-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbodsdata.py
1071 lines (844 loc) · 31.5 KB
/
bodsdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import base64
import mimetypes
from fabric import Connection
from pathlib import Path
from distutils.command.upload import upload
import pandas
import polars
from google.cloud import bigquery
import duckdb
import csv
import datetime
import functools
import glob
import gzip
import json
import requests
import os
import re
import shutil
import subprocess
import sys
import tempfile
import traceback
import zipfile
from collections import Counter, deque, defaultdict
from retry import retry
from textwrap import dedent
import ijson
import flatterer
import humanize
import boto3
import click
import openpyxl
import orjson
import requests
import sqlalchemy as sa
from codetiming import Timer
from fastavro import parse_schema, writer
from google.cloud.bigquery.dataset import AccessEntry
from google.oauth2 import service_account
from googleapiclient.discovery import build
from googleapiclient.http import MediaFileUpload
from jsonref import JsonRef
from openpyxl.cell.cell import ILLEGAL_CHARACTERS_RE
from consistency_checks import ConsistencyChecks
this_path = Path(__file__).parent.absolute()
output_dir = tempfile.gettempdir()
upload_bucket = "oo-bodsdata"
render_host = None
s3_data_location = None
def _first_doc_line(function):
return function.__doc__.split("\n")[0]
@functools.lru_cache(None)
def get_engine(schema=None, db_uri=None, pool_size=1):
"""Get SQLAlchemy engine
Will cache engine if all arguments are the same so not expensive to call multiple times.
Parameters
----------
schema : string, optional
Postgres schema that all queries will use. Defaults to using public schema.
db_url : string, optional
SQLAlchemy database connection string. Will defailt to using `DATABASE_URL` environment variable.
pool_size : int
SQLAlchemy connection pool size
Returns
-------
sqlalchemy.Engine
SQLAlchemy Engine object set up to query specified schema (or public schema)
"""
if not db_uri:
db_uri = os.environ["DATABASE_URL"]
connect_args = {}
if schema:
connect_args = {"options": f"-csearch_path={schema}"}
return sa.create_engine(db_uri, pool_size=pool_size, connect_args=connect_args)
def get_s3_bucket(bucket=None):
"""Get S3 bucket object
Needs environment variables:
`AWS_ACCESS_KEY_ID`,
`AWS_S3_ENDPOINT_URL`,
`AWS_SECRET_ACCESS_KEY`,
`AWS_DEFAULT_REGION`,
`AWS_S3_ENDPOINT_URL`
Returns
-------
s3.Bucket
s3.Bucket object to interact with S3
"""
session = boto3.session.Session()
if not os.environ.get("AWS_ACCESS_KEY_ID"):
return
s3 = session.resource("s3", endpoint_url=os.environ.get("AWS_S3_ENDPOINT_URL"))
bucket = s3.Bucket(bucket or os.environ.get("AWS_S3_BUCKET"))
return bucket
def get_drive_service():
json_acct_info = orjson.loads(
base64.b64decode(os.environ["GOOGLE_SERVICE_ACCOUNT"])
)
credentials = service_account.Credentials.from_service_account_info(
json_acct_info
)
return build("drive", "v3", credentials=credentials)
def create_table(table, schema, sql, **params):
"""Create table under given schema by supplying SQL
Parameters
----------
table : string
Postgres schema to use.
schema : string
Postgres schema to use.
sql : string
SQL to create table can be parametarized by SQLAlchemy parms that start with a `:` e.g `:param`.
params : key (string), values (any)
keys are params found in sql and values are the values to be replaced.
"""
print(f"creating table {table}")
t = Timer()
t.start()
engine = get_engine(schema)
with engine.connect() as con:
con.execute(
sa.text(
f"""DROP TABLE IF EXISTS {table};
CREATE TABLE {table}
AS
{sql};"""
),
**params,
)
t.stop()
@click.group()
def cli():
pass
def create_schema(schema):
"""Create Postgres Schema.
Parameters
----------
schema : string
Postgres schema to create.
"""
engine = get_engine()
with engine.begin() as connection:
connection.execute(
f"""DROP SCHEMA IF EXISTS {schema} CASCADE;
create schema {schema};"""
)
@cli.command("create-schema", help=_first_doc_line(create_schema))
@click.argument("schema")
def _create_schema(schema):
create_schema(schema)
def rename_schema(schema, new_schema):
"""Rename Postgres Schema.
Parameters
----------
schema : string
Postgres schema to rename.
new_schema : string
New schema name.
