This repository has been archived by the owner on Apr 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathmodule-emulator.c
894 lines (749 loc) · 23.9 KB
/
module-emulator.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
#define MODULE_LOG_PREFIX "emu"
#include "globals.h"
#ifdef WITH_EMU
#include "module-streamrelay.h"
#include "module-emulator-osemu.h"
#include "module-emulator-biss.h"
#include "module-emulator-irdeto.h"
#include "module-emulator-powervu.h"
#include "oscam-conf-chk.h"
#include "oscam-config.h"
#include "oscam-reader.h"
#include "oscam-string.h"
/*
* Readers in OSCam consist of 2 basic parts.
* The hardware or the device part. This is where physical smart cards are inserted
* and made available to OSCam.
* The software or the emulation part. This is where the actual card reading is done,
* including ecm and emm processing (i.e emulation of the various cryptosystems).
* In the Emu reader, the device part has no meaning, but we have to create it in
* order to be compatible with OSCam's reader structure.
*/
/*
* Create the Emu "emulation" part. This is of type s_cardsystem.
* Similar structures are found in the main sources folder (files reader-xxxxxx.c)
* for every cryptosystem supported by OSCam.
* Here we read keys from our virtual card (aka the SoftCam.Key file) and we inform
* OSCam about them. This is done with the emu_card_info() function. Keep in mind
* that Emu holds all its keys to separate structures for faster access.
* In addition, ECM and EMM requests are processed here, with the emu_do_ecm() and
* emu_do_emm() functions.
*/
#define CS_OK 1
#define CS_ERROR 0
extern char cs_confdir[128];
#ifdef MODULE_STREAMRELAY
static int8_t emu_key_data_mutex_init = 0;
#endif
pthread_mutex_t emu_key_data_mutex;
static void set_hexserial_to_version(struct s_reader *rdr)
{
char cVersion[32];
uint32_t version = EMU_VERSION;
uint8_t hversion[2];
memset(hversion, 0, 2);
snprintf(cVersion, sizeof(cVersion), "%04d", version);
char_to_bin(hversion, cVersion, 4);
rdr->hexserial[3] = hversion[0];
rdr->hexserial[4] = hversion[1];
}
static void set_prids(struct s_reader *rdr)
{
int32_t i, j;
rdr->nprov = 0;
for (i = 0; (i < rdr->emu_auproviders.nfilts) && (rdr->nprov < CS_MAXPROV); i++)
{
for (j = 0; (j < rdr->emu_auproviders.filts[i].nprids) && (rdr->nprov < CS_MAXPROV); j++)
{
i2b_buf(4, rdr->emu_auproviders.filts[i].prids[j], rdr->prid[i]);
rdr->nprov++;
}
}
}
static void emu_add_entitlement(struct s_reader *rdr, uint16_t caid, uint32_t provid, uint8_t *key, char *keyName, uint32_t keyLength, uint8_t isData)
{
if (!rdr->ll_entitlements)
{
rdr->ll_entitlements = ll_create("ll_entitlements");
}
S_ENTITLEMENT *item;
if (cs_malloc(&item, sizeof(S_ENTITLEMENT)))
{
// fill item
item->caid = caid;
