forked from qfgaohao/pytorch-ssd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraw_eval_results.py
35 lines (30 loc) · 1.09 KB
/
draw_eval_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import sys
import cv2
import pandas as pd
import os
eval_result_file = sys.argv[1]
image_dir = sys.argv[2]
output_dir = sys.argv[3]
threshold = float(sys.argv[4])
if not os.path.exists(output_dir):
os.mkdir(output_dir)
r = pd.read_csv(eval_result_file, delimiter=" ", names=["ImageID", "Prob", "x1", "y1", "x2", "y2"])
r['x1'] = r['x1'].astype(int)
r['y1'] = r['y1'].astype(int)
r['x2'] = r['x2'].astype(int)
r['y2'] = r['y2'].astype(int)
for image_id, g in r.groupby('ImageID'):
image = cv2.imread(os.path.join(image_dir, image_id + ".jpg"))
for row in g.itertuples():
if row.Prob < threshold:
continue
cv2.rectangle(image, (row.x1, row.y1), (row.x2, row.y2), (255, 255, 0), 4)
label = f"{row.Prob:.2f}"
cv2.putText(image, label,
(row.x1 + 20, row.y1 + 40),
cv2.FONT_HERSHEY_SIMPLEX,
1, # font scale
(255, 0, 255),
2) # line type
cv2.imwrite(os.path.join(output_dir, image_id + ".jpg"), image)
print(f"Task Done. Processed {r.shape[0]} bounding boxes.")