-
Notifications
You must be signed in to change notification settings - Fork 25
/
matchable.sls
1132 lines (998 loc) · 41.6 KB
/
matchable.sls
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
;;; Chez-Scheme Wrappers for Alex Shinn's Match (Wright Compatible)
;;;
;;; Copyright (c) 2016 Federico Beffa <[email protected]>
;;;
;;; Permission to use, copy, modify, and distribute this software for
;;; any purpose with or without fee is hereby granted, provided that the
;;; above copyright notice and this permission notice appear in all
;;; copies.
;;;
;;; THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
;;; WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
;;; WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
;;; AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
;;; DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
;;; OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
;;; TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
;;; PERFORMANCE OF THIS SOFTWARE.
;; The reader in #!r6rs mode doesn't allow the '..1' identifier.
#!chezscheme
(library (matchable)
(export
match
match-lambda
match-lambda*
match-let
match-let*
match-letrec
match-named-let
:_ ___ ..1 *** ? $ struct @ object)
#;(import
(rnrs base)
(rnrs lists)
(rnrs mutable-pairs)
(rnrs records syntactic)
(rnrs records procedural)
(rnrs records inspection)
(rnrs syntax-case)
(only (chezscheme) iota include)
;; avoid dependence on chez-srfi (apart for tests)
;; (srfi private aux-keywords)
;; (srfi private include)
)
(import (chezscheme))
;; We declare end export the symbols used as auxiliary identifiers
;; in 'syntax-rules' to make them work in Chez Scheme's interactive
;; environment. (FBE)
;; Also we replaced '_' with ':_' as the special identifier matching
;; anything and not binding. This is because R6RS forbids its use
;; as an auxiliary literal in a syntax-rules form.
(define-syntax define-auxiliary-keyword
(syntax-rules ()
[(_ name)
(define-syntax name
(lambda (x)
(syntax-violation #f "misplaced use of auxiliary keyword" x)))]))
(define-syntax define-auxiliary-keywords
(syntax-rules ()
[(_ name* ...)
(begin (define-auxiliary-keyword name*) ...)]))
(define-auxiliary-keywords :_ ___ ..1 *** ? $ struct @ object)
(define-syntax is-a?
(syntax-rules ()
((_ rec rtn)
(and (record? rec)
(eq? (record-type-name (record-rtd rec)) (quote rtn))))))
(define-syntax slot-ref
(syntax-rules ()
((_ rtn rec n)
(if (number? n)
((record-accessor (record-rtd rec) n) rec)
;; If it's not a number, then it should be a symbol with
;; the name of a field.
(let* ((rtd (record-rtd rec))
(fields (record-type-field-names rtd))
(fields-idxs (map (lambda (f i) (cons f i))
(vector->list fields)
(iota (vector-length fields))))
(idx (cdr (assv n fields-idxs))))
((record-accessor rtd idx) rec))))))
(define-syntax slot-set!
(syntax-rules ()
((_ rtn rec n)
(if (number? n)
((record-mutator (record-rtd rec) n) rec)
;; If it's not a number, then it should be a symbol with
;; the name of a field.
(let* ((rtd (record-rtd rec))
(fields (record-type-field-names rtd))
(fields-idxs (map (lambda (f i) (cons f i))
(vector->list fields)
(iota (vector-length fields))))
(idx (cdr (assv n fields-idxs))))
((record-mutator rtd idx) rec))))))
;;;; match.scm -- portable hygienic pattern matcher -*- coding: utf-8 -*-
;;
;; This code is written by Alex Shinn and placed in the
;; Public Domain. All warranties are disclaimed.
;;> \example-import[(srfi 9)]
;;> A portable hygienic pattern matcher.
;;> This is a full superset of the popular \hyperlink[
;;> "http://www.cs.indiana.edu/scheme-repository/code.match.html"]{match}
;;> package by Andrew Wright, written in fully portable \scheme{syntax-rules}
;;> and thus preserving hygiene.
;;> The most notable extensions are the ability to use \emph{non-linear}
;;> patterns - patterns in which the same identifier occurs multiple
;;> times, tail patterns after ellipsis, and the experimental tree patterns.
;;> \section{Patterns}
;;> Patterns are written to look like the printed representation of
;;> the objects they match. The basic usage is
;;> \scheme{(match expr (pat body ...) ...)}
;;> where the result of \var{expr} is matched against each pattern in
;;> turn, and the corresponding body is evaluated for the first to
;;> succeed. Thus, a list of three elements matches a list of three
;;> elements.
;;> \example{(let ((ls (list 1 2 3))) (match ls ((1 2 3) #t)))}
;;> If no patterns match an error is signalled.
;;> Identifiers will match anything, and make the corresponding
;;> binding available in the body.
;;> \example{(match (list 1 2 3) ((a b c) b))}
;;> If the same identifier occurs multiple times, the first instance
;;> will match anything, but subsequent instances must match a value
;;> which is \scheme{equal?} to the first.
