-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathquery_db.py
634 lines (504 loc) · 41 KB
/
query_db.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
#-------------------------------------------------------------------------------
# Name: module1
# Purpose:
#
# Author: mwooten3
#
# Created: 10/11/2016
# Copyright: (c) mwooten3 2016
# Licence: <your licence>
# 5/13/2021: Editing script to resume DISCOVER processing with new SLES12. Changes:
# - DONE: a few edits to slurm .j file writing
# - TO DO: edits to postgres connection with database
# - TO DO: edits in preparation of new db schema ??
# 5/7/2020: Removed references to cent_lat and lon as they were removed from db schema
# 9/18/2018: adding the four dg_stereo arguments (subpixKern, erodeSize, corrKern, corrTime) to the command line. these will be passed to workflow with python_script_args
# 1/24: Instead of passing along preLogText list, write preLogText to text file (saved to inASP dir) and pass filename as arg; then read file into list on DISCOVER
# 1/24: Previously made changes are commented throughout the code (search #*, ##*, #Q, ##Q)
# 10/17/2017: Changing the module of GDAL that we load in the slurm.j file
# 11/13/2017: NEW: query_db_new.py.
# Changes:(#n flag)
# - No longer ASPdir and outDir, just ddir: /att/gpfsfs/briskfs01/ppl/mwooten3/Paul_TTE/DSMs/; which will still be separated by batch ON DISCOVER (not ADAPT)
# - getting rid of mapprj stuff
# - getting rid of imageDate stuff since it will always be in yyyymmdd in the pairname
# 7/15/2021: Updating for new DB access
# - DB does not (currently) have access in crane or gumby nodes
#-------------------------------------------------------------------------------
import os, sys, math, shutil, time, glob, platform, csv, subprocess as subp # edited for ADAPT (no gdalinfo- do we need it?)
#from osgeo import ogr, osr, gdal
from datetime import datetime
from timeit import default_timer as timer
from time import gmtime, strftime
#gdal.AllRegister() #register all raster format drivers
#import workflow_functions as wf
import psycopg2
#import LLtoUTM as convert
#import get_stereopairs_v3 as g
#import shapefile
#from distutils.util import strtobool
def find_elapsed_time(start, end):
elapsed_min = (end-start)/60
return float(elapsed_min)
# 6/15 changing the first check to check for existance in inASP/batch/pairname which will cover duplicates within batch and queries that were cut short (deleting unique_pairnames stuff)
# ...also putting it into a function so it can be addressed multiple times depending on when pairname is defined
# ...also for alreadyQueried and alreadyProcessed outattributes, only batchID, pairname, catID_1 and catID_2 columns might possibly be filled
# function to check if pairname has: already been queried (i.e. directory exists in the same batch in inASP) or already been processed and synced back to DISCOVER
def check_pairname_continue(pairname, imageDir, job_script, preLogText, alwaysCopyPair, SGM): # outAttributes will have as many outAttributes as are known at the time but with 'filler' in the last columm, which will be replaced with approporate reason before getting written to csv
if SGM:
checkDir = '/att/pubrepo/DEM/hrsi_dsm/v2/'
else: checkDir = '/att/pubrepo/DEM/hrsi_dsm/'
alreadyProcessed = False # this starts at False and gets set to true if the pair was already processed
queryCopyPair = True # start with the assumption that we have not queried/copied this pair for this batch and so we DO want to query/copy
# let's be sure the pairname we are trying to run has not been run before in this batch OR has not be processed through DISCOVER
# (i.e. glob on imageDir, '.xml' is not empty) AND slurm.j file is written (last thing that will happen to a pair)
globDir = glob.glob(os.path.join(imageDir, '*xml')) # this list will be empty if not already queried
if len(globDir) > 0 and os.path.isfile(job_script): # if there are xml's in the imageDir AND slurm.j file, we can skip query/copy step
print " Pair {} has already been queried and copied for this batch. Skipping query/copy steps\n".format(pairname)
preLogText.append("\n\t Pair {} was queried and copied earlier for this batch\n".format(pairname))
