diff --git a/src/analysis/surival_01.ipynb b/src/analysis/surival_01.ipynb
index 4cef3db..b62d902 100644
--- a/src/analysis/surival_01.ipynb
+++ b/src/analysis/surival_01.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 301,
"metadata": {},
"outputs": [],
"source": [
@@ -10,7 +10,7 @@
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
- " "
+ "import functools"
]
},
{
@@ -1346,16 +1346,23 @@
},
{
"cell_type": "code",
- "execution_count": 245,
+ "execution_count": 271,
"metadata": {},
"outputs": [],
"source": [
- "incisor_surface_counts = restored_surface_counts.query('incisor == 1')[['tooth_num', '1', '2', '3', '4', '5', '6']]"
+ "incisor_surfaces = restored_surface_counts.query('incisor == 1')[['tooth_num', '1', '2', '3', '4', '5', '6']]\n",
+ "molar_surfaces = restored_surface_counts.query('molar == 1')[['tooth_num', '1', '2', '3', '4', '5', '6']]\n",
+ "canine_surfaces = restored_surface_counts.query('canine == 1')[['tooth_num', '1', '2', '3', '4', '5', '6']]\n",
+ "premolar_surfaces = restored_surface_counts.query('premolar == 1')[['tooth_num', '1', '2', '3', '4', '5', '6']]\n",
+ "upper_surfaces = restored_surface_counts.query('upper == 1')[['tooth_num', '1', '2', '3', '4', '5', '6']]\n",
+ "lower_surfaces = restored_surface_counts.query('lower == 1')[['tooth_num', '1', '2', '3', '4', '5', '6']]\n",
+ "right_surfaces = restored_surface_counts.query('right == 1')[['tooth_num', '1', '2', '3', '4', '5', '6']]\n",
+ "left_surfaces = restored_surface_counts.query('left == 1')[['tooth_num', '1', '2', '3', '4', '5', '6']]"
]
},
{
"cell_type": "code",
- "execution_count": 249,
+ "execution_count": 272,
"metadata": {},
"outputs": [
{
@@ -1390,83 +1397,43 @@
" \n",
"
\n",
" \n",
- " 1 | \n",
- " 10 | \n",
- " 11438 | \n",
- " 10234 | \n",
- " 6438 | \n",
- " 3140 | \n",
- " 521 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 15 | \n",
- " 23 | \n",
- " 4365 | \n",
- " 3089 | \n",
- " 1720 | \n",
- " 727 | \n",
- " 106 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 16 | \n",
- " 24 | \n",
- " 5125 | \n",
- " 3697 | \n",
- " 2083 | \n",
- " 1109 | \n",
- " 240 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 17 | \n",
- " 25 | \n",
- " 4806 | \n",
- " 3808 | \n",
- " 2087 | \n",
- " 1082 | \n",
- " 203 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 18 | \n",
- " 26 | \n",
- " 4194 | \n",
- " 3247 | \n",
- " 1695 | \n",
- " 665 | \n",
- " 115 | \n",
+ " 2 | \n",
+ " 11 | \n",
+ " 12283 | \n",
+ " 9152 | \n",
+ " 4372 | \n",
+ " 1339 | \n",
+ " 168 | \n",
" 0 | \n",
"
\n",
" \n",
- " 29 | \n",
- " 7 | \n",
- " 11249 | \n",
- " 10399 | \n",
- " 6536 | \n",
- " 3214 | \n",
- " 498 | \n",
+ " 14 | \n",
+ " 22 | \n",
+ " 7662 | \n",
+ " 3591 | \n",
+ " 1763 | \n",
+ " 536 | \n",
+ " 52 | \n",
" 0 | \n",
"
\n",
" \n",
- " 30 | \n",
- " 8 | \n",
- " 12742 | \n",
- " 13514 | \n",
- " 8559 | \n",
- " 6064 | \n",
- " 956 | \n",
+ " 19 | \n",
+ " 27 | \n",
+ " 7391 | \n",
+ " 3841 | \n",
+ " 1839 | \n",
+ " 536 | \n",
+ " 63 | \n",
" 0 | \n",
"
\n",
" \n",
- " 31 | \n",
- " 9 | \n",
- " 12488 | \n",
- " 13227 | \n",
- " 8316 | \n",
- " 5976 | \n",
- " 923 | \n",
+ " 28 | \n",
+ " 6 | \n",
+ " 12144 | \n",
+ " 9097 | \n",
+ " 4103 | \n",
+ " 1296 | \n",
+ " 179 | \n",
" 0 | \n",
"
\n",
" \n",
@@ -1474,66 +1441,200 @@
""
],
"text/plain": [
- " tooth_num 1 2 3 4 5 6\n",
- "1 10 11438 10234 6438 3140 521 0\n",
- "15 23 4365 3089 1720 727 106 0\n",
- "16 24 5125 3697 2083 1109 240 1\n",
- "17 25 4806 3808 2087 1082 203 0\n",
- "18 26 4194 3247 1695 665 115 0\n",
- "29 7 11249 10399 6536 3214 498 0\n",
- "30 8 12742 13514 8559 6064 956 0\n",
- "31 9 12488 13227 8316 5976 923 0"
+ " tooth_num 1 2 3 4 5 6\n",
+ "2 11 12283 9152 4372 1339 168 0\n",
+ "14 22 7662 3591 1763 536 52 0\n",
+ "19 27 7391 3841 1839 536 63 0\n",
+ "28 6 12144 9097 4103 1296 179 0"
]
},
- "execution_count": 249,
+ "execution_count": 272,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "incisor_surface_counts"
+ "canine_surfaces"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 306,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "# incisor_surface_counts"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 289,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "molar_surface_counts = molar_surfaces.set_index('tooth_num').sum().to_frame(name='molar')\n",