;;> \example{(match (list 1 2 1) ((a a b) 1) ((a b a) 2))}
;;> The special identifier \scheme{_} matches anything, no matter how
;;> many times it is used, and does not bind the result in the body.
;;> \example{(match (list 1 2 1) ((_ _ b) 1) ((a b a) 2))}
;;> To match a literal identifier (or list or any other literal), use
;;> \scheme{quote}.
;;> \example{(match 'a ('b 1) ('a 2))}
;;> Analogous to its normal usage in scheme, \scheme{quasiquote} can
;;> be used to quote a mostly literally matching object with selected
;;> parts unquoted.
;;> \example|{(match (list 1 2 3) (`(1 ,b ,c) (list b c)))}|
;;> Often you want to match any number of a repeated pattern. Inside
;;> a list pattern you can append \scheme{...} after an element to
;;> match zero or more of that pattern (like a regexp Kleene star).
;;> \example{(match (list 1 2) ((1 2 3 ...) #t))}
;;> \example{(match (list 1 2 3) ((1 2 3 ...) #t))}
;;> \example{(match (list 1 2 3 3 3) ((1 2 3 ...) #t))}
;;> Pattern variables matched inside the repeated pattern are bound to
;;> a list of each matching instance in the body.
;;> \example{(match (list 1 2) ((a b c ...) c))}
;;> \example{(match (list 1 2 3) ((a b c ...) c))}
;;> \example{(match (list 1 2 3 4 5) ((a b c ...) c))}
;;> More than one \scheme{...} may not be used in the same list, since
;;> this would require exponential backtracking in the general case.
;;> However, \scheme{...} need not be the final element in the list,
;;> and may be succeeded by a fixed number of patterns.
;;> \example{(match (list 1 2 3 4) ((a b c ... d e) c))}
;;> \example{(match (list 1 2 3 4 5) ((a b c ... d e) c))}
;;> \example{(match (list 1 2 3 4 5 6 7) ((a b c ... d e) c))}
;;> \scheme{___} is provided as an alias for \scheme{...} when it is
;;> inconvenient to use the ellipsis (as in a syntax-rules template).
;;> The \scheme{..1} syntax is exactly like the \scheme{...} except
;;> that it matches one or more repetitions (like a regexp "+").
;;> \example{(match (list 1 2) ((a b c ..1) c))}
;;> \example{(match (list 1 2 3) ((a b c ..1) c))}
;;> The boolean operators \scheme{and}, \scheme{or} and \scheme{not}
;;> can be used to group and negate patterns analogously to their
;;> Scheme counterparts.
;;> The \scheme{and} operator ensures that all subpatterns match.
;;> This operator is often used with the idiom \scheme{(and x pat)} to
;;> bind \var{x} to the entire value that matches \var{pat}
;;> (c.f. "as-patterns" in ML or Haskell). Another common use is in
;;> conjunction with \scheme{not} patterns to match a general case
;;> with certain exceptions.
;;> \example{(match 1 ((and) #t))}
;;> \example{(match 1 ((and x) x))}
;;> \example{(match 1 ((and x 1) x))}
;;> The \scheme{or} operator ensures that at least one subpattern
;;> matches. If the same identifier occurs in different subpatterns,
;;> it is matched independently. All identifiers from all subpatterns
;;> are bound if the \scheme{or} operator matches, but the binding is
;;> only defined for identifiers from the subpattern which matched.
;;> \example{(match 1 ((or) #t) (else #f))}
;;> \example{(match 1 ((or x) x))}
;;> \example{(match 1 ((or x 2) x))}
;;> The \scheme{not} operator succeeds if the given pattern doesn't
;;> match. None of the identifiers used are available in the body.
;;> \example{(match 1 ((not 2) #t))}
;;> The more general operator \scheme{?} can be used to provide a
;;> predicate. The usage is \scheme{(? predicate pat ...)} where
;;> \var{predicate} is a Scheme expression evaluating to a predicate
;;> called on the value to match, and any optional patterns after the
;;> predicate are then matched as in an \scheme{and} pattern.
;;> \example{(match 1 ((? odd? x) x))}
;;> The field operator \scheme{=} is used to extract an arbitrary
;;> field and match against it. It is useful for more complex or
;;> conditional destructuring that can't be more directly expressed in
;;> the pattern syntax. The usage is \scheme{(= field pat)}, where
;;> \var{field} can be any expression, and should result in a
;;> procedure of one argument, which is applied to the value to match
;;> to generate a new value to match against \var{pat}.
;;> Thus the pattern \scheme{(and (= car x) (= cdr y))} is equivalent
;;> to \scheme{(x . y)}, except it will result in an immediate error
;;> if the value isn't a pair.
;;> \example{(match '(1 . 2) ((= car x) x))}
;;> \example{(match 4 ((= square x) x))}
;;> The record operator \scheme{$} is used as a concise way to match
;;> records defined by SRFI-9 (or SRFI-99). The usage is
;;> \scheme{($ rtd field ...)}, where \var{rtd} should be the record
;;> type descriptor specified as the first argument to
;;> \scheme{define-record-type}, and each \var{field} is a subpattern
;;> matched against the fields of the record in order. Not all fields
;;> must be present.
