From dfb1a15dcb4c24bf7ff0ba7ddfc5d623ad519d7d Mon Sep 17 00:00:00 2001 From: youkaichao Date: Mon, 5 Aug 2024 15:59:22 -0700 Subject: [PATCH 001/237] [ci][frontend] deduplicate tests (#7101) --- tests/entrypoints/openai/test_completion.py | 14 +- tests/entrypoints/openai/test_disable_mp.py | 715 -------------------- 2 files changed, 6 insertions(+), 723 deletions(-) delete mode 100644 tests/entrypoints/openai/test_disable_mp.py diff --git a/tests/entrypoints/openai/test_completion.py b/tests/entrypoints/openai/test_completion.py index 50add84087a95..05f667231738f 100644 --- a/tests/entrypoints/openai/test_completion.py +++ b/tests/entrypoints/openai/test_completion.py @@ -87,15 +87,13 @@ def default_server_args(zephyr_lora_files, zephyr_lora_added_tokens_files, ] -@pytest.fixture(scope="module") -def server(default_server_args): +@pytest.fixture(scope="module", + params=["", "--disable-frontend-multiprocessing"]) +def client(default_server_args, request): + if request.param: + default_server_args.append(request.param) with RemoteOpenAIServer(MODEL_NAME, default_server_args) as remote_server: - yield remote_server - - -@pytest.fixture(scope="module") -def client(server): - return server.get_async_client() + yield remote_server.get_async_client() @pytest.mark.asyncio diff --git a/tests/entrypoints/openai/test_disable_mp.py b/tests/entrypoints/openai/test_disable_mp.py deleted file mode 100644 index 12c805413311c..0000000000000 --- a/tests/entrypoints/openai/test_disable_mp.py +++ /dev/null @@ -1,715 +0,0 @@ -""" -Repeat of tests in test_completion.py with the non-mp backend. -""" - -# imports for guided decoding tests -import json -import re -import shutil -from tempfile import TemporaryDirectory -from typing import List - -import jsonschema -import openai # use the official client for correctness check -import pytest -# downloading lora to test lora requests -from huggingface_hub import snapshot_download -from openai import BadRequestError -from transformers import AutoTokenizer - -from vllm.transformers_utils.tokenizer import get_tokenizer - -from ...utils import RemoteOpenAIServer - -# any model with a chat template should work here -MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" -# technically these adapters use a different base model, -# but we're not testing generation quality here -LORA_NAME = "typeof/zephyr-7b-beta-lora" -PA_NAME = "swapnilbp/llama_tweet_ptune" -# if PA_NAME changes, PA_NUM_VIRTUAL_TOKENS might also -# need to change to match the prompt adapter -PA_NUM_VIRTUAL_TOKENS = 8 - - -@pytest.fixture(scope="module") -def zephyr_lora_files(): - return snapshot_download(repo_id=LORA_NAME) - - -@pytest.fixture(scope="module") -def zephyr_lora_added_tokens_files(zephyr_lora_files): - tmp_dir = TemporaryDirectory() - tmp_model_dir = f"{tmp_dir.name}/zephyr" - shutil.copytree(zephyr_lora_files, tmp_model_dir) - tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) - # Copy tokenizer to adapter and add some unique tokens - # 32000, 32001, 32002 - added = tokenizer.add_tokens(["vllm1", "vllm2", "vllm3"], - special_tokens=True) - assert added == 3 - tokenizer.save_pretrained(tmp_model_dir) - yield tmp_model_dir - tmp_dir.cleanup() - - -@pytest.fixture(scope="module") -def zephyr_pa_files(): - return snapshot_download(repo_id=PA_NAME) - - -@pytest.fixture(scope="module") -def default_server_args(zephyr_lora_files, zephyr_lora_added_tokens_files, - zephyr_pa_files): - return [ - # use half precision for speed and memory savings in CI environment - "--dtype", - "bfloat16", - "--max-model-len", - "8192", - "--max-num-seqs", - "128", - "--enforce-eager", - # lora config - "--enable-lora", - "--lora-modules", - f"zephyr-lora={zephyr_lora_files}", - f"zephyr-lora2={zephyr_lora_added_tokens_files}", - "--max-lora-rank", - "64", - "--max-cpu-loras", - "2", - # pa config - "--enable-prompt-adapter", - "--prompt-adapters", - f"zephyr-pa={zephyr_pa_files}", - f"zephyr-pa2={zephyr_pa_files}", - "--max-prompt-adapters", - "2", - "--max-prompt-adapter-token", - "128", - "--disable-frontend-multiprocessing" - ] - - -@pytest.fixture(scope="module") -def server(default_server_args): - with RemoteOpenAIServer(MODEL_NAME, default_server_args) as remote_server: - yield remote_server - - -@pytest.fixture(scope="module") -def client(server): - return server.get_async_client() - - -@pytest.mark.asyncio -@pytest.mark.parametrize( - # first test base model, then test loras, then test prompt adapters - "model_name,num_virtual_tokens", - [(MODEL_NAME, 0), ("zephyr-lora", 0), ("zephyr-lora2", 0), - ("zephyr-pa", PA_NUM_VIRTUAL_TOKENS), - ("zephyr-pa2", PA_NUM_VIRTUAL_TOKENS)], -) -async def test_single_completion(client: openai.AsyncOpenAI, model_name: str, - num_virtual_tokens: int): - completion = await client.completions.create(model=model_name, - prompt="Hello, my name is", - max_tokens=5, - temperature=0.0) - - assert completion.id is not None - assert completion.choices is not None and len(completion.choices) == 1 - - choice = completion.choices[0] - assert len(choice.text) >= 5 - assert choice.finish_reason == "length" - assert completion.usage == openai.types.CompletionUsage( - completion_tokens=5, - prompt_tokens=6 + num_virtual_tokens, - total_tokens=11 + num_virtual_tokens) - - # test using token IDs - completion = await client.completions.create( - model=model_name, - prompt=[0, 0, 0, 0, 0], - max_tokens=5, - temperature=0.0, - ) - assert len(completion.choices[0].text) >= 1 - - -@pytest.mark.asyncio -async def test_added_lora_tokens(client: openai.AsyncOpenAI): - # test using token IDs - completion = await client.completions.create( - model="zephyr-lora2", - prompt=[0, 0, 32000, 32001, 32002], - echo=True, - max_tokens=5, - temperature=0.0, - ) - # Added tokens should appear in tokenized prompt - assert completion.choices[0].text.startswith("vllm1vllm2vllm3") - - -@pytest.mark.asyncio -async def test_added_lora_tokens_base_model(client: openai.AsyncOpenAI): - # test using token IDs - completion = await client.completions.create( - model=MODEL_NAME, - prompt=[0, 0, 32000, 32001, 32002], - echo=True, - max_tokens=5, - temperature=0.0, - ) - # Added tokens should not appear in tokenized prompt - assert "vllm" not in completion.choices[0].text - - -@pytest.mark.asyncio -@pytest.mark.parametrize( - # first test base model, then test loras, then test prompt adapters - "model_name", - [MODEL_NAME, "zephyr-lora", "zephyr-lora2", "zephyr-pa", "zephyr-pa2"], -) -async def test_no_logprobs(client: openai.AsyncOpenAI, model_name: str): - # test using token IDs - completion = await client.completions.create( - model=model_name, - prompt=[0, 0, 0, 0, 0], - max_tokens=5, - temperature=0.0, - logprobs=None, - ) - choice = completion.choices[0] - assert choice.logprobs is None - - -@pytest.mark.asyncio -@pytest.mark.parametrize( - # just test 1 lora and 1 pa hereafter - "model_name", - [MODEL_NAME, "zephyr-lora", "zephyr-pa"], -) -async def test_zero_logprobs(client: openai.AsyncOpenAI, model_name: str): - # test using token IDs - completion = await client.completions.create( - model=model_name, - prompt=[0, 0, 0, 0, 0], - max_tokens=5, - temperature=0.0, - logprobs=0, - ) - choice = completion.choices[0] - assert choice.logprobs is not None - assert choice.logprobs.token_logprobs is not None - assert choice.logprobs.top_logprobs is not None - assert len(choice.logprobs.top_logprobs[0]) == 1 - - -@pytest.mark.asyncio -@pytest.mark.parametrize( - "model_name", - [MODEL_NAME, "zephyr-lora", "zephyr-pa"], -) -async def test_some_logprobs(client: openai.AsyncOpenAI, model_name: str): - # test using token IDs - completion = await client.completions.create( - model=model_name, - prompt=[0, 0, 0, 0, 0], - max_tokens=5, - temperature=0.0, - logprobs=5, - ) - choice = completion.choices[0] - assert choice.logprobs is not None - assert choice.logprobs.token_logprobs is not None - assert choice.logprobs.top_logprobs is not None - assert 5 <= len(choice.logprobs.top_logprobs[0]) <= 6 - - -@pytest.mark.asyncio -@pytest.mark.parametrize( - "model_name", - [MODEL_NAME, "zephyr-lora", "zephyr-pa"], -) -async def test_too_many_completion_logprobs(client: openai.AsyncOpenAI, - model_name: str): - - with pytest.raises( - (openai.BadRequestError, openai.APIError)): # test using token IDs - await client.completions.create( - model=model_name, - prompt=[0, 0, 0, 0, 0], - max_tokens=5, - temperature=0.0, - # vLLM has higher default max_logprobs (20 instead of 5) to support - # both Completion API and Chat Completion API - logprobs=21, - ) - ... - with pytest.raises( - (openai.BadRequestError, openai.APIError)): # test using token IDs - stream = await client.completions.create( - model=model_name, - prompt=[0, 0, 0, 0, 0], - max_tokens=5, - temperature=0.0, - # vLLM has higher default max_logprobs (20 instead of 5) to support - # both Completion API and Chat Completion API - logprobs=30, - stream=True, - ) - async for chunk in stream: - ... - - # the server should still work afterwards - completion = await client.completions.create( - model=model_name, - prompt=[0, 0, 0, 0, 0], - max_tokens=5, - temperature=0.0, - ) - assert len(completion.choices[0].text) >= 0 - - -@pytest.mark.asyncio -@pytest.mark.parametrize( - "model_name", - [MODEL_NAME, "zephyr-lora", "zephyr-pa"], -) -async def test_completion_streaming(client: openai.AsyncOpenAI, - model_name: str): - prompt = "What is an LLM?" - - single_completion = await client.completions.create( - model=model_name, - prompt=prompt, - max_tokens=5, - temperature=0.0, - ) - single_output = single_completion.choices[0].text - stream = await client.completions.create(model=model_name, - prompt=prompt, - max_tokens=5, - temperature=0.0, - stream=True) - chunks: List[str] = [] - finish_reason_count = 0 - async for chunk in stream: - chunks.append(chunk.choices[0].text) - if chunk.choices[0].finish_reason is not None: - finish_reason_count += 1 - # finish reason should only return in last block - assert finish_reason_count == 1 - assert chunk.choices[0].finish_reason == "length" - assert chunk.choices[0].text - assert "".join(chunks) == single_output - - -@pytest.mark.asyncio -@pytest.mark.parametrize( - "model_name", - [MODEL_NAME, "zephyr-lora", "zephyr-pa"], -) -async def test_completion_stream_options(client: openai.AsyncOpenAI, - model_name: str): - prompt = "What is the capital of France?" - - # Test stream=True, stream_options= - # {"include_usage": False, "continuous_usage_stats": False} - stream = await client.completions.create(model=model_name, - prompt=prompt, - max_tokens=5, - temperature=0.0, - stream=True, - stream_options={ - "include_usage": False, - "continuous_usage_stats": - False, - }) - - async for chunk in stream: - assert chunk.usage is None - - # Test stream=True, stream_options= - # {"include_usage": False, "continuous_usage_stats": True} - stream = await client.completions.create(model=model_name, - prompt=prompt, - max_tokens=5, - temperature=0.0, - stream=True, - stream_options={ - "include_usage": False, - "continuous_usage_stats": - True, - }) - async for chunk in stream: - assert chunk.usage is None - - # Test stream=True, stream_options= - # {"include_usage": True, "continuous_usage_stats": False} - stream = await client.completions.create(model=model_name, - prompt=prompt, - max_tokens=5, - temperature=0.0, - stream=True, - stream_options={ - "include_usage": True, - "continuous_usage_stats": - False, - }) - async for chunk in stream: - if chunk.choices[0].finish_reason is None: - assert chunk.usage is None - else: - assert chunk.usage is None - final_chunk = await stream.__anext__() - assert final_chunk.usage is not None - assert final_chunk.usage.prompt_tokens > 0 - assert final_chunk.usage.completion_tokens > 0 - assert final_chunk.usage.total_tokens == ( - final_chunk.usage.prompt_tokens + - final_chunk.usage.completion_tokens) - assert final_chunk.choices == [] - - # Test stream=True, stream_options= - # {"include_usage": True, "continuous_usage_stats": True} - stream = await client.completions.create(model=model_name, - prompt=prompt, - max_tokens=5, - temperature=0.0, - stream=True, - stream_options={ - "include_usage": True, - "continuous_usage_stats": - True, - }) - async for chunk in stream: - assert chunk.usage is not None - assert chunk.usage.prompt_tokens > 0 - assert chunk.usage.completion_tokens > 0 - assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens + - chunk.usage.completion_tokens) - if chunk.choices[0].finish_reason is not None: - final_chunk = await stream.__anext__() - assert final_chunk.usage is not None - assert final_chunk.usage.prompt_tokens > 0 - assert final_chunk.usage.completion_tokens > 0 - assert final_chunk.usage.total_tokens == ( - final_chunk.usage.prompt_tokens + - final_chunk.usage.completion_tokens) - assert final_chunk.choices == [] - - # Test stream=False, stream_options= - # {"include_usage": None} - with pytest.raises(BadRequestError): - await client.completions.create(model=model_name, - prompt=prompt, - max_tokens=5, - temperature=0.0, - stream=False, - stream_options={"include_usage": None}) - - # Test stream=False, stream_options= - # {"include_usage": True} - with pytest.raises(BadRequestError): - await client.completions.create(model=model_name, - prompt=prompt, - max_tokens=5, - temperature=0.0, - stream=False, - stream_options={"include_usage": True}) - - # Test stream=False, stream_options= - # {"continuous_usage_stats": None} - with pytest.raises(BadRequestError): - await client.completions.create( - model=model_name, - prompt=prompt, - max_tokens=5, - temperature=0.0, - stream=False, - stream_options={"continuous_usage_stats": None}) - - # Test stream=False, stream_options= - # {"continuous_usage_stats": True} - with pytest.raises(BadRequestError): - await client.completions.create( - model=model_name, - prompt=prompt, - max_tokens=5, - temperature=0.0, - stream=False, - stream_options={"continuous_usage_stats": True}) - - -@pytest.mark.asyncio -@pytest.mark.parametrize( - "model_name", - [MODEL_NAME, "zephyr-lora", "zephyr-pa"], -) -async def test_batch_completions(client: openai.AsyncOpenAI, model_name: str): - # test both text and token IDs - for prompts in (["Hello, my name is"] * 2, [[0, 0, 0, 0, 0]] * 2): - # test simple list - batch = await client.completions.create( - model=model_name, - prompt=prompts, - max_tokens=5, - temperature=0.0, - ) - assert len(batch.choices) == 2 - assert batch.choices[0].text == batch.choices[1].text - - # test n = 2 - batch = await client.completions.create( - model=model_name, - prompt=prompts, - n=2, - max_tokens=5, - temperature=0.0, - extra_body=dict( - # NOTE: this has to be true for n > 1 in vLLM, but not necessary - # for official client. - use_beam_search=True), - ) - assert len(batch.choices) == 4 - assert batch.choices[0].text != batch.choices[ - 1].text, "beam search should be different" - assert batch.choices[0].text == batch.choices[ - 2].text, "two copies of the same prompt should be the same" - assert batch.choices[1].text == batch.choices[ - 3].text, "two copies of the same prompt should be the same" - - # test streaming - batch = await client.completions.create( - model=model_name, - prompt=prompts, - max_tokens=5, - temperature=0.0, - stream=True, - ) - texts = [""] * 2 - async for chunk in batch: - assert len(chunk.choices) == 1 - choice = chunk.choices[0] - texts[choice.index] += choice.text - assert texts[0] == texts[1] - - -@pytest.mark.asyncio -async def test_logits_bias(client: openai.AsyncOpenAI): - prompt = "Hello, my name is" - max_tokens = 5 - tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME) - - # Test exclusive selection - token_id = 1000 - completion = await client.completions.create( - model=MODEL_NAME, - prompt=prompt, - max_tokens=max_tokens, - temperature=0.0, - logit_bias={str(token_id): 100}, - seed=42, - ) - assert len(completion.choices[0].text) >= 5 - response_tokens = tokenizer(completion.choices[0].text, - add_special_tokens=False)["input_ids"] - expected_tokens = tokenizer(tokenizer.decode([token_id] * 5), - add_special_tokens=False)["input_ids"] - assert all([ - response == expected - for response, expected in zip(response_tokens, expected_tokens) - ]) - - # Test ban - completion = await client.completions.create( - model=MODEL_NAME, - prompt=prompt, - max_tokens=max_tokens, - temperature=0.0, - ) - response_tokens = tokenizer(completion.choices[0].text, - add_special_tokens=False)["input_ids"] - first_response = completion.choices[0].text - completion = await client.completions.create( - model=MODEL_NAME, - prompt=prompt, - max_tokens=max_tokens, - temperature=0.0, - logit_bias={str(token): -100 - for token in response_tokens}, - ) - assert first_response != completion.choices[0].text - - -@pytest.mark.asyncio -async def test_allowed_token_ids(client: openai.AsyncOpenAI): - prompt = "Hello, my name is" - max_tokens = 1 - tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME) - - # Test exclusive selection - allowed_ids = [21555, 21557, 21558] - completion = await client.completions.create( - model=MODEL_NAME, - prompt=prompt, - max_tokens=max_tokens, - temperature=0.0, - seed=42, - extra_body=dict(allowed_token_ids=allowed_ids), - logprobs=1, - ) - response_tokens = completion.choices[0].logprobs.tokens - assert len(response_tokens) == 1 - assert tokenizer.convert_tokens_to_ids(response_tokens)[0] in allowed_ids - - -@pytest.mark.asyncio -@pytest.mark.parametrize("guided_decoding_backend", - ["outlines", "lm-format-enforcer"]) -async def test_guided_json_completion(client: openai.AsyncOpenAI, - guided_decoding_backend: str, - sample_json_schema): - completion = await client.completions.create( - model=MODEL_NAME, - prompt=f"Give an example JSON for an employee profile " - f"that fits this schema: {sample_json_schema}", - n=3, - temperature=1.0, - max_tokens=500, - extra_body=dict(guided_json=sample_json_schema, - guided_decoding_backend=guided_decoding_backend)) - - assert completion.id is not None - assert len(completion.choices) == 3 - for i in range(3): - output_json = json.loads(completion.choices[i].text) - jsonschema.validate(instance=output_json, schema=sample_json_schema) - - -@pytest.mark.asyncio -@pytest.mark.parametrize("guided_decoding_backend", - ["outlines", "lm-format-enforcer"]) -async def test_guided_regex_completion(client: openai.AsyncOpenAI, - guided_decoding_backend: str, - sample_regex): - completion = await client.completions.create( - model=MODEL_NAME, - prompt=f"Give an example IPv4 address with this regex: {sample_regex}", - n=3, - temperature=1.0, - max_tokens=20, - extra_body=dict(guided_regex=sample_regex, - guided_decoding_backend=guided_decoding_backend)) - - assert completion.id is not None - assert len(completion.choices) == 3 - for i in range(3): - assert re.fullmatch(sample_regex, - completion.choices[i].text) is not None - - -@pytest.mark.asyncio -@pytest.mark.parametrize("guided_decoding_backend", - ["outlines", "lm-format-enforcer"]) -async def test_guided_choice_completion(client: openai.AsyncOpenAI, - guided_decoding_backend: str, - sample_guided_choice): - completion = await client.completions.create( - model=MODEL_NAME, - prompt="The best language for type-safe systems programming is ", - n=2, - temperature=1.0, - max_tokens=10, - extra_body=dict(guided_choice=sample_guided_choice, - guided_decoding_backend=guided_decoding_backend)) - - assert completion.id is not None - assert len(completion.choices) == 2 - for i in range(2): - assert completion.choices[i].text in sample_guided_choice - - -@pytest.mark.asyncio -async def test_guided_grammar(client: openai.AsyncOpenAI, - sample_sql_statements): - - completion = await client.completions.create( - model=MODEL_NAME, - prompt=("Generate a sql state that select col_1 from " - "table_1 where it is equals to 1"), - temperature=1.0, - max_tokens=500, - extra_body=dict(guided_grammar=sample_sql_statements)) - - content = completion.choices[0].text - - # use Lark to parse the output, and make sure it's a valid parse tree - from lark import Lark - parser = Lark(sample_sql_statements) - parser.parse(content) - - # remove spaces for comparison b/c we removed them in the grammar - ground_truth = "SELECT col_1 from table_1 where col_1 = 1".replace(" ", "") - - assert content.strip() == ground_truth - - -@pytest.mark.asyncio -@pytest.mark.parametrize( - # first test base model, then test loras - "model_name", - [MODEL_NAME, "zephyr-lora", "zephyr-lora2"], -) -@pytest.mark.parametrize("logprobs_arg", [1, 0]) -async def test_echo_logprob_completion(client: openai.AsyncOpenAI, - model_name: str, logprobs_arg: int): - tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME) - # test using text and token IDs - for prompt in ("Hello, my name is", [0, 0, 0, 0, 0]): - completion = await client.completions.create(model=model_name, - prompt=prompt, - max_tokens=5, - temperature=0.0, - echo=True, - logprobs=logprobs_arg) - - prompt_text = tokenizer.decode(prompt) if isinstance(prompt, - list) else prompt - assert re.search(r"^" + prompt_text, completion.choices[0].text) - logprobs = completion.choices[0].logprobs - assert logprobs is not None - assert len(logprobs.text_offset) > 5 - assert (len(logprobs.token_logprobs) > 5 - and logprobs.token_logprobs[0] is None) - assert (len(logprobs.top_logprobs) > 5 - and logprobs.top_logprobs[0] is None) - for top_logprobs in logprobs.top_logprobs[1:]: - assert max(logprobs_arg, - 1) <= len(top_logprobs) <= logprobs_arg + 1 - assert len(logprobs.tokens) > 5 - - -@pytest.mark.asyncio -@pytest.mark.parametrize("guided_decoding_backend", - ["outlines", "lm-format-enforcer"]) -async def test_guided_decoding_type_error(client: openai.AsyncOpenAI, - guided_decoding_backend: str, - sample_json_schema, sample_regex): - with pytest.raises(openai.BadRequestError): - _ = await client.completions.create( - model=MODEL_NAME, - prompt="Give an example JSON that fits this schema: 42", - extra_body=dict(guided_json=42, - guided_decoding_backend=guided_decoding_backend)) - - with pytest.raises(openai.BadRequestError): - _ = await client.completions.create( - model=MODEL_NAME, - prompt="Give an example string that fits this regex", - extra_body=dict(guided_regex=sample_regex, - guided_json=sample_json_schema)) From 789937af2edb6c1ff847c3cbf0c773fb06602a5f Mon Sep 17 00:00:00 2001 From: Thomas Parnell Date: Tue, 6 Aug 2024 01:29:43 +0200 Subject: [PATCH 002/237] [Doc] [SpecDecode] Update MLPSpeculator documentation (#7100) Signed-off-by: Thomas Parnell --- docs/source/models/spec_decode.rst | 49 ++++++++++++++++++++ vllm/model_executor/models/mlp_speculator.py | 9 ++++ 2 files changed, 58 insertions(+) diff --git a/docs/source/models/spec_decode.rst b/docs/source/models/spec_decode.rst index 87a52360c0841..be901fa881b12 100644 --- a/docs/source/models/spec_decode.rst +++ b/docs/source/models/spec_decode.rst @@ -69,6 +69,55 @@ matching n-grams in the prompt. For more information read `this thread. `_ or +`this technical report `_. + +.. code-block:: python + + from vllm import LLM, SamplingParams + + prompts = [ + "The future of AI is", + ] + sampling_params = SamplingParams(temperature=0.8, top_p=0.95) + + llm = LLM( + model="meta-llama/Meta-Llama-3.1-70B-Instruct", + tensor_parallel_size=4, + speculative_model="ibm-fms/llama3-70b-accelerator", + speculative_draft_tensor_parallel_size=1, + use_v2_block_manager=True, + ) + outputs = llm.generate(prompts, sampling_params) + + for output in outputs: + prompt = output.prompt + generated_text = output.outputs[0].text + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") + +Note that these speculative models currently need to be run without tensor parallelism, although +it is possible to run the main model using tensor parallelism (see example above). Since the +speculative models are relatively small, we still see significant speedups. However, this +limitation will be fixed in a future release. + +A variety of speculative models of this type are available on HF hub: + +* `llama-13b-accelerator `_ +* `llama3-8b-accelerator `_ +* `codellama-34b-accelerator `_ +* `llama2-70b-accelerator `_ +* `llama3-70b-accelerator `_ +* `granite-3b-code-instruct-accelerator `_ +* `granite-8b-code-instruct-accelerator `_ +* `granite-7b-instruct-accelerator `_ +* `granite-20b-code-instruct-accelerator `_ + + Resources for vLLM contributors ------------------------------- * `A Hacker's Guide to Speculative Decoding in vLLM `_ diff --git a/vllm/model_executor/models/mlp_speculator.py b/vllm/model_executor/models/mlp_speculator.py index d3aec06a92fdb..95a655fbbf37d 100644 --- a/vllm/model_executor/models/mlp_speculator.py +++ b/vllm/model_executor/models/mlp_speculator.py @@ -56,6 +56,15 @@ def forward(self, x): class MLPSpeculator(nn.Module): + """ + An implementation of the speculative models introduced in + "Accelerating Production LLMs with Combined Token/Embedding + Speculators" + https://arxiv.org/pdf/2404.19124 + + Trained speculators of this type are available on HF hub at: + https://huggingface.co/ibm-fms and https://huggingface.co/ibm-granite + """ def __init__(self, config: MLPSpeculatorConfig, **kwargs) -> None: super().__init__() From 89b8db6bb2ce2948073c21231f103c76456844da Mon Sep 17 00:00:00 2001 From: Jacob Schein Date: Mon, 5 Aug 2024 16:35:47 -0700 Subject: [PATCH 003/237] [Bugfix] Specify device when loading LoRA and embedding tensors (#7129) Co-authored-by: Jacob Schein --- vllm/lora/models.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/vllm/lora/models.py b/vllm/lora/models.py index 017a1002bb9a7..279477562a940 100644 --- a/vllm/lora/models.py +++ b/vllm/lora/models.py @@ -248,7 +248,7 @@ def from_local_checkpoint( f" target modules in {expected_lora_modules}" f" but received {unexpected_modules}." f" Please verify that the loaded LoRA module is correct") - tensors = torch.load(lora_bin_file_path) + tensors = torch.load(lora_bin_file_path, map_location=device) else: raise ValueError(f"{lora_dir} doesn't contain tensors") @@ -257,7 +257,8 @@ def from_local_checkpoint( embeddings = safetensors.torch.load_file( new_embeddings_tensor_path) elif os.path.isfile(new_embeddings_bin_file_path): - embeddings = torch.load(new_embeddings_bin_file_path) + embeddings = torch.load(new_embeddings_bin_file_path, + map_location=device) rank = config["r"] lora_alpha = config["lora_alpha"] From ef527be06c4064f3a2753a3b2c7ede862fe459e8 Mon Sep 17 00:00:00 2001 From: Cody Yu Date: Mon, 5 Aug 2024 16:41:27 -0700 Subject: [PATCH 004/237] [MISC] Use non-blocking transfer in prepare_input (#7172) --- vllm/attention/backends/flash_attn.py | 27 ++++++++++++--------------- vllm/attention/backends/flashinfer.py | 23 +++++++++++------------ vllm/attention/backends/utils.py | 27 ++++++++++++--------------- vllm/worker/model_runner.py | 15 ++++++++------- 4 files changed, 43 insertions(+), 49 deletions(-) diff --git a/vllm/attention/backends/flash_attn.py b/vllm/attention/backends/flash_attn.py index 26b3159682b3e..8a895bbdc2dd7 100644 --- a/vllm/attention/backends/flash_attn.py +++ b/vllm/attention/backends/flash_attn.py @@ -13,7 +13,7 @@ from vllm.attention.backends.utils import (PAD_SLOT_ID, compute_slot_mapping, compute_slot_mapping_start_idx, is_block_tables_empty) -from vllm.utils import make_tensor_with_pad +from vllm.utils import async_tensor_h2d, make_tensor_with_pad if TYPE_CHECKING: from vllm.worker.model_runner import ModelInputForGPUBuilder @@ -310,7 +310,8 @@ def build(self, seq_lens: List[int], query_lens: List[int], for i, block_table in enumerate(self.block_tables): if block_table: input_block_tables[i, :len(block_table)] = block_table - block_tables = torch.tensor(input_block_tables, device=device) + block_tables = torch.from_numpy(input_block_tables).to( + device=device, non_blocking=True) else: block_tables = make_tensor_with_pad( self.block_tables, @@ -320,15 +321,15 @@ def build(self, seq_lens: List[int], query_lens: List[int], ) assert max_query_len > 0, ("query_lens: {}".format(query_lens)) - context_lens_tensor = torch.tensor(self.context_lens, - dtype=torch.int, - device=device) - seq_lens_tensor = torch.tensor(seq_lens, - dtype=torch.int, - device=device) - query_lens_tensor = torch.tensor(query_lens, - dtype=torch.long, - device=device) + assert device is not None + context_lens_tensor = async_tensor_h2d(self.context_lens, torch.int, + device, self.runner.pin_memory) + seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device, + self.runner.pin_memory) + query_lens_tensor = async_tensor_h2d(query_lens, torch.long, device, + self.runner.pin_memory) + slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long, + device, self.runner.pin_memory) query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1, dtype=torch.int32, device=device) @@ -344,10 +345,6 @@ def build(self, seq_lens: List[int], query_lens: List[int], dtype=query_start_loc.dtype, out=query_start_loc[1:]) - slot_mapping_tensor = torch.tensor(self.slot_mapping, - dtype=torch.long, - device=device) - return FlashAttentionMetadata( num_prefills=self.num_prefills, slot_mapping=slot_mapping_tensor, diff --git a/vllm/attention/backends/flashinfer.py b/vllm/attention/backends/flashinfer.py index 91abaab78dcb8..03188164a9637 100644 --- a/vllm/attention/backends/flashinfer.py +++ b/vllm/attention/backends/flashinfer.py @@ -21,7 +21,8 @@ compute_slot_mapping_start_idx, is_block_tables_empty) from vllm.attention.ops.paged_attn import PagedAttention -from vllm.utils import get_kv_cache_torch_dtype, make_tensor_with_pad +from vllm.utils import (async_tensor_h2d, get_kv_cache_torch_dtype, + make_tensor_with_pad) if TYPE_CHECKING: from vllm.worker.model_runner import ModelInputForGPUBuilder @@ -356,7 +357,8 @@ def build(self, seq_lens: List[int], query_lens: List[int], for i, block_table in enumerate(self.block_tables): if block_table: input_block_tables[i, :len(block_table)] = block_table - block_tables = torch.tensor(input_block_tables, device=device) + block_tables = torch.from_numpy(input_block_tables).to( + device, non_blocking=True) last_paged_kv_indptr = self.paged_kv_indptr[-1] self.paged_kv_indptr.extend([last_paged_kv_indptr] * @@ -371,12 +373,13 @@ def build(self, seq_lens: List[int], query_lens: List[int], ) assert max_query_len > 0, ("query_lens: {}".format(query_lens)) - seq_lens_tensor = torch.tensor(seq_lens, - dtype=torch.int, - device=device) - query_lens_tensor = torch.tensor(query_lens, - dtype=torch.long, - device=device) + assert device is not None + seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device, + self.runner.pin_memory) + query_lens_tensor = async_tensor_h2d(query_lens, torch.long, device, + self.runner.pin_memory) + slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long, + device, self.runner.pin_memory) query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1, dtype=torch.int32, device=device) @@ -392,10 +395,6 @@ def build(self, seq_lens: List[int], query_lens: List[int], dtype=query_start_loc.dtype, out=query_start_loc[1:]) - slot_mapping_tensor = torch.tensor(self.slot_mapping, - dtype=torch.long, - device=device) - if len(self.paged_kv_indptr) > 0: paged_kv_indices_tensor = torch.tensor(self.paged_kv_indices, device="cpu", diff --git a/vllm/attention/backends/utils.py b/vllm/attention/backends/utils.py index bca1370343b7b..f7cb2ee996501 100644 --- a/vllm/attention/backends/utils.py +++ b/vllm/attention/backends/utils.py @@ -4,7 +4,7 @@ import torch from vllm.attention import AttentionMetadata, AttentionMetadataBuilder -from vllm.utils import make_tensor_with_pad +from vllm.utils import async_tensor_h2d, make_tensor_with_pad # Error string(s) for encoder/decoder # unsupported attention scenarios @@ -181,7 +181,8 @@ def build(self, seq_lens: List[int], query_lens: List[int], for i, block_table in enumerate(self.block_tables): if block_table: input_block_tables[i, :len(block_table)] = block_table - block_tables = torch.tensor(input_block_tables, device=device) + block_tables = torch.from_numpy(input_block_tables).to( + device, non_blocking=True) else: block_tables = make_tensor_with_pad( self.block_tables, @@ -191,15 +192,15 @@ def build(self, seq_lens: List[int], query_lens: List[int], ) assert max_query_len > 0, "query_lens: {}".format(query_lens) - context_lens_tensor = torch.tensor(self.context_lens, - dtype=torch.int, - device=device) - seq_lens_tensor = torch.tensor(seq_lens, - dtype=torch.int, - device=device) - query_lens_tensor = torch.tensor(query_lens, - dtype=torch.long, - device=device) + assert device is not None + context_lens_tensor = async_tensor_h2d(self.context_lens, torch.int, + device, self.runner.pin_memory) + seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device, + self.runner.pin_memory) + query_lens_tensor = async_tensor_h2d(query_lens, torch.long, device, + self.runner.pin_memory) + slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long, + device, self.runner.pin_memory) query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1, dtype=torch.int32, device=device) @@ -215,10 +216,6 @@ def build(self, seq_lens: List[int], query_lens: List[int], dtype=query_start_loc.dtype, out=query_start_loc[1:]) - slot_mapping_tensor = torch.tensor(self.slot_mapping, - dtype=torch.long, - device=device) - return self._metadata_cls( # type: ignore num_prefills=self.num_prefills, slot_mapping=slot_mapping_tensor, diff --git a/vllm/worker/model_runner.py b/vllm/worker/model_runner.py index f9c26e0c318b1..8b744a438e81a 100644 --- a/vllm/worker/model_runner.py +++ b/vllm/worker/model_runner.py @@ -50,7 +50,7 @@ from vllm.sampling_params import SamplingParams from vllm.sequence import (IntermediateTensors, SamplerOutput, SequenceGroupMetadata) -from vllm.utils import (CudaMemoryProfiler, flatten_2d_lists, +from vllm.utils import (CudaMemoryProfiler, async_tensor_h2d, flatten_2d_lists, get_kv_cache_torch_dtype, is_hip, is_pin_memory_available) from vllm.worker.model_runner_base import ( @@ -549,12 +549,13 @@ def build(self) -> ModelInputForGPU: # Tokens and positions. input_tokens.extend([0] * cuda_graph_pad_size) input_positions.extend([0] * cuda_graph_pad_size) - input_tokens_tensor = torch.tensor(input_tokens, - dtype=torch.long, - device=self.runner.device) - input_positions_tensor = torch.tensor(input_positions, - dtype=torch.long, - device=self.runner.device) + assert self.runner.device is not None + input_tokens_tensor = async_tensor_h2d(input_tokens, torch.long, + self.runner.device, + self.runner.pin_memory) + input_positions_tensor = async_tensor_h2d(input_positions, torch.long, + self.runner.device, + self.runner.pin_memory) # Sequence and query lengths. seq_lens.extend([1] * cuda_graph_pad_size) From 360bd67cf0ea4a79a59c1aae736cc495a5a63ec5 Mon Sep 17 00:00:00 2001 From: Isotr0py <2037008807@qq.com> Date: Tue, 6 Aug 2024 07:54:23 +0800 Subject: [PATCH 005/237] [Core] Support loading GGUF model (#5191) Co-authored-by: Michael Goin --- .github/workflows/clang-format.yml | 5 + CMakeLists.txt | 1 + csrc/ops.h | 9 + csrc/quantization/gguf/dequantize.cuh | 531 +++++ csrc/quantization/gguf/ggml-common.h | 969 +++++++++ csrc/quantization/gguf/gguf_kernel.cu | 242 +++ csrc/quantization/gguf/mmq.cuh | 600 ++++++ csrc/quantization/gguf/mmvq.cuh | 182 ++ csrc/quantization/gguf/vecdotq.cuh | 1745 +++++++++++++++++ csrc/torch_bindings.cpp | 12 + examples/gguf_inference.py | 38 + format.sh | 5 + requirements-common.txt | 1 + tests/models/test_gguf.py | 76 + tests/quantization/test_lm_head.py | 6 +- vllm/_custom_ops.py | 32 + vllm/config.py | 1 + vllm/engine/arg_utils.py | 3 + vllm/model_executor/layers/linear.py | 82 +- .../layers/quantization/__init__.py | 2 + .../layers/quantization/base_config.py | 26 +- .../layers/quantization/gguf.py | 165 ++ .../layers/vocab_parallel_embedding.py | 59 +- vllm/model_executor/model_loader/loader.py | 94 +- .../model_loader/weight_utils.py | 47 +- vllm/model_executor/models/llama.py | 7 + vllm/model_executor/models/qwen2.py | 1 + vllm/transformers_utils/config.py | 40 +- vllm/transformers_utils/tokenizer.py | 10 +- 29 files changed, 4970 insertions(+), 21 deletions(-) create mode 100644 csrc/quantization/gguf/dequantize.cuh create mode 100644 csrc/quantization/gguf/ggml-common.h create mode 100644 csrc/quantization/gguf/gguf_kernel.cu create mode 100644 csrc/quantization/gguf/mmq.cuh create mode 100644 csrc/quantization/gguf/mmvq.cuh create mode 100644 csrc/quantization/gguf/vecdotq.cuh create mode 100644 examples/gguf_inference.py create mode 100644 tests/models/test_gguf.py create mode 100644 vllm/model_executor/layers/quantization/gguf.py diff --git a/.github/workflows/clang-format.yml b/.github/workflows/clang-format.yml index 79b85d8cad0d5..d5f37396e69d7 100644 --- a/.github/workflows/clang-format.yml +++ b/.github/workflows/clang-format.yml @@ -30,6 +30,11 @@ jobs: run: | EXCLUDES=( 'csrc/moe/topk_softmax_kernels.cu' + 'csrc/quantization/gguf/ggml-common.h' + 'csrc/quantization/gguf/dequantize.cuh' + 'csrc/quantization/gguf/vecdotq.cuh' + 'csrc/quantization/gguf/mmq.cuh' + 'csrc/quantization/gguf/mmvq.cuh' ) find csrc/ \( -name '*.h' -o -name '*.cpp' -o -name '*.cu' -o -name '*.cuh' \) -print \ | grep -vFf <(printf "%s\n" "${EXCLUDES[@]}") \ diff --git a/CMakeLists.txt b/CMakeLists.txt index 8de0c034a7cb6..784fea05ea734 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -208,6 +208,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA") "csrc/quantization/gptq_marlin/gptq_marlin.cu" "csrc/quantization/gptq_marlin/gptq_marlin_repack.cu" "csrc/quantization/gptq_marlin/awq_marlin_repack.cu" + "csrc/quantization/gguf/gguf_kernel.cu" "csrc/quantization/fp8/fp8_marlin.cu" "csrc/custom_all_reduce.cu" "csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu" diff --git a/csrc/ops.h b/csrc/ops.h index 3bd4a9eda5ee3..e9e5f79a4a6f6 100644 --- a/csrc/ops.h +++ b/csrc/ops.h @@ -107,6 +107,15 @@ torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, int64_t size_n, int64_t num_bits); +torch::Tensor ggml_dequantize(torch::Tensor W, int8_t type, int64_t m, + int64_t n); + +torch::Tensor ggml_mul_mat_vec_a8(torch::Tensor W, torch::Tensor X, int8_t type, + int64_t row); + +torch::Tensor ggml_mul_mat_a8(torch::Tensor W, torch::Tensor X, int8_t type, + int64_t row); + torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_scales, torch::Tensor& workspace, int64_t num_bits, int64_t size_m, int64_t size_n, diff --git a/csrc/quantization/gguf/dequantize.cuh b/csrc/quantization/gguf/dequantize.cuh new file mode 100644 index 0000000000000..03c080f645f02 --- /dev/null +++ b/csrc/quantization/gguf/dequantize.cuh @@ -0,0 +1,531 @@ +// copied and adapted from https://github.com/ggerganov/llama.cpp/blob/b2899/ggml-cuda/convert.cu +// Dequant functions +static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){ + const block_q4_0 * x = (const block_q4_0 *) vx; + + const dfloat d = x[ib].d; + + const int vui = x[ib].qs[iqs]; + + v.x = __int2half_rn(vui & 0xF); + v.y = __int2half_rn(vui >> 4); + + v = __hsub2(v, __floats2half2_rn(8.0f, 8.0f)); + v = __hmul2(v, {d, d}); +} + +static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){ + const block_q4_1 * x = (const block_q4_1 *) vx; + + const dfloat d = __low2half(x[ib].dm); + const dfloat m = __high2half(x[ib].dm); + + const int vui = x[ib].qs[iqs]; + + v.x = __int2half_rn(vui & 0xF); + v.y = __int2half_rn(vui >> 4); + + v = __hmul2(v, {d, d}); + v = __hadd2(v, {m, m}); +} + +static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){ + const block_q5_0 * x = (const block_q5_0 *) vx; + + const dfloat d = x[ib].d; + + uint32_t qh; + memcpy(&qh, x[ib].qh, sizeof(qh)); + + const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; + const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10; + + v.x = __int2half_rn((x[ib].qs[iqs] & 0xf) | xh_0); + v.y = __int2half_rn((x[ib].qs[iqs] >> 4) | xh_1); + + v = __hsub2(v, __floats2half2_rn(16.0f, 16.0f)); + v = __hmul2(v, {d, d}); +} + +static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){ + const block_q5_1 * x = (const block_q5_1 *) vx; + + const dfloat d = __low2half(x[ib].dm); + const dfloat m = __high2half(x[ib].dm); + + uint32_t qh; + memcpy(&qh, x[ib].qh, sizeof(qh)); + + const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; + const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10; + + v.x = __int2half_rn((x[ib].qs[iqs] & 0xf) | xh_0); + v.y = __int2half_rn((x[ib].qs[iqs] >> 4) | xh_1); + + v = __hmul2(v, {d, d}); + v = __hadd2(v, {m, m}); +} + +static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){ + const block_q8_0 * x = (const block_q8_0 *) vx; + + const dfloat d = x[ib].d; + + v.x = __int2half_rn(x[ib].qs[iqs + 0]); + v.y = __int2half_rn(x[ib].qs[iqs + 1]); + + v = __hmul2(v, {d, d}); +} + +template +static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) { + const int i = 2*(blockDim.x*blockIdx.x + threadIdx.x); + + if (i >= k) { + return; + } + + const int ib = i/qk; // block index + const int iqs = (i%qk)/qr; // quant index + const int iybs = i - i%qk; // y block start index + const int y_offset = qr == 1 ? 