item->provid = provid;
item->id = 0;
item->class = 0;
item->start = 0;
item->end = 2147472000;
item->type = 0;
item->isKey = 1;
memcpy(item->name, keyName, 8);
item->key = key;
item->keyLength = keyLength;
item->isData = isData;
// add item
ll_append(rdr->ll_entitlements, item);
}
}
static void refresh_entitlements(struct s_reader *rdr)
{
uint32_t i;
uint16_t caid;
KeyData *tmpKeyData;
LL_ITER itr;
biss2_rsa_key_t *item;
cs_clear_entitlement(rdr);
for (i = 0; i < StreamKeys.keyCount; i++)
{
emu_add_entitlement(rdr, b2i(2, StreamKeys.EmuKeys[i].key), StreamKeys.EmuKeys[i].provider, StreamKeys.EmuKeys[i].key,
StreamKeys.EmuKeys[i].keyName, StreamKeys.EmuKeys[i].keyLength, 1);
}
for (i = 0; i < ViKeys.keyCount; i++)
{
emu_add_entitlement(rdr, 0x0500, ViKeys.EmuKeys[i].provider, ViKeys.EmuKeys[i].key,
ViKeys.EmuKeys[i].keyName, ViKeys.EmuKeys[i].keyLength, 0);
}
for (i = 0; i < IrdetoKeys.keyCount; i++)
{
tmpKeyData = &IrdetoKeys.EmuKeys[i];
do
{
emu_add_entitlement(rdr, tmpKeyData->provider >> 8, tmpKeyData->provider & 0xFF,
tmpKeyData->key, tmpKeyData->keyName, tmpKeyData->keyLength, 0);
tmpKeyData = tmpKeyData->nextKey;
}
while (tmpKeyData != NULL);
}
for (i = 0; i < CwKeys.keyCount; i++)
{
emu_add_entitlement(rdr, CwKeys.EmuKeys[i].provider >> 8, CwKeys.EmuKeys[i].provider & 0xFF,
CwKeys.EmuKeys[i].key, CwKeys.EmuKeys[i].keyName, CwKeys.EmuKeys[i].keyLength, 0);
}
for (i = 0; i < PowervuKeys.keyCount; i++)
{
emu_add_entitlement(rdr, 0x0E00, PowervuKeys.EmuKeys[i].provider, PowervuKeys.EmuKeys[i].key,
PowervuKeys.EmuKeys[i].keyName, PowervuKeys.EmuKeys[i].keyLength, 0);
}
for (i = 0; i < TandbergKeys.keyCount; i++)
{
emu_add_entitlement(rdr, 0x1010, TandbergKeys.EmuKeys[i].provider, TandbergKeys.EmuKeys[i].key,
TandbergKeys.EmuKeys[i].keyName, TandbergKeys.EmuKeys[i].keyLength, 0);
}
for (i = 0; i < NagraKeys.keyCount; i++)
{
emu_add_entitlement(rdr, 0x1801, NagraKeys.EmuKeys[i].provider, NagraKeys.EmuKeys[i].key,
NagraKeys.EmuKeys[i].keyName, NagraKeys.EmuKeys[i].keyLength, 0);
}
// Session words for BISS1 mode 1/E (caid 2600) and BISS2 mode 1/E (caid 2602)
for (i = 0; i < BissSWs.keyCount; i++)
{
caid = (BissSWs.EmuKeys[i].keyLength == 8) ? 0x2600 : 0x2602;
emu_add_entitlement(rdr, caid, BissSWs.EmuKeys[i].provider, BissSWs.EmuKeys[i].key,
BissSWs.EmuKeys[i].keyName, BissSWs.EmuKeys[i].keyLength, 0);
}
// Session keys (ECM keys) for BISS2 mode CA
for (i = 0; i < Biss2Keys.keyCount; i++)
{
emu_add_entitlement(rdr, 0x2610, Biss2Keys.EmuKeys[i].provider, Biss2Keys.EmuKeys[i].key,
Biss2Keys.EmuKeys[i].keyName, Biss2Keys.EmuKeys[i].keyLength, 0);
}
// RSA keys (EMM keys) for BISS2 mode CA
itr = ll_iter_create(rdr->ll_biss2_rsa_keys);
while ((item = ll_iter_next(&itr)))
{
emu_add_entitlement(rdr, 0x2610, 0, item->ekid, "RSAPRI", 8, 0);
