-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathee568_magnets.html
506 lines (323 loc) · 12.3 KB
/
ee568_magnets.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
<<!DOCTYPE html>
<html>
<head>
<title>EE568-Selected Topics in Electrical Machines</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
@import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
@import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic);
body { font-family: 'Droid Serif'; }
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: normal;
}
.remark-code, .remark-inline-code { font-family: 'Ubuntu Mono'; }
</style>
</head>
<body>
<textarea id="source">
class: center, middle
# EE-568 Selected Topics in Electrical Machines
## Ozan Keysan
[keysan.me](http://keysan.me)
Office: C-113 <span class="meta">•</span> Tel: 210 7586
---
# Permanent Magnets Machines
<img src="https://windings.com/wp-content/uploads/magnet.jpg" alt="Drawing" style="width: 500px;"/>
### Becoming more and more popular with high efficiency and high torque density
---
#Applications
<img src="https://www.tcd.ie/Physics/research/groups/magnetism/img/per_mag_2.jpg" alt="Drawing" style="width: 800px;"/>
---
# History
<img src="http://www.magnetnrg.com/uploads/2/0/0/5/20054943/2633149.jpg" alt="Drawing" style="width: 750px;"/>
---
# Neodymium Magnets (NdFeB)
### Strongest and most common (60% market share)
### Neodmymium is mostly exported by China
### Expensive (600 TL/kg, $85/kg) (2020)
<img src="./images/ee564/nd_cost.png" alt="Drawing" style="width: 350px;"/>
---
# Magnetization Directions
<img src="http://www.flaig-te.de/images/Rohmagnete/roh_englisch_1.jpg" alt="Drawing" style="width: 800px;"/>
---
#B-H Curve of a Magnet
--
### Desired Properties:
--
### Large Remanence flux density (retentivity, point that crosses B axis)
--
### Large [coercivity](http://hyperphysics.phy-astr.gsu.edu/hbase/solids/imgsol/coercivity.gif) (point that crosses H axis)
--
![](https://www.electronics-tutorials.ws/wp-content/uploads/2013/08/mag20.gif)
---
# Magnet Strength Comparison
<img src="http://www.kjmagnetics.com/images/blog/demag.curves2d.gif" alt="Drawing" style="width: 600px;"/>
---
## Intrinsic vs Normal B-H Charateristics
<img src="https://raw.githubusercontent.com/ozank/ozank.github.io/master/presentations/images/intrinsic.jpg" alt="Drawing" style="width: 360px;"/>
### We can only measure normal curve
[More info about magnets](http://what-when-how.com/electric-motors/hard-magnetic-materials-permanent-magnets-electric-motors/), [Magnet Guide](http://www.allianceorg.com/pdfs/Magnet_Tutorial_v85_1.pdf), [Demagnetization](http://www.shinetsu-rare-earth-magnet.jp/e/design/)
---
# Demagnetization of PMs
<img src="https://www.kjmagnetics.com/images/blog/BHexplained.png" alt="Drawing" style="width: 600px;"/>
### If external magnetic fields get below the knee point, PM will lose strength
---
# Demagnetization of PMs
## Recoil Line
### Magnets will loose strength if the reverse magnetic field goes beyond the knee point.
<img src="http://www.eeeguide.com/wp-content/uploads/2015/11/Application-of-Permanent-Magnet-Materials3.png" alt="Drawing" style="width: 600px;"/>
---
# Magnets with Temperature
### Real Datasheet of Sm-Co (Samarium-Cobalt Magnet)
<img src="https://www.mpimagnets.com/wp-content/uploads//2018/09/06.jpg" alt="Drawing" style="width: 600px;"/>
