-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGHGanalysis.R
313 lines (269 loc) · 12.8 KB
/
GHGanalysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# title: "GHGanalysis.Rmd"
# author: "Eric Koski"
# date: "1/4/2020"
# Copyright (c) 2021 Orebed Analytics LLC under MIT License; see LICENSE.md.
#
# Data files produced by this software are licensed under a Creative Commons
# Attribution 4.0 International License; see
# https://creativecommons.org/licenses/by/4.0/.
# library(glue)
# library(ltxsparklines)
GHGemissionsLYindustryDetail <- GHGemissionsPerCountyFuelYear4dig %>%
filter(YEAR == max(YEAR)) %>%
group_by(County, NAICS4dig, NAICSname4dig) %>%
summarize(CO2e100mt = sum(CO2e100kg) / 1000,
.groups = "drop") %>%
ungroup() %>%
pivot_wider(id_cols = c(NAICS4dig, NAICSname4dig),
names_from = County,
values_from = CO2e100mt,
values_fill = list(CO2e100mt = 0)) %>%
mutate(CO2e100mt = rowSums(select(., -contains("NAICS")))) %>%
mutate(NAICSname4dig = stri_replace_first_regex(NAICSname4dig, "T$", "")) %>%
arrange(desc(CO2e100mt))
GHGemissionsLY_2dig <- GHGemissionsPerCountyFuelYear2dig %>%
filter(YEAR == max(YEAR)) %>%
group_by(NAICS2dig, NAICSname2dig) %>%
summarize(CO2e100mt = sum(CO2e100kg) / 1000,
.groups = "drop") %>%
ungroup()
GHGemissionsLY_3dig <- GHGemissionsPerCountyFuelYear3dig %>%
filter(YEAR == max(YEAR)) %>%
group_by(NAICS3dig, NAICSname3dig) %>%
summarize(CO2e100mt = sum(CO2e100kg) / 1000,
.groups = "drop") %>%
ungroup()
GHGemissionsSectorSummary <- GHGemissionsPerCountyFuelYear2dig %>%
ungroup() %>%
left_join(tibble(NAICS2dig = c(11, 21, 23, 31, 32, 33),
Sector = c("Agriculture", "Mining", "Construction",
rep.int("Manufacturing", 3))), by = "NAICS2dig") %>%
mutate(Year = YEAR) %>%
select(Sector, Year, County, CO2e100kg, -YEAR) %>%
group_by(Sector, Year, County) %>%
summarize(CO2e100mt = sum(CO2e100kg / 1000)) %>%
ungroup()
GHGemissionsSectorYearSummary <- GHGemissionsSectorSummary %>%
group_by(Sector, Year) %>%
summarize(CO2e100mt = sum(CO2e100mt)) %>%
ungroup()
GHGemissionsLYSectorCountySummary <- GHGemissionsSectorSummary %>%
filter(Year == max(Year))
GHGemissionsLYsectorSummary <- bind_rows(
filter(GHGemissionsLY_3dig, NAICS3dig %in% c(111, 112)) %>%
mutate(sector="Agriculture") %>%
group_by(sector) %>%
summarize(CO2e100mt = sum(CO2e100mt)) %>%
ungroup(),
filter(GHGemissionsLY_3dig, NAICS3dig %in% c(211, 212, 213)) %>%
mutate(sector="Mining") %>%
group_by(sector) %>%
summarize(CO2e100mt = sum(CO2e100mt)) %>%
ungroup(),
filter(GHGemissionsLY_3dig, NAICS3dig %in% c(236, 237, 238)) %>%
mutate(sector="Construction") %>%
group_by(sector) %>%
summarize(CO2e100mt = sum(CO2e100mt)) %>%
ungroup(),
filter(GHGemissionsLY_2dig, NAICS2dig %in% c(31, 32, 33)) %>%
mutate(sector="Manufacturing") %>%
group_by(sector) %>%
summarize(CO2e100mt = sum(CO2e100mt)) %>%
ungroup()) %>%
mutate(percentage = 100 * CO2e100mt / sum(GHGemissionsLY_2dig$CO2e100mt))
sectorOrder <- GHGemissionsLYsectorSummary %>%
arrange(CO2e100mt) %>%
