-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsphynx_torch.py
138 lines (108 loc) · 4.63 KB
/
sphynx_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# rewriting sphynx.py in pytorch
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import os
## -------- model architecture -------- ##
class BranchNetwork(nn.Module):
''' Branch network for one position '''
def __init__(self, input_size, output_size):
super(BranchNetwork, self).__init__()
self.fc1 = nn.Linear(input_size, 128)
self.fc2 = nn.Linear(128, 128)
self.fc3 = nn.Linear(128, 128)
self.fc4 = nn.Linear(128, 64)
self.fc5 = nn.Linear(64, 32)
self.fc6 = nn.Linear(32, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.relu(self.fc3(x))
x = torch.relu(self.fc4(x))
x = torch.relu(self.fc5(x))
x = self.fc6(x)
return x
class SphinxModel(nn.Module):
''' Sphinx architecture model '''
def __init__(self, input_size, num_branches, output_size):
super(SphinxModel, self).__init__()
self.fc1 = nn.Linear(input_size, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 256)
self.fc4 = nn.Linear(256, 256)
self.fc5 = nn.Linear(256, 128)
# Creating multiple branches
self.branches = nn.ModuleList([BranchNetwork(128, output_size) for _ in range(num_branches)])
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.relu(self.fc3(x))
x = torch.relu(self.fc4(x))
x = self.fc5(x)
outputs = [branch(x) for branch in self.branches]
return torch.stack(outputs, dim=1)
def load_data(data_path):
x = np.load(f'data/x_{data_path}.npy')
y = np.load(f'data/y_{data_path}.npy')
# Convert numpy arrays to PyTorch tensors
x = torch.tensor(x, dtype=torch.float32)
y_class_indices = [np.argmax(y[:, i, :], axis=1) for i in range(num_branches)]
# Convert to PyTorch tensors
y = [torch.tensor(y_indices, dtype=torch.long) for y_indices in y_class_indices]
# split into train and validation and test
len_data = len(x)
train_split = int(0.8 * len_data)
val_split = int(0.9 * len_data)
x_train, x_val, x_test = x[:train_split], x[train_split:val_split], x[val_split:]
y_train, y_val, y_test = y[:train_split], y[train_split:val_split], y[val_split:]
return x_train, y_train, x_val, y_val, x_test, y_test
def create_model(input_size, num_branches, output_size):
'''Initiates the model'''
model = SphinxModel(input_size=input_size, num_branches=num_branches, output_size=output_size).to(device)
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
return model, optimizer, criterion
def train(batch_size, epochs, model, optimizer, criterion, x_train, y_train, num_branches):
''' Trains the model '''
model.train()
try:
for epoch in range(epochs):
for i in range(0, len(x_train), batch_size):
end_idx = min(i + batch_size, len(x_train))
# Move data to the device
x_batch = x_train[i:end_idx].to(device)
y_batch = [y_train[j][i:end_idx].to(device) for j in range(num_branches)]
optimizer.zero_grad()
# Forward pass
outputs = model(x_batch)
# Calculate and backpropagate loss
loss = sum([criterion(outputs[:, j], y_batch[j]) for j in range(num_branches)])
loss.backward()
optimizer.step()
print(f'Epoch {epoch+1}, Batch {i+1}: loss {loss.item():.3f}')
except KeyboardInterrupt:
print('Interrupted, saving model...')
## --------- Save the model --------- ##
if not os.path.exists('models'):
os.makedirs('models')
torch.save(model.state_dict(), os.path.join('models', f'model_{model_name}.pt'))
if __name__ == '__main__':
# Check for GPU availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
## --------- Create and compile the model --------- ##
N2 = 3
max_depth = 20
num_gates = 5 + N2 # Rx Ry Rz P CNOT on any qubit and then allowing CNOT target on any of the N2
model_name = 'v0'
output_size = num_gates
num_branches = N2*max_depth
# Load data
x_train, y_train, x_val, y_val, x_test, y_test = load_data(f'{N2}_{max_depth}_100000')
# Create model
model, optimizer, criterion = create_model(2**N2, num_branches, output_size)
# Train model
batch_size = 64
epochs = 100
train(batch_size, epochs, model, optimizer, criterion, x_train, y_train, num_branches)