;;> \example{
;;> (let ()
;;> (define-record-type employee
;;> (make-employee name title)
;;> employee?
;;> (name get-name)
;;> (title get-title))
;;> (match (make-employee "Bob" "Doctor")
;;> (($ employee n t) (list t n))))
;;> }
;;> For records with more fields it can be helpful to match them by
;;> name rather than position. For this you can use the \scheme{@}
;;> operator, originally a Gauche extension:
;;> \example{
;;> (let ()
;;> (define-record-type employee
;;> (make-employee name title)
;;> employee?
;;> (name get-name)
;;> (title get-title))
;;> (match (make-employee "Bob" "Doctor")
;;> ((@ employee (title t) (name n)) (list t n))))
;;> }
;;> The \scheme{set!} and \scheme{get!} operators are used to bind an
;;> identifier to the setter and getter of a field, respectively. The
;;> setter is a procedure of one argument, which mutates the field to
;;> that argument. The getter is a procedure of no arguments which
;;> returns the current value of the field.
;;> \example{(let ((x (cons 1 2))) (match x ((1 . (set! s)) (s 3) x)))}
;;> \example{(match '(1 . 2) ((1 . (get! g)) (g)))}
;;> The new operator \scheme{***} can be used to search a tree for
;;> subpatterns. A pattern of the form \scheme{(x *** y)} represents
;;> the subpattern \var{y} located somewhere in a tree where the path
;;> from the current object to \var{y} can be seen as a list of the
;;> form \scheme{(x ...)}. \var{y} can immediately match the current
;;> object in which case the path is the empty list. In a sense it's
;;> a 2-dimensional version of the \scheme{...} pattern.
;;> As a common case the pattern \scheme{(_ *** y)} can be used to
;;> search for \var{y} anywhere in a tree, regardless of the path
;;> used.
;;> \example{(match '(a (a (a b))) ((x *** 'b) x))}
;;> \example{(match '(a (b) (c (d e) (f g))) ((x *** 'g) x))}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Notes
;; The implementation is a simple generative pattern matcher - each
;; pattern is expanded into the required tests, calling a failure
;; continuation if the tests fail. This makes the logic easy to
;; follow and extend, but produces sub-optimal code in cases where you
;; have many similar clauses due to repeating the same tests.
;; Nonetheless a smart compiler should be able to remove the redundant
;; tests. For MATCH-LET and DESTRUCTURING-BIND type uses there is no
;; performance hit.
;; The original version was written on 2006/11/29 and described in the
;; following Usenet post:
;; http://groups.google.com/group/comp.lang.scheme/msg/0941234de7112ffd
;; and is still available at
;; http://synthcode.com/scheme/match-simple.scm
;; It's just 80 lines for the core MATCH, and an extra 40 lines for
;; MATCH-LET, MATCH-LAMBDA and other syntactic sugar.
;;
;; A variant of this file which uses COND-EXPAND in a few places for
;; performance can be found at
;; http://synthcode.com/scheme/match-cond-expand.scm
;;
;; 2016/03/06 - fixing named match-let (thanks to Stefan Israelsson Tampe)
;; 2015/05/09 - fixing bug in var extraction of quasiquote patterns
;; 2014/11/24 - adding Gauche's `@' pattern for named record field matching
;; 2012/12/26 - wrapping match-let&co body in lexical closure
;; 2012/11/28 - fixing typo s/vetor/vector in largely unused set! code
;; 2012/05/23 - fixing combinatorial explosion of code in certain or patterns
;; 2011/09/25 - fixing bug when directly matching an identifier repeated in
;; the pattern (thanks to Stefan Israelsson Tampe)
;; 2011/01/27 - fixing bug when matching tail patterns against improper lists
;; 2010/09/26 - adding `..1' patterns (thanks to Ludovic Courtès)
;; 2010/09/07 - fixing identifier extraction in some `...' and `***' patterns
;; 2009/11/25 - adding `***' tree search patterns
;; 2008/03/20 - fixing bug where (a ...) matched non-lists
;; 2008/03/15 - removing redundant check in vector patterns
;; 2008/03/06 - you can use `...' portably now (thanks to Taylor Campbell)
;; 2007/09/04 - fixing quasiquote patterns
;; 2007/07/21 - allowing ellipsis patterns in non-final list positions
;; 2007/04/10 - fixing potential hygiene issue in match-check-ellipsis
;; (thanks to Taylor Campbell)
;; 2007/04/08 - clean up, commenting
;; 2006/12/24 - bugfixes
;; 2006/12/01 - non-linear patterns, shared variables in OR, get!/set!
