 + g = f[e >> 2] | 0 + gk( + f[(a + 4) >> 2] | 0, + ((f[(g + 56) >> 2] | 0) - (f[(g + 52) >> 2] | 0)) >> 2, + ) + g = (a + 84) | 0 + a = f[g >> 2] | 0 + if (!a) { + h = f[((f[e >> 2] | 0) + 64) >> 2] | 0 + i = ((f[(h + 4) >> 2] | 0) - (f[h >> 2] | 0)) >> 2 + h = ((i >>> 0) / 3) | 0 + if (i >>> 0 <= 2) { + u = b + return 1 + } + i = 0 + do { + f[d >> 2] = i * 3 + f[c >> 2] = f[d >> 2] + Zb(e, c) + i = (i + 1) | 0 + } while ((i | 0) < (h | 0)) + u = b + return 1 + } else { + h = f[a >> 2] | 0 + if ((f[(a + 4) >> 2] | 0) == (h | 0)) { + u = b + return 1 + } + a = 0 + i = h + do { + f[d >> 2] = f[(i + (a << 2)) >> 2] + f[c >> 2] = f[d >> 2] + Zb(e, c) + a = (a + 1) | 0 + h = f[g >> 2] | 0 + i = f[h >> 2] | 0 + } while (a >>> 0 < (((f[(h + 4) >> 2] | 0) - i) >> 2) >>> 0) + u = b + return 1 + } + return 0 + } + function Ng(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0 + d = u + u = (u + 48) | 0 + e = (d + 16) | 0 + g = d + h = (d + 32) | 0 + i = (a + 28) | 0 + j = f[i >> 2] | 0 + f[h >> 2] = j + k = (a + 20) | 0 + l = ((f[k >> 2] | 0) - j) | 0 + f[(h + 4) >> 2] = l + f[(h + 8) >> 2] = b + f[(h + 12) >> 2] = c + b = (l + c) | 0 + l = (a + 60) | 0 + f[g >> 2] = f[l >> 2] + f[(g + 4) >> 2] = h + f[(g + 8) >> 2] = 2 + j = to(Aa(146, g | 0) | 0) | 0 + a: do + if ((b | 0) != (j | 0)) { + g = 2 + m = b + n = h + o = j + while (1) { + if ((o | 0) < 0) break + m = (m - o) | 0 + p = f[(n + 4) >> 2] | 0 + q = o >>> 0 > p >>> 0 + r = q ? (n + 8) | 0 : n + s = (g + ((q << 31) >> 31)) | 0 + t = (o - (q ? p : 0)) | 0 + f[r >> 2] = (f[r >> 2] | 0) + t + p = (r + 4) | 0 + f[p >> 2] = (f[p >> 2] | 0) - t + f[e >> 2] = f[l >> 2] + f[(e + 4) >> 2] = r + f[(e + 8) >> 2] = s + o = to(Aa(146, e | 0) | 0) | 0 + if ((m | 0) == (o | 0)) { + v = 3 + break a + } else { + g = s + n = r + } + } + f[(a + 16) >> 2] = 0 + f[i >> 2] = 0 + f[k >> 2] = 0 + f[a >> 2] = f[a >> 2] | 32 + if ((g | 0) == 2) w = 0 + else w = (c - (f[(n + 4) >> 2] | 0)) | 0 + } else v = 3 + while (0) + if ((v | 0) == 3) { + v = f[(a + 44) >> 2] | 0 + f[(a + 16) >> 2] = v + (f[(a + 48) >> 2] | 0) + a = v + f[i >> 2] = a + f[k >> 2] = a + w = c + } + u = d + return w | 0 + } + function Og(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + f[a >> 2] = 6192 + b = f[(a + 68) >> 2] | 0 + if (b | 0) { + c = (a + 72) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 56) >> 2] | 0 + if (b | 0) { + d = (a + 60) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 44) >> 2] | 0 + if (b | 0) { + c = (a + 48) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 32) >> 2] | 0 + if (b | 0) { + d = (a + 36) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 20) >> 2] | 0 + if (b | 0) { + c = (a + 24) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + hi((a + 8) | 0) + b = (a + 4) | 0 + a = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!a) return + b = (a + 40) | 0 + d = f[b >> 2] | 0 + if (d | 0) { + c = (a + 44) | 0 + e = f[c >> 2] | 0 + if ((e | 0) == (d | 0)) g = d + else { + h = e + do { + e = (h + -4) | 0 + f[c >> 2] = e + i = f[e >> 2] | 0 + f[e >> 2] = 0 + if (i | 0) { + bj(i) + Oq(i) + } + h = f[c >> 2] | 0 + } while ((h | 0) != (d | 0)) + g = f[b >> 2] | 0 + } + Oq(g) + } + bj(a) + Oq(a) + return + } + function Pg(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + c = (a + 12) | 0 + d = f[a >> 2] | 0 + e = (a + 8) | 0 + g = f[e >> 2] | 0 + h = (g | 0) == -1 + if (!(b[c >> 0] | 0)) { + do + if ( + ( + ( + !h + ? ((i = ((((g >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + g) | 0), + (i | 0) != -1) + : 0 + ) + ? ((f[((f[d >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) == + 0 + : 0 + ) + ? ((j = + f[ + ((f[((f[(d + 64) >> 2] | 0) + 12) >> 2] | 0) + (i << 2)) >> + 2 + ] | 0), + (j | 0) != -1) + : 0 + ) + if (!((j >>> 0) % 3 | 0)) { + k = (j + 2) | 0 + break + } else { + k = (j + -1) | 0 + break + } + else k = -1 + while (0) + f[e >> 2] = k + return + } + k = (g + 1) | 0 + if ( + ( + ( + !h + ? ((h = ((k >>> 0) % 3 | 0 | 0) == 0 ? (g + -2) | 0 : k), + (h | 0) != -1) + : 0 + ) + ? ((f[((f[d >> 2] | 0) + ((h >>> 5) << 2)) >> 2] & + (1 << (h & 31))) | + 0) == + 0 + : 0 + ) + ? ((k = + f[((f[((f[(d + 64) >> 2] | 0) + 12) >> 2] | 0) + (h << 2)) >> 2] | + 0), + (h = (k + 1) | 0), + (k | 0) != -1) + : 0 + ) { + g = ((h >>> 0) % 3 | 0 | 0) == 0 ? (k + -2) | 0 : h + f[e >> 2] = g + if ((g | 0) != -1) { + if ((g | 0) != (f[(a + 4) >> 2] | 0)) return + f[e >> 2] = -1 + return + } + } else f[e >> 2] = -1 + g = f[(a + 4) >> 2] | 0 + do + if ( + ( + ( + (g | 0) != -1 + ? ((a = ((((g >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + g) | 0), + (a | 0) != -1) + : 0 + ) + ? ((f[((f[d >> 2] | 0) + ((a >>> 5) << 2)) >> 2] & + (1 << (a & 31))) | + 0) == + 0 + : 0 + ) + ? ((h = + f[ + ((f[((f[(d + 64) >> 2] | 0) + 12) >> 2] | 0) + (a << 2)) >> 2 + ] | 0), + (h | 0) != -1) + : 0 + ) + if (!((h >>> 0) % 3 | 0)) { + l = (h + 2) | 0 + break + } else { + l = (h + -1) | 0 + break + } + else l = -1 + while (0) + f[e >> 2] = l + b[c >> 0] = 0 + return + } + function Qg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = (a + 4) | 0 + d = f[a >> 2] | 0 + e = ((f[c >> 2] | 0) - d) >> 2 + g = (e + 1) | 0 + if (g >>> 0 > 1073741823) aq(a) + h = (a + 8) | 0 + i = ((f[h >> 2] | 0) - d) | 0 + d = i >> 1 + j = (i >> 2) >>> 0 < 536870911 ? (d >>> 0 < g >>> 0 ? g : d) : 1073741823 + do + if (j) + if (j >>> 0 > 1073741823) { + d = ra(8) | 0 + Oo(d, 16035) + f[d >> 2] = 7256 + va(d | 0, 1112, 110) + } else { + k = ln(j << 2) | 0 + break + } + else k = 0 + while (0) + d = (k + (e << 2)) | 0 + e = d + g = (k + (j << 2)) | 0 + j = f[b >> 2] | 0 + f[b >> 2] = 0 + f[d >> 2] = j + j = (d + 4) | 0 + b = f[a >> 2] | 0 + k = f[c >> 2] | 0 + if ((k | 0) == (b | 0)) { + l = e + m = b + n = b + } else { + i = k + k = e + e = d + do { + i = (i + -4) | 0 + d = f[i >> 2] | 0 + f[i >> 2] = 0 + f[(e + -4) >> 2] = d + e = (k + -4) | 0 + k = e + } while ((i | 0) != (b | 0)) + l = k + m = f[a >> 2] | 0 + n = f[c >> 2] | 0 + } + f[a >> 2] = l + f[c >> 2] = j + f[h >> 2] = g + g = m + if ((n | 0) != (g | 0)) { + h = n + do { + h = (h + -4) | 0 + n = f[h >> 2] | 0 + f[h >> 2] = 0 + if (n | 0) Va[f[((f[n >> 2] | 0) + 4) >> 2] & 127](n) + } while ((h | 0) != (g | 0)) + } + if (!m) return + Oq(m) + return + } + function Rg(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = (a + 4) | 0 + a = f[d >> 2] | 0 + do + if (a | 0) { + e = b[(c + 11) >> 0] | 0 + g = (e << 24) >> 24 < 0 + h = g ? f[(c + 4) >> 2] | 0 : e & 255 + e = g ? f[c >> 2] | 0 : c + g = d + i = a + a: while (1) { + j = i + while (1) { + k = (j + 16) | 0 + l = b[(k + 11) >> 0] | 0 + m = (l << 24) >> 24 < 0 + n = m ? f[(j + 20) >> 2] | 0 : l & 255 + l = h >>> 0 < n >>> 0 ? h : n + if ( + (l | 0) != 0 + ? ((o = Vk(m ? f[k >> 2] | 0 : k, e, l) | 0), (o | 0) != 0) + : 0 + ) { + if ((o | 0) >= 0) break + } else p = 6 + if ((p | 0) == 6 ? ((p = 0), n >>> 0 >= h >>> 0) : 0) break + n = f[(j + 4) >> 2] | 0 + if (!n) { + q = g + break a + } else j = n + } + i = f[j >> 2] | 0 + if (!i) { + q = j + break + } else g = j + } + if ((q | 0) != (d | 0)) { + g = (q + 16) | 0 + i = b[(g + 11) >> 0] | 0 + n = (i << 24) >> 24 < 0 + o = n ? f[(q + 20) >> 2] | 0 : i & 255 + i = o >>> 0 < h >>> 0 ? o : h + if ( + i | 0 ? ((l = Vk(e, n ? f[g >> 2] | 0 : g, i) | 0), l | 0) : 0 + ) { + if ((l | 0) < 0) break + else r = q + return r | 0 + } + if (h >>> 0 >= o >>> 0) { + r = q + return r | 0 + } + } + } + while (0) + r = d + return r | 0 + } + function Sg(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + c = (a + 8) | 0 + f[c >> 2] = f[b >> 2] + fg((a + 12) | 0, (b + 4) | 0) | 0 + d = (a + 44) | 0 + e = (b + 36) | 0 + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + f[(d + 8) >> 2] = f[(e + 8) >> 2] + f[(d + 12) >> 2] = f[(e + 12) >> 2] + if ((c | 0) == (b | 0)) { + f[(a + 96) >> 2] = f[(b + 88) >> 2] + return + } else { + ng((a + 60) | 0, f[(b + 52) >> 2] | 0, f[(b + 56) >> 2] | 0) + ng((a + 72) | 0, f[(b + 64) >> 2] | 0, f[(b + 68) >> 2] | 0) + ng((a + 84) | 0, f[(b + 76) >> 2] | 0, f[(b + 80) >> 2] | 0) + f[(a + 96) >> 2] = f[(b + 88) >> 2] + Ig((a + 100) | 0, f[(b + 92) >> 2] | 0, f[(b + 96) >> 2] | 0) + return + } + } + function Tg(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + d = (a + 8) | 0 + e = f[d >> 2] | 0 + g = (a + 4) | 0 + h = f[g >> 2] | 0 + if (((((e - h) | 0) / 12) | 0) >>> 0 >= b >>> 0) { + i = b + j = h + do { + f[j >> 2] = f[c >> 2] + f[(j + 4) >> 2] = f[(c + 4) >> 2] + f[(j + 8) >> 2] = f[(c + 8) >> 2] + j = ((f[g >> 2] | 0) + 12) | 0 + f[g >> 2] = j + i = (i + -1) | 0 + } while ((i | 0) != 0) + return + } + i = f[a >> 2] | 0 + j = (((h - i) | 0) / 12) | 0 + h = (j + b) | 0 + if (h >>> 0 > 357913941) aq(a) + k = (((e - i) | 0) / 12) | 0 + i = k << 1 + e = k >>> 0 < 178956970 ? (i >>> 0 < h >>> 0 ? h : i) : 357913941 + do + if (e) + if (e >>> 0 > 357913941) { + i = ra(8) | 0 + Oo(i, 16035) + f[i >> 2] = 7256 + va(i | 0, 1112, 110) + } else { + l = ln((e * 12) | 0) | 0 + break + } + else l = 0 + while (0) + i = (l + ((j * 12) | 0)) | 0 + j = (l + ((e * 12) | 0)) | 0 + e = b + b = i + l = i + do { + f[b >> 2] = f[c >> 2] + f[(b + 4) >> 2] = f[(c + 4) >> 2] + f[(b + 8) >> 2] = f[(c + 8) >> 2] + b = (l + 12) | 0 + l = b + e = (e + -1) | 0 + } while ((e | 0) != 0) + e = f[a >> 2] | 0 + b = ((f[g >> 2] | 0) - e) | 0 + c = (i + (((((b | 0) / -12) | 0) * 12) | 0)) | 0 + if ((b | 0) > 0) kh(c | 0, e | 0, b | 0) | 0 + f[a >> 2] = c + f[g >> 2] = l + f[d >> 2] = j + if (!e) return + Oq(e) + return + } + function Ug(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = (a + 4) | 0 + d = f[a >> 2] | 0 + e = ((f[c >> 2] | 0) - d) >> 2 + g = (e + 1) | 0 + if (g >>> 0 > 1073741823) aq(a) + h = (a + 8) | 0 + i = ((f[h >> 2] | 0) - d) | 0 + d = i >> 1 + j = (i >> 2) >>> 0 < 536870911 ? (d >>> 0 < g >>> 0 ? g : d) : 1073741823 + do + if (j) + if (j >>> 0 > 1073741823) { + d = ra(8) | 0 + Oo(d, 16035) + f[d >> 2] = 7256 + va(d | 0, 1112, 110) + } else { + k = ln(j << 2) | 0 + break + } + else k = 0 + while (0) + d = (k + (e << 2)) | 0 + e = d + g = (k + (j << 2)) | 0 + j = f[b >> 2] | 0 + f[b >> 2] = 0 + f[d >> 2] = j + j = (d + 4) | 0 + b = f[a >> 2] | 0 + k = f[c >> 2] | 0 + if ((k | 0) == (b | 0)) { + l = e + m = b + n = b + } else { + i = k + k = e + e = d + do { + i = (i + -4) | 0 + d = f[i >> 2] | 0 + f[i >> 2] = 0 + f[(e + -4) >> 2] = d + e = (k + -4) | 0 + k = e + } while ((i | 0) != (b | 0)) + l = k + m = f[a >> 2] | 0 + n = f[c >> 2] | 0 + } + f[a >> 2] = l + f[c >> 2] = j + f[h >> 2] = g + g = m + if ((n | 0) != (g | 0)) { + h = n + do { + h = (h + -4) | 0 + n = f[h >> 2] | 0 + f[h >> 2] = 0 + if (n | 0) { + bj(n) + Oq(n) + } + } while ((h | 0) != (g | 0)) + } + if (!m) return + Oq(m) + return + } + function Vg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + e = f[b >> 2] | 0 + g = f[a >> 2] | 0 + h = f[d >> 2] | 0 + d = f[h >> 2] | 0 + i = ((f[(h + 4) >> 2] | 0) - d) >> 3 + if (i >>> 0 <= e >>> 0) aq(h) + j = d + if (i >>> 0 <= g >>> 0) aq(h) + d = f[(j + (e << 3)) >> 2] | 0 + k = f[c >> 2] | 0 + if (i >>> 0 <= k >>> 0) aq(h) + l = (j + (g << 3)) | 0 + m = (f[(j + (k << 3)) >> 2] | 0) >>> 0 < d >>> 0 + if (d >>> 0 < (f[l >> 2] | 0) >>> 0) { + if (m) { + f[a >> 2] = k + f[c >> 2] = g + n = 1 + return n | 0 + } + f[a >> 2] = e + f[b >> 2] = g + d = f[c >> 2] | 0 + if (i >>> 0 <= d >>> 0) aq(h) + if ((f[(j + (d << 3)) >> 2] | 0) >>> 0 >= (f[l >> 2] | 0) >>> 0) { + n = 1 + return n | 0 + } + f[b >> 2] = d + f[c >> 2] = g + n = 2 + return n | 0 + } + if (!m) { + n = 0 + return n | 0 + } + f[b >> 2] = k + f[c >> 2] = e + e = f[b >> 2] | 0 + c = f[a >> 2] | 0 + if (i >>> 0 <= e >>> 0) aq(h) + if (i >>> 0 <= c >>> 0) aq(h) + if ( + (f[(j + (e << 3)) >> 2] | 0) >>> 0 >= + (f[(j + (c << 3)) >> 2] | 0) >>> 0 + ) { + n = 1 + return n | 0 + } + f[a >> 2] = e + f[b >> 2] = c + n = 2 + return n | 0 + } + function Wg(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + b = u + u = (u + 16) | 0 + c = (b + 4) | 0 + d = b + e = (a + 8) | 0 + g = f[e >> 2] | 0 + gk( + f[(a + 4) >> 2] | 0, + ((f[(g + 28) >> 2] | 0) - (f[(g + 24) >> 2] | 0)) >> 2, + ) + g = (a + 84) | 0 + a = f[g >> 2] | 0 + if (!a) { + h = f[e >> 2] | 0 + i = ((f[(h + 4) >> 2] | 0) - (f[h >> 2] | 0)) >> 2 + h = ((i >>> 0) / 3) | 0 + if (i >>> 0 <= 2) { + u = b + return 1 + } + i = 0 + do { + f[d >> 2] = i * 3 + f[c >> 2] = f[d >> 2] + dc(e, c) + i = (i + 1) | 0 + } while ((i | 0) < (h | 0)) + u = b + return 1 + } else { + h = f[a >> 2] | 0 + if ((f[(a + 4) >> 2] | 0) == (h | 0)) { + u = b + return 1 + } + a = 0 + i = h + do { + f[d >> 2] = f[(i + (a << 2)) >> 2] + f[c >> 2] = f[d >> 2] + dc(e, c) + a = (a + 1) | 0 + h = f[g >> 2] | 0 + i = f[h >> 2] | 0 + } while (a >>> 0 < (((f[(h + 4) >> 2] | 0) - i) >> 2) >>> 0) + u = b + return 1 + } + return 0 + } + function Xg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + a = u + u = (u + 16) | 0 + e = a + if (!b) { + g = 0 + u = a + return g | 0 + } + h = (b + 96) | 0 + i = (b + 100) | 0 + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + b = f[i >> 2] | 0 + j = f[h >> 2] | 0 + k = (((b - j) | 0) / 12) | 0 + l = j + j = b + if (k >>> 0 >= c >>> 0) { + if ( + k >>> 0 > c >>> 0 + ? ((b = (l + ((c * 12) | 0)) | 0), (b | 0) != (j | 0)) + : 0 + ) + f[i >> 2] = j + ((~(((((j + -12 - b) | 0) >>> 0) / 12) | 0) * 12) | 0) + if (!c) { + g = 1 + u = a + return g | 0 + } + } else Tg(h, (c - k) | 0, e) + k = 0 + b = f[h >> 2] | 0 + while (1) { + j = (k * 3) | 0 + l = f[(d + (j << 2)) >> 2] | 0 + m = f[(d + ((j + 1) << 2)) >> 2] | 0 + n = f[(d + ((j + 2) << 2)) >> 2] | 0 + j = ((((f[i >> 2] | 0) - b) | 0) / 12) | 0 + o = k + k = (k + 1) | 0 + if (o >>> 0 < j >>> 0) { + p = b + q = b + } else { + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + Tg(h, (k - j) | 0, e) + j = f[h >> 2] | 0 + p = j + q = j + } + f[(p + ((o * 12) | 0)) >> 2] = l + f[(p + ((o * 12) | 0) + 4) >> 2] = m + f[(p + ((o * 12) | 0) + 8) >> 2] = n + if ((k | 0) == (c | 0)) { + g = 1 + break + } else b = q + } + u = a + return g | 0 + } + function Yg(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0 + e = u + u = (u + 80) | 0 + g = (e + 36) | 0 + h = e + ao(g, c) + Ke(h, b, c) + Ph(g, h) + Ej((h + 24) | 0, f[(h + 28) >> 2] | 0) + Oj((h + 12) | 0, f[(h + 16) >> 2] | 0) + Ej(h, f[(h + 4) >> 2] | 0) + cj(a, g, d) + Ej((g + 24) | 0, f[(g + 28) >> 2] | 0) + Oj((g + 12) | 0, f[(g + 16) >> 2] | 0) + Ej(g, f[(g + 4) >> 2] | 0) + u = e + return + } + function Zg(a) { + a = +a + var b = 0, + c = 0, + d = 0, + e = 0.0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0.0, + n = 0.0, + o = 0.0, + q = 0.0, + r = 0.0, + t = 0.0 + p[s >> 3] = a + b = f[s >> 2] | 0 + c = f[(s + 4) >> 2] | 0 + d = (c | 0) < 0 + do + if (d | (c >>> 0 < 1048576)) { + if (((b | 0) == 0) & (((c & 2147483647) | 0) == 0)) { + e = -1.0 / (a * a) + break + } + if (d) { + e = (a - a) / 0.0 + break + } else { + p[s >> 3] = a * 18014398509481984.0 + g = f[(s + 4) >> 2] | 0 + h = -1077 + i = g + j = f[s >> 2] | 0 + k = g + l = 9 + break + } + } else if (c >>> 0 <= 2146435071) + if (((b | 0) == 0) & (0 == 0) & ((c | 0) == 1072693248)) e = 0.0 + else { + h = -1023 + i = c + j = b + k = c + l = 9 + } + else e = a + while (0) + if ((l | 0) == 9) { + l = (i + 614242) | 0 + f[s >> 2] = j + f[(s + 4) >> 2] = (l & 1048575) + 1072079006 + a = +p[s >> 3] + -1.0 + m = a * a * 0.5 + n = a / (a + 2.0) + o = n * n + q = o * o + p[s >> 3] = a - m + j = f[(s + 4) >> 2] | 0 + f[s >> 2] = 0 + f[(s + 4) >> 2] = j + r = +p[s >> 3] + t = + a - + r - + m + + n * + (m + + (q * + (q * (q * 0.15313837699209373 + 0.22222198432149784) + + 0.3999999999940942) + + o * + (q * + (q * (q * 0.14798198605116586 + 0.1818357216161805) + + 0.2857142874366239) + + 0.6666666666666735))) + q = r * 1.4426950407214463 + o = +((h + (l >>> 20)) | 0) + m = q + o + e = + m + + (q + + (o - m) + + (t * 1.4426950407214463 + (t + r) * 1.6751713164886512e-10)) + } + return +e + } + function _g(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + d = u + u = (u + 16) | 0 + e = d + g = ln(32) | 0 + f[e >> 2] = g + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 17 + h = g + i = 14390 + j = (h + 17) | 0 + do { + b[h >> 0] = b[i >> 0] | 0 + h = (h + 1) | 0 + i = (i + 1) | 0 + } while ((h | 0) < (j | 0)) + b[(g + 17) >> 0] = 0 + g = (c + 16) | 0 + i = f[g >> 2] | 0 + if (i) { + h = g + j = i + a: while (1) { + i = j + while (1) { + if ((f[(i + 16) >> 2] | 0) >= (a | 0)) break + k = f[(i + 4) >> 2] | 0 + if (!k) { + l = h + break a + } else i = k + } + j = f[i >> 2] | 0 + if (!j) { + l = i + break + } else h = i + } + if ( + ((l | 0) != (g | 0) ? (f[(l + 16) >> 2] | 0) <= (a | 0) : 0) + ? ((a = (l + 20) | 0), (Jh(a, e) | 0) != 0) + : 0 + ) + m = a + else n = 10 + } else n = 10 + if ((n | 0) == 10) m = c + c = Hk(m, e, -1) | 0 + if ((b[(e + 11) >> 0] | 0) >= 0) { + o = (c | 0) == -1 + p = c >>> 0 > 6 + q = p ? -2 : c + r = o ? -1 : q + u = d + return r | 0 + } + Oq(f[e >> 2] | 0) + o = (c | 0) == -1 + p = c >>> 0 > 6 + q = p ? -2 : c + r = o ? -1 : q + u = d + return r | 0 + } + function $g(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + d = u + u = (u + 16) | 0 + e = d + g = f[c >> 2] | 0 + f[c >> 2] = 0 + f[e >> 2] = g + Lg(a, b, e) + g = f[e >> 2] | 0 + f[e >> 2] = 0 + if (g | 0) { + e = (g + 88) | 0 + c = f[e >> 2] | 0 + f[e >> 2] = 0 + if (c | 0) { + e = f[(c + 8) >> 2] | 0 + if (e | 0) { + h = (c + 12) | 0 + if ((f[h >> 2] | 0) != (e | 0)) f[h >> 2] = e + Oq(e) + } + Oq(c) + } + c = f[(g + 68) >> 2] | 0 + if (c | 0) { + e = (g + 72) | 0 + h = f[e >> 2] | 0 + if ((h | 0) != (c | 0)) + f[e >> 2] = h + (~(((h + -4 - c) | 0) >>> 2) << 2) + Oq(c) + } + c = (g + 64) | 0 + h = f[c >> 2] | 0 + f[c >> 2] = 0 + if (h | 0) { + c = f[h >> 2] | 0 + if (c | 0) { + e = (h + 4) | 0 + if ((f[e >> 2] | 0) != (c | 0)) f[e >> 2] = c + Oq(c) + } + Oq(h) + } + Oq(g) + } + g = (a + 84) | 0 + h = (a + 88) | 0 + a = f[h >> 2] | 0 + c = f[g >> 2] | 0 + e = (a - c) >> 2 + if ((e | 0) > (b | 0)) { + u = d + return + } + i = (b + 1) | 0 + b = a + if (i >>> 0 > e >>> 0) { + Fh(g, (i - e) | 0) + u = d + return + } + if (i >>> 0 >= e >>> 0) { + u = d + return + } + e = (c + (i << 2)) | 0 + if ((e | 0) == (b | 0)) { + u = d + return + } + f[h >> 2] = b + (~(((b + -4 - e) | 0) >>> 2) << 2) + u = d + return + } + function ah(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 16) | 0 + e = d + g = (a + 4) | 0 + f[g >> 2] = c + f[(a + 8) >> 2] = f[(c + 52) >> 2] + h = f[(a + 184) >> 2] | 0 + i = (a + 188) | 0 + j = f[i >> 2] | 0 + if ((j | 0) != (h | 0)) f[i >> 2] = j + (~(((j + -4 - h) | 0) >>> 2) << 2) + h = f[(c + 48) >> 2] | 0 + c = ln(32) | 0 + f[e >> 2] = c + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 19 + j = c + i = 15351 + k = (j + 19) | 0 + do { + b[j >> 0] = b[i >> 0] | 0 + j = (j + 1) | 0 + i = (i + 1) | 0 + } while ((j | 0) < (k | 0)) + b[(c + 19) >> 0] = 0 + c = (Jh(h, e) | 0) == 0 + if ((b[(e + 11) >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + h = f[((f[g >> 2] | 0) + 48) >> 2] | 0 + if (c) { + c = ((mi(h) | 0) > 5) & 1 + b[(a + 352) >> 0] = c + u = d + return 1 + } + c = ln(32) | 0 + f[e >> 2] = c + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 19 + j = c + i = 15351 + k = (j + 19) | 0 + do { + b[j >> 0] = b[i >> 0] | 0 + j = (j + 1) | 0 + i = (i + 1) | 0 + } while ((j | 0) < (k | 0)) + b[(c + 19) >> 0] = 0 + c = (Yj(h, e, 0) | 0) & 1 + b[(a + 352) >> 0] = c + if ((b[(e + 11) >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + u = d + return 1 + } + function bh(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = (a + 108) | 0 + d = ((f[(a + 112) >> 2] | 0) - (f[c >> 2] | 0)) | 0 + e = ((d | 0) / 12) | 0 + g = (a + 4) | 0 + ci(e, f[((f[g >> 2] | 0) + 44) >> 2] | 0) | 0 + if (!d) return 1 + d = 0 + a = 0 + while (1) { + i = f[c >> 2] | 0 + j = (i + ((d * 12) | 0) + 4) | 0 + ci(((f[j >> 2] | 0) - a) | 0, f[((f[g >> 2] | 0) + 44) >> 2] | 0) | 0 + ci( + ((f[j >> 2] | 0) - (f[(i + ((d * 12) | 0)) >> 2] | 0)) | 0, + f[((f[g >> 2] | 0) + 44) >> 2] | 0, + ) | 0 + d = (d + 1) | 0 + if (d >>> 0 >= e >>> 0) break + else a = f[j >> 2] | 0 + } + zi(f[((f[g >> 2] | 0) + 44) >> 2] | 0, e, 0, 0) | 0 + a = 0 + do { + d = f[((f[g >> 2] | 0) + 44) >> 2] | 0 + j = (d + 16) | 0 + i = f[(j + 4) >> 2] | 0 + if (((i | 0) > 0) | (((i | 0) == 0) & ((f[j >> 2] | 0) >>> 0 > 0))) { + j = f[(d + 12) >> 2] | 0 + d = (j + 4) | 0 + i = f[d >> 2] | 0 + k = b[((f[c >> 2] | 0) + ((a * 12) | 0) + 8) >> 0] & 1 + l = i >>> 3 + m = i & 7 + i = ((f[j >> 2] | 0) + l) | 0 + b[i >> 0] = ((1 << m) ^ 255) & (h[i >> 0] | 0) + i = ((f[j >> 2] | 0) + l) | 0 + b[i >> 0] = (k << m) | (h[i >> 0] | 0) + f[d >> 2] = (f[d >> 2] | 0) + 1 + } + a = (a + 1) | 0 + } while (a >>> 0 < e >>> 0) + eg(f[((f[g >> 2] | 0) + 44) >> 2] | 0) + return 1 + } + function ch(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0 + e = u + u = (u + 80) | 0 + g = (e + 36) | 0 + h = e + io(g, c) + Ke(h, b, c) + Ph(g, h) + Ej((h + 24) | 0, f[(h + 28) >> 2] | 0) + Oj((h + 12) | 0, f[(h + 16) >> 2] | 0) + Ej(h, f[(h + 4) >> 2] | 0) + cj(a, g, d) + Ej((g + 24) | 0, f[(g + 28) >> 2] | 0) + Oj((g + 12) | 0, f[(g + 16) >> 2] | 0) + Ej(g, f[(g + 4) >> 2] | 0) + u = e + return + } + function dh(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 16) | 0 + e = d + g = (a + 4) | 0 + f[g >> 2] = c + f[(a + 8) >> 2] = f[(c + 52) >> 2] + h = f[(a + 184) >> 2] | 0 + i = (a + 188) | 0 + j = f[i >> 2] | 0 + if ((j | 0) != (h | 0)) f[i >> 2] = j + (~(((j + -4 - h) | 0) >>> 2) << 2) + h = f[(c + 48) >> 2] | 0 + c = ln(32) | 0 + f[e >> 2] = c + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 19 + j = c + i = 15351 + k = (j + 19) | 0 + do { + b[j >> 0] = b[i >> 0] | 0 + j = (j + 1) | 0 + i = (i + 1) | 0 + } while ((j | 0) < (k | 0)) + b[(c + 19) >> 0] = 0 + c = (Jh(h, e) | 0) == 0 + if ((b[(e + 11) >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + h = f[((f[g >> 2] | 0) + 48) >> 2] | 0 + if (c) { + c = ((mi(h) | 0) > 5) & 1 + b[(a + 288) >> 0] = c + u = d + return 1 + } + c = ln(32) | 0 + f[e >> 2] = c + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 19 + j = c + i = 15351 + k = (j + 19) | 0 + do { + b[j >> 0] = b[i >> 0] | 0 + j = (j + 1) | 0 + i = (i + 1) | 0 + } while ((j | 0) < (k | 0)) + b[(c + 19) >> 0] = 0 + c = (Yj(h, e, 0) | 0) & 1 + b[(a + 288) >> 0] = c + if ((b[(e + 11) >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + u = d + return 1 + } + function eh(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + g = u + u = (u + 32) | 0 + h = (g + 16) | 0 + i = (g + 8) | 0 + j = g + k = (d - e) | 0 + d = (a + 8) | 0 + if ((k | 0) > 0) { + a = (0 - e) | 0 + l = (i + 4) | 0 + m = (j + 4) | 0 + n = (h + 4) | 0 + o = k + do { + k = (b + (o << 2)) | 0 + p = (k + (a << 2)) | 0 + q = (c + (o << 2)) | 0 + r = f[(k + 4) >> 2] | 0 + s = f[p >> 2] | 0 + t = f[(p + 4) >> 2] | 0 + f[i >> 2] = f[k >> 2] + f[l >> 2] = r + f[j >> 2] = s + f[m >> 2] = t + Od(h, d, i, j) + f[q >> 2] = f[h >> 2] + f[(q + 4) >> 2] = f[n >> 2] + o = (o - e) | 0 + } while ((o | 0) > 0) + } + o = e >>> 0 > 1073741823 ? -1 : e << 2 + e = Lq(o) | 0 + sj(e | 0, 0, o | 0) | 0 + o = f[(b + 4) >> 2] | 0 + n = f[e >> 2] | 0 + m = f[(e + 4) >> 2] | 0 + f[i >> 2] = f[b >> 2] + f[(i + 4) >> 2] = o + f[j >> 2] = n + f[(j + 4) >> 2] = m + Od(h, d, i, j) + f[c >> 2] = f[h >> 2] + f[(c + 4) >> 2] = f[(h + 4) >> 2] + Mq(e) + u = g + return 1 + } + function fh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = u + u = (u + 32) | 0 + d = (c + 12) | 0 + e = c + g = f[(b + 100) >> 2] | 0 + h = f[(b + 96) >> 2] | 0 + b = (g - h) | 0 + i = ((b | 0) / 12) | 0 + f[d >> 2] = 0 + j = (d + 4) | 0 + f[j >> 2] = 0 + f[(d + 8) >> 2] = 0 + k = h + do + if (b) + if (i >>> 0 > 357913941) aq(d) + else { + l = ln(b) | 0 + f[d >> 2] = l + f[(d + 8) >> 2] = l + ((i * 12) | 0) + sj(l | 0, 0, b | 0) | 0 + f[j >> 2] = l + b + m = l + break + } + else m = 0 + while (0) + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + if ((g | 0) != (h | 0)) { + h = (e + 4) | 0 + g = (e + 8) | 0 + b = 0 + do { + l = (k + ((b * 12) | 0)) | 0 + f[e >> 2] = f[l >> 2] + f[(e + 4) >> 2] = f[(l + 4) >> 2] + f[(e + 8) >> 2] = f[(l + 8) >> 2] + f[(m + ((b * 12) | 0)) >> 2] = f[e >> 2] + f[(m + ((b * 12) | 0) + 4) >> 2] = f[h >> 2] + f[(m + ((b * 12) | 0) + 8) >> 2] = f[g >> 2] + b = (b + 1) | 0 + } while (b >>> 0 < i >>> 0) + } + Kj(a, d) + a = f[d >> 2] | 0 + if (!a) { + u = c + return + } + d = f[j >> 2] | 0 + if ((d | 0) != (a | 0)) + f[j >> 2] = d + ((~(((((d + -12 - a) | 0) >>> 0) / 12) | 0) * 12) | 0) + Oq(a) + u = c + return + } + function gh(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + if (c >>> 0 > 4294967279) aq(a) + d = (a + 11) | 0 + e = b[d >> 0] | 0 + g = (e << 24) >> 24 < 0 + if (g) { + h = f[(a + 4) >> 2] | 0 + i = ((f[(a + 8) >> 2] & 2147483647) + -1) | 0 + } else { + h = e & 255 + i = 10 + } + j = h >>> 0 > c >>> 0 ? h : c + c = j >>> 0 < 11 + k = c ? 10 : (((j + 16) & -16) + -1) | 0 + do + if ((k | 0) != (i | 0)) { + do + if (c) { + j = f[a >> 2] | 0 + if (g) { + l = 0 + m = j + n = a + o = 13 + } else { + Fo(a, j, ((e & 255) + 1) | 0) | 0 + Oq(j) + o = 16 + } + } else { + j = (k + 1) | 0 + p = ln(j) | 0 + if (g) { + l = 1 + m = f[a >> 2] | 0 + n = p + o = 13 + break + } else { + Fo(p, a, ((e & 255) + 1) | 0) | 0 + q = p + r = j + s = (a + 4) | 0 + o = 15 + break + } + } + while (0) + if ((o | 0) == 13) { + j = (a + 4) | 0 + Fo(n, m, ((f[j >> 2] | 0) + 1) | 0) | 0 + Oq(m) + if (l) { + q = n + r = (k + 1) | 0 + s = j + o = 15 + } else o = 16 + } + if ((o | 0) == 15) { + f[(a + 8) >> 2] = r | -2147483648 + f[s >> 2] = h + f[a >> 2] = q + break + } else if ((o | 0) == 16) { + b[d >> 0] = h + break + } + } + while (0) + return + } + function hh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + c = f[b >> 2] | 0 + if ((c | 0) == -1) { + d = -1 + return d | 0 + } + b = f[((f[(a + 24) >> 2] | 0) + (c << 2)) >> 2] | 0 + if ((b | 0) == -1) { + d = 0 + return d | 0 + } + c = (a + 12) | 0 + a = 0 + e = 0 + g = b + a: while (1) { + b: do + if (e) { + h = (a + 1) | 0 + i = ((((g >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + g) | 0 + if ((i | 0) == -1) { + d = h + j = 15 + break a + } + k = f[((f[c >> 2] | 0) + (i << 2)) >> 2] | 0 + if ((k | 0) == -1) { + d = h + j = 15 + break a + } + if (!((k >>> 0) % 3 | 0)) { + l = (k + 2) | 0 + m = h + break + } else { + l = (k + -1) | 0 + m = h + break + } + } else { + h = a + k = g + while (1) { + i = (h + 1) | 0 + n = (k + 1) | 0 + o = ((n >>> 0) % 3 | 0 | 0) == 0 ? (k + -2) | 0 : n + if ((o | 0) == -1) { + l = b + m = i + break b + } + n = f[((f[c >> 2] | 0) + (o << 2)) >> 2] | 0 + o = (n + 1) | 0 + if ((n | 0) == -1) { + l = b + m = i + break b + } + k = ((o >>> 0) % 3 | 0 | 0) == 0 ? (n + -2) | 0 : o + if ((k | 0) == -1) { + l = b + m = i + break b + } + if ((k | 0) == (b | 0)) { + d = i + j = 15 + break a + } else h = i + } + } + while (0) + if ((l | 0) == -1) { + d = m + j = 15 + break + } else { + a = m + e = 1 + g = l + } + } + if ((j | 0) == 15) return d | 0 + return 0 + } + function ih(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + d = (a + 8) | 0 + Vg(a, (a + 4) | 0, d, c) | 0 + e = (a + 12) | 0 + if ((e | 0) == (b | 0)) return + g = f[c >> 2] | 0 + c = f[g >> 2] | 0 + h = ((f[(g + 4) >> 2] | 0) - c) >> 3 + i = c + c = e + e = d + a: while (1) { + d = f[c >> 2] | 0 + j = f[e >> 2] | 0 + if (h >>> 0 <= d >>> 0) { + k = 5 + break + } + if (h >>> 0 <= j >>> 0) { + k = 7 + break + } + l = (i + (d << 3)) | 0 + if ((f[l >> 2] | 0) >>> 0 < (f[(i + (j << 3)) >> 2] | 0) >>> 0) { + m = e + n = c + o = j + while (1) { + f[n >> 2] = o + if ((m | 0) == (a | 0)) { + p = a + break + } + j = (m + -4) | 0 + o = f[j >> 2] | 0 + if (h >>> 0 <= o >>> 0) { + k = 11 + break a + } + if ((f[l >> 2] | 0) >>> 0 >= (f[(i + (o << 3)) >> 2] | 0) >>> 0) { + p = m + break + } else { + q = m + m = j + n = q + } + } + f[p >> 2] = d + } + n = (c + 4) | 0 + if ((n | 0) == (b | 0)) { + k = 3 + break + } else { + m = c + c = n + e = m + } + } + if ((k | 0) == 3) return + else if ((k | 0) == 5) aq(g) + else if ((k | 0) == 7) aq(g) + else if ((k | 0) == 11) aq(g) + } + function jh(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = Vg(a, b, c, e) | 0 + h = f[d >> 2] | 0 + i = f[c >> 2] | 0 + j = f[e >> 2] | 0 + e = f[j >> 2] | 0 + k = ((f[(j + 4) >> 2] | 0) - e) >> 3 + if (k >>> 0 <= h >>> 0) aq(j) + l = e + if (k >>> 0 <= i >>> 0) aq(j) + if ( + (f[(l + (h << 3)) >> 2] | 0) >>> 0 >= + (f[(l + (i << 3)) >> 2] | 0) >>> 0 + ) { + m = g + return m | 0 + } + f[c >> 2] = h + f[d >> 2] = i + i = f[c >> 2] | 0 + d = f[b >> 2] | 0 + if (k >>> 0 <= i >>> 0) aq(j) + if (k >>> 0 <= d >>> 0) aq(j) + if ( + (f[(l + (i << 3)) >> 2] | 0) >>> 0 >= + (f[(l + (d << 3)) >> 2] | 0) >>> 0 + ) { + m = (g + 1) | 0 + return m | 0 + } + f[b >> 2] = i + f[c >> 2] = d + d = f[b >> 2] | 0 + c = f[a >> 2] | 0 + if (k >>> 0 <= d >>> 0) aq(j) + if (k >>> 0 <= c >>> 0) aq(j) + if ( + (f[(l + (d << 3)) >> 2] | 0) >>> 0 >= + (f[(l + (c << 3)) >> 2] | 0) >>> 0 + ) { + m = (g + 2) | 0 + return m | 0 + } + f[a >> 2] = d + f[b >> 2] = c + m = (g + 3) | 0 + return m | 0 + } + function kh(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0 + if ((d | 0) >= 8192) return Da(a | 0, c | 0, d | 0) | 0 + e = a | 0 + g = (a + d) | 0 + if ((a & 3) == (c & 3)) { + while (a & 3) { + if (!d) return e | 0 + b[a >> 0] = b[c >> 0] | 0 + a = (a + 1) | 0 + c = (c + 1) | 0 + d = (d - 1) | 0 + } + h = (g & -4) | 0 + d = (h - 64) | 0 + while ((a | 0) <= (d | 0)) { + f[a >> 2] = f[c >> 2] + f[(a + 4) >> 2] = f[(c + 4) >> 2] + f[(a + 8) >> 2] = f[(c + 8) >> 2] + f[(a + 12) >> 2] = f[(c + 12) >> 2] + f[(a + 16) >> 2] = f[(c + 16) >> 2] + f[(a + 20) >> 2] = f[(c + 20) >> 2] + f[(a + 24) >> 2] = f[(c + 24) >> 2] + f[(a + 28) >> 2] = f[(c + 28) >> 2] + f[(a + 32) >> 2] = f[(c + 32) >> 2] + f[(a + 36) >> 2] = f[(c + 36) >> 2] + f[(a + 40) >> 2] = f[(c + 40) >> 2] + f[(a + 44) >> 2] = f[(c + 44) >> 2] + f[(a + 48) >> 2] = f[(c + 48) >> 2] + f[(a + 52) >> 2] = f[(c + 52) >> 2] + f[(a + 56) >> 2] = f[(c + 56) >> 2] + f[(a + 60) >> 2] = f[(c + 60) >> 2] + a = (a + 64) | 0 + c = (c + 64) | 0 + } + while ((a | 0) < (h | 0)) { + f[a >> 2] = f[c >> 2] + a = (a + 4) | 0 + c = (c + 4) | 0 + } + } else { + h = (g - 4) | 0 + while ((a | 0) < (h | 0)) { + b[a >> 0] = b[c >> 0] | 0 + b[(a + 1) >> 0] = b[(c + 1) >> 0] | 0 + b[(a + 2) >> 0] = b[(c + 2) >> 0] | 0 + b[(a + 3) >> 0] = b[(c + 3) >> 0] | 0 + a = (a + 4) | 0 + c = (c + 4) | 0 + } + } + while ((a | 0) < (g | 0)) { + b[a >> 0] = b[c >> 0] | 0 + a = (a + 1) | 0 + c = (c + 1) | 0 + } + return e | 0 + } + function lh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0 + c = u + u = (u + 16) | 0 + d = (c + 4) | 0 + e = c + f[a >> 2] = 1232 + g = (a + 4) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + f[(g + 16) >> 2] = 0 + f[(g + 20) >> 2] = 0 + f[(g + 24) >> 2] = 0 + f[(g + 28) >> 2] = 0 + f[d >> 2] = b + b = (a + 4) | 0 + g = (a + 8) | 0 + Ri(b, d) + h = f[d >> 2] | 0 + i = (a + 20) | 0 + j = f[i >> 2] | 0 + k = (a + 16) | 0 + a = f[k >> 2] | 0 + l = (j - a) >> 2 + m = a + if ((h | 0) < (l | 0)) { + n = m + o = h + p = f[g >> 2] | 0 + q = f[b >> 2] | 0 + r = (p - q) | 0 + s = r >> 2 + t = (s + -1) | 0 + v = (n + (o << 2)) | 0 + f[v >> 2] = t + u = c + return + } + a = (h + 1) | 0 + f[e >> 2] = -1 + w = j + if (a >>> 0 <= l >>> 0) + if ( + a >>> 0 < l >>> 0 ? ((j = (m + (a << 2)) | 0), (j | 0) != (w | 0)) : 0 + ) { + f[i >> 2] = w + (~(((w + -4 - j) | 0) >>> 2) << 2) + x = h + y = m + } else { + x = h + y = m + } + else { + Ch(k, (a - l) | 0, e) + x = f[d >> 2] | 0 + y = f[k >> 2] | 0 + } + n = y + o = x + p = f[g >> 2] | 0 + q = f[b >> 2] | 0 + r = (p - q) | 0 + s = r >> 2 + t = (s + -1) | 0 + v = (n + (o << 2)) | 0 + f[v >> 2] = t + u = c + return + } + function mh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + b = (a + 4) | 0 + c = f[b >> 2] | 0 + d = ((f[(c + 12) >> 2] | 0) - (f[(c + 8) >> 2] | 0)) | 0 + c = d >> 2 + a: do + if ((d | 0) > 0) { + e = 0 + while (1) { + if (!(Ra[f[((f[a >> 2] | 0) + 36) >> 2] & 127](a, e) | 0)) { + g = 0 + break + } + e = (e + 1) | 0 + h = f[b >> 2] | 0 + i = ((f[(h + 12) >> 2] | 0) - (f[(h + 8) >> 2] | 0)) >> 2 + if ((e | 0) >= (i | 0)) { + j = i + break a + } + } + return g | 0 + } else j = c + while (0) + c = (a + 20) | 0 + b = (a + 24) | 0 + d = f[b >> 2] | 0 + e = f[c >> 2] | 0 + i = (d - e) >> 2 + h = e + e = d + if (j >>> 0 <= i >>> 0) { + if ( + j >>> 0 < i >>> 0 ? ((d = (h + (j << 2)) | 0), (d | 0) != (e | 0)) : 0 + ) + f[b >> 2] = e + (~(((e + -4 - d) | 0) >>> 2) << 2) + } else Ci(c, (j - i) | 0) + i = f[(a + 12) >> 2] | 0 + j = f[(a + 8) >> 2] | 0 + a = j + if ((i | 0) == (j | 0)) { + g = 1 + return g | 0 + } + d = (i - j) >> 2 + j = 0 + do { + i = f[(a + (j << 2)) >> 2] | 0 + e = f[(i + 8) >> 2] | 0 + b = f[(i + 4) >> 2] | 0 + i = b + if ( + (e | 0) != (b | 0) + ? ((h = f[c >> 2] | 0), + (k = (e - b) >> 2), + (f[(h + (f[i >> 2] << 2)) >> 2] = j), + k >>> 0 > 1) + : 0 + ) { + b = 1 + do { + f[(h + (f[(i + (b << 2)) >> 2] << 2)) >> 2] = j + b = (b + 1) | 0 + } while (b >>> 0 < k >>> 0) + } + j = (j + 1) | 0 + } while (j >>> 0 < d >>> 0) + g = 1 + return g | 0 + } + function nh(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + d = f[(c + 88) >> 2] | 0 + if (!d) { + e = 0 + return e | 0 + } + if ((f[d >> 2] | 0) != 1) { + e = 0 + return e | 0 + } + g = (d + 8) | 0 + d = f[g >> 2] | 0 + f[(a + 4) >> 2] = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + i = (a + 8) | 0 + j = (c + 24) | 0 + c = b[j >> 0] | 0 + k = (c << 24) >> 24 + l = (a + 12) | 0 + m = f[l >> 2] | 0 + n = f[i >> 2] | 0 + o = (m - n) >> 2 + p = n + n = m + if (o >>> 0 >= k >>> 0) + if ( + o >>> 0 > k >>> 0 ? ((m = (p + (k << 2)) | 0), (m | 0) != (n | 0)) : 0 + ) { + f[l >> 2] = n + (~(((n + -4 - m) | 0) >>> 2) << 2) + q = c + r = d + } else { + q = c + r = d + } + else { + Ci(i, (k - o) | 0) + q = b[j >> 0] | 0 + r = f[g >> 2] | 0 + } + g = (r + 4) | 0 + j = + h[g >> 0] | + (h[(g + 1) >> 0] << 8) | + (h[(g + 2) >> 0] << 16) | + (h[(g + 3) >> 0] << 24) + if ((q << 24) >> 24 > 0) { + g = f[i >> 2] | 0 + i = (q << 24) >> 24 + q = j + o = 4 + k = 0 + while (1) { + f[(g + (k << 2)) >> 2] = q + o = (o + 4) | 0 + k = (k + 1) | 0 + d = (r + o) | 0 + c = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + if ((k | 0) >= (i | 0)) { + s = c + break + } else q = c + } + } else s = j + f[(a + 20) >> 2] = s + e = 1 + return e | 0 + } + function oh(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + do + if (!(fp(a, f[(c + 8) >> 2] | 0, g) | 0)) { + if (!(fp(a, f[c >> 2] | 0, g) | 0)) { + h = f[(a + 8) >> 2] | 0 + Za[f[((f[h >> 2] | 0) + 24) >> 2] & 3](h, c, d, e, g) + break + } + if ( + (f[(c + 16) >> 2] | 0) != (d | 0) + ? ((h = (c + 20) | 0), (f[h >> 2] | 0) != (d | 0)) + : 0 + ) { + f[(c + 32) >> 2] = e + i = (c + 44) | 0 + if ((f[i >> 2] | 0) == 4) break + j = (c + 52) | 0 + b[j >> 0] = 0 + k = (c + 53) | 0 + b[k >> 0] = 0 + l = f[(a + 8) >> 2] | 0 + _a[f[((f[l >> 2] | 0) + 20) >> 2] & 3](l, c, d, d, 1, g) + if (b[k >> 0] | 0) + if (!(b[j >> 0] | 0)) { + m = 3 + n = 11 + } else o = 3 + else { + m = 4 + n = 11 + } + if ((n | 0) == 11) { + f[h >> 2] = d + h = (c + 40) | 0 + f[h >> 2] = (f[h >> 2] | 0) + 1 + if ( + (f[(c + 36) >> 2] | 0) == 1 ? (f[(c + 24) >> 2] | 0) == 2 : 0 + ) { + b[(c + 54) >> 0] = 1 + o = m + } else o = m + } + f[i >> 2] = o + break + } + if ((e | 0) == 1) f[(c + 32) >> 2] = 1 + } else Vm(0, c, d, e) + while (0) + return + } + function ph(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + e = u + u = (u + 16) | 0 + g = (e + 12) | 0 + h = (e + 8) | 0 + i = e + f[i >> 2] = f[b >> 2] + f[g >> 2] = f[i >> 2] + i = Kd(a, g, h, (e + 4) | 0, c) | 0 + c = f[i >> 2] | 0 + if (c | 0) { + j = c + u = e + return j | 0 + } + c = ln(40) | 0 + pj((c + 16) | 0, d) + pj((c + 28) | 0, (d + 12) | 0) + d = f[h >> 2] | 0 + f[c >> 2] = 0 + f[(c + 4) >> 2] = 0 + f[(c + 8) >> 2] = d + f[i >> 2] = c + d = f[f[a >> 2] >> 2] | 0 + if (!d) k = c + else { + f[a >> 2] = d + k = f[i >> 2] | 0 + } + Oe(f[(a + 4) >> 2] | 0, k) + k = (a + 8) | 0 + f[k >> 2] = (f[k >> 2] | 0) + 1 + j = c + u = e + return j | 0 + } + function qh(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + e = u + u = (u + 16) | 0 + g = e + h = (a + 4) | 0 + f[h >> 2] = 0 + if (!c) { + u = e + return + } + i = (a + 8) | 0 + j = f[i >> 2] | 0 + k = j << 5 + if (k >>> 0 < c >>> 0) { + f[g >> 2] = 0 + l = (g + 4) | 0 + f[l >> 2] = 0 + m = (g + 8) | 0 + f[m >> 2] = 0 + if ((c | 0) < 0) aq(a) + n = j << 6 + j = (c + 31) & -32 + vi(g, k >>> 0 < 1073741823 ? (n >>> 0 < j >>> 0 ? j : n) : 2147483647) + n = f[a >> 2] | 0 + f[a >> 2] = f[g >> 2] + f[g >> 2] = n + g = f[h >> 2] | 0 + f[h >> 2] = c + f[l >> 2] = g + g = f[i >> 2] | 0 + f[i >> 2] = f[m >> 2] + f[m >> 2] = g + if (n | 0) Oq(n) + o = a + } else { + f[h >> 2] = c + o = a + } + a = f[o >> 2] | 0 + o = a + h = a + a = c >>> 5 + n = a << 2 + if (!(b[d >> 0] | 0)) { + sj(h | 0, 0, n | 0) | 0 + d = c & 31 + g = (o + (a << 2)) | 0 + if (!d) { + u = e + return + } + f[g >> 2] = f[g >> 2] & ~(-1 >>> ((32 - d) | 0)) + u = e + return + } else { + sj(h | 0, -1, n | 0) | 0 + n = c & 31 + c = (o + (a << 2)) | 0 + if (!n) { + u = e + return + } + f[c >> 2] = f[c >> 2] | (-1 >>> ((32 - n) | 0)) + u = e + return + } + } + function rh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + f[g >> 2] = f[(a + 12) >> 2] + h = (b + 16) | 0 + i = h + j = f[i >> 2] | 0 + k = f[(i + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & (j >>> 0 > 0))) { + l = k + m = j + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + j = h + l = f[(j + 4) >> 2] | 0 + m = f[j >> 2] | 0 + } + f[g >> 2] = f[(a + 20) >> 2] + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + n = (a + 88) | 0 + ld(n, b) + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + n = (a + 88) | 0 + ld(n, b) + u = c + return 1 + } + function sh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + f[g >> 2] = f[(a + 12) >> 2] + h = (b + 16) | 0 + i = h + j = f[i >> 2] | 0 + k = f[(i + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & (j >>> 0 > 0))) { + l = k + m = j + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + j = h + l = f[(j + 4) >> 2] | 0 + m = f[j >> 2] | 0 + } + f[g >> 2] = f[(a + 16) >> 2] + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + n = (a + 108) | 0 + ld(n, b) + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + n = (a + 108) | 0 + ld(n, b) + u = c + return 1 + } + function th(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + c = (a + 32) | 0 + d = f[(a + 64) >> 2] | 0 + e = ((Qa[f[((f[d >> 2] | 0) + 40) >> 2] & 127](d) | 0) + 52) | 0 + d = f[e >> 2] | 0 + zi( + c, + ((((((f[(d + 100) >> 2] | 0) - (f[(d + 96) >> 2] | 0)) | 0) / 12) | 0) * + 3) | + 0, + 0, + 1, + ) | 0 + d = (a + 68) | 0 + e = f[d >> 2] | 0 + g = ((f[(a + 72) >> 2] | 0) - e) | 0 + if ((g | 0) <= 0) { + eg(c) + return + } + i = (a + 48) | 0 + j = (a + 44) | 0 + a = ((g >>> 2) + -1) | 0 + g = e + while (1) { + e = f[(g + (a << 2)) >> 2] | 0 + k = f[(3524 + (e << 2)) >> 2] | 0 + l = i + m = f[(l + 4) >> 2] | 0 + if ( + ((m | 0) > 0) | (((m | 0) == 0) & ((f[l >> 2] | 0) >>> 0 > 0)) + ? ((l = f[j >> 2] | 0), ((171 >>> e) & 1) | 0) + : 0 + ) { + m = (l + 4) | 0 + n = 0 + o = f[m >> 2] | 0 + do { + p = o >>> 3 + q = o & 7 + r = ((f[l >> 2] | 0) + p) | 0 + b[r >> 0] = ((1 << q) ^ 255) & (h[r >> 0] | 0) + r = ((f[l >> 2] | 0) + p) | 0 + b[r >> 0] = (((e >>> n) & 1) << q) | (h[r >> 0] | 0) + o = ((f[m >> 2] | 0) + 1) | 0 + f[m >> 2] = o + n = (n + 1) | 0 + } while ((n | 0) != (k | 0)) + } + k = (a + -1) | 0 + if ((k | 0) <= -1) break + a = k + g = f[d >> 2] | 0 + } + eg(c) + return + } + function uh(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + g = u + u = (u + 48) | 0 + h = g + i = (g + 32) | 0 + if (!c) { + j = 0 + u = g + return j | 0 + } + Gn(h) + do + if ((dm(c, 0) | 0) != -1) { + if (d) { + if (!(Qa[f[((f[c >> 2] | 0) + 16) >> 2] & 127](c) | 0)) { + k = 0 + break + } + Va[f[((f[c >> 2] | 0) + 20) >> 2] & 127](c) + } + Yg(i, a, c, h) + l = (f[i >> 2] | 0) == 0 + m = (i + 4) | 0 + if ((b[(m + 11) >> 0] | 0) < 0) Oq(f[m >> 2] | 0) + if (l) { + l = f[h >> 2] | 0 + m = (h + 4) | 0 + rg(e, l, (l + ((f[m >> 2] | 0) - l)) | 0) + k = ((f[m >> 2] | 0) - (f[h >> 2] | 0)) | 0 + } else k = 0 + } else k = 0 + while (0) + e = (h + 12) | 0 + i = f[e >> 2] | 0 + f[e >> 2] = 0 + if (i | 0) Oq(i) + i = f[h >> 2] | 0 + if (i | 0) { + e = (h + 4) | 0 + if ((f[e >> 2] | 0) != (i | 0)) f[e >> 2] = i + Oq(i) + } + j = k + u = g + return j | 0 + } + function vh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + c = u + u = (u + 16) | 0 + d = c + e = f[((f[a >> 2] | 0) + 8) >> 2] | 0 + g = (a + 8) | 0 + h = (a + 12) | 0 + i = ((f[h >> 2] | 0) - (f[g >> 2] | 0)) >> 2 + j = f[b >> 2] | 0 + f[b >> 2] = 0 + f[d >> 2] = j + Xa[e & 15](a, i, d) + i = f[d >> 2] | 0 + f[d >> 2] = 0 + if (!i) { + k = f[h >> 2] | 0 + l = f[g >> 2] | 0 + m = (k - l) | 0 + n = m >> 2 + o = (n + -1) | 0 + u = c + return o | 0 + } + d = (i + 88) | 0 + a = f[d >> 2] | 0 + f[d >> 2] = 0 + if (a | 0) { + d = f[(a + 8) >> 2] | 0 + if (d | 0) { + e = (a + 12) | 0 + if ((f[e >> 2] | 0) != (d | 0)) f[e >> 2] = d + Oq(d) + } + Oq(a) + } + a = f[(i + 68) >> 2] | 0 + if (a | 0) { + d = (i + 72) | 0 + e = f[d >> 2] | 0 + if ((e | 0) != (a | 0)) + f[d >> 2] = e + (~(((e + -4 - a) | 0) >>> 2) << 2) + Oq(a) + } + a = (i + 64) | 0 + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) { + a = f[e >> 2] | 0 + if (a | 0) { + d = (e + 4) | 0 + if ((f[d >> 2] | 0) != (a | 0)) f[d >> 2] = a + Oq(a) + } + Oq(e) + } + Oq(i) + k = f[h >> 2] | 0 + l = f[g >> 2] | 0 + m = (k - l) | 0 + n = m >> 2 + o = (n + -1) | 0 + u = c + return o | 0 + } + function wh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = (a + 4) | 0 + g = f[e >> 2] | 0 + if (((d - g) >> 3) >>> 0 >= b >>> 0) { + h = b + i = g + do { + j = i + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + i = ((f[e >> 2] | 0) + 8) | 0 + f[e >> 2] = i + h = (h + -1) | 0 + } while ((h | 0) != 0) + return + } + h = f[a >> 2] | 0 + i = (g - h) >> 3 + g = (i + b) | 0 + if (g >>> 0 > 536870911) aq(a) + j = (d - h) | 0 + h = j >> 2 + d = (j >> 3) >>> 0 < 268435455 ? (h >>> 0 < g >>> 0 ? g : h) : 536870911 + do + if (d) + if (d >>> 0 > 536870911) { + h = ra(8) | 0 + Oo(h, 16035) + f[h >> 2] = 7256 + va(h | 0, 1112, 110) + } else { + k = ln(d << 3) | 0 + break + } + else k = 0 + while (0) + h = (k + (i << 3)) | 0 + i = (k + (d << 3)) | 0 + d = b + b = h + k = h + do { + g = b + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + b = (k + 8) | 0 + k = b + d = (d + -1) | 0 + } while ((d | 0) != 0) + d = f[a >> 2] | 0 + b = ((f[e >> 2] | 0) - d) | 0 + g = (h + ((0 - (b >> 3)) << 3)) | 0 + if ((b | 0) > 0) kh(g | 0, d | 0, b | 0) | 0 + f[a >> 2] = g + f[e >> 2] = k + f[c >> 2] = i + if (!d) return + Oq(d) + return + } + function xh(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + d = u + u = (u + 16) | 0 + e = d + if (!(bn(a, b, c) | 0)) { + g = 0 + u = d + return g | 0 + } + if ( + ((Qa[f[((f[a >> 2] | 0) + 32) >> 2] & 127](a) | 0) << 24) >> 24 == 1 + ? (((f[((f[(a + 8) >> 2] | 0) + 28) >> 2] | 0) + -1) | 0) >>> 0 >= 6 + : 0 + ) { + g = 0 + u = d + return g | 0 + } + h = _g(c, f[(b + 48) >> 2] | 0) | 0 + Xa[f[((f[a >> 2] | 0) + 48) >> 2] & 15](e, a, h) + h = (a + 36) | 0 + b = f[e >> 2] | 0 + f[e >> 2] = 0 + c = f[h >> 2] | 0 + f[h >> 2] = b + if (!c) { + f[e >> 2] = 0 + i = b + } else { + Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + c = f[e >> 2] | 0 + f[e >> 2] = 0 + if (c | 0) Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + i = f[h >> 2] | 0 + } + if (!i) { + g = 1 + u = d + return g | 0 + } + if (Ra[f[((f[a >> 2] | 0) + 36) >> 2] & 127](a, i) | 0) { + g = 1 + u = d + return g | 0 + } + i = f[h >> 2] | 0 + f[h >> 2] = 0 + if (!i) { + g = 1 + u = d + return g | 0 + } + Va[f[((f[i >> 2] | 0) + 4) >> 2] & 127](i) + g = 1 + u = d + return g | 0 + } + function yh(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + e = u + u = (u + 16) | 0 + g = (e + 4) | 0 + h = e + i = (e + 8) | 0 + j = a & 255 + b[i >> 0] = j & 127 + do + if ((c >>> 0 > 0) | (((c | 0) == 0) & (a >>> 0 > 127))) { + b[i >> 0] = j | -128 + k = (d + 16) | 0 + l = f[(k + 4) >> 2] | 0 + if (((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0))) { + m = 0 + break + } else { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(d, g, i, (i + 1) | 0) | 0 + k = Yn(a | 0, c | 0, 7) | 0 + m = yh(k, I, d) | 0 + break + } + } else { + k = (d + 16) | 0 + l = f[(k + 4) >> 2] | 0 + if (((l | 0) > 0) | (((l | 0) == 0) & ((f[k >> 2] | 0) >>> 0 > 0))) { + m = 0 + break + } + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(d, g, i, (i + 1) | 0) | 0 + n = 1 + u = e + return n | 0 + } + while (0) + n = m + u = e + return n | 0 + } + function zh(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0 + g = f[((f[((f[(d + 4) >> 2] | 0) + 8) >> 2] | 0) + (c << 2)) >> 2] | 0 + if ((b | 0) == -1) h = Xi(c, d) | 0 + else h = b + if ((h | 0) == -2) i = 0 + else { + do + if ((Qa[f[((f[d >> 2] | 0) + 8) >> 2] & 127](d) | 0) == 1) { + Xf(a, d, h, c, e, 514) + if (!(f[a >> 2] | 0)) { + f[a >> 2] = 0 + break + } else return + } + while (0) + c = ln(44) | 0 + f[c >> 2] = 1544 + f[(c + 4) >> 2] = g + g = (c + 8) | 0 + f[g >> 2] = f[e >> 2] + f[(g + 4) >> 2] = f[(e + 4) >> 2] + f[(g + 8) >> 2] = f[(e + 8) >> 2] + f[(g + 12) >> 2] = f[(e + 12) >> 2] + f[(g + 16) >> 2] = f[(e + 16) >> 2] + f[(g + 20) >> 2] = f[(e + 20) >> 2] + fk((c + 32) | 0, (e + 24) | 0) + f[c >> 2] = 1600 + i = c + } + f[a >> 2] = i + return + } + function Ah(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + e = u + u = (u + 224) | 0 + g = (e + 120) | 0 + h = (e + 80) | 0 + i = e + j = (e + 136) | 0 + k = h + l = (k + 40) | 0 + do { + f[k >> 2] = 0 + k = (k + 4) | 0 + } while ((k | 0) < (l | 0)) + f[g >> 2] = f[d >> 2] + if ((qb(0, c, g, i, h) | 0) < 0) m = -1 + else { + if ((f[(a + 76) >> 2] | 0) > -1) n = Tq(a) | 0 + else n = 0 + d = f[a >> 2] | 0 + k = d & 32 + if ((b[(a + 74) >> 0] | 0) < 1) f[a >> 2] = d & -33 + d = (a + 48) | 0 + if (!(f[d >> 2] | 0)) { + l = (a + 44) | 0 + o = f[l >> 2] | 0 + f[l >> 2] = j + p = (a + 28) | 0 + f[p >> 2] = j + q = (a + 20) | 0 + f[q >> 2] = j + f[d >> 2] = 80 + r = (a + 16) | 0 + f[r >> 2] = j + 80 + j = qb(a, c, g, i, h) | 0 + if (!o) s = j + else { + Sa[f[(a + 36) >> 2] & 31](a, 0, 0) | 0 + t = (f[q >> 2] | 0) == 0 ? -1 : j + f[l >> 2] = o + f[d >> 2] = 0 + f[r >> 2] = 0 + f[p >> 2] = 0 + f[q >> 2] = 0 + s = t + } + } else s = qb(a, c, g, i, h) | 0 + h = f[a >> 2] | 0 + f[a >> 2] = h | k + if (n | 0) Sq(a) + m = ((h & 32) | 0) == 0 ? s : -1 + } + u = e + return m | 0 + } + function Bh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + e = f[a >> 2] | 0 + g = (d - e) >> 2 + h = d + if (g >>> 0 < b >>> 0) { + uf(a, (b - g) | 0) + return + } + if (g >>> 0 <= b >>> 0) return + g = (e + (b << 2)) | 0 + if ((g | 0) == (h | 0)) return + else i = h + do { + h = (i + -4) | 0 + f[c >> 2] = h + b = f[h >> 2] | 0 + f[h >> 2] = 0 + if (b | 0) { + h = (b + 88) | 0 + e = f[h >> 2] | 0 + f[h >> 2] = 0 + if (e | 0) { + h = f[(e + 8) >> 2] | 0 + if (h | 0) { + a = (e + 12) | 0 + if ((f[a >> 2] | 0) != (h | 0)) f[a >> 2] = h + Oq(h) + } + Oq(e) + } + e = f[(b + 68) >> 2] | 0 + if (e | 0) { + h = (b + 72) | 0 + a = f[h >> 2] | 0 + if ((a | 0) != (e | 0)) + f[h >> 2] = a + (~(((a + -4 - e) | 0) >>> 2) << 2) + Oq(e) + } + e = (b + 64) | 0 + a = f[e >> 2] | 0 + f[e >> 2] = 0 + if (a | 0) { + e = f[a >> 2] | 0 + if (e | 0) { + h = (a + 4) | 0 + if ((f[h >> 2] | 0) != (e | 0)) f[h >> 2] = e + Oq(e) + } + Oq(a) + } + Oq(b) + } + i = f[c >> 2] | 0 + } while ((i | 0) != (g | 0)) + return + } + function Ch(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + d = (a + 8) | 0 + e = f[d >> 2] | 0 + g = (a + 4) | 0 + h = f[g >> 2] | 0 + i = h + if (((e - h) >> 2) >>> 0 >= b >>> 0) { + j = b + k = i + while (1) { + f[k >> 2] = f[c >> 2] + j = (j + -1) | 0 + if (!j) break + else k = (k + 4) | 0 + } + f[g >> 2] = i + (b << 2) + return + } + i = f[a >> 2] | 0 + k = (h - i) | 0 + h = k >> 2 + j = (h + b) | 0 + if (j >>> 0 > 1073741823) aq(a) + l = (e - i) | 0 + e = l >> 1 + m = (l >> 2) >>> 0 < 536870911 ? (e >>> 0 < j >>> 0 ? j : e) : 1073741823 + do + if (m) + if (m >>> 0 > 1073741823) { + e = ra(8) | 0 + Oo(e, 16035) + f[e >> 2] = 7256 + va(e | 0, 1112, 110) + } else { + e = ln(m << 2) | 0 + n = e + o = e + break + } + else { + n = 0 + o = 0 + } + while (0) + e = (n + (h << 2)) | 0 + h = (n + (m << 2)) | 0 + m = b + j = e + while (1) { + f[j >> 2] = f[c >> 2] + m = (m + -1) | 0 + if (!m) break + else j = (j + 4) | 0 + } + if ((k | 0) > 0) kh(o | 0, i | 0, k | 0) | 0 + f[a >> 2] = n + f[g >> 2] = e + (b << 2) + f[d >> 2] = h + if (!i) return + Oq(i) + return + } + function Dh(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + e = ((f[a >> 2] | 0) + 1794895138) | 0 + g = gp(f[(a + 8) >> 2] | 0, e) | 0 + h = gp(f[(a + 12) >> 2] | 0, e) | 0 + i = gp(f[(a + 16) >> 2] | 0, e) | 0 + a: do + if ( + ( + g >>> 0 < (c >>> 2) >>> 0 + ? ((j = (c - (g << 2)) | 0), + (h >>> 0 < j >>> 0) & (i >>> 0 < j >>> 0)) + : 0 + ) + ? (((i | h) & 3) | 0) == 0 + : 0 + ) { + j = h >>> 2 + k = i >>> 2 + l = 0 + m = g + while (1) { + n = m >>> 1 + o = (l + n) | 0 + p = o << 1 + q = (p + j) | 0 + r = gp(f[(a + (q << 2)) >> 2] | 0, e) | 0 + s = gp(f[(a + ((q + 1) << 2)) >> 2] | 0, e) | 0 + if (!((s >>> 0 < c >>> 0) & (r >>> 0 < ((c - s) | 0) >>> 0))) { + t = 0 + break a + } + if (b[(a + (s + r)) >> 0] | 0) { + t = 0 + break a + } + r = hl(d, (a + s) | 0) | 0 + if (!r) break + s = (r | 0) < 0 + if ((m | 0) == 1) { + t = 0 + break a + } else { + l = s ? l : o + m = s ? n : (m - n) | 0 + } + } + m = (p + k) | 0 + l = gp(f[(a + (m << 2)) >> 2] | 0, e) | 0 + j = gp(f[(a + ((m + 1) << 2)) >> 2] | 0, e) | 0 + if ((j >>> 0 < c >>> 0) & (l >>> 0 < ((c - j) | 0) >>> 0)) + t = (b[(a + (j + l)) >> 0] | 0) == 0 ? (a + j) | 0 : 0 + else t = 0 + } else t = 0 + while (0) + return t | 0 + } + function Eh(a, c, e, g) { + a = a | 0 + c = c | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + h = u + u = (u + 64) | 0 + i = h + j = f[a >> 2] | 0 + k = (a + (f[(j + -8) >> 2] | 0)) | 0 + l = f[(j + -4) >> 2] | 0 + f[i >> 2] = e + f[(i + 4) >> 2] = a + f[(i + 8) >> 2] = c + f[(i + 12) >> 2] = g + g = (i + 16) | 0 + c = (i + 20) | 0 + a = (i + 24) | 0 + j = (i + 28) | 0 + m = (i + 32) | 0 + n = (i + 40) | 0 + o = g + p = (o + 36) | 0 + do { + f[o >> 2] = 0 + o = (o + 4) | 0 + } while ((o | 0) < (p | 0)) + d[(g + 36) >> 1] = 0 + b[(g + 38) >> 0] = 0 + a: do + if (fp(l, e, 0) | 0) { + f[(i + 48) >> 2] = 1 + _a[f[((f[l >> 2] | 0) + 20) >> 2] & 3](l, i, k, k, 1, 0) + q = (f[a >> 2] | 0) == 1 ? k : 0 + } else { + Za[f[((f[l >> 2] | 0) + 24) >> 2] & 3](l, i, k, 1, 0) + switch (f[(i + 36) >> 2] | 0) { + case 0: { + q = + ((f[n >> 2] | 0) == 1) & + ((f[j >> 2] | 0) == 1) & + ((f[m >> 2] | 0) == 1) + ? f[c >> 2] | 0 + : 0 + break a + break + } + case 1: + break + default: { + q = 0 + break a + } + } + if ( + (f[a >> 2] | 0) != 1 + ? !( + ((f[n >> 2] | 0) == 0) & + ((f[j >> 2] | 0) == 1) & + ((f[m >> 2] | 0) == 1) + ) + : 0 + ) { + q = 0 + break + } + q = f[g >> 2] | 0 + } + while (0) + u = h + return q | 0 + } + function Fh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = (a + 4) | 0 + g = f[e >> 2] | 0 + h = g + if (((d - g) >> 2) >>> 0 >= b >>> 0) { + i = b + j = h + while (1) { + f[j >> 2] = 1 + i = (i + -1) | 0 + if (!i) break + else j = (j + 4) | 0 + } + f[e >> 2] = h + (b << 2) + return + } + h = f[a >> 2] | 0 + j = (g - h) | 0 + g = j >> 2 + i = (g + b) | 0 + if (i >>> 0 > 1073741823) aq(a) + k = (d - h) | 0 + d = k >> 1 + l = (k >> 2) >>> 0 < 536870911 ? (d >>> 0 < i >>> 0 ? i : d) : 1073741823 + do + if (l) + if (l >>> 0 > 1073741823) { + d = ra(8) | 0 + Oo(d, 16035) + f[d >> 2] = 7256 + va(d | 0, 1112, 110) + } else { + d = ln(l << 2) | 0 + m = d + n = d + break + } + else { + m = 0 + n = 0 + } + while (0) + d = (m + (g << 2)) | 0 + g = (m + (l << 2)) | 0 + l = b + i = d + while (1) { + f[i >> 2] = 1 + l = (l + -1) | 0 + if (!l) break + else i = (i + 4) | 0 + } + if ((j | 0) > 0) kh(n | 0, h | 0, j | 0) | 0 + f[a >> 2] = m + f[e >> 2] = d + (b << 2) + f[c >> 2] = g + if (!h) return + Oq(h) + return + } + function Gh(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 16) | 0 + e = d + if (!c) { + g = 0 + u = d + return g | 0 + } + h = (a + 84) | 0 + i = f[h >> 2] | 0 + j = (a + 88) | 0 + k = f[j >> 2] | 0 + if ((k | 0) != (i | 0)) f[j >> 2] = k + (~(((k + -4 - i) | 0) >>> 2) << 2) + f[h >> 2] = 0 + f[j >> 2] = 0 + f[(a + 92) >> 2] = 0 + if (i | 0) Oq(i) + i = (a + 72) | 0 + j = f[i >> 2] | 0 + h = (a + 76) | 0 + if ((f[h >> 2] | 0) != (j | 0)) f[h >> 2] = j + f[i >> 2] = 0 + f[h >> 2] = 0 + f[(a + 80) >> 2] = 0 + if (j | 0) Oq(j) + j = (c + 4) | 0 + h = ((f[j >> 2] | 0) - (f[c >> 2] | 0)) >> 2 + b[e >> 0] = 0 + qh(a, h, e) + h = (c + 24) | 0 + i = (c + 28) | 0 + k = ((f[i >> 2] | 0) - (f[h >> 2] | 0)) >> 2 + b[e >> 0] = 0 + qh((a + 12) | 0, k, e) + hg((a + 28) | 0, ((f[j >> 2] | 0) - (f[c >> 2] | 0)) >> 2, 6180) + gk((a + 52) | 0, ((f[i >> 2] | 0) - (f[h >> 2] | 0)) >> 2) + gk((a + 40) | 0, ((f[i >> 2] | 0) - (f[h >> 2] | 0)) >> 2) + f[(a + 64) >> 2] = c + b[(a + 24) >> 0] = 1 + g = 1 + u = d + return g | 0 + } + function Hh(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + c = (a + 12) | 0 + d = f[a >> 2] | 0 + e = (a + 8) | 0 + g = f[e >> 2] | 0 + h = (g | 0) == -1 + if (!(b[c >> 0] | 0)) { + do + if ( + ( + !h + ? ((i = ((((g >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + g) | 0), + (i | 0) != -1) + : 0 + ) + ? ((j = f[((f[(d + 12) >> 2] | 0) + (i << 2)) >> 2] | 0), + (j | 0) != -1) + : 0 + ) + if (!((j >>> 0) % 3 | 0)) { + k = (j + 2) | 0 + break + } else { + k = (j + -1) | 0 + break + } + else k = -1 + while (0) + f[e >> 2] = k + return + } + k = (g + 1) | 0 + if ( + ( + !h + ? ((h = ((k >>> 0) % 3 | 0 | 0) == 0 ? (g + -2) | 0 : k), + (h | 0) != -1) + : 0 + ) + ? ((k = f[((f[(d + 12) >> 2] | 0) + (h << 2)) >> 2] | 0), + (h = (k + 1) | 0), + (k | 0) != -1) + : 0 + ) { + g = ((h >>> 0) % 3 | 0 | 0) == 0 ? (k + -2) | 0 : h + f[e >> 2] = g + if ((g | 0) != -1) { + if ((g | 0) != (f[(a + 4) >> 2] | 0)) return + f[e >> 2] = -1 + return + } + } else f[e >> 2] = -1 + g = f[(a + 4) >> 2] | 0 + do + if ( + ( + (g | 0) != -1 + ? ((a = ((((g >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + g) | 0), + (a | 0) != -1) + : 0 + ) + ? ((h = f[((f[(d + 12) >> 2] | 0) + (a << 2)) >> 2] | 0), + (h | 0) != -1) + : 0 + ) + if (!((h >>> 0) % 3 | 0)) { + l = (h + 2) | 0 + break + } else { + l = (h + -1) | 0 + break + } + else l = -1 + while (0) + f[e >> 2] = l + b[c >> 0] = 0 + return + } + function Ih(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + Td(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 20) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + Td(a, e) + return + } + function Jh(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + d = f[(a + 4) >> 2] | 0 + if (!d) { + e = 0 + return e | 0 + } + a = b[(c + 11) >> 0] | 0 + g = (a << 24) >> 24 < 0 + h = g ? f[(c + 4) >> 2] | 0 : a & 255 + a = g ? f[c >> 2] | 0 : c + c = d + while (1) { + d = (c + 16) | 0 + g = b[(d + 11) >> 0] | 0 + i = (g << 24) >> 24 < 0 + j = i ? f[(c + 20) >> 2] | 0 : g & 255 + g = j >>> 0 < h >>> 0 + k = g ? j : h + if ( + (k | 0) != 0 + ? ((l = Vk(a, i ? f[d >> 2] | 0 : d, k) | 0), (l | 0) != 0) + : 0 + ) + if ((l | 0) < 0) m = 7 + else m = 8 + else if (h >>> 0 < j >>> 0) m = 7 + else m = 8 + if ((m | 0) == 7) { + m = 0 + n = c + } else if ((m | 0) == 8) { + m = 0 + l = h >>> 0 < j >>> 0 ? h : j + if ( + (l | 0) != 0 + ? ((j = Vk(i ? f[d >> 2] | 0 : d, a, l) | 0), (j | 0) != 0) + : 0 + ) { + if ((j | 0) >= 0) { + e = 1 + m = 14 + break + } + } else m = 10 + if ((m | 0) == 10 ? ((m = 0), !g) : 0) { + e = 1 + m = 14 + break + } + n = (c + 4) | 0 + } + c = f[n >> 2] | 0 + if (!c) { + e = 0 + m = 14 + break + } + } + if ((m | 0) == 14) return e | 0 + return 0 + } + function Kh(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0 + e = u + u = (u + 16) | 0 + g = (e + 4) | 0 + h = e + i = f[(a + 8) >> 2] | 0 + j = (i + 24) | 0 + k = b[j >> 0] | 0 + l = (c + 4) | 0 + ag(a, ((f[l >> 2] | 0) - (f[c >> 2] | 0)) >> 2, k, d) + d = f[(a + 32) >> 2] | 0 + a = ((f[f[d >> 2] >> 2] | 0) + (f[(d + 48) >> 2] | 0)) | 0 + d = f[c >> 2] | 0 + c = f[l >> 2] | 0 + if ((d | 0) == (c | 0)) { + m = 1 + u = e + return m | 0 + } + l = (i + 84) | 0 + n = (i + 68) | 0 + o = 0 + p = d + while (1) { + d = f[p >> 2] | 0 + if (!(b[l >> 0] | 0)) q = f[((f[n >> 2] | 0) + (d << 2)) >> 2] | 0 + else q = d + f[h >> 2] = q + d = b[j >> 0] | 0 + f[g >> 2] = f[h >> 2] + if (!(Qb(i, g, d, (a + (o << 2)) | 0) | 0)) { + m = 0 + r = 7 + break + } + p = (p + 4) | 0 + if ((p | 0) == (c | 0)) { + m = 1 + r = 7 + break + } else o = (o + k) | 0 + } + if ((r | 0) == 7) { + u = e + return m | 0 + } + return 0 + } + function Lh(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + f[a >> 2] = 1408 + b = (a + 72) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + c = f[(a + 60) >> 2] | 0 + if (c | 0) { + b = (a + 64) | 0 + d = f[b >> 2] | 0 + if ((d | 0) != (c | 0)) + f[b >> 2] = d + (~(((d + -4 - c) | 0) >>> 2) << 2) + Oq(c) + } + c = f[(a + 48) >> 2] | 0 + if (c | 0) Oq(c) + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if (d | 0) { + b = (a + 40) | 0 + e = f[b >> 2] | 0 + if ((e | 0) == (d | 0)) g = d + else { + h = e + do { + e = (h + -4) | 0 + f[b >> 2] = e + i = f[e >> 2] | 0 + f[e >> 2] = 0 + if (i | 0) Va[f[((f[i >> 2] | 0) + 4) >> 2] & 127](i) + h = f[b >> 2] | 0 + } while ((h | 0) != (d | 0)) + g = f[c >> 2] | 0 + } + Oq(g) + } + f[a >> 2] = 1232 + g = f[(a + 16) >> 2] | 0 + if (g | 0) { + c = (a + 20) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (g | 0)) + f[c >> 2] = d + (~(((d + -4 - g) | 0) >>> 2) << 2) + Oq(g) + } + g = f[(a + 4) >> 2] | 0 + if (!g) return + d = (a + 8) | 0 + a = f[d >> 2] | 0 + if ((a | 0) != (g | 0)) f[d >> 2] = a + (~(((a + -4 - g) | 0) >>> 2) << 2) + Oq(g) + return + } + function Mh(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + f[a >> 2] = d + e = (a + 24) | 0 + g = (a + 28) | 0 + h = f[g >> 2] | 0 + i = f[e >> 2] | 0 + j = (h - i) >> 2 + k = i + i = h + if (j >>> 0 >= d >>> 0) { + if ( + j >>> 0 > d >>> 0 ? ((h = (k + (d << 2)) | 0), (h | 0) != (i | 0)) : 0 + ) + f[g >> 2] = i + (~(((i + -4 - h) | 0) >>> 2) << 2) + } else Ci(e, (d - j) | 0) + if (!c) return + j = f[b >> 2] | 0 + if ((c | 0) > 1) { + d = j + e = j + h = 1 + while (1) { + i = f[(b + (h << 2)) >> 2] | 0 + g = (i | 0) < (e | 0) + k = g ? i : e + l = g ? d : (i | 0) > (d | 0) ? i : d + h = (h + 1) | 0 + if ((h | 0) == (c | 0)) { + m = l + n = k + break + } else { + d = l + e = k + } + } + } else { + m = j + n = j + } + f[(a + 4) >> 2] = n + f[(a + 8) >> 2] = m + j = + Xn( + m | 0, + ((((m | 0) < 0) << 31) >> 31) | 0, + n | 0, + ((((n | 0) < 0) << 31) >> 31) | 0, + ) | 0 + n = I + if (!((n >>> 0 < 0) | (((n | 0) == 0) & (j >>> 0 < 2147483647)))) return + n = (j + 1) | 0 + f[(a + 12) >> 2] = n + j = ((n | 0) / 2) | 0 + m = (a + 16) | 0 + f[m >> 2] = j + f[(a + 20) >> 2] = 0 - j + if ((n & 1) | 0) return + f[m >> 2] = j + -1 + return + } + function Nh(a) { + a = a | 0 + Fj((a + 992) | 0) + Fj((a + 960) | 0) + Fj((a + 928) | 0) + Fj((a + 896) | 0) + Fj((a + 864) | 0) + Fj((a + 832) | 0) + Fj((a + 800) | 0) + Fj((a + 768) | 0) + Fj((a + 736) | 0) + Fj((a + 704) | 0) + Fj((a + 672) | 0) + Fj((a + 640) | 0) + Fj((a + 608) | 0) + Fj((a + 576) | 0) + Fj((a + 544) | 0) + Fj((a + 512) | 0) + Fj((a + 480) | 0) + Fj((a + 448) | 0) + Fj((a + 416) | 0) + Fj((a + 384) | 0) + Fj((a + 352) | 0) + Fj((a + 320) | 0) + Fj((a + 288) | 0) + Fj((a + 256) | 0) + Fj((a + 224) | 0) + Fj((a + 192) | 0) + Fj((a + 160) | 0) + Fj((a + 128) | 0) + Fj((a + 96) | 0) + Fj((a + 64) | 0) + Fj((a + 32) | 0) + Fj(a) + return + } + function Oh(a) { + a = a | 0 + wn(a) + wn((a + 32) | 0) + wn((a + 64) | 0) + wn((a + 96) | 0) + wn((a + 128) | 0) + wn((a + 160) | 0) + wn((a + 192) | 0) + wn((a + 224) | 0) + wn((a + 256) | 0) + wn((a + 288) | 0) + wn((a + 320) | 0) + wn((a + 352) | 0) + wn((a + 384) | 0) + wn((a + 416) | 0) + wn((a + 448) | 0) + wn((a + 480) | 0) + wn((a + 512) | 0) + wn((a + 544) | 0) + wn((a + 576) | 0) + wn((a + 608) | 0) + wn((a + 640) | 0) + wn((a + 672) | 0) + wn((a + 704) | 0) + wn((a + 736) | 0) + wn((a + 768) | 0) + wn((a + 800) | 0) + wn((a + 832) | 0) + wn((a + 864) | 0) + wn((a + 896) | 0) + wn((a + 928) | 0) + wn((a + 960) | 0) + wn((a + 992) | 0) + return + } + function Ph(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = u + u = (u + 16) | 0 + d = (c + 12) | 0 + e = (c + 8) | 0 + g = (c + 4) | 0 + h = c + i = (a | 0) == (b | 0) + if (!i) { + f[g >> 2] = f[b >> 2] + f[h >> 2] = b + 4 + f[e >> 2] = f[g >> 2] + f[d >> 2] = f[h >> 2] + Oc(a, e, d) + } + if (!i) { + f[g >> 2] = f[(b + 12) >> 2] + f[h >> 2] = b + 16 + f[e >> 2] = f[g >> 2] + f[d >> 2] = f[h >> 2] + Hc((a + 12) | 0, e, d) + } + if (i) { + u = c + return + } + f[g >> 2] = f[(b + 24) >> 2] + f[h >> 2] = b + 28 + f[e >> 2] = f[g >> 2] + f[d >> 2] = f[h >> 2] + Oc((a + 24) | 0, e, d) + u = c + return + } + function Qh(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + a = u + u = (u + 16) | 0 + e = a + if (((c | 0) < 0) | (((b | 0) == 0) | ((d | 0) == 0))) { + g = 0 + u = a + return g | 0 + } + h = f[(b + 8) >> 2] | 0 + if (((((f[(b + 12) >> 2] | 0) - h) >> 2) | 0) <= (c | 0)) { + g = 0 + u = a + return g | 0 + } + i = (b + 4) | 0 + if (!(f[i >> 2] | 0)) { + j = ln(52) | 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + f[(j + 12) >> 2] = 0 + n[(j + 16) >> 2] = $(1.0) + k = (j + 20) | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + n[(j + 36) >> 2] = $(1.0) + f[(j + 40) >> 2] = 0 + f[(j + 44) >> 2] = 0 + f[(j + 48) >> 2] = 0 + f[(b + 4) >> 2] = j + } + j = f[((f[(h + (c << 2)) >> 2] | 0) + 60) >> 2] | 0 + c = ln(44) | 0 + Ub(c, d) + f[(c + 40) >> 2] = j + j = f[i >> 2] | 0 + f[e >> 2] = c + mk(j, e) | 0 + j = f[e >> 2] | 0 + f[e >> 2] = 0 + if (!j) { + g = 1 + u = a + return g | 0 + } + bj(j) + Oq(j) + g = 1 + u = a + return g | 0 + } + function Rh(a, c, d, e, g, h, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + var j = 0, + k = 0 + c = u + u = (u + 64) | 0 + j = c + k = i ? 6 : 5 + Il(j) + i = f[(h + 56) >> 2] | 0 + h = X(Vl(k) | 0, e) | 0 + Jj(j, i, 0, e & 255, k, 0, h, (((h | 0) < 0) << 31) >> 31, 0, 0) + h = ln(96) | 0 + tl(h, j) + f[a >> 2] = h + Bj(h, d) | 0 + d = (h + 84) | 0 + if (!g) { + b[d >> 0] = 1 + a = f[(h + 68) >> 2] | 0 + j = (h + 72) | 0 + k = f[j >> 2] | 0 + if ((k | 0) == (a | 0)) { + u = c + return + } + f[j >> 2] = k + (~(((k + -4 - a) | 0) >>> 2) << 2) + u = c + return + } + b[d >> 0] = 0 + d = (h + 68) | 0 + a = (h + 72) | 0 + h = f[a >> 2] | 0 + k = f[d >> 2] | 0 + j = (h - k) >> 2 + e = h + if (j >>> 0 < g >>> 0) { + Ch(d, (g - j) | 0, 1216) + u = c + return + } + if (j >>> 0 <= g >>> 0) { + u = c + return + } + j = (k + (g << 2)) | 0 + if ((j | 0) == (e | 0)) { + u = c + return + } + f[a >> 2] = e + (~(((e + -4 - j) | 0) >>> 2) << 2) + u = c + return + } + function Sh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + rd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + rd(a, e) + return + } + function Th(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + vd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + vd(a, e) + return + } + function Uh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + Fd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + Fd(a, e) + return + } + function Vh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + Pd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + Pd(a, e) + return + } + function Wh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + ud(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + ud(a, e) + return + } + function Xh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + zd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + zd(a, e) + return + } + function Yh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + Jd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + Jd(a, e) + return + } + function Zh(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + sd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + sd(a, e) + return + } + function _h(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + wd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + wd(a, e) + return + } + function $h(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + Gd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + Gd(a, e) + return + } + function ai(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + Qd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + Qd(a, e) + return + } + function bi(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + g = u + u = (u + 16) | 0 + h = g + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + i = ln(16) | 0 + f[h >> 2] = i + f[(h + 8) >> 2] = -2147483632 + f[(h + 4) >> 2] = 15 + j = i + k = 14479 + l = (j + 15) | 0 + do { + b[j >> 0] = b[k >> 0] | 0 + j = (j + 1) | 0 + k = (k + 1) | 0 + } while ((j | 0) < (l | 0)) + b[(i + 15) >> 0] = 0 + i = Hk(c, h, -1) | 0 + if ((b[(h + 11) >> 0] | 0) < 0) Oq(f[h >> 2] | 0) + switch (i | 0) { + case -1: { + if ((mi(c) | 0) == 10) m = 6 + else m = 5 + break + } + case 1: { + m = 5 + break + } + default: + m = 6 + } + if ((m | 0) == 5) { + i = ln(60) | 0 + Lo(i) + n = i + } else if ((m | 0) == 6) { + m = ln(56) | 0 + tp(m) + n = m + } + xo(n, d) + Md(a, n, c, e) + Va[f[((f[n >> 2] | 0) + 4) >> 2] & 127](n) + u = g + return + } + function ci(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 8) | 0 + b[h >> 0] = a & 127 + do + if (a >>> 0 > 127) { + b[h >> 0] = a | 128 + i = (c + 16) | 0 + j = f[(i + 4) >> 2] | 0 + if (((j | 0) > 0) | (((j | 0) == 0) & ((f[i >> 2] | 0) >>> 0 > 0))) { + k = 0 + break + } else { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, (h + 1) | 0) | 0 + k = ci(a >>> 7, c) | 0 + break + } + } else { + i = (c + 16) | 0 + j = f[(i + 4) >> 2] | 0 + if (((j | 0) > 0) | (((j | 0) == 0) & ((f[i >> 2] | 0) >>> 0 > 0))) { + k = 0 + break + } + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, (h + 1) | 0) | 0 + l = 1 + u = d + return l | 0 + } + while (0) + l = k + u = d + return l | 0 + } + function vc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0 + e = u + u = (u + 32) | 0 + g = (e + 16) | 0 + h = (e + 12) | 0 + i = (e + 8) | 0 + j = (e + 4) | 0 + k = e + switch (f[(c + 28) >> 2] | 0) { + case 9: { + l = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = l + f[g >> 2] = f[h >> 2] + m = hc(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = l + f[g >> 2] = f[i >> 2] + m = Wb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = l + f[g >> 2] = f[j >> 2] + m = uc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = l + f[g >> 2] = f[k >> 2] + m = mc(a, c, g) | 0 + break + } + default: + m = 0 + } + n = m + break + } + case 1: { + m = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = m + f[g >> 2] = f[h >> 2] + o = gc(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = m + f[g >> 2] = f[i >> 2] + o = Xb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = m + f[g >> 2] = f[j >> 2] + o = sc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = m + f[g >> 2] = f[k >> 2] + o = lc(a, c, g) | 0 + break + } + default: + o = 0 + } + n = o + break + } + case 11: + case 2: { + o = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = o + f[g >> 2] = f[h >> 2] + p = gc(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = o + f[g >> 2] = f[i >> 2] + p = Xb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = o + f[g >> 2] = f[j >> 2] + p = sc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = o + f[g >> 2] = f[k >> 2] + p = lc(a, c, g) | 0 + break + } + default: + p = 0 + } + n = p + break + } + case 4: { + p = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = p + f[g >> 2] = f[h >> 2] + q = ec(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = p + f[g >> 2] = f[i >> 2] + q = Vb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = p + f[g >> 2] = f[j >> 2] + q = nc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = p + f[g >> 2] = f[k >> 2] + q = jc(a, c, g) | 0 + break + } + default: + q = 0 + } + n = q + break + } + case 3: { + q = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = q + f[g >> 2] = f[h >> 2] + r = ec(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = q + f[g >> 2] = f[i >> 2] + r = Vb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = q + f[g >> 2] = f[j >> 2] + r = nc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = q + f[g >> 2] = f[k >> 2] + r = jc(a, c, g) | 0 + break + } + default: + r = 0 + } + n = r + break + } + case 6: { + r = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = r + f[g >> 2] = f[h >> 2] + s = hc(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = r + f[g >> 2] = f[i >> 2] + s = Wb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = r + f[g >> 2] = f[j >> 2] + s = uc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = r + f[g >> 2] = f[k >> 2] + s = mc(a, c, g) | 0 + break + } + default: + s = 0 + } + n = s + break + } + case 5: { + s = f[d >> 2] | 0 + switch (b[(c + 24) >> 0] | 0) { + case 1: { + f[h >> 2] = s + f[g >> 2] = f[h >> 2] + t = hc(a, c, g) | 0 + break + } + case 2: { + f[i >> 2] = s + f[g >> 2] = f[i >> 2] + t = Wb(a, c, g) | 0 + break + } + case 3: { + f[j >> 2] = s + f[g >> 2] = f[j >> 2] + t = uc(a, c, g) | 0 + break + } + case 4: { + f[k >> 2] = s + f[g >> 2] = f[k >> 2] + t = mc(a, c, g) | 0 + break + } + default: + t = 0 + } + n = t + break + } + default: { + v = -1 + u = e + return v | 0 + } + } + v = (n | 0) == 0 ? -1 : n + u = e + return v | 0 + } + function wc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + e = u + u = (u + 32) | 0 + g = (e + 16) | 0 + h = (e + 12) | 0 + i = (e + 29) | 0 + j = e + k = (e + 28) | 0 + if (!(f[((f[(a + 8) >> 2] | 0) + 80) >> 2] | 0)) { + l = 1 + u = e + return l | 0 + } + b[i >> 0] = -2 + m = (a + 36) | 0 + n = f[m >> 2] | 0 + if (n) + if (Ra[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a, n) | 0) { + n = f[m >> 2] | 0 + o = (Qa[f[((f[n >> 2] | 0) + 8) >> 2] & 127](n) | 0) & 255 + b[i >> 0] = o + p = 5 + } else q = 0 + else p = 5 + if ((p | 0) == 5) { + o = (d + 16) | 0 + n = o + r = f[(n + 4) >> 2] | 0 + if (!(((r | 0) > 0) | (((r | 0) == 0) & ((f[n >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(d, g, i, (i + 1) | 0) | 0 + } + i = f[m >> 2] | 0 + if ( + i | 0 + ? ((n = (Qa[f[((f[i >> 2] | 0) + 36) >> 2] & 127](i) | 0) & 255), + (b[j >> 0] = n), + (n = o), + (i = f[(n + 4) >> 2] | 0), + !(((i | 0) > 0) | (((i | 0) == 0) & ((f[n >> 2] | 0) >>> 0 > 0)))) + : 0 + ) { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(d, g, j, (j + 1) | 0) | 0 + } + n = f[(a + 32) >> 2] | 0 + i = b[(n + 24) >> 0] | 0 + r = X(f[(n + 80) >> 2] | 0, i) | 0 + s = ((f[f[n >> 2] >> 2] | 0) + (f[(n + 48) >> 2] | 0)) | 0 + f[j >> 2] = 0 + n = (j + 4) | 0 + f[n >> 2] = 0 + f[(j + 8) >> 2] = 0 + t = (r | 0) == 0 + do + if (!t) + if (r >>> 0 > 1073741823) aq(j) + else { + v = r << 2 + w = ln(v) | 0 + f[j >> 2] = w + x = (w + (r << 2)) | 0 + f[(j + 8) >> 2] = x + sj(w | 0, 0, v | 0) | 0 + f[n >> 2] = x + y = w + break + } + else y = 0 + while (0) + w = f[m >> 2] | 0 + do + if (w) { + Ta[f[((f[w >> 2] | 0) + 44) >> 2] & 31]( + w, + s, + y, + r, + i, + f[c >> 2] | 0, + ) | 0 + x = f[m >> 2] | 0 + if (!x) { + z = s + A = f[j >> 2] | 0 + p = 20 + break + } + if (!(Qa[f[((f[x >> 2] | 0) + 32) >> 2] & 127](x) | 0)) { + x = f[j >> 2] | 0 + z = f[m >> 2] | 0 ? x : s + A = x + p = 20 + } + } else { + z = s + A = y + p = 20 + } + while (0) + if ((p | 0) == 20) xm(z, r, A) + A = (a + 4) | 0 + a = f[A >> 2] | 0 + do + if (a) { + z = f[(a + 48) >> 2] | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + y = ln(48) | 0 + f[g >> 2] = y + f[(g + 8) >> 2] = -2147483600 + f[(g + 4) >> 2] = 34 + s = y + w = 10697 + x = (s + 34) | 0 + do { + b[s >> 0] = b[w >> 0] | 0 + s = (s + 1) | 0 + w = (w + 1) | 0 + } while ((s | 0) < (x | 0)) + b[(y + 34) >> 0] = 0 + w = Yj(z, g, 1) | 0 + if ((b[(g + 11) >> 0] | 0) < 0) Oq(f[g >> 2] | 0) + if (!w) { + if (!t) { + w = f[j >> 2] | 0 + s = 0 + x = 0 + do { + x = f[(w + (s << 2)) >> 2] | x + s = (s + 1) | 0 + } while ((s | 0) != (r | 0)) + if (x) B = ((((_(x | 0) | 0) >>> 3) ^ 3) + 1) | 0 + else B = 1 + } else B = 1 + b[k >> 0] = 0 + s = o + w = f[s >> 2] | 0 + z = f[(s + 4) >> 2] | 0 + if (((z | 0) > 0) | (((z | 0) == 0) & (w >>> 0 > 0))) { + C = z + D = w + } else { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(d, g, k, (k + 1) | 0) | 0 + w = o + C = f[(w + 4) >> 2] | 0 + D = f[w >> 2] | 0 + } + b[k >> 0] = B + if (!(((C | 0) > 0) | (((C | 0) == 0) & (D >>> 0 > 0)))) { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(d, g, k, (k + 1) | 0) | 0 + } + if ((B | 0) == (Vl(5) | 0)) { + w = f[j >> 2] | 0 + z = o + s = f[(z + 4) >> 2] | 0 + if ( + !( + ((s | 0) > 0) | + (((s | 0) == 0) & ((f[z >> 2] | 0) >>> 0 > 0)) + ) + ) { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(d, g, w, (w + (r << 2)) | 0) | 0 + } + p = 48 + break + } + if (t) p = 48 + else { + w = (d + 4) | 0 + z = 0 + do { + s = ((f[j >> 2] | 0) + (z << 2)) | 0 + y = o + v = f[(y + 4) >> 2] | 0 + if ( + !( + ((v | 0) > 0) | + (((v | 0) == 0) & ((f[y >> 2] | 0) >>> 0 > 0)) + ) + ) { + f[h >> 2] = f[w >> 2] + f[g >> 2] = f[h >> 2] + Me(d, g, s, (s + B) | 0) | 0 + } + z = (z + 1) | 0 + } while (z >>> 0 < r >>> 0) + p = 48 + } + } else p = 27 + } else p = 27 + while (0) + if ((p | 0) == 27) { + b[k >> 0] = 1 + r = o + o = f[(r + 4) >> 2] | 0 + if ( + !(((o | 0) > 0) | (((o | 0) == 0) & ((f[r >> 2] | 0) >>> 0 > 0))) + ) { + f[h >> 2] = f[(d + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(d, g, k, (k + 1) | 0) | 0 + } + lp(g) + k = f[A >> 2] | 0 + if (k | 0) Zj(g, (10 - (mi(f[(k + 48) >> 2] | 0) | 0)) | 0) | 0 + k = + Mc( + f[j >> 2] | 0, + X(((f[(c + 4) >> 2] | 0) - (f[c >> 2] | 0)) >> 2, i) | 0, + i, + g, + d, + ) | 0 + Ej(g, f[(g + 4) >> 2] | 0) + if (k) p = 48 + else E = 0 + } + if ((p | 0) == 48) { + p = f[m >> 2] | 0 + if (!p) E = 1 + else { + Ra[f[((f[p >> 2] | 0) + 40) >> 2] & 127](p, d) | 0 + E = 1 + } + } + d = f[j >> 2] | 0 + if (d | 0) { + j = f[n >> 2] | 0 + if ((j | 0) != (d | 0)) + f[n >> 2] = j + (~(((j + -4 - d) | 0) >>> 2) << 2) + Oq(d) + } + q = E + } + l = q + u = e + return l | 0 + } + function xc(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0 + b = u + u = (u + 48) | 0 + c = (b + 24) | 0 + d = (b + 12) | 0 + e = b + g = (a + 32) | 0 + h = (a + 8) | 0 + i = (a + 12) | 0 + j = f[i >> 2] | 0 + k = f[h >> 2] | 0 + l = (j - k) >> 2 + m = (a + 36) | 0 + n = f[m >> 2] | 0 + o = f[g >> 2] | 0 + p = (n - o) >> 2 + q = o + o = n + n = k + if (l >>> 0 <= p >>> 0) + if ( + l >>> 0 < p >>> 0 ? ((r = (q + (l << 2)) | 0), (r | 0) != (o | 0)) : 0 + ) { + f[m >> 2] = o + (~(((o + -4 - r) | 0) >>> 2) << 2) + s = n + t = k + v = j + } else { + s = n + t = k + v = j + } + else { + Ci(g, (l - p) | 0) + p = f[h >> 2] | 0 + s = p + t = p + v = f[i >> 2] | 0 + } + p = (v - t) | 0 + l = p >> 2 + f[c >> 2] = 0 + j = (c + 4) | 0 + f[j >> 2] = 0 + k = (c + 8) | 0 + f[k >> 2] = 0 + if (l | 0) { + if ((p | 0) < 0) aq(c) + p = ((((l + -1) | 0) >>> 5) + 1) | 0 + n = ln(p << 2) | 0 + f[c >> 2] = n + f[k >> 2] = p + f[j >> 2] = l + j = l >>> 5 + sj(n | 0, 0, (j << 2) | 0) | 0 + p = l & 31 + l = (n + (j << 2)) | 0 + if (p | 0) f[l >> 2] = f[l >> 2] & ~(-1 >>> ((32 - p) | 0)) + } + p = (a + 20) | 0 + l = 0 + j = s + s = t + t = v + while (1) { + if (l >>> 0 < ((t - s) >> 2) >>> 0) { + w = 0 + x = 0 + y = l + z = s + A = j + } else { + B = 25 + break + } + while (1) { + v = x >>> 5 + n = 1 << (x & 31) + do + if (!(f[((f[c >> 2] | 0) + (v << 2)) >> 2] & n)) { + k = f[(A + (x << 2)) >> 2] | 0 + if ((f[(k + 8) >> 2] | 0) != (f[(k + 4) >> 2] | 0)) { + r = 0 + o = 1 + m = A + q = k + while (1) { + k = f[((f[(q + 4) >> 2] | 0) + (r << 2)) >> 2] | 0 + C = 0 + D = m + while (1) { + E = f[(D + (x << 2)) >> 2] | 0 + if ( + (C | 0) >= + (Ra[f[((f[E >> 2] | 0) + 24) >> 2] & 127](E, k) | 0) + ) { + F = o + break + } + E = f[((f[h >> 2] | 0) + (x << 2)) >> 2] | 0 + G = Sa[f[((f[E >> 2] | 0) + 28) >> 2] & 31](E, k, C) | 0 + if ( + (G | 0) != (x | 0) + ? ((E = f[((f[p >> 2] | 0) + (G << 2)) >> 2] | 0), + (((1 << (E & 31)) & + f[((f[c >> 2] | 0) + ((E >>> 5) << 2)) >> 2]) | + 0) == + 0) + : 0 + ) { + F = 0 + break + } + C = (C + 1) | 0 + D = f[h >> 2] | 0 + } + r = (r + 1) | 0 + m = f[h >> 2] | 0 + q = f[(m + (x << 2)) >> 2] | 0 + if ( + r >>> 0 >= + (((f[(q + 8) >> 2] | 0) - (f[(q + 4) >> 2] | 0)) >> 2) >>> 0 + ) + break + else o = F + } + o = m + if (F) H = o + else { + I = w + J = y + K = o + break + } + } else H = z + f[((f[g >> 2] | 0) + (y << 2)) >> 2] = x + o = ((f[c >> 2] | 0) + (v << 2)) | 0 + f[o >> 2] = f[o >> 2] | n + I = 1 + J = (y + 1) | 0 + K = H + } else { + I = w + J = y + K = z + } + while (0) + x = (x + 1) | 0 + L = f[i >> 2] | 0 + M = (L - K) >> 2 + A = K + if (x >>> 0 >= M >>> 0) break + else { + w = I + y = J + z = K + } + } + if ((J >>> 0 < M >>> 0) & (I ^ 1)) { + N = 0 + break + } else { + l = J + j = A + s = K + t = L + } + } + if ((B | 0) == 25) { + f[d >> 2] = 0 + B = (d + 4) | 0 + f[B >> 2] = 0 + f[(d + 8) >> 2] = 0 + L = f[(a + 4) >> 2] | 0 + a = ((f[(L + 12) >> 2] | 0) - (f[(L + 8) >> 2] | 0)) | 0 + L = a >> 2 + f[e >> 2] = 0 + K = (e + 4) | 0 + f[K >> 2] = 0 + A = (e + 8) | 0 + f[A >> 2] = 0 + if (L | 0) { + if ((a | 0) < 0) aq(e) + a = ((((L + -1) | 0) >>> 5) + 1) | 0 + J = ln(a << 2) | 0 + f[e >> 2] = J + f[A >> 2] = a + f[K >> 2] = L + K = L >>> 5 + sj(J | 0, 0, (K << 2) | 0) | 0 + a = L & 31 + L = (J + (K << 2)) | 0 + if (a | 0) f[L >> 2] = f[L >> 2] & ~(-1 >>> ((32 - a) | 0)) + } + a: do + if ((t | 0) == (s | 0)) O = 1 + else { + a = 0 + L = j + K = s + J = t + while (1) { + A = f[((f[g >> 2] | 0) + (a << 2)) >> 2] | 0 + l = f[(L + (A << 2)) >> 2] | 0 + I = ((f[(l + 8) >> 2] | 0) - (f[(l + 4) >> 2] | 0)) | 0 + l = I >> 2 + if ((I | 0) < 8) { + P = K + Q = J + } else { + I = f[B >> 2] | 0 + M = f[d >> 2] | 0 + z = (I - M) >> 2 + y = M + M = I + if (l >>> 0 <= z >>> 0) + if ( + l >>> 0 < z >>> 0 + ? ((I = (y + (l << 2)) | 0), (I | 0) != (M | 0)) + : 0 + ) { + f[B >> 2] = M + (~(((M + -4 - I) | 0) >>> 2) << 2) + R = 0 + } else R = 0 + else { + Ci(d, (l - z) | 0) + R = 0 + } + while (1) { + if ((R | 0) < (l | 0)) { + S = 0 + T = 0 + U = R + } else break + while (1) { + z = f[((f[h >> 2] | 0) + (A << 2)) >> 2] | 0 + I = f[((f[(z + 4) >> 2] | 0) + (S << 2)) >> 2] | 0 + M = S >>> 5 + y = 1 << (S & 31) + if (!(f[((f[e >> 2] | 0) + (M << 2)) >> 2] & y)) { + w = 0 + x = 1 + H = z + while (1) { + if ( + (w | 0) >= + (Ra[f[((f[H >> 2] | 0) + 24) >> 2] & 127](H, I) | 0) + ) { + V = x + break + } + z = f[((f[h >> 2] | 0) + (A << 2)) >> 2] | 0 + F = Sa[f[((f[z >> 2] | 0) + 28) >> 2] & 31](z, I, w) | 0 + z = + ((f[((f[e >> 2] | 0) + ((F >>> 5) << 2)) >> 2] & + (1 << (F & 31))) | + 0) != + 0 + F = x & z + if (!z) { + V = F + break + } + w = (w + 1) | 0 + x = F + H = f[((f[h >> 2] | 0) + (A << 2)) >> 2] | 0 + } + if (V) { + f[((f[d >> 2] | 0) + (U << 2)) >> 2] = S + H = ((f[e >> 2] | 0) + (M << 2)) | 0 + f[H >> 2] = f[H >> 2] | y + W = 1 + X = (U + 1) | 0 + } else { + W = T + X = U + } + } else { + W = T + X = U + } + S = (S + 1) | 0 + if ((S | 0) >= (l | 0)) break + else { + T = W + U = X + } + } + if (W | ((X | 0) >= (l | 0))) R = X + else { + O = 0 + break a + } + } + bg(f[((f[h >> 2] | 0) + (A << 2)) >> 2] | 0, d) + P = f[h >> 2] | 0 + Q = f[i >> 2] | 0 + } + a = (a + 1) | 0 + if (a >>> 0 >= ((Q - P) >> 2) >>> 0) { + O = 1 + break + } else { + L = P + K = P + J = Q + } + } + } + while (0) + Q = f[e >> 2] | 0 + if (Q | 0) Oq(Q) + Q = f[d >> 2] | 0 + if (Q | 0) { + d = f[B >> 2] | 0 + if ((d | 0) != (Q | 0)) + f[B >> 2] = d + (~(((d + -4 - Q) | 0) >>> 2) << 2) + Oq(Q) + } + N = O + } + O = f[c >> 2] | 0 + if (!O) { + u = b + return N | 0 + } + Oq(O) + u = b + return N | 0 + } + function yc(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0 + if (!a) return + b = (a + -8) | 0 + c = f[4788] | 0 + d = f[(a + -4) >> 2] | 0 + a = d & -8 + e = (b + a) | 0 + do + if (!(d & 1)) { + g = f[b >> 2] | 0 + if (!(d & 3)) return + h = (b + (0 - g)) | 0 + i = (g + a) | 0 + if (h >>> 0 < c >>> 0) return + if ((f[4789] | 0) == (h | 0)) { + j = (e + 4) | 0 + k = f[j >> 2] | 0 + if (((k & 3) | 0) != 3) { + l = h + m = i + n = h + break + } + f[4786] = i + f[j >> 2] = k & -2 + f[(h + 4) >> 2] = i | 1 + f[(h + i) >> 2] = i + return + } + k = g >>> 3 + if (g >>> 0 < 256) { + g = f[(h + 8) >> 2] | 0 + j = f[(h + 12) >> 2] | 0 + if ((j | 0) == (g | 0)) { + f[4784] = f[4784] & ~(1 << k) + l = h + m = i + n = h + break + } else { + f[(g + 12) >> 2] = j + f[(j + 8) >> 2] = g + l = h + m = i + n = h + break + } + } + g = f[(h + 24) >> 2] | 0 + j = f[(h + 12) >> 2] | 0 + do + if ((j | 0) == (h | 0)) { + k = (h + 16) | 0 + o = (k + 4) | 0 + p = f[o >> 2] | 0 + if (!p) { + q = f[k >> 2] | 0 + if (!q) { + r = 0 + break + } else { + s = q + t = k + } + } else { + s = p + t = o + } + while (1) { + o = (s + 20) | 0 + p = f[o >> 2] | 0 + if (p | 0) { + s = p + t = o + continue + } + o = (s + 16) | 0 + p = f[o >> 2] | 0 + if (!p) break + else { + s = p + t = o + } + } + f[t >> 2] = 0 + r = s + } else { + o = f[(h + 8) >> 2] | 0 + f[(o + 12) >> 2] = j + f[(j + 8) >> 2] = o + r = j + } + while (0) + if (g) { + j = f[(h + 28) >> 2] | 0 + o = (19440 + (j << 2)) | 0 + if ((f[o >> 2] | 0) == (h | 0)) { + f[o >> 2] = r + if (!r) { + f[4785] = f[4785] & ~(1 << j) + l = h + m = i + n = h + break + } + } else { + f[ + (g + 16 + ((((f[(g + 16) >> 2] | 0) != (h | 0)) & 1) << 2)) >> 2 + ] = r + if (!r) { + l = h + m = i + n = h + break + } + } + f[(r + 24) >> 2] = g + j = (h + 16) | 0 + o = f[j >> 2] | 0 + if (o | 0) { + f[(r + 16) >> 2] = o + f[(o + 24) >> 2] = r + } + o = f[(j + 4) >> 2] | 0 + if (o) { + f[(r + 20) >> 2] = o + f[(o + 24) >> 2] = r + l = h + m = i + n = h + } else { + l = h + m = i + n = h + } + } else { + l = h + m = i + n = h + } + } else { + l = b + m = a + n = b + } + while (0) + if (n >>> 0 >= e >>> 0) return + b = (e + 4) | 0 + a = f[b >> 2] | 0 + if (!(a & 1)) return + if (!(a & 2)) { + if ((f[4790] | 0) == (e | 0)) { + r = ((f[4787] | 0) + m) | 0 + f[4787] = r + f[4790] = l + f[(l + 4) >> 2] = r | 1 + if ((l | 0) != (f[4789] | 0)) return + f[4789] = 0 + f[4786] = 0 + return + } + if ((f[4789] | 0) == (e | 0)) { + r = ((f[4786] | 0) + m) | 0 + f[4786] = r + f[4789] = n + f[(l + 4) >> 2] = r | 1 + f[(n + r) >> 2] = r + return + } + r = ((a & -8) + m) | 0 + s = a >>> 3 + do + if (a >>> 0 < 256) { + t = f[(e + 8) >> 2] | 0 + c = f[(e + 12) >> 2] | 0 + if ((c | 0) == (t | 0)) { + f[4784] = f[4784] & ~(1 << s) + break + } else { + f[(t + 12) >> 2] = c + f[(c + 8) >> 2] = t + break + } + } else { + t = f[(e + 24) >> 2] | 0 + c = f[(e + 12) >> 2] | 0 + do + if ((c | 0) == (e | 0)) { + d = (e + 16) | 0 + o = (d + 4) | 0 + j = f[o >> 2] | 0 + if (!j) { + p = f[d >> 2] | 0 + if (!p) { + u = 0 + break + } else { + v = p + w = d + } + } else { + v = j + w = o + } + while (1) { + o = (v + 20) | 0 + j = f[o >> 2] | 0 + if (j | 0) { + v = j + w = o + continue + } + o = (v + 16) | 0 + j = f[o >> 2] | 0 + if (!j) break + else { + v = j + w = o + } + } + f[w >> 2] = 0 + u = v + } else { + o = f[(e + 8) >> 2] | 0 + f[(o + 12) >> 2] = c + f[(c + 8) >> 2] = o + u = c + } + while (0) + if (t | 0) { + c = f[(e + 28) >> 2] | 0 + h = (19440 + (c << 2)) | 0 + if ((f[h >> 2] | 0) == (e | 0)) { + f[h >> 2] = u + if (!u) { + f[4785] = f[4785] & ~(1 << c) + break + } + } else { + f[ + (t + 16 + ((((f[(t + 16) >> 2] | 0) != (e | 0)) & 1) << 2)) >> + 2 + ] = u + if (!u) break + } + f[(u + 24) >> 2] = t + c = (e + 16) | 0 + h = f[c >> 2] | 0 + if (h | 0) { + f[(u + 16) >> 2] = h + f[(h + 24) >> 2] = u + } + h = f[(c + 4) >> 2] | 0 + if (h | 0) { + f[(u + 20) >> 2] = h + f[(h + 24) >> 2] = u + } + } + } + while (0) + f[(l + 4) >> 2] = r | 1 + f[(n + r) >> 2] = r + if ((l | 0) == (f[4789] | 0)) { + f[4786] = r + return + } else x = r + } else { + f[b >> 2] = a & -2 + f[(l + 4) >> 2] = m | 1 + f[(n + m) >> 2] = m + x = m + } + m = x >>> 3 + if (x >>> 0 < 256) { + n = (19176 + ((m << 1) << 2)) | 0 + a = f[4784] | 0 + b = 1 << m + if (!(a & b)) { + f[4784] = a | b + y = n + z = (n + 8) | 0 + } else { + b = (n + 8) | 0 + y = f[b >> 2] | 0 + z = b + } + f[z >> 2] = l + f[(y + 12) >> 2] = l + f[(l + 8) >> 2] = y + f[(l + 12) >> 2] = n + return + } + n = x >>> 8 + if (n) + if (x >>> 0 > 16777215) A = 31 + else { + y = (((n + 1048320) | 0) >>> 16) & 8 + z = n << y + n = (((z + 520192) | 0) >>> 16) & 4 + b = z << n + z = (((b + 245760) | 0) >>> 16) & 2 + a = (14 - (n | y | z) + ((b << z) >>> 15)) | 0 + A = ((x >>> ((a + 7) | 0)) & 1) | (a << 1) + } + else A = 0 + a = (19440 + (A << 2)) | 0 + f[(l + 28) >> 2] = A + f[(l + 20) >> 2] = 0 + f[(l + 16) >> 2] = 0 + z = f[4785] | 0 + b = 1 << A + do + if (z & b) { + y = x << ((A | 0) == 31 ? 0 : (25 - (A >>> 1)) | 0) + n = f[a >> 2] | 0 + while (1) { + if (((f[(n + 4) >> 2] & -8) | 0) == (x | 0)) { + B = 73 + break + } + C = (n + 16 + ((y >>> 31) << 2)) | 0 + m = f[C >> 2] | 0 + if (!m) { + B = 72 + break + } else { + y = y << 1 + n = m + } + } + if ((B | 0) == 72) { + f[C >> 2] = l + f[(l + 24) >> 2] = n + f[(l + 12) >> 2] = l + f[(l + 8) >> 2] = l + break + } else if ((B | 0) == 73) { + y = (n + 8) | 0 + t = f[y >> 2] | 0 + f[(t + 12) >> 2] = l + f[y >> 2] = l + f[(l + 8) >> 2] = t + f[(l + 12) >> 2] = n + f[(l + 24) >> 2] = 0 + break + } + } else { + f[4785] = z | b + f[a >> 2] = l + f[(l + 24) >> 2] = a + f[(l + 12) >> 2] = l + f[(l + 8) >> 2] = l + } + while (0) + l = ((f[4792] | 0) + -1) | 0 + f[4792] = l + if (!l) D = 19592 + else return + while (1) { + l = f[D >> 2] | 0 + if (!l) break + else D = (l + 8) | 0 + } + f[4792] = -1 + return + } + function zc(a) { + a = a | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0 + c = u + u = (u + 32) | 0 + e = (c + 4) | 0 + g = c + h = (c + 16) | 0 + i = (a + 52) | 0 + j = f[i >> 2] | 0 + k = ((f[(j + 100) >> 2] | 0) - (f[(j + 96) >> 2] | 0)) | 0 + j = ((k | 0) / 12) | 0 + l = (a + 44) | 0 + ci(j, f[l >> 2] | 0) | 0 + ci(f[((f[i >> 2] | 0) + 80) >> 2] | 0, f[l >> 2] | 0) | 0 + m = f[(a + 48) >> 2] | 0 + n = ln(32) | 0 + f[e >> 2] = n + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 21 + o = n + p = 15598 + q = (o + 21) | 0 + do { + b[o >> 0] = b[p >> 0] | 0 + o = (o + 1) | 0 + p = (p + 1) | 0 + } while ((o | 0) < (q | 0)) + b[(n + 21) >> 0] = 0 + n = Yj(m, e, 0) | 0 + if ((b[(e + 11) >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + m = f[l >> 2] | 0 + if (n) { + b[h >> 0] = 0 + n = (m + 16) | 0 + p = f[(n + 4) >> 2] | 0 + if (!(((p | 0) > 0) | (((p | 0) == 0) & ((f[n >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(m + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(m, e, h, (h + 1) | 0) | 0 + } + mf(a) | 0 + u = c + return 1 + } + b[h >> 0] = 1 + a = (m + 16) | 0 + n = f[(a + 4) >> 2] | 0 + if (!(((n | 0) > 0) | (((n | 0) == 0) & ((f[a >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(m + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(m, e, h, (h + 1) | 0) | 0 + } + m = f[i >> 2] | 0 + a = f[(m + 80) >> 2] | 0 + if (a >>> 0 < 256) { + if (!k) { + u = c + return 1 + } + n = (h + 1) | 0 + p = (h + 1) | 0 + o = (h + 1) | 0 + q = 0 + r = m + while (1) { + s = f[(r + 96) >> 2] | 0 + t = f[l >> 2] | 0 + b[h >> 0] = f[(s + ((q * 12) | 0)) >> 2] + v = (t + 16) | 0 + w = f[v >> 2] | 0 + x = f[(v + 4) >> 2] | 0 + if (((x | 0) > 0) | (((x | 0) == 0) & (w >>> 0 > 0))) { + y = w + z = t + A = x + } else { + f[g >> 2] = f[(t + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(t, e, h, o) | 0 + t = f[l >> 2] | 0 + x = (t + 16) | 0 + y = f[x >> 2] | 0 + z = t + A = f[(x + 4) >> 2] | 0 + } + b[h >> 0] = f[(s + ((q * 12) | 0) + 4) >> 2] + if (((A | 0) > 0) | (((A | 0) == 0) & (y >>> 0 > 0))) { + B = A + C = y + D = z + } else { + f[g >> 2] = f[(z + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(z, e, h, p) | 0 + x = f[l >> 2] | 0 + t = (x + 16) | 0 + B = f[(t + 4) >> 2] | 0 + C = f[t >> 2] | 0 + D = x + } + b[h >> 0] = f[(s + ((q * 12) | 0) + 8) >> 2] + if (!(((B | 0) > 0) | (((B | 0) == 0) & (C >>> 0 > 0)))) { + f[g >> 2] = f[(D + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(D, e, h, n) | 0 + } + s = (q + 1) | 0 + if (s >>> 0 >= j >>> 0) break + q = s + r = f[i >> 2] | 0 + } + u = c + return 1 + } + if (a >>> 0 < 65536) { + if (!k) { + u = c + return 1 + } + r = (h + 2) | 0 + q = (h + 2) | 0 + n = (h + 2) | 0 + D = 0 + C = m + while (1) { + B = f[(C + 96) >> 2] | 0 + p = f[l >> 2] | 0 + d[h >> 1] = f[(B + ((D * 12) | 0)) >> 2] + z = (p + 16) | 0 + y = f[z >> 2] | 0 + A = f[(z + 4) >> 2] | 0 + if (((A | 0) > 0) | (((A | 0) == 0) & (y >>> 0 > 0))) { + E = A + F = y + G = p + } else { + f[g >> 2] = f[(p + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(p, e, h, n) | 0 + p = f[l >> 2] | 0 + y = (p + 16) | 0 + E = f[(y + 4) >> 2] | 0 + F = f[y >> 2] | 0 + G = p + } + d[h >> 1] = f[(B + ((D * 12) | 0) + 4) >> 2] + if (((E | 0) > 0) | (((E | 0) == 0) & (F >>> 0 > 0))) { + H = E + I = F + J = G + } else { + f[g >> 2] = f[(G + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(G, e, h, q) | 0 + p = f[l >> 2] | 0 + y = (p + 16) | 0 + H = f[(y + 4) >> 2] | 0 + I = f[y >> 2] | 0 + J = p + } + d[h >> 1] = f[(B + ((D * 12) | 0) + 8) >> 2] + if (!(((H | 0) > 0) | (((H | 0) == 0) & (I >>> 0 > 0)))) { + f[g >> 2] = f[(J + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(J, e, h, r) | 0 + } + B = (D + 1) | 0 + if (B >>> 0 >= j >>> 0) break + D = B + C = f[i >> 2] | 0 + } + u = c + return 1 + } + C = (k | 0) != 0 + if (a >>> 0 < 2097152) { + if (C) { + K = 0 + L = m + } else { + u = c + return 1 + } + while (1) { + a = f[(L + 96) >> 2] | 0 + ci(f[(a + ((K * 12) | 0)) >> 2] | 0, f[l >> 2] | 0) | 0 + ci(f[(a + ((K * 12) | 0) + 4) >> 2] | 0, f[l >> 2] | 0) | 0 + ci(f[(a + ((K * 12) | 0) + 8) >> 2] | 0, f[l >> 2] | 0) | 0 + a = (K + 1) | 0 + if (a >>> 0 >= j >>> 0) break + K = a + L = f[i >> 2] | 0 + } + u = c + return 1 + } + if (!C) { + u = c + return 1 + } + C = 0 + L = m + while (1) { + m = ((f[(L + 96) >> 2] | 0) + ((C * 12) | 0)) | 0 + K = f[l >> 2] | 0 + a = (K + 16) | 0 + k = f[(a + 4) >> 2] | 0 + if (!(((k | 0) > 0) | (((k | 0) == 0) & ((f[a >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(K + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(K, e, m, (m + 12) | 0) | 0 + } + m = (C + 1) | 0 + if (m >>> 0 >= j >>> 0) break + C = m + L = f[i >> 2] | 0 + } + u = c + return 1 + } + function Ac(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = Oa, + w = Oa, + x = Oa, + y = Oa, + z = 0, + A = 0, + B = 0, + C = Oa, + D = Oa, + E = Oa, + F = Oa, + G = Oa, + H = Oa, + I = Oa, + K = Oa, + M = Oa, + N = Oa, + O = Oa, + P = 0, + Q = Oa, + R = Oa, + S = 0 + g = u + u = (u + 48) | 0 + h = (g + 40) | 0 + i = (g + 36) | 0 + j = (g + 24) | 0 + k = (g + 12) | 0 + l = g + m = (a + 28) | 0 + o = f[c >> 2] | 0 + c = (o + 1) | 0 + if ((o | 0) != -1) { + p = ((c >>> 0) % 3 | 0 | 0) == 0 ? (o + -2) | 0 : c + c = (o + (((o >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + if ((p | 0) == -1) q = -1 + else q = f[((f[f[m >> 2] >> 2] | 0) + (p << 2)) >> 2] | 0 + if ((c | 0) == -1) { + r = -1 + s = q + } else { + r = f[((f[f[m >> 2] >> 2] | 0) + (c << 2)) >> 2] | 0 + s = q + } + } else { + r = -1 + s = -1 + } + q = f[(a + 32) >> 2] | 0 + c = f[q >> 2] | 0 + m = ((f[(q + 4) >> 2] | 0) - c) >> 2 + if (m >>> 0 <= s >>> 0) aq(q) + p = c + c = f[(p + (s << 2)) >> 2] | 0 + if (m >>> 0 <= r >>> 0) aq(q) + q = f[(p + (r << 2)) >> 2] | 0 + r = (c | 0) < (e | 0) + if (!(r & ((q | 0) < (e | 0)))) { + do + if (r) t = c + else { + if ((e | 0) > 0) { + t = (e + -1) | 0 + break + } + p = (a + 52) | 0 + if ((f[p >> 2] | 0) <= 0) { + u = g + return + } + m = f[(a + 48) >> 2] | 0 + s = 0 + do { + f[(m + (s << 2)) >> 2] = 0 + s = (s + 1) | 0 + } while ((s | 0) < (f[p >> 2] | 0)) + u = g + return + } + while (0) + r = (a + 52) | 0 + p = f[r >> 2] | 0 + s = X(p, t) | 0 + if ((p | 0) <= 0) { + u = g + return + } + p = f[(a + 48) >> 2] | 0 + t = 0 + do { + f[(p + (t << 2)) >> 2] = f[(d + ((t + s) << 2)) >> 2] + t = (t + 1) | 0 + } while ((t | 0) < (f[r >> 2] | 0)) + u = g + return + } + r = (a + 52) | 0 + t = f[r >> 2] | 0 + s = X(t, c) | 0 + v = $(f[(d + (s << 2)) >> 2] | 0) + w = $(f[(d + ((s + 1) << 2)) >> 2] | 0) + s = X(t, q) | 0 + x = $(f[(d + (s << 2)) >> 2] | 0) + y = $(f[(d + ((s + 1) << 2)) >> 2] | 0) + if (!((x != v) | (y != w))) { + s = f[(a + 48) >> 2] | 0 + f[s >> 2] = ~~x + f[(s + 4) >> 2] = ~~y + u = g + return + } + s = (a + 44) | 0 + t = f[((f[s >> 2] | 0) + (e << 2)) >> 2] | 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + p = (a + 40) | 0 + m = f[p >> 2] | 0 + if (!(b[(m + 84) >> 0] | 0)) + z = f[((f[(m + 68) >> 2] | 0) + (t << 2)) >> 2] | 0 + else z = t + f[i >> 2] = z + z = b[(m + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + mb(m, h, z, j) | 0 + z = f[((f[s >> 2] | 0) + (c << 2)) >> 2] | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + c = f[p >> 2] | 0 + if (!(b[(c + 84) >> 0] | 0)) + A = f[((f[(c + 68) >> 2] | 0) + (z << 2)) >> 2] | 0 + else A = z + f[i >> 2] = A + A = b[(c + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + mb(c, h, A, k) | 0 + A = f[((f[s >> 2] | 0) + (q << 2)) >> 2] | 0 + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[(l + 8) >> 2] = 0 + q = f[p >> 2] | 0 + if (!(b[(q + 84) >> 0] | 0)) + B = f[((f[(q + 68) >> 2] | 0) + (A << 2)) >> 2] | 0 + else B = A + f[i >> 2] = B + B = b[(q + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + mb(q, h, B, l) | 0 + C = $(n[l >> 2]) + D = $(n[k >> 2]) + E = $(C - D) + C = $(n[(l + 4) >> 2]) + F = $(n[(k + 4) >> 2]) + G = $(C - F) + C = $(n[(l + 8) >> 2]) + H = $(n[(k + 8) >> 2]) + I = $(C - H) + C = $($(n[j >> 2]) - D) + D = $($(n[(j + 4) >> 2]) - F) + F = $($(n[(j + 8) >> 2]) - H) + H = $($($($(E * E) + $(0.0)) + $(G * G)) + $(I * I)) + if (H > $(0.0)) { + K = $($($($($(E * C) + $(0.0)) + $(G * D)) + $(I * F)) / H) + M = $(C - $(E * K)) + E = $(D - $(G * K)) + G = $(F - $(I * K)) + N = K + O = $(L($($($(G * G) + $($(E * E) + $($(M * M) + $(0.0)))) / H))) + } else { + N = $(0.0) + O = $(0.0) + } + H = $(x - v) + x = $(y - w) + y = $($(H * N) + v) + v = $(H * O) + H = $($(x * N) + w) + w = $(x * O) + O = $(y - w) + x = $(H + v) + N = $(y + w) + w = $(H - v) + j = X(f[r >> 2] | 0, e) | 0 + v = $(f[(d + (j << 2)) >> 2] | 0) + H = $(f[(d + ((j + 1) << 2)) >> 2] | 0) + y = $(v - O) + M = $(H - x) + E = $(v - N) + v = $(H - w) + j = + $($($(y * y) + $(0.0)) + $(M * M)) < $($($(E * E) + $(0.0)) + $(v * v)) + d = (a + 56) | 0 + e = (a + 60) | 0 + r = f[e >> 2] | 0 + k = f[(a + 64) >> 2] | 0 + l = (r | 0) == ((k << 5) | 0) + if (j) { + do + if (l) + if (((r + 1) | 0) < 0) aq(d) + else { + j = k << 6 + B = (r + 32) & -32 + vi( + d, + r >>> 0 < 1073741823 ? (j >>> 0 < B >>> 0 ? B : j) : 2147483647, + ) + P = f[e >> 2] | 0 + break + } + else P = r + while (0) + f[e >> 2] = P + 1 + j = ((f[d >> 2] | 0) + ((P >>> 5) << 2)) | 0 + f[j >> 2] = f[j >> 2] | (1 << (P & 31)) + Q = O + R = x + } else { + do + if (l) + if (((r + 1) | 0) < 0) aq(d) + else { + P = k << 6 + j = (r + 32) & -32 + vi( + d, + r >>> 0 < 1073741823 ? (P >>> 0 < j >>> 0 ? j : P) : 2147483647, + ) + S = f[e >> 2] | 0 + break + } + else S = r + while (0) + f[e >> 2] = S + 1 + e = ((f[d >> 2] | 0) + ((S >>> 5) << 2)) | 0 + f[e >> 2] = f[e >> 2] & ~(1 << (S & 31)) + Q = N + R = w + } + S = ~~+J(+(+Q + 0.5)) + e = f[(a + 48) >> 2] | 0 + f[e >> 2] = S + S = ~~+J(+(+R + 0.5)) + f[(e + 4) >> 2] = S + u = g + return + } + function Bc(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = Oa, + v = Oa, + w = Oa, + x = Oa, + y = 0, + z = 0, + A = 0, + B = Oa, + C = Oa, + D = Oa, + E = Oa, + F = Oa, + G = Oa, + H = Oa, + I = Oa, + K = Oa, + M = Oa, + N = Oa, + O = 0, + P = Oa, + Q = Oa, + R = 0 + g = u + u = (u + 48) | 0 + h = (g + 40) | 0 + i = (g + 36) | 0 + j = (g + 24) | 0 + k = (g + 12) | 0 + l = g + m = (a + 28) | 0 + o = f[c >> 2] | 0 + c = (o + 1) | 0 + do + if ((o | 0) != -1) { + p = ((c >>> 0) % 3 | 0 | 0) == 0 ? (o + -2) | 0 : c + if (!((o >>> 0) % 3 | 0)) { + q = (o + 2) | 0 + r = p + break + } else { + q = (o + -1) | 0 + r = p + break + } + } else { + q = -1 + r = -1 + } + while (0) + o = f[((f[m >> 2] | 0) + 28) >> 2] | 0 + m = f[(o + (r << 2)) >> 2] | 0 + r = f[(o + (q << 2)) >> 2] | 0 + q = f[(a + 32) >> 2] | 0 + o = f[q >> 2] | 0 + c = ((f[(q + 4) >> 2] | 0) - o) >> 2 + if (c >>> 0 <= m >>> 0) aq(q) + p = o + o = f[(p + (m << 2)) >> 2] | 0 + if (c >>> 0 <= r >>> 0) aq(q) + q = f[(p + (r << 2)) >> 2] | 0 + r = (o | 0) < (e | 0) + if (!(r & ((q | 0) < (e | 0)))) { + do + if (r) s = o + else { + if ((e | 0) > 0) { + s = (e + -1) | 0 + break + } + p = (a + 52) | 0 + if ((f[p >> 2] | 0) <= 0) { + u = g + return + } + c = f[(a + 48) >> 2] | 0 + m = 0 + do { + f[(c + (m << 2)) >> 2] = 0 + m = (m + 1) | 0 + } while ((m | 0) < (f[p >> 2] | 0)) + u = g + return + } + while (0) + r = (a + 52) | 0 + p = f[r >> 2] | 0 + m = X(p, s) | 0 + if ((p | 0) <= 0) { + u = g + return + } + p = f[(a + 48) >> 2] | 0 + s = 0 + do { + f[(p + (s << 2)) >> 2] = f[(d + ((s + m) << 2)) >> 2] + s = (s + 1) | 0 + } while ((s | 0) < (f[r >> 2] | 0)) + u = g + return + } + r = (a + 52) | 0 + s = f[r >> 2] | 0 + m = X(s, o) | 0 + t = $(f[(d + (m << 2)) >> 2] | 0) + v = $(f[(d + ((m + 1) << 2)) >> 2] | 0) + m = X(s, q) | 0 + w = $(f[(d + (m << 2)) >> 2] | 0) + x = $(f[(d + ((m + 1) << 2)) >> 2] | 0) + if (!((w != t) | (x != v))) { + m = f[(a + 48) >> 2] | 0 + f[m >> 2] = ~~w + f[(m + 4) >> 2] = ~~x + u = g + return + } + m = (a + 44) | 0 + s = f[((f[m >> 2] | 0) + (e << 2)) >> 2] | 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + p = (a + 40) | 0 + c = f[p >> 2] | 0 + if (!(b[(c + 84) >> 0] | 0)) + y = f[((f[(c + 68) >> 2] | 0) + (s << 2)) >> 2] | 0 + else y = s + f[i >> 2] = y + y = b[(c + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + mb(c, h, y, j) | 0 + y = f[((f[m >> 2] | 0) + (o << 2)) >> 2] | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + o = f[p >> 2] | 0 + if (!(b[(o + 84) >> 0] | 0)) + z = f[((f[(o + 68) >> 2] | 0) + (y << 2)) >> 2] | 0 + else z = y + f[i >> 2] = z + z = b[(o + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + mb(o, h, z, k) | 0 + z = f[((f[m >> 2] | 0) + (q << 2)) >> 2] | 0 + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[(l + 8) >> 2] = 0 + q = f[p >> 2] | 0 + if (!(b[(q + 84) >> 0] | 0)) + A = f[((f[(q + 68) >> 2] | 0) + (z << 2)) >> 2] | 0 + else A = z + f[i >> 2] = A + A = b[(q + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + mb(q, h, A, l) | 0 + B = $(n[l >> 2]) + C = $(n[k >> 2]) + D = $(B - C) + B = $(n[(l + 4) >> 2]) + E = $(n[(k + 4) >> 2]) + F = $(B - E) + B = $(n[(l + 8) >> 2]) + G = $(n[(k + 8) >> 2]) + H = $(B - G) + B = $($(n[j >> 2]) - C) + C = $($(n[(j + 4) >> 2]) - E) + E = $($(n[(j + 8) >> 2]) - G) + G = $($($($(D * D) + $(0.0)) + $(F * F)) + $(H * H)) + if (G > $(0.0)) { + I = $($($($($(D * B) + $(0.0)) + $(F * C)) + $(H * E)) / G) + K = $(B - $(D * I)) + D = $(C - $(F * I)) + F = $(E - $(H * I)) + M = I + N = $(L($($($(F * F) + $($(D * D) + $($(K * K) + $(0.0)))) / G))) + } else { + M = $(0.0) + N = $(0.0) + } + G = $(w - t) + w = $(x - v) + x = $($(G * M) + t) + t = $(G * N) + G = $($(w * M) + v) + v = $(w * N) + N = $(x - v) + w = $(G + t) + M = $(x + v) + v = $(G - t) + j = X(f[r >> 2] | 0, e) | 0 + t = $(f[(d + (j << 2)) >> 2] | 0) + G = $(f[(d + ((j + 1) << 2)) >> 2] | 0) + x = $(t - N) + K = $(G - w) + D = $(t - M) + t = $(G - v) + j = + $($($(x * x) + $(0.0)) + $(K * K)) < $($($(D * D) + $(0.0)) + $(t * t)) + d = (a + 56) | 0 + e = (a + 60) | 0 + r = f[e >> 2] | 0 + k = f[(a + 64) >> 2] | 0 + l = (r | 0) == ((k << 5) | 0) + if (j) { + do + if (l) + if (((r + 1) | 0) < 0) aq(d) + else { + j = k << 6 + A = (r + 32) & -32 + vi( + d, + r >>> 0 < 1073741823 ? (j >>> 0 < A >>> 0 ? A : j) : 2147483647, + ) + O = f[e >> 2] | 0 + break + } + else O = r + while (0) + f[e >> 2] = O + 1 + j = ((f[d >> 2] | 0) + ((O >>> 5) << 2)) | 0 + f[j >> 2] = f[j >> 2] | (1 << (O & 31)) + P = N + Q = w + } else { + do + if (l) + if (((r + 1) | 0) < 0) aq(d) + else { + O = k << 6 + j = (r + 32) & -32 + vi( + d, + r >>> 0 < 1073741823 ? (O >>> 0 < j >>> 0 ? j : O) : 2147483647, + ) + R = f[e >> 2] | 0 + break + } + else R = r + while (0) + f[e >> 2] = R + 1 + e = ((f[d >> 2] | 0) + ((R >>> 5) << 2)) | 0 + f[e >> 2] = f[e >> 2] & ~(1 << (R & 31)) + P = M + Q = v + } + R = ~~+J(+(+P + 0.5)) + e = f[(a + 48) >> 2] | 0 + f[e >> 2] = R + R = ~~+J(+(+Q + 0.5)) + f[(e + 4) >> 2] = R + u = g + return + } + function Cc(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = Oa, + w = Oa, + x = Oa, + y = Oa, + z = 0, + A = 0, + B = 0, + C = Oa, + D = Oa, + E = Oa, + F = Oa, + G = Oa, + H = Oa, + I = Oa, + K = Oa, + M = Oa, + N = Oa, + O = Oa, + P = 0, + Q = Oa, + R = Oa, + S = 0 + g = u + u = (u + 48) | 0 + h = (g + 40) | 0 + i = (g + 36) | 0 + j = (g + 24) | 0 + k = (g + 12) | 0 + l = g + m = (a + 48) | 0 + o = f[c >> 2] | 0 + c = (o + 1) | 0 + if ((o | 0) != -1) { + p = ((c >>> 0) % 3 | 0 | 0) == 0 ? (o + -2) | 0 : c + c = (o + (((o >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + if ((p | 0) == -1) q = -1 + else q = f[((f[f[m >> 2] >> 2] | 0) + (p << 2)) >> 2] | 0 + if ((c | 0) == -1) { + r = -1 + s = q + } else { + r = f[((f[f[m >> 2] >> 2] | 0) + (c << 2)) >> 2] | 0 + s = q + } + } else { + r = -1 + s = -1 + } + q = f[(a + 52) >> 2] | 0 + c = f[q >> 2] | 0 + m = ((f[(q + 4) >> 2] | 0) - c) >> 2 + if (m >>> 0 <= s >>> 0) aq(q) + p = c + c = f[(p + (s << 2)) >> 2] | 0 + if (m >>> 0 <= r >>> 0) aq(q) + q = f[(p + (r << 2)) >> 2] | 0 + r = (c | 0) < (e | 0) + if (!(r & ((q | 0) < (e | 0)))) { + do + if (r) t = c + else { + if ((e | 0) > 0) { + t = (e + -1) | 0 + break + } + p = (a + 72) | 0 + if ((f[p >> 2] | 0) <= 0) { + u = g + return + } + m = f[(a + 68) >> 2] | 0 + s = 0 + do { + f[(m + (s << 2)) >> 2] = 0 + s = (s + 1) | 0 + } while ((s | 0) < (f[p >> 2] | 0)) + u = g + return + } + while (0) + r = (a + 72) | 0 + p = f[r >> 2] | 0 + s = X(p, t) | 0 + if ((p | 0) <= 0) { + u = g + return + } + p = f[(a + 68) >> 2] | 0 + t = 0 + do { + f[(p + (t << 2)) >> 2] = f[(d + ((t + s) << 2)) >> 2] + t = (t + 1) | 0 + } while ((t | 0) < (f[r >> 2] | 0)) + u = g + return + } + r = (a + 72) | 0 + t = f[r >> 2] | 0 + s = X(t, c) | 0 + v = $(f[(d + (s << 2)) >> 2] | 0) + w = $(f[(d + ((s + 1) << 2)) >> 2] | 0) + s = X(t, q) | 0 + x = $(f[(d + (s << 2)) >> 2] | 0) + y = $(f[(d + ((s + 1) << 2)) >> 2] | 0) + if (!((x != v) | (y != w))) { + s = f[(a + 68) >> 2] | 0 + f[s >> 2] = ~~x + f[(s + 4) >> 2] = ~~y + u = g + return + } + s = (a + 64) | 0 + t = f[((f[s >> 2] | 0) + (e << 2)) >> 2] | 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + p = (a + 60) | 0 + m = f[p >> 2] | 0 + if (!(b[(m + 84) >> 0] | 0)) + z = f[((f[(m + 68) >> 2] | 0) + (t << 2)) >> 2] | 0 + else z = t + f[i >> 2] = z + z = b[(m + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + mb(m, h, z, j) | 0 + z = f[((f[s >> 2] | 0) + (c << 2)) >> 2] | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + c = f[p >> 2] | 0 + if (!(b[(c + 84) >> 0] | 0)) + A = f[((f[(c + 68) >> 2] | 0) + (z << 2)) >> 2] | 0 + else A = z + f[i >> 2] = A + A = b[(c + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + mb(c, h, A, k) | 0 + A = f[((f[s >> 2] | 0) + (q << 2)) >> 2] | 0 + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[(l + 8) >> 2] = 0 + q = f[p >> 2] | 0 + if (!(b[(q + 84) >> 0] | 0)) + B = f[((f[(q + 68) >> 2] | 0) + (A << 2)) >> 2] | 0 + else B = A + f[i >> 2] = B + B = b[(q + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + mb(q, h, B, l) | 0 + C = $(n[l >> 2]) + D = $(n[k >> 2]) + E = $(C - D) + C = $(n[(l + 4) >> 2]) + F = $(n[(k + 4) >> 2]) + G = $(C - F) + C = $(n[(l + 8) >> 2]) + H = $(n[(k + 8) >> 2]) + I = $(C - H) + C = $($(n[j >> 2]) - D) + D = $($(n[(j + 4) >> 2]) - F) + F = $($(n[(j + 8) >> 2]) - H) + H = $($($($(E * E) + $(0.0)) + $(G * G)) + $(I * I)) + if (H > $(0.0)) { + K = $($($($($(E * C) + $(0.0)) + $(G * D)) + $(I * F)) / H) + M = $(C - $(E * K)) + E = $(D - $(G * K)) + G = $(F - $(I * K)) + N = K + O = $(L($($($(G * G) + $($(E * E) + $($(M * M) + $(0.0)))) / H))) + } else { + N = $(0.0) + O = $(0.0) + } + H = $(x - v) + x = $(y - w) + y = $($(H * N) + v) + v = $(H * O) + H = $($(x * N) + w) + w = $(x * O) + O = $(y - w) + x = $(H + v) + N = $(y + w) + w = $(H - v) + j = X(f[r >> 2] | 0, e) | 0 + v = $(f[(d + (j << 2)) >> 2] | 0) + H = $(f[(d + ((j + 1) << 2)) >> 2] | 0) + y = $(v - O) + M = $(H - x) + E = $(v - N) + v = $(H - w) + j = + $($($(y * y) + $(0.0)) + $(M * M)) < $($($(E * E) + $(0.0)) + $(v * v)) + d = (a + 76) | 0 + e = (a + 80) | 0 + r = f[e >> 2] | 0 + k = f[(a + 84) >> 2] | 0 + l = (r | 0) == ((k << 5) | 0) + if (j) { + do + if (l) + if (((r + 1) | 0) < 0) aq(d) + else { + j = k << 6 + B = (r + 32) & -32 + vi( + d, + r >>> 0 < 1073741823 ? (j >>> 0 < B >>> 0 ? B : j) : 2147483647, + ) + P = f[e >> 2] | 0 + break + } + else P = r + while (0) + f[e >> 2] = P + 1 + j = ((f[d >> 2] | 0) + ((P >>> 5) << 2)) | 0 + f[j >> 2] = f[j >> 2] | (1 << (P & 31)) + Q = O + R = x + } else { + do + if (l) + if (((r + 1) | 0) < 0) aq(d) + else { + P = k << 6 + j = (r + 32) & -32 + vi( + d, + r >>> 0 < 1073741823 ? (P >>> 0 < j >>> 0 ? j : P) : 2147483647, + ) + S = f[e >> 2] | 0 + break + } + else S = r + while (0) + f[e >> 2] = S + 1 + e = ((f[d >> 2] | 0) + ((S >>> 5) << 2)) | 0 + f[e >> 2] = f[e >> 2] & ~(1 << (S & 31)) + Q = N + R = w + } + S = ~~+J(+(+Q + 0.5)) + e = f[(a + 68) >> 2] | 0 + f[e >> 2] = S + S = ~~+J(+(+R + 0.5)) + f[(e + 4) >> 2] = S + u = g + return + } + function Dc(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = Oa, + v = Oa, + w = Oa, + x = Oa, + y = 0, + z = 0, + A = 0, + B = Oa, + C = Oa, + D = Oa, + E = Oa, + F = Oa, + G = Oa, + H = Oa, + I = Oa, + K = Oa, + M = Oa, + N = Oa, + O = 0, + P = Oa, + Q = Oa, + R = 0 + g = u + u = (u + 48) | 0 + h = (g + 40) | 0 + i = (g + 36) | 0 + j = (g + 24) | 0 + k = (g + 12) | 0 + l = g + m = (a + 48) | 0 + o = f[c >> 2] | 0 + c = (o + 1) | 0 + do + if ((o | 0) != -1) { + p = ((c >>> 0) % 3 | 0 | 0) == 0 ? (o + -2) | 0 : c + if (!((o >>> 0) % 3 | 0)) { + q = (o + 2) | 0 + r = p + break + } else { + q = (o + -1) | 0 + r = p + break + } + } else { + q = -1 + r = -1 + } + while (0) + o = f[((f[m >> 2] | 0) + 28) >> 2] | 0 + m = f[(o + (r << 2)) >> 2] | 0 + r = f[(o + (q << 2)) >> 2] | 0 + q = f[(a + 52) >> 2] | 0 + o = f[q >> 2] | 0 + c = ((f[(q + 4) >> 2] | 0) - o) >> 2 + if (c >>> 0 <= m >>> 0) aq(q) + p = o + o = f[(p + (m << 2)) >> 2] | 0 + if (c >>> 0 <= r >>> 0) aq(q) + q = f[(p + (r << 2)) >> 2] | 0 + r = (o | 0) < (e | 0) + if (!(r & ((q | 0) < (e | 0)))) { + do + if (r) s = o + else { + if ((e | 0) > 0) { + s = (e + -1) | 0 + break + } + p = (a + 72) | 0 + if ((f[p >> 2] | 0) <= 0) { + u = g + return + } + c = f[(a + 68) >> 2] | 0 + m = 0 + do { + f[(c + (m << 2)) >> 2] = 0 + m = (m + 1) | 0 + } while ((m | 0) < (f[p >> 2] | 0)) + u = g + return + } + while (0) + r = (a + 72) | 0 + p = f[r >> 2] | 0 + m = X(p, s) | 0 + if ((p | 0) <= 0) { + u = g + return + } + p = f[(a + 68) >> 2] | 0 + s = 0 + do { + f[(p + (s << 2)) >> 2] = f[(d + ((s + m) << 2)) >> 2] + s = (s + 1) | 0 + } while ((s | 0) < (f[r >> 2] | 0)) + u = g + return + } + r = (a + 72) | 0 + s = f[r >> 2] | 0 + m = X(s, o) | 0 + t = $(f[(d + (m << 2)) >> 2] | 0) + v = $(f[(d + ((m + 1) << 2)) >> 2] | 0) + m = X(s, q) | 0 + w = $(f[(d + (m << 2)) >> 2] | 0) + x = $(f[(d + ((m + 1) << 2)) >> 2] | 0) + if (!((w != t) | (x != v))) { + m = f[(a + 68) >> 2] | 0 + f[m >> 2] = ~~w + f[(m + 4) >> 2] = ~~x + u = g + return + } + m = (a + 64) | 0 + s = f[((f[m >> 2] | 0) + (e << 2)) >> 2] | 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + p = (a + 60) | 0 + c = f[p >> 2] | 0 + if (!(b[(c + 84) >> 0] | 0)) + y = f[((f[(c + 68) >> 2] | 0) + (s << 2)) >> 2] | 0 + else y = s + f[i >> 2] = y + y = b[(c + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + mb(c, h, y, j) | 0 + y = f[((f[m >> 2] | 0) + (o << 2)) >> 2] | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + o = f[p >> 2] | 0 + if (!(b[(o + 84) >> 0] | 0)) + z = f[((f[(o + 68) >> 2] | 0) + (y << 2)) >> 2] | 0 + else z = y + f[i >> 2] = z + z = b[(o + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + mb(o, h, z, k) | 0 + z = f[((f[m >> 2] | 0) + (q << 2)) >> 2] | 0 + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[(l + 8) >> 2] = 0 + q = f[p >> 2] | 0 + if (!(b[(q + 84) >> 0] | 0)) + A = f[((f[(q + 68) >> 2] | 0) + (z << 2)) >> 2] | 0 + else A = z + f[i >> 2] = A + A = b[(q + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + mb(q, h, A, l) | 0 + B = $(n[l >> 2]) + C = $(n[k >> 2]) + D = $(B - C) + B = $(n[(l + 4) >> 2]) + E = $(n[(k + 4) >> 2]) + F = $(B - E) + B = $(n[(l + 8) >> 2]) + G = $(n[(k + 8) >> 2]) + H = $(B - G) + B = $($(n[j >> 2]) - C) + C = $($(n[(j + 4) >> 2]) - E) + E = $($(n[(j + 8) >> 2]) - G) + G = $($($($(D * D) + $(0.0)) + $(F * F)) + $(H * H)) + if (G > $(0.0)) { + I = $($($($($(D * B) + $(0.0)) + $(F * C)) + $(H * E)) / G) + K = $(B - $(D * I)) + D = $(C - $(F * I)) + F = $(E - $(H * I)) + M = I + N = $(L($($($(F * F) + $($(D * D) + $($(K * K) + $(0.0)))) / G))) + } else { + M = $(0.0) + N = $(0.0) + } + G = $(w - t) + w = $(x - v) + x = $($(G * M) + t) + t = $(G * N) + G = $($(w * M) + v) + v = $(w * N) + N = $(x - v) + w = $(G + t) + M = $(x + v) + v = $(G - t) + j = X(f[r >> 2] | 0, e) | 0 + t = $(f[(d + (j << 2)) >> 2] | 0) + G = $(f[(d + ((j + 1) << 2)) >> 2] | 0) + x = $(t - N) + K = $(G - w) + D = $(t - M) + t = $(G - v) + j = + $($($(x * x) + $(0.0)) + $(K * K)) < $($($(D * D) + $(0.0)) + $(t * t)) + d = (a + 76) | 0 + e = (a + 80) | 0 + r = f[e >> 2] | 0 + k = f[(a + 84) >> 2] | 0 + l = (r | 0) == ((k << 5) | 0) + if (j) { + do + if (l) + if (((r + 1) | 0) < 0) aq(d) + else { + j = k << 6 + A = (r + 32) & -32 + vi( + d, + r >>> 0 < 1073741823 ? (j >>> 0 < A >>> 0 ? A : j) : 2147483647, + ) + O = f[e >> 2] | 0 + break + } + else O = r + while (0) + f[e >> 2] = O + 1 + j = ((f[d >> 2] | 0) + ((O >>> 5) << 2)) | 0 + f[j >> 2] = f[j >> 2] | (1 << (O & 31)) + P = N + Q = w + } else { + do + if (l) + if (((r + 1) | 0) < 0) aq(d) + else { + O = k << 6 + j = (r + 32) & -32 + vi( + d, + r >>> 0 < 1073741823 ? (O >>> 0 < j >>> 0 ? j : O) : 2147483647, + ) + R = f[e >> 2] | 0 + break + } + else R = r + while (0) + f[e >> 2] = R + 1 + e = ((f[d >> 2] | 0) + ((R >>> 5) << 2)) | 0 + f[e >> 2] = f[e >> 2] & ~(1 << (R & 31)) + P = M + Q = v + } + R = ~~+J(+(+P + 0.5)) + e = f[(a + 68) >> 2] | 0 + f[e >> 2] = R + R = ~~+J(+(+Q + 0.5)) + f[(e + 4) >> 2] = R + u = g + return + } + function Ec(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = Oa, + F = Oa, + G = Oa, + H = 0, + I = 0, + J = 0, + K = 0 + d = b[(c + 11) >> 0] | 0 + e = (d << 24) >> 24 < 0 + g = e ? f[c >> 2] | 0 : c + i = e ? f[(c + 4) >> 2] | 0 : d & 255 + if (i >>> 0 > 3) { + d = g + e = i + j = i + while (1) { + k = + X( + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24), + 1540483477, + ) | 0 + e = (X((k >>> 24) ^ k, 1540483477) | 0) ^ (X(e, 1540483477) | 0) + j = (j + -4) | 0 + if (j >>> 0 <= 3) break + else d = (d + 4) | 0 + } + d = (i + -4) | 0 + j = d & -4 + l = (d - j) | 0 + m = (g + (j + 4)) | 0 + o = e + } else { + l = i + m = g + o = i + } + switch (l | 0) { + case 3: { + p = (h[(m + 2) >> 0] << 16) ^ o + q = 6 + break + } + case 2: { + p = o + q = 6 + break + } + case 1: { + r = o + q = 7 + break + } + default: + s = o + } + if ((q | 0) == 6) { + r = (h[(m + 1) >> 0] << 8) ^ p + q = 7 + } + if ((q | 0) == 7) s = X(r ^ h[m >> 0], 1540483477) | 0 + m = X((s >>> 13) ^ s, 1540483477) | 0 + s = (m >>> 15) ^ m + m = (a + 4) | 0 + r = f[m >> 2] | 0 + p = (r | 0) == 0 + a: do + if (!p) { + o = (r + -1) | 0 + l = ((o & r) | 0) == 0 + if (!l) + if (s >>> 0 < r >>> 0) t = s + else t = (s >>> 0) % (r >>> 0) | 0 + else t = s & o + e = f[((f[a >> 2] | 0) + (t << 2)) >> 2] | 0 + if ((e | 0) != 0 ? ((j = f[e >> 2] | 0), (j | 0) != 0) : 0) { + e = (i | 0) == 0 + if (l) { + if (e) { + l = j + while (1) { + d = f[(l + 4) >> 2] | 0 + if (!(((d | 0) == (s | 0)) | (((d & o) | 0) == (t | 0)))) { + u = t + break a + } + d = b[(l + 8 + 11) >> 0] | 0 + if ( + !( + ((d << 24) >> 24 < 0 ? f[(l + 12) >> 2] | 0 : d & 255) | 0 + ) + ) { + v = l + break + } + l = f[l >> 2] | 0 + if (!l) { + u = t + break a + } + } + w = (v + 20) | 0 + return w | 0 + } else x = j + b: while (1) { + l = f[(x + 4) >> 2] | 0 + if (!(((l | 0) == (s | 0)) | (((l & o) | 0) == (t | 0)))) { + u = t + break a + } + l = (x + 8) | 0 + d = b[(l + 11) >> 0] | 0 + k = (d << 24) >> 24 < 0 + y = d & 255 + do + if (((k ? f[(x + 12) >> 2] | 0 : y) | 0) == (i | 0)) { + d = f[l >> 2] | 0 + if (k) + if (!(Vk(d, g, i) | 0)) { + v = x + q = 63 + break b + } else break + if ((b[g >> 0] | 0) == ((d & 255) << 24) >> 24) { + d = l + z = y + A = g + do { + z = (z + -1) | 0 + d = (d + 1) | 0 + if (!z) { + v = x + q = 63 + break b + } + A = (A + 1) | 0 + } while ((b[d >> 0] | 0) == (b[A >> 0] | 0)) + } + } + while (0) + x = f[x >> 2] | 0 + if (!x) { + u = t + break a + } + } + if ((q | 0) == 63) { + w = (v + 20) | 0 + return w | 0 + } + } + if (e) { + o = j + while (1) { + y = f[(o + 4) >> 2] | 0 + if ((y | 0) != (s | 0)) { + if (y >>> 0 < r >>> 0) B = y + else B = (y >>> 0) % (r >>> 0) | 0 + if ((B | 0) != (t | 0)) { + u = t + break a + } + } + y = b[(o + 8 + 11) >> 0] | 0 + if ( + !(((y << 24) >> 24 < 0 ? f[(o + 12) >> 2] | 0 : y & 255) | 0) + ) { + v = o + break + } + o = f[o >> 2] | 0 + if (!o) { + u = t + break a + } + } + w = (v + 20) | 0 + return w | 0 + } else C = j + c: while (1) { + o = f[(C + 4) >> 2] | 0 + if ((o | 0) != (s | 0)) { + if (o >>> 0 < r >>> 0) D = o + else D = (o >>> 0) % (r >>> 0) | 0 + if ((D | 0) != (t | 0)) { + u = t + break a + } + } + o = (C + 8) | 0 + e = b[(o + 11) >> 0] | 0 + y = (e << 24) >> 24 < 0 + l = e & 255 + do + if (((y ? f[(C + 12) >> 2] | 0 : l) | 0) == (i | 0)) { + e = f[o >> 2] | 0 + if (y) + if (!(Vk(e, g, i) | 0)) { + v = C + q = 63 + break c + } else break + if ((b[g >> 0] | 0) == ((e & 255) << 24) >> 24) { + e = o + k = l + A = g + do { + k = (k + -1) | 0 + e = (e + 1) | 0 + if (!k) { + v = C + q = 63 + break c + } + A = (A + 1) | 0 + } while ((b[e >> 0] | 0) == (b[A >> 0] | 0)) + } + } + while (0) + C = f[C >> 2] | 0 + if (!C) { + u = t + break a + } + } + if ((q | 0) == 63) { + w = (v + 20) | 0 + return w | 0 + } + } else u = t + } else u = 0 + while (0) + t = ln(24) | 0 + pj((t + 8) | 0, c) + f[(t + 20) >> 2] = 0 + f[(t + 4) >> 2] = s + f[t >> 2] = 0 + c = (a + 12) | 0 + E = $((((f[c >> 2] | 0) + 1) | 0) >>> 0) + F = $(r >>> 0) + G = $(n[(a + 16) >> 2]) + do + if (p | ($(G * F) < E)) { + C = (r << 1) | (((r >>> 0 < 3) | ((((r + -1) & r) | 0) != 0)) & 1) + g = ~~$(W($(E / G))) >>> 0 + ei(a, C >>> 0 < g >>> 0 ? g : C) + C = f[m >> 2] | 0 + g = (C + -1) | 0 + if (!(g & C)) { + H = C + I = g & s + break + } + if (s >>> 0 < C >>> 0) { + H = C + I = s + } else { + H = C + I = (s >>> 0) % (C >>> 0) | 0 + } + } else { + H = r + I = u + } + while (0) + u = ((f[a >> 2] | 0) + (I << 2)) | 0 + I = f[u >> 2] | 0 + if (!I) { + r = (a + 8) | 0 + f[t >> 2] = f[r >> 2] + f[r >> 2] = t + f[u >> 2] = r + r = f[t >> 2] | 0 + if (r | 0) { + u = f[(r + 4) >> 2] | 0 + r = (H + -1) | 0 + if (r & H) + if (u >>> 0 < H >>> 0) J = u + else J = (u >>> 0) % (H >>> 0) | 0 + else J = u & r + K = ((f[a >> 2] | 0) + (J << 2)) | 0 + q = 61 + } + } else { + f[t >> 2] = f[I >> 2] + K = I + q = 61 + } + if ((q | 0) == 61) f[K >> 2] = t + f[c >> 2] = (f[c >> 2] | 0) + 1 + v = t + w = (v + 20) | 0 + return w | 0 + } + function Fc(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0.0, + q = 0.0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0.0, + G = 0.0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0.0, + P = 0, + Q = 0.0, + R = 0.0, + S = 0, + T = 0.0, + U = 0, + V = 0, + W = 0, + X = 0.0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0.0, + da = 0, + ea = 0.0 + g = (a + 4) | 0 + i = f[g >> 2] | 0 + j = (a + 100) | 0 + if (i >>> 0 < (f[j >> 2] | 0) >>> 0) { + f[g >> 2] = i + 1 + k = h[i >> 0] | 0 + l = 0 + } else { + k = Si(a) | 0 + l = 0 + } + a: while (1) { + switch (k | 0) { + case 46: { + m = 8 + break a + break + } + case 48: + break + default: { + n = 0 + o = 0 + p = 1.0 + q = 0.0 + r = 0 + s = k + t = l + u = 0 + v = 0 + w = 0 + x = 0 + break a + } + } + i = f[g >> 2] | 0 + if (i >>> 0 < (f[j >> 2] | 0) >>> 0) { + f[g >> 2] = i + 1 + k = h[i >> 0] | 0 + l = 1 + continue + } else { + k = Si(a) | 0 + l = 1 + continue + } + } + if ((m | 0) == 8) { + k = f[g >> 2] | 0 + if (k >>> 0 < (f[j >> 2] | 0) >>> 0) { + f[g >> 2] = k + 1 + y = h[k >> 0] | 0 + } else y = Si(a) | 0 + if ((y | 0) == 48) { + k = 0 + i = 0 + while (1) { + z = f[g >> 2] | 0 + if (z >>> 0 < (f[j >> 2] | 0) >>> 0) { + f[g >> 2] = z + 1 + A = h[z >> 0] | 0 + } else A = Si(a) | 0 + z = Vn(k | 0, i | 0, -1, -1) | 0 + B = I + if ((A | 0) == 48) { + k = z + i = B + } else { + n = 1 + o = 0 + p = 1.0 + q = 0.0 + r = 0 + s = A + t = 1 + u = 0 + v = 0 + w = z + x = B + break + } + } + } else { + n = 1 + o = 0 + p = 1.0 + q = 0.0 + r = 0 + s = y + t = l + u = 0 + v = 0 + w = 0 + x = 0 + } + } + while (1) { + l = (s + -48) | 0 + y = s | 32 + if (l >>> 0 >= 10) { + A = (s | 0) == 46 + if (!(A | (((y + -97) | 0) >>> 0 < 6))) { + C = s + break + } + if (A) + if (!n) { + D = 1 + E = o + F = p + G = q + H = r + J = t + K = v + L = u + M = v + N = u + } else { + C = 46 + break + } + else m = 20 + } else m = 20 + if ((m | 0) == 20) { + m = 0 + A = (s | 0) > 57 ? (y + -87) | 0 : l + do + if (!(((u | 0) < 0) | (((u | 0) == 0) & (v >>> 0 < 8)))) + if (((u | 0) < 0) | (((u | 0) == 0) & (v >>> 0 < 14))) { + O = p * 0.0625 + P = o + Q = O + R = q + O * +(A | 0) + S = r + break + } else { + l = ((o | 0) != 0) | ((A | 0) == 0) + P = l ? o : 1 + Q = p + R = l ? q : q + p * 0.5 + S = r + break + } + else { + P = o + Q = p + R = q + S = (A + (r << 4)) | 0 + } + while (0) + A = Vn(v | 0, u | 0, 1, 0) | 0 + D = n + E = P + F = Q + G = R + H = S + J = 1 + K = w + L = x + M = A + N = I + } + A = f[g >> 2] | 0 + if (A >>> 0 < (f[j >> 2] | 0) >>> 0) { + f[g >> 2] = A + 1 + n = D + o = E + p = F + q = G + r = H + s = h[A >> 0] | 0 + t = J + u = N + v = M + w = K + x = L + continue + } else { + n = D + o = E + p = F + q = G + r = H + s = Si(a) | 0 + t = J + u = N + v = M + w = K + x = L + continue + } + } + do + if (!t) { + L = (f[j >> 2] | 0) == 0 + if (!L) f[g >> 2] = (f[g >> 2] | 0) + -1 + if (e) { + if (!L) f[g >> 2] = (f[g >> 2] | 0) + -1 + if (!(((n | 0) == 0) | L)) f[g >> 2] = (f[g >> 2] | 0) + -1 + } else Ym(a, 0) + T = +(d | 0) * 0.0 + } else { + L = (n | 0) == 0 + K = L ? v : w + M = L ? u : x + if (((u | 0) < 0) | (((u | 0) == 0) & (v >>> 0 < 8))) { + L = r + N = v + J = u + while (1) { + s = L << 4 + H = N + N = Vn(N | 0, J | 0, 1, 0) | 0 + if (!(((J | 0) < 0) | (((J | 0) == 0) & (H >>> 0 < 7)))) { + U = s + break + } else { + L = s + J = I + } + } + } else U = r + if ((C | 32 | 0) == 112) { + J = Re(a, e) | 0 + L = I + if (((J | 0) == 0) & ((L | 0) == -2147483648)) { + if (!e) { + Ym(a, 0) + T = 0.0 + break + } + if (!(f[j >> 2] | 0)) { + V = 0 + W = 0 + } else { + f[g >> 2] = (f[g >> 2] | 0) + -1 + V = 0 + W = 0 + } + } else { + V = J + W = L + } + } else if (!(f[j >> 2] | 0)) { + V = 0 + W = 0 + } else { + f[g >> 2] = (f[g >> 2] | 0) + -1 + V = 0 + W = 0 + } + L = Tn(K | 0, M | 0, 2) | 0 + J = Vn(L | 0, I | 0, -32, -1) | 0 + L = Vn(J | 0, I | 0, V | 0, W | 0) | 0 + J = I + if (!U) { + T = +(d | 0) * 0.0 + break + } + N = (0 - c) | 0 + s = (((N | 0) < 0) << 31) >> 31 + if ( + ((J | 0) > (s | 0)) | + (((J | 0) == (s | 0)) & (L >>> 0 > N >>> 0)) + ) { + N = Vq() | 0 + f[N >> 2] = 34 + T = + +(d | 0) * + 1797693134862315708145274.0e284 * + 1797693134862315708145274.0e284 + break + } + N = (c + -106) | 0 + s = (((N | 0) < 0) << 31) >> 31 + if ( + ((J | 0) < (s | 0)) | + (((J | 0) == (s | 0)) & (L >>> 0 < N >>> 0)) + ) { + N = Vq() | 0 + f[N >> 2] = 34 + T = +(d | 0) * 2.2250738585072014e-308 * 2.2250738585072014e-308 + break + } + if ((U | 0) > -1) { + G = q + N = U + s = L + H = J + while (1) { + E = !(G >= 0.5) + o = (N << 1) | ((E ^ 1) & 1) + F = G + (E ? G : G + -1.0) + E = Vn(s | 0, H | 0, -1, -1) | 0 + D = I + if ((o | 0) > -1) { + G = F + N = o + s = E + H = D + } else { + X = F + Y = o + Z = E + _ = D + break + } + } + } else { + X = q + Y = U + Z = L + _ = J + } + H = (((b | 0) < 0) << 31) >> 31 + s = Xn(32, 0, c | 0, ((((c | 0) < 0) << 31) >> 31) | 0) | 0 + N = Vn(s | 0, I | 0, Z | 0, _ | 0) | 0 + s = I + if ( + ((s | 0) < (H | 0)) | + (((s | 0) == (H | 0)) & (N >>> 0 < b >>> 0)) + ) + if ((N | 0) > 0) { + $ = N + m = 59 + } else { + aa = 0 + ba = 84 + m = 61 + } + else { + $ = b + m = 59 + } + if ((m | 0) == 59) + if (($ | 0) < 53) { + aa = $ + ba = (84 - $) | 0 + m = 61 + } else { + ca = 0.0 + da = $ + ea = +(d | 0) + } + if ((m | 0) == 61) { + G = +(d | 0) + ca = +rq(+bk(1.0, ba), G) + da = aa + ea = G + } + N = (((Y & 1) | 0) == 0) & ((X != 0.0) & ((da | 0) < 32)) + G = (N ? 0.0 : X) * ea + (ca + ea * +(((Y + (N & 1)) | 0) >>> 0)) - ca + if (!(G != 0.0)) { + N = Vq() | 0 + f[N >> 2] = 34 + } + T = +sq(G, Z) + } + while (0) + return +T + } + function Gc(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0 + g = u + u = (u + 16) | 0 + h = (g + 4) | 0 + i = g + if (!(Gh(a, d) | 0)) { + j = 0 + u = g + return j | 0 + } + d = (a + 84) | 0 + k = f[d >> 2] | 0 + l = (a + 88) | 0 + m = f[l >> 2] | 0 + if ((m | 0) != (k | 0)) f[l >> 2] = m + (~(((m + -4 - k) | 0) >>> 2) << 2) + f[d >> 2] = 0 + f[l >> 2] = 0 + f[(a + 92) >> 2] = 0 + if (k | 0) Oq(k) + k = (a + 72) | 0 + l = f[k >> 2] | 0 + d = (a + 76) | 0 + if ((f[d >> 2] | 0) != (l | 0)) f[d >> 2] = l + f[k >> 2] = 0 + f[d >> 2] = 0 + f[(a + 80) >> 2] = 0 + if (l | 0) Oq(l) + l = (a + 64) | 0 + d = f[l >> 2] | 0 + if ((f[(d + 4) >> 2] | 0) != (f[d >> 2] | 0)) { + k = (a + 12) | 0 + m = (e + 84) | 0 + n = (e + 68) | 0 + o = (c + 96) | 0 + p = (a + 24) | 0 + q = 0 + r = d + do { + f[i >> 2] = ((q >>> 0) / 3) | 0 + f[h >> 2] = f[i >> 2] + d = _j(r, h) | 0 + r = f[l >> 2] | 0 + do + if (!d) { + s = f[((f[(r + 12) >> 2] | 0) + (q << 2)) >> 2] | 0 + if ((s | 0) == -1) { + t = ((f[a >> 2] | 0) + ((q >>> 5) << 2)) | 0 + f[t >> 2] = f[t >> 2] | (1 << (q & 31)) + t = (q + 1) | 0 + v = ((t >>> 0) % 3 | 0 | 0) == 0 ? (q + -2) | 0 : t + if ((v | 0) == -1) w = -1 + else w = f[((f[r >> 2] | 0) + (v << 2)) >> 2] | 0 + v = ((f[k >> 2] | 0) + ((w >>> 5) << 2)) | 0 + f[v >> 2] = f[v >> 2] | (1 << (w & 31)) + v = ((((q >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + q) | 0 + if ((v | 0) == -1) x = -1 + else x = f[((f[r >> 2] | 0) + (v << 2)) >> 2] | 0 + v = ((f[k >> 2] | 0) + ((x >>> 5) << 2)) | 0 + f[v >> 2] = f[v >> 2] | (1 << (x & 31)) + break + } + if (s >>> 0 >= q >>> 0) { + v = (q + 1) | 0 + t = ((v >>> 0) % 3 | 0 | 0) == 0 ? (q + -2) | 0 : v + y = (s + (((s >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + z = (t | 0) == -1 + if (!(b[m >> 0] | 0)) { + if (z) A = -1 + else + A = + f[ + ((f[o >> 2] | 0) + + (((((t | 0) / 3) | 0) * 12) | 0) + + (((t | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + B = (y | 0) == -1 + if (B) C = -1 + else + C = + f[ + ((f[o >> 2] | 0) + + (((((y | 0) / 3) | 0) * 12) | 0) + + (((y | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + D = f[n >> 2] | 0 + if ( + (f[(D + (A << 2)) >> 2] | 0) == + (f[(D + (C << 2)) >> 2] | 0) + ) { + E = (t + 1) | 0 + if (z) F = -1 + else F = ((E >>> 0) % 3 | 0 | 0) == 0 ? (t + -2) | 0 : E + do + if (!B) + if (!((y >>> 0) % 3 | 0)) { + G = (y + 2) | 0 + break + } else { + G = (y + -1) | 0 + break + } + else G = -1 + while (0) + if ((F | 0) == -1) H = -1 + else + H = + f[ + ((f[o >> 2] | 0) + + (((((F | 0) / 3) | 0) * 12) | 0) + + (((F | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if ((G | 0) == -1) I = -1 + else + I = + f[ + ((f[o >> 2] | 0) + + (((((G | 0) / 3) | 0) * 12) | 0) + + (((G | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if ( + (f[(D + (H << 2)) >> 2] | 0) == + (f[(D + (I << 2)) >> 2] | 0) + ) + break + } + } else { + if (z) J = -1 + else + J = + f[ + ((f[o >> 2] | 0) + + (((((t | 0) / 3) | 0) * 12) | 0) + + (((t | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + B = (y | 0) == -1 + if (B) K = -1 + else + K = + f[ + ((f[o >> 2] | 0) + + (((((y | 0) / 3) | 0) * 12) | 0) + + (((y | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if ((J | 0) == (K | 0)) { + E = (t + 1) | 0 + if (z) L = -1 + else L = ((E >>> 0) % 3 | 0 | 0) == 0 ? (t + -2) | 0 : E + do + if (!B) + if (!((y >>> 0) % 3 | 0)) { + M = (y + 2) | 0 + break + } else { + M = (y + -1) | 0 + break + } + else M = -1 + while (0) + if ((L | 0) == -1) N = -1 + else + N = + f[ + ((f[o >> 2] | 0) + + (((((L | 0) / 3) | 0) * 12) | 0) + + (((L | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if ((M | 0) == -1) O = -1 + else + O = + f[ + ((f[o >> 2] | 0) + + (((((M | 0) / 3) | 0) * 12) | 0) + + (((M | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if ((N | 0) == (O | 0)) break + } + } + b[p >> 0] = 0 + y = f[a >> 2] | 0 + B = (y + ((q >>> 5) << 2)) | 0 + f[B >> 2] = f[B >> 2] | (1 << (q & 31)) + B = (y + ((s >>> 5) << 2)) | 0 + f[B >> 2] = f[B >> 2] | (1 << (s & 31)) + B = ((v >>> 0) % 3 | 0 | 0) == 0 ? (q + -2) | 0 : v + if ((B | 0) == -1) P = -1 + else P = f[((f[r >> 2] | 0) + (B << 2)) >> 2] | 0 + B = ((f[k >> 2] | 0) + ((P >>> 5) << 2)) | 0 + f[B >> 2] = f[B >> 2] | (1 << (P & 31)) + B = ((((q >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + q) | 0 + if ((B | 0) == -1) Q = -1 + else Q = f[((f[r >> 2] | 0) + (B << 2)) >> 2] | 0 + B = ((f[k >> 2] | 0) + ((Q >>> 5) << 2)) | 0 + f[B >> 2] = f[B >> 2] | (1 << (Q & 31)) + B = (s + 1) | 0 + y = ((B >>> 0) % 3 | 0 | 0) == 0 ? (s + -2) | 0 : B + if ((y | 0) == -1) R = -1 + else R = f[((f[r >> 2] | 0) + (y << 2)) >> 2] | 0 + y = ((f[k >> 2] | 0) + ((R >>> 5) << 2)) | 0 + f[y >> 2] = f[y >> 2] | (1 << (R & 31)) + y = ((((s >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + s) | 0 + if ((y | 0) == -1) S = -1 + else S = f[((f[r >> 2] | 0) + (y << 2)) >> 2] | 0 + y = ((f[k >> 2] | 0) + ((S >>> 5) << 2)) | 0 + f[y >> 2] = f[y >> 2] | (1 << (S & 31)) + } + } + while (0) + q = (q + 1) | 0 + } while ( + q >>> 0 < + (((f[(r + 4) >> 2] | 0) - (f[r >> 2] | 0)) >> 2) >>> 0 + ) + } + if (((c | 0) != 0) & ((e | 0) != 0)) { + Qc(a, c, e) + j = 1 + u = g + return j | 0 + } else { + md(a, 0, 0) + j = 1 + u = g + return j | 0 + } + return 0 + } + function Hc(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0 + d = u + u = (u + 32) | 0 + e = (d + 12) | 0 + g = (d + 8) | 0 + h = (d + 4) | 0 + i = d + j = (a + 8) | 0 + a: do + if ( + f[j >> 2] | 0 + ? ((k = f[a >> 2] | 0), + (l = (a + 4) | 0), + (f[a >> 2] = l), + (f[((f[l >> 2] | 0) + 8) >> 2] = 0), + (f[l >> 2] = 0), + (f[j >> 2] = 0), + (m = f[(k + 4) >> 2] | 0), + (n = (m | 0) == 0 ? k : m), + n | 0) + : 0 + ) { + m = (a + 4) | 0 + k = n + n = f[b >> 2] | 0 + while (1) { + if ((n | 0) == (f[c >> 2] | 0)) break + o = (k + 16) | 0 + f[o >> 2] = f[(n + 16) >> 2] + if ((k | 0) != (n | 0)) { + f[h >> 2] = f[(n + 20) >> 2] + f[i >> 2] = n + 24 + f[g >> 2] = f[h >> 2] + f[e >> 2] = f[i >> 2] + Oc((k + 20) | 0, g, e) + } + p = (k + 8) | 0 + q = f[p >> 2] | 0 + do + if (q) { + r = f[q >> 2] | 0 + if ((r | 0) == (k | 0)) { + f[q >> 2] = 0 + s = f[(q + 4) >> 2] | 0 + if (!s) { + t = q + break + } else v = s + while (1) { + s = f[v >> 2] | 0 + if (s | 0) { + v = s + continue + } + s = f[(v + 4) >> 2] | 0 + if (!s) break + else v = s + } + t = v + break + } else { + f[(q + 4) >> 2] = 0 + if (!r) { + t = q + break + } else w = r + while (1) { + s = f[w >> 2] | 0 + if (s | 0) { + w = s + continue + } + s = f[(w + 4) >> 2] | 0 + if (!s) break + else w = s + } + t = w + break + } + } else t = 0 + while (0) + q = f[l >> 2] | 0 + do + if (q) { + r = f[o >> 2] | 0 + s = q + while (1) { + if ((r | 0) < (f[(s + 16) >> 2] | 0)) { + x = f[s >> 2] | 0 + if (!x) { + y = 22 + break + } else z = x + } else { + A = (s + 4) | 0 + x = f[A >> 2] | 0 + if (!x) { + y = 25 + break + } else z = x + } + s = z + } + if ((y | 0) == 22) { + y = 0 + B = s + C = s + break + } else if ((y | 0) == 25) { + y = 0 + B = s + C = A + break + } + } else { + B = l + C = l + } + while (0) + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[p >> 2] = B + f[C >> 2] = k + q = f[f[a >> 2] >> 2] | 0 + if (!q) D = k + else { + f[a >> 2] = q + D = f[C >> 2] | 0 + } + Oe(f[m >> 2] | 0, D) + f[j >> 2] = (f[j >> 2] | 0) + 1 + q = f[(n + 4) >> 2] | 0 + if (!q) { + o = (n + 8) | 0 + r = f[o >> 2] | 0 + if ((f[r >> 2] | 0) == (n | 0)) E = r + else { + r = o + do { + o = f[r >> 2] | 0 + r = (o + 8) | 0 + x = f[r >> 2] | 0 + } while ((f[x >> 2] | 0) != (o | 0)) + E = x + } + } else { + r = q + while (1) { + p = f[r >> 2] | 0 + if (!p) break + else r = p + } + E = r + } + f[b >> 2] = E + if (!t) break a + else { + k = t + n = E + } + } + n = f[(k + 8) >> 2] | 0 + if (!n) F = k + else { + m = n + while (1) { + n = f[(m + 8) >> 2] | 0 + if (!n) break + else m = n + } + F = m + } + Oj(a, F) + } + while (0) + F = f[b >> 2] | 0 + E = f[c >> 2] | 0 + if ((F | 0) == (E | 0)) { + u = d + return + } + c = (a + 4) | 0 + t = (a + 4) | 0 + D = F + while (1) { + Kg(e, a, (D + 16) | 0) + F = f[c >> 2] | 0 + do + if (F) { + C = f[e >> 2] | 0 + B = f[(C + 16) >> 2] | 0 + A = F + while (1) { + if ((B | 0) < (f[(A + 16) >> 2] | 0)) { + z = f[A >> 2] | 0 + if (!z) { + y = 43 + break + } else G = z + } else { + H = (A + 4) | 0 + z = f[H >> 2] | 0 + if (!z) { + y = 46 + break + } else G = z + } + A = G + } + if ((y | 0) == 43) { + y = 0 + I = A + J = A + K = C + break + } else if ((y | 0) == 46) { + y = 0 + I = A + J = H + K = C + break + } + } else { + I = c + J = c + K = f[e >> 2] | 0 + } + while (0) + f[K >> 2] = 0 + f[(K + 4) >> 2] = 0 + f[(K + 8) >> 2] = I + f[J >> 2] = K + F = f[f[a >> 2] >> 2] | 0 + if (!F) L = K + else { + f[a >> 2] = F + L = f[J >> 2] | 0 + } + Oe(f[t >> 2] | 0, L) + f[j >> 2] = (f[j >> 2] | 0) + 1 + F = f[(D + 4) >> 2] | 0 + if (!F) { + m = (D + 8) | 0 + B = f[m >> 2] | 0 + if ((f[B >> 2] | 0) == (D | 0)) M = B + else { + B = m + do { + m = f[B >> 2] | 0 + B = (m + 8) | 0 + r = f[B >> 2] | 0 + } while ((f[r >> 2] | 0) != (m | 0)) + M = r + } + } else { + B = F + while (1) { + r = f[B >> 2] | 0 + if (!r) break + else B = r + } + M = B + } + f[b >> 2] = M + if ((M | 0) == (E | 0)) break + else D = M + } + u = d + return + } + function Ic(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0 + g = u + u = (u + 32) | 0 + d = (g + 16) | 0 + h = (g + 8) | 0 + i = g + j = f[(a + 28) >> 2] | 0 + k = f[(a + 32) >> 2] | 0 + l = e >>> 0 > 1073741823 ? -1 : e << 2 + m = Lq(l) | 0 + sj(m | 0, 0, l | 0) | 0 + n = Lq(l) | 0 + sj(n | 0, 0, l | 0) | 0 + l = (a + 36) | 0 + o = f[l >> 2] | 0 + p = f[(o + 4) >> 2] | 0 + q = f[o >> 2] | 0 + r = (p - q) | 0 + a: do + if ((r | 0) > 4) { + s = r >> 2 + t = (e | 0) > 0 + v = (a + 8) | 0 + w = (h + 4) | 0 + x = (i + 4) | 0 + y = (d + 4) | 0 + z = (m + 4) | 0 + A = (h + 4) | 0 + B = (i + 4) | 0 + C = (d + 4) | 0 + D = (j + 12) | 0 + E = e << 2 + F = (s + -1) | 0 + if (((p - q) >> 2) >>> 0 > F >>> 0) { + G = s + H = F + I = q + } else { + J = o + aq(J) + } + while (1) { + F = f[(I + (H << 2)) >> 2] | 0 + if (t) sj(m | 0, 0, E | 0) | 0 + if ((F | 0) != -1) { + s = f[D >> 2] | 0 + K = 0 + L = F + while (1) { + M = f[(s + (L << 2)) >> 2] | 0 + if ((M | 0) != -1) { + N = f[j >> 2] | 0 + O = f[k >> 2] | 0 + P = f[(O + (f[(N + (M << 2)) >> 2] << 2)) >> 2] | 0 + Q = (M + 1) | 0 + R = ((Q >>> 0) % 3 | 0 | 0) == 0 ? (M + -2) | 0 : Q + if ((R | 0) == -1) S = -1 + else S = f[(N + (R << 2)) >> 2] | 0 + R = f[(O + (S << 2)) >> 2] | 0 + Q = ((((M >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + M) | 0 + if ((Q | 0) == -1) T = -1 + else T = f[(N + (Q << 2)) >> 2] | 0 + Q = f[(O + (T << 2)) >> 2] | 0 + if ( + ((P | 0) < (H | 0)) & + ((R | 0) < (H | 0)) & + ((Q | 0) < (H | 0)) + ) { + O = X(P, e) | 0 + P = X(R, e) | 0 + R = X(Q, e) | 0 + if (t) { + Q = 0 + do { + f[(n + (Q << 2)) >> 2] = + (f[(b + ((Q + R) << 2)) >> 2] | 0) + + (f[(b + ((Q + P) << 2)) >> 2] | 0) - + (f[(b + ((Q + O) << 2)) >> 2] | 0) + Q = (Q + 1) | 0 + } while ((Q | 0) != (e | 0)) + if (t) { + Q = 0 + do { + O = (m + (Q << 2)) | 0 + f[O >> 2] = + (f[O >> 2] | 0) + (f[(n + (Q << 2)) >> 2] | 0) + Q = (Q + 1) | 0 + } while ((Q | 0) != (e | 0)) + } + } + U = (K + 1) | 0 + } else U = K + } else U = K + Q = ((((L >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + L) | 0 + do + if ( + (Q | 0) != -1 + ? ((O = f[(s + (Q << 2)) >> 2] | 0), (O | 0) != -1) + : 0 + ) + if (!((O >>> 0) % 3 | 0)) { + V = (O + 2) | 0 + break + } else { + V = (O + -1) | 0 + break + } + else V = -1 + while (0) + L = (V | 0) == (F | 0) ? -1 : V + if ((L | 0) == -1) break + else K = U + } + K = X(H, e) | 0 + if (!U) { + W = K + Y = 30 + } else { + if (t) { + L = 0 + do { + F = (m + (L << 2)) | 0 + f[F >> 2] = ((f[F >> 2] | 0) / (U | 0)) | 0 + L = (L + 1) | 0 + } while ((L | 0) != (e | 0)) + } + L = (b + (K << 2)) | 0 + F = (c + (K << 2)) | 0 + s = f[(L + 4) >> 2] | 0 + Q = f[m >> 2] | 0 + O = f[z >> 2] | 0 + f[h >> 2] = f[L >> 2] + f[A >> 2] = s + f[i >> 2] = Q + f[B >> 2] = O + Od(d, v, h, i) + f[F >> 2] = f[d >> 2] + f[(F + 4) >> 2] = f[C >> 2] + } + } else { + W = X(H, e) | 0 + Y = 30 + } + if ((Y | 0) == 30) { + Y = 0 + F = (b + (W << 2)) | 0 + O = (b + ((X((G + -2) | 0, e) | 0) << 2)) | 0 + Q = (c + (W << 2)) | 0 + s = f[(F + 4) >> 2] | 0 + L = f[O >> 2] | 0 + P = f[(O + 4) >> 2] | 0 + f[h >> 2] = f[F >> 2] + f[w >> 2] = s + f[i >> 2] = L + f[x >> 2] = P + Od(d, v, h, i) + f[Q >> 2] = f[d >> 2] + f[(Q + 4) >> 2] = f[y >> 2] + } + if ((G | 0) <= 2) break a + Q = f[l >> 2] | 0 + I = f[Q >> 2] | 0 + P = (H + -1) | 0 + if ((((f[(Q + 4) >> 2] | 0) - I) >> 2) >>> 0 <= P >>> 0) { + J = Q + break + } else { + Q = H + H = P + G = Q + } + } + aq(J) + } + while (0) + if ((e | 0) <= 0) { + Z = (a + 8) | 0 + _ = (b + 4) | 0 + $ = f[b >> 2] | 0 + aa = f[_ >> 2] | 0 + ba = (m + 4) | 0 + ca = f[m >> 2] | 0 + da = f[ba >> 2] | 0 + f[h >> 2] = $ + ea = (h + 4) | 0 + f[ea >> 2] = aa + f[i >> 2] = ca + fa = (i + 4) | 0 + f[fa >> 2] = da + Od(d, Z, h, i) + ga = f[d >> 2] | 0 + f[c >> 2] = ga + ha = (d + 4) | 0 + ia = f[ha >> 2] | 0 + ja = (c + 4) | 0 + f[ja >> 2] = ia + Mq(n) + Mq(m) + u = g + return 1 + } + sj(m | 0, 0, (e << 2) | 0) | 0 + Z = (a + 8) | 0 + _ = (b + 4) | 0 + $ = f[b >> 2] | 0 + aa = f[_ >> 2] | 0 + ba = (m + 4) | 0 + ca = f[m >> 2] | 0 + da = f[ba >> 2] | 0 + f[h >> 2] = $ + ea = (h + 4) | 0 + f[ea >> 2] = aa + f[i >> 2] = ca + fa = (i + 4) | 0 + f[fa >> 2] = da + Od(d, Z, h, i) + ga = f[d >> 2] | 0 + f[c >> 2] = ga + ha = (d + 4) | 0 + ia = f[ha >> 2] | 0 + ja = (c + 4) | 0 + f[ja >> 2] = ia + Mq(n) + Mq(m) + u = g + return 1 + } + function Jc(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0 + g = (a + 8) | 0 + Mh(g, b, d, e) + d = e >>> 0 > 1073741823 ? -1 : e << 2 + h = Lq(d) | 0 + sj(h | 0, 0, d | 0) | 0 + d = f[(a + 48) >> 2] | 0 + i = f[(a + 56) >> 2] | 0 + j = f[i >> 2] | 0 + k = ((f[(i + 4) >> 2] | 0) - j) | 0 + l = k >> 2 + a: do + if ((k | 0) > 4) { + m = f[(a + 52) >> 2] | 0 + n = (a + 16) | 0 + o = (a + 32) | 0 + p = (a + 12) | 0 + q = (a + 28) | 0 + r = (a + 20) | 0 + s = (a + 24) | 0 + t = (d + 12) | 0 + u = (e | 0) > 0 + v = j + w = l + while (1) { + x = w + w = (w + -1) | 0 + if (l >>> 0 <= w >>> 0) break + y = f[(v + (w << 2)) >> 2] | 0 + z = X(w, e) | 0 + if ( + (y | 0) != -1 + ? ((A = f[((f[t >> 2] | 0) + (y << 2)) >> 2] | 0), + (A | 0) != -1) + : 0 + ) { + y = f[d >> 2] | 0 + B = f[m >> 2] | 0 + C = f[(B + (f[(y + (A << 2)) >> 2] << 2)) >> 2] | 0 + D = (A + 1) | 0 + E = ((D >>> 0) % 3 | 0 | 0) == 0 ? (A + -2) | 0 : D + if ((E | 0) == -1) F = -1 + else F = f[(y + (E << 2)) >> 2] | 0 + E = f[(B + (F << 2)) >> 2] | 0 + D = ((((A >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + A) | 0 + if ((D | 0) == -1) G = -1 + else G = f[(y + (D << 2)) >> 2] | 0 + D = f[(B + (G << 2)) >> 2] | 0 + if ( + ((C | 0) < (w | 0)) & + ((E | 0) < (w | 0)) & + ((D | 0) < (w | 0)) + ) { + B = X(C, e) | 0 + C = X(E, e) | 0 + E = X(D, e) | 0 + if (u) { + D = 0 + do { + f[(h + (D << 2)) >> 2] = + (f[(b + ((D + E) << 2)) >> 2] | 0) + + (f[(b + ((D + C) << 2)) >> 2] | 0) - + (f[(b + ((D + B) << 2)) >> 2] | 0) + D = (D + 1) | 0 + } while ((D | 0) != (e | 0)) + } + D = (b + (z << 2)) | 0 + B = (c + (z << 2)) | 0 + C = f[g >> 2] | 0 + if ((C | 0) > 0) { + E = 0 + y = h + A = C + while (1) { + if ((A | 0) > 0) { + C = 0 + do { + H = f[(y + (C << 2)) >> 2] | 0 + I = f[n >> 2] | 0 + if ((H | 0) > (I | 0)) { + J = f[o >> 2] | 0 + f[(J + (C << 2)) >> 2] = I + K = J + } else { + J = f[p >> 2] | 0 + I = f[o >> 2] | 0 + f[(I + (C << 2)) >> 2] = (H | 0) < (J | 0) ? J : H + K = I + } + C = (C + 1) | 0 + } while ((C | 0) < (f[g >> 2] | 0)) + L = K + } else L = f[o >> 2] | 0 + C = + ((f[(D + (E << 2)) >> 2] | 0) - + (f[(L + (E << 2)) >> 2] | 0)) | + 0 + I = (B + (E << 2)) | 0 + f[I >> 2] = C + if ((C | 0) >= (f[q >> 2] | 0)) { + if ((C | 0) > (f[s >> 2] | 0)) { + M = (C - (f[r >> 2] | 0)) | 0 + N = 42 + } + } else { + M = ((f[r >> 2] | 0) + C) | 0 + N = 42 + } + if ((N | 0) == 42) { + N = 0 + f[I >> 2] = M + } + E = (E + 1) | 0 + A = f[g >> 2] | 0 + if ((E | 0) >= (A | 0)) break + else y = L + } + } + } else N = 16 + } else N = 16 + if ( + (N | 0) == 16 + ? ((N = 0), + (y = (b + (z << 2)) | 0), + (A = (c + (z << 2)) | 0), + (E = f[g >> 2] | 0), + (E | 0) > 0) + : 0 + ) { + B = 0 + D = (b + ((X((x + -2) | 0, e) | 0) << 2)) | 0 + I = E + while (1) { + if ((I | 0) > 0) { + E = 0 + do { + C = f[(D + (E << 2)) >> 2] | 0 + H = f[n >> 2] | 0 + if ((C | 0) > (H | 0)) { + J = f[o >> 2] | 0 + f[(J + (E << 2)) >> 2] = H + O = J + } else { + J = f[p >> 2] | 0 + H = f[o >> 2] | 0 + f[(H + (E << 2)) >> 2] = (C | 0) < (J | 0) ? J : C + O = H + } + E = (E + 1) | 0 + } while ((E | 0) < (f[g >> 2] | 0)) + P = O + } else P = f[o >> 2] | 0 + E = + ((f[(y + (B << 2)) >> 2] | 0) - + (f[(P + (B << 2)) >> 2] | 0)) | + 0 + H = (A + (B << 2)) | 0 + f[H >> 2] = E + if ((E | 0) >= (f[q >> 2] | 0)) { + if ((E | 0) > (f[s >> 2] | 0)) { + Q = (E - (f[r >> 2] | 0)) | 0 + N = 29 + } + } else { + Q = ((f[r >> 2] | 0) + E) | 0 + N = 29 + } + if ((N | 0) == 29) { + N = 0 + f[H >> 2] = Q + } + B = (B + 1) | 0 + I = f[g >> 2] | 0 + if ((B | 0) >= (I | 0)) break + else D = P + } + } + if ((x | 0) <= 2) break a + } + aq(i) + } + while (0) + if ((e | 0) > 0) sj(h | 0, 0, (e << 2) | 0) | 0 + e = f[g >> 2] | 0 + if ((e | 0) <= 0) { + Mq(h) + return 1 + } + i = (a + 16) | 0 + P = (a + 32) | 0 + Q = (a + 12) | 0 + O = (a + 28) | 0 + L = (a + 20) | 0 + M = (a + 24) | 0 + a = 0 + K = h + G = e + while (1) { + if ((G | 0) > 0) { + e = 0 + do { + F = f[(K + (e << 2)) >> 2] | 0 + d = f[i >> 2] | 0 + if ((F | 0) > (d | 0)) { + l = f[P >> 2] | 0 + f[(l + (e << 2)) >> 2] = d + R = l + } else { + l = f[Q >> 2] | 0 + d = f[P >> 2] | 0 + f[(d + (e << 2)) >> 2] = (F | 0) < (l | 0) ? l : F + R = d + } + e = (e + 1) | 0 + } while ((e | 0) < (f[g >> 2] | 0)) + S = R + } else S = f[P >> 2] | 0 + e = ((f[(b + (a << 2)) >> 2] | 0) - (f[(S + (a << 2)) >> 2] | 0)) | 0 + d = (c + (a << 2)) | 0 + f[d >> 2] = e + if ((e | 0) >= (f[O >> 2] | 0)) { + if ((e | 0) > (f[M >> 2] | 0)) { + T = (e - (f[L >> 2] | 0)) | 0 + N = 56 + } + } else { + T = ((f[L >> 2] | 0) + e) | 0 + N = 56 + } + if ((N | 0) == 56) { + N = 0 + f[d >> 2] = T + } + a = (a + 1) | 0 + G = f[g >> 2] | 0 + if ((a | 0) >= (G | 0)) break + else K = S + } + Mq(h) + return 1 + } + function Kc(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0 + g = u + u = (u + 32) | 0 + d = (g + 16) | 0 + h = (g + 8) | 0 + i = g + j = f[(a + 28) >> 2] | 0 + k = f[(a + 32) >> 2] | 0 + l = e >>> 0 > 1073741823 ? -1 : e << 2 + m = Lq(l) | 0 + sj(m | 0, 0, l | 0) | 0 + n = Lq(l) | 0 + sj(n | 0, 0, l | 0) | 0 + l = (a + 36) | 0 + o = f[l >> 2] | 0 + p = f[(o + 4) >> 2] | 0 + q = f[o >> 2] | 0 + r = (p - q) | 0 + a: do + if ((r | 0) > 4) { + s = r >> 2 + t = (e | 0) > 0 + v = (a + 8) | 0 + w = (h + 4) | 0 + x = (i + 4) | 0 + y = (d + 4) | 0 + z = (m + 4) | 0 + A = (h + 4) | 0 + B = (i + 4) | 0 + C = (d + 4) | 0 + D = (j + 64) | 0 + E = (j + 28) | 0 + F = e << 2 + G = (s + -1) | 0 + if (((p - q) >> 2) >>> 0 > G >>> 0) { + H = s + I = G + J = q + } else { + K = o + aq(K) + } + while (1) { + G = f[(J + (I << 2)) >> 2] | 0 + if (t) sj(m | 0, 0, F | 0) | 0 + if ((G | 0) != -1) { + s = f[j >> 2] | 0 + L = 0 + M = G + while (1) { + if ( + ( + ((f[(s + ((M >>> 5) << 2)) >> 2] & (1 << (M & 31))) | 0) == + 0 + ? ((N = + f[ + ((f[((f[D >> 2] | 0) + 12) >> 2] | 0) + (M << 2)) >> + 2 + ] | 0), + (N | 0) != -1) + : 0 + ) + ? ((O = f[E >> 2] | 0), + (P = f[k >> 2] | 0), + (Q = f[(P + (f[(O + (N << 2)) >> 2] << 2)) >> 2] | 0), + (R = (N + 1) | 0), + (S = + f[ + (P + + (f[ + (O + + ((((R >>> 0) % 3 | 0 | 0) == 0 + ? (N + -2) | 0 + : R) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + (R = + f[ + (P + + (f[ + (O + + (((((N >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + + N) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + ((Q | 0) < (I | 0)) & + ((S | 0) < (I | 0)) & + ((R | 0) < (I | 0))) + : 0 + ) { + N = X(Q, e) | 0 + Q = X(S, e) | 0 + S = X(R, e) | 0 + if (t) { + R = 0 + do { + f[(n + (R << 2)) >> 2] = + (f[(b + ((R + S) << 2)) >> 2] | 0) + + (f[(b + ((R + Q) << 2)) >> 2] | 0) - + (f[(b + ((R + N) << 2)) >> 2] | 0) + R = (R + 1) | 0 + } while ((R | 0) != (e | 0)) + if (t) { + R = 0 + do { + N = (m + (R << 2)) | 0 + f[N >> 2] = + (f[N >> 2] | 0) + (f[(n + (R << 2)) >> 2] | 0) + R = (R + 1) | 0 + } while ((R | 0) != (e | 0)) + } + } + T = (L + 1) | 0 + } else T = L + R = ((((M >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + M) | 0 + do + if ( + ( + (R | 0) != -1 + ? ((f[(s + ((R >>> 5) << 2)) >> 2] & (1 << (R & 31))) | + 0) == + 0 + : 0 + ) + ? ((N = + f[ + ((f[((f[D >> 2] | 0) + 12) >> 2] | 0) + (R << 2)) >> + 2 + ] | 0), + (N | 0) != -1) + : 0 + ) + if (!((N >>> 0) % 3 | 0)) { + U = (N + 2) | 0 + break + } else { + U = (N + -1) | 0 + break + } + else U = -1 + while (0) + M = (U | 0) == (G | 0) ? -1 : U + if ((M | 0) == -1) break + else L = T + } + L = X(I, e) | 0 + if (!T) { + V = L + W = 28 + } else { + if (t) { + M = 0 + do { + G = (m + (M << 2)) | 0 + f[G >> 2] = ((f[G >> 2] | 0) / (T | 0)) | 0 + M = (M + 1) | 0 + } while ((M | 0) != (e | 0)) + } + M = (b + (L << 2)) | 0 + G = (c + (L << 2)) | 0 + s = f[(M + 4) >> 2] | 0 + R = f[m >> 2] | 0 + N = f[z >> 2] | 0 + f[h >> 2] = f[M >> 2] + f[A >> 2] = s + f[i >> 2] = R + f[B >> 2] = N + Od(d, v, h, i) + f[G >> 2] = f[d >> 2] + f[(G + 4) >> 2] = f[C >> 2] + } + } else { + V = X(I, e) | 0 + W = 28 + } + if ((W | 0) == 28) { + W = 0 + G = (b + (V << 2)) | 0 + N = (b + ((X((H + -2) | 0, e) | 0) << 2)) | 0 + R = (c + (V << 2)) | 0 + s = f[(G + 4) >> 2] | 0 + M = f[N >> 2] | 0 + Q = f[(N + 4) >> 2] | 0 + f[h >> 2] = f[G >> 2] + f[w >> 2] = s + f[i >> 2] = M + f[x >> 2] = Q + Od(d, v, h, i) + f[R >> 2] = f[d >> 2] + f[(R + 4) >> 2] = f[y >> 2] + } + if ((H | 0) <= 2) break a + R = f[l >> 2] | 0 + J = f[R >> 2] | 0 + Q = (I + -1) | 0 + if ((((f[(R + 4) >> 2] | 0) - J) >> 2) >>> 0 <= Q >>> 0) { + K = R + break + } else { + R = I + I = Q + H = R + } + } + aq(K) + } + while (0) + if ((e | 0) <= 0) { + Y = (a + 8) | 0 + Z = (b + 4) | 0 + _ = f[b >> 2] | 0 + $ = f[Z >> 2] | 0 + aa = (m + 4) | 0 + ba = f[m >> 2] | 0 + ca = f[aa >> 2] | 0 + f[h >> 2] = _ + da = (h + 4) | 0 + f[da >> 2] = $ + f[i >> 2] = ba + ea = (i + 4) | 0 + f[ea >> 2] = ca + Od(d, Y, h, i) + fa = f[d >> 2] | 0 + f[c >> 2] = fa + ga = (d + 4) | 0 + ha = f[ga >> 2] | 0 + ia = (c + 4) | 0 + f[ia >> 2] = ha + Mq(n) + Mq(m) + u = g + return 1 + } + sj(m | 0, 0, (e << 2) | 0) | 0 + Y = (a + 8) | 0 + Z = (b + 4) | 0 + _ = f[b >> 2] | 0 + $ = f[Z >> 2] | 0 + aa = (m + 4) | 0 + ba = f[m >> 2] | 0 + ca = f[aa >> 2] | 0 + f[h >> 2] = _ + da = (h + 4) | 0 + f[da >> 2] = $ + f[i >> 2] = ba + ea = (i + 4) | 0 + f[ea >> 2] = ca + Od(d, Y, h, i) + fa = f[d >> 2] | 0 + f[c >> 2] = fa + ga = (d + 4) | 0 + ha = f[ga >> 2] | 0 + ia = (c + 4) | 0 + f[ia >> 2] = ha + Mq(n) + Mq(m) + u = g + return 1 + } + function Lc(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0 + g = (a + 8) | 0 + Mh(g, b, d, e) + d = e >>> 0 > 1073741823 ? -1 : e << 2 + h = Lq(d) | 0 + sj(h | 0, 0, d | 0) | 0 + d = f[(a + 48) >> 2] | 0 + i = f[(a + 56) >> 2] | 0 + j = f[i >> 2] | 0 + k = ((f[(i + 4) >> 2] | 0) - j) | 0 + l = k >> 2 + a: do + if ((k | 0) > 4) { + m = f[(a + 52) >> 2] | 0 + n = (a + 16) | 0 + o = (a + 32) | 0 + p = (a + 12) | 0 + q = (a + 28) | 0 + r = (a + 20) | 0 + s = (a + 24) | 0 + t = (d + 64) | 0 + u = (d + 28) | 0 + v = (e | 0) > 0 + w = j + x = l + while (1) { + y = x + x = (x + -1) | 0 + if (l >>> 0 <= x >>> 0) break + z = f[(w + (x << 2)) >> 2] | 0 + A = X(x, e) | 0 + if ( + ( + ( + (z | 0) != -1 + ? ((f[((f[d >> 2] | 0) + ((z >>> 5) << 2)) >> 2] & + (1 << (z & 31))) | + 0) == + 0 + : 0 + ) + ? ((B = + f[ + ((f[((f[t >> 2] | 0) + 12) >> 2] | 0) + (z << 2)) >> 2 + ] | 0), + (B | 0) != -1) + : 0 + ) + ? ((z = f[u >> 2] | 0), + (C = f[m >> 2] | 0), + (D = f[(C + (f[(z + (B << 2)) >> 2] << 2)) >> 2] | 0), + (E = (B + 1) | 0), + (F = + f[ + (C + + (f[ + (z + + ((((E >>> 0) % 3 | 0 | 0) == 0 + ? (B + -2) | 0 + : E) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + (E = + f[ + (C + + (f[ + (z + + (((((B >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + B) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + ((D | 0) < (x | 0)) & + ((F | 0) < (x | 0)) & + ((E | 0) < (x | 0))) + : 0 + ) { + B = X(D, e) | 0 + D = X(F, e) | 0 + F = X(E, e) | 0 + if (v) { + E = 0 + do { + f[(h + (E << 2)) >> 2] = + (f[(b + ((E + F) << 2)) >> 2] | 0) + + (f[(b + ((E + D) << 2)) >> 2] | 0) - + (f[(b + ((E + B) << 2)) >> 2] | 0) + E = (E + 1) | 0 + } while ((E | 0) != (e | 0)) + } + E = (b + (A << 2)) | 0 + B = (c + (A << 2)) | 0 + D = f[g >> 2] | 0 + if ((D | 0) > 0) { + F = 0 + z = h + C = D + while (1) { + if ((C | 0) > 0) { + D = 0 + do { + G = f[(z + (D << 2)) >> 2] | 0 + H = f[n >> 2] | 0 + if ((G | 0) > (H | 0)) { + I = f[o >> 2] | 0 + f[(I + (D << 2)) >> 2] = H + J = I + } else { + I = f[p >> 2] | 0 + H = f[o >> 2] | 0 + f[(H + (D << 2)) >> 2] = (G | 0) < (I | 0) ? I : G + J = H + } + D = (D + 1) | 0 + } while ((D | 0) < (f[g >> 2] | 0)) + K = J + } else K = f[o >> 2] | 0 + D = + ((f[(E + (F << 2)) >> 2] | 0) - + (f[(K + (F << 2)) >> 2] | 0)) | + 0 + H = (B + (F << 2)) | 0 + f[H >> 2] = D + if ((D | 0) >= (f[q >> 2] | 0)) { + if ((D | 0) > (f[s >> 2] | 0)) { + L = (D - (f[r >> 2] | 0)) | 0 + M = 39 + } + } else { + L = ((f[r >> 2] | 0) + D) | 0 + M = 39 + } + if ((M | 0) == 39) { + M = 0 + f[H >> 2] = L + } + F = (F + 1) | 0 + C = f[g >> 2] | 0 + if ((F | 0) >= (C | 0)) break + else z = K + } + } + } else M = 13 + if ( + (M | 0) == 13 + ? ((M = 0), + (z = (b + (A << 2)) | 0), + (C = (c + (A << 2)) | 0), + (F = f[g >> 2] | 0), + (F | 0) > 0) + : 0 + ) { + B = 0 + E = (b + ((X((y + -2) | 0, e) | 0) << 2)) | 0 + H = F + while (1) { + if ((H | 0) > 0) { + F = 0 + do { + D = f[(E + (F << 2)) >> 2] | 0 + G = f[n >> 2] | 0 + if ((D | 0) > (G | 0)) { + I = f[o >> 2] | 0 + f[(I + (F << 2)) >> 2] = G + N = I + } else { + I = f[p >> 2] | 0 + G = f[o >> 2] | 0 + f[(G + (F << 2)) >> 2] = (D | 0) < (I | 0) ? I : D + N = G + } + F = (F + 1) | 0 + } while ((F | 0) < (f[g >> 2] | 0)) + O = N + } else O = f[o >> 2] | 0 + F = + ((f[(z + (B << 2)) >> 2] | 0) - + (f[(O + (B << 2)) >> 2] | 0)) | + 0 + G = (C + (B << 2)) | 0 + f[G >> 2] = F + if ((F | 0) >= (f[q >> 2] | 0)) { + if ((F | 0) > (f[s >> 2] | 0)) { + P = (F - (f[r >> 2] | 0)) | 0 + M = 26 + } + } else { + P = ((f[r >> 2] | 0) + F) | 0 + M = 26 + } + if ((M | 0) == 26) { + M = 0 + f[G >> 2] = P + } + B = (B + 1) | 0 + H = f[g >> 2] | 0 + if ((B | 0) >= (H | 0)) break + else E = O + } + } + if ((y | 0) <= 2) break a + } + aq(i) + } + while (0) + if ((e | 0) > 0) sj(h | 0, 0, (e << 2) | 0) | 0 + e = f[g >> 2] | 0 + if ((e | 0) <= 0) { + Mq(h) + return 1 + } + i = (a + 16) | 0 + O = (a + 32) | 0 + P = (a + 12) | 0 + N = (a + 28) | 0 + K = (a + 20) | 0 + L = (a + 24) | 0 + a = 0 + J = h + d = e + while (1) { + if ((d | 0) > 0) { + e = 0 + do { + l = f[(J + (e << 2)) >> 2] | 0 + j = f[i >> 2] | 0 + if ((l | 0) > (j | 0)) { + k = f[O >> 2] | 0 + f[(k + (e << 2)) >> 2] = j + Q = k + } else { + k = f[P >> 2] | 0 + j = f[O >> 2] | 0 + f[(j + (e << 2)) >> 2] = (l | 0) < (k | 0) ? k : l + Q = j + } + e = (e + 1) | 0 + } while ((e | 0) < (f[g >> 2] | 0)) + R = Q + } else R = f[O >> 2] | 0 + e = ((f[(b + (a << 2)) >> 2] | 0) - (f[(R + (a << 2)) >> 2] | 0)) | 0 + j = (c + (a << 2)) | 0 + f[j >> 2] = e + if ((e | 0) >= (f[N >> 2] | 0)) { + if ((e | 0) > (f[L >> 2] | 0)) { + S = (e - (f[K >> 2] | 0)) | 0 + M = 53 + } + } else { + S = ((f[K >> 2] | 0) + e) | 0 + M = 53 + } + if ((M | 0) == 53) { + M = 0 + f[j >> 2] = S + } + a = (a + 1) | 0 + d = f[g >> 2] | 0 + if ((a | 0) >= (d | 0)) break + else J = R + } + Mq(h) + return 1 + } + function Mc(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0 + h = u + u = (u + 48) | 0 + i = (h + 28) | 0 + j = (h + 24) | 0 + k = h + l = (h + 12) | 0 + m = (h + 40) | 0 + if ((c | 0) < 0) { + n = 0 + u = h + return n | 0 + } + if (!c) { + n = 1 + u = h + return n | 0 + } + o = (d | 0) > 1 + p = o ? d : 1 + f[k >> 2] = 0 + d = (k + 4) | 0 + f[d >> 2] = 0 + f[(k + 8) >> 2] = 0 + gk(k, c) + q = (k + 8) | 0 + if (o) { + o = 0 + r = 0 + while (1) { + s = 1 + t = f[(a + (r << 2)) >> 2] | 0 + do { + v = f[(a + ((s + r) << 2)) >> 2] | 0 + t = t >>> 0 < v >>> 0 ? v : t + s = (s + 1) | 0 + } while ((s | 0) != (p | 0)) + s = (_(t | 0) | 0) ^ 31 + v = t >>> 0 > o >>> 0 ? t : o + w = (t | 0) == 0 ? 1 : (s + 1) | 0 + f[i >> 2] = w + s = f[d >> 2] | 0 + if (s >>> 0 < (f[q >> 2] | 0) >>> 0) { + f[s >> 2] = w + f[d >> 2] = s + 4 + } else Ri(k, i) + r = (r + p) | 0 + if ((r | 0) >= (c | 0)) { + x = v + break + } else o = v + } + } else { + o = 0 + r = 0 + while (1) { + v = f[(a + (o << 2)) >> 2] | 0 + s = (_(v | 0) | 0) ^ 31 + w = v >>> 0 > r >>> 0 ? v : r + y = (v | 0) == 0 ? 1 : (s + 1) | 0 + f[i >> 2] = y + s = f[d >> 2] | 0 + if (s >>> 0 < (f[q >> 2] | 0) >>> 0) { + f[s >> 2] = y + f[d >> 2] = s + 4 + } else Ri(k, i) + o = (o + p) | 0 + if ((o | 0) >= (c | 0)) { + x = w + break + } else r = w + } + } + f[l >> 2] = 0 + r = (l + 4) | 0 + f[r >> 2] = 0 + f[(l + 8) >> 2] = 0 + o = f[k >> 2] | 0 + q = ((f[d >> 2] | 0) - o) | 0 + w = q >> 2 + if (w) { + if (w >>> 0 > 1073741823) aq(l) + s = ln(q) | 0 + f[r >> 2] = s + f[l >> 2] = s + f[(l + 8) >> 2] = s + (w << 2) + w = s + if ((q | 0) > 0) { + y = (s + ((q >>> 2) << 2)) | 0 + kh(s | 0, o | 0, q | 0) | 0 + f[r >> 2] = y + q = (y - w) >> 2 + if ((y | 0) == (s | 0)) { + z = q + A = s + B = 0 + C = 0 + } else { + y = 0 + o = 0 + v = 0 + while (1) { + D = Vn(o | 0, v | 0, f[(s + (y << 2)) >> 2] | 0, 0) | 0 + E = I + y = (y + 1) | 0 + if (y >>> 0 >= q >>> 0) { + z = q + A = s + B = D + C = E + break + } else { + o = D + v = E + } + } + } + } else { + F = w + G = 18 + } + } else { + F = 0 + G = 18 + } + if ((G | 0) == 18) { + z = 0 + A = F + B = 0 + C = 0 + } + F = Jg(A, z, 32, i) | 0 + z = I + A = f[i >> 2] << 3 + w = Tn(A | 0, ((((A | 0) < 0) << 31) >> 31) | 0, 1) | 0 + A = I + v = un(B | 0, C | 0, p | 0, 0) | 0 + C = Vn(F | 0, z | 0, v | 0, I | 0) | 0 + v = Vn(C | 0, I | 0, w | 0, A | 0) | 0 + A = I + w = f[l >> 2] | 0 + if (w | 0) { + l = f[r >> 2] | 0 + if ((l | 0) != (w | 0)) + f[r >> 2] = l + (~(((l + -4 - w) | 0) >>> 2) << 2) + Oq(w) + } + w = Jg(a, c, x, i) | 0 + l = f[i >> 2] | 0 + r = (((((x - l) | 0) / 64) | 0) + l) << 3 + C = l << 3 + z = Vn(w | 0, I | 0, C | 0, ((((C | 0) < 0) << 31) >> 31) | 0) | 0 + C = Vn(z | 0, I | 0, r | 0, ((((r | 0) < 0) << 31) >> 31) | 0) | 0 + r = I + z = (_((x >>> 0 > 1 ? x : 1) | 0) | 0) ^ 30 + if (e) { + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + w = ln(32) | 0 + f[i >> 2] = w + f[(i + 8) >> 2] = -2147483616 + f[(i + 4) >> 2] = 22 + F = w + B = 15964 + o = (F + 22) | 0 + do { + b[F >> 0] = b[B >> 0] | 0 + F = (F + 1) | 0 + B = (B + 1) | 0 + } while ((F | 0) < (o | 0)) + b[(w + 22) >> 0] = 0 + w = (Jh(e, i) | 0) == 0 + if ((b[(i + 11) >> 0] | 0) < 0) Oq(f[i >> 2] | 0) + if (!w) { + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + w = ln(32) | 0 + f[i >> 2] = w + f[(i + 8) >> 2] = -2147483616 + f[(i + 4) >> 2] = 22 + F = w + B = 15964 + o = (F + 22) | 0 + do { + b[F >> 0] = b[B >> 0] | 0 + F = (F + 1) | 0 + B = (B + 1) | 0 + } while ((F | 0) < (o | 0)) + b[(w + 22) >> 0] = 0 + w = Mk(e, i) | 0 + if ((b[(i + 11) >> 0] | 0) < 0) Oq(f[i >> 2] | 0) + H = w + } else G = 32 + } else G = 32 + if ((G | 0) == 32) + H = + (z >>> 0 < 18) & + (((A | 0) > (r | 0)) | + (((A | 0) == (r | 0)) & (v >>> 0 >= C >>> 0))) & + 1 + b[m >> 0] = H + C = (g + 16) | 0 + v = f[(C + 4) >> 2] | 0 + if (!(((v | 0) > 0) | (((v | 0) == 0) & ((f[C >> 2] | 0) >>> 0 > 0)))) { + f[j >> 2] = f[(g + 4) >> 2] + f[i >> 2] = f[j >> 2] + Me(g, i, m, (m + 1) | 0) | 0 + } + switch (H | 0) { + case 0: { + J = td(a, c, p, k, g) | 0 + break + } + case 1: { + J = Tc(a, c, x, l, e, g) | 0 + break + } + default: + J = 0 + } + g = f[k >> 2] | 0 + if (g | 0) { + k = f[d >> 2] | 0 + if ((k | 0) != (g | 0)) + f[d >> 2] = k + (~(((k + -4 - g) | 0) >>> 2) << 2) + Oq(g) + } + n = J + u = h + return n | 0 + } + function Nc(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0 + if ((b | 0) < 0) return + c = (a + 12) | 0 + d = f[c >> 2] | 0 + e = f[(a + 8) >> 2] | 0 + g = e + h = d + if (((d - e) >> 2) >>> 0 <= b >>> 0) return + e = (g + (b << 2)) | 0 + d = f[((f[e >> 2] | 0) + 56) >> 2] | 0 + i = f[((f[(g + (b << 2)) >> 2] | 0) + 60) >> 2] | 0 + g = (e + 4) | 0 + if ((g | 0) != (h | 0)) { + j = g + g = e + do { + k = f[j >> 2] | 0 + f[j >> 2] = 0 + l = f[g >> 2] | 0 + f[g >> 2] = k + if (l | 0) { + k = (l + 88) | 0 + m = f[k >> 2] | 0 + f[k >> 2] = 0 + if (m | 0) { + k = f[(m + 8) >> 2] | 0 + if (k | 0) { + n = (m + 12) | 0 + if ((f[n >> 2] | 0) != (k | 0)) f[n >> 2] = k + Oq(k) + } + Oq(m) + } + m = f[(l + 68) >> 2] | 0 + if (m | 0) { + k = (l + 72) | 0 + n = f[k >> 2] | 0 + if ((n | 0) != (m | 0)) + f[k >> 2] = n + (~(((n + -4 - m) | 0) >>> 2) << 2) + Oq(m) + } + m = (l + 64) | 0 + n = f[m >> 2] | 0 + f[m >> 2] = 0 + if (n | 0) { + m = f[n >> 2] | 0 + if (m | 0) { + k = (n + 4) | 0 + if ((f[k >> 2] | 0) != (m | 0)) f[k >> 2] = m + Oq(m) + } + Oq(n) + } + Oq(l) + } + j = (j + 4) | 0 + g = (g + 4) | 0 + } while ((j | 0) != (h | 0)) + j = f[c >> 2] | 0 + if ((j | 0) != (g | 0)) { + o = g + p = j + q = 24 + } + } else { + o = e + p = h + q = 24 + } + if ((q | 0) == 24) { + q = p + do { + p = (q + -4) | 0 + f[c >> 2] = p + h = f[p >> 2] | 0 + f[p >> 2] = 0 + if (h | 0) { + p = (h + 88) | 0 + e = f[p >> 2] | 0 + f[p >> 2] = 0 + if (e | 0) { + p = f[(e + 8) >> 2] | 0 + if (p | 0) { + j = (e + 12) | 0 + if ((f[j >> 2] | 0) != (p | 0)) f[j >> 2] = p + Oq(p) + } + Oq(e) + } + e = f[(h + 68) >> 2] | 0 + if (e | 0) { + p = (h + 72) | 0 + j = f[p >> 2] | 0 + if ((j | 0) != (e | 0)) + f[p >> 2] = j + (~(((j + -4 - e) | 0) >>> 2) << 2) + Oq(e) + } + e = (h + 64) | 0 + j = f[e >> 2] | 0 + f[e >> 2] = 0 + if (j | 0) { + e = f[j >> 2] | 0 + if (e | 0) { + p = (j + 4) | 0 + if ((f[p >> 2] | 0) != (e | 0)) f[p >> 2] = e + Oq(e) + } + Oq(j) + } + Oq(h) + } + q = f[c >> 2] | 0 + } while ((q | 0) != (o | 0)) + } + o = f[(a + 4) >> 2] | 0 + a: do + if (o | 0) { + q = (o + 44) | 0 + c = f[q >> 2] | 0 + h = f[(o + 40) >> 2] | 0 + while (1) { + if ((h | 0) == (c | 0)) break a + r = (h + 4) | 0 + if ((f[((f[h >> 2] | 0) + 40) >> 2] | 0) == (i | 0)) break + else h = r + } + if ((r | 0) != (c | 0)) { + j = r + e = h + do { + p = f[j >> 2] | 0 + f[j >> 2] = 0 + g = f[e >> 2] | 0 + f[e >> 2] = p + if (g | 0) { + bj(g) + Oq(g) + } + j = (j + 4) | 0 + e = (e + 4) | 0 + } while ((j | 0) != (c | 0)) + j = f[q >> 2] | 0 + if ((j | 0) == (e | 0)) break + else { + s = e + t = j + } + } else { + s = h + t = c + } + j = t + do { + g = (j + -4) | 0 + f[q >> 2] = g + p = f[g >> 2] | 0 + f[g >> 2] = 0 + if (p | 0) { + bj(p) + Oq(p) + } + j = f[q >> 2] | 0 + } while ((j | 0) != (s | 0)) + } + while (0) + b: do + if ((d | 0) < 5) { + s = f[(a + 20 + ((d * 12) | 0)) >> 2] | 0 + t = (a + 20 + ((d * 12) | 0) + 4) | 0 + r = f[t >> 2] | 0 + i = r + c: do + if ((s | 0) == (r | 0)) u = s + else { + o = s + while (1) { + if ((f[o >> 2] | 0) == (b | 0)) { + u = o + break c + } + o = (o + 4) | 0 + if ((o | 0) == (r | 0)) break b + } + } + while (0) + if ((u | 0) != (r | 0)) { + s = (u + 4) | 0 + o = (i - s) | 0 + j = o >> 2 + if (!j) v = r + else { + im(u | 0, s | 0, o | 0) | 0 + v = f[t >> 2] | 0 + } + o = (u + (j << 2)) | 0 + if ((v | 0) != (o | 0)) + f[t >> 2] = v + (~(((v + -4 - o) | 0) >>> 2) << 2) + } + } + while (0) + v = f[(a + 24) >> 2] | 0 + u = f[(a + 20) >> 2] | 0 + d = u + if ((v | 0) != (u | 0)) { + o = (v - u) >> 2 + u = 0 + do { + v = (d + (u << 2)) | 0 + j = f[v >> 2] | 0 + if ((j | 0) > (b | 0)) f[v >> 2] = j + -1 + u = (u + 1) | 0 + } while (u >>> 0 < o >>> 0) + } + o = f[(a + 36) >> 2] | 0 + u = f[(a + 32) >> 2] | 0 + d = u + if ((o | 0) != (u | 0)) { + j = (o - u) >> 2 + u = 0 + do { + o = (d + (u << 2)) | 0 + v = f[o >> 2] | 0 + if ((v | 0) > (b | 0)) f[o >> 2] = v + -1 + u = (u + 1) | 0 + } while (u >>> 0 < j >>> 0) + } + j = f[(a + 48) >> 2] | 0 + u = f[(a + 44) >> 2] | 0 + d = u + if ((j | 0) != (u | 0)) { + v = (j - u) >> 2 + u = 0 + do { + j = (d + (u << 2)) | 0 + o = f[j >> 2] | 0 + if ((o | 0) > (b | 0)) f[j >> 2] = o + -1 + u = (u + 1) | 0 + } while (u >>> 0 < v >>> 0) + } + v = f[(a + 60) >> 2] | 0 + u = f[(a + 56) >> 2] | 0 + d = u + if ((v | 0) != (u | 0)) { + o = (v - u) >> 2 + u = 0 + do { + v = (d + (u << 2)) | 0 + j = f[v >> 2] | 0 + if ((j | 0) > (b | 0)) f[v >> 2] = j + -1 + u = (u + 1) | 0 + } while (u >>> 0 < o >>> 0) + } + o = f[(a + 72) >> 2] | 0 + u = f[(a + 68) >> 2] | 0 + a = u + if ((o | 0) == (u | 0)) return + d = (o - u) >> 2 + u = 0 + do { + o = (a + (u << 2)) | 0 + j = f[o >> 2] | 0 + if ((j | 0) > (b | 0)) f[o >> 2] = j + -1 + u = (u + 1) | 0 + } while (u >>> 0 < d >>> 0) + return + } + function Oc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0 + e = (a + 8) | 0 + a: do + if ( + f[e >> 2] | 0 + ? ((g = f[a >> 2] | 0), + (h = (a + 4) | 0), + (f[a >> 2] = h), + (f[((f[h >> 2] | 0) + 8) >> 2] = 0), + (f[h >> 2] = 0), + (f[e >> 2] = 0), + (i = f[(g + 4) >> 2] | 0), + (j = (i | 0) == 0 ? g : i), + j | 0) + : 0 + ) { + i = (a + 4) | 0 + g = j + j = f[c >> 2] | 0 + while (1) { + if ((j | 0) == (f[d >> 2] | 0)) break + k = (g + 16) | 0 + am(k, (j + 16) | 0) | 0 + am((g + 28) | 0, (j + 28) | 0) | 0 + l = (g + 8) | 0 + m = f[l >> 2] | 0 + do + if (m) { + n = f[m >> 2] | 0 + if ((n | 0) == (g | 0)) { + f[m >> 2] = 0 + o = f[(m + 4) >> 2] | 0 + if (!o) { + p = m + break + } else q = o + while (1) { + o = f[q >> 2] | 0 + if (o | 0) { + q = o + continue + } + o = f[(q + 4) >> 2] | 0 + if (!o) break + else q = o + } + p = q + break + } else { + f[(m + 4) >> 2] = 0 + if (!n) { + p = m + break + } else r = n + while (1) { + o = f[r >> 2] | 0 + if (o | 0) { + r = o + continue + } + o = f[(r + 4) >> 2] | 0 + if (!o) break + else r = o + } + p = r + break + } + } else p = 0 + while (0) + m = f[h >> 2] | 0 + do + if (m) { + n = b[(k + 11) >> 0] | 0 + o = (n << 24) >> 24 < 0 + s = o ? f[(g + 20) >> 2] | 0 : n & 255 + n = o ? f[k >> 2] | 0 : k + o = m + while (1) { + t = (o + 16) | 0 + u = b[(t + 11) >> 0] | 0 + v = (u << 24) >> 24 < 0 + w = v ? f[(o + 20) >> 2] | 0 : u & 255 + u = w >>> 0 < s >>> 0 ? w : s + if ( + (u | 0) != 0 + ? ((x = Vk(n, v ? f[t >> 2] | 0 : t, u) | 0), + (x | 0) != 0) + : 0 + ) + if ((x | 0) < 0) y = 22 + else y = 24 + else if (s >>> 0 < w >>> 0) y = 22 + else y = 24 + if ((y | 0) == 22) { + y = 0 + w = f[o >> 2] | 0 + if (!w) { + y = 23 + break + } else z = w + } else if ((y | 0) == 24) { + y = 0 + A = (o + 4) | 0 + w = f[A >> 2] | 0 + if (!w) { + y = 26 + break + } else z = w + } + o = z + } + if ((y | 0) == 23) { + y = 0 + B = o + C = o + break + } else if ((y | 0) == 26) { + y = 0 + B = A + C = o + break + } + } else { + B = h + C = h + } + while (0) + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[l >> 2] = C + f[B >> 2] = g + m = f[f[a >> 2] >> 2] | 0 + if (!m) D = g + else { + f[a >> 2] = m + D = f[B >> 2] | 0 + } + Oe(f[i >> 2] | 0, D) + f[e >> 2] = (f[e >> 2] | 0) + 1 + m = f[(j + 4) >> 2] | 0 + if (!m) { + k = (j + 8) | 0 + s = f[k >> 2] | 0 + if ((f[s >> 2] | 0) == (j | 0)) E = s + else { + s = k + do { + k = f[s >> 2] | 0 + s = (k + 8) | 0 + n = f[s >> 2] | 0 + } while ((f[n >> 2] | 0) != (k | 0)) + E = n + } + } else { + s = m + while (1) { + l = f[s >> 2] | 0 + if (!l) break + else s = l + } + E = s + } + f[c >> 2] = E + if (!p) break a + else { + g = p + j = E + } + } + j = f[(g + 8) >> 2] | 0 + if (!j) F = g + else { + i = j + while (1) { + j = f[(i + 8) >> 2] | 0 + if (!j) break + else i = j + } + F = i + } + Ej(a, F) + } + while (0) + F = f[c >> 2] | 0 + E = f[d >> 2] | 0 + if ((F | 0) == (E | 0)) return + else G = F + while (1) { + bf(a, (G + 16) | 0) | 0 + F = f[(G + 4) >> 2] | 0 + if (!F) { + d = (G + 8) | 0 + p = f[d >> 2] | 0 + if ((f[p >> 2] | 0) == (G | 0)) H = p + else { + p = d + do { + d = f[p >> 2] | 0 + p = (d + 8) | 0 + e = f[p >> 2] | 0 + } while ((f[e >> 2] | 0) != (d | 0)) + H = e + } + } else { + p = F + while (1) { + i = f[p >> 2] | 0 + if (!i) break + else p = i + } + H = p + } + f[c >> 2] = H + if ((H | 0) == (E | 0)) break + else G = H + } + return + } + function Pc(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0 + b = u + u = (u + 32) | 0 + c = (b + 4) | 0 + d = b + e = (a + 16) | 0 + g = f[e >> 2] | 0 + if (g >>> 0 > 112) { + f[e >> 2] = g + -113 + g = (a + 4) | 0 + e = f[g >> 2] | 0 + h = f[e >> 2] | 0 + i = (e + 4) | 0 + f[g >> 2] = i + e = (a + 8) | 0 + j = f[e >> 2] | 0 + k = (a + 12) | 0 + l = f[k >> 2] | 0 + m = l + do + if ((j | 0) == (l | 0)) { + n = f[a >> 2] | 0 + o = n + if (i >>> 0 > n >>> 0) { + p = i + q = (((((p - o) >> 2) + 1) | 0) / -2) | 0 + r = (i + (q << 2)) | 0 + s = (j - p) | 0 + p = s >> 2 + if (!p) t = i + else { + im(r | 0, i | 0, s | 0) | 0 + t = f[g >> 2] | 0 + } + s = (r + (p << 2)) | 0 + f[e >> 2] = s + f[g >> 2] = t + (q << 2) + v = s + break + } + s = (m - o) >> 1 + o = (s | 0) == 0 ? 1 : s + if (o >>> 0 > 1073741823) { + s = ra(8) | 0 + Oo(s, 16035) + f[s >> 2] = 7256 + va(s | 0, 1112, 110) + } + s = ln(o << 2) | 0 + q = s + p = (s + ((o >>> 2) << 2)) | 0 + r = p + w = (s + (o << 2)) | 0 + if ((i | 0) == (j | 0)) { + x = r + y = n + } else { + n = p + p = r + o = i + do { + f[n >> 2] = f[o >> 2] + n = (p + 4) | 0 + p = n + o = (o + 4) | 0 + } while ((o | 0) != (j | 0)) + x = p + y = f[a >> 2] | 0 + } + f[a >> 2] = q + f[g >> 2] = r + f[e >> 2] = x + f[k >> 2] = w + if (!y) v = x + else { + Oq(y) + v = f[e >> 2] | 0 + } + } else v = j + while (0) + f[v >> 2] = h + f[e >> 2] = (f[e >> 2] | 0) + 4 + u = b + return + } + e = (a + 8) | 0 + h = f[e >> 2] | 0 + v = (a + 4) | 0 + j = (h - (f[v >> 2] | 0)) | 0 + y = (a + 12) | 0 + x = f[y >> 2] | 0 + k = (x - (f[a >> 2] | 0)) | 0 + if (j >>> 0 >= k >>> 0) { + g = k >> 1 + k = (g | 0) == 0 ? 