1 : qk/2; + + // dequantize + dfloat2 v; + dequantize_kernel(vx, ib, iqs, v); + + y[iybs + iqs + 0] = v.x; + y[iybs + iqs + y_offset] = v.y; +} + +template +static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { + + const int i = blockIdx.x; + const block_q2_K * x = (const block_q2_K *) vx; + + const int tid = threadIdx.x; + const int n = tid/32; + const int l = tid - 32*n; + const int is = 8*n + l/16; + + const uint8_t q = x[i].qs[32*n + l]; + dst_t * y = yy + i*QK_K + 128*n; + + half dall = __low2half(x[i].dm); + half dmin = __high2half(x[i].dm); + y[l+ 0] = __hsub(__hmul(dall, __int2half_rn((x[i].scales[is+0] & 0xF) * ((q >> 0) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+0] >> 4))); + y[l+32] = __hsub(__hmul(dall, __int2half_rn((x[i].scales[is+2] & 0xF) * ((q >> 2) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+2] >> 4))); + y[l+64] = __hsub(__hmul(dall, __int2half_rn((x[i].scales[is+4] & 0xF) * ((q >> 4) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+4] >> 4))); + y[l+96] = __hsub(__hmul(dall, __int2half_rn((x[i].scales[is+6] & 0xF) * ((q >> 6) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+6] >> 4))); +} + +template +static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { + + const int i = blockIdx.x; + const block_q3_K * x = (const block_q3_K *) vx; + + const int r = threadIdx.x/4; + const int tid = r/2; + const int is0 = r%2; + const int l0 = 16*is0 + 4*(threadIdx.x%4); + const int n = tid / 4; + const int j = tid - 4*n; + + uint8_t m = 1 << (4*n + j); + int is = 8*n + 2*j + is0; + int shift = 2*j; + + int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) : + is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) : + is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) : + (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4); + half d_all = x[i].d; + half dl = __hmul(d_all, __int2half_rn(us - 32)); + + dst_t * y = yy + i*QK_K + 128*n + 32*j; + const uint8_t * q = x[i].qs + 32*n; + const uint8_t * hm = x[i].hmask; + + for (int l = l0; l < l0+4; ++l) y[l] = __hmul(dl, __int2half_rn((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4))); +} + +static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) { + if (j < 4) { + d = q[j] & 63; m = q[j + 4] & 63; + } else { + d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4); + m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); + } +} + +template +static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { + const block_q4_K * x = (const block_q4_K *) vx; + + const int i = blockIdx.x; + + // assume 32 threads + const int tid = threadIdx.x; + const int il = tid/8; + const int ir = tid%8; + const int is = 2*il; + const int n = 4; + + dst_t * y = yy + i*QK_K + 64*il + n*ir; + + const half dall = __low2half(x[i].dm); + const half dmin = __high2half(x[i].dm); + + const uint8_t * q = x[i].qs + 32*il + n*ir; + + uint8_t sc, m; + get_scale_min_k4(is + 0, x[i].scales, sc, m); + const half d1 = __hmul(dall, __int2half_rn(sc)); + const half m1 = __hmul(dmin, __int2half_rn(m)); + get_scale_min_k4(is + 1, x[i].scales, sc, m); + const half d2 = __hmul(dall, __int2half_rn(sc)); + const half m2 = __hmul(dmin, __int2half_rn(m)); + for (int l = 0; l < n; ++l) { + y[l + 0] = __hsub(__hmul(d1, __int2half_rn(q[l] & 0xF)), m1); + y[l +32] = __hsub(__hmul(d2, __int2half_rn(q[l] >> 4)), m2); + } +} + +template +static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { + const block_q5_K * x = (const block_q5_K *) vx; + + const int i = blockIdx.x; + + // assume 64 threads - this is very slightly better than the one below + const int tid = threadIdx.x; + const int il = tid/16; // il is in 0...3 + const int ir = tid%16; // ir is in 0...15 + const int is = 2*il; // is is in 0...6 + + dst_t * y = yy + i*QK_K + 64*il + 2*ir; + + const half dall = __low2half(x[i].dm); + const half dmin = __high2half(x[i].dm); + + const uint8_t * ql = x[i].qs + 32*il + 2*ir; + const uint8_t * qh = x[i].qh + 2*ir; + + uint8_t sc, m; + get_scale_min_k4(is + 0, x[i].scales, sc, m); + const half d1 = __hmul(dall, __int2half_rn(sc)); const half m1 = __hmul(dmin, __int2half_rn(m)); + get_scale_min_k4(is + 1, x[i].scales, sc, m); + const half d2 = __hmul(dall, __int2half_rn(sc)); const half m2 = __hmul(dmin, __int2half_rn(m)); + + uint8_t hm = 1 << (2*il); + y[ 0] = __hsub(__hmul(d1, __int2half_rn((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0))), m1); + y[ 1] = __hsub(__hmul(d1, __int2half_rn((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0))), m1); + hm <<= 1; + y[32] = __hsub(__hmul(d2, __int2half_rn((ql[0] >> 4) + (qh[0] & hm ? 16 : 0))), m2); + y[33] = __hsub(__hmul(d2, __int2half_rn((ql[1] >> 4) + (qh[1] & hm ? 16 : 0))), m2); +} + +template +static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { + const block_q6_K * x = (const block_q6_K *) vx; + + const int i = blockIdx.x; + + // assume 64 threads - this is very slightly better than the one below + const int tid = threadIdx.x; + const int ip = tid/32; // ip is 0 or 1 + const int il = tid - 32*ip; // 0...32 + const int is = 8*ip + il/16; + + dst_t * y = yy + i*QK_K + 128*ip + il; + + const half d = x[i].d; + + const uint8_t * ql = x[i].ql + 64*ip + il; + const uint8_t qh = x[i].qh[32*ip + il]; + const int8_t * sc = x[i].scales + is; + + y[ 0] = __hmul(d, __int2half_rn(sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32))); + y[32] = __hmul(d, __int2half_rn(sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32))); + y[64] = __hmul(d, __int2half_rn(sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32))); + y[96] = __hmul(d, __int2half_rn(sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32))); +} + +template +static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) { + + const int i = blockIdx.x; + const block_iq2_xxs * x = (const block_iq2_xxs *) vx; + + const int tid = threadIdx.x; + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 8*il; + const uint16_t * q2 = x[i].qs + 4*ib; + const uint8_t * aux8 = (const uint8_t *)q2; + const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]); + const uint32_t aux32 = q2[2] | (q2[3] << 16); + const float d = __half2float(x[i].d) * (0.5f + (aux32 >> 28)) * 0.25f; + const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127]; + for (int j = 0; j < 8; ++j) y[j] = __float2half(d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f)); +} + +template +static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) { + + const int i = blockIdx.x; + const block_iq2_xs * x = (const block_iq2_xs *) vx; + + const int tid = threadIdx.x; + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 8*il; + const uint16_t * q2 = x[i].qs + 4*ib; + const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511)); + const float d = __half2float(x[i].d) * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f; + const uint8_t signs = ksigns_iq2xs[q2[il] >> 9]; + for (int j = 0; j < 8; ++j) y[j] = __float2half(d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f)); + +} + +template +static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { + + const int i = blockIdx.x; + const block_iq2_s * x = (const block_iq2_s *) vx; + + const int tid = threadIdx.x; + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 8*il; + const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300))); + const float d = __half2float(x[i].d) * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f; + const uint8_t signs = x[i].qs[QK_K/8+4*ib+il]; + for (int j = 0; j < 8; ++j) y[j] = __float2half(d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f)); +} + +template +static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) { + + const int i = blockIdx.x; + const block_iq3_xxs * x = (const block_iq3_xxs *) vx; + + const int tid = threadIdx.x; + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 8*il; + const uint8_t * q3 = x[i].qs + 8*ib; + const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib; + const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]); + const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]); + const uint32_t aux32 = gas[0] | (gas[1] << 16); + const float d = __half2float(x[i].d) * (0.5f + (aux32 >> 28)) * 0.5f; + const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127]; + for (int j = 0; j < 4; ++j) { + y[j+0] = __float2half(d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f)); + y[j+4] = __float2half(d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f)); + } +} + +template +static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { + + const int i = blockIdx.x; + const block_iq3_s * x = (const block_iq3_s *) vx; + + const int tid = threadIdx.x; + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 8*il; + const uint8_t * qs = x[i].qs + 8*ib; + const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256))); + const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256))); + const float d = __half2float(x[i].d) * (0.5f + ((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf)) * 0.5f; + const uint8_t signs = x[i].signs[4*ib + il]; + for (int j = 0; j < 4; ++j) { + y[j+0] = __float2half(d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f)); + y[j+4] = __float2half(d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f)); + } +} + +template +static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { + + const int i = blockIdx.x; + const block_iq1_s * x = (const block_iq1_s *) vx; + + const int tid = threadIdx.x; + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 8*il; + const int i8 = 4*ib+il; + uint8_t h = x[i].scales[i8/2] >> 4*(i8%2); + const int8_t * grid = (const int8_t *)(iq1s_grid + (x[i].qs[i8] | ((h & 8) << 5))); + const float d = __half2float(x[i].d) * (2*(h & 7) + 1); + for (int j = 0; j < 8; ++j) y[j] = __float2half(d * grid[j]); +} + +template +static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) { + + const int i = blockIdx.x; + const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL); + + const int tid = threadIdx.x; + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 4*il; + const uint8_t * q4 = x[ib].qs + 4*il; + const float d = __half2float(x[ib].d); + for (int j = 0; j < 4; ++j) { + y[j+ 0] = __float2half(d * kvalues_iq4nl[q4[j] & 0xf]); + y[j+16] = __float2half(d * kvalues_iq4nl[q4[j] >> 4]); + } + +} + +template +static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) { + const int i = blockIdx.x; + const block_iq4_xs * x = (const block_iq4_xs *)vx; + + const int tid = threadIdx.x; + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 4*il; + const uint8_t * q4 = x[i].qs + 16*ib + 4*il; + const float d = __half2float(x[i].d) * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32); + for (int j = 0; j < 4; ++j) { + y[j+ 0] = __float2half(d * kvalues_iq4nl[q4[j] & 0xf]); + y[j+16] = __float2half(d * kvalues_iq4nl[q4[j] >> 4]); + } +} + +template +static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) { + const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE); + dequantize_block<<>>(vx, y, k); +} + +template +static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_q2_K<<>>(vx, y); +} + +template +static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_q3_K<<>>(vx, y); +} + +template +static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_q4_K<<>>(vx, y); +} + +template +static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_q5_K<<>>(vx, y); +} + +template +static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_q6_K<<>>(vx, y); +} + +template +static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_iq2_xxs<<>>(vx, y); +} + +template +static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_iq2_xs<<>>(vx, y); +} + +template +static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_iq2_s<<>>(vx, y); +} + +template +static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_iq3_xxs<<>>(vx, y); +} + +template +static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_iq3_s<<>>(vx, y); +} + +template +static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_iq1_s<<>>(vx, y); +} + +template +static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = (k + QK_K - 1) / QK_K; + dequantize_block_iq4_nl<<>>(vx, y); +} + +template +static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb = (k + QK_K - 1) / QK_K; + dequantize_block_iq4_xs<<>>(vx, y); +} + +static to_fp16_cuda_t ggml_get_to_fp16_cuda(int type) { + switch (type) { + case 2: + return dequantize_block_cuda; + case 3: + return dequantize_block_cuda; + case 6: + return dequantize_block_cuda; + case 7: + return dequantize_block_cuda; + case 8: + return dequantize_block_cuda; + case 10: + return dequantize_row_q2_K_cuda; + case 11: + return dequantize_row_q3_K_cuda; + case 12: + return dequantize_row_q4_K_cuda; + case 13: + return dequantize_row_q5_K_cuda; + case 14: + return dequantize_row_q6_K_cuda; + case 16: + return dequantize_row_iq2_xxs_cuda; + case 17: + return dequantize_row_iq2_xs_cuda; + case 18: + return dequantize_row_iq3_xxs_cuda; + case 19: + return dequantize_row_iq1_s_cuda; + case 20: + return dequantize_row_iq4_nl_cuda; + case 21: + return dequantize_row_iq3_s_cuda; + case 22: + return dequantize_row_iq2_s_cuda; + case 23: + return dequantize_row_iq4_xs_cuda; + default: + return nullptr; + } +} \ No newline at end of file diff --git a/csrc/quantization/gguf/ggml-common.h b/csrc/quantization/gguf/ggml-common.h new file mode 100644 index 0000000000000..d7989d84bf68e --- /dev/null +++ b/csrc/quantization/gguf/ggml-common.h @@ -0,0 +1,969 @@ +// copied from https://github.com/ggerganov/llama.cpp/blob/b2899/ggml-common.h +#define QK_K 256 +#define K_QUANTS_PER_ITERATION 2 +#define WARP_SIZE 32 +#define K_SCALE_SIZE 12 +#define CUDA_DEQUANTIZE_BLOCK_SIZE 256 +#define CUDA_QUANTIZE_BLOCK_SIZE 256 +#define GGML_CUDA_DMMV_X 32 +#define GGML_CUDA_MMV_Y 1 + + +// Data Structures +// QK = number of values after dequantization +// QR = QK / number of values before dequantization +// QI = number of 32 bit integers before dequantization + +#define QK4_0 32 +#define QR4_0 2 +#define QI4_0 (QK4_0 / (4 * QR4_0)) +typedef struct { + half d; // delta + uint8_t qs[QK4_0 / 2]; // nibbles / quants +} block_q4_0; + +#define QK4_1 32 +#define QR4_1 2 +#define QI4_1 (QK4_1 / (4 * QR4_1)) +typedef struct { + half2 dm; // dm.x = delta, dm.y = min + uint8_t qs[QK4_1 / 2]; // nibbles / quants +} block_q4_1; + +#define QK5_0 32 +#define QR5_0 2 +#define QI5_0 (QK5_0 / (4 * QR5_0)) +typedef struct { + half d; // delta + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_0 / 2]; // nibbles / quants +} block_q5_0; + +#define QK5_1 32 +#define QR5_1 2 +#define QI5_1 (QK5_1 / (4 * QR5_1)) +typedef struct { + half2 dm; // dm.x = delta, dm.y = min + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_1 / 2]; // nibbles / quants +} block_q5_1; + +#define QK8_0 32 +#define QR8_0 1 +#define QI8_0 (QK8_0 / (4 * QR8_0)) +typedef struct { + half d; // delta + int8_t qs[QK8_0]; // quants +} block_q8_0; + +#define QK8_1 32 +#define QR8_1 1 +#define QI8_1 (QK8_1 / (4 * QR8_1)) +typedef struct { + half2 ds; // ds.x = delta, ds.y = sum + int8_t qs[QK8_0]; // quants +} block_q8_1; + +#define QR2_K 4 +#define QI2_K (QK_K / (4*QR2_K)) +typedef struct { + uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits + uint8_t qs[QK_K/4]; // quants + half2 dm; // super-block scale for quantized scales/mins +} block_q2_K; + +#define QR3_K 4 +#define QI3_K (QK_K / (4*QR3_K)) +typedef struct { + uint8_t hmask[QK_K/8]; // quants - high bit + uint8_t qs[QK_K/4]; // quants - low 2 bits + uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits + half d; // super-block scale +} block_q3_K; + +#define QR4_K 2 +#define QI4_K (QK_K / (4*QR4_K)) +typedef struct { + half2 dm; // super-block scale for quantized scales/mins + uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits + uint8_t qs[QK_K/2]; // 4--bit quants +} block_q4_K; + +#define QR5_K 2 +#define QI5_K (QK_K / (4*QR5_K)) +typedef struct { + half2 dm; // super-block scale for quantized scales/mins + uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_K; + +#define QR6_K 2 +#define QI6_K (QK_K / (4*QR6_K)) +typedef struct { + uint8_t ql[QK_K/2]; // quants, lower 4 bits + uint8_t qh[QK_K/4]; // quants, upper 2 bits + int8_t scales[QK_K/16]; // scales + half d; // delta +} block_q6_K; + +#define QR2_XXS 8 +#define QI2_XXS (QK_K / (4*QR2_XXS)) +typedef struct { + half d; + uint16_t qs[QK_K/8]; +} block_iq2_xxs; + +#define QR2_XS 8 +#define QI2_XS (QK_K / (4*QR2_XS)) +typedef struct { + half d; + uint16_t qs[QK_K/8]; + uint8_t scales[QK_K/32]; +} block_iq2_xs; + +#define QR2_S 8 +#define QI2_S (QK_K / (4*QR2_S)) +typedef struct { + half d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t scales[QK_K/32]; +} block_iq2_s; + +#define QR3_XXS 8 +#define QI3_XXS (QK_K / (4*QR3_XXS)) +typedef struct { + half d; + uint8_t qs[3*(QK_K/8)]; +} block_iq3_xxs; + +#define QR3_XS 8 +#define QI3_XS (QK_K / (4*QR3_XS)) +#define IQ3S_N_SCALE QK_K/64 +typedef struct { + half d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t signs[QK_K/8]; + uint8_t scales[IQ3S_N_SCALE]; +} block_iq3_s; + +#define QR1_S 8 +#define QI1_S (QK_K / (4*QR1_S)) +typedef struct { + half d; + uint8_t qs[QK_K/8]; + uint8_t scales[QK_K/16]; +} block_iq1_s; + +#define QK4_NL 32 +#define QR4_NL 2 +#define QI4_NL (QK4_NL / (4*QR4_NL)) +typedef struct { + half d; + uint8_t qs[QK4_NL/2]; +} block_iq4_nl; + +#define QR4_XS 8 +#define QI4_XS (QK_K / (4*QR4_XS)) +typedef struct { + half d; + uint16_t scales_h; + uint8_t scales_l[QK_K/64]; + uint8_t qs[QK_K/2]; +} block_iq4_xs; + +static const __device__ uint64_t iq2xxs_grid[256] = { + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808, + 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819, + 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819, + 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b, + 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808, + 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08, + 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b, + 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819, + 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08, + 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, + 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08, + 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808, + 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808, + 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919, + 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819, + 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08, + 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908, + 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819, + 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808, + 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808, + 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908, + 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808, + 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08, + 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819, + 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819, + 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819, + 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908, + 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19, + 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819, + 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b, + 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808, + 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908, + 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08, + 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08, + 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908, + 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819, + 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808, + 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808, + 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19, + 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819, + 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, + 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b, + 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08, + 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808, + 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908, + 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b, + 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819, + 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08, + 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08, + 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808, + 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b, + 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b, + 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908, + 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819, + 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808, + 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908, + 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b, + 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808, + 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b, + 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b, + 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808, + 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19, + 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908, +}; + +static const __device__ uint64_t iq2xs_grid[512] = { + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, + 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, + 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, + 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, + 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808, + 0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819, + 0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819, + 0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, + 0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b, + 0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b, + 0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908, + 0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908, + 0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919, + 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808, + 0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919, + 0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908, + 0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, + 0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, + 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08, + 0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808, + 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808, + 0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819, + 0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908, + 0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819, + 0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808, + 0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b, + 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819, + 0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819, + 0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808, + 0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908, + 0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19, + 0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b, + 0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b, + 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919, + 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808, + 0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819, + 0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819, + 0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b, + 0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908, + 0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808, + 0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819, + 0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808, + 0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, + 0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808, + 0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808, + 0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908, + 0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908, + 0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808, + 0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b, + 0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819, + 0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, + 0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908, + 0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808, + 0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908, + 0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919, + 0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08, + 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19, + 0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b, + 0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b, + 0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808, + 0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08, + 0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b, + 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908, + 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b, + 0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908, + 0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, + 0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808, + 0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808, + 0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08, + 0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819, + 0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919, + 0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808, + 0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808, + 0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819, + 0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819, + 0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908, + 0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908, + 0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b, + 0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908, + 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908, + 0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908, + 0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808, + 0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, + 0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819, + 0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819, + 0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808, + 0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b, + 0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819, + 0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819, + 0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08, + 0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808, + 0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19, + 0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919, + 0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, + 0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19, + 0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b, + 0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808, + 0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b, + 0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b, + 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, + 0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b, + 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808, + 0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819, + 0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808, + 0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808, + 0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08, + 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b, + 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19, + 0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08, + 0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919, + 0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08, + 0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08, + 0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908, + 0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908, + 0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b, + 0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908, + 0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808, + 0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b, + 0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808, + 0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808, + 0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19, + 0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08, + 0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808, + 0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b, + 0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808, + 0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b, + 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b, +}; + +static const __device__ uint64_t iq2s_grid[1024] = { + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, + 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, + 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, + 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, + 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x08080808192b192b, + 0x08080808192b2b19, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919, + 0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b2b0808, + 0x080808082b2b1919, 0x080808082b2b2b2b, 0x0808081908080819, 0x0808081908081908, + 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b, + 0x0808081908191919, 0x0808081908192b08, 0x08080819082b0819, 0x08080819082b1908, + 0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08, + 0x0808081919190819, 0x0808081919191908, 0x080808191919192b, 0x0808081919192b19, + 0x08080819192b0808, 0x08080819192b1919, 0x08080819192b2b08, 0x080808192b080819, + 0x080808192b081908, 0x080808192b190808, 0x080808192b19082b, 0x080808192b191919, + 0x080808192b2b0819, 0x080808192b2b1908, 0x0808082b08080808, 0x0808082b0808082b, + 0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, + 0x0808082b082b0808, 0x0808082b082b2b2b, 0x0808082b19080819, 0x0808082b19081908, + 0x0808082b1908192b, 0x0808082b19082b19, 0x0808082b19190808, 0x0808082b19191919, + 0x0808082b2b080808, 0x0808082b2b081919, 0x0808082b2b082b2b, 0x0808082b2b191908, + 0x0808082b2b2b082b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b, + 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919, + 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x08081908082b192b, + 0x08081908082b2b19, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, + 0x0808190819082b08, 0x0808190819082b2b, 0x0808190819190819, 0x0808190819191908, + 0x080819081919192b, 0x0808190819192b19, 0x08081908192b0808, 0x08081908192b082b, + 0x08081908192b1919, 0x080819082b080819, 0x080819082b081908, 0x080819082b08192b, + 0x080819082b082b19, 0x080819082b190808, 0x080819082b191919, 0x080819082b192b08, + 0x080819082b2b0819, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, + 0x0808191908081919, 0x0808191908082b08, 0x0808191908082b2b, 0x0808191908190819, + 0x0808191908191908, 0x080819190819192b, 0x0808191908192b19, 0x08081919082b0808, + 0x08081919082b1919, 0x08081919082b2b08, 0x0808191919080819, 0x0808191919081908, + 0x080819191908192b, 0x0808191919082b19, 0x0808191919190808, 0x080819191919082b, + 0x0808191919191919, 0x0808191919192b08, 0x08081919192b0819, 0x08081919192b1908, + 0x080819192b080808, 0x080819192b08082b, 0x080819192b081919, 0x080819192b082b08, + 0x080819192b190819, 0x080819192b191908, 0x080819192b2b0808, 0x0808192b08080819, + 0x0808192b08081908, 0x0808192b0808192b, 0x0808192b08082b19, 0x0808192b08190808, + 0x0808192b08191919, 0x0808192b19080808, 0x0808192b19081919, 0x0808192b19082b08, + 0x0808192b19190819, 0x0808192b19191908, 0x0808192b192b0808, 0x0808192b2b080819, + 0x0808192b2b081908, 0x0808192b2b190808, 0x08082b0808080808, 0x08082b080808082b, + 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808190819, 0x08082b0808191908, + 0x08082b080819192b, 0x08082b0808192b19, 0x08082b08082b0808, 0x08082b08082b1919, + 0x08082b08082b2b2b, 0x08082b0819080819, 0x08082b0819081908, 0x08082b081908192b, + 0x08082b0819082b19, 0x08082b0819190808, 0x08082b081919082b, 0x08082b0819191919, + 0x08082b0819192b08, 0x08082b08192b0819, 0x08082b08192b1908, 0x08082b082b080808, + 0x08082b082b081919, 0x08082b082b191908, 0x08082b082b2b2b2b, 0x08082b1908080819, + 0x08082b1908081908, 0x08082b1908190808, 0x08082b190819082b, 0x08082b1908191919, + 0x08082b1908192b08, 0x08082b19082b0819, 0x08082b1919080808, 0x08082b1919081919, + 0x08082b1919082b08, 0x08082b1919190819, 0x08082b1919191908, 0x08082b19192b0808, + 0x08082b192b080819, 0x08082b192b190808, 0x08082b2b08080808, 0x08082b2b08190819, + 0x08082b2b08191908, 0x08082b2b082b082b, 0x08082b2b082b2b08, 0x08082b2b082b2b2b, + 0x08082b2b19190808, 0x08082b2b2b192b19, 0x0819080808080819, 0x0819080808081908, + 0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, + 0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, + 0x08190808082b192b, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919, + 0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x081908081919192b, + 0x0819080819192b19, 0x08190808192b0808, 0x08190808192b082b, 0x08190808192b1919, + 0x08190808192b2b08, 0x081908082b080819, 0x081908082b081908, 0x081908082b08192b, + 0x081908082b190808, 0x081908082b191919, 0x081908082b192b08, 0x081908082b2b0819, + 0x081908082b2b1908, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919, + 0x0819081908082b08, 0x0819081908082b2b, 0x0819081908190819, 0x0819081908191908, + 0x081908190819192b, 0x0819081908192b19, 0x08190819082b0808, 0x08190819082b082b, + 0x08190819082b1919, 0x08190819082b2b08, 0x0819081919080819, 0x0819081919081908, + 0x081908191908192b, 0x0819081919082b19, 0x0819081919190808, 0x081908191919082b, + 0x0819081919191919, 0x0819081919192b08, 0x08190819192b0819, 0x08190819192b1908, + 0x081908192b080808, 0x081908192b08082b, 0x081908192b081919, 0x081908192b082b08, + 0x081908192b190819, 0x081908192b191908, 0x0819082b08080819, 0x0819082b08081908, + 0x0819082b08082b19, 0x0819082b08190808, 0x0819082b08191919, 0x0819082b082b0819, + 0x0819082b082b1908, 0x0819082b19080808, 0x0819082b19081919, 0x0819082b19190819, + 0x0819082b19191908, 0x0819082b2b080819, 0x0819082b2b081908, 0x0819082b2b190808, + 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08, + 0x0819190808190819, 0x0819190808191908, 0x081919080819192b, 0x0819190808192b19, + 0x08191908082b0808, 0x08191908082b1919, 0x08191908082b2b08, 0x0819190819080819, + 0x0819190819081908, 0x081919081908192b, 0x0819190819082b19, 0x0819190819190808, + 0x081919081919082b, 0x0819190819191919, 0x0819190819192b08, 0x08191908192b0819, + 0x08191908192b1908, 0x081919082b080808, 0x081919082b08082b, 0x081919082b081919, + 0x081919082b082b08, 0x081919082b190819, 0x081919082b191908, 0x081919082b2b0808, + 0x0819191908080819, 0x0819191908081908, 0x081919190808192b, 0x0819191908082b19, + 0x0819191908190808, 0x081919190819082b, 0x0819191908191919, 0x0819191908192b08, + 0x08191919082b0819, 0x08191919082b1908, 0x0819191919080808, 0x081919191908082b, + 0x0819191919081919, 0x0819191919082b08, 0x0819191919190819, 0x0819191919191908, + 0x08191919192b0808, 0x081919192b080819, 0x081919192b081908, 0x081919192b190808, + 0x0819192b08080808, 0x0819192b08081919, 0x0819192b08082b08, 0x0819192b08190819, + 0x0819192b08191908, 0x0819192b082b0808, 0x0819192b19080819, 0x0819192b19081908, + 0x0819192b19190808, 0x0819192b2b080808, 0x0819192b2b2b2b2b, 0x08192b0808080819, + 0x08192b0808081908, 0x08192b080808192b, 0x08192b0808082b19, 0x08192b0808190808, + 0x08192b0808191919, 0x08192b0808192b08, 0x08192b08082b0819, 0x08192b0819080808, + 0x08192b081908082b, 0x08192b0819081919, 0x08192b0819082b08, 0x08192b0819190819, + 0x08192b0819191908, 0x08192b08192b0808, 0x08192b082b080819, 0x08192b082b081908, + 0x08192b1908080808, 0x08192b190808082b, 0x08192b1908081919, 0x08192b1908082b08, + 0x08192b1908190819, 0x08192b1908191908, 0x08192b19082b0808, 0x08192b1919080819, + 0x08192b1919081908, 0x08192b1919190808, 0x08192b19192b2b19, 0x08192b192b2b082b, + 0x08192b2b08081908, 0x08192b2b08190808, 0x08192b2b19080808, 0x08192b2b1919192b, + 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08, + 0x082b080808190819, 0x082b080808191908, 0x082b08080819192b, 0x082b080808192b19, + 0x082b0808082b0808, 0x082b0808082b1919, 0x082b0808082b2b2b, 0x082b080819080819, + 0x082b080819081908, 0x082b080819190808, 0x082b08081919082b, 0x082b080819191919, + 0x082b0808192b1908, 0x082b08082b080808, 0x082b08082b082b2b, 0x082b08082b191908, + 0x082b08082b2b2b2b, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808, + 0x082b08190819082b, 0x082b081908191919, 0x082b0819082b0819, 0x082b081919080808, + 0x082b08191908082b, 0x082b081919081919, 0x082b081919190819, 0x082b081919191908, + 0x082b0819192b0808, 0x082b08192b080819, 0x082b08192b081908, 0x082b08192b190808, + 0x082b082b08080808, 0x082b082b08082b2b, 0x082b082b082b082b, 0x082b082b082b2b08, + 0x082b082b082b2b2b, 0x082b082b19081908, 0x082b082b19190808, 0x082b082b2b082b08, + 0x082b082b2b082b2b, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908, + 0x082b19080808192b, 0x082b190808082b19, 0x082b190808190808, 0x082b190808191919, + 0x082b190808192b08, 0x082b1908082b0819, 0x082b1908082b1908, 0x082b190819080808, + 0x082b19081908082b, 0x082b190819081919, 0x082b190819082b08, 0x082b190819190819, + 0x082b190819191908, 0x082b1908192b0808, 0x082b19082b080819, 0x082b19082b081908, + 0x082b19082b190808, 0x082b191908080808, 0x082b191908081919, 0x082b191908082b08, + 0x082b191908190819, 0x082b191908191908, 0x082b1919082b0808, 0x082b191919080819, + 0x082b191919081908, 0x082b191919190808, 0x082b1919192b192b, 0x082b19192b080808, + 0x082b192b08080819, 0x082b192b08081908, 0x082b192b08190808, 0x082b192b19080808, + 0x082b192b19192b19, 0x082b2b0808080808, 0x082b2b0808081919, 0x082b2b0808190819, + 0x082b2b0808191908, 0x082b2b0819080819, 0x082b2b0819081908, 0x082b2b0819190808, + 0x082b2b082b082b2b, 0x082b2b082b2b2b2b, 0x082b2b1908080819, 0x082b2b1908081908, + 0x082b2b1908190808, 0x082b2b192b191919, 0x082b2b2b08082b2b, 0x082b2b2b082b082b, + 0x082b2b2b192b1908, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, + 0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, + 0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x1908080808192b2b, + 0x19080808082b0819, 0x19080808082b1908, 0x19080808082b192b, 0x1908080819080808, + 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b, + 0x1908080819190819, 0x1908080819191908, 0x190808081919192b, 0x1908080819192b19, + 0x19080808192b0808, 0x19080808192b082b, 0x19080808192b1919, 0x190808082b080819, + 0x190808082b081908, 0x190808082b190808, 0x190808082b191919, 0x190808082b192b08, + 0x190808082b2b0819, 0x190808082b2b1908, 0x1908081908080808, 0x190808190808082b, + 0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908, + 0x190808190819192b, 0x1908081908192b19, 0x19080819082b0808, 0x19080819082b082b, + 0x19080819082b1919, 0x1908081919080819, 0x1908081919081908, 0x190808191908192b, + 0x1908081919082b19, 0x1908081919190808, 0x190808191919082b, 0x1908081919191919, + 0x1908081919192b08, 0x19080819192b0819, 0x19080819192b1908, 0x190808192b080808, + 0x190808192b08082b, 0x190808192b081919, 0x190808192b082b08, 0x190808192b190819, + 0x190808192b191908, 0x190808192b2b0808, 0x1908082b08080819, 0x1908082b08081908, + 0x1908082b08190808, 0x1908082b0819082b, 0x1908082b08191919, 0x1908082b08192b08, + 0x1908082b082b1908, 0x1908082b19080808, 0x1908082b19081919, 0x1908082b19082b08, + 0x1908082b19190819, 0x1908082b19191908, 0x1908082b192b0808, 0x1908082b2b080819, + 0x1908082b2b081908, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919, + 0x1908190808082b08, 0x1908190808082b2b, 0x1908190808190819, 0x1908190808191908, + 0x190819080819192b, 0x1908190808192b19, 0x19081908082b0808, 0x19081908082b082b, + 0x19081908082b1919, 0x19081908082b2b08, 0x1908190819080819, 0x1908190819081908, + 0x190819081908192b, 0x1908190819082b19, 0x1908190819190808, 0x190819081919082b, + 0x1908190819191919, 0x1908190819192b08, 0x19081908192b0819, 0x19081908192b1908, + 0x190819082b080808, 0x190819082b08082b, 0x190819082b081919, 0x190819082b082b08, + 0x190819082b190819, 0x190819082b191908, 0x190819082b2b0808, 0x1908191908080819, + 0x1908191908081908, 0x190819190808192b, 0x1908191908082b19, 0x1908191908190808, + 0x190819190819082b, 0x1908191908191919, 0x1908191908192b08, 0x19081919082b0819, + 0x19081919082b1908, 0x1908191919080808, 0x190819191908082b, 0x1908191919081919, + 0x1908191919082b08, 