forked from meta-llama/llama-cookbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge_and_save_llama.py
53 lines (36 loc) · 1.8 KB
/
merge_and_save_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
from transformers import AutoTokenizer, LlamaForCausalLM
from peft import PeftModel, AutoPeftModelForCausalLM
import torch
output_dir = "llama-recipes/FT-vicuna-13b-v1.5-16k-v3"
model_name = "lmsys/vicuna-13b-v1.5-16k"
output_merged_dir = "vicuna-13b-v1.5-16k-paper-summary-v2"
# save tokenizer for easy inference
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.save_pretrained(output_merged_dir)
def load_model(model_name):
model = LlamaForCausalLM.from_pretrained(
model_name,
return_dict=True,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
return model
# Function to load the PeftModel for performance optimization
def load_peft_model(model, peft_model):
peft_model = PeftModel.from_pretrained(model, peft_model)
return peft_model
os.makedirs(output_merged_dir, exist_ok=True)
model = load_model("lmsys/vicuna-13b-v1.5-16k")
model = load_peft_model(model, output_dir)
model = model.merge_and_unload()
# state_dict = model.state_dict()
model.save_pretrained(output_merged_dir, safe_serialization=False)
print("model saved!")
# with open("prompt_test.txt", "r") as f:
# prompt = f.read()
# inputs = tokenizer(prompt, return_tensors="pt")
# generate_ids = model.generate(inputs.input_ids.to("cuda"), max_length=7000)
# print(tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0])
# model.save_pretrained(output_merged_dir, safe_serialization=True)
#INFO 08-27 13:32:39 llm_engine.py:70] Initializing an LLM engine with config: model='vicuna-13b-v1.5-16k-paper-summary-v0', tokenizer='vicuna-13b-v1.5-16k-paper-summary-v0', tokenizer_mode=auto, trust_remote_code=False, dtype=torch.float16, use_dummy_weights=False, download_dir=None, use_np_weights=False, tensor_parallel_size=1, seed=0)