+ "premolar_surface_counts = premolar_surfaces.set_index('tooth_num').sum().to_frame(name='premolar')\n",
+ "canine_surface_counts = canine_surfaces.set_index('tooth_num').sum().to_frame(name='canine')\n",
+ "incisor_surface_counts = incisor_surfaces.set_index('tooth_num').sum().to_frame(name='incisor')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 312,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def join_dfs(ldf, rdf):\n",
+ " return ldf.join(rdf, how='inner')\n",
+ "\n",
+ "df_surface_counts = \\\n",
+ " functools.reduce(join_dfs, \n",
+ " [molar_surface_counts, premolar_surface_counts, \n",
+ " canine_surface_counts, incisor_surface_counts])"
+ ]
},
{
"cell_type": "code",
- "execution_count": 252,
+ "execution_count": 314,
"metadata": {},
"outputs": [],
"source": [
- "incisor_surface_counts.set_index('tooth_num', inplace=True)"
+ "# df_counts"
]
},
{
"cell_type": "code",
- "execution_count": 253,
+ "execution_count": 335,
"metadata": {},
"outputs": [
{
"data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAAFbCAYAAAA9T/O2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XuclnP+x/HXp8zUdJLOqUglqrXWGtWqJVKpsLSSJBLCJhsqRRIJWw6pDVt2xW5sB8dVSg6xER2WH1FZux2U6UTEznT+/P64rnvcc3dPM9XMNc3M+/l43I/pvq7P9b0+9z1/+MzX9/p8zd0RERERESnNyhR1AiIiIiIiRU1FsYiIiIiUeiqKRURERKTUU1EsIiIiIqWeimIRERERKfVUFIuIiIhIqaeiWERERERKPRXFIiIiIlLqqSgWERERkVJPRbGIiIiIlHpHFHUCUvzUqFHDGzZsWNRpiIiIiORp6dKlW9y9Zl5xKorlgDVs2JAlS5YUdRoiIiIieTKzNfmJ0/IJERERESn1VBSLiIiISKmnolhERERESj0VxSIiIiJS6qkoFhEREZFST90nREREpMTatm0bmzZtYteuXUWdihSwlJQUatWqRZUqVQpkPBXFIiIiUiJt27aNjRs3Uq9ePdLS0jCzok5JCoi7k5WVxfr16wEKpDDW8gkREREpkTZt2kS9evWoUKGCCuISxsyoUKEC9erVY9OmTQUypopiERERKZF27dpFWlpaUachhSgtLa3AlsaoKBYREZESSzPEJVtB/n5VFIuIiIhIqacH7eSw0nDorAOKX/1A10LKREREpGRr164dNWrUYObMmUWdymFBM8UiIiIiUupppvgQmVlvYCDQCCgPrAaeBB52dw9jWgGPAL8EtgJTgOHuvidunLrAo8C54aHZwE3uvikuJgUYDfQGqgJLgd+7+9KEnPoAw4CGwCpglLtPTYjJMycREZGS6ED/r2RBKan/dzMrK6tEPNComeJDtwkYBZwOtAAeAO4BbgIwswbAPGAlcCpwA3AdQXFLGFMGeBU4DugAdASaAi9ZzhXkY4Grw+tPA/4LvGFmdeLGuhD4M/AEcDIwGXjGzDrHxeSZk4iIiBS9Pn36kJ6ezqxZs2jevDkVKlSga9eufPvtt3z55ZecddZZVKxYkfT0dD755JPs6zIzM7npppuoU6cO5cuX57TTTuP111/f771WrFjBpZdeSoMGDahQoQItWrRg3Lhx7N27Nztm/vz5mBlz587lggsuoFKlStx4442F9vmjpJniQ+TucxMO/TcsTNsRzPzeAGwDrnb3vcBnZlYPGGNmo9z9f8A5BDO2J7r7SsiegV4GnAnMN7PKwPUEs8evhDFXAevD4yPD+w8Bprn7I+H7FWbWGrgNeC08lp+cRERE5DCwdu1aRowYwb333ktmZiYDBgygX79+rF69mmuvvZYhQ4YwbNgwLr30Uj777DPMjGuvvZZXXnmF++67jyZNmjB58mS6du3K22+/Tdu2bZPeZ/369Zxwwgn06tWLypUr8/HHH3PXXXeRlZXFsGHDcsReffXVXHXVVQwcOJDy5ctH8TUUOhXFBSic1T0NaAPcGx5uA7weFp8xc4A/AqcAC8KYVbGCGMDdPzOzdUBbYD6QDpQLr43F7DGzeWEMZpYa3v+JhNTmABPNrGy4PCI/OYmIiMhh4Ntvv2XhwoU0btwYgE8++YSxY8fy9NNPc8UVVwDBDm9du3ZlxYoVADz33HM89dRTXHnllQB06tSJn//854waNYq5cxPn8wLt27enffv22eO1bduWzMxMJk+evE9R3L17d0aNGlUon7eoqCguAGZ2JMGMbSpQFrjb3ceHp+sC7yVcsiHuXOznBva1ISGGJHEbCGaZAWoQ/E6TxZQDqgGb85lTDmbWD+gHcMwxxyQLERERkULQsGHD7IIYoEmTJgCcffbZ+xxbv349X3/9Ne5O9+7ds8+XKVOG7t27M2bMmFzvs337du6//36mTp3K2rVrc2yKsXv3bo444qeysWvXkrc+WmuKC8YPwC8IZnP7Azeb2TX7ifeEn/tTUDF5xe03J3ef5O7p7p5es2bNfN5OREREDlXVqlVzvE9NTd3neOzY9u3bycjIoFKlSlSoUCHHdbVr1yYzM5MdO3Ykvc9tt93Ggw8+SL9+/Zg9ezaLFy9m+PDh2eMmjlXSaKa4AITLEL4M335iZkcRLJ94EsgA6iRcEnsfm53NIFhXnKh2Qkzs2rW5xGwBdie5X21gB0GXidhYeeUkIiIixVDdunX58ccfyczMzFEYb9y4kQoVKlCuXLmk182YMYMBAwYwZMiQ7GOzZiXv1FESdwrUTHHhKEOwXAGCZQodwg4TMecCmcBHcTHHmdnxsQAzawY04Kf1vUsJCttOcTFlCIrpBQDuvhNYHB8Td78P4tqt5ScnERERKYZOO+00zCzHphzuzsyZM3N9yA6C1mrxBfOePXv4+9//Xqi5Hk40U3yIzOxu4J8E7dFSgDMIOj08FYY8DtwITDazh4HGBC3cJsR1eXgD+BfwNzMbABgwEfgAeAfA3beZ2RPAfWaWQdB/eDCQBvwpLqUxwEwzW0Tw8FxXoBtwflxMfnISERGRYqhZs2b07NmTG2+8kW3btmV3n1ixYgWPP/54rtd16NCBiRMn0qRJE6pVq8bEiRNzXWpREqkoPnRVCLo91AO2ExTHw8JjuPtXZtYReJhgtvc7YBIwPDaAu+81s/OA8cCbBOt6XwMGxDYACQ0GdhIsy4ht3tHB3TPixnopXM98O0Ff41VAH3d/LS4mz5xERESk+Jo8eTK33XYbo0aN4rvvvuOkk07i1Vdf3e9M8YQJE7j++uvp378/aWlpXHnllVx00UX069cvwsyLjuWsuUTylp6e7kuWLCmUsQ90l6GSujuQiIgcuuXLl9OsWbOiTkMKWV6/ZzNb6u7peY2jNcUiIiIiUuqpKBYRERGRUk9FsYiIiIiUeiqKRURERKTUK5LuE2ZWjqBbQ/nEc+7+efQZiYiIiEhpFmlRbGZHE7T+6pzsNEErsrJR5iQiIiIiEvVM8ZPAL4FbgM8Jeu6KiIiIiBSpqIviNsC17j494vuKiIiIiOQq6gftNgFZEd9TRERERGS/oi6KRwC3mVmViO8rIiIiIpKrqJdPdAOOAdaY2WLgu4Tz7u49Is5JRERERApBnz59WLZsGUuWLCnqVPIUdVFcA/hP+O8UoGbE9xcREZHSbuSRRXTf74vmvpIvkRbF7n5WlPcTERERKW2ysrJIS0sr6jQKVBSfqUh3tDOzlKK8v4iIiMjhrE+fPqSnp/PSSy9x4oknUr58edq2bcvnn/+015mZ8fDDDzNw4EBq1qzJSSedlH3u5ZdfJj09nfLly1OnTh2GDBnCrl27ss+PHDmSGjVq8OGHH5Kenk5aWhpt27Zl1apVbNq0iQsvvJBKlSrRrFkz3nrrrRy57dmzh5EjR3LMMcdQrlw5WrRowbPPPrvfz5ORkUHfvn1p1KgRaWlpNG3alOHDh7Nz509delevXo2ZMXXqVK644gqqVq3K+eeff6hfZZ4iL4rN7HQze83MfgC2m9kPZjbbzH4VdS4iIiIih7s1a9Zwyy23cOedd/Lss8/y/fff06lTJ7Zv354dM3bsWDIyMvjrX//K+PHjAZg+fTrdunWjZcuWvPLKK9x1111MmjSJYcOG5Rg/MzOTfv36cfPNN/Pcc8+xdu1aevfuTc+ePWnbti0vvPAC9erVo3v37mRmZmZfN2LECEaPHk2/fv145ZVXaNOmDb169eK5557L9bNs2bKFatWq8fDDDzNnzhwGDx7MU089xYABA/aJHTRoEJUrV2bGjBncfvvth/o15inqHe06ALOAlcBYYCNQG7gYmG9mXd39jShzEhERETmcbdmyhZdffpnTTz8dgFNPPZXGjRszZcoUrr/+egDq1KnDtGnTsq9xdwYPHswVV1zBY489ln28XLly9O/fn2HDhlG9enUgWJowfvx4zjzzTAC+/vpr+vfvz913382gQYMAqF+/Pi1atOCdd96hc+fOfPvtt4wbN47hw4czfPhwADp16sS6desYOXIkPXv2TPpZTjrpJB588MHs923atKFixYr07duXCRMmkJqamn2udevWTJw48ZC/v/yKeqZ4NPAK8HN3v8fd/xT+/DnwKnBfxPmIiIiIHNZq1aqVXRADHHvssZx66qksWrQo+1jXrl1zXPPFF1+wdu1aLrnkEnbv3p39Ovvss9m+fTvLli3Ljk1NTeXXv/519vsmTZoAcPbZZ+9zbP369QAsW7aMzMxMunfvnuO+PXr04IsvvmDTpk1JP4u7M27cOJo3b05aWhopKSn06tWLHTt2sHbt2hyxiZ+psEVdFJ8ETHZ3T3JuUnheREREREK1atVKeiwjIyP7fe3atXOc37JlCwBdunQhJSUl+3XccccB8NVXX2XHVq5cmTJlfioJY7O1VatW3edYbMlG7N6J942937p1a9LPMm7cOG699VYuuugiXn75ZRYtWpQ9Gxy/HCTZ2IUt6pZs3wGNcznXhH37FouIiIiUaslmXTdt2kSLFi2y35tZjvPVqlUDYNKkSZxyyin7XB8rjg9W3bp1s/OILcMA2LhxY477J5oxYwbdu3dn9OjR2cfiHxqMl/iZClvUM8UzgPvN7HIzKw9gZuXN7HKCpRXTI85HRERE5LC2adMm3n///ez3a9eu5V//+hctW7bM9ZoTTjiBevXqsXr1atLT0/d5xReyB+NnP/sZFSpUYMaMGTmOT58+naZNm1KzZvKtKLKysihXrlyOY1OnTj2kXApK1DPFtwHVgaeBp83sR6BSeO658LyIiIiIhGrUqEHv3r0ZNWoUaWlpjBgxglq1atGnT59crylTpgwPPfQQvXv3Ztu2bXTu3JnU1FT++9//8tJLLzFz5kwqVKhw0DlVq1aNgQMHcu+993LEEUeQnp7OCy+8wOzZs/fbfaJDhw6MHz+eVq1a0bhxY6ZOncqXX3550HkUpKg378gCepnZKOA0oC6QASx29xVR5iIiIiJSHBx77LHcfvvtDB06lDVr1pCens5zzz1H+fLl93tdjx49qFKlCvfddx9/+ctfKFu2LI0aNeK8887L0eXhYN1zzz0cccQRPP7442zcuJEmTZrwt7/9jUsvvTTXa0aMGMHmzZuzO1Z069aN8ePHR9KHOC+W/Jk3kdylp6d7Ye1h3nDorAOKX/1AtE+miohI8bF8+XKaNWtW1Gkckj59+rBs2TIK67+7JUFev2czW+ru6XmNU+gzxWbWHPiPu+8I/71f7p58tbWIiIiISCGJYvnEMqA1sCj8d25T0xaeKxtBTiIiIiIi2aIois8CYrO/Z5N7USwiIiIicaZMmVLUKZQahV4Uu/s7cf+eX9j3ExERERE5UJH2KTazPWaWtKmemZ1qZnuizEdEREREBKLfvGN/W5OkALujSkREREREJCaK7hPHAA3jDp0S280uTnngSmBVYecjIiIiIpIoigftrgLuInjAzoHHc4nLAq6JIB8RERERkRyiWD7xGHAScDLB8ole4fv41wlANXfPfV/Aw5SZDTazhWa21cy+M7MFZnZuQkwfM/Mkr3MS4pqa2VwzyzSzLWb2hJlVTIipbGaTzewbM/ufmb1mZo2T5DXEzNaY2XYz+8jMOiaJ6WJmH5vZDjNbbWa3FNT3IiIiIlKcFHpR7O6b3f0zd18GHAc8H76Pf/3b3XcUdi6F5GzgLwSt51oBHwCvmlmbhLg9BNtax7/ejZ00s0rAmwTrqk8HLgHOBf6cMM5fgfbAxUBbgj805plZWtxYA4G7gTuBU4B5wD/M7OdxMenAy8Ac4BfASOA+M7v+4L4GERERKa5GjhxJjRo1ijqNIhXF8ols7r4GwMyOAI4hWEucGFOsdrRz984JhwaZWSegG/BeQuyG/Qx1GVADuMzdvwcws/4EBfYwd19lZk2B3wCd3P3tMKYnsAHoAUwxMwMGA4+4+zPh2EPM7CzgFqBPeOwWYLG7Dw3fLzezFsBtwBMH9CWIiIhIsXbNNddw/vnnF3UaRSrSotjMUoDxBA/VlcslrFjvaGdmZYDKwJaEU2XN7L9AGrASeNDdX4073wZYGCuIQ68De8Nzq8KfuwhmlAFw961mtohg1ngKwUONRxPMAMebA/RMuF/iLPQcgqK+vruvy8/nFRERKW5OevqkIrnvp1d+WiT3zY/69etTv379ok6jSEXdkm0EcB5wNcH/9r+R4EG8N4HVQEn4E+V2oCrBMoeYlQR/CHQLXx8TLGe4Oi6mLsGMbzZ33wV8G56LxWxx98R+zhsSYmLHcotJer+493UTjmNm/cxsiZkt2bx5c+JpERERKSTvvvsuZ511FpUqVeLII4+kXbt2fPTRR2RkZNC3b18aNWpEWloaTZs2Zfjw4ezcuTP72tWrV2NmTJ8+neuuu44jjzyS+vXrc9ddd7F3797suMTlE/Pnz8fMmD9/Pt27d6dSpUo0atSIxx57bJ/8FixYwJlnnkmFChWoXr061157LT/88EPhfimFIOqi+BKCtavTw/eL3P0Zd+8ILCBYGlBsmdnvCIrii+NnWt19Yfg5Pw7/PZCgaL4tn0PnZ2vsgopJGufuk9w93d3Ta9asmc9hRERE5FDMnz+f9u3bk5KSwtNPP820adP49a9/zfr169myZQvVqlXj4YcfZs6cOQwePJinnnqKAQMG7DPOkCFDqFSpEjNnzuTyyy/nnnvuYebMmXne/9prr+Xkk0/mxRdfpF27dvTv359FixZln3/vvfdo3749derUYebMmYwbN47Zs2dz1VVXFej3EIVIl08ADYAv3H2PmW0Hjoo7NxV4Frgu4pwKhJkNIni47QJ3fyMfl7wPXBr3PoPg+4kfMwWoxk8zuBlADTMrmzBbXBv4Ii4GoE7csVhM/MxwRhhDQgzsO4MsIiIiRWDYsGGcfPLJzJ07l+CxITj33J+aXD344IPZ/27Tpg0VK1akb9++TJgwgdTU1OxzZ5xxBg899BAAHTp0YM6cObzwwgtccskl+71/z549GT58OADt2rXjH//4By+88AItWwYbFA8dOpTTTz+dadOmZV9Tr1492rdvz7Jly/jZz352iN9AdKKeKc4gWFoAwRrZM+LO7dNWrLgws3sIejF3yWdBDEFXiK/i3r8H/MrMqsQd60DwO3ovLiaFoONF7N5VCbpeLAgPrQa+Bjol3O/cuJjYWMli1mg9sYiISNH73//+x4cffsiVV16ZXRDHc3fGjRtH8+bNSUtLIyUlhV69erFjxw7Wrl2bI7Zjx5ydWZs3b866dXn/5z7+upSUFI4//vjs6zIzM1m4cCGXXHIJu3fvzn61bduWlJQUli5dejAfu8hEPVM8H/g18A9gMvCgmTUBdhB0TyiOfYrHEcxu9wRWmlls