}
for (i = 0; i < OmnicryptKeys.keyCount; i++)
{
emu_add_entitlement(rdr, 0x00FF, OmnicryptKeys.EmuKeys[i].provider, OmnicryptKeys.EmuKeys[i].key,
OmnicryptKeys.EmuKeys[i].keyName, OmnicryptKeys.EmuKeys[i].keyLength, 0);
}
}
static int32_t emu_do_ecm(struct s_reader *rdr, const ECM_REQUEST *er, struct s_ecm_answer *ea)
{
if (!emu_process_ecm(rdr, er, ea->cw, &ea->cw_ex))
{
return CS_OK;
}
return CS_ERROR;
}
static int32_t emu_do_emm(struct s_reader *rdr, EMM_PACKET *emm)
{
uint32_t keysAdded = 0;
if (emm->emmlen < 3)
{
return CS_ERROR;
}
if (SCT_LEN(emm->emm) > emm->emmlen)
{
return CS_ERROR;
}
if (!emu_process_emm(rdr, b2i(2, emm->caid), emm->emm, &keysAdded))
{
if (keysAdded > 0)
{
refresh_entitlements(rdr);
}
return CS_OK;
}
return CS_ERROR;
}
static int32_t emu_card_info(struct s_reader *rdr)
{
SAFE_MUTEX_LOCK(&emu_key_data_mutex);
// Delete keys from Emu's memory
emu_clear_keydata();
// Delete BISS2 mode CA RSA keys
ll_destroy_data(&rdr->ll_biss2_rsa_keys);
// Read keys built in the OSCam-Emu binary
emu_read_keymemory(rdr);
// Read keys from SoftCam.Key file
emu_set_keyfile_path(cs_confdir);
if (!emu_read_keyfile(rdr, cs_confdir))
{
if (emu_read_keyfile(rdr, "/var/keys/"))
{
emu_set_keyfile_path("/var/keys/");
}
}
// Read BISS2 mode CA RSA keys from PEM files
biss_read_pem(rdr, BISS2_MAX_RSA_KEYS);
cs_log("Total keys in memory: W:%d V:%d N:%d I:%d F:%d G:%d O:%d P:%d T:%d A:%d",
CwKeys.keyCount, ViKeys.keyCount, NagraKeys.keyCount, IrdetoKeys.keyCount, BissSWs.keyCount,
Biss2Keys.keyCount, OmnicryptKeys.keyCount, PowervuKeys.keyCount, TandbergKeys.keyCount,
StreamKeys.keyCount);
// Inform OSCam about all available keys.
// This is used for listing the "entitlements" in the webif's reader page.
refresh_entitlements(rdr);
SAFE_MUTEX_UNLOCK(&emu_key_data_mutex);
set_prids(rdr);
set_hexserial_to_version(rdr);
return CS_OK;
}
/*
static int32_t emu_card_init(struct s_reader *UNUSED(rdr), struct s_ATR *UNUSED(atr))
{
return CS_ERROR;
}
*/
int32_t emu_get_via3_emm_type(EMM_PACKET *ep, struct s_reader *rdr)
{
uint32_t provid = 0;
if(ep->emm[3] == 0x90 && ep->emm[4] == 0x03)
{
provid = b2i(3, ep->emm + 5);
provid &= 0xFFFFF0;
i2b_buf(4, provid, ep->provid);
}
switch (ep->emm[0])
{
case 0x88:
ep->type = UNIQUE;
memset(ep->hexserial, 0, 8);
memcpy(ep->hexserial, ep->emm + 4, 4);
rdr_log_dbg(rdr, D_EMM, "UNIQUE");
return 1;
case 0x8A:
case 0x8B:
ep->type = GLOBAL;
rdr_log_dbg(rdr, D_EMM, "GLOBAL");
return 1;
case 0x8C:
case 0x8D:
ep->type = SHARED;
rdr_log_dbg(rdr, D_EMM, "SHARED (part)");
// We need those packets to pass otherwise we would never
// be able to complete EMM reassembly
return 1;
case 0x8E:
ep->type = SHARED;
rdr_log_dbg(rdr, D_EMM, "SHARED");
memset(ep->hexserial, 0, 8);
memcpy(ep->hexserial, ep->emm + 3, 3);
