-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelegans_new.py
446 lines (377 loc) · 17.4 KB
/
elegans_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# implements new circuit to be the general circuit
import numpy as np
import matplotlib.pyplot as plt
from oscars_toolbox.trabbit import trabbit
from scipy.optimize import minimize, linear_sum_assignment
from functools import partial
from datetime import datetime
# -------- universal gates -------- #
I2 = np.eye(2)
def Rx(theta): return np.array([[np.cos(theta / 2), -1j * np.sin(theta / 2)], [-1j * np.sin(theta / 2), np.cos(theta / 2)]])
def Ry(theta): return np.array([[np.cos(theta / 2), -np.sin(theta / 2)], [np.sin(theta / 2), np.cos(theta / 2)]])
def Rz(theta): return np.array([[np.exp(-1j * theta / 2), 0], [0, np.exp(1j * theta / 2)]])
def P(phi): return np.array([[1, 0], [0, np.exp(1j * phi)]])
CNOT = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0 ,0, 1, 0]])
def CNOTp(alpha): return np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, np.sin(alpha), np.cos(alpha)], [0, 0, np.cos(alpha), np.sin(alpha)]]) # parametrized CNOT
# -------- circuit -------- #
def circuit(N, params):
'''Implements approximation circuit for a given number of params.
Circuit:
- Rx Ry Rz P initially (4N params)
- CNOTps between every pair of qubits plus RP tensor RP on either side (N+16N = 17N params)
- Rx Ry Rz P at the end (4N params)
uses 18N total params.
'''
assert len(params) == 25 * N, f'Need 25N params, got {len(params)}'
# divide up params
init_params = params[:4 * N]
CNOT_params = params[4 * N: 5 * N]
CNOT_extra_b1_params = params[5*N: 9*N]
CNOT_extra_b2_params = params[9*N: 13*N]
CNOT_extra_a1_params = params[13*N: 17*N]
CNOT_extra_a2_params = params[17*N: 21*N]
final_params = params[-4*N:]
# reshape params
init_params = np.reshape(init_params, (N, 4))
CNOT_extra_b1_params = np.reshape(CNOT_extra_b1_params, (N, 4))
CNOT_extra_b2_params = np.reshape(CNOT_extra_b2_params, (N, 4))
CNOT_extra_a1_params = np.reshape(CNOT_extra_a1_params, (N, 4))
CNOT_extra_a2_params = np.reshape(CNOT_extra_a2_params, (N, 4))
final_params = np.reshape(final_params, (N, 4))
# initialize circuit
for i in range(N):
if i == 0:
circ = Rx(init_params[i][0]) @ Ry(init_params[i][1]) @ Rz(init_params[i][2]) @ P(init_params[i][3])
else:
circ = np.kron(circ, Rx(init_params[i][0]) @ Ry(init_params[i][1]) @ Rz(init_params[i][2]) @ P(init_params[i][3]))
# CNOTs
for i in range(N-1):
# apply CNOT between ith and (i+1)th qubits. prepare term to multiply the circuit by which is I for all qubits except the ith and (i+1)th qubits
RP_b1 = Rx(CNOT_extra_b1_params[i][0]) @ Ry(CNOT_extra_b1_params[i][1]) @ Rz(CNOT_extra_b1_params[i][2]) @ P(CNOT_extra_b1_params[i][3])
RP_b2 = Rx(CNOT_extra_b2_params[i][0]) @ Ry(CNOT_extra_b2_params[i][1]) @ Rz(CNOT_extra_b2_params[i][2]) @ P(CNOT_extra_b2_params[i][3])
RP_a1 = Rx(CNOT_extra_a1_params[i][0]) @ Ry(CNOT_extra_a1_params[i][1]) @ Rz(CNOT_extra_a1_params[i][2]) @ P(CNOT_extra_a1_params[i][3])
RP_a2 = Rx(CNOT_extra_a2_params[i][0]) @ Ry(CNOT_extra_a2_params[i][1]) @ Rz(CNOT_extra_a2_params[i][2]) @ P(CNOT_extra_a2_params[i][3])
RP_init = np.kron(RP_b1, RP_b2)
RP_final = np.kron(RP_a1, RP_a2)
if i == 0:
term = RP_final @ CNOTp(CNOT_params[i])@ RP_init
# fill in the rest of the term with identity matrices
for _ in range(N-2):
term = np.kron(term, I2)
else:
# fill in the first i-1 qubits with identity matrices
term = I2
for _ in range(i-1):