## outAttributes = outAttributes.replace('filler', 'processing')
## outAttributes = outAttributes.replace('""', 'True') # if pairname was alreadyQueried, catID1 and 2 have been found (True)
## with open(summary_csv, 'a') as c:
## c.write(outAttributes)
queryCopyPair = False # then skip copy and query. if it has already been queried/copied, skip query copy step but do the rest
# also check to be sure pairname was not already processed in an earlier batch by seeing if it exsits in outASP on ADAPT:
checkOut1 = os.path.join(checkDir, pairname, "out-DEM_4m.tif") # if EITHER of these exist, we dont need to process in DISC
checkOut2 = os.path.join(checkDir, pairname, "out-DEM_1m.tif")
if os.path.isfile(checkOut1) or os.path.isfile(checkOut2): # already ran successfully and was rsynced back to ADAPT
alreadyProcessed = True # then skip pairname. even if queryCopyPair is True it will be skipped entirely because continue is before if queryCopyPair
if alwaysCopyPair:
alreadyProcessed = False # if we want to copy it anyways, pretend it was not already processed
print " Pair {} has already been processed in previous batch. alwaysCopyPair is on, so copying data anyways\n".format(pairname)
else: print " Pair {} has already been processed in previous batch. Moving to next pair\n".format(pairname)
return (queryCopyPair, alreadyProcessed, preLogText)
#def main(csv, ASPdir, batchID, mapprj=True, doP2D=True, rp=100): #* batchID to keep track of groups of pairs for processing # old way- without argparse
def main(inTxt, ASPdir, batchID, jobID, alwaysCopyPair, SGM, subpixKern, erodeSize, corrKern, corrTime, noP2D, rp, debug): #the 3 latter args are optional #n vinTxt replaces csv
tarzipBatch = False # set as variable for now, might use it but might get rid of it altogether
test = False # set test to True if we want to run a test, which will not skip the pair if it's already in the hrsi_dsms directory on pubrepo
start_main = timer() # start timer object for entire batch
# 7/15/2021: Get DB password from file
dbPassTxt = '/att/gpfsfs/home/mwooten3/arcdb04_password.txt'
with open(dbPassTxt, 'r') as ot:
dbPass = ot.read().strip()
baseDir = os.path.dirname(ASPdir.rstrip('/'))
# ASPdir is (/att/nobackup/mwooten3/AIST/TTE/ASP)
# baseDir is one level up (os.path.dirname(ASPdir.rstrip('/') = /att/nobackup/mwooten3/AIST/TTE/)
if batchID.startswith('batch'): batchID = batchID.replace('batch', '')
# set variables using CL args
doP2D = not noP2D # doP2D is the opposite of noP2D
DEMdir = '/att/pubrepo/ASTERGDEM/'
DISCdir = '/discover/nobackup/projects/boreal_nga' # DISCOVER path, for writing the job scripts
batchDir = os.path.join(ASPdir, 'batch{}'.format(batchID))
os.system('mkdir -p {}'.format(batchDir))
##LogHeaderText = []
workflowCodeName = 'workflow_HRSI_vDISC.py' #N
# Read in the pairnames from the text file #n
if os.path.exists(inTxt):
with open(inTxt, 'r') as it:
pairnames = [f.strip() for f in it.readlines()]
## print pairnames #T
nPairs = len(pairnames)
# 2/13 if SHAPE* is in the header, replace with shape to header can be passed
# go ahead and get the name for the reQuery csv file. This csv will be a subset of the incsv, but including only those lines that had data missing and could not be processed # 4/5/2017
try:
oldQvers = int(os.path.basename(inTxt).split('_')[-1].split('.')[0][1]) # this will grab the ? from the *_q?.txt to figure out which query version we are on (0 is initial)
newQvers = oldQvers + 1 # we will only need this if there are pairs with no data
newQtxt = inTxt.replace('q{}.txt'.format(oldQvers), 'q{}.txt'.format(newQvers))
except ValueError:
newQtxt = inTxt.replace('.txt', '_new.txt')
# log ADAPT output for bash
logdir = os.path.join(baseDir, 'queryLogs')
os.system('mkdir -p {}'.format(logdir))
lfile = os.path.join(logdir, 'batch{}_ADAPT_query_log.txt'.format(batchID))
print "Attempting to process {} pairs for batch {}. See log file for output:\n{}".format(nPairs, batchID, lfile)
so = se = open(lfile, 'a', 0) # open our log file
sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) # re-open stdout without buffering
os.dup2(so.fileno(), sys.stdout.fileno()) # redirect stdout and stderr to the log file opened above
os.dup2(se.fileno(), sys.stderr.fileno())
if debug: print "!!!!! DEBUG mode !!!!!\n\n"
print "BATCH: {}".format(batchID)
print "Attempting to process {} pairs\n".format(nPairs)
print "Begin:", datetime.now().strftime("%m%d%y-%I%M%p"), "\n"