1 : g + f[(c + 12) >> 2] = 0 + f[(c + 16) >> 2] = a + 12 + if (k >>> 0 > 1073741823) { + g = ra(8) | 0 + Oo(g, 16035) + f[g >> 2] = 7256 + va(g | 0, 1112, 110) + } + g = ln(k << 2) | 0 + f[c >> 2] = g + i = (g + ((j >> 2) << 2)) | 0 + j = (c + 8) | 0 + f[j >> 2] = i + m = (c + 4) | 0 + f[m >> 2] = i + i = (c + 12) | 0 + f[i >> 2] = g + (k << 2) + k = ln(4068) | 0 + f[d >> 2] = k + Ag(c, d) + d = f[e >> 2] | 0 + while (1) { + z = f[v >> 2] | 0 + if ((d | 0) == (z | 0)) break + k = (d + -4) | 0 + ug(c, k) + d = k + } + k = z + z = f[a >> 2] | 0 + f[a >> 2] = f[c >> 2] + f[c >> 2] = z + f[v >> 2] = f[m >> 2] + f[m >> 2] = k + m = f[e >> 2] | 0 + f[e >> 2] = f[j >> 2] + f[j >> 2] = m + g = f[y >> 2] | 0 + f[y >> 2] = f[i >> 2] + f[i >> 2] = g + g = m + if ((d | 0) != (g | 0)) + f[j >> 2] = g + (~(((g + -4 - k) | 0) >>> 2) << 2) + if (z | 0) Oq(z) + u = b + return + } + if ((x | 0) != (h | 0)) { + h = ln(4068) | 0 + f[c >> 2] = h + Ag(a, c) + u = b + return + } + h = ln(4068) | 0 + f[c >> 2] = h + ug(a, c) + c = f[v >> 2] | 0 + h = f[c >> 2] | 0 + x = (c + 4) | 0 + f[v >> 2] = x + c = f[e >> 2] | 0 + z = f[y >> 2] | 0 + k = z + do + if ((c | 0) == (z | 0)) { + g = f[a >> 2] | 0 + j = g + if (x >>> 0 > g >>> 0) { + d = x + m = (((((d - j) >> 2) + 1) | 0) / -2) | 0 + i = (x + (m << 2)) | 0 + t = (c - d) | 0 + d = t >> 2 + if (!d) A = x + else { + im(i | 0, x | 0, t | 0) | 0 + A = f[v >> 2] | 0 + } + t = (i + (d << 2)) | 0 + f[e >> 2] = t + f[v >> 2] = A + (m << 2) + B = t + break + } + t = (k - j) >> 1 + j = (t | 0) == 0 ? 1 : t + if (j >>> 0 > 1073741823) { + t = ra(8) | 0 + Oo(t, 16035) + f[t >> 2] = 7256 + va(t | 0, 1112, 110) + } + t = ln(j << 2) | 0 + m = t + d = (t + ((j >>> 2) << 2)) | 0 + i = d + l = (t + (j << 2)) | 0 + if ((x | 0) == (c | 0)) { + C = i + D = g + } else { + g = d + d = i + j = x + do { + f[g >> 2] = f[j >> 2] + g = (d + 4) | 0 + d = g + j = (j + 4) | 0 + } while ((j | 0) != (c | 0)) + C = d + D = f[a >> 2] | 0 + } + f[a >> 2] = m + f[v >> 2] = i + f[e >> 2] = C + f[y >> 2] = l + if (!D) B = C + else { + Oq(D) + B = f[e >> 2] | 0 + } + } else B = c + while (0) + f[B >> 2] = h + f[e >> 2] = (f[e >> 2] | 0) + 4 + u = b + return + } + function Qc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0 + e = u + u = (u + 16) | 0 + g = (e + 8) | 0 + h = (e + 4) | 0 + i = e + j = (a + 64) | 0 + k = f[j >> 2] | 0 + if ((f[(k + 28) >> 2] | 0) == (f[(k + 24) >> 2] | 0)) { + u = e + return + } + l = (c + 96) | 0 + c = (a + 52) | 0 + m = (d + 84) | 0 + n = (d + 68) | 0 + d = (a + 56) | 0 + o = (a + 60) | 0 + p = (a + 12) | 0 + q = (a + 28) | 0 + r = (a + 40) | 0 + s = (a + 44) | 0 + t = (a + 48) | 0 + v = 0 + w = 0 + x = k + while (1) { + k = f[((f[(x + 24) >> 2] | 0) + (w << 2)) >> 2] | 0 + if ((k | 0) == -1) { + y = v + z = x + } else { + A = (v + 1) | 0 + B = + f[ + ((f[l >> 2] | 0) + + (((((k | 0) / 3) | 0) * 12) | 0) + + (((k | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if (!(b[m >> 0] | 0)) C = f[((f[n >> 2] | 0) + (B << 2)) >> 2] | 0 + else C = B + f[g >> 2] = C + B = f[d >> 2] | 0 + if (B >>> 0 < (f[o >> 2] | 0) >>> 0) { + f[B >> 2] = C + f[d >> 2] = B + 4 + } else Ri(c, g) + f[g >> 2] = k + f[h >> 2] = 0 + a: do + if ( + !(f[((f[p >> 2] | 0) + ((w >>> 5) << 2)) >> 2] & (1 << (w & 31))) + ) + D = k + else { + B = (k + 1) | 0 + E = ((B >>> 0) % 3 | 0 | 0) == 0 ? (k + -2) | 0 : B + if ( + ( + (E | 0) != -1 + ? ((f[((f[a >> 2] | 0) + ((E >>> 5) << 2)) >> 2] & + (1 << (E & 31))) | + 0) == + 0 + : 0 + ) + ? ((B = + f[ + ((f[((f[j >> 2] | 0) + 12) >> 2] | 0) + (E << 2)) >> 2 + ] | 0), + (E = (B + 1) | 0), + (B | 0) != -1) + : 0 + ) { + F = ((E >>> 0) % 3 | 0 | 0) == 0 ? (B + -2) | 0 : E + f[h >> 2] = F + if ((F | 0) == -1) { + D = k + break + } else G = F + while (1) { + f[g >> 2] = G + F = (G + 1) | 0 + E = ((F >>> 0) % 3 | 0 | 0) == 0 ? (G + -2) | 0 : F + if ((E | 0) == -1) break + if ( + (f[((f[a >> 2] | 0) + ((E >>> 5) << 2)) >> 2] & + (1 << (E & 31))) | + 0 + ) + break + F = + f[((f[((f[j >> 2] | 0) + 12) >> 2] | 0) + (E << 2)) >> 2] | + 0 + E = (F + 1) | 0 + if ((F | 0) == -1) break + B = ((E >>> 0) % 3 | 0 | 0) == 0 ? (F + -2) | 0 : E + f[h >> 2] = B + if ((B | 0) == -1) { + D = G + break a + } else G = B + } + f[h >> 2] = -1 + D = G + break + } + f[h >> 2] = -1 + D = k + } + while (0) + f[((f[q >> 2] | 0) + (D << 2)) >> 2] = v + k = f[s >> 2] | 0 + if ((k | 0) == (f[t >> 2] | 0)) Ri(r, g) + else { + f[k >> 2] = f[g >> 2] + f[s >> 2] = k + 4 + } + k = f[j >> 2] | 0 + B = f[g >> 2] | 0 + b: do + if ( + ( + (B | 0) != -1 + ? ((E = ((((B >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + B) | 0), + (E | 0) != -1) + : 0 + ) + ? ((F = f[((f[(k + 12) >> 2] | 0) + (E << 2)) >> 2] | 0), + (F | 0) != -1) + : 0 + ) { + E = (F + (((F >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + f[h >> 2] = E + if (((E | 0) != -1) & ((E | 0) != (B | 0))) { + F = A + H = v + I = E + while (1) { + E = (I + 1) | 0 + J = ((E >>> 0) % 3 | 0 | 0) == 0 ? (I + -2) | 0 : E + do + if ( + f[((f[a >> 2] | 0) + ((J >>> 5) << 2)) >> 2] & + (1 << (J & 31)) + ) { + E = (F + 1) | 0 + K = + f[ + ((f[l >> 2] | 0) + + (((((I | 0) / 3) | 0) * 12) | 0) + + (((I | 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + if (!(b[m >> 0] | 0)) + L = f[((f[n >> 2] | 0) + (K << 2)) >> 2] | 0 + else L = K + f[i >> 2] = L + K = f[d >> 2] | 0 + if (K >>> 0 < (f[o >> 2] | 0) >>> 0) { + f[K >> 2] = L + f[d >> 2] = K + 4 + } else Ri(c, i) + K = f[s >> 2] | 0 + if ((K | 0) == (f[t >> 2] | 0)) { + Ri(r, h) + M = E + N = F + break + } else { + f[K >> 2] = f[h >> 2] + f[s >> 2] = K + 4 + M = E + N = F + break + } + } else { + M = F + N = H + } + while (0) + f[((f[q >> 2] | 0) + (f[h >> 2] << 2)) >> 2] = N + O = f[j >> 2] | 0 + J = f[h >> 2] | 0 + if ((J | 0) == -1) break + E = ((((J >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + J) | 0 + if ((E | 0) == -1) break + J = f[((f[(O + 12) >> 2] | 0) + (E << 2)) >> 2] | 0 + if ((J | 0) == -1) break + I = (J + (((J >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + f[h >> 2] = I + if (!((I | 0) != -1 ? (I | 0) != (f[g >> 2] | 0) : 0)) { + P = M + Q = O + break b + } else { + F = M + H = N + } + } + f[h >> 2] = -1 + P = M + Q = O + } else { + P = A + Q = k + } + } else R = 28 + while (0) + if ((R | 0) == 28) { + R = 0 + f[h >> 2] = -1 + P = A + Q = k + } + y = P + z = Q + } + w = (w + 1) | 0 + if ( + w >>> 0 >= + (((f[(z + 28) >> 2] | 0) - (f[(z + 24) >> 2] | 0)) >> 2) >>> 0 + ) + break + else { + v = y + x = z + } + } + u = e + return + } + function Rc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0.0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + D = 0, + E = 0, + F = 0 + switch (c | 0) { + case 0: { + e = -149 + g = 24 + i = 4 + break + } + case 1: { + e = -1074 + g = 53 + i = 4 + break + } + case 2: { + e = -1074 + g = 53 + i = 4 + break + } + default: + j = 0.0 + } + a: do + if ((i | 0) == 4) { + c = (a + 4) | 0 + k = (a + 100) | 0 + do { + l = f[c >> 2] | 0 + if (l >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = l + 1 + m = h[l >> 0] | 0 + } else m = Si(a) | 0 + } while ((eq(m) | 0) != 0) + b: do + switch (m | 0) { + case 43: + case 45: { + l = (1 - ((((m | 0) == 45) & 1) << 1)) | 0 + n = f[c >> 2] | 0 + if (n >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = n + 1 + o = h[n >> 0] | 0 + p = l + break b + } else { + o = Si(a) | 0 + p = l + break b + } + break + } + default: { + o = m + p = 1 + } + } + while (0) + l = 0 + n = o + while (1) { + if ((n | 32 | 0) != (b[(18546 + l) >> 0] | 0)) { + q = l + r = n + break + } + do + if (l >>> 0 < 7) { + s = f[c >> 2] | 0 + if (s >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = s + 1 + t = h[s >> 0] | 0 + break + } else { + t = Si(a) | 0 + break + } + } else t = n + while (0) + s = (l + 1) | 0 + if (s >>> 0 < 8) { + l = s + n = t + } else { + q = s + r = t + break + } + } + c: do + switch (q | 0) { + case 8: + break + case 3: { + i = 23 + break + } + default: { + n = (d | 0) != 0 + if (n & (q >>> 0 > 3)) + if ((q | 0) == 8) break c + else { + i = 23 + break c + } + d: do + if (!q) { + l = 0 + s = r + while (1) { + if ((s | 32 | 0) != (b[(18555 + l) >> 0] | 0)) { + u = l + v = s + break d + } + do + if (l >>> 0 < 2) { + w = f[c >> 2] | 0 + if (w >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = w + 1 + x = h[w >> 0] | 0 + break + } else { + x = Si(a) | 0 + break + } + } else x = s + while (0) + w = (l + 1) | 0 + if (w >>> 0 < 3) { + l = w + s = x + } else { + u = w + v = x + break + } + } + } else { + u = q + v = r + } + while (0) + switch (u | 0) { + case 3: { + s = f[c >> 2] | 0 + if (s >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = s + 1 + y = h[s >> 0] | 0 + } else y = Si(a) | 0 + if ((y | 0) == 40) z = 1 + else { + if (!(f[k >> 2] | 0)) { + j = B + break a + } + f[c >> 2] = (f[c >> 2] | 0) + -1 + j = B + break a + } + while (1) { + s = f[c >> 2] | 0 + if (s >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = s + 1 + A = h[s >> 0] | 0 + } else A = Si(a) | 0 + if ( + !( + (((A + -48) | 0) >>> 0 < 10) | + (((A + -65) | 0) >>> 0 < 26) + ) + ? !(((A | 0) == 95) | (((A + -97) | 0) >>> 0 < 26)) + : 0 + ) + break + z = (z + 1) | 0 + } + if ((A | 0) == 41) { + j = B + break a + } + s = (f[k >> 2] | 0) == 0 + if (!s) f[c >> 2] = (f[c >> 2] | 0) + -1 + if (!n) { + l = Vq() | 0 + f[l >> 2] = 22 + Ym(a, 0) + j = 0.0 + break a + } + if (!z) { + j = B + break a + } else D = z + while (1) { + D = (D + -1) | 0 + if (!s) f[c >> 2] = (f[c >> 2] | 0) + -1 + if (!D) { + j = B + break a + } + } + break + } + case 0: { + if ((v | 0) == 48) { + s = f[c >> 2] | 0 + if (s >>> 0 < (f[k >> 2] | 0) >>> 0) { + f[c >> 2] = s + 1 + E = h[s >> 0] | 0 + } else E = Si(a) | 0 + if ((E | 32 | 0) == 120) { + j = +Fc(a, g, e, p, d) + break a + } + if (!(f[k >> 2] | 0)) F = 48 + else { + f[c >> 2] = (f[c >> 2] | 0) + -1 + F = 48 + } + } else F = v + j = +nb(a, F, g, e, p, d) + break a + break + } + default: { + if (f[k >> 2] | 0) f[c >> 2] = (f[c >> 2] | 0) + -1 + s = Vq() | 0 + f[s >> 2] = 22 + Ym(a, 0) + j = 0.0 + break a + } + } + } + } + while (0) + if ((i | 0) == 23) { + s = (f[k >> 2] | 0) == 0 + if (!s) f[c >> 2] = (f[c >> 2] | 0) + -1 + if (((d | 0) != 0) & (q >>> 0 > 3)) { + n = q + do { + if (!s) f[c >> 2] = (f[c >> 2] | 0) + -1 + n = (n + -1) | 0 + } while (n >>> 0 > 3) + } + } + j = +$($(p | 0) * $(C)) + } + while (0) + return +j + } + function Sc(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0 + g = u + u = (u + 16) | 0 + h = g + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + i = ln(16) | 0 + f[h >> 2] = i + f[(h + 8) >> 2] = -2147483632 + f[(h + 4) >> 2] = 15 + j = i + k = 14479 + l = (j + 15) | 0 + do { + b[j >> 0] = b[k >> 0] | 0 + j = (j + 1) | 0 + k = (k + 1) | 0 + } while ((j | 0) < (l | 0)) + b[(i + 15) >> 0] = 0 + i = Hk(c, h, -1) | 0 + if ((b[(h + 11) >> 0] | 0) < 0) Oq(f[h >> 2] | 0) + switch (i | 0) { + case 0: { + m = ln(52) | 0 + j = m + l = (j + 52) | 0 + do { + f[j >> 2] = 0 + j = (j + 4) | 0 + } while ((j | 0) < (l | 0)) + Zn(m) + n = 4044 + o = m + break + } + case -1: { + if ((mi(c) | 0) == 10) { + m = ln(52) | 0 + j = m + l = (j + 52) | 0 + do { + f[j >> 2] = 0 + j = (j + 4) | 0 + } while ((j | 0) < (l | 0)) + Zn(m) + n = 4044 + o = m + } else p = 6 + break + } + default: + p = 6 + } + a: do + if ((p | 0) == 6) { + m = (d + 8) | 0 + q = (d + 12) | 0 + r = f[q >> 2] | 0 + s = f[m >> 2] | 0 + b: do + if (((r - s) | 0) > 0) { + t = (h + 8) | 0 + v = (h + 4) | 0 + w = (c + 16) | 0 + x = (h + 11) | 0 + y = 0 + z = s + A = r + c: while (1) { + B = f[((f[(z + (y << 2)) >> 2] | 0) + 28) >> 2] | 0 + switch (B | 0) { + case 9: { + p = 12 + break + } + case 6: + case 5: + case 4: + case 2: { + C = z + D = A + break + } + default: { + if ((B | 2 | 0) != 3) break c + if ((B | 0) == 9) p = 12 + else { + C = z + D = A + } + } + } + if ((p | 0) == 12) { + p = 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + B = ln(32) | 0 + f[h >> 2] = B + f[t >> 2] = -2147483616 + f[v >> 2] = 17 + j = B + k = 14495 + l = (j + 17) | 0 + do { + b[j >> 0] = b[k >> 0] | 0 + j = (j + 1) | 0 + k = (k + 1) | 0 + } while ((j | 0) < (l | 0)) + b[(B + 17) >> 0] = 0 + E = f[w >> 2] | 0 + if (E) { + F = w + G = E + d: while (1) { + E = G + while (1) { + if ((f[(E + 16) >> 2] | 0) >= 0) break + H = f[(E + 4) >> 2] | 0 + if (!H) { + I = F + break d + } else E = H + } + G = f[E >> 2] | 0 + if (!G) { + I = E + break + } else F = E + } + if ( + ((I | 0) != (w | 0) ? (f[(I + 16) >> 2] | 0) <= 0 : 0) + ? ((F = (I + 20) | 0), (Jh(F, h) | 0) != 0) + : 0 + ) + J = Hk(F, h, -1) | 0 + else p = 21 + } else p = 21 + if ((p | 0) == 21) { + p = 0 + J = Hk(c, h, -1) | 0 + } + if ((b[x >> 0] | 0) < 0) Oq(f[h >> 2] | 0) + if ((J | 0) < 1) break + C = f[m >> 2] | 0 + D = f[q >> 2] | 0 + } + y = (y + 1) | 0 + if ((y | 0) >= (((D - C) >> 2) | 0)) break b + else { + z = C + A = D + } + } + if ((i | 0) != 1) { + A = ln(52) | 0 + j = A + l = (j + 52) | 0 + do { + f[j >> 2] = 0 + j = (j + 4) | 0 + } while ((j | 0) < (l | 0)) + Zn(A) + n = 4044 + o = A + break a + } + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + z = ln(32) | 0 + f[h >> 2] = z + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 24 + j = z + k = 14513 + l = (j + 24) | 0 + do { + b[j >> 0] = b[k >> 0] | 0 + j = (j + 1) | 0 + k = (k + 1) | 0 + } while ((j | 0) < (l | 0)) + b[(z + 24) >> 0] = 0 + f[a >> 2] = -1 + pj((a + 4) | 0, h) + if ((b[(h + 11) >> 0] | 0) < 0) Oq(f[h >> 2] | 0) + u = g + return + } + while (0) + q = ln(52) | 0 + j = q + l = (j + 52) | 0 + do { + f[j >> 2] = 0 + j = (j + 4) | 0 + } while ((j | 0) < (l | 0)) + Zn(q) + n = 3988 + o = q + } + while (0) + f[o >> 2] = n + ip(o, d) + Md(a, o, c, e) + Va[f[((f[o >> 2] | 0) + 4) >> 2] & 127](o) + u = g + return + } + function Tc(a, c, d, e, g, h) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + var i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0 + i = u + u = (u + 32) | 0 + j = (i + 4) | 0 + k = i + l = (i + 16) | 0 + m = (_(e | 0) | 0) ^ 31 + if ((e | 0) > 0) + if (m >>> 0 > 17) { + n = 0 + u = i + return n | 0 + } else o = (m + 1) | 0 + else o = 1 + do + if (g) { + m = ln(48) | 0 + f[j >> 2] = m + f[(j + 8) >> 2] = -2147483600 + f[(j + 4) >> 2] = 33 + e = m + p = 15987 + q = (e + 33) | 0 + do { + b[e >> 0] = b[p >> 0] | 0 + e = (e + 1) | 0 + p = (p + 1) | 0 + } while ((e | 0) < (q | 0)) + b[(m + 33) >> 0] = 0 + r = (Jh(g, j) | 0) == 0 + if ((b[(j + 11) >> 0] | 0) < 0) Oq(f[j >> 2] | 0) + if (!r) { + r = ln(48) | 0 + f[j >> 2] = r + f[(j + 8) >> 2] = -2147483600 + f[(j + 4) >> 2] = 33 + e = r + p = 15987 + q = (e + 33) | 0 + do { + b[e >> 0] = b[p >> 0] | 0 + e = (e + 1) | 0 + p = (p + 1) | 0 + } while ((e | 0) < (q | 0)) + b[(r + 33) >> 0] = 0 + p = Mk(g, j) | 0 + if ((b[(j + 11) >> 0] | 0) < 0) Oq(f[j >> 2] | 0) + if ((p | 0) < 4) { + s = (o + -2) | 0 + break + } + if ((p | 0) < 6) { + s = (o + -1) | 0 + break + } + if ((p | 0) > 9) { + s = (o + 2) | 0 + break + } else { + s = (o + (((p | 0) > 7) & 1)) | 0 + break + } + } else s = o + } else s = o + while (0) + o = (s | 0) > 1 ? s : 1 + s = (o | 0) < 18 ? o : 18 + b[l >> 0] = s + o = (h + 16) | 0 + g = f[(o + 4) >> 2] | 0 + if (!(((g | 0) > 0) | (((g | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0)))) { + f[k >> 2] = f[(h + 4) >> 2] + f[j >> 2] = f[k >> 2] + Me(h, j, l, (l + 1) | 0) | 0 + } + do + switch (s & 31) { + case 1: + case 0: { + n = ue(a, c, d, h) | 0 + u = i + return n | 0 + } + case 2: { + n = te(a, c, d, h) | 0 + u = i + return n | 0 + } + case 3: { + n = se(a, c, d, h) | 0 + u = i + return n | 0 + } + case 4: { + n = re(a, c, d, h) | 0 + u = i + return n | 0 + } + case 5: { + n = qe(a, c, d, h) | 0 + u = i + return n | 0 + } + case 6: { + n = pe(a, c, d, h) | 0 + u = i + return n | 0 + } + case 7: { + n = oe(a, c, d, h) | 0 + u = i + return n | 0 + } + case 8: { + n = ne(a, c, d, h) | 0 + u = i + return n | 0 + } + case 9: { + n = me(a, c, d, h) | 0 + u = i + return n | 0 + } + case 10: { + n = le(a, c, d, h) | 0 + u = i + return n | 0 + } + case 11: { + n = ke(a, c, d, h) | 0 + u = i + return n | 0 + } + case 12: { + n = ie(a, c, d, h) | 0 + u = i + return n | 0 + } + case 13: { + n = he(a, c, d, h) | 0 + u = i + return n | 0 + } + case 14: { + n = ge(a, c, d, h) | 0 + u = i + return n | 0 + } + case 15: { + n = fe(a, c, d, h) | 0 + u = i + return n | 0 + } + case 16: { + n = ee(a, c, d, h) | 0 + u = i + return n | 0 + } + case 17: { + n = de(a, c, d, h) | 0 + u = i + return n | 0 + } + case 18: { + n = ce(a, c, d, h) | 0 + u = i + return n | 0 + } + default: { + n = 0 + u = i + return n | 0 + } + } + while (0) + return 0 + } + function Uc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 1048576.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 1048576) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + xb(z, A, g) + a: do + if ((x | 0) < 1048576) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 1048576 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 1048576 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -1048576) | 0 + m = x + while (1) { + v = 1048576.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 1048576) { + C = p + D = 1048576 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 1048576) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 9.5367431640625e-7) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function Vc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 1048576.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 1048576) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + yb(z, A, g) + a: do + if ((x | 0) < 1048576) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 1048576 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 1048576 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -1048576) | 0 + m = x + while (1) { + v = 1048576.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 1048576) { + C = p + D = 1048576 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 1048576) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 9.5367431640625e-7) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function Wc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 1048576.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 1048576) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + zb(z, A, g) + a: do + if ((x | 0) < 1048576) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 1048576 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 1048576 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -1048576) | 0 + m = x + while (1) { + v = 1048576.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 1048576) { + C = p + D = 1048576 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 1048576) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 9.5367431640625e-7) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function Xc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 1048576.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 1048576) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Ab(z, A, g) + a: do + if ((x | 0) < 1048576) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 1048576 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 1048576 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -1048576) | 0 + m = x + while (1) { + v = 1048576.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 1048576) { + C = p + D = 1048576 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 1048576) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 9.5367431640625e-7) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function Yc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 1048576.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 1048576) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Fb(z, A, g) + a: do + if ((x | 0) < 1048576) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 1048576 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 1048576 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -1048576) | 0 + m = x + while (1) { + v = 1048576.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 1048576) { + C = p + D = 1048576 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 1048576) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 9.5367431640625e-7) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function Zc(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 524288.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 524288) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Bb(z, A, g) + a: do + if ((x | 0) < 524288) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 524288 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 524288 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -524288) | 0 + m = x + while (1) { + v = 524288.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 524288) { + C = p + D = 524288 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 524288) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 1.9073486328125e-6) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function _c(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 262144.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 262144) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Cb(z, A, g) + a: do + if ((x | 0) < 262144) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 262144 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 262144 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -262144) | 0 + m = x + while (1) { + v = 262144.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 262144) { + C = p + D = 262144 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 262144) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 3.814697265625e-6) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function $c(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 65536.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 65536) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Db(z, A, g) + a: do + if ((x | 0) < 65536) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 65536 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 65536 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -65536) | 0 + m = x + while (1) { + v = 65536.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 65536) { + C = p + D = 65536 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 65536) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 0.0000152587890625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function ad(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 32768.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 32768) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Eb(z, A, g) + a: do + if ((x | 0) < 32768) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 32768 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 32768 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -32768) | 0 + m = x + while (1) { + v = 32768.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 32768) { + C = p + D = 32768 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 32768) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 0.000030517578125) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function bd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 8192.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 8192) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Gb(z, A, g) + a: do + if ((x | 0) < 8192) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 8192 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 8192 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -8192) | 0 + m = x + while (1) { + v = 8192.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 8192) { + C = p + D = 8192 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 8192) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 0.0001220703125) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function cd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Hb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function dd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Ib(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function ed(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Jb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function fd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Kb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function gd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Lb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function hd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Mb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function id(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Nb(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function jd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0.0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0.0, + F = 0.0, + G = 0.0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + if ((c | 0) > 0) { + i = 0 + j = 0 + k = 0 + l = 0 + while (1) { + m = (b + (j << 3)) | 0 + n = f[m >> 2] | 0 + o = f[(m + 4) >> 2] | 0 + m = Vn(n | 0, o | 0, k | 0, l | 0) | 0 + p = I + q = ((n | 0) == 0) & ((o | 0) == 0) ? i : j + j = (j + 1) | 0 + if ((j | 0) == (c | 0)) { + r = q + s = p + t = m + break + } else { + i = q + k = m + l = p + } + } + } else { + r = 0 + s = 0 + t = 0 + } + l = (r + 1) | 0 + f[(a + 12) >> 2] = l + k = (a + 4) | 0 + i = f[k >> 2] | 0 + c = f[a >> 2] | 0 + j = (i - c) >> 3 + p = c + c = i + if (l >>> 0 <= j >>> 0) { + if ( + l >>> 0 < j >>> 0 ? ((i = (p + (l << 3)) | 0), (i | 0) != (c | 0)) : 0 + ) + f[k >> 2] = c + (~(((c + -8 - i) | 0) >>> 3) << 3) + } else wh(a, (l - j) | 0) + v = +(t >>> 0) + 4294967296.0 * +(s >>> 0) + s = (r | 0) < 0 + if (!s) { + t = f[a >> 2] | 0 + j = 0 + i = 0 + do { + c = (b + (i << 3)) | 0 + k = f[c >> 2] | 0 + p = f[(c + 4) >> 2] | 0 + c = + ~~( + ((+(k >>> 0) + 4294967296.0 * +(p >>> 0)) / v) * 4096.0 + + 0.5 + ) >>> 0 + m = (((k | 0) != 0) | ((p | 0) != 0)) & ((c | 0) == 0) ? 1 : c + f[(t + (i << 3)) >> 2] = m + j = (m + j) | 0 + i = (i + 1) | 0 + } while ((i | 0) != (l | 0)) + if ((j | 0) == 4096) { + if (s) { + w = 0 + u = e + return w | 0 + } + } else { + x = j + y = 12 + } + } else { + x = 0 + y = 12 + } + if ((y | 0) == 12) { + f[h >> 2] = 0 + j = (h + 4) | 0 + f[j >> 2] = 0 + f[(h + 8) >> 2] = 0 + do + if (l) + if (l >>> 0 > 1073741823) aq(h) + else { + i = l << 2 + t = ln(i) | 0 + f[h >> 2] = t + m = (t + (l << 2)) | 0 + f[(h + 8) >> 2] = m + sj(t | 0, 0, i | 0) | 0 + f[j >> 2] = m + z = t + A = m + break + } + else { + z = 0 + A = 0 + } + while (0) + if (!s ? ((f[z >> 2] = 0), r | 0) : 0) { + m = 1 + do { + f[(z + (m << 2)) >> 2] = m + m = (m + 1) | 0 + } while ((m | 0) != (l | 0)) + } + f[g >> 2] = a + Ob(z, A, g) + a: do + if ((x | 0) < 4096) { + g = ((f[a >> 2] | 0) + (f[((f[j >> 2] | 0) + -4) >> 2] << 3)) | 0 + f[g >> 2] = 4096 - x + (f[g >> 2] | 0) + B = 0 + } else { + g = f[h >> 2] | 0 + if ((r | 0) <= 0) { + A = (x | 0) > 4096 + while (1) + if (!A) { + B = 0 + break a + } + } + A = f[a >> 2] | 0 + z = (x + -4096) | 0 + m = x + while (1) { + v = 4096.0 / +(m | 0) + t = r + i = z + c = m + while (1) { + p = (A + (f[(g + (t << 2)) >> 2] << 3)) | 0 + k = f[p >> 2] | 0 + if (k >>> 0 < 2) { + y = 28 + break + } + q = (k - ~~+J(+(v * +(k >>> 0)))) | 0 + o = (q | 0) == 0 ? 1 : q + q = (o | 0) < (k | 0) ? o : (k + -1) | 0 + o = (q | 0) > (i | 0) ? i : q + f[p >> 2] = k - o + k = (c - o) | 0 + p = (i - o) | 0 + if ((k | 0) == 4096) { + C = p + D = 4096 + break + } + if ((t | 0) > 1) { + t = (t + -1) | 0 + i = p + c = k + } else { + C = p + D = k + break + } + } + if ((y | 0) == 28) { + y = 0 + if ((t | 0) == (r | 0)) { + B = 1 + break a + } else { + C = i + D = c + } + } + if ((C | 0) > 0) { + z = C + m = D + } else { + B = 0 + break + } + } + } + while (0) + D = f[h >> 2] | 0 + if (D | 0) { + h = f[j >> 2] | 0 + if ((h | 0) != (D | 0)) + f[j >> 2] = h + (~(((h + -4 - D) | 0) >>> 2) << 2) + Oq(D) + } + if (((B | 0) != 0) | s) { + w = 0 + u = e + return w | 0 + } + } + B = f[a >> 2] | 0 + D = 0 + h = 0 + do { + f[(B + (D << 3) + 4) >> 2] = h + h = ((f[(B + (D << 3)) >> 2] | 0) + h) | 0 + D = (D + 1) | 0 + } while ((D | 0) != (l | 0)) + if ((h | 0) != 4096) { + w = 0 + u = e + return w | 0 + } + if (s) E = 0.0 + else { + s = f[a >> 2] | 0 + h = 0 + v = 0.0 + while (1) { + D = f[(s + (h << 3)) >> 2] | 0 + if (!D) F = v + else { + B = (b + (h << 3)) | 0 + G = + +((f[B >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(B + 4) >> 2] | 0) >>> 0) + F = v + +Zg(+(D >>> 0) * 0.000244140625) * G + } + h = (h + 1) | 0 + if ((h | 0) == (l | 0)) { + E = F + break + } else v = F + } + } + F = +W(+-E) + l = + +K(F) >= 1.0 + ? F > 0.0 + ? ~~+Y(+J(F / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((F - +(~~F >>> 0)) / 4294967296.0) >>> 0 + : 0 + h = (a + 16) | 0 + f[h >> 2] = ~~F >>> 0 + f[(h + 4) >> 2] = l + w = Le(a, d) | 0 + u = e + return w | 0 + } + function kd(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0 + g = u + u = (u + 32) | 0 + d = (g + 16) | 0 + h = (g + 8) | 0 + i = g + j = e >>> 0 > 1073741823 ? -1 : e << 2 + k = Lq(j) | 0 + sj(k | 0, 0, j | 0) | 0 + j = f[(a + 28) >> 2] | 0 + l = (a + 36) | 0 + m = f[l >> 2] | 0 + n = f[(m + 4) >> 2] | 0 + o = f[m >> 2] | 0 + p = (n - o) | 0 + a: do + if ((p | 0) > 4) { + q = p >> 2 + r = f[(a + 32) >> 2] | 0 + s = (a + 8) | 0 + t = (h + 4) | 0 + v = (i + 4) | 0 + w = (d + 4) | 0 + x = (j + 12) | 0 + y = (e | 0) > 0 + z = (k + 4) | 0 + A = (h + 4) | 0 + B = (i + 4) | 0 + C = (d + 4) | 0 + D = (q + -1) | 0 + if (((n - o) >> 2) >>> 0 > D >>> 0) { + E = q + F = D + G = o + } else { + H = m + aq(H) + } + while (1) { + D = f[(G + (F << 2)) >> 2] | 0 + q = X(F, e) | 0 + if ( + (D | 0) != -1 + ? ((I = f[((f[x >> 2] | 0) + (D << 2)) >> 2] | 0), + (I | 0) != -1) + : 0 + ) { + D = f[j >> 2] | 0 + J = f[r >> 2] | 0 + K = f[(J + (f[(D + (I << 2)) >> 2] << 2)) >> 2] | 0 + L = (I + 1) | 0 + M = ((L >>> 0) % 3 | 0 | 0) == 0 ? (I + -2) | 0 : L + if ((M | 0) == -1) N = -1 + else N = f[(D + (M << 2)) >> 2] | 0 + M = f[(J + (N << 2)) >> 2] | 0 + L = ((((I >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + I) | 0 + if ((L | 0) == -1) O = -1 + else O = f[(D + (L << 2)) >> 2] | 0 + L = f[(J + (O << 2)) >> 2] | 0 + if ( + ((K | 0) < (F | 0)) & + ((M | 0) < (F | 0)) & + ((L | 0) < (F | 0)) + ) { + J = X(K, e) | 0 + K = X(M, e) | 0 + M = X(L, e) | 0 + if (y) { + L = 0 + do { + f[(k + (L << 2)) >> 2] = + (f[(b + ((L + M) << 2)) >> 2] | 0) + + (f[(b + ((L + K) << 2)) >> 2] | 0) - + (f[(b + ((L + J) << 2)) >> 2] | 0) + L = (L + 1) | 0 + } while ((L | 0) != (e | 0)) + } + L = (b + (q << 2)) | 0 + J = (c + (q << 2)) | 0 + K = f[(L + 4) >> 2] | 0 + M = f[k >> 2] | 0 + D = f[z >> 2] | 0 + f[h >> 2] = f[L >> 2] + f[A >> 2] = K + f[i >> 2] = M + f[B >> 2] = D + Od(d, s, h, i) + f[J >> 2] = f[d >> 2] + f[(J + 4) >> 2] = f[C >> 2] + } else P = 15 + } else P = 15 + if ((P | 0) == 15) { + P = 0 + J = (b + (q << 2)) | 0 + D = (b + ((X((E + -2) | 0, e) | 0) << 2)) | 0 + M = (c + (q << 2)) | 0 + K = f[(J + 4) >> 2] | 0 + L = f[D >> 2] | 0 + I = f[(D + 4) >> 2] | 0 + f[h >> 2] = f[J >> 2] + f[t >> 2] = K + f[i >> 2] = L + f[v >> 2] = I + Od(d, s, h, i) + f[M >> 2] = f[d >> 2] + f[(M + 4) >> 2] = f[w >> 2] + } + if ((E | 0) <= 2) break a + M = f[l >> 2] | 0 + G = f[M >> 2] | 0 + I = (F + -1) | 0 + if ((((f[(M + 4) >> 2] | 0) - G) >> 2) >>> 0 <= I >>> 0) { + H = M + break + } else { + M = F + F = I + E = M + } + } + aq(H) + } + while (0) + if ((e | 0) <= 0) { + Q = (a + 8) | 0 + R = (b + 4) | 0 + S = f[b >> 2] | 0 + T = f[R >> 2] | 0 + U = (k + 4) | 0 + V = f[k >> 2] | 0 + W = f[U >> 2] | 0 + f[h >> 2] = S + Y = (h + 4) | 0 + f[Y >> 2] = T + f[i >> 2] = V + Z = (i + 4) | 0 + f[Z >> 2] = W + Od(d, Q, h, i) + _ = f[d >> 2] | 0 + f[c >> 2] = _ + $ = (d + 4) | 0 + aa = f[$ >> 2] | 0 + ba = (c + 4) | 0 + f[ba >> 2] = aa + Mq(k) + u = g + return 1 + } + sj(k | 0, 0, (e << 2) | 0) | 0 + Q = (a + 8) | 0 + R = (b + 4) | 0 + S = f[b >> 2] | 0 + T = f[R >> 2] | 0 + U = (k + 4) | 0 + V = f[k >> 2] | 0 + W = f[U >> 2] | 0 + f[h >> 2] = S + Y = (h + 4) | 0 + f[Y >> 2] = T + f[i >> 2] = V + Z = (i + 4) | 0 + f[Z >> 2] = W + Od(d, Q, h, i) + _ = f[d >> 2] | 0 + f[c >> 2] = _ + $ = (d + 4) | 0 + aa = f[$ >> 2] | 0 + ba = (c + 4) | 0 + f[ba >> 2] = aa + Mq(k) + u = g + return 1 + } + function ld(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0 + d = u + u = (u + 32) | 0 + e = d + g = (d + 20) | 0 + h = (d + 24) | 0 + i = (d + 8) | 0 + j = f[a >> 2] | 0 + k = (j + 8) | 0 + l = j + j = f[l >> 2] | 0 + m = f[(l + 4) >> 2] | 0 + l = Vn(j | 0, m | 0, f[k >> 2] | 0, f[(k + 4) >> 2] | 0) | 0 + k = I + n = Vn(l | 0, k | 0, (((l | 0) == 0) & ((k | 0) == 0) & 1) | 0, 0) | 0 + k = + ~~( + ((+(j >>> 0) + 4294967296.0 * +(m >>> 0)) / + (+(n >>> 0) + 4294967296.0 * +(I >>> 0))) * + 256.0 + + 0.5 + ) >>> 0 + n = k >>> 0 < 255 ? k : 255 + k = (n + (((n | 0) == 0) & 1)) & 255 + b[h >> 0] = k + n = (a + 12) | 0 + m = (a + 16) | 0 + j = ((((f[m >> 2] | 0) - (f[n >> 2] | 0)) << 1) + 64) | 0 + f[i >> 2] = 0 + l = (i + 4) | 0 + f[l >> 2] = 0 + f[(i + 8) >> 2] = 0 + if (!j) o = 0 + else { + if ((j | 0) < 0) aq(i) + p = ln(j) | 0 + f[l >> 2] = p + f[i >> 2] = p + f[(i + 8) >> 2] = p + j + q = j + j = p + do { + b[j >> 0] = 0 + j = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = j + q = (q + -1) | 0 + } while ((q | 0) != 0) + o = f[i >> 2] | 0 + } + q = (a + 28) | 0 + j = ((f[q >> 2] | 0) + -1) | 0 + a: do + if ((j | 0) > -1) { + p = (a + 24) | 0 + r = j + s = 4096 + t = 0 + v = k + while (1) { + w = ((f[p >> 2] & (1 << r)) | 0) != 0 + x = (w ? (0 - (v & 255)) & 255 : v) & 255 + if (s >>> 0 < (x << 12) >>> 0) { + y = t + z = s + } else { + b[(o + t) >> 0] = s + y = (t + 1) | 0 + z = s >>> 8 + } + un(f[(4092 + (x << 3)) >> 2] | 0, 0, z | 0, 0) | 0 + A = + (z + + (w ? 0 : (0 - v) & 255) + + (X( + ((z + I) | 0) >>> (f[(4092 + (x << 3) + 4) >> 2] | 0), + (256 - x) | 0, + ) | + 0)) | + 0 + x = (r + -1) | 0 + if ((x | 0) <= -1) { + B = A + C = y + break a + } + r = x + s = A + t = y + v = b[h >> 0] | 0 + } + } else { + B = 4096 + C = 0 + } + while (0) + y = f[m >> 2] | 0 + if ((f[n >> 2] | 0) == (y | 0)) { + D = B + E = C + } else { + z = B + B = C + C = y + while (1) { + C = (C + -4) | 0 + y = f[C >> 2] | 0 + k = 31 + j = z + v = B + while (1) { + t = b[h >> 0] | 0 + s = (((1 << k) & y) | 0) != 0 + r = (s ? (0 - (t & 255)) & 255 : t) & 255 + if (j >>> 0 < (r << 12) >>> 0) { + F = v + G = j + } else { + b[(o + v) >> 0] = j + F = (v + 1) | 0 + G = j >>> 8 + } + un(f[(4092 + (r << 3)) >> 2] | 0, 0, G | 0, 0) | 0 + j = + (G + + (s ? 0 : (0 - t) & 255) + + (X( + ((G + I) | 0) >>> (f[(4092 + (r << 3) + 4) >> 2] | 0), + (256 - r) | 0, + ) | + 0)) | + 0 + if ((k | 0) <= 0) break + else { + k = (k + -1) | 0 + v = F + } + } + if ((f[n >> 2] | 0) == (C | 0)) { + D = j + E = F + break + } else { + z = j + B = F + } + } + } + F = (D + -4096) | 0 + do + if (F >>> 0 >= 64) { + if (F >>> 0 < 16384) { + B = (o + E) | 0 + z = (D + 12288) | 0 + b[B >> 0] = z + H = 2 + J = z >>> 8 + K = (B + 1) | 0 + L = 25 + break + } + if (F >>> 0 < 4194304) { + B = (o + E) | 0 + z = (D + 8384512) | 0 + b[B >> 0] = z + b[(B + 1) >> 0] = z >>> 8 + H = 3 + J = z >>> 16 + K = (B + 2) | 0 + L = 25 + } else M = E + } else { + H = 1 + J = F + K = (o + E) | 0 + L = 25 + } + while (0) + if ((L | 0) == 25) { + b[K >> 0] = J + M = (H + E) | 0 + } + E = (c + 16) | 0 + H = E + J = f[(H + 4) >> 2] | 0 + if (!(((J | 0) > 0) | (((J | 0) == 0) & ((f[H >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, (h + 1) | 0) | 0 + } + ci(M, c) | 0 + h = f[i >> 2] | 0 + H = E + E = f[(H + 4) >> 2] | 0 + if (!(((E | 0) > 0) | (((E | 0) == 0) & ((f[H >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, (h + M) | 0) | 0 + } + M = e + f[M >> 2] = 0 + f[(M + 4) >> 2] = 0 + qf(a, 2, e) + e = f[(a + 12) >> 2] | 0 + M = f[m >> 2] | 0 + if ((M | 0) != (e | 0)) f[m >> 2] = M + (~(((M + -4 - e) | 0) >>> 2) << 2) + f[(a + 24) >> 2] = 0 + f[q >> 2] = 0 + q = f[i >> 2] | 0 + if (!q) { + u = d + return + } + if ((f[l >> 2] | 0) != (q | 0)) f[l >> 2] = q + Oq(q) + u = d + return + } + function md(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0 + c = u + u = (u + 16) | 0 + b = (c + 8) | 0 + d = (c + 4) | 0 + e = c + g = (a + 64) | 0 + h = f[g >> 2] | 0 + if ((f[(h + 28) >> 2] | 0) == (f[(h + 24) >> 2] | 0)) { + u = c + return + } + i = (a + 52) | 0 + j = (a + 56) | 0 + k = (a + 60) | 0 + l = (a + 12) | 0 + m = (a + 28) | 0 + n = (a + 40) | 0 + o = (a + 44) | 0 + p = (a + 48) | 0 + q = 0 + r = 0 + s = h + while (1) { + h = f[((f[(s + 24) >> 2] | 0) + (r << 2)) >> 2] | 0 + if ((h | 0) == -1) { + t = q + v = s + } else { + w = (q + 1) | 0 + f[b >> 2] = q + x = f[j >> 2] | 0 + if ((x | 0) == (f[k >> 2] | 0)) Ri(i, b) + else { + f[x >> 2] = q + f[j >> 2] = x + 4 + } + f[d >> 2] = h + f[e >> 2] = 0 + a: do + if ( + !(f[((f[l >> 2] | 0) + ((r >>> 5) << 2)) >> 2] & (1 << (r & 31))) + ) + y = h + else { + x = (h + 1) | 0 + z = ((x >>> 0) % 3 | 0 | 0) == 0 ? (h + -2) | 0 : x + if ( + ( + (z | 0) != -1 + ? ((f[((f[a >> 2] | 0) + ((z >>> 5) << 2)) >> 2] & + (1 << (z & 31))) | + 0) == + 0 + : 0 + ) + ? ((x = + f[ + ((f[((f[g >> 2] | 0) + 12) >> 2] | 0) + (z << 2)) >> 2 + ] | 0), + (z = (x + 1) | 0), + (x | 0) != -1) + : 0 + ) { + A = ((z >>> 0) % 3 | 0 | 0) == 0 ? (x + -2) | 0 : z + f[e >> 2] = A + if ((A | 0) == -1) { + y = h + break + } else B = A + while (1) { + f[d >> 2] = B + A = (B + 1) | 0 + z = ((A >>> 0) % 3 | 0 | 0) == 0 ? (B + -2) | 0 : A + if ((z | 0) == -1) break + if ( + (f[((f[a >> 2] | 0) + ((z >>> 5) << 2)) >> 2] & + (1 << (z & 31))) | + 0 + ) + break + A = + f[((f[((f[g >> 2] | 0) + 12) >> 2] | 0) + (z << 2)) >> 2] | + 0 + z = (A + 1) | 0 + if ((A | 0) == -1) break + x = ((z >>> 0) % 3 | 0 | 0) == 0 ? (A + -2) | 0 : z + f[e >> 2] = x + if ((x | 0) == -1) { + y = B + break a + } else B = x + } + f[e >> 2] = -1 + y = B + break + } + f[e >> 2] = -1 + y = h + } + while (0) + f[((f[m >> 2] | 0) + (y << 2)) >> 2] = f[b >> 2] + h = f[o >> 2] | 0 + if ((h | 0) == (f[p >> 2] | 0)) Ri(n, d) + else { + f[h >> 2] = f[d >> 2] + f[o >> 2] = h + 4 + } + h = f[g >> 2] | 0 + x = f[d >> 2] | 0 + b: do + if ( + ( + (x | 0) != -1 + ? ((z = ((((x >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + x) | 0), + (z | 0) != -1) + : 0 + ) + ? ((A = f[((f[(h + 12) >> 2] | 0) + (z << 2)) >> 2] | 0), + (A | 0) != -1) + : 0 + ) { + z = (A + (((A >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + f[e >> 2] = z + if (((z | 0) != -1) & ((z | 0) != (x | 0))) { + A = w + C = z + while (1) { + z = (C + 1) | 0 + D = ((z >>> 0) % 3 | 0 | 0) == 0 ? (C + -2) | 0 : z + do + if ( + f[((f[a >> 2] | 0) + ((D >>> 5) << 2)) >> 2] & + (1 << (D & 31)) + ) { + z = (A + 1) | 0 + f[b >> 2] = A + E = f[j >> 2] | 0 + if ((E | 0) == (f[k >> 2] | 0)) Ri(i, b) + else { + f[E >> 2] = A + f[j >> 2] = E + 4 + } + E = f[o >> 2] | 0 + if ((E | 0) == (f[p >> 2] | 0)) { + Ri(n, e) + F = z + break + } else { + f[E >> 2] = f[e >> 2] + f[o >> 2] = E + 4 + F = z + break + } + } else F = A + while (0) + f[((f[m >> 2] | 0) + (f[e >> 2] << 2)) >> 2] = f[b >> 2] + G = f[g >> 2] | 0 + D = f[e >> 2] | 0 + if ((D | 0) == -1) break + z = ((((D >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + D) | 0 + if ((z | 0) == -1) break + D = f[((f[(G + 12) >> 2] | 0) + (z << 2)) >> 2] | 0 + if ((D | 0) == -1) break + C = (D + (((D >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + f[e >> 2] = C + if (!((C | 0) != -1 ? (C | 0) != (f[d >> 2] | 0) : 0)) { + H = F + I = G + break b + } else A = F + } + f[e >> 2] = -1 + H = F + I = G + } else { + H = w + I = h + } + } else J = 26 + while (0) + if ((J | 0) == 26) { + J = 0 + f[e >> 2] = -1 + H = w + I = h + } + t = H + v = I + } + r = (r + 1) | 0 + if ( + r >>> 0 >= + (((f[(v + 28) >> 2] | 0) - (f[(v + 24) >> 2] | 0)) >> 2) >>> 0 + ) + break + else { + q = t + s = v + } + } + u = c + return + } + function nd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + h = (a + 124) | 0 + f[h >> 2] = (f[h >> 2] | 0) + 1 + h = (a + 88) | 0 + i = (a + 120) | 0 + j = f[i >> 2] | 0 + k = (j + 1) | 0 + do + if ((j | 0) != -1) { + l = ((k >>> 0) % 3 | 0 | 0) == 0 ? (j + -2) | 0 : k + if (!((j >>> 0) % 3 | 0)) { + m = (j + 2) | 0 + n = l + break + } else { + m = (j + -1) | 0 + n = l + break + } + } else { + m = -1 + n = -1 + } + while (0) + k = (a + 104) | 0 + l = (a + 92) | 0 + o = f[l >> 2] | 0 + p = (o + (n << 2)) | 0 + q = f[k >> 2] | 0 + r = (q + (f[p >> 2] << 2)) | 0 + s = f[r >> 2] | 0 + switch (b | 0) { + case 1: + case 0: { + f[r >> 2] = s + -1 + r = (q + (f[(o + (m << 2)) >> 2] << 2)) | 0 + f[r >> 2] = (f[r >> 2] | 0) + -1 + if ((b | 0) == 1) { + if ( + (m | 0) != -1 + ? ((r = + f[((f[((f[h >> 2] | 0) + 12) >> 2] | 0) + (m << 2)) >> 2] | + 0), + (r | 0) != -1) + : 0 + ) { + t = (a + 64) | 0 + v = 1 + w = r + while (1) { + r = f[t >> 2] | 0 + x = f[((f[r >> 2] | 0) + 36) >> 2] | 0 + f[e >> 2] = ((w >>> 0) / 3) | 0 + f[d >> 2] = f[e >> 2] + if (Ra[x & 127](r, d) | 0) { + y = v + break + } + r = (w + 1) | 0 + x = ((r >>> 0) % 3 | 0 | 0) == 0 ? (w + -2) | 0 : r + if ((x | 0) == -1) { + z = 12 + break + } + w = + f[((f[((f[h >> 2] | 0) + 12) >> 2] | 0) + (x << 2)) >> 2] | 0 + x = (v + 1) | 0 + if ((w | 0) == -1) { + y = x + break + } else v = x + } + if ((z | 0) == 12) y = (v + 1) | 0 + A = y + B = f[k >> 2] | 0 + C = f[l >> 2] | 0 + } else { + A = 1 + B = q + C = o + } + f[(B + (f[(C + (f[i >> 2] << 2)) >> 2] << 2)) >> 2] = A + A = (a + 108) | 0 + i = f[A >> 2] | 0 + C = (i - B) >> 2 + B = i + if ( + (n | 0) != -1 + ? ((i = + f[((f[((f[h >> 2] | 0) + 12) >> 2] | 0) + (n << 2)) >> 2] | + 0), + (i | 0) != -1) + : 0 + ) { + n = (a + 64) | 0 + y = 1 + v = i + while (1) { + i = f[n >> 2] | 0 + w = f[((f[i >> 2] | 0) + 36) >> 2] | 0 + f[g >> 2] = ((v >>> 0) / 3) | 0 + f[d >> 2] = f[g >> 2] + if (Ra[w & 127](i, d) | 0) { + D = y + break + } + i = (v + 1) | 0 + f[ + ((f[l >> 2] | 0) + + ((((i >>> 0) % 3 | 0 | 0) == 0 ? (v + -2) | 0 : i) << 2)) >> + 2 + ] = C + i = ((((v >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + v) | 0 + if ((i | 0) == -1) { + z = 20 + break + } + v = + f[((f[((f[h >> 2] | 0) + 12) >> 2] | 0) + (i << 2)) >> 2] | 0 + i = (y + 1) | 0 + if ((v | 0) == -1) { + D = i + break + } else y = i + } + if ((z | 0) == 20) D = (y + 1) | 0 + E = D + F = f[A >> 2] | 0 + } else { + E = 1 + F = B + } + f[d >> 2] = E + if (F >>> 0 < (f[(a + 112) >> 2] | 0) >>> 0) { + f[F >> 2] = E + f[A >> 2] = F + 4 + } else Ri(k, d) + } + break + } + case 5: { + k = (q + (f[(o + (j << 2)) >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -1 + k = (q + (f[p >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -1 + k = (q + (f[(o + (m << 2)) >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -2 + break + } + case 3: { + k = (q + (f[(o + (j << 2)) >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -1 + k = (q + (f[p >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -2 + k = (q + (f[(o + (m << 2)) >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -1 + break + } + case 7: { + k = (q + (f[(o + (j << 2)) >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -2 + k = (q + (f[p >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -2 + k = (q + (f[(o + (m << 2)) >> 2] << 2)) | 0 + f[k >> 2] = (f[k >> 2] | 0) + -2 + break + } + default: { + } + } + k = (a + 116) | 0 + m = f[k >> 2] | 0 + if ((m | 0) == -1) { + f[k >> 2] = b + u = c + return + } + o = f[(a + 128) >> 2] | 0 + if ((s | 0) < (o | 0)) G = o + else { + q = f[(a + 132) >> 2] | 0 + G = (s | 0) > (q | 0) ? q : s + } + s = (G - o) | 0 + o = f[(a + 136) >> 2] | 0 + a = f[(3724 + (m << 2)) >> 2] | 0 + f[d >> 2] = a + m = (o + ((s * 12) | 0) + 4) | 0 + G = f[m >> 2] | 0 + if (G >>> 0 < (f[(o + ((s * 12) | 0) + 8) >> 2] | 0) >>> 0) { + f[G >> 2] = a + f[m >> 2] = G + 4 + } else Ri((o + ((s * 12) | 0)) | 0, d) + f[k >> 2] = b + u = c + return + } + function od(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + g = u + u = (u + 32) | 0 + d = (g + 16) | 0 + h = (g + 8) | 0 + i = g + j = e >>> 0 > 1073741823 ? -1 : e << 2 + k = Lq(j) | 0 + sj(k | 0, 0, j | 0) | 0 + j = f[(a + 28) >> 2] | 0 + l = (a + 36) | 0 + m = f[l >> 2] | 0 + n = f[(m + 4) >> 2] | 0 + o = f[m >> 2] | 0 + p = (n - o) | 0 + a: do + if ((p | 0) > 4) { + q = p >> 2 + r = f[(a + 32) >> 2] | 0 + s = (a + 8) | 0 + t = (h + 4) | 0 + v = (i + 4) | 0 + w = (d + 4) | 0 + x = (j + 64) | 0 + y = (j + 28) | 0 + z = (e | 0) > 0 + A = (k + 4) | 0 + B = (h + 4) | 0 + C = (i + 4) | 0 + D = (d + 4) | 0 + E = (q + -1) | 0 + if (((n - o) >> 2) >>> 0 > E >>> 0) { + F = q + G = E + H = o + } else { + I = m + aq(I) + } + while (1) { + E = f[(H + (G << 2)) >> 2] | 0 + q = X(G, e) | 0 + if ( + ( + ( + (E | 0) != -1 + ? ((f[((f[j >> 2] | 0) + ((E >>> 5) << 2)) >> 2] & + (1 << (E & 31))) | + 0) == + 0 + : 0 + ) + ? ((J = + f[ + ((f[((f[x >> 2] | 0) + 12) >> 2] | 0) + (E << 2)) >> 2 + ] | 0), + (J | 0) != -1) + : 0 + ) + ? ((E = f[y >> 2] | 0), + (K = f[r >> 2] | 0), + (L = f[(K + (f[(E + (J << 2)) >> 2] << 2)) >> 2] | 0), + (M = (J + 1) | 0), + (N = + f[ + (K + + (f[ + (E + + ((((M >>> 0) % 3 | 0 | 0) == 0 + ? (J + -2) | 0 + : M) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + (M = + f[ + (K + + (f[ + (E + + (((((J >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + J) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + ((L | 0) < (G | 0)) & + ((N | 0) < (G | 0)) & + ((M | 0) < (G | 0))) + : 0 + ) { + J = X(L, e) | 0 + L = X(N, e) | 0 + N = X(M, e) | 0 + if (z) { + M = 0 + do { + f[(k + (M << 2)) >> 2] = + (f[(b + ((M + N) << 2)) >> 2] | 0) + + (f[(b + ((M + L) << 2)) >> 2] | 0) - + (f[(b + ((M + J) << 2)) >> 2] | 0) + M = (M + 1) | 0 + } while ((M | 0) != (e | 0)) + } + M = (b + (q << 2)) | 0 + J = (c + (q << 2)) | 0 + L = f[(M + 4) >> 2] | 0 + N = f[k >> 2] | 0 + E = f[A >> 2] | 0 + f[h >> 2] = f[M >> 2] + f[B >> 2] = L + f[i >> 2] = N + f[C >> 2] = E + Od(d, s, h, i) + f[J >> 2] = f[d >> 2] + f[(J + 4) >> 2] = f[D >> 2] + } else { + J = (b + (q << 2)) | 0 + E = (b + ((X((F + -2) | 0, e) | 0) << 2)) | 0 + N = (c + (q << 2)) | 0 + L = f[(J + 4) >> 2] | 0 + M = f[E >> 2] | 0 + K = f[(E + 4) >> 2] | 0 + f[h >> 2] = f[J >> 2] + f[t >> 2] = L + f[i >> 2] = M + f[v >> 2] = K + Od(d, s, h, i) + f[N >> 2] = f[d >> 2] + f[(N + 4) >> 2] = f[w >> 2] + } + if ((F | 0) <= 2) break a + N = f[l >> 2] | 0 + H = f[N >> 2] | 0 + K = (G + -1) | 0 + if ((((f[(N + 4) >> 2] | 0) - H) >> 2) >>> 0 <= K >>> 0) { + I = N + break + } else { + N = G + G = K + F = N + } + } + aq(I) + } + while (0) + if ((e | 0) <= 0) { + O = (a + 8) | 0 + P = (b + 4) | 0 + Q = f[b >> 2] | 0 + R = f[P >> 2] | 0 + S = (k + 4) | 0 + T = f[k >> 2] | 0 + U = f[S >> 2] | 0 + f[h >> 2] = Q + V = (h + 4) | 0 + f[V >> 2] = R + f[i >> 2] = T + W = (i + 4) | 0 + f[W >> 2] = U + Od(d, O, h, i) + Y = f[d >> 2] | 0 + f[c >> 2] = Y + Z = (d + 4) | 0 + _ = f[Z >> 2] | 0 + $ = (c + 4) | 0 + f[$ >> 2] = _ + Mq(k) + u = g + return 1 + } + sj(k | 0, 0, (e << 2) | 0) | 0 + O = (a + 8) | 0 + P = (b + 4) | 0 + Q = f[b >> 2] | 0 + R = f[P >> 2] | 0 + S = (k + 4) | 0 + T = f[k >> 2] | 0 + U = f[S >> 2] | 0 + f[h >> 2] = Q + V = (h + 4) | 0 + f[V >> 2] = R + f[i >> 2] = T + W = (i + 4) | 0 + f[W >> 2] = U + Od(d, O, h, i) + Y = f[d >> 2] | 0 + f[c >> 2] = Y + Z = (d + 4) | 0 + _ = f[Z >> 2] | 0 + $ = (c + 4) | 0 + f[$ >> 2] = _ + Mq(k) + u = g + return 1 + } + function pd(a, b, c, d, e, g, h) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + var i = 0 + switch (c | 0) { + case 1: { + c = ln(60) | 0 + f[c >> 2] = 1544 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[(h + 16) >> 2] = f[(e + 16) >> 2] + f[(h + 20) >> 2] = f[(e + 20) >> 2] + fk((c + 32) | 0, (e + 24) | 0) + h = (c + 44) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2076 + i = c + f[a >> 2] = i + return + } + case 2: { + c = ln(60) | 0 + f[c >> 2] = 1544 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[(h + 16) >> 2] = f[(e + 16) >> 2] + f[(h + 20) >> 2] = f[(e + 20) >> 2] + fk((c + 32) | 0, (e + 24) | 0) + h = (c + 44) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2132 + i = c + f[a >> 2] = i + return + } + case 4: { + c = ln(168) | 0 + Ti(c, d, e, g) + i = c + f[a >> 2] = i + return + } + case 3: { + c = ln(88) | 0 + f[c >> 2] = 1544 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[(h + 16) >> 2] = f[(e + 16) >> 2] + f[(h + 20) >> 2] = f[(e + 20) >> 2] + fk((c + 32) | 0, (e + 24) | 0) + h = (c + 44) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2188 + h = (c + 60) | 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + f[(h + 12) >> 2] = 0 + f[(h + 16) >> 2] = 0 + f[(h + 20) >> 2] = 0 + f[(h + 24) >> 2] = 0 + i = c + f[a >> 2] = i + return + } + case 5: { + c = ln(104) | 0 + f[c >> 2] = 1544 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[(h + 16) >> 2] = f[(e + 16) >> 2] + f[(h + 20) >> 2] = f[(e + 20) >> 2] + fk((c + 32) | 0, (e + 24) | 0) + h = (c + 44) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2244 + f[(c + 60) >> 2] = 0 + f[(c + 64) >> 2] = 0 + f[(c + 76) >> 2] = 0 + f[(c + 80) >> 2] = 0 + f[(c + 84) >> 2] = 0 + h = (c + 88) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + i = c + f[a >> 2] = i + return + } + case 6: { + c = ln(140) | 0 + f[c >> 2] = 1544 + f[(c + 4) >> 2] = d + d = (c + 8) | 0 + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + f[(d + 8) >> 2] = f[(e + 8) >> 2] + f[(d + 12) >> 2] = f[(e + 12) >> 2] + f[(d + 16) >> 2] = f[(e + 16) >> 2] + f[(d + 20) >> 2] = f[(e + 20) >> 2] + fk((c + 32) | 0, (e + 24) | 0) + e = (c + 44) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2300 + f[(c + 64) >> 2] = 0 + f[(c + 68) >> 2] = 0 + e = (c + 72) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[(c + 60) >> 2] = 2356 + f[(c + 88) >> 2] = 1 + g = (c + 92) | 0 + f[g >> 2] = -1 + f[(g + 4) >> 2] = -1 + f[(g + 8) >> 2] = -1 + f[(g + 12) >> 2] = -1 + wn((c + 108) | 0) + i = c + f[a >> 2] = i + return + } + default: { + i = 0 + f[a >> 2] = i + return + } + } + } + function qd(a, b, c, d, e, g, h) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + var i = 0 + switch (c | 0) { + case 1: { + c = ln(60) | 0 + f[c >> 2] = 1544 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[(h + 16) >> 2] = f[(e + 16) >> 2] + f[(h + 20) >> 2] = f[(e + 20) >> 2] + fk((c + 32) | 0, (e + 24) | 0) + h = (c + 44) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 1656 + i = c + f[a >> 2] = i + return + } + case 2: { + c = ln(60) | 0 + f[c >> 2] = 1544 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[(h + 16) >> 2] = f[(e + 16) >> 2] + f[(h + 20) >> 2] = f[(e + 20) >> 2] + fk((c + 32) | 0, (e + 24) | 0) + h = (c + 44) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 1712 + i = c + f[a >> 2] = i + return + } + case 4: { + c = ln(168) | 0 + Ui(c, d, e, g) + i = c + f[a >> 2] = i + return + } + case 3: { + c = ln(88) | 0 + f[c >> 2] = 1544 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[(h + 16) >> 2] = f[(e + 16) >> 2] + f[(h + 20) >> 2] = f[(e + 20) >> 2] + fk((c + 32) | 0, (e + 24) | 0) + h = (c + 44) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 1768 + h = (c + 60) | 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + f[(h + 12) >> 2] = 0 + f[(h + 16) >> 2] = 0 + f[(h + 20) >> 2] = 0 + f[(h + 24) >> 2] = 0 + i = c + f[a >> 2] = i + return + } + case 5: { + c = ln(104) | 0 + f[c >> 2] = 1544 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[(h + 16) >> 2] = f[(e + 16) >> 2] + f[(h + 20) >> 2] = f[(e + 20) >> 2] + fk((c + 32) | 0, (e + 24) | 0) + h = (c + 44) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 1824 + f[(c + 60) >> 2] = 0 + f[(c + 64) >> 2] = 0 + f[(c + 76) >> 2] = 0 + f[(c + 80) >> 2] = 0 + f[(c + 84) >> 2] = 0 + h = (c + 88) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + i = c + f[a >> 2] = i + return + } + case 6: { + c = ln(140) | 0 + f[c >> 2] = 1544 + f[(c + 4) >> 2] = d + d = (c + 8) | 0 + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + f[(d + 8) >> 2] = f[(e + 8) >> 2] + f[(d + 12) >> 2] = f[(e + 12) >> 2] + f[(d + 16) >> 2] = f[(e + 16) >> 2] + f[(d + 20) >> 2] = f[(e + 20) >> 2] + fk((c + 32) | 0, (e + 24) | 0) + e = (c + 44) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 1880 + f[(c + 64) >> 2] = 0 + f[(c + 68) >> 2] = 0 + e = (c + 72) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[(c + 60) >> 2] = 1936 + f[(c + 88) >> 2] = 1 + g = (c + 92) | 0 + f[g >> 2] = -1 + f[(g + 4) >> 2] = -1 + f[(g + 8) >> 2] = -1 + f[(g + 12) >> 2] = -1 + wn((c + 108) | 0) + i = c + f[a >> 2] = i + return + } + default: { + i = 0 + f[a >> 2] = i + return + } + } + } + function rd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0 + c = (a + 4) | 0 + if (!b) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) Oq(e) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + e = ra(8) | 0 + Oo(e, 16035) + f[e >> 2] = 7256 + va(e | 0, 1112, 110) + } + e = ln(b << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) Oq(g) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + g = f[c >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (b + -1) | 0 + i = ((h & b) | 0) == 0 + if (!i) + if (e >>> 0 < b >>> 0) j = e + else j = (e >>> 0) % (b >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = c + c = f[g >> 2] | 0 + if (!c) return + else { + k = j + l = g + m = c + n = g + } + a: while (1) { + g = l + c = m + j = n + b: while (1) { + c: do + if (i) { + e = c + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) { + p = e + break c + } + q = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[q >> 2] | 0)) { + r = e + s = o + t = q + break b + } + q = (e + 8) | 0 + u = (q + 2) | 0 + v = (e + 12) | 0 + w = (q + 6) | 0 + x = f[e >> 2] | 0 + d: do + if (!x) y = e + else { + z = d[q >> 1] | 0 + A = e + B = x + while (1) { + C = (B + 8) | 0 + if ((z << 16) >> 16 != (d[C >> 1] | 0)) { + y = A + break d + } + if ((d[u >> 1] | 0) != (d[(C + 2) >> 1] | 0)) { + y = A + break d + } + if ((d[v >> 1] | 0) != (d[(B + 12) >> 1] | 0)) { + y = A + break d + } + if ((d[w >> 1] | 0) != (d[(C + 6) >> 1] | 0)) { + y = A + break d + } + C = f[B >> 2] | 0 + if (!C) { + y = B + break + } else { + D = B + B = C + A = D + } + } + } + while (0) + f[j >> 2] = f[y >> 2] + f[y >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + E = 43 + break a + } + } + } else { + e = c + while (1) { + w = f[(e + 4) >> 2] | 0 + if (w >>> 0 < b >>> 0) F = w + else F = (w >>> 0) % (b >>> 0) | 0 + if ((F | 0) == (k | 0)) { + p = e + break c + } + w = ((f[a >> 2] | 0) + (F << 2)) | 0 + if (!(f[w >> 2] | 0)) { + r = e + s = F + t = w + break b + } + w = (e + 8) | 0 + v = (w + 2) | 0 + u = (e + 12) | 0 + x = (w + 6) | 0 + q = f[e >> 2] | 0 + e: do + if (!q) G = e + else { + A = d[w >> 1] | 0 + B = e + z = q + while (1) { + D = (z + 8) | 0 + if ((A << 16) >> 16 != (d[D >> 1] | 0)) { + G = B + break e + } + if ((d[v >> 1] | 0) != (d[(D + 2) >> 1] | 0)) { + G = B + break e + } + if ((d[u >> 1] | 0) != (d[(z + 12) >> 1] | 0)) { + G = B + break e + } + if ((d[x >> 1] | 0) != (d[(D + 6) >> 1] | 0)) { + G = B + break e + } + D = f[z >> 2] | 0 + if (!D) { + G = z + break + } else { + C = z + z = D + B = C + } + } + } + while (0) + f[j >> 2] = f[G >> 2] + f[G >> 2] = f[f[((f[a >> 2] | 0) + (F << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (F << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + E = 43 + break a + } + } + } + while (0) + c = f[p >> 2] | 0 + if (!c) { + E = 43 + break a + } else { + g = p + j = p + } + } + f[t >> 2] = j + m = f[r >> 2] | 0 + if (!m) { + E = 43 + break + } else { + k = s + l = r + n = r + } + } + if ((E | 0) == 43) return + } + function sd(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0 + d = (a + 4) | 0 + if (!c) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) Oq(e) + f[d >> 2] = 0 + return + } + if (c >>> 0 > 1073741823) { + e = ra(8) | 0 + Oo(e, 16035) + f[e >> 2] = 7256 + va(e | 0, 1112, 110) + } + e = ln(c << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) Oq(g) + f[d >> 2] = c + d = 0 + do { + f[((f[a >> 2] | 0) + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + } while ((d | 0) != (c | 0)) + d = (a + 8) | 0 + g = f[d >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (c + -1) | 0 + i = ((h & c) | 0) == 0 + if (!i) + if (e >>> 0 < c >>> 0) j = e + else j = (e >>> 0) % (c >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = d + d = f[g >> 2] | 0 + if (!d) return + else { + k = j + l = g + m = d + n = g + } + a: while (1) { + g = l + d = m + j = n + b: while (1) { + c: do + if (i) { + e = d + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) { + p = e + break c + } + q = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[q >> 2] | 0)) { + r = e + s = o + t = q + break b + } + q = (e + 8) | 0 + u = (q + 1) | 0 + v = (q + 2) | 0 + w = (q + 3) | 0 + x = f[e >> 2] | 0 + d: do + if (!x) y = e + else { + z = b[q >> 0] | 0 + A = e + B = x + while (1) { + C = (B + 8) | 0 + if ((z << 24) >> 24 != (b[C >> 0] | 0)) { + y = A + break d + } + if ((b[u >> 0] | 0) != (b[(C + 1) >> 0] | 0)) { + y = A + break d + } + if ((b[v >> 0] | 0) != (b[(C + 2) >> 0] | 0)) { + y = A + break d + } + if ((b[w >> 0] | 0) != (b[(C + 3) >> 0] | 0)) { + y = A + break d + } + C = f[B >> 2] | 0 + if (!C) { + y = B + break + } else { + D = B + B = C + A = D + } + } + } + while (0) + f[j >> 2] = f[y >> 2] + f[y >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + E = 43 + break a + } + } + } else { + e = d + while (1) { + w = f[(e + 4) >> 2] | 0 + if (w >>> 0 < c >>> 0) F = w + else F = (w >>> 0) % (c >>> 0) | 0 + if ((F | 0) == (k | 0)) { + p = e + break c + } + w = ((f[a >> 2] | 0) + (F << 2)) | 0 + if (!(f[w >> 2] | 0)) { + r = e + s = F + t = w + break b + } + w = (e + 8) | 0 + v = (w + 1) | 0 + u = (w + 2) | 0 + x = (w + 3) | 0 + q = f[e >> 2] | 0 + e: do + if (!q) G = e + else { + A = b[w >> 0] | 0 + B = e + z = q + while (1) { + D = (z + 8) | 0 + if ((A << 24) >> 24 != (b[D >> 0] | 0)) { + G = B + break e + } + if ((b[v >> 0] | 0) != (b[(D + 1) >> 0] | 0)) { + G = B + break e + } + if ((b[u >> 0] | 0) != (b[(D + 2) >> 0] | 0)) { + G = B + break e + } + if ((b[x >> 0] | 0) != (b[(D + 3) >> 0] | 0)) { + G = B + break e + } + D = f[z >> 2] | 0 + if (!D) { + G = z + break + } else { + C = z + z = D + B = C + } + } + } + while (0) + f[j >> 2] = f[G >> 2] + f[G >> 2] = f[f[((f[a >> 2] | 0) + (F << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (F << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + E = 43 + break a + } + } + } + while (0) + d = f[p >> 2] | 0 + if (!d) { + E = 43 + break a + } else { + g = p + j = p + } + } + f[t >> 2] = j + m = f[r >> 2] | 0 + if (!m) { + E = 43 + break + } else { + k = s + l = r + n = r + } + } + if ((E | 0) == 43) return + } + function td(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0 + i = u + u = (u + 352) | 0 + j = (i + 340) | 0 + k = (i + 336) | 0 + l = (i + 80) | 0 + m = (i + 48) | 0 + n = i + sj(l | 0, 0, 256) | 0 + o = f[(e + 4) >> 2] | 0 + p = f[e >> 2] | 0 + q = p + if ((o | 0) != (p | 0)) { + r = (o - p) >> 2 + p = 0 + do { + o = (l + (f[(q + (p << 2)) >> 2] << 3)) | 0 + s = o + t = Vn(f[s >> 2] | 0, f[(s + 4) >> 2] | 0, 1, 0) | 0 + s = o + f[s >> 2] = t + f[(s + 4) >> 2] = I + p = (p + 1) | 0 + } while (p >>> 0 < r >>> 0) + } + Gn(m) + r = Tn(c | 0, ((((c | 0) < 0) << 31) >> 31) | 0, 5) | 0 + p = I + q = (n + 40) | 0 + s = q + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + f[n >> 2] = 0 + f[(n + 4) >> 2] = 0 + f[(n + 8) >> 2] = 0 + f[(n + 12) >> 2] = 0 + f[(n + 16) >> 2] = 0 + f[(n + 20) >> 2] = 0 + fd(n, l, 32, g) | 0 + l = (n + 16) | 0 + s = Tn(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, 1) | 0 + l = (g + 4) | 0 + t = ((f[l >> 2] | 0) - (f[g >> 2] | 0)) | 0 + o = q + f[o >> 2] = t + f[(o + 4) >> 2] = 0 + o = Vn(s | 0, I | 0, 39, 0) | 0 + s = Yn(o | 0, I | 0, 3) | 0 + o = Vn(s | 0, I | 0, 8, 0) | 0 + s = Vn(o | 0, I | 0, t | 0, 0) | 0 + Cl(g, s, I) + s = (n + 24) | 0 + f[s >> 2] = (f[g >> 2] | 0) + (f[q >> 2] | 0) + q = (n + 28) | 0 + f[q >> 2] = 0 + t = (n + 32) | 0 + f[t >> 2] = 16384 + zi(m, r, p, 0) | 0 + p = (c - d) | 0 + if ((p | 0) > -1) { + c = (d | 0) > 0 + r = (m + 16) | 0 + o = (m + 12) | 0 + v = p + do { + w = f[e >> 2] | 0 + x = f[(w + ((((v | 0) / (d | 0)) | 0) << 2)) >> 2] | 0 + y = f[n >> 2] | 0 + z = f[(y + (x << 3)) >> 2] | 0 + A = f[t >> 2] | 0 + B = z << 10 + if (A >>> 0 < B >>> 0) { + C = A + D = w + } else { + w = A + do { + A = f[s >> 2] | 0 + E = f[q >> 2] | 0 + f[q >> 2] = E + 1 + b[(A + E) >> 0] = w + w = (f[t >> 2] | 0) >>> 8 + f[t >> 2] = w + } while (w >>> 0 >= B >>> 0) + C = w + D = f[e >> 2] | 0 + } + f[t >> 2] = + ((((C >>> 0) / (z >>> 0)) | 0) << 12) + + ((C >>> 0) % (z >>> 0) | 0) + + (f[(y + (x << 3) + 4) >> 2] | 0) + B = (p - v) | 0 + E = f[(D + ((((B | 0) / (d | 0)) | 0) << 2)) >> 2] | 0 + if (c & ((E | 0) > 0)) { + A = 0 + do { + F = f[(a + ((A + B) << 2)) >> 2] | 0 + G = r + H = f[(G + 4) >> 2] | 0 + if ( + ((H | 0) > 0) | + (((H | 0) == 0) & ((f[G >> 2] | 0) >>> 0 > 0)) + ) { + G = f[o >> 2] | 0 + H = (G + 4) | 0 + J = 0 + K = f[H >> 2] | 0 + do { + L = K >>> 3 + M = K & 7 + N = ((f[G >> 2] | 0) + L) | 0 + b[N >> 0] = ((1 << M) ^ 255) & (h[N >> 0] | 0) + N = ((f[G >> 2] | 0) + L) | 0 + b[N >> 0] = (((F >>> J) & 1) << M) | (h[N >> 0] | 0) + K = ((f[H >> 2] | 0) + 1) | 0 + f[H >> 2] = K + J = (J + 1) | 0 + } while ((J | 0) != (E | 0)) + } + A = (A + 1) | 0 + } while ((A | 0) != (d | 0)) + } + v = (v - d) | 0 + } while ((v | 0) > -1) + } + _f(n, g) + eg(m) + v = f[m >> 2] | 0 + d = (m + 4) | 0 + o = (g + 16) | 0 + r = f[(o + 4) >> 2] | 0 + if (!(((r | 0) > 0) | (((r | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0)))) { + o = ((f[d >> 2] | 0) - v) | 0 + f[k >> 2] = f[l >> 2] + f[j >> 2] = f[k >> 2] + Me(g, j, v, (v + o) | 0) | 0 + } + o = f[n >> 2] | 0 + if (o | 0) { + v = (n + 4) | 0 + n = f[v >> 2] | 0 + if ((n | 0) != (o | 0)) + f[v >> 2] = n + (~(((n + -8 - o) | 0) >>> 3) << 3) + Oq(o) + } + o = (m + 12) | 0 + n = f[o >> 2] | 0 + f[o >> 2] = 0 + if (n | 0) Oq(n) + n = f[m >> 2] | 0 + if (!n) { + u = i + return 1 + } + if ((f[d >> 2] | 0) != (n | 0)) f[d >> 2] = n + Oq(n) + u = i + return 1 + } + function ud(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + c = (a + 4) | 0 + if (!b) { + d = f[a >> 2] | 0 + f[a >> 2] = 0 + if (d | 0) Oq(d) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + d = ra(8) | 0 + Oo(d, 16035) + f[d >> 2] = 7256 + va(d | 0, 1112, 110) + } + d = ln(b << 2) | 0 + e = f[a >> 2] | 0 + f[a >> 2] = d + if (e | 0) Oq(e) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + e = f[c >> 2] | 0 + if (!e) return + d = f[(e + 4) >> 2] | 0 + g = (b + -1) | 0 + h = ((g & b) | 0) == 0 + if (!h) + if (d >>> 0 < b >>> 0) i = d + else i = (d >>> 0) % (b >>> 0) | 0 + else i = d & g + f[((f[a >> 2] | 0) + (i << 2)) >> 2] = c + c = f[e >> 2] | 0 + if (!c) return + else { + j = i + k = e + l = c + m = e + } + a: while (1) { + e = k + c = l + i = m + b: while (1) { + c: do + if (h) { + d = c + while (1) { + n = f[(d + 4) >> 2] & g + if ((n | 0) == (j | 0)) { + o = d + break c + } + p = ((f[a >> 2] | 0) + (n << 2)) | 0 + if (!(f[p >> 2] | 0)) { + q = d + r = n + s = p + break b + } + p = (d + 12) | 0 + t = (d + 16) | 0 + u = (d + 20) | 0 + v = f[d >> 2] | 0 + d: do + if (!v) w = d + else { + x = f[(d + 8) >> 2] | 0 + y = d + z = v + while (1) { + if ((x | 0) != (f[(z + 8) >> 2] | 0)) { + w = y + break d + } + if ((f[p >> 2] | 0) != (f[(z + 12) >> 2] | 0)) { + w = y + break d + } + if ((f[t >> 2] | 0) != (f[(z + 16) >> 2] | 0)) { + w = y + break d + } + if ((f[u >> 2] | 0) != (f[(z + 20) >> 2] | 0)) { + w = y + break d + } + A = f[z >> 2] | 0 + if (!A) { + w = z + break + } else { + B = z + z = A + y = B + } + } + } + while (0) + f[i >> 2] = f[w >> 2] + f[w >> 2] = f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] = d + d = f[e >> 2] | 0 + if (!d) { + C = 43 + break a + } + } + } else { + d = c + while (1) { + u = f[(d + 4) >> 2] | 0 + if (u >>> 0 < b >>> 0) D = u + else D = (u >>> 0) % (b >>> 0) | 0 + if ((D | 0) == (j | 0)) { + o = d + break c + } + u = ((f[a >> 2] | 0) + (D << 2)) | 0 + if (!(f[u >> 2] | 0)) { + q = d + r = D + s = u + break b + } + u = (d + 12) | 0 + t = (d + 16) | 0 + p = (d + 20) | 0 + v = f[d >> 2] | 0 + e: do + if (!v) E = d + else { + y = f[(d + 8) >> 2] | 0 + z = d + x = v + while (1) { + if ((y | 0) != (f[(x + 8) >> 2] | 0)) { + E = z + break e + } + if ((f[u >> 2] | 0) != (f[(x + 12) >> 2] | 0)) { + E = z + break e + } + if ((f[t >> 2] | 0) != (f[(x + 16) >> 2] | 0)) { + E = z + break e + } + if ((f[p >> 2] | 0) != (f[(x + 20) >> 2] | 0)) { + E = z + break e + } + B = f[x >> 2] | 0 + if (!B) { + E = x + break + } else { + A = x + x = B + z = A + } + } + } + while (0) + f[i >> 2] = f[E >> 2] + f[E >> 2] = f[f[((f[a >> 2] | 0) + (D << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (D << 2)) >> 2] >> 2] = d + d = f[e >> 2] | 0 + if (!d) { + C = 43 + break a + } + } + } + while (0) + c = f[o >> 2] | 0 + if (!c) { + C = 43 + break a + } else { + e = o + i = o + } + } + f[s >> 2] = i + l = f[q >> 2] | 0 + if (!l) { + C = 43 + break + } else { + j = r + k = q + m = q + } + } + if ((C | 0) == 43) return + } + function vd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0 + c = (a + 4) | 0 + if (!b) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) Oq(e) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + e = ra(8) | 0 + Oo(e, 16035) + f[e >> 2] = 7256 + va(e | 0, 1112, 110) + } + e = ln(b << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) Oq(g) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + g = f[c >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (b + -1) | 0 + i = ((h & b) | 0) == 0 + if (!i) + if (e >>> 0 < b >>> 0) j = e + else j = (e >>> 0) % (b >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = c + c = f[g >> 2] | 0 + if (!c) return + else { + k = j + l = g + m = c + n = g + } + a: while (1) { + g = l + c = m + j = n + b: while (1) { + c: do + if (i) { + e = c + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) { + p = e + break c + } + q = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[q >> 2] | 0)) { + r = e + s = o + t = q + break b + } + q = (e + 8) | 0 + u = (e + 12) | 0 + v = f[e >> 2] | 0 + d: do + if (!v) w = e + else { + x = d[q >> 1] | 0 + y = (q + 2) | 0 + z = e + A = v + while (1) { + B = (A + 8) | 0 + if ((x << 16) >> 16 != (d[B >> 1] | 0)) { + w = z + break d + } + if ((d[y >> 1] | 0) != (d[(B + 2) >> 1] | 0)) { + w = z + break d + } + if ((d[u >> 1] | 0) != (d[(A + 12) >> 1] | 0)) { + w = z + break d + } + B = f[A >> 2] | 0 + if (!B) { + w = A + break + } else { + C = A + A = B + z = C + } + } + } + while (0) + f[j >> 2] = f[w >> 2] + f[w >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + D = 41 + break a + } + } + } else { + e = c + while (1) { + u = f[(e + 4) >> 2] | 0 + if (u >>> 0 < b >>> 0) E = u + else E = (u >>> 0) % (b >>> 0) | 0 + if ((E | 0) == (k | 0)) { + p = e + break c + } + u = ((f[a >> 2] | 0) + (E << 2)) | 0 + if (!(f[u >> 2] | 0)) { + r = e + s = E + t = u + break b + } + u = (e + 8) | 0 + v = (e + 12) | 0 + q = f[e >> 2] | 0 + e: do + if (!q) F = e + else { + z = d[u >> 1] | 0 + A = (u + 2) | 0 + y = e + x = q + while (1) { + C = (x + 8) | 0 + if ((z << 16) >> 16 != (d[C >> 1] | 0)) { + F = y + break e + } + if ((d[A >> 1] | 0) != (d[(C + 2) >> 1] | 0)) { + F = y + break e + } + if ((d[v >> 1] | 0) != (d[(x + 12) >> 1] | 0)) { + F = y + break e + } + C = f[x >> 2] | 0 + if (!C) { + F = x + break + } else { + B = x + x = C + y = B + } + } + } + while (0) + f[j >> 2] = f[F >> 2] + f[F >> 2] = f[f[((f[a >> 2] | 0) + (E << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (E << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + D = 41 + break a + } + } + } + while (0) + c = f[p >> 2] | 0 + if (!c) { + D = 41 + break a + } else { + g = p + j = p + } + } + f[t >> 2] = j + m = f[r >> 2] | 0 + if (!m) { + D = 41 + break + } else { + k = s + l = r + n = r + } + } + if ((D | 0) == 41) return + } + function wd(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0 + d = (a + 4) | 0 + if (!c) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) Oq(e) + f[d >> 2] = 0 + return + } + if (c >>> 0 > 1073741823) { + e = ra(8) | 0 + Oo(e, 16035) + f[e >> 2] = 7256 + va(e | 0, 1112, 110) + } + e = ln(c << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) Oq(g) + f[d >> 2] = c + d = 0 + do { + f[((f[a >> 2] | 0) + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + } while ((d | 0) != (c | 0)) + d = (a + 8) | 0 + g = f[d >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (c + -1) | 0 + i = ((h & c) | 0) == 0 + if (!i) + if (e >>> 0 < c >>> 0) j = e + else j = (e >>> 0) % (c >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = d + d = f[g >> 2] | 0 + if (!d) return + else { + k = j + l = g + m = d + n = g + } + a: while (1) { + g = l + d = m + j = n + b: while (1) { + c: do + if (i) { + e = d + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) { + p = e + break c + } + q = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[q >> 2] | 0)) { + r = e + s = o + t = q + break b + } + q = (e + 8) | 0 + u = (q + 1) | 0 + v = (q + 2) | 0 + w = f[e >> 2] | 0 + d: do + if (!w) x = e + else { + y = b[q >> 0] | 0 + z = e + A = w + while (1) { + B = (A + 8) | 0 + if ((y << 24) >> 24 != (b[B >> 0] | 0)) { + x = z + break d + } + if ((b[u >> 0] | 0) != (b[(B + 1) >> 0] | 0)) { + x = z + break d + } + if ((b[v >> 0] | 0) != (b[(B + 2) >> 0] | 0)) { + x = z + break d + } + B = f[A >> 2] | 0 + if (!B) { + x = A + break + } else { + C = A + A = B + z = C + } + } + } + while (0) + f[j >> 2] = f[x >> 2] + f[x >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + D = 41 + break a + } + } + } else { + e = d + while (1) { + v = f[(e + 4) >> 2] | 0 + if (v >>> 0 < c >>> 0) E = v + else E = (v >>> 0) % (c >>> 0) | 0 + if ((E | 0) == (k | 0)) { + p = e + break c + } + v = ((f[a >> 2] | 0) + (E << 2)) | 0 + if (!(f[v >> 2] | 0)) { + r = e + s = E + t = v + break b + } + v = (e + 8) | 0 + u = (v + 1) | 0 + w = (v + 2) | 0 + q = f[e >> 2] | 0 + e: do + if (!q) F = e + else { + z = b[v >> 0] | 0 + A = e + y = q + while (1) { + C = (y + 8) | 0 + if ((z << 24) >> 24 != (b[C >> 0] | 0)) { + F = A + break e + } + if ((b[u >> 0] | 0) != (b[(C + 1) >> 0] | 0)) { + F = A + break e + } + if ((b[w >> 0] | 0) != (b[(C + 2) >> 0] | 0)) { + F = A + break e + } + C = f[y >> 2] | 0 + if (!C) { + F = y + break + } else { + B = y + y = C + A = B + } + } + } + while (0) + f[j >> 2] = f[F >> 2] + f[F >> 2] = f[f[((f[a >> 2] | 0) + (E << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (E << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + D = 41 + break a + } + } + } + while (0) + d = f[p >> 2] | 0 + if (!d) { + D = 41 + break a + } else { + g = p + j = p + } + } + f[t >> 2] = j + m = f[r >> 2] | 0 + if (!m) { + D = 41 + break + } else { + k = s + l = r + n = r + } + } + if ((D | 0) == 41) return + } + function xd(a, b) { + a = +a + b = +b + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + q = 0, + r = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0.0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0.0 + p[s >> 3] = a + c = f[s >> 2] | 0 + d = f[(s + 4) >> 2] | 0 + p[s >> 3] = b + e = f[s >> 2] | 0 + g = f[(s + 4) >> 2] | 0 + h = Yn(c | 0, d | 0, 52) | 0 + i = h & 2047 + h = Yn(e | 0, g | 0, 52) | 0 + j = h & 2047 + h = d & -2147483648 + k = Tn(e | 0, g | 0, 1) | 0 + l = I + a: do + if ( + !(((k | 0) == 0) & ((l | 0) == 0)) + ? ((m = yo(b) | 0), + (n = I & 2147483647), + !( + ((i | 0) == 2047) | + ((n >>> 0 > 2146435072) | + (((n | 0) == 2146435072) & (m >>> 0 > 0))) + )) + : 0 + ) { + m = Tn(c | 0, d | 0, 1) | 0 + n = I + if ( + !( + (n >>> 0 > l >>> 0) | + (((n | 0) == (l | 0)) & (m >>> 0 > k >>> 0)) + ) + ) + return +(((m | 0) == (k | 0)) & ((n | 0) == (l | 0)) ? a * 0.0 : a) + if (!i) { + n = Tn(c | 0, d | 0, 12) | 0 + m = I + if (((m | 0) > -1) | (((m | 0) == -1) & (n >>> 0 > 4294967295))) { + o = 0 + q = n + n = m + while (1) { + m = (o + -1) | 0 + q = Tn(q | 0, n | 0, 1) | 0 + n = I + if ( + !(((n | 0) > -1) | (((n | 0) == -1) & (q >>> 0 > 4294967295))) + ) { + r = m + break + } else o = m + } + } else r = 0 + o = Tn(c | 0, d | 0, (1 - r) | 0) | 0 + t = r + u = o + v = I + } else { + t = i + u = c + v = (d & 1048575) | 1048576 + } + if (!j) { + o = Tn(e | 0, g | 0, 12) | 0 + q = I + if (((q | 0) > -1) | (((q | 0) == -1) & (o >>> 0 > 4294967295))) { + n = 0 + m = o + o = q + while (1) { + q = (n + -1) | 0 + m = Tn(m | 0, o | 0, 1) | 0 + o = I + if ( + !(((o | 0) > -1) | (((o | 0) == -1) & (m >>> 0 > 4294967295))) + ) { + w = q + break + } else n = q + } + } else w = 0 + n = Tn(e | 0, g | 0, (1 - w) | 0) | 0 + x = w + y = n + z = I + } else { + x = j + y = e + z = (g & 1048575) | 1048576 + } + n = Xn(u | 0, v | 0, y | 0, z | 0) | 0 + m = I + o = ((m | 0) > -1) | (((m | 0) == -1) & (n >>> 0 > 4294967295)) + b: do + if ((t | 0) > (x | 0)) { + q = t + A = m + B = o + C = u + D = v + E = n + while (1) { + if (B) + if (((E | 0) == 0) & ((A | 0) == 0)) break + else { + F = E + G = A + } + else { + F = C + G = D + } + H = Tn(F | 0, G | 0, 1) | 0 + J = I + K = (q + -1) | 0 + L = Xn(H | 0, J | 0, y | 0, z | 0) | 0 + M = I + N = ((M | 0) > -1) | (((M | 0) == -1) & (L >>> 0 > 4294967295)) + if ((K | 0) > (x | 0)) { + q = K + A = M + B = N + C = H + D = J + E = L + } else { + O = K + P = N + Q = L + R = M + S = H + T = J + break b + } + } + U = a * 0.0 + break a + } else { + O = t + P = o + Q = n + R = m + S = u + T = v + } + while (0) + if (P) + if (((Q | 0) == 0) & ((R | 0) == 0)) { + U = a * 0.0 + break + } else { + V = R + W = Q + } + else { + V = T + W = S + } + if ((V >>> 0 < 1048576) | (((V | 0) == 1048576) & (W >>> 0 < 0))) { + m = O + n = W + o = V + while (1) { + E = Tn(n | 0, o | 0, 1) | 0 + D = I + C = (m + -1) | 0 + if ( + (D >>> 0 < 1048576) | + (((D | 0) == 1048576) & (E >>> 0 < 0)) + ) { + m = C + n = E + o = D + } else { + X = C + Y = E + Z = D + break + } + } + } else { + X = O + Y = W + Z = V + } + if ((X | 0) > 0) { + o = Vn(Y | 0, Z | 0, 0, -1048576) | 0 + n = I + m = Tn(X | 0, 0, 52) | 0 + _ = n | I + $ = o | m + } else { + m = Yn(Y | 0, Z | 0, (1 - X) | 0) | 0 + _ = I + $ = m + } + f[s >> 2] = $ + f[(s + 4) >> 2] = _ | h + U = +p[s >> 3] + } else aa = 3 + while (0) + if ((aa | 0) == 3) { + ba = a * b + U = ba / ba + } + return +U + } + function yd(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0 + d = u + u = (u + 32) | 0 + e = (d + 8) | 0 + g = d + h = (c + 4) | 0 + i = f[((f[h >> 2] | 0) + 48) >> 2] | 0 + j = (c + 12) | 0 + c = f[j >> 2] | 0 + k = ln(32) | 0 + f[e >> 2] = k + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 17 + l = k + m = 14495 + n = (l + 17) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(k + 17) >> 0] = 0 + k = (i + 16) | 0 + m = f[k >> 2] | 0 + if (m) { + l = k + n = m + a: while (1) { + m = n + while (1) { + if ((f[(m + 16) >> 2] | 0) >= (c | 0)) break + o = f[(m + 4) >> 2] | 0 + if (!o) { + p = l + break a + } else m = o + } + n = f[m >> 2] | 0 + if (!n) { + p = m + break + } else l = m + } + if ( + ((p | 0) != (k | 0) ? (c | 0) >= (f[(p + 16) >> 2] | 0) : 0) + ? ((c = (p + 20) | 0), (Jh(c, e) | 0) != 0) + : 0 + ) + q = Hk(c, e, -1) | 0 + else r = 10 + } else r = 10 + if ((r | 0) == 10) q = Hk(i, e, -1) | 0 + if ((b[(e + 11) >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + f[e >> 2] = -1 + f[(e + 4) >> 2] = -1 + f[(e + 8) >> 2] = -1 + f[(e + 12) >> 2] = -1 + i = (_(((1 << q) + -1) | 0) | 0) ^ 31 + if (((i + -1) | 0) >>> 0 <= 28) { + f[e >> 2] = i + 1 + q = 2 << i + f[(e + 4) >> 2] = q + -1 + i = (q + -2) | 0 + f[(e + 8) >> 2] = i + f[(e + 12) >> 2] = ((i | 0) / 2) | 0 + } + switch (Xi(f[j >> 2] | 0, f[h >> 2] | 0) | 0) { + case 6: { + i = f[j >> 2] | 0 + q = f[h >> 2] | 0 + c = f[((f[((f[(q + 4) >> 2] | 0) + 8) >> 2] | 0) + (i << 2)) >> 2] | 0 + do + if ((Qa[f[((f[q >> 2] | 0) + 8) >> 2] & 127](q) | 0) == 1) { + Hf(g, q, 6, i, e, 514) + p = f[g >> 2] | 0 + if (!p) { + f[g >> 2] = 0 + s = g + r = 21 + break + } else { + t = g + v = p + break + } + } else { + s = g + r = 21 + } + while (0) + if ((r | 0) == 21) { + i = ln(24) | 0 + f[(i + 4) >> 2] = c + c = (i + 8) | 0 + f[c >> 2] = f[e >> 2] + f[(c + 4) >> 2] = f[(e + 4) >> 2] + f[(c + 8) >> 2] = f[(e + 8) >> 2] + f[(c + 12) >> 2] = f[(e + 12) >> 2] + f[i >> 2] = 2560 + c = i + f[g >> 2] = c + t = s + v = c + } + f[a >> 2] = v + f[t >> 2] = 0 + u = d + return + } + case 0: { + t = f[j >> 2] | 0 + j = f[h >> 2] | 0 + h = f[((f[((f[(j + 4) >> 2] | 0) + 8) >> 2] | 0) + (t << 2)) >> 2] | 0 + do + if ((Qa[f[((f[j >> 2] | 0) + 8) >> 2] & 127](j) | 0) == 1) { + Hf(g, j, 0, t, e, 514) + v = f[g >> 2] | 0 + if (!v) { + f[g >> 2] = 0 + w = g + r = 28 + break + } else { + x = g + y = v + break + } + } else { + w = g + r = 28 + } + while (0) + if ((r | 0) == 28) { + r = ln(24) | 0 + f[(r + 4) >> 2] = h + h = (r + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + f[r >> 2] = 2560 + e = r + f[g >> 2] = e + x = w + y = e + } + f[a >> 2] = y + f[x >> 2] = 0 + u = d + return + } + default: { + f[a >> 2] = 0 + u = d + return + } + } + } + function zd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0 + c = (a + 4) | 0 + if (!b) { + d = f[a >> 2] | 0 + f[a >> 2] = 0 + if (d | 0) Oq(d) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + d = ra(8) | 0 + Oo(d, 16035) + f[d >> 2] = 7256 + va(d | 0, 1112, 110) + } + d = ln(b << 2) | 0 + e = f[a >> 2] | 0 + f[a >> 2] = d + if (e | 0) Oq(e) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + e = f[c >> 2] | 0 + if (!e) return + d = f[(e + 4) >> 2] | 0 + g = (b + -1) | 0 + h = ((g & b) | 0) == 0 + if (!h) + if (d >>> 0 < b >>> 0) i = d + else i = (d >>> 0) % (b >>> 0) | 0 + else i = d & g + f[((f[a >> 2] | 0) + (i << 2)) >> 2] = c + c = f[e >> 2] | 0 + if (!c) return + else { + j = i + k = e + l = c + m = e + } + a: while (1) { + e = k + c = l + i = m + b: while (1) { + c: do + if (h) { + d = c + while (1) { + n = f[(d + 4) >> 2] & g + if ((n | 0) == (j | 0)) { + o = d + break c + } + p = ((f[a >> 2] | 0) + (n << 2)) | 0 + if (!(f[p >> 2] | 0)) { + q = d + r = n + s = p + break b + } + p = (d + 12) | 0 + t = (d + 16) | 0 + u = f[d >> 2] | 0 + d: do + if (!u) v = d + else { + w = f[(d + 8) >> 2] | 0 + x = d + y = u + while (1) { + if ((w | 0) != (f[(y + 8) >> 2] | 0)) { + v = x + break d + } + if ((f[p >> 2] | 0) != (f[(y + 12) >> 2] | 0)) { + v = x + break d + } + if ((f[t >> 2] | 0) != (f[(y + 16) >> 2] | 0)) { + v = x + break d + } + z = f[y >> 2] | 0 + if (!z) { + v = y + break + } else { + A = y + y = z + x = A + } + } + } + while (0) + f[i >> 2] = f[v >> 2] + f[v >> 2] = f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] = d + d = f[e >> 2] | 0 + if (!d) { + B = 41 + break a + } + } + } else { + d = c + while (1) { + t = f[(d + 4) >> 2] | 0 + if (t >>> 0 < b >>> 0) C = t + else C = (t >>> 0) % (b >>> 0) | 0 + if ((C | 0) == (j | 0)) { + o = d + break c + } + t = ((f[a >> 2] | 0) + (C << 2)) | 0 + if (!(f[t >> 2] | 0)) { + q = d + r = C + s = t + break b + } + t = (d + 12) | 0 + p = (d + 16) | 0 + u = f[d >> 2] | 0 + e: do + if (!u) D = d + else { + x = f[(d + 8) >> 2] | 0 + y = d + w = u + while (1) { + if ((x | 0) != (f[(w + 8) >> 2] | 0)) { + D = y + break e + } + if ((f[t >> 2] | 0) != (f[(w + 12) >> 2] | 0)) { + D = y + break e + } + if ((f[p >> 2] | 0) != (f[(w + 16) >> 2] | 0)) { + D = y + break e + } + A = f[w >> 2] | 0 + if (!A) { + D = w + break + } else { + z = w + w = A + y = z + } + } + } + while (0) + f[i >> 2] = f[D >> 2] + f[D >> 2] = f[f[((f[a >> 2] | 0) + (C << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (C << 2)) >> 2] >> 2] = d + d = f[e >> 2] | 0 + if (!d) { + B = 41 + break a + } + } + } + while (0) + c = f[o >> 2] | 0 + if (!c) { + B = 41 + break a + } else { + e = o + i = o + } + } + f[s >> 2] = i + l = f[q >> 2] | 0 + if (!l) { + B = 41 + break + } else { + j = r + k = q + m = q + } + } + if ((B | 0) == 41) return + } + function Ad(a, b, c, d, e, g, h) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + var i = 0, + j = 0 + switch (c | 0) { + case 1: { + c = ln(40) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2980 + i = c + f[a >> 2] = i + return + } + case 2: { + c = ln(40) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 3036 + i = c + f[a >> 2] = i + return + } + case 4: { + c = ln(152) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 3092 + h = (c + 96) | 0 + b = (c + 40) | 0 + j = (b + 52) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (j | 0)) + Zm(h) + f[(c + 136) >> 2] = 0 + f[(c + 140) >> 2] = 0 + f[(c + 144) >> 2] = 0 + i = c + f[a >> 2] = i + return + } + case 3: { + c = ln(68) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 3148 + h = (c + 40) | 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + f[(h + 12) >> 2] = 0 + f[(h + 16) >> 2] = 0 + f[(h + 20) >> 2] = 0 + f[(h + 24) >> 2] = 0 + i = c + f[a >> 2] = i + return + } + case 5: { + c = ln(84) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 3204 + f[(c + 40) >> 2] = 0 + f[(c + 44) >> 2] = 0 + f[(c + 56) >> 2] = 0 + f[(c + 60) >> 2] = 0 + f[(c + 64) >> 2] = 0 + h = (c + 68) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + i = c + f[a >> 2] = i + return + } + case 6: { + c = ln(120) | 0 + f[(c + 4) >> 2] = d + d = (c + 8) | 0 + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + f[(d + 8) >> 2] = f[(e + 8) >> 2] + f[(d + 12) >> 2] = f[(e + 12) >> 2] + e = (c + 24) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 3260 + f[(c + 44) >> 2] = 0 + f[(c + 48) >> 2] = 0 + e = (c + 52) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[(c + 40) >> 2] = 3316 + f[(c + 68) >> 2] = 1 + g = (c + 72) | 0 + f[g >> 2] = -1 + f[(g + 4) >> 2] = -1 + f[(g + 8) >> 2] = -1 + f[(g + 12) >> 2] = -1 + wn((c + 88) | 0) + i = c + f[a >> 2] = i + return + } + default: { + i = 0 + f[a >> 2] = i + return + } + } + } + function Bd(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + d = (a + 4) | 0 + if (!c) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) Oq(e) + f[d >> 2] = 0 + return + } + if (c >>> 0 > 1073741823) { + e = ra(8) | 0 + Oo(e, 16035) + f[e >> 2] = 7256 + va(e | 0, 1112, 110) + } + e = ln(c << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) Oq(g) + f[d >> 2] = c + d = 0 + do { + f[((f[a >> 2] | 0) + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + } while ((d | 0) != (c | 0)) + d = (a + 8) | 0 + g = f[d >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (c + -1) | 0 + i = ((h & c) | 0) == 0 + if (!i) + if (e >>> 0 < c >>> 0) j = e + else j = (e >>> 0) % (c >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = d + d = f[g >> 2] | 0 + if (!d) return + else { + k = j + l = g + m = d + n = g + } + a: while (1) { + g = l + d = m + j = n + b: while (1) { + o = d + while (1) { + e = f[(o + 4) >> 2] | 0 + if (!i) + if (e >>> 0 < c >>> 0) p = e + else p = (e >>> 0) % (c >>> 0) | 0 + else p = e & h + if ((p | 0) == (k | 0)) break + q = ((f[a >> 2] | 0) + (p << 2)) | 0 + if (!(f[q >> 2] | 0)) break b + e = f[o >> 2] | 0 + c: do + if (!e) r = o + else { + s = (o + 8) | 0 + t = b[(s + 11) >> 0] | 0 + u = (t << 24) >> 24 < 0 + v = t & 255 + t = u ? f[(o + 12) >> 2] | 0 : v + w = (t | 0) == 0 + if (u) { + u = o + x = e + while (1) { + y = (x + 8) | 0 + z = b[(y + 11) >> 0] | 0 + A = (z << 24) >> 24 < 0 + if ((t | 0) != ((A ? f[(x + 12) >> 2] | 0 : z & 255) | 0)) { + r = u + break c + } + if ( + !w ? Vk(f[s >> 2] | 0, A ? f[y >> 2] | 0 : y, t) | 0 : 0 + ) { + r = u + break c + } + y = f[x >> 2] | 0 + if (!y) { + r = x + break c + } else { + A = x + x = y + u = A + } + } + } + if (w) { + u = o + x = e + while (1) { + A = b[(x + 8 + 11) >> 0] | 0 + if ( + ((A << 24) >> 24 < 0 ? f[(x + 12) >> 2] | 0 : A & 255) | 0 + ) { + r = u + break c + } + A = f[x >> 2] | 0 + if (!A) { + r = x + break c + } else { + y = x + x = A + u = y + } + } + } + u = o + x = e + while (1) { + w = (x + 8) | 0 + y = b[(w + 11) >> 0] | 0 + A = (y << 24) >> 24 < 0 + if ((t | 0) != ((A ? f[(x + 12) >> 2] | 0 : y & 255) | 0)) { + r = u + break c + } + y = A ? f[w >> 2] | 0 : w + if ((b[y >> 0] | 0) == ((f[s >> 2] & 255) << 24) >> 24) { + B = s + C = v + D = y + } else { + r = u + break c + } + while (1) { + C = (C + -1) | 0 + B = (B + 1) | 0 + if (!C) break + D = (D + 1) | 0 + if ((b[B >> 0] | 0) != (b[D >> 0] | 0)) { + r = u + break c + } + } + y = f[x >> 2] | 0 + if (!y) { + r = x + break + } else { + w = x + x = y + u = w + } + } + } + while (0) + f[j >> 2] = f[r >> 2] + f[r >> 2] = f[f[((f[a >> 2] | 0) + (p << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (p << 2)) >> 2] >> 2] = o + e = f[g >> 2] | 0 + if (!e) { + E = 43 + break a + } else o = e + } + d = f[o >> 2] | 0 + if (!d) { + E = 43 + break a + } else { + g = o + j = o + } + } + f[q >> 2] = j + m = f[o >> 2] | 0 + if (!m) { + E = 43 + break + } else { + k = p + l = o + n = o + } + } + if ((E | 0) == 43) return + } + function Cd(a, b, c, d, e, g, h) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + var i = 0, + j = 0 + switch (c | 0) { + case 1: { + c = ln(40) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2616 + i = c + f[a >> 2] = i + return + } + case 2: { + c = ln(40) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2672 + i = c + f[a >> 2] = i + return + } + case 4: { + c = ln(152) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2728 + h = (c + 96) | 0 + b = (c + 40) | 0 + j = (b + 52) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (j | 0)) + Zm(h) + f[(c + 136) >> 2] = 0 + f[(c + 140) >> 2] = 0 + f[(c + 144) >> 2] = 0 + i = c + f[a >> 2] = i + return + } + case 3: { + c = ln(68) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2784 + h = (c + 40) | 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + f[(h + 12) >> 2] = 0 + f[(h + 16) >> 2] = 0 + f[(h + 20) >> 2] = 0 + f[(h + 24) >> 2] = 0 + i = c + f[a >> 2] = i + return + } + case 5: { + c = ln(84) | 0 + f[(c + 4) >> 2] = d + h = (c + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[(h + 12) >> 2] = f[(e + 12) >> 2] + h = (c + 24) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2840 + f[(c + 40) >> 2] = 0 + f[(c + 44) >> 2] = 0 + f[(c + 56) >> 2] = 0 + f[(c + 60) >> 2] = 0 + f[(c + 64) >> 2] = 0 + h = (c + 68) | 0 + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + f[(h + 12) >> 2] = f[(g + 12) >> 2] + i = c + f[a >> 2] = i + return + } + case 6: { + c = ln(120) | 0 + f[(c + 4) >> 2] = d + d = (c + 8) | 0 + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + f[(d + 8) >> 2] = f[(e + 8) >> 2] + f[(d + 12) >> 2] = f[(e + 12) >> 2] + e = (c + 24) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[c >> 2] = 2896 + f[(c + 44) >> 2] = 0 + f[(c + 48) >> 2] = 0 + e = (c + 52) | 0 + f[e >> 2] = f[g >> 2] + f[(e + 4) >> 2] = f[(g + 4) >> 2] + f[(e + 8) >> 2] = f[(g + 8) >> 2] + f[(e + 12) >> 2] = f[(g + 12) >> 2] + f[(c + 40) >> 2] = 2952 + f[(c + 68) >> 2] = 1 + g = (c + 72) | 0 + f[g >> 2] = -1 + f[(g + 4) >> 2] = -1 + f[(g + 8) >> 2] = -1 + f[(g + 12) >> 2] = -1 + wn((c + 88) | 0) + i = c + f[a >> 2] = i + return + } + default: { + i = 0 + f[a >> 2] = i + return + } + } + } + function Dd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = u + u = (u + 48) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + h = (a + 44) | 0 + ci(f[h >> 2] | 0, b) | 0 + if (f[h >> 2] | 0) { + wn(d) + tk(d) + i = ((f[h >> 2] | 0) + -1) | 0 + if ((i | 0) > -1) { + h = (a + 40) | 0 + j = i + do { + fj( + d, + ((f[((f[h >> 2] | 0) + ((j >>> 5) << 2)) >> 2] & + (1 << (j & 31))) | + 0) != + 0, + ) + j = (j + -1) | 0 + } while ((j | 0) > -1) + } + ld(d, b) + Fj(d) + } + j = (a + 56) | 0 + ci(f[j >> 2] | 0, b) | 0 + if (f[j >> 2] | 0) { + wn(d) + tk(d) + h = ((f[j >> 2] | 0) + -2) | 0 + if ((h | 0) > -1) { + j = (a + 52) | 0 + i = h + do { + fj( + d, + ((f[((f[j >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) != + 0, + ) + h = (i + 1) | 0 + fj( + d, + ((f[((f[j >> 2] | 0) + ((h >>> 5) << 2)) >> 2] & + (1 << (h & 31))) | + 0) != + 0, + ) + i = (i + -2) | 0 + } while ((i | 0) > -1) + } + ld(d, b) + Fj(d) + } + i = (a + 68) | 0 + ci(f[i >> 2] | 0, b) | 0 + if (f[i >> 2] | 0) { + wn(d) + tk(d) + j = ((f[i >> 2] | 0) + -3) | 0 + if ((j | 0) > -1) { + i = (a + 64) | 0 + h = j + do { + fj( + d, + ((f[((f[i >> 2] | 0) + ((h >>> 5) << 2)) >> 2] & + (1 << (h & 31))) | + 0) != + 0, + ) + j = (h + 1) | 0 + fj( + d, + ((f[((f[i >> 2] | 0) + ((j >>> 5) << 2)) >> 2] & + (1 << (j & 31))) | + 0) != + 0, + ) + j = (h + 2) | 0 + fj( + d, + ((f[((f[i >> 2] | 0) + ((j >>> 5) << 2)) >> 2] & + (1 << (j & 31))) | + 0) != + 0, + ) + h = (h + -3) | 0 + } while ((h | 0) > -1) + } + ld(d, b) + Fj(d) + } + h = (a + 80) | 0 + ci(f[h >> 2] | 0, b) | 0 + if (f[h >> 2] | 0) { + wn(d) + tk(d) + i = ((f[h >> 2] | 0) + -4) | 0 + if ((i | 0) > -1) { + h = (a + 76) | 0 + j = i + do { + fj( + d, + ((f[((f[h >> 2] | 0) + ((j >>> 5) << 2)) >> 2] & + (1 << (j & 31))) | + 0) != + 0, + ) + i = (j + 1) | 0 + fj( + d, + ((f[((f[h >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) != + 0, + ) + i = (j + 2) | 0 + fj( + d, + ((f[((f[h >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) != + 0, + ) + i = (j + 3) | 0 + fj( + d, + ((f[((f[h >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) != + 0, + ) + j = (j + -4) | 0 + } while ((j | 0) > -1) + } + ld(d, b) + Fj(d) + } + f[g >> 2] = f[(a + 12) >> 2] + j = (b + 16) | 0 + h = j + i = f[h >> 2] | 0 + k = f[(h + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & (i >>> 0 > 0))) { + l = k + m = i + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + i = j + l = f[(i + 4) >> 2] | 0 + m = f[i >> 2] | 0 + } + f[g >> 2] = f[(a + 20) >> 2] + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + u = c + return 1 + } + function Ed(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = u + u = (u + 48) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + h = (a + 64) | 0 + ci(f[h >> 2] | 0, b) | 0 + if (f[h >> 2] | 0) { + wn(d) + tk(d) + i = ((f[h >> 2] | 0) + -1) | 0 + if ((i | 0) > -1) { + h = (a + 60) | 0 + j = i + do { + fj( + d, + ((f[((f[h >> 2] | 0) + ((j >>> 5) << 2)) >> 2] & + (1 << (j & 31))) | + 0) != + 0, + ) + j = (j + -1) | 0 + } while ((j | 0) > -1) + } + ld(d, b) + Fj(d) + } + j = (a + 76) | 0 + ci(f[j >> 2] | 0, b) | 0 + if (f[j >> 2] | 0) { + wn(d) + tk(d) + h = ((f[j >> 2] | 0) + -2) | 0 + if ((h | 0) > -1) { + j = (a + 72) | 0 + i = h + do { + fj( + d, + ((f[((f[j >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) != + 0, + ) + h = (i + 1) | 0 + fj( + d, + ((f[((f[j >> 2] | 0) + ((h >>> 5) << 2)) >> 2] & + (1 << (h & 31))) | + 0) != + 0, + ) + i = (i + -2) | 0 + } while ((i | 0) > -1) + } + ld(d, b) + Fj(d) + } + i = (a + 88) | 0 + ci(f[i >> 2] | 0, b) | 0 + if (f[i >> 2] | 0) { + wn(d) + tk(d) + j = ((f[i >> 2] | 0) + -3) | 0 + if ((j | 0) > -1) { + i = (a + 84) | 0 + h = j + do { + fj( + d, + ((f[((f[i >> 2] | 0) + ((h >>> 5) << 2)) >> 2] & + (1 << (h & 31))) | + 0) != + 0, + ) + j = (h + 1) | 0 + fj( + d, + ((f[((f[i >> 2] | 0) + ((j >>> 5) << 2)) >> 2] & + (1 << (j & 31))) | + 0) != + 0, + ) + j = (h + 2) | 0 + fj( + d, + ((f[((f[i >> 2] | 0) + ((j >>> 5) << 2)) >> 2] & + (1 << (j & 31))) | + 0) != + 0, + ) + h = (h + -3) | 0 + } while ((h | 0) > -1) + } + ld(d, b) + Fj(d) + } + h = (a + 100) | 0 + ci(f[h >> 2] | 0, b) | 0 + if (f[h >> 2] | 0) { + wn(d) + tk(d) + i = ((f[h >> 2] | 0) + -4) | 0 + if ((i | 0) > -1) { + h = (a + 96) | 0 + j = i + do { + fj( + d, + ((f[((f[h >> 2] | 0) + ((j >>> 5) << 2)) >> 2] & + (1 << (j & 31))) | + 0) != + 0, + ) + i = (j + 1) | 0 + fj( + d, + ((f[((f[h >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) != + 0, + ) + i = (j + 2) | 0 + fj( + d, + ((f[((f[h >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) != + 0, + ) + i = (j + 3) | 0 + fj( + d, + ((f[((f[h >> 2] | 0) + ((i >>> 5) << 2)) >> 2] & + (1 << (i & 31))) | + 0) != + 0, + ) + j = (j + -4) | 0 + } while ((j | 0) > -1) + } + ld(d, b) + Fj(d) + } + f[g >> 2] = f[(a + 12) >> 2] + j = (b + 16) | 0 + h = j + i = f[h >> 2] | 0 + k = f[(h + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & (i >>> 0 > 0))) { + l = k + m = i + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + i = j + l = f[(i + 4) >> 2] | 0 + m = f[i >> 2] | 0 + } + f[g >> 2] = f[(a + 16) >> 2] + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + u = c + return 1 + } + function Fd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + c = (a + 4) | 0 + if (!b) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) Oq(e) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + e = ra(8) | 0 + Oo(e, 16035) + f[e >> 2] = 7256 + va(e | 0, 1112, 110) + } + e = ln(b << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) Oq(g) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + g = f[c >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (b + -1) | 0 + i = ((h & b) | 0) == 0 + if (!i) + if (e >>> 0 < b >>> 0) j = e + else j = (e >>> 0) % (b >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = c + c = f[g >> 2] | 0 + if (!c) return + else { + k = j + l = g + m = c + n = g + } + a: while (1) { + g = l + c = m + j = n + b: while (1) { + c: do + if (i) { + e = c + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) { + p = e + break c + } + q = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[q >> 2] | 0)) { + r = e + s = o + t = q + break b + } + q = (e + 8) | 0 + u = f[e >> 2] | 0 + d: do + if (!u) v = e + else { + w = d[q >> 1] | 0 + x = (q + 2) | 0 + y = e + z = u + while (1) { + A = (z + 8) | 0 + if ((w << 16) >> 16 != (d[A >> 1] | 0)) { + v = y + break d + } + if ((d[x >> 1] | 0) != (d[(A + 2) >> 1] | 0)) { + v = y + break d + } + A = f[z >> 2] | 0 + if (!A) { + v = z + break + } else { + B = z + z = A + y = B + } + } + } + while (0) + f[j >> 2] = f[v >> 2] + f[v >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + C = 39 + break a + } + } + } else { + e = c + while (1) { + u = f[(e + 4) >> 2] | 0 + if (u >>> 0 < b >>> 0) D = u + else D = (u >>> 0) % (b >>> 0) | 0 + if ((D | 0) == (k | 0)) { + p = e + break c + } + u = ((f[a >> 2] | 0) + (D << 2)) | 0 + if (!(f[u >> 2] | 0)) { + r = e + s = D + t = u + break b + } + u = (e + 8) | 0 + q = f[e >> 2] | 0 + e: do + if (!q) E = e + else { + y = d[u >> 1] | 0 + z = (u + 2) | 0 + x = e + w = q + while (1) { + B = (w + 8) | 0 + if ((y << 16) >> 16 != (d[B >> 1] | 0)) { + E = x + break e + } + if ((d[z >> 1] | 0) != (d[(B + 2) >> 1] | 0)) { + E = x + break e + } + B = f[w >> 2] | 0 + if (!B) { + E = w + break + } else { + A = w + w = B + x = A + } + } + } + while (0) + f[j >> 2] = f[E >> 2] + f[E >> 2] = f[f[((f[a >> 2] | 0) + (D << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (D << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + C = 39 + break a + } + } + } + while (0) + c = f[p >> 2] | 0 + if (!c) { + C = 39 + break a + } else { + g = p + j = p + } + } + f[t >> 2] = j + m = f[r >> 2] | 0 + if (!m) { + C = 39 + break + } else { + k = s + l = r + n = r + } + } + if ((C | 0) == 39) return + } + function Gd(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + d = (a + 4) | 0 + if (!c) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) Oq(e) + f[d >> 2] = 0 + return + } + if (c >>> 0 > 1073741823) { + e = ra(8) | 0 + Oo(e, 16035) + f[e >> 2] = 7256 + va(e | 0, 1112, 110) + } + e = ln(c << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) Oq(g) + f[d >> 2] = c + d = 0 + do { + f[((f[a >> 2] | 0) + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + } while ((d | 0) != (c | 0)) + d = (a + 8) | 0 + g = f[d >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (c + -1) | 0 + i = ((h & c) | 0) == 0 + if (!i) + if (e >>> 0 < c >>> 0) j = e + else j = (e >>> 0) % (c >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = d + d = f[g >> 2] | 0 + if (!d) return + else { + k = j + l = g + m = d + n = g + } + a: while (1) { + g = l + d = m + j = n + b: while (1) { + c: do + if (i) { + e = d + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) { + p = e + break c + } + q = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[q >> 2] | 0)) { + r = e + s = o + t = q + break b + } + q = (e + 8) | 0 + u = f[e >> 2] | 0 + d: do + if (!u) v = e + else { + w = b[q >> 0] | 0 + x = (q + 1) | 0 + y = e + z = u + while (1) { + A = (z + 8) | 0 + if ((w << 24) >> 24 != (b[A >> 0] | 0)) { + v = y + break d + } + if ((b[x >> 0] | 0) != (b[(A + 1) >> 0] | 0)) { + v = y + break d + } + A = f[z >> 2] | 0 + if (!A) { + v = z + break + } else { + B = z + z = A + y = B + } + } + } + while (0) + f[j >> 2] = f[v >> 2] + f[v >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + C = 39 + break a + } + } + } else { + e = d + while (1) { + u = f[(e + 4) >> 2] | 0 + if (u >>> 0 < c >>> 0) D = u + else D = (u >>> 0) % (c >>> 0) | 0 + if ((D | 0) == (k | 0)) { + p = e + break c + } + u = ((f[a >> 2] | 0) + (D << 2)) | 0 + if (!(f[u >> 2] | 0)) { + r = e + s = D + t = u + break b + } + u = (e + 8) | 0 + q = f[e >> 2] | 0 + e: do + if (!q) E = e + else { + y = b[u >> 0] | 0 + z = (u + 1) | 0 + x = e + w = q + while (1) { + B = (w + 8) | 0 + if ((y << 24) >> 24 != (b[B >> 0] | 0)) { + E = x + break e + } + if ((b[z >> 0] | 0) != (b[(B + 1) >> 0] | 0)) { + E = x + break e + } + B = f[w >> 2] | 0 + if (!B) { + E = w + break + } else { + A = w + w = B + x = A + } + } + } + while (0) + f[j >> 2] = f[E >> 2] + f[E >> 2] = f[f[((f[a >> 2] | 0) + (D << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (D << 2)) >> 2] >> 2] = e + e = f[g >> 2] | 0 + if (!e) { + C = 39 + break a + } + } + } + while (0) + d = f[p >> 2] | 0 + if (!d) { + C = 39 + break a + } else { + g = p + j = p + } + } + f[t >> 2] = j + m = f[r >> 2] | 0 + if (!m) { + C = 39 + break + } else { + k = s + l = r + n = r + } + } + if ((C | 0) == 39) return + } + function Hd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + c = u + u = (u + 48) | 0 + d = (c + 32) | 0 + e = (c + 28) | 0 + g = (c + 16) | 0 + h = c + i = (a + 16) | 0 + j = f[i >> 2] | 0 + if (j | 0) { + k = f[b >> 2] | 0 + l = i + m = j + a: while (1) { + j = m + while (1) { + if ((f[(j + 16) >> 2] | 0) >= (k | 0)) break + n = f[(j + 4) >> 2] | 0 + if (!n) { + o = l + break a + } else j = n + } + m = f[j >> 2] | 0 + if (!m) { + o = j + break + } else l = j + } + if ((o | 0) != (i | 0) ? (k | 0) >= (f[(o + 16) >> 2] | 0) : 0) { + p = o + q = (p + 20) | 0 + u = c + return q | 0 + } + } + lp(g) + f[h >> 2] = f[b >> 2] + b = (h + 4) | 0 + f[(h + 8) >> 2] = 0 + o = (h + 12) | 0 + f[o >> 2] = 0 + k = (h + 8) | 0 + f[b >> 2] = k + l = f[g >> 2] | 0 + m = (g + 4) | 0 + if ((l | 0) != (m | 0)) { + n = k + r = l + while (1) { + l = (r + 16) | 0 + f[e >> 2] = n + f[d >> 2] = f[e >> 2] + ph(b, d, l, l) | 0 + l = f[(r + 4) >> 2] | 0 + if (!l) { + s = (r + 8) | 0 + t = f[s >> 2] | 0 + if ((f[t >> 2] | 0) == (r | 0)) v = t + else { + t = s + do { + s = f[t >> 2] | 0 + t = (s + 8) | 0 + w = f[t >> 2] | 0 + } while ((f[w >> 2] | 0) != (s | 0)) + v = w + } + } else { + t = l + while (1) { + j = f[t >> 2] | 0 + if (!j) break + else t = j + } + v = t + } + if ((v | 0) == (m | 0)) break + else r = v + } + } + v = (a + 12) | 0 + r = f[i >> 2] | 0 + do + if (r) { + d = f[h >> 2] | 0 + e = (a + 16) | 0 + n = r + while (1) { + l = f[(n + 16) >> 2] | 0 + if ((d | 0) < (l | 0)) { + j = f[n >> 2] | 0 + if (!j) { + x = 23 + break + } else { + y = n + z = j + } + } else { + if ((l | 0) >= (d | 0)) { + x = 27 + break + } + A = (n + 4) | 0 + l = f[A >> 2] | 0 + if (!l) { + x = 26 + break + } else { + y = A + z = l + } + } + e = y + n = z + } + if ((x | 0) == 23) { + B = n + C = n + break + } else if ((x | 0) == 26) { + B = n + C = A + break + } else if ((x | 0) == 27) { + B = n + C = e + break + } + } else { + B = i + C = i + } + while (0) + i = f[C >> 2] | 0 + if (!i) { + x = ln(32) | 0 + f[(x + 16) >> 2] = f[h >> 2] + A = (x + 20) | 0 + f[A >> 2] = f[b >> 2] + z = (x + 24) | 0 + y = f[(h + 8) >> 2] | 0 + f[z >> 2] = y + r = f[o >> 2] | 0 + f[(x + 28) >> 2] = r + if (!r) f[A >> 2] = z + else { + f[(y + 8) >> 2] = z + f[b >> 2] = k + f[k >> 2] = 0 + f[o >> 2] = 0 + } + f[x >> 2] = 0 + f[(x + 4) >> 2] = 0 + f[(x + 8) >> 2] = B + f[C >> 2] = x + B = f[f[v >> 2] >> 2] | 0 + if (!B) D = x + else { + f[v >> 2] = B + D = f[C >> 2] | 0 + } + Oe(f[(a + 16) >> 2] | 0, D) + D = (a + 20) | 0 + f[D >> 2] = (f[D >> 2] | 0) + 1 + E = x + } else E = i + Ej((h + 4) | 0, f[k >> 2] | 0) + Ej(g, f[m >> 2] | 0) + p = E + q = (p + 20) | 0 + u = c + return q | 0 + } + function Id(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0 + d = b[(c + 11) >> 0] | 0 + e = (d << 24) >> 24 < 0 + g = e ? f[c >> 2] | 0 : c + i = e ? f[(c + 4) >> 2] | 0 : d & 255 + if (i >>> 0 > 3) { + d = g + c = i + e = i + while (1) { + j = + X( + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24), + 1540483477, + ) | 0 + c = (X((j >>> 24) ^ j, 1540483477) | 0) ^ (X(c, 1540483477) | 0) + e = (e + -4) | 0 + if (e >>> 0 <= 3) break + else d = (d + 4) | 0 + } + d = (i + -4) | 0 + e = d & -4 + k = (d - e) | 0 + l = (g + (e + 4)) | 0 + m = c + } else { + k = i + l = g + m = i + } + switch (k | 0) { + case 3: { + n = (h[(l + 2) >> 0] << 16) ^ m + o = 6 + break + } + case 2: { + n = m + o = 6 + break + } + case 1: { + p = m + o = 7 + break + } + default: + q = m + } + if ((o | 0) == 6) { + p = (h[(l + 1) >> 0] << 8) ^ n + o = 7 + } + if ((o | 0) == 7) q = X(p ^ h[l >> 0], 1540483477) | 0 + l = X((q >>> 13) ^ q, 1540483477) | 0 + q = (l >>> 15) ^ l + l = f[(a + 4) >> 2] | 0 + if (!l) { + r = 0 + return r | 0 + } + p = (l + -1) | 0 + n = ((p & l) | 0) == 0 + if (!n) + if (q >>> 0 < l >>> 0) s = q + else s = (q >>> 0) % (l >>> 0) | 0 + else s = q & p + m = f[((f[a >> 2] | 0) + (s << 2)) >> 2] | 0 + if (!m) { + r = 0 + return r | 0 + } + a = f[m >> 2] | 0 + if (!a) { + r = 0 + return r | 0 + } + m = (i | 0) == 0 + if (n) { + n = a + a: while (1) { + k = f[(n + 4) >> 2] | 0 + c = (k | 0) == (q | 0) + if (!(c | (((k & p) | 0) == (s | 0)))) { + r = 0 + o = 40 + break + } + do + if ( + c + ? ((k = (n + 8) | 0), + (e = b[(k + 11) >> 0] | 0), + (d = (e << 24) >> 24 < 0), + (j = e & 255), + ((d ? f[(n + 12) >> 2] | 0 : j) | 0) == (i | 0)) + : 0 + ) { + e = f[k >> 2] | 0 + t = d ? e : k + if (d) { + if (m) { + r = n + o = 40 + break a + } + if (!(Vk(t, g, i) | 0)) { + r = n + o = 40 + break a + } else break + } + if (m) { + r = n + o = 40 + break a + } + if ((b[g >> 0] | 0) == ((e & 255) << 24) >> 24) { + e = k + k = j + j = g + do { + k = (k + -1) | 0 + e = (e + 1) | 0 + if (!k) { + r = n + o = 40 + break a + } + j = (j + 1) | 0 + } while ((b[e >> 0] | 0) == (b[j >> 0] | 0)) + } + } + while (0) + n = f[n >> 2] | 0 + if (!n) { + r = 0 + o = 40 + break + } + } + if ((o | 0) == 40) return r | 0 + } else u = a + b: while (1) { + a = f[(u + 4) >> 2] | 0 + do + if ((a | 0) == (q | 0)) { + n = (u + 8) | 0 + p = b[(n + 11) >> 0] | 0 + c = (p << 24) >> 24 < 0 + j = p & 255 + if (((c ? f[(u + 12) >> 2] | 0 : j) | 0) == (i | 0)) { + p = f[n >> 2] | 0 + e = c ? p : n + if (c) { + if (m) { + r = u + o = 40 + break b + } + if (!(Vk(e, g, i) | 0)) { + r = u + o = 40 + break b + } else break + } + if (m) { + r = u + o = 40 + break b + } + if ((b[g >> 0] | 0) == ((p & 255) << 24) >> 24) { + p = n + n = j + j = g + do { + n = (n + -1) | 0 + p = (p + 1) | 0 + if (!n) { + r = u + o = 40 + break b + } + j = (j + 1) | 0 + } while ((b[p >> 0] | 0) == (b[j >> 0] | 0)) + } + } + } else { + if (a >>> 0 < l >>> 0) v = a + else v = (a >>> 0) % (l >>> 0) | 0 + if ((v | 0) != (s | 0)) { + r = 0 + o = 40 + break b + } + } + while (0) + u = f[u >> 2] | 0 + if (!u) { + r = 0 + o = 40 + break + } + } + if ((o | 0) == 40) return r | 0 + return 0 + } + function Jd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0 + c = (a + 4) | 0 + if (!b) { + d = f[a >> 2] | 0 + f[a >> 2] = 0 + if (d | 0) Oq(d) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + d = ra(8) | 0 + Oo(d, 16035) + f[d >> 2] = 7256 + va(d | 0, 1112, 110) + } + d = ln(b << 2) | 0 + e = f[a >> 2] | 0 + f[a >> 2] = d + if (e | 0) Oq(e) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + e = f[c >> 2] | 0 + if (!e) return + d = f[(e + 4) >> 2] | 0 + g = (b + -1) | 0 + h = ((g & b) | 0) == 0 + if (!h) + if (d >>> 0 < b >>> 0) i = d + else i = (d >>> 0) % (b >>> 0) | 0 + else i = d & g + f[((f[a >> 2] | 0) + (i << 2)) >> 2] = c + c = f[e >> 2] | 0 + if (!c) return + else { + j = i + k = e + l = c + m = e + } + a: while (1) { + e = k + c = l + i = m + b: while (1) { + c: do + if (h) { + d = c + while (1) { + n = f[(d + 4) >> 2] & g + if ((n | 0) == (j | 0)) { + o = d + break c + } + p = ((f[a >> 2] | 0) + (n << 2)) | 0 + if (!(f[p >> 2] | 0)) { + q = d + r = n + s = p + break b + } + p = (d + 12) | 0 + t = f[d >> 2] | 0 + d: do + if (!t) u = d + else { + v = f[(d + 8) >> 2] | 0 + w = d + x = t + while (1) { + if ((v | 0) != (f[(x + 8) >> 2] | 0)) { + u = w + break d + } + if ((f[p >> 2] | 0) != (f[(x + 12) >> 2] | 0)) { + u = w + break d + } + y = f[x >> 2] | 0 + if (!y) { + u = x + break + } else { + z = x + x = y + w = z + } + } + } + while (0) + f[i >> 2] = f[u >> 2] + f[u >> 2] = f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] = d + d = f[e >> 2] | 0 + if (!d) { + A = 39 + break a + } + } + } else { + d = c + while (1) { + p = f[(d + 4) >> 2] | 0 + if (p >>> 0 < b >>> 0) B = p + else B = (p >>> 0) % (b >>> 0) | 0 + if ((B | 0) == (j | 0)) { + o = d + break c + } + p = ((f[a >> 2] | 0) + (B << 2)) | 0 + if (!(f[p >> 2] | 0)) { + q = d + r = B + s = p + break b + } + p = (d + 12) | 0 + t = f[d >> 2] | 0 + e: do + if (!t) C = d + else { + w = f[(d + 8) >> 2] | 0 + x = d + v = t + while (1) { + if ((w | 0) != (f[(v + 8) >> 2] | 0)) { + C = x + break e + } + if ((f[p >> 2] | 0) != (f[(v + 12) >> 2] | 0)) { + C = x + break e + } + z = f[v >> 2] | 0 + if (!z) { + C = v + break + } else { + y = v + v = z + x = y + } + } + } + while (0) + f[i >> 2] = f[C >> 2] + f[C >> 2] = f[f[((f[a >> 2] | 0) + (B << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (B << 2)) >> 2] >> 2] = d + d = f[e >> 2] | 0 + if (!d) { + A = 39 + break a + } + } + } + while (0) + c = f[o >> 2] | 0 + if (!c) { + A = 39 + break a + } else { + e = o + i = o + } + } + f[s >> 2] = i + l = f[q >> 2] | 0 + if (!l) { + A = 39 + break + } else { + j = r + k = q + m = q + } + } + if ((A | 0) == 39) return + } + function Kd(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0 + h = (a + 4) | 0 + i = f[c >> 2] | 0 + c = i + do + if ((i | 0) != (h | 0)) { + j = (i + 16) | 0 + k = b[(j + 11) >> 0] | 0 + l = (k << 24) >> 24 < 0 + m = l ? f[(i + 20) >> 2] | 0 : k & 255 + k = b[(g + 11) >> 0] | 0 + n = (k << 24) >> 24 < 0 + o = n ? f[(g + 4) >> 2] | 0 : k & 255 + k = m >>> 0 < o >>> 0 + p = k ? m : o + if ( + (p | 0) != 0 + ? ((q = Vk(n ? f[g >> 2] | 0 : g, l ? f[j >> 2] | 0 : j, p) | 0), + (q | 0) != 0) + : 0 + ) { + if ((q | 0) < 0) break + } else r = 4 + if ((r | 0) == 4 ? o >>> 0 < m >>> 0 : 0) break + q = o >>> 0 < m >>> 0 ? o : m + if ( + (q | 0) != 0 + ? ((m = Vk(l ? f[j >> 2] | 0 : j, n ? f[g >> 2] | 0 : g, q) | 0), + (m | 0) != 0) + : 0 + ) { + if ((m | 0) >= 0) r = 37 + } else r = 21 + if ((r | 0) == 21 ? !k : 0) r = 37 + if ((r | 0) == 37) { + f[d >> 2] = c + f[e >> 2] = c + s = e + return s | 0 + } + k = f[(i + 4) >> 2] | 0 + m = (k | 0) == 0 + if (m) { + q = (i + 8) | 0 + j = f[q >> 2] | 0 + if ((f[j >> 2] | 0) == (i | 0)) t = j + else { + j = q + do { + q = f[j >> 2] | 0 + j = (q + 8) | 0 + l = f[j >> 2] | 0 + } while ((f[l >> 2] | 0) != (q | 0)) + t = l + } + } else { + j = k + while (1) { + l = f[j >> 2] | 0 + if (!l) break + else j = l + } + t = j + } + do + if ((t | 0) != (h | 0)) { + k = (t + 16) | 0 + l = b[(k + 11) >> 0] | 0 + q = (l << 24) >> 24 < 0 + p = q ? f[(t + 20) >> 2] | 0 : l & 255 + l = p >>> 0 < o >>> 0 ? p : o + if ( + (l | 0) != 0 + ? ((u = + Vk(n ? f[g >> 2] | 0 : g, q ? f[k >> 2] | 0 : k, l) | 0), + (u | 0) != 0) + : 0 + ) { + if ((u | 0) < 0) break + } else r = 31 + if ((r | 0) == 31 ? o >>> 0 < p >>> 0 : 0) break + s = yg(a, d, g) | 0 + return s | 0 + } + while (0) + if (m) { + f[d >> 2] = c + s = (i + 4) | 0 + return s | 0 + } else { + f[d >> 2] = t + s = t + return s | 0 + } + } + while (0) + t = f[i >> 2] | 0 + do + if ((f[a >> 2] | 0) == (i | 0)) v = c + else { + if (!t) { + h = i + while (1) { + e = f[(h + 8) >> 2] | 0 + if ((f[e >> 2] | 0) == (h | 0)) h = e + else { + w = e + break + } + } + } else { + h = t + while (1) { + m = f[(h + 4) >> 2] | 0 + if (!m) { + w = h + break + } else h = m + } + } + h = w + m = (w + 16) | 0 + e = b[(g + 11) >> 0] | 0 + o = (e << 24) >> 24 < 0 + n = o ? f[(g + 4) >> 2] | 0 : e & 255 + e = b[(m + 11) >> 0] | 0 + j = (e << 24) >> 24 < 0 + p = j ? f[(w + 20) >> 2] | 0 : e & 255 + e = n >>> 0 < p >>> 0 ? n : p + if ( + (e | 0) != 0 + ? ((u = Vk(j ? f[m >> 2] | 0 : m, o ? f[g >> 2] | 0 : g, e) | 0), + (u | 0) != 0) + : 0 + ) { + if ((u | 0) < 0) { + v = h + break + } + } else r = 13 + if ((r | 0) == 13 ? p >>> 0 < n >>> 0 : 0) { + v = h + break + } + s = yg(a, d, g) | 0 + return s | 0 + } + while (0) + if (!t) { + f[d >> 2] = i + s = i + return s | 0 + } else { + f[d >> 2] = v + s = (v + 4) | 0 + return s | 0 + } + return 0 + } + function Ld(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0 + g = a + h = b + i = h + j = c + k = d + l = k + if (!i) { + m = (e | 0) != 0 + if (!l) { + if (m) { + f[e >> 2] = (g >>> 0) % (j >>> 0) + f[(e + 4) >> 2] = 0 + } + n = 0 + o = ((g >>> 0) / (j >>> 0)) >>> 0 + return ((I = n), o) | 0 + } else { + if (!m) { + n = 0 + o = 0 + return ((I = n), o) | 0 + } + f[e >> 2] = a | 0 + f[(e + 4) >> 2] = b & 0 + n = 0 + o = 0 + return ((I = n), o) | 0 + } + } + m = (l | 0) == 0 + do + if (j) { + if (!m) { + p = ((_(l | 0) | 0) - (_(i | 0) | 0)) | 0 + if (p >>> 0 <= 31) { + q = (p + 1) | 0 + r = (31 - p) | 0 + s = (p - 31) >> 31 + t = q + u = ((g >>> (q >>> 0)) & s) | (i << r) + v = (i >>> (q >>> 0)) & s + w = 0 + x = g << r + break + } + if (!e) { + n = 0 + o = 0 + return ((I = n), o) | 0 + } + f[e >> 2] = a | 0 + f[(e + 4) >> 2] = h | (b & 0) + n = 0 + o = 0 + return ((I = n), o) | 0 + } + r = (j - 1) | 0 + if ((r & j) | 0) { + s = ((_(j | 0) | 0) + 33 - (_(i | 0) | 0)) | 0 + q = (64 - s) | 0 + p = (32 - s) | 0 + y = p >> 31 + z = (s - 32) | 0 + A = z >> 31 + t = s + u = + (((p - 1) >> 31) & (i >>> (z >>> 0))) | + (((i << p) | (g >>> (s >>> 0))) & A) + v = A & (i >>> (s >>> 0)) + w = (g << q) & y + x = + (((i << q) | (g >>> (z >>> 0))) & y) | + ((g << p) & ((s - 33) >> 31)) + break + } + if (e | 0) { + f[e >> 2] = r & g + f[(e + 4) >> 2] = 0 + } + if ((j | 0) == 1) { + n = h | (b & 0) + o = a | 0 | 0 + return ((I = n), o) | 0 + } else { + r = vm(j | 0) | 0 + n = (i >>> (r >>> 0)) | 0 + o = (i << (32 - r)) | (g >>> (r >>> 0)) | 0 + return ((I = n), o) | 0 + } + } else { + if (m) { + if (e | 0) { + f[e >> 2] = (i >>> 0) % (j >>> 0) + f[(e + 4) >> 2] = 0 + } + n = 0 + o = ((i >>> 0) / (j >>> 0)) >>> 0 + return ((I = n), o) | 0 + } + if (!g) { + if (e | 0) { + f[e >> 2] = 0 + f[(e + 4) >> 2] = (i >>> 0) % (l >>> 0) + } + n = 0 + o = ((i >>> 0) / (l >>> 0)) >>> 0 + return ((I = n), o) | 0 + } + r = (l - 1) | 0 + if (!(r & l)) { + if (e | 0) { + f[e >> 2] = a | 0 + f[(e + 4) >> 2] = (r & i) | (b & 0) + } + n = 0 + o = i >>> ((vm(l | 0) | 0) >>> 0) + return ((I = n), o) | 0 + } + r = ((_(l | 0) | 0) - (_(i | 0) | 0)) | 0 + if (r >>> 0 <= 30) { + s = (r + 1) | 0 + p = (31 - r) | 0 + t = s + u = (i << p) | (g >>> (s >>> 0)) + v = i >>> (s >>> 0) + w = 0 + x = g << p + break + } + if (!e) { + n = 0 + o = 0 + return ((I = n), o) | 0 + } + f[e >> 2] = a | 0 + f[(e + 4) >> 2] = h | (b & 0) + n = 0 + o = 0 + return ((I = n), o) | 0 + } + while (0) + if (!t) { + B = x + C = w + D = v + E = u + F = 0 + G = 0 + } else { + b = c | 0 | 0 + c = k | (d & 0) + d = Vn(b | 0, c | 0, -1, -1) | 0 + k = I + h = x + x = w + w = v + v = u + u = t + t = 0 + do { + a = h + h = (x >>> 31) | (h << 1) + x = t | (x << 1) + g = (v << 1) | (a >>> 31) | 0 + a = (v >>> 31) | (w << 1) | 0 + Xn(d | 0, k | 0, g | 0, a | 0) | 0 + i = I + l = (i >> 31) | (((i | 0) < 0 ? -1 : 0) << 1) + t = l & 1 + v = + Xn( + g | 0, + a | 0, + (l & b) | 0, + (((((i | 0) < 0 ? -1 : 0) >> 31) | + (((i | 0) < 0 ? -1 : 0) << 1)) & + c) | + 0, + ) | 0 + w = I + u = (u - 1) | 0 + } while ((u | 0) != 0) + B = h + C = x + D = w + E = v + F = 0 + G = t + } + t = C + C = 0 + if (e | 0) { + f[e >> 2] = E + f[(e + 4) >> 2] = D + } + n = ((t | 0) >>> 31) | ((B | C) << 1) | (((C << 1) | (t >>> 31)) & 0) | F + o = (((t << 1) | (0 >>> 31)) & -2) | G + return ((I = n), o) | 0 + } + function Md(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + g = u + u = (u + 16) | 0 + h = g + f[(c + 48) >> 2] = d + f[(c + 44) >> 2] = e + e = f[(c + 8) >> 2] | 0 + d = (c + 12) | 0 + i = f[d >> 2] | 0 + if ((i | 0) != (e | 0)) { + j = i + do { + i = (j + -4) | 0 + f[d >> 2] = i + k = f[i >> 2] | 0 + f[i >> 2] = 0 + if (k | 0) Va[f[((f[k >> 2] | 0) + 4) >> 2] & 127](k) + j = f[d >> 2] | 0 + } while ((j | 0) != (e | 0)) + } + e = f[(c + 20) >> 2] | 0 + j = (c + 24) | 0 + d = f[j >> 2] | 0 + if ((d | 0) != (e | 0)) f[j >> 2] = d + (~(((d + -4 - e) | 0) >>> 2) << 2) + e = f[(c + 32) >> 2] | 0 + d = (c + 36) | 0 + j = f[d >> 2] | 0 + if ((j | 0) != (e | 0)) f[d >> 2] = j + (~(((j + -4 - e) | 0) >>> 2) << 2) + if (!(f[(c + 4) >> 2] | 0)) { + e = ln(32) | 0 + f[h >> 2] = e + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 23 + l = e + m = 15706 + n = (l + 23) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(e + 23) >> 0] = 0 + f[a >> 2] = -1 + pj((a + 4) | 0, h) + if ((b[(h + 11) >> 0] | 0) < 0) Oq(f[h >> 2] | 0) + u = g + return + } + Ud(a, c) + if (f[a >> 2] | 0) { + u = g + return + } + e = (a + 4) | 0 + j = (e + 11) | 0 + if ((b[j >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + Wi(a, c) + if (f[a >> 2] | 0) { + u = g + return + } + if ((b[j >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + if (!(Qa[f[((f[c >> 2] | 0) + 16) >> 2] & 127](c) | 0)) { + j = ln(32) | 0 + f[h >> 2] = j + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 29 + l = j + m = 15730 + n = (l + 29) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(j + 29) >> 0] = 0 + f[a >> 2] = -1 + pj(e, h) + if ((b[(h + 11) >> 0] | 0) < 0) Oq(f[h >> 2] | 0) + u = g + return + } + if (!(Qa[f[((f[c >> 2] | 0) + 20) >> 2] & 127](c) | 0)) { + j = ln(32) | 0 + f[h >> 2] = j + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 31 + l = j + m = 15760 + n = (l + 31) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(j + 31) >> 0] = 0 + f[a >> 2] = -1 + pj(e, h) + if ((b[(h + 11) >> 0] | 0) < 0) Oq(f[h >> 2] | 0) + u = g + return + } + if (!(Qa[f[((f[c >> 2] | 0) + 24) >> 2] & 127](c) | 0)) { + j = ln(32) | 0 + f[h >> 2] = j + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 31 + l = j + m = 15792 + n = (l + 31) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(j + 31) >> 0] = 0 + f[a >> 2] = -1 + pj(e, h) + if ((b[(h + 11) >> 0] | 0) < 0) Oq(f[h >> 2] | 0) + u = g + return + } + if (Qa[f[((f[c >> 2] | 0) + 28) >> 2] & 127](c) | 0) { + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = g + return + } + c = ln(48) | 0 + f[h >> 2] = c + f[(h + 8) >> 2] = -2147483600 + f[(h + 4) >> 2] = 34 + l = c + m = 15824 + n = (l + 34) | 0 + do { + b[l >> 0] = b[m >> 0] | 0 + l = (l + 1) | 0 + m = (m + 1) | 0 + } while ((l | 0) < (n | 0)) + b[(c + 34) >> 0] = 0 + f[a >> 2] = -1 + pj(e, h) + if ((b[(h + 11) >> 0] | 0) < 0) Oq(f[h >> 2] | 0) + u = g + return + } + function Nd(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0 + c = u + u = (u + 32) | 0 + d = (c + 4) | 0 + e = c + g = (c + 16) | 0 + h = (a + 48) | 0 + i = f[h >> 2] | 0 + j = ln(32) | 0 + f[d >> 2] = j + f[(d + 8) >> 2] = -2147483616 + f[(d + 4) >> 2] = 20 + k = j + l = 14538 + m = (k + 20) | 0 + do { + b[k >> 0] = b[l >> 0] | 0 + k = (k + 1) | 0 + l = (l + 1) | 0 + } while ((k | 0) < (m | 0)) + b[(j + 20) >> 0] = 0 + j = Fk((i + 24) | 0, d) | 0 + if ((b[(d + 11) >> 0] | 0) < 0) Oq(f[d >> 2] | 0) + i = f[h >> 2] | 0 + n = ln(32) | 0 + f[d >> 2] = n + f[(d + 8) >> 2] = -2147483616 + f[(d + 4) >> 2] = 22 + k = n + l = 14559 + m = (k + 22) | 0 + do { + b[k >> 0] = b[l >> 0] | 0 + k = (k + 1) | 0 + l = (l + 1) | 0 + } while ((k | 0) < (m | 0)) + b[(n + 22) >> 0] = 0 + n = Fk((i + 24) | 0, d) | 0 + if ((b[(d + 11) >> 0] | 0) < 0) Oq(f[d >> 2] | 0) + i = (a + 56) | 0 + o = f[i >> 2] | 0 + f[i >> 2] = 0 + if (o | 0) Va[f[((f[o >> 2] | 0) + 4) >> 2] & 127](o) + o = f[(a + 52) >> 2] | 0 + p = + (((((f[(o + 100) >> 2] | 0) - (f[(o + 96) >> 2] | 0)) | 0) / 12) | + 0) >>> + 0 < + 1e3 + o = f[h >> 2] | 0 + q = ln(32) | 0 + f[d >> 2] = q + f[(d + 8) >> 2] = -2147483616 + f[(d + 4) >> 2] = 18 + k = q + l = 14582 + m = (k + 18) | 0 + do { + b[k >> 0] = b[l >> 0] | 0 + k = (k + 1) | 0 + l = (l + 1) | 0 + } while ((k | 0) < (m | 0)) + b[(q + 18) >> 0] = 0 + q = Hk(o, d, -1) | 0 + if ((b[(d + 11) >> 0] | 0) < 0) Oq(f[d >> 2] | 0) + switch (q | 0) { + case -1: { + if (j ? p | (((mi(f[h >> 2] | 0) | 0) > 4) | (n ^ 1)) : 0) r = 13 + else r = 17 + break + } + case 0: { + if (j) r = 13 + else r = 21 + break + } + case 2: { + r = 17 + break + } + default: + r = 21 + } + if ((r | 0) == 13) { + j = f[(a + 44) >> 2] | 0 + b[g >> 0] = 0 + n = (j + 16) | 0 + h = f[(n + 4) >> 2] | 0 + if (!(((h | 0) > 0) | (((h | 0) == 0) & ((f[n >> 2] | 0) >>> 0 > 0)))) { + f[e >> 2] = f[(j + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(j, d, g, (g + 1) | 0) | 0 + } + j = ln(296) | 0 + _i(j) + n = f[i >> 2] | 0 + f[i >> 2] = j + if (!n) s = j + else { + Va[f[((f[n >> 2] | 0) + 4) >> 2] & 127](n) + r = 21 + } + } else if ((r | 0) == 17) { + n = f[(a + 44) >> 2] | 0 + b[g >> 0] = 2 + j = (n + 16) | 0 + h = f[(j + 4) >> 2] | 0 + if (!(((h | 0) > 0) | (((h | 0) == 0) & ((f[j >> 2] | 0) >>> 0 > 0)))) { + f[e >> 2] = f[(n + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(n, d, g, (g + 1) | 0) | 0 + } + g = ln(360) | 0 + xi(g) + d = f[i >> 2] | 0 + f[i >> 2] = g + if (!d) s = g + else { + Va[f[((f[d >> 2] | 0) + 4) >> 2] & 127](d) + r = 21 + } + } + if ((r | 0) == 21) { + r = f[i >> 2] | 0 + if (!r) { + t = 0 + u = c + return t | 0 + } else s = r + } + t = Ra[f[((f[s >> 2] | 0) + 8) >> 2] & 127](s, a) | 0 + u = c + return t | 0 + } + function Od(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0 + e = (b + 12) | 0 + g = f[e >> 2] | 0 + h = (c + 4) | 0 + i = ((f[h >> 2] | 0) - g) | 0 + j = c + f[j >> 2] = (f[c >> 2] | 0) - g + f[(j + 4) >> 2] = i + i = ((f[d >> 2] | 0) - g) | 0 + j = (d + 4) | 0 + k = ((f[j >> 2] | 0) - g) | 0 + g = d + f[g >> 2] = i + f[(g + 4) >> 2] = k + g = f[e >> 2] | 0 + if ( + ((((k | 0) > -1 ? k : (0 - k) | 0) + ((i | 0) > -1 ? i : (0 - i) | 0)) | + 0) > + (g | 0) + ) { + l = f[c >> 2] | 0 + m = f[h >> 2] | 0 + if ((l | 0) > -1) + if ((m | 0) <= -1) + if ((l | 0) < 1) { + n = -1 + o = -1 + } else p = 6 + else { + n = 1 + o = 1 + } + else if ((m | 0) < 1) { + n = -1 + o = -1 + } else p = 6 + if ((p | 0) == 6) { + n = (l | 0) > 0 ? 1 : -1 + o = (m | 0) > 0 ? 1 : -1 + } + q = X(g, n) | 0 + r = X(g, o) | 0 + g = ((l << 1) - q) | 0 + f[c >> 2] = g + l = ((m << 1) - r) | 0 + f[h >> 2] = l + if ((X(n, o) | 0) > -1) { + o = (0 - l) | 0 + f[c >> 2] = o + s = (0 - g) | 0 + t = o + } else { + f[c >> 2] = l + s = g + t = l + } + f[c >> 2] = (((t + q) | 0) / 2) | 0 + f[h >> 2] = (((s + r) | 0) / 2) | 0 + r = f[d >> 2] | 0 + s = f[j >> 2] | 0 + if ((r | 0) > -1) + if ((s | 0) <= -1) + if ((r | 0) < 1) { + u = -1 + v = -1 + } else p = 14 + else { + u = 1 + v = 1 + } + else if ((s | 0) < 1) { + u = -1 + v = -1 + } else p = 14 + if ((p | 0) == 14) { + u = (r | 0) > 0 ? 1 : -1 + v = (s | 0) > 0 ? 1 : -1 + } + q = f[e >> 2] | 0 + e = X(q, u) | 0 + t = X(q, v) | 0 + q = ((r << 1) - e) | 0 + f[d >> 2] = q + r = ((s << 1) - t) | 0 + f[j >> 2] = r + if ((X(u, v) | 0) > -1) { + v = (0 - r) | 0 + f[d >> 2] = v + w = (0 - q) | 0 + x = v + } else { + f[d >> 2] = r + w = q + x = r + } + r = (((x + e) | 0) / 2) | 0 + f[d >> 2] = r + e = (((w + t) | 0) / 2) | 0 + f[j >> 2] = e + y = r + z = e + } else { + y = i + z = k + } + if (!y) + if (!z) { + A = y + B = z + } else p = 22 + else if (((y | 0) < 0) & ((z | 0) < 1)) { + A = y + B = z + } else p = 22 + if ((p | 0) == 22) { + if (!y) C = (z | 0) == 0 ? 0 : (z | 0) > 0 ? 3 : 1 + else C = (y | 0) > 0 ? ((z >> 31) + 2) | 0 : (z | 0) < 1 ? 0 : 3 + z = f[c >> 2] | 0 + y = f[h >> 2] | 0 + switch (C | 0) { + case 1: { + C = c + f[C >> 2] = y + f[(C + 4) >> 2] = 0 - z + D = f[j >> 2] | 0 + E = (0 - (f[d >> 2] | 0)) | 0 + break + } + case 2: { + C = c + f[C >> 2] = 0 - z + f[(C + 4) >> 2] = 0 - y + D = (0 - (f[d >> 2] | 0)) | 0 + E = (0 - (f[j >> 2] | 0)) | 0 + break + } + case 3: { + C = c + f[C >> 2] = 0 - y + f[(C + 4) >> 2] = z + D = (0 - (f[j >> 2] | 0)) | 0 + E = f[d >> 2] | 0 + break + } + default: { + C = c + f[C >> 2] = z + f[(C + 4) >> 2] = y + D = f[d >> 2] | 0 + E = f[j >> 2] | 0 + } + } + j = d + f[j >> 2] = D + f[(j + 4) >> 2] = E + A = D + B = E + } + E = ((f[c >> 2] | 0) - A) | 0 + f[a >> 2] = E + A = ((f[h >> 2] | 0) - B) | 0 + B = (a + 4) | 0 + f[B >> 2] = A + if ((E | 0) < 0) F = ((f[(b + 4) >> 2] | 0) + E) | 0 + else F = E + f[a >> 2] = F + if ((A | 0) >= 0) { + G = A + f[B >> 2] = G + return + } + G = ((f[(b + 4) >> 2] | 0) + A) | 0 + f[B >> 2] = G + return + } + function Pd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + c = (a + 4) | 0 + if (!b) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) Oq(e) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + e = ra(8) | 0 + Oo(e, 16035) + f[e >> 2] = 7256 + va(e | 0, 1112, 110) + } + e = ln(b << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) Oq(g) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + g = f[c >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (b + -1) | 0 + i = ((h & b) | 0) == 0 + if (!i) + if (e >>> 0 < b >>> 0) j = e + else j = (e >>> 0) % (b >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = c + c = f[g >> 2] | 0 + if (!c) return + else { + k = j + l = g + m = c + n = g + } + a: while (1) { + b: do + if (i) { + g = l + c = m + j = n + while (1) { + e = c + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) break + p = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[p >> 2] | 0)) { + q = e + r = j + s = o + t = p + break b + } + p = (e + 8) | 0 + u = e + while (1) { + v = f[u >> 2] | 0 + if (!v) break + if ((d[p >> 1] | 0) == (d[(v + 8) >> 1] | 0)) u = v + else break + } + f[j >> 2] = v + f[u >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + p = f[g >> 2] | 0 + if (!p) { + w = 37 + break a + } else e = p + } + c = f[e >> 2] | 0 + if (!c) { + w = 37 + break a + } else { + g = e + j = e + } + } + } else { + j = l + g = m + c = n + while (1) { + p = g + while (1) { + x = f[(p + 4) >> 2] | 0 + if (x >>> 0 < b >>> 0) y = x + else y = (x >>> 0) % (b >>> 0) | 0 + if ((y | 0) == (k | 0)) break + x = ((f[a >> 2] | 0) + (y << 2)) | 0 + if (!(f[x >> 2] | 0)) { + q = p + r = c + s = y + t = x + break b + } + x = (p + 8) | 0 + z = p + while (1) { + A = f[z >> 2] | 0 + if (!A) break + if ((d[x >> 1] | 0) == (d[(A + 8) >> 1] | 0)) z = A + else break + } + f[c >> 2] = A + f[z >> 2] = f[f[((f[a >> 2] | 0) + (y << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (y << 2)) >> 2] >> 2] = p + x = f[j >> 2] | 0 + if (!x) { + w = 37 + break a + } else p = x + } + g = f[p >> 2] | 0 + if (!g) { + w = 37 + break a + } else { + j = p + c = p + } + } + } + while (0) + f[t >> 2] = r + m = f[q >> 2] | 0 + if (!m) { + w = 37 + break + } else { + k = s + l = q + n = q + } + } + if ((w | 0) == 37) return + } + function Qd(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0 + d = (a + 4) | 0 + if (!c) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) Oq(e) + f[d >> 2] = 0 + return + } + if (c >>> 0 > 1073741823) { + e = ra(8) | 0 + Oo(e, 16035) + f[e >> 2] = 7256 + va(e | 0, 1112, 110) + } + e = ln(c << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) Oq(g) + f[d >> 2] = c + d = 0 + do { + f[((f[a >> 2] | 0) + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + } while ((d | 0) != (c | 0)) + d = (a + 8) | 0 + g = f[d >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (c + -1) | 0 + i = ((h & c) | 0) == 0 + if (!i) + if (e >>> 0 < c >>> 0) j = e + else j = (e >>> 0) % (c >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = d + d = f[g >> 2] | 0 + if (!d) return + else { + k = j + l = g + m = d + n = g + } + a: while (1) { + b: do + if (i) { + g = l + d = m + j = n + while (1) { + e = d + while (1) { + o = f[(e + 4) >> 2] & h + if ((o | 0) == (k | 0)) break + p = ((f[a >> 2] | 0) + (o << 2)) | 0 + if (!(f[p >> 2] | 0)) { + q = e + r = j + s = o + t = p + break b + } + p = (e + 8) | 0 + u = e + while (1) { + v = f[u >> 2] | 0 + if (!v) break + if ((b[p >> 0] | 0) == (b[(v + 8) >> 0] | 0)) u = v + else break + } + f[j >> 2] = v + f[u >> 2] = f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (o << 2)) >> 2] >> 2] = e + p = f[g >> 2] | 0 + if (!p) { + w = 37 + break a + } else e = p + } + d = f[e >> 2] | 0 + if (!d) { + w = 37 + break a + } else { + g = e + j = e + } + } + } else { + j = l + g = m + d = n + while (1) { + p = g + while (1) { + x = f[(p + 4) >> 2] | 0 + if (x >>> 0 < c >>> 0) y = x + else y = (x >>> 0) % (c >>> 0) | 0 + if ((y | 0) == (k | 0)) break + x = ((f[a >> 2] | 0) + (y << 2)) | 0 + if (!(f[x >> 2] | 0)) { + q = p + r = d + s = y + t = x + break b + } + x = (p + 8) | 0 + z = p + while (1) { + A = f[z >> 2] | 0 + if (!A) break + if ((b[x >> 0] | 0) == (b[(A + 8) >> 0] | 0)) z = A + else break + } + f[d >> 2] = A + f[z >> 2] = f[f[((f[a >> 2] | 0) + (y << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (y << 2)) >> 2] >> 2] = p + x = f[j >> 2] | 0 + if (!x) { + w = 37 + break a + } else p = x + } + g = f[p >> 2] | 0 + if (!g) { + w = 37 + break a + } else { + j = p + d = p + } + } + } + while (0) + f[t >> 2] = r + m = f[q >> 2] | 0 + if (!m) { + w = 37 + break + } else { + k = s + l = q + n = q + } + } + if ((w | 0) == 37) return + } + function Rd(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0 + g = f[c >> 2] | 0 + c = f[b >> 2] | 0 + h = (g - c) | 0 + i = (a + 8) | 0 + j = f[i >> 2] | 0 + if (h >>> 0 < 64) { + if (j >>> 0 <= 1) { + k = 0 + return k | 0 + } + l = f[e >> 2] | 0 + m = 0 + n = 1 + while (1) { + o = + (f[(l + (m << 2)) >> 2] | 0) >>> 0 > + (f[(l + (n << 2)) >> 2] | 0) >>> 0 + ? n + : m + n = (n + 1) | 0 + if (n >>> 0 >= j >>> 0) { + k = o + break + } else m = o + } + return k | 0 + } + if (j) { + j = f[(a + 1128) >> 2] | 0 + m = f[e >> 2] | 0 + e = f[(a + 1140) >> 2] | 0 + n = f[d >> 2] | 0 + d = (b + 4) | 0 + l = (b + 8) | 0 + if ((g | 0) == (c | 0)) { + b = 0 + do { + o = (j + (b << 2)) | 0 + f[o >> 2] = 0 + p = ((f[a >> 2] | 0) - (f[(m + (b << 2)) >> 2] | 0)) | 0 + f[(e + (b << 2)) >> 2] = p + if (p | 0) { + p = f[o >> 2] | 0 + q = (h - p) | 0 + f[o >> 2] = q >>> 0 < p >>> 0 ? p : q + } + b = (b + 1) | 0 + q = f[i >> 2] | 0 + } while (b >>> 0 < q >>> 0) + r = q + } else { + b = 0 + do { + q = (j + (b << 2)) | 0 + f[q >> 2] = 0 + p = ((f[a >> 2] | 0) - (f[(m + (b << 2)) >> 2] | 0)) | 0 + f[(e + (b << 2)) >> 2] = p + if (p | 0) { + o = ((f[(n + (b << 2)) >> 2] | 0) + (1 << (p + -1))) | 0 + p = f[l >> 2] | 0 + s = f[((f[d >> 2] | 0) + 24) >> 2] | 0 + t = c + u = f[q >> 2] | 0 + do { + v = (s + ((X(t, p) | 0) << 2) + (b << 2)) | 0 + u = (u + (((f[v >> 2] | 0) >>> 0 < o >>> 0) & 1)) | 0 + f[q >> 2] = u + t = (t + 1) | 0 + } while ((t | 0) != (g | 0)) + t = (h - u) | 0 + f[q >> 2] = t >>> 0 < u >>> 0 ? u : t + } + b = (b + 1) | 0 + t = f[i >> 2] | 0 + } while (b >>> 0 < t >>> 0) + r = t + } + if (r) { + b = f[(a + 1140) >> 2] | 0 + i = (a + 1128) | 0 + h = 0 + g = 0 + c = 0 + while (1) { + if (!(f[(b + (g << 2)) >> 2] | 0)) { + w = h + x = c + } else { + d = f[((f[i >> 2] | 0) + (g << 2)) >> 2] | 0 + l = h >>> 0 < d >>> 0 + w = l ? d : h + x = l ? g : c + } + g = (g + 1) | 0 + if (g >>> 0 >= r >>> 0) { + y = x + break + } else { + h = w + c = x + } + } + } else y = 0 + } else y = 0 + x = (a + 1088) | 0 + c = (a + 1104) | 0 + w = f[c >> 2] | 0 + h = (32 - w) | 0 + if ((h | 0) < 4) { + r = y & 15 + g = (4 - h) | 0 + f[c >> 2] = g + h = (a + 1100) | 0 + i = f[h >> 2] | (r >>> g) + f[h >> 2] = i + g = (a + 1092) | 0 + b = f[g >> 2] | 0 + if ((b | 0) == (f[(a + 1096) >> 2] | 0)) Ri(x, h) + else { + f[b >> 2] = i + f[g >> 2] = b + 4 + } + f[h >> 2] = r << (32 - (f[c >> 2] | 0)) + k = y + return k | 0 + } + r = (a + 1100) | 0 + h = f[r >> 2] | ((y << 28) >>> w) + f[r >> 2] = h + b = (w + 4) | 0 + f[c >> 2] = b + if ((b | 0) != 32) { + k = y + return k | 0 + } + b = (a + 1092) | 0 + w = f[b >> 2] | 0 + if ((w | 0) == (f[(a + 1096) >> 2] | 0)) Ri(x, r) + else { + f[w >> 2] = h + f[b >> 2] = w + 4 + } + f[r >> 2] = 0 + f[c >> 2] = 0 + k = y + return k | 0 + } + function Sd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0 + c = (a + 4) | 0 + if (!b) { + d = f[a >> 2] | 0 + f[a >> 2] = 0 + if (d | 0) Oq(d) + f[c >> 2] = 0 + return + } + if (b >>> 0 > 1073741823) { + d = ra(8) | 0 + Oo(d, 16035) + f[d >> 2] = 7256 + va(d | 0, 1112, 110) + } + d = ln(b << 2) | 0 + e = f[a >> 2] | 0 + f[a >> 2] = d + if (e | 0) Oq(e) + f[c >> 2] = b + c = 0 + do { + f[((f[a >> 2] | 0) + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } while ((c | 0) != (b | 0)) + c = (a + 8) | 0 + e = f[c >> 2] | 0 + if (!e) return + d = f[(e + 4) >> 2] | 0 + g = (b + -1) | 0 + h = ((g & b) | 0) == 0 + if (!h) + if (d >>> 0 < b >>> 0) i = d + else i = (d >>> 0) % (b >>> 0) | 0 + else i = d & g + f[((f[a >> 2] | 0) + (i << 2)) >> 2] = c + c = f[e >> 2] | 0 + if (!c) return + else { + j = i + k = e + l = c + m = e + } + a: while (1) { + b: do + if (h) { + e = k + c = l + i = m + while (1) { + d = c + while (1) { + n = f[(d + 4) >> 2] & g + if ((n | 0) == (j | 0)) break + o = ((f[a >> 2] | 0) + (n << 2)) | 0 + if (!(f[o >> 2] | 0)) { + p = d + q = i + r = n + s = o + break b + } + o = (d + 8) | 0 + t = d + while (1) { + u = f[t >> 2] | 0 + if (!u) break + if ((f[o >> 2] | 0) == (f[(u + 8) >> 2] | 0)) t = u + else break + } + f[i >> 2] = u + f[t >> 2] = f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (n << 2)) >> 2] >> 2] = d + o = f[e >> 2] | 0 + if (!o) { + v = 37 + break a + } else d = o + } + c = f[d >> 2] | 0 + if (!c) { + v = 37 + break a + } else { + e = d + i = d + } + } + } else { + i = k + e = l + c = m + while (1) { + o = e + while (1) { + w = f[(o + 4) >> 2] | 0 + if (w >>> 0 < b >>> 0) x = w + else x = (w >>> 0) % (b >>> 0) | 0 + if ((x | 0) == (j | 0)) break + w = ((f[a >> 2] | 0) + (x << 2)) | 0 + if (!(f[w >> 2] | 0)) { + p = o + q = c + r = x + s = w + break b + } + w = (o + 8) | 0 + y = o + while (1) { + z = f[y >> 2] | 0 + if (!z) break + if ((f[w >> 2] | 0) == (f[(z + 8) >> 2] | 0)) y = z + else break + } + f[c >> 2] = z + f[y >> 2] = f[f[((f[a >> 2] | 0) + (x << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (x << 2)) >> 2] >> 2] = o + w = f[i >> 2] | 0 + if (!w) { + v = 37 + break a + } else o = w + } + e = f[o >> 2] | 0 + if (!e) { + v = 37 + break a + } else { + i = o + c = o + } + } + } + while (0) + f[s >> 2] = q + l = f[p >> 2] | 0 + if (!l) { + v = 37 + break + } else { + j = r + k = p + m = p + } + } + if ((v | 0) == 37) return + } + function Td(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + d = (a + 4) | 0 + if (!c) { + e = f[a >> 2] | 0 + f[a >> 2] = 0 + if (e | 0) Oq(e) + f[d >> 2] = 0 + return + } + if (c >>> 0 > 1073741823) { + e = ra(8) | 0 + Oo(e, 16035) + f[e >> 2] = 7256 + va(e | 0, 1112, 110) + } + e = ln(c << 2) | 0 + g = f[a >> 2] | 0 + f[a >> 2] = e + if (g | 0) Oq(g) + f[d >> 2] = c + d = 0 + do { + f[((f[a >> 2] | 0) + (d << 2)) >> 2] = 0 + d = (d + 1) | 0 + } while ((d | 0) != (c | 0)) + d = (a + 8) | 0 + g = f[d >> 2] | 0 + if (!g) return + e = f[(g + 4) >> 2] | 0 + h = (c + -1) | 0 + i = ((h & c) | 0) == 0 + if (!i) + if (e >>> 0 < c >>> 0) j = e + else j = (e >>> 0) % (c >>> 0) | 0 + else j = e & h + f[((f[a >> 2] | 0) + (j << 2)) >> 2] = d + d = f[g >> 2] | 0 + if (!d) return + e = (a + 24) | 0 + k = j + j = g + l = d + d = g + a: while (1) { + g = j + m = l + n = d + b: while (1) { + o = m + while (1) { + p = f[(o + 4) >> 2] | 0 + if (!i) + if (p >>> 0 < c >>> 0) q = p + else q = (p >>> 0) % (c >>> 0) | 0 + else q = p & h + if ((q | 0) == (k | 0)) break + r = ((f[a >> 2] | 0) + (q << 2)) | 0 + if (!(f[r >> 2] | 0)) break b + p = f[o >> 2] | 0 + c: do + if (!p) s = o + else { + t = f[(o + 8) >> 2] | 0 + u = f[e >> 2] | 0 + v = f[(u + 8) >> 2] | 0 + w = ((f[(u + 12) >> 2] | 0) - v) | 0 + u = v + v = w >>> 2 + if ((w | 0) > 0) { + x = o + y = p + } else { + w = p + while (1) { + z = f[w >> 2] | 0 + if (!z) { + s = w + break c + } else w = z + } + } + while (1) { + w = f[(y + 8) >> 2] | 0 + z = 0 + do { + A = f[(u + (z << 2)) >> 2] | 0 + if (!(b[(A + 84) >> 0] | 0)) { + B = f[(A + 68) >> 2] | 0 + C = f[(B + (w << 2)) >> 2] | 0 + D = f[(B + (t << 2)) >> 2] | 0 + } else { + C = w + D = t + } + z = (z + 1) | 0 + if ((D | 0) != (C | 0)) { + s = x + break c + } + } while ((z | 0) < (v | 0)) + z = f[y >> 2] | 0 + if (!z) { + s = y + break + } else { + w = y + y = z + x = w + } + } + } + while (0) + f[n >> 2] = f[s >> 2] + f[s >> 2] = f[f[((f[a >> 2] | 0) + (q << 2)) >> 2] >> 2] + f[f[((f[a >> 2] | 0) + (q << 2)) >> 2] >> 2] = o + p = f[g >> 2] | 0 + if (!p) { + E = 38 + break a + } else o = p + } + m = f[o >> 2] | 0 + if (!m) { + E = 38 + break a + } else { + g = o + n = o + } + } + f[r >> 2] = n + l = f[o >> 2] | 0 + if (!l) { + E = 38 + break + } else { + k = q + j = o + d = o + } + } + if ((E | 0) == 38) return + } + function Ud(a, c) { + a = a | 0 + c = c | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0 + e = u + u = (u + 16) | 0 + g = (e + 4) | 0 + h = e + i = (e + 12) | 0 + j = (e + 11) | 0 + k = (e + 10) | 0 + l = (e + 8) | 0 + m = (c + 44) | 0 + n = f[m >> 2] | 0 + o = (n + 16) | 0 + p = f[(o + 4) >> 2] | 0 + if (!(((p | 0) > 0) | (((p | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(n + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(n, g, 15886, 15891) | 0 + } + n = Qa[f[((f[c >> 2] | 0) + 8) >> 2] & 127](c) | 0 + b[i >> 0] = n + b[j >> 0] = 2 + b[k >> 0] = ((n & 255) | 0) == 0 ? 3 : 2 + n = f[m >> 2] | 0 + o = (n + 16) | 0 + p = f[(o + 4) >> 2] | 0 + if (!(((p | 0) > 0) | (((p | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(n + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(n, g, j, (j + 1) | 0) | 0 + j = f[m >> 2] | 0 + o = (j + 16) | 0 + p = f[(o + 4) >> 2] | 0 + if (!(((p | 0) > 0) | (((p | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(j + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(j, g, k, (k + 1) | 0) | 0 + k = f[m >> 2] | 0 + o = (k + 16) | 0 + p = f[(o + 4) >> 2] | 0 + if (((p | 0) > 0) | (((p | 0) == 0) & ((f[o >> 2] | 0) >>> 0 > 0))) { + q = h + r = k + } else { + f[h >> 2] = f[(k + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(k, g, i, (i + 1) | 0) | 0 + q = h + r = f[m >> 2] | 0 + } + } else { + s = h + t = j + v = 6 + } + } else { + s = h + t = n + v = 6 + } + if ((v | 0) == 6) { + q = h + r = t + } + t = Qa[f[((f[c >> 2] | 0) + 12) >> 2] & 127](c) | 0 + b[l >> 0] = t + t = (r + 16) | 0 + q = f[(t + 4) >> 2] | 0 + if (!(((q | 0) > 0) | (((q | 0) == 0) & ((f[t >> 2] | 0) >>> 0 > 0)))) { + f[h >> 2] = f[(r + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(r, g, l, (l + 1) | 0) | 0 + } + d[l >> 1] = (f[((f[(c + 4) >> 2] | 0) + 4) >> 2] | 0) == 0 ? 0 : -32768 + c = f[m >> 2] | 0 + m = (c + 16) | 0 + r = f[(m + 4) >> 2] | 0 + if (((r | 0) > 0) | (((r | 0) == 0) & ((f[m >> 2] | 0) >>> 0 > 0))) { + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + f[h >> 2] = f[(c + 4) >> 2] + f[g >> 2] = f[h >> 2] + Me(c, g, l, (l + 2) | 0) | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = e + return + } + function Vd(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0 + e = u + u = (u + 176) | 0 + g = (e + 136) | 0 + h = (e + 104) | 0 + i = e + j = (e + 72) | 0 + k = ln(88) | 0 + l = f[(c + 8) >> 2] | 0 + f[(k + 4) >> 2] = 0 + f[k >> 2] = 3612 + m = (k + 12) | 0 + f[m >> 2] = 3636 + n = (k + 64) | 0 + f[n >> 2] = 0 + f[(k + 68) >> 2] = 0 + f[(k + 72) >> 2] = 0 + o = (k + 16) | 0 + p = (o + 44) | 0 + do { + f[o >> 2] = 0 + o = (o + 4) | 0 + } while ((o | 0) < (p | 0)) + f[(k + 76) >> 2] = l + f[(k + 80) >> 2] = d + q = (k + 84) | 0 + f[q >> 2] = 0 + r = k + f[h >> 2] = 3636 + s = (h + 4) | 0 + t = (s + 4) | 0 + f[t >> 2] = 0 + f[(t + 4) >> 2] = 0 + f[(t + 8) >> 2] = 0 + f[(t + 12) >> 2] = 0 + f[(t + 16) >> 2] = 0 + f[(t + 20) >> 2] = 0 + t = f[(c + 12) >> 2] | 0 + v = (i + 4) | 0 + f[v >> 2] = 3636 + w = (i + 56) | 0 + f[w >> 2] = 0 + x = (i + 60) | 0 + f[x >> 2] = 0 + f[(i + 64) >> 2] = 0 + o = (i + 8) | 0 + p = (o + 44) | 0 + do { + f[o >> 2] = 0 + o = (o + 4) | 0 + } while ((o | 0) < (p | 0)) + o = t + f[s >> 2] = o + s = (((((f[(o + 4) >> 2] | 0) - (f[t >> 2] | 0)) >> 2) >>> 0) / 3) | 0 + b[g >> 0] = 0 + qh((h + 8) | 0, s, g) + Va[f[((f[h >> 2] | 0) + 8) >> 2] & 127](h) + Ff(j, h) + Ff(g, j) + f[i >> 2] = f[(g + 4) >> 2] + s = (i + 4) | 0 + fg(s, g) | 0 + f[g >> 2] = 3636 + o = f[(g + 20) >> 2] | 0 + if (o | 0) Oq(o) + o = f[(g + 8) >> 2] | 0 + if (o | 0) Oq(o) + f[(i + 36) >> 2] = t + f[(i + 40) >> 2] = d + f[(i + 44) >> 2] = l + f[(i + 48) >> 2] = k + f[j >> 2] = 3636 + l = f[(j + 20) >> 2] | 0 + if (l | 0) Oq(l) + l = f[(j + 8) >> 2] | 0 + if (l | 0) Oq(l) + f[q >> 2] = c + 72 + f[(k + 8) >> 2] = f[i >> 2] + fg(m, s) | 0 + s = (k + 44) | 0 + k = (i + 36) | 0 + f[s >> 2] = f[k >> 2] + f[(s + 4) >> 2] = f[(k + 4) >> 2] + f[(s + 8) >> 2] = f[(k + 8) >> 2] + f[(s + 12) >> 2] = f[(k + 12) >> 2] + b[(s + 16) >> 0] = b[(k + 16) >> 0] | 0 + ng(n, f[w >> 2] | 0, f[x >> 2] | 0) + f[a >> 2] = r + r = f[w >> 2] | 0 + if (r | 0) { + w = f[x >> 2] | 0 + if ((w | 0) != (r | 0)) + f[x >> 2] = w + (~(((w + -4 - r) | 0) >>> 2) << 2) + Oq(r) + } + f[v >> 2] = 3636 + v = f[(i + 24) >> 2] | 0 + if (v | 0) Oq(v) + v = f[(i + 12) >> 2] | 0 + if (v | 0) Oq(v) + f[h >> 2] = 3636 + v = f[(h + 20) >> 2] | 0 + if (v | 0) Oq(v) + v = f[(h + 8) >> 2] | 0 + if (!v) { + u = e + return + } + Oq(v) + u = e + return + } + function Wd(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = Oa, + x = 0, + y = Oa, + z = Oa, + A = Oa + e = u + u = (u + 16) | 0 + g = e + h = (a + 4) | 0 + if ((f[h >> 2] | 0) != -1) { + i = 0 + u = e + return i | 0 + } + f[h >> 2] = d + d = b[(c + 24) >> 0] | 0 + h = (d << 24) >> 24 + j = (a + 20) | 0 + n[j >> 2] = $(0.0) + f[g >> 2] = 0 + k = (g + 4) | 0 + f[k >> 2] = 0 + f[(g + 8) >> 2] = 0 + do + if ((d << 24) >> 24) + if ((d << 24) >> 24 < 0) aq(g) + else { + l = h << 2 + m = ln(l) | 0 + f[g >> 2] = m + o = (m + (h << 2)) | 0 + f[(g + 8) >> 2] = o + sj(m | 0, 0, l | 0) | 0 + l = (m + (h << 2)) | 0 + f[k >> 2] = l + p = m + q = l + r = o + break + } + else { + p = 0 + q = 0 + r = 0 + } + while (0) + k = (a + 8) | 0 + g = f[k >> 2] | 0 + o = (a + 12) | 0 + if (!g) s = (a + 16) | 0 + else { + l = f[o >> 2] | 0 + if ((l | 0) != (g | 0)) + f[o >> 2] = l + (~(((l + -4 - g) | 0) >>> 2) << 2) + Oq(g) + g = (a + 16) | 0 + f[g >> 2] = 0 + f[o >> 2] = 0 + f[k >> 2] = 0 + s = g + } + f[k >> 2] = p + f[o >> 2] = q + f[s >> 2] = r + r = h >>> 0 > 1073741823 ? -1 : h << 2 + s = Lq(r) | 0 + q = Lq(r) | 0 + r = (c + 48) | 0 + o = f[r >> 2] | 0 + g = (c + 40) | 0 + a = f[g >> 2] | 0 + l = f[c >> 2] | 0 + kh(q | 0, ((f[l >> 2] | 0) + o) | 0, a | 0) | 0 + kh(p | 0, ((f[l >> 2] | 0) + o) | 0, a | 0) | 0 + a = r + r = f[a >> 2] | 0 + o = f[(a + 4) >> 2] | 0 + a = g + g = f[a >> 2] | 0 + l = f[(a + 4) >> 2] | 0 + a = f[c >> 2] | 0 + kh(s | 0, ((f[a >> 2] | 0) + r) | 0, g | 0) | 0 + p = f[(c + 80) >> 2] | 0 + a: do + if (p >>> 0 > 1) { + if ((d << 24) >> 24 <= 0) { + c = 1 + while (1) { + m = un(g | 0, l | 0, c | 0, 0) | 0 + t = Vn(m | 0, I | 0, r | 0, o | 0) | 0 + kh(q | 0, ((f[a >> 2] | 0) + t) | 0, g | 0) | 0 + c = (c + 1) | 0 + if (c >>> 0 >= p >>> 0) break a + } + } + c = f[k >> 2] | 0 + t = 1 + do { + m = un(g | 0, l | 0, t | 0, 0) | 0 + v = Vn(m | 0, I | 0, r | 0, o | 0) | 0 + kh(q | 0, ((f[a >> 2] | 0) + v) | 0, g | 0) | 0 + v = 0 + do { + m = (c + (v << 2)) | 0 + w = $(n[m >> 2]) + x = (q + (v << 2)) | 0 + y = $(n[x >> 2]) + if (w > y) { + n[m >> 2] = y + z = $(n[x >> 2]) + } else z = y + x = (s + (v << 2)) | 0 + if ($(n[x >> 2]) < z) n[x >> 2] = z + v = (v + 1) | 0 + } while ((v | 0) != (h | 0)) + t = (t + 1) | 0 + } while (t >>> 0 < p >>> 0) + } + while (0) + if ((d << 24) >> 24 > 0) { + d = f[k >> 2] | 0 + k = 0 + z = $(n[j >> 2]) + while (1) { + y = $(n[(s + (k << 2)) >> 2]) + w = $(y - $(n[(d + (k << 2)) >> 2])) + if (w > z) { + n[j >> 2] = w + A = w + } else A = z + k = (k + 1) | 0 + if ((k | 0) == (h | 0)) break + else z = A + } + } + Mq(q) + Mq(s) + i = 1 + u = e + return i | 0 + } + function Xd(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0 + g = (a + 8) | 0 + Mh(g, b, d, e) + h = (d - e) | 0 + if ((h | 0) > 0) { + d = (0 - e) | 0 + i = (a + 16) | 0 + j = (a + 32) | 0 + k = (a + 12) | 0 + l = (a + 28) | 0 + m = (a + 20) | 0 + n = (a + 24) | 0 + o = h + h = f[g >> 2] | 0 + while (1) { + p = (b + (o << 2)) | 0 + q = (c + (o << 2)) | 0 + if ((h | 0) > 0) { + r = 0 + s = (p + (d << 2)) | 0 + t = h + while (1) { + if ((t | 0) > 0) { + u = 0 + do { + v = f[(s + (u << 2)) >> 2] | 0 + w = f[i >> 2] | 0 + if ((v | 0) > (w | 0)) { + x = f[j >> 2] | 0 + f[(x + (u << 2)) >> 2] = w + y = x + } else { + x = f[k >> 2] | 0 + w = f[j >> 2] | 0 + f[(w + (u << 2)) >> 2] = (v | 0) < (x | 0) ? x : v + y = w + } + u = (u + 1) | 0 + } while ((u | 0) < (f[g >> 2] | 0)) + z = y + } else z = f[j >> 2] | 0 + u = + ((f[(p + (r << 2)) >> 2] | 0) - (f[(z + (r << 2)) >> 2] | 0)) | + 0 + w = (q + (r << 2)) | 0 + f[w >> 2] = u + if ((u | 0) >= (f[l >> 2] | 0)) { + if ((u | 0) > (f[n >> 2] | 0)) { + A = (u - (f[m >> 2] | 0)) | 0 + B = 31 + } + } else { + A = ((f[m >> 2] | 0) + u) | 0 + B = 31 + } + if ((B | 0) == 31) { + B = 0 + f[w >> 2] = A + } + r = (r + 1) | 0 + w = f[g >> 2] | 0 + if ((r | 0) >= (w | 0)) { + C = w + break + } else { + s = z + t = w + } + } + } else C = h + o = (o - e) | 0 + if ((o | 0) <= 0) { + D = C + break + } else h = C + } + } else D = f[g >> 2] | 0 + C = e >>> 0 > 1073741823 ? -1 : e << 2 + e = Lq(C) | 0 + sj(e | 0, 0, C | 0) | 0 + if ((D | 0) <= 0) { + Mq(e) + return 1 + } + C = (a + 16) | 0 + h = (a + 32) | 0 + o = (a + 12) | 0 + z = (a + 28) | 0 + A = (a + 20) | 0 + m = (a + 24) | 0 + a = 0 + n = e + l = D + while (1) { + if ((l | 0) > 0) { + D = 0 + do { + j = f[(n + (D << 2)) >> 2] | 0 + y = f[C >> 2] | 0 + if ((j | 0) > (y | 0)) { + k = f[h >> 2] | 0 + f[(k + (D << 2)) >> 2] = y + E = k + } else { + k = f[o >> 2] | 0 + y = f[h >> 2] | 0 + f[(y + (D << 2)) >> 2] = (j | 0) < (k | 0) ? k : j + E = y + } + D = (D + 1) | 0 + } while ((D | 0) < (f[g >> 2] | 0)) + F = E + } else F = f[h >> 2] | 0 + D = ((f[(b + (a << 2)) >> 2] | 0) - (f[(F + (a << 2)) >> 2] | 0)) | 0 + y = (c + (a << 2)) | 0 + f[y >> 2] = D + if ((D | 0) >= (f[z >> 2] | 0)) { + if ((D | 0) > (f[m >> 2] | 0)) { + G = (D - (f[A >> 2] | 0)) | 0 + B = 16 + } + } else { + G = ((f[A >> 2] | 0) + D) | 0 + B = 16 + } + if ((B | 0) == 16) { + B = 0 + f[y >> 2] = G + } + a = (a + 1) | 0 + l = f[g >> 2] | 0 + if ((a | 0) >= (l | 0)) break + else n = F + } + Mq(e) + return 1 + } + function Yd(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0 + e = f[a >> 2] | 0 + g = e + h = ((f[b >> 2] | 0) - g) | 0 + b = (e + ((h >> 2) << 2)) | 0 + i = f[c >> 2] | 0 + c = f[d >> 2] | 0 + d = (c - i) | 0 + j = d >> 2 + k = i + l = c + if ((d | 0) <= 0) { + m = b + return m | 0 + } + d = (a + 8) | 0 + n = f[d >> 2] | 0 + o = (a + 4) | 0 + p = f[o >> 2] | 0 + q = p + if ((j | 0) <= (((n - q) >> 2) | 0)) { + r = b + s = (q - r) | 0 + t = s >> 2 + if ((j | 0) > (t | 0)) { + u = (k + (t << 2)) | 0 + t = u + if ((u | 0) == (l | 0)) v = p + else { + w = (l + -4 - t) | 0 + x = u + u = p + while (1) { + f[u >> 2] = f[x >> 2] + x = (x + 4) | 0 + if ((x | 0) == (l | 0)) break + else u = (u + 4) | 0 + } + u = (p + (((w >>> 2) + 1) << 2)) | 0 + f[o >> 2] = u + v = u + } + if ((s | 0) > 0) { + y = t + z = v + } else { + m = b + return m | 0 + } + } else { + y = c + z = p + } + c = (z - (b + (j << 2))) >> 2 + v = (b + (c << 2)) | 0 + if (v >>> 0 < p >>> 0) { + t = ((p + ((0 - c) << 2) + ~r) | 0) >>> 2 + r = v + s = z + while (1) { + f[s >> 2] = f[r >> 2] + r = (r + 4) | 0 + if (r >>> 0 >= p >>> 0) break + else s = (s + 4) | 0 + } + f[o >> 2] = z + ((t + 1) << 2) + } + if (c | 0) { + c = v + v = z + do { + c = (c + -4) | 0 + v = (v + -4) | 0 + f[v >> 2] = f[c >> 2] + } while ((c | 0) != (b | 0)) + } + c = y + if ((k | 0) == (c | 0)) { + m = b + return m | 0 + } else { + A = b + B = k + } + while (1) { + f[A >> 2] = f[B >> 2] + B = (B + 4) | 0 + if ((B | 0) == (c | 0)) { + m = b + break + } else A = (A + 4) | 0 + } + return m | 0 + } + A = (((q - g) >> 2) + j) | 0 + if (A >>> 0 > 1073741823) aq(a) + j = (n - g) | 0 + g = j >> 1 + n = (j >> 2) >>> 0 < 536870911 ? (g >>> 0 < A >>> 0 ? A : g) : 1073741823 + g = b + A = h >> 2 + do + if (n) + if (n >>> 0 > 1073741823) { + j = ra(8) | 0 + Oo(j, 16035) + f[j >> 2] = 7256 + va(j | 0, 1112, 110) + } else { + j = ln(n << 2) | 0 + C = j + D = j + break + } + else { + C = 0 + D = 0 + } + while (0) + j = (D + (A << 2)) | 0 + A = (D + (n << 2)) | 0 + if ((l | 0) == (k | 0)) E = j + else { + n = ((((l + -4 - i) | 0) >>> 2) + 1) | 0 + i = k + k = j + while (1) { + f[k >> 2] = f[i >> 2] + i = (i + 4) | 0 + if ((i | 0) == (l | 0)) break + else k = (k + 4) | 0 + } + E = (j + (n << 2)) | 0 + } + if ((h | 0) > 0) kh(C | 0, e | 0, h | 0) | 0 + h = (q - g) | 0 + if ((h | 0) > 0) { + kh(E | 0, b | 0, h | 0) | 0 + F = (E + ((h >>> 2) << 2)) | 0 + } else F = E + f[a >> 2] = D + f[o >> 2] = F + f[d >> 2] = A + if (!e) { + m = j + return m | 0 + } + Oq(e) + m = j + return m | 0 + } + function Zd(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0 + c = u + u = (u + 48) | 0 + d = (c + 40) | 0 + e = (c + 36) | 0 + g = (c + 32) | 0 + h = c + i = (a + 60) | 0 + ci(f[i >> 2] | 0, b) | 0 + wn(h) + tk(h) + j = f[(a + 56) >> 2] | 0 + k = f[i >> 2] | 0 + i = k >>> 5 + l = (j + (i << 2)) | 0 + m = k & 31 + k = (i | 0) != 0 + a: do + if (i | m | 0) { + if (!m) { + n = 1 + o = j + p = k + while (1) { + if (p) { + q = n + r = 0 + while (1) { + s = ((f[o >> 2] & (1 << r)) | 0) != 0 + fj(h, q ^ s ^ 1) + if ((r | 0) == 31) { + t = s + break + } else { + q = s + r = (r + 1) | 0 + } + } + } else { + r = n + q = 0 + while (1) { + s = ((f[o >> 2] & (1 << q)) | 0) != 0 + fj(h, r ^ s ^ 1) + if ((q | 0) == 31) { + t = s + break + } else { + r = s + q = (q + 1) | 0 + } + } + } + o = (o + 4) | 0 + if ((l | 0) == (o | 0)) break a + else { + n = t + p = 1 + } + } + } + if (k) { + p = 1 + n = j + while (1) { + o = p + q = 0 + while (1) { + r = o + o = ((f[n >> 2] & (1 << q)) | 0) != 0 + fj(h, r ^ o ^ 1) + if ((q | 0) == 31) break + else q = (q + 1) | 0 + } + q = (n + 4) | 0 + if ((l | 0) == (q | 0)) { + v = o + w = q + break + } else { + p = o + n = q + } + } + } else { + v = 1 + w = j + } + n = v + p = 0 + do { + q = n + n = ((f[w >> 2] & (1 << p)) | 0) != 0 + fj(h, q ^ n ^ 1) + p = (p + 1) | 0 + } while ((p | 0) != (m | 0)) + } + while (0) + ld(h, b) + f[g >> 2] = f[(a + 12) >> 2] + m = (b + 16) | 0 + w = m + v = f[w >> 2] | 0 + j = f[(w + 4) >> 2] | 0 + if (((j | 0) > 0) | (((j | 0) == 0) & (v >>> 0 > 0))) { + x = j + y = v + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + v = m + x = f[(v + 4) >> 2] | 0 + y = f[v >> 2] | 0 + } + f[g >> 2] = f[(a + 20) >> 2] + if (((x | 0) > 0) | (((x | 0) == 0) & (y >>> 0 > 0))) { + Fj(h) + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + Fj(h) + u = c + return 1 + } + function _d(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0 + switch (((b - a) >> 2) | 0) { + case 2: { + d = (b + -4) | 0 + e = f[d >> 2] | 0 + g = f[a >> 2] | 0 + h = f[c >> 2] | 0 + i = f[h >> 2] | 0 + j = ((f[(h + 4) >> 2] | 0) - i) >> 3 + if (j >>> 0 <= e >>> 0) aq(h) + k = i + if (j >>> 0 <= g >>> 0) aq(h) + if ( + (f[(k + (e << 3)) >> 2] | 0) >>> 0 >= + (f[(k + (g << 3)) >> 2] | 0) >>> 0 + ) { + l = 1 + return l | 0 + } + f[a >> 2] = e + f[d >> 2] = g + l = 1 + return l | 0 + } + case 3: { + Vg(a, (a + 4) | 0, (b + -4) | 0, c) | 0 + l = 1 + return l | 0 + } + case 4: { + jh(a, (a + 4) | 0, (a + 8) | 0, (b + -4) | 0, c) | 0 + l = 1 + return l | 0 + } + case 5: { + ig(a, (a + 4) | 0, (a + 8) | 0, (a + 12) | 0, (b + -4) | 0, c) | 0 + l = 1 + return l | 0 + } + case 1: + case 0: { + l = 1 + return l | 0 + } + default: { + g = (a + 8) | 0 + Vg(a, (a + 4) | 0, g, c) | 0 + d = (a + 12) | 0 + a: do + if ((d | 0) != (b | 0)) { + e = f[c >> 2] | 0 + k = f[e >> 2] | 0 + h = ((f[(e + 4) >> 2] | 0) - k) >> 3 + j = k + k = d + i = 0 + m = g + b: while (1) { + n = f[k >> 2] | 0 + o = f[m >> 2] | 0 + if (h >>> 0 <= n >>> 0) { + p = 14 + break + } + if (h >>> 0 <= o >>> 0) { + p = 16 + break + } + q = (j + (n << 3)) | 0 + if ( + (f[q >> 2] | 0) >>> 0 < + (f[(j + (o << 3)) >> 2] | 0) >>> 0 + ) { + r = m + s = k + t = o + while (1) { + f[s >> 2] = t + if ((r | 0) == (a | 0)) { + u = a + break + } + o = (r + -4) | 0 + t = f[o >> 2] | 0 + if (h >>> 0 <= t >>> 0) { + p = 20 + break b + } + if ( + (f[q >> 2] | 0) >>> 0 >= + (f[(j + (t << 3)) >> 2] | 0) >>> 0 + ) { + u = r + break + } else { + v = r + r = o + s = v + } + } + f[u >> 2] = n + s = (i + 1) | 0 + if ((s | 0) == 8) { + w = 0 + x = ((k + 4) | 0) == (b | 0) + break a + } else y = s + } else y = i + s = (k + 4) | 0 + if ((s | 0) == (b | 0)) { + w = 1 + x = 0 + break a + } else { + r = k + k = s + i = y + m = r + } + } + if ((p | 0) == 14) aq(e) + else if ((p | 0) == 16) aq(e) + else if ((p | 0) == 20) aq(e) + } else { + w = 1 + x = 0 + } + while (0) + l = x | w + return l | 0 + } + } + return 0 + } + function $d(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0 + c = u + u = (u + 48) | 0 + d = (c + 40) | 0 + e = (c + 36) | 0 + g = (c + 32) | 0 + h = c + i = (a + 80) | 0 + ci(f[i >> 2] | 0, b) | 0 + wn(h) + tk(h) + j = f[(a + 76) >> 2] | 0 + k = f[i >> 2] | 0 + i = k >>> 5 + l = (j + (i << 2)) | 0 + m = k & 31 + k = (i | 0) != 0 + a: do + if (i | m | 0) { + if (!m) { + n = 1 + o = j + p = k + while (1) { + if (p) { + q = n + r = 0 + while (1) { + s = ((f[o >> 2] & (1 << r)) | 0) != 0 + fj(h, q ^ s ^ 1) + if ((r | 0) == 31) { + t = s + break + } else { + q = s + r = (r + 1) | 0 + } + } + } else { + r = n + q = 0 + while (1) { + s = ((f[o >> 2] & (1 << q)) | 0) != 0 + fj(h, r ^ s ^ 1) + if ((q | 0) == 31) { + t = s + break + } else { + r = s + q = (q + 1) | 0 + } + } + } + o = (o + 4) | 0 + if ((l | 0) == (o | 0)) break a + else { + n = t + p = 1 + } + } + } + if (k) { + p = 1 + n = j + while (1) { + o = p + q = 0 + while (1) { + r = o + o = ((f[n >> 2] & (1 << q)) | 0) != 0 + fj(h, r ^ o ^ 1) + if ((q | 0) == 31) break + else q = (q + 1) | 0 + } + q = (n + 4) | 0 + if ((l | 0) == (q | 0)) { + v = o + w = q + break + } else { + p = o + n = q + } + } + } else { + v = 1 + w = j + } + n = v + p = 0 + do { + q = n + n = ((f[w >> 2] & (1 << p)) | 0) != 0 + fj(h, q ^ n ^ 1) + p = (p + 1) | 0 + } while ((p | 0) != (m | 0)) + } + while (0) + ld(h, b) + f[g >> 2] = f[(a + 12) >> 2] + m = (b + 16) | 0 + w = m + v = f[w >> 2] | 0 + j = f[(w + 4) >> 2] | 0 + if (((j | 0) > 0) | (((j | 0) == 0) & (v >>> 0 > 0))) { + x = j + y = v + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + v = m + x = f[(v + 4) >> 2] | 0 + y = f[v >> 2] | 0 + } + f[g >> 2] = f[(a + 16) >> 2] + if (((x | 0) > 0) | (((x | 0) == 0) & (y >>> 0 > 0))) { + Fj(h) + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + Fj(h) + u = c + return 1 + } + function ae(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0 + h = u + u = (u + 16) | 0 + i = (h + 4) | 0 + j = h + f[(a + 72) >> 2] = e + f[(a + 64) >> 2] = g + g = Lq(e >>> 0 > 1073741823 ? -1 : e << 2) | 0 + k = (a + 68) | 0 + l = f[k >> 2] | 0 + f[k >> 2] = g + if (l | 0) Mq(l) + l = (a + 8) | 0 + Mh(l, b, d, e) + d = (a + 56) | 0 + g = f[d >> 2] | 0 + m = f[(g + 4) >> 2] | 0 + n = f[g >> 2] | 0 + o = (m - n) | 0 + if ((o | 0) <= 0) { + u = h + return 1 + } + p = ((o >>> 2) + -1) | 0 + o = (a + 16) | 0 + q = (a + 32) | 0 + r = (a + 12) | 0 + s = (a + 28) | 0 + t = (a + 20) | 0 + v = (a + 24) | 0 + if (((m - n) >> 2) >>> 0 > p >>> 0) { + w = p + x = n + } else { + y = g + aq(y) + } + while (1) { + f[j >> 2] = f[(x + (w << 2)) >> 2] + f[i >> 2] = f[j >> 2] + Dc(a, i, b, w) + g = X(w, e) | 0 + n = (b + (g << 2)) | 0 + p = (c + (g << 2)) | 0 + g = f[l >> 2] | 0 + if ((g | 0) > 0) { + m = 0 + z = f[k >> 2] | 0 + A = g + while (1) { + if ((A | 0) > 0) { + g = 0 + do { + B = f[(z + (g << 2)) >> 2] | 0 + C = f[o >> 2] | 0 + if ((B | 0) > (C | 0)) { + D = f[q >> 2] | 0 + f[(D + (g << 2)) >> 2] = C + E = D + } else { + D = f[r >> 2] | 0 + C = f[q >> 2] | 0 + f[(C + (g << 2)) >> 2] = (B | 0) < (D | 0) ? D : B + E = C + } + g = (g + 1) | 0 + } while ((g | 0) < (f[l >> 2] | 0)) + F = E + } else F = f[q >> 2] | 0 + g = + ((f[(n + (m << 2)) >> 2] | 0) - (f[(F + (m << 2)) >> 2] | 0)) | 0 + C = (p + (m << 2)) | 0 + f[C >> 2] = g + if ((g | 0) >= (f[s >> 2] | 0)) { + if ((g | 0) > (f[v >> 2] | 0)) { + G = (g - (f[t >> 2] | 0)) | 0 + H = 21 + } + } else { + G = ((f[t >> 2] | 0) + g) | 0 + H = 21 + } + if ((H | 0) == 21) { + H = 0 + f[C >> 2] = G + } + m = (m + 1) | 0 + A = f[l >> 2] | 0 + if ((m | 0) >= (A | 0)) break + else z = F + } + } + w = (w + -1) | 0 + if ((w | 0) <= -1) { + H = 5 + break + } + z = f[d >> 2] | 0 + x = f[z >> 2] | 0 + if ((((f[(z + 4) >> 2] | 0) - x) >> 2) >>> 0 <= w >>> 0) { + y = z + H = 6 + break + } + } + if ((H | 0) == 5) { + u = h + return 1 + } else if ((H | 0) == 6) aq(y) + return 0 + } + function $a(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0 + b = u + u = (u + 16) | 0 + c = b + do + if (a >>> 0 < 245) { + d = a >>> 0 < 11 ? 16 : (a + 11) & -8 + e = d >>> 3 + g = f[4784] | 0 + h = g >>> e + if ((h & 3) | 0) { + i = (((h & 1) ^ 1) + e) | 0 + j = (19176 + ((i << 1) << 2)) | 0 + k = (j + 8) | 0 + l = f[k >> 2] | 0 + m = (l + 8) | 0 + n = f[m >> 2] | 0 + if ((n | 0) == (j | 0)) f[4784] = g & ~(1 << i) + else { + f[(n + 12) >> 2] = j + f[k >> 2] = n + } + n = i << 3 + f[(l + 4) >> 2] = n | 3 + i = (l + n + 4) | 0 + f[i >> 2] = f[i >> 2] | 1 + o = m + u = b + return o | 0 + } + m = f[4786] | 0 + if (d >>> 0 > m >>> 0) { + if (h | 0) { + i = 2 << e + n = (h << e) & (i | (0 - i)) + i = ((n & (0 - n)) + -1) | 0 + n = (i >>> 12) & 16 + e = i >>> n + i = (e >>> 5) & 8 + h = e >>> i + e = (h >>> 2) & 4 + l = h >>> e + h = (l >>> 1) & 2 + k = l >>> h + l = (k >>> 1) & 1 + j = ((i | n | e | h | l) + (k >>> l)) | 0 + l = (19176 + ((j << 1) << 2)) | 0 + k = (l + 8) | 0 + h = f[k >> 2] | 0 + e = (h + 8) | 0 + n = f[e >> 2] | 0 + if ((n | 0) == (l | 0)) { + i = g & ~(1 << j) + f[4784] = i + p = i + } else { + f[(n + 12) >> 2] = l + f[k >> 2] = n + p = g + } + n = j << 3 + j = (n - d) | 0 + f[(h + 4) >> 2] = d | 3 + k = (h + d) | 0 + f[(k + 4) >> 2] = j | 1 + f[(h + n) >> 2] = j + if (m | 0) { + n = f[4789] | 0 + h = m >>> 3 + l = (19176 + ((h << 1) << 2)) | 0 + i = 1 << h + if (!(p & i)) { + f[4784] = p | i + q = l + r = (l + 8) | 0 + } else { + i = (l + 8) | 0 + q = f[i >> 2] | 0 + r = i + } + f[r >> 2] = n + f[(q + 12) >> 2] = n + f[(n + 8) >> 2] = q + f[(n + 12) >> 2] = l + } + f[4786] = j + f[4789] = k + o = e + u = b + return o | 0 + } + e = f[4785] | 0 + if (e) { + k = ((e & (0 - e)) + -1) | 0 + j = (k >>> 12) & 16 + l = k >>> j + k = (l >>> 5) & 8 + n = l >>> k + l = (n >>> 2) & 4 + i = n >>> l + n = (i >>> 1) & 2 + h = i >>> n + i = (h >>> 1) & 1 + s = f[(19440 + (((k | j | l | n | i) + (h >>> i)) << 2)) >> 2] | 0 + i = ((f[(s + 4) >> 2] & -8) - d) | 0 + h = + f[(s + 16 + ((((f[(s + 16) >> 2] | 0) == 0) & 1) << 2)) >> 2] | + 0 + if (!h) { + t = s + v = i + } else { + n = s + s = i + i = h + while (1) { + h = ((f[(i + 4) >> 2] & -8) - d) | 0 + l = h >>> 0 < s >>> 0 + j = l ? h : s + h = l ? i : n + i = + f[ + (i + 16 + ((((f[(i + 16) >> 2] | 0) == 0) & 1) << 2)) >> 2 + ] | 0 + if (!i) { + t = h + v = j + break + } else { + n = h + s = j + } + } + } + s = (t + d) | 0 + if (s >>> 0 > t >>> 0) { + n = f[(t + 24) >> 2] | 0 + i = f[(t + 12) >> 2] | 0 + do + if ((i | 0) == (t | 0)) { + j = (t + 20) | 0 + h = f[j >> 2] | 0 + if (!h) { + l = (t + 16) | 0 + k = f[l >> 2] | 0 + if (!k) { + w = 0 + break + } else { + x = k + y = l + } + } else { + x = h + y = j + } + while (1) { + j = (x + 20) | 0 + h = f[j >> 2] | 0 + if (h | 0) { + x = h + y = j + continue + } + j = (x + 16) | 0 + h = f[j >> 2] | 0 + if (!h) break + else { + x = h + y = j + } + } + f[y >> 2] = 0 + w = x + } else { + j = f[(t + 8) >> 2] | 0 + f[(j + 12) >> 2] = i + f[(i + 8) >> 2] = j + w = i + } + while (0) + do + if (n | 0) { + i = f[(t + 28) >> 2] | 0 + j = (19440 + (i << 2)) | 0 + if ((t | 0) == (f[j >> 2] | 0)) { + f[j >> 2] = w + if (!w) { + f[4785] = e & ~(1 << i) + break + } + } else { + f[ + (n + + 16 + + ((((f[(n + 16) >> 2] | 0) != (t | 0)) & 1) << 2)) >> + 2 + ] = w + if (!w) break + } + f[(w + 24) >> 2] = n + i = f[(t + 16) >> 2] | 0 + if (i | 0) { + f[(w + 16) >> 2] = i + f[(i + 24) >> 2] = w + } + i = f[(t + 20) >> 2] | 0 + if (i | 0) { + f[(w + 20) >> 2] = i + f[(i + 24) >> 2] = w + } + } + while (0) + if (v >>> 0 < 16) { + n = (v + d) | 0 + f[(t + 4) >> 2] = n | 3 + e = (t + n + 4) | 0 + f[e >> 2] = f[e >> 2] | 1 + } else { + f[(t + 4) >> 2] = d | 3 + f[(s + 4) >> 2] = v | 1 + f[(s + v) >> 2] = v + if (m | 0) { + e = f[4789] | 0 + n = m >>> 3 + i = (19176 + ((n << 1) << 2)) | 0 + j = 1 << n + if (!(g & j)) { + f[4784] = g | j + z = i + A = (i + 8) | 0 + } else { + j = (i + 8) | 0 + z = f[j >> 2] | 0 + A = j + } + f[A >> 2] = e + f[(z + 12) >> 2] = e + f[(e + 8) >> 2] = z + f[(e + 12) >> 2] = i + } + f[4786] = v + f[4789] = s + } + o = (t + 8) | 0 + u = b + return o | 0 + } else B = d + } else B = d + } else B = d + } else if (a >>> 0 <= 4294967231) { + i = (a + 11) | 0 + e = i & -8 + j = f[4785] | 0 + if (j) { + n = (0 - e) | 0 + h = i >>> 8 + if (h) + if (e >>> 0 > 16777215) C = 31 + else { + i = (((h + 1048320) | 0) >>> 16) & 8 + l = h << i + h = (((l + 520192) | 0) >>> 16) & 4 + k = l << h + l = (((k + 245760) | 0) >>> 16) & 2 + D = (14 - (h | i | l) + ((k << l) >>> 15)) | 0 + C = ((e >>> ((D + 7) | 0)) & 1) | (D << 1) + } + else C = 0 + D = f[(19440 + (C << 2)) >> 2] | 0 + a: do + if (!D) { + E = 0 + F = 0 + G = n + H = 57 + } else { + l = 0 + k = n + i = D + h = e << ((C | 0) == 31 ? 0 : (25 - (C >>> 1)) | 0) + I = 0 + while (1) { + J = ((f[(i + 4) >> 2] & -8) - e) | 0 + if (J >>> 0 < k >>> 0) + if (!J) { + K = 0 + L = i + M = i + H = 61 + break a + } else { + N = i + O = J + } + else { + N = l + O = k + } + J = f[(i + 20) >> 2] | 0 + i = f[(i + 16 + ((h >>> 31) << 2)) >> 2] | 0 + P = ((J | 0) == 0) | ((J | 0) == (i | 0)) ? I : J + J = (i | 0) == 0 + if (J) { + E = P + F = N + G = O + H = 57 + break + } else { + l = N + k = O + h = h << ((J ^ 1) & 1) + I = P + } + } + } + while (0) + if ((H | 0) == 57) { + if (((E | 0) == 0) & ((F | 0) == 0)) { + D = 2 << C + n = j & (D | (0 - D)) + if (!n) { + B = e + break + } + D = ((n & (0 - n)) + -1) | 0 + n = (D >>> 12) & 16 + d = D >>> n + D = (d >>> 5) & 8 + s = d >>> D + d = (s >>> 2) & 4 + g = s >>> d + s = (g >>> 1) & 2 + m = g >>> s + g = (m >>> 1) & 1 + Q = 0 + R = + f[(19440 + (((D | n | d | s | g) + (m >>> g)) << 2)) >> 2] | 0 + } else { + Q = F + R = E + } + if (!R) { + S = Q + T = G + } else { + K = G + L = R + M = Q + H = 61 + } + } + if ((H | 0) == 61) + while (1) { + H = 0 + g = ((f[(L + 4) >> 2] & -8) - e) | 0 + m = g >>> 0 < K >>> 0 + s = m ? g : K + g = m ? L : M + L = + f[ + (L + 16 + ((((f[(L + 16) >> 2] | 0) == 0) & 1) << 2)) >> 2 + ] | 0 + if (!L) { + S = g + T = s + break + } else { + K = s + M = g + H = 61 + } + } + if ((S | 0) != 0 ? T >>> 0 < (((f[4786] | 0) - e) | 0) >>> 0 : 0) { + g = (S + e) | 0 + if (g >>> 0 <= S >>> 0) { + o = 0 + u = b + return o | 0 + } + s = f[(S + 24) >> 2] | 0 + m = f[(S + 12) >> 2] | 0 + do + if ((m | 0) == (S | 0)) { + d = (S + 20) | 0 + n = f[d >> 2] | 0 + if (!n) { + D = (S + 16) | 0 + I = f[D >> 2] | 0 + if (!I) { + U = 0 + break + } else { + V = I + W = D + } + } else { + V = n + W = d + } + while (1) { + d = (V + 20) | 0 + n = f[d >> 2] | 0 + if (n | 0) { + V = n + W = d + continue + } + d = (V + 16) | 0 + n = f[d >> 2] | 0 + if (!n) break + else { + V = n + W = d + } + } + f[W >> 2] = 0 + U = V + } else { + d = f[(S + 8) >> 2] | 0 + f[(d + 12) >> 2] = m + f[(m + 8) >> 2] = d + U = m + } + while (0) + do + if (s) { + m = f[(S + 28) >> 2] | 0 + d = (19440 + (m << 2)) | 0 + if ((S | 0) == (f[d >> 2] | 0)) { + f[d >> 2] = U + if (!U) { + d = j & ~(1 << m) + f[4785] = d + X = d + break + } + } else { + f[ + (s + + 16 + + ((((f[(s + 16) >> 2] | 0) != (S | 0)) & 1) << 2)) >> + 2 + ] = U + if (!U) { + X = j + break + } + } + f[(U + 24) >> 2] = s + d = f[(S + 16) >> 2] | 0 + if (d | 0) { + f[(U + 16) >> 2] = d + f[(d + 24) >> 2] = U + } + d = f[(S + 20) >> 2] | 0 + if (d) { + f[(U + 20) >> 2] = d + f[(d + 24) >> 2] = U + X = j + } else X = j + } else X = j + while (0) + do + if (T >>> 0 >= 16) { + f[(S + 4) >> 2] = e | 3 + f[(g + 4) >> 2] = T | 1 + f[(g + T) >> 2] = T + j = T >>> 3 + if (T >>> 0 < 256) { + s = (19176 + ((j << 1) << 2)) | 0 + d = f[4784] | 0 + m = 1 << j + if (!(d & m)) { + f[4784] = d | m + Y = s + Z = (s + 8) | 0 + } else { + m = (s + 8) | 0 + Y = f[m >> 2] | 0 + Z = m + } + f[Z >> 2] = g + f[(Y + 12) >> 2] = g + f[(g + 8) >> 2] = Y + f[(g + 12) >> 2] = s + break + } + s = T >>> 8 + if (s) + if (T >>> 0 > 16777215) _ = 31 + else { + m = (((s + 1048320) | 0) >>> 16) & 8 + d = s << m + s = (((d + 520192) | 0) >>> 16) & 4 + j = d << s + d = (((j + 245760) | 0) >>> 16) & 2 + n = (14 - (s | m | d) + ((j << d) >>> 15)) | 0 + _ = ((T >>> ((n + 7) | 0)) & 1) | (n << 1) + } + else _ = 0 + n = (19440 + (_ << 2)) | 0 + f[(g + 28) >> 2] = _ + d = (g + 16) | 0 + f[(d + 4) >> 2] = 0 + f[d >> 2] = 0 + d = 1 << _ + if (!(X & d)) { + f[4785] = X | d + f[n >> 2] = g + f[(g + 24) >> 2] = n + f[(g + 12) >> 2] = g + f[(g + 8) >> 2] = g + break + } + d = T << ((_ | 0) == 31 ? 0 : (25 - (_ >>> 1)) | 0) + j = f[n >> 2] | 0 + while (1) { + if (((f[(j + 4) >> 2] & -8) | 0) == (T | 0)) { + H = 97 + break + } + $ = (j + 16 + ((d >>> 31) << 2)) | 0 + n = f[$ >> 2] | 0 + if (!n) { + H = 96 + break + } else { + d = d << 1 + j = n + } + } + if ((H | 0) == 96) { + f[$ >> 2] = g + f[(g + 24) >> 2] = j + f[(g + 12) >> 2] = g + f[(g + 8) >> 2] = g + break + } else if ((H | 0) == 97) { + d = (j + 8) | 0 + n = f[d >> 2] | 0 + f[(n + 12) >> 2] = g + f[d >> 2] = g + f[(g + 8) >> 2] = n + f[(g + 12) >> 2] = j + f[(g + 24) >> 2] = 0 + break + } + } else { + n = (T + e) | 0 + f[(S + 4) >> 2] = n | 3 + d = (S + n + 4) | 0 + f[d >> 2] = f[d >> 2] | 1 + } + while (0) + o = (S + 8) | 0 + u = b + return o | 0 + } else B = e + } else B = e + } else B = -1 + while (0) + S = f[4786] | 0 + if (S >>> 0 >= B >>> 0) { + T = (S - B) | 0 + $ = f[4789] | 0 + if (T >>> 0 > 15) { + _ = ($ + B) | 0 + f[4789] = _ + f[4786] = T + f[(_ + 4) >> 2] = T | 1 + f[($ + S) >> 2] = T + f[($ + 4) >> 2] = B | 3 + } else { + f[4786] = 0 + f[4789] = 0 + f[($ + 4) >> 2] = S | 3 + T = ($ + S + 4) | 0 + f[T >> 2] = f[T >> 2] | 1 + } + o = ($ + 8) | 0 + u = b + return o | 0 + } + $ = f[4787] | 0 + if ($ >>> 0 > B >>> 0) { + T = ($ - B) | 0 + f[4787] = T + S = f[4790] | 0 + _ = (S + B) | 0 + f[4790] = _ + f[(_ + 4) >> 2] = T | 1 + f[(S + 4) >> 2] = B | 3 + o = (S + 8) | 0 + u = b + return o | 0 + } + if (!