term = np.kron(term, I2)
# add CNOT
term = np.kron(term, RP_final @ CNOTp(CNOT_params[i])@ RP_init)
# fill in the rest of the term with identity matrices
for _ in range(N-2-i):
term = np.kron(term, I2)
# multiply the circuit by the term
circ = term @ circ
# final gates
for i in range(N):
if i == 0:
term = Rx(final_params[i][0]) @ Ry(final_params[i][1]) @ Rz(final_params[i][2]) @ P(final_params[i][3])
else:
term = np.kron(term, Rx(final_params[i][0]) @ Ry(final_params[i][1]) @ Rz(final_params[i][2]) @ P(final_params[i][3]))
# multiply the circuit by the term
circ = term @ circ
return circ
def circuit_mini(N, params):
'''Only uses Rx Ry Rz block for all of the qubits'''
assert len(params) == 3 * N, f'Need 3N params, got {len(params)}'
# reshape params
params = np.reshape(params, (N, 3))
# initialize circuit
for i in range(N):
if i == 0:
circ = Rx(params[i][0]) @ Ry(params[i][1]) @ Rz(params[i][2])
else:
circ = np.kron(circ, Rx(params[i][0]) @ Ry(params[i][1]) @ Rz(params[i][2]))
return circ
def circuit_miniP(N, params):
'''Only uses Rx Ry Rz P block for all of the qubits'''
assert len(params) == 4 * N, f'Need 4N params, got {len(params)}'
# reshape params
params = np.reshape(params, (N, 4))
# initialize circuit
for i in range(N):
if i == 0:
circ = Rx(params[i][0]) @ Ry(params[i][1]) @ Rz(params[i][2]) @ P(params[i][3])
else:
circ = np.kron(circ, Rx(params[i][0]) @ Ry(params[i][1]) @ Rz(params[i][2]) @ P(params[i][3]))
return circ
def circuit_CNOT(N, params):
'''Only uses CNOT block for all of the qubits'''
assert len(params) == 17*N, f'Need 8N params, got {len(params)}'
CNOT_params = params[:N]
CNOT_extra_b1_params = params[N: 5*N]
CNOT_extra_b2_params = params[5*N: 9*N]
CNOT_extra_a1_params = params[9*N: 13*N]
CNOT_extra_a2_params = params[13*N:]
# reshape params
CNOT_extra_b1_params = np.reshape(CNOT_extra_b1_params, (N, 4))
CNOT_extra_b2_params = np.reshape(CNOT_extra_b2_params, (N, 4))
CNOT_extra_a1_params = np.reshape(CNOT_extra_a1_params, (N, 4))
CNOT_extra_a2_params = np.reshape(CNOT_extra_a2_params, (N, 4))
circ = np.eye(2**N)
for i in range(N-1):
# apply CNOT between ith and (i+1)th qubits. prepare term to multiply the circuit by which is I for all qubits except the ith and (i+1)th qubits
RP_b1 = Rx(CNOT_extra_b1_params[i][0]) @ Ry(CNOT_extra_b1_params[i][1]) @ Rz(CNOT_extra_b1_params[i][2]) @ P(CNOT_extra_b1_params[i][3])
RP_b2 = Rx(CNOT_extra_b2_params[i][0]) @ Ry(CNOT_extra_b2_params[i][1]) @ Rz(CNOT_extra_b2_params[i][2]) @ P(CNOT_extra_b2_params[i][3])
RP_a1 = Rx(CNOT_extra_a1_params[i][0]) @ Ry(CNOT_extra_a1_params[i][1]) @ Rz(CNOT_extra_a1_params[i][2]) @ P(CNOT_extra_a1_params[i][3])
RP_a2 = Rx(CNOT_extra_a2_params[i][0]) @ Ry(CNOT_extra_a2_params[i][1]) @ Rz(CNOT_extra_a2_params[i][2]) @ P(CNOT_extra_a2_params[i][3])
RP_init = np.kron(RP_b1, RP_b2)
RP_final = np.kron(RP_a1, RP_a2)
if i == 0:
term = RP_final @ CNOTp(CNOT_params[i])@ RP_init
# fill in the rest of the term with identity matrices
for _ in range(N-2):
term = np.kron(term, I2)
else:
# fill in the first i-1 qubits with identity matrices
term = I2
for _ in range(i-1):
term = np.kron(term, I2)
# add CNOT
term = np.kron(term, RP_final @ CNOTp(CNOT_params[i])@ RP_init)
# fill in the rest of the term with identity matrices
for _ in range(N-2-i):
term = np.kron(term, I2)
# multiply the circuit by the term
circ = term @ circ
return circ
# -------- randomization -------- #
def random(N):
'''Returns a random circuit with 25N params.'''