### Magnets become less stable with increasing temperature.
---
# What is Magnetic Force?
### [Why magnets attract each other?](http://www.youtube.com/watch?v=uTcuDprmues) by Richard Feynman
--
### [Magnets and Special Relativity](https://www.youtube.com/watch?v=1TKSfAkWWN0)
Reading Suggestion: [Eminim Şaka Yapıyorsunuz Bay Feynman](http://www.idefix.com/Kitap/Eminim-Saka-Yapiyorsunuz-Bay-Feynman-Merakli-Bir-Sahsiyetin-Maceralari/Richard-P-Feynman/Bilim/Populer-Bilim/urunno=0000000427673)
<img src="https://cdn-images-1.medium.com/max/2000/1*4MnjkvCDAAJt7d0KrvFBOw.png" alt="Drawing" style="width: 600px;"/>
---
# Magnetic Circuits with Magnets, Load Line
<img src="./images/ee564/magnet_load_line.png" alt="Drawing" style="width: 600px;"/>
[More info on load lines](https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-061-introduction-to-electric-power-systems-spring-2011/readings/MIT6_061S11_ch11.pdf),
---
# Magnetic Circuits with Magnets, Load Line
## Be aware of the temperature variation
<img src="./images/ee564/magnet_load_line_temp.png" alt="Drawing" style="width: 600px;"/>
# The magnet can lose some of its strength
---
# Magnet Grades
## A definition for its strength (i.e. max. stored energy)
<img src="http://www.usrareearthmagnets.com/wp-content/uploads/2019/07/n52-magnets.jpg" alt="Drawing" style="width: 400px;"/>
---
# Magnet Grades
<img src="./images/ee564/magnet_grades.jpg" alt="Drawing" style="width: 600px;"/>
---
# Magnet Grades
## Last letter defines the working temperature
- ## No Letter: < 80 C
--
- ## M: Medium, <100 C
--
- ## H: High, <120 C
--
- ## SH: Super High, <150 C
---
# Magnet Coatings
### Beware NdFeB magnets are prone to corrosion and need to be coated
--
<img src="./images/ee564/magnet_coatings.jpg" alt="Drawing" style="width: 800px;"/>
---
# Modelling of Magnets
## Operation range of a magnet
<img src="./images/ee564/magnet_dynamic_bh.png" alt="Drawing" style="width: 500px;"/>
---
# Modelling of Magnets
## Equivalent Circuit (Flux Source)
<img src="./images/ee564/magnet_equivalent_circuit.png" alt="Drawing" style="width: 700px;"/>
---
# Modelling of Magnets
## Thevenin Equivalent Circuit (MMF Source)
<img src="./images/ee564/magnet_equivalent2.png" alt="Drawing" style="width: 700px;"/>
---
# Modelling of Magnets
## If the magnet is operating in linear region
### \\(B_m = B_r + \mu_R \mu_0 H_m \\)
### \\(H_m\\) is negative (third quadrant in BH graph)
--
### \\(\Phi = B_m A_m \\)
--
\\(\ = B_r A_m + \mu_R \mu_0 A_m H_m \\)
--
### \\(\Phi = B_m A_m \\)
--
\\(\ = \Phi_r + \dfrac{F_m}{R_m} \\)
---
# Modelling of Magnets
### \\(\Phi = \Phi_r + \dfrac{F_m}{R_m} \\)
--
### A constant flux source with a reluctance in parallel (i.e Norton circuit)
### \\(R_m = \dfrac{l_m}{ \mu_0 \mu_r A_m} \\)
### \\(P_m = \dfrac{1}{R_m} \\): Permeance
---
## Thevenin Equivalent Circuit (MMF Source)
<img src="./images/ee564/magnet_equivalent2.png" alt="Drawing" style="width: 400px;"/>
### Magnet can be considered as a coil (MMF source) with:
### \\(NI =\\)
--
\\(\Phi_r R_m =\\)
--
\\(B_r A_m \dfrac{l_m}{\mu_o \mu_r A_m} \\)
--
\\(= \dfrac{B_r l_m}{\mu_o \mu_r} \\)
---
# Group Exercise-#1
--
<img src="./images/ee564/magnet_c_core1.png" alt="Drawing" style="width: 500px;"/>
### Calculate the airgap flux density for:
---
# Group Exercise- #2
--
<img src="./images/ee564/coil_magnet.png" alt="Drawing" style="width: 700px;"/>
### Draw the magnetic equivalent circuit (ignore leakage)
---
# Group Exercise- #2
--
<img src="./images/ee564/coil_magnet_circuit.png" alt="Drawing" style="width: 700px;"/>
### Equivalent magnetic circuit
---
# Group Exercise-#3
--
<img src="./images/ee564/magnet_c_core.png" alt="Drawing" style="width: 650px;"/>
### Calculate the airgap flux density for:
---
# Group Exercise- #4
--
<img src="./images/ee564/magnet_leakage_a.png" alt="Drawing" style="width: 230px;"/>
w a
<img src="./images/ee564/magnet_leakage_b.png" alt="Drawing" style="width: 240px;"/>
<img src="./images/ee564/magnet_leakage_c.png" alt="Drawing" style="width: 250px;"/>