(f[4902] | 0)) { + f[4904] = 4096 + f[4903] = 4096 + f[4905] = -1 + f[4906] = -1 + f[4907] = 0 + f[4895] = 0 + f[4902] = (c & -16) ^ 1431655768 + aa = 4096 + } else aa = f[4904] | 0 + c = (B + 48) | 0 + S = (B + 47) | 0 + T = (aa + S) | 0 + _ = (0 - aa) | 0 + aa = T & _ + if (aa >>> 0 <= B >>> 0) { + o = 0 + u = b + return o | 0 + } + X = f[4894] | 0 + if ( + X | 0 + ? ((Y = f[4892] | 0), + (Z = (Y + aa) | 0), + (Z >>> 0 <= Y >>> 0) | (Z >>> 0 > X >>> 0)) + : 0 + ) { + o = 0 + u = b + return o | 0 + } + b: do + if (!(f[4895] & 4)) { + X = f[4790] | 0 + c: do + if (X) { + Z = 19584 + while (1) { + Y = f[Z >> 2] | 0 + if ( + Y >>> 0 <= X >>> 0 + ? ((ba = (Z + 4) | 0), + ((Y + (f[ba >> 2] | 0)) | 0) >>> 0 > X >>> 0) + : 0 + ) + break + Y = f[(Z + 8) >> 2] | 0 + if (!Y) { + H = 118 + break c + } else Z = Y + } + j = (T - $) & _ + if (j >>> 0 < 2147483647) { + Y = Nl(j | 0) | 0 + if ((Y | 0) == (((f[Z >> 2] | 0) + (f[ba >> 2] | 0)) | 0)) + if ((Y | 0) == (-1 | 0)) ca = j + else { + da = j + ea = Y + H = 135 + break b + } + else { + fa = Y + ga = j + H = 126 + } + } else ca = 0 + } else H = 118 + while (0) + do + if ((H | 0) == 118) { + X = Nl(0) | 0 + if ( + (X | 0) != (-1 | 0) + ? ((e = X), + (j = f[4903] | 0), + (Y = (j + -1) | 0), + (U = + ((((Y & e) | 0) == 0 + ? 0 + : (((Y + e) & (0 - j)) - e) | 0) + + aa) | + 0), + (e = f[4892] | 0), + (j = (U + e) | 0), + (U >>> 0 > B >>> 0) & (U >>> 0 < 2147483647)) + : 0 + ) { + Y = f[4894] | 0 + if (Y | 0 ? (j >>> 0 <= e >>> 0) | (j >>> 0 > Y >>> 0) : 0) { + ca = 0 + break + } + Y = Nl(U | 0) | 0 + if ((Y | 0) == (X | 0)) { + da = U + ea = X + H = 135 + break b + } else { + fa = Y + ga = U + H = 126 + } + } else ca = 0 + } + while (0) + do + if ((H | 0) == 126) { + U = (0 - ga) | 0 + if ( + !( + (c >>> 0 > ga >>> 0) & + ((ga >>> 0 < 2147483647) & ((fa | 0) != (-1 | 0))) + ) + ) + if ((fa | 0) == (-1 | 0)) { + ca = 0 + break + } else { + da = ga + ea = fa + H = 135 + break b + } + Y = f[4904] | 0 + X = (S - ga + Y) & (0 - Y) + if (X >>> 0 >= 2147483647) { + da = ga + ea = fa + H = 135 + break b + } + if ((Nl(X | 0) | 0) == (-1 | 0)) { + Nl(U | 0) | 0 + ca = 0 + break + } else { + da = (X + ga) | 0 + ea = fa + H = 135 + break b + } + } + while (0) + f[4895] = f[4895] | 4 + ha = ca + H = 133 + } else { + ha = 0 + H = 133 + } + while (0) + if ( + ((H | 0) == 133 ? aa >>> 0 < 2147483647 : 0) + ? ((ca = Nl(aa | 0) | 0), + (aa = Nl(0) | 0), + (fa = (aa - ca) | 0), + (ga = fa >>> 0 > ((B + 40) | 0) >>> 0), + !( + ((ca | 0) == (-1 | 0)) | + (ga ^ 1) | + (((ca >>> 0 < aa >>> 0) & + (((ca | 0) != (-1 | 0)) & ((aa | 0) != (-1 | 0)))) ^ + 1) + )) + : 0 + ) { + da = ga ? fa : ha + ea = ca + H = 135 + } + if ((H | 0) == 135) { + ca = ((f[4892] | 0) + da) | 0 + f[4892] = ca + if (ca >>> 0 > (f[4893] | 0) >>> 0) f[4893] = ca + ca = f[4790] | 0 + do + if (ca) { + ha = 19584 + while (1) { + ia = f[ha >> 2] | 0 + ja = (ha + 4) | 0 + ka = f[ja >> 2] | 0 + if ((ea | 0) == ((ia + ka) | 0)) { + H = 143 + break + } + fa = f[(ha + 8) >> 2] | 0 + if (!fa) break + else ha = fa + } + if ( + ((H | 0) == 143 ? ((f[(ha + 12) >> 2] & 8) | 0) == 0 : 0) + ? (ea >>> 0 > ca >>> 0) & (ia >>> 0 <= ca >>> 0) + : 0 + ) { + f[ja >> 2] = ka + da + fa = ((f[4787] | 0) + da) | 0 + ga = (ca + 8) | 0 + aa = ((ga & 7) | 0) == 0 ? 0 : (0 - ga) & 7 + ga = (ca + aa) | 0 + S = (fa - aa) | 0 + f[4790] = ga + f[4787] = S + f[(ga + 4) >> 2] = S | 1 + f[(ca + fa + 4) >> 2] = 40 + f[4791] = f[4906] + break + } + if (ea >>> 0 < (f[4788] | 0) >>> 0) f[4788] = ea + fa = (ea + da) | 0 + S = 19584 + while (1) { + if ((f[S >> 2] | 0) == (fa | 0)) { + H = 151 + break + } + ga = f[(S + 8) >> 2] | 0 + if (!ga) { + la = 19584 + break + } else S = ga + } + if ((H | 0) == 151) + if (!(f[(S + 12) >> 2] & 8)) { + f[S >> 2] = ea + ha = (S + 4) | 0 + f[ha >> 2] = (f[ha >> 2] | 0) + da + ha = (ea + 8) | 0 + ga = (ea + (((ha & 7) | 0) == 0 ? 0 : (0 - ha) & 7)) | 0 + ha = (fa + 8) | 0 + aa = (fa + (((ha & 7) | 0) == 0 ? 0 : (0 - ha) & 7)) | 0 + ha = (ga + B) | 0 + c = (aa - ga - B) | 0 + f[(ga + 4) >> 2] = B | 3 + do + if ((ca | 0) != (aa | 0)) { + if ((f[4789] | 0) == (aa | 0)) { + ba = ((f[4786] | 0) + c) | 0 + f[4786] = ba + f[4789] = ha + f[(ha + 4) >> 2] = ba | 1 + f[(ha + ba) >> 2] = ba + break + } + ba = f[(aa + 4) >> 2] | 0 + if (((ba & 3) | 0) == 1) { + _ = ba & -8 + $ = ba >>> 3 + d: do + if (ba >>> 0 < 256) { + T = f[(aa + 8) >> 2] | 0 + X = f[(aa + 12) >> 2] | 0 + if ((X | 0) == (T | 0)) { + f[4784] = f[4784] & ~(1 << $) + break + } else { + f[(T + 12) >> 2] = X + f[(X + 8) >> 2] = T + break + } + } else { + T = f[(aa + 24) >> 2] | 0 + X = f[(aa + 12) >> 2] | 0 + do + if ((X | 0) == (aa | 0)) { + U = (aa + 16) | 0 + Y = (U + 4) | 0 + j = f[Y >> 2] | 0 + if (!j) { + e = f[U >> 2] | 0 + if (!e) { + ma = 0 + break + } else { + na = e + oa = U + } + } else { + na = j + oa = Y + } + while (1) { + Y = (na + 20) | 0 + j = f[Y >> 2] | 0 + if (j | 0) { + na = j + oa = Y + continue + } + Y = (na + 16) | 0 + j = f[Y >> 2] | 0 + if (!j) break + else { + na = j + oa = Y + } + } + f[oa >> 2] = 0 + ma = na + } else { + Y = f[(aa + 8) >> 2] | 0 + f[(Y + 12) >> 2] = X + f[(X + 8) >> 2] = Y + ma = X + } + while (0) + if (!T) break + X = f[(aa + 28) >> 2] | 0 + Y = (19440 + (X << 2)) | 0 + do + if ((f[Y >> 2] | 0) != (aa | 0)) { + f[ + (T + + 16 + + ((((f[(T + 16) >> 2] | 0) != (aa | 0)) & 1) << + 2)) >> + 2 + ] = ma + if (!ma) break d + } else { + f[Y >> 2] = ma + if (ma | 0) break + f[4785] = f[4785] & ~(1 << X) + break d + } + while (0) + f[(ma + 24) >> 2] = T + X = (aa + 16) | 0 + Y = f[X >> 2] | 0 + if (Y | 0) { + f[(ma + 16) >> 2] = Y + f[(Y + 24) >> 2] = ma + } + Y = f[(X + 4) >> 2] | 0 + if (!Y) break + f[(ma + 20) >> 2] = Y + f[(Y + 24) >> 2] = ma + } + while (0) + pa = (aa + _) | 0 + qa = (_ + c) | 0 + } else { + pa = aa + qa = c + } + $ = (pa + 4) | 0 + f[$ >> 2] = f[$ >> 2] & -2 + f[(ha + 4) >> 2] = qa | 1 + f[(ha + qa) >> 2] = qa + $ = qa >>> 3 + if (qa >>> 0 < 256) { + ba = (19176 + (($ << 1) << 2)) | 0 + Z = f[4784] | 0 + Y = 1 << $ + if (!(Z & Y)) { + f[4784] = Z | Y + ra = ba + sa = (ba + 8) | 0 + } else { + Y = (ba + 8) | 0 + ra = f[Y >> 2] | 0 + sa = Y + } + f[sa >> 2] = ha + f[(ra + 12) >> 2] = ha + f[(ha + 8) >> 2] = ra + f[(ha + 12) >> 2] = ba + break + } + ba = qa >>> 8 + do + if (!ba) ta = 0 + else { + if (qa >>> 0 > 16777215) { + ta = 31 + break + } + Y = (((ba + 1048320) | 0) >>> 16) & 8 + Z = ba << Y + $ = (((Z + 520192) | 0) >>> 16) & 4 + X = Z << $ + Z = (((X + 245760) | 0) >>> 16) & 2 + j = (14 - ($ | Y | Z) + ((X << Z) >>> 15)) | 0 + ta = ((qa >>> ((j + 7) | 0)) & 1) | (j << 1) + } + while (0) + ba = (19440 + (ta << 2)) | 0 + f[(ha + 28) >> 2] = ta + _ = (ha + 16) | 0 + f[(_ + 4) >> 2] = 0 + f[_ >> 2] = 0 + _ = f[4785] | 0 + j = 1 << ta + if (!(_ & j)) { + f[4785] = _ | j + f[ba >> 2] = ha + f[(ha + 24) >> 2] = ba + f[(ha + 12) >> 2] = ha + f[(ha + 8) >> 2] = ha + break + } + j = qa << ((ta | 0) == 31 ? 0 : (25 - (ta >>> 1)) | 0) + _ = f[ba >> 2] | 0 + while (1) { + if (((f[(_ + 4) >> 2] & -8) | 0) == (qa | 0)) { + H = 192 + break + } + ua = (_ + 16 + ((j >>> 31) << 2)) | 0 + ba = f[ua >> 2] | 0 + if (!ba) { + H = 191 + break + } else { + j = j << 1 + _ = ba + } + } + if ((H | 0) == 191) { + f[ua >> 2] = ha + f[(ha + 24) >> 2] = _ + f[(ha + 12) >> 2] = ha + f[(ha + 8) >> 2] = ha + break + } else if ((H | 0) == 192) { + j = (_ + 8) | 0 + ba = f[j >> 2] | 0 + f[(ba + 12) >> 2] = ha + f[j >> 2] = ha + f[(ha + 8) >> 2] = ba + f[(ha + 12) >> 2] = _ + f[(ha + 24) >> 2] = 0 + break + } + } else { + ba = ((f[4787] | 0) + c) | 0 + f[4787] = ba + f[4790] = ha + f[(ha + 4) >> 2] = ba | 1 + } + while (0) + o = (ga + 8) | 0 + u = b + return o | 0 + } else la = 19584 + while (1) { + ha = f[la >> 2] | 0 + if ( + ha >>> 0 <= ca >>> 0 + ? ((va = (ha + (f[(la + 4) >> 2] | 0)) | 0), + va >>> 0 > ca >>> 0) + : 0 + ) + break + la = f[(la + 8) >> 2] | 0 + } + ga = (va + -47) | 0 + ha = (ga + 8) | 0 + c = (ga + (((ha & 7) | 0) == 0 ? 0 : (0 - ha) & 7)) | 0 + ha = (ca + 16) | 0 + ga = c >>> 0 < ha >>> 0 ? ca : c + c = (ga + 8) | 0 + aa = (da + -40) | 0 + fa = (ea + 8) | 0 + S = ((fa & 7) | 0) == 0 ? 0 : (0 - fa) & 7 + fa = (ea + S) | 0 + ba = (aa - S) | 0 + f[4790] = fa + f[4787] = ba + f[(fa + 4) >> 2] = ba | 1 + f[(ea + aa + 4) >> 2] = 40 + f[4791] = f[4906] + aa = (ga + 4) | 0 + f[aa >> 2] = 27 + f[c >> 2] = f[4896] + f[(c + 4) >> 2] = f[4897] + f[(c + 8) >> 2] = f[4898] + f[(c + 12) >> 2] = f[4899] + f[4896] = ea + f[4897] = da + f[4899] = 0 + f[4898] = c + c = (ga + 24) | 0 + do { + ba = c + c = (c + 4) | 0 + f[c >> 2] = 7 + } while (((ba + 8) | 0) >>> 0 < va >>> 0) + if ((ga | 0) != (ca | 0)) { + c = (ga - ca) | 0 + f[aa >> 2] = f[aa >> 2] & -2 + f[(ca + 4) >> 2] = c | 1 + f[ga >> 2] = c + ba = c >>> 3 + if (c >>> 0 < 256) { + fa = (19176 + ((ba << 1) << 2)) | 0 + S = f[4784] | 0 + j = 1 << ba + if (!(S & j)) { + f[4784] = S | j + wa = fa + xa = (fa + 8) | 0 + } else { + j = (fa + 8) | 0 + wa = f[j >> 2] | 0 + xa = j + } + f[xa >> 2] = ca + f[(wa + 12) >> 2] = ca + f[(ca + 8) >> 2] = wa + f[(ca + 12) >> 2] = fa + break + } + fa = c >>> 8 + if (fa) + if (c >>> 0 > 16777215) ya = 31 + else { + j = (((fa + 1048320) | 0) >>> 16) & 8 + S = fa << j + fa = (((S + 520192) | 0) >>> 16) & 4 + ba = S << fa + S = (((ba + 245760) | 0) >>> 16) & 2 + Z = (14 - (fa | j | S) + ((ba << S) >>> 15)) | 0 + ya = ((c >>> ((Z + 7) | 0)) & 1) | (Z << 1) + } + else ya = 0 + Z = (19440 + (ya << 2)) | 0 + f[(ca + 28) >> 2] = ya + f[(ca + 20) >> 2] = 0 + f[ha >> 2] = 0 + S = f[4785] | 0 + ba = 1 << ya + if (!(S & ba)) { + f[4785] = S | ba + f[Z >> 2] = ca + f[(ca + 24) >> 2] = Z + f[(ca + 12) >> 2] = ca + f[(ca + 8) >> 2] = ca + break + } + ba = c << ((ya | 0) == 31 ? 0 : (25 - (ya >>> 1)) | 0) + S = f[Z >> 2] | 0 + while (1) { + if (((f[(S + 4) >> 2] & -8) | 0) == (c | 0)) { + H = 213 + break + } + za = (S + 16 + ((ba >>> 31) << 2)) | 0 + Z = f[za >> 2] | 0 + if (!Z) { + H = 212 + break + } else { + ba = ba << 1 + S = Z + } + } + if ((H | 0) == 212) { + f[za >> 2] = ca + f[(ca + 24) >> 2] = S + f[(ca + 12) >> 2] = ca + f[(ca + 8) >> 2] = ca + break + } else if ((H | 0) == 213) { + ba = (S + 8) | 0 + c = f[ba >> 2] | 0 + f[(c + 12) >> 2] = ca + f[ba >> 2] = ca + f[(ca + 8) >> 2] = c + f[(ca + 12) >> 2] = S + f[(ca + 24) >> 2] = 0 + break + } + } + } else { + c = f[4788] | 0 + if (((c | 0) == 0) | (ea >>> 0 < c >>> 0)) f[4788] = ea + f[4896] = ea + f[4897] = da + f[4899] = 0 + f[4793] = f[4902] + f[4792] = -1 + f[4797] = 19176 + f[4796] = 19176 + f[4799] = 19184 + f[4798] = 19184 + f[4801] = 19192 + f[4800] = 19192 + f[4803] = 19200 + f[4802] = 19200 + f[4805] = 19208 + f[4804] = 19208 + f[4807] = 19216 + f[4806] = 19216 + f[4809] = 19224 + f[4808] = 19224 + f[4811] = 19232 + f[4810] = 19232 + f[4813] = 19240 + f[4812] = 19240 + f[4815] = 19248 + f[4814] = 19248 + f[4817] = 19256 + f[4816] = 19256 + f[4819] = 19264 + f[4818] = 19264 + f[4821] = 19272 + f[4820] = 19272 + f[4823] = 19280 + f[4822] = 19280 + f[4825] = 19288 + f[4824] = 19288 + f[4827] = 19296 + f[4826] = 19296 + f[4829] = 19304 + f[4828] = 19304 + f[4831] = 19312 + f[4830] = 19312 + f[4833] = 19320 + f[4832] = 19320 + f[4835] = 19328 + f[4834] = 19328 + f[4837] = 19336 + f[4836] = 19336 + f[4839] = 19344 + f[4838] = 19344 + f[4841] = 19352 + f[4840] = 19352 + f[4843] = 19360 + f[4842] = 19360 + f[4845] = 19368 + f[4844] = 19368 + f[4847] = 19376 + f[4846] = 19376 + f[4849] = 19384 + f[4848] = 19384 + f[4851] = 19392 + f[4850] = 19392 + f[4853] = 19400 + f[4852] = 19400 + f[4855] = 19408 + f[4854] = 19408 + f[4857] = 19416 + f[4856] = 19416 + f[4859] = 19424 + f[4858] = 19424 + c = (da + -40) | 0 + ba = (ea + 8) | 0 + ha = ((ba & 7) | 0) == 0 ? 0 : (0 - ba) & 7 + ba = (ea + ha) | 0 + ga = (c - ha) | 0 + f[4790] = ba + f[4787] = ga + f[(ba + 4) >> 2] = ga | 1 + f[(ea + c + 4) >> 2] = 40 + f[4791] = f[4906] + } + while (0) + ea = f[4787] | 0 + if (ea >>> 0 > B >>> 0) { + da = (ea - B) | 0 + f[4787] = da + ea = f[4790] | 0 + ca = (ea + B) | 0 + f[4790] = ca + f[(ca + 4) >> 2] = da | 1 + f[(ea + 4) >> 2] = B | 3 + o = (ea + 8) | 0 + u = b + return o | 0 + } + } + ea = Vq() | 0 + f[ea >> 2] = 12 + o = 0 + u = b + return o | 0 + } + function ab(a, c, d, e, g, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0, + Sa = 0, + Ta = 0, + Ua = 0, + Va = 0.0, + Wa = 0.0, + Xa = 0.0, + Ya = 0, + Za = 0, + _a = 0, + $a = 0, + ab = 0, + bb = 0, + cb = 0, + db = 0, + eb = 0, + fb = 0, + gb = 0, + hb = 0, + ib = 0, + jb = 0, + kb = 0, + lb = 0, + mb = 0, + nb = 0, + ob = 0, + pb = 0, + qb = 0, + rb = 0, + sb = 0, + tb = 0, + ub = 0, + vb = 0, + wb = 0, + xb = 0, + yb = 0, + zb = 0, + Ab = 0, + Bb = 0, + Cb = 0, + Db = 0, + Eb = 0, + Fb = 0, + Gb = 0, + Hb = 0, + Ib = 0, + Jb = 0, + Kb = 0, + Lb = 0, + Mb = 0, + Nb = 0, + Ob = 0 + i = u + u = (u + 240) | 0 + j = (i + 104) | 0 + k = (i + 224) | 0 + l = (i + 176) | 0 + m = (i + 160) | 0 + n = (i + 228) | 0 + o = (i + 72) | 0 + p = (i + 40) | 0 + q = (i + 132) | 0 + r = i + s = (i + 172) | 0 + t = (i + 156) | 0 + v = (i + 152) | 0 + w = (i + 148) | 0 + x = (i + 144) | 0 + y = (i + 128) | 0 + z = (a + 8) | 0 + Mh(z, c, e, g) + e = f[(a + 48) >> 2] | 0 + A = f[(a + 52) >> 2] | 0 + B = l + C = (B + 48) | 0 + do { + f[B >> 2] = 0 + B = (B + 4) | 0 + } while ((B | 0) < (C | 0)) + if (!g) { + D = 0 + E = 0 + } else { + Ci(l, g) + D = f[(l + 12) >> 2] | 0 + E = f[(l + 16) >> 2] | 0 + } + B = (l + 16) | 0 + C = (E - D) >> 2 + F = D + D = E + if (C >>> 0 >= g >>> 0) { + if ( + C >>> 0 > g >>> 0 ? ((E = (F + (g << 2)) | 0), (E | 0) != (D | 0)) : 0 + ) + f[B >> 2] = D + (~(((D + -4 - E) | 0) >>> 2) << 2) + } else Ci((l + 12) | 0, (g - C) | 0) + C = (l + 24) | 0 + E = (l + 28) | 0 + D = f[E >> 2] | 0 + B = f[C >> 2] | 0 + F = (D - B) >> 2 + G = B + B = D + if (F >>> 0 >= g >>> 0) { + if ( + F >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[E >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else Ci(C, (g - F) | 0) + F = (l + 36) | 0 + C = (l + 40) | 0 + D = f[C >> 2] | 0 + B = f[F >> 2] | 0 + E = (D - B) >> 2 + G = B + B = D + if (E >>> 0 >= g >>> 0) { + if ( + E >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[C >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else Ci(F, (g - E) | 0) + f[m >> 2] = 0 + E = (m + 4) | 0 + f[E >> 2] = 0 + f[(m + 8) >> 2] = 0 + F = (g | 0) == 0 + do + if (!F) + if (g >>> 0 > 1073741823) aq(m) + else { + D = g << 2 + B = ln(D) | 0 + f[m >> 2] = B + C = (B + (g << 2)) | 0 + f[(m + 8) >> 2] = C + sj(B | 0, 0, D | 0) | 0 + f[E >> 2] = C + break + } + while (0) + C = (a + 152) | 0 + D = (a + 156) | 0 + B = f[D >> 2] | 0 + G = f[C >> 2] | 0 + H = (B - G) >> 2 + L = G + G = B + if (H >>> 0 >= g >>> 0) { + if ( + H >>> 0 > g >>> 0 ? ((B = (L + (g << 2)) | 0), (B | 0) != (G | 0)) : 0 + ) + f[D >> 2] = G + (~(((G + -4 - B) | 0) >>> 2) << 2) + } else Ci(C, (g - H) | 0) + f[o >> 2] = 0 + f[(o + 4) >> 2] = 0 + f[(o + 8) >> 2] = 0 + f[(o + 12) >> 2] = 0 + f[(o + 16) >> 2] = 0 + f[(o + 20) >> 2] = 0 + f[(o + 24) >> 2] = 0 + f[(o + 28) >> 2] = 0 + f[p >> 2] = 0 + f[(p + 4) >> 2] = 0 + f[(p + 8) >> 2] = 0 + f[(p + 12) >> 2] = 0 + f[(p + 16) >> 2] = 0 + f[(p + 20) >> 2] = 0 + f[(p + 24) >> 2] = 0 + f[(p + 28) >> 2] = 0 + f[q >> 2] = 0 + H = (q + 4) | 0 + f[H >> 2] = 0 + f[(q + 8) >> 2] = 0 + if (F) { + M = 0 + N = 0 + O = 0 + P = 0 + } else { + F = g << 2 + B = ln(F) | 0 + f[q >> 2] = B + G = (B + (g << 2)) | 0 + f[(q + 8) >> 2] = G + sj(B | 0, 0, F | 0) | 0 + f[H >> 2] = G + M = B + N = G + O = G + P = B + } + B = (a + 56) | 0 + G = f[B >> 2] | 0 + F = f[(G + 4) >> 2] | 0 + D = f[G >> 2] | 0 + L = (F - D) | 0 + a: do + if ((L | 0) > 4) { + Q = L >> 2 + R = (e + 64) | 0 + S = (e + 28) | 0 + T = (g | 0) > 0 + U = (r + 4) | 0 + V = (r + 8) | 0 + Z = (r + 12) | 0 + _ = (a + 152) | 0 + $ = (a + 112) | 0 + aa = (r + 16) | 0 + ba = (r + 28) | 0 + ca = (a + 16) | 0 + da = (a + 32) | 0 + ea = (a + 12) | 0 + fa = (a + 28) | 0 + ga = (a + 20) | 0 + ha = (a + 24) | 0 + ia = (r + 28) | 0 + ja = (r + 16) | 0 + ka = (r + 20) | 0 + la = (r + 32) | 0 + ma = (n + 1) | 0 + na = g << 2 + oa = (g | 0) == 1 + pa = (Q + -1) | 0 + if (((F - D) >> 2) >>> 0 > pa >>> 0) { + qa = Q + ra = pa + sa = D + ta = P + ua = O + va = M + wa = M + xa = N + ya = M + za = N + } else { + Aa = G + aq(Aa) + } + b: while (1) { + pa = f[(sa + (ra << 2)) >> 2] | 0 + Q = ((((pa >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + pa) | 0 + Ba = Q >>> 5 + Ca = 1 << (Q & 31) + Da = ((pa | 0) == -1) | ((Q | 0) == -1) + Ea = 1 + Fa = 0 + Ga = pa + c: while (1) { + Ha = Ea ^ 1 + Ia = Fa + Ja = Ga + while (1) { + if ((Ja | 0) == -1) { + Ka = Ia + break c + } + La = f[(l + ((Ia * 12) | 0)) >> 2] | 0 + if ( + ( + ((f[((f[e >> 2] | 0) + ((Ja >>> 5) << 2)) >> 2] & + (1 << (Ja & 31))) | + 0) == + 0 + ? ((Ma = + f[ + ((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + + (Ja << 2)) >> + 2 + ] | 0), + (Ma | 0) != -1) + : 0 + ) + ? ((Na = f[S >> 2] | 0), + (Oa = f[A >> 2] | 0), + (Pa = f[(Oa + (f[(Na + (Ma << 2)) >> 2] << 2)) >> 2] | 0), + (Qa = (Ma + 1) | 0), + (Ra = + f[ + (Oa + + (f[ + (Na + + ((((Qa >>> 0) % 3 | 0 | 0) == 0 + ? (Ma + -2) | 0 + : Qa) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + (Qa = + f[ + (Oa + + (f[ + (Na + + (((((Ma >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + + Ma) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + ((Pa | 0) < (ra | 0)) & + ((Ra | 0) < (ra | 0)) & + ((Qa | 0) < (ra | 0))) + : 0 + ) { + Ma = X(Pa, g) | 0 + Pa = X(Ra, g) | 0 + Ra = X(Qa, g) | 0 + if (T) { + Qa = 0 + do { + f[(La + (Qa << 2)) >> 2] = + (f[(c + ((Qa + Ra) << 2)) >> 2] | 0) + + (f[(c + ((Qa + Pa) << 2)) >> 2] | 0) - + (f[(c + ((Qa + Ma) << 2)) >> 2] | 0) + Qa = (Qa + 1) | 0 + } while ((Qa | 0) != (g | 0)) + } + Qa = (Ia + 1) | 0 + if ((Qa | 0) == 4) { + Ka = 4 + break c + } else Sa = Qa + } else Sa = Ia + do + if (Ea) { + Qa = (Ja + 1) | 0 + Ma = ((Qa >>> 0) % 3 | 0 | 0) == 0 ? (Ja + -2) | 0 : Qa + if ( + ( + (Ma | 0) != -1 + ? ((f[((f[e >> 2] | 0) + ((Ma >>> 5) << 2)) >> 2] & + (1 << (Ma & 31))) | + 0) == + 0 + : 0 + ) + ? ((Qa = + f[ + ((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + + (Ma << 2)) >> + 2 + ] | 0), + (Ma = (Qa + 1) | 0), + (Qa | 0) != -1) + : 0 + ) + Ta = ((Ma >>> 0) % 3 | 0 | 0) == 0 ? (Qa + -2) | 0 : Ma + else Ta = -1 + } else { + Ma = ((((Ja >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Ja) | 0 + if ( + ( + (Ma | 0) != -1 + ? ((f[((f[e >> 2] | 0) + ((Ma >>> 5) << 2)) >> 2] & + (1 << (Ma & 31))) | + 0) == + 0 + : 0 + ) + ? ((Qa = + f[ + ((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + + (Ma << 2)) >> + 2 + ] | 0), + (Qa | 0) != -1) + : 0 + ) + if (!((Qa >>> 0) % 3 | 0)) { + Ta = (Qa + 2) | 0 + break + } else { + Ta = (Qa + -1) | 0 + break + } + else Ta = -1 + } + while (0) + if ((Ta | 0) == (pa | 0)) { + Ka = Sa + break c + } + if (((Ta | 0) != -1) | Ha) { + Ia = Sa + Ja = Ta + } else break + } + if (Da) { + Ea = 0 + Fa = Sa + Ga = -1 + continue + } + if ((f[((f[e >> 2] | 0) + (Ba << 2)) >> 2] & Ca) | 0) { + Ea = 0 + Fa = Sa + Ga = -1 + continue + } + Ja = f[((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + (Q << 2)) >> 2] | 0 + if ((Ja | 0) == -1) { + Ea = 0 + Fa = Sa + Ga = -1 + continue + } + if (!((Ja >>> 0) % 3 | 0)) { + Ea = 0 + Fa = Sa + Ga = (Ja + 2) | 0 + continue + } else { + Ea = 0 + Fa = Sa + Ga = (Ja + -1) | 0 + continue + } + } + Ga = X(ra, g) | 0 + f[r >> 2] = 0 + f[U >> 2] = 0 + b[V >> 0] = 0 + f[Z >> 2] = 0 + f[(Z + 4) >> 2] = 0 + f[(Z + 8) >> 2] = 0 + f[(Z + 12) >> 2] = 0 + f[(Z + 16) >> 2] = 0 + f[(Z + 20) >> 2] = 0 + f[(Z + 24) >> 2] = 0 + Fa = (Ka + -1) | 0 + Ea = (p + (Fa << 3)) | 0 + Q = Ea + Ca = + Vn( + f[Q >> 2] | 0, + f[(Q + 4) >> 2] | 0, + Ka | 0, + ((((Ka | 0) < 0) << 31) >> 31) | 0, + ) | 0 + Q = I + Ba = Ea + f[Ba >> 2] = Ca + f[(Ba + 4) >> 2] = Q + Ba = (c + ((X((qa + -2) | 0, g) | 0) << 2)) | 0 + Ea = (c + (Ga << 2)) | 0 + Da = f[_ >> 2] | 0 + if (T) { + pa = 0 + Ja = 0 + while (1) { + Ia = + ((f[(Ba + (pa << 2)) >> 2] | 0) - + (f[(Ea + (pa << 2)) >> 2] | 0)) | + 0 + Ha = (((Ia | 0) > -1 ? Ia : (0 - Ia) | 0) + Ja) | 0 + f[(va + (pa << 2)) >> 2] = Ia + f[(Da + (pa << 2)) >> 2] = (Ia << 1) ^ (Ia >> 31) + pa = (pa + 1) | 0 + if ((pa | 0) == (g | 0)) { + Ua = Ha + break + } else Ja = Ha + } + } else Ua = 0 + mo(j, $, Da, g) + Ja = Zk(j) | 0 + pa = I + Ha = Bm(j) | 0 + Ia = I + Qa = (o + (Fa << 3)) | 0 + Ma = Qa + Pa = f[Ma >> 2] | 0 + Ra = f[(Ma + 4) >> 2] | 0 + Va = +wm(Ca, Pa) + Ma = Vn(Ha | 0, Ia | 0, Ja | 0, pa | 0) | 0 + Wa = +(Ca >>> 0) + 4294967296.0 * +(Q | 0) + Xa = +W(+(Va * Wa)) + pa = + Vn( + Ma | 0, + I | 0, + (~~Xa >>> 0) | 0, + (+K(Xa) >= 1.0 + ? Xa > 0.0 + ? ~~+Y(+J(Xa / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Xa - +(~~Xa >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + Ma = r + f[Ma >> 2] = pa + f[(Ma + 4) >> 2] = Ua + b[V >> 0] = 0 + f[Z >> 2] = 0 + $f(aa, Ba, (Ba + (g << 2)) | 0) + f[s >> 2] = ta + f[t >> 2] = ua + f[k >> 2] = f[s >> 2] + f[j >> 2] = f[t >> 2] + Jf(ba, k, j) + if ((Ka | 0) < 1) { + Ya = za + Za = ya + _a = xa + $a = wa + ab = ua + bb = ta + cb = ta + } else { + Ma = (n + Ka) | 0 + pa = f[q >> 2] | 0 + Ja = pa + Ia = f[H >> 2] | 0 + Ha = (Ma + -1) | 0 + La = (Ha | 0) == (n | 0) + Na = (Ma + -2) | 0 + Oa = ma >>> 0 < Na >>> 0 + db = ~Ka + eb = (Ka + 2 + ((db | 0) > -2 ? db : -2)) | 0 + db = Ia + fb = Ha >>> 0 > n >>> 0 + gb = 0 + hb = 1 + while (1) { + gb = (gb + 1) | 0 + sj(n | 0, 1, eb | 0) | 0 + sj(n | 0, 0, gb | 0) | 0 + ib = Vn(Pa | 0, Ra | 0, hb | 0, 0) | 0 + d: while (1) { + if (T) { + sj(f[m >> 2] | 0, 0, na | 0) | 0 + jb = f[m >> 2] | 0 + kb = 0 + lb = 0 + while (1) { + if (!(b[(n + kb) >> 0] | 0)) { + mb = f[(l + ((kb * 12) | 0)) >> 2] | 0 + nb = 0 + do { + ob = (jb + (nb << 2)) | 0 + f[ob >> 2] = + (f[ob >> 2] | 0) + (f[(mb + (nb << 2)) >> 2] | 0) + nb = (nb + 1) | 0 + } while ((nb | 0) != (g | 0)) + pb = ((1 << kb) | (lb & 255)) & 255 + } else pb = lb + kb = (kb + 1) | 0 + if ((kb | 0) == (Ka | 0)) { + qb = pb + break + } else lb = pb + } + } else { + lb = 0 + kb = 0 + while (1) { + if (!(b[(n + lb) >> 0] | 0)) + rb = ((1 << lb) | (kb & 255)) & 255 + else rb = kb + lb = (lb + 1) | 0 + if ((lb | 0) == (Ka | 0)) { + qb = rb + break + } else kb = rb + } + } + kb = f[m >> 2] | 0 + do + if (T) { + f[kb >> 2] = ((f[kb >> 2] | 0) / (hb | 0)) | 0 + if (!oa) { + lb = 1 + do { + jb = (kb + (lb << 2)) | 0 + f[jb >> 2] = ((f[jb >> 2] | 0) / (hb | 0)) | 0 + lb = (lb + 1) | 0 + } while ((lb | 0) != (g | 0)) + lb = f[_ >> 2] | 0 + if (T) sb = lb + else { + tb = 0 + ub = lb + break + } + } else sb = f[_ >> 2] | 0 + lb = 0 + jb = 0 + while (1) { + nb = + ((f[(kb + (lb << 2)) >> 2] | 0) - + (f[(Ea + (lb << 2)) >> 2] | 0)) | + 0 + mb = (((nb | 0) > -1 ? nb : (0 - nb) | 0) + jb) | 0 + f[(pa + (lb << 2)) >> 2] = nb + f[(sb + (lb << 2)) >> 2] = (nb << 1) ^ (nb >> 31) + lb = (lb + 1) | 0 + if ((lb | 0) == (g | 0)) { + tb = mb + ub = sb + break + } else jb = mb + } + } else { + tb = 0 + ub = f[_ >> 2] | 0 + } + while (0) + mo(j, $, ub, g) + kb = Zk(j) | 0 + jb = I + lb = Bm(j) | 0 + mb = I + Xa = +wm(Ca, ib) + nb = Vn(lb | 0, mb | 0, kb | 0, jb | 0) | 0 + Va = +W(+(Xa * Wa)) + jb = + Vn( + nb | 0, + I | 0, + (~~Va >>> 0) | 0, + (+K(Va) >= 1.0 + ? Va > 0.0 + ? ~~+Y(+J(Va / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Va - +(~~Va >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + nb = f[r >> 2] | 0 + if ( + !((nb | 0) <= (jb | 0) + ? !((nb | 0) >= (jb | 0) ? (tb | 0) < (f[U >> 2] | 0) : 0) + : 0) + ) { + nb = r + f[nb >> 2] = jb + f[(nb + 4) >> 2] = tb + b[V >> 0] = qb + f[Z >> 2] = hb + f[v >> 2] = f[m >> 2] + f[w >> 2] = f[E >> 2] + f[k >> 2] = f[v >> 2] + f[j >> 2] = f[w >> 2] + Jf(aa, k, j) + f[x >> 2] = Ja + f[y >> 2] = Ia + f[k >> 2] = f[x >> 2] + f[j >> 2] = f[y >> 2] + Jf(ba, k, j) + } + if (La) break + vb = b[Ha >> 0] | 0 + nb = -1 + jb = vb + while (1) { + kb = (nb + -1) | 0 + wb = (Ma + kb) | 0 + mb = jb + jb = b[wb >> 0] | 0 + if ((jb & 255) < (mb & 255)) break + if ((wb | 0) == (n | 0)) { + xb = 84 + break d + } else nb = kb + } + kb = (Ma + nb) | 0 + if ((jb & 255) < (vb & 255)) { + yb = Ha + zb = vb + } else { + mb = Ma + lb = Ha + while (1) { + ob = (lb + -1) | 0 + if ((jb & 255) < (h[(mb + -2) >> 0] | 0)) { + yb = ob + zb = 1 + break + } else { + Ab = lb + lb = ob + mb = Ab + } + } + } + b[wb >> 0] = zb + b[yb >> 0] = jb + if ((nb | 0) < -1) { + Bb = kb + Cb = Ha + } else continue + while (1) { + mb = b[Bb >> 0] | 0 + b[Bb >> 0] = b[Cb >> 0] | 0 + b[Cb >> 0] = mb + mb = (Bb + 1) | 0 + lb = (Cb + -1) | 0 + if (mb >>> 0 < lb >>> 0) { + Bb = mb + Cb = lb + } else continue d + } + } + if ( + ((xb | 0) == 84 ? ((xb = 0), fb) : 0) + ? ((ib = b[n >> 0] | 0), + (b[n >> 0] = vb), + (b[Ha >> 0] = ib), + Oa) + : 0 + ) { + ib = Na + kb = ma + do { + nb = b[kb >> 0] | 0 + b[kb >> 0] = b[ib >> 0] | 0 + b[ib >> 0] = nb + kb = (kb + 1) | 0 + ib = (ib + -1) | 0 + } while (kb >>> 0 < ib >>> 0) + } + if ((hb | 0) >= (Ka | 0)) { + Ya = db + Za = pa + _a = db + $a = pa + ab = Ia + bb = Ja + cb = pa + break + } else hb = (hb + 1) | 0 + } + } + hb = f[Z >> 2] | 0 + pa = + Vn(Pa | 0, Ra | 0, hb | 0, ((((hb | 0) < 0) << 31) >> 31) | 0) | 0 + hb = Qa + f[hb >> 2] = pa + f[(hb + 4) >> 2] = I + if (T) { + hb = f[ba >> 2] | 0 + pa = f[C >> 2] | 0 + Ja = 0 + do { + Ia = f[(hb + (Ja << 2)) >> 2] | 0 + f[(pa + (Ja << 2)) >> 2] = (Ia << 1) ^ (Ia >> 31) + Ja = (Ja + 1) | 0 + } while ((Ja | 0) != (g | 0)) + Db = pa + } else Db = f[C >> 2] | 0 + lo(j, $, Db, g) + if ((Ka | 0) > 0) { + Eb = (a + 60 + ((Fa * 12) | 0)) | 0 + pa = (a + 60 + ((Fa * 12) | 0) + 4) | 0 + Ja = (a + 60 + ((Fa * 12) | 0) + 8) | 0 + hb = 0 + do { + Qa = f[pa >> 2] | 0 + Ra = f[Ja >> 2] | 0 + Pa = (Qa | 0) == ((Ra << 5) | 0) + if (!((1 << hb) & h[V >> 0])) { + if (Pa) { + if (((Qa + 1) | 0) < 0) { + xb = 108 + break b + } + Ia = Ra << 6 + db = (Qa + 32) & -32 + vi( + Eb, + Qa >>> 0 < 1073741823 + ? Ia >>> 0 < db >>> 0 + ? db + : Ia + : 2147483647, + ) + Fb = f[pa >> 2] | 0 + } else Fb = Qa + f[pa >> 2] = Fb + 1 + Ia = ((f[Eb >> 2] | 0) + ((Fb >>> 5) << 2)) | 0 + f[Ia >> 2] = f[Ia >> 2] | (1 << (Fb & 31)) + } else { + if (Pa) { + if (((Qa + 1) | 0) < 0) { + xb = 113 + break b + } + Pa = Ra << 6 + Ra = (Qa + 32) & -32 + vi( + Eb, + Qa >>> 0 < 1073741823 + ? Pa >>> 0 < Ra >>> 0 + ? Ra + : Pa + : 2147483647, + ) + Gb = f[pa >> 2] | 0 + } else Gb = Qa + f[pa >> 2] = Gb + 1 + Qa = ((f[Eb >> 2] | 0) + ((Gb >>> 5) << 2)) | 0 + f[Qa >> 2] = f[Qa >> 2] & ~(1 << (Gb & 31)) + } + hb = (hb + 1) | 0 + } while ((hb | 0) < (Ka | 0)) + } + hb = (d + (Ga << 2)) | 0 + pa = f[z >> 2] | 0 + if ((pa | 0) > 0) { + Ja = 0 + Fa = f[aa >> 2] | 0 + Qa = pa + while (1) { + if ((Qa | 0) > 0) { + pa = 0 + do { + Pa = f[(Fa + (pa << 2)) >> 2] | 0 + Ra = f[ca >> 2] | 0 + if ((Pa | 0) > (Ra | 0)) { + Ia = f[da >> 2] | 0 + f[(Ia + (pa << 2)) >> 2] = Ra + Hb = Ia + } else { + Ia = f[ea >> 2] | 0 + Ra = f[da >> 2] | 0 + f[(Ra + (pa << 2)) >> 2] = (Pa | 0) < (Ia | 0) ? Ia : Pa + Hb = Ra + } + pa = (pa + 1) | 0 + } while ((pa | 0) < (f[z >> 2] | 0)) + Ib = Hb + } else Ib = f[da >> 2] | 0 + pa = + ((f[(Ea + (Ja << 2)) >> 2] | 0) - + (f[(Ib + (Ja << 2)) >> 2] | 0)) | + 0 + Ra = (hb + (Ja << 2)) | 0 + f[Ra >> 2] = pa + do + if ((pa | 0) < (f[fa >> 2] | 0)) { + Jb = ((f[ga >> 2] | 0) + pa) | 0 + xb = 103 + } else { + if ((pa | 0) <= (f[ha >> 2] | 0)) break + Jb = (pa - (f[ga >> 2] | 0)) | 0 + xb = 103 + } + while (0) + if ((xb | 0) == 103) { + xb = 0 + f[Ra >> 2] = Jb + } + Ja = (Ja + 1) | 0 + Qa = f[z >> 2] | 0 + if ((Ja | 0) >= (Qa | 0)) break + else Fa = Ib + } + } + Fa = f[ia >> 2] | 0 + if (Fa | 0) { + Qa = f[la >> 2] | 0 + if ((Qa | 0) != (Fa | 0)) + f[la >> 2] = Qa + (~(((Qa + -4 - Fa) | 0) >>> 2) << 2) + Oq(Fa) + } + Fa = f[ja >> 2] | 0 + if (Fa | 0) { + Qa = f[ka >> 2] | 0 + if ((Qa | 0) != (Fa | 0)) + f[ka >> 2] = Qa + (~(((Qa + -4 - Fa) | 0) >>> 2) << 2) + Oq(Fa) + } + if ((qa | 0) <= 2) { + Kb = $a + Lb = _a + break a + } + Fa = f[B >> 2] | 0 + sa = f[Fa >> 2] | 0 + Qa = (ra + -1) | 0 + if ((((f[(Fa + 4) >> 2] | 0) - sa) >> 2) >>> 0 <= Qa >>> 0) { + Aa = Fa + xb = 18 + break + } else { + Fa = ra + ra = Qa + ta = bb + ua = ab + va = cb + wa = $a + xa = _a + ya = Za + za = Ya + qa = Fa + } + } + if ((xb | 0) == 18) aq(Aa) + else if ((xb | 0) == 108) aq(Eb) + else if ((xb | 0) == 113) aq(Eb) + } else { + Kb = M + Lb = N + } + while (0) + N = f[l >> 2] | 0 + if ((g | 0) > 0 ? ((f[N >> 2] = 0), (g | 0) != 1) : 0) { + M = 1 + do { + f[(N + (M << 2)) >> 2] = 0 + M = (M + 1) | 0 + } while ((M | 0) != (g | 0)) + } + g = f[z >> 2] | 0 + if ((g | 0) > 0) { + M = (a + 16) | 0 + Eb = (a + 32) | 0 + Aa = (a + 12) | 0 + qa = (a + 28) | 0 + Ya = (a + 20) | 0 + za = (a + 24) | 0 + a = 0 + Za = N + N = g + while (1) { + if ((N | 0) > 0) { + g = 0 + do { + ya = f[(Za + (g << 2)) >> 2] | 0 + _a = f[M >> 2] | 0 + if ((ya | 0) > (_a | 0)) { + xa = f[Eb >> 2] | 0 + f[(xa + (g << 2)) >> 2] = _a + Mb = xa + } else { + xa = f[Aa >> 2] | 0 + _a = f[Eb >> 2] | 0 + f[(_a + (g << 2)) >> 2] = (ya | 0) < (xa | 0) ? xa : ya + Mb = _a + } + g = (g + 1) | 0 + } while ((g | 0) < (f[z >> 2] | 0)) + Nb = Mb + } else Nb = f[Eb >> 2] | 0 + g = ((f[(c + (a << 2)) >> 2] | 0) - (f[(Nb + (a << 2)) >> 2] | 0)) | 0 + _a = (d + (a << 2)) | 0 + f[_a >> 2] = g + if ((g | 0) >= (f[qa >> 2] | 0)) { + if ((g | 0) > (f[za >> 2] | 0)) { + Ob = (g - (f[Ya >> 2] | 0)) | 0 + xb = 139 + } + } else { + Ob = ((f[Ya >> 2] | 0) + g) | 0 + xb = 139 + } + if ((xb | 0) == 139) { + xb = 0 + f[_a >> 2] = Ob + } + a = (a + 1) | 0 + N = f[z >> 2] | 0 + if ((a | 0) >= (N | 0)) break + else Za = Nb + } + } + if (Kb | 0) { + if ((Lb | 0) != (Kb | 0)) + f[H >> 2] = Lb + (~(((Lb + -4 - Kb) | 0) >>> 2) << 2) + Oq(Kb) + } + Kb = f[m >> 2] | 0 + if (Kb | 0) { + m = f[E >> 2] | 0 + if ((m | 0) != (Kb | 0)) + f[E >> 2] = m + (~(((m + -4 - Kb) | 0) >>> 2) << 2) + Oq(Kb) + } + Kb = f[(l + 36) >> 2] | 0 + if (Kb | 0) { + m = (l + 40) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Kb | 0)) + f[m >> 2] = E + (~(((E + -4 - Kb) | 0) >>> 2) << 2) + Oq(Kb) + } + Kb = f[(l + 24) >> 2] | 0 + if (Kb | 0) { + E = (l + 28) | 0 + m = f[E >> 2] | 0 + if ((m | 0) != (Kb | 0)) + f[E >> 2] = m + (~(((m + -4 - Kb) | 0) >>> 2) << 2) + Oq(Kb) + } + Kb = f[(l + 12) >> 2] | 0 + if (Kb | 0) { + m = (l + 16) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Kb | 0)) + f[m >> 2] = E + (~(((E + -4 - Kb) | 0) >>> 2) << 2) + Oq(Kb) + } + Kb = f[l >> 2] | 0 + if (!Kb) { + u = i + return 1 + } + E = (l + 4) | 0 + l = f[E >> 2] | 0 + if ((l | 0) != (Kb | 0)) + f[E >> 2] = l + (~(((l + -4 - Kb) | 0) >>> 2) << 2) + Oq(Kb) + u = i + return 1 + } + function bb(a, c, d, e, g, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0, + Sa = 0, + Ta = 0, + Ua = 0, + Va = 0.0, + Wa = 0.0, + Xa = 0.0, + Ya = 0, + Za = 0, + _a = 0, + $a = 0, + ab = 0, + bb = 0, + cb = 0, + db = 0, + eb = 0, + fb = 0, + gb = 0, + hb = 0, + ib = 0, + jb = 0, + kb = 0, + lb = 0, + mb = 0, + nb = 0, + ob = 0, + pb = 0, + qb = 0, + rb = 0, + sb = 0, + tb = 0, + ub = 0, + vb = 0, + wb = 0, + xb = 0, + yb = 0, + zb = 0, + Ab = 0, + Bb = 0, + Cb = 0, + Db = 0, + Eb = 0, + Fb = 0, + Gb = 0, + Hb = 0, + Ib = 0, + Jb = 0, + Kb = 0, + Lb = 0, + Mb = 0, + Nb = 0, + Ob = 0, + Pb = 0, + Qb = 0 + i = u + u = (u + 240) | 0 + j = (i + 104) | 0 + k = (i + 224) | 0 + l = (i + 176) | 0 + m = (i + 160) | 0 + n = (i + 228) | 0 + o = (i + 72) | 0 + p = (i + 40) | 0 + q = (i + 132) | 0 + r = i + s = (i + 172) | 0 + t = (i + 156) | 0 + v = (i + 152) | 0 + w = (i + 148) | 0 + x = (i + 144) | 0 + y = (i + 128) | 0 + z = (a + 8) | 0 + Mh(z, c, e, g) + e = f[(a + 48) >> 2] | 0 + A = f[(a + 52) >> 2] | 0 + B = l + C = (B + 48) | 0 + do { + f[B >> 2] = 0 + B = (B + 4) | 0 + } while ((B | 0) < (C | 0)) + if (!g) { + D = 0 + E = 0 + } else { + Ci(l, g) + D = f[(l + 12) >> 2] | 0 + E = f[(l + 16) >> 2] | 0 + } + B = (l + 16) | 0 + C = (E - D) >> 2 + F = D + D = E + if (C >>> 0 >= g >>> 0) { + if ( + C >>> 0 > g >>> 0 ? ((E = (F + (g << 2)) | 0), (E | 0) != (D | 0)) : 0 + ) + f[B >> 2] = D + (~(((D + -4 - E) | 0) >>> 2) << 2) + } else Ci((l + 12) | 0, (g - C) | 0) + C = (l + 24) | 0 + E = (l + 28) | 0 + D = f[E >> 2] | 0 + B = f[C >> 2] | 0 + F = (D - B) >> 2 + G = B + B = D + if (F >>> 0 >= g >>> 0) { + if ( + F >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[E >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else Ci(C, (g - F) | 0) + F = (l + 36) | 0 + C = (l + 40) | 0 + D = f[C >> 2] | 0 + B = f[F >> 2] | 0 + E = (D - B) >> 2 + G = B + B = D + if (E >>> 0 >= g >>> 0) { + if ( + E >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[C >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else Ci(F, (g - E) | 0) + f[m >> 2] = 0 + E = (m + 4) | 0 + f[E >> 2] = 0 + f[(m + 8) >> 2] = 0 + F = (g | 0) == 0 + do + if (!F) + if (g >>> 0 > 1073741823) aq(m) + else { + D = g << 2 + B = ln(D) | 0 + f[m >> 2] = B + C = (B + (g << 2)) | 0 + f[(m + 8) >> 2] = C + sj(B | 0, 0, D | 0) | 0 + f[E >> 2] = C + break + } + while (0) + C = (a + 152) | 0 + D = (a + 156) | 0 + B = f[D >> 2] | 0 + G = f[C >> 2] | 0 + H = (B - G) >> 2 + L = G + G = B + if (H >>> 0 >= g >>> 0) { + if ( + H >>> 0 > g >>> 0 ? ((B = (L + (g << 2)) | 0), (B | 0) != (G | 0)) : 0 + ) + f[D >> 2] = G + (~(((G + -4 - B) | 0) >>> 2) << 2) + } else Ci(C, (g - H) | 0) + f[o >> 2] = 0 + f[(o + 4) >> 2] = 0 + f[(o + 8) >> 2] = 0 + f[(o + 12) >> 2] = 0 + f[(o + 16) >> 2] = 0 + f[(o + 20) >> 2] = 0 + f[(o + 24) >> 2] = 0 + f[(o + 28) >> 2] = 0 + f[p >> 2] = 0 + f[(p + 4) >> 2] = 0 + f[(p + 8) >> 2] = 0 + f[(p + 12) >> 2] = 0 + f[(p + 16) >> 2] = 0 + f[(p + 20) >> 2] = 0 + f[(p + 24) >> 2] = 0 + f[(p + 28) >> 2] = 0 + f[q >> 2] = 0 + H = (q + 4) | 0 + f[H >> 2] = 0 + f[(q + 8) >> 2] = 0 + if (F) { + M = 0 + N = 0 + O = 0 + P = 0 + } else { + F = g << 2 + B = ln(F) | 0 + f[q >> 2] = B + G = (B + (g << 2)) | 0 + f[(q + 8) >> 2] = G + sj(B | 0, 0, F | 0) | 0 + f[H >> 2] = G + M = B + N = G + O = G + P = B + } + B = (a + 56) | 0 + G = f[B >> 2] | 0 + F = f[(G + 4) >> 2] | 0 + D = f[G >> 2] | 0 + L = (F - D) | 0 + a: do + if ((L | 0) > 4) { + Q = L >> 2 + R = (e + 12) | 0 + S = (g | 0) > 0 + T = (r + 4) | 0 + U = (r + 8) | 0 + V = (r + 12) | 0 + Z = (a + 152) | 0 + _ = (a + 112) | 0 + $ = (r + 16) | 0 + aa = (r + 28) | 0 + ba = (a + 16) | 0 + ca = (a + 32) | 0 + da = (a + 12) | 0 + ea = (a + 28) | 0 + fa = (a + 20) | 0 + ga = (a + 24) | 0 + ha = (r + 28) | 0 + ia = (r + 16) | 0 + ja = (r + 20) | 0 + ka = (r + 32) | 0 + la = (n + 1) | 0 + ma = g << 2 + na = (g | 0) == 1 + oa = (Q + -1) | 0 + if (((F - D) >> 2) >>> 0 > oa >>> 0) { + pa = Q + qa = oa + ra = D + sa = P + ta = O + ua = M + va = M + wa = N + xa = M + ya = N + } else { + za = G + aq(za) + } + b: while (1) { + oa = f[(ra + (qa << 2)) >> 2] | 0 + Q = ((((oa >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + oa) | 0 + Aa = ((oa | 0) == -1) | ((Q | 0) == -1) + Ba = 1 + Ca = 0 + Da = oa + c: while (1) { + Ea = Ba ^ 1 + Fa = Ca + Ga = Da + while (1) { + if ((Ga | 0) == -1) { + Ha = Fa + break c + } + Ia = f[(l + ((Fa * 12) | 0)) >> 2] | 0 + Ja = f[R >> 2] | 0 + Ka = f[(Ja + (Ga << 2)) >> 2] | 0 + if ((Ka | 0) != -1) { + La = f[e >> 2] | 0 + Ma = f[A >> 2] | 0 + Na = f[(Ma + (f[(La + (Ka << 2)) >> 2] << 2)) >> 2] | 0 + Oa = (Ka + 1) | 0 + Pa = ((Oa >>> 0) % 3 | 0 | 0) == 0 ? (Ka + -2) | 0 : Oa + if ((Pa | 0) == -1) Qa = -1 + else Qa = f[(La + (Pa << 2)) >> 2] | 0 + Pa = f[(Ma + (Qa << 2)) >> 2] | 0 + Oa = ((((Ka >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Ka) | 0 + if ((Oa | 0) == -1) Ra = -1 + else Ra = f[(La + (Oa << 2)) >> 2] | 0 + Oa = f[(Ma + (Ra << 2)) >> 2] | 0 + if ( + ((Na | 0) < (qa | 0)) & + ((Pa | 0) < (qa | 0)) & + ((Oa | 0) < (qa | 0)) + ) { + Ma = X(Na, g) | 0 + Na = X(Pa, g) | 0 + Pa = X(Oa, g) | 0 + if (S) { + Oa = 0 + do { + f[(Ia + (Oa << 2)) >> 2] = + (f[(c + ((Oa + Pa) << 2)) >> 2] | 0) + + (f[(c + ((Oa + Na) << 2)) >> 2] | 0) - + (f[(c + ((Oa + Ma) << 2)) >> 2] | 0) + Oa = (Oa + 1) | 0 + } while ((Oa | 0) != (g | 0)) + } + Oa = (Fa + 1) | 0 + if ((Oa | 0) == 4) { + Ha = 4 + break c + } else Sa = Oa + } else Sa = Fa + } else Sa = Fa + do + if (Ba) { + Oa = (Ga + 1) | 0 + Ma = ((Oa >>> 0) % 3 | 0 | 0) == 0 ? (Ga + -2) | 0 : Oa + if ( + (Ma | 0) != -1 + ? ((Oa = f[(Ja + (Ma << 2)) >> 2] | 0), + (Ma = (Oa + 1) | 0), + (Oa | 0) != -1) + : 0 + ) + Ta = ((Ma >>> 0) % 3 | 0 | 0) == 0 ? (Oa + -2) | 0 : Ma + else Ta = -1 + } else { + Ma = ((((Ga >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Ga) | 0 + if ( + (Ma | 0) != -1 + ? ((Oa = f[(Ja + (Ma << 2)) >> 2] | 0), (Oa | 0) != -1) + : 0 + ) + if (!((Oa >>> 0) % 3 | 0)) { + Ta = (Oa + 2) | 0 + break + } else { + Ta = (Oa + -1) | 0 + break + } + else Ta = -1 + } + while (0) + if ((Ta | 0) == (oa | 0)) { + Ha = Sa + break c + } + if (((Ta | 0) != -1) | Ea) { + Fa = Sa + Ga = Ta + } else break + } + if (Aa) { + Ba = 0 + Ca = Sa + Da = -1 + continue + } + Ga = f[(Ja + (Q << 2)) >> 2] | 0 + if ((Ga | 0) == -1) { + Ba = 0 + Ca = Sa + Da = -1 + continue + } + if (!((Ga >>> 0) % 3 | 0)) { + Ba = 0 + Ca = Sa + Da = (Ga + 2) | 0 + continue + } else { + Ba = 0 + Ca = Sa + Da = (Ga + -1) | 0 + continue + } + } + Da = X(qa, g) | 0 + f[r >> 2] = 0 + f[T >> 2] = 0 + b[U >> 0] = 0 + f[V >> 2] = 0 + f[(V + 4) >> 2] = 0 + f[(V + 8) >> 2] = 0 + f[(V + 12) >> 2] = 0 + f[(V + 16) >> 2] = 0 + f[(V + 20) >> 2] = 0 + f[(V + 24) >> 2] = 0 + Ca = (Ha + -1) | 0 + Ba = (p + (Ca << 3)) | 0 + Q = Ba + Aa = + Vn( + f[Q >> 2] | 0, + f[(Q + 4) >> 2] | 0, + Ha | 0, + ((((Ha | 0) < 0) << 31) >> 31) | 0, + ) | 0 + Q = I + oa = Ba + f[oa >> 2] = Aa + f[(oa + 4) >> 2] = Q + oa = (c + ((X((pa + -2) | 0, g) | 0) << 2)) | 0 + Ba = (c + (Da << 2)) | 0 + Ga = f[Z >> 2] | 0 + if (S) { + Fa = 0 + Ea = 0 + while (1) { + Oa = + ((f[(oa + (Fa << 2)) >> 2] | 0) - + (f[(Ba + (Fa << 2)) >> 2] | 0)) | + 0 + Ma = (((Oa | 0) > -1 ? Oa : (0 - Oa) | 0) + Ea) | 0 + f[(ua + (Fa << 2)) >> 2] = Oa + f[(Ga + (Fa << 2)) >> 2] = (Oa << 1) ^ (Oa >> 31) + Fa = (Fa + 1) | 0 + if ((Fa | 0) == (g | 0)) { + Ua = Ma + break + } else Ea = Ma + } + } else Ua = 0 + mo(j, _, Ga, g) + Ea = Zk(j) | 0 + Fa = I + Ma = Bm(j) | 0 + Oa = I + Na = (o + (Ca << 3)) | 0 + Pa = Na + Ia = f[Pa >> 2] | 0 + La = f[(Pa + 4) >> 2] | 0 + Va = +wm(Aa, Ia) + Pa = Vn(Ma | 0, Oa | 0, Ea | 0, Fa | 0) | 0 + Wa = +(Aa >>> 0) + 4294967296.0 * +(Q | 0) + Xa = +W(+(Va * Wa)) + Fa = + Vn( + Pa | 0, + I | 0, + (~~Xa >>> 0) | 0, + (+K(Xa) >= 1.0 + ? Xa > 0.0 + ? ~~+Y(+J(Xa / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Xa - +(~~Xa >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + Pa = r + f[Pa >> 2] = Fa + f[(Pa + 4) >> 2] = Ua + b[U >> 0] = 0 + f[V >> 2] = 0 + $f($, oa, (oa + (g << 2)) | 0) + f[s >> 2] = sa + f[t >> 2] = ta + f[k >> 2] = f[s >> 2] + f[j >> 2] = f[t >> 2] + Jf(aa, k, j) + if ((Ha | 0) < 1) { + Ya = ya + Za = xa + _a = wa + $a = va + ab = ta + bb = sa + cb = sa + } else { + Pa = (n + Ha) | 0 + Fa = f[q >> 2] | 0 + Ea = Fa + Oa = f[H >> 2] | 0 + Ma = (Pa + -1) | 0 + Ka = (Ma | 0) == (n | 0) + db = (Pa + -2) | 0 + eb = la >>> 0 < db >>> 0 + fb = ~Ha + gb = (Ha + 2 + ((fb | 0) > -2 ? fb : -2)) | 0 + fb = Oa + hb = Ma >>> 0 > n >>> 0 + ib = 0 + jb = 1 + while (1) { + ib = (ib + 1) | 0 + sj(n | 0, 1, gb | 0) | 0 + sj(n | 0, 0, ib | 0) | 0 + kb = Vn(Ia | 0, La | 0, jb | 0, 0) | 0 + d: while (1) { + if (S) { + sj(f[m >> 2] | 0, 0, ma | 0) | 0 + lb = f[m >> 2] | 0 + mb = 0 + nb = 0 + while (1) { + if (!(b[(n + mb) >> 0] | 0)) { + ob = f[(l + ((mb * 12) | 0)) >> 2] | 0 + pb = 0 + do { + qb = (lb + (pb << 2)) | 0 + f[qb >> 2] = + (f[qb >> 2] | 0) + (f[(ob + (pb << 2)) >> 2] | 0) + pb = (pb + 1) | 0 + } while ((pb | 0) != (g | 0)) + rb = ((1 << mb) | (nb & 255)) & 255 + } else rb = nb + mb = (mb + 1) | 0 + if ((mb | 0) == (Ha | 0)) { + sb = rb + break + } else nb = rb + } + } else { + nb = 0 + mb = 0 + while (1) { + if (!(b[(n + nb) >> 0] | 0)) + tb = ((1 << nb) | (mb & 255)) & 255 + else tb = mb + nb = (nb + 1) | 0 + if ((nb | 0) == (Ha | 0)) { + sb = tb + break + } else mb = tb + } + } + mb = f[m >> 2] | 0 + do + if (S) { + f[mb >> 2] = ((f[mb >> 2] | 0) / (jb | 0)) | 0 + if (!na) { + nb = 1 + do { + lb = (mb + (nb << 2)) | 0 + f[lb >> 2] = ((f[lb >> 2] | 0) / (jb | 0)) | 0 + nb = (nb + 1) | 0 + } while ((nb | 0) != (g | 0)) + nb = f[Z >> 2] | 0 + if (S) ub = nb + else { + vb = 0 + wb = nb + break + } + } else ub = f[Z >> 2] | 0 + nb = 0 + lb = 0 + while (1) { + pb = + ((f[(mb + (nb << 2)) >> 2] | 0) - + (f[(Ba + (nb << 2)) >> 2] | 0)) | + 0 + ob = (((pb | 0) > -1 ? pb : (0 - pb) | 0) + lb) | 0 + f[(Fa + (nb << 2)) >> 2] = pb + f[(ub + (nb << 2)) >> 2] = (pb << 1) ^ (pb >> 31) + nb = (nb + 1) | 0 + if ((nb | 0) == (g | 0)) { + vb = ob + wb = ub + break + } else lb = ob + } + } else { + vb = 0 + wb = f[Z >> 2] | 0 + } + while (0) + mo(j, _, wb, g) + mb = Zk(j) | 0 + lb = I + nb = Bm(j) | 0 + ob = I + Xa = +wm(Aa, kb) + pb = Vn(nb | 0, ob | 0, mb | 0, lb | 0) | 0 + Va = +W(+(Xa * Wa)) + lb = + Vn( + pb | 0, + I | 0, + (~~Va >>> 0) | 0, + (+K(Va) >= 1.0 + ? Va > 0.0 + ? ~~+Y(+J(Va / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Va - +(~~Va >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + pb = f[r >> 2] | 0 + if ( + !((pb | 0) <= (lb | 0) + ? !((pb | 0) >= (lb | 0) ? (vb | 0) < (f[T >> 2] | 0) : 0) + : 0) + ) { + pb = r + f[pb >> 2] = lb + f[(pb + 4) >> 2] = vb + b[U >> 0] = sb + f[V >> 2] = jb + f[v >> 2] = f[m >> 2] + f[w >> 2] = f[E >> 2] + f[k >> 2] = f[v >> 2] + f[j >> 2] = f[w >> 2] + Jf($, k, j) + f[x >> 2] = Ea + f[y >> 2] = Oa + f[k >> 2] = f[x >> 2] + f[j >> 2] = f[y >> 2] + Jf(aa, k, j) + } + if (Ka) break + xb = b[Ma >> 0] | 0 + pb = -1 + lb = xb + while (1) { + mb = (pb + -1) | 0 + yb = (Pa + mb) | 0 + ob = lb + lb = b[yb >> 0] | 0 + if ((lb & 255) < (ob & 255)) break + if ((yb | 0) == (n | 0)) { + zb = 84 + break d + } else pb = mb + } + mb = (Pa + pb) | 0 + if ((lb & 255) < (xb & 255)) { + Ab = Ma + Bb = xb + } else { + ob = Pa + nb = Ma + while (1) { + qb = (nb + -1) | 0 + if ((lb & 255) < (h[(ob + -2) >> 0] | 0)) { + Ab = qb + Bb = 1 + break + } else { + Cb = nb + nb = qb + ob = Cb + } + } + } + b[yb >> 0] = Bb + b[Ab >> 0] = lb + if ((pb | 0) < -1) { + Db = mb + Eb = Ma + } else continue + while (1) { + ob = b[Db >> 0] | 0 + b[Db >> 0] = b[Eb >> 0] | 0 + b[Eb >> 0] = ob + ob = (Db + 1) | 0 + nb = (Eb + -1) | 0 + if (ob >>> 0 < nb >>> 0) { + Db = ob + Eb = nb + } else continue d + } + } + if ( + ((zb | 0) == 84 ? ((zb = 0), hb) : 0) + ? ((kb = b[n >> 0] | 0), + (b[n >> 0] = xb), + (b[Ma >> 0] = kb), + eb) + : 0 + ) { + kb = db + mb = la + do { + pb = b[mb >> 0] | 0 + b[mb >> 0] = b[kb >> 0] | 0 + b[kb >> 0] = pb + mb = (mb + 1) | 0 + kb = (kb + -1) | 0 + } while (mb >>> 0 < kb >>> 0) + } + if ((jb | 0) >= (Ha | 0)) { + Ya = fb + Za = Fa + _a = fb + $a = Fa + ab = Oa + bb = Ea + cb = Fa + break + } else jb = (jb + 1) | 0 + } + } + jb = f[V >> 2] | 0 + Fa = + Vn(Ia | 0, La | 0, jb | 0, ((((jb | 0) < 0) << 31) >> 31) | 0) | 0 + jb = Na + f[jb >> 2] = Fa + f[(jb + 4) >> 2] = I + if (S) { + jb = f[aa >> 2] | 0 + Fa = f[C >> 2] | 0 + Ea = 0 + do { + Oa = f[(jb + (Ea << 2)) >> 2] | 0 + f[(Fa + (Ea << 2)) >> 2] = (Oa << 1) ^ (Oa >> 31) + Ea = (Ea + 1) | 0 + } while ((Ea | 0) != (g | 0)) + Fb = Fa + } else Fb = f[C >> 2] | 0 + lo(j, _, Fb, g) + if ((Ha | 0) > 0) { + Gb = (a + 60 + ((Ca * 12) | 0)) | 0 + Fa = (a + 60 + ((Ca * 12) | 0) + 4) | 0 + Ea = (a + 60 + ((Ca * 12) | 0) + 8) | 0 + jb = 0 + do { + Na = f[Fa >> 2] | 0 + La = f[Ea >> 2] | 0 + Ia = (Na | 0) == ((La << 5) | 0) + if (!((1 << jb) & h[U >> 0])) { + if (Ia) { + if (((Na + 1) | 0) < 0) { + zb = 108 + break b + } + Oa = La << 6 + fb = (Na + 32) & -32 + vi( + Gb, + Na >>> 0 < 1073741823 + ? Oa >>> 0 < fb >>> 0 + ? fb + : Oa + : 2147483647, + ) + Hb = f[Fa >> 2] | 0 + } else Hb = Na + f[Fa >> 2] = Hb + 1 + Oa = ((f[Gb >> 2] | 0) + ((Hb >>> 5) << 2)) | 0 + f[Oa >> 2] = f[Oa >> 2] | (1 << (Hb & 31)) + } else { + if (Ia) { + if (((Na + 1) | 0) < 0) { + zb = 113 + break b + } + Ia = La << 6 + La = (Na + 32) & -32 + vi( + Gb, + Na >>> 0 < 1073741823 + ? Ia >>> 0 < La >>> 0 + ? La + : Ia + : 2147483647, + ) + Ib = f[Fa >> 2] | 0 + } else Ib = Na + f[Fa >> 2] = Ib + 1 + Na = ((f[Gb >> 2] | 0) + ((Ib >>> 5) << 2)) | 0 + f[Na >> 2] = f[Na >> 2] & ~(1 << (Ib & 31)) + } + jb = (jb + 1) | 0 + } while ((jb | 0) < (Ha | 0)) + } + jb = (d + (Da << 2)) | 0 + Fa = f[z >> 2] | 0 + if ((Fa | 0) > 0) { + Ea = 0 + Ca = f[$ >> 2] | 0 + Na = Fa + while (1) { + if ((Na | 0) > 0) { + Fa = 0 + do { + Ia = f[(Ca + (Fa << 2)) >> 2] | 0 + La = f[ba >> 2] | 0 + if ((Ia | 0) > (La | 0)) { + Oa = f[ca >> 2] | 0 + f[(Oa + (Fa << 2)) >> 2] = La + Jb = Oa + } else { + Oa = f[da >> 2] | 0 + La = f[ca >> 2] | 0 + f[(La + (Fa << 2)) >> 2] = (Ia | 0) < (Oa | 0) ? Oa : Ia + Jb = La + } + Fa = (Fa + 1) | 0 + } while ((Fa | 0) < (f[z >> 2] | 0)) + Kb = Jb + } else Kb = f[ca >> 2] | 0 + Fa = + ((f[(Ba + (Ea << 2)) >> 2] | 0) - + (f[(Kb + (Ea << 2)) >> 2] | 0)) | + 0 + La = (jb + (Ea << 2)) | 0 + f[La >> 2] = Fa + do + if ((Fa | 0) < (f[ea >> 2] | 0)) { + Lb = ((f[fa >> 2] | 0) + Fa) | 0 + zb = 103 + } else { + if ((Fa | 0) <= (f[ga >> 2] | 0)) break + Lb = (Fa - (f[fa >> 2] | 0)) | 0 + zb = 103 + } + while (0) + if ((zb | 0) == 103) { + zb = 0 + f[La >> 2] = Lb + } + Ea = (Ea + 1) | 0 + Na = f[z >> 2] | 0 + if ((Ea | 0) >= (Na | 0)) break + else Ca = Kb + } + } + Ca = f[ha >> 2] | 0 + if (Ca | 0) { + Na = f[ka >> 2] | 0 + if ((Na | 0) != (Ca | 0)) + f[ka >> 2] = Na + (~(((Na + -4 - Ca) | 0) >>> 2) << 2) + Oq(Ca) + } + Ca = f[ia >> 2] | 0 + if (Ca | 0) { + Na = f[ja >> 2] | 0 + if ((Na | 0) != (Ca | 0)) + f[ja >> 2] = Na + (~(((Na + -4 - Ca) | 0) >>> 2) << 2) + Oq(Ca) + } + if ((pa | 0) <= 2) { + Mb = $a + Nb = _a + break a + } + Ca = f[B >> 2] | 0 + ra = f[Ca >> 2] | 0 + Na = (qa + -1) | 0 + if ((((f[(Ca + 4) >> 2] | 0) - ra) >> 2) >>> 0 <= Na >>> 0) { + za = Ca + zb = 18 + break + } else { + Ca = qa + qa = Na + sa = bb + ta = ab + ua = cb + va = $a + wa = _a + xa = Za + ya = Ya + pa = Ca + } + } + if ((zb | 0) == 18) aq(za) + else if ((zb | 0) == 108) aq(Gb) + else if ((zb | 0) == 113) aq(Gb) + } else { + Mb = M + Nb = N + } + while (0) + N = f[l >> 2] | 0 + if ((g | 0) > 0 ? ((f[N >> 2] = 0), (g | 0) != 1) : 0) { + M = 1 + do { + f[(N + (M << 2)) >> 2] = 0 + M = (M + 1) | 0 + } while ((M | 0) != (g | 0)) + } + g = f[z >> 2] | 0 + if ((g | 0) > 0) { + M = (a + 16) | 0 + Gb = (a + 32) | 0 + za = (a + 12) | 0 + pa = (a + 28) | 0 + Ya = (a + 20) | 0 + ya = (a + 24) | 0 + a = 0 + Za = N + N = g + while (1) { + if ((N | 0) > 0) { + g = 0 + do { + xa = f[(Za + (g << 2)) >> 2] | 0 + _a = f[M >> 2] | 0 + if ((xa | 0) > (_a | 0)) { + wa = f[Gb >> 2] | 0 + f[(wa + (g << 2)) >> 2] = _a + Ob = wa + } else { + wa = f[za >> 2] | 0 + _a = f[Gb >> 2] | 0 + f[(_a + (g << 2)) >> 2] = (xa | 0) < (wa | 0) ? wa : xa + Ob = _a + } + g = (g + 1) | 0 + } while ((g | 0) < (f[z >> 2] | 0)) + Pb = Ob + } else Pb = f[Gb >> 2] | 0 + g = ((f[(c + (a << 2)) >> 2] | 0) - (f[(Pb + (a << 2)) >> 2] | 0)) | 0 + _a = (d + (a << 2)) | 0 + f[_a >> 2] = g + if ((g | 0) >= (f[pa >> 2] | 0)) { + if ((g | 0) > (f[ya >> 2] | 0)) { + Qb = (g - (f[Ya >> 2] | 0)) | 0 + zb = 139 + } + } else { + Qb = ((f[Ya >> 2] | 0) + g) | 0 + zb = 139 + } + if ((zb | 0) == 139) { + zb = 0 + f[_a >> 2] = Qb + } + a = (a + 1) | 0 + N = f[z >> 2] | 0 + if ((a | 0) >= (N | 0)) break + else Za = Pb + } + } + if (Mb | 0) { + if ((Nb | 0) != (Mb | 0)) + f[H >> 2] = Nb + (~(((Nb + -4 - Mb) | 0) >>> 2) << 2) + Oq(Mb) + } + Mb = f[m >> 2] | 0 + if (Mb | 0) { + m = f[E >> 2] | 0 + if ((m | 0) != (Mb | 0)) + f[E >> 2] = m + (~(((m + -4 - Mb) | 0) >>> 2) << 2) + Oq(Mb) + } + Mb = f[(l + 36) >> 2] | 0 + if (Mb | 0) { + m = (l + 40) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Mb | 0)) + f[m >> 2] = E + (~(((E + -4 - Mb) | 0) >>> 2) << 2) + Oq(Mb) + } + Mb = f[(l + 24) >> 2] | 0 + if (Mb | 0) { + E = (l + 28) | 0 + m = f[E >> 2] | 0 + if ((m | 0) != (Mb | 0)) + f[E >> 2] = m + (~(((m + -4 - Mb) | 0) >>> 2) << 2) + Oq(Mb) + } + Mb = f[(l + 12) >> 2] | 0 + if (Mb | 0) { + m = (l + 16) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Mb | 0)) + f[m >> 2] = E + (~(((E + -4 - Mb) | 0) >>> 2) << 2) + Oq(Mb) + } + Mb = f[l >> 2] | 0 + if (!Mb) { + u = i + return 1 + } + E = (l + 4) | 0 + l = f[E >> 2] | 0 + if ((l | 0) != (Mb | 0)) + f[E >> 2] = l + (~(((l + -4 - Mb) | 0) >>> 2) << 2) + Oq(Mb) + u = i + return 1 + } + function cb(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + b = u + u = (u + 16) | 0 + c = b + d = (b + 8) | 0 + e = (b + 4) | 0 + f[d >> 2] = a + do + if (a >>> 0 >= 212) { + g = ((a >>> 0) / 210) | 0 + h = (g * 210) | 0 + f[e >> 2] = a - h + i = 0 + j = g + g = ((Hl(6952, 7144, e, c) | 0) - 6952) >> 2 + k = h + a: while (1) { + l = ((f[(6952 + (g << 2)) >> 2] | 0) + k) | 0 + h = 5 + while (1) { + if (h >>> 0 >= 47) { + m = 211 + n = i + o = 8 + break + } + p = f[(6760 + (h << 2)) >> 2] | 0 + q = ((l >>> 0) / (p >>> 0)) | 0 + if (q >>> 0 < p >>> 0) { + o = 106 + break a + } + if ((l | 0) == (X(q, p) | 0)) { + r = i + break + } else h = (h + 1) | 0 + } + b: do + if ((o | 0) == 8) { + c: while (1) { + o = 0 + h = ((l >>> 0) / (m >>> 0)) | 0 + do + if (h >>> 0 >= m >>> 0) + if ((l | 0) != (X(h, m) | 0)) { + p = (m + 10) | 0 + q = ((l >>> 0) / (p >>> 0)) | 0 + if (q >>> 0 >= p >>> 0) + if ((l | 0) != (X(q, p) | 0)) { + q = (m + 12) | 0 + s = ((l >>> 0) / (q >>> 0)) | 0 + if (s >>> 0 >= q >>> 0) + if ((l | 0) != (X(s, q) | 0)) { + s = (m + 16) | 0 + t = ((l >>> 0) / (s >>> 0)) | 0 + if (t >>> 0 >= s >>> 0) + if ((l | 0) != (X(t, s) | 0)) { + t = (m + 18) | 0 + v = ((l >>> 0) / (t >>> 0)) | 0 + if (v >>> 0 >= t >>> 0) + if ((l | 0) != (X(v, t) | 0)) { + v = (m + 22) | 0 + w = ((l >>> 0) / (v >>> 0)) | 0 + if (w >>> 0 >= v >>> 0) + if ((l | 0) != (X(w, v) | 0)) { + w = (m + 28) | 0 + x = ((l >>> 0) / (w >>> 0)) | 0 + if (x >>> 0 >= w >>> 0) + if ((l | 0) == (X(x, w) | 0)) { + y = w + z = 9 + A = n + } else { + x = (m + 30) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 36) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 40) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 42) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 46) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 52) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 58) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 60) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 66) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 70) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 72) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 78) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 82) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 88) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 96) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 100) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 102) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 106) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 108) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 112) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 120) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 126) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 130) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 136) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 138) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 142) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 148) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 150) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 156) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 162) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 166) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 168) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 172) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 178) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 180) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 186) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 190) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 192) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 196) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 198) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + if (B >>> 0 < x >>> 0) { + y = x + z = 1 + A = l + break + } + if ((l | 0) == (X(B, x) | 0)) { + y = x + z = 9 + A = n + break + } + x = (m + 208) | 0 + B = ((l >>> 0) / (x >>> 0)) | 0 + C = B >>> 0 < x >>> 0 + D = (l | 0) == (X(B, x) | 0) + y = C | D ? x : (m + 210) | 0 + z = C ? 1 : D ? 9 : 0 + A = C ? l : n + } + else { + y = w + z = 1 + A = l + } + } else { + y = v + z = 9 + A = n + } + else { + y = v + z = 1 + A = l + } + } else { + y = t + z = 9 + A = n + } + else { + y = t + z = 1 + A = l + } + } else { + y = s + z = 9 + A = n + } + else { + y = s + z = 1 + A = l + } + } else { + y = q + z = 9 + A = n + } + else { + y = q + z = 1 + A = l + } + } else { + y = p + z = 9 + A = n + } + else { + y = p + z = 1 + A = l + } + } else { + y = m + z = 9 + A = n + } + else { + y = m + z = 1 + A = l + } + while (0) + switch (z & 15) { + case 9: { + r = A + break b + break + } + case 0: { + m = y + n = A + o = 8 + break + } + default: + break c + } + } + if (!z) r = A + else { + o = 107 + break a + } + } + while (0) + h = (g + 1) | 0 + p = (h | 0) == 48 + q = (j + (p & 1)) | 0 + i = r + j = q + g = p ? 0 : h + k = (q * 210) | 0 + } + if ((o | 0) == 106) { + f[d >> 2] = l + E = l + break + } else if ((o | 0) == 107) { + f[d >> 2] = l + E = A + break + } + } else { + k = Hl(6760, 6952, d, c) | 0 + E = f[k >> 2] | 0 + } + while (0) + u = b + return E | 0 + } + function db(a, c, d, e, g, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0, + Sa = 0, + Ta = 0.0, + Ua = 0.0, + Va = 0.0, + Wa = 0, + Xa = 0, + Ya = 0, + Za = 0, + _a = 0, + $a = 0, + ab = 0, + bb = 0, + cb = 0, + db = 0, + eb = 0, + fb = 0, + gb = 0, + hb = 0, + ib = 0, + jb = 0, + kb = 0, + lb = 0, + mb = 0, + nb = 0, + ob = 0, + pb = 0, + qb = 0, + rb = 0, + sb = 0, + tb = 0, + ub = 0, + vb = 0, + wb = 0, + xb = 0, + yb = 0, + zb = 0, + Ab = 0, + Bb = 0, + Cb = 0, + Db = 0, + Eb = 0, + Fb = 0, + Gb = 0 + i = u + u = (u + 256) | 0 + e = (i + 104) | 0 + j = (i + 240) | 0 + k = (i + 224) | 0 + l = (i + 160) | 0 + m = (i + 140) | 0 + n = (i + 248) | 0 + o = (i + 72) | 0 + p = (i + 40) | 0 + q = (i + 128) | 0 + r = i + s = (i + 232) | 0 + t = (i + 220) | 0 + v = (i + 216) | 0 + w = (i + 212) | 0 + x = (i + 208) | 0 + y = (i + 152) | 0 + z = f[(a + 28) >> 2] | 0 + A = f[(a + 32) >> 2] | 0 + B = l + C = (B + 48) | 0 + do { + f[B >> 2] = 0 + B = (B + 4) | 0 + } while ((B | 0) < (C | 0)) + if (!g) { + D = 0 + E = 0 + } else { + Ci(l, g) + D = f[(l + 12) >> 2] | 0 + E = f[(l + 16) >> 2] | 0 + } + B = (l + 16) | 0 + C = (E - D) >> 2 + F = D + D = E + if (C >>> 0 >= g >>> 0) { + if ( + C >>> 0 > g >>> 0 ? ((E = (F + (g << 2)) | 0), (E | 0) != (D | 0)) : 0 + ) + f[B >> 2] = D + (~(((D + -4 - E) | 0) >>> 2) << 2) + } else Ci((l + 12) | 0, (g - C) | 0) + C = (l + 24) | 0 + E = (l + 28) | 0 + D = f[E >> 2] | 0 + B = f[C >> 2] | 0 + F = (D - B) >> 2 + G = B + B = D + if (F >>> 0 >= g >>> 0) { + if ( + F >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[E >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else Ci(C, (g - F) | 0) + F = (l + 36) | 0 + C = (l + 40) | 0 + D = f[C >> 2] | 0 + B = f[F >> 2] | 0 + E = (D - B) >> 2 + G = B + B = D + if (E >>> 0 >= g >>> 0) { + if ( + E >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[C >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else Ci(F, (g - E) | 0) + f[m >> 2] = 0 + E = (m + 4) | 0 + f[E >> 2] = 0 + f[(m + 8) >> 2] = 0 + F = (g | 0) == 0 + do + if (!F) + if (g >>> 0 > 1073741823) aq(m) + else { + D = g << 2 + B = ln(D) | 0 + f[m >> 2] = B + C = (B + (g << 2)) | 0 + f[(m + 8) >> 2] = C + sj(B | 0, 0, D | 0) | 0 + f[E >> 2] = C + break + } + while (0) + C = (a + 136) | 0 + D = (a + 140) | 0 + B = f[D >> 2] | 0 + G = f[C >> 2] | 0 + H = (B - G) >> 2 + L = G + G = B + if (H >>> 0 >= g >>> 0) { + if ( + H >>> 0 > g >>> 0 ? ((B = (L + (g << 2)) | 0), (B | 0) != (G | 0)) : 0 + ) + f[D >> 2] = G + (~(((G + -4 - B) | 0) >>> 2) << 2) + } else Ci(C, (g - H) | 0) + f[o >> 2] = 0 + f[(o + 4) >> 2] = 0 + f[(o + 8) >> 2] = 0 + f[(o + 12) >> 2] = 0 + f[(o + 16) >> 2] = 0 + f[(o + 20) >> 2] = 0 + f[(o + 24) >> 2] = 0 + f[(o + 28) >> 2] = 0 + f[p >> 2] = 0 + f[(p + 4) >> 2] = 0 + f[(p + 8) >> 2] = 0 + f[(p + 12) >> 2] = 0 + f[(p + 16) >> 2] = 0 + f[(p + 20) >> 2] = 0 + f[(p + 24) >> 2] = 0 + f[(p + 28) >> 2] = 0 + f[q >> 2] = 0 + H = (q + 4) | 0 + f[H >> 2] = 0 + f[(q + 8) >> 2] = 0 + if (F) { + M = 0 + N = 0 + O = 0 + P = 0 + } else { + F = g << 2 + B = ln(F) | 0 + f[q >> 2] = B + G = (B + (g << 2)) | 0 + f[(q + 8) >> 2] = G + sj(B | 0, 0, F | 0) | 0 + f[H >> 2] = G + M = B + N = G + O = G + P = B + } + B = (a + 36) | 0 + G = f[B >> 2] | 0 + F = f[(G + 4) >> 2] | 0 + D = f[G >> 2] | 0 + L = (F - D) | 0 + a: do + if ((L | 0) > 4) { + Q = L >> 2 + R = (z + 64) | 0 + S = (z + 28) | 0 + T = (g | 0) > 0 + U = (r + 4) | 0 + V = (r + 8) | 0 + Z = (r + 12) | 0 + _ = (a + 136) | 0 + $ = (a + 96) | 0 + aa = (r + 16) | 0 + ba = (r + 28) | 0 + ca = (a + 8) | 0 + da = (j + 4) | 0 + ea = (k + 4) | 0 + fa = (e + 4) | 0 + ga = (r + 28) | 0 + ha = (r + 16) | 0 + ia = (r + 20) | 0 + ja = (r + 32) | 0 + ka = (n + 1) | 0 + la = g << 2 + ma = (g | 0) == 1 + na = (Q + -1) | 0 + if (((F - D) >> 2) >>> 0 > na >>> 0) { + oa = Q + pa = na + qa = D + ra = P + sa = O + ta = M + ua = M + va = N + wa = M + xa = N + } else { + ya = G + aq(ya) + } + b: while (1) { + na = f[(qa + (pa << 2)) >> 2] | 0 + Q = ((((na >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + na) | 0 + za = Q >>> 5 + Aa = 1 << (Q & 31) + Ba = ((na | 0) == -1) | ((Q | 0) == -1) + Ca = 1 + Da = 0 + Ea = na + c: while (1) { + Fa = Ca ^ 1 + Ga = Da + Ha = Ea + while (1) { + if ((Ha | 0) == -1) { + Ia = Ga + break c + } + Ja = f[(l + ((Ga * 12) | 0)) >> 2] | 0 + if ( + ( + ((f[((f[z >> 2] | 0) + ((Ha >>> 5) << 2)) >> 2] & + (1 << (Ha & 31))) | + 0) == + 0 + ? ((Ka = + f[ + ((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + + (Ha << 2)) >> + 2 + ] | 0), + (Ka | 0) != -1) + : 0 + ) + ? ((La = f[S >> 2] | 0), + (Ma = f[A >> 2] | 0), + (Na = f[(Ma + (f[(La + (Ka << 2)) >> 2] << 2)) >> 2] | 0), + (Oa = (Ka + 1) | 0), + (Pa = + f[ + (Ma + + (f[ + (La + + ((((Oa >>> 0) % 3 | 0 | 0) == 0 + ? (Ka + -2) | 0 + : Oa) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + (Oa = + f[ + (Ma + + (f[ + (La + + (((((Ka >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + + Ka) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + ((Na | 0) < (pa | 0)) & + ((Pa | 0) < (pa | 0)) & + ((Oa | 0) < (pa | 0))) + : 0 + ) { + Ka = X(Na, g) | 0 + Na = X(Pa, g) | 0 + Pa = X(Oa, g) | 0 + if (T) { + Oa = 0 + do { + f[(Ja + (Oa << 2)) >> 2] = + (f[(c + ((Oa + Pa) << 2)) >> 2] | 0) + + (f[(c + ((Oa + Na) << 2)) >> 2] | 0) - + (f[(c + ((Oa + Ka) << 2)) >> 2] | 0) + Oa = (Oa + 1) | 0 + } while ((Oa | 0) != (g | 0)) + } + Oa = (Ga + 1) | 0 + if ((Oa | 0) == 4) { + Ia = 4 + break c + } else Qa = Oa + } else Qa = Ga + do + if (Ca) { + Oa = (Ha + 1) | 0 + Ka = ((Oa >>> 0) % 3 | 0 | 0) == 0 ? (Ha + -2) | 0 : Oa + if ( + ( + (Ka | 0) != -1 + ? ((f[((f[z >> 2] | 0) + ((Ka >>> 5) << 2)) >> 2] & + (1 << (Ka & 31))) | + 0) == + 0 + : 0 + ) + ? ((Oa = + f[ + ((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + + (Ka << 2)) >> + 2 + ] | 0), + (Ka = (Oa + 1) | 0), + (Oa | 0) != -1) + : 0 + ) + Ra = ((Ka >>> 0) % 3 | 0 | 0) == 0 ? (Oa + -2) | 0 : Ka + else Ra = -1 + } else { + Ka = ((((Ha >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Ha) | 0 + if ( + ( + (Ka | 0) != -1 + ? ((f[((f[z >> 2] | 0) + ((Ka >>> 5) << 2)) >> 2] & + (1 << (Ka & 31))) | + 0) == + 0 + : 0 + ) + ? ((Oa = + f[ + ((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + + (Ka << 2)) >> + 2 + ] | 0), + (Oa | 0) != -1) + : 0 + ) + if (!((Oa >>> 0) % 3 | 0)) { + Ra = (Oa + 2) | 0 + break + } else { + Ra = (Oa + -1) | 0 + break + } + else Ra = -1 + } + while (0) + if ((Ra | 0) == (na | 0)) { + Ia = Qa + break c + } + if (((Ra | 0) != -1) | Fa) { + Ga = Qa + Ha = Ra + } else break + } + if (Ba) { + Ca = 0 + Da = Qa + Ea = -1 + continue + } + if ((f[((f[z >> 2] | 0) + (za << 2)) >> 2] & Aa) | 0) { + Ca = 0 + Da = Qa + Ea = -1 + continue + } + Ha = f[((f[((f[R >> 2] | 0) + 12) >> 2] | 0) + (Q << 2)) >> 2] | 0 + if ((Ha | 0) == -1) { + Ca = 0 + Da = Qa + Ea = -1 + continue + } + if (!((Ha >>> 0) % 3 | 0)) { + Ca = 0 + Da = Qa + Ea = (Ha + 2) | 0 + continue + } else { + Ca = 0 + Da = Qa + Ea = (Ha + -1) | 0 + continue + } + } + Ea = X(pa, g) | 0 + f[r >> 2] = 0 + f[U >> 2] = 0 + b[V >> 0] = 0 + f[Z >> 2] = 0 + f[(Z + 4) >> 2] = 0 + f[(Z + 8) >> 2] = 0 + f[(Z + 12) >> 2] = 0 + f[(Z + 16) >> 2] = 0 + f[(Z + 20) >> 2] = 0 + f[(Z + 24) >> 2] = 0 + Da = (Ia + -1) | 0 + Ca = (p + (Da << 3)) | 0 + Q = Ca + Aa = + Vn( + f[Q >> 2] | 0, + f[(Q + 4) >> 2] | 0, + Ia | 0, + ((((Ia | 0) < 0) << 31) >> 31) | 0, + ) | 0 + Q = I + za = Ca + f[za >> 2] = Aa + f[(za + 4) >> 2] = Q + za = (c + ((X((oa + -2) | 0, g) | 0) << 2)) | 0 + Ca = (c + (Ea << 2)) | 0 + Ba = f[_ >> 2] | 0 + if (T) { + na = 0 + Ha = 0 + while (1) { + Ga = + ((f[(za + (na << 2)) >> 2] | 0) - + (f[(Ca + (na << 2)) >> 2] | 0)) | + 0 + Fa = (((Ga | 0) > -1 ? Ga : (0 - Ga) | 0) + Ha) | 0 + f[(ta + (na << 2)) >> 2] = Ga + f[(Ba + (na << 2)) >> 2] = (Ga << 1) ^ (Ga >> 31) + na = (na + 1) | 0 + if ((na | 0) == (g | 0)) { + Sa = Fa + break + } else Ha = Fa + } + } else Sa = 0 + mo(e, $, Ba, g) + Ha = Zk(e) | 0 + na = I + Fa = Bm(e) | 0 + Ga = I + Oa = (o + (Da << 3)) | 0 + Ka = Oa + Na = f[Ka >> 2] | 0 + Pa = f[(Ka + 4) >> 2] | 0 + Ta = +wm(Aa, Na) + Ka = Vn(Fa | 0, Ga | 0, Ha | 0, na | 0) | 0 + Ua = +(Aa >>> 0) + 4294967296.0 * +(Q | 0) + Va = +W(+(Ta * Ua)) + na = + Vn( + Ka | 0, + I | 0, + (~~Va >>> 0) | 0, + (+K(Va) >= 1.0 + ? Va > 0.0 + ? ~~+Y(+J(Va / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Va - +(~~Va >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + Ka = r + f[Ka >> 2] = na + f[(Ka + 4) >> 2] = Sa + b[V >> 0] = 0 + f[Z >> 2] = 0 + $f(aa, za, (za + (g << 2)) | 0) + f[s >> 2] = ra + f[t >> 2] = sa + f[j >> 2] = f[s >> 2] + f[e >> 2] = f[t >> 2] + Jf(ba, j, e) + if ((Ia | 0) < 1) { + Wa = xa + Xa = wa + Ya = va + Za = ua + _a = sa + $a = ra + ab = ra + } else { + Ka = (n + Ia) | 0 + na = f[q >> 2] | 0 + Ha = na + Ga = f[H >> 2] | 0 + Fa = (Ka + -1) | 0 + Ja = (Fa | 0) == (n | 0) + La = (Ka + -2) | 0 + Ma = ka >>> 0 < La >>> 0 + bb = ~Ia + cb = (Ia + 2 + ((bb | 0) > -2 ? bb : -2)) | 0 + bb = Ga + db = Fa >>> 0 > n >>> 0 + eb = 0 + fb = 1 + while (1) { + eb = (eb + 1) | 0 + sj(n | 0, 1, cb | 0) | 0 + sj(n | 0, 0, eb | 0) | 0 + gb = Vn(Na | 0, Pa | 0, fb | 0, 0) | 0 + d: while (1) { + if (T) { + sj(f[m >> 2] | 0, 0, la | 0) | 0 + hb = f[m >> 2] | 0 + ib = 0 + jb = 0 + while (1) { + if (!(b[(n + ib) >> 0] | 0)) { + kb = f[(l + ((ib * 12) | 0)) >> 2] | 0 + lb = 0 + do { + mb = (hb + (lb << 2)) | 0 + f[mb >> 2] = + (f[mb >> 2] | 0) + (f[(kb + (lb << 2)) >> 2] | 0) + lb = (lb + 1) | 0 + } while ((lb | 0) != (g | 0)) + nb = ((1 << ib) | (jb & 255)) & 255 + } else nb = jb + ib = (ib + 1) | 0 + if ((ib | 0) == (Ia | 0)) { + ob = nb + break + } else jb = nb + } + } else { + jb = 0 + ib = 0 + while (1) { + if (!(b[(n + jb) >> 0] | 0)) + pb = ((1 << jb) | (ib & 255)) & 255 + else pb = ib + jb = (jb + 1) | 0 + if ((jb | 0) == (Ia | 0)) { + ob = pb + break + } else ib = pb + } + } + ib = f[m >> 2] | 0 + do + if (T) { + f[ib >> 2] = ((f[ib >> 2] | 0) / (fb | 0)) | 0 + if (!ma) { + jb = 1 + do { + hb = (ib + (jb << 2)) | 0 + f[hb >> 2] = ((f[hb >> 2] | 0) / (fb | 0)) | 0 + jb = (jb + 1) | 0 + } while ((jb | 0) != (g | 0)) + jb = f[_ >> 2] | 0 + if (T) qb = jb + else { + rb = 0 + sb = jb + break + } + } else qb = f[_ >> 2] | 0 + jb = 0 + hb = 0 + while (1) { + lb = + ((f[(ib + (jb << 2)) >> 2] | 0) - + (f[(Ca + (jb << 2)) >> 2] | 0)) | + 0 + kb = (((lb | 0) > -1 ? lb : (0 - lb) | 0) + hb) | 0 + f[(na + (jb << 2)) >> 2] = lb + f[(qb + (jb << 2)) >> 2] = (lb << 1) ^ (lb >> 31) + jb = (jb + 1) | 0 + if ((jb | 0) == (g | 0)) { + rb = kb + sb = qb + break + } else hb = kb + } + } else { + rb = 0 + sb = f[_ >> 2] | 0 + } + while (0) + mo(e, $, sb, g) + ib = Zk(e) | 0 + hb = I + jb = Bm(e) | 0 + kb = I + Va = +wm(Aa, gb) + lb = Vn(jb | 0, kb | 0, ib | 0, hb | 0) | 0 + Ta = +W(+(Va * Ua)) + hb = + Vn( + lb | 0, + I | 0, + (~~Ta >>> 0) | 0, + (+K(Ta) >= 1.0 + ? Ta > 0.0 + ? ~~+Y(+J(Ta / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Ta - +(~~Ta >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + lb = f[r >> 2] | 0 + if ( + !((lb | 0) <= (hb | 0) + ? !((lb | 0) >= (hb | 0) ? (rb | 0) < (f[U >> 2] | 0) : 0) + : 0) + ) { + lb = r + f[lb >> 2] = hb + f[(lb + 4) >> 2] = rb + b[V >> 0] = ob + f[Z >> 2] = fb + f[v >> 2] = f[m >> 2] + f[w >> 2] = f[E >> 2] + f[j >> 2] = f[v >> 2] + f[e >> 2] = f[w >> 2] + Jf(aa, j, e) + f[x >> 2] = Ha + f[y >> 2] = Ga + f[j >> 2] = f[x >> 2] + f[e >> 2] = f[y >> 2] + Jf(ba, j, e) + } + if (Ja) break + tb = b[Fa >> 0] | 0 + lb = -1 + hb = tb + while (1) { + ib = (lb + -1) | 0 + ub = (Ka + ib) | 0 + kb = hb + hb = b[ub >> 0] | 0 + if ((hb & 255) < (kb & 255)) break + if ((ub | 0) == (n | 0)) { + vb = 84 + break d + } else lb = ib + } + ib = (Ka + lb) | 0 + if ((hb & 255) < (tb & 255)) { + wb = Fa + xb = tb + } else { + kb = Ka + jb = Fa + while (1) { + mb = (jb + -1) | 0 + if ((hb & 255) < (h[(kb + -2) >> 0] | 0)) { + wb = mb + xb = 1 + break + } else { + yb = jb + jb = mb + kb = yb + } + } + } + b[ub >> 0] = xb + b[wb >> 0] = hb + if ((lb | 0) < -1) { + zb = ib + Ab = Fa + } else continue + while (1) { + kb = b[zb >> 0] | 0 + b[zb >> 0] = b[Ab >> 0] | 0 + b[Ab >> 0] = kb + kb = (zb + 1) | 0 + jb = (Ab + -1) | 0 + if (kb >>> 0 < jb >>> 0) { + zb = kb + Ab = jb + } else continue d + } + } + if ( + ((vb | 0) == 84 ? ((vb = 0), db) : 0) + ? ((gb = b[n >> 0] | 0), + (b[n >> 0] = tb), + (b[Fa >> 0] = gb), + Ma) + : 0 + ) { + gb = La + ib = ka + do { + lb = b[ib >> 0] | 0 + b[ib >> 0] = b[gb >> 0] | 0 + b[gb >> 0] = lb + ib = (ib + 1) | 0 + gb = (gb + -1) | 0 + } while (ib >>> 0 < gb >>> 0) + } + if ((fb | 0) >= (Ia | 0)) { + Wa = bb + Xa = na + Ya = bb + Za = na + _a = Ga + $a = Ha + ab = na + break + } else fb = (fb + 1) | 0 + } + } + fb = f[Z >> 2] | 0 + na = + Vn(Na | 0, Pa | 0, fb | 0, ((((fb | 0) < 0) << 31) >> 31) | 0) | 0 + fb = Oa + f[fb >> 2] = na + f[(fb + 4) >> 2] = I + if (T) { + fb = f[ba >> 2] | 0 + na = f[C >> 2] | 0 + Ha = 0 + do { + Ga = f[(fb + (Ha << 2)) >> 2] | 0 + f[(na + (Ha << 2)) >> 2] = (Ga << 1) ^ (Ga >> 31) + Ha = (Ha + 1) | 0 + } while ((Ha | 0) != (g | 0)) + Bb = na + } else Bb = f[C >> 2] | 0 + lo(e, $, Bb, g) + if ((Ia | 0) > 0) { + Cb = (a + 40 + ((Da * 12) | 0)) | 0 + na = (a + 40 + ((Da * 12) | 0) + 4) | 0 + Ha = (a + 40 + ((Da * 12) | 0) + 8) | 0 + fb = 0 + do { + Oa = f[na >> 2] | 0 + Pa = f[Ha >> 2] | 0 + Na = (Oa | 0) == ((Pa << 5) | 0) + if (!((1 << fb) & h[V >> 0])) { + if (Na) { + if (((Oa + 1) | 0) < 0) { + vb = 95 + break b + } + Ga = Pa << 6 + bb = (Oa + 32) & -32 + vi( + Cb, + Oa >>> 0 < 1073741823 + ? Ga >>> 0 < bb >>> 0 + ? bb + : Ga + : 2147483647, + ) + Db = f[na >> 2] | 0 + } else Db = Oa + f[na >> 2] = Db + 1 + Ga = ((f[Cb >> 2] | 0) + ((Db >>> 5) << 2)) | 0 + f[Ga >> 2] = f[Ga >> 2] | (1 << (Db & 31)) + } else { + if (Na) { + if (((Oa + 1) | 0) < 0) { + vb = 100 + break b + } + Na = Pa << 6 + Pa = (Oa + 32) & -32 + vi( + Cb, + Oa >>> 0 < 1073741823 + ? Na >>> 0 < Pa >>> 0 + ? Pa + : Na + : 2147483647, + ) + Eb = f[na >> 2] | 0 + } else Eb = Oa + f[na >> 2] = Eb + 1 + Oa = ((f[Cb >> 2] | 0) + ((Eb >>> 5) << 2)) | 0 + f[Oa >> 2] = f[Oa >> 2] & ~(1 << (Eb & 31)) + } + fb = (fb + 1) | 0 + } while ((fb | 0) < (Ia | 0)) + } + fb = f[aa >> 2] | 0 + na = (d + (Ea << 2)) | 0 + Ha = f[(Ca + 4) >> 2] | 0 + Da = f[fb >> 2] | 0 + Oa = f[(fb + 4) >> 2] | 0 + f[j >> 2] = f[Ca >> 2] + f[da >> 2] = Ha + f[k >> 2] = Da + f[ea >> 2] = Oa + Od(e, ca, j, k) + f[na >> 2] = f[e >> 2] + f[(na + 4) >> 2] = f[fa >> 2] + na = f[ga >> 2] | 0 + if (na | 0) { + Oa = f[ja >> 2] | 0 + if ((Oa | 0) != (na | 0)) + f[ja >> 2] = Oa + (~(((Oa + -4 - na) | 0) >>> 2) << 2) + Oq(na) + } + na = f[ha >> 2] | 0 + if (na | 0) { + Oa = f[ia >> 2] | 0 + if ((Oa | 0) != (na | 0)) + f[ia >> 2] = Oa + (~(((Oa + -4 - na) | 0) >>> 2) << 2) + Oq(na) + } + if ((oa | 0) <= 2) { + Fb = Za + Gb = Ya + break a + } + na = f[B >> 2] | 0 + qa = f[na >> 2] | 0 + Oa = (pa + -1) | 0 + if ((((f[(na + 4) >> 2] | 0) - qa) >> 2) >>> 0 <= Oa >>> 0) { + ya = na + vb = 18 + break + } else { + na = pa + pa = Oa + ra = $a + sa = _a + ta = ab + ua = Za + va = Ya + wa = Xa + xa = Wa + oa = na + } + } + if ((vb | 0) == 18) aq(ya) + else if ((vb | 0) == 95) aq(Cb) + else if ((vb | 0) == 100) aq(Cb) + } else { + Fb = M + Gb = N + } + while (0) + if ((g | 0) > 0) sj(f[l >> 2] | 0, 0, (g << 2) | 0) | 0 + g = f[l >> 2] | 0 + N = f[(c + 4) >> 2] | 0 + M = f[g >> 2] | 0 + Cb = f[(g + 4) >> 2] | 0 + f[j >> 2] = f[c >> 2] + f[(j + 4) >> 2] = N + f[k >> 2] = M + f[(k + 4) >> 2] = Cb + Od(e, (a + 8) | 0, j, k) + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + if (Fb | 0) { + if ((Gb | 0) != (Fb | 0)) + f[H >> 2] = Gb + (~(((Gb + -4 - Fb) | 0) >>> 2) << 2) + Oq(Fb) + } + Fb = f[m >> 2] | 0 + if (Fb | 0) { + m = f[E >> 2] | 0 + if ((m | 0) != (Fb | 0)) + f[E >> 2] = m + (~(((m + -4 - Fb) | 0) >>> 2) << 2) + Oq(Fb) + } + Fb = f[(l + 36) >> 2] | 0 + if (Fb | 0) { + m = (l + 40) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Fb | 0)) + f[m >> 2] = E + (~(((E + -4 - Fb) | 0) >>> 2) << 2) + Oq(Fb) + } + Fb = f[(l + 24) >> 2] | 0 + if (Fb | 0) { + E = (l + 28) | 0 + m = f[E >> 2] | 0 + if ((m | 0) != (Fb | 0)) + f[E >> 2] = m + (~(((m + -4 - Fb) | 0) >>> 2) << 2) + Oq(Fb) + } + Fb = f[(l + 12) >> 2] | 0 + if (Fb | 0) { + m = (l + 16) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Fb | 0)) + f[m >> 2] = E + (~(((E + -4 - Fb) | 0) >>> 2) << 2) + Oq(Fb) + } + Fb = f[l >> 2] | 0 + if (!Fb) { + u = i + return 1 + } + E = (l + 4) | 0 + l = f[E >> 2] | 0 + if ((l | 0) != (Fb | 0)) + f[E >> 2] = l + (~(((l + -4 - Fb) | 0) >>> 2) << 2) + Oq(Fb) + u = i + return 1 + } + function eb(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0, + Sa = 0, + Ta = 0, + Ua = 0, + Va = 0, + Wa = 0, + Xa = 0, + Ya = 0, + Za = 0, + _a = 0, + $a = 0, + ab = 0, + bb = 0, + cb = 0, + db = 0, + eb = 0, + fb = 0, + gb = 0, + hb = 0, + ib = 0, + jb = 0, + kb = 0, + lb = 0, + mb = 0, + nb = 0, + ob = 0, + pb = 0, + qb = 0, + rb = 0, + sb = 0, + tb = 0, + ub = 0, + vb = 0, + wb = 0, + xb = 0, + yb = 0, + zb = 0, + Ab = 0, + Bb = 0, + Cb = 0, + Db = 0, + Eb = 0, + Fb = 0, + Gb = 0, + Hb = 0, + Ib = 0, + Jb = 0, + Kb = 0, + Lb = 0, + Mb = 0, + Nb = 0, + Ob = 0, + Pb = 0, + Qb = 0, + Rb = 0, + Sb = 0, + Tb = 0, + Ub = 0, + Vb = 0, + Wb = 0, + Xb = 0, + Yb = 0, + Zb = 0, + _b = 0 + c = u + u = (u + 32) | 0 + d = (c + 16) | 0 + e = (c + 4) | 0 + g = c + f[(a + 36) >> 2] = b + h = (a + 24) | 0 + i = (a + 28) | 0 + j = f[i >> 2] | 0 + k = f[h >> 2] | 0 + l = (j - k) >> 2 + m = k + k = j + if (l >>> 0 >= b >>> 0) { + if ( + l >>> 0 > b >>> 0 ? ((j = (m + (b << 2)) | 0), (j | 0) != (k | 0)) : 0 + ) + f[i >> 2] = k + (~(((k + -4 - j) | 0) >>> 2) << 2) + } else Ch(h, (b - l) | 0, 6140) + f[d >> 2] = 0 + l = (d + 4) | 0 + f[l >> 2] = 0 + j = (d + 8) | 0 + f[j >> 2] = 0 + if (b) { + if ((b | 0) < 0) aq(d) + k = ((((b + -1) | 0) >>> 5) + 1) | 0 + m = ln(k << 2) | 0 + f[d >> 2] = m + f[j >> 2] = k + f[l >> 2] = b + k = b >>> 5 + sj(m | 0, 0, (k << 2) | 0) | 0 + n = b & 31 + o = (m + (k << 2)) | 0 + k = m + if (!n) { + p = b + q = k + r = m + } else { + f[o >> 2] = f[o >> 2] & ~(-1 >>> ((32 - n) | 0)) + p = b + q = k + r = m + } + } else { + p = 0 + q = 0 + r = 0 + } + m = (a + 4) | 0 + k = f[a >> 2] | 0 + n = ((f[m >> 2] | 0) - k) | 0 + o = n >> 2 + f[e >> 2] = 0 + s = (e + 4) | 0 + f[s >> 2] = 0 + t = (e + 8) | 0 + f[t >> 2] = 0 + do + if (o) { + if ((n | 0) < 0) aq(e) + v = ((((o + -1) | 0) >>> 5) + 1) | 0 + w = ln(v << 2) | 0 + f[e >> 2] = w + f[t >> 2] = v + f[s >> 2] = o + v = o >>> 5 + sj(w | 0, 0, (v << 2) | 0) | 0 + x = o & 31 + y = (w + (v << 2)) | 0 + if (x | 0) f[y >> 2] = f[y >> 2] & ~(-1 >>> ((32 - x) | 0)) + if (o >>> 0 > 2) { + x = (a + 12) | 0 + y = (a + 32) | 0 + v = (a + 52) | 0 + w = (a + 56) | 0 + z = (a + 48) | 0 + A = b + B = k + C = 0 + D = q + E = r + a: while (1) { + F = B + G = (C * 3) | 0 + if ((G | 0) != -1) { + H = f[(F + (G << 2)) >> 2] | 0 + I = (G + 1) | 0 + J = ((I >>> 0) % 3 | 0 | 0) == 0 ? (G + -2) | 0 : I + if ((J | 0) == -1) K = -1 + else K = f[(F + (J << 2)) >> 2] | 0 + J = ((((G >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + G) | 0 + if ((J | 0) == -1) L = -1 + else L = f[(F + (J << 2)) >> 2] | 0 + if ( + (H | 0) != (K | 0) + ? !(((H | 0) == (L | 0)) | ((K | 0) == (L | 0))) + : 0 + ) { + H = 0 + J = A + F = E + I = D + while (1) { + M = (H + G) | 0 + if ( + !( + f[((f[e >> 2] | 0) + ((M >>> 5) << 2)) >> 2] & + (1 << (M & 31)) + ) + ) { + N = f[((f[a >> 2] | 0) + (M << 2)) >> 2] | 0 + f[g >> 2] = N + if (!(f[(F + ((N >>> 5) << 2)) >> 2] & (1 << (N & 31)))) { + O = 0 + P = J + Q = N + } else { + N = f[i >> 2] | 0 + if ((N | 0) == (f[y >> 2] | 0)) Ri(h, 6140) + else { + f[N >> 2] = -1 + f[i >> 2] = N + 4 + } + N = f[v >> 2] | 0 + if ((N | 0) == (f[w >> 2] | 0)) Ri(z, g) + else { + f[N >> 2] = f[g >> 2] + f[v >> 2] = N + 4 + } + N = f[l >> 2] | 0 + R = f[j >> 2] | 0 + if ((N | 0) == ((R << 5) | 0)) { + if (((N + 1) | 0) < 0) { + S = 50 + break a + } + T = R << 6 + R = (N + 32) & -32 + vi( + d, + N >>> 0 < 1073741823 + ? T >>> 0 < R >>> 0 + ? R + : T + : 2147483647, + ) + U = f[l >> 2] | 0 + } else U = N + f[l >> 2] = U + 1 + N = ((f[d >> 2] | 0) + ((U >>> 5) << 2)) | 0 + f[N >> 2] = f[N >> 2] & ~(1 << (U & 31)) + f[g >> 2] = J + O = 1 + P = (J + 1) | 0 + Q = J + } + N = f[d >> 2] | 0 + T = (N + ((Q >>> 5) << 2)) | 0 + f[T >> 2] = f[T >> 2] | (1 << (Q & 31)) + T = N + b: do + if (O) { + R = M + while (1) { + if ((R | 0) == -1) { + S = 64 + break b + } + V = ((f[e >> 2] | 0) + ((R >>> 5) << 2)) | 0 + f[V >> 2] = f[V >> 2] | (1 << (R & 31)) + V = f[g >> 2] | 0 + f[((f[h >> 2] | 0) + (V << 2)) >> 2] = R + f[((f[a >> 2] | 0) + (R << 2)) >> 2] = V + V = (R + 1) | 0 + W = ((V >>> 0) % 3 | 0 | 0) == 0 ? (R + -2) | 0 : V + do + if ((W | 0) == -1) X = -1 + else { + V = f[((f[x >> 2] | 0) + (W << 2)) >> 2] | 0 + Y = (V + 1) | 0 + if ((V | 0) == -1) { + X = -1 + break + } + X = + ((Y >>> 0) % 3 | 0 | 0) == 0 + ? (V + -2) | 0 + : Y + } + while (0) + if ((X | 0) == (M | 0)) break + else R = X + } + } else { + R = M + while (1) { + if ((R | 0) == -1) { + S = 64 + break b + } + W = ((f[e >> 2] | 0) + ((R >>> 5) << 2)) | 0 + f[W >> 2] = f[W >> 2] | (1 << (R & 31)) + f[((f[h >> 2] | 0) + (f[g >> 2] << 2)) >> 2] = R + W = (R + 1) | 0 + Y = ((W >>> 0) % 3 | 0 | 0) == 0 ? (R + -2) | 0 : W + do + if ((Y | 0) == -1) Z = -1 + else { + W = f[((f[x >> 2] | 0) + (Y << 2)) >> 2] | 0 + V = (W + 1) | 0 + if ((W | 0) == -1) { + Z = -1 + break + } + Z = + ((V >>> 0) % 3 | 0 | 0) == 0 + ? (W + -2) | 0 + : V + } + while (0) + if ((Z | 0) == (M | 0)) break + else R = Z + } + } + while (0) + c: do + if ((S | 0) == 64) { + S = 0 + if ((M | 0) == -1) break + R = ((((M >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + M) | 0 + if ((R | 0) == -1) break + Y = f[((f[x >> 2] | 0) + (R << 2)) >> 2] | 0 + if ((Y | 0) == -1) break + R = (Y + (((Y >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + if ((R | 0) == -1) break + if (!O) { + Y = R + while (1) { + V = ((f[e >> 2] | 0) + ((Y >>> 5) << 2)) | 0 + f[V >> 2] = f[V >> 2] | (1 << (Y & 31)) + V = + ((((Y >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Y) | + 0 + if ((V | 0) == -1) break c + W = f[((f[x >> 2] | 0) + (V << 2)) >> 2] | 0 + if ((W | 0) == -1) break c + Y = + (W + (((W >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | + 0 + if ((Y | 0) == -1) break c + } + } + Y = f[a >> 2] | 0 + W = R + do { + V = ((f[e >> 2] | 0) + ((W >>> 5) << 2)) | 0 + f[V >> 2] = f[V >> 2] | (1 << (W & 31)) + f[(Y + (W << 2)) >> 2] = f[g >> 2] + V = + ((((W >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + W) | 0 + if ((V | 0) == -1) break c + _ = f[((f[x >> 2] | 0) + (V << 2)) >> 2] | 0 + if ((_ | 0) == -1) break c + W = + (_ + (((_ >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1)) | 0 + } while ((W | 0) != -1) + } + while (0) + $ = P + aa = T + ba = N + } else { + $ = J + aa = I + ba = F + } + if ((H | 0) < 2) { + H = (H + 1) | 0 + J = $ + F = ba + I = aa + } else { + ca = $ + da = aa + ea = ba + break + } + } + } else { + ca = A + da = D + ea = E + } + } else { + ca = A + da = D + ea = E + } + C = (C + 1) | 0 + B = f[a >> 2] | 0 + if ( + C >>> 0 >= + ((((((f[m >> 2] | 0) - B) >> 2) >>> 0) / 3) | 0) >>> 0 + ) { + S = 18 + break + } else { + A = ca + D = da + E = ea + } + } + if ((S | 0) == 18) { + fa = da + ga = f[l >> 2] | 0 + break + } else if ((S | 0) == 50) aq(d) + } else { + fa = q + ga = p + } + } else { + fa = q + ga = p + } + while (0) + p = (a + 44) | 0 + f[p >> 2] = 0 + a = fa + fa = ga >>> 5 + q = (a + (fa << 2)) | 0 + S = ga & 31 + ga = (fa | 0) != 0 + d: do + if (fa | S | 0) + if (!S) { + l = a + da = 0 + ea = ga + while (1) { + e: do + if (ea) { + if (!(f[l >> 2] & 1)) { + ca = (da + 1) | 0 + f[p >> 2] = ca + ha = ca + } else ha = da + if (!(f[l >> 2] & 2)) { + ca = (ha + 1) | 0 + f[p >> 2] = ca + ia = ca + } else ia = ha + if (!(f[l >> 2] & 4)) { + ca = (ia + 1) | 0 + f[p >> 2] = ca + ja = ca + } else ja = ia + if (!(f[l >> 2] & 8)) { + ca = (ja + 1) | 0 + f[p >> 2] = ca + ka = ca + } else ka = ja + if (!(f[l >> 2] & 16)) { + ca = (ka + 1) | 0 + f[p >> 2] = ca + la = ca + } else la = ka + if (!(f[l >> 2] & 32)) { + ca = (la + 1) | 0 + f[p >> 2] = ca + ma = ca + } else ma = la + if (!(f[l >> 2] & 64)) { + ca = (ma + 1) | 0 + f[p >> 2] = ca + na = ca + } else na = ma + if (!(f[l >> 2] & 128)) { + ca = (na + 1) | 0 + f[p >> 2] = ca + oa = ca + } else oa = na + if (!(f[l >> 2] & 256)) { + ca = (oa + 1) | 0 + f[p >> 2] = ca + pa = ca + } else pa = oa + if (!(f[l >> 2] & 512)) { + ca = (pa + 1) | 0 + f[p >> 2] = ca + qa = ca + } else qa = pa + if (!(f[l >> 2] & 1024)) { + ca = (qa + 1) | 0 + f[p >> 2] = ca + ra = ca + } else ra = qa + if (!(f[l >> 2] & 2048)) { + ca = (ra + 1) | 0 + f[p >> 2] = ca + sa = ca + } else sa = ra + if (!(f[l >> 2] & 4096)) { + ca = (sa + 1) | 0 + f[p >> 2] = ca + ta = ca + } else ta = sa + if (!(f[l >> 2] & 8192)) { + ca = (ta + 1) | 0 + f[p >> 2] = ca + ua = ca + } else ua = ta + if (!(f[l >> 2] & 16384)) { + ca = (ua + 1) | 0 + f[p >> 2] = ca + va = ca + } else va = ua + if (!(f[l >> 2] & 32768)) { + ca = (va + 1) | 0 + f[p >> 2] = ca + wa = ca + } else wa = va + if (!(f[l >> 2] & 65536)) { + ca = (wa + 1) | 0 + f[p >> 2] = ca + xa = ca + } else xa = wa + if (!(f[l >> 2] & 131072)) { + ca = (xa + 1) | 0 + f[p >> 2] = ca + ya = ca + } else ya = xa + if (!(f[l >> 2] & 262144)) { + ca = (ya + 1) | 0 + f[p >> 2] = ca + za = ca + } else za = ya + if (!(f[l >> 2] & 524288)) { + ca = (za + 1) | 0 + f[p >> 2] = ca + Aa = ca + } else Aa = za + if (!(f[l >> 2] & 1048576)) { + ca = (Aa + 1) | 0 + f[p >> 2] = ca + Ba = ca + } else Ba = Aa + if (!(f[l >> 2] & 2097152)) { + ca = (Ba + 1) | 0 + f[p >> 2] = ca + Ca = ca + } else Ca = Ba + if (!(f[l >> 2] & 4194304)) { + ca = (Ca + 1) | 0 + f[p >> 2] = ca + Da = ca + } else Da = Ca + if (!(f[l >> 2] & 8388608)) { + ca = (Da + 1) | 0 + f[p >> 2] = ca + Ea = ca + } else Ea = Da + if (!(f[l >> 2] & 16777216)) { + ca = (Ea + 1) | 0 + f[p >> 2] = ca + Fa = ca + } else Fa = Ea + if (!(f[l >> 2] & 33554432)) { + ca = (Fa + 1) | 0 + f[p >> 2] = ca + Ga = ca + } else Ga = Fa + if (!(f[l >> 2] & 67108864)) { + ca = (Ga + 1) | 0 + f[p >> 2] = ca + Ha = ca + } else Ha = Ga + if (!(f[l >> 2] & 134217728)) { + ca = (Ha + 1) | 0 + f[p >> 2] = ca + Ia = ca + } else Ia = Ha + if (!(f[l >> 2] & 268435456)) { + ca = (Ia + 1) | 0 + f[p >> 2] = ca + Ja = ca + } else Ja = Ia + if (!(f[l >> 2] & 536870912)) { + ca = (Ja + 1) | 0 + f[p >> 2] = ca + Ka = ca + } else Ka = Ja + if (!(f[l >> 2] & 1073741824)) { + ca = (Ka + 1) | 0 + f[p >> 2] = ca + La = ca + } else La = Ka + if ((f[l >> 2] | 0) <= -1) { + Ma = La + break + } + ca = (La + 1) | 0 + f[p >> 2] = ca + Ma = ca + } else { + ca = 0 + m = da + while (1) { + if (!(f[l >> 2] & (1 << ca))) { + ba = (m + 1) | 0 + f[p >> 2] = ba + Na = ba + } else Na = m + if ((ca | 0) == 31) { + Ma = Na + break e + } + ca = (ca + 1) | 0 + if (!ca) break d + else m = Na + } + } + while (0) + l = (l + 4) | 0 + if ((q | 0) == (l | 0)) break + else { + da = Ma + ea = 1 + } + } + } else { + if (ga) { + ea = 0 + da = a + l = 0 + while (1) { + if (!(f[da >> 2] & 1)) { + m = (l + 1) | 0 + f[p >> 2] = m + Oa = m + Pa = m + } else { + Oa = l + Pa = ea + } + if (!(f[da >> 2] & 2)) { + m = (Oa + 1) | 0 + f[p >> 2] = m + Qa = m + Ra = m + } else { + Qa = Oa + Ra = Pa + } + if (!(f[da >> 2] & 4)) { + m = (Qa + 1) | 0 + f[p >> 2] = m + Sa = m + Ta = m + } else { + Sa = Qa + Ta = Ra + } + if (!(f[da >> 2] & 8)) { + m = (Sa + 1) | 0 + f[p >> 2] = m + Ua = m + Va = m + } else { + Ua = Sa + Va = Ta + } + if (!(f[da >> 2] & 16)) { + m = (Ua + 1) | 0 + f[p >> 2] = m + Wa = m + Xa = m + } else { + Wa = Ua + Xa = Va + } + if (!(f[da >> 2] & 32)) { + m = (Wa + 1) | 0 + f[p >> 2] = m + Ya = m + Za = m + } else { + Ya = Wa + Za = Xa + } + if (!(f[da >> 2] & 64)) { + m = (Ya + 1) | 0 + f[p >> 2] = m + _a = m + $a = m + } else { + _a = Ya + $a = Za + } + if (!(f[da >> 2] & 128)) { + m = (_a + 1) | 0 + f[p >> 2] = m + ab = m + bb = m + } else { + ab = _a + bb = $a + } + if (!(f[da >> 2] & 256)) { + m = (ab + 1) | 0 + f[p >> 2] = m + cb = m + db = m + } else { + cb = ab + db = bb + } + if (!(f[da >> 2] & 512)) { + m = (cb + 1) | 0 + f[p >> 2] = m + eb = m + fb = m + } else { + eb = cb + fb = db + } + if (!(f[da >> 2] & 1024)) { + m = (eb + 1) | 0 + f[p >> 2] = m + gb = m + hb = m + } else { + gb = eb + hb = fb + } + if (!(f[da >> 2] & 2048)) { + m = (gb + 1) | 0 + f[p >> 2] = m + ib = m + jb = m + } else { + ib = gb + jb = hb + } + if (!(f[da >> 2] & 4096)) { + m = (ib + 1) | 0 + f[p >> 2] = m + kb = m + lb = m + } else { + kb = ib + lb = jb + } + if (!(f[da >> 2] & 8192)) { + m = (kb + 1) | 0 + f[p >> 2] = m + mb = m + nb = m + } else { + mb = kb + nb = lb + } + if (!(f[da >> 2] & 16384)) { + m = (mb + 1) | 0 + f[p >> 2] = m + ob = m + pb = m + } else { + ob = mb + pb = nb + } + if (!(f[da >> 2] & 32768)) { + m = (ob + 1) | 0 + f[p >> 2] = m + qb = m + rb = m + } else { + qb = ob + rb = pb + } + if (!(f[da >> 2] & 65536)) { + m = (qb + 1) | 0 + f[p >> 2] = m + sb = m + tb = m + } else { + sb = qb + tb = rb + } + if (!(f[da >> 2] & 131072)) { + m = (sb + 1) | 0 + f[p >> 2] = m + ub = m + vb = m + } else { + ub = sb + vb = tb + } + if (!(f[da >> 2] & 262144)) { + m = (ub + 1) | 0 + f[p >> 2] = m + wb = m + xb = m + } else { + wb = ub + xb = vb + } + if (!(f[da >> 2] & 524288)) { + m = (wb + 1) | 0 + f[p >> 2] = m + yb = m + zb = m + } else { + yb = wb + zb = xb + } + if (!(f[da >> 2] & 1048576)) { + m = (yb + 1) | 0 + f[p >> 2] = m + Ab = m + Bb = m + } else { + Ab = yb + Bb = zb + } + if (!(f[da >> 2] & 2097152)) { + m = (Ab + 1) | 0 + f[p >> 2] = m + Cb = m + Db = m + } else { + Cb = Ab + Db = Bb + } + if (!(f[da >> 2] & 4194304)) { + m = (Cb + 1) | 0 + f[p >> 2] = m + Eb = m + Fb = m + } else { + Eb = Cb + Fb = Db + } + if (!(f[da >> 2] & 8388608)) { + m = (Eb + 1) | 0 + f[p >> 2] = m + Gb = m + Hb = m + } else { + Gb = Eb + Hb = Fb + } + if (!(f[da >> 2] & 16777216)) { + m = (Gb + 1) | 0 + f[p >> 2] = m + Ib = m + Jb = m + } else { + Ib = Gb + Jb = Hb + } + if (!(f[da >> 2] & 33554432)) { + m = (Ib + 1) | 0 + f[p >> 2] = m + Kb = m + Lb = m + } else { + Kb = Ib + Lb = Jb + } + if (!(f[da >> 2] & 67108864)) { + m = (Kb + 1) | 0 + f[p >> 2] = m + Mb = m + Nb = m + } else { + Mb = Kb + Nb = Lb + } + if (!(f[da >> 2] & 134217728)) { + m = (Mb + 1) | 0 + f[p >> 2] = m + Ob = m + Pb = m + } else { + Ob = Mb + Pb = Nb + } + if (!(f[da >> 2] & 268435456)) { + m = (Ob + 1) | 0 + f[p >> 2] = m + Qb = m + Rb = m + } else { + Qb = Ob + Rb = Pb + } + if (!(f[da >> 2] & 536870912)) { + m = (Qb + 1) | 0 + f[p >> 2] = m + Sb = m + Tb = m + } else { + Sb = Qb + Tb = Rb + } + if (!(f[da >> 2] & 1073741824)) { + m = (Sb + 1) | 0 + f[p >> 2] = m + Ub = m + Vb = m + } else { + Ub = Sb + Vb = Tb + } + if ((f[da >> 2] | 0) > -1) { + m = (Ub + 1) | 0 + f[p >> 2] = m + Wb = m + Xb = m + } else { + Wb = Ub + Xb = Vb + } + m = (da + 4) | 0 + if ((q | 0) == (m | 0)) { + Yb = m + Zb = Xb + break + } else { + ea = Xb + da = m + l = Wb + } + } + } else { + Yb = a + Zb = 0 + } + l = 0 + da = Zb + while (1) { + if (!(f[Yb >> 2] & (1 << l))) { + ea = (da + 1) | 0 + f[p >> 2] = ea + _b = ea + } else _b = da + l = (l + 1) | 0 + if ((l | 0) == (S | 0)) break + else da = _b + } + } + while (0) + _b = f[e >> 2] | 0 + if (_b | 0) Oq(_b) + _b = f[d >> 2] | 0 + if (!_b) { + u = c + return 1 + } + Oq(_b) + u = c + return 1 + } + function fb(a, c, d, e, g, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0, + Sa = 0, + Ta = 0.0, + Ua = 0.0, + Va = 0.0, + Wa = 0, + Xa = 0, + Ya = 0, + Za = 0, + _a = 0, + $a = 0, + ab = 0, + bb = 0, + cb = 0, + db = 0, + eb = 0, + fb = 0, + gb = 0, + hb = 0, + ib = 0, + jb = 0, + kb = 0, + lb = 0, + mb = 0, + nb = 0, + ob = 0, + pb = 0, + qb = 0, + rb = 0, + sb = 0, + tb = 0, + ub = 0, + vb = 0, + wb = 0, + xb = 0, + yb = 0, + zb = 0, + Ab = 0, + Bb = 0, + Cb = 0, + Db = 0, + Eb = 0, + Fb = 0, + Gb = 0, + Hb = 0, + Ib = 0 + i = u + u = (u + 256) | 0 + e = (i + 104) | 0 + j = (i + 240) | 0 + k = (i + 224) | 0 + l = (i + 160) | 0 + m = (i + 140) | 0 + n = (i + 248) | 0 + o = (i + 72) | 0 + p = (i + 40) | 0 + q = (i + 128) | 0 + r = i + s = (i + 232) | 0 + t = (i + 220) | 0 + v = (i + 216) | 0 + w = (i + 212) | 0 + x = (i + 208) | 0 + y = (i + 152) | 0 + z = f[(a + 28) >> 2] | 0 + A = f[(a + 32) >> 2] | 0 + B = l + C = (B + 48) | 0 + do { + f[B >> 2] = 0 + B = (B + 4) | 0 + } while ((B | 0) < (C | 0)) + if (!g) { + D = 0 + E = 0 + } else { + Ci(l, g) + D = f[(l + 12) >> 2] | 0 + E = f[(l + 16) >> 2] | 0 + } + B = (l + 16) | 0 + C = (E - D) >> 2 + F = D + D = E + if (C >>> 0 >= g >>> 0) { + if ( + C >>> 0 > g >>> 0 ? ((E = (F + (g << 2)) | 0), (E | 0) != (D | 0)) : 0 + ) + f[B >> 2] = D + (~(((D + -4 - E) | 0) >>> 2) << 2) + } else Ci((l + 12) | 0, (g - C) | 0) + C = (l + 24) | 0 + E = (l + 28) | 0 + D = f[E >> 2] | 0 + B = f[C >> 2] | 0 + F = (D - B) >> 2 + G = B + B = D + if (F >>> 0 >= g >>> 0) { + if ( + F >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[E >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else Ci(C, (g - F) | 0) + F = (l + 36) | 0 + C = (l + 40) | 0 + D = f[C >> 2] | 0 + B = f[F >> 2] | 0 + E = (D - B) >> 2 + G = B + B = D + if (E >>> 0 >= g >>> 0) { + if ( + E >>> 0 > g >>> 0 ? ((D = (G + (g << 2)) | 0), (D | 0) != (B | 0)) : 0 + ) + f[C >> 2] = B + (~(((B + -4 - D) | 0) >>> 2) << 2) + } else Ci(F, (g - E) | 0) + f[m >> 2] = 0 + E = (m + 4) | 0 + f[E >> 2] = 0 + f[(m + 8) >> 2] = 0 + F = (g | 0) == 0 + do + if (!F) + if (g >>> 0 > 1073741823) aq(m) + else { + D = g << 2 + B = ln(D) | 0 + f[m >> 2] = B + C = (B + (g << 2)) | 0 + f[(m + 8) >> 2] = C + sj(B | 0, 0, D | 0) | 0 + f[E >> 2] = C + break + } + while (0) + C = (a + 136) | 0 + D = (a + 140) | 0 + B = f[D >> 2] | 0 + G = f[C >> 2] | 0 + H = (B - G) >> 2 + L = G + G = B + if (H >>> 0 >= g >>> 0) { + if ( + H >>> 0 > g >>> 0 ? ((B = (L + (g << 2)) | 0), (B | 0) != (G | 0)) : 0 + ) + f[D >> 2] = G + (~(((G + -4 - B) | 0) >>> 2) << 2) + } else Ci(C, (g - H) | 0) + f[o >> 2] = 0 + f[(o + 4) >> 2] = 0 + f[(o + 8) >> 2] = 0 + f[(o + 12) >> 2] = 0 + f[(o + 16) >> 2] = 0 + f[(o + 20) >> 2] = 0 + f[(o + 24) >> 2] = 0 + f[(o + 28) >> 2] = 0 + f[p >> 2] = 0 + f[(p + 4) >> 2] = 0 + f[(p + 8) >> 2] = 0 + f[(p + 12) >> 2] = 0 + f[(p + 16) >> 2] = 0 + f[(p + 20) >> 2] = 0 + f[(p + 24) >> 2] = 0 + f[(p + 28) >> 2] = 0 + f[q >> 2] = 0 + H = (q + 4) | 0 + f[H >> 2] = 0 + f[(q + 8) >> 2] = 0 + if (F) { + M = 0 + N = 0 + O = 0 + P = 0 + } else { + F = g << 2 + B = ln(F) | 0 + f[q >> 2] = B + G = (B + (g << 2)) | 0 + f[(q + 8) >> 2] = G + sj(B | 0, 0, F | 0) | 0 + f[H >> 2] = G + M = B + N = G + O = G + P = B + } + B = (a + 36) | 0 + G = f[B >> 2] | 0 + F = f[(G + 4) >> 2] | 0 + D = f[G >> 2] | 0 + L = (F - D) | 0 + a: do + if ((L | 0) > 4) { + Q = L >> 2 + R = (z + 12) | 0 + S = (g | 0) > 0 + T = (r + 4) | 0 + U = (r + 8) | 0 + V = (r + 12) | 0 + Z = (a + 136) | 0 + _ = (a + 96) | 0 + $ = (r + 16) | 0 + aa = (r + 28) | 0 + ba = (a + 8) | 0 + ca = (j + 4) | 0 + da = (k + 4) | 0 + ea = (e + 4) | 0 + fa = (r + 28) | 0 + ga = (r + 16) | 0 + ha = (r + 20) | 0 + ia = (r + 32) | 0 + ja = (n + 1) | 0 + ka = g << 2 + la = (g | 0) == 1 + ma = (Q + -1) | 0 + if (((F - D) >> 2) >>> 0 > ma >>> 0) { + na = Q + oa = ma + pa = P + qa = O + ra = M + sa = M + ta = N + ua = M + va = N + wa = D + } else { + xa = G + aq(xa) + } + b: while (1) { + ma = f[(wa + (oa << 2)) >> 2] | 0 + Q = ((((ma >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + ma) | 0 + ya = ((ma | 0) == -1) | ((Q | 0) == -1) + za = 1 + Aa = 0 + Ba = ma + c: while (1) { + Ca = za ^ 1 + Da = Aa + Ea = Ba + while (1) { + if ((Ea | 0) == -1) { + Fa = Da + break c + } + Ga = f[(l + ((Da * 12) | 0)) >> 2] | 0 + Ha = f[R >> 2] | 0 + Ia = f[(Ha + (Ea << 2)) >> 2] | 0 + if ((Ia | 0) != -1) { + Ja = f[z >> 2] | 0 + Ka = f[A >> 2] | 0 + La = f[(Ka + (f[(Ja + (Ia << 2)) >> 2] << 2)) >> 2] | 0 + Ma = (Ia + 1) | 0 + Na = ((Ma >>> 0) % 3 | 0 | 0) == 0 ? (Ia + -2) | 0 : Ma + if ((Na | 0) == -1) Oa = -1 + else Oa = f[(Ja + (Na << 2)) >> 2] | 0 + Na = f[(Ka + (Oa << 2)) >> 2] | 0 + Ma = ((((Ia >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Ia) | 0 + if ((Ma | 0) == -1) Pa = -1 + else Pa = f[(Ja + (Ma << 2)) >> 2] | 0 + Ma = f[(Ka + (Pa << 2)) >> 2] | 0 + if ( + ((La | 0) < (oa | 0)) & + ((Na | 0) < (oa | 0)) & + ((Ma | 0) < (oa | 0)) + ) { + Ka = X(La, g) | 0 + La = X(Na, g) | 0 + Na = X(Ma, g) | 0 + if (S) { + Ma = 0 + do { + f[(Ga + (Ma << 2)) >> 2] = + (f[(c + ((Ma + Na) << 2)) >> 2] | 0) + + (f[(c + ((Ma + La) << 2)) >> 2] | 0) - + (f[(c + ((Ma + Ka) << 2)) >> 2] | 0) + Ma = (Ma + 1) | 0 + } while ((Ma | 0) != (g | 0)) + } + Ma = (Da + 1) | 0 + if ((Ma | 0) == 4) { + Fa = 4 + break c + } else Qa = Ma + } else Qa = Da + } else Qa = Da + do + if (za) { + Ma = (Ea + 1) | 0 + Ka = ((Ma >>> 0) % 3 | 0 | 0) == 0 ? (Ea + -2) | 0 : Ma + if ( + (Ka | 0) != -1 + ? ((Ma = f[(Ha + (Ka << 2)) >> 2] | 0), + (Ka = (Ma + 1) | 0), + (Ma | 0) != -1) + : 0 + ) + Ra = ((Ka >>> 0) % 3 | 0 | 0) == 0 ? (Ma + -2) | 0 : Ka + else Ra = -1 + } else { + Ka = ((((Ea >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Ea) | 0 + if ( + (Ka | 0) != -1 + ? ((Ma = f[(Ha + (Ka << 2)) >> 2] | 0), (Ma | 0) != -1) + : 0 + ) + if (!((Ma >>> 0) % 3 | 0)) { + Ra = (Ma + 2) | 0 + break + } else { + Ra = (Ma + -1) | 0 + break + } + else Ra = -1 + } + while (0) + if ((Ra | 0) == (ma | 0)) { + Fa = Qa + break c + } + if (((Ra | 0) != -1) | Ca) { + Da = Qa + Ea = Ra + } else break + } + if (ya) { + za = 0 + Aa = Qa + Ba = -1 + continue + } + Ea = f[(Ha + (Q << 2)) >> 2] | 0 + if ((Ea | 0) == -1) { + za = 0 + Aa = Qa + Ba = -1 + continue + } + if (!((Ea >>> 0) % 3 | 0)) { + za = 0 + Aa = Qa + Ba = (Ea + 2) | 0 + continue + } else { + za = 0 + Aa = Qa + Ba = (Ea + -1) | 0 + continue + } + } + Ba = X(oa, g) | 0 + f[r >> 2] = 0 + f[T >> 2] = 0 + b[U >> 0] = 0 + f[V >> 2] = 0 + f[(V + 4) >> 2] = 0 + f[(V + 8) >> 2] = 0 + f[(V + 12) >> 2] = 0 + f[(V + 16) >> 2] = 0 + f[(V + 20) >> 2] = 0 + f[(V + 24) >> 2] = 0 + Aa = (Fa + -1) | 0 + za = (p + (Aa << 3)) | 0 + Q = za + ya = + Vn( + f[Q >> 2] | 0, + f[(Q + 4) >> 2] | 0, + Fa | 0, + ((((Fa | 0) < 0) << 31) >> 31) | 0, + ) | 0 + Q = I + ma = za + f[ma >> 2] = ya + f[(ma + 4) >> 2] = Q + ma = (c + ((X((na + -2) | 0, g) | 0) << 2)) | 0 + za = (c + (Ba << 2)) | 0 + Ea = f[Z >> 2] | 0 + if (S) { + Da = 0 + Ca = 0 + while (1) { + Ma = + ((f[(ma + (Da << 2)) >> 2] | 0) - + (f[(za + (Da << 2)) >> 2] | 0)) | + 0 + Ka = (((Ma | 0) > -1 ? Ma : (0 - Ma) | 0) + Ca) | 0 + f[(ra + (Da << 2)) >> 2] = Ma + f[(Ea + (Da << 2)) >> 2] = (Ma << 1) ^ (Ma >> 31) + Da = (Da + 1) | 0 + if ((Da | 0) == (g | 0)) { + Sa = Ka + break + } else Ca = Ka + } + } else Sa = 0 + mo(e, _, Ea, g) + Ca = Zk(e) | 0 + Da = I + Ka = Bm(e) | 0 + Ma = I + La = (o + (Aa << 3)) | 0 + Na = La + Ga = f[Na >> 2] | 0 + Ja = f[(Na + 4) >> 2] | 0 + Ta = +wm(ya, Ga) + Na = Vn(Ka | 0, Ma | 0, Ca | 0, Da | 0) | 0 + Ua = +(ya >>> 0) + 4294967296.0 * +(Q | 0) + Va = +W(+(Ta * Ua)) + Da = + Vn( + Na | 0, + I | 0, + (~~Va >>> 0) | 0, + (+K(Va) >= 1.0 + ? Va > 0.0 + ? ~~+Y(+J(Va / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Va - +(~~Va >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + Na = r + f[Na >> 2] = Da + f[(Na + 4) >> 2] = Sa + b[U >> 0] = 0 + f[V >> 2] = 0 + $f($, ma, (ma + (g << 2)) | 0) + f[s >> 2] = pa + f[t >> 2] = qa + f[j >> 2] = f[s >> 2] + f[e >> 2] = f[t >> 2] + Jf(aa, j, e) + if ((Fa | 0) < 1) { + Wa = va + Xa = ua + Ya = ta + Za = sa + _a = qa + $a = pa + ab = pa + } else { + Na = (n + Fa) | 0 + Da = f[q >> 2] | 0 + Ca = Da + Ma = f[H >> 2] | 0 + Ka = (Na + -1) | 0 + Ia = (Ka | 0) == (n | 0) + bb = (Na + -2) | 0 + cb = ja >>> 0 < bb >>> 0 + db = ~Fa + eb = (Fa + 2 + ((db | 0) > -2 ? db : -2)) | 0 + db = Ma + fb = Ka >>> 0 > n >>> 0 + gb = 0 + hb = 1 + while (1) { + gb = (gb + 1) | 0 + sj(n | 0, 1, eb | 0) | 0 + sj(n | 0, 0, gb | 0) | 0 + ib = Vn(Ga | 0, Ja | 0, hb | 0, 0) | 0 + d: while (1) { + if (S) { + sj(f[m >> 2] | 0, 0, ka | 0) | 0 + jb = f[m >> 2] | 0 + kb = 0 + lb = 0 + while (1) { + if (!(b[(n + kb) >> 0] | 0)) { + mb = f[(l + ((kb * 12) | 0)) >> 2] | 0 + nb = 0 + do { + ob = (jb + (nb << 2)) | 0 + f[ob >> 2] = + (f[ob >> 2] | 0) + (f[(mb + (nb << 2)) >> 2] | 0) + nb = (nb + 1) | 0 + } while ((nb | 0) != (g | 0)) + pb = ((1 << kb) | (lb & 255)) & 255 + } else pb = lb + kb = (kb + 1) | 0 + if ((kb | 0) == (Fa | 0)) { + qb = pb + break + } else lb = pb + } + } else { + lb = 0 + kb = 0 + while (1) { + if (!(b[(n + lb) >> 0] | 0)) + rb = ((1 << lb) | (kb & 255)) & 255 + else rb = kb + lb = (lb + 1) | 0 + if ((lb | 0) == (Fa | 0)) { + qb = rb + break + } else kb = rb + } + } + kb = f[m >> 2] | 0 + do + if (S) { + f[kb >> 2] = ((f[kb >> 2] | 0) / (hb | 0)) | 0 + if (!la) { + lb = 1 + do { + jb = (kb + (lb << 2)) | 0 + f[jb >> 2] = ((f[jb >> 2] | 0) / (hb | 0)) | 0 + lb = (lb + 1) | 0 + } while ((lb | 0) != (g | 0)) + lb = f[Z >> 2] | 0 + if (S) sb = lb + else { + tb = 0 + ub = lb + break + } + } else sb = f[Z >> 2] | 0 + lb = 0 + jb = 0 + while (1) { + nb = + ((f[(kb + (lb << 2)) >> 2] | 0) - + (f[(za + (lb << 2)) >> 2] | 0)) | + 0 + mb = (((nb | 0) > -1 ? nb : (0 - nb) | 0) + jb) | 0 + f[(Da + (lb << 2)) >> 2] = nb + f[(sb + (lb << 2)) >> 2] = (nb << 1) ^ (nb >> 31) + lb = (lb + 1) | 0 + if ((lb | 0) == (g | 0)) { + tb = mb + ub = sb + break + } else jb = mb + } + } else { + tb = 0 + ub = f[Z >> 2] | 0 + } + while (0) + mo(e, _, ub, g) + kb = Zk(e) | 0 + jb = I + lb = Bm(e) | 0 + mb = I + Va = +wm(ya, ib) + nb = Vn(lb | 0, mb | 0, kb | 0, jb | 0) | 0 + Ta = +W(+(Va * Ua)) + jb = + Vn( + nb | 0, + I | 0, + (~~Ta >>> 0) | 0, + (+K(Ta) >= 1.0 + ? Ta > 0.0 + ? ~~+Y(+J(Ta / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((Ta - +(~~Ta >>> 0)) / 4294967296.0) >>> 0 + : 0) | 0, + ) | 0 + nb = f[r >> 2] | 0 + if ( + !((nb | 0) <= (jb | 0) + ? !((nb | 0) >= (jb | 0) ? (tb | 0) < (f[T >> 2] | 0) : 0) + : 0) + ) { + nb = r + f[nb >> 2] = jb + f[(nb + 4) >> 2] = tb + b[U >> 0] = qb + f[V >> 2] = hb + f[v >> 2] = f[m >> 2] + f[w >> 2] = f[E >> 2] + f[j >> 2] = f[v >> 2] + f[e >> 2] = f[w >> 2] + Jf($, j, e) + f[x >> 2] = Ca + f[y >> 2] = Ma + f[j >> 2] = f[x >> 2] + f[e >> 2] = f[y >> 2] + Jf(aa, j, e) + } + if (Ia) break + vb = b[Ka >> 0] | 0 + nb = -1 + jb = vb + while (1) { + kb = (nb + -1) | 0 + wb = (Na + kb) | 0 + mb = jb + jb = b[wb >> 0] | 0 + if ((jb & 255) < (mb & 255)) break + if ((wb | 0) == (n | 0)) { + xb = 84 + break d + } else nb = kb + } + kb = (Na + nb) | 0 + if ((jb & 255) < (vb & 255)) { + yb = Ka + zb = vb + } else { + mb = Na + lb = Ka + while (1) { + ob = (lb + -1) | 0 + if ((jb & 255) < (h[(mb + -2) >> 0] | 0)) { + yb = ob + zb = 1 + break + } else { + Ab = lb + lb = ob + mb = Ab + } + } + } + b[wb >> 0] = zb + b[yb >> 0] = jb + if ((nb | 0) < -1) { + Bb = kb + Cb = Ka + } else continue + while (1) { + mb = b[Bb >> 0] | 0 + b[Bb >> 0] = b[Cb >> 0] | 0 + b[Cb >> 0] = mb + mb = (Bb + 1) | 0 + lb = (Cb + -1) | 0 + if (mb >>> 0 < lb >>> 0) { + Bb = mb + Cb = lb + } else continue d + } + } + if ( + ((xb | 0) == 84 ? ((xb = 0), fb) : 0) + ? ((ib = b[n >> 0] | 0), + (b[n >> 0] = vb), + (b[Ka >> 0] = ib), + cb) + : 0 + ) { + ib = bb + kb = ja + do { + nb = b[kb >> 0] | 0 + b[kb >> 0] = b[ib >> 0] | 0 + b[ib >> 0] = nb + kb = (kb + 1) | 0 + ib = (ib + -1) | 0 + } while (kb >>> 0 < ib >>> 0) + } + if ((hb | 0) >= (Fa | 0)) { + Wa = db + Xa = Da + Ya = db + Za = Da + _a = Ma + $a = Ca + ab = Da + break + } else hb = (hb + 1) | 0 + } + } + hb = f[V >> 2] | 0 + Da = + Vn(Ga | 0, Ja | 0, hb | 0, ((((hb | 0) < 0) << 31) >> 31) | 0) | 0 + hb = La + f[hb >> 2] = Da + f[(hb + 4) >> 2] = I + if (S) { + hb = f[aa >> 2] | 0 + Da = f[C >> 2] | 0 + Ca = 0 + do { + Ma = f[(hb + (Ca << 2)) >> 2] | 0 + f[(Da + (Ca << 2)) >> 2] = (Ma << 1) ^ (Ma >> 31) + Ca = (Ca + 1) | 0 + } while ((Ca | 0) != (g | 0)) + Db = Da + } else Db = f[C >> 2] | 0 + lo(e, _, Db, g) + if ((Fa | 0) > 0) { + Eb = (a + 40 + ((Aa * 12) | 0)) | 0 + Da = (a + 40 + ((Aa * 12) | 0) + 4) | 0 + Ca = (a + 40 + ((Aa * 12) | 0) + 8) | 0 + hb = 0 + do { + La = f[Da >> 2] | 0 + Ja = f[Ca >> 2] | 0 + Ga = (La | 0) == ((Ja << 5) | 0) + if (!((1 << hb) & h[U >> 0])) { + if (Ga) { + if (((La + 1) | 0) < 0) { + xb = 95 + break b + } + Ma = Ja << 6 + db = (La + 32) & -32 + vi( + Eb, + La >>> 0 < 1073741823 + ? Ma >>> 0 < db >>> 0 + ? db + : Ma + : 2147483647, + ) + Fb = f[Da >> 2] | 0 + } else Fb = La + f[Da >> 2] = Fb + 1 + Ma = ((f[Eb >> 2] | 0) + ((Fb >>> 5) << 2)) | 0 + f[Ma >> 2] = f[Ma >> 2] | (1 << (Fb & 31)) + } else { + if (Ga) { + if (((La + 1) | 0) < 0) { + xb = 100 + break b + } + Ga = Ja << 6 + Ja = (La + 32) & -32 + vi( + Eb, + La >>> 0 < 1073741823 + ? Ga >>> 0 < Ja >>> 0 + ? Ja + : Ga + : 2147483647, + ) + Gb = f[Da >> 2] | 0 + } else Gb = La + f[Da >> 2] = Gb + 1 + La = ((f[Eb >> 2] | 0) + ((Gb >>> 5) << 2)) | 0 + f[La >> 2] = f[La >> 2] & ~(1 << (Gb & 31)) + } + hb = (hb + 1) | 0 + } while ((hb | 0) < (Fa | 0)) + } + hb = f[$ >> 2] | 0 + Da = (d + (Ba << 2)) | 0 + Ca = f[(za + 4) >> 2] | 0 + Aa = f[hb >> 2] | 0 + La = f[(hb + 4) >> 2] | 0 + f[j >> 2] = f[za >> 2] + f[ca >> 2] = Ca + f[k >> 2] = Aa + f[da >> 2] = La + Od(e, ba, j, k) + f[Da >> 2] = f[e >> 2] + f[(Da + 4) >> 2] = f[ea >> 2] + Da = f[fa >> 2] | 0 + if (Da | 0) { + La = f[ia >> 2] | 0 + if ((La | 0) != (Da | 0)) + f[ia >> 2] = La + (~(((La + -4 - Da) | 0) >>> 2) << 2) + Oq(Da) + } + Da = f[ga >> 2] | 0 + if (Da | 0) { + La = f[ha >> 2] | 0 + if ((La | 0) != (Da | 0)) + f[ha >> 2] = La + (~(((La + -4 - Da) | 0) >>> 2) << 2) + Oq(Da) + } + if ((na | 0) <= 2) { + Hb = Za + Ib = Ya + break a + } + Da = f[B >> 2] | 0 + wa = f[Da >> 2] | 0 + La = (oa + -1) | 0 + if ((((f[(Da + 4) >> 2] | 0) - wa) >> 2) >>> 0 <= La >>> 0) { + xa = Da + xb = 18 + break + } else { + Da = oa + oa = La + pa = $a + qa = _a + ra = ab + sa = Za + ta = Ya + ua = Xa + va = Wa + na = Da + } + } + if ((xb | 0) == 18) aq(xa) + else if ((xb | 0) == 95) aq(Eb) + else if ((xb | 0) == 100) aq(Eb) + } else { + Hb = M + Ib = N + } + while (0) + if ((g | 0) > 0) sj(f[l >> 2] | 0, 0, (g << 2) | 0) | 0 + g = f[l >> 2] | 0 + N = f[(c + 4) >> 2] | 0 + M = f[g >> 2] | 0 + Eb = f[(g + 4) >> 2] | 0 + f[j >> 2] = f[c >> 2] + f[(j + 4) >> 2] = N + f[k >> 2] = M + f[(k + 4) >> 2] = Eb + Od(e, (a + 8) | 0, j, k) + f[d >> 2] = f[e >> 2] + f[(d + 4) >> 2] = f[(e + 4) >> 2] + if (Hb | 0) { + if ((Ib | 0) != (Hb | 0)) + f[H >> 2] = Ib + (~(((Ib + -4 - Hb) | 0) >>> 2) << 2) + Oq(Hb) + } + Hb = f[m >> 2] | 0 + if (Hb | 0) { + m = f[E >> 2] | 0 + if ((m | 0) != (Hb | 0)) + f[E >> 2] = m + (~(((m + -4 - Hb) | 0) >>> 2) << 2) + Oq(Hb) + } + Hb = f[(l + 36) >> 2] | 0 + if (Hb | 0) { + m = (l + 40) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Hb | 0)) + f[m >> 2] = E + (~(((E + -4 - Hb) | 0) >>> 2) << 2) + Oq(Hb) + } + Hb = f[(l + 24) >> 2] | 0 + if (Hb | 0) { + E = (l + 28) | 0 + m = f[E >> 2] | 0 + if ((m | 0) != (Hb | 0)) + f[E >> 2] = m + (~(((m + -4 - Hb) | 0) >>> 2) << 2) + Oq(Hb) + } + Hb = f[(l + 12) >> 2] | 0 + if (Hb | 0) { + m = (l + 16) | 0 + E = f[m >> 2] | 0 + if ((E | 0) != (Hb | 0)) + f[m >> 2] = E + (~(((E + -4 - Hb) | 0) >>> 2) << 2) + Oq(Hb) + } + Hb = f[l >> 2] | 0 + if (!Hb) { + u = i + return 1 + } + E = (l + 4) | 0 + l = f[E >> 2] | 0 + if ((l | 0) != (Hb | 0)) + f[E >> 2] = l + (~(((l + -4 - Hb) | 0) >>> 2) << 2) + Oq(Hb) + u = i + return 1 + } + function gb(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = Oa, + La = 0, + Ma = 0, + Na = 0, + Pa = 0, + Qa = Oa, + Ra = 0, + Sa = 0, + Ta = 0, + Ua = 0, + Va = 0 + c = u + u = (u + 80) | 0 + d = (c + 60) | 0 + e = (c + 48) | 0 + g = (c + 24) | 0 + h = (c + 12) | 0 + i = c + j = (a + 28) | 0 + k = f[j >> 2] | 0 + l = f[(k + 4) >> 2] | 0 + m = f[(l + 80) >> 2] | 0 + o = (a + 4) | 0 + p = (a + 8) | 0 + q = f[p >> 2] | 0 + r = f[o >> 2] | 0 + s = (q | 0) == (r | 0) + t = r + if (s) { + f[(a + 72) >> 2] = 0 + v = 1 + u = c + return v | 0 + } + w = f[(l + 8) >> 2] | 0 + x = (q - r) >> 2 + r = 0 + q = 0 + do { + r = + (r + + (b[((f[(w + (f[(t + (q << 2)) >> 2] << 2)) >> 2] | 0) + 24) >> 0] | + 0)) | + 0 + q = (q + 1) | 0 + } while (q >>> 0 < x >>> 0) + f[(a + 72) >> 2] = r + if (s) { + v = 1 + u = c + return v | 0 + } + s = (g + 4) | 0 + r = (g + 8) | 0 + x = (d + 8) | 0 + q = (d + 4) | 0 + w = (d + 11) | 0 + y = (g + 12) | 0 + z = (d + 8) | 0 + A = (d + 4) | 0 + B = (d + 11) | 0 + C = (h + 4) | 0 + D = (h + 8) | 0 + E = (i + 8) | 0 + F = (i + 4) | 0 + G = (d + 11) | 0 + H = (d + 4) | 0 + I = (i + 11) | 0 + J = (d + 8) | 0 + K = (d + 4) | 0 + L = (d + 11) | 0 + M = (d + 11) | 0 + N = (d + 4) | 0 + O = (h + 8) | 0 + P = (a + 40) | 0 + Q = (a + 44) | 0 + R = (a + 36) | 0 + S = (a + 64) | 0 + T = (a + 68) | 0 + U = (a + 60) | 0 + V = (g + 8) | 0 + W = (g + 20) | 0 + X = (e + 8) | 0 + Y = (e + 4) | 0 + Z = (e + 11) | 0 + _ = (g + 4) | 0 + aa = (g + 8) | 0 + ba = (h + 4) | 0 + ca = (h + 8) | 0 + da = (h + 8) | 0 + ea = (a + 52) | 0 + fa = (a + 56) | 0 + ga = (a + 48) | 0 + a = (g + 8) | 0 + ha = 0 + ia = t + t = l + l = k + a: while (1) { + k = f[(ia + (ha << 2)) >> 2] | 0 + ja = f[((f[(t + 8) >> 2] | 0) + (k << 2)) >> 2] | 0 + switch (f[(ja + 28) >> 2] | 0) { + case 9: { + f[g >> 2] = 1196 + f[s >> 2] = -1 + f[r >> 2] = 0 + f[(r + 4) >> 2] = 0 + f[(r + 8) >> 2] = 0 + f[(r + 12) >> 2] = 0 + ka = f[(l + 48) >> 2] | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + la = ln(32) | 0 + f[d >> 2] = la + f[x >> 2] = -2147483616 + f[q >> 2] = 17 + ma = la + na = 14495 + oa = (ma + 17) | 0 + do { + b[ma >> 0] = b[na >> 0] | 0 + ma = (ma + 1) | 0 + na = (na + 1) | 0 + } while ((ma | 0) < (oa | 0)) + b[(la + 17) >> 0] = 0 + pa = (ka + 16) | 0 + qa = f[pa >> 2] | 0 + if (qa) { + ra = pa + sa = qa + b: while (1) { + qa = sa + while (1) { + if ((f[(qa + 16) >> 2] | 0) >= (k | 0)) break + ta = f[(qa + 4) >> 2] | 0 + if (!ta) { + ua = ra + break b + } else qa = ta + } + sa = f[qa >> 2] | 0 + if (!sa) { + ua = qa + break + } else ra = qa + } + if ( + ((ua | 0) != (pa | 0) ? (k | 0) >= (f[(ua + 16) >> 2] | 0) : 0) + ? ((ra = (ua + 20) | 0), (Jh(ra, d) | 0) != 0) + : 0 + ) + va = Hk(ra, d, -1) | 0 + else wa = 17 + } else wa = 17 + if ((wa | 0) == 17) { + wa = 0 + va = Hk(ka, d, -1) | 0 + } + if ((b[w >> 0] | 0) < 0) Oq(f[d >> 2] | 0) + if ((va | 0) < 1) xa = 1 + else { + ra = f[((f[j >> 2] | 0) + 48) >> 2] | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + sa = ln(32) | 0 + f[d >> 2] = sa + f[z >> 2] = -2147483616 + f[A >> 2] = 19 + ma = sa + na = 14438 + oa = (ma + 19) | 0 + do { + b[ma >> 0] = b[na >> 0] | 0 + ma = (ma + 1) | 0 + na = (na + 1) | 0 + } while ((ma | 0) < (oa | 0)) + b[(sa + 19) >> 0] = 0 + ka = (ra + 16) | 0 + pa = f[ka >> 2] | 0 + if (pa) { + la = ka + ta = pa + c: while (1) { + pa = ta + while (1) { + if ((f[(pa + 16) >> 2] | 0) >= (k | 0)) break + ya = f[(pa + 4) >> 2] | 0 + if (!ya) { + za = la + break c + } else pa = ya + } + ta = f[pa >> 2] | 0 + if (!ta) { + za = pa + break + } else la = pa + } + if ( + (za | 0) != (ka | 0) ? (k | 0) >= (f[(za + 16) >> 2] | 0) : 0 + ) + Aa = (za + 20) | 0 + else wa = 29 + } else wa = 29 + if ((wa | 0) == 29) { + wa = 0 + Aa = ra + } + if (!(Jh(Aa, d) | 0)) Ba = 0 + else { + la = f[((f[j >> 2] | 0) + 48) >> 2] | 0 + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + ta = ln(32) | 0 + f[e >> 2] = ta + f[X >> 2] = -2147483616 + f[Y >> 2] = 18 + ma = ta + na = 14458 + oa = (ma + 18) | 0 + do { + b[ma >> 0] = b[na >> 0] | 0 + ma = (ma + 1) | 0 + na = (na + 1) | 0 + } while ((ma | 0) < (oa | 0)) + b[(ta + 18) >> 0] = 0 + ra = (la + 16) | 0 + ka = f[ra >> 2] | 0 + if (ka) { + sa = ra + qa = ka + d: while (1) { + ka = qa + while (1) { + if ((f[(ka + 16) >> 2] | 0) >= (k | 0)) break + ya = f[(ka + 4) >> 2] | 0 + if (!ya) { + Ca = sa + break d + } else ka = ya + } + qa = f[ka >> 2] | 0 + if (!qa) { + Ca = ka + break + } else sa = ka + } + if ( + (Ca | 0) != (ra | 0) + ? (k | 0) >= (f[(Ca + 16) >> 2] | 0) + : 0 + ) + Da = (Ca + 20) | 0 + else wa = 39 + } else wa = 39 + if ((wa | 0) == 39) { + wa = 0 + Da = la + } + sa = (Jh(Da, e) | 0) != 0 + if ((b[Z >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + Ba = sa + } + if ((b[B >> 0] | 0) < 0) Oq(f[d >> 2] | 0) + if (Ba) { + sa = (ja + 24) | 0 + qa = b[sa >> 0] | 0 + ta = (qa << 24) >> 24 + f[h >> 2] = 0 + f[C >> 2] = 0 + f[D >> 2] = 0 + if (!((qa << 24) >> 24)) Ea = 0 + else { + if ((qa << 24) >> 24 < 0) { + wa = 48 + break a + } + qa = ta << 2 + pa = ln(qa) | 0 + f[h >> 2] = pa + ya = (pa + (ta << 2)) | 0 + f[O >> 2] = ya + sj(pa | 0, 0, qa | 0) | 0 + f[C >> 2] = ya + Ea = pa + } + pa = f[((f[j >> 2] | 0) + 48) >> 2] | 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + ya = ln(32) | 0 + f[i >> 2] = ya + f[E >> 2] = -2147483616 + f[F >> 2] = 19 + ma = ya + na = 14438 + oa = (ma + 19) | 0 + do { + b[ma >> 0] = b[na >> 0] | 0 + ma = (ma + 1) | 0 + na = (na + 1) | 0 + } while ((ma | 0) < (oa | 0)) + b[(ya + 19) >> 0] = 0 + la = b[sa >> 0] | 0 + ra = (la << 24) >> 24 + qa = (pa + 16) | 0 + ta = f[qa >> 2] | 0 + if (ta) { + Fa = qa + Ga = ta + e: while (1) { + ta = Ga + while (1) { + if ((f[(ta + 16) >> 2] | 0) >= (k | 0)) break + Ha = f[(ta + 4) >> 2] | 0 + if (!Ha) { + Ia = Fa + break e + } else ta = Ha + } + Ga = f[ta >> 2] | 0 + if (!Ga) { + Ia = ta + break + } else Fa = ta + } + if ( + ( + (Ia | 0) != (qa | 0) + ? (k | 0) >= (f[(Ia + 16) >> 2] | 0) + : 0 + ) + ? ((Fa = (Ia + 20) | 0), (Jh(Fa, i) | 0) != 0) + : 0 + ) { + Ga = Rg(Fa, i) | 0 + if ((Ga | 0) != ((Ia + 24) | 0)) { + pj(d, (Ga + 28) | 0) + Ga = b[M >> 0] | 0 + Fa = (Ga << 24) >> 24 < 0 + if (!((Fa ? f[N >> 2] | 0 : Ga & 255) | 0)) Ja = Ga + else { + if ((la << 24) >> 24 > 0) { + ya = Fa ? f[d >> 2] | 0 : d + Fa = 0 + do { + Ka = $(bq(ya, e)) + ka = ya + ya = f[e >> 2] | 0 + if ((ka | 0) == (ya | 0)) break + n[(Ea + (Fa << 2)) >> 2] = Ka + Fa = (Fa + 1) | 0 + } while ((Fa | 0) < (ra | 0)) + La = b[M >> 0] | 0 + } else La = Ga + Ja = La + } + if ((Ja << 24) >> 24 < 0) Oq(f[d >> 2] | 0) + } + } else wa = 69 + } else wa = 69 + if ( + (wa | 0) == 69 + ? ((wa = 0), + (Fa = Rg(pa, i) | 0), + (Fa | 0) != ((pa + 4) | 0)) + : 0 + ) { + pj(d, (Fa + 28) | 0) + Fa = b[G >> 0] | 0 + ya = (Fa << 24) >> 24 < 0 + if (!((ya ? f[H >> 2] | 0 : Fa & 255) | 0)) Ma = Fa + else { + if ((la << 24) >> 24 > 0) { + qa = ya ? f[d >> 2] | 0 : d + ya = 0 + do { + Ka = $(bq(qa, e)) + ka = qa + qa = f[e >> 2] | 0 + if ((ka | 0) == (qa | 0)) break + n[(Ea + (ya << 2)) >> 2] = Ka + ya = (ya + 1) | 0 + } while ((ya | 0) < (ra | 0)) + Na = b[G >> 0] | 0 + } else Na = Fa + Ma = Na + } + if ((Ma << 24) >> 24 < 0) Oq(f[d >> 2] | 0) + } + if ((b[I >> 0] | 0) < 0) Oq(f[i >> 2] | 0) + ra = f[((f[j >> 2] | 0) + 48) >> 2] | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + ya = ln(32) | 0 + f[d >> 2] = ya + f[J >> 2] = -2147483616 + f[K >> 2] = 18 + ma = ya + na = 14458 + oa = (ma + 18) | 0 + do { + b[ma >> 0] = b[na >> 0] | 0 + ma = (ma + 1) | 0 + na = (na + 1) | 0 + } while ((ma | 0) < (oa | 0)) + b[(ya + 18) >> 0] = 0 + na = (ra + 16) | 0 + ma = f[na >> 2] | 0 + do + if (ma) { + oa = na + Fa = ma + f: while (1) { + qa = Fa + while (1) { + if ((f[(qa + 16) >> 2] | 0) >= (k | 0)) break + la = f[(qa + 4) >> 2] | 0 + if (!la) { + Pa = oa + break f + } else qa = la + } + Fa = f[qa >> 2] | 0 + if (!Fa) { + Pa = qa + break + } else oa = qa + } + if ( + (Pa | 0) != (na | 0) + ? (k | 0) >= (f[(Pa + 16) >> 2] | 0) + : 0 + ) { + oa = (Pa + 20) | 0 + if (!(Jh(oa, d) | 0)) { + wa = 91 + break + } + Qa = $(sk(oa, d, $(1.0))) + } else wa = 91 + } else wa = 91 + while (0) + if ((wa | 0) == 91) { + wa = 0 + Qa = $(sk(ra, d, $(1.0))) + } + if ((b[L >> 0] | 0) < 0) Oq(f[d >> 2] | 0) + Dl(g, va, f[h >> 2] | 0, b[sa >> 0] | 0, Qa) + k = f[h >> 2] | 0 + if (k | 0) { + na = f[C >> 2] | 0 + if ((na | 0) != (k | 0)) + f[C >> 2] = na + (~(((na + -4 - k) | 0) >>> 2) << 2) + Oq(k) + } + } else Wd(g, ja, va) | 0 + k = f[P >> 2] | 0 + if ((k | 0) == (f[Q >> 2] | 0)) Cf(R, g) + else { + f[k >> 2] = 1196 + f[(k + 4) >> 2] = f[s >> 2] + Ra = (k + 8) | 0 + f[Ra >> 2] = 0 + na = (k + 12) | 0 + f[na >> 2] = 0 + f[(k + 16) >> 2] = 0 + ma = ((f[y >> 2] | 0) - (f[V >> 2] | 0)) | 0 + ya = ma >> 2 + if (ya | 0) { + if (ya >>> 0 > 1073741823) { + wa = 103 + break a + } + oa = ln(ma) | 0 + f[na >> 2] = oa + f[Ra >> 2] = oa + f[(k + 16) >> 2] = oa + (ya << 2) + ya = f[V >> 2] | 0 + ma = ((f[y >> 2] | 0) - ya) | 0 + if ((ma | 0) > 0) { + kh(oa | 0, ya | 0, ma | 0) | 0 + f[na >> 2] = oa + ((ma >>> 2) << 2) + } + } + f[(k + 20) >> 2] = f[W >> 2] + f[P >> 2] = (f[P >> 2] | 0) + 24 + } + Qe(d, g, ja, m) + k = f[S >> 2] | 0 + if (k >>> 0 < (f[T >> 2] | 0) >>> 0) { + ma = f[d >> 2] | 0 + f[d >> 2] = 0 + f[k >> 2] = ma + f[S >> 2] = k + 4 + } else Ze(U, d) + k = f[d >> 2] | 0 + f[d >> 2] = 0 + if (k | 0) { + ma = (k + 88) | 0 + oa = f[ma >> 2] | 0 + f[ma >> 2] = 0 + if (oa | 0) { + ma = f[(oa + 8) >> 2] | 0 + if (ma | 0) { + na = (oa + 12) | 0 + if ((f[na >> 2] | 0) != (ma | 0)) f[na >> 2] = ma + Oq(ma) + } + Oq(oa) + } + oa = f[(k + 68) >> 2] | 0 + if (oa | 0) { + ma = (k + 72) | 0 + na = f[ma >> 2] | 0 + if ((na | 0) != (oa | 0)) + f[ma >> 2] = na + (~(((na + -4 - oa) | 0) >>> 2) << 2) + Oq(oa) + } + oa = (k + 64) | 0 + na = f[oa >> 2] | 0 + f[oa >> 2] = 0 + if (na | 0) { + oa = f[na >> 2] | 0 + if (oa | 0) { + ma = (na + 4) | 0 + if ((f[ma >> 2] | 0) != (oa | 0)) f[ma >> 2] = oa + Oq(oa) + } + Oq(na) + } + Oq(k) + } + xa = 0 + } + f[g >> 2] = 1196 + k = f[r >> 2] | 0 + if (k | 0) { + na = f[y >> 2] | 0 + if ((na | 0) != (k | 0)) + f[y >> 2] = na + (~(((na + -4 - k) | 0) >>> 2) << 2) + Oq(k) + } + if (xa | 0) { + v = 0 + wa = 169 + break a + } + break + } + case 1: + case 3: + case 5: { + k = (ja + 24) | 0 + na = b[k >> 0] | 0 + oa = (na << 24) >> 24 + f[g >> 2] = 0 + f[_ >> 2] = 0 + f[aa >> 2] = 0 + if (!((na << 24) >> 24)) Sa = 0 + else { + if ((na << 24) >> 24 < 0) { + wa = 137 + break a + } + na = ln(oa << 2) | 0 + f[_ >> 2] = na + f[g >> 2] = na + ma = (na + (oa << 2)) | 0 + f[a >> 2] = ma + ya = oa + oa = na + while (1) { + f[oa >> 2] = 2147483647 + ya = (ya + -1) | 0 + if (!ya) break + else oa = (oa + 4) | 0 + } + f[_ >> 2] = ma + Sa = b[k >> 0] | 0 + } + oa = (Sa << 24) >> 24 + f[h >> 2] = 0 + f[ba >> 2] = 0 + f[ca >> 2] = 0 + if (!((Sa << 24) >> 24)) Ta = 0 + else { + if ((Sa << 24) >> 24 < 0) { + wa = 144 + break a + } + ya = oa << 2 + sa = ln(ya) | 0 + f[h >> 2] = sa + ra = (sa + (oa << 2)) | 0 + f[da >> 2] = ra + sj(sa | 0, 0, ya | 0) | 0 + f[ba >> 2] = ra + Ta = sa + } + sa = (ja + 80) | 0 + ra = b[k >> 0] | 0 + g: do + if (!(f[sa >> 2] | 0)) Ua = ra + else { + ya = 0 + oa = ra + na = Ta + while (1) { + f[e >> 2] = ya + f[d >> 2] = f[e >> 2] + Qb(ja, d, oa, na) | 0 + Fa = b[k >> 0] | 0 + if ((Fa << 24) >> 24 > 0) { + ta = f[g >> 2] | 0 + la = f[h >> 2] | 0 + pa = (Fa << 24) >> 24 + Ga = 0 + do { + ka = (ta + (Ga << 2)) | 0 + Ha = f[(la + (Ga << 2)) >> 2] | 0 + if ((f[ka >> 2] | 0) > (Ha | 0)) f[ka >> 2] = Ha + Ga = (Ga + 1) | 0 + } while ((Ga | 0) < (pa | 0)) + } + pa = (ya + 1) | 0 + if (pa >>> 0 >= (f[sa >> 2] | 0) >>> 0) { + Ua = Fa + break g + } + ya = pa + oa = Fa + na = f[h >> 2] | 0 + } + } + while (0) + if ((Ua << 24) >> 24 > 0) { + sa = 0 + ja = Ua + while (1) { + ra = ((f[g >> 2] | 0) + (sa << 2)) | 0 + ma = f[ea >> 2] | 0 + if ((ma | 0) == (f[fa >> 2] | 0)) { + Ri(ga, ra) + Va = b[k >> 0] | 0 + } else { + f[ma >> 2] = f[ra >> 2] + f[ea >> 2] = ma + 4 + Va = ja + } + sa = (sa + 1) | 0 + if ((sa | 0) >= (((Va << 24) >> 24) | 0)) break + else ja = Va + } + } + ja = f[h >> 2] | 0 + if (ja | 0) { + sa = f[ba >> 2] | 0 + if ((sa | 0) != (ja | 0)) + f[ba >> 2] = sa + (~(((sa + -4 - ja) | 0) >>> 2) << 2) + Oq(ja) + } + ja = f[g >> 2] | 0 + if (ja | 0) { + sa = f[_ >> 2] | 0 + if ((sa | 0) != (ja | 0)) + f[_ >> 2] = sa + (~(((sa + -4 - ja) | 0) >>> 2) << 2) + Oq(ja) + } + break + } + default: { + } + } + ja = (ha + 1) | 0 + sa = f[o >> 2] | 0 + if (ja >>> 0 >= (((f[p >> 2] | 0) - sa) >> 2) >>> 0) { + v = 1 + wa = 169 + break + } + k = f[j >> 2] | 0 + ha = ja + ia = sa + t = f[(k + 4) >> 2] | 0 + l = k + } + if ((wa | 0) == 48) aq(h) + else if ((wa | 0) == 103) aq(Ra) + else if ((wa | 0) == 137) aq(g) + else if ((wa | 0) == 144) aq(h) + else if ((wa | 0) == 169) { + u = c + return v | 0 + } + return 0 + } + function hb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 8) | 0 + h = f[g >> 2] | 0 + f[e >> 2] = 0 + i = (e + 4) | 0 + f[i >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (h) + if (h >>> 0 > 1073741823) aq(e) + else { + j = h << 2 + k = ln(j) | 0 + f[e >> 2] = k + l = (k + (h << 2)) | 0 + f[(e + 8) >> 2] = l + sj(k | 0, 0, j | 0) | 0 + f[i >> 2] = l + m = l + n = k + break + } + else { + m = 0 + n = 0 + } + while (0) + k = (a + 128) | 0 + l = f[k >> 2] | 0 + j = f[l >> 2] | 0 + o = (l + 4) | 0 + if (!j) { + p = (l + 8) | 0 + q = n + r = m + s = h + } else { + h = f[o >> 2] | 0 + if ((h | 0) != (j | 0)) + f[o >> 2] = h + (~(((h + -4 - j) | 0) >>> 2) << 2) + Oq(j) + j = (l + 8) | 0 + f[j >> 2] = 0 + f[o >> 2] = 0 + f[l >> 2] = 0 + p = j + q = f[e >> 2] | 0 + r = f[i >> 2] | 0 + s = f[g >> 2] | 0 + } + f[l >> 2] = q + f[o >> 2] = r + f[p >> 2] = f[(e + 8) >> 2] + f[e >> 2] = 0 + p = (e + 4) | 0 + f[p >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (s) + if (s >>> 0 > 1073741823) aq(e) + else { + r = s << 2 + o = ln(r) | 0 + f[e >> 2] = o + q = (o + (s << 2)) | 0 + f[(e + 8) >> 2] = q + sj(o | 0, 0, r | 0) | 0 + f[p >> 2] = q + t = q + v = o + break + } + else { + t = 0 + v = 0 + } + while (0) + s = (a + 140) | 0 + o = f[s >> 2] | 0 + q = f[o >> 2] | 0 + r = (o + 4) | 0 + if (!q) { + w = (o + 8) | 0 + x = v + y = t + } else { + t = f[r >> 2] | 0 + if ((t | 0) != (q | 0)) + f[r >> 2] = t + (~(((t + -4 - q) | 0) >>> 2) << 2) + Oq(q) + q = (o + 8) | 0 + f[q >> 2] = 0 + f[r >> 2] = 0 + f[o >> 2] = 0 + w = q + x = f[e >> 2] | 0 + y = f[p >> 2] | 0 + } + f[o >> 2] = x + f[r >> 2] = y + f[w >> 2] = f[(e + 8) >> 2] + w = f[b >> 2] | 0 + y = (b + 4) | 0 + r = f[y >> 2] | 0 + x = f[(y + 4) >> 2] | 0 + y = f[c >> 2] | 0 + o = (c + 4) | 0 + p = f[o >> 2] | 0 + q = f[(o + 4) >> 2] | 0 + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + f[(e + 12) >> 2] = 0 + f[(e + 16) >> 2] = 0 + f[(e + 20) >> 2] = 0 + o = (e + 8) | 0 + t = (e + 4) | 0 + v = (e + 16) | 0 + l = (e + 20) | 0 + i = r + Pc(e) + j = f[t >> 2] | 0 + h = ((f[l >> 2] | 0) + (f[v >> 2] | 0)) | 0 + if ((f[o >> 2] | 0) == (j | 0)) z = 0 + else + z = + ((f[(j + ((((h >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((h >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[z >> 2] = w + h = (z + 4) | 0 + f[h >> 2] = r + f[(h + 4) >> 2] = x + f[(z + 12) >> 2] = y + h = (z + 16) | 0 + f[h >> 2] = p + f[(h + 4) >> 2] = q + f[(z + 24) >> 2] = 0 + f[(z + 28) >> 2] = y - w + f[(z + 32) >> 2] = 0 + z = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = z + if (z | 0) { + w = (a + 116) | 0 + y = (a + 48) | 0 + h = (a + 44) | 0 + j = (a + 36) | 0 + m = (a + 40) | 0 + n = (a + 32) | 0 + A = (b + 8) | 0 + B = (c + 8) | 0 + C = (a + 28) | 0 + D = (a + 24) | 0 + E = (a + 16) | 0 + F = (a + 20) | 0 + G = (a + 12) | 0 + H = (a + 88) | 0 + I = (a + 84) | 0 + J = (a + 76) | 0 + K = (a + 80) | 0 + L = (a + 72) | 0 + M = (i + 4) | 0 + N = (i + 24) | 0 + O = (i + 24) | 0 + P = (p + 24) | 0 + Q = z + while (1) { + z = f[v >> 2] | 0 + R = (Q + -1) | 0 + S = (R + z) | 0 + T = f[t >> 2] | 0 + U = f[(T + ((((S >>> 0) / 113) | 0) << 2)) >> 2] | 0 + V = (S >>> 0) % 113 | 0 + S = f[(U + ((V * 36) | 0)) >> 2] | 0 + W = f[(U + ((V * 36) | 0) + 12) >> 2] | 0 + Y = f[(U + ((V * 36) | 0) + 24) >> 2] | 0 + Z = f[(U + ((V * 36) | 0) + 32) >> 2] | 0 + f[l >> 2] = R + R = f[o >> 2] | 0 + V = (R - T) >> 2 + if ( + ((1 - Q - z + ((V | 0) == 0 ? 0 : (((V * 113) | 0) + -1) | 0)) | + 0) >>> + 0 > + 225 + ) { + Oq(f[(R + -4) >> 2] | 0) + f[o >> 2] = (f[o >> 2] | 0) + -4 + } + f[b >> 2] = S + f[c >> 2] = W + R = f[k >> 2] | 0 + V = (((f[g >> 2] | 0) + -1) | 0) == (Y | 0) ? 0 : (Y + 1) | 0 + Y = ((f[s >> 2] | 0) + ((Z * 12) | 0)) | 0 + z = (W - S) | 0 + T = ((f[a >> 2] | 0) - (f[((f[Y >> 2] | 0) + (V << 2)) >> 2] | 0)) | 0 + a: do + if (T) { + if (z >>> 0 < 3) { + U = f[w >> 2] | 0 + f[U >> 2] = V + $ = f[g >> 2] | 0 + if ($ >>> 0 > 1) { + aa = 1 + ba = $ + ca = V + while (1) { + ca = (ca | 0) == ((ba + -1) | 0) ? 0 : (ca + 1) | 0 + f[(U + (aa << 2)) >> 2] = ca + aa = (aa + 1) | 0 + da = f[g >> 2] | 0 + if (aa >>> 0 >= da >>> 0) { + ea = da + break + } else ba = da + } + } else ea = $ + if (!z) { + fa = 99 + break + } else { + ga = 0 + ha = ea + } + while (1) { + ba = + ((f[N >> 2] | 0) + + ((X(f[M >> 2] | 0, (S + ga) | 0) | 0) << 2)) | + 0 + if (!ha) ia = 0 + else { + aa = 0 + do { + ca = f[((f[w >> 2] | 0) + (aa << 2)) >> 2] | 0 + U = + ((f[a >> 2] | 0) - + (f[((f[Y >> 2] | 0) + (ca << 2)) >> 2] | 0)) | + 0 + do + if (U | 0) { + da = f[y >> 2] | 0 + ja = (32 - da) | 0 + ka = (32 - U) | 0 + la = f[(ba + (ca << 2)) >> 2] << ka + if ((U | 0) > (ja | 0)) { + ma = la >>> ka + ka = (U - ja) | 0 + f[y >> 2] = ka + ja = f[h >> 2] | (ma >>> ka) + f[h >> 2] = ja + ka = f[j >> 2] | 0 + if ((ka | 0) == (f[m >> 2] | 0)) Ri(n, h) + else { + f[ka >> 2] = ja + f[j >> 2] = ka + 4 + } + f[h >> 2] = ma << (32 - (f[y >> 2] | 0)) + break + } + ma = f[h >> 2] | (la >>> da) + f[h >> 2] = ma + la = (da + U) | 0 + f[y >> 2] = la + if ((la | 0) != 32) break + la = f[j >> 2] | 0 + if ((la | 0) == (f[m >> 2] | 0)) Ri(n, h) + else { + f[la >> 2] = ma + f[j >> 2] = la + 4 + } + f[h >> 2] = 0 + f[y >> 2] = 0 + } + while (0) + aa = (aa + 1) | 0 + U = f[g >> 2] | 0 + } while (aa >>> 0 < U >>> 0) + ia = U + } + ga = (ga + 1) | 0 + if (ga >>> 0 >= z >>> 0) { + fa = 99 + break a + } else ha = ia + } + } + $ = (Z + 1) | 0 + Ig( + (R + (($ * 12) | 0)) | 0, + f[(R + ((Z * 12) | 0)) >> 2] | 0, + f[(R + ((Z * 12) | 0) + 4) >> 2] | 0, + ) + aa = + ((f[((f[k >> 2] | 0) + (($ * 12) | 0)) >> 2] | 0) + (V << 2)) | + 0 + ba = ((f[aa >> 2] | 0) + (1 << (T + -1))) | 0 + f[aa >> 2] = ba + aa = f[A >> 2] | 0 + U = f[B >> 2] | 0 + b: do + if ((W | 0) == (S | 0)) na = S + else { + ca = f[O >> 2] | 0 + if (!aa) { + if ((f[(ca + (V << 2)) >> 2] | 0) >>> 0 < ba >>> 0) { + na = W + break + } else { + oa = W + pa = S + } + while (1) { + la = oa + do { + la = (la + -1) | 0 + if ((pa | 0) == (la | 0)) { + na = pa + break b + } + ma = + ((f[P >> 2] | 0) + ((X(la, U) | 0) << 2) + (V << 2)) | + 0 + } while ((f[ma >> 2] | 0) >>> 0 >= ba >>> 0) + pa = (pa + 1) | 0 + if ((pa | 0) == (la | 0)) { + na = la + break b + } else oa = la + } + } else { + qa = W + ra = S + } + while (1) { + ma = ra + while (1) { + sa = (ca + ((X(ma, aa) | 0) << 2)) | 0 + if ((f[(sa + (V << 2)) >> 2] | 0) >>> 0 >= ba >>> 0) { + ta = qa + break + } + da = (ma + 1) | 0 + if ((da | 0) == (qa | 0)) { + na = qa + break b + } else ma = da + } + while (1) { + ta = (ta + -1) | 0 + if ((ma | 0) == (ta | 0)) { + na = ma + break b + } + ua = ((f[P >> 2] | 0) + ((X(ta, U) | 0) << 2)) | 0 + if ((f[(ua + (V << 2)) >> 2] | 0) >>> 0 < ba >>> 0) { + va = 0 + break + } + } + do { + la = (sa + (va << 2)) | 0 + da = (ua + (va << 2)) | 0 + ka = f[la >> 2] | 0 + f[la >> 2] = f[da >> 2] + f[da >> 2] = ka + va = (va + 1) | 0 + } while ((va | 0) != (aa | 0)) + ra = (ma + 1) | 0 + if ((ra | 0) == (ta | 0)) { + na = ta + break + } else qa = ta + } + } + while (0) + ba = (_(z | 0) | 0) ^ 31 + U = (na - S) | 0 + ca = (W - na) | 0 + ka = U >>> 0 < ca >>> 0 + if ((U | 0) != (ca | 0)) { + da = f[H >> 2] | 0 + if (ka) f[I >> 2] = f[I >> 2] | (1 << (31 - da)) + la = (da + 1) | 0 + f[H >> 2] = la + if ((la | 0) == 32) { + la = f[J >> 2] | 0 + if ((la | 0) == (f[K >> 2] | 0)) Ri(L, I) + else { + f[la >> 2] = f[I >> 2] + f[J >> 2] = la + 4 + } + f[H >> 2] = 0 + f[I >> 2] = 0 + } + } + la = z >>> 1 + do + if (ka) { + da = f[C >> 2] | 0 + ja = (32 - da) | 0 + wa = (32 - ba) | 0 + xa = (la - U) << wa + if ((ba | 0) > (ja | 0)) { + ya = xa >>> wa + wa = (ba - ja) | 0 + f[C >> 2] = wa + ja = f[D >> 2] | (ya >>> wa) + f[D >> 2] = ja + wa = f[E >> 2] | 0 + if ((wa | 0) == (f[F >> 2] | 0)) Ri(G, D) + else { + f[wa >> 2] = ja + f[E >> 2] = wa + 4 + } + f[D >> 2] = ya << (32 - (f[C >> 2] | 0)) + break + } + ya = f[D >> 2] | (xa >>> da) + f[D >> 2] = ya + xa = (da + ba) | 0 + f[C >> 2] = xa + if ((xa | 0) == 32) { + xa = f[E >> 2] | 0 + if ((xa | 0) == (f[F >> 2] | 0)) Ri(G, D) + else { + f[xa >> 2] = ya + f[E >> 2] = xa + 4 + } + f[D >> 2] = 0 + f[C >> 2] = 0 + } + } else { + xa = f[C >> 2] | 0 + ya = (32 - xa) | 0 + da = (32 - ba) | 0 + wa = (la - ca) << da + if ((ba | 0) > (ya | 0)) { + ja = wa >>> da + da = (ba - ya) | 0 + f[C >> 2] = da + ya = f[D >> 2] | (ja >>> da) + f[D >> 2] = ya + da = f[E >> 2] | 0 + if ((da | 0) == (f[F >> 2] | 0)) Ri(G, D) + else { + f[da >> 2] = ya + f[E >> 2] = da + 4 + } + f[D >> 2] = ja << (32 - (f[C >> 2] | 0)) + break + } + ja = f[D >> 2] | (wa >>> xa) + f[D >> 2] = ja + wa = (xa + ba) | 0 + f[C >> 2] = wa + if ((wa | 0) == 32) { + wa = f[E >> 2] | 0 + if ((wa | 0) == (f[F >> 2] | 0)) Ri(G, D) + else { + f[wa >> 2] = ja + f[E >> 2] = wa + 4 + } + f[D >> 2] = 0 + f[C >> 2] = 0 + } + } + while (0) + ba = f[s >> 2] | 0 + la = f[(ba + ((Z * 12) | 0)) >> 2] | 0 + ka = (la + (V << 2)) | 0 + f[ka >> 2] = (f[ka >> 2] | 0) + 1 + Ig( + (ba + (($ * 12) | 0)) | 0, + la, + f[(ba + ((Z * 12) | 0) + 4) >> 2] | 0, + ) + if ((na | 0) != (S | 0)) { + ba = f[o >> 2] | 0 + la = f[t >> 2] | 0 + ka = (ba - la) >> 2 + wa = f[v >> 2] | 0 + ja = f[l >> 2] | 0 + if ( + (((ka | 0) == 0 ? 0 : (((ka * 113) | 0) + -1) | 0) | 0) == + ((ja + wa) | 0) + ) { + Pc(e) + za = f[v >> 2] | 0 + Aa = f[l >> 2] | 0 + Ba = f[o >> 2] | 0 + Ca = f[t >> 2] | 0 + } else { + za = wa + Aa = ja + Ba = ba + Ca = la + } + la = (Aa + za) | 0 + if ((Ba | 0) == (Ca | 0)) Da = 0 + else + Da = + ((f[(Ca + ((((la >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((la >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[Da >> 2] = S + la = (Da + 4) | 0 + f[la >> 2] = r + f[(la + 4) >> 2] = x + f[(Da + 12) >> 2] = na + f[(Da + 16) >> 2] = i + f[(Da + 20) >> 2] = aa + f[(Da + 24) >> 2] = V + f[(Da + 28) >> 2] = U + f[(Da + 32) >> 2] = Z + f[l >> 2] = (f[l >> 2] | 0) + 1 + } + if ((W | 0) != (na | 0)) { + la = f[o >> 2] | 0 + ba = f[t >> 2] | 0 + ja = (la - ba) >> 2 + wa = f[v >> 2] | 0 + ka = f[l >> 2] | 0 + if ( + (((ja | 0) == 0 ? 0 : (((ja * 113) | 0) + -1) | 0) | 0) == + ((ka + wa) | 0) + ) { + Pc(e) + Ea = f[v >> 2] | 0 + Fa = f[l >> 2] | 0 + Ga = f[o >> 2] | 0 + Ha = f[t >> 2] | 0 + } else { + Ea = wa + Fa = ka + Ga = la + Ha = ba + } + ba = (Fa + Ea) | 0 + if ((Ga | 0) == (Ha | 0)) Ia = 0 + else + Ia = + ((f[(Ha + ((((ba >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((ba >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[Ia >> 2] = na + f[(Ia + 4) >> 2] = i + f[(Ia + 8) >> 2] = aa + f[(Ia + 12) >> 2] = W + ba = (Ia + 16) | 0 + f[ba >> 2] = p + f[(ba + 4) >> 2] = q + f[(Ia + 24) >> 2] = V + f[(Ia + 28) >> 2] = ca + f[(Ia + 32) >> 2] = $ + ba = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = ba + Ja = ba + } else fa = 99 + } else fa = 99 + while (0) + if ((fa | 0) == 99) { + fa = 0 + Ja = f[l >> 2] | 0 + } + if (!Ja) break + else Q = Ja + } + } + Ja = f[t >> 2] | 0 + Q = f[v >> 2] | 0 + Ia = (Ja + ((((Q >>> 0) / 113) | 0) << 2)) | 0 + q = f[o >> 2] | 0 + p = q + i = Ja + if ((q | 0) == (Ja | 0)) { + Ka = 0 + La = 0 + } else { + na = ((f[Ia >> 2] | 0) + ((((Q >>> 0) % 113 | 0) * 36) | 0)) | 0 + Ka = na + La = na + } + na = Ia + Ia = La + c: while (1) { + La = Ia + do { + Q = La + if ((Ka | 0) == (Q | 0)) break c + La = (Q + 36) | 0 + } while (((La - (f[na >> 2] | 0)) | 0) != 4068) + La = (na + 4) | 0 + na = La + Ia = f[La >> 2] | 0 + } + f[l >> 2] = 0 + l = (p - i) >> 2 + if (l >>> 0 > 2) { + i = Ja + do { + Oq(f[i >> 2] | 0) + i = ((f[t >> 2] | 0) + 4) | 0 + f[t >> 2] = i + Ma = f[o >> 2] | 0 + Na = (Ma - i) >> 2 + } while (Na >>> 0 > 2) + Oa = Na + Pa = i + Qa = Ma + } else { + Oa = l + Pa = Ja + Qa = q + } + switch (Oa | 0) { + case 1: { + Ra = 56 + fa = 113 + break + } + case 2: { + Ra = 113 + fa = 113 + break + } + default: { + } + } + if ((fa | 0) == 113) f[v >> 2] = Ra + if ((Pa | 0) != (Qa | 0)) { + Ra = Pa + do { + Oq(f[Ra >> 2] | 0) + Ra = (Ra + 4) | 0 + } while ((Ra | 0) != (Qa | 0)) + Qa = f[t >> 2] | 0 + t = f[o >> 2] | 0 + if ((t | 0) != (Qa | 0)) + f[o >> 2] = t + (~(((t + -4 - Qa) | 0) >>> 2) << 2) + } + Qa = f[e >> 2] | 0 + if (!Qa) { + u = d + return + } + Oq(Qa) + u = d + return + } + function ib(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0 + d = u + u = (u + 48) | 0 + e = (d + 36) | 0 + g = (d + 24) | 0 + h = d + i = (a + 8) | 0 + j = f[i >> 2] | 0 + f[e >> 2] = 0 + k = (e + 4) | 0 + f[k >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (j) + if (j >>> 0 > 1073741823) aq(e) + else { + l = j << 2 + m = ln(l) | 0 + f[e >> 2] = m + n = (m + (j << 2)) | 0 + f[(e + 8) >> 2] = n + sj(m | 0, 0, l | 0) | 0 + f[k >> 2] = n + o = n + p = m + break + } + else { + o = 0 + p = 0 + } + while (0) + m = (a + 1164) | 0 + n = f[m >> 2] | 0 + l = f[n >> 2] | 0 + q = (n + 4) | 0 + if (!l) { + r = (n + 8) | 0 + s = p + t = o + v = j + } else { + j = f[q >> 2] | 0 + if ((j | 0) != (l | 0)) + f[q >> 2] = j + (~(((j + -4 - l) | 0) >>> 2) << 2) + Oq(l) + l = (n + 8) | 0 + f[l >> 2] = 0 + f[q >> 2] = 0 + f[n >> 2] = 0 + r = l + s = f[e >> 2] | 0 + t = f[k >> 2] | 0 + v = f[i >> 2] | 0 + } + f[n >> 2] = s + f[q >> 2] = t + f[r >> 2] = f[(e + 8) >> 2] + f[e >> 2] = 0 + r = (e + 4) | 0 + f[r >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (v) + if (v >>> 0 > 1073741823) aq(e) + else { + t = v << 2 + q = ln(t) | 0 + f[e >> 2] = q + s = (q + (v << 2)) | 0 + f[(e + 8) >> 2] = s + sj(q | 0, 0, t | 0) | 0 + f[r >> 2] = s + w = s + x = q + break + } + else { + w = 0 + x = 0 + } + while (0) + v = (a + 1176) | 0 + q = f[v >> 2] | 0 + s = f[q >> 2] | 0 + t = (q + 4) | 0 + if (!s) { + y = (q + 8) | 0 + z = x + A = w + } else { + w = f[t >> 2] | 0 + if ((w | 0) != (s | 0)) + f[t >> 2] = w + (~(((w + -4 - s) | 0) >>> 2) << 2) + Oq(s) + s = (q + 8) | 0 + f[s >> 2] = 0 + f[t >> 2] = 0 + f[q >> 2] = 0 + y = s + z = f[e >> 2] | 0 + A = f[r >> 2] | 0 + } + f[q >> 2] = z + f[t >> 2] = A + f[y >> 2] = f[(e + 8) >> 2] + y = f[b >> 2] | 0 + A = (b + 4) | 0 + t = f[A >> 2] | 0 + z = f[(A + 4) >> 2] | 0 + A = f[c >> 2] | 0 + q = (c + 4) | 0 + r = f[q >> 2] | 0 + s = f[(q + 4) >> 2] | 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + f[(h + 12) >> 2] = 0 + f[(h + 16) >> 2] = 0 + f[(h + 20) >> 2] = 0 + q = (h + 8) | 0 + w = (h + 4) | 0 + x = (h + 16) | 0 + n = (h + 20) | 0 + k = t + Pc(h) + l = f[w >> 2] | 0 + j = ((f[n >> 2] | 0) + (f[x >> 2] | 0)) | 0 + if ((f[q >> 2] | 0) == (l | 0)) B = 0 + else + B = + ((f[(l + ((((j >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((j >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[B >> 2] = y + j = (B + 4) | 0 + f[j >> 2] = t + f[(j + 4) >> 2] = z + f[(B + 12) >> 2] = A + j = (B + 16) | 0 + f[j >> 2] = r + f[(j + 4) >> 2] = s + f[(B + 24) >> 2] = 0 + f[(B + 28) >> 2] = A - y + f[(B + 32) >> 2] = 0 + B = ((f[n >> 2] | 0) + 1) | 0 + f[n >> 2] = B + if (B | 0) { + y = (a + 1152) | 0 + A = (a + 1084) | 0 + j = (a + 1080) | 0 + l = (a + 1072) | 0 + o = (a + 1076) | 0 + p = (a + 1068) | 0 + C = (b + 8) | 0 + D = (c + 8) | 0 + E = (a + 1124) | 0 + F = (a + 1120) | 0 + G = (a + 1112) | 0 + H = (a + 1116) | 0 + I = (a + 1108) | 0 + J = (k + 4) | 0 + K = (k + 24) | 0 + L = (k + 24) | 0 + M = (r + 24) | 0 + N = B + while (1) { + B = f[x >> 2] | 0 + O = (N + -1) | 0 + P = (O + B) | 0 + Q = f[w >> 2] | 0 + R = f[(Q + ((((P >>> 0) / 113) | 0) << 2)) >> 2] | 0 + S = (P >>> 0) % 113 | 0 + P = f[(R + ((S * 36) | 0)) >> 2] | 0 + T = f[(R + ((S * 36) | 0) + 12) >> 2] | 0 + U = f[(R + ((S * 36) | 0) + 24) >> 2] | 0 + V = f[(R + ((S * 36) | 0) + 32) >> 2] | 0 + f[n >> 2] = O + O = f[q >> 2] | 0 + S = (O - Q) >> 2 + if ( + ((1 - N - B + ((S | 0) == 0 ? 0 : (((S * 113) | 0) + -1) | 0)) | + 0) >>> + 0 > + 225 + ) { + Oq(f[(O + -4) >> 2] | 0) + f[q >> 2] = (f[q >> 2] | 0) + -4 + } + f[b >> 2] = P + f[c >> 2] = T + O = f[m >> 2] | 0 + S = (O + ((V * 12) | 0)) | 0 + B = ((f[v >> 2] | 0) + ((V * 12) | 0)) | 0 + f[g >> 2] = f[b >> 2] + f[(g + 4) >> 2] = f[(b + 4) >> 2] + f[(g + 8) >> 2] = f[(b + 8) >> 2] + f[e >> 2] = f[c >> 2] + f[(e + 4) >> 2] = f[(c + 4) >> 2] + f[(e + 8) >> 2] = f[(c + 8) >> 2] + Q = Rd(a, g, e, S, B, U) | 0 + U = (T - P) | 0 + R = ((f[a >> 2] | 0) - (f[((f[B >> 2] | 0) + (Q << 2)) >> 2] | 0)) | 0 + a: do + if (R) { + if (U >>> 0 < 3) { + W = f[y >> 2] | 0 + f[W >> 2] = Q + Y = f[i >> 2] | 0 + if (Y >>> 0 > 1) { + Z = 1 + $ = Y + aa = Q + while (1) { + aa = (aa | 0) == (($ + -1) | 0) ? 0 : (aa + 1) | 0 + f[(W + (Z << 2)) >> 2] = aa + Z = (Z + 1) | 0 + ba = f[i >> 2] | 0 + if (Z >>> 0 >= ba >>> 0) { + ca = ba + break + } else $ = ba + } + } else ca = Y + if (!U) { + da = 87 + break + } else { + ea = 0 + fa = ca + } + while (1) { + $ = + ((f[K >> 2] | 0) + + ((X(f[J >> 2] | 0, (P + ea) | 0) | 0) << 2)) | + 0 + if (!fa) ga = 0 + else { + Z = 0 + do { + aa = f[((f[y >> 2] | 0) + (Z << 2)) >> 2] | 0 + W = + ((f[a >> 2] | 0) - + (f[((f[B >> 2] | 0) + (aa << 2)) >> 2] | 0)) | + 0 + do + if (W | 0) { + ba = f[A >> 2] | 0 + ha = (32 - ba) | 0 + ia = (32 - W) | 0 + ja = f[($ + (aa << 2)) >> 2] << ia + if ((W | 0) > (ha | 0)) { + ka = ja >>> ia + ia = (W - ha) | 0 + f[A >> 2] = ia + ha = f[j >> 2] | (ka >>> ia) + f[j >> 2] = ha + ia = f[l >> 2] | 0 + if ((ia | 0) == (f[o >> 2] | 0)) Ri(p, j) + else { + f[ia >> 2] = ha + f[l >> 2] = ia + 4 + } + f[j >> 2] = ka << (32 - (f[A >> 2] | 0)) + break + } + ka = f[j >> 2] | (ja >>> ba) + f[j >> 2] = ka + ja = (ba + W) | 0 + f[A >> 2] = ja + if ((ja | 0) != 32) break + ja = f[l >> 2] | 0 + if ((ja | 0) == (f[o >> 2] | 0)) Ri(p, j) + else { + f[ja >> 2] = ka + f[l >> 2] = ja + 4 + } + f[j >> 2] = 0 + f[A >> 2] = 0 + } + while (0) + Z = (Z + 1) | 0 + W = f[i >> 2] | 0 + } while (Z >>> 0 < W >>> 0) + ga = W + } + ea = (ea + 1) | 0 + if (ea >>> 0 >= U >>> 0) { + da = 87 + break a + } else fa = ga + } + } + Y = (V + 1) | 0 + Z = f[m >> 2] | 0 + $ = (Z + ((Y * 12) | 0)) | 0 + if (($ | 0) == (S | 0)) la = Z + else { + Ig($, f[S >> 2] | 0, f[(O + ((V * 12) | 0) + 4) >> 2] | 0) + la = f[m >> 2] | 0 + } + $ = ((f[(la + ((Y * 12) | 0)) >> 2] | 0) + (Q << 2)) | 0 + Z = ((f[$ >> 2] | 0) + (1 << (R + -1))) | 0 + f[$ >> 2] = Z + $ = f[C >> 2] | 0 + W = f[D >> 2] | 0 + b: do + if ((T | 0) == (P | 0)) ma = P + else { + aa = f[L >> 2] | 0 + if (!$) { + if ((f[(aa + (Q << 2)) >> 2] | 0) >>> 0 < Z >>> 0) { + ma = T + break + } else { + na = T + oa = P + } + while (1) { + ja = na + do { + ja = (ja + -1) | 0 + if ((oa | 0) == (ja | 0)) { + ma = oa + break b + } + ka = + ((f[M >> 2] | 0) + ((X(ja, W) | 0) << 2) + (Q << 2)) | + 0 + } while ((f[ka >> 2] | 0) >>> 0 >= Z >>> 0) + oa = (oa + 1) | 0 + if ((oa | 0) == (ja | 0)) { + ma = ja + break b + } else na = ja + } + } else { + pa = T + qa = P + } + while (1) { + ka = qa + while (1) { + ra = (aa + ((X(ka, $) | 0) << 2)) | 0 + if ((f[(ra + (Q << 2)) >> 2] | 0) >>> 0 >= Z >>> 0) { + sa = pa + break + } + ba = (ka + 1) | 0 + if ((ba | 0) == (pa | 0)) { + ma = pa + break b + } else ka = ba + } + while (1) { + sa = (sa + -1) | 0 + if ((ka | 0) == (sa | 0)) { + ma = ka + break b + } + ta = ((f[M >> 2] | 0) + ((X(sa, W) | 0) << 2)) | 0 + if ((f[(ta + (Q << 2)) >> 2] | 0) >>> 0 < Z >>> 0) { + ua = 0 + break + } + } + do { + ja = (ra + (ua << 2)) | 0 + ba = (ta + (ua << 2)) | 0 + ia = f[ja >> 2] | 0 + f[ja >> 2] = f[ba >> 2] + f[ba >> 2] = ia + ua = (ua + 1) | 0 + } while ((ua | 0) != ($ | 0)) + qa = (ka + 1) | 0 + if ((qa | 0) == (sa | 0)) { + ma = sa + break + } else pa = sa + } + } + while (0) + Z = (_(U | 0) | 0) ^ 31 + W = (ma - P) | 0 + aa = (T - ma) | 0 + ia = W >>> 0 < aa >>> 0 + if ((W | 0) != (aa | 0)) { + ba = f[E >> 2] | 0 + if (ia) f[F >> 2] = f[F >> 2] | (1 << (31 - ba)) + ja = (ba + 1) | 0 + f[E >> 2] = ja + if ((ja | 0) == 32) { + ja = f[G >> 2] | 0 + if ((ja | 0) == (f[H >> 2] | 0)) Ri(I, F) + else { + f[ja >> 2] = f[F >> 2] + f[G >> 2] = ja + 4 + } + f[E >> 2] = 0 + f[F >> 2] = 0 + } + } + ja = U >>> 1 + if (ia) { + ia = (ja - W) | 0 + if (Z | 0) { + ba = 0 + ha = 1 << (Z + -1) + while (1) { + fj((a + 12 + (ba << 5)) | 0, ((ha & ia) | 0) != 0) + ba = (ba + 1) | 0 + if ((ba | 0) == (Z | 0)) break + else ha = ha >>> 1 + } + } + } else { + ha = (ja - aa) | 0 + if (Z | 0) { + ba = 0 + ia = 1 << (Z + -1) + while (1) { + fj((a + 12 + (ba << 5)) | 0, ((ia & ha) | 0) != 0) + ba = (ba + 1) | 0 + if ((ba | 0) == (Z | 0)) break + else ia = ia >>> 1 + } + } + } + ia = f[v >> 2] | 0 + Z = f[(ia + ((V * 12) | 0)) >> 2] | 0 + ba = (Z + (Q << 2)) | 0 + f[ba >> 2] = (f[ba >> 2] | 0) + 1 + Ig( + (ia + ((Y * 12) | 0)) | 0, + Z, + f[(ia + ((V * 12) | 0) + 4) >> 2] | 0, + ) + if ((ma | 0) != (P | 0)) { + ia = f[q >> 2] | 0 + Z = f[w >> 2] | 0 + ba = (ia - Z) >> 2 + ha = f[x >> 2] | 0 + ja = f[n >> 2] | 0 + if ( + (((ba | 0) == 0 ? 0 : (((ba * 113) | 0) + -1) | 0) | 0) == + ((ja + ha) | 0) + ) { + Pc(h) + va = f[x >> 2] | 0 + wa = f[n >> 2] | 0 + xa = f[q >> 2] | 0 + ya = f[w >> 2] | 0 + } else { + va = ha + wa = ja + xa = ia + ya = Z + } + Z = (wa + va) | 0 + if ((xa | 0) == (ya | 0)) za = 0 + else + za = + ((f[(ya + ((((Z >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((Z >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[za >> 2] = P + Z = (za + 4) | 0 + f[Z >> 2] = t + f[(Z + 4) >> 2] = z + f[(za + 12) >> 2] = ma + f[(za + 16) >> 2] = k + f[(za + 20) >> 2] = $ + f[(za + 24) >> 2] = Q + f[(za + 28) >> 2] = W + f[(za + 32) >> 2] = V + f[n >> 2] = (f[n >> 2] | 0) + 1 + } + if ((T | 0) != (ma | 0)) { + Z = f[q >> 2] | 0 + ia = f[w >> 2] | 0 + ja = (Z - ia) >> 2 + ha = f[x >> 2] | 0 + ba = f[n >> 2] | 0 + if ( + (((ja | 0) == 0 ? 0 : (((ja * 113) | 0) + -1) | 0) | 0) == + ((ba + ha) | 0) + ) { + Pc(h) + Aa = f[x >> 2] | 0 + Ba = f[n >> 2] | 0 + Ca = f[q >> 2] | 0 + Da = f[w >> 2] | 0 + } else { + Aa = ha + Ba = ba + Ca = Z + Da = ia + } + ia = (Ba + Aa) | 0 + if ((Ca | 0) == (Da | 0)) Ea = 0 + else + Ea = + ((f[(Da + ((((ia >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((ia >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[Ea >> 2] = ma + f[(Ea + 4) >> 2] = k + f[(Ea + 8) >> 2] = $ + f[(Ea + 12) >> 2] = T + ia = (Ea + 16) | 0 + f[ia >> 2] = r + f[(ia + 4) >> 2] = s + f[(Ea + 24) >> 2] = Q + f[(Ea + 28) >> 2] = aa + f[(Ea + 32) >> 2] = Y + ia = ((f[n >> 2] | 0) + 1) | 0 + f[n >> 2] = ia + Fa = ia + } else da = 87 + } else da = 87 + while (0) + if ((da | 0) == 87) { + da = 0 + Fa = f[n >> 2] | 0 + } + if (!Fa) break + else N = Fa + } + } + Fa = f[w >> 2] | 0 + N = f[x >> 2] | 0 + Ea = (Fa + ((((N >>> 0) / 113) | 0) << 2)) | 0 + s = f[q >> 2] | 0 + r = s + k = Fa + if ((s | 0) == (Fa | 0)) { + Ga = 0 + Ha = 0 + } else { + ma = ((f[Ea >> 2] | 0) + ((((N >>> 0) % 113 | 0) * 36) | 0)) | 0 + Ga = ma + Ha = ma + } + ma = Ea + Ea = Ha + c: while (1) { + Ha = Ea + do { + N = Ha + if ((Ga | 0) == (N | 0)) break c + Ha = (N + 36) | 0 + } while (((Ha - (f[ma >> 2] | 0)) | 0) != 4068) + Ha = (ma + 4) | 0 + ma = Ha + Ea = f[Ha >> 2] | 0 + } + f[n >> 2] = 0 + n = (r - k) >> 2 + if (n >>> 0 > 2) { + k = Fa + do { + Oq(f[k >> 2] | 0) + k = ((f[w >> 2] | 0) + 4) | 0 + f[w >> 2] = k + Ia = f[q >> 2] | 0 + Ja = (Ia - k) >> 2 + } while (Ja >>> 0 > 2) + Ka = Ja + La = k + Ma = Ia + } else { + Ka = n + La = Fa + Ma = s + } + switch (Ka | 0) { + case 1: { + Na = 56 + da = 101 + break + } + case 2: { + Na = 113 + da = 101 + break + } + default: { + } + } + if ((da | 0) == 101) f[x >> 2] = Na + if ((La | 0) != (Ma | 0)) { + Na = La + do { + Oq(f[Na >> 2] | 0) + Na = (Na + 4) | 0 + } while ((Na | 0) != (Ma | 0)) + Ma = f[w >> 2] | 0 + w = f[q >> 2] | 0 + if ((w | 0) != (Ma | 0)) + f[q >> 2] = w + (~(((w + -4 - Ma) | 0) >>> 2) << 2) + } + Ma = f[h >> 2] | 0 + if (!Ma) { + u = d + return + } + Oq(Ma) + u = d + return + } + function jb(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0 + d = u + u = (u + 1424) | 0 + e = (d + 1408) | 0 + g = (d + 1396) | 0 + h = (d + 1420) | 0 + i = (d + 1200) | 0 + j = (d + 12) | 0 + k = d + l = (d + 1384) | 0 + m = (d + 1372) | 0 + n = (d + 1360) | 0 + o = (d + 1348) | 0 + p = (d + 1336) | 0 + q = (d + 1324) | 0 + r = (d + 1312) | 0 + s = (d + 1300) | 0 + t = (d + 1288) | 0 + v = (d + 1276) | 0 + w = (d + 1264) | 0 + x = (d + 1252) | 0 + y = (d + 1240) | 0 + z = (d + 1228) | 0 + A = (a + 28) | 0 + B = (10 - (mi(f[((f[A >> 2] | 0) + 48) >> 2] | 0) | 0)) | 0 + C = (B | 0) < 6 ? B : 6 + b[h >> 0] = C + if (((C & 255) | 0) == 6 ? (f[(a + 72) >> 2] | 0) > 15 : 0) b[h >> 0] = 5 + C = (c + 16) | 0 + B = f[(C + 4) >> 2] | 0 + if (!(((B | 0) > 0) | (((B | 0) == 0) & ((f[C >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, (h + 1) | 0) | 0 + } + C = f[A >> 2] | 0 + B = f[((f[(C + 4) >> 2] | 0) + 80) >> 2] | 0 + D = (a + 72) | 0 + E = f[D >> 2] | 0 + f[i >> 2] = B + F = (i + 4) | 0 + f[F >> 2] = E + f[(i + 8) >> 2] = E << 2 + G = (i + 12) | 0 + H = X(E, B) | 0 + f[G >> 2] = 0 + J = (i + 16) | 0 + f[J >> 2] = 0 + f[(i + 20) >> 2] = 0 + do + if (H) + if (H >>> 0 > 1073741823) aq(G) + else { + K = H << 2 + L = ln(K) | 0 + f[G >> 2] = L + M = (L + (H << 2)) | 0 + f[(i + 20) >> 2] = M + sj(L | 0, 0, K | 0) | 0 + f[J >> 2] = M + N = L + break + } + else N = 0 + while (0) + H = (i + 24) | 0 + f[H >> 2] = N + G = (a + 4) | 0 + L = (a + 8) | 0 + M = f[G >> 2] | 0 + a: do + if ((f[L >> 2] | 0) != (M | 0)) { + K = (j + 4) | 0 + O = (j + 8) | 0 + P = (j + 8) | 0 + Q = (B | 0) == 0 + R = (j + 4) | 0 + S = (j + 8) | 0 + T = (k + 4) | 0 + U = (k + 8) | 0 + V = (k + 8) | 0 + W = (a + 48) | 0 + Y = (j + 8) | 0 + Z = (a + 60) | 0 + $ = 0 + aa = 0 + ba = 0 + ca = 0 + da = M + ea = C + b: while (1) { + fa = + f[ + ((f[((f[(ea + 4) >> 2] | 0) + 8) >> 2] | 0) + + (f[(da + (ca << 2)) >> 2] << 2)) >> + 2 + ] | 0 + switch (f[(fa + 28) >> 2] | 0) { + case 1: + case 3: + case 5: + case 2: + case 4: + case 6: { + ga = fa + ha = aa + break + } + case 9: { + ga = f[((f[Z >> 2] | 0) + (aa << 2)) >> 2] | 0 + ha = (aa + 1) | 0 + break + } + default: { + ia = 0 + break a + } + } + if (!ga) { + ia = 0 + break a + } + c: do + switch (f[(ga + 28) >> 2] | 0) { + case 6: { + if (Q) { + ja = ba + ka = (ga + 24) | 0 + break c + } + fa = (ga + 84) | 0 + la = (ga + 68) | 0 + ma = (ga + 48) | 0 + na = (ga + 40) | 0 + oa = (ga + 24) | 0 + pa = 0 + do { + if (!(b[fa >> 0] | 0)) + qa = f[((f[la >> 2] | 0) + (pa << 2)) >> 2] | 0 + else qa = pa + ra = ma + sa = f[ra >> 2] | 0 + ta = f[(ra + 4) >> 2] | 0 + ra = na + ua = un(f[ra >> 2] | 0, f[(ra + 4) >> 2] | 0, qa | 0, 0) | 0 + ra = Vn(ua | 0, I | 0, sa | 0, ta | 0) | 0 + kh( + ((f[H >> 2] | 0) + + ((X(f[F >> 2] | 0, pa) | 0) << 2) + + ($ << 2)) | + 0, + ((f[f[ga >> 2] >> 2] | 0) + ra) | 0, + (b[oa >> 0] << 2) | 0, + ) | 0 + pa = (pa + 1) | 0 + } while ((pa | 0) != (B | 0)) + ja = ba + ka = oa + break + } + case 1: + case 3: + case 5: { + oa = (ga + 24) | 0 + pa = b[oa >> 0] | 0 + na = (pa << 24) >> 24 + f[j >> 2] = 0 + f[R >> 2] = 0 + f[S >> 2] = 0 + if (!((pa << 24) >> 24)) va = 0 + else { + if ((pa << 24) >> 24 < 0) { + wa = 24 + break b + } + pa = na << 2 + ma = ln(pa) | 0 + f[j >> 2] = ma + la = (ma + (na << 2)) | 0 + f[Y >> 2] = la + sj(ma | 0, 0, pa | 0) | 0 + f[R >> 2] = la + va = b[oa >> 0] | 0 + } + la = (va << 24) >> 24 + f[k >> 2] = 0 + f[T >> 2] = 0 + f[U >> 2] = 0 + if (!((va << 24) >> 24)) { + xa = 0 + ya = 0 + } else { + if ((va << 24) >> 24 < 0) { + wa = 30 + break b + } + pa = la << 2 + ma = ln(pa) | 0 + f[k >> 2] = ma + na = (ma + (la << 2)) | 0 + f[V >> 2] = na + sj(ma | 0, 0, pa | 0) | 0 + f[T >> 2] = na + xa = ma + ya = ma + } + if (Q) { + za = ya + Aa = xa + } else { + ma = (ga + 84) | 0 + na = (ga + 68) | 0 + pa = 0 + do { + if (!(b[ma >> 0] | 0)) + Ba = f[((f[na >> 2] | 0) + (pa << 2)) >> 2] | 0 + else Ba = pa + la = f[j >> 2] | 0 + f[g >> 2] = Ba + fa = b[oa >> 0] | 0 + f[e >> 2] = f[g >> 2] + Qb(ga, e, fa, la) | 0 + la = b[oa >> 0] | 0 + fa = (la << 24) >> 24 + if ((la << 24) >> 24 > 0) { + la = f[j >> 2] | 0 + ra = f[W >> 2] | 0 + ta = f[k >> 2] | 0 + sa = 0 + do { + f[(ta + (sa << 2)) >> 2] = + (f[(la + (sa << 2)) >> 2] | 0) - + (f[(ra + ((sa + ba) << 2)) >> 2] | 0) + sa = (sa + 1) | 0 + } while ((sa | 0) < (fa | 0)) + Ca = ta + } else Ca = f[k >> 2] | 0 + kh( + ((f[H >> 2] | 0) + + ((X(f[F >> 2] | 0, pa) | 0) << 2) + + ($ << 2)) | + 0, + Ca | 0, + (fa << 2) | 0, + ) | 0 + pa = (pa + 1) | 0 + } while (pa >>> 0 < B >>> 0) + pa = f[k >> 2] | 0 + za = pa + Aa = pa + } + pa = (ba + (b[oa >> 0] | 0)) | 0 + if (za | 0) { + na = f[T >> 2] | 0 + if ((na | 0) != (za | 0)) + f[T >> 2] = na + (~(((na + -4 - za) | 0) >>> 2) << 2) + Oq(Aa) + } + na = f[j >> 2] | 0 + if (na | 0) { + ma = f[R >> 2] | 0 + if ((ma | 0) != (na | 0)) + f[R >> 2] = ma + (~(((ma + -4 - na) | 0) >>> 2) << 2) + Oq(na) + } + ja = pa + ka = oa + break + } + default: { + pa = (ga + 24) | 0 + na = b[pa >> 0] | 0 + ma = (na << 24) >> 24 + f[j >> 2] = 0 + f[K >> 2] = 0 + f[O >> 2] = 0 + if (!((na << 24) >> 24)) { + Da = 0 + Ea = 0 + } else { + if ((na << 24) >> 24 < 0) { + wa = 53 + break b + } + na = ma << 2 + ta = ln(na) | 0 + f[j >> 2] = ta + sa = (ta + (ma << 2)) | 0 + f[P >> 2] = sa + sj(ta | 0, 0, na | 0) | 0 + f[K >> 2] = sa + Da = ta + Ea = ta + } + if (Q) { + Fa = Ea + Ga = Da + } else { + ta = (ga + 84) | 0 + sa = (ga + 68) | 0 + na = 0 + do { + if (!(b[ta >> 0] | 0)) + Ha = f[((f[sa >> 2] | 0) + (na << 2)) >> 2] | 0 + else Ha = na + ma = f[j >> 2] | 0 + f[g >> 2] = Ha + ra = b[pa >> 0] | 0 + f[e >> 2] = f[g >> 2] + Pb(ga, e, ra, ma) | 0 + kh( + ((f[H >> 2] | 0) + + ((X(f[F >> 2] | 0, na) | 0) << 2) + + ($ << 2)) | + 0, + f[j >> 2] | 0, + (b[pa >> 0] << 2) | 0, + ) | 0 + na = (na + 1) | 0 + } while (na >>> 0 < B >>> 0) + na = f[j >> 2] | 0 + Fa = na + Ga = na + } + if (Fa | 0) { + na = f[K >> 2] | 0 + if ((na | 0) != (Fa | 0)) + f[K >> 2] = na + (~(((na + -4 - Fa) | 0) >>> 2) << 2) + Oq(Ga) + } + ja = ba + ka = pa + } + } + while (0) + na = (ca + 1) | 0 + sa = f[G >> 2] | 0 + if (na >>> 0 >= (((f[L >> 2] | 0) - sa) >> 2) >>> 0) { + wa = 66 + break + } + $ = ($ + (b[ka >> 0] | 0)) | 0 + aa = ha + ba = ja + ca = na + da = sa + ea = f[A >> 2] | 0 + } + if ((wa | 0) == 24) aq(j) + else if ((wa | 0) == 30) aq(k) + else if ((wa | 0) == 53) aq(j) + else if ((wa | 0) == 66) { + Ia = f[D >> 2] | 0 + Ja = f[H >> 2] | 0 + wa = 67 + break + } + } else { + Ia = E + Ja = N + wa = 67 + } + while (0) + d: do + if ((wa | 0) == 67) { + N = X(Ia, B) | 0 + if ((N | 0) > 0) { + E = 0 + H = 0 + while (1) { + D = f[(Ja + (E << 2)) >> 2] | 0 + if (!D) Ka = H + else { + A = (_(D | 0) | 0) ^ 31 + Ka = (A | 0) < (H | 0) ? H : (A + 1) | 0 + } + E = (E + 1) | 0 + if ((E | 0) >= (N | 0)) { + La = Ka + break + } else H = Ka + } + } else La = 0 + switch (b[h >> 0] | 0) { + case 6: { + Ue(j, Ia) + f[l >> 2] = 0 + f[(l + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(l + 8) >> 2] = H + f[m >> 2] = f[i >> 2] + f[(m + 4) >> 2] = i + f[(m + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[l >> 2] + f[(g + 4) >> 2] = f[(l + 4) >> 2] + f[(g + 8) >> 2] = f[(l + 8) >> 2] + f[e >> 2] = f[m >> 2] + f[(e + 4) >> 2] = f[(m + 4) >> 2] + f[(e + 8) >> 2] = f[(m + 8) >> 2] + H = sf(j, g, e, k, c) | 0 + Se(j) + if (!H) { + ia = 0 + break d + } + break + } + case 5: { + Ue(j, Ia) + f[n >> 2] = 0 + f[(n + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(n + 8) >> 2] = H + f[o >> 2] = f[i >> 2] + f[(o + 4) >> 2] = i + f[(o + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[n >> 2] + f[(g + 4) >> 2] = f[(n + 4) >> 2] + f[(g + 8) >> 2] = f[(n + 8) >> 2] + f[e >> 2] = f[o >> 2] + f[(e + 4) >> 2] = f[(o + 4) >> 2] + f[(e + 8) >> 2] = f[(o + 8) >> 2] + H = tf(j, g, e, k, c) | 0 + Se(j) + if (!H) { + ia = 0 + break d + } + break + } + case 4: { + Ue(j, Ia) + f[p >> 2] = 0 + f[(p + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(p + 8) >> 2] = H + f[q >> 2] = f[i >> 2] + f[(q + 4) >> 2] = i + f[(q + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[p >> 2] + f[(g + 4) >> 2] = f[(p + 4) >> 2] + f[(g + 8) >> 2] = f[(p + 8) >> 2] + f[e >> 2] = f[q >> 2] + f[(e + 4) >> 2] = f[(q + 4) >> 2] + f[(e + 8) >> 2] = f[(q + 8) >> 2] + H = tf(j, g, e, k, c) | 0 + Se(j) + if (!H) { + ia = 0 + break d + } + break + } + case 3: { + $e(j, Ia) + f[r >> 2] = 0 + f[(r + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(r + 8) >> 2] = H + f[s >> 2] = f[i >> 2] + f[(s + 4) >> 2] = i + f[(s + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[r >> 2] + f[(g + 4) >> 2] = f[(r + 4) >> 2] + f[(g + 8) >> 2] = f[(r + 8) >> 2] + f[e >> 2] = f[s >> 2] + f[(e + 4) >> 2] = f[(s + 4) >> 2] + f[(e + 8) >> 2] = f[(s + 8) >> 2] + H = Af(j, g, e, k, c) | 0 + ef(j) + if (!H) { + ia = 0 + break d + } + break + } + case 2: { + $e(j, Ia) + f[t >> 2] = 0 + f[(t + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(t + 8) >> 2] = H + f[v >> 2] = f[i >> 2] + f[(v + 4) >> 2] = i + f[(v + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[t >> 2] + f[(g + 4) >> 2] = f[(t + 4) >> 2] + f[(g + 8) >> 2] = f[(t + 8) >> 2] + f[e >> 2] = f[v >> 2] + f[(e + 4) >> 2] = f[(v + 4) >> 2] + f[(e + 8) >> 2] = f[(v + 8) >> 2] + H = Af(j, g, e, k, c) | 0 + ef(j) + if (!H) { + ia = 0 + break d + } + break + } + case 1: { + af(j, Ia) + f[w >> 2] = 0 + f[(w + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(w + 8) >> 2] = H + f[x >> 2] = f[i >> 2] + f[(x + 4) >> 2] = i + f[(x + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[w >> 2] + f[(g + 4) >> 2] = f[(w + 4) >> 2] + f[(g + 8) >> 2] = f[(w + 8) >> 2] + f[e >> 2] = f[x >> 2] + f[(e + 4) >> 2] = f[(x + 4) >> 2] + f[(e + 8) >> 2] = f[(x + 8) >> 2] + H = zf(j, g, e, k, c) | 0 + df(j) + if (!H) { + ia = 0 + break d + } + break + } + case 0: { + af(j, Ia) + f[y >> 2] = 0 + f[(y + 4) >> 2] = i + H = f[F >> 2] | 0 + f[(y + 8) >> 2] = H + f[z >> 2] = f[i >> 2] + f[(z + 4) >> 2] = i + f[(z + 8) >> 2] = H + f[k >> 2] = La + f[g >> 2] = f[y >> 2] + f[(g + 4) >> 2] = f[(y + 4) >> 2] + f[(g + 8) >> 2] = f[(y + 8) >> 2] + f[e >> 2] = f[z >> 2] + f[(e + 4) >> 2] = f[(z + 4) >> 2] + f[(e + 8) >> 2] = f[(z + 8) >> 2] + H = zf(j, g, e, k, c) | 0 + df(j) + if (!H) { + ia = 0 + break d + } + break + } + default: { + ia = 0 + break d + } + } + ia = 1 + } + while (0) + j = f[(i + 12) >> 2] | 0 + if (!j) { + u = d + return ia | 0 + } + i = f[J >> 2] | 0 + if ((i | 0) != (j | 0)) f[J >> 2] = i + (~(((i + -4 - j) | 0) >>> 2) << 2) + Oq(j) + u = d + return ia | 0 + } + function kb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 8) | 0 + h = f[g >> 2] | 0 + f[e >> 2] = 0 + i = (e + 4) | 0 + f[i >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (h) + if (h >>> 0 > 1073741823) aq(e) + else { + j = h << 2 + k = ln(j) | 0 + f[e >> 2] = k + l = (k + (h << 2)) | 0 + f[(e + 8) >> 2] = l + sj(k | 0, 0, j | 0) | 0 + f[i >> 2] = l + m = l + n = k + break + } + else { + m = 0 + n = 0 + } + while (0) + k = (a + 1164) | 0 + l = f[k >> 2] | 0 + j = f[l >> 2] | 0 + o = (l + 4) | 0 + if (!j) { + p = (l + 8) | 0 + q = n + r = m + s = h + } else { + h = f[o >> 2] | 0 + if ((h | 0) != (j | 0)) + f[o >> 2] = h + (~(((h + -4 - j) | 0) >>> 2) << 2) + Oq(j) + j = (l + 8) | 0 + f[j >> 2] = 0 + f[o >> 2] = 0 + f[l >> 2] = 0 + p = j + q = f[e >> 2] | 0 + r = f[i >> 2] | 0 + s = f[g >> 2] | 0 + } + f[l >> 2] = q + f[o >> 2] = r + f[p >> 2] = f[(e + 8) >> 2] + f[e >> 2] = 0 + p = (e + 4) | 0 + f[p >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (s) + if (s >>> 0 > 1073741823) aq(e) + else { + r = s << 2 + o = ln(r) | 0 + f[e >> 2] = o + q = (o + (s << 2)) | 0 + f[(e + 8) >> 2] = q + sj(o | 0, 0, r | 0) | 0 + f[p >> 2] = q + t = q + v = o + break + } + else { + t = 0 + v = 0 + } + while (0) + s = (a + 1176) | 0 + o = f[s >> 2] | 0 + q = f[o >> 2] | 0 + r = (o + 4) | 0 + if (!q) { + w = (o + 8) | 0 + x = v + y = t + } else { + t = f[r >> 2] | 0 + if ((t | 0) != (q | 0)) + f[r >> 2] = t + (~(((t + -4 - q) | 0) >>> 2) << 2) + Oq(q) + q = (o + 8) | 0 + f[q >> 2] = 0 + f[r >> 2] = 0 + f[o >> 2] = 0 + w = q + x = f[e >> 2] | 0 + y = f[p >> 2] | 0 + } + f[o >> 2] = x + f[r >> 2] = y + f[w >> 2] = f[(e + 8) >> 2] + w = f[b >> 2] | 0 + y = (b + 4) | 0 + r = f[y >> 2] | 0 + x = f[(y + 4) >> 2] | 0 + y = f[c >> 2] | 0 + o = (c + 4) | 0 + p = f[o >> 2] | 0 + q = f[(o + 4) >> 2] | 0 + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + f[(e + 12) >> 2] = 0 + f[(e + 16) >> 2] = 0 + f[(e + 20) >> 2] = 0 + o = (e + 8) | 0 + t = (e + 4) | 0 + v = (e + 16) | 0 + l = (e + 20) | 0 + i = r + Pc(e) + j = f[t >> 2] | 0 + h = ((f[l >> 2] | 0) + (f[v >> 2] | 0)) | 0 + if ((f[o >> 2] | 0) == (j | 0)) z = 0 + else + z = + ((f[(j + ((((h >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((h >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[z >> 2] = w + h = (z + 4) | 0 + f[h >> 2] = r + f[(h + 4) >> 2] = x + f[(z + 12) >> 2] = y + h = (z + 16) | 0 + f[h >> 2] = p + f[(h + 4) >> 2] = q + f[(z + 24) >> 2] = 0 + f[(z + 28) >> 2] = y - w + f[(z + 32) >> 2] = 0 + z = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = z + if (z | 0) { + w = (a + 1152) | 0 + y = (a + 1084) | 0 + h = (a + 1080) | 0 + j = (a + 1072) | 0 + m = (a + 1076) | 0 + n = (a + 1068) | 0 + A = (b + 8) | 0 + B = (c + 8) | 0 + C = (a + 1124) | 0 + D = (a + 1120) | 0 + E = (a + 1112) | 0 + F = (a + 1116) | 0 + G = (a + 1108) | 0 + H = (i + 4) | 0 + I = (i + 24) | 0 + J = (i + 24) | 0 + K = (p + 24) | 0 + L = z + while (1) { + z = f[v >> 2] | 0 + M = (L + -1) | 0 + N = (M + z) | 0 + O = f[t >> 2] | 0 + P = f[(O + ((((N >>> 0) / 113) | 0) << 2)) >> 2] | 0 + Q = (N >>> 0) % 113 | 0 + N = f[(P + ((Q * 36) | 0)) >> 2] | 0 + R = f[(P + ((Q * 36) | 0) + 12) >> 2] | 0 + S = f[(P + ((Q * 36) | 0) + 24) >> 2] | 0 + T = f[(P + ((Q * 36) | 0) + 32) >> 2] | 0 + f[l >> 2] = M + M = f[o >> 2] | 0 + Q = (M - O) >> 2 + if ( + ((1 - L - z + ((Q | 0) == 0 ? 0 : (((Q * 113) | 0) + -1) | 0)) | + 0) >>> + 0 > + 225 + ) { + Oq(f[(M + -4) >> 2] | 0) + f[o >> 2] = (f[o >> 2] | 0) + -4 + } + f[b >> 2] = N + f[c >> 2] = R + M = f[k >> 2] | 0 + Q = (((f[g >> 2] | 0) + -1) | 0) == (S | 0) ? 0 : (S + 1) | 0 + S = ((f[s >> 2] | 0) + ((T * 12) | 0)) | 0 + z = (R - N) | 0 + O = ((f[a >> 2] | 0) - (f[((f[S >> 2] | 0) + (Q << 2)) >> 2] | 0)) | 0 + a: do + if (O) { + if (z >>> 0 < 3) { + P = f[w >> 2] | 0 + f[P >> 2] = Q + U = f[g >> 2] | 0 + if (U >>> 0 > 1) { + V = 1 + W = U + Y = Q + while (1) { + Y = (Y | 0) == ((W + -1) | 0) ? 0 : (Y + 1) | 0 + f[(P + (V << 2)) >> 2] = Y + V = (V + 1) | 0 + Z = f[g >> 2] | 0 + if (V >>> 0 >= Z >>> 0) { + $ = Z + break + } else W = Z + } + } else $ = U + if (!z) { + aa = 85 + break + } else { + ba = 0 + ca = $ + } + while (1) { + W = + ((f[I >> 2] | 0) + + ((X(f[H >> 2] | 0, (N + ba) | 0) | 0) << 2)) | + 0 + if (!ca) da = 0 + else { + V = 0 + do { + Y = f[((f[w >> 2] | 0) + (V << 2)) >> 2] | 0 + P = + ((f[a >> 2] | 0) - + (f[((f[S >> 2] | 0) + (Y << 2)) >> 2] | 0)) | + 0 + do + if (P | 0) { + Z = f[y >> 2] | 0 + ea = (32 - Z) | 0 + fa = (32 - P) | 0 + ga = f[(W + (Y << 2)) >> 2] << fa + if ((P | 0) > (ea | 0)) { + ha = ga >>> fa + fa = (P - ea) | 0 + f[y >> 2] = fa + ea = f[h >> 2] | (ha >>> fa) + f[h >> 2] = ea + fa = f[j >> 2] | 0 + if ((fa | 0) == (f[m >> 2] | 0)) Ri(n, h) + else { + f[fa >> 2] = ea + f[j >> 2] = fa + 4 + } + f[h >> 2] = ha << (32 - (f[y >> 2] | 0)) + break + } + ha = f[h >> 2] | (ga >>> Z) + f[h >> 2] = ha + ga = (Z + P) | 0 + f[y >> 2] = ga + if ((ga | 0) != 32) break + ga = f[j >> 2] | 0 + if ((ga | 0) == (f[m >> 2] | 0)) Ri(n, h) + else { + f[ga >> 2] = ha + f[j >> 2] = ga + 4 + } + f[h >> 2] = 0 + f[y >> 2] = 0 + } + while (0) + V = (V + 1) | 0 + P = f[g >> 2] | 0 + } while (V >>> 0 < P >>> 0) + da = P + } + ba = (ba + 1) | 0 + if (ba >>> 0 >= z >>> 0) { + aa = 85 + break a + } else ca = da + } + } + U = (T + 1) | 0 + Ig( + (M + ((U * 12) | 0)) | 0, + f[(M + ((T * 12) | 0)) >> 2] | 0, + f[(M + ((T * 12) | 0) + 4) >> 2] | 0, + ) + V = + ((f[((f[k >> 2] | 0) + ((U * 12) | 0)) >> 2] | 0) + (Q << 2)) | + 0 + W = ((f[V >> 2] | 0) + (1 << (O + -1))) | 0 + f[V >> 2] = W + V = f[A >> 2] | 0 + P = f[B >> 2] | 0 + b: do + if ((R | 0) == (N | 0)) ia = N + else { + Y = f[J >> 2] | 0 + if (!V) { + if ((f[(Y + (Q << 2)) >> 2] | 0) >>> 0 < W >>> 0) { + ia = R + break + } else { + ja = R + ka = N + } + while (1) { + ga = ja + do { + ga = (ga + -1) | 0 + if ((ka | 0) == (ga | 0)) { + ia = ka + break b + } + ha = + ((f[K >> 2] | 0) + ((X(ga, P) | 0) << 2) + (Q << 2)) | + 0 + } while ((f[ha >> 2] | 0) >>> 0 >= W >>> 0) + ka = (ka + 1) | 0 + if ((ka | 0) == (ga | 0)) { + ia = ga + break b + } else ja = ga + } + } else { + la = R + ma = N + } + while (1) { + ha = ma + while (1) { + na = (Y + ((X(ha, V) | 0) << 2)) | 0 + if ((f[(na + (Q << 2)) >> 2] | 0) >>> 0 >= W >>> 0) { + oa = la + break + } + Z = (ha + 1) | 0 + if ((Z | 0) == (la | 0)) { + ia = la + break b + } else ha = Z + } + while (1) { + oa = (oa + -1) | 0 + if ((ha | 0) == (oa | 0)) { + ia = ha + break b + } + pa = ((f[K >> 2] | 0) + ((X(oa, P) | 0) << 2)) | 0 + if ((f[(pa + (Q << 2)) >> 2] | 0) >>> 0 < W >>> 0) { + qa = 0 + break + } + } + do { + ga = (na + (qa << 2)) | 0 + Z = (pa + (qa << 2)) | 0 + fa = f[ga >> 2] | 0 + f[ga >> 2] = f[Z >> 2] + f[Z >> 2] = fa + qa = (qa + 1) | 0 + } while ((qa | 0) != (V | 0)) + ma = (ha + 1) | 0 + if ((ma | 0) == (oa | 0)) { + ia = oa + break + } else la = oa + } + } + while (0) + W = (_(z | 0) | 0) ^ 31 + P = (ia - N) | 0 + Y = (R - ia) | 0 + fa = P >>> 0 < Y >>> 0 + if ((P | 0) != (Y | 0)) { + Z = f[C >> 2] | 0 + if (fa) f[D >> 2] = f[D >> 2] | (1 << (31 - Z)) + ga = (Z + 1) | 0 + f[C >> 2] = ga + if ((ga | 0) == 32) { + ga = f[E >> 2] | 0 + if ((ga | 0) == (f[F >> 2] | 0)) Ri(G, D) + else { + f[ga >> 2] = f[D >> 2] + f[E >> 2] = ga + 4 + } + f[C >> 2] = 0 + f[D >> 2] = 0 + } + } + ga = z >>> 1 + if (fa) { + fa = (ga - P) | 0 + if (W | 0) { + Z = 0 + ea = 1 << (W + -1) + while (1) { + fj((a + 12 + (Z << 5)) | 0, ((ea & fa) | 0) != 0) + Z = (Z + 1) | 0 + if ((Z | 0) == (W | 0)) break + else ea = ea >>> 1 + } + } + } else { + ea = (ga - Y) | 0 + if (W | 0) { + Z = 0 + fa = 1 << (W + -1) + while (1) { + fj((a + 12 + (Z << 5)) | 0, ((fa & ea) | 0) != 0) + Z = (Z + 1) | 0 + if ((Z | 0) == (W | 0)) break + else fa = fa >>> 1 + } + } + } + fa = f[s >> 2] | 0 + W = f[(fa + ((T * 12) | 0)) >> 2] | 0 + Z = (W + (Q << 2)) | 0 + f[Z >> 2] = (f[Z >> 2] | 0) + 1 + Ig( + (fa + ((U * 12) | 0)) | 0, + W, + f[(fa + ((T * 12) | 0) + 4) >> 2] | 0, + ) + if ((ia | 0) != (N | 0)) { + fa = f[o >> 2] | 0 + W = f[t >> 2] | 0 + Z = (fa - W) >> 2 + ea = f[v >> 2] | 0 + ga = f[l >> 2] | 0 + if ( + (((Z | 0) == 0 ? 0 : (((Z * 113) | 0) + -1) | 0) | 0) == + ((ga + ea) | 0) + ) { + Pc(e) + ra = f[v >> 2] | 0 + sa = f[l >> 2] | 0 + ta = f[o >> 2] | 0 + ua = f[t >> 2] | 0 + } else { + ra = ea + sa = ga + ta = fa + ua = W + } + W = (sa + ra) | 0 + if ((ta | 0) == (ua | 0)) va = 0 + else + va = + ((f[(ua + ((((W >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((W >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[va >> 2] = N + W = (va + 4) | 0 + f[W >> 2] = r + f[(W + 4) >> 2] = x + f[(va + 12) >> 2] = ia + f[(va + 16) >> 2] = i + f[(va + 20) >> 2] = V + f[(va + 24) >> 2] = Q + f[(va + 28) >> 2] = P + f[(va + 32) >> 2] = T + f[l >> 2] = (f[l >> 2] | 0) + 1 + } + if ((R | 0) != (ia | 0)) { + W = f[o >> 2] | 0 + fa = f[t >> 2] | 0 + ga = (W - fa) >> 2 + ea = f[v >> 2] | 0 + Z = f[l >> 2] | 0 + if ( + (((ga | 0) == 0 ? 0 : (((ga * 113) | 0) + -1) | 0) | 0) == + ((Z + ea) | 0) + ) { + Pc(e) + wa = f[v >> 2] | 0 + xa = f[l >> 2] | 0 + ya = f[o >> 2] | 0 + za = f[t >> 2] | 0 + } else { + wa = ea + xa = Z + ya = W + za = fa + } + fa = (xa + wa) | 0 + if ((ya | 0) == (za | 0)) Aa = 0 + else + Aa = + ((f[(za + ((((fa >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((fa >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[Aa >> 2] = ia + f[(Aa + 4) >> 2] = i + f[(Aa + 8) >> 2] = V + f[(Aa + 12) >> 2] = R + fa = (Aa + 16) | 0 + f[fa >> 2] = p + f[(fa + 4) >> 2] = q + f[(Aa + 24) >> 2] = Q + f[(Aa + 28) >> 2] = Y + f[(Aa + 32) >> 2] = U + fa = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = fa + Ba = fa + } else aa = 85 + } else aa = 85 + while (0) + if ((aa | 0) == 85) { + aa = 0 + Ba = f[l >> 2] | 0 + } + if (!Ba) break + else L = Ba + } + } + Ba = f[t >> 2] | 0 + L = f[v >> 2] | 0 + Aa = (Ba + ((((L >>> 0) / 113) | 0) << 2)) | 0 + q = f[o >> 2] | 0 + p = q + i = Ba + if ((q | 0) == (Ba | 0)) { + Ca = 0 + Da = 0 + } else { + ia = ((f[Aa >> 2] | 0) + ((((L >>> 0) % 113 | 0) * 36) | 0)) | 0 + Ca = ia + Da = ia + } + ia = Aa + Aa = Da + c: while (1) { + Da = Aa + do { + L = Da + if ((Ca | 0) == (L | 0)) break c + Da = (L + 36) | 0 + } while (((Da - (f[ia >> 2] | 0)) | 0) != 4068) + Da = (ia + 4) | 0 + ia = Da + Aa = f[Da >> 2] | 0 + } + f[l >> 2] = 0 + l = (p - i) >> 2 + if (l >>> 0 > 2) { + i = Ba + do { + Oq(f[i >> 2] | 0) + i = ((f[t >> 2] | 0) + 4) | 0 + f[t >> 2] = i + Ea = f[o >> 2] | 0 + Fa = (Ea - i) >> 2 + } while (Fa >>> 0 > 2) + Ga = Fa + Ha = i + Ia = Ea + } else { + Ga = l + Ha = Ba + Ia = q + } + switch (Ga | 0) { + case 1: { + Ja = 56 + aa = 99 + break + } + case 2: { + Ja = 113 + aa = 99 + break + } + default: { + } + } + if ((aa | 0) == 99) f[v >> 2] = Ja + if ((Ha | 0) != (Ia | 0)) { + Ja = Ha + do { + Oq(f[Ja >> 2] | 0) + Ja = (Ja + 4) | 0 + } while ((Ja | 0) != (Ia | 0)) + Ia = f[t >> 2] | 0 + t = f[o >> 2] | 0 + if ((t | 0) != (Ia | 0)) + f[o >> 2] = t + (~(((t + -4 - Ia) | 0) >>> 2) << 2) + } + Ia = f[e >> 2] | 0 + if (!Ia) { + u = d + return + } + Oq(Ia) + u = d + return + } + function lb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0 + d = u + u = (u + 32) | 0 + e = d + g = (a + 8) | 0 + h = f[g >> 2] | 0 + f[e >> 2] = 0 + i = (e + 4) | 0 + f[i >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (h) + if (h >>> 0 > 1073741823) aq(e) + else { + j = h << 2 + k = ln(j) | 0 + f[e >> 2] = k + l = (k + (h << 2)) | 0 + f[(e + 8) >> 2] = l + sj(k | 0, 0, j | 0) | 0 + f[i >> 2] = l + m = l + n = k + break + } + else { + m = 0 + n = 0 + } + while (0) + k = (a + 140) | 0 + l = f[k >> 2] | 0 + j = f[l >> 2] | 0 + o = (l + 4) | 0 + if (!j) { + p = (l + 8) | 0 + q = n + r = m + s = h + } else { + h = f[o >> 2] | 0 + if ((h | 0) != (j | 0)) + f[o >> 2] = h + (~(((h + -4 - j) | 0) >>> 2) << 2) + Oq(j) + j = (l + 8) | 0 + f[j >> 2] = 0 + f[o >> 2] = 0 + f[l >> 2] = 0 + p = j + q = f[e >> 2] | 0 + r = f[i >> 2] | 0 + s = f[g >> 2] | 0 + } + f[l >> 2] = q + f[o >> 2] = r + f[p >> 2] = f[(e + 8) >> 2] + f[e >> 2] = 0 + p = (e + 4) | 0 + f[p >> 2] = 0 + f[(e + 8) >> 2] = 0 + do + if (s) + if (s >>> 0 > 1073741823) aq(e) + else { + r = s << 2 + o = ln(r) | 0 + f[e >> 2] = o + q = (o + (s << 2)) | 0 + f[(e + 8) >> 2] = q + sj(o | 0, 0, r | 0) | 0 + f[p >> 2] = q + t = q + v = o + break + } + else { + t = 0 + v = 0 + } + while (0) + s = (a + 152) | 0 + o = f[s >> 2] | 0 + q = f[o >> 2] | 0 + r = (o + 4) | 0 + if (!q) { + w = (o + 8) | 0 + x = v + y = t + } else { + t = f[r >> 2] | 0 + if ((t | 0) != (q | 0)) + f[r >> 2] = t + (~(((t + -4 - q) | 0) >>> 2) << 2) + Oq(q) + q = (o + 8) | 0 + f[q >> 2] = 0 + f[r >> 2] = 0 + f[o >> 2] = 0 + w = q + x = f[e >> 2] | 0 + y = f[p >> 2] | 0 + } + f[o >> 2] = x + f[r >> 2] = y + f[w >> 2] = f[(e + 8) >> 2] + w = f[b >> 2] | 0 + y = (b + 4) | 0 + r = f[y >> 2] | 0 + x = f[(y + 4) >> 2] | 0 + y = f[c >> 2] | 0 + o = (c + 4) | 0 + p = f[o >> 2] | 0 + q = f[(o + 4) >> 2] | 0 + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + f[(e + 12) >> 2] = 0 + f[(e + 16) >> 2] = 0 + f[(e + 20) >> 2] = 0 + o = (e + 8) | 0 + t = (e + 4) | 0 + v = (e + 16) | 0 + l = (e + 20) | 0 + i = r + Pc(e) + j = f[t >> 2] | 0 + h = ((f[l >> 2] | 0) + (f[v >> 2] | 0)) | 0 + if ((f[o >> 2] | 0) == (j | 0)) z = 0 + else + z = + ((f[(j + ((((h >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((h >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[z >> 2] = w + h = (z + 4) | 0 + f[h >> 2] = r + f[(h + 4) >> 2] = x + f[(z + 12) >> 2] = y + h = (z + 16) | 0 + f[h >> 2] = p + f[(h + 4) >> 2] = q + f[(z + 24) >> 2] = 0 + f[(z + 28) >> 2] = y - w + f[(z + 32) >> 2] = 0 + z = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = z + if (z | 0) { + w = (a + 128) | 0 + y = (a + 60) | 0 + h = (a + 56) | 0 + j = (a + 48) | 0 + m = (a + 52) | 0 + n = (a + 44) | 0 + A = (b + 8) | 0 + B = (c + 8) | 0 + C = (a + 12) | 0 + D = (a + 100) | 0 + E = (a + 96) | 0 + F = (a + 88) | 0 + G = (a + 92) | 0 + H = (a + 84) | 0 + I = (i + 4) | 0 + J = (i + 24) | 0 + K = (i + 24) | 0 + L = (p + 24) | 0 + M = z + while (1) { + z = f[v >> 2] | 0 + N = (M + -1) | 0 + O = (N + z) | 0 + P = f[t >> 2] | 0 + Q = f[(P + ((((O >>> 0) / 113) | 0) << 2)) >> 2] | 0 + R = (O >>> 0) % 113 | 0 + O = f[(Q + ((R * 36) | 0)) >> 2] | 0 + S = f[(Q + ((R * 36) | 0) + 12) >> 2] | 0 + T = f[(Q + ((R * 36) | 0) + 24) >> 2] | 0 + U = f[(Q + ((R * 36) | 0) + 32) >> 2] | 0 + f[l >> 2] = N + N = f[o >> 2] | 0 + R = (N - P) >> 2 + if ( + ((1 - M - z + ((R | 0) == 0 ? 0 : (((R * 113) | 0) + -1) | 0)) | + 0) >>> + 0 > + 225 + ) { + Oq(f[(N + -4) >> 2] | 0) + f[o >> 2] = (f[o >> 2] | 0) + -4 + } + f[b >> 2] = O + f[c >> 2] = S + N = f[k >> 2] | 0 + R = (((f[g >> 2] | 0) + -1) | 0) == (T | 0) ? 0 : (T + 1) | 0 + T = ((f[s >> 2] | 0) + ((U * 12) | 0)) | 0 + z = (S - O) | 0 + P = ((f[a >> 2] | 0) - (f[((f[T >> 2] | 0) + (R << 2)) >> 2] | 0)) | 0 + a: do + if (P) { + if (z >>> 0 < 3) { + Q = f[w >> 2] | 0 + f[Q >> 2] = R + V = f[g >> 2] | 0 + if (V >>> 0 > 1) { + W = 1 + Y = V + Z = R + while (1) { + Z = (Z | 0) == ((Y + -1) | 0) ? 