# Set up an output summary CSV that matches input CSV
# csvOutFile = csv.split(".")[0] + "_output_smry.csv" ##* old way, below is the same thing but more readable
# set up batch level failure csv. this is where outAtributes will go unless the pair succeeded
## summary_csv = os.path.join(baseDir, 'batch_failure_csvs', 'batch%s_failed_pairs.csv' % batchID) # old batch failure script
summary_csv = os.path.join(batchDir, 'batch{}_output_summary.csv'.format(batchID))
# if summary csv does not exist, create it and write header:
#if not os.path.isfile(summary_csv):
with open(summary_csv, 'w') as sc:
sc.write("batchID, pairname, catID_1, catID_1_found, catID_2, catID_2_found, year, month, queryResult\n")
# also set up text file that will contain list of catIDs that are missing data
missing_catID_file = os.path.join(baseDir, 'missing_catID_lists', 'batch{}_missing_catIDs.txt'.format(batchID))
## print missing_catID_file #T
n_missing_catIDs = 0 # count starts at 0
if os.path.isfile(missing_catID_file): os.remove(missing_catID_file) # if this missing cat ID file exists, erase it
# this text file will be a list of all pairs submitted for processing (including pairs that were
submittedPairFile = os.path.join(baseDir, 'submittedPairs_lists', 'batch{}_submittedPairs.txt'.format(batchID))
if os.path.isfile(submittedPairFile): os.remove(submittedPairFile) # if this submitted pair file exists, erase it and start over
# make some dirs:
for d in [os.path.join(baseDir, 'missing_catID_lists'), os.path.join(baseDir, 'submittedPairs_lists')]:
os.system('mkdir -p {}'.format(d))
# create submission script file which will contain all commands needed to submit the job to slurm
submission_file = os.path.join(batchDir, 'submit_jobs_batch{}.sh'.format(batchID))
# ?? what all do we need here to run all the jobs ??
with open(submission_file, 'w') as ff:
ff.write('#!/bin/bash\n\n')
#------------------------------------------------------------------
# Loop through pairs
#------------------------------------------------------------------
pair_count = 0 # to print which pair we are at
n_pair_copy = 0 # number of succeffully copied pairs, which may just be a subset of number of pairs submitted
n_submitted = 0 # number of pairs actually submitted
for pairname in pairnames: #for pair in pairnames
start_pair = timer()
pair_count += 1
print "\nAttempting to query and copy data for pair {} of {} ({}):\n".format(pair_count, nPairs, pairname) # print to ADAPT screen
#print line
preLogText = [] # start over with new preLog everytime you go to another pair
# Get attributes from the CSV
## linesplit = line.rstrip().split(',')
preLogText.append("--DB Querying Text (ADAPT)------\nInput text file: {}\n\nPairname from text file: {}\nBatch ID: {}\n\n".format(os.path.abspath(inTxt), pairname, batchID))
catID_1 = pairname.split('_')[2]
catID_2 = pairname.split('_')[3]
sensor = pairname.split('_')[0]
imageDate = pairname.split('_')[1] # will be text in format yyyymmdd
year = imageDate[0:4] # get info before converting to datetime object
month = imageDate[4:6]
day = imageDate[6:8]
date = year+month+day # don't know if I need this anymore but jic. string date
# 3/9: Niger delta does not have dates in pairnames, doesn't appear that we need/use this anyway, so comment out for now
#imageDate = datetime.strptime(imageDate,"%Y%m%d") # now imageDate is a datetime object #* do we even need this. when we pass to DISCOVER we convert to string anyways
# create variables that use pairname
imageDir = os.path.join(batchDir, pairname) # where data will be copied to on ADAPT
discover_imageDir = os.path.join(DISCdir, 'ASP', 'batch{}'.format(batchID), '{}'.format(pairname)) # where data will be copied to on DISCOVER (and thus the imageDir we need to write to code call) #n imageDir on DISC is no longer separated by batch
job_script = os.path.join(imageDir, 'slurm_batch{}_{}.j'.format(batchID, pairname)) # individual job script
# before continuing, check to see if we need to a) stop processing (alreadyProcessed) b) skip query/copy or c) continue on with process
outAttributes = '{},{},{},"",{},"",{},{},filler\n'.format(batchID, pairname, catID_1, catID_2, year, month) # this is outAttributes for now. filler will be replaced
(queryCopyPair, alreadyProcessed, preLogText) = check_pairname_continue(pairname, imageDir, job_script, preLogText, alwaysCopyPair, SGM)