return 1;
default:
ep->type = UNKNOWN;
rdr_log_dbg(rdr, D_EMM, "UNKNOWN");
return 1;
}
}
int32_t emu_get_ird2_emm_type(EMM_PACKET *ep, struct s_reader *rdr)
{
int32_t l = (ep->emm[3] & 0x07);
int32_t base = (ep->emm[3] >> 3);
char dumprdrserial[l * 3], dumpemmserial[l * 3];
switch (l)
{
case 0:
// global emm, 0 bytes addressed
ep->type = GLOBAL;
rdr_log_dbg(rdr, D_EMM, "GLOBAL base = %02x", base);
return 1;
case 2:
// shared emm, 2 bytes addressed
ep->type = SHARED;
memset(ep->hexserial, 0, 8);
memcpy(ep->hexserial, ep->emm + 4, l);
cs_hexdump(1, rdr->hexserial, l, dumprdrserial, sizeof(dumprdrserial));
cs_hexdump(1, ep->hexserial, l, dumpemmserial, sizeof(dumpemmserial));
rdr_log_dbg_sensitive(rdr, D_EMM, "SHARED l = %d ep = {%s} rdr = {%s} base = %02x",
l, dumpemmserial, dumprdrserial, base);
return 1;
case 3:
// unique emm, 3 bytes addressed
ep->type = UNIQUE;
memset(ep->hexserial, 0, 8);
memcpy(ep->hexserial, ep->emm + 4, l);
cs_hexdump(1, rdr->hexserial, l, dumprdrserial, sizeof(dumprdrserial));
cs_hexdump(1, ep->hexserial, l, dumpemmserial, sizeof(dumpemmserial));
rdr_log_dbg_sensitive(rdr, D_EMM, "UNIQUE l = %d ep = {%s} rdr = {%s} base = %02x",
l, dumpemmserial, dumprdrserial, base);
return 1;
default:
ep->type = UNKNOWN;
rdr_log_dbg(rdr, D_EMM, "UNKNOWN");
return 1;
}
}
int32_t emu_get_pvu_emm_type(EMM_PACKET *ep, struct s_reader *rdr)
{
if (ep->emm[0] == 0x82)
{
ep->type = UNIQUE;
memset(ep->hexserial, 0, 8);
memcpy(ep->hexserial, ep->emm + 12, 4);
}
else
{
ep->type = UNKNOWN;
rdr_log_dbg(rdr, D_EMM, "UNKNOWN");
}
return 1;
}
int32_t emu_get_tan_emm_type(EMM_PACKET *ep, struct s_reader *rdr)
{
if (ep->emm[0] == 0x82 || ep->emm[0] == 0x83)
{
ep->type = GLOBAL;
}
else
{
ep->type = UNKNOWN;
rdr_log_dbg(rdr, D_EMM, "UNKNOWN");
}
return 1;
}
int32_t emu_get_biss_emm_type(EMM_PACKET *ep, struct s_reader *rdr)
{
switch (ep->emm[0])
{
case 0x81: // Spec say this is for EMM, but oscam (and all other crypto systems) use it for ECM
case 0x82:
case 0x83:
case 0x84:
case 0x85:
case 0x86:
case 0x87:
case 0x88:
case 0x89:
case 0x8A:
case 0x8B:
case 0x8C:
case 0x8D:
case 0x8E:
case 0x8F:
ep->type = GLOBAL;
return 1;
default:
ep->type = UNKNOWN;
rdr_log_dbg(rdr, D_EMM, "UNKNOWN");
return 1;
}
}
static int32_t emu_get_emm_type(struct emm_packet_t *ep, struct s_reader *rdr)
{
uint16_t caid = b2i(2, ep->caid);
if (caid_is_viaccess(caid)) return emu_get_via3_emm_type(ep, rdr);
if (caid_is_irdeto(caid)) return emu_get_ird2_emm_type(ep, rdr);
if (caid_is_powervu(caid)) return emu_get_pvu_emm_type(ep, rdr);
if (caid_is_director(caid)) return emu_get_tan_emm_type(ep, rdr);
if (caid_is_biss_dynamic(caid)) return emu_get_biss_emm_type(ep, rdr);
return CS_ERROR;
}
FILTER *get_emu_prids_for_caid(struct s_reader *rdr, uint16_t caid)
