From dec6b5ab7b7cbb8bc8ee05f17063327a75331b6d Mon Sep 17 00:00:00 2001
From: PGijsbers
Date: Tue, 17 Sep 2019 15:33:00 +0200
Subject: [PATCH] :white_check_mark: Update examples.
---
examples/arff_example.py | 2 +-
examples/classification_example.py | 2 +-
examples/regression_example.py | 2 +-
3 files changed, 3 insertions(+), 3 deletions(-)
diff --git a/examples/arff_example.py b/examples/arff_example.py
index c484388b..943c17f4 100644
--- a/examples/arff_example.py
+++ b/examples/arff_example.py
@@ -4,7 +4,7 @@
print("Make sure you adjust the file path if not executed from the examples directory.")
file_path = "../tests/data/breast_cancer_{}.arff"
- automl = GamaClassifier(max_total_time=180, keep_analysis_log=False, n_jobs=1)
+ automl = GamaClassifier(max_total_time=180, keep_analysis_log=None, n_jobs=1)
print("Starting `fit` which will take roughly 3 minutes.")
automl.fit_arff(file_path.format('train'))
diff --git a/examples/classification_example.py b/examples/classification_example.py
index 26d7af7d..5846ec10 100644
--- a/examples/classification_example.py
+++ b/examples/classification_example.py
@@ -7,7 +7,7 @@
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)
- automl = GamaClassifier(max_total_time=180, keep_analysis_log=False, n_jobs=1)
+ automl = GamaClassifier(max_total_time=180, keep_analysis_log=None, n_jobs=1)
print("Starting `fit` which will take roughly 3 minutes.")
automl.fit(X_train, y_train)
diff --git a/examples/regression_example.py b/examples/regression_example.py
index ce24d76f..8f5432d7 100644
--- a/examples/regression_example.py
+++ b/examples/regression_example.py
@@ -7,7 +7,7 @@
X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
- automl = GamaRegressor(max_total_time=180, keep_analysis_log=False, n_jobs=1)
+ automl = GamaRegressor(max_total_time=180, keep_analysis_log=None, n_jobs=1)
print("Starting `fit` which will take roughly 3 minutes.")
automl.fit(X_train, y_train)