-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathee564_mmf_exercise.html
1062 lines (663 loc) · 23.8 KB
/
ee564_mmf_exercise.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<title>EE568-Selected Topics in Electrical Machines</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
@import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
@import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic);
body { font-family: 'Droid Serif'; }
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: normal;
}
.remark-code, .remark-inline-code { font-family: 'Ubuntu Mono'; }
</style>
</head>
<body>
<textarea id="source">
class: center, middle
# EE568-Selected Topics in Electrical Machines
## Ozan Keysan
[keysan.me](http://keysan.me)
Office: C-113 <span class="meta">•</span> Tel: 210 7586
---
# Windings of Electrical Machines
--
<img src="https://www.menzel-motors.com/fileadmin/user_upload/Service/Wicklung/motor_winding-04_web.jpg" alt="Drawing" style="width: 800px;">
### [Bobinaj](https://www.youtube.com/watch?v=qnU_AFy3ML0), [Pakistan Machine Winding Shop](https://www.youtube.com/watch?v=5YTbkETpZN8)
---
# Roles of Windings in Electrical Machines
---
# Armature Winding:
<img src="http://4.bp.blogspot.com/-lLSSvpP-1aE/UM8uxA0e5pI/AAAAAAAAAI0/6C1VMNdVKsg/s320/commutator.jpg" alt="Drawing" style="width: 400px;">
--
## Power-producing winding of an electrical machine
--
## Can be on
--
the rotor (DC machines),
--
or on the stator (synchronous machines)
---
# Field (Magnetizing) Winding:
--
## Creates the magnetic field required for energy conversion.
--
## Not all machines have a field winding (i.e. PM machines, reluctance machines)
---
# Field (Magnetizing) Winding:
## Can be on the stator: Field winding of a DC machine
<img src="http://www.gef.com.my/images/DC_Field_Coil_Winding_After_Service_Re-varnish.jpg" alt="Drawing" style="width: 500px;">
---
# Field (Magnetizing) Winding:
## Can be on the rotor: Synchronous Machine
--
## Salient Pole Rotor
<img src="http://www.kencoil.com/wp-content/uploads/2017/03/39b.jpg" alt="Drawing" style="width: 600px;">
---
# Field (Magnetizing) Winding:
## Can be on the rotor: Synchronous Machine
--
## Cylindrical Rotor
<img src="https://3.bp.blogspot.com/-yB8dCzX2duw/V4t-BfncMFI/AAAAAAAABiY/cS_7dqlDz7kVDXQtMojGfpnhFeUQ5Y4AwCK4B/s400/rotor%2Bof%2Ban%2Balternator.jpg" alt="Drawing" style="width: 800px;">
---
# Rotating Field Windings
--
### In Induction (asynchronous) machines, windings both creates field and performs energy conversion, so it is slightly differs from armature windings by definition
--
<img src="https://qph.fs.quoracdn.net/main-qimg-fb915069a5d2c4638e6e185916b77f7e" alt="Drawing" style="width: 500px;">
---
# Rotating Field Windings
## Induction Motor Rotor Side:
--
## Squirrel-Cage Rotor
<img src="https://www.researchgate.net/profile/Mohammed_Therib/publication/320799573/figure/fig1/AS:556180796657664@1509615243458/Squirrel-Cage-Rotor.png" alt="Drawing" style="width: 800px;">
---
## Squirrel-Cage Rotor
<img src="./images/ee564/copper_rotor.webp" alt="Drawing" style="width: 250px;">
<img src="./images/ee564/aluminium_rotor.jpg" alt="Drawing" style="width: 450px;">
### Can be made from copper or aluminium. Coil ends are short-circuited.
---
# Rotating Field Windings
## Wound Rotor Induction Machine
--
<img src="https://www.industrial-electronics.com/images/imc7e_44-1.jpg" alt="Drawing" style="width: 600px;">
---
# Damper Winding
--
<img src="./images/ee564/damper_winding.png" alt="Drawing" style="width: 550px;">