0x1908191919190819, 0x1908191919191908, 0x19081919192b0808, + 0x19081919192b2b2b, 0x190819192b080819, 0x190819192b081908, 0x190819192b190808, + 0x1908192b08080808, 0x1908192b0808082b, 0x1908192b08081919, 0x1908192b08082b08, + 0x1908192b08190819, 0x1908192b08191908, 0x1908192b082b0808, 0x1908192b19080819, + 0x1908192b19081908, 0x1908192b19190808, 0x1908192b2b080808, 0x1908192b2b2b1919, + 0x19082b0808080819, 0x19082b0808081908, 0x19082b0808082b19, 0x19082b0808190808, + 0x19082b080819082b, 0x19082b0808191919, 0x19082b0808192b08, 0x19082b08082b0819, + 0x19082b08082b1908, 0x19082b0819080808, 0x19082b081908082b, 0x19082b0819081919, + 0x19082b0819082b08, 0x19082b0819190819, 0x19082b0819191908, 0x19082b08192b0808, + 0x19082b082b081908, 0x19082b082b190808, 0x19082b1908080808, 0x19082b190808082b, + 0x19082b1908081919, 0x19082b1908082b08, 0x19082b1908190819, 0x19082b1908191908, + 0x19082b19082b0808, 0x19082b1919080819, 0x19082b1919081908, 0x19082b1919190808, + 0x19082b192b080808, 0x19082b192b19192b, 0x19082b2b08080819, 0x19082b2b08081908, + 0x19082b2b08190808, 0x19082b2b19080808, 0x1919080808080808, 0x191908080808082b, + 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908, + 0x191908080819192b, 0x1919080808192b19, 0x19190808082b0808, 0x19190808082b082b, + 0x19190808082b1919, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908, + 0x191908081908192b, 0x1919080819082b19, 0x1919080819190808, 0x191908081919082b, + 0x1919080819191919, 0x1919080819192b08, 0x19190808192b0819, 0x19190808192b1908, + 0x191908082b080808, 0x191908082b08082b, 0x191908082b081919, 0x191908082b082b08, + 0x191908082b190819, 0x191908082b191908, 0x1919081908080819, 0x1919081908081908, + 0x191908190808192b, 0x1919081908082b19, 0x1919081908190808, 0x191908190819082b, + 0x1919081908191919, 0x1919081908192b08, 0x19190819082b0819, 0x19190819082b1908, + 0x1919081919080808, 0x191908191908082b, 0x1919081919081919, 0x1919081919082b08, + 0x1919081919190819, 0x1919081919191908, 0x19190819192b0808, 0x191908192b080819, + 0x191908192b081908, 0x191908192b190808, 0x1919082b08080808, 0x1919082b08081919, + 0x1919082b08082b08, 0x1919082b08190819, 0x1919082b08191908, 0x1919082b082b0808, + 0x1919082b19080819, 0x1919082b19081908, 0x1919082b19190808, 0x1919082b192b2b19, + 0x1919082b2b080808, 0x1919190808080819, 0x1919190808081908, 0x191919080808192b, + 0x1919190808082b19, 0x1919190808190808, 0x191919080819082b, 0x1919190808191919, + 0x1919190808192b08, 0x19191908082b0819, 0x19191908082b1908, 0x1919190819080808, + 0x191919081908082b, 0x1919190819081919, 0x1919190819082b08, 0x1919190819190819, + 0x1919190819191908, 0x19191908192b0808, 0x191919082b080819, 0x191919082b081908, + 0x191919082b190808, 0x1919191908080808, 0x191919190808082b, 0x1919191908081919, + 0x1919191908082b08, 0x1919191908190819, 0x1919191908191908, 0x19191919082b0808, + 0x1919191919080819, 0x1919191919081908, 0x1919191919190808, 0x191919192b080808, + 0x1919192b08080819, 0x1919192b08081908, 0x1919192b08190808, 0x1919192b082b192b, + 0x1919192b19080808, 0x19192b0808080808, 0x19192b080808082b, 0x19192b0808081919, + 0x19192b0808082b08, 0x19192b0808190819, 0x19192b0808191908, 0x19192b08082b0808, + 0x19192b0819080819, 0x19192b0819081908, 0x19192b0819190808, 0x19192b0819192b2b, + 0x19192b082b080808, 0x19192b1908080819, 0x19192b1908081908, 0x19192b1908190808, + 0x19192b1919080808, 0x19192b2b08080808, 0x19192b2b08192b19, 0x19192b2b2b081919, + 0x19192b2b2b2b2b08, 0x192b080808080819, 0x192b080808081908, 0x192b08080808192b, + 0x192b080808190808, 0x192b08080819082b, 0x192b080808191919, 0x192b080808192b08, + 0x192b0808082b0819, 0x192b0808082b1908, 0x192b080819080808, 0x192b080819081919, + 0x192b080819082b08, 0x192b080819190819, 0x192b080819191908, 0x192b0808192b0808, + 0x192b08082b081908, 0x192b08082b190808, 0x192b081908080808, 0x192b08190808082b, + 0x192b081908081919, 0x192b081908082b08, 0x192b081908190819, 0x192b081908191908, + 0x192b0819082b0808, 0x192b081919080819, 0x192b081919081908, 0x192b081919190808, + 0x192b08192b080808, 0x192b08192b192b19, 0x192b082b08081908, 0x192b082b08190808, + 0x192b082b19080808, 0x192b082b1919192b, 0x192b082b2b2b0819, 0x192b190808080808, + 0x192b190808081919, 0x192b190808082b08, 0x192b190808190819, 0x192b190808191908, + 0x192b1908082b0808, 0x192b190819080819, 0x192b190819081908, 0x192b190819190808, + 0x192b19082b080808, 0x192b191908080819, 0x192b191908081908, 0x192b191908190808, + 0x192b191919080808, 0x192b191919082b2b, 0x192b1919192b2b08, 0x192b19192b19082b, + 0x192b192b08080808, 0x192b192b2b191908, 0x192b2b0808080819, 0x192b2b0808081908, + 0x192b2b0808190808, 0x192b2b08192b1919, 0x192b2b082b192b08, 0x192b2b1908080808, + 0x192b2b19082b2b2b, 0x192b2b2b1908082b, 0x192b2b2b2b2b0819, 0x2b08080808080808, + 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819, + 0x2b08080808191908, 0x2b08080808192b19, 0x2b080808082b0808, 0x2b080808082b1919, + 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808081919082b, + 0x2b08080819191919, 0x2b08080819192b08, 0x2b080808192b0819, 0x2b0808082b080808, + 0x2b0808082b081919, 0x2b0808082b190819, 0x2b0808082b191908, 0x2b08081908080819, + 0x2b08081908081908, 0x2b08081908082b19, 0x2b08081908190808, 0x2b0808190819082b, + 0x2b08081908191919, 0x2b08081908192b08, 0x2b080819082b0819, 0x2b080819082b1908, + 0x2b08081919080808, 0x2b0808191908082b, 0x2b08081919081919, 0x2b08081919082b08, + 0x2b08081919190819, 0x2b08081919191908, 0x2b0808192b080819, 0x2b0808192b081908, + 0x2b0808192b190808, 0x2b0808192b2b2b19, 0x2b08082b08080808, 0x2b08082b08081919, + 0x2b08082b08082b2b, 0x2b08082b08190819, 0x2b08082b08191908, 0x2b08082b19080819, + 0x2b08082b19081908, 0x2b08082b19190808, 0x2b08190808080819, 0x2b08190808081908, + 0x2b0819080808192b, 0x2b08190808082b19, 0x2b08190808190808, 0x2b0819080819082b, + 0x2b08190808191919, 0x2b08190808192b08, 0x2b081908082b0819, 0x2b08190819080808, + 0x2b0819081908082b, 0x2b08190819081919, 0x2b08190819082b08, 0x2b08190819190819, + 0x2b08190819191908, 0x2b081908192b0808, 0x2b0819082b080819, 0x2b0819082b081908, + 0x2b0819082b190808, 0x2b08191908080808, 0x2b0819190808082b, 0x2b08191908081919, + 0x2b08191908082b08, 0x2b08191908190819, 0x2b08191908191908, 0x2b081919082b0808, + 0x2b08191919080819, 0x2b08191919081908, 0x2b08191919190808, 0x2b0819192b080808, + 0x2b0819192b082b2b, 0x2b08192b08080819, 0x2b08192b08081908, 0x2b08192b08190808, + 0x2b08192b082b2b19, 0x2b08192b19080808, 0x2b082b0808080808, 0x2b082b0808081919, + 0x2b082b0808190819, 0x2b082b0808191908, 0x2b082b0819080819, 0x2b082b0819081908, + 0x2b082b0819190808, 0x2b082b082b2b082b, 0x2b082b1908080819, 0x2b082b1908081908, + 0x2b082b1919080808, 0x2b082b19192b1919, 0x2b082b2b082b082b, 0x2b082b2b19192b08, + 0x2b082b2b19192b2b, 0x2b082b2b2b08082b, 0x2b082b2b2b2b082b, 0x2b19080808080819, + 0x2b19080808081908, 0x2b19080808082b19, 0x2b19080808190808, 0x2b1908080819082b, + 0x2b19080808191919, 0x2b19080808192b08, 0x2b190808082b1908, 0x2b19080819080808, + 0x2b1908081908082b, 0x2b19080819081919, 0x2b19080819082b08, 0x2b19080819190819, + 0x2b19080819191908, 0x2b190808192b0808, 0x2b1908082b080819, 0x2b1908082b081908, + 0x2b1908082b190808, 0x2b19081908080808, 0x2b19081908081919, 0x2b19081908190819, + 0x2b19081908191908, 0x2b19081919080819, 0x2b19081919081908, 0x2b19081919190808, + 0x2b19081919192b2b, 0x2b19082b08080819, 0x2b19082b08081908, 0x2b19082b08190808, + 0x2b19082b19080808, 0x2b19082b2b2b192b, 0x2b19190808080808, 0x2b1919080808082b, + 0x2b19190808081919, 0x2b19190808082b08, 0x2b19190808190819, 0x2b19190808191908, + 0x2b191908082b0808, 0x2b19190819080819, 0x2b19190819081908, 0x2b19190819190808, + 0x2b1919082b080808, 0x2b1919082b19192b, 0x2b19191908080819, 0x2b19191908081908, + 0x2b19191908190808, 0x2b19191919080808, 0x2b1919192b192b08, 0x2b1919192b2b0819, + 0x2b19192b08080808, 0x2b19192b1908192b, 0x2b19192b192b1908, 0x2b192b0808080819, + 0x2b192b0808081908, 0x2b192b0808190808, 0x2b192b08082b192b, 0x2b192b0819080808, + 0x2b192b082b2b2b19, 0x2b192b1908080808, 0x2b192b1919082b19, 0x2b192b191919082b, + 0x2b192b2b2b190808, 0x2b2b080808080808, 0x2b2b080808081919, 0x2b2b080808082b2b, + 0x2b2b080808191908, 0x2b2b0808082b082b, 0x2b2b0808082b2b2b, 0x2b2b080819080819, + 0x2b2b080819081908, 0x2b2b080819190808, 0x2b2b08082b2b082b, 0x2b2b08082b2b2b2b, + 0x2b2b081919080808, 0x2b2b0819192b1919, 0x2b2b082b0808082b, 0x2b2b082b08082b2b, + 0x2b2b082b082b082b, 0x2b2b082b082b2b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b08082b, + 0x2b2b082b2b082b08, 0x2b2b082b2b082b2b, 0x2b2b082b2b2b2b08, 0x2b2b190808080819, + 0x2b2b190808081908, 0x2b2b190808190808, 0x2b2b190819080808, 0x2b2b19082b082b19, + 0x2b2b19082b2b1908, 0x2b2b191908080808, 0x2b2b191908192b19, 0x2b2b192b19190819, + 0x2b2b2b0808082b2b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b082b, 0x2b2b2b1919191908, + 0x2b2b2b192b08192b, 0x2b2b2b2b08082b08, 0x2b2b2b2b08082b2b, 0x2b2b2b2b082b0808, + 0x2b2b2b2b082b082b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b2b082b08, 0x2b2b2b2b2b2b2b2b, +}; + +static const __device__ uint32_t iq3xxs_grid[256] = { + 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414, + 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14, + 0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404, + 0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e, + 0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c, + 0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c, + 0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34, + 0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c, + 0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c, + 0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04, + 0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c, + 0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414, + 0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434, + 0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c, + 0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e, + 0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24, + 0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24, + 0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c, + 0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c, + 0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14, + 0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414, + 0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e, + 0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404, + 0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c, + 0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c, + 0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14, + 0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c, + 0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c, + 0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14, + 0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14, + 0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c, + 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04, +}; + +static const __device__ uint32_t iq3xs_grid[512] = { + 0x04040404, 0x0404040c, 0x04040414, 0x0404042c, 0x0404043e, 0x04040c04, 0x04040c0c, 0x04040c14, + 0x04040c24, 0x04040c34, 0x04041404, 0x0404140c, 0x0404142c, 0x04041c1c, 0x04042404, 0x04042414, + 0x0404242c, 0x0404243e, 0x04042c0c, 0x04042c1c, 0x04043404, 0x04043414, 0x04043e0c, 0x04043e24, + 0x04043e3e, 0x040c0404, 0x040c040c, 0x040c0414, 0x040c0424, 0x040c0c04, 0x040c0c0c, 0x040c0c2c, + 0x040c1404, 0x040c141c, 0x040c143e, 0x040c1c0c, 0x040c1c2c, 0x040c2424, 0x040c340c, 0x040c342c, + 0x040c3e14, 0x04140404, 0x0414040c, 0x0414042c, 0x0414043e, 0x04140c04, 0x04140c1c, 0x04140c34, + 0x0414140c, 0x0414142c, 0x04141c04, 0x04141c24, 0x04142414, 0x0414242c, 0x0414243e, 0x04142c0c, + 0x04142c1c, 0x04143e04, 0x04143e1c, 0x041c041c, 0x041c0c0c, 0x041c0c2c, 0x041c1404, 0x041c1414, + 0x041c1c0c, 0x041c1c1c, 0x041c1c34, 0x041c2424, 0x041c2c04, 0x041c2c14, 0x041c343e, 0x041c3e0c, + 0x041c3e2c, 0x04240404, 0x04240c1c, 0x04240c3e, 0x0424140c, 0x04241424, 0x04241c14, 0x04242404, + 0x0424241c, 0x04242c0c, 0x04243e04, 0x042c0414, 0x042c0424, 0x042c1404, 0x042c1414, 0x042c1434, + 0x042c1c1c, 0x042c240c, 0x042c242c, 0x042c243e, 0x042c3434, 0x042c3e1c, 0x04340434, 0x04340c0c, + 0x04340c1c, 0x04341c0c, 0x04342c14, 0x04343e0c, 0x043e0404, 0x043e0414, 0x043e0424, 0x043e1404, + 0x043e1414, 0x043e1434, 0x043e1c1c, 0x043e2c04, 0x043e2c24, 0x0c040404, 0x0c04040c, 0x0c040414, + 0x0c040424, 0x0c040c04, 0x0c040c0c, 0x0c040c1c, 0x0c040c2c, 0x0c040c3e, 0x0c041404, 0x0c041414, + 0x0c041c0c, 0x0c041c24, 0x0c041c34, 0x0c042c24, 0x0c042c34, 0x0c04340c, 0x0c043e14, 0x0c0c0404, + 0x0c0c040c, 0x0c0c041c, 0x0c0c0434, 0x0c0c0c04, 0x0c0c0c24, 0x0c0c140c, 0x0c0c1c04, 0x0c0c1c1c, + 0x0c0c240c, 0x0c0c2c04, 0x0c0c2c14, 0x0c0c3e04, 0x0c0c3e34, 0x0c140404, 0x0c140c14, 0x0c140c2c, + 0x0c140c3e, 0x0c141404, 0x0c141424, 0x0c141c14, 0x0c142404, 0x0c14241c, 0x0c142c2c, 0x0c143404, + 0x0c143e14, 0x0c1c040c, 0x0c1c0424, 0x0c1c043e, 0x0c1c0c04, 0x0c1c0c1c, 0x0c1c140c, 0x0c1c143e, + 0x0c1c1c04, 0x0c1c1c24, 0x0c1c240c, 0x0c1c3414, 0x0c1c3e04, 0x0c24041c, 0x0c24042c, 0x0c240c14, + 0x0c240c24, 0x0c241c0c, 0x0c241c1c, 0x0c242414, 0x0c242434, 0x0c242c04, 0x0c242c24, 0x0c2c040c, + 0x0c2c0c04, 0x0c2c0c1c, 0x0c2c140c, 0x0c2c1c04, 0x0c2c1c14, 0x0c2c2c0c, 0x0c341404, 0x0c341424, + 0x0c34143e, 0x0c342424, 0x0c342434, 0x0c3e040c, 0x0c3e041c, 0x0c3e0c04, 0x0c3e0c14, 0x0c3e140c, + 0x0c3e1c2c, 0x0c3e240c, 0x0c3e3414, 0x0c3e3e04, 0x14040404, 0x1404040c, 0x1404041c, 0x1404042c, + 0x1404043e, 0x14040c04, 0x14040c14, 0x14040c24, 0x14040c34, 0x1404140c, 0x1404141c, 0x1404143e, + 0x14041c04, 0x14041c14, 0x1404240c, 0x1404241c, 0x1404242c, 0x14042c04, 0x14042c14, 0x1404343e, + 0x14043e04, 0x14043e1c, 0x14043e2c, 0x140c0404, 0x140c0414, 0x140c0c04, 0x140c0c1c, 0x140c0c3e, + 0x140c1414, 0x140c142c, 0x140c1c0c, 0x140c1c24, 0x140c2414, 0x140c2c0c, 0x1414040c, 0x14140424, + 0x1414043e, 0x1414140c, 0x1414141c, 0x14141c04, 0x14141c3e, 0x1414240c, 0x14142c1c, 0x14142c3e, + 0x14143e0c, 0x14143e24, 0x141c0404, 0x141c0414, 0x141c042c, 0x141c0c0c, 0x141c1414, 0x141c1424, + 0x141c1c0c, 0x141c1c1c, 0x141c2414, 0x141c2c04, 0x141c3434, 0x1424040c, 0x1424043e, 0x14241404, + 0x1424141c, 0x14241c14, 0x14241c2c, 0x1424240c, 0x14243e14, 0x14243e2c, 0x142c0424, 0x142c0c0c, + 0x142c1414, 0x142c1c3e, 0x142c2404, 0x142c2c1c, 0x142c3e04, 0x14340404, 0x14340414, 0x1434043e, + 0x1434140c, 0x14342c2c, 0x1434340c, 0x143e042c, 0x143e0c0c, 0x143e1434, 0x143e1c04, 0x143e241c, + 0x143e2c04, 0x1c040414, 0x1c040c0c, 0x1c040c1c, 0x1c040c2c, 0x1c040c3e, 0x1c041414, 0x1c041c0c, + 0x1c041c1c, 0x1c041c2c, 0x1c042414, 0x1c042424, 0x1c04243e, 0x1c042c0c, 0x1c04341c, 0x1c043e0c, + 0x1c0c040c, 0x1c0c041c, 0x1c0c042c, 0x1c0c0c24, 0x1c0c140c, 0x1c0c141c, 0x1c0c2404, 0x1c0c3404, + 0x1c0c3e14, 0x1c0c3e34, 0x1c140404, 0x1c140c14, 0x1c141404, 0x1c141c14, 0x1c141c24, 0x1c142c04, + 0x1c1c040c, 0x1c1c0c04, 0x1c1c0c24, 0x1c1c140c, 0x1c1c141c, 0x1c1c143e, 0x1c1c1c04, 0x1c1c240c, + 0x1c1c241c, 0x1c1c243e, 0x1c1c2c2c, 0x1c1c3e1c, 0x1c24041c, 0x1c240c0c, 0x1c240c34, 0x1c241414, + 0x1c241c0c, 0x1c242c14, 0x1c243404, 0x1c243424, 0x1c2c040c, 0x1c2c0c04, 0x1c2c0c14, 0x1c2c142c, + 0x1c2c1c14, 0x1c2c2424, 0x1c2c2c34, 0x1c2c3e1c, 0x1c340c34, 0x1c34240c, 0x1c3e040c, 0x1c3e041c, + 0x1c3e1404, 0x1c3e1414, 0x1c3e1c2c, 0x24040404, 0x24040424, 0x24040c14, 0x24041404, 0x24041424, + 0x2404143e, 0x24041c14, 0x2404240c, 0x24042c04, 0x24043e04, 0x240c0414, 0x240c043e, 0x240c0c0c, + 0x240c0c1c, 0x240c1414, 0x240c1c04, 0x240c1c2c, 0x240c241c, 0x240c2c0c, 0x240c2c2c, 0x2414040c, + 0x2414041c, 0x24140c04, 0x24140c2c, 0x2414140c, 0x24141c1c, 0x24142404, 0x24142c3e, 0x24143414, + 0x24143e04, 0x241c0424, 0x241c0c0c, 0x241c0c1c, 0x241c1404, 0x241c1414, 0x241c1c0c, 0x241c1c2c, + 0x24240404, 0x24240414, 0x24241424, 0x24241c3e, 0x24242404, 0x24243e0c, 0x242c042c, 0x242c043e, + 0x242c140c, 0x242c3414, 0x24340c1c, 0x24341c24, 0x24343404, 0x243e0c04, 0x243e0c2c, 0x243e1c04, + 0x243e241c, 0x243e2c0c, 0x2c040414, 0x2c040c04, 0x2c040c24, 0x2c041414, 0x2c042404, 0x2c042424, + 0x2c04243e, 0x2c042c14, 0x2c043434, 0x2c043e24, 0x2c0c040c, 0x2c0c041c, 0x2c0c042c, 0x2c0c0c14, + 0x2c0c140c, 0x2c0c1c14, 0x2c0c3e14, 0x2c140404, 0x2c140c0c, 0x2c14141c, 0x2c141c04, 0x2c141c34, + 0x2c142c1c, 0x2c1c0414, 0x2c1c043e, 0x2c1c0c04, 0x2c1c143e, 0x2c1c2424, 0x2c1c2c0c, 0x2c1c342c, + 0x2c1c3e1c, 0x2c24040c, 0x2c240424, 0x2c241404, 0x2c241c14, 0x2c242434, 0x2c2c0c14, 0x2c2c1434, + 0x2c2c2c0c, 0x2c2c2c1c, 0x2c342414, 0x2c3e0414, 0x2c3e0424, 0x2c3e1414, 0x34040c0c, 0x34040c1c, + 0x34040c2c, 0x34041c0c, 0x34041c1c, 0x34043404, 0x340c0404, 0x340c1404, 0x340c143e, 0x340c3424, + 0x34140c14, 0x34141c24, 0x34142414, 0x34142c2c, 0x34143414, 0x34143e04, 0x341c0404, 0x341c0c24, + 0x341c140c, 0x341c2404, 0x3424142c, 0x3424241c, 0x34243414, 0x342c0404, 0x342c041c, 0x342c1c24, + 0x342c3404, 0x3434042c, 0x34342404, 0x343e0c0c, 0x343e0c1c, 0x3e040404, 0x3e040424, 0x3e04043e, + 0x3e041404, 0x3e041414, 0x3e041c34, 0x3e042404, 0x3e042c24, 0x3e043414, 0x3e0c0414, 0x3e0c0c0c, + 0x3e0c1424, 0x3e0c241c, 0x3e0c242c, 0x3e14040c, 0x3e140424, 0x3e140c04, 0x3e140c34, 0x3e14140c, + 0x3e141c04, 0x3e142c0c, 0x3e1c0414, 0x3e1c1c14, 0x3e1c1c2c, 0x3e1c2c1c, 0x3e24040c, 0x3e24042c, + 0x3e240c1c, 0x3e241404, 0x3e242c04, 0x3e2c1414, 0x3e2c2414, 0x3e340414, 0x3e341c0c, 0x3e3e0404, +}; + +static const __device__ uint64_t iq1s_grid[512] = { + 0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000, + 0xffffffff01ff00ff, 0xffffffff01ff0001, 0xffffffff0101ffff, 0xffffffff0101ff01, + 0xffffff00ff000000, 0xffffff000000ff00, 0xffffff00000000ff, 0xffffff0000000100, + 0xffffff0000010000, 0xffffff0001000000, 0xffffff01ffff00ff, 0xffffff01ff01ff00, + 0xffffff01ff010100, 0xffffff0100000001, 0xffffff0101ffff00, 0xffffff0101ff0101, + 0xffffff0101010100, 0xffff00ffff00ff01, 0xffff00ffff0000ff, 0xffff00ff00ff0100, + 0xffff00ff0100ff00, 0xffff00ff010001ff, 0xffff0000ff0101ff, 0xffff000000ffff00, + 0xffff000000000000, 0xffff00000001ff01, 0xffff000001000101, 0xffff0000010100ff, + 0xffff0001ffff0100, 0xffff00010000ff00, 0xffff000100010101, 0xffff000101000000, + 0xffff01ffffff0000, 0xffff01ffff01ffff, 0xffff01ffff010100, 0xffff01ff00000000, + 0xffff01ff01ffffff, 0xffff01ff01ff0001, 0xffff01ff0101ffff, 0xffff01ff01010001, + 0xffff0100ffffff01, 0xffff01000000ffff, 0xffff010000000100, 0xffff010001ff01ff, + 0xffff010001000000, 0xffff0101ff000000, 0xffff0101000101ff, 0xffff010101ffff01, + 0xffff01010101ff00, 0xff00ffffff000000, 0xff00ffff00ffff00, 0xff00ffff00000001, + 0xff00ffff000001ff, 0xff00ffff01010000, 0xff00ff00ffff0000, 0xff00ff00ff00ff00, + 0xff00ff00ff0000ff, 0xff00ff00ff000100, 0xff00ff00ff010001, 0xff00ff0000ff0001, + 0xff00ff000000ffff, 0xff00ff0000000000, 0xff00ff000001ff00, 0xff00ff0000010100, + 0xff00ff0001ff0000, 0xff00ff000100ff00, 0xff00ff0001000100, 0xff00ff01ff000000, + 0xff00ff0100ff0000, 0xff00ff01000001ff, 0xff00ff0101010001, 0xff0000ff00000000, + 0xff0000ff0001ff00, 0xff0000ff00010100, 0xff000000ffff0101, 0xff000000ff000000, + 0xff000000ff01ff00, 0xff00000000ff0000, 0xff0000000000ff00, 0xff000000000000ff, + 0xff00000000000000, 0xff00000000000001, 0xff00000000000100, 0xff0000000001ffff, + 0xff00000000010000, 0xff00000001000000, 0xff00000001010100, 0xff000001ff00ff01, + 0xff000001ff0100ff, 0xff00000100000000, 0xff0000010001ff00, 0xff00000101ff0100, + 0xff0000010100ff00, 0xff0001ff00ff00ff, 0xff0001ff00000101, 0xff0001ff000100ff, + 0xff0001ff01000000, 0xff000100ff0001ff, 0xff0001000000ff01, 0xff00010000000000, + 0xff00010000010001, 0xff00010000010100, 0xff00010001ffff00, 0xff00010001ff0101, + 0xff00010001010000, 0xff000101ffffffff, 0xff000101ff000101, 0xff00010101ff00ff, + 0xff00010101000001, 0xff000101010100ff, 0xff01ffffff000101, 0xff01ffffff01ffff, + 0xff01ffffff01ff01, 0xff01ffffff0101ff, 0xff01ffff00000000, 0xff01ffff01ff0001, + 0xff01ffff0101ff01, 0xff01ff00ff000000, 0xff01ff0000ff0100, 0xff01ff000000ff01, + 0xff01ff0000010000, 0xff01ff00010000ff, 0xff01ff01ff01ff00, 0xff01ff0100000101, + 0xff0100ffffff0000, 0xff0100ffff010000, 0xff0100ff01ff00ff, 0xff0100ff01000100, + 0xff0100ff010100ff, 0xff010000ffffff01, 0xff01000000000000, 0xff0100000101ff00, + 0xff010001ffff00ff, 0xff010001ff000100, 0xff01000100ffff00, 0xff01000100010001, + 0xff01000101ff0001, 0xff010001010001ff, 0xff0101ffffffffff, 0xff0101ffff01ffff, + 0xff0101ffff010101, 0xff0101ff0000ff00, 0xff0101ff01010001, 0xff010100ff000000, + 0xff010100ff01ff01, 0xff01010000ff0001, 0xff01010000000100, 0xff01010001000000, + 0xff0101010100ffff, 0x00ffffff0000ff01, 0x00ffffff000000ff, 0x00ffffff00000100, + 0x00ffffff00010000, 0x00ffff00ffff0001, 0x00ffff00ff0000ff, 0x00ffff00ff000100, + 0x00ffff0000000000, 0x00ffff0001000100, 0x00ffff0001010001, 0x00ffff01ff00ff01, + 0x00ffff0100ff0100, 0x00ffff010000ff00, 0x00ffff01000100ff, 0x00ffff0101ff00ff, + 0x00ffff010101ff00, 0x00ff00ffffffffff, 0x00ff00ffffff01ff, 0x00ff00ffff000101, + 0x00ff00ff00000000, 0x00ff00ff000101ff, 0x00ff00ff01010101, 0x00ff0000ff000000, + 0x00ff0000ff01ffff, 0x00ff000000ff0000, 0x00ff00000000ff00, 0x00ff0000000000ff, + 0x00ff000000000000, 0x00ff000000000001, 0x00ff000000000100, 0x00ff000000010000, + 0x00ff000001ffff01, 0x00ff000001000000, 0x00ff0001ff000101, 0x00ff000100ffffff, + 0x00ff000100000000, 0x00ff0001010001ff, 0x00ff01ffff000000, 0x00ff01ff0001ff00, + 0x00ff01ff01ff0100, 0x00ff0100ff01ff01, 0x00ff010000ff00ff, 0x00ff010000ff0101, + 0x00ff010000000000, 0x00ff010000010101, 0x00ff01000100ff00, 0x00ff010001010000, + 0x00ff0101ffffff00, 0x00ff01010000ff01, 0x00ff010100000100, 0x00ff010101ff0000, + 0x0000ffffffff0100, 0x0000ffffff00ff00, 0x0000ffffff0000ff, 0x0000ffffff010000, + 0x0000ffff00000000, 0x0000ffff00010101, 0x0000ffff01ffff01, 0x0000ffff01000100, + 0x0000ff00ff000000, 0x0000ff00ff01ff00, 0x0000ff00ff0101ff, 0x0000ff0000ff0000, + 0x0000ff000000ff00, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001, + 0x0000ff0000000100, 0x0000ff0000010000, 0x0000ff0001ffffff, 0x0000ff0001ff01ff, + 0x0000ff0001000000, 0x0000ff000101ffff, 0x0000ff01ffff0101, 0x0000ff01ff010000, + 0x0000ff0100000000, 0x0000ff0101000101, 0x000000ffffff0001, 0x000000ffff000000, + 0x000000ff00ff0000, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000, + 0x000000ff00000001, 0x000000ff00000100, 0x000000ff00010000, 0x000000ff01000000, + 0x000000ff0101ff00, 0x00000000ffff0000, 0x00000000ff00ff00, 0x00000000ff0000ff, + 0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff010000, + 0x0000000000ffff00, 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001, + 0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01, + 0x00000000000000ff, 0x0000000000000001, 0x00000000000001ff, 0x0000000000000100, + 0x0000000000000101, 0x000000000001ff00, 0x00000000000100ff, 0x0000000000010000, + 0x0000000000010001, 0x0000000000010100, 0x0000000001ff0000, 0x000000000100ff00, + 0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, 0x0000000001000100, + 0x0000000001010000, 0x00000001ffff01ff, 0x00000001ff000000, 0x0000000100ff0000, + 0x000000010000ff00, 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001, + 0x0000000100000100, 0x0000000100010000, 0x0000000101000000, 0x000001ffff00ff00, + 0x000001ffff010001, 0x000001ffff0101ff, 0x000001ff00ffff01, 0x000001ff0000ffff, + 0x000001ff00000000, 0x000001ff010000ff, 0x000001ff01010100, 0x00000100ffff0100, + 0x00000100ff000000, 0x0000010000ff0000, 0x000001000000ff00, 0x00000100000000ff, + 0x0000010000000000, 0x0000010000000001, 0x0000010000000100, 0x0000010000010000, + 0x0000010001000000, 0x000001000101ff01, 0x00000101ffff0001, 0x00000101ff01ffff, + 0x0000010100000000, 0x0000010101010100, 0x0001ffffff000000, 0x0001ffff00ffffff, + 0x0001ffff00000100, 0x0001ffff0001ff00, 0x0001ffff01000000, 0x0001ff00ffffff00, + 0x0001ff00ffff01ff, 0x0001ff00ff010000, 0x0001ff0000000000, 0x0001ff0000010001, + 0x0001ff0001ff0000, 0x0001ff0001010100, 0x0001ff01ff0000ff, 0x0001ff01ff000001, + 0x0001ff0100ffffff, 0x0001ff010001ffff, 0x0001ff01000101ff, 0x0001ff010100ff01, + 0x000100ffff00ffff, 0x000100ffff00ff01, 0x000100ffff000100, 0x000100ff00000000, + 0x000100ff000101ff, 0x000100ff01ff0101, 0x000100ff0100ffff, 0x000100ff01010101, + 0x00010000ff000000, 0x00010000ff010100, 0x0001000000ff0000, 0x000100000000ff00, + 0x00010000000000ff, 0x0001000000000000, 0x0001000000000001, 0x0001000000000100, + 0x0001000000010000, 0x0001000001ffff01, 0x0001000001000000, 0x0001000100ff0101, + 0x0001000100000000, 0x00010001010100ff, 0x000101ffffff01ff, 0x000101ffffff0101, + 0x000101ff00010000, 0x000101ff01ff0000, 0x000101ff0100ff01, 0x00010100ffff0000, + 0x0001010000000000, 0x000101000001ffff, 0x0001010000010101, 0x00010100010001ff, + 0x00010101ff00ff00, 0x00010101ff010001, 0x0001010100ffffff, 0x0001010100ff01ff, + 0x00010101000101ff, 0x0001010101ff0000, 0x000101010100ff01, 0x0001010101000101, + 0x01ffffffffff0101, 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff, + 0x01ffffffff010101, 0x01ffffff00000000, 0x01ffffff01ff01ff, 0x01ffffff01000101, + 0x01ffffff0101ff01, 0x01ffffff010100ff, 0x01ffff000000ff00, 0x01ffff0000000001, + 0x01ffff00000001ff, 0x01ffff0000010000, 0x01ffff0001ff0000, 0x01ffff01ffffffff, + 0x01ffff01ffff01ff, 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff0101ff, + 0x01ffff010100ffff, 0x01ff00ffffff0000, 0x01ff00ffff010000, 0x01ff00ff00ffff01, + 0x01ff0000ff0000ff, 0x01ff000000000000, 0x01ff00000001ff01, 0x01ff000001ffffff, + 0x01ff000001010100, 0x01ff0001ffffff01, 0x01ff0001ff010001, 0x01ff000101ff0100, + 0x01ff000101000001, 0x01ff0001010100ff, 0x01ff01ffff00ffff, 0x01ff01ff00010001, + 0x01ff01ff01000000, 0x01ff01ff010101ff, 0x01ff0100ff000001, 0x01ff010000ffff00, + 0x01ff010000000100, 0x01ff010001ff01ff, 0x01ff01000101ffff, 0x01ff0101ffff00ff, + 0x01ff0101ffff0101, 0x01ff0101ff0101ff, 0x01ff010100010000, 0x0100ffff00ff00ff, + 0x0100ffff00ff0001, 0x0100ffff00000100, 0x0100ffff0100ff00, 0x0100ff00ffff0000, + 0x0100ff00ff00ffff, 0x0100ff00ff00ff01, 0x0100ff00ff000100, 0x0100ff00ff010000, + 0x0100ff0000000000, 0x0100ff00000100ff, 0x0100ff0001ff0101, 0x0100ff0001010101, + 0x0100ff0100ff00ff, 0x0100ff0100ff0001, 0x0100ff0100000100, 0x0100ff0100010001, + 0x0100ff0101000000, 0x010000ffff00ff00, 0x010000ff0000ffff, 0x010000ff00000000, + 0x010000ff010001ff, 0x010000ff01010001, 0x01000000ffffff00, 0x01000000ffff0101, + 0x01000000ff000000, 0x01000000ff0100ff, 0x01000000ff010101, 0x0100000000ff0000, + 0x010000000000ff00, 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001, + 0x0100000000000100, 0x0100000000010000, 0x0100000001000000, 0x0100000100000000, + 0x01000001000101ff, 0x0100000101ffff01, 0x010001ffff000101, 0x010001ff00ff0100, + 0x010001ff0000ff00, 0x010001ff000100ff, 0x010001ff01ffffff, 0x01000100ffff0000, + 0x01000100ff0001ff, 0x0100010000000000, 0x010001000001ff00, 0x0100010001ff0000, + 0x01000100010000ff, 0x0100010001000101, 0x01000101ff00ff01, 0x0100010100ff0100, + 0x010001010000ffff, 0x0100010101010001, 0x0101ffffffff0101, 0x0101ffffff0001ff, + 0x0101ffffff01ffff, 0x0101ffffff010101, 0x0101ffff00000000, 0x0101ffff0101ffff, + 0x0101ffff010101ff, 0x0101ff00ff000000, 0x0101ff0000ff0100, 0x0101ff000000ff00, + 0x0101ff0000010000, 0x0101ff00010000ff, 0x0101ff0001000001, 0x0101ff01ff010101, + 0x0101ff0100000000, 0x0101ff010101ff00, 0x010100ffffff0000, 0x010100ffff010000, + 0x010100ff00ff01ff, 0x010100ff000000ff, 0x010100ff00000101, 0x010100ff01ffff00, + 0x01010000ffffff01, 0x01010000ff000100, 0x01010000ff01ff01, 0x0101000000000000, + 0x01010000000100ff, 0x010100000101ff01, 0x01010001ffff0000, 0x01010001ff00ffff, + 0x01010001ff010000, 0x0101000101ffffff, 0x0101000101ff01ff, 0x0101000101010101, + 0x010101ffff01ffff, 0x010101ff00000000, 0x010101ff0001ff01, 0x010101ff0101ffff, + 0x010101ff010101ff, 0x01010100ffffffff, 0x01010100ff000001, 0x010101000000ff00, + 0x0101010001010000, 0x0101010100ff0001, 0x010101010001ff01, 0x010101010101ffff, +}; + +static const __device__ uint8_t ksigns_iq2xs[128] = { + 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15, + 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159, + 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175, + 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63, + 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207, + 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95, + 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111, + 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255, +}; + +static const __device__ uint64_t ksigns64[128] = { + 0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff, + 0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff, + 0xff000000ff000000, 0x00000000ff0000ff, 0x00000000ff00ff00, 0xff000000ff00ffff, + 0x00000000ffff0000, 0xff000000ffff00ff, 0xff000000ffffff00, 0x00000000ffffffff, + 0xff0000ff00000000, 0x000000ff000000ff, 0x000000ff0000ff00, 0xff0000ff0000ffff, + 0x000000ff00ff0000, 0xff0000ff00ff00ff, 0xff0000ff00ffff00, 0x000000ff00ffffff, + 0x000000ffff000000, 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0x000000ffff00ffff, + 0xff0000ffffff0000, 0x000000ffffff00ff, 0x000000ffffffff00, 0xff0000ffffffffff, + 0xff00ff0000000000, 0x0000ff00000000ff, 0x0000ff000000ff00, 0xff00ff000000ffff, + 0x0000ff0000ff0000, 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0x0000ff0000ffffff, + 0x0000ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00, 0x0000ff00ff00ffff, + 0xff00ff00ffff0000, 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0xff00ff00ffffffff, + 0x0000ffff00000000, 0xff00ffff000000ff, 0xff00ffff0000ff00, 0x0000ffff0000ffff, + 0xff00ffff00ff0000, 0x0000ffff00ff00ff, 0x0000ffff00ffff00, 0xff00ffff00ffffff, + 0xff00ffffff000000, 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0xff00ffffff00ffff, + 0x0000ffffffff0000, 0xff00ffffffff00ff, 0xff00ffffffffff00, 0x0000ffffffffffff, + 0xffff000000000000, 0x00ff0000000000ff, 0x00ff00000000ff00, 0xffff00000000ffff, + 0x00ff000000ff0000, 0xffff000000ff00ff, 0xffff000000ffff00, 0x00ff000000ffffff, + 0x00ff0000ff000000, 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0x00ff0000ff00ffff, + 0xffff0000ffff0000, 0x00ff0000ffff00ff, 0x00ff0000ffffff00, 0xffff0000ffffffff, + 0x00ff00ff00000000, 0xffff00ff000000ff, 0xffff00ff0000ff00, 0x00ff00ff0000ffff, + 0xffff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00, 0xffff00ff00ffffff, + 0xffff00ffff000000, 0x00ff00ffff0000ff, 0x00ff00ffff00ff00, 0xffff00ffff00ffff, + 0x00ff00ffffff0000, 0xffff00ffffff00ff, 0xffff00ffffffff00, 0x00ff00ffffffffff, + 0x00ffff0000000000, 0xffffff00000000ff, 0xffffff000000ff00, 0x00ffff000000ffff, + 0xffffff0000ff0000, 0x00ffff0000ff00ff, 0x00ffff0000ffff00, 0xffffff0000ffffff, + 0xffffff00ff000000, 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0xffffff00ff00ffff, + 0x00ffff00ffff0000, 0xffffff00ffff00ff, 0xffffff00ffffff00, 0x00ffff00ffffffff, + 0xffffffff00000000, 0x00ffffff000000ff, 0x00ffffff0000ff00, 0xffffffff0000ffff, + 0x00ffffff00ff0000, 0xffffffff00ff00ff, 0xffffffff00ffff00, 0x00ffffff00ffffff, + 0x00ffffffff000000, 0xffffffffff0000ff, 0xffffffffff00ff00, 0x00ffffffff00ffff, + 0xffffffffffff0000, 0x00ffffffffff00ff, 0x00ffffffffffff00, 0xffffffffffffffff, +}; + +static const __device__ uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128}; +static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; + + +typedef half dfloat; // dequantize float +typedef half2 dfloat2; +typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v); +typedef void (*to_fp16_cuda_t)(const void * __restrict__ x, dfloat * __restrict__ y, int k, cudaStream_t stream); +typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs); +typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc); +typedef void (*load_tiles_cuda_t)( + const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, + int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row); +typedef float (*vec_dot_q_mul_mat_cuda_t)( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k); + +// Utility function + +#if defined(USE_ROCM) + +#ifndef __has_builtin + #define __has_builtin(x) 0 +#endif + +typedef int8_t int8x4_t __attribute__((ext_vector_type(4))); +static __device__ __forceinline__ int __vsubss4(const int a, const int b) { + const int8x4_t va = reinterpret_cast(a); + const int8x4_t vb = reinterpret_cast(b); +#if __has_builtin(__builtin_elementwise_sub_sat) + const int8x4_t c = __builtin_elementwise_sub_sat(va, vb); + return reinterpret_cast(c); +#else + int8x4_t c; + int16_t tmp; +#pragma unroll + for (int i = 0; i < 4; i++) { + tmp = va[i] - vb[i]; + if(tmp > std::numeric_limits::max()) tmp = std::numeric_limits::max(); + if(tmp < std::numeric_limits::min()) tmp = std::numeric_limits::min(); + c[i] = tmp; + } + return reinterpret_cast(c); +#endif // __has_builtin(__builtin_elementwise_sub_sat) +} + +static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) { +#if __has_builtin(__builtin_amdgcn_sdot4) + c = __builtin_amdgcn_sdot4(a, b, c, false); +#else + const int8x4_t va = reinterpret_cast(a); + const int8x4_t vb = reinterpret_cast(b); + c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3]; +#endif + return c; +} +#endif // defined(USE_ROCM) diff --git a/csrc/quantization/gguf/gguf_kernel.cu b/csrc/quantization/gguf/gguf_kernel.cu new file mode 100644 index 0000000000000..9beae1bec4034 --- /dev/null +++ b/csrc/quantization/gguf/gguf_kernel.cu @@ -0,0 +1,242 @@ +#include +#include + +#include +#include + +#include "ggml-common.h" +#include "vecdotq.cuh" +#include "dequantize.cuh" +#include "mmvq.cuh" +#include "mmq.cuh" + +// Q8 gemv +static __global__ void quantize_q8_1(const half* __restrict__ x, + void* __restrict__ vy, const int kx, + const int kx_padded) { + const int ix = blockDim.x * blockIdx.x + threadIdx.x; + if (ix >= kx_padded) { + return; + } + const int iy = blockDim.y * blockIdx.y + threadIdx.y; + const int i_padded = iy * kx_padded + ix; + + block_q8_1* y = (block_q8_1*)vy; + + const int ib = i_padded / QK8_1; // block index + const int iqs = i_padded % QK8_1; // quant index + + const float xi = ix < kx ? __half2float(x[iy * kx + ix]) : 0.0f; + float amax = fabsf(xi); + float sum = xi; + +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32)); + sum += __shfl_xor_sync(0xffffffff, sum, mask, 32); + } + + const float d = amax / 127; + const int8_t q = amax == 0.0f ? 0 : roundf(xi / d); + + y[ib].qs[iqs] = q; + + if (iqs > 0) { + return; + } + + y[ib].ds.x = __float2half(d); + y[ib].ds.y = __float2half(sum); +} + +static void quantize_row_q8_1_cuda(const half* x, void* vy, const int kx, + const int ky, cudaStream_t stream) { + const int64_t kx_padded = (kx + 512 - 1) / 512 * 512; + const int block_num_x = + (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE; + const dim3 num_blocks(block_num_x, ky, 1); + const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1); + quantize_q8_1<<>>(x, vy, kx, kx_padded); +} + +torch::Tensor ggml_dequantize(torch::Tensor W, // quant weight + int8_t type, int64_t m, int64_t n) { + const at::cuda::OptionalCUDAGuard device_guard(device_of(W)); + auto options = + torch::TensorOptions().dtype(torch::kFloat16).device(W.device()); + at::Tensor DW = torch::empty({m, n}, options); + cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream(); + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(type); + to_fp16_cuda((void*)W.data_ptr(), (half*)DW.data_ptr(), m * n, stream); + return DW; +} + +torch::Tensor ggml_mul_mat_vec_a8(torch::Tensor W, // quant weight + torch::Tensor X, // input + int8_t type, int64_t row) { + int col = X.sizes()[1]; + const int padded = (col + 512 - 1) / 512 * 512; + const at::cuda::OptionalCUDAGuard device_guard(device_of(X)); + auto options = + torch::TensorOptions().dtype(torch::kFloat16).device(W.device()); + at::Tensor Y = torch::empty({1, row}, options); + cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream(); + options = torch::TensorOptions().dtype(torch::kInt32).device(W.device()); + at::Tensor quant_X = torch::empty({1, padded / 32 * 9}, options); + quantize_row_q8_1_cuda((half*)X.data_ptr(), (void*)quant_X.data_ptr(), col, 1, + stream); + switch (type) { + case 2: + mul_mat_vec_q4_0_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 3: + mul_mat_vec_q4_1_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 6: + mul_mat_vec_q5_0_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 7: + mul_mat_vec_q5_1_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 8: + mul_mat_vec_q8_0_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 10: + mul_mat_vec_q2_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 11: + mul_mat_vec_q3_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 12: + mul_mat_vec_q4_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 13: + mul_mat_vec_q5_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 14: + mul_mat_vec_q6_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 16: + mul_mat_vec_iq2_xxs_q8_1_cuda((void*)W.data_ptr(), + (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 17: + mul_mat_vec_iq2_xs_q8_1_cuda((void*)W.data_ptr(), + (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 18: + mul_mat_vec_iq3_xxs_q8_1_cuda((void*)W.data_ptr(), + (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 19: + mul_mat_vec_iq1_s_q8_1_cuda((void*)W.data_ptr(), + (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 20: + mul_mat_vec_iq4_nl_q8_1_cuda((void*)W.data_ptr(), + (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 21: + mul_mat_vec_iq3_s_q8_1_cuda((void*)W.data_ptr(), + (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 22: + mul_mat_vec_iq2_s_q8_1_cuda((void*)W.data_ptr(), + (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + case 23: + mul_mat_vec_iq4_xs_q8_1_cuda((void*)W.data_ptr(), + (void*)quant_X.data_ptr(), + (half*)Y.data_ptr(), col, row, stream); + break; + } + return Y; +} + +torch::Tensor ggml_mul_mat_a8(torch::Tensor W, // quant weight + torch::Tensor X, // input + int8_t type, int64_t row) { + int col = X.sizes()[1]; + int padded = (col + 512 - 1) / 512 * 512; + int batch = X.sizes()[0]; + const at::cuda::OptionalCUDAGuard device_guard(device_of(X)); + auto options = + torch::TensorOptions().dtype(torch::kFloat16).device(W.device()); + at::Tensor Y = torch::empty({batch, row}, options); + cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream(); + options = torch::TensorOptions().dtype(torch::kInt32).device(W.device()); + at::Tensor quant_X = torch::empty({batch, padded / 32 * 9}, options); + quantize_row_q8_1_cuda((half*)X.data_ptr(), (void*)quant_X.data_ptr(), col, + batch, stream); + + switch (type) { + case 2: + ggml_mul_mat_q4_0_q8_1_cuda( + (void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), + col, row, batch, padded, row, stream); + break; + case 3: + ggml_mul_mat_q4_1_q8_1_cuda( + (void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), + col, row, batch, padded, row, stream); + break; + case 6: + ggml_mul_mat_q5_0_q8_1_cuda( + (void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), + col, row, batch, padded, row, stream); + break; + case 7: + ggml_mul_mat_q5_1_q8_1_cuda( + (void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), + col, row, batch, padded, row, stream); + break; + case 8: + ggml_mul_mat_q8_0_q8_1_cuda( + (void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), + col, row, batch, padded, row, stream); + break; + case 10: + ggml_mul_mat_q2_K_q8_1_cuda( + (void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), + col, row, batch, padded, row, stream); + break; + case 11: + ggml_mul_mat_q3_K_q8_1_cuda( + (void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), + col, row, batch, padded, row, stream); + break; + case 12: + ggml_mul_mat_q4_K_q8_1_cuda( + (void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), + col, row, batch, padded, row, stream); + break; + case 13: + ggml_mul_mat_q5_K_q8_1_cuda( + (void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), + col, row, batch, padded, row, stream); + break; + case 14: + ggml_mul_mat_q6_K_q8_1_cuda( + (void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(), + col, row, batch, padded, row, stream); + break; + } + return Y; +} \ No newline at end of file diff --git a/csrc/quantization/gguf/mmq.cuh b/csrc/quantization/gguf/mmq.cuh new file mode 100644 index 0000000000000..d13efd5965313 --- /dev/null +++ b/csrc/quantization/gguf/mmq.cuh @@ -0,0 +1,600 @@ +// copied from https://github.com/ggerganov/llama.cpp/blob/b2899/ggml-cuda/mmq.cu +template +static __device__ __forceinline__ void mul_mat_q( + const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { + + const block_q_t * x = (const block_q_t *) vx; + const block_q8_1 * y = (const block_q8_1 *) vy; + + const int blocks_per_row_x = ncols_x / qk; + const int blocks_per_col_y = nrows_y / QK8_1; + const int blocks_per_warp = WARP_SIZE / qi; + + const int & ncols_dst = ncols_y; + + const int row_dst_0 = blockIdx.x*mmq_y; + const int & row_x_0 = row_dst_0; + + const int col_dst_0 = blockIdx.y*mmq_x; + const int & col_y_0 = col_dst_0; + + int * tile_x_ql = nullptr; + half2 * tile_x_dm = nullptr; + int * tile_x_qh = nullptr; + int * tile_x_sc = nullptr; + + allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc); + + __shared__ int tile_y_qs[mmq_x * WARP_SIZE]; + __shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1]; + + float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}}; + + for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) { + + load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, + threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x); + +#pragma unroll + for (int ir = 0; ir < qr; ++ir) { + const int kqs = ir*WARP_SIZE + threadIdx.x; + const int kbxd = kqs / QI8_1; + +#pragma unroll + for (int i = 0; i < mmq_x; i += nwarps) { + const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses + const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd]; + const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE; + tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1); + } + +#pragma unroll + for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) { + const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x; + const int kby = threadIdx.x % (WARP_SIZE/QI8_1); + const int col_y_eff = min(col_y_0 + ids, ncols_y-1); + + // if the sum is not needed it's faster to transform the scale to f32 ahead of time + const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds; + half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby]; + if (need_sum) { + *dsi_dst = *dsi_src; + } else { + float * dfi_dst = (float *) dsi_dst; + *dfi_dst = __low2float(*dsi_src); + } + } + + __syncthreads(); + +// #pragma unroll // unrolling this loop causes too much register pressure + for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) { +#pragma unroll + for (int j = 0; j < mmq_x; j += nwarps) { +#pragma unroll + for (int i = 0; i < mmq_y; i += WARP_SIZE) { + sum[i/WARP_SIZE][j/nwarps] += vec_dot( + tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds, + threadIdx.x + i, threadIdx.y + j, k); + } + } + } + __syncthreads(); + } + } + +#pragma unroll + for (int j = 0; j < mmq_x; j += nwarps) { + const int col_dst = col_dst_0 + j + threadIdx.y; + if (col_dst >= ncols_dst) { + return; + } + +#pragma unroll + for (int i = 0; i < mmq_y; i += WARP_SIZE) { + const int row_dst = row_dst_0 + threadIdx.x + i; + if (row_dst >= nrows_dst) { + continue; + } + dst[col_dst*nrows_dst + row_dst] = __float2half(sum[i/WARP_SIZE][j/nwarps]); + } + } +} + +#if defined(USE_ROCM) +#define MMQ_X_Q4_0 64 +#define MMQ_Y_Q4_0 128 +#define NWARPS_Q4_0 8 +#else +#define MMQ_X_Q4_0 4 +#define MMQ_Y_Q4_0 32 +#define NWARPS_Q4_0 4 +#endif + +template static __global__ void +#if defined(USE_ROCM) +__launch_bounds__(WARP_SIZE*NWARPS_Q4_0, 2) +#endif +mul_mat_q4_0( + const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { + const int mmq_x = MMQ_X_Q4_0; + const int mmq_y = MMQ_Y_Q4_0; + const int nwarps = NWARPS_Q4_0; + + mul_mat_q, + load_tiles_q4_0, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); +} + +static void ggml_mul_mat_q4_0_q8_1_cuda( + const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x, + const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { + + int mmq_x = MMQ_X_Q4_0; + int mmq_y = MMQ_Y_Q4_0; + int nwarps = NWARPS_Q4_0; + + const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; + const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; + const dim3 block_nums(block_num_x, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, nwarps, 1); + + if (nrows_x % mmq_y == 0) { + const bool need_check = false; + mul_mat_q4_0<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } else { + const bool need_check = true; + mul_mat_q4_0<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } +} + +#if defined(USE_ROCM) +#define MMQ_X_Q4_1 64 +#define MMQ_Y_Q4_1 128 +#define NWARPS_Q4_1 8 +#else +#define MMQ_X_Q4_1 4 +#define MMQ_Y_Q4_1 32 +#define NWARPS_Q4_1 4 +#endif + +template static __global__ void +#if defined(USE_ROCM) +__launch_bounds__(WARP_SIZE*NWARPS_Q4_1, 2) +#endif +mul_mat_q4_1( + const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { + const int mmq_x = MMQ_X_Q4_1; + const int mmq_y = MMQ_Y_Q4_1; + const int nwarps = NWARPS_Q4_1; + + mul_mat_q, + load_tiles_q4_1, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); +} + +static void ggml_mul_mat_q4_1_q8_1_cuda( + const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x, + const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { + + int mmq_x = MMQ_X_Q4_1; + int mmq_y = MMQ_Y_Q4_1; + int nwarps = NWARPS_Q4_1; + + const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; + const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; + const dim3 block_nums(block_num_x, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, nwarps, 1); + + if (nrows_x % mmq_y == 0) { + const bool need_check = false; + mul_mat_q4_1<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } else { + const bool need_check = true; + mul_mat_q4_1<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } +} + +#if defined(USE_ROCM) +#define MMQ_X_Q5_0 64 +#define MMQ_Y_Q5_0 128 +#define NWARPS_Q5_0 8 +#else +#define MMQ_X_Q5_0 4 +#define MMQ_Y_Q5_0 32 +#define NWARPS_Q5_0 4 +#endif + +template static __global__ void +#if defined(USE_ROCM) +__launch_bounds__(WARP_SIZE*NWARPS_Q5_0, 2) +#endif +mul_mat_q5_0( + const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { + const int mmq_x = MMQ_X_Q5_0; + const int mmq_y = MMQ_Y_Q5_0; + const int nwarps = NWARPS_Q5_0; + + mul_mat_q, + load_tiles_q5_0, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); +} + +static void ggml_mul_mat_q5_0_q8_1_cuda( + const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x, + const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { + + const int mmq_x = MMQ_X_Q5_0; + const int mmq_y = MMQ_Y_Q5_0; + const int nwarps = NWARPS_Q5_0; + + const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; + const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; + const dim3 block_nums(block_num_x, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, nwarps, 1); + + if (nrows_x % mmq_y == 0) { + const bool need_check = false; + mul_mat_q5_0<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } else { + const bool need_check = true; + mul_mat_q5_0<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } +} + +#if defined(USE_ROCM) +#define MMQ_X_Q5_1 64 +#define MMQ_Y_Q5_1 128 +#define NWARPS_Q5_1 8 +#else +#define MMQ_X_Q5_1 4 +#define MMQ_Y_Q5_1 32 +#define NWARPS_Q5_1 4 +#endif + +template static __global__ void +#if defined(USE_ROCM) +__launch_bounds__(WARP_SIZE*NWARPS_Q5_1, 2) +#endif +mul_mat_q5_1( + const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { + const int mmq_x = MMQ_X_Q5_1; + const int mmq_y = MMQ_Y_Q5_1; + const int nwarps = NWARPS_Q5_1; + + mul_mat_q, + load_tiles_q5_1, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); +} + +static void ggml_mul_mat_q5_1_q8_1_cuda( + const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x, + const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { + const int mmq_x = MMQ_X_Q5_1; + const int mmq_y = MMQ_Y_Q5_1; + const int nwarps = NWARPS_Q5_1; + + const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; + const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; + const dim3 block_nums(block_num_x, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, nwarps, 1); + + if (nrows_x % mmq_y == 0) { + const bool need_check = false; + mul_mat_q5_1<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } else { + const bool need_check = true; + mul_mat_q5_1<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } +} + +#if defined(USE_ROCM) +#define MMQ_X_Q8_0 64 +#define MMQ_Y_Q8_0 128 +#define NWARPS_Q8_0 8 +#else +#define MMQ_X_Q8_0 4 +#define MMQ_Y_Q8_0 32 +#define NWARPS_Q8_0 4 +#endif + +template static __global__ void +#if defined(USE_ROCM) +__launch_bounds__(WARP_SIZE*NWARPS_Q8_0, 2) +#endif +mul_mat_q8_0( + const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { + const int mmq_x = MMQ_X_Q8_0; + const int mmq_y = MMQ_Y_Q8_0; + const int nwarps = NWARPS_Q8_0; + + mul_mat_q, + load_tiles_q8_0, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); +} + +static void ggml_mul_mat_q8_0_q8_1_cuda( + const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x, + const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { + const int mmq_x = MMQ_X_Q8_0; + const int mmq_y = MMQ_Y_Q8_0; + const int nwarps = NWARPS_Q8_0; + + const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; + const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; + const dim3 block_nums(block_num_x, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, nwarps, 1); + + if (nrows_x % mmq_y == 0) { + const bool need_check = false; + mul_mat_q8_0<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } else { + const bool need_check = true; + mul_mat_q8_0<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } +} + +#if defined(USE_ROCM) +#define MMQ_X_Q2_K 64 +#define MMQ_Y_Q2_K 128 +#define NWARPS_Q2_K 8 +#else +#define MMQ_X_Q2_K 4 +#define MMQ_Y_Q2_K 32 +#define NWARPS_Q2_K 4 +#endif + +template static __global__ void +#if defined(USE_ROCM) +__launch_bounds__(WARP_SIZE*NWARPS_Q2_K, 2) +#endif +mul_mat_q2_K( + const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { + const int mmq_x = MMQ_X_Q2_K; + const int mmq_y = MMQ_Y_Q2_K; + const int nwarps = NWARPS_Q2_K; + + mul_mat_q, + load_tiles_q2_K, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); +} + +static void ggml_mul_mat_q2_K_q8_1_cuda( + const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x, + const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { + const int mmq_x = MMQ_X_Q2_K; + const int mmq_y = MMQ_Y_Q2_K; + const int nwarps = NWARPS_Q2_K; + + const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; + const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; + const dim3 block_nums(block_num_x, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, nwarps, 1); + + if (nrows_x % mmq_y == 0) { + const bool need_check = false; + mul_mat_q2_K<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } else { + const bool need_check = true; + mul_mat_q2_K<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } +} + +#if defined(USE_ROCM) +#define MMQ_X_Q3_K 64 +#define MMQ_Y_Q3_K 128 +#define NWARPS_Q3_K 8 +#else +#define MMQ_X_Q3_K 4 +#define MMQ_Y_Q3_K 32 +#define NWARPS_Q3_K 4 +#endif + +template static __global__ void +#if defined(USE_ROCM) +__launch_bounds__(WARP_SIZE*NWARPS_Q3_K, 2) +#endif +mul_mat_q3_K( + const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { + + const int mmq_x = MMQ_X_Q3_K; + const int mmq_y = MMQ_Y_Q3_K; + const int nwarps = NWARPS_Q3_K; + + mul_mat_q, + load_tiles_q3_K, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); +} + +static void ggml_mul_mat_q3_K_q8_1_cuda( + const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x, + const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { + + const int mmq_x = MMQ_X_Q3_K; + const int mmq_y = MMQ_Y_Q3_K; + const int nwarps = NWARPS_Q3_K; + + const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; + const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; + const dim3 block_nums(block_num_x, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, nwarps, 1); + + if (nrows_x % mmq_y == 0) { + const bool need_check = false; + mul_mat_q3_K<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } else { + const bool need_check = true; + mul_mat_q3_K<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } +} + +#if defined(USE_ROCM) +#define MMQ_X_Q4_K 64 +#define MMQ_Y_Q4_K 128 +#define NWARPS_Q4_K 8 +#else +#define MMQ_X_Q4_K 4 +#define MMQ_Y_Q4_K 32 +#define NWARPS_Q4_K 4 +#endif + +template static __global__ void +#if defined(USE_ROCM) +__launch_bounds__(WARP_SIZE*NWARPS_Q4_K, 2) +#endif +mul_mat_q4_K( + const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { + const int mmq_x = MMQ_X_Q4_K; + const int mmq_y = MMQ_Y_Q4_K; + const int nwarps = NWARPS_Q4_K; + + mul_mat_q, + load_tiles_q4_K, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); +} + +static void ggml_mul_mat_q4_K_q8_1_cuda( + const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x, + const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { + const int mmq_x = MMQ_X_Q4_K; + const int mmq_y = MMQ_Y_Q4_K; + const int nwarps = NWARPS_Q4_K; + + const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; + const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; + const dim3 block_nums(block_num_x, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, nwarps, 1); + + if (nrows_x % mmq_y == 0) { + const bool need_check = false; + mul_mat_q4_K<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } else { + const bool need_check = true; + mul_mat_q4_K<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } +} + +#if defined(USE_ROCM) +#define MMQ_X_Q5_K 64 +#define MMQ_Y_Q5_K 128 +#define NWARPS_Q5_K 8 +#else +#define MMQ_X_Q5_K 4 +#define MMQ_Y_Q5_K 32 +#define NWARPS_Q5_K 4 +#endif + +template static __global__ void +#if defined(USE_ROCM) +__launch_bounds__(WARP_SIZE*NWARPS_Q5_K, 2) +#endif +mul_mat_q5_K( + const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { + const int mmq_x = MMQ_X_Q5_K; + const int mmq_y = MMQ_Y_Q5_K; + const int nwarps = NWARPS_Q5_K; + + mul_mat_q, + load_tiles_q5_K, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); +} + +static void ggml_mul_mat_q5_K_q8_1_cuda( + const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x, + const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { + + const int mmq_x = MMQ_X_Q5_K; + const int mmq_y = MMQ_Y_Q5_K; + const int nwarps = NWARPS_Q5_K; + + const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; + const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; + const dim3 block_nums(block_num_x, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, nwarps, 1); + + if (nrows_x % mmq_y == 0) { + const bool need_check = false; + mul_mat_q5_K<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } else { + const bool need_check = true; + mul_mat_q5_K<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } +} + +#if defined(USE_ROCM) +#define MMQ_X_Q6_K 64 +#define MMQ_Y_Q6_K 128 +#define NWARPS_Q6_K 8 +#else +#define MMQ_X_Q6_K 4 +#define MMQ_Y_Q6_K 32 +#define NWARPS_Q6_K 4 +#endif + +template static __global__ void +#if defined(USE_ROCM) +__launch_bounds__(WARP_SIZE*NWARPS_Q6_K, 2) +#endif +mul_mat_q6_K( + const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { + const int mmq_x = MMQ_X_Q6_K; + const int mmq_y = MMQ_Y_Q6_K; + const int nwarps = NWARPS_Q6_K; + + mul_mat_q, + load_tiles_q6_K, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); +} + +static void ggml_mul_mat_q6_K_q8_1_cuda( + const void * vx, const void * vy, half * dst, const int ncols_x, const int nrows_x, + const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { + const int mmq_x = MMQ_X_Q6_K; + const int mmq_y = MMQ_Y_Q6_K; + const int nwarps = NWARPS_Q6_K; + + const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; + const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; + const dim3 block_nums(block_num_x, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, nwarps, 1); + + if (nrows_x % mmq_y == 0) { + const bool need_check = false; + mul_mat_q6_K<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } else { + const bool need_check = true; + mul_mat_q6_K<<>> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + } +} diff --git a/csrc/quantization/gguf/mmvq.cuh b/csrc/quantization/gguf/mmvq.cuh new file mode 100644 index 0000000000000..ef2ea072392d2 --- /dev/null +++ b/csrc/quantization/gguf/mmvq.cuh @@ -0,0 +1,182 @@ +// copied and adapted from https://github.com/ggerganov/llama.cpp/blob/b2899/ggml-cuda/mmvq.cu +template +static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, half * __restrict__ dst, const int ncols, const int nrows) { + const int row = blockIdx.x*blockDim.y + threadIdx.y; + + if (row >= nrows) { + return; + } + + const int blocks_per_row = ncols / qk; + const int blocks_per_warp = vdr * WARP_SIZE / qi; + +// partial sum for each thread + float tmp = 0.0f; + + const block_q_t * x = (const block_q_t *) vx; + const block_q8_1 * y = (const block_q8_1 *) vy; + + for (int i = threadIdx.x / (qi/vdr); i < blocks_per_row; i += blocks_per_warp) { + const int ibx = row*blocks_per_row + i; // x block index + + const int iby = i * (qk/QK8_1); // y block index that aligns with ibx + + const int iqs = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int + + tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs); + } + + // sum up partial sums and write back result +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); + } + + if (threadIdx.x == 0) { + dst[row] = __float2half(tmp); + } +} + +static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_iq2_xxs_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_iq2_xs_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_iq2_s_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_iq3_xxs_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_iq1_s_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_iq4_nl_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_iq4_xs_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} + +static void mul_mat_vec_iq3_s_q8_1_cuda(const void * vx, const void * vy, half * dst, const int ncols, const int nrows, cudaStream_t stream) { + const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; + const dim3 block_nums(block_num_y, 1, 1); + const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); + mul_mat_vec_q + <<>>(vx, vy, dst, ncols, nrows); +} diff --git a/csrc/quantization/gguf/vecdotq.cuh b/csrc/quantization/gguf/vecdotq.cuh new file mode 100644 index 0000000000000..78c749d3f3bc1 --- /dev/null +++ b/csrc/quantization/gguf/vecdotq.cuh @@ -0,0 +1,1745 @@ +// copied and adapted from https://github.com/ggerganov/llama.cpp/blob/b2899/ggml-cuda/vecdotq.cuh +// and https://github.com/ggerganov/llama.cpp/blob/b2899/ggml-cuda/mmq.cu +static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) { + const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment + int x32 = 0; + x32 |= x16[0] << 0; + x32 |= x16[1] << 16; + return x32; +} + +static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) { + const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment + int x32 = 0; + x32 |= x16[0] << 0; + x32 |= x16[1] << 16; + return x32; +} + +static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) { + return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment +} + +static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) { + return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment +} + + +#define VDR_Q4_0_Q8_1_MMVQ 2 +#define VDR_Q4_0_Q8_1_MMQ 4 + +template static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl( + const int * v, const int * u, const float & d4, const half2 & ds8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + const int vi0 = (v[i] >> 0) & 0x0F0F0F0F; + const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; + + // SIMD dot product of quantized values + sumi = __dp4a(vi0, u[2*i+0], sumi); + sumi = __dp4a(vi1, u[2*i+1], sumi); + } + + const float2 ds8f = __half22float2(ds8); + + // second part effectively subtracts 8 from each quant value + return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y); +#endif +} + +#define VDR_Q4_1_Q8_1_MMVQ 2 +#define VDR_Q4_1_Q8_1_MMQ 4 + +template static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl( + const int * v, const int * u, const half2 & dm4, const half2 & ds8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + const int vi0 = (v[i] >> 0) & 0x0F0F0F0F; + const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; + + // SIMD dot product of quantized values + sumi = __dp4a(vi0, u[2*i+0], sumi); + sumi = __dp4a(vi1, u[2*i+1], sumi); + } + + const float2 tmp = __half22float2(__hmul2(dm4, ds8)); + const float d4d8 = tmp.x; + const float m4s8 = tmp.y; + + // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it + return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1)); +#endif +} + +#define VDR_Q5_0_Q8_1_MMVQ 2 +#define VDR_Q5_0_Q8_1_MMQ 4 + +template static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl( + const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits + vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4 + vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 + vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 + vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 + sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values + + int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits + vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 + vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 + vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 + vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 + sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values + } + + const float2 ds8f = __half22float2(ds8); + + // second part effectively subtracts 16 from each quant value + return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y); +#endif +} + + +#define VDR_Q5_1_Q8_1_MMVQ 2 +#define VDR_Q5_1_Q8_1_MMQ 4 + +template static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl( + const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits + vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4 + vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 + vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 + vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 + sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values + + int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits + vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 + vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 + vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 + vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 + sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values + } + + const float2 tmp = __half22float2(__hmul2(dm5, ds8)); + const float d5d8 = tmp.x; + const float m5s8 = tmp.y; + + // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it + return sumi*d5d8 + m5s8 / (QI5_1 / vdr); +#endif +} + +#define VDR_Q8_0_Q8_1_MMVQ 2 +#define VDR_Q8_0_Q8_1_MMQ 8 + +template static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl( + const int * v, const int * u, const float & d8_0, const float & d8_1) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + // SIMD dot product of quantized values + sumi = __dp4a(v[i], u[i], sumi); + } + return d8_0*d8_1 * sumi; +#endif +} + +template static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl( + const int * v, const int * u, const half2 & dm8, const half2 & ds8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + // SIMD dot product of quantized values + sumi = __dp4a(v[i], u[i], sumi); + } + + const float2 tmp = __half22float2(__hmul2(dm8, ds8)); + const float d8d8 = tmp.x; + const float m8s8 = tmp.y; + + // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it + return sumi*d8d8 + m8s8 / (QI8_1 / vdr); +#endif +} + +#define VDR_Q2_K_Q8_1_MMVQ 1 +#define VDR_Q2_K_Q8_1_MMQ 2 + +// contiguous v/x values +static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq( + const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales, + const half2 & dm2, const float * __restrict__ d8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + float sumf_d = 0.0f; + float sumf_m = 0.0f; + +#pragma unroll + for (int i = 0; i < QR2_K; ++i) { + const int sc = scales[2*i]; + + const int vi = (v >> (2*i)) & 0x03030303; + + sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product + + // fill int with 4x m + int m = sc >> 4; + m |= m << 8; + m |= m << 16; + sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values + } + + const float2 dm2f = __half22float2(dm2); + + return dm2f.x*sumf_d - dm2f.y*sumf_m; +#endif +} + +static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq( + const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales, + const half2 & dm2, const float & d8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + int sumi_d = 0; + int sumi_m = 0; + +#pragma unroll + for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) { + int sumi_d_sc = 0; + + const int sc = scales[i0 / (QI8_1/2)]; + + // fill int with 4x m + int m = sc >> 4; + m |= m << 8; + m |= m << 16; + +#pragma unroll + for (int i = i0; i < i0 + QI8_1/2; ++i) { + sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product + sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m + } + + sumi_d += sumi_d_sc * (sc & 0xF); + } + + const float2 dm2f = __half22float2(dm2); + + return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m); +#endif +} + +#define VDR_Q3_K_Q8_1_MMVQ 1 +#define VDR_Q3_K_Q8_1_MMQ 2 + +// contiguous v/x values +static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq( + const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales, + const int & scale_offset, const float & d3, const float * __restrict__ d8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + + float sumf = 0.0f; + +#pragma unroll + for (int i = 0; i < QR3_K; ++i) { + const int isc = scale_offset + 2*i; + + const int isc_low = isc % (QK_K/32); + const int sc_shift_low = 4 * (isc / (QK_K/32)); + const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF; + + const int isc_high = isc % (QK_K/64); + const int sc_shift_high = 2 * (isc / (QK_K/64)); + const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4; + + const int sc = (sc_low | sc_high) - 32; + + const int vil = (vl >> (2*i)) & 0x03030303; + + const int vih = ((vh >> i) << 2) & 0x04040404; + + const int vi = __vsubss4(vil, vih); + + sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product + } + + return d3 * sumf; +#endif +} + +static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq( + const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales, + const float & d3, const float & d8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + int sumi = 0; + +#pragma unroll + for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) { + int sumi_sc = 0; + + for (int i = i0; i < i0 + QI8_1/2; ++i) { + sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product + } + + sumi += sumi_sc * scales[i0 / (QI8_1/2)]; + } + + return d3*d8 * sumi; +#endif +} + +#define VDR_Q4_K_Q8_1_MMVQ 2 +#define VDR_Q4_K_Q8_1_MMQ 8 + +// contiguous v/x values +static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq( + const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, + const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + + float sumf_d = 0.0f; + float sumf_m = 0.0f; + +#pragma unroll + for (int i = 0; i < QR4_K; ++i) { + const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F; + const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F; + + const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product + const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u + + sumf_d += d8[i] * (dot1 * sc[i]); + sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values + } + + const float2 dm4f = __half22float2(dm4); + return dm4f.x*sumf_d - dm4f.y*sumf_m; +#endif +} + +static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq( + const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, + const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + float sumf_d = 0.0f; + float sumf_m = 0.0f; + +#pragma unroll + for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) { + int sumi_d = 0; + +#pragma unroll + for (int j = 0; j < QI8_1; ++j) { + sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product + } + + const float2 ds8f = __half22float2(ds8[i]); + + sumf_d += ds8f.x * (sc[i] * sumi_d); + sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val + } + + const float2 dm4f = __half22float2(dm4); + + return dm4f.x*sumf_d - dm4f.y*sumf_m; +#endif +} + +#define VDR_Q5_K_Q8_1_MMVQ 2 +#define VDR_Q5_K_Q8_1_MMQ 8 + +static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq( + const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc, + const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + + float sumf_d = 0.0f; + float sumf_m = 0.0f; + +#pragma unroll + for (int i = 0; i < QR5_K; ++i) { + const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F; + const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F; + + const int vh0i = ((vh[0] >> i) << 4) & 0x10101010; + const int vh1i = ((vh[1] >> i) << 4) & 0x10101010; + + const int v0i = vl0i | vh0i; + const int v1i = vl1i | vh1i; + + const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product + const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u + + sumf_d += d8[i] * (dot1 * sc[i]); + sumf_m += d8[i] * (dot2 * m[i]); + } + + const float2 dm5f = __half22float2(dm5); + return dm5f.x*sumf_d - dm5f.y*sumf_m; +#endif +} + +static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq( + const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, + const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + float sumf_d = 0.0f; + float sumf_m = 0.0f; + +#pragma unroll + for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) { + int sumi_d = 0; + +#pragma unroll + for (int j = 0; j < QI8_1; ++j) { + sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product + } + + const float2 ds8f = __half22float2(ds8[i]); + + sumf_d += ds8f.x * (sc[i] * sumi_d); + sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val + } + + const float2 dm4f = __half22float2(dm4); + + return dm4f.x*sumf_d - dm4f.y*sumf_m; +#endif +} + +#define VDR_Q6_K_Q8_1_MMVQ 1 +#define VDR_Q6_K_Q8_1_MMQ 8 + +// contiguous v/x values +static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq( + const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales, + const float & d, const float * __restrict__ d8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + float sumf = 0.0f; + +#pragma unroll + for (int i = 0; i < QR6_K; ++i) { + const int sc = scales[4*i]; + const int vil = (vl >> (4*i)) & 0x0F0F0F0F; + const int vih = ((vh >> (4*i)) << 4) & 0x30303030; + const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32 + + sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product + } + + return d*sumf; +#endif +} + +static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq( + const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc, + const float & d6, const float * __restrict__ d8) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + float sumf_d = 0.0f; + +#pragma unroll + for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) { + int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale + +#pragma unroll + for (int i = i0; i < i0 + 2; ++i) { + sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product + sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product + + sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product + sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product + } + + sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y); + } + + return d6 * sumf_d; +#endif +} + +static __device__ __forceinline__ float vec_dot_q4_0_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq; + + int v[VDR_Q4_0_Q8_1_MMVQ]; + int u[2*VDR_Q4_0_Q8_1_MMVQ]; + +#pragma unroll + for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) { + v[i] = get_int_from_uint8(bq4_0->qs, iqs + i); + u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0); + } + + return vec_dot_q4_0_q8_1_impl(v, u, __half2float(bq4_0->d), bq8_1->ds); +} + +template static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { + __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y]; + __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0]; + *x_ql = tile_x_qs; + *x_dm = (half2 *) tile_x_d; +} + +template static __device__ __forceinline__ void load_tiles_q4_0( + const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, + int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { + const int kbx = k / QI4_0; + const int kqsx = k % QI4_0; + + const block_q4_0 * bx0 = (const block_q4_0 *) vx; + float * x_dmf = (float *) x_dm; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { + int i = i0 + i_offset; + if (need_check) { + i = min(i, i_max); + } + const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx; + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx); + // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d; + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI4_0; + const int kbxd = k % blocks_per_tile_x_row; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) { + int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row; + if (need_check) { + i = min(i, i_max); + } + const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd; + x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = __half2float(bxi->d); + } +} + +static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + (void)x_qh; (void)x_sc; + + const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); + const float * x_dmf = (const float *) x_dm; + + int u[2*VDR_Q4_0_Q8_1_MMQ]; + +#pragma unroll + for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) { + u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; + u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE]; + } + + return vec_dot_q4_0_q8_1_impl + (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0], + y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); +} + +static __device__ __forceinline__ float vec_dot_q4_1_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq; + + int v[VDR_Q4_1_Q8_1_MMVQ]; + int u[2*VDR_Q4_1_Q8_1_MMVQ]; + +#pragma unroll + for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) { + v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i); + u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1); + } + + return vec_dot_q4_1_q8_1_impl(v, u, bq4_1->dm, bq8_1->ds); +} + +template static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { + __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y]; + __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1]; + *x_ql = tile_x_qs; + *x_dm = tile_x_dm; +} + +template static __device__ __forceinline__ void load_tiles_q4_1( + const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, + int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { + const int kbx = k / QI4_1; + const int kqsx = k % QI4_1; + + const block_q4_1 * bx0 = (const block_q4_1 *) vx; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { + int i = i0 + i_offset; + if (need_check) { + i = min(i, i_max); + } + const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx; + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI4_1; + const int kbxd = k % blocks_per_tile_x_row; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) { + int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row; + if (need_check) { + i = min(i, i_max); + } + const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd; + x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm; + } +} + +static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); + + int u[2*VDR_Q4_1_Q8_1_MMQ]; + +#pragma unroll + for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) { + u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; + u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE]; + } + + return vec_dot_q4_1_q8_1_impl + (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1], + y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); +} + +static __device__ __forceinline__ float vec_dot_q5_0_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq; + + int vl[VDR_Q5_0_Q8_1_MMVQ]; + int vh[VDR_Q5_0_Q8_1_MMVQ]; + int u[2*VDR_Q5_0_Q8_1_MMVQ]; + +#pragma unroll + for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) { + vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i); + vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i)); + u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0); + } + + return vec_dot_q5_0_q8_1_impl(vl, vh, u, __half2float(bq5_0->d), bq8_1->ds); +} + +template static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { + __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y]; + __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0]; + + *x_ql = tile_x_ql; + *x_dm = (half2 *) tile_x_d; +} + +template static __device__ __forceinline__ void load_tiles_q5_0( + const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, + int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { + const int kbx = k / QI5_0; + const int kqsx = k % QI5_0; + + const block_q5_0 * bx0 = (const block_q5_0 *) vx; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { + int i = i0 + i_offset; + + if (need_check) { + i = min(i, i_max); + } + const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx; + const int ql = get_int_from_uint8(bxi->qs, kqsx); + const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0)); + + int qs0 = (ql >> 0) & 0x0F0F0F0F; + qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 + qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 + qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 + qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 + qs0 = __vsubss4(qs0, 0x10101010); // subtract 16 + + x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0; + + int qs1 = (ql >> 4) & 0x0F0F0F0F; + qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 + qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 + qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 + qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 + qs1 = __vsubss4(qs1, 0x10101010); // subtract 16 + + x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1; + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI5_0; + const int kbxd = k % blocks_per_tile_x_row; + float * x_dmf = (float *) x_dm; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) { + int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row; + + if (need_check) { + i = min(i, i_max); + } + + const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd; + x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = __half2float(bxi->d); + } +} + +static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); + const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0; + const float * x_dmf = (const float *) x_dm; + const float * y_df = (const float *) y_ds; + + int u[2*VDR_Q5_0_Q8_1_MMQ]; + +#pragma unroll + for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) { + u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; + u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE]; + } + + return vec_dot_q8_0_q8_1_impl + (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); +} + +static __device__ __forceinline__ float vec_dot_q5_1_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq; + + int vl[VDR_Q5_1_Q8_1_MMVQ]; + int vh[VDR_Q5_1_Q8_1_MMVQ]; + int u[2*VDR_Q5_1_Q8_1_MMVQ]; + +#pragma unroll + for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) { + vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i); + vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i)); + u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1); + } + + return vec_dot_q5_1_q8_1_impl(vl, vh, u, bq5_1->dm, bq8_1->ds); +} + +template static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { + __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y]; + __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1]; + + *x_ql = tile_x_ql; + *x_dm = tile_x_dm; +} + +template static __device__ __forceinline__ void load_tiles_q5_1( + const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, + int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { + const int kbx = k / QI5_1; + const int kqsx = k % QI5_1; + + const block_q5_1 * bx0 = (const block_q5_1 *) vx; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { + int i = i0 + i_offset; + + if (need_check) { + i = min(i, i_max); + } + + const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx; + + const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx); + const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1)); + + int qs0 = (ql >> 0) & 0x0F0F0F0F; + qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 + qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 + qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 + qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 + + x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0; + + int qs1 = (ql >> 4) & 0x0F0F0F0F; + qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 + qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 + qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 + qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 + + x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1; + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI5_1; + const int kbxd = k % blocks_per_tile_x_row; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) { + int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row; + + if (need_check) { + i = min(i, i_max); + } + + const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd; + + x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm; + } +} + +static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); + const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1; + + int u[2*VDR_Q5_1_Q8_1_MMQ]; + +#pragma unroll + for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) { + u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; + u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE]; + } + + return vec_dot_q8_1_q8_1_impl + (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); +} + +static __device__ __forceinline__ float vec_dot_q8_0_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq; + + int v[VDR_Q8_0_Q8_1_MMVQ]; + int u[VDR_Q8_0_Q8_1_MMVQ]; + +#pragma unroll + for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) { + v[i] = get_int_from_int8(bq8_0->qs, iqs + i); + u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + } + + return vec_dot_q8_0_q8_1_impl(v, u, __half2float(bq8_0->d), __low2float(bq8_1->ds)); +} + +template static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { + __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y]; + __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0]; + + *x_ql = tile_x_qs; + *x_dm = (half2 *) tile_x_d; +} + +template static __device__ __forceinline__ void load_tiles_q8_0( + const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, + int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { + const int kbx = k / QI8_0; + const int kqsx = k % QI8_0; + float * x_dmf = (float *) x_dm; + + const block_q8_0 * bx0 = (const block_q8_0 *) vx; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { + int i = i0 + i_offset; + + if (need_check) { + i = min(i, i_max); + } + const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx; + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI8_0; + const int kbxd = k % blocks_per_tile_x_row; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) { + int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row; + + if (need_check) { + i = min(i, i_max); + } + const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd; + x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = __half2float(bxi->d); + } +} + +static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + const float * x_dmf = (const float *) x_dm; + const float * y_df = (const float *) y_ds; + + return vec_dot_q8_0_q8_1_impl + (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0], + y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]); +} + +static __device__ __forceinline__ float vec_dot_q2_K_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q2_K * bq2_K = (const block_q2_K *) vbq; + + const int bq8_offset = QR2_K * (iqs / QI8_1); + const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2); + + const uint8_t * scales = bq2_K->scales + scale_offset; + + const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs); + int u[QR2_K]; + float d8[QR2_K]; + +#pragma unroll + for (int i = 0; i < QR2_K; ++ i) { + u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1); + d8[i] = __low2float(bq8_1[bq8_offset + i].ds); + } + + return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8); +} + +template static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { + __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y]; + __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K]; + __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4]; + + *x_ql = tile_x_ql; + *x_dm = tile_x_dm; + *x_sc = tile_x_sc; +} + +template static __device__ __forceinline__ void load_tiles_q2_K( + const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, + int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { + const int kbx = k / QI2_K; + const int kqsx = k % QI2_K; + + const block_q2_K * bx0 = (const block_q2_K *) vx; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { + int i = i0 + i_offset; + + if (need_check) { + i = min(i, i_max); + } + const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx; + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI2_K; + const int kbxd = k % blocks_per_tile_x_row; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) { + int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y; + + if (need_check) { + i = min(i, i_max); + } + const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd; + x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm; + } + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) { + int i = i0 + i_offset * 4 + k / (WARP_SIZE/4); + + if (need_check) { + i = min(i, i_max); + } + const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4); + x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4)); + } +} + +static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + const int kbx = k / QI2_K; + const int ky = (k % QI2_K) * QR2_K; + const float * y_df = (const float *) y_ds; + + int v[QR2_K*VDR_Q2_K_Q8_1_MMQ]; + + const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2); + const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2)); + +#pragma unroll + for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) { + v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303; + } + + const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4; + + const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE; + return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]); +} + +static __device__ __forceinline__ float vec_dot_q3_K_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q3_K * bq3_K = (const block_q3_K *) vbq; + + const int bq8_offset = QR3_K * (iqs / (QI3_K/2)); + const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2); + + const float d = __half2float(bq3_K->d); + + const int vl = get_int_from_uint8(bq3_K->qs, iqs); + + // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted + const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset; + + int u[QR3_K]; + float d8[QR3_K]; + +#pragma unroll + for (int i = 0; i < QR3_K; ++i) { + u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1); + d8[i] = __low2float(bq8_1[bq8_offset + i].ds); + } + + return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8); +} + +template static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { + __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y]; + __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K]; + __shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2]; + __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4]; + + *x_ql = tile_x_ql; + *x_dm = tile_x_dm; + *x_qh = tile_x_qh; + *x_sc = tile_x_sc; +} + +template static __device__ __forceinline__ void load_tiles_q3_K( + const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, + int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { + const int kbx = k / QI3_K; + const int kqsx = k % QI3_K; + + const block_q3_K * bx0 = (const block_q3_K *) vx; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { + int i = i0 + i_offset; + if (need_check) { + i = min(i, i_max); + } + const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx; + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI3_K; + const int kbxd = k % blocks_per_tile_x_row; + float * x_dmf = (float *) x_dm; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) { + int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y; + if (need_check) { + i = min(i, i_max); + } + const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd; + x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = __half2float(bxi->d); + } + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) { + int i = i0 + i_offset * 2 + k / (WARP_SIZE/2); + if (need_check) { + i = min(i, i_max); + } + const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2); + // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted + x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2)); + } + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) { + int i = i0 + i_offset * 4 + k / (WARP_SIZE/4); + if (need_check) { + i = min(i, i_max); + } + const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4); + + const int ksc = k % (QI3_K/4); + + const int ksc_low = ksc % (QI3_K/8); + const int shift_low = 4 * (ksc / (QI3_K/8)); + const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F; + + const int ksc_high = QI3_K/8; + const int shift_high = 2 * ksc; + const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030; + + const int sc = __vsubss4(sc_low | sc_high, 0x20202020); + + x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc; + } +} + +static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + + const int kbx = k / QI3_K; + const int ky = (k % QI3_K) * QR3_K; + const float * x_dmf = (const float *) x_dm; + const float * y_df = (const float *) y_ds; + + const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4; + + int v[QR3_K*VDR_Q3_K_Q8_1_MMQ]; + +#pragma unroll + for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) { + const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2); + const int shift = 2 * ((ky % 32) / 8); + const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303; + + const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8); + const int vlh = (vh << 2) & 0x04040404; + + v[l] = __vsubss4(vll, vlh); + } + + const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE; + return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]); +} + +static __device__ __forceinline__ float vec_dot_q4_K_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + const block_q4_K * bq4_K = (const block_q4_K *) vbq; + + int v[2]; + int u[2*QR4_K]; + float d8[QR4_K]; + + // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6 + const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2)); + + // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12 + // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44 + // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76 + // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108 + + const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4)); + v[0] = q4[0]; + v[1] = q4[4]; + + const uint16_t * scales = (const uint16_t *)bq4_K->scales; + uint16_t aux[2]; + const int j = bq8_offset/2; + if (j < 2) { + aux[0] = scales[j+0] & 0x3f3f; + aux[1] = scales[j+2] & 0x3f3f; + } else { + aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2); + aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2); + } + const uint8_t * sc = (const uint8_t *)aux; + const uint8_t * m = sc + 2; + + for (int i = 0; i < QR4_K; ++i) { + const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; + d8[i] = __low2float(bq8i->ds); + + const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); + u[2*i+0] = q8[0]; + u[2*i+1] = q8[4]; + } + + return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8); +} + +template static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { + __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y]; + __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K]; + __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8]; + + *x_ql = tile_x_ql; + *x_dm = tile_x_dm; + *x_sc = tile_x_sc; +} + +template static __device__ __forceinline__ void load_tiles_q4_K( + const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, + int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { + const int kbx = k / QI4_K; // == 0 if QK_K == 256 + const int kqsx = k % QI4_K; // == k if QK_K == 256 + + const block_q4_K * bx0 = (const block_q4_K *) vx; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { + int i = i0 + i_offset; + + if (need_check) { + i = min(i, i_max); + } + const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx; + x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256 + const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256 + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) { + int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y; + if (need_check) { + i = min(i, i_max); + } + const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd; + x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm; + } + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { + int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y; + + if (need_check) { + i = min(i, i_max); + } + + const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8); + + const int * scales = (const int *) bxi->scales; + + const int ksc = k % (WARP_SIZE/8); + // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8 + int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits + scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits + + x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8; + } +} + +static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + (void)x_qh; + + const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8); + + const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE; + return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8, + x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]); +} + +static __device__ __forceinline__ float vec_dot_q5_K_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q5_K * bq5_K = (const block_q5_K *) vbq; + + int vl[2]; + int vh[2]; + int u[2*QR5_K]; + float d8[QR5_K]; + + const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2)); + const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4)); + const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4)); + + vl[0] = ql[0]; + vl[1] = ql[4]; + + vh[0] = qh[0] >> bq8_offset; + vh[1] = qh[4] >> bq8_offset; + + const uint16_t * scales = (const uint16_t *)bq5_K->scales; + uint16_t aux[2]; + const int j = bq8_offset/2; + if (j < 2) { + aux[0] = scales[j+0] & 0x3f3f; + aux[1] = scales[j+2] & 0x3f3f; + } else { + aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2); + aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2); + } + const uint8_t * sc = (const uint8_t *)aux; + const uint8_t * m = sc + 2; + +#pragma unroll + for (int i = 0; i < QR5_K; ++i) { + const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; + d8[i] = __low2float(bq8i->ds); + + const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); + u[2*i+0] = q8[0]; + u[2*i+1] = q8[4]; + } + + return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8); +} + +template static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { + __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y]; + __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K]; + __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8]; + + *x_ql = tile_x_ql; + *x_dm = tile_x_dm; + *x_sc = tile_x_sc; +} + +template static __device__ __forceinline__ void load_tiles_q5_K( + const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, + int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { + const int kbx = k / QI5_K; // == 0 if QK_K == 256 + const int kqsx = k % QI5_K; // == k if QK_K == 256 + + const block_q5_K * bx0 = (const block_q5_K *) vx; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { + int i = i0 + i_offset; + + if (need_check) { + i = min(i, i_max); + } + + const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx; + const int ky = QR5_K*kqsx; + + const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx); + const int ql0 = (ql >> 0) & 0x0F0F0F0F; + const int ql1 = (ql >> 4) & 0x0F0F0F0F; + + const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4)); + const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010; + const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010; + + const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0; + const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4); + + x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0; + x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1; + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256 + const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256 + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) { + int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y; + + if (need_check) { + i = min(i, i_max); + } + + const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd; + x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm; + } + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { + int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y; + + if (need_check) { + i = min(i, i_max); + } + + const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8); + + const int * scales = (const int *) bxi->scales; + + const int ksc = k % (WARP_SIZE/8); + + // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8 + int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits + scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits + + x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8; + } +} + +static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8); + + const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k; + const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE; + return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8, + x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]); +} + +static __device__ __forceinline__ float vec_dot_q6_K_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + + const block_q6_K * bq6_K = (const block_q6_K *) vbq; + + const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4); + const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8); + const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4)); + + const int vl = get_int_from_uint8(bq6_K->ql, iqs); + const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift; + + const int8_t * scales = bq6_K->scales + scale_offset; + + int u[QR6_K]; + float d8[QR6_K]; + +#pragma unroll + for (int i = 0; i < QR6_K; ++i) { + u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1); + d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds); + } + + return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, __half2float(bq6_K->d), d8); +} + +template static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { + __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y]; + __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K]; + __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8]; + + *x_ql = tile_x_ql; + *x_dm = tile_x_dm; + *x_sc = tile_x_sc; +} + +template static __device__ __forceinline__ void load_tiles_q6_K( + const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, + int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { + const int kbx = k / QI6_K; // == 0 if QK_K == 256 + const int kqsx = k % QI6_K; // == k if QK_K == 256 + + const block_q6_K * bx0 = (const block_q6_K *) vx; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { + int i = i0 + i_offset; + + if (need_check) { + i = min(i, i_max); + } + + const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx; + const int ky = QR6_K*kqsx; + + const int ql = get_int_from_uint8(bxi->ql, kqsx); + const int ql0 = (ql >> 0) & 0x0F0F0F0F; + const int ql1 = (ql >> 4) & 0x0F0F0F0F; + + const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4)); + const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030; + const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030; + + const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0; + const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2); + + x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020); + x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020); + } + + const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256 + const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256 + float * x_dmf = (float *) x_dm; + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) { + int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y; + + if (need_check) { + i = min(i, i_max); + } + + const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd; + + x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = __half2float(bxi->d); + } + +#pragma unroll + for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { + int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y; + + if (need_check) { + i = min(i, i_max); + } + + const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4; + + x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8)); + } +} + +static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat( + const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, + const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { + const float * x_dmf = (const float *) x_dm; + const float * y_df = (const float *) y_ds; + + const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]); + + const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k; + const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE; + return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]); +} + +static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq; + + const int ib32 = iqs; + const uint16_t * q2 = bq2->qs + 4*ib32; + const uint8_t * aux8 = (const uint8_t *)q2; + const int8_t * q8 = bq8_1[ib32].qs; + uint32_t aux32 = q2[2] | (q2[3] << 16); + int sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]); + const uint8_t signs = ksigns_iq2xs[aux32 & 127]; + for (int j = 0; j < 8; ++j) { + sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1); + } + q8 += 8; + aux32 >>= 7; + } + const float d = __half2float(bq2->d) * (0.5f + aux32) * __half2float(bq8_1[ib32].ds.x) * 0.25f; + return d * sumi; +} + +static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { + const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq; + + const int ib32 = iqs; + const uint16_t * q2 = bq2->qs + 4*ib32; + const int8_t * q8 = bq8_1[ib32].qs; + const uint8_t ls1 = bq2->scales[ib32] & 0xf; + const uint8_t ls2 = bq2->scales[ib32] >> 4; + int sumi1 = 0; + for (int l = 0; l < 2; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511)); + const uint8_t signs = ksigns_iq2xs[q2[l] >> 9]; + for (int j = 0; j < 8; ++j) { + sumi1 += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1); + } + q8 += 8; + } + int sumi2 = 0; + for (int l = 2; l < 4; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511)); + const uint8_t signs = ksigns_iq2xs[q2[l] >> 9]; + for (int j = 0; j < 8; ++j) { + sumi2 += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1); + } + q8 += 8; + } + const float d = __half2float(bq2->d) * __half2float(bq8_1[ib32].ds.x) * 0.25f; + return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2); +} + +static __device__ __forceinline__ float vec_dot_iq2_s_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + const block_iq2_s * bq2 = (const block_iq2_s *) vbq; + + const int ib32 = iqs; + const int8_t * q8 = bq8_1[ib32].qs; + const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32; + const uint8_t ls1 = bq2->scales[ib32] & 0xf; + const uint8_t ls2 = bq2->scales[ib32] >> 4; + int sumi1 = 0; + for (int l = 0; l < 2; ++l) { + const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300))); + const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); + const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); + const int grid_l = __vsub4(grid[0] ^ signs0, signs0); + const int grid_h = __vsub4(grid[1] ^ signs1, signs1); + sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1); + sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1); + q8 += 8; + } + int sumi2 = 0; + for (int l = 2; l < 4; ++l) { + const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300))); + const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); + const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); + const int grid_l = __vsub4(grid[0] ^ signs0, signs0); + const int grid_h = __vsub4(grid[1] ^ signs1, signs1); + sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2); + sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2); + q8 += 8; + } + const float d = __half2float(bq2->d) * __low2float(bq8_1[ib32].ds) * 0.25f; + return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2); +#endif +} + +static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq; + + const int ib32 = iqs; + const uint8_t * q3 = bq2->qs + 8*ib32; + const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32; + const int8_t * q8 = bq8_1[ib32].qs; + uint32_t aux32 = gas[0] | (gas[1] << 16); + int sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0]; + const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1]; + const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127)); + const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]); + const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]); + sumi = __dp4a(grid_l, *((int *)q8+0), sumi); + sumi = __dp4a(grid_h, *((int *)q8+1), sumi); + q8 += 8; + aux32 >>= 7; + } + const float d = __half2float(bq2->d) * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f; + return d * sumi; +#endif +} + +static __device__ __forceinline__ float vec_dot_iq3_s_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + const block_iq3_s * bq2 = (const block_iq3_s *) vbq; + + const int ib32 = iqs; + const uint8_t * qs = bq2->qs + 8*ib32; + const int8_t * q8 = bq8_1[ib32].qs; + int sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint32_t * grid1 = iq3xs_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256)); + const uint32_t * grid2 = iq3xs_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256)); + uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); + uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); + const int grid_l = __vsub4(grid1[0] ^ signs0, signs0); + const int grid_h = __vsub4(grid2[0] ^ signs1, signs1); + sumi = __dp4a(grid_l, *((int *)q8+0), sumi); + sumi = __dp4a(grid_h, *((int *)q8+1), sumi); + q8 += 8; + } + const float d = __half2float(bq2->d) * (0.5f + ((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds) * 0.5f; + return d * sumi; +#endif +} + +static __device__ __forceinline__ float vec_dot_iq1_s_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + const block_iq1_s * bq1 = (const block_iq1_s *) vbq; + + const int ib32 = iqs; + int sumi1 = 0, sumi2 = 0, sumi3 = 0, sumi4 = 0; + const uint8_t h1 = bq1->scales[2*ib32+0]; + const uint8_t h2 = bq1->scales[2*ib32+1]; + const int * q8 = (const int *)bq8_1[ib32].qs; + const int * grid1 = (const int *)(iq1s_grid + (bq1->qs[4*ib32+0] | ((h1 & 0x08) << 5))); + const int * grid2 = (const int *)(iq1s_grid + (bq1->qs[4*ib32+1] | ((h1 & 0x80) << 1))); + const int * grid3 = (const int *)(iq1s_grid + (bq1->qs[4*ib32+2] | ((h2 & 0x08) << 5))); + const int * grid4 = (const int *)(iq1s_grid + (bq1->qs[4*ib32+3] | ((h2 & 0x80) << 1))); + for (int j = 0; j < 2; ++j) { + sumi1 = __dp4a(q8[j+0], grid1[j], sumi1); + sumi2 = __dp4a(q8[j+2], grid2[j], sumi2); + sumi3 = __dp4a(q8[j+4], grid3[j], sumi3); + sumi4 = __dp4a(q8[j+6], grid4[j], sumi4); + } + const float d = __half2float(bq1->d) * __low2float(bq8_1[ib32].ds); + return d * (sumi1 * (2*(h1 & 7) + 1) + sumi2 * (2*((h1 >> 4) & 7) + 1) + + sumi3 * (2*(h2 & 7) + 1) + sumi4 * (2*((h2 >> 4) & 7) + 1)); +#endif +} + +static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values, + int & val1, int & val2) { + + uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32; + aux32 = q4 & 0x0f0f0f0f; + uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8); + uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8); + val1 = v1 | (v2 << 16); + aux32 = (q4 >> 4) & 0x0f0f0f0f; + v1 = values[q8[0]] | (values[q8[1]] << 8); + v2 = values[q8[2]] | (values[q8[3]] << 8); + val2 = v1 | (v2 << 16); +} + +static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + + const block_iq4_nl * bq = (const block_iq4_nl *) vbq; + + const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs; + const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs; + + const uint8_t * values = (const uint8_t *)kvalues_iq4nl; + + int v1, v2; + int sumi1 = 0, sumi2 = 0; + for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) { + const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16); + get_int_from_table_16(aux, values, v1, v2); + sumi1 = __dp4a(v1, q8[l+0], sumi1); + sumi2 = __dp4a(v2, q8[l+4], sumi2); + } + const float d = __half2float(bq->d) * __low2float(bq8_1->ds); + return d * (sumi1 + sumi2); +#endif +} + + +static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) { +#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 610 + const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq; + const uint8_t * values = (const uint8_t *)kvalues_iq4nl; + + // iqs is 0...7 + const int ib32 = iqs; + const int32_t * q8 = (const int *)bq8_1[ib32].qs; + const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32; + const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4); + const float d = __half2float(bq4->d) * (ls - 32) * __low2float(bq8_1[ib32].ds); + int v1, v2; + int sumi1 = 0, sumi2 = 0; + for (int j = 0; j < 4; ++j) { + get_int_from_table_16(q4[j], values, v1, v2); + sumi1 = __dp4a(v1, q8[j+0], sumi1); + sumi2 = __dp4a(v2, q8[j+4], sumi2); + } + return d * (sumi1 + sumi2); +#endif +} \ No newline at end of file diff --git a/csrc/torch_bindings.cpp b/csrc/torch_bindings.cpp index 7c0d617fc8b3b..b35fd471ed4fb 100644 --- a/csrc/torch_bindings.cpp +++ b/csrc/torch_bindings.cpp @@ -145,6 +145,18 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { ops.def("awq_marlin_repack", &awq_marlin_repack); ops.impl("awq_marlin_repack", torch::kCUDA, &awq_marlin_repack); + // Dequantization for GGML. + ops.def("ggml_dequantize", &ggml_dequantize); + ops.impl("ggml_dequantize", torch::kCUDA, &ggml_dequantize); + + // mmvq kernel for GGML. + ops.def("ggml_mul_mat_vec_a8", &ggml_mul_mat_vec_a8); + ops.impl("ggml_mul_mat_vec_a8", torch::kCUDA, &ggml_mul_mat_vec_a8); + + // mmq kernel for GGML. + ops.def("ggml_mul_mat_a8", &ggml_mul_mat_a8); + ops.impl("ggml_mul_mat_a8", torch::kCUDA, &ggml_mul_mat_a8); + // fp8_marlin Optimized Quantized GEMM for FP8 weight-only. ops.def("fp8_marlin_gemm", &fp8_marlin_gemm); ops.impl("fp8_marlin_gemm", torch::kCUDA, &fp8_marlin_gemm); diff --git a/examples/gguf_inference.py b/examples/gguf_inference.py new file mode 100644 index 0000000000000..09a5fcc22e553 --- /dev/null +++ b/examples/gguf_inference.py @@ -0,0 +1,38 @@ +from huggingface_hub import hf_hub_download + +from vllm import LLM, SamplingParams + + +def run_gguf_inference(model_path): + PROMPT_TEMPLATE = "<|system|>\n{system_message}\n<|user|>\n{prompt}\n<|assistant|>\n" # noqa: E501 + system_message = "You are a friendly chatbot who always responds in the style of a pirate." # noqa: E501 + # Sample prompts. + prompts = [ + "How many helicopters can a human eat in one sitting?", + "What's the future of AI?", + ] + prompts = [ + PROMPT_TEMPLATE.format(system_message=system_message, prompt=prompt) + for prompt in prompts + ] + # Create a sampling params object. + sampling_params = SamplingParams(temperature=0, max_tokens=128) + + # Create an LLM. + llm = LLM(model=model_path, + tokenizer="TinyLlama/TinyLlama-1.1B-Chat-v1.0", + gpu_memory_utilization=0.95) + + outputs = llm.generate(prompts, sampling_params) + # Print the outputs. + for output in outputs: + prompt = output.prompt + generated_text = output.outputs[0].text + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") + + +if __name__ == "__main__": + repo_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF" + filename = "tinyllama-1.1b-chat-v1.0.Q4_0.gguf" + model = hf_hub_download(repo_id, filename=filename) + run_gguf_inference(model) diff --git a/format.sh b/format.sh index baaebc811d405..a8fd95a1ea445 100755 --- a/format.sh +++ b/format.sh @@ -242,6 +242,11 @@ echo 'vLLM isort: Done' # NOTE: Keep up to date with .github/workflows/clang-format.yml CLANG_FORMAT_EXCLUDES=( 'csrc/moe/topk_softmax_kernels.cu' + 'csrc/quantization/gguf/ggml-common.h' + 'csrc/quantization/gguf/dequantize.cuh' + 'csrc/quantization/gguf/vecdotq.cuh' + 'csrc/quantization/gguf/mmq.cuh' + 'csrc/quantization/gguf/mmvq.cuh' ) # Format specified files with clang-format diff --git a/requirements-common.txt b/requirements-common.txt index 3b8d473c1fe7a..d8c95bf772405 100644 --- a/requirements-common.txt +++ b/requirements-common.txt @@ -22,3 +22,4 @@ outlines >= 0.0.43, < 0.1 # Requires torch >= 2.1.0 typing_extensions filelock >= 3.10.4 # filelock starts to support `mode` argument from 3.10.4 pyzmq +gguf == 0.9.1 diff --git a/tests/models/test_gguf.py b/tests/models/test_gguf.py new file mode 100644 index 0000000000000..5971179f01211 --- /dev/null +++ b/tests/models/test_gguf.py @@ -0,0 +1,76 @@ +""" +Tests gguf models against unquantized models generations +Note: To pass the test, quantization higher than Q4 should be used +""" + +import os + +import pytest +from huggingface_hub import hf_hub_download + +from tests.quantization.utils import is_quant_method_supported + +from .utils import check_logprobs_close + +os.environ["TOKENIZERS_PARALLELISM"] = "true" + +MAX_MODEL_LEN = 1024 + +# FIXME: Move this to confest +MODELS = [ + ("TinyLlama/TinyLlama-1.1B-Chat-v1.0", + hf_hub_download("TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF", + filename="tinyllama-1.1b-chat-v1.0.Q4_0.gguf")), + ("TinyLlama/TinyLlama-1.1B-Chat-v1.0", + hf_hub_download("duyntnet/TinyLlama-1.1B-Chat-v1.0-imatrix-GGUF", + filename="TinyLlama-1.1B-Chat-v1.0-IQ4_XS.gguf")), + ("Qwen/Qwen2-1.5B-Instruct", + hf_hub_download("Qwen/Qwen2-1.5B-Instruct-GGUF", + filename="qwen2-1_5b-instruct-q4_k_m.gguf")), + ("Qwen/Qwen2-1.5B-Instruct", + hf_hub_download("legraphista/Qwen2-1.5B-Instruct-IMat-GGUF", + filename="Qwen2-1.5B-Instruct.IQ4_XS.gguf")), +] + + +@pytest.mark.skipif(not is_quant_method_supported("gguf"), + reason="gguf is not supported on this GPU type.") +@pytest.mark.parametrize("model", MODELS) +@pytest.mark.parametrize("dtype", ["half"]) +@pytest.mark.parametrize("max_tokens", [32]) +@pytest.mark.parametrize("num_logprobs", [5]) +def test_models( + vllm_runner, + example_prompts, + model, + dtype: str, + max_tokens: int, + num_logprobs: int, +) -> None: + original_model, gguf_model = model + + # Run unquantized model. + with vllm_runner(model_name=original_model, + dtype=dtype, + max_model_len=MAX_MODEL_LEN, + enforce_eager=True, + tensor_parallel_size=1) as original_model: + + original_outputs = original_model.generate_greedy_logprobs( + example_prompts[:-1], max_tokens, num_logprobs) + + # Run gguf model. + with vllm_runner(model_name=gguf_model, + dtype=dtype, + max_model_len=MAX_MODEL_LEN, + enforce_eager=True, + tensor_parallel_size=1) as gguf_model: + gguf_outputs = gguf_model.generate_greedy_logprobs( + example_prompts[:-1], max_tokens, num_logprobs) + + check_logprobs_close( + outputs_0_lst=original_outputs, + outputs_1_lst=gguf_outputs, + name_0="original", + name_1="gguf", + ) diff --git a/tests/quantization/test_lm_head.py b/tests/quantization/test_lm_head.py index dd9a016807df9..ad526a4065101 100644 --- a/tests/quantization/test_lm_head.py +++ b/tests/quantization/test_lm_head.py @@ -7,11 +7,12 @@ import pytest import torch -from vllm.model_executor.layers.linear import UnquantizedLinearMethod from vllm.model_executor.layers.quantization.gptq import GPTQLinearMethod from vllm.model_executor.layers.quantization.gptq_marlin import ( GPTQMarlinLinearMethod) from vllm.model_executor.layers.quantization.marlin import MarlinLinearMethod +from vllm.model_executor.layers.vocab_parallel_embedding import ( + UnquantizedEmbeddingMethod) PROMPT = "On the surface of Mars, we found" @@ -37,7 +38,8 @@ def test_lm_head( lm_head_layer.linear_method, (GPTQLinearMethod, GPTQMarlinLinearMethod, MarlinLinearMethod)) else: - assert isinstance(lm_head_layer.linear_method, UnquantizedLinearMethod) + assert isinstance(lm_head_layer.linear_method, + UnquantizedEmbeddingMethod) print( vllm_model.generate_greedy(prompts=["Hello my name is"], diff --git a/vllm/_custom_ops.py b/vllm/_custom_ops.py index ad7e5bd199339..e3e2c5536a2b2 100644 --- a/vllm/_custom_ops.py +++ b/vllm/_custom_ops.py @@ -404,6 +404,38 @@ def marlin_qqq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor, workspace, size_m, size_n, size_k) +# gguf +def ggml_dequantize(W: torch.Tensor, quant_type: int, m: int, n: int): + return torch.ops._C.ggml_dequantize(W, quant_type, m, n) + + +def ggml_mul_mat_vec( + W: torch.Tensor, + X: torch.Tensor, + quant_type: int, + row: int, +): + return torch.ops._C.ggml_mul_mat_vec(W, X, quant_type, row) + + +def ggml_mul_mat_vec_a8( + W: torch.Tensor, + X: torch.Tensor, + quant_type: int, + row: int, +): + return torch.ops._C.ggml_mul_mat_vec_a8(W, X, quant_type, row) + + +def ggml_mul_mat_a8( + W: torch.Tensor, + X: torch.Tensor, + quant_type: int, + row: int, +): + return torch.ops._C.ggml_mul_mat_a8(W, X, quant_type, row) + + # moe def moe_align_block_size(topk_ids: torch.Tensor, num_experts: int, block_size: int, sorted_token_ids: torch.Tensor, diff --git a/vllm/config.py b/vllm/config.py index bec0b63197ef4..4b968f549d902 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -582,6 +582,7 @@ class LoadFormat(str, enum.Enum): DUMMY = "dummy" TENSORIZER = "tensorizer" SHARDED_STATE = "sharded_state" + GGUF = "gguf" BITSANDBYTES = "bitsandbytes" diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index acc0551af0154..935a509cdb7ce 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -672,6 +672,9 @@ def from_cli_args(cls, args: argparse.Namespace): return engine_args def create_engine_config(self, ) -> EngineConfig: + # gguf file needs a specific model loader and doesn't use hf_repo + if self.model.endswith(".gguf"): + self.quantization = self.load_format = "gguf" # bitsandbytes quantization needs a specific model loader # so we make sure the quant method and the load format are consistent diff --git a/vllm/model_executor/layers/linear.py b/vllm/model_executor/layers/linear.py index b6e280ae65049..cd53c2b916211 100644 --- a/vllm/model_executor/layers/linear.py +++ b/vllm/model_executor/layers/linear.py @@ -3,7 +3,7 @@ import torch import torch.nn.functional as F -from torch.nn.parameter import Parameter +from torch.nn.parameter import Parameter, UninitializedParameter from vllm.distributed import (divide, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, @@ -311,6 +311,17 @@ def __init__(self, def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor): tp_rank = get_tensor_model_parallel_rank() output_dim = getattr(param, "output_dim", None) + + # Special case for GGUF + is_gguf_weight = getattr(param, "is_gguf_weight", False) + is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False) + if is_gguf_weight_type: + param.weight_type = loaded_weight.item() + + # Materialize GGUF UninitializedParameter + if is_gguf_weight and isinstance(param, UninitializedParameter): + param.materialize(loaded_weight.shape, dtype=loaded_weight.dtype) + param_data = param.data if output_dim is not None: shard_size = param_data.shape[output_dim] @@ -398,6 +409,27 @@ def weight_loader(self, loaded_weight: torch.Tensor, loaded_shard_id: Optional[int] = None): + # Special case for GGUF + # initialize GGUF param after we know the quantize type + is_gguf_weight = getattr(param, "is_gguf_weight", False) + is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False) + if is_gguf_weight_type: + param.data[loaded_shard_id].copy_(loaded_weight) + param.shard_weight_type[loaded_shard_id] = loaded_weight.item() + return + + if is_gguf_weight and isinstance(param, UninitializedParameter): + from gguf.constants import GGML_QUANT_SIZES + + ori_shape = param.tensor_shape + weight_types = self.qweight_type.shard_weight_type.values() + row_size = [] + for weight_type in weight_types: + block_size, type_size = GGML_QUANT_SIZES[weight_type] + row_size.append(ori_shape[1] // block_size * type_size) + q_shape = (ori_shape[0], max(row_size)) + param.materialize(q_shape, dtype=loaded_weight.dtype) + param_data = param.data output_dim = getattr(param, "output_dim", None) # Special case for AQLM codebooks. @@ -460,6 +492,13 @@ def weight_loader(self, shard_offset = loaded_weight.shape[output_dim] * \ loaded_shard_id + if is_gguf_weight: + shard_size = loaded_weight.shape[output_dim] + shard_offset = loaded_weight.shape[output_dim] * \ + loaded_shard_id + param.shard_id.append(loaded_shard_id) + param.shard_size[loaded_shard_id] = loaded_weight.shape + param_data = param_data.narrow(output_dim, shard_offset, shard_size) start_idx = tp_rank * shard_size @@ -563,6 +602,29 @@ def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor, loaded_shard_id: Optional[str] = None): + + # Special case for GGUF + # initialize GGUF param after we know the quantize type + is_gguf_weight = getattr(param, "is_gguf_weight", False) + is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False) + if is_gguf_weight_type and loaded_shard_id is not None: + idx_map = {"q": 0, "k": 1, "v": 2} + param.data[idx_map[loaded_shard_id]].copy_(loaded_weight) + param.shard_weight_type[loaded_shard_id] = loaded_weight.item() + return + + if is_gguf_weight and isinstance(param, UninitializedParameter): + from gguf.constants import GGML_QUANT_SIZES + + ori_shape = param.tensor_shape + weight_types = self.qweight_type.shard_weight_type.values() + row_size = [] + for weight_type in weight_types: + block_size, type_size = GGML_QUANT_SIZES[weight_type] + row_size.append(ori_shape[1] // block_size * type_size) + q_shape = (ori_shape[0], max(row_size)) + param.materialize(q_shape, dtype=loaded_weight.dtype) + param_data = param.data output_dim = getattr(param, "output_dim", None) # Special case for AQLM codebooks. @@ -650,6 +712,13 @@ def weight_loader(self, shard_size, shard_offset = adjust_bitsandbytes_shard( param, orig_qkv_offsets, loaded_shard_id) + if is_gguf_weight: + param.shard_id.append(loaded_shard_id) + param.shard_size[loaded_shard_id] = loaded_weight.shape + input_dim = getattr(param, "input_dim", None) + input_size = loaded_weight.shape[input_dim] + param_data = param_data.narrow(input_dim, 0, input_size) + param_data = param_data.narrow(output_dim, shard_offset, shard_size) if loaded_shard_id == "q": @@ -755,6 +824,17 @@ def __init__(self, def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor): tp_rank = get_tensor_model_parallel_rank() input_dim = getattr(param, "input_dim", None) + + # Special case for GGUF + is_gguf_weight = getattr(param, "is_gguf_weight", False) + is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False) + if is_gguf_weight_type: + param.weight_type = loaded_weight.item() + + # Materialize GGUF UninitializedParameter + if is_gguf_weight and isinstance(param, UninitializedParameter): + param.materialize(loaded_weight.shape, dtype=loaded_weight.dtype) + param_data = param.data if input_dim is not None: shard_size = param_data.shape[input_dim] diff --git a/vllm/model_executor/layers/quantization/__init__.py b/vllm/model_executor/layers/quantization/__init__.py index 13da6376ec295..db2a245561699 100644 --- a/vllm/model_executor/layers/quantization/__init__.py +++ b/vllm/model_executor/layers/quantization/__init__.py @@ -13,6 +13,7 @@ DeepSpeedFPConfig) from vllm.model_executor.layers.quantization.fbgemm_fp8 import FBGEMMFp8Config from vllm.model_executor.layers.quantization.fp8 import Fp8Config +from vllm.model_executor.layers.quantization.gguf import GGUFConfig from vllm.model_executor.layers.quantization.gptq import GPTQConfig from vllm.model_executor.layers.quantization.gptq_marlin import ( GPTQMarlinConfig) @@ -31,6 +32,7 @@ # The order of gptq methods is important for config.py iteration over # override_quantization_method(..) "marlin": MarlinConfig, + "gguf": GGUFConfig, "gptq_marlin_24": GPTQMarlin24Config, "gptq_marlin": GPTQMarlinConfig, "awq_marlin": AWQMarlinConfig, diff --git a/vllm/model_executor/layers/quantization/base_config.py b/vllm/model_executor/layers/quantization/base_config.py index f5ff27b9f14b7..75fa8249cd3c2 100644 --- a/vllm/model_executor/layers/quantization/base_config.py +++ b/vllm/model_executor/layers/quantization/base_config.py @@ -1,5 +1,6 @@ +import inspect from abc import ABC, abstractmethod -from typing import Any, Dict, List, Optional +from typing import Any, Dict, List, Optional, Type import torch from torch import nn @@ -23,6 +24,14 @@ def apply(self, layer: torch.nn.Module, *args, **kwargs) -> torch.Tensor: Expects create_weights to have been called before on the layer.""" raise NotImplementedError + # Not required functions + def embedding(self, layer: torch.nn.Module, *args, + **kwargs) -> torch.Tensor: + """Gather embeddings in the layer based on indices in the input tensor. + + Expects create_weights to have been called before on the layer.""" + raise NotImplementedError + def process_weights_after_loading(self, layer: nn.Module) -> None: """Process the weight after loading. @@ -31,6 +40,21 @@ def process_weights_after_loading(self, layer: nn.Module) -> None: return +def method_has_implemented_embedding( + method_class: Type[QuantizeMethodBase]) -> bool: + """ + Not all quant methods have embedding implemented, so we need to check that + it exists for our given method. We check this by making sure the function + has been changed from the base implementation. + """ + base_embedding = inspect.getattr_static(QuantizeMethodBase, "embedding", + None) + class_embedding = inspect.getattr_static(method_class, "embedding", None) + + return (class_embedding is not None + and class_embedding is not base_embedding) + + class QuantizationConfig(ABC): """Base class for quantization configs.""" diff --git a/vllm/model_executor/layers/quantization/gguf.py b/vllm/model_executor/layers/quantization/gguf.py new file mode 100644 index 0000000000000..a4e0a4d509608 --- /dev/null +++ b/vllm/model_executor/layers/quantization/gguf.py @@ -0,0 +1,165 @@ +from typing import Any, Dict, List, Optional + +import gguf +import torch +from torch.nn.parameter import Parameter, UninitializedParameter + +from vllm import _custom_ops as ops +from vllm.distributed import get_tensor_model_parallel_world_size +from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase +from vllm.model_executor.layers.quantization.base_config import ( + QuantizationConfig, QuantizeMethodBase) +from vllm.model_executor.layers.vocab_parallel_embedding import ( + VocabParallelEmbedding) +from vllm.model_executor.utils import set_weight_attrs + + +class GGUFConfig(QuantizationConfig): + """Config class for GGUF.""" + + def __init__(self, ) -> None: + pass + + def __repr__(self) -> str: + return ("GGUFConfig()") + + def get_name(self) -> str: + return "gguf" + + def get_supported_act_dtypes(self) -> List[torch.dtype]: + return [torch.half, torch.bfloat16] + + @classmethod + def get_min_capability(cls) -> int: + return 60 + + @classmethod + def get_config_filenames(cls) -> List[str]: + return [] # no extra configs. + + @classmethod + def from_config(cls, config: Dict[str, Any]) -> "GGUFConfig": + if get_tensor_model_parallel_world_size() > 1: + raise ValueError( + "GGUF quantization hasn't supported tensor parallelism yet.") + return cls() + + def get_quant_method(self, layer: torch.nn.Module, + prefix: str) -> Optional["QuantizeMethodBase"]: + if isinstance(layer, LinearBase): + return GGUFLinearMethod(self) + elif isinstance(layer, VocabParallelEmbedding): + return GGUFEmbeddingMethod(self) + return None + + def get_scaled_act_names(self) -> List[str]: + return [] + + +def _fuse_mul_mat(x: torch.Tensor, qweight: torch.Tensor, + qweight_type: int) -> torch.Tensor: + # use dequantize mulmat for IQmatrix, mmq for k-quants + if qweight_type >= 16: + block_size, type_size = gguf.GGML_QUANT_SIZES[qweight_type] + shape = (qweight.shape[0], qweight.shape[1] // type_size * block_size) + weight = ops.ggml_dequantize(qweight, qweight_type, *shape) + y = x @ weight.T + else: + y = ops.ggml_mul_mat_a8(qweight, x, qweight_type, qweight.shape[0]) + return y + + +class GGUFLinearMethod(LinearMethodBase): + """Linear method for GGUF. + + Args: + quant_config: The GGUF quantization config. + """ + + def __init__(self, quant_config: GGUFConfig): + self.quant_config = quant_config + + def create_weights(self, layer: torch.nn.Module, + input_size_per_partition: int, + output_partition_sizes: List[int], input_size: int, + output_size: int, params_dtype: torch.dtype, + **extra_weight_attrs): + output_size_per_partition = sum(output_partition_sizes) + + tensor_shape = (output_size_per_partition, input_size_per_partition) + qweight = UninitializedParameter(requires_grad=False) + set_weight_attrs( + qweight, { + "input_dim": 1, + "output_dim": 0, + "tensor_shape": tensor_shape, + "is_gguf_weight": True, + "shard_size": {}, + "shard_id": [], + }) + set_weight_attrs(qweight, extra_weight_attrs) + layer.register_parameter("qweight", qweight) + + qweight_type = Parameter(torch.empty(len(output_partition_sizes), + dtype=torch.uint8), + requires_grad=False) + set_weight_attrs( + qweight_type, { + "is_gguf_weight_type": True, + "weight_type": 0, + "shard_weight_type": {}, + "ignore_warning": True + }) + set_weight_attrs(qweight_type, extra_weight_attrs) + layer.register_parameter("qweight_type", qweight_type) + + def apply(self, + layer: torch.nn.Module, + x: torch.Tensor, + bias: Optional[torch.Tensor] = None) -> torch.Tensor: + shard_size = getattr(layer.qweight, "shard_size", None) + shard_id = getattr(layer.qweight, "shard_id", None) + + if shard_id and shard_size: + result = [] + offset = 0 + # dequantize shard weights respectively + shard_id = ["q", "k", "v"] if "q" in shard_id else shard_id + for id in shard_id: + shard_weight = layer.qweight[ + offset:offset + + shard_size[id][0], :shard_size[id][1]].contiguous() + qweight_type = layer.qweight_type.shard_weight_type[id] + result.append(_fuse_mul_mat(x, shard_weight, qweight_type)) + offset += shard_size[id][0] + out = torch.cat(result, axis=1) + else: + qweight = layer.qweight + qweight_type = layer.qweight_type.weight_type + out = _fuse_mul_mat(x, qweight, qweight_type) + if bias is not None: + out.add_(bias) + return out + + +class GGUFEmbeddingMethod(GGUFLinearMethod): + """Embedding method for GGUF. + + Args: + quant_config: The GGUF quantization config. + """ + + def embedding(self, layer: torch.nn.Module, + x: torch.Tensor) -> torch.Tensor: + qweight = layer.qweight + qweight_type = layer.qweight_type.weight_type + + block_size, type_size = gguf.GGML_QUANT_SIZES[qweight_type] + hidden_size = qweight.shape[1] // type_size * block_size + if qweight_type < 2: + return torch.embedding(qweight, x) + x_flat = x.flatten() + quant = torch.index_select(qweight, dim=0, index=x_flat) + dequant = ops.ggml_dequantize(quant, qweight_type, hidden_size, + x_flat.shape[0]) + return dequant.view(*x.shape, hidden_size) diff --git a/vllm/model_executor/layers/vocab_parallel_embedding.py b/vllm/model_executor/layers/vocab_parallel_embedding.py index 74aeb964274b0..3ba15573c217b 100644 --- a/vllm/model_executor/layers/vocab_parallel_embedding.py +++ b/vllm/model_executor/layers/vocab_parallel_embedding.py @@ -3,19 +3,46 @@ import torch import torch.nn.functional as F -from torch.nn.parameter import Parameter +from torch.nn.parameter import Parameter, UninitializedParameter from vllm.distributed import (divide, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, tensor_model_parallel_all_reduce) -from vllm.model_executor.layers.linear import UnquantizedLinearMethod from vllm.model_executor.layers.quantization.base_config import ( - QuantizationConfig, QuantizeMethodBase) + QuantizationConfig, QuantizeMethodBase, method_has_implemented_embedding) from vllm.model_executor.utils import set_weight_attrs DEFAULT_VOCAB_PADDING_SIZE = 64 +class UnquantizedEmbeddingMethod(QuantizeMethodBase): + """Unquantized method for embeddings.""" + + def create_weights(self, layer: torch.nn.Module, + input_size_per_partition: int, + output_partition_sizes: List[int], input_size: int, + output_size: int, params_dtype: torch.dtype, + **extra_weight_attrs): + """Create weights for embedding layer.""" + weight = Parameter(torch.empty(sum(output_partition_sizes), + input_size_per_partition, + dtype=params_dtype), + requires_grad=False) + set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0}) + layer.register_parameter("weight", weight) + set_weight_attrs(weight, extra_weight_attrs) + + def apply(self, + layer: torch.nn.Module, + x: torch.Tensor, + bias: Optional[torch.Tensor] = None) -> torch.Tensor: + return F.linear(x, layer.weight, bias) + + def embedding(self, layer: torch.nn.Module, + input_: torch.Tensor) -> torch.Tensor: + return F.embedding(input_, layer.weight) + + def pad_vocab_size(vocab_size: int, pad_to: int = DEFAULT_VOCAB_PADDING_SIZE) -> int: """Pad the vocab size to the given value.""" @@ -199,7 +226,19 @@ def __init__(self, if quant_config is not None: linear_method = quant_config.get_quant_method(self, prefix=prefix) if linear_method is None: - linear_method = UnquantizedLinearMethod() + linear_method = UnquantizedEmbeddingMethod() + + # If we are making an embedding layer, then our quantization linear + # method must implement the embedding operation. If we are another + # layer type like ParallelLMHead, this is not important. + is_embedding_layer = type(self.__class__) is VocabParallelEmbedding + linear_method_implements_embedding = method_has_implemented_embedding( + type(linear_method)) + if is_embedding_layer and not linear_method_implements_embedding: + raise NotImplementedError( + f"The class {type(linear_method).__name__} must implement " + "the 'embedding' method, see UnquantizedEmbeddingMethod.") + self.linear_method: QuantizeMethodBase = linear_method if params_dtype is None: @@ -306,6 +345,14 @@ def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor): output_dim = getattr(param, "output_dim", None) packed_dim = getattr(param, "packed_dim", None) + # If the parameter is a gguf weight, then load it directly. + if getattr(param, "is_gguf_weight_type", None): + param.data.copy_(loaded_weight) + param.weight_type = loaded_weight.item() + return + elif isinstance(param, UninitializedParameter): + param.materialize(loaded_weight.shape, dtype=loaded_weight.dtype) + # If parameter does not have output dim, then it should # be copied onto all gpus (e.g. g_idx for act_order gptq). if output_dim is None: @@ -344,7 +391,8 @@ def forward(self, input_): else: masked_input = input_ # Get the embeddings. - output_parallel = F.embedding(masked_input.long(), self.weight) + output_parallel = self.linear_method.embedding(self, + masked_input.long()) # Mask the output embedding. if self.tp_size > 1: output_parallel.masked_fill_(input_mask.unsqueeze(-1), 0) @@ -389,6 +437,7 @@ def __init__(self, super().__init__(num_embeddings, embedding_dim, params_dtype, org_num_embeddings, padding_size, quant_config, prefix) + if bias: self.bias = Parameter( torch.empty(self.num_embeddings_per_partition, diff --git a/vllm/model_executor/model_loader/loader.py b/vllm/model_executor/model_loader/loader.py index f72515e014829..a5c5cb87bc460 100644 --- a/vllm/model_executor/model_loader/loader.py +++ b/vllm/model_executor/model_loader/loader.py @@ -10,11 +10,13 @@ from contextlib import contextmanager from typing import Any, Dict, Generator, List, Optional, Tuple, Type +import gguf import huggingface_hub import numpy as np import torch from huggingface_hub import HfApi, hf_hub_download from torch import nn +from transformers import AutoModelForCausalLM from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoadFormat, LoRAConfig, ModelConfig, MultiModalConfig, @@ -31,8 +33,9 @@ from vllm.model_executor.model_loader.weight_utils import ( download_safetensors_index_file_from_hf, download_weights_from_hf, filter_duplicate_safetensors_files, filter_files_not_needed_for_inference, - get_quant_config, initialize_dummy_weights, np_cache_weights_iterator, - pt_weights_iterator, safetensors_weights_iterator) + get_gguf_extra_tensor_names, get_quant_config, gguf_quant_weights_iterator, + initialize_dummy_weights, np_cache_weights_iterator, pt_weights_iterator, + safetensors_weights_iterator) from vllm.model_executor.models.interfaces import (has_inner_state, supports_lora, supports_vision) @@ -948,6 +951,90 @@ def load_model(self, *, model_config: ModelConfig, return model.eval() +class GGUFModelLoader(BaseModelLoader): + """ + Model loader that can load GGUF files. This is useful for loading models + that are quantized with GGUF and saved in the GGUF format. This loader + supports loading both full models and sharded models. + """ + + def __init__(self, load_config: LoadConfig): + super().__init__(load_config) + if load_config.model_loader_extra_config: + raise ValueError(f"Model loader extra config is not supported for " + f"load format {load_config.load_format}") + + def _prepare_weights(self, model_name_or_path: str): + if os.path.isfile(model_name_or_path): + return model_name_or_path + else: + raise ValueError(f"{model_name_or_path} is not a file.") + + def _get_gguf_weights_map(self, model_config: ModelConfig): + """ + GGUF uses this naming convention for their tensors from HF checkpoint: + `blk.N.BB.weight` and `blk.N.BB.bias` + where N signifies the block number of a layer, and BB signifies the + attention/mlp layer components. + See "Standardized tensor names" in + https://github.com/ggerganov/ggml/blob/master/docs/gguf.md for details. + """ + config = model_config.hf_config + model_type = config.model_type + # hack: ggufs have a different name than transformers + if model_type == "cohere": + model_type = "command-r" + arch = None + for key, value in gguf.MODEL_ARCH_NAMES.items(): + if value == model_type: + arch = key + break + if arch is None: + raise RuntimeError(f"Unknown gguf model_type: {model_type}") + num_layers = config.num_hidden_layers + name_map = gguf.get_tensor_name_map(arch, num_layers) + with torch.device("meta"): + dummy_model = AutoModelForCausalLM.from_config(config) + state_dict = dummy_model.state_dict() + + gguf_to_hf_name_map = {} + for hf_name in state_dict: + name, suffix = hf_name.rsplit(".", 1) + gguf_name = name_map.get_name(name) + gguf_to_hf_name_map[f"{gguf_name}.{suffix}"] = hf_name + return gguf_to_hf_name_map + + def _get_weights_iterator( + self, model_name_or_path: str, gguf_to_hf_name_map: Dict[str, str] + ) -> Generator[Tuple[str, torch.Tensor], None, None]: + return gguf_quant_weights_iterator(model_name_or_path, + gguf_to_hf_name_map) + + def load_model(self, *, model_config: ModelConfig, + device_config: DeviceConfig, + lora_config: Optional[LoRAConfig], + multimodal_config: Optional[MultiModalConfig], + parallel_config: ParallelConfig, + scheduler_config: SchedulerConfig, + cache_config: CacheConfig) -> nn.Module: + + local_model_path = self._prepare_weights(model_config.model) + gguf_weights_map = self._get_gguf_weights_map(model_config) + # we can only know if tie word embeddings after mapping weights + if "lm_head.weight" in get_gguf_extra_tensor_names( + local_model_path, gguf_weights_map): + model_config.hf_config.update({"tie_word_embeddings": True}) + + with set_default_torch_dtype(model_config.dtype): + with torch.device(device_config.device): + model = _initialize_model(model_config, self.load_config, + lora_config, multimodal_config, + cache_config) + model.load_weights( + self._get_weights_iterator(local_model_path, gguf_weights_map)) + return model + + def get_model_loader(load_config: LoadConfig) -> BaseModelLoader: """Get a model loader based on the load format.""" @@ -966,4 +1053,7 @@ def get_model_loader(load_config: LoadConfig) -> BaseModelLoader: if load_config.load_format == LoadFormat.BITSANDBYTES: return BitsAndBytesModelLoader(load_config) + if load_config.load_format == LoadFormat.GGUF: + return GGUFModelLoader(load_config) + return DefaultModelLoader(load_config) diff --git a/vllm/model_executor/model_loader/weight_utils.py b/vllm/model_executor/model_loader/weight_utils.py index 5e142e8cb8b8a..250561654b14d 100644 --- a/vllm/model_executor/model_loader/weight_utils.py +++ b/vllm/model_executor/model_loader/weight_utils.py @@ -6,9 +6,10 @@ import os import tempfile from collections import defaultdict -from typing import Any, Generator, Iterable, List, Optional, Tuple, Union +from typing import Any, Dict, Generator, Iterable, List, Optional, Tuple, Union import filelock +import gguf import huggingface_hub.constants import numpy as np import torch @@ -121,6 +122,11 @@ def get_quant_config(model_config: ModelConfig, load_config: LoadConfig) -> QuantizationConfig: quant_cls = get_quantization_config(model_config.quantization) + + # GGUF doesn't have config file + if model_config.quantization == "gguf": + return quant_cls.from_config({}) + # Read the quantization config from the HF model config, if available. hf_quant_config = getattr(model_config.hf_config, "quantization_config", None) @@ -409,6 +415,45 @@ def pt_weights_iterator( torch.cuda.empty_cache() +def get_gguf_extra_tensor_names( + gguf_file: str, gguf_to_hf_name_map: Dict[str, str]) -> List[str]: + reader = gguf.GGUFReader(gguf_file) + expected_gguf_keys = set(gguf_to_hf_name_map.keys()) + exact_gguf_keys = set([tensor.name for tensor in reader.tensors]) + extra_keys = expected_gguf_keys - exact_gguf_keys + return [gguf_to_hf_name_map[key] for key in extra_keys] + + +def gguf_quant_weights_iterator( + gguf_file: str, gguf_to_hf_name_map: Dict[str, str] +) -> Generator[Tuple[str, torch.Tensor], None, None]: + """ + Iterate over the quant weights in the model gguf files and convert + them to torch tensors + """ + + reader = gguf.GGUFReader(gguf_file) + + for tensor in reader.tensors: + weight_type = tensor.tensor_type + name = gguf_to_hf_name_map[tensor.name] + + if weight_type.name != "F32": + weight_type_name = name.replace("weight", "qweight_type") + weight_type = torch.tensor(weight_type) + yield weight_type_name, weight_type + + for tensor in reader.tensors: + weight = tensor.data + weight_type = tensor.tensor_type + name = gguf_to_hf_name_map[tensor.name] + + if weight_type.name != "F32": + name = name.replace("weight", "qweight") + param = torch.tensor(weight) + yield name, param + + def kv_cache_scales_loader( filename: str, tp_rank: int, tp_size: int, num_hidden_layers: int, model_type: Optional[str]) -> Iterable[Tuple[int, float]]: diff --git a/vllm/model_executor/models/llama.py b/vllm/model_executor/models/llama.py index 048c292c79c83..023ae2a18d41c 100644 --- a/vllm/model_executor/models/llama.py +++ b/vllm/model_executor/models/llama.py @@ -140,6 +140,7 @@ def __init__( quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) + self.o_proj = RowParallelLinear( input_size=self.total_num_heads * self.head_dim, output_size=hidden_size, @@ -148,12 +149,17 @@ def __init__( prefix=f"{prefix}.o_proj", ) + is_neox_style = True + if quant_config is not None and quant_config.get_name() == "gguf": + is_neox_style = False + self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, + is_neox_style=is_neox_style, ) self.attn = Attention(self.num_heads, self.head_dim, @@ -279,6 +285,7 @@ def __init__( self.vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, + quant_config=quant_config, ) else: self.embed_tokens = PPMissingLayer() diff --git a/vllm/model_executor/models/qwen2.py b/vllm/model_executor/models/qwen2.py index 99fdd993943be..a66a1eee7c160 100644 --- a/vllm/model_executor/models/qwen2.py +++ b/vllm/model_executor/models/qwen2.py @@ -238,6 +238,7 @@ def __init__( self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, + quant_config=quant_config, ) self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, diff --git a/vllm/transformers_utils/config.py b/vllm/transformers_utils/config.py index 3d13631b9b2b6..5f04b39ef524e 100644 --- a/vllm/transformers_utils/config.py +++ b/vllm/transformers_utils/config.py @@ -1,7 +1,10 @@ import contextlib -from typing import Dict, Optional, Type +from pathlib import Path +from typing import Dict, Optional, Type, Union from transformers import GenerationConfig, PretrainedConfig +from transformers.models.auto.modeling_auto import ( + MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) from vllm.envs import VLLM_USE_MODELSCOPE from vllm.logger import init_logger @@ -36,18 +39,29 @@ AutoConfig.register(name, cls) -def get_config(model: str, - trust_remote_code: bool, - revision: Optional[str] = None, - code_revision: Optional[str] = None, - rope_scaling: Optional[dict] = None, - rope_theta: Optional[float] = None) -> PretrainedConfig: +def get_config( + model: Union[str, Path], + trust_remote_code: bool, + revision: Optional[str] = None, + code_revision: Optional[str] = None, + rope_scaling: Optional[dict] = None, + rope_theta: Optional[float] = None, + **kwargs, +) -> PretrainedConfig: + + # Separate model folder from file path for GGUF models + is_gguf = Path(model).is_file() and Path(model).suffix == ".gguf" + if is_gguf: + kwargs["gguf_file"] = Path(model).name + model = Path(model).parent + try: config = AutoConfig.from_pretrained( model, trust_remote_code=trust_remote_code, revision=revision, - code_revision=code_revision) + code_revision=code_revision, + **kwargs) except ValueError as e: if (not trust_remote_code and "requires you to execute the configuration file" in str(e)): @@ -64,12 +78,22 @@ def get_config(model: str, config = config_class.from_pretrained(model, revision=revision, code_revision=code_revision) + + # Special architecture mapping check for GGUF models + if is_gguf: + if config.model_type not in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES: + raise RuntimeError( + f"Can't get gguf config for {config.model_type}.") + model_type = MODEL_FOR_CAUSAL_LM_MAPPING_NAMES[config.model_type] + config.update({"architectures": [model_type]}) + for key, value in [("rope_scaling", rope_scaling), ("rope_theta", rope_theta)]: if value is not None: logger.info("Updating %s from %r to %r", key, getattr(config, key, None), value) config.update({key: value}) + return config diff --git a/vllm/transformers_utils/tokenizer.py b/vllm/transformers_utils/tokenizer.py index c515f46ecc299..bf26d889d1388 100644 --- a/vllm/transformers_utils/tokenizer.py +++ b/vllm/transformers_utils/tokenizer.py @@ -1,4 +1,5 @@ import os +from pathlib import Path from typing import Optional, Union import huggingface_hub @@ -55,7 +56,7 @@ def __len__(self): def get_tokenizer( - tokenizer_name: str, + tokenizer_name: Union[str, Path], *args, tokenizer_mode: str = "auto", trust_remote_code: bool = False, @@ -91,6 +92,13 @@ def get_tokenizer( if "truncation_side" not in kwargs: kwargs["truncation_side"] = "left" + # Separate model folder from file path for GGUF models + is_gguf = Path(tokenizer_name).is_file() and Path( + tokenizer_name).suffix == ".gguf" + if is_gguf: + kwargs["gguf_file"] = Path(tokenizer_name).name + tokenizer_name = Path(tokenizer_name).parent + try: tokenizer = AutoTokenizer.from_pretrained( tokenizer_name, From e3c664bfcb14a41e43ddb6078ed1464ae9b7852f Mon Sep 17 00:00:00 2001 From: Simon Mo Date: Mon, 5 Aug 2024 17:39:22 -0700 Subject: [PATCH 006/237] [Build] Add initial conditional testing spec (#6841) --- .buildkite/test-pipeline.yaml | 390 ++++++++++++++++++++-------------- 1 file changed, 234 insertions(+), 156 deletions(-) diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index 93b3e3fe91663..6f38cd313f115 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -5,11 +5,47 @@ # https://github.com/vllm-project/buildkite-ci/blob/main/scripts/test-template-aws.j2 # to generate the final pipeline yaml file. +# Documentation +# label(str): the name of the test. emoji allowed. +# fast_check(bool): whether to run this on each commit on fastcheck pipeline. +# fast_check_only(bool): run this test on fastcheck pipeline only +# command(str): the single command to run for tests. incompatible with commands. +# commands(list): the list of commands to run for test. incompatbile with command. +# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd] +# gpu(str): override the GPU selection for the test. default is on L4 GPUs. currently only supports a100 +# num_gpus(int): override the number of GPUs for the test. default to 1 GPU. currently support 2,4. +# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host, +# in this case, commands must be specified. the first command runs on first host, the second +# command runs on the second host. +# working_dir(str): specify the place where command should execute, default to /vllm-workspace/tests +# source_file_dependencies(list): the list of prefix to opt-in the test for, if empty, the test will always run. + +# When adding a test +# - If the test belong to an existing group, add it there +# - If the test is short, add to any existing step +# - If the test takes more than 10min, then it is okay to create a new step. +# Note that all steps execute in parallel. steps: -- label: Async Engine, Inputs, Utils, Worker Test +##### fast check tests ##### + +- label: Documentation Build # 2min + working_dir: "/vllm-workspace/test_docs/docs" fast_check: true - fast_check_only: true + no_gpu: True + commands: + - pip install -r requirements-docs.txt + - SPHINXOPTS=\"-W\" make html + +- label: Async Engine, Inputs, Utils, Worker Test # 15min + fast_check: true + source_file_dependencies: + - vllm/ + - tests/async_engine + - tests/test_inputs + - tests/multimodal + - tests/test_utils + - tests/worker commands: - pytest -v -s async_engine # Async Engine - pytest -v -s test_inputs.py @@ -17,31 +53,12 @@ steps: - pytest -v -s test_utils.py # Utils - pytest -v -s worker # Worker -- label: Metrics, Tracing Test - fast_check: true - fast_check_only: true - commands: - - pytest -v -s metrics # Metrics - - "pip install \ - opentelemetry-sdk \ - opentelemetry-api \ - opentelemetry-exporter-otlp \ - opentelemetry-semantic-conventions-ai" # Tracing - - pytest -v -s tracing - -- label: Regression Test - mirror_hardwares: [amd] - fast_check: true - command: pytest -v -s test_regression.py - working_dir: "/vllm-workspace/tests" # optional - -- label: AsyncEngine Test - #mirror_hardwares: [amd] - command: pytest -v -s async_engine - -- label: Basic Correctness Test +- label: Basic Correctness Test # 30min mirror_hardwares: [amd] fast_check: true + source_file_dependencies: + - vllm/ + - tests/basic_correctness commands: # This flashinfer installation will fail on AMD ROCm, so it is set as optional. - pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.2/flashinfer-0.1.2+cu121torch2.4-cp310-cp310-linux_x86_64.whl || true @@ -50,215 +67,264 @@ steps: - VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py - VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py - VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py - -- label: Core Test + +- label: Core Test # 10min mirror_hardwares: [amd] fast_check: true + source_file_dependencies: + - vllm/core + - vllm/distributed + - tests/core commands: - pytest -v -s core -- label: Distributed Comm Ops Test - #mirror_hardwares: [amd] - working_dir: "/vllm-workspace/tests" - num_gpus: 2 - commands: - - pytest -v -s distributed/test_comm_ops.py - - pytest -v -s distributed/test_shm_broadcast.py - -- label: 2 Node Tests (4 GPUs in total) - working_dir: "/vllm-workspace/tests" - num_gpus: 2 - num_nodes: 2 - commands: - - # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up) - - VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py - - VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py - - # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up) - - VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py - -- label: Distributed Tests (2 GPUs) +- label: Entrypoints Test # 20min + fast_check: true mirror_hardwares: [amd] - working_dir: "/vllm-workspace/tests" - num_gpus: 2 + source_file_dependencies: + - vllm/entrypoints + - tests/entrypoints commands: - - VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py - - TARGET_TEST_SUITE=L4 pytest -v -s distributed/test_basic_distributed_correctness.py - - pytest -v -s distributed/test_chunked_prefill_distributed.py - - pytest -v -s distributed/test_multimodal_broadcast.py - - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py - - CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py - - CUDA_VISIBLE_DEVICES=0,1 pytest -v -s distributed/test_utils.py + - pytest -v -s entrypoints/llm + - pytest -v -s entrypoints/openai -- label: Distributed Tests (4 GPUs) - #mirror_hardwares: [amd] +- label: Distributed Tests (4 GPUs) # 10min working_dir: "/vllm-workspace/tests" num_gpus: 4 fast_check: true + source_file_dependencies: + - vllm/ + - tests/distributed + - tests/spec_decode/e2e/test_integration_dist_tp4 commands: - pytest -v -s distributed/test_pynccl.py - pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py -- label: Pipeline Parallelism Test - working_dir: "/vllm-workspace/tests" - num_gpus: 4 +##### fast check tests ##### +##### 1 GPU test ##### + +- label: Metrics, Tracing Test # 10min + source_file_dependencies: + - vllm/ + - tests/metrics + - tests/tracing commands: - - pytest -v -s distributed/test_pipeline_parallel.py + - pytest -v -s metrics + - "pip install \ + opentelemetry-sdk \ + opentelemetry-api \ + opentelemetry-exporter-otlp \ + opentelemetry-semantic-conventions-ai" + - pytest -v -s tracing -- label: Engine Test +- label: Regression Test # 5min mirror_hardwares: [amd] + source_file_dependencies: + - vllm/ + - tests/test_regression + command: pytest -v -s test_regression.py + working_dir: "/vllm-workspace/tests" # optional + +- label: Engine Test # 10min + mirror_hardwares: [amd] + source_file_dependencies: + - vllm/ + - tests/engine + - tests/tokenization commands: - pytest -v -s engine test_sequence.py test_config.py test_logger.py # OOM in the CI unless we run this separately - pytest -v -s tokenization -- label: Entrypoints Test - fast_check: true - mirror_hardwares: [amd] - - commands: - - pytest -v -s entrypoints/llm - - pytest -v -s entrypoints/openai - -- label: Examples Test +- label: Examples Test # 12min working_dir: "/vllm-workspace/examples" mirror_hardwares: [amd] + source_file_dependencies: + - vllm/entrypoints + - examples/ commands: - # install tensorizer for tensorize_vllm_model.py - - pip install awscli tensorizer + - pip install awscli tensorizer # for llava example and tensorizer test - python3 offline_inference.py - python3 cpu_offload.py - python3 offline_inference_with_prefix.py - python3 llm_engine_example.py - - python3 offline_inference_vision_language.py + - python3 llava_example.py - python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors -- label: Inputs Test - #mirror_hardwares: [amd] - commands: - - pytest -v -s test_inputs.py - - pytest -v -s multimodal - -# - label: Kernels Test %N -# #mirror_hardwares: [amd] -# commands: -# - pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.8/flashinfer-0.0.8+cu121torch2.3-cp310-cp310-linux_x86_64.whl -# - pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT -# parallelism: 4 - -- label: Models Test - #mirror_hardwares: [amd] +- label: Models Test # 1hr10min + source_file_dependencies: + - vllm/ + - tests/models commands: - pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.2/flashinfer-0.1.2+cu121torch2.4-cp310-cp310-linux_x86_64.whl - pytest -v -s models -m \"not vlm\" -- label: Vision Language Models Test +- label: Vision Language Models Test # 42min mirror_hardwares: [amd] + source_file_dependencies: + - vllm/ commands: - pytest -v -s models -m vlm -- label: Prefix Caching Test +- label: Prefix Caching Test # 7min mirror_hardwares: [amd] + source_file_dependencies: + - vllm/ + - tests/prefix_caching commands: - pytest -v -s prefix_caching -- label: Samplers Test - #mirror_hardwares: [amd] +- label: Samplers Test # 18min + source_file_dependencies: + - vllm/model_executor/layers + - vllm/sampling_metadata.py + - tests/samplers command: pytest -v -s samplers -- label: LogitsProcessor Test +- label: LogitsProcessor Test # 5min mirror_hardwares: [amd] + source_file_dependencies: + - vllm/model_executor/layers + - tests/test_logits_processor command: pytest -v -s test_logits_processor.py -- label: Utils Test - commands: - - pytest -v -s test_utils.py - - pytest -v -s test_embedded_commit.py - -- label: Worker Test - mirror_hardwares: [amd] - command: pytest -v -s worker - -- label: Speculative decoding tests - #mirror_hardwares: [amd] +- label: Speculative decoding tests # 22min + source_file_dependencies: + - vllm/spec_decode + - tests/spec_decode commands: # See https://github.com/vllm-project/vllm/issues/5152 - export VLLM_ATTENTION_BACKEND=XFORMERS - pytest -v -s spec_decode -# - label: LoRA Test %N -# #mirror_hardwares: [amd] -# command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py -# parallelism: 4 - -# - label: LoRA Long Context (Distributed) -# #mirror_hardwares: [amd] -# num_gpus: 4 -# # This test runs llama 13B, so it is required to run on 4 GPUs. -# commands: -# # FIXIT: find out which code initialize cuda before running the test -# # before the fix, we need to use spawn to test it -# - export VLLM_WORKER_MULTIPROC_METHOD=spawn -# - pytest -v -s -x lora/test_long_context.py - -- label: Tensorizer Test - #mirror_hardwares: [amd] - fast_check: true +- label: LoRA Test %N # 30min each + source_file_dependencies: + - vllm/lora + - csrc/punica + - tests/lora + command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py + parallelism: 4 + +- label: Kernels Test %N # 30min each + source_file_dependencies: + - csrc/ + - vllm/attention + - tests/kernels + commands: + - pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.2/flashinfer-0.1.2+cu121torch2.4-cp310-cp310-linux_x86_64.whl + - pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT + parallelism: 4 + +- label: Tensorizer Test # 11min + soft_fail: true + source_file_dependencies: + - vllm/model_executor/model_loader + - tests/tensorizer_loader commands: - apt-get install -y curl libsodium23 - export VLLM_WORKER_MULTIPROC_METHOD=spawn - pytest -v -s tensorizer_loader -- label: Metrics Test - mirror_hardwares: [amd] - command: pytest -v -s metrics - -- label: Quantization Test - #mirror_hardwares: [amd] - command: pytest -v -s quantization - -- label: Tracing Test - commands: - - "pip install \ - opentelemetry-sdk \ - opentelemetry-api \ - opentelemetry-exporter-otlp \ - opentelemetry-semantic-conventions-ai" - - pytest -v -s tracing - -- label: Benchmarks +- label: Benchmarks # 9min working_dir: "/vllm-workspace/.buildkite" mirror_hardwares: [amd] + source_file_dependencies: + - benchmarks/ commands: - pip install aiohttp - bash run-benchmarks.sh -- label: LM Eval Small Models +- label: Quantization Test # 15min + source_file_dependencies: + - csrc/ + - vllm/model_executor/layers/quantization + - tests/quantization + command: pytest -v -s quantization + +- label: LM Eval Small Models # 53min working_dir: "/vllm-workspace/.buildkite/lm-eval-harness" + source_file_dependencies: + - csrc/ + - vllm/model_executor/layers/quantization commands: - pip install lm-eval - export VLLM_WORKER_MULTIPROC_METHOD=spawn - bash ./run-tests.sh -c configs/models-small.txt -t 1 -- label: LM Eval Large Models - gpu: a100 + +##### 1 GPU test ##### +##### multi gpus test ##### + +- label: Distributed Comm Ops Test # 7min + working_dir: "/vllm-workspace/tests" + num_gpus: 2 + source_file_dependencies: + - vllm/distributed + - tests/distributed + commands: + - pytest -v -s distributed/test_comm_ops.py + - pytest -v -s distributed/test_shm_broadcast.py + +- label: 2 Node Tests (4 GPUs in total) # 16min + working_dir: "/vllm-workspace/tests" + num_gpus: 2 + num_nodes: 2 + source_file_dependencies: + - vllm/ + - tests/distributed/test_same_node + commands: + - # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up) + - VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py + - VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py + - # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up) + - VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py + +- label: Distributed Tests (2 GPUs) # 28min + mirror_hardwares: [amd] + working_dir: "/vllm-workspace/tests" + num_gpus: 2 + source_file_dependencies: + - vllm/ + - tests/distributed + commands: + - VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py + - TARGET_TEST_SUITE=L4 pytest -v -s distributed/test_basic_distributed_correctness.py + - pytest -v -s distributed/test_chunked_prefill_distributed.py + - pytest -v -s distributed/test_multimodal_broadcast.py + - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py + - CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py + - CUDA_VISIBLE_DEVICES=0,1 pytest -v -s distributed/test_utils.py + +- label: Pipeline Parallelism Test # 23min + working_dir: "/vllm-workspace/tests" num_gpus: 4 - working_dir: "/vllm-workspace/.buildkite/lm-eval-harness" + source_file_dependencies: + - vllm/ + - tests/distributed/test_pipeline_parallel commands: - - pip install lm-eval - - export VLLM_WORKER_MULTIPROC_METHOD=spawn - - bash ./run-tests.sh -c configs/models-large.txt -t 4 + - pytest -v -s distributed/test_pipeline_parallel.py -- label: Documentation Build - working_dir: "/vllm-workspace/test_docs/docs" - fast_check: true - no_gpu: True +- label: LoRA Long Context (Distributed) # 11min + # This test runs llama 13B, so it is required to run on 4 GPUs. + num_gpus: 4 + source_file_dependencies: + - vllm/lora + - csrc/punica + - tests/lora/test_long_context commands: - - pip install -r requirements-docs.txt - - SPHINXOPTS=\"-W\" make html + # FIXIT: find out which code initialize cuda before running the test + # before the fix, we need to use spawn to test it + - export VLLM_WORKER_MULTIPROC_METHOD=spawn + - pytest -v -s -x lora/test_long_context.py + +##### multi gpus test ##### +##### A100 test ##### -- label: Distributed Tests (A100) +- label: Distributed Tests (A100) # optional gpu: a100 num_gpus: 4 + source_file_dependencies: + - vllm/ commands: # NOTE: don't test llama model here, it seems hf implementation is buggy # see https://github.com/vllm-project/vllm/pull/5689 for details @@ -266,3 +332,15 @@ steps: - pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.2/flashinfer-0.1.2+cu121torch2.4-cp310-cp310-linux_x86_64.whl - TARGET_TEST_SUITE=A100 pytest -v -s distributed/test_basic_distributed_correctness.py - pytest -v -s -x lora/test_mixtral.py + +- label: LM Eval Large Models # optional + gpu: a100 + num_gpus: 4 + working_dir: "/vllm-workspace/.buildkite/lm-eval-harness" + source_file_dependencies: + - csrc/ + - vllm/model_executor/layers/quantization + commands: + - pip install lm-eval + - export VLLM_WORKER_MULTIPROC_METHOD=spawn + - bash ./run-tests.sh -c configs/models-large.txt -t 4 From 9118217f58c39040aa935b7c85250c7364ffa72d Mon Sep 17 00:00:00 2001 From: Jee Jee Li Date: Tue, 6 Aug 2024 09:57:25 +0800 Subject: [PATCH 007/237] [LoRA] Relax LoRA condition (#7146) --- tests/lora/test_layers.py | 2 +- tests/lora/test_punica_variation.py | 2 +- vllm/config.py | 5 +++-- vllm/lora/layers.py | 6 +++--- 4 files changed, 8 insertions(+), 7 deletions(-) diff --git a/tests/lora/test_layers.py b/tests/lora/test_layers.py index d8cc68d5e9599..ad86f7bdf6101 100644 --- a/tests/lora/test_layers.py +++ b/tests/lora/test_layers.py @@ -420,7 +420,7 @@ def create_random_embedding_layer(): @torch.inference_mode() @pytest.mark.parametrize("num_loras", [1, 2, 4, 8]) @pytest.mark.parametrize("device", CUDA_DEVICES) -@pytest.mark.parametrize("vocab_size", [512, 32000, 64000, 128000]) +@pytest.mark.parametrize("vocab_size", [512, 32000, 64000, 256512]) @pytest.mark.parametrize("stage", STAGES) def test_lm_head_logits_processor(dist_init, num_loras, device, vocab_size, stage) -> None: diff --git a/tests/lora/test_punica_variation.py b/tests/lora/test_punica_variation.py index 7e73ea67ee5f4..5bf3f72e7d97b 100644 --- a/tests/lora/test_punica_variation.py +++ b/tests/lora/test_punica_variation.py @@ -25,7 +25,7 @@ BATCHES = [1, 4, 16, 32] NUM_LORA = [1, 4, 8, 16, 32, 64, 128] DTYPES = [torch.float16, torch.bfloat16] -MAX_RANKS = [1, 4, 8, 16, 32, 64, 128] +MAX_RANKS = [1, 4, 8, 16, 32, 64, 128, 256] SCALES = [0.5] SEED = [0] CUDA_DEVICES = [f"cuda:{0}"] diff --git a/vllm/config.py b/vllm/config.py index 4b968f549d902..3cc197f3d655f 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -1311,8 +1311,9 @@ class LoRAConfig: long_lora_scaling_factors: Optional[Tuple[float]] = None def __post_init__(self): - # TODO: Increase the range of rank - possible_max_ranks = (8, 16, 32, 64) + # Setting the maximum rank to 256 should be able to satisfy the vast + # majority of applications. + possible_max_ranks = (8, 16, 32, 64, 128, 256) possible_lora_extra_vocab_size = (0, 256, 512) if self.max_lora_rank not in possible_max_ranks: raise ValueError( diff --git a/vllm/lora/layers.py b/vllm/lora/layers.py index d3978ff6f4ff1..e3316059dc6d1 100644 --- a/vllm/lora/layers.py +++ b/vllm/lora/layers.py @@ -1073,10 +1073,10 @@ def create_lora_weights( lora_config: LoRAConfig, model_config: Optional[PretrainedConfig] = None, ) -> None: - # TODO: Verify if this condition can be relaxed - if 32000 < self.base_layer.vocab_size > 128512: + # TODO: Verify if this condition can be further relaxed + if 32000 < self.base_layer.vocab_size > 257024: raise ValueError("When using LoRA, vocab size must be " - "32000 >= vocab_size <= 128512") + "32000 >= vocab_size <= 257024") self.lora_a_stacked = torch.zeros( ( max_loras, From 1f26efbb3a5e6dad0b98421dd697167c42a50629 Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Tue, 6 Aug 2024 16:55:31 +0800 Subject: [PATCH 008/237] [Model] Support SigLIP encoder and alternative decoders for LLaVA models (#7153) Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com> --- requirements-test.txt | 3 + tests/models/test_llava.py | 36 +++- tests/models/test_llava_next.py | 9 +- tests/models/test_paligemma.py | 9 +- tests/models/test_registry.py | 2 +- vllm/model_executor/model_loader/loader.py | 38 +++- vllm/model_executor/model_loader/utils.py | 8 +- vllm/model_executor/models/__init__.py | 16 +- vllm/model_executor/models/clip.py | 24 ++- vllm/model_executor/models/internvl.py | 24 +-- vllm/model_executor/models/llava.py | 211 +++++++++--------- vllm/model_executor/models/llava_next.py | 239 ++++++++++++--------- vllm/model_executor/models/siglip.py | 49 ++++- vllm/model_executor/models/utils.py | 56 ++++- 14 files changed, 455 insertions(+), 269 deletions(-) diff --git a/requirements-test.txt b/requirements-test.txt index 5f3fd15c7ee56..62d6cc49eade4 100644 --- a/requirements-test.txt +++ b/requirements-test.txt @@ -20,6 +20,9 @@ sentence-transformers # required for embedding compressed-tensors==0.4.0 # required for compressed-tensors timm # required for internvl test +# TODO: Add this after fully implementing llava(mantis) +# git+https://github.com/TIGER-AI-Lab/Mantis.git # required for llava(mantis) test + # Benchmarking aiohttp diff --git a/tests/models/test_llava.py b/tests/models/test_llava.py index 79ab58c364f64..749d3353717e2 100644 --- a/tests/models/test_llava.py +++ b/tests/models/test_llava.py @@ -1,10 +1,11 @@ from typing import List, Optional, Tuple, Type import pytest -from transformers import AutoTokenizer +from transformers import AutoConfig, AutoTokenizer from vllm.multimodal.utils import rescale_image_size from vllm.sequence import SampleLogprobs +from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE from ..conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets from .utils import check_logprobs_close @@ -18,9 +19,11 @@ "USER: \nWhat is the season?