-
Notifications
You must be signed in to change notification settings - Fork 3
/
experiments_figure_6.py
269 lines (225 loc) · 9.77 KB
/
experiments_figure_6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import argparse
import datetime
import json
import os
import re
import shutil
import subprocess
import sys
from tangle.analysis import TangleAnalysator
from sklearn.model_selection import ParameterGrid
#############################################################################
############################# Parameter section #############################
#############################################################################
params = {
'dataset': ['femnistclustered'], # is expected to be one value to construct default experiment name
'model': ['cnn'], # is expected to be one value to construct default experiment name
'num_rounds': [100],
'eval_every': [-1],
'eval_on_fraction': [0.05],
'clients_per_round': [10],
'model_data_dir': ['./data/femnist-data-clustered-alt/'],
'src_tangle_dir': [''], # Set to '' to not use --src-tangle-dir parameter
'start_round': [0],
'tip_selector': ['lazy_accuracy'],
'num_tips': [2],
'sample_size': [2],
'batch_size': [10],
'num_batches': [10],
'publish_if_better_than': ['REFERENCE'], # or PARENTS
'reference_avg_top': [1],
'target_accuracy': [1],
'learning_rate': [0.05],
'num_epochs': [1],
'acc_tip_selection_strategy': ['WALK'],
'acc_cumulate_ratings': ['False'],
'acc_ratings_to_weights': ['ALPHA'],
'acc_select_from_weights': ['WEIGHTED_CHOICE'],
'acc_alpha': [10000,1000,100,10,1,0.1,0.01,0.001],
'use_particles': ['True'],
'particles_depth_start': [10],
'particles_depth_end': [20],
'particles_number': [10],
'poison_type': ['disabled'],
'poison_fraction': [0],
'poison_from': [0],
}
##############################################################################
########################## End of Parameter section ##########################
##############################################################################
def main():
setup_filename = '1_setup.log'
console_output_filename = '2_training.log'
# exit_if_repo_not_clean()
args = parse_args()
experiment_folder = prepare_exp_folder(args)
print("[Info]: Experiment results and log data will be stored at %s" % experiment_folder)
git_hash = get_git_hash()
run_and_document_experiments(args, experiment_folder, setup_filename, console_output_filename, git_hash)
def exit_if_repo_not_clean():
proc = subprocess.Popen(['git', 'status', '--porcelain'], stdout=subprocess.PIPE)
try:
dirty_files, errs = proc.communicate(timeout=3)
except subprocess.TimeoutExpired:
proc.kill()
_, errs = proc.communicate()
print('[Error]: Could not check git status!: %s' % errs, file=sys.stderr)
exit(1)
if dirty_files:
print('[Error]: You have uncommited changes. Please commit them before continuing. No experiments will be executed.', file=sys.stderr)
exit(1)
def parse_args():
parser = argparse.ArgumentParser(description='Run and document an experiment.')
parser.add_argument('--name', help='The name of the experiment. Results will be stored under ./experiments/<name>. Default: <dataset>-<model>-<exp_number>')
parser.add_argument('--overwrite_okay', type=bool, default=False, help='Overwrite existing experiment with same name. Default: False')
args = parser.parse_args()
return args
def prepare_exp_folder(args):
experiments_base = './experiments'
os.makedirs(experiments_base, exist_ok=True)
if not args.name:
default_prefix = "%s-%s" % (params['dataset'][0], params['model'][0])
# Find other experiments with default names
all_experiments = next(os.walk(experiments_base))[1]
default_exps = [exp for exp in all_experiments if re.match("^(%s-\d+)$" % default_prefix, exp)]
# Find the last experiments with default name and increment id
if len(default_exps) == 0:
next_default_exp_id = 0
else:
default_exp_ids = [int(exp.split("-")[-1]) for exp in default_exps]
default_exp_ids.sort()
next_default_exp_id = default_exp_ids[-1] + 1
args.name = "%s-%d" % (default_prefix, next_default_exp_id)
exp_name = args.name
experiment_folder = experiments_base + '/' + exp_name
# check, if existing experiment exists
if (os.path.exists(experiment_folder) and not args.overwrite_okay):
print('[Error]: Experiment "%s" already exists! To overwrite set --overwrite_okay to True' % exp_name, file=sys.stderr)
exit(1)
os.makedirs(experiment_folder, exist_ok=True)
return experiment_folder
def get_git_hash():
proc = subprocess.Popen(['git', 'rev-parse', '--verify', 'HEAD'], stdout=subprocess.PIPE)
try:
git_hash, errs = proc.communicate(timeout=3)
git_hash = git_hash.decode("utf-8")
except subprocess.TimeoutExpired:
proc.kill()
_, errs = proc.communicate()
git_hash = 'Could not get Githash!: %s' % errs
return git_hash
def run_and_document_experiments(args, experiments_dir, setup_filename, console_output_filename, git_hash):
shutil.copy(__file__, experiments_dir)
parameter_grid = ParameterGrid(params)
print(f'Starting experiments for {len(parameter_grid)} parameter combinations...')