return np.random.uniform(0, 2*np.pi, size=(25 * N))
def random_mini(N):
'''Returns a random circuit with 3N params.'''
return np.random.uniform(0, 2*np.pi, size=(3 * N))
def random_miniP(N):
'''Returns a random circuit with 4N params.'''
return np.random.uniform(0, 2*np.pi, size=(4 * N))
def random_CNOT(N):
'''Returns a random circuit with 16N params.'''
return np.random.uniform(0, 2*np.pi, size=(17 * N))
def random_circuit(N, depth, Rx_prob = 1/5, Ry_prob = 1/5, Rz_prob = 1/5, P_prob = 1/5, CNOT_prob = 1/5):
'''Returns a random circuit for a given number N of qubits and depth and probabilities for each gate being applied to a qubit.'''
# initialize probabilities
p = np.array([Rx_prob, Ry_prob, Rz_prob, P_prob, CNOT_prob])
p /= np.sum(p)
circ = np.eye(2**N)
# save a list of lists so we can see what gates were applied to each qubit
gates_applied = [[] for _ in range(N)]
# apply random gates to each qubit for the given depth
for _ in range(depth):
# apply random gates to each qubit
gates = np.random.choice(['Rx', 'Ry', 'Rz', 'P', 'CNOT'], size=N, p=p)
for j, gate in enumerate(gates):
param = np.random.uniform(0, 2*np.pi)
if gate == 'Rx':
# print('Rx')
if j == 0:
term = Rx(param)
# put identity matrices after the Rx
for _ in range(N-j-1):
term = np.kron(term, I2)
else:
# put identity matrices before the Rx
term = I2
for _ in range(j-1):
term = np.kron(term, I2)
term = np.kron(term, Rx(param))
# put identity matrices after the Rx
for _ in range(N-j-1):
term = np.kron(term, I2)
elif gate == 'Ry':
# print('Ry')
if j == 0:
term = Ry(param)
# put identity matrices after the Ry
for _ in range(N-j-1):
term = np.kron(term, I2)
else:
# put identity matrices before the Ry
term = I2
for _ in range(j-1):
term = np.kron(term, I2)
term = np.kron(term, Ry(param))
# put identity matrices after the Ry
for _ in range(N-j-1):
term = np.kron(term, I2)
elif gate == 'Rz':
# print('Rz')
if j == 0:
term = Rz(param)
# put identity matrices after the Rz
for _ in range(N-j-1):
term = np.kron(term, I2)
else:
# put identity matrices before the Rz
term = I2
for _ in range(j-1):
term = np.kron(term, I2)
term = np.kron(term, Rz(param))
# put identity matrices after the Rz
for _ in range(N-j-1):
term = np.kron(term, I2)
elif gate == 'P':
# print('P')
if j == 0:
term = P(param)
# put identity matrices after the P
for _ in range(N-j-1):
term = np.kron(term, I2)
else:
# put identity matrices before the P
term = I2
for _ in range(j-1):
term = np.kron(term, I2)
term = np.kron(term, P(param))
# put identity matrices after the P
for _ in range(N-j-1):
term = np.kron(term, I2)
elif gate == 'CNOT':
param = None
if j == 0:
term = CNOT
# fill in the rest of the term with identity matrices
for _ in range(N-2):
term = np.kron(term, I2)
elif j == N-1:
# move it to N-2
term = I2
for _ in range(N-3):
term = np.kron(term, I2)
term = np.kron(term, CNOT)
else:
# fill in the first j-1 qubits with identity matrices
term = I2
for _ in range(j-1):
term = np.kron(term, I2)
# add CNOT
term = np.kron(term, CNOT)
# fill in the rest of the term with identity matrices
for _ in range(N-2-j):
term = np.kron(term, I2)
# add to the circuit
gates_applied[j].append([gate, param])
# multiply the circuit by the term
circ = term @ circ
# print gates applied
for i, gates in enumerate(gates_applied):
print(f'qubit {i}: {gates}')
return circ
# -------- learning -------- #
def loss(params, circ_func, target, N):
'''Returns the loss between the circuit with the given params and the target matrix.'''
return np.linalg.norm(circ_func(N, params) - target)
def find_params(target, model=0, do_tr=True):
'''Finds the params that minimize the loss between the circuit with the given params and the target matrix.
