-
Notifications
You must be signed in to change notification settings - Fork 4
/
README.Rmd
198 lines (157 loc) · 5.24 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
output: github_document
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = TRUE,
echo = TRUE, # echo code?
message = TRUE, # Show messages
warning = TRUE, # Show warnings
fig.width = 8, # Default plot width
fig.height = 6, # .... height
dpi = 200, # Plot resolution
fig.align = "center",
fig.path = "man/figures/README-"
)
knitr::opts_chunk$set() # Figure alignment
library(DataFakeR)
set.seed(123)
options(tibble.width = Inf)
```
# DataFakeR <img src="man/figures/logo.png" align="right" width="120" />
[![version](https://img.shields.io/static/v1.svg?label=github.com&message=v.0.1.3&color=ff69b4)](https://openpharma.github.io/DataFakeR/)
[![lifecycle](https://img.shields.io/badge/lifecycle-experimental-success.svg)](https://lifecycle.r-lib.org/articles/stages.html#experimental)
## Overview
DataFakeR is an R package designed to help you generate sample of fake data preserving specified assumptions about the original one.
<center>
## <span style="color:blue"> DataFakeR 0.1.3 is now available!</span>
</center>
## Installation
- from CRAN
```
install.packages("DataFakeR")
```
- latest version from Github
```
remotes::install_github(
"openpharma/DataFakeR"
)
```
## Learning DataFakeR
If you are new to DataFakeR, look at the **[Welcome Page](https://openpharma.github.io/DataFakeR/articles/main.html)**.
You may find there a list of useful articles that will guide you through the package functionality.
## Usage
### Configure schema YAML structure
```
# schema_books.yml
public:
tables:
books:
nrows: 10
columns:
book_id:
type: char(8)
formula: !expr paste0(substr(author, 1, 4), substr(title, 1, 4), substr(bought, 1, 4))
author:
type: varchar
spec: name
title:
type: varchar
spec: book
spec_params:
add_second: true
genre:
type: varchar
values: [Fantasy, Adventure, Horror, Romance]
bought:
type: date
range: ['2020-01-02', '2021-06-01']
amount:
type: smallint
range: [1, 99]
na_ratio: 0.2
purchase_id:
type: varchar
check_constraints:
purchase_id_check:
column: purchase_id
expression: !expr purchase_id == paste0('purchase_', bought)
borrowed:
nrows: 30
columns:
book_id:
type: char(8)
not_null: true
user_id:
type: char(10)
foreign_keys:
book_id_fkey:
columns: book_id
references:
columns: book_id
table: books
```
### Define custom simulation methods if needed
```{r}
books <- function(n, add_second = FALSE) {
first <- c("Learning", "Amusing", "Hiding", "Symbols", "Hunting", "Smile")
second <- c("Of", "On", "With", "From", "In", "Before")
third <- c("My", "Your", "The", "Common", "Mysterious", "A")
fourth <- c("Future", "South", "Technology", "Forest", "Storm", "Dreams")
second_res <- NULL
if (add_second) {
second_res <- sample(second, n, replace = TRUE)
}
paste(
sample(first, n, replace = TRUE), second_res,
sample(third, n, replace = TRUE), sample(fourth, n, replace = TRUE)
)
}
simul_spec_character_book <- function(n, unique, spec_params, ...) {
spec_params$n <- n
DataFakeR::unique_sample(
do.call(books, spec_params),
spec_params = spec_params, unique = unique
)
}
set_faker_opts(
opt_simul_spec_character = opt_simul_spec_character(book = simul_spec_character_book)
)
```
### Source schema (and check table and column dependencies)
```{r}
options("dfkr_verbose" = TRUE) # set `dfkr_verbose` option to see the workflow progress
sch <- schema_source("schema_books.yml")
```
```{r tbls_dep}
schema_plot_deps(sch)
```
```{r books_dep}
schema_plot_deps(sch, "books")
```
### Run data simulation
```{r}
sch <- schema_simulate(sch)
```
### Check the results
```{r}
schema_get_table(sch, "books")
```
```{r}
schema_get_table(sch, "borrowed")
```
## Acknowledgment
**The package was created thanks to [Roche](https://www.roche.com/) support and contributions from RWD Insights Engineering Team.**
Special thanks to:
- [Adam Foryś](mailto:[email protected]) for technical support, numerous suggestions for the current and future implementation of the package.
- [Adam Leśniewski](mailto:[email protected]) for challenging limitations of the package by providing multiple real-world test scenarios (and wonderful hex sticker!).
- [Paweł Kawski](mailto:[email protected]) for indication of initial assumptions about the package based on real-world medical data.
- [Kamil Wais](mailto:[email protected]) for highlighting the need for the package and its relevance to real-world applications.
## Lifecycle
DataFakeR 0.1.3 is at experimental stage. If you find bugs or post an issue on GitHub page at <https://github.com/openpharma/DataFakeR/issues>
## Getting help
There are two main ways to get help with `DataFakeR`
1. Reach the package author via email: [email protected].
2. Post an issue on our GitHub page at [https://github.com/openpharma/DataFakeR/issues](https://github.com/openpharma/DataFakeR/issues).