This repository has been archived by the owner on Jul 1, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample.jl
184 lines (134 loc) · 6.04 KB
/
example.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
############################################################################
## We discuss the implementation of an algorithm to compute the GIT-fan
## for torus actions on affine varieties with symmetries based on OSCAR.
## The algorithm combines computational techniques from commutative algebra,
## convex geometry and group theory.
## Applications of the algorithm (using the original implemenation in
## Singular) include the computation of the Mori chamber decomposition of
## the moving cone of $\overline{M}_{0,6}$.
##
## In the following, we discuss Example 5.2 in the paper:
##
## [J. Boehm, S. Keicher, Y. Ren:
## Computing GIT-Fans with Symmetry and the Mori Chamber Decomposition of
## $\overline{M}_{0,6}$](https://arxiv.org/abs/1603.09241)
## ([Math. Comp. 89 (2020),
## 3003-3021](https://mathscinet.ams.org/mathscinet-getitem?mr=4136555))
using Oscar
using GITFans
############################################################################
## Enter the input data as described in Example 5.2 of the paper.
##
## Let $K$ be an algebraically closed field of characteristic zero.
## The Cox ring of $M_{0,5}$ is isomorphic to the coordinate ring
## $R = K[T_1, \ldots , T_{10}]/\mathfrac{a}$ of the affine cone
## over the Grassmannian $\mathbb{G}(2, 5)$
## where the ideal a is generated by the Pl\"ucker relations
## and the $i$-th row of the matrix $Q$ is the degree
## $\operatorname{deg}(T_i)\in \mathbb{Z}^5$;
## this determines the $\mathbb{Z}^5$- grading of $R$.
# grading matrix
Q = [
1 1 0 0 0 ;
1 0 1 1 0 ;
1 0 1 0 1 ;
1 0 0 1 1 ;
0 1 0 0 -1 ;
0 1 0 -1 0 ;
0 1 -1 0 0 ;
0 0 1 0 0 ;
0 0 0 1 0 ;
0 0 0 0 1 ];
# polynomial ring
n = size(Q, 1)
Qt, T = Oscar.PolynomialRing(QQ, :T => 1:n)
D = free_abelian_group(size(Q,2))
w = [D(Q[i, :]) for i = 1:n]
R = grade(Qt, w)
# generators for the ideal
a = ideal([
T[5]*T[10] - T[6]*T[9] + T[7]*T[8],
T[1]*T[9] - T[2]*T[7] + T[4]*T[5],
T[1]*T[8] - T[2]*T[6] + T[3]*T[5],
T[1]*T[10] - T[3]*T[7] + T[4]*T[6],
T[2]*T[10] - T[3]*T[9] + T[4]*T[8],
])
############################################################################
## We observe that there is an $S_5$-symmetry
## for the $H\cong (\KK^*)^5$-action on $V(\aa)$ where the symmetry group
## $S_5\cong G\subseteq S_{10}$ is generated by
## (2,3)(5,6)(9,10), (1,5,9,10,3)(2,7,8,4,6).
perms_list = [ [1,3,2,4,6,5,7,8,10,9], [5,7,1,6,9,2,8,4,10,3] ];
sym10 = symmetric_group(n);
G, emb = sub([sym10(x) for x in perms_list]...);
G
############################################################################
## We now compute the GIT-fan, represented as a fan in polymake,
## using Gröbner bases from Singular:
fanobj = GITFans.git_fan(a, Q, G)
############################################################################
## We ask polymake to compute its F-vector.
fanobj.F_VECTOR
############################################################################
## We now go into more details on the computation.
##
## We compute the orbit cones as projection of a-faces and partition
## the set of orbit cones into orbits under the symmetry group action.
## We also return the action on the orbit cones in terms of homomorphisms.
oc = GITFans.orbit_cone_orbits_and_action(a, Q, G);
############################################################################
## Lengths of the orbit cone orbits:
map(length, oc[:orbit_list])
############################################################################
## Action of the symmetry group
## permuting the elements of the first orbit cone orbit:
oc[:homs][1]
############################################################################
## We compute the GIT-fan in terms of a set of orbit representatives
## of maximal dimensional GIT-cones
## under the action of the given symmetry group,
## where the GIT-cones are described via hashes encoding the cones
## as intersections of orbits cones.
## The data structure also contains the group action on the hashes
## encoded as homomorphisms.
##
## The algorithm is based on a fan traversal.
##
## The function also returns the incidence relation of the orbits of
## GIT-cones.
(hash_list, edges) = GITFans.fan_traversal(oc);
############################################################################
## There are six maximal cones, up to G-symmetry.
length(hash_list)
############################################################################
## One of the GIT-cones encoded as a hash
## (the entries of the list correspond to the orbit cone orbits):
hash_list[1]
############################################################################
## We ask Polymake to create the incidence graph of the orbits,
## and to visualize it.
intergraph = Polymake.graph.graph_from_edges(collect(edges));
Polymake.graph.visual(intergraph)
############################################################################
## We translate the descriptions of the six maximal cones back
## to cone objects and expand their G-orbits.
expanded = GITFans.orbits_of_maximal_GIT_cones(oc, hash_list);
orbit_lengths = map(length, expanded)
############################################################################
## There are in total 76 maximal cones.
sum(orbit_lengths)
# ############################################################################
# ## The full intersection graph of the fan has (76 vertices and) 180 edges.
# ## (A simpleminded visualization of this graph is not very enlightening.)
#
# maxcones = vcat( expanded... );
# full_edges = GITFans.edges_intersection_graph(maxcones, size(Q, 2) - 1);
# length(full_edges)
# # full_intergraph = Polymake.graph.graph_from_edges(collect(full_edges));
# # Polymake.graph.visual(full_intergraph)
############################################################################
## We create the GIT-Fan represented by a fan object in polymake:
fanobj = GITFans.hashes_to_polyhedral_fan(oc, hash_list)
############################################################################
## We ask polymake to compute its F-vector:
fanobj.F_VECTOR