Params:
:target: the target matrix
:model: whether to use the full circuit (0) or just the Rx Ry Rz block (1) or Rx Ry Rz P block (2)
:do_tr: whether to use trabbit or not
'''
N = int(np.log2(target.shape[0]))
if model==0:
random_func = partial(random, N)
loss_func = partial(loss, circ_func = circuit, target=target, N=N)
elif model == 1:
random_func = partial(random_mini, N)
loss_func = partial(loss, circ_func = circuit_mini, target=target, N=N)
elif model == 2:
random_func = partial(random_miniP, N)
loss_func = partial(loss, circ_func = circuit_miniP, target=target, N=N)
elif model == 3:
random_func = partial(random_CNOT, N)
loss_func = partial(loss, circ_func = circuit_CNOT, target=target, N=N)
if do_tr:
# minimize the loss
x_best, loss_best = trabbit(loss_func, random_func, temperature=0.1, alpha=0.8, num=50, tol=1e-4)
print(f'loss in find_params: {loss_best}')
print(f'params: {x_best}')
# results = minimize(loss_func, x0=random_func(), method='Nelder-Mead', options={'maxiter': 1000})
# loss_m = results.fun
return x_best, loss_best
else:
# minimize the loss
results = minimize(loss_func, x0=random_func(), method='Nelder-Mead', options={'maxiter': 1000})
x_best = results.x
loss_m = results.fun
print(f'loss in find_params: {loss_m}')
return x_best, loss_m
# -------- testing -------- #
def match_eigenvalues(eigenvals1, eigenvals2):
# create distance matrix
distance_matrix = np.abs(eigenvals1[:, np.newaxis] - eigenvals2)
# solve assignment problem using Hungarian algorithm
row_ind, col_ind = linear_sum_assignment(distance_matrix)
# return matched eigenvalues and the total distance
matched_eigenvals1 = eigenvals1[row_ind]
matched_eigenvals2 = eigenvals2[col_ind]
total_distance = np.linalg.norm(matched_eigenvals1 - matched_eigenvals2)
return matched_eigenvals1, matched_eigenvals2, total_distance
def benchmark(num_qubit, depth, model, reps, Rx_prob = 1/5, Ry_prob = 1/5, Rz_prob = 1/5, P_prob = 1/5, CNOT_prob = 1/5):
'''Returns the avg and sem of loss of the model over reps num of trials.'''
loss_list = []
for _ in trange(reps):
# generate random target
target = random_circuit(num_qubit, depth, Rx_prob=Rx_prob, Ry_prob = Ry_prob, Rz_prob=Rz_prob, P_prob=P_prob, CNOT_prob=CNOT_prob)
# find params
params, loss_best = find_params(target, model=model)
# calculate loss
loss = loss_best
# add to list
loss_list.append(loss)
# calculate avg and sem
avg = np.mean(loss_list)
sem = np.std(loss_list) / np.sqrt(reps)
print(f'For {reps} random trials, loss is {avg} +- {sem}')
# -------- visualize -------- #
def print_matrix(matrix_ls, title=None, savefig=False, display=False):
'''Prints a matrix in a nice way.'''
if len(matrix_ls) == 1:
# print out the matrix
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
elif len(matrix_ls) == 2:
# print out the two matrices side by sie
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
else:
raise ValueError(f'Can only print 1 or 2 matrices, got {len(matrix_ls)}')
for i, matrix in enumerate(matrix_ls):
# get magnnitude and phase
mag = np.abs(matrix)
phase = np.angle(matrix)
# where magnitude is 0, phase is 0
phase[mag == 0] = 0
# plot with colorbar
im0 = ax[0][i].imshow(mag)
im1 = ax[1][i].imshow(phase)
fig.colorbar(im0, ax=ax[0][i])
fig.colorbar(im1, ax=ax[1][i])
# set title
if len(matrix_ls) == 2:
if i == 0:
ax[0][i].set_title('Target')
elif i == 1:
ax[0][i].set_title('Approx')
if title is not None:
fig.suptitle(title)
plt.tight_layout()
date = str(datetime.now()).split('.')
if savefig and title is not None:
plt.savefig(f'elegans_new_figs/{title}_{date}.pdf')
elif savefig:
plt.savefig(f'elegans_new_figs/{date}.pdf')
if display:
plt.show()
if __name__ == '__main__':
from tqdm import trange
N = 6 # PROBLEM WITH N = 2
depth = 10
model = 2 # use full circuit or just Rx Ry Rz block
benchmark(N, depth, model, 20)