0 : (Z + 1) | 0 + f[(Q + (W << 2)) >> 2] = Z + W = (W + 1) | 0 + $ = f[g >> 2] | 0 + if (W >>> 0 >= $ >>> 0) { + aa = $ + break + } else Y = $ + } + } else aa = V + if (!z) { + ba = 81 + break + } else { + ca = 0 + da = aa + } + while (1) { + Y = + ((f[J >> 2] | 0) + + ((X(f[I >> 2] | 0, (O + ca) | 0) | 0) << 2)) | + 0 + if (!da) ea = 0 + else { + W = 0 + do { + Z = f[((f[w >> 2] | 0) + (W << 2)) >> 2] | 0 + Q = + ((f[a >> 2] | 0) - + (f[((f[T >> 2] | 0) + (Z << 2)) >> 2] | 0)) | + 0 + do + if (Q | 0) { + $ = f[y >> 2] | 0 + fa = (32 - $) | 0 + ga = (32 - Q) | 0 + ha = f[(Y + (Z << 2)) >> 2] << ga + if ((Q | 0) > (fa | 0)) { + ia = ha >>> ga + ga = (Q - fa) | 0 + f[y >> 2] = ga + fa = f[h >> 2] | (ia >>> ga) + f[h >> 2] = fa + ga = f[j >> 2] | 0 + if ((ga | 0) == (f[m >> 2] | 0)) Ri(n, h) + else { + f[ga >> 2] = fa + f[j >> 2] = ga + 4 + } + f[h >> 2] = ia << (32 - (f[y >> 2] | 0)) + break + } + ia = f[h >> 2] | (ha >>> $) + f[h >> 2] = ia + ha = ($ + Q) | 0 + f[y >> 2] = ha + if ((ha | 0) != 32) break + ha = f[j >> 2] | 0 + if ((ha | 0) == (f[m >> 2] | 0)) Ri(n, h) + else { + f[ha >> 2] = ia + f[j >> 2] = ha + 4 + } + f[h >> 2] = 0 + f[y >> 2] = 0 + } + while (0) + W = (W + 1) | 0 + Q = f[g >> 2] | 0 + } while (W >>> 0 < Q >>> 0) + ea = Q + } + ca = (ca + 1) | 0 + if (ca >>> 0 >= z >>> 0) { + ba = 81 + break a + } else da = ea + } + } + V = (U + 1) | 0 + Ig( + (N + ((V * 12) | 0)) | 0, + f[(N + ((U * 12) | 0)) >> 2] | 0, + f[(N + ((U * 12) | 0) + 4) >> 2] | 0, + ) + W = + ((f[((f[k >> 2] | 0) + ((V * 12) | 0)) >> 2] | 0) + (R << 2)) | + 0 + Y = ((f[W >> 2] | 0) + (1 << (P + -1))) | 0 + f[W >> 2] = Y + W = f[A >> 2] | 0 + Q = f[B >> 2] | 0 + b: do + if ((S | 0) == (O | 0)) ja = O + else { + Z = f[K >> 2] | 0 + if (!W) { + if ((f[(Z + (R << 2)) >> 2] | 0) >>> 0 < Y >>> 0) { + ja = S + break + } else { + ka = S + la = O + } + while (1) { + ha = ka + do { + ha = (ha + -1) | 0 + if ((la | 0) == (ha | 0)) { + ja = la + break b + } + ia = + ((f[L >> 2] | 0) + ((X(ha, Q) | 0) << 2) + (R << 2)) | + 0 + } while ((f[ia >> 2] | 0) >>> 0 >= Y >>> 0) + la = (la + 1) | 0 + if ((la | 0) == (ha | 0)) { + ja = ha + break b + } else ka = ha + } + } else { + ma = S + na = O + } + while (1) { + ia = na + while (1) { + oa = (Z + ((X(ia, W) | 0) << 2)) | 0 + if ((f[(oa + (R << 2)) >> 2] | 0) >>> 0 >= Y >>> 0) { + pa = ma + break + } + $ = (ia + 1) | 0 + if (($ | 0) == (ma | 0)) { + ja = ma + break b + } else ia = $ + } + while (1) { + pa = (pa + -1) | 0 + if ((ia | 0) == (pa | 0)) { + ja = ia + break b + } + qa = ((f[L >> 2] | 0) + ((X(pa, Q) | 0) << 2)) | 0 + if ((f[(qa + (R << 2)) >> 2] | 0) >>> 0 < Y >>> 0) { + ra = 0 + break + } + } + do { + ha = (oa + (ra << 2)) | 0 + $ = (qa + (ra << 2)) | 0 + ga = f[ha >> 2] | 0 + f[ha >> 2] = f[$ >> 2] + f[$ >> 2] = ga + ra = (ra + 1) | 0 + } while ((ra | 0) != (W | 0)) + na = (ia + 1) | 0 + if ((na | 0) == (pa | 0)) { + ja = pa + break + } else ma = pa + } + } + while (0) + Y = (_(z | 0) | 0) ^ 31 + Q = (ja - O) | 0 + Z = (S - ja) | 0 + ga = Q >>> 0 < Z >>> 0 + if ((Q | 0) != (Z | 0)) { + $ = f[D >> 2] | 0 + if (ga) f[E >> 2] = f[E >> 2] | (1 << (31 - $)) + ha = ($ + 1) | 0 + f[D >> 2] = ha + if ((ha | 0) == 32) { + ha = f[F >> 2] | 0 + if ((ha | 0) == (f[G >> 2] | 0)) Ri(H, E) + else { + f[ha >> 2] = f[E >> 2] + f[F >> 2] = ha + 4 + } + f[D >> 2] = 0 + f[E >> 2] = 0 + } + } + ha = z >>> 1 + if (ga) sg(C, Y, (ha - Q) | 0) + else sg(C, Y, (ha - Z) | 0) + ha = f[s >> 2] | 0 + Y = f[(ha + ((U * 12) | 0)) >> 2] | 0 + ga = (Y + (R << 2)) | 0 + f[ga >> 2] = (f[ga >> 2] | 0) + 1 + Ig( + (ha + ((V * 12) | 0)) | 0, + Y, + f[(ha + ((U * 12) | 0) + 4) >> 2] | 0, + ) + if ((ja | 0) != (O | 0)) { + ha = f[o >> 2] | 0 + Y = f[t >> 2] | 0 + ga = (ha - Y) >> 2 + $ = f[v >> 2] | 0 + fa = f[l >> 2] | 0 + if ( + (((ga | 0) == 0 ? 0 : (((ga * 113) | 0) + -1) | 0) | 0) == + ((fa + $) | 0) + ) { + Pc(e) + sa = f[v >> 2] | 0 + ta = f[l >> 2] | 0 + ua = f[o >> 2] | 0 + va = f[t >> 2] | 0 + } else { + sa = $ + ta = fa + ua = ha + va = Y + } + Y = (ta + sa) | 0 + if ((ua | 0) == (va | 0)) wa = 0 + else + wa = + ((f[(va + ((((Y >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((Y >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[wa >> 2] = O + Y = (wa + 4) | 0 + f[Y >> 2] = r + f[(Y + 4) >> 2] = x + f[(wa + 12) >> 2] = ja + f[(wa + 16) >> 2] = i + f[(wa + 20) >> 2] = W + f[(wa + 24) >> 2] = R + f[(wa + 28) >> 2] = Q + f[(wa + 32) >> 2] = U + f[l >> 2] = (f[l >> 2] | 0) + 1 + } + if ((S | 0) != (ja | 0)) { + Q = f[o >> 2] | 0 + Y = f[t >> 2] | 0 + ha = (Q - Y) >> 2 + fa = f[v >> 2] | 0 + $ = f[l >> 2] | 0 + if ( + (((ha | 0) == 0 ? 0 : (((ha * 113) | 0) + -1) | 0) | 0) == + (($ + fa) | 0) + ) { + Pc(e) + xa = f[v >> 2] | 0 + ya = f[l >> 2] | 0 + za = f[o >> 2] | 0 + Aa = f[t >> 2] | 0 + } else { + xa = fa + ya = $ + za = Q + Aa = Y + } + Y = (ya + xa) | 0 + if ((za | 0) == (Aa | 0)) Ba = 0 + else + Ba = + ((f[(Aa + ((((Y >>> 0) / 113) | 0) << 2)) >> 2] | 0) + + ((((Y >>> 0) % 113 | 0) * 36) | 0)) | + 0 + f[Ba >> 2] = ja + f[(Ba + 4) >> 2] = i + f[(Ba + 8) >> 2] = W + f[(Ba + 12) >> 2] = S + Y = (Ba + 16) | 0 + f[Y >> 2] = p + f[(Y + 4) >> 2] = q + f[(Ba + 24) >> 2] = R + f[(Ba + 28) >> 2] = Z + f[(Ba + 32) >> 2] = V + Z = ((f[l >> 2] | 0) + 1) | 0 + f[l >> 2] = Z + Ca = Z + } else ba = 81 + } else ba = 81 + while (0) + if ((ba | 0) == 81) { + ba = 0 + Ca = f[l >> 2] | 0 + } + if (!Ca) break + else M = Ca + } + } + Ca = f[t >> 2] | 0 + M = f[v >> 2] | 0 + Ba = (Ca + ((((M >>> 0) / 113) | 0) << 2)) | 0 + q = f[o >> 2] | 0 + p = q + i = Ca + if ((q | 0) == (Ca | 0)) { + Da = 0 + Ea = 0 + } else { + ja = ((f[Ba >> 2] | 0) + ((((M >>> 0) % 113 | 0) * 36) | 0)) | 0 + Da = ja + Ea = ja + } + ja = Ba + Ba = Ea + c: while (1) { + Ea = Ba + do { + M = Ea + if ((Da | 0) == (M | 0)) break c + Ea = (M + 36) | 0 + } while (((Ea - (f[ja >> 2] | 0)) | 0) != 4068) + Ea = (ja + 4) | 0 + ja = Ea + Ba = f[Ea >> 2] | 0 + } + f[l >> 2] = 0 + l = (p - i) >> 2 + if (l >>> 0 > 2) { + i = Ca + do { + Oq(f[i >> 2] | 0) + i = ((f[t >> 2] | 0) + 4) | 0 + f[t >> 2] = i + Fa = f[o >> 2] | 0 + Ga = (Fa - i) >> 2 + } while (Ga >>> 0 > 2) + Ha = Ga + Ia = i + Ja = Fa + } else { + Ha = l + Ia = Ca + Ja = q + } + switch (Ha | 0) { + case 1: { + Ka = 56 + ba = 95 + break + } + case 2: { + Ka = 113 + ba = 95 + break + } + default: { + } + } + if ((ba | 0) == 95) f[v >> 2] = Ka + if ((Ia | 0) != (Ja | 0)) { + Ka = Ia + do { + Oq(f[Ka >> 2] | 0) + Ka = (Ka + 4) | 0 + } while ((Ka | 0) != (Ja | 0)) + Ja = f[t >> 2] | 0 + t = f[o >> 2] | 0 + if ((t | 0) != (Ja | 0)) + f[o >> 2] = t + (~(((t + -4 - Ja) | 0) >>> 2) << 2) + } + Ja = f[e >> 2] | 0 + if (!Ja) { + u = d + return + } + Oq(Ja) + u = d + return + } + function mb(a, c, e, g) { + a = a | 0 + c = c | 0 + e = e | 0 + g = g | 0 + var i = 0, + k = 0, + l = 0, + m = 0, + o = 0, + q = 0, + r = 0, + s = Oa, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0 + if (!g) { + i = 0 + return i | 0 + } + do + switch (f[(a + 28) >> 2] | 0) { + case 1: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + q = un(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + r = Vn(q | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (m + r) | 0 + if (!(b[(a + 32) >> 0] | 0)) { + r = o + m = 0 + while (1) { + s = $(b[r >> 0] | 0) + n[(g + (m << 2)) >> 2] = s + m = (m + 1) | 0 + q = b[k >> 0] | 0 + if ( + (m | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> + 24) | + 0) + ) { + t = q + break + } else r = (r + 1) | 0 + } + } else { + r = o + m = 0 + while (1) { + s = $($(b[r >> 0] | 0) / $(127.0)) + n[(g + (m << 2)) >> 2] = s + m = (m + 1) | 0 + q = b[k >> 0] | 0 + if ( + (m | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> + 24) | + 0) + ) { + t = q + break + } else r = (r + 1) | 0 + } + } + } else t = l + r = (t << 24) >> 24 + if ((t << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (r << 2)) | 0, 0, ((((e << 24) >> 24) - r) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 2: { + r = (a + 24) | 0 + m = b[r >> 0] | 0 + if ((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + q = un(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + u = Vn(q | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (k + u) | 0 + if (!(b[(a + 32) >> 0] | 0)) { + u = o + k = 0 + while (1) { + s = $(h[u >> 0] | 0) + n[(g + (k << 2)) >> 2] = s + k = (k + 1) | 0 + q = b[r >> 0] | 0 + if ( + (k | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> + 24) | + 0) + ) { + v = q + break + } else u = (u + 1) | 0 + } + } else { + u = o + k = 0 + while (1) { + s = $($(h[u >> 0] | 0) / $(255.0)) + n[(g + (k << 2)) >> 2] = s + k = (k + 1) | 0 + l = b[r >> 0] | 0 + if ( + (k | 0) >= + (((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> + 24) | + 0) + ) { + v = l + break + } else u = (u + 1) | 0 + } + } + } else v = m + u = (v << 24) >> 24 + if ((v << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (u << 2)) | 0, 0, ((((e << 24) >> 24) - u) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 3: { + u = (a + 48) | 0 + k = f[u >> 2] | 0 + r = f[(u + 4) >> 2] | 0 + u = (a + 40) | 0 + o = + ((Vn( + un(f[u >> 2] | 0, f[(u + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0, + I | 0, + k | 0, + r | 0, + ) | + 0) + + (f[f[a >> 2] >> 2] | 0)) | + 0 + r = (a + 24) | 0 + k = b[r >> 0] | 0 + if ((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24 > 0) + if (!(b[(a + 32) >> 0] | 0)) { + u = o + l = 0 + while (1) { + s = $(d[u >> 1] | 0) + n[(g + (l << 2)) >> 2] = s + l = (l + 1) | 0 + q = b[r >> 0] | 0 + if ( + (l | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> + 24) | + 0) + ) { + w = q + break + } else u = (u + 2) | 0 + } + } else { + u = o + l = 0 + while (1) { + s = $($(d[u >> 1] | 0) / $(32767.0)) + n[(g + (l << 2)) >> 2] = s + l = (l + 1) | 0 + m = b[r >> 0] | 0 + if ( + (l | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> + 24) | + 0) + ) { + w = m + break + } else u = (u + 2) | 0 + } + } + else w = k + u = (w << 24) >> 24 + if ((w << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (u << 2)) | 0, 0, ((((e << 24) >> 24) - u) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 4: { + u = (a + 48) | 0 + l = f[u >> 2] | 0 + r = f[(u + 4) >> 2] | 0 + u = (a + 40) | 0 + o = + ((Vn( + un(f[u >> 2] | 0, f[(u + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0, + I | 0, + l | 0, + r | 0, + ) | + 0) + + (f[f[a >> 2] >> 2] | 0)) | + 0 + r = (a + 24) | 0 + l = b[r >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) + if (!(b[(a + 32) >> 0] | 0)) { + u = o + m = 0 + while (1) { + s = $(j[u >> 1] | 0) + n[(g + (m << 2)) >> 2] = s + m = (m + 1) | 0 + q = b[r >> 0] | 0 + if ( + (m | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> + 24) | + 0) + ) { + x = q + break + } else u = (u + 2) | 0 + } + } else { + u = o + m = 0 + while (1) { + s = $($(j[u >> 1] | 0) / $(65535.0)) + n[(g + (m << 2)) >> 2] = s + m = (m + 1) | 0 + k = b[r >> 0] | 0 + if ( + (m | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> + 24) | + 0) + ) { + x = k + break + } else u = (u + 2) | 0 + } + } + else x = l + u = (x << 24) >> 24 + if ((x << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (u << 2)) | 0, 0, ((((e << 24) >> 24) - u) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 5: { + u = (a + 48) | 0 + m = f[u >> 2] | 0 + r = f[(u + 4) >> 2] | 0 + u = (a + 40) | 0 + o = + ((Vn( + un(f[u >> 2] | 0, f[(u + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0, + I | 0, + m | 0, + r | 0, + ) | + 0) + + (f[f[a >> 2] >> 2] | 0)) | + 0 + r = (a + 24) | 0 + m = b[r >> 0] | 0 + if ((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24 > 0) + if (!(b[(a + 32) >> 0] | 0)) { + u = o + k = 0 + while (1) { + s = $(f[u >> 2] | 0) + n[(g + (k << 2)) >> 2] = s + k = (k + 1) | 0 + q = b[r >> 0] | 0 + if ( + (k | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> + 24) | + 0) + ) { + y = q + break + } else u = (u + 4) | 0 + } + } else { + u = o + k = 0 + while (1) { + s = $($(f[u >> 2] | 0) * $(4.65661287e-10)) + n[(g + (k << 2)) >> 2] = s + k = (k + 1) | 0 + l = b[r >> 0] | 0 + if ( + (k | 0) >= + (((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> + 24) | + 0) + ) { + y = l + break + } else u = (u + 4) | 0 + } + } + else y = m + u = (y << 24) >> 24 + if ((y << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (u << 2)) | 0, 0, ((((e << 24) >> 24) - u) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 6: { + u = (a + 48) | 0 + k = f[u >> 2] | 0 + r = f[(u + 4) >> 2] | 0 + u = (a + 40) | 0 + o = + ((Vn( + un(f[u >> 2] | 0, f[(u + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0, + I | 0, + k | 0, + r | 0, + ) | + 0) + + (f[f[a >> 2] >> 2] | 0)) | + 0 + r = (a + 24) | 0 + k = b[r >> 0] | 0 + if ((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24 > 0) + if (!(b[(a + 32) >> 0] | 0)) { + u = o + l = 0 + while (1) { + s = $((f[u >> 2] | 0) >>> 0) + n[(g + (l << 2)) >> 2] = s + l = (l + 1) | 0 + q = b[r >> 0] | 0 + if ( + (l | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> + 24) | + 0) + ) { + z = q + break + } else u = (u + 4) | 0 + } + } else { + u = o + l = 0 + while (1) { + s = $($((f[u >> 2] | 0) >>> 0) * $(2.32830644e-10)) + n[(g + (l << 2)) >> 2] = s + l = (l + 1) | 0 + m = b[r >> 0] | 0 + if ( + (l | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> + 24) | + 0) + ) { + z = m + break + } else u = (u + 4) | 0 + } + } + else z = k + u = (z << 24) >> 24 + if ((z << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (u << 2)) | 0, 0, ((((e << 24) >> 24) - u) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 7: { + u = (a + 48) | 0 + l = f[u >> 2] | 0 + r = f[(u + 4) >> 2] | 0 + u = (a + 40) | 0 + o = + ((Vn( + un(f[u >> 2] | 0, f[(u + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0, + I | 0, + l | 0, + r | 0, + ) | + 0) + + (f[f[a >> 2] >> 2] | 0)) | + 0 + r = (a + 24) | 0 + l = b[r >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) + if (!(b[(a + 32) >> 0] | 0)) { + u = o + m = 0 + while (1) { + q = u + s = $( + +((f[q >> 2] | 0) >>> 0) + + 4294967296.0 * +(f[(q + 4) >> 2] | 0), + ) + n[(g + (m << 2)) >> 2] = s + m = (m + 1) | 0 + q = b[r >> 0] | 0 + if ( + (m | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> + 24) | + 0) + ) { + A = q + break + } else u = (u + 8) | 0 + } + } else { + u = o + m = 0 + while (1) { + k = u + s = $( + $( + +((f[k >> 2] | 0) >>> 0) + + 4294967296.0 * +(f[(k + 4) >> 2] | 0), + ) * $(1.08420217e-19), + ) + n[(g + (m << 2)) >> 2] = s + m = (m + 1) | 0 + k = b[r >> 0] | 0 + if ( + (m | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> + 24) | + 0) + ) { + A = k + break + } else u = (u + 8) | 0 + } + } + else A = l + u = (A << 24) >> 24 + if ((A << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (u << 2)) | 0, 0, ((((e << 24) >> 24) - u) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 8: { + u = (a + 48) | 0 + m = f[u >> 2] | 0 + r = f[(u + 4) >> 2] | 0 + u = (a + 40) | 0 + o = + ((Vn( + un(f[u >> 2] | 0, f[(u + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0, + I | 0, + m | 0, + r | 0, + ) | + 0) + + (f[f[a >> 2] >> 2] | 0)) | + 0 + r = (a + 24) | 0 + m = b[r >> 0] | 0 + if ((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24 > 0) + if (!(b[(a + 32) >> 0] | 0)) { + u = o + k = 0 + while (1) { + q = u + s = $( + +((f[q >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(q + 4) >> 2] | 0) >>> 0), + ) + n[(g + (k << 2)) >> 2] = s + k = (k + 1) | 0 + q = b[r >> 0] | 0 + if ( + (k | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> + 24) | + 0) + ) { + B = q + break + } else u = (u + 8) | 0 + } + } else { + u = o + k = 0 + while (1) { + l = u + s = $( + $( + +((f[l >> 2] | 0) >>> 0) + + 4294967296.0 * +((f[(l + 4) >> 2] | 0) >>> 0), + ) * $(5.42101086e-20), + ) + n[(g + (k << 2)) >> 2] = s + k = (k + 1) | 0 + l = b[r >> 0] | 0 + if ( + (k | 0) >= + (((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> + 24) | + 0) + ) { + B = l + break + } else u = (u + 8) | 0 + } + } + else B = m + u = (B << 24) >> 24 + if ((B << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (u << 2)) | 0, 0, ((((e << 24) >> 24) - u) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 9: { + u = (a + 24) | 0 + k = b[u >> 0] | 0 + if ((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24 > 0) { + r = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + l = un(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + q = Vn(l | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (r + q) | 0 + q = 0 + while (1) { + f[(g + (q << 2)) >> 2] = f[o >> 2] + q = (q + 1) | 0 + r = b[u >> 0] | 0 + if ( + (q | 0) >= + (((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24) | + 0) + ) { + C = r + break + } else o = (o + 4) | 0 + } + } else C = k + o = (C << 24) >> 24 + if ((C << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (o << 2)) | 0, 0, ((((e << 24) >> 24) - o) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 10: { + o = (a + 24) | 0 + q = b[o >> 0] | 0 + if ((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24 > 0) { + u = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + r = un(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + l = Vn(r | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (u + l) | 0 + l = 0 + while (1) { + s = $(+p[m >> 3]) + n[(g + (l << 2)) >> 2] = s + l = (l + 1) | 0 + u = b[o >> 0] | 0 + if ( + (l | 0) >= + (((((u << 24) >> 24 > (e << 24) >> 24 ? e : u) << 24) >> 24) | + 0) + ) { + D = u + break + } else m = (m + 8) | 0 + } + } else D = q + m = (D << 24) >> 24 + if ((D << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (m << 2)) | 0, 0, ((((e << 24) >> 24) - m) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 11: { + m = (a + 24) | 0 + l = b[m >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + k = (a + 40) | 0 + u = un(f[k >> 2] | 0, f[(k + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + k = (a + 48) | 0 + r = Vn(u | 0, I | 0, f[k >> 2] | 0, f[(k + 4) >> 2] | 0) | 0 + k = (o + r) | 0 + r = 0 + while (1) { + s = $(((b[k >> 0] | 0) != 0) & 1) + n[(g + (r << 2)) >> 2] = s + r = (r + 1) | 0 + o = b[m >> 0] | 0 + if ( + (r | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + E = o + break + } else k = (k + 1) | 0 + } + } else E = l + k = (E << 24) >> 24 + if ((E << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (k << 2)) | 0, 0, ((((e << 24) >> 24) - k) << 2) | 0) | 0 + i = 1 + return i | 0 + } + default: { + i = 0 + return i | 0 + } + } + while (0) + return 0 + } + function nb(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0.0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0, + Ja = 0, + Ka = 0, + La = 0, + Ma = 0, + Na = 0, + Oa = 0, + Pa = 0, + Qa = 0, + Ra = 0, + Sa = 0, + Ta = 0, + Ua = 0, + Va = 0, + Wa = 0, + Xa = 0, + Ya = 0, + Za = 0, + _a = 0, + $a = 0, + ab = 0, + bb = 0.0, + cb = 0, + db = 0, + eb = 0, + fb = 0, + gb = 0, + hb = 0, + ib = 0, + jb = 0.0, + kb = 0.0, + lb = 0.0, + mb = 0.0, + nb = 0.0, + ob = 0.0, + pb = 0.0, + qb = 0.0, + rb = 0.0, + sb = 0.0, + tb = 0 + i = u + u = (u + 512) | 0 + j = i + k = (d + c) | 0 + l = (0 - k) | 0 + m = (a + 4) | 0 + n = (a + 100) | 0 + o = b + b = 0 + a: while (1) { + switch (o | 0) { + case 46: { + p = 6 + break a + break + } + case 48: + break + default: { + q = 0 + r = o + s = b + t = 0 + v = 0 + break a + } + } + w = f[m >> 2] | 0 + if (w >>> 0 < (f[n >> 2] | 0) >>> 0) { + f[m >> 2] = w + 1 + o = h[w >> 0] | 0 + b = 1 + continue + } else { + o = Si(a) | 0 + b = 1 + continue + } + } + if ((p | 0) == 6) { + o = f[m >> 2] | 0 + if (o >>> 0 < (f[n >> 2] | 0) >>> 0) { + f[m >> 2] = o + 1 + x = h[o >> 0] | 0 + } else x = Si(a) | 0 + if ((x | 0) == 48) { + o = 0 + w = 0 + while (1) { + y = Vn(o | 0, w | 0, -1, -1) | 0 + z = I + A = f[m >> 2] | 0 + if (A >>> 0 < (f[n >> 2] | 0) >>> 0) { + f[m >> 2] = A + 1 + B = h[A >> 0] | 0 + } else B = Si(a) | 0 + if ((B | 0) == 48) { + o = y + w = z + } else { + q = 1 + r = B + s = 1 + t = y + v = z + break + } + } + } else { + q = 1 + r = x + s = b + t = 0 + v = 0 + } + } + f[j >> 2] = 0 + b = (r + -48) | 0 + x = (r | 0) == 46 + b: do + if (x | (b >>> 0 < 10)) { + B = (j + 496) | 0 + w = 0 + o = 0 + z = 0 + y = q + A = s + C = r + D = x + E = b + F = t + G = v + H = 0 + J = 0 + c: while (1) { + do + if (D) + if (!y) { + L = w + M = o + N = 1 + O = z + P = A + Q = H + R = J + S = H + T = J + } else break c + else { + U = Vn(H | 0, J | 0, 1, 0) | 0 + V = I + W = (C | 0) != 48 + if ((o | 0) >= 125) { + if (!W) { + L = w + M = o + N = y + O = z + P = A + Q = F + R = G + S = U + T = V + break + } + f[B >> 2] = f[B >> 2] | 1 + L = w + M = o + N = y + O = z + P = A + Q = F + R = G + S = U + T = V + break + } + Y = (j + (o << 2)) | 0 + if (!w) Z = E + else Z = (C + -48 + (((f[Y >> 2] | 0) * 10) | 0)) | 0 + f[Y >> 2] = Z + Y = (w + 1) | 0 + _ = (Y | 0) == 9 + L = _ ? 0 : Y + M = (o + (_ & 1)) | 0 + N = y + O = W ? U : z + P = 1 + Q = F + R = G + S = U + T = V + } + while (0) + V = f[m >> 2] | 0 + if (V >>> 0 < (f[n >> 2] | 0) >>> 0) { + f[m >> 2] = V + 1 + $ = h[V >> 0] | 0 + } else $ = Si(a) | 0 + E = ($ + -48) | 0 + D = ($ | 0) == 46 + if (!(D | (E >>> 0 < 10))) { + aa = L + ba = M + ca = O + da = N + ea = $ + fa = P + ga = S + ha = Q + ia = T + ja = R + p = 29 + break b + } else { + w = L + o = M + z = O + y = N + A = P + C = $ + F = Q + G = R + H = S + J = T + } + } + ka = w + la = o + ma = z + na = H + oa = J + pa = F + qa = G + ra = (A | 0) != 0 + p = 37 + } else { + aa = 0 + ba = 0 + ca = 0 + da = q + ea = r + fa = s + ga = 0 + ha = t + ia = 0 + ja = v + p = 29 + } + while (0) + do + if ((p | 0) == 29) { + v = (da | 0) == 0 + t = v ? ga : ha + s = v ? ia : ja + v = (fa | 0) != 0 + if (!(v & ((ea | 32 | 0) == 101))) + if ((ea | 0) > -1) { + ka = aa + la = ba + ma = ca + na = ga + oa = ia + pa = t + qa = s + ra = v + p = 37 + break + } else { + sa = aa + ta = ba + ua = ca + va = ga + wa = ia + xa = v + ya = t + za = s + p = 39 + break + } + v = Re(a, g) | 0 + r = I + if (((v | 0) == 0) & ((r | 0) == -2147483648)) { + if (!g) { + Ym(a, 0) + Aa = 0.0 + break + } + if (!(f[n >> 2] | 0)) { + Ba = 0 + Ca = 0 + } else { + f[m >> 2] = (f[m >> 2] | 0) + -1 + Ba = 0 + Ca = 0 + } + } else { + Ba = v + Ca = r + } + r = Vn(Ba | 0, Ca | 0, t | 0, s | 0) | 0 + Da = aa + Ea = ba + Fa = ca + Ga = r + Ha = ga + Ia = I + Ja = ia + p = 41 + } + while (0) + if ((p | 0) == 37) + if (f[n >> 2] | 0) { + f[m >> 2] = (f[m >> 2] | 0) + -1 + if (ra) { + Da = ka + Ea = la + Fa = ma + Ga = pa + Ha = na + Ia = qa + Ja = oa + p = 41 + } else p = 40 + } else { + sa = ka + ta = la + ua = ma + va = na + wa = oa + xa = ra + ya = pa + za = qa + p = 39 + } + if ((p | 0) == 39) + if (xa) { + Da = sa + Ea = ta + Fa = ua + Ga = ya + Ha = va + Ia = za + Ja = wa + p = 41 + } else p = 40 + do + if ((p | 0) == 40) { + wa = Vq() | 0 + f[wa >> 2] = 22 + Ym(a, 0) + Aa = 0.0 + } else if ((p | 0) == 41) { + wa = f[j >> 2] | 0 + if (!wa) { + Aa = +(e | 0) * 0.0 + break + } + if ( + (((Ja | 0) < 0) | (((Ja | 0) == 0) & (Ha >>> 0 < 10))) & + (((Ga | 0) == (Ha | 0)) & ((Ia | 0) == (Ja | 0))) + ? ((c | 0) > 30) | (((wa >>> c) | 0) == 0) + : 0 + ) { + Aa = +(e | 0) * +(wa >>> 0) + break + } + wa = ((d | 0) / -2) | 0 + za = (((wa | 0) < 0) << 31) >> 31 + if ( + ((Ia | 0) > (za | 0)) | + (((Ia | 0) == (za | 0)) & (Ga >>> 0 > wa >>> 0)) + ) { + wa = Vq() | 0 + f[wa >> 2] = 34 + Aa = + +(e | 0) * + 1797693134862315708145274.0e284 * + 1797693134862315708145274.0e284 + break + } + wa = (d + -106) | 0 + za = (((wa | 0) < 0) << 31) >> 31 + if ( + ((Ia | 0) < (za | 0)) | + (((Ia | 0) == (za | 0)) & (Ga >>> 0 < wa >>> 0)) + ) { + wa = Vq() | 0 + f[wa >> 2] = 34 + Aa = +(e | 0) * 2.2250738585072014e-308 * 2.2250738585072014e-308 + break + } + if (!Da) Ka = Ea + else { + if ((Da | 0) < 9) { + wa = (j + (Ea << 2)) | 0 + za = Da + va = f[wa >> 2] | 0 + while (1) { + va = (va * 10) | 0 + if ((za | 0) >= 8) break + else za = (za + 1) | 0 + } + f[wa >> 2] = va + } + Ka = (Ea + 1) | 0 + } + if ((Fa | 0) < 9 ? ((Fa | 0) <= (Ga | 0)) & ((Ga | 0) < 18) : 0) { + if ((Ga | 0) == 9) { + Aa = +(e | 0) * +((f[j >> 2] | 0) >>> 0) + break + } + if ((Ga | 0) < 9) { + Aa = + (+(e | 0) * +((f[j >> 2] | 0) >>> 0)) / + +(f[(6720 + ((8 - Ga) << 2)) >> 2] | 0) + break + } + za = (c + 27 + (X(Ga, -3) | 0)) | 0 + A = f[j >> 2] | 0 + if (((za | 0) > 30) | (((A >>> za) | 0) == 0)) { + Aa = + +(e | 0) * + +(A >>> 0) * + +(f[(6720 + ((Ga + -10) << 2)) >> 2] | 0) + break + } + } + A = (Ga | 0) % 9 | 0 + if (!A) { + La = 0 + Ma = Ka + Na = 0 + Oa = Ga + } else { + za = (Ga | 0) > -1 ? A : (A + 9) | 0 + A = f[(6720 + ((8 - za) << 2)) >> 2] | 0 + if (Ka) { + G = (1e9 / (A | 0)) | 0 + F = 0 + J = 0 + H = Ga + z = 0 + do { + o = (j + (z << 2)) | 0 + w = f[o >> 2] | 0 + ya = ((((w >>> 0) / (A >>> 0)) | 0) + F) | 0 + f[o >> 2] = ya + F = X(G, (w >>> 0) % (A >>> 0) | 0) | 0 + w = ((z | 0) == (J | 0)) & ((ya | 0) == 0) + H = w ? (H + -9) | 0 : H + J = w ? (J + 1) & 127 : J + z = (z + 1) | 0 + } while ((z | 0) != (Ka | 0)) + if (!F) { + Pa = J + Qa = Ka + Ra = H + } else { + f[(j + (Ka << 2)) >> 2] = F + Pa = J + Qa = (Ka + 1) | 0 + Ra = H + } + } else { + Pa = 0 + Qa = 0 + Ra = Ga + } + La = 0 + Ma = Qa + Na = Pa + Oa = (9 - za + Ra) | 0 + } + d: while (1) { + z = (Oa | 0) < 18 + A = (Oa | 0) == 18 + G = (j + (Na << 2)) | 0 + va = La + wa = Ma + while (1) { + if (!z) { + if (!A) { + Sa = va + Ta = Na + Ua = Oa + Va = wa + break d + } + if ((f[G >> 2] | 0) >>> 0 >= 9007199) { + Sa = va + Ta = Na + Ua = 18 + Va = wa + break d + } + } + w = 0 + Wa = wa + ya = (wa + 127) | 0 + while (1) { + o = ya & 127 + ua = (j + (o << 2)) | 0 + ta = Tn(f[ua >> 2] | 0, 0, 29) | 0 + sa = Vn(ta | 0, I | 0, w | 0, 0) | 0 + ta = I + if ((ta >>> 0 > 0) | (((ta | 0) == 0) & (sa >>> 0 > 1e9))) { + xa = jp(sa | 0, ta | 0, 1e9, 0) | 0 + qa = hn(sa | 0, ta | 0, 1e9, 0) | 0 + Xa = xa + Ya = qa + } else { + Xa = 0 + Ya = sa + } + f[ua >> 2] = Ya + ua = (o | 0) == (Na | 0) + Wa = + ((Ya | 0) == 0) & + ((((o | 0) != (((Wa + 127) & 127) | 0)) | ua) ^ 1) + ? o + : Wa + if (ua) break + else { + w = Xa + ya = (o + -1) | 0 + } + } + va = (va + -29) | 0 + if (Xa | 0) break + else wa = Wa + } + wa = (Na + 127) & 127 + G = (Wa + 127) & 127 + A = (j + (((Wa + 126) & 127) << 2)) | 0 + if ((wa | 0) == (Wa | 0)) { + f[A >> 2] = f[A >> 2] | f[(j + (G << 2)) >> 2] + Za = G + } else Za = Wa + f[(j + (wa << 2)) >> 2] = Xa + La = va + Ma = Za + Na = wa + Oa = (Oa + 9) | 0 + } + e: while (1) { + za = (Va + 1) & 127 + H = (j + (((Va + 127) & 127) << 2)) | 0 + J = Sa + F = Ta + wa = Ua + while (1) { + G = (wa | 0) == 18 + A = (wa | 0) > 27 ? 9 : 1 + _a = J + $a = F + while (1) { + z = 0 + while (1) { + ya = (z + $a) & 127 + if ((ya | 0) == (Va | 0)) { + ab = 2 + p = 88 + break + } + w = f[(j + (ya << 2)) >> 2] | 0 + ya = f[(6752 + (z << 2)) >> 2] | 0 + if (w >>> 0 < ya >>> 0) { + ab = 2 + p = 88 + break + } + if (w >>> 0 > ya >>> 0) break + ya = (z + 1) | 0 + if ((z | 0) < 1) z = ya + else { + ab = ya + p = 88 + break + } + } + if ((p | 0) == 88 ? ((p = 0), G & ((ab | 0) == 2)) : 0) { + bb = 0.0 + cb = 0 + db = Va + break e + } + eb = (A + _a) | 0 + if (($a | 0) == (Va | 0)) { + _a = eb + $a = Va + } else break + } + G = ((1 << A) + -1) | 0 + z = 1e9 >>> A + fb = 0 + gb = $a + hb = wa + ya = $a + do { + w = (j + (ya << 2)) | 0 + o = f[w >> 2] | 0 + ua = ((o >>> A) + fb) | 0 + f[w >> 2] = ua + fb = X(o & G, z) | 0 + o = ((ya | 0) == (gb | 0)) & ((ua | 0) == 0) + hb = o ? (hb + -9) | 0 : hb + gb = o ? (gb + 1) & 127 : gb + ya = (ya + 1) & 127 + } while ((ya | 0) != (Va | 0)) + if (!fb) { + J = eb + F = gb + wa = hb + continue + } + if ((za | 0) != (gb | 0)) break + f[H >> 2] = f[H >> 2] | 1 + J = eb + F = gb + wa = hb + } + f[(j + (Va << 2)) >> 2] = fb + Sa = eb + Ta = gb + Ua = hb + Va = za + } + while (1) { + wa = (cb + $a) & 127 + F = (db + 1) & 127 + if ((wa | 0) == (db | 0)) { + f[(j + ((F + -1) << 2)) >> 2] = 0 + ib = F + } else ib = db + bb = bb * 1.0e9 + +((f[(j + (wa << 2)) >> 2] | 0) >>> 0) + cb = (cb + 1) | 0 + if ((cb | 0) == 2) break + else db = ib + } + jb = +(e | 0) + kb = bb * jb + wa = (_a + 53) | 0 + F = (wa - d) | 0 + J = (F | 0) < (c | 0) + H = J ? ((F | 0) > 0 ? F : 0) : c + if ((H | 0) < 53) { + lb = +rq(+bk(1.0, (105 - H) | 0), kb) + mb = +Dq(kb, +bk(1.0, (53 - H) | 0)) + nb = lb + ob = mb + pb = lb + (kb - mb) + } else { + nb = 0.0 + ob = 0.0 + pb = kb + } + va = ($a + 2) & 127 + if ((va | 0) != (ib | 0)) { + ya = f[(j + (va << 2)) >> 2] | 0 + do + if (ya >>> 0 >= 5e8) { + if ((ya | 0) != 5e8) { + qb = jb * 0.75 + ob + break + } + if (((($a + 3) & 127) | 0) == (ib | 0)) { + qb = jb * 0.5 + ob + break + } else { + qb = jb * 0.75 + ob + break + } + } else { + if ((ya | 0) == 0 ? ((($a + 3) & 127) | 0) == (ib | 0) : 0) { + qb = ob + break + } + qb = jb * 0.25 + ob + } + while (0) + if (((53 - H) | 0) > 1 ? !(+Dq(qb, 1.0) != 0.0) : 0) rb = qb + 1.0 + else rb = qb + } else rb = ob + jb = pb + rb - nb + do + if (((wa & 2147483647) | 0) > ((-2 - k) | 0)) { + ya = !(+K(+jb) >= 9007199254740992.0) + va = (_a + ((ya ^ 1) & 1)) | 0 + kb = ya ? jb : jb * 0.5 + if ( + ((va + 50) | 0) <= (l | 0) + ? !((rb != 0.0) & (J & (((H | 0) != (F | 0)) | ya))) + : 0 + ) { + sb = kb + tb = va + break + } + ya = Vq() | 0 + f[ya >> 2] = 34 + sb = kb + tb = va + } else { + sb = jb + tb = _a + } + while (0) + Aa = +sq(sb, tb) + } + while (0) + u = i + return +Aa + } + function ob(a, c, d, e, g, i) { + a = a | 0 + c = +c + d = d | 0 + e = e | 0 + g = g | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0.0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0.0, + C = 0, + D = 0.0, + E = 0, + F = 0, + G = 0, + H = 0.0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0.0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0.0, + ga = 0.0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0 + j = u + u = (u + 560) | 0 + k = (j + 8) | 0 + l = j + m = (j + 524) | 0 + n = m + o = (j + 512) | 0 + f[l >> 2] = 0 + p = (o + 12) | 0 + yo(c) | 0 + if ((I | 0) < 0) { + q = -c + r = 1 + s = 16605 + } else { + q = c + r = (((g & 2049) | 0) != 0) & 1 + s = ((g & 2048) | 0) == 0 ? (((g & 1) | 0) == 0 ? 16606 : 16611) : 16608 + } + yo(q) | 0 + do + if ((0 == 0) & (((I & 2146435072) | 0) == 2146435072)) { + t = ((i & 32) | 0) != 0 + v = (r + 3) | 0 + Qk(a, 32, d, v, g & -65537) + Xo(a, s, r) + Xo( + a, + (q != q) | (0.0 != 0.0) ? (t ? 18555 : 16632) : t ? 16624 : 16628, + 3, + ) + Qk(a, 32, d, v, g ^ 8192) + w = v + } else { + c = +tq(q, l) * 2.0 + v = c != 0.0 + if (v) f[l >> 2] = (f[l >> 2] | 0) + -1 + t = i | 32 + if ((t | 0) == 97) { + x = i & 32 + y = (x | 0) == 0 ? s : (s + 9) | 0 + z = r | 2 + A = (12 - e) | 0 + do + if (!((e >>> 0 > 11) | ((A | 0) == 0))) { + B = 8.0 + C = A + do { + C = (C + -1) | 0 + B = B * 16.0 + } while ((C | 0) != 0) + if ((b[y >> 0] | 0) == 45) { + D = -(B + (-c - B)) + break + } else { + D = c + B - B + break + } + } else D = c + while (0) + A = f[l >> 2] | 0 + C = (A | 0) < 0 ? (0 - A) | 0 : A + E = Rj(C, (((C | 0) < 0) << 31) >> 31, p) | 0 + if ((E | 0) == (p | 0)) { + C = (o + 11) | 0 + b[C >> 0] = 48 + F = C + } else F = E + b[(F + -1) >> 0] = ((A >> 31) & 2) + 43 + A = (F + -2) | 0 + b[A >> 0] = i + 15 + E = (e | 0) < 1 + C = ((g & 8) | 0) == 0 + G = m + H = D + while (1) { + J = ~~H + K = (G + 1) | 0 + b[G >> 0] = x | h[(16636 + J) >> 0] + H = (H - +(J | 0)) * 16.0 + if (((K - n) | 0) == 1 ? !(C & (E & (H == 0.0))) : 0) { + b[K >> 0] = 46 + L = (G + 2) | 0 + } else L = K + if (!(H != 0.0)) break + else G = L + } + G = L + if ((e | 0) != 0 ? ((-2 - n + G) | 0) < (e | 0) : 0) { + M = (G - n) | 0 + N = (e + 2) | 0 + } else { + E = (G - n) | 0 + M = E + N = E + } + E = (p - A) | 0 + G = (E + z + N) | 0 + Qk(a, 32, d, G, g) + Xo(a, y, z) + Qk(a, 48, d, G, g ^ 65536) + Xo(a, m, M) + Qk(a, 48, (N - M) | 0, 0, 0) + Xo(a, A, E) + Qk(a, 32, d, G, g ^ 8192) + w = G + break + } + G = (e | 0) < 0 ? 6 : e + if (v) { + E = ((f[l >> 2] | 0) + -28) | 0 + f[l >> 2] = E + O = c * 268435456.0 + P = E + } else { + O = c + P = f[l >> 2] | 0 + } + E = (P | 0) < 0 ? k : (k + 288) | 0 + C = E + H = O + do { + x = ~~H >>> 0 + f[C >> 2] = x + C = (C + 4) | 0 + H = (H - +(x >>> 0)) * 1.0e9 + } while (H != 0.0) + if ((P | 0) > 0) { + v = E + A = C + z = P + while (1) { + y = (z | 0) < 29 ? z : 29 + x = (A + -4) | 0 + if (x >>> 0 >= v >>> 0) { + K = x + x = 0 + do { + J = Tn(f[K >> 2] | 0, 0, y | 0) | 0 + Q = Vn(J | 0, I | 0, x | 0, 0) | 0 + J = I + R = hn(Q | 0, J | 0, 1e9, 0) | 0 + f[K >> 2] = R + x = jp(Q | 0, J | 0, 1e9, 0) | 0 + K = (K + -4) | 0 + } while (K >>> 0 >= v >>> 0) + if (x) { + K = (v + -4) | 0 + f[K >> 2] = x + S = K + } else S = v + } else S = v + K = A + while (1) { + if (K >>> 0 <= S >>> 0) break + J = (K + -4) | 0 + if (!(f[J >> 2] | 0)) K = J + else break + } + x = ((f[l >> 2] | 0) - y) | 0 + f[l >> 2] = x + if ((x | 0) > 0) { + v = S + A = K + z = x + } else { + T = S + U = K + V = x + break + } + } + } else { + T = E + U = C + V = P + } + if ((V | 0) < 0) { + z = (((((G + 25) | 0) / 9) | 0) + 1) | 0 + A = (t | 0) == 102 + v = T + x = U + J = V + while (1) { + Q = (0 - J) | 0 + R = (Q | 0) < 9 ? Q : 9 + if (v >>> 0 < x >>> 0) { + Q = ((1 << R) + -1) | 0 + W = 1e9 >>> R + Y = 0 + Z = v + do { + _ = f[Z >> 2] | 0 + f[Z >> 2] = (_ >>> R) + Y + Y = X(_ & Q, W) | 0 + Z = (Z + 4) | 0 + } while (Z >>> 0 < x >>> 0) + Z = (f[v >> 2] | 0) == 0 ? (v + 4) | 0 : v + if (!Y) { + $ = Z + aa = x + } else { + f[x >> 2] = Y + $ = Z + aa = (x + 4) | 0 + } + } else { + $ = (f[v >> 2] | 0) == 0 ? (v + 4) | 0 : v + aa = x + } + Z = A ? E : $ + W = (((aa - Z) >> 2) | 0) > (z | 0) ? (Z + (z << 2)) | 0 : aa + J = ((f[l >> 2] | 0) + R) | 0 + f[l >> 2] = J + if ((J | 0) >= 0) { + ba = $ + ca = W + break + } else { + v = $ + x = W + } + } + } else { + ba = T + ca = U + } + x = E + if (ba >>> 0 < ca >>> 0) { + v = (((x - ba) >> 2) * 9) | 0 + J = f[ba >> 2] | 0 + if (J >>> 0 < 10) da = v + else { + z = v + v = 10 + while (1) { + v = (v * 10) | 0 + A = (z + 1) | 0 + if (J >>> 0 < v >>> 0) { + da = A + break + } else z = A + } + } + } else da = 0 + z = (t | 0) == 103 + v = (G | 0) != 0 + J = (G - ((t | 0) != 102 ? da : 0) + (((v & z) << 31) >> 31)) | 0 + if ((J | 0) < ((((((ca - x) >> 2) * 9) | 0) + -9) | 0)) { + A = (J + 9216) | 0 + J = (E + 4 + (((((A | 0) / 9) | 0) + -1024) << 2)) | 0 + C = (A | 0) % 9 | 0 + if ((C | 0) < 8) { + A = C + C = 10 + while (1) { + W = (C * 10) | 0 + if ((A | 0) < 7) { + A = (A + 1) | 0 + C = W + } else { + ea = W + break + } + } + } else ea = 10 + C = f[J >> 2] | 0 + A = (C >>> 0) % (ea >>> 0) | 0 + t = ((J + 4) | 0) == (ca | 0) + if (!(t & ((A | 0) == 0))) { + B = + (((((C >>> 0) / (ea >>> 0)) | 0) & 1) | 0) == 0 + ? 9007199254740992.0 + : 9007199254740994.0 + W = ((ea | 0) / 2) | 0 + H = A >>> 0 < W >>> 0 ? 0.5 : t & ((A | 0) == (W | 0)) ? 1.0 : 1.5 + if (!r) { + fa = H + ga = B + } else { + W = (b[s >> 0] | 0) == 45 + fa = W ? -H : H + ga = W ? -B : B + } + W = (C - A) | 0 + f[J >> 2] = W + if (ga + fa != ga) { + A = (W + ea) | 0 + f[J >> 2] = A + if (A >>> 0 > 999999999) { + A = ba + W = J + while (1) { + C = (W + -4) | 0 + f[W >> 2] = 0 + if (C >>> 0 < A >>> 0) { + t = (A + -4) | 0 + f[t >> 2] = 0 + ha = t + } else ha = A + t = ((f[C >> 2] | 0) + 1) | 0 + f[C >> 2] = t + if (t >>> 0 > 999999999) { + A = ha + W = C + } else { + ia = ha + ja = C + break + } + } + } else { + ia = ba + ja = J + } + W = (((x - ia) >> 2) * 9) | 0 + A = f[ia >> 2] | 0 + if (A >>> 0 < 10) { + ka = ja + la = W + ma = ia + } else { + C = W + W = 10 + while (1) { + W = (W * 10) | 0 + t = (C + 1) | 0 + if (A >>> 0 < W >>> 0) { + ka = ja + la = t + ma = ia + break + } else C = t + } + } + } else { + ka = J + la = da + ma = ba + } + } else { + ka = J + la = da + ma = ba + } + C = (ka + 4) | 0 + na = la + oa = ca >>> 0 > C >>> 0 ? C : ca + pa = ma + } else { + na = da + oa = ca + pa = ba + } + C = oa + while (1) { + if (C >>> 0 <= pa >>> 0) { + qa = 0 + break + } + W = (C + -4) | 0 + if (!(f[W >> 2] | 0)) C = W + else { + qa = 1 + break + } + } + J = (0 - na) | 0 + do + if (z) { + W = (G + ((v ^ 1) & 1)) | 0 + if (((W | 0) > (na | 0)) & ((na | 0) > -5)) { + ra = (i + -1) | 0 + sa = (W + -1 - na) | 0 + } else { + ra = (i + -2) | 0 + sa = (W + -1) | 0 + } + W = g & 8 + if (!W) { + if (qa ? ((A = f[(C + -4) >> 2] | 0), (A | 0) != 0) : 0) + if (!((A >>> 0) % 10 | 0)) { + t = 0 + Z = 10 + while (1) { + Z = (Z * 10) | 0 + Q = (t + 1) | 0 + if ((A >>> 0) % (Z >>> 0) | 0 | 0) { + ta = Q + break + } else t = Q + } + } else ta = 0 + else ta = 9 + t = (((((C - x) >> 2) * 9) | 0) + -9) | 0 + if ((ra | 32 | 0) == 102) { + Z = (t - ta) | 0 + A = (Z | 0) > 0 ? Z : 0 + ua = ra + va = (sa | 0) < (A | 0) ? sa : A + wa = 0 + break + } else { + A = (t + na - ta) | 0 + t = (A | 0) > 0 ? A : 0 + ua = ra + va = (sa | 0) < (t | 0) ? sa : t + wa = 0 + break + } + } else { + ua = ra + va = sa + wa = W + } + } else { + ua = i + va = G + wa = g & 8 + } + while (0) + G = va | wa + x = ((G | 0) != 0) & 1 + v = (ua | 32 | 0) == 102 + if (v) { + xa = 0 + ya = (na | 0) > 0 ? na : 0 + } else { + z = (na | 0) < 0 ? J : na + t = Rj(z, (((z | 0) < 0) << 31) >> 31, p) | 0 + z = p + if (((z - t) | 0) < 2) { + A = t + while (1) { + Z = (A + -1) | 0 + b[Z >> 0] = 48 + if (((z - Z) | 0) < 2) A = Z + else { + za = Z + break + } + } + } else za = t + b[(za + -1) >> 0] = ((na >> 31) & 2) + 43 + A = (za + -2) | 0 + b[A >> 0] = ua + xa = A + ya = (z - A) | 0 + } + A = (r + 1 + va + x + ya) | 0 + Qk(a, 32, d, A, g) + Xo(a, s, r) + Qk(a, 48, d, A, g ^ 65536) + if (v) { + J = pa >>> 0 > E >>> 0 ? E : pa + Z = (m + 9) | 0 + R = Z + Y = (m + 8) | 0 + Q = J + do { + K = Rj(f[Q >> 2] | 0, 0, Z) | 0 + if ((Q | 0) == (J | 0)) + if ((K | 0) == (Z | 0)) { + b[Y >> 0] = 48 + Aa = Y + } else Aa = K + else if (K >>> 0 > m >>> 0) { + sj(m | 0, 48, (K - n) | 0) | 0 + y = K + while (1) { + _ = (y + -1) | 0 + if (_ >>> 0 > m >>> 0) y = _ + else { + Aa = _ + break + } + } + } else Aa = K + Xo(a, Aa, (R - Aa) | 0) + Q = (Q + 4) | 0 + } while (Q >>> 0 <= E >>> 0) + if (G | 0) Xo(a, 16652, 1) + if ((Q >>> 0 < C >>> 0) & ((va | 0) > 0)) { + E = va + R = Q + while (1) { + Y = Rj(f[R >> 2] | 0, 0, Z) | 0 + if (Y >>> 0 > m >>> 0) { + sj(m | 0, 48, (Y - n) | 0) | 0 + J = Y + while (1) { + v = (J + -1) | 0 + if (v >>> 0 > m >>> 0) J = v + else { + Ba = v + break + } + } + } else Ba = Y + Xo(a, Ba, (E | 0) < 9 ? E : 9) + R = (R + 4) | 0 + J = (E + -9) | 0 + if (!((R >>> 0 < C >>> 0) & ((E | 0) > 9))) { + Ca = J + break + } else E = J + } + } else Ca = va + Qk(a, 48, (Ca + 9) | 0, 9, 0) + } else { + E = qa ? C : (pa + 4) | 0 + if ((va | 0) > -1) { + R = (m + 9) | 0 + Z = (wa | 0) == 0 + Q = R + G = (0 - n) | 0 + J = (m + 8) | 0 + K = va + v = pa + while (1) { + x = Rj(f[v >> 2] | 0, 0, R) | 0 + if ((x | 0) == (R | 0)) { + b[J >> 0] = 48 + Da = J + } else Da = x + do + if ((v | 0) == (pa | 0)) { + x = (Da + 1) | 0 + Xo(a, Da, 1) + if (Z & ((K | 0) < 1)) { + Ea = x + break + } + Xo(a, 16652, 1) + Ea = x + } else { + if (Da >>> 0 <= m >>> 0) { + Ea = Da + break + } + sj(m | 0, 48, (Da + G) | 0) | 0 + x = Da + while (1) { + z = (x + -1) | 0 + if (z >>> 0 > m >>> 0) x = z + else { + Ea = z + break + } + } + } + while (0) + Y = (Q - Ea) | 0 + Xo(a, Ea, (K | 0) > (Y | 0) ? Y : K) + x = (K - Y) | 0 + v = (v + 4) | 0 + if (!((v >>> 0 < E >>> 0) & ((x | 0) > -1))) { + Fa = x + break + } else K = x + } + } else Fa = va + Qk(a, 48, (Fa + 18) | 0, 18, 0) + Xo(a, xa, (p - xa) | 0) + } + Qk(a, 32, d, A, g ^ 8192) + w = A + } + while (0) + u = j + return ((w | 0) < (d | 0) ? d : w) | 0 + } + function pb(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0 + c = u + u = (u + 64) | 0 + d = (c + 56) | 0 + e = (c + 52) | 0 + g = (c + 48) | 0 + h = (c + 60) | 0 + i = c + j = (c + 44) | 0 + k = (c + 40) | 0 + l = (c + 36) | 0 + m = (c + 32) | 0 + n = (c + 28) | 0 + o = (c + 24) | 0 + p = (c + 20) | 0 + q = (c + 16) | 0 + r = (c + 12) | 0 + if (!(b[(a + 288) >> 0] | 0)) { + _e(d, f[(a + 8) >> 2] | 0) + s = (a + 12) | 0 + t = f[d >> 2] | 0 + f[d >> 2] = 0 + v = f[s >> 2] | 0 + f[s >> 2] = t + if (v) { + Ii(v) + Oq(v) + v = f[d >> 2] | 0 + f[d >> 2] = 0 + if (v | 0) { + Ii(v) + Oq(v) + } + } else f[d >> 2] = 0 + } else { + fh(d, f[(a + 8) >> 2] | 0) + v = (a + 12) | 0 + t = f[d >> 2] | 0 + f[d >> 2] = 0 + s = f[v >> 2] | 0 + f[v >> 2] = t + if (s) { + Ii(s) + Oq(s) + s = f[d >> 2] | 0 + f[d >> 2] = 0 + if (s | 0) { + Ii(s) + Oq(s) + } + } else f[d >> 2] = 0 + } + s = (a + 12) | 0 + t = f[s >> 2] | 0 + if (!t) { + w = 0 + u = c + return w | 0 + } + if ( + ((((((f[(t + 4) >> 2] | 0) - (f[t >> 2] | 0)) >> 2) >>> 0) / 3) | + 0 | + 0) == + (f[(t + 40) >> 2] | 0) + ) { + w = 0 + u = c + return w | 0 + } + v = (a + 200) | 0 + f[(a + 264) >> 2] = a + x = (a + 4) | 0 + ci( + ((((f[(t + 28) >> 2] | 0) - (f[(t + 24) >> 2] | 0)) >> 2) - + (f[(t + 44) >> 2] | 0)) | + 0, + f[((f[x >> 2] | 0) + 44) >> 2] | 0, + ) | 0 + t = f[s >> 2] | 0 + ci( + (((((((f[(t + 4) >> 2] | 0) - (f[t >> 2] | 0)) >> 2) >>> 0) / 3) | 0) - + (f[(t + 40) >> 2] | 0)) | + 0, + f[((f[x >> 2] | 0) + 44) >> 2] | 0, + ) | 0 + t = (a + 28) | 0 + y = (a + 8) | 0 + z = f[y >> 2] | 0 + A = ((((f[(z + 100) >> 2] | 0) - (f[(z + 96) >> 2] | 0)) | 0) / 12) | 0 + b[d >> 0] = 0 + qh(t, A, d) + A = f[s >> 2] | 0 + z = ((f[(A + 28) >> 2] | 0) - (f[(A + 24) >> 2] | 0)) >> 2 + f[d >> 2] = -1 + hg((a + 52) | 0, z, d) + z = (a + 40) | 0 + A = f[z >> 2] | 0 + B = (a + 44) | 0 + C = f[B >> 2] | 0 + if ((C | 0) != (A | 0)) f[B >> 2] = C + (~(((C + -4 - A) | 0) >>> 2) << 2) + A = f[s >> 2] | 0 + C = ((f[(A + 4) >> 2] | 0) - (f[A >> 2] | 0)) >> 2 + gk(z, (C - ((C >>> 0) % 3 | 0)) | 0) + C = (a + 84) | 0 + z = f[s >> 2] | 0 + A = ((f[(z + 28) >> 2] | 0) - (f[(z + 24) >> 2] | 0)) >> 2 + b[d >> 0] = 0 + qh(C, A, d) + A = (a + 96) | 0 + z = f[A >> 2] | 0 + B = (a + 100) | 0 + D = f[B >> 2] | 0 + if ((D | 0) != (z | 0)) f[B >> 2] = D + (~(((D + -4 - z) | 0) >>> 2) << 2) + f[(a + 164) >> 2] = -1 + z = (a + 168) | 0 + f[z >> 2] = 0 + D = f[(a + 108) >> 2] | 0 + E = (a + 112) | 0 + F = f[E >> 2] | 0 + if ((F | 0) != (D | 0)) + f[E >> 2] = F + ((~(((((F + -12 - D) | 0) >>> 0) / 12) | 0) * 12) | 0) + D = (a + 132) | 0 + if (f[D >> 2] | 0) { + F = (a + 128) | 0 + E = f[F >> 2] | 0 + if (E | 0) { + G = E + do { + E = G + G = f[G >> 2] | 0 + Oq(E) + } while ((G | 0) != 0) + } + f[F >> 2] = 0 + F = f[(a + 124) >> 2] | 0 + if (F | 0) { + G = (a + 120) | 0 + E = 0 + do { + f[((f[G >> 2] | 0) + (E << 2)) >> 2] = 0 + E = (E + 1) | 0 + } while ((E | 0) != (F | 0)) + } + f[D >> 2] = 0 + } + f[(a + 144) >> 2] = 0 + D = f[s >> 2] | 0 + F = ((f[(D + 28) >> 2] | 0) - (f[(D + 24) >> 2] | 0)) >> 2 + f[d >> 2] = -1 + hg((a + 152) | 0, F, d) + F = (a + 72) | 0 + D = f[F >> 2] | 0 + E = (a + 76) | 0 + G = f[E >> 2] | 0 + if ((G | 0) != (D | 0)) f[E >> 2] = G + (~(((G + -4 - D) | 0) >>> 2) << 2) + D = f[s >> 2] | 0 + gk(F, (((((f[(D + 4) >> 2] | 0) - (f[D >> 2] | 0)) >> 2) >>> 0) / 3) | 0) + f[(a + 64) >> 2] = 0 + if (!(Be(a) | 0)) { + w = 0 + u = c + return w | 0 + } + if (!(Hg(a) | 0)) { + w = 0 + u = c + return w | 0 + } + D = (a + 172) | 0 + G = (a + 176) | 0 + H = (((((f[G >> 2] | 0) - (f[D >> 2] | 0)) | 0) / 136) | 0) & 255 + b[h >> 0] = H + I = f[((f[x >> 2] | 0) + 44) >> 2] | 0 + J = (I + 16) | 0 + K = f[(J + 4) >> 2] | 0 + if (((K | 0) > 0) | (((K | 0) == 0) & ((f[J >> 2] | 0) >>> 0 > 0))) L = H + else { + f[e >> 2] = f[(I + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(I, d, h, (h + 1) | 0) | 0 + L = b[h >> 0] | 0 + } + h = (a + 284) | 0 + f[h >> 2] = L & 255 + L = f[s >> 2] | 0 + I = ((f[(L + 4) >> 2] | 0) - (f[L >> 2] | 0)) | 0 + L = I >> 2 + dj(v) + f[i >> 2] = 0 + H = (i + 4) | 0 + f[H >> 2] = 0 + f[(i + 8) >> 2] = 0 + a: do + if ((I | 0) > 0) { + J = (a + 104) | 0 + K = (i + 8) | 0 + M = 0 + b: while (1) { + N = ((M >>> 0) / 3) | 0 + O = N >>> 5 + P = 1 << (N & 31) + if ( + ((f[((f[t >> 2] | 0) + (O << 2)) >> 2] & P) | 0) == 0 + ? ((Q = f[s >> 2] | 0), + (f[j >> 2] = N), + (f[d >> 2] = f[j >> 2]), + !(_j(Q, d) | 0)) + : 0 + ) { + f[e >> 2] = 0 + f[k >> 2] = N + f[d >> 2] = f[k >> 2] + N = xg(a, d, e) | 0 + fj(v, N) + Q = f[e >> 2] | 0 + R = (Q | 0) == -1 + do + if (N) { + do + if (R) { + S = -1 + T = -1 + U = -1 + } else { + V = f[f[s >> 2] >> 2] | 0 + W = f[(V + (Q << 2)) >> 2] | 0 + X = (Q + 1) | 0 + Y = ((X >>> 0) % 3 | 0 | 0) == 0 ? (Q + -2) | 0 : X + if ((Y | 0) == -1) Z = -1 + else Z = f[(V + (Y << 2)) >> 2] | 0 + Y = ((((Q >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Q) | 0 + if ((Y | 0) == -1) { + S = W + T = -1 + U = Z + break + } + S = W + T = f[(V + (Y << 2)) >> 2] | 0 + U = Z + } + while (0) + Y = f[C >> 2] | 0 + V = (Y + ((S >>> 5) << 2)) | 0 + f[V >> 2] = f[V >> 2] | (1 << (S & 31)) + V = (Y + ((U >>> 5) << 2)) | 0 + f[V >> 2] = f[V >> 2] | (1 << (U & 31)) + V = (Y + ((T >>> 5) << 2)) | 0 + f[V >> 2] = f[V >> 2] | (1 << (T & 31)) + f[d >> 2] = 1 + V = f[B >> 2] | 0 + if (V >>> 0 < (f[J >> 2] | 0) >>> 0) { + f[V >> 2] = 1 + f[B >> 2] = V + 4 + } else Ri(A, d) + V = ((f[t >> 2] | 0) + (O << 2)) | 0 + f[V >> 2] = f[V >> 2] | P + V = (Q + 1) | 0 + if (R) _ = -1 + else _ = ((V >>> 0) % 3 | 0 | 0) == 0 ? (Q + -2) | 0 : V + f[d >> 2] = _ + Y = f[H >> 2] | 0 + if (Y >>> 0 < (f[K >> 2] | 0) >>> 0) { + f[Y >> 2] = _ + f[H >> 2] = Y + 4 + } else Ri(i, d) + if (R) break + Y = ((V >>> 0) % 3 | 0 | 0) == 0 ? (Q + -2) | 0 : V + if ((Y | 0) == -1) break + V = + f[((f[((f[s >> 2] | 0) + 12) >> 2] | 0) + (Y << 2)) >> 2] | + 0 + Y = (V | 0) == -1 + W = Y ? -1 : ((V >>> 0) / 3) | 0 + if (Y) break + if ( + (f[((f[t >> 2] | 0) + ((W >>> 5) << 2)) >> 2] & + (1 << (W & 31))) | + 0 + ) + break + f[l >> 2] = V + f[d >> 2] = f[l >> 2] + if (!(kc(a, d) | 0)) break b + } else { + V = (Q + 1) | 0 + if (R) $ = -1 + else $ = ((V >>> 0) % 3 | 0 | 0) == 0 ? (Q + -2) | 0 : V + f[m >> 2] = $ + f[d >> 2] = f[m >> 2] + Pe(a, d, 1) | 0 + f[n >> 2] = f[e >> 2] + f[d >> 2] = f[n >> 2] + if (!(kc(a, d) | 0)) break b + } + while (0) + } + M = (M + 1) | 0 + if ((M | 0) >= (L | 0)) { + aa = 62 + break a + } + } + ba = 0 + } else aa = 62 + while (0) + if ((aa | 0) == 62) { + aa = f[F >> 2] | 0 + L = f[E >> 2] | 0 + n = L + if ( + (aa | 0) != (L | 0) ? ((m = (L + -4) | 0), aa >>> 0 < m >>> 0) : 0 + ) { + L = aa + aa = m + do { + m = f[L >> 2] | 0 + f[L >> 2] = f[aa >> 2] + f[aa >> 2] = m + L = (L + 4) | 0 + aa = (aa + -4) | 0 + } while (L >>> 0 < aa >>> 0) + } + f[o >> 2] = n + f[p >> 2] = f[i >> 2] + f[q >> 2] = f[H >> 2] + f[g >> 2] = f[o >> 2] + f[e >> 2] = f[p >> 2] + f[d >> 2] = f[q >> 2] + Yd(F, g, e, d) | 0 + if ( + (f[G >> 2] | 0) != (f[D >> 2] | 0) + ? ((D = f[y >> 2] | 0), + (y = + ((((f[(D + 100) >> 2] | 0) - (f[(D + 96) >> 2] | 0)) | 0) / + 12) | + 0), + (b[d >> 0] = 0), + qh(t, y, d), + (y = f[F >> 2] | 0), + (F = f[E >> 2] | 0), + (y | 0) != (F | 0)) + : 0 + ) { + E = y + do { + f[r >> 2] = f[E >> 2] + f[d >> 2] = f[r >> 2] + He(a, d) | 0 + E = (E + 4) | 0 + } while ((E | 0) != (F | 0)) + } + th(v) + F = (a + 232) | 0 + ld(v, F) + v = (a + 280) | 0 + E = f[v >> 2] | 0 + if ( + (E | 0 ? (f[h >> 2] | 0) > 0 : 0) + ? (ld(E, F), (f[h >> 2] | 0) > 1) + : 0 + ) { + E = 1 + do { + ld(((f[v >> 2] | 0) + (E << 5)) | 0, F) + E = (E + 1) | 0 + } while ((E | 0) < (f[h >> 2] | 0)) + } + ci( + ((f[(a + 272) >> 2] | 0) - (f[(a + 268) >> 2] | 0)) >> 2, + f[((f[x >> 2] | 0) + 44) >> 2] | 0, + ) | 0 + ci(f[z >> 2] | 0, f[((f[x >> 2] | 0) + 44) >> 2] | 0) | 0 + if (bh(a) | 0) { + z = f[((f[x >> 2] | 0) + 44) >> 2] | 0 + x = f[F >> 2] | 0 + F = (z + 16) | 0 + h = f[(F + 4) >> 2] | 0 + if ( + !(((h | 0) > 0) | (((h | 0) == 0) & ((f[F >> 2] | 0) >>> 0 > 0))) + ) { + F = ((f[(a + 236) >> 2] | 0) - x) | 0 + f[e >> 2] = f[(z + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(z, d, x, (x + F) | 0) | 0 + } + ba = 1 + } else ba = 0 + } + F = f[i >> 2] | 0 + if (F | 0) { + i = f[H >> 2] | 0 + if ((i | 0) != (F | 0)) + f[H >> 2] = i + (~(((i + -4 - F) | 0) >>> 2) << 2) + Oq(F) + } + w = ba + u = c + return w | 0 + } + function qb(a, c, e, g, h) { + a = a | 0 + c = c | 0 + e = e | 0 + g = g | 0 + h = h | 0 + var i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0, + Aa = 0, + Ba = 0, + Ca = 0, + Da = 0, + Ea = 0, + Fa = 0, + Ga = 0, + Ha = 0, + Ia = 0 + i = u + u = (u + 64) | 0 + j = (i + 16) | 0 + k = i + l = (i + 24) | 0 + m = (i + 8) | 0 + n = (i + 20) | 0 + f[j >> 2] = c + c = (a | 0) != 0 + o = (l + 40) | 0 + q = o + r = (l + 39) | 0 + l = (m + 4) | 0 + s = 0 + t = 0 + v = 0 + a: while (1) { + do + if ((t | 0) > -1) + if ((s | 0) > ((2147483647 - t) | 0)) { + w = Vq() | 0 + f[w >> 2] = 75 + x = -1 + break + } else { + x = (s + t) | 0 + break + } + else x = t + while (0) + w = f[j >> 2] | 0 + y = b[w >> 0] | 0 + if (!((y << 24) >> 24)) { + z = 88 + break + } else { + A = y + B = w + } + b: while (1) { + switch ((A << 24) >> 24) { + case 37: { + C = B + D = B + z = 9 + break b + break + } + case 0: { + E = B + break b + break + } + default: { + } + } + y = (B + 1) | 0 + f[j >> 2] = y + A = b[y >> 0] | 0 + B = y + } + c: do + if ((z | 0) == 9) + while (1) { + z = 0 + if ((b[(D + 1) >> 0] | 0) != 37) { + E = C + break c + } + y = (C + 1) | 0 + D = (D + 2) | 0 + f[j >> 2] = D + if ((b[D >> 0] | 0) != 37) { + E = y + break + } else { + C = y + z = 9 + } + } + while (0) + y = (E - w) | 0 + if (c) Xo(a, w, y) + if (y | 0) { + s = y + t = x + continue + } + y = (Aq(b[((f[j >> 2] | 0) + 1) >> 0] | 0) | 0) == 0 + F = f[j >> 2] | 0 + if (!y ? (b[(F + 2) >> 0] | 0) == 36 : 0) { + G = ((b[(F + 1) >> 0] | 0) + -48) | 0 + H = 1 + J = 3 + } else { + G = -1 + H = v + J = 1 + } + y = (F + J) | 0 + f[j >> 2] = y + F = b[y >> 0] | 0 + K = (((F << 24) >> 24) + -32) | 0 + if ((K >>> 0 > 31) | ((((1 << K) & 75913) | 0) == 0)) { + L = 0 + M = F + N = y + } else { + K = 0 + O = F + F = y + while (1) { + y = (1 << (((O << 24) >> 24) + -32)) | K + P = (F + 1) | 0 + f[j >> 2] = P + Q = b[P >> 0] | 0 + R = (((Q << 24) >> 24) + -32) | 0 + if ((R >>> 0 > 31) | ((((1 << R) & 75913) | 0) == 0)) { + L = y + M = Q + N = P + break + } else { + K = y + O = Q + F = P + } + } + } + if ((M << 24) >> 24 == 42) { + if ( + (Aq(b[(N + 1) >> 0] | 0) | 0) != 0 + ? ((F = f[j >> 2] | 0), (b[(F + 2) >> 0] | 0) == 36) + : 0 + ) { + O = (F + 1) | 0 + f[(h + (((b[O >> 0] | 0) + -48) << 2)) >> 2] = 10 + S = f[(g + (((b[O >> 0] | 0) + -48) << 3)) >> 2] | 0 + T = 1 + U = (F + 3) | 0 + } else { + if (H | 0) { + V = -1 + break + } + if (c) { + F = ((f[e >> 2] | 0) + (4 - 1)) & ~(4 - 1) + O = f[F >> 2] | 0 + f[e >> 2] = F + 4 + W = O + } else W = 0 + S = W + T = 0 + U = ((f[j >> 2] | 0) + 1) | 0 + } + f[j >> 2] = U + O = (S | 0) < 0 + X = O ? (0 - S) | 0 : S + Y = O ? L | 8192 : L + Z = T + _ = U + } else { + O = Ll(j) | 0 + if ((O | 0) < 0) { + V = -1 + break + } + X = O + Y = L + Z = H + _ = f[j >> 2] | 0 + } + do + if ((b[_ >> 0] | 0) == 46) { + if ((b[(_ + 1) >> 0] | 0) != 42) { + f[j >> 2] = _ + 1 + O = Ll(j) | 0 + $ = O + aa = f[j >> 2] | 0 + break + } + if ( + Aq(b[(_ + 2) >> 0] | 0) | 0 + ? ((O = f[j >> 2] | 0), (b[(O + 3) >> 0] | 0) == 36) + : 0 + ) { + F = (O + 2) | 0 + f[(h + (((b[F >> 0] | 0) + -48) << 2)) >> 2] = 10 + K = f[(g + (((b[F >> 0] | 0) + -48) << 3)) >> 2] | 0 + F = (O + 4) | 0 + f[j >> 2] = F + $ = K + aa = F + break + } + if (Z | 0) { + V = -1 + break a + } + if (c) { + F = ((f[e >> 2] | 0) + (4 - 1)) & ~(4 - 1) + K = f[F >> 2] | 0 + f[e >> 2] = F + 4 + ba = K + } else ba = 0 + K = ((f[j >> 2] | 0) + 2) | 0 + f[j >> 2] = K + $ = ba + aa = K + } else { + $ = -1 + aa = _ + } + while (0) + K = 0 + F = aa + while (1) { + if ((((b[F >> 0] | 0) + -65) | 0) >>> 0 > 57) { + V = -1 + break a + } + O = F + F = (F + 1) | 0 + f[j >> 2] = F + ca = b[((b[O >> 0] | 0) + -65 + (16124 + ((K * 58) | 0))) >> 0] | 0 + da = ca & 255 + if (((da + -1) | 0) >>> 0 >= 8) break + else K = da + } + if (!((ca << 24) >> 24)) { + V = -1 + break + } + O = (G | 0) > -1 + do + if ((ca << 24) >> 24 == 19) + if (O) { + V = -1 + break a + } else z = 50 + else { + if (O) { + f[(h + (G << 2)) >> 2] = da + P = (g + (G << 3)) | 0 + Q = f[(P + 4) >> 2] | 0 + y = k + f[y >> 2] = f[P >> 2] + f[(y + 4) >> 2] = Q + z = 50 + break + } + if (!c) { + V = 0 + break a + } + We(k, da, e) + ea = f[j >> 2] | 0 + } + while (0) + if ((z | 0) == 50) { + z = 0 + if (c) ea = F + else { + s = 0 + t = x + v = Z + continue + } + } + O = b[(ea + -1) >> 0] | 0 + Q = ((K | 0) != 0) & (((O & 15) | 0) == 3) ? O & -33 : O + O = Y & -65537 + y = ((Y & 8192) | 0) == 0 ? Y : O + d: do + switch (Q | 0) { + case 110: { + switch (((K & 255) << 24) >> 24) { + case 0: { + f[f[k >> 2] >> 2] = x + s = 0 + t = x + v = Z + continue a + break + } + case 1: { + f[f[k >> 2] >> 2] = x + s = 0 + t = x + v = Z + continue a + break + } + case 2: { + P = f[k >> 2] | 0 + f[P >> 2] = x + f[(P + 4) >> 2] = (((x | 0) < 0) << 31) >> 31 + s = 0 + t = x + v = Z + continue a + break + } + case 3: { + d[f[k >> 2] >> 1] = x + s = 0 + t = x + v = Z + continue a + break + } + case 4: { + b[f[k >> 2] >> 0] = x + s = 0 + t = x + v = Z + continue a + break + } + case 6: { + f[f[k >> 2] >> 2] = x + s = 0 + t = x + v = Z + continue a + break + } + case 7: { + P = f[k >> 2] | 0 + f[P >> 2] = x + f[(P + 4) >> 2] = (((x | 0) < 0) << 31) >> 31 + s = 0 + t = x + v = Z + continue a + break + } + default: { + s = 0 + t = x + v = Z + continue a + } + } + break + } + case 112: { + fa = 120 + ga = $ >>> 0 > 8 ? $ : 8 + ha = y | 8 + z = 62 + break + } + case 88: + case 120: { + fa = Q + ga = $ + ha = y + z = 62 + break + } + case 111: { + P = k + R = f[P >> 2] | 0 + ia = f[(P + 4) >> 2] | 0 + P = Ol(R, ia, o) | 0 + ja = (q - P) | 0 + ka = P + la = 0 + ma = 16588 + na = + (((y & 8) | 0) == 0) | (($ | 0) > (ja | 0)) ? $ : (ja + 1) | 0 + oa = y + pa = R + qa = ia + z = 68 + break + } + case 105: + case 100: { + ia = k + R = f[ia >> 2] | 0 + ja = f[(ia + 4) >> 2] | 0 + if ((ja | 0) < 0) { + ia = Xn(0, 0, R | 0, ja | 0) | 0 + P = I + ra = k + f[ra >> 2] = ia + f[(ra + 4) >> 2] = P + sa = 1 + ta = 16588 + ua = ia + va = P + z = 67 + break d + } else { + sa = (((y & 2049) | 0) != 0) & 1 + ta = + ((y & 2048) | 0) == 0 + ? ((y & 1) | 0) == 0 + ? 16588 + : 16590 + : 16589 + ua = R + va = ja + z = 67 + break d + } + break + } + case 117: { + ja = k + sa = 0 + ta = 16588 + ua = f[ja >> 2] | 0 + va = f[(ja + 4) >> 2] | 0 + z = 67 + break + } + case 99: { + b[r >> 0] = f[k >> 2] + wa = r + xa = 0 + ya = 16588 + za = o + Aa = 1 + Ba = O + break + } + case 109: { + ja = Vq() | 0 + Ca = $o(f[ja >> 2] | 0) | 0 + z = 72 + break + } + case 115: { + ja = f[k >> 2] | 0 + Ca = ja | 0 ? ja : 16598 + z = 72 + break + } + case 67: { + f[m >> 2] = f[k >> 2] + f[l >> 2] = 0 + f[k >> 2] = m + Da = -1 + Ea = m + z = 76 + break + } + case 83: { + ja = f[k >> 2] | 0 + if (!$) { + Qk(a, 32, X, 0, y) + Fa = 0 + z = 85 + } else { + Da = $ + Ea = ja + z = 76 + } + break + } + case 65: + case 71: + case 70: + case 69: + case 97: + case 103: + case 102: + case 101: { + s = ob(a, +p[k >> 3], X, $, y, Q) | 0 + t = x + v = Z + continue a + break + } + default: { + wa = w + xa = 0 + ya = 16588 + za = o + Aa = $ + Ba = y + } + } + while (0) + e: do + if ((z | 0) == 62) { + z = 0 + w = k + Q = f[w >> 2] | 0 + K = f[(w + 4) >> 2] | 0 + w = ul(Q, K, o, fa & 32) | 0 + F = (((ha & 8) | 0) == 0) | (((Q | 0) == 0) & ((K | 0) == 0)) + ka = w + la = F ? 0 : 2 + ma = F ? 16588 : (16588 + (fa >> 4)) | 0 + na = ga + oa = ha + pa = Q + qa = K + z = 68 + } else if ((z | 0) == 67) { + z = 0 + ka = Rj(ua, va, o) | 0 + la = sa + ma = ta + na = $ + oa = y + pa = ua + qa = va + z = 68 + } else if ((z | 0) == 72) { + z = 0 + K = tg(Ca, 0, $) | 0 + Q = (K | 0) == 0 + wa = Ca + xa = 0 + ya = 16588 + za = Q ? (Ca + $) | 0 : K + Aa = Q ? $ : (K - Ca) | 0 + Ba = O + } else if ((z | 0) == 76) { + z = 0 + K = Ea + Q = 0 + F = 0 + while (1) { + w = f[K >> 2] | 0 + if (!w) { + Ga = Q + Ha = F + break + } + ja = Po(n, w) | 0 + if (((ja | 0) < 0) | (ja >>> 0 > ((Da - Q) | 0) >>> 0)) { + Ga = Q + Ha = ja + break + } + w = (ja + Q) | 0 + if (Da >>> 0 > w >>> 0) { + K = (K + 4) | 0 + Q = w + F = ja + } else { + Ga = w + Ha = ja + break + } + } + if ((Ha | 0) < 0) { + V = -1 + break a + } + Qk(a, 32, X, Ga, y) + if (!Ga) { + Fa = 0 + z = 85 + } else { + F = Ea + Q = 0 + while (1) { + K = f[F >> 2] | 0 + if (!K) { + Fa = Ga + z = 85 + break e + } + ja = Po(n, K) | 0 + Q = (ja + Q) | 0 + if ((Q | 0) > (Ga | 0)) { + Fa = Ga + z = 85 + break e + } + Xo(a, n, ja) + if (Q >>> 0 >= Ga >>> 0) { + Fa = Ga + z = 85 + break + } else F = (F + 4) | 0 + } + } + } + while (0) + if ((z | 0) == 68) { + z = 0 + O = ((pa | 0) != 0) | ((qa | 0) != 0) + F = ((na | 0) != 0) | O + Q = (q - ka + ((O ^ 1) & 1)) | 0 + wa = F ? ka : o + xa = la + ya = ma + za = o + Aa = F ? ((na | 0) > (Q | 0) ? na : Q) : na + Ba = (na | 0) > -1 ? oa & -65537 : oa + } else if ((z | 0) == 85) { + z = 0 + Qk(a, 32, X, Fa, y ^ 8192) + s = (X | 0) > (Fa | 0) ? X : Fa + t = x + v = Z + continue + } + Q = (za - wa) | 0 + F = (Aa | 0) < (Q | 0) ? Q : Aa + O = (F + xa) | 0 + ja = (X | 0) < (O | 0) ? O : X + Qk(a, 32, ja, O, Ba) + Xo(a, ya, xa) + Qk(a, 48, ja, O, Ba ^ 65536) + Qk(a, 48, F, Q, 0) + Xo(a, wa, Q) + Qk(a, 32, ja, O, Ba ^ 8192) + s = ja + t = x + v = Z + } + f: do + if ((z | 0) == 88) + if (!a) + if (v) { + Z = 1 + while (1) { + t = f[(h + (Z << 2)) >> 2] | 0 + if (!t) { + Ia = Z + break + } + We((g + (Z << 3)) | 0, t, e) + t = (Z + 1) | 0 + if ((Z | 0) < 9) Z = t + else { + Ia = t + break + } + } + if ((Ia | 0) < 10) { + Z = Ia + while (1) { + if (f[(h + (Z << 2)) >> 2] | 0) { + V = -1 + break f + } + if ((Z | 0) < 9) Z = (Z + 1) | 0 + else { + V = 1 + break + } + } + } else V = 1 + } else V = 0 + else V = x + while (0) + u = i + return V | 0 + } + function rb(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0 + c = u + u = (u + 64) | 0 + d = (c + 56) | 0 + e = (c + 52) | 0 + g = (c + 48) | 0 + h = (c + 60) | 0 + i = c + j = (c + 44) | 0 + k = (c + 40) | 0 + l = (c + 36) | 0 + m = (c + 32) | 0 + n = (c + 28) | 0 + o = (c + 24) | 0 + p = (c + 20) | 0 + q = (c + 16) | 0 + r = (c + 12) | 0 + if (!(b[(a + 352) >> 0] | 0)) { + _e(d, f[(a + 8) >> 2] | 0) + s = (a + 12) | 0 + t = f[d >> 2] | 0 + f[d >> 2] = 0 + v = f[s >> 2] | 0 + f[s >> 2] = t + if (v) { + Ii(v) + Oq(v) + v = f[d >> 2] | 0 + f[d >> 2] = 0 + if (v | 0) { + Ii(v) + Oq(v) + } + } else f[d >> 2] = 0 + } else { + fh(d, f[(a + 8) >> 2] | 0) + v = (a + 12) | 0 + t = f[d >> 2] | 0 + f[d >> 2] = 0 + s = f[v >> 2] | 0 + f[v >> 2] = t + if (s) { + Ii(s) + Oq(s) + s = f[d >> 2] | 0 + f[d >> 2] = 0 + if (s | 0) { + Ii(s) + Oq(s) + } + } else f[d >> 2] = 0 + } + s = (a + 12) | 0 + t = f[s >> 2] | 0 + if (!t) { + w = 0 + u = c + return w | 0 + } + if ( + ((((((f[(t + 4) >> 2] | 0) - (f[t >> 2] | 0)) >> 2) >>> 0) / 3) | + 0 | + 0) == + (f[(t + 40) >> 2] | 0) + ) { + w = 0 + u = c + return w | 0 + } + t = (a + 200) | 0 + ve(t, a) | 0 + v = f[s >> 2] | 0 + x = (a + 4) | 0 + ci( + ((((f[(v + 28) >> 2] | 0) - (f[(v + 24) >> 2] | 0)) >> 2) - + (f[(v + 44) >> 2] | 0)) | + 0, + f[((f[x >> 2] | 0) + 44) >> 2] | 0, + ) | 0 + v = f[s >> 2] | 0 + ci( + (((((((f[(v + 4) >> 2] | 0) - (f[v >> 2] | 0)) >> 2) >>> 0) / 3) | 0) - + (f[(v + 40) >> 2] | 0)) | + 0, + f[((f[x >> 2] | 0) + 44) >> 2] | 0, + ) | 0 + v = (a + 28) | 0 + y = (a + 8) | 0 + z = f[y >> 2] | 0 + A = ((((f[(z + 100) >> 2] | 0) - (f[(z + 96) >> 2] | 0)) | 0) / 12) | 0 + b[d >> 0] = 0 + qh(v, A, d) + A = f[s >> 2] | 0 + z = ((f[(A + 28) >> 2] | 0) - (f[(A + 24) >> 2] | 0)) >> 2 + f[d >> 2] = -1 + hg((a + 52) | 0, z, d) + z = (a + 40) | 0 + A = f[z >> 2] | 0 + B = (a + 44) | 0 + C = f[B >> 2] | 0 + if ((C | 0) != (A | 0)) f[B >> 2] = C + (~(((C + -4 - A) | 0) >>> 2) << 2) + A = f[s >> 2] | 0 + C = ((f[(A + 4) >> 2] | 0) - (f[A >> 2] | 0)) >> 2 + gk(z, (C - ((C >>> 0) % 3 | 0)) | 0) + C = (a + 84) | 0 + z = f[s >> 2] | 0 + A = ((f[(z + 28) >> 2] | 0) - (f[(z + 24) >> 2] | 0)) >> 2 + b[d >> 0] = 0 + qh(C, A, d) + A = (a + 96) | 0 + z = f[A >> 2] | 0 + B = (a + 100) | 0 + D = f[B >> 2] | 0 + if ((D | 0) != (z | 0)) f[B >> 2] = D + (~(((D + -4 - z) | 0) >>> 2) << 2) + f[(a + 164) >> 2] = -1 + z = (a + 168) | 0 + f[z >> 2] = 0 + D = f[(a + 108) >> 2] | 0 + E = (a + 112) | 0 + F = f[E >> 2] | 0 + if ((F | 0) != (D | 0)) + f[E >> 2] = F + ((~(((((F + -12 - D) | 0) >>> 0) / 12) | 0) * 12) | 0) + D = (a + 132) | 0 + if (f[D >> 2] | 0) { + F = (a + 128) | 0 + E = f[F >> 2] | 0 + if (E | 0) { + G = E + do { + E = G + G = f[G >> 2] | 0 + Oq(E) + } while ((G | 0) != 0) + } + f[F >> 2] = 0 + F = f[(a + 124) >> 2] | 0 + if (F | 0) { + G = (a + 120) | 0 + E = 0 + do { + f[((f[G >> 2] | 0) + (E << 2)) >> 2] = 0 + E = (E + 1) | 0 + } while ((E | 0) != (F | 0)) + } + f[D >> 2] = 0 + } + f[(a + 144) >> 2] = 0 + D = f[s >> 2] | 0 + F = ((f[(D + 28) >> 2] | 0) - (f[(D + 24) >> 2] | 0)) >> 2 + f[d >> 2] = -1 + hg((a + 152) | 0, F, d) + F = (a + 72) | 0 + D = f[F >> 2] | 0 + E = (a + 76) | 0 + G = f[E >> 2] | 0 + if ((G | 0) != (D | 0)) f[E >> 2] = G + (~(((G + -4 - D) | 0) >>> 2) << 2) + D = f[s >> 2] | 0 + gk(F, (((((f[(D + 4) >> 2] | 0) - (f[D >> 2] | 0)) >> 2) >>> 0) / 3) | 0) + f[(a + 64) >> 2] = 0 + if (!(Be(a) | 0)) { + w = 0 + u = c + return w | 0 + } + if (!(Dg(a) | 0)) { + w = 0 + u = c + return w | 0 + } + D = (a + 172) | 0 + G = (a + 176) | 0 + H = (((((f[G >> 2] | 0) - (f[D >> 2] | 0)) | 0) / 136) | 0) & 255 + b[h >> 0] = H + I = f[((f[x >> 2] | 0) + 44) >> 2] | 0 + J = (I + 16) | 0 + K = f[(J + 4) >> 2] | 0 + if (((K | 0) > 0) | (((K | 0) == 0) & ((f[J >> 2] | 0) >>> 0 > 0))) L = H + else { + f[e >> 2] = f[(I + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(I, d, h, (h + 1) | 0) | 0 + L = b[h >> 0] | 0 + } + f[(a + 284) >> 2] = L & 255 + L = f[s >> 2] | 0 + h = ((f[(L + 4) >> 2] | 0) - (f[L >> 2] | 0)) | 0 + L = h >> 2 + dj(t) + f[i >> 2] = 0 + I = (i + 4) | 0 + f[I >> 2] = 0 + f[(i + 8) >> 2] = 0 + a: do + if ((h | 0) > 0) { + H = (a + 104) | 0 + J = (i + 8) | 0 + K = 0 + b: while (1) { + M = ((K >>> 0) / 3) | 0 + N = M >>> 5 + O = 1 << (M & 31) + if ( + ((f[((f[v >> 2] | 0) + (N << 2)) >> 2] & O) | 0) == 0 + ? ((P = f[s >> 2] | 0), + (f[j >> 2] = M), + (f[d >> 2] = f[j >> 2]), + !(_j(P, d) | 0)) + : 0 + ) { + f[e >> 2] = 0 + f[k >> 2] = M + f[d >> 2] = f[k >> 2] + M = xg(a, d, e) | 0 + fj(t, M) + P = f[e >> 2] | 0 + Q = (P | 0) == -1 + do + if (M) { + do + if (Q) { + R = -1 + S = -1 + T = -1 + } else { + U = f[f[s >> 2] >> 2] | 0 + V = f[(U + (P << 2)) >> 2] | 0 + W = (P + 1) | 0 + X = ((W >>> 0) % 3 | 0 | 0) == 0 ? (P + -2) | 0 : W + if ((X | 0) == -1) Y = -1 + else Y = f[(U + (X << 2)) >> 2] | 0 + X = ((((P >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + P) | 0 + if ((X | 0) == -1) { + R = -1 + S = Y + T = V + break + } + R = f[(U + (X << 2)) >> 2] | 0 + S = Y + T = V + } + while (0) + V = f[C >> 2] | 0 + X = (V + ((T >>> 5) << 2)) | 0 + f[X >> 2] = f[X >> 2] | (1 << (T & 31)) + X = (V + ((S >>> 5) << 2)) | 0 + f[X >> 2] = f[X >> 2] | (1 << (S & 31)) + X = (V + ((R >>> 5) << 2)) | 0 + f[X >> 2] = f[X >> 2] | (1 << (R & 31)) + f[d >> 2] = 1 + X = f[B >> 2] | 0 + if (X >>> 0 < (f[H >> 2] | 0) >>> 0) { + f[X >> 2] = 1 + f[B >> 2] = X + 4 + } else Ri(A, d) + X = ((f[v >> 2] | 0) + (N << 2)) | 0 + f[X >> 2] = f[X >> 2] | O + X = (P + 1) | 0 + if (Q) Z = -1 + else Z = ((X >>> 0) % 3 | 0 | 0) == 0 ? (P + -2) | 0 : X + f[d >> 2] = Z + V = f[I >> 2] | 0 + if (V >>> 0 < (f[J >> 2] | 0) >>> 0) { + f[V >> 2] = Z + f[I >> 2] = V + 4 + } else Ri(i, d) + if (Q) break + V = ((X >>> 0) % 3 | 0 | 0) == 0 ? (P + -2) | 0 : X + if ((V | 0) == -1) break + X = + f[((f[((f[s >> 2] | 0) + 12) >> 2] | 0) + (V << 2)) >> 2] | + 0 + V = (X | 0) == -1 + U = V ? -1 : ((X >>> 0) / 3) | 0 + if (V) break + if ( + (f[((f[v >> 2] | 0) + ((U >>> 5) << 2)) >> 2] & + (1 << (U & 31))) | + 0 + ) + break + f[l >> 2] = X + f[d >> 2] = f[l >> 2] + if (!(Yb(a, d) | 0)) break b + } else { + X = (P + 1) | 0 + if (Q) _ = -1 + else _ = ((X >>> 0) % 3 | 0 | 0) == 0 ? (P + -2) | 0 : X + f[m >> 2] = _ + f[d >> 2] = f[m >> 2] + Pe(a, d, 1) | 0 + f[n >> 2] = f[e >> 2] + f[d >> 2] = f[n >> 2] + if (!(Yb(a, d) | 0)) break b + } + while (0) + } + K = (K + 1) | 0 + if ((K | 0) >= (L | 0)) { + $ = 62 + break a + } + } + aa = 0 + } else $ = 62 + while (0) + if (($ | 0) == 62) { + $ = f[F >> 2] | 0 + L = f[E >> 2] | 0 + n = L + if (($ | 0) != (L | 0) ? ((m = (L + -4) | 0), $ >>> 0 < m >>> 0) : 0) { + L = $ + $ = m + do { + m = f[L >> 2] | 0 + f[L >> 2] = f[$ >> 2] + f[$ >> 2] = m + L = (L + 4) | 0 + $ = ($ + -4) | 0 + } while (L >>> 0 < $ >>> 0) + } + f[o >> 2] = n + f[p >> 2] = f[i >> 2] + f[q >> 2] = f[I >> 2] + f[g >> 2] = f[o >> 2] + f[e >> 2] = f[p >> 2] + f[d >> 2] = f[q >> 2] + Yd(F, g, e, d) | 0 + if ( + (f[G >> 2] | 0) != (f[D >> 2] | 0) + ? ((D = f[y >> 2] | 0), + (y = + ((((f[(D + 100) >> 2] | 0) - (f[(D + 96) >> 2] | 0)) | 0) / + 12) | + 0), + (b[d >> 0] = 0), + qh(v, y, d), + (y = f[F >> 2] | 0), + (F = f[E >> 2] | 0), + (y | 0) != (F | 0)) + : 0 + ) { + E = y + do { + f[r >> 2] = f[E >> 2] + f[d >> 2] = f[r >> 2] + He(a, d) | 0 + E = (E + 4) | 0 + } while ((E | 0) != (F | 0)) + } + pi(t) + ci(f[(a + 324) >> 2] | 0, f[((f[x >> 2] | 0) + 44) >> 2] | 0) | 0 + ci(f[z >> 2] | 0, f[((f[x >> 2] | 0) + 44) >> 2] | 0) | 0 + if (bh(a) | 0) { + z = f[((f[x >> 2] | 0) + 44) >> 2] | 0 + x = f[(a + 232) >> 2] | 0 + t = (z + 16) | 0 + F = f[(t + 4) >> 2] | 0 + if ( + !(((F | 0) > 0) | (((F | 0) == 0) & ((f[t >> 2] | 0) >>> 0 > 0))) + ) { + t = ((f[(a + 236) >> 2] | 0) - x) | 0 + f[e >> 2] = f[(z + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(z, d, x, (x + t) | 0) | 0 + } + aa = 1 + } else aa = 0 + } + t = f[i >> 2] | 0 + if (t | 0) { + i = f[I >> 2] | 0 + if ((i | 0) != (t | 0)) + f[I >> 2] = i + (~(((i + -4 - t) | 0) >>> 2) << 2) + Oq(t) + } + w = aa + u = c + return w | 0 + } + function sb(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = Oa, + ma = Oa, + na = Oa, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0 + c = u + u = (u + 64) | 0 + d = (c + 28) | 0 + e = (c + 16) | 0 + g = (c + 4) | 0 + h = c + i = a + j = (a + 80) | 0 + k = f[j >> 2] | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = i + l = (d + 20) | 0 + n[l >> 2] = $(1.0) + f[(d + 24) >> 2] = i + Ih(d, k) + k = f[j >> 2] | 0 + f[e >> 2] = 0 + i = (e + 4) | 0 + f[i >> 2] = 0 + f[(e + 8) >> 2] = 0 + m = (k | 0) == 0 + do + if (!m) + if (k >>> 0 > 1073741823) aq(e) + else { + o = k << 2 + p = ln(o) | 0 + f[e >> 2] = p + q = (p + (k << 2)) | 0 + f[(e + 8) >> 2] = q + sj(p | 0, 0, o | 0) | 0 + f[i >> 2] = q + break + } + while (0) + f[g >> 2] = 0 + k = (g + 4) | 0 + f[k >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[h >> 2] = 0 + if (!m) { + m = (d + 16) | 0 + q = (d + 4) | 0 + o = (d + 12) | 0 + p = (d + 8) | 0 + r = (g + 8) | 0 + s = (d + 24) | 0 + t = 0 + v = 0 + while (1) { + w = f[m >> 2] | 0 + x = f[(w + 8) >> 2] | 0 + y = ((f[(w + 12) >> 2] | 0) - x) | 0 + w = (y | 0) > 0 + z = x + if (w) { + x = y >>> 2 + A = 0 + B = 0 + while (1) { + C = f[(z + (A << 2)) >> 2] | 0 + if (!(b[(C + 84) >> 0] | 0)) + D = f[((f[(C + 68) >> 2] | 0) + (v << 2)) >> 2] | 0 + else D = v + C = (D + 239) ^ B + A = (A + 1) | 0 + if ((A | 0) >= (x | 0)) { + E = C + break + } else B = C + } + } else E = 0 + B = f[q >> 2] | 0 + x = (B | 0) == 0 + a: do + if (!x) { + A = (B + -1) | 0 + C = ((A & B) | 0) == 0 + if (!C) + if (E >>> 0 < B >>> 0) F = E + else F = (E >>> 0) % (B >>> 0) | 0 + else F = A & E + G = f[((f[d >> 2] | 0) + (F << 2)) >> 2] | 0 + if ((G | 0) != 0 ? ((H = f[G >> 2] | 0), (H | 0) != 0) : 0) { + G = f[s >> 2] | 0 + I = (G + 8) | 0 + J = (G + 12) | 0 + b: do + if (C) { + G = H + while (1) { + K = f[(G + 4) >> 2] | 0 + L = (K | 0) == (E | 0) + if (!(L | (((K & A) | 0) == (F | 0)))) { + M = 44 + break a + } + c: do + if (L) { + K = f[(G + 8) >> 2] | 0 + N = f[I >> 2] | 0 + O = ((f[J >> 2] | 0) - N) | 0 + P = N + if ((O | 0) <= 0) { + Q = G + break b + } + N = O >>> 2 + O = 0 + while (1) { + R = f[(P + (O << 2)) >> 2] | 0 + if (!(b[(R + 84) >> 0] | 0)) { + S = f[(R + 68) >> 2] | 0 + T = f[(S + (v << 2)) >> 2] | 0 + U = f[(S + (K << 2)) >> 2] | 0 + } else { + T = v + U = K + } + O = (O + 1) | 0 + if ((U | 0) != (T | 0)) break c + if ((O | 0) >= (N | 0)) { + V = G + M = 42 + break b + } + } + } + while (0) + G = f[G >> 2] | 0 + if (!G) { + M = 44 + break a + } + } + } else { + G = H + while (1) { + L = f[(G + 4) >> 2] | 0 + d: do + if ((L | 0) != (E | 0)) { + if (L >>> 0 < B >>> 0) X = L + else X = (L >>> 0) % (B >>> 0) | 0 + if ((X | 0) != (F | 0)) { + M = 44 + break a + } + } else { + N = f[(G + 8) >> 2] | 0 + O = f[I >> 2] | 0 + K = ((f[J >> 2] | 0) - O) | 0 + P = O + if ((K | 0) <= 0) { + Q = G + break b + } + O = K >>> 2 + K = 0 + while (1) { + S = f[(P + (K << 2)) >> 2] | 0 + if (!(b[(S + 84) >> 0] | 0)) { + R = f[(S + 68) >> 2] | 0 + Y = f[(R + (v << 2)) >> 2] | 0 + Z = f[(R + (N << 2)) >> 2] | 0 + } else { + Y = v + Z = N + } + K = (K + 1) | 0 + if ((Z | 0) != (Y | 0)) break d + if ((K | 0) >= (O | 0)) { + V = G + M = 42 + break b + } + } + } + while (0) + G = f[G >> 2] | 0 + if (!G) { + M = 44 + break a + } + } + } + while (0) + if ((M | 0) == 42) { + M = 0 + if (!V) { + M = 44 + break + } else Q = V + } + f[((f[e >> 2] | 0) + (v << 2)) >> 2] = f[(Q + 12) >> 2] + _ = t + } else M = 44 + } else M = 44 + while (0) + do + if ((M | 0) == 44) { + M = 0 + if (w) { + J = y >>> 2 + I = 0 + H = 0 + while (1) { + A = f[(z + (I << 2)) >> 2] | 0 + if (!(b[(A + 84) >> 0] | 0)) + aa = f[((f[(A + 68) >> 2] | 0) + (v << 2)) >> 2] | 0 + else aa = v + A = (aa + 239) ^ H + I = (I + 1) | 0 + if ((I | 0) >= (J | 0)) { + ba = A + break + } else H = A + } + } else ba = 0 + e: do + if (!x) { + H = (B + -1) | 0 + J = ((H & B) | 0) == 0 + if (!J) + if (ba >>> 0 < B >>> 0) ca = ba + else ca = (ba >>> 0) % (B >>> 0) | 0 + else ca = H & ba + I = f[((f[d >> 2] | 0) + (ca << 2)) >> 2] | 0 + if ((I | 0) != 0 ? ((A = f[I >> 2] | 0), (A | 0) != 0) : 0) { + I = f[s >> 2] | 0 + C = (I + 8) | 0 + G = (I + 12) | 0 + if (J) { + J = A + while (1) { + I = f[(J + 4) >> 2] | 0 + if ( + !(((I | 0) == (ba | 0)) | (((I & H) | 0) == (ca | 0))) + ) { + da = ca + M = 76 + break e + } + I = f[(J + 8) >> 2] | 0 + L = f[C >> 2] | 0 + O = ((f[G >> 2] | 0) - L) | 0 + K = L + if ((O | 0) <= 0) { + ea = v + break e + } + L = O >>> 2 + O = 0 + while (1) { + N = f[(K + (O << 2)) >> 2] | 0 + if (!(b[(N + 84) >> 0] | 0)) { + P = f[(N + 68) >> 2] | 0 + fa = f[(P + (v << 2)) >> 2] | 0 + ga = f[(P + (I << 2)) >> 2] | 0 + } else { + fa = v + ga = I + } + O = (O + 1) | 0 + if ((ga | 0) != (fa | 0)) break + if ((O | 0) >= (L | 0)) { + ea = v + break e + } + } + J = f[J >> 2] | 0 + if (!J) { + da = ca + M = 76 + break e + } + } + } else ha = A + while (1) { + J = f[(ha + 4) >> 2] | 0 + if ((J | 0) != (ba | 0)) { + if (J >>> 0 < B >>> 0) ia = J + else ia = (J >>> 0) % (B >>> 0) | 0 + if ((ia | 0) != (ca | 0)) { + da = ca + M = 76 + break e + } + } + J = f[(ha + 8) >> 2] | 0 + H = f[C >> 2] | 0 + L = ((f[G >> 2] | 0) - H) | 0 + O = H + if ((L | 0) <= 0) { + ea = v + break e + } + H = L >>> 2 + L = 0 + while (1) { + I = f[(O + (L << 2)) >> 2] | 0 + if (!(b[(I + 84) >> 0] | 0)) { + K = f[(I + 68) >> 2] | 0 + ja = f[(K + (v << 2)) >> 2] | 0 + ka = f[(K + (J << 2)) >> 2] | 0 + } else { + ja = v + ka = J + } + L = (L + 1) | 0 + if ((ka | 0) != (ja | 0)) break + if ((L | 0) >= (H | 0)) { + ea = v + break e + } + } + ha = f[ha >> 2] | 0 + if (!ha) { + da = ca + M = 76 + break + } + } + } else { + da = ca + M = 76 + } + } else { + da = 0 + M = 76 + } + while (0) + if ((M | 0) == 76) { + M = 0 + G = ln(16) | 0 + f[(G + 8) >> 2] = v + f[(G + 12) >> 2] = t + f[(G + 4) >> 2] = ba + f[G >> 2] = 0 + la = $((((f[o >> 2] | 0) + 1) | 0) >>> 0) + ma = $(B >>> 0) + na = $(n[l >> 2]) + do + if (x | ($(na * ma) < la)) { + C = + (B << 1) | + (((B >>> 0 < 3) | ((((B + -1) & B) | 0) != 0)) & 1) + A = ~~$(W($(la / na))) >>> 0 + Ih(d, C >>> 0 < A >>> 0 ? A : C) + C = f[q >> 2] | 0 + A = (C + -1) | 0 + if (!(A & C)) { + oa = C + pa = A & ba + break + } + if (ba >>> 0 < C >>> 0) { + oa = C + pa = ba + } else { + oa = C + pa = (ba >>> 0) % (C >>> 0) | 0 + } + } else { + oa = B + pa = da + } + while (0) + C = ((f[d >> 2] | 0) + (pa << 2)) | 0 + A = f[C >> 2] | 0 + if (!A) { + f[G >> 2] = f[p >> 2] + f[p >> 2] = G + f[C >> 2] = p + C = f[G >> 2] | 0 + if (C | 0) { + H = f[(C + 4) >> 2] | 0 + C = (oa + -1) | 0 + if (C & oa) + if (H >>> 0 < oa >>> 0) qa = H + else qa = (H >>> 0) % (oa >>> 0) | 0 + else qa = H & C + ra = ((f[d >> 2] | 0) + (qa << 2)) | 0 + M = 89 + } + } else { + f[G >> 2] = f[A >> 2] + ra = A + M = 89 + } + if ((M | 0) == 89) { + M = 0 + f[ra >> 2] = G + } + f[o >> 2] = (f[o >> 2] | 0) + 1 + ea = f[h >> 2] | 0 + } + A = (t + 1) | 0 + f[((f[e >> 2] | 0) + (ea << 2)) >> 2] = t + C = f[k >> 2] | 0 + if ((C | 0) == (f[r >> 2] | 0)) { + Ri(g, h) + _ = A + break + } else { + f[C >> 2] = f[h >> 2] + f[k >> 2] = C + 4 + _ = A + break + } + } + while (0) + v = ((f[h >> 2] | 0) + 1) | 0 + f[h >> 2] = v + sa = f[j >> 2] | 0 + if (v >>> 0 >= sa >>> 0) break + else t = _ + } + if ((_ | 0) != (sa | 0)) { + Xa[f[((f[a >> 2] | 0) + 24) >> 2] & 15](a, e, g) + f[j >> 2] = _ + } + } + _ = f[g >> 2] | 0 + if (_ | 0) { + g = f[k >> 2] | 0 + if ((g | 0) != (_ | 0)) + f[k >> 2] = g + (~(((g + -4 - _) | 0) >>> 2) << 2) + Oq(_) + } + _ = f[e >> 2] | 0 + if (_ | 0) { + e = f[i >> 2] | 0 + if ((e | 0) != (_ | 0)) + f[i >> 2] = e + (~(((e + -4 - _) | 0) >>> 2) << 2) + Oq(_) + } + _ = f[(d + 8) >> 2] | 0 + if (_ | 0) { + e = _ + do { + _ = e + e = f[e >> 2] | 0 + Oq(_) + } while ((e | 0) != 0) + } + e = f[d >> 2] | 0 + f[d >> 2] = 0 + if (!e) { + u = c + return + } + Oq(e) + u = c + return + } + function tb(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0 + g = u + u = (u + 80) | 0 + h = (g + 76) | 0 + i = (g + 72) | 0 + j = (g + 48) | 0 + k = (g + 24) | 0 + l = g + m = (a + 32) | 0 + n = f[c >> 2] | 0 + c = (n + 1) | 0 + if ((n | 0) != -1) { + o = ((c >>> 0) % 3 | 0 | 0) == 0 ? (n + -2) | 0 : c + c = ((((n >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + n) | 0 + if ((o | 0) == -1) p = -1 + else p = f[((f[f[m >> 2] >> 2] | 0) + (o << 2)) >> 2] | 0 + if ((c | 0) == -1) { + q = p + r = -1 + } else { + q = p + r = f[((f[f[m >> 2] >> 2] | 0) + (c << 2)) >> 2] | 0 + } + } else { + q = -1 + r = -1 + } + c = f[(a + 36) >> 2] | 0 + m = f[c >> 2] | 0 + p = ((f[(c + 4) >> 2] | 0) - m) >> 2 + if (p >>> 0 <= q >>> 0) aq(c) + o = m + m = f[(o + (q << 2)) >> 2] | 0 + if (p >>> 0 <= r >>> 0) aq(c) + c = f[(o + (r << 2)) >> 2] | 0 + r = (m | 0) < (e | 0) + do + if (r & ((c | 0) < (e | 0))) { + o = m << 1 + p = f[(d + (o << 2)) >> 2] | 0 + q = (((p | 0) < 0) << 31) >> 31 + n = f[(d + ((o | 1) << 2)) >> 2] | 0 + o = (((n | 0) < 0) << 31) >> 31 + s = c << 1 + t = f[(d + (s << 2)) >> 2] | 0 + v = f[(d + ((s | 1) << 2)) >> 2] | 0 + if (!(((t | 0) != (p | 0)) | ((v | 0) != (n | 0)))) { + f[(a + 8) >> 2] = p + f[(a + 12) >> 2] = n + u = g + return + } + s = (a + 4) | 0 + w = f[((f[s >> 2] | 0) + (e << 2)) >> 2] | 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + f[(j + 12) >> 2] = 0 + f[(j + 16) >> 2] = 0 + f[(j + 20) >> 2] = 0 + x = f[a >> 2] | 0 + if (!(b[(x + 84) >> 0] | 0)) + y = f[((f[(x + 68) >> 2] | 0) + (w << 2)) >> 2] | 0 + else y = w + f[i >> 2] = y + w = b[(x + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + vb(x, h, w, j) | 0 + w = f[((f[s >> 2] | 0) + (m << 2)) >> 2] | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + f[(k + 16) >> 2] = 0 + f[(k + 20) >> 2] = 0 + x = f[a >> 2] | 0 + if (!(b[(x + 84) >> 0] | 0)) + z = f[((f[(x + 68) >> 2] | 0) + (w << 2)) >> 2] | 0 + else z = w + f[i >> 2] = z + w = b[(x + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + vb(x, h, w, k) | 0 + w = f[((f[s >> 2] | 0) + (c << 2)) >> 2] | 0 + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[(l + 8) >> 2] = 0 + f[(l + 12) >> 2] = 0 + f[(l + 16) >> 2] = 0 + f[(l + 20) >> 2] = 0 + s = f[a >> 2] | 0 + if (!(b[(s + 84) >> 0] | 0)) + A = f[((f[(s + 68) >> 2] | 0) + (w << 2)) >> 2] | 0 + else A = w + f[i >> 2] = A + w = b[(s + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + vb(s, h, w, l) | 0 + w = l + s = k + x = f[s >> 2] | 0 + B = f[(s + 4) >> 2] | 0 + s = Xn(f[w >> 2] | 0, f[(w + 4) >> 2] | 0, x | 0, B | 0) | 0 + w = I + C = (l + 8) | 0 + D = (k + 8) | 0 + E = f[D >> 2] | 0 + F = f[(D + 4) >> 2] | 0 + D = Xn(f[C >> 2] | 0, f[(C + 4) >> 2] | 0, E | 0, F | 0) | 0 + C = I + G = (l + 16) | 0 + H = (k + 16) | 0 + J = f[H >> 2] | 0 + K = f[(H + 4) >> 2] | 0 + H = Xn(f[G >> 2] | 0, f[(G + 4) >> 2] | 0, J | 0, K | 0) | 0 + G = I + L = un(s | 0, w | 0, s | 0, w | 0) | 0 + M = I + N = un(D | 0, C | 0, D | 0, C | 0) | 0 + O = Vn(N | 0, I | 0, L | 0, M | 0) | 0 + M = I + L = un(H | 0, G | 0, H | 0, G | 0) | 0 + N = Vn(O | 0, M | 0, L | 0, I | 0) | 0 + L = I + if (((N | 0) == 0) & ((L | 0) == 0)) break + M = j + O = Xn(f[M >> 2] | 0, f[(M + 4) >> 2] | 0, x | 0, B | 0) | 0 + B = I + x = (j + 8) | 0 + M = Xn(f[x >> 2] | 0, f[(x + 4) >> 2] | 0, E | 0, F | 0) | 0 + F = I + E = (j + 16) | 0 + x = Xn(f[E >> 2] | 0, f[(E + 4) >> 2] | 0, J | 0, K | 0) | 0 + K = I + J = un(O | 0, B | 0, s | 0, w | 0) | 0 + E = I + P = un(M | 0, F | 0, D | 0, C | 0) | 0 + Q = Vn(P | 0, I | 0, J | 0, E | 0) | 0 + E = I + J = un(x | 0, K | 0, H | 0, G | 0) | 0 + P = Vn(Q | 0, E | 0, J | 0, I | 0) | 0 + J = I + E = Xn(t | 0, ((((t | 0) < 0) << 31) >> 31) | 0, p | 0, q | 0) | 0 + t = I + Q = Xn(v | 0, ((((v | 0) < 0) << 31) >> 31) | 0, n | 0, o | 0) | 0 + v = I + R = un(N | 0, L | 0, p | 0, q | 0) | 0 + q = I + p = un(N | 0, L | 0, n | 0, o | 0) | 0 + o = I + n = un(P | 0, J | 0, E | 0, t | 0) | 0 + S = I + T = un(P | 0, J | 0, Q | 0, v | 0) | 0 + U = I + V = Vn(n | 0, S | 0, R | 0, q | 0) | 0 + q = I + R = Vn(T | 0, U | 0, p | 0, o | 0) | 0 + o = I + p = un(P | 0, J | 0, s | 0, w | 0) | 0 + w = I + s = un(P | 0, J | 0, D | 0, C | 0) | 0 + C = I + D = un(P | 0, J | 0, H | 0, G | 0) | 0 + G = I + H = Ik(p | 0, w | 0, N | 0, L | 0) | 0 + w = I + p = Ik(s | 0, C | 0, N | 0, L | 0) | 0 + C = I + s = Ik(D | 0, G | 0, N | 0, L | 0) | 0 + G = I + D = Xn(O | 0, B | 0, H | 0, w | 0) | 0 + w = I + H = Xn(M | 0, F | 0, p | 0, C | 0) | 0 + C = I + p = Xn(x | 0, K | 0, s | 0, G | 0) | 0 + G = I + s = un(D | 0, w | 0, D | 0, w | 0) | 0 + w = I + D = un(H | 0, C | 0, H | 0, C | 0) | 0 + C = Vn(D | 0, I | 0, s | 0, w | 0) | 0 + w = I + s = un(p | 0, G | 0, p | 0, G | 0) | 0 + G = Vn(C | 0, w | 0, s | 0, I | 0) | 0 + s = I + w = Xn(0, 0, E | 0, t | 0) | 0 + t = I + E = un(G | 0, s | 0, N | 0, L | 0) | 0 + s = I + switch (E | 0) { + case 0: { + if (!s) { + W = 0 + X = 0 + } else { + Y = 1 + Z = 0 + _ = E + $ = s + aa = 23 + } + break + } + case 1: { + if (!s) { + ba = 1 + ca = 0 + aa = 24 + } else { + Y = 1 + Z = 0 + _ = E + $ = s + aa = 23 + } + break + } + default: { + Y = 1 + Z = 0 + _ = E + $ = s + aa = 23 + } + } + if ((aa | 0) == 23) + while (1) { + aa = 0 + G = Tn(Y | 0, Z | 0, 1) | 0 + C = I + p = _ + _ = Yn(_ | 0, $ | 0, 2) | 0 + if (!(($ >>> 0 > 0) | ((($ | 0) == 0) & (p >>> 0 > 7)))) { + ba = G + ca = C + aa = 24 + break + } else { + Y = G + Z = C + $ = I + aa = 23 + } + } + if ((aa | 0) == 24) + while (1) { + aa = 0 + C = jp(E | 0, s | 0, ba | 0, ca | 0) | 0 + G = Vn(C | 0, I | 0, ba | 0, ca | 0) | 0 + C = Yn(G | 0, I | 0, 1) | 0 + G = I + p = un(C | 0, G | 0, C | 0, G | 0) | 0 + D = I + if ( + (D >>> 0 > s >>> 0) | + (((D | 0) == (s | 0)) & (p >>> 0 > E >>> 0)) + ) { + ba = C + ca = G + aa = 24 + } else { + W = C + X = G + break + } + } + E = un(W | 0, X | 0, Q | 0, v | 0) | 0 + s = I + G = un(W | 0, X | 0, w | 0, t | 0) | 0 + C = I + p = Vn(E | 0, s | 0, V | 0, q | 0) | 0 + D = I + H = Vn(G | 0, C | 0, R | 0, o | 0) | 0 + K = I + x = Ik(p | 0, D | 0, N | 0, L | 0) | 0 + D = I + p = Ik(H | 0, K | 0, N | 0, L | 0) | 0 + K = I + H = Xn(V | 0, q | 0, E | 0, s | 0) | 0 + s = I + E = Xn(R | 0, o | 0, G | 0, C | 0) | 0 + C = I + G = Ik(H | 0, s | 0, N | 0, L | 0) | 0 + s = I + H = Ik(E | 0, C | 0, N | 0, L | 0) | 0 + C = I + E = e << 1 + F = f[(d + (E << 2)) >> 2] | 0 + M = (((F | 0) < 0) << 31) >> 31 + B = f[(d + ((E | 1) << 2)) >> 2] | 0 + E = (((B | 0) < 0) << 31) >> 31 + O = Xn(F | 0, M | 0, x | 0, D | 0) | 0 + J = I + P = Xn(B | 0, E | 0, p | 0, K | 0) | 0 + U = I + T = un(O | 0, J | 0, O | 0, J | 0) | 0 + J = I + O = un(P | 0, U | 0, P | 0, U | 0) | 0 + U = Vn(O | 0, I | 0, T | 0, J | 0) | 0 + J = I + T = Xn(F | 0, M | 0, G | 0, s | 0) | 0 + M = I + F = Xn(B | 0, E | 0, H | 0, C | 0) | 0 + E = I + B = un(T | 0, M | 0, T | 0, M | 0) | 0 + M = I + T = un(F | 0, E | 0, F | 0, E | 0) | 0 + E = Vn(T | 0, I | 0, B | 0, M | 0) | 0 + M = I + B = (a + 16) | 0 + T = (a + 20) | 0 + F = f[T >> 2] | 0 + O = f[(a + 24) >> 2] | 0 + P = (F | 0) == ((O << 5) | 0) + if ( + (J >>> 0 < M >>> 0) | + (((J | 0) == (M | 0)) & (U >>> 0 < E >>> 0)) + ) { + do + if (P) + if (((F + 1) | 0) < 0) aq(B) + else { + E = O << 6 + U = (F + 32) & -32 + vi( + B, + F >>> 0 < 1073741823 + ? E >>> 0 < U >>> 0 + ? U + : E + : 2147483647, + ) + da = f[T >> 2] | 0 + break + } + else da = F + while (0) + f[T >> 2] = da + 1 + L = ((f[B >> 2] | 0) + ((da >>> 5) << 2)) | 0 + f[L >> 2] = f[L >> 2] | (1 << (da & 31)) + ea = x + fa = p + ga = K + ha = D + } else { + do + if (P) + if (((F + 1) | 0) < 0) aq(B) + else { + L = O << 6 + N = (F + 32) & -32 + vi( + B, + F >>> 0 < 1073741823 + ? L >>> 0 < N >>> 0 + ? N + : L + : 2147483647, + ) + ia = f[T >> 2] | 0 + break + } + else ia = F + while (0) + f[T >> 2] = ia + 1 + F = ((f[B >> 2] | 0) + ((ia >>> 5) << 2)) | 0 + f[F >> 2] = f[F >> 2] & ~(1 << (ia & 31)) + ea = G + fa = H + ga = C + ha = s + } + f[(a + 8) >> 2] = ea + f[(a + 12) >> 2] = fa + u = g + return + } + while (0) + do + if (r) ja = m << 1 + else { + if ((e | 0) > 0) { + ja = ((e << 1) + -2) | 0 + break + } + fa = (a + 8) | 0 + f[fa >> 2] = 0 + f[(fa + 4) >> 2] = 0 + u = g + return + } + while (0) + f[(a + 8) >> 2] = f[(d + (ja << 2)) >> 2] + f[(a + 12) >> 2] = f[(d + ((ja + 1) << 2)) >> 2] + u = g + return + } + function ub(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0 + g = u + u = (u + 80) | 0 + h = (g + 76) | 0 + i = (g + 72) | 0 + j = (g + 48) | 0 + k = (g + 24) | 0 + l = g + m = (a + 32) | 0 + n = f[c >> 2] | 0 + c = (n + 1) | 0 + do + if ((n | 0) != -1) { + o = ((c >>> 0) % 3 | 0 | 0) == 0 ? (n + -2) | 0 : c + if (!((n >>> 0) % 3 | 0)) { + p = (n + 2) | 0 + q = o + break + } else { + p = (n + -1) | 0 + q = o + break + } + } else { + p = -1 + q = -1 + } + while (0) + n = f[((f[m >> 2] | 0) + 28) >> 2] | 0 + m = f[(n + (q << 2)) >> 2] | 0 + q = f[(n + (p << 2)) >> 2] | 0 + p = f[(a + 36) >> 2] | 0 + n = f[p >> 2] | 0 + c = ((f[(p + 4) >> 2] | 0) - n) >> 2 + if (c >>> 0 <= m >>> 0) aq(p) + o = n + n = f[(o + (m << 2)) >> 2] | 0 + if (c >>> 0 <= q >>> 0) aq(p) + p = f[(o + (q << 2)) >> 2] | 0 + q = (n | 0) < (e | 0) + do + if (q & ((p | 0) < (e | 0))) { + o = n << 1 + c = f[(d + (o << 2)) >> 2] | 0 + m = (((c | 0) < 0) << 31) >> 31 + r = f[(d + ((o | 1) << 2)) >> 2] | 0 + o = (((r | 0) < 0) << 31) >> 31 + s = p << 1 + t = f[(d + (s << 2)) >> 2] | 0 + v = f[(d + ((s | 1) << 2)) >> 2] | 0 + if (!(((t | 0) != (c | 0)) | ((v | 0) != (r | 0)))) { + f[(a + 8) >> 2] = c + f[(a + 12) >> 2] = r + u = g + return + } + s = (a + 4) | 0 + w = f[((f[s >> 2] | 0) + (e << 2)) >> 2] | 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + f[(j + 12) >> 2] = 0 + f[(j + 16) >> 2] = 0 + f[(j + 20) >> 2] = 0 + x = f[a >> 2] | 0 + if (!(b[(x + 84) >> 0] | 0)) + y = f[((f[(x + 68) >> 2] | 0) + (w << 2)) >> 2] | 0 + else y = w + f[i >> 2] = y + w = b[(x + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + vb(x, h, w, j) | 0 + w = f[((f[s >> 2] | 0) + (n << 2)) >> 2] | 0 + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + f[(k + 16) >> 2] = 0 + f[(k + 20) >> 2] = 0 + x = f[a >> 2] | 0 + if (!(b[(x + 84) >> 0] | 0)) + z = f[((f[(x + 68) >> 2] | 0) + (w << 2)) >> 2] | 0 + else z = w + f[i >> 2] = z + w = b[(x + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + vb(x, h, w, k) | 0 + w = f[((f[s >> 2] | 0) + (p << 2)) >> 2] | 0 + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[(l + 8) >> 2] = 0 + f[(l + 12) >> 2] = 0 + f[(l + 16) >> 2] = 0 + f[(l + 20) >> 2] = 0 + s = f[a >> 2] | 0 + if (!(b[(s + 84) >> 0] | 0)) + A = f[((f[(s + 68) >> 2] | 0) + (w << 2)) >> 2] | 0 + else A = w + f[i >> 2] = A + w = b[(s + 24) >> 0] | 0 + f[h >> 2] = f[i >> 2] + vb(s, h, w, l) | 0 + w = l + s = k + x = f[s >> 2] | 0 + B = f[(s + 4) >> 2] | 0 + s = Xn(f[w >> 2] | 0, f[(w + 4) >> 2] | 0, x | 0, B | 0) | 0 + w = I + C = (l + 8) | 0 + D = (k + 8) | 0 + E = f[D >> 2] | 0 + F = f[(D + 4) >> 2] | 0 + D = Xn(f[C >> 2] | 0, f[(C + 4) >> 2] | 0, E | 0, F | 0) | 0 + C = I + G = (l + 16) | 0 + H = (k + 16) | 0 + J = f[H >> 2] | 0 + K = f[(H + 4) >> 2] | 0 + H = Xn(f[G >> 2] | 0, f[(G + 4) >> 2] | 0, J | 0, K | 0) | 0 + G = I + L = un(s | 0, w | 0, s | 0, w | 0) | 0 + M = I + N = un(D | 0, C | 0, D | 0, C | 0) | 0 + O = Vn(N | 0, I | 0, L | 0, M | 0) | 0 + M = I + L = un(H | 0, G | 0, H | 0, G | 0) | 0 + N = Vn(O | 0, M | 0, L | 0, I | 0) | 0 + L = I + if (((N | 0) == 0) & ((L | 0) == 0)) break + M = j + O = Xn(f[M >> 2] | 0, f[(M + 4) >> 2] | 0, x | 0, B | 0) | 0 + B = I + x = (j + 8) | 0 + M = Xn(f[x >> 2] | 0, f[(x + 4) >> 2] | 0, E | 0, F | 0) | 0 + F = I + E = (j + 16) | 0 + x = Xn(f[E >> 2] | 0, f[(E + 4) >> 2] | 0, J | 0, K | 0) | 0 + K = I + J = un(O | 0, B | 0, s | 0, w | 0) | 0 + E = I + P = un(M | 0, F | 0, D | 0, C | 0) | 0 + Q = Vn(P | 0, I | 0, J | 0, E | 0) | 0 + E = I + J = un(x | 0, K | 0, H | 0, G | 0) | 0 + P = Vn(Q | 0, E | 0, J | 0, I | 0) | 0 + J = I + E = Xn(t | 0, ((((t | 0) < 0) << 31) >> 31) | 0, c | 0, m | 0) | 0 + t = I + Q = Xn(v | 0, ((((v | 0) < 0) << 31) >> 31) | 0, r | 0, o | 0) | 0 + v = I + R = un(N | 0, L | 0, c | 0, m | 0) | 0 + m = I + c = un(N | 0, L | 0, r | 0, o | 0) | 0 + o = I + r = un(P | 0, J | 0, E | 0, t | 0) | 0 + S = I + T = un(P | 0, J | 0, Q | 0, v | 0) | 0 + U = I + V = Vn(r | 0, S | 0, R | 0, m | 0) | 0 + m = I + R = Vn(T | 0, U | 0, c | 0, o | 0) | 0 + o = I + c = un(P | 0, J | 0, s | 0, w | 0) | 0 + w = I + s = un(P | 0, J | 0, D | 0, C | 0) | 0 + C = I + D = un(P | 0, J | 0, H | 0, G | 0) | 0 + G = I + H = Ik(c | 0, w | 0, N | 0, L | 0) | 0 + w = I + c = Ik(s | 0, C | 0, N | 0, L | 0) | 0 + C = I + s = Ik(D | 0, G | 0, N | 0, L | 0) | 0 + G = I + D = Xn(O | 0, B | 0, H | 0, w | 0) | 0 + w = I + H = Xn(M | 0, F | 0, c | 0, C | 0) | 0 + C = I + c = Xn(x | 0, K | 0, s | 0, G | 0) | 0 + G = I + s = un(D | 0, w | 0, D | 0, w | 0) | 0 + w = I + D = un(H | 0, C | 0, H | 0, C | 0) | 0 + C = Vn(D | 0, I | 0, s | 0, w | 0) | 0 + w = I + s = un(c | 0, G | 0, c | 0, G | 0) | 0 + G = Vn(C | 0, w | 0, s | 0, I | 0) | 0 + s = I + w = Xn(0, 0, E | 0, t | 0) | 0 + t = I + E = un(G | 0, s | 0, N | 0, L | 0) | 0 + s = I + switch (E | 0) { + case 0: { + if (!s) { + W = 0 + X = 0 + } else { + Y = 1 + Z = 0 + _ = E + $ = s + aa = 22 + } + break + } + case 1: { + if (!s) { + ba = 1 + ca = 0 + aa = 23 + } else { + Y = 1 + Z = 0 + _ = E + $ = s + aa = 22 + } + break + } + default: { + Y = 1 + Z = 0 + _ = E + $ = s + aa = 22 + } + } + if ((aa | 0) == 22) + while (1) { + aa = 0 + G = Tn(Y | 0, Z | 0, 1) | 0 + C = I + c = _ + _ = Yn(_ | 0, $ | 0, 2) | 0 + if (!(($ >>> 0 > 0) | ((($ | 0) == 0) & (c >>> 0 > 7)))) { + ba = G + ca = C + aa = 23 + break + } else { + Y = G + Z = C + $ = I + aa = 22 + } + } + if ((aa | 0) == 23) + while (1) { + aa = 0 + C = jp(E | 0, s | 0, ba | 0, ca | 0) | 0 + G = Vn(C | 0, I | 0, ba | 0, ca | 0) | 0 + C = Yn(G | 0, I | 0, 1) | 0 + G = I + c = un(C | 0, G | 0, C | 0, G | 0) | 0 + D = I + if ( + (D >>> 0 > s >>> 0) | + (((D | 0) == (s | 0)) & (c >>> 0 > E >>> 0)) + ) { + ba = C + ca = G + aa = 23 + } else { + W = C + X = G + break + } + } + E = un(W | 0, X | 0, Q | 0, v | 0) | 0 + s = I + G = un(W | 0, X | 0, w | 0, t | 0) | 0 + C = I + c = Vn(E | 0, s | 0, V | 0, m | 0) | 0 + D = I + H = Vn(G | 0, C | 0, R | 0, o | 0) | 0 + K = I + x = Ik(c | 0, D | 0, N | 0, L | 0) | 0 + D = I + c = Ik(H | 0, K | 0, N | 0, L | 0) | 0 + K = I + H = Xn(V | 0, m | 0, E | 0, s | 0) | 0 + s = I + E = Xn(R | 0, o | 0, G | 0, C | 0) | 0 + C = I + G = Ik(H | 0, s | 0, N | 0, L | 0) | 0 + s = I + H = Ik(E | 0, C | 0, N | 0, L | 0) | 0 + C = I + E = e << 1 + F = f[(d + (E << 2)) >> 2] | 0 + M = (((F | 0) < 0) << 31) >> 31 + B = f[(d + ((E | 1) << 2)) >> 2] | 0 + E = (((B | 0) < 0) << 31) >> 31 + O = Xn(F | 0, M | 0, x | 0, D | 0) | 0 + J = I + P = Xn(B | 0, E | 0, c | 0, K | 0) | 0 + U = I + T = un(O | 0, J | 0, O | 0, J | 0) | 0 + J = I + O = un(P | 0, U | 0, P | 0, U | 0) | 0 + U = Vn(O | 0, I | 0, T | 0, J | 0) | 0 + J = I + T = Xn(F | 0, M | 0, G | 0, s | 0) | 0 + M = I + F = Xn(B | 0, E | 0, H | 0, C | 0) | 0 + E = I + B = un(T | 0, M | 0, T | 0, M | 0) | 0 + M = I + T = un(F | 0, E | 0, F | 0, E | 0) | 0 + E = Vn(T | 0, I | 0, B | 0, M | 0) | 0 + M = I + B = (a + 16) | 0 + T = (a + 20) | 0 + F = f[T >> 2] | 0 + O = f[(a + 24) >> 2] | 0 + P = (F | 0) == ((O << 5) | 0) + if ( + (J >>> 0 < M >>> 0) | + (((J | 0) == (M | 0)) & (U >>> 0 < E >>> 0)) + ) { + do + if (P) + if (((F + 1) | 0) < 0) aq(B) + else { + E = O << 6 + U = (F + 32) & -32 + vi( + B, + F >>> 0 < 1073741823 + ? E >>> 0 < U >>> 0 + ? U + : E + : 2147483647, + ) + da = f[T >> 2] | 0 + break + } + else da = F + while (0) + f[T >> 2] = da + 1 + L = ((f[B >> 2] | 0) + ((da >>> 5) << 2)) | 0 + f[L >> 2] = f[L >> 2] | (1 << (da & 31)) + ea = x + fa = c + ga = K + ha = D + } else { + do + if (P) + if (((F + 1) | 0) < 0) aq(B) + else { + L = O << 6 + N = (F + 32) & -32 + vi( + B, + F >>> 0 < 1073741823 + ? L >>> 0 < N >>> 0 + ? N + : L + : 2147483647, + ) + ia = f[T >> 2] | 0 + break + } + else ia = F + while (0) + f[T >> 2] = ia + 1 + F = ((f[B >> 2] | 0) + ((ia >>> 5) << 2)) | 0 + f[F >> 2] = f[F >> 2] & ~(1 << (ia & 31)) + ea = G + fa = H + ga = C + ha = s + } + f[(a + 8) >> 2] = ea + f[(a + 12) >> 2] = fa + u = g + return + } + while (0) + do + if (q) ja = n << 1 + else { + if ((e | 0) > 0) { + ja = ((e << 1) + -2) | 0 + break + } + fa = (a + 8) | 0 + f[fa >> 2] = 0 + f[(fa + 4) >> 2] = 0 + u = g + return + } + while (0) + f[(a + 8) >> 2] = f[(d + (ja << 2)) >> 2] + f[(a + 12) >> 2] = f[(d + ((ja + 1) << 2)) >> 2] + u = g + return + } + function vb(a, c, e, g) { + a = a | 0 + c = c | 0 + e = e | 0 + g = g | 0 + var i = 0, + k = 0, + l = 0, + m = 0, + o = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = Oa, + D = 0, + E = 0.0, + F = 0, + G = 0 + if (!g) { + i = 0 + return i | 0 + } + do + switch (f[(a + 28) >> 2] | 0) { + case 1: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + q = un(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + r = Vn(q | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (m + r) | 0 + r = 0 + while (1) { + m = b[o >> 0] | 0 + q = (g + (r << 3)) | 0 + f[q >> 2] = m + f[(q + 4) >> 2] = (((m | 0) < 0) << 31) >> 31 + r = (r + 1) | 0 + m = b[k >> 0] | 0 + if ( + (r | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + s = m + break + } else o = (o + 1) | 0 + } + } else s = l + o = (s << 24) >> 24 + if ((s << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (o << 3)) | 0, 0, ((((e << 24) >> 24) - o) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 2: { + o = (a + 24) | 0 + r = b[o >> 0] | 0 + if ((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + q = un(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + t = Vn(q | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (k + t) | 0 + t = 0 + while (1) { + k = (g + (t << 3)) | 0 + f[k >> 2] = h[m >> 0] + f[(k + 4) >> 2] = 0 + t = (t + 1) | 0 + k = b[o >> 0] | 0 + if ( + (t | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24) | + 0) + ) { + u = k + break + } else m = (m + 1) | 0 + } + } else u = r + m = (u << 24) >> 24 + if ((u << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (m << 3)) | 0, 0, ((((e << 24) >> 24) - m) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 3: { + m = (a + 24) | 0 + t = b[m >> 0] | 0 + if ((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + l = (a + 40) | 0 + k = un(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + l = (a + 48) | 0 + q = Vn(k | 0, I | 0, f[l >> 2] | 0, f[(l + 4) >> 2] | 0) | 0 + l = (o + q) | 0 + q = 0 + while (1) { + o = d[l >> 1] | 0 + k = (g + (q << 3)) | 0 + f[k >> 2] = o + f[(k + 4) >> 2] = (((o | 0) < 0) << 31) >> 31 + q = (q + 1) | 0 + o = b[m >> 0] | 0 + if ( + (q | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + v = o + break + } else l = (l + 2) | 0 + } + } else v = t + l = (v << 24) >> 24 + if ((v << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (l << 3)) | 0, 0, ((((e << 24) >> 24) - l) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 4: { + l = (a + 24) | 0 + q = b[l >> 0] | 0 + if ((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + r = (a + 40) | 0 + o = un(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + r = (a + 48) | 0 + k = Vn(o | 0, I | 0, f[r >> 2] | 0, f[(r + 4) >> 2] | 0) | 0 + r = (m + k) | 0 + k = 0 + while (1) { + m = (g + (k << 3)) | 0 + f[m >> 2] = j[r >> 1] + f[(m + 4) >> 2] = 0 + k = (k + 1) | 0 + m = b[l >> 0] | 0 + if ( + (k | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + w = m + break + } else r = (r + 2) | 0 + } + } else w = q + r = (w << 24) >> 24 + if ((w << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (r << 3)) | 0, 0, ((((e << 24) >> 24) - r) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 5: { + r = (a + 24) | 0 + k = b[r >> 0] | 0 + if ((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24 > 0) { + l = f[f[a >> 2] >> 2] | 0 + t = (a + 40) | 0 + m = un(f[t >> 2] | 0, f[(t + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + t = (a + 48) | 0 + o = Vn(m | 0, I | 0, f[t >> 2] | 0, f[(t + 4) >> 2] | 0) | 0 + t = (l + o) | 0 + o = 0 + while (1) { + l = f[t >> 2] | 0 + m = (g + (o << 3)) | 0 + f[m >> 2] = l + f[(m + 4) >> 2] = (((l | 0) < 0) << 31) >> 31 + o = (o + 1) | 0 + l = b[r >> 0] | 0 + if ( + (o | 0) >= + (((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24) | + 0) + ) { + x = l + break + } else t = (t + 4) | 0 + } + } else x = k + t = (x << 24) >> 24 + if ((x << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (t << 3)) | 0, 0, ((((e << 24) >> 24) - t) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 6: { + t = (a + 24) | 0 + o = b[t >> 0] | 0 + if ((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24 > 0) { + r = f[f[a >> 2] >> 2] | 0 + q = (a + 40) | 0 + l = un(f[q >> 2] | 0, f[(q + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + q = (a + 48) | 0 + m = Vn(l | 0, I | 0, f[q >> 2] | 0, f[(q + 4) >> 2] | 0) | 0 + q = (r + m) | 0 + m = 0 + while (1) { + r = (g + (m << 3)) | 0 + f[r >> 2] = f[q >> 2] + f[(r + 4) >> 2] = 0 + m = (m + 1) | 0 + r = b[t >> 0] | 0 + if ( + (m | 0) >= + (((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24) | + 0) + ) { + y = r + break + } else q = (q + 4) | 0 + } + } else y = o + q = (y << 24) >> 24 + if ((y << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (q << 3)) | 0, 0, ((((e << 24) >> 24) - q) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 7: { + q = (a + 24) | 0 + m = b[q >> 0] | 0 + if ((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24 > 0) { + t = f[f[a >> 2] >> 2] | 0 + k = (a + 40) | 0 + r = un(f[k >> 2] | 0, f[(k + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + k = (a + 48) | 0 + l = Vn(r | 0, I | 0, f[k >> 2] | 0, f[(k + 4) >> 2] | 0) | 0 + k = (t + l) | 0 + l = 0 + while (1) { + t = k + r = f[(t + 4) >> 2] | 0 + z = (g + (l << 3)) | 0 + f[z >> 2] = f[t >> 2] + f[(z + 4) >> 2] = r + l = (l + 1) | 0 + r = b[q >> 0] | 0 + if ( + (l | 0) >= + (((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24) | + 0) + ) { + A = r + break + } else k = (k + 8) | 0 + } + } else A = m + k = (A << 24) >> 24 + if ((A << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (k << 3)) | 0, 0, ((((e << 24) >> 24) - k) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 8: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + q = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + r = un(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + z = Vn(r | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (q + z) | 0 + z = 0 + while (1) { + q = o + r = f[(q + 4) >> 2] | 0 + t = (g + (z << 3)) | 0 + f[t >> 2] = f[q >> 2] + f[(t + 4) >> 2] = r + z = (z + 1) | 0 + r = b[k >> 0] | 0 + if ( + (z | 0) >= + (((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24) | + 0) + ) { + B = r + break + } else o = (o + 8) | 0 + } + } else B = l + o = (B << 24) >> 24 + if ((B << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (o << 3)) | 0, 0, ((((e << 24) >> 24) - o) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 9: { + o = (a + 24) | 0 + z = b[o >> 0] | 0 + if ((((z << 24) >> 24 > (e << 24) >> 24 ? e : z) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + r = un(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + t = Vn(r | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (k + t) | 0 + t = 0 + while (1) { + C = $(n[m >> 2]) + k = + +K(+C) >= 1.0 + ? +C > 0.0 + ? ~~+Y(+J(+C / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((+C - +(~~+C >>> 0)) / 4294967296.0) >>> 0 + : 0 + r = (g + (t << 3)) | 0 + f[r >> 2] = ~~+C >>> 0 + f[(r + 4) >> 2] = k + t = (t + 1) | 0 + k = b[o >> 0] | 0 + if ( + (t | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24) | + 0) + ) { + D = k + break + } else m = (m + 4) | 0 + } + } else D = z + m = (D << 24) >> 24 + if ((D << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (m << 3)) | 0, 0, ((((e << 24) >> 24) - m) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 10: { + m = (a + 24) | 0 + t = b[m >> 0] | 0 + if ((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + l = (a + 40) | 0 + k = un(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + l = (a + 48) | 0 + r = Vn(k | 0, I | 0, f[l >> 2] | 0, f[(l + 4) >> 2] | 0) | 0 + l = (o + r) | 0 + r = 0 + while (1) { + E = +p[l >> 3] + o = + +K(E) >= 1.0 + ? E > 0.0 + ? ~~+Y(+J(E / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((E - +(~~E >>> 0)) / 4294967296.0) >>> 0 + : 0 + k = (g + (r << 3)) | 0 + f[k >> 2] = ~~E >>> 0 + f[(k + 4) >> 2] = o + r = (r + 1) | 0 + o = b[m >> 0] | 0 + if ( + (r | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + F = o + break + } else l = (l + 8) | 0 + } + } else F = t + l = (F << 24) >> 24 + if ((F << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (l << 3)) | 0, 0, ((((e << 24) >> 24) - l) << 3) | 0) | 0 + i = 1 + return i | 0 + } + case 11: { + l = (a + 24) | 0 + r = b[l >> 0] | 0 + if ((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + z = (a + 40) | 0 + o = un(f[z >> 2] | 0, f[(z + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + z = (a + 48) | 0 + k = Vn(o | 0, I | 0, f[z >> 2] | 0, f[(z + 4) >> 2] | 0) | 0 + z = (m + k) | 0 + k = 0 + while (1) { + m = (g + (k << 3)) | 0 + f[m >> 2] = h[z >> 0] + f[(m + 4) >> 2] = 0 + k = (k + 1) | 0 + m = b[l >> 0] | 0 + if ( + (k | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + G = m + break + } else z = (z + 1) | 0 + } + } else G = r + z = (G << 24) >> 24 + if ((G << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (z << 3)) | 0, 0, ((((e << 24) >> 24) - z) << 3) | 0) | 0 + i = 1 + return i | 0 + } + default: { + i = 0 + return i | 0 + } + } + while (0) + return 0 + } + function wb(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = c + if ((f[(a + 96) >> 2] | 0) == (f[(a + 92) >> 2] | 0)) { + u = c + return + } + g = (a + 56) | 0 + h = f[g >> 2] | 0 + if ((h | 0) == (f[(a + 60) >> 2] | 0)) { + Ri((a + 52) | 0, b) + i = b + } else { + f[h >> 2] = f[b >> 2] + f[g >> 2] = h + 4 + i = b + } + b = (a + 88) | 0 + f[b >> 2] = 0 + h = f[a >> 2] | 0 + g = f[i >> 2] | 0 + j = (g + 1) | 0 + if ((g | 0) != -1) { + k = ((j >>> 0) % 3 | 0 | 0) == 0 ? (g + -2) | 0 : j + if ((k | 0) == -1) l = -1 + else l = f[((f[h >> 2] | 0) + (k << 2)) >> 2] | 0 + k = ((((g >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + g) | 0 + if ((k | 0) == -1) { + m = l + n = -1 + } else { + m = l + n = f[((f[h >> 2] | 0) + (k << 2)) >> 2] | 0 + } + } else { + m = -1 + n = -1 + } + k = (a + 24) | 0 + h = f[k >> 2] | 0 + l = (h + ((m >>> 5) << 2)) | 0 + g = 1 << (m & 31) + j = f[l >> 2] | 0 + if (!(j & g)) { + f[l >> 2] = j | g + g = f[i >> 2] | 0 + j = (g + 1) | 0 + if ((g | 0) == -1) o = -1 + else o = ((j >>> 0) % 3 | 0 | 0) == 0 ? (g + -2) | 0 : j + f[e >> 2] = o + j = + f[ + ((f[((f[(a + 44) >> 2] | 0) + 96) >> 2] | 0) + + (((((o >>> 0) / 3) | 0) * 12) | 0) + + (((o >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + o = f[(a + 48) >> 2] | 0 + f[d >> 2] = j + g = f[(o + 4) >> 2] | 0 + o = (g + 4) | 0 + l = f[o >> 2] | 0 + if ((l | 0) == (f[(g + 8) >> 2] | 0)) Ri(g, d) + else { + f[l >> 2] = j + f[o >> 2] = l + 4 + } + l = (a + 40) | 0 + o = f[l >> 2] | 0 + j = (o + 4) | 0 + g = f[j >> 2] | 0 + if ((g | 0) == (f[(o + 8) >> 2] | 0)) { + Ri(o, e) + p = f[l >> 2] | 0 + } else { + f[g >> 2] = f[e >> 2] + f[j >> 2] = g + 4 + p = o + } + o = (p + 24) | 0 + f[((f[(p + 12) >> 2] | 0) + (m << 2)) >> 2] = f[o >> 2] + f[o >> 2] = (f[o >> 2] | 0) + 1 + q = f[k >> 2] | 0 + } else q = h + h = (q + ((n >>> 5) << 2)) | 0 + q = 1 << (n & 31) + o = f[h >> 2] | 0 + if (!(o & q)) { + f[h >> 2] = o | q + q = f[i >> 2] | 0 + do + if ((q | 0) != -1) + if (!((q >>> 0) % 3 | 0)) { + r = (q + 2) | 0 + break + } else { + r = (q + -1) | 0 + break + } + else r = -1 + while (0) + f[e >> 2] = r + q = + f[ + ((f[((f[(a + 44) >> 2] | 0) + 96) >> 2] | 0) + + (((((r >>> 0) / 3) | 0) * 12) | 0) + + (((r >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + r = f[(a + 48) >> 2] | 0 + f[d >> 2] = q + o = f[(r + 4) >> 2] | 0 + r = (o + 4) | 0 + h = f[r >> 2] | 0 + if ((h | 0) == (f[(o + 8) >> 2] | 0)) Ri(o, d) + else { + f[h >> 2] = q + f[r >> 2] = h + 4 + } + h = (a + 40) | 0 + r = f[h >> 2] | 0 + q = (r + 4) | 0 + o = f[q >> 2] | 0 + if ((o | 0) == (f[(r + 8) >> 2] | 0)) { + Ri(r, e) + s = f[h >> 2] | 0 + } else { + f[o >> 2] = f[e >> 2] + f[q >> 2] = o + 4 + s = r + } + r = (s + 24) | 0 + f[((f[(s + 12) >> 2] | 0) + (n << 2)) >> 2] = f[r >> 2] + f[r >> 2] = (f[r >> 2] | 0) + 1 + } + r = f[i >> 2] | 0 + if ((r | 0) == -1) t = -1 + else t = f[((f[f[a >> 2] >> 2] | 0) + (r << 2)) >> 2] | 0 + r = ((f[k >> 2] | 0) + ((t >>> 5) << 2)) | 0 + n = 1 << (t & 31) + s = f[r >> 2] | 0 + if (!(n & s)) { + f[r >> 2] = s | n + n = f[i >> 2] | 0 + f[e >> 2] = n + s = + f[ + ((f[((f[(a + 44) >> 2] | 0) + 96) >> 2] | 0) + + (((((n >>> 0) / 3) | 0) * 12) | 0) + + (((n >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + n = f[(a + 48) >> 2] | 0 + f[d >> 2] = s + r = f[(n + 4) >> 2] | 0 + n = (r + 4) | 0 + o = f[n >> 2] | 0 + if ((o | 0) == (f[(r + 8) >> 2] | 0)) Ri(r, d) + else { + f[o >> 2] = s + f[n >> 2] = o + 4 + } + o = (a + 40) | 0 + n = f[o >> 2] | 0 + s = (n + 4) | 0 + r = f[s >> 2] | 0 + if ((r | 0) == (f[(n + 8) >> 2] | 0)) { + Ri(n, e) + v = f[o >> 2] | 0 + } else { + f[r >> 2] = f[e >> 2] + f[s >> 2] = r + 4 + v = n + } + n = (v + 24) | 0 + f[((f[(v + 12) >> 2] | 0) + (t << 2)) >> 2] = f[n >> 2] + f[n >> 2] = (f[n >> 2] | 0) + 1 + } + n = f[b >> 2] | 0 + a: do + if ((n | 0) < 3) { + t = (a + 12) | 0 + v = (a + 44) | 0 + r = (a + 48) | 0 + s = (a + 40) | 0 + o = (a + 92) | 0 + q = n + while (1) { + h = q + while (1) { + w = (a + 52 + ((h * 12) | 0) + 4) | 0 + x = f[w >> 2] | 0 + if ((f[(a + 52 + ((h * 12) | 0)) >> 2] | 0) != (x | 0)) break + if ((h | 0) < 2) h = (h + 1) | 0 + else break a + } + m = (x + -4) | 0 + p = f[m >> 2] | 0 + f[w >> 2] = m + f[b >> 2] = h + f[i >> 2] = p + if ((p | 0) == -1) break + m = ((p >>> 0) / 3) | 0 + g = f[t >> 2] | 0 + do + if (!(f[(g + ((m >>> 5) << 2)) >> 2] & (1 << (m & 31)))) { + j = p + l = g + b: while (1) { + y = ((j >>> 0) / 3) | 0 + z = (l + ((y >>> 5) << 2)) | 0 + f[z >> 2] = (1 << (y & 31)) | f[z >> 2] + z = f[i >> 2] | 0 + if ((z | 0) == -1) A = -1 + else A = f[((f[f[a >> 2] >> 2] | 0) + (z << 2)) >> 2] | 0 + y = ((f[k >> 2] | 0) + ((A >>> 5) << 2)) | 0 + B = 1 << (A & 31) + C = f[y >> 2] | 0 + if (!(B & C)) { + f[y >> 2] = C | B + B = f[i >> 2] | 0 + f[e >> 2] = B + C = + f[ + ((f[((f[v >> 2] | 0) + 96) >> 2] | 0) + + (((((B >>> 0) / 3) | 0) * 12) | 0) + + (((B >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + B = f[r >> 2] | 0 + f[d >> 2] = C + y = f[(B + 4) >> 2] | 0 + B = (y + 4) | 0 + D = f[B >> 2] | 0 + if ((D | 0) == (f[(y + 8) >> 2] | 0)) Ri(y, d) + else { + f[D >> 2] = C + f[B >> 2] = D + 4 + } + D = f[s >> 2] | 0 + B = (D + 4) | 0 + C = f[B >> 2] | 0 + if ((C | 0) == (f[(D + 8) >> 2] | 0)) { + Ri(D, e) + E = f[s >> 2] | 0 + } else { + f[C >> 2] = f[e >> 2] + f[B >> 2] = C + 4 + E = D + } + D = (E + 24) | 0 + f[((f[(E + 12) >> 2] | 0) + (A << 2)) >> 2] = f[D >> 2] + f[D >> 2] = (f[D >> 2] | 0) + 1 + F = f[i >> 2] | 0 + } else F = z + z = f[a >> 2] | 0 + if ((F | 0) == -1) { + G = 93 + break + } + D = (F + 1) | 0 + C = ((D >>> 0) % 3 | 0 | 0) == 0 ? (F + -2) | 0 : D + if ((C | 0) == -1) H = -1 + else H = f[((f[(z + 12) >> 2] | 0) + (C << 2)) >> 2] | 0 + C = ((((F >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + F) | 0 + if ((C | 0) == -1) I = -1 + else I = f[((f[(z + 12) >> 2] | 0) + (C << 2)) >> 2] | 0 + C = (H | 0) == -1 + D = C ? -1 : ((H >>> 0) / 3) | 0 + B = (I | 0) == -1 + y = B ? -1 : ((I >>> 0) / 3) | 0 + if (C) J = 1 + else + J = + ((f[((f[t >> 2] | 0) + ((D >>> 5) << 2)) >> 2] & + (1 << (D & 31))) | + 0) != + 0 + do + if (B) + if (J) { + G = 93 + break b + } else G = 82 + else { + if ( + (f[((f[t >> 2] | 0) + ((y >>> 5) << 2)) >> 2] & + (1 << (y & 31))) | + 0 + ) + if (J) { + G = 93 + break b + } else { + G = 82 + break + } + D = f[((f[z >> 2] | 0) + (I << 2)) >> 2] | 0 + if ( + !( + (1 << (D & 31)) & + f[((f[k >> 2] | 0) + ((D >>> 5) << 2)) >> 2] + ) + ) { + K = ((f[o >> 2] | 0) + (D << 2)) | 0 + D = f[K >> 2] | 0 + f[K >> 2] = D + 1 + L = (D | 0) > 0 ? 1 : 2 + } else L = 0 + if (J ? (L | 0) <= (f[b >> 2] | 0) : 0) { + M = I + break + } + f[d >> 2] = I + D = (a + 52 + ((L * 12) | 0) + 4) | 0 + K = f[D >> 2] | 0 + if ( + (K | 0) == + (f[(a + 52 + ((L * 12) | 0) + 8) >> 2] | 0) + ) + Ri((a + 52 + ((L * 12) | 0)) | 0, d) + else { + f[K >> 2] = I + f[D >> 2] = K + 4 + } + if ((f[b >> 2] | 0) > (L | 0)) f[b >> 2] = L + if (J) { + G = 93 + break b + } else G = 82 + } + while (0) + if ((G | 0) == 82) { + G = 0 + if (C) N = -1 + else N = f[((f[f[a >> 2] >> 2] | 0) + (H << 2)) >> 2] | 0 + if ( + !( + (1 << (N & 31)) & + f[((f[k >> 2] | 0) + ((N >>> 5) << 2)) >> 2] + ) + ) { + z = ((f[o >> 2] | 0) + (N << 2)) | 0 + y = f[z >> 2] | 0 + f[z >> 2] = y + 1 + O = (y | 0) > 0 ? 1 : 2 + } else O = 0 + if ((O | 0) > (f[b >> 2] | 0)) break + else M = H + } + f[i >> 2] = M + j = M + l = f[t >> 2] | 0 + } + if ((G | 0) == 93) { + G = 0 + P = f[b >> 2] | 0 + break + } + f[d >> 2] = H + l = (a + 52 + ((O * 12) | 0) + 4) | 0 + j = f[l >> 2] | 0 + if ((j | 0) == (f[(a + 52 + ((O * 12) | 0) + 8) >> 2] | 0)) + Ri((a + 52 + ((O * 12) | 0)) | 0, d) + else { + f[j >> 2] = H + f[l >> 2] = j + 4 + } + j = f[b >> 2] | 0 + if ((j | 0) > (O | 0)) { + f[b >> 2] = O + Q = O + } else Q = j + P = Q + } else P = h + while (0) + if ((P | 0) < 3) q = P + else break a + } + u = c + return + } + while (0) + f[i >> 2] = -1 + u = c + return + } + function xb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + xb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + xb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function yb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + yb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + yb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function zb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + zb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + zb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Ab(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Ab(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Ab((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Bb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Bb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Bb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Cb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Cb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Cb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Db(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Db(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Db((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Eb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Eb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Eb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Fb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Fb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Fb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Gb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Gb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Gb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Hb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Hb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Hb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Ib(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Ib(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Ib((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Jb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Jb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Jb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Kb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Kb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Kb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Lb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Lb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Lb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Mb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Mb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Mb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Nb(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Nb(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Nb((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Ob(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0 + d = a + a = b + a: while (1) { + b = a + e = (a + -4) | 0 + g = d + while (1) { + h = g + b: while (1) { + i = h + j = (b - i) | 0 + k = j >> 2 + switch (k | 0) { + case 2: { + l = 5 + break a + break + } + case 3: { + l = 11 + break a + break + } + case 4: { + l = 12 + break a + break + } + case 5: { + l = 13 + break a + break + } + case 1: + case 0: { + l = 84 + break a + break + } + default: { + } + } + if ((j | 0) < 124) { + l = 15 + break a + } + m = (h + ((((k | 0) / 2) | 0) << 2)) | 0 + if ((j | 0) > 3996) { + j = ((k | 0) / 4) | 0 + n = ig(h, (h + (j << 2)) | 0, m, (m + (j << 2)) | 0, e, c) | 0 + } else n = Vg(h, m, e, c) | 0 + o = f[h >> 2] | 0 + j = f[m >> 2] | 0 + p = f[c >> 2] | 0 + k = f[p >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= o >>> 0) { + l = 20 + break a + } + r = k + if (q >>> 0 <= j >>> 0) { + l = 22 + break a + } + k = f[(r + (o << 3)) >> 2] | 0 + s = f[(r + (j << 3)) >> 2] | 0 + if (k >>> 0 < s >>> 0) { + t = e + u = n + break + } else v = e + while (1) { + v = (v + -4) | 0 + if ((h | 0) == (v | 0)) break + w = f[v >> 2] | 0 + if (q >>> 0 <= w >>> 0) { + l = 51 + break a + } + if ((f[(r + (w << 3)) >> 2] | 0) >>> 0 < s >>> 0) { + l = 53 + break b + } + } + s = (h + 4) | 0 + j = f[e >> 2] | 0 + if (q >>> 0 <= j >>> 0) { + l = 26 + break a + } + if (k >>> 0 < (f[(r + (j << 3)) >> 2] | 0) >>> 0) x = s + else { + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + while (1) { + z = f[y >> 2] | 0 + if (q >>> 0 <= z >>> 0) { + l = 32 + break a + } + if (k >>> 0 < (f[(r + (z << 3)) >> 2] | 0) >>> 0) break + s = (y + 4) | 0 + if ((s | 0) == (e | 0)) { + l = 84 + break a + } else y = s + } + f[y >> 2] = j + f[e >> 2] = z + x = (y + 4) | 0 + } + if ((x | 0) == (e | 0)) { + l = 84 + break a + } + r = f[h >> 2] | 0 + A = f[c >> 2] | 0 + k = f[A >> 2] | 0 + q = ((f[(A + 4) >> 2] | 0) - k) >> 3 + if (q >>> 0 <= r >>> 0) { + l = 38 + break a + } + s = k + k = e + B = x + C = r + while (1) { + r = (s + (C << 3)) | 0 + D = q >>> 0 > C >>> 0 + E = B + while (1) { + F = f[E >> 2] | 0 + if (q >>> 0 <= F >>> 0) { + l = 40 + break a + } + G = f[r >> 2] | 0 + if (G >>> 0 < (f[(s + (F << 3)) >> 2] | 0) >>> 0) break + if (D) E = (E + 4) | 0 + else { + l = 38 + break a + } + } + if (q >>> 0 > C >>> 0) H = k + else { + l = 46 + break a + } + do { + H = (H + -4) | 0 + I = f[H >> 2] | 0 + if (q >>> 0 <= I >>> 0) { + l = 47 + break a + } + } while (G >>> 0 < (f[(s + (I << 3)) >> 2] | 0) >>> 0) + if (E >>> 0 >= H >>> 0) { + h = E + continue b + } + D = f[E >> 2] | 0 + f[E >> 2] = I + f[H >> 2] = D + C = f[h >> 2] | 0 + if (q >>> 0 <= C >>> 0) { + l = 38 + break a + } else { + k = H + B = (E + 4) | 0 + } + } + } + if ((l | 0) == 53) { + l = 0 + f[h >> 2] = w + f[v >> 2] = o + t = v + u = (n + 1) | 0 + } + B = (h + 4) | 0 + c: do + if (B >>> 0 < t >>> 0) { + k = f[B >> 2] | 0 + C = f[c >> 2] | 0 + q = f[C >> 2] | 0 + s = ((f[(C + 4) >> 2] | 0) - q) >> 3 + if (s >>> 0 > k >>> 0) { + J = t + K = B + L = u + M = m + N = s + O = q + P = C + Q = k + } else { + R = C + l = 57 + break a + } + while (1) { + C = f[c >> 2] | 0 + k = (C + 4) | 0 + q = f[M >> 2] | 0 + s = K + j = O + D = N + S = P + r = Q + while (1) { + F = j + if (D >>> 0 <= q >>> 0) { + l = 59 + break a + } + if ( + (f[(F + (r << 3)) >> 2] | 0) >>> 0 >= + (f[(F + (q << 3)) >> 2] | 0) >>> 0 + ) + break + F = (s + 4) | 0 + T = f[F >> 2] | 0 + j = f[C >> 2] | 0 + D = ((f[k >> 2] | 0) - j) >> 3 + if (D >>> 0 <= T >>> 0) { + R = C + l = 57 + break a + } else { + s = F + S = C + r = T + } + } + C = f[M >> 2] | 0 + O = f[S >> 2] | 0 + N = ((f[(S + 4) >> 2] | 0) - O) >> 3 + D = O + j = (D + (C << 3)) | 0 + if (N >>> 0 > C >>> 0) U = J + else { + l = 65 + break a + } + do { + U = (U + -4) | 0 + V = f[U >> 2] | 0 + if (N >>> 0 <= V >>> 0) { + l = 66 + break a + } + } while ( + (f[(D + (V << 3)) >> 2] | 0) >>> 0 >= + (f[j >> 2] | 0) >>> 0 + ) + if (s >>> 0 > U >>> 0) { + W = M + X = L + Y = s + break c + } + f[s >> 2] = V + f[U >> 2] = r + K = (s + 4) | 0 + Q = f[K >> 2] | 0 + if (N >>> 0 <= Q >>> 0) { + R = S + l = 57 + break a + } else { + J = U + L = (L + 1) | 0 + M = (M | 0) == (s | 0) ? U : M + P = S + } + } + } else { + W = m + X = u + Y = B + } + while (0) + if ((Y | 0) != (W | 0)) { + B = f[W >> 2] | 0 + j = f[Y >> 2] | 0 + Z = f[c >> 2] | 0 + D = f[Z >> 2] | 0 + C = ((f[(Z + 4) >> 2] | 0) - D) >> 3 + if (C >>> 0 <= B >>> 0) { + l = 72 + break a + } + k = D + if (C >>> 0 <= j >>> 0) { + l = 74 + break a + } + if ( + (f[(k + (B << 3)) >> 2] | 0) >>> 0 < + (f[(k + (j << 3)) >> 2] | 0) >>> 0 + ) { + f[Y >> 2] = B + f[W >> 2] = j + _ = (X + 1) | 0 + } else _ = X + } else _ = X + if (!_) { + $ = _d(h, Y, c) | 0 + j = (Y + 4) | 0 + if (_d(j, a, c) | 0) { + l = 83 + break + } + if ($) { + g = j + continue + } + } + j = Y + if (((j - i) | 0) >= ((b - j) | 0)) { + l = 82 + break + } + Ob(h, Y, c) + g = (Y + 4) | 0 + } + if ((l | 0) == 82) { + l = 0 + Ob((Y + 4) | 0, a, c) + d = h + a = Y + continue + } else if ((l | 0) == 83) { + l = 0 + if ($) { + l = 84 + break + } else { + d = h + a = Y + continue + } + } + } + switch (l | 0) { + case 5: { + l = f[e >> 2] | 0 + Y = f[h >> 2] | 0 + d = f[c >> 2] | 0 + $ = f[d >> 2] | 0 + i = ((f[(d + 4) >> 2] | 0) - $) >> 3 + if (i >>> 0 <= l >>> 0) aq(d) + _ = $ + if (i >>> 0 <= Y >>> 0) aq(d) + if ( + (f[(_ + (l << 3)) >> 2] | 0) >>> 0 >= + (f[(_ + (Y << 3)) >> 2] | 0) >>> 0 + ) + return + f[h >> 2] = l + f[e >> 2] = Y + return + } + case 11: { + Vg(h, (h + 4) | 0, e, c) | 0 + return + } + case 12: { + jh(h, (h + 4) | 0, (h + 8) | 0, e, c) | 0 + return + } + case 13: { + ig(h, (h + 4) | 0, (h + 8) | 0, (h + 12) | 0, e, c) | 0 + return + } + case 15: { + ih(h, a, c) + return + } + case 20: { + aq(p) + break + } + case 22: { + aq(p) + break + } + case 26: { + aq(p) + break + } + case 32: { + aq(p) + break + } + case 38: { + aq(A) + break + } + case 40: { + aq(A) + break + } + case 46: { + aq(A) + break + } + case 47: { + aq(A) + break + } + case 51: { + aq(p) + break + } + case 57: { + aq(R) + break + } + case 59: { + aq(S) + break + } + case 65: { + if (N >>> 0 > (f[(J + -4) >> 2] | 0) >>> 0) aq(S) + else aq(S) + break + } + case 66: { + aq(S) + break + } + case 72: { + aq(Z) + break + } + case 74: { + aq(Z) + break + } + case 84: + return + } + } + function Pb(a, c, e, g) { + a = a | 0 + c = c | 0 + e = e | 0 + g = g | 0 + var i = 0, + k = 0, + l = 0, + m = 0, + o = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0 + if (!g) { + i = 0 + return i | 0 + } + do + switch (f[(a + 28) >> 2] | 0) { + case 1: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + q = un(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + r = Vn(q | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (m + r) | 0 + r = 0 + while (1) { + f[(g + (r << 2)) >> 2] = b[o >> 0] + r = (r + 1) | 0 + m = b[k >> 0] | 0 + if ( + (r | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + s = m + break + } else o = (o + 1) | 0 + } + } else s = l + o = (s << 24) >> 24 + if ((s << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (o << 2)) | 0, 0, ((((e << 24) >> 24) - o) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 2: { + o = (a + 24) | 0 + r = b[o >> 0] | 0 + if ((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + q = un(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + t = Vn(q | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (k + t) | 0 + t = 0 + while (1) { + f[(g + (t << 2)) >> 2] = h[m >> 0] + t = (t + 1) | 0 + k = b[o >> 0] | 0 + if ( + (t | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24) | + 0) + ) { + u = k + break + } else m = (m + 1) | 0 + } + } else u = r + m = (u << 24) >> 24 + if ((u << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (m << 2)) | 0, 0, ((((e << 24) >> 24) - m) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 3: { + m = (a + 24) | 0 + t = b[m >> 0] | 0 + if ((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + l = (a + 40) | 0 + k = un(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + l = (a + 48) | 0 + q = Vn(k | 0, I | 0, f[l >> 2] | 0, f[(l + 4) >> 2] | 0) | 0 + l = (o + q) | 0 + q = 0 + while (1) { + f[(g + (q << 2)) >> 2] = d[l >> 1] + q = (q + 1) | 0 + o = b[m >> 0] | 0 + if ( + (q | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + v = o + break + } else l = (l + 2) | 0 + } + } else v = t + l = (v << 24) >> 24 + if ((v << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (l << 2)) | 0, 0, ((((e << 24) >> 24) - l) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 4: { + l = (a + 24) | 0 + q = b[l >> 0] | 0 + if ((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + r = (a + 40) | 0 + o = un(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + r = (a + 48) | 0 + k = Vn(o | 0, I | 0, f[r >> 2] | 0, f[(r + 4) >> 2] | 0) | 0 + r = (m + k) | 0 + k = 0 + while (1) { + f[(g + (k << 2)) >> 2] = j[r >> 1] + k = (k + 1) | 0 + m = b[l >> 0] | 0 + if ( + (k | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + w = m + break + } else r = (r + 2) | 0 + } + } else w = q + r = (w << 24) >> 24 + if ((w << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (r << 2)) | 0, 0, ((((e << 24) >> 24) - r) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 5: { + r = (a + 24) | 0 + k = b[r >> 0] | 0 + if ((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24 > 0) { + l = f[f[a >> 2] >> 2] | 0 + t = (a + 40) | 0 + m = un(f[t >> 2] | 0, f[(t + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + t = (a + 48) | 0 + o = Vn(m | 0, I | 0, f[t >> 2] | 0, f[(t + 4) >> 2] | 0) | 0 + t = (l + o) | 0 + o = 0 + while (1) { + f[(g + (o << 2)) >> 2] = f[t >> 2] + o = (o + 1) | 0 + l = b[r >> 0] | 0 + if ( + (o | 0) >= + (((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24) | + 0) + ) { + x = l + break + } else t = (t + 4) | 0 + } + } else x = k + t = (x << 24) >> 24 + if ((x << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (t << 2)) | 0, 0, ((((e << 24) >> 24) - t) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 6: { + t = (a + 24) | 0 + o = b[t >> 0] | 0 + if ((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24 > 0) { + r = f[f[a >> 2] >> 2] | 0 + q = (a + 40) | 0 + l = un(f[q >> 2] | 0, f[(q + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + q = (a + 48) | 0 + m = Vn(l | 0, I | 0, f[q >> 2] | 0, f[(q + 4) >> 2] | 0) | 0 + q = (r + m) | 0 + m = 0 + while (1) { + f[(g + (m << 2)) >> 2] = f[q >> 2] + m = (m + 1) | 0 + r = b[t >> 0] | 0 + if ( + (m | 0) >= + (((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24) | + 0) + ) { + y = r + break + } else q = (q + 4) | 0 + } + } else y = o + q = (y << 24) >> 24 + if ((y << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (q << 2)) | 0, 0, ((((e << 24) >> 24) - q) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 7: { + q = (a + 24) | 0 + m = b[q >> 0] | 0 + if ((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24 > 0) { + t = f[f[a >> 2] >> 2] | 0 + k = (a + 40) | 0 + r = un(f[k >> 2] | 0, f[(k + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + k = (a + 48) | 0 + l = Vn(r | 0, I | 0, f[k >> 2] | 0, f[(k + 4) >> 2] | 0) | 0 + k = (t + l) | 0 + l = 0 + while (1) { + f[(g + (l << 2)) >> 2] = f[k >> 2] + l = (l + 1) | 0 + t = b[q >> 0] | 0 + if ( + (l | 0) >= + (((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24) | + 0) + ) { + z = t + break + } else k = (k + 8) | 0 + } + } else z = m + k = (z << 24) >> 24 + if ((z << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (k << 2)) | 0, 0, ((((e << 24) >> 24) - k) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 8: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + q = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + t = un(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + r = Vn(t | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (q + r) | 0 + r = 0 + while (1) { + f[(g + (r << 2)) >> 2] = f[o >> 2] + r = (r + 1) | 0 + q = b[k >> 0] | 0 + if ( + (r | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24) | + 0) + ) { + A = q + break + } else o = (o + 8) | 0 + } + } else A = l + o = (A << 24) >> 24 + if ((A << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (o << 2)) | 0, 0, ((((e << 24) >> 24) - o) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 9: { + o = (a + 24) | 0 + r = b[o >> 0] | 0 + if ((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + q = un(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + t = Vn(q | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (k + t) | 0 + t = 0 + while (1) { + k = ~~$(n[m >> 2]) >>> 0 + f[(g + (t << 2)) >> 2] = k + t = (t + 1) | 0 + k = b[o >> 0] | 0 + if ( + (t | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24) | + 0) + ) { + B = k + break + } else m = (m + 4) | 0 + } + } else B = r + m = (B << 24) >> 24 + if ((B << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (m << 2)) | 0, 0, ((((e << 24) >> 24) - m) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 10: { + m = (a + 24) | 0 + t = b[m >> 0] | 0 + if ((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + l = (a + 40) | 0 + k = un(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + l = (a + 48) | 0 + q = Vn(k | 0, I | 0, f[l >> 2] | 0, f[(l + 4) >> 2] | 0) | 0 + l = (o + q) | 0 + q = 0 + while (1) { + f[(g + (q << 2)) >> 2] = ~~+p[l >> 3] >>> 0 + q = (q + 1) | 0 + o = b[m >> 0] | 0 + if ( + (q | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + C = o + break + } else l = (l + 8) | 0 + } + } else C = t + l = (C << 24) >> 24 + if ((C << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (l << 2)) | 0, 0, ((((e << 24) >> 24) - l) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 11: { + l = (a + 24) | 0 + q = b[l >> 0] | 0 + if ((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + r = (a + 40) | 0 + o = un(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + r = (a + 48) | 0 + k = Vn(o | 0, I | 0, f[r >> 2] | 0, f[(r + 4) >> 2] | 0) | 0 + r = (m + k) | 0 + k = 0 + while (1) { + f[(g + (k << 2)) >> 2] = h[r >> 0] + k = (k + 1) | 0 + m = b[l >> 0] | 0 + if ( + (k | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + D = m + break + } else r = (r + 1) | 0 + } + } else D = q + r = (D << 24) >> 24 + if ((D << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (r << 2)) | 0, 0, ((((e << 24) >> 24) - r) << 2) | 0) | 0 + i = 1 + return i | 0 + } + default: { + i = 0 + return i | 0 + } + } + while (0) + return 0 + } + function Qb(a, c, e, g) { + a = a | 0 + c = c | 0 + e = e | 0 + g = g | 0 + var i = 0, + k = 0, + l = 0, + m = 0, + o = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0 + if (!g) { + i = 0 + return i | 0 + } + do + switch (f[(a + 28) >> 2] | 0) { + case 1: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + q = un(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + r = Vn(q | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (m + r) | 0 + r = 0 + while (1) { + f[(g + (r << 2)) >> 2] = b[o >> 0] + r = (r + 1) | 0 + m = b[k >> 0] | 0 + if ( + (r | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + s = m + break + } else o = (o + 1) | 0 + } + } else s = l + o = (s << 24) >> 24 + if ((s << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (o << 2)) | 0, 0, ((((e << 24) >> 24) - o) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 2: { + o = (a + 24) | 0 + r = b[o >> 0] | 0 + if ((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + q = un(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + t = Vn(q | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (k + t) | 0 + t = 0 + while (1) { + f[(g + (t << 2)) >> 2] = h[m >> 0] + t = (t + 1) | 0 + k = b[o >> 0] | 0 + if ( + (t | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24) | + 0) + ) { + u = k + break + } else m = (m + 1) | 0 + } + } else u = r + m = (u << 24) >> 24 + if ((u << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (m << 2)) | 0, 0, ((((e << 24) >> 24) - m) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 3: { + m = (a + 24) | 0 + t = b[m >> 0] | 0 + if ((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + l = (a + 40) | 0 + k = un(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + l = (a + 48) | 0 + q = Vn(k | 0, I | 0, f[l >> 2] | 0, f[(l + 4) >> 2] | 0) | 0 + l = (o + q) | 0 + q = 0 + while (1) { + f[(g + (q << 2)) >> 2] = d[l >> 1] + q = (q + 1) | 0 + o = b[m >> 0] | 0 + if ( + (q | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + v = o + break + } else l = (l + 2) | 0 + } + } else v = t + l = (v << 24) >> 24 + if ((v << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (l << 2)) | 0, 0, ((((e << 24) >> 24) - l) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 4: { + l = (a + 24) | 0 + q = b[l >> 0] | 0 + if ((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + r = (a + 40) | 0 + o = un(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + r = (a + 48) | 0 + k = Vn(o | 0, I | 0, f[r >> 2] | 0, f[(r + 4) >> 2] | 0) | 0 + r = (m + k) | 0 + k = 0 + while (1) { + f[(g + (k << 2)) >> 2] = j[r >> 1] + k = (k + 1) | 0 + m = b[l >> 0] | 0 + if ( + (k | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + w = m + break + } else r = (r + 2) | 0 + } + } else w = q + r = (w << 24) >> 24 + if ((w << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (r << 2)) | 0, 0, ((((e << 24) >> 24) - r) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 5: { + r = (a + 24) | 0 + k = b[r >> 0] | 0 + if ((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24 > 0) { + l = f[f[a >> 2] >> 2] | 0 + t = (a + 40) | 0 + m = un(f[t >> 2] | 0, f[(t + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + t = (a + 48) | 0 + o = Vn(m | 0, I | 0, f[t >> 2] | 0, f[(t + 4) >> 2] | 0) | 0 + t = (l + o) | 0 + o = 0 + while (1) { + f[(g + (o << 2)) >> 2] = f[t >> 2] + o = (o + 1) | 0 + l = b[r >> 0] | 0 + if ( + (o | 0) >= + (((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24) | + 0) + ) { + x = l + break + } else t = (t + 4) | 0 + } + } else x = k + t = (x << 24) >> 24 + if ((x << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (t << 2)) | 0, 0, ((((e << 24) >> 24) - t) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 6: { + t = (a + 24) | 0 + o = b[t >> 0] | 0 + if ((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24 > 0) { + r = f[f[a >> 2] >> 2] | 0 + q = (a + 40) | 0 + l = un(f[q >> 2] | 0, f[(q + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + q = (a + 48) | 0 + m = Vn(l | 0, I | 0, f[q >> 2] | 0, f[(q + 4) >> 2] | 0) | 0 + q = (r + m) | 0 + m = 0 + while (1) { + f[(g + (m << 2)) >> 2] = f[q >> 2] + m = (m + 1) | 0 + r = b[t >> 0] | 0 + if ( + (m | 0) >= + (((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24) | + 0) + ) { + y = r + break + } else q = (q + 4) | 0 + } + } else y = o + q = (y << 24) >> 24 + if ((y << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (q << 2)) | 0, 0, ((((e << 24) >> 24) - q) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 7: { + q = (a + 24) | 0 + m = b[q >> 0] | 0 + if ((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24 > 0) { + t = f[f[a >> 2] >> 2] | 0 + k = (a + 40) | 0 + r = un(f[k >> 2] | 0, f[(k + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + k = (a + 48) | 0 + l = Vn(r | 0, I | 0, f[k >> 2] | 0, f[(k + 4) >> 2] | 0) | 0 + k = (t + l) | 0 + l = 0 + while (1) { + f[(g + (l << 2)) >> 2] = f[k >> 2] + l = (l + 1) | 0 + t = b[q >> 0] | 0 + if ( + (l | 0) >= + (((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24) | + 0) + ) { + z = t + break + } else k = (k + 8) | 0 + } + } else z = m + k = (z << 24) >> 24 + if ((z << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (k << 2)) | 0, 0, ((((e << 24) >> 24) - k) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 8: { + k = (a + 24) | 0 + l = b[k >> 0] | 0 + if ((((l << 24) >> 24 > (e << 24) >> 24 ? e : l) << 24) >> 24 > 0) { + q = f[f[a >> 2] >> 2] | 0 + o = (a + 40) | 0 + t = un(f[o >> 2] | 0, f[(o + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + o = (a + 48) | 0 + r = Vn(t | 0, I | 0, f[o >> 2] | 0, f[(o + 4) >> 2] | 0) | 0 + o = (q + r) | 0 + r = 0 + while (1) { + f[(g + (r << 2)) >> 2] = f[o >> 2] + r = (r + 1) | 0 + q = b[k >> 0] | 0 + if ( + (r | 0) >= + (((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24) | + 0) + ) { + A = q + break + } else o = (o + 8) | 0 + } + } else A = l + o = (A << 24) >> 24 + if ((A << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (o << 2)) | 0, 0, ((((e << 24) >> 24) - o) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 9: { + o = (a + 24) | 0 + r = b[o >> 0] | 0 + if ((((r << 24) >> 24 > (e << 24) >> 24 ? e : r) << 24) >> 24 > 0) { + k = f[f[a >> 2] >> 2] | 0 + m = (a + 40) | 0 + q = un(f[m >> 2] | 0, f[(m + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + m = (a + 48) | 0 + t = Vn(q | 0, I | 0, f[m >> 2] | 0, f[(m + 4) >> 2] | 0) | 0 + m = (k + t) | 0 + t = 0 + while (1) { + k = ~~$(n[m >> 2]) + f[(g + (t << 2)) >> 2] = k + t = (t + 1) | 0 + k = b[o >> 0] | 0 + if ( + (t | 0) >= + (((((k << 24) >> 24 > (e << 24) >> 24 ? e : k) << 24) >> 24) | + 0) + ) { + B = k + break + } else m = (m + 4) | 0 + } + } else B = r + m = (B << 24) >> 24 + if ((B << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (m << 2)) | 0, 0, ((((e << 24) >> 24) - m) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 10: { + m = (a + 24) | 0 + t = b[m >> 0] | 0 + if ((((t << 24) >> 24 > (e << 24) >> 24 ? e : t) << 24) >> 24 > 0) { + o = f[f[a >> 2] >> 2] | 0 + l = (a + 40) | 0 + k = un(f[l >> 2] | 0, f[(l + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + l = (a + 48) | 0 + q = Vn(k | 0, I | 0, f[l >> 2] | 0, f[(l + 4) >> 2] | 0) | 0 + l = (o + q) | 0 + q = 0 + while (1) { + f[(g + (q << 2)) >> 2] = ~~+p[l >> 3] + q = (q + 1) | 0 + o = b[m >> 0] | 0 + if ( + (q | 0) >= + (((((o << 24) >> 24 > (e << 24) >> 24 ? e : o) << 24) >> 24) | + 0) + ) { + C = o + break + } else l = (l + 8) | 0 + } + } else C = t + l = (C << 24) >> 24 + if ((C << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (l << 2)) | 0, 0, ((((e << 24) >> 24) - l) << 2) | 0) | 0 + i = 1 + return i | 0 + } + case 11: { + l = (a + 24) | 0 + q = b[l >> 0] | 0 + if ((((q << 24) >> 24 > (e << 24) >> 24 ? e : q) << 24) >> 24 > 0) { + m = f[f[a >> 2] >> 2] | 0 + r = (a + 40) | 0 + o = un(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, f[c >> 2] | 0, 0) | 0 + r = (a + 48) | 0 + k = Vn(o | 0, I | 0, f[r >> 2] | 0, f[(r + 4) >> 2] | 0) | 0 + r = (m + k) | 0 + k = 0 + while (1) { + f[(g + (k << 2)) >> 2] = h[r >> 0] + k = (k + 1) | 0 + m = b[l >> 0] | 0 + if ( + (k | 0) >= + (((((m << 24) >> 24 > (e << 24) >> 24 ? e : m) << 24) >> 24) | + 0) + ) { + D = m + break + } else r = (r + 1) | 0 + } + } else D = q + r = (D << 24) >> 24 + if ((D << 24) >> 24 >= (e << 24) >> 24) { + i = 1 + return i | 0 + } + sj((g + (r << 2)) | 0, 0, ((((e << 24) >> 24) - r) << 2) | 0) | 0 + i = 1 + return i | 0 + } + default: { + i = 0 + return i | 0 + } + } + while (0) + return 0 + } + function Rb(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = Oa, + J = 0, + K = 0, + L = 0, + M = 0, + N = Oa + e = u + u = (u + 48) | 0 + g = (e + 36) | 0 + h = (e + 24) | 0 + i = (e + 12) | 0 + j = e + if (!(xh(a, c, d) | 0)) { + k = 0 + u = e + return k | 0 + } + l = f[((f[((f[(c + 4) >> 2] | 0) + 8) >> 2] | 0) + (d << 2)) >> 2] | 0 + if ((f[(l + 28) >> 2] | 0) != 9) { + k = 0 + u = e + return k | 0 + } + m = (c + 48) | 0 + c = f[m >> 2] | 0 + o = ln(32) | 0 + f[g >> 2] = o + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 17 + p = o + q = 14495 + r = (p + 17) | 0 + do { + b[p >> 0] = b[q >> 0] | 0 + p = (p + 1) | 0 + q = (q + 1) | 0 + } while ((p | 0) < (r | 0)) + b[(o + 17) >> 0] = 0 + o = (c + 16) | 0 + s = f[o >> 2] | 0 + if (s) { + t = o + v = s + a: while (1) { + s = v + while (1) { + if ((f[(s + 16) >> 2] | 0) >= (d | 0)) break + w = f[(s + 4) >> 2] | 0 + if (!w) { + x = t + break a + } else s = w + } + v = f[s >> 2] | 0 + if (!v) { + x = s + break + } else t = s + } + if ( + ((x | 0) != (o | 0) ? (f[(x + 16) >> 2] | 0) <= (d | 0) : 0) + ? ((o = (x + 20) | 0), (Jh(o, g) | 0) != 0) + : 0 + ) + y = Hk(o, g, -1) | 0 + else z = 12 + } else z = 12 + if ((z | 0) == 12) y = Hk(c, g, -1) | 0 + if ((b[(g + 11) >> 0] | 0) < 0) Oq(f[g >> 2] | 0) + if ((y | 0) < 1) { + k = 0 + u = e + return k | 0 + } + c = f[m >> 2] | 0 + o = ln(32) | 0 + f[g >> 2] = o + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 19 + p = o + q = 14438 + r = (p + 19) | 0 + do { + b[p >> 0] = b[q >> 0] | 0 + p = (p + 1) | 0 + q = (q + 1) | 0 + } while ((p | 0) < (r | 0)) + b[(o + 19) >> 0] = 0 + o = (c + 16) | 0 + x = f[o >> 2] | 0 + if (x) { + t = o + v = x + b: while (1) { + x = v + while (1) { + if ((f[(x + 16) >> 2] | 0) >= (d | 0)) break + w = f[(x + 4) >> 2] | 0 + if (!w) { + A = t + break b + } else x = w + } + v = f[x >> 2] | 0 + if (!v) { + A = x + break + } else t = x + } + if ((A | 0) != (o | 0) ? (f[(A + 16) >> 2] | 0) <= (d | 0) : 0) + B = (A + 20) | 0 + else z = 24 + } else z = 24 + if ((z | 0) == 24) B = c + if (!(Jh(B, g) | 0)) C = 0 + else { + B = f[m >> 2] | 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + c = ln(32) | 0 + f[h >> 2] = c + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 18 + p = c + q = 14458 + r = (p + 18) | 0 + do { + b[p >> 0] = b[q >> 0] | 0 + p = (p + 1) | 0 + q = (q + 1) | 0 + } while ((p | 0) < (r | 0)) + b[(c + 18) >> 0] = 0 + c = (B + 16) | 0 + A = f[c >> 2] | 0 + if (A) { + o = c + t = A + c: while (1) { + A = t + while (1) { + if ((f[(A + 16) >> 2] | 0) >= (d | 0)) break + v = f[(A + 4) >> 2] | 0 + if (!v) { + D = o + break c + } else A = v + } + t = f[A >> 2] | 0 + if (!t) { + D = A + break + } else o = A + } + if ((D | 0) != (c | 0) ? (f[(D + 16) >> 2] | 0) <= (d | 0) : 0) + E = (D + 20) | 0 + else z = 34 + } else z = 34 + if ((z | 0) == 34) E = B + B = (Jh(E, h) | 0) != 0 + if ((b[(h + 11) >> 0] | 0) < 0) Oq(f[h >> 2] | 0) + C = B + } + if ((b[(g + 11) >> 0] | 0) < 0) Oq(f[g >> 2] | 0) + if (!C) { + Wd((a + 40) | 0, l, y) | 0 + k = 1 + u = e + return k | 0 + } + C = (l + 24) | 0 + l = b[C >> 0] | 0 + B = (l << 24) >> 24 + f[i >> 2] = 0 + E = (i + 4) | 0 + f[E >> 2] = 0 + f[(i + 8) >> 2] = 0 + do + if ((l << 24) >> 24) + if ((l << 24) >> 24 < 0) aq(i) + else { + D = B << 2 + c = ln(D) | 0 + f[i >> 2] = c + o = (c + (B << 2)) | 0 + f[(i + 8) >> 2] = o + sj(c | 0, 0, D | 0) | 0 + f[E >> 2] = o + F = c + break + } + else F = 0 + while (0) + B = f[m >> 2] | 0 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + l = ln(32) | 0 + f[j >> 2] = l + f[(j + 8) >> 2] = -2147483616 + f[(j + 4) >> 2] = 19 + p = l + q = 14438 + r = (p + 19) | 0 + do { + b[p >> 0] = b[q >> 0] | 0 + p = (p + 1) | 0 + q = (q + 1) | 0 + } while ((p | 0) < (r | 0)) + b[(l + 19) >> 0] = 0 + l = b[C >> 0] | 0 + c = (l << 24) >> 24 + o = (B + 16) | 0 + D = f[o >> 2] | 0 + if (D) { + t = o + x = D + d: while (1) { + D = x + while (1) { + if ((f[(D + 16) >> 2] | 0) >= (d | 0)) break + v = f[(D + 4) >> 2] | 0 + if (!v) { + G = t + break d + } else D = v + } + x = f[D >> 2] | 0 + if (!x) { + G = D + break + } else t = D + } + if ( + ((G | 0) != (o | 0) ? (f[(G + 16) >> 2] | 0) <= (d | 0) : 0) + ? ((o = (G + 20) | 0), (Jh(o, j) | 0) != 0) + : 0 + ) { + t = Rg(o, j) | 0 + if ((t | 0) != ((G + 24) | 0)) { + pj(g, (t + 28) | 0) + t = (g + 11) | 0 + G = b[t >> 0] | 0 + o = (G << 24) >> 24 < 0 + if (!((o ? f[(g + 4) >> 2] | 0 : G & 255) | 0)) H = G + else { + if ((l << 24) >> 24 > 0) { + x = o ? f[g >> 2] | 0 : g + o = 0 + do { + I = $(bq(x, h)) + A = x + x = f[h >> 2] | 0 + if ((A | 0) == (x | 0)) break + n[(F + (o << 2)) >> 2] = I + o = (o + 1) | 0 + } while ((o | 0) < (c | 0)) + J = b[t >> 0] | 0 + } else J = G + H = J + } + if ((H << 24) >> 24 < 0) Oq(f[g >> 2] | 0) + } + } else z = 64 + } else z = 64 + if ((z | 0) == 64 ? ((H = Rg(B, j) | 0), (H | 0) != ((B + 4) | 0)) : 0) { + pj(g, (H + 28) | 0) + H = (g + 11) | 0 + B = b[H >> 0] | 0 + J = (B << 24) >> 24 < 0 + if (!((J ? f[(g + 4) >> 2] | 0 : B & 255) | 0)) K = B + else { + if ((l << 24) >> 24 > 0) { + l = J ? f[g >> 2] | 0 : g + J = 0 + do { + I = $(bq(l, h)) + G = l + l = f[h >> 2] | 0 + if ((G | 0) == (l | 0)) break + n[(F + (J << 2)) >> 2] = I + J = (J + 1) | 0 + } while ((J | 0) < (c | 0)) + L = b[H >> 0] | 0 + } else L = B + K = L + } + if ((K << 24) >> 24 < 0) Oq(f[g >> 2] | 0) + } + if ((b[(j + 11) >> 0] | 0) < 0) Oq(f[j >> 2] | 0) + j = f[m >> 2] | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + m = ln(32) | 0 + f[g >> 2] = m + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 18 + p = m + q = 14458 + r = (p + 18) | 0 + do { + b[p >> 0] = b[q >> 0] | 0 + p = (p + 1) | 0 + q = (q + 1) | 0 + } while ((p | 0) < (r | 0)) + b[(m + 18) >> 0] = 0 + m = (j + 16) | 0 + q = f[m >> 2] | 0 + if (q) { + p = m + r = q + e: while (1) { + q = r + while (1) { + if ((f[(q + 16) >> 2] | 0) >= (d | 0)) break + K = f[(q + 4) >> 2] | 0 + if (!K) { + M = p + break e + } else q = K + } + r = f[q >> 2] | 0 + if (!r) { + M = q + break + } else p = q + } + if ( + ((M | 0) != (m | 0) ? (f[(M + 16) >> 2] | 0) <= (d | 0) : 0) + ? ((d = (M + 20) | 0), (Jh(d, g) | 0) != 0) + : 0 + ) + N = $(sk(d, g, $(1.0))) + else z = 86 + } else z = 86 + if ((z | 0) == 86) N = $(sk(j, g, $(1.0))) + if ((b[(g + 11) >> 0] | 0) < 0) Oq(f[g >> 2] | 0) + Dl((a + 40) | 0, y, f[i >> 2] | 0, b[C >> 0] | 0, N) + C = f[i >> 2] | 0 + if (C | 0) { + i = f[E >> 2] | 0 + if ((i | 0) != (C | 0)) + f[E >> 2] = i + (~(((i + -4 - C) | 0) >>> 2) << 2) + Oq(C) + } + k = 1 + u = e + return k | 0 + } + function Sb(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0 + e = u + u = (u + 64) | 0 + d = (e + 48) | 0 + h = (e + 36) | 0 + i = (e + 24) | 0 + j = (e + 16) | 0 + k = (e + 8) | 0 + l = e + m = (e + 32) | 0 + n = (a + 60) | 0 + f[(a + 68) >> 2] = g + g = (a + 108) | 0 + tk(g) + o = (a + 56) | 0 + p = f[o >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - (f[p >> 2] | 0)) | 0 + r = q >> 2 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + s = i + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = j + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = k + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = l + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + if ((q | 0) <= 0) { + u = e + return 1 + } + q = (h + 4) | 0 + s = (h + 8) | 0 + t = (a + 104) | 0 + v = (i + 4) | 0 + w = (a + 100) | 0 + x = (j + 4) | 0 + y = (a + 8) | 0 + z = (a + 16) | 0 + A = (a + 32) | 0 + B = (a + 12) | 0 + C = (a + 28) | 0 + D = (a + 20) | 0 + E = (a + 24) | 0 + F = (a + 96) | 0 + a = (k + 4) | 0 + G = (l + 4) | 0 + H = f[p >> 2] | 0 + if ((f[(p + 4) >> 2] | 0) == (H | 0)) { + J = p + aq(J) + } else { + K = 0 + L = H + } + while (1) { + f[m >> 2] = f[(L + (K << 2)) >> 2] + f[d >> 2] = f[m >> 2] + ic(n, d, h) + H = f[h >> 2] | 0 + p = (H | 0) > -1 ? H : (0 - H) | 0 + M = f[q >> 2] | 0 + N = (M | 0) > -1 ? M : (0 - M) | 0 + O = + Vn( + N | 0, + ((((N | 0) < 0) << 31) >> 31) | 0, + p | 0, + ((((p | 0) < 0) << 31) >> 31) | 0, + ) | 0 + p = f[s >> 2] | 0 + N = (p | 0) > -1 + P = N ? p : (0 - p) | 0 + p = Vn(O | 0, I | 0, P | 0, ((((P | 0) < 0) << 31) >> 31) | 0) | 0 + P = I + if (((p | 0) == 0) & ((P | 0) == 0)) { + O = f[t >> 2] | 0 + Q = O + R = h + S = M + T = O + } else { + O = f[t >> 2] | 0 + U = (((O | 0) < 0) << 31) >> 31 + V = un(O | 0, U | 0, H | 0, ((((H | 0) < 0) << 31) >> 31) | 0) | 0 + H = Ik(V | 0, I | 0, p | 0, P | 0) | 0 + f[h >> 2] = H + V = un(O | 0, U | 0, M | 0, ((((M | 0) < 0) << 31) >> 31) | 0) | 0 + M = Ik(V | 0, I | 0, p | 0, P | 0) | 0 + f[q >> 2] = M + P = + (O - + ((H | 0) > -1 ? H : (0 - H) | 0) - + ((M | 0) > -1 ? M : (0 - M) | 0)) | + 0 + Q = N ? P : (0 - P) | 0 + R = s + S = M + T = O + } + f[R >> 2] = Q + O = f[h >> 2] | 0 + do + if ((O | 0) <= -1) { + if ((S | 0) < 0) { + M = f[s >> 2] | 0 + W = (M | 0) > -1 ? M : (0 - M) | 0 + X = M + } else { + M = f[s >> 2] | 0 + W = ((f[w >> 2] | 0) - ((M | 0) > -1 ? M : (0 - M) | 0)) | 0 + X = M + } + if ((X | 0) < 0) { + Y = (S | 0) > -1 ? S : (0 - S) | 0 + Z = W + _ = X + break + } else { + Y = ((f[w >> 2] | 0) - ((S | 0) > -1 ? S : (0 - S) | 0)) | 0 + Z = W + _ = X + break + } + } else { + M = f[s >> 2] | 0 + Y = (M + T) | 0 + Z = (T + S) | 0 + _ = M + } + while (0) + M = (Z | 0) == 0 + P = (Y | 0) == 0 + N = f[w >> 2] | 0 + do + if (Y | Z) { + H = (N | 0) == (Y | 0) + if (!(M & H)) { + p = (N | 0) == (Z | 0) + if (!(P & p)) { + if (M & ((T | 0) < (Y | 0))) { + $ = 0 + aa = ((T << 1) - Y) | 0 + break + } + if (p & ((T | 0) > (Y | 0))) { + $ = Z + aa = ((T << 1) - Y) | 0 + break + } + if (H & ((T | 0) > (Z | 0))) { + $ = ((T << 1) - Z) | 0 + aa = Y + break + } + if (P) { + $ = (T | 0) < (Z | 0) ? ((T << 1) - Z) | 0 : Z + aa = 0 + } else { + $ = Z + aa = Y + } + } else { + $ = Z + aa = Z + } + } else { + $ = Y + aa = Y + } + } else { + $ = N + aa = N + } + while (0) + f[i >> 2] = $ + f[v >> 2] = aa + P = (0 - S) | 0 + M = (0 - _) | 0 + f[h >> 2] = 0 - O + f[q >> 2] = P + f[s >> 2] = M + if ((O | 0) < 1) { + ba = (T - _) | 0 + ca = (T - S) | 0 + } else { + H = (_ | 0) < 1 ? M : _ + M = (S | 0) < 1 ? P : S + ba = (_ | 0) > 0 ? M : (N - M) | 0 + ca = (S | 0) > 0 ? H : (N - H) | 0 + } + H = (ca | 0) == 0 + M = (ba | 0) == 0 + do + if ( + ((ba | ca | 0) != 0 ? ((P = (N | 0) == (ba | 0)), !(H & P)) : 0) + ? ((p = (N | 0) == (ca | 0)), !(M & p)) + : 0 + ) { + if (H & ((T | 0) < (ba | 0))) { + da = 0 + ea = ((T << 1) - ba) | 0 + break + } + if (p & ((T | 0) > (ba | 0))) { + da = N + ea = ((T << 1) - ba) | 0 + break + } + if (P & ((T | 0) > (ca | 0))) { + da = ((T << 1) - ca) | 0 + ea = N + break + } + if (M) { + da = (T | 0) < (ca | 0) ? ((T << 1) - ca) | 0 : ca + ea = 0 + } else { + da = ca + ea = ba + } + } else { + da = N + ea = N + } + while (0) + f[j >> 2] = da + f[x >> 2] = ea + N = K << 1 + M = (b + (N << 2)) | 0 + H = f[y >> 2] | 0 + if ((H | 0) > 0) { + O = 0 + P = i + p = H + while (1) { + if ((p | 0) > 0) { + H = 0 + do { + V = f[(P + (H << 2)) >> 2] | 0 + U = f[z >> 2] | 0 + if ((V | 0) > (U | 0)) { + fa = f[A >> 2] | 0 + f[(fa + (H << 2)) >> 2] = U + ga = fa + } else { + fa = f[B >> 2] | 0 + U = f[A >> 2] | 0 + f[(U + (H << 2)) >> 2] = (V | 0) < (fa | 0) ? fa : V + ga = U + } + H = (H + 1) | 0 + U = f[y >> 2] | 0 + } while ((H | 0) < (U | 0)) + ha = ga + ia = U + } else { + ha = f[A >> 2] | 0 + ia = p + } + H = + ((f[(M + (O << 2)) >> 2] | 0) - (f[(ha + (O << 2)) >> 2] | 0)) | 0 + U = (k + (O << 2)) | 0 + f[U >> 2] = H + ja = f[C >> 2] | 0 + if ((H | 0) >= (ja | 0)) { + if ((H | 0) > (f[E >> 2] | 0)) { + ka = (H - (f[D >> 2] | 0)) | 0 + la = 52 + } + } else { + ka = ((f[D >> 2] | 0) + H) | 0 + la = 52 + } + if ((la | 0) == 52) { + la = 0 + f[U >> 2] = ka + } + O = (O + 1) | 0 + if ((O | 0) >= (ia | 0)) break + else { + P = ha + p = ia + } + } + if ((ia | 0) > 0) { + p = 0 + P = j + O = ia + U = ja + while (1) { + if ((O | 0) > 0) { + H = 0 + do { + V = f[(P + (H << 2)) >> 2] | 0 + fa = f[z >> 2] | 0 + if ((V | 0) > (fa | 0)) f[(ha + (H << 2)) >> 2] = fa + else { + fa = f[B >> 2] | 0 + f[(ha + (H << 2)) >> 2] = (V | 0) < (fa | 0) ? fa : V + } + H = (H + 1) | 0 + ma = f[y >> 2] | 0 + } while ((H | 0) < (ma | 0)) + na = f[C >> 2] | 0 + oa = ma + } else { + na = U + oa = O + } + H = + ((f[(M + (p << 2)) >> 2] | 0) - (f[(ha + (p << 2)) >> 2] | 0)) | + 0 + V = (l + (p << 2)) | 0 + f[V >> 2] = H + if ((H | 0) >= (na | 0)) { + if ((H | 0) > (f[E >> 2] | 0)) { + pa = (H - (f[D >> 2] | 0)) | 0 + la = 65 + } + } else { + pa = ((f[D >> 2] | 0) + H) | 0 + la = 65 + } + if ((la | 0) == 65) { + la = 0 + f[V >> 2] = pa + } + p = (p + 1) | 0 + if ((p | 0) >= (oa | 0)) break + else { + P = ha + O = oa + U = na + } + } + } + } + U = f[k >> 2] | 0 + O = f[t >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) qa = ((f[F >> 2] | 0) + U) | 0 + else qa = U + else qa = (U - (f[F >> 2] | 0)) | 0 + f[k >> 2] = qa + U = f[a >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) ra = ((f[F >> 2] | 0) + U) | 0 + else ra = U + else ra = (U - (f[F >> 2] | 0)) | 0 + f[a >> 2] = ra + U = f[l >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) sa = ((f[F >> 2] | 0) + U) | 0 + else sa = U + else sa = (U - (f[F >> 2] | 0)) | 0 + f[l >> 2] = sa + U = f[G >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) ta = ((f[F >> 2] | 0) + U) | 0 + else ta = U + else ta = (U - (f[F >> 2] | 0)) | 0 + f[G >> 2] = ta + if ( + ((((ra | 0) > -1 ? ra : (0 - ra) | 0) + + ((qa | 0) > -1 ? qa : (0 - qa) | 0)) | + 0) < + ((((sa | 0) > -1 ? sa : (0 - sa) | 0) + + ((ta | 0) > -1 ? ta : (0 - ta) | 0)) | + 0) + ) { + fj(g, 0) + ua = k + } else { + fj(g, 1) + ua = l + } + U = f[ua >> 2] | 0 + if ((U | 0) < 0) va = ((f[F >> 2] | 0) + U) | 0 + else va = U + U = (c + (N << 2)) | 0 + f[U >> 2] = va + O = f[(ua + 4) >> 2] | 0 + if ((O | 0) < 0) wa = ((f[F >> 2] | 0) + O) | 0 + else wa = O + f[(U + 4) >> 2] = wa + K = (K + 1) | 0 + if ((K | 0) >= (r | 0)) { + la = 3 + break + } + U = f[o >> 2] | 0 + L = f[U >> 2] | 0 + if ((((f[(U + 4) >> 2] | 0) - L) >> 2) >>> 0 <= K >>> 0) { + J = U + la = 4 + break + } + } + if ((la | 0) == 3) { + u = e + return 1 + } else if ((la | 0) == 4) aq(J) + return 0 + } + function Tb(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0 + e = u + u = (u + 64) | 0 + d = (e + 48) | 0 + h = (e + 36) | 0 + i = (e + 24) | 0 + j = (e + 16) | 0 + k = (e + 8) | 0 + l = e + m = (e + 32) | 0 + n = (a + 60) | 0 + f[(a + 68) >> 2] = g + g = (a + 108) | 0 + tk(g) + o = (a + 56) | 0 + p = f[o >> 2] | 0 + q = ((f[(p + 4) >> 2] | 0) - (f[p >> 2] | 0)) | 0 + r = q >> 2 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + s = i + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = j + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = k + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + s = l + f[s >> 2] = 0 + f[(s + 4) >> 2] = 0 + if ((q | 0) <= 0) { + u = e + return 1 + } + q = (h + 4) | 0 + s = (h + 8) | 0 + t = (a + 104) | 0 + v = (i + 4) | 0 + w = (a + 100) | 0 + x = (j + 4) | 0 + y = (a + 8) | 0 + z = (a + 16) | 0 + A = (a + 32) | 0 + B = (a + 12) | 0 + C = (a + 28) | 0 + D = (a + 20) | 0 + E = (a + 24) | 0 + F = (a + 96) | 0 + a = (k + 4) | 0 + G = (l + 4) | 0 + H = f[p >> 2] | 0 + if ((f[(p + 4) >> 2] | 0) == (H | 0)) { + J = p + aq(J) + } else { + K = 0 + L = H + } + while (1) { + f[m >> 2] = f[(L + (K << 2)) >> 2] + f[d >> 2] = f[m >> 2] + $b(n, d, h) + H = f[h >> 2] | 0 + p = (H | 0) > -1 ? H : (0 - H) | 0 + M = f[q >> 2] | 0 + N = (M | 0) > -1 ? M : (0 - M) | 0 + O = + Vn( + N | 0, + ((((N | 0) < 0) << 31) >> 31) | 0, + p | 0, + ((((p | 0) < 0) << 31) >> 31) | 0, + ) | 0 + p = f[s >> 2] | 0 + N = (p | 0) > -1 + P = N ? p : (0 - p) | 0 + p = Vn(O | 0, I | 0, P | 0, ((((P | 0) < 0) << 31) >> 31) | 0) | 0 + P = I + if (((p | 0) == 0) & ((P | 0) == 0)) { + O = f[t >> 2] | 0 + Q = O + R = h + S = M + T = O + } else { + O = f[t >> 2] | 0 + U = (((O | 0) < 0) << 31) >> 31 + V = un(O | 0, U | 0, H | 0, ((((H | 0) < 0) << 31) >> 31) | 0) | 0 + H = Ik(V | 0, I | 0, p | 0, P | 0) | 0 + f[h >> 2] = H + V = un(O | 0, U | 0, M | 0, ((((M | 0) < 0) << 31) >> 31) | 0) | 0 + M = Ik(V | 0, I | 0, p | 0, P | 0) | 0 + f[q >> 2] = M + P = + (O - + ((H | 0) > -1 ? H : (0 - H) | 0) - + ((M | 0) > -1 ? M : (0 - M) | 0)) | + 0 + Q = N ? P : (0 - P) | 0 + R = s + S = M + T = O + } + f[R >> 2] = Q + O = f[h >> 2] | 0 + do + if ((O | 0) <= -1) { + if ((S | 0) < 0) { + M = f[s >> 2] | 0 + W = (M | 0) > -1 ? M : (0 - M) | 0 + X = M + } else { + M = f[s >> 2] | 0 + W = ((f[w >> 2] | 0) - ((M | 0) > -1 ? M : (0 - M) | 0)) | 0 + X = M + } + if ((X | 0) < 0) { + Y = (S | 0) > -1 ? S : (0 - S) | 0 + Z = W + _ = X + break + } else { + Y = ((f[w >> 2] | 0) - ((S | 0) > -1 ? S : (0 - S) | 0)) | 0 + Z = W + _ = X + break + } + } else { + M = f[s >> 2] | 0 + Y = (M + T) | 0 + Z = (T + S) | 0 + _ = M + } + while (0) + M = (Z | 0) == 0 + P = (Y | 0) == 0 + N = f[w >> 2] | 0 + do + if (Y | Z) { + H = (N | 0) == (Y | 0) + if (!(M & H)) { + p = (N | 0) == (Z | 0) + if (!(P & p)) { + if (M & ((T | 0) < (Y | 0))) { + $ = 0 + aa = ((T << 1) - Y) | 0 + break + } + if (p & ((T | 0) > (Y | 0))) { + $ = Z + aa = ((T << 1) - Y) | 0 + break + } + if (H & ((T | 0) > (Z | 0))) { + $ = ((T << 1) - Z) | 0 + aa = Y + break + } + if (P) { + $ = (T | 0) < (Z | 0) ? ((T << 1) - Z) | 0 : Z + aa = 0 + } else { + $ = Z + aa = Y + } + } else { + $ = Z + aa = Z + } + } else { + $ = Y + aa = Y + } + } else { + $ = N + aa = N + } + while (0) + f[i >> 2] = $ + f[v >> 2] = aa + P = (0 - S) | 0 + M = (0 - _) | 0 + f[h >> 2] = 0 - O + f[q >> 2] = P + f[s >> 2] = M + if ((O | 0) < 1) { + ba = (T - _) | 0 + ca = (T - S) | 0 + } else { + H = (_ | 0) < 1 ? M : _ + M = (S | 0) < 1 ? P : S + ba = (_ | 0) > 0 ? M : (N - M) | 0 + ca = (S | 0) > 0 ? H : (N - H) | 0 + } + H = (ca | 0) == 0 + M = (ba | 0) == 0 + do + if ( + ((ba | ca | 0) != 0 ? ((P = (N | 0) == (ba | 0)), !(H & P)) : 0) + ? ((p = (N | 0) == (ca | 0)), !(M & p)) + : 0 + ) { + if (H & ((T | 0) < (ba | 0))) { + da = 0 + ea = ((T << 1) - ba) | 0 + break + } + if (p & ((T | 0) > (ba | 0))) { + da = N + ea = ((T << 1) - ba) | 0 + break + } + if (P & ((T | 0) > (ca | 0))) { + da = ((T << 1) - ca) | 0 + ea = N + break + } + if (M) { + da = (T | 0) < (ca | 0) ? ((T << 1) - ca) | 0 : ca + ea = 0 + } else { + da = ca + ea = ba + } + } else { + da = N + ea = N + } + while (0) + f[j >> 2] = da + f[x >> 2] = ea + N = K << 1 + M = (b + (N << 2)) | 0 + H = f[y >> 2] | 0 + if ((H | 0) > 0) { + O = 0 + P = i + p = H + while (1) { + if ((p | 0) > 0) { + H = 0 + do { + V = f[(P + (H << 2)) >> 2] | 0 + U = f[z >> 2] | 0 + if ((V | 0) > (U | 0)) { + fa = f[A >> 2] | 0 + f[(fa + (H << 2)) >> 2] = U + ga = fa + } else { + fa = f[B >> 2] | 0 + U = f[A >> 2] | 0 + f[(U + (H << 2)) >> 2] = (V | 0) < (fa | 0) ? fa : V + ga = U + } + H = (H + 1) | 0 + U = f[y >> 2] | 0 + } while ((H | 0) < (U | 0)) + ha = ga + ia = U + } else { + ha = f[A >> 2] | 0 + ia = p + } + H = + ((f[(M + (O << 2)) >> 2] | 0) - (f[(ha + (O << 2)) >> 2] | 0)) | 0 + U = (k + (O << 2)) | 0 + f[U >> 2] = H + ja = f[C >> 2] | 0 + if ((H | 0) >= (ja | 0)) { + if ((H | 0) > (f[E >> 2] | 0)) { + ka = (H - (f[D >> 2] | 0)) | 0 + la = 52 + } + } else { + ka = ((f[D >> 2] | 0) + H) | 0 + la = 52 + } + if ((la | 0) == 52) { + la = 0 + f[U >> 2] = ka + } + O = (O + 1) | 0 + if ((O | 0) >= (ia | 0)) break + else { + P = ha + p = ia + } + } + if ((ia | 0) > 0) { + p = 0 + P = j + O = ia + U = ja + while (1) { + if ((O | 0) > 0) { + H = 0 + do { + V = f[(P + (H << 2)) >> 2] | 0 + fa = f[z >> 2] | 0 + if ((V | 0) > (fa | 0)) f[(ha + (H << 2)) >> 2] = fa + else { + fa = f[B >> 2] | 0 + f[(ha + (H << 2)) >> 2] = (V | 0) < (fa | 0) ? fa : V + } + H = (H + 1) | 0 + ma = f[y >> 2] | 0 + } while ((H | 0) < (ma | 0)) + na = f[C >> 2] | 0 + oa = ma + } else { + na = U + oa = O + } + H = + ((f[(M + (p << 2)) >> 2] | 0) - (f[(ha + (p << 2)) >> 2] | 0)) | + 0 + V = (l + (p << 2)) | 0 + f[V >> 2] = H + if ((H | 0) >= (na | 0)) { + if ((H | 0) > (f[E >> 2] | 0)) { + pa = (H - (f[D >> 2] | 0)) | 0 + la = 65 + } + } else { + pa = ((f[D >> 2] | 0) + H) | 0 + la = 65 + } + if ((la | 0) == 65) { + la = 0 + f[V >> 2] = pa + } + p = (p + 1) | 0 + if ((p | 0) >= (oa | 0)) break + else { + P = ha + O = oa + U = na + } + } + } + } + U = f[k >> 2] | 0 + O = f[t >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) qa = ((f[F >> 2] | 0) + U) | 0 + else qa = U + else qa = (U - (f[F >> 2] | 0)) | 0 + f[k >> 2] = qa + U = f[a >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) ra = ((f[F >> 2] | 0) + U) | 0 + else ra = U + else ra = (U - (f[F >> 2] | 0)) | 0 + f[a >> 2] = ra + U = f[l >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) sa = ((f[F >> 2] | 0) + U) | 0 + else sa = U + else sa = (U - (f[F >> 2] | 0)) | 0 + f[l >> 2] = sa + U = f[G >> 2] | 0 + if ((O | 0) >= (U | 0)) + if ((U | 0) < ((0 - O) | 0)) ta = ((f[F >> 2] | 0) + U) | 0 + else ta = U + else ta = (U - (f[F >> 2] | 0)) | 0 + f[G >> 2] = ta + if ( + ((((ra | 0) > -1 ? ra : (0 - ra) | 0) + + ((qa | 0) > -1 ? qa : (0 - qa) | 0)) | + 0) < + ((((sa | 0) > -1 ? sa : (0 - sa) | 0) + + ((ta | 0) > -1 ? ta : (0 - ta) | 0)) | + 0) + ) { + fj(g, 0) + ua = k + } else { + fj(g, 1) + ua = l + } + U = f[ua >> 2] | 0 + if ((U | 0) < 0) va = ((f[F >> 2] | 0) + U) | 0 + else va = U + U = (c + (N << 2)) | 0 + f[U >> 2] = va + O = f[(ua + 4) >> 2] | 0 + if ((O | 0) < 0) wa = ((f[F >> 2] | 0) + O) | 0 + else wa = O + f[(U + 4) >> 2] = wa + K = (K + 1) | 0 + if ((K | 0) >= (r | 0)) { + la = 3 + break + } + U = f[o >> 2] | 0 + L = f[U >> 2] | 0 + if ((((f[(U + 4) >> 2] | 0) - L) >> 2) >>> 0 <= K >>> 0) { + J = U + la = 4 + break + } + } + if ((la | 0) == 3) { + u = e + return 1 + } else if ((la | 0) == 4) aq(J) + return 0 + } + function Ub(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = Oa, + V = Oa, + Y = Oa, + Z = 0, + _ = 0, + aa = 0, + ba = 0 + d = u + u = (u + 16) | 0 + e = d + g = (a + 16) | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + n[g >> 2] = $(1.0) + i = (a + 20) | 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + n[(a + 36) >> 2] = $(1.0) + j = f[(c + 8) >> 2] | 0 + a: do + if (j | 0) { + k = (a + 4) | 0 + l = (a + 12) | 0 + m = (a + 8) | 0 + o = j + p = j + while (1) { + q = (o + 8) | 0 + r = b[(q + 11) >> 0] | 0 + s = (r << 24) >> 24 < 0 + t = s ? f[q >> 2] | 0 : q + v = s ? f[(o + 12) >> 2] | 0 : r & 255 + if (v >>> 0 > 3) { + r = t + s = v + w = v + while (1) { + x = + X( + h[r >> 0] | + (h[(r + 1) >> 0] << 8) | + (h[(r + 2) >> 0] << 16) | + (h[(r + 3) >> 0] << 24), + 1540483477, + ) | 0 + s = (X((x >>> 24) ^ x, 1540483477) | 0) ^ (X(s, 1540483477) | 0) + w = (w + -4) | 0 + if (w >>> 0 <= 3) break + else r = (r + 4) | 0 + } + r = (v + -4) | 0 + w = r & -4 + y = (r - w) | 0 + z = (t + (w + 4)) | 0 + A = s + } else { + y = v + z = t + A = v + } + switch (y | 0) { + case 3: { + B = (h[(z + 2) >> 0] << 16) ^ A + C = 8 + break + } + case 2: { + B = A + C = 8 + break + } + case 1: { + D = A + C = 9 + break + } + default: + E = A + } + if ((C | 0) == 8) { + C = 0 + D = (h[(z + 1) >> 0] << 8) ^ B + C = 9 + } + if ((C | 0) == 9) { + C = 0 + E = X(D ^ h[z >> 0], 1540483477) | 0 + } + w = X((E >>> 13) ^ E, 1540483477) | 0 + r = (w >>> 15) ^ w + w = f[k >> 2] | 0 + x = (w | 0) == 0 + b: do + if (!x) { + F = (w + -1) | 0 + G = ((F & w) | 0) == 0 + if (!G) + if (r >>> 0 < w >>> 0) H = r + else H = (r >>> 0) % (w >>> 0) | 0 + else H = r & F + I = f[((f[a >> 2] | 0) + (H << 2)) >> 2] | 0 + if ((I | 0) != 0 ? ((J = f[I >> 2] | 0), (J | 0) != 0) : 0) { + I = (v | 0) == 0 + if (G) { + if (I) { + G = J + while (1) { + K = f[(G + 4) >> 2] | 0 + if ( + !(((K | 0) == (r | 0)) | (((K & F) | 0) == (H | 0))) + ) { + L = H + C = 50 + break b + } + K = b[(G + 8 + 11) >> 0] | 0 + if ( + !( + ((K << 24) >> 24 < 0 + ? f[(G + 12) >> 2] | 0 + : K & 255) | 0 + ) + ) + break b + G = f[G >> 2] | 0 + if (!G) { + L = H + C = 50 + break b + } + } + } else M = J + while (1) { + G = f[(M + 4) >> 2] | 0 + if ( + !(((G | 0) == (r | 0)) | (((G & F) | 0) == (H | 0))) + ) { + L = H + C = 50 + break b + } + G = (M + 8) | 0 + K = b[(G + 11) >> 0] | 0 + N = (K << 24) >> 24 < 0 + O = K & 255 + do + if (((N ? f[(M + 12) >> 2] | 0 : O) | 0) == (v | 0)) { + K = f[G >> 2] | 0 + if (N) + if (!(Vk(K, t, v) | 0)) break b + else break + if ((b[t >> 0] | 0) == ((K & 255) << 24) >> 24) { + K = G + P = O + Q = t + do { + P = (P + -1) | 0 + K = (K + 1) | 0 + if (!P) break b + Q = (Q + 1) | 0 + } while ((b[K >> 0] | 0) == (b[Q >> 0] | 0)) + } + } + while (0) + M = f[M >> 2] | 0 + if (!M) { + L = H + C = 50 + break b + } + } + } + if (I) { + F = J + while (1) { + O = f[(F + 4) >> 2] | 0 + if ((O | 0) != (r | 0)) { + if (O >>> 0 < w >>> 0) R = O + else R = (O >>> 0) % (w >>> 0) | 0 + if ((R | 0) != (H | 0)) { + L = H + C = 50 + break b + } + } + O = b[(F + 8 + 11) >> 0] | 0 + if ( + !( + ((O << 24) >> 24 < 0 + ? f[(F + 12) >> 2] | 0 + : O & 255) | 0 + ) + ) + break b + F = f[F >> 2] | 0 + if (!F) { + L = H + C = 50 + break b + } + } + } else S = J + while (1) { + F = f[(S + 4) >> 2] | 0 + if ((F | 0) != (r | 0)) { + if (F >>> 0 < w >>> 0) T = F + else T = (F >>> 0) % (w >>> 0) | 0 + if ((T | 0) != (H | 0)) { + L = H + C = 50 + break b + } + } + F = (S + 8) | 0 + I = b[(F + 11) >> 0] | 0 + O = (I << 24) >> 24 < 0 + G = I & 255 + do + if (((O ? f[(S + 12) >> 2] | 0 : G) | 0) == (v | 0)) { + I = f[F >> 2] | 0 + if (O) + if (!(Vk(I, t, v) | 0)) break b + else break + if ((b[t >> 0] | 0) == ((I & 255) << 24) >> 24) { + I = F + N = G + Q = t + do { + N = (N + -1) | 0 + I = (I + 1) | 0 + if (!N) break b + Q = (Q + 1) | 0 + } while ((b[I >> 0] | 0) == (b[Q >> 0] | 0)) + } + } + while (0) + S = f[S >> 2] | 0 + if (!S) { + L = H + C = 50 + break + } + } + } else { + L = H + C = 50 + } + } else { + L = 0 + C = 50 + } + while (0) + if ((C | 0) == 50) { + C = 0 + Di(e, a, r, q) + U = $((((f[l >> 2] | 0) + 1) | 0) >>> 0) + V = $(w >>> 0) + Y = $(n[g >> 2]) + do + if (x | ($(Y * V) < U)) { + t = + (w << 1) | + (((w >>> 0 < 3) | ((((w + -1) & w) | 0) != 0)) & 1) + v = ~~$(W($(U / Y))) >>> 0 + ei(a, t >>> 0 < v >>> 0 ? v : t) + t = f[k >> 2] | 0 + v = (t + -1) | 0 + if (!(v & t)) { + Z = t + _ = v & r + break + } + if (r >>> 0 < t >>> 0) { + Z = t + _ = r + } else { + Z = t + _ = (r >>> 0) % (t >>> 0) | 0 + } + } else { + Z = w + _ = L + } + while (0) + w = f[((f[a >> 2] | 0) + (_ << 2)) >> 2] | 0 + if (!w) { + f[f[e >> 2] >> 2] = f[m >> 2] + f[m >> 2] = f[e >> 2] + f[((f[a >> 2] | 0) + (_ << 2)) >> 2] = m + r = f[e >> 2] | 0 + x = f[r >> 2] | 0 + if (x | 0) { + q = f[(x + 4) >> 2] | 0 + x = (Z + -1) | 0 + if (x & Z) + if (q >>> 0 < Z >>> 0) aa = q + else aa = (q >>> 0) % (Z >>> 0) | 0 + else aa = q & x + f[((f[a >> 2] | 0) + (aa << 2)) >> 2] = r + } + } else { + f[f[e >> 2] >> 2] = f[w >> 2] + f[w >> 2] = f[e >> 2] + } + f[l >> 2] = (f[l >> 2] | 0) + 1 + } + w = f[p >> 2] | 0 + if (!w) break a + else { + o = w + p = w + } + } + } + while (0) + e = f[(c + 28) >> 2] | 0 + if (!e) { + u = d + return + } else ba = e + do { + e = ba + c = ln(40) | 0 + Ub(c, f[(e + 20) >> 2] | 0) + aa = Ec(i, (e + 8) | 0) | 0 + e = f[aa >> 2] | 0 + f[aa >> 2] = c + if (e | 0) { + c = f[(e + 28) >> 2] | 0 + if (c | 0) { + aa = c + do { + c = aa + aa = f[aa >> 2] | 0 + ri((c + 8) | 0) + Oq(c) + } while ((aa | 0) != 0) + } + aa = (e + 20) | 0 + c = f[aa >> 2] | 0 + f[aa >> 2] = 0 + if (c | 0) Oq(c) + c = f[(e + 8) >> 2] | 0 + if (c | 0) { + aa = c + do { + c = aa + aa = f[aa >> 2] | 0 + a = (c + 8) | 0 + Z = f[(c + 20) >> 2] | 0 + if (Z | 0) { + _ = (c + 24) | 0 + if ((f[_ >> 2] | 0) != (Z | 0)) f[_ >> 2] = Z + Oq(Z) + } + if ((b[(a + 11) >> 0] | 0) < 0) Oq(f[a >> 2] | 0) + Oq(c) + } while ((aa | 0) != 0) + } + aa = f[e >> 2] | 0 + f[e >> 2] = 0 + if (aa | 0) Oq(aa) + Oq(e) + } + ba = f[ba >> 2] | 0 + } while ((ba | 0) != 0) + u = d + return + } + function Vb(a, c, e) { + a = a | 0 + c = c | 0 + e = e | 0 + var g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = Oa, + fa = Oa, + ga = Oa, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0 + g = u + u = (u + 48) | 0 + i = (g + 16) | 0 + j = (g + 12) | 0 + k = g + l = (i + 16) | 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + n[l >> 2] = $(1.0) + m = (a + 80) | 0 + o = f[m >> 2] | 0 + f[k >> 2] = 0 + p = (k + 4) | 0 + f[p >> 2] = 0 + f[(k + 8) >> 2] = 0 + if (o) { + if (o >>> 0 > 1073741823) aq(k) + q = o << 2 + r = ln(q) | 0 + f[k >> 2] = r + s = (r + (o << 2)) | 0 + f[(k + 8) >> 2] = s + sj(r | 0, 0, q | 0) | 0 + f[p >> 2] = s + s = (c + 48) | 0 + q = (c + 40) | 0 + o = (i + 4) | 0 + t = (i + 12) | 0 + v = (i + 8) | 0 + w = (a + 40) | 0 + x = (a + 64) | 0 + y = f[e >> 2] | 0 + e = r + z = 0 + A = 0 + B = r + C = r + D = 0 + E = r + while (1) { + r = s + F = f[r >> 2] | 0 + G = f[(r + 4) >> 2] | 0 + r = q + H = un(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, (y + z) | 0, 0) | 0 + r = Vn(H | 0, I | 0, F | 0, G | 0) | 0 + G = ((f[f[c >> 2] >> 2] | 0) + r) | 0 + r = + h[G >> 0] | + (h[(G + 1) >> 0] << 8) | + (h[(G + 2) >> 0] << 16) | + (h[(G + 3) >> 0] << 24) + f[j >> 2] = r + G = r & 65535 + F = r >>> 16 + H = F & 65535 + J = (((r & 65535) ^ 318) + 239) ^ F + F = (D | 0) == 0 + a: do + if (!F) { + K = (D + -1) | 0 + L = ((K & D) | 0) == 0 + if (!L) + if (J >>> 0 < D >>> 0) M = J + else M = (J >>> 0) % (D >>> 0) | 0 + else M = J & K + N = f[((f[i >> 2] | 0) + (M << 2)) >> 2] | 0 + do + if (N | 0 ? ((O = f[N >> 2] | 0), O | 0) : 0) { + b: do + if (L) { + P = O + while (1) { + Q = f[(P + 4) >> 2] | 0 + R = (Q | 0) == (J | 0) + if (!(R | (((Q & K) | 0) == (M | 0)))) { + S = 27 + break b + } + if ( + ( + R + ? ((R = (P + 8) | 0), + (d[R >> 1] | 0) == (G << 16) >> 16) + : 0 + ) + ? (d[(R + 2) >> 1] | 0) == (H << 16) >> 16 + : 0 + ) { + T = P + S = 26 + break b + } + P = f[P >> 2] | 0 + if (!P) { + S = 27 + break + } + } + } else { + P = O + while (1) { + R = f[(P + 4) >> 2] | 0 + if ((R | 0) == (J | 0)) { + Q = (P + 8) | 0 + if ( + (d[Q >> 1] | 0) == (G << 16) >> 16 + ? (d[(Q + 2) >> 1] | 0) == (H << 16) >> 16 + : 0 + ) { + T = P + S = 26 + break b + } + } else { + if (R >>> 0 < D >>> 0) U = R + else U = (R >>> 0) % (D >>> 0) | 0 + if ((U | 0) != (M | 0)) { + S = 27 + break b + } + } + P = f[P >> 2] | 0 + if (!P) { + S = 27 + break + } + } + } + while (0) + if ((S | 0) == 26) { + S = 0 + f[(E + (z << 2)) >> 2] = f[(T + 12) >> 2] + V = e + X = A + Y = C + Z = B + _ = E + break a + } else if ((S | 0) == 27) { + S = 0 + if (F) { + aa = 0 + S = 46 + break a + } else break + } + } + while (0) + K = (D + -1) | 0 + L = ((K & D) | 0) == 0 + if (!L) + if (J >>> 0 < D >>> 0) ba = J + else ba = (J >>> 0) % (D >>> 0) | 0 + else ba = K & J + N = f[((f[i >> 2] | 0) + (ba << 2)) >> 2] | 0 + if ((N | 0) != 0 ? ((O = f[N >> 2] | 0), (O | 0) != 0) : 0) { + if (L) { + L = O + while (1) { + N = f[(L + 4) >> 2] | 0 + if (!