"""
engine = get_engine()
drop_schema(new_schema)
with engine.begin() as connection:
connection.execute(f"""ALTER SCHEMA "{schema}" RENAME TO "{new_schema}";""")
@cli.command("rename-schema", help=_first_doc_line(rename_schema))
@click.argument("schema")
@click.argument("new_schema")
def _rename_schema(schema, new_schema):
rename_schema(schema, new_schema)
def drop_schema(schema):
"""Drop Postgres Schema.
Parameters
----------
schema : string
Postgres schema to drop.
"""
engine = get_engine()
with engine.begin() as connection:
connection.execute(f"""DROP SCHEMA IF EXISTS {schema} CASCADE;""")
@cli.command("drop-schema", help=_first_doc_line(drop_schema))
@click.argument("schema")
def _drop_schema(schema):
drop_schema(schema)
def get_bigquery_client():
""" Get bigquery client
Needs `GOOGLE_SERVICE_ACCOUNT` envirnment varibale as a base64 encoding of
the account JSON.
"""
json_acct_info = orjson.loads(
base64.b64decode(os.environ["GOOGLE_SERVICE_ACCOUNT"])
)
credentials = service_account.Credentials.from_service_account_info(json_acct_info)
return bigquery.Client(credentials=credentials)
def refresh_bigquery(source):
""" Make a new public big query project.
Parameters
----------
source : string
Data Source Name
"""
print("Refreshing Bigquery")
client = get_bigquery_client()
dataset_id = f"{client.project}.{source}"
client.delete_dataset(dataset_id, delete_contents=True, not_found_ok=True)
dataset = bigquery.Dataset(dataset_id)
dataset.location = "EU"
dataset = client.create_dataset(dataset, timeout=30)
access_entries = list(dataset.access_entries)
access_entries.append(
AccessEntry("READER", "specialGroup", "allAuthenticatedUsers")
)
dataset.access_entries = access_entries
dataset = client.update_dataset(dataset, ["access_entries"])
def export_bigquery(source, parquet_path, table_name):
""" Make a new public big query project.
Parameters
----------
source : string
Data Source Name
parquet_path : string
parquet file to upload to big query
table_name : string
big_query table name
"""
client = get_bigquery_client()
dataset_id = f"{client.project}.{source}"
table_id = f"{client.project}.{source}.{table_name}"
job_config = bigquery.LoadJobConfig(
source_format=bigquery.SourceFormat.PARQUET
)
with open(parquet_path, "rb") as source_file:
client.load_table_from_file(
source_file, table_id, job_config=job_config, size=None, timeout=50
)
def sqlite_zip(source, upload=False):
""" Make a zip file of the sqlite database
Parameters
----------
source : string
Data Source Name
upload: bool
Upload to s3 bucket and delete local file.
"""
print("Making sqlite.zip")
filepath = f'{output_dir}/{source}/sqlite.zip'
with zipfile.ZipFile(filepath, 'w', compression=zipfile.ZIP_DEFLATED) as f_zip:
f_zip.write(
f'{output_dir}/{source}/sqlite.db',
arcname=f"sqlite.db",
)
if upload:
bucket_location = f"data/{source}/sqlite.zip"
upload_s3(filepath, bucket_location)
os.unlink(filepath)
def sqlite_gzip(source, upload=False):
""" Make a gzip file of the sqlite database
Parameters
----------
source : string
Data Source Name
upload: bool
Upload to s3 bucket and delete local file.
"""
print("Making sqlite.gz")
filepath = f'{output_dir}/{source}/sqlite.db.gz'
with open(f'{output_dir}/{source}/sqlite.db', 'rb') as f_in:
with gzip.open(filepath, 'wb', compresslevel=5) as f_out:
shutil.copyfileobj(f_in, f_out)
if upload:
bucket_location = f"data/{source}/sqlite.db.gz"
upload_s3(filepath, bucket_location)
os.unlink(filepath)
def datapackage(source, upload=False):
""" Make a zip file of CSV files along with the `datapackage.json`
Parameters
----------
source : string
Data Source Name
upload: bool
Upload to s3 bucket and delete local file.
