-
Notifications
You must be signed in to change notification settings - Fork 26
/
test.py
65 lines (59 loc) · 2.55 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import time
import os
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from util import html
opt = TestOptions().parse()
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
epoch_length = 100
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
# visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# test
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
model = create_model(opt)
model.set_input(data)
visualizer = Visualizer(opt)
img_path = model.get_image_paths()
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
for j in range(opt.TEST_ITERS):
iter_start_time = time.time()
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.optimize_noise()
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/epoch_length, opt, errors)
if total_steps % opt.save_model_freq == 0:
print('saving the at (total_steps %d)' %
(total_steps))
model.save(webpage, img_path, total_steps)
if total_steps % epoch_length == 0:
break
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()
visuals = model.get_current_visuals()
print('%04d: process image... %s' % (i, img_path))
visualizer.save_images(webpage, visuals, img_path)
webpage.save()