(((N | 0) == (J | 0)) | (((N & K) | 0) == (ba | 0)))) { + aa = ba + S = 46 + break a + } + N = (L + 8) | 0 + if ( + (d[N >> 1] | 0) == (G << 16) >> 16 + ? (d[(N + 2) >> 1] | 0) == (H << 16) >> 16 + : 0 + ) { + S = 61 + break a + } + L = f[L >> 2] | 0 + if (!L) { + aa = ba + S = 46 + break a + } + } + } else ca = O + while (1) { + L = f[(ca + 4) >> 2] | 0 + if ((L | 0) != (J | 0)) { + if (L >>> 0 < D >>> 0) da = L + else da = (L >>> 0) % (D >>> 0) | 0 + if ((da | 0) != (ba | 0)) { + aa = ba + S = 46 + break a + } + } + L = (ca + 8) | 0 + if ( + (d[L >> 1] | 0) == (G << 16) >> 16 + ? (d[(L + 2) >> 1] | 0) == (H << 16) >> 16 + : 0 + ) { + S = 61 + break a + } + ca = f[ca >> 2] | 0 + if (!ca) { + aa = ba + S = 46 + break + } + } + } else { + aa = ba + S = 46 + } + } else { + aa = 0 + S = 46 + } + while (0) + if ((S | 0) == 46) { + S = 0 + H = ln(16) | 0 + G = (H + 8) | 0 + d[G >> 1] = r + d[(G + 2) >> 1] = r >>> 16 + f[(H + 12) >> 2] = A + f[(H + 4) >> 2] = J + f[H >> 2] = 0 + ea = $((((f[t >> 2] | 0) + 1) | 0) >>> 0) + fa = $(D >>> 0) + ga = $(n[l >> 2]) + do + if (F | ($(ga * fa) < ea)) { + G = + (D << 1) | (((D >>> 0 < 3) | ((((D + -1) & D) | 0) != 0)) & 1) + O = ~~$(W($(ea / ga))) >>> 0 + Uh(i, G >>> 0 < O >>> 0 ? O : G) + G = f[o >> 2] | 0 + O = (G + -1) | 0 + if (!(O & G)) { + ha = G + ia = O & J + break + } + if (J >>> 0 < G >>> 0) { + ha = G + ia = J + } else { + ha = G + ia = (J >>> 0) % (G >>> 0) | 0 + } + } else { + ha = D + ia = aa + } + while (0) + J = ((f[i >> 2] | 0) + (ia << 2)) | 0 + F = f[J >> 2] | 0 + if (!F) { + f[H >> 2] = f[v >> 2] + f[v >> 2] = H + f[J >> 2] = v + J = f[H >> 2] | 0 + if (J | 0) { + r = f[(J + 4) >> 2] | 0 + J = (ha + -1) | 0 + if (J & ha) + if (r >>> 0 < ha >>> 0) ja = r + else ja = (r >>> 0) % (ha >>> 0) | 0 + else ja = r & J + ka = ((f[i >> 2] | 0) + (ja << 2)) | 0 + S = 59 + } + } else { + f[H >> 2] = f[F >> 2] + ka = F + S = 59 + } + if ((S | 0) == 59) { + S = 0 + f[ka >> 2] = H + } + f[t >> 2] = (f[t >> 2] | 0) + 1 + S = 61 + } + if ((S | 0) == 61) { + S = 0 + F = w + J = f[F >> 2] | 0 + r = un(J | 0, f[(F + 4) >> 2] | 0, A | 0, 0) | 0 + kh(((f[f[x >> 2] >> 2] | 0) + r) | 0, j | 0, J | 0) | 0 + J = f[k >> 2] | 0 + f[(J + (z << 2)) >> 2] = A + V = J + X = (A + 1) | 0 + Y = J + Z = J + _ = J + } + J = (z + 1) | 0 + la = f[m >> 2] | 0 + if (J >>> 0 >= la >>> 0) break + e = V + z = J + A = X + B = Z + C = Y + D = f[o >> 2] | 0 + E = _ + } + if ((X | 0) == (la | 0)) ma = Z + else { + Z = (a + 84) | 0 + if (!(b[Z >> 0] | 0)) { + _ = f[(a + 72) >> 2] | 0 + E = f[(a + 68) >> 2] | 0 + o = E + if ((_ | 0) == (E | 0)) na = V + else { + D = (_ - E) >> 2 + E = 0 + do { + _ = (o + (E << 2)) | 0 + f[_ >> 2] = f[(Y + (f[_ >> 2] << 2)) >> 2] + E = (E + 1) | 0 + } while (E >>> 0 < D >>> 0) + na = V + } + } else { + b[Z >> 0] = 0 + Z = (a + 68) | 0 + V = (a + 72) | 0 + D = f[V >> 2] | 0 + E = f[Z >> 2] | 0 + Y = (D - E) >> 2 + o = E + E = D + if (la >>> 0 <= Y >>> 0) + if ( + la >>> 0 < Y >>> 0 + ? ((D = (o + (la << 2)) | 0), (D | 0) != (E | 0)) + : 0 + ) { + f[V >> 2] = E + (~(((E + -4 - D) | 0) >>> 2) << 2) + oa = la + } else oa = la + else { + Ch(Z, (la - Y) | 0, 1220) + oa = f[m >> 2] | 0 + } + Y = f[k >> 2] | 0 + if (!oa) na = Y + else { + k = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(k + (a << 2)) >> 2] = f[(Y + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < oa >>> 0) + na = Y + } + } + f[m >> 2] = X + ma = na + } + if (!ma) pa = X + else { + na = f[p >> 2] | 0 + if ((na | 0) != (ma | 0)) + f[p >> 2] = na + (~(((na + -4 - ma) | 0) >>> 2) << 2) + Oq(ma) + pa = X + } + } else pa = 0 + X = f[(i + 8) >> 2] | 0 + if (X | 0) { + ma = X + do { + X = ma + ma = f[ma >> 2] | 0 + Oq(X) + } while ((ma | 0) != 0) + } + ma = f[i >> 2] | 0 + f[i >> 2] = 0 + if (!ma) { + u = g + return pa | 0 + } + Oq(ma) + u = g + return pa | 0 + } + function Wb(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = Oa, + da = Oa, + ea = Oa, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0 + e = u + u = (u + 48) | 0 + g = (e + 20) | 0 + i = e + j = (e + 8) | 0 + k = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[k >> 2] = $(1.0) + l = (a + 80) | 0 + m = f[l >> 2] | 0 + f[j >> 2] = 0 + o = (j + 4) | 0 + f[o >> 2] = 0 + f[(j + 8) >> 2] = 0 + if (m) { + if (m >>> 0 > 1073741823) aq(j) + p = m << 2 + q = ln(p) | 0 + f[j >> 2] = q + r = (q + (m << 2)) | 0 + f[(j + 8) >> 2] = r + sj(q | 0, 0, p | 0) | 0 + f[o >> 2] = r + r = (c + 48) | 0 + p = (c + 40) | 0 + m = (g + 4) | 0 + s = (g + 12) | 0 + t = (g + 8) | 0 + v = (a + 40) | 0 + w = (a + 64) | 0 + x = f[d >> 2] | 0 + d = q + y = 0 + z = 0 + A = q + B = q + C = q + q = 0 + while (1) { + D = r + E = f[D >> 2] | 0 + F = f[(D + 4) >> 2] | 0 + D = p + G = un(f[D >> 2] | 0, f[(D + 4) >> 2] | 0, (x + y) | 0, 0) | 0 + D = Vn(G | 0, I | 0, E | 0, F | 0) | 0 + F = ((f[f[c >> 2] >> 2] | 0) + D) | 0 + D = F + E = + h[D >> 0] | + (h[(D + 1) >> 0] << 8) | + (h[(D + 2) >> 0] << 16) | + (h[(D + 3) >> 0] << 24) + D = (F + 4) | 0 + F = + h[D >> 0] | + (h[(D + 1) >> 0] << 8) | + (h[(D + 2) >> 0] << 16) | + (h[(D + 3) >> 0] << 24) + D = i + f[D >> 2] = E + f[(D + 4) >> 2] = F + D = ((E ^ 318) + 239) ^ F + G = (q | 0) == 0 + a: do + if (!G) { + H = (q + -1) | 0 + J = ((H & q) | 0) == 0 + if (!J) + if (D >>> 0 < q >>> 0) K = D + else K = (D >>> 0) % (q >>> 0) | 0 + else K = D & H + L = f[((f[g >> 2] | 0) + (K << 2)) >> 2] | 0 + do + if (L | 0 ? ((M = f[L >> 2] | 0), M | 0) : 0) { + b: do + if (J) { + N = M + while (1) { + O = f[(N + 4) >> 2] | 0 + P = (O | 0) == (D | 0) + if (!(P | (((O & H) | 0) == (K | 0)))) { + Q = 27 + break b + } + if ( + (P ? (f[(N + 8) >> 2] | 0) == (E | 0) : 0) + ? (f[(N + 12) >> 2] | 0) == (F | 0) + : 0 + ) { + R = N + Q = 26 + break b + } + N = f[N >> 2] | 0 + if (!N) { + Q = 27 + break + } + } + } else { + N = M + while (1) { + P = f[(N + 4) >> 2] | 0 + if ((P | 0) == (D | 0)) { + if ( + (f[(N + 8) >> 2] | 0) == (E | 0) + ? (f[(N + 12) >> 2] | 0) == (F | 0) + : 0 + ) { + R = N + Q = 26 + break b + } + } else { + if (P >>> 0 < q >>> 0) S = P + else S = (P >>> 0) % (q >>> 0) | 0 + if ((S | 0) != (K | 0)) { + Q = 27 + break b + } + } + N = f[N >> 2] | 0 + if (!N) { + Q = 27 + break + } + } + } + while (0) + if ((Q | 0) == 26) { + Q = 0 + f[(A + (y << 2)) >> 2] = f[(R + 16) >> 2] + T = d + U = z + V = C + X = B + Y = A + break a + } else if ((Q | 0) == 27) { + Q = 0 + if (G) { + Z = 0 + Q = 46 + break a + } else break + } + } + while (0) + H = (q + -1) | 0 + J = ((H & q) | 0) == 0 + if (!J) + if (D >>> 0 < q >>> 0) _ = D + else _ = (D >>> 0) % (q >>> 0) | 0 + else _ = H & D + L = f[((f[g >> 2] | 0) + (_ << 2)) >> 2] | 0 + if ((L | 0) != 0 ? ((M = f[L >> 2] | 0), (M | 0) != 0) : 0) { + if (J) { + J = M + while (1) { + L = f[(J + 4) >> 2] | 0 + if (!(((L | 0) == (D | 0)) | (((L & H) | 0) == (_ | 0)))) { + Z = _ + Q = 46 + break a + } + if ( + (f[(J + 8) >> 2] | 0) == (E | 0) + ? (f[(J + 12) >> 2] | 0) == (F | 0) + : 0 + ) { + Q = 61 + break a + } + J = f[J >> 2] | 0 + if (!J) { + Z = _ + Q = 46 + break a + } + } + } else aa = M + while (1) { + J = f[(aa + 4) >> 2] | 0 + if ((J | 0) != (D | 0)) { + if (J >>> 0 < q >>> 0) ba = J + else ba = (J >>> 0) % (q >>> 0) | 0 + if ((ba | 0) != (_ | 0)) { + Z = _ + Q = 46 + break a + } + } + if ( + (f[(aa + 8) >> 2] | 0) == (E | 0) + ? (f[(aa + 12) >> 2] | 0) == (F | 0) + : 0 + ) { + Q = 61 + break a + } + aa = f[aa >> 2] | 0 + if (!aa) { + Z = _ + Q = 46 + break + } + } + } else { + Z = _ + Q = 46 + } + } else { + Z = 0 + Q = 46 + } + while (0) + if ((Q | 0) == 46) { + Q = 0 + M = ln(20) | 0 + J = (M + 8) | 0 + f[J >> 2] = E + f[(J + 4) >> 2] = F + f[(M + 16) >> 2] = z + f[(M + 4) >> 2] = D + f[M >> 2] = 0 + ca = $((((f[s >> 2] | 0) + 1) | 0) >>> 0) + da = $(q >>> 0) + ea = $(n[k >> 2]) + do + if (G | ($(ea * da) < ca)) { + J = + (q << 1) | (((q >>> 0 < 3) | ((((q + -1) & q) | 0) != 0)) & 1) + H = ~~$(W($(ca / ea))) >>> 0 + Yh(g, J >>> 0 < H >>> 0 ? H : J) + J = f[m >> 2] | 0 + H = (J + -1) | 0 + if (!(H & J)) { + fa = J + ga = H & D + break + } + if (D >>> 0 < J >>> 0) { + fa = J + ga = D + } else { + fa = J + ga = (D >>> 0) % (J >>> 0) | 0 + } + } else { + fa = q + ga = Z + } + while (0) + D = ((f[g >> 2] | 0) + (ga << 2)) | 0 + G = f[D >> 2] | 0 + if (!G) { + f[M >> 2] = f[t >> 2] + f[t >> 2] = M + f[D >> 2] = t + D = f[M >> 2] | 0 + if (D | 0) { + F = f[(D + 4) >> 2] | 0 + D = (fa + -1) | 0 + if (D & fa) + if (F >>> 0 < fa >>> 0) ha = F + else ha = (F >>> 0) % (fa >>> 0) | 0 + else ha = F & D + ia = ((f[g >> 2] | 0) + (ha << 2)) | 0 + Q = 59 + } + } else { + f[M >> 2] = f[G >> 2] + ia = G + Q = 59 + } + if ((Q | 0) == 59) { + Q = 0 + f[ia >> 2] = M + } + f[s >> 2] = (f[s >> 2] | 0) + 1 + Q = 61 + } + if ((Q | 0) == 61) { + Q = 0 + G = v + D = f[G >> 2] | 0 + F = un(D | 0, f[(G + 4) >> 2] | 0, z | 0, 0) | 0 + kh(((f[f[w >> 2] >> 2] | 0) + F) | 0, i | 0, D | 0) | 0 + D = f[j >> 2] | 0 + f[(D + (y << 2)) >> 2] = z + T = D + U = (z + 1) | 0 + V = D + X = D + Y = D + } + D = (y + 1) | 0 + ja = f[l >> 2] | 0 + if (D >>> 0 >= ja >>> 0) break + d = T + y = D + z = U + A = Y + B = X + C = V + q = f[m >> 2] | 0 + } + if ((U | 0) == (ja | 0)) ka = X + else { + X = (a + 84) | 0 + if (!(b[X >> 0] | 0)) { + m = f[(a + 72) >> 2] | 0 + q = f[(a + 68) >> 2] | 0 + C = q + if ((m | 0) == (q | 0)) la = T + else { + B = (m - q) >> 2 + q = 0 + do { + m = (C + (q << 2)) | 0 + f[m >> 2] = f[(V + (f[m >> 2] << 2)) >> 2] + q = (q + 1) | 0 + } while (q >>> 0 < B >>> 0) + la = T + } + } else { + b[X >> 0] = 0 + X = (a + 68) | 0 + T = (a + 72) | 0 + B = f[T >> 2] | 0 + q = f[X >> 2] | 0 + V = (B - q) >> 2 + C = q + q = B + if (ja >>> 0 <= V >>> 0) + if ( + ja >>> 0 < V >>> 0 + ? ((B = (C + (ja << 2)) | 0), (B | 0) != (q | 0)) + : 0 + ) { + f[T >> 2] = q + (~(((q + -4 - B) | 0) >>> 2) << 2) + ma = ja + } else ma = ja + else { + Ch(X, (ja - V) | 0, 1220) + ma = f[l >> 2] | 0 + } + V = f[j >> 2] | 0 + if (!ma) la = V + else { + j = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(j + (a << 2)) >> 2] = f[(V + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ma >>> 0) + la = V + } + } + f[l >> 2] = U + ka = la + } + if (!ka) na = U + else { + la = f[o >> 2] | 0 + if ((la | 0) != (ka | 0)) + f[o >> 2] = la + (~(((la + -4 - ka) | 0) >>> 2) << 2) + Oq(ka) + na = U + } + } else na = 0 + U = f[(g + 8) >> 2] | 0 + if (U | 0) { + ka = U + do { + U = ka + ka = f[ka >> 2] | 0 + Oq(U) + } while ((ka | 0) != 0) + } + ka = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!ka) { + u = e + return na | 0 + } + Oq(ka) + u = e + return na | 0 + } + function Xb(a, c, e) { + a = a | 0 + c = c | 0 + e = e | 0 + var g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = Oa, + fa = Oa, + ga = Oa, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0 + g = u + u = (u + 48) | 0 + i = (g + 12) | 0 + j = (g + 32) | 0 + k = g + l = (i + 16) | 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + n[l >> 2] = $(1.0) + m = (a + 80) | 0 + o = f[m >> 2] | 0 + f[k >> 2] = 0 + p = (k + 4) | 0 + f[p >> 2] = 0 + f[(k + 8) >> 2] = 0 + if (o) { + if (o >>> 0 > 1073741823) aq(k) + q = o << 2 + r = ln(q) | 0 + f[k >> 2] = r + s = (r + (o << 2)) | 0 + f[(k + 8) >> 2] = s + sj(r | 0, 0, q | 0) | 0 + f[p >> 2] = s + s = (c + 48) | 0 + q = (c + 40) | 0 + o = (i + 4) | 0 + t = (i + 12) | 0 + v = (i + 8) | 0 + w = (a + 40) | 0 + x = (a + 64) | 0 + y = f[e >> 2] | 0 + e = r + z = 0 + A = 0 + B = r + C = r + D = 0 + E = r + while (1) { + r = s + F = f[r >> 2] | 0 + G = f[(r + 4) >> 2] | 0 + r = q + H = un(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, (y + z) | 0, 0) | 0 + r = Vn(H | 0, I | 0, F | 0, G | 0) | 0 + G = ((f[f[c >> 2] >> 2] | 0) + r) | 0 + r = h[G >> 0] | (h[(G + 1) >> 0] << 8) + d[j >> 1] = r + G = r & 255 + F = (r & 65535) >>> 8 + H = F & 255 + J = ((((((r & 255) ^ 318) + 239) << 16) >> 16) ^ F) & 65535 + F = (D | 0) == 0 + a: do + if (!F) { + K = (D + -1) | 0 + L = ((K & D) | 0) == 0 + if (!L) + if (D >>> 0 > J >>> 0) M = J + else M = (J >>> 0) % (D >>> 0) | 0 + else M = K & J + N = f[((f[i >> 2] | 0) + (M << 2)) >> 2] | 0 + do + if (N | 0 ? ((O = f[N >> 2] | 0), O | 0) : 0) { + b: do + if (L) { + P = O + while (1) { + Q = f[(P + 4) >> 2] | 0 + R = (Q | 0) == (J | 0) + if (!(R | (((Q & K) | 0) == (M | 0)))) { + S = 27 + break b + } + if ( + ( + R + ? ((R = (P + 8) | 0), + (b[R >> 0] | 0) == (G << 24) >> 24) + : 0 + ) + ? (b[(R + 1) >> 0] | 0) == (H << 24) >> 24 + : 0 + ) { + T = P + S = 26 + break b + } + P = f[P >> 2] | 0 + if (!P) { + S = 27 + break + } + } + } else { + P = O + while (1) { + R = f[(P + 4) >> 2] | 0 + if ((R | 0) == (J | 0)) { + Q = (P + 8) | 0 + if ( + (b[Q >> 0] | 0) == (G << 24) >> 24 + ? (b[(Q + 1) >> 0] | 0) == (H << 24) >> 24 + : 0 + ) { + T = P + S = 26 + break b + } + } else { + if (R >>> 0 < D >>> 0) U = R + else U = (R >>> 0) % (D >>> 0) | 0 + if ((U | 0) != (M | 0)) { + S = 27 + break b + } + } + P = f[P >> 2] | 0 + if (!P) { + S = 27 + break + } + } + } + while (0) + if ((S | 0) == 26) { + S = 0 + f[(E + (z << 2)) >> 2] = f[(T + 12) >> 2] + V = e + X = A + Y = C + Z = B + _ = E + break a + } else if ((S | 0) == 27) { + S = 0 + if (F) { + aa = 0 + S = 46 + break a + } else break + } + } + while (0) + K = (D + -1) | 0 + L = ((K & D) | 0) == 0 + if (!L) + if (D >>> 0 > J >>> 0) ba = J + else ba = (J >>> 0) % (D >>> 0) | 0 + else ba = K & J + N = f[((f[i >> 2] | 0) + (ba << 2)) >> 2] | 0 + if ((N | 0) != 0 ? ((O = f[N >> 2] | 0), (O | 0) != 0) : 0) { + if (L) { + L = O + while (1) { + N = f[(L + 4) >> 2] | 0 + if (!(((N | 0) == (J | 0)) | (((N & K) | 0) == (ba | 0)))) { + aa = ba + S = 46 + break a + } + N = (L + 8) | 0 + if ( + (b[N >> 0] | 0) == (G << 24) >> 24 + ? (b[(N + 1) >> 0] | 0) == (H << 24) >> 24 + : 0 + ) { + S = 61 + break a + } + L = f[L >> 2] | 0 + if (!L) { + aa = ba + S = 46 + break a + } + } + } else ca = O + while (1) { + L = f[(ca + 4) >> 2] | 0 + if ((L | 0) != (J | 0)) { + if (L >>> 0 < D >>> 0) da = L + else da = (L >>> 0) % (D >>> 0) | 0 + if ((da | 0) != (ba | 0)) { + aa = ba + S = 46 + break a + } + } + L = (ca + 8) | 0 + if ( + (b[L >> 0] | 0) == (G << 24) >> 24 + ? (b[(L + 1) >> 0] | 0) == (H << 24) >> 24 + : 0 + ) { + S = 61 + break a + } + ca = f[ca >> 2] | 0 + if (!ca) { + aa = ba + S = 46 + break + } + } + } else { + aa = ba + S = 46 + } + } else { + aa = 0 + S = 46 + } + while (0) + if ((S | 0) == 46) { + S = 0 + H = ln(16) | 0 + G = (H + 8) | 0 + b[G >> 0] = r + b[(G + 1) >> 0] = r >> 8 + f[(H + 12) >> 2] = A + f[(H + 4) >> 2] = J + f[H >> 2] = 0 + ea = $((((f[t >> 2] | 0) + 1) | 0) >>> 0) + fa = $(D >>> 0) + ga = $(n[l >> 2]) + do + if (F | ($(ga * fa) < ea)) { + G = + (D << 1) | (((D >>> 0 < 3) | ((((D + -1) & D) | 0) != 0)) & 1) + O = ~~$(W($(ea / ga))) >>> 0 + $h(i, G >>> 0 < O >>> 0 ? O : G) + G = f[o >> 2] | 0 + O = (G + -1) | 0 + if (!(O & G)) { + ha = G + ia = O & J + break + } + if (G >>> 0 > J >>> 0) { + ha = G + ia = J + } else { + ha = G + ia = (J >>> 0) % (G >>> 0) | 0 + } + } else { + ha = D + ia = aa + } + while (0) + J = ((f[i >> 2] | 0) + (ia << 2)) | 0 + F = f[J >> 2] | 0 + if (!F) { + f[H >> 2] = f[v >> 2] + f[v >> 2] = H + f[J >> 2] = v + J = f[H >> 2] | 0 + if (J | 0) { + r = f[(J + 4) >> 2] | 0 + J = (ha + -1) | 0 + if (J & ha) + if (r >>> 0 < ha >>> 0) ja = r + else ja = (r >>> 0) % (ha >>> 0) | 0 + else ja = r & J + ka = ((f[i >> 2] | 0) + (ja << 2)) | 0 + S = 59 + } + } else { + f[H >> 2] = f[F >> 2] + ka = F + S = 59 + } + if ((S | 0) == 59) { + S = 0 + f[ka >> 2] = H + } + f[t >> 2] = (f[t >> 2] | 0) + 1 + S = 61 + } + if ((S | 0) == 61) { + S = 0 + F = w + J = f[F >> 2] | 0 + r = un(J | 0, f[(F + 4) >> 2] | 0, A | 0, 0) | 0 + kh(((f[f[x >> 2] >> 2] | 0) + r) | 0, j | 0, J | 0) | 0 + J = f[k >> 2] | 0 + f[(J + (z << 2)) >> 2] = A + V = J + X = (A + 1) | 0 + Y = J + Z = J + _ = J + } + J = (z + 1) | 0 + la = f[m >> 2] | 0 + if (J >>> 0 >= la >>> 0) break + e = V + z = J + A = X + B = Z + C = Y + D = f[o >> 2] | 0 + E = _ + } + if ((X | 0) == (la | 0)) ma = Z + else { + Z = (a + 84) | 0 + if (!(b[Z >> 0] | 0)) { + _ = f[(a + 72) >> 2] | 0 + E = f[(a + 68) >> 2] | 0 + o = E + if ((_ | 0) == (E | 0)) na = V + else { + D = (_ - E) >> 2 + E = 0 + do { + _ = (o + (E << 2)) | 0 + f[_ >> 2] = f[(Y + (f[_ >> 2] << 2)) >> 2] + E = (E + 1) | 0 + } while (E >>> 0 < D >>> 0) + na = V + } + } else { + b[Z >> 0] = 0 + Z = (a + 68) | 0 + V = (a + 72) | 0 + D = f[V >> 2] | 0 + E = f[Z >> 2] | 0 + Y = (D - E) >> 2 + o = E + E = D + if (la >>> 0 <= Y >>> 0) + if ( + la >>> 0 < Y >>> 0 + ? ((D = (o + (la << 2)) | 0), (D | 0) != (E | 0)) + : 0 + ) { + f[V >> 2] = E + (~(((E + -4 - D) | 0) >>> 2) << 2) + oa = la + } else oa = la + else { + Ch(Z, (la - Y) | 0, 1220) + oa = f[m >> 2] | 0 + } + Y = f[k >> 2] | 0 + if (!oa) na = Y + else { + k = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(k + (a << 2)) >> 2] = f[(Y + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < oa >>> 0) + na = Y + } + } + f[m >> 2] = X + ma = na + } + if (!ma) pa = X + else { + na = f[p >> 2] | 0 + if ((na | 0) != (ma | 0)) + f[p >> 2] = na + (~(((na + -4 - ma) | 0) >>> 2) << 2) + Oq(ma) + pa = X + } + } else pa = 0 + X = f[(i + 8) >> 2] | 0 + if (X | 0) { + ma = X + do { + X = ma + ma = f[ma >> 2] | 0 + Oq(X) + } while ((ma | 0) != 0) + } + ma = f[i >> 2] | 0 + f[i >> 2] = 0 + if (!ma) { + u = g + return pa | 0 + } + Oq(ma) + u = g + return pa | 0 + } + function Yb(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = c + g = (c + 4) | 0 + h = (a + 16) | 0 + i = f[h >> 2] | 0 + j = (a + 20) | 0 + k = f[j >> 2] | 0 + if ((k | 0) == (i | 0)) l = i + else { + m = (k + (~(((k + -4 - i) | 0) >>> 2) << 2)) | 0 + f[j >> 2] = m + l = m + } + m = (a + 24) | 0 + if ((l | 0) == (f[m >> 2] | 0)) { + Ri(h, b) + n = f[h >> 2] | 0 + o = f[j >> 2] | 0 + } else { + f[l >> 2] = f[b >> 2] + k = (l + 4) | 0 + f[j >> 2] = k + n = i + o = k + } + k = f[(a + 8) >> 2] | 0 + i = ((f[(k + 100) >> 2] | 0) - (f[(k + 96) >> 2] | 0)) | 0 + k = ((i | 0) / 12) | 0 + if ((n | 0) == (o | 0)) { + u = c + return 1 + } + n = (a + 28) | 0 + l = (i | 0) > 0 + i = (a + 164) | 0 + p = (a + 12) | 0 + q = (a + 76) | 0 + r = (a + 80) | 0 + s = (a + 72) | 0 + t = (a + 200) | 0 + v = (a + 320) | 0 + w = (a + 152) | 0 + x = (a + 84) | 0 + y = (a + 324) | 0 + z = (a + 292) | 0 + A = (a + 304) | 0 + B = (a + 316) | 0 + C = (a + 328) | 0 + D = (a + 336) | 0 + E = (a + 332) | 0 + F = (a + 168) | 0 + G = (a + 140) | 0 + H = (a + 120) | 0 + I = o + do { + o = f[(I + -4) >> 2] | 0 + f[b >> 2] = o + a: do + if ( + (o | 0) != -1 + ? ((J = ((o >>> 0) / 3) | 0), + (K = f[n >> 2] | 0), + ((f[(K + ((J >>> 5) << 2)) >> 2] & (1 << (J & 31))) | 0) == 0) + : 0 + ) { + if (l) { + J = 0 + L = K + b: while (1) { + K = (J + 1) | 0 + f[i >> 2] = (f[i >> 2] | 0) + 1 + M = f[b >> 2] | 0 + N = (M | 0) == -1 ? -1 : ((M >>> 0) / 3) | 0 + M = (L + ((N >>> 5) << 2)) | 0 + f[M >> 2] = (1 << (N & 31)) | f[M >> 2] + M = f[q >> 2] | 0 + if ((M | 0) == (f[r >> 2] | 0)) Ri(s, b) + else { + f[M >> 2] = f[b >> 2] + f[q >> 2] = M + 4 + } + f[v >> 2] = f[b >> 2] + M = f[b >> 2] | 0 + if ((M | 0) == -1) O = -1 + else O = f[((f[f[p >> 2] >> 2] | 0) + (M << 2)) >> 2] | 0 + P = (f[((f[w >> 2] | 0) + (O << 2)) >> 2] | 0) != -1 + Q = ((f[x >> 2] | 0) + ((O >>> 5) << 2)) | 0 + R = 1 << (O & 31) + S = f[Q >> 2] | 0 + do + if (!(S & R)) { + f[Q >> 2] = S | R + if (P) { + T = f[b >> 2] | 0 + U = 38 + break + } + f[y >> 2] = (f[y >> 2] | 0) + 1 + V = f[v >> 2] | 0 + W = (V + 1) | 0 + do + if ((V | 0) != -1) { + X = ((W >>> 0) % 3 | 0 | 0) == 0 ? (V + -2) | 0 : W + if (!((V >>> 0) % 3 | 0)) { + Y = (V + 2) | 0 + Z = X + break + } else { + Y = (V + -1) | 0 + Z = X + break + } + } else { + Y = -1 + Z = -1 + } + while (0) + V = f[z >> 2] | 0 + W = f[A >> 2] | 0 + X = (W + (f[(V + (Z << 2)) >> 2] << 2)) | 0 + _ = f[X >> 2] | 0 + f[X >> 2] = _ + -1 + X = (W + (f[(V + (Y << 2)) >> 2] << 2)) | 0 + f[X >> 2] = (f[X >> 2] | 0) + -1 + X = f[B >> 2] | 0 + if ((X | 0) != -1) { + V = f[C >> 2] | 0 + if ((_ | 0) < (V | 0)) $ = V + else { + W = f[E >> 2] | 0 + $ = (_ | 0) > (W | 0) ? W : _ + } + _ = ($ - V) | 0 + V = f[D >> 2] | 0 + W = f[(3724 + (X << 2)) >> 2] | 0 + f[d >> 2] = W + X = (V + ((_ * 12) | 0) + 4) | 0 + aa = f[X >> 2] | 0 + if ( + aa >>> 0 < + (f[(V + ((_ * 12) | 0) + 8) >> 2] | 0) >>> 0 + ) { + f[aa >> 2] = W + f[X >> 2] = aa + 4 + } else Ri((V + ((_ * 12) | 0)) | 0, d) + } + f[B >> 2] = 0 + _ = f[b >> 2] | 0 + V = (_ + 1) | 0 + if ( + (_ | 0) != -1 + ? ((aa = + ((V >>> 0) % 3 | 0 | 0) == 0 ? (_ + -2) | 0 : V), + (aa | 0) != -1) + : 0 + ) + ba = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (aa << 2)) >> + 2 + ] | 0 + else ba = -1 + f[b >> 2] = ba + } else { + T = M + U = 38 + } + while (0) + if ((U | 0) == 38) { + U = 0 + M = (T + 1) | 0 + if ((T | 0) == -1) { + U = 43 + break + } + R = ((M >>> 0) % 3 | 0 | 0) == 0 ? (T + -2) | 0 : M + if ((R | 0) == -1) ca = -1 + else + ca = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (R << 2)) >> 2 + ] | 0 + f[e >> 2] = ca + R = ((((T >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + T) | 0 + if ((R | 0) == -1) da = -1 + else + da = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (R << 2)) >> 2 + ] | 0 + R = (ca | 0) == -1 + S = R ? -1 : ((ca >>> 0) / 3) | 0 + ea = (da | 0) == -1 + fa = ea ? -1 : ((da >>> 0) / 3) | 0 + Q = ((M >>> 0) % 3 | 0 | 0) == 0 ? (T + -2) | 0 : M + if ( + ( + (Q | 0) != -1 + ? ((M = f[((f[p >> 2] | 0) + 12) >> 2] | 0), + (aa = f[(M + (Q << 2)) >> 2] | 0), + (aa | 0) != -1) + : 0 + ) + ? ((Q = ((aa >>> 0) / 3) | 0), + (aa = f[n >> 2] | 0), + ((f[(aa + ((Q >>> 5) << 2)) >> 2] & (1 << (Q & 31))) | + 0) == + 0) + : 0 + ) { + Q = ((((T >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + T) | 0 + do + if ((Q | 0) != -1) { + V = f[(M + (Q << 2)) >> 2] | 0 + if ((V | 0) == -1) break + _ = ((V >>> 0) / 3) | 0 + if ( + !(f[(aa + ((_ >>> 5) << 2)) >> 2] & (1 << (_ & 31))) + ) { + U = 62 + break b + } + } + while (0) + if (!ea) xf(a, f[i >> 2] | 0, N, 0, fa) + nd(t, 3) + ga = f[e >> 2] | 0 + } else { + if (!R) { + xf(a, f[i >> 2] | 0, N, 1, S) + aa = f[b >> 2] | 0 + if ((aa | 0) == -1) { + U = 52 + break + } else ha = aa + } else ha = T + aa = ((((ha >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + ha) | 0 + if ((aa | 0) == -1) { + U = 52 + break + } + Q = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (aa << 2)) >> 2 + ] | 0 + if ((Q | 0) == -1) { + U = 52 + break + } + aa = ((Q >>> 0) / 3) | 0 + if ( + (f[((f[n >> 2] | 0) + ((aa >>> 5) << 2)) >> 2] & + (1 << (aa & 31))) | + 0 + ) { + U = 52 + break + } + nd(t, 5) + ga = da + } + f[b >> 2] = ga + } + if ((K | 0) >= (k | 0)) break a + J = K + L = f[n >> 2] | 0 + } + do + if ((U | 0) == 43) { + U = 0 + f[e >> 2] = -1 + U = 54 + } else if ((U | 0) == 52) { + U = 0 + if (ea) U = 54 + else { + xf(a, f[i >> 2] | 0, N, 0, fa) + U = 54 + } + } else if ((U | 0) == 62) { + U = 0 + nd(t, 1) + f[F >> 2] = (f[F >> 2] | 0) + 1 + if ( + P + ? ((L = f[((f[w >> 2] | 0) + (O << 2)) >> 2] | 0), + (((1 << (L & 31)) & + f[((f[G >> 2] | 0) + ((L >>> 5) << 2)) >> 2]) | + 0) == + 0) + : 0 + ) { + f[g >> 2] = f[b >> 2] + f[d >> 2] = f[g >> 2] + Pe(a, d, 0) | 0 + } + L = f[i >> 2] | 0 + f[d >> 2] = N + J = je(H, d) | 0 + f[J >> 2] = L + L = f[j >> 2] | 0 + f[(L + -4) >> 2] = da + if ((L | 0) == (f[m >> 2] | 0)) { + Ri(h, e) + break + } else { + f[L >> 2] = f[e >> 2] + f[j >> 2] = L + 4 + break + } + } + while (0) + if ((U | 0) == 54) { + U = 0 + nd(t, 7) + f[j >> 2] = (f[j >> 2] | 0) + -4 + } + } + } else U = 11 + while (0) + if ((U | 0) == 11) { + U = 0 + f[j >> 2] = I + -4 + } + I = f[j >> 2] | 0 + } while ((f[h >> 2] | 0) != (I | 0)) + u = c + return 1 + } + function Zb(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = c + g = f[b >> 2] | 0 + if ((g | 0) == -1) { + u = c + return + } + h = ((g >>> 0) / 3) | 0 + i = (a + 12) | 0 + if ( + (f[((f[i >> 2] | 0) + ((h >>> 5) << 2)) >> 2] & (1 << (h & 31))) | + 0 + ) { + u = c + return + } + h = (a + 56) | 0 + j = f[h >> 2] | 0 + k = (a + 60) | 0 + l = f[k >> 2] | 0 + if ((l | 0) == (j | 0)) m = j + else { + n = (l + (~(((l + -4 - j) | 0) >>> 2) << 2)) | 0 + f[k >> 2] = n + m = n + } + n = (a + 64) | 0 + if ((m | 0) == (f[n >> 2] | 0)) Ri(h, b) + else { + f[m >> 2] = g + f[k >> 2] = m + 4 + } + m = f[a >> 2] | 0 + g = f[b >> 2] | 0 + j = (g + 1) | 0 + do + if ((g | 0) != -1) { + l = f[(m + 28) >> 2] | 0 + o = + f[ + (l + ((((j >>> 0) % 3 | 0 | 0) == 0 ? (g + -2) | 0 : j) << 2)) >> + 2 + ] | 0 + if (!((g >>> 0) % 3 | 0)) { + p = o + q = (g + 2) | 0 + r = l + break + } else { + p = o + q = (g + -1) | 0 + r = l + break + } + } else { + l = f[(m + 28) >> 2] | 0 + p = f[(l + -4) >> 2] | 0 + q = -1 + r = l + } + while (0) + m = f[(r + (q << 2)) >> 2] | 0 + q = (a + 24) | 0 + r = f[q >> 2] | 0 + g = (r + ((p >>> 5) << 2)) | 0 + j = 1 << (p & 31) + l = f[g >> 2] | 0 + if (!(l & j)) { + f[g >> 2] = l | j + j = f[b >> 2] | 0 + l = (j + 1) | 0 + if ((j | 0) == -1) s = -1 + else s = ((l >>> 0) % 3 | 0 | 0) == 0 ? (j + -2) | 0 : l + f[e >> 2] = s + l = + f[ + ((f[((f[(a + 44) >> 2] | 0) + 96) >> 2] | 0) + + (((((s >>> 0) / 3) | 0) * 12) | 0) + + (((s >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + s = f[(a + 48) >> 2] | 0 + f[d >> 2] = l + j = f[(s + 4) >> 2] | 0 + s = (j + 4) | 0 + g = f[s >> 2] | 0 + if ((g | 0) == (f[(j + 8) >> 2] | 0)) Ri(j, d) + else { + f[g >> 2] = l + f[s >> 2] = g + 4 + } + g = (a + 40) | 0 + s = f[g >> 2] | 0 + l = (s + 4) | 0 + j = f[l >> 2] | 0 + if ((j | 0) == (f[(s + 8) >> 2] | 0)) { + Ri(s, e) + t = f[g >> 2] | 0 + } else { + f[j >> 2] = f[e >> 2] + f[l >> 2] = j + 4 + t = s + } + s = (t + 24) | 0 + f[((f[(t + 12) >> 2] | 0) + (p << 2)) >> 2] = f[s >> 2] + f[s >> 2] = (f[s >> 2] | 0) + 1 + v = f[q >> 2] | 0 + } else v = r + r = (v + ((m >>> 5) << 2)) | 0 + v = 1 << (m & 31) + s = f[r >> 2] | 0 + if (!(s & v)) { + f[r >> 2] = s | v + v = f[b >> 2] | 0 + do + if ((v | 0) != -1) + if (!((v >>> 0) % 3 | 0)) { + w = (v + 2) | 0 + break + } else { + w = (v + -1) | 0 + break + } + else w = -1 + while (0) + f[e >> 2] = w + v = + f[ + ((f[((f[(a + 44) >> 2] | 0) + 96) >> 2] | 0) + + (((((w >>> 0) / 3) | 0) * 12) | 0) + + (((w >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + w = f[(a + 48) >> 2] | 0 + f[d >> 2] = v + s = f[(w + 4) >> 2] | 0 + w = (s + 4) | 0 + r = f[w >> 2] | 0 + if ((r | 0) == (f[(s + 8) >> 2] | 0)) Ri(s, d) + else { + f[r >> 2] = v + f[w >> 2] = r + 4 + } + r = (a + 40) | 0 + w = f[r >> 2] | 0 + v = (w + 4) | 0 + s = f[v >> 2] | 0 + if ((s | 0) == (f[(w + 8) >> 2] | 0)) { + Ri(w, e) + x = f[r >> 2] | 0 + } else { + f[s >> 2] = f[e >> 2] + f[v >> 2] = s + 4 + x = w + } + w = (x + 24) | 0 + f[((f[(x + 12) >> 2] | 0) + (m << 2)) >> 2] = f[w >> 2] + f[w >> 2] = (f[w >> 2] | 0) + 1 + } + w = f[h >> 2] | 0 + m = f[k >> 2] | 0 + if ((w | 0) == (m | 0)) { + u = c + return + } + x = (a + 44) | 0 + s = (a + 48) | 0 + v = (a + 40) | 0 + r = m + m = w + while (1) { + w = f[(r + -4) >> 2] | 0 + f[b >> 2] = w + p = ((w >>> 0) / 3) | 0 + if ( + (w | 0) != -1 + ? ((w = f[i >> 2] | 0), + ((f[(w + ((p >>> 5) << 2)) >> 2] & (1 << (p & 31))) | 0) == 0) + : 0 + ) { + t = p + p = w + w = f[a >> 2] | 0 + a: while (1) { + j = (p + ((t >>> 5) << 2)) | 0 + f[j >> 2] = f[j >> 2] | (1 << (t & 31)) + j = f[b >> 2] | 0 + l = f[((f[(w + 28) >> 2] | 0) + (j << 2)) >> 2] | 0 + g = ((f[q >> 2] | 0) + ((l >>> 5) << 2)) | 0 + o = 1 << (l & 31) + y = f[g >> 2] | 0 + if (!(o & y)) { + z = f[((f[(w + 40) >> 2] | 0) + (l << 2)) >> 2] | 0 + if ((z | 0) == -1) A = 1 + else { + B = f[((f[f[(w + 64) >> 2] >> 2] | 0) + (z << 2)) >> 2] | 0 + A = + (((1 << (B & 31)) & + f[((f[(w + 12) >> 2] | 0) + ((B >>> 5) << 2)) >> 2]) | + 0) != + 0 + } + f[g >> 2] = y | o + o = f[b >> 2] | 0 + f[e >> 2] = o + y = + f[ + ((f[((f[x >> 2] | 0) + 96) >> 2] | 0) + + (((((o >>> 0) / 3) | 0) * 12) | 0) + + (((o >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + o = f[s >> 2] | 0 + f[d >> 2] = y + g = f[(o + 4) >> 2] | 0 + o = (g + 4) | 0 + B = f[o >> 2] | 0 + if ((B | 0) == (f[(g + 8) >> 2] | 0)) Ri(g, d) + else { + f[B >> 2] = y + f[o >> 2] = B + 4 + } + B = f[v >> 2] | 0 + o = (B + 4) | 0 + y = f[o >> 2] | 0 + if ((y | 0) == (f[(B + 8) >> 2] | 0)) { + Ri(B, e) + C = f[v >> 2] | 0 + } else { + f[y >> 2] = f[e >> 2] + f[o >> 2] = y + 4 + C = B + } + B = (C + 24) | 0 + f[((f[(C + 12) >> 2] | 0) + (l << 2)) >> 2] = f[B >> 2] + f[B >> 2] = (f[B >> 2] | 0) + 1 + B = f[a >> 2] | 0 + l = f[b >> 2] | 0 + if (A) { + D = l + E = B + F = 57 + } else { + y = (l + 1) | 0 + do + if ((l | 0) == -1) G = -1 + else { + o = ((y >>> 0) % 3 | 0 | 0) == 0 ? (l + -2) | 0 : y + if ((o | 0) == -1) { + G = -1 + break + } + if ( + (f[((f[B >> 2] | 0) + ((o >>> 5) << 2)) >> 2] & + (1 << (o & 31))) | + 0 + ) { + G = -1 + break + } + G = + f[ + ((f[((f[(B + 64) >> 2] | 0) + 12) >> 2] | 0) + + (o << 2)) >> + 2 + ] | 0 + } + while (0) + f[b >> 2] = G + H = ((G >>> 0) / 3) | 0 + I = B + } + } else { + D = j + E = w + F = 57 + } + if ((F | 0) == 57) { + F = 0 + y = (D + 1) | 0 + if ((D | 0) == -1) { + F = 58 + break + } + l = ((y >>> 0) % 3 | 0 | 0) == 0 ? (D + -2) | 0 : y + if ( + (l | 0) != -1 + ? ((f[((f[E >> 2] | 0) + ((l >>> 5) << 2)) >> 2] & + (1 << (l & 31))) | + 0) == + 0 + : 0 + ) + J = + f[ + ((f[((f[(E + 64) >> 2] | 0) + 12) >> 2] | 0) + (l << 2)) >> + 2 + ] | 0 + else J = -1 + f[d >> 2] = J + l = ((((D >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + D) | 0 + if ( + (l | 0) != -1 + ? ((f[((f[E >> 2] | 0) + ((l >>> 5) << 2)) >> 2] & + (1 << (l & 31))) | + 0) == + 0 + : 0 + ) + K = + f[ + ((f[((f[(E + 64) >> 2] | 0) + 12) >> 2] | 0) + (l << 2)) >> + 2 + ] | 0 + else K = -1 + l = (J | 0) == -1 + y = ((J >>> 0) / 3) | 0 + o = l ? -1 : y + g = (K | 0) == -1 + z = ((K >>> 0) / 3) | 0 + L = g ? -1 : z + do + if (!l) { + M = f[i >> 2] | 0 + if ((f[(M + ((o >>> 5) << 2)) >> 2] & (1 << (o & 31))) | 0) { + F = 67 + break + } + if (g) { + N = J + O = y + break + } + if (!(f[(M + ((L >>> 5) << 2)) >> 2] & (1 << (L & 31)))) { + F = 72 + break a + } else { + N = J + O = y + } + } else F = 67 + while (0) + if ((F | 0) == 67) { + F = 0 + if (g) { + F = 69 + break + } + if ( + !( + f[((f[i >> 2] | 0) + ((L >>> 5) << 2)) >> 2] & + (1 << (L & 31)) + ) + ) { + N = K + O = z + } else { + F = 69 + break + } + } + f[b >> 2] = N + H = O + I = E + } + t = H + p = f[i >> 2] | 0 + w = I + } + do + if ((F | 0) == 58) { + F = 0 + f[d >> 2] = -1 + F = 69 + } else if ((F | 0) == 72) { + F = 0 + w = f[k >> 2] | 0 + f[(w + -4) >> 2] = K + if ((w | 0) == (f[n >> 2] | 0)) { + Ri(h, d) + P = f[k >> 2] | 0 + break + } else { + f[w >> 2] = f[d >> 2] + p = (w + 4) | 0 + f[k >> 2] = p + P = p + break + } + } + while (0) + if ((F | 0) == 69) { + F = 0 + p = ((f[k >> 2] | 0) + -4) | 0 + f[k >> 2] = p + P = p + } + Q = f[h >> 2] | 0 + R = P + } else { + p = (r + -4) | 0 + f[k >> 2] = p + Q = m + R = p + } + if ((Q | 0) == (R | 0)) break + else { + r = R + m = Q + } + } + u = c + return + } + function _b(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = Oa, + K = Oa, + L = Oa, + M = 0, + N = 0, + O = 0, + P = 0 + e = u + u = (u + 64) | 0 + g = (e + 40) | 0 + i = (e + 16) | 0 + j = e + k = Id(a, c) | 0 + if (k | 0) { + f[i >> 2] = k + f[g >> 2] = f[i >> 2] + lf(a, g) | 0 + } + f[j >> 2] = 0 + k = (j + 4) | 0 + f[k >> 2] = 0 + f[(j + 8) >> 2] = 0 + Fi(j, 8) + l = d + d = l + m = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + d = (l + 4) | 0 + l = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + d = f[j >> 2] | 0 + o = d + b[o >> 0] = m + b[(o + 1) >> 0] = m >> 8 + b[(o + 2) >> 0] = m >> 16 + b[(o + 3) >> 0] = m >> 24 + m = (d + 4) | 0 + b[m >> 0] = l + b[(m + 1) >> 0] = l >> 8 + b[(m + 2) >> 0] = l >> 16 + b[(m + 3) >> 0] = l >> 24 + pj(i, c) + c = (i + 12) | 0 + f[c >> 2] = 0 + l = (i + 16) | 0 + f[l >> 2] = 0 + f[(i + 20) >> 2] = 0 + m = f[k >> 2] | 0 + d = f[j >> 2] | 0 + o = (m - d) | 0 + if (!o) { + p = d + q = m + r = 0 + } else { + Fi(c, o) + p = f[j >> 2] | 0 + q = f[k >> 2] | 0 + r = f[c >> 2] | 0 + } + kh(r | 0, p | 0, (q - p) | 0) | 0 + p = (i + 11) | 0 + q = b[p >> 0] | 0 + r = (q << 24) >> 24 < 0 + c = r ? f[i >> 2] | 0 : i + o = r ? f[(i + 4) >> 2] | 0 : q & 255 + if (o >>> 0 > 3) { + q = c + r = o + m = o + while (1) { + d = + X( + h[q >> 0] | + (h[(q + 1) >> 0] << 8) | + (h[(q + 2) >> 0] << 16) | + (h[(q + 3) >> 0] << 24), + 1540483477, + ) | 0 + r = (X((d >>> 24) ^ d, 1540483477) | 0) ^ (X(r, 1540483477) | 0) + m = (m + -4) | 0 + if (m >>> 0 <= 3) break + else q = (q + 4) | 0 + } + q = (o + -4) | 0 + m = q & -4 + s = (q - m) | 0 + t = (c + (m + 4)) | 0 + v = r + } else { + s = o + t = c + v = o + } + switch (s | 0) { + case 3: { + w = (h[(t + 2) >> 0] << 16) ^ v + x = 10 + break + } + case 2: { + w = v + x = 10 + break + } + case 1: { + y = v + x = 11 + break + } + default: + z = v + } + if ((x | 0) == 10) { + y = (h[(t + 1) >> 0] << 8) ^ w + x = 11 + } + if ((x | 0) == 11) z = X(y ^ h[t >> 0], 1540483477) | 0 + t = X((z >>> 13) ^ z, 1540483477) | 0 + z = (t >>> 15) ^ t + t = (a + 4) | 0 + y = f[t >> 2] | 0 + w = (y | 0) == 0 + a: do + if (!w) { + v = (y + -1) | 0 + s = ((v & y) | 0) == 0 + if (!s) + if (z >>> 0 < y >>> 0) A = z + else A = (z >>> 0) % (y >>> 0) | 0 + else A = z & v + r = f[((f[a >> 2] | 0) + (A << 2)) >> 2] | 0 + if ((r | 0) != 0 ? ((m = f[r >> 2] | 0), (m | 0) != 0) : 0) { + r = (o | 0) == 0 + if (s) { + if (r) { + s = m + while (1) { + q = f[(s + 4) >> 2] | 0 + if (!(((q | 0) == (z | 0)) | (((q & v) | 0) == (A | 0)))) { + B = A + x = 52 + break a + } + q = b[(s + 8 + 11) >> 0] | 0 + if ( + !( + ((q << 24) >> 24 < 0 ? f[(s + 12) >> 2] | 0 : q & 255) | 0 + ) + ) + break a + s = f[s >> 2] | 0 + if (!s) { + B = A + x = 52 + break a + } + } + } else C = m + while (1) { + s = f[(C + 4) >> 2] | 0 + if (!(((s | 0) == (z | 0)) | (((s & v) | 0) == (A | 0)))) { + B = A + x = 52 + break a + } + s = (C + 8) | 0 + q = b[(s + 11) >> 0] | 0 + d = (q << 24) >> 24 < 0 + D = q & 255 + do + if (((d ? f[(C + 12) >> 2] | 0 : D) | 0) == (o | 0)) { + q = f[s >> 2] | 0 + if (d) + if (!(Vk(q, c, o) | 0)) break a + else break + if ((b[c >> 0] | 0) == ((q & 255) << 24) >> 24) { + q = s + E = D + F = c + do { + E = (E + -1) | 0 + q = (q + 1) | 0 + if (!E) break a + F = (F + 1) | 0 + } while ((b[q >> 0] | 0) == (b[F >> 0] | 0)) + } + } + while (0) + C = f[C >> 2] | 0 + if (!C) { + B = A + x = 52 + break a + } + } + } + if (r) { + v = m + while (1) { + D = f[(v + 4) >> 2] | 0 + if ((D | 0) != (z | 0)) { + if (D >>> 0 < y >>> 0) G = D + else G = (D >>> 0) % (y >>> 0) | 0 + if ((G | 0) != (A | 0)) { + B = A + x = 52 + break a + } + } + D = b[(v + 8 + 11) >> 0] | 0 + if ( + !(((D << 24) >> 24 < 0 ? f[(v + 12) >> 2] | 0 : D & 255) | 0) + ) + break a + v = f[v >> 2] | 0 + if (!v) { + B = A + x = 52 + break a + } + } + } else H = m + while (1) { + v = f[(H + 4) >> 2] | 0 + if ((v | 0) != (z | 0)) { + if (v >>> 0 < y >>> 0) I = v + else I = (v >>> 0) % (y >>> 0) | 0 + if ((I | 0) != (A | 0)) { + B = A + x = 52 + break a + } + } + v = (H + 8) | 0 + r = b[(v + 11) >> 0] | 0 + D = (r << 24) >> 24 < 0 + s = r & 255 + do + if (((D ? f[(H + 12) >> 2] | 0 : s) | 0) == (o | 0)) { + r = f[v >> 2] | 0 + if (D) + if (!(Vk(r, c, o) | 0)) break a + else break + if ((b[c >> 0] | 0) == ((r & 255) << 24) >> 24) { + r = v + d = s + F = c + do { + d = (d + -1) | 0 + r = (r + 1) | 0 + if (!d) break a + F = (F + 1) | 0 + } while ((b[r >> 0] | 0) == (b[F >> 0] | 0)) + } + } + while (0) + H = f[H >> 2] | 0 + if (!H) { + B = A + x = 52 + break + } + } + } else { + B = A + x = 52 + } + } else { + B = 0 + x = 52 + } + while (0) + if ((x | 0) == 52) { + oi(g, a, z, i) + x = (a + 12) | 0 + J = $((((f[x >> 2] | 0) + 1) | 0) >>> 0) + K = $(y >>> 0) + L = $(n[(a + 16) >> 2]) + do + if (w | ($(L * K) < J)) { + A = (y << 1) | (((y >>> 0 < 3) | ((((y + -1) & y) | 0) != 0)) & 1) + H = ~~$(W($(J / L))) >>> 0 + ei(a, A >>> 0 < H >>> 0 ? H : A) + A = f[t >> 2] | 0 + H = (A + -1) | 0 + if (!(H & A)) { + M = A + N = H & z + break + } + if (z >>> 0 < A >>> 0) { + M = A + N = z + } else { + M = A + N = (z >>> 0) % (A >>> 0) | 0 + } + } else { + M = y + N = B + } + while (0) + B = f[((f[a >> 2] | 0) + (N << 2)) >> 2] | 0 + if (!B) { + y = (a + 8) | 0 + f[f[g >> 2] >> 2] = f[y >> 2] + f[y >> 2] = f[g >> 2] + f[((f[a >> 2] | 0) + (N << 2)) >> 2] = y + y = f[g >> 2] | 0 + N = f[y >> 2] | 0 + if (!N) O = g + else { + z = f[(N + 4) >> 2] | 0 + N = (M + -1) | 0 + if (N & M) + if (z >>> 0 < M >>> 0) P = z + else P = (z >>> 0) % (M >>> 0) | 0 + else P = z & N + f[((f[a >> 2] | 0) + (P << 2)) >> 2] = y + O = g + } + } else { + f[f[g >> 2] >> 2] = f[B >> 2] + f[B >> 2] = f[g >> 2] + O = g + } + f[x >> 2] = (f[x >> 2] | 0) + 1 + f[O >> 2] = 0 + } + O = f[(i + 12) >> 2] | 0 + if (O | 0) { + if ((f[l >> 2] | 0) != (O | 0)) f[l >> 2] = O + Oq(O) + } + if ((b[p >> 0] | 0) < 0) Oq(f[i >> 2] | 0) + i = f[j >> 2] | 0 + if (!i) { + u = e + return + } + if ((f[k >> 2] | 0) != (i | 0)) f[k >> 2] = i + Oq(i) + u = e + return + } + function $b(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0, + ua = 0, + va = 0, + wa = 0, + xa = 0, + ya = 0, + za = 0 + e = u + u = (u + 96) | 0 + g = (e + 92) | 0 + h = (e + 88) | 0 + i = (e + 72) | 0 + j = (e + 48) | 0 + k = (e + 24) | 0 + l = e + m = (a + 16) | 0 + n = f[m >> 2] | 0 + o = f[c >> 2] | 0 + f[i >> 2] = n + f[(i + 4) >> 2] = o + c = (i + 8) | 0 + f[c >> 2] = o + b[(i + 12) >> 0] = 1 + p = (o | 0) == -1 + if (p) q = -1 + else q = f[((f[n >> 2] | 0) + (o << 2)) >> 2] | 0 + n = (a + 20) | 0 + r = f[n >> 2] | 0 + s = f[r >> 2] | 0 + if ((((f[(r + 4) >> 2] | 0) - s) >> 2) >>> 0 <= q >>> 0) aq(r) + r = (a + 8) | 0 + t = f[((f[r >> 2] | 0) + (f[(s + (q << 2)) >> 2] << 2)) >> 2] | 0 + q = (a + 4) | 0 + s = f[q >> 2] | 0 + if (!(b[(s + 84) >> 0] | 0)) + v = f[((f[(s + 68) >> 2] | 0) + (t << 2)) >> 2] | 0 + else v = t + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + f[(j + 12) >> 2] = 0 + f[(j + 16) >> 2] = 0 + f[(j + 20) >> 2] = 0 + f[h >> 2] = v + v = b[(s + 24) >> 0] | 0 + f[g >> 2] = f[h >> 2] + vb(s, g, v, j) | 0 + v = (a + 28) | 0 + a = (f[v >> 2] | 0) == 0 + a: do + if (!p) { + s = (k + 8) | 0 + t = (j + 8) | 0 + w = (k + 16) | 0 + x = (j + 16) | 0 + y = (l + 8) | 0 + z = (l + 16) | 0 + A = o + B = o + C = 0 + D = 0 + E = 0 + F = 0 + G = 0 + H = 0 + J = a + K = o + while (1) { + do + if (J) { + L = (K + 1) | 0 + if ((K | 0) == -1) { + M = A + N = -1 + O = -1 + P = -1 + break + } + Q = ((L >>> 0) % 3 | 0 | 0) == 0 ? (K + -2) | 0 : L + if ((A | 0) != -1) + if (!((A >>> 0) % 3 | 0)) { + R = A + S = (A + 2) | 0 + T = Q + U = A + V = 19 + break + } else { + R = A + S = (A + -1) | 0 + T = Q + U = A + V = 19 + break + } + else { + R = -1 + S = -1 + T = Q + U = -1 + V = 19 + } + } else { + Q = (B + 1) | 0 + L = ((Q >>> 0) % 3 | 0 | 0) == 0 ? (B + -2) | 0 : Q + if (!((B >>> 0) % 3 | 0)) { + R = A + S = (B + 2) | 0 + T = L + U = K + V = 19 + break + } else { + R = A + S = (B + -1) | 0 + T = L + U = K + V = 19 + break + } + } + while (0) + if ((V | 0) == 19) { + V = 0 + if ((T | 0) == -1) { + M = R + N = -1 + O = S + P = U + } else { + M = R + N = f[((f[f[m >> 2] >> 2] | 0) + (T << 2)) >> 2] | 0 + O = S + P = U + } + } + W = f[n >> 2] | 0 + L = f[W >> 2] | 0 + if ((((f[(W + 4) >> 2] | 0) - L) >> 2) >>> 0 <= N >>> 0) { + V = 22 + break + } + Q = f[((f[r >> 2] | 0) + (f[(L + (N << 2)) >> 2] << 2)) >> 2] | 0 + L = f[q >> 2] | 0 + if (!(b[(L + 84) >> 0] | 0)) + X = f[((f[(L + 68) >> 2] | 0) + (Q << 2)) >> 2] | 0 + else X = Q + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + f[(k + 16) >> 2] = 0 + f[(k + 20) >> 2] = 0 + f[h >> 2] = X + Q = b[(L + 24) >> 0] | 0 + f[g >> 2] = f[h >> 2] + vb(L, g, Q, k) | 0 + if ((O | 0) == -1) Y = -1 + else Y = f[((f[f[m >> 2] >> 2] | 0) + (O << 2)) >> 2] | 0 + Z = f[n >> 2] | 0 + Q = f[Z >> 2] | 0 + if ((((f[(Z + 4) >> 2] | 0) - Q) >> 2) >>> 0 <= Y >>> 0) { + V = 28 + break + } + L = f[((f[r >> 2] | 0) + (f[(Q + (Y << 2)) >> 2] << 2)) >> 2] | 0 + Q = f[q >> 2] | 0 + if (!(b[(Q + 84) >> 0] | 0)) + _ = f[((f[(Q + 68) >> 2] | 0) + (L << 2)) >> 2] | 0 + else _ = L + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[(l + 8) >> 2] = 0 + f[(l + 12) >> 2] = 0 + f[(l + 16) >> 2] = 0 + f[(l + 20) >> 2] = 0 + f[h >> 2] = _ + L = b[(Q + 24) >> 0] | 0 + f[g >> 2] = f[h >> 2] + vb(Q, g, L, l) | 0 + L = k + Q = j + $ = f[Q >> 2] | 0 + aa = f[(Q + 4) >> 2] | 0 + Q = Xn(f[L >> 2] | 0, f[(L + 4) >> 2] | 0, $ | 0, aa | 0) | 0 + L = I + ba = s + ca = t + da = f[ca >> 2] | 0 + ea = f[(ca + 4) >> 2] | 0 + ca = Xn(f[ba >> 2] | 0, f[(ba + 4) >> 2] | 0, da | 0, ea | 0) | 0 + ba = I + fa = w + ga = x + ha = f[ga >> 2] | 0 + ia = f[(ga + 4) >> 2] | 0 + ga = Xn(f[fa >> 2] | 0, f[(fa + 4) >> 2] | 0, ha | 0, ia | 0) | 0 + fa = I + ja = l + ka = Xn(f[ja >> 2] | 0, f[(ja + 4) >> 2] | 0, $ | 0, aa | 0) | 0 + aa = I + $ = y + ja = Xn(f[$ >> 2] | 0, f[($ + 4) >> 2] | 0, da | 0, ea | 0) | 0 + ea = I + da = z + $ = Xn(f[da >> 2] | 0, f[(da + 4) >> 2] | 0, ha | 0, ia | 0) | 0 + ia = I + ha = un($ | 0, ia | 0, ca | 0, ba | 0) | 0 + da = I + la = un(ja | 0, ea | 0, ga | 0, fa | 0) | 0 + ma = I + na = un(ka | 0, aa | 0, ga | 0, fa | 0) | 0 + fa = I + ga = un($ | 0, ia | 0, Q | 0, L | 0) | 0 + ia = I + $ = un(ja | 0, ea | 0, Q | 0, L | 0) | 0 + L = I + Q = un(ka | 0, aa | 0, ca | 0, ba | 0) | 0 + ba = I + ca = Xn(C | 0, D | 0, la | 0, ma | 0) | 0 + ma = Vn(ca | 0, I | 0, ha | 0, da | 0) | 0 + da = I + ha = Vn(na | 0, fa | 0, E | 0, F | 0) | 0 + fa = Xn(ha | 0, I | 0, ga | 0, ia | 0) | 0 + ia = I + ga = Xn(G | 0, H | 0, Q | 0, ba | 0) | 0 + ba = Vn(ga | 0, I | 0, $ | 0, L | 0) | 0 + L = I + Hh(i) + B = f[c >> 2] | 0 + $ = (f[v >> 2] | 0) == 0 + if ((B | 0) == -1) { + oa = $ + pa = da + qa = ma + ra = ia + sa = fa + ta = L + ua = ba + break a + } else { + A = M + C = ma + D = da + E = fa + F = ia + G = ba + H = L + J = $ + K = P + } + } + if ((V | 0) == 22) aq(W) + else if ((V | 0) == 28) aq(Z) + } else { + oa = a + pa = 0 + qa = 0 + ra = 0 + sa = 0 + ta = 0 + ua = 0 + } + while (0) + a = ((pa | 0) > -1) | (((pa | 0) == -1) & (qa >>> 0 > 4294967295)) + Z = Xn(0, 0, qa | 0, pa | 0) | 0 + V = a ? pa : I + W = ((ra | 0) > -1) | (((ra | 0) == -1) & (sa >>> 0 > 4294967295)) + P = Xn(0, 0, sa | 0, ra | 0) | 0 + M = W ? ra : I + v = ((ta | 0) > -1) | (((ta | 0) == -1) & (ua >>> 0 > 4294967295)) + c = Xn(0, 0, ua | 0, ta | 0) | 0 + i = Vn((W ? sa : P) | 0, M | 0, (v ? ua : c) | 0, (v ? ta : I) | 0) | 0 + v = Vn(i | 0, I | 0, (a ? qa : Z) | 0, V | 0) | 0 + V = I + if (oa) { + if ((v | 0) <= 536870912) { + va = qa + wa = sa + xa = ua + f[d >> 2] = va + ya = (d + 4) | 0 + f[ya >> 2] = wa + za = (d + 8) | 0 + f[za >> 2] = xa + u = e + return + } + oa = Yn(v | 0, V | 0, 29) | 0 + Z = oa & 7 + oa = Ik(qa | 0, pa | 0, Z | 0, 0) | 0 + a = Ik(sa | 0, ra | 0, Z | 0, 0) | 0 + i = Ik(ua | 0, ta | 0, Z | 0, 0) | 0 + va = oa + wa = a + xa = i + f[d >> 2] = va + ya = (d + 4) | 0 + f[ya >> 2] = wa + za = (d + 8) | 0 + f[za >> 2] = xa + u = e + return + } else { + if (!(((V | 0) > 0) | (((V | 0) == 0) & (v >>> 0 > 536870912)))) { + va = qa + wa = sa + xa = ua + f[d >> 2] = va + ya = (d + 4) | 0 + f[ya >> 2] = wa + za = (d + 8) | 0 + f[za >> 2] = xa + u = e + return + } + i = Yn(v | 0, V | 0, 29) | 0 + V = I + v = Ik(qa | 0, pa | 0, i | 0, V | 0) | 0 + pa = Ik(sa | 0, ra | 0, i | 0, V | 0) | 0 + ra = Ik(ua | 0, ta | 0, i | 0, V | 0) | 0 + va = v + wa = pa + xa = ra + f[d >> 2] = va + ya = (d + 4) | 0 + f[ya >> 2] = wa + za = (d + 8) | 0 + f[za >> 2] = xa + u = e + return + } + } + function ac(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = Oa, + M = Oa, + N = Oa, + O = 0, + P = 0, + Q = 0, + R = 0 + e = u + u = (u + 64) | 0 + g = (e + 40) | 0 + i = (e + 16) | 0 + j = e + k = Id(a, c) | 0 + if (k | 0) { + f[i >> 2] = k + f[g >> 2] = f[i >> 2] + lf(a, g) | 0 + } + f[j >> 2] = 0 + k = (j + 4) | 0 + f[k >> 2] = 0 + f[(j + 8) >> 2] = 0 + l = (d + 11) | 0 + m = b[l >> 0] | 0 + o = (d + 4) | 0 + p = f[o >> 2] | 0 + q = (m << 24) >> 24 < 0 ? p : m & 255 + if (!q) { + r = m + s = p + t = 0 + } else { + Fi(j, q) + r = b[l >> 0] | 0 + s = f[o >> 2] | 0 + t = f[j >> 2] | 0 + } + o = (r << 24) >> 24 < 0 + kh(t | 0, (o ? f[d >> 2] | 0 : d) | 0, (o ? s : r & 255) | 0) | 0 + pj(i, c) + c = (i + 12) | 0 + f[c >> 2] = 0 + r = (i + 16) | 0 + f[r >> 2] = 0 + f[(i + 20) >> 2] = 0 + s = f[k >> 2] | 0 + o = f[j >> 2] | 0 + d = (s - o) | 0 + if (!d) { + v = o + w = s + x = 0 + } else { + Fi(c, d) + v = f[j >> 2] | 0 + w = f[k >> 2] | 0 + x = f[c >> 2] | 0 + } + kh(x | 0, v | 0, (w - v) | 0) | 0 + v = (i + 11) | 0 + w = b[v >> 0] | 0 + x = (w << 24) >> 24 < 0 + c = x ? f[i >> 2] | 0 : i + d = x ? f[(i + 4) >> 2] | 0 : w & 255 + if (d >>> 0 > 3) { + w = c + x = d + s = d + while (1) { + o = + X( + h[w >> 0] | + (h[(w + 1) >> 0] << 8) | + (h[(w + 2) >> 0] << 16) | + (h[(w + 3) >> 0] << 24), + 1540483477, + ) | 0 + x = (X((o >>> 24) ^ o, 1540483477) | 0) ^ (X(x, 1540483477) | 0) + s = (s + -4) | 0 + if (s >>> 0 <= 3) break + else w = (w + 4) | 0 + } + w = (d + -4) | 0 + s = w & -4 + y = (w - s) | 0 + z = (c + (s + 4)) | 0 + A = x + } else { + y = d + z = c + A = d + } + switch (y | 0) { + case 3: { + B = (h[(z + 2) >> 0] << 16) ^ A + C = 12 + break + } + case 2: { + B = A + C = 12 + break + } + case 1: { + D = A + C = 13 + break + } + default: + E = A + } + if ((C | 0) == 12) { + D = (h[(z + 1) >> 0] << 8) ^ B + C = 13 + } + if ((C | 0) == 13) E = X(D ^ h[z >> 0], 1540483477) | 0 + z = X((E >>> 13) ^ E, 1540483477) | 0 + E = (z >>> 15) ^ z + z = (a + 4) | 0 + D = f[z >> 2] | 0 + B = (D | 0) == 0 + a: do + if (!B) { + A = (D + -1) | 0 + y = ((A & D) | 0) == 0 + if (!y) + if (E >>> 0 < D >>> 0) F = E + else F = (E >>> 0) % (D >>> 0) | 0 + else F = E & A + x = f[((f[a >> 2] | 0) + (F << 2)) >> 2] | 0 + if ((x | 0) != 0 ? ((s = f[x >> 2] | 0), (s | 0) != 0) : 0) { + x = (d | 0) == 0 + if (y) { + if (x) { + y = s + while (1) { + w = f[(y + 4) >> 2] | 0 + if (!(((w | 0) == (E | 0)) | (((w & A) | 0) == (F | 0)))) { + G = F + C = 54 + break a + } + w = b[(y + 8 + 11) >> 0] | 0 + if ( + !( + ((w << 24) >> 24 < 0 ? f[(y + 12) >> 2] | 0 : w & 255) | 0 + ) + ) + break a + y = f[y >> 2] | 0 + if (!y) { + G = F + C = 54 + break a + } + } + } else H = s + while (1) { + y = f[(H + 4) >> 2] | 0 + if (!(((y | 0) == (E | 0)) | (((y & A) | 0) == (F | 0)))) { + G = F + C = 54 + break a + } + y = (H + 8) | 0 + w = b[(y + 11) >> 0] | 0 + o = (w << 24) >> 24 < 0 + t = w & 255 + do + if (((o ? f[(H + 12) >> 2] | 0 : t) | 0) == (d | 0)) { + w = f[y >> 2] | 0 + if (o) + if (!(Vk(w, c, d) | 0)) break a + else break + if ((b[c >> 0] | 0) == ((w & 255) << 24) >> 24) { + w = y + l = t + q = c + do { + l = (l + -1) | 0 + w = (w + 1) | 0 + if (!l) break a + q = (q + 1) | 0 + } while ((b[w >> 0] | 0) == (b[q >> 0] | 0)) + } + } + while (0) + H = f[H >> 2] | 0 + if (!H) { + G = F + C = 54 + break a + } + } + } + if (x) { + A = s + while (1) { + t = f[(A + 4) >> 2] | 0 + if ((t | 0) != (E | 0)) { + if (t >>> 0 < D >>> 0) I = t + else I = (t >>> 0) % (D >>> 0) | 0 + if ((I | 0) != (F | 0)) { + G = F + C = 54 + break a + } + } + t = b[(A + 8 + 11) >> 0] | 0 + if ( + !(((t << 24) >> 24 < 0 ? f[(A + 12) >> 2] | 0 : t & 255) | 0) + ) + break a + A = f[A >> 2] | 0 + if (!A) { + G = F + C = 54 + break a + } + } + } else J = s + while (1) { + A = f[(J + 4) >> 2] | 0 + if ((A | 0) != (E | 0)) { + if (A >>> 0 < D >>> 0) K = A + else K = (A >>> 0) % (D >>> 0) | 0 + if ((K | 0) != (F | 0)) { + G = F + C = 54 + break a + } + } + A = (J + 8) | 0 + x = b[(A + 11) >> 0] | 0 + t = (x << 24) >> 24 < 0 + y = x & 255 + do + if (((t ? f[(J + 12) >> 2] | 0 : y) | 0) == (d | 0)) { + x = f[A >> 2] | 0 + if (t) + if (!(Vk(x, c, d) | 0)) break a + else break + if ((b[c >> 0] | 0) == ((x & 255) << 24) >> 24) { + x = A + o = y + q = c + do { + o = (o + -1) | 0 + x = (x + 1) | 0 + if (!o) break a + q = (q + 1) | 0 + } while ((b[x >> 0] | 0) == (b[q >> 0] | 0)) + } + } + while (0) + J = f[J >> 2] | 0 + if (!J) { + G = F + C = 54 + break + } + } + } else { + G = F + C = 54 + } + } else { + G = 0 + C = 54 + } + while (0) + if ((C | 0) == 54) { + oi(g, a, E, i) + C = (a + 12) | 0 + L = $((((f[C >> 2] | 0) + 1) | 0) >>> 0) + M = $(D >>> 0) + N = $(n[(a + 16) >> 2]) + do + if (B | ($(N * M) < L)) { + F = (D << 1) | (((D >>> 0 < 3) | ((((D + -1) & D) | 0) != 0)) & 1) + J = ~~$(W($(L / N))) >>> 0 + ei(a, F >>> 0 < J >>> 0 ? J : F) + F = f[z >> 2] | 0 + J = (F + -1) | 0 + if (!(J & F)) { + O = F + P = J & E + break + } + if (E >>> 0 < F >>> 0) { + O = F + P = E + } else { + O = F + P = (E >>> 0) % (F >>> 0) | 0 + } + } else { + O = D + P = G + } + while (0) + G = f[((f[a >> 2] | 0) + (P << 2)) >> 2] | 0 + if (!G) { + D = (a + 8) | 0 + f[f[g >> 2] >> 2] = f[D >> 2] + f[D >> 2] = f[g >> 2] + f[((f[a >> 2] | 0) + (P << 2)) >> 2] = D + D = f[g >> 2] | 0 + P = f[D >> 2] | 0 + if (!P) Q = g + else { + E = f[(P + 4) >> 2] | 0 + P = (O + -1) | 0 + if (P & O) + if (E >>> 0 < O >>> 0) R = E + else R = (E >>> 0) % (O >>> 0) | 0 + else R = E & P + f[((f[a >> 2] | 0) + (R << 2)) >> 2] = D + Q = g + } + } else { + f[f[g >> 2] >> 2] = f[G >> 2] + f[G >> 2] = f[g >> 2] + Q = g + } + f[C >> 2] = (f[C >> 2] | 0) + 1 + f[Q >> 2] = 0 + } + Q = f[(i + 12) >> 2] | 0 + if (Q | 0) { + if ((f[r >> 2] | 0) != (Q | 0)) f[r >> 2] = Q + Oq(Q) + } + if ((b[v >> 0] | 0) < 0) Oq(f[i >> 2] | 0) + i = f[j >> 2] | 0 + if (!i) { + u = e + return + } + if ((f[k >> 2] | 0) != (i | 0)) f[k >> 2] = i + Oq(i) + u = e + return + } + function bc(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0 + d = u + u = (u + 192) | 0 + e = (d + 152) | 0 + g = (d + 144) | 0 + h = (d + 72) | 0 + i = d + j = (d + 112) | 0 + k = (d + 108) | 0 + l = (d + 104) | 0 + m = (a + 352) | 0 + if ( + b[m >> 0] | 0 + ? ((n = Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0), + (((f[(n + 12) >> 2] | 0) - (f[(n + 8) >> 2] | 0)) | 0) > 0) + : 0 + ) { + n = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 8) | 0 + o = f[f[n >> 2] >> 2] | 0 + f[e >> 2] = c + n = (o + 4) | 0 + p = (o + 8) | 0 + q = f[p >> 2] | 0 + if ((q | 0) == (f[(o + 12) >> 2] | 0)) Ri(n, e) + else { + f[q >> 2] = c + f[p >> 2] = q + 4 + } + q = f[e >> 2] | 0 + r = (o + 16) | 0 + s = (o + 20) | 0 + o = f[s >> 2] | 0 + t = f[r >> 2] | 0 + v = (o - t) >> 2 + w = t + if ((q | 0) < (v | 0)) { + x = w + y = q + } else { + t = (q + 1) | 0 + f[g >> 2] = -1 + z = o + if (t >>> 0 <= v >>> 0) + if ( + t >>> 0 < v >>> 0 + ? ((o = (w + (t << 2)) | 0), (o | 0) != (z | 0)) + : 0 + ) { + f[s >> 2] = z + (~(((z + -4 - o) | 0) >>> 2) << 2) + A = q + B = w + } else { + A = q + B = w + } + else { + Ch(r, (t - v) | 0, g) + A = f[e >> 2] | 0 + B = f[r >> 2] | 0 + } + x = B + y = A + } + f[(x + (y << 2)) >> 2] = (((f[p >> 2] | 0) - (f[n >> 2] | 0)) >> 2) + -1 + C = 1 + u = d + return C | 0 + } + n = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 52) | 0 + p = f[((f[((f[n >> 2] | 0) + 84) >> 2] | 0) + (c << 2)) >> 2] | 0 + n = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 4) | 0 + y = f[((f[((f[n >> 2] | 0) + 8) >> 2] | 0) + (c << 2)) >> 2] | 0 + f[g >> 2] = -1 + n = (a + 172) | 0 + x = f[(a + 176) >> 2] | 0 + A = f[n >> 2] | 0 + B = A + a: do + if ((x | 0) == (A | 0)) D = -1 + else { + r = (((x - A) | 0) / 136) | 0 + v = 0 + while (1) { + if ((f[(B + ((v * 136) | 0)) >> 2] | 0) == (c | 0)) break + t = (v + 1) | 0 + if (t >>> 0 < r >>> 0) v = t + else { + D = -1 + break a + } + } + f[g >> 2] = v + D = v + } + while (0) + b: do + if (!(b[m >> 0] | 0)) { + A = (f[(y + 56) >> 2] | 0) == 0 + do + if (!(((p | 0) == 0) | A)) { + if ((p | 0) == 1 ? b[(B + ((D * 136) | 0) + 28) >> 0] | 0 : 0) + break + x = ln(88) | 0 + r = f[(a + 8) >> 2] | 0 + t = (B + ((D * 136) | 0) + 104) | 0 + f[(x + 4) >> 2] = 0 + f[x >> 2] = 3564 + w = (x + 12) | 0 + f[w >> 2] = 3588 + q = (x + 64) | 0 + f[q >> 2] = 0 + f[(x + 68) >> 2] = 0 + f[(x + 72) >> 2] = 0 + o = (x + 16) | 0 + z = (o + 44) | 0 + do { + f[o >> 2] = 0 + o = (o + 4) | 0 + } while ((o | 0) < (z | 0)) + f[(x + 76) >> 2] = r + f[(x + 80) >> 2] = t + s = (x + 84) | 0 + f[s >> 2] = 0 + f[h >> 2] = 3588 + E = (h + 4) | 0 + F = (E + 4) | 0 + f[F >> 2] = 0 + f[(F + 4) >> 2] = 0 + f[(F + 8) >> 2] = 0 + f[(F + 12) >> 2] = 0 + f[(F + 16) >> 2] = 0 + f[(F + 20) >> 2] = 0 + F = (B + ((D * 136) | 0) + 4) | 0 + G = (i + 4) | 0 + f[G >> 2] = 3588 + H = (i + 56) | 0 + f[H >> 2] = 0 + I = (i + 60) | 0 + f[I >> 2] = 0 + f[(i + 64) >> 2] = 0 + o = (i + 8) | 0 + z = (o + 44) | 0 + do { + f[o >> 2] = 0 + o = (o + 4) | 0 + } while ((o | 0) < (z | 0)) + f[E >> 2] = F + o = f[(B + ((D * 136) | 0) + 68) >> 2] | 0 + z = + (((((f[(o + 4) >> 2] | 0) - (f[o >> 2] | 0)) >> 2) >>> 0) / 3) | + 0 + b[e >> 0] = 0 + qh((h + 8) | 0, z, e) + Va[f[((f[h >> 2] | 0) + 8) >> 2] & 127](h) + Df(j, h) + Df(e, j) + f[i >> 2] = f[(e + 4) >> 2] + z = (i + 4) | 0 + fg(z, e) | 0 + f[e >> 2] = 3588 + o = f[(e + 20) >> 2] | 0 + if (o | 0) Oq(o) + o = f[(e + 8) >> 2] | 0 + if (o | 0) Oq(o) + f[(i + 36) >> 2] = F + f[(i + 40) >> 2] = t + f[(i + 44) >> 2] = r + f[(i + 48) >> 2] = x + f[j >> 2] = 3588 + o = f[(j + 20) >> 2] | 0 + if (o | 0) Oq(o) + o = f[(j + 8) >> 2] | 0 + if (o | 0) Oq(o) + f[s >> 2] = a + 72 + f[(x + 8) >> 2] = f[i >> 2] + fg(w, z) | 0 + z = (x + 44) | 0 + o = (i + 36) | 0 + f[z >> 2] = f[o >> 2] + f[(z + 4) >> 2] = f[(o + 4) >> 2] + f[(z + 8) >> 2] = f[(o + 8) >> 2] + f[(z + 12) >> 2] = f[(o + 12) >> 2] + b[(z + 16) >> 0] = b[(o + 16) >> 0] | 0 + ng(q, f[H >> 2] | 0, f[I >> 2] | 0) + o = x + z = f[H >> 2] | 0 + if (z | 0) { + J = f[I >> 2] | 0 + if ((J | 0) != (z | 0)) + f[I >> 2] = J + (~(((J + -4 - z) | 0) >>> 2) << 2) + Oq(z) + } + f[G >> 2] = 3588 + z = f[(i + 24) >> 2] | 0 + if (z | 0) Oq(z) + z = f[(i + 12) >> 2] | 0 + if (z | 0) Oq(z) + f[h >> 2] = 3588 + z = f[(h + 20) >> 2] | 0 + if (z | 0) Oq(z) + z = f[(h + 8) >> 2] | 0 + if (z | 0) Oq(z) + K = 0 + L = o + M = 54 + break b + } + while (0) + if (!A) { + b[(B + ((D * 136) | 0) + 100) >> 0] = 0 + N = (B + ((D * 136) | 0) + 104) | 0 + M = 26 + } else M = 24 + } else M = 24 + while (0) + if ((M | 0) == 24) { + N = (a + 40) | 0 + M = 26 + } + if ((M | 0) == 26) { + D = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 48) | 0 + do + if ((mi(f[D >> 2] | 0) | 0) == 0 ? (f[(y + 56) >> 2] | 0) == 0 : 0) { + if ( + b[m >> 0] | 0 + ? ((B = f[(a + 8) >> 2] | 0), + (((f[(B + 12) >> 2] | 0) - (f[(B + 8) >> 2] | 0)) | 0) > 4) + : 0 + ) { + M = 31 + break + } + gf(e, a, N) + O = 1 + P = f[e >> 2] | 0 + } else M = 31 + while (0) + if ((M | 0) == 31) { + Vd(e, a, N) + O = 0 + P = f[e >> 2] | 0 + } + if (!P) Q = 0 + else { + K = O + L = P + M = 54 + } + } + if ((M | 0) == 54) { + M = f[g >> 2] | 0 + if ((M | 0) == -1) R = (a + 68) | 0 + else R = ((f[n >> 2] | 0) + ((M * 136) | 0) + 132) | 0 + f[R >> 2] = K + K = ln(76) | 0 + f[k >> 2] = L + rl(K, k, c) + c = K + K = f[k >> 2] | 0 + f[k >> 2] = 0 + if (K | 0) Va[f[((f[K >> 2] | 0) + 4) >> 2] & 127](K) + K = (a + 188) | 0 + k = f[K >> 2] | 0 + if ((k | 0) == (f[(a + 192) >> 2] | 0)) Ri((a + 184) | 0, g) + else { + f[k >> 2] = f[g >> 2] + f[K >> 2] = k + 4 + } + k = Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0 + f[l >> 2] = c + a = (k + 12) | 0 + K = f[a >> 2] | 0 + if (K >>> 0 < (f[(k + 16) >> 2] | 0) >>> 0) { + f[l >> 2] = 0 + f[K >> 2] = c + f[a >> 2] = K + 4 + S = l + } else { + Qg((k + 8) | 0, l) + S = l + } + l = f[S >> 2] | 0 + f[S >> 2] = 0 + if (!l) Q = 1 + else { + Va[f[((f[l >> 2] | 0) + 4) >> 2] & 127](l) + Q = 1 + } + } + C = Q + u = d + return C | 0 + } + function cc(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0 + d = u + u = (u + 192) | 0 + e = (d + 152) | 0 + g = (d + 144) | 0 + h = (d + 72) | 0 + i = d + j = (d + 112) | 0 + k = (d + 108) | 0 + l = (d + 104) | 0 + m = (a + 288) | 0 + if ( + b[m >> 0] | 0 + ? ((n = Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0), + (((f[(n + 12) >> 2] | 0) - (f[(n + 8) >> 2] | 0)) | 0) > 0) + : 0 + ) { + n = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 8) | 0 + o = f[f[n >> 2] >> 2] | 0 + f[e >> 2] = c + n = (o + 4) | 0 + p = (o + 8) | 0 + q = f[p >> 2] | 0 + if ((q | 0) == (f[(o + 12) >> 2] | 0)) Ri(n, e) + else { + f[q >> 2] = c + f[p >> 2] = q + 4 + } + q = f[e >> 2] | 0 + r = (o + 16) | 0 + s = (o + 20) | 0 + o = f[s >> 2] | 0 + t = f[r >> 2] | 0 + v = (o - t) >> 2 + w = t + if ((q | 0) < (v | 0)) { + x = w + y = q + } else { + t = (q + 1) | 0 + f[g >> 2] = -1 + z = o + if (t >>> 0 <= v >>> 0) + if ( + t >>> 0 < v >>> 0 + ? ((o = (w + (t << 2)) | 0), (o | 0) != (z | 0)) + : 0 + ) { + f[s >> 2] = z + (~(((z + -4 - o) | 0) >>> 2) << 2) + A = q + B = w + } else { + A = q + B = w + } + else { + Ch(r, (t - v) | 0, g) + A = f[e >> 2] | 0 + B = f[r >> 2] | 0 + } + x = B + y = A + } + f[(x + (y << 2)) >> 2] = (((f[p >> 2] | 0) - (f[n >> 2] | 0)) >> 2) + -1 + C = 1 + u = d + return C | 0 + } + n = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 52) | 0 + p = f[((f[((f[n >> 2] | 0) + 84) >> 2] | 0) + (c << 2)) >> 2] | 0 + n = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 4) | 0 + y = f[((f[((f[n >> 2] | 0) + 8) >> 2] | 0) + (c << 2)) >> 2] | 0 + f[g >> 2] = -1 + n = (a + 172) | 0 + x = f[(a + 176) >> 2] | 0 + A = f[n >> 2] | 0 + B = A + a: do + if ((x | 0) == (A | 0)) D = -1 + else { + r = (((x - A) | 0) / 136) | 0 + v = 0 + while (1) { + if ((f[(B + ((v * 136) | 0)) >> 2] | 0) == (c | 0)) break + t = (v + 1) | 0 + if (t >>> 0 < r >>> 0) v = t + else { + D = -1 + break a + } + } + f[g >> 2] = v + D = v + } + while (0) + b: do + if (!(b[m >> 0] | 0)) { + A = (f[(y + 56) >> 2] | 0) == 0 + do + if (!(((p | 0) == 0) | A)) { + if ((p | 0) == 1 ? b[(B + ((D * 136) | 0) + 28) >> 0] | 0 : 0) + break + x = ln(88) | 0 + r = f[(a + 8) >> 2] | 0 + t = (B + ((D * 136) | 0) + 104) | 0 + f[(x + 4) >> 2] = 0 + f[x >> 2] = 3564 + w = (x + 12) | 0 + f[w >> 2] = 3588 + q = (x + 64) | 0 + f[q >> 2] = 0 + f[(x + 68) >> 2] = 0 + f[(x + 72) >> 2] = 0 + o = (x + 16) | 0 + z = (o + 44) | 0 + do { + f[o >> 2] = 0 + o = (o + 4) | 0 + } while ((o | 0) < (z | 0)) + f[(x + 76) >> 2] = r + f[(x + 80) >> 2] = t + s = (x + 84) | 0 + f[s >> 2] = 0 + f[h >> 2] = 3588 + E = (h + 4) | 0 + F = (E + 4) | 0 + f[F >> 2] = 0 + f[(F + 4) >> 2] = 0 + f[(F + 8) >> 2] = 0 + f[(F + 12) >> 2] = 0 + f[(F + 16) >> 2] = 0 + f[(F + 20) >> 2] = 0 + F = (B + ((D * 136) | 0) + 4) | 0 + G = (i + 4) | 0 + f[G >> 2] = 3588 + H = (i + 56) | 0 + f[H >> 2] = 0 + I = (i + 60) | 0 + f[I >> 2] = 0 + f[(i + 64) >> 2] = 0 + o = (i + 8) | 0 + z = (o + 44) | 0 + do { + f[o >> 2] = 0 + o = (o + 4) | 0 + } while ((o | 0) < (z | 0)) + f[E >> 2] = F + o = f[(B + ((D * 136) | 0) + 68) >> 2] | 0 + z = + (((((f[(o + 4) >> 2] | 0) - (f[o >> 2] | 0)) >> 2) >>> 0) / 3) | + 0 + b[e >> 0] = 0 + qh((h + 8) | 0, z, e) + Va[f[((f[h >> 2] | 0) + 8) >> 2] & 127](h) + Df(j, h) + Df(e, j) + f[i >> 2] = f[(e + 4) >> 2] + z = (i + 4) | 0 + fg(z, e) | 0 + f[e >> 2] = 3588 + o = f[(e + 20) >> 2] | 0 + if (o | 0) Oq(o) + o = f[(e + 8) >> 2] | 0 + if (o | 0) Oq(o) + f[(i + 36) >> 2] = F + f[(i + 40) >> 2] = t + f[(i + 44) >> 2] = r + f[(i + 48) >> 2] = x + f[j >> 2] = 3588 + o = f[(j + 20) >> 2] | 0 + if (o | 0) Oq(o) + o = f[(j + 8) >> 2] | 0 + if (o | 0) Oq(o) + f[s >> 2] = a + 72 + f[(x + 8) >> 2] = f[i >> 2] + fg(w, z) | 0 + z = (x + 44) | 0 + o = (i + 36) | 0 + f[z >> 2] = f[o >> 2] + f[(z + 4) >> 2] = f[(o + 4) >> 2] + f[(z + 8) >> 2] = f[(o + 8) >> 2] + f[(z + 12) >> 2] = f[(o + 12) >> 2] + b[(z + 16) >> 0] = b[(o + 16) >> 0] | 0 + ng(q, f[H >> 2] | 0, f[I >> 2] | 0) + o = x + z = f[H >> 2] | 0 + if (z | 0) { + J = f[I >> 2] | 0 + if ((J | 0) != (z | 0)) + f[I >> 2] = J + (~(((J + -4 - z) | 0) >>> 2) << 2) + Oq(z) + } + f[G >> 2] = 3588 + z = f[(i + 24) >> 2] | 0 + if (z | 0) Oq(z) + z = f[(i + 12) >> 2] | 0 + if (z | 0) Oq(z) + f[h >> 2] = 3588 + z = f[(h + 20) >> 2] | 0 + if (z | 0) Oq(z) + z = f[(h + 8) >> 2] | 0 + if (z | 0) Oq(z) + K = 0 + L = o + M = 54 + break b + } + while (0) + if (!A) { + b[(B + ((D * 136) | 0) + 100) >> 0] = 0 + N = (B + ((D * 136) | 0) + 104) | 0 + M = 26 + } else M = 24 + } else M = 24 + while (0) + if ((M | 0) == 24) { + N = (a + 40) | 0 + M = 26 + } + if ((M | 0) == 26) { + D = ((Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0) + 48) | 0 + do + if ((mi(f[D >> 2] | 0) | 0) == 0 ? (f[(y + 56) >> 2] | 0) == 0 : 0) { + if ( + b[m >> 0] | 0 + ? ((B = f[(a + 8) >> 2] | 0), + (((f[(B + 12) >> 2] | 0) - (f[(B + 8) >> 2] | 0)) | 0) > 4) + : 0 + ) { + M = 31 + break + } + gf(e, a, N) + O = 1 + P = f[e >> 2] | 0 + } else M = 31 + while (0) + if ((M | 0) == 31) { + Vd(e, a, N) + O = 0 + P = f[e >> 2] | 0 + } + if (!P) Q = 0 + else { + K = O + L = P + M = 54 + } + } + if ((M | 0) == 54) { + M = f[g >> 2] | 0 + if ((M | 0) == -1) R = (a + 68) | 0 + else R = ((f[n >> 2] | 0) + ((M * 136) | 0) + 132) | 0 + f[R >> 2] = K + K = ln(76) | 0 + f[k >> 2] = L + rl(K, k, c) + c = K + K = f[k >> 2] | 0 + f[k >> 2] = 0 + if (K | 0) Va[f[((f[K >> 2] | 0) + 4) >> 2] & 127](K) + K = (a + 188) | 0 + k = f[K >> 2] | 0 + if ((k | 0) == (f[(a + 192) >> 2] | 0)) Ri((a + 184) | 0, g) + else { + f[k >> 2] = f[g >> 2] + f[K >> 2] = k + 4 + } + k = Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0 + f[l >> 2] = c + a = (k + 12) | 0 + K = f[a >> 2] | 0 + if (K >>> 0 < (f[(k + 16) >> 2] | 0) >>> 0) { + f[l >> 2] = 0 + f[K >> 2] = c + f[a >> 2] = K + 4 + S = l + } else { + Qg((k + 8) | 0, l) + S = l + } + l = f[S >> 2] | 0 + f[S >> 2] = 0 + if (!l) Q = 1 + else { + Va[f[((f[l >> 2] | 0) + 4) >> 2] & 127](l) + Q = 1 + } + } + C = Q + u = d + return C | 0 + } + function dc(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = c + g = f[b >> 2] | 0 + if ((g | 0) == -1) { + u = c + return + } + h = ((g >>> 0) / 3) | 0 + i = (a + 12) | 0 + if ( + (f[((f[i >> 2] | 0) + ((h >>> 5) << 2)) >> 2] & (1 << (h & 31))) | + 0 + ) { + u = c + return + } + h = (a + 56) | 0 + j = f[h >> 2] | 0 + k = (a + 60) | 0 + l = f[k >> 2] | 0 + if ((l | 0) == (j | 0)) m = j + else { + n = (l + (~(((l + -4 - j) | 0) >>> 2) << 2)) | 0 + f[k >> 2] = n + m = n + } + n = (a + 64) | 0 + if ((m | 0) == (f[n >> 2] | 0)) Ri(h, b) + else { + f[m >> 2] = g + f[k >> 2] = m + 4 + } + m = f[a >> 2] | 0 + g = f[b >> 2] | 0 + j = (g + 1) | 0 + if ((g | 0) != -1) { + l = ((j >>> 0) % 3 | 0 | 0) == 0 ? (g + -2) | 0 : j + if ((l | 0) == -1) o = -1 + else o = f[((f[m >> 2] | 0) + (l << 2)) >> 2] | 0 + l = ((((g >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + g) | 0 + if ((l | 0) == -1) { + p = o + q = -1 + } else { + p = o + q = f[((f[m >> 2] | 0) + (l << 2)) >> 2] | 0 + } + } else { + p = -1 + q = -1 + } + l = (a + 24) | 0 + m = f[l >> 2] | 0 + o = (m + ((p >>> 5) << 2)) | 0 + g = 1 << (p & 31) + j = f[o >> 2] | 0 + if (!(j & g)) { + f[o >> 2] = j | g + g = f[b >> 2] | 0 + j = (g + 1) | 0 + if ((g | 0) == -1) r = -1 + else r = ((j >>> 0) % 3 | 0 | 0) == 0 ? (g + -2) | 0 : j + f[e >> 2] = r + j = + f[ + ((f[((f[(a + 44) >> 2] | 0) + 96) >> 2] | 0) + + (((((r >>> 0) / 3) | 0) * 12) | 0) + + (((r >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + r = f[(a + 48) >> 2] | 0 + f[d >> 2] = j + g = f[(r + 4) >> 2] | 0 + r = (g + 4) | 0 + o = f[r >> 2] | 0 + if ((o | 0) == (f[(g + 8) >> 2] | 0)) Ri(g, d) + else { + f[o >> 2] = j + f[r >> 2] = o + 4 + } + o = (a + 40) | 0 + r = f[o >> 2] | 0 + j = (r + 4) | 0 + g = f[j >> 2] | 0 + if ((g | 0) == (f[(r + 8) >> 2] | 0)) { + Ri(r, e) + s = f[o >> 2] | 0 + } else { + f[g >> 2] = f[e >> 2] + f[j >> 2] = g + 4 + s = r + } + r = (s + 24) | 0 + f[((f[(s + 12) >> 2] | 0) + (p << 2)) >> 2] = f[r >> 2] + f[r >> 2] = (f[r >> 2] | 0) + 1 + t = f[l >> 2] | 0 + } else t = m + m = (t + ((q >>> 5) << 2)) | 0 + t = 1 << (q & 31) + r = f[m >> 2] | 0 + if (!(r & t)) { + f[m >> 2] = r | t + t = f[b >> 2] | 0 + do + if ((t | 0) != -1) + if (!((t >>> 0) % 3 | 0)) { + v = (t + 2) | 0 + break + } else { + v = (t + -1) | 0 + break + } + else v = -1 + while (0) + f[e >> 2] = v + t = + f[ + ((f[((f[(a + 44) >> 2] | 0) + 96) >> 2] | 0) + + (((((v >>> 0) / 3) | 0) * 12) | 0) + + (((v >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + v = f[(a + 48) >> 2] | 0 + f[d >> 2] = t + r = f[(v + 4) >> 2] | 0 + v = (r + 4) | 0 + m = f[v >> 2] | 0 + if ((m | 0) == (f[(r + 8) >> 2] | 0)) Ri(r, d) + else { + f[m >> 2] = t + f[v >> 2] = m + 4 + } + m = (a + 40) | 0 + v = f[m >> 2] | 0 + t = (v + 4) | 0 + r = f[t >> 2] | 0 + if ((r | 0) == (f[(v + 8) >> 2] | 0)) { + Ri(v, e) + w = f[m >> 2] | 0 + } else { + f[r >> 2] = f[e >> 2] + f[t >> 2] = r + 4 + w = v + } + v = (w + 24) | 0 + f[((f[(w + 12) >> 2] | 0) + (q << 2)) >> 2] = f[v >> 2] + f[v >> 2] = (f[v >> 2] | 0) + 1 + } + v = f[h >> 2] | 0 + q = f[k >> 2] | 0 + if ((v | 0) == (q | 0)) { + u = c + return + } + w = (a + 44) | 0 + r = (a + 48) | 0 + t = (a + 40) | 0 + m = q + q = v + while (1) { + v = f[(m + -4) >> 2] | 0 + f[b >> 2] = v + p = ((v >>> 0) / 3) | 0 + if ( + (v | 0) != -1 + ? ((v = f[i >> 2] | 0), + ((f[(v + ((p >>> 5) << 2)) >> 2] & (1 << (p & 31))) | 0) == 0) + : 0 + ) { + s = p + p = v + a: while (1) { + v = (p + ((s >>> 5) << 2)) | 0 + f[v >> 2] = f[v >> 2] | (1 << (s & 31)) + v = f[b >> 2] | 0 + if ((v | 0) == -1) x = -1 + else x = f[((f[f[a >> 2] >> 2] | 0) + (v << 2)) >> 2] | 0 + g = ((f[l >> 2] | 0) + ((x >>> 5) << 2)) | 0 + j = 1 << (x & 31) + o = f[g >> 2] | 0 + do + if (!(j & o)) { + y = f[a >> 2] | 0 + z = f[((f[(y + 24) >> 2] | 0) + (x << 2)) >> 2] | 0 + A = (z + 1) | 0 + if ( + ( + (z | 0) != -1 + ? ((B = ((A >>> 0) % 3 | 0 | 0) == 0 ? (z + -2) | 0 : A), + (B | 0) != -1) + : 0 + ) + ? ((A = f[((f[(y + 12) >> 2] | 0) + (B << 2)) >> 2] | 0), + (B = (A + 1) | 0), + (A | 0) != -1) + : 0 + ) + C = + ((((B >>> 0) % 3 | 0 | 0) == 0 ? (A + -2) | 0 : B) | 0) == + -1 + else C = 1 + f[g >> 2] = o | j + B = f[b >> 2] | 0 + f[e >> 2] = B + A = + f[ + ((f[((f[w >> 2] | 0) + 96) >> 2] | 0) + + (((((B >>> 0) / 3) | 0) * 12) | 0) + + (((B >>> 0) % 3 | 0) << 2)) >> + 2 + ] | 0 + B = f[r >> 2] | 0 + f[d >> 2] = A + y = f[(B + 4) >> 2] | 0 + B = (y + 4) | 0 + z = f[B >> 2] | 0 + if ((z | 0) == (f[(y + 8) >> 2] | 0)) Ri(y, d) + else { + f[z >> 2] = A + f[B >> 2] = z + 4 + } + z = f[t >> 2] | 0 + B = (z + 4) | 0 + A = f[B >> 2] | 0 + if ((A | 0) == (f[(z + 8) >> 2] | 0)) { + Ri(z, e) + D = f[t >> 2] | 0 + } else { + f[A >> 2] = f[e >> 2] + f[B >> 2] = A + 4 + D = z + } + z = (D + 24) | 0 + f[((f[(D + 12) >> 2] | 0) + (x << 2)) >> 2] = f[z >> 2] + f[z >> 2] = (f[z >> 2] | 0) + 1 + if (C) { + E = f[b >> 2] | 0 + F = 60 + break + } + z = f[a >> 2] | 0 + A = f[b >> 2] | 0 + do + if ((A | 0) == -1) G = -1 + else { + B = (A + 1) | 0 + y = ((B >>> 0) % 3 | 0 | 0) == 0 ? (A + -2) | 0 : B + if ((y | 0) == -1) { + G = -1 + break + } + G = f[((f[(z + 12) >> 2] | 0) + (y << 2)) >> 2] | 0 + } + while (0) + f[b >> 2] = G + H = ((G >>> 0) / 3) | 0 + } else { + E = v + F = 60 + } + while (0) + if ((F | 0) == 60) { + F = 0 + v = f[a >> 2] | 0 + if ((E | 0) == -1) { + F = 61 + break + } + j = (E + 1) | 0 + o = ((j >>> 0) % 3 | 0 | 0) == 0 ? (E + -2) | 0 : j + if ((o | 0) == -1) I = -1 + else I = f[((f[(v + 12) >> 2] | 0) + (o << 2)) >> 2] | 0 + f[d >> 2] = I + o = ((((E >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + E) | 0 + if ((o | 0) == -1) J = -1 + else J = f[((f[(v + 12) >> 2] | 0) + (o << 2)) >> 2] | 0 + o = (I | 0) == -1 + v = ((I >>> 0) / 3) | 0 + j = o ? -1 : v + g = (J | 0) == -1 + z = ((J >>> 0) / 3) | 0 + A = g ? -1 : z + do + if (!o) { + y = f[i >> 2] | 0 + if ((f[(y + ((j >>> 5) << 2)) >> 2] & (1 << (j & 31))) | 0) { + F = 68 + break + } + if (g) { + K = I + L = v + break + } + if (!(f[(y + ((A >>> 5) << 2)) >> 2] & (1 << (A & 31)))) { + F = 73 + break a + } else { + K = I + L = v + } + } else F = 68 + while (0) + if ((F | 0) == 68) { + F = 0 + if (g) { + F = 70 + break + } + if ( + !( + f[((f[i >> 2] | 0) + ((A >>> 5) << 2)) >> 2] & + (1 << (A & 31)) + ) + ) { + K = J + L = z + } else { + F = 70 + break + } + } + f[b >> 2] = K + H = L + } + s = H + p = f[i >> 2] | 0 + } + do + if ((F | 0) == 61) { + F = 0 + f[d >> 2] = -1 + F = 70 + } else if ((F | 0) == 73) { + F = 0 + p = f[k >> 2] | 0 + f[(p + -4) >> 2] = J + if ((p | 0) == (f[n >> 2] | 0)) { + Ri(h, d) + M = f[k >> 2] | 0 + break + } else { + f[p >> 2] = f[d >> 2] + s = (p + 4) | 0 + f[k >> 2] = s + M = s + break + } + } + while (0) + if ((F | 0) == 70) { + F = 0 + s = ((f[k >> 2] | 0) + -4) | 0 + f[k >> 2] = s + M = s + } + N = f[h >> 2] | 0 + O = M + } else { + s = (m + -4) | 0 + f[k >> 2] = s + N = q + O = s + } + if ((N | 0) == (O | 0)) break + else { + m = O + q = N + } + } + u = c + return + } + function ec(a, c, e) { + a = a | 0 + c = c | 0 + e = e | 0 + var g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = Oa, + fa = Oa, + ga = Oa, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0 + g = u + u = (u + 48) | 0 + i = (g + 12) | 0 + j = (g + 32) | 0 + k = g + l = (i + 16) | 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + n[l >> 2] = $(1.0) + m = (a + 80) | 0 + o = f[m >> 2] | 0 + f[k >> 2] = 0 + p = (k + 4) | 0 + f[p >> 2] = 0 + f[(k + 8) >> 2] = 0 + if (o) { + if (o >>> 0 > 1073741823) aq(k) + q = o << 2 + r = ln(q) | 0 + f[k >> 2] = r + s = (r + (o << 2)) | 0 + f[(k + 8) >> 2] = s + sj(r | 0, 0, q | 0) | 0 + f[p >> 2] = s + s = (c + 48) | 0 + q = (c + 40) | 0 + o = (i + 4) | 0 + t = (i + 12) | 0 + v = (i + 8) | 0 + w = (a + 40) | 0 + x = (a + 64) | 0 + y = f[e >> 2] | 0 + e = 0 + z = r + A = 0 + B = 0 + C = r + D = r + E = r + while (1) { + r = s + F = f[r >> 2] | 0 + G = f[(r + 4) >> 2] | 0 + r = q + H = un(f[r >> 2] | 0, f[(r + 4) >> 2] | 0, (y + A) | 0, 0) | 0 + r = Vn(H | 0, I | 0, F | 0, G | 0) | 0 + G = ((f[f[c >> 2] >> 2] | 0) + r) | 0 + r = h[G >> 0] | (h[(G + 1) >> 0] << 8) + d[j >> 1] = r + G = (r ^ 318) & 65535 + a: do + if (e) { + F = (e + -1) | 0 + H = ((F & e) | 0) == 0 + if (!H) + if (e >>> 0 > G >>> 0) J = G + else J = (G >>> 0) % (e >>> 0) | 0 + else J = F & G + K = f[i >> 2] | 0 + L = f[(K + (J << 2)) >> 2] | 0 + b: do + if (L | 0 ? ((M = f[L >> 2] | 0), M | 0) : 0) { + c: do + if (H) { + N = M + while (1) { + O = f[(N + 4) >> 2] | 0 + P = (O | 0) == (G | 0) + if (!(P | (((O & F) | 0) == (J | 0)))) break b + if (P ? (d[(N + 8) >> 1] | 0) == (r << 16) >> 16 : 0) { + Q = N + break c + } + N = f[N >> 2] | 0 + if (!N) break b + } + } else { + N = M + while (1) { + P = f[(N + 4) >> 2] | 0 + if ((P | 0) == (G | 0)) { + if ((d[(N + 8) >> 1] | 0) == (r << 16) >> 16) { + Q = N + break c + } + } else { + if (P >>> 0 < e >>> 0) R = P + else R = (P >>> 0) % (e >>> 0) | 0 + if ((R | 0) != (J | 0)) break b + } + N = f[N >> 2] | 0 + if (!N) break b + } + } + while (0) + f[(E + (A << 2)) >> 2] = f[(Q + 12) >> 2] + S = z + T = B + U = D + V = C + X = E + break a + } + while (0) + if (!H) + if (e >>> 0 > G >>> 0) Y = G + else Y = (G >>> 0) % (e >>> 0) | 0 + else Y = F & G + L = f[(K + (Y << 2)) >> 2] | 0 + if (!L) { + Z = Y + _ = e + aa = 0 + ba = 40 + } else { + if (H) { + M = L + while (1) { + M = f[M >> 2] | 0 + if (!M) { + Z = Y + _ = e + aa = 0 + ba = 40 + break a + } + N = f[(M + 4) >> 2] | 0 + if (!(((N | 0) == (G | 0)) | (((N & F) | 0) == (Y | 0)))) { + Z = Y + _ = e + aa = 0 + ba = 40 + break a + } + if ((d[(M + 8) >> 1] | 0) == (r << 16) >> 16) { + ba = 55 + break a + } + } + } else ca = L + while (1) { + ca = f[ca >> 2] | 0 + if (!ca) { + Z = Y + _ = e + aa = 0 + ba = 40 + break a + } + M = f[(ca + 4) >> 2] | 0 + if ((M | 0) != (G | 0)) { + if (M >>> 0 < e >>> 0) da = M + else da = (M >>> 0) % (e >>> 0) | 0 + if ((da | 0) != (Y | 0)) { + Z = Y + _ = e + aa = 0 + ba = 40 + break a + } + } + if ((d[(ca + 8) >> 1] | 0) == (r << 16) >> 16) { + ba = 55 + break + } + } + } + } else { + Z = 0 + _ = 0 + aa = 1 + ba = 40 + } + while (0) + if ((ba | 0) == 40) { + ba = 0 + L = ln(16) | 0 + d[(L + 8) >> 1] = r + f[(L + 12) >> 2] = B + f[(L + 4) >> 2] = G + f[L >> 2] = 0 + ea = $((((f[t >> 2] | 0) + 1) | 0) >>> 0) + fa = $(_ >>> 0) + ga = $(n[l >> 2]) + do + if (aa | ($(ga * fa) < ea)) { + M = + (_ << 1) | (((_ >>> 0 < 3) | ((((_ + -1) & _) | 0) != 0)) & 1) + F = ~~$(W($(ea / ga))) >>> 0 + Vh(i, M >>> 0 < F >>> 0 ? F : M) + M = f[o >> 2] | 0 + F = (M + -1) | 0 + if (!(F & M)) { + ha = M + ia = F & G + break + } + if (M >>> 0 > G >>> 0) { + ha = M + ia = G + } else { + ha = M + ia = (G >>> 0) % (M >>> 0) | 0 + } + } else { + ha = _ + ia = Z + } + while (0) + G = ((f[i >> 2] | 0) + (ia << 2)) | 0 + r = f[G >> 2] | 0 + if (!r) { + f[L >> 2] = f[v >> 2] + f[v >> 2] = L + f[G >> 2] = v + G = f[L >> 2] | 0 + if (G | 0) { + M = f[(G + 4) >> 2] | 0 + G = (ha + -1) | 0 + if (G & ha) + if (M >>> 0 < ha >>> 0) ja = M + else ja = (M >>> 0) % (ha >>> 0) | 0 + else ja = M & G + ka = ((f[i >> 2] | 0) + (ja << 2)) | 0 + ba = 53 + } + } else { + f[L >> 2] = f[r >> 2] + ka = r + ba = 53 + } + if ((ba | 0) == 53) { + ba = 0 + f[ka >> 2] = L + } + f[t >> 2] = (f[t >> 2] | 0) + 1 + ba = 55 + } + if ((ba | 0) == 55) { + ba = 0 + r = w + G = f[r >> 2] | 0 + M = un(G | 0, f[(r + 4) >> 2] | 0, B | 0, 0) | 0 + kh(((f[f[x >> 2] >> 2] | 0) + M) | 0, j | 0, G | 0) | 0 + G = f[k >> 2] | 0 + f[(G + (A << 2)) >> 2] = B + S = G + T = (B + 1) | 0 + U = G + V = G + X = G + } + G = (A + 1) | 0 + la = f[m >> 2] | 0 + if (G >>> 0 >= la >>> 0) break + e = f[o >> 2] | 0 + z = S + A = G + B = T + C = V + D = U + E = X + } + if ((T | 0) == (la | 0)) ma = V + else { + V = (a + 84) | 0 + if (!(b[V >> 0] | 0)) { + X = f[(a + 72) >> 2] | 0 + E = f[(a + 68) >> 2] | 0 + D = E + if ((X | 0) == (E | 0)) na = S + else { + C = (X - E) >> 2 + E = 0 + do { + X = (D + (E << 2)) | 0 + f[X >> 2] = f[(U + (f[X >> 2] << 2)) >> 2] + E = (E + 1) | 0 + } while (E >>> 0 < C >>> 0) + na = S + } + } else { + b[V >> 0] = 0 + V = (a + 68) | 0 + S = (a + 72) | 0 + C = f[S >> 2] | 0 + E = f[V >> 2] | 0 + U = (C - E) >> 2 + D = E + E = C + if (la >>> 0 <= U >>> 0) + if ( + la >>> 0 < U >>> 0 + ? ((C = (D + (la << 2)) | 0), (C | 0) != (E | 0)) + : 0 + ) { + f[S >> 2] = E + (~(((E + -4 - C) | 0) >>> 2) << 2) + oa = la + } else oa = la + else { + Ch(V, (la - U) | 0, 1220) + oa = f[m >> 2] | 0 + } + U = f[k >> 2] | 0 + if (!oa) na = U + else { + k = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(k + (a << 2)) >> 2] = f[(U + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < oa >>> 0) + na = U + } + } + f[m >> 2] = T + ma = na + } + if (!ma) pa = T + else { + na = f[p >> 2] | 0 + if ((na | 0) != (ma | 0)) + f[p >> 2] = na + (~(((na + -4 - ma) | 0) >>> 2) << 2) + Oq(ma) + pa = T + } + } else pa = 0 + T = f[(i + 8) >> 2] | 0 + if (T | 0) { + ma = T + do { + T = ma + ma = f[ma >> 2] | 0 + Oq(T) + } while ((ma | 0) != 0) + } + ma = f[i >> 2] | 0 + f[i >> 2] = 0 + if (!ma) { + u = g + return pa | 0 + } + Oq(ma) + u = g + return pa | 0 + } + function fc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = Oa, + K = Oa, + L = Oa, + M = 0, + N = 0, + O = 0, + P = 0 + e = u + u = (u + 64) | 0 + g = (e + 40) | 0 + i = (e + 16) | 0 + j = e + k = Id(a, c) | 0 + if (k | 0) { + f[i >> 2] = k + f[g >> 2] = f[i >> 2] + lf(a, g) | 0 + } + f[j >> 2] = 0 + k = (j + 4) | 0 + f[k >> 2] = 0 + f[(j + 8) >> 2] = 0 + Fi(j, 4) + l = f[j >> 2] | 0 + m = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + b[l >> 0] = m + b[(l + 1) >> 0] = m >> 8 + b[(l + 2) >> 0] = m >> 16 + b[(l + 3) >> 0] = m >> 24 + pj(i, c) + c = (i + 12) | 0 + f[c >> 2] = 0 + m = (i + 16) | 0 + f[m >> 2] = 0 + f[(i + 20) >> 2] = 0 + l = f[k >> 2] | 0 + d = f[j >> 2] | 0 + o = (l - d) | 0 + if (!o) { + p = d + q = l + r = 0 + } else { + Fi(c, o) + p = f[j >> 2] | 0 + q = f[k >> 2] | 0 + r = f[c >> 2] | 0 + } + kh(r | 0, p | 0, (q - p) | 0) | 0 + p = (i + 11) | 0 + q = b[p >> 0] | 0 + r = (q << 24) >> 24 < 0 + c = r ? f[i >> 2] | 0 : i + o = r ? f[(i + 4) >> 2] | 0 : q & 255 + if (o >>> 0 > 3) { + q = c + r = o + l = o + while (1) { + d = + X( + h[q >> 0] | + (h[(q + 1) >> 0] << 8) | + (h[(q + 2) >> 0] << 16) | + (h[(q + 3) >> 0] << 24), + 1540483477, + ) | 0 + r = (X((d >>> 24) ^ d, 1540483477) | 0) ^ (X(r, 1540483477) | 0) + l = (l + -4) | 0 + if (l >>> 0 <= 3) break + else q = (q + 4) | 0 + } + q = (o + -4) | 0 + l = q & -4 + s = (q - l) | 0 + t = (c + (l + 4)) | 0 + v = r + } else { + s = o + t = c + v = o + } + switch (s | 0) { + case 3: { + w = (h[(t + 2) >> 0] << 16) ^ v + x = 10 + break + } + case 2: { + w = v + x = 10 + break + } + case 1: { + y = v + x = 11 + break + } + default: + z = v + } + if ((x | 0) == 10) { + y = (h[(t + 1) >> 0] << 8) ^ w + x = 11 + } + if ((x | 0) == 11) z = X(y ^ h[t >> 0], 1540483477) | 0 + t = X((z >>> 13) ^ z, 1540483477) | 0 + z = (t >>> 15) ^ t + t = (a + 4) | 0 + y = f[t >> 2] | 0 + w = (y | 0) == 0 + a: do + if (!w) { + v = (y + -1) | 0 + s = ((v & y) | 0) == 0 + if (!s) + if (z >>> 0 < y >>> 0) A = z + else A = (z >>> 0) % (y >>> 0) | 0 + else A = z & v + r = f[((f[a >> 2] | 0) + (A << 2)) >> 2] | 0 + if ((r | 0) != 0 ? ((l = f[r >> 2] | 0), (l | 0) != 0) : 0) { + r = (o | 0) == 0 + if (s) { + if (r) { + s = l + while (1) { + q = f[(s + 4) >> 2] | 0 + if (!(((q | 0) == (z | 0)) | (((q & v) | 0) == (A | 0)))) { + B = A + x = 52 + break a + } + q = b[(s + 8 + 11) >> 0] | 0 + if ( + !( + ((q << 24) >> 24 < 0 ? f[(s + 12) >> 2] | 0 : q & 255) | 0 + ) + ) + break a + s = f[s >> 2] | 0 + if (!s) { + B = A + x = 52 + break a + } + } + } else C = l + while (1) { + s = f[(C + 4) >> 2] | 0 + if (!(((s | 0) == (z | 0)) | (((s & v) | 0) == (A | 0)))) { + B = A + x = 52 + break a + } + s = (C + 8) | 0 + q = b[(s + 11) >> 0] | 0 + d = (q << 24) >> 24 < 0 + D = q & 255 + do + if (((d ? f[(C + 12) >> 2] | 0 : D) | 0) == (o | 0)) { + q = f[s >> 2] | 0 + if (d) + if (!(Vk(q, c, o) | 0)) break a + else break + if ((b[c >> 0] | 0) == ((q & 255) << 24) >> 24) { + q = s + E = D + F = c + do { + E = (E + -1) | 0 + q = (q + 1) | 0 + if (!E) break a + F = (F + 1) | 0 + } while ((b[q >> 0] | 0) == (b[F >> 0] | 0)) + } + } + while (0) + C = f[C >> 2] | 0 + if (!C) { + B = A + x = 52 + break a + } + } + } + if (r) { + v = l + while (1) { + D = f[(v + 4) >> 2] | 0 + if ((D | 0) != (z | 0)) { + if (D >>> 0 < y >>> 0) G = D + else G = (D >>> 0) % (y >>> 0) | 0 + if ((G | 0) != (A | 0)) { + B = A + x = 52 + break a + } + } + D = b[(v + 8 + 11) >> 0] | 0 + if ( + !(((D << 24) >> 24 < 0 ? f[(v + 12) >> 2] | 0 : D & 255) | 0) + ) + break a + v = f[v >> 2] | 0 + if (!v) { + B = A + x = 52 + break a + } + } + } else H = l + while (1) { + v = f[(H + 4) >> 2] | 0 + if ((v | 0) != (z | 0)) { + if (v >>> 0 < y >>> 0) I = v + else I = (v >>> 0) % (y >>> 0) | 0 + if ((I | 0) != (A | 0)) { + B = A + x = 52 + break a + } + } + v = (H + 8) | 0 + r = b[(v + 11) >> 0] | 0 + D = (r << 24) >> 24 < 0 + s = r & 255 + do + if (((D ? f[(H + 12) >> 2] | 0 : s) | 0) == (o | 0)) { + r = f[v >> 2] | 0 + if (D) + if (!(Vk(r, c, o) | 0)) break a + else break + if ((b[c >> 0] | 0) == ((r & 255) << 24) >> 24) { + r = v + d = s + F = c + do { + d = (d + -1) | 0 + r = (r + 1) | 0 + if (!d) break a + F = (F + 1) | 0 + } while ((b[r >> 0] | 0) == (b[F >> 0] | 0)) + } + } + while (0) + H = f[H >> 2] | 0 + if (!H) { + B = A + x = 52 + break + } + } + } else { + B = A + x = 52 + } + } else { + B = 0 + x = 52 + } + while (0) + if ((x | 0) == 52) { + oi(g, a, z, i) + x = (a + 12) | 0 + J = $((((f[x >> 2] | 0) + 1) | 0) >>> 0) + K = $(y >>> 0) + L = $(n[(a + 16) >> 2]) + do + if (w | ($(L * K) < J)) { + A = (y << 1) | (((y >>> 0 < 3) | ((((y + -1) & y) | 0) != 0)) & 1) + H = ~~$(W($(J / L))) >>> 0 + ei(a, A >>> 0 < H >>> 0 ? H : A) + A = f[t >> 2] | 0 + H = (A + -1) | 0 + if (!(H & A)) { + M = A + N = H & z + break + } + if (z >>> 0 < A >>> 0) { + M = A + N = z + } else { + M = A + N = (z >>> 0) % (A >>> 0) | 0 + } + } else { + M = y + N = B + } + while (0) + B = f[((f[a >> 2] | 0) + (N << 2)) >> 2] | 0 + if (!B) { + y = (a + 8) | 0 + f[f[g >> 2] >> 2] = f[y >> 2] + f[y >> 2] = f[g >> 2] + f[((f[a >> 2] | 0) + (N << 2)) >> 2] = y + y = f[g >> 2] | 0 + N = f[y >> 2] | 0 + if (!N) O = g + else { + z = f[(N + 4) >> 2] | 0 + N = (M + -1) | 0 + if (N & M) + if (z >>> 0 < M >>> 0) P = z + else P = (z >>> 0) % (M >>> 0) | 0 + else P = z & N + f[((f[a >> 2] | 0) + (P << 2)) >> 2] = y + O = g + } + } else { + f[f[g >> 2] >> 2] = f[B >> 2] + f[B >> 2] = f[g >> 2] + O = g + } + f[x >> 2] = (f[x >> 2] | 0) + 1 + f[O >> 2] = 0 + } + O = f[(i + 12) >> 2] | 0 + if (O | 0) { + if ((f[m >> 2] | 0) != (O | 0)) f[m >> 2] = O + Oq(O) + } + if ((b[p >> 0] | 0) < 0) Oq(f[i >> 2] | 0) + i = f[j >> 2] | 0 + if (!i) { + u = e + return + } + if ((f[k >> 2] | 0) != (i | 0)) f[k >> 2] = i + Oq(i) + u = e + return + } + function gc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = Oa, + da = Oa, + ea = Oa, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0 + e = u + u = (u + 48) | 0 + g = (e + 12) | 0 + h = (e + 32) | 0 + i = e + j = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[j >> 2] = $(1.0) + k = (a + 80) | 0 + l = f[k >> 2] | 0 + f[i >> 2] = 0 + m = (i + 4) | 0 + f[m >> 2] = 0 + f[(i + 8) >> 2] = 0 + if (l) { + if (l >>> 0 > 1073741823) aq(i) + o = l << 2 + p = ln(o) | 0 + f[i >> 2] = p + q = (p + (l << 2)) | 0 + f[(i + 8) >> 2] = q + sj(p | 0, 0, o | 0) | 0 + f[m >> 2] = q + q = (c + 48) | 0 + o = (c + 40) | 0 + l = (g + 4) | 0 + r = (g + 12) | 0 + s = (g + 8) | 0 + t = (a + 40) | 0 + v = (a + 64) | 0 + w = f[d >> 2] | 0 + d = 0 + x = p + y = 0 + z = 0 + A = p + B = p + C = p + while (1) { + p = q + D = f[p >> 2] | 0 + E = f[(p + 4) >> 2] | 0 + p = o + F = un(f[p >> 2] | 0, f[(p + 4) >> 2] | 0, (w + y) | 0, 0) | 0 + p = Vn(F | 0, I | 0, D | 0, E | 0) | 0 + E = b[((f[f[c >> 2] >> 2] | 0) + p) >> 0] | 0 + b[h >> 0] = E + p = (E & 255) ^ 318 + a: do + if (d) { + D = (d + -1) | 0 + F = ((D & d) | 0) == 0 + if (!F) + if (p >>> 0 < d >>> 0) G = p + else G = (p >>> 0) % (d >>> 0) | 0 + else G = D & p + H = f[g >> 2] | 0 + J = f[(H + (G << 2)) >> 2] | 0 + b: do + if (J | 0 ? ((K = f[J >> 2] | 0), K | 0) : 0) { + c: do + if (F) { + L = K + while (1) { + M = f[(L + 4) >> 2] | 0 + N = (M | 0) == (p | 0) + if (!(N | (((M & D) | 0) == (G | 0)))) break b + if (N ? (b[(L + 8) >> 0] | 0) == (E << 24) >> 24 : 0) { + O = L + break c + } + L = f[L >> 2] | 0 + if (!L) break b + } + } else { + L = K + while (1) { + N = f[(L + 4) >> 2] | 0 + if ((N | 0) == (p | 0)) { + if ((b[(L + 8) >> 0] | 0) == (E << 24) >> 24) { + O = L + break c + } + } else { + if (N >>> 0 < d >>> 0) P = N + else P = (N >>> 0) % (d >>> 0) | 0 + if ((P | 0) != (G | 0)) break b + } + L = f[L >> 2] | 0 + if (!L) break b + } + } + while (0) + f[(C + (y << 2)) >> 2] = f[(O + 12) >> 2] + Q = x + R = z + S = B + T = A + U = C + break a + } + while (0) + if (!F) + if (p >>> 0 < d >>> 0) V = p + else V = (p >>> 0) % (d >>> 0) | 0 + else V = D & p + J = f[(H + (V << 2)) >> 2] | 0 + if (!J) { + X = V + Y = d + Z = 0 + _ = 40 + } else { + if (F) { + K = J + while (1) { + K = f[K >> 2] | 0 + if (!K) { + X = V + Y = d + Z = 0 + _ = 40 + break a + } + L = f[(K + 4) >> 2] | 0 + if (!(((L | 0) == (p | 0)) | (((L & D) | 0) == (V | 0)))) { + X = V + Y = d + Z = 0 + _ = 40 + break a + } + if ((b[(K + 8) >> 0] | 0) == (E << 24) >> 24) { + _ = 55 + break a + } + } + } else aa = J + while (1) { + aa = f[aa >> 2] | 0 + if (!aa) { + X = V + Y = d + Z = 0 + _ = 40 + break a + } + K = f[(aa + 4) >> 2] | 0 + if ((K | 0) != (p | 0)) { + if (K >>> 0 < d >>> 0) ba = K + else ba = (K >>> 0) % (d >>> 0) | 0 + if ((ba | 0) != (V | 0)) { + X = V + Y = d + Z = 0 + _ = 40 + break a + } + } + if ((b[(aa + 8) >> 0] | 0) == (E << 24) >> 24) { + _ = 55 + break + } + } + } + } else { + X = 0 + Y = 0 + Z = 1 + _ = 40 + } + while (0) + if ((_ | 0) == 40) { + _ = 0 + J = ln(16) | 0 + b[(J + 8) >> 0] = E + f[(J + 12) >> 2] = z + f[(J + 4) >> 2] = p + f[J >> 2] = 0 + ca = $((((f[r >> 2] | 0) + 1) | 0) >>> 0) + da = $(Y >>> 0) + ea = $(n[j >> 2]) + do + if (Z | ($(ea * da) < ca)) { + K = + (Y << 1) | (((Y >>> 0 < 3) | ((((Y + -1) & Y) | 0) != 0)) & 1) + D = ~~$(W($(ca / ea))) >>> 0 + ai(g, K >>> 0 < D >>> 0 ? D : K) + K = f[l >> 2] | 0 + D = (K + -1) | 0 + if (!(D & K)) { + fa = K + ga = D & p + break + } + if (p >>> 0 < K >>> 0) { + fa = K + ga = p + } else { + fa = K + ga = (p >>> 0) % (K >>> 0) | 0 + } + } else { + fa = Y + ga = X + } + while (0) + p = ((f[g >> 2] | 0) + (ga << 2)) | 0 + E = f[p >> 2] | 0 + if (!E) { + f[J >> 2] = f[s >> 2] + f[s >> 2] = J + f[p >> 2] = s + p = f[J >> 2] | 0 + if (p | 0) { + K = f[(p + 4) >> 2] | 0 + p = (fa + -1) | 0 + if (p & fa) + if (K >>> 0 < fa >>> 0) ha = K + else ha = (K >>> 0) % (fa >>> 0) | 0 + else ha = K & p + ia = ((f[g >> 2] | 0) + (ha << 2)) | 0 + _ = 53 + } + } else { + f[J >> 2] = f[E >> 2] + ia = E + _ = 53 + } + if ((_ | 0) == 53) { + _ = 0 + f[ia >> 2] = J + } + f[r >> 2] = (f[r >> 2] | 0) + 1 + _ = 55 + } + if ((_ | 0) == 55) { + _ = 0 + E = t + p = f[E >> 2] | 0 + K = un(p | 0, f[(E + 4) >> 2] | 0, z | 0, 0) | 0 + kh(((f[f[v >> 2] >> 2] | 0) + K) | 0, h | 0, p | 0) | 0 + p = f[i >> 2] | 0 + f[(p + (y << 2)) >> 2] = z + Q = p + R = (z + 1) | 0 + S = p + T = p + U = p + } + p = (y + 1) | 0 + ja = f[k >> 2] | 0 + if (p >>> 0 >= ja >>> 0) break + d = f[l >> 2] | 0 + x = Q + y = p + z = R + A = T + B = S + C = U + } + if ((R | 0) == (ja | 0)) ka = T + else { + T = (a + 84) | 0 + if (!(b[T >> 0] | 0)) { + U = f[(a + 72) >> 2] | 0 + C = f[(a + 68) >> 2] | 0 + B = C + if ((U | 0) == (C | 0)) la = Q + else { + A = (U - C) >> 2 + C = 0 + do { + U = (B + (C << 2)) | 0 + f[U >> 2] = f[(S + (f[U >> 2] << 2)) >> 2] + C = (C + 1) | 0 + } while (C >>> 0 < A >>> 0) + la = Q + } + } else { + b[T >> 0] = 0 + T = (a + 68) | 0 + Q = (a + 72) | 0 + A = f[Q >> 2] | 0 + C = f[T >> 2] | 0 + S = (A - C) >> 2 + B = C + C = A + if (ja >>> 0 <= S >>> 0) + if ( + ja >>> 0 < S >>> 0 + ? ((A = (B + (ja << 2)) | 0), (A | 0) != (C | 0)) + : 0 + ) { + f[Q >> 2] = C + (~(((C + -4 - A) | 0) >>> 2) << 2) + ma = ja + } else ma = ja + else { + Ch(T, (ja - S) | 0, 1220) + ma = f[k >> 2] | 0 + } + S = f[i >> 2] | 0 + if (!ma) la = S + else { + i = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(i + (a << 2)) >> 2] = f[(S + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ma >>> 0) + la = S + } + } + f[k >> 2] = R + ka = la + } + if (!ka) na = R + else { + la = f[m >> 2] | 0 + if ((la | 0) != (ka | 0)) + f[m >> 2] = la + (~(((la + -4 - ka) | 0) >>> 2) << 2) + Oq(ka) + na = R + } + } else na = 0 + R = f[(g + 8) >> 2] | 0 + if (R | 0) { + ka = R + do { + R = ka + ka = f[ka >> 2] | 0 + Oq(R) + } while ((ka | 0) != 0) + } + ka = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!ka) { + u = e + return na | 0 + } + Oq(ka) + u = e + return na | 0 + } + function hc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = Oa, + ea = Oa, + fa = Oa, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0 + e = u + u = (u + 48) | 0 + g = (e + 16) | 0 + i = (e + 12) | 0 + j = e + k = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[k >> 2] = $(1.0) + l = (a + 80) | 0 + m = f[l >> 2] | 0 + f[j >> 2] = 0 + o = (j + 4) | 0 + f[o >> 2] = 0 + f[(j + 8) >> 2] = 0 + if (m) { + if (m >>> 0 > 1073741823) aq(j) + p = m << 2 + q = ln(p) | 0 + f[j >> 2] = q + r = (q + (m << 2)) | 0 + f[(j + 8) >> 2] = r + sj(q | 0, 0, p | 0) | 0 + f[o >> 2] = r + r = (c + 48) | 0 + p = (c + 40) | 0 + m = (g + 4) | 0 + s = (g + 12) | 0 + t = (g + 8) | 0 + v = (a + 40) | 0 + w = (a + 64) | 0 + x = f[d >> 2] | 0 + d = 0 + y = q + z = 0 + A = 0 + B = q + C = q + D = q + while (1) { + q = r + E = f[q >> 2] | 0 + F = f[(q + 4) >> 2] | 0 + q = p + G = un(f[q >> 2] | 0, f[(q + 4) >> 2] | 0, (x + z) | 0, 0) | 0 + q = Vn(G | 0, I | 0, E | 0, F | 0) | 0 + F = ((f[f[c >> 2] >> 2] | 0) + q) | 0 + q = + h[F >> 0] | + (h[(F + 1) >> 0] << 8) | + (h[(F + 2) >> 0] << 16) | + (h[(F + 3) >> 0] << 24) + f[i >> 2] = q + F = q ^ 318 + a: do + if (d) { + E = (d + -1) | 0 + G = ((E & d) | 0) == 0 + if (!G) + if (F >>> 0 < d >>> 0) H = F + else H = (F >>> 0) % (d >>> 0) | 0 + else H = E & F + J = f[g >> 2] | 0 + K = f[(J + (H << 2)) >> 2] | 0 + b: do + if (K | 0 ? ((L = f[K >> 2] | 0), L | 0) : 0) { + c: do + if (G) { + M = L + while (1) { + N = f[(M + 4) >> 2] | 0 + O = (N | 0) == (F | 0) + if (!(O | (((N & E) | 0) == (H | 0)))) break b + if (O ? (f[(M + 8) >> 2] | 0) == (q | 0) : 0) { + P = M + break c + } + M = f[M >> 2] | 0 + if (!M) break b + } + } else { + M = L + while (1) { + O = f[(M + 4) >> 2] | 0 + if ((O | 0) == (F | 0)) { + if ((f[(M + 8) >> 2] | 0) == (q | 0)) { + P = M + break c + } + } else { + if (O >>> 0 < d >>> 0) Q = O + else Q = (O >>> 0) % (d >>> 0) | 0 + if ((Q | 0) != (H | 0)) break b + } + M = f[M >> 2] | 0 + if (!M) break b + } + } + while (0) + f[(D + (z << 2)) >> 2] = f[(P + 12) >> 2] + R = y + S = A + T = C + U = B + V = D + break a + } + while (0) + if (!G) + if (F >>> 0 < d >>> 0) X = F + else X = (F >>> 0) % (d >>> 0) | 0 + else X = E & F + K = f[(J + (X << 2)) >> 2] | 0 + if (!K) { + Y = X + Z = d + _ = 0 + aa = 40 + } else { + if (G) { + L = K + while (1) { + L = f[L >> 2] | 0 + if (!L) { + Y = X + Z = d + _ = 0 + aa = 40 + break a + } + M = f[(L + 4) >> 2] | 0 + if (!(((M | 0) == (F | 0)) | (((M & E) | 0) == (X | 0)))) { + Y = X + Z = d + _ = 0 + aa = 40 + break a + } + if ((f[(L + 8) >> 2] | 0) == (q | 0)) { + aa = 55 + break a + } + } + } else ba = K + while (1) { + ba = f[ba >> 2] | 0 + if (!ba) { + Y = X + Z = d + _ = 0 + aa = 40 + break a + } + L = f[(ba + 4) >> 2] | 0 + if ((L | 0) != (F | 0)) { + if (L >>> 0 < d >>> 0) ca = L + else ca = (L >>> 0) % (d >>> 0) | 0 + if ((ca | 0) != (X | 0)) { + Y = X + Z = d + _ = 0 + aa = 40 + break a + } + } + if ((f[(ba + 8) >> 2] | 0) == (q | 0)) { + aa = 55 + break + } + } + } + } else { + Y = 0 + Z = 0 + _ = 1 + aa = 40 + } + while (0) + if ((aa | 0) == 40) { + aa = 0 + K = ln(16) | 0 + f[(K + 8) >> 2] = q + f[(K + 12) >> 2] = A + f[(K + 4) >> 2] = F + f[K >> 2] = 0 + da = $((((f[s >> 2] | 0) + 1) | 0) >>> 0) + ea = $(Z >>> 0) + fa = $(n[k >> 2]) + do + if (_ | ($(fa * ea) < da)) { + L = + (Z << 1) | (((Z >>> 0 < 3) | ((((Z + -1) & Z) | 0) != 0)) & 1) + E = ~~$(W($(da / fa))) >>> 0 + Hi(g, L >>> 0 < E >>> 0 ? E : L) + L = f[m >> 2] | 0 + E = (L + -1) | 0 + if (!(E & L)) { + ga = L + ha = E & F + break + } + if (F >>> 0 < L >>> 0) { + ga = L + ha = F + } else { + ga = L + ha = (F >>> 0) % (L >>> 0) | 0 + } + } else { + ga = Z + ha = Y + } + while (0) + F = ((f[g >> 2] | 0) + (ha << 2)) | 0 + q = f[F >> 2] | 0 + if (!q) { + f[K >> 2] = f[t >> 2] + f[t >> 2] = K + f[F >> 2] = t + F = f[K >> 2] | 0 + if (F | 0) { + L = f[(F + 4) >> 2] | 0 + F = (ga + -1) | 0 + if (F & ga) + if (L >>> 0 < ga >>> 0) ia = L + else ia = (L >>> 0) % (ga >>> 0) | 0 + else ia = L & F + ja = ((f[g >> 2] | 0) + (ia << 2)) | 0 + aa = 53 + } + } else { + f[K >> 2] = f[q >> 2] + ja = q + aa = 53 + } + if ((aa | 0) == 53) { + aa = 0 + f[ja >> 2] = K + } + f[s >> 2] = (f[s >> 2] | 0) + 1 + aa = 55 + } + if ((aa | 0) == 55) { + aa = 0 + q = v + F = f[q >> 2] | 0 + L = un(F | 0, f[(q + 4) >> 2] | 0, A | 0, 0) | 0 + kh(((f[f[w >> 2] >> 2] | 0) + L) | 0, i | 0, F | 0) | 0 + F = f[j >> 2] | 0 + f[(F + (z << 2)) >> 2] = A + R = F + S = (A + 1) | 0 + T = F + U = F + V = F + } + F = (z + 1) | 0 + ka = f[l >> 2] | 0 + if (F >>> 0 >= ka >>> 0) break + d = f[m >> 2] | 0 + y = R + z = F + A = S + B = U + C = T + D = V + } + if ((S | 0) == (ka | 0)) la = U + else { + U = (a + 84) | 0 + if (!(b[U >> 0] | 0)) { + V = f[(a + 72) >> 2] | 0 + D = f[(a + 68) >> 2] | 0 + C = D + if ((V | 0) == (D | 0)) ma = R + else { + B = (V - D) >> 2 + D = 0 + do { + V = (C + (D << 2)) | 0 + f[V >> 2] = f[(T + (f[V >> 2] << 2)) >> 2] + D = (D + 1) | 0 + } while (D >>> 0 < B >>> 0) + ma = R + } + } else { + b[U >> 0] = 0 + U = (a + 68) | 0 + R = (a + 72) | 0 + B = f[R >> 2] | 0 + D = f[U >> 2] | 0 + T = (B - D) >> 2 + C = D + D = B + if (ka >>> 0 <= T >>> 0) + if ( + ka >>> 0 < T >>> 0 + ? ((B = (C + (ka << 2)) | 0), (B | 0) != (D | 0)) + : 0 + ) { + f[R >> 2] = D + (~(((D + -4 - B) | 0) >>> 2) << 2) + na = ka + } else na = ka + else { + Ch(U, (ka - T) | 0, 1220) + na = f[l >> 2] | 0 + } + T = f[j >> 2] | 0 + if (!na) ma = T + else { + j = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(j + (a << 2)) >> 2] = f[(T + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < na >>> 0) + ma = T + } + } + f[l >> 2] = S + la = ma + } + if (!la) oa = S + else { + ma = f[o >> 2] | 0 + if ((ma | 0) != (la | 0)) + f[o >> 2] = ma + (~(((ma + -4 - la) | 0) >>> 2) << 2) + Oq(la) + oa = S + } + } else oa = 0 + S = f[(g + 8) >> 2] | 0 + if (S | 0) { + la = S + do { + S = la + la = f[la >> 2] | 0 + Oq(S) + } while ((la | 0) != 0) + } + la = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!la) { + u = e + return oa | 0 + } + Oq(la) + u = e + return oa | 0 + } + function ic(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0, + na = 0, + oa = 0, + pa = 0, + qa = 0, + ra = 0, + sa = 0, + ta = 0 + e = u + u = (u + 96) | 0 + g = (e + 92) | 0 + h = (e + 88) | 0 + i = (e + 72) | 0 + j = (e + 48) | 0 + k = (e + 24) | 0 + l = e + m = (a + 16) | 0 + n = f[m >> 2] | 0 + o = f[c >> 2] | 0 + f[i >> 2] = n + f[(i + 4) >> 2] = o + c = (i + 8) | 0 + f[c >> 2] = o + b[(i + 12) >> 0] = 1 + p = f[((f[(n + 28) >> 2] | 0) + (o << 2)) >> 2] | 0 + n = (a + 20) | 0 + q = f[n >> 2] | 0 + r = f[q >> 2] | 0 + if ((((f[(q + 4) >> 2] | 0) - r) >> 2) >>> 0 <= p >>> 0) aq(q) + q = (a + 8) | 0 + s = f[((f[q >> 2] | 0) + (f[(r + (p << 2)) >> 2] << 2)) >> 2] | 0 + p = (a + 4) | 0 + r = f[p >> 2] | 0 + if (!(b[(r + 84) >> 0] | 0)) + t = f[((f[(r + 68) >> 2] | 0) + (s << 2)) >> 2] | 0 + else t = s + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + f[(j + 12) >> 2] = 0 + f[(j + 16) >> 2] = 0 + f[(j + 20) >> 2] = 0 + f[h >> 2] = t + t = b[(r + 24) >> 0] | 0 + f[g >> 2] = f[h >> 2] + vb(r, g, t, j) | 0 + t = (a + 28) | 0 + a = (f[t >> 2] | 0) == 0 + a: do + if ((o | 0) != -1) { + r = (k + 8) | 0 + s = (j + 8) | 0 + v = (k + 16) | 0 + w = (j + 16) | 0 + x = (l + 8) | 0 + y = (l + 16) | 0 + z = o + A = o + B = 0 + C = 0 + D = 0 + E = 0 + F = 0 + G = 0 + H = a + J = o + while (1) { + do + if (H) { + K = (J + 1) | 0 + if ((J | 0) != -1) { + L = ((K >>> 0) % 3 | 0 | 0) == 0 ? (J + -2) | 0 : K + if ((z | 0) != -1) + if (!((z >>> 0) % 3 | 0)) { + M = z + N = (z + 2) | 0 + O = L + P = z + break + } else { + M = z + N = (z + -1) | 0 + O = L + P = z + break + } + else { + M = -1 + N = -1 + O = L + P = -1 + } + } else { + M = z + N = -1 + O = -1 + P = -1 + } + } else { + L = (A + 1) | 0 + K = ((L >>> 0) % 3 | 0 | 0) == 0 ? (A + -2) | 0 : L + if (!((A >>> 0) % 3 | 0)) { + M = z + N = (A + 2) | 0 + O = K + P = J + break + } else { + M = z + N = (A + -1) | 0 + O = K + P = J + break + } + } + while (0) + K = f[((f[((f[m >> 2] | 0) + 28) >> 2] | 0) + (O << 2)) >> 2] | 0 + Q = f[n >> 2] | 0 + L = f[Q >> 2] | 0 + if ((((f[(Q + 4) >> 2] | 0) - L) >> 2) >>> 0 <= K >>> 0) { + R = 17 + break + } + S = f[((f[q >> 2] | 0) + (f[(L + (K << 2)) >> 2] << 2)) >> 2] | 0 + K = f[p >> 2] | 0 + if (!(b[(K + 84) >> 0] | 0)) + T = f[((f[(K + 68) >> 2] | 0) + (S << 2)) >> 2] | 0 + else T = S + f[k >> 2] = 0 + f[(k + 4) >> 2] = 0 + f[(k + 8) >> 2] = 0 + f[(k + 12) >> 2] = 0 + f[(k + 16) >> 2] = 0 + f[(k + 20) >> 2] = 0 + f[h >> 2] = T + S = b[(K + 24) >> 0] | 0 + f[g >> 2] = f[h >> 2] + vb(K, g, S, k) | 0 + S = f[((f[((f[m >> 2] | 0) + 28) >> 2] | 0) + (N << 2)) >> 2] | 0 + U = f[n >> 2] | 0 + K = f[U >> 2] | 0 + if ((((f[(U + 4) >> 2] | 0) - K) >> 2) >>> 0 <= S >>> 0) { + R = 21 + break + } + L = f[((f[q >> 2] | 0) + (f[(K + (S << 2)) >> 2] << 2)) >> 2] | 0 + S = f[p >> 2] | 0 + if (!(b[(S + 84) >> 0] | 0)) + V = f[((f[(S + 68) >> 2] | 0) + (L << 2)) >> 2] | 0 + else V = L + f[l >> 2] = 0 + f[(l + 4) >> 2] = 0 + f[(l + 8) >> 2] = 0 + f[(l + 12) >> 2] = 0 + f[(l + 16) >> 2] = 0 + f[(l + 20) >> 2] = 0 + f[h >> 2] = V + L = b[(S + 24) >> 0] | 0 + f[g >> 2] = f[h >> 2] + vb(S, g, L, l) | 0 + L = k + S = j + K = f[S >> 2] | 0 + W = f[(S + 4) >> 2] | 0 + S = Xn(f[L >> 2] | 0, f[(L + 4) >> 2] | 0, K | 0, W | 0) | 0 + L = I + X = r + Y = s + Z = f[Y >> 2] | 0 + _ = f[(Y + 4) >> 2] | 0 + Y = Xn(f[X >> 2] | 0, f[(X + 4) >> 2] | 0, Z | 0, _ | 0) | 0 + X = I + $ = v + aa = w + ba = f[aa >> 2] | 0 + ca = f[(aa + 4) >> 2] | 0 + aa = Xn(f[$ >> 2] | 0, f[($ + 4) >> 2] | 0, ba | 0, ca | 0) | 0 + $ = I + da = l + ea = Xn(f[da >> 2] | 0, f[(da + 4) >> 2] | 0, K | 0, W | 0) | 0 + W = I + K = x + da = Xn(f[K >> 2] | 0, f[(K + 4) >> 2] | 0, Z | 0, _ | 0) | 0 + _ = I + Z = y + K = Xn(f[Z >> 2] | 0, f[(Z + 4) >> 2] | 0, ba | 0, ca | 0) | 0 + ca = I + ba = un(K | 0, ca | 0, Y | 0, X | 0) | 0 + Z = I + fa = un(da | 0, _ | 0, aa | 0, $ | 0) | 0 + ga = I + ha = un(ea | 0, W | 0, aa | 0, $ | 0) | 0 + $ = I + aa = un(K | 0, ca | 0, S | 0, L | 0) | 0 + ca = I + K = un(da | 0, _ | 0, S | 0, L | 0) | 0 + L = I + S = un(ea | 0, W | 0, Y | 0, X | 0) | 0 + X = I + Y = Xn(B | 0, C | 0, fa | 0, ga | 0) | 0 + ga = Vn(Y | 0, I | 0, ba | 0, Z | 0) | 0 + Z = I + ba = Vn(ha | 0, $ | 0, D | 0, E | 0) | 0 + $ = Xn(ba | 0, I | 0, aa | 0, ca | 0) | 0 + ca = I + aa = Xn(F | 0, G | 0, S | 0, X | 0) | 0 + X = Vn(aa | 0, I | 0, K | 0, L | 0) | 0 + L = I + Pg(i) + A = f[c >> 2] | 0 + K = (f[t >> 2] | 0) == 0 + if ((A | 0) == -1) { + ia = K + ja = Z + ka = ga + la = ca + ma = $ + na = L + oa = X + break a + } else { + z = M + B = ga + C = Z + D = $ + E = ca + F = X + G = L + H = K + J = P + } + } + if ((R | 0) == 17) aq(Q) + else if ((R | 0) == 21) aq(U) + } else { + ia = a + ja = 0 + ka = 0 + la = 0 + ma = 0 + na = 0 + oa = 0 + } + while (0) + a = ((ja | 0) > -1) | (((ja | 0) == -1) & (ka >>> 0 > 4294967295)) + U = Xn(0, 0, ka | 0, ja | 0) | 0 + R = a ? ja : I + Q = ((la | 0) > -1) | (((la | 0) == -1) & (ma >>> 0 > 4294967295)) + P = Xn(0, 0, ma | 0, la | 0) | 0 + M = Q ? la : I + t = ((na | 0) > -1) | (((na | 0) == -1) & (oa >>> 0 > 4294967295)) + c = Xn(0, 0, oa | 0, na | 0) | 0 + i = Vn((Q ? ma : P) | 0, M | 0, (t ? oa : c) | 0, (t ? na : I) | 0) | 0 + t = Vn(i | 0, I | 0, (a ? ka : U) | 0, R | 0) | 0 + R = I + if (ia) { + if ((t | 0) <= 536870912) { + pa = ka + qa = ma + ra = oa + f[d >> 2] = pa + sa = (d + 4) | 0 + f[sa >> 2] = qa + ta = (d + 8) | 0 + f[ta >> 2] = ra + u = e + return + } + ia = Yn(t | 0, R | 0, 29) | 0 + U = ia & 7 + ia = Ik(ka | 0, ja | 0, U | 0, 0) | 0 + a = Ik(ma | 0, la | 0, U | 0, 0) | 0 + i = Ik(oa | 0, na | 0, U | 0, 0) | 0 + pa = ia + qa = a + ra = i + f[d >> 2] = pa + sa = (d + 4) | 0 + f[sa >> 2] = qa + ta = (d + 8) | 0 + f[ta >> 2] = ra + u = e + return + } else { + if (!(((R | 0) > 0) | (((R | 0) == 0) & (t >>> 0 > 536870912)))) { + pa = ka + qa = ma + ra = oa + f[d >> 2] = pa + sa = (d + 4) | 0 + f[sa >> 2] = qa + ta = (d + 8) | 0 + f[ta >> 2] = ra + u = e + return + } + i = Yn(t | 0, R | 0, 29) | 0 + R = I + t = Ik(ka | 0, ja | 0, i | 0, R | 0) | 0 + ja = Ik(ma | 0, la | 0, i | 0, R | 0) | 0 + la = Ik(oa | 0, na | 0, i | 0, R | 0) | 0 + pa = t + qa = ja + ra = la + f[d >> 2] = pa + sa = (d + 4) | 0 + f[sa >> 2] = qa + ta = (d + 8) | 0 + f[ta >> 2] = ra + u = e + return + } + } + function jc(a, c, e) { + a = a | 0 + c = c | 0 + e = e | 0 + var g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = Oa, + V = Oa, + X = Oa, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0 + g = u + u = (u + 48) | 0 + i = (g + 28) | 0 + j = (g + 8) | 0 + k = g + l = (g + 16) | 0 + m = (i + 16) | 0 + f[i >> 2] = 0 + f[(i + 4) >> 2] = 0 + f[(i + 8) >> 2] = 0 + f[(i + 12) >> 2] = 0 + n[m >> 2] = $(1.0) + o = (a + 80) | 0 + p = f[o >> 2] | 0 + f[l >> 2] = 0 + q = (l + 4) | 0 + f[q >> 2] = 0 + f[(l + 8) >> 2] = 0 + if (p) { + if (p >>> 0 > 1073741823) aq(l) + r = p << 2 + s = ln(r) | 0 + f[l >> 2] = s + t = (s + (p << 2)) | 0 + f[(l + 8) >> 2] = t + sj(s | 0, 0, r | 0) | 0 + f[q >> 2] = t + t = f[e >> 2] | 0 + e = (c + 48) | 0 + r = (c + 40) | 0 + s = (i + 4) | 0 + p = (i + 12) | 0 + v = (i + 8) | 0 + w = (a + 40) | 0 + x = (a + 64) | 0 + y = 0 + z = 0 + while (1) { + A = e + B = f[A >> 2] | 0 + C = f[(A + 4) >> 2] | 0 + A = r + D = un(f[A >> 2] | 0, f[(A + 4) >> 2] | 0, (t + y) | 0, 0) | 0 + A = Vn(D | 0, I | 0, B | 0, C | 0) | 0 + C = ((f[f[c >> 2] >> 2] | 0) + A) | 0 + A = C + B = + h[A >> 0] | + (h[(A + 1) >> 0] << 8) | + (h[(A + 2) >> 0] << 16) | + (h[(A + 3) >> 0] << 24) + A = (C + 4) | 0 + C = + h[A >> 0] | + (h[(A + 1) >> 0] << 8) | + (h[(A + 2) >> 0] << 16) | + (h[(A + 3) >> 0] << 24) + A = j + f[A >> 2] = B + f[(A + 4) >> 2] = C + A = k + f[A >> 2] = B + f[(A + 4) >> 2] = C + C = yf(i, k) | 0 + if (!C) { + A = k + B = f[A >> 2] | 0 + D = f[(A + 4) >> 2] | 0 + A = B & 65535 + E = Yn(B | 0, D | 0, 16) | 0 + F = E & 65535 + G = D & 65535 + H = Yn(B | 0, D | 0, 48) | 0 + J = H & 65535 + K = + (((((((A ^ 318) & 65535) + 239) ^ (E & 65535)) + 239) ^ + (D & 65535)) + + 239) ^ + (H & 65535) + H = f[s >> 2] | 0 + E = (H | 0) == 0 + a: do + if (!E) { + L = (H + -1) | 0 + M = ((L & H) | 0) == 0 + if (!M) + if (K >>> 0 < H >>> 0) N = K + else N = (K >>> 0) % (H >>> 0) | 0 + else N = K & L + O = f[((f[i >> 2] | 0) + (N << 2)) >> 2] | 0 + if ((O | 0) != 0 ? ((P = f[O >> 2] | 0), (P | 0) != 0) : 0) { + if (M) { + M = P + while (1) { + O = f[(M + 4) >> 2] | 0 + if ( + !(((O | 0) == (K | 0)) | (((O & L) | 0) == (N | 0))) + ) { + Q = N + R = 31 + break a + } + O = (M + 8) | 0 + if ( + ( + ( + (d[O >> 1] | 0) == (A << 16) >> 16 + ? (d[(O + 2) >> 1] | 0) == (F << 16) >> 16 + : 0 + ) + ? (d[(M + 12) >> 1] | 0) == (G << 16) >> 16 + : 0 + ) + ? (d[(O + 6) >> 1] | 0) == (J << 16) >> 16 + : 0 + ) + break a + M = f[M >> 2] | 0 + if (!M) { + Q = N + R = 31 + break a + } + } + } else S = P + while (1) { + M = f[(S + 4) >> 2] | 0 + if ((M | 0) != (K | 0)) { + if (M >>> 0 < H >>> 0) T = M + else T = (M >>> 0) % (H >>> 0) | 0 + if ((T | 0) != (N | 0)) { + Q = N + R = 31 + break a + } + } + M = (S + 8) | 0 + if ( + ( + ( + (d[M >> 1] | 0) == (A << 16) >> 16 + ? (d[(M + 2) >> 1] | 0) == (F << 16) >> 16 + : 0 + ) + ? (d[(S + 12) >> 1] | 0) == (G << 16) >> 16 + : 0 + ) + ? (d[(M + 6) >> 1] | 0) == (J << 16) >> 16 + : 0 + ) + break a + S = f[S >> 2] | 0 + if (!S) { + Q = N + R = 31 + break + } + } + } else { + Q = N + R = 31 + } + } else { + Q = 0 + R = 31 + } + while (0) + if ((R | 0) == 31) { + R = 0 + J = ln(20) | 0 + G = (J + 8) | 0 + F = G + d[F >> 1] = B + d[(F + 2) >> 1] = B >>> 16 + F = (G + 4) | 0 + d[F >> 1] = D + d[(F + 2) >> 1] = D >>> 16 + f[(J + 16) >> 2] = z + f[(J + 4) >> 2] = K + f[J >> 2] = 0 + U = $((((f[p >> 2] | 0) + 1) | 0) >>> 0) + V = $(H >>> 0) + X = $(n[m >> 2]) + do + if (E | ($(X * V) < U)) { + F = + (H << 1) | + (((H >>> 0 < 3) | ((((H + -1) & H) | 0) != 0)) & 1) + G = ~~$(W($(U / X))) >>> 0 + Sh(i, F >>> 0 < G >>> 0 ? G : F) + F = f[s >> 2] | 0 + G = (F + -1) | 0 + if (!(G & F)) { + Y = F + Z = G & K + break + } + if (K >>> 0 < F >>> 0) { + Y = F + Z = K + } else { + Y = F + Z = (K >>> 0) % (F >>> 0) | 0 + } + } else { + Y = H + Z = Q + } + while (0) + H = ((f[i >> 2] | 0) + (Z << 2)) | 0 + K = f[H >> 2] | 0 + if (!K) { + f[J >> 2] = f[v >> 2] + f[v >> 2] = J + f[H >> 2] = v + H = f[J >> 2] | 0 + if (H | 0) { + E = f[(H + 4) >> 2] | 0 + H = (Y + -1) | 0 + if (H & Y) + if (E >>> 0 < Y >>> 0) _ = E + else _ = (E >>> 0) % (Y >>> 0) | 0 + else _ = E & H + aa = ((f[i >> 2] | 0) + (_ << 2)) | 0 + R = 44 + } + } else { + f[J >> 2] = f[K >> 2] + aa = K + R = 44 + } + if ((R | 0) == 44) { + R = 0 + f[aa >> 2] = J + } + f[p >> 2] = (f[p >> 2] | 0) + 1 + } + K = w + H = f[K >> 2] | 0 + E = un(H | 0, f[(K + 4) >> 2] | 0, z | 0, 0) | 0 + kh(((f[f[x >> 2] >> 2] | 0) + E) | 0, j | 0, H | 0) | 0 + H = f[l >> 2] | 0 + f[(H + (y << 2)) >> 2] = z + ba = (z + 1) | 0 + ca = H + } else { + H = f[l >> 2] | 0 + f[(H + (y << 2)) >> 2] = f[(C + 16) >> 2] + ba = z + ca = H + } + y = (y + 1) | 0 + da = f[o >> 2] | 0 + if (y >>> 0 >= da >>> 0) break + else z = ba + } + if ((ba | 0) == (da | 0)) ea = ca + else { + z = (a + 84) | 0 + if (!(b[z >> 0] | 0)) { + y = f[(a + 72) >> 2] | 0 + j = f[(a + 68) >> 2] | 0 + x = j + if ((y | 0) == (j | 0)) fa = ca + else { + w = (y - j) >> 2 + j = 0 + do { + y = (x + (j << 2)) | 0 + f[y >> 2] = f[(ca + (f[y >> 2] << 2)) >> 2] + j = (j + 1) | 0 + } while (j >>> 0 < w >>> 0) + fa = ca + } + } else { + b[z >> 0] = 0 + z = (a + 68) | 0 + ca = (a + 72) | 0 + w = f[ca >> 2] | 0 + j = f[z >> 2] | 0 + x = (w - j) >> 2 + y = j + j = w + if (da >>> 0 <= x >>> 0) + if ( + da >>> 0 < x >>> 0 + ? ((w = (y + (da << 2)) | 0), (w | 0) != (j | 0)) + : 0 + ) { + f[ca >> 2] = j + (~(((j + -4 - w) | 0) >>> 2) << 2) + ga = da + } else ga = da + else { + Ch(z, (da - x) | 0, 1220) + ga = f[o >> 2] | 0 + } + x = f[l >> 2] | 0 + if (!ga) fa = x + else { + l = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(l + (a << 2)) >> 2] = f[(x + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ga >>> 0) + fa = x + } + } + f[o >> 2] = ba + ea = fa + } + if (!ea) ha = ba + else { + fa = f[q >> 2] | 0 + if ((fa | 0) != (ea | 0)) + f[q >> 2] = fa + (~(((fa + -4 - ea) | 0) >>> 2) << 2) + Oq(ea) + ha = ba + } + } else ha = 0 + ba = f[(i + 8) >> 2] | 0 + if (ba | 0) { + ea = ba + do { + ba = ea + ea = f[ea >> 2] | 0 + Oq(ba) + } while ((ea | 0) != 0) + } + ea = f[i >> 2] | 0 + f[i >> 2] = 0 + if (!ea) { + u = g + return ha | 0 + } + Oq(ea) + u = g + return ha | 0 + } + function kc(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = c + g = (c + 4) | 0 + h = (a + 16) | 0 + i = f[h >> 2] | 0 + j = (a + 20) | 0 + k = f[j >> 2] | 0 + if ((k | 0) == (i | 0)) l = i + else { + m = (k + (~(((k + -4 - i) | 0) >>> 2) << 2)) | 0 + f[j >> 2] = m + l = m + } + m = (a + 24) | 0 + if ((l | 0) == (f[m >> 2] | 0)) { + Ri(h, b) + n = f[h >> 2] | 0 + o = f[j >> 2] | 0 + } else { + f[l >> 2] = f[b >> 2] + k = (l + 4) | 0 + f[j >> 2] = k + n = i + o = k + } + k = f[(a + 8) >> 2] | 0 + i = ((f[(k + 100) >> 2] | 0) - (f[(k + 96) >> 2] | 0)) | 0 + k = ((i | 0) / 12) | 0 + if ((n | 0) == (o | 0)) { + u = c + return 1 + } + n = (a + 28) | 0 + l = (i | 0) > 0 + i = (a + 164) | 0 + p = (a + 12) | 0 + q = (a + 76) | 0 + r = (a + 80) | 0 + s = (a + 72) | 0 + t = (a + 152) | 0 + v = (a + 84) | 0 + w = (a + 272) | 0 + x = (a + 276) | 0 + y = (a + 268) | 0 + z = (a + 168) | 0 + A = (a + 140) | 0 + B = (a + 120) | 0 + C = o + do { + o = f[(C + -4) >> 2] | 0 + f[b >> 2] = o + a: do + if ( + (o | 0) != -1 + ? ((D = ((o >>> 0) / 3) | 0), + (E = f[n >> 2] | 0), + ((f[(E + ((D >>> 5) << 2)) >> 2] & (1 << (D & 31))) | 0) == 0) + : 0 + ) { + if (l) { + D = 0 + F = E + b: while (1) { + E = (D + 1) | 0 + f[i >> 2] = (f[i >> 2] | 0) + 1 + G = f[b >> 2] | 0 + H = (G | 0) == -1 ? -1 : ((G >>> 0) / 3) | 0 + G = (F + ((H >>> 5) << 2)) | 0 + f[G >> 2] = (1 << (H & 31)) | f[G >> 2] + G = f[q >> 2] | 0 + if ((G | 0) == (f[r >> 2] | 0)) Ri(s, b) + else { + f[G >> 2] = f[b >> 2] + f[q >> 2] = G + 4 + } + G = f[b >> 2] | 0 + if ((G | 0) == -1) I = -1 + else I = f[((f[f[p >> 2] >> 2] | 0) + (G << 2)) >> 2] | 0 + J = (f[((f[t >> 2] | 0) + (I << 2)) >> 2] | 0) != -1 + K = ((f[v >> 2] | 0) + ((I >>> 5) << 2)) | 0 + L = 1 << (I & 31) + M = f[K >> 2] | 0 + do + if (!(M & L)) { + f[K >> 2] = M | L + if (J) { + N = f[b >> 2] | 0 + O = 30 + break + } + f[d >> 2] = 0 + P = f[w >> 2] | 0 + if ((P | 0) == (f[x >> 2] | 0)) Ri(y, d) + else { + f[P >> 2] = 0 + f[w >> 2] = P + 4 + } + P = f[b >> 2] | 0 + Q = (P + 1) | 0 + if ( + (P | 0) != -1 + ? ((R = + ((Q >>> 0) % 3 | 0 | 0) == 0 ? (P + -2) | 0 : Q), + (R | 0) != -1) + : 0 + ) + S = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (R << 2)) >> 2 + ] | 0 + else S = -1 + f[b >> 2] = S + } else { + N = G + O = 30 + } + while (0) + if ((O | 0) == 30) { + O = 0 + G = (N + 1) | 0 + if ((N | 0) == -1) { + O = 35 + break + } + L = ((G >>> 0) % 3 | 0 | 0) == 0 ? (N + -2) | 0 : G + if ((L | 0) == -1) T = -1 + else + T = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (L << 2)) >> 2 + ] | 0 + f[e >> 2] = T + L = ((((N >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + N) | 0 + if ((L | 0) == -1) U = -1 + else + U = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (L << 2)) >> 2 + ] | 0 + L = (T | 0) == -1 + M = L ? -1 : ((T >>> 0) / 3) | 0 + V = (U | 0) == -1 + W = V ? -1 : ((U >>> 0) / 3) | 0 + K = ((G >>> 0) % 3 | 0 | 0) == 0 ? (N + -2) | 0 : G + if ( + ( + (K | 0) != -1 + ? ((G = f[((f[p >> 2] | 0) + 12) >> 2] | 0), + (R = f[(G + (K << 2)) >> 2] | 0), + (R | 0) != -1) + : 0 + ) + ? ((K = ((R >>> 0) / 3) | 0), + (R = f[n >> 2] | 0), + ((f[(R + ((K >>> 5) << 2)) >> 2] & (1 << (K & 31))) | + 0) == + 0) + : 0 + ) { + K = ((((N >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + N) | 0 + do + if ((K | 0) != -1) { + Q = f[(G + (K << 2)) >> 2] | 0 + if ((Q | 0) == -1) break + P = ((Q >>> 0) / 3) | 0 + if ( + !(f[(R + ((P >>> 5) << 2)) >> 2] & (1 << (P & 31))) + ) { + O = 63 + break b + } + } + while (0) + if (!V) xf(a, f[i >> 2] | 0, H, 0, W) + f[d >> 2] = 3 + R = f[w >> 2] | 0 + if ((R | 0) == (f[x >> 2] | 0)) Ri(y, d) + else { + f[R >> 2] = 3 + f[w >> 2] = R + 4 + } + X = f[e >> 2] | 0 + } else { + if (!L) { + xf(a, f[i >> 2] | 0, H, 1, M) + R = f[b >> 2] | 0 + if ((R | 0) == -1) { + O = 44 + break + } else Y = R + } else Y = N + R = ((((Y >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + Y) | 0 + if ((R | 0) == -1) { + O = 44 + break + } + K = + f[ + ((f[((f[p >> 2] | 0) + 12) >> 2] | 0) + (R << 2)) >> 2 + ] | 0 + if ((K | 0) == -1) { + O = 44 + break + } + R = ((K >>> 0) / 3) | 0 + if ( + (f[((f[n >> 2] | 0) + ((R >>> 5) << 2)) >> 2] & + (1 << (R & 31))) | + 0 + ) { + O = 44 + break + } + f[d >> 2] = 5 + R = f[w >> 2] | 0 + if ((R | 0) == (f[x >> 2] | 0)) Ri(y, d) + else { + f[R >> 2] = 5 + f[w >> 2] = R + 4 + } + X = U + } + f[b >> 2] = X + } + if ((E | 0) >= (k | 0)) break a + D = E + F = f[n >> 2] | 0 + } + do + if ((O | 0) == 35) { + O = 0 + f[e >> 2] = -1 + O = 46 + } else if ((O | 0) == 44) { + O = 0 + if (V) O = 46 + else { + xf(a, f[i >> 2] | 0, H, 0, W) + O = 46 + } + } else if ((O | 0) == 63) { + O = 0 + f[d >> 2] = 1 + F = f[w >> 2] | 0 + if ((F | 0) == (f[x >> 2] | 0)) Ri(y, d) + else { + f[F >> 2] = 1 + f[w >> 2] = F + 4 + } + f[z >> 2] = (f[z >> 2] | 0) + 1 + if ( + J + ? ((F = f[((f[t >> 2] | 0) + (I << 2)) >> 2] | 0), + (((1 << (F & 31)) & + f[((f[A >> 2] | 0) + ((F >>> 5) << 2)) >> 2]) | + 0) == + 0) + : 0 + ) { + f[g >> 2] = f[b >> 2] + f[d >> 2] = f[g >> 2] + Pe(a, d, 0) | 0 + } + F = f[i >> 2] | 0 + f[d >> 2] = H + D = je(B, d) | 0 + f[D >> 2] = F + F = f[j >> 2] | 0 + f[(F + -4) >> 2] = U + if ((F | 0) == (f[m >> 2] | 0)) { + Ri(h, e) + break + } else { + f[F >> 2] = f[e >> 2] + f[j >> 2] = F + 4 + break + } + } + while (0) + if ((O | 0) == 46) { + O = 0 + f[d >> 2] = 7 + F = f[w >> 2] | 0 + if ((F | 0) == (f[x >> 2] | 0)) Ri(y, d) + else { + f[F >> 2] = 7 + f[w >> 2] = F + 4 + } + f[j >> 2] = (f[j >> 2] | 0) + -4 + } + } + } else O = 11 + while (0) + if ((O | 0) == 11) { + O = 0 + f[j >> 2] = C + -4 + } + C = f[j >> 2] | 0 + } while ((f[h >> 2] | 0) != (C | 0)) + u = c + return 1 + } + function lc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = Oa, + V = Oa, + X = Oa, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0 + e = u + u = (u + 48) | 0 + g = (e + 20) | 0 + i = (e + 16) | 0 + j = (e + 12) | 0 + k = e + l = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[l >> 2] = $(1.0) + m = (a + 80) | 0 + o = f[m >> 2] | 0 + f[k >> 2] = 0 + p = (k + 4) | 0 + f[p >> 2] = 0 + f[(k + 8) >> 2] = 0 + if (o) { + if (o >>> 0 > 1073741823) aq(k) + q = o << 2 + r = ln(q) | 0 + f[k >> 2] = r + s = (r + (o << 2)) | 0 + f[(k + 8) >> 2] = s + sj(r | 0, 0, q | 0) | 0 + f[p >> 2] = s + s = f[d >> 2] | 0 + d = (c + 48) | 0 + q = (c + 40) | 0 + r = (g + 4) | 0 + o = (g + 12) | 0 + t = (g + 8) | 0 + v = (a + 40) | 0 + w = (a + 64) | 0 + x = 0 + y = 0 + while (1) { + z = d + A = f[z >> 2] | 0 + B = f[(z + 4) >> 2] | 0 + z = q + C = un(f[z >> 2] | 0, f[(z + 4) >> 2] | 0, (s + x) | 0, 0) | 0 + z = Vn(C | 0, I | 0, A | 0, B | 0) | 0 + B = ((f[f[c >> 2] >> 2] | 0) + z) | 0 + z = + h[B >> 0] | + (h[(B + 1) >> 0] << 8) | + (h[(B + 2) >> 0] << 16) | + (h[(B + 3) >> 0] << 24) + f[i >> 2] = z + f[j >> 2] = z + z = Ef(g, j) | 0 + if (!z) { + B = f[j >> 2] | 0 + A = B & 255 + C = B >>> 8 + D = C & 255 + E = B >>> 16 + F = E & 255 + G = B >>> 24 + H = G & 255 + J = C & 255 + C = E & 255 + E = (((((((B & 255) ^ 318) + 239) ^ J) + 239) ^ C) + 239) ^ G + G = f[r >> 2] | 0 + K = (G | 0) == 0 + a: do + if (!K) { + L = (G + -1) | 0 + M = ((L & G) | 0) == 0 + if (!M) + if (E >>> 0 < G >>> 0) N = E + else N = (E >>> 0) % (G >>> 0) | 0 + else N = E & L + O = f[((f[g >> 2] | 0) + (N << 2)) >> 2] | 0 + if ((O | 0) != 0 ? ((P = f[O >> 2] | 0), (P | 0) != 0) : 0) { + if (M) { + M = P + while (1) { + O = f[(M + 4) >> 2] | 0 + if ( + !(((O | 0) == (E | 0)) | (((O & L) | 0) == (N | 0))) + ) { + Q = N + R = 31 + break a + } + O = (M + 8) | 0 + if ( + ( + ( + (b[O >> 0] | 0) == (A << 24) >> 24 + ? (b[(O + 1) >> 0] | 0) == (D << 24) >> 24 + : 0 + ) + ? (b[(O + 2) >> 0] | 0) == (F << 24) >> 24 + : 0 + ) + ? (b[(O + 3) >> 0] | 0) == (H << 24) >> 24 + : 0 + ) + break a + M = f[M >> 2] | 0 + if (!M) { + Q = N + R = 31 + break a + } + } + } else S = P + while (1) { + M = f[(S + 4) >> 2] | 0 + if ((M | 0) != (E | 0)) { + if (M >>> 0 < G >>> 0) T = M + else T = (M >>> 0) % (G >>> 0) | 0 + if ((T | 0) != (N | 0)) { + Q = N + R = 31 + break a + } + } + M = (S + 8) | 0 + if ( + ( + ( + (b[M >> 0] | 0) == (A << 24) >> 24 + ? (b[(M + 1) >> 0] | 0) == (D << 24) >> 24 + : 0 + ) + ? (b[(M + 2) >> 0] | 0) == (F << 24) >> 24 + : 0 + ) + ? (b[(M + 3) >> 0] | 0) == (H << 24) >> 24 + : 0 + ) + break a + S = f[S >> 2] | 0 + if (!S) { + Q = N + R = 31 + break + } + } + } else { + Q = N + R = 31 + } + } else { + Q = 0 + R = 31 + } + while (0) + if ((R | 0) == 31) { + R = 0 + H = ln(16) | 0 + F = (H + 8) | 0 + D = (B & -16776961) | (C << 16) | (J << 8) + b[F >> 0] = D + b[(F + 1) >> 0] = D >> 8 + b[(F + 2) >> 0] = D >> 16 + b[(F + 3) >> 0] = D >> 24 + f[(H + 12) >> 2] = y + f[(H + 4) >> 2] = E + f[H >> 2] = 0 + U = $((((f[o >> 2] | 0) + 1) | 0) >>> 0) + V = $(G >>> 0) + X = $(n[l >> 2]) + do + if (K | ($(X * V) < U)) { + D = + (G << 1) | + (((G >>> 0 < 3) | ((((G + -1) & G) | 0) != 0)) & 1) + F = ~~$(W($(U / X))) >>> 0 + Zh(g, D >>> 0 < F >>> 0 ? F : D) + D = f[r >> 2] | 0 + F = (D + -1) | 0 + if (!(F & D)) { + Y = D + Z = F & E + break + } + if (E >>> 0 < D >>> 0) { + Y = D + Z = E + } else { + Y = D + Z = (E >>> 0) % (D >>> 0) | 0 + } + } else { + Y = G + Z = Q + } + while (0) + G = ((f[g >> 2] | 0) + (Z << 2)) | 0 + E = f[G >> 2] | 0 + if (!E) { + f[H >> 2] = f[t >> 2] + f[t >> 2] = H + f[G >> 2] = t + G = f[H >> 2] | 0 + if (G | 0) { + K = f[(G + 4) >> 2] | 0 + G = (Y + -1) | 0 + if (G & Y) + if (K >>> 0 < Y >>> 0) _ = K + else _ = (K >>> 0) % (Y >>> 0) | 0 + else _ = K & G + aa = ((f[g >> 2] | 0) + (_ << 2)) | 0 + R = 44 + } + } else { + f[H >> 2] = f[E >> 2] + aa = E + R = 44 + } + if ((R | 0) == 44) { + R = 0 + f[aa >> 2] = H + } + f[o >> 2] = (f[o >> 2] | 0) + 1 + } + E = v + G = f[E >> 2] | 0 + K = un(G | 0, f[(E + 4) >> 2] | 0, y | 0, 0) | 0 + kh(((f[f[w >> 2] >> 2] | 0) + K) | 0, i | 0, G | 0) | 0 + G = f[k >> 2] | 0 + f[(G + (x << 2)) >> 2] = y + ba = (y + 1) | 0 + ca = G + } else { + G = f[k >> 2] | 0 + f[(G + (x << 2)) >> 2] = f[(z + 12) >> 2] + ba = y + ca = G + } + x = (x + 1) | 0 + da = f[m >> 2] | 0 + if (x >>> 0 >= da >>> 0) break + else y = ba + } + if ((ba | 0) == (da | 0)) ea = ca + else { + y = (a + 84) | 0 + if (!(b[y >> 0] | 0)) { + x = f[(a + 72) >> 2] | 0 + i = f[(a + 68) >> 2] | 0 + w = i + if ((x | 0) == (i | 0)) fa = ca + else { + v = (x - i) >> 2 + i = 0 + do { + x = (w + (i << 2)) | 0 + f[x >> 2] = f[(ca + (f[x >> 2] << 2)) >> 2] + i = (i + 1) | 0 + } while (i >>> 0 < v >>> 0) + fa = ca + } + } else { + b[y >> 0] = 0 + y = (a + 68) | 0 + ca = (a + 72) | 0 + v = f[ca >> 2] | 0 + i = f[y >> 2] | 0 + w = (v - i) >> 2 + x = i + i = v + if (da >>> 0 <= w >>> 0) + if ( + da >>> 0 < w >>> 0 + ? ((v = (x + (da << 2)) | 0), (v | 0) != (i | 0)) + : 0 + ) { + f[ca >> 2] = i + (~(((i + -4 - v) | 0) >>> 2) << 2) + ga = da + } else ga = da + else { + Ch(y, (da - w) | 0, 1220) + ga = f[m >> 2] | 0 + } + w = f[k >> 2] | 0 + if (!ga) fa = w + else { + k = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(k + (a << 2)) >> 2] = f[(w + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ga >>> 0) + fa = w + } + } + f[m >> 2] = ba + ea = fa + } + if (!ea) ha = ba + else { + fa = f[p >> 2] | 0 + if ((fa | 0) != (ea | 0)) + f[p >> 2] = fa + (~(((fa + -4 - ea) | 0) >>> 2) << 2) + Oq(ea) + ha = ba + } + } else ha = 0 + ba = f[(g + 8) >> 2] | 0 + if (ba | 0) { + ea = ba + do { + ba = ea + ea = f[ea >> 2] | 0 + Oq(ba) + } while ((ea | 0) != 0) + } + ea = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!ea) { + u = e + return ha | 0 + } + Oq(ea) + u = e + return ha | 0 + } + function mc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = Oa, + V = Oa, + X = Oa, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0 + e = u + u = (u + 80) | 0 + g = (e + 48) | 0 + h = (e + 32) | 0 + i = (e + 16) | 0 + j = e + k = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[k >> 2] = $(1.0) + l = (a + 80) | 0 + m = f[l >> 2] | 0 + f[j >> 2] = 0 + o = (j + 4) | 0 + f[o >> 2] = 0 + f[(j + 8) >> 2] = 0 + if (m) { + if (m >>> 0 > 1073741823) aq(j) + p = m << 2 + q = ln(p) | 0 + f[j >> 2] = q + r = (q + (m << 2)) | 0 + f[(j + 8) >> 2] = r + sj(q | 0, 0, p | 0) | 0 + f[o >> 2] = r + r = f[d >> 2] | 0 + d = (c + 48) | 0 + p = (c + 40) | 0 + q = (i + 4) | 0 + m = (i + 8) | 0 + s = (i + 12) | 0 + t = (g + 4) | 0 + v = (g + 12) | 0 + w = (g + 8) | 0 + x = (a + 40) | 0 + y = (a + 64) | 0 + z = 0 + A = 0 + while (1) { + B = d + C = f[B >> 2] | 0 + D = f[(B + 4) >> 2] | 0 + B = p + E = un(f[B >> 2] | 0, f[(B + 4) >> 2] | 0, (r + A) | 0, 0) | 0 + B = Vn(E | 0, I | 0, C | 0, D | 0) | 0 + D = ((f[f[c >> 2] >> 2] | 0) + B) | 0 + B = h + C = D + E = (B + 16) | 0 + do { + b[B >> 0] = b[C >> 0] | 0 + B = (B + 1) | 0 + C = (C + 1) | 0 + } while ((B | 0) < (E | 0)) + im(i | 0, D | 0, 16) | 0 + C = Vf(g, i) | 0 + if (!C) { + B = f[i >> 2] | 0 + E = f[q >> 2] | 0 + F = f[m >> 2] | 0 + G = f[s >> 2] | 0 + H = ((((((B ^ 318) + 239) ^ E) + 239) ^ F) + 239) ^ G + J = f[t >> 2] | 0 + K = (J | 0) == 0 + a: do + if (!K) { + L = (J + -1) | 0 + M = ((L & J) | 0) == 0 + if (!M) + if (H >>> 0 < J >>> 0) N = H + else N = (H >>> 0) % (J >>> 0) | 0 + else N = H & L + O = f[((f[g >> 2] | 0) + (N << 2)) >> 2] | 0 + if ((O | 0) != 0 ? ((P = f[O >> 2] | 0), (P | 0) != 0) : 0) { + if (M) { + M = P + while (1) { + O = f[(M + 4) >> 2] | 0 + if ( + !(((O | 0) == (H | 0)) | (((O & L) | 0) == (N | 0))) + ) { + Q = N + R = 31 + break a + } + if ( + ( + ( + (f[(M + 8) >> 2] | 0) == (B | 0) + ? (f[(M + 12) >> 2] | 0) == (E | 0) + : 0 + ) + ? (f[(M + 16) >> 2] | 0) == (F | 0) + : 0 + ) + ? (f[(M + 20) >> 2] | 0) == (G | 0) + : 0 + ) + break a + M = f[M >> 2] | 0 + if (!M) { + Q = N + R = 31 + break a + } + } + } else S = P + while (1) { + M = f[(S + 4) >> 2] | 0 + if ((M | 0) != (H | 0)) { + if (M >>> 0 < J >>> 0) T = M + else T = (M >>> 0) % (J >>> 0) | 0 + if ((T | 0) != (N | 0)) { + Q = N + R = 31 + break a + } + } + if ( + ( + ( + (f[(S + 8) >> 2] | 0) == (B | 0) + ? (f[(S + 12) >> 2] | 0) == (E | 0) + : 0 + ) + ? (f[(S + 16) >> 2] | 0) == (F | 0) + : 0 + ) + ? (f[(S + 20) >> 2] | 0) == (G | 0) + : 0 + ) + break a + S = f[S >> 2] | 0 + if (!S) { + Q = N + R = 31 + break + } + } + } else { + Q = N + R = 31 + } + } else { + Q = 0 + R = 31 + } + while (0) + if ((R | 0) == 31) { + R = 0 + D = ln(28) | 0 + f[(D + 8) >> 2] = B + f[(D + 12) >> 2] = E + f[(D + 16) >> 2] = F + f[(D + 20) >> 2] = G + f[(D + 24) >> 2] = z + f[(D + 4) >> 2] = H + f[D >> 2] = 0 + U = $((((f[v >> 2] | 0) + 1) | 0) >>> 0) + V = $(J >>> 0) + X = $(n[k >> 2]) + do + if (K | ($(X * V) < U)) { + P = + (J << 1) | + (((J >>> 0 < 3) | ((((J + -1) & J) | 0) != 0)) & 1) + M = ~~$(W($(U / X))) >>> 0 + Wh(g, P >>> 0 < M >>> 0 ? M : P) + P = f[t >> 2] | 0 + M = (P + -1) | 0 + if (!(M & P)) { + Y = P + Z = M & H + break + } + if (H >>> 0 < P >>> 0) { + Y = P + Z = H + } else { + Y = P + Z = (H >>> 0) % (P >>> 0) | 0 + } + } else { + Y = J + Z = Q + } + while (0) + J = ((f[g >> 2] | 0) + (Z << 2)) | 0 + H = f[J >> 2] | 0 + if (!H) { + f[D >> 2] = f[w >> 2] + f[w >> 2] = D + f[J >> 2] = w + J = f[D >> 2] | 0 + if (J | 0) { + K = f[(J + 4) >> 2] | 0 + J = (Y + -1) | 0 + if (J & Y) + if (K >>> 0 < Y >>> 0) _ = K + else _ = (K >>> 0) % (Y >>> 0) | 0 + else _ = K & J + aa = ((f[g >> 2] | 0) + (_ << 2)) | 0 + R = 44 + } + } else { + f[D >> 2] = f[H >> 2] + aa = H + R = 44 + } + if ((R | 0) == 44) { + R = 0 + f[aa >> 2] = D + } + f[v >> 2] = (f[v >> 2] | 0) + 1 + } + H = x + J = f[H >> 2] | 0 + K = un(J | 0, f[(H + 4) >> 2] | 0, z | 0, 0) | 0 + kh(((f[f[y >> 2] >> 2] | 0) + K) | 0, h | 0, J | 0) | 0 + J = f[j >> 2] | 0 + f[(J + (A << 2)) >> 2] = z + ba = (z + 1) | 0 + ca = J + } else { + J = f[j >> 2] | 0 + f[(J + (A << 2)) >> 2] = f[(C + 24) >> 2] + ba = z + ca = J + } + A = (A + 1) | 0 + da = f[l >> 2] | 0 + if (A >>> 0 >= da >>> 0) break + else z = ba + } + if ((ba | 0) == (da | 0)) ea = ca + else { + z = (a + 84) | 0 + if (!(b[z >> 0] | 0)) { + A = f[(a + 72) >> 2] | 0 + h = f[(a + 68) >> 2] | 0 + y = h + if ((A | 0) == (h | 0)) fa = ca + else { + x = (A - h) >> 2 + h = 0 + do { + A = (y + (h << 2)) | 0 + f[A >> 2] = f[(ca + (f[A >> 2] << 2)) >> 2] + h = (h + 1) | 0 + } while (h >>> 0 < x >>> 0) + fa = ca + } + } else { + b[z >> 0] = 0 + z = (a + 68) | 0 + ca = (a + 72) | 0 + x = f[ca >> 2] | 0 + h = f[z >> 2] | 0 + y = (x - h) >> 2 + A = h + h = x + if (da >>> 0 <= y >>> 0) + if ( + da >>> 0 < y >>> 0 + ? ((x = (A + (da << 2)) | 0), (x | 0) != (h | 0)) + : 0 + ) { + f[ca >> 2] = h + (~(((h + -4 - x) | 0) >>> 2) << 2) + ga = da + } else ga = da + else { + Ch(z, (da - y) | 0, 1220) + ga = f[l >> 2] | 0 + } + y = f[j >> 2] | 0 + if (!ga) fa = y + else { + j = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(j + (a << 2)) >> 2] = f[(y + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ga >>> 0) + fa = y + } + } + f[l >> 2] = ba + ea = fa + } + if (!ea) ha = ba + else { + fa = f[o >> 2] | 0 + if ((fa | 0) != (ea | 0)) + f[o >> 2] = fa + (~(((fa + -4 - ea) | 0) >>> 2) << 2) + Oq(ea) + ha = ba + } + } else ha = 0 + ba = f[(g + 8) >> 2] | 0 + if (ba | 0) { + ea = ba + do { + ba = ea + ea = f[ea >> 2] | 0 + Oq(ba) + } while ((ea | 0) != 0) + } + ea = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!ea) { + u = e + return ha | 0 + } + Oq(ea) + u = e + return ha | 0 + } + function nc(a, c, e) { + a = a | 0 + c = c | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = Oa, + T = Oa, + U = Oa, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0 + g = u + u = (u + 48) | 0 + h = (g + 12) | 0 + i = (g + 38) | 0 + j = (g + 32) | 0 + k = g + l = (h + 16) | 0 + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + f[(h + 12) >> 2] = 0 + n[l >> 2] = $(1.0) + m = (a + 80) | 0 + o = f[m >> 2] | 0 + f[k >> 2] = 0 + p = (k + 4) | 0 + f[p >> 2] = 0 + f[(k + 8) >> 2] = 0 + if (o) { + if (o >>> 0 > 1073741823) aq(k) + q = o << 2 + r = ln(q) | 0 + f[k >> 2] = r + s = (r + (o << 2)) | 0 + f[(k + 8) >> 2] = s + sj(r | 0, 0, q | 0) | 0 + f[p >> 2] = s + s = f[e >> 2] | 0 + e = (c + 48) | 0 + q = (c + 40) | 0 + r = (j + 2) | 0 + o = (j + 4) | 0 + t = (h + 4) | 0 + v = (h + 12) | 0 + w = (h + 8) | 0 + x = (a + 40) | 0 + y = (a + 64) | 0 + z = 0 + A = 0 + while (1) { + B = e + C = f[B >> 2] | 0 + D = f[(B + 4) >> 2] | 0 + B = q + E = un(f[B >> 2] | 0, f[(B + 4) >> 2] | 0, (s + A) | 0, 0) | 0 + B = Vn(E | 0, I | 0, C | 0, D | 0) | 0 + D = ((f[f[c >> 2] >> 2] | 0) + B) | 0 + b[i >> 0] = b[D >> 0] | 0 + b[(i + 1) >> 0] = b[(D + 1) >> 0] | 0 + b[(i + 2) >> 0] = b[(D + 2) >> 0] | 0 + b[(i + 3) >> 0] = b[(D + 3) >> 0] | 0 + b[(i + 4) >> 0] = b[(D + 4) >> 0] | 0 + b[(i + 5) >> 0] = b[(D + 5) >> 0] | 0 + im(j | 0, D | 0, 6) | 0 + D = dg(h, j) | 0 + if (!D) { + B = d[j >> 1] | 0 + C = d[r >> 1] | 0 + E = d[o >> 1] | 0 + F = + (((((B ^ 318) & 65535) + 239) ^ (C & 65535)) + 239) ^ (E & 65535) + G = f[t >> 2] | 0 + H = (G | 0) == 0 + a: do + if (!H) { + J = (G + -1) | 0 + K = ((J & G) | 0) == 0 + if (!K) + if (F >>> 0 < G >>> 0) L = F + else L = (F >>> 0) % (G >>> 0) | 0 + else L = F & J + M = f[((f[h >> 2] | 0) + (L << 2)) >> 2] | 0 + if ((M | 0) != 0 ? ((N = f[M >> 2] | 0), (N | 0) != 0) : 0) { + if (K) { + K = N + while (1) { + M = f[(K + 4) >> 2] | 0 + if ( + !(((M | 0) == (F | 0)) | (((M & J) | 0) == (L | 0))) + ) { + O = L + P = 29 + break a + } + M = (K + 8) | 0 + if ( + ( + (d[M >> 1] | 0) == (B << 16) >> 16 + ? (d[(M + 2) >> 1] | 0) == (C << 16) >> 16 + : 0 + ) + ? (d[(K + 12) >> 1] | 0) == (E << 16) >> 16 + : 0 + ) + break a + K = f[K >> 2] | 0 + if (!K) { + O = L + P = 29 + break a + } + } + } else Q = N + while (1) { + K = f[(Q + 4) >> 2] | 0 + if ((K | 0) != (F | 0)) { + if (K >>> 0 < G >>> 0) R = K + else R = (K >>> 0) % (G >>> 0) | 0 + if ((R | 0) != (L | 0)) { + O = L + P = 29 + break a + } + } + K = (Q + 8) | 0 + if ( + ( + (d[K >> 1] | 0) == (B << 16) >> 16 + ? (d[(K + 2) >> 1] | 0) == (C << 16) >> 16 + : 0 + ) + ? (d[(Q + 12) >> 1] | 0) == (E << 16) >> 16 + : 0 + ) + break a + Q = f[Q >> 2] | 0 + if (!Q) { + O = L + P = 29 + break + } + } + } else { + O = L + P = 29 + } + } else { + O = 0 + P = 29 + } + while (0) + if ((P | 0) == 29) { + P = 0 + N = ln(20) | 0 + d[(N + 8) >> 1] = B + d[(N + 10) >> 1] = C + d[(N + 12) >> 1] = E + f[(N + 16) >> 2] = z + f[(N + 4) >> 2] = F + f[N >> 2] = 0 + S = $((((f[v >> 2] | 0) + 1) | 0) >>> 0) + T = $(G >>> 0) + U = $(n[l >> 2]) + do + if (H | ($(U * T) < S)) { + K = + (G << 1) | + (((G >>> 0 < 3) | ((((G + -1) & G) | 0) != 0)) & 1) + J = ~~$(W($(S / U))) >>> 0 + Th(h, K >>> 0 < J >>> 0 ? J : K) + K = f[t >> 2] | 0 + J = (K + -1) | 0 + if (!(J & K)) { + V = K + X = J & F + break + } + if (F >>> 0 < K >>> 0) { + V = K + X = F + } else { + V = K + X = (F >>> 0) % (K >>> 0) | 0 + } + } else { + V = G + X = O + } + while (0) + G = ((f[h >> 2] | 0) + (X << 2)) | 0 + F = f[G >> 2] | 0 + if (!F) { + f[N >> 2] = f[w >> 2] + f[w >> 2] = N + f[G >> 2] = w + G = f[N >> 2] | 0 + if (G | 0) { + H = f[(G + 4) >> 2] | 0 + G = (V + -1) | 0 + if (G & V) + if (H >>> 0 < V >>> 0) Y = H + else Y = (H >>> 0) % (V >>> 0) | 0 + else Y = H & G + Z = ((f[h >> 2] | 0) + (Y << 2)) | 0 + P = 42 + } + } else { + f[N >> 2] = f[F >> 2] + Z = F + P = 42 + } + if ((P | 0) == 42) { + P = 0 + f[Z >> 2] = N + } + f[v >> 2] = (f[v >> 2] | 0) + 1 + } + F = x + G = f[F >> 2] | 0 + H = un(G | 0, f[(F + 4) >> 2] | 0, z | 0, 0) | 0 + kh(((f[f[y >> 2] >> 2] | 0) + H) | 0, i | 0, G | 0) | 0 + G = f[k >> 2] | 0 + f[(G + (A << 2)) >> 2] = z + _ = (z + 1) | 0 + aa = G + } else { + G = f[k >> 2] | 0 + f[(G + (A << 2)) >> 2] = f[(D + 16) >> 2] + _ = z + aa = G + } + A = (A + 1) | 0 + ba = f[m >> 2] | 0 + if (A >>> 0 >= ba >>> 0) break + else z = _ + } + if ((_ | 0) == (ba | 0)) ca = aa + else { + z = (a + 84) | 0 + if (!(b[z >> 0] | 0)) { + A = f[(a + 72) >> 2] | 0 + i = f[(a + 68) >> 2] | 0 + y = i + if ((A | 0) == (i | 0)) da = aa + else { + x = (A - i) >> 2 + i = 0 + do { + A = (y + (i << 2)) | 0 + f[A >> 2] = f[(aa + (f[A >> 2] << 2)) >> 2] + i = (i + 1) | 0 + } while (i >>> 0 < x >>> 0) + da = aa + } + } else { + b[z >> 0] = 0 + z = (a + 68) | 0 + aa = (a + 72) | 0 + x = f[aa >> 2] | 0 + i = f[z >> 2] | 0 + y = (x - i) >> 2 + A = i + i = x + if (ba >>> 0 <= y >>> 0) + if ( + ba >>> 0 < y >>> 0 + ? ((x = (A + (ba << 2)) | 0), (x | 0) != (i | 0)) + : 0 + ) { + f[aa >> 2] = i + (~(((i + -4 - x) | 0) >>> 2) << 2) + ea = ba + } else ea = ba + else { + Ch(z, (ba - y) | 0, 1220) + ea = f[m >> 2] | 0 + } + y = f[k >> 2] | 0 + if (!ea) da = y + else { + k = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(k + (a << 2)) >> 2] = f[(y + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ea >>> 0) + da = y + } + } + f[m >> 2] = _ + ca = da + } + if (!ca) fa = _ + else { + da = f[p >> 2] | 0 + if ((da | 0) != (ca | 0)) + f[p >> 2] = da + (~(((da + -4 - ca) | 0) >>> 2) << 2) + Oq(ca) + fa = _ + } + } else fa = 0 + _ = f[(h + 8) >> 2] | 0 + if (_ | 0) { + ca = _ + do { + _ = ca + ca = f[ca >> 2] | 0 + Oq(_) + } while ((ca | 0) != 0) + } + ca = f[h >> 2] | 0 + f[h >> 2] = 0 + if (!ca) { + u = g + return fa | 0 + } + Oq(ca) + u = g + return fa | 0 + } + function oc(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0, + _ = 0 + g = (a + 8) | 0 + Mh(g, b, d, e) + d = f[(a + 48) >> 2] | 0 + h = f[(a + 52) >> 2] | 0 + i = e >>> 0 > 1073741823 ? -1 : e << 2 + j = Lq(i) | 0 + sj(j | 0, 0, i | 0) | 0 + k = Lq(i) | 0 + sj(k | 0, 0, i | 0) | 0 + i = f[(a + 56) >> 2] | 0 + l = (i + 4) | 0 + m = f[l >> 2] | 0 + n = f[i >> 2] | 0 + o = (m - n) | 0 + a: do + if ((o | 0) > 4) { + p = o >> 2 + q = (e | 0) > 0 + r = (a + 16) | 0 + s = (a + 32) | 0 + t = (a + 12) | 0 + u = (a + 28) | 0 + v = (a + 20) | 0 + w = (a + 24) | 0 + x = (d + 12) | 0 + y = e << 2 + z = (p + -1) | 0 + if (((m - n) >> 2) >>> 0 > z >>> 0) { + A = p + B = z + C = n + } else aq(i) + while (1) { + z = f[(C + (B << 2)) >> 2] | 0 + if (q) sj(j | 0, 0, y | 0) | 0 + if ((z | 0) != -1) { + p = f[x >> 2] | 0 + D = 0 + E = z + while (1) { + F = f[(p + (E << 2)) >> 2] | 0 + if ((F | 0) != -1) { + G = f[d >> 2] | 0 + H = f[h >> 2] | 0 + I = f[(H + (f[(G + (F << 2)) >> 2] << 2)) >> 2] | 0 + J = (F + 1) | 0 + K = ((J >>> 0) % 3 | 0 | 0) == 0 ? (F + -2) | 0 : J + if ((K | 0) == -1) L = -1 + else L = f[(G + (K << 2)) >> 2] | 0 + K = f[(H + (L << 2)) >> 2] | 0 + J = ((((F >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + F) | 0 + if ((J | 0) == -1) M = -1 + else M = f[(G + (J << 2)) >> 2] | 0 + J = f[(H + (M << 2)) >> 2] | 0 + if ( + ((I | 0) < (B | 0)) & + ((K | 0) < (B | 0)) & + ((J | 0) < (B | 0)) + ) { + H = X(I, e) | 0 + I = X(K, e) | 0 + K = X(J, e) | 0 + if (q) { + J = 0 + do { + f[(k + (J << 2)) >> 2] = + (f[(b + ((J + K) << 2)) >> 2] | 0) + + (f[(b + ((J + I) << 2)) >> 2] | 0) - + (f[(b + ((J + H) << 2)) >> 2] | 0) + J = (J + 1) | 0 + } while ((J | 0) != (e | 0)) + if (q) { + J = 0 + do { + H = (j + (J << 2)) | 0 + f[H >> 2] = + (f[H >> 2] | 0) + (f[(k + (J << 2)) >> 2] | 0) + J = (J + 1) | 0 + } while ((J | 0) != (e | 0)) + } + } + N = (D + 1) | 0 + } else N = D + } else N = D + J = ((((E >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + E) | 0 + do + if ( + (J | 0) != -1 + ? ((H = f[(p + (J << 2)) >> 2] | 0), (H | 0) != -1) + : 0 + ) + if (!((H >>> 0) % 3 | 0)) { + O = (H + 2) | 0 + break + } else { + O = (H + -1) | 0 + break + } + else O = -1 + while (0) + E = (O | 0) == (z | 0) ? -1 : O + if ((E | 0) == -1) break + else D = N + } + D = X(B, e) | 0 + if (N) { + if (q) { + E = 0 + do { + z = (j + (E << 2)) | 0 + f[z >> 2] = ((f[z >> 2] | 0) / (N | 0)) | 0 + E = (E + 1) | 0 + } while ((E | 0) != (e | 0)) + } + E = (b + (D << 2)) | 0 + z = (c + (D << 2)) | 0 + p = f[g >> 2] | 0 + if ((p | 0) > 0) { + J = 0 + H = j + I = p + while (1) { + if ((I | 0) > 0) { + p = 0 + do { + K = f[(H + (p << 2)) >> 2] | 0 + G = f[r >> 2] | 0 + if ((K | 0) > (G | 0)) { + F = f[s >> 2] | 0 + f[(F + (p << 2)) >> 2] = G + P = F + } else { + F = f[t >> 2] | 0 + G = f[s >> 2] | 0 + f[(G + (p << 2)) >> 2] = (K | 0) < (F | 0) ? F : K + P = G + } + p = (p + 1) | 0 + } while ((p | 0) < (f[g >> 2] | 0)) + Q = P + } else Q = f[s >> 2] | 0 + p = + ((f[(E + (J << 2)) >> 2] | 0) - + (f[(Q + (J << 2)) >> 2] | 0)) | + 0 + G = (z + (J << 2)) | 0 + f[G >> 2] = p + if ((p | 0) >= (f[u >> 2] | 0)) { + if ((p | 0) > (f[w >> 2] | 0)) { + R = (p - (f[v >> 2] | 0)) | 0 + S = 57 + } + } else { + R = ((f[v >> 2] | 0) + p) | 0 + S = 57 + } + if ((S | 0) == 57) { + S = 0 + f[G >> 2] = R + } + J = (J + 1) | 0 + I = f[g >> 2] | 0 + if ((J | 0) >= (I | 0)) break + else H = Q + } + } + } else { + T = D + S = 30 + } + } else { + T = X(B, e) | 0 + S = 30 + } + if ( + (S | 0) == 30 + ? ((S = 0), + (H = (b + (T << 2)) | 0), + (I = (c + (T << 2)) | 0), + (J = f[g >> 2] | 0), + (J | 0) > 0) + : 0 + ) { + z = 0 + E = (b + ((X((A + -2) | 0, e) | 0) << 2)) | 0 + G = J + while (1) { + if ((G | 0) > 0) { + J = 0 + do { + p = f[(E + (J << 2)) >> 2] | 0 + K = f[r >> 2] | 0 + if ((p | 0) > (K | 0)) { + F = f[s >> 2] | 0 + f[(F + (J << 2)) >> 2] = K + U = F + } else { + F = f[t >> 2] | 0 + K = f[s >> 2] | 0 + f[(K + (J << 2)) >> 2] = (p | 0) < (F | 0) ? F : p + U = K + } + J = (J + 1) | 0 + } while ((J | 0) < (f[g >> 2] | 0)) + V = U + } else V = f[s >> 2] | 0 + J = + ((f[(H + (z << 2)) >> 2] | 0) - + (f[(V + (z << 2)) >> 2] | 0)) | + 0 + K = (I + (z << 2)) | 0 + f[K >> 2] = J + if ((J | 0) >= (f[u >> 2] | 0)) { + if ((J | 0) > (f[w >> 2] | 0)) { + W = (J - (f[v >> 2] | 0)) | 0 + S = 42 + } + } else { + W = ((f[v >> 2] | 0) + J) | 0 + S = 42 + } + if ((S | 0) == 42) { + S = 0 + f[K >> 2] = W + } + z = (z + 1) | 0 + G = f[g >> 2] | 0 + if ((z | 0) >= (G | 0)) break + else E = V + } + } + if ((A | 0) <= 2) break a + C = f[i >> 2] | 0 + E = (B + -1) | 0 + if ((((f[l >> 2] | 0) - C) >> 2) >>> 0 <= E >>> 0) break + else { + G = B + B = E + A = G + } + } + aq(i) + } + while (0) + if ((e | 0) > 0) sj(j | 0, 0, (e << 2) | 0) | 0 + e = f[g >> 2] | 0 + if ((e | 0) <= 0) { + Mq(k) + Mq(j) + return 1 + } + i = (a + 16) | 0 + A = (a + 32) | 0 + B = (a + 12) | 0 + C = (a + 28) | 0 + l = (a + 20) | 0 + V = (a + 24) | 0 + a = 0 + W = j + U = e + while (1) { + if ((U | 0) > 0) { + e = 0 + do { + T = f[(W + (e << 2)) >> 2] | 0 + Q = f[i >> 2] | 0 + if ((T | 0) > (Q | 0)) { + R = f[A >> 2] | 0 + f[(R + (e << 2)) >> 2] = Q + Y = R + } else { + R = f[B >> 2] | 0 + Q = f[A >> 2] | 0 + f[(Q + (e << 2)) >> 2] = (T | 0) < (R | 0) ? R : T + Y = Q + } + e = (e + 1) | 0 + } while ((e | 0) < (f[g >> 2] | 0)) + Z = Y + } else Z = f[A >> 2] | 0 + e = ((f[(b + (a << 2)) >> 2] | 0) - (f[(Z + (a << 2)) >> 2] | 0)) | 0 + Q = (c + (a << 2)) | 0 + f[Q >> 2] = e + if ((e | 0) >= (f[C >> 2] | 0)) { + if ((e | 0) > (f[V >> 2] | 0)) { + _ = (e - (f[l >> 2] | 0)) | 0 + S = 72 + } + } else { + _ = ((f[l >> 2] | 0) + e) | 0 + S = 72 + } + if ((S | 0) == 72) { + S = 0 + f[Q >> 2] = _ + } + a = (a + 1) | 0 + U = f[g >> 2] | 0 + if ((a | 0) >= (U | 0)) break + else W = Z + } + Mq(k) + Mq(j) + return 1 + } + function pc(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + u = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + Y = 0, + Z = 0 + g = (a + 8) | 0 + Mh(g, b, d, e) + d = f[(a + 48) >> 2] | 0 + h = f[(a + 52) >> 2] | 0 + i = e >>> 0 > 1073741823 ? -1 : e << 2 + j = Lq(i) | 0 + sj(j | 0, 0, i | 0) | 0 + k = Lq(i) | 0 + sj(k | 0, 0, i | 0) | 0 + i = f[(a + 56) >> 2] | 0 + l = (i + 4) | 0 + m = f[l >> 2] | 0 + n = f[i >> 2] | 0 + o = (m - n) | 0 + a: do + if ((o | 0) > 4) { + p = o >> 2 + q = (e | 0) > 0 + r = (a + 16) | 0 + s = (a + 32) | 0 + t = (a + 12) | 0 + u = (a + 28) | 0 + v = (a + 20) | 0 + w = (a + 24) | 0 + x = (d + 64) | 0 + y = (d + 28) | 0 + z = e << 2 + A = (p + -1) | 0 + if (((m - n) >> 2) >>> 0 > A >>> 0) { + B = p + C = A + D = n + } else aq(i) + while (1) { + A = f[(D + (C << 2)) >> 2] | 0 + if (q) sj(j | 0, 0, z | 0) | 0 + if ((A | 0) != -1) { + p = f[d >> 2] | 0 + E = 0 + F = A + while (1) { + if ( + ( + ((f[(p + ((F >>> 5) << 2)) >> 2] & (1 << (F & 31))) | 0) == + 0 + ? ((G = + f[ + ((f[((f[x >> 2] | 0) + 12) >> 2] | 0) + (F << 2)) >> + 2 + ] | 0), + (G | 0) != -1) + : 0 + ) + ? ((H = f[y >> 2] | 0), + (I = f[h >> 2] | 0), + (J = f[(I + (f[(H + (G << 2)) >> 2] << 2)) >> 2] | 0), + (K = (G + 1) | 0), + (L = + f[ + (I + + (f[ + (H + + ((((K >>> 0) % 3 | 0 | 0) == 0 + ? (G + -2) | 0 + : K) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + (K = + f[ + (I + + (f[ + (H + + (((((G >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + + G) << + 2)) >> + 2 + ] << + 2)) >> + 2 + ] | 0), + ((J | 0) < (C | 0)) & + ((L | 0) < (C | 0)) & + ((K | 0) < (C | 0))) + : 0 + ) { + G = X(J, e) | 0 + J = X(L, e) | 0 + L = X(K, e) | 0 + if (q) { + K = 0 + do { + f[(k + (K << 2)) >> 2] = + (f[(b + ((K + L) << 2)) >> 2] | 0) + + (f[(b + ((K + J) << 2)) >> 2] | 0) - + (f[(b + ((K + G) << 2)) >> 2] | 0) + K = (K + 1) | 0 + } while ((K | 0) != (e | 0)) + if (q) { + K = 0 + do { + G = (j + (K << 2)) | 0 + f[G >> 2] = + (f[G >> 2] | 0) + (f[(k + (K << 2)) >> 2] | 0) + K = (K + 1) | 0 + } while ((K | 0) != (e | 0)) + } + } + M = (E + 1) | 0 + } else M = E + K = ((((F >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + F) | 0 + do + if ( + ( + (K | 0) != -1 + ? ((f[(p + ((K >>> 5) << 2)) >> 2] & (1 << (K & 31))) | + 0) == + 0 + : 0 + ) + ? ((G = + f[ + ((f[((f[x >> 2] | 0) + 12) >> 2] | 0) + (K << 2)) >> + 2 + ] | 0), + (G | 0) != -1) + : 0 + ) + if (!((G >>> 0) % 3 | 0)) { + N = (G + 2) | 0 + break + } else { + N = (G + -1) | 0 + break + } + else N = -1 + while (0) + F = (N | 0) == (A | 0) ? -1 : N + if ((F | 0) == -1) break + else E = M + } + E = X(C, e) | 0 + if (M) { + if (q) { + F = 0 + do { + A = (j + (F << 2)) | 0 + f[A >> 2] = ((f[A >> 2] | 0) / (M | 0)) | 0 + F = (F + 1) | 0 + } while ((F | 0) != (e | 0)) + } + F = (b + (E << 2)) | 0 + A = (c + (E << 2)) | 0 + p = f[g >> 2] | 0 + if ((p | 0) > 0) { + K = 0 + G = j + J = p + while (1) { + if ((J | 0) > 0) { + p = 0 + do { + L = f[(G + (p << 2)) >> 2] | 0 + H = f[r >> 2] | 0 + if ((L | 0) > (H | 0)) { + I = f[s >> 2] | 0 + f[(I + (p << 2)) >> 2] = H + O = I + } else { + I = f[t >> 2] | 0 + H = f[s >> 2] | 0 + f[(H + (p << 2)) >> 2] = (L | 0) < (I | 0) ? I : L + O = H + } + p = (p + 1) | 0 + } while ((p | 0) < (f[g >> 2] | 0)) + P = O + } else P = f[s >> 2] | 0 + p = + ((f[(F + (K << 2)) >> 2] | 0) - + (f[(P + (K << 2)) >> 2] | 0)) | + 0 + H = (A + (K << 2)) | 0 + f[H >> 2] = p + if ((p | 0) >= (f[u >> 2] | 0)) { + if ((p | 0) > (f[w >> 2] | 0)) { + Q = (p - (f[v >> 2] | 0)) | 0 + R = 55 + } + } else { + Q = ((f[v >> 2] | 0) + p) | 0 + R = 55 + } + if ((R | 0) == 55) { + R = 0 + f[H >> 2] = Q + } + K = (K + 1) | 0 + J = f[g >> 2] | 0 + if ((K | 0) >= (J | 0)) break + else G = P + } + } + } else { + S = E + R = 28 + } + } else { + S = X(C, e) | 0 + R = 28 + } + if ( + (R | 0) == 28 + ? ((R = 0), + (G = (b + (S << 2)) | 0), + (J = (c + (S << 2)) | 0), + (K = f[g >> 2] | 0), + (K | 0) > 0) + : 0 + ) { + A = 0 + F = (b + ((X((B + -2) | 0, e) | 0) << 2)) | 0 + H = K + while (1) { + if ((H | 0) > 0) { + K = 0 + do { + p = f[(F + (K << 2)) >> 2] | 0 + L = f[r >> 2] | 0 + if ((p | 0) > (L | 0)) { + I = f[s >> 2] | 0 + f[(I + (K << 2)) >> 2] = L + T = I + } else { + I = f[t >> 2] | 0 + L = f[s >> 2] | 0 + f[(L + (K << 2)) >> 2] = (p | 0) < (I | 0) ? I : p + T = L + } + K = (K + 1) | 0 + } while ((K | 0) < (f[g >> 2] | 0)) + U = T + } else U = f[s >> 2] | 0 + K = + ((f[(G + (A << 2)) >> 2] | 0) - + (f[(U + (A << 2)) >> 2] | 0)) | + 0 + L = (J + (A << 2)) | 0 + f[L >> 2] = K + if ((K | 0) >= (f[u >> 2] | 0)) { + if ((K | 0) > (f[w >> 2] | 0)) { + V = (K - (f[v >> 2] | 0)) | 0 + R = 40 + } + } else { + V = ((f[v >> 2] | 0) + K) | 0 + R = 40 + } + if ((R | 0) == 40) { + R = 0 + f[L >> 2] = V + } + A = (A + 1) | 0 + H = f[g >> 2] | 0 + if ((A | 0) >= (H | 0)) break + else F = U + } + } + if ((B | 0) <= 2) break a + D = f[i >> 2] | 0 + F = (C + -1) | 0 + if ((((f[l >> 2] | 0) - D) >> 2) >>> 0 <= F >>> 0) break + else { + H = C + C = F + B = H + } + } + aq(i) + } + while (0) + if ((e | 0) > 0) sj(j | 0, 0, (e << 2) | 0) | 0 + e = f[g >> 2] | 0 + if ((e | 0) <= 0) { + Mq(k) + Mq(j) + return 1 + } + i = (a + 16) | 0 + B = (a + 32) | 0 + C = (a + 12) | 0 + D = (a + 28) | 0 + l = (a + 20) | 0 + U = (a + 24) | 0 + a = 0 + V = j + T = e + while (1) { + if ((T | 0) > 0) { + e = 0 + do { + S = f[(V + (e << 2)) >> 2] | 0 + P = f[i >> 2] | 0 + if ((S | 0) > (P | 0)) { + Q = f[B >> 2] | 0 + f[(Q + (e << 2)) >> 2] = P + W = Q + } else { + Q = f[C >> 2] | 0 + P = f[B >> 2] | 0 + f[(P + (e << 2)) >> 2] = (S | 0) < (Q | 0) ? Q : S + W = P + } + e = (e + 1) | 0 + } while ((e | 0) < (f[g >> 2] | 0)) + Y = W + } else Y = f[B >> 2] | 0 + e = ((f[(b + (a << 2)) >> 2] | 0) - (f[(Y + (a << 2)) >> 2] | 0)) | 0 + P = (c + (a << 2)) | 0 + f[P >> 2] = e + if ((e | 0) >= (f[D >> 2] | 0)) { + if ((e | 0) > (f[U >> 2] | 0)) { + Z = (e - (f[l >> 2] | 0)) | 0 + R = 70 + } + } else { + Z = ((f[l >> 2] | 0) + e) | 0 + R = 70 + } + if ((R | 0) == 70) { + R = 0 + f[P >> 2] = Z + } + a = (a + 1) | 0 + T = f[g >> 2] | 0 + if ((a | 0) >= (T | 0)) break + else V = Y + } + Mq(k) + Mq(j) + return 1 + } + function qc(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0 + e = u + u = (u + 64) | 0 + d = (e + 48) | 0 + h = (e + 40) | 0 + i = (e + 32) | 0 + j = (e + 16) | 0 + k = (e + 8) | 0 + l = e + m = (e + 28) | 0 + n = (a + 8) | 0 + o = f[n >> 2] | 0 + if (((o + -2) | 0) >>> 0 <= 28) { + f[(a + 72) >> 2] = o + p = 1 << o + f[(a + 76) >> 2] = p + -1 + o = (p + -2) | 0 + f[(a + 80) >> 2] = o + f[(a + 84) >> 2] = ((o | 0) / 2) | 0 + } + o = (a + 40) | 0 + f[(a + 48) >> 2] = g + g = (a + 88) | 0 + tk(g) + p = (a + 36) | 0 + q = f[p >> 2] | 0 + r = ((f[(q + 4) >> 2] | 0) - (f[q >> 2] | 0)) | 0 + s = r >> 2 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + t = k + f[t >> 2] = 0 + f[(t + 4) >> 2] = 0 + t = l + f[t >> 2] = 0 + f[(t + 4) >> 2] = 0 + if ((r | 0) <= 0) { + u = e + return 1 + } + r = (j + 4) | 0 + t = (j + 8) | 0 + v = (a + 84) | 0 + w = (a + 80) | 0 + x = (h + 4) | 0 + y = (i + 4) | 0 + z = (d + 4) | 0 + A = (k + 4) | 0 + B = (h + 4) | 0 + C = (i + 4) | 0 + D = (d + 4) | 0 + E = (l + 4) | 0 + F = (a + 76) | 0 + a = (k + 4) | 0 + G = (l + 4) | 0 + H = f[q >> 2] | 0 + if ((f[(q + 4) >> 2] | 0) == (H | 0)) { + J = q + aq(J) + } else { + K = 0 + L = H + } + while (1) { + f[m >> 2] = f[(L + (K << 2)) >> 2] + f[d >> 2] = f[m >> 2] + ic(o, d, j) + H = f[j >> 2] | 0 + q = (H | 0) > -1 ? H : (0 - H) | 0 + M = f[r >> 2] | 0 + N = (M | 0) > -1 ? M : (0 - M) | 0 + O = + Vn( + N | 0, + ((((N | 0) < 0) << 31) >> 31) | 0, + q | 0, + ((((q | 0) < 0) << 31) >> 31) | 0, + ) | 0 + q = f[t >> 2] | 0 + N = (q | 0) > -1 + P = N ? q : (0 - q) | 0 + q = Vn(O | 0, I | 0, P | 0, ((((P | 0) < 0) << 31) >> 31) | 0) | 0 + P = I + if (((q | 0) == 0) & ((P | 0) == 0)) { + O = f[v >> 2] | 0 + Q = O + R = j + S = M + T = O + } else { + O = f[v >> 2] | 0 + U = (((O | 0) < 0) << 31) >> 31 + V = un(O | 0, U | 0, H | 0, ((((H | 0) < 0) << 31) >> 31) | 0) | 0 + H = Ik(V | 0, I | 0, q | 0, P | 0) | 0 + f[j >> 2] = H + V = un(O | 0, U | 0, M | 0, ((((M | 0) < 0) << 31) >> 31) | 0) | 0 + M = Ik(V | 0, I | 0, q | 0, P | 0) | 0 + f[r >> 2] = M + P = + (O - + ((H | 0) > -1 ? H : (0 - H) | 0) - + ((M | 0) > -1 ? M : (0 - M) | 0)) | + 0 + Q = N ? P : (0 - P) | 0 + R = t + S = M + T = O + } + f[R >> 2] = Q + O = f[j >> 2] | 0 + do + if ((O | 0) <= -1) { + if ((S | 0) < 0) { + M = f[t >> 2] | 0 + W = (M | 0) > -1 ? M : (0 - M) | 0 + X = M + } else { + M = f[t >> 2] | 0 + W = ((f[w >> 2] | 0) - ((M | 0) > -1 ? M : (0 - M) | 0)) | 0 + X = M + } + if ((X | 0) < 0) { + Y = (S | 0) > -1 ? S : (0 - S) | 0 + Z = W + _ = X + break + } else { + Y = ((f[w >> 2] | 0) - ((S | 0) > -1 ? S : (0 - S) | 0)) | 0 + Z = W + _ = X + break + } + } else { + M = f[t >> 2] | 0 + Y = (M + T) | 0 + Z = (T + S) | 0 + _ = M + } + while (0) + M = (Z | 0) == 0 + P = (Y | 0) == 0 + N = f[w >> 2] | 0 + do + if (Y | Z) { + H = (N | 0) == (Y | 0) + if (!(M & H)) { + q = (N | 0) == (Z | 0) + if (!(P & q)) { + if (M & ((T | 0) < (Y | 0))) { + $ = 0 + aa = ((T << 1) - Y) | 0 + break + } + if (q & ((T | 0) > (Y | 0))) { + $ = Z + aa = ((T << 1) - Y) | 0 + break + } + if (H & ((T | 0) > (Z | 0))) { + $ = ((T << 1) - Z) | 0 + aa = Y + break + } + if (P) { + $ = (T | 0) < (Z | 0) ? ((T << 1) - Z) | 0 : Z + aa = 0 + } else { + $ = Z + aa = Y + } + } else { + $ = Z + aa = Z + } + } else { + $ = Y + aa = Y + } + } else { + $ = N + aa = N + } + while (0) + P = (0 - S) | 0 + M = (0 - _) | 0 + f[j >> 2] = 0 - O + f[r >> 2] = P + f[t >> 2] = M + if ((O | 0) < 1) { + ba = (T - _) | 0 + ca = (T - S) | 0 + } else { + H = (_ | 0) < 1 ? M : _ + M = (S | 0) < 1 ? P : S + ba = (_ | 0) > 0 ? M : (N - M) | 0 + ca = (S | 0) > 0 ? H : (N - H) | 0 + } + H = (ca | 0) == 0 + M = (ba | 0) == 0 + do + if ( + ((ba | ca | 0) != 0 ? ((P = (N | 0) == (ba | 0)), !(H & P)) : 0) + ? ((q = (N | 0) == (ca | 0)), !(M & q)) + : 0 + ) { + if (H & ((T | 0) < (ba | 0))) { + da = 0 + ea = ((T << 1) - ba) | 0 + break + } + if (q & ((T | 0) > (ba | 0))) { + da = N + ea = ((T << 1) - ba) | 0 + break + } + if (P & ((T | 0) > (ca | 0))) { + da = ((T << 1) - ca) | 0 + ea = N + break + } + if (M) { + da = (T | 0) < (ca | 0) ? ((T << 1) - ca) | 0 : ca + ea = 0 + } else { + da = ca + ea = ba + } + } else { + da = N + ea = N + } + while (0) + N = K << 1 + M = (b + (N << 2)) | 0 + H = (M + 4) | 0 + O = f[H >> 2] | 0 + f[h >> 2] = f[M >> 2] + f[x >> 2] = O + f[i >> 2] = $ + f[y >> 2] = aa + Od(d, n, h, i) + O = f[d >> 2] | 0 + f[k >> 2] = O + P = f[z >> 2] | 0 + f[A >> 2] = P + q = f[H >> 2] | 0 + f[h >> 2] = f[M >> 2] + f[B >> 2] = q + f[i >> 2] = da + f[C >> 2] = ea + Od(d, n, h, i) + q = f[d >> 2] | 0 + f[l >> 2] = q + M = f[D >> 2] | 0 + f[E >> 2] = M + H = f[v >> 2] | 0 + if ((H | 0) >= (O | 0)) + if ((O | 0) < ((0 - H) | 0)) fa = ((f[F >> 2] | 0) + O) | 0 + else fa = O + else fa = (O - (f[F >> 2] | 0)) | 0 + f[k >> 2] = fa + if ((H | 0) >= (P | 0)) + if ((P | 0) < ((0 - H) | 0)) ga = ((f[F >> 2] | 0) + P) | 0 + else ga = P + else ga = (P - (f[F >> 2] | 0)) | 0 + f[a >> 2] = ga + if ((H | 0) >= (q | 0)) + if ((q | 0) < ((0 - H) | 0)) ha = ((f[F >> 2] | 0) + q) | 0 + else ha = q + else ha = (q - (f[F >> 2] | 0)) | 0 + f[l >> 2] = ha + if ((H | 0) >= (M | 0)) + if ((M | 0) < ((0 - H) | 0)) ia = ((f[F >> 2] | 0) + M) | 0 + else ia = M + else ia = (M - (f[F >> 2] | 0)) | 0 + f[G >> 2] = ia + if ( + ((((ga | 0) > -1 ? ga : (0 - ga) | 0) + + ((fa | 0) > -1 ? fa : (0 - fa) | 0)) | + 0) < + ((((ha | 0) > -1 ? ha : (0 - ha) | 0) + + ((ia | 0) > -1 ? ia : (0 - ia) | 0)) | + 0) + ) { + fj(g, 0) + ja = k + } else { + fj(g, 1) + ja = l + } + M = f[ja >> 2] | 0 + if ((M | 0) < 0) ka = ((f[F >> 2] | 0) + M) | 0 + else ka = M + M = (c + (N << 2)) | 0 + f[M >> 2] = ka + N = f[(ja + 4) >> 2] | 0 + if ((N | 0) < 0) la = ((f[F >> 2] | 0) + N) | 0 + else la = N + f[(M + 4) >> 2] = la + K = (K + 1) | 0 + if ((K | 0) >= (s | 0)) { + ma = 5 + break + } + M = f[p >> 2] | 0 + L = f[M >> 2] | 0 + if ((((f[(M + 4) >> 2] | 0) - L) >> 2) >>> 0 <= K >>> 0) { + J = M + ma = 6 + break + } + } + if ((ma | 0) == 5) { + u = e + return 1 + } else if ((ma | 0) == 6) aq(J) + return 0 + } + function rc(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + I = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0 + c = u + u = (u + 48) | 0 + d = (c + 24) | 0 + e = (c + 12) | 0 + g = c + if (!b) { + h = 0 + u = c + return h | 0 + } + i = (a + 12) | 0 + j = (a + 4) | 0 + k = f[j >> 2] | 0 + l = f[a >> 2] | 0 + m = (k - l) >> 2 + n = (a + 16) | 0 + o = f[n >> 2] | 0 + p = f[i >> 2] | 0 + q = (o - p) >> 2 + r = p + p = o + if (m >>> 0 <= q >>> 0) + if ( + m >>> 0 < q >>> 0 ? ((o = (r + (m << 2)) | 0), (o | 0) != (p | 0)) : 0 + ) { + f[n >> 2] = p + (~(((p + -4 - o) | 0) >>> 2) << 2) + s = l + t = k + } else { + s = l + t = k + } + else { + Ch(i, (m - q) | 0, 6140) + s = f[a >> 2] | 0 + t = f[j >> 2] | 0 + } + f[d >> 2] = 0 + q = (d + 4) | 0 + f[q >> 2] = 0 + f[(d + 8) >> 2] = 0 + gk(d, (t - s) >> 2) + s = f[j >> 2] | 0 + t = f[a >> 2] | 0 + if ((s | 0) == (t | 0)) { + v = s + w = s + } else { + m = f[d >> 2] | 0 + k = m + l = k + o = 0 + p = s + s = k + k = t + t = m + while (1) { + m = f[(k + (o << 2)) >> 2] | 0 + n = f[q >> 2] | 0 + if (m >>> 0 < ((n - t) >> 2) >>> 0) { + x = l + y = s + z = k + A = p + } else { + r = (m + 1) | 0 + f[e >> 2] = 0 + B = (n - t) >> 2 + C = t + D = n + if (r >>> 0 <= B >>> 0) + if ( + r >>> 0 < B >>> 0 + ? ((n = (C + (r << 2)) | 0), (n | 0) != (D | 0)) + : 0 + ) { + f[q >> 2] = D + (~(((D + -4 - n) | 0) >>> 2) << 2) + E = l + F = p + G = k + } else { + E = l + F = p + G = k + } + else { + Ch(d, (r - B) | 0, e) + E = f[d >> 2] | 0 + F = f[j >> 2] | 0 + G = f[a >> 2] | 0 + } + x = E + y = E + z = G + A = F + } + B = (y + (m << 2)) | 0 + f[B >> 2] = (f[B >> 2] | 0) + 1 + o = (o + 1) | 0 + if (o >>> 0 >= ((A - z) >> 2) >>> 0) { + v = z + w = A + break + } else { + l = x + p = A + s = y + k = z + t = y + } + } + } + y = (w - v) | 0 + v = y >> 2 + f[e >> 2] = 0 + w = (e + 4) | 0 + f[w >> 2] = 0 + f[(e + 8) >> 2] = 0 + if (!v) { + H = 0 + I = 0 + } else { + if (v >>> 0 > 536870911) aq(e) + t = ln(y << 1) | 0 + f[w >> 2] = t + f[e >> 2] = t + y = (t + (v << 3)) | 0 + f[(e + 8) >> 2] = y + z = v + v = t + k = t + while (1) { + s = v + f[s >> 2] = -1 + f[(s + 4) >> 2] = -1 + s = (k + 8) | 0 + A = (z + -1) | 0 + if (!A) break + else { + z = A + v = s + k = s + } + } + f[w >> 2] = y + H = t + I = t + } + t = f[q >> 2] | 0 + y = f[d >> 2] | 0 + k = (t - y) | 0 + v = k >> 2 + f[g >> 2] = 0 + z = (g + 4) | 0 + f[z >> 2] = 0 + f[(g + 8) >> 2] = 0 + s = y + do + if (v) + if (v >>> 0 > 1073741823) aq(g) + else { + A = ln(k) | 0 + f[g >> 2] = A + p = (A + (v << 2)) | 0 + f[(g + 8) >> 2] = p + sj(A | 0, 0, k | 0) | 0 + f[z >> 2] = p + J = A + K = p + L = A + break + } + else { + J = 0 + K = 0 + L = 0 + } + while (0) + if ((t | 0) != (y | 0)) { + y = 0 + t = 0 + while (1) { + f[(J + (t << 2)) >> 2] = y + k = (t + 1) | 0 + if (k >>> 0 < v >>> 0) { + y = ((f[(s + (t << 2)) >> 2] | 0) + y) | 0 + t = k + } else break + } + } + t = f[j >> 2] | 0 + j = f[a >> 2] | 0 + y = j + if ((t | 0) != (j | 0)) { + k = (a + 40) | 0 + a = (t - j) >> 2 + j = H + t = H + g = H + A = H + p = H + x = H + l = 0 + o = J + while (1) { + F = f[(y + (l << 2)) >> 2] | 0 + G = (l + 1) | 0 + E = ((G >>> 0) % 3 | 0 | 0) == 0 ? (l + -2) | 0 : G + if ((E | 0) == -1) M = -1 + else M = f[(y + (E << 2)) >> 2] | 0 + E = ((l >>> 0) % 3 | 0 | 0) == 0 + G = ((E ? 2 : -1) + l) | 0 + if ((G | 0) == -1) N = -1 + else N = f[(y + (G << 2)) >> 2] | 0 + if ( + E + ? ((M | 0) == (N | 0)) | + (((F | 0) == (M | 0)) | ((F | 0) == (N | 0))) + : 0 + ) { + f[k >> 2] = (f[k >> 2] | 0) + 1 + O = j + P = t + Q = g + R = A + S = p + T = x + U = (l + 2) | 0 + V = o + } else W = 51 + a: do + if ((W | 0) == 51) { + W = 0 + E = f[(s + (N << 2)) >> 2] | 0 + b: do + if ((E | 0) > 0) { + G = 0 + B = f[(o + (N << 2)) >> 2] | 0 + while (1) { + m = f[(p + (B << 3)) >> 2] | 0 + if ((m | 0) == -1) { + X = j + Y = t + Z = A + _ = p + break b + } + if ((m | 0) == (M | 0)) { + m = f[(p + (B << 3) + 4) >> 2] | 0 + if ((m | 0) == -1) $ = -1 + else $ = f[(y + (m << 2)) >> 2] | 0 + if ((F | 0) != ($ | 0)) break + } + m = (G + 1) | 0 + if ((m | 0) < (E | 0)) { + G = m + B = (B + 1) | 0 + } else { + X = j + Y = t + Z = A + _ = p + break b + } + } + m = f[(A + (B << 3) + 4) >> 2] | 0 + r = G + n = B + D = t + while (1) { + r = (r + 1) | 0 + if ((r | 0) >= (E | 0)) break + C = (n + 1) | 0 + f[(D + (n << 3)) >> 2] = f[(D + (C << 3)) >> 2] + f[(D + (n << 3) + 4) >> 2] = f[(D + (C << 3) + 4) >> 2] + if ((f[(j + (n << 3)) >> 2] | 0) == -1) break + else { + n = C + D = j + } + } + f[(g + (n << 3)) >> 2] = -1 + if ((m | 0) == -1) { + X = g + Y = g + Z = g + _ = g + } else { + D = f[i >> 2] | 0 + f[(D + (l << 2)) >> 2] = m + f[(D + (m << 2)) >> 2] = l + O = g + P = g + Q = g + R = g + S = g + T = x + U = l + V = o + break a + } + } else { + X = j + Y = t + Z = A + _ = p + } + while (0) + E = f[(s + (M << 2)) >> 2] | 0 + if ((E | 0) > 0) { + D = 0 + r = f[(J + (M << 2)) >> 2] | 0 + while (1) { + aa = (x + (r << 3)) | 0 + if ((f[aa >> 2] | 0) == -1) break + D = (D + 1) | 0 + if ((D | 0) >= (E | 0)) { + O = x + P = x + Q = x + R = x + S = x + T = x + U = l + V = J + break a + } else r = (r + 1) | 0 + } + f[aa >> 2] = N + f[(H + (r << 3) + 4) >> 2] = l + O = H + P = H + Q = H + R = H + S = H + T = H + U = l + V = J + } else { + O = X + P = Y + Q = g + R = Z + S = _ + T = x + U = l + V = o + } + } + while (0) + l = (U + 1) | 0 + if (l >>> 0 >= a >>> 0) break + else { + j = O + t = P + g = Q + A = R + p = S + x = T + o = V + } + } + } + f[b >> 2] = v + if (!J) { + ba = H + ca = I + } else { + if ((K | 0) != (J | 0)) + f[z >> 2] = K + (~(((K + -4 - J) | 0) >>> 2) << 2) + Oq(L) + L = f[e >> 2] | 0 + ba = L + ca = L + } + if (ba | 0) { + L = f[w >> 2] | 0 + if ((L | 0) != (ba | 0)) + f[w >> 2] = L + (~(((L + -8 - ba) | 0) >>> 3) << 3) + Oq(ca) + } + ca = f[d >> 2] | 0 + if (ca | 0) { + d = f[q >> 2] | 0 + if ((d | 0) != (ca | 0)) + f[q >> 2] = d + (~(((d + -4 - ca) | 0) >>> 2) << 2) + Oq(ca) + } + h = 1 + u = c + return h | 0 + } + function sc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = Oa, + S = Oa, + T = Oa, + U = 0, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0 + e = u + u = (u + 48) | 0 + g = (e + 12) | 0 + h = (e + 35) | 0 + i = (e + 32) | 0 + j = e + k = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[k >> 2] = $(1.0) + l = (a + 80) | 0 + m = f[l >> 2] | 0 + f[j >> 2] = 0 + o = (j + 4) | 0 + f[o >> 2] = 0 + f[(j + 8) >> 2] = 0 + if (m) { + if (m >>> 0 > 1073741823) aq(j) + p = m << 2 + q = ln(p) | 0 + f[j >> 2] = q + r = (q + (m << 2)) | 0 + f[(j + 8) >> 2] = r + sj(q | 0, 0, p | 0) | 0 + f[o >> 2] = r + r = f[d >> 2] | 0 + d = (c + 48) | 0 + p = (c + 40) | 0 + q = (i + 1) | 0 + m = (i + 2) | 0 + s = (g + 4) | 0 + t = (g + 12) | 0 + v = (g + 8) | 0 + w = (a + 40) | 0 + x = (a + 64) | 0 + y = 0 + z = 0 + while (1) { + A = d + B = f[A >> 2] | 0 + C = f[(A + 4) >> 2] | 0 + A = p + D = un(f[A >> 2] | 0, f[(A + 4) >> 2] | 0, (r + y) | 0, 0) | 0 + A = Vn(D | 0, I | 0, B | 0, C | 0) | 0 + C = ((f[f[c >> 2] >> 2] | 0) + A) | 0 + b[h >> 0] = b[C >> 0] | 0 + b[(h + 1) >> 0] = b[(C + 1) >> 0] | 0 + b[(h + 2) >> 0] = b[(C + 2) >> 0] | 0 + im(i | 0, C | 0, 3) | 0 + C = jg(g, i) | 0 + if (!C) { + A = b[i >> 0] | 0 + B = b[q >> 0] | 0 + D = b[m >> 0] | 0 + E = (((((A & 255) ^ 318) + 239) ^ (B & 255)) + 239) ^ (D & 255) + F = f[s >> 2] | 0 + G = (F | 0) == 0 + a: do + if (!G) { + H = (F + -1) | 0 + J = ((H & F) | 0) == 0 + if (!J) + if (E >>> 0 < F >>> 0) K = E + else K = (E >>> 0) % (F >>> 0) | 0 + else K = E & H + L = f[((f[g >> 2] | 0) + (K << 2)) >> 2] | 0 + if ((L | 0) != 0 ? ((M = f[L >> 2] | 0), (M | 0) != 0) : 0) { + if (J) { + J = M + while (1) { + L = f[(J + 4) >> 2] | 0 + if ( + !(((L | 0) == (E | 0)) | (((L & H) | 0) == (K | 0))) + ) { + N = K + O = 29 + break a + } + L = (J + 8) | 0 + if ( + ( + (b[L >> 0] | 0) == (A << 24) >> 24 + ? (b[(L + 1) >> 0] | 0) == (B << 24) >> 24 + : 0 + ) + ? (b[(L + 2) >> 0] | 0) == (D << 24) >> 24 + : 0 + ) + break a + J = f[J >> 2] | 0 + if (!J) { + N = K + O = 29 + break a + } + } + } else P = M + while (1) { + J = f[(P + 4) >> 2] | 0 + if ((J | 0) != (E | 0)) { + if (J >>> 0 < F >>> 0) Q = J + else Q = (J >>> 0) % (F >>> 0) | 0 + if ((Q | 0) != (K | 0)) { + N = K + O = 29 + break a + } + } + J = (P + 8) | 0 + if ( + ( + (b[J >> 0] | 0) == (A << 24) >> 24 + ? (b[(J + 1) >> 0] | 0) == (B << 24) >> 24 + : 0 + ) + ? (b[(J + 2) >> 0] | 0) == (D << 24) >> 24 + : 0 + ) + break a + P = f[P >> 2] | 0 + if (!P) { + N = K + O = 29 + break + } + } + } else { + N = K + O = 29 + } + } else { + N = 0 + O = 29 + } + while (0) + if ((O | 0) == 29) { + O = 0 + M = ln(16) | 0 + b[(M + 8) >> 0] = A + b[(M + 9) >> 0] = B + b[(M + 10) >> 0] = D + f[(M + 12) >> 2] = z + f[(M + 4) >> 2] = E + f[M >> 2] = 0 + R = $((((f[t >> 2] | 0) + 1) | 0) >>> 0) + S = $(F >>> 0) + T = $(n[k >> 2]) + do + if (G | ($(T * S) < R)) { + J = + (F << 1) | + (((F >>> 0 < 3) | ((((F + -1) & F) | 0) != 0)) & 1) + H = ~~$(W($(R / T))) >>> 0 + _h(g, J >>> 0 < H >>> 0 ? H : J) + J = f[s >> 2] | 0 + H = (J + -1) | 0 + if (!(H & J)) { + U = J + V = H & E + break + } + if (E >>> 0 < J >>> 0) { + U = J + V = E + } else { + U = J + V = (E >>> 0) % (J >>> 0) | 0 + } + } else { + U = F + V = N + } + while (0) + F = ((f[g >> 2] | 0) + (V << 2)) | 0 + E = f[F >> 2] | 0 + if (!E) { + f[M >> 2] = f[v >> 2] + f[v >> 2] = M + f[F >> 2] = v + F = f[M >> 2] | 0 + if (F | 0) { + G = f[(F + 4) >> 2] | 0 + F = (U + -1) | 0 + if (F & U) + if (G >>> 0 < U >>> 0) X = G + else X = (G >>> 0) % (U >>> 0) | 0 + else X = G & F + Y = ((f[g >> 2] | 0) + (X << 2)) | 0 + O = 42 + } + } else { + f[M >> 2] = f[E >> 2] + Y = E + O = 42 + } + if ((O | 0) == 42) { + O = 0 + f[Y >> 2] = M + } + f[t >> 2] = (f[t >> 2] | 0) + 1 + } + E = w + F = f[E >> 2] | 0 + G = un(F | 0, f[(E + 4) >> 2] | 0, z | 0, 0) | 0 + kh(((f[f[x >> 2] >> 2] | 0) + G) | 0, h | 0, F | 0) | 0 + F = f[j >> 2] | 0 + f[(F + (y << 2)) >> 2] = z + Z = (z + 1) | 0 + _ = F + } else { + F = f[j >> 2] | 0 + f[(F + (y << 2)) >> 2] = f[(C + 12) >> 2] + Z = z + _ = F + } + y = (y + 1) | 0 + aa = f[l >> 2] | 0 + if (y >>> 0 >= aa >>> 0) break + else z = Z + } + if ((Z | 0) == (aa | 0)) ba = _ + else { + z = (a + 84) | 0 + if (!(b[z >> 0] | 0)) { + y = f[(a + 72) >> 2] | 0 + h = f[(a + 68) >> 2] | 0 + x = h + if ((y | 0) == (h | 0)) ca = _ + else { + w = (y - h) >> 2 + h = 0 + do { + y = (x + (h << 2)) | 0 + f[y >> 2] = f[(_ + (f[y >> 2] << 2)) >> 2] + h = (h + 1) | 0 + } while (h >>> 0 < w >>> 0) + ca = _ + } + } else { + b[z >> 0] = 0 + z = (a + 68) | 0 + _ = (a + 72) | 0 + w = f[_ >> 2] | 0 + h = f[z >> 2] | 0 + x = (w - h) >> 2 + y = h + h = w + if (aa >>> 0 <= x >>> 0) + if ( + aa >>> 0 < x >>> 0 + ? ((w = (y + (aa << 2)) | 0), (w | 0) != (h | 0)) + : 0 + ) { + f[_ >> 2] = h + (~(((h + -4 - w) | 0) >>> 2) << 2) + da = aa + } else da = aa + else { + Ch(z, (aa - x) | 0, 1220) + da = f[l >> 2] | 0 + } + x = f[j >> 2] | 0 + if (!da) ca = x + else { + j = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(j + (a << 2)) >> 2] = f[(x + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < da >>> 0) + ca = x + } + } + f[l >> 2] = Z + ba = ca + } + if (!ba) ea = Z + else { + ca = f[o >> 2] | 0 + if ((ca | 0) != (ba | 0)) + f[o >> 2] = ca + (~(((ca + -4 - ba) | 0) >>> 2) << 2) + Oq(ba) + ea = Z + } + } else ea = 0 + Z = f[(g + 8) >> 2] | 0 + if (Z | 0) { + ba = Z + do { + Z = ba + ba = f[ba >> 2] | 0 + Oq(Z) + } while ((ba | 0) != 0) + } + ba = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!ba) { + u = e + return ea | 0 + } + Oq(ba) + u = e + return ea | 0 + } + function tc(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = 0, + T = 0, + U = 0, + V = 0, + W = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + $ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0, + ga = 0, + ha = 0, + ia = 0, + ja = 0, + ka = 0, + la = 0, + ma = 0 + e = u + u = (u + 64) | 0 + d = (e + 48) | 0 + h = (e + 40) | 0 + i = (e + 32) | 0 + j = (e + 16) | 0 + k = (e + 8) | 0 + l = e + m = (e + 28) | 0 + n = (a + 8) | 0 + o = f[n >> 2] | 0 + if (((o + -2) | 0) >>> 0 <= 28) { + f[(a + 72) >> 2] = o + p = 1 << o + f[(a + 76) >> 2] = p + -1 + o = (p + -2) | 0 + f[(a + 80) >> 2] = o + f[(a + 84) >> 2] = ((o | 0) / 2) | 0 + } + o = (a + 40) | 0 + f[(a + 48) >> 2] = g + g = (a + 88) | 0 + tk(g) + p = (a + 36) | 0 + q = f[p >> 2] | 0 + r = ((f[(q + 4) >> 2] | 0) - (f[q >> 2] | 0)) | 0 + s = r >> 2 + f[j >> 2] = 0 + f[(j + 4) >> 2] = 0 + f[(j + 8) >> 2] = 0 + t = k + f[t >> 2] = 0 + f[(t + 4) >> 2] = 0 + t = l + f[t >> 2] = 0 + f[(t + 4) >> 2] = 0 + if ((r | 0) <= 0) { + u = e + return 1 + } + r = (j + 4) | 0 + t = (j + 8) | 0 + v = (a + 84) | 0 + w = (a + 80) | 0 + x = (h + 4) | 0 + y = (i + 4) | 0 + z = (d + 4) | 0 + A = (k + 4) | 0 + B = (h + 4) | 0 + C = (i + 4) | 0 + D = (d + 4) | 0 + E = (l + 4) | 0 + F = (a + 76) | 0 + a = (k + 4) | 0 + G = (l + 4) | 0 + H = f[q >> 2] | 0 + if ((f[(q + 4) >> 2] | 0) == (H | 0)) { + J = q + aq(J) + } else { + K = 0 + L = H + } + while (1) { + f[m >> 2] = f[(L + (K << 2)) >> 2] + f[d >> 2] = f[m >> 2] + $b(o, d, j) + H = f[j >> 2] | 0 + q = (H | 0) > -1 ? H : (0 - H) | 0 + M = f[r >> 2] | 0 + N = (M | 0) > -1 ? M : (0 - M) | 0 + O = + Vn( + N | 0, + ((((N | 0) < 0) << 31) >> 31) | 0, + q | 0, + ((((q | 0) < 0) << 31) >> 31) | 0, + ) | 0 + q = f[t >> 2] | 0 + N = (q | 0) > -1 + P = N ? q : (0 - q) | 0 + q = Vn(O | 0, I | 0, P | 0, ((((P | 0) < 0) << 31) >> 31) | 0) | 0 + P = I + if (((q | 0) == 0) & ((P | 0) == 0)) { + O = f[v >> 2] | 0 + Q = O + R = j + S = M + T = O + } else { + O = f[v >> 2] | 0 + U = (((O | 0) < 0) << 31) >> 31 + V = un(O | 0, U | 0, H | 0, ((((H | 0) < 0) << 31) >> 31) | 0) | 0 + H = Ik(V | 0, I | 0, q | 0, P | 0) | 0 + f[j >> 2] = H + V = un(O | 0, U | 0, M | 0, ((((M | 0) < 0) << 31) >> 31) | 0) | 0 + M = Ik(V | 0, I | 0, q | 0, P | 0) | 0 + f[r >> 2] = M + P = + (O - + ((H | 0) > -1 ? H : (0 - H) | 0) - + ((M | 0) > -1 ? M : (0 - M) | 0)) | + 0 + Q = N ? P : (0 - P) | 0 + R = t + S = M + T = O + } + f[R >> 2] = Q + O = f[j >> 2] | 0 + do + if ((O | 0) <= -1) { + if ((S | 0) < 0) { + M = f[t >> 2] | 0 + W = (M | 0) > -1 ? M : (0 - M) | 0 + X = M + } else { + M = f[t >> 2] | 0 + W = ((f[w >> 2] | 0) - ((M | 0) > -1 ? M : (0 - M) | 0)) | 0 + X = M + } + if ((X | 0) < 0) { + Y = (S | 0) > -1 ? S : (0 - S) | 0 + Z = W + _ = X + break + } else { + Y = ((f[w >> 2] | 0) - ((S | 0) > -1 ? S : (0 - S) | 0)) | 0 + Z = W + _ = X + break + } + } else { + M = f[t >> 2] | 0 + Y = (M + T) | 0 + Z = (T + S) | 0 + _ = M + } + while (0) + M = (Z | 0) == 0 + P = (Y | 0) == 0 + N = f[w >> 2] | 0 + do + if (Y | Z) { + H = (N | 0) == (Y | 0) + if (!(M & H)) { + q = (N | 0) == (Z | 0) + if (!(P & q)) { + if (M & ((T | 0) < (Y | 0))) { + $ = 0 + aa = ((T << 1) - Y) | 0 + break + } + if (q & ((T | 0) > (Y | 0))) { + $ = Z + aa = ((T << 1) - Y) | 0 + break + } + if (H & ((T | 0) > (Z | 0))) { + $ = ((T << 1) - Z) | 0 + aa = Y + break + } + if (P) { + $ = (T | 0) < (Z | 0) ? ((T << 1) - Z) | 0 : Z + aa = 0 + } else { + $ = Z + aa = Y + } + } else { + $ = Z + aa = Z + } + } else { + $ = Y + aa = Y + } + } else { + $ = N + aa = N + } + while (0) + P = (0 - S) | 0 + M = (0 - _) | 0 + f[j >> 2] = 0 - O + f[r >> 2] = P + f[t >> 2] = M + if ((O | 0) < 1) { + ba = (T - _) | 0 + ca = (T - S) | 0 + } else { + H = (_ | 0) < 1 ? M : _ + M = (S | 0) < 1 ? P : S + ba = (_ | 0) > 0 ? M : (N - M) | 0 + ca = (S | 0) > 0 ? H : (N - H) | 0 + } + H = (ca | 0) == 0 + M = (ba | 0) == 0 + do + if ( + ((ba | ca | 0) != 0 ? ((P = (N | 0) == (ba | 0)), !(H & P)) : 0) + ? ((q = (N | 0) == (ca | 0)), !