# pairnameContinue
# TEST 1/29/18: only editing this below (and commenting the line above) so we can send these test pairs to DISCOVER for comparison
if test:
alreadyProcessed = False
queryCopyPair = True
if alreadyProcessed: # if the pairname was already processed all the way through (in a previous batch) skip the pair (after writing outAttributes to csv summary)
outAttributes = '{},{},{},True,{},True,{},{},alreadyProcessed\n'.format(batchID, pairname, catID_1, catID_2, year, month)
with open(summary_csv, 'a') as c:
c.write(outAttributes)
continue
# but if queryCopyPAir is False, we still need to do other stuff before skipping
# NOW QUERY AND COPY DATA FOR PAIR, but ONLY if queryCopyPair is True (ie we have not already done it for pair in this batch)
if queryCopyPair:
# [4] Search ADAPT's NGA database for catID_1 and catid_2
# Establish the database connection
start_query = timer()
#with psycopg2.connect(database="ngadb01", user="anon", host="ngadb01", port="5432") as dbConnect:
# 7/15/2021: New DB
with psycopg2.connect(database="arcgis", user="mwooten3",
password=dbPass, host="arcdb04", port="5432") as dbConnect:
cur = dbConnect.cursor() # setup the cursor
""" 5/6/20: (figuring out which columns are in the db schema)
cur.execute("Select * FROM nga_inventory_canon LIMIT 0")
colnames = [desc[0] for desc in cur.description]
"""
catIDlist = ['XXXXXXX', 'XXXXXXX']
pIDlist = ['XXXXXXX', 'XXXXXXX']
found_catID = [False,False] # have not found it yet
"""
Search 1 catID at a time
"""
# setup and execute the query on both catids of the stereopair indicated with the current line of the input CSV
selected_list = [[],[]] ##** to store the list of lists (selected_list[0] will give list of scenes for catID 1, select_list[1] will give for catID2
for num, catID in enumerate([catID_1,catID_2]): #* loop thru catID of the pairs
# 2/13 change nga_inventory_footprint to nga_inventory
# 4/13 add AND prod_code so we only get Pan data
#selquery = "SELECT s_filepath, sensor, acq_time, cent_lat, cent_long FROM nga_files_footprint WHERE catalog_id = '%s'" %(catID)
# 5/7/2020: cetn_lat and cent_long are no longer included in the database schema
#selquery = "SELECT s_filepath, sensor, acq_time, cent_lat, cent_long FROM nga_inventory_canon WHERE catalog_id = '{}' AND prod_code = 'P1BS'".format(catID)
#selquery = "SELECT s_filepath, sensor, acq_time FROM nga_inventory_canon WHERE catalog_id = '{}' AND prod_code = 'P1BS'".format(catID)
# 7/15/2021: New table name
selquery = "SELECT s_filepath, sensor, acq_time FROM nga_footprint_master_v2 WHERE catalog_id = '{}' AND prod_code = 'P1BS'".format(catID)
preLogText.append( "\n Now executing database query on catID '{}' ...".format(catID))
print " Executing database query on catID '{}' ...".format(catID)
cur.execute(selquery)
"""
'selected' will be a list of all raw scene matching the catid and their associated attributes that you asked for above
"""
selected=cur.fetchall()
preLogText.append( "\n -Found '{}' scenes for catID '{}' ".format(len(selected),catID))
# Get info from first item returned
if len(selected) == 0:
found_catID[num] = False
print " -No data found for catID {}. Writing to missing catID text file".format(catID)
if debug: print selected
#missing_catIDs.append(catID)
# we can just assume we will never run batch more than once when we get shit figured out
with open(missing_catID_file, 'a') as mf:
mf.write(catID +'\n')
n_missing_catIDs += 1 # add one to number of missing catIDs for batch
continue ##** if we don't have data for catID X, set it to false and move to the next catID
# only want to print number of scenes found if there were scenes found
print " -Found {} scenes".format(len(selected))
if debug: print " Selected list (before pID filtering): {}".format(selected)
##** removed else here because continue should take care of the flow
##** moved this following block from down below
# If > 0 items returned from search, add catID to list, add product ID to list, and add the resulting scenes to the list
"""
This is a 2 element list holding the catid of the left and the right strip
"""
catIDlist[num] = catID
pID = os.path.basename(selected[0][0]).split('-')[2].split('_')[0] # same thing: os.path.split(os.path.split(selected[0][0])[0])[1].split('_')[-2] # get pID from first entry in selected
pIDlist[num] = pID