{
int32_t i;
for (i = 0; i < rdr->emu_auproviders.nfilts; i++)
{
if (caid == rdr->emu_auproviders.filts[i].caid)
{
return &rdr->emu_auproviders.filts[i];
}
}
return NULL;
}
static int32_t emu_get_via3_emm_filter(struct s_reader *UNUSED(rdr), struct s_csystem_emm_filter **emm_filters, unsigned int *filter_count, uint16_t UNUSED(caid), uint32_t UNUSED(provid))
{
if (*emm_filters == NULL)
{
const unsigned int max_filter_count = 1;
if (!cs_malloc(emm_filters, max_filter_count * sizeof(struct s_csystem_emm_filter)))
{
return CS_ERROR;
}
struct s_csystem_emm_filter *filters = *emm_filters;
*filter_count = 0;
int32_t idx = 0;
filters[idx].type = EMM_GLOBAL;
filters[idx].enabled = 1;
filters[idx].filter[0] = 0x8A;
filters[idx].mask[0] = 0xFE;
filters[idx].filter[3] = 0x80;
filters[idx].mask[3] = 0x80;
idx++;
*filter_count = idx;
}
return CS_OK;
}
static int32_t emu_get_ird2_emm_filter(struct s_reader *rdr, struct s_csystem_emm_filter **emm_filters, unsigned int *filter_count, uint16_t caid, uint32_t UNUSED(provid))
{
uint8_t hexserial[3], prid[4];
FILTER *emu_provids;
int8_t have_provid = 0, have_serial = 0;
int32_t i;
SAFE_MUTEX_LOCK(&emu_key_data_mutex);
if(irdeto2_get_hexserial(caid, hexserial))
{
have_serial = 1;
}
SAFE_MUTEX_UNLOCK(&emu_key_data_mutex);
emu_provids = get_emu_prids_for_caid(rdr, caid);
if (emu_provids != NULL && emu_provids->nprids > 0)
{
have_provid = 1;
}
if (*emm_filters == NULL)
{
const unsigned int max_filter_count = have_serial + (2 * (have_provid ? emu_provids->nprids : 0));
if (!cs_malloc(emm_filters, max_filter_count * sizeof(struct s_csystem_emm_filter)))
{
return CS_ERROR;
}
struct s_csystem_emm_filter *filters = *emm_filters;
*filter_count = 0;
unsigned int idx = 0;
if (have_serial)
{
filters[idx].type = EMM_UNIQUE;
filters[idx].enabled = 1;
filters[idx].filter[0] = 0x82;
filters[idx].mask[0] = 0xFF;
filters[idx].filter[1] = 0xFB;
filters[idx].mask[1] = 0x07;
memcpy(&filters[idx].filter[2], hexserial, 3);
memset(&filters[idx].mask[2], 0xFF, 3);
idx++;
}
for (i = 0; have_provid && i < emu_provids->nprids; i++)
{
i2b_buf(4, emu_provids->prids[i], prid);
filters[idx].type = EMM_UNIQUE;
filters[idx].enabled = 1;
filters[idx].filter[0] = 0x82;
filters[idx].mask[0] = 0xFF;
filters[idx].filter[1] = 0xFB;
filters[idx].mask[1] = 0x07;
memcpy(&filters[idx].filter[2], &prid[1], 3);
memset(&filters[idx].mask[2], 0xFF, 3);
idx++;
filters[idx].type = EMM_SHARED;
filters[idx].enabled = 1;
filters[idx].filter[0] = 0x82;
filters[idx].mask[0] = 0xFF;
filters[idx].filter[1] = 0xFA;
filters[idx].mask[1] = 0x07;
memcpy(&filters[idx].filter[2], &prid[1], 2);
memset(&filters[idx].mask[2], 0xFF, 2);
idx++;
}
*filter_count = idx;
}
return CS_OK;
}
static int32_t emu_get_pvu_emm_filter(struct s_csystem_emm_filter **emm_filters, unsigned int *filter_count,