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; force compile-time syntax errors with useful messages
(define-syntax match-syntax-error
(syntax-rules ()
((_) (match-syntax-error "invalid match-syntax-error usage"))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;> \section{Syntax}
;;> \macro{(match expr (pattern . body) ...)\br{}
;;> (match expr (pattern (=> failure) . body) ...)}
;;> The result of \var{expr} is matched against each \var{pattern} in
;;> turn, according to the pattern rules described in the previous
;;> section, until the the first \var{pattern} matches. When a match is
;;> found, the corresponding \var{body}s are evaluated in order,
;;> and the result of the last expression is returned as the result
;;> of the entire \scheme{match}. If a \var{failure} is provided,
;;> then it is bound to a procedure of no arguments which continues,
;;> processing at the next \var{pattern}. If no \var{pattern} matches,
;;> an error is signalled.
;; The basic interface. MATCH just performs some basic syntax
;; validation, binds the match expression to a temporary variable `v',
;; and passes it on to MATCH-NEXT. It's a constant throughout the
;; code below that the binding `v' is a direct variable reference, not
;; an expression.
(define-syntax match
(syntax-rules ()
((match)
(match-syntax-error "missing match expression"))
((match atom)
(match-syntax-error "no match clauses"))
((match (app ...) (pat . body) ...)
(let ((v (app ...)))
(match-next v ((app ...) (set! (app ...))) (pat . body) ...)))
((match #(vec ...) (pat . body) ...)
(let ((v #(vec ...)))
(match-next v (v (set! v)) (pat . body) ...)))
((match atom (pat . body) ...)
(let ((v atom))
(match-next v (atom (set! atom)) (pat . body) ...)))
))
;; MATCH-NEXT passes each clause to MATCH-ONE in turn with its failure
;; thunk, which is expanded by recursing MATCH-NEXT on the remaining
;; clauses. `g+s' is a list of two elements, the get! and set!
;; expressions respectively.
(define-syntax match-next
(syntax-rules (=>)
;; no more clauses, the match failed
((match-next v g+s)
(error 'match "no matching pattern" v))
;; named failure continuation
((match-next v g+s (pat (=> failure) . body) . rest)
(let ((failure (lambda () (match-next v g+s . rest))))
;; match-one analyzes the pattern for us
(match-one v pat g+s (match-drop-ids (begin . body)) (failure) ())))
;; anonymous failure continuation, give it a dummy name
((match-next v g+s (pat . body) . rest)
(match-next v g+s (pat (=> failure) . body) . rest))))
;; MATCH-ONE first checks for ellipsis patterns, otherwise passes on to
;; MATCH-TWO.
(define-syntax match-one
(syntax-rules ()
;; If it's a list of two or more values, check to see if the
;; second one is an ellipsis and handle accordingly, otherwise go
;; to MATCH-TWO.
((match-one v (p q . r) g+s sk fk i)
(match-check-ellipsis
q
(match-extract-vars p (match-gen-ellipsis v p r g+s sk fk i) i ())
(match-two v (p q . r) g+s sk fk i)))
;; Go directly to MATCH-TWO.
((match-one . x)
(match-two . x))))
;; This is the guts of the pattern matcher. We are passed a lot of
;; information in the form:
;;
;; (match-two var pattern getter setter success-k fail-k (ids ...))
;;
;; usually abbreviated
;;
;; (match-two v p g+s sk fk i)
;;
;; where VAR is the symbol name of the current variable we are
;; matching, PATTERN is the current pattern, getter and setter are the
;; corresponding accessors (e.g. CAR and SET-CAR! of the pair holding
;; VAR), SUCCESS-K is the success continuation, FAIL-K is the failure
;; continuation (which is just a thunk call and is thus safe to expand
;; multiple times) and IDS are the list of identifiers bound in the
;; pattern so far.
;; Replace '_' with ':_' as the former is forbidden as an auxiliariy
;; keyword in R6RS. (FBE)
(define-syntax match-two
(syntax-rules (:_ ___ ..1 *** quote quasiquote ? $ struct @ object = and or not set! get!)