"""
print("Making datapackage")
filepath = f'{output_dir}/{source}/csv.zip'
with zipfile.ZipFile(filepath, 'w', compression=zipfile.ZIP_DEFLATED) as f_zip:
for item in glob.glob(f'{output_dir}/{source}/csv/*.csv'):
f_zip.write(
item,
arcname="/".join(item.split('/')[-2:])
)
f_zip.write(
f'{output_dir}/{source}/datapackage.json',
arcname="datapackage.json"
)
if upload:
bucket_location = f"data/{source}/csv.zip"
upload_s3(filepath, bucket_location)
os.unlink(filepath)
polars_type_lookup = {
"date": polars.Utf8,
"text": polars.Utf8,
"null": polars.Utf8,
"number": polars.Float64,
"boolean": polars.Boolean,
"integer": polars.Utf8,
}
duckdb_lookup = {
"date": "timestamp",
"datetime": "timestamp",
"string": "text",
"text": "text",
"null": "text",
"number": "double",
"boolean": "bool",
"integer": "text",
}
def polars_generator(source):
""" Return iterator of tuple of table_name and polars dataframe.
Parameters
----------
source : string
Data Source Name
"""
with open(f'{output_dir}/{source}/datapackage.json', 'r') as f:
datapackage = json.load(f)
# date Date, Utf8 number Float64 boolean Boolean
for resource in datapackage['resources']:
field_types = []
for field in resource['schema']['fields']:
field_types.append(polars_type_lookup[field["type"]])
yield (resource['name'], polars.read_csv(f'{output_dir}/{source}/{resource["path"]}', dtypes=field_types))
def pandas_generator(source):
""" Return iterator of tuple of table_name and pandas dataframe.
Parameters
----------
source : string
Data Source Name
"""
with open(f'{output_dir}/{source}/datapackage.json', 'r') as f:
datapackage = json.load(f)
for resource in datapackage['resources']:
yield (resource['name'], pandas.read_csv(f'{output_dir}/{source}/{resource["path"]}', low_memory=False))
def pandas_dataframe(source):
""" Return dict of table_name as key and pandas dataframe as value.
Parameters
----------
source : string
Data Source Name
"""
return dict(pandas_generator(source))
def polars_dataframe(source):
""" Return dict of table_name as key and polars dataframe as value.
Parameters
----------
source : string
Data Source Name
"""
return dict(polars_generator(source))
@retry(tries=5)
def upload_s3(filepath, bucket_location, bucket=None):
""" Upload file in `filepath` to s3 at `bucket_location`.
Parameters
----------
source : string
Data Source Name
bucket_location : string
Data Source Name
bucket : string
Name of bucket to upload to
"""
bucket = get_s3_bucket(bucket or upload_bucket)
object = bucket.Object(
bucket_location
)
args = {"ACL": "public-read"}
mimetype, _ = mimetypes.guess_type(filepath)
if mimetype:
args["ContentType"] = mimetype
object.upload_file(
filepath,
ExtraArgs=args
)
@retry(tries=5)
def create_parquet(source, upload=False):
""" Create parquet files
Parameters
----------
source : string
Data Source Name
upload: bool
Upload to s3 bucket and delete local files.
"""
print("Creating parquet")
with open(f'{output_dir}/{source}/datapackage.json', 'r') as f:
datapackage = json.load(f)
for resource in datapackage['resources']:
filepath = f"{output_dir}/{source}/parquet/{resource['name']}.parquet"
if upload:
bucket_location = f"data/{source}/parquet/{resource['name']}.parquet"
upload_s3(filepath, bucket_location)
export_bigquery(source, filepath, resource['name'])
def create_avro(source, upload=False):
""" Create avro files
Parameters
----------
source : string
Data Source Name
upload: bool
Upload to s3 bucket and delete local files.
"""
os.makedirs(f'{output_dir}/{source}/avro')
for table, df in polars_generator(source):
filepath = f'{output_dir}/{source}/avro/{table.lower()}.avro'
df.to_avro(filepath, compression='snappy')
if upload:
bucket_location = f"data/{source}/avro/{table.lower()}.avro"
upload_s3(filepath, bucket_location)
os.unlink(filepath)
def create_pgdump(source, upload=False):
""" Create pg_dump file
Parameters
----------
source : string
Data Source Name
upload: bool
Upload to s3 bucket and delete local files.