## [What is it used for](https://instrumentationtools.com/damper-windings-used-synchronous-motors/)?
---
# Damper Winding
<img src="https://engineeringtutorial.com/wp-content/uploads/2016/04/Electrical-Machines.jpg" alt="Drawing" style="width: 500px;">
### Helps to self-start of a synchronous machine and Reduces oscillations in transient conditions.
### [61MVA Stator & Rotor Rewinding](https://www.youtube.com/watch?v=ov8KAjxMxlU), [coil manufacturing](https://www.youtube.com/watch?v=Y7T6I1wg7tQ)
---
# Other Windings
## Helps to reduce armature reaction
- ## [Commutating Windings](http://www.studyelectrical.com/2015/01/compensating-windings-interpoles-dc-generator-motor.html)
- ## [Compensating Windings](https://www.quora.com/Electrical-Machines-What-do-interpoles-do-in-DC-motors) (Interpoles)
---
# Winding Types
<img src="./images/ee564/winding_types.png" alt="Drawing" style="width: 700px;">
---
# Exercise
--
## Field Winding of a Salient Pole Synchronous Machnie
<img src="./images/ee564/synchronous_salient.png" alt="Drawing" style="width: 800px;">
#### Calculate the required field winding current to get Bmax=0.82T, if there are 95 turns per pole. Assume sinusoidal flux density distribution and the minimum airgap distance is 3.5mm
---
# Exercise
<img src="./images/ee564/field_exercise.png" alt="Drawing" style="width: 800px;">
---
# Slot Windings
--
<img src="./images/ee564/slot_winding_current_linkage.png" alt="Drawing" style="width: 800px;">
### Current Linkage distribution in a two-pole cylindrical winding.
#### \\(z_Q\\) conductors in each slot with current \\(I_f\\)
---
### Some Definitions
--
## Pole Pitch:
--
## \\(\tau_p = \dfrac{\pi D}{2p} \\)
###\\(p\\): pole pairs, \\(D\\): air-gap diameter
---
### Some Definitions
## Slot Pitch:
--
## \\(\tau_u = \dfrac{\pi D}{Q} \\)
###\\(Q\\): number of slots
--
## Slot Angle (electrical):
--
### \\(\alpha_u = \dfrac{2\pi}{(Q/p)} \\)
---
### Some Definitions
## Slots per-pole per-phase (q):
--
## \\(q = \dfrac{Q}{2pm} \\)
###\\(m\\): number of phases
---
### Some Definitions
## Slots per-pole per-phase (q):
## If \\(q\\) is integer:
--
Integral Slot Winding
--
## If \\(q\\) is fractional:
--
Fractional Slot Winding
---
# 3-Phase Integral Slot Stator Winding
--
## Simplest case for rotating MMF
- ## m = 3
- ## p = 1
- ## q = 1
--
- ## Q = 6
---
## Simplest case:
<img src="./images/ee564/slot_q6.png" alt="Drawing" style="width: 500px;">
---
## MMF from a single phase
--
<img src="./images/ee564/single_slot_mmf.png" alt="Drawing" style="width: 700px;">
--
## Peak MMF: \\(\dfrac{4}{\pi}\dfrac{i_U z_Q}{2}\\)
---
## MMF from three phase
<img src="./images/ee564/3ph_mmf1.png" alt="Drawing" style="width: 700px;">
---
## MMF from three phase
<img src="./images/ee564/3ph_mmf2.png" alt="Drawing" style="width: 750px;">
---
# Three Phase AC: Rotating MMF
<img src="http://www.ece.umn.edu/users/riaz/animations/sinwaves0.gif" alt="Drawing" style="width: 750px;"/>
---
# Three Phase AC: Rotating MMF
<img src="http://www.ece.umn.edu/users/riaz/animations/vecmovieslow.gif" alt="Drawing" style="width: 500px;"/>
---
# Three Phase AC: Rotating MMF
<img src="http://www.ece.umn.edu/users/riaz/animations/sinvec.gif" alt="Drawing" style="width: 800px;"/>