((match-two v () g+s (sk ...) fk i)
(if (null? v) (sk ... i) fk))
((match-two v (quote p) g+s (sk ...) fk i)
(if (equal? v 'p) (sk ... i) fk))
((match-two v (quasiquote p) . x)
(match-quasiquote v p . x))
((match-two v (and) g+s (sk ...) fk i) (sk ... i))
((match-two v (and p q ...) g+s sk fk i)
(match-one v p g+s (match-one v (and q ...) g+s sk fk) fk i))
((match-two v (or) g+s sk fk i) fk)
((match-two v (or p) . x)
(match-one v p . x))
((match-two v (or p ...) g+s sk fk i)
(match-extract-vars (or p ...) (match-gen-or v (p ...) g+s sk fk i) i ()))
((match-two v (not p) g+s (sk ...) fk i)
(match-one v p g+s (match-drop-ids fk) (sk ... i) i))
((match-two v (get! getter) (g s) (sk ...) fk i)
(let ((getter (lambda () g))) (sk ... i)))
((match-two v (set! setter) (g (s ...)) (sk ...) fk i)
(let ((setter (lambda (x) (s ... x)))) (sk ... i)))
((match-two v (? pred . p) g+s sk fk i)
(if (pred v) (match-one v (and . p) g+s sk fk i) fk))
((match-two v (= proc p) . x)
(let ((w (proc v))) (match-one w p . x)))
((match-two v (p ___ . r) g+s sk fk i)
(match-extract-vars p (match-gen-ellipsis v p r g+s sk fk i) i ()))
((match-two v (p) g+s sk fk i)
(if (and (pair? v) (null? (cdr v)))
(let ((w (car v)))
(match-one w p ((car v) (set-car! v)) sk fk i))
fk))
((match-two v (p *** q) g+s sk fk i)
(match-extract-vars p (match-gen-search v p q g+s sk fk i) i ()))
((match-two v (p *** . q) g+s sk fk i)
(match-syntax-error "invalid use of ***" (p *** . q)))
((match-two v (p ..1) g+s sk fk i)
(if (pair? v)
(match-one v (p ___) g+s sk fk i)
fk))
((match-two v ($ rec p ...) g+s sk fk i)
(if (is-a? v rec)
(match-record-refs v rec 0 (p ...) g+s sk fk i)
fk))
((match-two v (struct rec p ...) g+s sk fk i)
(if (is-a? v rec)
(match-record-refs v rec 0 (p ...) g+s sk fk i)
fk))
((match-two v (@ rec p ...) g+s sk fk i)
(if (is-a? v rec)
(match-record-named-refs v rec (p ...) g+s sk fk i)
fk))
((match-two v (object rec p ...) g+s sk fk i)
(if (is-a? v rec)
(match-record-named-refs v rec (p ...) g+s sk fk i)
fk))
((match-two v (p . q) g+s sk fk i)
(if (pair? v)
(let ((w (car v)) (x (cdr v)))
(match-one w p ((car v) (set-car! v))
(match-one x q ((cdr v) (set-cdr! v)) sk fk)
fk
i))
fk))
((match-two v #(p ...) g+s . x)
(match-vector v 0 () (p ...) . x))
;; Next line: replace '_' with ':_'. (FBE)
((match-two v :_ g+s (sk ...) fk i) (sk ... i))
;; Not a pair or vector or special literal, test to see if it's a
;; new symbol, in which case we just bind it, or if it's an
;; already bound symbol or some other literal, in which case we
;; compare it with EQUAL?.
((match-two v x g+s (sk ...) fk (id ...))
(let-syntax
((new-sym?
(syntax-rules (id ...)
((new-sym? x sk2 fk2) sk2)
((new-sym? y sk2 fk2) fk2))))
(new-sym? random-sym-to-match
(let ((x v)) (sk ... (id ... x)))
(if (equal? v x) (sk ... (id ...)) fk))))
))
;; QUASIQUOTE patterns
(define-syntax match-quasiquote
(syntax-rules (unquote unquote-splicing quasiquote)
((_ v (unquote p) g+s sk fk i)
(match-one v p g+s sk fk i))
((_ v ((unquote-splicing p) . rest) g+s sk fk i)
(if (pair? v)
(match-one v
(p . tmp)
(match-quasiquote tmp rest g+s sk fk)
fk
i)
fk))
((_ v (quasiquote p) g+s sk fk i . depth)
(match-quasiquote v p g+s sk fk i #f . depth))
((_ v (unquote p) g+s sk fk i x . depth)
(match-quasiquote v p g+s sk fk i . depth))
((_ v (unquote-splicing p) g+s sk fk i x . depth)
(match-quasiquote v p g+s sk fk i . depth))
((_ v (p . q) g+s sk fk i . depth)
(if (pair? v)
(let ((w (car v)) (x (cdr v)))
(match-quasiquote
w p g+s
(match-quasiquote-step x q g+s sk fk depth)
fk i . depth))
fk))
((_ v #(elt ...) g+s sk fk i . depth)
(if (vector? v)
(let ((ls (vector->list v)))
(match-quasiquote ls (elt ...) g+s sk fk i . depth))
fk))
((_ v x g+s sk fk i . depth)
(match-one v 'x g+s sk fk i))))
(define-syntax match-quasiquote-step
(syntax-rules ()
((match-quasiquote-step x q g+s sk fk depth i)
(match-quasiquote x q g+s sk fk i . depth))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Utilities
;; Takes two values and just expands into the first.
(define-syntax match-drop-ids
(syntax-rules ()
((_ expr ids ...) expr)))
(define-syntax match-tuck-ids
(syntax-rules ()
((_ (letish args (expr ...)) ids ...)
(letish args (expr ... ids ...)))))
(define-syntax match-drop-first-arg
(syntax-rules ()
((_ arg expr) expr)))
;; To expand an OR group we try each clause in succession, passing the
;; first that succeeds to the success continuation. On failure for
;; any clause, we just try the next clause, finally resorting to the
;; failure continuation fk if all clauses fail. The only trick is
;; that we want to unify the identifiers, so that the success
;; continuation can refer to a variable from any of the OR clauses.
(define-syntax match-gen-or
(syntax-rules ()
((_ v p g+s (sk ...) fk (i ...) ((id id-ls) ...))