for idx, p in enumerate(parameter_grid):
# Create folder for that run
experiment_folder = experiments_dir + '/config_%s' % idx
os.makedirs(experiment_folder, exist_ok=True)
# Prepare execution command
command = 'python -m tangle.ray ' \
'-dataset %s ' \
'-model %s ' \
'--num-rounds %s ' \
'--eval-every %s ' \
'--eval-on-fraction %s ' \
'--clients-per-round %s ' \
'--tangle-dir %s ' \
'--model-data-dir %s ' \
'--target-accuracy %s ' \
'--num-tips %s ' \
'--sample-size %s ' \
'--batch-size %s ' \
'--num-batches %s ' \
'-lr %s ' \
'--num-epochs %s ' \
'--publish-if-better-than %s ' \
'--reference-avg-top %s ' \
'--tip-selector %s ' \
'--acc-tip-selection-strategy %s ' \
'--acc-cumulate-ratings %s ' \
'--acc-ratings-to-weights %s ' \
'--acc-select-from-weights %s ' \
'--acc-alpha %s ' \
'--use-particles %s ' \
'--particles-depth-start %s ' \
'--particles-depth-end %s ' \
'--particles-number %s ' \
'--poison-type %s ' \
'--poison-fraction %s ' \
'--poison-from %s ' \
''
parameters = (
p['dataset'],
p['model'],
p['num_rounds'],
p['eval_every'],
p['eval_on_fraction'],
p['clients_per_round'],
experiment_folder + '/tangle_data',
p['model_data_dir'],
p['target_accuracy'],
p['num_tips'],
p['sample_size'],
p['batch_size'],
p['num_batches'],
p['learning_rate'],
p['num_epochs'],
p['publish_if_better_than'],
p['reference_avg_top'],
p['tip_selector'],
p['acc_tip_selection_strategy'],
p['acc_cumulate_ratings'],
p['acc_ratings_to_weights'],
p['acc_select_from_weights'],
p['acc_alpha'],
p['use_particles'],
p['particles_depth_start'],
p['particles_depth_end'],
p['particles_number'],
p['poison_type'],
p['poison_fraction'],
p['poison_from'],
)
command = command.strip() % parameters
if len(p['src_tangle_dir']) > 0:
command = '%s --src-tangle-dir %s' % (command, p['src_tangle_dir'])
start_time = datetime.datetime.now()
# Print Parameters and command
with open(experiment_folder + '/' + setup_filename, 'w+') as file:
print('', file=file)
print('StartTime: %s' % start_time, file=file)
print('Githash: %s' % git_hash, file=file)
print('Parameters:', file=file)
print(json.dumps(p, indent=4), file=file)
print('Command: %s' % command, file=file)
# Execute training
print('Training started...')
with open(experiment_folder + '/' + console_output_filename, 'w+') as file:
command = command.split(" ")
command.append("--start-from-round")
command.append("") # Placeholder to be set to the round below
step = 100
start = p['start_round']
for i in range(start, p['num_rounds'], step):
end = min(i+step, p['num_rounds'])
command[-1] = str(start)
command[8] = str(end)
print(f"Running {start} to {end}...")
training = subprocess.Popen(command, stdout=file, stderr=file)
training.wait()
if training.returncode != 0:
raise Exception('Training subprocess failed')
start = end
# Document end of training
print('Training finished. Documenting results...')
with open(experiment_folder + '/' + setup_filename, 'a+') as file:
end_time = datetime.datetime.now()
print('EndTime: %s' % end_time, file=file)
print('Duration Training: %s' % (end_time - start_time), file=file)
print('Analysing tangle...')
os.makedirs(experiment_folder + '/tangle_analysis', exist_ok=True)
analysator = TangleAnalysator(experiment_folder + '/tangle_data', p['num_rounds'] - 1, experiment_folder + '/tangle_analysis')
analysator.save_statistics(include_reference_statistics=(params['publish_if_better_than'] is 'REFERENCE'))
if __name__ == "__main__":
main()