### Derivation left as an exercise!
---
## Manufacturing of Coils
<img src="https://en.partzsch.de/files/Produktspektrum/Staenderwicklungen/Formspulen/galerie/formspulen_6.jpg" alt="Drawing" style="width: 300px;"/>
### Chevy Spark EV [Motor Manufacturing](https://www.caranddriver.com/news/a18744950/we-build-the-chevy-spark-evs-ac-permanent-magnet-motor/)
### [Disributed winding schematic](https://www.researchgate.net/profile/Jakob_Igelspacher/publication/241174581/figure/fig3/AS:340780838342662@1458259891354/Fig-4-Schematic-example-of-a-distributed-winding-of-an-axial-flux-induction-machine.jpg)
### [Preformed coils](https://www.heinrich-schuemann.de/ankerformspulen-200.html), [Preformed coils-2](https://www.heinrich-schuemann.de/files/uploads/Produkte/Elektromaschinenbau/ankerformspulen/anker-w1p.jpg)
### [Coils in the stator](https://empoweringpumps.com/sulzer-hydro-generator-refurbishment-increases-output-by-15/), [Coils in the stator-2](https://4.imimg.com/data4/YY/YY/GLADMIN-/wp-content-uploads-2015-11-diamond_coils_03-500x500.jpg)
---
# Distributed Winding
### Many coils are connected in series and distributed over many slot to achine a more sinusoidal MMF distribution
--
<img src="https://raw.githubusercontent.com/ozank/ozank.github.io/master/presentations/images/distributed_coil.png" alt="Drawing" style="width: 400px;"/>
---
# Distributed Winding MMF
### Let's calculate the MMF with the distributed coil:
--
<img src="https://archive.cnx.org/resources/8cbc00b4366fcb581988511a2b55b5bdee858576/graphics14.png" alt="Drawing" style="width: 600px;"/>
---
# Distributed Winding Manufacturing
###Videos
- [Production of electric machines](https://www.youtube.com/watch?v=5Mu42TzHy8M) (T=6:00)
- [Rewinding a Large Motor](https://www.youtube.com/watch?v=_65mXQ-GNVM) (T=0:20)
- [BMW Electric Motor - Drive](https://www.youtube.com/watch?v=Qktx5yx1Bjw)
- [Induction Motors: Overhauling a Motor](https://www.youtube.com/watch?v=yPvYd03cKJU)
---
## Full-Pitch Coil ?
--
<img src="https://www.electrical4u.com/wp-content/uploads/2013/04/full-pitched-short-pitched-winding-11.10.13.png" alt="Drawing" style="width: 800px;"/>
---
## Full-Pitch Coil ?
<img src="./images/full_pitch.png" alt="Drawing" style="width: 700px;"/>
### (a)Full-pitched coil, (b) Short-pitched coil
---
# Winding Factors
### Constants related to estimate characteristics of MMF and voltage of windings.
### An easier method for analytical calculations
--
- ## Distribution Factor (\\(k_d\\))
--
- ## Pitch Factor (\\(k_p\\))
---
# Distribution Factor
<img src="https://raw.githubusercontent.com/ozank/ozank.github.io/master/presentations/images/distributed_coil.png" alt="Drawing" style="width: 500px;"/>
