forked from elbersb/tidylog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
236 lines (177 loc) · 6.95 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# tidylog
[![CRAN Version](https://www.r-pkg.org/badges/version/tidylog)](https://CRAN.R-project.org/package=tidylog)
[![Downloads](http://cranlogs.r-pkg.org/badges/tidylog)](https://CRAN.R-project.org/package=tidylog)
[![R-CMD-check](https://github.com/elbersb/tidylog/workflows/R-CMD-check/badge.svg)](https://github.com/elbersb/tidylog/actions)
[![Coverage status](https://codecov.io/gh/elbersb/tidylog/branch/master/graph/badge.svg)](https://codecov.io/github/elbersb/tidylog?branch=master)
The goal of tidylog is to provide feedback about dplyr and tidyr operations. It provides simple wrapper functions for almost all dplyr and tidyr functions, such as `filter`, `mutate`, `select`, `full_join`, and `group_by`.
## Example
Load `tidylog` after `dplyr` and/or `tidyr`:
```{r message=FALSE, warning=FALSE}
library("dplyr")
library("tidyr")
library("tidylog", warn.conflicts = FALSE)
```
Tidylog will give you feedback, for instance when filtering a data frame or adding a new variable:
```{r}
filtered <- filter(mtcars, cyl == 4)
mutated <- mutate(mtcars, new_var = wt ** 2)
```
Tidylog reports detailed information for joins:
```{r}
joined <- left_join(nycflights13::flights, nycflights13::weather,
by = c("year", "month", "day", "origin", "hour", "time_hour"))
```
In this case, we see that 1,556 rows from the `flights` dataset do not have weather information.
Tidylog can be especially helpful in longer pipes:
```{r}
summary <- mtcars %>%
select(mpg, cyl, hp, am) %>%
filter(mpg > 15) %>%
mutate(mpg_round = round(mpg)) %>%
group_by(cyl, mpg_round, am) %>%
tally() %>%
filter(n >= 1)
```
Here, it might have been accidental that the last `filter` command had no effect.
## Installation
Download from CRAN:
``` r
install.packages("tidylog")
```
Or install the development version:
``` r
devtools::install_github("elbersb/tidylog")
```
## Benchmarks
Tidylog will add a small overhead to each function call. This can be relevant for very large datasets and especially for joins. If you want to switch off tidylog for a single long-running command, simply prefix `dplyr::` or `tidyr::`, such as in `dplyr::left_join`. See [this vignette](https://cran.r-project.org/web/packages/tidylog/vignettes/benchmarks.html) for more information.
## More examples
### filter, distinct, drop_na
```{r}
a <- filter(mtcars, mpg > 20)
b <- filter(mtcars, mpg > 100)
c <- filter(mtcars, mpg > 0)
d <- filter_at(mtcars, vars(starts_with("d")), any_vars((. %% 2) == 0))
e <- distinct(mtcars)
f <- distinct_at(mtcars, vars(vs:carb))
g <- top_n(mtcars, 2, am)
i <- sample_frac(mtcars, 0.5)
j <- drop_na(airquality)
k <- drop_na(airquality, Ozone)
```
### mutate, transmute, replace_na, fill
```{r}
a <- mutate(mtcars, new_var = 1)
b <- mutate(mtcars, new_var = runif(n()))
c <- mutate(mtcars, new_var = NA)
d <- mutate_at(mtcars, vars(mpg, gear, drat), round)
e <- mutate(mtcars, am_factor = as.factor(am))
f <- mutate(mtcars, am = as.ordered(am))
g <- mutate(mtcars, am = ifelse(am == 1, NA, am))
h <- mutate(mtcars, am = recode(am, `0` = "zero", `1` = NA_character_))
i <- transmute(mtcars, mpg = mpg * 2, gear = gear + 1, new_var = vs + am)
j <- replace_na(airquality, list(Solar.R = 1))
k <- fill(airquality, Ozone)
```
### joins
For joins, tidylog provides more detailed information. For any join,
tidylog will show the number of rows
that are only present in x (the first dataframe), only present in y (the second dataframe),
and rows that have been matched. Numbers in parentheses indicate that these rows are not
included in the result. Tidylog will also indicate whether any rows were duplicated
(which is often unintentional):
```{r}
x <- tibble(a = 1:2)
y <- tibble(a = c(1, 1, 2), b = 1:3) # 1 is duplicated
j <- left_join(x, y, by = "a")
```
More examples:
```{r}
a <- left_join(band_members, band_instruments, by = "name")
b <- full_join(band_members, band_instruments, by = "name")
c <- anti_join(band_members, band_instruments, by = "name")
```
Because tidylog needs to perform two additional joins behind the scenes to report this information,
the overhead will be larger than for the other tidylog functions (especially with large datasets).
### select, relocate, rename
```{r}
a <- select(mtcars, mpg, wt)
b <- select_if(mtcars, is.character)
c <- relocate(mtcars, hp)
d <- select(mtcars, a = wt, b = mpg)
e <- rename(mtcars, miles_per_gallon = mpg)
f <- rename_with(mtcars, toupper)
```
### summarize
```{r}
a <- mtcars %>%
group_by(cyl, carb) %>%
summarize(total_weight = sum(wt))
b <- iris %>%
group_by(Species) %>%
summarize_all(list(min, max))
```
### tally, count, add_tally, add_count
```{r}
a <- mtcars %>% group_by(gear, carb) %>% tally
b <- mtcars %>% group_by(gear, carb) %>% add_tally()
c <- mtcars %>% count(gear, carb)
d <- mtcars %>% add_count(gear, carb, name = "count")
```
### pivot_longer, pivot_wider
```{r}
longer <- mtcars %>%
mutate(id = 1:n()) %>%
pivot_longer(-id, names_to = "var", values_to = "value")
wider <- longer %>%
pivot_wider(names_from = var, values_from = value)
```
Tidylog also supports `gather` and `spread`.
## Turning logging off, registering additional loggers
To turn off the output for just a particular function call, you can simply call the dplyr and tidyr functions
directly, e.g. `dplyr::filter` or `tidyr::drop_na`.
To turn off the output more permanently, set the global option `tidylog.display` to an empty list:
```{r}
options("tidylog.display" = list()) # turn off
a <- filter(mtcars, mpg > 20)
options("tidylog.display" = NULL) # turn on
a <- filter(mtcars, mpg > 20)
```
This option can also be used to register additional loggers. The option `tidylog.display` expects
a list of functions. By default (when `tidylog.display` is set to NULL), tidylog
will use the `message` function to display the output, but if you prefer a more colorful output,
simply overwrite the option:
```{r}
library("crayon") # for terminal colors
crayon <- function(x) cat(red$bold(x), sep = "\n")
options("tidylog.display" = list(crayon))
a <- filter(mtcars, mpg > 20)
```
To print the output both to the screen and to a file, you could use:
```{r}
log_to_file <- function(text) cat(text, file = "log.txt", sep = "\n", append = TRUE)
options("tidylog.display" = list(message, log_to_file))
a <- filter(mtcars, mpg > 20)
```
## Namespace conflicts
Tidylog redefines several of the functions exported by dplyr and tidyr, so it should be loaded last, otherwise there will be no output. A more explicit way to resolve namespace conflicts is to use the [conflicted](https://CRAN.R-project.org/package=conflicted) package:
``` r
library("dplyr")
library("tidyr")
library("tidylog")
library("conflicted")
for (f in getNamespaceExports("tidylog")) {
conflicted::conflict_prefer(f, "tidylog", quiet = TRUE)
}
```