uint16_t caid, uint16_t srvid, uint16_t tsid, uint16_t onid, uint32_t ens)
{
uint8_t hexserials[32][4];
uint32_t i, count = 0;
SAFE_MUTEX_LOCK(&emu_key_data_mutex);
count = powervu_get_hexserials_new(hexserials, 32, caid, tsid, onid, ens);
if (count == 0)
{
count = powervu_get_hexserials(hexserials, 32, srvid);
if (count == 0)
{
SAFE_MUTEX_UNLOCK(&emu_key_data_mutex);
return CS_ERROR;
}
}
SAFE_MUTEX_UNLOCK(&emu_key_data_mutex);
if (*emm_filters == NULL)
{
const unsigned int max_filter_count = count;
if (!cs_malloc(emm_filters, max_filter_count * sizeof(struct s_csystem_emm_filter)))
{
return CS_ERROR;
}
struct s_csystem_emm_filter *filters = *emm_filters;
*filter_count = 0;
int32_t idx = 0;
for (i = 0; i < count; i++)
{
filters[idx].type = EMM_UNIQUE;
filters[idx].enabled = 1;
filters[idx].filter[0] = 0x82;
filters[idx].filter[10] = hexserials[i][0];
filters[idx].filter[11] = hexserials[i][1];
filters[idx].filter[12] = hexserials[i][2];
filters[idx].filter[13] = hexserials[i][3];
filters[idx].mask[0] = 0xFF;
filters[idx].mask[10] = 0xFF;
filters[idx].mask[11] = 0xFF;
filters[idx].mask[12] = 0xFF;
filters[idx].mask[13] = 0xFF;
idx++;
}
*filter_count = idx;
}
return CS_OK;
}
static int32_t emu_get_tan_emm_filter(struct s_reader *UNUSED(rdr), struct s_csystem_emm_filter **emm_filters, unsigned int *filter_count, uint16_t UNUSED(caid), uint32_t UNUSED(provid))
{
if (*emm_filters == NULL)
{
const unsigned int max_filter_count = 2;
uint8_t buf[8];
if (!emu_find_key('T', 0x40, 0, "MK", buf, 8, 0, 0, 0, NULL) &&
!emu_find_key('T', 0x40, 0, "MK01", buf, 8, 0, 0, 0, NULL))
{
return CS_ERROR;
}
if (!cs_malloc(emm_filters, max_filter_count * sizeof(struct s_csystem_emm_filter)))
{
return CS_ERROR;
}
struct s_csystem_emm_filter *filters = *emm_filters;
*filter_count = 0;
int32_t idx = 0;
filters[idx].type = EMM_GLOBAL;
filters[idx].enabled = 1;
filters[idx].filter[0] = 0x82;
filters[idx].mask[0] = 0xFF;
idx++;
filters[idx].type = EMM_GLOBAL;
filters[idx].enabled = 1;
filters[idx].filter[0] = 0x83;
filters[idx].mask[0] = 0xFF;
idx++;
*filter_count = idx;
}
return CS_OK;
}
static int32_t emu_get_biss_emm_filter(struct s_reader *UNUSED(rdr), struct s_csystem_emm_filter **emm_filters, unsigned int *filter_count, uint16_t UNUSED(caid), uint32_t UNUSED(provid))
{
if (*emm_filters == NULL)
{
const unsigned int max_filter_count = 15;
if (!cs_malloc(emm_filters, max_filter_count * sizeof(struct s_csystem_emm_filter)))
{
return CS_ERROR;
}
struct s_csystem_emm_filter *filters = *emm_filters;
*filter_count = 0;
int32_t idx = 0;
uint8_t i;
for (i = 0; i < max_filter_count; i++)
{
filters[idx].type = EMM_GLOBAL;
filters[idx].enabled = 1;
filters[idx].filter[0] = 0x81 + i; // What about table 0x81?