(let ((sk2 (lambda (id ...) (sk ... (i ... id ...)))))
(match-gen-or-step v p g+s (match-drop-ids (sk2 id ...)) fk (i ...))))))
(define-syntax match-gen-or-step
(syntax-rules ()
((_ v () g+s sk fk . x)
;; no OR clauses, call the failure continuation
fk)
((_ v (p) . x)
;; last (or only) OR clause, just expand normally
(match-one v p . x))
((_ v (p . q) g+s sk fk i)
;; match one and try the remaining on failure
(let ((fk2 (lambda () (match-gen-or-step v q g+s sk fk i))))
(match-one v p g+s sk (fk2) i)))
))
;; We match a pattern (p ...) by matching the pattern p in a loop on
;; each element of the variable, accumulating the bound ids into lists.
;; Look at the body of the simple case - it's just a named let loop,
;; matching each element in turn to the same pattern. The only trick
;; is that we want to keep track of the lists of each extracted id, so
;; when the loop recurses we cons the ids onto their respective list
;; variables, and on success we bind the ids (what the user input and
;; expects to see in the success body) to the reversed accumulated
;; list IDs.
(define-syntax match-gen-ellipsis
(syntax-rules ()
((_ v p () g+s (sk ...) fk i ((id id-ls) ...))
(match-check-identifier p
;; simplest case equivalent to (p ...), just bind the list
(let ((p v))
(if (list? p)
(sk ... i)
fk))
;; simple case, match all elements of the list
(let loop ((ls v) (id-ls '()) ...)
(cond
((null? ls)
(let ((id (reverse id-ls)) ...) (sk ... i)))
((pair? ls)
(let ((w (car ls)))
(match-one w p ((car ls) (set-car! ls))
(match-drop-ids (loop (cdr ls) (cons id id-ls) ...))
fk i)))
(else
fk)))))
((_ v p r g+s (sk ...) fk i ((id id-ls) ...))
;; general case, trailing patterns to match, keep track of the
;; remaining list length so we don't need any backtracking
(match-verify-no-ellipsis
r
(let* ((tail-len (length 'r))
(ls v)
(len (and (list? ls) (length ls))))
(if (or (not len) (< len tail-len))
fk
(let loop ((ls ls) (n len) (id-ls '()) ...)
(cond
((= n tail-len)
(let ((id (reverse id-ls)) ...)
(match-one ls r (#f #f) (sk ...) fk i)))
((pair? ls)
(let ((w (car ls)))
(match-one w p ((car ls) (set-car! ls))
(match-drop-ids
(loop (cdr ls) (- n 1) (cons id id-ls) ...))
fk
i)))
(else
fk)))))))))
;; This is just a safety check. Although unlike syntax-rules we allow
;; trailing patterns after an ellipsis, we explicitly disable multiple
;; ellipsis at the same level. This is because in the general case
;; such patterns are exponential in the number of ellipsis, and we
;; don't want to make it easy to construct very expensive operations
;; with simple looking patterns. For example, it would be O(n^2) for
;; patterns like (a ... b ...) because we must consider every trailing
;; element for every possible break for the leading "a ...".
(define-syntax match-verify-no-ellipsis
(syntax-rules ()
((_ (x . y) sk)
(match-check-ellipsis
x
(match-syntax-error
"multiple ellipsis patterns not allowed at same level")
(match-verify-no-ellipsis y sk)))
((_ () sk)
sk)
((_ x sk)
(match-syntax-error "dotted tail not allowed after ellipsis" x))))
;; To implement the tree search, we use two recursive procedures. TRY
;; attempts to match Y once, and on success it calls the normal SK on
;; the accumulated list ids as in MATCH-GEN-ELLIPSIS. On failure, we
;; call NEXT which first checks if the current value is a list
;; beginning with X, then calls TRY on each remaining element of the
;; list. Since TRY will recursively call NEXT again on failure, this
;; effects a full depth-first search.
;;
;; The failure continuation throughout is a jump to the next step in
;; the tree search, initialized with the original failure continuation
;; FK.
(define-syntax match-gen-search
(syntax-rules ()
((match-gen-search v p q g+s sk fk i ((id id-ls) ...))
(letrec ((try (lambda (w fail id-ls ...)
(match-one w q g+s
(match-tuck-ids
(let ((id (reverse id-ls)) ...)
sk))
(next w fail id-ls ...) i)))
(next (lambda (w fail id-ls ...)
(if (not (pair? w))
(fail)
(let ((u (car w)))
(match-one
u p ((car w) (set-car! w))
(match-drop-ids
;; accumulate the head variables from
;; the p pattern, and loop over the tail
(let ((id-ls (cons id id-ls)) ...)
(let lp ((ls (cdr w)))
(if (pair? ls)
(try (car ls)
(lambda () (lp (cdr ls)))
id-ls ...)
(fail)))))
(fail) i))))))
;; the initial id-ls binding here is a dummy to get the right
;; number of '()s
(let ((id-ls '()) ...)
(try v (lambda () fk) id-ls ...))))))