select(sector)
sectorOrder <- sectorOrder[[1]]
maxListedCounties <- 4
################# MANUFACTURING ##############################################
GHGemissionsManufacturingDetail <- GHGemissionsLYindustryDetail %>%
filter((NAICS4dig >= 3000) & (NAICS4dig < 4000)) %>%
arrange(desc(CO2e100mt)) %>%
mutate(CO2eCumFract = cumsum(CO2e100mt) / sum(CO2e100mt)) %>%
select(contains("NAICS"), contains("CO2e"), everything())
MfgTotals <- NULL
for (n in countyNames) {
MfgTotals[[n]] <- sum(GHGemissionsManufacturingDetail[[n]])
}
MfgTotals <- sort(unlist(MfgTotals), decreasing = TRUE)
GHGemissionsManufacturingDetail <- select(GHGemissionsManufacturingDetail, contains("NAICS"), contains("CO2e"), !!names(MfgTotals))
GHGemissionsMfgDetailHighest <-
slice(GHGemissionsManufacturingDetail,
1:(min(14 + ifelse(numberOfCounties < 4, 6,
ifelse(numberOfCounties < 10, 2, 0)),
nrow(filter(GHGemissionsManufacturingDetail, CO2eCumFract < 0.84))) + 1))
MfgRemaining <- list("NAICS4dig" = 0,
"NAICSname4dig" = "Remaining manufacturing categories",
"CO2e100mt" = sum(GHGemissionsManufacturingDetail$CO2e100mt) -
sum(GHGemissionsMfgDetailHighest$CO2e100mt),
"CO2eCumFract" = 1.0)
for (n in names(MfgTotals)) {
MfgRemaining[[n]] <- sum(GHGemissionsManufacturingDetail[[n]]) -
sum(GHGemissionsMfgDetailHighest[[n]])
}
GHGemissionsMfgDetailHighest <- bind_rows(GHGemissionsMfgDetailHighest,
MfgRemaining)
GHGemissionsMfgDetailHighest <- GHGemissionsMfgDetailHighest %>%
mutate(CountyDist = "", HighestCounties = "")
# browser() ###############
for (i in 1:nrow(GHGemissionsMfgDetailHighest)) {
row <- slice(GHGemissionsMfgDetailHighest, i)
countyGHGs <- select(row, one_of(countyNames))
countyGHGs <- countyGHGs[,order(unlist(-countyGHGs[1,]))]
if (sum(countyGHGs) < 0.00001) {
GHGemissionsMfgDetailHighest[i,]$HighestCounties <- ""
GHGemissionsMfgDetailHighest[i,]$CountyDist <- ""
} else {
GHGfractions <- lapply(countyGHGs, function(x) (x/row$CO2e100mt))
qtl <- 1 - min(1, maxListedCounties / length(unlist(GHGfractions)))
thrsh <- min(0.1, (quantile(unlist(GHGfractions), probs = qtl) + 0.00001))
GHGemissionsMfgDetailHighest[i,]$HighestCounties <-
glue_collapse(names(countyGHGs)[which(GHGfractions >= thrsh)], sep = ", ")
GHGemissionsMfgDetailHighest[i,]$CountyDist <-
sparkline(yspikes = c(unlist(GHGfractions)[1:min(12, length(GHGfractions))], 0),
width=8,
bottomline = FALSE)
}
}
################# AGRICULTURE ##############################################
GHGemissionsAgricultureDetail <- GHGemissionsLYindustryDetail %>%
filter((NAICS4dig >= 1000) & (NAICS4dig < 2000)) %>%
arrange(desc(CO2e100mt)) %>%
mutate(CO2eCumFract = cumsum(CO2e100mt) / sum(CO2e100mt)) %>%
select(contains("NAICS"), contains("CO2e"), everything())
AgTotals <- NULL
for (n in countyNames) {
AgTotals[[n]] <- sum(GHGemissionsAgricultureDetail[[n]])
}
AgTotals <- sort(unlist(AgTotals), decreasing = TRUE)
GHGemissionsAgricultureDetail <- select(GHGemissionsAgricultureDetail, contains("NAICS"), contains("CO2e"), !!names(AgTotals))