---
# Distribution Factor
## Vector sum of voltages in a distributed coil is less than the algebraic sum of the voltage in each coil.
--
## \\(k_d = \dfrac{\mathrm{Vector\,Sum\,of\,Voltages}}{\mathrm{Algebraic\,Sum\,of\,Voltages}}\\)
---
# Distribution Factor
### Q1: What is the distribution factor of a concentrated coil?
--
### Q2: What is the distribution factor of two coils seperated by \\(\pi/3\\)?
--
### Q3: What is the distribution factor of three coils seperated by \\(\pi/6\\)?
--
### Generalized equation
---
# Distribution Factor
## \\(k_d = \dfrac{sin(q \dfrac{\alpha}{2})}{q sin(\dfrac{\alpha}{2})}\\)
## \\(q\\): Number of coils
## \\(\alpha\\): Angle between each coil
---
# Pitch-Factor
--
## Review of Definitions:
- # Full-pitched (= \\(\pi\\) electrical)
--
- # Under-pitched (< \\(\pi\\) electrical)
--
- # Over-pitched (> \\(\pi\\) electrical)
---
## A 2-pole machine with sinusoidal \\(B_{gap}\\)
<img src="https://raw.githubusercontent.com/ozank/ozank.github.io/master/presentations/images/2pole_mmf.jpg" alt="Drawing" style="width: 450px;"/>
---
## A 2-pole machine with sinusoidal \\(B_{gap}\\)
<img src="https://raw.githubusercontent.com/ozank/ozank.github.io/master/presentations/images/2pole_voltage.jpg" alt="Drawing" style="width: 800px;"/>
---
# Full-pitched vs Fractional-pitched Coil
- ## Full-pitch = 180 degrees (\\(\pi\\))
--
- ## Under pitch < 180 degrees (\\(\pi\\))
--
- ## \\(V\_{full-pitch} > V\_{under-pitch}\\)
--
- # If so, what is the point?
---
# A big Parenthesis
## Fourier Series
--
> ## All waveforms, no matter what you scribble or observe in the universe, are actually just the sum of simple sinusoids of different frequencies.
---
# Fourier Series
![](http://media.giphy.com/media/Km4XeiMqFNCDK/giphy.gif)
[Fourier Series using Circles](https://www.youtube.com/watch?v=LznjC4Lo7lE), [Complex Orbits](https://www.youtube.com/watch?v=QVuU2YCwHjw), [Useful applets](http://www.falstad.com/fourier), [Fourier examples](http://ptolemy.eecs.berkeley.edu/eecs20/week8/examples.html)
[More Useful Links on Fourier Series](http://keysan.me/explained/)
---
# Fourier Series
<a href="https://www.google.com/search?q=plot+(sin(x)%2B0.25*sin(3*x)%2B0.1*sin(5*x))">Google Plot</a>
--
- ## Let's see what happens with a 2/3 under pitched coil?
--
- ## Under-Pitched coils are very useful for the elimination of harmonics
---
#Pitch Factor
## Voltage in a short-pitched coil is less than a full-pitched coil
## \\(k_p = \dfrac{\mathrm{Short-Pitched\;Coil\;Flux}}{\mathrm{Full-Pitched\;Coil\;Flux}}\\)
---
#Pitch Factor
# \\(k_p = sin(\dfrac{\lambda}{2})\\)
# \\(\lambda\\): Coil-pitch in electrical degrees
---
# Pitch and Distribution Factor for Harmonics
## For harmonic number n:
## \\(k_p(n) = sin(\dfrac{n\lambda}{2})\\)
--
## \\(k_d(n) = \dfrac{sin(q n \dfrac{\alpha}{2})}{q sin(\dfrac{n\alpha}{2})}\\)
---
# Winding Factor:
## is the combination of distribution and pitch factor
--
#\\(k_w = k_d \times k_p\\)