filters[idx].mask[0] = 0xFF;
idx++;
*filter_count = idx;
}
}
return CS_OK;
}
static int32_t emu_get_emm_filter(struct s_reader *UNUSED(rdr), struct s_csystem_emm_filter **UNUSED(emm_filters), unsigned int *UNUSED(filter_count))
{
return CS_ERROR;
}
static int32_t emu_get_emm_filter_adv(struct s_reader *rdr, struct s_csystem_emm_filter **emm_filters, unsigned int *filter_count,
uint16_t caid, uint32_t provid, uint16_t srvid, uint16_t tsid, uint16_t onid, uint32_t ens)
{
if (caid_is_viaccess(caid)) return emu_get_via3_emm_filter(rdr, emm_filters, filter_count, caid, provid);
if (caid_is_irdeto(caid)) return emu_get_ird2_emm_filter(rdr, emm_filters, filter_count, caid, provid);
if (caid_is_powervu(caid)) return emu_get_pvu_emm_filter(emm_filters, filter_count, caid, srvid, tsid, onid, ens);
if (caid_is_director(caid)) return emu_get_tan_emm_filter(rdr, emm_filters, filter_count, caid, provid);
if (caid_is_biss_dynamic(caid)) return emu_get_biss_emm_filter(rdr, emm_filters, filter_count, caid, provid);
return CS_ERROR;
}
const struct s_cardsystem reader_emu =
{
.desc = "emu",
.caids = (uint16_t[]){ 0x05, 0x06, 0x0D, 0x0E, 0x10, 0x18, 0x26, 0 },
.do_ecm = emu_do_ecm,
.do_emm = emu_do_emm,
.card_info = emu_card_info,
//.card_init = emu_card_init, // apparently this is not needed at all
.get_emm_type = emu_get_emm_type,
.get_emm_filter = emu_get_emm_filter, // needed to pass checks
.get_emm_filter_adv = emu_get_emm_filter_adv,
};
/*
* Create the Emu virtual "device" part. This is of type s_cardreader.
* Similar structures are found in the csctapi (Card System Card Terminal API)
* folder for every IFD (InterFace Device), aka smart card reader.
* Since we have no hardware to initialize, we start our Stream Relay server
* with the emu_reader_init() function.
* At Emu shutdown, we remove keys from memory with the emu_close() function.
*/
#define CR_OK 0
#define CR_ERROR 1
static int32_t emu_reader_init(struct s_reader *UNUSED(reader))
{
#ifdef MODULE_STREAMRELAY
if (cfg.stream_relay_enabled && (stream_server_thread_init == 0))
{
int32_t i;
stream_server_thread_init = 1;
SAFE_MUTEX_INIT(&emu_fixed_key_srvid_mutex, NULL);
for (i = 0; i < EMU_STREAM_SERVER_MAX_CONNECTIONS; i++)
{
SAFE_MUTEX_INIT(&emu_fixed_key_data_mutex[i], NULL);
ll_emu_stream_delayed_keys[i] = ll_create("ll_emu_stream_delayed_keys");
memset(&emu_fixed_key_data[i], 0, sizeof(emu_stream_client_key_data));
}
start_thread("stream_key_delayer", stream_key_delayer, NULL, NULL, 1, 1);
cs_log("Stream key delayer initialized");
}
// Initialize mutex for exclusive access to key database and key file
if (!emu_key_data_mutex_init)
{
SAFE_MUTEX_INIT(&emu_key_data_mutex, NULL);
emu_key_data_mutex_init = 1;
}
#endif
return CR_OK;
}
static int32_t emu_close(struct s_reader *UNUSED(reader))
{
cs_log("Reader is shutting down");
// Delete keys from Emu's memory
SAFE_MUTEX_LOCK(&emu_key_data_mutex);
emu_clear_keydata();
SAFE_MUTEX_UNLOCK(&emu_key_data_mutex);
return CR_OK;
}
static int32_t emu_get_status(struct s_reader *UNUSED(reader), int32_t *in) { *in = 1; return CR_OK; }
static int32_t emu_activate(struct s_reader *UNUSED(reader), struct s_ATR *UNUSED(atr)) { return CR_OK; }