9jUrrovESGARwcxtOYJ2atcAN8UN9SxBC7VnzewOghniicA0d18F4O5fmNnLwOPheuTvgfuA9cC0MMbNbCxBe7XlwBKCjhMnA9fG3e8R4H0zG02wlKMlMAC4uWC+GSkuGg6ddUDxqx/oWkiZiIhIvK1bt+Lu1K27z6M+AIwbN45BgwYxdOhQzjzzTI466igWL15M//792b59e47YqlWr5nifmpq6T0wy+7tu69at7Nmzh9/97nf87ne/2+far776ap9jh7Ooi+I7CNqO4e7jwvZhFxN0ZJgA3BNxPgXh9+HPFxOOP81P7c+qEBS4dQh27lsBXOLuz8eC3f3HcDOPCcDCMG4mQeu0eL0JCtoXCVravQt0dPesuLHGmVkqQcFcG1hOsKzj/+JiFpvZhWHMIIIlE3e4u9qxiYiIHAaOOuooypQpQ0ZGRtLzM2bMoHv37owePTr72OefR9fZtmrVqpgZI0eOpEuXLvucP/rooyPLpSBEVhSH62MbEyybAMDdHyEo8Iotd9/3/2fsG3ML+xa3yeJWAvvsPJcQ8wPBLPN+t8R29zHAmDxiZgEHNk0oIiIikahYsSKtWrXimWee4cYbb9xnCUVWVhblyuXscDt16tRI82vdujUrV65kxIgRkd23sEQ5U7wHeAvoQrDmVURERET244EHHuCcc86hc+fO9OvXj4oVK7Jw4ULS09Pp0KED48ePp1WrVjRu3JipU6fy5ZdfRprfmDFjaN++PWXKlOHiiy+mcuXKrF27llmzZjF69GiaNm0aaT6HIrIH7dx9L/BvfupwICIiIiL7ccYZZzBv3jwyMzO5/PLL6dGjB++88w7169dnxIgR2d0hevbsSWpqKuPHj480v7Zt2/Luu++yefNmevfuzfnnn8+YMWNo0KABtWsXr5LP3PPburYAbmb2G+APQHd3P3y3dZH9Sk9P9yVLlhTK2HroK3r6zkWkpFq+fDnNmjUr6jSkkOX1ezazpe6entc4UT9oNxyoDnxsZuuBjSRsFOHuLSPOSURERERKuaiL4s+AZRHfU0RERERkvyItit29T5T3ExERERHJj0h3tDOzv5jZcbmcO9bM/hJlPiIiIiIiEP02z32AmrmcqwFcGV0qIiIiIiKBqItiSHiwLs7PgM1RJiIiIiIiAhGsKTaz3/PTVsgOvGRmOxLCyhP0L55S2PmIiIiIiCSK4kG7z4HnASPY6vhtIHET753ACmB6BPmIiIiIiORQ6EWxu88D5gGY2Q/Ak+6+vrDvKyIiIiKSX1G3ZLsbwMxSgZOAasC3wKfuvjPKXEREREREYiJ/0M7MhhDsZLcImAssBjaa2eCocxERERE5nPXp04f09Dx3KD4gI0eOpEaNGgU6ZkkQ6UyxmQ0E7geeAKYRFMe1gR7A/Wa2w93HR5mTiIiIlC7LT2xWJPdttmL5AV9z5513kpWVVaB5XHPNNZx//vkFOmZJEPU2z/2BB9z9jrhjK4F3zew74CZARbGIiIgI0Lhx4wIfs379+tSvX7/Ax02UlZVFWlpaod+noES9fKIBQfeJZOYDhf8bEhERESkm4pdPTJkyBTPj008/pUOHDlSsWJETTzyRF154YZ/rXnzxRVq2bElaWhrVq1enS5curFmzBth3+cSuXbsYNGgQxxxzDOXKlePoo4/moosuYufOnx73+vjjj2nfvj0VKlTgqKOOolevXmzcuDH7/OrVqzEzpk6dyhVXXEHVqlWL3Wx01EXxWqBjLuc6hOdFREREJBeXXXYZF1xwAS+++CLHH388l156KevWrcs+/9e//pVu3brRuHFjpk+fzlNPPUXTpk3ZvDn5Hmn3338/U6dOZdSoUcybN49x48Zx5JFHsmfPHgA2b95Mu3btyMzM5Nlnn2XChAm88847dOjQIUfhDDBo0CAqV67MjBkzuP322wvvSygEUS+fGA+MN7NqwEyCNcW1gO4EW0DfFHE+IiIiIsXKzTffTN++fQE49dRTqV27Nq+++irXX389e/fuZejQoVx00UU899xz2ddccMEFuY63aNEiLrvsMq688srsY5dcckn2vx966CEA5s6dS5UqVQBo2rQprVq14vnnn6dnz57Zsa1bt2bixIkF80EjFulMsbv/EbgOOBeYDSwBXgvfX+/uj0WZj4iIiEhx07HjT//TvXr16tSqVSt7pnjlypV8/fXXXHXVVfke7xe/+AVTpkxhzJgxfPLJJ7h7jvOLFi2iY8eO2QUxQMuWLWnYsCELFizIEdu1a9eD+UiHhchbsrn7ZIK1xccCvwp/NnD3J6PORURERKS4qVq1ao73qampbN++HYBvvvkGgLp16+Z7vOHDh9O/f38ee+wxTj75ZBo0aMCjjz6afT4jI4PatWvvc13t2rX59ttv9zlWXEVeFAN44Ct3X+TuXwFHFkUeIiIiIiVJ9erVgaCQza/y5ctzzz33sHr1ar744gt69OjBwIEDmTNnDhAU2Js2bdrnuo0bN1KtWrUcx8zsELIvWpEWxWZ2Q7h5R+z9L8xsHfCNmS01M3WfEBERETlIJ5xwAvXq1ePpp58+qOuPP/54HnzwQcqVK8fnn38OQKtWrZg7dy4//PBDdtzixYtZvXo1bdu2LZC8DwdRzxQPALbFvR8PfA30CnN5IOJ8REREREqMMmXKMGbMGJ5//nl69erFq6++yqxZs7j11ltZsmRJ0msuuugi7r33XmbNmsVbb71F//792b17N2eccQYAt9xyCwCdOnXi5ZdfZurUqXTr1o2TTjqJ3/72t5F9tsIWdfeJYwg268DMagJtgPbuPt/MdgJ/zGsAMzsCKOvuO+KOdQSaA++6+78KJXMRERGRYuCyyy6jfPnyjB49mosvvpiKFSvSunVratasmTT+9NNPZ9q0aYwdO5a9e/fSvHlznn/++ez+yDVr1uTtt9/m1ltvpWfPnqSmptKlSxceeeQRUlNTo/xohcoSnzAs1JuZfQNc5u5zzewS4M9AVXffY2btgNnuXiGPMZ4Hvnf3vuH7m4BxwA6gLNDN3V8tzM9R2qWnp3tuf20eqoZDZx1Q/OoHiu9TrocLfeciUlItX76cZs2KZktniU5ev2czW+ru6XmNE/XyiUVAfzNrQdCTeI677wnPNSJYSpGX1gTt3GIGAw+5exrwJHBH0qtERERERHIRdVF8K8Eyh08J2rLFF7A9gPfyMUZ1YAOAmZ0EHA08EZ6bEY4vIiIiIpJvka4pdvfPgSZmVh341nOu3RhEWOzmYSPQEFhAsOnHGnf/T3guDdhbcBmLiIiISGkQ9YN2Md8C9c2sAfB/7v4/d/80n9fOAP5gZicDV5Hz4bxTgH8XbKoiIiIiUtJFvnmHmf0OWA+sAf4JnBAef8HMBuZjiKHAn4ATgceB++POnQpMK9CERURERKTEi3rzjsHAw8Bk4GwgftuT+QTrivfL3Xe7+z3ufr673xnfms3du7n7QwWcdq7MbLCZLTSzrWb2nZktMLNzk8S1MrP3zWy7mWWY2f1mVjYhpq6ZTTezbeHr72ZWKyEmxczGhGNkhfc7Ncn9+pjZSjPbYWYrzKzXweQkIiJS3EXZZUuiV5C/36hnivsDI9z9LoJZ4ngrgab5HcjMOpvZnWY2ycyOCY+dYWZHF1y6eTob+AtwFtAK+AB41czaxOXZAJgkGCfKAAAgAElEQVRH8PlOBW4ArgNGx8WUAV4FjgM6AB0JvouXLOd+iWOBq8PrTwP+C7xhZnXixrqQoNXdE8DJBH+APGNmnQ8kJxERkeIuJSWFrKysok5DClFWVhYpKSkFMlbUa4rrAEtzObcXKJ/XAGZWG3iFoJhbTVBIPgGsJVhjvJ2gyCt07t454dAgM+sEdOOnTho3EOzid7W77wU+M7N6wBgzG+Xu/wPOAX4JnOjusc1NegPLgDOB+WZWGbgeuMndXwljriJYinI9MDK83xBgmrs/Er5fYWatgduA1w4gJxERkWKtVq1arF+/nnr16pGWlkbOeSYpztydrKws1q9fT+3atQtkzKiL4i8Jirw3k5w7A/g8H2NMACoRrCleDeyMO/cGcNehpXjwwhnfysCWuMNtgNfD4jNmDsEDgqcQdNFoA6yKFcQA7v6Zma0D2hIsLUkHyoXXxmL2mNm8MAYzSyWYQY61qIu/30QzKxv2hc5PTiIiIsValSpVAPj666/ZtWtXEWcjBS0lJYXatWtn/54PVdRF8TjgsXBL55nhsVpmdjVwC3BtPsY4F