--
## gives an idea about the magnitude of the coil voltage (or MMF) compared to concentrated and full-pitched winding.
---
# Group Exercise
--
### A rotating magnetic flux created by a 3-ph 50 Hz, 600 rpm alternator has a distribution of magnetic flux density:
--
### \\(B(\theta)=\hat{B}_1 sin(\theta)+\hat{B}_3 sin(3\theta)+\hat{B}_5sin(5\theta)\\)
--
### \\(B(\theta)=0.9sin(\theta)+0.25 sin(3\theta)+0.18sin(5\theta)\\)
---
# Group Exercise
## The machine has:
- ### 180 slots, double-layer winding, Y-connected
--
- ### Each coil has 3 turns with a span of 15 slots
--
- ### Armature diameter = 135 cm
--
- ### Effective axial length = 0.5 m
---
# Group Exercise
--
## Draw the winding diagram
--
## Calculate the MMF for:
--
- ### ia=1 A, ib=-0.5 A, ic=-0.5A
--
- ### ia= -0.5A, ib=1 A, ic=-0.5A
---
# Group Exercise
## Calculate:
--
- ## Number of poles, pole area
--
- ## Fundamental flux per-pole
--
- ## Winding and distribution factors for each winding
--
- ## Induced voltage rms per phase and line-to-line
---
## Now find the RMS of phase voltage and line voltages.
--
### \\(V\_{rms(i)} = \dfrac{1}{\sqrt{2}} 2\pi f\_i k\_{w(i)} N\_{ph} \Phi\_{(i)} \\) which is equal to:
--
### \\(V\_{rms(i)} = 4.44 f\_i k\_{w(i)} N\_{ph} \Phi\_{(i)} \\)
### \\(i\\): harmonic order, \\(\quad f\\): frequency
### \\(k_w\\): winding factor
### \\(N_{ph}\\): number of coils per phase
### \\(\Phi\\): flux per pole.
---
# True RMS
### RMS values of all harmonics
# \\(\sqrt{\sum{V_{rms-i}^2}}\\)
### For fundamental, 3rd and 5th harmonics
# True RMS = \\(\sqrt{V\_{1}^2+V\_{3}^2+V\_{5}^2}\\)
---
# Induced Voltages
## V1=4482 V
## V3=613 V
## V5=49.5 V
## Waveform of the [total phase voltage](https://www.google.com.tr/search?ei=67W3WqSJDMOv6ATzqZ_QDQ&q=plot+4482*sqrt%282%29*sin%28x%29+-+613*sqrt%282%29*sin%283*x%29+%2B+49.5*sqrt%282%29*sin%285*x%29&oq=plot+4482*sqrt%282%29*sin%28x%29+-+613*sqrt%282%29*sin%283*x%29+%2B+49.5*sqrt%282%29*sin%285*x%29&gs_l=psy-ab.3...10186.25518.0.26977.18.18.0.0.0.0.317.2643.0j12j3j1.16.0....0...1c.1.64.psy-ab..2.0.0....0.DBXGbFsm7D8)
---
# Line Voltage
## \\(V\_{BA}=V\_{Bn}-V\_{An}\\)
## No 3rd Voltage Harmonics in Y-connected line-to-line voltages
## Waveform of the [line voltage](https://www.google.com.tr/search?ei=R7a3WoqpNszO6AS415iIDg&q=plot+4482*sqrt%286%29*sin%28x%29+%2B+49.5*sqrt%286%29*sin%285*x%29&oq=plot+4482*sqrt%286%29*sin%28x%29+%2B+49.5*sqrt%286%29*sin%285*x%29&gs_l=psy-ab.3...4540.15170.0.25670.9.9.0.0.0.0.179.1246.0j9.9.0....0...1c.1.64.psy-ab..0.0.0....0.8eSFbs9SpcI)
---
# Fractional Slot Windings
--
### Slots-per-pole-per-phase (q) is fractional
--
- ### Gives more choice in winding design
--
- ### Voltage waveform can be improved by eliminating certain harmonics
--
- ### Vast possibilities, but not every possibility produces a symmetrical rotating MMF
---
## Fractional Slot Example
--
## Consider a 10-pole machine
--
## What can be the number of slots?
--
- ## 30 slots? q=
--
1
--
- ## 60 slots? q=
--
2
- ## How about 42 slots?