(M & q)) + : 0 + ) { + if (H & ((T | 0) < (ba | 0))) { + da = 0 + ea = ((T << 1) - ba) | 0 + break + } + if (q & ((T | 0) > (ba | 0))) { + da = N + ea = ((T << 1) - ba) | 0 + break + } + if (P & ((T | 0) > (ca | 0))) { + da = ((T << 1) - ca) | 0 + ea = N + break + } + if (M) { + da = (T | 0) < (ca | 0) ? ((T << 1) - ca) | 0 : ca + ea = 0 + } else { + da = ca + ea = ba + } + } else { + da = N + ea = N + } + while (0) + N = K << 1 + M = (b + (N << 2)) | 0 + H = (M + 4) | 0 + O = f[H >> 2] | 0 + f[h >> 2] = f[M >> 2] + f[x >> 2] = O + f[i >> 2] = $ + f[y >> 2] = aa + Od(d, n, h, i) + O = f[d >> 2] | 0 + f[k >> 2] = O + P = f[z >> 2] | 0 + f[A >> 2] = P + q = f[H >> 2] | 0 + f[h >> 2] = f[M >> 2] + f[B >> 2] = q + f[i >> 2] = da + f[C >> 2] = ea + Od(d, n, h, i) + q = f[d >> 2] | 0 + f[l >> 2] = q + M = f[D >> 2] | 0 + f[E >> 2] = M + H = f[v >> 2] | 0 + if ((H | 0) >= (O | 0)) + if ((O | 0) < ((0 - H) | 0)) fa = ((f[F >> 2] | 0) + O) | 0 + else fa = O + else fa = (O - (f[F >> 2] | 0)) | 0 + f[k >> 2] = fa + if ((H | 0) >= (P | 0)) + if ((P | 0) < ((0 - H) | 0)) ga = ((f[F >> 2] | 0) + P) | 0 + else ga = P + else ga = (P - (f[F >> 2] | 0)) | 0 + f[a >> 2] = ga + if ((H | 0) >= (q | 0)) + if ((q | 0) < ((0 - H) | 0)) ha = ((f[F >> 2] | 0) + q) | 0 + else ha = q + else ha = (q - (f[F >> 2] | 0)) | 0 + f[l >> 2] = ha + if ((H | 0) >= (M | 0)) + if ((M | 0) < ((0 - H) | 0)) ia = ((f[F >> 2] | 0) + M) | 0 + else ia = M + else ia = (M - (f[F >> 2] | 0)) | 0 + f[G >> 2] = ia + if ( + ((((ga | 0) > -1 ? ga : (0 - ga) | 0) + + ((fa | 0) > -1 ? fa : (0 - fa) | 0)) | + 0) < + ((((ha | 0) > -1 ? ha : (0 - ha) | 0) + + ((ia | 0) > -1 ? ia : (0 - ia) | 0)) | + 0) + ) { + fj(g, 0) + ja = k + } else { + fj(g, 1) + ja = l + } + M = f[ja >> 2] | 0 + if ((M | 0) < 0) ka = ((f[F >> 2] | 0) + M) | 0 + else ka = M + M = (c + (N << 2)) | 0 + f[M >> 2] = ka + N = f[(ja + 4) >> 2] | 0 + if ((N | 0) < 0) la = ((f[F >> 2] | 0) + N) | 0 + else la = N + f[(M + 4) >> 2] = la + K = (K + 1) | 0 + if ((K | 0) >= (s | 0)) { + ma = 5 + break + } + M = f[p >> 2] | 0 + L = f[M >> 2] | 0 + if ((((f[(M + 4) >> 2] | 0) - L) >> 2) >>> 0 <= K >>> 0) { + J = M + ma = 6 + break + } + } + if ((ma | 0) == 5) { + u = e + return 1 + } else if ((ma | 0) == 6) aq(J) + return 0 + } + function uc(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0, + p = 0, + q = 0, + r = 0, + s = 0, + t = 0, + v = 0, + w = 0, + x = 0, + y = 0, + z = 0, + A = 0, + B = 0, + C = 0, + D = 0, + E = 0, + F = 0, + G = 0, + H = 0, + J = 0, + K = 0, + L = 0, + M = 0, + N = 0, + O = 0, + P = 0, + Q = 0, + R = 0, + S = Oa, + T = Oa, + U = Oa, + V = 0, + X = 0, + Y = 0, + Z = 0, + _ = 0, + aa = 0, + ba = 0, + ca = 0, + da = 0, + ea = 0, + fa = 0 + e = u + u = (u + 64) | 0 + g = (e + 36) | 0 + h = (e + 24) | 0 + i = (e + 12) | 0 + j = e + k = (g + 16) | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + f[(g + 12) >> 2] = 0 + n[k >> 2] = $(1.0) + l = (a + 80) | 0 + m = f[l >> 2] | 0 + f[j >> 2] = 0 + o = (j + 4) | 0 + f[o >> 2] = 0 + f[(j + 8) >> 2] = 0 + if (m) { + if (m >>> 0 > 1073741823) aq(j) + p = m << 2 + q = ln(p) | 0 + f[j >> 2] = q + r = (q + (m << 2)) | 0 + f[(j + 8) >> 2] = r + sj(q | 0, 0, p | 0) | 0 + f[o >> 2] = r + r = f[d >> 2] | 0 + d = (c + 48) | 0 + p = (c + 40) | 0 + q = (i + 4) | 0 + m = (i + 8) | 0 + s = (g + 4) | 0 + t = (g + 12) | 0 + v = (g + 8) | 0 + w = (a + 40) | 0 + x = (a + 64) | 0 + y = 0 + z = 0 + while (1) { + A = d + B = f[A >> 2] | 0 + C = f[(A + 4) >> 2] | 0 + A = p + D = un(f[A >> 2] | 0, f[(A + 4) >> 2] | 0, (r + z) | 0, 0) | 0 + A = Vn(D | 0, I | 0, B | 0, C | 0) | 0 + C = ((f[f[c >> 2] >> 2] | 0) + A) | 0 + A = h + B = C + D = (A + 12) | 0 + do { + b[A >> 0] = b[B >> 0] | 0 + A = (A + 1) | 0 + B = (B + 1) | 0 + } while ((A | 0) < (D | 0)) + im(i | 0, C | 0, 12) | 0 + B = qg(g, i) | 0 + if (!B) { + A = f[i >> 2] | 0 + D = f[q >> 2] | 0 + E = f[m >> 2] | 0 + F = ((((A ^ 318) + 239) ^ D) + 239) ^ E + G = f[s >> 2] | 0 + H = (G | 0) == 0 + a: do + if (!H) { + J = (G + -1) | 0 + K = ((J & G) | 0) == 0 + if (!K) + if (F >>> 0 < G >>> 0) L = F + else L = (F >>> 0) % (G >>> 0) | 0 + else L = F & J + M = f[((f[g >> 2] | 0) + (L << 2)) >> 2] | 0 + if ((M | 0) != 0 ? ((N = f[M >> 2] | 0), (N | 0) != 0) : 0) { + if (K) { + K = N + while (1) { + M = f[(K + 4) >> 2] | 0 + if ( + !(((M | 0) == (F | 0)) | (((M & J) | 0) == (L | 0))) + ) { + O = L + P = 29 + break a + } + if ( + ( + (f[(K + 8) >> 2] | 0) == (A | 0) + ? (f[(K + 12) >> 2] | 0) == (D | 0) + : 0 + ) + ? (f[(K + 16) >> 2] | 0) == (E | 0) + : 0 + ) + break a + K = f[K >> 2] | 0 + if (!K) { + O = L + P = 29 + break a + } + } + } else Q = N + while (1) { + K = f[(Q + 4) >> 2] | 0 + if ((K | 0) != (F | 0)) { + if (K >>> 0 < G >>> 0) R = K + else R = (K >>> 0) % (G >>> 0) | 0 + if ((R | 0) != (L | 0)) { + O = L + P = 29 + break a + } + } + if ( + ( + (f[(Q + 8) >> 2] | 0) == (A | 0) + ? (f[(Q + 12) >> 2] | 0) == (D | 0) + : 0 + ) + ? (f[(Q + 16) >> 2] | 0) == (E | 0) + : 0 + ) + break a + Q = f[Q >> 2] | 0 + if (!Q) { + O = L + P = 29 + break + } + } + } else { + O = L + P = 29 + } + } else { + O = 0 + P = 29 + } + while (0) + if ((P | 0) == 29) { + P = 0 + C = ln(24) | 0 + f[(C + 8) >> 2] = A + f[(C + 12) >> 2] = D + f[(C + 16) >> 2] = E + f[(C + 20) >> 2] = y + f[(C + 4) >> 2] = F + f[C >> 2] = 0 + S = $((((f[t >> 2] | 0) + 1) | 0) >>> 0) + T = $(G >>> 0) + U = $(n[k >> 2]) + do + if (H | ($(U * T) < S)) { + N = + (G << 1) | + (((G >>> 0 < 3) | ((((G + -1) & G) | 0) != 0)) & 1) + K = ~~$(W($(S / U))) >>> 0 + Xh(g, N >>> 0 < K >>> 0 ? K : N) + N = f[s >> 2] | 0 + K = (N + -1) | 0 + if (!(K & N)) { + V = N + X = K & F + break + } + if (F >>> 0 < N >>> 0) { + V = N + X = F + } else { + V = N + X = (F >>> 0) % (N >>> 0) | 0 + } + } else { + V = G + X = O + } + while (0) + G = ((f[g >> 2] | 0) + (X << 2)) | 0 + F = f[G >> 2] | 0 + if (!F) { + f[C >> 2] = f[v >> 2] + f[v >> 2] = C + f[G >> 2] = v + G = f[C >> 2] | 0 + if (G | 0) { + H = f[(G + 4) >> 2] | 0 + G = (V + -1) | 0 + if (G & V) + if (H >>> 0 < V >>> 0) Y = H + else Y = (H >>> 0) % (V >>> 0) | 0 + else Y = H & G + Z = ((f[g >> 2] | 0) + (Y << 2)) | 0 + P = 42 + } + } else { + f[C >> 2] = f[F >> 2] + Z = F + P = 42 + } + if ((P | 0) == 42) { + P = 0 + f[Z >> 2] = C + } + f[t >> 2] = (f[t >> 2] | 0) + 1 + } + F = w + G = f[F >> 2] | 0 + H = un(G | 0, f[(F + 4) >> 2] | 0, y | 0, 0) | 0 + kh(((f[f[x >> 2] >> 2] | 0) + H) | 0, h | 0, G | 0) | 0 + G = f[j >> 2] | 0 + f[(G + (z << 2)) >> 2] = y + _ = (y + 1) | 0 + aa = G + } else { + G = f[j >> 2] | 0 + f[(G + (z << 2)) >> 2] = f[(B + 20) >> 2] + _ = y + aa = G + } + z = (z + 1) | 0 + ba = f[l >> 2] | 0 + if (z >>> 0 >= ba >>> 0) break + else y = _ + } + if ((_ | 0) == (ba | 0)) ca = aa + else { + y = (a + 84) | 0 + if (!(b[y >> 0] | 0)) { + z = f[(a + 72) >> 2] | 0 + h = f[(a + 68) >> 2] | 0 + x = h + if ((z | 0) == (h | 0)) da = aa + else { + w = (z - h) >> 2 + h = 0 + do { + z = (x + (h << 2)) | 0 + f[z >> 2] = f[(aa + (f[z >> 2] << 2)) >> 2] + h = (h + 1) | 0 + } while (h >>> 0 < w >>> 0) + da = aa + } + } else { + b[y >> 0] = 0 + y = (a + 68) | 0 + aa = (a + 72) | 0 + w = f[aa >> 2] | 0 + h = f[y >> 2] | 0 + x = (w - h) >> 2 + z = h + h = w + if (ba >>> 0 <= x >>> 0) + if ( + ba >>> 0 < x >>> 0 + ? ((w = (z + (ba << 2)) | 0), (w | 0) != (h | 0)) + : 0 + ) { + f[aa >> 2] = h + (~(((h + -4 - w) | 0) >>> 2) << 2) + ea = ba + } else ea = ba + else { + Ch(y, (ba - x) | 0, 1220) + ea = f[l >> 2] | 0 + } + x = f[j >> 2] | 0 + if (!ea) da = x + else { + j = f[(a + 68) >> 2] | 0 + a = 0 + do { + f[(j + (a << 2)) >> 2] = f[(x + (a << 2)) >> 2] + a = (a + 1) | 0 + } while (a >>> 0 < ea >>> 0) + da = x + } + } + f[l >> 2] = _ + ca = da + } + if (!ca) fa = _ + else { + da = f[o >> 2] | 0 + if ((da | 0) != (ca | 0)) + f[o >> 2] = da + (~(((da + -4 - ca) | 0) >>> 2) << 2) + Oq(ca) + fa = _ + } + } else fa = 0 + _ = f[(g + 8) >> 2] | 0 + if (_ | 0) { + ca = _ + do { + _ = ca + ca = f[ca >> 2] | 0 + Oq(_) + } while ((ca | 0) != 0) + } + ca = f[g >> 2] | 0 + f[g >> 2] = 0 + if (!ca) { + u = e + return fa | 0 + } + Oq(ca) + u = e + return fa | 0 + } + function di(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = u + u = (u + 16) | 0 + e = d + Je(e, (a + 40) | 0, f[(a + 8) >> 2] | 0, b, c) + gj(a, e) + a = f[e >> 2] | 0 + f[e >> 2] = 0 + if (!a) { + u = d + return 1 + } + e = (a + 88) | 0 + c = f[e >> 2] | 0 + f[e >> 2] = 0 + if (c | 0) { + e = f[(c + 8) >> 2] | 0 + if (e | 0) { + b = (c + 12) | 0 + if ((f[b >> 2] | 0) != (e | 0)) f[b >> 2] = e + Oq(e) + } + Oq(c) + } + c = f[(a + 68) >> 2] | 0 + if (c | 0) { + e = (a + 72) | 0 + b = f[e >> 2] | 0 + if ((b | 0) != (c | 0)) + f[e >> 2] = b + (~(((b + -4 - c) | 0) >>> 2) << 2) + Oq(c) + } + c = (a + 64) | 0 + b = f[c >> 2] | 0 + f[c >> 2] = 0 + if (b | 0) { + c = f[b >> 2] | 0 + if (c | 0) { + e = (b + 4) | 0 + if ((f[e >> 2] | 0) != (c | 0)) f[e >> 2] = c + Oq(c) + } + Oq(b) + } + Oq(a) + u = d + return 1 + } + function ei(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + Bd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + Bd(a, e) + return + } + function fi(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + e = u + u = (u + 48) | 0 + g = e + h = (e + 32) | 0 + if (!c) { + i = 0 + u = e + return i | 0 + } + Gn(g) + if ( + (dm(c, 0) | 0) != -1 + ? Qa[f[((f[c >> 2] | 0) + 16) >> 2] & 127](c) | 0 + : 0 + ) { + Va[f[((f[c >> 2] | 0) + 20) >> 2] & 127](c) + ch(h, a, c, g) + c = (f[h >> 2] | 0) == 0 + a = (h + 4) | 0 + if ((b[(a + 11) >> 0] | 0) < 0) Oq(f[a >> 2] | 0) + if (c) { + c = f[g >> 2] | 0 + a = (g + 4) | 0 + rg(d, c, (c + ((f[a >> 2] | 0) - c)) | 0) + j = ((f[a >> 2] | 0) - (f[g >> 2] | 0)) | 0 + } else j = 0 + } else j = 0 + a = (g + 12) | 0 + c = f[a >> 2] | 0 + f[a >> 2] = 0 + if (c | 0) Oq(c) + c = f[g >> 2] | 0 + if (c | 0) { + a = (g + 4) | 0 + if ((f[a >> 2] | 0) != (c | 0)) f[a >> 2] = c + Oq(c) + } + i = j + u = e + return i | 0 + } + function gi(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = u + u = (u + 16) | 0 + e = d + Fe(e, (a + 40) | 0, f[(a + 8) >> 2] | 0, b, c) + gj(a, e) + a = f[e >> 2] | 0 + f[e >> 2] = 0 + if (!a) { + u = d + return 1 + } + e = (a + 88) | 0 + c = f[e >> 2] | 0 + f[e >> 2] = 0 + if (c | 0) { + e = f[(c + 8) >> 2] | 0 + if (e | 0) { + b = (c + 12) | 0 + if ((f[b >> 2] | 0) != (e | 0)) f[b >> 2] = e + Oq(e) + } + Oq(c) + } + c = f[(a + 68) >> 2] | 0 + if (c | 0) { + e = (a + 72) | 0 + b = f[e >> 2] | 0 + if ((b | 0) != (c | 0)) + f[e >> 2] = b + (~(((b + -4 - c) | 0) >>> 2) << 2) + Oq(c) + } + c = (a + 64) | 0 + b = f[c >> 2] | 0 + f[c >> 2] = 0 + if (b | 0) { + c = f[b >> 2] | 0 + if (c | 0) { + e = (b + 4) | 0 + if ((f[e >> 2] | 0) != (c | 0)) f[e >> 2] = c + Oq(c) + } + Oq(b) + } + Oq(a) + u = d + return 1 + } + function hi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + b = f[a >> 2] | 0 + if (!b) return + c = (a + 4) | 0 + d = f[c >> 2] | 0 + if ((d | 0) == (b | 0)) e = b + else { + g = d + do { + d = (g + -4) | 0 + f[c >> 2] = d + h = f[d >> 2] | 0 + f[d >> 2] = 0 + if (h | 0) { + d = (h + 88) | 0 + i = f[d >> 2] | 0 + f[d >> 2] = 0 + if (i | 0) { + d = f[(i + 8) >> 2] | 0 + if (d | 0) { + j = (i + 12) | 0 + if ((f[j >> 2] | 0) != (d | 0)) f[j >> 2] = d + Oq(d) + } + Oq(i) + } + i = f[(h + 68) >> 2] | 0 + if (i | 0) { + d = (h + 72) | 0 + j = f[d >> 2] | 0 + if ((j | 0) != (i | 0)) + f[d >> 2] = j + (~(((j + -4 - i) | 0) >>> 2) << 2) + Oq(i) + } + i = (h + 64) | 0 + j = f[i >> 2] | 0 + f[i >> 2] = 0 + if (j | 0) { + i = f[j >> 2] | 0 + if (i | 0) { + d = (j + 4) | 0 + if ((f[d >> 2] | 0) != (i | 0)) f[d >> 2] = i + Oq(i) + } + Oq(j) + } + Oq(h) + } + g = f[c >> 2] | 0 + } while ((g | 0) != (b | 0)) + e = f[a >> 2] | 0 + } + Oq(e) + return + } + function ii(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0, + q = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 8) | 0 + if (!(Ie(a, c) | 0)) { + i = 0 + u = d + return i | 0 + } + j = (a + 36) | 0 + k = (a + 40) | 0 + a = f[j >> 2] | 0 + if ((f[k >> 2] | 0) == (a | 0)) { + i = 1 + u = d + return i | 0 + } + l = (c + 16) | 0 + m = (c + 4) | 0 + n = (h + 1) | 0 + o = 0 + p = a + do { + a = f[(p + (o << 2)) >> 2] | 0 + q = Qa[f[((f[a >> 2] | 0) + 32) >> 2] & 127](a) | 0 + b[h >> 0] = q + q = l + a = f[(q + 4) >> 2] | 0 + if (!(((a | 0) > 0) | (((a | 0) == 0) & ((f[q >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[m >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, n) | 0 + } + o = (o + 1) | 0 + p = f[j >> 2] | 0 + } while (o >>> 0 < (((f[k >> 2] | 0) - p) >> 2) >>> 0) + i = 1 + u = d + return i | 0 + } + function ji(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = u + u = (u + 16) | 0 + d = c + lp(a) + f[(a + 16) >> 2] = 0 + f[(a + 20) >> 2] = 0 + f[(a + 12) >> 2] = a + 16 + e = (a + 24) | 0 + lp(e) + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + a = ln(32) | 0 + f[d >> 2] = a + f[(d + 8) >> 2] = -2147483616 + f[(d + 4) >> 2] = 20 + g = a + h = 14538 + i = (g + 20) | 0 + do { + b[g >> 0] = b[h >> 0] | 0 + g = (g + 1) | 0 + h = (h + 1) | 0 + } while ((g | 0) < (i | 0)) + b[(a + 20) >> 0] = 0 + Vj(e, d, 1) + if ((b[(d + 11) >> 0] | 0) < 0) Oq(f[d >> 2] | 0) + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + a = ln(32) | 0 + f[d >> 2] = a + f[(d + 8) >> 2] = -2147483616 + f[(d + 4) >> 2] = 22 + g = a + h = 14559 + i = (g + 22) | 0 + do { + b[g >> 0] = b[h >> 0] | 0 + g = (g + 1) | 0 + h = (h + 1) | 0 + } while ((g | 0) < (i | 0)) + b[(a + 22) >> 0] = 0 + Vj(e, d, 1) + if ((b[(d + 11) >> 0] | 0) >= 0) { + u = c + return + } + Oq(f[d >> 2] | 0) + u = c + return + } + function ki(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + b = f[(a + 4) >> 2] | 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) { + e = d + do { + d = (e + -4) | 0 + f[c >> 2] = d + g = f[d >> 2] | 0 + f[d >> 2] = 0 + if (g | 0) { + d = (g + 88) | 0 + h = f[d >> 2] | 0 + f[d >> 2] = 0 + if (h | 0) { + d = f[(h + 8) >> 2] | 0 + if (d | 0) { + i = (h + 12) | 0 + if ((f[i >> 2] | 0) != (d | 0)) f[i >> 2] = d + Oq(d) + } + Oq(h) + } + h = f[(g + 68) >> 2] | 0 + if (h | 0) { + d = (g + 72) | 0 + i = f[d >> 2] | 0 + if ((i | 0) != (h | 0)) + f[d >> 2] = i + (~(((i + -4 - h) | 0) >>> 2) << 2) + Oq(h) + } + h = (g + 64) | 0 + i = f[h >> 2] | 0 + f[h >> 2] = 0 + if (i | 0) { + h = f[i >> 2] | 0 + if (h | 0) { + d = (i + 4) | 0 + if ((f[d >> 2] | 0) != (h | 0)) f[d >> 2] = h + Oq(h) + } + Oq(i) + } + Oq(g) + } + e = f[c >> 2] | 0 + } while ((e | 0) != (b | 0)) + } + b = f[a >> 2] | 0 + if (!b) return + Oq(b) + return + } + function li(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + f[g >> 2] = f[(a + 12) >> 2] + h = (b + 16) | 0 + i = h + j = f[i >> 2] | 0 + k = f[(i + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & (j >>> 0 > 0))) { + l = k + m = j + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + j = h + l = f[(j + 4) >> 2] | 0 + m = f[j >> 2] | 0 + } + f[g >> 2] = f[(a + 20) >> 2] + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + u = c + return 1 + } + function mi(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = u + u = (u + 16) | 0 + d = c + e = ln(16) | 0 + f[d >> 2] = e + f[(d + 8) >> 2] = -2147483632 + f[(d + 4) >> 2] = 14 + g = e + h = 14408 + i = (g + 14) | 0 + do { + b[g >> 0] = b[h >> 0] | 0 + g = (g + 1) | 0 + h = (h + 1) | 0 + } while ((g | 0) < (i | 0)) + b[(e + 14) >> 0] = 0 + e = Hk(a, d, -1) | 0 + if ((b[(d + 11) >> 0] | 0) < 0) Oq(f[d >> 2] | 0) + j = ln(16) | 0 + f[d >> 2] = j + f[(d + 8) >> 2] = -2147483632 + f[(d + 4) >> 2] = 14 + g = j + h = 14423 + i = (g + 14) | 0 + do { + b[g >> 0] = b[h >> 0] | 0 + g = (g + 1) | 0 + h = (h + 1) | 0 + } while ((g | 0) < (i | 0)) + b[(j + 14) >> 0] = 0 + j = Hk(a, d, -1) | 0 + if ((b[(d + 11) >> 0] | 0) >= 0) { + k = (e | 0) < (j | 0) + l = k ? j : e + m = (l | 0) == -1 + n = m ? 5 : l + u = c + return n | 0 + } + Oq(f[d >> 2] | 0) + k = (e | 0) < (j | 0) + l = k ? j : e + m = (l | 0) == -1 + n = m ? 5 : l + u = c + return n | 0 + } + function ni(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = u + u = (u + 16) | 0 + d = (c + 8) | 0 + e = (c + 4) | 0 + g = c + f[g >> 2] = f[(a + 12) >> 2] + h = (b + 16) | 0 + i = h + j = f[i >> 2] | 0 + k = f[(i + 4) >> 2] | 0 + if (((k | 0) > 0) | (((k | 0) == 0) & (j >>> 0 > 0))) { + l = k + m = j + } else { + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + j = h + l = f[(j + 4) >> 2] | 0 + m = f[j >> 2] | 0 + } + f[g >> 2] = f[(a + 16) >> 2] + if (((l | 0) > 0) | (((l | 0) == 0) & (m >>> 0 > 0))) { + u = c + return 1 + } + f[e >> 2] = f[(b + 4) >> 2] + f[d >> 2] = f[e >> 2] + Me(b, d, g, (g + 4) | 0) | 0 + u = c + return 1 + } + function oi(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + g = ln(32) | 0 + f[a >> 2] = g + f[(a + 4) >> 2] = c + 8 + c = (a + 8) | 0 + b[c >> 0] = 0 + h = (g + 8) | 0 + f[h >> 2] = f[e >> 2] + f[(h + 4) >> 2] = f[(e + 4) >> 2] + f[(h + 8) >> 2] = f[(e + 8) >> 2] + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + h = (g + 20) | 0 + i = (e + 12) | 0 + f[h >> 2] = 0 + f[(g + 24) >> 2] = 0 + f[(g + 28) >> 2] = 0 + g = (e + 16) | 0 + e = f[g >> 2] | 0 + j = f[i >> 2] | 0 + k = (e - j) | 0 + if (!k) { + l = j + m = e + n = 0 + } else { + Fi(h, k) + l = f[i >> 2] | 0 + m = f[g >> 2] | 0 + n = f[h >> 2] | 0 + } + kh(n | 0, l | 0, (m - l) | 0) | 0 + b[c >> 0] = 1 + c = f[a >> 2] | 0 + f[(c + 4) >> 2] = d + f[c >> 2] = 0 + return + } + function pi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + b = (a + 32) | 0 + ld(a, b) + c = (a + 80) | 0 + d = f[c >> 2] | 0 + if ( + (d | 0 ? ((e = (a + 84) | 0), (f[e >> 2] | 0) > 0) : 0) + ? (ld(d, b), (f[e >> 2] | 0) > 1) + : 0 + ) { + d = 1 + do { + ld(((f[c >> 2] | 0) + (d << 5)) | 0, b) + d = (d + 1) | 0 + } while ((d | 0) < (f[e >> 2] | 0)) + } + e = (a + 136) | 0 + d = (a + 140) | 0 + a = f[e >> 2] | 0 + if ((f[d >> 2] | 0) == (a | 0)) return + c = 0 + g = a + while (1) { + a = g + ci( + ((f[(a + ((c * 12) | 0) + 4) >> 2] | 0) - + (f[(a + ((c * 12) | 0)) >> 2] | 0)) >> + 2, + b, + ) | 0 + a = f[e >> 2] | 0 + h = f[(a + ((c * 12) | 0)) >> 2] | 0 + i = ((f[(a + ((c * 12) | 0) + 4) >> 2] | 0) - h) >> 2 + if (!i) j = a + else { + Mc(h, i, 1, 0, b) | 0 + j = f[e >> 2] | 0 + } + c = (c + 1) | 0 + if (c >>> 0 >= (((((f[d >> 2] | 0) - j) | 0) / 12) | 0) >>> 0) break + else g = j + } + return + } + function qi(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + e = (d + 16) | 0 + g = f[e >> 2] | 0 + if (!g) + if (!(vl(d) | 0)) { + h = f[e >> 2] | 0 + i = 5 + } else j = 0 + else { + h = g + i = 5 + } + a: do + if ((i | 0) == 5) { + g = (d + 20) | 0 + e = f[g >> 2] | 0 + k = e + if (((h - e) | 0) >>> 0 < c >>> 0) { + j = Sa[f[(d + 36) >> 2] & 31](d, a, c) | 0 + break + } + b: do + if ((b[(d + 75) >> 0] | 0) > -1) { + e = c + while (1) { + if (!e) { + l = 0 + m = a + n = c + o = k + break b + } + p = (e + -1) | 0 + if ((b[(a + p) >> 0] | 0) == 10) break + else e = p + } + p = Sa[f[(d + 36) >> 2] & 31](d, a, e) | 0 + if (p >>> 0 < e >>> 0) { + j = p + break a + } + l = e + m = (a + e) | 0 + n = (c - e) | 0 + o = f[g >> 2] | 0 + } else { + l = 0 + m = a + n = c + o = k + } + while (0) + kh(o | 0, m | 0, n | 0) | 0 + f[g >> 2] = (f[g >> 2] | 0) + n + j = (l + n) | 0 + } + while (0) + return j | 0 + } + function ri(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = (a + 12) | 0 + d = f[c >> 2] | 0 + f[c >> 2] = 0 + if (d | 0) { + c = f[(d + 28) >> 2] | 0 + if (c | 0) { + e = c + do { + c = e + e = f[e >> 2] | 0 + ri((c + 8) | 0) + Oq(c) + } while ((e | 0) != 0) + } + e = (d + 20) | 0 + c = f[e >> 2] | 0 + f[e >> 2] = 0 + if (c | 0) Oq(c) + c = f[(d + 8) >> 2] | 0 + if (c | 0) { + e = c + do { + c = e + e = f[e >> 2] | 0 + g = (c + 8) | 0 + h = f[(c + 20) >> 2] | 0 + if (h | 0) { + i = (c + 24) | 0 + if ((f[i >> 2] | 0) != (h | 0)) f[i >> 2] = h + Oq(h) + } + if ((b[(g + 11) >> 0] | 0) < 0) Oq(f[g >> 2] | 0) + Oq(c) + } while ((e | 0) != 0) + } + e = f[d >> 2] | 0 + f[d >> 2] = 0 + if (e | 0) Oq(e) + Oq(d) + } + if ((b[(a + 11) >> 0] | 0) >= 0) return + Oq(f[a >> 2] | 0) + return + } + function si(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + o = 0 + g = u + u = (u + 32) | 0 + h = (g + 12) | 0 + i = g + f[h >> 2] = 0 + f[(h + 4) >> 2] = 0 + f[(h + 8) >> 2] = 0 + if ((e | 0) > 0) { + j = (i + 11) | 0 + k = (i + 4) | 0 + l = 0 + do { + if ((l | 0) > 0) An(h, 14477) | 0 + il(i, $(n[(d + (l << 2)) >> 2])) + m = b[j >> 0] | 0 + o = (m << 24) >> 24 < 0 + lj(h, o ? f[i >> 2] | 0 : i, o ? f[k >> 2] | 0 : m & 255) | 0 + if ((b[j >> 0] | 0) < 0) Oq(f[i >> 2] | 0) + l = (l + 1) | 0 + } while ((l | 0) < (e | 0)) + } + am(Ai(a, c) | 0, h) | 0 + if ((b[(h + 11) >> 0] | 0) >= 0) { + u = g + return + } + Oq(f[h >> 2] | 0) + u = g + return + } + function ti(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = u + u = (u + 16) | 0 + d = c + if ((Qa[f[((f[b >> 2] | 0) + 20) >> 2] & 127](b) | 0) <= 0) { + e = 1 + u = c + return e | 0 + } + g = (a + 4) | 0 + h = (a + 20) | 0 + i = (a + 24) | 0 + j = (a + 16) | 0 + a = 0 + while (1) { + k = f[((f[g >> 2] | 0) + 4) >> 2] | 0 + l = dm(k, Ra[f[((f[b >> 2] | 0) + 24) >> 2] & 127](b, a) | 0) | 0 + f[d >> 2] = l + if ((l | 0) == -1) break + k = f[h >> 2] | 0 + if ((k | 0) == (f[i >> 2] | 0)) Ri(j, d) + else { + f[k >> 2] = l + f[h >> 2] = k + 4 + } + gl(f[g >> 2] | 0, f[d >> 2] | 0) | 0 + a = (a + 1) | 0 + if ((a | 0) >= (Qa[f[((f[b >> 2] | 0) + 20) >> 2] & 127](b) | 0)) { + e = 1 + m = 9 + break + } + } + if ((m | 0) == 9) { + u = c + return e | 0 + } + e = 0 + u = c + return e | 0 + } + function ui(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + f[a >> 2] = 1292 + hi((a + 60) | 0) + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + c = (a + 52) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = (a + 36) | 0 + d = f[b >> 2] | 0 + if (d | 0) { + c = (a + 40) | 0 + e = f[c >> 2] | 0 + if ((e | 0) == (d | 0)) g = d + else { + h = e + do { + e = (h + -24) | 0 + f[c >> 2] = e + Va[f[f[e >> 2] >> 2] & 127](e) + h = f[c >> 2] | 0 + } while ((h | 0) != (d | 0)) + g = f[b >> 2] | 0 + } + Oq(g) + } + f[a >> 2] = 1232 + g = f[(a + 16) >> 2] | 0 + if (g | 0) { + b = (a + 20) | 0 + d = f[b >> 2] | 0 + if ((d | 0) != (g | 0)) + f[b >> 2] = d + (~(((d + -4 - g) | 0) >>> 2) << 2) + Oq(g) + } + g = f[(a + 4) >> 2] | 0 + if (!g) return + d = (a + 8) | 0 + a = f[d >> 2] | 0 + if ((a | 0) != (g | 0)) f[d >> 2] = a + (~(((a + -4 - g) | 0) >>> 2) << 2) + Oq(g) + return + } + function vi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + c = u + u = (u + 32) | 0 + d = (c + 16) | 0 + e = (c + 8) | 0 + g = c + h = (a + 8) | 0 + if ((f[h >> 2] << 5) >>> 0 >= b >>> 0) { + u = c + return + } + f[d >> 2] = 0 + i = (d + 4) | 0 + f[i >> 2] = 0 + j = (d + 8) | 0 + f[j >> 2] = 0 + if ((b | 0) < 0) aq(d) + k = ((((b + -1) | 0) >>> 5) + 1) | 0 + b = ln(k << 2) | 0 + f[d >> 2] = b + f[i >> 2] = 0 + f[j >> 2] = k + k = f[a >> 2] | 0 + f[e >> 2] = k + f[(e + 4) >> 2] = 0 + b = (a + 4) | 0 + l = f[b >> 2] | 0 + f[g >> 2] = k + ((l >>> 5) << 2) + f[(g + 4) >> 2] = l & 31 + zg(d, e, g) + g = f[a >> 2] | 0 + f[a >> 2] = f[d >> 2] + f[d >> 2] = g + d = f[b >> 2] | 0 + f[b >> 2] = f[i >> 2] + f[i >> 2] = d + d = f[h >> 2] | 0 + f[h >> 2] = f[j >> 2] + f[j >> 2] = d + if (g | 0) Oq(g) + u = c + return + } + function wi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + b = (a + 136) | 0 + c = f[b >> 2] | 0 + if (c | 0) { + d = (a + 140) | 0 + e = f[d >> 2] | 0 + if ((e | 0) == (c | 0)) g = c + else { + h = e + while (1) { + e = (h + -12) | 0 + f[d >> 2] = e + i = f[e >> 2] | 0 + if (!i) j = e + else { + e = (h + -8) | 0 + k = f[e >> 2] | 0 + if ((k | 0) != (i | 0)) + f[e >> 2] = k + (~(((k + -4 - i) | 0) >>> 2) << 2) + Oq(i) + j = f[d >> 2] | 0 + } + if ((j | 0) == (c | 0)) break + else h = j + } + g = f[b >> 2] | 0 + } + Oq(g) + } + g = f[(a + 104) >> 2] | 0 + if (g | 0) { + b = (a + 108) | 0 + j = f[b >> 2] | 0 + if ((j | 0) != (g | 0)) + f[b >> 2] = j + (~(((j + -4 - g) | 0) >>> 2) << 2) + Oq(g) + } + g = f[(a + 92) >> 2] | 0 + if (!g) { + uj(a) + return + } + j = (a + 96) | 0 + b = f[j >> 2] | 0 + if ((b | 0) != (g | 0)) f[j >> 2] = b + (~(((b + -4 - g) | 0) >>> 2) << 2) + Oq(g) + uj(a) + return + } + function xi(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0 + f[a >> 2] = 3680 + c = (a + 72) | 0 + d = (a + 136) | 0 + e = (a + 4) | 0 + g = (e + 64) | 0 + do { + f[e >> 2] = 0 + e = (e + 4) | 0 + } while ((e | 0) < (g | 0)) + e = c + g = (e + 64) | 0 + do { + f[e >> 2] = 0 + e = (e + 4) | 0 + } while ((e | 0) < (g | 0)) + n[d >> 2] = $(1.0) + d = (a + 140) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + f[(a + 164) >> 2] = -1 + d = (a + 168) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + f[(d + 24) >> 2] = 0 + wn((a + 200) | 0) + Gn((a + 232) | 0) + d = (a + 316) | 0 + e = (a + 264) | 0 + g = (e + 52) | 0 + do { + f[e >> 2] = 0 + e = (e + 4) | 0 + } while ((e | 0) < (g | 0)) + f[d >> 2] = -1 + f[(a + 320) >> 2] = -1 + f[(a + 324) >> 2] = 0 + f[(a + 328) >> 2] = 2 + f[(a + 332) >> 2] = 7 + f[(a + 336) >> 2] = 0 + f[(a + 340) >> 2] = 0 + f[(a + 344) >> 2] = 0 + b[(a + 352) >> 0] = 0 + return + } + function yi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + c = (a + 4) | 0 + d = f[a >> 2] | 0 + e = ((f[c >> 2] | 0) - d) | 0 + g = ((e | 0) / 12) | 0 + h = (g + 1) | 0 + if (h >>> 0 > 357913941) aq(a) + i = (a + 8) | 0 + j = ((((f[i >> 2] | 0) - d) | 0) / 12) | 0 + k = j << 1 + l = j >>> 0 < 178956970 ? (k >>> 0 < h >>> 0 ? h : k) : 357913941 + do + if (l) + if (l >>> 0 > 357913941) { + k = ra(8) | 0 + Oo(k, 16035) + f[k >> 2] = 7256 + va(k | 0, 1112, 110) + } else { + m = ln((l * 12) | 0) | 0 + break + } + else m = 0 + while (0) + k = (m + ((g * 12) | 0)) | 0 + f[k >> 2] = f[b >> 2] + f[(k + 4) >> 2] = f[(b + 4) >> 2] + f[(k + 8) >> 2] = f[(b + 8) >> 2] + b = (k + (((((e | 0) / -12) | 0) * 12) | 0)) | 0 + if ((e | 0) > 0) kh(b | 0, d | 0, e | 0) | 0 + f[a >> 2] = b + f[c >> 2] = k + 12 + f[i >> 2] = m + ((l * 12) | 0) + if (!d) return + Oq(d) + return + } + function zi(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + g = (a + 16) | 0 + h = g + i = f[(h + 4) >> 2] | 0 + if ( + ((d | 0) < 0) | + (((d | 0) == 0) & (c >>> 0 < 1)) | + (((i | 0) > 0) | (((i | 0) == 0) & ((f[h >> 2] | 0) >>> 0 > 0))) + ) { + j = 0 + return j | 0 + } + b[(a + 24) >> 0] = e & 1 + h = Vn(c | 0, d | 0, 7, 0) | 0 + d = Ik(h | 0, I | 0, 8, 0) | 0 + h = I + c = g + f[c >> 2] = d + f[(c + 4) >> 2] = h + c = (a + 4) | 0 + g = f[c >> 2] | 0 + i = f[a >> 2] | 0 + k = (g - i) | 0 + l = Vn(k | 0, 0, 8, 0) | 0 + m = e ? l : k + l = Vn(m | 0, (e ? I : 0) | 0, d | 0, h | 0) | 0 + h = i + i = g + if (k >>> 0 >= l >>> 0) + if (k >>> 0 > l >>> 0 ? ((g = (h + l) | 0), (g | 0) != (i | 0)) : 0) { + f[c >> 2] = g + n = h + } else n = h + else { + Fi(a, (l - k) | 0) + n = f[a >> 2] | 0 + } + k = ln(8) | 0 + f[k >> 2] = n + m + f[(k + 4) >> 2] = 0 + m = (a + 12) | 0 + a = f[m >> 2] | 0 + f[m >> 2] = k + if (!a) { + j = 1 + return j | 0 + } + Oq(a) + j = 1 + return j | 0 + } + function Ai(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = u + u = (u + 16) | 0 + d = c + e = yg(a, d, b) | 0 + g = f[e >> 2] | 0 + if (g | 0) { + h = g + i = (h + 28) | 0 + u = c + return i | 0 + } + g = ln(40) | 0 + pj((g + 16) | 0, b) + b = (g + 28) | 0 + f[b >> 2] = 0 + f[(b + 4) >> 2] = 0 + f[(b + 8) >> 2] = 0 + b = f[d >> 2] | 0 + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = b + f[e >> 2] = g + b = f[f[a >> 2] >> 2] | 0 + if (!b) j = g + else { + f[a >> 2] = b + j = f[e >> 2] | 0 + } + Oe(f[(a + 4) >> 2] | 0, j) + j = (a + 8) | 0 + f[j >> 2] = (f[j >> 2] | 0) + 1 + h = g + i = (h + 28) | 0 + u = c + return i | 0 + } + function Bi(a, c, d, e, g, h, i, j) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + j = j | 0 + var k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + k = u + u = (u + 16) | 0 + l = k + if (((-18 - c) | 0) >>> 0 < d >>> 0) aq(a) + if ((b[(a + 11) >> 0] | 0) < 0) m = f[a >> 2] | 0 + else m = a + if (c >>> 0 < 2147483623) { + n = (d + c) | 0 + d = c << 1 + o = n >>> 0 < d >>> 0 ? d : n + p = o >>> 0 < 11 ? 11 : (o + 16) & -16 + } else p = -17 + o = ln(p) | 0 + if (g | 0) Fo(o, m, g) | 0 + if (i | 0) Fo((o + g) | 0, j, i) | 0 + j = (e - h) | 0 + e = (j - g) | 0 + if (e | 0) Fo((o + g + i) | 0, (m + g + h) | 0, e) | 0 + if ((c | 0) != 10) Oq(m) + f[a >> 2] = o + f[(a + 8) >> 2] = p | -2147483648 + p = (j + i) | 0 + f[(a + 4) >> 2] = p + b[l >> 0] = 0 + up((o + p) | 0, l) + u = k + return + } + function Ci(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = (a + 8) | 0 + d = f[c >> 2] | 0 + e = (a + 4) | 0 + g = f[e >> 2] | 0 + if (((d - g) >> 2) >>> 0 >= b >>> 0) { + sj(g | 0, 0, (b << 2) | 0) | 0 + f[e >> 2] = g + (b << 2) + return + } + h = f[a >> 2] | 0 + i = (g - h) | 0 + g = i >> 2 + j = (g + b) | 0 + if (j >>> 0 > 1073741823) aq(a) + k = (d - h) | 0 + d = k >> 1 + l = (k >> 2) >>> 0 < 536870911 ? (d >>> 0 < j >>> 0 ? j : d) : 1073741823 + do + if (l) + if (l >>> 0 > 1073741823) { + d = ra(8) | 0 + Oo(d, 16035) + f[d >> 2] = 7256 + va(d | 0, 1112, 110) + } else { + d = ln(l << 2) | 0 + m = d + n = d + break + } + else { + m = 0 + n = 0 + } + while (0) + d = (m + (g << 2)) | 0 + sj(d | 0, 0, (b << 2) | 0) | 0 + if ((i | 0) > 0) kh(n | 0, h | 0, i | 0) | 0 + f[a >> 2] = m + f[e >> 2] = d + (b << 2) + f[c >> 2] = m + (l << 2) + if (!h) return + Oq(h) + return + } + function Di(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + g = ln(32) | 0 + f[a >> 2] = g + f[(a + 4) >> 2] = c + 8 + c = (a + 8) | 0 + b[c >> 0] = 0 + pj((g + 8) | 0, e) + h = (g + 20) | 0 + i = (e + 12) | 0 + f[h >> 2] = 0 + f[(g + 24) >> 2] = 0 + f[(g + 28) >> 2] = 0 + g = (e + 16) | 0 + e = f[g >> 2] | 0 + j = f[i >> 2] | 0 + k = (e - j) | 0 + if (!k) { + l = j + m = e + n = 0 + } else { + Fi(h, k) + l = f[i >> 2] | 0 + m = f[g >> 2] | 0 + n = f[h >> 2] | 0 + } + kh(n | 0, l | 0, (m - l) | 0) | 0 + b[c >> 0] = 1 + c = f[a >> 2] | 0 + f[(c + 4) >> 2] = d + f[c >> 2] = 0 + return + } + function Ei(a, c, d) { + a = a | 0 + c = c | 0 + d = $(d) + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0.0, + l = 0, + m = 0, + n = 0, + o = 0 + e = u + u = (u + 16) | 0 + g = e + h = (c + 11) | 0 + i = b[h >> 0] | 0 + if ((i << 24) >> 24 < 0) j = f[(c + 4) >> 2] | 0 + else j = i & 255 + k = +d + l = j + j = i + while (1) { + if ((j << 24) >> 24 < 0) m = f[c >> 2] | 0 + else m = c + p[g >> 3] = k + n = Bn(m, (l + 1) | 0, 18562, g) | 0 + if ((n | 0) > -1) + if (n >>> 0 > l >>> 0) o = n + else break + else o = (l << 1) | 1 + Hj(c, o, 0) + l = o + j = b[h >> 0] | 0 + } + Hj(c, n, 0) + f[a >> 2] = f[c >> 2] + f[(a + 4) >> 2] = f[(c + 4) >> 2] + f[(a + 8) >> 2] = f[(c + 8) >> 2] + a = 0 + while (1) { + if ((a | 0) == 3) break + f[(c + (a << 2)) >> 2] = 0 + a = (a + 1) | 0 + } + u = e + return + } + function Fi(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + d = (a + 8) | 0 + e = f[d >> 2] | 0 + g = (a + 4) | 0 + h = f[g >> 2] | 0 + if (((e - h) | 0) >>> 0 >= c >>> 0) { + i = c + j = h + do { + b[j >> 0] = 0 + j = ((f[g >> 2] | 0) + 1) | 0 + f[g >> 2] = j + i = (i + -1) | 0 + } while ((i | 0) != 0) + return + } + i = f[a >> 2] | 0 + j = (h - i) | 0 + h = (j + c) | 0 + if ((h | 0) < 0) aq(a) + k = (e - i) | 0 + i = k << 1 + e = k >>> 0 < 1073741823 ? (i >>> 0 < h >>> 0 ? h : i) : 2147483647 + if (!e) l = 0 + else l = ln(e) | 0 + i = (l + j) | 0 + j = (l + e) | 0 + e = c + c = i + l = i + do { + b[l >> 0] = 0 + l = (c + 1) | 0 + c = l + e = (e + -1) | 0 + } while ((e | 0) != 0) + e = f[a >> 2] | 0 + l = ((f[g >> 2] | 0) - e) | 0 + h = (i + (0 - l)) | 0 + if ((l | 0) > 0) kh(h | 0, e | 0, l | 0) | 0 + f[a >> 2] = h + f[g >> 2] = c + f[d >> 2] = j + if (!e) return + Oq(e) + return + } + function Gi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + e = f[a >> 2] | 0 + g = (((d - e) | 0) / 136) | 0 + h = d + if (g >>> 0 < b >>> 0) { + Ge(a, (b - g) | 0) + return + } + if (g >>> 0 <= b >>> 0) return + g = (e + ((b * 136) | 0)) | 0 + if ((g | 0) == (h | 0)) return + else i = h + do { + f[c >> 2] = i + -136 + h = f[(i + -20) >> 2] | 0 + if (h | 0) { + b = (i + -16) | 0 + e = f[b >> 2] | 0 + if ((e | 0) != (h | 0)) + f[b >> 2] = e + (~(((e + -4 - h) | 0) >>> 2) << 2) + Oq(h) + } + h = f[(i + -32) >> 2] | 0 + if (h | 0) { + e = (i + -28) | 0 + b = f[e >> 2] | 0 + if ((b | 0) != (h | 0)) + f[e >> 2] = b + (~(((b + -4 - h) | 0) >>> 2) << 2) + Oq(h) + } + Mi((i + -132) | 0) + i = f[c >> 2] | 0 + } while ((i | 0) != (g | 0)) + return + } + function Hi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = Oa, + e = 0, + g = 0 + if ((b | 0) != 1) + if (!((b + -1) & b)) c = b + else c = cb(b) | 0 + else c = 2 + b = f[(a + 4) >> 2] | 0 + if (c >>> 0 > b >>> 0) { + Sd(a, c) + return + } + if (c >>> 0 >= b >>> 0) return + d = $((f[(a + 12) >> 2] | 0) >>> 0) + e = ~~$(W($(d / $(n[(a + 16) >> 2])))) >>> 0 + if ((b >>> 0 > 2) & ((((b + -1) & b) | 0) == 0)) + g = 1 << (32 - (_((e + -1) | 0) | 0)) + else g = cb(e) | 0 + e = c >>> 0 < g >>> 0 ? g : c + if (e >>> 0 >= b >>> 0) return + Sd(a, e) + return + } + function Ii(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = f[(a + 76) >> 2] | 0 + if (b | 0) { + c = (a + 80) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 64) >> 2] | 0 + if (b | 0) { + d = (a + 68) | 0 + if ((f[d >> 2] | 0) != (b | 0)) f[d >> 2] = b + Oq(b) + } + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + d = (a + 52) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 24) >> 2] | 0 + if (b | 0) { + c = (a + 28) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 12) >> 2] | 0 + if (b | 0) { + d = (a + 16) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[a >> 2] | 0 + if (!b) return + c = (a + 4) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + Oq(b) + return + } + function Ji(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + e = u + u = (u + 16) | 0 + g = e + h = (c + 11) | 0 + i = b[h >> 0] | 0 + if ((i << 24) >> 24 < 0) j = f[(c + 4) >> 2] | 0 + else j = i & 255 + k = j + j = i + while (1) { + if ((j << 24) >> 24 < 0) l = f[c >> 2] | 0 + else l = c + f[g >> 2] = d + m = Bn(l, (k + 1) | 0, 18559, g) | 0 + if ((m | 0) > -1) + if (m >>> 0 > k >>> 0) n = m + else break + else n = (k << 1) | 1 + Hj(c, n, 0) + k = n + j = b[h >> 0] | 0 + } + Hj(c, m, 0) + f[a >> 2] = f[c >> 2] + f[(a + 4) >> 2] = f[(c + 4) >> 2] + f[(a + 8) >> 2] = f[(c + 8) >> 2] + a = 0 + while (1) { + if ((a | 0) == 3) break + f[(c + (a << 2)) >> 2] = 0 + a = (a + 1) | 0 + } + u = e + return + } + function Ki(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + b = (a + 8) | 0 + c = f[b >> 2] | 0 + if ((c | 0) < 0) { + d = 0 + return d | 0 + } + e = (a + 4) | 0 + a = f[e >> 2] | 0 + g = (a + 4) | 0 + h = f[g >> 2] | 0 + i = f[a >> 2] | 0 + j = (h - i) >> 2 + k = i + i = h + if (c >>> 0 <= j >>> 0) + if ( + c >>> 0 < j >>> 0 ? ((h = (k + (c << 2)) | 0), (h | 0) != (i | 0)) : 0 + ) { + f[g >> 2] = i + (~(((i + -4 - h) | 0) >>> 2) << 2) + l = c + } else l = c + else { + Ci(a, (c - j) | 0) + l = f[b >> 2] | 0 + } + if ((l | 0) <= 0) { + d = 1 + return d | 0 + } + b = f[e >> 2] | 0 + e = f[b >> 2] | 0 + j = ((f[(b + 4) >> 2] | 0) - e) >> 2 + c = e + e = 0 + while (1) { + if (j >>> 0 <= e >>> 0) { + m = 10 + break + } + f[(c + (e << 2)) >> 2] = e + e = (e + 1) | 0 + if ((e | 0) >= (l | 0)) { + d = 1 + m = 12 + break + } + } + if ((m | 0) == 10) aq(b) + else if ((m | 0) == 12) return d | 0 + return 0 + } + function Li(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + e = u + u = (u + 16) | 0 + g = e + h = ln(16) | 0 + f[g >> 2] = h + f[(g + 8) >> 2] = -2147483632 + f[(g + 4) >> 2] = 14 + i = h + j = 14408 + k = (i + 14) | 0 + do { + b[i >> 0] = b[j >> 0] | 0 + i = (i + 1) | 0 + j = (j + 1) | 0 + } while ((i | 0) < (k | 0)) + b[(h + 14) >> 0] = 0 + Xj(a, g, c) + if ((b[(g + 11) >> 0] | 0) < 0) Oq(f[g >> 2] | 0) + c = ln(16) | 0 + f[g >> 2] = c + f[(g + 8) >> 2] = -2147483632 + f[(g + 4) >> 2] = 14 + i = c + j = 14423 + k = (i + 14) | 0 + do { + b[i >> 0] = b[j >> 0] | 0 + i = (i + 1) | 0 + j = (j + 1) | 0 + } while ((i | 0) < (k | 0)) + b[(c + 14) >> 0] = 0 + Xj(a, g, d) + if ((b[(g + 11) >> 0] | 0) >= 0) { + u = e + return + } + Oq(f[g >> 2] | 0) + u = e + return + } + function Mi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = f[(a + 84) >> 2] | 0 + if (b | 0) { + c = (a + 88) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 72) >> 2] | 0 + if (b | 0) { + d = (a + 76) | 0 + if ((f[d >> 2] | 0) != (b | 0)) f[d >> 2] = b + Oq(b) + } + b = f[(a + 52) >> 2] | 0 + if (b | 0) { + d = (a + 56) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 40) >> 2] | 0 + if (b | 0) { + c = (a + 44) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 28) >> 2] | 0 + if (b | 0) { + d = (a + 32) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 12) >> 2] | 0 + if (b | 0) Oq(b) + b = f[a >> 2] | 0 + if (!b) return + Oq(b) + return + } + function Ni(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + f[a >> 2] = 1352 + b = (a + 32) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) { + b = (c + 88) | 0 + d = f[b >> 2] | 0 + f[b >> 2] = 0 + if (d | 0) { + b = f[(d + 8) >> 2] | 0 + if (b | 0) { + e = (d + 12) | 0 + if ((f[e >> 2] | 0) != (b | 0)) f[e >> 2] = b + Oq(b) + } + Oq(d) + } + d = f[(c + 68) >> 2] | 0 + if (d | 0) { + b = (c + 72) | 0 + e = f[b >> 2] | 0 + if ((e | 0) != (d | 0)) + f[b >> 2] = e + (~(((e + -4 - d) | 0) >>> 2) << 2) + Oq(d) + } + d = (c + 64) | 0 + e = f[d >> 2] | 0 + f[d >> 2] = 0 + if (e | 0) { + d = f[e >> 2] | 0 + if (d | 0) { + b = (e + 4) | 0 + if ((f[b >> 2] | 0) != (d | 0)) f[b >> 2] = d + Oq(d) + } + Oq(e) + } + Oq(c) + } + c = f[(a + 16) >> 2] | 0 + if (!c) return + e = (a + 20) | 0 + a = f[e >> 2] | 0 + if ((a | 0) != (c | 0)) f[e >> 2] = a + (~(((a + -4 - c) | 0) >>> 2) << 2) + Oq(c) + return + } + function Oi() { + var a = 0, + b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + a = u + u = (u + 48) | 0 + b = (a + 32) | 0 + c = (a + 24) | 0 + d = (a + 16) | 0 + e = a + g = (a + 36) | 0 + a = sn() | 0 + if (a | 0 ? ((h = f[a >> 2] | 0), h | 0) : 0) { + a = (h + 48) | 0 + i = f[a >> 2] | 0 + j = f[(a + 4) >> 2] | 0 + if (!((((i & -256) | 0) == 1126902528) & ((j | 0) == 1129074247))) { + f[c >> 2] = 18701 + Hn(18651, c) + } + if (((i | 0) == 1126902529) & ((j | 0) == 1129074247)) + k = f[(h + 44) >> 2] | 0 + else k = (h + 80) | 0 + f[g >> 2] = k + k = f[h >> 2] | 0 + h = f[(k + 4) >> 2] | 0 + if (Sa[f[((f[258] | 0) + 16) >> 2] & 31](1032, k, g) | 0) { + k = f[g >> 2] | 0 + g = Qa[f[((f[k >> 2] | 0) + 8) >> 2] & 127](k) | 0 + f[e >> 2] = 18701 + f[(e + 4) >> 2] = h + f[(e + 8) >> 2] = g + Hn(18565, e) + } else { + f[d >> 2] = 18701 + f[(d + 4) >> 2] = h + Hn(18610, d) + } + } + Hn(18689, b) + } + function Pi(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0 + do + if (a) { + if (c >>> 0 < 128) { + b[a >> 0] = c + e = 1 + break + } + d = ((Jq() | 0) + 188) | 0 + if (!(f[f[d >> 2] >> 2] | 0)) + if (((c & -128) | 0) == 57216) { + b[a >> 0] = c + e = 1 + break + } else { + d = Vq() | 0 + f[d >> 2] = 84 + e = -1 + break + } + if (c >>> 0 < 2048) { + b[a >> 0] = (c >>> 6) | 192 + b[(a + 1) >> 0] = (c & 63) | 128 + e = 2 + break + } + if ((c >>> 0 < 55296) | (((c & -8192) | 0) == 57344)) { + b[a >> 0] = (c >>> 12) | 224 + b[(a + 1) >> 0] = ((c >>> 6) & 63) | 128 + b[(a + 2) >> 0] = (c & 63) | 128 + e = 3 + break + } + if (((c + -65536) | 0) >>> 0 < 1048576) { + b[a >> 0] = (c >>> 18) | 240 + b[(a + 1) >> 0] = ((c >>> 12) & 63) | 128 + b[(a + 2) >> 0] = ((c >>> 6) & 63) | 128 + b[(a + 3) >> 0] = (c & 63) | 128 + e = 4 + break + } else { + d = Vq() | 0 + f[d >> 2] = 84 + e = -1 + break + } + } else e = 1 + while (0) + return e | 0 + } + function Qi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = f[(a + 92) >> 2] | 0 + if (b | 0) { + c = (a + 96) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 76) >> 2] | 0 + if (b | 0) { + d = (a + 80) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 64) >> 2] | 0 + if (b | 0) { + c = (a + 68) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 52) >> 2] | 0 + if (b | 0) { + d = (a + 56) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + f[(a + 4) >> 2] = 3636 + b = f[(a + 24) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 12) >> 2] | 0 + if (!b) return + Oq(b) + return + } + function Ri(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + c = (a + 4) | 0 + d = f[a >> 2] | 0 + e = ((f[c >> 2] | 0) - d) | 0 + g = e >> 2 + h = (g + 1) | 0 + if (h >>> 0 > 1073741823) aq(a) + i = (a + 8) | 0 + j = ((f[i >> 2] | 0) - d) | 0 + k = j >> 1 + l = (j >> 2) >>> 0 < 536870911 ? (k >>> 0 < h >>> 0 ? h : k) : 1073741823 + do + if (l) + if (l >>> 0 > 1073741823) { + k = ra(8) | 0 + Oo(k, 16035) + f[k >> 2] = 7256 + va(k | 0, 1112, 110) + } else { + k = ln(l << 2) | 0 + m = k + n = k + break + } + else { + m = 0 + n = 0 + } + while (0) + k = (m + (g << 2)) | 0 + f[k >> 2] = f[b >> 2] + if ((e | 0) > 0) kh(n | 0, d | 0, e | 0) | 0 + f[a >> 2] = m + f[c >> 2] = k + 4 + f[i >> 2] = m + (l << 2) + if (!d) return + Oq(d) + return + } + function Si(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0 + c = (a + 104) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != 0 ? (f[(a + 108) >> 2] | 0) >= (d | 0) : 0) e = 4 + else { + d = Wm(a) | 0 + if ((d | 0) >= 0) { + g = f[c >> 2] | 0 + c = (a + 8) | 0 + if (g) { + i = f[c >> 2] | 0 + j = f[(a + 4) >> 2] | 0 + k = (g - (f[(a + 108) >> 2] | 0)) | 0 + g = i + if (((i - j) | 0) < (k | 0)) { + l = g + m = g + } else { + l = (j + (k + -1)) | 0 + m = g + } + } else { + g = f[c >> 2] | 0 + l = g + m = g + } + f[(a + 100) >> 2] = l + l = (a + 4) | 0 + if (!m) n = f[l >> 2] | 0 + else { + g = f[l >> 2] | 0 + l = (a + 108) | 0 + f[l >> 2] = m + 1 - g + (f[l >> 2] | 0) + n = g + } + g = (n + -1) | 0 + if ((d | 0) == (h[g >> 0] | 0 | 0)) o = d + else { + b[g >> 0] = d + o = d + } + } else e = 4 + } + if ((e | 0) == 4) { + f[(a + 100) >> 2] = 0 + o = -1 + } + return o | 0 + } + function Ti(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + f[a >> 2] = 1544 + f[(a + 4) >> 2] = b + b = (a + 8) | 0 + f[b >> 2] = f[c >> 2] + f[(b + 4) >> 2] = f[(c + 4) >> 2] + f[(b + 8) >> 2] = f[(c + 8) >> 2] + f[(b + 12) >> 2] = f[(c + 12) >> 2] + f[(b + 16) >> 2] = f[(c + 16) >> 2] + f[(b + 20) >> 2] = f[(c + 20) >> 2] + fk((a + 32) | 0, (c + 24) | 0) + f[a >> 2] = 2384 + c = (a + 44) | 0 + f[c >> 2] = f[d >> 2] + f[(c + 4) >> 2] = f[(d + 4) >> 2] + f[(c + 8) >> 2] = f[(d + 8) >> 2] + f[(c + 12) >> 2] = f[(d + 12) >> 2] + f[a >> 2] = 2440 + d = (a + 112) | 0 + c = (a + 60) | 0 + b = (c + 52) | 0 + do { + f[c >> 2] = 0 + c = (c + 4) | 0 + } while ((c | 0) < (b | 0)) + Zm(d) + f[(a + 152) >> 2] = 0 + f[(a + 156) >> 2] = 0 + f[(a + 160) >> 2] = 0 + return + } + function Ui(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + f[a >> 2] = 1544 + f[(a + 4) >> 2] = b + b = (a + 8) | 0 + f[b >> 2] = f[c >> 2] + f[(b + 4) >> 2] = f[(c + 4) >> 2] + f[(b + 8) >> 2] = f[(c + 8) >> 2] + f[(b + 12) >> 2] = f[(c + 12) >> 2] + f[(b + 16) >> 2] = f[(c + 16) >> 2] + f[(b + 20) >> 2] = f[(c + 20) >> 2] + fk((a + 32) | 0, (c + 24) | 0) + f[a >> 2] = 1964 + c = (a + 44) | 0 + f[c >> 2] = f[d >> 2] + f[(c + 4) >> 2] = f[(d + 4) >> 2] + f[(c + 8) >> 2] = f[(d + 8) >> 2] + f[(c + 12) >> 2] = f[(d + 12) >> 2] + f[a >> 2] = 2020 + d = (a + 112) | 0 + c = (a + 60) | 0 + b = (c + 52) | 0 + do { + f[c >> 2] = 0 + c = (c + 4) | 0 + } while ((c | 0) < (b | 0)) + Zm(d) + f[(a + 152) >> 2] = 0 + f[(a + 156) >> 2] = 0 + f[(a + 160) >> 2] = 0 + return + } + function Vi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2440 + b = f[(a + 152) >> 2] | 0 + if (b | 0) { + c = (a + 156) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 112) >> 2] | 0 + if (b | 0) { + d = (a + 116) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 96) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 84) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 72) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 60) >> 2] | 0 + if (b | 0) Oq(b) + f[a >> 2] = 1544 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + Oq(b) + return + } + function Wi(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + d = u + u = (u + 16) | 0 + e = d + g = f[((f[(c + 4) >> 2] | 0) + 4) >> 2] | 0 + if (!g) { + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + u = d + return + } + if (!(Dj((d + 12) | 0, f[(c + 44) >> 2] | 0, g) | 0)) { + g = ln(32) | 0 + f[e >> 2] = g + f[(e + 8) >> 2] = -2147483616 + f[(e + 4) >> 2] = 26 + c = g + h = 15859 + i = (c + 26) | 0 + do { + b[c >> 0] = b[h >> 0] | 0 + c = (c + 1) | 0 + h = (h + 1) | 0 + } while ((c | 0) < (i | 0)) + b[(g + 26) >> 0] = 0 + f[a >> 2] = -1 + pj((a + 4) | 0, e) + if ((b[(e + 11) >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + } else { + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + } + u = d + return + } + function Xi(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0 + c = (b + 48) | 0 + if ((mi(f[c >> 2] | 0) | 0) > 9) { + d = 0 + return d | 0 + } + if ((Qa[f[((f[b >> 2] | 0) + 8) >> 2] & 127](b) | 0) != 1) { + d = 0 + return d | 0 + } + e = (b + 4) | 0 + b = + ((f[((f[((f[e >> 2] | 0) + 8) >> 2] | 0) + (a << 2)) >> 2] | 0) + 56) | + 0 + a = f[b >> 2] | 0 + do + if ((a | 0) == 3) + if ((mi(f[c >> 2] | 0) | 0) < 4) { + d = 5 + return d | 0 + } else { + g = f[b >> 2] | 0 + break + } + else g = a + while (0) + a = mi(f[c >> 2] | 0) | 0 + if ((g | 0) == 1) { + d = (a | 0) < 4 ? 6 : 0 + return d | 0 + } + if ((a | 0) > 7) { + d = 0 + return d | 0 + } + if ((mi(f[c >> 2] | 0) | 0) > 1) { + d = 1 + return d | 0 + } else + return ((f[((f[e >> 2] | 0) + 80) >> 2] | 0) >>> 0 < 40 ? 1 : 4) | 0 + return 0 + } + function Yi(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2020 + b = f[(a + 152) >> 2] | 0 + if (b | 0) { + c = (a + 156) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 112) >> 2] | 0 + if (b | 0) { + d = (a + 116) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 96) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 84) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 72) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 60) >> 2] | 0 + if (b | 0) Oq(b) + f[a >> 2] = 1544 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + Oq(b) + return + } + function Zi(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0, + o = 0, + p = 0 + g = u + u = (u + 128) | 0 + h = (g + 124) | 0 + i = g + j = i + k = 6596 + l = (j + 124) | 0 + do { + f[j >> 2] = f[k >> 2] + j = (j + 4) | 0 + k = (k + 4) | 0 + } while ((j | 0) < (l | 0)) + if (((c + -1) | 0) >>> 0 > 2147483646) + if (!c) { + m = h + n = 1 + o = 4 + } else { + h = Vq() | 0 + f[h >> 2] = 75 + p = -1 + } + else { + m = a + n = c + o = 4 + } + if ((o | 0) == 4) { + o = (-2 - m) | 0 + c = n >>> 0 > o >>> 0 ? o : n + f[(i + 48) >> 2] = c + n = (i + 20) | 0 + f[n >> 2] = m + f[(i + 44) >> 2] = m + o = (m + c) | 0 + m = (i + 16) | 0 + f[m >> 2] = o + f[(i + 28) >> 2] = o + o = Ah(i, d, e) | 0 + if (!c) p = o + else { + c = f[n >> 2] | 0 + b[(c + ((((c | 0) == (f[m >> 2] | 0)) << 31) >> 31)) >> 0] = 0 + p = o + } + } + u = g + return p | 0 + } + function _i(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0 + f[a >> 2] = 3480 + c = (a + 72) | 0 + d = (a + 136) | 0 + e = (a + 4) | 0 + g = (e + 64) | 0 + do { + f[e >> 2] = 0 + e = (e + 4) | 0 + } while ((e | 0) < (g | 0)) + e = c + g = (e + 64) | 0 + do { + f[e >> 2] = 0 + e = (e + 4) | 0 + } while ((e | 0) < (g | 0)) + n[d >> 2] = $(1.0) + d = (a + 140) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + f[(a + 164) >> 2] = -1 + d = (a + 168) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + f[(d + 24) >> 2] = 0 + wn((a + 200) | 0) + Gn((a + 232) | 0) + d = (a + 264) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + b[(d + 24) >> 0] = 0 + return + } + function $i(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = +e + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + a = u + u = (u + 16) | 0 + g = a + if (!c) { + h = 0 + u = a + return h | 0 + } + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + i = Gj(d) | 0 + if (i >>> 0 > 4294967279) aq(g) + if (i >>> 0 < 11) { + b[(g + 11) >> 0] = i + if (!i) j = g + else { + k = g + l = 7 + } + } else { + m = (i + 16) & -16 + n = ln(m) | 0 + f[g >> 2] = n + f[(g + 8) >> 2] = m | -2147483648 + f[(g + 4) >> 2] = i + k = n + l = 7 + } + if ((l | 0) == 7) { + kh(k | 0, d | 0, i | 0) | 0 + j = k + } + b[(j + i) >> 0] = 0 + Zl(c, g, e) + if ((b[(g + 11) >> 0] | 0) < 0) Oq(f[g >> 2] | 0) + h = 1 + u = a + return h | 0 + } + function aj(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + a = u + u = (u + 16) | 0 + g = a + if (!c) { + h = 0 + u = a + return h | 0 + } + f[g >> 2] = 0 + f[(g + 4) >> 2] = 0 + f[(g + 8) >> 2] = 0 + i = Gj(d) | 0 + if (i >>> 0 > 4294967279) aq(g) + if (i >>> 0 < 11) { + b[(g + 11) >> 0] = i + if (!i) j = g + else { + k = g + l = 7 + } + } else { + m = (i + 16) & -16 + n = ln(m) | 0 + f[g >> 2] = n + f[(g + 8) >> 2] = m | -2147483648 + f[(g + 4) >> 2] = i + k = n + l = 7 + } + if ((l | 0) == 7) { + kh(k | 0, d | 0, i | 0) | 0 + j = k + } + b[(j + i) >> 0] = 0 + $l(c, g, e) + if ((b[(g + 11) >> 0] | 0) < 0) Oq(f[g >> 2] | 0) + h = 1 + u = a + return h | 0 + } + function bj(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + c = f[(a + 28) >> 2] | 0 + if (c | 0) { + d = c + do { + c = d + d = f[d >> 2] | 0 + e = (c + 8) | 0 + g = (c + 20) | 0 + h = f[g >> 2] | 0 + f[g >> 2] = 0 + if (h | 0) { + bj(h) + Oq(h) + } + if ((b[(e + 11) >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + Oq(c) + } while ((d | 0) != 0) + } + d = (a + 20) | 0 + c = f[d >> 2] | 0 + f[d >> 2] = 0 + if (c | 0) Oq(c) + c = f[(a + 8) >> 2] | 0 + if (c | 0) { + d = c + do { + c = d + d = f[d >> 2] | 0 + e = (c + 8) | 0 + h = f[(c + 20) >> 2] | 0 + if (h | 0) { + g = (c + 24) | 0 + if ((f[g >> 2] | 0) != (h | 0)) f[g >> 2] = h + Oq(h) + } + if ((b[(e + 11) >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + Oq(c) + } while ((d | 0) != 0) + } + d = f[a >> 2] | 0 + f[a >> 2] = 0 + if (!d) return + Oq(d) + return + } + function cj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + e = u + u = (u + 16) | 0 + g = e + h = f[(c + 36) >> 2] | 0 + if (!h) { + i = ln(32) | 0 + f[g >> 2] = i + f[(g + 8) >> 2] = -2147483616 + f[(g + 4) >> 2] = 23 + j = i + k = 15706 + l = (j + 23) | 0 + do { + b[j >> 0] = b[k >> 0] | 0 + j = (j + 1) | 0 + k = (k + 1) | 0 + } while ((j | 0) < (l | 0)) + b[(i + 23) >> 0] = 0 + f[a >> 2] = -1 + pj((a + 4) | 0, g) + if ((b[(g + 11) >> 0] | 0) < 0) Oq(f[g >> 2] | 0) + u = e + return + } + g = f[(c + 40) >> 2] | 0 + if (!g) { + Sc(a, c, h, d) + u = e + return + } else { + bi(a, c, g, d) + u = e + return + } + } + function dj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + tk(a) + b = (a + 84) | 0 + c = f[b >> 2] | 0 + if ((c | 0) <= 0) return + d = c << 5 + e = + Lq((c >>> 0 > 134217727) | (d >>> 0 > 4294967291) ? -1 : (d + 4) | 0) | + 0 + f[e >> 2] = c + d = (e + 4) | 0 + e = (d + (c << 5)) | 0 + c = d + do { + wn(c) + c = (c + 32) | 0 + } while ((c | 0) != (e | 0)) + e = (a + 80) | 0 + a = f[e >> 2] | 0 + f[e >> 2] = d + if (a | 0) { + d = (a + -4) | 0 + c = f[d >> 2] | 0 + if (c | 0) { + g = (a + (c << 5)) | 0 + do { + g = (g + -32) | 0 + Fj(g) + } while ((g | 0) != (a | 0)) + } + Mq(d) + } + if ((f[b >> 2] | 0) > 0) h = 0 + else return + do { + tk(((f[e >> 2] | 0) + (h << 5)) | 0) + h = (h + 1) | 0 + } while ((h | 0) < (f[b >> 2] | 0)) + return + } + function ej(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + if (!b) { + d = 0 + return d | 0 + } + if (f[(b + 4) >> 2] | 0) { + d = 0 + return d | 0 + } + a = ln(52) | 0 + Ub(a, c) + f[(a + 40) >> 2] = 0 + f[(a + 44) >> 2] = 0 + f[(a + 48) >> 2] = 0 + c = (b + 4) | 0 + b = f[c >> 2] | 0 + f[c >> 2] = a + if (!b) { + d = 1 + return d | 0 + } + a = (b + 40) | 0 + c = f[a >> 2] | 0 + if (c | 0) { + e = (b + 44) | 0 + g = f[e >> 2] | 0 + if ((g | 0) == (c | 0)) h = c + else { + i = g + do { + g = (i + -4) | 0 + f[e >> 2] = g + j = f[g >> 2] | 0 + f[g >> 2] = 0 + if (j | 0) { + bj(j) + Oq(j) + } + i = f[e >> 2] | 0 + } while ((i | 0) != (c | 0)) + h = f[a >> 2] | 0 + } + Oq(h) + } + bj(b) + Oq(b) + d = 1 + return d | 0 + } + function fj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + c = f[a >> 2] | 0 + if (b) { + b = (c + 8) | 0 + d = b + e = Vn(f[d >> 2] | 0, f[(d + 4) >> 2] | 0, 1, 0) | 0 + d = b + f[d >> 2] = e + f[(d + 4) >> 2] = I + d = (a + 28) | 0 + e = f[d >> 2] | 0 + b = (a + 24) | 0 + f[b >> 2] = f[b >> 2] | (1 << e) + g = d + h = e + } else { + e = c + d = Vn(f[e >> 2] | 0, f[(e + 4) >> 2] | 0, 1, 0) | 0 + e = c + f[e >> 2] = d + f[(e + 4) >> 2] = I + e = (a + 28) | 0 + g = e + h = f[e >> 2] | 0 + } + e = (h + 1) | 0 + f[g >> 2] = e + if ((e | 0) != 32) return + e = (a + 24) | 0 + h = (a + 16) | 0 + d = f[h >> 2] | 0 + if ((d | 0) == (f[(a + 20) >> 2] | 0)) Ri((a + 12) | 0, e) + else { + f[d >> 2] = f[e >> 2] + f[h >> 2] = d + 4 + } + f[g >> 2] = 0 + f[e >> 2] = 0 + return + } + function gj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + c = (a + 32) | 0 + a = f[b >> 2] | 0 + f[b >> 2] = 0 + b = f[c >> 2] | 0 + f[c >> 2] = a + if (!b) return + a = (b + 88) | 0 + c = f[a >> 2] | 0 + f[a >> 2] = 0 + if (c | 0) { + a = f[(c + 8) >> 2] | 0 + if (a | 0) { + d = (c + 12) | 0 + if ((f[d >> 2] | 0) != (a | 0)) f[d >> 2] = a + Oq(a) + } + Oq(c) + } + c = f[(b + 68) >> 2] | 0 + if (c | 0) { + a = (b + 72) | 0 + d = f[a >> 2] | 0 + if ((d | 0) != (c | 0)) + f[a >> 2] = d + (~(((d + -4 - c) | 0) >>> 2) << 2) + Oq(c) + } + c = (b + 64) | 0 + d = f[c >> 2] | 0 + f[c >> 2] = 0 + if (d | 0) { + c = f[d >> 2] | 0 + if (c | 0) { + a = (d + 4) | 0 + if ((f[a >> 2] | 0) != (c | 0)) f[a >> 2] = c + Oq(c) + } + Oq(d) + } + Oq(b) + return + } + function hj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + e = u + u = (u + 16) | 0 + g = e + if (c | 0) { + h = (a + 11) | 0 + i = b[h >> 0] | 0 + if ((i << 24) >> 24 < 0) { + j = f[(a + 4) >> 2] | 0 + k = ((f[(a + 8) >> 2] & 2147483647) + -1) | 0 + } else { + j = i & 255 + k = 10 + } + if (((k - j) | 0) >>> 0 < c >>> 0) { + xj(a, k, (c - k + j) | 0, j, j, 0, 0) + l = b[h >> 0] | 0 + } else l = i + if ((l << 24) >> 24 < 0) m = f[a >> 2] | 0 + else m = a + Qn((m + j) | 0, c, d) | 0 + d = (j + c) | 0 + if ((b[h >> 0] | 0) < 0) f[(a + 4) >> 2] = d + else b[h >> 0] = d + b[g >> 0] = 0 + up((m + d) | 0, g) + } + u = e + return a | 0 + } + function ij(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 48) | 0 + e = (d + 4) | 0 + g = d + h = f[(b + 12) >> 2] | 0 + i = f[(b + 4) >> 2] | 0 + b = e + j = (b + 36) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (j | 0)) + zh(g, c, h, i, e) + i = f[(e + 24) >> 2] | 0 + if (!i) { + k = f[g >> 2] | 0 + f[a >> 2] = k + u = d + return + } + h = (e + 28) | 0 + e = f[h >> 2] | 0 + if ((e | 0) != (i | 0)) f[h >> 2] = e + (~(((e + -4 - i) | 0) >>> 2) << 2) + Oq(i) + k = f[g >> 2] | 0 + f[a >> 2] = k + u = d + return + } + function jj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + e = u + u = (u + 16) | 0 + g = e + h = (a + 11) | 0 + i = b[h >> 0] | 0 + j = (i << 24) >> 24 < 0 + if (j) k = ((f[(a + 8) >> 2] & 2147483647) + -1) | 0 + else k = 10 + do + if (k >>> 0 >= d >>> 0) { + if (j) l = f[a >> 2] | 0 + else l = a + Eo(l, c, d) | 0 + b[g >> 0] = 0 + up((l + d) | 0, g) + if ((b[h >> 0] | 0) < 0) { + f[(a + 4) >> 2] = d + break + } else { + b[h >> 0] = d + break + } + } else { + if (j) m = f[(a + 4) >> 2] | 0 + else m = i & 255 + Bi(a, k, (d - k) | 0, m, 0, m, d, c) + } + while (0) + u = e + return a | 0 + } + function kj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + b = f[a >> 2] | 0 + if (!b) return + c = (a + 4) | 0 + d = f[c >> 2] | 0 + if ((d | 0) == (b | 0)) e = b + else { + g = d + do { + f[c >> 2] = g + -136 + d = f[(g + -20) >> 2] | 0 + if (d | 0) { + h = (g + -16) | 0 + i = f[h >> 2] | 0 + if ((i | 0) != (d | 0)) + f[h >> 2] = i + (~(((i + -4 - d) | 0) >>> 2) << 2) + Oq(d) + } + d = f[(g + -32) >> 2] | 0 + if (d | 0) { + i = (g + -28) | 0 + h = f[i >> 2] | 0 + if ((h | 0) != (d | 0)) + f[i >> 2] = h + (~(((h + -4 - d) | 0) >>> 2) << 2) + Oq(d) + } + Mi((g + -132) | 0) + g = f[c >> 2] | 0 + } while ((g | 0) != (b | 0)) + e = f[a >> 2] | 0 + } + Oq(e) + return + } + function lj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0 + e = u + u = (u + 16) | 0 + g = e + h = (a + 11) | 0 + i = b[h >> 0] | 0 + j = (i << 24) >> 24 < 0 + if (j) { + k = f[(a + 4) >> 2] | 0 + l = ((f[(a + 8) >> 2] & 2147483647) + -1) | 0 + } else { + k = i & 255 + l = 10 + } + if (((l - k) | 0) >>> 0 >= d >>> 0) { + if (d | 0) { + if (j) m = f[a >> 2] | 0 + else m = a + Fo((m + k) | 0, c, d) | 0 + j = (k + d) | 0 + if ((b[h >> 0] | 0) < 0) f[(a + 4) >> 2] = j + else b[h >> 0] = j + b[g >> 0] = 0 + up((m + j) | 0, g) + } + } else Bi(a, l, (d - l + k) | 0, k, k, 0, d, c) + u = e + return a | 0 + } + function mj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + f[a >> 2] = 3932 + b = f[(a + 32) >> 2] | 0 + if (b | 0) { + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 20) >> 2] | 0 + if (b | 0) { + d = (a + 24) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = (a + 8) | 0 + c = f[b >> 2] | 0 + if (!c) return + d = (a + 12) | 0 + a = f[d >> 2] | 0 + if ((a | 0) == (c | 0)) e = c + else { + g = a + do { + a = (g + -4) | 0 + f[d >> 2] = a + h = f[a >> 2] | 0 + f[a >> 2] = 0 + if (h | 0) Va[f[((f[h >> 2] | 0) + 4) >> 2] & 127](h) + g = f[d >> 2] | 0 + } while ((g | 0) != (c | 0)) + e = f[b >> 2] | 0 + } + Oq(e) + return + } + function nj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = (a + 4) | 0 + if ((Qa[f[((f[b >> 2] | 0) + 20) >> 2] & 127](b) | 0) <= 0) { + d = 1 + return d | 0 + } + a = 0 + while (1) { + e = f[((f[c >> 2] | 0) + 4) >> 2] | 0 + g = dm(e, Ra[f[((f[b >> 2] | 0) + 24) >> 2] & 127](b, a) | 0) | 0 + if ((g | 0) == -1) { + d = 0 + h = 6 + break + } + e = f[((f[b >> 2] | 0) + 28) >> 2] | 0 + i = fl(f[c >> 2] | 0, g) | 0 + a = (a + 1) | 0 + if (!(Ra[e & 127](b, i) | 0)) { + d = 0 + h = 6 + break + } + if ((a | 0) >= (Qa[f[((f[b >> 2] | 0) + 20) >> 2] & 127](b) | 0)) { + d = 1 + h = 6 + break + } + } + if ((h | 0) == 6) return d | 0 + return 0 + } + function oj(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + if (!(ho(a, b, c) | 0)) { + d = 0 + return d | 0 + } + if (!(Qa[f[((f[a >> 2] | 0) + 52) >> 2] & 127](a) | 0)) { + d = 0 + return d | 0 + } + c = (a + 4) | 0 + e = (a + 8) | 0 + g = f[c >> 2] | 0 + if ((f[e >> 2] | 0) == (g | 0)) { + d = 1 + return d | 0 + } + h = (a + 36) | 0 + a = 0 + i = g + while (1) { + g = f[((f[h >> 2] | 0) + (a << 2)) >> 2] | 0 + if ( + !( + Sa[f[((f[g >> 2] | 0) + 8) >> 2] & 31]( + g, + b, + f[(i + (a << 2)) >> 2] | 0, + ) | 0 + ) + ) { + d = 0 + j = 7 + break + } + a = (a + 1) | 0 + i = f[c >> 2] | 0 + if (a >>> 0 >= (((f[e >> 2] | 0) - i) >> 2) >>> 0) { + d = 1 + j = 7 + break + } + } + if ((j | 0) == 7) return d | 0 + return 0 + } + function pj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 16) | 0 + e = d + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + if ((b[(c + 11) >> 0] | 0) < 0) { + g = f[c >> 2] | 0 + h = f[(c + 4) >> 2] | 0 + if (h >>> 0 > 4294967279) aq(a) + if (h >>> 0 < 11) { + b[(a + 11) >> 0] = h + i = a + } else { + j = (h + 16) & -16 + k = ln(j) | 0 + f[a >> 2] = k + f[(a + 8) >> 2] = j | -2147483648 + f[(a + 4) >> 2] = h + i = k + } + Fo(i, g, h) | 0 + b[e >> 0] = 0 + up((i + h) | 0, e) + } else { + f[a >> 2] = f[c >> 2] + f[(a + 4) >> 2] = f[(c + 4) >> 2] + f[(a + 8) >> 2] = f[(c + 8) >> 2] + } + u = d + return + } + function qj(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0 + b[(c + 53) >> 0] = 1 + do + if ((f[(c + 4) >> 2] | 0) == (e | 0)) { + b[(c + 52) >> 0] = 1 + a = (c + 16) | 0 + h = f[a >> 2] | 0 + if (!h) { + f[a >> 2] = d + f[(c + 24) >> 2] = g + f[(c + 36) >> 2] = 1 + if (!((g | 0) == 1 ? (f[(c + 48) >> 2] | 0) == 1 : 0)) break + b[(c + 54) >> 0] = 1 + break + } + if ((h | 0) != (d | 0)) { + h = (c + 36) | 0 + f[h >> 2] = (f[h >> 2] | 0) + 1 + b[(c + 54) >> 0] = 1 + break + } + h = (c + 24) | 0 + a = f[h >> 2] | 0 + if ((a | 0) == 2) { + f[h >> 2] = g + i = g + } else i = a + if ((i | 0) == 1 ? (f[(c + 48) >> 2] | 0) == 1 : 0) + b[(c + 54) >> 0] = 1 + } + while (0) + return + } + function rj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = (a + 36) | 0 + d = (a + 40) | 0 + e = f[c >> 2] | 0 + if ((f[d >> 2] | 0) != (e | 0)) { + g = 0 + h = e + do { + vg((h + ((g * 24) | 0)) | 0, b) | 0 + g = (g + 1) | 0 + h = f[c >> 2] | 0 + } while (g >>> 0 < (((((f[d >> 2] | 0) - h) | 0) / 24) | 0) >>> 0) + } + h = (a + 48) | 0 + d = (a + 52) | 0 + a = f[h >> 2] | 0 + if ((f[d >> 2] | 0) == (a | 0)) return 1 + else { + i = 0 + j = a + } + do { + a = f[(j + (i << 2)) >> 2] | 0 + ci((a << 1) ^ (a >> 31), b) | 0 + i = (i + 1) | 0 + j = f[h >> 2] | 0 + } while (i >>> 0 < (((f[d >> 2] | 0) - j) >> 2) >>> 0) + return 1 + } + function sj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0 + e = (a + d) | 0 + c = c & 255 + if ((d | 0) >= 67) { + while (a & 3) { + b[a >> 0] = c + a = (a + 1) | 0 + } + g = (e & -4) | 0 + h = (g - 64) | 0 + i = c | (c << 8) | (c << 16) | (c << 24) + while ((a | 0) <= (h | 0)) { + f[a >> 2] = i + f[(a + 4) >> 2] = i + f[(a + 8) >> 2] = i + f[(a + 12) >> 2] = i + f[(a + 16) >> 2] = i + f[(a + 20) >> 2] = i + f[(a + 24) >> 2] = i + f[(a + 28) >> 2] = i + f[(a + 32) >> 2] = i + f[(a + 36) >> 2] = i + f[(a + 40) >> 2] = i + f[(a + 44) >> 2] = i + f[(a + 48) >> 2] = i + f[(a + 52) >> 2] = i + f[(a + 56) >> 2] = i + f[(a + 60) >> 2] = i + a = (a + 64) | 0 + } + while ((a | 0) < (g | 0)) { + f[a >> 2] = i + a = (a + 4) | 0 + } + } + while ((a | 0) < (e | 0)) { + b[a >> 0] = c + a = (a + 1) | 0 + } + return (e - d) | 0 + } + function tj(a, c, d, e, g) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0 + do + if (!(fp(a, f[(c + 8) >> 2] | 0, g) | 0)) { + if (fp(a, f[c >> 2] | 0, g) | 0) { + if ( + (f[(c + 16) >> 2] | 0) != (d | 0) + ? ((h = (c + 20) | 0), (f[h >> 2] | 0) != (d | 0)) + : 0 + ) { + f[(c + 32) >> 2] = e + f[h >> 2] = d + h = (c + 40) | 0 + f[h >> 2] = (f[h >> 2] | 0) + 1 + if ((f[(c + 36) >> 2] | 0) == 1 ? (f[(c + 24) >> 2] | 0) == 2 : 0) + b[(c + 54) >> 0] = 1 + f[(c + 44) >> 2] = 4 + break + } + if ((e | 0) == 1) f[(c + 32) >> 2] = 1 + } + } else Vm(0, c, d, e) + while (0) + return + } + function uj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0 + b = (a + 80) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) { + b = (c + -4) | 0 + d = f[b >> 2] | 0 + if (d | 0) { + e = (c + (d << 5)) | 0 + do { + e = (e + -32) | 0 + Fj(e) + } while ((e | 0) != (c | 0)) + } + Mq(b) + } + b = f[(a + 68) >> 2] | 0 + if (b | 0) { + c = (a + 72) | 0 + e = f[c >> 2] | 0 + if ((e | 0) != (b | 0)) + f[c >> 2] = e + (~(((e + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = (a + 44) | 0 + e = f[b >> 2] | 0 + f[b >> 2] = 0 + if (e | 0) Oq(e) + e = f[(a + 32) >> 2] | 0 + if (!e) { + Fj(a) + return + } + b = (a + 36) | 0 + if ((f[b >> 2] | 0) != (e | 0)) f[b >> 2] = e + Oq(e) + Fj(a) + return + } + function vj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3092 + b = f[(a + 136) >> 2] | 0 + if (b | 0) { + c = (a + 140) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 96) >> 2] | 0 + if (b | 0) { + d = (a + 100) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 76) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 64) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 52) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 40) >> 2] | 0 + if (!b) return + Oq(b) + return + } + function wj(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0 + if ((d | 0) < 0) { + e = 0 + return e | 0 + } + do + if (!b) { + d = (a + 4) | 0 + g = f[d >> 2] | 0 + h = f[a >> 2] | 0 + i = (g - h) | 0 + if (i >>> 0 < c >>> 0) { + Fi(a, (c - i) | 0) + break + } + if (i >>> 0 > c >>> 0 ? ((i = (h + c) | 0), (i | 0) != (g | 0)) : 0) + f[d >> 2] = i + } else Cg(a, b, (b + c) | 0) + while (0) + c = (a + 24) | 0 + a = c + b = Vn(f[a >> 2] | 0, f[(a + 4) >> 2] | 0, 1, 0) | 0 + a = c + f[a >> 2] = b + f[(a + 4) >> 2] = I + e = 1 + return e | 0 + } + function xj(a, c, d, e, g, h, i) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + var j = 0, + k = 0, + l = 0, + m = 0 + if (((-17 - c) | 0) >>> 0 < d >>> 0) aq(a) + if ((b[(a + 11) >> 0] | 0) < 0) j = f[a >> 2] | 0 + else j = a + if (c >>> 0 < 2147483623) { + k = (d + c) | 0 + d = c << 1 + l = k >>> 0 < d >>> 0 ? d : k + m = l >>> 0 < 11 ? 11 : (l + 16) & -16 + } else m = -17 + l = ln(m) | 0 + if (g | 0) Fo(l, j, g) | 0 + k = (e - h - g) | 0 + if (k | 0) Fo((l + g + i) | 0, (j + g + h) | 0, k) | 0 + if ((c | 0) != 10) Oq(j) + f[a >> 2] = l + f[(a + 8) >> 2] = m | -2147483648 + return + } + function yj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2728 + b = f[(a + 136) >> 2] | 0 + if (b | 0) { + c = (a + 140) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 96) >> 2] | 0 + if (b | 0) { + d = (a + 100) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) + f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 76) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 64) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 52) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 40) >> 2] | 0 + if (!b) return + Oq(b) + return + } + function zj(a, b) { + a = a | 0 + b = b | 0 + if (!b) return + else { + zj(a, f[b >> 2] | 0) + zj(a, f[(b + 4) >> 2] | 0) + Ej((b + 20) | 0, f[(b + 24) >> 2] | 0) + Oq(b) + return + } + } + function Aj(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + Yf(a, b, c) + c = f[(a + 100) >> 2] | 0 + d = f[(a + 96) >> 2] | 0 + a = d + if ((c | 0) == (d | 0)) return + e = f[b >> 2] | 0 + b = (((c - d) | 0) / 12) | 0 + d = 0 + do { + c = (a + ((d * 12) | 0)) | 0 + f[c >> 2] = f[(e + (f[c >> 2] << 2)) >> 2] + c = (a + ((d * 12) | 0) + 4) | 0 + f[c >> 2] = f[(e + (f[c >> 2] << 2)) >> 2] + c = (a + ((d * 12) | 0) + 8) | 0 + f[c >> 2] = f[(e + (f[c >> 2] << 2)) >> 2] + d = (d + 1) | 0 + } while (d >>> 0 < b >>> 0) + return + } + function Bj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = (a + 64) | 0 + if ( + (f[d >> 2] | 0) == 0 + ? ((e = ln(32) | 0), + yn(e), + (g = f[d >> 2] | 0), + (f[d >> 2] = e), + g | 0) + : 0 + ) { + e = f[g >> 2] | 0 + if (e | 0) { + h = (g + 4) | 0 + if ((f[h >> 2] | 0) != (e | 0)) f[h >> 2] = e + Oq(e) + } + Oq(g) + } + g = Vl(f[(a + 28) >> 2] | 0) | 0 + e = X(g, b[(a + 24) >> 0] | 0) | 0 + g = (((e | 0) < 0) << 31) >> 31 + h = f[d >> 2] | 0 + i = un(e | 0, g | 0, c | 0, 0) | 0 + if (!(wj(h, 0, i, I) | 0)) { + j = 0 + return j | 0 + } + Kk(a, f[d >> 2] | 0, e, g, 0, 0) + f[(a + 80) >> 2] = c + j = 1 + return j | 0 + } + function Cj(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = u + u = (u + 64) | 0 + e = d + if (!(fp(a, b, 0) | 0)) + if ((b | 0) != 0 ? ((g = Eh(b, 1056, 1040, 0) | 0), (g | 0) != 0) : 0) { + b = (e + 4) | 0 + h = (b + 52) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (h | 0)) + f[e >> 2] = g + f[(e + 8) >> 2] = a + f[(e + 12) >> 2] = -1 + f[(e + 48) >> 2] = 1 + Ya[f[((f[g >> 2] | 0) + 28) >> 2] & 3](g, e, f[c >> 2] | 0, 1) + if ((f[(e + 24) >> 2] | 0) == 1) { + f[c >> 2] = f[(e + 16) >> 2] + i = 1 + } else i = 0 + j = i + } else j = 0 + else j = 1 + u = d + return j | 0 + } + function Dj(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0 + if (!c) { + d = 0 + return d | 0 + } + e = (c + 40) | 0 + g = (c + 44) | 0 + ci(((f[g >> 2] | 0) - (f[e >> 2] | 0)) >> 2, b) | 0 + h = f[e >> 2] | 0 + e = f[g >> 2] | 0 + if ((h | 0) != (e | 0)) { + g = h + do { + h = f[g >> 2] | 0 + if (h | 0) { + ci(f[(h + 40) >> 2] | 0, b) | 0 + lg(a, b, h) | 0 + } + g = (g + 4) | 0 + } while ((g | 0) != (e | 0)) + } + lg(a, b, c) | 0 + d = 1 + return d | 0 + } + function Ej(a, c) { + a = a | 0 + c = c | 0 + var d = 0 + if (!c) return + Ej(a, f[c >> 2] | 0) + Ej(a, f[(c + 4) >> 2] | 0) + a = (c + 16) | 0 + d = (c + 28) | 0 + if ((b[(d + 11) >> 0] | 0) < 0) Oq(f[d >> 2] | 0) + if ((b[(a + 11) >> 0] | 0) < 0) Oq(f[a >> 2] | 0) + Oq(c) + return + } + function Fj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + b = u + u = (u + 16) | 0 + c = b + d = c + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + qf(a, 2, c) + c = f[(a + 12) >> 2] | 0 + d = (a + 16) | 0 + e = f[d >> 2] | 0 + if ((e | 0) == (c | 0)) g = c + else { + h = (e + (~(((e + -4 - c) | 0) >>> 2) << 2)) | 0 + f[d >> 2] = h + g = h + } + f[(a + 24) >> 2] = 0 + f[(a + 28) >> 2] = 0 + if (c | 0) { + if ((g | 0) != (c | 0)) + f[d >> 2] = g + (~(((g + -4 - c) | 0) >>> 2) << 2) + Oq(c) + } + c = f[a >> 2] | 0 + if (!c) { + u = b + return + } + g = (a + 4) | 0 + a = f[g >> 2] | 0 + if ((a | 0) != (c | 0)) f[g >> 2] = a + (~(((a + -8 - c) | 0) >>> 3) << 3) + Oq(c) + u = b + return + } + function Gj(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0, + l = 0 + c = a + a: do + if (!(c & 3)) { + d = a + e = 4 + } else { + g = a + h = c + while (1) { + if (!(b[g >> 0] | 0)) { + i = h + break a + } + j = (g + 1) | 0 + h = j + if (!(h & 3)) { + d = j + e = 4 + break + } else g = j + } + } + while (0) + if ((e | 0) == 4) { + e = d + while (1) { + k = f[e >> 2] | 0 + if (!(((k & -2139062144) ^ -2139062144) & (k + -16843009))) + e = (e + 4) | 0 + else break + } + if (!(((k & 255) << 24) >> 24)) l = e + else { + k = e + while (1) { + e = (k + 1) | 0 + if (!(b[e >> 0] | 0)) { + l = e + break + } else k = e + } + } + i = l + } + return (i - c) | 0 + } + function Hj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + e = u + u = (u + 16) | 0 + g = e + h = (a + 11) | 0 + i = b[h >> 0] | 0 + j = (i << 24) >> 24 < 0 + if (j) k = f[(a + 4) >> 2] | 0 + else k = i & 255 + do + if (k >>> 0 >= c >>> 0) + if (j) { + i = ((f[a >> 2] | 0) + c) | 0 + b[g >> 0] = 0 + up(i, g) + f[(a + 4) >> 2] = c + break + } else { + b[g >> 0] = 0 + up((a + c) | 0, g) + b[h >> 0] = c + break + } + else hj(a, (c - k) | 0, d) | 0 + while (0) + u = e + return + } + function Ij(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + if (!a) return + b = (a + 88) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) { + b = f[(c + 8) >> 2] | 0 + if (b | 0) { + d = (c + 12) | 0 + if ((f[d >> 2] | 0) != (b | 0)) f[d >> 2] = b + Oq(b) + } + Oq(c) + } + c = f[(a + 68) >> 2] | 0 + if (c | 0) { + b = (a + 72) | 0 + d = f[b >> 2] | 0 + if ((d | 0) != (c | 0)) + f[b >> 2] = d + (~(((d + -4 - c) | 0) >>> 2) << 2) + Oq(c) + } + c = (a + 64) | 0 + d = f[c >> 2] | 0 + f[c >> 2] = 0 + if (d | 0) { + c = f[d >> 2] | 0 + if (c | 0) { + b = (d + 4) | 0 + if ((f[b >> 2] | 0) != (c | 0)) f[b >> 2] = c + Oq(c) + } + Oq(d) + } + Oq(a) + return + } + function Jj(a, c, d, e, g, h, i, j, k, l) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + h = h | 0 + i = i | 0 + j = j | 0 + k = k | 0 + l = l | 0 + var m = 0, + n = 0, + o = 0 + f[a >> 2] = d + if (d | 0) { + m = (d + 16) | 0 + n = f[(m + 4) >> 2] | 0 + o = (a + 8) | 0 + f[o >> 2] = f[m >> 2] + f[(o + 4) >> 2] = n + n = (d + 24) | 0 + d = f[(n + 4) >> 2] | 0 + o = (a + 16) | 0 + f[o >> 2] = f[n >> 2] + f[(o + 4) >> 2] = d + } + b[(a + 24) >> 0] = e + f[(a + 28) >> 2] = g + b[(a + 32) >> 0] = h & 1 + h = (a + 40) | 0 + f[h >> 2] = i + f[(h + 4) >> 2] = j + j = (a + 48) | 0 + f[j >> 2] = k + f[(j + 4) >> 2] = l + f[(a + 56) >> 2] = c + return + } + function Kj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0 + c = ln(88) | 0 + d = (c + 60) | 0 + e = c + g = (e + 60) | 0 + do { + f[e >> 2] = 0 + e = (e + 4) | 0 + } while ((e | 0) < (g | 0)) + f[d >> 2] = c + d = (c + 64) | 0 + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + f[(d + 8) >> 2] = 0 + f[(d + 12) >> 2] = 0 + f[(d + 16) >> 2] = 0 + f[(d + 20) >> 2] = 0 + d = cg(c, b) | 0 + f[a >> 2] = d ? c : 0 + a = d ? 0 : c + if (d) return + Ii(a) + Oq(a) + return + } + function Lj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + if ((f[(c + 76) >> 2] | 0) >= 0 ? (Tq(c) | 0) != 0 : 0) { + d = a & 255 + e = a & 255 + if ( + (e | 0) != (b[(c + 75) >> 0] | 0) + ? ((g = (c + 20) | 0), + (h = f[g >> 2] | 0), + h >>> 0 < (f[(c + 16) >> 2] | 0) >>> 0) + : 0 + ) { + f[g >> 2] = h + 1 + b[h >> 0] = d + i = e + } else i = Nj(c, a) | 0 + Sq(c) + j = i + } else k = 3 + do + if ((k | 0) == 3) { + i = a & 255 + e = a & 255 + if ( + (e | 0) != (b[(c + 75) >> 0] | 0) + ? ((d = (c + 20) | 0), + (h = f[d >> 2] | 0), + h >>> 0 < (f[(c + 16) >> 2] | 0) >>> 0) + : 0 + ) { + f[d >> 2] = h + 1 + b[h >> 0] = i + j = e + break + } + j = Nj(c, a) | 0 + } + while (0) + return j | 0 + } + function Mj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = u + u = (u + 16) | 0 + e = (d + 4) | 0 + g = d + h = (d + 8) | 0 + i = f[(a + 4) >> 2] | 0 + if ((i | 0) == -1) { + j = 0 + u = d + return j | 0 + } + b[h >> 0] = i + i = (c + 16) | 0 + a = f[(i + 4) >> 2] | 0 + if (!(((a | 0) > 0) | (((a | 0) == 0) & ((f[i >> 2] | 0) >>> 0 > 0)))) { + f[g >> 2] = f[(c + 4) >> 2] + f[e >> 2] = f[g >> 2] + Me(c, e, h, (h + 1) | 0) | 0 + } + j = 1 + u = d + return j | 0 + } + function Nj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0, + l = 0, + m = 0, + n = 0 + d = u + u = (u + 16) | 0 + e = d + g = c & 255 + b[e >> 0] = g + i = (a + 16) | 0 + j = f[i >> 2] | 0 + if (!j) + if (!(vl(a) | 0)) { + k = f[i >> 2] | 0 + l = 4 + } else m = -1 + else { + k = j + l = 4 + } + do + if ((l | 0) == 4) { + j = (a + 20) | 0 + i = f[j >> 2] | 0 + if ( + i >>> 0 < k >>> 0 + ? ((n = c & 255), (n | 0) != (b[(a + 75) >> 0] | 0)) + : 0 + ) { + f[j >> 2] = i + 1 + b[i >> 0] = g + m = n + break + } + if ((Sa[f[(a + 36) >> 2] & 31](a, e, 1) | 0) == 1) m = h[e >> 0] | 0 + else m = -1 + } + while (0) + u = d + return m | 0 + } + function Oj(a, b) { + a = a | 0 + b = b | 0 + if (!b) return + else { + Oj(a, f[b >> 2] | 0) + Oj(a, f[(b + 4) >> 2] | 0) + Ej((b + 20) | 0, f[(b + 24) >> 2] | 0) + Oq(b) + return + } + } + function Pj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + e = u + u = (u + 16) | 0 + g = e + h = (e + 4) | 0 + f[g >> 2] = c + c = ln(32) | 0 + f[h >> 2] = c + f[(h + 8) >> 2] = -2147483616 + f[(h + 4) >> 2] = 17 + i = c + j = 14495 + k = (i + 17) | 0 + do { + b[i >> 0] = b[j >> 0] | 0 + i = (i + 1) | 0 + j = (j + 1) | 0 + } while ((i | 0) < (k | 0)) + b[(c + 17) >> 0] = 0 + Xj(Hd(a, g) | 0, h, d) + if ((b[(h + 11) >> 0] | 0) >= 0) { + u = e + return + } + Oq(f[h >> 2] | 0) + u = e + return + } + function Qj(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + c = f[(a + 16) >> 2] | 0 + if (((((f[(a + 20) >> 2] | 0) - c) >> 2) | 0) <= (b | 0)) { + d = 0 + return d | 0 + } + e = f[(c + (b << 2)) >> 2] | 0 + if ((e | 0) < 0) { + d = 0 + return d | 0 + } + b = (a + 48) | 0 + if ((f[(a + 52) >> 2] | 0) >>> 0 <= e >>> 0) Ce(b, (e + 1) | 0, 0) + c = ((f[b >> 2] | 0) + ((e >>> 5) << 2)) | 0 + f[c >> 2] = f[c >> 2] | (1 << (e & 31)) + c = f[(a + 36) >> 2] | 0 + if ((((f[(a + 40) >> 2] | 0) - c) >> 2) >>> 0 <= e >>> 0) { + d = 1 + return d | 0 + } + Bp(f[(c + (e << 2)) >> 2] | 0) + d = 1 + return d | 0 + } + function Rj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + if ((c >>> 0 > 0) | (((c | 0) == 0) & (a >>> 0 > 4294967295))) { + e = d + f = a + g = c + while (1) { + c = hn(f | 0, g | 0, 10, 0) | 0 + e = (e + -1) | 0 + b[e >> 0] = (c & 255) | 48 + c = f + f = jp(f | 0, g | 0, 10, 0) | 0 + if (!((g >>> 0 > 9) | (((g | 0) == 9) & (c >>> 0 > 4294967295)))) + break + else g = I + } + h = f + i = e + } else { + h = a + i = d + } + if (!h) j = i + else { + d = h + h = i + while (1) { + i = (h + -1) | 0 + b[i >> 0] = (d >>> 0) % 10 | 0 | 48 + if (d >>> 0 < 10) { + j = i + break + } else { + d = ((d >>> 0) / 10) | 0 + h = i + } + } + } + return j | 0 + } + function Sj(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = a + while (1) { + d = (c + 1) | 0 + if (!(eq(b[c >> 0] | 0) | 0)) break + else c = d + } + a = b[c >> 0] | 0 + switch (((a << 24) >> 24) | 0) { + case 45: { + e = 1 + f = 5 + break + } + case 43: { + e = 0 + f = 5 + break + } + default: { + g = 0 + h = c + i = a + } + } + if ((f | 0) == 5) { + g = e + h = d + i = b[d >> 0] | 0 + } + if (!(Aq((i << 24) >> 24) | 0)) j = 0 + else { + i = 0 + d = h + while (1) { + h = (((i * 10) | 0) + 48 - (b[d >> 0] | 0)) | 0 + d = (d + 1) | 0 + if (!(Aq(b[d >> 0] | 0) | 0)) { + j = h + break + } else i = h + } + } + return (g | 0 ? j : (0 - j) | 0) | 0 + } + function Tj(a, c, d) { + a = a | 0 + c = c | 0 + d = $(d) + var e = 0, + g = 0, + h = 0 + e = u + u = (u + 16) | 0 + g = e + il(g, d) + h = Ai(a, c) | 0 + c = (h + 11) | 0 + if ((b[c >> 0] | 0) < 0) { + b[f[h >> 2] >> 0] = 0 + f[(h + 4) >> 2] = 0 + } else { + b[h >> 0] = 0 + b[c >> 0] = 0 + } + gh(h, 0) + f[h >> 2] = f[g >> 2] + f[(h + 4) >> 2] = f[(g + 4) >> 2] + f[(h + 8) >> 2] = f[(g + 8) >> 2] + u = e + return + } + function Uj(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + b = u + u = (u + 16) | 0 + c = (b + 8) | 0 + d = (b + 4) | 0 + e = b + f[e >> 2] = f[((f[(a + 4) >> 2] | 0) + 80) >> 2] + g = f[(a + 44) >> 2] | 0 + a = (g + 16) | 0 + h = f[(a + 4) >> 2] | 0 + if (((h | 0) > 0) | (((h | 0) == 0) & ((f[a >> 2] | 0) >>> 0 > 0))) { + u = b + return 1 + } + f[d >> 2] = f[(g + 4) >> 2] + f[c >> 2] = f[d >> 2] + Me(g, c, e, (e + 4) | 0) | 0 + u = b + return 1 + } + function Vj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0 + e = u + u = (u + 16) | 0 + g = e + ll(g, d & 1) + d = Ai(a, c) | 0 + c = (d + 11) | 0 + if ((b[c >> 0] | 0) < 0) { + b[f[d >> 2] >> 0] = 0 + f[(d + 4) >> 2] = 0 + } else { + b[d >> 0] = 0 + b[c >> 0] = 0 + } + gh(d, 0) + f[d >> 2] = f[g >> 2] + f[(d + 4) >> 2] = f[(g + 4) >> 2] + f[(d + 8) >> 2] = f[(g + 8) >> 2] + u = e + return + } + function Wj(a) { + a = a | 0 + if (!a) return + Ej((a + 24) | 0, f[(a + 28) >> 2] | 0) + zj((a + 12) | 0, f[(a + 16) >> 2] | 0) + Ej(a, f[(a + 4) >> 2] | 0) + Oq(a) + return + } + function Xj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0 + e = u + u = (u + 16) | 0 + g = e + ll(g, d) + d = Ai(a, c) | 0 + c = (d + 11) | 0 + if ((b[c >> 0] | 0) < 0) { + b[f[d >> 2] >> 0] = 0 + f[(d + 4) >> 2] = 0 + } else { + b[d >> 0] = 0 + b[c >> 0] = 0 + } + gh(d, 0) + f[d >> 2] = f[g >> 2] + f[(d + 4) >> 2] = f[(g + 4) >> 2] + f[(d + 8) >> 2] = f[(g + 8) >> 2] + u = e + return + } + function Yj(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + e = Rg(a, c) | 0 + if ((e | 0) == ((a + 4) | 0)) { + g = -1 + h = (g | 0) == -1 + i = (g | 0) != 0 + j = h ? d : i + return j | 0 + } + a = (e + 28) | 0 + if ((b[(a + 11) >> 0] | 0) < 0) k = f[a >> 2] | 0 + else k = a + g = Sj(k) | 0 + h = (g | 0) == -1 + i = (g | 0) != 0 + j = h ? d : i + return j | 0 + } + function Zj(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0, + k = 0 + d = u + u = (u + 16) | 0 + e = d + if (c >>> 0 > 10) { + g = 0 + u = d + return g | 0 + } + h = ln(48) | 0 + f[e >> 2] = h + f[(e + 8) >> 2] = -2147483600 + f[(e + 4) >> 2] = 33 + i = h + j = 15987 + k = (i + 33) | 0 + do { + b[i >> 0] = b[j >> 0] | 0 + i = (i + 1) | 0 + j = (j + 1) | 0 + } while ((i | 0) < (k | 0)) + b[(h + 33) >> 0] = 0 + Xj(a, e, c) + if ((b[(e + 11) >> 0] | 0) < 0) Oq(f[e >> 2] | 0) + g = 1 + u = d + return g | 0 + } + function _j(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + c = f[b >> 2] | 0 + if ((c | 0) == -1) return 1 + b = (c * 3) | 0 + if ((b | 0) == -1) return 1 + c = f[a >> 2] | 0 + a = f[(c + (b << 2)) >> 2] | 0 + d = (b + 1) | 0 + e = ((d >>> 0) % 3 | 0 | 0) == 0 ? (b + -2) | 0 : d + if ((e | 0) == -1) g = -1 + else g = f[(c + (e << 2)) >> 2] | 0 + e = ((((b >>> 0) % 3 | 0 | 0) == 0 ? 2 : -1) + b) | 0 + if ((e | 0) == -1) h = -1 + else h = f[(c + (e << 2)) >> 2] | 0 + if ((a | 0) == (g | 0)) return 1 + else return ((a | 0) == (h | 0)) | ((g | 0) == (h | 0)) | 0 + return 0 + } + function $j(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0, + j = 0, + k = 0 + d = 0 + while (1) { + if ((h[(16654 + d) >> 0] | 0) == (a | 0)) { + e = 2 + break + } + g = (d + 1) | 0 + if ((g | 0) == 87) { + i = 16742 + j = 87 + e = 5 + break + } else d = g + } + if ((e | 0) == 2) + if (!d) k = 16742 + else { + i = 16742 + j = d + e = 5 + } + if ((e | 0) == 5) + while (1) { + e = 0 + d = i + do { + a = d + d = (d + 1) | 0 + } while ((b[a >> 0] | 0) != 0) + j = (j + -1) | 0 + if (!j) { + k = d + break + } else { + i = d + e = 5 + } + } + return jq(k, f[(c + 20) >> 2] | 0) | 0 + } + function ak(a, b) { + a = +a + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0.0, + h = 0.0, + i = 0, + j = 0.0 + p[s >> 3] = a + c = f[s >> 2] | 0 + d = f[(s + 4) >> 2] | 0 + e = Yn(c | 0, d | 0, 52) | 0 + switch (e & 2047) { + case 0: { + if (a != 0.0) { + g = +ak(a * 18446744073709551616.0, b) + h = g + i = ((f[b >> 2] | 0) + -64) | 0 + } else { + h = a + i = 0 + } + f[b >> 2] = i + j = h + break + } + case 2047: { + j = a + break + } + default: { + f[b >> 2] = (e & 2047) + -1022 + f[s >> 2] = c + f[(s + 4) >> 2] = (d & -2146435073) | 1071644672 + j = +p[s >> 3] + } + } + return +j + } + function bk(a, b) { + a = +a + b = b | 0 + var c = 0.0, + d = 0, + e = 0, + g = 0.0, + h = 0 + if ((b | 0) <= 1023) + if ((b | 0) < -1022) { + c = a * 2.2250738585072014e-308 + d = (b | 0) < -2044 + e = (b + 2044) | 0 + g = d ? c * 2.2250738585072014e-308 : c + h = d ? ((e | 0) > -1022 ? e : -1022) : (b + 1022) | 0 + } else { + g = a + h = b + } + else { + c = a * 8988465674311579538646525.0e283 + e = (b | 0) > 2046 + d = (b + -2046) | 0 + g = e ? c * 8988465674311579538646525.0e283 : c + h = e ? ((d | 0) < 1023 ? d : 1023) : (b + -1023) | 0 + } + b = Tn((h + 1023) | 0, 0, 52) | 0 + h = I + f[s >> 2] = b + f[(s + 4) >> 2] = h + return +(g * +p[s >> 3]) + } + function ck(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + if (!(f[(a + 80) >> 2] | 0)) { + b = 0 + return b | 0 + } + c = (a + 8) | 0 + d = (a + 12) | 0 + a = f[c >> 2] | 0 + if ((((f[d >> 2] | 0) - a) | 0) > 0) { + e = 0 + g = a + } else { + b = 1 + return b | 0 + } + while (1) { + a = f[(g + (e << 2)) >> 2] | 0 + e = (e + 1) | 0 + if (!(Gl(a, a) | 0)) { + b = 0 + h = 5 + break + } + g = f[c >> 2] | 0 + if ((e | 0) >= ((((f[d >> 2] | 0) - g) >> 2) | 0)) { + b = 1 + h = 5 + break + } + } + if ((h | 0) == 5) return b | 0 + return 0 + } + function dk(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = (a + 36) | 0 + d = (a + 40) | 0 + e = f[c >> 2] | 0 + if ((f[d >> 2] | 0) == (e | 0)) { + g = 1 + return g | 0 + } + h = (a + 60) | 0 + a = 0 + i = e + while (1) { + e = f[(i + (a << 2)) >> 2] | 0 + a = (a + 1) | 0 + if (!(Sa[f[((f[e >> 2] | 0) + 20) >> 2] & 31](e, h, b) | 0)) { + g = 0 + j = 5 + break + } + i = f[c >> 2] | 0 + if (a >>> 0 >= (((f[d >> 2] | 0) - i) >> 2) >>> 0) { + g = 1 + j = 5 + break + } + } + if ((j | 0) == 5) return g | 0 + return 0 + } + function ek(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + c = (a + 36) | 0 + d = (a + 40) | 0 + a = f[c >> 2] | 0 + if ((f[d >> 2] | 0) == (a | 0)) { + e = 1 + return e | 0 + } else { + g = 0 + h = a + } + while (1) { + a = f[(h + (g << 2)) >> 2] | 0 + g = (g + 1) | 0 + if (!(Ra[f[((f[a >> 2] | 0) + 24) >> 2] & 127](a, b) | 0)) { + e = 0 + i = 4 + break + } + h = f[c >> 2] | 0 + if (g >>> 0 >= (((f[d >> 2] | 0) - h) >> 2) >>> 0) { + e = 1 + i = 4 + break + } + } + if ((i | 0) == 4) return e | 0 + return 0 + } + function fk(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + f[a >> 2] = 0 + c = (a + 4) | 0 + f[c >> 2] = 0 + f[(a + 8) >> 2] = 0 + d = (b + 4) | 0 + e = ((f[d >> 2] | 0) - (f[b >> 2] | 0)) | 0 + g = e >> 2 + if (!g) return + if (g >>> 0 > 1073741823) aq(a) + h = ln(e) | 0 + f[c >> 2] = h + f[a >> 2] = h + f[(a + 8) >> 2] = h + (g << 2) + g = f[b >> 2] | 0 + b = ((f[d >> 2] | 0) - g) | 0 + if ((b | 0) <= 0) return + kh(h | 0, g | 0, b | 0) | 0 + f[c >> 2] = h + ((b >>> 2) << 2) + return + } + function gk(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + c = (a + 8) | 0 + d = f[a >> 2] | 0 + if ((((f[c >> 2] | 0) - d) >> 2) >>> 0 >= b >>> 0) return + e = (a + 4) | 0 + if (b >>> 0 > 1073741823) { + g = ra(8) | 0 + Oo(g, 16035) + f[g >> 2] = 7256 + va(g | 0, 1112, 110) + } + g = ((f[e >> 2] | 0) - d) | 0 + h = ln(b << 2) | 0 + if ((g | 0) > 0) kh(h | 0, d | 0, g | 0) | 0 + f[a >> 2] = h + f[e >> 2] = h + ((g >> 2) << 2) + f[c >> 2] = h + (b << 2) + if (!d) return + Oq(d) + return + } + function hk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0 + b = (a + 36) | 0 + c = (a + 40) | 0 + d = f[b >> 2] | 0 + if ((f[c >> 2] | 0) == (d | 0)) { + e = 1 + return e | 0 + } + g = (a + 60) | 0 + a = 0 + h = d + while (1) { + d = f[(h + (a << 2)) >> 2] | 0 + a = (a + 1) | 0 + if (!(Ra[f[((f[d >> 2] | 0) + 16) >> 2] & 127](d, g) | 0)) { + e = 0 + i = 5 + break + } + h = f[b >> 2] | 0 + if (a >>> 0 >= (((f[c >> 2] | 0) - h) >> 2) >>> 0) { + e = 1 + i = 5 + break + } + } + if ((i | 0) == 5) return e | 0 + return 0 + } + function ik(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0 + d = f[(a + 176) >> 2] | 0 + e = f[(a + 172) >> 2] | 0 + a = e + if ((d | 0) == (e | 0)) return 0 + g = (((d - e) | 0) / 136) | 0 + e = 0 + while (1) { + if ((f[(a + ((e * 136) | 0)) >> 2] | 0) == (c | 0)) { + h = 4 + break + } + d = (e + 1) | 0 + if (d >>> 0 < g >>> 0) e = d + else { + h = 6 + break + } + } + if ((h | 0) == 4) + return ( + ((b[(a + ((e * 136) | 0) + 100) >> 0] | 0) == 0 + ? 0 + : (a + ((e * 136) | 0) + 4) | 0) | 0 + ) + else if ((h | 0) == 6) return 0 + return 0 + } + function jk(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + d = u + u = (u + 16) | 0 + e = d + g = ln(16) | 0 + f[e >> 2] = g + f[(e + 8) >> 2] = -2147483632 + f[(e + 4) >> 2] = 15 + h = g + i = 14479 + j = (h + 15) | 0 + do { + b[h >> 0] = b[i >> 0] | 0 + h = (h + 1) | 0 + i = (i + 1) | 0 + } while ((h | 0) < (j | 0)) + b[(g + 15) >> 0] = 0 + Xj(a, e, c) + if ((b[(e + 11) >> 0] | 0) >= 0) { + u = d + return + } + Oq(f[e >> 2] | 0) + u = d + return + } + function kk(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + c = f[(a + 72) >> 2] | 0 + if (!c) { + d = 0 + return d | 0 + } + f[(c + 4) >> 2] = a + 60 + if (!(Qa[f[((f[c >> 2] | 0) + 12) >> 2] & 127](c) | 0)) { + d = 0 + return d | 0 + } + if (!(Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0)) { + d = 0 + return d | 0 + } + if (!(Ra[f[((f[a >> 2] | 0) + 44) >> 2] & 127](a, b) | 0)) { + d = 0 + return d | 0 + } + d = Ra[f[((f[a >> 2] | 0) + 48) >> 2] & 127](a, b) | 0 + return d | 0 + } + function lk(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + f[a >> 2] = 0 + d = (a + 4) | 0 + f[d >> 2] = 0 + f[(a + 8) >> 2] = 0 + if (!b) return + if (b >>> 0 > 357913941) aq(a) + e = ln((b * 12) | 0) | 0 + f[d >> 2] = e + f[a >> 2] = e + f[(a + 8) >> 2] = e + ((b * 12) | 0) + a = b + b = e + do { + fk(b, c) + b = ((f[d >> 2] | 0) + 12) | 0 + f[d >> 2] = b + a = (a + -1) | 0 + } while ((a | 0) != 0) + return + } + function mk(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0 + c = f[b >> 2] | 0 + if (!c) { + d = 0 + return d | 0 + } + e = (a + 44) | 0 + g = f[e >> 2] | 0 + if (g >>> 0 < (f[(a + 48) >> 2] | 0) >>> 0) { + f[b >> 2] = 0 + f[g >> 2] = c + f[e >> 2] = (f[e >> 2] | 0) + 4 + d = 1 + return d | 0 + } else { + Ug((a + 40) | 0, b) + d = 1 + return d | 0 + } + return 0 + } + function nk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3564 + b = f[(a + 64) >> 2] | 0 + if (b | 0) { + c = (a + 68) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + f[(a + 12) >> 2] = 3588 + b = f[(a + 32) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 20) >> 2] | 0 + if (!b) { + Oq(a) + return + } + Oq(b) + Oq(a) + return + } + function ok(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3344 + f[(a + 40) >> 2] = 1196 + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + c = (a + 52) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + f[a >> 2] = 1476 + b = (a + 36) | 0 + d = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!d) { + Ni(a) + Oq(a) + return + } + Va[f[((f[d >> 2] | 0) + 4) >> 2] & 127](d) + Ni(a) + Oq(a) + return + } + function pk(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + i = 0 + f[c >> 2] = 2 + d = (a + 4) | 0 + a = (c + 8) | 0 + e = f[a >> 2] | 0 + g = ((f[(c + 12) >> 2] | 0) - e) | 0 + if (g >>> 0 < 4294967292) { + Lk(a, (g + 4) | 0, 0) + i = f[a >> 2] | 0 + } else i = e + e = (i + g) | 0 + g = + h[d >> 0] | + (h[(d + 1) >> 0] << 8) | + (h[(d + 2) >> 0] << 16) | + (h[(d + 3) >> 0] << 24) + b[e >> 0] = g + b[(e + 1) >> 0] = g >> 8 + b[(e + 2) >> 0] = g >> 16 + b[(e + 3) >> 0] = g >> 24 + return + } + function qk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3612 + b = f[(a + 64) >> 2] | 0 + if (b | 0) { + c = (a + 68) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + f[(a + 12) >> 2] = 3636 + b = f[(a + 32) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 20) >> 2] | 0 + if (!b) { + Oq(a) + return + } + Oq(b) + Oq(a) + return + } + function rk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2188 + b = f[(a + 76) >> 2] | 0 + if (b | 0) Oq(b) + b = (a + 68) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) Mq(c) + f[a >> 2] = 1544 + c = f[(a + 32) >> 2] | 0 + if (!c) { + Oq(a) + return + } + b = (a + 36) | 0 + d = f[b >> 2] | 0 + if ((d | 0) != (c | 0)) f[b >> 2] = d + (~(((d + -4 - c) | 0) >>> 2) << 2) + Oq(c) + Oq(a) + return + } + function sk(a, c, d) { + a = a | 0 + c = c | 0 + d = $(d) + var e = 0, + g = Oa, + h = 0 + e = Rg(a, c) | 0 + if ((e | 0) == ((a + 4) | 0)) { + g = d + return $(g) + } + a = (e + 28) | 0 + if ((b[(a + 11) >> 0] | 0) < 0) h = f[a >> 2] | 0 + else h = a + g = $(+Iq(h)) + return $(g) + } + function tk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + b = u + u = (u + 16) | 0 + c = b + d = c + f[d >> 2] = 0 + f[(d + 4) >> 2] = 0 + qf(a, 2, c) + c = f[(a + 12) >> 2] | 0 + d = (a + 16) | 0 + e = f[d >> 2] | 0 + if ((e | 0) == (c | 0)) { + g = (a + 24) | 0 + f[g >> 2] = 0 + h = (a + 28) | 0 + f[h >> 2] = 0 + u = b + return + } + f[d >> 2] = e + (~(((e + -4 - c) | 0) >>> 2) << 2) + g = (a + 24) | 0 + f[g >> 2] = 0 + h = (a + 28) | 0 + f[h >> 2] = 0 + u = b + return + } + function uk(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0, + i = 0, + j = 0 + c = f[(a + 176) >> 2] | 0 + d = f[(a + 172) >> 2] | 0 + e = d + a: do + if ((c | 0) != (d | 0)) { + g = (((c - d) | 0) / 136) | 0 + h = 0 + while (1) { + if ((f[(e + ((h * 136) | 0)) >> 2] | 0) == (b | 0)) break + i = (h + 1) | 0 + if (i >>> 0 < g >>> 0) h = i + else break a + } + j = (e + ((h * 136) | 0) + 104) | 0 + return j | 0 + } + while (0) + j = (a + 40) | 0 + return j | 0 + } + function vk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3564 + b = f[(a + 64) >> 2] | 0 + if (b | 0) { + c = (a + 68) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + f[(a + 12) >> 2] = 3588 + b = f[(a + 32) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 20) >> 2] | 0 + if (!b) return + Oq(b) + return + } + function wk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 1768 + b = f[(a + 76) >> 2] | 0 + if (b | 0) Oq(b) + b = (a + 68) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) Mq(c) + f[a >> 2] = 1544 + c = f[(a + 32) >> 2] | 0 + if (!c) { + Oq(a) + return + } + b = (a + 36) | 0 + d = f[b >> 2] | 0 + if ((d | 0) != (c | 0)) f[b >> 2] = d + (~(((d + -4 - c) | 0) >>> 2) << 2) + Oq(c) + Oq(a) + return + } + function xk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3344 + f[(a + 40) >> 2] = 1196 + b = f[(a + 48) >> 2] | 0 + if (b | 0) { + c = (a + 52) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + f[a >> 2] = 1476 + b = (a + 36) | 0 + d = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!d) { + Ni(a) + return + } + Va[f[((f[d >> 2] | 0) + 4) >> 2] & 127](d) + Ni(a) + return + } + function yk(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + Nc(a, b) + if ((b | 0) <= -1) return + c = (a + 88) | 0 + d = f[c >> 2] | 0 + e = f[(a + 84) >> 2] | 0 + if ((((d - e) >> 2) | 0) <= (b | 0)) return + a = (e + (b << 2)) | 0 + b = (a + 4) | 0 + e = (d - b) | 0 + g = e >> 2 + if (!g) h = d + else { + im(a | 0, b | 0, e | 0) | 0 + h = f[c >> 2] | 0 + } + e = (a + (g << 2)) | 0 + if ((h | 0) == (e | 0)) return + f[c >> 2] = h + (~(((h + -4 - e) | 0) >>> 2) << 2) + return + } + function zk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + b = f[(a + 32) >> 2] | 0 + c = f[(a + 36) >> 2] | 0 + if ((b | 0) == (c | 0)) { + d = 1 + return d | 0 + } + e = (a + 8) | 0 + g = (a + 44) | 0 + a = b + while (1) { + b = f[((f[e >> 2] | 0) + (f[a >> 2] << 2)) >> 2] | 0 + a = (a + 4) | 0 + if (!(Ra[f[((f[b >> 2] | 0) + 20) >> 2] & 127](b, f[g >> 2] | 0) | 0)) { + d = 0 + h = 5 + break + } + if ((a | 0) == (c | 0)) { + d = 1 + h = 5 + break + } + } + if ((h | 0) == 5) return d | 0 + return 0 + } + function Ak(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 3612 + b = f[(a + 64) >> 2] | 0 + if (b | 0) { + c = (a + 68) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + f[(a + 12) >> 2] = 3636 + b = f[(a + 32) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 20) >> 2] | 0 + if (!b) return + Oq(b) + return + } + function Bk(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0, + i = 0.0 + d = u + u = (u + 128) | 0 + e = d + g = e + h = (g + 124) | 0 + do { + f[g >> 2] = 0 + g = (g + 4) | 0 + } while ((g | 0) < (h | 0)) + g = (e + 4) | 0 + f[g >> 2] = a + h = (e + 8) | 0 + f[h >> 2] = -1 + f[(e + 44) >> 2] = a + f[(e + 76) >> 2] = -1 + Ym(e, 0) + i = +Rc(e, c, 1) + c = ((f[g >> 2] | 0) - (f[h >> 2] | 0) + (f[(e + 108) >> 2] | 0)) | 0 + if (b | 0) f[b >> 2] = c | 0 ? (a + c) | 0 : a + u = d + return +i + } + function Ck(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var g = 0, + h = 0 + a = (c + 16) | 0 + g = f[a >> 2] | 0 + do + if (g) { + if ((g | 0) != (d | 0)) { + h = (c + 36) | 0 + f[h >> 2] = (f[h >> 2] | 0) + 1 + f[(c + 24) >> 2] = 2 + b[(c + 54) >> 0] = 1 + break + } + h = (c + 24) | 0 + if ((f[h >> 2] | 0) == 2) f[h >> 2] = e + } else { + f[a >> 2] = d + f[(c + 24) >> 2] = e + f[(c + 36) >> 2] = 1 + } + while (0) + return + } + function Dk(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 2188 + b = f[(a + 76) >> 2] | 0 + if (b | 0) Oq(b) + b = (a + 68) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) Mq(c) + f[a >> 2] = 1544 + c = f[(a + 32) >> 2] | 0 + if (!c) return + b = (a + 36) | 0 + a = f[b >> 2] | 0 + if ((a | 0) != (c | 0)) f[b >> 2] = a + (~(((a + -4 - c) | 0) >>> 2) << 2) + Oq(c) + return + } + function Ek(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0 + c = (a + 74) | 0 + d = b[c >> 0] | 0 + b[c >> 0] = (d + 255) | d + d = (a + 20) | 0 + c = (a + 28) | 0 + if ((f[d >> 2] | 0) >>> 0 > (f[c >> 2] | 0) >>> 0) + Sa[f[(a + 36) >> 2] & 31](a, 0, 0) | 0 + f[(a + 16) >> 2] = 0 + f[c >> 2] = 0 + f[d >> 2] = 0 + d = f[a >> 2] | 0 + if (!(d & 4)) { + c = ((f[(a + 44) >> 2] | 0) + (f[(a + 48) >> 2] | 0)) | 0 + f[(a + 8) >> 2] = c + f[(a + 4) >> 2] = c + e = (d << 27) >> 31 + } else { + f[a >> 2] = d | 32 + e = -1 + } + return e | 0 + } + function Fk(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + d = Rg(a, c) | 0 + if ((d | 0) == ((a + 4) | 0)) { + e = 0 + return e | 0 + } + a = (d + 28) | 0 + if ((b[(a + 11) >> 0] | 0) < 0) g = f[a >> 2] | 0 + else g = a + e = (((Sj(g) | 0) + 1) | 0) >>> 0 > 1 + return e | 0 + } + function Gk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 6152 + b = f[(a + 96) >> 2] | 0 + if (b | 0) { + c = (a + 100) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + ((~(((((d + -12 - b) | 0) >>> 0) / 12) | 0) * 12) | 0) + Oq(b) + } + b = f[(a + 84) >> 2] | 0 + if (!b) { + Og(a) + Oq(a) + return + } + d = (a + 88) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + Og(a) + Oq(a) + return + } + function Hk(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0, + h = 0 + e = Rg(a, c) | 0 + if ((e | 0) == ((a + 4) | 0)) { + g = d + return g | 0 + } + d = (e + 28) | 0 + if ((b[(d + 11) >> 0] | 0) < 0) h = f[d >> 2] | 0 + else h = d + g = Sj(h) | 0 + return g | 0 + } + function Ik(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0 + e = (b >> 31) | (((b | 0) < 0 ? -1 : 0) << 1) + f = (((b | 0) < 0 ? -1 : 0) >> 31) | (((b | 0) < 0 ? -1 : 0) << 1) + g = (d >> 31) | (((d | 0) < 0 ? -1 : 0) << 1) + h = (((d | 0) < 0 ? -1 : 0) >> 31) | (((d | 0) < 0 ? -1 : 0) << 1) + i = Xn((e ^ a) | 0, (f ^ b) | 0, e | 0, f | 0) | 0 + b = I + a = g ^ e + e = h ^ f + return ( + Xn( + ((Ld(i, b, Xn((g ^ c) | 0, (h ^ d) | 0, g | 0, h | 0) | 0, I, 0) | + 0) ^ + a) | + 0, + (I ^ e) | 0, + a | 0, + e | 0, + ) | 0 + ) + } + function Jk(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1768 + b = f[(a + 76) >> 2] | 0 + if (b | 0) Oq(b) + b = (a + 68) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) Mq(c) + f[a >> 2] = 1544 + c = f[(a + 32) >> 2] | 0 + if (!c) return + b = (a + 36) | 0 + a = f[b >> 2] | 0 + if ((a | 0) != (c | 0)) f[b >> 2] = a + (~(((a + -4 - c) | 0) >>> 2) << 2) + Oq(c) + return + } + function Kk(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0, + i = 0, + j = 0 + f[a >> 2] = b + h = (b + 16) | 0 + i = f[(h + 4) >> 2] | 0 + j = (a + 8) | 0 + f[j >> 2] = f[h >> 2] + f[(j + 4) >> 2] = i + i = (b + 24) | 0 + b = f[(i + 4) >> 2] | 0 + j = (a + 16) | 0 + f[j >> 2] = f[i >> 2] + f[(j + 4) >> 2] = b + b = (a + 40) | 0 + f[b >> 2] = c + f[(b + 4) >> 2] = d + d = (a + 48) | 0 + f[d >> 2] = e + f[(d + 4) >> 2] = g + return + } + function Lk(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + e = f[a >> 2] | 0 + g = (d - e) | 0 + h = e + e = d + if (g >>> 0 >= b >>> 0) { + if (g >>> 0 > b >>> 0 ? ((d = (h + b) | 0), (d | 0) != (e | 0)) : 0) + f[c >> 2] = d + } else Fi(a, (b - g) | 0) + g = (a + 24) | 0 + a = g + b = Vn(f[a >> 2] | 0, f[(a + 4) >> 2] | 0, 1, 0) | 0 + a = g + f[a >> 2] = b + f[(a + 4) >> 2] = I + return + } + function Mk(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + d = Rg(a, c) | 0 + if ((d | 0) == ((a + 4) | 0)) { + e = -1 + return e | 0 + } + a = (d + 28) | 0 + if ((b[(a + 11) >> 0] | 0) < 0) g = f[a >> 2] | 0 + else g = a + e = Sj(g) | 0 + return e | 0 + } + function Nk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 6152 + b = f[(a + 96) >> 2] | 0 + if (b | 0) { + c = (a + 100) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + ((~(((((d + -12 - b) | 0) >>> 0) / 12) | 0) * 12) | 0) + Oq(b) + } + b = f[(a + 84) >> 2] | 0 + if (!b) { + Og(a) + return + } + d = (a + 88) | 0 + c = f[d >> 2] | 0 + if ((c | 0) != (b | 0)) f[d >> 2] = c + (~(((c + -4 - b) | 0) >>> 2) << 2) + Oq(b) + Og(a) + return + } + function Ok(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + f[(a + 16) >> 2] = 0 + f[(a + 20) >> 2] = 0 + b[(a + 24) >> 0] = 1 + c = (a + 68) | 0 + d = (a + 28) | 0 + e = (d + 40) | 0 + do { + f[d >> 2] = 0 + d = (d + 4) | 0 + } while ((d | 0) < (e | 0)) + f[c >> 2] = a + c = (a + 72) | 0 + f[c >> 2] = 0 + f[(c + 4) >> 2] = 0 + f[(c + 8) >> 2] = 0 + f[(c + 12) >> 2] = 0 + f[(c + 16) >> 2] = 0 + f[(c + 20) >> 2] = 0 + return + } + function Pk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2244 + b = f[(a + 76) >> 2] | 0 + if (b | 0) Oq(b) + f[a >> 2] = 1544 + b = f[(a + 32) >> 2] | 0 + if (!b) { + Oq(a) + return + } + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + Oq(a) + return + } + function Qk(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var f = 0, + g = 0, + h = 0 + f = u + u = (u + 256) | 0 + g = f + if (((c | 0) > (d | 0)) & (((e & 73728) | 0) == 0)) { + e = (c - d) | 0 + sj(g | 0, ((b << 24) >> 24) | 0, (e >>> 0 < 256 ? e : 256) | 0) | 0 + if (e >>> 0 > 255) { + b = (c - d) | 0 + d = e + do { + Xo(a, g, 256) + d = (d + -256) | 0 + } while (d >>> 0 > 255) + h = b & 255 + } else h = e + Xo(a, g, h) + } + u = f + return + } + function Rk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 1824 + b = f[(a + 76) >> 2] | 0 + if (b | 0) Oq(b) + f[a >> 2] = 1544 + b = f[(a + 32) >> 2] | 0 + if (!b) { + Oq(a) + return + } + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + Oq(a) + return + } + function Sk(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + var h = 0 + if (fp(a, f[(b + 8) >> 2] | 0, g) | 0) qj(0, b, c, d, e) + else { + h = f[(a + 8) >> 2] | 0 + _a[f[((f[h >> 2] | 0) + 20) >> 2] & 3](h, b, c, d, e, g) + } + return + } + function Tk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 2300 + Fj((a + 108) | 0) + f[a >> 2] = 1544 + b = f[(a + 32) >> 2] | 0 + if (!b) { + Oq(a) + return + } + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + Oq(a) + return + } + function Uk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 1880 + Fj((a + 108) | 0) + f[a >> 2] = 1544 + b = f[(a + 32) >> 2] | 0 + if (!b) { + Oq(a) + return + } + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + Oq(a) + return + } + function Vk(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0, + g = 0, + h = 0, + i = 0, + j = 0 + a: do + if (!d) e = 0 + else { + f = a + g = d + h = c + while (1) { + i = b[f >> 0] | 0 + j = b[h >> 0] | 0 + if ((i << 24) >> 24 != (j << 24) >> 24) break + g = (g + -1) | 0 + if (!g) { + e = 0 + break a + } else { + f = (f + 1) | 0 + h = (h + 1) | 0 + } + } + e = ((i & 255) - (j & 255)) | 0 + } + while (0) + return e | 0 + } + function Wk(a) { + a = a | 0 + if (!(f[(a + 44) >> 2] | 0)) return 0 + if (!(f[(a + 48) >> 2] | 0)) return 0 + if (!(f[(a + 24) >> 2] | 0)) return 0 + if (!(f[(a + 28) >> 2] | 0)) return 0 + if (!(f[(a + 32) >> 2] | 0)) return 0 + else return ((f[(a + 36) >> 2] | 0) != 0) | 0 + return 0 + } + function Xk(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 2244 + b = f[(a + 76) >> 2] | 0 + if (b | 0) Oq(b) + f[a >> 2] = 1544 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + Oq(b) + return + } + function Yk(a) { + a = a | 0 + var c = 0, + d = 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + c = 0 + while (1) { + if ((c | 0) == 3) break + f[(a + (c << 2)) >> 2] = 0 + c = (c + 1) | 0 + } + if ((b[(a + 11) >> 0] | 0) < 0) + d = ((f[(a + 8) >> 2] & 2147483647) + -1) | 0 + else d = 10 + Hj(a, d, 0) + return + } + function Zk(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0.0, + g = 0.0 + b = f[(a + 8) >> 2] | 0 + if ((b | 0) < 2) { + c = 0 + d = 0 + I = c + return d | 0 + } + e = +(b | 0) + g = +Zg(e) * e + e = +W(+(g - +p[a >> 3])) + c = + +K(e) >= 1.0 + ? e > 0.0 + ? ~~+Y(+J(e / 4294967296.0), 4294967295.0) >>> 0 + : ~~+W((e - +(~~e >>> 0)) / 4294967296.0) >>> 0 + : 0 + d = ~~e >>> 0 + I = c + return d | 0 + } + function _k(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1824 + b = f[(a + 76) >> 2] | 0 + if (b | 0) Oq(b) + f[a >> 2] = 1544 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + Oq(b) + return + } + function $k(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + c = f[(a + 16) >> 2] | 0 + if (((((f[(a + 20) >> 2] | 0) - c) >> 2) | 0) <= (b | 0)) { + d = 0 + return d | 0 + } + e = f[(c + (b << 2)) >> 2] | 0 + if ((e | 0) < 0) { + d = 0 + return d | 0 + } + b = f[((f[(a + 36) >> 2] | 0) + (e << 2)) >> 2] | 0 + e = f[(b + 32) >> 2] | 0 + if (e | 0) { + d = e + return d | 0 + } + d = f[(b + 8) >> 2] | 0 + return d | 0 + } + function al(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 1232 + b = f[(a + 16) >> 2] | 0 + if (b | 0) { + c = (a + 20) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) + f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + } + b = f[(a + 4) >> 2] | 0 + if (!b) return + d = (a + 8) | 0 + a = f[d >> 2] | 0 + if ((a | 0) != (b | 0)) f[d >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + Oq(b) + return + } + function bl(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 2300 + Fj((a + 108) | 0) + f[a >> 2] = 1544 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + Oq(b) + return + } + function cl(a) { + a = a | 0 + if (!(f[(a + 64) >> 2] | 0)) return 0 + if (!(f[(a + 68) >> 2] | 0)) return 0 + if (!(f[(a + 44) >> 2] | 0)) return 0 + if (!(f[(a + 48) >> 2] | 0)) return 0 + if (!(f[(a + 52) >> 2] | 0)) return 0 + else return ((f[(a + 56) >> 2] | 0) != 0) | 0 + return 0 + } + function dl(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0 + if (fp(a, f[(b + 8) >> 2] | 0, 0) | 0) Ck(0, b, c, d) + else { + e = f[(a + 8) >> 2] | 0 + Ya[f[((f[e >> 2] | 0) + 28) >> 2] & 3](e, b, c, d) + } + return + } + function el(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1880 + Fj((a + 108) | 0) + f[a >> 2] = 1544 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + Oq(b) + return + } + function fl(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + if ((b | 0) < 0) { + c = 0 + return c | 0 + } + d = f[(a + 4) >> 2] | 0 + if ( + ((((f[(d + 12) >> 2] | 0) - (f[(d + 8) >> 2] | 0)) >> 2) | 0) <= + (b | 0) + ) { + c = 0 + return c | 0 + } + d = + f[ + ((f[(a + 8) >> 2] | 0) + + (f[((f[(a + 20) >> 2] | 0) + (b << 2)) >> 2] << 2)) >> + 2 + ] | 0 + c = Ra[f[((f[d >> 2] | 0) + 36) >> 2] & 127](d, b) | 0 + return c | 0 + } + function gl(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + if ((b | 0) < 0) { + c = 0 + return c | 0 + } + d = f[(a + 4) >> 2] | 0 + if ( + ((((f[(d + 12) >> 2] | 0) - (f[(d + 8) >> 2] | 0)) >> 2) | 0) <= + (b | 0) + ) { + c = 0 + return c | 0 + } + d = + f[ + ((f[(a + 8) >> 2] | 0) + + (f[((f[(a + 20) >> 2] | 0) + (b << 2)) >> 2] << 2)) >> + 2 + ] | 0 + c = Ra[f[((f[d >> 2] | 0) + 32) >> 2] & 127](d, b) | 0 + return c | 0 + } + function hl(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0, + f = 0, + g = 0 + d = b[a >> 0] | 0 + e = b[c >> 0] | 0 + if ((d << 24) >> 24 == 0 ? 1 : (d << 24) >> 24 != (e << 24) >> 24) { + f = e + g = d + } else { + d = c + c = a + do { + c = (c + 1) | 0 + d = (d + 1) | 0 + a = b[c >> 0] | 0 + e = b[d >> 0] | 0 + } while ( + !((a << 24) >> 24 == 0 ? 1 : (a << 24) >> 24 != (e << 24) >> 24) + ) + f = e + g = a + } + return ((g & 255) - (f & 255)) | 0 + } + function il(a, b) { + a = a | 0 + b = $(b) + var c = 0, + d = 0 + c = u + u = (u + 16) | 0 + d = c + Yk(d) + Ei(a, d, b) + Bo(d) + u = c + return + } + function jl(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0, + e = 0, + g = 0 + b = f[a >> 2] | 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + if ((d | 0) == (b | 0)) e = b + else { + g = (d + (~(((d + -4 - b) | 0) >>> 2) << 2)) | 0 + f[c >> 2] = g + e = g + } + f[(a + 12) >> 2] = 0 + f[(a + 16) >> 2] = 0 + if (!b) return + if ((e | 0) != (b | 0)) f[c >> 2] = e + (~(((e + -4 - b) | 0) >>> 2) << 2) + Oq(b) + return + } + function kl(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + d = f[(a + 16) >> 2] | 0 + if (((((f[(a + 20) >> 2] | 0) - d) >> 2) | 0) <= (b | 0)) { + e = -1 + return e | 0 + } + g = f[(d + (b << 2)) >> 2] | 0 + if ((g | 0) < 0) { + e = -1 + return e | 0 + } + e = + f[ + ((f[((f[((f[(a + 36) >> 2] | 0) + (g << 2)) >> 2] | 0) + 16) >> 2] | + 0) + + (c << 2)) >> + 2 + ] | 0 + return e | 0 + } + function ll(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + c = u + u = (u + 16) | 0 + d = c + Yk(d) + Ji(a, d, b) + Bo(d) + u = c + return + } + function ml(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0, + h = 0 + d = u + u = (u + 32) | 0 + e = d + g = (d + 20) | 0 + f[e >> 2] = f[(a + 60) >> 2] + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = b + f[(e + 12) >> 2] = g + f[(e + 16) >> 2] = c + if ((to(za(140, e | 0) | 0) | 0) < 0) { + f[g >> 2] = -1 + h = -1 + } else h = f[g >> 2] | 0 + u = d + return h | 0 + } + function nl(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + if (((b | 0) == -1) | ((b | 0) > 4)) { + c = 0 + return c | 0 + } + d = f[(a + 20 + ((b * 12) | 0)) >> 2] | 0 + if ((((f[(a + 20 + ((b * 12) | 0) + 4) >> 2] | 0) - d) | 0) <= 0) { + c = 0 + return c | 0 + } + b = f[d >> 2] | 0 + if ((b | 0) == -1) { + c = 0 + return c | 0 + } + c = f[((f[(a + 8) >> 2] | 0) + (b << 2)) >> 2] | 0 + return c | 0 + } + function ol(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + c = f[(a + 16) >> 2] | 0 + if (((((f[(a + 20) >> 2] | 0) - c) >> 2) | 0) <= (b | 0)) { + d = 0 + return d | 0 + } + e = f[(c + (b << 2)) >> 2] | 0 + if ((e | 0) < 0) { + d = 0 + return d | 0 + } + b = f[((f[(a + 36) >> 2] | 0) + (e << 2)) >> 2] | 0 + d = ((f[(b + 20) >> 2] | 0) - (f[(b + 16) >> 2] | 0)) >> 2 + return d | 0 + } + function pl(a) { + a = a | 0 + if (!(f[(a + 40) >> 2] | 0)) return 0 + if (!(f[(a + 24) >> 2] | 0)) return 0 + if (!(f[(a + 28) >> 2] | 0)) return 0 + if (!(f[(a + 32) >> 2] | 0)) return 0 + else return ((f[(a + 36) >> 2] | 0) != 0) | 0 + return 0 + } + function ql(a) { + a = a | 0 + var b = 0 + if (!(f[(a + 24) >> 2] | 0)) { + b = 0 + return b | 0 + } + if (!(f[(a + 28) >> 2] | 0)) { + b = 0 + return b | 0 + } + if (!(f[(a + 32) >> 2] | 0)) { + b = 0 + return b | 0 + } + b = (f[(a + 36) >> 2] | 0) != 0 + return b | 0 + } + function rl(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0 + lh(a, c) + f[a >> 2] = 1408 + c = (a + 72) | 0 + d = (a + 36) | 0 + a = (d + 36) | 0 + do { + f[d >> 2] = 0 + d = (d + 4) | 0 + } while ((d | 0) < (a | 0)) + d = f[b >> 2] | 0 + f[b >> 2] = 0 + f[c >> 2] = d + return + } + function sl(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 3148 + b = f[(a + 56) >> 2] | 0 + if (b | 0) Oq(b) + b = (a + 48) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!c) { + Oq(a) + return + } + Mq(c) + Oq(a) + return + } + function tl(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0 + d = a + e = c + c = (d + 64) | 0 + do { + f[d >> 2] = f[e >> 2] + d = (d + 4) | 0 + e = (e + 4) | 0 + } while ((d | 0) < (c | 0)) + e = (a + 64) | 0 + f[(a + 88) >> 2] = 0 + f[e >> 2] = 0 + f[(e + 4) >> 2] = 0 + f[(e + 8) >> 2] = 0 + f[(e + 12) >> 2] = 0 + f[(e + 16) >> 2] = 0 + b[(e + 20) >> 0] = 0 + return + } + function ul(a, c, d, e) { + a = a | 0 + c = c | 0 + d = d | 0 + e = e | 0 + var f = 0, + g = 0 + if (((a | 0) == 0) & ((c | 0) == 0)) f = d + else { + g = d + d = c + c = a + while (1) { + a = (g + -1) | 0 + b[a >> 0] = h[(16636 + (c & 15)) >> 0] | 0 | e + c = Yn(c | 0, d | 0, 4) | 0 + d = I + if (((c | 0) == 0) & ((d | 0) == 0)) { + f = a + break + } else g = a + } + } + return f | 0 + } + function vl(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0 + c = (a + 74) | 0 + d = b[c >> 0] | 0 + b[c >> 0] = (d + 255) | d + d = f[a >> 2] | 0 + if (!(d & 8)) { + f[(a + 8) >> 2] = 0 + f[(a + 4) >> 2] = 0 + c = f[(a + 44) >> 2] | 0 + f[(a + 28) >> 2] = c + f[(a + 20) >> 2] = c + f[(a + 16) >> 2] = c + (f[(a + 48) >> 2] | 0) + e = 0 + } else { + f[a >> 2] = d | 32 + e = -1 + } + return e | 0 + } + function wl(a) { + a = a | 0 + if (!(f[(a + 60) >> 2] | 0)) return 0 + if (!(f[(a + 44) >> 2] | 0)) return 0 + if (!(f[(a + 48) >> 2] | 0)) return 0 + if (!(f[(a + 52) >> 2] | 0)) return 0 + else return ((f[(a + 56) >> 2] | 0) != 0) | 0 + return 0 + } + function xl(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + c = f[(b + 88) >> 2] | 0 + if (!c) { + d = 0 + return d | 0 + } + if ((f[c >> 2] | 0) != 2) { + d = 0 + return d | 0 + } + b = f[(c + 8) >> 2] | 0 + f[(a + 4) >> 2] = + h[b >> 0] | + (h[(b + 1) >> 0] << 8) | + (h[(b + 2) >> 0] << 16) | + (h[(b + 3) >> 0] << 24) + d = 1 + return d | 0 + } + function yl(a) { + a = a | 0 + var b = 0 + if (!(f[(a + 44) >> 2] | 0)) { + b = 0 + return b | 0 + } + if (!(f[(a + 48) >> 2] | 0)) { + b = 0 + return b | 0 + } + if (!(f[(a + 52) >> 2] | 0)) { + b = 0 + return b | 0 + } + b = (f[(a + 56) >> 2] | 0) != 0 + return b | 0 + } + function zl(a) { + a = a | 0 + vj(a) + Oq(a) + return + } + function Al(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 2784 + b = f[(a + 56) >> 2] | 0 + if (b | 0) Oq(b) + b = (a + 48) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!c) { + Oq(a) + return + } + Mq(c) + Oq(a) + return + } + function Bl(a, c) { + a = a | 0 + c = c | 0 + var d = 0 + if (f[(c + 56) >> 2] | 0) { + d = 0 + return d | 0 + } + if ((b[(c + 24) >> 0] | 0) != 3) { + d = 0 + return d | 0 + } + f[(a + 44) >> 2] = c + d = 1 + return d | 0 + } + function Cl(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + e = f[a >> 2] | 0 + g = (d - e) | 0 + if (g >>> 0 < b >>> 0) { + Fi(a, (b - g) | 0) + return + } + if (g >>> 0 <= b >>> 0) return + g = (e + b) | 0 + if ((g | 0) == (d | 0)) return + f[c >> 2] = g + return + } + function Dl(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = $(e) + f[(a + 4) >> 2] = b + Zf((a + 8) | 0, c, (c + (d << 2)) | 0) + n[(a + 20) >> 2] = e + return + } + function El(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (!(Qa[f[((f[a >> 2] | 0) + 40) >> 2] & 127](a) | 0)) { + c = 0 + return c | 0 + } + if (!(Ra[f[((f[a >> 2] | 0) + 44) >> 2] & 127](a, b) | 0)) { + c = 0 + return c | 0 + } + c = Ra[f[((f[a >> 2] | 0) + 48) >> 2] & 127](a, b) | 0 + return c | 0 + } + function Fl(a, c) { + a = a | 0 + c = c | 0 + var d = 0 + if (f[(c + 56) >> 2] | 0) { + d = 0 + return d | 0 + } + if ((b[(c + 24) >> 0] | 0) != 3) { + d = 0 + return d | 0 + } + f[(a + 40) >> 2] = c + d = 1 + return d | 0 + } + function Gl(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + c = u + u = (u + 16) | 0 + d = (c + 4) | 0 + e = c + f[e >> 2] = 0 + f[d >> 2] = f[e >> 2] + e = vc(a, b, d) | 0 + u = c + return e | 0 + } + function Hl(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0 + d = f[c >> 2] | 0 + c = a + e = (b - a) >> 2 + while (1) { + if (!e) break + a = ((e | 0) / 2) | 0 + b = (c + (a << 2)) | 0 + g = (f[b >> 2] | 0) >>> 0 < d >>> 0 + c = g ? (b + 4) | 0 : c + e = g ? (e + -1 - a) | 0 : a + } + return c | 0 + } + function Il(a) { + a = a | 0 + var c = 0 + f[a >> 2] = 0 + c = (a + 8) | 0 + f[c >> 2] = 0 + f[(c + 4) >> 2] = 0 + f[(c + 8) >> 2] = 0 + f[(c + 12) >> 2] = 0 + b[(a + 24) >> 0] = 1 + f[(a + 28) >> 2] = 9 + c = (a + 40) | 0 + f[c >> 2] = 0 + f[(c + 4) >> 2] = 0 + f[(c + 8) >> 2] = 0 + f[(c + 12) >> 2] = 0 + f[(a + 56) >> 2] = -1 + f[(a + 60) >> 2] = 0 + return + } + function Jl(a) { + a = a | 0 + yj(a) + Oq(a) + return + } + function Kl(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3148 + b = f[(a + 56) >> 2] | 0 + if (b | 0) Oq(b) + b = (a + 48) | 0 + a = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!a) return + Mq(a) + return + } + function Ll(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0, + h = 0 + if (!(Aq(b[f[a >> 2] >> 0] | 0) | 0)) c = 0 + else { + d = 0 + while (1) { + e = f[a >> 2] | 0 + g = (((d * 10) | 0) + -48 + (b[e >> 0] | 0)) | 0 + h = (e + 1) | 0 + f[a >> 2] = h + if (!(Aq(b[h >> 0] | 0) | 0)) { + c = g + break + } else d = g + } + } + return c | 0 + } + function Ml(a, c) { + a = a | 0 + c = c | 0 + var d = 0 + if (f[(c + 56) >> 2] | 0) { + d = 0 + return d | 0 + } + if ((b[(c + 24) >> 0] | 0) != 3) { + d = 0 + return d | 0 + } + f[(a + 64) >> 2] = c + d = 1 + return d | 0 + } + function Nl(a) { + a = a | 0 + var b = 0, + c = 0 + b = f[r >> 2] | 0 + c = (b + a) | 0 + if ((((a | 0) > 0) & ((c | 0) < (b | 0))) | ((c | 0) < 0)) { + ea() | 0 + ya(12) + return -1 + } + f[r >> 2] = c + if ((c | 0) > (da() | 0) ? (ca() | 0) == 0 : 0) { + f[r >> 2] = b + ya(12) + return -1 + } + return b | 0 + } + function Ol(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0 + if (((a | 0) == 0) & ((c | 0) == 0)) e = d + else { + f = d + d = c + c = a + while (1) { + a = (f + -1) | 0 + b[a >> 0] = (c & 7) | 48 + c = Yn(c | 0, d | 0, 3) | 0 + d = I + if (((c | 0) == 0) & ((d | 0) == 0)) { + e = a + break + } else f = a + } + } + return e | 0 + } + function Pl(a, c) { + a = a | 0 + c = c | 0 + var d = 0 + if (f[(c + 56) >> 2] | 0) { + d = 0 + return d | 0 + } + if ((b[(c + 24) >> 0] | 0) != 3) { + d = 0 + return d | 0 + } + f[(a + 60) >> 2] = c + d = 1 + return d | 0 + } + function Ql(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 1544 + b = f[(a + 32) >> 2] | 0 + if (!b) { + Oq(a) + return + } + c = (a + 36) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + Oq(a) + return + } + function Rl(a, b, c, d, e, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + g = g | 0 + if (fp(a, f[(b + 8) >> 2] | 0, g) | 0) qj(0, b, c, d, e) + return + } + function Sl(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 2784 + b = f[(a + 56) >> 2] | 0 + if (b | 0) Oq(b) + b = (a + 48) | 0 + a = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!a) return + Mq(a) + return + } + function Tl(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0 + c = u + u = (u + 16) | 0 + d = c + e = f[(a + 4) >> 2] | 0 + g = ((f[(e + 56) >> 2] | 0) - (f[(e + 52) >> 2] | 0)) >> 2 + b[d >> 0] = 0 + qh((a + 20) | 0, g, d) + u = c + return + } + function Ul(a) { + a = a | 0 + Vi(a) + Oq(a) + return + } + function Vl(a) { + a = a | 0 + var b = 0 + switch (a | 0) { + case 11: + case 2: + case 1: { + b = 1 + break + } + case 4: + case 3: { + b = 2 + break + } + case 6: + case 5: { + b = 4 + break + } + case 8: + case 7: { + b = 8 + break + } + case 9: { + b = 4 + break + } + case 10: { + b = 8 + break + } + default: + b = -1 + } + return b | 0 + } + function Wl(a) { + a = a | 0 + var c = 0, + d = 0, + e = 0, + g = 0 + c = u + u = (u + 16) | 0 + d = c + e = f[(a + 4) >> 2] | 0 + g = ((f[(e + 28) >> 2] | 0) - (f[(e + 24) >> 2] | 0)) >> 2 + b[d >> 0] = 0 + qh((a + 20) | 0, g, d) + u = c + return + } + function Xl() { + var a = 0, + b = 0 + a = ln(40) | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + n[(a + 16) >> 2] = $(1.0) + b = (a + 20) | 0 + f[b >> 2] = 0 + f[(b + 4) >> 2] = 0 + f[(b + 8) >> 2] = 0 + f[(b + 12) >> 2] = 0 + n[(a + 36) >> 2] = $(1.0) + return a | 0 + } + function Yl(a, b) { + a = +a + b = +b + var c = 0, + d = 0, + e = 0 + p[s >> 3] = a + c = f[s >> 2] | 0 + d = f[(s + 4) >> 2] | 0 + p[s >> 3] = b + e = (f[(s + 4) >> 2] & -2147483648) | (d & 2147483647) + f[s >> 2] = c + f[(s + 4) >> 2] = e + return +(+p[s >> 3]) + } + function Zl(a, b, c) { + a = a | 0 + b = b | 0 + c = +c + var d = 0, + e = 0 + d = u + u = (u + 16) | 0 + e = d + p[e >> 3] = c + _b(a, b, e) + u = d + return + } + function _l(a) { + a = a | 0 + f[a >> 2] = 3656 + Qi((a + 8) | 0) + Oq(a) + return + } + function $l(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + d = u + u = (u + 16) | 0 + e = d + f[e >> 2] = c + fc(a, b, e) + u = d + return + } + function am(a, c) { + a = a | 0 + c = c | 0 + var d = 0, + e = 0 + if ((a | 0) != (c | 0)) { + d = b[(c + 11) >> 0] | 0 + e = (d << 24) >> 24 < 0 + jj(a, e ? f[c >> 2] | 0 : c, e ? f[(c + 4) >> 2] | 0 : d & 255) | 0 + } + return a | 0 + } + function bm(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0, + f = 0 + c = a & 65535 + d = b & 65535 + e = X(d, c) | 0 + f = a >>> 16 + a = ((e >>> 16) + (X(d, f) | 0)) | 0 + d = b >>> 16 + b = X(d, c) | 0 + return ( + ((I = + ((a >>> 16) + (X(d, f) | 0) + ((((a & 65535) + b) | 0) >>> 16)) | 0), + ((a + b) << 16) | (e & 65535) | 0) | 0 + ) + } + function cm(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + c = Gj(b) | 0 + d = ln((c + 13) | 0) | 0 + f[d >> 2] = c + f[(d + 4) >> 2] = c + f[(d + 8) >> 2] = 0 + e = Fp(d) | 0 + kh(e | 0, b | 0, (c + 1) | 0) | 0 + f[a >> 2] = e + return + } + function dm(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + if (((b | 0) == -1) | ((b | 0) > 4)) { + c = -1 + return c | 0 + } + d = f[(a + 20 + ((b * 12) | 0)) >> 2] | 0 + if ((((f[(a + 20 + ((b * 12) | 0) + 4) >> 2] | 0) - d) | 0) <= 0) { + c = -1 + return c | 0 + } + c = f[d >> 2] | 0 + return c | 0 + } + function em(a) { + a = a | 0 + Yi(a) + Oq(a) + return + } + function fm(a) { + a = a | 0 + f[a >> 2] = 3656 + Qi((a + 8) | 0) + return + } + function gm(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1544 + b = f[(a + 32) >> 2] | 0 + if (!b) return + c = (a + 36) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + Oq(b) + return + } + function hm(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + if (fp(a, f[(b + 8) >> 2] | 0, 0) | 0) Ck(0, b, c, d) + return + } + function im(a, c, d) { + a = a | 0 + c = c | 0 + d = d | 0 + var e = 0 + if (((c | 0) < (a | 0)) & ((a | 0) < ((c + d) | 0))) { + e = a + c = (c + d) | 0 + a = (a + d) | 0 + while ((d | 0) > 0) { + a = (a - 1) | 0 + c = (c - 1) | 0 + d = (d - 1) | 0 + b[a >> 0] = b[c >> 0] | 0 + } + a = e + } else kh(a, c, d) | 0 + return a | 0 + } + function jm(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + f[a >> 2] = 1196 + b = f[(a + 8) >> 2] | 0 + if (!b) { + Oq(a) + return + } + c = (a + 12) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + Oq(b) + Oq(a) + return + } + function km(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3204 + b = f[(a + 56) >> 2] | 0 + if (!b) { + Oq(a) + return + } + Oq(b) + Oq(a) + return + } + function lm(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + d = u + u = (u + 16) | 0 + e = d + f[e >> 2] = f[c >> 2] + g = Sa[f[((f[a >> 2] | 0) + 16) >> 2] & 31](a, b, e) | 0 + if (g) f[c >> 2] = f[e >> 2] + u = d + return (g & 1) | 0 + } + function mm(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (b >>> 0 >= 2) { + c = 0 + return c | 0 + } + f[(a + 28) >> 2] = b + c = 1 + return c | 0 + } + function nm(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 3408 + b = (a + 56) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (!c) { + mj(a) + return + } + Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + mj(a) + return + } + function om() { + var a = 0, + b = 0 + a = sn() | 0 + if ( + (a | 0 ? ((b = f[a >> 2] | 0), b | 0) : 0) + ? ((a = (b + 48) | 0), + ((f[a >> 2] & -256) | 0) == 1126902528 + ? (f[(a + 4) >> 2] | 0) == 1129074247 + : 0) + : 0 + ) + Ho(f[(b + 12) >> 2] | 0) + Ho(Qp() | 0) + } + function pm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Qf(a, b, c, d, e, f, 6) | 0 + } + function qm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Pf(a, b, c, d, e, f, 4) | 0 + } + function rm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Wf(a, b, c, d, e, f, 2) | 0 + } + function sm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Pf(a, b, c, d, e, f, 3) | 0 + } + function tm(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 2840 + b = f[(a + 56) >> 2] | 0 + if (!b) { + Oq(a) + return + } + Oq(b) + Oq(a) + return + } + function um(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Wf(a, b, c, d, e, f, 1) | 0 + } + function vm(a) { + a = a | 0 + var c = 0 + c = b[(w + (a & 255)) >> 0] | 0 + if ((c | 0) < 8) return c | 0 + c = b[(w + ((a >> 8) & 255)) >> 0] | 0 + if ((c | 0) < 8) return (c + 8) | 0 + c = b[(w + ((a >> 16) & 255)) >> 0] | 0 + if ((c | 0) < 8) return (c + 16) | 0 + return ((b[(w + (a >>> 24)) >> 0] | 0) + 24) | 0 + } + function wm(a, b) { + a = a | 0 + b = b | 0 + var c = 0.0, + d = 0.0, + e = 0.0, + f = 0.0 + if (!a) { + c = 0.0 + return +c + } + if (((b | 0) == 0) | ((a | 0) == (b | 0))) { + c = 0.0 + return +c + } + d = +(b >>> 0) / +(a >>> 0) + e = 1.0 - d + f = d * +Zg(d) + c = -(f + e * +Zg(e)) + return +c + } + function xm(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0 + if ((b | 0) > 0) d = 0 + else return + do { + e = f[(a + (d << 2)) >> 2] | 0 + f[(c + (d << 2)) >> 2] = (e << 1) ^ (e >> 31) + d = (d + 1) | 0 + } while ((d | 0) != (b | 0)) + return + } + function ym(a) { + a = a | 0 + var b = 0 + zo(a) + f[a >> 2] = 3344 + f[(a + 40) >> 2] = 1196 + f[(a + 44) >> 2] = -1 + b = (a + 48) | 0 + f[b >> 2] = 0 + f[(b + 4) >> 2] = 0 + f[(b + 8) >> 2] = 0 + f[(b + 12) >> 2] = 0 + return + } + function zm(a, c) { + a = a | 0 + c = c | 0 + var d = 0 + b[(c + 84) >> 0] = 1 + a = f[(c + 68) >> 2] | 0 + d = (c + 72) | 0 + c = f[d >> 2] | 0 + if ((c | 0) == (a | 0)) return 1 + f[d >> 2] = c + (~(((c + -4 - a) | 0) >>> 2) << 2) + return 1 + } + function Am(a) { + a = a | 0 + var b = 0, + c = 0 + if ( + pq(a) | 0 + ? ((b = Mp(f[a >> 2] | 0) | 0), + (a = (b + 8) | 0), + (c = f[a >> 2] | 0), + (f[a >> 2] = c + -1), + ((c + -1) | 0) < 0) + : 0 + ) + Oq(b) + return + } + function Bm(a) { + a = a | 0 + var b = 0, + c = 0 + b = f[(a + 16) >> 2] | 0 + c = ((((((f[(a + 12) >> 2] | 0) + 1 - b) | 0) / 64) | 0) + b) << 3 + a = b << 3 + b = + Vn( + c | 0, + ((((c | 0) < 0) << 31) >> 31) | 0, + a | 0, + ((((a | 0) < 0) << 31) >> 31) | 0, + ) | 0 + return b | 0 + } + function Cm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Qf(a, b, c, d, e, f, 5) | 0 + } + function Dm(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Qf(a, b, c, d, e, f, 9) | 0 + } + function Em(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3204 + b = f[(a + 56) >> 2] | 0 + if (!b) return + Oq(b) + return + } + function Fm(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1476 + b = (a + 36) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + Ni(a) + Oq(a) + return + } + function Gm(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1196 + b = f[(a + 8) >> 2] | 0 + if (!b) return + c = (a + 12) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + Oq(b) + return + } + function Hm(a) { + a = a | 0 + var c = 0 + f[a >> 2] = 1352 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = -1 + c = (a + 16) | 0 + f[(a + 32) >> 2] = 0 + f[c >> 2] = 0 + f[(c + 4) >> 2] = 0 + f[(c + 8) >> 2] = 0 + b[(c + 12) >> 0] = 0 + return + } + function Im(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 2840 + b = f[(a + 56) >> 2] | 0 + if (!b) return + Oq(b) + return + } + function Jm(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 1476 + b = (a + 36) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + Ni(a) + return + } + function Km(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = $(f) + Fg(a, b, c, d, e, f) + return + } + function Lm(a) { + a = a | 0 + var b = 0, + c = 0 + f[a >> 2] = 3408 + b = (a + 56) | 0 + c = f[b >> 2] | 0 + f[b >> 2] = 0 + if (c | 0) Va[f[((f[c >> 2] | 0) + 4) >> 2] & 127](c) + mj(a) + Oq(a) + return + } + function Mm(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = f[a >> 2] | 0 + c = (a + 4) | 0 + d = f[c >> 2] | 0 + if ((d | 0) != (b | 0)) f[c >> 2] = d + (~(((d + -4 - b) | 0) >>> 2) << 2) + f[(a + 12) >> 2] = 0 + f[(a + 16) >> 2] = 0 + return + } + function Nm(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + var d = 0, + e = 0, + g = 0 + d = (a + 20) | 0 + e = f[d >> 2] | 0 + g = ((f[(a + 16) >> 2] | 0) - e) | 0 + a = g >>> 0 > c >>> 0 ? c : g + kh(e | 0, b | 0, a | 0) | 0 + f[d >> 2] = (f[d >> 2] | 0) + a + return c | 0 + } + function Om(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3588 + b = f[(a + 20) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 8) >> 2] | 0 + if (!b) { + Oq(a) + return + } + Oq(b) + Oq(a) + return + } + function Pm(a) { + a = a | 0 + var b = 0, + c = 0 + b = f[a >> 2] | 0 + if (!b) return + c = (a + 4) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -8 - b) | 0) >>> 3) << 3) + Oq(b) + return + } + function Qm(a) { + a = a | 0 + var b = 0, + c = 0 + b = f[a >> 2] | 0 + if (!b) return + c = (a + 4) | 0 + a = f[c >> 2] | 0 + if ((a | 0) != (b | 0)) f[c >> 2] = a + (~(((a + -4 - b) | 0) >>> 2) << 2) + Oq(b) + return + } + function Rm(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = f[b >> 2] | 0 + return ( + ((((1 << (c & 31)) & + f[((f[(a + 28) >> 2] | 0) + ((c >>> 5) << 2)) >> 2]) | + 0) != + 0) | + 0 + ) + } + function Sm(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return Sa[f[((f[a >> 2] | 0) + 44) >> 2] & 31](a, b, c) | 0 + } + function Tm(a) { + a = a | 0 + var c = 0 + Il(a) + c = (a + 64) | 0 + f[(a + 88) >> 2] = 0 + f[c >> 2] = 0 + f[(c + 4) >> 2] = 0 + f[(c + 8) >> 2] = 0 + f[(c + 12) >> 2] = 0 + f[(c + 16) >> 2] = 0 + b[(c + 20) >> 0] = 0 + return + } + function Um(a) { + a = a | 0 + f[a >> 2] = 3260 + Fj((a + 88) | 0) + Oq(a) + return + } + function Vm(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + if ( + (f[(b + 4) >> 2] | 0) == (c | 0) + ? ((c = (b + 28) | 0), (f[c >> 2] | 0) != 1) + : 0 + ) + f[c >> 2] = d + return + } + function Wm(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = u + u = (u + 16) | 0 + c = b + if ((Ek(a) | 0) == 0 ? (Sa[f[(a + 32) >> 2] & 31](a, c, 1) | 0) == 1 : 0) + d = h[c >> 0] | 0 + else d = -1 + u = b + return d | 0 + } + function Xm(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3636 + b = f[(a + 20) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 8) >> 2] | 0 + if (!b) { + Oq(a) + return + } + Oq(b) + Oq(a) + return + } + function Ym(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0, + e = 0 + f[(a + 104) >> 2] = b + c = f[(a + 8) >> 2] | 0 + d = f[(a + 4) >> 2] | 0 + e = (c - d) | 0 + f[(a + 108) >> 2] = e + f[(a + 100) >> 2] = ((b | 0) != 0) & ((e | 0) > (b | 0)) ? (d + b) | 0 : c + return + } + function Zm(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + b = (a + 16) | 0 + f[b >> 2] = 0 + f[(b + 4) >> 2] = 0 + f[(b + 8) >> 2] = 0 + f[(b + 12) >> 2] = 0 + f[(b + 16) >> 2] = 0 + return + } + function _m(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = $(f) + Km(a, b, c, d, e, f) + return + } + function $m(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return pm(a, b, c, d, e, f) | 0 + } + function an(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return qm(a, b, c, d, e, f) | 0 + } + function bn(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + f[(a + 4) >> 2] = b + f[(a + 8) >> 2] = + f[((f[((f[(b + 4) >> 2] | 0) + 8) >> 2] | 0) + (c << 2)) >> 2] + f[(a + 12) >> 2] = c + return 1 + } + function cn(a) { + a = a | 0 + var b = 0, + c = 0 + if (!a) return + b = f[a >> 2] | 0 + if (b | 0) { + c = (a + 4) | 0 + if ((f[c >> 2] | 0) != (b | 0)) f[c >> 2] = b + Oq(b) + } + Oq(a) + return + } + function dn(a) { + a = a | 0 + f[a >> 2] = 2896 + Fj((a + 88) | 0) + Oq(a) + return + } + function en(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return rm(a, b, c, d, e, f) | 0 + } + function fn(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return sm(a, b, c, d, e, f) | 0 + } + function gn(a) { + a = a | 0 + f[a >> 2] = 3260 + Fj((a + 88) | 0) + return + } + function hn(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0 + e = u + u = (u + 16) | 0 + g = e | 0 + Ld(a, b, c, d, g) | 0 + u = e + return ((I = f[(g + 4) >> 2] | 0), f[g >> 2] | 0) | 0 + } + function jn(a) { + a = a | 0 + var b = 0 + eo(a) + f[a >> 2] = 6152 + b = (a + 84) | 0 + f[b >> 2] = 0 + f[(b + 4) >> 2] = 0 + f[(b + 8) >> 2] = 0 + f[(b + 12) >> 2] = 0 + f[(b + 16) >> 2] = 0 + f[(b + 20) >> 2] = 0 + return + } + function kn(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return um(a, b, c, d, e, f) | 0 + } + function ln(a) { + a = a | 0 + var b = 0, + c = 0 + b = (a | 0) == 0 ? 1 : a + while (1) { + a = $a(b) | 0 + if (a | 0) { + c = a + break + } + a = Op() | 0 + if (!a) { + c = 0 + break + } + Ua[a & 3]() + } + return c | 0 + } + function mn(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + ac(a, b, c) + return + } + function nn(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3588 + b = f[(a + 20) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 8) >> 2] | 0 + if (!b) return + Oq(b) + return + } + function on(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Cm(a, b, c, d, e, f) | 0 + } + function pn(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + return Dm(a, b, c, d, e, f) | 0 + } + function qn(a) { + a = a | 0 + f[a >> 2] = 2896 + Fj((a + 88) | 0) + return + } + function rn(a) { + a = a | 0 + var b = 0, + c = 0, + d = 0 + b = u + u = (u + 16) | 0 + c = b + d = Qq(f[(a + 60) >> 2] | 0) | 0 + f[c >> 2] = d + d = to(Ba(6, c | 0) | 0) | 0 + u = b + return d | 0 + } + function sn() { + var a = 0, + b = 0 + a = u + u = (u + 16) | 0 + if (!(Ka(19700, 3) | 0)) { + b = Ia(f[4926] | 0) | 0 + u = a + return b | 0 + } else Hn(18840, a) + return 0 + } + function tn(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3636 + b = f[(a + 20) >> 2] | 0 + if (b | 0) Oq(b) + b = f[(a + 8) >> 2] | 0 + if (!b) return + Oq(b) + return + } + function un(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + f = 0 + e = a + a = c + c = bm(e, a) | 0 + f = I + return ( + ((I = ((X(b, a) | 0) + (X(d, e) | 0) + f) | (f & 0)), c | 0 | 0) | 0 + ) + } + function vn(a, b) { + a = a | 0 + b = b | 0 + lh(a, b) + f[a >> 2] = 1292 + b = (a + 36) | 0 + a = (b + 40) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (a | 0)) + return + } + function wn(a) { + a = a | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + f[(a + 16) >> 2] = 0 + f[(a + 20) >> 2] = 0 + f[(a + 24) >> 2] = 0 + f[(a + 28) >> 2] = 0 + return + } + function xn(a) { + a = a | 0 + var b = 0 + b = u + u = (u + 16) | 0 + yc(a) + if (!(La(f[4926] | 0, 0) | 0)) { + u = b + return + } else Hn(18939, b) + } + function yn(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + b = (a + 16) | 0 + f[b >> 2] = 0 + f[(b + 4) >> 2] = 0 + f[(b + 8) >> 2] = 0 + f[(b + 12) >> 2] = 0 + return + } + function zn(a, b) { + a = a | 0 + b = b | 0 + return vg((a + 40) | 0, b) | 0 + } + function An(a, b) { + a = a | 0 + b = b | 0 + return lj(a, b, lq(b) | 0) | 0 + } + function Bn(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0, + g = 0 + e = u + u = (u + 16) | 0 + g = e + f[g >> 2] = d + d = Zi(a, b, c, g) | 0 + u = e + return d | 0 + } + function Cn(a, b) { + a = a | 0 + b = b | 0 + return Mj((a + 40) | 0, b) | 0 + } + function Dn(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return Qh(a, b, c, d) | 0 + } + function En(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return uh(a, b, c, d) | 0 + } + function Fn(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = f[(a + 56) >> 2] | 0 + return Ra[f[((f[c >> 2] | 0) + 24) >> 2] & 127](c, b) | 0 + } + function Gn(a) { + a = a | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + f[(a + 16) >> 2] = 0 + f[(a + 20) >> 2] = 0 + b[(a + 24) >> 0] = 0 + return + } + function Hn(a, b) { + a = a | 0 + b = b | 0 + var c = 0, + d = 0 + c = u + u = (u + 16) | 0 + d = c + f[d >> 2] = b + b = f[1556] | 0 + Ah(b, a, d) | 0 + Lj(10, b) | 0 + Ca() + } + function In(a, b, c, d, e, f, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + g = g | 0 + return Ta[a & 31](b | 0, c | 0, d | 0, e | 0, f | 0, g | 0) | 0 + } + function Jn(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = f[(a + 56) >> 2] | 0 + return Ra[f[((f[c >> 2] | 0) + 16) >> 2] & 127](c, b) | 0 + } + function Kn(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = f[(a + 56) >> 2] | 0 + return Ra[f[((f[c >> 2] | 0) + 20) >> 2] & 127](c, b) | 0 + } + function Ln(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = f[(a + 56) >> 2] | 0 + return Ra[f[((f[c >> 2] | 0) + 12) >> 2] & 127](c, b) | 0 + } + function Mn() { + var a = 0 + a = u + u = (u + 16) | 0 + if (!(Ja(19704, 113) | 0)) { + u = a + return + } else Hn(18889, a) + } + function Nn(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + Pj(a, b, c) + return + } + function On(a) { + a = a | 0 + cf(a) + Oq(a) + return + } + function Pn(a, b, c, d, e, f, g) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + g = g | 0 + _a[a & 3](b | 0, c | 0, d | 0, e | 0, f | 0, g | 0) + } + function Qn(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + if (b | 0) sj(a | 0, ((kq(c) | 0) & 255) | 0, b | 0) | 0 + return a | 0 + } + function Rn(a) { + a = a | 0 + return 4 + } + function Sn(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return ej(0, b, c) | 0 + } + function Tn(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + if ((c | 0) < 32) { + I = (b << c) | ((a & (((1 << c) - 1) << (32 - c))) >>> (32 - c)) + return a << c + } + I = a << (c - 32) + return 0 + } + function Un() {} + function Vn(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0 + e = (a + c) >>> 0 + return ((I = (b + d + ((e >>> 0 < a >>> 0) | 0)) >>> 0), e | 0) | 0 + } + function Wn(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (!b) c = 0 + else c = Dh(f[b >> 2] | 0, f[(b + 4) >> 2] | 0, a) | 0 + return (c | 0 ? c : a) | 0 + } + function Xn(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + var e = 0 + e = (b - d) >>> 0 + e = (b - d - ((c >>> 0 > a >>> 0) | 0)) >>> 0 + return ((I = e), ((a - c) >>> 0) | 0) | 0 + } + function Yn(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + if ((c | 0) < 32) { + I = b >>> c + return (a >>> c) | ((b & ((1 << c) - 1)) << (32 - c)) + } + I = 0 + return (b >>> (c - 32)) | 0 + } + function Zn(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 3932 + b = (a + 4) | 0 + a = (b + 44) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (a | 0)) + return + } + function _n(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return De(a, b, c, d) | 0 + } + function $n(a) { + a = a | 0 + ff(a) + Oq(a) + return + } + function ao(a, b) { + a = a | 0 + b = b | 0 + ji(a) + f[(a + 36) >> 2] = b + f[(a + 40) >> 2] = 0 + return + } + function bo(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = +d + return $i(a, b, c, d) | 0 + } + function co(a) { + a = a | 0 + return 5 + } + function eo(a) { + a = a | 0 + var b = 0 + f[a >> 2] = 6192 + b = (a + 4) | 0 + a = (b + 80) | 0 + do { + f[b >> 2] = 0 + b = (b + 4) | 0 + } while ((b | 0) < (a | 0)) + return + } + function fo(a) { + a = a | 0 + return 6 + } + function go(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return aj(a, b, c, d) | 0 + } + function ho(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + f[(a + 28) >> 2] = b + f[(a + 32) >> 2] = c + return 1 + } + function io(a, b) { + a = a | 0 + b = b | 0 + ji(a) + f[(a + 36) >> 2] = b + f[(a + 40) >> 2] = b + return + } + function jo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + Nn(a, b, c) + return + } + function ko(a) { + a = a | 0 + var b = 0 + b = f[(a + 56) >> 2] | 0 + return Qa[f[((f[b >> 2] | 0) + 28) >> 2] & 127](b) | 0 + } + function lo(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + Ve(a, b, c, d, 1) + return + } + function mo(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + Ve(a, b, c, d, 0) + return + } + function no(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return Xg(a, b, c, d) | 0 + } + function oo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return fi(a, b, c) | 0 + } + function po(a) { + a = a | 0 + var b = 0 + b = f[(a + 56) >> 2] | 0 + return Qa[f[((f[b >> 2] | 0) + 32) >> 2] & 127](b) | 0 + } + function qo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return ej(a, b, c) | 0 + } + function ro(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return Sn(a, b, c) | 0 + } + function so(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + Za[a & 3](b | 0, c | 0, d | 0, e | 0, f | 0) + } + function to(a) { + a = a | 0 + var b = 0, + c = 0 + if (a >>> 0 > 4294963200) { + b = Vq() | 0 + f[b >> 2] = 0 - a + c = -1 + } else c = a + return c | 0 + } + function uo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + Li(a, b, c) + return + } + function vo(a) { + a = a | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[(a + 12) >> 2] = 0 + f[(a + 16) >> 2] = 0 + return + } + function wo(a, b) { + a = a | 0 + b = b | 0 + f[(a + 8) >> 2] = b + f[(a + 12) >> 2] = -1 + return 1 + } + function xo(a, b) { + a = a | 0 + b = b | 0 + f[(a + 52) >> 2] = b + ip(a, b) + return + } + function yo(a) { + a = +a + var b = 0 + p[s >> 3] = a + b = f[s >> 2] | 0 + I = f[(s + 4) >> 2] | 0 + return b | 0 + } + function zo(a) { + a = a | 0 + Hm(a) + f[a >> 2] = 1476 + f[(a + 36) >> 2] = 0 + return + } + function Ao(a) { + a = a | 0 + var b = 0 + if (!a) b = 0 + else b = ((Eh(a, 1056, 1144, 0) | 0) != 0) & 1 + return b | 0 + } + function Bo(a) { + a = a | 0 + if ((b[(a + 11) >> 0] | 0) < 0) Oq(f[a >> 2] | 0) + return + } + function Co(a) { + a = a | 0 + if (!a) return + Va[f[((f[a >> 2] | 0) + 4) >> 2] & 127](a) + return + } + function Do(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + Ya[a & 3](b | 0, c | 0, d | 0, e | 0) + } + function Eo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + if (c | 0) im(a | 0, b | 0, c | 0) | 0 + return a | 0 + } + function Fo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + if (c | 0) kh(a | 0, b | 0, c | 0) | 0 + return a | 0 + } + function Go(a, b) { + a = a | 0 + b = b | 0 + return -1 + } + function Ho(a) { + a = a | 0 + var b = 0 + b = u + u = (u + 16) | 0 + Ua[a & 3]() + Hn(18992, b) + } + function Io(a) { + a = a | 0 + Lh(a) + Oq(a) + return + } + function Jo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + Ro(a, b, c) + return + } + function Ko(a, b, c) { + a = a | 0 + b = $(b) + c = c | 0 + f[(a + 4) >> 2] = c + n[a >> 2] = b + return + } + function Lo(a) { + a = a | 0 + To(a) + f[a >> 2] = 3408 + f[(a + 56) >> 2] = 0 + return + } + function Mo(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return Sa[a & 31](b | 0, c | 0, d | 0) | 0 + } + function No(a, b) { + a = a | 0 + b = b | 0 + return (((wp(a, b) | 0) << 24) >> 24) | 0 + } + function Oo(a, b) { + a = a | 0 + b = b | 0 + f[a >> 2] = 7236 + cm((a + 4) | 0, b) + return + } + function Po(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + if (!a) c = 0 + else c = Pi(a, b, 0) | 0 + return c | 0 + } + function Qo(a) { + a = a | 0 + return f[(a + 12) >> 2] | 0 + } + function Ro(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + uo(a, b, c) + return + } + function So() { + var a = 0 + a = ln(64) | 0 + Il(a) + return a | 0 + } + function To(a) { + a = a | 0 + Zn(a) + f[a >> 2] = 3764 + f[(a + 52) >> 2] = 0 + return + } + function Uo(a) { + a = a | 0 + if (!a) return + bj(a) + Oq(a) + return + } + function Vo(a) { + a = a | 0 + return Qa[f[((f[a >> 2] | 0) + 60) >> 2] & 127](a) | 0 + } + function Wo(a) { + a = a | 0 + return f[(a + 4) >> 2] | 0 + } + function Xo(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + if (!(f[a >> 2] & 32)) qi(b, c, a) | 0 + return + } + function Yo(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + Xa[a & 15](b | 0, c | 0, d | 0) + } + function Zo() { + var a = 0 + a = ln(96) | 0 + Tm(a) + return a | 0 + } + function _o(a) { + a = a | 0 + var b = 0 + b = u + u = (u + a) | 0 + u = (u + 15) & -16 + return b | 0 + } + function $o(a) { + a = a | 0 + var b = 0 + b = ((Jq() | 0) + 188) | 0 + return $j(a, f[b >> 2] | 0) | 0 + } + function ap(a) { + a = a | 0 + return ( + ((((f[(a + 100) >> 2] | 0) - (f[(a + 96) >> 2] | 0)) | 0) / 12) | 0 | 0 + ) + } + function bp(a, b) { + a = a | 0 + b = b | 0 + kp(a, b) + return + } + function cp(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + aa(3) + return 0 + } + function dp() { + var a = 0 + a = ln(12) | 0 + op(a) + return a | 0 + } + function ep(a) { + a = a | 0 + Ni(a) + Oq(a) + return + } + function fp(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return ((a | 0) == (b | 0)) | 0 + } + function gp(a, b) { + a = a | 0 + b = b | 0 + var c = 0 + c = sp(a | 0) | 0 + return ((b | 0) == 0 ? a : c) | 0 + } + function hp(a) { + a = a | 0 + return (((f[(a + 12) >> 2] | 0) - (f[(a + 8) >> 2] | 0)) >> 2) | 0 + } + function ip(a, b) { + a = a | 0 + b = b | 0 + f[(a + 4) >> 2] = b + return + } + function jp(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + return Ld(a, b, c, d, 0) | 0 + } + function kp(a, b) { + a = a | 0 + b = b | 0 + jk(a, b) + return + } + function lp(a) { + a = a | 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + f[a >> 2] = a + 4 + return + } + function mp() { + var a = 0 + a = ln(84) | 0 + eo(a) + return a | 0 + } + function np(a) { + a = a | 0 + ui(a) + Oq(a) + return + } + function op(a) { + a = a | 0 + f[a >> 2] = 0 + f[(a + 4) >> 2] = 0 + f[(a + 8) >> 2] = 0 + return + } + function pp(a) { + a = a | 0 + f[a >> 2] = 7236 + Am((a + 4) | 0) + return + } + function qp(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return Ra[a & 127](b | 0, c | 0) | 0 + } + function rp(a, b, c, d, e, f) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + f = f | 0 + aa(10) + } + function sp(a) { + a = a | 0 + return ( + ((a & 255) << 24) | + (((a >> 8) & 255) << 16) | + (((a >> 16) & 255) << 8) | + (a >>> 24) | + 0 + ) + } + function tp(a) { + a = a | 0 + To(a) + f[a >> 2] = 3836 + return + } + function up(a, c) { + a = a | 0 + c = c | 0 + b[a >> 0] = b[c >> 0] | 0 + return + } + function vp(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + return -1 + } + function wp(a, c) { + a = a | 0 + c = c | 0 + return b[((f[a >> 2] | 0) + c) >> 0] | 0 + } + function xp(a) { + a = a | 0 + return ((f[(a + 4) >> 2] | 0) - (f[a >> 2] | 0)) | 0 + } + function yp(a) { + a = a | 0 + mj(a) + Oq(a) + return + } + function zp(a) { + a = a | 0 + if (!a) return + Oq(a) + return + } + function Ap(a) { + a = a | 0 + n[a >> 2] = $(1.0) + f[(a + 4) >> 2] = 1 + return + } + function Bp(a) { + a = a | 0 + b[(a + 28) >> 0] = 1 + return + } + function Cp(a, b) { + a = a | 0 + b = b | 0 + if (!x) { + x = a + y = b + } + } + function Dp(a) { + a = a | 0 + ji(a) + return + } + function Ep(a, b) { + a = a | 0 + b = b | 0 + return 1 + } + function Fp(a) { + a = a | 0 + return (a + 12) | 0 + } + function Gp(a, b) { + a = a | 0 + b = b | 0 + f[(a + 80) >> 2] = b + return + } + function Hp(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + Wa[a & 7](b | 0, c | 0) + } + function Ip() { + var a = 0 + a = ln(36) | 0 + qq(a) + return a | 0 + } + function Jp(a) { + a = a | 0 + return gq((a + 4) | 0) | 0 + } + function Kp() { + var a = 0 + a = ln(108) | 0 + jn(a) + return a | 0 + } + function Lp(a) { + a = a | 0 + return ((b[(a + 32) >> 0] | 0) != 0) | 0 + } + function Mp(a) { + a = a | 0 + return (a + -12) | 0 + } + function Np(a, b, c, d, e) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + e = e | 0 + aa(9) + } + function Op() { + var a = 0 + a = f[4927] | 0 + f[4927] = a + 0 + return a | 0 + } + function Pp(a) { + a = a | 0 + return f[(a + 56) >> 2] | 0 + } + function Qp() { + var a = 0 + a = f[1786] | 0 + f[1786] = a + 0 + return a | 0 + } + function Rp(a) { + a = a | 0 + Og(a) + Oq(a) + return + } + function Sp(a) { + a = a | 0 + Sq(a) + Oq(a) + return + } + function Tp(a) { + a = a | 0 + return b[(a + 24) >> 0] | 0 + } + function Up(a, b) { + a = a | 0 + b = b | 0 + return 0 + } + function Vp(a) { + a = a | 0 + return f[(a + 40) >> 2] | 0 + } + function Wp(a) { + a = a | 0 + return f[(a + 48) >> 2] | 0 + } + function Xp(a, b) { + a = a | 0 + b = b | 0 + return Qa[a & 127](b | 0) | 0 + } + function Yp(a) { + a = a | 0 + return f[(a + 60) >> 2] | 0 + } + function Zp(a) { + a = a | 0 + return f[(a + 28) >> 2] | 0 + } + function _p(a) { + a = a | 0 + sa(a | 0) | 0 + om() + } + function $p(a) { + a = a | 0 + pp(a) + Oq(a) + return + } + function aq(a) { + a = a | 0 + Ca() + } + function bq(a, b) { + a = a | 0 + b = b | 0 + return $(+Bk(a, b, 0)) + } + function cq(a) { + a = a | 0 + return 3 + } + function dq(a, b) { + a = a | 0 + b = b | 0 + u = a + v = b + } + function eq(a) { + a = a | 0 + return ((((a | 0) == 32) | (((a + -9) | 0) >>> 0 < 5)) & 1) | 0 + } + function fq(a) { + a = a | 0 + return f[(a + 80) >> 2] | 0 + } + function gq(a) { + a = a | 0 + return f[a >> 2] | 0 + } + function hq(a, b, c, d) { + a = a | 0 + b = b | 0 + c = c | 0 + d = d | 0 + aa(8) + } + function iq(a, b) { + a = a | 0 + b = b | 0 + Va[a & 127](b | 0) + } + function jq(a, b) { + a = a | 0 + b = b | 0 + return Wn(a, b) | 0 + } + function kq(a) { + a = a | 0 + return (a & 255) | 0 + } + function lq(a) { + a = a | 0 + return Gj(a) | 0 + } + function mq(a, b) { + a = a | 0 + b = b | 0 + return +(+Bk(a, b, 1)) + } + function nq(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + aa(2) + return 0 + } + function oq(a) { + a = a | 0 + return 2 + } + function pq(a) { + a = a | 0 + return 1 + } + function qq(a) { + a = a | 0 + Dp(a) + return + } + function rq(a, b) { + a = +a + b = +b + return +(+Yl(a, b)) + } + function sq(a, b) { + a = +a + b = b | 0 + return +(+bk(a, b)) + } + function tq(a, b) { + a = +a + b = b | 0 + return +(+ak(a, b)) + } + function uq() { + return 3 + } + function vq(a, b, c) { + a = a | 0 + b = b | 0 + c = c | 0 + aa(7) + } + function wq() { + return 0 + } + function xq() { + return -1 + } + function yq() { + return ln(1) | 0 + } + function zq() { + return 4 + } + function Aq(a) { + a = a | 0 + return (((a + -48) | 0) >>> 0 < 10) | 0 + } + function Bq() { + return 1 + } + function Cq() { + return 2 + } + function Dq(a, b) { + a = +a + b = +b + return +(+xd(a, b)) + } + function Eq(a, b) { + a = a | 0 + b = b | 0 + aa(1) + return 0 + } + function Fq(a) { + a = a | 0 + Ha() + } + function Gq(a) { + a = a | 0 + Ua[a & 3]() + } + function Hq() { + ua() + } + function Iq(a) { + a = a | 0 + return +(+mq(a, 0)) + } + function Jq() { + return Yq() | 0 + } + function Kq(a, b) { + a = a | 0 + b = b | 0 + aa(6) + } + function Lq(a) { + a = a | 0 + return ln(a) | 0 + } + function Mq(a) { + a = a | 0 + Oq(a) + return + } + function Nq(a) { + a = a | 0 + u = a + } + function Oq(a) { + a = a | 0 + yc(a) + return + } + function Pq(a) { + a = a | 0 + I = a + } + function Qq(a) { + a = a | 0 + return a | 0 + } + function Rq(a) { + a = a | 0 + aa(0) + return 0 + } + function Sq(a) { + a = a | 0 + return + } + function Tq(a) { + a = a | 0 + return 0 + } + function Uq() { + return I | 0 + } + function Vq() { + return 19632 + } + function Wq() { + return u | 0 + } + function Xq(a) { + a = a | 0 + aa(5) + } + function Yq() { + return 6352 + } + function Zq() { + aa(4) + } -// EMSCRIPTEN_END_FUNCS -var Qa=[Rq,oq,pq,pq,oq,gb,Tq,Tq,Tq,hk,kg,pq,Wo,Tq,Tq,pq,Tq,pq,pq,yl,oq,yl,cq,wl,pq,co,wl,pq,fo,cl,pq,Zp,Rn,yl,pq,yl,oq,yl,cq,wl,pq,co,wl,pq,fo,cl,pq,Zp,Rn,yl,pq,cq,Tq,Wo,pq,Tq,pq,cq,pq,ql,oq,ql,Rn,ql,cq,pl,pq,co,pl,pq,fo,Wk,pq,Zp,pq,ql,oq,ql,Rn,ql,cq,pl,pq,co,pl,pq,fo,Wk,pq,Zp,pq,oq,pq,pq,Nd,pq,Vo,Xe,mh,zk,po,ko,pb,Qo,Wo,Mg,Wg,Lf,rb,Qo,Wo,pq,Tq,Tq,zc,Ki,Tq,pq,pq,Uj,Tq,Uj,ck,rn,Jp,Rq,Rq,Rq];var Ra=[Eq,xl,nh,Ie,El,Up,Up,Up,Ep,jb,rj,wo,Ep,Ep,ti,nj,ii,kk,ol,Qj,$k,dk,ek,Te,Go,Up,ni,Up,Pl,$d,Up,Pl,nf,Up,Ml,sh,mm,Ed,Up,Pl,$d,Up,Pl,nf,Up,Ml,sh,mm,Ed,Cn,Go,Up,li,Dd,Up,Fl,Zd,Up,Fl,hf,Up,Bl,rh,mm,Dd,Up,Fl,Zd,Up,Fl,hf,Up,Bl,rh,mm,zn,Kn,Fn,Ln,Jn,dh,ik,uk,cc,ye,Rm,og,vf,wf,ah,ik,uk,bc,ye,Rm,Ep,Up,Up,of,zm,mg,of,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq,Eq];var Sa=[nq,ho,vp,bn,Sm,wg,oj,kl,xh,wc,Kh,pg,gi,Rb,di,Ng,ml,Nm,Cj,nq,nq,nq,nq,nq,nq,nq,nq,nq,nq,nq,nq,nq];var Ta=[cp,Xd,Jc,oc,be,Ae,Tb,bb,Lc,pc,ae,ze,Sb,ab,eh,kd,Ic,fb,pf,If,tc,od,Kc,db,kf,Gf,qc,cp,cp,cp,cp,cp];var Ua=[Zq,Hq,Oi,Mn];var Va=[Xq,Sq,Mq,Gm,jm,al,Fq,ui,np,Ni,ep,Lh,Io,Jm,Fm,gm,Fq,Ql,Ql,Ql,Jk,wk,_k,Rk,el,Uk,Sq,Mq,Fq,Yi,em,Ql,Ql,Dk,rk,Xk,Pk,bl,Tk,Sq,Mq,Fq,Vi,Ul,Jm,Fm,Sq,Mq,Mq,Mq,yj,Jl,Sl,Al,Im,tm,qn,dn,Sq,Mq,Mq,Mq,vj,zl,Kl,sl,Em,km,gn,Um,Sq,Mq,xk,ok,nm,Lm,ff,$n,vk,nk,nn,Om,Tl,Ak,qk,tn,Xm,Wl,fm,_l,cf,On,mj,Fq,yp,Sq,Mq,Fq,yp,yp,Nk,Gk,sb,Og,Rp,Sq,Sp,Sq,Sq,Sp,pp,$p,$p,xn,Xq,Xq,Xq,Xq,Xq,Xq,Xq,Xq,Xq,Xq,Xq,Xq,Xq,Xq];var Wa=[Kq,pk,gg,yk,Nc,Kq,Kq,Kq];var Xa=[vq,Ne,ij,$b,ic,yd,$b,ic,$g,Aj,Lg,Yf,vq,vq,vq,vq];var Ya=[hq,hm,dl,hq];var Za=[Np,tj,oh,Np];var _a=[rp,Rl,Sk,rp];return{___cxa_can_catch:lm,___cxa_is_pointer_type:Ao,___divdi3:Ik,___muldi3:un,___udivdi3:jp,___uremdi3:hn,_bitshift64Lshr:Yn,_bitshift64Shl:Tn,_emscripten_bind_DracoInt8Array_DracoInt8Array_0:dp,_emscripten_bind_DracoInt8Array_GetValue_1:No,_emscripten_bind_DracoInt8Array___destroy___0:cn,_emscripten_bind_DracoInt8Array_size_0:xp,_emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2:oo,_emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3:En,_emscripten_bind_Encoder_Encoder_0:Ip,_emscripten_bind_Encoder_SetAttributeExplicitQuantization_5:_m,_emscripten_bind_Encoder_SetAttributeQuantization_2:jo,_emscripten_bind_Encoder_SetEncodingMethod_1:bp,_emscripten_bind_Encoder_SetSpeedOptions_2:Jo,_emscripten_bind_Encoder___destroy___0:Wj,_emscripten_bind_GeometryAttribute_GeometryAttribute_0:So,_emscripten_bind_GeometryAttribute___destroy___0:zp,_emscripten_bind_MeshBuilder_AddFacesToMesh_3:no,_emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5:pn,_emscripten_bind_MeshBuilder_AddFloatAttribute_5:pn,_emscripten_bind_MeshBuilder_AddInt16Attribute_5:fn,_emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5:on,_emscripten_bind_MeshBuilder_AddInt32Attribute_5:on,_emscripten_bind_MeshBuilder_AddInt8Attribute_5:kn,_emscripten_bind_MeshBuilder_AddMetadataToMesh_2:ro,_emscripten_bind_MeshBuilder_AddMetadata_2:qo,_emscripten_bind_MeshBuilder_AddUInt16Attribute_5:an,_emscripten_bind_MeshBuilder_AddUInt32Attribute_5:$m,_emscripten_bind_MeshBuilder_AddUInt8Attribute_5:en,_emscripten_bind_MeshBuilder_MeshBuilder_0:yq,_emscripten_bind_MeshBuilder_SetMetadataForAttribute_3:Dn,_emscripten_bind_MeshBuilder___destroy___0:zp,_emscripten_bind_Mesh_Mesh_0:Kp,_emscripten_bind_Mesh___destroy___0:Co,_emscripten_bind_Mesh_num_attributes_0:hp,_emscripten_bind_Mesh_num_faces_0:ap,_emscripten_bind_Mesh_num_points_0:fq,_emscripten_bind_Mesh_set_num_points_1:Gp,_emscripten_bind_MetadataBuilder_AddDoubleEntry_3:bo,_emscripten_bind_MetadataBuilder_AddIntEntry_3:go,_emscripten_bind_MetadataBuilder_AddStringEntry_3:_n,_emscripten_bind_MetadataBuilder_MetadataBuilder_0:yq,_emscripten_bind_MetadataBuilder___destroy___0:zp,_emscripten_bind_Metadata_Metadata_0:Xl,_emscripten_bind_Metadata___destroy___0:Uo,_emscripten_bind_PointAttribute_PointAttribute_0:Zo,_emscripten_bind_PointAttribute___destroy___0:Ij,_emscripten_bind_PointAttribute_attribute_type_0:Pp,_emscripten_bind_PointAttribute_byte_offset_0:Wp,_emscripten_bind_PointAttribute_byte_stride_0:Vp,_emscripten_bind_PointAttribute_data_type_0:Zp,_emscripten_bind_PointAttribute_normalized_0:Lp,_emscripten_bind_PointAttribute_num_components_0:Tp,_emscripten_bind_PointAttribute_size_0:fq,_emscripten_bind_PointAttribute_unique_id_0:Yp,_emscripten_bind_PointCloudBuilder_AddFloatAttribute_5:pn,_emscripten_bind_PointCloudBuilder_AddInt16Attribute_5:fn,_emscripten_bind_PointCloudBuilder_AddInt32Attribute_5:on,_emscripten_bind_PointCloudBuilder_AddInt8Attribute_5:kn,_emscripten_bind_PointCloudBuilder_AddMetadata_2:qo,_emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5:an,_emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5:$m,_emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5:en,_emscripten_bind_PointCloudBuilder_PointCloudBuilder_0:yq,_emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3:Dn,_emscripten_bind_PointCloudBuilder___destroy___0:zp,_emscripten_bind_PointCloud_PointCloud_0:mp,_emscripten_bind_PointCloud___destroy___0:Co,_emscripten_bind_PointCloud_num_attributes_0:hp,_emscripten_bind_PointCloud_num_points_0:fq,_emscripten_bind_VoidPtr___destroy___0:zp,_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE:xq,_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD:wq,_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH:Bq,_emscripten_enum_draco_GeometryAttribute_Type_COLOR:Cq,_emscripten_enum_draco_GeometryAttribute_Type_GENERIC:zq,_emscripten_enum_draco_GeometryAttribute_Type_INVALID:xq,_emscripten_enum_draco_GeometryAttribute_Type_NORMAL:Bq,_emscripten_enum_draco_GeometryAttribute_Type_POSITION:wq,_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD:uq,_emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING:Bq,_emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING:wq,_emscripten_replace_memory:Pa,_free:yc,_i64Add:Vn,_i64Subtract:Xn,_llvm_bswap_i32:sp,_malloc:$a,_memcpy:kh,_memmove:im,_memset:sj,_sbrk:Nl,dynCall_ii:Xp,dynCall_iii:qp,dynCall_iiii:Mo,dynCall_iiiiiii:In,dynCall_v:Gq,dynCall_vi:iq,dynCall_vii:Hp,dynCall_viii:Yo,dynCall_viiii:Do,dynCall_viiiii:so,dynCall_viiiiii:Pn,establishStackSpace:dq,getTempRet0:Uq,runPostSets:Un,setTempRet0:Pq,setThrew:Cp,stackAlloc:_o,stackRestore:Nq,stackSave:Wq}}) + // EMSCRIPTEN_END_FUNCS + var Qa = [ + Rq, + oq, + pq, + pq, + oq, + gb, + Tq, + Tq, + Tq, + hk, + kg, + pq, + Wo, + Tq, + Tq, + pq, + Tq, + pq, + pq, + yl, + oq, + yl, + cq, + wl, + pq, + co, + wl, + pq, + fo, + cl, + pq, + Zp, + Rn, + yl, + pq, + yl, + oq, + yl, + cq, + wl, + pq, + co, + wl, + pq, + fo, + cl, + pq, + Zp, + Rn, + yl, + pq, + cq, + Tq, + Wo, + pq, + Tq, + pq, + cq, + pq, + ql, + oq, + ql, + Rn, + ql, + cq, + pl, + pq, + co, + pl, + pq, + fo, + Wk, + pq, + Zp, + pq, + ql, + oq, + ql, + Rn, + ql, + cq, + pl, + pq, + co, + pl, + pq, + fo, + Wk, + pq, + Zp, + pq, + oq, + pq, + pq, + Nd, + pq, + Vo, + Xe, + mh, + zk, + po, + ko, + pb, + Qo, + Wo, + Mg, + Wg, + Lf, + rb, + Qo, + Wo, + pq, + Tq, + Tq, + zc, + Ki, + Tq, + pq, + pq, + Uj, + Tq, + Uj, + ck, + rn, + Jp, + Rq, + Rq, + Rq, + ] + var Ra = [ + Eq, + xl, + nh, + Ie, + El, + Up, + Up, + Up, + Ep, + jb, + rj, + wo, + Ep, + Ep, + ti, + nj, + ii, + kk, + ol, + Qj, + $k, + dk, + ek, + Te, + Go, + Up, + ni, + Up, + Pl, + $d, + Up, + Pl, + nf, + Up, + Ml, + sh, + mm, + Ed, + Up, + Pl, + $d, + Up, + Pl, + nf, + Up, + Ml, + sh, + mm, + Ed, + Cn, + Go, + Up, + li, + Dd, + Up, + Fl, + Zd, + Up, + Fl, + hf, + Up, + Bl, + rh, + mm, + Dd, + Up, + Fl, + Zd, + Up, + Fl, + hf, + Up, + Bl, + rh, + mm, + zn, + Kn, + Fn, + Ln, + Jn, + dh, + ik, + uk, + cc, + ye, + Rm, + og, + vf, + wf, + ah, + ik, + uk, + bc, + ye, + Rm, + Ep, + Up, + Up, + of, + zm, + mg, + of, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + Eq, + ] + var Sa = [ + nq, + ho, + vp, + bn, + Sm, + wg, + oj, + kl, + xh, + wc, + Kh, + pg, + gi, + Rb, + di, + Ng, + ml, + Nm, + Cj, + nq, + nq, + nq, + nq, + nq, + nq, + nq, + nq, + nq, + nq, + nq, + nq, + nq, + ] + var Ta = [ + cp, + Xd, + Jc, + oc, + be, + Ae, + Tb, + bb, + Lc, + pc, + ae, + ze, + Sb, + ab, + eh, + kd, + Ic, + fb, + pf, + If, + tc, + od, + Kc, + db, + kf, + Gf, + qc, + cp, + cp, + cp, + cp, + cp, + ] + var Ua = [Zq, Hq, Oi, Mn] + var Va = [ + Xq, + Sq, + Mq, + Gm, + jm, + al, + Fq, + ui, + np, + Ni, + ep, + Lh, + Io, + Jm, + Fm, + gm, + Fq, + Ql, + Ql, + Ql, + Jk, + wk, + _k, + Rk, + el, + Uk, + Sq, + Mq, + Fq, + Yi, + em, + Ql, + Ql, + Dk, + rk, + Xk, + Pk, + bl, + Tk, + Sq, + Mq, + Fq, + Vi, + Ul, + Jm, + Fm, + Sq, + Mq, + Mq, + Mq, + yj, + Jl, + Sl, + Al, + Im, + tm, + qn, + dn, + Sq, + Mq, + Mq, + Mq, + vj, + zl, + Kl, + sl, + Em, + km, + gn, + Um, + Sq, + Mq, + xk, + ok, + nm, + Lm, + ff, + $n, + vk, + nk, + nn, + Om, + Tl, + Ak, + qk, + tn, + Xm, + Wl, + fm, + _l, + cf, + On, + mj, + Fq, + yp, + Sq, + Mq, + Fq, + yp, + yp, + Nk, + Gk, + sb, + Og, + Rp, + Sq, + Sp, + Sq, + Sq, + Sp, + pp, + $p, + $p, + xn, + Xq, + Xq, + Xq, + Xq, + Xq, + Xq, + Xq, + Xq, + Xq, + Xq, + Xq, + Xq, + Xq, + Xq, + ] + var Wa = [Kq, pk, gg, yk, Nc, Kq, Kq, Kq] + var Xa = [vq, Ne, ij, $b, ic, yd, $b, ic, $g, Aj, Lg, Yf, vq, vq, vq, vq] + var Ya = [hq, hm, dl, hq] + var Za = [Np, tj, oh, Np] + var _a = [rp, Rl, Sk, rp] + return { + ___cxa_can_catch: lm, + ___cxa_is_pointer_type: Ao, + ___divdi3: Ik, + ___muldi3: un, + ___udivdi3: jp, + ___uremdi3: hn, + _bitshift64Lshr: Yn, + _bitshift64Shl: Tn, + _emscripten_bind_DracoInt8Array_DracoInt8Array_0: dp, + _emscripten_bind_DracoInt8Array_GetValue_1: No, + _emscripten_bind_DracoInt8Array___destroy___0: cn, + _emscripten_bind_DracoInt8Array_size_0: xp, + _emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2: oo, + _emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3: En, + _emscripten_bind_Encoder_Encoder_0: Ip, + _emscripten_bind_Encoder_SetAttributeExplicitQuantization_5: _m, + _emscripten_bind_Encoder_SetAttributeQuantization_2: jo, + _emscripten_bind_Encoder_SetEncodingMethod_1: bp, + _emscripten_bind_Encoder_SetSpeedOptions_2: Jo, + _emscripten_bind_Encoder___destroy___0: Wj, + _emscripten_bind_GeometryAttribute_GeometryAttribute_0: So, + _emscripten_bind_GeometryAttribute___destroy___0: zp, + _emscripten_bind_MeshBuilder_AddFacesToMesh_3: no, + _emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5: pn, + _emscripten_bind_MeshBuilder_AddFloatAttribute_5: pn, + _emscripten_bind_MeshBuilder_AddInt16Attribute_5: fn, + _emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5: on, + _emscripten_bind_MeshBuilder_AddInt32Attribute_5: on, + _emscripten_bind_MeshBuilder_AddInt8Attribute_5: kn, + _emscripten_bind_MeshBuilder_AddMetadataToMesh_2: ro, + _emscripten_bind_MeshBuilder_AddMetadata_2: qo, + _emscripten_bind_MeshBuilder_AddUInt16Attribute_5: an, + _emscripten_bind_MeshBuilder_AddUInt32Attribute_5: $m, + _emscripten_bind_MeshBuilder_AddUInt8Attribute_5: en, + _emscripten_bind_MeshBuilder_MeshBuilder_0: yq, + _emscripten_bind_MeshBuilder_SetMetadataForAttribute_3: Dn, + _emscripten_bind_MeshBuilder___destroy___0: zp, + _emscripten_bind_Mesh_Mesh_0: Kp, + _emscripten_bind_Mesh___destroy___0: Co, + _emscripten_bind_Mesh_num_attributes_0: hp, + _emscripten_bind_Mesh_num_faces_0: ap, + _emscripten_bind_Mesh_num_points_0: fq, + _emscripten_bind_Mesh_set_num_points_1: Gp, + _emscripten_bind_MetadataBuilder_AddDoubleEntry_3: bo, + _emscripten_bind_MetadataBuilder_AddIntEntry_3: go, + _emscripten_bind_MetadataBuilder_AddStringEntry_3: _n, + _emscripten_bind_MetadataBuilder_MetadataBuilder_0: yq, + _emscripten_bind_MetadataBuilder___destroy___0: zp, + _emscripten_bind_Metadata_Metadata_0: Xl, + _emscripten_bind_Metadata___destroy___0: Uo, + _emscripten_bind_PointAttribute_PointAttribute_0: Zo, + _emscripten_bind_PointAttribute___destroy___0: Ij, + _emscripten_bind_PointAttribute_attribute_type_0: Pp, + _emscripten_bind_PointAttribute_byte_offset_0: Wp, + _emscripten_bind_PointAttribute_byte_stride_0: Vp, + _emscripten_bind_PointAttribute_data_type_0: Zp, + _emscripten_bind_PointAttribute_normalized_0: Lp, + _emscripten_bind_PointAttribute_num_components_0: Tp, + _emscripten_bind_PointAttribute_size_0: fq, + _emscripten_bind_PointAttribute_unique_id_0: Yp, + _emscripten_bind_PointCloudBuilder_AddFloatAttribute_5: pn, + _emscripten_bind_PointCloudBuilder_AddInt16Attribute_5: fn, + _emscripten_bind_PointCloudBuilder_AddInt32Attribute_5: on, + _emscripten_bind_PointCloudBuilder_AddInt8Attribute_5: kn, + _emscripten_bind_PointCloudBuilder_AddMetadata_2: qo, + _emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5: an, + _emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5: $m, + _emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5: en, + _emscripten_bind_PointCloudBuilder_PointCloudBuilder_0: yq, + _emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3: Dn, + _emscripten_bind_PointCloudBuilder___destroy___0: zp, + _emscripten_bind_PointCloud_PointCloud_0: mp, + _emscripten_bind_PointCloud___destroy___0: Co, + _emscripten_bind_PointCloud_num_attributes_0: hp, + _emscripten_bind_PointCloud_num_points_0: fq, + _emscripten_bind_VoidPtr___destroy___0: zp, + _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE: xq, + _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD: wq, + _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH: Bq, + _emscripten_enum_draco_GeometryAttribute_Type_COLOR: Cq, + _emscripten_enum_draco_GeometryAttribute_Type_GENERIC: zq, + _emscripten_enum_draco_GeometryAttribute_Type_INVALID: xq, + _emscripten_enum_draco_GeometryAttribute_Type_NORMAL: Bq, + _emscripten_enum_draco_GeometryAttribute_Type_POSITION: wq, + _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD: uq, + _emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING: Bq, + _emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING: wq, + _emscripten_replace_memory: Pa, + _free: yc, + _i64Add: Vn, + _i64Subtract: Xn, + _llvm_bswap_i32: sp, + _malloc: $a, + _memcpy: kh, + _memmove: im, + _memset: sj, + _sbrk: Nl, + dynCall_ii: Xp, + dynCall_iii: qp, + dynCall_iiii: Mo, + dynCall_iiiiiii: In, + dynCall_v: Gq, + dynCall_vi: iq, + dynCall_vii: Hp, + dynCall_viii: Yo, + dynCall_viiii: Do, + dynCall_viiiii: so, + dynCall_viiiiii: Pn, + establishStackSpace: dq, + getTempRet0: Uq, + runPostSets: Un, + setTempRet0: Pq, + setThrew: Cp, + stackAlloc: _o, + stackRestore: Nq, + stackSave: Wq, + } + })( + // EMSCRIPTEN_END_ASM + Module.asmGlobalArg, + Module.asmLibraryArg, + buffer, + ) + var ___cxa_can_catch = (Module['___cxa_can_catch'] = asm['___cxa_can_catch']) + var ___cxa_is_pointer_type = (Module['___cxa_is_pointer_type'] = + asm['___cxa_is_pointer_type']) + var ___divdi3 = (Module['___divdi3'] = asm['___divdi3']) + var ___muldi3 = (Module['___muldi3'] = asm['___muldi3']) + var ___udivdi3 = (Module['___udivdi3'] = asm['___udivdi3']) + var ___uremdi3 = (Module['___uremdi3'] = asm['___uremdi3']) + var _bitshift64Lshr = (Module['_bitshift64Lshr'] = asm['_bitshift64Lshr']) + var _bitshift64Shl = (Module['_bitshift64Shl'] = asm['_bitshift64Shl']) + var _emscripten_bind_DracoInt8Array_DracoInt8Array_0 = (Module[ + '_emscripten_bind_DracoInt8Array_DracoInt8Array_0' + ] = asm['_emscripten_bind_DracoInt8Array_DracoInt8Array_0']) + var _emscripten_bind_DracoInt8Array_GetValue_1 = (Module[ + '_emscripten_bind_DracoInt8Array_GetValue_1' + ] = asm['_emscripten_bind_DracoInt8Array_GetValue_1']) + var _emscripten_bind_DracoInt8Array___destroy___0 = (Module[ + '_emscripten_bind_DracoInt8Array___destroy___0' + ] = asm['_emscripten_bind_DracoInt8Array___destroy___0']) + var _emscripten_bind_DracoInt8Array_size_0 = (Module[ + '_emscripten_bind_DracoInt8Array_size_0' + ] = asm['_emscripten_bind_DracoInt8Array_size_0']) + var _emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2 = (Module[ + '_emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2' + ] = asm['_emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2']) + var _emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3 = (Module[ + '_emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3' + ] = asm['_emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3']) + var _emscripten_bind_Encoder_Encoder_0 = (Module[ + '_emscripten_bind_Encoder_Encoder_0' + ] = asm['_emscripten_bind_Encoder_Encoder_0']) + var _emscripten_bind_Encoder_SetAttributeExplicitQuantization_5 = (Module[ + '_emscripten_bind_Encoder_SetAttributeExplicitQuantization_5' + ] = asm['_emscripten_bind_Encoder_SetAttributeExplicitQuantization_5']) + var _emscripten_bind_Encoder_SetAttributeQuantization_2 = (Module[ + '_emscripten_bind_Encoder_SetAttributeQuantization_2' + ] = asm['_emscripten_bind_Encoder_SetAttributeQuantization_2']) + var _emscripten_bind_Encoder_SetEncodingMethod_1 = (Module[ + '_emscripten_bind_Encoder_SetEncodingMethod_1' + ] = asm['_emscripten_bind_Encoder_SetEncodingMethod_1']) + var _emscripten_bind_Encoder_SetSpeedOptions_2 = (Module[ + '_emscripten_bind_Encoder_SetSpeedOptions_2' + ] = asm['_emscripten_bind_Encoder_SetSpeedOptions_2']) + var _emscripten_bind_Encoder___destroy___0 = (Module[ + '_emscripten_bind_Encoder___destroy___0' + ] = asm['_emscripten_bind_Encoder___destroy___0']) + var _emscripten_bind_GeometryAttribute_GeometryAttribute_0 = (Module[ + '_emscripten_bind_GeometryAttribute_GeometryAttribute_0' + ] = asm['_emscripten_bind_GeometryAttribute_GeometryAttribute_0']) + var _emscripten_bind_GeometryAttribute___destroy___0 = (Module[ + '_emscripten_bind_GeometryAttribute___destroy___0' + ] = asm['_emscripten_bind_GeometryAttribute___destroy___0']) + var _emscripten_bind_MeshBuilder_AddFacesToMesh_3 = (Module[ + '_emscripten_bind_MeshBuilder_AddFacesToMesh_3' + ] = asm['_emscripten_bind_MeshBuilder_AddFacesToMesh_3']) + var _emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5' + ] = asm['_emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5']) + var _emscripten_bind_MeshBuilder_AddFloatAttribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddFloatAttribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddFloatAttribute_5']) + var _emscripten_bind_MeshBuilder_AddInt16Attribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddInt16Attribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddInt16Attribute_5']) + var _emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5' + ] = asm['_emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5']) + var _emscripten_bind_MeshBuilder_AddInt32Attribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddInt32Attribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddInt32Attribute_5']) + var _emscripten_bind_MeshBuilder_AddInt8Attribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddInt8Attribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddInt8Attribute_5']) + var _emscripten_bind_MeshBuilder_AddMetadataToMesh_2 = (Module[ + '_emscripten_bind_MeshBuilder_AddMetadataToMesh_2' + ] = asm['_emscripten_bind_MeshBuilder_AddMetadataToMesh_2']) + var _emscripten_bind_MeshBuilder_AddMetadata_2 = (Module[ + '_emscripten_bind_MeshBuilder_AddMetadata_2' + ] = asm['_emscripten_bind_MeshBuilder_AddMetadata_2']) + var _emscripten_bind_MeshBuilder_AddUInt16Attribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddUInt16Attribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddUInt16Attribute_5']) + var _emscripten_bind_MeshBuilder_AddUInt32Attribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddUInt32Attribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddUInt32Attribute_5']) + var _emscripten_bind_MeshBuilder_AddUInt8Attribute_5 = (Module[ + '_emscripten_bind_MeshBuilder_AddUInt8Attribute_5' + ] = asm['_emscripten_bind_MeshBuilder_AddUInt8Attribute_5']) + var _emscripten_bind_MeshBuilder_MeshBuilder_0 = (Module[ + '_emscripten_bind_MeshBuilder_MeshBuilder_0' + ] = asm['_emscripten_bind_MeshBuilder_MeshBuilder_0']) + var _emscripten_bind_MeshBuilder_SetMetadataForAttribute_3 = (Module[ + '_emscripten_bind_MeshBuilder_SetMetadataForAttribute_3' + ] = asm['_emscripten_bind_MeshBuilder_SetMetadataForAttribute_3']) + var _emscripten_bind_MeshBuilder___destroy___0 = (Module[ + '_emscripten_bind_MeshBuilder___destroy___0' + ] = asm['_emscripten_bind_MeshBuilder___destroy___0']) + var _emscripten_bind_Mesh_Mesh_0 = (Module['_emscripten_bind_Mesh_Mesh_0'] = + asm['_emscripten_bind_Mesh_Mesh_0']) + var _emscripten_bind_Mesh___destroy___0 = (Module[ + '_emscripten_bind_Mesh___destroy___0' + ] = asm['_emscripten_bind_Mesh___destroy___0']) + var _emscripten_bind_Mesh_num_attributes_0 = (Module[ + '_emscripten_bind_Mesh_num_attributes_0' + ] = asm['_emscripten_bind_Mesh_num_attributes_0']) + var _emscripten_bind_Mesh_num_faces_0 = (Module[ + '_emscripten_bind_Mesh_num_faces_0' + ] = asm['_emscripten_bind_Mesh_num_faces_0']) + var _emscripten_bind_Mesh_num_points_0 = (Module[ + '_emscripten_bind_Mesh_num_points_0' + ] = asm['_emscripten_bind_Mesh_num_points_0']) + var _emscripten_bind_Mesh_set_num_points_1 = (Module[ + '_emscripten_bind_Mesh_set_num_points_1' + ] = asm['_emscripten_bind_Mesh_set_num_points_1']) + var _emscripten_bind_MetadataBuilder_AddDoubleEntry_3 = (Module[ + '_emscripten_bind_MetadataBuilder_AddDoubleEntry_3' + ] = asm['_emscripten_bind_MetadataBuilder_AddDoubleEntry_3']) + var _emscripten_bind_MetadataBuilder_AddIntEntry_3 = (Module[ + '_emscripten_bind_MetadataBuilder_AddIntEntry_3' + ] = asm['_emscripten_bind_MetadataBuilder_AddIntEntry_3']) + var _emscripten_bind_MetadataBuilder_AddStringEntry_3 = (Module[ + '_emscripten_bind_MetadataBuilder_AddStringEntry_3' + ] = asm['_emscripten_bind_MetadataBuilder_AddStringEntry_3']) + var _emscripten_bind_MetadataBuilder_MetadataBuilder_0 = (Module[ + '_emscripten_bind_MetadataBuilder_MetadataBuilder_0' + ] = asm['_emscripten_bind_MetadataBuilder_MetadataBuilder_0']) + var _emscripten_bind_MetadataBuilder___destroy___0 = (Module[ + '_emscripten_bind_MetadataBuilder___destroy___0' + ] = asm['_emscripten_bind_MetadataBuilder___destroy___0']) + var _emscripten_bind_Metadata_Metadata_0 = (Module[ + '_emscripten_bind_Metadata_Metadata_0' + ] = asm['_emscripten_bind_Metadata_Metadata_0']) + var _emscripten_bind_Metadata___destroy___0 = (Module[ + '_emscripten_bind_Metadata___destroy___0' + ] = asm['_emscripten_bind_Metadata___destroy___0']) + var _emscripten_bind_PointAttribute_PointAttribute_0 = (Module[ + '_emscripten_bind_PointAttribute_PointAttribute_0' + ] = asm['_emscripten_bind_PointAttribute_PointAttribute_0']) + var _emscripten_bind_PointAttribute___destroy___0 = (Module[ + '_emscripten_bind_PointAttribute___destroy___0' + ] = asm['_emscripten_bind_PointAttribute___destroy___0']) + var _emscripten_bind_PointAttribute_attribute_type_0 = (Module[ + '_emscripten_bind_PointAttribute_attribute_type_0' + ] = asm['_emscripten_bind_PointAttribute_attribute_type_0']) + var _emscripten_bind_PointAttribute_byte_offset_0 = (Module[ + '_emscripten_bind_PointAttribute_byte_offset_0' + ] = asm['_emscripten_bind_PointAttribute_byte_offset_0']) + var _emscripten_bind_PointAttribute_byte_stride_0 = (Module[ + '_emscripten_bind_PointAttribute_byte_stride_0' + ] = asm['_emscripten_bind_PointAttribute_byte_stride_0']) + var _emscripten_bind_PointAttribute_data_type_0 = (Module[ + '_emscripten_bind_PointAttribute_data_type_0' + ] = asm['_emscripten_bind_PointAttribute_data_type_0']) + var _emscripten_bind_PointAttribute_normalized_0 = (Module[ + '_emscripten_bind_PointAttribute_normalized_0' + ] = asm['_emscripten_bind_PointAttribute_normalized_0']) + var _emscripten_bind_PointAttribute_num_components_0 = (Module[ + '_emscripten_bind_PointAttribute_num_components_0' + ] = asm['_emscripten_bind_PointAttribute_num_components_0']) + var _emscripten_bind_PointAttribute_size_0 = (Module[ + '_emscripten_bind_PointAttribute_size_0' + ] = asm['_emscripten_bind_PointAttribute_size_0']) + var _emscripten_bind_PointAttribute_unique_id_0 = (Module[ + '_emscripten_bind_PointAttribute_unique_id_0' + ] = asm['_emscripten_bind_PointAttribute_unique_id_0']) + var _emscripten_bind_PointCloudBuilder_AddFloatAttribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddFloatAttribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddFloatAttribute_5']) + var _emscripten_bind_PointCloudBuilder_AddInt16Attribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddInt16Attribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddInt16Attribute_5']) + var _emscripten_bind_PointCloudBuilder_AddInt32Attribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddInt32Attribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddInt32Attribute_5']) + var _emscripten_bind_PointCloudBuilder_AddInt8Attribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddInt8Attribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddInt8Attribute_5']) + var _emscripten_bind_PointCloudBuilder_AddMetadata_2 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddMetadata_2' + ] = asm['_emscripten_bind_PointCloudBuilder_AddMetadata_2']) + var _emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5']) + var _emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5']) + var _emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5 = (Module[ + '_emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5' + ] = asm['_emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5']) + var _emscripten_bind_PointCloudBuilder_PointCloudBuilder_0 = (Module[ + '_emscripten_bind_PointCloudBuilder_PointCloudBuilder_0' + ] = asm['_emscripten_bind_PointCloudBuilder_PointCloudBuilder_0']) + var _emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3 = (Module[ + '_emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3' + ] = asm['_emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3']) + var _emscripten_bind_PointCloudBuilder___destroy___0 = (Module[ + '_emscripten_bind_PointCloudBuilder___destroy___0' + ] = asm['_emscripten_bind_PointCloudBuilder___destroy___0']) + var _emscripten_bind_PointCloud_PointCloud_0 = (Module[ + '_emscripten_bind_PointCloud_PointCloud_0' + ] = asm['_emscripten_bind_PointCloud_PointCloud_0']) + var _emscripten_bind_PointCloud___destroy___0 = (Module[ + '_emscripten_bind_PointCloud___destroy___0' + ] = asm['_emscripten_bind_PointCloud___destroy___0']) + var _emscripten_bind_PointCloud_num_attributes_0 = (Module[ + '_emscripten_bind_PointCloud_num_attributes_0' + ] = asm['_emscripten_bind_PointCloud_num_attributes_0']) + var _emscripten_bind_PointCloud_num_points_0 = (Module[ + '_emscripten_bind_PointCloud_num_points_0' + ] = asm['_emscripten_bind_PointCloud_num_points_0']) + var _emscripten_bind_VoidPtr___destroy___0 = (Module[ + '_emscripten_bind_VoidPtr___destroy___0' + ] = asm['_emscripten_bind_VoidPtr___destroy___0']) + var _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE = + (Module[ + '_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE' + ] = asm['_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE']) + var _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD = (Module[ + '_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD' + ] = asm['_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD']) + var _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH = (Module[ + '_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH' + ] = asm['_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH']) + var _emscripten_enum_draco_GeometryAttribute_Type_COLOR = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_COLOR' + ] = asm['_emscripten_enum_draco_GeometryAttribute_Type_COLOR']) + var _emscripten_enum_draco_GeometryAttribute_Type_GENERIC = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_GENERIC' + ] = asm['_emscripten_enum_draco_GeometryAttribute_Type_GENERIC']) + var _emscripten_enum_draco_GeometryAttribute_Type_INVALID = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_INVALID' + ] = asm['_emscripten_enum_draco_GeometryAttribute_Type_INVALID']) + var _emscripten_enum_draco_GeometryAttribute_Type_NORMAL = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_NORMAL' + ] = asm['_emscripten_enum_draco_GeometryAttribute_Type_NORMAL']) + var _emscripten_enum_draco_GeometryAttribute_Type_POSITION = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_POSITION' + ] = asm['_emscripten_enum_draco_GeometryAttribute_Type_POSITION']) + var _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD = (Module[ + '_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD' + ] = asm['_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD']) + var _emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING = + (Module[ + '_emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING' + ] = + asm['_emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING']) + var _emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING = + (Module[ + '_emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING' + ] = + asm['_emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING']) + var _emscripten_replace_memory = (Module['_emscripten_replace_memory'] = + asm['_emscripten_replace_memory']) + var _free = (Module['_free'] = asm['_free']) + var _i64Add = (Module['_i64Add'] = asm['_i64Add']) + var _i64Subtract = (Module['_i64Subtract'] = asm['_i64Subtract']) + var _llvm_bswap_i32 = (Module['_llvm_bswap_i32'] = asm['_llvm_bswap_i32']) + var _malloc = (Module['_malloc'] = asm['_malloc']) + var _memcpy = (Module['_memcpy'] = asm['_memcpy']) + var _memmove = (Module['_memmove'] = asm['_memmove']) + var _memset = (Module['_memset'] = asm['_memset']) + var _sbrk = (Module['_sbrk'] = asm['_sbrk']) + var establishStackSpace = (Module['establishStackSpace'] = + asm['establishStackSpace']) + var getTempRet0 = (Module['getTempRet0'] = asm['getTempRet0']) + var runPostSets = (Module['runPostSets'] = asm['runPostSets']) + var setTempRet0 = (Module['setTempRet0'] = asm['setTempRet0']) + var setThrew = (Module['setThrew'] = asm['setThrew']) + var stackAlloc = (Module['stackAlloc'] = asm['stackAlloc']) + var stackRestore = (Module['stackRestore'] = asm['stackRestore']) + var stackSave = (Module['stackSave'] = asm['stackSave']) + var dynCall_ii = (Module['dynCall_ii'] = asm['dynCall_ii']) + var dynCall_iii = (Module['dynCall_iii'] = asm['dynCall_iii']) + var dynCall_iiii = (Module['dynCall_iiii'] = asm['dynCall_iiii']) + var dynCall_iiiiiii = (Module['dynCall_iiiiiii'] = asm['dynCall_iiiiiii']) + var dynCall_v = (Module['dynCall_v'] = asm['dynCall_v']) + var dynCall_vi = (Module['dynCall_vi'] = asm['dynCall_vi']) + var dynCall_vii = (Module['dynCall_vii'] = asm['dynCall_vii']) + var dynCall_viii = (Module['dynCall_viii'] = asm['dynCall_viii']) + var dynCall_viiii = (Module['dynCall_viiii'] = asm['dynCall_viiii']) + var dynCall_viiiii = (Module['dynCall_viiiii'] = asm['dynCall_viiiii']) + var dynCall_viiiiii = (Module['dynCall_viiiiii'] = asm['dynCall_viiiiii']) + Module['asm'] = asm + if (memoryInitializer) { + if (!isDataURI(memoryInitializer)) { + if (typeof Module['locateFile'] === 'function') { + memoryInitializer = Module['locateFile'](memoryInitializer) + } else if (Module['memoryInitializerPrefixURL']) { + memoryInitializer = + Module['memoryInitializerPrefixURL'] + memoryInitializer + } + } + if (ENVIRONMENT_IS_NODE || ENVIRONMENT_IS_SHELL) { + var data = Module['readBinary'](memoryInitializer) + HEAPU8.set(data, GLOBAL_BASE) + } else { + addRunDependency('memory initializer') + var applyMemoryInitializer = function (data) { + if (data.byteLength) data = new Uint8Array(data) + HEAPU8.set(data, GLOBAL_BASE) + if (Module['memoryInitializerRequest']) + delete Module['memoryInitializerRequest'].response + removeRunDependency('memory initializer') + } + function doBrowserLoad() { + Module['readAsync']( + memoryInitializer, + applyMemoryInitializer, + function () { + throw 'could not load memory initializer ' + memoryInitializer + }, + ) + } + var memoryInitializerBytes = tryParseAsDataURI(memoryInitializer) + if (memoryInitializerBytes) { + applyMemoryInitializer(memoryInitializerBytes.buffer) + } else if (Module['memoryInitializerRequest']) { + function useRequest() { + var request = Module['memoryInitializerRequest'] + var response = request.response + if (request.status !