found_catID[num] = True
selected_filtered = [s for s in selected if os.path.basename(s[0]).split('-')[2].split('_')[0] == pID] # filter selected based on pID
print " -Have {} scenes after filtering based on pID {}".format(len(selected_filtered), pID)
preLogText.append( "\n -Have {} scenes after filtering based on pID {}".format(len(selected_filtered), pID))
selected_list[num] = selected_filtered # selected list is a list of len 2, where the first index contains the matching files from the first catID, and second index contains from second catID
if debug:
print " Selected list (after pID filtering): {}".format(selected_filtered)
print ' Number of filtered scenes, side 1: {}'.format(len(selected_list[0]))
print ' Number of filtered scenes, side 2: {}'.format(len(selected_list[1]))
if found_catID.count(False) == 2: # if both values of found_catID are False, no data was found
# took out try statement to get month/year/date from imageDate and put it before if queryCopyPair:. It will be the same thing here even though it's moved up
# pairname = sensor + "_" + date + "_" + catID_1 + "_" + catID_2
#pairname = "{}_{}_{}_{}".format(sensor, date, catID_1, catID_2) # don't need this here anymore. we will always get pairname from input csv
## mapprj = False
DSMdone = False
#outAttributes = batchID + "," + pairname + "," + str(found_catID[0]) + "," + str(found_catID[1]) + "," + str(mapprj) + "," + str(year) + "," + str(month) + "," + str(avSunElev)+ "," + str(avSunAz) + "," + str(avOffNadir) + "," + str(avTargetAz) + "," + str(avSatAz) + "," +str(conv_ang) + "," + str(bie_ang) + "," + str(asym_ang) +"\n"
outAttributes = '{},{},{},{},{},{},{},{},missingData\n'.format(batchID, pairname, catID_1, found_catID[0], catID_2, found_catID[1], year, month)
with open(summary_csv, 'a') as c:
c.write(outAttributes) ##* append the attributes (mostly blank at this point) to the csv file list
with open(newQtxt, 'a') as nq:
nq.write('{}\n'.format(pairname))
##Q Print statement here??? or do we just need to print one statement if one or both catID data is not present
preLogText.append("\n There is no data for either catID in our archive for pair {}\n\n".format(pairname))
print "Neither catID returned data from our query. Moving to next pair\n"
continue ##* and move on to the next pair in the list
##** now get info from first scene in selected list, regardless of whether or not we have one or two catIDs. if we get to this point we know we have items in selected list
#* at this point we know that we have data for at least one catID
"""
Getting needed info from just the first rec in the returned table called 'selected' ##** now it's a list called selected_list
s_filepath, sensor, acq_time
"""
#* getting the date here again. Do we need to do this?
# get a selected list (like from the query loop) that is definitely not empty
selected = selected_list[found_catID.index(True)] # this will give the selected list that has data (works for scenarios where one catID has data or both)
## date = str(selected[0][2]).replace("-","") # eg. 20110604
## year = date.strip()[:-4] # e.g. 2011
## month = date.strip()[4:].strip()[:-2] # e.g. 06
"""
pairname is important: indicates that data on which the DSM was built..its unique..used for subdir names in outASP and inASP
"""
#if len(catIDlist) < 2: ##** if there was one but not two catIDs of data for the pair, we want to get the info for the outCsv and move on to the next pair
if found_catID.count(False) == 1:
#print "\n\tMissing a catalog_id, can't do stereogrammetry. **review this print statement/placement with the one below in mind\n\n"
preLogText.append("\n Missing a catalog_id, can't do stereogrammetry. **review this print statement/placement with the one below in mind\n\n")
## mapprj = False
DSMdone = False
#outAttributes = batchID + "," + pairname + "," + str(found_catID[0]) + "," + str(found_catID[1]) + "," + str(mapprj) + "," + str(year) + "," + str(month) + "," + str(avSunElev)+ "," + str(avSunAz) + "," + str(avOffNadir) + "," + str(avTargetAz) + "," + str(avSatAz) + "," +str(conv_ang) + "," + str(bie_ang) + "," + str(asym_ang) + "\n"
outAttributes = '{},{},{},{},{},{},{},{},missingData\n'.format(batchID, pairname, catID_1, found_catID[0], catID_2, found_catID[1], year, month)
with open(summary_csv, 'a') as c:
c.write(outAttributes)
##Q print statement here?