--
## q = 42/(10*3) = 7/5
---
## 42 slot, 10 pole
<img src="./images/ee564/42_slot.png" alt="Drawing" style="width: 500px;">
---
## 42 slot, 10 pole
## Phase shift between coils?
--
### \\(360*(10/2)/42=42.85^o\\)
--
### Let's choose a coil span of 4 slots. Coil pitch?
--
### \\(42.85*4 = 171.5^o\\), Pitch factor?
--
### \\(sin(171.5/2) = 0.997\\)
---
# Why Fractional Winding?
## Integer Slot: 4 pole, 12 slot
<img src="./images/ee564/4pole_12slot.png" alt="Drawing" style="width: 500px;">
---
# Why Fractional Winding?
## Can you guess the magnitude of cogging torque?
<img src="./images/ee564/4pole_12slot.png" alt="Drawing" style="width: 500px;">
---
# Why Fractional Winding?
## Can you guess the magnitude of cogging torque?
<img src="./images/ee564/4pole_12slot_flux.png" alt="Drawing" style="width: 500px;">
---
# How can you reduce cogging torque?
## Skewing is an option, but increases phase resistance
<img src="./images/ee564/skewed_stator.png" alt="Drawing" style="width: 700px;">
---
# Why Fractional Winding?
## Repeat the same thing with 4 pole, 15 slot?
<img src="./images/ee564/4pole_15slot.png" alt="Drawing" style="width: 500px;">
---
# Why Fractional Winding?
## Even more poles: 10 pole, 12 slot?
<img src="./images/ee564/10pole_12slot.png" alt="Drawing" style="width: 500px;">
---
## Conditions for Symmetrical Rotating MMF
--
### 1- Number of coils per phase winding should be an integer
--
### Single-layer windings:
### \\(\dfrac{Q}{2m} = pq \in N\\)
--
### Double-layer windings:
### \\(\dfrac{Q}{m} = 2pq \in N\\)
### Easier to achieve symmetrical MMF with double-layer windings
---
## Conditions for Symmetrical Rotating MMF
--
### 2- The angle between phase windings (\\(\alpha\_{ph}\\)) should be an integer multiple of slot angle \\(\alpha_z\\)
--
### Normal Systems:
### \\(\dfrac{\alpha\_{ph}}{\alpha\_{z}}=\dfrac{Q}{mt} \in N\\)
### t: largest common divider of Q and p
### Reading Assignment Pyrhonen Sections 2-9:2-12
---
# Winding Voltage Phasor Diagrams
<img src="./images/ee564/voltage_phasor.png" alt="Drawing" style="width: 500px;">
---
# Voltage induced in a straight wire?
<img src="http://www.solitaryroad.com/c1048/ole3.gif" alt="Drawing" style="width: 450px;">
---
# Voltage induced in a straight wire?
# \\(e = Blv\\)
## v: linear velocity
---
# Winding Voltage Phasor Diagrams
## 2 pole, 3phase, 12 slot machine
--
<img src="./images/ee564/voltage_phasor_12slot.png" alt="Drawing" style="width: 800px;">
---
# Winding Voltage Phasor Diagrams
## Induced Phase Voltages
--
<img src="./images/ee564/voltage_phasor_phase.png" alt="Drawing" style="width: 800px;">
---
## Two possible ways to put the coils
--
## Lap winding
--
<img src="./images/ee564/lap_winding.png" alt="Drawing" style="width: 750px;">
### Most common type
---
## Concentric winding
--
<img src="./images/ee564/concentric_winding.png" alt="Drawing" style="width: 400px;">
### They have exactly the same voltage waveforms
---
## Fractional Slot Example:
--
## 12 slot, 10 pole, single layer
--
<img src="./images/ee564/12slot_10pole.png" alt="Drawing" style="width: 400px;">
---
## Fractional Slot Example:
--
### \\(\alpha_u=\\)
--
\\(360*5/12=150^o\\)
--
<img src="./images/ee564/12slot_10pole2.png" alt="Drawing" style="width: 400px;">
---