== 200 && request.status !== 0) { + var data = tryParseAsDataURI(Module['memoryInitializerRequestURL']) + if (data) { + response = data.buffer + } else { + console.warn( + 'a problem seems to have happened with Module.memoryInitializerRequest, status: ' + + request.status + + ', retrying ' + + memoryInitializer, + ) + doBrowserLoad() + return + } + } + applyMemoryInitializer(response) + } + if (Module['memoryInitializerRequest'].response) { + setTimeout(useRequest, 0) + } else { + Module['memoryInitializerRequest'].addEventListener( + 'load', + useRequest, + ) + } + } else { + doBrowserLoad() + } + } + } + Module['then'] = function (func) { + if (Module['calledRun']) { + func(Module) + } else { + var old = Module['onRuntimeInitialized'] + Module['onRuntimeInitialized'] = function () { + if (old) old() + func(Module) + } + } + return Module + } + function ExitStatus(status) { + this.name = 'ExitStatus' + this.message = 'Program terminated with exit(' + status + ')' + this.status = status + } + ExitStatus.prototype = new Error() + ExitStatus.prototype.constructor = ExitStatus + var initialStackTop + dependenciesFulfilled = function runCaller() { + if (!Module['calledRun']) run() + if (!Module['calledRun']) dependenciesFulfilled = runCaller + } + function run(args) { + args = args || Module['arguments'] + if (runDependencies > 0) { + return + } + preRun() + if (runDependencies > 0) return + if (Module['calledRun']) return + function doRun() { + if (Module['calledRun']) return + Module['calledRun'] = true + if (ABORT) return + ensureInitRuntime() + preMain() + if (Module['onRuntimeInitialized']) Module['onRuntimeInitialized']() + postRun() + } + if (Module['setStatus']) { + Module['setStatus']('Running...') + setTimeout(function () { + setTimeout(function () { + Module['setStatus']('') + }, 1) + doRun() + }, 1) + } else { + doRun() + } + } + Module['run'] = run + function exit(status, implicit) { + if (implicit && Module['noExitRuntime'] && status === 0) { + return + } + if (Module['noExitRuntime']) { + } else { + ABORT = true + EXITSTATUS = status + STACKTOP = initialStackTop + exitRuntime() + if (Module['onExit']) Module['onExit'](status) + } + if (ENVIRONMENT_IS_NODE) { + process['exit'](status) + } + Module['quit'](status, new ExitStatus(status)) + } + Module['exit'] = exit + function abort(what) { + if (Module['onAbort']) { + Module['onAbort'](what) + } + if (what !== undefined) { + Module.print(what) + Module.printErr(what) + what = JSON.stringify(what) + } else { + what = '' + } + ABORT = true + EXITSTATUS = 1 + throw 'abort(' + what + '). Build with -s ASSERTIONS=1 for more info.' + } + Module['abort'] = abort + if (Module['preInit']) { + if (typeof Module['preInit'] == 'function') + Module['preInit'] = [Module['preInit']] + while (Module['preInit'].length > 0) { + Module['preInit'].pop()() + } + } + Module['noExitRuntime'] = true + run() + function WrapperObject() {} + WrapperObject.prototype = Object.create(WrapperObject.prototype) + WrapperObject.prototype.constructor = WrapperObject + WrapperObject.prototype.__class__ = WrapperObject + WrapperObject.__cache__ = {} + Module['WrapperObject'] = WrapperObject + function getCache(__class__) { + return (__class__ || WrapperObject).__cache__ + } + Module['getCache'] = getCache + function wrapPointer(ptr, __class__) { + var cache = getCache(__class__) + var ret = cache[ptr] + if (ret) return ret + ret = Object.create((__class__ || WrapperObject).prototype) + ret.ptr = ptr + return (cache[ptr] = ret) + } + Module['wrapPointer'] = wrapPointer + function castObject(obj, __class__) { + return wrapPointer(obj.ptr, __class__) + } + Module['castObject'] = castObject + Module['NULL'] = wrapPointer(0) + function destroy(obj) { + if (!obj['__destroy__']) + throw 'Error: Cannot destroy object. (Did you create it yourself?)' + obj['__destroy__']() + delete getCache(obj.__class__)[obj.ptr] + } + Module['destroy'] = destroy + function compare(obj1, obj2) { + return obj1.ptr === obj2.ptr + } + Module['compare'] = compare + function getPointer(obj) { + return obj.ptr + } + Module['getPointer'] = getPointer + function getClass(obj) { + return obj.__class__ + } + Module['getClass'] = getClass + var ensureCache = { + buffer: 0, + size: 0, + pos: 0, + temps: [], + needed: 0, + prepare: function () { + if (ensureCache.needed) { + for (var i = 0; i < ensureCache.temps.length; i++) { + Module['_free'](ensureCache.temps[i]) + } + ensureCache.temps.length = 0 + Module['_free'](ensureCache.buffer) + ensureCache.buffer = 0 + ensureCache.size += ensureCache.needed + ensureCache.needed = 0 + } + if (!ensureCache.buffer) { + ensureCache.size += 128 + ensureCache.buffer = Module['_malloc'](ensureCache.size) + assert(ensureCache.buffer) + } + ensureCache.pos = 0 + }, + alloc: function (array, view) { + assert(ensureCache.buffer) + var bytes = view.BYTES_PER_ELEMENT + var len = array.length * bytes + len = (len + 7) & -8 + var ret + if (ensureCache.pos + len >= ensureCache.size) { + assert(len > 0) + ensureCache.needed += len + ret = Module['_malloc'](len) + ensureCache.temps.push(ret) + } else { + ret = ensureCache.buffer + ensureCache.pos + ensureCache.pos += len + } + return ret + }, + copy: function (array, view, offset) { + var offsetShifted = offset + var bytes = view.BYTES_PER_ELEMENT + switch (bytes) { + case 2: + offsetShifted >>= 1 + break + case 4: + offsetShifted >>= 2 + break + case 8: + offsetShifted >>= 3 + break + } + for (var i = 0; i < array.length; i++) { + view[offsetShifted + i] = array[i] + } + }, + } + function ensureString(value) { + if (typeof value === 'string') { + var intArray = intArrayFromString(value) + var offset = ensureCache.alloc(intArray, HEAP8) + ensureCache.copy(intArray, HEAP8, offset) + return offset + } + return value + } + function ensureInt8(value) { + if (typeof value === 'object') { + var offset = ensureCache.alloc(value, HEAP8) + ensureCache.copy(value, HEAP8, offset) + return offset + } + return value + } + function ensureInt16(value) { + if (typeof value === 'object') { + var offset = ensureCache.alloc(value, HEAP16) + ensureCache.copy(value, HEAP16, offset) + return offset + } + return value + } + function ensureInt32(value) { + if (typeof value === 'object') { + var offset = ensureCache.alloc(value, HEAP32) + ensureCache.copy(value, HEAP32, offset) + return offset + } + return value + } + function ensureFloat32(value) { + if (typeof value === 'object') { + var offset = ensureCache.alloc(value, HEAPF32) + ensureCache.copy(value, HEAPF32, offset) + return offset + } + return value + } + function PointCloud() { + this.ptr = _emscripten_bind_PointCloud_PointCloud_0() + getCache(PointCloud)[this.ptr] = this + } + PointCloud.prototype = Object.create(WrapperObject.prototype) + PointCloud.prototype.constructor = PointCloud + PointCloud.prototype.__class__ = PointCloud + PointCloud.__cache__ = {} + Module['PointCloud'] = PointCloud + PointCloud.prototype['num_attributes'] = PointCloud.prototype.num_attributes = + function () { + var self = this.ptr + return _emscripten_bind_PointCloud_num_attributes_0(self) + } + PointCloud.prototype['num_points'] = PointCloud.prototype.num_points = + function () { + var self = this.ptr + return _emscripten_bind_PointCloud_num_points_0(self) + } + PointCloud.prototype['__destroy__'] = PointCloud.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_PointCloud___destroy___0(self) + } + function PointAttribute() { + this.ptr = _emscripten_bind_PointAttribute_PointAttribute_0() + getCache(PointAttribute)[this.ptr] = this + } + PointAttribute.prototype = Object.create(WrapperObject.prototype) + PointAttribute.prototype.constructor = PointAttribute + PointAttribute.prototype.__class__ = PointAttribute + PointAttribute.__cache__ = {} + Module['PointAttribute'] = PointAttribute + PointAttribute.prototype['size'] = PointAttribute.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_size_0(self) + } + PointAttribute.prototype['attribute_type'] = + PointAttribute.prototype.attribute_type = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_attribute_type_0(self) + } + PointAttribute.prototype['data_type'] = PointAttribute.prototype.data_type = + function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_data_type_0(self) + } + PointAttribute.prototype['num_components'] = + PointAttribute.prototype.num_components = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_num_components_0(self) + } + PointAttribute.prototype['normalized'] = PointAttribute.prototype.normalized = + function () { + var self = this.ptr + return !!_emscripten_bind_PointAttribute_normalized_0(self) + } + PointAttribute.prototype['byte_stride'] = + PointAttribute.prototype.byte_stride = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_byte_stride_0(self) + } + PointAttribute.prototype['byte_offset'] = + PointAttribute.prototype.byte_offset = function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_byte_offset_0(self) + } + PointAttribute.prototype['unique_id'] = PointAttribute.prototype.unique_id = + function () { + var self = this.ptr + return _emscripten_bind_PointAttribute_unique_id_0(self) + } + PointAttribute.prototype['__destroy__'] = + PointAttribute.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_PointAttribute___destroy___0(self) + } + function Encoder() { + this.ptr = _emscripten_bind_Encoder_Encoder_0() + getCache(Encoder)[this.ptr] = this + } + Encoder.prototype = Object.create(WrapperObject.prototype) + Encoder.prototype.constructor = Encoder + Encoder.prototype.__class__ = Encoder + Encoder.__cache__ = {} + Module['Encoder'] = Encoder + Encoder.prototype['SetEncodingMethod'] = Encoder.prototype.SetEncodingMethod = + function (arg0) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + _emscripten_bind_Encoder_SetEncodingMethod_1(self, arg0) + } + Encoder.prototype['SetAttributeQuantization'] = + Encoder.prototype.SetAttributeQuantization = function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + _emscripten_bind_Encoder_SetAttributeQuantization_2(self, arg0, arg1) + } + Encoder.prototype['SetAttributeExplicitQuantization'] = + Encoder.prototype.SetAttributeExplicitQuantization = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (typeof arg3 == 'object') { + arg3 = ensureFloat32(arg3) + } + if (arg4 && typeof arg4 === 'object') arg4 = arg4.ptr + _emscripten_bind_Encoder_SetAttributeExplicitQuantization_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + Encoder.prototype['SetSpeedOptions'] = Encoder.prototype.SetSpeedOptions = + function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + _emscripten_bind_Encoder_SetSpeedOptions_2(self, arg0, arg1) + } + Encoder.prototype['EncodeMeshToDracoBuffer'] = + Encoder.prototype.EncodeMeshToDracoBuffer = function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + return _emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2( + self, + arg0, + arg1, + ) + } + Encoder.prototype['EncodePointCloudToDracoBuffer'] = + Encoder.prototype.EncodePointCloudToDracoBuffer = function ( + arg0, + arg1, + arg2, + ) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + return _emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3( + self, + arg0, + arg1, + arg2, + ) + } + Encoder.prototype['__destroy__'] = Encoder.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_Encoder___destroy___0(self) + } + function MeshBuilder() { + this.ptr = _emscripten_bind_MeshBuilder_MeshBuilder_0() + getCache(MeshBuilder)[this.ptr] = this + } + MeshBuilder.prototype = Object.create(WrapperObject.prototype) + MeshBuilder.prototype.constructor = MeshBuilder + MeshBuilder.prototype.__class__ = MeshBuilder + MeshBuilder.__cache__ = {} + Module['MeshBuilder'] = MeshBuilder + MeshBuilder.prototype['AddFacesToMesh'] = + MeshBuilder.prototype.AddFacesToMesh = function (arg0, arg1, arg2) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (typeof arg2 == 'object') { + arg2 = ensureInt32(arg2) + } + return !!_emscripten_bind_MeshBuilder_AddFacesToMesh_3( + self, + arg0, + arg1, + arg2, + ) + } + MeshBuilder.prototype['AddFloatAttributeToMesh'] = + MeshBuilder.prototype.AddFloatAttributeToMesh = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureFloat32(arg4) + } + return _emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddInt32AttributeToMesh'] = + MeshBuilder.prototype.AddInt32AttributeToMesh = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt32(arg4) + } + return _emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddMetadataToMesh'] = + MeshBuilder.prototype.AddMetadataToMesh = function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + return !!_emscripten_bind_MeshBuilder_AddMetadataToMesh_2( + self, + arg0, + arg1, + ) + } + MeshBuilder.prototype['AddFloatAttribute'] = + MeshBuilder.prototype.AddFloatAttribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureFloat32(arg4) + } + return _emscripten_bind_MeshBuilder_AddFloatAttribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddInt8Attribute'] = + MeshBuilder.prototype.AddInt8Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt8(arg4) + } + return _emscripten_bind_MeshBuilder_AddInt8Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddUInt8Attribute'] = + MeshBuilder.prototype.AddUInt8Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt8(arg4) + } + return _emscripten_bind_MeshBuilder_AddUInt8Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddInt16Attribute'] = + MeshBuilder.prototype.AddInt16Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt16(arg4) + } + return _emscripten_bind_MeshBuilder_AddInt16Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddUInt16Attribute'] = + MeshBuilder.prototype.AddUInt16Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt16(arg4) + } + return _emscripten_bind_MeshBuilder_AddUInt16Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddInt32Attribute'] = + MeshBuilder.prototype.AddInt32Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt32(arg4) + } + return _emscripten_bind_MeshBuilder_AddInt32Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddUInt32Attribute'] = + MeshBuilder.prototype.AddUInt32Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt32(arg4) + } + return _emscripten_bind_MeshBuilder_AddUInt32Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + MeshBuilder.prototype['AddMetadata'] = MeshBuilder.prototype.AddMetadata = + function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + return !!_emscripten_bind_MeshBuilder_AddMetadata_2(self, arg0, arg1) + } + MeshBuilder.prototype['SetMetadataForAttribute'] = + MeshBuilder.prototype.SetMetadataForAttribute = function ( + arg0, + arg1, + arg2, + ) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + return !!_emscripten_bind_MeshBuilder_SetMetadataForAttribute_3( + self, + arg0, + arg1, + arg2, + ) + } + MeshBuilder.prototype['__destroy__'] = MeshBuilder.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_MeshBuilder___destroy___0(self) + } + function DracoInt8Array() { + this.ptr = _emscripten_bind_DracoInt8Array_DracoInt8Array_0() + getCache(DracoInt8Array)[this.ptr] = this + } + DracoInt8Array.prototype = Object.create(WrapperObject.prototype) + DracoInt8Array.prototype.constructor = DracoInt8Array + DracoInt8Array.prototype.__class__ = DracoInt8Array + DracoInt8Array.__cache__ = {} + Module['DracoInt8Array'] = DracoInt8Array + DracoInt8Array.prototype['GetValue'] = DracoInt8Array.prototype.GetValue = + function (arg0) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + return _emscripten_bind_DracoInt8Array_GetValue_1(self, arg0) + } + DracoInt8Array.prototype['size'] = DracoInt8Array.prototype.size = + function () { + var self = this.ptr + return _emscripten_bind_DracoInt8Array_size_0(self) + } + DracoInt8Array.prototype['__destroy__'] = + DracoInt8Array.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_DracoInt8Array___destroy___0(self) + } + function MetadataBuilder() { + this.ptr = _emscripten_bind_MetadataBuilder_MetadataBuilder_0() + getCache(MetadataBuilder)[this.ptr] = this + } + MetadataBuilder.prototype = Object.create(WrapperObject.prototype) + MetadataBuilder.prototype.constructor = MetadataBuilder + MetadataBuilder.prototype.__class__ = MetadataBuilder + MetadataBuilder.__cache__ = {} + Module['MetadataBuilder'] = MetadataBuilder + MetadataBuilder.prototype['AddStringEntry'] = + MetadataBuilder.prototype.AddStringEntry = function (arg0, arg1, arg2) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + else arg1 = ensureString(arg1) + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + else arg2 = ensureString(arg2) + return !!_emscripten_bind_MetadataBuilder_AddStringEntry_3( + self, + arg0, + arg1, + arg2, + ) + } + MetadataBuilder.prototype['AddIntEntry'] = + MetadataBuilder.prototype.AddIntEntry = function (arg0, arg1, arg2) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + else arg1 = ensureString(arg1) + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + return !!_emscripten_bind_MetadataBuilder_AddIntEntry_3( + self, + arg0, + arg1, + arg2, + ) + } + MetadataBuilder.prototype['AddDoubleEntry'] = + MetadataBuilder.prototype.AddDoubleEntry = function (arg0, arg1, arg2) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + else arg1 = ensureString(arg1) + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + return !!_emscripten_bind_MetadataBuilder_AddDoubleEntry_3( + self, + arg0, + arg1, + arg2, + ) + } + MetadataBuilder.prototype['__destroy__'] = + MetadataBuilder.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_MetadataBuilder___destroy___0(self) + } + function GeometryAttribute() { + this.ptr = _emscripten_bind_GeometryAttribute_GeometryAttribute_0() + getCache(GeometryAttribute)[this.ptr] = this + } + GeometryAttribute.prototype = Object.create(WrapperObject.prototype) + GeometryAttribute.prototype.constructor = GeometryAttribute + GeometryAttribute.prototype.__class__ = GeometryAttribute + GeometryAttribute.__cache__ = {} + Module['GeometryAttribute'] = GeometryAttribute + GeometryAttribute.prototype['__destroy__'] = + GeometryAttribute.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_GeometryAttribute___destroy___0(self) + } + function Mesh() { + this.ptr = _emscripten_bind_Mesh_Mesh_0() + getCache(Mesh)[this.ptr] = this + } + Mesh.prototype = Object.create(WrapperObject.prototype) + Mesh.prototype.constructor = Mesh + Mesh.prototype.__class__ = Mesh + Mesh.__cache__ = {} + Module['Mesh'] = Mesh + Mesh.prototype['num_faces'] = Mesh.prototype.num_faces = function () { + var self = this.ptr + return _emscripten_bind_Mesh_num_faces_0(self) + } + Mesh.prototype['num_attributes'] = Mesh.prototype.num_attributes = + function () { + var self = this.ptr + return _emscripten_bind_Mesh_num_attributes_0(self) + } + Mesh.prototype['num_points'] = Mesh.prototype.num_points = function () { + var self = this.ptr + return _emscripten_bind_Mesh_num_points_0(self) + } + Mesh.prototype['set_num_points'] = Mesh.prototype.set_num_points = function ( + arg0, + ) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + _emscripten_bind_Mesh_set_num_points_1(self, arg0) + } + Mesh.prototype['__destroy__'] = Mesh.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_Mesh___destroy___0(self) + } + function PointCloudBuilder() { + this.ptr = _emscripten_bind_PointCloudBuilder_PointCloudBuilder_0() + getCache(PointCloudBuilder)[this.ptr] = this + } + PointCloudBuilder.prototype = Object.create(WrapperObject.prototype) + PointCloudBuilder.prototype.constructor = PointCloudBuilder + PointCloudBuilder.prototype.__class__ = PointCloudBuilder + PointCloudBuilder.__cache__ = {} + Module['PointCloudBuilder'] = PointCloudBuilder + PointCloudBuilder.prototype['AddFloatAttribute'] = + PointCloudBuilder.prototype.AddFloatAttribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureFloat32(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddFloatAttribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddInt8Attribute'] = + PointCloudBuilder.prototype.AddInt8Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt8(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddInt8Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddUInt8Attribute'] = + PointCloudBuilder.prototype.AddUInt8Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt8(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddInt16Attribute'] = + PointCloudBuilder.prototype.AddInt16Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt16(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddInt16Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddUInt16Attribute'] = + PointCloudBuilder.prototype.AddUInt16Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt16(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddInt32Attribute'] = + PointCloudBuilder.prototype.AddInt32Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt32(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddInt32Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddUInt32Attribute'] = + PointCloudBuilder.prototype.AddUInt32Attribute = function ( + arg0, + arg1, + arg2, + arg3, + arg4, + ) { + var self = this.ptr + ensureCache.prepare() + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + if (arg3 && typeof arg3 === 'object') arg3 = arg3.ptr + if (typeof arg4 == 'object') { + arg4 = ensureInt32(arg4) + } + return _emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5( + self, + arg0, + arg1, + arg2, + arg3, + arg4, + ) + } + PointCloudBuilder.prototype['AddMetadata'] = + PointCloudBuilder.prototype.AddMetadata = function (arg0, arg1) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + return !!_emscripten_bind_PointCloudBuilder_AddMetadata_2( + self, + arg0, + arg1, + ) + } + PointCloudBuilder.prototype['SetMetadataForAttribute'] = + PointCloudBuilder.prototype.SetMetadataForAttribute = function ( + arg0, + arg1, + arg2, + ) { + var self = this.ptr + if (arg0 && typeof arg0 === 'object') arg0 = arg0.ptr + if (arg1 && typeof arg1 === 'object') arg1 = arg1.ptr + if (arg2 && typeof arg2 === 'object') arg2 = arg2.ptr + return !!_emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3( + self, + arg0, + arg1, + arg2, + ) + } + PointCloudBuilder.prototype['__destroy__'] = + PointCloudBuilder.prototype.__destroy__ = function () { + var self = this.ptr + _emscripten_bind_PointCloudBuilder___destroy___0(self) + } + function VoidPtr() { + throw 'cannot construct a VoidPtr, no constructor in IDL' + } + VoidPtr.prototype = Object.create(WrapperObject.prototype) + VoidPtr.prototype.constructor = VoidPtr + VoidPtr.prototype.__class__ = VoidPtr + VoidPtr.__cache__ = {} + Module['VoidPtr'] = VoidPtr + VoidPtr.prototype['__destroy__'] = VoidPtr.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_VoidPtr___destroy___0(self) + } + function Metadata() { + this.ptr = _emscripten_bind_Metadata_Metadata_0() + getCache(Metadata)[this.ptr] = this + } + Metadata.prototype = Object.create(WrapperObject.prototype) + Metadata.prototype.constructor = Metadata + Metadata.prototype.__class__ = Metadata + Metadata.__cache__ = {} + Module['Metadata'] = Metadata + Metadata.prototype['__destroy__'] = Metadata.prototype.__destroy__ = + function () { + var self = this.ptr + _emscripten_bind_Metadata___destroy___0(self) + } + ;(function () { + function setupEnums() { + Module['MESH_SEQUENTIAL_ENCODING'] = + _emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING() + Module['MESH_EDGEBREAKER_ENCODING'] = + _emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING() + Module['INVALID_GEOMETRY_TYPE'] = + _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE() + Module['POINT_CLOUD'] = + _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD() + Module['TRIANGULAR_MESH'] = + _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH() + Module['INVALID'] = + _emscripten_enum_draco_GeometryAttribute_Type_INVALID() + Module['POSITION'] = + _emscripten_enum_draco_GeometryAttribute_Type_POSITION() + Module['NORMAL'] = _emscripten_enum_draco_GeometryAttribute_Type_NORMAL() + Module['COLOR'] = _emscripten_enum_draco_GeometryAttribute_Type_COLOR() + Module['TEX_COORD'] = + _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD() + Module['GENERIC'] = + _emscripten_enum_draco_GeometryAttribute_Type_GENERIC() + } + if (Module['calledRun']) setupEnums() + else addOnPreMain(setupEnums) + })() + if (typeof Module['onModuleParsed'] === 'function') { + Module['onModuleParsed']() + } - -// EMSCRIPTEN_END_ASM -(Module.asmGlobalArg,Module.asmLibraryArg,buffer);var ___cxa_can_catch=Module["___cxa_can_catch"]=asm["___cxa_can_catch"];var ___cxa_is_pointer_type=Module["___cxa_is_pointer_type"]=asm["___cxa_is_pointer_type"];var ___divdi3=Module["___divdi3"]=asm["___divdi3"];var ___muldi3=Module["___muldi3"]=asm["___muldi3"];var ___udivdi3=Module["___udivdi3"]=asm["___udivdi3"];var ___uremdi3=Module["___uremdi3"]=asm["___uremdi3"];var _bitshift64Lshr=Module["_bitshift64Lshr"]=asm["_bitshift64Lshr"];var _bitshift64Shl=Module["_bitshift64Shl"]=asm["_bitshift64Shl"];var _emscripten_bind_DracoInt8Array_DracoInt8Array_0=Module["_emscripten_bind_DracoInt8Array_DracoInt8Array_0"]=asm["_emscripten_bind_DracoInt8Array_DracoInt8Array_0"];var _emscripten_bind_DracoInt8Array_GetValue_1=Module["_emscripten_bind_DracoInt8Array_GetValue_1"]=asm["_emscripten_bind_DracoInt8Array_GetValue_1"];var _emscripten_bind_DracoInt8Array___destroy___0=Module["_emscripten_bind_DracoInt8Array___destroy___0"]=asm["_emscripten_bind_DracoInt8Array___destroy___0"];var _emscripten_bind_DracoInt8Array_size_0=Module["_emscripten_bind_DracoInt8Array_size_0"]=asm["_emscripten_bind_DracoInt8Array_size_0"];var _emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2=Module["_emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2"]=asm["_emscripten_bind_Encoder_EncodeMeshToDracoBuffer_2"];var _emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3=Module["_emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3"]=asm["_emscripten_bind_Encoder_EncodePointCloudToDracoBuffer_3"];var _emscripten_bind_Encoder_Encoder_0=Module["_emscripten_bind_Encoder_Encoder_0"]=asm["_emscripten_bind_Encoder_Encoder_0"];var _emscripten_bind_Encoder_SetAttributeExplicitQuantization_5=Module["_emscripten_bind_Encoder_SetAttributeExplicitQuantization_5"]=asm["_emscripten_bind_Encoder_SetAttributeExplicitQuantization_5"];var _emscripten_bind_Encoder_SetAttributeQuantization_2=Module["_emscripten_bind_Encoder_SetAttributeQuantization_2"]=asm["_emscripten_bind_Encoder_SetAttributeQuantization_2"];var _emscripten_bind_Encoder_SetEncodingMethod_1=Module["_emscripten_bind_Encoder_SetEncodingMethod_1"]=asm["_emscripten_bind_Encoder_SetEncodingMethod_1"];var _emscripten_bind_Encoder_SetSpeedOptions_2=Module["_emscripten_bind_Encoder_SetSpeedOptions_2"]=asm["_emscripten_bind_Encoder_SetSpeedOptions_2"];var _emscripten_bind_Encoder___destroy___0=Module["_emscripten_bind_Encoder___destroy___0"]=asm["_emscripten_bind_Encoder___destroy___0"];var _emscripten_bind_GeometryAttribute_GeometryAttribute_0=Module["_emscripten_bind_GeometryAttribute_GeometryAttribute_0"]=asm["_emscripten_bind_GeometryAttribute_GeometryAttribute_0"];var _emscripten_bind_GeometryAttribute___destroy___0=Module["_emscripten_bind_GeometryAttribute___destroy___0"]=asm["_emscripten_bind_GeometryAttribute___destroy___0"];var _emscripten_bind_MeshBuilder_AddFacesToMesh_3=Module["_emscripten_bind_MeshBuilder_AddFacesToMesh_3"]=asm["_emscripten_bind_MeshBuilder_AddFacesToMesh_3"];var _emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5=Module["_emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5"]=asm["_emscripten_bind_MeshBuilder_AddFloatAttributeToMesh_5"];var _emscripten_bind_MeshBuilder_AddFloatAttribute_5=Module["_emscripten_bind_MeshBuilder_AddFloatAttribute_5"]=asm["_emscripten_bind_MeshBuilder_AddFloatAttribute_5"];var _emscripten_bind_MeshBuilder_AddInt16Attribute_5=Module["_emscripten_bind_MeshBuilder_AddInt16Attribute_5"]=asm["_emscripten_bind_MeshBuilder_AddInt16Attribute_5"];var _emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5=Module["_emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5"]=asm["_emscripten_bind_MeshBuilder_AddInt32AttributeToMesh_5"];var _emscripten_bind_MeshBuilder_AddInt32Attribute_5=Module["_emscripten_bind_MeshBuilder_AddInt32Attribute_5"]=asm["_emscripten_bind_MeshBuilder_AddInt32Attribute_5"];var _emscripten_bind_MeshBuilder_AddInt8Attribute_5=Module["_emscripten_bind_MeshBuilder_AddInt8Attribute_5"]=asm["_emscripten_bind_MeshBuilder_AddInt8Attribute_5"];var _emscripten_bind_MeshBuilder_AddMetadataToMesh_2=Module["_emscripten_bind_MeshBuilder_AddMetadataToMesh_2"]=asm["_emscripten_bind_MeshBuilder_AddMetadataToMesh_2"];var _emscripten_bind_MeshBuilder_AddMetadata_2=Module["_emscripten_bind_MeshBuilder_AddMetadata_2"]=asm["_emscripten_bind_MeshBuilder_AddMetadata_2"];var _emscripten_bind_MeshBuilder_AddUInt16Attribute_5=Module["_emscripten_bind_MeshBuilder_AddUInt16Attribute_5"]=asm["_emscripten_bind_MeshBuilder_AddUInt16Attribute_5"];var _emscripten_bind_MeshBuilder_AddUInt32Attribute_5=Module["_emscripten_bind_MeshBuilder_AddUInt32Attribute_5"]=asm["_emscripten_bind_MeshBuilder_AddUInt32Attribute_5"];var _emscripten_bind_MeshBuilder_AddUInt8Attribute_5=Module["_emscripten_bind_MeshBuilder_AddUInt8Attribute_5"]=asm["_emscripten_bind_MeshBuilder_AddUInt8Attribute_5"];var _emscripten_bind_MeshBuilder_MeshBuilder_0=Module["_emscripten_bind_MeshBuilder_MeshBuilder_0"]=asm["_emscripten_bind_MeshBuilder_MeshBuilder_0"];var _emscripten_bind_MeshBuilder_SetMetadataForAttribute_3=Module["_emscripten_bind_MeshBuilder_SetMetadataForAttribute_3"]=asm["_emscripten_bind_MeshBuilder_SetMetadataForAttribute_3"];var _emscripten_bind_MeshBuilder___destroy___0=Module["_emscripten_bind_MeshBuilder___destroy___0"]=asm["_emscripten_bind_MeshBuilder___destroy___0"];var _emscripten_bind_Mesh_Mesh_0=Module["_emscripten_bind_Mesh_Mesh_0"]=asm["_emscripten_bind_Mesh_Mesh_0"];var _emscripten_bind_Mesh___destroy___0=Module["_emscripten_bind_Mesh___destroy___0"]=asm["_emscripten_bind_Mesh___destroy___0"];var _emscripten_bind_Mesh_num_attributes_0=Module["_emscripten_bind_Mesh_num_attributes_0"]=asm["_emscripten_bind_Mesh_num_attributes_0"];var _emscripten_bind_Mesh_num_faces_0=Module["_emscripten_bind_Mesh_num_faces_0"]=asm["_emscripten_bind_Mesh_num_faces_0"];var _emscripten_bind_Mesh_num_points_0=Module["_emscripten_bind_Mesh_num_points_0"]=asm["_emscripten_bind_Mesh_num_points_0"];var _emscripten_bind_Mesh_set_num_points_1=Module["_emscripten_bind_Mesh_set_num_points_1"]=asm["_emscripten_bind_Mesh_set_num_points_1"];var _emscripten_bind_MetadataBuilder_AddDoubleEntry_3=Module["_emscripten_bind_MetadataBuilder_AddDoubleEntry_3"]=asm["_emscripten_bind_MetadataBuilder_AddDoubleEntry_3"];var _emscripten_bind_MetadataBuilder_AddIntEntry_3=Module["_emscripten_bind_MetadataBuilder_AddIntEntry_3"]=asm["_emscripten_bind_MetadataBuilder_AddIntEntry_3"];var _emscripten_bind_MetadataBuilder_AddStringEntry_3=Module["_emscripten_bind_MetadataBuilder_AddStringEntry_3"]=asm["_emscripten_bind_MetadataBuilder_AddStringEntry_3"];var _emscripten_bind_MetadataBuilder_MetadataBuilder_0=Module["_emscripten_bind_MetadataBuilder_MetadataBuilder_0"]=asm["_emscripten_bind_MetadataBuilder_MetadataBuilder_0"];var _emscripten_bind_MetadataBuilder___destroy___0=Module["_emscripten_bind_MetadataBuilder___destroy___0"]=asm["_emscripten_bind_MetadataBuilder___destroy___0"];var _emscripten_bind_Metadata_Metadata_0=Module["_emscripten_bind_Metadata_Metadata_0"]=asm["_emscripten_bind_Metadata_Metadata_0"];var _emscripten_bind_Metadata___destroy___0=Module["_emscripten_bind_Metadata___destroy___0"]=asm["_emscripten_bind_Metadata___destroy___0"];var _emscripten_bind_PointAttribute_PointAttribute_0=Module["_emscripten_bind_PointAttribute_PointAttribute_0"]=asm["_emscripten_bind_PointAttribute_PointAttribute_0"];var _emscripten_bind_PointAttribute___destroy___0=Module["_emscripten_bind_PointAttribute___destroy___0"]=asm["_emscripten_bind_PointAttribute___destroy___0"];var _emscripten_bind_PointAttribute_attribute_type_0=Module["_emscripten_bind_PointAttribute_attribute_type_0"]=asm["_emscripten_bind_PointAttribute_attribute_type_0"];var _emscripten_bind_PointAttribute_byte_offset_0=Module["_emscripten_bind_PointAttribute_byte_offset_0"]=asm["_emscripten_bind_PointAttribute_byte_offset_0"];var _emscripten_bind_PointAttribute_byte_stride_0=Module["_emscripten_bind_PointAttribute_byte_stride_0"]=asm["_emscripten_bind_PointAttribute_byte_stride_0"];var _emscripten_bind_PointAttribute_data_type_0=Module["_emscripten_bind_PointAttribute_data_type_0"]=asm["_emscripten_bind_PointAttribute_data_type_0"];var _emscripten_bind_PointAttribute_normalized_0=Module["_emscripten_bind_PointAttribute_normalized_0"]=asm["_emscripten_bind_PointAttribute_normalized_0"];var _emscripten_bind_PointAttribute_num_components_0=Module["_emscripten_bind_PointAttribute_num_components_0"]=asm["_emscripten_bind_PointAttribute_num_components_0"];var _emscripten_bind_PointAttribute_size_0=Module["_emscripten_bind_PointAttribute_size_0"]=asm["_emscripten_bind_PointAttribute_size_0"];var _emscripten_bind_PointAttribute_unique_id_0=Module["_emscripten_bind_PointAttribute_unique_id_0"]=asm["_emscripten_bind_PointAttribute_unique_id_0"];var _emscripten_bind_PointCloudBuilder_AddFloatAttribute_5=Module["_emscripten_bind_PointCloudBuilder_AddFloatAttribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddFloatAttribute_5"];var _emscripten_bind_PointCloudBuilder_AddInt16Attribute_5=Module["_emscripten_bind_PointCloudBuilder_AddInt16Attribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddInt16Attribute_5"];var _emscripten_bind_PointCloudBuilder_AddInt32Attribute_5=Module["_emscripten_bind_PointCloudBuilder_AddInt32Attribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddInt32Attribute_5"];var _emscripten_bind_PointCloudBuilder_AddInt8Attribute_5=Module["_emscripten_bind_PointCloudBuilder_AddInt8Attribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddInt8Attribute_5"];var _emscripten_bind_PointCloudBuilder_AddMetadata_2=Module["_emscripten_bind_PointCloudBuilder_AddMetadata_2"]=asm["_emscripten_bind_PointCloudBuilder_AddMetadata_2"];var _emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5=Module["_emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddUInt16Attribute_5"];var _emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5=Module["_emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddUInt32Attribute_5"];var _emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5=Module["_emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5"]=asm["_emscripten_bind_PointCloudBuilder_AddUInt8Attribute_5"];var _emscripten_bind_PointCloudBuilder_PointCloudBuilder_0=Module["_emscripten_bind_PointCloudBuilder_PointCloudBuilder_0"]=asm["_emscripten_bind_PointCloudBuilder_PointCloudBuilder_0"];var _emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3=Module["_emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3"]=asm["_emscripten_bind_PointCloudBuilder_SetMetadataForAttribute_3"];var _emscripten_bind_PointCloudBuilder___destroy___0=Module["_emscripten_bind_PointCloudBuilder___destroy___0"]=asm["_emscripten_bind_PointCloudBuilder___destroy___0"];var _emscripten_bind_PointCloud_PointCloud_0=Module["_emscripten_bind_PointCloud_PointCloud_0"]=asm["_emscripten_bind_PointCloud_PointCloud_0"];var _emscripten_bind_PointCloud___destroy___0=Module["_emscripten_bind_PointCloud___destroy___0"]=asm["_emscripten_bind_PointCloud___destroy___0"];var _emscripten_bind_PointCloud_num_attributes_0=Module["_emscripten_bind_PointCloud_num_attributes_0"]=asm["_emscripten_bind_PointCloud_num_attributes_0"];var _emscripten_bind_PointCloud_num_points_0=Module["_emscripten_bind_PointCloud_num_points_0"]=asm["_emscripten_bind_PointCloud_num_points_0"];var _emscripten_bind_VoidPtr___destroy___0=Module["_emscripten_bind_VoidPtr___destroy___0"]=asm["_emscripten_bind_VoidPtr___destroy___0"];var _emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE=Module["_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE"]=asm["_emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE"];var _emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD=Module["_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD"]=asm["_emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD"];var _emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH=Module["_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH"]=asm["_emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH"];var _emscripten_enum_draco_GeometryAttribute_Type_COLOR=Module["_emscripten_enum_draco_GeometryAttribute_Type_COLOR"]=asm["_emscripten_enum_draco_GeometryAttribute_Type_COLOR"];var _emscripten_enum_draco_GeometryAttribute_Type_GENERIC=Module["_emscripten_enum_draco_GeometryAttribute_Type_GENERIC"]=asm["_emscripten_enum_draco_GeometryAttribute_Type_GENERIC"];var _emscripten_enum_draco_GeometryAttribute_Type_INVALID=Module["_emscripten_enum_draco_GeometryAttribute_Type_INVALID"]=asm["_emscripten_enum_draco_GeometryAttribute_Type_INVALID"];var _emscripten_enum_draco_GeometryAttribute_Type_NORMAL=Module["_emscripten_enum_draco_GeometryAttribute_Type_NORMAL"]=asm["_emscripten_enum_draco_GeometryAttribute_Type_NORMAL"];var _emscripten_enum_draco_GeometryAttribute_Type_POSITION=Module["_emscripten_enum_draco_GeometryAttribute_Type_POSITION"]=asm["_emscripten_enum_draco_GeometryAttribute_Type_POSITION"];var _emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD=Module["_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD"]=asm["_emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD"];var _emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING=Module["_emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING"]=asm["_emscripten_enum_draco_MeshEncoderMethod_MESH_EDGEBREAKER_ENCODING"];var _emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING=Module["_emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING"]=asm["_emscripten_enum_draco_MeshEncoderMethod_MESH_SEQUENTIAL_ENCODING"];var _emscripten_replace_memory=Module["_emscripten_replace_memory"]=asm["_emscripten_replace_memory"];var _free=Module["_free"]=asm["_free"];var _i64Add=Module["_i64Add"]=asm["_i64Add"];var _i64Subtract=Module["_i64Subtract"]=asm["_i64Subtract"];var _llvm_bswap_i32=Module["_llvm_bswap_i32"]=asm["_llvm_bswap_i32"];var _malloc=Module["_malloc"]=asm["_malloc"];var _memcpy=Module["_memcpy"]=asm["_memcpy"];var _memmove=Module["_memmove"]=asm["_memmove"];var _memset=Module["_memset"]=asm["_memset"];var _sbrk=Module["_sbrk"]=asm["_sbrk"];var establishStackSpace=Module["establishStackSpace"]=asm["establishStackSpace"];var getTempRet0=Module["getTempRet0"]=asm["getTempRet0"];var runPostSets=Module["runPostSets"]=asm["runPostSets"];var setTempRet0=Module["setTempRet0"]=asm["setTempRet0"];var setThrew=Module["setThrew"]=asm["setThrew"];var stackAlloc=Module["stackAlloc"]=asm["stackAlloc"];var stackRestore=Module["stackRestore"]=asm["stackRestore"];var stackSave=Module["stackSave"]=asm["stackSave"];var dynCall_ii=Module["dynCall_ii"]=asm["dynCall_ii"];var dynCall_iii=Module["dynCall_iii"]=asm["dynCall_iii"];var dynCall_iiii=Module["dynCall_iiii"]=asm["dynCall_iiii"];var dynCall_iiiiiii=Module["dynCall_iiiiiii"]=asm["dynCall_iiiiiii"];var dynCall_v=Module["dynCall_v"]=asm["dynCall_v"];var dynCall_vi=Module["dynCall_vi"]=asm["dynCall_vi"];var dynCall_vii=Module["dynCall_vii"]=asm["dynCall_vii"];var dynCall_viii=Module["dynCall_viii"]=asm["dynCall_viii"];var dynCall_viiii=Module["dynCall_viiii"]=asm["dynCall_viiii"];var dynCall_viiiii=Module["dynCall_viiiii"]=asm["dynCall_viiiii"];var dynCall_viiiiii=Module["dynCall_viiiiii"]=asm["dynCall_viiiiii"];Module["asm"]=asm;if(memoryInitializer){if(!isDataURI(memoryInitializer)){if(typeof Module["locateFile"]==="function"){memoryInitializer=Module["locateFile"](memoryInitializer)}else if(Module["memoryInitializerPrefixURL"]){memoryInitializer=Module["memoryInitializerPrefixURL"]+memoryInitializer}}if(ENVIRONMENT_IS_NODE||ENVIRONMENT_IS_SHELL){var data=Module["readBinary"](memoryInitializer);HEAPU8.set(data,GLOBAL_BASE)}else{addRunDependency("memory initializer");var applyMemoryInitializer=(function(data){if(data.byteLength)data=new Uint8Array(data);HEAPU8.set(data,GLOBAL_BASE);if(Module["memoryInitializerRequest"])delete Module["memoryInitializerRequest"].response;removeRunDependency("memory initializer")});function doBrowserLoad(){Module["readAsync"](memoryInitializer,applyMemoryInitializer,(function(){throw"could not load memory initializer "+memoryInitializer}))}var memoryInitializerBytes=tryParseAsDataURI(memoryInitializer);if(memoryInitializerBytes){applyMemoryInitializer(memoryInitializerBytes.buffer)}else if(Module["memoryInitializerRequest"]){function useRequest(){var request=Module["memoryInitializerRequest"];var response=request.response;if(request.status!==200&&request.status!==0){var data=tryParseAsDataURI(Module["memoryInitializerRequestURL"]);if(data){response=data.buffer}else{console.warn("a problem seems to have happened with Module.memoryInitializerRequest, status: "+request.status+", retrying "+memoryInitializer);doBrowserLoad();return}}applyMemoryInitializer(response)}if(Module["memoryInitializerRequest"].response){setTimeout(useRequest,0)}else{Module["memoryInitializerRequest"].addEventListener("load",useRequest)}}else{doBrowserLoad()}}}Module["then"]=(function(func){if(Module["calledRun"]){func(Module)}else{var old=Module["onRuntimeInitialized"];Module["onRuntimeInitialized"]=(function(){if(old)old();func(Module)})}return Module});function ExitStatus(status){this.name="ExitStatus";this.message="Program terminated with exit("+status+")";this.status=status}ExitStatus.prototype=new Error;ExitStatus.prototype.constructor=ExitStatus;var initialStackTop;dependenciesFulfilled=function runCaller(){if(!Module["calledRun"])run();if(!Module["calledRun"])dependenciesFulfilled=runCaller};function run(args){args=args||Module["arguments"];if(runDependencies>0){return}preRun();if(runDependencies>0)return;if(Module["calledRun"])return;function doRun(){if(Module["calledRun"])return;Module["calledRun"]=true;if(ABORT)return;ensureInitRuntime();preMain();if(Module["onRuntimeInitialized"])Module["onRuntimeInitialized"]();postRun()}if(Module["setStatus"]){Module["setStatus"]("Running...");setTimeout((function(){setTimeout((function(){Module["setStatus"]("")}),1);doRun()}),1)}else{doRun()}}Module["run"]=run;function exit(status,implicit){if(implicit&&Module["noExitRuntime"]&&status===0){return}if(Module["noExitRuntime"]){}else{ABORT=true;EXITSTATUS=status;STACKTOP=initialStackTop;exitRuntime();if(Module["onExit"])Module["onExit"](status)}if(ENVIRONMENT_IS_NODE){process["exit"](status)}Module["quit"](status,new ExitStatus(status))}Module["exit"]=exit;function abort(what){if(Module["onAbort"]){Module["onAbort"](what)}if(what!==undefined){Module.print(what);Module.printErr(what);what=JSON.stringify(what)}else{what=""}ABORT=true;EXITSTATUS=1;throw"abort("+what+"). Build with -s ASSERTIONS=1 for more info."}Module["abort"]=abort;if(Module["preInit"]){if(typeof Module["preInit"]=="function")Module["preInit"]=[Module["preInit"]];while(Module["preInit"].length>0){Module["preInit"].pop()()}}Module["noExitRuntime"]=true;run();function WrapperObject(){}WrapperObject.prototype=Object.create(WrapperObject.prototype);WrapperObject.prototype.constructor=WrapperObject;WrapperObject.prototype.__class__=WrapperObject;WrapperObject.__cache__={};Module["WrapperObject"]=WrapperObject;function getCache(__class__){return(__class__||WrapperObject).__cache__}Module["getCache"]=getCache;function wrapPointer(ptr,__class__){var cache=getCache(__class__);var ret=cache[ptr];if(ret)return ret;ret=Object.create((__class__||WrapperObject).prototype);ret.ptr=ptr;return cache[ptr]=ret}Module["wrapPointer"]=wrapPointer;function castObject(obj,__class__){return wrapPointer(obj.ptr,__class__)}Module["castObject"]=castObject;Module["NULL"]=wrapPointer(0);function destroy(obj){if(!obj["__destroy__"])throw"Error: Cannot destroy object. (Did you create it yourself?)";obj["__destroy__"]();delete getCache(obj.__class__)[obj.ptr]}Module["destroy"]=destroy;function compare(obj1,obj2){return obj1.ptr===obj2.ptr}Module["compare"]=compare;function getPointer(obj){return obj.ptr}Module["getPointer"]=getPointer;function getClass(obj){return obj.__class__}Module["getClass"]=getClass;var ensureCache={buffer:0,size:0,pos:0,temps:[],needed:0,prepare:(function(){if(ensureCache.needed){for(var i=0;i=ensureCache.size){assert(len>0);ensureCache.needed+=len;ret=Module["_malloc"](len);ensureCache.temps.push(ret)}else{ret=ensureCache.buffer+ensureCache.pos;ensureCache.pos+=len}return ret}),copy:(function(array,view,offset){var offsetShifted=offset;var bytes=view.BYTES_PER_ELEMENT;switch(bytes){case 2:offsetShifted>>=1;break;case 4:offsetShifted>>=2;break;case 8:offsetShifted>>=3;break}for(var i=0;i>>0,$jscomp.propertyToPolyfillSymbol[l]=$jscomp.IS_SYMBOL_NATIVE? -$jscomp.global.Symbol(l):$jscomp.POLYFILL_PREFIX+k+"$"+l),$jscomp.defineProperty(p,$jscomp.propertyToPolyfillSymbol[l],{configurable:!0,writable:!0,value:n})))}; -$jscomp.polyfill("Promise",function(h){function n(){this.batch_=null}function k(f){return f instanceof l?f:new l(function(q,u){q(f)})}if(h&&(!($jscomp.FORCE_POLYFILL_PROMISE||$jscomp.FORCE_POLYFILL_PROMISE_WHEN_NO_UNHANDLED_REJECTION&&"undefined"===typeof $jscomp.global.PromiseRejectionEvent)||!$jscomp.global.Promise||-1===$jscomp.global.Promise.toString().indexOf("[native code]")))return h;n.prototype.asyncExecute=function(f){if(null==this.batch_){this.batch_=[];var q=this;this.asyncExecuteFunction(function(){q.executeBatch_()})}this.batch_.push(f)}; -var p=$jscomp.global.setTimeout;n.prototype.asyncExecuteFunction=function(f){p(f,0)};n.prototype.executeBatch_=function(){for(;this.batch_&&this.batch_.length;){var f=this.batch_;this.batch_=[];for(var q=0;q=y}},"es6","es3"); -$jscomp.polyfill("Array.prototype.copyWithin",function(h){function n(k){k=Number(k);return Infinity===k||-Infinity===k?k:k|0}return h?h:function(k,p,l){var y=this.length;k=n(k);p=n(p);l=void 0===l?y:n(l);k=0>k?Math.max(y+k,0):Math.min(k,y);p=0>p?Math.max(y+p,0):Math.min(p,y);l=0>l?Math.max(y+l,0):Math.min(l,y);if(kp;)--l in this?this[--k]=this[l]:delete this[--k];return this}},"es6","es3"); -$jscomp.typedArrayCopyWithin=function(h){return h?h:Array.prototype.copyWithin};$jscomp.polyfill("Int8Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Uint8Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Uint8ClampedArray.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Int16Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5"); -$jscomp.polyfill("Uint16Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Int32Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Uint32Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Float32Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5");$jscomp.polyfill("Float64Array.prototype.copyWithin",$jscomp.typedArrayCopyWithin,"es6","es5"); -var DracoDecoderModule=function(){var h="undefined"!==typeof document&&document.currentScript?document.currentScript.src:void 0;"undefined"!==typeof __filename&&(h=h||__filename);return function(n){function k(e){return a.locateFile?a.locateFile(e,U):U+e}function p(e,b){if(e){var c=ia;var d=e+b;for(b=e;c[b]&&!(b>=d);)++b;if(16g?d+=String.fromCharCode(g):(g-=65536,d+=String.fromCharCode(55296|g>>10,56320|g&1023))}}else d+=String.fromCharCode(g)}c=d}}else c="";return c}function l(){var e=ja.buffer;a.HEAP8=W=new Int8Array(e);a.HEAP16=new Int16Array(e);a.HEAP32=ca=new Int32Array(e);a.HEAPU8=ia=new Uint8Array(e);a.HEAPU16=new Uint16Array(e);a.HEAPU32=Y=new Uint32Array(e);a.HEAPF32=new Float32Array(e);a.HEAPF64=new Float64Array(e)}function y(e){if(a.onAbort)a.onAbort(e); -e="Aborted("+e+")";da(e);sa=!0;e=new WebAssembly.RuntimeError(e+". Build with -sASSERTIONS for more info.");ka(e);throw e;}function f(e){try{if(e==P&&ea)return new Uint8Array(ea);if(ma)return ma(e);throw"both async and sync fetching of the wasm failed";}catch(b){y(b)}}function q(){if(!ea&&(ta||fa)){if("function"==typeof fetch&&!P.startsWith("file://"))return fetch(P,{credentials:"same-origin"}).then(function(e){if(!e.ok)throw"failed to load wasm binary file at '"+P+"'";return e.arrayBuffer()}).catch(function(){return f(P)}); -if(na)return new Promise(function(e,b){na(P,function(c){e(new Uint8Array(c))},b)})}return Promise.resolve().then(function(){return f(P)})}function u(e){for(;0>2]=b};this.get_type=function(){return Y[this.ptr+4>>2]};this.set_destructor=function(b){Y[this.ptr+8>>2]=b};this.get_destructor=function(){return Y[this.ptr+8>>2]};this.set_refcount=function(b){ca[this.ptr>>2]=b};this.set_caught=function(b){W[this.ptr+ -12>>0]=b?1:0};this.get_caught=function(){return 0!=W[this.ptr+12>>0]};this.set_rethrown=function(b){W[this.ptr+13>>0]=b?1:0};this.get_rethrown=function(){return 0!=W[this.ptr+13>>0]};this.init=function(b,c){this.set_adjusted_ptr(0);this.set_type(b);this.set_destructor(c);this.set_refcount(0);this.set_caught(!1);this.set_rethrown(!1)};this.add_ref=function(){ca[this.ptr>>2]+=1};this.release_ref=function(){var b=ca[this.ptr>>2];ca[this.ptr>>2]=b-1;return 1===b};this.set_adjusted_ptr=function(b){Y[this.ptr+ -16>>2]=b};this.get_adjusted_ptr=function(){return Y[this.ptr+16>>2]};this.get_exception_ptr=function(){if(ua(this.get_type()))return Y[this.excPtr>>2];var b=this.get_adjusted_ptr();return 0!==b?b:this.excPtr}}function F(){function e(){if(!la&&(la=!0,a.calledRun=!0,!sa)){va=!0;u(oa);wa(a);if(a.onRuntimeInitialized)a.onRuntimeInitialized();if(a.postRun)for("function"==typeof a.postRun&&(a.postRun=[a.postRun]);a.postRun.length;)xa.unshift(a.postRun.shift());u(xa)}}if(!(0=d?b++:2047>=d?b+=2:55296<=d&&57343>= -d?(b+=4,++c):b+=3}b=Array(b+1);c=0;d=b.length;if(0=t){var aa=e.charCodeAt(++g);t=65536+((t&1023)<<10)|aa&1023}if(127>=t){if(c>=d)break;b[c++]=t}else{if(2047>=t){if(c+1>=d)break;b[c++]=192|t>>6}else{if(65535>=t){if(c+2>=d)break;b[c++]=224|t>>12}else{if(c+3>=d)break;b[c++]=240|t>>18;b[c++]=128|t>>12&63}b[c++]=128|t>>6&63}b[c++]=128|t&63}}b[c]=0}e=r.alloc(b,W);r.copy(b,W,e);return e}return e}function Z(e){if("object"=== -typeof e){var b=r.alloc(e,W);r.copy(e,W,b);return b}return e}function X(){throw"cannot construct a VoidPtr, no constructor in IDL";}function S(){this.ptr=za();w(S)[this.ptr]=this}function Q(){this.ptr=Aa();w(Q)[this.ptr]=this}function V(){this.ptr=Ba();w(V)[this.ptr]=this}function x(){this.ptr=Ca();w(x)[this.ptr]=this}function D(){this.ptr=Da();w(D)[this.ptr]=this}function G(){this.ptr=Ea();w(G)[this.ptr]=this}function H(){this.ptr=Fa();w(H)[this.ptr]=this}function E(){this.ptr=Ga();w(E)[this.ptr]= -this}function T(){this.ptr=Ha();w(T)[this.ptr]=this}function C(){throw"cannot construct a Status, no constructor in IDL";}function I(){this.ptr=Ia();w(I)[this.ptr]=this}function J(){this.ptr=Ja();w(J)[this.ptr]=this}function K(){this.ptr=Ka();w(K)[this.ptr]=this}function L(){this.ptr=La();w(L)[this.ptr]=this}function M(){this.ptr=Ma();w(M)[this.ptr]=this}function N(){this.ptr=Na();w(N)[this.ptr]=this}function O(){this.ptr=Oa();w(O)[this.ptr]=this}function z(){this.ptr=Pa();w(z)[this.ptr]=this}function m(){this.ptr= -Qa();w(m)[this.ptr]=this}n=void 0===n?{}:n;var a="undefined"!=typeof n?n:{},wa,ka;a.ready=new Promise(function(e,b){wa=e;ka=b});var Ra=!1,Sa=!1;a.onRuntimeInitialized=function(){Ra=!0;if(Sa&&"function"===typeof a.onModuleLoaded)a.onModuleLoaded(a)};a.onModuleParsed=function(){Sa=!0;if(Ra&&"function"===typeof a.onModuleLoaded)a.onModuleLoaded(a)};a.isVersionSupported=function(e){if("string"!==typeof e)return!1;e=e.split(".");return 2>e.length||3=e[1]?!0:0!=e[0]||10< -e[1]?!1:!0};var Ta=Object.assign({},a),ta="object"==typeof window,fa="function"==typeof importScripts,Ua="object"==typeof process&&"object"==typeof process.versions&&"string"==typeof process.versions.node,U="";if(Ua){var Va=require("fs"),pa=require("path");U=fa?pa.dirname(U)+"/":__dirname+"/";var Wa=function(e,b){e=e.startsWith("file://")?new URL(e):pa.normalize(e);return Va.readFileSync(e,b?void 0:"utf8")};var ma=function(e){e=Wa(e,!0);e.buffer||(e=new Uint8Array(e));return e};var na=function(e, -b,c){e=e.startsWith("file://")?new URL(e):pa.normalize(e);Va.readFile(e,function(d,g){d?c(d):b(g.buffer)})};1>>=0;if(2147483648=c;c*=2){var d=b*(1+.2/c);d=Math.min(d,e+100663296);var g=Math;d=Math.max(e,d);g=g.min.call(g,2147483648,d+(65536-d%65536)%65536);a:{d=ja.buffer;try{ja.grow(g-d.byteLength+65535>>>16);l();var t=1;break a}catch(aa){}t=void 0}if(t)return!0}return!1}};(function(){function e(g,t){a.asm=g.exports;ja=a.asm.e;l();oa.unshift(a.asm.f);ba--;a.monitorRunDependencies&&a.monitorRunDependencies(ba);0==ba&&(null!==qa&&(clearInterval(qa),qa=null),ha&&(g=ha,ha=null,g()))}function b(g){e(g.instance)} -function c(g){return q().then(function(t){return WebAssembly.instantiate(t,d)}).then(function(t){return t}).then(g,function(t){da("failed to asynchronously prepare wasm: "+t);y(t)})}var d={a:qd};ba++;a.monitorRunDependencies&&a.monitorRunDependencies(ba);if(a.instantiateWasm)try{return a.instantiateWasm(d,e)}catch(g){da("Module.instantiateWasm callback failed with error: "+g),ka(g)}(function(){return ea||"function"!=typeof WebAssembly.instantiateStreaming||P.startsWith("data:application/octet-stream;base64,")|| -P.startsWith("file://")||Ua||"function"!=typeof fetch?c(b):fetch(P,{credentials:"same-origin"}).then(function(g){return WebAssembly.instantiateStreaming(g,d).then(b,function(t){da("wasm streaming compile failed: "+t);da("falling back to ArrayBuffer instantiation");return c(b)})})})().catch(ka);return{}})();var Xa=a._emscripten_bind_VoidPtr___destroy___0=function(){return(Xa=a._emscripten_bind_VoidPtr___destroy___0=a.asm.h).apply(null,arguments)},za=a._emscripten_bind_DecoderBuffer_DecoderBuffer_0= -function(){return(za=a._emscripten_bind_DecoderBuffer_DecoderBuffer_0=a.asm.i).apply(null,arguments)},Ya=a._emscripten_bind_DecoderBuffer_Init_2=function(){return(Ya=a._emscripten_bind_DecoderBuffer_Init_2=a.asm.j).apply(null,arguments)},Za=a._emscripten_bind_DecoderBuffer___destroy___0=function(){return(Za=a._emscripten_bind_DecoderBuffer___destroy___0=a.asm.k).apply(null,arguments)},Aa=a._emscripten_bind_AttributeTransformData_AttributeTransformData_0=function(){return(Aa=a._emscripten_bind_AttributeTransformData_AttributeTransformData_0= -a.asm.l).apply(null,arguments)},$a=a._emscripten_bind_AttributeTransformData_transform_type_0=function(){return($a=a._emscripten_bind_AttributeTransformData_transform_type_0=a.asm.m).apply(null,arguments)},ab=a._emscripten_bind_AttributeTransformData___destroy___0=function(){return(ab=a._emscripten_bind_AttributeTransformData___destroy___0=a.asm.n).apply(null,arguments)},Ba=a._emscripten_bind_GeometryAttribute_GeometryAttribute_0=function(){return(Ba=a._emscripten_bind_GeometryAttribute_GeometryAttribute_0= -a.asm.o).apply(null,arguments)},bb=a._emscripten_bind_GeometryAttribute___destroy___0=function(){return(bb=a._emscripten_bind_GeometryAttribute___destroy___0=a.asm.p).apply(null,arguments)},Ca=a._emscripten_bind_PointAttribute_PointAttribute_0=function(){return(Ca=a._emscripten_bind_PointAttribute_PointAttribute_0=a.asm.q).apply(null,arguments)},cb=a._emscripten_bind_PointAttribute_size_0=function(){return(cb=a._emscripten_bind_PointAttribute_size_0=a.asm.r).apply(null,arguments)},db=a._emscripten_bind_PointAttribute_GetAttributeTransformData_0= -function(){return(db=a._emscripten_bind_PointAttribute_GetAttributeTransformData_0=a.asm.s).apply(null,arguments)},eb=a._emscripten_bind_PointAttribute_attribute_type_0=function(){return(eb=a._emscripten_bind_PointAttribute_attribute_type_0=a.asm.t).apply(null,arguments)},fb=a._emscripten_bind_PointAttribute_data_type_0=function(){return(fb=a._emscripten_bind_PointAttribute_data_type_0=a.asm.u).apply(null,arguments)},gb=a._emscripten_bind_PointAttribute_num_components_0=function(){return(gb=a._emscripten_bind_PointAttribute_num_components_0= -a.asm.v).apply(null,arguments)},hb=a._emscripten_bind_PointAttribute_normalized_0=function(){return(hb=a._emscripten_bind_PointAttribute_normalized_0=a.asm.w).apply(null,arguments)},ib=a._emscripten_bind_PointAttribute_byte_stride_0=function(){return(ib=a._emscripten_bind_PointAttribute_byte_stride_0=a.asm.x).apply(null,arguments)},jb=a._emscripten_bind_PointAttribute_byte_offset_0=function(){return(jb=a._emscripten_bind_PointAttribute_byte_offset_0=a.asm.y).apply(null,arguments)},kb=a._emscripten_bind_PointAttribute_unique_id_0= -function(){return(kb=a._emscripten_bind_PointAttribute_unique_id_0=a.asm.z).apply(null,arguments)},lb=a._emscripten_bind_PointAttribute___destroy___0=function(){return(lb=a._emscripten_bind_PointAttribute___destroy___0=a.asm.A).apply(null,arguments)},Da=a._emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0=function(){return(Da=a._emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0=a.asm.B).apply(null,arguments)},mb=a._emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1= -function(){return(mb=a._emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1=a.asm.C).apply(null,arguments)},nb=a._emscripten_bind_AttributeQuantizationTransform_quantization_bits_0=function(){return(nb=a._emscripten_bind_AttributeQuantizationTransform_quantization_bits_0=a.asm.D).apply(null,arguments)},ob=a._emscripten_bind_AttributeQuantizationTransform_min_value_1=function(){return(ob=a._emscripten_bind_AttributeQuantizationTransform_min_value_1=a.asm.E).apply(null,arguments)},pb= -a._emscripten_bind_AttributeQuantizationTransform_range_0=function(){return(pb=a._emscripten_bind_AttributeQuantizationTransform_range_0=a.asm.F).apply(null,arguments)},qb=a._emscripten_bind_AttributeQuantizationTransform___destroy___0=function(){return(qb=a._emscripten_bind_AttributeQuantizationTransform___destroy___0=a.asm.G).apply(null,arguments)},Ea=a._emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0=function(){return(Ea=a._emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0= -a.asm.H).apply(null,arguments)},rb=a._emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1=function(){return(rb=a._emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1=a.asm.I).apply(null,arguments)},sb=a._emscripten_bind_AttributeOctahedronTransform_quantization_bits_0=function(){return(sb=a._emscripten_bind_AttributeOctahedronTransform_quantization_bits_0=a.asm.J).apply(null,arguments)},tb=a._emscripten_bind_AttributeOctahedronTransform___destroy___0=function(){return(tb= -a._emscripten_bind_AttributeOctahedronTransform___destroy___0=a.asm.K).apply(null,arguments)},Fa=a._emscripten_bind_PointCloud_PointCloud_0=function(){return(Fa=a._emscripten_bind_PointCloud_PointCloud_0=a.asm.L).apply(null,arguments)},ub=a._emscripten_bind_PointCloud_num_attributes_0=function(){return(ub=a._emscripten_bind_PointCloud_num_attributes_0=a.asm.M).apply(null,arguments)},vb=a._emscripten_bind_PointCloud_num_points_0=function(){return(vb=a._emscripten_bind_PointCloud_num_points_0=a.asm.N).apply(null, -arguments)},wb=a._emscripten_bind_PointCloud___destroy___0=function(){return(wb=a._emscripten_bind_PointCloud___destroy___0=a.asm.O).apply(null,arguments)},Ga=a._emscripten_bind_Mesh_Mesh_0=function(){return(Ga=a._emscripten_bind_Mesh_Mesh_0=a.asm.P).apply(null,arguments)},xb=a._emscripten_bind_Mesh_num_faces_0=function(){return(xb=a._emscripten_bind_Mesh_num_faces_0=a.asm.Q).apply(null,arguments)},yb=a._emscripten_bind_Mesh_num_attributes_0=function(){return(yb=a._emscripten_bind_Mesh_num_attributes_0= -a.asm.R).apply(null,arguments)},zb=a._emscripten_bind_Mesh_num_points_0=function(){return(zb=a._emscripten_bind_Mesh_num_points_0=a.asm.S).apply(null,arguments)},Ab=a._emscripten_bind_Mesh___destroy___0=function(){return(Ab=a._emscripten_bind_Mesh___destroy___0=a.asm.T).apply(null,arguments)},Ha=a._emscripten_bind_Metadata_Metadata_0=function(){return(Ha=a._emscripten_bind_Metadata_Metadata_0=a.asm.U).apply(null,arguments)},Bb=a._emscripten_bind_Metadata___destroy___0=function(){return(Bb=a._emscripten_bind_Metadata___destroy___0= -a.asm.V).apply(null,arguments)},Cb=a._emscripten_bind_Status_code_0=function(){return(Cb=a._emscripten_bind_Status_code_0=a.asm.W).apply(null,arguments)},Db=a._emscripten_bind_Status_ok_0=function(){return(Db=a._emscripten_bind_Status_ok_0=a.asm.X).apply(null,arguments)},Eb=a._emscripten_bind_Status_error_msg_0=function(){return(Eb=a._emscripten_bind_Status_error_msg_0=a.asm.Y).apply(null,arguments)},Fb=a._emscripten_bind_Status___destroy___0=function(){return(Fb=a._emscripten_bind_Status___destroy___0= -a.asm.Z).apply(null,arguments)},Ia=a._emscripten_bind_DracoFloat32Array_DracoFloat32Array_0=function(){return(Ia=a._emscripten_bind_DracoFloat32Array_DracoFloat32Array_0=a.asm._).apply(null,arguments)},Gb=a._emscripten_bind_DracoFloat32Array_GetValue_1=function(){return(Gb=a._emscripten_bind_DracoFloat32Array_GetValue_1=a.asm.$).apply(null,arguments)},Hb=a._emscripten_bind_DracoFloat32Array_size_0=function(){return(Hb=a._emscripten_bind_DracoFloat32Array_size_0=a.asm.aa).apply(null,arguments)},Ib= -a._emscripten_bind_DracoFloat32Array___destroy___0=function(){return(Ib=a._emscripten_bind_DracoFloat32Array___destroy___0=a.asm.ba).apply(null,arguments)},Ja=a._emscripten_bind_DracoInt8Array_DracoInt8Array_0=function(){return(Ja=a._emscripten_bind_DracoInt8Array_DracoInt8Array_0=a.asm.ca).apply(null,arguments)},Jb=a._emscripten_bind_DracoInt8Array_GetValue_1=function(){return(Jb=a._emscripten_bind_DracoInt8Array_GetValue_1=a.asm.da).apply(null,arguments)},Kb=a._emscripten_bind_DracoInt8Array_size_0= -function(){return(Kb=a._emscripten_bind_DracoInt8Array_size_0=a.asm.ea).apply(null,arguments)},Lb=a._emscripten_bind_DracoInt8Array___destroy___0=function(){return(Lb=a._emscripten_bind_DracoInt8Array___destroy___0=a.asm.fa).apply(null,arguments)},Ka=a._emscripten_bind_DracoUInt8Array_DracoUInt8Array_0=function(){return(Ka=a._emscripten_bind_DracoUInt8Array_DracoUInt8Array_0=a.asm.ga).apply(null,arguments)},Mb=a._emscripten_bind_DracoUInt8Array_GetValue_1=function(){return(Mb=a._emscripten_bind_DracoUInt8Array_GetValue_1= -a.asm.ha).apply(null,arguments)},Nb=a._emscripten_bind_DracoUInt8Array_size_0=function(){return(Nb=a._emscripten_bind_DracoUInt8Array_size_0=a.asm.ia).apply(null,arguments)},Ob=a._emscripten_bind_DracoUInt8Array___destroy___0=function(){return(Ob=a._emscripten_bind_DracoUInt8Array___destroy___0=a.asm.ja).apply(null,arguments)},La=a._emscripten_bind_DracoInt16Array_DracoInt16Array_0=function(){return(La=a._emscripten_bind_DracoInt16Array_DracoInt16Array_0=a.asm.ka).apply(null,arguments)},Pb=a._emscripten_bind_DracoInt16Array_GetValue_1= -function(){return(Pb=a._emscripten_bind_DracoInt16Array_GetValue_1=a.asm.la).apply(null,arguments)},Qb=a._emscripten_bind_DracoInt16Array_size_0=function(){return(Qb=a._emscripten_bind_DracoInt16Array_size_0=a.asm.ma).apply(null,arguments)},Rb=a._emscripten_bind_DracoInt16Array___destroy___0=function(){return(Rb=a._emscripten_bind_DracoInt16Array___destroy___0=a.asm.na).apply(null,arguments)},Ma=a._emscripten_bind_DracoUInt16Array_DracoUInt16Array_0=function(){return(Ma=a._emscripten_bind_DracoUInt16Array_DracoUInt16Array_0= -a.asm.oa).apply(null,arguments)},Sb=a._emscripten_bind_DracoUInt16Array_GetValue_1=function(){return(Sb=a._emscripten_bind_DracoUInt16Array_GetValue_1=a.asm.pa).apply(null,arguments)},Tb=a._emscripten_bind_DracoUInt16Array_size_0=function(){return(Tb=a._emscripten_bind_DracoUInt16Array_size_0=a.asm.qa).apply(null,arguments)},Ub=a._emscripten_bind_DracoUInt16Array___destroy___0=function(){return(Ub=a._emscripten_bind_DracoUInt16Array___destroy___0=a.asm.ra).apply(null,arguments)},Na=a._emscripten_bind_DracoInt32Array_DracoInt32Array_0= -function(){return(Na=a._emscripten_bind_DracoInt32Array_DracoInt32Array_0=a.asm.sa).apply(null,arguments)},Vb=a._emscripten_bind_DracoInt32Array_GetValue_1=function(){return(Vb=a._emscripten_bind_DracoInt32Array_GetValue_1=a.asm.ta).apply(null,arguments)},Wb=a._emscripten_bind_DracoInt32Array_size_0=function(){return(Wb=a._emscripten_bind_DracoInt32Array_size_0=a.asm.ua).apply(null,arguments)},Xb=a._emscripten_bind_DracoInt32Array___destroy___0=function(){return(Xb=a._emscripten_bind_DracoInt32Array___destroy___0= -a.asm.va).apply(null,arguments)},Oa=a._emscripten_bind_DracoUInt32Array_DracoUInt32Array_0=function(){return(Oa=a._emscripten_bind_DracoUInt32Array_DracoUInt32Array_0=a.asm.wa).apply(null,arguments)},Yb=a._emscripten_bind_DracoUInt32Array_GetValue_1=function(){return(Yb=a._emscripten_bind_DracoUInt32Array_GetValue_1=a.asm.xa).apply(null,arguments)},Zb=a._emscripten_bind_DracoUInt32Array_size_0=function(){return(Zb=a._emscripten_bind_DracoUInt32Array_size_0=a.asm.ya).apply(null,arguments)},$b=a._emscripten_bind_DracoUInt32Array___destroy___0= -function(){return($b=a._emscripten_bind_DracoUInt32Array___destroy___0=a.asm.za).apply(null,arguments)},Pa=a._emscripten_bind_MetadataQuerier_MetadataQuerier_0=function(){return(Pa=a._emscripten_bind_MetadataQuerier_MetadataQuerier_0=a.asm.Aa).apply(null,arguments)},ac=a._emscripten_bind_MetadataQuerier_HasEntry_2=function(){return(ac=a._emscripten_bind_MetadataQuerier_HasEntry_2=a.asm.Ba).apply(null,arguments)},bc=a._emscripten_bind_MetadataQuerier_GetIntEntry_2=function(){return(bc=a._emscripten_bind_MetadataQuerier_GetIntEntry_2= -a.asm.Ca).apply(null,arguments)},cc=a._emscripten_bind_MetadataQuerier_GetIntEntryArray_3=function(){return(cc=a._emscripten_bind_MetadataQuerier_GetIntEntryArray_3=a.asm.Da).apply(null,arguments)},dc=a._emscripten_bind_MetadataQuerier_GetDoubleEntry_2=function(){return(dc=a._emscripten_bind_MetadataQuerier_GetDoubleEntry_2=a.asm.Ea).apply(null,arguments)},ec=a._emscripten_bind_MetadataQuerier_GetStringEntry_2=function(){return(ec=a._emscripten_bind_MetadataQuerier_GetStringEntry_2=a.asm.Fa).apply(null, -arguments)},fc=a._emscripten_bind_MetadataQuerier_NumEntries_1=function(){return(fc=a._emscripten_bind_MetadataQuerier_NumEntries_1=a.asm.Ga).apply(null,arguments)},gc=a._emscripten_bind_MetadataQuerier_GetEntryName_2=function(){return(gc=a._emscripten_bind_MetadataQuerier_GetEntryName_2=a.asm.Ha).apply(null,arguments)},hc=a._emscripten_bind_MetadataQuerier___destroy___0=function(){return(hc=a._emscripten_bind_MetadataQuerier___destroy___0=a.asm.Ia).apply(null,arguments)},Qa=a._emscripten_bind_Decoder_Decoder_0= -function(){return(Qa=a._emscripten_bind_Decoder_Decoder_0=a.asm.Ja).apply(null,arguments)},ic=a._emscripten_bind_Decoder_DecodeArrayToPointCloud_3=function(){return(ic=a._emscripten_bind_Decoder_DecodeArrayToPointCloud_3=a.asm.Ka).apply(null,arguments)},jc=a._emscripten_bind_Decoder_DecodeArrayToMesh_3=function(){return(jc=a._emscripten_bind_Decoder_DecodeArrayToMesh_3=a.asm.La).apply(null,arguments)},kc=a._emscripten_bind_Decoder_GetAttributeId_2=function(){return(kc=a._emscripten_bind_Decoder_GetAttributeId_2= -a.asm.Ma).apply(null,arguments)},lc=a._emscripten_bind_Decoder_GetAttributeIdByName_2=function(){return(lc=a._emscripten_bind_Decoder_GetAttributeIdByName_2=a.asm.Na).apply(null,arguments)},mc=a._emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3=function(){return(mc=a._emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3=a.asm.Oa).apply(null,arguments)},nc=a._emscripten_bind_Decoder_GetAttribute_2=function(){return(nc=a._emscripten_bind_Decoder_GetAttribute_2=a.asm.Pa).apply(null,arguments)}, -oc=a._emscripten_bind_Decoder_GetAttributeByUniqueId_2=function(){return(oc=a._emscripten_bind_Decoder_GetAttributeByUniqueId_2=a.asm.Qa).apply(null,arguments)},pc=a._emscripten_bind_Decoder_GetMetadata_1=function(){return(pc=a._emscripten_bind_Decoder_GetMetadata_1=a.asm.Ra).apply(null,arguments)},qc=a._emscripten_bind_Decoder_GetAttributeMetadata_2=function(){return(qc=a._emscripten_bind_Decoder_GetAttributeMetadata_2=a.asm.Sa).apply(null,arguments)},rc=a._emscripten_bind_Decoder_GetFaceFromMesh_3= -function(){return(rc=a._emscripten_bind_Decoder_GetFaceFromMesh_3=a.asm.Ta).apply(null,arguments)},sc=a._emscripten_bind_Decoder_GetTriangleStripsFromMesh_2=function(){return(sc=a._emscripten_bind_Decoder_GetTriangleStripsFromMesh_2=a.asm.Ua).apply(null,arguments)},tc=a._emscripten_bind_Decoder_GetTrianglesUInt16Array_3=function(){return(tc=a._emscripten_bind_Decoder_GetTrianglesUInt16Array_3=a.asm.Va).apply(null,arguments)},uc=a._emscripten_bind_Decoder_GetTrianglesUInt32Array_3=function(){return(uc= -a._emscripten_bind_Decoder_GetTrianglesUInt32Array_3=a.asm.Wa).apply(null,arguments)},vc=a._emscripten_bind_Decoder_GetAttributeFloat_3=function(){return(vc=a._emscripten_bind_Decoder_GetAttributeFloat_3=a.asm.Xa).apply(null,arguments)},wc=a._emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3=function(){return(wc=a._emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3=a.asm.Ya).apply(null,arguments)},xc=a._emscripten_bind_Decoder_GetAttributeIntForAllPoints_3=function(){return(xc=a._emscripten_bind_Decoder_GetAttributeIntForAllPoints_3= -a.asm.Za).apply(null,arguments)},yc=a._emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3=function(){return(yc=a._emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3=a.asm._a).apply(null,arguments)},zc=a._emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3=function(){return(zc=a._emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3=a.asm.$a).apply(null,arguments)},Ac=a._emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3=function(){return(Ac=a._emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3= -a.asm.ab).apply(null,arguments)},Bc=a._emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3=function(){return(Bc=a._emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3=a.asm.bb).apply(null,arguments)},Cc=a._emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3=function(){return(Cc=a._emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3=a.asm.cb).apply(null,arguments)},Dc=a._emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3=function(){return(Dc=a._emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3= -a.asm.db).apply(null,arguments)},Ec=a._emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5=function(){return(Ec=a._emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5=a.asm.eb).apply(null,arguments)},Fc=a._emscripten_bind_Decoder_SkipAttributeTransform_1=function(){return(Fc=a._emscripten_bind_Decoder_SkipAttributeTransform_1=a.asm.fb).apply(null,arguments)},Gc=a._emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1=function(){return(Gc=a._emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1= -a.asm.gb).apply(null,arguments)},Hc=a._emscripten_bind_Decoder_DecodeBufferToPointCloud_2=function(){return(Hc=a._emscripten_bind_Decoder_DecodeBufferToPointCloud_2=a.asm.hb).apply(null,arguments)},Ic=a._emscripten_bind_Decoder_DecodeBufferToMesh_2=function(){return(Ic=a._emscripten_bind_Decoder_DecodeBufferToMesh_2=a.asm.ib).apply(null,arguments)},Jc=a._emscripten_bind_Decoder___destroy___0=function(){return(Jc=a._emscripten_bind_Decoder___destroy___0=a.asm.jb).apply(null,arguments)},Kc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM= -function(){return(Kc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM=a.asm.kb).apply(null,arguments)},Lc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM=function(){return(Lc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM=a.asm.lb).apply(null,arguments)},Mc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM=function(){return(Mc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM= -a.asm.mb).apply(null,arguments)},Nc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM=function(){return(Nc=a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM=a.asm.nb).apply(null,arguments)},Oc=a._emscripten_enum_draco_GeometryAttribute_Type_INVALID=function(){return(Oc=a._emscripten_enum_draco_GeometryAttribute_Type_INVALID=a.asm.ob).apply(null,arguments)},Pc=a._emscripten_enum_draco_GeometryAttribute_Type_POSITION=function(){return(Pc=a._emscripten_enum_draco_GeometryAttribute_Type_POSITION= -a.asm.pb).apply(null,arguments)},Qc=a._emscripten_enum_draco_GeometryAttribute_Type_NORMAL=function(){return(Qc=a._emscripten_enum_draco_GeometryAttribute_Type_NORMAL=a.asm.qb).apply(null,arguments)},Rc=a._emscripten_enum_draco_GeometryAttribute_Type_COLOR=function(){return(Rc=a._emscripten_enum_draco_GeometryAttribute_Type_COLOR=a.asm.rb).apply(null,arguments)},Sc=a._emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD=function(){return(Sc=a._emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD= -a.asm.sb).apply(null,arguments)},Tc=a._emscripten_enum_draco_GeometryAttribute_Type_GENERIC=function(){return(Tc=a._emscripten_enum_draco_GeometryAttribute_Type_GENERIC=a.asm.tb).apply(null,arguments)},Uc=a._emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE=function(){return(Uc=a._emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE=a.asm.ub).apply(null,arguments)},Vc=a._emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD=function(){return(Vc=a._emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD= -a.asm.vb).apply(null,arguments)},Wc=a._emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH=function(){return(Wc=a._emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH=a.asm.wb).apply(null,arguments)},Xc=a._emscripten_enum_draco_DataType_DT_INVALID=function(){return(Xc=a._emscripten_enum_draco_DataType_DT_INVALID=a.asm.xb).apply(null,arguments)},Yc=a._emscripten_enum_draco_DataType_DT_INT8=function(){return(Yc=a._emscripten_enum_draco_DataType_DT_INT8=a.asm.yb).apply(null,arguments)},Zc= -a._emscripten_enum_draco_DataType_DT_UINT8=function(){return(Zc=a._emscripten_enum_draco_DataType_DT_UINT8=a.asm.zb).apply(null,arguments)},$c=a._emscripten_enum_draco_DataType_DT_INT16=function(){return($c=a._emscripten_enum_draco_DataType_DT_INT16=a.asm.Ab).apply(null,arguments)},ad=a._emscripten_enum_draco_DataType_DT_UINT16=function(){return(ad=a._emscripten_enum_draco_DataType_DT_UINT16=a.asm.Bb).apply(null,arguments)},bd=a._emscripten_enum_draco_DataType_DT_INT32=function(){return(bd=a._emscripten_enum_draco_DataType_DT_INT32= -a.asm.Cb).apply(null,arguments)},cd=a._emscripten_enum_draco_DataType_DT_UINT32=function(){return(cd=a._emscripten_enum_draco_DataType_DT_UINT32=a.asm.Db).apply(null,arguments)},dd=a._emscripten_enum_draco_DataType_DT_INT64=function(){return(dd=a._emscripten_enum_draco_DataType_DT_INT64=a.asm.Eb).apply(null,arguments)},ed=a._emscripten_enum_draco_DataType_DT_UINT64=function(){return(ed=a._emscripten_enum_draco_DataType_DT_UINT64=a.asm.Fb).apply(null,arguments)},fd=a._emscripten_enum_draco_DataType_DT_FLOAT32= -function(){return(fd=a._emscripten_enum_draco_DataType_DT_FLOAT32=a.asm.Gb).apply(null,arguments)},gd=a._emscripten_enum_draco_DataType_DT_FLOAT64=function(){return(gd=a._emscripten_enum_draco_DataType_DT_FLOAT64=a.asm.Hb).apply(null,arguments)},hd=a._emscripten_enum_draco_DataType_DT_BOOL=function(){return(hd=a._emscripten_enum_draco_DataType_DT_BOOL=a.asm.Ib).apply(null,arguments)},id=a._emscripten_enum_draco_DataType_DT_TYPES_COUNT=function(){return(id=a._emscripten_enum_draco_DataType_DT_TYPES_COUNT= -a.asm.Jb).apply(null,arguments)},jd=a._emscripten_enum_draco_StatusCode_OK=function(){return(jd=a._emscripten_enum_draco_StatusCode_OK=a.asm.Kb).apply(null,arguments)},kd=a._emscripten_enum_draco_StatusCode_DRACO_ERROR=function(){return(kd=a._emscripten_enum_draco_StatusCode_DRACO_ERROR=a.asm.Lb).apply(null,arguments)},ld=a._emscripten_enum_draco_StatusCode_IO_ERROR=function(){return(ld=a._emscripten_enum_draco_StatusCode_IO_ERROR=a.asm.Mb).apply(null,arguments)},md=a._emscripten_enum_draco_StatusCode_INVALID_PARAMETER= -function(){return(md=a._emscripten_enum_draco_StatusCode_INVALID_PARAMETER=a.asm.Nb).apply(null,arguments)},nd=a._emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION=function(){return(nd=a._emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION=a.asm.Ob).apply(null,arguments)},od=a._emscripten_enum_draco_StatusCode_UNKNOWN_VERSION=function(){return(od=a._emscripten_enum_draco_StatusCode_UNKNOWN_VERSION=a.asm.Pb).apply(null,arguments)};a._malloc=function(){return(a._malloc=a.asm.Qb).apply(null,arguments)}; -a._free=function(){return(a._free=a.asm.Rb).apply(null,arguments)};var ua=function(){return(ua=a.asm.Sb).apply(null,arguments)};a.___start_em_js=11660;a.___stop_em_js=11758;var la;ha=function b(){la||F();la||(ha=b)};if(a.preInit)for("function"==typeof a.preInit&&(a.preInit=[a.preInit]);0=r.size?(0>>=0;switch(c.BYTES_PER_ELEMENT){case 2:d>>>=1;break;case 4:d>>>=2;break;case 8:d>>>=3}for(var g=0;gb.byteLength)return a.INVALID_GEOMETRY_TYPE;switch(b[7]){case 0:return a.POINT_CLOUD;case 1:return a.TRIANGULAR_MESH;default:return a.INVALID_GEOMETRY_TYPE}};return n.ready}}();"object"===typeof exports&&"object"===typeof module?module.exports=DracoDecoderModule:"function"===typeof define&&define.amd?define([],function(){return DracoDecoderModule}):"object"===typeof exports&&(exports.DracoDecoderModule=DracoDecoderModule); +var $jscomp = $jscomp || {} +$jscomp.scope = {} +$jscomp.arrayIteratorImpl = function (h) { + var n = 0 + return function () { + return n < h.length ? { done: !1, value: h[n++] } : { done: !0 } + } +} +$jscomp.arrayIterator = function (h) { + return { next: $jscomp.arrayIteratorImpl(h) } +} +$jscomp.makeIterator = function (h) { + var n = 'undefined' != typeof Symbol && Symbol.iterator && h[Symbol.iterator] + return n ? n.call(h) : $jscomp.arrayIterator(h) +} +$jscomp.ASSUME_ES5 = !1 +$jscomp.ASSUME_NO_NATIVE_MAP = !1 +$jscomp.ASSUME_NO_NATIVE_SET = !1 +$jscomp.SIMPLE_FROUND_POLYFILL = !1 +$jscomp.ISOLATE_POLYFILLS = !1 +$jscomp.FORCE_POLYFILL_PROMISE = !1 +$jscomp.FORCE_POLYFILL_PROMISE_WHEN_NO_UNHANDLED_REJECTION = !1 +$jscomp.getGlobal = function (h) { + h = [ + 'object' == typeof globalThis && globalThis, + h, + 'object' == typeof window && window, + 'object' == typeof self && self, + 'object' == typeof global && global, + ] + for (var n = 0; n < h.length; ++n) { + var k = h[n] + if (k && k.Math == Math) return k + } + throw Error('Cannot find global object') +} +$jscomp.global = $jscomp.getGlobal(this) +$jscomp.defineProperty = + $jscomp.ASSUME_ES5 || 'function' == typeof Object.defineProperties + ? Object.defineProperty + : function (h, n, k) { + if (h == Array.prototype || h == Object.prototype) return h + h[n] = k.value + return h + } +$jscomp.IS_SYMBOL_NATIVE = + 'function' === typeof Symbol && 'symbol' === typeof Symbol('x') +$jscomp.TRUST_ES6_POLYFILLS = + !$jscomp.ISOLATE_POLYFILLS || $jscomp.IS_SYMBOL_NATIVE +$jscomp.polyfills = {} +$jscomp.propertyToPolyfillSymbol = {} +$jscomp.POLYFILL_PREFIX = '$jscp$' +var $jscomp$lookupPolyfilledValue = function (h, n) { + var k = $jscomp.propertyToPolyfillSymbol[n] + if (null == k) return h[n] + k = h[k] + return void 0 !== k ? k : h[n] +} +$jscomp.polyfill = function (h, n, k, p) { + n && + ($jscomp.ISOLATE_POLYFILLS + ? $jscomp.polyfillIsolated(h, n, k, p) + : $jscomp.polyfillUnisolated(h, n, k, p)) +} +$jscomp.polyfillUnisolated = function (h, n, k, p) { + k = $jscomp.global + h = h.split('.') + for (p = 0; p < h.length - 1; p++) { + var l = h[p] + if (!(l in k)) return + k = k[l] + } + h = h[h.length - 1] + p = k[h] + n = n(p) + n != p && + null != n && + $jscomp.defineProperty(k, h, { configurable: !0, writable: !0, value: n }) +} +$jscomp.polyfillIsolated = function (h, n, k, p) { + var l = h.split('.') + h = 1 === l.length + p = l[0] + p = !h && p in $jscomp.polyfills ? $jscomp.polyfills : $jscomp.global + for (var y = 0; y < l.length - 1; y++) { + var f = l[y] + if (!(f in p)) return + p = p[f] + } + l = l[l.length - 1] + k = $jscomp.IS_SYMBOL_NATIVE && 'es6' === k ? p[l] : null + n = n(k) + null != n && + (h + ? $jscomp.defineProperty($jscomp.polyfills, l, { + configurable: !0, + writable: !0, + value: n, + }) + : n !== k && + (void 0 === $jscomp.propertyToPolyfillSymbol[l] && + ((k = (1e9 * Math.random()) >>> 0), + ($jscomp.propertyToPolyfillSymbol[l] = $jscomp.IS_SYMBOL_NATIVE + ? $jscomp.global.Symbol(l) + : $jscomp.POLYFILL_PREFIX + k + '$' + l)), + $jscomp.defineProperty(p, $jscomp.propertyToPolyfillSymbol[l], { + configurable: !0, + writable: !0, + value: n, + }))) +} +$jscomp.polyfill( + 'Promise', + function (h) { + function n() { + this.batch_ = null + } + function k(f) { + return f instanceof l + ? f + : new l(function (q, u) { + q(f) + }) + } + if ( + h && + (!( + $jscomp.FORCE_POLYFILL_PROMISE || + ($jscomp.FORCE_POLYFILL_PROMISE_WHEN_NO_UNHANDLED_REJECTION && + 'undefined' === typeof $jscomp.global.PromiseRejectionEvent) + ) || + !$jscomp.global.Promise || + -1 === $jscomp.global.Promise.toString().indexOf('[native code]')) + ) + return h + n.prototype.asyncExecute = function (f) { + if (null == this.batch_) { + this.batch_ = [] + var q = this + this.asyncExecuteFunction(function () { + q.executeBatch_() + }) + } + this.batch_.push(f) + } + var p = $jscomp.global.setTimeout + n.prototype.asyncExecuteFunction = function (f) { + p(f, 0) + } + n.prototype.executeBatch_ = function () { + for (; this.batch_ && this.batch_.length; ) { + var f = this.batch_ + this.batch_ = [] + for (var q = 0; q < f.length; ++q) { + var u = f[q] + f[q] = null + try { + u() + } catch (A) { + this.asyncThrow_(A) + } + } + } + this.batch_ = null + } + n.prototype.asyncThrow_ = function (f) { + this.asyncExecuteFunction(function () { + throw f + }) + } + var l = function (f) { + this.state_ = 0 + this.result_ = void 0 + this.onSettledCallbacks_ = [] + this.isRejectionHandled_ = !1 + var q = this.createResolveAndReject_() + try { + f(q.resolve, q.reject) + } catch (u) { + q.reject(u) + } + } + l.prototype.createResolveAndReject_ = function () { + function f(A) { + return function (F) { + u || ((u = !0), A.call(q, F)) + } + } + var q = this, + u = !1 + return { resolve: f(this.resolveTo_), reject: f(this.reject_) } + } + l.prototype.resolveTo_ = function (f) { + if (f === this) + this.reject_(new TypeError('A Promise cannot resolve to itself')) + else if (f instanceof l) this.settleSameAsPromise_(f) + else { + a: switch (typeof f) { + case 'object': + var q = null != f + break a + case 'function': + q = !0 + break a + default: + q = !1 + } + q ? this.resolveToNonPromiseObj_(f) : this.fulfill_(f) + } + } + l.prototype.resolveToNonPromiseObj_ = function (f) { + var q = void 0 + try { + q = f.then + } catch (u) { + this.reject_(u) + return + } + 'function' == typeof q + ? this.settleSameAsThenable_(q, f) + : this.fulfill_(f) + } + l.prototype.reject_ = function (f) { + this.settle_(2, f) + } + l.prototype.fulfill_ = function (f) { + this.settle_(1, f) + } + l.prototype.settle_ = function (f, q) { + if (0 != this.state_) + throw Error( + 'Cannot settle(' + + f + + ', ' + + q + + '): Promise already settled in state' + + this.state_, + ) + this.state_ = f + this.result_ = q + 2 === this.state_ && this.scheduleUnhandledRejectionCheck_() + this.executeOnSettledCallbacks_() + } + l.prototype.scheduleUnhandledRejectionCheck_ = function () { + var f = this + p(function () { + if (f.notifyUnhandledRejection_()) { + var q = $jscomp.global.console + 'undefined' !== typeof q && q.error(f.result_) + } + }, 1) + } + l.prototype.notifyUnhandledRejection_ = function () { + if (this.isRejectionHandled_) return !1 + var f = $jscomp.global.CustomEvent, + q = $jscomp.global.Event, + u = $jscomp.global.dispatchEvent + if ('undefined' === typeof u) return !0 + 'function' === typeof f + ? (f = new f('unhandledrejection', { cancelable: !0 })) + : 'function' === typeof q + ? (f = new q('unhandledrejection', { cancelable: !0 })) + : ((f = $jscomp.global.document.createEvent('CustomEvent')), + f.initCustomEvent('unhandledrejection', !1, !0, f)) + f.promise = this + f.reason = this.result_ + return u(f) + } + l.prototype.executeOnSettledCallbacks_ = function () { + if (null != this.onSettledCallbacks_) { + for (var f = 0; f < this.onSettledCallbacks_.length; ++f) + y.asyncExecute(this.onSettledCallbacks_[f]) + this.onSettledCallbacks_ = null + } + } + var y = new n() + l.prototype.settleSameAsPromise_ = function (f) { + var q = this.createResolveAndReject_() + f.callWhenSettled_(q.resolve, q.reject) + } + l.prototype.settleSameAsThenable_ = function (f, q) { + var u = this.createResolveAndReject_() + try { + f.call(q, u.resolve, u.reject) + } catch (A) { + u.reject(A) + } + } + l.prototype.then = function (f, q) { + function u(w, B) { + return 'function' == typeof w + ? function (R) { + try { + A(w(R)) + } catch (Z) { + F(Z) + } + } + : B + } + var A, + F, + v = new l(function (w, B) { + A = w + F = B + }) + this.callWhenSettled_(u(f, A), u(q, F)) + return v + } + l.prototype.catch = function (f) { + return this.then(void 0, f) + } + l.prototype.callWhenSettled_ = function (f, q) { + function u() { + switch (A.state_) { + case 1: + f(A.result_) + break + case 2: + q(A.result_) + break + default: + throw Error('Unexpected state: ' + A.state_) + } + } + var A = this + null == this.onSettledCallbacks_ + ? y.asyncExecute(u) + : this.onSettledCallbacks_.push(u) + this.isRejectionHandled_ = !0 + } + l.resolve = k + l.reject = function (f) { + return new l(function (q, u) { + u(f) + }) + } + l.race = function (f) { + return new l(function (q, u) { + for ( + var A = $jscomp.makeIterator(f), F = A.next(); + !F.done; + F = A.next() + ) + k(F.value).callWhenSettled_(q, u) + }) + } + l.all = function (f) { + var q = $jscomp.makeIterator(f), + u = q.next() + return u.done + ? k([]) + : new l(function (A, F) { + function v(R) { + return function (Z) { + w[R] = Z + B-- + 0 == B && A(w) + } + } + var w = [], + B = 0 + do + w.push(void 0), + B++, + k(u.value).callWhenSettled_(v(w.length - 1), F), + (u = q.next()) + while (!u.done) + }) + } + return l + }, + 'es6', + 'es3', +) +$jscomp.owns = function (h, n) { + return Object.prototype.hasOwnProperty.call(h, n) +} +$jscomp.assign = + $jscomp.TRUST_ES6_POLYFILLS && 'function' == typeof Object.assign + ? Object.assign + : function (h, n) { + for (var k = 1; k < arguments.length; k++) { + var p = arguments[k] + if (p) for (var l in p) $jscomp.owns(p, l) && (h[l] = p[l]) + } + return h + } +$jscomp.polyfill( + 'Object.assign', + function (h) { + return h || $jscomp.assign + }, + 'es6', + 'es3', +) +$jscomp.checkStringArgs = function (h, n, k) { + if (null == h) + throw new TypeError( + "The 'this' value for String.prototype." + + k + + ' must not be null or undefined', + ) + if (n instanceof RegExp) + throw new TypeError( + 'First argument to String.prototype.' + + k + + ' must not be a regular expression', + ) + return h + '' +} +$jscomp.polyfill( + 'String.prototype.startsWith', + function (h) { + return h + ? h + : function (n, k) { + var p = $jscomp.checkStringArgs(this, n, 'startsWith') + n += '' + var l = p.length, + y = n.length + k = Math.max(0, Math.min(k | 0, p.length)) + for (var f = 0; f < y && k < l; ) if (p[k++] != n[f++]) return !1 + return f >= y + } + }, + 'es6', + 'es3', +) +$jscomp.polyfill( + 'Array.prototype.copyWithin', + function (h) { + function n(k) { + k = Number(k) + return Infinity === k || -Infinity === k ? k : k | 0 + } + return h + ? h + : function (k, p, l) { + var y = this.length + k = n(k) + p = n(p) + l = void 0 === l ? y : n(l) + k = 0 > k ? Math.max(y + k, 0) : Math.min(k, y) + p = 0 > p ? Math.max(y + p, 0) : Math.min(p, y) + l = 0 > l ? Math.max(y + l, 0) : Math.min(l, y) + if (k < p) + for (; p < l; ) + p in this ? (this[k++] = this[p++]) : (delete this[k++], p++) + else + for (l = Math.min(l, y + p - k), k += l - p; l > p; ) + --l in this ? (this[--k] = this[l]) : delete this[--k] + return this + } + }, + 'es6', + 'es3', +) +$jscomp.typedArrayCopyWithin = function (h) { + return h ? h : Array.prototype.copyWithin +} +$jscomp.polyfill( + 'Int8Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Uint8Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Uint8ClampedArray.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Int16Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Uint16Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Int32Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Uint32Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Float32Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +$jscomp.polyfill( + 'Float64Array.prototype.copyWithin', + $jscomp.typedArrayCopyWithin, + 'es6', + 'es5', +) +var DracoDecoderModule = (function () { + var h = + 'undefined' !== typeof document && document.currentScript + ? document.currentScript.src + : void 0 + 'undefined' !== typeof __filename && (h = h || __filename) + return function (n) { + function k(e) { + return a.locateFile ? a.locateFile(e, U) : U + e + } + function p(e, b) { + if (e) { + var c = ia + var d = e + b + for (b = e; c[b] && !(b >= d); ) ++b + if (16 < b - e && c.buffer && ra) c = ra.decode(c.subarray(e, b)) + else { + for (d = ''; e < b; ) { + var g = c[e++] + if (g & 128) { + var t = c[e++] & 63 + if (192 == (g & 224)) + d += String.fromCharCode(((g & 31) << 6) | t) + else { + var aa = c[e++] & 63 + g = + 224 == (g & 240) + ? ((g & 15) << 12) | (t << 6) | aa + : ((g & 7) << 18) | (t << 12) | (aa << 6) | (c[e++] & 63) + 65536 > g + ? (d += String.fromCharCode(g)) + : ((g -= 65536), + (d += String.fromCharCode( + 55296 | (g >> 10), + 56320 | (g & 1023), + ))) + } + } else d += String.fromCharCode(g) + } + c = d + } + } else c = '' + return c + } + function l() { + var e = ja.buffer + a.HEAP8 = W = new Int8Array(e) + a.HEAP16 = new Int16Array(e) + a.HEAP32 = ca = new Int32Array(e) + a.HEAPU8 = ia = new Uint8Array(e) + a.HEAPU16 = new Uint16Array(e) + a.HEAPU32 = Y = new Uint32Array(e) + a.HEAPF32 = new Float32Array(e) + a.HEAPF64 = new Float64Array(e) + } + function y(e) { + if (a.onAbort) a.onAbort(e) + e = 'Aborted(' + e + ')' + da(e) + sa = !0 + e = new WebAssembly.RuntimeError( + e + '. Build with -sASSERTIONS for more info.', + ) + ka(e) + throw e + } + function f(e) { + try { + if (e == P && ea) return new Uint8Array(ea) + if (ma) return ma(e) + throw 'both async and sync fetching of the wasm failed' + } catch (b) { + y(b) + } + } + function q() { + if (!ea && (ta || fa)) { + if ('function' == typeof fetch && !P.startsWith('file://')) + return fetch(P, { credentials: 'same-origin' }) + .then(function (e) { + if (!e.ok) throw "failed to load wasm binary file at '" + P + "'" + return e.arrayBuffer() + }) + .catch(function () { + return f(P) + }) + if (na) + return new Promise(function (e, b) { + na( + P, + function (c) { + e(new Uint8Array(c)) + }, + b, + ) + }) + } + return Promise.resolve().then(function () { + return f(P) + }) + } + function u(e) { + for (; 0 < e.length; ) e.shift()(a) + } + function A(e) { + this.excPtr = e + this.ptr = e - 24 + this.set_type = function (b) { + Y[(this.ptr + 4) >> 2] = b + } + this.get_type = function () { + return Y[(this.ptr + 4) >> 2] + } + this.set_destructor = function (b) { + Y[(this.ptr + 8) >> 2] = b + } + this.get_destructor = function () { + return Y[(this.ptr + 8) >> 2] + } + this.set_refcount = function (b) { + ca[this.ptr >> 2] = b + } + this.set_caught = function (b) { + W[(this.ptr + 12) >> 0] = b ? 1 : 0 + } + this.get_caught = function () { + return 0 != W[(this.ptr + 12) >> 0] + } + this.set_rethrown = function (b) { + W[(this.ptr + 13) >> 0] = b ? 1 : 0 + } + this.get_rethrown = function () { + return 0 != W[(this.ptr + 13) >> 0] + } + this.init = function (b, c) { + this.set_adjusted_ptr(0) + this.set_type(b) + this.set_destructor(c) + this.set_refcount(0) + this.set_caught(!1) + this.set_rethrown(!1) + } + this.add_ref = function () { + ca[this.ptr >> 2] += 1 + } + this.release_ref = function () { + var b = ca[this.ptr >> 2] + ca[this.ptr >> 2] = b - 1 + return 1 === b + } + this.set_adjusted_ptr = function (b) { + Y[(this.ptr + 16) >> 2] = b + } + this.get_adjusted_ptr = function () { + return Y[(this.ptr + 16) >> 2] + } + this.get_exception_ptr = function () { + if (ua(this.get_type())) return Y[this.excPtr >> 2] + var b = this.get_adjusted_ptr() + return 0 !== b ? b : this.excPtr + } + } + function F() { + function e() { + if (!la && ((la = !0), (a.calledRun = !0), !sa)) { + va = !0 + u(oa) + wa(a) + if (a.onRuntimeInitialized) a.onRuntimeInitialized() + if (a.postRun) + for ( + 'function' == typeof a.postRun && (a.postRun = [a.postRun]); + a.postRun.length; + + ) + xa.unshift(a.postRun.shift()) + u(xa) + } + } + if (!(0 < ba)) { + if (a.preRun) + for ( + 'function' == typeof a.preRun && (a.preRun = [a.preRun]); + a.preRun.length; + + ) + ya.unshift(a.preRun.shift()) + u(ya) + 0 < ba || + (a.setStatus + ? (a.setStatus('Running...'), + setTimeout(function () { + setTimeout(function () { + a.setStatus('') + }, 1) + e() + }, 1)) + : e()) + } + } + function v() {} + function w(e) { + return (e || v).__cache__ + } + function B(e, b) { + var c = w(b), + d = c[e] + if (d) return d + d = Object.create((b || v).prototype) + d.ptr = e + return (c[e] = d) + } + function R(e) { + if ('string' === typeof e) { + for (var b = 0, c = 0; c < e.length; ++c) { + var d = e.charCodeAt(c) + 127 >= d + ? b++ + : 2047 >= d + ? (b += 2) + : 55296 <= d && 57343 >= d + ? ((b += 4), ++c) + : (b += 3) + } + b = Array(b + 1) + c = 0 + d = b.length + if (0 < d) { + d = c + d - 1 + for (var g = 0; g < e.length; ++g) { + var t = e.charCodeAt(g) + if (55296 <= t && 57343 >= t) { + var aa = e.charCodeAt(++g) + t = (65536 + ((t & 1023) << 10)) | (aa & 1023) + } + if (127 >= t) { + if (c >= d) break + b[c++] = t + } else { + if (2047 >= t) { + if (c + 1 >= d) break + b[c++] = 192 | (t >> 6) + } else { + if (65535 >= t) { + if (c + 2 >= d) break + b[c++] = 224 | (t >> 12) + } else { + if (c + 3 >= d) break + b[c++] = 240 | (t >> 18) + b[c++] = 128 | ((t >> 12) & 63) + } + b[c++] = 128 | ((t >> 6) & 63) + } + b[c++] = 128 | (t & 63) + } + } + b[c] = 0 + } + e = r.alloc(b, W) + r.copy(b, W, e) + return e + } + return e + } + function Z(e) { + if ('object' === typeof e) { + var b = r.alloc(e, W) + r.copy(e, W, b) + return b + } + return e + } + function X() { + throw 'cannot construct a VoidPtr, no constructor in IDL' + } + function S() { + this.ptr = za() + w(S)[this.ptr] = this + } + function Q() { + this.ptr = Aa() + w(Q)[this.ptr] = this + } + function V() { + this.ptr = Ba() + w(V)[this.ptr] = this + } + function x() { + this.ptr = Ca() + w(x)[this.ptr] = this + } + function D() { + this.ptr = Da() + w(D)[this.ptr] = this + } + function G() { + this.ptr = Ea() + w(G)[this.ptr] = this + } + function H() { + this.ptr = Fa() + w(H)[this.ptr] = this + } + function E() { + this.ptr = Ga() + w(E)[this.ptr] = this + } + function T() { + this.ptr = Ha() + w(T)[this.ptr] = this + } + function C() { + throw 'cannot construct a Status, no constructor in IDL' + } + function I() { + this.ptr = Ia() + w(I)[this.ptr] = this + } + function J() { + this.ptr = Ja() + w(J)[this.ptr] = this + } + function K() { + this.ptr = Ka() + w(K)[this.ptr] = this + } + function L() { + this.ptr = La() + w(L)[this.ptr] = this + } + function M() { + this.ptr = Ma() + w(M)[this.ptr] = this + } + function N() { + this.ptr = Na() + w(N)[this.ptr] = this + } + function O() { + this.ptr = Oa() + w(O)[this.ptr] = this + } + function z() { + this.ptr = Pa() + w(z)[this.ptr] = this + } + function m() { + this.ptr = Qa() + w(m)[this.ptr] = this + } + n = void 0 === n ? {} : n + var a = 'undefined' != typeof n ? n : {}, + wa, + ka + a.ready = new Promise(function (e, b) { + wa = e + ka = b + }) + var Ra = !1, + Sa = !1 + a.onRuntimeInitialized = function () { + Ra = !0 + if (Sa && 'function' === typeof a.onModuleLoaded) a.onModuleLoaded(a) + } + a.onModuleParsed = function () { + Sa = !0 + if (Ra && 'function' === typeof a.onModuleLoaded) a.onModuleLoaded(a) + } + a.isVersionSupported = function (e) { + if ('string' !== typeof e) return !1 + e = e.split('.') + return 2 > e.length || 3 < e.length + ? !1 + : 1 == e[0] && 0 <= e[1] && 5 >= e[1] + ? !0 + : 0 != e[0] || 10 < e[1] + ? !1 + : !0 + } + var Ta = Object.assign({}, a), + ta = 'object' == typeof window, + fa = 'function' == typeof importScripts, + Ua = + 'object' == typeof process && + 'object' == typeof process.versions && + 'string' == typeof process.versions.node, + U = '' + if (Ua) { + var Va = require('fs'), + pa = require('path') + U = fa ? pa.dirname(U) + '/' : __dirname + '/' + var Wa = function (e, b) { + e = e.startsWith('file://') ? new URL(e) : pa.normalize(e) + return Va.readFileSync(e, b ? void 0 : 'utf8') + } + var ma = function (e) { + e = Wa(e, !0) + e.buffer || (e = new Uint8Array(e)) + return e + } + var na = function (e, b, c) { + e = e.startsWith('file://') ? new URL(e) : pa.normalize(e) + Va.readFile(e, function (d, g) { + d ? c(d) : b(g.buffer) + }) + } + 1 < process.argv.length && process.argv[1].replace(/\\/g, '/') + process.argv.slice(2) + a.inspect = function () { + return '[Emscripten Module object]' + } + } else if (ta || fa) + fa + ? (U = self.location.href) + : 'undefined' != typeof document && + document.currentScript && + (U = document.currentScript.src), + h && (U = h), + (U = + 0 !== U.indexOf('blob:') + ? U.substr(0, U.replace(/[?#].*/, '').lastIndexOf('/') + 1) + : ''), + (Wa = function (e) { + var b = new XMLHttpRequest() + b.open('GET', e, !1) + b.send(null) + return b.responseText + }), + fa && + (ma = function (e) { + var b = new XMLHttpRequest() + b.open('GET', e, !1) + b.responseType = 'arraybuffer' + b.send(null) + return new Uint8Array(b.response) + }), + (na = function (e, b, c) { + var d = new XMLHttpRequest() + d.open('GET', e, !0) + d.responseType = 'arraybuffer' + d.onload = function () { + 200 == d.status || (0 == d.status && d.response) + ? b(d.response) + : c() + } + d.onerror = c + d.send(null) + }) + a.print || console.log.bind(console) + var da = a.printErr || console.warn.bind(console) + Object.assign(a, Ta) + Ta = null + var ea + a.wasmBinary && (ea = a.wasmBinary) + 'object' != typeof WebAssembly && y('no native wasm support detected') + var ja, + sa = !1, + ra = 'undefined' != typeof TextDecoder ? new TextDecoder('utf8') : void 0, + W, + ia, + ca, + Y, + ya = [], + oa = [], + xa = [], + va = !1, + ba = 0, + qa = null, + ha = null + var P = 'draco_decoder_gltf.wasm' + P.startsWith('data:application/octet-stream;base64,') || (P = k(P)) + var pd = 0, + qd = { + b: function (e, b, c) { + new A(e).init(b, c) + pd++ + throw e + }, + a: function () { + y('') + }, + d: function (e, b, c) { + ia.copyWithin(e, b, b + c) + }, + c: function (e) { + var b = ia.length + e >>>= 0 + if (2147483648 < e) return !1 + for (var c = 1; 4 >= c; c *= 2) { + var d = b * (1 + 0.2 / c) + d = Math.min(d, e + 100663296) + var g = Math + d = Math.max(e, d) + g = g.min.call(g, 2147483648, d + ((65536 - (d % 65536)) % 65536)) + a: { + d = ja.buffer + try { + ja.grow((g - d.byteLength + 65535) >>> 16) + l() + var t = 1 + break a + } catch (aa) {} + t = void 0 + } + if (t) return !0 + } + return !1 + }, + } + ;(function () { + function e(g, t) { + a.asm = g.exports + ja = a.asm.e + l() + oa.unshift(a.asm.f) + ba-- + a.monitorRunDependencies && a.monitorRunDependencies(ba) + 0 == ba && + (null !== qa && (clearInterval(qa), (qa = null)), + ha && ((g = ha), (ha = null), g())) + } + function b(g) { + e(g.instance) + } + function c(g) { + return q() + .then(function (t) { + return WebAssembly.instantiate(t, d) + }) + .then(function (t) { + return t + }) + .then(g, function (t) { + da('failed to asynchronously prepare wasm: ' + t) + y(t) + }) + } + var d = { a: qd } + ba++ + a.monitorRunDependencies && a.monitorRunDependencies(ba) + if (a.instantiateWasm) + try { + return a.instantiateWasm(d, e) + } catch (g) { + da('Module.instantiateWasm callback failed with error: ' + g), ka(g) + } + ;(function () { + return ea || + 'function' != typeof WebAssembly.instantiateStreaming || + P.startsWith('data:application/octet-stream;base64,') || + P.startsWith('file://') || + Ua || + 'function' != typeof fetch + ? c(b) + : fetch(P, { credentials: 'same-origin' }).then(function (g) { + return WebAssembly.instantiateStreaming(g, d).then( + b, + function (t) { + da('wasm streaming compile failed: ' + t) + da('falling back to ArrayBuffer instantiation') + return c(b) + }, + ) + }) + })().catch(ka) + return {} + })() + var Xa = (a._emscripten_bind_VoidPtr___destroy___0 = function () { + return (Xa = a._emscripten_bind_VoidPtr___destroy___0 = a.asm.h).apply( + null, + arguments, + ) + }), + za = (a._emscripten_bind_DecoderBuffer_DecoderBuffer_0 = function () { + return (za = a._emscripten_bind_DecoderBuffer_DecoderBuffer_0 = + a.asm.i).apply(null, arguments) + }), + Ya = (a._emscripten_bind_DecoderBuffer_Init_2 = function () { + return (Ya = a._emscripten_bind_DecoderBuffer_Init_2 = a.asm.j).apply( + null, + arguments, + ) + }), + Za = (a._emscripten_bind_DecoderBuffer___destroy___0 = function () { + return (Za = a._emscripten_bind_DecoderBuffer___destroy___0 = + a.asm.k).apply(null, arguments) + }), + Aa = (a._emscripten_bind_AttributeTransformData_AttributeTransformData_0 = + function () { + return (Aa = + a._emscripten_bind_AttributeTransformData_AttributeTransformData_0 = + a.asm.l).apply(null, arguments) + }), + $a = (a._emscripten_bind_AttributeTransformData_transform_type_0 = + function () { + return ($a = + a._emscripten_bind_AttributeTransformData_transform_type_0 = + a.asm.m).apply(null, arguments) + }), + ab = (a._emscripten_bind_AttributeTransformData___destroy___0 = + function () { + return (ab = a._emscripten_bind_AttributeTransformData___destroy___0 = + a.asm.n).apply(null, arguments) + }), + Ba = (a._emscripten_bind_GeometryAttribute_GeometryAttribute_0 = + function () { + return (Ba = + a._emscripten_bind_GeometryAttribute_GeometryAttribute_0 = + a.asm.o).apply(null, arguments) + }), + bb = (a._emscripten_bind_GeometryAttribute___destroy___0 = function () { + return (bb = a._emscripten_bind_GeometryAttribute___destroy___0 = + a.asm.p).apply(null, arguments) + }), + Ca = (a._emscripten_bind_PointAttribute_PointAttribute_0 = function () { + return (Ca = a._emscripten_bind_PointAttribute_PointAttribute_0 = + a.asm.q).apply(null, arguments) + }), + cb = (a._emscripten_bind_PointAttribute_size_0 = function () { + return (cb = a._emscripten_bind_PointAttribute_size_0 = a.asm.r).apply( + null, + arguments, + ) + }), + db = (a._emscripten_bind_PointAttribute_GetAttributeTransformData_0 = + function () { + return (db = + a._emscripten_bind_PointAttribute_GetAttributeTransformData_0 = + a.asm.s).apply(null, arguments) + }), + eb = (a._emscripten_bind_PointAttribute_attribute_type_0 = function () { + return (eb = a._emscripten_bind_PointAttribute_attribute_type_0 = + a.asm.t).apply(null, arguments) + }), + fb = (a._emscripten_bind_PointAttribute_data_type_0 = function () { + return (fb = a._emscripten_bind_PointAttribute_data_type_0 = + a.asm.u).apply(null, arguments) + }), + gb = (a._emscripten_bind_PointAttribute_num_components_0 = function () { + return (gb = a._emscripten_bind_PointAttribute_num_components_0 = + a.asm.v).apply(null, arguments) + }), + hb = (a._emscripten_bind_PointAttribute_normalized_0 = function () { + return (hb = a._emscripten_bind_PointAttribute_normalized_0 = + a.asm.w).apply(null, arguments) + }), + ib = (a._emscripten_bind_PointAttribute_byte_stride_0 = function () { + return (ib = a._emscripten_bind_PointAttribute_byte_stride_0 = + a.asm.x).apply(null, arguments) + }), + jb = (a._emscripten_bind_PointAttribute_byte_offset_0 = function () { + return (jb = a._emscripten_bind_PointAttribute_byte_offset_0 = + a.asm.y).apply(null, arguments) + }), + kb = (a._emscripten_bind_PointAttribute_unique_id_0 = function () { + return (kb = a._emscripten_bind_PointAttribute_unique_id_0 = + a.asm.z).apply(null, arguments) + }), + lb = (a._emscripten_bind_PointAttribute___destroy___0 = function () { + return (lb = a._emscripten_bind_PointAttribute___destroy___0 = + a.asm.A).apply(null, arguments) + }), + Da = + (a._emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0 = + function () { + return (Da = + a._emscripten_bind_AttributeQuantizationTransform_AttributeQuantizationTransform_0 = + a.asm.B).apply(null, arguments) + }), + mb = + (a._emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1 = + function () { + return (mb = + a._emscripten_bind_AttributeQuantizationTransform_InitFromAttribute_1 = + a.asm.C).apply(null, arguments) + }), + nb = + (a._emscripten_bind_AttributeQuantizationTransform_quantization_bits_0 = + function () { + return (nb = + a._emscripten_bind_AttributeQuantizationTransform_quantization_bits_0 = + a.asm.D).apply(null, arguments) + }), + ob = (a._emscripten_bind_AttributeQuantizationTransform_min_value_1 = + function () { + return (ob = + a._emscripten_bind_AttributeQuantizationTransform_min_value_1 = + a.asm.E).apply(null, arguments) + }), + pb = (a._emscripten_bind_AttributeQuantizationTransform_range_0 = + function () { + return (pb = + a._emscripten_bind_AttributeQuantizationTransform_range_0 = + a.asm.F).apply(null, arguments) + }), + qb = (a._emscripten_bind_AttributeQuantizationTransform___destroy___0 = + function () { + return (qb = + a._emscripten_bind_AttributeQuantizationTransform___destroy___0 = + a.asm.G).apply(null, arguments) + }), + Ea = + (a._emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0 = + function () { + return (Ea = + a._emscripten_bind_AttributeOctahedronTransform_AttributeOctahedronTransform_0 = + a.asm.H).apply(null, arguments) + }), + rb = + (a._emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1 = + function () { + return (rb = + a._emscripten_bind_AttributeOctahedronTransform_InitFromAttribute_1 = + a.asm.I).apply(null, arguments) + }), + sb = + (a._emscripten_bind_AttributeOctahedronTransform_quantization_bits_0 = + function () { + return (sb = + a._emscripten_bind_AttributeOctahedronTransform_quantization_bits_0 = + a.asm.J).apply(null, arguments) + }), + tb = (a._emscripten_bind_AttributeOctahedronTransform___destroy___0 = + function () { + return (tb = + a._emscripten_bind_AttributeOctahedronTransform___destroy___0 = + a.asm.K).apply(null, arguments) + }), + Fa = (a._emscripten_bind_PointCloud_PointCloud_0 = function () { + return (Fa = a._emscripten_bind_PointCloud_PointCloud_0 = + a.asm.L).apply(null, arguments) + }), + ub = (a._emscripten_bind_PointCloud_num_attributes_0 = function () { + return (ub = a._emscripten_bind_PointCloud_num_attributes_0 = + a.asm.M).apply(null, arguments) + }), + vb = (a._emscripten_bind_PointCloud_num_points_0 = function () { + return (vb = a._emscripten_bind_PointCloud_num_points_0 = + a.asm.N).apply(null, arguments) + }), + wb = (a._emscripten_bind_PointCloud___destroy___0 = function () { + return (wb = a._emscripten_bind_PointCloud___destroy___0 = + a.asm.O).apply(null, arguments) + }), + Ga = (a._emscripten_bind_Mesh_Mesh_0 = function () { + return (Ga = a._emscripten_bind_Mesh_Mesh_0 = a.asm.P).apply( + null, + arguments, + ) + }), + xb = (a._emscripten_bind_Mesh_num_faces_0 = function () { + return (xb = a._emscripten_bind_Mesh_num_faces_0 = a.asm.Q).apply( + null, + arguments, + ) + }), + yb = (a._emscripten_bind_Mesh_num_attributes_0 = function () { + return (yb = a._emscripten_bind_Mesh_num_attributes_0 = a.asm.R).apply( + null, + arguments, + ) + }), + zb = (a._emscripten_bind_Mesh_num_points_0 = function () { + return (zb = a._emscripten_bind_Mesh_num_points_0 = a.asm.S).apply( + null, + arguments, + ) + }), + Ab = (a._emscripten_bind_Mesh___destroy___0 = function () { + return (Ab = a._emscripten_bind_Mesh___destroy___0 = a.asm.T).apply( + null, + arguments, + ) + }), + Ha = (a._emscripten_bind_Metadata_Metadata_0 = function () { + return (Ha = a._emscripten_bind_Metadata_Metadata_0 = a.asm.U).apply( + null, + arguments, + ) + }), + Bb = (a._emscripten_bind_Metadata___destroy___0 = function () { + return (Bb = a._emscripten_bind_Metadata___destroy___0 = a.asm.V).apply( + null, + arguments, + ) + }), + Cb = (a._emscripten_bind_Status_code_0 = function () { + return (Cb = a._emscripten_bind_Status_code_0 = a.asm.W).apply( + null, + arguments, + ) + }), + Db = (a._emscripten_bind_Status_ok_0 = function () { + return (Db = a._emscripten_bind_Status_ok_0 = a.asm.X).apply( + null, + arguments, + ) + }), + Eb = (a._emscripten_bind_Status_error_msg_0 = function () { + return (Eb = a._emscripten_bind_Status_error_msg_0 = a.asm.Y).apply( + null, + arguments, + ) + }), + Fb = (a._emscripten_bind_Status___destroy___0 = function () { + return (Fb = a._emscripten_bind_Status___destroy___0 = a.asm.Z).apply( + null, + arguments, + ) + }), + Ia = (a._emscripten_bind_DracoFloat32Array_DracoFloat32Array_0 = + function () { + return (Ia = + a._emscripten_bind_DracoFloat32Array_DracoFloat32Array_0 = + a.asm._).apply(null, arguments) + }), + Gb = (a._emscripten_bind_DracoFloat32Array_GetValue_1 = function () { + return (Gb = a._emscripten_bind_DracoFloat32Array_GetValue_1 = + a.asm.$).apply(null, arguments) + }), + Hb = (a._emscripten_bind_DracoFloat32Array_size_0 = function () { + return (Hb = a._emscripten_bind_DracoFloat32Array_size_0 = + a.asm.aa).apply(null, arguments) + }), + Ib = (a._emscripten_bind_DracoFloat32Array___destroy___0 = function () { + return (Ib = a._emscripten_bind_DracoFloat32Array___destroy___0 = + a.asm.ba).apply(null, arguments) + }), + Ja = (a._emscripten_bind_DracoInt8Array_DracoInt8Array_0 = function () { + return (Ja = a._emscripten_bind_DracoInt8Array_DracoInt8Array_0 = + a.asm.ca).apply(null, arguments) + }), + Jb = (a._emscripten_bind_DracoInt8Array_GetValue_1 = function () { + return (Jb = a._emscripten_bind_DracoInt8Array_GetValue_1 = + a.asm.da).apply(null, arguments) + }), + Kb = (a._emscripten_bind_DracoInt8Array_size_0 = function () { + return (Kb = a._emscripten_bind_DracoInt8Array_size_0 = a.asm.ea).apply( + null, + arguments, + ) + }), + Lb = (a._emscripten_bind_DracoInt8Array___destroy___0 = function () { + return (Lb = a._emscripten_bind_DracoInt8Array___destroy___0 = + a.asm.fa).apply(null, arguments) + }), + Ka = (a._emscripten_bind_DracoUInt8Array_DracoUInt8Array_0 = function () { + return (Ka = a._emscripten_bind_DracoUInt8Array_DracoUInt8Array_0 = + a.asm.ga).apply(null, arguments) + }), + Mb = (a._emscripten_bind_DracoUInt8Array_GetValue_1 = function () { + return (Mb = a._emscripten_bind_DracoUInt8Array_GetValue_1 = + a.asm.ha).apply(null, arguments) + }), + Nb = (a._emscripten_bind_DracoUInt8Array_size_0 = function () { + return (Nb = a._emscripten_bind_DracoUInt8Array_size_0 = + a.asm.ia).apply(null, arguments) + }), + Ob = (a._emscripten_bind_DracoUInt8Array___destroy___0 = function () { + return (Ob = a._emscripten_bind_DracoUInt8Array___destroy___0 = + a.asm.ja).apply(null, arguments) + }), + La = (a._emscripten_bind_DracoInt16Array_DracoInt16Array_0 = function () { + return (La = a._emscripten_bind_DracoInt16Array_DracoInt16Array_0 = + a.asm.ka).apply(null, arguments) + }), + Pb = (a._emscripten_bind_DracoInt16Array_GetValue_1 = function () { + return (Pb = a._emscripten_bind_DracoInt16Array_GetValue_1 = + a.asm.la).apply(null, arguments) + }), + Qb = (a._emscripten_bind_DracoInt16Array_size_0 = function () { + return (Qb = a._emscripten_bind_DracoInt16Array_size_0 = + a.asm.ma).apply(null, arguments) + }), + Rb = (a._emscripten_bind_DracoInt16Array___destroy___0 = function () { + return (Rb = a._emscripten_bind_DracoInt16Array___destroy___0 = + a.asm.na).apply(null, arguments) + }), + Ma = (a._emscripten_bind_DracoUInt16Array_DracoUInt16Array_0 = + function () { + return (Ma = a._emscripten_bind_DracoUInt16Array_DracoUInt16Array_0 = + a.asm.oa).apply(null, arguments) + }), + Sb = (a._emscripten_bind_DracoUInt16Array_GetValue_1 = function () { + return (Sb = a._emscripten_bind_DracoUInt16Array_GetValue_1 = + a.asm.pa).apply(null, arguments) + }), + Tb = (a._emscripten_bind_DracoUInt16Array_size_0 = function () { + return (Tb = a._emscripten_bind_DracoUInt16Array_size_0 = + a.asm.qa).apply(null, arguments) + }), + Ub = (a._emscripten_bind_DracoUInt16Array___destroy___0 = function () { + return (Ub = a._emscripten_bind_DracoUInt16Array___destroy___0 = + a.asm.ra).apply(null, arguments) + }), + Na = (a._emscripten_bind_DracoInt32Array_DracoInt32Array_0 = function () { + return (Na = a._emscripten_bind_DracoInt32Array_DracoInt32Array_0 = + a.asm.sa).apply(null, arguments) + }), + Vb = (a._emscripten_bind_DracoInt32Array_GetValue_1 = function () { + return (Vb = a._emscripten_bind_DracoInt32Array_GetValue_1 = + a.asm.ta).apply(null, arguments) + }), + Wb = (a._emscripten_bind_DracoInt32Array_size_0 = function () { + return (Wb = a._emscripten_bind_DracoInt32Array_size_0 = + a.asm.ua).apply(null, arguments) + }), + Xb = (a._emscripten_bind_DracoInt32Array___destroy___0 = function () { + return (Xb = a._emscripten_bind_DracoInt32Array___destroy___0 = + a.asm.va).apply(null, arguments) + }), + Oa = (a._emscripten_bind_DracoUInt32Array_DracoUInt32Array_0 = + function () { + return (Oa = a._emscripten_bind_DracoUInt32Array_DracoUInt32Array_0 = + a.asm.wa).apply(null, arguments) + }), + Yb = (a._emscripten_bind_DracoUInt32Array_GetValue_1 = function () { + return (Yb = a._emscripten_bind_DracoUInt32Array_GetValue_1 = + a.asm.xa).apply(null, arguments) + }), + Zb = (a._emscripten_bind_DracoUInt32Array_size_0 = function () { + return (Zb = a._emscripten_bind_DracoUInt32Array_size_0 = + a.asm.ya).apply(null, arguments) + }), + $b = (a._emscripten_bind_DracoUInt32Array___destroy___0 = function () { + return ($b = a._emscripten_bind_DracoUInt32Array___destroy___0 = + a.asm.za).apply(null, arguments) + }), + Pa = (a._emscripten_bind_MetadataQuerier_MetadataQuerier_0 = function () { + return (Pa = a._emscripten_bind_MetadataQuerier_MetadataQuerier_0 = + a.asm.Aa).apply(null, arguments) + }), + ac = (a._emscripten_bind_MetadataQuerier_HasEntry_2 = function () { + return (ac = a._emscripten_bind_MetadataQuerier_HasEntry_2 = + a.asm.Ba).apply(null, arguments) + }), + bc = (a._emscripten_bind_MetadataQuerier_GetIntEntry_2 = function () { + return (bc = a._emscripten_bind_MetadataQuerier_GetIntEntry_2 = + a.asm.Ca).apply(null, arguments) + }), + cc = (a._emscripten_bind_MetadataQuerier_GetIntEntryArray_3 = + function () { + return (cc = a._emscripten_bind_MetadataQuerier_GetIntEntryArray_3 = + a.asm.Da).apply(null, arguments) + }), + dc = (a._emscripten_bind_MetadataQuerier_GetDoubleEntry_2 = function () { + return (dc = a._emscripten_bind_MetadataQuerier_GetDoubleEntry_2 = + a.asm.Ea).apply(null, arguments) + }), + ec = (a._emscripten_bind_MetadataQuerier_GetStringEntry_2 = function () { + return (ec = a._emscripten_bind_MetadataQuerier_GetStringEntry_2 = + a.asm.Fa).apply(null, arguments) + }), + fc = (a._emscripten_bind_MetadataQuerier_NumEntries_1 = function () { + return (fc = a._emscripten_bind_MetadataQuerier_NumEntries_1 = + a.asm.Ga).apply(null, arguments) + }), + gc = (a._emscripten_bind_MetadataQuerier_GetEntryName_2 = function () { + return (gc = a._emscripten_bind_MetadataQuerier_GetEntryName_2 = + a.asm.Ha).apply(null, arguments) + }), + hc = (a._emscripten_bind_MetadataQuerier___destroy___0 = function () { + return (hc = a._emscripten_bind_MetadataQuerier___destroy___0 = + a.asm.Ia).apply(null, arguments) + }), + Qa = (a._emscripten_bind_Decoder_Decoder_0 = function () { + return (Qa = a._emscripten_bind_Decoder_Decoder_0 = a.asm.Ja).apply( + null, + arguments, + ) + }), + ic = (a._emscripten_bind_Decoder_DecodeArrayToPointCloud_3 = function () { + return (ic = a._emscripten_bind_Decoder_DecodeArrayToPointCloud_3 = + a.asm.Ka).apply(null, arguments) + }), + jc = (a._emscripten_bind_Decoder_DecodeArrayToMesh_3 = function () { + return (jc = a._emscripten_bind_Decoder_DecodeArrayToMesh_3 = + a.asm.La).apply(null, arguments) + }), + kc = (a._emscripten_bind_Decoder_GetAttributeId_2 = function () { + return (kc = a._emscripten_bind_Decoder_GetAttributeId_2 = + a.asm.Ma).apply(null, arguments) + }), + lc = (a._emscripten_bind_Decoder_GetAttributeIdByName_2 = function () { + return (lc = a._emscripten_bind_Decoder_GetAttributeIdByName_2 = + a.asm.Na).apply(null, arguments) + }), + mc = (a._emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3 = + function () { + return (mc = + a._emscripten_bind_Decoder_GetAttributeIdByMetadataEntry_3 = + a.asm.Oa).apply(null, arguments) + }), + nc = (a._emscripten_bind_Decoder_GetAttribute_2 = function () { + return (nc = a._emscripten_bind_Decoder_GetAttribute_2 = + a.asm.Pa).apply(null, arguments) + }), + oc = (a._emscripten_bind_Decoder_GetAttributeByUniqueId_2 = function () { + return (oc = a._emscripten_bind_Decoder_GetAttributeByUniqueId_2 = + a.asm.Qa).apply(null, arguments) + }), + pc = (a._emscripten_bind_Decoder_GetMetadata_1 = function () { + return (pc = a._emscripten_bind_Decoder_GetMetadata_1 = a.asm.Ra).apply( + null, + arguments, + ) + }), + qc = (a._emscripten_bind_Decoder_GetAttributeMetadata_2 = function () { + return (qc = a._emscripten_bind_Decoder_GetAttributeMetadata_2 = + a.asm.Sa).apply(null, arguments) + }), + rc = (a._emscripten_bind_Decoder_GetFaceFromMesh_3 = function () { + return (rc = a._emscripten_bind_Decoder_GetFaceFromMesh_3 = + a.asm.Ta).apply(null, arguments) + }), + sc = (a._emscripten_bind_Decoder_GetTriangleStripsFromMesh_2 = + function () { + return (sc = a._emscripten_bind_Decoder_GetTriangleStripsFromMesh_2 = + a.asm.Ua).apply(null, arguments) + }), + tc = (a._emscripten_bind_Decoder_GetTrianglesUInt16Array_3 = function () { + return (tc = a._emscripten_bind_Decoder_GetTrianglesUInt16Array_3 = + a.asm.Va).apply(null, arguments) + }), + uc = (a._emscripten_bind_Decoder_GetTrianglesUInt32Array_3 = function () { + return (uc = a._emscripten_bind_Decoder_GetTrianglesUInt32Array_3 = + a.asm.Wa).apply(null, arguments) + }), + vc = (a._emscripten_bind_Decoder_GetAttributeFloat_3 = function () { + return (vc = a._emscripten_bind_Decoder_GetAttributeFloat_3 = + a.asm.Xa).apply(null, arguments) + }), + wc = (a._emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3 = + function () { + return (wc = + a._emscripten_bind_Decoder_GetAttributeFloatForAllPoints_3 = + a.asm.Ya).apply(null, arguments) + }), + xc = (a._emscripten_bind_Decoder_GetAttributeIntForAllPoints_3 = + function () { + return (xc = + a._emscripten_bind_Decoder_GetAttributeIntForAllPoints_3 = + a.asm.Za).apply(null, arguments) + }), + yc = (a._emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3 = + function () { + return (yc = + a._emscripten_bind_Decoder_GetAttributeInt8ForAllPoints_3 = + a.asm._a).apply(null, arguments) + }), + zc = (a._emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3 = + function () { + return (zc = + a._emscripten_bind_Decoder_GetAttributeUInt8ForAllPoints_3 = + a.asm.$a).apply(null, arguments) + }), + Ac = (a._emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3 = + function () { + return (Ac = + a._emscripten_bind_Decoder_GetAttributeInt16ForAllPoints_3 = + a.asm.ab).apply(null, arguments) + }), + Bc = (a._emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3 = + function () { + return (Bc = + a._emscripten_bind_Decoder_GetAttributeUInt16ForAllPoints_3 = + a.asm.bb).apply(null, arguments) + }), + Cc = (a._emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3 = + function () { + return (Cc = + a._emscripten_bind_Decoder_GetAttributeInt32ForAllPoints_3 = + a.asm.cb).apply(null, arguments) + }), + Dc = (a._emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3 = + function () { + return (Dc = + a._emscripten_bind_Decoder_GetAttributeUInt32ForAllPoints_3 = + a.asm.db).apply(null, arguments) + }), + Ec = (a._emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5 = + function () { + return (Ec = + a._emscripten_bind_Decoder_GetAttributeDataArrayForAllPoints_5 = + a.asm.eb).apply(null, arguments) + }), + Fc = (a._emscripten_bind_Decoder_SkipAttributeTransform_1 = function () { + return (Fc = a._emscripten_bind_Decoder_SkipAttributeTransform_1 = + a.asm.fb).apply(null, arguments) + }), + Gc = (a._emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1 = + function () { + return (Gc = + a._emscripten_bind_Decoder_GetEncodedGeometryType_Deprecated_1 = + a.asm.gb).apply(null, arguments) + }), + Hc = (a._emscripten_bind_Decoder_DecodeBufferToPointCloud_2 = + function () { + return (Hc = a._emscripten_bind_Decoder_DecodeBufferToPointCloud_2 = + a.asm.hb).apply(null, arguments) + }), + Ic = (a._emscripten_bind_Decoder_DecodeBufferToMesh_2 = function () { + return (Ic = a._emscripten_bind_Decoder_DecodeBufferToMesh_2 = + a.asm.ib).apply(null, arguments) + }), + Jc = (a._emscripten_bind_Decoder___destroy___0 = function () { + return (Jc = a._emscripten_bind_Decoder___destroy___0 = a.asm.jb).apply( + null, + arguments, + ) + }), + Kc = + (a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM = + function () { + return (Kc = + a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_INVALID_TRANSFORM = + a.asm.kb).apply(null, arguments) + }), + Lc = + (a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM = + function () { + return (Lc = + a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_NO_TRANSFORM = + a.asm.lb).apply(null, arguments) + }), + Mc = + (a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM = + function () { + return (Mc = + a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_QUANTIZATION_TRANSFORM = + a.asm.mb).apply(null, arguments) + }), + Nc = + (a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM = + function () { + return (Nc = + a._emscripten_enum_draco_AttributeTransformType_ATTRIBUTE_OCTAHEDRON_TRANSFORM = + a.asm.nb).apply(null, arguments) + }), + Oc = (a._emscripten_enum_draco_GeometryAttribute_Type_INVALID = + function () { + return (Oc = a._emscripten_enum_draco_GeometryAttribute_Type_INVALID = + a.asm.ob).apply(null, arguments) + }), + Pc = (a._emscripten_enum_draco_GeometryAttribute_Type_POSITION = + function () { + return (Pc = + a._emscripten_enum_draco_GeometryAttribute_Type_POSITION = + a.asm.pb).apply(null, arguments) + }), + Qc = (a._emscripten_enum_draco_GeometryAttribute_Type_NORMAL = + function () { + return (Qc = a._emscripten_enum_draco_GeometryAttribute_Type_NORMAL = + a.asm.qb).apply(null, arguments) + }), + Rc = (a._emscripten_enum_draco_GeometryAttribute_Type_COLOR = + function () { + return (Rc = a._emscripten_enum_draco_GeometryAttribute_Type_COLOR = + a.asm.rb).apply(null, arguments) + }), + Sc = (a._emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD = + function () { + return (Sc = + a._emscripten_enum_draco_GeometryAttribute_Type_TEX_COORD = + a.asm.sb).apply(null, arguments) + }), + Tc = (a._emscripten_enum_draco_GeometryAttribute_Type_GENERIC = + function () { + return (Tc = a._emscripten_enum_draco_GeometryAttribute_Type_GENERIC = + a.asm.tb).apply(null, arguments) + }), + Uc = (a._emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE = + function () { + return (Uc = + a._emscripten_enum_draco_EncodedGeometryType_INVALID_GEOMETRY_TYPE = + a.asm.ub).apply(null, arguments) + }), + Vc = (a._emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD = + function () { + return (Vc = + a._emscripten_enum_draco_EncodedGeometryType_POINT_CLOUD = + a.asm.vb).apply(null, arguments) + }), + Wc = (a._emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH = + function () { + return (Wc = + a._emscripten_enum_draco_EncodedGeometryType_TRIANGULAR_MESH = + a.asm.wb).apply(null, arguments) + }), + Xc = (a._emscripten_enum_draco_DataType_DT_INVALID = function () { + return (Xc = a._emscripten_enum_draco_DataType_DT_INVALID = + a.asm.xb).apply(null, arguments) + }), + Yc = (a._emscripten_enum_draco_DataType_DT_INT8 = function () { + return (Yc = a._emscripten_enum_draco_DataType_DT_INT8 = + a.asm.yb).apply(null, arguments) + }), + Zc = (a._emscripten_enum_draco_DataType_DT_UINT8 = function () { + return (Zc = a._emscripten_enum_draco_DataType_DT_UINT8 = + a.asm.zb).apply(null, arguments) + }), + $c = (a._emscripten_enum_draco_DataType_DT_INT16 = function () { + return ($c = a._emscripten_enum_draco_DataType_DT_INT16 = + a.asm.Ab).apply(null, arguments) + }), + ad = (a._emscripten_enum_draco_DataType_DT_UINT16 = function () { + return (ad = a._emscripten_enum_draco_DataType_DT_UINT16 = + a.asm.Bb).apply(null, arguments) + }), + bd = (a._emscripten_enum_draco_DataType_DT_INT32 = function () { + return (bd = a._emscripten_enum_draco_DataType_DT_INT32 = + a.asm.Cb).apply(null, arguments) + }), + cd = (a._emscripten_enum_draco_DataType_DT_UINT32 = function () { + return (cd = a._emscripten_enum_draco_DataType_DT_UINT32 = + a.asm.Db).apply(null, arguments) + }), + dd = (a._emscripten_enum_draco_DataType_DT_INT64 = function () { + return (dd = a._emscripten_enum_draco_DataType_DT_INT64 = + a.asm.Eb).apply(null, arguments) + }), + ed = (a._emscripten_enum_draco_DataType_DT_UINT64 = function () { + return (ed = a._emscripten_enum_draco_DataType_DT_UINT64 = + a.asm.Fb).apply(null, arguments) + }), + fd = (a._emscripten_enum_draco_DataType_DT_FLOAT32 = function () { + return (fd = a._emscripten_enum_draco_DataType_DT_FLOAT32 = + a.asm.Gb).apply(null, arguments) + }), + gd = (a._emscripten_enum_draco_DataType_DT_FLOAT64 = function () { + return (gd = a._emscripten_enum_draco_DataType_DT_FLOAT64 = + a.asm.Hb).apply(null, arguments) + }), + hd = (a._emscripten_enum_draco_DataType_DT_BOOL = function () { + return (hd = a._emscripten_enum_draco_DataType_DT_BOOL = + a.asm.Ib).apply(null, arguments) + }), + id = (a._emscripten_enum_draco_DataType_DT_TYPES_COUNT = function () { + return (id = a._emscripten_enum_draco_DataType_DT_TYPES_COUNT = + a.asm.Jb).apply(null, arguments) + }), + jd = (a._emscripten_enum_draco_StatusCode_OK = function () { + return (jd = a._emscripten_enum_draco_StatusCode_OK = a.asm.Kb).apply( + null, + arguments, + ) + }), + kd = (a._emscripten_enum_draco_StatusCode_DRACO_ERROR = function () { + return (kd = a._emscripten_enum_draco_StatusCode_DRACO_ERROR = + a.asm.Lb).apply(null, arguments) + }), + ld = (a._emscripten_enum_draco_StatusCode_IO_ERROR = function () { + return (ld = a._emscripten_enum_draco_StatusCode_IO_ERROR = + a.asm.Mb).apply(null, arguments) + }), + md = (a._emscripten_enum_draco_StatusCode_INVALID_PARAMETER = + function () { + return (md = a._emscripten_enum_draco_StatusCode_INVALID_PARAMETER = + a.asm.Nb).apply(null, arguments) + }), + nd = (a._emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION = + function () { + return (nd = a._emscripten_enum_draco_StatusCode_UNSUPPORTED_VERSION = + a.asm.Ob).apply(null, arguments) + }), + od = (a._emscripten_enum_draco_StatusCode_UNKNOWN_VERSION = function () { + return (od = a._emscripten_enum_draco_StatusCode_UNKNOWN_VERSION = + a.asm.Pb).apply(null, arguments) + }) + a._malloc = function () { + return (a._malloc = a.asm.Qb).apply(null, arguments) + } + a._free = function () { + return (a._free = a.asm.Rb).apply(null, arguments) + } + var ua = function () { + return (ua = a.asm.Sb).apply(null, arguments) + } + a.___start_em_js = 11660 + a.___stop_em_js = 11758 + var la + ha = function b() { + la || F() + la || (ha = b) + } + if (a.preInit) + for ( + 'function' == typeof a.preInit && (a.preInit = [a.preInit]); + 0 < a.preInit.length; + + ) + a.preInit.pop()() + F() + v.prototype = Object.create(v.prototype) + v.prototype.constructor = v + v.prototype.__class__ = v + v.__cache__ = {} + a.WrapperObject = v + a.getCache = w + a.wrapPointer = B + a.castObject = function (b, c) { + return B(b.ptr, c) + } + a.NULL = B(0) + a.destroy = function (b) { + if (!b.__destroy__) + throw 'Error: Cannot destroy object. (Did you create it yourself?)' + b.__destroy__() + delete w(b.__class__)[b.ptr] + } + a.compare = function (b, c) { + return b.ptr === c.ptr + } + a.getPointer = function (b) { + return b.ptr + } + a.getClass = function (b) { + return b.__class__ + } + var r = { + buffer: 0, + size: 0, + pos: 0, + temps: [], + needed: 0, + prepare: function () { + if (r.needed) { + for (var b = 0; b < r.temps.length; b++) a._free(r.temps[b]) + r.temps.length = 0 + a._free(r.buffer) + r.buffer = 0 + r.size += r.needed + r.needed = 0 + } + r.buffer || + ((r.size += 128), + (r.buffer = a._malloc(r.size)), + r.buffer || y(void 0)) + r.pos = 0 + }, + alloc: function (b, c) { + r.buffer || y(void 0) + b = b.length * c.BYTES_PER_ELEMENT + b = (b + 7) & -8 + r.pos + b >= r.size + ? (0 < b || y(void 0), + (r.needed += b), + (c = a._malloc(b)), + r.temps.push(c)) + : ((c = r.buffer + r.pos), (r.pos += b)) + return c + }, + copy: function (b, c, d) { + d >>>= 0 + switch (c.BYTES_PER_ELEMENT) { + case 2: + d >>>= 1 + break + case 4: + d >>>= 2 + break + case 8: + d >>>= 3 + } + for (var g = 0; g < b.length; g++) c[d + g] = b[g] + }, + } + X.prototype = Object.create(v.prototype) + X.prototype.constructor = X + X.prototype.__class__ = X + X.__cache__ = {} + a.VoidPtr = X + X.prototype.__destroy__ = X.prototype.__destroy__ = function () { + Xa(this.ptr) + } + S.prototype = Object.create(v.prototype) + S.prototype.constructor = S + S.prototype.__class__ = S + S.__cache__ = {} + a.DecoderBuffer = S + S.prototype.Init = S.prototype.Init = function (b, c) { + var d = this.ptr + r.prepare() + 'object' == typeof b && (b = Z(b)) + c && 'object' === typeof c && (c = c.ptr) + Ya(d, b, c) + } + S.prototype.__destroy__ = S.prototype.__destroy__ = function () { + Za(this.ptr) + } + Q.prototype = Object.create(v.prototype) + Q.prototype.constructor = Q + Q.prototype.__class__ = Q + Q.__cache__ = {} + a.AttributeTransformData = Q + Q.prototype.transform_type = Q.prototype.transform_type = function () { + return $a(this.ptr) + } + Q.prototype.__destroy__ = Q.prototype.__destroy__ = function () { + ab(this.ptr) + } + V.prototype = Object.create(v.prototype) + V.prototype.constructor = V + V.prototype.__class__ = V + V.__cache__ = {} + a.GeometryAttribute = V + V.prototype.__destroy__ = V.prototype.__destroy__ = function () { + bb(this.ptr) + } + x.prototype = Object.create(v.prototype) + x.prototype.constructor = x + x.prototype.__class__ = x + x.__cache__ = {} + a.PointAttribute = x + x.prototype.size = x.prototype.size = function () { + return cb(this.ptr) + } + x.prototype.GetAttributeTransformData = + x.prototype.GetAttributeTransformData = function () { + return B(db(this.ptr), Q) + } + x.prototype.attribute_type = x.prototype.attribute_type = function () { + return eb(this.ptr) + } + x.prototype.data_type = x.prototype.data_type = function () { + return fb(this.ptr) + } + x.prototype.num_components = x.prototype.num_components = function () { + return gb(this.ptr) + } + x.prototype.normalized = x.prototype.normalized = function () { + return !!hb(this.ptr) + } + x.prototype.byte_stride = x.prototype.byte_stride = function () { + return ib(this.ptr) + } + x.prototype.byte_offset = x.prototype.byte_offset = function () { + return jb(this.ptr) + } + x.prototype.unique_id = x.prototype.unique_id = function () { + return kb(this.ptr) + } + x.prototype.__destroy__ = x.prototype.__destroy__ = function () { + lb(this.ptr) + } + D.prototype = Object.create(v.prototype) + D.prototype.constructor = D + D.prototype.__class__ = D + D.__cache__ = {} + a.AttributeQuantizationTransform = D + D.prototype.InitFromAttribute = D.prototype.InitFromAttribute = function ( + b, + ) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return !!mb(c, b) + } + D.prototype.quantization_bits = D.prototype.quantization_bits = + function () { + return nb(this.ptr) + } + D.prototype.min_value = D.prototype.min_value = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return ob(c, b) + } + D.prototype.range = D.prototype.range = function () { + return pb(this.ptr) + } + D.prototype.__destroy__ = D.prototype.__destroy__ = function () { + qb(this.ptr) + } + G.prototype = Object.create(v.prototype) + G.prototype.constructor = G + G.prototype.__class__ = G + G.__cache__ = {} + a.AttributeOctahedronTransform = G + G.prototype.InitFromAttribute = G.prototype.InitFromAttribute = function ( + b, + ) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return !!rb(c, b) + } + G.prototype.quantization_bits = G.prototype.quantization_bits = + function () { + return sb(this.ptr) + } + G.prototype.__destroy__ = G.prototype.__destroy__ = function () { + tb(this.ptr) + } + H.prototype = Object.create(v.prototype) + H.prototype.constructor = H + H.prototype.__class__ = H + H.__cache__ = {} + a.PointCloud = H + H.prototype.num_attributes = H.prototype.num_attributes = function () { + return ub(this.ptr) + } + H.prototype.num_points = H.prototype.num_points = function () { + return vb(this.ptr) + } + H.prototype.__destroy__ = H.prototype.__destroy__ = function () { + wb(this.ptr) + } + E.prototype = Object.create(v.prototype) + E.prototype.constructor = E + E.prototype.__class__ = E + E.__cache__ = {} + a.Mesh = E + E.prototype.num_faces = E.prototype.num_faces = function () { + return xb(this.ptr) + } + E.prototype.num_attributes = E.prototype.num_attributes = function () { + return yb(this.ptr) + } + E.prototype.num_points = E.prototype.num_points = function () { + return zb(this.ptr) + } + E.prototype.__destroy__ = E.prototype.__destroy__ = function () { + Ab(this.ptr) + } + T.prototype = Object.create(v.prototype) + T.prototype.constructor = T + T.prototype.__class__ = T + T.__cache__ = {} + a.Metadata = T + T.prototype.__destroy__ = T.prototype.__destroy__ = function () { + Bb(this.ptr) + } + C.prototype = Object.create(v.prototype) + C.prototype.constructor = C + C.prototype.__class__ = C + C.__cache__ = {} + a.Status = C + C.prototype.code = C.prototype.code = function () { + return Cb(this.ptr) + } + C.prototype.ok = C.prototype.ok = function () { + return !!Db(this.ptr) + } + C.prototype.error_msg = C.prototype.error_msg = function () { + return p(Eb(this.ptr)) + } + C.prototype.__destroy__ = C.prototype.__destroy__ = function () { + Fb(this.ptr) + } + I.prototype = Object.create(v.prototype) + I.prototype.constructor = I + I.prototype.__class__ = I + I.__cache__ = {} + a.DracoFloat32Array = I + I.prototype.GetValue = I.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Gb(c, b) + } + I.prototype.size = I.prototype.size = function () { + return Hb(this.ptr) + } + I.prototype.__destroy__ = I.prototype.__destroy__ = function () { + Ib(this.ptr) + } + J.prototype = Object.create(v.prototype) + J.prototype.constructor = J + J.prototype.__class__ = J + J.__cache__ = {} + a.DracoInt8Array = J + J.prototype.GetValue = J.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Jb(c, b) + } + J.prototype.size = J.prototype.size = function () { + return Kb(this.ptr) + } + J.prototype.__destroy__ = J.prototype.__destroy__ = function () { + Lb(this.ptr) + } + K.prototype = Object.create(v.prototype) + K.prototype.constructor = K + K.prototype.__class__ = K + K.__cache__ = {} + a.DracoUInt8Array = K + K.prototype.GetValue = K.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Mb(c, b) + } + K.prototype.size = K.prototype.size = function () { + return Nb(this.ptr) + } + K.prototype.__destroy__ = K.prototype.__destroy__ = function () { + Ob(this.ptr) + } + L.prototype = Object.create(v.prototype) + L.prototype.constructor = L + L.prototype.__class__ = L + L.__cache__ = {} + a.DracoInt16Array = L + L.prototype.GetValue = L.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Pb(c, b) + } + L.prototype.size = L.prototype.size = function () { + return Qb(this.ptr) + } + L.prototype.__destroy__ = L.prototype.__destroy__ = function () { + Rb(this.ptr) + } + M.prototype = Object.create(v.prototype) + M.prototype.constructor = M + M.prototype.__class__ = M + M.__cache__ = {} + a.DracoUInt16Array = M + M.prototype.GetValue = M.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Sb(c, b) + } + M.prototype.size = M.prototype.size = function () { + return Tb(this.ptr) + } + M.prototype.__destroy__ = M.prototype.__destroy__ = function () { + Ub(this.ptr) + } + N.prototype = Object.create(v.prototype) + N.prototype.constructor = N + N.prototype.__class__ = N + N.__cache__ = {} + a.DracoInt32Array = N + N.prototype.GetValue = N.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Vb(c, b) + } + N.prototype.size = N.prototype.size = function () { + return Wb(this.ptr) + } + N.prototype.__destroy__ = N.prototype.__destroy__ = function () { + Xb(this.ptr) + } + O.prototype = Object.create(v.prototype) + O.prototype.constructor = O + O.prototype.__class__ = O + O.__cache__ = {} + a.DracoUInt32Array = O + O.prototype.GetValue = O.prototype.GetValue = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Yb(c, b) + } + O.prototype.size = O.prototype.size = function () { + return Zb(this.ptr) + } + O.prototype.__destroy__ = O.prototype.__destroy__ = function () { + $b(this.ptr) + } + z.prototype = Object.create(v.prototype) + z.prototype.constructor = z + z.prototype.__class__ = z + z.__cache__ = {} + a.MetadataQuerier = z + z.prototype.HasEntry = z.prototype.HasEntry = function (b, c) { + var d = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + return !!ac(d, b, c) + } + z.prototype.GetIntEntry = z.prototype.GetIntEntry = function (b, c) { + var d = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + return bc(d, b, c) + } + z.prototype.GetIntEntryArray = z.prototype.GetIntEntryArray = function ( + b, + c, + d, + ) { + var g = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + d && 'object' === typeof d && (d = d.ptr) + cc(g, b, c, d) + } + z.prototype.GetDoubleEntry = z.prototype.GetDoubleEntry = function (b, c) { + var d = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + return dc(d, b, c) + } + z.prototype.GetStringEntry = z.prototype.GetStringEntry = function (b, c) { + var d = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + return p(ec(d, b, c)) + } + z.prototype.NumEntries = z.prototype.NumEntries = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return fc(c, b) + } + z.prototype.GetEntryName = z.prototype.GetEntryName = function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return p(gc(d, b, c)) + } + z.prototype.__destroy__ = z.prototype.__destroy__ = function () { + hc(this.ptr) + } + m.prototype = Object.create(v.prototype) + m.prototype.constructor = m + m.prototype.__class__ = m + m.__cache__ = {} + a.Decoder = m + m.prototype.DecodeArrayToPointCloud = m.prototype.DecodeArrayToPointCloud = + function (b, c, d) { + var g = this.ptr + r.prepare() + 'object' == typeof b && (b = Z(b)) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return B(ic(g, b, c, d), C) + } + m.prototype.DecodeArrayToMesh = m.prototype.DecodeArrayToMesh = function ( + b, + c, + d, + ) { + var g = this.ptr + r.prepare() + 'object' == typeof b && (b = Z(b)) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return B(jc(g, b, c, d), C) + } + m.prototype.GetAttributeId = m.prototype.GetAttributeId = function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return kc(d, b, c) + } + m.prototype.GetAttributeIdByName = m.prototype.GetAttributeIdByName = + function (b, c) { + var d = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + return lc(d, b, c) + } + m.prototype.GetAttributeIdByMetadataEntry = + m.prototype.GetAttributeIdByMetadataEntry = function (b, c, d) { + var g = this.ptr + r.prepare() + b && 'object' === typeof b && (b = b.ptr) + c = c && 'object' === typeof c ? c.ptr : R(c) + d = d && 'object' === typeof d ? d.ptr : R(d) + return mc(g, b, c, d) + } + m.prototype.GetAttribute = m.prototype.GetAttribute = function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return B(nc(d, b, c), x) + } + m.prototype.GetAttributeByUniqueId = m.prototype.GetAttributeByUniqueId = + function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return B(oc(d, b, c), x) + } + m.prototype.GetMetadata = m.prototype.GetMetadata = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return B(pc(c, b), T) + } + m.prototype.GetAttributeMetadata = m.prototype.GetAttributeMetadata = + function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return B(qc(d, b, c), T) + } + m.prototype.GetFaceFromMesh = m.prototype.GetFaceFromMesh = function ( + b, + c, + d, + ) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!rc(g, b, c, d) + } + m.prototype.GetTriangleStripsFromMesh = + m.prototype.GetTriangleStripsFromMesh = function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return sc(d, b, c) + } + m.prototype.GetTrianglesUInt16Array = m.prototype.GetTrianglesUInt16Array = + function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!tc(g, b, c, d) + } + m.prototype.GetTrianglesUInt32Array = m.prototype.GetTrianglesUInt32Array = + function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!uc(g, b, c, d) + } + m.prototype.GetAttributeFloat = m.prototype.GetAttributeFloat = function ( + b, + c, + d, + ) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!vc(g, b, c, d) + } + m.prototype.GetAttributeFloatForAllPoints = + m.prototype.GetAttributeFloatForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!wc(g, b, c, d) + } + m.prototype.GetAttributeIntForAllPoints = + m.prototype.GetAttributeIntForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!xc(g, b, c, d) + } + m.prototype.GetAttributeInt8ForAllPoints = + m.prototype.GetAttributeInt8ForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!yc(g, b, c, d) + } + m.prototype.GetAttributeUInt8ForAllPoints = + m.prototype.GetAttributeUInt8ForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!zc(g, b, c, d) + } + m.prototype.GetAttributeInt16ForAllPoints = + m.prototype.GetAttributeInt16ForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Ac(g, b, c, d) + } + m.prototype.GetAttributeUInt16ForAllPoints = + m.prototype.GetAttributeUInt16ForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Bc(g, b, c, d) + } + m.prototype.GetAttributeInt32ForAllPoints = + m.prototype.GetAttributeInt32ForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Cc(g, b, c, d) + } + m.prototype.GetAttributeUInt32ForAllPoints = + m.prototype.GetAttributeUInt32ForAllPoints = function (b, c, d) { + var g = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + return !!Dc(g, b, c, d) + } + m.prototype.GetAttributeDataArrayForAllPoints = + m.prototype.GetAttributeDataArrayForAllPoints = function (b, c, d, g, t) { + var aa = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + d && 'object' === typeof d && (d = d.ptr) + g && 'object' === typeof g && (g = g.ptr) + t && 'object' === typeof t && (t = t.ptr) + return !!Ec(aa, b, c, d, g, t) + } + m.prototype.SkipAttributeTransform = m.prototype.SkipAttributeTransform = + function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + Fc(c, b) + } + m.prototype.GetEncodedGeometryType_Deprecated = + m.prototype.GetEncodedGeometryType_Deprecated = function (b) { + var c = this.ptr + b && 'object' === typeof b && (b = b.ptr) + return Gc(c, b) + } + m.prototype.DecodeBufferToPointCloud = + m.prototype.DecodeBufferToPointCloud = function (b, c) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return B(Hc(d, b, c), C) + } + m.prototype.DecodeBufferToMesh = m.prototype.DecodeBufferToMesh = function ( + b, + c, + ) { + var d = this.ptr + b && 'object' === typeof b && (b = b.ptr) + c && 'object' === typeof c && (c = c.ptr) + return B(Ic(d, b, c), C) + } + m.prototype.__destroy__ = m.prototype.__destroy__ = function () { + Jc(this.ptr) + } + ;(function () { + function b() { + a.ATTRIBUTE_INVALID_TRANSFORM = Kc() + a.ATTRIBUTE_NO_TRANSFORM = Lc() + a.ATTRIBUTE_QUANTIZATION_TRANSFORM = Mc() + a.ATTRIBUTE_OCTAHEDRON_TRANSFORM = Nc() + a.INVALID = Oc() + a.POSITION = Pc() + a.NORMAL = Qc() + a.COLOR = Rc() + a.TEX_COORD = Sc() + a.GENERIC = Tc() + a.INVALID_GEOMETRY_TYPE = Uc() + a.POINT_CLOUD = Vc() + a.TRIANGULAR_MESH = Wc() + a.DT_INVALID = Xc() + a.DT_INT8 = Yc() + a.DT_UINT8 = Zc() + a.DT_INT16 = $c() + a.DT_UINT16 = ad() + a.DT_INT32 = bd() + a.DT_UINT32 = cd() + a.DT_INT64 = dd() + a.DT_UINT64 = ed() + a.DT_FLOAT32 = fd() + a.DT_FLOAT64 = gd() + a.DT_BOOL = hd() + a.DT_TYPES_COUNT = id() + a.OK = jd() + a.DRACO_ERROR = kd() + a.IO_ERROR = ld() + a.INVALID_PARAMETER = md() + a.UNSUPPORTED_VERSION = nd() + a.UNKNOWN_VERSION = od() + } + va ? b() : oa.unshift(b) + })() + if ('function' === typeof a.onModuleParsed) a.onModuleParsed() + a.Decoder.prototype.GetEncodedGeometryType = function (b) { + if (b.__class__ && b.__class__ === a.DecoderBuffer) + return a.Decoder.prototype.GetEncodedGeometryType_Deprecated(b) + if (8 > b.byteLength) return a.INVALID_GEOMETRY_TYPE + switch (b[7]) { + case 0: + return a.POINT_CLOUD + case 1: + return a.TRIANGULAR_MESH + default: + return a.INVALID_GEOMETRY_TYPE + } + } + return n.ready + } +})() +'object' === typeof exports && 'object' === typeof module + ? (module.exports = DracoDecoderModule) + : 'function' === typeof define && define.amd + ? define([], function () { + return DracoDecoderModule + }) + : 'object' === typeof exports && + (exports.DracoDecoderModule = DracoDecoderModule) diff --git a/public/images/favicon/site.webmanifest b/public/images/favicon/site.webmanifest index 3d1ea397..9371db60 100644 --- a/public/images/favicon/site.webmanifest +++ b/public/images/favicon/site.webmanifest @@ -1,19 +1,19 @@ { - "name": "OpenPV", - "short_name": "OpenPV", - "icons": [ - { - "src": "/images/favicon/android-chrome-192x192.png", - "sizes": "192x192", - "type": "image/png" - }, - { - "src": "/images/favicon/android-chrome-512x512.png", - "sizes": "512x512", - "type": "image/png" - } - ], - "theme_color": "#2f728f", - "background_color": "#2f728f", - "display": "standalone" + "name": "OpenPV", + "short_name": "OpenPV", + "icons": [ + { + "src": "/images/favicon/android-chrome-192x192.png", + "sizes": "192x192", + "type": "image/png" + }, + { + "src": "/images/favicon/android-chrome-512x512.png", + "sizes": "512x512", + "type": "image/png" + } + ], + "theme_color": "#2f728f", + "background_color": "#2f728f", + "display": "standalone" } diff --git a/src/Main.jsx b/src/Main.jsx index a1ccb62d..90de3c04 100644 --- a/src/Main.jsx +++ b/src/Main.jsx @@ -1,16 +1,16 @@ -import { Box } from "@chakra-ui/react" -import PropTypes from "prop-types" -import React from "react" -import { Helmet, HelmetProvider } from "react-helmet-async" +import { Box } from '@chakra-ui/react' +import PropTypes from 'prop-types' +import React from 'react' +import { Helmet, HelmetProvider } from 'react-helmet-async' -import Navigation from "./components/Template/Navigation" +import Navigation from './components/Template/Navigation' const Main = (props) => ( - + {props.title && {props.title}} - - + + @@ -33,7 +33,7 @@ Main.defaultProps = { children: null, fullPage: false, title: null, - description: "Ermittle das Potential für eine Solaranlage.", + description: 'Ermittle das Potential für eine Solaranlage.', } export default Main @@ -41,29 +41,29 @@ export default Main const Layout = ({ children }) => { return ( {children} diff --git a/src/components/ErrorMessages/WrongAdress.jsx b/src/components/ErrorMessages/WrongAdress.jsx index 4fef6dd0..7aaa2f02 100644 --- a/src/components/ErrorMessages/WrongAdress.jsx +++ b/src/components/ErrorMessages/WrongAdress.jsx @@ -1,15 +1,15 @@ -import { Card, CardBody, CardHeader, Heading, Image } from "@chakra-ui/react" -import React from "react" -import { useTranslation } from "react-i18next" +import { Card, CardBody, CardHeader, Heading } from '@chakra-ui/react' +import React from 'react' +import { useTranslation } from 'react-i18next' function WrongAdress() { const { t } = useTranslation() return ( - {t("errorMessage.header")} + {t('errorMessage.header')} - {t("errorMessage.wrongAdress")} + {t('errorMessage.wrongAdress')} ) } diff --git a/src/components/Footer.jsx b/src/components/Footer.jsx index 219feecb..d85c7b68 100644 --- a/src/components/Footer.jsx +++ b/src/components/Footer.jsx @@ -7,16 +7,16 @@ import { ModalHeader, ModalOverlay, useDisclosure, -} from "@chakra-ui/react" -import i18n from "i18next" -import React from "react" -import { useTranslation } from "react-i18next" -import { attributions, licenseLinks } from "../data/dataLicense" +} from '@chakra-ui/react' +import i18n from 'i18next' +import React from 'react' +import { useTranslation } from 'react-i18next' +import { attributions, licenseLinks } from '../data/dataLicense' const WrapperForLaptopDevice = ({ children }) => { return ( -

