-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathauxiliary_tasks.py
163 lines (137 loc) · 7.33 KB
/
auxiliary_tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import tensorflow as tf
from utils import small_convnet, fc, activ, flatten_two_dims, unflatten_first_dim, small_deconvnet
class FeatureExtractor(object):
def __init__(self, policy, features_shared_with_policy, feat_dim=None, layernormalize=None,
scope='feature_extractor'):
self.scope = scope
self.features_shared_with_policy = features_shared_with_policy
self.feat_dim = feat_dim
self.layernormalize = layernormalize
self.policy = policy
self.hidsize = policy.hidsize
self.ob_space = policy.ob_space
self.ac_space = policy.ac_space
self.obs = self.policy.ph_ob
self.ob_mean = self.policy.ob_mean
self.ob_std = self.policy.ob_std
with tf.variable_scope(scope):
self.last_ob = tf.placeholder(dtype=tf.int32,
shape=(None, 1) + self.ob_space.shape, name='last_ob')
self.next_ob = tf.concat([self.obs[:, 1:], self.last_ob], 1)
if features_shared_with_policy:
self.features = self.policy.features
self.last_features = self.policy.get_features(self.last_ob, reuse=True)
else:
self.features = self.get_features(self.obs, reuse=False)
self.last_features = self.get_features(self.last_ob, reuse=True)
self.next_features = tf.concat([self.features[:, 1:], self.last_features], 1)
self.ac = self.policy.ph_ac
self.scope = scope
self.loss = self.get_loss()
def get_features(self, x, reuse):
nl = tf.nn.leaky_relu
x_has_timesteps = (x.get_shape().ndims == 5)
if x_has_timesteps:
sh = tf.shape(x)
x = flatten_two_dims(x)
with tf.variable_scope(self.scope + "_features", reuse=reuse):
x = (tf.to_float(x) - self.ob_mean) / self.ob_std
x = small_convnet(x, nl=nl, feat_dim=self.feat_dim, last_nl=None, layernormalize=self.layernormalize)
if x_has_timesteps:
x = unflatten_first_dim(x, sh)
return x
def get_loss(self):
return tf.zeros((), dtype=tf.float32)
class InverseDynamics(FeatureExtractor):
def __init__(self, policy, features_shared_with_policy, feat_dim=None, layernormalize=None):
super(InverseDynamics, self).__init__(scope="inverse_dynamics", policy=policy,
features_shared_with_policy=features_shared_with_policy,
feat_dim=feat_dim, layernormalize=layernormalize)
def get_loss(self):
with tf.variable_scope(self.scope):
x = tf.concat([self.features, self.next_features], 2)
sh = tf.shape(x)
x = flatten_two_dims(x)
x = fc(x, units=self.policy.hidsize, activation=activ)
x = fc(x, units=self.ac_space.n, activation=None)
param = unflatten_first_dim(x, sh)
idfpd = self.policy.ac_pdtype.pdfromflat(param)
return idfpd.neglogp(self.ac)
class VAE(FeatureExtractor):
def __init__(self, policy, features_shared_with_policy, feat_dim=None, layernormalize=False, spherical_obs=False):
assert not layernormalize, "VAE features should already have reasonable size, no need to layer normalize them"
self.spherical_obs = spherical_obs
super(VAE, self).__init__(scope="vae", policy=policy,
features_shared_with_policy=features_shared_with_policy,
feat_dim=feat_dim, layernormalize=False)
self.features = tf.split(self.features, 2, -1)[0] # use mean only for features exposed to the dynamics
self.next_features = tf.split(self.next_features, 2, -1)[0]
def get_features(self, x, reuse):
nl = tf.nn.leaky_relu
x_has_timesteps = (x.get_shape().ndims == 5)
if x_has_timesteps:
sh = tf.shape(x)
x = flatten_two_dims(x)
with tf.variable_scope(self.scope + "_features", reuse=reuse):
x = (tf.to_float(x) - self.ob_mean) / self.ob_std
x = small_convnet(x, nl=nl, feat_dim=2 * self.feat_dim, last_nl=None, layernormalize=False)
if x_has_timesteps:
x = unflatten_first_dim(x, sh)
return x
def get_loss(self):
with tf.variable_scope(self.scope):
posterior_mean, posterior_scale = tf.split(self.features, 2, -1)
posterior_scale = tf.nn.softplus(posterior_scale)
posterior_distribution = tf.distributions.Normal(loc=posterior_mean, scale=posterior_scale)
sh = tf.shape(posterior_mean)
prior = tf.distributions.Normal(loc=tf.zeros(sh), scale=tf.ones(sh))
posterior_kl = tf.distributions.kl_divergence(posterior_distribution, prior)
posterior_kl = tf.reduce_sum(posterior_kl, [-1])
assert posterior_kl.get_shape().ndims == 2
posterior_sample = posterior_distribution.sample()
reconstruction_distribution = self.decoder(posterior_sample)
norm_obs = self.add_noise_and_normalize(self.obs)
reconstruction_likelihood = reconstruction_distribution.log_prob(norm_obs)
assert reconstruction_likelihood.get_shape().as_list()[2:] == [84, 84, 4]
reconstruction_likelihood = tf.reduce_sum(reconstruction_likelihood, [2, 3, 4])
likelihood_lower_bound = reconstruction_likelihood - posterior_kl
return - likelihood_lower_bound
def add_noise_and_normalize(self, x):
x = tf.to_float(x) + tf.random_uniform(shape=tf.shape(x), minval=0., maxval=1.)
x = (x - self.ob_mean) / self.ob_std
return x
def decoder(self, z):
nl = tf.nn.leaky_relu
z_has_timesteps = (z.get_shape().ndims == 3)
if z_has_timesteps:
sh = tf.shape(z)
z = flatten_two_dims(z)
with tf.variable_scope(self.scope + "decoder"):
z = small_deconvnet(z, nl=nl, ch=4 if self.spherical_obs else 8, positional_bias=True)
if z_has_timesteps:
z = unflatten_first_dim(z, sh)
if self.spherical_obs:
scale = tf.get_variable(name="scale", shape=(), dtype=tf.float32,
initializer=tf.ones_initializer())
scale = tf.maximum(scale, -4.)
scale = tf.nn.softplus(scale)
scale = scale * tf.ones_like(z)
else:
z, scale = tf.split(z, 2, -1)
scale = tf.nn.softplus(scale)
# scale = tf.Print(scale, [scale])
return tf.distributions.Normal(loc=z, scale=scale)
class JustPixels(FeatureExtractor):
def __init__(self, policy, features_shared_with_policy, feat_dim=None, layernormalize=None,
scope='just_pixels'):
assert not layernormalize
assert not features_shared_with_policy
super(JustPixels, self).__init__(scope=scope, policy=policy,
features_shared_with_policy=False,
feat_dim=None, layernormalize=None)
def get_features(self, x, reuse):
with tf.variable_scope(self.scope + "_features", reuse=reuse):
x = (tf.to_float(x) - self.ob_mean) / self.ob_std
return x
def get_loss(self):
return tf.zeros((), dtype=tf.float32)