# write pairname to new query list
with open(newQtxt, 'a') as nq:
nq.write('{}\n'.format(pairname))
preLogText.append("\n One of the catIDs does not have data in our archive for pair {}\n\n".format(pairname))
print "One of the catIDs returned no data from our query. Moving to next pair\n"
continue ##* move on to the next pair
end_query = timer()
time_query = round((end_query - start_query)/60, 3)
print " Elapsed time to query pair {}: {} minutes\n".format(pairname, time_query)
start_copy = timer()
# we will only get to this point if there is data for both catIDs
pair_data_exists = [False, False] # keeps track of whether scene data for either catID exists in ADAPT or not
for num, catID in enumerate([catID_1,catID_2]):
print " Copying data for catalog ID {}".format(catID) # print to ADAPT log
selected = selected_list[num] # retrieve list of scenes for catID
# 5/7/2020: cetn_lat and cent_long are no longer included in the database schema
# get lat long and path from first
#lat= float(selected[0][3])
#lon = float(selected[0][4])
path_0 = os.path.split(selected[0][0])[0]
preLogText.append("\n NGA dB path: {}".format(path_0))
# Get productcatalogid from this first dir: sometimes 2 are associated with a catid, and represent duplicate data from different generation times
pID = pIDlist[num]
preLogText.append(" Product ID: {}".format(pID))
#preLogText.append(" Center Lat: {}".format(lat))
#preLogText.append(" Center Lon: {}".format(lon))
"""
[4.1] Make imageDir and COPY data from archive to ADAPT
"""
os.system('mkdir -p {}'.format(imageDir))
preLogText.append("\n Moving data from NGA database to {}".format(imageDir))
scene_exist_cnt = 0 # if this remains 0, uh oh. skip pair
for row in selected: ##** now we are looping through the list of selected scenes for catID X
ntf = row[0]
filename, fileExt = os.path.splitext(ntf)
xml = ntf.replace(fileExt, '.xml') # for ntf files
if debug:
print ntf
print xml
print os.path.isfile(ntf)
print os.path.isfile(xml)
#continue
# ** FOR NOW: copy files if it exists. assumming if it doesnt exist the path changed to NGA, copy that instead
if not os.path.isfile(os.path.join(imageDir, os.path.basename(ntf))): # if the file is not in the imageDir
ntf_replace = ntf.replace('NGA_Incoming/NGA', 'NGA')
## if debug: print ntf, ntf_replace
if os.path.isfile(ntf):
if debug: print "Copying {}".format(ntf)
else: os.system('cp {} {}'.format(ntf, imageDir)) # only copy if debug off
elif os.path.isfile(ntf_replace):
if debug: print "Copying {}".format(ntf_replace)
else: ntf = ntf_replace
# print "Copying %s" % ntf
os.system('cp {} {}'.format(ntf, imageDir))
else: # if the file exists in none of these places
#print " file does not exist in (%s) - delete later?" % ntf
if debug: print "file does not exist in {} or {}".format(ntf, ntf_replace)
continue # move to next scene, don't even try to get the xml
if not os.path.isfile(os.path.join(imageDir, os.path.basename(xml))):
xml_replace = xml.replace('NGA_Incoming/NGA', 'NGA')
## if debug: print xml, xml_replace
if os.path.isfile(xml):
if debug: print "Copying {}".format(xml)
else: os.system('cp {} {}'.format(xml, imageDir))
elif os.path.isfile(xml_replace):
xml = xml_replace
if debug: print "Copying {}".format(xml_replace)
else: os.system('cp {} {}'.format(xml, imageDir))
else:
#print " file does not exist in (%s) - delete later?" % xml
if debug: print "file does not exist in {} or {}".format(xml, xml_replace)
else: os.remove(ntf) # remove ntf file if xml does not exist
continue # move to next scene
# if we get here, both xml and ntf existed (we bypassed both else - continue statements)
# TD 4/5: we need to be sure the count goes up only if the above statements works
scene_exist_cnt += 1 # add one to count
if scene_exist_cnt == 0: # if no data was found in the NGA database for catID
print " No data was found in ADAPT archive for pair {}. Skipping to next catID\n\n".format(pairname)
continue
else:
pair_data_exists[num] = True # set catID side to True since scenes do exist
if pair_data_exists == [True, True]: # both pairs have data
#print "Data exists for each catID in pair"
pass # then keep going
else: # if there was no data for one or both catIDs
print "There was no data for one or both catIDs in the ADAPT archive. Skipping to next pair\n\n"
# write pairname
with open(newQtxt, 'a') as nq:
nq.write('{}\n'.format(pairname))
# write out attributes to failue csv
#outAttributes = batchID + "," + pairname + "," + str(found_catID[0]) + "," + str(found_catID[1]) + "," + str(mapprj) + "," + str(year) + "," + str(month) + "," + str(avSunElev)+ "," + str(avSunAz) + "," + str(avOffNadir) + "," + str(avTargetAz) + "," + str(avSatAz) + "," +str(conv_ang) + "," + str(bie_ang) + "," + str(asym_ang) + ", data does not exist on ADAPT\n"
outAttributes = '{},{},{},{},{},{},{},{},missingData-ADAPT\n'.format(batchID, pairname, catID_1, found_catID[0], catID_2, found_catID[1], year, month) # we should theoretically never get to this point but just in case have a separate queryResult value
with open(summary_csv, 'a') as c:
c.write(outAttributes)
continue
"""
Now we have all the raw data in the inASP subdir identified with the pairname
"""
end_copy = timer()
time_copy = round((end_copy - start_copy)/60, 3)
print " Elapsed time to copy data for pair {} of {}, pairname {}: {} minutes\n".format(pair_count, nPairs, pairname, time_copy)
n_pair_copy += 1 # if we get to this point we have successfully copied data for the pair
# don't need to rewrite prelog text file or individual job script if we've already queried/copied pair
# write preLogText to a text file
preLogTextFile = os.path.join(imageDir, 'preLogText_{}.txt'.format(pairname))
with open(preLogTextFile, 'w') as tf:
for r in preLogText:
tf.write(r + '\n')
preLogTextFile_DISC = os.path.join(discover_imageDir, os.path.basename(preLogTextFile)) # the path to where it's stored on DISCOVER
# slurm.j inputs
job_name = '{}__{}__job'.format(batchID, pairname) # identify job with batchID and pairname??