static int32_t emu_transmit(struct s_reader *UNUSED(reader), uint8_t *UNUSED(buffer), uint32_t UNUSED(size), uint32_t UNUSED(expectedlen), uint32_t UNUSED(delay), uint32_t UNUSED(timeout)) { return CR_OK; }
static int32_t emu_receive(struct s_reader *UNUSED(reader), uint8_t *UNUSED(buffer), uint32_t UNUSED(size), uint32_t UNUSED(delay), uint32_t UNUSED(timeout)) { return CR_OK; }
static int32_t emu_write_settings(struct s_reader *UNUSED(reader), struct s_cardreader_settings *UNUSED(s)) { return CR_OK; }
static int32_t emu_card_write(struct s_reader *UNUSED(pcsc_reader), const uint8_t *UNUSED(buf), uint8_t *UNUSED(cta_res), uint16_t *UNUSED(cta_lr), int32_t UNUSED(l)) { return CR_OK; }
static int32_t emu_set_protocol(struct s_reader *UNUSED(rdr), uint8_t *UNUSED(params), uint32_t *UNUSED(length), uint32_t UNUSED(len_request)) { return CR_OK; }
const struct s_cardreader cardreader_emu =
{
.desc = "emu",
.typ = R_EMU,
.skip_extra_atr_parsing = 1,
.reader_init = emu_reader_init,
.get_status = emu_get_status,
.activate = emu_activate,
.transmit = emu_transmit,
.receive = emu_receive,
.close = emu_close,
.write_settings = emu_write_settings,
.card_write = emu_card_write,
.set_protocol = emu_set_protocol,
};
void add_emu_reader(void)
{
// This function is called inside oscam.c and creates an emu [reader] with default
// settings in oscam.server file. If an emu [reader] already exists, it uses that.
LL_ITER itr;
struct s_reader *rdr;
int8_t haveEmuReader = 0;
char emuName[] = "emulator";
char *ctab, *ftab, *emu_auproviders, *disablecrccws_only_for;
// Check if emu [reader] entry already exists in oscam.server file and get it
itr = ll_iter_create(configured_readers);
while ((rdr = ll_iter_next(&itr)))
{
if (rdr->typ == R_EMU)
{
haveEmuReader = 1;
break;
}
}
rdr = NULL;
// If there's no emu [reader] in oscam.server, create one with default settings
if (!haveEmuReader)
{
if (!cs_malloc(&rdr, sizeof(struct s_reader)))
{
return;
}
reader_set_defaults(rdr);
rdr->enable = 1;
rdr->typ = R_EMU;
cs_strncpy(rdr->label, emuName, sizeof(emuName));
cs_strncpy(rdr->device, emuName, sizeof(emuName));
// CAIDs
ctab = strdup("0500,0604,0D00,0E00,1010,1801,2600,2602,2610");
chk_caidtab(ctab, &rdr->ctab);
NULLFREE(ctab);
// Idents
ftab = strdup("0500:020A00,021110;"
"0604:000000;"
"0D00:0000C0;"
"0E00:000000;"
"1010:000000;"
"1801:000000,001101,002111,007301;"
"2600:000000;"
"2602:000000;"
"2610:000000;"
);
chk_ftab(ftab, &rdr->ftab);
NULLFREE(ftab);
// AU providers
emu_auproviders = strdup("0604:010200;0E00:000000;1010:000000;2610:000000;");
chk_ftab(emu_auproviders, &rdr->emu_auproviders);
NULLFREE(emu_auproviders);
// EMM cache
rdr->cachemm = 2;
rdr->rewritemm = 1;
rdr->logemm = 2;
rdr->deviceemm = 1;
// User group
rdr->grp = 0x1ULL;
// Add the "device" part to our emu reader
rdr->crdr = &cardreader_emu;
// Disable CW checksum test for PowerVu
disablecrccws_only_for = strdup("0E00:000000");
chk_ftab(disablecrccws_only_for, &rdr->disablecrccws_only_for);
NULLFREE(disablecrccws_only_for);
reader_fixups_fn(rdr);
ll_append(configured_readers, rdr);
}
// Set DVB Api delayer option
#ifdef HAVE_DVBAPI
if (cfg.dvbapi_enabled && cfg.dvbapi_delayer < 60)
{
cfg.dvbapi_delayer = 60;
}
#endif
cs_log("OSCam-Emu version %d", EMU_VERSION);
}
#endif // WITH_EMU