GHGemissionsAgDetailHighest <-
slice(GHGemissionsAgricultureDetail,
1:(nrow(filter(GHGemissionsAgricultureDetail, CO2eCumFract < 0.98)) + 1))
AgRemaining <- list("NAICS4dig" = 0,
"NAICSname4dig" = "Remaining agriculture categories",
"CO2e100mt" = sum(GHGemissionsAgricultureDetail$CO2e100mt) -
sum(GHGemissionsAgDetailHighest$CO2e100mt),
"CO2eCumFract" = 1.0)
for (n in names(AgTotals)) {
AgRemaining[[n]] <- sum(GHGemissionsAgricultureDetail[[n]]) -
sum(GHGemissionsAgDetailHighest[[n]])
}
GHGemissionsAgDetailHighest <- bind_rows(GHGemissionsAgDetailHighest,
AgRemaining)
GHGemissionsAgDetailHighest <- GHGemissionsAgDetailHighest %>%
mutate(CountyDist = "", HighestCounties = "")
for (i in 1:nrow(GHGemissionsAgDetailHighest)) {
row <- slice(GHGemissionsAgDetailHighest, i)
countyGHGs <- select(row, one_of(countyNames))
countyGHGs <- countyGHGs[,order(unlist(-countyGHGs[1,]))]
if (sum(countyGHGs) < 0.00001) {
GHGemissionsAgDetailHighest[i,]$HighestCounties <- ""
GHGemissionsAgDetailHighest[i,]$CountyDist <- ""
} else {
GHGfractions <- lapply(countyGHGs, function(x) (x/row$CO2e100mt))
qtl <- 1 - min(1, maxListedCounties / length(unlist(GHGfractions)))
thrsh <- min(0.1, (quantile(unlist(GHGfractions), probs = qtl) + 0.00001))
GHGemissionsAgDetailHighest[i,]$HighestCounties <-
glue_collapse(names(countyGHGs)[which(GHGfractions >= thrsh)], sep = ", ")
GHGemissionsAgDetailHighest[i,]$CountyDist <-
sparkline(yspikes = c(unlist(GHGfractions)[1:min(12, length(GHGfractions))], 0),
width=8,
bottomline = FALSE)
}
}
################# CONSTRUCTION ##############################################
GHGemissionsConstructionDetail <- GHGemissionsLYindustryDetail %>%
filter((NAICS4dig >= 2300) & (NAICS4dig < 2400)) %>%
arrange(desc(CO2e100mt)) %>%
mutate(CO2eCumFract = cumsum(CO2e100mt) / sum(CO2e100mt)) %>%
select(contains("NAICS"), contains("CO2e"), everything())
ConstrTotals <- NULL
for (n in countyNames) {
ConstrTotals[[n]] <- sum(GHGemissionsConstructionDetail[[n]])
}
ConstrTotals <- sort(unlist(ConstrTotals), decreasing = TRUE)
GHGemissionsConstructionDetail <- select(GHGemissionsConstructionDetail, contains("NAICS"), contains("CO2e"), !!names(ConstrTotals))
GHGemissionsConstrDetailHighest <-
slice(GHGemissionsConstructionDetail,
1:(nrow(filter(GHGemissionsConstructionDetail, CO2eCumFract < 0.98)) + 1))
ConstrRemaining <- list("NAICS4dig" = 0,
"NAICSname4dig" = "Remaining construction categories",
"CO2e100mt" = sum(GHGemissionsConstructionDetail$CO2e100mt) -
sum(GHGemissionsConstrDetailHighest$CO2e100mt),
"CO2eCumFract" = 1.0)
for (n in names(ConstrTotals)) {
ConstrRemaining[[n]] <- sum(GHGemissionsConstructionDetail[[n]]) -
sum(GHGemissionsConstrDetailHighest[[n]])
}
GHGemissionsConstrDetailHighest <- bind_rows(GHGemissionsConstrDetailHighest,
ConstrRemaining)
GHGemissionsConstrDetailHighest <- GHGemissionsConstrDetailHighest %>%
mutate(CountyDist = "", HighestCounties = "")
for (i in 1:nrow(GHGemissionsConstrDetailHighest)) {
