-
Notifications
You must be signed in to change notification settings - Fork 55
/
main.py
375 lines (301 loc) · 11.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
"""
To train the model:
python main.py
To evaluate the model (on GPU0) by loading a saved checkpoint:
CUDA_VISIBLE_DEVICES=0 python main.py --evaluate --resume=checkpoint.pth.tar
train resnet50 (weight decay 5e-4) on extras + train, eval on test:
Prec@1 95.500
"""
import argparse
import os
import shutil
import time
import warnings
import bird_or_bicycle
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
from unrestricted_advex import eval_kit
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__") and
callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', metavar='DIR', default='',
help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--evaluate', dest='evaluate', action='store_true',
help='Evaluate the model.')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--smoke-test', dest='smoke_test', action='store_true',
help='Test running only with 1 train/eval batch.')
best_prec1 = 0
def main():
global args, best_prec1
args = parser.parse_args()
if args.smoke_test:
args.batch_size = 4
print('Smoke testing, setting batch size to {}'.format(args.batch_size))
args.lr = 0.1 * (args.batch_size / 256)
args.workers = int(4 * (args.batch_size / 256))
if args.data == '':
bird_or_bicycle.get_dataset('train')
bird_or_bicycle.get_dataset('test')
bird_or_bicycle.get_dataset('extras')
args.data = bird_or_bicycle.dataset.default_data_root()
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
# create model
model = getattr(models, args.arch)(num_classes=2, pretrained=args.pretrained)
# prepend a BN layer w/o learnable params to perform data normalization
# as we disabled data normalization in data iter in order to make the
# interface compatible with attack APIs that requires data in [0.0, 1.0]
# range.
model = nn.Sequential(nn.BatchNorm2d(num_features=3, affine=False), model)
if args.gpu is not None:
model = model.cuda(args.gpu)
else:
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=[30, 60, 80], gamma=0.2)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
traindirs = [os.path.join(args.data, partition)
for partition in ['extras']]
# Use train as validation because it is IID with the test set
valdir = os.path.join(args.data, 'train')
# this normalization is NOT used, as the attack API requires
# the images to be in [0, 1] range. So we prepend a BatchNorm
# layer to the model instead of normalizing the images in the
# data iter.
_unused_normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = [datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# _unused_normalize,
]))
for traindir in traindirs]
if len(train_dataset) == 1:
train_dataset = train_dataset[0]
else:
train_dataset = torch.utils.data.ConcatDataset(train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
# _unused_normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
if not args.resume:
print('WARNING: evaluating without loading a checkpoint, use --resume '
'to load a previously trained checkpoint if needed.')
evaluate(model)
return
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train_epoch(train_loader, model, criterion, optimizer, epoch)
lr_scheduler.step()
# evaluate on validation set
prec1 = validate_epoch(val_loader, model, criterion)
if args.smoke_test:
break # smoke test train with only 1 epoch
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best)
def train_epoch(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (x, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
x = x.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(x)
loss = criterion(output, target)
# measure accuracy and record loss
prec1 = accuracy(output, target)
losses.update(loss.item(), x.size(0))
top1.update(prec1.item(), x.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 or args.smoke_test:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t)'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
if args.smoke_test:
break # smoke test train with only 1 batch
def validate_epoch(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1 = accuracy(output, target)
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 or args.smoke_test:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1))
if args.smoke_test:
break # smoke test runs with only 1 epoch
print(' * Prec@1 {top1.avg:.3f}'.format(top1=top1))
return top1.avg
def evaluate(model):
# ----------------------------------------
# Workaround: tensorflow claims all the visible
# GPU memory upon starting. We use hacky patch
# to disable this feature
import tensorflow as tf
oldinit = tf.Session.__init__
def myinit(session_object, target='', graph=None, config=None):
print("Intercepted!")
if config is None:
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
oldinit(session_object, target, graph, config)
tf.Session.__init__ = myinit
# ----------------------------------------
def wrapped_model(x_np):
x_np = x_np.transpose((0, 3, 1, 2)) # from NHWC to NCHW
x_t = torch.from_numpy(x_np).cuda()
model.eval()
with torch.no_grad():
return model(x_t).cpu().numpy()
eval_kit.evaluate_bird_or_bicycle_model(
wrapped_model,
model_name='undefended_pytorch_resnet'
)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target):
"""Computes the precision@k for the specified values of k"""
with torch.no_grad():
batch_size = target.size(0)
pred = torch.argmax(output, dim=1)
correct = pred.eq(target)
num_correct = correct.float().sum(0)
return num_correct.mul_(100.0 / batch_size)
if __name__ == '__main__':
main()