time_limit = '6-00:00:00'
if sensor == 'WV03': time_limit = '8-00:00:00'
num_nodes = '1'
python_script_args = 'python {} {} {} {} {} {} {} {} {} {}'.format(os.path.join(DISCdir, 'code', 'evhr', workflowCodeName), pairname, batchID, os.path.join(DISCdir, 'ASP'), preLogTextFile_DISC, str(SGM).lower(), subpixKern, erodeSize, corrKern, corrTime)
#print python_script_args #T
# slurm.j file (calls the python code in discover for just one pair)
# 5/13/2021: New slurm .j set up (edits have ** next to)
with open(job_script, 'wb') as f:
f.write('#!/bin/bash -f\n\n')
f.write('#SBATCH --job-name={}\n'.format(job_name))
f.write('#SBATCH --nodes={}\n'.format(num_nodes))
f.write('#SBATCH --constraint=hasw|sky\n\n') #** skylake or old haswell nodes
f.write('#SBATCH --time={}\n'.format(time_limit))
f.write('#SBATCH --account={}\n'.format(jobID))
f.write('#SBATCH --partition=single\n')
f.write('#SBATCH --qos=boreal_b0217\n\n')
f.write('source /usr/share/modules/init/bash\n')
f.write('source /discover/nobackup/projects/boreal_nga/set_my_env.sh\n\n') #**
# ** no longer doing this block. most of it happens with the above line now
#f.write('module load other/asp/2.6.0-2018-03-06\n\n')
#f.write('export PATH=/discover/nobackup/projects/boreal_nga/code/evhr:${PATH}\n')
#f.write('export PATH=/discover/nobackup/projects/boreal_nga/code/dgtools/dgtools:${PATH}\n')
#f.write('export PATH=/discover/nobackup/projects/boreal_nga/code/imview/imview:${PATH}\n')
#f.write('export PATH=/discover/nobackup/projects/boreal_nga/code/pygeotools/pygeotools:${PATH}\n\n')
#f.write('ulimit -a\n\n') # prob dont need?
#f.write('export PYTHONPATH=/discover/nobackup/projects/boreal_nga/code/evhr:/discover/nobackup/projects/boreal_nga/code/dgtools:/discover/nobackup/projects/boreal_nga/code/pygeotools:/discover/nobackup/projects/boreal_nga/code/imview\n\n')
f.write('{}\n'.format(python_script_args))
# if we get here we know: pair was either alreadyQueried (and is sent to processing) or was just queried. either way, write to summary csv;; also know found catID is True
found_catID = [True, True] # hard code this. either pair was already queried/processed (in which case both catIDs have data, or if data is missing (either one of found_catID is False), pair will be skipped
# even if queryCopyPair was False. we still need to do the submission/csv stuff
outAttributes = '{},{},{},{},{},{},{},{},processing\n'.format(batchID, pairname, catID_1, found_catID[0], catID_2, found_catID[1], year, month)
with open(summary_csv, 'a') as c:
c.write(outAttributes) ##* append the attributes (mostly blank at this point) to the csv file list
with open(submission_file, 'a') as ff:
ff.write("\ncd {0}\nchmod 755 {1}\nsed -i '$a\\' {1}\nsbatch {1}".format(discover_imageDir, os.path.basename(job_script))) # do the sed just in case. this arg says add newline to end of file only if one is not already there
n_submitted +=1 # add one to n_submitted
# add pairname to a text list with pairs submittedPairFile = '/att/gpfsfs/briskfs01/ppl/mwooten3/Paul_TTE/submittedPairs_lists/batch{}_submittedPairs.txt'.format(batchID)
with open(submittedPairFile, 'a') as ptf: # pairname will only get written here if it was just queried/copied or queried/copied earlier. but not if it was already processed or missing data
ptf.write('{}\n'.format(pairname))
if n_missing_catIDs > 0: print "\n- Wrote {} catIDs to missing catID list {}".format(n_missing_catIDs, missing_catID_file) # only thing we wanna do is print how many files
if debug: sys.exit() # exit before tarring
# copy summary csv to summary_csvs directory:
os.system('cp {} {}'.format(summary_csv, os.path.join(baseDir, 'batch_summary_csvs')))
# NOW TAR everything in the batchDir into archive
if tarzipBatch:
start_tarzip = timer()
archive = os.path.join(ASPdir, 'batch{}-archive.tar.gz'.format(batchID))