"""
print("Creating pg_dump")
filepath = f'{output_dir}/{source}/pgdump.sql.gz'
with gzip.open(filepath, 'wt+', compresslevel=5) as f:
f.write(f'create schema {source};\n')
f.write(f'set search_path TO {source};\n')
for item in glob.glob(f'{output_dir}/{source}/output_*/postgresql/postgresql_schema.sql'):
with open(item) as schema_file:
f.write(schema_file.read())
with open(f'{output_dir}/{source}/datapackage.json', 'r') as datapackage:
datapackage = json.load(datapackage)
for resource in datapackage['resources']:
f.write(f'COPY {resource["name"].lower()} FROM stdin WITH CSV;\n')
with open(f'{output_dir}/{source}/{resource["path"]}', 'r') as input_csv:
for num, line in enumerate(input_csv):
if num == 0:
continue
f.write(line)
f.write(r'\.')
f.write('\n\n')
if upload:
bucket_location = f"data/{source}/pgdump.sql.gz"
upload_s3(filepath, bucket_location)
os.unlink(filepath)
def create_samples(source, upload=False, size=10):
""" Create samples.json file, needs local parquet files to be generated.
Parameters
----------
source : string
Data Source Name
upload: bool
Upload to s3 bucket and delete local files.
upload: int
How many samples
"""
print("Creating samples")
output = {}
df_output = {}
con = duckdb.connect()
con.execute("PRAGMA memory_limit='1GB'")
with open(f'{output_dir}/{source}/datapackage.json', 'r') as f:
datapackage = json.load(f)
for resource in datapackage['resources']:
for resource in datapackage['resources']:
columns = {}
for field in resource['schema']['fields']:
columns[field['name']] = duckdb_lookup[field["type"]]
df = con.execute(f'''
SELECT
*
FROM
'{output_dir}/{source}/parquet/{resource['name']}.parquet'
USING SAMPLE {size}
''').df()
df_output[resource["name"]] = df
output[resource["name"]] = json.loads(df.to_json(orient='split'))
filepath = f'{output_dir}/{source}/samples.json'
with open(f'{output_dir}/{source}/samples.json', 'w+') as f:
json.dump(output, f)
if upload:
bucket_location = f"data/{source}/samples.json"
upload_s3(filepath, bucket_location)
return df_output
def create_parquet_zip(source, upload=False):
print('Create parquet zip')
with open(f'{output_dir}/{source}/datapackage.json', 'r') as f:
datapackage = json.load(f)
with zipfile.ZipFile(f'{output_dir}/{source}/parquet.zip', 'w', compression=zipfile.ZIP_DEFLATED) as f_zip:
for resource in datapackage['resources']:
output_file = f'{output_dir}/{source}/parquet/{resource["name"]}.parquet'
f_zip.write(
output_file,
arcname=f'{resource["name"]}.parquet',
)
os.unlink(output_file)
filepath = f'{output_dir}/{source}/parquet.zip'
if upload:
bucket_location = f"data/{source}/parquet.zip"
upload_s3(filepath, bucket_location)
shutil.rmtree(f'{output_dir}/{source}/parquet')
def download_file(url, source, name=None):
""" Download file to download directory ready to be processes.
Can be called many times to download many files.
Accepts zip files which will be unzipped in download directory.
Parameters
----------
url : string
url of json, json lines file or zip file containing json/json lines.
source : string
Data Source Name
name: string
Choose name of file. Will not work for zip file contents.
"""
print('Downloading File')
os.makedirs(f'{output_dir}/{source}_download', exist_ok=True)
if not name:
name = url.split('/')[-1]
filename = f'{output_dir}/{source}_download/{name}'
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(filename, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
if name.endswith('.zip'):
with zipfile.ZipFile(filename, 'r') as zipObj:
zipObj.extractall(path=f'{output_dir}/{source}_download/')
os.remove(filename)
def download_files_s3(source, s3_path_pattern, latest=False, bucket="bodsdata-oo", sample=None):
""" Download file to form s3 with given regex pattern.
Parameters
----------
source : string
Data Source Name
s3_path_pattern : string
RE pattern to match
bucket: string
Name of bucket to get the files from
latest: bool
Just get the latest file from matched results
"""
print('Downloading Files')
os.makedirs(f'{output_dir}/{source}_download', exist_ok=True)
bucket = get_s3_bucket(bucket)
items = []
if not s3_path_pattern.startswith("^"): s3_path_pattern = f"^{s3_path_pattern}"
for item in bucket.objects.all():
if re.search(s3_path_pattern, item.key):
items.append(item.key)
items.sort()
if latest and items:
items = [items[-1]]
for num, item in enumerate(items):
file_name = item.split('/')[-1]
download_path = f'{output_dir}/{source}_download/{file_name}'
bucket.download_file(item, download_path)
if not download_path.endswith('.gz'):
with open(download_path, 'rb') as f_in:
with gzip.open(f'{download_path}.gz', 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
os.remove(download_path)
if sample and num == sample:
break
def check_data_consistency(source, check_missing_fields=True, check_is_component=True,
check_statement_dups=True, check_statement_refs=True, error_limit=1000):
""" Run consistency checks on input data.
