-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathtrain_generator.py
137 lines (111 loc) · 5.56 KB
/
train_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import tensorflow as tf
import numpy as np
import argparse
import model_config
import data_loader
from ByteNet import generator
import utils
import shutil
import time
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--learning_rate', type=float, default=0.001,
help='Learning Rate')
parser.add_argument('--batch_size', type=int, default=1,
help='Learning Rate')
parser.add_argument('--sample_every', type=int, default=500,
help='Sample generator output evry x steps')
parser.add_argument('--summary_every', type=int, default=50,
help='Sample generator output evry x steps')
parser.add_argument('--save_model_every', type=int, default=1500,
help='Save model every')
parser.add_argument('--sample_size', type=int, default=300,
help='Sampled output size')
parser.add_argument('--top_k', type=int, default=5,
help='Sample from top k predictions')
parser.add_argument('--max_epochs', type=int, default=1000,
help='Max Epochs')
parser.add_argument('--beta1', type=float, default=0.5,
help='Momentum for Adam Update')
parser.add_argument('--resume_model', type=str, default=None,
help='Pre-Trained Model Path, to resume from')
parser.add_argument('--text_dir', type=str, default='Data/generator_training_data',
help='Directory containing text files')
parser.add_argument('--data_dir', type=str, default='Data',
help='Data Directory')
parser.add_argument('--seed', type=str, default='All',
help='Seed for text generation')
args = parser.parse_args()
# model_config = json.loads( open('model_config.json').read() )
config = model_config.predictor_config
dl = data_loader.Data_Loader({'model_type' : 'generator', 'dir_name' : args.text_dir})
text_samples, vocab = dl.load_generator_data(config['sample_size'])
print text_samples.shape
model_options = {
'vocab_size' : len(vocab),
'residual_channels' : config['residual_channels'],
'dilations' : config['dilations'],
'filter_width' : config['filter_width'],
}
generator_model = generator.ByteNet_Generator( model_options )
generator_model.build_model()
optim = tf.train.AdamOptimizer(
args.learning_rate,
beta1 = args.beta1).minimize(generator_model.loss)
generator_model.build_generator(reuse = True)
merged_summary = tf.summary.merge_all()
sess = tf.InteractiveSession()
tf.initialize_all_variables().run()
saver = tf.train.Saver()
if args.resume_model:
saver.restore(sess, args.resume_model)
shutil.rmtree('Data/tb_summaries/generator_model')
train_writer = tf.summary.FileWriter('Data/tb_summaries/generator_model', sess.graph)
step = 0
for epoch in range(args.max_epochs):
batch_no = 0
batch_size = args.batch_size
while (batch_no+1) * batch_size < text_samples.shape[0]:
start = time.clock()
text_batch = text_samples[batch_no*batch_size : (batch_no + 1)*batch_size, :]
_, loss, prediction = sess.run(
[optim, generator_model.loss,
generator_model.arg_max_prediction],
feed_dict = {
generator_model.t_sentence : text_batch
})
end = time.clock()
print "-------------------------------------------------------"
print "LOSS: {}\tEPOCH: {}\tBATCH_NO: {}\t STEP:{}\t total_batches:{}".format(
loss, epoch, batch_no, step, text_samples.shape[0]/args.batch_size)
print "TIME FOR BATCH", end - start
print "TIME FOR EPOCH (mins)", (end - start) * (text_samples.shape[0]/args.batch_size)/60.0
batch_no += 1
step += 1
if step % args.summary_every == 0:
[summary] = sess.run([merged_summary], feed_dict = {
generator_model.t_sentence : text_batch
})
train_writer.add_summary(summary, step)
print dl.inidices_to_string(prediction, vocab)
print "********************************************************"
if step % args.sample_every == 0:
seed_sentence = np.array([dl.string_to_indices(args.seed, vocab)], dtype = 'int32' )
for col in range(args.sample_size):
[probs] = sess.run([generator_model.g_probs],
feed_dict = {
generator_model.seed_sentence :seed_sentence
})
curr_preds = []
for bi in range(probs.shape[0]):
pred_word = utils.sample_top(probs[bi][-1], top_k = args.top_k )
curr_preds.append(pred_word)
seed_sentence = np.insert(seed_sentence, seed_sentence.shape[1], curr_preds, axis = 1)
print col, dl.inidices_to_string(seed_sentence[0], vocab)
f = open('Data/generator_sample.txt', 'wb')
f.write(dl.inidices_to_string(seed_sentence[0], vocab))
f.close()
if step % args.save_model_every == 0:
save_path = saver.save(sess, "Data/Models/generation_model/model_epoch_{}_{}.ckpt".format(epoch, step))
if __name__ == '__main__':
main()