\nASSISTANT:", }) -IMAGE_TOKEN_ID = 32000 - -models = ["llava-hf/llava-1.5-7b-hf"] +models = [ + "llava-hf/llava-1.5-7b-hf", + # TODO: Get this model to produce meaningful output in vLLM + # "TIGER-Lab/Mantis-8B-siglip-llama3", +] def vllm_to_hf_output(vllm_output: Tuple[List[int], str, @@ -29,12 +32,15 @@ def vllm_to_hf_output(vllm_output: Tuple[List[int], str, """Sanitize vllm output to be comparable with hf output.""" output_ids, output_str, out_logprobs = vllm_output + config = AutoConfig.from_pretrained(model) + image_token_id = config.image_token_index + tokenizer = AutoTokenizer.from_pretrained(model) eos_token_id = tokenizer.eos_token_id hf_output_ids = [ token_id for idx, token_id in enumerate(output_ids) - if token_id != IMAGE_TOKEN_ID or output_ids[idx - 1] != IMAGE_TOKEN_ID + if token_id != image_token_id or output_ids[idx - 1] != image_token_id ] assert output_str[0] == " " @@ -67,6 +73,17 @@ def run_test( Note, the text input is also adjusted to abide by vllm contract. The text output is sanitized to be able to compare with hf. """ + # NOTE: For local use; this isn't tested in CI yet (see TODO above) + if model.startswith("TIGER-Lab/Mantis"): + from mantis.models.mllava import MLlavaProcessor + + torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[dtype] + mantis_processor = MLlavaProcessor.from_pretrained( + model, torch_dtype=torch_dtype) + assert isinstance(mantis_processor, MLlavaProcessor) + else: + mantis_processor = None + images = [asset.pil_image for asset in image_assets] inputs_per_image = [( @@ -94,6 +111,15 @@ def run_test( ] with hf_runner(model, dtype=dtype, is_vision_model=True) as hf_model: + if mantis_processor is not None: + + def process(*args, **kwargs): + output = mantis_processor(*args, **kwargs) + output["pixel_values"] = output["pixel_values"].to(torch_dtype) + return output + + hf_model.processor = process + hf_outputs_per_image = [ hf_model.generate_greedy_logprobs_limit(prompts, max_tokens, diff --git a/tests/models/test_llava_next.py b/tests/models/test_llava_next.py index b6d72dee5c5b5..60c7fc33b72fe 100644 --- a/tests/models/test_llava_next.py +++ b/tests/models/test_llava_next.py @@ -1,7 +1,7 @@ from typing import List, Optional, Tuple, Type, overload import pytest -from transformers import AutoTokenizer +from transformers import AutoConfig, AutoTokenizer from vllm.multimodal.utils import rescale_image_size from vllm.sequence import SampleLogprobs @@ -23,8 +23,6 @@ f"{_PREFACE} USER: \nWhat is the season? ASSISTANT:", }) -IMAGE_TOKEN_ID = 32000 - models = ["llava-hf/llava-v1.6-vicuna-7b-hf"] @@ -34,12 +32,15 @@ def vllm_to_hf_output(vllm_output: Tuple[List[int], str, """Sanitize vllm output to be comparable with hf output.""" output_ids, output_str, out_logprobs = vllm_output + config = AutoConfig.from_pretrained(model) + image_token_id = config.image_token_index + tokenizer = AutoTokenizer.from_pretrained(model) eos_token_id = tokenizer.eos_token_id hf_output_ids = [ token_id for idx, token_id in enumerate(output_ids) - if token_id != IMAGE_TOKEN_ID or output_ids[idx - 1] != IMAGE_TOKEN_ID + if token_id != image_token_id or output_ids[idx - 1] != image_token_id ] assert output_str[0] == " " diff --git a/tests/models/test_paligemma.py b/tests/models/test_paligemma.py index e1c39ee6fecb6..f3f682b1c2cda 100644 --- a/tests/models/test_paligemma.py +++ b/tests/models/test_paligemma.py @@ -2,7 +2,7 @@ from typing import List, Optional, Tuple, Type import pytest -from transformers import AutoTokenizer +from transformers import AutoConfig, AutoTokenizer from vllm.multimodal.utils import rescale_image_size from vllm.sequence import SampleLogprobs @@ -20,8 +20,6 @@ "What is in the picture?", }) -IMAGE_TOKEN_ID = 257152 - models = ["google/paligemma-3b-mix-224"] # ROCm Triton FA can run into compilation issues with these models due to, @@ -37,12 +35,15 @@ def vllm_to_hf_output(vllm_output: Tuple[List[int], str, """Sanitize vllm output to be comparable with hf output.""" output_ids, output_str, out_logprobs = vllm_output + config = AutoConfig.from_pretrained(model) + image_token_id = config.image_token_index + tokenizer = AutoTokenizer.from_pretrained(model) eos_token_id = tokenizer.eos_token_id hf_output_ids = [ token_id for idx, token_id in enumerate(output_ids) - if token_id != IMAGE_TOKEN_ID or output_ids[idx - 1] != IMAGE_TOKEN_ID + if token_id != image_token_id or output_ids[idx - 1] != image_token_id ] hf_output_str = output_str diff --git a/tests/models/test_registry.py b/tests/models/test_registry.py index 547ab10051f1b..b058e2755c245 100644 --- a/tests/models/test_registry.py +++ b/tests/models/test_registry.py @@ -6,4 +6,4 @@ @pytest.mark.parametrize("model_cls", _MODELS) def test_registry_imports(model_cls): # Ensure all model classes can be imported successfully - ModelRegistry.load_model_cls(model_cls) + ModelRegistry.resolve_model_cls([model_cls]) diff --git a/vllm/model_executor/model_loader/loader.py b/vllm/model_executor/model_loader/loader.py index a5c5cb87bc460..44c04c9ba8ddc 100644 --- a/vllm/model_executor/model_loader/loader.py +++ b/vllm/model_executor/model_loader/loader.py @@ -16,7 +16,7 @@ import torch from huggingface_hub import HfApi, hf_hub_download from torch import nn -from transformers import AutoModelForCausalLM +from transformers import AutoModelForCausalLM, PretrainedConfig from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoadFormat, LoRAConfig, ModelConfig, MultiModalConfig, @@ -143,6 +143,22 @@ def _get_model_initialization_kwargs( return extra_kwargs +def build_model(model_class: Type[nn.Module], hf_config: PretrainedConfig, + cache_config: Optional[CacheConfig], + quant_config: Optional[QuantizationConfig], *, + lora_config: Optional[LoRAConfig], + multimodal_config: Optional[MultiModalConfig], + scheduler_config: Optional[SchedulerConfig]) -> nn.Module: + extra_kwargs = _get_model_initialization_kwargs(model_class, lora_config, + multimodal_config, + scheduler_config) + + return model_class(config=hf_config, + cache_config=cache_config, + quant_config=quant_config, + **extra_kwargs) + + def _initialize_model( model_config: ModelConfig, load_config: LoadConfig, @@ -151,15 +167,17 @@ def _initialize_model( cache_config: CacheConfig, scheduler_config: Optional[SchedulerConfig] = None) -> nn.Module: """Initialize a model with the given configurations.""" - model_class = get_model_architecture(model_config)[0] - quant_config = _get_quantization_config(model_config, load_config) - - return model_class(config=model_config.hf_config, - cache_config=cache_config, - quant_config=quant_config, - **_get_model_initialization_kwargs( - model_class, lora_config, multimodal_config, - scheduler_config)) + model_class, _ = get_model_architecture(model_config) + + return build_model( + model_class, + model_config.hf_config, + quant_config=_get_quantization_config(model_config, load_config), + lora_config=lora_config, + multimodal_config=multimodal_config, + cache_config=cache_config, + scheduler_config=scheduler_config, + ) class BaseModelLoader(ABC): diff --git a/vllm/model_executor/model_loader/utils.py b/vllm/model_executor/model_loader/utils.py index f7e0f56c1a46e..331b859d2adec 100644 --- a/vllm/model_executor/model_loader/utils.py +++ b/vllm/model_executor/model_loader/utils.py @@ -28,13 +28,7 @@ def get_model_architecture( and "MixtralForCausalLM" in architectures): architectures = ["QuantMixtralForCausalLM"] - for arch in architectures: - model_cls = ModelRegistry.load_model_cls(arch) - if model_cls is not None: - return (model_cls, arch) - raise ValueError( - f"Model architectures {architectures} are not supported for now. " - f"Supported architectures: {ModelRegistry.get_supported_archs()}") + return ModelRegistry.resolve_model_cls(architectures) def get_architecture_class_name(model_config: ModelConfig) -> str: diff --git a/vllm/model_executor/models/__init__.py b/vllm/model_executor/models/__init__.py index 94c3cea98be7b..ebb77a802d5cb 100644 --- a/vllm/model_executor/models/__init__.py +++ b/vllm/model_executor/models/__init__.py @@ -1,6 +1,6 @@ import functools import importlib -from typing import Dict, List, Optional, Type +from typing import Dict, List, Optional, Tuple, Type import torch.nn as nn @@ -126,7 +126,7 @@ def _get_model(model_arch: str): return getattr(module, model_cls_name, None) @staticmethod - def load_model_cls(model_arch: str) -> Optional[Type[nn.Module]]: + def _try_load_model_cls(model_arch: str) -> Optional[Type[nn.Module]]: if model_arch in _OOT_MODELS: return _OOT_MODELS[model_arch] if model_arch not in _MODELS: @@ -143,6 +143,18 @@ def load_model_cls(model_arch: str) -> Optional[Type[nn.Module]]: return ModelRegistry._get_model(model_arch) + @staticmethod + def resolve_model_cls( + architectures: List[str]) -> Tuple[Type[nn.Module], str]: + for arch in architectures: + model_cls = ModelRegistry._try_load_model_cls(arch) + if model_cls is not None: + return (model_cls, arch) + + raise ValueError( + f"Model architectures {architectures} are not supported for now. " + f"Supported architectures: {ModelRegistry.get_supported_archs()}") + @staticmethod def get_supported_archs() -> List[str]: return list(_MODELS.keys()) diff --git a/vllm/model_executor/models/clip.py b/vllm/model_executor/models/clip.py index b4f628061f19c..805ade39389de 100644 --- a/vllm/model_executor/models/clip.py +++ b/vllm/model_executor/models/clip.py @@ -1,6 +1,6 @@ """Minimal implementation of CLIPVisionModel intended to be only used within a vision language model.""" -from typing import Optional +from typing import Iterable, Optional, Tuple import torch import torch.nn as nn @@ -14,6 +14,7 @@ from vllm.model_executor.layers.linear import (ColumnParallelLinear, RowParallelLinear) from vllm.model_executor.layers.quantization import QuantizationConfig +from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.multimodal.image import (cached_get_tokenizer, repeat_and_pad_image_tokens) from vllm.sequence import SequenceData @@ -32,7 +33,7 @@ def get_clip_num_patches(*, image_size: int, patch_size: int) -> int: def get_clip_image_feature_size(hf_config: CLIPVisionConfig) -> int: return get_clip_num_patches(image_size=hf_config.image_size, - patch_size=hf_config.patch_size) + patch_size=hf_config.patch_size) + 1 def get_max_clip_image_tokens(hf_config: CLIPVisionConfig) -> int: @@ -291,3 +292,22 @@ def forward(self, pixel_values: Optional[torch.Tensor] = None): @property def device(self): return next(self.parameters()).device + + def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): + params_dict = dict(self.named_parameters()) + layer_count = len(self.vision_model.encoder.layers) + + for name, loaded_weight in weights: + # post_layernorm is not needed in CLIPVisionModel + if "vision_model.post_layernorm" in name: + continue + # omit layers when num_hidden_layers_override is set + if "vision_model.encoder.layers." in name: + layer_idx = int(name.split(".")[3]) + if layer_idx >= layer_count: + continue + + param = params_dict[name] + weight_loader = getattr(param, "weight_loader", + default_weight_loader) + weight_loader(param, loaded_weight) diff --git a/vllm/model_executor/models/internvl.py b/vllm/model_executor/models/internvl.py index 4749251271487..8850fd7c6763b 100644 --- a/vllm/model_executor/models/internvl.py +++ b/vllm/model_executor/models/internvl.py @@ -18,7 +18,6 @@ from vllm.inputs import INPUT_REGISTRY, InputContext, LLMInputs from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.model_loader.weight_utils import default_weight_loader -from vllm.model_executor.models import ModelRegistry from vllm.model_executor.models.intern_vit import InternVisionModel from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY @@ -29,7 +28,8 @@ from .clip import (dummy_image_for_clip, dummy_seq_data_for_clip, get_clip_num_patches) from .interfaces import SupportsVision -from .utils import merge_vision_embeddings +from .utils import (filter_weights, init_vllm_registered_model, + merge_vision_embeddings) IMG_START = '' IMG_END = '' @@ -283,10 +283,8 @@ def __init__(self, self.vision_model = InternVisionModel( config.vision_config, num_hidden_layers_override=num_hidden_layers) - llm_class = ModelRegistry.load_model_cls( - config.text_config.architectures[0]) - self.language_model = llm_class(config.text_config, cache_config, - quant_config) + self.language_model = init_vllm_registered_model( + config.text_config, cache_config, quant_config) vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.text_config.hidden_size @@ -415,24 +413,16 @@ def sample( ) -> Optional[SamplerOutput]: return self.language_model.sample(logits, sampling_metadata) - def _filter_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], - prefix: str): - for name, loaded_weight in weights: - name = name.split(".") - if prefix == name.pop(0): - name = ".".join(name) - yield name, loaded_weight - def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): # prepare weight iterators for components vit_weights, mlp_weights, llm_weights = itertools.tee(weights, 3) # load vision encoder - vit_weights = self._filter_weights(vit_weights, "vision_model") + vit_weights = filter_weights(vit_weights, "vision_model") self.vision_model.load_weights(vit_weights) # load mlp projector - mlp_weights = self._filter_weights(mlp_weights, "mlp1") + mlp_weights = filter_weights(mlp_weights, "mlp1") mlp_params_dict = dict(self.mlp1.named_parameters()) for name, loaded_weight in mlp_weights: param = mlp_params_dict[name] @@ -441,5 +431,5 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): weight_loader(param, loaded_weight) # load llm backbone - llm_weights = self._filter_weights(llm_weights, "language_model") + llm_weights = filter_weights(llm_weights, "language_model") self.language_model.load_weights(llm_weights) diff --git a/vllm/model_executor/models/llava.py b/vllm/model_executor/models/llava.py index 4e7e6c47f0a0b..9a11bcc4c54ce 100644 --- a/vllm/model_executor/models/llava.py +++ b/vllm/model_executor/models/llava.py @@ -1,34 +1,30 @@ -from typing import Iterable, List, Literal, Optional, Tuple, TypedDict +import itertools +from typing import Iterable, List, Literal, Optional, Tuple, TypedDict, Union import torch import torch.nn as nn -from transformers import CLIPVisionConfig, LlavaConfig +from transformers import CLIPVisionConfig, LlavaConfig, SiglipVisionConfig from vllm.attention import AttentionMetadata from vllm.config import CacheConfig, MultiModalConfig from vllm.inputs import INPUT_REGISTRY, InputContext, LLMInputs from vllm.model_executor.layers.activation import get_act_fn -from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization.base_config import ( QuantizationConfig) -from vllm.model_executor.layers.sampler import Sampler -from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead from vllm.model_executor.model_loader.weight_utils import default_weight_loader -from vllm.model_executor.models.clip import CLIPVisionModel -from vllm.model_executor.models.llama import LlamaModel from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.sequence import IntermediateTensors, SamplerOutput -from .clip import (dummy_image_for_clip, dummy_seq_data_for_clip, - get_max_clip_image_tokens, input_processor_for_clip) +from .clip import (CLIPVisionModel, dummy_image_for_clip, + dummy_seq_data_for_clip, get_max_clip_image_tokens, + input_processor_for_clip) from .interfaces import SupportsVision -from .utils import merge_vision_embeddings - -_KEYS_TO_MODIFY_MAPPING = { - "language_model.lm_head": "lm_head", - "language_model.model": "language_model", -} +from .siglip import (SiglipVisionModel, dummy_image_for_siglip, + dummy_seq_data_for_siglip, get_max_siglip_image_tokens, + input_processor_for_siglip) +from .utils import (filter_weights, init_vllm_registered_model, + merge_vision_embeddings) # TODO(xwjiang): Run benchmark and decide if TP. @@ -67,25 +63,48 @@ def get_max_llava_image_tokens(ctx: InputContext): vision_config = hf_config.vision_config if isinstance(vision_config, CLIPVisionConfig): - return get_max_clip_image_tokens(vision_config) - - msg = f"Unsupported vision config: {type(vision_config)}" - raise NotImplementedError(msg) + num_image_tokens = get_max_clip_image_tokens(vision_config) + elif isinstance(vision_config, SiglipVisionConfig): + num_image_tokens = get_max_siglip_image_tokens(vision_config) + else: + msg = f"Unsupported vision config: {type(vision_config)}" + raise NotImplementedError(msg) + + strategy = hf_config.vision_feature_select_strategy + if strategy == "default": + return num_image_tokens - 1 + elif strategy == "full": + return num_image_tokens + else: + raise ValueError(f"Unexpected select feature strategy: {strategy}") def dummy_data_for_llava(ctx: InputContext, seq_len: int): hf_config = ctx.get_hf_config(LlavaConfig) vision_config = hf_config.vision_config + image_feature_size = get_max_llava_image_tokens(ctx) + if isinstance(vision_config, CLIPVisionConfig): seq_data = dummy_seq_data_for_clip( vision_config, seq_len, image_token_id=hf_config.image_token_index, + image_feature_size_override=image_feature_size, ) mm_data = dummy_image_for_clip(vision_config) return seq_data, mm_data + elif isinstance(vision_config, SiglipVisionConfig): + seq_data = dummy_seq_data_for_siglip( + vision_config, + seq_len, + image_token_id=hf_config.image_token_index, + image_feature_size_override=image_feature_size, + ) + + mm_data = dummy_image_for_siglip(vision_config) + return seq_data, mm_data msg = f"Unsupported vision config: {type(vision_config)}" raise NotImplementedError(msg) @@ -100,12 +119,49 @@ def input_processor_for_llava(ctx: InputContext, llm_inputs: LLMInputs): hf_config = ctx.get_hf_config(LlavaConfig) vision_config = hf_config.vision_config + image_feature_size = get_max_llava_image_tokens(ctx) + if isinstance(vision_config, CLIPVisionConfig): return input_processor_for_clip( model_config, vision_config, llm_inputs, image_token_id=hf_config.image_token_index, + image_feature_size_override=image_feature_size, + ) + elif isinstance(vision_config, SiglipVisionConfig): + return input_processor_for_siglip( + model_config, + vision_config, + llm_inputs, + image_token_id=hf_config.image_token_index, + image_feature_size_override=image_feature_size, + ) + + msg = f"Unsupported vision config: {type(vision_config)}" + raise NotImplementedError(msg) + + +def _init_vision_tower(hf_config: LlavaConfig): + vision_config = hf_config.vision_config + + # Initialize the vision tower only up to the required feature layer + vision_feature_layer = hf_config.vision_feature_layer + if vision_feature_layer < 0: + num_hidden_layers = hf_config.vision_config.num_hidden_layers \ + + vision_feature_layer + 1 + else: + num_hidden_layers = vision_feature_layer + 1 + + if isinstance(vision_config, CLIPVisionConfig): + return CLIPVisionModel( + vision_config, + num_hidden_layers_override=num_hidden_layers, + ) + elif isinstance(vision_config, SiglipVisionConfig): + return SiglipVisionModel( + vision_config, + num_hidden_layers_override=num_hidden_layers, ) msg = f"Unsupported vision config: {type(vision_config)}" @@ -128,36 +184,15 @@ def __init__(self, self.config = config self.multimodal_config = multimodal_config - # Initialize the vision tower only up to the required feature layer - vision_feature_layer = config.vision_feature_layer - if vision_feature_layer < 0: - num_hidden_layers = config.vision_config.num_hidden_layers \ - + vision_feature_layer + 1 - else: - num_hidden_layers = vision_feature_layer + 1 - # TODO: Optionally initializes this for supporting embeddings. - self.vision_tower = CLIPVisionModel( - config.vision_config, num_hidden_layers_override=num_hidden_layers) + self.vision_tower = _init_vision_tower(config) self.multi_modal_projector = LlavaMultiModalProjector( vision_hidden_size=config.vision_config.hidden_size, text_hidden_size=config.text_config.hidden_size, projector_hidden_act=config.projector_hidden_act) - self.quant_config = quant_config - self.language_model = LlamaModel(config.text_config, cache_config, - quant_config) - self.unpadded_vocab_size = config.text_config.vocab_size - self.lm_head = ParallelLMHead( - self.unpadded_vocab_size, - config.text_config.hidden_size, - org_num_embeddings=self.language_model.org_vocab_size, - quant_config=quant_config) - logit_scale = getattr(config, "logit_scale", 1.0) - self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, - config.text_config.vocab_size, - logit_scale) - self.sampler = Sampler() + self.language_model = init_vllm_registered_model( + config.text_config, cache_config, quant_config) def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor: h = w = self.config.vision_config.image_size @@ -198,8 +233,11 @@ def _select_image_features(self, image_features: torch.Tensor, *, raise ValueError(f"Unexpected select feature strategy: {strategy}") - def _image_pixels_to_features(self, vision_tower: CLIPVisionModel, - pixel_values: torch.Tensor) -> torch.Tensor: + def _image_pixels_to_features( + self, + vision_tower: Union[CLIPVisionModel, SiglipVisionModel], + pixel_values: torch.Tensor, + ) -> torch.Tensor: # NOTE: we skip the step to select the vision feature layer since # this is already done inside the vision tower @@ -272,7 +310,8 @@ def forward( if image_input is not None: vision_embeddings = self._process_image_input(image_input) - inputs_embeds = self.language_model.get_input_embeddings(input_ids) + inputs_embeds = self.language_model.model.get_input_embeddings( + input_ids) inputs_embeds = merge_vision_embeddings( input_ids, inputs_embeds, vision_embeddings, @@ -282,68 +321,44 @@ def forward( else: inputs_embeds = None - hidden_states = self.language_model(input_ids, - positions, - kv_caches, - attn_metadata, - None, - inputs_embeds=inputs_embeds) + hidden_states = self.language_model.model(input_ids, + positions, + kv_caches, + attn_metadata, + None, + inputs_embeds=inputs_embeds) return hidden_states def compute_logits(self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata) -> torch.Tensor: - logits = self.logits_processor(self.lm_head, hidden_states, - sampling_metadata) - return logits + return self.language_model.compute_logits(hidden_states, + sampling_metadata) def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: - next_tokens = self.sampler(logits, sampling_metadata) - return next_tokens + return self.language_model.sample(logits, sampling_metadata) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): - # only doing this for language model part for now. - stacked_params_mapping = [ - # (param_name, shard_name, shard_id) - ("qkv_proj", "q_proj", "q"), - ("qkv_proj", "k_proj", "k"), - ("qkv_proj", "v_proj", "v"), - ("gate_up_proj", "gate_proj", 0), - ("gate_up_proj", "up_proj", 1), - ] - params_dict = dict(self.named_parameters()) - for name, loaded_weight in weights: - if "rotary_emb.inv_freq" in name: - continue - # post_layernorm is not needed in CLIPVisionModel - if "vision_model.post_layernorm" in name: - continue - for key_to_modify, new_key in _KEYS_TO_MODIFY_MAPPING.items(): - if key_to_modify in name: - name = name.replace(key_to_modify, new_key) - use_default_weight_loading = False - if "vision" in name: - if self.vision_tower is not None: - # We only do sharding for language model and - # not vision model for now. - use_default_weight_loading = True - else: - for (param_name, weight_name, - shard_id) in stacked_params_mapping: - if weight_name not in name: - continue - param = params_dict[name.replace(weight_name, param_name)] - weight_loader = param.weight_loader - weight_loader(param, loaded_weight, shard_id) - break - else: - use_default_weight_loading = True - if use_default_weight_loading and name in params_dict: - param = params_dict[name] - weight_loader = getattr(param, "weight_loader", - default_weight_loader) - weight_loader(param, loaded_weight) + # prepare weight iterators for components + vit_weights, mlp_weights, llm_weights = itertools.tee(weights, 3) + + # load vision encoder + vit_weights = filter_weights(vit_weights, "vision_tower") + self.vision_tower.load_weights(vit_weights) + + # load mlp projector + mlp_weights = filter_weights(mlp_weights, "multi_modal_projector") + mlp_params_dict = dict(self.multi_modal_projector.named_parameters()) + for name, loaded_weight in mlp_weights: + param = mlp_params_dict[name] + weight_loader = getattr(param, "weight_loader", + default_weight_loader) + weight_loader(param, loaded_weight) + + # load llm backbone + llm_weights = filter_weights(llm_weights, "language_model") + self.language_model.load_weights(llm_weights) diff --git a/vllm/model_executor/models/llava_next.py b/vllm/model_executor/models/llava_next.py index 4a67b9a583ea8..9abc480f60dec 100644 --- a/vllm/model_executor/models/llava_next.py +++ b/vllm/model_executor/models/llava_next.py @@ -1,9 +1,10 @@ +import itertools from typing import Iterable, List, Literal, Optional, Tuple, TypedDict, Union import torch import torch.nn as nn from PIL import Image -from transformers import CLIPVisionConfig, LlavaNextConfig +from transformers import CLIPVisionConfig, LlavaNextConfig, SiglipVisionConfig from transformers.models.llava_next.modeling_llava_next import ( get_anyres_image_grid_shape, unpad_image) from typing_extensions import NotRequired @@ -12,23 +13,23 @@ from vllm.config import CacheConfig, MultiModalConfig from vllm.inputs import INPUT_REGISTRY, InputContext, LLMInputs from vllm.logger import init_logger -from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization.base_config import ( QuantizationConfig) -from vllm.model_executor.layers.sampler import Sampler -from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead from vllm.model_executor.model_loader.weight_utils import default_weight_loader -from vllm.model_executor.models.clip import CLIPVisionModel -from vllm.model_executor.models.llama import LlamaModel from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.sequence import IntermediateTensors, SamplerOutput -from .clip import (dummy_image_for_clip, dummy_seq_data_for_clip, +from .clip import (CLIPVisionModel, dummy_image_for_clip, + dummy_seq_data_for_clip, get_clip_image_feature_size, get_clip_patch_grid_length, input_processor_for_clip) from .interfaces import SupportsVision from .llava import LlavaMultiModalProjector -from .utils import merge_vision_embeddings +from .siglip import (SiglipVisionModel, dummy_image_for_siglip, + dummy_seq_data_for_siglip, get_siglip_image_feature_size, + get_siglip_patch_grid_length, input_processor_for_siglip) +from .utils import (filter_weights, init_vllm_registered_model, + merge_vision_embeddings) logger = init_logger(__name__) @@ -104,30 +105,42 @@ def get_llava_next_image_feature_size( image_size=vision_config.image_size, patch_size=vision_config.patch_size, ) - base_feature_size = num_patches * num_patches - - num_patch_height, num_patch_width = get_anyres_image_grid_shape( - image_size=(input_height, input_width), - grid_pinpoints=hf_config.image_grid_pinpoints, - patch_size=vision_config.image_size, + base_feature_size = get_clip_image_feature_size(vision_config) + elif isinstance(vision_config, SiglipVisionConfig): + num_patches = get_siglip_patch_grid_length( + image_size=vision_config.image_size, + patch_size=vision_config.patch_size, ) + base_feature_size = get_siglip_image_feature_size(vision_config) + else: + msg = f"Unsupported vision config: {type(vision_config)}" + raise NotImplementedError(msg) + + strategy = hf_config.vision_feature_select_strategy + if strategy == "default": + base_feature_size -= 1 + elif strategy == "full": + pass + else: + raise ValueError(f"Unexpected select feature strategy: {strategy}") - ( - unpadded_feature_size, - newline_feature_size, - ) = _get_llava_next_num_unpadded_features(input_height, input_width, - num_patches, - num_patch_height, - num_patch_width) + num_patch_height, num_patch_width = get_anyres_image_grid_shape( + image_size=(input_height, input_width), + grid_pinpoints=hf_config.image_grid_pinpoints, + patch_size=vision_config.image_size, + ) - return unpadded_feature_size + newline_feature_size + base_feature_size + ( + unpadded_feature_size, + newline_feature_size, + ) = _get_llava_next_num_unpadded_features(input_height, input_width, + num_patches, num_patch_height, + num_patch_width) - msg = f"Unsupported vision config: {type(vision_config)}" - raise NotImplementedError(msg) + return unpadded_feature_size + newline_feature_size + base_feature_size def get_max_llava_next_image_tokens(ctx: InputContext): - return get_llava_next_image_feature_size( ctx.get_hf_config(LlavaNextConfig), input_height=MAX_IMAGE_FEATURE_SIZE_HEIGHT, @@ -155,6 +168,21 @@ def dummy_data_for_llava_next(ctx: InputContext, seq_len: int): image_height_override=MAX_IMAGE_FEATURE_SIZE_HEIGHT, ) + return seq_data, mm_data + elif isinstance(vision_config, SiglipVisionConfig): + seq_data = dummy_seq_data_for_siglip( + vision_config, + seq_len, + image_token_id=hf_config.image_token_index, + image_feature_size_override=image_feature_size, + ) + + mm_data = dummy_image_for_siglip( + vision_config, + image_width_override=MAX_IMAGE_FEATURE_SIZE_WIDTH, + image_height_override=MAX_IMAGE_FEATURE_SIZE_HEIGHT, + ) + return seq_data, mm_data msg = f"Unsupported vision config: {type(vision_config)}" @@ -194,6 +222,40 @@ def input_processor_for_llava_next(ctx: InputContext, llm_inputs: LLMInputs): image_token_id=hf_config.image_token_index, image_feature_size_override=image_feature_size, ) + elif isinstance(vision_config, SiglipVisionConfig): + return input_processor_for_siglip( + model_config, + vision_config, + llm_inputs, + image_token_id=hf_config.image_token_index, + image_feature_size_override=image_feature_size, + ) + + msg = f"Unsupported vision config: {type(vision_config)}" + raise NotImplementedError(msg) + + +def _init_vision_tower(hf_config: LlavaNextConfig): + vision_config = hf_config.vision_config + + # Initialize the vision tower only up to the required feature layer + vision_feature_layer = hf_config.vision_feature_layer + if vision_feature_layer < 0: + num_hidden_layers = hf_config.vision_config.num_hidden_layers \ + + vision_feature_layer + 1 + else: + num_hidden_layers = vision_feature_layer + 1 + + if isinstance(vision_config, CLIPVisionConfig): + return CLIPVisionModel( + vision_config, + num_hidden_layers_override=num_hidden_layers, + ) + elif isinstance(vision_config, SiglipVisionConfig): + return SiglipVisionModel( + vision_config, + num_hidden_layers_override=num_hidden_layers, + ) msg = f"Unsupported vision config: {type(vision_config)}" raise NotImplementedError(msg) @@ -215,36 +277,15 @@ def __init__(self, self.config = config self.multimodal_config = multimodal_config - # Initialize the vision tower only up to the required feature layer - vision_feature_layer = config.vision_feature_layer - if vision_feature_layer < 0: - num_hidden_layers = config.vision_config.num_hidden_layers \ - + vision_feature_layer + 1 - else: - num_hidden_layers = vision_feature_layer + 1 - # TODO: Optionally initializes this for supporting embeddings. - self.vision_tower = CLIPVisionModel( - config.vision_config, num_hidden_layers_override=num_hidden_layers) + self.vision_tower = _init_vision_tower(config) self.multi_modal_projector = LlavaMultiModalProjector( vision_hidden_size=config.vision_config.hidden_size, text_hidden_size=config.text_config.hidden_size, projector_hidden_act=config.projector_hidden_act) - self.quant_config = quant_config - self.language_model = LlamaModel(config.text_config, cache_config, - quant_config) - self.unpadded_vocab_size = config.text_config.vocab_size - self.lm_head = ParallelLMHead( - self.unpadded_vocab_size, - config.text_config.hidden_size, - org_num_embeddings=self.language_model.org_vocab_size, - quant_config=quant_config) - logit_scale = getattr(config, "logit_scale", 1.0) - self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, - config.text_config.vocab_size, - logit_scale) - self.sampler = Sampler() + self.language_model = init_vllm_registered_model( + config.text_config, cache_config, quant_config) self.image_newline = nn.Parameter( torch.empty(config.text_config.hidden_size)) @@ -310,8 +351,11 @@ def _select_image_features(self, image_features: torch.Tensor, *, raise ValueError(f"Unexpected select feature strategy: {strategy}") - def _image_pixels_to_features(self, vision_tower: CLIPVisionModel, - pixel_values: torch.Tensor) -> torch.Tensor: + def _image_pixels_to_features( + self, + vision_tower: Union[CLIPVisionModel, SiglipVisionModel], + pixel_values: torch.Tensor, + ) -> torch.Tensor: # NOTE: we skip the step to select the vision feature layer since # this is already done inside the vision tower @@ -496,7 +540,8 @@ def forward( if image_input is not None: vision_embeddings = self._process_image_input(image_input) - inputs_embeds = self.language_model.get_input_embeddings(input_ids) + inputs_embeds = self.language_model.model.get_input_embeddings( + input_ids) inputs_embeds = merge_vision_embeddings( input_ids, inputs_embeds, vision_embeddings, @@ -506,68 +551,54 @@ def forward( else: inputs_embeds = None - hidden_states = self.language_model(input_ids, - positions, - kv_caches, - attn_metadata, - None, - inputs_embeds=inputs_embeds) + hidden_states = self.language_model.model(input_ids, + positions, + kv_caches, + attn_metadata, + None, + inputs_embeds=inputs_embeds) return hidden_states def compute_logits(self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata) -> torch.Tensor: - logits = self.logits_processor(self.lm_head, hidden_states, - sampling_metadata) - return logits + return self.language_model.compute_logits(hidden_states, + sampling_metadata) def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: - next_tokens = self.sampler(logits, sampling_metadata) - return next_tokens + return self.language_model.sample(logits, sampling_metadata) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): - # only doing this for language model part for now. - stacked_params_mapping = [ - # (param_name, shard_name, shard_id) - ("qkv_proj", "q_proj", "q"), - ("qkv_proj", "k_proj", "k"), - ("qkv_proj", "v_proj", "v"), - ("gate_up_proj", "gate_proj", 0), - ("gate_up_proj", "up_proj", 1), - ] - params_dict = dict(self.named_parameters()) - for name, loaded_weight in weights: - if "rotary_emb.inv_freq" in name: - continue - # post_layernorm is not needed in CLIPVisionModel - if "vision_model.post_layernorm" in name: - continue - for key_to_modify, new_key in _KEYS_TO_MODIFY_MAPPING.items(): - if key_to_modify in name: - name = name.replace(key_to_modify, new_key) - use_default_weight_loading = False - if "vision" in name: - if self.vision_tower is not None: - # We only do sharding for language model and - # not vision model for now. - use_default_weight_loading = True - else: - for (param_name, weight_name, - shard_id) in stacked_params_mapping: - if weight_name not in name: - continue - param = params_dict[name.replace(weight_name, param_name)] - weight_loader = param.weight_loader - weight_loader(param, loaded_weight, shard_id) - break - else: - use_default_weight_loading = True - if use_default_weight_loading and name in params_dict: - param = params_dict[name] - weight_loader = getattr(param, "weight_loader", - default_weight_loader) - weight_loader(param, loaded_weight) + # prepare weight iterators for components + vit_weights, mlp_weights, newline_weights, llm_weights = itertools.tee( + weights, 4) + + # load vision encoder + vit_weights = filter_weights(vit_weights, "vision_tower") + self.vision_tower.load_weights(vit_weights) + + # load mlp projector + mlp_weights = filter_weights(mlp_weights, "multi_modal_projector") + mlp_params_dict = dict(self.multi_modal_projector.named_parameters()) + for name, loaded_weight in mlp_weights: + param = mlp_params_dict[name] + weight_loader = getattr(param, "weight_loader", + default_weight_loader) + weight_loader(param, loaded_weight) + + # load newline + newline_weights = filter_weights(newline_weights, "image_newline") + for name, loaded_weight in newline_weights: + assert name == "" + param = self.image_newline + weight_loader = getattr(param, "weight_loader", + default_weight_loader) + weight_loader(param, loaded_weight) + + # load llm backbone + llm_weights = filter_weights(llm_weights, "language_model") + self.language_model.load_weights(llm_weights) diff --git a/vllm/model_executor/models/siglip.py b/vllm/model_executor/models/siglip.py index 6faef45c9a6d3..5ba14f73394f3 100644 --- a/vllm/model_executor/models/siglip.py +++ b/vllm/model_executor/models/siglip.py @@ -2,12 +2,12 @@ within a vision language model.""" import math -from typing import Optional, Tuple +from typing import Iterable, Optional, Tuple import torch from PIL import Image from torch import nn -from transformers import SiglipConfig, SiglipVisionConfig +from transformers import SiglipVisionConfig from transformers.models.siglip.modeling_siglip import SiglipAttention from vllm_flash_attn import flash_attn_func from xformers.ops import memory_efficient_attention @@ -22,13 +22,15 @@ from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.vocab_parallel_embedding import ( VocabParallelEmbedding) +from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.multimodal.image import (cached_get_tokenizer, repeat_and_pad_image_tokens) from vllm.sequence import SequenceData def get_siglip_patch_grid_length(*, image_size: int, patch_size: int) -> int: - assert image_size % patch_size == 0 + # Since interpolation is applied, the image size need not be divisible + # assert image_size % patch_size == 0 return image_size // patch_size @@ -454,7 +456,7 @@ class SiglipEncoderLayer(nn.Module): def __init__( self, - config: SiglipConfig, + config: SiglipVisionConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() @@ -474,7 +476,7 @@ def __init__( def forward( self, hidden_states: torch.Tensor, - ) -> Tuple[torch.Tensor]: + ) -> Tuple[torch.Tensor, None]: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) @@ -493,22 +495,27 @@ class SiglipEncoder(nn.Module): def __init__( self, - config: SiglipConfig, + config: SiglipVisionConfig, quant_config: Optional[QuantizationConfig] = None, + num_hidden_layers_override: Optional[int] = None, ): super().