Parameters
----------
source : string
Data Source Name
check_missing_fields : bool
Optionally disable checking for missing required field in statements
check_is_component : bool
Optionally disable checking for isComponent in statements
check_statement_dups : bool
Optionally disable checking for duplicate statementIDs
check_statement_refs : bool
Optionally disable checking for reference to missing statements
error_limit: int
Maximum number of consistency check errors to print out (default=1000)
"""
source_dir = f'{output_dir}/{source}_download/'
check = ConsistencyChecks(source_dir, check_missing_fields=check_missing_fields, check_is_component=check_is_component,
check_statement_dups=check_statement_dups, check_statement_refs=check_statement_refs,
error_limit=error_limit)
check.run()
def json_zip(source, upload=False):
print("Making json.zip")
with zipfile.ZipFile(f'{output_dir}/{source}/json.zip', 'w', compression=zipfile.ZIP_DEFLATED) as f_zip:
with f_zip.open( f'{source}.json', 'w', force_zip64=True) as output_file:
for item in glob.glob(f'{output_dir}/{source}_download/*'):
with gzip.open(item, 'rb') as input_file:
for line in input_file:
output_file.write(line)
os.unlink(item)
filepath = f'{output_dir}/{source}/json.zip'
if upload:
bucket_location = f"data/{source}/json.zip"
upload_s3(filepath, bucket_location)
os.unlink(filepath)
def remove_download(source):
""" Remove download folder
Parameters
----------
source : string
Data Source Name
"""
shutil.rmtree(f'{output_dir}/{source}_download', ignore_errors=True)
def remove_output(source):
""" Remove output folder
Parameters
----------
source : string
Data Source Name
"""
shutil.rmtree(f'{output_dir}/{source}', ignore_errors=True)
def run_flatterer(source, statement_type, sample=None):
""" Run flatterer for a particular bods statement type
Parameters
----------
source : string
Data Source Name
statement_type : string
Bods statement type. One of person, entity, ownershipOrControl
sample : int
Only take this amout of rows from the data.
"""
print(f"Flattening {statement_type} to make CSV and SQLite")
def flatten_iterator():
for item in glob.glob(f'{output_dir}/{source}_download/*'):
opener = open
if item.endswith('.gz'):
opener = gzip.open
file_name = item.split('/')[-1]
with opener(f'{output_dir}/{source}_download/{file_name}') as f:
start_of_file = f.read(100).strip()
path = ''
if start_of_file[0] == '[':
path = 'item'
f.seek(0)
for (num, object) in enumerate(ijson.items(f, path, multiple_values=True)):
if num % 1000000 == 0 and num:
print(f'number of rows processed {num}')
if sample and num == sample:
return
if object["statementType"] == statement_type + 'Statement':
yield object
short_statement_type = statement_type.replace('ownershipOrControl', 'ooc')
flatterer.flatten(
flatten_iterator(),
f'{output_dir}/{source}/output_{statement_type}',
main_table_name='statement', sql_scripts=True,
force=True, table_prefix=f'{short_statement_type}_', parquet=True,
sqlite=True, sqlite_path=f'{output_dir}/{source}/sqlite.db')
def flatten(source, sample=None):
""" Run flatterer against all statement types and merge all into one folder.
Parameters
----------
source : string
Data Source Name
sample : int
Only take this amount of rows for each statement time.