;; Vector patterns are just more of the same, with the slight
;; exception that we pass around the current vector index being
;; matched.
(define-syntax match-vector
(syntax-rules (___)
((_ v n pats (p q) . x)
(match-check-ellipsis q
(match-gen-vector-ellipsis v n pats p . x)
(match-vector-two v n pats (p q) . x)))
((_ v n pats (p ___) sk fk i)
(match-gen-vector-ellipsis v n pats p sk fk i))
((_ . x)
(match-vector-two . x))))
;; Check the exact vector length, then check each element in turn.
(define-syntax match-vector-two
(syntax-rules ()
((_ v n ((pat index) ...) () sk fk i)
(if (vector? v)
(let ((len (vector-length v)))
(if (= len n)
(match-vector-step v ((pat index) ...) sk fk i)
fk))
fk))
((_ v n (pats ...) (p . q) . x)
(match-vector v (+ n 1) (pats ... (p n)) q . x))))
(define-syntax match-vector-step
(syntax-rules ()
((_ v () (sk ...) fk i) (sk ... i))
((_ v ((pat index) . rest) sk fk i)
(let ((w (vector-ref v index)))
(match-one w pat ((vector-ref v index) (vector-set! v index))
(match-vector-step v rest sk fk)
fk i)))))
;; With a vector ellipsis pattern we first check to see if the vector
;; length is at least the required length.
(define-syntax match-gen-vector-ellipsis
(syntax-rules ()
((_ v n ((pat index) ...) p sk fk i)
(if (vector? v)
(let ((len (vector-length v)))
(if (>= len n)
(match-vector-step v ((pat index) ...)
(match-vector-tail v p n len sk fk)
fk i)
fk))
fk))))
(define-syntax match-vector-tail
(syntax-rules ()
((_ v p n len sk fk i)
(match-extract-vars p (match-vector-tail-two v p n len sk fk i) i ()))))
(define-syntax match-vector-tail-two
(syntax-rules ()
((_ v p n len (sk ...) fk i ((id id-ls) ...))
(let loop ((j n) (id-ls '()) ...)
(if (>= j len)
(let ((id (reverse id-ls)) ...) (sk ... i))
(let ((w (vector-ref v j)))
(match-one w p ((vector-ref v j) (vector-set! v j))
(match-drop-ids (loop (+ j 1) (cons id id-ls) ...))
fk i)))))))
(define-syntax match-record-refs
(syntax-rules ()
((_ v rec n (p . q) g+s sk fk i)
(let ((w (slot-ref rec v n)))
(match-one w p ((slot-ref rec v n) (slot-set! rec v n))
(match-record-refs v rec (+ n 1) q g+s sk fk) fk i)))
((_ v rec n () g+s (sk ...) fk i)
(sk ... i))))
(define-syntax match-record-named-refs
(syntax-rules ()
((_ v rec ((f p) . q) g+s sk fk i)
(let ((w (slot-ref rec v 'f)))
(match-one w p ((slot-ref rec v 'f) (slot-set! rec v 'f))
(match-record-named-refs v rec q g+s sk fk) fk i)))
((_ v rec () g+s (sk ...) fk i)
(sk ... i))))
;; Extract all identifiers in a pattern. A little more complicated
;; than just looking for symbols, we need to ignore special keywords
;; and non-pattern forms (such as the predicate expression in ?
;; patterns), and also ignore previously bound identifiers.
;;
;; Calls the continuation with all new vars as a list of the form
;; ((orig-var tmp-name) ...), where tmp-name can be used to uniquely
;; pair with the original variable (e.g. it's used in the ellipsis
;; generation for list variables).
;;
;; (match-extract-vars pattern continuation (ids ...) (new-vars ...))
;; Replace '_' with ':_' as the former is forbidden as an auxiliariy
;; keyword in R6RS. (FBE)
(define-syntax match-extract-vars
(syntax-rules (:_ ___ ..1 *** ? $ struct @ object = quote quasiquote and or not get! set!)
((match-extract-vars (? pred . p) . x)
(match-extract-vars p . x))
((match-extract-vars ($ rec . p) . x)
(match-extract-vars p . x))
((match-extract-vars (struct rec . p) . x)
(match-extract-vars p . x))
((match-extract-vars (@ rec (f p) ...) . x)
(match-extract-vars (p ...) . x))
((match-extract-vars (object rec (f p) ...) . x)
(match-extract-vars (p ...) . x))
((match-extract-vars (= proc p) . x)
(match-extract-vars p . x))
((match-extract-vars (quote x) (k ...) i v)
(k ... v))
((match-extract-vars (quasiquote x) k i v)
(match-extract-quasiquote-vars x k i v (#t)))
((match-extract-vars (and . p) . x)
(match-extract-vars p . x))
((match-extract-vars (or . p) . x)
(match-extract-vars p . x))
((match-extract-vars (not . p) . x)
(match-extract-vars p . x))
;; A non-keyword pair, expand the CAR with a continuation to
;; expand the CDR.
