forked from matthewsamuel95/ACM-ICPC-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmiller_rabin.cpp
93 lines (78 loc) · 2.21 KB
/
miller_rabin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
// From geeks for geeks
#include <bits/stdc++.h>
using namespace std;
// Utility function to do modular exponentiation.
// It returns (x^y) % p
int power(int x, unsigned int y, int p)
{
int res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0)
{
// If y is odd, multiply x with result
if (y & 1)
res = (res*x) % p;
// y must be even now
y = y>>1; // y = y/2
x = (x*x) % p;
}
return res;
}
// This function is called for all k trials. It returns
// false if n is composite and returns false if n is
// probably prime.
// d is an odd number such that d*2<sup>r</sup> = n-1
// for some r >= 1
bool miillerTest(int d, int n)
{
// Pick a random number in [2..n-2]
// Corner cases make sure that n > 4
int a = 2 + rand() % (n - 4);
// Compute a^d % n
int x = power(a, d, n);
if (x == 1 || x == n-1)
return true;
// Keep squaring x while one of the following doesn't
// happen
// (i) d does not reach n-1
// (ii) (x^2) % n is not 1
// (iii) (x^2) % n is not n-1
while (d != n-1)
{
x = (x * x) % n;
d *= 2;
if (x == 1) return false;
if (x == n-1) return true;
}
// Return composite
return false;
}
// It returns false if n is composite and returns true if n
// is probably prime. k is an input parameter that determines
// accuracy level. Higher value of k indicates more accuracy.
bool isPrime(int n, int k)
{
// Corner cases
if (n <= 1 || n == 4) return false;
if (n <= 3) return true;
// Find r such that n = 2^d * r + 1 for some r >= 1
int d = n - 1;
while (d % 2 == 0)
d /= 2;
// Iterate given nber of 'k' times
for (int i = 0; i < k; i++)
if (!miillerTest(d, n))
return false;
return true;
}
// Driver program
int main()
{
int k = 4; // Number of iterations
cout << "All primes smaller than 100: \n";
for (int n = 1; n < 100; n++)
if (isPrime(n, k))
cout << n << " ";
return 0;
}