"""
run_flatterer(source, 'person', sample)
run_flatterer(source, 'entity', sample)
run_flatterer(source, 'ownershipOrControl', sample)
os.makedirs(f'{output_dir}/{source}/csv', exist_ok=True)
for item in glob.glob(f'{output_dir}/{source}/*/csv/*.csv'):
shutil.move(item, f"{output_dir}/{source}/csv/{item.split('/')[-1]}")
os.makedirs(f'{output_dir}/{source}/parquet', exist_ok=True)
for item in glob.glob(f'{output_dir}/{source}/*/parquet/*.parquet'):
shutil.move(item, f"{output_dir}/{source}/parquet/{item.split('/')[-1]}")
datapackage = {"profile": "tabular-data-package", "resources": []}
for item in glob.glob(f'{output_dir}/{source}/*/datapackage.json'):
with open(item) as f:
datapackage["resources"].extend(json.load(f)['resources'])
with open(f'{output_dir}/{source}/datapackage.json', 'w+') as f:
json.dump(datapackage, f, indent=2)
def publish_metadata(source, title="", description="", upload=True):
""" Gather metadata about this source and push to s3
Parameters
----------
source : string
Data Source Name
title : string
Title of the source
description : string
description of the source
"""
print("publishing metadata")
out = {"parquet": {},
"update_date": datetime.datetime.now().isoformat()[:10],
"description": description,
"title": title}
bucket = get_s3_bucket(upload_bucket)
bucket_url = f"{bucket.meta.client.meta.endpoint_url}/{bucket.name}"
all_sources = set()
inspect_data = {}
for item in sorted(bucket.objects.all(), key=lambda x: x.key.split("/")[-1]):
item_url = f"{bucket_url}/{item.key}"
parts = item.key.split("/")
file_name = parts[-1]
if file_name == "inspect-data.json" and len(parts) > 2:
inspect_data.update(requests.get(item_url).json())
if parts[0] == 'data' and len(parts) > 2:
all_sources.add(parts[1])
if parts[0] != 'data' or parts[1] != source:
continue
if file_name.endswith("csv.zip"):
out["csv"] = item_url
out["csv_size"] = humanize.naturalsize(item.size)
if file_name.endswith("sqlite.zip"):
out["sqlite_zip"] = item_url
out["sqlite_zip_size"] = humanize.naturalsize(item.size)
if file_name.endswith("sqlite.db.gz"):
out["sqlite_gzip"] = item_url
out["sqlite_gzip_size"] = humanize.naturalsize(item.size)
if file_name.endswith("sql.gz"):
out["pg_dump"] = item_url
out["pg_dump_size"] = humanize.naturalsize(item.size)
if file_name.endswith("parquet.zip"):
out["parquet_zip"] = item_url
out["parquet_zip_size"] = humanize.naturalsize(item.size)
if file_name.endswith("json.zip"):
out["json_zip"] = item_url
out["json_zip_size"] = humanize.naturalsize(item.size)
with open(f'{output_dir}/{source}/datapackage.json') as samples_file:
out['datapackage'] = json.load(samples_file)
with open(f'{output_dir}/{source}/samples.json') as samples_file:
out['samples'] = json.load(samples_file)
filepath = f'{output_dir}/{source}/metadata.json'
with open(filepath, 'w+') as f:
json.dump(out, f, indent=2)
bucket_location = f"data/{source}/metadata.json"
if upload:
upload_s3(filepath, bucket_location)
filepath = f'{output_dir}/all_sources.json'
with open(filepath, 'w+') as f:
json.dump(list(all_sources), f, indent=2)
bucket_location = f"data/all_sources.json"
if upload:
upload_s3(filepath, bucket_location)
filepath = f'{output_dir}/inspect-data.json'
with open(filepath, 'w+') as inspect_file:
json.dump(inspect_data, inspect_file)
bucket_location = f"data/inspect-data.json"
if upload:
upload_s3(filepath, bucket_location)
def make_datasette_infofile(source, upload=True):
output = subprocess.run(["datasette", "inspect", f'{output_dir}/{source}/sqlite.db'], text=True, capture_output=True)
inspect_data = json.loads(output.stdout)
inspect_data["sqlite"]["file"] = f"{source}.db"
inspect_data[source] = inspect_data["sqlite"]
inspect_data.pop("sqlite")
filepath = f'{output_dir}/{source}/inspect-data.json'
with open(filepath, 'w+') as inspect_file:
json.dump(inspect_data, inspect_file)
if upload:
upload_s3(filepath, f"data/{source}/inspect-data.json")
def publish_datasettes():
""" Publish all the datasettes """
print("publishing metadata")
all_sources = requests.get(s3_data_location + 'all_sources.json').json()
with tempfile.TemporaryDirectory() as tmpdirname:
private_key = Path(tmpdirname) / 'render_private_key'
private_key.write_text(os.environ['RENDER_SSH_KEY'])
c = Connection(
host=render_host,
connect_kwargs={
"key_filename": str(private_key),
}
)
for source in all_sources:
sqlite_gz = s3_data_location + f'{source}/sqlite.db.gz'
c.run(f'curl {sqlite_gz} | gunzip > /var/data/{source}.db')
c.run(f'curl {s3_data_location}inspect-data.json > /var/data/inspect-data.json')
requests.get(os.environ['RENDER_DATASETTE_DEPLOY_HOOK'])
def build_website():