((match-extract-vars (p q . r) k i v)
(match-check-ellipsis
q
(match-extract-vars (p . r) k i v)
(match-extract-vars p (match-extract-vars-step (q . r) k i v) i ())))
((match-extract-vars (p . q) k i v)
(match-extract-vars p (match-extract-vars-step q k i v) i ()))
((match-extract-vars #(p ...) . x)
(match-extract-vars (p ...) . x))
;; Next line: replace '_' with ':_'. (FBE)
((match-extract-vars :_ (k ...) i v) (k ... v))
((match-extract-vars ___ (k ...) i v) (k ... v))
((match-extract-vars *** (k ...) i v) (k ... v))
((match-extract-vars ..1 (k ...) i v) (k ... v))
;; This is the main part, the only place where we might add a new
;; var if it's an unbound symbol.
((match-extract-vars p (k ...) (i ...) v)
(let-syntax
((new-sym?
(syntax-rules (i ...)
((new-sym? p sk fk) sk)
((new-sym? any sk fk) fk))))
(new-sym? random-sym-to-match
(k ... ((p p-ls) . v))
(k ... v))))
))
;; Stepper used in the above so it can expand the CAR and CDR
;; separately.
(define-syntax match-extract-vars-step
(syntax-rules ()
((_ p k i v ((v2 v2-ls) ...))
(match-extract-vars p k (v2 ... . i) ((v2 v2-ls) ... . v)))
))
(define-syntax match-extract-quasiquote-vars
(syntax-rules (quasiquote unquote unquote-splicing)
((match-extract-quasiquote-vars (quasiquote x) k i v d)
(match-extract-quasiquote-vars x k i v (#t . d)))
((match-extract-quasiquote-vars (unquote-splicing x) k i v d)
(match-extract-quasiquote-vars (unquote x) k i v d))
((match-extract-quasiquote-vars (unquote x) k i v (#t))
(match-extract-vars x k i v))
((match-extract-quasiquote-vars (unquote x) k i v (#t . d))
(match-extract-quasiquote-vars x k i v d))
((match-extract-quasiquote-vars (x . y) k i v d)
(match-extract-quasiquote-vars
x
(match-extract-quasiquote-vars-step y k i v d) i () d))
((match-extract-quasiquote-vars #(x ...) k i v d)
(match-extract-quasiquote-vars (x ...) k i v d))
((match-extract-quasiquote-vars x (k ...) i v d)
(k ... v))
))
(define-syntax match-extract-quasiquote-vars-step
(syntax-rules ()
((_ x k i v d ((v2 v2-ls) ...))
(match-extract-quasiquote-vars x k (v2 ... . i) ((v2 v2-ls) ... . v) d))
))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Gimme some sugar baby.
;;> Shortcut for \scheme{lambda} + \scheme{match}. Creates a
;;> procedure of one argument, and matches that argument against each
;;> clause.
(define-syntax match-lambda
(syntax-rules ()
((_ (pattern . body) ...) (lambda (expr) (match expr (pattern . body) ...)))))
;;> Similar to \scheme{match-lambda}. Creates a procedure of any
;;> number of arguments, and matches the argument list against each
;;> clause.
(define-syntax match-lambda*
(syntax-rules ()
((_ (pattern . body) ...) (lambda expr (match expr (pattern . body) ...)))))
;;> Matches each var to the corresponding expression, and evaluates
;;> the body with all match variables in scope. Raises an error if
;;> any of the expressions fail to match. Syntax analogous to named
;;> let can also be used for recursive functions which match on their
;;> arguments as in \scheme{match-lambda*}.
(define-syntax match-let
(syntax-rules ()
((_ ((var value) ...) . body)
(match-let/helper let () () ((var value) ...) . body))
((_ loop ((var init) ...) . body)
(match-named-let loop () ((var init) ...) . body))))
;;> Similar to \scheme{match-let}, but analogously to \scheme{letrec}
;;> matches and binds the variables with all match variables in scope.
(define-syntax match-letrec
(syntax-rules ()
((_ ((var value) ...) . body)
(match-let/helper letrec () () ((var value) ...) . body))))
(define-syntax match-let/helper
(syntax-rules ()
((_ let ((var expr) ...) () () . body)
(let ((var expr) ...) . body))
((_ let ((var expr) ...) ((pat tmp) ...) () . body)
(let ((var expr) ...)
(match-let* ((pat tmp) ...)
. body)))
((_ let (v ...) (p ...) (((a . b) expr) . rest) . body)
(match-let/helper
let (v ... (tmp expr)) (p ... ((a . b) tmp)) rest . body))
((_ let (v ...) (p ...) ((#(a ...) expr) . rest) . body)
(match-let/helper
let (v ... (tmp expr)) (p ... (#(a ...) tmp)) rest . body))
((_ let (v ...) (p ...) ((a expr) . rest) . body)
(match-let/helper let (v ... (a expr)) (p ...) rest . body))))
(define-syntax match-named-let
(syntax-rules ()
((_ loop ((pat expr var) ...) () . body)
(let loop ((var expr) ...)
(match-let ((pat var) ...)