__init__() self.config = config + + if num_hidden_layers_override is None: + num_hidden_layers = config.num_hidden_layers + else: + num_hidden_layers = num_hidden_layers_override + self.layers = nn.ModuleList([ - SiglipEncoderLayer( - config, - quant_config=quant_config, - ) for _ in range(config.num_hidden_layers) + SiglipEncoderLayer(config, quant_config=quant_config) + for _ in range(num_hidden_layers) ]) def forward( self, inputs_embeds: torch.Tensor, - ) -> Tuple: + ) -> torch.Tensor: hidden_states = inputs_embeds for encoder_layer in self.layers: hidden_states, _ = encoder_layer(hidden_states) @@ -553,6 +560,7 @@ def __init__( self, config: SiglipVisionConfig, quant_config: Optional[QuantizationConfig] = None, + num_hidden_layers_override: Optional[int] = None, ): super().__init__() self.config = config @@ -562,6 +570,7 @@ def __init__( self.encoder = SiglipEncoder( config, quant_config=quant_config, + num_hidden_layers_override=num_hidden_layers_override, ) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @@ -600,11 +609,13 @@ def __init__( self, config: SiglipVisionConfig, quant_config: Optional[QuantizationConfig] = None, + num_hidden_layers_override: Optional[int] = None, ): super().__init__() self.vision_model = SiglipVisionTransformer( config, quant_config, + num_hidden_layers_override=num_hidden_layers_override, ) def get_input_embeddings(self) -> nn.Module: @@ -619,3 +630,19 @@ def forward( pixel_values=pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, ) + + def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): + params_dict = dict(self.named_parameters()) + layer_count = len(self.vision_model.encoder.layers) + + for name, loaded_weight in weights: + # omit layers when num_hidden_layers_override is set + if "vision_model.encoder.layers." in name: + layer_idx = int(name.split(".")[3]) + if layer_idx >= layer_count: + continue + + param = params_dict[name] + weight_loader = getattr(param, "weight_loader", + default_weight_loader) + weight_loader(param, loaded_weight) diff --git a/vllm/model_executor/models/utils.py b/vllm/model_executor/models/utils.py index 91b4a27814bf4..d1bb030c6c90f 100644 --- a/vllm/model_executor/models/utils.py +++ b/vllm/model_executor/models/utils.py @@ -1,22 +1,70 @@ -from typing import Dict, List, Protocol, Tuple +from typing import Dict, Iterable, List, Optional, Protocol, Tuple import torch +import torch.nn as nn from torch.func import functional_call +from transformers import PretrainedConfig +from vllm.config import (CacheConfig, LoRAConfig, MultiModalConfig, + SchedulerConfig) +from vllm.model_executor.layers.quantization import QuantizationConfig +from vllm.model_executor.model_loader.loader import build_model +from vllm.model_executor.models import ModelRegistry from vllm.multimodal import BatchedTensors from vllm.utils import is_pin_memory_available +def filter_weights(weights: Iterable[Tuple[str, torch.Tensor]], prefix: str): + """ + Helper function to load weights for inner vLLM models. + + See also: + :ref:`init_vllm_registered_model` + """ + for name, loaded_weight in weights: + name = name.split(".") + if prefix == name.pop(0): + name = ".".join(name) + yield name, loaded_weight + + +def init_vllm_registered_model( + hf_config: PretrainedConfig, + cache_config: Optional[CacheConfig], + quant_config: Optional[QuantizationConfig], + *, + lora_config: Optional[LoRAConfig] = None, + multimodal_config: Optional[MultiModalConfig] = None, + scheduler_config: Optional[SchedulerConfig] = None, +) -> nn.Module: + """ + Helper function to initialize an inner model registered to vLLM, + based on the arguments passed to the outer vLLM model. + """ + model_class, _ = ModelRegistry.resolve_model_cls(hf_config.architectures) + + return build_model( + model_class, + hf_config, + cache_config, + quant_config, + lora_config=lora_config, + multimodal_config=multimodal_config, + scheduler_config=scheduler_config, + ) + + def merge_vision_embeddings(input_ids: torch.Tensor, inputs_embeds: torch.Tensor, vision_embeddings: BatchedTensors, image_token_id: int) -> torch.Tensor: """ - Merge `vision_embeddings` into `inputs_embeds` by overwriting the positions - in `inputs_embeds` corresponding to placeholder image tokens in `input_ids`. + Merge ``vision_embeddings`` into ``inputs_embeds`` by overwriting the + positions in ``inputs_embeds`` corresponding to placeholder image tokens in + ``input_ids``. Note: - This updates `inputs_embeds` in place. + This updates ``inputs_embeds`` in place. """ mask = (input_ids == image_token_id) num_expected_tokens = mask.sum() From a3bbbfa1d8c2f30581d37c6f30429d648bbbf87c Mon Sep 17 00:00:00 2001 From: Dipika Sikka Date: Tue, 6 Aug 2024 11:16:53 -0400 Subject: [PATCH 009/237] [BugFix] Fix DeepSeek remote code (#7178) --- .../lm-eval-harness/configs/DeepSeek-V2-Lite-Chat.yaml | 1 + .buildkite/lm-eval-harness/test_lm_eval_correctness.py | 5 ++++- 2 files changed, 5 insertions(+), 1 deletion(-) diff --git a/.buildkite/lm-eval-harness/configs/DeepSeek-V2-Lite-Chat.yaml b/.buildkite/lm-eval-harness/configs/DeepSeek-V2-Lite-Chat.yaml index 15268395ec68b..d70ecb2a7e7b0 100644 --- a/.buildkite/lm-eval-harness/configs/DeepSeek-V2-Lite-Chat.yaml +++ b/.buildkite/lm-eval-harness/configs/DeepSeek-V2-Lite-Chat.yaml @@ -9,3 +9,4 @@ tasks: value: 0.664 limit: 1000 num_fewshot: 5 +trust_remote_code: True \ No newline at end of file diff --git a/.buildkite/lm-eval-harness/test_lm_eval_correctness.py b/.buildkite/lm-eval-harness/test_lm_eval_correctness.py index 7fdce7b53bd7f..af3226f51f4ff 100644 --- a/.buildkite/lm-eval-harness/test_lm_eval_correctness.py +++ b/.buildkite/lm-eval-harness/test_lm_eval_correctness.py @@ -23,9 +23,12 @@ def launch_lm_eval(eval_config): + trust_remote_code = eval_config.get('trust_remote_code', False) + model_args = f"pretrained={eval_config['model_name']}," \ f"tensor_parallel_size={TP_SIZE}," \ - f"add_bos_token=true" + f"add_bos_token=true," \ + f"trust_remote_code={trust_remote_code}" results = lm_eval.simple_evaluate( model="vllm", From 541c1852d37b9502fbc06253def70e901ca0c352 Mon Sep 17 00:00:00 2001 From: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com> Date: Tue, 6 Aug 2024 12:26:26 -0400 Subject: [PATCH 010/237] [ BugFix ] Fix ZMQ when `VLLM_PORT` is set (#7205) --- vllm/envs.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/vllm/envs.py b/vllm/envs.py index 089a39d8e029d..81d2d80e65e46 100644 --- a/vllm/envs.py +++ b/vllm/envs.py @@ -145,7 +145,7 @@ def get_default_config_root(): # used when the frontend api server is running in multi-processing mode, # to communicate with the backend engine process over ZMQ. 'VLLM_RPC_PORT': - lambda: int(os.getenv('VLLM_PORT', '5570')), + lambda: int(os.getenv('VLLM_RPC_PORT', '5570')), # If true, will load models from ModelScope instead of Hugging Face Hub. # note that the value is true or false, not numbers From 00afc7859072bdcaba30611c6563f2f7ac7104a3 Mon Sep 17 00:00:00 2001 From: Katarzyna Papis Date: Tue, 6 Aug 2024 19:08:35 +0200 Subject: [PATCH 011/237] [Bugfix] add gguf dependency (#7198) Co-authored-by: katarzyna.papis --- requirements-openvino.txt | 1 + 1 file changed, 1 insertion(+) diff --git a/requirements-openvino.txt b/requirements-openvino.txt index a86c6cb580484..2dd971d6400be 100644 --- a/requirements-openvino.txt +++ b/requirements-openvino.txt @@ -25,6 +25,7 @@ outlines >= 0.0.43, < 0.1 # Requires torch >= 2.1.0 typing_extensions filelock >= 3.10.4 # filelock starts to support `mode` argument from 3.10.4 pyzmq +gguf == 0.9.1 # OpenVINO dependencies torch >= 2.1.2 From 5c60c8c423197bcf20fdc5217d79b78532033f04 Mon Sep 17 00:00:00 2001 From: Lily Liu Date: Tue, 6 Aug 2024 10:40:32 -0700 Subject: [PATCH 012/237] [SpecDecode] [Minor] Fix spec decode sampler tests (#7183) --- tests/samplers/test_rejection_sampler.py | 14 +++++++------- .../test_typical_acceptance_sampler.py | 18 +++++++++--------- .../layers/spec_decode_base_sampler.py | 9 ++++++--- 3 files changed, 22 insertions(+), 19 deletions(-) diff --git a/tests/samplers/test_rejection_sampler.py b/tests/samplers/test_rejection_sampler.py index 8f6c292620c20..3ce4a5f658198 100644 --- a/tests/samplers/test_rejection_sampler.py +++ b/tests/samplers/test_rejection_sampler.py @@ -25,7 +25,7 @@ def mock_causal_accepted_tensor( accepted = (torch.arange(k).expand(batch_size, k) <= last_accepted_indices.unsqueeze(-1).broadcast_to( - batch_size, k)).to(device="cuda") + batch_size, k)) # Sprinkle accepted values after the contiguous initial accepted values. # This replicates the behavior of rejection sampling, which may "accept" @@ -33,7 +33,7 @@ def mock_causal_accepted_tensor( sprinkle_candidates = ( torch.arange(k).expand(batch_size, k) > last_accepted_indices.unsqueeze(-1).broadcast_to(batch_size, k) + 1) - sprinkle = torch.rand(batch_size, k, device="cuda") > 0.5 + sprinkle = torch.rand(batch_size, k) > 0.5 accepted[sprinkle_candidates] = sprinkle[sprinkle_candidates] return accepted @@ -86,7 +86,7 @@ def test_correct_output_format(which_tokens_accepted: str, rejection_sampler = RejectionSampler( disable_bonus_tokens=disable_bonus_tokens) - rejection_sampler.init_gpu_tensors(rank=0) + rejection_sampler.init_gpu_tensors(device=device) output_token_ids = rejection_sampler._create_output( # pylint: disable=protected-access accepted, recovered_token_ids, @@ -138,7 +138,7 @@ def test_no_crash_with_varying_dims(k: int, vocab_size: int, batch_size: int, device: str): torch.set_default_device(device) rejection_sampler = RejectionSampler() - rejection_sampler.init_gpu_tensors(rank=0) + rejection_sampler.init_gpu_tensors(device=device) draft_probs = torch.rand(batch_size, k, vocab_size, dtype=torch.float32) target_probs = torch.rand(batch_size, k, vocab_size, dtype=torch.float32) @@ -167,7 +167,7 @@ def test_deterministic_when_seeded(k: int, vocab_size: int, batch_size: int, device: str): torch.set_default_device(device) rejection_sampler = RejectionSampler() - rejection_sampler.init_gpu_tensors(rank=0) + rejection_sampler.init_gpu_tensors(device=device) draft_probs = torch.rand(batch_size, k, vocab_size, dtype=torch.float32) target_probs = torch.rand(batch_size, k, vocab_size, dtype=torch.float32) @@ -211,7 +211,7 @@ def test_raises_when_vocab_oob(above_or_below_vocab_range: str, torch.set_default_device(device) rejection_sampler = RejectionSampler(strict_mode=True) - rejection_sampler.init_gpu_tensors(rank=0) + rejection_sampler.init_gpu_tensors(device=device) draft_probs = torch.rand(batch_size, k, vocab_size, dtype=torch.float32) target_probs = torch.rand(batch_size, k, vocab_size, dtype=torch.float32) @@ -339,7 +339,7 @@ def __init__(self, vocab_size: int, rejection_sampler: RejectionSampler): self.vocab_size = vocab_size self.vocab_range = (0, vocab_size) - self.rejection_sampler.init_gpu_tensors(rank=0) + self.rejection_sampler.init_gpu_tensors(device=0) # Keep test simple, use k=1 self.k = 1 diff --git a/tests/samplers/test_typical_acceptance_sampler.py b/tests/samplers/test_typical_acceptance_sampler.py index 4f6290795b2ce..aa3c1d29bdb36 100644 --- a/tests/samplers/test_typical_acceptance_sampler.py +++ b/tests/samplers/test_typical_acceptance_sampler.py @@ -78,7 +78,7 @@ def test_no_crash_with_varying_dims(k: int, vocab_size: int, batch_size: int, """ torch.set_default_device(device) typical_acceptance_sampler = get_acceptance_sampler() - typical_acceptance_sampler.init_gpu_tensors(rank=0) + typical_acceptance_sampler.init_gpu_tensors(device=device) target_probs = torch.rand(batch_size, k, vocab_size, dtype=torch.float32) bonus_token_ids = torch.randint(low=0, high=vocab_size, @@ -111,7 +111,7 @@ def test_raises_when_vocab_oob(above_or_below_vocab_range: str, vocab_size = 30_000 torch.set_default_device(device) typical_acceptance_sampler = get_acceptance_sampler(strict_mode=True) - typical_acceptance_sampler.init_gpu_tensors(rank=0) + typical_acceptance_sampler.init_gpu_tensors(device=device) target_probs = torch.rand(batch_size, k, vocab_size, dtype=torch.float32) bonus_token_ids = torch.randint(low=0, high=vocab_size, @@ -171,7 +171,7 @@ def test_uniform_target_distribution_accepts_all_tokens( torch.set_default_device(device) typical_acceptance_sampler = get_acceptance_sampler( strict_mode=True, disable_bonus_tokens=disable_bonus_tokens) - typical_acceptance_sampler.init_gpu_tensors(rank=0) + typical_acceptance_sampler.init_gpu_tensors(device=device) target_probs = torch.rand(batch_size, k, vocab_size, dtype=torch.float32) draft_token_ids = torch.randint(low=0, high=vocab_size, @@ -225,7 +225,7 @@ def test_temperature_zero_target_distribution(seed: int, typical_acceptance_sampler = get_acceptance_sampler( strict_mode=True, disable_bonus_tokens=disable_bonus_tokens) - typical_acceptance_sampler.init_gpu_tensors(rank=0) + typical_acceptance_sampler.init_gpu_tensors(device=device) # Simulate temperature 0 probability distribution for target probabilities # and create target probabilities such that only 1 token id has # probability 1.0 @@ -285,7 +285,7 @@ def test_mixed_target_distribution(seed: int, disable_bonus_tokens: bool, torch.set_default_device(device) typical_acceptance_sampler = get_acceptance_sampler( strict_mode=True, disable_bonus_tokens=disable_bonus_tokens) - typical_acceptance_sampler.init_gpu_tensors(rank=0) + typical_acceptance_sampler.init_gpu_tensors(device=device) # For sequences 0 and 2 set the distribution to a temperature # zero distribution. For sequences 1 and 3 set it to a uniform # distribution. @@ -352,7 +352,7 @@ def test_accept_tokens_partially(seed: int, disable_bonus_tokens: bool, torch.set_default_device(device) typical_acceptance_sampler = get_acceptance_sampler( strict_mode=True, disable_bonus_tokens=disable_bonus_tokens) - typical_acceptance_sampler.init_gpu_tensors(rank=0) + typical_acceptance_sampler.init_gpu_tensors(device=device) # Create a temperature zero target probability distribution and ensure # all draft token ids correspond to the tokens with 1.0 probability. # Verify that all of them are accepted. @@ -414,7 +414,7 @@ def test_accept_tokens_set_non_default_posteriors(seed: int, torch.set_default_device(device) typical_acceptance_sampler = get_acceptance_sampler( strict_mode=True, disable_bonus_tokens=disable_bonus_tokens) - typical_acceptance_sampler.init_gpu_tensors(rank=0) + typical_acceptance_sampler.init_gpu_tensors(device=device) # Simulate temperature 0 probability distribution for target # probabilities and create target probabilities such that only 1 token # id has probability 1.0 and others have a very low probability of @@ -447,7 +447,7 @@ def test_accept_tokens_set_non_default_posteriors(seed: int, disable_bonus_tokens=disable_bonus_tokens, posterior_threshold=0.0, posterior_alpha=0.0) - typical_acceptance_sampler.init_gpu_tensors(rank=0) + typical_acceptance_sampler.init_gpu_tensors(device=device) output_token_ids = typical_acceptance_sampler( target_probs, bonus_token_ids, @@ -485,7 +485,7 @@ def test_replacement_token_ids(seed: int, disable_bonus_tokens: bool, torch.set_default_device(device) typical_acceptance_sampler = get_acceptance_sampler( strict_mode=True, disable_bonus_tokens=disable_bonus_tokens) - typical_acceptance_sampler.init_gpu_tensors(rank=0) + typical_acceptance_sampler.init_gpu_tensors(device=device) target_probs = torch.rand(batch_size, k, vocab_size, dtype=torch.float32) expected_replacement_tokens = -torch.ones( (batch_size, k), dtype=torch.long) diff --git a/vllm/model_executor/layers/spec_decode_base_sampler.py b/vllm/model_executor/layers/spec_decode_base_sampler.py index 3091e639727b0..467c43c41550e 100644 --- a/vllm/model_executor/layers/spec_decode_base_sampler.py +++ b/vllm/model_executor/layers/spec_decode_base_sampler.py @@ -1,5 +1,5 @@ from abc import abstractmethod -from typing import Dict, Optional +from typing import Dict, Optional, Union import torch import torch.jit @@ -36,9 +36,12 @@ def __init__(self, self.num_emitted_tokens: Optional[torch.Tensor] = None self.num_draft_tokens: int = 0 - def init_gpu_tensors(self, rank: int) -> None: + def init_gpu_tensors(self, device: Union[int, str]) -> None: assert self.num_accepted_tokens is None - device = f"cuda:{rank}" + if isinstance(device, int): + device = f"cuda:{device}" + elif not isinstance(device, str): + raise ValueError(f"Device must be int or str, get {type(device)}") self.num_accepted_tokens = torch.tensor(0, dtype=torch.long, device=device) From 8d59dbb00044a588cab96bcdc028006ed922eb06 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Luka=20Govedi=C4=8D?= Date: Tue, 6 Aug 2024 14:17:08 -0400 Subject: [PATCH 013/237] [Kernel] Add per-tensor and per-token AZP epilogues (#5941) Co-authored-by: Tyler Michael Smith --- .../cutlass_benchmarks/w8a8_benchmarks.py | 185 +++++++------ csrc/ops.h | 8 + csrc/quantization/cutlass_w8a8/Epilogues.md | 147 ++++++++++ .../broadcast_load_epilogue_c2x.hpp | 152 ++++++++++- .../cutlass_w8a8/scaled_mm_c2x.cu | 57 ++++ .../cutlass_w8a8/scaled_mm_c2x.cuh | 253 ++++++++++++++--- .../cutlass_w8a8/scaled_mm_c3x.cu | 258 ++++++++++++++++-- .../cutlass_w8a8/scaled_mm_entry.cu | 111 +++++++- csrc/torch_bindings.cpp | 11 +- tests/kernels/test_cutlass.py | 120 +++++++- vllm/_custom_ops.py | 26 +- 11 files changed, 1175 insertions(+), 153 deletions(-) create mode 100644 csrc/quantization/cutlass_w8a8/Epilogues.md diff --git a/benchmarks/cutlass_benchmarks/w8a8_benchmarks.py b/benchmarks/cutlass_benchmarks/w8a8_benchmarks.py index 64011b2db2395..63cf5d50cac75 100644 --- a/benchmarks/cutlass_benchmarks/w8a8_benchmarks.py +++ b/benchmarks/cutlass_benchmarks/w8a8_benchmarks.py @@ -32,7 +32,6 @@ def to_int8(tensor: torch.Tensor) -> torch.Tensor: def make_rand_tensors(dtype: torch.dtype, m: int, n: int, k: int) -> Tuple[torch.Tensor, torch.Tensor]: - a = torch.randn((m, k), device='cuda') * 5 b = torch.randn((n, k), device='cuda').t() * 5 @@ -44,59 +43,18 @@ def make_rand_tensors(dtype: torch.dtype, m: int, n: int, raise ValueError("unsupported dtype") -# impl - - -def pytorch_mm_impl(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor, - scale_b: torch.Tensor, - out_dtype: torch.dtype) -> torch.Tensor: - return torch.mm(a, b) - - -def pytorch_fp8_impl(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor, - scale_b: torch.Tensor, - out_dtype: torch.dtype) -> torch.Tensor: - return torch._scaled_mm(a, - b, - scale_a=scale_a, - scale_b=scale_b, - out_dtype=out_dtype) - - -def pytorch_fp8_impl_fast_accum(a: torch.Tensor, b: torch.Tensor, - scale_a: torch.Tensor, scale_b: torch.Tensor, - out_dtype: torch.dtype) -> torch.Tensor: - return torch._scaled_mm(a, - b, - scale_a=scale_a, - scale_b=scale_b, - out_dtype=out_dtype, - use_fast_accum=True) - - -def cutlass_impl(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor, - scale_b: torch.Tensor, - out_dtype: torch.dtype) -> torch.Tensor: - return ops.cutlass_scaled_mm(a, b, scale_a, scale_b, out_dtype=out_dtype) - - # bench -def bench_fn(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor, - scale_b: torch.Tensor, out_dtype: torch.dtype, label: str, - sub_label: str, fn: Callable, description: str) -> TMeasurement: - +def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args, + **kwargs) -> TMeasurement: min_run_time = 1 globals = { - "a": a, - "b": b, - "scale_a": scale_a, - "scale_b": scale_b, - "out_dtype": out_dtype, + "args": args, + "kwargs": kwargs, "fn": fn, } return TBenchmark.Timer( - stmt="fn(a, b, scale_a, scale_b, out_dtype)", + stmt="fn(*args, **kwargs)", globals=globals, label=label, sub_label=sub_label, @@ -110,26 +68,58 @@ def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str, a, b = make_rand_tensors(torch.int8, m, n, k) scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32) scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32) + bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16) + azp = torch.zeros((m, ), device="cuda", dtype=torch.int32) + azp_adj = torch.zeros((n, ), device="cuda", dtype=torch.int32) timers = [] # pytorch impl - bfloat16 timers.append( - bench_fn(a.to(dtype=torch.bfloat16, device="cuda"), - b.to(dtype=torch.bfloat16, device="cuda"), scale_a, scale_b, - torch.bfloat16, label, sub_label, pytorch_mm_impl, - "pytorch_bf16_bf16_bf16_matmul-no-scales")) + bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales", + torch.mm, a.to(dtype=torch.bfloat16), + b.to(dtype=torch.bfloat16))) # pytorch impl - float16 timers.append( - bench_fn(a.to(dtype=torch.float16, device="cuda"), - b.to(dtype=torch.float16, device="cuda"), scale_a, scale_b, - torch.float16, label, sub_label, pytorch_mm_impl, - "pytorch_fp16_fp16_fp16_matmul-no-scales")) + bench_fn(label, sub_label, + "pytorch_fp16_fp16_fp16_matmul-no-scales", torch.mm, + a.to(dtype=torch.float16), b.to(dtype=torch.float16))) # cutlass impl timers.append( - bench_fn(a, b, scale_a, scale_b, torch.bfloat16, label, sub_label, - cutlass_impl, "cutlass_i8_i8_bf16_scaled_mm")) + bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm", + ops.cutlass_scaled_mm, a, b, scale_a, scale_b, + torch.bfloat16)) + + # cutlass with bias + timers.append( + bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_bias", + ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16, + bias)) + + # cutlass with azp per-tensor + timers.append( + bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp", + ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b, + torch.bfloat16, azp_adj)) + + # cutlass with azp per-tensor + bias + timers.append( + bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_bias", + ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b, + torch.bfloat16, azp_adj, None, bias)) + + # cutlass with azp per-token + timers.append( + bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_pt", + ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b, + torch.bfloat16, azp_adj, azp)) + + # cutlass with azp per-token + bias + timers.append( + bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias", + ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b, + torch.bfloat16, azp_adj, azp, bias)) return timers @@ -140,46 +130,88 @@ def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str, a, b = make_rand_tensors(torch.float8_e4m3fn, m, n, k) scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32) scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32) + bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16) timers = [] # pytorch impl w. bf16 timers.append( - bench_fn(a.to(dtype=torch.bfloat16, device="cuda"), - b.to(dtype=torch.bfloat16, device="cuda"), scale_a, scale_b, - torch.bfloat16, label, sub_label, pytorch_mm_impl, - "pytorch_bf16_bf16_bf16_matmul-no-scales")) + bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales", + torch.mm, a.to(dtype=torch.bfloat16, device="cuda"), + b.to(dtype=torch.bfloat16, device="cuda"))) # pytorch impl: bf16 output, without fp8 fast accum timers.append( - bench_fn(a, b, scale_a, scale_b, torch.bfloat16, label, sub_label, - pytorch_fp8_impl, "pytorch_fp8_fp8_bf16_scaled_mm")) + bench_fn(label, + sub_label, + "pytorch_fp8_fp8_bf16_scaled_mm", + torch._scaled_mm, + a, + b, + scale_a=scale_a, + scale_b=scale_b, + out_dtype=torch.bfloat16)) # pytorch impl: bf16 output, with fp8 fast accum timers.append( - bench_fn(a, b, scale_a, scale_b, torch.bfloat16, label, sub_label, - pytorch_fp8_impl_fast_accum, - "pytorch_fp8_fp8_bf16_scaled_mm_fast_accum")) + bench_fn(label, + sub_label, + "pytorch_fp8_fp8_bf16_scaled_mm_fast_accum", + torch._scaled_mm, + a, + b, + scale_a=scale_a, + scale_b=scale_b, + out_dtype=torch.bfloat16, + use_fast_accum=True)) # pytorch impl: fp16 output, without fp8 fast accum timers.append( - bench_fn(a, b, scale_a, scale_b, torch.float16, label, sub_label, - pytorch_fp8_impl, "pytorch_fp8_fp8_fp16_scaled_mm")) + bench_fn(label, + sub_label, + "pytorch_fp8_fp8_fp16_scaled_mm", + torch._scaled_mm, + a, + b, + scale_a=scale_a, + scale_b=scale_b, + out_dtype=torch.float16)) # pytorch impl: fp16 output, with fp8 fast accum timers.append( - bench_fn(a, b, scale_a, scale_b, torch.float16, label, sub_label, - pytorch_fp8_impl_fast_accum, - "pytorch_fp8_fp8_fp16_scaled_mm_fast_accum")) + bench_fn(label, + sub_label, + "pytorch_fp8_fp8_fp16_scaled_mm_fast_accum", + torch._scaled_mm, + a, + b, + scale_a=scale_a, + scale_b=scale_b, + out_dtype=torch.float16, + use_fast_accum=True)) # cutlass impl: bf16 output timers.append( - bench_fn(a, b, scale_a, scale_b, torch.bfloat16, label, sub_label, - cutlass_impl, "cutlass_fp8_fp8_bf16_scaled_mm")) + bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm", + ops.cutlass_scaled_mm, a, b, scale_a, scale_b, + torch.bfloat16)) # cutlass impl: fp16 output timers.append( - bench_fn(a, b, scale_a, scale_b, torch.float16, label, sub_label, - cutlass_impl, "cutlass_fp8_fp8_fp16_scaled_mm")) + bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_mm", + ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.float16)) + + # cutlass impl: bf16 output, with bias + timers.append( + bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm_bias", + ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16, + bias)) + + # cutlass impl: fp16 output, with bias + timers.append( + bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_mm_bias", + ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.float16, + bias.to(dtype=torch.float16))) + return timers @@ -200,7 +232,6 @@ def print_timers(timers: Iterable[TMeasurement]): def run(dtype: torch.dtype, MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]: - results = [] for m, k, n in MKNs: timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm", @@ -216,7 +247,6 @@ def make_output(data: Iterable[TMeasurement], MKNs: Iterable[Tuple[int, int, int]], base_description: str, timestamp=None): - print(f"== All Results {base_description} ====") print_timers(data) @@ -251,7 +281,6 @@ def run_range_bench(args): def run_model_bench(args): - print("Benchmarking models:") for i, model in enumerate(args.models): print(f"[{i}] {model}") diff --git a/csrc/ops.h b/csrc/ops.h index e9e5f79a4a6f6..023455f8a1530 100644 --- a/csrc/ops.h +++ b/csrc/ops.h @@ -128,6 +128,14 @@ void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a, torch::Tensor const& b_scales, c10::optional const& bias); +void cutlass_scaled_mm_azp(torch::Tensor& out, torch::Tensor const& a, + torch::Tensor const& b, + torch::Tensor const& a_scales, + torch::Tensor const& b_scales, + torch::Tensor const& azp_adj, + c10::optional const& azp, + c10::optional const& bias); + torch::Tensor marlin_qqq_gemm(torch::Tensor const& a, torch::Tensor const& b_q_weight, torch::Tensor const& s_tok, diff --git a/csrc/quantization/cutlass_w8a8/Epilogues.md b/csrc/quantization/cutlass_w8a8/Epilogues.md new file mode 100644 index 0000000000000..aae04157b10de --- /dev/null +++ b/csrc/quantization/cutlass_w8a8/Epilogues.md @@ -0,0 +1,147 @@ +# CUTLASS Epilogues + +## Introduction +This document describes the various CUTLASS epilogues implemented for fusing de-quantization operations onto GEMMs. + +Currently, we only support symmetric quantization for weights, +and symmetric and asymmetric quantization for activations. +Both can be quantized per-tensor or per-channel (weights) / per-token (activations). + +There are 4 epilogues: +1. ScaledEpilogue: symmetric quantization for activations, no bias. +1. ScaledEpilogueBias: symmetric quantization for activations, supports bias. +1. ScaledEpilogueAzp: asymmetric per-tensor quantization for activations, supports bias. +1. ScaledEpilogueAzpPerToken: asymmetric per-token quantization for activations, supports bias. + +We do not have epilogues for asymmetric quantization of activations without bias in order to reduce final binary size. +Instead, if no bias is passed, the epilogue will use 0 as the bias. +That induces a redundant addition operation (and runtime check), but the performance impact is minor. + +## Underlying Linear Algebra + +More details available in the [Activation Quantization RFC](https://github.com/vllm-project/vllm/issues/3975). + +If $` \widehat X `$ is the quantized $` X `$, our matrices become the following + +```math +A = s_a (\widehat A - J_a z_a) +``` +```math +B = s_b \widehat B +``` +```math +D = A B + C +``` +```math +D = s_a s_b \widehat D + C +``` + +Here, D is the output of the GEMM, and C is the bias. +A is the activations and supports asymmetric quantization, +and B is the weights and only supports symmetric quantization. +$ s_a $ and $s_b$ are the scales for activations and weights, respectively. +$ z_a $ is the zero-point for activations, and $ J_a $ is the matrix of all ones with dimensions of A. +Additional epilogues would be required to support asymmetric quantization for weights. + +Expanding further, we can calculate $` \widehat D `$ as follows: + +```math +A B = s_a ( \widehat A - J_a z_a ) s_b \widehat B +``` +```math +A B = s_a s_b \left( \widehat A \widehat B - J_a z_a \widehat B \right) +``` +```math +\widehat D = \widehat A \widehat B - z_a J_a \widehat B +``` + +Note that $` \widehat A \widehat B `$ is the raw output of the GEMM, +and $` J_a \widehat B `$ is known ahead of time. +Each row of it is equal to $` \mathbf 1 \widehat B `$, which is a row-vector of column sums of $` \widehat B `$. + +## Epilogues + +### ScaledEpilogue +This epilogue computes the symmetric quantization for activations without bias, meaning $` C = 0 `$ and $` z_a = 0 `$. +The output of the GEMM is: + +```math +\widehat D = \widehat A \widehat B +``` +```math +D = s_a s_b \widehat D +``` +```math +D = s_a s_b \widehat A \widehat B +``` + +Epilogue parameters: +- `scale_a` is the scale for activations, can be per-tensor (scalar) or per-token (column-vector). +- `scale_b` is the scale for weights, can be per-tensor (scalar) or per-channel (row-vector). + +### ScaledEpilogueBias +This epilogue computes the symmetric quantization for activations with bias, meaning $` z_a = 0 `$. +The output of the GEMM is: + +```math +\widehat D = \widehat A \widehat B +``` +```math +D = s_a s_b \widehat D + C +``` +```math +D = s_a s_b \widehat A \widehat B + C +``` + + +Epilogue parameters: +- `scale_a` is the scale for activations, can be per-tensor (scalar) or per-token (column-vector). +- `scale_b` is the scale for weights, can be per-tensor (scalar) or per-channel (row-vector). +- `bias` is the bias, is always per-channel (row-vector). + +### ScaledEpilogueAzp +This epilogue computes the asymmetric per-tensor quantization for activations with bias. +The output of the GEMM is: + +```math +\widehat D = \widehat A \widehat B - z_a J_a \widehat B +``` +```math +D = s_a s_b \widehat D + C +``` +```math +D = s_a s_b \left( \widehat A \widehat B - z_a J_a \widehat B \right) + C +``` + +Because $` z_a `$ is a scalar, the zero-point term $` z_a J_a \widehat B `$ has every row equal to $` z_a \mathbf 1 B `$. +That is precomputed and stored in `azp_with_adj` as a row-vector. + +Epilogue parameters: +- `scale_a` is the scale for activations, can be per-tensor (scalar) or per-token (column-vector). + - Generally this will be per-tensor as the zero-points are per-tensor. +- `scale_b` is the scale for weights, can be per-tensor (scalar) or per-channel (row-vector). +- `azp_with_adj` is the precomputed zero-point term ($` z_a J_a \widehat B `$), is per-channel (row-vector). +- `bias` is the bias, is always per-channel (row-vector). + +To use these kernels efficiently, users must precompute the `azp_with_adj` term offline and pass it to the kernel. + +### ScaledEpilogueAzpPerToken +This epilogue computes the asymmetric per-token quantization for activations with bias. + +The output of the GEMM is the same as above, but the $` z_a `$ is a column-vector. +That means the zero-point term $` z_a J_a \widehat B `$ becomes an outer product of $` z_a `$ and $` \mathbf 1 \widehat B `$. + +Epilogue parameters: +- `scale_a` is the scale for activations, can be per-tensor (scalar) or per-token (column-vector). + - Generally this will be per-token as the zero-points are per-token. +- `scale_b` is the scale for weights, can be per-tensor (scalar) or per-channel (row-vector). +- `azp_adj` is the precomputed zero-point adjustment term ($` \mathbf 1 \widehat B `$), is per-channel (row-vector). +- `azp` is the zero-point (`z_a`), is per-token (column-vector). +- `bias` is the bias, is always per-channel (row-vector). + +To use these kernels efficiently, users must precompute the `azp_adj` term offline and pass it to the kernel. + +The epilogue performs the following computation (where `Dq` is the raw quantized output of the GEMM): +``` +out = scale_a * scale_b * (Dq - azp_adj * azp) + bias +``` diff --git a/csrc/quantization/cutlass_w8a8/broadcast_load_epilogue_c2x.hpp b/csrc/quantization/cutlass_w8a8/broadcast_load_epilogue_c2x.hpp index c4c6b18654eed..d407d66ab2aa6 100644 --- a/csrc/quantization/cutlass_w8a8/broadcast_load_epilogue_c2x.hpp +++ b/csrc/quantization/cutlass_w8a8/broadcast_load_epilogue_c2x.hpp @@ -207,6 +207,156 @@ struct VisitorRowOrScalarBroadcast { }; +///////////////////////////////////////////////////////////////////////////////////////////////// + +// This is a modified RowBroadcast that will broadcast 0 if ptr_row is null +template< + class ThreadMap, + class Element, + class StrideMNL +> +struct VisitorRowOrZeroBroadcast { + + // This struct has been modified to remove null_default (because it's always 0) + struct Arguments { + Element const* ptr_row = nullptr; + StrideMNL dRow = {}; + }; + + using Params = Arguments; + + template + static constexpr Params + to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) { + return args; + } + + template + static size_t + get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) { + return 0; + } + + struct SharedStorage {}; + + // Global load type + static int constexpr vec_bits = ThreadMap::kElementsPerAccess * sizeof_bits::value; + using VecType = uint_bit_t; + static int constexpr VecLength = sizeof(VecType) / sizeof(Element); + + CUTLASS_HOST_DEVICE + VisitorRowOrZeroBroadcast() { } + + CUTLASS_HOST_DEVICE + VisitorRowOrZeroBroadcast(Params const& params, SharedStorage const& shared_storage) + : params_ptr(¶ms) { } + + Params const* params_ptr; + + template + struct Callbacks : EmptyCallbacks { + CUTLASS_DEVICE + Callbacks( + GTensor&& tC_gRow, + RTensor&& tC_rRow, + CTensor&& tC_cRow, + ProblemShape problem_shape, + Params const* params_ptr + ): + tC_gRow(cute::forward(tC_gRow)), + tC_rRow(cute::forward(tC_rRow)), + tC_cRow(cute::forward(tC_cRow)), + n(get<1>(problem_shape)), + params_ptr(params_ptr) { } + + GTensor tC_gRow; + RTensor tC_rRow; + CTensor tC_cRow; + Params const* params_ptr; + int n; + + // This function is modified from VisitorRowBroadcast + CUTLASS_DEVICE void + begin_epilogue() { + clear(tC_rRow); + auto src_v = filter(tC_gRow); + auto coord_v = filter(tC_cRow); + auto dst_v = filter(tC_rRow); + + if (params_ptr->ptr_row != nullptr) { + // In this case we are loading from a row vector and broadcasting + CUTLASS_PRAGMA_UNROLL + for (int i = 0; i < size(src_v); ++i) { + bool guard = get<1>(coord_v(i)) < n; + cutlass::arch::global_load( + dst_v(i), (void const*)&src_v(i), guard); + } + } else { + // In this case we are broadcasting 0 + VecType filled_vec; + CUTLASS_PRAGMA_UNROLL + for (int i = 0; i < VecLength; i++) { + reinterpret_cast(&filled_vec)[i] = Element{0}; + } + + CUTLASS_PRAGMA_UNROLL + for (int i = 0; i < size(src_v); ++i) { + if (get<1>(coord_v(i)) < n) { + dst_v(i) = filled_vec; + } + } + } + } + + template + CUTLASS_DEVICE auto // returns an Array + visit(int iter_idx, int row_idx, int column_idx, int frg_idx, + Array const& frg_acc) { + Tensor rRow_frg = recast>(coalesce(tC_rRow)); + return rRow_frg(column_idx); + } + }; + + template + CUTLASS_DEVICE auto + get_callbacks( + gemm::GemmCoord threadblock_tile_offset, + int thread_idx, + ProblemShape problem_shape + ) { + Tensor mRow = make_tensor( + make_gmem_ptr(params_ptr->ptr_row), + problem_shape, + params_ptr->dRow); + + // VECTOR, FRAGMENT_COLUMN + Tensor tC_gRow = recast( + ThreadMap::partition(mRow, thread_idx, threadblock_tile_offset) + )(_,_,_0{},_0{},_0{},_0{}); + Tensor tC_rRow = make_tensor_like(tC_gRow); + + // Generate the pred tensor + Tensor cRow = make_identity_tensor(mRow.shape()); + Tensor tC_cRow = outer_partition( + ThreadMap::partition(cRow, thread_idx, threadblock_tile_offset)(_,_,_0{},_0{},_0{},_0{}), + Shape>{}, + (_0{}) + ); + + return Callbacks< + decltype(tC_gRow), decltype(tC_rRow), + decltype(tC_cRow), ProblemShape>( + cute::move(tC_gRow), + cute::move(tC_rRow), + cute::move(tC_cRow), + problem_shape, + params_ptr + ); + } + +}; + + ///////////////////////////////////////////////////////////////////////////////////////////////// // Column vector broadcast @@ -217,7 +367,7 @@ template< > struct VisitorColOrScalarBroadcast { - // This struct has been modified to have a bool indicating that ptr_col is a + // This struct has been modified to have a bool indicating that ptr_col is a // scalar that must be broadcast. struct Arguments { Element const* ptr_col = nullptr; diff --git a/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu b/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu index 8d0dfee7bf23a..ee801e16573d4 100644 --- a/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu +++ b/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu @@ -50,6 +50,25 @@ void cutlass_scaled_mm_sm75(torch::Tensor& out, torch::Tensor const& a, } } +void cutlass_scaled_mm_azp_sm75(torch::Tensor& out, torch::Tensor const& a, + torch::Tensor const& b, + torch::Tensor const& a_scales, + torch::Tensor const& b_scales, + torch::Tensor const& azp_adj, + c10::optional const& azp, + c10::optional const& bias) { + TORCH_CHECK(a_scales.dtype() == torch::kFloat32); + TORCH_CHECK(b_scales.dtype() == torch::kFloat32); + + if (azp) { + return cutlass_scaled_mm_sm75_epilogue( + out, a, b, a_scales, b_scales, azp_adj, *azp, bias); + } else { + return cutlass_scaled_mm_sm75_epilogue( + out, a, b, a_scales, b_scales, azp_adj, bias); + } +} + template