### Which one creates the most flux density (don't ignore leakage flux)?
---
# General PM Machine Structure
--
<img src="./images/ee564/smpm_magnet.png" alt="Drawing" style="width: 500px;"/>
### Surface Mount Permanent Magnet Machine
---
# Magnetic Circuit Model
<img src="./images/ee564/smpm_magnet_circuit.png" alt="Drawing" style="width: 500px;"/>
### SMPM magnetic circuit
---
# Magnetic Circuit Model
<img src="./images/ee564/smpm_magnet_circuit2.png" alt="Drawing" style="width: 400px;"/>
### Series components combined
---
# Magnetic Circuit Model
<img src="./images/ee564/smpm_magnet_circuit3.png" alt="Drawing" style="width: 400px;"/>
### Leakage ignored
---
# Magnetic Circuit Model
<img src="./images/ee564/smpm_magnet_circuit4.png" alt="Drawing" style="width: 500px;"/>
### Magnets combined (it is possible to use half-symmetry too)
---
# Magnetic Circuit Model
<img src="./images/ee564/smpm_magnet_circuit5.png" alt="Drawing" style="width: 500px;"/>
### Steel reluctance ignored (\\(K_r\\) factor added, \\(Kr \gtrapprox 1\\))
---
# Magnetic Circuit Model
## Ideal Airgap Flux Distribution
<img src="./images/ee564/smpm_airgap_flux.png" alt="Drawing" style="width: 500px;"/>
---
### Let's see the induced voltage waveform for a full-pitch coil
--
<img src="./images/ee564/smpm_full_pitch.png" alt="Drawing" style="width: 500px;"/>
---
### Flux and Induced Voltage in the Coil
--
<img src="./images/ee564/smpm_full_pitch_voltage.png" alt="Drawing" style="width: 500px;"/>
---
### How about a fractional-pitch coil ?
--
<img src="./images/ee564/smpm_fractional_pitch.png" alt="Drawing" style="width: 600px;"/>
---
### Flux and Induced Voltage in the Fractional-Pitch Coil
--
<img src="./images/ee564/smpm_fractional_pitch_voltage.png" alt="Drawing" style="width: 600px;"/>
---
## How about fractional pitch magnets?
--
<img src="./images/ee564/fractional_pitch_magnet.png" alt="Drawing" style="width: 500px;"/>
## Reduces the leakage flux between adjacent magnets
---
## Induced voltage in a fractional pitch magnets
<img src="./images/ee564/fractional_magnet_voltage.png" alt="Drawing" style="width: 500px;"/>
---
# Multiple Coils
--
### Nslot= 15, Npoles= 4
<img src="./images/ee564/fractional_slot_15.png" alt="Drawing" style="width: 500px;"/>
---
# Multiple Coils
--
### Nslot= 15, Npoles= 4, 192 degree coil span
<img src="./images/ee564/fractional_slot_15_A.png" alt="Drawing" style="width: 450px;"/>
---
# Multiple Coils
### Flux Linkage in Single Coil
<img src="./images/ee564/fractional_slot_15_flux.png" alt="Drawing" style="width: 500px;"/>
---
# Multiple Coils
### Induced Voltage in Single Coils
<img src="./images/ee564/fractional_slot_15_volages.png" alt="Drawing" style="width: 500px;"/>
---
# Multiple Coils
### Total Induced Voltage
<img src="./images/ee564/fractional_slot_15_combined.png" alt="Drawing" style="width: 500px;"/>
---
# PMSM vs BLDC
--
## Permanent Magnet Synchronous Motor
<img src="https://g-search2.alicdn.com/img/bao/uploaded/i4/i2/2645629644/TB1gSWSXBUSMeJjy1zdXXaR3FXa_!!0-item_pic.jpg" alt="Drawing" style="width: 300px;"/>
---
# PMSM vs BLDC
--
## Brushless DC Motor
<img src="./images/ee564/bldc.jpg" alt="Drawing" style="width: 350px;"/>
### Usually preferred in low cost, small motor
---
# PMSM
--
## Sinusoidal Back-EMF
<img src="./images/ee564/pmsm_emf.png" alt="Drawing" style="width: 600px;"/>
### Sinusoidal back-emf, vector control, precise motion control
---
# BLDC
--
## Trapezoidal Back-EMF
<img src="./images/ee564/bldc_emf.png" alt="Drawing" style="width: 600px;"/>
### Driven by square wave pulses, small power/low cost applications
---
# D-Q Axes Revisited
--
## SM-PMSM
--
(Surface Mount Permanent Magnet Synchronous Machine)
--
<img src="./images/ee564/smpm_Ld_Lq.png" alt="Drawing" style="width: 600px;"/>
--
## Ld = Lq for SMPM machines
---
# D-Q Axes Revisited
--
## IPM
--
(Interior Permanent Magnet Synchronous Machine)
--
<img src="./images/ee564/ipm_Ld_Lq.png" alt="Drawing" style="width: 600px;"/>
--
## Lq > Ld for IPM machines (as \\(\mu_r \approx 1 \\) for PMs)
---
</textarea>
<script src="https://remarkjs.com/downloads/remark-latest.min.js" type="text/javascript"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS_HTML&delayStartupUntil=configured" type="text/javascript"></script>
<script type="text/javascript">
var slideshow = remark.create({countIncrementalSlides: false});
// Setup MathJax
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
MathJax.Hub.Queue(function() {
$(MathJax.Hub.getAllJax()).map(function(index, elem) {
return(elem.SourceElement());
}).parent().addClass('has-jax');
});
MathJax.Hub.Configured();
</script>
</body>
</html>