-
{children}
+
+
{children}
) } @@ -24,9 +24,9 @@ const WrapperForLaptopDevice = ({ children }) => { const WrapperForTouchDevice = ({ children }) => { const { isOpen, onOpen, onClose } = useDisclosure() return ( -
-
- @@ -56,33 +56,33 @@ export default function Footer({ federalState, frontendState }) { const footerContent = ( <> - {(frontendState == "Map" || - frontendState == "Results" || - frontendState == "DrawPV") && ( -

- Basiskarte ©{" "} - + {(frontendState == 'Map' || + frontendState == 'Results' || + frontendState == 'DrawPV') && ( +

+ Basiskarte ©{' '} + BKG  ( - + dl-de/by-2-0 ) | Geländemodell:  - + © Sonny  ( CC-BY-4.0 ), erstellt aus verschiedenen Quellen @@ -92,46 +92,46 @@ export default function Footer({ federalState, frontendState }) { <>

- Gebäudedaten ©{" "} - + Gebäudedaten ©{' '} + {attr.attribution}  ( - + {attr.license} )

)} -

+

©  - + Team OpenPV - {" | "} - Impressum - {" | "} - {t("Footer.privacyPolicy")} - {" | "} + {' | '} + Impressum + {' | '} + {t('Footer.privacyPolicy')} + {' | '} { e.preventDefault() - changeLanguage("en") + changeLanguage('en') }} > English - {" | "} + {' | '} { e.preventDefault() - changeLanguage("de") + changeLanguage('de') }} > German diff --git a/src/components/MapPopup.jsx b/src/components/MapPopup.jsx index 24b963bf..fda4f7e8 100644 --- a/src/components/MapPopup.jsx +++ b/src/components/MapPopup.jsx @@ -1,37 +1,37 @@ -import { Button, Text } from "@chakra-ui/react" -import React, { useEffect, useState } from "react" -import { useTranslation } from "react-i18next" -import { Popup } from "react-map-gl/maplibre" -import { useNavigate } from "react-router-dom" +import { Button, Text } from '@chakra-ui/react' +import React, { useEffect, useState } from 'react' +import { useTranslation } from 'react-i18next' +import { Popup } from 'react-map-gl/maplibre' +import { useNavigate } from 'react-router-dom' -export default function MapPopup({lat, lon, display_name}) { +export default function MapPopup({ lat, lon, display_name }) { const { t } = useTranslation() - const navigate = useNavigate(); + const navigate = useNavigate() const action = () => { navigate(`/simulation/${lon}/${lat}`) - }; + } - const [visible, setVisible] = useState(true); + const [visible, setVisible] = useState(true) useEffect(() => { - console.log('effect changed'); - setVisible(true); + console.log('effect changed') + setVisible(true) }, [lat, lon]) - return <> - {visible && - setVisible(false)} - > - { display_name } - - - } - + return ( + <> + {visible && ( + setVisible(false)} + > + {display_name} + + + )} + + ) } diff --git a/src/components/PVSimulation/SavingsCalculation.jsx b/src/components/PVSimulation/SavingsCalculation.jsx index 11316bf2..64c736cd 100644 --- a/src/components/PVSimulation/SavingsCalculation.jsx +++ b/src/components/PVSimulation/SavingsCalculation.jsx @@ -17,9 +17,9 @@ import { Tooltip, UnorderedList, useDisclosure, -} from "@chakra-ui/react" -import React, { useState } from "react" -import { useTranslation } from "react-i18next" +} from '@chakra-ui/react' +import React, { useState } from 'react' +import { useTranslation } from 'react-i18next' function SavingCalculation({ selectedPVSystem, @@ -30,21 +30,21 @@ function SavingCalculation({ const { isOpen: isOpenResultFade, onToggle: onToggleResultFade } = useDisclosure({ defaultIsOpen: false }) const { t } = useTranslation() - const [annualConsumption, setAnnualConsumption] = useState("3000") - const [storageCapacity, setStorageCapacity] = useState("0") - const [electricityPrice, setElectricityPrice] = useState("30") + const [annualConsumption, setAnnualConsumption] = useState('3000') + const [storageCapacity, setStorageCapacity] = useState('0') + const [electricityPrice, setElectricityPrice] = useState('30') const [selfConsumption, setSelfConsumption] = useState(0) const [annualSavings, setAnnualSavings] = useState(0) // Helper function to normalize input with different decimal separators const normalizeInput = (value) => { - return value.replace(",", ".") + return value.replace(',', '.') } // Helper function to handle numeric input changes const handleNumericChange = (setter) => (e) => { const value = e.target.value - if (value === "" || /^[0-9]*[.,]?[0-9]*$/.test(value)) { + if (value === '' || /^[0-9]*[.,]?[0-9]*$/.test(value)) { setter(value) } } @@ -54,8 +54,8 @@ function SavingCalculation({ pvProduction = Math.round( selectedPVSystem.reduce( (previous, current) => previous + current.annualYield, - 0 - ) + 0, + ), ) } @@ -69,12 +69,12 @@ function SavingCalculation({ setAnnualSavings, }) { const response = await fetch( - "https://www.openpv.de/data/savings_calculation/cons_prod.json" + 'https://www.openpv.de/data/savings_calculation/cons_prod.json', ) const data = await response.json() - const normalizedConsumption = data["Consumption"] - const normalizedProduction = data["Production"] + const normalizedConsumption = data['Consumption'] + const normalizedProduction = data['Production'] const result = {} let currentStorageLevel = 0 @@ -95,7 +95,7 @@ function SavingCalculation({ const availableStorageSpace = storageCapacity - currentStorageLevel const chargedAmount = Math.min( excessProduction, - availableStorageSpace + availableStorageSpace, ) currentStorageLevel += chargedAmount } else { @@ -104,7 +104,7 @@ function SavingCalculation({ // Use storage if available const usedFromStorage = Math.min( productionDeficit, - currentStorageLevel + currentStorageLevel, ) currentStorageLevel -= usedFromStorage @@ -116,12 +116,12 @@ function SavingCalculation({ let selfConsumedElectricity = Object.values(result).reduce( (acc, val) => acc + val, - 0 + 0, ) setSelfConsumption(Math.round(selfConsumedElectricity)) setAnnualSavings( - Math.round((selfConsumedElectricity * electricityPrice) / 100) + Math.round((selfConsumedElectricity * electricityPrice) / 100), ) } @@ -141,12 +141,12 @@ function SavingCalculation({ <> {selectedPVSystem.length > 0 && ( )} - {t("savingsCalculation.button")} + {t('savingsCalculation.button')} <> - {t("savingsCalculation.consumptionTitle")} + {t('savingsCalculation.consumptionTitle')} - - {t("savingsCalculation.consumptionHelperLabel")} + + {t('savingsCalculation.consumptionHelperLabel')} @@ -183,7 +183,7 @@ function SavingCalculation({
- {t("savingsCalculation.storageTitle")} + {t('savingsCalculation.storageTitle')} - {t("savingsCalculation.electricityPriceTitle")} + {t('savingsCalculation.electricityPriceTitle')} - {t("savingsCalculation.disclaimer")} + {t('savingsCalculation.disclaimer')} - {t("savingsCalculation.results.production")} - + {t('savingsCalculation.results.production')} + {pvProduction} kWh - {t("savingsCalculation.results.consumption")} - + {t('savingsCalculation.results.consumption')} + {selfConsumption} kWh - {t("savingsCalculation.results.savings")} - + {t('savingsCalculation.results.savings')} + {annualSavings}€ @@ -250,7 +250,7 @@ function SavingCalculation({ } }} > - {t("savingsCalculation.calculate")} + {t('savingsCalculation.calculate')}
diff --git a/src/components/PVSimulation/SearchField.jsx b/src/components/PVSimulation/SearchField.jsx index 77cf093b..3a0ee793 100644 --- a/src/components/PVSimulation/SearchField.jsx +++ b/src/components/PVSimulation/SearchField.jsx @@ -1,10 +1,10 @@ -import { Button, Input, List, ListItem } from "@chakra-ui/react" -import React, { useEffect, useRef, useState } from "react" -import { useTranslation } from "react-i18next" -import { requestLocation } from "../../simulation/location" +import { Button, Input, List, ListItem } from '@chakra-ui/react' +import React, { useEffect, useRef, useState } from 'react' +import { useTranslation } from 'react-i18next' +import { requestLocation } from '../../simulation/location' export default function SearchField({ callback }) { - const [inputValue, setInputValue] = useState("") + const [inputValue, setInputValue] = useState('') const [suggestions, setSuggestions] = useState([]) const [suggestionsVisible, setSuggestionsVisible] = useState(false) // isSelectedAdress is used so that if an adress is already selected, @@ -25,11 +25,11 @@ export default function SearchField({ callback }) { } } - document.addEventListener("mousedown", handleClickOutside) - document.addEventListener("touchstart", handleClickOutside) + document.addEventListener('mousedown', handleClickOutside) + document.addEventListener('touchstart', handleClickOutside) return () => { - document.removeEventListener("mousedown", handleClickOutside) - document.removeEventListener("touchstart", handleClickOutside) + document.removeEventListener('mousedown', handleClickOutside) + document.removeEventListener('touchstart', handleClickOutside) } }) @@ -45,12 +45,12 @@ export default function SearchField({ callback }) { } if (inputValue.length > 2) { try { - const inputValueParts = inputValue.split(" ") + const inputValueParts = inputValue.split(' ') let streetAddressNumber = null // Find the street address number for (let inputPart of inputValueParts) { - if (inputPart[inputPart.length - 1] === ",") { + if (inputPart[inputPart.length - 1] === ',') { //drop last character (ie the comma) inputPart = inputPart.slice(0, -1) } @@ -67,28 +67,28 @@ export default function SearchField({ callback }) { const response = await fetch( `https://photon.komoot.io/api/?q=${encodeURIComponent( - inputValue - )}&bbox=5.98865807458,47.3024876979,15.0169958839,54.983104153&limit=5&lang=de&layer=street` + inputValue, + )}&bbox=5.98865807458,47.3024876979,15.0169958839,54.983104153&limit=5&lang=de&layer=street`, ) const data = await response.json() - console.log("data", data) + console.log('data', data) setSuggestions( data.features.map((feature) => { let suggestion = feature.properties.name if (streetAddressNumber) { - suggestion += " " + streetAddressNumber + suggestion += ' ' + streetAddressNumber } suggestion += - ", " + + ', ' + feature.properties.postcode + - " " + + ' ' + feature.properties.city return suggestion - }) + }), ) } catch (error) { - console.error("Error fetching suggestions:", error) + console.error('Error fetching suggestions:', error) } } else { setSuggestions([]) @@ -118,15 +118,15 @@ export default function SearchField({ callback }) { } const handleKeyDown = (event) => { - if (event.key === "ArrowDown") { + if (event.key === 'ArrowDown') { event.preventDefault() setFocusedIndex((prevIndex) => - prevIndex < suggestions.length - 1 ? prevIndex + 1 : prevIndex + prevIndex < suggestions.length - 1 ? prevIndex + 1 : prevIndex, ) - } else if (event.key === "ArrowUp") { + } else if (event.key === 'ArrowUp') { event.preventDefault() setFocusedIndex((prevIndex) => (prevIndex > -1 ? prevIndex - 1 : -1)) - } else if (event.key === "Enter" && focusedIndex > -1) { + } else if (event.key === 'Enter' && focusedIndex > -1) { event.preventDefault() handleSuggestionClick(suggestions[focusedIndex]) } @@ -145,50 +145,50 @@ export default function SearchField({ callback }) { ref={formRef} onSubmit={handleSubmit} style={{ - display: "flex", - flexDirection: "column", - alignItems: "stretch", - padding: "5px", - position: "relative", + display: 'flex', + flexDirection: 'column', + alignItems: 'stretch', + padding: '5px', + position: 'relative', }} > -

+
setInputValue(evt.target.value)} onKeyDown={handleKeyDown} - margin={"5px"} - autoComplete="street-address" + margin={'5px'} + autoComplete='street-address' /> -
{suggestionsVisible && ( {suggestions.map((suggestion, index) => ( (suggestionsRef.current[index] = elem)} key={index} p={2} - style={{ paddingLeft: "1em" }} - cursor="pointer" - _hover={{ backgroundColor: "gray.100" }} - backgroundColor={focusedIndex === index ? "gray.100" : "white"} + style={{ paddingLeft: '1em' }} + cursor='pointer' + _hover={{ backgroundColor: 'gray.100' }} + backgroundColor={focusedIndex === index ? 'gray.100' : 'white'} onClick={() => handleSuggestionClick(suggestion)} onKeyDown={handleKeyDown} > diff --git a/src/components/Template/ButtonWithHoverHelp.jsx b/src/components/Template/ButtonWithHoverHelp.jsx index 97158b02..c6eac853 100644 --- a/src/components/Template/ButtonWithHoverHelp.jsx +++ b/src/components/Template/ButtonWithHoverHelp.jsx @@ -1,5 +1,5 @@ -import { Button, Tooltip } from "@chakra-ui/react" -import React from "react" +import { Button, Tooltip } from '@chakra-ui/react' +import React from 'react' export default function ButtonWithHoverHelp({ buttonLabel, diff --git a/src/components/Template/HoverHelp.jsx b/src/components/Template/HoverHelp.jsx index 9fd4316d..5f0cffa6 100644 --- a/src/components/Template/HoverHelp.jsx +++ b/src/components/Template/HoverHelp.jsx @@ -1,10 +1,10 @@ -import { Icon, Tooltip } from "@chakra-ui/react" -import React from "react" +import { Icon, Tooltip } from '@chakra-ui/react' +import React from 'react' function HoverHelp({ label }) { return ( - + ) } diff --git a/src/components/Template/LoadingBar.jsx b/src/components/Template/LoadingBar.jsx index 68d6491d..c65600de 100644 --- a/src/components/Template/LoadingBar.jsx +++ b/src/components/Template/LoadingBar.jsx @@ -1,6 +1,6 @@ -import { Progress } from "@chakra-ui/react" -import React, { useEffect, useState } from "react" -import { useTranslation } from "react-i18next" +import { Progress } from '@chakra-ui/react' +import React, { useEffect, useState } from 'react' +import { useTranslation } from 'react-i18next' const LoadingBar = ({ progress }) => { const { t } = useTranslation() @@ -16,18 +16,18 @@ const LoadingBar = ({ progress }) => { return (
-

- {t("loadingMessage.tip" + shownTip.toString())} +

+ {t('loadingMessage.tip' + shownTip.toString())}

-
- +
+
) diff --git a/src/components/Template/Navigation.jsx b/src/components/Template/Navigation.jsx index 672aa616..b4088966 100644 --- a/src/components/Template/Navigation.jsx +++ b/src/components/Template/Navigation.jsx @@ -1,7 +1,7 @@ -import { Box, Heading, Tab, TabList, Tabs } from "@chakra-ui/react" -import React from "react" -import { useTranslation } from "react-i18next" -import { Link, useLocation } from "react-router-dom" +import { Tab, TabList, Tabs } from '@chakra-ui/react' +import React from 'react' +import { useTranslation } from 'react-i18next' +import { Link, useLocation } from 'react-router-dom' const Navigation = () => { const { t } = useTranslation() @@ -11,24 +11,24 @@ const Navigation = () => { return ( OpenPV - - {t("about.title")} + + {t('about.title')} diff --git a/src/components/Template/SliderWithLabel.jsx b/src/components/Template/SliderWithLabel.jsx index 3866c8a6..519ead41 100644 --- a/src/components/Template/SliderWithLabel.jsx +++ b/src/components/Template/SliderWithLabel.jsx @@ -4,9 +4,9 @@ import { SliderThumb, SliderTrack, Tooltip, -} from "@chakra-ui/react" -import React from "react" -import HoverHelp from "./HoverHelp" +} from '@chakra-ui/react' +import React from 'react' +import HoverHelp from './HoverHelp' const SliderWithLabel = ({ sliderProps, @@ -22,11 +22,11 @@ const SliderWithLabel = ({ {hoverHelpLabel && } setShowTooltip(true)} onMouseLeave={() => setShowTooltip(false)} @@ -36,9 +36,9 @@ const SliderWithLabel = ({ diff --git a/src/components/Template/WelcomeMessage.jsx b/src/components/Template/WelcomeMessage.jsx index 1b1b7da0..56520441 100644 --- a/src/components/Template/WelcomeMessage.jsx +++ b/src/components/Template/WelcomeMessage.jsx @@ -12,23 +12,23 @@ import { ModalHeader, ModalOverlay, useDisclosure, -} from "@chakra-ui/react" -import React, { useState } from "react" -import { useTranslation } from "react-i18next" +} from '@chakra-ui/react' +import React, { useState } from 'react' +import { useTranslation } from 'react-i18next' function WelcomeMessageBoxElement({ image, text }) { return ( {image && ( {image.alt} )} @@ -53,56 +53,56 @@ function WelcomeMessage() { } return ( - + - {t("WelcomeMessage.title")} + {t('WelcomeMessage.title')} {currentPage === 1 && ( )} {currentPage === 2 && ( )} {currentPage === 3 && ( )} {currentPage === 4 && ( )} {currentPage === 5 && ( - + )} {currentPage != 5 && ( )} {currentPage == 5 && ( )} - + {Array.from({ length: numPages }, (_, i) => i + 1).map((page) => ( ))} diff --git a/src/components/ThreeViewer/Controls/CustomMapControl.jsx b/src/components/ThreeViewer/Controls/CustomMapControl.jsx index 85482477..365bb865 100644 --- a/src/components/ThreeViewer/Controls/CustomMapControl.jsx +++ b/src/components/ThreeViewer/Controls/CustomMapControl.jsx @@ -1,7 +1,7 @@ -import { OrbitControls } from "@react-three/drei" -import { useFrame, useThree } from "@react-three/fiber" -import React, { useEffect, useRef } from "react" -import * as THREE from "three" +import { OrbitControls } from '@react-three/drei' +import { useFrame, useThree } from '@react-three/fiber' +import React, { useEffect, useRef } from 'react' +import * as THREE from 'three' function CustomMapControl(props) { const controlsRef = useRef() @@ -34,37 +34,37 @@ function CustomMapControl(props) { const intersects = getIntersects() if (intersects.length === 0) { - console.log("No children in the intersected mesh.") + console.log('No children in the intersected mesh.') return } // Filter out Sprites (ie the labels of PV systems) let i = 0 - while (i < intersects.length && intersects[i].object.type === "Sprite") { + while (i < intersects.length && intersects[i].object.type === 'Sprite') { i++ } if (i === intersects.length) { - console.log("Only Sprite objects found in intersections.") + console.log('Only Sprite objects found in intersections.') return } let intersectedMesh = intersects[i].object - console.log("Intersected Mesh", intersectedMesh) + console.log('Intersected Mesh', intersectedMesh) if (!intersectedMesh) return if (!intersectedMesh.geometry.name) { console.log( - "There is a mesh, but it has no name so I don't know what to do." + "There is a mesh, but it has no name so I don't know what to do.", ) return } if ( - intersectedMesh.geometry.name.includes("surrounding") || - intersectedMesh.geometry.name.includes("background") + intersectedMesh.geometry.name.includes('surrounding') || + intersectedMesh.geometry.name.includes('background') ) { props.setSelectedMesh([intersectedMesh]) } - if (intersectedMesh.geometry.name.includes("pvSystem")) { + if (intersectedMesh.geometry.name.includes('pvSystem')) { props.setSelectedPVSystem([intersectedMesh.geometry]) } } @@ -85,12 +85,12 @@ function CustomMapControl(props) { useEffect(() => { const canvas = gl.domElement - canvas.addEventListener("dblclick", handleDoubleClick) - canvas.addEventListener("touchstart", handleDoubleTap) + canvas.addEventListener('dblclick', handleDoubleClick) + canvas.addEventListener('touchstart', handleDoubleTap) return () => { - canvas.removeEventListener("dblclick", handleDoubleClick) - canvas.removeEventListener("touchstart", handleDoubleTap) + canvas.removeEventListener('dblclick', handleDoubleClick) + canvas.removeEventListener('touchstart', handleDoubleTap) } }, [camera, scene]) diff --git a/src/components/ThreeViewer/Controls/DrawPVControl.jsx b/src/components/ThreeViewer/Controls/DrawPVControl.jsx index a9880859..5bb59bcf 100644 --- a/src/components/ThreeViewer/Controls/DrawPVControl.jsx +++ b/src/components/ThreeViewer/Controls/DrawPVControl.jsx @@ -1,7 +1,7 @@ -import { useFrame, useThree } from "@react-three/fiber" -import { useEffect, useRef } from "react" -import * as THREE from "three" -import { OrbitControls } from "three/examples/jsm/controls/OrbitControls" +import { useFrame, useThree } from '@react-three/fiber' +import { useEffect, useRef } from 'react' +import * as THREE from 'three' +import { OrbitControls } from 'three/examples/jsm/controls/OrbitControls' const DrawPVControl = ({ middle, setPVPoints }) => { const { camera, gl, scene } = useThree() @@ -46,7 +46,7 @@ const DrawPVControl = ({ middle, setPVPoints }) => { // Catch the error where sometimes the intersection // is undefined. By this no dot is drawn, but also // no error is thrown - console.log("Intersaction.face was null.") + console.log('Intersaction.face was null.') return undefined } const normal = intersection.face.normal @@ -59,11 +59,11 @@ const DrawPVControl = ({ middle, setPVPoints }) => { useEffect(() => { // Add event listener - gl.domElement.addEventListener("pointerdown", onPointerDown) + gl.domElement.addEventListener('pointerdown', onPointerDown) // Clean up return () => { - gl.domElement.removeEventListener("pointerdown", onPointerDown) + gl.domElement.removeEventListener('pointerdown', onPointerDown) } }, [gl]) diff --git a/src/components/ThreeViewer/Meshes/HighlitedPVSystem.jsx b/src/components/ThreeViewer/Meshes/HighlitedPVSystem.jsx index ebe8cb9b..0caa8b0a 100644 --- a/src/components/ThreeViewer/Meshes/HighlitedPVSystem.jsx +++ b/src/components/ThreeViewer/Meshes/HighlitedPVSystem.jsx @@ -1,5 +1,5 @@ -import React from "react" -import * as THREE from "three" +import React from 'react' +import * as THREE from 'three' export function HighlightedPVSystem({ geometries }) { return ( @@ -10,7 +10,7 @@ export function HighlightedPVSystem({ geometries }) { geometry={geometry} material={ new THREE.MeshLambertMaterial({ - color: "red", + color: 'red', transparent: false, }) } diff --git a/src/components/ThreeViewer/Meshes/HiglightedMesh.jsx b/src/components/ThreeViewer/Meshes/HiglightedMesh.jsx index 3cf0c66f..63b46a2c 100644 --- a/src/components/ThreeViewer/Meshes/HiglightedMesh.jsx +++ b/src/components/ThreeViewer/Meshes/HiglightedMesh.jsx @@ -1,5 +1,5 @@ -import React from "react" -import * as THREE from "three" +import React from 'react' +import * as THREE from 'three' export function HighlightedMesh({ meshes }) { return ( @@ -10,7 +10,7 @@ export function HighlightedMesh({ meshes }) { geometry={mesh.geometry} material={ new THREE.MeshLambertMaterial({ - color: "#2b2c40", + color: '#2b2c40', transparent: false, }) } diff --git a/src/components/ThreeViewer/Meshes/PVSystems.jsx b/src/components/ThreeViewer/Meshes/PVSystems.jsx index 9fc5627d..b81d070a 100644 --- a/src/components/ThreeViewer/Meshes/PVSystems.jsx +++ b/src/components/ThreeViewer/Meshes/PVSystems.jsx @@ -1,8 +1,8 @@ -import React, { useRef } from "react" -import { useFrame } from "react-three-fiber" -import * as THREE from "three" -import * as BufferGeometryUtils from "three/addons/utils/BufferGeometryUtils.js" -import TextSprite from "../TextSprite" +import React, { useRef } from 'react' +import { useFrame } from 'react-three-fiber' +import * as THREE from 'three' +import * as BufferGeometryUtils from 'three/addons/utils/BufferGeometryUtils.js' +import TextSprite from '../TextSprite' export const PVSystems = ({ pvSystems }) => { return ( @@ -31,7 +31,7 @@ export function createPVSystem({ const bufferTriangles = [] const normalOffset = 0.1 // Adjust this value as needed - for(const {a, b, c} of trianglesWithNormals) { + for (const { a, b, c } of trianglesWithNormals) { const shift = (element) => ({ x: element.point.x + element.normal.x * normalOffset, y: element.point.y + element.normal.y * normalOffset, @@ -42,25 +42,21 @@ export function createPVSystem({ const sb = shift(b) const sc = shift(c) - triangles.push({a: a.point, b: b.point, c: c.point }) - bufferTriangles.push( - sa.x, sa.y, sa.z, - sb.x, sb.y, sb.z, - sc.x, sc.y, sc.z - ) + triangles.push({ a: a.point, b: b.point, c: c.point }) + bufferTriangles.push(sa.x, sa.y, sa.z, sb.x, sb.y, sb.z, sc.x, sc.y, sc.z) } geometry.setAttribute( - "position", - new THREE.Float32BufferAttribute(bufferTriangles, 3) + 'position', + new THREE.Float32BufferAttribute(bufferTriangles, 3), ) - geometry.name = "pvSystem" + geometry.name = 'pvSystem' let subdividedTriangles = [] const triangleSubdivisionThreshold = 0.8 triangles.forEach((triangle) => { subdividedTriangles = subdividedTriangles.concat( - subdivideTriangle(triangle, triangleSubdivisionThreshold) + subdivideTriangle(triangle, triangleSubdivisionThreshold), ) }) @@ -73,13 +69,13 @@ export function createPVSystem({ }) const simulationGeometry = BufferGeometryUtils.mergeGeometries( geometries, - true + true, ) const polygonPrefilteringCutoff = 10 const prefilteredPolygons = filterPolygonsByDistance( simulationGeometry, points, - polygonPrefilteringCutoff + polygonPrefilteringCutoff, ) const newVertices = [] const newColors = [] @@ -93,19 +89,19 @@ export function createPVSystem({ const vertex = new THREE.Vector3( newVertices[i], newVertices[i + 1], - newVertices[i + 2] + newVertices[i + 2], ) const closestPolygon = findClosestPolygon( vertex, prefilteredPolygons, - polygonPrefilteringCutoff + polygonPrefilteringCutoff, ) if (closestPolygon) { const projectedVertex = projectOntoTriangle(vertex, closestPolygon) const color = getColorAtPointOnTriangle(projectedVertex, closestPolygon) const intensity = getIntensityAtPointOnTriangle( projectedVertex, - closestPolygon + closestPolygon, ) newColors.push(color.r, color.g, color.b) newIntensities.push(intensity) @@ -117,7 +113,7 @@ export function createPVSystem({ const polygonArea = calculatePolygonArea(triangles) const polygonIntensity = calculatePolygonIntensity( newVertices, - newIntensities + newIntensities, ) const annualYield = polygonArea * polygonIntensity @@ -146,7 +142,7 @@ const PVSystem = ({ geometry }) => { geometry={geometry} material={ new THREE.MeshStandardMaterial({ - color: "#2b2c40", + color: '#2b2c40', transparent: true, opacity: 0.5, metalness: 1, @@ -157,7 +153,7 @@ const PVSystem = ({ geometry }) => { @@ -172,7 +168,7 @@ const calculateCenter = (points) => { acc[index % 3] += value return acc }, - [0, 0, 0] + [0, 0, 0], ) return new THREE.Vector3(sum[0] / length, sum[1] / length, sum[2] / length) } @@ -244,7 +240,7 @@ function findClosestPolygon(vertex, polygons, polygonPrefilteringCutoff) { if (minDistance >= polygonPrefilteringCutoff) { console.error( - `Error: Trying to create a polygon with a distance longer than the threshold (${minDistance})` + `Error: Trying to create a polygon with a distance longer than the threshold (${minDistance})`, ) } @@ -268,17 +264,17 @@ function filterPolygonsByDistance(geometry, points, threshold) { const v0 = new THREE.Vector3( positions[i], positions[i + 1], - positions[i + 2] + positions[i + 2], ) const v1 = new THREE.Vector3( positions[i + 3], positions[i + 4], - positions[i + 5] + positions[i + 5], ) const v2 = new THREE.Vector3( positions[i + 6], positions[i + 7], - positions[i + 8] + positions[i + 8], ) const color0 = colors @@ -300,7 +296,7 @@ function filterPolygonsByDistance(geometry, points, threshold) { const distance = Math.min( point.distanceTo(v0), point.distanceTo(v1), - point.distanceTo(v2) + point.distanceTo(v2), ) if (distance < minDistance) { minDistance = distance @@ -309,7 +305,7 @@ function filterPolygonsByDistance(geometry, points, threshold) { if (minDistance < threshold) { const normal = new THREE.Triangle(v0, v1, v2).getNormal( - new THREE.Vector3() + new THREE.Vector3(), ) filteredPolygons.push({ vertices: [v0, v1, v2], @@ -339,19 +335,19 @@ function getColorAtPointOnTriangle(point, triangle) { const normal = triangle.normal.clone().normalize() const areaABC = normal.dot( - new THREE.Vector3().crossVectors(v1.clone().sub(v0), v2.clone().sub(v0)) + new THREE.Vector3().crossVectors(v1.clone().sub(v0), v2.clone().sub(v0)), ) const areaPBC = normal.dot( new THREE.Vector3().crossVectors( v1.clone().sub(point), - v2.clone().sub(point) - ) + v2.clone().sub(point), + ), ) const areaPCA = normal.dot( new THREE.Vector3().crossVectors( v2.clone().sub(point), - v0.clone().sub(point) - ) + v0.clone().sub(point), + ), ) const u = areaPBC / areaABC @@ -374,19 +370,19 @@ function getIntensityAtPointOnTriangle(point, triangle) { const normal = triangle.normal.clone().normalize() const areaABC = normal.dot( - new THREE.Vector3().crossVectors(v1.clone().sub(v0), v2.clone().sub(v0)) + new THREE.Vector3().crossVectors(v1.clone().sub(v0), v2.clone().sub(v0)), ) const areaPBC = normal.dot( new THREE.Vector3().crossVectors( v1.clone().sub(point), - v2.clone().sub(point) - ) + v2.clone().sub(point), + ), ) const areaPCA = normal.dot( new THREE.Vector3().crossVectors( v2.clone().sub(point), - v0.clone().sub(point) - ) + v0.clone().sub(point), + ), ) const u = areaPBC / areaABC @@ -411,17 +407,17 @@ function calculatePolygonIntensity(vertices, intensities) { a: new THREE.Vector3( vertices[i * 9], vertices[i * 9 + 1], - vertices[i * 9 + 2] + vertices[i * 9 + 2], ), b: new THREE.Vector3( vertices[i * 9 + 3], vertices[i * 9 + 4], - vertices[i * 9 + 5] + vertices[i * 9 + 5], ), c: new THREE.Vector3( vertices[i * 9 + 6], vertices[i * 9 + 7], - vertices[i * 9 + 8] + vertices[i * 9 + 8], ), intensities: [ intensities[i * 3], @@ -452,91 +448,110 @@ function calculateTriangleIntensity(triangle) { // making sure to generate a valid triangulation of the polygon // Highly inefficient implementation, but we don't triangulate many polygons so it should be fine export function triangulate(points) { - if(points.length == 3) { - return [{a: points[0], b: points[1], c: points[2]}] + if (points.length == 3) { + return [{ a: points[0], b: points[1], c: points[2] }] } else if (points.length < 3) { return [] } // As the triangle is in 3d-space anyways, we can just assume that vertices are given in CCW order - const pt = (i) => points[(i + points.length) % points.length]; + const pt = (i) => points[(i + points.length) % points.length] const ab = sub(pt(1).point, pt(0).point) const ac = sub(pt(2).point, pt(0).point) const normal = new THREE.Vector3().crossVectors(ab, ac) - let countNegative = 0; - let countPositive = 0; + let countNegative = 0 + let countPositive = 0 // Taking inspiration from a polygon triangulation based on the two ears theorem // However, in R3, things can get a bit more wonky... - // https://en.wikipedia.org/wiki/Two_ears_theorem#Relation_to_triangulations + // https://en.wikipedia.org/wiki/Two_ears_theorem#Relation_to_triangulations const makeTriplet = (left, vertex, right) => { const det = determinant( sub(vertex.point, left.point), sub(vertex.point, right.point), - normal + normal, ) - if(det > 0) { + if (det > 0) { countPositive += 1 } else { countNegative += 1 } - return {left: left, vertex: vertex, right: right, det} + return { left: left, vertex: vertex, right: right, det } } - const triplets = points.map((cur, i) => makeTriplet(pt(i-1), cur, pt(i+1))) + const triplets = points.map((cur, i) => + makeTriplet(pt(i - 1), cur, pt(i + 1)), + ) - if(countPositive < countNegative) { + if (countPositive < countNegative) { // negative det => convex vertex, so we flip all determinants - for(let t of triplets) { + for (let t of triplets) { t.det = -t.det } } - const concaveVertices = triplets.filter(t => t.det < 0).map(t => t.vertex) + const concaveVertices = triplets.filter((t) => t.det < 0).map((t) => t.vertex) - let anyEar = false; - for(let t of triplets) { + let anyEar = false + for (let t of triplets) { // Idea: Define the 3d analogue of a polygon ear by looking at triples and projecting the // remaining points onto the plane spanned by that particular triangle // An ear is any triangle having no concave vertices lying inside it const containedConcaveVertices = concaveVertices - .filter(v => v != t.left && v != t.vertex && v != t.right) - .filter(v => pointInsideTriangle(v.point, t.left.point, t.vertex.point, t.right.point)) + .filter((v) => v != t.left && v != t.vertex && v != t.right) + .filter((v) => + pointInsideTriangle( + v.point, + t.left.point, + t.vertex.point, + t.right.point, + ), + ) - t.isEar = (t.det > 0) && (containedConcaveVertices.length == 0) - if(t.isEar) { + t.isEar = t.det > 0 && containedConcaveVertices.length == 0 + if (t.isEar) { anyEar = true } } // Prevent infinite loop - if(!anyEar) { + if (!anyEar) { console.warn('No ear found in ear clipping!') triplets[0].isEar = true } - for(let ear of triplets.filter(t => t.isEar)) { - const remainingPoints = triplets.filter(t => t != ear).map(t => t.vertex) - return [{a: ear.left, b: ear.vertex, c: ear.right}].concat(triangulate(remainingPoints)) + for (let ear of triplets.filter((t) => t.isEar)) { + const remainingPoints = triplets + .filter((t) => t != ear) + .map((t) => t.vertex) + return [{ a: ear.left, b: ear.vertex, c: ear.right }].concat( + triangulate(remainingPoints), + ) } } function determinant(v1, v2, v3) { const matrix = new THREE.Matrix3() matrix.set( - v1.x, v2.x, v3.x, // First column - v1.y, v2.y, v3.y, // Second column - v1.z, v2.z, v3.z // Third column + v1.x, + v2.x, + v3.x, // First column + v1.y, + v2.y, + v3.y, // Second column + v1.z, + v2.z, + v3.z, // Third column ) return matrix.determinant() } function sub(v1, v2) { - return new THREE.Vector3().subVectors(v1, v2) + return new THREE.Vector3().subVectors(v1, v2) } function cross(v1, v2) { @@ -554,5 +569,5 @@ export function pointInsideTriangle(point, v1, v2, v3) { const d3 = Math.sign(n3.dot(sub(v3, point))) // Inside if all 3 have the same sign - return (d1 == d2) && (d2 == d3) + return d1 == d2 && d2 == d3 } diff --git a/src/components/ThreeViewer/Meshes/SimulationMesh.jsx b/src/components/ThreeViewer/Meshes/SimulationMesh.jsx index 22dc1066..96e91d84 100644 --- a/src/components/ThreeViewer/Meshes/SimulationMesh.jsx +++ b/src/components/ThreeViewer/Meshes/SimulationMesh.jsx @@ -1,5 +1,5 @@ -import React from "react" -import * as THREE from "three" +import React from 'react' +import * as THREE from 'three' const SimulationMesh = ({ meshes }) => { return ( diff --git a/src/components/ThreeViewer/Meshes/SurroundingMesh.jsx b/src/components/ThreeViewer/Meshes/SurroundingMesh.jsx index b25334d7..d87eaf5e 100644 --- a/src/components/ThreeViewer/Meshes/SurroundingMesh.jsx +++ b/src/components/ThreeViewer/Meshes/SurroundingMesh.jsx @@ -1,4 +1,4 @@ -import * as THREE from "three" +import * as THREE from 'three' const SurroundingMesh = ({ geometries }) => { return ( diff --git a/src/components/ThreeViewer/Meshes/VegetationMesh.jsx b/src/components/ThreeViewer/Meshes/VegetationMesh.jsx index 19816059..cfedfcd4 100644 --- a/src/components/ThreeViewer/Meshes/VegetationMesh.jsx +++ b/src/components/ThreeViewer/Meshes/VegetationMesh.jsx @@ -1,21 +1,19 @@ -import React, { useMemo } from 'react'; -import * as THREE from "three"; +import React, { useMemo } from 'react' +import * as THREE from 'three' const vegetationColors = [ - "#27AD6B", // Light green - "#2DBE76", // mint - "#33CC80", //dull green -]; - - - + '#27AD6B', // Light green + '#2DBE76', // mint + '#33CC80', //dull green +] const VegetationMesh = ({ geometries }) => { const randomColors = useMemo(() => { - return geometries.map(() => - vegetationColors[Math.floor(Math.random() * vegetationColors.length)] - ); - }, [geometries]); + return geometries.map( + () => + vegetationColors[Math.floor(Math.random() * vegetationColors.length)], + ) + }, [geometries]) return ( <> @@ -29,7 +27,7 @@ const VegetationMesh = ({ geometries }) => { ))} - ); -}; + ) +} export default VegetationMesh diff --git a/src/components/ThreeViewer/Overlay.jsx b/src/components/ThreeViewer/Overlay.jsx index d206943a..e0138094 100644 --- a/src/components/ThreeViewer/Overlay.jsx +++ b/src/components/ThreeViewer/Overlay.jsx @@ -20,15 +20,15 @@ import { Text, UnorderedList, useDisclosure, -} from "@chakra-ui/react" -import React from "react" -import { useTranslation } from "react-i18next" +} from '@chakra-ui/react' +import React from 'react' +import { useTranslation } from 'react-i18next' -import ButtonWithHoverHelp from "../Template/ButtonWithHoverHelp" -import SliderWithLabel from "../Template/SliderWithLabel" -import { createPVSystem } from "./Meshes/PVSystems" -import SelectionNotificationBuilding from "./SelectionNotificationBuilding" -import SelectionNotificationPV from "./SelectionNotificationPV" +import ButtonWithHoverHelp from '../Template/ButtonWithHoverHelp' +import SliderWithLabel from '../Template/SliderWithLabel' +import { createPVSystem } from './Meshes/PVSystems' +import SelectionNotificationBuilding from './SelectionNotificationBuilding' +import SelectionNotificationPV from './SelectionNotificationPV' function Overlay({ frontendState, @@ -68,11 +68,11 @@ function Overlay({ setPVPoints, simulationMeshes, }) - setFrontendState("Results") + setFrontendState('Results') } const handleAbortButtonClick = () => { - setFrontendState("Results") + setFrontendState('Results') } return ( @@ -91,26 +91,26 @@ function Overlay({ geometries={geometries} geoLocation={geoLocation} /> - {frontendState == "Results" && ( + {frontendState == 'Results' && ( <> )} - {frontendState == "Results" && ( + {frontendState == 'Results' && ( { - setFrontendState("DrawPV") + setFrontendState('DrawPV') onCloseDrawer() }} - className={pvSystems.length == 0 ? "button-high-prio" : ""} - hoverText={t("button.drawPVSystemHover")} + className={pvSystems.length == 0 ? 'button-high-prio' : ''} + hoverText={t('button.drawPVSystemHover')} /> )} - {frontendState == "DrawPV" && ( + {frontendState == 'DrawPV' && ( <> {pvPoints.length > 0 && ( <> )} )} @@ -169,32 +169,32 @@ const OverlayWrapper = ({ children }) => { return ( <> *": { - pointerEvents: "auto", + '> *': { + pointerEvents: 'auto', }, }} > {children} @@ -207,33 +207,33 @@ const HighPrioWrapper = ({ children }) => { return ( <> *": { - pointerEvents: "auto", + '> *': { + pointerEvents: 'auto', }, }} > {children} @@ -246,31 +246,31 @@ const CustomDrawer = ({ isOpen, onClose, showTerrain, setShowTerrain }) => { const { t } = useTranslation() const [sliderValue, setSliderValue] = React.useState(window.numSimulations) return ( - - + + - + - {t("button.options")} + {t('button.options')} <> - {t("sidebar.header")} - {t("sidebar.mainText")} + {t('sidebar.header')} + {t('sidebar.mainText')} - {t("button.showMap")} + {t('button.showMap')} setShowTerrain((prev) => !prev)} - colorScheme="teal" - margin={"5px"} + colorScheme='teal' + margin={'5px'} /> { setSliderValue(newValue) @@ -289,7 +289,7 @@ export default Overlay const ModalControls = ({ isOpen, onClose }) => { const { t } = useTranslation() - const touchDeviceText = window.isTouchDevice ? "touch." : "" + const touchDeviceText = window.isTouchDevice ? 'touch.' : '' return ( diff --git a/src/components/ThreeViewer/PointsAndEdges.jsx b/src/components/ThreeViewer/PointsAndEdges.jsx index 9df61990..fb75ce54 100644 --- a/src/components/ThreeViewer/PointsAndEdges.jsx +++ b/src/components/ThreeViewer/PointsAndEdges.jsx @@ -1,5 +1,5 @@ -import React, { useMemo } from "react" -import * as THREE from "three" +import React, { useMemo } from 'react' +import * as THREE from 'three' const PointsAndEdges = ({ points }) => { const pointsAndEdges = useMemo(() => { @@ -9,7 +9,7 @@ const PointsAndEdges = ({ points }) => { point.point, ]) const pointMaterial = new THREE.PointsMaterial({ - color: "#333333", + color: '#333333', size: 10, sizeAttenuation: false, }) @@ -29,20 +29,20 @@ const PointsAndEdges = ({ points }) => { edgePositions.push( points[i].point.x, points[i].point.y, - points[i].point.z + points[i].point.z, ) edgePositions.push( points[i + 1].point.x, points[i + 1].point.y, - points[i + 1].point.z + points[i + 1].point.z, ) } edgeGeometry.setAttribute( - "position", - new THREE.Float32BufferAttribute(edgePositions, 3) + 'position', + new THREE.Float32BufferAttribute(edgePositions, 3), ) const edgeMaterial = new THREE.LineBasicMaterial({ - color: "#333333", + color: '#333333', }) const edges = ( diff --git a/src/components/ThreeViewer/Scene.jsx b/src/components/ThreeViewer/Scene.jsx index a05450d1..4df22c3e 100644 --- a/src/components/ThreeViewer/Scene.jsx +++ b/src/components/ThreeViewer/Scene.jsx @@ -1,17 +1,17 @@ -import React, { useRef, useState } from "react" -import { Canvas } from "react-three-fiber" +import React, { useRef, useState } from 'react' +import { Canvas } from 'react-three-fiber' -import CustomMapControl from "./Controls/CustomMapControl" -import DrawPVControl from "./Controls/DrawPVControl" -import { HighlightedPVSystem } from "./Meshes/HighlitedPVSystem" -import { HighlightedMesh } from "./Meshes/HiglightedMesh" -import { PVSystems } from "./Meshes/PVSystems" -import SimulationMesh from "./Meshes/SimulationMesh" -import SurroundingMesh from "./Meshes/SurroundingMesh" -import VegetationMesh from "./Meshes/VegetationMesh" -import Overlay from "./Overlay" -import PointsAndEdges from "./PointsAndEdges" -import Terrain from "./Terrain" +import CustomMapControl from './Controls/CustomMapControl' +import DrawPVControl from './Controls/DrawPVControl' +import { HighlightedPVSystem } from './Meshes/HighlitedPVSystem' +import { HighlightedMesh } from './Meshes/HiglightedMesh' +import { PVSystems } from './Meshes/PVSystems' +import SimulationMesh from './Meshes/SimulationMesh' +import SurroundingMesh from './Meshes/SurroundingMesh' +import VegetationMesh from './Meshes/VegetationMesh' +import Overlay from './Overlay' +import PointsAndEdges from './PointsAndEdges' +import Terrain from './Terrain' const Scene = ({ frontendState, @@ -90,20 +90,20 @@ const Scene = ({ {selectedPVSystem && ( )} - {simulationMeshes.length > 0 && frontendState == "Results" && ( + {simulationMeshes.length > 0 && frontendState == 'Results' && ( )} - {frontendState == "DrawPV" && ( + {frontendState == 'DrawPV' && ( )} - {frontendState == "DrawPV" && } + {frontendState == 'DrawPV' && } {pvSystems.length > 0 && } diff --git a/src/components/ThreeViewer/SelectionNotificationBuilding.jsx b/src/components/ThreeViewer/SelectionNotificationBuilding.jsx index e71bf3d8..14b29053 100644 --- a/src/components/ThreeViewer/SelectionNotificationBuilding.jsx +++ b/src/components/ThreeViewer/SelectionNotificationBuilding.jsx @@ -5,10 +5,10 @@ import { CloseButton, useDisclosure, Wrap, -} from "@chakra-ui/react" -import React, { useEffect, useState } from "react" -import { useTranslation } from "react-i18next" -import { simulationForNewBuilding } from "../../simulation/main" +} from '@chakra-ui/react' +import React, { useEffect, useState } from 'react' +import { useTranslation } from 'react-i18next' +import { simulationForNewBuilding } from '../../simulation/main' const SelectionNotificationBuilding = ({ selectedMesh, @@ -54,27 +54,27 @@ const SelectionNotificationBuilding = ({ return ( - - - + + + - - - - {t("savingsCalculation.notificationLabel")} + + + + {t('savingsCalculation.notificationLabel')} - + { const zoom = props.zoom const tx = props.x const ty = props.y - const divisions = props.divisions; + const divisions = props.divisions const url = `https://sgx.geodatenzentrum.de/wmts_basemapde/tile/1.0.0/de_basemapde_web_raster_farbe/default/GLOBAL_WEBMERCATOR/${zoom}/${ty}/${tx}.png` @@ -117,51 +125,61 @@ const TerrainTile = (props) => { const mapFuture = new THREE.TextureLoader().loadAsync(url) // Size of the world map in meters - const [x0, y0, x1, y1] = xyzBounds(tx, ty, zoom); - let vertices = []; - let uvs = []; - let indices = []; - let i = 0; + const [x0, y0, x1, y1] = xyzBounds(tx, ty, zoom) + let vertices = [] + let uvs = [] + let indices = [] + let i = 0 - const row = divisions+1; + const row = divisions + 1 for (let ty = 0; ty <= divisions; ty++) { for (let tx = 0; tx <= divisions; tx++) { - const x = x0 + tx / divisions * (x1 - x0); - const y = y0 + ty / divisions * (y1 - y0); - vertices.push(ElevationManager.toPoint3D(x, y)); + const x = x0 + (tx / divisions) * (x1 - x0) + const y = y0 + (ty / divisions) * (y1 - y0) + vertices.push(ElevationManager.toPoint3D(x, y)) // UV mapping for the texture - uvs = uvs.concat([tx / divisions, 1.0 - ty / divisions]); + uvs = uvs.concat([tx / divisions, 1.0 - ty / divisions]) // Triangle indices - if(tx > 0 && ty > 0) { + if (tx > 0 && ty > 0) { indices = indices.concat([ - i-row-1, i-1, i-row, // 1st triangle - i-row, i-1, i // 2nd triangle - ]); + i - row - 1, + i - 1, + i - row, // 1st triangle + i - row, + i - 1, + i, // 2nd triangle + ]) } - i += 1; + i += 1 } } - vertices = await Promise.all(vertices); - const vertexBuffer = new Float32Array(vertices.flatMap(x => x.point)) - const normalBuffer = new Float32Array(vertices.flatMap(x => x.normal)) + vertices = await Promise.all(vertices) + const vertexBuffer = new Float32Array(vertices.flatMap((x) => x.point)) + const normalBuffer = new Float32Array(vertices.flatMap((x) => x.normal)) const uvBuffer = new Float32Array(uvs) - const indexBuffer = new Uint32Array(indices); + const indexBuffer = new Uint32Array(indices) const geometry = new THREE.BufferGeometry() - geometry.setAttribute("position", new THREE.BufferAttribute(vertexBuffer, 3)) - geometry.setAttribute("normal", new THREE.BufferAttribute(normalBuffer, 3)) - geometry.setAttribute("uv", new THREE.BufferAttribute(uvBuffer, 2)) + geometry.setAttribute( + 'position', + new THREE.BufferAttribute(vertexBuffer, 3), + ) + geometry.setAttribute( + 'normal', + new THREE.BufferAttribute(normalBuffer, 3), + ) + geometry.setAttribute('uv', new THREE.BufferAttribute(uvBuffer, 2)) geometry.setIndex(new THREE.BufferAttribute(indexBuffer, 1)) setGeometry(geometry) - const map = await mapFuture; - map.colorSpace = THREE.SRGBColorSpace; + const map = await mapFuture + map.colorSpace = THREE.SRGBColorSpace setMaterial( new THREE.MeshLambertMaterial({ flatShading: false, map: await mapFuture, side: THREE.FrontSide, - }) + }), ) setMeshLoaded(true) } @@ -171,9 +189,9 @@ const TerrainTile = (props) => { return mesh } -const Terrain = ({visible}) => { +const Terrain = ({ visible }) => { const [x, y] = coordinatesXY15 - const [tiles, setTiles] = useState([]); // State to manage tiles + const [tiles, setTiles] = useState([]) // State to manage tiles const tx = Math.floor(x * 16) const ty = Math.floor(y * 16) @@ -186,34 +204,38 @@ const Terrain = ({visible}) => { xys.sort((a, b) => a.dx * a.dx + a.dy * a.dy - (b.dx * b.dx + b.dy * b.dy)) useEffect(() => { - let currentTiles = []; + let currentTiles = [] // Function to load tiles progressively const loadTiles = (index) => { if (index < xys.length) { - const { dx, dy, divisions } = xys[index]; - const key = `${tx + dx}-${ty + dy}-${19}`; - currentTiles.push(); - - setTiles([...currentTiles]); // Update the state with the new set of tiles + const { dx, dy, divisions } = xys[index] + const key = `${tx + dx}-${ty + dy}-${19}` + currentTiles.push( + , + ) + + setTiles([...currentTiles]) // Update the state with the new set of tiles // Schedule the next tile load - setTimeout(() => loadTiles(index + 1), 0); // Adjust the timeout for desired loading speed + setTimeout(() => loadTiles(index + 1), 0) // Adjust the timeout for desired loading speed } - }; + } - loadTiles(0); // Start loading tiles + loadTiles(0) // Start loading tiles return () => { - setTiles([]); // Clean up on component unmount - }; - }, [tx, ty]); // Dependency array to reset when the coordinates change - - return ( - - {tiles} - - ); + setTiles([]) // Clean up on component unmount + } + }, [tx, ty]) // Dependency array to reset when the coordinates change + + return {tiles} } export default Terrain diff --git a/src/components/ThreeViewer/TextSprite.jsx b/src/components/ThreeViewer/TextSprite.jsx index 07b3f705..90ca4bae 100644 --- a/src/components/ThreeViewer/TextSprite.jsx +++ b/src/components/ThreeViewer/TextSprite.jsx @@ -1,23 +1,23 @@ -import React, { useEffect, useRef } from "react" -import * as THREE from "three" +import React, { useEffect, useRef } from 'react' +import * as THREE from 'three' const TextSprite = ({ text, position }) => { const spriteRef = useRef() useEffect(() => { - const canvas = document.createElement("canvas") - const context = canvas.getContext("2d") + const canvas = document.createElement('canvas') + const context = canvas.getContext('2d') const canvasRatio = 7 canvas.width = 128 * canvasRatio canvas.height = 128 - context.font = "55px Arial" - context.fillStyle = "rgba(0, 0, 0, 0.3)" + context.font = '55px Arial' + context.fillStyle = 'rgba(0, 0, 0, 0.3)' context.fillRect(0, 0, canvas.width, canvas.height) - const lines = text.split("\n") - context.font = "55px Arial" - context.fillStyle = "white" + const lines = text.split('\n') + context.font = '55px Arial' + context.fillStyle = 'white' lines.forEach((line, index) => { context.fillText(line, 10, 60 + index * 60) }) diff --git a/src/data/dataLicense.js b/src/data/dataLicense.js index 41b9fa17..da7a4af4 100644 --- a/src/data/dataLicense.js +++ b/src/data/dataLicense.js @@ -1,91 +1,91 @@ - export const attributions = { +export const attributions = { BB: { - attribution: "GeoBasis-DE/LGB", - license: "dl-de/by-2-0", - link: "https://geoportal.brandenburg.de/", + attribution: 'GeoBasis-DE/LGB', + license: 'dl-de/by-2-0', + link: 'https://geoportal.brandenburg.de/', }, BY: { - attribution: "Bayerische Vermessungsverwaltung – www.geodaten.bayern.de", - license: "cc/by-4-0", - link: "https://geodaten.bayern.de/opengeodata/OpenDataDetail.html?pn=lod2", + attribution: 'Bayerische Vermessungsverwaltung – www.geodaten.bayern.de', + license: 'cc/by-4-0', + link: 'https://geodaten.bayern.de/opengeodata/OpenDataDetail.html?pn=lod2', }, BW: { - attribution: "Datenquelle: LGL, www.lgl-bw.de", - license: "dl-de/by-2-0", - link: "https://www.lgl-bw.de/Produkte/3D-Produkte/3D-Gebaeudemodelle/", + attribution: 'Datenquelle: LGL, www.lgl-bw.de', + license: 'dl-de/by-2-0', + link: 'https://www.lgl-bw.de/Produkte/3D-Produkte/3D-Gebaeudemodelle/', }, BE: { attribution: - "Geoportal Berlin / 3D-Gebäudemodelle im Level of Detail 2 (LoD 2)", - license: "dl-de/by-2-0", - link: "https://www.berlin.de/sen/sbw/stadtdaten/geoportal/geoportal-daten-und-dienste/", + 'Geoportal Berlin / 3D-Gebäudemodelle im Level of Detail 2 (LoD 2)', + license: 'dl-de/by-2-0', + link: 'https://www.berlin.de/sen/sbw/stadtdaten/geoportal/geoportal-daten-und-dienste/', }, HB: { - attribution: "Landesamt GeoInformation Bremen", - license: "cc/by-4-0", - link: "https://geoportal.bremen.de/geoportal/", + attribution: 'Landesamt GeoInformation Bremen', + license: 'cc/by-4-0', + link: 'https://geoportal.bremen.de/geoportal/', }, HE: { - attribution: "Hessische Verwaltung für Bodenmanagement und Geoinformation", - license: "dl-de/zero-2-0", - link: "https://gds.hessen.de/INTERSHOP/web/WFS/HLBG-Geodaten-Site/de_DE/-/EUR/ViewDownloadcenter-Start?path=3D-Daten/3D-Geb%C3%A4udemodelle/3D-Geb%C3%A4udemodelle%20LoD2", + attribution: 'Hessische Verwaltung für Bodenmanagement und Geoinformation', + license: 'dl-de/zero-2-0', + link: 'https://gds.hessen.de/INTERSHOP/web/WFS/HLBG-Geodaten-Site/de_DE/-/EUR/ViewDownloadcenter-Start?path=3D-Daten/3D-Geb%C3%A4udemodelle/3D-Geb%C3%A4udemodelle%20LoD2', }, HH: { attribution: - "Freie und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV)", - license: "dl-de/by-2-0", - link: "https://metaver.de/trefferanzeige?docuuid=2C1F2EEC-CF9F-4D8B-ACAC-79D8C1334D5E&q=3D-Geb%C3%A4udemodell+LoD2&f=type%3Aopendata%3B", + 'Freie und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV)', + license: 'dl-de/by-2-0', + link: 'https://metaver.de/trefferanzeige?docuuid=2C1F2EEC-CF9F-4D8B-ACAC-79D8C1334D5E&q=3D-Geb%C3%A4udemodell+LoD2&f=type%3Aopendata%3B', }, MV: { - attribution: "GeoBasis-DE/M-V", - license: "cc/by-4-0", - link: "https://www.geoportal-mv.de/portal/Geowebdienste/INSPIRE-Themen/Gebaeude", + attribution: 'GeoBasis-DE/M-V', + license: 'cc/by-4-0', + link: 'https://www.geoportal-mv.de/portal/Geowebdienste/INSPIRE-Themen/Gebaeude', }, NI: { - attribution: "Quelle: LGLN 2024", - license: "cc/by-4-0", - link: "https://metaver.de/trefferanzeige?docuuid=6c1ab9c0-02c0-4f0d-98af-caf9fec83cc3&q=3D-Geb%C3%A4udemodell+LoD2&rstart=10&f=type%3Aopendata%3B", + attribution: 'Quelle: LGLN 2024', + license: 'cc/by-4-0', + link: 'https://metaver.de/trefferanzeige?docuuid=6c1ab9c0-02c0-4f0d-98af-caf9fec83cc3&q=3D-Geb%C3%A4udemodell+LoD2&rstart=10&f=type%3Aopendata%3B', }, NW: { - attribution: "Geobasis NRW", - license: "dl-de/zero-2-0", - link: "https://www.geoportal.nrw/?activetab=map#/datasets/iso/5d9a8abc-dfd0-4dda-b8fa-165cce4d8065", + attribution: 'Geobasis NRW', + license: 'dl-de/zero-2-0', + link: 'https://www.geoportal.nrw/?activetab=map#/datasets/iso/5d9a8abc-dfd0-4dda-b8fa-165cce4d8065', }, SH: { - attribution: "GeoBasis-DE/LVermGeo SH", - license: "cc/by-4-0", - link: "https://geodaten.schleswig-holstein.de/gaialight-sh/_apps/dladownload/dl-lod2.html", + attribution: 'GeoBasis-DE/LVermGeo SH', + license: 'cc/by-4-0', + link: 'https://geodaten.schleswig-holstein.de/gaialight-sh/_apps/dladownload/dl-lod2.html', }, SL: { - attribution: "GeoBasis DE/LVGL-SL (2024)", - license: "dl-de/by-2-0", - link: "https://geoportal.saarland.de/spatial-objects/407", + attribution: 'GeoBasis DE/LVGL-SL (2024)', + license: 'dl-de/by-2-0', + link: 'https://geoportal.saarland.de/spatial-objects/407', }, SN: { - attribution: "Landesamt für Geobasisinformation Sachsen (GeoSN)", - license: "dl-de/by-2-0", - link: "https://www.geodaten.sachsen.de/downloadbereich-digitale-3d-stadtmodelle-4875.html", + attribution: 'Landesamt für Geobasisinformation Sachsen (GeoSN)', + license: 'dl-de/by-2-0', + link: 'https://www.geodaten.sachsen.de/downloadbereich-digitale-3d-stadtmodelle-4875.html', }, ST: { - attribution: "GeoBasis-DE/LVermGeo ST", - license: "dl-de/by-2-0", - link: "https://metaver.de/trefferanzeige?docuuid=4D2501AB-6888-4B8A-A706-6B0755947B13&q=3D-Geb%C3%A4udemodell+LoD2&f=type%3Aopendata%3B", + attribution: 'GeoBasis-DE/LVermGeo ST', + license: 'dl-de/by-2-0', + link: 'https://metaver.de/trefferanzeige?docuuid=4D2501AB-6888-4B8A-A706-6B0755947B13&q=3D-Geb%C3%A4udemodell+LoD2&f=type%3Aopendata%3B', }, TH: { - attribution: "GDI-Th", - license: "dl-de/by-2-0", - link: "https://geoportal.thueringen.de/gdi-th/download-offene-geodaten/download-3d-gebaeudedaten", + attribution: 'GDI-Th', + license: 'dl-de/by-2-0', + link: 'https://geoportal.thueringen.de/gdi-th/download-offene-geodaten/download-3d-gebaeudedaten', }, RP: { - attribution: "GeoBasis-DE/LVermGeoRP (2024)", - license: "dl-de/by-2-0", - link: "https://metaportal.rlp.de/gui/html/0b28684d-b2ce-4b0b-b080-928025588c61", + attribution: 'GeoBasis-DE/LVermGeoRP (2024)', + license: 'dl-de/by-2-0', + link: 'https://metaportal.rlp.de/gui/html/0b28684d-b2ce-4b0b-b080-928025588c61', }, } export const licenseLinks = { - "dl-de/by-2-0": "https://www.govdata.de/dl-de/by-2-0", - "dl-de/zero-2-0": "https://www.govdata.de/dl-de/zero-2-0", - "cc/by-4-0": "https://creativecommons.org/licenses/by/4.0/deed", - "cc/by-3-0": "https://creativecommons.org/licenses/by/3.0/deed", + 'dl-de/by-2-0': 'https://www.govdata.de/dl-de/by-2-0', + 'dl-de/zero-2-0': 'https://www.govdata.de/dl-de/zero-2-0', + 'cc/by-4-0': 'https://creativecommons.org/licenses/by/4.0/deed', + 'cc/by-3-0': 'https://creativecommons.org/licenses/by/3.0/deed', } diff --git a/src/i18n.js b/src/i18n.js index b922a0ee..e9de1b6d 100644 --- a/src/i18n.js +++ b/src/i18n.js @@ -1,7 +1,7 @@ -import i18n from "i18next" -import { initReactI18next } from "react-i18next" +import i18n from 'i18next' +import { initReactI18next } from 'react-i18next' -import Backend from "i18next-http-backend" +import Backend from 'i18next-http-backend' i18n // load translation using http -> see /public/locales (i.e. https://github.com/i18next/react-i18next/tree/master/example/react/public/locales) @@ -12,7 +12,7 @@ i18n // init i18next // for all options read: https://www.i18next.com/overview/configuration-options .init({ - fallbackLng: "de", + fallbackLng: 'de', }) export default i18n diff --git a/src/index.jsx b/src/index.jsx index f6bc0c2f..bc680701 100644 --- a/src/index.jsx +++ b/src/index.jsx @@ -1,22 +1,22 @@ -import { ChakraProvider } from "@chakra-ui/react" -import React, { Suspense, lazy } from "react" -import { createRoot, hydrateRoot } from "react-dom/client" -import { BrowserRouter, Route, Routes } from "react-router-dom" -import "./i18n" // needs to be bundled -import Main from "./Main" // fallback for lazy pages -import "./static/css/main.css" // All of our styles +import { ChakraProvider } from '@chakra-ui/react' +import React, { Suspense, lazy } from 'react' +import { createRoot, hydrateRoot } from 'react-dom/client' +import { BrowserRouter, Route, Routes } from 'react-router-dom' +import './i18n' // needs to be bundled +import Main from './Main' // fallback for lazy pages +import './static/css/main.css' // All of our styles const { PUBLIC_URL } = process.env // Every route - we lazy load so that each page can be chunked // NOTE that some of these chunks are very small. We should optimize // which pages are lazy loaded in the future. -const Map = lazy(() => import("./pages/Map")) -const Simulation = lazy(() => import("./pages/Simulation")) -const NotFound = lazy(() => import("./pages/NotFound")) -const Impressum = lazy(() => import("./pages/Impressum")) -const Datenschutz = lazy(() => import("./pages/Datenschutz")) -const About = lazy(() => import("./pages/About")) +const Map = lazy(() => import('./pages/Map')) +const Simulation = lazy(() => import('./pages/Simulation')) +const NotFound = lazy(() => import('./pages/NotFound')) +const Impressum = lazy(() => import('./pages/Impressum')) +const Datenschutz = lazy(() => import('./pages/Datenschutz')) +const About = lazy(() => import('./pages/About')) window.isTouchDevice = isTouchDevice() @@ -27,13 +27,13 @@ const StrictApp = () => ( }> - } /> - } /> - } /> - } /> - } /> - } /> - } /> + } /> + } /> + } /> + } /> + } /> + } /> + } /> @@ -41,7 +41,7 @@ const StrictApp = () => ( ) -const rootElement = document.getElementById("root") +const rootElement = document.getElementById('root') // hydrate is required by react-snap. if (rootElement.hasChildNodes()) { @@ -53,14 +53,14 @@ if (rootElement.hasChildNodes()) { function isTouchDevice() { const isTouch = - "ontouchstart" in window || + 'ontouchstart' in window || navigator.maxTouchPoints > 0 || navigator.msMaxTouchPoints > 0 - const isCoarse = window.matchMedia("(pointer: coarse)").matches + const isCoarse = window.matchMedia('(pointer: coarse)').matches if (isTouch && isCoarse) { - console.log("The device is of type touch.") + console.log('The device is of type touch.') } else { - console.log("The device is a laptop.") + console.log('The device is a laptop.') } return isTouch && isCoarse } diff --git a/src/pages/About.jsx b/src/pages/About.jsx index e83557fd..bc5cb535 100644 --- a/src/pages/About.jsx +++ b/src/pages/About.jsx @@ -11,101 +11,101 @@ import { SimpleGrid, Text, VStack, -} from "@chakra-ui/react" -import React from "react" -import { useTranslation } from "react-i18next" -import Footer from "../components/Footer" +} from '@chakra-ui/react' +import React from 'react' +import { useTranslation } from 'react-i18next' +import Footer from '../components/Footer' -import Main from "../Main" +import Main from '../Main' const About = () => { const { t } = useTranslation() return ( <> -
- +
+ - {t("about.title")} + {t('about.title')} - - {t("about.introduction")} + + {t('about.introduction')} - {t("about.steps.introduction")} + {t('about.steps.introduction')} - {t("about.steps.1")} - {t("about.steps.2")} - {t("about.steps.3")} - {t("about.steps.4")} + {t('about.steps.1')} + {t('about.steps.2')} + {t('about.steps.3')} + {t('about.steps.4')} - - {t("about.data.p1")}{" "} + + {t('about.data.p1')}{' '} - {"[CC-BY-4.0]"} + {'[CC-BY-4.0]'} - {", "} - {t("about.data.p2")}{" "} - - {"[CC-BY-4.0]"} + {', '} + {t('about.data.p2')}{' '} + + {'[CC-BY-4.0]'} - {", "} - {t("about.data.p3")}{" "} + {', '} + {t('about.data.p3')}{' '} - {"[DL-DE/BY-2-0]"} + {'[DL-DE/BY-2-0]'} . - + - {t("about.team.link")} + {t('about.team.link')} @@ -121,7 +121,7 @@ export default About function TextBox({ content, heading, children }) { return ( - + {heading} {content} @@ -130,7 +130,7 @@ function TextBox({ content, heading, children }) { ) } -const ImageRow = ({ images, alttext, links = [], objectFit = "cover" }) => { +const ImageRow = ({ images, alttext, links = [], objectFit = 'cover' }) => { return ( {images.map((src, index) => { @@ -138,9 +138,9 @@ const ImageRow = ({ images, alttext, links = [], objectFit = "cover" }) => { {alttext[index]} ) diff --git a/src/pages/Datenschutz.jsx b/src/pages/Datenschutz.jsx index cc592242..a36903e5 100644 --- a/src/pages/Datenschutz.jsx +++ b/src/pages/Datenschutz.jsx @@ -1,13 +1,13 @@ -import { Card, CardBody, CardHeader, Heading } from "@chakra-ui/react" +import { Card, CardBody, CardHeader, Heading } from '@chakra-ui/react' -import Main from "../Main" +import Main from '../Main' const Datenschutz = () => { return ( -
- +
+ - Datenschutz + Datenschutz

Datenschutzerklärung

@@ -60,11 +60,11 @@ const Datenschutz = () => {

Eine Liste der Aufsichtsbehörden (für den nichtöffentlichen Bereich) - mit Anschrift finden Sie unter:{" "} + mit Anschrift finden Sie unter:{' '} https://www.bfdi.bund.de/DE/Service/Anschriften/Laender/Laender-node.html @@ -203,14 +203,14 @@ const Datenschutz = () => {

Die Datenschutzerklärung wurde mithilfe der activeMind AG - erstellt, den Experten für{" "} + erstellt, den Experten für{' '} externe Datenschutzbeauftragte - {" "} + {' '} (Version #2020-09-30).

diff --git a/src/pages/Impressum.jsx b/src/pages/Impressum.jsx index 15872728..e7d47bb5 100644 --- a/src/pages/Impressum.jsx +++ b/src/pages/Impressum.jsx @@ -1,14 +1,14 @@ -import { Card, CardBody, CardHeader, Heading } from "@chakra-ui/react" -import React from "react" +import { Card, CardBody, CardHeader, Heading } from '@chakra-ui/react' +import React from 'react' -import Main from "../Main" +import Main from '../Main' const Impressum = () => { return ( -
- +
+ - Impressum + Impressum

diff --git a/src/pages/Map.jsx b/src/pages/Map.jsx index 17e42508..57daa148 100644 --- a/src/pages/Map.jsx +++ b/src/pages/Map.jsx @@ -1,23 +1,23 @@ -import React, { useCallback, useRef, useState } from "react" -import Main from "../Main" +import React, { useCallback, useRef, useState } from 'react' +import Main from '../Main' -import { useToast } from "@chakra-ui/react" -import "maplibre-gl/dist/maplibre-gl.css" -import { useTranslation } from "react-i18next" -import { Map, NavigationControl } from "react-map-gl/maplibre" -import Footer from "../components/Footer" -import MapPopup from "../components/MapPopup" -import SearchField from "../components/PVSimulation/SearchField" -import WelcomeMessage from "../components/Template/WelcomeMessage" +import { useToast } from '@chakra-ui/react' +import 'maplibre-gl/dist/maplibre-gl.css' +import { useTranslation } from 'react-i18next' +import { Map, NavigationControl } from 'react-map-gl/maplibre' +import Footer from '../components/Footer' +import MapPopup from '../components/MapPopup' +import SearchField from '../components/PVSimulation/SearchField' +import WelcomeMessage from '../components/Template/WelcomeMessage' function Index() { const { t } = useTranslation() const basemap_source = { - id: "basemap-source", - type: "raster", + id: 'basemap-source', + type: 'raster', tiles: [ - "https://sgx.geodatenzentrum.de/wmts_basemapde/tile/1.0.0/de_basemapde_web_raster_farbe/default/GLOBAL_WEBMERCATOR/{z}/{y}/{x}.png", + 'https://sgx.geodatenzentrum.de/wmts_basemapde/tile/1.0.0/de_basemapde_web_raster_farbe/default/GLOBAL_WEBMERCATOR/{z}/{y}/{x}.png', ], attribution: ` Basiskarte © @@ -32,9 +32,9 @@ function Index() { `, } const basemap_layer = { - id: "basemap", - type: "raster", - source: "basemap-source", + id: 'basemap', + type: 'raster', + source: 'basemap-source', // minzoom: 0, // maxzoom: 22, } @@ -52,11 +52,11 @@ function Index() { const searchCallback = (locations) => { if (locations.length == 0) { - console.error("No search results!") + console.error('No search results!') toast({ - title: t("noSearchResults.title"), - description: t("noSearchResults.description"), - status: "error", + title: t('noSearchResults.title'), + description: t('noSearchResults.description'), + status: 'error', duration: 4000, isClosable: true, }) @@ -78,7 +78,9 @@ function Index() { }) } setMapMarkers( - locations.map((location) => ) + locations.map((location) => ( + + )), ) } @@ -100,20 +102,20 @@ function Index() { }) return ( -

+
-
+
-
+
setViewState(evt.viewState)} onClick={mapClick} attributionControl={false} @@ -122,15 +124,15 @@ function Index() { <>{mapMarkers} {clickPoint && ( )} - + -
+
) diff --git a/src/pages/NotFound.jsx b/src/pages/NotFound.jsx index 857887b7..b97ff751 100644 --- a/src/pages/NotFound.jsx +++ b/src/pages/NotFound.jsx @@ -1,19 +1,19 @@ -import React from "react" -import { Helmet, HelmetProvider } from "react-helmet-async" -import { Link } from "react-router-dom" +import React from 'react' +import { Helmet, HelmetProvider } from 'react-helmet-async' +import { Link } from 'react-router-dom' const PageNotFound = () => ( -
- +
+

Page Not Found

- Return home. + Return home.

diff --git a/src/pages/Simulation.jsx b/src/pages/Simulation.jsx index 1ec692e3..7b2148c9 100644 --- a/src/pages/Simulation.jsx +++ b/src/pages/Simulation.jsx @@ -1,17 +1,17 @@ -import React, { useEffect, useState } from "react" -import { useParams } from "react-router-dom" -import WrongAdress from "../components/ErrorMessages/WrongAdress" -import Footer from "../components/Footer" -import LoadingBar from "../components/Template/LoadingBar" -import Scene from "../components/ThreeViewer/Scene" -import Main from "../Main" -import { mainSimulation } from "../simulation/main" +import React, { useEffect, useState } from 'react' +import { useParams } from 'react-router-dom' +import WrongAdress from '../components/ErrorMessages/WrongAdress' +import Footer from '../components/Footer' +import LoadingBar from '../components/Template/LoadingBar' +import Scene from '../components/ThreeViewer/Scene' +import Main from '../Main' +import { mainSimulation } from '../simulation/main' function Index() { const location = useParams() // frontendState defines the general state of the frontend (Results, Loading, DrawPV) - const [frontendState, setFrontendState] = useState("Loading") + const [frontendState, setFrontendState] = useState('Loading') // simulationProgress is used for the loading bar const [simulationProgress, setSimulationProgress] = useState(0) @@ -41,7 +41,7 @@ function Index() { const { simulationMesh } = await mainSimulation(location) if (simulationMesh) { setSimulationMeshes([...simulationMeshes, simulationMesh]) - setFrontendState("Results") + setFrontendState('Results') } } @@ -50,11 +50,11 @@ function Index() { }, []) return ( -
-
- {frontendState == "ErrorAdress" && } +
+
+ {frontendState == 'ErrorAdress' && } - {(frontendState == "Results" || frontendState == "DrawPV") && ( + {(frontendState == 'Results' || frontendState == 'DrawPV') && ( )} - {frontendState == "Loading" && ( + {frontendState == 'Loading' && ( )}