row <- slice(GHGemissionsConstrDetailHighest, i)
countyGHGs <- select(row, one_of(countyNames))
countyGHGs <- countyGHGs[,order(unlist(-countyGHGs[1,]))]
if (sum(countyGHGs) < 0.00001) {
GHGemissionsConstrDetailHighest[i,]$HighestCounties <- ""
GHGemissionsConstrDetailHighest[i,]$CountyDist <- ""
} else {
GHGfractions <- lapply(countyGHGs, function(x) (x/row$CO2e100mt))
qtl <- 1 - min(1, maxListedCounties / length(unlist(GHGfractions)))
thrsh <- min(0.1, (quantile(unlist(GHGfractions), probs = qtl) + 0.00001))
GHGemissionsConstrDetailHighest[i,]$HighestCounties <-
glue_collapse(names(countyGHGs)[which(GHGfractions >= thrsh)], sep = ", ")
GHGemissionsConstrDetailHighest[i,]$CountyDist <-
sparkline(yspikes = c(unlist(GHGfractions)[1:min(12, length(GHGfractions))], 0),
width=8,
bottomline = FALSE)
}
}
################# MINING ##############################################
GHGemissionsMiningDetail <- GHGemissionsLYindustryDetail %>%
filter((NAICS4dig >= 2000) & (NAICS4dig < 2200)) %>%
arrange(desc(CO2e100mt)) %>%
mutate(CO2eCumFract = cumsum(CO2e100mt) / sum(CO2e100mt)) %>%
select(contains("NAICS"), contains("CO2e"), everything())
MiningTotals <- NULL
for (n in countyNames) {
MiningTotals[[n]] <- sum(GHGemissionsMiningDetail[[n]])
}
MiningTotals <- sort(unlist(MiningTotals), decreasing = TRUE)
GHGemissionsMiningDetail <- select(GHGemissionsMiningDetail, contains("NAICS"), contains("CO2e"), !!names(MiningTotals))
GHGemissionsMiningDetailHighest <-
slice(GHGemissionsMiningDetail,
1:(nrow(filter(GHGemissionsMiningDetail, CO2eCumFract < 0.98)) + 1))
MiningRemaining <- list("NAICS4dig" = 0,
"NAICSname4dig" = "Remaining mining categories",
"CO2e100mt" = sum(GHGemissionsMiningDetail$CO2e100mt) -
sum(GHGemissionsMiningDetailHighest$CO2e100mt),
"CO2eCumFract" = 1.0)
for (n in names(MiningTotals)) {
MiningRemaining[[n]] <- sum(GHGemissionsMiningDetail[[n]]) -
sum(GHGemissionsMiningDetailHighest[[n]])
}
GHGemissionsMiningDetailHighest <- bind_rows(GHGemissionsMiningDetailHighest,
MiningRemaining)
GHGemissionsMiningDetailHighest <- GHGemissionsMiningDetailHighest %>%
mutate(CountyDist = "", HighestCounties = "")
for (i in 1:nrow(GHGemissionsMiningDetailHighest)) {
row <- slice(GHGemissionsMiningDetailHighest, i)
countyGHGs <- select(row, one_of(countyNames))
countyGHGs <- countyGHGs[,order(unlist(-countyGHGs[1,]))]
if (sum(countyGHGs) < 0.00001) {
GHGemissionsMiningDetailHighest[i,]$HighestCounties <- ""
GHGemissionsMiningDetailHighest[i,]$CountyDist <- ""
} else {
GHGfractions <- lapply(countyGHGs, function(x) (x/row$CO2e100mt))
qtl <- 1 - min(1, maxListedCounties / length(unlist(GHGfractions)))
thrsh <- min(0.1, (quantile(unlist(GHGfractions), probs = qtl) + 0.00001))
GHGemissionsMiningDetailHighest[i,]$HighestCounties <-
glue_collapse(names(countyGHGs)[which(GHGfractions >= thrsh)], sep = ", ")
GHGemissionsMiningDetailHighest[i,]$CountyDist <-
sparkline(yspikes = c(unlist(GHGfractions)[1:min(12, length(GHGfractions))], 0),
width=8,
bottomline = FALSE)
}
}