7jS3b9MsgZ2HVCvwLI9cLcDVYG/xh2ry779lzfEnYv9TNaObkNCDEniNhDMMgPUIPidJospB1QDNuczpxzMrB/QD+CYY45JFiIiInLYqVKlSoEVTVKyRd2n+EkzOwoYAdwdHp4NZAIj3f3ZfA61J5fjNYAiWTwUdtW4HbjA3dflEe4JP/MTe6gxecXtNyd3nwRMgmCb53zeT0RERKRYiLwlm7uPJdiFrjNwOdAFqBcez49/AgMSZoljRVpf4K2CyjW/zGwQwUNwF7j7GwmnMwjWUseLvd+wnxiA2gkxJImLj9kC7M4lZgew9QByEhERESk1Ii+KAdz9B3d/3d2fdfc57v49gJnVz8fltxGsm10GjCIoiK81s3eBXwHDCyvvZMzsHoJ1zF2SFMQQLFPoEK43jjmXYHb8o7iY48zs+LhxmxFshR1b37uUoLDtFBdThuAhvQUA7r4TWBwfE3e/D8L1xPnNSURERKTUKJKiOJGZnWRmTwP/ySvW3ZcRdJ5YAvQhWErRDfgKaOXuXxRiqjmY2ThgMNAbWGlmdcLXkXFhjwNHApPNrIWZXUBQzE+I6/LwBvAv4G9m1tLMWhGsS/4AeAfA3bcRPEB3n5mdZ2YtCNrBpRFsZhIzBuhhZr83sxPM7BaC7+cPB5iTiIiISKkRyZpiM7sMuIJg5nMVcL+7v2dmJwEPEMxSbgXuzWOcMgQPgm10996Fm3W+/D78+WLC8acJCnbc/Ssz60iwaclS4DuCtbnZM9ruvtfMzgPGE3TmcIL2aQM8Z1fqwQTdNp4keKBvKdDB3TPixnrJzK4hWN88luD77uPur8XF5JmTiIiISGlS6EVx2FliMrAc+BQ4hmDDicHAQwT9cm8DHs/HLGUZgjZs5xPXmqyouHu+Gh66+wfA6XnEZADd84jZRdCHeEgecVOAKYeak4iIiEhpEcVM8QDgGXfvEztgZgOBR4H3gfPd/bv8DOTuu81sDVChMBIVERERkdIpijXFjcnZtxeCWUwDRue3II7zB+AOM6tZALmJiIiIiEQyU1wR+CHhWOz9poMYryPBuuLVZrYU2EjO3rru7j0OYlwRERERKaWi2rzjdDOrEfe+DEEh28bMcvTLdffZeYxVA1iZ8F5ERERE5KBFVRQ/nMvxRxPeO5C4dXPOAPezCiQjEREREZFQFEXxcRHcQ0RERETkoBV6UezuawpyPDMbk4977rdlmYiIiIhIvKiWTxSkZL18jwKqAN8TbAKiolhERERE8q3YFcXunnQ5Rrg18iTg+mgzEhEREZHiLoo+xZFw9w8JtjX+Y1HnIiIiIiLFS4kpikPfACcUdRIiIiIiUrwUu+UTZpZsi+dUoBlwD/BZtBmJiIiISHEXeVFsZrWAW4F0oAFwkbt/Zma/Bxa5+8I8hviRnDvYZQ8NrAcuLMh8RURERKTki7QoNrOWwDxgM/AO0A4oF56uS1AsX5zHMH3ZtyjeDqwjKKp3FVS+IiIiIlI6RD1T/AjwNtCNYD3zVXHnFgGX5TWAu08plMxEREREpNSKuij+JfAbd99rZpZw7hugVsT5iIiIiIhEXhR/D9TM5VwjYGOyE2a2l+TriJNy97IHnpqIiIiIlFZRF8UvA3eb2UIgtv2zm1kNYBDwQi7X3cRPRXEKwdrjH8PxNgG1gd8AFYGHCid1ERERESmpoi6KhwJvAp8DS8NjTwBNgFXAiGQXuXv2hhxm9jDwIdDd3T3u+FBgBpB0xzsRERERkdxEunmHu28FWgP9CWaK3yAohocCbdz9h3wMcwUwOb4gDsd2YDJweYEmLSIiIiIlXuR9it19J/Dn8HUwyhJs1DE3ybkWlLxd+kRERESkkEXdp7g90CBZWzUz6wOscfe38xhmKnCfmR0BvEKwprgWwZriezj4YltERERESqmoZ4pHAy/mcq4GcB3wqzzGuAXYRVAA/yHu+A7gT8CQQ8xRREREREqZqJcatACW5HLuI6B5XgO4+053vxmoD7Qn2PDjbKC+uw8Ml2eIiIiIiORb1DPFu4FquZyrfiADufu3wPxDTUhEREREJOqZ4gXAYDNLjT8Yvr8V+Gd+BjGzn5vZNDP7j5ntMLNfhsdHm1nnAs9aREREREq0qIviO4ATgS/NbKyZ3WJmY4F/AycQtGbbr7DoXQrUAZ4h2MwjZgcwoMCzFhEREZESLeo+xZ8ApwHvAb0JHpTrTTCD3NLdl+VjmPuBKe5+JsGDe/E+Bn5RcBmLiIiISGlQFH2KVwI9D2GIEwm2hIaftn6O2Ubua5ZFRERERJIqjhtdbAIa5XKuBbA2wlxEREREpASIfKbYzH4FXA00Bconnnf3lnkM8XfgHjP7HFgYu8zMmgK3oc07REREROQARTpTbGYdgHcJegy3BTYDPwInE7Rky8+a4jsJeh2/w0+zwi+H134C3FewWe+fmZ1hZi+b2RozczMbnnC+T3g88XVOQlxTM5trZplmtsXMnjCzigkxlc1sspl9Y2b/M7PXzKxxkpyGhPlsN7OPzKxjkpguZvZx2L1jtZndUlDfiYiIiEhxE/XyiXuAR4Gu4fs73f1sglnjXeSj77C773D384COwNPAk8CzQFd3P8/ddxVG4vtRCficYCe9DbnE7AHqJrzejZ00s0rAmwR9nE8HLgHOZd9Z778SbFhyMcEfFQbMM7O0uLEGAncT/PFwCjAP+IeZ/TwuJp3gD4k5BA8mjiTYOvv6A/3wIiIiIiVB1MsnmgPDgb0ED8lVBHD3NWY2kqCYeyY/A7n7mwSFZJFy99nAbAAz+8N+4nIrmCHYla8GcJm7fx+O1R941cyGufuqcHnIb4BO7v52GNOToBDvAUwxMwMGA4+4e+x7HGJmZxFsj90nPHYLsNjdYy3wlptZC4LlJ08c0BcgIiIiUgJEPVO8HSjj7g5kAPH/638bwbKK/TKzS81scC7nBpnZJQWSacEqa2b/NbMMM5tvZuclnG8DLIwVxKHXCf54aBMXs4u4PwTcfSuwiGDWGKAhcDTBDHC8OXExsbGSxTQ0szx/ByIiIiIlTdRF8f8RbNIBQXE3zMw6mNmZBEsrPs3HGEMJiutkMoFhh5xlwVoJXAl0C18fEyxnuDoupi4JSy/CZSDfhudiMVvcfU/C+BsSYmLHcotJer+493VJwsz6mdkSM1uyefPmZCEiIiIixVbUyyfGAceF/74d+AcwN3y/DrgoH2McT+4P5C0Pzx823H0hP3XJAFhoZtXIf6eMxF7MhRmTa5y7TwImAaSnp+d3LBEREZFiodCLYjM7Bshw913h+lsA3H29mZ0KNAHSgBXuvjMfQ2aS+zKLBgRbPR/u3gcujXufQZB7NjNLIdiIZENcTA0zK5swW1wb+CIuBoItsL9IiImfGc4IY0iIgdwfFhQREREpsaJYPrGKoAsCZvaWmZ0YO+GBf7v7J/ksiAHeAO40s1rxB82sJnAHwVrcw90pwFdx798DfmVmVeKOdSD4/bwXF5MCnB0LMLOqQCuCbbIBVgNfA50S7nduXExsrGQxa9x93QF+FhEREZFiL4rlE1lAhfDf7YAquYfmy23AB8B/zGwOwaxnXYIi7zuC1miRCdupNQnfpgJ1zOwXwI/u/mXYVWMRwcxtOYJ2atcAN8UN8yxBC7VnzewOghniicA0d18F4O5fmNnLwOPheuTvCXoyrwemhTFuZmMJ2qstJ+jn3IegD/S1cfd7BHjfzEYTtHlrCQwAbi6o70VERESkOImiKP4IeNTM5oXvB5hZRi6x7u637W8wd19rZicTtBU7i6DP7jfABIJWZFsKKO/8SgfejnvfP3y9w09/BEwkWK6QBawALnH352MXuPuP4WYeEwjWH2cBMwk+Y7zeBAXtiwS7Ab4LdHT3rLixxplZKkHBXJtgnfUF7v5/cTGLzezCMGYQwZKJO9xd7dhERESkVLKgO1oh3iBYLjEWOBFoBGwk93W/7u6NCjUhOWTp6em+ZMmSQhm74dBZBxS/+oGueQfJfuk7FxGRkszMlrp7el5xhT5T7O4rgPPDpPYCF7r7okMd18yOBn5FsNTgG+ADd//6UMcVERERkdInspZsZlYOGEH+W4PlNk5ZgmUG1wJl407tMbNJwAB333so9xCR/Rh55AHEfp93jIiIyGEgss073H0HwcYaFfKKzcPdQF+CPscNCdq5NQzf9wVGHuL4IiIiIlLKRL2j3WLg1EMc4wpguLuPdfe17r4j/DmWoINDn0NNUkRERERKl6h3tBtM0HZsJzCb4KG7HMsp3D0zjzFqAZ/kcu6T8LyIiIiISL5FPVP8IdAYGA/8G9gG/JDwyssX5NwNLt6lwMpDT1NERERESpOoZ4r7cogP2gH3An8Pt4+eSTDbXAvoTtC3OLeCWUREREQkqUiLYnefUgBjTDez7wgeuHuUYOvjXcBS4Fx3n7e/60VEREREEkU9U1wg3P114HUzKwPUALaoDZuIiIiIHKxIi2Iz20weyyfcPdcH5cysPPA90MPdXwoL4U0Fm6WIiIiIlDZRzxRPZN+iuBpwNlAF+PP+Lnb37Wa2CdhdOOmJiIiISGkU9ZrikcmOm5kB08lfsfsn4CYzm+vuuwowPREREREppQ6LNcXu7mb2JPAUcF8e4VWBnwGrzexN9u117O5+W+FkKiIiIiIl0WFRFIcaAan5iPstsCP896+TnHdARbGIiIiI5FvUD9r9LsnhVKAZ0AuYkdcY7n5cQeclIiIiIqVb1DPFf0xybAewDniMoPdwrsysOtAQ2ODu6ws8OxEREREplaJ+0O6gtpU2s8oEnSl+G3dsMXC5u39ZQOmJiIiISCl1UEVqEbgb6AyMALoCNwL1yKOFm4iIiIhIfhT6TLGZHQ0c6+4LE47/ArgTOJGgg8QEd38xl2EuAIa7+6Nx1y8D5pvZke7+feFkLyIiIiKlQRQzxaOBh+IPmNnxwD+Bc4DlwFHATDNrn8sYxwKLE459CFh4TkRERETkoEWxprgNMD7h2C1AOSDd3T8BMLOXgKHAm0nGKAskbtSxJ+6ciIiIiMhBi6IoPppgNjjeBcDCWEEc+gvwxH7Gud/Mvo17b+HPMWa2Ne64u3uPg85WREREREqdKIriTCAt9sbMjgPqEhTB8bYS7FaXzLsEM8I1E46/Q/AZEo+LiIiIiORbFEXxx0Bv4NXwfS+CXedeTYhrDGQkG8Dd2xVWciIiIiIiURTF9wBvm9n/AZuAs4G33f3DhLjfEjw8J5J/I488gFg1KREREZHkCr37hLsvAM4CPiXYvW40cFF8jJnVBPYCUwo7HxERERGRRJHsaBcWxgv2c34z8JsochERERERSVRcdrQTERERESk0KopFREREpNRTUSwiIiIipZ6KYhEREREp9SIris2snJndYWYnR3XPKJjZGWb2spmtMTM3s+FJYlqZ2ftmtt3MMszsfjMrmxBT18ymm9m28PV3M6uVEJNiZmPCMbLMbIGZnZrkfn3MbKWZ7TCzFWbW62ByEhERESktIiuK3X0HcAe571pXXFUCPgeGABsST5pZA2AesBI4FbgBuI6gNV0spgzBZibHAR2AjkBT4CUzs7jhxgJXh9efBvwXeMPM6sSNdSHwZ4Its08GJgPPmFnnA8lJREREpDSJpCVbnA8JirB3Ir5voXH32cBsADP7Q5KQG4BtwNXuvhf4zMzqAWPMbJS7/w84B/glcKK7rwzH6g0sA84E5ptZZeB64CZ3fyWMuQpYHx4fGd5vCDDN3R8J368ws9bAbcBrB5CTiIiISKkR9ZriIcANZnajmTUys4pmViH+FXE+UWgDvB4WnzFzgArAKXExq2IFMYC7fwasA9qGh9KBcuG1sZg9BDO+bQHMLJVgBjk7Ju5+reOWR+QnJxEREZFSI+qi+EOgMTAe+DfBbOUPCa+Spi77LqvYEHcut5hYXN2E2GRjxc7VIJj9TxZTDqh2ADnlYGb9zGyJmS3ZvHlzshARERGRYivq5RN9AY/4nocjT/iZn9hDjckrbr85ufskYBJAenq6fociIiJSokRaFLv7lCjvd5jIAOokHIu93xAXc06Sa2snxMSuXZtLzBZgd5L71QZ2AFsPICcRERGRUqNI+hSbWXMz621mt8c6J5hZk/BhspLmPaBD2GEi5lwgE/goLuY4Mzs+FmBmzYAGwILw0FKCwrZTXEwZgmJ6AYC77wQWx8fE3e+DcA1yfnMSERERKTUinSk2s0rAX4CLgV3h/ecQzE7eRzADOijKnA5V+JmahG9TgTpm9gvgR3f/EngcuBGYbGYPE6ypHgVMiOvy8AbwL+BvZjYAMGAi8AFhpw5332ZmTwD3mVkGsAoYDKQBf4pLaQww08wWEXy3XYFuwPlxMfnJSURERKTUiHqm+GHgdKA9UJmg+IuZTTBbWdykE8yufkTwkFr/8N9PArj7VwR9h5sRzPbG1ubeERsg7AJxHsEfBW8SdJT4D/Abd49fvzsYeCoceylwPNDB3TPixnoJuCbM41OC/sN93P21uJg8cxIREREpTaJ+0K4b8Ht3fzvJ7mlrgGMjzueQuft8chb3yWI+IPhjYH8xGUD3PGJ2EbS1G5JH3BRgyqHmJCIiIlJaRD1TnAZ8k8u5ysCeXM6JiIiIiBSaqIvixcAVuZy7GHg/wlxERERERIDol08MB94wszeAGQQ9cbuY2c0ERfEZEecjIiIiIhLtTLG7LyB4yK4c8EeCtbh3A42Ac9x9cZT5iIiIiIhA9DPFuPt7wK/NLA04CvjO3TOjzkNEREREJKZINu8IbSfoVZxVhDmIiIiIiERfFJtZFzN7n6Ao3gBsN7P3zaxr1LmIiIiIiEDERbGZXQf8A/gR+D1BX97fh+9fCc+LiIiIiEQq6jXFtwOT3P2GhONPhFsY30HOLYtFRERERApd1MsnqgMv5HLueaBahLmIiIiIiADRF8VvA2fmcu5M4N0IcxERERERASJYPmFmzePejgeeNLPqwEvAJqAWcBHQGbimsPMRESlqDYfOOqD41Q/oOWQRkcIWxZriZQQ718UYcF348vB9zBygbAQ5iYiIiIhki6IoPiuCe4iIiIiIHLRCL4rd/Z3CvoeIiIiIyKGIfJvnGDM7AkhNPK4tn0VEREQkalFv3nGkmT1mZhkEO9r9kOQlIiIiIhKpqGeKpxC0XpsMfAnsjPj+IiIiIiL7iLoobg9c5+7PRXxfEREREZFcRb15x1pAa4ZFRERE5LASdVE8BBhuZsdEfF8RERERkVxFunzC3Web2TnAl2a2GvguSUzLKHMSEREREYm0KDazB4GBwGL0oJ0c5paf2OyA4putWF5ImYiIiEhhi/pBu2uAO9z9/ojvKyIiIiKSq6jXFGcCSyO+p4iIiIjIfkVdFD8K9DMzi/i+IiIiIiK5inr5RA2gFbDSzOaz74N27u63RZyTiBwmtI5bRESKStRF8cXAbiAF6JDkvAMqikVEREQkUlG3ZDsuyvuJiIiIiORH1DPFIiJyoEYeeQCx3xdeHiIiJVjUfYp/l1eMuz8WRS4iIiIiIjFRd5/4435eE8JXiWNmI83Mk7yaxMW0MrP3zWy7mWWY2f1mVjZhnLpmNt3MtoWvv5tZrYSYFDMbE46RZWYLzOzUJDn1MbOVZrbDzFaYWa/C+wZEREREDm+RFsXuXibxBVQDegL/BzSPMp+IrQbqJrxWAZhZA2AesBI4FbgBuA4YHbvYzMoArwLHETyk2BFoCryU0OJuLHB1eP1pwH+BN8ysTtxYFwJ/Bp4ATgYmA8+YWecC/swiIiIixUKRryl29++AaWZ2JPAnoF3RZlRo9rj7hlzO3QBsA652973AZ2ZWDxhjZqPc/X/AOcAvgRPdfSWAmfUGlgFnAvPNrDJwPXCTu78SxlwFrA+PjwzvNwSY5u6PhO9XmFlrgs4frxXkhxYREREpDqJePrE/q4D0ok6iENU3s3Xh6zUzOz3uXBvg9bAgjpkDVABOiYtZFSuIAdz9M2Ad0DY8lA6UC6+NxewhmIVuC2BmqQQzyNkxcfdrnbhkQ0RERKQ0OCyKYjOrC9xKuJygBPoQuALoQrBUZCvwTzOL9WquCyTOIm+IO5dbTCyubkJssrFi52oQ/B+CZDHlCJaz7MPM+pnZEjNbsnnz5mQhIiIiIsVW1N0nNhNs0BEvFagMbAe6RZlPVNw9cUnCP8PlEYMJZnGTXpbwc7+3KKCYXOPcfRIwCSA9PT2/Y4mIiIgUC1GvKZ7IvkXXdoIlAHPc/ZuI8ylKC/npj4AMoE7C+dj7DXEx5yQZp3ZCTOzatbnEbCHYVTDxfrWBHQSz2CIiIiKlStQ72o2M8n6HuVOAr8J/vwf0NrMyceuKzwUygY/iYkaY2fHu/m8AM2sGNAAWhDFLCQrbTgQdJWJdK84hnOV1951mtjiMeSYun3OBD8I1yCIiIiKlSpF3nygNzOxhgnZqq4EqwLUEbdV+E4Y8DtwITA5jGwOjgAlh5wmAN4B/AX8zswGAEcy8fwC8A+Du28zsCeA+M8sgWKM9GEgj6OwRMwaYaWaLCB6w60owa31+gX94ERERkWKg0ItiM3vrAMLd3dsXWjJFpy7BrGxN4HvgE+Acd38LwN2/MrOOwMMEs73fEczsDo8N4O57zew8YDzwJsEylNeAAe4evyRlMLATeBKoGo7Xwd0z4sZ6ycyuAW4n6Gu8CuiTZO2z/H97dx4tR1Wucfj3EsSAyJQwyhAVgQhxgWBcDCpGGQSuCiqKIiAyKOLEPOg1TBLC6BUBEUNARBSvKIIMMRAIXoaAogxJFCVIJGFIGAKZgHz3j70bKnX6nNOHnO5Out5nrV59unpX1Ve7qru/2rVrHzMzM6uEVrQUN9JPeF1gOxq/GWyZEhH7NFDmLlId9FRmBvCZXsq8TBqH+Jheyo0FxvYWl5mZmVkVND0pjohukzhJG5L+YcQepBvAzu2urJmZmZlZs7SlT7GkjYHjgX2Bp/LfP46Iee2Ix8zMzMyqrdXjFG8OnEjqAvA48E1gTEQsbGUcVk3DLhvWp/K/alIcZmZmtvRpyX+0k7S1pN+QbjDbCjgIeFdEXOSE2MzMzMzarRWjT9wA7ExKiD8XEVc3e51mZtaYyZsN7VP5oVMmNykSM7P2akX3iV3y8wbAjyT9qKfCEbFW80MyMzMzM3tdK5Lik1qwDjMzMzOzN6wVQ7I5KTYzMzOzpVpLbrQzMzMzM1uaOSk2MzMzs8pzUmxmZmZmleek2MzMzMwqz0mxmZmZmVWek2IzMzMzq7xWjFNsZhU17LJhfSr/qybFYWZm1hu3FJuZmZlZ5TkpNjMzM7PKc/cJMzOzFpq82dA+lR86ZXKTIjGzIifFZmbW8YYcd32fyk8btXuTIjGzpZW7T5iZmZlZ5TkpNjMzM7PKc1JsZmZmZpXnpNjMzMzMKs9JsZmZmZlVnpNiMzMzM6s8D8lmZtZB/K+1zczeGLcUm5mZmVnlOSk2MzMzs8pzUmxmZmZmlec+xWZmZmUjV+1D2eebF4eZtYxbis3MzMys8pwUV5ik3STdL2mBpGmSjmh3TGZmZmbt4O4TFSVpG+B3wNnAPsD7gYskzY2Ii9oanJnZMsTD4NU35Ljr+1R+2qjdmxQJTN5saJ/KD50yuUmR2NLMSXF1HQFMiojj8uvJkjYHjgWcFJuZmVmlOCmuru2Bn5am3QgcJWn9iJjehpjMzKyqfHOjtZkiot0xWBtIWggcHhEXF6ZtDjwIDI+ISaXyhwCH5JebAlNbFWs/Ggw80+4gKsZ13nqu89Zznbee67z1luU63ygi1uytkFuKrZ4uZ0o5eb64TtllhqR7I2KbdsdRJa7z1nOdt57rvPVc561XhTr36BPVNQNYpzRt7fw8s8WxmJmZmbWVk+Lq+hOwS2narsBj7k9sZmZmVeOkuLrOBYZLOk3SZpL2A74OjGpzXM20THf/WEa5zlvPdd56rvPWc523XsfXuW+0qzBJuwPfBzYjdZn4QUSc096ozMzMzFrPSbGZmZmZVZ67T5iZmZlZ5Tkpto4m6YOSfifpMUkh6TvtjqnTSTpa0p2SnpX0nKQ7JO3a7rg6maQvSrov1/k8SZMlHSlJ7Y6tCiSNkPSqpEfaHUsnkzQyf4+XHxu3O7ZOJmmwpAslPSFpgaRHJX2l3XE1g8cptk63MvAwcCVwXptjqYoRwBhgEjAPOBi4TtKHIuJPbY2scz0FnEL6pzoLgA8AFwCvAD9oY1wdT9LawGXAOMDJWfNNA7YtTXu6DXFUgqSVgduB/wD7AI8B6wJvamdczeI+xVYZkqYBl0TEqe2OpWokPQDcHBFHtjuWqpB0DUBE7NnuWDqVpOWAm4E/AgOBfSPCiXGTSBqJ67ilJJ0E7A9sGhEL2h1Ps7n7hJk1VU4c3sqy+w9k2Y4AABLCSURBVO9BlylKhgPbA7e2O54O913SfwAd3e5AKmR9SdPz4wZJ27U7oA73KeAO4FxJMyRNkXSmpJXaHVgzuPuEmTXbCcBqwM/aHUgnk7Qq6RLnCsAA4KSI+J/2RtW5JH0Y+AqwVUQscvftlrgb2A+YAqwKfBWYKGnXiBjX1sg61ztJ3YJ+CfwXsB5wfn7+QhvjagonxWbWNJIOIyXFH/d/Smy6OcCWwErAdsDpkp6IiEvaG1bnkTQYuAI4MCJmtjueqoiIG0qTJkp6G3A0qU+39b/lSFf5vhwRrwBIWgG4WtLXI2J2W6PrZ06KzawpJB0FnERKiP/Y7ng6XUQsAmqjH/xN0urAqYCT4v63Baml7PeFFuLlSL1XXgH2i4gr2xVcxdwJ7NXuIDrYDGBaLSHOHsrPGwFOis3MeiLpZODbwG4RcVu746mo5YA3tzuIDjUJGFaadhiwB7Ab8HjLI6qurXB9N9NEYEdJAyLi1Txt0/w8rT0hNY+TYutoeTiZ2p3KKwDrSNoSeDEiPKZoE0g6DziUNHzPVEnr5LfmRcTz7Yusc+U7xCcC/yINlfRB4Fjg0nbG1aki4iXgweI0SU8BCyPiwfpz2ZKSdA5wHSkZW4U03ONOwCfaGFanOwvYGzg/f7evl6ddHhHPtjWyJvCQbNbRJO1I/Tvwb4uIHVsbTTVI6u5L5bKIOKCVsVSFpHNJN8G8DZhPSo7HABcVWnesiTxcWPNJ+gVpDO41geeBvwHfj4hb2hpYh5P0EWAU6erITOBq4HsRMbetgTWBk2IzMzMzqzyPU2xmZmZmleek2MzMzMwqz0mxmZmZmVWek2IzMzMzqzwnxWZmZmZWeU6KzczMzKzynBSbmZmZWeU5KTYzMzOzynNSbGZmZmaV56TYzMzMzCrPSbGZmZmZVZ6TYjMzMzOrPCfFZmZmZlZ5TorNzMzMrPKcFJuZmZlZ5TkpNjMzM7PKc1JsZmZmZpXnpNjMzMzMKs9JsZmZmZlVnpNiMzMzM6s8J8VmZmZmVnlOis3MzMys8pwUm5mZmVnlOSk2MzMzs8pzUmzWISSNlBSSbqrz3q8lTWhhLDvmWLZo1Tr7QtJQSRMlvZTjHNJNucGSzpf0L0nzJT0h6SZJn+zHWJaT9CNJT+ZYRvbXsptF0rQca0haKOkfks6Q9JYmrGtnSd/q7+W+UZIOlxS9lBkp6ZkmrX+TvPzVStMPyPtj5Satd2xhny+S9JikSyWt3Yz19SdJe/T0OTerWb7dAZhZv9tZ0vsiYlK7A1mKnQmsBnwceAmYUS4g6U3ArcBKwGnAP4H1gZ2BjwC/7adY9gIOA74MPAxM76flNtuVwA+BFYAPAd8FBgEH9fN6dgY+DZzXz8tdVm0CfA8YCzzX4nVPAb5EalDbnPS5eLekbSNiUYtjMet3TorNOstsUlJ1ItBvrZlLG0kDI2L+EixiM+DaiBjfQ5kdgS2A4aUTjCskaQnWDYCkFSNiXo7l2YgYs6TLbLEZEXFX/vt2SW8DDpB0yNKcIPXDsVNlLxX2+f9Jmgf8DNga6HISnk8sF0XEqy2MsWkkDQAGRMTCdsdizeHuE2adJYDvAx+XNKy7Qt1d3s2XGA8vvJ4m6SxJx0maIel5SWcr2U3SQ5LmSPqtpNXrrGo9Sdflbgr/lvSVOuvcQdJtkuZKmiXpJ5LeWni/dll4uKQJ+Yf46B62bUtJ4/PynpX089olXklD8qXvdwLfzsud0M2iapenZ5bfiIjXLp/ny8r3lmIYkpe9R2FaSDpC0nmSngYeyOs+BVi9cGl6iKR1JY3J3TbmSfq7pFMlrVBaz4qSRudL2QskPSrp9FKZg/J+WpDLHVN6f3NJN0qanffTZElf665+e/BX4M3AmqXl97Z/V5N0iVLXlPn5OPlJfm8kcCSwUaF+xhbm3VvSA3nbHpd0mqTlC+93e+xIGpjr7vE8/18l7VaK/c1K3Weey/VzLvCmRitE0vaS/py3635JOxTeOzPvX5Xm+ZJSl5TBdZa3I/D7/PLRvG3TSsXeLmlc3pdTJO1VZzmfkHRvjmtmroeGt6vgvvw8JC93glJXrUMk/ROYD6yX3xsh6e68ziclXaBSVw9JgyT9WOm7Zr6kqSp0nVHqanScpEfyPvu7pP1Ly5DS99tTSt9NlwOrlMrU7d5Vi7/wemyup09Keihvz/vzextKuiofF3OVulVt+gbq0JYibik26zxXAyeRWos/1w/L+xxwD+my6dbAqaQT6g+SLpmvCJwPnA6Uk96fklqSfkjqJnChpOkRcR2kpAEYT+qK8GnS5fdRwOr5ddEvgAvzttW9bCxpTWACMBn4PLByXt44SduQuklsC1wD3JLjeqGb7b4fWASMkXQScFdEvNJN2UYdDdwOfJFUh9OAI0jbumsuM4N0iXx2fu/Z/HokKeE8NG+rgN/l7TmFlKC8DfhAbWWSjiadJI0m1cvWwCmS5kbE+bnYtaTL4vsCC4BNKSURDdoQmAO8drLV4P49B9gO+DbpBGQD0rEFcAnwLmAEsGee9nRe9s7AL4HLSfX6nlwPg+h6HNY7dn4NDCd1RfgnsDdwraRtIuL+XGYUqTvIiaSuLQcDn2mwPlYCriB9LmaQkvsbJL0rImbmbTuK1PVkQmG+A4DfR0S9Psl/zvOcRfo8zSDts6IrgYtJXYS+Dlwl6R0RMR3SiUSujx8DJ5BOEE8nHY9HNbhtNUPyc/HEcfu8zGOBucDzkt4N3AiMAz5F2sejgHeQj3tJK5LqYS3SfpoCbJwfNT8E9gdOznWxE+nzOav2nQJ8A/hv0nE/kVRPo/u4XeVtHJ3X+STpZGQN4A5gFulYmwscB/xR0ib5CpAtiyLCDz/86IAHKWl6Jv99APAqsEl+/WtgQr2ypWUEcHjh9TTgEdIlw9q0e4BXgLcXpo0Gniy83jEv6+LS8seRksva64nAraUyI/K8WxS2JYBvNlAHo0hJzyqFacPz/PuUtuusBpZ3BLAwzz+P9MP+mVKZscC9pWlD8jx7lOr2Lz3ttx7iWJ6U5M8HVsjTdsnL/Hg386wCvAh8rzT9ZFISMwAYnJcxrI/H2jTg7BzXSqTE5lng2FK5Rvbvg8DXe1jXWcC0OtPvqrPsY/Jxv35Pxw6pT3gAHypNvx24Ov89KO/zYwvvL0dK1qKBz2IAny9MW5l0ojOqMO0O4LLC63eQTsT26GHZe+RlDylNr23rgYVpg0if1a/k1wIeAy4tzXtg3tZBPax3LHBv3ucrAFsCDwD/BlbKZSbk5axTmvcq4B8s/j2yd4532/z60LztW3az/o3z+/uXpl8OTMp/DwCeAC4slRlXrDNe/37aolRuAvDr0jZHOSbSydcsYI3CtNWB54Gv9eWz5MfS9XD3CbPOdAXpx+r4fljWhFi8T+AjpCTl0dK0NVW6vE9qkS36DbC1pAGSViK1cv5K0vK1BylReJnUqll0fQOxDgdujojXWn8j4h5SErdDdzN1JyLOAd4OfI102fr9Od7Te5yxe41sQ+0S8LckPZwv+b8M/JzUPWHDXGwEMDsiru1mMdsCbwGuLtXvLcDapJsGZwOPAxdJ+qyktfqwLUfkuF4CbiAlqGcUtqHR/Xs/cLSkwyRt0siKlfp2vpd0VaTol6TEddvS9HK9f5R0YvCnUmzjgW1ymWHAQFJrPACR+kr/jsa9dvxHxIuk5Gx44f2fAp8qdCM4gNQaeWMf1lF2c2Gds4CnSPsa0hWHDem6T24hbWtvo8VsTdp3C4C/5Gmfjoi5hTL3RWoJLxoOXFP6HvlfUsJe+1yOIJ003k99HyElxdfU2Wdb5mNiA2Bduu6j3/SyXT35T52YPkraly8U4phDulqzTXkBtuxwUmzWgSJd5h8N7CtpoyVcXLmrwsJuponUglT0VJ3Xy5NaKFcntexcQPqhrT0WkPptblCa98kGYl23m3JPAms0MH8XEfGfiLggIvYmJRc3kpK4QW9gcY1sA8C3SC2x1wCfICUVtX6+A/PzIOqMmlFQ65P6EIvX7615+gY5yduZlCCOAWYqDVW3VQMxXgG8j9Tqdimwp6SvFt5vdP8eTupe8d/AVKXh3Xrr9jM4L6Ncn7XX5X1dLjcYWKcU18ukFt5aXOvk53rHcCNejK6X0Z8iHaM1vyIlenvn7jD7AZfHknXTqffZrB0ztWPiDyy+3bUT3PJnrmwyaZ+/F1g7Ioblk86iesd4l89lTpBn8fq+auR4HkBqjS3GPpb0nbIuS77P6qm3PYOBz9L1+PkwvdehLcXcp9isc40BvkPq21c2n1ICq/o3yi2pcsvjWqTWoWdIP9RBSkT+UGfeJ0qvexwbNptRZ52QWkbvqzO9TyLiJUkXkLoLbEz6Ue9Sl3SfgDeyDZD6rV4dESfWJuR+mUWzWDzBKpudn/eg/g/7VICImEJqrXwTqT/yGcD1ktaPnkeReDIiajcY3pZPvk6WdHlEvERKznrdvxHxHKkf6DckvYfUBeLnkv4WEQ93s+5nSElIeV/XxsydXZpervfZwH/oeYSWWmvnWqXlNdqavrJeH2GkOO9riV8+nq4itRA/BmxESvKapbYdh/B6S2/Ro3WmFc0t7PPu1DvGu3wuc8vuoEJMs1i8/3DZbNJ3x/akE4my2gk35XXVeV0bfaTe57bcl7ve9swm9cU/pc57c+pMs2WEW4rNOlRELCD1xzyQrsnTdOCtSsNo1ezchDD2rPP6voh4NSdOdwGbRsS9dR7lpLgRdwO7aPHRDd5H6uN7R18WJGkNFUYyKHhXfq61Pk0HhkgaWCizU1/WVceKdL2B6gul1+OBNVQY4aLkTlL/zvW6qd/Ffrwj4uWIuIV049u6vD76RqOOJ7WgfTkvr8/7NyL+RrppbjnSUHWweEtnrdyrpJOc8k1ve5MSpjt7iXU8qVXxxXqx5TIPkJKnT9RmkrRc8XUDXjv+cxeJnUh98ot+SjoZGUnqbz+5l2XWhgMb2GOp+qaSTgaGdLNPZr2BZTbibtKVhAGFaXuRktja53I8sFU+MarnFlJL8ardxL6Q1BVoJl33UXkEjtpY4ENrEyRtQLrJtBHjSeM0P1QnjqkNLsOWQm4pNutstTvMtwNuK0y/kZQwjZF0NqnfbJfh0vrBxySdlte9FykpKP5gHQOMl7SIdDPgHFKfx92BEyPi731c3znAV4GbJJ3B66NPPEDqw9gXI4DTJV1KGoN1EakejwOuK/Sp/i3p5rVLlIYL24o0UseSGEdqOb2bNDLCF+jaijYOuAm4UlLtbvx1gQ9GxKER8ZzSkGY/yK24t5OSzU2AD0fEnjkBOYvUF/dfpC4PxwJ/jYhya2uPIuIeSeNIQ939KCeuve5fSXeQuok8SGqVO5jUT7mWPE4B1pZ0QC7zTERMI40acVPeP1eR+gCfAvwk8kgLPajV3bh8nDxEujFxS2BgRBwfEbMkXQycJOmVXOZg0jHViHnAaTkZfoI0ssMKwA9K9XZ3Hu5rB/LIIr2oJV2H5lbmuRHxQCMBRcQiSUcCP5O0Cqkv+ELSDX6fpGv/4P5yKqll+reSLiR1QzoDuCkiaicwl5O6CN2cj9uppO+lTSLiuIiYKuki0mgao0k3/Q0kJaebRMRBEfFqfu8spSEnJ5JGu3gt+c31MF3SJPJILKTPxQl0vcLQnXNIo7XcIumHpBONtUkjidwREb/oawXZUqK/7tjzww8/2vug+xElTiAlGxNK0z9G+qGfS/rxGEr90SfOKs03lq6jLRyQ5105v94xv96F9MM7l9Q6c1id+N5PStJfICVDD5N+dFatt+wG6mErUqvSXNIl/CtJ/R/pabvqLGcDUsJ4f17OHFJyfTz5bvvS9v8zr/M6UvJcb/SJw+usp8t+IyVel5J+pGeThu+qjTqwRaHcijnG6aSW5UeB00rL2pfUqjqPNELE3cAR+b21SEPm/YvUKjqTNFzXhr3UTd36Iw2lVh7po7f9e2au1zm5nm8FPlCYf2Cui6fysscW3vtsnndhroPTgOW7Oy5Lsb6ZNPTXI3n+mTnO3UtlLiD1Y32WNCTYETQ2+sQzpBbg+/O++SvphKVe+VPzsbNKT8stlD+S1N3iFfLIHN1ta719RfrsT8z744Uc46nFuquzzrGUPvd1ykygMHpD6b2P5GNvft6XF9SJdRDwk/z+fNIJ0TcK74vU3/6hXKdPk0649yuVOSW/N4d0g+rnKY3YQTrJnJDrYCrpZH2x+HvaZtL4y5eSuiYtyPV8BbB5I/vQj6XzobxzzczMrA0k3QNMjYgvtjsWsypz9wkzM7M2yP9QZgRpRIc38l8EzawfOSk2MzNrj0mkLiPHR8SkdgdjVnXuPmFmZmZmlech2czMzMys8pwUm5mZmVnlOSk2MzMzs8pzUmxmZmZmleek2MzMzMwqz0mxmZmZmVXe/wOBWmV3j5r3AgAAAABJRU5ErkJggg==\n",
"text/plain": [
- "1 66407\n",
- "2 61215\n",
- "3 37434\n",
- "4 21977\n",
- "5 3562\n",
- "6 1\n",
- "dtype: int64"
+ "