-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathold.py
108 lines (95 loc) · 3.74 KB
/
old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# file to implement wormhole teleportation protocol
import numpy as np
import math
import matplotlib.pyplot as plt
# define pauli matrices
Sx = np.array([[0, 1], [1, 0]])
Sy = np.array([[0, -1j], [1j, 0]])
Sz = np.array([[1, 0], [0, -1]])
# get SYK Hamiltonian
# helper function to return product of pauli matrices given a list of indices
def get_prod(indices, N):
'''Returns the uncoupled product of majorana fermions in qubit basis'''
main_prod = np.eye(2**N)
for ind in indices:
part_prod = np.eye(2**N)
for m in range(N-1): # loop over all qubits, except the last one; move the location of sigma_Z within tensor product
prod= np.array([1])
for n in range(N): # do the tensor product
if n != m:
prod = np.kron(prod, np.eye(2))
else:
prod = np.kron(prod, Sz)
part_prod = part_prod @ prod
if ind %2 == 0:
# build giant tensor product with sigma_X at end and identity everywhere else
prod= np.array([1])
for n in range(N): # do the tensor product
if n < N-1:
prod = np.kron(prod, np.eye(2))
else:
prod = np.kron(prod, Sx)
else: # same as above, but we use a Sy instead of Sx
prod= np.array([1])
for n in range(N): # do the tensor product
if n < N-1:
prod = np.kron(prod, np.eye(2))
else:
prod = np.kron(prod, Sy)
part_prod = part_prod @ prod
main_prod = main_prod @ part_prod
return main_prod
def anti_commutator(A, B):
'''Returns the anti-commutator of A and B'''
return A @ B + B @ A
def is_hermitian(A):
'''Returns True if A is Hermitian, False otherwise'''
return np.allclose(A, A.conj().T)
def get_H(N=10, J2=2):
'''Returns the SYK Hamiltonian for N qubits.
NOTE: wormhole paper used N = 10, J^2 = 2, beta= 4, mu = -12
'''
# initialize H
H = np.zeros((2**N, 2**N), dtype=np.complex128)
# get all possible combinations of N qubits
# Li et al says i < j < k < l
# if we sum over all combinations, then get non-Hermitian !!
for i in range(N-3):
for j in range(i, N-2, 1):
for l in range(j, N-1, 1):
for k in range(l, N,1):
# print(i, j, l, k)
# determine coupling constant for this term
c = np.random.normal(loc=0.0, scale=math.factorial(3)*J2/(2**(N)))
# print(c)
# c=1
# assign matrices to each fermion in qubit basis by checking whether the index is odd or even
# get product of majorana fermions
prod_tot = get_prod([i, j, l, k], N)
# fig, ax = plt.subplots(2, 1)
# ax[0].imshow(np.real(prod_tot))
# ax[1].imshow(np.imag(prod_tot))
# plt.show()
# mutliply by c and add to H
H += c*prod_tot
# print(H)
return H
if __name__ == '__main__':
H = get_H(N=4)
print('is H hermitian?', is_hermitian(H))
# fig, ax = plt.subplots(2, 1)
# ax[0].imshow(np.real(H))
# ax[1].imshow(np.imag(H))
# plt.show()
# print(H)
# # confirm that H is hermitian
# print(np.allclose(H, H.conj().T))
# psi1 = get_prod([1], 4)
# psi2 = get_prod([2], 4)
# print(anti_commutator(psi1, psi2))
# print(anti_commutator(psi1, psi1))
# mat = get_prod([0, 2, 3, 4], 4)
# fig, ax = plt.subplots(2, 1)
# ax[0].imshow(np.real(mat))
# ax[1].imshow(np.imag(mat))
# plt.show()