print "\n\n--------------------------------------------\nAttempting to archive data now for entire batch ({} of {} pairs)...".format(n_submitted, nPairs)
if not os.path.exists(archive): # if data has not yet been tarred up (careful with this)
print "\n Begin archiving:", datetime.now().strftime("%I:%M%p %a, %m-%d-%Y")
tarComm = 'tar -zcf {} -C {} batch{}'.format(archive, ASPdir, batchID) #* might not need to change, still wanna get rid of all the way up to batchdir so
print ' ' + tarComm
os.system(tarComm)
print " Finish archiving:", datetime.now().strftime("%I:%M%p %a, %m-%d-%Y")
end_tarzip = timer()
time_tarzip = round(find_elapsed_time(start_tarzip, end_tarzip),3)
print "Elapsed time for tarring/zipping {} pairs: {} minutes".format(n_submitted, time_tarzip)
else:
print " Archive {} already exists".format(archive)
time_tarzip = 0
else: # if no tarzip
print "\nNot tar/zipping batch"
time_tarzip = 'N/A'
end_main = timer()
time_main = round(find_elapsed_time(start_main, end_main), 3)
print "\nElapsed time for entire run [queried/copied {} pairs, submitted {} pairs, {} total pairs]: {} minutes".format(n_pair_copy, n_submitted, nPairs, time_main)
# lastly we need to append to the main processing summary: batchID/date, input csv file, number of pairs attempted, number succeeded, time to zip, total time
main_summary = os.path.join(baseDir, 'main_processing_summary.csv') # this is not in Paul_TTE/inASP but in Paul_TTE/
## print main_summary #T
with open(main_summary, 'a') as ms:
ms.write('{}, {}, {}, {}, {}, {}, {}\n'.format(batchID, os.path.abspath(inTxt), n_submitted, nPairs, n_missing_catIDs, time_tarzip, time_main))
print "End:", datetime.now().strftime("%m%d%y-%I%M%p"), "\n\n"
if __name__ == '__main__':
import argparse
ap = argparse.ArgumentParser()
ap.add_argument("inTxt", help = "Input text file with pairnames to be queried and processed") #required
ap.add_argument("ASPdir", help = "inASP directory where batch/pair input data will be stored") # required
ap.add_argument("batchID", help = "Batch identifier") #required
ap.add_argument("-jobID", default='s1862', help = "Job ID (s1861 or s1862)")
ap.add_argument("-alwaysCopyPair", action='store_true', default=False, help="Include -alwaysCopyPair tag if you want to copy pairs regardless of whether or not it's already been processed")
# subpixKern, erodeSize, corrKern, corrTime
ap.add_argument("-SGM", action='store_true', default=False, help = "Include -SGM if you would like to run in SGM mode") # Default (if -SGM left off) = False
ap.add_argument("-subpixKern", default=21, help = "Integer specifying the kernel size used for the subpixel method")
ap.add_argument("-erodeSize", default=0, help = "Isolated blobs with no more than this number of pixels will be removed")
ap.add_argument("-corrKern", default=21, help = "Integer specifying the size of the correlation kernel used in stereogrammetry")
ap.add_argument("-corrTime", default=300, help = "Integer specifying the time allotted to each tile for integer correlation")
## ap.add_argument("-mapprj", action='store_true', help="Include -mapprj tag at the command line if you wish to mapproject") # if "-mapprj" is NOT included at the command line, it defaults to False. if it IS, mapprj gets set to True
ap.add_argument("-noP2D", action='store_true', help="Include -noP2D tag at the command line if you do NOT wish to run P2D") # if "-noP2D" is NOT included at the CL, it defaults to False. doP2D = not noP2D
ap.add_argument("-rp", default=100, type=int, help="Reduce Percent, default = 100")
ap.add_argument("-debug", action='store_true', help="Include -debug if you wish to run in debug mode") # if -debug is NOT included at the CL, it defaults to False
kwargs = vars(ap.parse_args()) # parse args and convert to dict
main(**kwargs) # run main with arguments