forked from jparkerholder/PB2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kernel.py
executable file
·55 lines (41 loc) · 1.92 KB
/
kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from GPy.kern import Kern
from GPy.core import Param
from sklearn.metrics import pairwise_distances
from sklearn.metrics.pairwise import euclidean_distances
import numpy as np
class TV_SquaredExp(Kern):
def __init__(self,input_dim, variance=1.,lengthscale=1.,epsilon=0.,active_dims=None):
super().__init__(input_dim, active_dims, 'time_se')
self.variance = Param('variance', variance)
self.lengthscale = Param('lengthscale', lengthscale)
self.epsilon = Param('epsilon', epsilon)
self.link_parameters(self.variance, self.lengthscale, self.epsilon)
def K(self,X,X2):
# time must be in the far left column
if self.epsilon > 0.5: # 0.5
self.epsilon = 0.5
if X2 is None: X2 = np.copy(X)
T1 = X[:, 0].reshape(-1, 1)
T2 = X2[:, 0].reshape(-1, 1)
dists = pairwise_distances(T1,T2, 'cityblock')
timekernel=(1-self.epsilon)**(0.5*dists)
X = X[:, 1:]
X2 = X2[:, 1:]
RBF = self.variance*np.exp(-np.square(euclidean_distances(X,X2))/self.lengthscale)
return RBF * timekernel
def Kdiag(self,X):
return self.variance*np.ones(X.shape[0])
def update_gradients_full(self, dL_dK, X, X2):
if X2 is None: X2 = np.copy(X)
T1 = X[:, 0].reshape(-1, 1)
T2 = X2[:, 0].reshape(-1, 1)
X = X[:, 1:]
X2 = X2[:, 1:]
dist2 = np.square(euclidean_distances(X,X2))/self.lengthscale
dvar = np.exp(-np.square((euclidean_distances(X,X2))/self.lengthscale))
dl = - (2 * euclidean_distances(X,X2)**2 * self.variance * np.exp(-dist2)) * self.lengthscale**(-2)
n = pairwise_distances(T1,T2, 'cityblock')/2
deps = -n * (1-self.epsilon)**(n-1)
self.variance.gradient = np.sum(dvar*dL_dK)
self.lengthscale.gradient = np.sum(dl*dL_dK)
self.epsilon.gradient = np.sum(deps*dL_dK)