## Fractional Slot Example:
### Phase Induced Voltage
<img src="./images/ee564/12slot_10pole3.png" alt="Drawing" style="width: 800px;">
---
## Example (2-16)
### Create a voltage phasor diagram of a single layer integral slot winding for which Q=36, p=2, m=3
--
<img src="./images/ee564/voltage_phasor_ex.png" alt="Drawing" style="width: 450px;">
---
## Example (2-16)
### Create a voltage phasor diagram of a single layer integral slot winding for which Q=36, p=2, m=3
<img src="./images/ee564/voltage_phasor_ex2.png" alt="Drawing" style="width: 800px;">
---
## Fractional Single Layer vs Double Layer
# Q=6, m=3, p=2, q=1/2
--
<img src="./images/ee564/fractional_single_double.png" alt="Drawing" style="width: 750px;">
---
# Winding Examples
---
<img src="./images/ee564/winding_ex1.png" alt="Drawing" style="width: 500px;">
--
## Q=24, p=2,
--
q=2,
--
Single layer,
--
integral slot, distributed winding
---
<img src="./images/ee564/winding_ex2.png" alt="Drawing" style="width: 500px;">
--
## Q=12, p=2,
--
q=1,
--
Single layer,
--
integral slot, concentrated winding,
---
<img src="./images/ee564/winding_ex3.png" alt="Drawing" style="width: 500px;">
--
## Q=18, p=2,
--
q=3/2,
--
Double layer,
--
fractional slot winding,
---
<img src="./images/ee564/winding_ex4.png" alt="Drawing" style="width: 500px;">
--
## Q=6, p=2,
--
q=1/2,
--
Double layer,
--
fractional slot concentrated winding,
---
<img src="./images/ee564/winding_ex5.png" alt="Drawing" style="width: 500px;">
--
## Q=6, p=2,
--
q=1/2,
--
double layer,
--
fractional slot, concentrated winding,
---
# Winding Factor Tables
## Single Layer Winding
<img src="./images/ee564/winding_table_single.png" alt="Drawing" style="width: 800px;">
---
# Winding Factor Tables
## Double Layer Winding
<img src="./images/ee564/winding_table_double.png" alt="Drawing" style="width: 800px;">
---
# Winding Factor Tables
### Online Calculators
<img src="https://pengky.cn/zz-generator-principle-and-structure/06-ac-motor-winding/10-ac-motor-winding.jpg" alt="Drawing" style="width: 400px;">
- ### [Emetor](https://www.emetor.com/windings/)
- ### [Winding Scheme Drawer](https://www.bavaria-direct.co.za/scheme/calculator/)
---
# Winding Manufacturing
## Slot Layout
--
<img src="./images/ee564/slot_layout.png" alt="Drawing" style="width: 600px;">
---
# Random Wound Coils
<img src="./images/ee564/random_wound_coil.png" alt="Drawing" style="width: 800px;">
### [Random wound coil insertion](https://www.youtube.com/watch?v=5P6YVi2mB6Q)
---
# Form Wound Coils
<img src="./images/ee564/form_wound_coil.png" alt="Drawing" style="width: 800px;">
### [Enercon Generator](https://www.youtube.com/watch?v=MgGk2WvK80M), (8:28)
---
# Form Wound Coils
- ### [Preformed Coil Manufacturing](https://youtu.be/qQ2pS_z3dVc?t=215)
- ### [Coil Spreader](https://www.youtube.com/watch?v=TnKKFZAD2uY)
- ### [Hair Pin Winding Manufacturing](https://youtu.be/fT04LbFXR7E?t=65)
---
# Semi-closed vs Open Slot
<img src="./images/ee564/open_slot.png" alt="Drawing" style="width: 500px;">
---
# Fill Factor Comparison
--
## Random Wound Coil
<img src="./images/ee564/fill_factor_random.png" alt="Drawing" style="width: 500px;">
---
# Fill Factor Comparison
## Form Wound Coil
<img src="./images/ee564/form_wound.png" alt="Drawing" style="width: 450px;">
### Up to 65% fill factor (higher possible with lower voltages)
---
# Fill Factor Comparison